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Abstract 
The advent of new multispectral sensors such as Worldview-2 with very high spatial 

resolution (VHR) has presented new opportunities for mapping vegetation at species-level. 

However the use of VHR data for tree species mapping is often confronted with issues of 

within-canopy spectral variability. The prevailing intraspecies variability in southern African 

savannah limits our ability to accurately map the distribution of tree species. These 

challenges necessitate the development of new methods for tree species mapping. This 

study investigated i) the utility of object-based image analysis (OBIA) for tree species 

mapping in the savannah environment using Worldview-2 image, ii) the spectral capability of 

WV-2 for species mapping and iii) the ability of multi-temporal data to enhance spectral 

separability between tree species in southern African savannah. Using Random Forest (RF), 

the study could not establish any statistically significant difference between OBIA and pixel-

based approach towards savannah tree species classification (zobt < zcrit). However OBIA 

successfully improved classification accuracy of Sclerocharya birrea and Acacia nigrescens 

which makes it an appropriate alternative for classifying big trees in the savannah 

environment using WV-2 image.  

Moreover, the spectral configuration of WV-2 with the inclusion of yellow and red-edge 

bands enhanced the discriminatory power of WV-2 sensor. The WV-2 image achieved higher 

classification accuracy (74.5% with object-based and 76.4% with pixel-based) than simulated 

IKONOS image (58.6% with object-based and 67.9% with pixel-based). The difference was 

statistically significant (zobt > zcrit). The use of multi-temporal data enhanced spectral 

variability between species and achieved the highest classification accuracy (80.4%) than 

March and April dates (72.9% and 76.4%, respectively). Multi-temporal data mitigated the 

spectral confusion between Sclerocharya birrea and Dichrostachys cinerea and achieved 

producer’s and user’s accuracy of above 60% for these tree species. The results highlight the 

opportunities available to biodiversity managers due to advances in remote sensing 

technology. The ability to accurately map tree species is the key element in the management 

of savannah biodiversity.  
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Chapter 1: Introduction 

1.1 Background 
Tree species mapping at large geographic scales secures indispensable information for sound 

management of the savannah ecosystem (Naidoo et al. 2012; Cho et al. 2012). Large tree 

species play an important role in the savannah ecosystem as nutrient pumps in the system 

(Treydte et al. 2007; Ludwig et al. 2004), source of fuelwood and economically viable fruits 

for local communities (Shackleton and Shackleton, 2003) and also act as breeding sites for 

birds (Cho et al. 2012). However, the savannah ecosystem bears escalating pressure from 

humans and bush encroaching species. Cho et al. (2012) noted a widespread distribution of 

bush encroaching species (Dichrostachys cinerea and Combretum appiculatum) and over-

exploitation of Terminalia sericea species in the southern African savannah. Therefore 

regular mapping of biodiversity remains critical for monitoring changes and ensuring 

sustainable use of ecosystem resources (Cho et al. 2012). In addition biodiversity mapping 

facilitates the assessment of management decisions implemented at a regional scale (Asner 

et al. 2009).   

The challenge to biodiversity mapping has been the paucity of appropriate data in terms of 

accuracy, details, completeness as well as spatial and spectral resolution (Foody and Cutler, 

2003). The traditional ground-based methods of biodiversity assessment lack regional-scale 

generalization (Asner et al. 2009; Foody and Cutler, 2003). Moreover, the early satellite 

sensors such as Landsat TM or ETM+ provides low spatial and spectral resolution data 

insufficient for tree species mapping (Xie et al. 2008; Nagendra and Rocchini, 2008). Tree 

species mapping with remotely sensed data necessitates the use of very high resolution data 

to capture and differentiate species based on their unique biochemical and biophysical 

properties (Cho et al. 2012; Clark et al. 2007). Therefore the use of Landsat data has been 

limited to habitat mapping and analysis of landcover change (Yang and Prince, 2000; 

Townsend and Walsh, 2001; Millington et al. 2003). 

However, the advancement in spectral and spatial resolution of multispectral sensors 

presents new opportunities for species-level mapping (Foody et al. 2005) while also 

renewing the need for development of new methods for effective image classification (Cho 

et al. 2010). The latter is particularly relevant to savannah environment where open, 

irregular canopy shape, varying tree height, interlocking canopies and background 

vegetation may reduce mapping accuracy when using high resolution data (Chastain, 2008; 
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Naidoo et al. 2012). Since the pixel size of high resolution sensors is smaller than canopy 

size, various components of the tree canopy i.e. sunlit leaves, shaded leaves and bark will be 

captured including the background and this eventually leads to high within-canopy variability 

(Nagendra and Rocchini, 2008; Chastian, 2008). Hence deriving species identity becomes 

challenging due to within-canopy spectral variability (Nagendra, 2001).  

Studies have progressively tapped into the utility of object-based image analysis (OBIA) to 

improve tree species classification using very high resolution data (Ardila et al. 2012; Zhang 

and Xie, 2012; Whiteside et al. 2011; Chastain, 2008). Prior to the advent of OBIA, 

researchers exploited per-pixel classification techniques with some degree of success. The 

advancement in spatial and spectral resolution of satellite sensors has enhanced the level of 

details attainable from earth objects (Wulder et al. 2004). Whilst this delivered much 

needed benefits to ecological application of remote sensing (Nagendra and Rocchini, 2008; 

Wulder et al. 2004), it has complicated the ability of per-pixel classifiers to produce desirable 

accuracy level. Per-pixel classifiers are yet to resolve adequately, the issue of within-canopy 

spectral variability that comes with VHR data. Their application with VHR data often leads to 

classification inconsistencies i.e. producing a class within a class often called salt and pepper 

effect (Ardila et al. 2012; Whiteside et al. 2011).              

Alternatively OBIA bestow an opportunity to merge spectral, spatial and contextual 

information in order to close the gap between much detailed spatial data and important 

feature classification task (Ardila et al. 2012; Whiteside et al. 2011). First, OBIA partitions the 

image pixels through segmentation into image objects based on scale, colour and form 

parameters. The subsequent image classification uses these image objects as units of 

classification (Whiteside et al. 2011; Kim et al. 2009). Generally, studies have reported 

improved mapping accuracy with OBIA and attributed that to the consideration of spectral, 

spatial and contextual information altogether (Kim et al. 2009; Whiteside et al. 2011; Ardila 

et al. 2012; Zhang and Xie, 2012). Nonetheless, Robertson and King (2011) in their study 

comparing the performance of pixel-based and object-based classification concluded that 

there is no statistically significant difference between these classifiers.  

In addition studies have established that multi-temporal approach enhances spectral 

differences between species (Hill et al. 2010; Gilmore et al. 2008). Multi-temporal data 

covering leaf flushing, leaf development and maturity and senescence mitigates perturbing 

effects such as individual image noise and enhance the spectral differences between tree 

species (Hill et al. 2010; Key et al. 2001; Wolter et al. 1995). A multi-temporal approach has 



3 | P a g e  
 

been recommended for mapping savannah woody species (Cho et al. 2010). However none 

of the literature consulted have adopted a multi-temporal approach towards tree species 

mapping in the southern African savannah.     

The primary objective of this study is to develop a classification method for mapping 

savannah tree species using Worldview-2 image. The first part of the study intends to 

investigate if OBIA is superior to pixel-based classification for mapping savannah tree species 

using Worldview-2 image. The assumption is that using objects with Worldview-2 spectral 

data will improve tree species discrimination. Worldview-2 image has 2m spatial resolution 

which enables it to capture individual tree canopy thus presenting an opportunity for 

species-level mapping. Nonetheless, exploiting such an opportunity necessitates overcoming 

the high intra-class spectral variability inherent to VHR data. The Worldview-2 data contains 

innovative bands in the yellow and red-edge spectrum, which has shown to be sensitive to 

subtle differences between species. The study will compare the performance of WV-2 

spectral configuration to that of simulated IKONOS spectral configuration. Finally, the study 

will investigate the ability of Worldview-2 data captured at different seasons to enhance 

spectral variability amongst tree species in the savannah environment.   

1.2 Research Questions 
 Can object-based image classification improve tree species mapping in southern 

African savannah when compared to pixel-based classification? 

 To what extent does the inclusion of new bands in the yellow and red-edge regions 

of Worldview-2 enhance its capacity to discriminate tree species in the savannah 

environment? 

 How does the spectral separability of tree species changes in: i) individual images 

acquired at key points of the typical phenological development of savannah and ii) 

when images of different dates are combined? 

1.3 Objectives 
 To develop an object-based method for species-level classification of individual tree 

crown using their spectral information; 

 To assess the capability of  Worldview-2 spectral bands for  tree species mapping in 

the complex savannah environment; 

 To investigate whether a multi-temporal approach based on multi-seasonal imagery 

could enhance the spectral variation amongst savannah tree species compared to 

single image data, and improve on their classification. 
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1.4 Summary of Chapters 
The thesis is organized into four chapters. The initial chapter deliberates on the importance 

of tree species inventory and monitoring and the relevance of remote sensing for addressing 

these tasks and outlines the research objectives. Chapter two and three are written in a 

paper format for publication in peer reviewed journals. Chapter two investigates the utility 

of object-based image analysis for tree species mapping and assess the spectral capability of 

Worldview-2 data compared to simulated IKONOS. Chapter three investigates the benefits 

of multi-temporal approach for tree species mapping. The fourth chapter presents the 

conclusion of the study and provides recommendation for further research. Important 

research findings are highlighted in relation to the research objectives.   

1.5 Study area 
The study site is situated between longitude 31o21’18.66” to 31o31’1.61”E and latitude 

24o50’42.61” to 24o59’35.04”S in the immediate vicinity of the Kruger National Park, South 

Africa (Figure 1) and it covers approximately 265 sqkm. It falls in the South African Lowveld 

within the broader savannah biome which is characterized by the coexistence of continuous 

grassy vegetation layer and discontinuous woody vegetation. Rainfall, geology, grazing 

pressures (both from wild and domestic herbivores), human uses (e.g. crop, fuelwood 

collection) and fires dictate the vegetation structure in this biome. Savannah environment is 

characterized by alternating periods of dry and wet seasons. The Lowveld receives annual 

rainfall of between 235 and 1000 mm. The average annual temperature for the site is 22oC 

and frost is rare (du Toit et al. 2003; Eckhardt et al. 2000). 

Two geological substrates dominate in the area with vegetation communities defined along 

these geological structures. The nutrient-rich gabbros substrate exhibits predominance of 

grassy plant formation and sketchy tree distribution. Gabbros consists of shallow to 

moderately deep, dark clay with nutritious high-bulk grasses and sketchy distribution of 

trees and shrubs particularly Acacia spp. Conversely the granitic substrate consist of poor-

nutrient soils with gentle undulating terrain and they sustain woody deciduous broad-leaved 

species occupying upslope while fine-leaved species dominating at the footslope. Granite 

landscape with shallow to moderately deep sandy soil is characterized by high species 

diversity and dominance of Combretum spp. (Cho et al. 2012).The study area run across two 

different management regimes; the Sabi Sands Wildtuin which is a privately owned land 

used purely for nature conservation and the Bushbuckridge Municipality District which 

incorporate communal land used by neighbouring communities for livestock grazing, 

fuelwood harvesting and other farming activities.  
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 Figure 1.1 Study area and data collection sites 

1.6 General methodology 
A schematic representation of the research methods is presented in Figure 1.2. The first part 

of the study investigated the utility of OBIA in relation to pixel-approach, for tree species in 

the savannah environment using Worldview-2 image captured during the transition to 

senescence phonological period (April date). The second part of the study used the two 

Worldview-2 images to test the ability of multi-temporal data to enhance spectral 

separability between tree species. Detailed discussion on the pre-processing process, 

segmentation and classification processes is presented under method section in the 

subsequent chapters.    

 



6 | P a g e  
 

WV-2 image: 

19-April-2012

WV-2 image: 

7-March-2013

Pre-processing
-PCI Geomatica 

OrthoEngine

-ATCOR-2

Tree masking 
-NDVI, BI,NIR-2 and SAM for 

eliminating non-canopy 

features

Tree 

masks

Segmentation

Scale 7

Segmentation

Scale 5

Segmentation

Scale 3

Optimal 

scale 

Segmentation 

evaluation

Tree masks

(Pixel-level)

Species classification

(pixel-approach vs OBIA)

Accuracy assessment

Species classification

-Multi-temporal approach

Accuracy assessment

 

Figure 1.2 Schematic representations of the data and research methods used.  
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Chapter 2: The utility of Object-based image analysis (OBIA) 

for tree species mapping in the savannah environment using 

WV-2 image1 

2.1 Abstract 
In this study, the utility of object-based image analysis (OBIA) for tree species mapping in a 

heterogeneous savannah environment is investigated using very high resolution Worldview-

2 (WV-2) data. The spectral capability of WV-2 sensor is also compared to that of simulated 

IKONOS for species discrimination. Using RF as a classifier, the study could not establish any 

statistically significant difference between OBIA and pixel-based approach towards tree 

species classification (zobt < zcrit) and this is attributable to complex structure of tree 

canopies in the savannah environment. However, OBIA minimized the effects of tree canopy 

edge pixels and therefore improved the classification accuracy of Sclerocharya birrea 

compared to pixel-based approach. In addition, OBIA successfully improved classification 

accuracy between Sclerocharya birrea and Acacia nigrescens which makes it an appropriate 

alternative for classifying big trees in the savannah environment using WV-2 image. The 8-

bands of Worldview-2 sensor achieved higher discriminatory power than that of simulated 

IKONOS sensor. In particular, the yellow band (605nm) showed a statistically significant (zobt 

> zcrit) contribution in the performance of WV-2.  

 

 

 

Keywords: OBIA, species discrimination, savannah, Worldview-2, simulated IKONOS, yellow band 

 

 

 

 

                                                           
Madonsela, S., Cho, M., Mathieu, R. and Mutanga, O. (in preparation). Evaluating the utility of OBIA 

for mapping savannah tree species using Worldview-2 image. International Journal of Applied Earth 

Observation and Geoinformation. 
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2.2 Introduction 
Regular mapping of savannah biodiversity remains critical in order to monitor changes and 

ensure that resource use remain within the resilience limits of the ecosystem (Cho et al. 

2012). Large tree species are of significant ecological and economic value in the savannah 

ecosystem. For instance, these trees serve as breeding sites for birds, source of fuelwood 

and produce fruits for local communities and also act as nutrient pumps in the ecosystem 

(Treydte et al. 2007; Ludwig et al. 2004; Shackleton and Shackleton 2003; Archer et al. 

2001). Previous studies noted that land use and management regimes have an impact on 

tree densities in southern African savannah (Wessels et al. 2011; Asner et al. 2009). Parallel 

to other ecosystems of the world, African savannah is subjected high pressure from humans 

and the burden remains with protected areas to maintain biodiversity in its pristine state 

(Cho et al. 2012; Asner et al. 2009). However, rigorous ecosystem management necessitates 

spatially detailed assessments of species richness and distribution on a regular basis (Turner 

et al. 2003).  

Spaceborne remote sensing has often served as a major source of data for assessing and 

monitoring the earth ecosystems especially due to its extensive spatial coverage and revisit 

capacity (Mutanga et al. 2009; Foody et al. 2005). The recent advancement in spectral 

configuration and spatial resolution of spaceborne multispectral sensors has presented new 

opportunities for detailed examination of earth’s biodiversity (Pu and Landry, 2012; 

Nagendra and Rocchini, 2008; Nagendra, 2001). Sensors such as Worldview-2 and Rapid-Eye, 

possess new bands in the yellow and red-edge spectrum when compared to well-known 

sensors such as SPOT or Landsat and have high spatial resolution, 2m and 5m respectively 

(Hamdan, 2010; Cho et al. 2011). These developments in spatial and spectral resolution have 

pushed the boundary beyond vegetation community mapping and provide opportunities for 

mapping vegetation at crown scale and species-level, thus enhancing the utility of 

multispectral data (Pu and Landry, 2012; Cho et al. 2012; Hamdan 2010).  

Remote sensing data contain important spectral information which can be used to assess 

species diversity since each species possess unique spectral signature linked to its 

biochemical and biophysical attributes (Cho et al. 2012, 2010; Nagendra, 2001). The yellow 

and/or red-edge bands present in new multispectral sensors such as Worldview-2 and 

RapidEye have been shown to be sensitive to subtle differences in foliar pigments 

(chlorophyll and carotenoids) and therefore differences between tree species (Mutanga et 

al. 2009; Hamdan, 2010; Cho et al. 2011). Consistent with this, Pu and Landry (2012) used 
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Worldview-2 data to classify seven urban tree species with 62.93% overall accuracy and 

attributed this accuracy to improved spatial resolution and spectral configuration of the 

Worldview-2 sensor. Hamdan (2010) and Pu and Landry (2012) noted that the additional 

yellow, red-edge and NIR-2 bands on Worldview-2 sensor enhance our ability to spectrally 

discriminate different tree species with high accuracy. Moreover Cho et al. (2012) argued 

that 2m spatial resolution of Worldview-2 image is suitable for mapping tree canopy greater 

than 6m in diameter.      

However, advances in spatial resolution of multispectral sensors also present, inadvertently 

new mapping challenges (Pu and Landry, 2012). High resolution datasets often capture 

various aspects of the tree canopy, i.e. sunlit leaves, shaded leaves, bark including 

background effect, and this leads to high within-canopy spectral variability. Eventually, this 

produces high misclassification errors when using per-pixel classification approaches 

(Nagendra and Rocchini, 2008; Chastain, 2008; Nagendra, 2001). Furthermore, a high intra-

species spectral variability has been observed in southern African savannah setting and this 

originates partly from differences in within-species phenology, variation in edaphic 

properties and climatic conditions across the landscape (Cho et al. 2010; Naidoo et al. 2012). 

High intra-species spectral variability derails the assumption of unique spectral signature for 

each species thus calling for advanced classification approaches (Cho et al. 2010).   

Previous studies have resorted to redesigning spectral libraries that account for intra-species 

variability in the spectral discrimination of tree species (Cho et al. 2010; Cochrane et al. 

2000). For instance Cho et al (2010) developed a protocol for application of Spectral Angle 

Mapper (SAM) based on multiple-endmember approach and achieved higher overall 

accuracy compared to conventional SAM. Recent studies  working on very high resolution 

(VHR) data have resorted to object-based image analysis (OBIA) for its ability to eliminate 

the effects of high within-canopy spectral variability and incorporate spectral, textural and 

contextual information altogether (Pu and Landry, 2012; Ardila et al. 2012; Zhang et al. 

2012). OBIA addresses the disparity between detailed spatial data captured by the sensor 

and feature identification task; OBIA firstly runs segmentation to create meaningful objects 

that are internally homogeneous and uses these objects as units of classification (Pu and 

Landry, 2012; Ardila et al. 2012; Gao and Mas, 2008). Pixels representative of a tree canopy 

are grouped together to form an object thus eliminating within-canopy spectral variability 

(Devadas et al. 2012). During the classification process, the classifying algorithm acts on 

objects and the literature reviewed indicates that OBIA performs better than pixel-approach 
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on very high resolution data (Gao and Mas, 2008; Pu and Landry, 2012; Zhang and Xie, 2012; 

Whiteside et al. 2011).   

Nonetheless the performance of OBIA with VHR data in a complex scene such as presented 

by southern African savannah ecosystem and in the context of single-crown tree species 

mapping is yet to be tested. The complexity in savannah vegetation structure is centred on 

tree height variability, irregular or layered canopy shape and spatial arrangement of woody 

species (Archer et al. 2001; Naidoo et al. 2012). Such complexity in vegetation structure 

increases within-species spectral variability (Hill et al. 2010). OBIA is expected to offset this 

complexity through the use of tree structural attributes e.g. tree canopy delineated as 

objects together with Worldview-2 spectral data and that may improve tree species 

mapping due to the enhanced spectral configuration and spatial resolution of Worldview-2 

(Cho et al. 2012).   

The primary objective of this study is to investigate the utility of OBIA for mapping savannah 

tree species using Worldview-2 image. The assumption is that using objects with Worldview-

2 spectral data will improve tree species discrimination compared to pixel-based 

classification. Worldview-2 image has 2m spatial resolution which enables it to capture 

individual tree canopy thus presenting an opportunity for species-level mapping. 

Nonetheless exploiting such an opportunity necessitates overcoming high intra-class spectral 

variability inherent with VHR data hence object-based classification is proposed in this study. 

Moreover Worldview-2 data contains new bands in the yellow and red-edge spectrum, 

which has shown to be sensitive to subtle differences between species and their 

performance will be tested against the simulated IKONOS band combination.  
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2.3 Data and Methods 

2.3.1 Remote sensing data 
The Worldview-2 (hereafter called WV-2) satellite image (DigitalGlobe, Inc., USA) was 

acquired on the 19th of April 2012 to capture transition to senescence phenological period 

prevailing at this time of the growing season (Cho et al. 2010). Worldview-2 is the only 

multispectral sensor with eight bands situated in the visible and near-infrared regions of the 

spectrum: coastal blue (400-450nm), blue (450-510nm), green (510-580nm), yellow (580-

625nm), red (625-690nm), red-edge (705-745nm), NIR-1(770-895nm) and NIR-2(860-

1040nm). It captures the image in two modes; panchromatic and multispectral. The sensor 

has a swath width of 16.4km, a maximum revisit period of 1.1 day and a spatial resolution of 

2 m for the 8 multispectral bands. The panchromatic band (450-800nm) is acquired at spatial 

resolution of 0.5 m.  

2.3.2 Field data collection 
Field data were collected during the transition period from wet to dry season in April 2012. 

Eight sites distributed across the study area were sampled purposively to cover varying 

degrees of tree cover (low to high tree cover). These sites were selected over two geological 

substrates, gabbro and granite, present in the study area. In each of these sites, a 100m X 

100m plot was set up and all trees with diameter at breast height greater than 10cm were 

sampled.  In all sites big trees (N=273) located using a high precision GeoExplorer 600 series 

Global Positioning System (GPS), and the species were identified. One-second data from the 

Nelspruit reference station (90km from the study area) were used to post-process the GPS 

location to sub-meter accuracy. However, some of these points were located on cloud-

covered parts of the image and were therefore not available for use. Additional trees and 

GPS points (N=62) collected in the area from previous studies (Naidoo et al. 2012) were also 

used for spectral endmember collection. A combination of these points was sufficient for 

maintaining representativity of each species of interest. In total 250 points representing four 

tree species of interest were used to train and validate the classifications. The study focused 

on four common tree species (i.e. Acacia nigrescens (AN), Combretum spp. (Combretum 

collinum, Combretum apiculatum and Combretum herorence)  (COM), Sclerocarya birrea (SB) 

and Dichrostachys cinerea (DC)) that were encountered in most sampling sites in our 

fieldwork (Table 2.1 for attribute information). Additional tree attributes information, e.g. 

tree DBH, height, whether trees are interlocking or coppicing were also recorded.      
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Table 2.1 Information for the four tree species of interest in this study. 

Tree species Phenology Attribute information 

Sclerocarya 

birrea 

 

Deciduous 

 

  

Common tree species in SA savannah which is protected by 

law. Its fruits are considered important for beer-making in 

local communities and also a source of food for wild 

animals. 

Acacia 

nigrescens 

 

 Deciduous 

 

Important tree species for many browsers and serves as a 

nitrogen-fixing tree, increasing grass quality underneath its 

canopy.     

Combretum 

spp. 

 

 

 

 Deciduous 

 

     

Common tree species with high density in granite 

landscape. Often used for charcoal production and other 

numerous medicinal purposes 

Dichrostachys 

cinerea 

 

 Deciduous 

 

Shrubby tree species often considered as an encroaching 

species in the savannah with degrading effect on rangeland 

quality.  

Sources: (Shackleton and Shackleton, 2003; Munyathi et al. 2013; Treydte et al. 2007; 
Naidoo et al. 2012) 

2.3.3 Pre-processing steps 
The WV-2 image was geometrically and atmospherically corrected. Using PCI Geomatica 

OrthoEngine several Rational Polynomial Coefficient (RPC) models (RPC 0th, 1st and 2nd order 

correction) were tested for a rigorous orthorectification of Worldview-2 image. The accuracy 

of the models was assessed via a leave-one-out cross validation approach with 18 ground 

control points (GCPs). The GCPs were evenly distributed over the study area considering land 

land features available on the landscape (e.g. road intersections). A differential GeoExplorer 

2008 series GPS was used to record accurate positions of the GCPs and data from Nelspruit 

reference station were used to post-process the data to sub-meter accuracy. The RPC 0th 

order correction model was opted because its accuracy coincides with that of a rigorous 

model and it is the recommended RPC model for Worldview-2 product (Geomatica, 2013).  

ATCOR-2, often used for flat terrain (Richter and Schlapfer, 2012) was chosen for 

atmospheric correction of WV-2 image since the study area is generally flat to gentle 

undulating slopes.  
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2.3.4 Tree extraction  
The image was characterized by clouds and cloud shadows, bare-ground, grass and tree 

canopy and therefore masking was necessary to remove unwanted features and produce a 

tree canopy map. Developing a tree masking method is a common practice in that it 

enhances the spectral separability of the target features (Pu and Landry, 2012; Pu, 2011). 

Vegetation indices e.g. Normalized Difference Vegetation Index and Soil Adjusted Vegetation 

Index enhance vegetation signals and are often used to separate vegetated areas from non-

vegetated areas. NDVI in particular, is more sensitive to sparsely vegetated areas and has 

effectively been used to eliminate non-vegetated areas (Pu and Landry, 2012; Pu, 2011). 

Other studies have used textural information to separate tree canopies from non-canopy 

vegetation i.e. grass and shrubs (Pu and Landry, 2012; Pu, 2011). In addition, the high spatial 

resolution data enables the identification of tree shadows for tall trees and band 

thresholding has been used to facilitates the separation of shaded tree canopy from non-

shaded canopy (Pu, 2011).    

In this study, a tree masking method was developed in ENVI 4.8 to extract tree canopies and 

eliminates non-canopy features and the best method to achieve this objective relied on 

NDVI, Brightness index and SAM classifier. Region of interest (ROI) tool in ENVI 4.8 was used 

to delineate and eliminate clouds and cloud shadows. Then prior to image segmentation, a 

quantitative approach was developed using histogram to find optimal threshold values for 

elimination of non-canopy features and shaded areas. GPS points (N=72) (collected from a 

previous study) were used to collect NDVI values for tree canopy and grassy areas. Due to 

the absence of GPS reference points for bare areas, the study relied on dirt roads which 

were clearly discernible from the image.   

An NDVI threshold value of 0.55 was used to mask tree canopies from non-canopy features. 

Visual inspection of the NDVI histogram (Figure 2.1 (A)) reveals that this threshold 

eliminates all pixels covering bare areas including some of the grass pixels.  Shaded areas 

were eliminated using the brightness index. The Brightness index is often used to describe 

the condition of the image features with regard to overall brightness and wetness (Todd and 

Hoffer, 1998). The threshold value of 790 was used to separate shaded and non-shaded 

targets (Figure 2.1 (B)).   
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Figure 2.1 A= NDVI for separating vegetated from non-vegetated features; B= Brightness index for 

separating shaded areas from non-shaded. 

 

Grassy features were not sufficiently eliminated by the NDVI thresholding and any attempt 

to increase the NDVI threshold beyond the histogram-derived optimum led to elimination  of 

canopy features, especially Acacia nigrescens. Therefore, the study assessed the potential of 

textural information to eliminate grass. Grass is assumed to be a low spatial frequency 

feature with low variability, compared to tree canopy which has typically a rougher surface, 

and therefore a variance matrix was computed on a 3x3 moving window to generate a 

texture layer. However, this assumption was not confirmed as the variance matrix showed 

insensitivity to within-canopy variability. The method was unable to show textural 

differences between grass and tree canopy. Spectral angle mapper (SAM) was then used to 

classify and further eliminate grass pixels from the NDVI-based tree canopy product. SAM is 

a similarity measure that compares the spectral angle between the reference spectrum and 

the target spectrum. A small angle indicates high spectral similarity (Cho et al 2010; Clark et 

al. 2005). The study sets a maximum-angle threshold of 0.005 for SAM and repeatedly ran 

classification on the NDVI product. A smaller angle was selected to cater for the spectral 

similarity that exists between grass and Acacia nigrescens.  This section generated the tree 

products which were subsequently used for segmentation and tree classification (Figure 

2.2).  
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Figure 2.2 Tree mask produced from WV-2 scene with the dark colour representing the mask and 
the light colour representing the background. 

 

2.3.5 Image segmentation  
The tree mask product was partitioned into image objects (IO) resembling tree canopies and 

this was done via segmentation in eCognition 8.6 using a multi-resolution algorithm. This 

algorithm uses a bottom-up approach that begins with one pixel and fuses similar 

neighbouring pixels to form image objects. The average size of IOs is determined by the scale 

parameter which dictates the maximum spectral heterogeneity allowed within an object 

(Johnson and Xie, 2012; Gao and Mas, 2008). A high value for the scale parameter increases 

the heterogeneity threshold with consequent amalgamation of a higher number of pixels 

within one segment. The choice of the scale parameter is critical as it can result in over- or 

under-segmentation (Espindola et al. 2006). Other segmentation parameters include 

colour/shape and compactness/smoothness. Previous studies often place more weight on 

colour for the creation of meaningful IOs (Whiteside et al. 2012; Johnson and Xie 2012). 

Colour criterion determines the weight of spectral information in the segmentation process 

while compactness /smoothness enhances IOs with compact and smooth shape respectively 

(Gao and Mas, 2008). 

In this study, image segmentation were conducted with various scale parameters (20, 18, 16, 

14, 12, 10, 7, 5 and 3) and with higher weights placed on shape (colour 0.3; shape 0.7). High 
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resolution dataset often show high within-canopy variability (Nagendra and Rocchini, 2008; 

Chastain, 2008; Nagendra, 2001) and therefore this study placed high weight on shape to 

minimize the possibility of over-segmented tree canopy. Smoothness/ compactness were 

assigned equal weights. Preliminary visual inspection assessed the extent to which image 

objects corresponds to tree canopies on the image. A subset of three scale parameters (7, 5 

and 3) with visibly optimal segmentation results were selected for further assessment using 

reference data.   

2.3.6 Segmentation evaluation 
Segmented images were exported as shapefiles to ArcGIS 10 for assessing dimensional 

accuracy of IOs. Dimensional accuracy indicates, quantitatively, the degree at which the 

shape and dimension of IOs corresponds to real tree canopies. Literature suggests that 

different methods exist for assessing dimensional accuracy. Ardila et al. (2012) and Pu and 

Landry (2012) used a metric that measures both topological and geometric accuracy. The 

metric measures the relative area of overlap between a segmented object and a reference 

object and their positional discrepancy.  In this study, points (N= 45) were randomly 

generated over the segmented IOs in order to select samples for dimensional accuracy 

assessment. The assessment was conducted by comparing the dimension of IOs (predicted) 

with the dimension of the corresponding reference canopies (observed) manually digitized 

from the WV-2 panchromatic image (Figure 2.3) with 0.5m spatial resolution. The Root-

mean-square-error (RMSE) was calculated (equation 1) to determine the degree at which 

the segmented objects deviate from the reference objects. A 1:1 line was used to assess the 

distribution of segmented IOs. The points closest to the 1:1 line are indicative of high 

agreement with the reference objects while those further away from the 1:1 line indicates 

high deviation from the reference objects due to under-segmentation (above the line) or 

over-segmentation (below the line). 

                                         
n

XX
RMSE

n

i idelmoiobs 


 1

2

,, )(
                                                                                     Equation 1 

                  where Xobs is observed values and Xmodel is modelled values 
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The scale parameter of 5 provided the smallest RMSE of 16.7 compared to the scale of 3 and 

that of 7 (Figure 2.4). The assessment result indicates the scale parameter of 5 as optimal for 

tree canopy delineation in southern African savannah using Worldview-2 image acquired 

during the transition to senescence period (April). 

Figure 2.3 Worldview-2 panchromatic image showing examples of tree canopies 
used as reference polygons for segmentation assessment 

Tree canopies 
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Figure 2.4 Scatterplots and RMSE for the dimensional accuracy of the segmented image objects: (A) scale 

parameter of 3, (B) scale of 5 and (C) scale of 7. 

 

2.3.7 Training and validation samples  
The GPS coordinates of the tree species collected in the field were used for training and 

validation of the pixel-based and object-based classification. The GPS data guided the 

collection of spectral endmembers using regions of interest (ROI) in ENVI 4.8. Table 2.2 

summarizes the number of samples used for training and validation corresponding to both 

object-based and pixel-based classifications. ROIs collection procedure followed different 

formats; for pixel-based classification a minimum of two to four pixels representing a tree 

canopy was collected while single object was collected for object-based classification. 

However the validation process necessitated the use of equal validation points between 

OBIA and pixel-approach to be able to compare results using McNemar test. Therefore, 

number of pixels within an object was adjusted to be similar to those from pixel-approach.  
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Table 2.2 Training and validation data used for tree species classification  

     

 

                                   April image 

 
Object-based 

 
Pixel-based 

 Training Validation Training Validation 

AN 30 118 119 118 

COM 31 110 98 110 

DC 31 108 112 108 

SB 35 92 123 92 

 

2.3.8 Spectral data analysis 
This study evaluated the spectral variability within- and between-species using the Spectral 

Angle Mapper (SAM). SAM is a similarity measure that quantifies the level of similarity 

between two spectra and is insensitive to illumination-induced differences among spectra. It 

quantifies the angle between two spectra               and               

SAM (      ) =  (        =       
∑       

 
   

[∑    
  

   ]  ⁄  ∑    
   

   

                     Equation 2 

where L is the number of bands. A high angle between spectra indicates that the two 

species are spectrally separable (Cho et al. 2010; Clark et al. 2005). In our application of 

intra-species SAM the angle between each spectrum of a species was computed. The 

application of inter-species SAM followed the same approach as the intraspecies one; the 

angle between each spectrum to every other species spectrum was computed. Two band 

combinations (all WV-2 bands and simulated IKONOS bands (blue, green, red, NIR1)) were 

tested at both pixel- and object-level to establish the band combination that magnifies the 

spectral separability between species.  

In addition, we subjected the individual spectral bands of WV-2 data to further scrutiny 

through the use of band-add-on (BAO) procedure to establish the discriminatory ability of 

each band. The BAO procedure is often used on hyperspectral data with high data 

dimensionality (Keshava, 2004). This procedure iteratively selects bands that optimize 
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angular separation between spectra. The procedure adds on pairs of bands and selects those 

with the highest average SAM. The process is repeated until no band contributes further to 

the discriminatory power (Keshava, 2004; Naidoo et al. 2012; Cho et al. 2010). The 

application of BAO, whilst identifying spectral bands that increases angular separation, also 

identifies band redundancy. The BAO procedure was run on WV-2 bands eight times with 

one band excluded each time and this enabled the identification of the spectral bands with 

the highest discriminatory power for the species in question.     

2.3.9 Tree species classification 
We conducted tree species classification at both pixel-level and object-level using Random 

Forest (RF). RF has been successfully applied to classify savannah tree species using 

hyperspectral data (Naidoo et al. 2012). Chan and Paelinckx (2008) argued that RF remains 

the most robust machine learning algorithm. RF is a tree-based classifier that assembles 

hundreds of decision trees using random subsets of training data. These decision trees are 

evaluated using out-of-bag estimates to establish the importance of each input (Naidoo et 

al. 2012; Chan and Paelinckx, 2008). Similar to Adelabu et al (2013) this study used the RF 

algorithm based on EnMap box to classify four tree species (Acacia nigrescens, Combretum 

spp., Sclerocharya birea and Dichrostachys cinerea). Eight WV-2 bands were submitted into 

RF procedure as predictor variables. Classification results are presented in a confusion 

matrix depicting user’s and producer’s accuracy for each species and the overall accuracy.  

2.3.10 Comparing Object-based and Pixel-based classification 
Performance assessment of object-based classification versus pixel-based is very important 

as it reveals the strengths and weakness of each classification approach. The McNemar test 

is preferred for such assessment since it provides detailed information on performance 

discrepancies between classification approach (Bostanci and Bostanci, 2013). Moreover, the 

classification tests employed the same samples to avoid differences induced by sampling 

variability and therefore these are not independent as required for the Kappa difference test 

(Foody, 2004). The McNemar test is a parametric test based on confusion matrices. The 

McNemar test employs a z score (Equation 2) to quantify the difference between the two 

classifications.   

  
           

√         
                                                         Equation 2 

where     denotes the number of instances that were wrongly classified at object-based but 

correctly classified at pixel-based and     denotes the number of instances that were 
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correctly classified at object-based but wrongly classified at pixel-based. Additional     and 

    were included for instances that were wrongly classified at both levels and the number 

of instances that were correctly classified at both levels respectively.  
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2.4 Results 

2.4.1 Spectral Variability: Intra- and Inter-species 
The summary of intra- and inter-species spectral variability is presented in Figure 2.5 to 2.10. 

The canopy reflectance collected from the April image (transition period to senescence 

phenological stage) for each tree species exhibit patterns of high intraspecies variability 

(Figure 2.5 and 2.6). Intraspecies species spectral variability is more pronounced in the red 

region which is a region associated with chlorophyll absorption (Datt, 1999). The spectral 

profile of each tree species showed the expected increase in the canopy reflectance at the 

545nm and increase in the absorption at the 660nm due to chlorophyll within leaves. High 

canopy reflectance is also observed in the leaf-water-sensitive NIR region particularly for 

Combretum spp. 

Acacia nigrescens showed a relatively high reflectance at the 605nm compared to other tree 

species which showed a more pronounced absorption. This is a region sensitive to 

carotenoid presence in leaves (Gitelson et al. 2002) and it indicates that Acacia nigrescens 

was already in the senescence stage in April. Acacia nigrescens displays the highest 

intraspecies-SAM (Figure 2.7 A and B) which may be attributable to between sites 

phenological differences. Acacia nigrescens found on gabbro soils often shows higher 

reflectance in the yellow to red band region compared to those found on granite soils 

(Figure 2.8), ANOVA results indicates that the difference is statistically significant (Fobt > Fcrit) 

when 95% confidence level is used. This indicates the existence of between sites 

phenological differences due to geological variations. Coarse-textured granite soils have 

lower water holding-capacity than fined-textured gabbro soils (Venter et al. 2003). However, 

during the drying phase the water is more tightly bound to clay particles and becomes less 

accessible to plants while granite soils deep water reserves remain undiminished (Colgan et 

al. 2012). Hence it may explain that senescence occurs early on Acacia nigrescens found on 

gabbro soils.  
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Figure 2.5 Spectral profile of the four tree species. AN= Acacia nigrescens; COM=Combretum collinum; 
DC=Dichrostachys cinera; SB=Sclerocharya birea. A1-A4 object-based spectra and B1-B4 pixel-based spectra 
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Figure 2.6 Coefficient of variation for four tree species 

 

Figure 2.7 Intraspecies-SAM for four species; A=Object-based and B=Pixel-based. 

 

Figure 2.8 Average spectral profile of Acacia nigrescens collected on different geological substrates.  
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The interspecies SAM experiment shows a similar pattern of variability for both object-based 

and pixel-based spectra (Figure 2.9). However pixel-based spectra showed a higher average 

interspecies-SAM than OBIA spectra and the difference is statistically significant (Fobt > Fcrit). 

Moreover, the four simulated IKONOS bands provided higher interspecies-SAM compared to 

WV-2 band combination (Figure 2.9). The BAO procedure reveals that excluding red-edge, 

NIR-1 and NIR-2 bands from WV-2 band combination increases the interspecies-SAM (Figure 

2.10). The exclusion of NIR-1 and NIR-2 significantly increase interspecies-SAM (Fobt > Fcrit) 

while the increase in interspecies-SAM due to exclusion of red-edge is statistically 

insignificant (Fobt < Fcrit). In addition, the BAO procedure identified the yellow and red bands 

as the most influential bands in the discriminatory power of WV-2 during the transition 

period (April). The exclusion of either of the two bands significantly decreases the 

interspecies-SAM (Fobt > Fcrit).  

 

Figure 2.9 Interspecies-SAM produced with different band combinations and different classification units: A 

= objects and B = pixels; 1= WV-2 band combination and 2= simulated IKONOS band combination. 
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Figure 2.10 Interspecies-SAM produced with one of WV-2 bands excluded; from top to bottom = object-based to pixel-based. 
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2.4.2 Tree species classification results  
The pixel-based classification yielded higher overall accuracy (76.4%) compared to object-

based classification (74.5%) (Table 2.3). However the difference was not statistically 

significant (zobt = 1.166; zcrit = 3.841). The producer’s accuracy of Sclerocharya birrea was 

particularly lower with pixel-based classification. This was due to spectral confusion between 

Sclerocharya birrea and the three other species as 55% of Sclerocharya birrea was 

misclassified as Combretum spp., Acacia nigrescens or Dichrostachys cinerea (Table 2.5). The 

spectral character of Sclerocharya birrea may be more affected by the background such as 

understory and soil because of the frequent open canopy gaps that characterise the species.  

However, the producer’s accuracy of Sclerocharya birrea improved from 44.5% with pixel-

based classification to 59.7% with object-based classification (Table 2.4). Inversely, the 

producer’s accuracy of Dichrostachys cinerea decreased from 81.4% with pixel-based 

classification to 68.5% with the object-based classification due to spectral confusion with 

Acacia nigrescens and Sclerocharya birrea. The classification confusion between the 

Sclerocharya birrea and Dichrostachys cinerea concurs with lower SC-DC interspecies-SAM 

reported earlier (Figure 2.9). Furthermore, the high intraspecies-SAM by Acacia nigrescens 

account for classification confusion with Dichrostachys cinerea.     

Figure 2.11 presents an example of the species maps produced using the pixel-based and 

object-based classifications and the WV-2 spectral configuration. The species maps are 

consistent with our field knowledge, Combretum species dominating in the granite soils 

while Acacia nigrescens dominate on gabbro soils. The pixel-based classification shows 

underestimation of Sclerocharya birrea and this is consistent with low producer’s accuracy 

for this species.  

Table 2.3 Overall accuracies achieved with WV-2 and simulated IKONOS images using Random 
Forest, April date. 

Classification approach WV-2 Simulated IKONOS 

bands 

Object-5 74.5% 58.6% 

Pixel 76.4% 67.9% 
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Table 2.4 Confusion matrix from object-based classification using Random Forest on 8-bands of 

Worldview-2 image April date. 

      
Producer's User's 

Classes Com AN SB DC Total accuracy accuracy 

Com 101 6 21 3 131 91.8% 77.0% 

AcNig 1 89 3 18 111 75.4% 80.1% 

ScBi 6 7 55 13 81 59.7% 67.9% 

DiCi 2 16 13 74 105 68.5% 70.4% 

Total 110 118 92 108 428 
  Overall 

Accuracy 74.5% 
      Overall Kappa  65.9% 
       

Table 2.5 Confusion matrix from pixel-based classification using Random Forest on 8-bands of 

Worldview-2 image April date. 

      
Producer's User's 

Classes Com AN SB DC Total accuracy accuracy 

Com 104 1 14 1 120 94.5% 86.6% 

AcNig 0 94 19 14 127 79.6% 74.0% 

ScBi 6 7 41 5 59 44.5% 69.4% 

DiCi 0 16 18 88 122 81.4% 72.1% 

Total 110 118 92 108 428 
  Overall 

Accuracy 76.4%   
     Overall Kappa  68.3%   
     (Com= Combretum spp., AN= Acacia nigrescens, SB= Sclerocharya birrea and DC= Dichrostachys 

cinerea) 

The WV-2 band combination achieved higher classification accuracy (74.5% with object-

based and 76.4% with pixel-based) compared to the simulated IKONOS bands (58.6% with 

object-based and 67.9% with pixel-based) and the difference was statistically significant (zobt 

= 5.833; zcrit = 3.841). Given that the two datasets were of the same spatial resolution and 

tested with same samples, the higher overall accuracy from WV-2 image demonstrates the 

high spectral capability of WV-2 in tree species discrimination. 

To further investigate the benefits of the new bands featuring in WV-2 (coastal, yellow, red-

edge and NIR-2) we ran a set of pixel-based classifications excluding these bands one by one. 

The following overall classification accuracies were obtained: 70.3% without coastal band 

centred at 425nm, 69.6% without yellow band centred at 605nm, 70.7% without red-edge 

band centred at 725nm and 70.3% without NIR-2 band centred at 950nm. Consistent with 

BAO procedure, the classification accuracy significantly decreased with the exclusion of 

yellow band (zobt = 4.269; zcrit = 3.841) and this is indicative of the importance of the yellow 

spectral region for tree species discrimination during the transition to senescence period. 

The exclusion of the coastal band also led to the significant decrease in the classification 
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accuracy (zobt = 4.269; zcrit = 3.841). While the overall accuracy also declined when red-edge 

and NIR-2 were excluded the difference was not statistically significant (zobt = 3.252; zcrit = 

3.841 and zobt = 3.608; zcrit = 3.841 respectively).  

 

Figure 2.11 Classification produced at different units: left = object-based and right = pixel-based 

classification 

 

2.4.3 McNemar Test 
From Table 2.6, it is evident that the difference observed between object-based and pixel-

based classification is statistically insignificant. Meanwhile the difference between WV-2 and 

simulated IKONOS image (Table 2.7) is statistically significant.  

Table 2.6 McNemar test for object-based versus pixel-based classification: April data 

                           Df 

    161      22      14      231    1.166    3.841    1 

 

Table 2.7 McNemar test for WV-2 versus simulated IKONOS image 

                           Df 

    101      36      0      291    5.833    3.841    1 
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2.5 Discussion 
The comparative analysis of classification results from OBIA and pixel-approach shows that 

there is no statistically significant difference (zobt < zcrit). This result does not support the 

suggestion in literature that spectral separability is enhanced amongst species when using 

objects as a basic unit of classification (Pu and Landry, 2012; Whiteside et al. 2011; Wang et 

al. 2004). Wang et al. (2004) tested the hypothesis that using objects as basic units of 

classification enhances spectral variability between mangrove species and subsequently 

achieved higher overall accuracy with objects compared to pixels. Whiteside et al. (2011) 

compared the utility of objects and pixels for mapping savannah landcover types at 

community level and eventually concluded that using objects minimizes spectral variability 

within heterogeneous landcover types of tropical savannah.  

In this study the interspecies-SAM yielded similar patterns of spectral separability between 

objects and pixels. These results contradicts the assumption that image objects enhance tree 

species discrimination compared to the pixel approach (Pu and Landry 2012; Wang et al. 

2004; Whiteside et al. 2011). Using both object-based and pixel-based approaches, Acacia 

nigrescens and Combretum spp. have shown to be highly separable with the highest 

interspecies-SAM while Sclerocharya birrea and Dichrostachys cinerea achieved the lowest 

interspecies-SAM indicative of low separability.     

The interspecies-SAM results indicate that objects could not enhance spectral variability 

between species higher than pixels in the savannah environment. This can be associated 

with the averaging of pixels representing a tree canopy. Individual pixels in high resolution 

data captures different aspects of the tree canopy (Nagendra and Rocchini, 2008; Nagendra, 

2001). Blaschke (2010) argued that averaging this information possibly reduces the purity of 

tree canopy spectra. Unlike mangrove forest, savannah tree canopies are highly irregular in 

shape with existence of canopy gaps and also have layered structure particularly for 

Sclerocharya birrea (Naidoo et al. 2012; Archer et al. 2001) therefore the spectral response 

from the tree is influenced by these complexities.  

Despite achieving higher mapping accuracy, Whiteside et al. (2011) focused on broad 

landcover classes using ASTER data with 15m spatial resolution and therefore the effect of 

within-canopy variability is not as influential as it is for single-crown and species-level 

mapping. Our study explored the utility of objects at species-level mapping using WV-2 with 

2m spatial resolution. Since tree species such as Acacia nigrescens, Combretum spp., 

Sclerocharya birea and Dichrostachys cinerea have canopy diameter greater than 2m (Cho et 
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al. 2012), within canopy variability is inevitable. In addition, trees with small crown are often 

characterized by mixed edge pixels (Cho et al. 2012). These complexities in the savannah 

tree structure results in within-canopy spectral variability and therefore the aggregation of 

tree canopy pixels into an object is often composed of mixed pixels which reduces the purity 

of tree canopy spectra. Hence we observe similar patterns of spectral separability between 

objects and pixels. 

However, object-based classification has improved the classification between big trees such 

as Sclerocharya birrea and Acacia nigrescens. The discrimination of Sclerocharya birrea from 

other species has also improved with object-based classification whereas pixel-based 

approach confused Sclerocharya birrea with other species (had achieved 44.5% producer’s 

accuracy). It seems that objects minimizes the effect of tree edge pixels which are often a 

source of spectral confusion. Small crowns such as those of Dichrostachys cinerea and 

Combretum spp. are often composed of mixed pixels along the edge which increase spectral 

confusion with big trees (Cho et al. 2012) and this was observed from pixel-based 

classification. Exception can be made in the case involving Sclerocharya birrea and 

Dichrostachys cinerea which are deemed to have low spectral separability and previous 

studies (Naidoo et al. 2012; Cho et al. 2012) have overcome this spectral confusion with the 

use of structural data.  

Our findings have also confirmed the importance of the new additional bands of WV-2 for 

discriminating tree species as observed by Pu and Landry (2012) and Cho et al. (2012). The 

yellow band (605 nm) and coastal blue (425 nm) in particular have a significant influence on 

the discriminatory ability of WV-2 compared to the red-edge and NIR-2. The higher 

performance from the yellow band may be reinforced by the phenological period at which 

the image was acquired (transition to senescence stage). The yellow and red-edge bands are 

sensitive to variation in leaf pigment concentration (Pu and Landry, 2012) and the transition 

to senescence period is characterized by a growing concentration of carotenoid (Gitelson et 

al. 2002; Zur et al. 2000) which is detectable in the yellow region.  

It is therefore not surprising that the yellow band contributes significantly in tree species 

discrimination given the variation in the rate of phenological change between species. A 

statistically significant contribution could be expected from the red-edge band for data 

captured at the start of the growing season when leaf chlorophyll concentration is high. The 

presence of yellow and red-edge bands distinguish WV-2 sensor from IKONOS in terms of 

ability to discriminate spectrally different tree species. In addition, the significant decline in 
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overall accuracy with simulated IKONOS image indicates the importance of all four 

additional bands in the overall performance of WV-2 image.  

2.6 Conclusion 
The results of this study shows that there is no statistically significant difference between 

OBIA and pixel-based approach towards savannah tree species mapping and this is 

attributed to complexities in tree canopy structure. The interspecies-SAM experiment 

showed similar patterns of spectral variability between objects and pixels. However, OBIA 

improved the classification accuracy between Sclerocharya birrea and Acacia nigrescens and 

this makes OBIA more appropriate for classifying big trees in the savannah environment 

using WV-2 data. This study has also established that the eight-band WV-2 data have higher 

discriminatory power than simulated IKONOS. The yellow band (605nm) in particular has 

shown significant contribution in the performance of WV-2. This indicates that the additional 

bands in the WV-2 sensor enhances it capacity to differentiate between different species. 
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Chapter 3: Multi-temporal approach towards tree species 

mapping in the savannah environment2 

3.1 Abstract 
In southern African savannah, intraspecies spectral variability remains a difficulty that 

challenges accurate discrimination of tree species. Our ability to accurately discriminate tree 

species using remote sensing data relies on high spectral differences between them. Earlier 

studies have shown that multi-temporal data covering different phenological events 

enhances spectral differences between species. In this study two images of different 

phenological periods were used to investigate the importance of multi-temporal data for 

tree species discrimination in the savannah environment. Using interspecies-Spectral Angle 

Mapper (SAM) the multi-temporal data showed higher spectral variability between species 

than individual images and the difference was statistically significant (zobt > zcrit). These 

results reaffirm the assertion that multi-temporal data enhances spectral separability 

between species. Multi-temporal data mitigated the long established spectral confusion 

between Sclerocharya birrea and Dichrostachys cinerea and achieved higher classification 

accuracy (OCA 80.4 %) compared to individual images (76.4% for April and 72.9% for March). 

Moreover, the higher classification accuracy from April date compared to March indicates 

that the transition to senescence as the most ideal phenological period for tree species 

mapping using single image.   
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3.2 Introduction 
The ability to map big trees contributes towards biodiversity assessment and conservation in 

southern African savannah (Cho et al. 2012; Asner et al. 2008). Mapping tree species 

provides an insight on the spatial distribution and abundance of species which is key 

information for biodiversity assessment (Turner et al. 2003). In the savannah ecosystem, 

large tree species play important ecological and economic functions as breeding sites for 

birds, nutrient pumps in the ecosystem, sources of fuelwood and fruits for local 

communities (Treydte et al. 2007; Ludwig et al. 2004; Cho et al. 2012). A study by Treydte et 

al. (2007) established that the quality of grass is improved underneath tree canopies 

particularly in drier parts of savannah and this impact positively on grazing ungulates. The N-

fixing Acacia spp increase soil nutrients creating islands of fertility in the landscape (Lugwid 

et al. 2004; Treydte et al. 2007). Furthermore Shackleton and Shackleton (2003) established 

that local communities benefit financially from Sclerocharya birrea which yields fruits often 

used for Marula-beer brewing. However Wessels et al. (2011) noted a declining distribution 

of trees below 4m due to prescribed long-term fires in protected areas and clearing in 

communal land.  

In addition Cho et al. (2012) noted a pervasive occurrence of bush encroaching species such 

as Dichrostachys cinerea and Combretum apiculatum. This threatens the diversity of 

herbaceous vegetation in the savannah landscape and the distribution of palatable grass 

(Archer et al. 2001). Bush encroachment remains a big concern to the integrity of savannah 

ecosystems ubiquitously (Archer et al. 2001). These instances highlight the importance of 

large tree species in the functioning of savannah ecosystem, the imminent threats to 

palatable grass and also the necessity for regular monitoring of changes in savannah 

vegetation patterns. However regular monitoring of changes would necessitate frequent and 

detailed information on the abundance and distribution of species (Turner et al. 2003). The 

paucity of appropriate data in terms of accuracy, details, completeness as well as spatial and 

spectral resolution remains a challenge for biodiversity assessment at landscape level (Foody 

and Cutler, 2003). The ground-based measurement of species composition coupled by 

ancillary data provides information in field plots less than a hectare (Yang and Prince, 2000; 

Foody and Cutler, 2003). The field plot information is hardly sufficient for making landscape 

scale generalization about the state of biodiversity particularly in the heterogeneous 

savannah environment (Asner et al. 2008; Foody and Cutler, 2003).  
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Alternatively remote sensing techniques present timely information on the spatial 

distribution of species and species richness over large surface in a consistent manner 

(Nagendra 2001; Foody and Cutler, 2003; Yang and Prince, 2000; Adam et al. 2010). The 

recent availability of high resolution data from spaceborne sensors such as Worldview-2 and 

Rapid-Eye (2m and 5m spatial resolution respectively) and airborne sensors such as Compact 

Airborne Spectrographic Imager (CASI) has renewed interests in forest monitoring at 

species-level (Foody et al. 2005; Nagendra and Rocchini, 2008). The high spatial and high 

spectral resolution of the recent satellite and airborne sensors enables fine scale mapping of 

biodiversity on the basis of biochemical and biophysical differences between species (Cho et 

al. 2010; Pu and Landry, 2012; Nagendra and Rocchini, 2008). Cho et al. (2012) argued that 

the 2m spatial resolution of Worldview-2 image would be ideal for mapping tree species in 

the savannah ecosystem. Foody et al. (2005) used hyperspectral data from CASI to map the 

distribution of invasive Acer pseudo-platanus in ancient woodland in the United Kingdom in 

order to understand its ecology. Naidoo et al (2012) used hyperspectral data from Carnegie 

Airborne Observatory in conjunction with LiDAR data to map the eight savannah tree 

species.   

However the use of spectral data for tree species discrimination can be problematic 

particularly in southern African savannah due to high intra-species variability arising from 

within-species phenological differences, variation in edaphic properties and climatic 

conditions across landscape (Cho et al. 2010; Asner et al. 2009). Such variability derails the 

assumption of unique spectral signature per species (Cho et al. 2010) and often produces 

spectral similarities between species (Cochrane, 2000). Studies (Hill et al. 2010; Gilmore et 

al. 2008; Key et al. 2001) have alternatively used multi-temporal data covering different 

phenological periods for purpose of tree species discrimination. Phenological changes occur 

throughout the growing season at different rates amongst species and data that captures 

these changes amplify the spectral variability between deciduous species (Hill et al. 2010; 

Key et al. 2001). This makes a multi-phenological approach towards tree species mapping in 

the savannah environment a more topical research question.     

Few studies (Chidumayo 2001; Archibald and Scholes, 2007) have been conducted on the 

relationship between leaf phenology and climatic variables to develop empirical models that 

can serves as a proxy for changing climatic conditions. However none in our knowledge have 

investigated the importance of multi-phenological approach in southern African savannah 

for tree species mapping despite the overwhelming dominance of deciduous species. This 
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study use Worldview-2 data to investigate how the spectral separability of tree species 

changes in individual images acquired at key points of the typical phenological development 

of savannah and when images of different dates are combined. 
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3.3 Data and Methods 

3.3.1 Remote sensing data 
Two Worldview-2 (hereafter called WV-2) satellite images (DigitalGlobe, Inc., USA) were 

acquired on different dates: i) 19th of April 2012 and ii) 7th of March 2013 to capture 

different phenological periods. In the savannah March period is characterized as the end of 

the rainy season with tree canopies at their maximum foliation while the April period 

constitutes a transition to senescence (Cho et al. 2010). Worldview-2 is the only 

multispectral sensor with eight bands situated in the visible and near-infrared regions of the 

spectrum: coastal blue (400-450nm), blue (450-510nm), green (510-580nm), yellow (580-

625nm), red (625-690nm), red-edge (705-745nm), NIR-1(770-895nm) and NIR-2(860-

1040nm). It captures the image in two modes; panchromatic and multispectral. The sensor 

has a swath width of 16.4km, a maximum revisit period of 1.1 day and a spatial resolution of 

2 m for the 8 multispectral bands. The panchromatic band (450-800nm) is acquired at spatial 

resolution of 0.5 m.  

3.3.2 Field data collection 
Field data were collected during the transition period from wet to dry season in April 2012. 

Eight sites distributed across the study area were sampled purposively to cover varying 

degrees of tree cover (low to high tree cover). These sites were selected over two geological 

substrates, gabbro and granite, present in the study area. In each of these sites, a 100m X 

100m plot was set up and all trees with diameter at breast height greater than 10cm were 

sampled.  In all sites big trees (N=273) located using a high precision GeoExplorer 600 series 

Global Positioning System (GPS), and the species were identified. One-second data from the 

Nelspruit reference station (90km from the study area) was used to post-process the GPS 

location to sub-meter accuracy. However, some of these points were located on cloud-

covered parts of the image and were therefore not available for use. Additional trees and 

GPS points (N=62) collected in the area from previous studies (Naidoo et al. 2012) were also 

used for spectral endmember collection. A combination of these points was sufficient for 

maintaining representativity of each species of interest. In total 250 points representing four 

tree species of interest were used to train and validate the classifications. The study focused 

on four common tree species (i.e. Acacia nigrescens (AN), Combretum spp, (Combretum 

collinum, Combretum apiculatum and Combretum herorence) (COM), Sclerocarya birrea (SB) 

and Dichrostachys cinerea (DC)) that were encountered in most sampling sites in our 

fieldwork (Table 3.1 for attribute information). Additional tree attributes information, e.g. 

tree DBH, height, whether trees are interlocking or coppicing were also recorded.      
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Table 3.1 Information for the four tree species of interest in this study. 

Tree species Phenology Attribute information 

Sclerocarya 

birrea 

 

Acacia 

nigrescens 

 

Combretum 

spp. 

 

 

Dichrostachys 

cinerea 

Deciduous 

 

  

 Deciduous 

 

 

 Deciduous 

 

 

 Deciduous 

Common tree species in SA savannah which is protected by 

law. Its fruits are considered important for beer-making in 

local communities and also a source of food for wild 

animals. 

Important tree species for many browsers and serves as a 

nitrogen-fixing tree, increasing grass quality underneath its 

canopy.     

     

Common tree species with high density in granite 

landscape. Often used for charcoal production and other 

numerous medicinal purposes 

 

Shrubby tree species often considered as an encroaching 

species in the savannah with degrading effect on rangeland 

quality.  

Sources: (Shackleton and Shackleton, 2003; Munyathi et al. 2013; Treydte et al. 2007; 
Naidoo et al. 2012) 

3.3.3 Pre-processing steps 
The WV-2 images were geometrically and atmospherically corrected. Using PCI Geomatica 

OrthoEngine several Rational Polynomial Coefficient (RPC) models (RPC 0th, 1st and 2nd order 

correction) were tested for a rigorous orthorectification of Worldview-2 image. The accuracy 

of the models was assessed via a leave-one-out cross validation approach with 18 ground 

control points (GCPs). The GCPs were evenly distributed over the study area considering land 

land features available on the landscape (e.g. road intersections). A differential GeoExplorer 

2008 series GPS was used to record accurate positions of the GCPs and data from Nelspruit 

reference station were used to post-process the data to sub-meter accuracy. The RPC 0th 

order correction model was opted because its accuracy coincides with that of a rigorous 

model and it is the recommended RPC model for Worldview-2 product (Geomatica, 2013).  

ATCOR-2, often used for flat terrain (Richter and Schlapfer, 2012) was chosen for 

atmospheric correction of WV-2 images since the study area is generally flat to gentle 

undulating slopes.  
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3.3.4 Tree extraction  
The images were characterized by clouds and cloud shadows, bare-ground, grass and tree 

canopy and therefore masking was necessary to remove unwanted features and produce a 

tree canopy map. Developing a tree masking method is a common practice in that it 

enhances the spectral separability of the target features (Pu and Landry, 2012; Pu, 2011). 

Vegetation indices e.g. Normalized Difference Vegetation Index and Soil Adjusted Vegetation 

Index enhance vegetation signals and are often used to separate vegetated areas from non-

vegetated areas. NDVI in particular, is more sensitive to sparsely vegetated areas and has 

effectively been used to eliminate non-vegetated areas (Pu and Landry, 2012; Pu, 2011; 

Jackson and Huete, 1991). Other studies have used textural information to separate tree 

canopies from non-canopy vegetation i.e. grass and shrubs (Pu and Landry, 2012; Pu, 2011). 

The high spatial resolution data enables the identification of tree shadows for tall trees and 

band thresholding facilitates the separation of shaded tree canopy from non-shaded canopy 

(Pu, 2011).    

In this study, a tree masking method was developed in ENVI 4.8 to extract tree canopies and 

eliminate non-canopy features. The best method to achieve this objective relied on NDVI, 

Brightness index, NIR-2 thresholding and SAM classifier. Region of interest (ROI) tool in ENVI 

4.8 was used to delineate and eliminate clouds and cloud shadows. Then prior to image 

segmentation, a quantitative approach was developed using histogram to find optimal 

threshold values for elimination of non-canopy features and shaded areas. GPS points 

(N=72) (collected from a previous study) were used to collect NDVI values for tree canopy 

and grassy areas. Due to the absence of GPS reference points for bare areas, the study relied 

on dirt roads which were clearly discernible from the image.   

For April image, an NDVI threshold value of 0.55 was used to mask tree canopies from non-

canopy features. Visual inspection of the NDVI histogram (Figure 3.1 (A)) reveals that this 

threshold eliminates all pixels covering bare areas including some of the grass pixels.  

Shaded areas were eliminated using the brightness index. The Brightness index is often used 

to describe the condition of the image features with regard to overall brightness and 

wetness (Todd and Hoffer, 1998). The threshold value of 790 was used to separate shaded 

and non-shaded targets (Figure 3.1 (B)).   
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Figure 3.1 A= NDVI for separating vegetated from non-vegetated features; B= Brightness index for 

separating shaded areas from non-shaded. April image. 

For March data, an NDVI threshold value of 0.65 was observed from the NDVI histogram 

(see Figure 3.2 Left) as the most optimal for eliminating pixels representing non-canopy 

features. Moreover NIR-2 thresholding was used to eliminate shaded pixels. Visual 

inspection of NIR-2 histogram (Figure 3.2 Right) indicates that a threshold value of 250 was 

sufficient to eliminate shaded pixels. 

 

Figure 3.2 Left= NDVI for separating vegetated from non-vegetated features; Right= NIR-2 

reflectance for separating shaded areas from non-shaded. March image. 

 

Grassy features were not sufficiently eliminated by the NDVI thresholding and any attempt 

to increase the NDVI threshold beyond the histogram-derived optimum led to elimination 

canopy features, especially Acacia nigrescens.  Therefore, the study assessed the potential of 
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textural information to eliminate grass. Grass is assumed to be a low spatial frequency 

feature with low variability, compared to tree canopy which has typically a rougher surface, 

and therefore a variance matrix was computed on a 3x3 moving window to generate a 

texture layer. However, this assumption was not confirmed as the variance matrix showed 

insensitivity to within-canopy variability. The method was unable to show textural 

differences between grass and tree canopy. Spectral angle mapper (SAM) was then used to 

classify and further eliminate grass pixels from the NDVI-based tree canopy product. SAM is 

a similarity measure that compares the spectral angle between the reference spectrum and 

the target spectrum. A small angle indicates high spectral similarity (Cho et al 2010; Clark et 

al. 2005). The study sets a maximum-angle threshold of 0.005 for SAM and repeatedly ran 

classification on the NDVI product. A smaller angle was selected to cater for the spectral 

similarity that exists between grass and Acacia nigrescens.  This section generated the tree 

products which were subsequently used for segmentation and tree classification (Figure 

3.3). 

 

Figure 3.3 Tree mask produced from WV-2 scene with dark colour representing mask and light 
colour representing the background: A April and B March data 

 

3.3.7 Training and validation samples  
The GPS coordinates of the tree species collected in the field were used for training and 

validation of the pixel-based and object-based classification. The GPS data guided the 

collection of spectral endmembers using regions of interest (ROI) in ENVI 4.8. Table 3.2 
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summarizes the number of samples used for training and validation. ROIs collection 

procedure followed the similar formats for both images.   

Table 3.2 Training and validation data used for tree species classification  

  
April data 

 
March data 

 Training Validation Training Validation 

AN 119 118 102 108 

COM 98 110 123 96 

DC 112 108 137 113 

SB 123 92 87 103 

 

3.3.8 Spectral data analysis 
This study evaluated the spectral variability within- and between-species using the Spectral 

Angle Mapper (SAM). SAM is a similarity measure that quantifies the level of similarity 

between two spectra and is insensitive to illumination-induced differences among spectra. It 

quantifies the angle between two spectra               and               

SAM (      ) =  (        =       
∑       

 
   

[∑    
  

   ]  ⁄  ∑    
   

   

                     Equation 2 

where L is the number of bands. A high angle between spectra indicates that the two 

species are spectrally separable (Cho et al. 2010; Clark et al. 2005). In our application of 

intra-species SAM the angle between each spectrum of a species was computed. The 

application of inter-species SAM followed the same approach as the intraspecies; the angle 

between each spectrum to every other species spectrum was computed. Two band 

combinations (all WV-2 bands and simulated IKONOS bands (blue, green, red, NIR1)) were 

tested at both pixel- and object-level to establish the band combination that magnifies the 

spectral separability between species.  

In addition, we subjected the individual spectral bands of WV-2 data to further scrutiny 

through the use of band-add-on (BAO) procedure to establish the discriminatory ability of 

each band. The BAO procedure is often used on hyperspectral data with high data 
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dimensionality (Keshava, 2004). This procedure iteratively selects bands that optimize 

angular separation between spectra. The procedure adds on pairs of bands and selects those 

with the highest average SAM. The process is repeated until no band contributes further to 

the discriminatory power (Keshava, 2004; Naidoo et al. 2012; Cho et al. 2010). The 

application of BAO, whilst identifying spectral bands that increases angular separation, also 

identifies band redundancy. The BAO procedure was run on WV-2 bands eight times with 

one band excluded each time and this enabled the identification of the spectral bands with 

the highest discriminatory power for the species in question.     

3.3.9 Tree species classification 
We conducted tree species classification using Random Forest (RF). RF has been successfully 

applied to classify savannah tree species using hyperspectral data (Naidoo et al. 2012). Chan 

and Paelinckx (2008) argued that RF remains the most robust machine learning algorithm. RF 

is a tree-based classifier that assembles hundreds of decision trees using random subsets of 

training data. These decision trees are evaluated using out-of-bag estimates to establish the 

importance of each input (Naidoo et al. 2012; Chan and Paelinckx, 2008). Similar to Adelabu 

et al. (2013) this study used the RF algorithm based on EnMap box to classify four tree 

species (Acacia nigrescens, Combretum spp., Sclerocharya birrea and Dichrostachys cinerea). 

The spectral endmembers collected from the April and March images were combined into 

hybrid spectral data to run multi-temporal classification in R Studio using RF modelling 

procedure.   
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3.4 Results 

3.4.1 Spectral variability: interspecies-SAM  
The interspecies-SAM experiment shows that overall tree species are more separable during 

the transition to senescence period (April) compared to the peak of productivity period 

(March) (Figure 3.7). The March data shows a relatively similar average interspecies-SAM for 

all species tested and this is typical of productivity period (Cho et al. 2012). Acacia 

nigrescens and Combretum spp. showed a high spectral separability due to the earlier 

senescence of Acacia nigrescens in April. However Sclerocharya birrea and Dichrostachys 

cinerea showed a lower spectral separability during April compared to the end of the rainy 

season (March). The multi-temporal data achieved higher interspecies-SAM for all tree 

species than single dates and the difference was statistically significant (zobt > zcrit).  
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Figure 3.4 Interspecies-SAM for single dates and time-series data: A = March image, B = April image and C = combination of the two dates.  
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3.2.2 Tree species classification 
The assessment of classification was based on a scenario which considers two datasets: 

multi-temporal data (March-April combination) and single dates. Using RF, the March-April 

combination achieved the highest overall accuracy for pixel-based classification than each of 

the single dates (Table 3.3). The higher overall accuracy concurs with the higher average 

interspecies-SAM achieved above (Figure 3.4) suggesting an amplified spectral differences 

between tree species. Amongst single dates April data achieved higher overall accuracy 

compared to March data and which is also consistent with the observed interspecies-SAM 

(Figure 3.4).  

Table 3.3 Overall classification accuracies for time-series data and single dates 

Classification unit Overall classification accuracy 

 April 2012 March 2013 Time-series data (April 

2012 & March 2013) 

Pixel-based 76.4% 72.9% 80.4% 

 

Classification with multi-temporal data achieved the producer’s and user’s accuracy of above 

60% for all species including Sclerocharya birrea and Dichrostachys cinerea (Table 3.4) which 

are often difficult to discriminate using spectral data alone (Naidoo et al. 2012) and were 

also difficult to discriminate with single dates. The producer’s accuracy of Acacia nigrescens 

has also improved with the use of time-series data.  

Table 3.4 Producer’s and user’s accuracies for time-series and single dates: pixel-based approach 

                               April data                            March data                          Time-series data 

Classes Producer's User's Producer's User's Producer’s User’s 

 
accuracy accuracy accuracy accuracy accuracy accuracy 

Com 94.50% 86.60% 83.60% 81.40% 96.50% 100% 

AN 79.60% 74.00% 65.20% 76.20% 95.00% 80.80% 

SB 44.50% 69.40% 55.40% 68.00% 66.60% 61.50% 

DC 81.40% 72.10% 79.60% 61.80% 60.00% 77.70% 
 

(Com= Combretum spp., AN= Acacia nigrescens, SB= Sclerocharya birrea and DC= Dichrostachys 

cinerea) 
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3.5 Discussion 
The spectral properties of tree species and separability between species originate from 

variation in leaf pigments, water content and other biophysical properties (e.g. leaf size and 

structure) that varies throughout the growing season (Gilmore et al. 2008). At a single date 

the highest spectral variability between the four species was found to be in April which 

captured the transition to senescence phenological stage. The rate of phenological change 

varies between species (Gilmore et al. 2008) and our results (interspecies-SAM) indicates 

that the rate of transition to senescence varies between species hence pronounced spectral 

differences were observed in April data. March data captures the peak of productivity and 

this seems to represent minor differences in tree phenological states. The peak of 

productivity is associated with less interspecies separability (Cho et al. 2012) and our results 

revealed a similar average interspecies-SAM with the March data. These observations 

authenticate the assertion made by Hill et al. (2010) that the ability to discriminate tree 

species is higher on the data captured at the start or end of the growing than mid-summer 

which is reported to have  low interspecies separability (Cho et al. 2012). It would be 

interesting to test the performance of WV-2 data captured at the start of the growing for 

savannah tree species discrimination given that the yellow band had outperformed the red-

edge band during the senescence period.      

This study showed the importance of identifying phenological period when tree species 

would achieve high spectral differences between them particularly in the deciduous 

woodland. The results of the study indicate April period as the most optimal time to acquire 

single spectral data for tree species discrimination in savannah. Differences in leaf pigments 

and other structural attributes between tree species seem to have been high during April 

period and this enhanced the discriminatory power of Worldview-2 image. However data 

collection during this period is often hampered by natural constraints such as cloudy 

weather condition.   

The March data did not exhibit high interspecies-SAM between species. However, combining 

data from March and April dates enhanced the spectral differences between species. The 

higher interspecies-SAM from multi-temporal data compared to individual images concurs 

with the literature that variations in spectral reflectance of deciduous species throughout 

the growing season enhances species separability (Hill et al. 2010; Gilmore et al. 2008). 

Throughout the growing season, deciduous tree species undergo phenological changes and 

multi-temporal data capturing these changes enhance the spectral differences between 
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species (Hill et al 2010; Gilmore et al. 2008). The two dates obviously captures different 

stages of phenological changes which also occur at different rates between deciduous tree 

species in the savannah. Therefore the compounded interspecies-SAM with multi-temporal 

data indicates the importance of multi-seasonal approach for discriminating numerous tree 

species in the savannah. Moreover multi-temporal data mitigated the well-established 

spectral confusion between Sclerocharya birrea and Dichrostachys cinerea often neutralised 

with the use of LiDAR data. Such improvement indicates that multi-temporal data is able to 

offset the effect of mixed pixels bordering the crowns of small trees. Therefore in the 

absence of LiDAR data, time-series data may also serves as an alternative. 

3.6 Conclusion 
This study concludes that the multi-temporal approach towards tree species increase the 

spectral differences between species. Multi-temporal data used to classify tree species in 

this study achieved higher interspecies-SAM and higher classification accuracy than 

individual images. Moreover, the study showed transition to senescence period to be an 

optimal period for spectral discrimination of savannah tree species using WV-2 data.   
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Chapter 4: Conclusion 

4.1 Objectives review and concluding remarks 

The advent of new multispectral sensors such as Worldview-2 with high spatial resolution 

and innovative bands in the yellow and red-edge regions of the electromagnetic spectrum 

provides opportunities for species-level mapping of biodiversity (Pu and Landry, 2012; Omar, 

2010; Nagendra and Rocchini, 2008). However species-level mapping of biodiversity in the 

savannah environment is often challenged by intraspecies spectral variability arising from 

within-species phenological differences, driven by variation in edaphic and climatic 

conditions across landscape (Cho et al. 2010; Naidoo et al. 2012). While the data from new 

multispectral sensors delivers the necessary spatial and spectral details for biodiversity 

estimation, its use for tree species mapping has often been challenged by within-canopy 

variability (Pu and Landry, 2012; Nagendra and Rocchini, 2008). This study has showed that 

developing methods for exploiting high resolution data will improve our ability to map 

biodiversity in the savannah environment. The main objectives of the study were to i) 

investigate the utility of OBIA for mapping savannah tree species using WV-2 data, ii) 

investigate and compare the spectral capability of WV-2 sensor to that of simulated IKONOS 

and iii) investigate the ability of multi-temporal data to enhance spectral variability amongst 

tree species in the savannah environment using Worldview-2 imagery captured in different 

seasons. The following concluding remarks were drawn from our findings in relation to the 

objectives of the study:  

4.1.1 Investigate the utility of OBIA for mapping savannah tree species 

using WV-2 image 
This study concludes that there is no statistically significant difference between OBIA and 

pixel-approach towards savannah tree species mapping. The assumption that using objects 

with Worldview-2 spectral data improves tree species mapping could not be verified and this 

may be attributed to complexities in the savannah tree structure. Nonetheless, OBIA 

minimized the effects of tree canopy edge pixels and therefore improves the classification 

accuracy of Sclerocharya birrea compared to a pixel-based approach. OBIA improved the 

classification accuracy between Sclerocharya birrea and Acacia nigrescens and this makes 

OBIA an appropriate alternative for classifying big trees in the savannah environment using 

WV-2 image. In addition mapping savannah tree species at 74.5% overall accuracy compares 

positively with other studies that have used OBIA for species-level mapping. 
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4.1.2 Investigate and compare the spectral capability of WV-2 sensor to 

that of simulated IKONOS  
The higher classification accuracy produced using WV-2 image demonstrates the improved 

capability of WV-2 spectral bands over that of IKONOS. Our results provide evidence that 

accurate mapping of savannah tree species is possible with WV-2 data. WV-2 image 

improved the overall accuracies of the classification of the four species from up to 15.9% 

and 8.5% higher than the simulated IKONOS using OBIA and pixel-based approach 

respectively. This may be attributable to the yellow band (605 nm) not present in most 

multispectral sensors such as IKONOS. The results in this study reiterate Pu and Landry 

(2012) conclusion that increasing spectral resolution of multispectral sensors will improve 

their ability to discriminate tree species spectrally.  

4.1.3 Multi-temporal approach towards tree species in the savannah 

environment using WV-2 data 
The enhanced spectral difference with the use of multi-temporal data stresses the ease at 

which tree species can be classified with multi-temporal approach. The multi-temporal data 

achieved higher interspecies-SAM compared to individual images. In addition a higher 

overall classification accuracy was produced from multi-temporal data (80.4%) compared to 

individual images (76.4% and 72.9% April and March respectively). Deciduous tree species 

undergo phenological changes throughout the growing season (Hill et al. 2010; Gilmore et al. 

2008)  and developing multi-temporal framework using WV-2 imagery with innovative bands 

in the yellow and red-edge regions improves our ability to discriminate tree species. The 

level of classification accuracy achieved in this study with multi-temporal data indicates the 

need to move towards multi-temporal approach if our work is to feed into biodiversity 

management. Accurate mapping of tree species distribution is essential for sound 

management of biodiversity (Turner et al. 2003). Moreover, the classification result shows 

the April period as the optimal period for discriminating tree species using spectral data.  

4.2 Limitations of the study 

The study could not produce a classification map from the multi-temporal approach due to 

pixel misalignment between images. Although the two images were corrected for geometric 

errors, the orientation of tree crowns between the images could not match. Therefore the 

study tested the concept of multi-temporal approach only without producing a classification 

map. In addition cloudy weather conditions distorted the image and some GPS points could 

not be used.   
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4.3 Recommendations   

The transition to senescence phenological period has shown high spectral difference 

between tree species and produced high mapping accuracy. This period can therefore be 

recommended as ideal for tree species discrimination using multispectral data particularly 

WV-2 image. Further research on the performance of WV-2 data captured at the beginning 

of the growing season is necessary to establish the importance of red-edge and NIR-2 bands 

pioneered in WV-2 sensor. The present study has established the yellow band as significant 

in the overall performance of WV-2. It will therefore be insightful to investigate the 

performance of WV-2 captured at a season different to present study.  

The study has shown improved mapping accuracy for Sclerocharya birrea and Acacia 

nigrescens with the use of object-based image analysis. The present study used only multi-

spectral data to investigate the utility of OBIA. Research that combines multispectral data 

with LiDAR data may provide more insight on the utility of OBIA in tree species mapping. The 

use of LiDAR data will assist with the elimination of below-canopy effect and therefore 

makes the first part of OBIA (segmentation) more effective.   

Pattern matching would be an appropriate corrective method where overlapping 

features are detected (Cervantes and Kang, 2006) and corrected using GPS points as 

a reference data. The challenge is that the two images cover different phonological 

periods. A study into the utility of pattern matching in the correction of pixel 

misalignment is warranted.   
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Appendices 

Appendix A: ANOVA results 
Appendix A.1: One-way ANOVA results for the observed variation in the reflectance of Acacia nigrescens 
found on different geological substrates.   

Source of Variation SS df MS F P-value F crit 

Between Groups 14734.5 1 14734.5 148.5537 
1.23E-

17 4.006873 

Within Groups 5752.809 58 99.18636 
   

       Total 20487.31 59         

 

Appendix A.2: One-way ANOVA results for the observed interspecies-SAM between OBIA and pixel-based 
approach.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.006752 1 0.006752 10.33951 0.00136 3.854317 

Within Groups 0.473446 725 0.000653 
   

       Total 0.480198 726         

 

Appendix A.3: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 
simulated bands of IKONOS sensor.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.029259 1 0.029259 27.64561 
1.92E-

07 3.854299 

Within Groups 0.768375 726 0.001058 
   

       Total 0.797634 727         

 

Appendix A.4: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 7-
bands of WV-2 with coastal blue excluded via BAO procedure.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.000466 1 0.000466 0.645458 0.422004 3.854299 

Within Groups 0.524338 726 0.000722 
   

       Total 0.524805 727         
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Appendix A.5: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 7-
bands of WV-2 with blue band excluded via BAO procedure.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups     0.002013 1 0.002013 2.877105 0.090276 3.854299  

Within Groups 0.508069 726 0.0007 
   

       Total 0.510082 727         

       Appendix A.6: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 7-
bands of WV-2 with green excluded via BAO procedure.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.002037 1 0.002037 2.957948 0.085883 3.854299 

Within Groups 0.499995 726 0.000689 
   

       Total 0.502032 727         

 

Appendix A.7: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 7-
bands of WV-2 with yellow excluded via BAO procedure.   

 

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.008592 1 0.008592 13.53715 0.000251 3.854299 

Within Groups 0.460777 726 0.000635 
   

       Total 0.469368 727         

 

Appendix A.8: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 7-
bands of WV-2 with red band excluded via BAO procedure.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.018433 1 0.018433 30.80934 3.99E-08 3.854299 

Within Groups 0.434355 726 0.000598 
   

       Total 0.452787 727         
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Appendix A.9: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 7-
bands of WV-2 with red-edge band excluded via BAO procedure.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.001725 1 0.001725 2.121077 0.145717 3.854299 

Within Groups 0.590434 726 0.000813 
   

       Total 0.592159 727         

 

Appendix A.10: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 
7-bands of WV-2 with NIR-1 band excluded via BAO procedure.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.013493 1 0.013493 15.45058 9.28E-05 3.854299 

Within Groups 0.634015 726 0.000873 
   

       Total 0.647508 727         

 

Appendix A.11: One-way ANOVA results for the observed interspecies-SAM between 8-bands of WV-2 and 
7-bands of WV-2 with NIR-2 excluded via BAO procedure.   

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.045926 1 0.045926 46.11867 2.32E-11 3.854299 

Within Groups 0.722973 726 0.000996 
   

       Total 0.7689 727         
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Appendix B: OBIA results from March Data  

Segmentation scale parameter 

The scale parameter of 3 provided the smallest RMSE of 22.5 compared to the scale of 5 and 

that of 7 (Appendix B1). The assessment result indicates the scale parameter of 3 as optimal 

for tree canopy delineation in southern African savannah using Worldview-2 image acquired 

during the peak of productivity period (March). 

 

Appendix  B.1 Scatterplot and Root-mean-square-error for dimensional accuracy of the segmented 
objects – March image; (A) segmentation scale parameter of 3, (B) scale of  5 and (C) scale of  7. 
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 Spectral variability: intra- and interspecies  

The canopy reflectance for all tree species shows a common pattern of spectral variability in 

the visible and near infrared regions. Intraspecies variability remains low in the visible region 

while a high spectral variability is observable in the near infrared region for all tree species. 

Moreover the spectral profile of each tree species is typical of a healthy photosynthetically 

active plant with high reflectance in the green region and high absorption in the red region 

due to the presence of leaf chlorophyll. This trend is observed for both object-based and 

pixel-based approaches (Appendix B2). The intraspecies-SAM experiment shows a high 

spectral variability within Dichrostachys cinerea (Appendix B3). However Acacia nigrescens, 

Combretum spp. and Sclerocharya birea exhibit similar patterns of intraspecies variability 

and this is observed for both object-based and pixel-based approaches (Appendix B3). 
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Appendix B.2 Spectral profile of the four tree species. AN= Acacia nigrescens; COM=Combretum collinum; 
DC=Dichrostachys cinera; SB=Sclerocharya birea. A1-A4 object-based spectra and B1-B4 pixel-based spectra 

 

 

Appendix B.3 Intraspecies-SAM for four species; A=Object-based and B=Pixel-based. 
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Appendix B.4 Interspecies-SAM for four species; A=Object-based and B=Pixel-based. 

 

 Tree species classification 
Appendix B.5 Confusion matrix from object-based classification using Random Forest on 8-bands of 
Worldview-2 image March date. 

      
Producer's User's 

Classes Com AcNig ScBi DiCi Total accuracy accuracy 

Com 96 7 11 0 114 84.2% 84.2% 

AcNig 6 69 7 15 97 58.4% 71.1% 

ScBi 11 18 60 23 112 65.2% 53.5% 

DiCi 1 24 14 70 109 64.8% 64.2% 

Total 114 118 92 108 432 
  Overall 

Accuracy 68.2% 
      Overall Kappa  57.7% 
       

Appendix B.6 Confusion matrix from pixel-based classification using Random Forest on 8-bands of 
Worldview-2 image March date. 

      
Producer's User's 

Classes Com AcNig ScBi DiCi Total accuracy accuracy 

Com 90 9 5 3 107 78.9% 84.1% 

AcNig 3 81 14 4 102 68.6% 79.4% 

ScBi 1 8 56 13 78 60.8% 71.7% 

DiCi 20 20 17 88 145 81.4% 60.6% 

Total 114 118 92 108 432 
  Overall 

Accuracy 72.9% 
      Overall Kappa  63.7% 
      (Com= Combretum spp., AN= Acacia nigrescens, SB= Sclerocharya birrea and DC= Dichrostachys 

cinerea) 
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Appendix B7 McNemar test for object-based versus pixel-based classification: March data 

 

 

 

 

 

                           Df 

    105      32      12      283    2.864    3.841    1 


