THE ROLE OF *POTAMOGETON CRISPUS* L. IN THE PONGOLO RIVER FLOODPLAIN ECOSYSTEM

VOLUME II

FIGURES, TABLES AND PLATES

Вy

KEVIN HUGH ROGERS

A

4.T Thes

DEPARTMENT OF BOTANY, UNIVERSITY OF NATAL, PIETERMARITZBURG.

DECEMBER 1984 -

D

VOLUME 2

CONTENTS

Ι List of Figures ٧ List of Tables VII List of Plates List of Figures Introduction Chapter 1 Generalized growth and metabolic patterns for 1.1 1 typical annual aquatic macrophyte Location of the Pongolo river floodplain and its 1.2 2 catchment Map of the Pongolo floodplain showing the 1.3 3 location of the major floodplain pans 1.4 Profile of the course of the Pongolo river through 4 its catchment 1.5 Geological section through the Pongolo river floodplain and its immediate surroundings 6 1.6 Mean monthly flow of the Pongolo river above the 7 Pongolapoort Dam (1929 - 1976) 1.7 A comparison of the natural flow regime of the Pongolo river and the artificial releases from the Pongolapoort Dam 8 1.8 Cross section of the Pongolo river floodplain showing the distribution of the seasonally flooded terrestrial communities 9 1.9 Map of Tete pan at maximum retention level 10 1.10 Hypsographic curve of Tete pan 11 1.11 An illustration of the general morphological features of a mature P. crispus plant 12

Ι

Page

Page

Chapter 3	The Physico-chemical Environment of Tete pan	
3.1	Depth of water and Secchi disc transparency	
	in Tete pan	13
3.2	Changes in surface area of Tete pan	14
3.3	Midday temperatures in Tete pan	15
3.4	Diel variation in temperature in Tete pan during	
	autumn winter and spring	16
3.5	(a - b) Changes in oxygen saturation and pH	
	in Tete pan	17
3.6	Changes in conductivity and salinity in Tete pan	18
3.7	Change in conductivity as a function of volume	
	change in Tete pan	19
3.8	Change in concentration of nitrate nitrogen (NO ₃ -N) in Tete pan	20
3.9	Change in concentration of soluble reactive	
	phosphorus (SRP) and total phosphorus (TP) in	
	Tete pan	21
Chapter 4	Adaptation of Growth, Reproduction and Nutrient	
	Relations of <i>Potamogeton crispus</i> to floodplain conditions	
4.1	Turion germination in the field	22
4.2	(a - b) Dry matter standing crop and production of	
	P. crispus in Tete pan	24
4.3	Changes in concentration of chlorophyll in P.	
	crispus leaves	25
4.4	The rate of oxygen production by P. crispus shoot	
	tips in Tete pan (1976)	26
4.5	Numbers and standing crop of turions and number	
	of inflorescences on P. crispus in Tete pan	27
4.6	Standing stocks of phosphorus and nitrogen in	
	P. crispus from Tete pan	30

	Pag	III je
Chapter 5	Potamogeton crispus/Waterfowl Interactions in the Grazing Food Chain	
5.1	(a - b) The numbers of White-faced Duck and total numbers of birds of other waterfowl species on	
5.2	11 different pans of the Pongolo floodplain Numbers of White-faced Duck and total number	36
5.3	of birds of other waterfowl species on Tete pan Changes in body mass and condition of White-faced	38
5.4	seasonal change in population size A conceptual model of interactions between	44
	waterfowl and <i>Potamogeton crispus</i> which affect the stability of the grazing system	48
Chapter 6	The Epiphyton/Grazer/Host (P. crispus) Association	
6.1	The relationships between leaf age, conditioning and grazers in <i>P. crispus</i>	60
6.2	The relationship between stem position, conditioning and grazers in <i>P. crispus</i>	61
6.3	Changes in snail biomass and numbers in relation to changes in <i>P. crispus</i> standing crop	62
Chapter 7	Decomposition and Detritus Formation	
7.1	The growth cycle of <i>P. crispus</i> population in Tete pan as determined by sequential estimates of	
7.2	<pre>standing crop (a - b) Loss of dry mass during decomposition of P. crispus shoots when plants were taken at maximum standing crop (a) and 20 days later (b)</pre>	63
7.3	Loss of dry mass of senescent and dried <i>P. crispus</i>	64
7.4	<pre>(a - b) Changes in the concentration and stocks of selected nutrients in senescent and dried P.</pre>	04
	crispus remaining in decomposition bags	65

	ł	age
7.5	(a - b) Mathematical functions of mass of plant material remaining against time in relation to actual data points	67
7.6	Size frequency distribution of the <i>Bulinus</i> natalensis population in Tete pan in September 1977	67
7.7	<pre>(a - b) Loss of mass of senescent P. crispus from coarse mesh gauze bags</pre>	68
7.8	<pre>(a - b) The changes in concentration and original stock of nitrogen and phosphorus in senescing</pre>	68
7.9	 P. crispus incubated in coarse mesh gauze bags (a - b) Effects of snails and epiphytic detrital aggregate on loss of mass and detrital accumulation from senescent <i>P. crispus</i> plants incubated in the laboratory 	69
Chapter 8	The Role of <i>Potamogeton crispus</i> in Conservative Transfers of Organic Matter and Nutrients in Tete pa	n
8.1	A conceptual model of pools and transfers of organic matter in the conservative network of Tete pan	20
8.2	A conceptual model of pools and transfers of nitrogen in the conservative network of Tete pan ecosystem	73
8.3	A conceptual model of pools and transfers of phosphorus in the conservative network of Tete	75
8.4	Seasonal fluctuations in the chemical composition of the benthic detrital aggregate in Tete pan in relation to potential detrital inputs and flooding	76
Chapter 9	General Discussion	
9.1 9.2	A diagrammatic comparison of nonteleological and teleological cybernetic systems A conceptual summary of the conservative and informational processes which regulate the	77
	role of <i>P. crispus</i> in Tete pan ecosystem	78

IV

List of Tables

Chapter 1	Introduction	
1.1	Climatic data measured at the Makatini Agricul- tural Research Station	5
Chapter 4	Adaptation of Growth, Reproduction and Nutrient Relations of <i>Potamogeton crispus</i> to Floodplain Conditions	
4.1	The effects of temperature and light on	
4.2	germination of <i>Potamogeton crispus</i> turions The numbers and mass of achenes and turions (m ⁻²) on the sediment of Tete pan at the beginning of	23
	each growing season	28
4.3	Changes in concentration of ash, phosphorus and nitrogen in the standing crop of <i>P. crispus</i> in	
	Tete pan	28
4.4	A preliminary mass balance of phosphorus and nitrogen in the plants and water of Tete pan during	
	periods between summer floods	31
4.5	Estimates of net production and production: biomass (P/B) ratio of P arignus in Tete pan	32
4.6	Comparisons of estimates for seasonal maximum standing crop, annual net production and production: biomass ratio (P/B) of different submerged	JL
	macrophyte communities	33
Chapter 5	Potamogeton crispus/Waterfowl Interactions in the Grazing Food Chain	
5.1	General characteristics of eleven floodplain pans	
	during winter and spring when duck populations are	
5.0	largest	34
5.2	species composition and abundance of waterfowl	
	plain 1978	35

Page

5.3	Species composition of waterfowl populations at	37
5 /	Composition (Aggregate %) and frequency of	
5.4	occurrence of food of White-faced Duck shot on	
	11 different mans on the Pongolo floodplain	39
55	Composition (Aggregate %), frequency of occurence	
J.J	and mass of food of White-faced duck shot on	
	Toto nan	40
E E	The winter diet (Aggregate %) of some important	
0.0	waterfew] species on Tete pan during 1978	41
r 7	The nutritional quality of P arishes turions	
5./	The nutritional quarity of F. Crespus currents	42
F 0	and achieves and many of turnions and achores inside	
5.8	Numbers and mass of currons and achenes inside	15
5.0	and outside exclosures in fete pan (1970)	τJ
5.9	lurion consumption by waterfowl on lete pan in	45
_	relation to total turion production	45
5.10	The change in mean mass of individual turions	10
	in Tete pan	46
5.11	Turion and achene numbers,and mass per unit area	
	in Tete pan and in exclosures(1978)	47
Chapter 7	Decomposition and Detritus Formation	
7.1	Mean number and mass of snails (Bulinus natalensis)	
	found in decomposition bags containing either dried	
	or senescent P. crispus	66
7.2	The effects of snails and epiphytic detrital	
	aggregate on mass loss of uprooted <i>P. crispus</i>	
	plants	70
7.3	The percentage distribution of total nitrogen and	
	phosphorus between the dissolved phase, fine par-	
	ticulate matter and remaining plant material during	
	in vitro decomposition of P origons in the presence	
	and absence of snails	71
7.4	The concentration of N. P and ash free dry mass in	11
	senescent P crisrue plants and in fine particulate	
	organic matter during in withe decomposition	70
	organice matter during on occure decomposition	12

Page

Page

List of Plates

Chapter 2	Materials and Methods	
2.1	(a - b) A comparison of "large" and "small" turions of <i>P. crispus</i>	12
Chapter 5	Potamogeton crispus/Waterfowl Interaction in the Grazing Food Chain	
5.1	<pre>(a - b) T/S of turion parenchyma cells showing starch accumulation</pre>	43
Chapter 6	The Epiphyton/Grazer/Host (P. crispus) Association	
6.1	(a - j) Scanning electron micrographs of the epiphyton on <i>P. crispus</i> leaves of different ages	49-50
6.2	(a - c) Bacteria seen on <i>P. crispus</i> leaves of different ages	51
6.3	<pre>(a - b) Scanning electron micrographs of the epiphyton on basal sections of P. crispus stems after 12 days incubation in unfiltered pan water</pre>	52
6.4	(a - c) T/S through P. crispus leaf epidermidi	53
6.5	(a - d) T/S of mature P. crispus leaves	54
6.6 6.7	<pre>(a - b) T/S of oldest P. crispus leaves (a - b) T/S of the oldest P. crispus leaves after 12 days incubation in pan water</pre>	55
6.8	(a - c) T/S of stems of mature P anience plants	57
6.9	 (a - f) The effects of snail grazing for 24 hours on the epiphyton and surface structure of <i>P. crispus</i> 	57
6.10	<pre>(a - d) The effects of snail grazing on P. crispus leaves of different ages 6 days after the introduction of enable</pre>	58
	incroduction of shalls	59

Figure 1.1 Generalized growth and metabolic patterns for a typical annual aquatic macrophyte. ---- = biomass; ---- = current gross productivity; = current net productivity;--- = current respiration rate; ••• = death losses. (After Westlake, 1965).

Figure 1.2 Location of the Pongolo river floodplain and its catchment. (After Furness, 1981)

Figure 1.3 Map of the Pongolo floodplain showing the location of the major floodplain pans. (After Heeg and Breen, 1982)

Figure 1.4 Profile of the course of the Pongolo river through its catchment. Note the marked change in gradient after the river passes through the Pongolapoort (After Heeg & Breen, 1982).

Figure 1.5

Geological section through the Pongolo floodplain and its immediate surroundings (After Heeg and Breen, 1982).

Month	Mean Maximum Temp. (°C)	Mean Minimum Temp. (°C)	Mean Temp. (°C)	Rainfall (mm)	Wind-1 (km day-1)	Relative 08h00	Humidity % 14h00			
July	25,4	8,3	16,8	12,1 149.3		86	39			
Aug.	26,7	11,4	19,0	6,9	190,4	78	39			
Sept.	28,2	14,5	21,3	46,9	240,8	70 ·	40			
Oct.	29,0	17,0	23,0	43,7	231,6	72	48			
Nov.	29,4	18,4	23,8	64,9	238,7	71	51			
Dec.	31,2	20,1	25,6	60,8	233,3	72	51			
Jan.	32,5	21,3	26,8	75,9 190,2	74	51				
Feb.	31,2	20,5	25,8	105,6	211,4	76	54			
March	30,5	19,6	25,0	73,4	180,5	81	54			
April	28,4	16,6	22,4	54,2 150,1		84	53			
May -	26,8	12,9	19,8 23,6 168,7	23,6 168,7		19,8 23,6	86	48		
June	25,0	8,4	16,6	4,6	127,0	86	40			
Year	28,7	15,8	22,1 572,6 192,7	5,8 22,1 572,6 192,7	15,8 22,1 572,6 192,7	572,6 192,7		22,1 572,6 192,7	78	47
Period from	1966	1966	1966	1966	1969	1966	1966			
to	1975	1975	1975	1975	1973	1975	1975			

Table 1.1Climatic data measured at the Makatini Agricultural Research Station
(After Heeg and Breen, 1982)

Figure 1.6

- Mean monthly flow of the Pongolo river above the Pongolapoort Dam (1929-1976). (After Heeg & Breen, 1982). (A) Mean and 99% confidence limits (uncorrected data)
- (B) Data in (A) corrected to give less weighting to extremes

-

Figure 1.9 Map of Tete pan at MRL showing inflow and outflow channels, and the three sites (X) used for physico-chemical sampling of the water column.

Figure 1.10 Hypsographic curve of Tete pan (modified, after Breen *et al.*, 1978)

An illustration of the general morphological features of a mature *P. crispus* plant.

Plate 2.1 A comparison of "large" and "small" turions of P. crispus
a) Large starch filled turions consisted of swollen
stems with dormant buds in the axils of swollen
leaf bases.

This series illustrates the maturation of a turion (1 - 5)

b) Small turions had stems which were only slightly swollen and the leaf bases were either absent (1) or so reduced that the dormant buds protruded beyond them (2 and 3)
The turions shown here were picked from senescing plants but the leaves were still intact. A large turion without attached leaves (4) illustrates the difference between these two types of turion. (Scale in cm).

(a)

110 120 130 140 150 160 170 180 190 200 21

Figure 3.1 Depth of water (----) and Secchi disc transparency (---) in Tete pan during the study period in relation to the mean retention level (MRL) and approximate high flood level (HFL).

Figure 3.2 Changes in surface area of Tete pan during the study period.

Figure 3.4 Diel variation in temperature (°C) in Tete pan during autumn (13-14/4/76), winter (17-18/8/76) and spring (27-28/10/76) of 1976. Bottom temperature, - - - ; Surface temperature, -----.

Figure 3.5 Changes in oxygen saturation (a) and pH (b) in Tete pan. Stipled areas represent changes in *P. crispus* standing crop and the hatched areas the periods during which water level exceeded MRL.

Figure 3.7 Change in conductivity as a function of volume change in Tete pan during the study period.

Figure 3.8 Change in the concentration of nitrate nitrogen (NO₃-N) in Tete pan. Stipled areas represent changes in *P. crispus* standing crop; the arrows, approximate start of recorded floods and the hatched areas the periods during which water level exceeded MRL.

Figure 4.1 Turion ge was expre with atta germinati

Turion germination in the field. During 1976 this was expressed as the number of turions in the sediment with attached plants but in other years as percent germination (See text pg.70 for details). I = 1 standard error of the mean.

Table 4.1	The effects of temperature and light on germination
	of Potamogeton crispus turions. Results are
	expressed as mean percent germination of five
	replicates per treatment.

TEMP		%	GERMINATION		
°C	LIGHT			DARK	
	31				
15	58.0			51.0	NS
20	41.0			33.0	NS
25	29.0			16.0	*
30	0.0			0.0	
LDS					
p = 0.01	21.88			12.08	

LSD = Least significant difference between means

- * Germination significantly different in the light and dark as tested by paired t test (p = 0.05)
- NS Not significantly affected by light conditions

~ `

Figure 4.4 The rate of oxygen production (gross ——; net ---) per unit dry mass of *P. crispus* shoot tips incubated at their natural depth in Tete pan during 1976. Vertical bars = 1 standard error of the mean.

Table 4.2 The numbers and mass of achenes and turions (m^{-2}) on the sediment of Tete pan at the beginning of each winter growing season (95% confidence limits in parenthesis) and the approximate achene production during that season.

YEAR	TURIO	(m^{-2})	ACHENES	S (m ⁻²)	APPROX. ACHENE
	Numbers	Mass (g)	Numbers	Mass (g)	PROD. (N° m ⁻²)
1976	1129	40.4	1445	3.9	561
	(<u>+</u> 195)	(<u>+</u> 7.0)	(<u>+</u> 209)	(<u>+</u> 0.6)	
1977	1317	36.9	1955	3.3	240
	(<u>+</u> 169)	(<u>+</u> 4.7)	(<u>+</u> 376)	(<u>+</u> 0.6)	
1978	1739	57.2	1972	3.9	180
	(<u>+</u> 262)	(<u>+</u> 8.4)	(<u>+</u> 380)	(<u>+</u> 0.7)	
1979	2100	60.0	1006	2.7	40
	(<u>+</u> 273)	(<u>+</u> 8.0)	(<u>+</u> 144)	(<u>+</u> 0.39)	

Table 4.3Changes in concentration (% dry mass) of ash, phosphorus
and nitrogen in the standing crop of Potamogeton crispus
in Tete pan during the period 1976 - 1979

DATE	ASH	Р	N	DATE	ASH	Р	N
6/5/76	17.9	0.7	3.3	18/5/78	14.6	0.5	2.6
3/6/76	16.3	0.5	2.7	16/6/78	15.0	0.5	2.5
10/7/76	15.6	0.7	2.5	11/7/78	14.4	0.4	2.6
28/7/76	16.5	0.9	2.6	22/8/78	13.2	0.3	2.0
19/8/76	15.1	0.6	2.9	23/9/78	12.1	0.2	1.9
8/9/76	12.9	0.5	2.4	30/10/78	12.0	0.2	1.5
29/9/76	12.1	0.4	1.8				
26/10/76	13.3	0.3	1.6				
24/11/76	12.0	0.3	1.4				
20/4/77	16.9	0.4	2.5	18/5/79	15.1	0.13	1.4
22/5/77	16.4	0.4	2.5	12/6/79	9.5	0.08	1.4
20/7/77	17.0	0.4	2.1	3/7/79	14.1	0.11	1.5
15/8/77	15.5	0.3	1.9	31/7/79	12.4	0.11	1.5
3/9/77	14.9	0.2	1.5	28/8/79	12.2	0.11	1.4
15/10/77	13.6	0.3	1.7				

Figure 4.6 Standing stocks of phosphorus and nitrogen in *P. crispus* from Tete pan during the study period.

Table 4.4 A preliminary mass balance of phosphorus (as Total P, kg) and nitrogen (as $NO_3^{\overline{3}}$ -N in the water and Total N in plants, kg) in the plants and water of Tete pan during periods between summer floods. The difference between mass of nutrients in the water at MRL (when the pan and river lost contact) and the next flood represents that transferred to other components of the system.

NON-REPRODUCTIVE P. CRISPUS

	WATER	R AT MRL	WATER	AT FLOOD	TRANS	FERRED	AT MAX.	ST. CROP	AT	FLOODS
	TP	$NO_3^= -N$	ТР	$NO_3^{=} - N$	TP	N0 ⁼ / ₃ -N	TP	TN	TP	TN
1976	42	82	35	21	7	61	152	730	0	0
1977	99	17	19	13	80	5	158	905	0	0
1978	88	127	18	1	80	126	81	647	44	400
1979	58	10	-	-	-	-	33	145	0	0

Table 4.5	Estimat	es of	annu	al net	produ	uction	and	prod	luctic	n:b	iomass
	(P/B) r	ratio	of P.	crispu	s in	Tete	pan 1	from	1976	to	1978

YEAR		NET PRO	DUCTION	g m ⁻² a ⁻		MAX. ST.	P/B	
	Non-Repro.	Root	Turion	Achene	Tota]	$CROP g m^{-2}$		
		,						
1976	68	3	48	1.1	120.1	43	2.8	
1977	107	5	75	0.5	187.5	72	2.6	
1978	74	4	81	0.4	159.4	64	2.5	

Table 4.6 Comparisons of estimates for seasonal maximum standing crop, annual net production and production:biomass ratio (P/B) of different submerged macrophyte communities

Locality	Species	Max. St. crop g m	Net Prod. 2 g m ⁻² yr ⁻¹	P/B	Source
Lawrence Lake Michigan	Scirpus Chara Annuals	338 110 130	565 155 199	1.7 1.4	Rich, Wetzel and Thuy (1971)
Borax Lake California	Ruppia	60	64	1.1	Wetzel (1964)
Swartvlei S.E. Cape	P. pectinatus	1952	2506	1.2	Howard-Williams (1978)

Table 5.1 General characteristics of the eleven floodplain pans during winter and spring when duck populations are largest. Information from Colvin (1971), Musil (1972) and Rogers and Breen (1981b)

PAN	P. crispus coverage	Depth at MRL	Area	Turbidity	Conduct.	%。 Salinity	Susceptibility to drought	Other aquatic vegetation coverage
Tete Mtikheni Mhlolo Sivunguvungu Bumbe Ntujanene	Abundant Abundant Abundant Abundant Abundant Abundant	1.5 1.5 2.5 2.5 2.0 1.2	100 ha 25 60 40 60 15	Clear Clear Clear Clear Clear Clear	900 <500 2100 235 <500 <500	1°/ <1 2.5°/ <1 <1 <1 <1 <1	Med Med Low Med Med High	2% 5% 20%* 5% 5% 25%*
		TOTAL	300 ha				-	
Mzinyeni Mandlankunzi Kangazini	Sparse Sparse Sparse	1.8 2.5 0.5 TOTAL	80 250 50 380 há	V. Turbid Turbid Variable	215 260 400	د 1 د1 د1	Low Low High	20% 15% 0
Namanini Sokunti	None None	1 m 4.5 TOTAL	65 ha 120 185 ha	Turbid V. Turbid	< 500 290	د 1 د 1	High Low	0 <1%

Susceptibility to drought

Low = unlikely to dry out even during exceptional drought Med. = will dry out only during protracted drought High = usually becomes very shallow each year and frequently dries out

* Includes areas where P. crispus and floating leaved plants occur together

Table 5.2 Species composition (proportion of sightings) and abundance of waterfowl on 11 different pans of the Pongolo floodplain, 1978. Pans were grouped according to the abundance of *P. crispus* during winter and spring as in Table 5.1. P = 40.1% or 0.1 birds ha⁻¹. Waterfowl nomenclature follows Mclachlan and Liversidge (1978)

Species	Number of sightings	% Total sightings	Number of P. crispus Abundant	birds per at Max. Sparse	r ha. st. crop None
White-faced Whistling Duck (Dendrocygna viduata (L.))	18504	73.5	48.6	8.9	2.8
Spur-wing Goose (Plectropterus gambensis (L.)	2363))	9.4	3.8	4.0	0.1
Yellow Billed Duck (Anas undulata,Dubois)	1097	4.4	2.5	0.7	0.7
Knob-billed Duck (Sarkidornis melanotos (Pennant))	1010	4.0	3.0	0.4	Р
Pygmy Goose (Nettopus auritus (Boddaert))	619	2.6	1.3	0.8	0
Red-billed Teal (Anas erythrorhyncha,Gmelin))	525	2.2	0.8	0.4	0.9
Egyptian Goose (Alopchen aegyptiacus (L.))	347	1.4	0.6	0.2	0.2
Fulvous Whistling Duck (Dendrocygna bicolor (Viellot))	312	1.3	Ρ	0.8	0
Hottentot Teal (Anas hottentota, Eyton)	216	0.9	0.5	0.1	0.2
Red-eyed Pochard (Netta erythrophthalma (Weid)	29)	0.1	0.1	Ρ	0
Cape Teal (Anas capensis, Gmelin)	1	Ρ	0	0	Р
White-backed Duck (Thalassornis leuconatus, Eyton)	1	Ρ	Р	0	0
TOTALS	25209	99.8%	71.2 ha ⁻¹	16.1 ha ⁻¹	4.9ha ⁻¹

Table 5.3 Species composition of waterfowl populations at Tete Pan during the period 1976 - 1978 expressed as a percentage of the total sightings for each year. P = < 0.1%

DUCK SPECIES	1976	1977	1978	1979
White-faced Duck	80.9	91.1	88.2	42.9
Spur-wing Goose	0.1	1.3	2.7	11.3
Yellow-billed Duck	0.3	1.0	1.4	20.9
Knob-billed Duck	14.9	4.4	4.5	2.2
Pygmy Goose	2.8	0.5	0.9	0
Red-billed Teal	0.3	0.4	0.7	13.2
Egyptian Goose	0.7	1.1	1.0	8.8
Fulvous Whistling Duck	Р	0.3	Р	0.1
Hottentot Teal	Р	Р	0.9	Р
Red-eyed Pochard	-	-	Р	0.1
Cape Shoveler	-	-	-	0.7

Figure 5.2 Numbers of White-faced Duck (•----•) and total number of birds of other waterfowl species (•---•) on Tete pan during the study period.

Table 5.4 Composition (Aggregate %) and frequency of occurence of food of 56 White-faced Duck shot on 11 different pans on the Pongolo floodplain between January 1978 and April 1979 inclusive.

Food Species	Organ	Winter	/spring	Summer/Autu		
		Agg.%	Freq.%	Agg.%	Freq.%	
Potamogeton crispus	Turion	63.5	83	8.0	9	
Potamogeton crispus	Achene	3.6	17	Р	1	
Aquatic Insect Larvae	-	0.4	29	3.4	6	
<i>Melanoides tuberculata</i> Müller (Mollusca)	-	Ρ	4	4.1	6	
Terrestrial Insects	-	0	0	7.8	16	
Heliotropium indicum L.	Nutlet	0	0	42.0	47	
Polygonum salicifolium Willd.	Achene	0	0	6.4	16	
Polygonum senegalense Meisn.	<pre></pre>	0	0	9.4	13	
Cyperus spp.	Achene	14.1	17	5.3	9	
Ceratophyllum demersum L.	Achene	0	0	0.5	3	
<i>Echinochloa pyramidalis</i> (Lam.) Hitch. and Chase	Caryops	is 8.2	13	6.3	6	
Nymphaea spp.	Seed	2.5	4	1.1	3	
Nymphaea spp.	Tuber	7.0	13	3.1	3	
Legume sp.	Legume	Р	4	Р	3	
Sp. D.	Seed	0	0	3.2	9	
Eriochloa sp.	Caryops	is O	0	Р	6	
TOTAL		99.5		100.6		
N =		24		32		

CROP C	ONTENTS					М	ONTH						TOTAL	TOTAL
SPECIES	ORGAN	A	М	J	^ე 5	J ₂₉	A	S	0	N	J	F	*000	MASS (g)
Nymphaea sp.	Tubers				1.0								1	0.17
Nymphaea sp	Seed	P	22.8	14.5	15.4								5	5.71
Echinochloa pyramidalis	Caryopsis	74.5	1.3	15.1	5.0	2.8	•						9	7.68
Polygonum sen e galen s e	Achene	25.4	74.9	63.1	20.1	0.4	2.0				0.2	16.6	20	0.07
Potamogeton crispus	Turion			0.3	38.8	83.3	96.2	97.8	99.6	80.0	47.3	53.1	36	7.27
Aquatic Insect Larvae	-		0.3	0.7	0.2	13.2	0.1	0.4	0.1	P	0.8	8.1	14	0.4
Potamogeton crispus	Achene		0.6	6.3	18.6		0.2	1.8	0.3	19.7			13	0.2
Cyperus spp.	Achene	0.1			0.9	0.1					5.0	0.2	7	0.4
Heliotropium indicum	Nutlet										42.8	14.0	2	2.73
Sp. F	Achene										0.7	0.3	2	0.05
Legume	Legume											7.7	1	0.11
Najas pectinata	Leaf Stem									Ρ	1.6		2	0.02
Chara sp.	Filaments									0.2	1.5		2	0.02
Sp. D	5					0.1	1.5						2	0.09
NO OF BIRDS	<u>.</u>	5	7	5	6	5	6	4	8	5	2	4		
MEAN CROP MAS	SS (g)	0.95	0.18	1.01	0.47	1.46	3.27	4.37	3.15	2.49	1.72	0.58		

Table 5.5	Composition (Aggregate	e %),frequency of occurence and mass of food of White-faced Duck shot on Tete	ban
	between April 1976 and	February 1977 inclusive.	

P = Present at < 0.1% of the total composition * No of occurrences in 57 birds

Table 5.6 The winter diet (Aggregate %) of some important waterfowl species on Tete pan during 1978. Three birds of each species were shot and the data presented as the aggregate percentage composition.

Duck Species			Food Items	%		
	<i>P. cr</i> Turions	<i>rispus</i> Achenes	Aquatic Insects	Bulinus natalensis	Ostra cods	C. dactylon leaves
Knob-billed Duck	99.9	-	0.1	-	-	-
Spur-winged Goose	89.1	10.7	-	-	-	0.2
Egyptian Goose	95.0	-	0.6	-	-	4.4
Fulvous Whistling Duck	98.8	-	1.2	-	-	-
Hottentot Teal	2.3	-	0.4	94.6	2.3	-

Table 5.7	The nutritional quality of <i>P. crispus</i> turions and
	achenes. Carbohydrate = Total available (non-
	structural) carbohydrate; Lipids = Ether extraction
	and A.M.E. = Apparent Metabolizable Energy.

		Turions	Achenes
Total Phosphorus	(%)	0.16	0.20
Total Potassium	(%)	0.95	1.8
Total Calcium	(%)	0.27	0.34
Total Nitrogen	(%)	0.60	0.94
Protein	(%)	3.7	5.9
Carbohydrate	(%)	50.0	18.8
Lipids	(%)	1.5	15.6
Gross Energy	(kj g ⁻¹)	16.4	18.9
A.M.E.	(kj g ⁻¹)	12.4	12.3
A.M.E. as % Gross	Ε.	75.5	65.1

Plate 5.1 T/S of turion parenchyma cells showing starch accumulation.

- a: Developing turion with a few starch granules in the chloroplasts of each cell
- b: In mature turions most of the cell volume was taken up by large starch granules.

Figure 5.3

Changes in body mass (g) and condition (fat as percent total body mass) of White-faced Duck on the Pongolo floodplain in relation to seasonal change in population size during the period March 1978 to January 1979.

Table 5.8	Numbers and mass (m^2) of turions and achenes inside
	and outside exclosures in Tete pan after the 1976
	P. crispus growing season. The significance of
	differences was tested by the t test of differences
	between two means (Parker, 1973).

2

	EXCLOSURE	PAN	SIGNIFICANCE OF DIFFERENCES
Turions (m ⁻²) N°	890	1317	S (P < 0.001)
Mass	30	38	NS (P > 0.05)
Achenes (m ⁻²) N [°]	1543	1955	NS (P > 0.05)
Mass	2.7	3.5	NS (P > 0.05)

Table 5.9

Turion consumption by waterfowl on Tete pan (calculated by means of the Wiens-Innis model) in relation to total turion production.

YEAR	Mass turic consumed (g m ⁻²)	Turions on sediment - (g m ⁻²)	Total turion production (g m ⁻²)	Percent Tur cor	ion Pro	oduction
	White-face	d Other sp	op.		White-faced	Other	spp.All spp.
1976	7.9	3.4	36.9	48.2	16.4	7.1	23.5
1977	14.2	4.1	57.2	75.5	18.8	5.4	24.2
1978	10.0	2.1	68.9	81.5	12.3	2.6	14.9
1979	1.8	3.5	-	-	-	-	-

Table 5.10	The change in mean mass (g) of individual turions, calculated
	as the standing crop divided by the total number per square
	metre, in Tete pan 1976 -1979.
	* indicates the sudden drop in mass discussed in the text.

,	1976	19)77	19	1978	
Date	x Mass	Date	x Mass	Date	x Mass	
4/7	0.051	18/6	0.050	16/6	0.046	
29/7	0.050	20/7	0.050	13/7	0.040*	
19 /8	0.040*	16/8	0.034*	20/8	0.040	
10/9	0.032	3/9	0.024	23/9	0.039	
30/9	0.030	15/10	0.062	30/10	0.030	
26/10	0.028	-	-	-	-	
23/11	0.040	-	-	-	-	

Table 5.11 Turion and achene numbers and mass per unit area in Tete pan and exclosures after the 1978 growing season.

	Achenes (m^{-2})		Large Turions(m ⁻²)		Small T	urions(m ⁻²)	Total Turions(m ⁻²)	
	Numbers	Mass (g)	Numbers	Mass (g)	Numbers	Mass (g)	Numbers	Mass (g)
Exclosure	e 803	1.6	1568	88	950	7	2518	94
Pan	778	1.5	851	55	1570	14	2421	69
Signifi- cant P<			*0.001	*0.001	*0.01	*0.001		*0.001
Not signi ficant P:	- *0.1	*0.1					*0.1	

47

Figure 5.4 A conceptual model (hypothesis) of interactions between waterfowl and *Potamogeton crispus* which maintain the stability of the grazing system in Tete pan.

Plate 6.1	(a - j)	Scanning electron micrographs of the
		epiphyton on <i>P. crispus</i> leaves of different ages.

a & b : The youngest leaves are devoid of epiphyton.

С	&	d	:	A young leaf colonized by a few diatom:	S
				Cocconeis placentula (Cp) and short st	out
				bacteria (SB) (d inset).	

- e & f : Mature leaves colonized by C. placentula (Cp); Gomphonema spp. (G); filamentous cyanobacteria (Cb); short stout bacteria (SB) and prostrate rods (PB).
- g & h : The oldest leaves colonized by C. placentula (Cp); Navicula spp. (N); cyanobacteria (Cb); short stout bacteria (SB) and filamentous bacteria (FB).
- i & j : A dead leaf densely covered with C. placentula (Cp); short stout bacteria (SB) and filamentous bacteria (FB).

Plate 6.1	(a - j)	Scanning electron micrographs of the epiphyton on <i>P. crispus</i> leaves of different ages.
	a&b:	The youngest leaves are devoid of epiphyton.
	c & d :	A young leaf colonized by a few diatoms <i>Cocconeis placentula</i> (Cp) and short stout bacteria (SB) (d inset).
	e & f :	Mature leaves colonized by <i>C. placentula</i> (Cp̄); <i>Gomphonema</i> spp. (G); filamentous cyanobacteria (Cb); short stout bacteria (SB) and prostrate rods (PB).
	g & h :	The oldest leaves colonized by <i>C. placentula</i> (Cp); <i>Navicula</i> spp. (N); cyanobacteria (Cb); short stout bacteria (SB) and filamentous bacteria (FB).
	i&j:	A dead leaf densely covered with <i>C</i> . <i>placentula</i> (Cp); short stout bacteria (SB) and filamentous bacteria (FB).

Plate 6.3 a - b :

Scanning electron micrographs of the epiphyton on basal sections of *P. crispus* stems after 12 days incubation in unfiltered pan water. The diatom and bacterial communities are similar to but more dense than, those on leaves incubated for the same period.

(a - c) T/S through P. crispus leaf epidermidi. The youngest leaves have a thin cuticle a : (C); layered cell wall (W) and a dense cytoplasm including mitochondria (M), dictyosomes (D) and chloroplasts (Ch). b : A young leaf showing attached bacterial epiphytes (B) and debris; the layered cell wall (W); a broad electron translucent band on the interior of the cell wall (SW); a narrow band of cytoplasm with densely packed chloroplasts (Ch) and mitochondria (M) and a large central vacuole (V). с: A higher magnification of the cell wall showing the electron translucent band to represent a swelling of the wall (SW) consisting of loosely arranged microfibrils. Note the narrow band of cytoplasm (Cy)

and central vacuole (V).

Plate 6.4

Plate 6.5 (a - d) T/S of mature P. crispus leaves.

- a : Bacteria (B) both inside and outside the cell wall. Those inside being surrounded by an electron translucent (Et) area resembling hydrolysis of the wall material.
- b: Note the absence of a cuticle; the digestion of the electron translucent cell wall (Et) and bacteria (B) inside and outside the cell wall.
- c: An epidermal and adjacent mesophyll cell illustrating the electron translucent area (Et) surrounding bacteria (B) which have invaded the epidermal wall; the swollen epidermal walls (SW) and the early stages of such swelling in the mesophyll cell (SW).
- d : Cross sections of bacteria within an epidermal cell wall showing the well defined cell walls (W); fibrous nuclear material (Fn) within an electron translucent area of cytoplasm. Note the sparse disorganised microfibrils of the surrounding plant cell wall.

Plate 6.6 (a - b)

a :

T/S of the oldest P. crispus leaves.

- Note the absence of a cuticle and extensive damage to the epidermal wall (W) which is almost entirely electron translucent; the swollen cell walls (SW); a narrow band of cytoplasm enclosing a few swollen chloroplasts (Ch) with ill defined grana stacks and an ill defined tonoplast (T).
- b: A mesophyll cell showing the swollen cell walls (SW) (at higher magnification in inset); large vacuole (V); chloroplasts (Ch); well defined tonoplast (T) and highly invaginated plasmalemma (P).

(a - b) Plate 6.7 T/S of the oldest P. crispus leaves after 12 days incubation in pan water. The epidermal cell wall (W) containing a : numerous bacteria (B) is almost entirely electron translucent. Note the bacteria (B) within the swollen cell wall area (SW) which contains only very sparse microfibrils. b : Bacteria, with well defined cell wall (BW) and fibrous nuclear material (Fn), within the swollen area of the mesophyll cell wall (SW). Note the swollen, ill defined plasmalemma (P) and lack of cytoplasm; the degraded cell wall (DW) and very sparse microfibrils of the

swollen area.

Plate 6.8 (a ·	-с)	T/S of	stems o	of mat	ure P.	crispus	plants.	
----------------	-----	--------	---------	--------	--------	---------	---------	--

а	:	Mid-way	down	the st	tem occ	casional	bacteria	were
		evident	withi	n the	outer	epiderma	al wall.	

- b : Epidermal cells of basal stem sections showed swelling typical of that in leaf cells.
- c : After 12 days incubation in pan water intercellular spaces of the cortex had been invaded by bacteria.

Plate 6.9	(a - f)	The effects of snail grazing for 24 hours on the epiphyton and surface structure of <i>P. crispus</i> leaves of different ages.
	a & 5 :	Young leaves were not damaged despite removal of most of the epiphyton.
	c & d :	Mature leaves; the outer walls of groups of

- epidermal cells had been removed (c) and numerous "canals" probably resulting from the action of necrotrophic bacteria can be seen (d).
- e & f : Senescent leaves were extensively damaged by snail grazing.

- Plate 6. 10 (a d) The effects of snail grazing on *P. crispus* leaves of different ages 6 days after the introduction of snails.
 - a & b : The youngest (a) and most young (b) leaves remained intact and showed no macroscopic evidence of damage. (x 0.9)
 - c & d : Most mature (c) leaves had been damaged and the few senescent (d) leaves remaining were extensively damaged. (x 0.9)

Figure 6.1 The relationship between leaf age, conditioning and grazers in *P. erispus*. (a):The effects of leaf age and time allowed for conditioning in the absence of grazers, on leaf edibility (leaves consumed day 1). (b): The effects of leaf age on time permitted for grazing, after conditioning, on the number of leaves remaining at the end of the experiment (20 days). (Y₁ = youngest leaves; Y₂ = young leaves; M = mature leaves; S = senescent leaves).

Figure 6.2 The relationship between stem position, conditioning and grazers in *P. crispus*. (a) The effects of stem position and time allowed for conditioning in the absence of grazers, on stem edibility (stems consumed day-1) (b) The effects of stem position and time permitted for grazing, after conditioning, on the number of stem sections remaining at the end of the experiment (20 days). (T = stem section from tip of plants; M = sections from middle of the stem; B = basal stem sections).

Changes in (a) snail biomass and (b) numbers in relation to (c) changes in *P. crispus* standing crop in Tete pan during 1977 and 1978.

Figure 7.1 The growth cycle of *P. crispus* population in Tete pan as determined by sequential estimates of standing crops. Arrows e_1 , e_2 and e_3 indicate the times at which decomposition experiments were initiated.

Figure 7.2 Loss of dry mass during decomposition of *P. crispus* shoots expressed as percent mass remaining in decomposition bags with time. (a) Experiment initiated at maximum standing crop (e₁ Fig. 7.1). (b) Experiment initiated 30 days after maximum standing crop (e₂ Fig. 7.1).

Figure 7.3 Loss of dry mass of senescent *P. crispus* shoots (----) and dried shoots (----) expressed as percent remaining in litter bags with time. (Vertical bars = 1 standard deviation from the mean).

Figure 7.4 Changes in the concentration (a) and stocks (b) of selected nutrients in senescent (----) and dried (---) P. crispus remaining in decomposition bags

Table 7.1 Mean number and mass of snails (*Bulinus natalensis*) found in small mesh decomposition bags containing (1) senescent plants and (2) dried plants and in (3) large mesh bags containing senescent plants. LSD = least significant difference between the means.

TIME	SE	SENESCENT		DRIED	LA	LARGE MESH		
(days)	No	Mass (mg	g) No	Mass(m	g) No	Mass	(mg)	
6	48	17	131	34	144	330		
12	158	70	177	84	144	570		
18	487	453	195	181	174	640		
24	325	455	135	202	120	660		
LSD . p = 0.05	77	101	121	73	57	186		

Figure 7.5 Mathematical functions of mass of plant material remaining against time in relation to actual data points for the 1977 experiment. (a) Loss of dried plant material from decomposition bags as described by a simple exponential function where $y = ae^{-bk}$. (b) Loss of senescent plant material as described by a linear function where $y = a_0 - a_1x$.

Figure 7.6

Size frequency distribution of the *Bulinus natalensis* population in Tete pan in September 1977.

Figure 7.7

Loss of mass of senescent *P. crispus* from coarse mesh gauze bags expressed as the percent original mass remaining. (a) Actual data points. (b) Described by simple exponential function where $y = ae^{-bk}$.

Figure 7.8

The changes in (a) concentration and (b) original stock of nitrogen $(- - - \rightarrow)$ and phosphorus $(- - - \rightarrow)$ in senescing *P. crispus* incubated in coarse mesh gauze bags.

Effects of snails and epiphytic detrital aggregate (EDA) on; (a) loss of mass and (b) detritus accumulation from senescent *P. crispus* plants incubated in the laboratory. (NS = no snails; S = snails).

Table 7.2 The effects of snails and epiphytic detrital aggregate (EDA) on mass loss of uprooted *P. crispus* plants. Described by a simple exponential function $(y = ae^{-kt})$ where $r^2 =$ coefficient of determination, k = rate constant, $t_{\frac{1}{2}} =$ time taken for 50% mass loss. Significance between regressions (Sokal and Rohlf, 1969); NS = not significant; x = p = 0.05; xx = p < 0.01.

TREATMENT	r^2	k	たな	SIGN	IFIC	ANCE	
NO SNAILS	0.981	- 0.033	22	NS	×	××	
NO SNAILS & EDA	0.877	- 0.034	20	NS			
SNAILS	0.987	- 0.056	13		×		××
SNAILS & EDA	0.999	- 0.091	6			**	××

Table 7.3 The precentage distribution of total nitrogen and phosphorus between the dissolved phase, fine particulate matter (FPOM) and remaining plant material during *in vitro* decomposition of *P. crispus* in the presence and absence of snails.

		PHOSPHORUS (%)				NITROGEN (%)				
DAYS	0	6	12	18	24	0	6	12	18	24
<u>Snails + EDA</u>	_									
Plants	99.8	62	35	19	9	99.2	55	33	19	10
Dissolved	0.2	9	24	29	29	0.8	3	4	6	11
FPOM	-	28	43	53	63	-	55	119	131	146
Totaí	100	99	102	101	101	100	113	156	156	167
No Snails										
Plants	99.8	78	60	51	49	99.2	94	79	68	60
Dissolved	0.2	7	16	22	27	0.8	2	3	4	3
FPOM	-	2	4	6	7	-	4	11	16	19
Total	100	87	80	79	83	100	100	93	88	82

Table 7.4 The concentration of N, P and ash free dry mass (expressed as a percentage) in senescent *P. crispus* plants (day 0) and in the fine particulate organic matter (FPOM; days 6 - 24) during *in vitro* decomposition in the presence and absence of snails and epiphytic detrital aggregate (EDA)

Time Days	Snai	ls + ED	Α	No Snails				
	P %	N %	Ash free %	P %	N %	Ash free %		
Plants			2 (* 1 *			Statute and		
0	0.31	1.6	85	0.31	1.6	85		
FPOM								
6	0.30	5.0	70	0.32	4.8	56		
12	0.30	6.9	75	0.32	5.5	67		
18	0.31	7.0	79	0.32	5.0	68		
24	0.32	7.2	77	0.31	5.2	69		

Figure 8.1

A conceptual, semi-quantitative, model of the major organic matter (tonnes ash free dry mass p.a.) pools and transfers in the conservative network of Tete pan ecosystem. Dotted lines represent known but not as yet quantified, pathways of transfer.

Figure 8.2

A conceptual, semi-quantitative, model of pools and transfers of nitrogen (kg p.a.) in the conservative network of Tete pan ecosystem. Dotted lines represent known but not as yet quantified, pathways of transfer.

Figure 8.3 A conceptual, semi-quantitative, model of pools and transfers of phosphorus (kg p.a.) in the conservative network of Tete pan ecosystem. Dotted lines represent known but not as yet quantified, pathways of transfer.

Figure 8.4 Seasonal fluctuations in the chemical composition of the benthic detrital aggregate (BDA) in Tete pan in relation to potential detrital inputs and flooding. (Data from Everson, 1980; Rogers, 1981; Heeg and Breen, 1982 and this study).

Figure 9.1 A diagramatic comparison of two cybernetic systems. (a) A nonteleological, deterministic system such as an ecosystem and (b) a teleological (goal seeking) system typical of man-made automatic control systems. (After Patten and Odum, 1981).

Figure 9.2 A conceptual model which summarises the conservative and informational processes which regulate the role of *P. crispus* in Tete pan ecosystem.