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Abstract

We have entered an era of precision cosmology, in which the parameters of the standard cosmo-

logical model have been well constrained by observations. The cosmic microwave background

(CMB) has played a vital role in providing these constraints, because the primordial CMB is

sensitive to many of the cosmological parameters. The observed CMB is modified by secondary

effects caused by photon interactions after the surface of last scattering. One such effect is grav-

itational lensing, the deflection of photons due to the matter that they pass. Gravitational lensing

can be used to probe the total matter distribution, which is dominated by dark matter. CMB

lensing also provides complementary cosmological information to that obtained from the CMB

power spectrum, and can be used to break parameter degeneracies and improve constraints on

dark energy and neutrino masses.

We explore methods of reconstructing the lensing field from lensed CMB temperature and

polarisation maps in real space, as an alternative to the harmonic space estimators currently in

use, by extending an existing temperature real space estimator to CMB polarisation. Real space

estimators have the advantage of being local in nature and they are thus equipped to deal with

the nonuniform sky coverage, galactic cuts and point source excisions found in experimental

data. We characterise some of the properties and limitations of these estimators and test them on

simulated maps, finding that the reconstructions are accurate for large-scale lensing fields, and
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that the polarisation reconstructions improve on those from CMB temperature maps.

Neutral hydrogen (HI) intensity mapping is expected to be a powerful probe of large scale

structure and cosmology, and a number of current and planned experiments will be performing

large intensity mapping surveys. HI is a biased tracer of the dark matter distribution, therefore HI

observations will be correlated with CMB lensing reconstructions. We investigate the potential

for measuring this cross-correlation using CMB lensing reconstructed from Advanced ACTPol

observations and HI intensity mapping data from the Hydrogen Intensity and Real-time Analysis

eXperiment (HIRAX). We find that the CMB lensing-HI cross-correlation will be detectable with

a total signal to noise ratio of between 20 and 50 in each of four bins in the HIRAX frequency

range, which will allow us to constrain the HI bias on various scales over a wide redshift range

(z = 0.8 to 2.5).
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CHAPTER 1

Introduction

In the beginning there was nothing, which exploded.

– Terry Pratchett

Time began 13.8 billion years ago with the Big Bang, when the universe started to expand

from an initial singularity (Planck Collaboration et al., 2015c). A period of rapid inflation fol-

lowed, during which the universe expanded by approximately 60 e-foldings, increasing in size

by a factor of 1026 in a very short time period (Guth, 1981; Guth and Weinberg, 1983). Inflation

stretched the initial quantum fluctuations into small inhomogeneities in the matter density, which

seeded the large-scale structure we see today (Padmanabhan, 1993; Peebles and Yu, 1970). After

inflation, expansion continued at a much slower rate. The universe cooled with its expansion,

allowing subatomic particles to form protons and neutrons, and later allowing light nuclei to

form in a process known as Big Bang nucleosynthesis (Alpher et al., 1948; Gamow, 1948). The

hot temperatures at early times meant that high-energy photons would immediately ionise any

neutral atoms as they formed. The photons, electrons and protons were tightly coupled into a

photon-baryon fluid by Compton scattering of photons off electrons and Coulomb interactions
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between electrons and protons. Photons could only travel very short distances before scattering

off an electron: the universe was opaque.

Around 380 000 years after the Big Bang, the universe had cooled sufficiently to usher in

a period of recombination: electrons and protons combined to form neutral hydrogen (Peebles,

1968; Zeldovich et al., 1968). This reduction in free electrons resulted in photons decoupling

from matter and traveling freely with few interactions. These photons pervade the universe,

and are known as the cosmic microwave background (CMB), because their energies fall in the

microwave part of the electromagnetic spectrum when they reach us. The CMB cooled as the

universe expanded, and its temperature dropped from T = 3000K at recombination to T =

2.725K today (Mather et al., 1992). The fluctuations in the early universe reveal themselves as

anisotropies in the CMB, or slightly hotter and colder regions with δT/T ≈ 10−5 (Smoot et al.,

1992). The CMB is also partially linearly polarised due to Thomson scattering in the presence of

a quadrupole anisotropy at the last scattering surface (Hu and White, 1997). The CMB provides

a snapshot of the universe relatively soon after the Big Bang, giving us valuable insight into the

early universe and allowing us to constrain the cosmological parameters (Planck Collaboration

et al., 2015c).

The fluctuations that are seen in the CMB are caused by perturbations to the otherwise uni-

form matter distribution in the universe at early times: there were regions that were slightly

more dense than the average as well as regions that were slightly less dense. Overdense regions

attracted more matter, and so the slight primordial overdensities gradually grew, under the in-

fluence of gravity, into the large-scale structures we see today (Peebles and Yu, 1970; Peebles,

1982).

The first stars formed a few hundred million years after the Big Bang, putting an end to the

dark ages and heralding the cosmic dawn (McKee and Ostriker, 2007; Zinnecker and Yorke,

2007; Bromm and Larson, 2004). These stars lit up the sky with UV radiation, which began a

period of reionisation, during which most of the neutral hydrogen (HI) was converted to ionised

hydrogen (HII) (Barkana and Loeb, 2001). After reionisation, the fraction of hydrogen that

remains in neutral form is found only in dense regions of galaxies and the intergalactic medium

(Wyithe and Loeb, 2008; Bagla et al., 2010).
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Early astronomers expected the universe to be made up of ordinary baryonic matter and

radiation. However, the velocity dispersion of galaxies in the Coma cluster indicated that far

more mass was present than could be accounted for by stars, gas and dust (Zwicky, 1933, 1937),

leading to the conclusion that most of the mass in the universe must come from another type of

matter. Other observations support this conclusion, including the observed shapes of galaxies

(Ostriker and Peebles, 1973), rotation curves of galaxies (Rubin and Ford, 1970), gravitational

lensing measurements (Clowe et al., 2006), and constraints on the total and baryonic matter

density from the CMB (Spergel et al., 2003). This mysterious component of the universe seems

to only interact gravitationally, and does not emit or absorb radiation, leading to the term ‘dark

matter’. Recent constraints from CMB observations suggest that dark matter makes up 25.8%

of the mass-energy content of the universe, while baryonic matter makes up only 4.8% (Planck

Collaboration et al., 2015c). Most of the mass in the universe is therefore in the form of dark

matter.

Another unexpected turn in the course of cosmology was the discovery that the universe is

undergoing accelerated expansion. Hubble (1929) was the first to observe that the universe was

expanding, but it was believed that the expansion was slowing, and the universe might eventu-

ally begin to collapse back in on itself. Observations of Type Ia supernovae showed that the

expansion of the universe was in fact accelerating, suggesting the presence of dark energy to fuel

this accelerated expansion (Riess et al., 1998; Perlmutter et al., 1999). One candidate for dark

energy is a cosmological constant, a vacuum energy whose energy density remains constant as

the universe expands, often visualised as a sort of ‘negative pressure’. Dark energy constitutes

69.4% of the universe’s energy content at present (Planck Collaboration et al., 2015c).

We therefore appear to live in a universe dominated by the largely unexplained quantities

of dark matter and dark energy. It seems our universe can nevertheless be well characterised

by only six cosmological parameters which describe the contents and history of the universe.

These are the parameters of the standard ΛCDM model of the universe, where Λ is the symbol

traditionally used for the cosmological constant and CDM stands for cold dark matter. The

majority of observations are consistent with the ΛCDM model, although various modifications

to the standard model have been proposed. For the rest of this thesis we assume that the ΛCDM
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model accurately describes our universe.

The CMB is not just a picture of the universe at early times: CMB photons interact with

the large-scale structure in various ways after recombination and last scattering, resulting in

secondary effects that modify the primordial CMB. Compton scattering of CMB photons off

high-energy electrons results in the thermal Sunyaev-Zel’dovich effect which boosts low energy

photons to higher energies (Sunyaev and Zeldovich, 1972). CMB photons that scatter off elec-

trons in galaxy clusters that are moving with respect to the CMB rest frame experience a Doppler

shift known as the kinetic Sunyaev-Zel’dovich effect (Sunyaev and Zeldovich, 1975; Amblard

et al., 2004). Photons scatter off the free electrons produced during reionisation, suppressing

the power in CMB temperature and inducing polarisation on large angular scales (Haiman and

Knox, 1999). The Rees-Sciama effect, a late time integrated Sachs Wolfe effect, changes the en-

ergy of photons that pass through potential wells that evolve during the photon’s passage (Rees

and Sciama, 1968). One of the most significant secondary effects, and the one we focus on, is

gravitational lensing: the deflection of CMB photons due to the matter that they pass (Blanchard

and Schneider, 1987; Cole and Efstathiou, 1989; Linder, 1990)

Gravitational lensing is predicted by Einstein’s theory of general relativity (Einstein, 1915).

Earlier scientists had speculated about gravitational lensing and used Newtonian theory to cal-

culate the amplitude of the deflection, finding a deflection half as large as the correct amplitude

predicted by general relativity and confirmed by observations (Dyson et al., 1920). Lensing

causes CMB photons to be deflected as they pass massive structures while traveling to us from

the surface of last scattering (Seljak, 1996). Thus the primordial CMB is remapped by a de-

flection field, with photon positions on the sky shifting slightly from the primordial to the lensed

CMB. The lensing effect contains information about the matter between us and the last scattering

surface, so the lensed CMB can be used to recover the projected distribution of matter in the uni-

verse (e.g. Hu, 2001a,b; Zaldarriaga and Seljak, 1999). Gravitational lensing therefore provides

a method for studying dark matter, which only interacts gravitationally.

When the CMB is lensed, the structure of the unlensed CMB (caused by the acoustic os-

cillations of the photon-baryon fluid before decoupling) is slightly smoothed out. Lensing also

produces a non-Gaussian signal in the lensed CMB (Zaldarriaga, 2000; Hu, 2001a,b). Gravita-
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tional lensing of the CMB due to large scale structure results in correlations between different

harmonic modes which are uncorrelated in the unlensed CMB. These off diagonal correlations

are proportional to the lensing potential, or the gravitational potential projected along the line of

sight. We can therefore construct estimators based on these correlations that allow us to recon-

struct the lensing potential (Zaldarriaga and Seljak, 1999; Hu and Okamoto, 2002).

Performing the lensing reconstruction in harmonic space poses difficulties for experimental

data, which only covers part of the sky and contains point source excisions and nonuniform

weightings. A local estimator implemented in map space can be helpful because it circumvents

the need to transform into harmonic space, which is an inherently nonlocal procedure. Bucher

et al. (2012) developed a real space estimator that can be applied to CMB temperature maps

to locally reconstruct the lensing field. Many experiments are now mapping the CMB sky in

polarisation as well as temperature, such as ACTPol (Naess et al., 2014) and SPTpol (Crites

et al., 2015), as well as the now-completed Planck mission (Planck Collaboration et al., 2015f).

As the sensitivity and resolution of CMB experiments continues to improve, the highest signal-

to-noise lensing reconstructions will come from polarisation data (Hu and Okamoto, 2002), so

in this thesis we extend the real space temperature lensing estimator to CMB polarisation.

Gravitational lensing can be used to constrain cosmological parameters. Apart from the

obvious applications to constraining the matter density and the amplitude of the matter power

spectrum, lensing can prove useful in breaking degeneracies between parameters that affect the

CMB power spectrum in the same way. For example, having access to the lensing potential

allows us to differentiate between curvature and dark energy for non-flat models of the universe

(Stompor and Efstathiou, 1999). Lensing can also improve constraints on the dark energy model

and neutrino masses, over and above the constraints from the lensed CMB power spectrum (de

Putter et al., 2009; Benoit-Lévy et al., 2012; Allison et al., 2015a). Because lensing probes the

distribution of matter, it can be used to study massive objects such as galaxy clusters (Seljak and

Zaldarriaga, 2000; Dodelson, 2004; Holder and Kosowsky, 2004; Baxter et al., 2015). Galaxy

lensing will in general yield more precise cluster mass results than CMB lensing (Richard et al.,

2014; Jauzac et al., 2015; Limousin et al., 2015), but for high redshift objects with no background

galaxies CMB lensing could prove useful in constraining cluster masses (Hu et al., 2007).
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Initial lensing detections were achieved in cross-correlation using data from the Wilkinson

Microwave Anisotropy Probe (WMAP) satellite (Smith et al., 2007; Hirata et al., 2008). Gravita-

tional lensing has now been detected in both temperature and polarisation data by various CMB

experiments such as the Atacama Cosmology Telescope (Das et al., 2014; van Engelen et al.,

2015), the South Pole Telescope (van Engelen et al., 2012) and the POLARBEAR collabora-

tion (Ade et al., 2014). The most significant lensing detection to date is the Planck satellite’s

40σ measurement, which was achieved using a combination of temperature and polarisation data

(Planck Collaboration et al., 2015d).

The radiation emitted by distant galaxies is gravitationally lensed by foreground galaxy clus-

ters, a phenomenon known as galaxy lensing. Galaxy lensing occurs in both the strong lensing

regime, in which multiple images of background galaxies are produced, and the weak lensing

regime, in which the shapes of background galaxies are distorted (e.g. Kneib and Natarajan,

2011; Hoekstra et al., 2013). Galaxy lensing can be used to study the matter distribution of the

cluster that forms the gravitational lens (Massey, 2010). In addition, the magnification caused

by lensing means that galaxy clusters can act as telescopes that allow very distant galaxies to

be observed (Richard et al., 2014). The geometry of the universe and the nature of dark energy

can also be constrained by galaxy lensing (Jullo et al., 2010). The first double image of a quasar

caused by strong gravitational lensing was detected by Walsh et al. (1979), although the authors

were not convinced this was an effect of lensing, and speculated that the two images could be two

similar quasars. Now observations of background galaxies with high-resolution telescopes such

as the Hubble Space Telescope have allowed astronomers to reconstruct the matter distribution

of the foreground galaxy clusters using multiple images from strong gravitational lensing (e.g.

Jauzac et al., 2015), and to constrain the dark energy equation of state (e.g. Jullo et al., 2010).

Distant galaxies have also been discovered using lensing (e.g. Richard et al., 2011). In addition,

maps of the matter distribution have been produced using galaxy weak lensing reconstruction

techniques, for example using the science verification data from the Dark Energy Survey (Chang

et al., 2015).

Surveys of large scale structure, such as the Sloan Digital Sky Survey (SDSS), allow us to

measure the galaxy power spectrum and constrain various cosmological parameters (e.g. Reid
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et al., 2010; Rozo et al., 2010). Next generation optical/infrared experiments such as the Large

Synoptic Survey Telescope (LSST) (Ivezic et al., 2008) and Euclid (Laureijs et al., 2011) will

survey larger volumes of the sky with better sensitivity than current telescopes. The Square Kilo-

meter Array (SKA) will probe the large scale structure of the universe at radio frequencies, using

large volume HI intensity mapping surveys (which do not detect individual galaxies but rather

the integrated emission in three-dimensional pixels), and later resolving the individual galaxies

in the planned HI galaxy redshift survey (Maartens et al., 2015). All of these experiments will

use gravitational lensing to probe the dark matter distribution. They will also study dark energy

via the growth of large scale structure (by studying the evolution of the galaxy power spectrum

directly, the growth of the matter power spectrum via gravitational lensing, and redshift-space

distortions which depend on the growth rate), and the expansion history of the universe (which

can be constrained by baryon acoustic oscillations and weak lensing) (Laureijs et al., 2011; Wein-

berg et al., 2013).

HI intensity mapping measures the integrated 21cm emission from neutral hydrogen on large

scales at different redshifts, without resolving individual galaxies. Intensity mapping is a useful

technique for rapidly surveying large volumes of the universe. This technique can be employed

using telescopes with lower resolution and sensitivity than would be needed to detect individual

galaxies, so although it will be used to great effect by the SKA (Santos et al., 2015), it can also

be used by earlier, lower resolution dedicated experiments such as the Canadian Hydrogen Inten-

sity Mapping Experiment (CHIME) (Vanderlinde and Chime Collaboration, 2014), the Baryon

acoustic oscillations In Neutral Gas Observations experiment (BINGO) (Battye et al., 2012),

Tianlai (Chen, 2015), and the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX)

(HIRAX Collaboration, 2016) to place constraints on baryon acoustic oscillations and therefore

dark energy.

CMB lensing reconstructions have been cross-correlated with other tracers of the dark mat-

ter distribution, such as quasars (Sherwin et al., 2012), the cosmic infrared background (Holder

et al., 2013) and galaxies (Pearson and Zahn, 2014; Kuntz, 2015), including high redshift sub-

millimetre galaxies (Bianchini et al., 2015) and radio galaxies (Allison et al., 2015b). Such

cross-correlations constrain various clustering properties of the tracers, such as their bias with
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respect to the underlying dark matter field. Cross-correlations of a foreground lens plane with

lensing from two different background source planes (such as the CMB at z ≈ 1100 and back-

ground sources for galaxy lensing at much lower redshifts) probe the geometrical distances to

different redshifts, and thus constrain dark energy parameters (Jain and Taylor, 2003; Bernstein

and Jain, 2004; Zhang et al., 2005; Das and Spergel, 2009). Combining results from CMB and

galaxy lensing reconstructions (Hand et al., 2015; Liu and Hill, 2015) also allows us to constrain

the amplitude of the density fluctuations probed by both types of lensing. In this thesis, we in-

vestigate the potential to detect the cross-correlation between CMB lensing reconstructed from

Advanced ACTPol (Henderson et al., 2015) and HI intensity mapping from HIRAX (HIRAX

Collaboration, 2016). A high signal to noise detection of this cross-correlation could be used to

constrain the bias of neutral hydrogen with respect to the underlying dark matter field.

This thesis is structured as follows. In Chapter 2, we present the relevant cosmological back-

ground information, discussing the standard cosmological model and the growth of the early

matter perturbations into the large scale structure that is responsible for lensing the CMB. We

also review the primordial CMB and the weak gravitational lensing effect on CMB photons as

they travel through space from the last scattering surface. We derive the real space CMB tem-

perature and polarisation lensing estimators in Chapter 3 and show that they are the large-scale

lensing field limit of the harmonic space estimators traditionally used. We investigate some of

the properties and limitations of these estimators, and apply them to simulated lensed tempera-

ture and polarisation maps, demonstrating that the reconstruction based on lensed E and B mode

polarisation maps is particularly accurate. A paper on real space CMB temperature and polar-

isation lensing estimators, based on the results in this chapter, is in preparation (Prince et al.,

2016a). The cross-correlation of CMB lensing with HI intensity mapping is explored in Chapter

4. We find that this cross-correlation should be robustly detected using CMB lensing recon-

structions from the upcoming Advanced ACTPol experiment (Henderson et al., 2015) and HI

intensity mapping data from HIRAX (HIRAX Collaboration, 2016). This work will be included

in an upcoming paper on CMB lensing and HI intensity mapping (Prince et al., 2016b).
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CHAPTER 2

Cosmological Background

2.1 Standard Cosmological Model

We are—as far as we know—living in a smooth, expanding, spatially flat universe whose energy

content is dominated by dark energy and dark matter, and which can be neatly described by just

six cosmological parameters (Planck Collaboration et al., 2015c). In this section we explore the

theoretical foundations and some features of the standard ΛCDM model of the universe.

2.1.1 Cosmological Principle

The cosmological principle asserts that on large scales the universe is isotropic (symmetric under

rotations) and homogenous (symmetric under translations). We do not occupy a privileged place

in the universe, so the part of the universe that we can observe should be a fair sample of the

whole, governed by the same laws and yielding the same scientific results as would be obtained

in a different region. The observed near-isotropy of the cosmic microwave background (Smoot

et al., 1992) and the homogeneity of galaxy surveys on large scales (Wu et al., 1999) provide
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observational support for the cosmological principle.

2.1.2 General Relativity

Einstein’s theory of general relativity (Einstein, 1915) allows us to describe gravity as a geometric

effect, in which massive objects distort spacetime. Mathematically, the geometric distortions are

encoded in a spacetime metric which is related to the matter and energy content of the universe

by Einstein’s field equations.

Robertson-Walker Metric

The general form for the spacetime interval in general relativity is ds2 = gµνdx
µdxν , where

gµν is the symmetric metric tensor, dx0 = cdt is the time coordinate and dxi, i ∈ {1, 2, 3} are

the three spatial coordinates. We can use the cosmological principle to determine an appropriate

metric for the standard model of the universe (Robertson, 1935). The spacetime element takes the

following form in comoving coordinates, that is to say a spatial coordinate system that expands

with the universe, so that a comoving observer (who observes the universe to be isotropic and

homogenous at any instant in time) remains at fixed spatial coordinates:

ds2 = −c2dt2 + a2(t)
[
dχ2 + f 2

K(χ)(dθ2 + sin2 θdφ2)
]
, (2.1)

where fK(χ) depends on the curvature of the universe,

fK(χ) =


K−

1
2 sin(K

1
2χ) K >0 (closed universe)

χ K = 0 (flat universe)

(−K)−
1
2 sinh((−K)

1
2χ) K <0 (open universe)

(2.2)

The spatial curvature K can be constrained by studying the observed angular scales of CMB

anisotropies, which depend on the geometry of the universe. CMB experiments have found the

universe to be spatially flat (Spergel et al., 2003), (Planck Collaboration et al., 2015c), so we take

K = 0 in the following.
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We define the conformal time η to be the comoving distance that light could have travelled

since t = 0. η is thus the comoving radius of the observable universe, called the comoving

horizon:

η =

∫ t

0

cdt′

a(t′)
. (2.3)

Writing the spacetime interval in terms of the conformal time gives

ds2 = a2(η)
[
−dη2 + dχ2 + χ2(dθ2 + sin2 θdφ2)

]
. (2.4)

The scale factor a relates the fixed comoving separation between two comoving observers to

the physical distance between them, which increases with the expansion of the universe. For

convenience we stipulate that the value of the scale factor at the present time is a0 = 1.

Einstein’s Field Equations

Einstein’s field equations relate the geometry of spacetime to the matter and energy content of the

universe, allowing us to determine the evolution of the universe’s expansion from its contents:

Gµ
ν + Λgµν =

8πG

c4
T µν . (2.5)

The geometry of spacetime is encapsulated by the Einstein tensor Gµ
ν , which depends on the

spacetime metric. Dark energy is included in the form of Λ, the cosmological constant, a vacuum

energy that causes the accelerated expansion of the universe. T µν is the stress-energy tensor,

which is taken to be that of a perfect isotropic fluid with energy density ρ and pressure p:

T µν =


−ρc2 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (2.6)

Einstein’s field equations, sometimes known in the form below as the Friedmann (2.7) and

acceleration (2.8) equations, then allow us to determine the evolution of the scale factor given

the contents of the universe: (
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
(2.7)
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ä

a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
. (2.8)

The Robertson-Walker metric with a scale factor obeying these evolution equations is called

the Friedmann-Lemaı̂tre-Robertson-Walker metric, because Friedmann and Lemaı̂tre indepen-

dently used these equations to solve for the evolution of the scale factor and thus the metric

(Friedmann, 1922) (Lemaı̂tre, 1927). We can combine Equations (2.7) and (2.8) to obtain the

conservation equation
d

dt
(a3ρc2) = −p d

dt
a3, (2.9)

which expresses the first law of thermodynamics: the change in energy in a certain volume (on

the left) is equal to the pressure times the change in proper volume (on the right).

Hubble Parameter

Hubble was the first to find observational evidence for the expansion of the universe predicted

by Lemaı̂tre (Hubble, 1929; Lemaı̂tre, 1927), when he found a linear relation between the reces-

sional velocities of Cepheid variable stars and their proper distances: v = H0D. This equation

is known as Hubble’s law, and the proportionality constant H0 is called the Hubble constant.

The Hubble parameter H(t) ≡ ȧ
a

describes how the scale factor changes with time. The Hubble

constant is the Hubble parameter at present time, H0 ≡ H(t0).

2.1.3 Equation of State and Density Parameters

The equation of state relates the pressure of matter to its energy density: p = p(ρ) = wρc2,

where w is a constant. Dust has no pressure so w = 0, while for radiation and other relativistic

matter w = 1
3
, and for the energy associated with the cosmological constant w = −1.

Substituting our equation of state into Equation (2.9), we find that

ρ(t) = a−3(w+1)(t)ρ0 . (2.10)

Thus the energy density of dust evolves as ρm(t) = a−3(t)ρm,0 and for relativistic matter ρr(t) =

a−4(t)ρr,0. This can be understood intuitively: if the number density of particles remains constant
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in a constant comoving volume, then the number density in the corresponding proper volume

changes according to a factor of a−3 since the proper length of each edge of a cube of comoving

volume scales as a. For dust, the energy density ρ is directly proportional to the number density,

and hence we have ρm ∝ a−3(t). Relativistic particles behave like photons, whose wavelength

is stretched by a factor of a, and whose frequency and thus energy therefore decrease as a−1,

meaning that the total energy density scales as a−4. Dark energy in the form of a cosmological

constant maintains constant energy density even as the universe expands.

The radiation energy density falls off faster than the matter (dust) density. The universe was

in a radiation dominated state at early times, but later entered a phase of matter domination.

Matter-radiation equality occurred when ρm = ρr, so aeq = ρr,0
ρm,0

, where a subscript of zero

indicates the value at the present time. The matter and radiation energy density decrease with

time while the cosmological constant energy density remains constant, leading to a transition

from matter domination to the current era of dark energy domination.

The critical density of the universe is the total energy density density required for the universe

to be spatially flat. A universe with actual density larger than the critical density would be closed

and have positive curvature, while a universe with lower density would be open, with negative

curvature. As previously mentioned, we know that our universe is very close to spatially flat,

with density approximately equal to the critical density, which is

ρc ≡
3H2

0

8πG
(2.11)

at the present time. We define the density parameter for a type of matter x to be the density of x

in units of ρc:

Ωx ≡
ρx
ρc
, (2.12)

where x = m denotes ordinary matter (baryonic and dark matter), and x = r denotes radiation

or relativistic matter. For the energy density associated with the cosmological constant Λ or the

curvature K, we define

ΩΛ ≡
Λc2

3H2
0

and ΩK ≡
Kc2

H2
0

. (2.13)
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The curvature density parameter is determined by how much the total energy density from

matter, radiation and the cosmological constant differs from the critical density: ΩK = Ωm,0 +

ΩΛ − 1, where we have neglected radiation at late times when it has a very low energy density.

2.1.4 Evolution of the Scale Factor and Hubble Parameter

We can determine the evolution of the scale factor a(t), by substituting the expression for ρ(a)

from Equation (2.10) into the Friedmann Equation (2.7). Again we set K = 0 (flat universe) and

for now we neglect the cosmological constant Λ. We obtain:

a(t) = a0

(
t

t0

) 2
3(w+1)

. (2.14)

Therefore for a dust dominated universe a(t) ∝ t
2
3 , and for relativistic matter a(t) ∝ t

1
2 . Clearly

a is an increasing function of t, and hence the universe is expanding in both the matter and

radiation dominated eras, consistent with Lemaı̂tre’s predictions and Hubble’s observations.

The deceleration parameter quantifies how the expansion rate of the universe is changing:

q = − äa
ȧ2

= − ä

aH2
. (2.15)

For matter or radiation dominated eras, the expansion rate slows with time, producing decelerat-

ing expansion with a deceleration parameter q > 0. However in the dark energy dominated era

the universe expands exponentially, a(t) ∝ eHt, resulting in a negative deceleration parameter

q < 0. Observations of Type Ia supernovae, which serve as ‘standard candles’ with known lu-

minosity, have shown that the universe is in fact undergoing accelerated expansion (Riess et al.,

1998; Perlmutter et al., 1999), consistent with dark energy in the form of a cosmological constant.

We can rewrite the Friedmann Equation (2.7) in terms of the density parameters defined

above as

H2(t) = H2
0

(
a−4(t)Ωr,0 + a−3(t)Ωm,0 + a−2(t)(1− Ωm,0 − ΩΛ) + ΩΛ

)
, (2.16)

giving the expansion history of the universe as a function of its contents. We can determine the

age of the universe t0 using the fact that dt = da
ȧ

= da
aH

, giving

t0 =
1

H0

∫ 1

0

da√
a−1Ωm,0 + (1− Ωm,0 − ΩΛ) + a2ΩΛ

(2.17)
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In calculating the above expression for t0, we have again neglected Ωr. This omission does not

result in a large error because the universe was only radiation dominated for a comparatively

short period of time.

We can compare the predicted values of t0 for various parameter values with the ages of

objects in our universe to constrain the parameters. For example, a completely matter dominated,

flat universe (Ωm = 1, ΩK = ΩΛ = Ωr = 0) would have age t0 = 2
3
H−1

0 , or of order 10 billion

years. This is younger than the oldest stars, making a purely matter dominated universe unviable.

The current best-fit parameters for the ΛCDM model place the age of the universe at 13.8 billion

years, which is consistent with the oldest observed stars (Planck Collaboration et al., 2015c).

2.1.5 Redshift

The expansion of the universe means that light from distant galaxies has its wavelength stretched

as it travels, resulting in an observed redshift: light arrives at observer with a lower energy than

it had when leaving the source. Redshift z is defined as the fractional change in wavelength

z = λo−λe
λe

, where o stands for the observed wavelength and e for emitted. The redshift can be

related to the scale factors at emission and observation:

1 + z =
λo
λe

=
a(to)

a(te)
. (2.18)

If we take to to be the present time, and te to be a general time t, then 1 + z = 1/a(t). Redshift

is a useful quantity as it is often possible to determine an object’s redshift observationally, by

the shifted frequencies of known spectral lines. We use redshift as a proxy for distance (objects

at higher redshifts are further away) or time (objects at higher redshifts emitted the observed

radiation at earlier times).

2.1.6 Distances

There are different ways to measure distance in our expanding universe, which all give different

results for objects at high redshifts but reduce to Hubble’s law D = cz
H0

at low redshifts. We
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explore four different ways of measuring distance here, three of which are plotted as a function

of redshift in Figure (2.1).

Proper Distance

The proper distance Dprop between two points is calculated using the travel time of a light ray

between these points: dDprop = cdt. For a light ray propagating from a redshift z to an observer

at z = 0, Equation (2.16) gives

Dprop(z) = c

∫ t0

t(z)

dt =
c

H0

∫ a(z0)

a(z)

da√
a−1Ωm,0 + (1− Ωm,0 − ΩΛ) + a2ΩΛ

. (2.19)

Comoving Distance

The comoving distance comes from the definition of comoving coordinates, dDcom = dχ =

dDprop
a

. Integrating over redshift we obtain (Dodelson, 2003)

Dcom(z) = χ =

∫ z

0

cdz′

H(z′)
. (2.20)

Angular Diameter Distance

The angular diameter distance is the distance an object of known size appears to be at based on

its apparent angular size on the sky: Dang = l
θ
, where l is the physical length of the object and θ

is the angle it subtends (Liddle, 2003). In a flat universe,

Dang = aχ =
χ

1 + z
. (2.21)

Luminosity Distance

The luminosity distance is inferred from the flux of radiation seen by the observer, assuming the

inverse square law for the reduction of intensity with distance from the source. ThusD2
lum = L

4πS

where L is the luminosity of the source and S is the flux density of the radiation at the observer

(Liddle and Lyth, 2000). Radiation from a source at a comoving distance χ will have spread out

over a sphere of radius aχ by the time it reaches the observer at the origin. Taking into account
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the loss of energy of each photon due to redshift and the decreased frequency of the photons

(each contributing a factor of (1 + z)−1 to S), we find that S = L
aχ(1+z)2

(Liddle, 2003). Thus

Dlum =
χ

a
= χ(1 + z) . (2.22)

It is clear from Figure (2.1) that the comoving distance, angular diameter distance and lu-

minosity distance give the same results for nearby objects. However they display very different

behavior for distant objects: the angular diameter distance reaches a maximum after which it

falls off so that more distant objects actually appear larger on the sky; the comoving distance

asymptotically approaches a constant 2c/H0 for large z; and the luminosity distance continues

to increase with redshift.

Figure 2.1: A comparison of the luminosity distance Dlum, comoving distance χ, and angular

diameter distance Dang as a function of redshift. Produced using the cosmolopy package for

Python created by R Kramer1 based on (Hogg, 1999), using the most recent Planck cosmological

parameters (Planck Collaboration et al., 2015c).

1http://roban.github.com/CosmoloPy
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2.2 Perturbation Theory and Large-Scale Structure Forma-

tion

Although the universe is homogeneous and isotropic on very large scales, it is clearly irregular on

smaller scales as evidenced by the presence of structures such as galaxies and galaxy clusters. It

is believed that the structures in the universe today were initially very small density perturbations

(Peebles and Yu, 1970; Peebles, 1982). With time, overdense regions grew more dense because

of gravitational attraction and underdense regions lost their matter to overdense regions. Dark

matter played a crucial role in this process, because it does not experience radiation pressure, so

the dark matter overdensities began to collapse before the baryonic matter, which was coupled

to radiation at early times. The universe is spanned by a cosmic web of dark matter haloes and

filaments, into which the baryonic matter falls under the force of gravity, forming galaxies and

galaxy clusters.

2.2.1 Perturbed Einstein Equations

We can write the metric, Einstein and stress-energy tensors in a perturbed spacetime as the sum

of the unperturbed background value and a small perturbation.

gµν = ḡµν + δgµν (2.23)

Gµ
ν = Ḡµ

ν + δGµ
ν (2.24)

T µν = T̄ µν + δT µν (2.25)

We assume that the perturbations and their first and second derivatives are sufficiently small

that any product of these quantities is negligible, i.e. we only keep linear order perturbation

terms. This linear treatment is valid until fairly late times when the matter perturbations become

nonlinear. From now on we will take c = 1 to simplify calculations.

We can separate Einstein’s Field Equations Gµ
ν = 8πGT µν (neglecting the cosmological con-

stant) into an unperturbed background component Ḡµ
ν = 8πGT̄ µν , which we dealt with in the

previous section, and an equation relating the geometric perturbations to the stress-energy per-
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turbations:

δGµ
ν = 8πGδT µν . (2.26)

Metric Perturbations

We can rewrite gµν = ḡµν + δgµν = a2(ηµν +hµν), where ηµν is the Minkowski metric (not to be

confused with the conformal time η) and

hµν=

−2A −Bi

−Bi −2Dδij + 2Eij

 . (2.27)

We find that the spacetime interval is

ds2 = a2(η)[−(1 + 2A)dη2 − 2Bidηdx
i + ((1− 2D)δij + 2Eij)dx

idxj] . (2.28)

It can be seen that A and D transform as scalars, Bi transforms as a 3-vector and Eij trans-

forms as a 3-tensor under rotations in the background spacetime (Kurki-Suonio, 2011).

We can decompose Bi into a vector and a scalar part, Bi = −B,i +BV
i , where B is a scalar,

B,i is the derivative of B with respect to the ith coordinate, and ~BV is a vector with∇ · ~BV = 0.

Similarly, we can writeEij in terms of a scalar, vector and tensor: Eij = ES
ij+E

V
ij +ET

ij . The first

term isES
ij = (∂i∂j− 1

3
δij∇2)E for scalarE. The second term is given byEV

ij = −1
2
(Ei,j −Ej,i )

where Ei are the components of a divergence-free vector ~E. The third term is a symmetric,

transverse and trace-free tensor.

The metric tensor perturbations can therefore be described by four scalars A,B,D and E;

two divergence-free vectors ~BV and ~E and one tensor ET
ij . Taking the constraints on the vectors

and tensors into account, this corresponds to ten degrees of freedom: four scalar degrees of

freedom, four vector degrees of freedom and two tensor degrees of freedom. We will see that

four of these degrees of freedom correspond to a choice of coordinates.

Stress-Energy Tensor Perturbations

The background stress-energy tensor is in the form of a perfect fluid, as in Equation (2.6). The

condition of homogeneity requires that the background energy density and pressure are indepen-

dent of position: ρ̄ = ρ̄(η) and p̄ = p̄(η). Isotropy requires that the fluid has no peculiar velocity,
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as this would locally single out a specific direction, so ūi = 0 ∀i ∈ {1, 2, 3}, i.e. the fluid is

stationary in the background universe.

There are some perturbations which keep T µν = T̄ µν + δT µν in its perfect fluid form. These are

ρ = ρ̄+ δρ , p = p̄+ δp and ui = ūi + δui = δui ≡ vi

a
. (2.29)

We will use δ to denote δρ
ρ̄

. To first order, vi = dxi

dη
, the coordinate velocity, which is the same

as the physical velocity of the fluid as seen by a comoving observer. We can express uµ and uµ

in terms of vi and elements of the metric tensor (used to raise and lower indices). We find that

uµ = 1
a
(1−A, vi) and uµ = a(−1−A, vi −B − i). Substituting the perturbed expressions into

T µν = (ρ+ p)uµuν + uδµν , we can compare the perturbed stress-energy tensor to the background

stress-energy tensor to find δT µν . There are 5 more degrees of freedom, correspond to anisotropic

stress perturbations Σij which prevent T µν from being a perfect fluid.

We can rewrite vi as the sum of a scalar part and a vector part vi = vSi + vVi , and Σij =

ΣS
ij + ΣV

ij + ΣT
ij where ΣS

ij depends on a scalar Σ, ΣV
ij depends on a vector Σi and ΣT

ij is a tensor.

Again, we have four scalar degrees of freedom (from δρ, δp, v and Σ), four vector degrees of

freedom (two each from vVi and ΣV
i ) and two tensor degrees of freedom (from ΣT

ij). We will

neglect the anisotropic stress in the rest of this section. For high precision calculations it should

be included as at early times there was anisotropic pressure present from neutrinos.

The perturbation to the Einstein tensor, δGµν can be divided into scalar, vector and tensor

parts, coming from the scalar, vector and tensor parts of δgµν respectively. The stress energy

perturbation δTµν can be similarly split up. In linear perturbation theory, the scalar, vector and

tensor perturbations evolve independently, and so we can treat them separately. The scalar per-

turbations are most relevant to structure formation, so we will focus on these in the following

discussion. Vector perturbations decay with time and do not have a large influence at later times.

Tensor perturbations correspond to gravitational waves, and have cosmological significance, but

will not be a focus in this section.
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2.2.2 Gauge Transformations

For a given coordinate system in the background spacetime, there are various possible coordinate

systems in the perturbed spacetime. A gauge transformation is a transformation between two dif-

ferent coordinate systems in the perturbed spacetime. If we have one set of coordinates denoted

xα and one denoted x̃α in the perturbed spacetime, we can relate them using x̃α = xα+ξα where

ξα and its derivatives are small enough to keep only linear terms.

We find (Kurki-Suonio, 2011) that perturbations to covariant and mixed tensors of rank 2

transform as

δ̃Bµν = δBµν − ξα,µ B̄αν − ξβ,ν B̄µβ − B̄µν ,γ ξ
γ (2.30)

δ̃B
µ

ν = δBµ
ν + ξµ,α B̄

α
ν − ξβ,ν B̄

µ
β − B̄

µ
ν ,γ ξ

γ (2.31)

We can express the spatial components ~ξ, where ξα=(ξ0, ~ξ), as the sum of a curl free scalar

part (−∇ξ for scalar ξ) and a divergence-free vector part (~ξV ) i.e. ξi = ξiV + δijξ,j . The vector

part does not affect scalar perturbation transformations, so we will neglect it in the following as

we will focus on scalar perturbations. We therefore use ξα=(ξ0,−∇ξ).

Scalar Perturbations

We use Equation (2.30) to write the gauge transformation equations for the scalar metric pertur-

bation quantities A, D, B and E in terms of ξ0 and ξ as

Ã = A− ξ0′ − a′

a
ξ0 (2.32)

B̃ = B + ξ′ − ξ0 (2.33)

D̃ = D − 1

3
∇2ξ +

a′

a
ξ0 (2.34)

Ẽ = E + ξ (2.35)

For scalar perturbations of the stress-energy tensor, vi = vsi = −v,i, so we find using Equa-

tion (2.31)

δ̃ρ = δρ− ρ̄′ξ0 , δ̃p = δp− p̄′ξ0 and ṽ = v + ξ′ . (2.36)
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Bardeen Potentials

The Bardeen potentials (Bardeen, 1980)

Ψ ≡ A+H(B − E ′) + (B − E ′)′ (2.37)

Φ ≡ D +
1

3
∇2E −H(B − E ′) (2.38)

are invariant under gauge transformations.

Conformal-Newtonian Gauge

We can use our gauge freedom to set EN = BN = 0, where the superscript N refers to

the conformal-Newtonian gauge (Hu and Sugiyama, 1995). To transform to the conformal-

Newtonian gauge from another gauge, we set

ξ = −E (2.39)

ξ0 = −B + E ′. (2.40)

This transformation gives

AN = Ψ (2.41)

DN = Φ, (2.42)

so in the conformal-Newtonian gauge, the two nonzero scalar metric potentials are equal to

the gauge-invariant Bardeen Potentials. The Bardeen potentials have straightforward physical

interpretations in this gauge: Ψ describes how the Newtonian potential is perturbed, while Φ

gives the perturbation to the spatial curvature (Dodelson, 2003).

The perturbed spacetime interval is given by

ds2 = a2(η)[−(1 + 2Ψ)dη2 + (1− 2Φ)δijdx
idxj] , (2.43)

from which we can find the components of the perturbed metric and thus the perturbed Einstein

tensor. A comparison with the unperturbed Einstein tensor will yield the perturbations δGµ
ν .
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For scalar perturbations in the conformal-Newtonian gauge, v = −v,i and B = 0, and the

perturbation to the stress energy tensor is thus

δT µν =

 −δρN −(ρ̄+ p̄)(vN ,i )

(ρ̄+ p̄)vN ,i δpNδij

 . (2.44)

Synchronous Gauge

Another commonly used gauge is the synchronous gauge, in which A = 0 = Bi (Bond and Efs-

tathiou, 1984). The synchronous gauge is often used in computations, as the equations governing

the evolution of perturbations are better-behaved numerically in the synchronous gauge than in

the conformal Newtonian gauge.

2.2.3 Equations Governing the Evolution of Perturbations

Einstein’s Field Equations for scalar perturbations of a perfect fluid (Σ = 0 so Φ = Ψ) in the

conformal-Newtonian gauge are given by

∇2Ψ =
3

2
H2[δN + 3H(1 + w)vN ] (2.45)

Ψ′ +HΨ =
3

2
H2(1 + w)vN (2.46)

Ψ′′ + 3HΨ′ + (2H′ +H2)Ψ =
3

2
H2 δp

N

ρ̄
(2.47)

where w comes from the equation of state p = wρ, and H ≡ a′

a
is the conformal Hubble

parameter, where ′ denotes differentiation with respect to conformal time η. The first equation

is a constraint equation (if we were not considering a perfect fluid, then we would have two

constraint equations) and the last two equations describe the evolution of Ψ.

We can use the condition of energy-momentum conservation

T µν;µ = 0 (2.48)

to obtain first order equations for the perturbations δ and v.
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For perfect fluid scalar perturbations in the conformal-Newtonian gauge the perturbations

satisfy the continuity equations:

(δN)′ = (1 + w)(∇2vN + 3Φ′) + 3H(wδN − δp

ρ̄
) (2.49)

(vN)′ = −H(1− 3w)vN − w′

1 + w
vN +

δpN

ρ̄+ p̄
+ Φ (2.50)

Full System of Equations

We consider a universe containing baryons (which we will take to include electrons), cold dark

matter, photons, massless neutrinos and dark energy. The total energy density is thus

ρ = ρb + ρm + ργ + ρν + ρDE . (2.51)

The pressures are given by pb = 0 = pm, pγ = ργ
3

, pν = ρν
3

and pDE = −ρDE . We assume that

there are no perturbations in the dark energy. We need to consider interactions between photons

and baryons, but can ignore interactions between the other components.

We Fourier-decompose δρ and v as

δρ(η, ~x) =
∑
~k

(δρ~k)e
i~k·~x (2.52)

v(η, ~x) =
∑
~k

v~k
k
ei
~k·~x, (2.53)

where the extra factor of k = |~k| in the decomposition of v is added so that v has the same

dimension as vSi (in Fourier space vSi = v,i becomes vSi = −iki
k
v) (Liddle and Lyth, 2000).

For linear perturbations different Fourier modes ~k are uncorrelated, so we can treat each mode

separately and work with their amplitudes δρ~k and v~k, dropping the subscript ~k in the following.

Note that k is the comoving wavenumber, which is related to the physical wavenumber kphys

by k = a kphys, where a is the scale factor. Our continuity equations (2.49, 2.49) for scalar
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perturbations in the conformal-Newtonian gauge become, in Fourier space,

δ′m = −kvm + 3Φ′ (2.54)

v′m = −Hvm + kΦ (2.55)

δ′b = −kvb + 3Φ′ + (collision term) (2.56)

v′b = −Hvb + kΦ + collision term (2.57)

δ′γ = −4

3
kvγ + 4Φ′ + (collision term) (2.58)

v′γ =
1

4
kδγ + kΦ + collision term (2.59)

δ′ν = −4

3
kvγ + 4Φ′ (2.60)

v′ν =
1

4
kδγ + kΦ (2.61)

The collision terms in brackets can be neglected, as the only collision effect that turns out to be

important is momentum transfer between photons and baryons, captured in the collision terms in

the velocity equations (Kurki-Suonio, 2011). In addition to these equations, we use the Einstein

equations of which two will be independent at early times when the baryons and photons are

tightly coupled. We can find equivalent equations in the synchronous gauge.

Solving the above set of equations for the cold dark matter component, we find that for

superhorizon scales, k � H, the density remains constant. The comoving Hubble scale H−1

increases with time, so superhorizon density perturbations enter the horizon whenH−1 increases

past k. Once the modes have entered the horizon, they begin to grow proportional to ln a in

the radiation dominated era and a in the matter dominated era as shown in the table below. The

density contrast in the synchronous gauge can be calculated from the conformal Newtonian gauge

result (Ma and Bertschinger, 1995, Eq. (27a)). The evolution of superhorizon modes depends

on the gauge choice, but on subhorizon scales general relativistic effects become less important,

and all of the gauges approach the Newtonian result.

Conformal-Newtonian Gauge Subhorizon (d� dH) Superhorizon (d� dH)

Radiation dominated era (a� aeq) δNm ∝ ln(a) δNm = constant

Matter dominated era (a� aeq) δNm ∝ a δNm = constant
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2.2.4 Evolution of the Power Spectrum

Statistics of Random Fields

We describe the statistical properties of the density perturbations or the gravitational potential by

their power spectrum, which gives the amplitude of fluctuations on different spatial scales. We

assume that the density perturbations were caused by an isotropic, homogeneous random process

and we denote our density contrast by δ(~x), where ~x is the spatial coordinate 3-vector. We obtain

the amplitude of a mode with wavevector ~k by taking the Fourier transform of the density field,

δ(~k) =

∫
d3~xe−i

~k·~xδ(~x) . (2.62)

The matter power spectrum for a wavevector ~k is defined to be the power of that ~k mode, i.e.

the amplitude of the mode squared. Different ~k modes are uncorrelated while the perturbations

are still linear, so the dark matter power spectrum is given by

〈δm(~k)δ∗m(~k′)〉 = (2π)3δ3
D(~k − ~k′)Pm(k) , (2.63)

where the power spectrum Pm(~k) = Pm(k) by isotropy, δ3
D is the three dimensional Dirac delta

function (which is 0 unless ~k = ~k′), and δm = δρm
ρ̄m

, where m refers to cold dark matter. The

angular brackets denote an expectation value, taken in theory by averaging over many realisations

of the matter density from the underlying statistical distribution. In reality we only have one

universe, or one realisation, so we average over the density contrast in many regions of the sky.

The power spectrum is in fact the Fourier transform of the correlation function ξ(r), where

ξ(r) is the probability over random that if there is an overdense region at ~x, there is also an

overdense region at ~x + ~r. The correlation function is a function of r = |~r| because of isotropy,

and can be written as ξ(r) ≡ 〈δm(~x)δm(~x+ ~r)〉.

We can also define the power spectrum of the gravitational potential, P φ(k), where

〈φ(~k)φ∗(~k′)〉 = (2π)3δ3
D(~k − ~k′)P φ(k) . (2.64)

δm and φ are related by the Poisson equation k2φ = 4πGρ̄ma
2δm, which describes how matter

sources a gravitational potential.
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Evolution of the Gravitational Potential

We can express the value of φ at the present epoch in terms of its primordial value as

φ(~k, η0) = φ(~k, ηi)× {transfer function} × {growth function}, (2.65)

where φ(~k, ηi) is the primordial potential, the transfer function describes the scale-dependent

evolution of perturbations through horizon crossing and the transition from radiation domination

to matter domination, and the growth factor describes the time evolution of perturbations.

Primordial Power Spectrum

We assume that the initial matter power spectrum is a power law:

Pm
initial(k) = Amk

ns , (2.66)

where the power spectrum is given in the synchronous gauge for convenience. We can constrain

Am and ns using cosmic microwave background observations. Recent results have found ns =

0.9667± 0.004 (Planck Collaboration et al., 2015c). We expect ns ≈ 1, because if ns � 1, there

would be an excess of power on large scales (small k), contradicting the fact that the CMB is

isotropic on large scales, and if ns � 1 there would be an excess of power on smaller scales,

resulting in more black holes than seem to be present in the universe. ns = 1 is called a scale-

invariant spectrum because it results in equal power in equal log intervals in k.

From the Poisson equation, we find

P φ
initial(k) = Aφk

ns−4, (2.67)

so P φ
init(k) ∝ k−3 for a scale-invariant potential power spectrum.

Transfer Function

The evolution of a particular mode depends on whether it enters the horizon before or after

matter-radiation equality. For superhorizon modes (k � kH), φ is a constant both in the matter

and radiation dominated eras, but the value of φ drops by 10% during the transition between
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radiation domination and matter domination (Dodelson, 2003). For modes that enter the horizon

during the radiation dominated era, the potential oscillates (because of oscillations from radiation

pressure) and decays (because of the expansion of the universe). Matter perturbations grow

logarithmically during radiation domination, as seen previously. After matter-radiation equality,

the perturbations grow as δ ∝ a. Matching the two different solutions at equality gives us an

expression for δ(~k, η). On small scales, after matter radiation equality, we can use the Poisson

equation to show that k2φ ∝ δm ∝ log(k/keq).

We define the transfer function to be

T (k) =
φ(k, a∗)

φ(klarge−scale, a∗)
, (2.68)

where a∗ is chosen long enough after matter-radiation equality that φ is constant again, and soon

enough after matter-radiation equality that curvature and dark energy effects would not affect the

perturbations.

We find (Dodelson, 2003)

T (k) =

1 k � keq

12( k
keq

)−2 log k
8keq

k � keq

(2.69)

Growth Function

The growth factor, denoted D(a), gives the (scale-independent) time evolution of perturbations.

We have seen that in matter-dominated times, δm(a) ∝ a, and so in a matter-dominated universe

D(a) ∝ a. The presence of curvature or dark energy would modify the growth factor, for exam-

ple dark energy increases the expansion rate of the universe and therefore suppresses structure

formation. The growth factor is given by (Dodelson, 2003)

D(a) =
5Ωm,0H

2
0

2
H(a)

∫ a

0

da′[a′H(a′)]−3. (2.70)
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Final Power Spectrum

After being modified by the scale-dependent transfer function and the time-dependent growth

factor, the final gravitational potential is given by

φ(~k, η0) =
9

10
φ(~k, ηi)× T (k)× D(a)

a
. (2.71)

The power spectrum for the gravitational potential is

P φ(k) = 〈|φ(k, a0)|2〉 =

(
9

10

)2

P φ
init(k)T 2(k)

(
D(a)

a

)2

, (2.72)

and using Poisson’s equation, we can find a similar expression for the density perturbation power

spectrum in the synchronous gauge:

Pm(k) = 〈|δm(k, a0)|2〉 =
9Aφ

25Ω2
m,0H

4
0

knsT 2(k)D2(a0) . (2.73)

For small k (large scales) Pm ∝ k because these modes only dropped by 10% across matter-

radiation equality. For large k (small scales) the power is attenuated (Pm ∝ k−3), because these

fluctuations entered the horizon before matter-radiation equality and their growth was suppressed

in comparison to large-scale k modes.

2.3 Inflation

We have discussed the homogeneity and isotropy of the universe on very large scales, as well

as the formation of structure that grew from the small ‘seed’ perturbations present in the early

universe, but we have not yet considered what caused the universe to be so smooth, or how

the initial perturbations were sourced. The theory of inflation, which posits an early period

of exponential expansion, provides answers to both of these questions (Guth, 1981; Guth and

Weinberg, 1983).

The Horizon Problem

The CMB has been measured to be isotropic to one part in 105 in all directions on the sky (Smoot

et al., 1992). If we consider a Big Bang singularity at t = 0 followed by periods of radiation
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domination and then matter domination as described earlier, then the comoving horizon when

the CMB was produced at time tLS (the furthest that light could have travelled by last scattering)

would be finite, and there would be regions of the CMB that were not causally connected. These

regions could not have had any communication, and would thus have no reason to be so uniform,

leaving the isotropy of the CMB unexplained. This is a consequence of the horizon problem

(Misner, 1969).

The Particle Horizon and the Hubble Radius

We can rewrite the conformal time or comoving horizon η as (Dodelson, 2003)

η =

∫ a

0

d ln(a′)
1

a′H(a′)
. (2.74)

Regions separated by comoving distances greater than η have never been in causal contact. η is

sometimes called the particle horizon because particles separated by η could never have commu-

nicated. The comoving Hubble radius is defined to be 1
a′H(a′)

. Particles with separations greater

than the Hubble radius are not in causal contact now.

Inflation solves the horizon problem. An early period of exponential expansion results in a

decreasing Hubble radius, which means that regions that were in causal contact at early times

became causally disconnected as the Hubble radius shrank. Thus inflation results in a particle

horizon that is much larger than the Hubble radius: regions that were not causally connected

when the CMB formed could have communicated early on, explaining the CMB’s near unifor-

mity.

Initial Perturbations

We have argued that the large scale structure seen in the universe today grew from small primor-

dial perturbations. Inflation provides an explanation for these perturbations: quantum fluctua-

tions present before inflation would have been amplified as space expanded, resulting in slight

overdensities and underdensities being present after inflation (Padmanabhan, 1993). It is these

overdensities and underdensities that provided the seeds for the large scale structure we see today.
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2.4 The Cosmic Microwave Background

At early times, when the universe was hot and dense, radiation and matter were coupled and

photons were not able to travel freely through space. The universe was ionised because the

photons were energetic enough to break apart any neutral atoms that formed. Photons were

coupled to the free electrons by Compton scattering, and electrons were coupled to baryons

by electromagnetic interactions, resulting in frequent interactions and a coupled photon-baryon

fluid. About 380 000 years after the Big Bang, the universe had cooled sufficiently to allow

neutral atoms to form: this period was called recombination. Photons did not interact strongly

with the neutral atoms and became decoupled from baryons—the universe became transparent

to light.

The cosmic microwave background (CMB) is radiation that was released from the photon-

baryon fluid after recombination and pervades the universe. At the last scattering surface, the

CMB photons had very high energies but their wavelengths stretched with the expansion of

the universe and they are in the microwave bandwidth when they reach us. The CMB has a

blackbody distribution with characteristic temperature 2.725K (Mather et al., 1992), and is dis-

tributed isotropically over the sky, with anisotropic fluctuations only appearing on the order of
∆T
T̄
∼ 10−5 (Smoot et al., 1992). These anisotropies, although small, give us very important

information about the fluctuations in the early universe.

2.4.1 Statistics of CMB Temperature Anisotropies

The anisotropies we see started off as temperature inhomogeneities on the surface of last scatter-

ing. We can write the temperature fluctuations in a direction n̂ on the sky in terms of spherical

harmonics Ylm as
δT (n̂)

T̄
=
T (n̂)− T̄

T̄
=
∞∑
l=0

l∑
m=−l

almYlm(n̂). (2.75)

In the flat sky approximation, which is valid when looking at a small part of the sky, this

decomposition in terms of spherical harmonics becomes the two-dimensional Fourier decompo-

sition. For now we will work with the full sky harmonic decomposition, but later on when we
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are focusing on lensing we will use the flat sky approximation to simplify calculations.

The angular power spectrum CTT
l is given by given by

〈alma∗l′m′〉 = δDll′δ
D
mm′C

TT
l . (2.76)

If the fluctuations are Gaussian as we expect, then the angular power spectrum contains all the

available statistical information about the temperature fluctuations.

In the flat-sky limit, l is the angular wavenumber corresponding to the angular wavelength

θ = 2π
l

. Large angular wavenumbers l (or multipole moments in the full sky analysis) correspond

to small angular scales and vice versa.

Inhomogeneities of the temperature field at recombination are seen by us as anisotropies

because when we look at the sky in different directions, we see photons from different parts of

the last scattering surface. The next section describes the physics of these anisotropies.

2.4.2 Physics of CMB Temperature Anisotropies

Monopole

The l = 0 monopole gives the mean temperature of the CMB, which is T = 2.725 ± 0.001 K

(Mather et al., 1992).

Dipole Anisotropy

The observed CMB has a dipole anisotropy of 3.346 ± 0.017 mK at the l = 1 spherical har-

monic caused by a Doppler shift due to our motion (Bennett et al., 2003). We remove the dipole

anisotropy from our maps to work in the rest frame of the CMB.

Acoustic Peaks

As discussed earlier, before recombination electrons interacted with photons via Thomson scat-

tering and with baryons via Coulomb scattering, resulting in the photons and baryons acting as

a tightly coupled photon-baryon fluid. Gravity tended to cause the photon-baryon fluid to fall

into the gravitational potential wells of the early density perturbations of the universe (created by
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clumps of cold dark matter), while pressure from the photons tended to oppose the compression

of the photon-baryon fluid caused by gravity. This resulted in acoustic oscillations of the photon-

baryon fluid (Hu, 2013). The CMB had a higher energy density and thus temperature in regions

where the photon-baryon fluid was compressed, and lower temperature where the photon-baryon

fluid was rarefied.

We can Fourier decompose the potential fluctuations, and treat each mode individually. The

wavelength of the mode is related to the frequency of its oscillation by ω = kcs, where cs is the

speed of sound of the medium. This makes sense intuitively because if the length scale of the

potential fluctuations was smaller (i.e. k was larger), then it would have taken less time for the

photon-baryon fluid to compress into the potential (i.e. ω would be be larger).

We can show (Dodelson, 2003) that the photon density perturbations satisfy the equation for

a damped, driven harmonic oscillator

δ̈γ +
HR

1 +R
δ̇γ + ω2δγ = F (Ψ), (2.77)

where F (Ψ) is the forcing function which describes the effect of the gravitational potential,

R = 3ρ̄b
4ρ̄γ

is related to the ratio of baryons to photons and ω is the frequency from the previous

paragraph.

At recombination, the electrons joined with nuclei to form neutral atoms. The photon-baryon

fluid was no longer strongly coupled and acoustic oscillations ceased. There is a particular mode

for which the photon baryon fluid would have compressed exactly once before recombination.

This mode has wavenumber k1 = π
sound horizon where the sound horizon is the distance sound could

have travelled by recombination. The mode with frequency k2 = 2k1 would have compressed

once and rarefied once before recombination, and would also be at an extremum at recombina-

tion. All modes with wavenumbers kn = nk1 were at their extrema at recombination, and had

greater temperature variations at their wavelengths than other modes. These modes became the

peaks of the temperature power spectrum. The characteristic wavenumbers of the peaks become

characteristic angular wavenumbers, because we see the spatial temperature variations as angular

anisotropies.

Baryons added inertial mass to the oscillations, resulting in compression in the potential
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wells being more marked than rarefaction. This enhanced the odd numbered peaks over the

even numbered ones, as odd peaks correspond to the photon-baryon fluid being compressed at

recombination and even numbered peaks correspond to rarefaction at recombination.

We can use the position and height of the peaks to constrain various cosmological parameters

(Planck Collaboration et al., 2015c). The rich structure of the power spectrum allows us to detect

the effects of gravitational lensing, which will be discussed in the next section.

Silk Damping

Recombination occurred over a short period of time, but was not instantaneous. During recom-

bination, the photons executed a random walk as they interacted with the electrons. On scales

smaller than the average distance travelled by photons during recombination (high l), the acous-

tic oscillations are damped because mixing between hot and cold regions occurred, smoothing

out the temperature fluctuations (Silk, 1968).

The acoustic peaks and small-scale damping can be seen in the temperature power spectrum

plotted in Figure (2.2).

2.4.3 CMB Polarisation

The CMB at last scattering had a nonzero quadrupole moment, which resulted in partial linear

polarisation of the CMB through Thomson scattering. We can describe radiation completely by

specifying the full set of Stokes parameters: the intensity I , circular polarisation V , and linear

polarisations in different directions Q and U . Thomson scattering does not produce circular

polarisation, so we only need to use the parameters Q and U to describe the linear polarisation of

the CMB. The polarisation has an amplitude of P =
√
Q2 + U2 and an angle α = 1

2
tan−1(U

Q
).

Q and U are the natural quantities to use in map space, while in Fourier space the polarisation can

more easily be separated into electric (E) and magnetic (B) modes. For E modes the polarisation

is aligned with the principle polarisation axes (parallel or perpendicular to ~k for each Fourier

mode) which corresponds to polarisation that is radial or tangential around temperature hotspots

and coldspots. B mode polarisation makes a 45◦ angle with the principle axes and the E modes
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(Hu and White, 1997). We can relate the Stokes parameters to the E and B modes by (Hu, 2008)

E(~l)± iB(~l) =

∫
d2~x(Q(~x) + iU(~x))e−i

~l·~xe∓2iφl . (2.78)

where we have used the flat sky approximation.

We define the polarisation and cross spectra as follows

〈Y ∗(~l)Z(~l′)〉 = (2π)2δ2
D(~l − ~l′)CY Z

l (2.79)

where Y Z = EE, BB, EB, TE or TB, and T (~l) is the two dimensional Fourier transform

of T (~x) in the flat sky approximation. The E mode power spectrum is shown in Figure (2.2).

Thomson scattering does not produce B modes, so any B modes in the primordial CMB are

expected to be caused by gravitational waves from inflation.

Figure 2.2: The unlensed CMB temperature (left) and E mode polarisation (right) angular power

spectra.

2.5 Weak Gravitational Lensing of the Cosmic Microwave Back-

ground

The CMB does not just contain information about the very early universe: secondary anisotropies

are imprinted on the CMB as the photons travel from the surface of last scattering to us. One
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such secondary effect is gravitational lensing: the deflection of photons due to the matter that

they pass. Gravitational lensing of the CMB can be used to probe the distribution of matter in

our universe, of which dark matter forms a dominant part.

2.5.1 Deflection Angle

The deflection of light caused by the gravitational pull of matter is not a new concept: in one of

the queries at the end of his book on Opticks, Newton suggests that light rays may be deflected

by matter. Later, Newtonian gravity was used to calculate a predicted magnitude for such a

deflection (von Soldner, 1804). The deflection angle predicted by Einstein’s theory of general

relativity is twice that predicted by the Newtonian theory of gravity, because of the effects of

spacetime curvature.

Consider CMB radiation from the surface of last scattering, a comoving distance χ∗ from the

observer. If this light is deflected by an angle δβ by a gravitational potential Ψ at a comoving

distance χ from the observer, we want to know how the observed angle θ of the radiation will be

affected, i.e. we want to find δθ.

We can relate the angles using the spatial coordinate fK(χ) to find (Lewis and Challinor,

2006)

δθχ =
fK(χ∗ − χ)

fK(χ∗)
δβ . (2.80)

In General Relativity, the deflection angle δβ can be shown to be δβ = −2δχ∇⊥Ψ. Substituting

this and integrating over the undeflected photon path (which is a good approximation in weak

lensing, where deflection angles are assumed to be small) gives the total deflection angle to be

~α = −2

∫ χ∗

0

dχ
fK(χ∗ − χ)

fK(χ∗)
~∇⊥Ψ(χn̂, η0 − χ) , (2.81)

where χn̂ gives the position and η0−χ the conformal time at which the potential Ψ is evaluated.

We take the universe to be flat, in which case fK(χ∗−χ)
fK(χ∗)

= χ∗−χ
χ∗

.

We can therefore describe the deflection angle in various directions across the sky by a vector

field ~α. We have defined ~α in such a way that the lensed CMB temperature T̃ in a direction n̂ is
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simply the unlensed temperature T of the CMB in the direction n̂′ = n̂+ ~α, i.e.

T̃ (n̂) = T (n̂+ ~α) . (2.82)

The effect of lensing is illustrated in Figure (2.3). The top panel shows a map of the unlensed

CMB on the left, and the lensed CMB on the right. We can see that the maps are very similar:

lensing is a small effect. The difference between the two maps is correlated with the modulus of

the deflection angle, shown in the bottom left and right panels respectively.

Lensing conserves the energy and thus the frequency of photons, so the lensed CMB has

the same blackbody spectrum as if the photons had traveled to us undeflected. Lensing also

conserves surface brightness. Although lensing may cause photons to converge, it also causes the

apparent area the photons are coming from to appear larger. Similarly, if light diverges because of

lensing, the area it seems to come from is smaller. This means that if the last scattering surface

was isotropic, we would not be able to detect the effects of gravitional lensing. It is the rich

structure of the anisotropies, described statistically by the CMB power spectrum, that allows us

to detect the effects of lensing and reconstruct the lensing potential.

2.5.2 Lensing Potential

We can represent the effect of all of the potentials between χ∗ and the observer as an effective

lensing potential, which will be a scalar field across the sky. The deflection angle vector field ~α

will then be expressed as the gradient of this effective potential scalar field: ~α = ~∇n̂ψ = ~∇ψ.

Writing ~∇⊥Ψ =
~∇n̂Ψ
χ

, our expression for ~α in Equation (2.81) becomes (in a flat universe)

~α = −2

∫ χ∗

0

dχ
χ∗ − χ
χ∗χ

~∇n̂Ψ(χn̂, η0 − χ) . (2.83)

We define the lensing potential ψ as follows:

ψ = −2

∫ χ∗

0

dχ
χ∗ − χ
χ∗χ

Ψ(χn̂, η0 − χ) . (2.84)

The lensing potential is a projection of the three dimensional gravitational potential onto the two-

dimensional sky, weighted according to how much a potential a comoving distance χ from us
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Figure 2.3: The top panel of this figure shows maps of the unlensed and lensed CMB tempera-

ture in units of µK (top left and right respectively). The bottom panel illustrates the difference

between the unlensed and lensed temperature maps in units of µK (left) which is correlated with

the magnitude of the deflection angle (right, shown in units of arcminutes). The horizontal and

vertical axes are in units of degrees.

affects the deflection angle of a photon from a source at a distance χ∗. The lensing kernel peaks

halfway between us and the last scattering surface, so matter at z ≈ 1 − 2 contributes the most

to this weighted integral.

We treat the CMB as a single source plane at the last scattering surface χ = χ∗, neglecting

the short time of recombination. We have also neglected the effects of reionisation and other late
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time effects.

Power Spectrum of the Lensing Potential

We write the angular power spectrum of the lensing potential ψ in terms of the three dimensional

power spectrum of the gravitational potential Ψ as follows

Cψ
l = 16π

∫
dk

k

∫ χ∗

0

dχ

∫ χ∗

0

dχ′
χ∗ − χ
χ∗χ

χ∗ − χ′

χ∗χ′
jl(kχ)jl(kχ

′)PΨ(k, η0 − χ, η0 − χ′) . (2.85)

The χ∗−χ
χ∗χ

factors weight the three dimensional potential along the line of sight from us to the

source at χ∗, according to how much a potential at χ contributes to the deflection angle. The jl’s

are spherical Bessel functions, which are used to project the three dimensional potentials onto

the two dimensional sky.

We can simplify this expression in the Limber approximation, for which we assume that

PΨ(k) varies slowly in comparison to the Bessel functions. This is valid for high l. We use the

identity ∫
dkk2jl(kχ)jl(kχ

′) =
π

2χ2
δD(χ− χ′) (2.86)

and integrate over the Bessel functions, which selects the scale k = l/χ and gives

Cψ
l ≈

8π

l3

∫ χ∗

0

χdχ

(
χ∗ − χ
χ∗χ

)2

PΨ(l/χ, η0 − χ). (2.87)

The power spectrum of ~α = ∇ψ, i.e. l(l+1)Cψ(l) is shown in Figure (2.4). The RMS deflec-

tion angle (inferred from the height of the peak of the power spectrum) is around 2 arcminutes,

and the deflections are coherent at scales of about 2 degrees (given by the position of the peak).

2.5.3 Magnification Matrix

The magnification matrix describes the distortion due to lensing. The matrix is given by the

derivative of the deflection angle

Aij = δij −
∂αi
∂xj

=

1− κ0 − γ+ −γ×
−γ× 1− κ0 + γ+

 . (2.88)
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Figure 2.4: The power spectrum of the deflection angle, calculated with linear theory using

CAMB: the Code for Anisotropies in the Microwave Background (Lewis and Challinor, 2011).

The convergence κ0 = 1
2
~∇·~α = 1

2
∇2ψ determines the shape-preserving expansion or shrink-

ing of a source due to lensing. The components of the shear, given by γ+ = 1
2
(∂

2ψ
∂x21
− ∂2ψ

∂x22
) and

γ× = ∂2ψ
∂x1∂x2

determine the distortion of the shape of the source along different axes due to the

tidal gravitational field. In harmonic space, these relations become

κ0(~L) = L2ψ(~L)

γ+(~L) = (L2
x − L2

y)ψ(~L)

γ×(~L) = 2LxLyψ(~L),

(2.89)

where ~L = (Lx, Ly) is the lensing wavevector in Fourier space in the flat sky approximation.
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2.5.4 Lensed CMB Power Spectra

We will calculate the lensed CMB power spectrum in terms of the unlensed power spectrum

by an expansion in the deflection angle. In order to simplify calculations, we will use the flat

sky approximation and use our usual two dimensional Fourier expansion instead of expanding in

spherical harmonics. This approximation is valid when we are dealing with relatively small parts

of the sky. The Fourier expansions of the unlensed temperature and the lensing potential are

T (~x) =

∫
d2~l

(2π)2
T (~l ) ei

~l·~x and ψ(~x) =

∫
d2~l

(2π)2
ψ(~l ) ei

~l·~x, (2.90)

where T (~l) =
∫
d2~xT (~x)e−i

~l·~x, and ψ(~l) =
∫
d2~xψ(~x)e−i

~l·~x.

Now we define the power spectra for the temperature and lensing potential as

〈T (~l)T ∗(~l′)〉 = (2π)2δ2
D(~l −~l′)CTT

l and 〈ψ(~l)ψ∗(~l′)〉 = (2π)2δ2
D(~l −~l′)Cψ

l , (2.91)

where the lensing potential power spectrum in the flat sky approximation will be equal to the

lensing potential angular power spectrum on small scales.

We can expand the expression for the lensed temperature to first order as

T̃ (~x) = T (~x+ ~α) = T (~x+ ~∇ψ) ≈ T (~x) + (~∇ψ) · (~∇T (~x)). (2.92)

Taking the Fourier transform of T̃ (~x) and using ~∇ψ(~x) = i
∫

d2~l
(2π)2

(~l )ψ(~l ) ei
~l·~x and ~∇T (~x) =

i
∫

d2~l
(2π)2

(~l )T (~l ) ei
~l·~x, we find that

T̃ (~l) = T (~l)−
∫
d2~l′ (~l′ )(~l − ~l′ )ψ(~l −~l′ )T (~l′ ) = T (~l)− (~lψ(~l)) ◦ (~lT (~l)) , (2.93)

where ◦ denotes convolution. We can do the same for Q and U polarisation and then rewrite the

expression in terms of E and B mode polarisation. We use these expressions to find the lensed

spectra for combinations of temperature and polarisation. The effects of lensing are to spread

out the power at the peaks of the spectrum due to the convolution, and to transfer power to high l

modes (Lewis and Challinor, 2006). The effect of lensing on the temperature and E mode power

spectra are shown in Figure (2.5).
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Figure 2.5: The left images show the unlensed (solid) and lensed (dashed) power spectra of the

CMB temperature (top) and E mode polarisation (bottom). Lensing spreads out the peaks very

slightly while transferring power to large l. The right panel shows the fractional change in the

power spectrum caused by lensing. The plots were produced using CAMB (Lewis and Challinor,

2011).
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If we take the expectation value over all values of the lensing potential ψ, which is statistically

isotropic over the sky, and all realisations of the unlensed CMB T (~l), then to first order in the

lensing potential power spectrum

〈T̃ (~l)T̃ ∗(~l′)〉 = (2π)2δ2
D(~l −~l′)C̃ TT

l , (2.94)

so harmonics with different ~l are uncorrelated. For a fixed lensing potential, however, different

lensed CMB Fourier modes are correlated. Taking the expectation value over temperature and

leaving the lensing potential fixed, we find the correlation between different lensed CMB l modes

to be proportional to the lensing potential (Hu and Okamoto, 2002; Lewis and Challinor, 2006):

〈T̃ (~l)T̃ ∗(~l − ~L)〉T = (2π)2δ2
D(~L)C TT

l +
(

(~L−~l) · ~LCTT
|~L−~l| +

~l · ~LCTT
l

)
ψ(~L) . (2.95)

We can use these ‘off-diagonal’ terms to reconstruct the lensing potential.
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CHAPTER 3

Real Space Estimators for CMB Lensing Reconstruction

Gravitational lensing introduces non-Gaussianities into the lensed CMB (Bernardeau, 1997; Zal-

darriaga, 2000; Hu, 2001a) and induces correlations between different harmonic modes, (see

Equation (2.95)). Because these off-diagonal correlations are proportional to the lensing poten-

tial, quadratic estimators can be applied to the CMB temperature and polarisation in harmonic

space to reconstruct the lensing potential (Zaldarriaga and Seljak, 1999; Seljak and Zaldarriaga,

1999; Hu and Okamoto, 2002; Okamoto and Hu, 2003; Cooray and Kesden, 2003). Alternative

methods of reconstructing CMB lensing using likelihood-based methods have also been explored

(Hirata and Seljak, 2003a,b).

In this chapter, we derive real space estimators that reconstruct the lensing convergence and

shear directly from CMB temperature and polarisation maps. The real space approach can be

helpful when analysing experimental data, as it makes use of local estimators which can eas-

ily cope with non uniform sky coverage and pixels that have been removed from CMB maps,

whereas the ubiquitous harmonic space estimators (e.g. Hu and Okamoto, 2002) implicitly re-

quire uniform full sky coverage to work without adaptations. The estimators we present take

the form of the convolution of a CMB temperature or polarisation map with a real space kernel
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(limited in extent), multiplied by another CMB map.

This chapter extends previous work (Bucher et al., 2012), which focused on Planck-like tem-

perature maps. As the sensitivity and resolution of CMB experiments continues to improve,

the highest signal-to-noise lensing reconstructions will come from polarisation data (Hu and

Okamoto, 2002), so we develop here similar real space estimators for polarisation in addition

to temperature. We also discuss how features of the estimators depend on the experimental

noise, comparing results from a Planck-like experiment (Planck Collaboration et al., 2015f) to

next-generation experiments with better resolution and noise properties, such as the Advanced

Atacama Cosmology Telescope Polarimeter (AdvACT) (Henderson et al., 2015). Ground-based

experiments such as AdvACT do not have access to the full sky and so a local treatment is useful,

especially if the survey strategy includes deep observations in relatively small patches of the sky.

3.1 Temperature and Polarisation Estimators

We develop estimators for the convergence (κ0) and the two components of the shear field (γ+

and γ×), which make up the deformation tensor (the part of the magnification matrix in Equation

(2.88) that describes the distortion due to lensing):

κ =

κ0 + γ+ γ×

γ× κ0 − γ+

 , (3.1)

where we have neglected a rotation in the matrix κ. We develop estimators for these three

quantities because ψ and ~α are both ambiguous: ψ is indistinguishable from ψ + (constant),

and the vector field ~α is indistinguishable from a translation (in the flat sky approximation) or

a rotation (when we take sky curvature into account) of itself, since we only know the power

spectrum and not the real-space temperature map of the unlensed CMB. Locally, the shear and

convergence are unambiguous, and so we find estimators for these quantities.

We make use of what we will call the ‘squeezed triangle approximation’, in which the un-

lensed and lensed angular wavevectors ~l and ~l′ have very similar magnitudes, which are large

compared to that of the difference between them, ~L = ~l−~l′, as seen in Fig 3.1. This limit corre-

sponds to studying the lensing fields (κ0, γ+ and γ×) on large scales (small L), and focusing on
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small scale CMB anisotropies (large l). This is a reasonably good approximation because small

scale anisotropies contribute most of the statistical information about lensing, and the lensing

potential peaks at fairly low L (see Figure (2.4)). However, the squeezed triangle approximation

will result in a loss of power in our reconstruction for higher Lmodes (small scale lensing fields).

This effect is discussed in more detail in Section 3.2.

Figure 3.1: Coordinate system in Fourier space. The length of ~L has been exaggerated to make

the diagram more readable.

We consider only weak lensing of the CMB, which is to say lensing in which the deflection

angle is small. The lensing effect is thus perturbatively small, and we neglect all terms of second

order or higher in the lensing fields.

3.1.1 Derivation from Lensed Power Spectra

We present a derivation of the real space temperature and polarisation estimators based on the

approach in Bucher et al. (2012), in which we first take the squeezed triangle limit of the lensed

power spectra to find the appropriate estimators in harmonic space, and then transform our ex-

pressions into real space. We recover the temperature estimator from Bucher et al. (2012) and

develop original estimators for CMB polarisation.
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Lensed Fields in Terms of Unlensed Fields

The effect of lensing is to remap photons from their primordial to their lensed positions on

the sky. We can thus write the lensed temperature or polarisation in one direction on the sky

(denoted by a tilde in the following) in terms of the unlensed temperature or polarisation in

another direction on the sky: T̃ (~x′) = T (~x), Q̃(~x′) = Q(~x) and Ũ(~x′) = U(~x), where we

relate the positions in the unlensed and lensed sky by ~x = S~x′. Here S = eκ is the linear

transformation describing the shifting of photons due to lensing in terms of the deformation

tensor of Equation (3.1).

We note that the polarisation basis propagated along the perturbed photon path (in direction

~x′ on the sky) is rotated slightly with respect to the basis propagated in the direction (~x). This

rotation angle is less than ∼ 1 arcminute provided we relate the two bases by a parallel transport

along the spherical geodesic connecting the unlensed position to the lensed position (Lewis and

Challinor, 2006), and so the effect of this rotation can be neglected.

We find the Fourier transform of the unlensed and lensed temperature maps in the flat sky

approximation by integrating over areas A and A′ respectively to obtain

T (~l) =
1√
A

∫
d2~x T (~x)e−i

~l·~x (3.2)

T̃ (~l) =
1√
A′

∫
d2~x ′ T̃ (~x ′)e−i

~l·~x′ (3.3)

=
1√

det(J)A

∫
d2~x det(J)T (~x)e−i

~l·(S−1~x) (3.4)

=
1√
A

∫
d2~x det

1
2 (J)T (~x)e−i(S

−1~l)·~x (3.5)

= det−
1
2 (S)T (S−1~l), (3.6)

where J is the Jacobian of the coordinate transformation S−1 and det J = 1
detS

.
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The Fourier transforms of the unlensed and lensed polarisation fields are

E(~l)± iB(~l) =
1√
A

∫
d2~x (Q(~x) + iU(~x)) e−i

~l·~xe∓2iφl (3.7)

Ẽ(~l)± iB̃(~l) =
1√
A′

∫
d2~x ′

(
Q̃(~x ′) + iŨ(~x ′)

)
e−i

~l·~x′e∓2iφl (3.8)

= det−
1
2 (S)

1√
A

∫
d2~xP (~x)e∓2iφl′e−i

~l ′·~xe∓2i(φl−φl′ ) (3.9)

= det−
1
2 (S)

(
E(~l′)± iB(~l′)

)
e∓2i(φl−φl′ ), (3.10)

where the lensed wavevector is related to the unlensed wavevector by ~l′ = S−1~l and φl′ is the

polar angle of ~l′.

Rewriting Equation (3.10) by expressing the angular factor as

e∓2i(φl−φl′ ) = 1∓ 2i[γ× cos(2φl)− γ+ sin(2φl)], (3.11)

we find Ẽ(~l) and B̃(~l) by equating real and imaginary parts, obtaining

Ẽ(~l) = det−
1
2 (S)[E(~l′) + 2(γ× cos(2φl)− γ+ sin(2φl))B(~l′)] (3.12)

B̃(~l) = det−
1
2 (S)[B(~l′)− 2(γ× cos(2φl)− γ+ sin(2φl))E(~l′)], (3.13)

where ~l′ = S−1~l as before. We Taylor expand S to obtain S = I + κ. A calculation of the

determinant keeping only first-order terms yields det−1(S) = 1− 2κ0.

Lensed Spectra in terms of Unlensed Spectra

It is now straightforward to find the lensed angular power spectra and cross spectra of the CMB

temperature and E- and B-mode polarisation in terms of the primordial spectra. The primordial

B mode power spectrum CBB
l is expected to be a very small signal from gravitational waves,

which can be neglected for our purposes, although detection of these inflationary gravitational

waves would have great cosmological significance. The unlensed cross spectra CEB
l and CTB

l

are zero by parity invariance.
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For XY = TT , EE and TE, we find

C̃XY
l = det−1(S)CXY

|S−1~l|

= (1− 2κ0)

(
CXY
l +Kl dC

XY
l

dl

)
= CXY

l − κ0

(
dCXY

l

d ln l
+ 2CXY

l

)
− (γ+ cos(2φl) + γ× sin(2φl))

dCXY
l

d ln l
. (3.14)

where we have made use of the relation l′ ≡ |S−1~l| = l −Kl with

K ≡
~l · κ ·~l
l2

= κ0 + γ+ cos(2φl) + γ× sin(2φl). (3.15)

We note that if the local spectral index β ≡ d lnCXYl
d ln l

= 1
CXYl

dCXYl
d ln l

takes on the value β = −2

then the power spectrum CXY
l is invariant under pure dilatations (for which only the conver-

gence lensing field is nonzero). This is because β = −2 corresponds to a scale invariant two-

dimensional angular power spectrum, and dilating such a field leaves it unchanged. If β = 0,

corresponding to a white noise spectrum, then the power spectrum is invariant under pure shear

transformations for which the convergence is zero (Bucher et al., 2012).

For C̃TB
l and C̃EB

l , we have the following (where Y is either T or E):

C̃Y B
l = 〈Ỹ ∗(~l)B̃(~l)〉 = −2CY E

l [γ× cos(2φl)− γ+ sin(2φl)] . (3.16)

In our approximation, the convergence has no effect on the lensed TB and EB power spectra,

and thus we cannot use these spectra to reconstruct κ0. This is because dilating E-mode polari-

sation with a large-scale convergence field that is approximately constant over the sky does not

convert any of the E-mode polarisation pattern into B-modes, resulting in the lensed TB and EB

spectra being zero. Shearing effects, however, mix polarisation E- and B-modes, and we can thus

use the lensed TB and EB combinations to reconstruct the shear.

When we neglect primordial B modes and use our squeezed triangle approximation, we find

C̃BB
l = 0. In reality the lensed B polarisation power spectrum will be nonzero even if the un-

lensed spectrum is zero because some of the E-mode polarisation becomes B-mode polarisation

under lensing. However, this effect is second order in γ+ and γ×, and thus negligible in our

linear and squeezed triangle approximations. We will therefore not work with estimators based

on C̃BB
l .

49



Estimators

The squeezed triangle approximation, in which we assume a small lensing wavenumber L, cor-

responds to κ0, γ+ and γ× varying on large scales across the sky. We use our expressions for the

lensed power spectra to find estimators for κ0, γ+ and γ× in a region of area A over which these

quantities are constant. We can think of this region as being a (sufficiently small) pixel in the

map. The estimator can then be translated to be applied at all pixels in the map.

An ansatz for an estimator for κ0, based on the spectra for XY = TT , EE, or TE from

Equation (3.14) can be written as a weighted average of products of lensed maps:

κ̂XY0 =
1

NXY
κ̂0

A
∫

d2~l

(2π)2

(
X̃∗(~l)Ỹ (~l)− CXY

l

)
gXYκ̂0 (l), (3.17)

where NXY
κ̂0

is the normalisation constant and gXYκ̂0 (~l) is a weighting function. We subtract the

unlensed power spectrum CXY
l from the observed one to isolate κ0.

We choose the normalisation constantNXY
κ̂0

to make the estimator unbiased, i.e. 〈κ̂XY0 〉X,Y =

κ0, where 〈 〉X,Y denotes an average over various realisations of the unlensed CMB temperature

and polarisation maps, giving

NXY
κ̂0

= A
∫

d2~l

(2π)2
gXYκ̂0 (l)

(
dCXY

l

d ln l
+ 2CXY

l

)
. (3.18)

We set the weighting function gXYκ̂0 to minimise the variance of our estimator. For XY = TT

and EE, we have

gXYκ̂0 (l) =
1

A

(
d ln[CXY

l ]

d ln l
+ 2

)(
CXY
l

(CXY
l + nXY (l))2

)
, (3.19)

and for TE we find that

gTE(l) =
1

A

(
dCTE

l

d ln l
+ 2CTE

l

) 1(
C̃TE
l

)2

+ (CTT
l + nTT (l)) (CEE

l + nEE(l))

 . (3.20)

These expressions include the experimental noise nXY (l), which depends on the resolution

and sensitivity of an experiment. The shapes of the weighting functions for Planck and AdvACT

specifications are shown in Section 3.2. We use the expression CXY
l +nXY (l) to approximate the
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total measured power C̃XY
l + nXY (l) because for most values of l the difference between CXY

l

and C̃XY
l is very small (as can be seen in Figure (2.5)), and for high l, where the difference is not

negligible, the detector noise nXY (l) dominates the sum. The denominator comes from the four

point correlation function when we calculate the variance.

We find estimators for γ+ and γ× by multiplying the observed power spectra by cos(2φl)

and sin(2φl) to isolate the γ+ and γ× parts (since when we integrate, only the coefficients of

cos2(2φl) or sin2(2φl) remain). We obtainγ̂XY+

γ̂XY×

 =
1

NXY
γ̂+,γ̂×

∫
d2~l

(2π)2
gXYγ̂+,γ̂×(l)

cos(2φl)

sin(2φl)

 X̃∗(~l)Ỹ (~l) (3.21)

with the normalisation given by

NXY
γ̂+,γ̂× =

A
2

∫
d2~l

(2π)2

(
dCXY

l

d ln l

)
gXYγ̂+,γ̂×(l), (3.22)

and the weighting factor for XY = TT and EE given by

gXYγ̂+,γ̂×(l) = A CXY
l

(CXY
l + nXYl )2

(
d ln[CXY

l ]

d ln l

)
, (3.23)

while for XY =TE

gTEγ̂+,γ̂×(l) =

(
1

(C̃TE
l )2 + (CTT

l + nTT (l))(CEE
l + nEE(l))

)(
dCTE

l

d ln l

)
. (3.24)

We can also construct estimators for γ+ and γ× based on the spectra for TB and EB. Using

Y to denote either T or E, we obtainγ̂Y B+

γ̂Y B×

 =
1

NY B
γ̂+,γ̂×

∫
d2~l

(2π)2

(
CY E
l

(CY Y
l + nY Y (l))(nBB(l))

)sin(2φl)

cos(2φl)

 Ỹ ∗(~l)B̃(~l), (3.25)

where

NY B
γ̂+γ̂× =

∫
d2~l

(2π)2

(CY E
l )2

(CY Y
l + nY Y (l))(nBB(l))

. (3.26)

These quadratic estimators for the lensing convergence and shear are unbiased and of mini-

mum variance in the squeezed triangle approximation. They can be transformed into map space,

giving the real space estimators that we implement.
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Real Space Implementation

To obtain the real space convergence estimator, we substitute the expressions for the Fourier

transform of the CMB maps X and Y (given in Equation (3.3) for the temperature) into the

convergence estimator expression κ̂XY0 given in Equation (3.17). Neglecting the unlensed com-

ponent for now (we include it in the final expression in Equation (3.31)), we find for XY = TT ,

EE or TE

κ̂XY0 =
1

Nκ̂0

∫
d~xX(~x)

∫
d~x ′Y (~x ′)

∫
d2l

(2π)2
ei
~l·(~x−~x ′)gXY (l) (3.27)

=

∫
d~xX(~x)

∫
d~x ′Y (~x ′)KXY

κ̂0
(~x− ~x ′) (3.28)

=

∫
d~xX(~x)(KXY

κ̂0
◦ Y )(~x) , (3.29)

where ◦ denotes convolution and KXY
κ̂0

is the inverse Fourier transform of the weighting function

gXY (l) normalised by Nκ̂0:

KXY
κ̂0

(x) =
1

Nκ̂0

∫
d2l

(2π)2
ei
~l·~xgXY (l). (3.30)

The kernel KXY
κ̂0

(x) peaks at small angular scales, as will be shown in Section 3.2. This means

that the central pixel contains the greatest signal, and integrating over other pixels makes the

reconstruction noisier. Thus we keep only the reconstruction from the central pixel and translate

it to different points on the map, giving our final expression for the estimator:

κ̂XY0 (~x) = X(~x)(KXY
κ̂0
◦ Y )(~x)− 〈X(~x)(KY Y

κ̂0
◦ Y )(~x)〉unlensed . (3.31)

Similar expressions can be found for γ̂XY+ (~x) and γ̂XY× (~x). Setting

KXY
γ̂+,γ̂×(x) =

1

Nγ̂+,γ̂×

∫ ∞
0

dl

(2π)
J2(lx)gXY (l), (3.32)

where J2 is the second order Bessel function of the first kind, and

KXY{
γ̂+

γ̂×

}(~x) = KXY
γ̂+,γ̂×(x)

cos 2θ(~x)

sin 2θ(~x)

 , (3.33)

where θ(~x) is a map of the polar angle of ~x, we obtainγ̂XY+ (~x)

γ̂XY× (~x)

 = X(~x)(KXY{
γ̂+

γ̂×

} ◦ Y )(~x) (3.34)
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These expressions indicate how the real-space estimators are implemented to obtain maps of

the lensing convergence and shear from temperature and polarisation maps.

3.1.2 Real Space Estimators as a limit of Harmonic Space Estimators

The real space estimators derived above are the small L or large scale limit of the harmonic space

estimators that are traditionally used for CMB lensing reconstruction (Seljak and Zaldarriaga,

1999; Hu and Okamoto, 2002; Cooray and Kesden, 2003). Harmonic space estimators make

use of the fact that lensing induces correlations (proportional to the lensing potential) between

previously uncorrelated CMB modes:

〈X(
~L

2
−~l)Y (

~L

2
+~l)〉 = fXY (~l, ~L) φ(~L) (3.35)

where XY =TT , EE or TE and

fXY (~l, ~L) = ~L ·

(
~L

2
−~l

)
CXY

| ~L
2
−~l|

+ ~L ·

(
~L

2
+~l

)
CXY

| ~L
2

+~l|
(3.36)

Following Bucher et al. (2012), who presented a similar calculation for CMB temperature esti-

mators, we have introduced a two-sided difference by using ~L
2
± ~l instead of ~l and ~L − ~l so that

we can take the low L limit more easily.

The harmonic space estimator for the lensing potential is a weighted average of these off-

diagonal modes:

ψ̂XY (~L) =
1

NXY (~L)

∫
d2~l

(2π)2
X̃(

~L

2
−~l)Ỹ ∗(

~L

2
+~l)gXY (~l, ~L) , (3.37)

where NXY (~L) is a normalisation factor to make the estimator unbiased, given by

NXY (~L) =

∫
d2~l

(2π)2
fXY (~l, ~L)gXY (~l, ~L), (3.38)

and gXY (~l, ~L) is a weighting function to minimize the variance, which for XY = TT and EE

is given by

gXY (~l, ~L) =
fXY (~l, ~L)(

C XY

| ~L
2
−~l|

+ nXY (| ~L
2
−~l|)

)(
C XY

| ~L
2

+~l|
+ nXY (| ~L

2
+~l|)

) , (3.39)
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while for TE

gTE(~l, ~L) =
fTE(~l, ~L)

(
C TT,tot

l1
C EE,tot

l2
− C TE,tot

l1
C TE,tot

l2

)
C TT,tot

l1
C EE,tot

l2
C EE,tot

l1
C TT,tot

l2
−
((
C TE,tot

l1

)(
C TE,tot

l2

))2 (3.40)

where l1 = | ~L
2
−~l|, l2 = | ~L

2
+~l| and C XY,tot

l = C XY
l + nXY (l).

We can simplify fXY in the squeezed triangle limit, where L� l :

fXY (~l, ~L) = ~L ·

(
~L

2
−~l

)
CXY

| ~L
2
−~l|

+ ~L ·

(
~L

2
+~l

)
CXY

| ~L
2

+~l|
(3.41)

≈ L2CXY
l +

(~l · ~L)2

l

dCXY
l

dl
(3.42)

≈ 1

2
L2

(
1

l2
d(l2CXY

l )

d ln(l)
+

(
2(~l · ~L)2

L2l2
− 1

)
dCXY

l

d ln(l)

)
(3.43)

≈ 1

2
L2

(
1

l2
d(l2CXY

l )

d ln(l)
+ cos(2φlL)

dCXY
l

d ln(l)

)
(3.44)

≈ 1

2
L2

(
dCXY

l

d ln(l)
+ 2CXY

l + cos(2φlL)
dCXY

l

d ln(l)

)
(3.45)

where φlL is the angle between ~L and ~l. In this limit, C XY

| ~L
2
±~l|

+ nXY (| ~L
2
±~l|) ≈ C XY

l + nXY (l),

giving

gXY (~l, ~L) =

1
2
L2CXY

l

(
d ln(l2CXYl )

d ln(l)
+ cos(2φlL)

d ln(CXYl )

d ln(l)

)
(cXYl + nXY (l))

2 (3.46)

for XY = TT and EE, and

gTE(~l, ~L) =

1
2
L2
((

dCTEl
d ln(l)

+ 2CTE
l

)
+ cos(2φlL)

dCTEl
d ln(l)

)
(C TT

l + nTT (l)) (C EE
l + nEE(l)) + (C TE

l + nTE(l))
2 . (3.47)

These approximate expressions for g and for f are carried through to the above expression for

NXY .

If we choose to align our x-axis and therefore our lx-axis with the lensing wavevector ~L, then

φlL = φl and we have

NXY (~L) =
1

4
L4(NXY

κ̂0
+NXY

γ̂+
) (3.48)

and

gXY =
A
2
L2
(
gXYκ̂0 + gXYγ̂+

)
, (3.49)
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where NXY
κ̂0

and gXYκ̂0 are given in Equations (3.18) and (3.19), and NXY
γ̂+

and gXYγ̂+ in Equations

(3.22) and (3.23). This choice of axes corresponds to measuring the shear E and B Fourier modes,

γE and γB, where γE(~L) corresponds to γ+(~L) in a frame aligned with the lensing wavevector

and γB(~L) corresponds to γ×(~L) in such a frame. For any other choice of axes, the shear E and

B modes can be obtained by rotating γ(~L) = γ+(~L) + iγ×(~L) into the basis aligned with the

wavenumber ~L to obtain

γE(~L) + iγB(~L) = e−2iφL(γ+(~L) + iγ×(~L)). (3.50)

Substituting the expressions for NXY and gXY into Equation (3.37), we find that

L2ψ̂XY (~L) ≈
NXY
κ̂0

(~L)

NXY
κ̂0

(~L) +NXY
γ̂E

(~L)
2κ̂0 +

NXY
γ̂E

(~L)

NXY
κ̂0

(~L) +NXY
γ̂E

(~L)
2γ̂E (3.51)

where κ̂XY0 and γ̂XYE are as defined in Equations (3.17) and (3.21), with the axes chosen as

discussed above. We can see that the harmonic space estimator for L2ψ̂XY for XY = TT ,

EE and TE is the inverse variance weighted combination of the real space estimators for the

convergence κ̂0 and the shear E mode γ̂E . This makes sense, because the expressions relating

the convergence and shear plus component to the lensing potential both reduce to L2ψ(~L) in

Equations (2.89) if the x-axis is aligned with the lensing wavevector. The B mode component

of the shear is forbidden in weak lensing, and is therefore not present. Thus our real space

estimators for the TT , EE and TE spectra are simply the small L limits of the corresponding

harmonic space estimators.

For TB and EB, we have the following (where Y is T or E)

〈Y (
~L

2
−~l)B(

~L

2
+~l)〉 = fY B(~l, ~L) φ(~L) (3.52)

where

fY B(~l, ~L) = ~L ·

(
~L

2
−~l

)
CY E

| ~L
2
−~l|

sin (2φ ~L
2

+~l,
~L
2
−~l) (3.53)

The harmonic space estimator for the lensing potential is given by

ψ̂Y B(~L) =
1

NY B(~L)

∫
d2~l

(2π)2
Ỹ (

~L

2
−~l)B̃∗(

~L

2
+~l)gY B(~l, ~L) , (3.54)
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where NY B(~L) is a normalisation function and gY B(~l, ~L) is a weighting function:

NY B(~L) =

∫
d2~l

(2π)2
fY B(~l, ~L)gY B(~l, ~L), (3.55)

and

gY B(~l, ~L) =
fY B(~l, ~L)(

C Y Y

| ~L
2
−~l|

+ nY Y (| ~L
2
−~l|)

)
n BB(| ~L

2
+~l|)

. (3.56)

We can simplify fY B in the limit where L� l (neglecting higher order terms in L):

fY B(~l, ~L) ≈
(
L2

2
−~l · ~L

)
CY E
l sin (2φ ~L

2
+~l,

~L
2
−~l) (3.57)

≈ −~l · ~LCY E
l sin (2φ ~L

2
+~l,

~L
2
−~l) (3.58)

≈ −LlL
l

2 cos(φlL) sin(φlL)CY E
l (3.59)

≈ L2 sin(2φlL)CY E
l (3.60)

where φlL is the angle between ~L and ~l.

Also, C Y Y

| ~L
2
−~l|

+ nY Y (| ~L
2
−~l|) ≈ C Y Y

l + nY Y (l) and n BB(| ~L
2

+~l|) ≈ nBB(l), giving

L2ψ̂Y B(~L) ≈ γ̂Y BE , (3.61)

where γ̂Y BE corresponds in our choice of coordinates to γY B+ as defined in Equation (3.25).

Again we see that the γ̂B component is not present, as expected for weak lensing. The

convergence is also missing for the TB and EB estimators as the large scale convergence fields

in our approximation do not generate B modes.

3.1.3 Derivation from Lensed Correlation Functions

The estimators we have derived so far, based on E and B polarisation maps, are the real-space

analogues of the quadratic polarisation lensing estimators in harmonic space (Hu and Okamoto,

2002) in the squeezed triangle approximation. However, we have not yet created truly local

polarisation lensing estimators, because E and B modes themselves are inherently non-local:

they depend on the alignment of the polarisation with nonlocal Fourier wave vectors.
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In this section, we present an alternative derivation that deals directly with CMB correlation

functions in real space, and results in lensing estimators that are applied to temperature and Q

and U polarisation maps. Q and U polarisations are what we measure experimentally, and so we

will obtain estimators that can be applied to maps without needing to apply nonlocal treatments

to construct the polarisation E and B mode maps. We note that for simulated maps, there is

no issue with using E and B mode polarisation as we can create maps with periodic boundary

conditions that can easily be Fourier transformed, and so we will show results that make use of

the E and B estimators defined above. However for experimental data the estimators defined for

Q and U maps will be the most straightforward to apply.

We consider the correlation functions

ξT (r) = 〈T (~x)T (~x− ~r)〉

ξ−(r) = 〈Pr(~x)P ∗r (~x− ~r)〉 = 〈P (~x)P ∗(~x− ~r)〉

ξ+(r) = 〈Pr(~x)Pr(~x− ~r)〉 = 〈e−4iφrP (~x)P (~x− ~r)〉

ξ×(r) = 〈Pr(~x)T (~x− ~r)〉 = 〈e−2iφrP (~x)T (~x− ~r)〉

(3.62)

where P (~x) = Q(~x) + iU(~x) and Pr(~x) = e−2iφrP (~x) is the polarisation field expressed in

the physically relevant basis defined by ~r, with φr the polar angle of ~r (Lewis and Challinor,

2006). Thus Qr describes polarisation along the direction r̂ (Qr positive) or perpendicular to r̂

(Qr negative), and Ur describes polarisation at a 45◦ angle to these directions.

Lensed Correlation Functions

We can relate the lensed CMB temperature map T̃ (~x) to the unlensed map T (~x) by

T̃ (~x) = T (eκ~x) ≈ T (~x+ κ~x) ≈ T (~x) + ~∇T (~x) · κ~x, (3.63)
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where κ is the deformation tensor defined in Equation (3.1), provided the lensing effect is small.

We can thus relate the lensed and unlensed temperature correlation functions:

ξ̃T (~r) =< T̃ (~x)T̃ (~x− ~r) >~x

=< T̃ (~x+ ~r)T̃ (~x) >~x

= ξT (~r)+ < (~∇T (~x+ ~r) · κ(~x+ ~r))T (~x) >~x + < (~∇T (~x) · κ~x)T (~x+ ~r) >~x

= ξT (~r)+ < (~∇T (~x+ ~r) · κ~x)T (~x) >~x + < (~∇T (~x) · κ~x)T (~x+ ~r) >~x + < (~∇T (~x+ ~r) · κ~r)T (~x) >~x

= ξT (~r)+ < (~∇T (~x+ ~r) · κ~r)T (~x) >~x,

(3.64)

where the two middle terms in the second line from the bottom vary sinusoidally with the polar

angle of ~x, and thus average to zero when we take the expectation value. We find

< (~∇T (~x+ ~r) · κ~r)T (~x) >~x= r
∂ξT
∂r

(κ0 + γ+,r) +
∂ξT
∂φ

γ×,r , (3.65)

where

γ+,r + iγ×,r = (γ+ + iγ×)e−2iφ (3.66)

is the shear in the basis defined by the ~r direction. The isotropy of the unlensed CMB means that
∂ξT
∂φ

= 0, so we find

< (~∇T (~x+ ~r) · κ~r)T (~x) >~x= r
∂ξT
∂r

(κ0 + γ+ cos 2φr + γ× sin 2φr). (3.67)

Substituting this into the expression for the lensed correlation function in Equation (3.64), we

obtain our final expression relating the lensed correlation function to the unlensed correlation

function:

ξ̃T (~r) = ξT (~r) +
∂ξT
∂ ln r

(κ0 + γ+ cos 2φr + γ× sin 2φr). (3.68)

A similar calculation for ξ̃+(~r), ξ̃−(~r) and ξ̃×(~r) shows that the same relation holds for all

of the correlation functions. The lensed correlation functions can be thus expressed in terms of

the unlensed correlation functions defined in Equations (3.62) and the lensing fields that make

up the deformation tensor, in a region in which κ0, γ+ and γ× are constant and small, as

ξ̃(~r) = ξ(r) +
dξ

d ln(r)
(κ0 + γ+ cos(2φr) + γ× sin(2φr)) , (3.69)
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where ξ = ξT , ξ+, ξ− or ξ×.

We can therefore construct estimators for the convergence and shear in this region as follows,

where we have a different version of each estimator for each of the different correlation functions:

κ̂0 =

∫
d2~rKκ0(r)ξ̃(~r)

γ̂+ =

∫
d2~rKγ(r) cos(2φr)ξ̃(~r) =

∫
d2~rKγ+(~r)ξ̃(~r)

γ̂× =

∫
d2~rKγ(r) sin(2φr)ξ̃(~r) =

∫
d2~rKγ×(~r)ξ̃(~r),

(3.70)

where Kγ+(~r) ≡ Kγ(r) cos(2φr), Kγ×(~r) ≡ Kγ(r) sin(2φr). The lensing kernels K weight

and normalise the estimators. We find the lensing kernels by relating the estimators in Equation

(3.70), and thus their kernels, to the real-space estimators obtained by starting with the lensing

distortion in harmonic space in Section 3.1.1. Expressions for the lensing kernels are calculated

below, and the final expressions appear in Tables (3.1) and (3.2).

Temperature Estimator

Taking ξT , we find

κ̂0
T =

∫
d2~rKκT0

(r)ξ̃T (~r)

=

∫
d2~rKκT0

(r)

∫
d2~xT (~x)T (~x− ~r)

=

∫
d2~xT (~x)

∫
d2~rKκT0

(r)T (~x− ~r)

=

∫
d2~xT (~x)(KκT0

◦ T )(~x).

(3.71)

This takes the same form as the estimator in Equation (3.29) which we derived in Section

3.1.1, and so KκT0
= KTT

κ0
calculated above. The kernel peaks at small angular scales and drops

off quickly, so the cleanest reconstruction is obtained by only keeping the central pixel in the
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integrand. The estimator can be translated to different points of the map, giving

κ̂0
T (~x) = T (~x)(KκT0

◦ T )(~x), (3.72)

where KκT0
= KTT

κ0
as defined in Equation (3.30).

ξ+ Estimator

For ξ+ we find

κ̂0 =

∫
d2~rK(~r)

∫
d2~xP̃ ∗(~x)P̃ (~x− ~r)

=

∫
d2~rK(~r)

∫
d2~x

(
Q̃(~x)Q̃(~x− ~r) + Ũ(~x)Ũ(~x− ~r)

)
=

∫
d2~x

(
Q̃(~x)(K ◦ Q̃)(~x) + Ũ(~x)(K ◦ Ũ)(~x)

)
.

(3.73)

Again, we can translate this estimator to different pixels on the map, giving

κ̂0(~x) = Q̃(~x)(K ◦ Q̃)(~x) + Ũ(~x)(K ◦ Ũ)(~x). (3.74)

We obtain the kernel by taking the Fourier transform of our estimator and comparing it to the

expressions for the estimators in harmonic space in Section 3.1.1. We find

κ̂0(~l) = Q̃(~l) ◦ (K(~l)Q̃(~l)) + Ũ(~l) ◦ (K(~l)Ũ(~l))

=

∫
d2~l′

(2π)2
K(~l′)

(
Q̃(~l −~l′)Q̃(~l′) + Ũ(~l −~l′)Ũ(~l′)

)
=

∫
d2~l′

(2π)2
K(~l′)

(
Q̃∗(~l′ −~l)Q̃(~l′) + Ũ∗(~l′ −~l)Ũ(~l′)

)
.

(3.75)

Taking the expectation value gives

< κ̂0(~l) >CMB=

∫
d2~l′

(2π)2
K(~l′)

(
C̃QQ
~l′

+ C̃UU
~l′

)
. (3.76)
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We can rewrite this in term of E and B modes using (Lewis and Challinor, 2006)

C̃QQ
~l

+ C̃UU
~l

=

∫
d2~rξ+(~r)e−i

~l·~r

= C̃EE
~l

+ C̃BB
~l

= C̃EE
~l

, (3.77)

where the last equality holds because in our approximation C̃BB(~l) = 0.

Our estimator thus simplifies to

< κ̂0(~l) >CMB=

∫
d2~l′

(2π)2
K(~l′)C̃EE

~l′
, (3.78)

which is what we find if we take the expectation value of the EE estimator in Equation (3.17).

Thus K(~l) for the ξ+ estimator is the same kernel as for our existing EE estimator, given in

Equation (3.30).

We can make similar comparisons for the other estimators, obtaining their kernels from those

defined in Section 3.1.1. Tables (3.1) and (3.2) show the forms taken by the convergence and

shear plus estimators respectively, as well as the expressions for the relevant kernels. The esti-

mators for γ× are the same as those for γ+ but with the factors of cos replaced by sin and vice

versa.

Table 3.1: Convergence estimators from real space correlation functions

Estimator Form Kernel

κ̂T0 T̃ (~x)(KκT0
◦ T̃ )(~x) KκT0

= 1
2πNTTκ0

∫∞
0
ldlJ0(lx)g

TT
κ0

(l)

κ̂+0 Q̃(~x)(Kκ+
0
◦ Q̃)(~x) + Ũ(~x)(Kκ+

0
◦ Ũ)(~x) Kκ+

0
= 1

2πNEEκ0

∫∞
0
ldlJ0(lx)g

EE
κ0

(l)

κ̂−0 Q̃(~x)(Kκ−0
◦ Q̃)(~x)− Ũ(~x)(Kκ−0

◦ Ũ)(~x) Kκ−0
= 1

πNEEκ0

∫∞
0
ldlJ0(lx)g

EE
κ0

(l)

κ̂×0 Q̃(~x)(KQ

κ×0
◦ T̃ )(~x) + Ũ(~x)(KU

κ×0
◦ T̃ )(~x) KQ

κ×0
=
(

1
2πNTEκ0

∫∞
0
ldlJ0(lx)g

TE
κ0

(l)
)
cos 2φr

KU
κ×0

=
(

1
2πNTEκ0

∫∞
0
ldlJ0(lx)g

TE
κ0

(l)
)
sin 2φr

These estimators are provided for completeness, and for future application to experimental

CMB maps. However, when we apply our real space estimators to simulated maps in Section

3.3, we make use of the estimators defined in Section 3.1.1.
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Table 3.2: Shear plus estimators from real space correlation functions

Estimator Form Kernel

γ̂T+ T̃ (~x)(KγT+
◦ T̃ )(~x) KγT+

=

(
1

2πNTTγ+

∫∞
0
ldlJ2(lx)g

TT
γ+ (l)

)
cos 2φr

γ̂++ Q̃(~x)(Kγ+
+
◦ Q̃)(~x) + Ũ(~x)(Kγ+

+
◦ Ũ)(~x) Kγ+

+
=

(
1

2πNEEγ+

∫∞
0
ldlJ2(lx)g

EE
γ+ (l)

)
cos 2φr

γ̂−+ Q̃(~x)(Kγ−+
◦ Q̃)(~x)− Ũ(~x)(Kγ−+

◦ Ũ)(~x) Kγ−+
=

(
1
2π

∫∞
0
ldlJ2(lx)

(
1√
2

gEEγ+
(l)

NEEγ+
− 1√

2

gEBγ+
(l)

NEBγ+

))
cos 2φr+

+

(
1
2π

∫∞
0
ldlJ6(lx)

(
1√
2

gEEγ+
(l)

NEEγ+
+ 1√

2

gEBγ+
(l)

NEBγ+

))
cos 6φr

γ̂×+ Q̃(~x)(KQ

γ×+
◦ T̃ )(~x) + Ũ(~x)(KU

γ×+
◦ T̃ )(~x) KQ

γ×+
=

(
1
4π

∫∞
0
ldlJ0(lx)

(
1√
2

gTEγ+
(l)

NTEγ+
− 1√

2

gTBγ+
(l)

NTBγ+

))
+

+

(
1
4π

∫∞
0
ldlJ4(lx)

(
1√
2

gTEγ+
(l)

NTEγ+
+ 1√

2

gTBγ+
(l)

NTBγ+

))
cos 4φr

KU
κ×0

=

(
1
4π

∫∞
0
ldlJ4(lx)

(
1√
2

gTEγ+
(l)

NTEγ+
+ 1√

2

gTBγ+
(l)

NTBγ+

))
sin 4φr

3.2 Features of Real Space Estimators

We now explore various properties of the real space estimators we have introduced, including

the shape of the kernels we use and the validity and consequences of using the squeezed triangle

approximation.

3.2.1 Cumulative Information

We wish to find out which angular scales contribute the most statistical weight to each estimator

in order to find out how small L has to be for our squeezed triangle approximation to be valid.

We do this by considering the cumulative information, or normalised cumulative signal-to-noise.

For our estimators, Nκ0 and Nγ give the signal to noise squared per unit solid angle per unit κ0,

γ+ or γ×, so χ2(l) =
∫ l

0
N(l′)dl′, where the form of N is given in Equations( 3.18), (3.22) and

(3.26).

In order to perform this analysis we must specify the experimental configuration, since we

need to use the noise of the experiment to determine the cumulative information. For a Gaussian

beam, the noise is given by

n(l) = σ2
pe
l2θ2beam (3.79)

where θbeam is the beam width and σp is the detector noise in a pixel of side θbeam = θFWHM/
√

8 ln 2.
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We compare an experiment with Planck’s 143 GHz noise (Planck Collaboration et al., 2015b)

to a next-generation experiment with the noise specifications of Advanced ACTPol’s 150 GHz

channel (Henderson et al., 2015). The specifications of the experiments are shown in Table (3.3).

Table 3.3: Planck and Advanced ACTPol Specifications

Experiment Channel Beam Size θFWHM Temperature Sensitivity Polarisation Sensitivity

Planck 143 GHz 7.3 arcmin 33 µK-arcmin 70 µK-arcmin

AdvACT 150 GHz 1.4 arcmin 7 µK-arcmin 10 µK-arcmin

The cumulative information for the Planck and AdvACT convergence and shear estimators

is shown in Figure (3.2). Both components of the shear have the same cumulative information,

plotted in black. Most of the information comes from scales over which the cumulative χ2 is

changing.

Temperature estimators receive more contributions from higher angular wave numbers than

polarisation estimators. For example, most of the information for the AdvACT TT estimator is

found between l ∼ 1800 and l ∼ 3000, while for the EE estimator the corresponding scales are

l ∼ 1000 and l ∼ 2000, and for the EB estimator most of the information comes from scales

between l ∼ 400 and l ∼ 1200.

The improved resolution of AdvACT (solid curves) with θbeam = 1.4 arcminutes as opposed

to Planck’s beam of ∼ 7 arcminutes means that more of the information comes from smaller

scales, or larger l, for AdvACT than for Planck. For example for the TT estimator, most of the

information for Planck comes from angular wave numbers between l ∼ 800 and l ∼ 1600, while

for AdvACT the corresponding wavenumbers are between l ∼ 1800 and l ∼ 3000. The squeezed

triangle approximation relies on this l being much higher than the wavenumber L of the lensing

modes, so the squeezed triangle approximation is valid for a larger range of lensing modes for

AdvACT than for Planck, allowing us to reconstruct the lensing field accurately on a wider range

of scales.
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Figure 3.2: Normalised cumulative χ2, integrated from both the left and the right for differ-

ent temperature and polarisation estimators, calculated using specifications from Planck (dashed

lines) and AdvACT (solid lines). The blue curves are for convergence estimators while the black

curves are for shear estimators.

3.2.2 Reconstruction Kernels

We now consider the shape of the kernels, K(~x), which are convolved with the lensed maps to

obtain the lensing reconstruction. As discussed earlier, the real-space filters need to be limited

in extent if we are to perform localised reconstructions on a small patch of the sky. The shapes

of the lensing kernels in real space (Equations (3.30) and (3.32)) and harmonic space (Equations

(3.19) and (3.23)) are shown in Figure (3.3) for the convergence estimators, and in Figure (3.4)

for the shear estimators. Bucher et al. (2012) showed the kernels for the temperature estimator,
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but the polarisation kernels are shown here for the first time. The plots are normalised to peak

at unity for ease of comparison between the experimental configurations, which have different

absolute normalisations.

Figure 3.3: TT (top row) and EE (bottom row) convergence lensing kernels in real space (left

column) and in Fourier space (right column)

The kernels for AdvACT peak at higher l than those for Planck, meaning that the lensing

reconstruction from maps with AdvACT noise and resolution receives much of its signal-to-noise

from small-scale CMB modes that are lensed by larger-scale lensing fields. The temperature

estimator reconstructions rely on higher angular wavenumbers (corresponding to smaller scale

CMB anisotropies) than the polarisation estimators, as we found for the cumulative information.

Most of the information in the real space lensing kernels (in the column on the left of Figures
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Figure 3.4: TT (top row) and EB (bottom row) shear lensing kernels in real space (left column)

and in Fourier space (right column)

(3.3) and (3.4)) is contained within the first few arcminutes, with the kernels for AdvACT peaking

at smaller angular scales than those for Planck. As discussed in Bucher et al. (2012), we can

choose to restrict the real space filter to angular scales smaller than xmax and then compute the

optimal filter for that truncation scale from the full kernel. The limited angular extent of the

filters means that we can perform the convolutions described in Section 3.1.1 over small areas of

the sky, allowing us to perform localised reconstructions of the lensing convergence and shear.
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Foregrounds

When we observe the sky at CMB frequencies, we do not only observe the lensed cosmic mi-

crowave background: there are other celestial objects that emit radiation at those frequencies,

obscuring the signal we are looking for. There are also other secondary effects on the CMB

apart from lensing, such as the thermal and kinetic Sunyaev-Zeldovich effects (Sunyaev and

Zeldovich, 1970). One of the dominant CMB foregrounds comes from clustered cosmic infrared

background sources (Dunkley et al., 2013), which begin to dominate the CMB signal at l ∼ 3000.

Thus for higher resolution experiments such as AdvACT, much of the apparent small scale signal

will actually be from foregrounds, which will act as an additional source of noise in our recon-

struction. To mitigate this, we can add the predicted foreground signal to our experimental noise

term when we create our lensing reconstruction kernels, thus cutting off the kernels on scales that

are dominated by foregrounds. Polarised foregrounds should also be taken into account to ob-

tain kernels that give sensible results when applied to experimental maps (Planck Collaboration

et al., 2015a). We do not deal with foregrounds in any more detail, as applying the estimators to

experimental data is beyond the scope of this dissertation.

3.2.3 Multiplicative Bias

The real space estimators are only optimal in the limit of small lensing L, or in other words for
lensing fields on much larger scales than the CMB anisotropies. For lensing fields with variations
on smaller scales, that is to say lensing fields with higher L modes, our reconstruction becomes
less optimal and the reconstructed fields become less accurate for larger L, having too little or too
much power (Bucher et al., 2012). We can calculate this modulation of reconstructed power as a
function of L by examining how a plane wave lensing field of wavenumber L is reconstructed by
our estimators. When the convergence is given by the plane wave κ0(~x) = Aei

~L·~x, or in Fourier
space κ0(~l) = (2π)2Aδ2

D(~l − ~L), then the lensed temperature in Fourier space can be found in
terms of the unlensed temperature and lensing field by Equation (2.93) to be

T̃ (~l) = T (~l)− 2A

L2
~L · (~l − ~L)T (~l − ~L), (3.80)

We now investigate the lensing field that we reconstruct when the input lensing field is a
plane wave with wavenumber L. We convert our expression for the reconstructed lensing field
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into Fourier space, the convolution becomes a product and vice versa, giving

〈T̃ (~l) ◦
(
K(~l)T̃ (~l)

)
〉 = 〈

(
T (~l)− 2A

L2
~L · (~l − ~L)T (~l − ~L)

)
◦
(
K(~l)T (~l)− 2A

L2
~L · (~l − ~L)K(~l)T (~l − ~L)

)
〉

= 〈T (~l) ◦
(
K(~l)T (~l)

)
〉+ 〈

(
−2A

L2
~L · (~l − ~L)T (~l − ~L)

)
◦
(
K(~l)T (~l)

)
〉+

+ 〈T (~l) ◦
(
−2A

L2
~L · (~l − ~L)K(~l)T (~l − ~L)

)
〉+O(A2), (3.81)

where K is the lensing reconstruction kernel. We thus find that the reconstructed convergence is
given by

〈κ̂0(~L)〉 = 〈T̃ (~l) ◦
(
K(~l)T̃ (~l)

)
〉 − 〈T (~l) ◦

(
K(~l)T (~l)

)
〉φ=0

= 〈
(
−2A

L2
~L · (~l − ~L)T (~l − ~L)

)
◦
(
K(~l)T (~l)

)
〉+ 〈T (~l) ◦

(
−2A

L2
~L · (~l − ~L)K(~l)T (~l − ~L)

)
〉

=
2A

L2

∫
d2~l′K(~L−~l′)

(
~L ·~l′CTTl′ − ~L · (~l′ − ~L)CTT|~l′−~L|

)
.

(3.82)

Dividing the reconstructed lensing field by the amplitude of the actual plane wave lensing

field, we obtain the multiplicative bias, or form factor, which modulates the reconstructed lensing

field amplitude as a function of wavenumber. We repeat an equivalent calculation for EE, TE,

EB and TB, deriving the form factors for the polarisation estimators, which is a new result. The

expressions for the multiplicative bias for the various estimators are shown in Table (3.4). We

obtain the multiplicative bias for the convergence and shear estimators by using their respective

kernels.

Table 3.4: Form Factor Expressions

Estimator Form Factor

TT 2
L2

∫
d2~l′

2π
K(~L−~l′)

(
~L ·~l′CTT

l′ − ~L · (~l′ − ~L)CTT
|~l′−~L|

)
EE 2

L2

∫
d2~l′

2π
cos 2(φ~l′−~L − φ~l′)K(~L−~l′)

(
~L ·~l′CEE

l′ − ~L · (~l′ − ~L)CEE
|~l′−~L|

)
TE 2

L2

∫
d2~l′

2π
K(~L−~l′)

(
~L ·~l′ cos 2(φ~l′−~L − φ~l′)CTE

l′ − ~L · (~l′ − ~L)CTE
|~l′−~L|

)
EB 2

L2

∫
d2~l′

2π
K(~L−~l′)~L ·~l′ sin 2(φ~l′−~L − φ~l′)CEE

l′

TB 2
L2

∫
d2~l′

2π
K(~L−~l′)~L ·~l′ sin 2(φ~l′−~L − φ~l′)CTE

l′

The AdvACT and Planck form factors are shown for the shear (top panel) and convergence

(bottom panel) estimators in Figure (3.5) (the shear plus and shear cross estimators have the same
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form factor). For large-scale lensing fields, or small angular wave numbers L . 100, the lens-

ing amplitude is accurately reconstructed because our squeezed triangle approximation is valid,

while for smaller scale lensing variations the amplitude of the reconstruction is incorrect and

must be rescaled. The temperature and EB estimators have the most promising form factors, as

the multiplicative bias falls off much less steeply with L than for the other estimators. The Ad-

vACT form factor curves tend to be higher than the corresponding Planck curves. This is because

the improved specifications of the Advanced ACTPol experiment give us a better reconstruction

out to higher L than Planck, as we inferred from the cumulative information plot.

Figure 3.5: Multiplicative bias for the shear estimators (top) and convergence estimators (bottom)
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Bucher et al. (2012) presented the multiplicative bias for temperature estimators applied to

an experiment with Planck’s sensitivity and resolution. The plot was generated using simulated

lensing of temperature maps by plane wave lensing fields of different wavenumbers. Numerical

errors due to low resolution simulated maps resulted in the form factor being slightly overesti-

mated in this analysis, and also resulted in different form factors for the two shear estimators

which in fact have identical multiplicative bias curves. This illustrates the value of the analytical

expression for the form factor which we have developed: the computation of the form factor is re-

duced to numerical integration, which is faster to compute and more accurate than the simulation

method.

Since we can calculate how the reconstructed lensing amplitude falls off on smaller scales

(larger L), we can correct for this loss of reconstructed power in the convergence and shear power

spectra, at the expense of an increase in the variance of our estimators.

3.3 Simulated CMB Lensing Map Reconstructions

In this section, we test the real space estimators presented in Section 3.1.1 on simulated CMB

maps. We generate simulated CMB temperature and polarisation maps and lensing maps from

the spectra produced by CAMB: the Code for Anisotropies in the Microwave Background (Lewis

and Challinor, 2011). We use the simulated lensing maps to shift the unlensed CMB maps by

the deflection angle, making use of a high resolution unlensed map (with a pixel scale of 0.3

arcminutes) to accurately simulate the deflection. We obtain lensed CMB maps in a 20◦ by

20◦ region of the sky with pixels of width 0.6 arcminutes. We then include experimental beam

smearing effects and add experimental noise to obtain our final simulated lensed maps. These

are the maps to which the real space estimators of Equations (3.31) and (3.34) are applied. The

simulation code is an extended version of code developed by Ridl (2012) and Bucher et al.

(2012). The unlensed and lensed temperature maps and the deflection angle are shown in Figure

(2.3). The Q and U mode polarisation maps are shown in Figure (3.6), with the unlensed maps

in the left column and the lensed maps with Planck noise in the right column. The lensing effect

is small, and is difficult to detect by eye in map space, but the beam smearing in the maps on the
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right is clearly visible.

Figure 3.6: The simulated primordial Q and U polarisation maps (left top and bottom respec-

tively) and the lensed Q and U maps with Planck noise (right top and bottom). The color scale is

in µK and the axes are in degrees.

The reconstructed convergence is shown in Figure (3.7) for different combinations of temper-

ature and E mode maps for AdvACT and Planck noise specifications, and the reconstructed shear

for the EB and TB estimators is shown in Figure (3.8). The colour map shows the reconstructed

field while the contours show the actual lensing field used. For an accurate reconstruction, the

blue colour map regions should align with the solid contours (map positive), while the red regions

should align with the dotted contours (map negative). The maps have been smoothed, keeping
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Figure 3.7: The real space convergence estimator applied to a 20◦ by 20◦ lensed temperature

map (left), E mode polarisation map (centre), and a combination (right). The maps have been

smoothed, keeping only Fourier modes with 15 < l < 100. AdvACT noise (top row) and Planck

noise (bottom row) has been added to the CMB maps and used in the reconstruction filter.

only Fourier modes with 15 < l < 100 to show the modes that are not severely compromised

by the form factor and to make the correspondence between the input and output maps clearer.

Most of the reconstructed maps broadly recover the input lensing field on these scales, although

the noise of the reconstructions varies.

Instrumental Noise

Our lensing reconstructions are clearly affected by the instrumental noise of the experiment. For

AdvACT noise, shown in the top row of Figures (3.7) and (3.8), the reconstructed convergence

corresponds closely to the input convergence. The higher noise and poorer resolution of the

Planck experiment, shown in the bottom row of the same figure, results in a much less accurate
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Figure 3.8: The real space shear plus estimator applied to 20◦ by 20◦ lensed E and B mode

polarisation maps (left), and a temperature and temperature and B mode polarisation (right). The

maps have been smoothed, keeping only Fourier modes with 15 < l < 100. AdvACT noise

(top row) and Planck noise (bottom row) has been added to the CMB maps and used in the

reconstruction filter.

lensing reconstruction, as can be seen by comparing the corresponding AdvACT and Planck

reconstructions.

As telescope sensitivity improves, the resulting CMB maps become less noisy and so our

reconstructions improve. Additionally, as resolution improves, the smaller beam means less

smearing of the observed CMB, giving us access to the small-scale CMB modes that are most

affected by lensing and allowing us to reconstruct the lensing effect with much higher accuracy.

In the following discussion we will use plots with AdvACT specifications.

We have not simulated the foregrounds that are included in the maps for any real CMB

experiment. Foregrounds dominate the CMB on small scales and this would need to be taken
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into account in the lensing kernel before applying these estimators to experimental data.

Reconstruction noise from the unlensed map and cosmic variance

Our lensing reconstructions contain noise due to apparent shear and convergence signals from the

unlensed maps: not all of the reconstructed power comes from the true lensing signal. When we

are working with observations, we cannot mitigate this effect in map space as we have no way to

access a map of the primordial CMB. We can use our simulated maps to illustrate the effect of the

unlensed map on the lensing reconstruction. This is shown for one of the shear reconstructions

from temperature maps in Figure (3.9), where we can see from the top right panel that merely

applying the lensing estimator to our simulated primordial CMB maps, which have no lensing

signal, results in a nonzero estimated lensing field. The reconstruction from the lensed map (top

left panel) has a noise contribution because of this. If we subtract off this noise from the lensing

reconstruction, we see that our reconstruction improves dramatically (bottom left panel). This

demonstrates the noise introduced into the reconstruction because of the unlensed CMB, but we

cannot remove the noise in this way for an actual experimental map.

Our universe is only one of many possible realisations of the underlying statistics. If we had

access to many realisations of the primordial CMB that were all lensed by the same field, we

could distinguish the true lensing signal from the shape of the primordial anisotropies (Kesden

et al., 2003). This is shown in the bottom right panel of Figure (3.9), where we see that in the

artificial case of having many realisations of the unlensed CMB, we are able to obtain an accu-

rate reconstruction because the noise from the different realisations is uncorrelated and averages

down. Part of the improvement in the reconstruction is also due to the instrumental noise being

reduced by taking an average, so the EB reconstruction also improves very slightly, as seen in

Figure (3.10). Again, we cannot mitigate this effect in map space in reality, but we can improve

our reconstructed lensing field power spectrum by observing many patches of the sky and com-

bining the reconstructions in those different patches, as the large scale structure should have the

same statistical properties in different regions of the sky.

In the case of estimators that depend on B modes, the reconstruction signal from the unlensed
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Figure 3.9: The real space temperature shear estimator applied to a 20◦ by 20◦ lensed temperature

map (top left) and unlensed temperature map (top right), as well as the difference between the

two reconstructions (bottom left) and the reconstruction averaged over 20 realisations of the

unlensed CMB (bottom right). The maps have been smoothed, keeping only Fourier modes with

15 < l < 100. The colour map shows the reconstructed field while the contours show the actual

lensing field. AdvACT noise has been added to the CMB maps and used in the reconstruction

filter.
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Figure 3.10: Shear plus reconstructed from E and B maps for one map (left) and averaged over

20 maps (right). The maps have been smoothed, keeping only Fourier modes with 15 < l < 100.

The colour map shows the reconstructed field while the contours show the actual lensing field.

AdvACT noise has been added to the CMB maps and used in the reconstruction filter.
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fields is approximately zero, as primordial B modes are negligibly small for our purposes. These

estimators therefore do not have additional noise from the unlensed maps, and so the EB and

TB estimators could prove promising for future experiments that can robustly detect lensed B

modes. This is illustrated in Figure (3.10), which shows that the shear reconstruction from the

EB estimator gives a very accurate, low-noise reconstruction on the scales shown.

3.3.1 Lensing Reconstruction Applications

Power Spectrum Estimation

We can use our reconstructed maps to find the angular power spectra of the lensing fields, for

example for the convergence

〈κ(~l)κ∗(~l′)〉 = (2π)2δ2
D(~l −~l′)Cκκ

l , (3.83)

and similarly for the two lensing shear components. To obtain the power spectrum we need to

take the Fourier transform of the reconstructed lensing field in a patch of the sky. This has some

practical difficulties, but various techniques can improve the accuracy of such a Fourier transform

such as an apodisation window to reduce ringing, and treating the map to reduce mode mixing

(Das et al., 2011a). Obtaining the lensing angular power spectrum has the advantage of allowing

us to remove the cosmic variance contribution to the lensing reconstruction by making use of the

statistical properties of the CMB.

The cosmic variance of the reconstructed lensing map due to the unlensed CMB maps is

seen as excess power in the lensing reconstruction power spectrum (Kesden et al., 2003). We

can mitigate the effect on the power spectrum by simulating approximate unlensed CMB maps,

applying our estimators to these maps, and estimating the excess power that they contribute. The

approximate unlensed CMB maps can be obtained by randomising the phases of the lensed maps

in Fourier space to recover the Gaussian random field we expect for the primordial CMB (thus

removing the non-Gaussianities induced by lensing). This term is the Gaussian bias discussed in

Das et al. (2011b).
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We plan to extend the results in this chapter to include a more realistic treatment of the noise

contribution from the unlensed CMB to improve the reconstructed lensing power spectrum.

Cosmological Parameter Estimation

CMB lensing can be used in combination with the CMB power spectrum to constrain dark energy.

The expansion rate cannot be distinguished from curvature using the primordial CMB power

spectrum alone, as both expansion and curvature affect the angular scale of the first acoustic

peak of the CMB power spectrum which corresponds to a fixed physical scale. This is known

as the geometric degeneracy. However, CMB lensing provides complementary constraints on

the geometry of the universe and the growth of structure, allowing us to distinguish between

geometry and expansion, and constrain dark energy models (Stompor and Efstathiou, 1999).

The CMB lensing power spectrum has been used for this purpose in, for example Sherwin et al.

(2011); Planck Collaboration et al. (2015d,e).

Massive neutrinos are relativistic at early times, and contribute to the radiation energy density,

but later become non-relativistic and similar to cold dark matter because of their weak interaction

cross-section. Massive neutrinos affect the expansion rate of the universe as well as growth of

structure, suppressing the matter power spectrum on scales smaller than the free-streaming scale

by a factor proportional to the sum of neutrino masses (Lesgourgues et al., 2006). CMB lensing

probes the matter power spectrum, and can thus constrain the mass of neutrinos (Allison et al.,

2015a).

Cross-Correlation Studies

The real space lensing reconstructions we have developed and demonstrated in this chapter allow

us to probe the matter distribution in our universe, which is dominated by dark matter. This has

many applications, one of which is cross-correlating the lensing field with other tracers of matter.

Cross-correlations of CMB lensing with dark matter tracers have been detected. CMB lens-

ing has been cross-correlated with quasars (Sherwin et al., 2012), the cosmic infrared background

(Holder et al., 2013), galaxy lensing (Hand et al., 2015; Liu and Hill, 2015) and galaxy distri-
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butions (Pearson and Zahn, 2014; Kuntz, 2015), including high redshift submillimetre galaxies

(Bianchini et al., 2015) and radio galaxies (Allison et al., 2015b).

Cross-correlations between lensing and other dark matter tracers allow us to constrain the bias

of these tracers (Sherwin et al., 2012; Masui et al., 2013; Pearson and Zahn, 2014). Additionally,

cross-correlations of a foreground lens plane with lensing from two different background source

planes (such as the CMB at z ≈ 1100 and background sources for galaxy lensing at much lower

redshifts) probe the geometrical distances to different redshifts, and thus constrain dark energy

parameters (Jain and Taylor, 2003; Bernstein and Jain, 2004; Zhang et al., 2005; Das and Spergel,

2009). CMB lensing can thus be used in cross-correlation to study the clustering properties of

matter tracers relative to the underlying dark matter as well as to constrain cosmology.
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CHAPTER 4

Cross-Correlation of CMB Lensing with HI Intensity Mapping

The primordial perturbations that later form the observed large scale structure are predicted by

single-field inflation to be adiabatic, in which case the baryon density contrast spatially traces the

dark matter density contrast. Neutral hydrogen (HI) gas is thus a biased tracer of dark matter. On

large scales the HI bias is approximately constant because we average over many galaxies. This

is confirmed by simulations. On smaller scales, the HI gas falls into the gravitational potential

wells created by dark matter overdensities, resulting in an increase in the bias which depends

on the details of how HI is clustered relative to the dark matter (Davé et al., 2013; Santos et al.,

2015).

In addition to the the cosmological constraints that can be obtained from the HI power spec-

trum, HI data can be cross-correlated with other matter tracers to study the clustering properties

of HI. HI intensity maps from the Green Bank Telescope have been cross-correlated with galax-

ies from the DEEP2 Survey (Chang et al., 2010) and later the Wiggle-Z survey (Masui et al.,

2013). The possibility of detecting the cross-correlation of HI intensity maps with Lyman Break

Galaxies (Villaescusa-Navarro et al., 2015), the Integrated Sachs Wolfe effect on the CMB (Guha

Sarkar et al., 2009), galaxy lensing (Pourtsidou et al., 2015a,b) and CMB weak lensing (Guha
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Sarkar, 2010) have been investigated.

In the previous chapter, we explored a novel method of reconstructing the gravitational

lensing signal from CMB temperature and polarisation maps. We now investigate the cross-

correlation of CMB lensing with HI, and the prospects for detecting this cross-correlation with

the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) (HIRAX Collaboration,

2016). The code that produced the results shown in this chapter, including all HI and cross-

correlation angular power spectrum results, was developed in collaboration with A Pénin for an

upcoming paper.

4.1 Neutral Hydrogen

Hydrogen constitutes around 75% of the total baryonic mass of the universe, making it the most

abundant element. Neutral hydrogen atoms first formed at recombination at a redshift of z ∼

1100, when the universe cooled sufficiently for protons and electrons to bond without being

broken apart by an ionising photon (Peebles, 1968; Zeldovich et al., 1968). Most of the hydrogen

in the universe remained neutral throughout the so-called dark ages after recombination, until the

first stars lit up the sky at z ∼ 30 − 15 (Bromm and Larson, 2004; McKee and Ostriker, 2007;

Zinnecker and Yorke, 2007). The UV radiation from these stars began to ionise the neutral

hydrogen, a period appropriately called the epoch of reionisation, which lasted from z ∼ 15

to z ∼ 6 (Barkana and Loeb, 2001). In the post-reionisation universe most of the hydrogen is

ionised (denoted HII), with what is left of the neutral hydrogen situated mainly in the interstellar

medium of galaxies (Bagla et al., 2010), or in dense regions of the intergalactic medium where

the recombination rate is high enough to maintain a neutral hydrogen presence (Wyithe and Loeb,

2008).

Neutral hydrogen observations can be used to probe the dark ages and the epoch of reion-

isation (Furlanetto et al., 2006). Existing experiments such as the Murchison Widefield Array

(MWA) and the Precision Array for Probing the Epoch of Reionization (PAPER) have placed up-

per bounds on the high-redshift HI power spectrum (Beardsley and MWA Collaboration, 2015;

Ali et al., 2015), and upcoming experiments including the Hydrogen Epoch of Reionisation Ar-
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ray (HERA) and the Square Kilometer Array (SKA) expect to make robust detections (DeBoer

and HERA, 2015; Koopmans et al., 2015).

Post-reionisation HI observations probe the expansion history of the universe and therefore

dark energy by constraining the baryon acoustic oscillation (BAO) scale in much the same way as

galaxy redshift surveys (Blake and Glazebrook, 2003; Hu and Haiman, 2003; Seo and Eisenstein,

2003). In the post-reionisation epoch , HI is a biased tracer of the dark matter fluctuations

(Bharadwaj et al., 2001; Wyithe and Loeb, 2008):

δHI(~k) = bHIδm(~k). (4.1)

Independent observations of the HI and dark matter distributions can therefore be used to con-

strain the bias of HI. One way of doing this is to cross-correlate CMB lensing with HI observa-

tions.

4.1.1 HI Lines

Neutral hydrogen can be detected by radiation that it emits and absorbs during transitions. The

Lyman-alpha transition between the first excited electronic state of hydrogen (n=2) and the

ground state (n=1) can be observed as an absorption feature if an HI region is illuminated

from behind by a distant galaxy or quasar, resulting in n=1 electrons absorbing photons with

λ = 1216Å. The redshift of the absorption line corresponds to the distance to the HI region.

In recent years much attention has turned to the hyperfine spin-flip transition of atomic hy-

drogen. An electron in the ground state of hydrogen (n=1) has slightly higher energy if its spin

is aligned with that of the proton than if it were anti-aligned, because of the interaction between

their magnetic moments. A transition between these two states results in the emission or absorp-

tion of a photon with λ =21 cm, or ν =1420 MHz. This is a forbidden transition with a long

lifetime of 107 years, but because of the abundance of neutral hydrogen even post-reionisation,

enough 21 cm radiation is produced to be used as a probe of HI over a wide range of redshifts.

The viability of observing the 21 cm emission of HI was first predicted by van de Hulst in 1944

after Oort prompted him to investigate emission lines, and 21 cm radiation from within our

galaxy was detected a few years later (Ewen and Purcell, 1951).
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4.1.2 Intensity Mapping

Mapping the HI emission from individual galaxies requires very sensitive, high resolution exper-

iments. An alternative approach is intensity mapping, in which the integrated 21 cm emission of

many galaxies in a pixel in three-dimensional space is measured (Chang et al., 2008; Loeb and

Wyithe, 2008). The three-dimensional information is obtained by measuring angular fluctuations

at different frequencies, which correspond to different redshifts. Large volumes of the universe

can be probed efficiently using this method, and the noise and resolution requirements of an in-

tensity mapping experiment are not as stringent as they would be to detect individual galaxies.

This technique will be employed by upcoming dedicated experiments such as the Canadian Hy-

drogen Intensity Mapping Experiment (CHIME) (Vanderlinde and Chime Collaboration, 2014)),

the Baryon acoustic oscillations In Neutral Gas Observations experiment (BINGO) (Battye et al.,

2012), Tianlai (Chen, 2015), and the Hydrogen Intensity and Real-time Analysis eXperiment

(HIRAX) as well as multi-purpose radio telescopes like MeerKAT (Booth and Jonas, 2012) and

the Square Kilometer Array (Santos et al., 2015) . Large volume intensity mapping surveys

are expected to result in cosmological constraints competitive with those from galaxy redshift

surveys (Bull et al., 2015).

We will focus on probing the HI distribution using HI intensity mapping data from HIRAX,

an experiment which will be operational in the Karoo in the next few years. HIRAX will consist

of 1000 dishes, each 6 m in diameter, which will be arranged in a close-packed structure that

makes use of redundant baselines.

4.1.3 HI Intensity Mapping Signal

The HI signal observed by radio telescopes is the flux density of the 21 cm emission line, which

corresponds to the source intensity Iν integrated over the beam. Using the Rayleigh-Jeans ap-

proximation, the intensity is converted to a brightness temperature T = Iνc2

2kBν2
. The total HI 21

cm signal is thus T = T̄ (1 + δHI), where δHI is the HI density contrast. We are interested in the

fluctuations δT about the mean brightness temperature T̄ :

δT (n̂, ν) = T̄ (z)δHI(χn̂, z), (4.2)
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where ν = 1420MHz
1+z

is the observed frequency for 21 cm radiation at redshift z, χ is the comoving

distance, and the mean brightness temperature is given by (Santos et al., 2015)

T̄ ≈ 566h

(
H0

H(z)

)(
ΩHI(z)

0.003

)
(1 + z)2µK. (4.3)

The HI density fraction ΩHI(z) = ρ̄HI(z)/ρc gives the ratio of the average comoving neutral

hydrogen density at redshift z to the critical density of the universe at the present time. Current

constraints indicate that ΩHI ≈ 10−3 independent of redshift for z = 2− 4 (Péroux et al., 2003;

Zafar et al., 2013).

The HI density contrast in Fourier space in the flat sky approximation is given by (Bull et al.,

2015)

δHI(~k) = (bHI + fµ2)δm(~k), (4.4)

where we have modified Equation (4.1) to include the effects of redshift space distortions. We

include redshift space distortions because we measure the HI brightness temperature as a function

of frequency and thus redshift instead of comoving distance, meaning that peculiar velocities can

cause apparent distortions along the line of sight (Kaiser, 1987). Here µ = k‖/k and the linear

growth rate f is related to the growth factor D of Equation (2.70) by f = d logD/d log a. The

growth rate is related to the matter density parameter by f(z) = Ωm(z)γ , where for the ΛCDM

model γ = 0.55 (Bull et al., 2015).

The redshift evolution of the HI bias is not well constrained at present. There are a few

observational constraints on the bias (Martin et al., 2012; Switzer et al., 2013; Masui et al., 2013),

and some from hydrodynamical simulations (Wilman et al., 2008), but different predictions of

the evolution of the HI bias are not in agreement (Padmanabhan et al., 2015a,b).

We can use a model of how the HI is distributed within dark matter haloes to predict the

evolution of the bias and HI density fraction (Bagla et al., 2010). If a dark matter halo of mass

M contains a total HI mass MHI(M, z), and only haloes between masses Mmin and Mmax host

HI, then the proper HI density is (Bull et al., 2015; Santos et al., 2015)

ρHI(z) =

∫ Mmax

Mmin

dM
dn

dM
MHI(M), (4.5)
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where dn
dM

is the proper halo mass function. The HI bias is given by

bHI(z) =
1

ρHI

∫ Mmax

Mmin

dM
dn

dM
MHI(M)b(M, z), (4.6)

where b(M, z) is the halo bias. The proper HI density fraction ΩHI is then

ΩHI(z) =
ρHI(z)

(1 + z)3ρc,0
. (4.7)

The halo mass range for haloes expected to contain HI is given in Bagla et al. (2010). Following

Bull et al. (2015) we assume that MHI is redshift independent and given by the power law

MHI = M0.6, normalised to match the constraints from Switzer et al. (2013).

HI signal in a bin

The neutral hydrogen signal in a frequency or redshift bin is the three dimensional signal pro-

jected along the line of sight. The signal in the direction n̂ is given by

δTbin(n̂) =

∫
bin

dνF (ν)δT (n̂, ν) (4.8)

=

∫ zmax

zmin

dz

(1 + z)2
ν21F (ν(z)) δT (n̂, z) (4.9)

where ν21 =1420 MHz is the frequency of the 21 cm line, F is the projection kernel weighting

the contribution of the temperature contrast at different redshifts, and the temperature contrast δT

is defined in Equation (4.2). The optimal kernel will depend on the noise frequency spectrum go

the experiment. For simplicity, we use a top-hat kernel to average the signal in a given frequency

bin, choosing F (ν) = 1
∆ν
, which gives

δTbin(n̂) =
1

∆ν̃

∫ zmax

zmin

dz

(1 + z)2
δT (n̂, z), (4.10)

where ∆ν̃ = ∆ν/ν21 is the dimensionless bandwidth.

In the flat sky approximation, we approximate a small region of the sky as a plane. The unit

vector n̂ can be decomposed as (Datta et al., 2007)

n̂ = ~m+ ~x (4.11)
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where ~m points to the small region we are observing and ~x gives the position within that region,

with ~m · ~x = 0, and x� 1 and m ≈ 1.

We define the two dimensional Fourier transform of the temperature fluctuations in the plane

of the sky to be

δTbin(~l) =

∫
d2~xe−i

~l·~xδTbin(n̂) (4.12)

where ~l gives the angular wavevector in the plane of the sky. Using the expression for δT (n̂)

from Equation (4.9) and writing δHI(n̂) in terms of its Fourier transform, we find

δTbin(~l) =
1

∆ν̃

∫
d2~xe−i

~l·~x
∫ zmax

zmin

dz

(1 + z)2
T̄ (z)

∫
d3~k

(2π)3
eiχn̂·

~kδHI(~k, z), (4.13)

where ~k · n̂ = ~k · ~m+~k ·~x = k‖+~k⊥ ·~x. The component of the three dimensional wavevector in

the plane of the sky or perpendicular to the line of sight (~k⊥) is related to the angular wavevector

by ~k⊥ = ~l′/χ. Thus the Fourier transform of the HI signal in a frequency or redshift bin in the

flat sky approximation is given by

δTbin(~l) =
1

∆ν̃

∫ zmax

zmin

dz

(1 + z)2

T̄ (z)

χ2(z)

∫
dk‖
2π

eik‖χ(bHI + fµ2)δ(k‖ ~m+~l/χ, z), (4.14)

where δ is the dark matter density contrast.

4.1.4 HI Power Spectrum

The three-dimensional power spectrum of HI, defined at a given redshift by

〈δT (~k)δT ∗(~k′)〉 = (2π)3δ3
D((~k − ~k′)PHI(~k, z) (4.15)

is given by (Bull et al., 2015)

PHI(~k, z) = T̄ 2(z)(bHI + fµ2)2Pm(k, z) (4.16)

where Pm(k, z) is the dark matter power spectrum.

The multi-frequency angular power spectrum (taken between frequencies ν1 and ν2 separated

by ∆ν) of the HI temperature fluctuations is given by (Bharadwaj and Ali, 2005; Datta et al.,

2007)

CHI
l (ν1, ν2) =

T̄ (z1)T̄ (z2)

πχ1χ2

∫ ∞
0

dk‖ cos(k‖∆χ)PHI(k, z), (4.17)
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where k =
√
k2
‖ + l2/χ2. The cosine within the k‖ integral reflects the fact that as the frequency

difference increases, the HI signal between the two corresponding redshifts becomes less corre-

lated, and the angular power is suppressed. Following Bharadwaj and Ali (2005), we can find

the approximate frequency separation for which the signal becomes uncorrelated by considering

how fast the HI power spectrum fall off with separation compared to the scales on which the

cosine term completes an oscillation: the multifrequency angular power spectrum will only have

an appreciable value if the power spectrum falls off faster than the cosine oscillates, otherwise

the cosine factor will cause cancellations. The signal is correlated for comoving separations less

than ∆χ = χ/u, corresponding to frequency separations of ∆ν = χ/(χ′u), where χ′ denotes the

derivative of the comoving distance with respect to frequency. For ν = 500 MHz, the frequency

separation after which the signal decorrelates is ∆ν ∼ 1.3 MHz at l ∼ 600 (Bharadwaj and Ali,

2005). It is important for experiments to use frequency channels smaller than this.

To obtain the angular power in a bin, the multi-frequency angular power spectrum is inte-

grated over the bin (Loverde and Afshordi, 2008)

CHI
l,bin =

∫ νmax

νmin

dν1F (ν1)

∫ νmax

νmin

dν2F (ν2)CHI
l (ν1, ν2), (4.18)

where F = 1/∆ν is the projection kernel weighting the contributions along the line of sight and

normalising the resultant angular power. Thus the full expression for the angular power in a bin

is given by

CHI
l,bin =

∫
bin

dz

(1 + z)2

1

∆ν̃

∫
bin

dz′

(1 + z′)2

1

∆ν̃ ′
T̄ (z)T̄ (z′)

πχχ′
×∫ ∞

0

dk‖ cos(k‖(χ− χ′))(bHI + fµ2)2Pm(k‖ ~m+~l/χ, z, z′). (4.19)

For a sufficiently large bin, integrating along the line of sight suppresses all except for small

k‖ modes, as higher k‖ modes vary along the line of sight direction and thus cancel under inte-

gration. The expression for the angular power spectrum is therefore dominated by modes with

k ≈ k⊥, allowing us to set µ ≈ 0 and remove b2
HIP

m from the k‖ integral, thus taking the Limber

approximation (Limber, 1953; Kaiser, 1987; Loverde and Afshordi, 2008). We obtain

CHI
l,limber =

∫
bin

dz

(1 + z)2

1

∆ν̃

T̄ 2(z)

χ2(z)
b2
HIP

(
l + 1/2

χ
, z

)
. (4.20)

87



The Limber approximation holds for large l, or fluctuations on small angular scales, and wide

bins (Valageas et al., 2011). We choose to use the full, general expression for the angular power

spectrum from Equation (4.19).

The HI angular power spectrum for several bin sizes is shown in the left panel of Figure (4.1).

The HI angular power spectra in this and later plots were calculated using a modified version

of code developed by A Pénin. We used the following fiducial values for the cosmological

parameters (Planck Collaboration et al., 2013): h = 0.67, ΩΛ = 0.683, Ωb = 0.049, ns = 0.962,

σ8 = 0.834 and Neff = 3.04, with ΩK = 0 and w = −1. Because we average the signal in each

bin, the angular power spectrum does not change significantly with varying bin size. However,

the amplitude of the angular power does drop slightly for larger bins, because the signal becomes

less correlated and averages down. The signal is also shown for four 100 MHz bins at different

redshifts in Figure (4.1). Again, in the redshift range we are considering (z=1.77 to 2.55) the

signal does not change dramatically although bins at higher frequencies (lower redshift) have

lower HI angular power spectra over most of their l range. This is because the bias of HI is

smaller at lower redshift (Padmanabhan et al., 2015a), and so the amplitude of the HI signal

decreases with increasing frequency.

Figure 4.1: HI angular power spectrum for different bin sizes centred at z=1 (left) and for four

100MHz bins in the HIRAX redshift range (right).
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4.1.5 Thermal Noise from HI Intensity Mapping

The HI intensity mapping signal can be observed using radio telescope arrays in interferometer

or single dish mode. We evaluate the noise angular power spectrum using the specifications

for HIRAX, given in Table (4.1) (HIRAX Collaboration, private communication). Although the

total survey area of HIRAX should be about 25 000 square degrees, we consider a 10 000 square

degree area that overlaps with CMB lensing data, giving fsky = Sarea[steradians]/4π = 0.24.

Table 4.1: HIRAX Specifications

Quantity Symbol Value

System temperature Tinst 50K

Number of dishes Ndish 1024

Dish diameter Ddish 6m

Minimum frequency νmin 400 MHz

Maximum frequency νmax 800 MHz

Minimum redshift zmin 0.77

Maximum redshift zmax 2.55

Survey area Sarea 25 000 square degrees

Survey time tobs 2 years

HIRAX will be used as a radio interferometer. Interferometers sample the visibility at dif-

ferent points on the uv plane that correspond to the separation between each pair of antennas,

known as the baseline. The visibility V is related to the HI brightness temperature δT (n̂) and the

primary beam of the telescope A(n̂) by (Zaldarriaga et al., 2004)

V (~u) =
2kB
λ2

∫
d2~xδT (n̂)A(n̂)e−2πi~u·~x. (4.21)

The baseline ~u is related to the physical distance between two antenna D and the wavelength of

observation by u = D/λ, and ~u is related to the angular wavevector by ~l = 2π~u.

The thermal noise from the detector for the real component of a visibility measurement, for
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a single polarisation is given by (Thompson et al., 1986)

σreal =

√
2kBTsys

Aeff
√
δνδt

. (4.22)

To obtain the noise for the complex visibility, the independent real and imaginary components of

the noise can be combined in quadrature to give

σ =
√

2σreal =
2kBTsys

Aeff
√
δνδt

. (4.23)

The noise decreases as the square root of the number of samples, which is proportional to

the product of the frequency channel width δν and the correlation time for a single visibility

δt. The system temperature Tsys = Tinst + Tsky is the sum of instrumental and sky noise, with

Tsky = 60K
(

ν
300MHz

)−2.5. Aeff is the effective area of the dish, and λ is the wavelength of the

observation.

For an interferometer, the noise for different baselines on the uv plane will be uncorrelated,

while the signal will be correlated for baselines with separations less than δu = 1/
√
FOV (in

units of wavelength) where the field of view is FOV = λ2/Aeff . Averaging the signal over a

resolution element in uv space of area δ2u thus reduces the noise of the detection. The noise

goes as σ ∝ 1/
√
N(~u), where N(~u) is the number of baselines in the uv element at the position

~u. N can be written in terms of the average number density of baselines, N(~u) = n(~u)δ2u. Sky

rotation results in azimuthal symmetry in the uv plane coverage, so n(~u) = n(u) depends only

on the magnitude of u. The average baseline density integrated over the uv plane is normalised

to give total number of baselines,
∫

2πu dun(u) = Nd(Nd − 1)/1 where Nd is the number of

dishes. Therefore for a resolution element in the uv plane of size (δu)2 = Aeff/λ and a pointing

time tp,

σ =
2kBTsys

Aeff
√
δν tpn(u)(δu)2

. (4.24)

The square of the observed visibilities is related to the angular power spectrum by (Zaldar-

riaga et al., 2004)

〈|V (~u|2〉 =

(
2kB
λ2

)2

CHI
l

∫
d2~u′|A(~u− ~u′)|2 (4.25)

≈
(

2kB
λ2

)2

CHI
l

1

δ2u
. (4.26)
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Using the fact that the average noise squared in each visibility is 〈|N(~u|2〉 = σ2, where σ is given

in Equation (4.23), the noise angular power for a single pointing is given by (Pourtsidou et al.,

2015b)

CN
l =

T 2
sys[FOV ]2

δν tpn(u)
. (4.27)

For many pointings covering a total area Sarea, the number of observed modes is increased by

Sarea/FOV and the pointing time is related to the total observation time by tp = tobsFOV/Sarea.

Combining the frequency channels in a bandwidth B gives B/δν samples, and so the noise

Figure 4.2: HI angular power spectrum (solid curve) and HIRAX noise angular power spectrum

(dashed curve) for four 100MHz bins in the HIRAX redshift range.
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becomes

NHI
L ≡ CN

l =
T 2
sys[FOV ]2

Btobsn(u)
. (4.28)

The HI angular power spectrum and noise are shown for four 100MHz bins in the HIRAX

redshift range in Figure (4.2). For bins at higher frequencies (lower redshifts), the noise is lower

and the beam is smaller, so the noise cutoff occurs at larger angular wavenumbers. We see that

HIRAX will make a decisive detection of the signal, although a more realistic forecast of the HI

angular power spectrum detection should include foreground residuals.

4.1.6 Foregrounds

The HI signal is buried within astrophysical foregrounds that are about six orders of magnitude

larger than the signal (Shaw et al., 2015). Galactic synchrotron emission dominates the fore-

grounds at the relevant frequencies, and extragalactic points sources and bremsstrahlung also

contaminate the signal (Santos et al., 2005). The challenging task of extracting the signal from

the foregrounds is made possible by the differing behaviour of the HI signal and the foregrounds

in frequency space. The foregrounds vary smoothly and gradually as a function of frequency, and

they are therefore confined to low k‖ modes. The HI signal, on the other hand, varies rapidly as a

function of distance along the line of sight, and thus frequency, and so the HI signal is contained

in higher k‖ modes. We can thus remove the foregrounds and obtain the HI signal, at the expense

of losing the low k‖ modes (Zaldarriaga et al., 2004; Wang et al., 2006; McQuinn et al., 2006;

Liu et al., 2009; Shaw et al., 2015).

We include the effect of foreground removal in our simulated angular power spectra by im-

plementing a low k‖ cutoff at k‖ = kFG ∼ 1/(χ∆ν̃) (Bull et al., 2015), neglecting all modes that

vary on larger scales. This corresponds to around k‖,min = 0.007h Mpc−1 for a bin between 700

and 800 MHz, and is the theoretical minimum k‖ attainable with foreground subtraction.

Two challenges in foreground removal are mode mixing, which converts angular structure

into spectral structure due to the frequency dependence of the experiment’s beam, and Fara-

day rotation of polarised foregrounds. Various foreground removal schemes have been devel-

oped to take mode mixing and polarised foregrounds into account, for example the Karhunen-
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Loéve transform in the m-mode formalism developed for transit telescopes (Shaw et al., 2015).

Following this treatment that includes more realistic sky and telescope simulations and sig-

nal reconstruction, the authors have found that the cutoff for k‖ is somewhat higher, around

k‖,min = 0.02h Mpc−1 (Shaw et al., 2015), which we also consider here.

Figure 4.3: HI angular power spectrum showing the effect of varying k‖,min for a 100 MHz bin

centred on z = 1.

We explore the effect of cutting out low k‖ modes in Figure (4.3), which shows the angular

power spectra for kB‖,min = 1/(χ∆ν̃) (Bull et al., 2015), kS‖,min = 0.02h Mpc−1 (Shaw et al.,

2015), which is larger than the Bull et al. expression for the bin widths plotted, and a low

k‖,min corresponding to no foreground removal, kL‖,min = 10−4h Mpc−1. As expected, the signal

decreases as more low k‖ modes are removed, with the Bull et al. (2015) and Shaw et al. (2015)
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cutoffs yielding similar results, although the larger kS‖,min results in a slightly smaller angular

spectrum.

In all plots in this chapter in which k‖,min is unspecified, we have used the low k‖ cutoff from

Bull et al. (2015), as well as their suggested high k‖ cutoff at k‖ = 0.15Mpc−1, which is due to

information on small scales being smeared out as a result of nonlinear velocities.

We have considered the ideal case in which foregrounds are removed completely. In reality

foreground residuals contaminate the signal (Santos et al., 2005). We postpone a more complete

foreground treatment that includes the effects of residual foregrounds to future work.

4.1.7 HI Signal to Noise

The error in estimating the angular power spectrum at a given l is given by (Kesden et al., 2003)

σHI =
CHI
l +NHI

l√
Nmodes

, (4.29)

where Nmodes is the number of modes in an annulus centred on l. In the flat sky approximation,

Nmodes = 2l∆lfsky. (4.30)

The HI signal to noise is therefore given by

S

N
=

√
Nmodes

CHI
l +NHI

l

CHI
l . (4.31)

The HI signal to noise is shown for different bin sizes in the top left panel of Figure (4.4),

using the Bull et al. k‖ cutoffs described above (Bull et al., 2015). The signal to noise improves

somewhat for larger individual frequency bins, mainly because the thermal noise is reduced as

the bandwidth increases. However, combining many smaller bins, for example taking ten 10

MHz bins instead of one 100 MHz bin over the same frequency range, would increase the total

HI signal over that from just integrating over the 100 MHz bin. The signal to noise is also shown

for four bins at different redshifts within the HIRAX redshift range in the top right panel of

Figure (4.4). It is clear that bins at higher frequencies have larger signal to noise, especially

on smaller angular scales because of the improved angular resolution with increasing frequency.
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The bottom panels show the cumulative signal to noise, obtained from combining the different

l modes in quadrature. HIRAX will detect the HI intensity mapping angular power spectrum at

high significance with a cumulative signal to noise of 800 - 1000, and will be able to constrain

standard cosmological parameters such as the dark energy fraction and the Hubble parameter,

as well as extensions to the standard model such as the dark energy equation of state and the

geometry of the universe (Bull et al., 2015).

Figure 4.4: HI signal to noise for single bins of varying width centred at z=1 (left) and for four

100MHz bins in the HIRAX redshift range (right). The top panels show the signal to noise and

the bottom panels show the cumulative signal to noise.
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4.2 CMB Lensing Convergence

The CMB lensing signal is discussed in detail in Chapter 3. In this section we present an overview

of the CMB lensing convergence signal and noise expressions needed to evaluate the theoretical

cross-correlation between HI intensity mapping and CMB lensing.

4.2.1 Lensing Signal

The CMB lensing convergence κ is a weighted projection of the dark matter overdensity δ

(Bartelmann and Schneider, 2001):

κ(n̂) =

∫ z∗

0

dzW κ(z)δ(χ(z)n̂, z) (4.32)

where z∗ denotes the redshift of the last scattering surface and the CMB lensing kernel is given

by

W κ(z) =
3

2
ΩmH

2
0

1 + z

H(z)

χ(z)

c

χ(z∗)− χ(z)

χ(z∗)
(4.33)

The lensing kernel is shown in Figure (4.5). It peaks at redshifts of around z = 1 to z = 2,

which overlaps significantly with the redshift range which will be probed by HIRAX, z = 0.77 to

z = 2.55, making CMB lensing ideal for cross-correlation with HIRAX’s HI intensity mapping

signal.

The lensing convergence in harmonic space in the flat sky approximation is

κ(~l) =

∫
d2~xe−i

~l·~xκ(n̂) (4.34)

=

∫ z∗

0

dz
W κ(z)

χ2(z)

∫
dk‖
2π

eik‖χδ(k‖ ~m+~l/χ, z) (4.35)

The CMB lensing convergence angular power spectrum is given, in the Limber approxima-

tion by

Cκ
l =

∫ z∗

0

dz
H(z)

c

(W κ(z))2

χ2(z)
P

(
l + 1/2

χ
, z

)
. (4.36)

We use the Limber approximation here because the redshift range we integrate over is very large,

and so the Limber approximation holds for a wide range of scales. The lensing convergence

power spectrum is shown in Figure (4.6)
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Figure 4.5: The CMB lensing kernel.

4.2.2 Lensing Reconstruction Noise

In harmonic space, the minimum variance estimator for the lensing potential (Hu and Okamoto,

2002) is given by Equation (3.37)

ψ̂XY (~L) =
1

NXY (~L)

∫
d2~l

(2π)2
X̃(~L−~l)Ỹ ∗(~l)gXY (~l, ~L) , (4.37)

where XY denotes the combination of temperature and polarisation used for the reconstruction.

The normalisation factor is given by

NXY (~L) =

∫
d2~l

(2π)2
fXY (~l, ~L)gXY (~l, ~L), (4.38)
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and it ensures that the estimator is unbiased, or 〈ψ̂(~L)〉CMB = ψ(~L). The lensing potential power

spectrum from this estimator has a noise term

〈ψ̂(~L)ψ̂∗(~L′)〉 = (2π)2δ2
D(~L− ~L′)(Cψ

L +N ψ
L ). (4.39)

To zeroth order in the lensing potential, the noise of the reconstruction is given by the inverse of

the normalisation factor N ψ
L = 1

NXY (~L)
(Hu and Okamoto, 2002; Kesden et al., 2003)

The convergence is related to the lensing potential by

κ(~L) =
1

2
L2ψ(~L), (4.40)

so the convergence noise is given by

〈κ̂(~L)κ̂∗(~L′)〉 = (2π)2δ2
D(~L− ~L′)(Cκ

L +N κ
L ) (4.41)

= (2π)2δ2
D(~L− ~L′)(Cκ

L +
L4

4
N ψ
L ), (4.42)

so the lensing convergence noise is related to the normalisation factor in Equation (4.38) by

N κ
L =

L4

4

1

NXY (~L)
. (4.43)

The EB reconstruction noise gives the best reconstruction for experiments with high resolution

and sensitivity (Hu and Okamoto, 2002). The reconstruction noise for an AdvACT-like experi-

ment with specifications given in Table (3.3) is shown in Figure (4.6), together with the lensing

convergence angular power spectrum. A southern sky survey is planned for AdvACT, which

will overlap with the region of the sky surveyed by HIRAX. We conservatively assume a 10 000

square degree overlap.

Kesden et al. (2003) show that there is an additional noise term of first order in Cφ
L, because

of the noise contributions of other lensing modes to the ~L mode reconstruction.This higher order

noise becomes more important as experimental resolution and sensitivity improve, but it will still

be an order of magnitude below the zeroth order noise term for the AdvACT experiment, so we

neglect it here.
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Figure 4.6: The CMB lensing convergence angular power spectrum (solid curve) and noise

(dashed curve). The angular power spectrum was computed using CAMB (Lewis and Challi-

nor, 2011).

4.3 Cross-Correlation of CMB Lensing with

HI Intensity Mapping

We now explore the theoretical cross-correlation between the lensing convergence and the HI

temperature contrast.
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4.3.1 Cross-Correlation Angular Power Spectrum

The cross-correlation between the convergence from CMB lensing and the temperature fluctua-

tions from HI intensity mapping is obtained from Equations (4.19) and (4.35) to be

〈δT (~l)κ∗(~l′)〉 =
1

∆ν̃

∫ zmax

zmin

dz

(1 + z)2

T̄ (z)

χ2(z)

∫ z∗

0

dz′
W κ(z′)

χ2(z′)
×

×
∫
dk‖
2π

∫
dk′‖
2π

ei(k‖χ−k
′
‖χ
′)(bHI + fµ2)〈δ(k‖ ~m+~l/χ, z)δ(k′‖ ~m+~l′/χ′, z′)〉

(4.44)

The dark matter power spectrum at a given wavenumber k between two different redshifts is

〈δ(~k, z)δ(~k′, z′)〉 = (2π)3δ3
D(~k − ~k′)Pm(~k, z, z′) (4.45)

so our expression for the cross-correlation becomes

〈δT (~l)κ∗(~l′)〉 =
1

∆ν̃

∫ zmax

zmin

dz

(1 + z)2

T̄ (z)

χ2(z)

∫ z∗

0

dz′
W κ(z′)

χ2(z′)
×

×
∫
dk‖
2π

eik‖(χ−χ
′)(bHI + fµ2)Pm(k‖ ~m+~l/χ, z, z′)(2π)2δ2

D

(
~l

χ
−
~l′

χ′

)
.

(4.46)

The HI signal in a given bin should only be correlated with the CMB lensing due to matter

within the HI bin, and random correlations from outside the bin should average down in the

signal, although they will contribute to the noise. We therefore assume that the cross-correlation

is negligible outside the HI bin. We also take bins small enough that χ ≈ χ′, giving

δ2
D(~k⊥ − ~k′⊥) = δ2

D

(
~l −~l′

χ

)
≈ χχ′δ2

D(~l −~l′). (4.47)

Under these assumptions, the cross-correlation becomes

〈δT (~l)κ∗(~l′)〉 =
1

∆ν̃

∫ zmax

zmin

dz

(1 + z)2

T̄ (z)

χ(z)

∫ zmax

zmin

dz′
W κ(z′)

χ(z′)
×

×
∫
dk‖
2π

eik‖(χ−χ
′)(bHI + fµ2)Pm(k‖ ~m+~l/χ, z, z′)(2π)2δ2

D(~l −~l′) (4.48)
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which gives

CHI−κ
l,bin =

1

∆ν̃

∫ zmax

zmin

dz

(1 + z)2

T̄ (z)

χ(z)

∫ zmax

zmin

dz′
W κ(z′)

χ(z′)

∫
dk‖
2π

eik‖(χ−χ
′)(bHI + fµ2)Pm(k‖ ~m+~l/χ, z, z′).

(4.49)

The amplitude of the cross-correlation increases as the bandwidth increases, as shown in the

left panel of Figure (4.7), because there is a larger overlap between the HI bin and the lensing

kernel. The four 100 MHz bins in the HIRAX redshift range have similar signals, as can be

seen in the right panel of Figure (4.7). The lowest redshift bin (ν=700 - 800 MHz) has a smaller

cross-correlation amplitude than the other bins because this bin corresponds to z = 0.78 to

z = 1.03, where the lensing kernel is smallest (see Figure (4.5)). The cross-correlation angular

power spectra in this and later plots were calculated using a modified version of code developed

by A Pénin.

Figure 4.7: Cross-correlation signal for different bin sizes centred at z=1 (left) and for four

100MHz bins in the HIRAX redshift range (right), using the kB‖,min cutoff from Bull et al. (2015).

4.3.2 Cross-Correlation Noise

The CMB lensing–HI cross spectrum in an annulus in Fourier space is given by

CHI−κ
L =

1

Nmodes

∫
aL

d2~lκ∗CMB(~l)δT (~l) (4.50)
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where aL is the annulus in which we measure the power and Nmodes is the number of individual

modes that are in the annulus and therefore contribute to the angular power spectrum. The

number of modes is given by

Nmodes =
2πL∆L

(2π)2/Sarea
= 2L∆Lfsky (4.51)

where (2π)2/Sarea is the area of an individual mode in ~L space and Sarea is the size of the survey.

The variance of the cross power spectrum is

σ2
CHI−κL

= 〈(CHI−κ
L )2〉 − 〈CHI−κ

L 〉2, (4.52)

where the first term is

〈(CHI−κ
L )2〉 =

1

N2
modes

∫
aL

d2~l

∫
aL

d2~l′〈κ∗(~l)δT (~l)κ∗(~l′)δT (~l′)〉

=
1

N2
modes

∫
aL

d2~l

∫
aL

d2~l′〈κ∗(~l)δT (~l)〉〈κ∗(~l′)δT (~l′)〉+ 〈κ∗(~l)δT (~l′)〉〈κ∗(~l′)δT (~l)〉+

+ 〈κ∗(~l)κ∗(~l′)〉〈δT (~l)δT (~l′)〉

=
1

N2
modes

[∫
aL

d2~l

∫
aL

d2~l′CHI−κ
l CHI−κ

l′ +

∫
aL

d2~l
(

(CHI−κ
l )2 + Cκ,tot

l CHI,tot
l

)]
,

(4.53)

with the total convergence and HI angular power given by

Cκ,tot
l = Cκ

l +N κ
l (4.54)

CHI,tot
l = CHI

l +NHI
l . (4.55)

We include the noise in the total angular power as κ and δT are noisy experimental quantities.

We assume that the lensing reconstruction noise and the HI noise are uncorrelated so that CHI−κ
l

is not biased. The HI noise NHI
l is the thermal noise angular power spectrum from Equation

(4.28).

The second term in the variance expression of Equation (4.52) is given by

〈CHI−κ
L 〉2 =

1

N2
modes

∫
aL

d2~l

∫
aL

d2~l′CHI−κ
l CHI−κ

l′ , (4.56)
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which cancels with the first term of Equation (4.53), so that the variance is given by

σ2
CHI−κL

=
1

N2
modes

∫
aL

d2~l
(

(CHI−κ
l )2 + Cκ,tot

l CHI,tot
l

)
. (4.57)

Assuming that the expression in the integral is approximately constant over the annulus, we

can evaluate it at the central l value of the annulus and remove it from the integral. We then

integrate over the annulus, obtaining its area. This cancels with one of the Nmodes factors, giving

σ2
CHI−κL

=
1

Nmodes

(
(CHI−κ

L )2 + Cκ,tot
L CHI,tot

L

)
(4.58)

or

σCHI−κL
=

√
(CHI−κ

L )2 + (Cκ
L +N κ

L )(CHI
L +NHI

L )

Nmodes

. (4.59)

Figure 4.8: Cross-correlation angular power spectrum showing the effect of varying k‖,min for a

100MHz bin centered on z = 1
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Figure (4.8) shows the effect of reducing k‖,min in a 100 MHz bin centred on z = 1, resulting

in the amplitude of the cross-correlation increasing by almost an order of magnitude. Therefore

if galactic foregrounds in the HI intensity mapping data could be removed on large scales along

the line of sight (low k‖), or if these HI modes could be reconstructed, the cross-correlation signal

would be significantly enhanced. Zhu et al. (2015) discuss the possibility of using the cosmic

tidal reconstruction method to recover the long wavelength radial modes and thus increase the

cross-correlation signal. The cross-correlation signal and noise are shown for four 100 MHz bins

in Figure (4.9), using the kB‖,min cutoff from the HI foregrounds discussed in Section 4.1.6 (Bull

et al., 2015). The detection for an individual l mode is marginal, so accessing lower k‖ modes

would be highly beneficial.

Figure 4.9: Cross-correlation signal and noise for four 100MHz bins in the HIRAX redshift

range, using the kB‖,min cutoff from Bull et al. (2015).
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4.3.3 Cross-Correlation Signal to Noise

We can use the expressions for the cross-correlation angular power spectrum and noise to find

the signal to noise ratio in a given annulus:

S

N
=
CHI−κ
L

σCHI−κL

= CHI−κ
L

√
Nmodes

(CHI−κ
L )2 + (Cκ

L +N κ
L )(CHI

L +NHI
L )

. (4.60)

The signal to noise is shown in the top panel of Figure (4.10). Larger bins have lower noise

and higher signal than smaller bins, and thus result in higher signal to noise, as shown in the left

panel. Unlike in the case of the HI autocorrelation discussed in Section 4.1.7, dividing larger

Figure 4.10: Cross-correlation signal to noise for different bin sizes centred at z=1 (left) and for

four 100MHz bins in the HIRAX redshift range (right). The top panel shows the signal to noise

while the bottom panel shows the cumulative signal to noise. The kB‖,min cutoff from Bull et al.

(2015) has been used.
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(100 MHz, for example) frequency bins into multiple smaller bins (such as ten 10 MHz bins)

offers no signal to noise advantage, as the small overlap between the HI bin and CMB lensing

kernel results in the signal to noise ratio for smaller bins being significantly suppressed.

The signal to noise for individual l modes is not highly significant, but we can add the con-

tributions from different annuli in l space in quadrature to obtain the cumulative signal to noise,

shown in the bottom panel of Figure (4.10). We find that a significant statistical detection of the

cross-correlation will be possible, with a total signal to noise of between 20 and 50 for the four

100 MHz bins, shown in the bottom right panel of Figure (4.10). The cross-correlation signal

to noise is smaller where the lensing kernel is smaller. For the four bins in the HIRAX redshift

range, this occurs for the ν =700-800 MHz bin as discussed above. We chose to use these four

bins to balance the requirements of having sufficiently large bins to obtain a significant detection

of the cross-correlation in each bin, while having multiple bins to study the cross-correlation

over a range of redshifts. We expect that the overall signal to noise will be reduced somewhat

once foreground residuals are included in our treatment, which will be taken into account in our

forthcoming paper.

4.3.4 Constraints from the Lensing-HI Cross-Correlation

The cross-correlation between CMB lensing and HI intensity mapping can be used to constrain

the HI bias and density parameter in the four different redshift bins via the product ΩHIbHI .

Because of the large cumulative signal to noise of the cross-correlation detection, the cross-

correlation signal can also be detected at reasonable significance in different l bins to investigate

the scale dependence of the bias in addition to its redshift evolution. We can quantify the con-

straints that can be placed on ΩHIbHI using the Fisher matrix forecasting formalism. These

constraints will be presented in future work.
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CHAPTER 5

Conclusion

Gravity is a habit that is hard to shake off.

– Terry Pratchett

The standard ΛCDM cosmological model describes a universe dominated by dark energy and

dark matter, and characterised by just six cosmological parameters. CMB observations (Spergel

et al., 2003; Planck Collaboration et al., 2015c), large-scale structure surveys (e.g. Eisenstein

et al., 2005; Reid et al., 2010) and type Ia supernovae observations (Perlmutter et al., 1999;

Riess et al., 1998, 2007) have informed the standard model and placed precise constraints on

the model parameters. Upcoming experiments such as Euclid (Laureijs et al., 2011), the Large

Synoptic Survey Telescope (Ivezic et al., 2008) and the Square Kilometer Array (Maartens et al.,

2015) will survey larger volumes of the universe than ever before, and will have the potential to

place even more precise constraints on the cosmological parameters, as well as to further test the

validity of the standard model and possibly discover as yet unthought of physics.

The cosmic microwave background anisotropies are caused by small spatial variations in the

matter density at early times. These perturbations seeded the formation of large-scale structure:
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slight overdensities grew into larger structures as they attracted matter from underdense regions.

The observed CMB contains secondary anisotropies caused by interactions of CMB photons

with the large-scale structure as they travel from the surface of last scattering. One of the ways

that large-scale structure interacts with CMB photons is by gravitational lensing–the deflection

of photons as they pass massive objects. Gravitational lensing is sensitive to the total matter

distribution, and can thus be used to probe dark matter, which dominates the matter density. We

described the standard model of cosmology in Chapter 2, including the growth of large-scale

structure, the primordial CMB, and the effect of gravitational lensing.

Most methods of reconstructing the gravitational lensing potential make use of harmonic

space lensing estimators. Real space estimators implemented locally in map space could prove

advantageous for CMB observations, which have point source excisions and non-uniform sky

coverage, making it difficult to accurately obtain harmonic space quantities. As the sensitivity

and resolution of CMB experiments continues to improve, the least noisy CMB lensing recon-

structions will come from polarisation (Hu and Okamoto, 2002). In Chapter 3, we extended an

existing real space lensing estimator based on CMB temperature maps (Bucher et al., 2012) to

CMB polarisation, and showed that this estimator can be obtained from the standard harmonic

space estimator in the large-scale lensing field approximation. We then explored the validity of

this approximation, studying which angular scales contribute the most statistical weight to the

estimators. We investigated the effect of the large-scale lensing field (squeezed triangle) approx-

imation on the lensing reconstruction, showing that the real space reconstruction amplitude is

accurate on large scales, but not on small scales. We calculated how the reconstruction amplitude

varies with angular wavenumber, which can be used to correct the power of the reconstruction at

the expense of an increase in the variance. We found that reconstructions from the high resolution

and sensitivity AdvACT experiment are more accurate out to smaller scales than an experiment

with Planck noise. We also noted that the TT and EB estimators are less negatively affected by

this modulation of reconstructed power with scale than the other estimators, offering the most

promising real space reconstructions. The real space estimators are implemented using a real

space kernel which is convolved with the CMB map. We showed that these kernels are limited

in spatial extent, and can therefore be applied locally to small regions of a CMB map. In future
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work, we plan to develop alternative real space estimators that provide accurate reconstructions

over a wide range of scales by applying two reconstruction kernels to the lensing map.

We tested the real space estimators that we developed on simulated lensed CMB maps, find-

ing that on large scales the reconstructed lensing field agrees with the input lensing field, although

the reconstruction has noise contributions from the unlensed map. The EB estimator reconstruc-

tion is in excellent agreement with the actual lensing field, because there is no cosmic variance

from primordial B modes, which are expected to be very small. This illustrates the value of de-

veloping polarisation estimators. The results from this study will be published in a forthcoming

paper, currently in preparation (Prince et al., 2016a). The next step in this research programme

is to apply these estimators to experimental CMB maps to reconstruct the actual lensing conver-

gence and shear, and thus to probe the matter distribution.

In Chapter 4 we investigated what could be learned from combining CMB lensing recon-

structions with intensity maps of the neutral hydrogen distribution. Neutral hydrogen (HI) is a

biased tracer of the dark matter distribution. HI can be observed via the redshifted 21 cm radi-

ation that it emits, which can be used to map the distribution of neutral hydrogen over a wide

range of redshifts. The technique of HI intensity mapping, in which the integrated signal from

many HI galaxies within a 3D pixel is detected, provides a way to rapidly map the HI throughout

large volumes of the universe without requiring high resolution experiments. HI intensity map-

ping can be used to probe the expansion history and geometry of the universe by measuring the

baryon acoustic oscillation scale at different redshifts.

Cross-correlating HI intensity mapping with CMB lensing would allow us to place constraints

on the clustering of HI relative to the underlying dark matter field. We found that CMB lensing

reconstructed from AdvACT data (Henderson et al., 2015) and post-reionisation HI intensity

mapping data from HIRAX (HIRAX Collaboration, 2016) would allow us to detect the cross-

correlation with a cumulative signal to noise ratio of between 20 and 50 for each of four bins in

the HIRAX redshift range. Such a detection of the cross-correlation could be used to constrain

the HI bias over a range of redshifts and scales. In a forthcoming paper, we will present forecasts

of constraints on the HI bias and density parameter from this cross-correlation (Prince et al.,

2016b).
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