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Abstract 
 
This research is based on a detailed description of model building for multivariate time series 
models. Under the assumption of stationarity, identification, estimation of the parameters and 
diagnostic checking for the Vector Autoregressive     (VAR   ), Vector Moving Average     
(VMA   ) and Vector Autoregressive Moving Average (VARMA     ) models are described in 
detail. With reference to the non-stationary case, the concept of cointegration is explained. 
Procedures for testing for cointegration, determining the cointegrating rank and estimation of 
the cointegrated model in the VAR    and VARMA      cases are discussed. 
 
The utility of multivariate time series models in the field of economics is discussed and its use is 
demonstrated by analysing quarterly South African inflation and wage data from April 1996 to 
December 2008. A review of the literature shows that multivariate time series analysis allows 
the researcher to: (i) understand phenomenon which occur regularly over a period of time (ii) 
determine interdependencies between series  (iii) establish causal relationships between series 
and (iv) forecast future variables in a time series based on current and past values of that 
variable. South African wage and inflation data was analysed using SAS version 9.2. Stationary 
VAR and VARMA models were run. The model with the best fit was the VAR model as the 
forecasts were reliable, and the small values of the Portmanteau statistic indicated that the 
model had a good fit. The VARMA models by contrast, had large values of the Portmanteau 
statistic as well as unreliable forecasts and thus were found not to fit the data well. There is 
therefore good evidence to suggest that wage increases occur independently of inflation, and 
while inflation can be predicted from its past values, it is dependent on wages. 
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Summary  
 
This thesis will focus on modelling, inferences and the practical applications of multivariate time 
series. The aim of this study, is to describe, compare and discuss the practical applications of 
the following three multivariate time series models in the stationary and non stationary case: (i) 
The Vector Autoregressive model of order   (VAR   ) (ii) The Vector Moving Average model of 
order   (VMA   ) and (iii) The Vector Autoregressive Moving Average model of order 
    (VARMA        
 
Under the assumption of stationarity, the first four chapters will explore multivariate time 
series models. In Chapter 1 the basic principles underpinning multivariate time series analysis 
are described. Chapter 2 addresses the simplest model, the Vector Autoregressive model of 
order   (VAR  )) in which an observation at time   is regressed on lagged values of itself. The 
autocovariance properties as well as forecasting are discussed, followed by the model building 
stage, which involves identifying the lag order   and estimating the parameters through the use 
of two methods viz, the method of least squares estimation and the method of maximum 
likelihood estimation. The concept of diagnostic checking once the model has been estimated is 
also explained. This is done in order to determine whether or not the model is adequate or not. 
 
The Vector Moving Average model of order   (VMA   ) model is introduced in Chapter 3. In 
this model vectors of observations at time   are regressed with lagged values of their error 
terms. As in the case of the Vector Autoregressive model, the autocovariance and forecasting 
properties are discussed in addition to the identification of the lag order  . Estimation of the 
parameters and diagnostic checks are once explained for this model. 
 
In the third model, the Vector Autoregressive Moving Average model of order     
(VARMA    )) a vector of observations at time   is regressed on both lagged values of 
themselves as well as lagged values of their error terms. The properties of the model as well as 
the model building stage are discussed in Chapter 4. 
 
Non-stationarity of multivariate time series is discussed in Chapter 5. The concept of 
cointegration is defined and procedures for testing for cointegration are explained. Determining 
the cointegrating rank and the estimation of the cointegrated VAR and VARMA models  
 
Chapter 6 deals with an important technique used for inference in multivariate time series 
models, Granger-causality tests. The interpretation of these tests when the series are non-
stationary is also discussed. 
 
In Chapter 7, the practical applications of multivariate time series are described. In order to 
illustrate the practical applications of the technique and to emphasise the utility of the different 
models, a brief review of multivariate time series analysis in the literature was undertaken. 
Applications in the fields of finance, economics, physical and environmental sciences, social 
sciences, engineering and medicine are highlighted. 
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This is followed in Chapter 8 by the author’s empirical application. In order to illustrate model 
selection and goodness of fit, the author analysed quarterly South African wage and inflation 
data from April 1996 to December 2008 using the program SAS version 9.2. The adequacy of 
the VAR    and VARMA       models was compared and their forecasting performance was 
evaluated. 
 
 In this application, three models were run, a VAR model and two VARMA models. The VAR 
model was estimated using the least squares method. Both VARMA models were estimated 
using maximum likelihood methods and solved using two optimisation techniques. The first 
model employed the Quasi-Newton method and the second, the Newton-Raphson procedure. 
The model with the best fit was the VAR model as the forecasts were reliable (there was not 
much difference between the observed and the predicted values), while the small values of the 
Portmanteau statistic indicated that there was little serial correlation in the residuals. The 
VARMA models in contrast, had large values of the Portmanteau statistic as well as unreliable 
forecasts and were thus were found not to fit the data well. 
 
In conclusion, multivariate time series analysis is a dynamic statistical procedure, which is used 
extensively to analyse the interrelationships between variables over a period of time and is 
supported by a large body of literature demonstrating its utility globally in the fields of 
economics, natural and health sciences.  
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CHAPTER 1 
 

Introduction 
 
 
1.1 Background  
 
A time series is an ordered sequence of values observed through time. In other words a time 
series refers to the repeated measurements of data items over a period of time. These data 
items must be well defined and must be measurable at equally spaced time intervals. Time 
dependent financial and economic data, can be easily constituted into a time series. There is a 
large body of literature dating from the seminal paper by Sims (1980) firmly establishing the 
utility of time series analysis to analyse macroeconomic data such as exchange rates, interest 
rates, growth, inflation etc. Time series analysis has also been used in the disciplines of 
criminology, meteorology, chemistry, ecology, geology and medicine. 

 
A single time series is referred to as a univariate series. Analysis of such a series provides useful 
information about the systems which generated the data over a specified period. This statistical 
method enables the practitioner to understand the underlying structure of the time series by 
breaking it down into its components. For example, trends in the data may be uncovered using 
this technique. A very popular application of the univariate method is for macroeconomic 
forecasting. Forecasting is the use of past values of a variable to predict future values of that 
variable. It provides a likely or expected future value for the outcome under investigation. It is 
of tremendous value because it reduces uncertainty and risk associated with the future. This 
type of information is particularly useful for investors and financial institutions. Scientific 
forecasting enhances knowledge of the future and the foresight gained allows for improved 
planning.  
 
However, economic and financial markets globally are dynamic and integrated systems. 
Financial indicators are commonly dependent on each other. Movements in one domain, for 
example, income can spread quickly and easily to other domains such as inflation. Furthermore, 
these relationships are not unidirectional and may be reversed depending on the context within 
which they occur. Univariate time series analysis does not capture the interactions and co-
movements between variables as it is confined to the analysis of a single variable.  
 
Consequently, another method, multivariate time series analysis was developed to analyse two 
or more time series that are observed simultaneously.  
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Multiple time series analysis allows for 
 

(i)  An understanding of the relationship the variables share with each other. 
(ii) The establishment of causal relationships between series. 
(iii) The determination of the interdependencies between series. 

 
Econometric models and methods used to investigate the relationship between economic 
variables such as inflation and income, forward and spot exchange rates, prices and interest 
rates (Chen & Lee, 1990), monetary and fiscal policy (Ansari, 1996), sales and stock prices 
(Chien, Lee & Tsai, 2006), etc. belong to vector or multivariate time series analysis in the 
statistical literature. The availability of computerised software packages and the frequent use of 
the time series analysis in the published literature have led to a rapid expansion in the 
modelling of multivariate time series (Athanasopoulos & Vahid, 2008). 
   
In this study we have chosen to describe the following multivariate time series models: Vector 
Autoregressive model of order    (VAR  )), the Vector Moving Average model of order   
(VMA   ) and the Vector Autoregressive Moving Average model of order     (VARMA    )) 
for the stationary and nonstationary case. 
 
 A key aspect of multivariate time series analysis is the choice of model used to represent the 
series. Differences in model specifications and parameter estimates can result in very different 
findings. It is important to select the appropriate model to avoid obtaining spurious results. 
(Fackler & Krieger, 1986).  
 
The VAR  )) model, because it is simple, flexible and easy to use is especially popular for 
forecasting economic data (Escanciano, Lobtato   Zhu, 2010; Kascha, 2010). On the other hand, 
the VARMA      model despite its well described theoretical advantages, has rarely been 
considered as an alternative to the VAR (Athanasopoulos   Vahid, 2008; Dias & Kapetanios, 
2011). This is due to the difficulty related to its implementation. Researchers are still plagued by 
the challenges of identifying and estimating unique VARMA models more than four decades 
after they were introduced (Lütkepohl & Poskitt, 1996; Raghavan, Athanasopoulos   Silvapulle, 
2009; Poskitt, 2011). 
 
In view of the paucity of literature related to the use the VARMA model as compared to the 
VAR model, this thesis describes the different methodologies proposed in the literature to deal 
with the complexities in establishing uniquely identified VARMA models. There is also a gap in 
the literature comparing the forecasting performance of these two models for a specific data 
set. 
 
The relationship between two economic variables, inflation and wages is currently the subject 
of much debate locally. South Africa has a highly unionised work force and there have been 
increasing calls by the Congress of South African Trade Unions (COSATU) for wage increases 
(Fin24, 2010) to counter the effects of rising inflation. This demand for higher wages has been 
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resisted by government leading to growing employee dissatisfaction, widespread destruction of 
property, violence and even death (mail and guardian). 
 
The post apartheid African National Congress led government has endeavoured through its 
“new growth path “ (NGP)  to keep inflation at low levels in an effort to contain poverty by 2020 
(Nattrass, 2011). There are two main types of inflation; (i) Demand pull inflation where prices 
are pulled upwards by the demand for goods and (ii) Cost push inflation where the cost of 
producing goods or services pushes up prices.  
 
The relationship between wages and inflation is well anchored in the econometric literature 
(Hess & Schweitzer, 2000). There is a perception based on Keynesian economics that higher 
wages lead to an increase in prices which in turn leads to increasingly higher wages (Ghali, 
1999; Todani, 2006). This is known as the wage-price spiral. On the other hand authors such as 
Mehra (1993) and Jonsson and Palmqvist (2004) report that it is inflation which is actually 
responsible for wage increases. I have thus used a multivariate time series approach to 
investigate whether there is indeed a relationship between wages and inflation in South Africa 
from 1996-2008. 
 
Against this background, the purpose of this study is to explain model selection for multivariate 
time series models emphasising methods to simplify model building procedures for the VARMA 
model and to apply the technique to a wage-inflation data set. 
 
 

1.2 Objectives and Significance of the Study  
 
The main objectives of this study are to: 
 

1. Explain model selection for multivariate time series models by describing and comparing 
model building procedures for (i) The Vector Autoregressive model of order   (VAR   ) 
(ii) The Vector Moving Average model of order   (VMA   ) and (iii) The Vector 
Autoregressive Moving Average model of order     (VARMA       in the stationary 
and non-stationary case. 

 
2. Summarise recent methodological advances for simplifying the identification and 

estimation procedures for the VARMA model in the literature. 
 

3. Illustrate the use of multivariate modelling techniques by applying it to South African 
wage and inflation data. 

 
4. Compare the forecasting performance of the VAR and VARMA models for the above 

data set.                        
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The significance of this study is that it contributes to the body of evidence for the use of the 
VARMA model and its comparison with the VAR for econometric forecasting in the international 
literature. The results of this study will also assist in the local demand for economic data to 
inform the difficult and tough fiscal and monetary policy decisions which lie ahead for this 
country. 
 
 

1.3 Organisation of the Chapters  
 
Chapter one lists the objectives and sets the background against which this thesis is based. 
Chapters two addresses the properties and model building process of the simplest multivariate 
time series model, the stationary Vector Autoregressive model of order   (VAR   ) in which a 
variable is regressed with past values of itself and other variables. Chapter three discusses the 
properties and model building process of the stationary Vector Moving Average model of order 
  (VMA   ) in which a vector of observations is regressed with past values of their error terms. 
Chapter four discusses the properties and model building stages of the stationary Vector 
Autoregressive Moving Average model of order     (VARMA     ) in which a vector of 
observations are regressed with lagged values of themselves and their error terms. Chapter five 
discusses the properties of non-stationary models and introduces the Vector Error Correction 
Model (VECM). Chapter six addresses the topic of Granger-causality. Following on the model 
building process, chapter seven reviews the literature on model selection and utilisation of 
multivariate time series models. Chapter eight demonstrates the use of the technique by 
analysing simultaneous inflation and wage series using the VARMAX procedure in SAS (version 
9.2) and includes the results and discussion. Chapter nine serves to conclude. 
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CHAPTER 2 
 

The Vector Autoregressive    (VAR   ) Model 
 

 

2.1 Introduction 
 
This chapter focuses on the simplest multivariate time series model, the finite vector 
autoregressive model of order   (VAR   ) in which an observation at time   is regressed on 
lagged values of itself and all other variables in the system at   time periods where two 
variables share a common lag (Fackler   Krieger, 1986). This model is a generalised version of 
the univariate autoregressive model of order   and is commonly used to determine the 
interrelationships amongst the different variables in a system. This model is simplistic and 
flexible and is especially popular in the fields of finance and economics where it is used to 
determine the relationships between various economic factors and for the forecasting of 
economic data. It has gained particular attention over the past 30 years (Escanciano, Lobato   
Zhu, 2010). 
 
In this section, some basic principles which are relevant to multivariate time series analysis will 
be defined before the VAR model is described in detail.  
 

A   dimensional multivariate time series   , is denoted as     (           )   

                    where each individual component,                is a univariate time 
series.  
 
Suppose    has a constant mean. The autocovariance between    and      is defined as 
 
        Cov (       )                        



  (

         

         

 
         

)                                    



     

(

 

                   

                  

   
                   )

 


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If for the process   ,         for all   and  Cov (  ,     ) = Cov (    ,   ), then    will be 
known as a stationary process. The covariance of a stationary process is not dependent on the 
time   but is instead dependent on the time interval  . 

 
The process    is strongly stationary if the probability distributions of the vectors  

   (             ) and                         are identical for times         and for all 

time lags   (Box, Jenkins   Reinsel, 2008). 
 
A more generalised definition of stationarity known as covariance stationarity/ weak 
stationarity occurs when a process    has finite first and second moments which satisfy the 
conditions that the mean,          , does not depend on time   and if the covariance 
                  depends only on the lag   (Tsay, 2005). 
 
A vector white noise process                   is a sequence of independent random vectors 
such that the mean       is 0 and autocovariance matrix              is    for     and 0 for 
     . 
 
The covariance between two individual univariate time series is known as the cross covariance 
and measures how strong the linear dependence is between them. This is expressed in 
mathematical terms as  
 

        (       )(          )  

                                     . 
 
                                                          
 
The       cross correlation matrix for a vector process is defined as  

       
 

          
 

   . 
 
where     diag [                         ] is a diagonal matrix whose  th diagonal element 
is the variance of the  th process (Wei, 2006) .  
 

i.e   (

          

        

   
          

)

 
The cross correlation coefficient between two individual univariate time series      and        is  

       
      

√            
 which measures the linear dependence of      on        (  > 0). If    , 

then        will be reduced to the autocorrelation function of      (Brockwell & Davis, 1996). 
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The following are additional properties of cross correlation functions, see e.g. Tsay (2005), 
 

 The element         measures the coexisting relationship between      and     . If 

        , then      and      are said to be ‘concurrently’ correlated. 

        ,    0 measures the linear dependence on      on the past value         If  

                for all values of    , then      and      do not have a linear 

relationship between each other. 

 If for all    , but for some     ,          0, then there is an unidirectional 

relationship between      and      and      does not depend on any of the past values of 

           however is dependent on some of the past values of      . 

 If          0 for some     and           0 for some    0, then there is a feedback 

relationship between      and     . 

 
 

2.2 Model Dynamics 
 
The general univariate autoregressive model of order   is of the form 
 
                                                 .               (2.1) 
 
The term   is a constant                     are random variables and      is an error term. The 

        coefficients of the univariate AR    model measure how dependent an observation 

     is on its past   values. The error term is assumed to be uncorrelated at different time 
periods. 

 
The vector autoregressive model (VAR) of order   is a multivariate extension of the model (2.1) 
in which each individual variable              is regressed on a constant and   of its own lags 
as well as   lags of each of the other variables in the system. This can be expressed in 
mathematical form as 
 
                                                 (2.2) 
 

The random vector     [            ] is of dimension        ,     [

           

   
           

]   

        is the  th order parameter matrix of dimension         ,     (          is a  
        intercept vector which denotes the constant terms                  is a         
vector of residual error terms which in general is assumed to follow a multivariate normal 
process.  
 
The error vector    is also assumed to be white noise, i.e. the components           are 
random vectors such that the mean         and the covariance matrix          ) is 
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         )        

(

 
 

     
                     

              
           

   

                        
  )

 
 

 . 

 
         ) is of dimension         and is assumed to be a positive definite matrix. In addition 
           ) = 0 for     (Box et al., 2008). The terms            are often allowed to be 
correlated contemporaneously, i.e.      could be correlated with            but not with the 
past values of either            (Chatfield, 2004). This means that if a single effect of    is 
examined while the other components are kept constant, it could lead to results that are 
contrary to the historical information summarized in    (Agénor   Hoffmaister, 1997). 
 
If the mean   is known, then the VAR    model in (2.2) can be written in the deviations of 
mean representation as 
 
       =   (         )     (       )        (       )      .        (2.3) 

 
Before discussing any underlying theory with regards to the VAR    model, the VAR    model 
in its simplest form will be considered, i.e. the zero mean VAR    model,  
 
                  or    –                .                 (2.4) 
 
  is known as the lag/backshift operator which shifts back the vector    by one period, i.e. 

        . In general,             if    is shifted back   periods. 
 
Consider the zero intercept, bivariate VAR    model below, 
 

[
    

    
]  [

          

          
] [

      

      
]   [

    

    
] .           (2.5)    

 
An equivalent representation of (2.5) which results from the multiplication of the 

matrices [
          

          
] and [

      

      
] is 

 
                                                
                                           .                   (2.6) 
 
From the use of above equations (2.5) and (2.6), it can easily be seen that each variable 
             does not only involve lagged values of itself but also lagged values of the other 
variables. The coefficient       shows the linear dependence of       on        in the presence of 
    . If           but         , it is said that there exists a unidirectional relationship between 
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     and      (and vice-versa) and if both the coefficients       and       are not equal to  , then 
there is a feedback relationship between the series (Tsay, 2005). 
 
The VAR    process is always invertible. For the process to be classified as stationary, the zero’s 
of the determinantal polynomial |   –   | must lie outside the unit circle. The stationary, no 
intercept VAR    model can be written in the following representation which is known as the 
infinite moving average form as 
 
                   ∑    

            
      

            (2.7) 
 
The values of    are obtained from the equation  
 

   
 

      
 

 
                      

   …)                             (2.8) 
 
Now by comparing each of the lag coefficients of (2.8), 
 
            
           
   :           =                   
               =                  
 
In general for   :            .        
 
If there is an intercept vector    in the model, then the VAR    model can be written in moving 
average form by the use of successive recursions as 
 
                    
                                  

                               
      

                    
                              

           (          
 )               

        
      .             (2.9) 

 
Continuing this procedure up to  , 

 

   ∑   
     

 
       

                         
      

 ) . 
 
Reinsel (1997) noted that if the absolute value of the eigenvalues of      is less than one, then 

the value of   
    will converge to   as    . Thus 

               
     (          

      
                       

      …     (2.10)   
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Lütkepohl (2005) noted that the term (          
      

            
      as 

     
 

Thus (2.10) can be written as         ∑   
     

 
    where         

      is the mean of 
the process. This equation shows that Cov            for all     since    is serially 
uncorrelated.    is thus often referred to as the shock or innovation vector at time    
(Tsay, 2005) 
 
It is important to note that the moving average representation does not necessarily have to be 
in infinite order. The VAR    process, (2.4) can also be written in the determinant/adjoint form 
as 
 

            
                 

        
 .         

 
Wei (2006) noted that if the matrix    is nilpotent (i.e. if there exist integers     with     

such that   
     and   

     ) or if the determinantal polynomial          is independent 
of  , then the   dimensional VAR    model can be expressed as a finite   dimensional Vector 
Moving Average model of order  , (VMA     model) with        . This is because the 
determinant of       is a constant and the elements of the adjoint matrix are polynomials in 
  of order less than or equal to one. 
 
The methodology that has been used for explaining the VAR    model can be similarly 
extended to the VAR    model 
 
   =    +        +                   +     

  or               .         (2.11) 
 
The VAR    process is always invertible and is stationary if the roots of the determinant of          
                       lie outside the unit circle i.e. if they are greater than one. The 

stationary VAR    process can be written in moving average form by defining the operator 
  

     ∑    
  

    such that            . The operator      is the inverse of     . 

 
If (2.11) is pre-multiplied by     , then  
 
                 
 
       ∑   

 
       ∑   

 
        

 
          ∑   

 
        . 

 
The mean of   ,   is obtained from 
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                                    . 
 
The    coefficients are obtained from the relation 
 
          ∑    

  
    

            
                        

                            (2.12)      
                   (              )          . 
 
Equating each of the lag coefficients 
 
           =   
         =    
                  = 0                                             
                       = 0                                     
 
In general        ∑     

 
                  

 
The VAR    process can also be expressed in the determinant/adjoint form as 
 
                     .           (2.13) 
 
|    | is the determinant of      and       is the adjoint matrix of     . Reinsel (1997) 
noted that       is a      matrix where the elements are polynomials with a maximum 
degree of     and is obtained from the relation 
 
        |    |        .           (2.14) 
 
The determinantal polynomial,|    | is of maximum order    (Wei, 2006). The right hand 
side of equation (2.13),          is of the form of a MA      process (Reinsel, 1997). This 
means that each of the individual components of    follow a univariate ARMA process with a 
maximum order of           .This order is less if there are common factors present 
between the autoregressive and moving average polynomials (Wei, 2006).   
 
 
2.3 Autocovariance and Autocorrelation for a VAR    Process 
 
An understanding of the autocovariances of a VAR    process can be gained by considering the 
simple example of the stationary VAR    process where the mean is known 
 
                   .           (2.15) 

 

The process (2.15) can be written in mean adjusted form with          as 
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                                      (2.16) 
   
Tsay (2005) noted that by using the same recursive techniques as demonstrated for the VAR    
models, it follows that Cov            and Cov              for    . 
        
Now, by multiplying both sides of (2.16) by             and taking expectations, 
 
                       =       (       )(       )´ ] +     (       )´ ] .   
 
If     ,  
 
      =      (      ) (     )´ ]       (     )´] 
           =          +    
           =           +    .           (2.17) 
 
If     ,     (     )´]= 0. 
 
Thus for    ,  
 
      =      (       ) (        )´ ] +     (       )´]  
           =            
          =            

  .           (2.18) 
 
Thus it follows that                      and              (Reinsel, 1997). 
 
If the covariance matrix      is given, then the values of    and    can be calculated 
recursively from 
 
                  
                                               . 
 
The covariance for the VAR     process is found in a similar manner. If equation (2.4) is 
multiplied by            on both sides and if expectations are taken then, 
 
 [(   –            ´]    (         [                             
               ]    [           ]         (2.19) 
 
 [(               ´]        [(       ) (         ] 
       [(       ) (         ]          [(       ) (         ]      .   (2.20) 
 
If     , (2.20) is simplified to 
 
 [(             ´]        [(       ) (      ]        [(       ) (      ] 
            [(       ) (      ]      
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     =                        +    .        (2.21) 

 
Since the process is stationary,             . 
 
Thus      =                        +       
 
Similarly for          , (2.20) is simplified to 
 
   :                                                 )     = 0       (2.22)    

   :                                                      = 0         (2.23) 
.  
. 
. 
 
    :                                                      = 0.   (2.24) 
 
In the case where    ,                                  = 0. 
  
The equations (2.22) – (2.24) are known as the Yule-Walker equations and can be used to solve 
for the parameter matrices    ,…,    in terms of             (Box et al., 2008). 
 
The equations (2.22) – (2.24) can also be expressed in matrix form as 
  

[

       
       

 
       

]   

[
 
 
 
 

                      
                     

    
 

                       ]
 
 
 
 

[

   
   
 

   

] . 

 
Once the values of    ,…,    are determined, the value of    is obtained from  
 
      ∑      

       . 
 
The autocorrelations for values of            are determined by the relation 
 
      

  

        
  

  , 
 

where    (

          

        

   
          

)  
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is a diagonal matrix with the autocovariances of the VAR    process on the diagonal. The 
autocorrelations are generally easier to work with as compared to the autocovariances as they 
do not depend on the unit of measurement (Lütkepohl, 2005). The cross correlation function 
between two individual time series is  
 

       
      

√            
           . 

 
 
2.4 VAR    Order Selection/Identification 
 
The VAR    model (2.2) is very extensive and may have a large number of parameters present. 
Given a VAR    model of a finite length          , the objective is to try and find a model 
that has as few parameters that are required to be estimated while at the same time one that 
suitably represents the dynamic relationships present in the model (Tiao   Tsay, 1983). In this 
section methods to obtain the correct lag order   are discussed. 
 
The correct order of   is of prime importance as the inclusion of each additional lag reduces the 
degrees of freedom by the square of the total number of variables present in the system 
(Fackler   Krieger, 1986). If the model order selected is larger than that of the optimal model 
order, then the model is said to have been over fitted which can often result in inefficient 
parameter estimates (de Waele   Broersen, 2003). Over fitting the model is a problem with 
multivariate models because the number of parameters that are required to be estimated 
increases at a significantly quicker pace as the order of the model increases i.e. the degrees of 
freedom are wasted (Enders, 2004). In addition, if the order selected is too small (i.e. the model 
is under fitted), then it will lead to the dynamics and the effects of variables being ignored 
which could result in a reduction in the forecasting accuracy of the model (Escanciano et al., 
2010).  
 
The lag length selected should be the most parsimonious while at the same time should 
account for the dynamics of the model. Brandt and Williams (2007) propose the following rules 
of thumb for selecting lag length that are applicable to seasonal data (monthly or quarterly) 
only.  
 

(i) The VAR models should generally have enough lags to encompass the full cycle 
length of the data. Thus, in the case of monthly data the minimum number of lags 
required in the model should be at least 12, while for quarterly data there should be 
at least four lags present. 

 
(ii) The lag length should not be more than a quarter of the degrees of freedom for an 

equation i.e. if   is the number of endogenous variables,   is the lag length and   is 
the number of observations, then the value of      should be less than  . 
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The Yule-Walker equations can also be used to find the order of  . This is done by finding the 
partial autoregression matrix of order   which is determined from the matrix coefficients 
              in the equations 

 

       ∑    
 
                                                                                             .    (2.25) 

 
These equations (2.25) arise when a VAR model of order   has been fitted to   .    is a VAR    
process if the partial autoregressive matrices                are equal to 0 for    , i.e. 

they cut off after lag   (Reinsel, 1997). 
 
The above tests however, depend very much on the analyst’s discretion. This is because model 
selection for multivariate time series is significantly more complex than for univariate series as 
the patterns need to be detected through the matrices of autocovariances (Granger 
  Newbold, 1986). More formal tests have therefore been developed. The first test involves a 
sequential procedure used to find the order of  . If   is an upper bound then define the null 
and alternate hypothesis as 
 
  :      

  :      

 
There have been various methods which have been derived in order to determine a test 
statistic. Tsay (2005) derived a statistic which was based on a method used by Tiao and Box 
(1981) and Reinsel (1997). Consider the following VAR    model 
 
                                           (2.26) 

 
where the parameters   ,         have been estimated from the use of either ordinary least 

squares or maximum likelihood estimation. 
 

If the estimate of    is denoted by  ̂ , then the residuals    are recursively estimated from 

 

 ̂          ̂     ̂          ̂      .         (2.27) 

 
The residual sum of squares and cross products under the null hypothesis   :      is 

 

SS      ∑   
          ̂     ̂          ̂            ̂     ̂          ̂       (2.28)         

 
The test statistic     , which makes use of (2.27) and (2.28) is  
 

        (        
 

 
)    |     |/|        |   
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     follows an approximately    distribution with    degrees of freedom. The null hypothesis 
(  :     ) is rejected for particularly large values of      (Box, Jenkins   Reinsel, 2008). If 

the null hypothesis is rejected, then the value of   is set as the value of  . If the null hypothesis 
is not rejected, the hypothesis   :        is tested against an alternative of 

  :            . This procedure carries on until there is rejection of the null hypothesis. 

In general the null hypothesis   :          is tested against an alternative of 

   :                         (Lütkepohl, 2005). 

 
In addition, an alternate likelihood ratio test statistic was derived by Hamilton (1994) by 
defining the hypotheses 
 
  : The model is of order      
  : The model is of order        
 
The test statistic     makes use of the maximum likelihood function   
 

LR   
   

 
         

 

 
   |  

  |  
  

 
  

 
and is defined as 
 
           ̂         ̂  ].         (2.29) 
 
 ̂ is the unconstrained maximum likelihood estimator (over the full parameter space) and  ̂  is 
the constrained or restricted maximum likelihood estimator subject to the restrictions that are 
stated in the null hypothesis. The statistic     follows a    distribution with the amount of 
degrees of freedom being the same as the number of different linear restrictions,          
(Hamilton, 1994). The    statistic is only accurate asymptotically i.e. for large values where  
     (Lütkepohl, 2005). 
 
Reinsel (1997) noted that the likelihood ratio statistic is not suitable for complex situations, for 
example, when a low order VAR model is not an adequate representation for the data. It also 
tends to be spuriously higher in cases where there are a large number of parameters present 
because the test will then tend to choose incorrect lag lengths resulting in bias in the model 
(Brandt   Williams, 2007). The statistic is also only applicable if one of the models is a restricted 
version of the other (Enders, 2004). Finally, the likelihood ratio test statistic is not always 
satisfactory if the model has been constructed for the specific purposes of forecasting. There 
have, however been a number of other criteria that have specifically been developed for this 
particular purpose. These criteria have been developed for univariate models but are easily 
extended for multivariate models. 
 
The minimum forecasting mean square error is generally used to choose the model order if 
forecasting is the objective. The one step ahead MSE is calculated from 
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   ̂      
      

 
   , 

 
where   is the order of the VAR process fitted,   is the sample size and   is the dimension of 
the time series.  
 

This statistic   ̂      
      

 
   can be adjusted by the degrees of freedom  

 

       
 . Fackler 

and Krieger (1986) noted a statistic which balances the fit of the model with the degrees of 
freedom used is known as the Final Prediction Error statistic (FPE) and is defined as 
 

FPE      det[ 
      

 

 

      
  ̂   ].         (2.30) 

 

The term   ̂    is the maximum likelihood estimate of    when a VAR    model is fitted. 
Equation (2.30) can be simplified to 
 

   
      

      
      ̂     . 

 
In order for a suitable value for   to be chosen as the overall model order, various models of 
orders           are estimated and recorded with their corresponding FPE values. The order 
which corresponds to the minimum value of FPE is chosen as the estimate for  .  
 
The Akaike Information Criterion (AIC) is a similar criterion that is based on the FPE and is 
defined as 
 

AIC           ̂        
 

 
 (number of free parameters estimated by maximum likelihood) 

                     ̂       
    

 
  

                    |  ̂   |                  (2.31) 

 
Grubb (1992) noted that the AIC can alternatively also be expressed as 
 
AIC        (maximum likelihood)        . 
 
This AIC criterion (2.31) asymptotically minimises the mean square error for the estimation of 
the parameters. As in the case of the FPE, the order of   chosen corresponds to the minimum 
value of the AIC. 
 
An important concept when selecting a model criterion is that of consistency. Lütkepohl (2005) 
noted that a criterion is consistent if it selects the correct order of the VAR with absolute 
certainty (probability of one) asymptotically i.e.           ̂    })   1. In addition a criterion 
is strongly consistent if  [       ̂    ]   1.  
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This concept can be explained by supposing that there is a VAR criterion say, 
 

            ̂       
   

 
  

 

where    is the number of freely varying parameters and   ̂    is the error covariance matrix. 
Suppose various models of orders          are fitted and  ̂ is the order chosen which has 

minimised      .  ̂ will be a consistent estimator if     ∞ and 
  

 
   (i.e. converges towards 

0) as the value of    . The estimator   ̂ will be strongly consistent if all of the above 

conditions hold and in addition 
  

      
     as      (Lütkepohl, 2005). 

 
Therefore from the above definitions, the AIC is not consistent because the value of     is     

and thus as     , the value of  
  

 
 does not converge towards  . It has been reported in the 

literature that the FPE and the AIC are asymptotically equivalent criteria and since the AIC 
criterion is not consistent, it follows that the FPE criterion is not consistent either (Lütkepohl, 
2005). 
 
The AIC is also minimised at the highest possible order which results in it being biased for finite 
sample cases. The AIC however, can be modified in order for its efficiency to be improved. The 
most widely used modification is the corrected AIC or AICC discussed by Hurvich and Tsai 

(1989). This criterion incorporates the addition of a penalty term  
           

     
. 

 

Thus AICC   AIC   
           

     
 .          (2.32) 

 
Karimi (2011) noted that the AICC criterion (2.32) is extremely efficient compared to the AIC 
criterion however it is not consistent and suffers from bias in finite samples.  
 
Karimi (2011) defined a more recent modification to the AIC as 
 

AIC(modified)       |  ̂   |   
     

        
           (2.33) 

 
Simulation studies showed that while this criterion (2.33) led to improved efficiency and had 
less bias, there was still not enough evidence to suggest that it was consistent. A consistent 
version of the AIC that can be used for multivariate VAR    models with certainty has yet to be 
determined. 
 
The Kullback information criterion is another criterion which is known to have less bias in finite 
samples although it is not consistent. It is defined as 
 

KIC        |  ̂   |       . 
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There are however other criteria which have been developed with the primary consideration 
being given to consistency. The Hannan-Quinn criterion is defined as 
 

HQ         |  ̂   |   
      

 
 (number of freely estimated parameters) 

                   |  ̂   |  
      

 
       .         (2.34) 

 
The term     refers to the number of parameters estimated by the log likelihood. The 
estimator  ̂ is the order for which the value of HQ     at different orders         is at a 
minimum. The value of     is            which means that the HQ     criterion is consistent 

because 
  

 
   as    . In addition, the HQ     criterion, (2.34) is strongly consistent for 

    (Lütkepohl, 2005). 
 
The Bayesian Information Criterion (BIC)/Schwartz Bayesian Criterion (SBC) has also been 
developed for the specific purpose of forecasting. In this criterion, the penalty term (2 in the 
AIC) is increased to   and is defined as 
 

BIC          |  ̂   |   
   

 
 (number of freely estimated parameters) 

                   |  ̂   |   
   

 
       .          (2.35) 

 
The order which corresponds to the minimum value of BIC     is chosen as the estimate for  ̂. 
Since          , the estimator is consistent and the BIC     criterion is strongly consistent 

for any value of  , as  
     

      
  approaches infinity when      (Lütkepohl, 2005). 

 
A statistic known as the combined information criterion was defined by de Waele and Broersen 
(2003) as 
 

CIC            |  ̂   |      ( ∏
     

     

 
    )             (2.36) 

 
where    are known as sample variance coefficients that are determined by the use of 
simulation techniques. These coefficients contain the finite sample behaviour of the estimator. 
Using simulations, de Waele and Broersen (2003) reported that this technique was accurate in 
determining the order correctly and does not tend to overfit the model. 
 
The HQ and BIC are generally the preferred criteria for choosing the order in large samples. It 
should be noted however, that just because HQ and BIC are more consistent, it does not 
necessarily mean that they are superior overall (Lütkepohl, 2005). Karimi (2011) noted that in 
many cases efficiency is usually preferred to consistency. Since the AIC and FPE criteria are 
designed with the primary objective of minimising the forecast error variance, they may not 
always predict the order of  ̂ correctly in large samples but they do produce more accurate 
forecasts (Lütkepohl, 2005). 
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Studies comparing the performance of criteria such as the AIC, BIC, HQ and the likelihood ratio 
statistic using simulation techniques have been published. 
 
 Lütkepohl (2005) studied 1000 simulations using mean square error forecasts and reported 
that for small samples       , the likelihood ratio statistic performed the worst while the BIC 
criterion performed the best. In larger samples         he found that there was no 
conclusive evidence to suggest that any one of the criteria outperformed any other. He 
recommended that multiple criteria should be used to in order to determine the order of a 
VAR    model especially if the primary objective is forecasting. 
 
The forecasting performance of unrestricted and restricted VAR models (where the insignificant 
parameters are set to 0) in which the lag orders were chosen by either the AIC or the BIC was 
compared by Athanasopoulos and Vahid (2008). For the unrestricted models, the VAR models 
that were chosen by the BIC criterion performed better than those selected by the AIC, while 
for longer time horizons        the AIC had a better performance. Amongst the restricted 
VAR models, the AIC outperformed the BIC at all forecast horizons. 
 
A more innovative procedure used by Hatemi and Hacker (2009) showed that the likelihood 
ratio test combined with the BIC and HQ criteria results in the correct lag order being chosen 
more frequently. 
 
 

2.5 Estimation of the VAR     Model 
 
The   dimensional VAR    model         where         ,       has the following 
representation 
 
                                    . 

 

In general the parameters,   ,         and    are unknown and are required to be 

estimated. There are various methods of estimation that can be used, the most well known 
being least squares estimation, Yule - Walker estimation and maximum likelihood estimation. 
 

2.5.1 Least Squares Estimation 
 
Least squares estimation is easy to implement and is quick as no iterations are generally 
required for the estimates to be obtained. The ordinary least squares estimates are consistent 
and asymptotically efficient (Enders, 2004). The estimates are also unbiased since all of the 
regressors are predetermined and the error term is white noise (Ewing, Kruse, Shroeder   
Smith, 2007). The least squares estimation procedure was derived by Lütkepohl (2005) as 
follows 
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The VAR    model for         can be written in the general from of the multivariate linear 
model 
 
Y =  X + U =    + ∑       

 
    (i.e. the general form of the multivariate linear model).  (2.37) 

 

Y = (     ,    = (

       

   
       

) is a        vector. 

 

  = (   ,        ) is the      (     1   vector of parameters. 

 

     = [

 
  

 
      

] is a ((     1)     vector. 

 
   = (   ,       ) is a ((     1)      vector. 

 
It thus follows that  X  is of dimension (    (     1)  (     1)    ). 
 

 U = [       ] = (

       

   
       

) is a         vector of error terms. 

 
The ‘vec’ operator is one which can transform a matrix by stacking the column vectors below 
each other. Defining the following for which the ‘vec’ operator is applied,  
 
    = vec(Y) which is of dimension        . 
 
  * = vec( ) which is of dimension             . 
 
 u = vec (U) which is of dimension        . 
 
The first procedure is to obtain the an estimate for the vector of parameters  ̂. This is done by 
applying the ‘vec’ operator to the equation (2.37),      
 
vec(Y) = vec(  ) + vec(U)           (2.38) 
              = (  ´     )vec( ) + vec(U)   
 
   = ( ´    )  * + u           (2.39) 
  is known as the Kronecker product and is defined in the Appendix.  
 
The covariance matrix of u is  
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 [vec(U) vec(U ’     (

  

 
  

)(  ,        

 

                                      [
                     

   
                     

] . 

 
In order for least square estimates of   to be obtained, the residual sum of squares               
SS  *)   u           u needs to be minimised.  
 
SS  *) = u´          u 

              = vec(U)´  
   vec(U)´ 

              = vec(Y     )   
   vec(Y –   ) 

              = tr[(Y     )´  
     –        

              = [    ( ´              
  )[     ( ´   )  ]      (2.40) 

 
tr() is the trace function of a matrix such that tr[A] refers to the sum of all the diagonal 
elements for a given matrix A (Tsay, 2005). Equation (2.40) is simplified to  
 

SS( *) =   ´(      
  )    +    (     )       

  )            

                                  (     
  )  .        (2.41) 

 
Note : (      )       

  )          

            = (    
  )           

            =        
    

 
 and               (     

  ) 

           = (     
  ) 

 
Thus SS(  ) =   ´(     

  )    +           
       2   (     

  )  .    (2.42) 
 
Partially differentiating equation (2.42) with respect to    and setting it equal to 0  
 
       

   
 = 2(      

  )    (    
  )   =0 

 
(      

  )    = (    
  )              (2.43) 

 
If the terms in (2.43) are rearranged, the least squares estimator of  ,   ̂  will be 
 
  ̂ =        

     (    
  )   

                  (     
  )   

     =                .           (2.44) 
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Wei (2006) noted that   ̂ is distributed joint multivariate normal with mean    and covariance 
matrix           . 
 
If the mean is known, then the VAR    model can be written in mean adjusted form as 
 
   =   +   (      ) +    (       )         (       ) +           (2.45) 

 

This estimation method is similar to the previous case although there are a few differences. 
These are;  
 
Y now comprises of the following terms Y = (             . 
 

The vector     is denoted as     = [

     
 

         
] and is of dimension        ). 

 
               is of dimension        ). 
 
The vector of parameters is defined as    = (        ) and is of dimension        ). 

  
vec(      

  is of dimension       ). 
 
The least squares estimator of (2.45) is 
 
   ̂

                vec(Y).  
 
In most cases however, the true mean   is unknown in advance. If this is the case, then the 

vector of sample means  ̅   
 

 
∑   

 
    can be used as an estimate for   (Lütkepohl, 2005).   

can also be estimated from  ̂       ̂     ̂   ̂  . 

 
Karimi (2011) noted that the residual covariance matrix of the estimated VAR    model with no 

intercept is  ̂     ̂  ̂           ̂  ̂    and is of the form  
 

   
     ̂         ̂ ) . 

 
2.5.2 Yule – Walker Estimation 
 
A quicker method of obtaining the estimates is through the use of Yule-Walker equations which 
were discussed earlier. This method is approximately equivalent to that of least squares 
estimation (Reinsel, 1997). 
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The Yule-Walker equations imply that the covariance matrix      is 
 

     [       ]  (
        

 
        

)              (2.46) 

 

Or [     ,…,     ]   [       ]  [
           

   
            

] .       (2.47) 

 
If the vector of parameters           is expressed as the main subject of the equation (2.47), 
then, 
 

            [                [
           

   
            

]

  

  

 

The inverse matrix [
           

   
            

]

  

is estimated by   ̂ ̂ 

 
  and 

 [     ,         is estimated by    ̂   ̂ 

 
 (Lütkepohl, 2005). 

 
From these estimates the vector of parameters [ ̂     ̂ ] is estimated by  ̂   ´       . Box 

et al. (2008) noted that the error covariance matrix,    is obtained from the relation  
 

         ∑       
    ̂     

       
The advantage of the Yule - Walker estimation is that it is quick and simple to use. Reinsel 
(1997) however, noted that estimates obtained from using the Yule - Walker equations suffer 
from a greater bias than those obtained from using least squares estimation. The least squares 
estimates also have a better sampling behaviour when the VAR    process is near non-
stationary. 
 
2.5.3 Maximum Likelihood Estimation 
 
If the VAR    process has a known distribution and    is assumed to be normally distributed, 
then maximum likelihood estimation can be used as an alternative procedure to least squares 
estimation. The main advantage of maximum likelihood estimation is that it is efficient 
asymptotically. The maximum likelihood estimation procedure below was discussed in detail by 
Lütkepohl (2005). 
 
Since            , 
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It follows that u   vec ( )   [
  

 
  

]            . 

 
From the properties of a normal distribution, the probability density of u is 
 
  (u)    

 

     
  
 

       
  

  exp     

  
 u´(     

    u .       (2.48) 

 
Consider the VAR    model written in deviations of the mean form  
 
       =   (       ) +   (       )      (       ) +    .     (2.49) 
 
For observations [         ], this representation (2.49) is equivalent to  
 

[
   –   

 

   –   

]     [
   –   

 

      –   

]     [
    –   

 

      –   

]      [

     –   

 

      –   

]   [

  

 
  

]      (2.50) 

  
(2.50) can be rewritten as  
 

[

  

 
  

]  [
   –   

 

   –   

]    [
   –   

 

   –   

]    [
    –   

 

      –   

]      [

     –   

 

      –   

]  
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In order to determine the probability distribution of  , a transformation is required to 

determine the value of the Jacobian matrix         

        
 , which is a lower triangular matrix with a 

unit diagonal and consists of the parameters [          ]. 
 

       

        
   

[
 
 
 
 
 
 
 

     

      

   
          

 
       ]

 
 
 
 
 
 
 

        (2.52) 

 
u can be written as  
 
u =    ̃            

 . 
 
  

    vec [         ] is the          vector of parameters and  ̃                is the vector 

of means which is of dimension       ). 
 
Since this matrix (2.52) is lower triangular, the determinant         

        
  is one. Thus the 

probability density of   is 
 
  ( )           

        
    u  

 

          =     
   

        
  

   
                 exp [    

 
    –  ̃     ´      

         
   [   –  ̃             

  .            (2.53) 
 
The matrix   is 
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     –        –         –   ]
 
 
 
 

 . 

 
If natural logs are taken on both sides on (2.53), then the resulting log likelihood function is  
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              (2.54) 
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The maximum likelihood estimators of     

  and    can now be determined by partially 
differentiating the log likelihood function,     (     

      with respect to     
  and    

(Lütkepohl, 2005). 
 
a) For   :  
 
If (2.55) is partially differentiated with respect to  , 
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   )  .        (2.56) 

 
The likelihood function is maximised when (2.56) is equated to  . The estimator of   is 
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b) For the vector of parameters   

 :    
  

If (2.54) is partially differentiated with respect to   
 , 
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Equating (2.58) to  , 
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c) For    : 
 
Lütkepohl (2005) noted that equation (2.55) can also be written as 
 
    (    
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where     (
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   –   

) . 

 
It follows that by partially differentiating (2.60) with respect to   , 
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   ̂    ̂ ̂    ̂    ̂ ̂  .        (2.61) 

    
The estimates  ̂ and   ̂ are obtained from   and    respectively by replacing   by  ̂  
Since these equations are nonlinear in the parameters, iterative procedures (such as those 
discussed in the appendix) need to be employed in order for them to be evaluated. Ma (1997) 
noted that this log likelihood is very close to being quadratic with respect to the autoregressive 
parameters which imply that the Newton-Raphson optimisation method is the preferred option 
for solving these equations. 
 
A modification of the traditional maximum likelihood estimation procedure was proposed by 
Roy, Fuller and Zhu (2009) who used a VAR    representation and a regression type approach 
in order to find an approximation for the maximum likelihood estimator. This estimator for 
stationary processes had a limiting distribution that was the same as the ordinary least squares 
estimator but was not recommended for the non-stationary processes as it had a different 
limiting distribution. 
 
 

2.6 Diagnostic Checking of the VAR    model 
 
In order to check whether a model has a good fit, it is necessary to observe whether the 
residuals are uncorrelated with each other over a period of time. If the residuals show signs of 
correlation with each other over a period of time, it means that there is serial correlation 
present in the model which means that the model does not have a good fit.  
 
The easiest and least computationally burdensome method is to simply plot the residuals over a 
period of time. This procedure is not recommended as it is not always obvious to detect a 
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pattern. Brandt and Williams (2007) noted that in many instances, special expertise is required 
to detect these patterns.  
 
An alternative method is to plot the sample residual autocorrelation function (which shows the 
correlation of the residuals of the variable with its own past values) and the sample cross 
correlation functions (which analyses the correlation of a variable with past values of other 
variables). A model with a good fit will not show any significant evidence of autocorrelation or 
cross correlations in the residuals (Brandt   Williams, 2007). As a rule of thumb, there is no 
serial correlation present if the sample residual cross correlations lie between the two standard 

error limits  
 

√ 
  (Granger   Newbold, 1986). 

 
There is also the goodness of fit test that can be used in order to test for serial correlation. In 
order to proceed with this method, assume that    is a   dimensional white noise process with 
covariance matrix   . If    denotes the vector of residuals of a VAR    process, then the 
residual autocovariance matrices denoted by      , are estimated from 
 

 ̂        
 

 
∑        

 
             where     . 

 

The residual autocovariance matrices,  ̂     are used to determine the residual autocorrelation 

function    ̂    .   ̂    is calculated from the relation   
   ̂      

            where    is 
a       diagonal matrix which has the square roots of the diagonal elements of       on its 
diagonal (Reinsel, 1997). 
 
The test procedure in order to test for the significance of residual autocorrelations up to lag   is 
conducted by defining the hypotheses  
 
   :    ̂         ̂         i.e. the residuals are not autocorrelated up to   lags 
   :    ̂         ̂         i.e. the residuals are autocorrelated up to   lags. 
 
These hypotheses can equivalently be expressed as 
 
   :  [                               
   :  [                              
 
In order to find a test statistic, a statistic known as the Portmanteau statistic (denoted by   ) 
was initially derived for univariate time series models though it is easily extendable for 
multivariate models. This statistic, expressed in terms of residual correlations is  
 

      ∑     
      ̂      ̂        ̂       ̂       .        (2.62) 

  
tr() is the trace function discussed earlier. The    statistic (2.62) can also be expressed in terms 
of residual covariances as  
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   ̂      ̂ 

  
  

          ∑     
    ̂     ̂       ̂      ̂        .      (2.63) 

 
   follows a    distribution with         degrees of freedom. The degrees of freedom is 
expressed as the number of autocorrelations multiplied by the number of series considered. 
This approximate distribution is valid provided that the value of   is chosen large enough so 
that the weights    in the infinite moving average representation of the VAR    model are 

small for     (Reinsel, 1997). Escanciano et al. (2010) recommend that a small value of   
should be used when   is small and a larger value of   for higher values of  . The model 
specified will thus be inadequate for large values of   . 
 
However, the same authors also noted that there are a few limitations of these critical values. 
The first is that these critical values are accurate only when the number of autocorrelations 
taken is sufficiently large. Secondly, this limiting distribution is sensitive to   which means that 
there is a loss of power in the test when   is too large (Pfaff, 2008). Escanciano et al. (2010) 
have proposed modified critical values which follow a    distribution with     degrees of 
freedom. These critical values take into account the estimation uncertainty by letting the value 
of   diverge towards infinity. 

  
The Box-Ljung statistic is a modified version of the Portmanteau statistic specifically for use in 
smaller sample sizes. It accounts for the estimates of serial correlation from the lags 1 to   
(Brandt & Williams, 2007). This statistic is defined as 
 

  ̃     ∑         
     ( ̂       ̂      ̂        ̂     )      (2.64) 

   

   
̃  follows the same set of critical values as the Portmanteau statistic. This statistic was tested 
by Hosking (1980) who conducted a simulation study to conclude that the Box-Ljung statistic 
outperformed the original Portmanteau statistic for smaller samples. 
 
Lagrange multiplier tests can also be used to test for residual autocorrelation in a VAR    
process. If the error vector    is assumed to be of the form of a VAR    model, i.e. 
                         where    is a white noise process (Lütkepohl, 2005).  
 
There is no residual autocorrelation present in the model if       . The residual covariances of 

   are calculated from  ̃   
 

 
∑      

 
   . The hypotheses for testing whether there is serial 

correlation in the residuals are  
 
   :             (There is no serial correlation present in the model) 
   : At least one of the                  
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There are various methods which can be used in order to find a suitable Lagrange Multiplier 
test statistic and its critical values. Brandt and Williams (2007) proposed a step by step 
procedure by estimating an unrestricted as well as a restricted VAR    model. The unrestricted 
model is of the form 
 
 ̂                        ̂          ̂       .    (2.65) 

 
The second restricted VAR is fitted under the assumption that the null hypothesis 
 (   :            ) is true. The resulting model is 
 
 ̂                        

          (2.66) 

 
  

  is a white noise process of the restricted model. The error covariance matrix of (2.66) is 

calculated from  ̃    
 

 
∑   

   
   

   .  ̃  and  ̃  are included in the LM test statistic which is 

defined as 
 

LM    [        ̃  ̃ 
  

 ].            (2.67) 
 
The value of   refers to the number of endogenous variables in the system. This LM statistic 
follows a    distribution with the degrees of freedom, where     is the number of restrictions 
placed on the parameters of the model (2.66) under the null hypothesis that there is no 
residual correlation present. 
 
As a final measure the information criteria (AIC, BIC, HQ) can be used for the purposes of 
diagnostic checking if they have not been previously used for selecting the order of the model. 
 
 

2.7 Forecasting of the VAR    Model 
 
It is very useful to be able to forecast future values of a variable under study based on its 
current and past values. This is true especially when there is not much knowledge available 
regarding the data generating process of a variable. Forecasting using time series methods is 
widely used in the fields of economics, finance, engineering, public health and geography. It is 
of practical value for both policy makers and scientists as it enables and ensures proper 
planning for the future. 
 
The predictor of a vector of future values,              is based on a realisation          
yields the minimum mean square error matrix  ̂                        (Box et al., 2008).  
 
Tsay (2005) noted that the one step ahead forecast at a time origin   is 
 
 ̂           ∑   

 
                   (2.68) 

with forecast error               ̂           . 
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The covariance matrix of the forecast error is    . 
 
The 2 step ahead forecast is 
 

 ̂               ̂       ∑   
 
                  (2.69) 

with forecast error    ( )         ̂                    where the value for      is 
substituted by its forecast at that particular period  ̂     .  
 
In general, the forecast for   steps ahead is 
 

 ̂           ∑   
 
    ̂

 
        

 
The VMA representation can also be used to calculate forecasts (Enders, 2004). If this is the 
case, then the forecast for   steps ahead is 
 
 ̂           ∑         

 
    .           (2.70) 

 

This has a forecast error   ( )         ̂                                      (2.71) 
 
The left hand side of the equation (2.71) shows the difference between the observed values in 
the vector of dependent variables      from the predicted values of a VAR while the right hand 
side shows the vector moving average representation of these forecasting errors from the 
current period   back to the time period   (Brandt   Williams, 2007). 

 
 
2.8 Forecast Error Variance Decomposition 
 
There is a method, derived from the use of forecast errors that can be used to interpret the 
interrelated changes in a VAR model which is known as the forecast error variance 
decomposition method or innovation accounting. In this method the amount of variation in 
each of the other variables in the system which is due to the changes in any one of the variables 
over a period of time is estimated. This procedure determines what portion of the squared 
forecast error variance of one variable at   time periods ahead is associated with the surprise 
movements of each variable in the model (Kulshreshtha   Parikh, 2000). This is because the 
forecast of a VAR model has two components: (a) the predicted paths of the variables in the 
model and (b) the unexplained innovations (shocks) (Brandt   Williams, 2007). From these two 
components (a) and (b), it is possible to establish in each equation how much of the variance in 
the forecast of    is due to the past shocks of itself as and how much is due to past shocks of 
other variables (Enders, 2004). A group of variables    are exogenous if the shocks of all the 
other variables do not explain the forecast error variance of itself at all forecast horizons. On 
the other hand, if the shocks of the other variables present explain all of the forecast error 
variance of    then    is said to be an entirely endogenous group of variables (Enders, 2004). In 
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general it is typical for a variable to explain a large proportion of its forecast error variance at 
shorter time horizons and increasingly smaller proportions at longer time horizons (Brandt   
Williams, 2007).  
 
The method of forecast error variation is performed by the simplification of the variance for the 
forecast errors in a VAR model. Recall that the error in forecasting the variance for a group of 
variables   ,   periods in the future is 
 
        ̂                                         

                         ∑         
   
    .  

 
The moving average coefficients (  )             show how the shocks in the VAR model are 
functions of their past values in this vector moving average (VMA) representation. 
 
The mean square error of the   period forecast is  
 
Var         ̂                  ̂               ̂       
                                                                     .      (2.72) 
 
As stated previously, the objective of forecast error variance decomposition is similar to that of 
an ANOVA as it determines how much the variance in a variable is due to its own shocks and 
how much of the variance is due to innovations of other variables over a period of time. In 
order for this to be determined, the equation (2.72) is required to be orthogonalised in order to 
standardize the variance of the shocks so that the relationships amongst the forecast 
innovations are observed (Brandt   Williams, 2007). This identifies which linear combinations 
of the forecast innovations are related to each other. 
 
The orthogonal innovations of the forecast are written in the following form (Hamilton, 1994) 
 
                                      (2.73) 
 
where                is the  th column of the covariance matrix of decomposition of residuals.  
 
Now since the    ’s are not correlated, if (2.73) is multiplied by its transpose and if expectations 
are taken,               can be written in the following form 
 
                                                          (2.74) 
 
From (2.74) the mean square error forecast which is orthogonalised is obtained which is written 
as the sum of the   terms 
 

MSE   ∑    (   )
 
                                                         .      (2.75) 
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This equation (2.75) shows how much of the  th orthogonalised innovation of the mean square 
error contributes is due to the   time period ahead forecasts. 
 
In general, the decomposition of the forecast error variance is usually found in a tabular form 
that indicates the percentage of a variable’s forecast error variance that can be attributed to 
itself as well as the percentage that is attributed to other variables in the model (Brandt & 
Williams, 2007). This is a limitation as the percentages mean that the forecast error variance 
cannot always be measured to the scale of the initial variable. 
 
In conclusion, the forecast error variance decomposition procedure is important because it 
demonstrates how the changes in the variables impact on each other.  
 
 
 

2.9 Impulse Response Analysis 
 
2.9.1 Introduction 
 
A shock to the  th variable affects not only itself but also the other endogenous variables in the 
system due to the lag structure of the VAR. Impulse responses demonstrate the response of 
present and future values of each of the variables to a one unit increase in the present value of 
one of the VAR error terms (Stock   Watson, 2001) i.e. they measure the time profile of the 
effects of shocks at a given point in time based on the expected future values of variables 
(Kulshreshtha   Parikh, 2000). In order to measure the effects of a shock where the VAR 
process is stationary, it is necessary to rewrite the model in an infinite vector moving average 
form as 
 
                            .          (2.76) 
 
The values of             are obtained from equating the coefficients of    in the equation 
 
(             

                         
    )     . 

 
The weight of    measures the impact of the past shock of      on    and is known as the 
impulse response function of   . If the innovations    are uncorrelated, then the impulse 
response function is easy to interpret as the  th innovation is simply a shock to the  th 
endogenous variable.  
 
If the innovations    are correlated, then a transformation needs to be made in order for them 
to be uncorrelated (Brandt   Williams, 2007). Suppose there is a lower triangular matrix   in 
which the diagonal elements are   and            where   is a diagonal matrix, then as noted 
by Tsay (2005), 
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          (2.77) 
 
where   

          and   
      and   

       . 
 
The transformed matrices   

 are the impulse response functions of   
 .  

 

2.9.2 Error Bands for Impulse Responses 
 
As stated above, impulse responses play an important role with regards to the impact that 
shocks have on variables (Pesavento   Rossi, 2006). Since moving averages are generally used 
to describe shocks for stationary autoregressive processes, it is expected that these shocks die 
off and return towards 0.  
 
It is thus important to know from the moving average representation of a VAR whether the 
reaction of equation   to a shock in variable   is significantly distant from  . If the confidence 
intervals of the responses are significantly distant from  , then the shocks are said to be 
statistically significant which means that they have a large impact. If the confidence intervals 
for the responses include   then the time horizon of responses is not statistically significant 
from   and the shocks do not have a major impact (Brandt   Williams, 2007). 
 
The estimation of confidence intervals requires the calculation of the variances of the impulse 
responses which can pose a significant challenge. This is because the derivation of these 
variances may be based on prior assumptions of the data. An additional difficulty relating to the 
construction of confidence intervals is that impulse responses also have a high dimensional 
parameter space. This implies that the same impulse response functions can be derived from 
two completely different      operators. Suppose        denotes the response of variable   to 

a one time shock in variable  . The converge probability of a stochastic (random) set of the 
      ’s is not dependent on only        itself and is different for the various      operators 

which correspond to       . Thus it is impossible to obtain an exact confidence set for       . In 

practice confidence intervals can be justified by the use of asymptotic theory (Brandt 
  Williams, 2007). 
 

2.9.3 Methods for the Estimation of the Error Bands 
 
There are several methods which have been proposed in order to derive the error 
bands/impulse responses using asymptotic theory.  
 

a. The Bootstrap Method  
 

This method involves taking unique random samples from the same data set. The first step is to 

take an initial consistent estimate say  ̂ and use Monte Carlo simulation to make random draws 

from a model      ̂ in order to obtain estimates of  ̂ that are conditional on the estimated 
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coefficients   ̂   , ̂  . The  ̂’s are mapped onto the distribution of the estimated impulse 

responses       ̂ in order to obtain the 100(1   ) confidence interval which is of the form 

[        ,           ]. The lower and upper confidence limits are constructed based on the   and 

1    percentiles of the bootstrap estimate. The advantage of this method is that it accounts for 
the skewness of the distribution of the impulse responses. The limitation however, is that 

reading the   and the 1    endpoints from a bootstrap distribution means that       ̂ has to be 

assumed to be unbiased. If there is any bias present in       ̂ , it can be difficult to correct. 

 

b. The Bootstrap Correction Method. 

 
A modification to the original bootstrap method known as the bootstrap correction method 
was proposed by Kilian (1998). This method involves indirectly removing the bias in the model 
prior to the bootstrapping of the estimate. The biased coefficient estimates are replaced by 
corrected estimates before the construction of impulse responses. Kilian (1998) determined 
from the use of simulation techniques that the bootstrap correction method had a better 
coverage as compared to the standard bootstrap method. In addition, after the inclusion of a 
time trend, the coverage performance for the standard bootstrap method deteriorated 
significantly while the bootstrap correction method remained effective. The disadvantage was 
demonstrated from the use of an empirical example which showed that the bootstrap 
correction method also led to conclusions that were substantially different from those obtained 
from using the standard bootstrap method. The computational cost of the bootstrap correction 
method was also slightly higher. 
 

c. Sims   Zha Method 
 

A similar method in estimating the error bands was used by Sims and Zha (1999) in which an 
interval was constructed from 
 

      ̂                     

 
       are functions which define the upper and lower bands of confidence intervals at a time   

in the 100      region. This can be depicted on a graph by plotting 3 functions , 

      ̂          ,       ̂ and       ̂         onto a single set of axes which shows both the point 

estimate of the response as well as the range of uncertainty of the form of the response. The 
variance of the impulse responses is assumed to be not correlated over a period of time. This 
results in the variance of the future responses being independent of the past responses with 
the exception of the variance of the autoregressive parameters. 
 
 
 
 
 



 

37 
 

d. The Simulation Method 
 
The simulation method used by Enders (2004) is advantageous in that it does not take into 
account any assumptions regarding the distribution of the autoregressive coefficients. The 
method proceeds as follows. 
 
Consider the univariate AR     process 
 
                                       .                                                                            

 
The coefficients              are estimated from the use of ordinary least squares estimation 

and are denoted by  ̂   ̂    ,  ̂  while the estimated residuals are saved and denoted by  ̂    . 

 
In a sample of size  ,   different numbers are drawn in order to obtain a sequence say {  }. The 
result of this is a simulated series of length   

  which has the same properties as an error 
process. In a similar way,   different random numbers are used to simulate a    sequence of 
length   

 , 
 
    

    ̂      ̂     
       ̂     

       
  .        (2.78) 

 
The simulated series     

  can be treated as an AR    process. The process is repeated multiple 
times until a large number of impulse response functions are obtained. These impulse response 
functions are used to construct the confidence intervals by ordering them from the smallest to 
the largest and by using the percentiles as the upper and lower class boundaries.  
 
The above discussion can be extended to the bivariate VAR    model below 
 
                                        

                                        . 
 
In this model, there is a possibility that the residuals of the regression       and        are 

correlated and as a result, they need to be drawn so that the error structure is maintained. In 
order for this to be done, the correlation coefficient is required to be taken into account when 
the random numbers are drawn to construct the    

  and    
  sequences. 

 

2.9.4 Limitations of Impulse Responses 
 
The interpretation of moving average representations as well as the error bands for impulse 
responses should be treated cautiously. This is because the width of the confidence interval has 
the potential to increase dramatically as there are a finite number of parameters estimated in 
the VAR representation. This in turn, affects the accuracy and precision of the impulse 
responses (Brandt   Williams, 2007). In addition, the impulse responses may show signs of 
model instability in small samples which can result in extremely large error bands. 
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2.10 Conclusion 
 
The VAR    model is the most widely used model for the modelling of multivariate time series. 
This is largely due to the fact that it is easy to specify because only one lag order needs to be 
chosen. The estimation of the parameters is also simpler as the method of least squares 
estimation can be used in addition to that of maximum likelihood estimation. The VAR    
model also produces reliable forecasts. 
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CHAPTER 3 

 

The Vector Moving Average    (VMA   ) 
Model  
 

 

3.1 Introduction 
 
The VAR process discussed earlier is useful in understanding the associations between different 
variables. However, it cannot be used to establish the relationship between a group of variables 
   and their shocks/innovations at different time periods. A finite multivariate time series 
model which only takes into account the relationship between    and its various shocks at   
time lags is known as the vector moving average model of order  . 

 
 

3.2 Model Dynamics 
 
The finite VMA    model has the representation,  
                                                      where 

                     
         

  .    is a the error vector with zero mean and covariance 

matrix       ´)     . 
 
The VMA    process is always stationary as the autocorrelations and the mean vector are 
independent of time. Thus, the constant vector    generally refers to the mean vector of    for 
a VMA    model (Tsay, 2005). The VMA    process is invertible if the roots of the determinant 
of the polynomial      lie outside the unit circle. An invertible VMA process can be written in 
the VAR representation as 
 
            . 
 
The operator      is defined as 
 
                   

      
      ∑    

  
    .          (3.1) 

   
The elements of the adjoint matrix       are polynomials in   and have a maximum order of 
   –      (Wei, 2006). In order to obtain the coefficients   ,       note that 
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               (3.2) 

 
 
Multiplying (3.2) throughout by     , 
 
              
(               

                  
                (3.3) 

                                
        

 
The    weights are calculated by comparing the lag coefficients in (3.3) 
 
  :             0         
                    0                                 
                        0                               (3.4) 
  
In general for                              with       for    .  
  
Du Frutos and Serrano (1997) noted that if the VMA    model is invertible, then    will tend 

towards 0 as     and thus a long but finite VAR     model is a good approximation for the 
model (3.1). The choice of    is dependent on the data and is usually set between log   and 
√ . 
 
The moving average coefficients can be explained by considering the following VAR    process 
without an intercept term, 
 
                    . 
 
Suppose    represents a bivariate series,    ,  
 

[
    

    
]   [  

  
] [

    

    
]  [

          

          
] [

      

      
] .              (3.5) 

 
This model (3.5) is known as the finite memory model and depends only on its current and past 
shocks. The       coefficient shows the linear dependence of      on        in the presence of 

       . If         0, then      will be independent of the lagged values of      . On the contrary if 
        0, then      will be independent of the lagged values of     . A unidirectional 
relationship occurs if either         and         0 or if         0 and         and a feedback 
relationship occurs if both values of       and       are not equal to zero (Tsay, 2005). 
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3.3 Autocovariances and Autocorrelations 
 
Since    has no serial correlations, it follows that Cov           (Tsay, 2005). This can be 
used in the explanation of the autocovariances for the VMA    model, 
 
                      . 
 
   ) =                        
          =   (           ] [(           ]   
                                      
            (             (              (                                    (3.6) 
  
Since    is white noise,  (          and  (              . 
Equation (3.6) is thus simplified to                    . 
 
In general the covariance for time interval   is 
 
      =   (       )(         )´  
           =   (            (                   
              (                (           )      (           )                    )   . 
 
Since  (            and  (             for     
 
         {                                                                                             

                                                                                              
       (3.7) 

 
The method of obtaining the covariance for the VMA    process can be extended to that of the 
VMA    process. The autocovariance for a VMA    process is 
 
   ) =  (      )(      )´  
          =              ) (           )   
                                                          
            (             (                                       .    
 
Since    is white noise,                 for    . 
 
Thus      =                         . 
 
The covariance time interval   is 
 
               )(        )´ 
           =  (                                                        (3.8) 

                                                              (           )       
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Since               and  (             for    ,      is simplified to   
 

       {∑     
   
                                                                                                

                                                                                                                          
     (3.9)  

 
The autocorrelation function for the VMA    process is similar to that of a VAR    with the 
exception of the covariance matrix obtained in (3.9). 
 
Thus, as for the VAR    model, the autocorrelations,                   are obtained from 
the relation 
 
                     . 
 

     (

          

        

   
          

) is a diagonal matrix with covariances on the diagonal. 

 
The cross correlation between two different series is      and        is 
  
        

      

√            
 

 
 
3.4 Identification of a VMA    Model 
 
The VMA model has not been studied as extensively as that of the VAR or VARMA models and 
orders of   are usually derived as a special case of a VARMA      model. It should be 
emphasised that for    ,        0, and as a result the cross correlation matrices        are 0 

for    , i.e. they cut off after lag  . Wei (1990) noted that the pattern of these cross 
correlation matrices for higher dimensional processes can be difficult to detect since the 
matrices are if this is the case.  
 
 
3.5 Estimation of a VMA    Model 
 
Maximum likelihood estimation is the method that is used most often to estimate the 
parameters of the VMA model. This is because of its asymptotic efficiency in a correctly 
specified model (Galbraith, Ullah & Zinde-Walsh, 2002). Since the process is assumed to be 
stationary, the problem of an intercept term can be solved by subtracting the sample mean 
prior to estimation (Lütkepohl & Claessen, 1997). 
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The maximum likelihood function for the simple zero mean and invertible VMA    process 
               where        is derived first based on the method used by Lütkepohl 
(2005). 
 

Defining     [
  

 
  

]  

(

 

       

   

   
      )

 [

  

 
  

] 

 
                                                 ̌ u . 
 

  ̌   

[
 
 
 
       

   

   
      ]

 
 
 
 is a               matrix.  

 

u   vec( )   [
  

 
  

]. 

 
   is white noise and follows a normal distribution with zero mean and covariance matrix    
 

i.e. [

  

 
  

] ~  (0        ) . 

 
Since       ̌ u, 
 
         ̌     =   ̌     = 0 
 
and var       var (  ̌ u)     ̌ (          ̌  . 
 
Thus   ~   (0,   ̌ (          ̌  ).         (3.10) 
  
From the use of the property that   is normally distributed in (3.10), the likelihood function 
 (  ,  | ) is proportional to 
 
   ̌             ̌  

  

 exp {   

  
      ̌             ̌   

   }       (3.11) 
 
The maximum likelihood function is ‘exact ’ if none of the terms are set towards 0 and is 
conditional if the insignificant terms are set to zero. The conditional likelihood function is useful 
because it results in a substantial reduction in the number of moving average parameters which 
are needed to be estimated, especially for stationary processes. The conditional methods often 
however, lead to the model producing unreliable and inefficient parameter estimates especially 
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for smaller samples and for the seasonal case (Hillmer   Tiao, 1979). The exact maximum 
likelihood estimation procedure, despite being more computationally burdensome reduces the 
bias in the model significantly by providing more accurate parameter estimates particularly 
when some of the zero’s of the determinantal polynomial |    | are close to the unit circle or 
if the eigenvalues of    are close to one (Tiao   Tsay, 1983). Reinsel (1997) recommended that 
the conditional maximum likelihood procedure should be used for the estimation in the initial 
stages of model building and the exact maximum likelihood procedure should be used for the 
estimation of the latter stages. This is because if the MA    process is invertible, then as   
tends towards infinity, the value of    will converge towards 0.  
 
In the case for the conditional likelihood procedure where     0,   can be partitioned as  
      

̿̿ ̿̿  u where  
 

  
̿̿̿̿  

[
 
 
 
     

  

  
     ]

 
 
 
 is a (       ) matrix where the column [

  

 
 
 

] has been  

 

removed from   ̌. 
 

u   [
  

 
  

]     (0,      ) is of dimension (      ). 

 
Recall       

̿̿̿̿  u . 
 
Thus  ( )     

̿̿̿̿   (u)      
̿̿̿̿    0 = 0 

 
The variance is var( )   var(   

̿̿̿̿  u)     
̿̿̿̿  (        

̿̿̿̿   . 
 
Thus   ~   (0,   ̌            ̌              (3.12) 
 

The likelihood function is calculated from (3.12) as 
 
    
̿̿̿̿           

̿̿̿̿   
  

 exp {   

  
         

̿̿ ̿̿            
̿̿̿̿         

 

     
̿̿̿̿  

  

         
  

    
̿̿̿̿   

  

 exp {    

  
  ´   

̿̿̿̿
  

 (     
  )  

̿̿̿̿
  

  } .     (3.13) 
 
The determinant of   

̿̿̿̿  is equal to 1 as the matrix   
̿̿̿̿  is lower triangular with identity matrices 

in the main diagonal. Thus (3.13) is simplified to 
 

     
  

 exp{   

 
     

̿̿̿̿
  

 (     
  )  

̿̿̿̿
  

   .        (3.14) 
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The inverse    

̿̿̿̿
  

 is 
 

  
̿̿̿̿

  
 [

      
       

    
       

]

  

 

 
 

           

[
 
 
 
 

      
        

   
      

   
     

        
         ]

 
 
 
 

 .        (3.15) 

 
The zero mean, invertible VMA    process                              can be 
written in infinite vector autoregression form by noting that             . Now from the 
use of successive recursions 
 
                      

                    
      

       .  
       . 
       . 
                          

              
          . 

   

Lütkepohl (2005) noted that if      then the value of       
  will converge towards 0. 

Thus       ∑       
     

 
    

or       ∑       
     

 
    .          (3.16) 

 

Equation (3.16) is of the form of an infinite VAR representation with             
 . Thus it 

follows that   
̿̿̿̿

  
 can be expressed as 

 

  
̿̿̿̿

  
  [

     

      

   
             

] . 

 

From the use of substitutions the VMA    process can be rewritten as 
 
     ∑      

    
               

         .         (3.17) 
 
Thus following the result in (3.15) the conditional likelihood function with        is 
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 (       )       
  

  exp   
  

 
∑   

 
          .        (3.18) 

 
The theory that has been used for estimating the VMA    process can be extended to that of 
the VMA   . As discussed earlier, the VMA    process with a zero mean is 
 
                          
  
An initial derivation of the likelihood function was proposed by Osborn (1977) and Hillmer and  
Tiao (1979) in which it was noted that    can be expressed as a function of the starting 
residuals             and observations          . 

 
By defining   ̈        ´       ´  and        ,        ,    can be expressed as a linear 

combination  of   ̈  and  . 
 
          ̈             (3.19) 
where   is of dimension           and   is of dimension           . 
 
The values of  ̈  are estimated from 
 
 ̈ ̂              

                                                                            (3.20) 
  
From the use of (3.19) and (3.20), the exact likelihood function for the VMA    process is 
 

                             |        |
  

   |               |
  

   
   exp{   

 
         ̈ ̂)             (        ̈ ̂) }.     (3.21) 

 
Hillmer and Tiao (1979) noted that the exact likelihood function is extremely difficult to 
compute when the order of   increases significantly. 
 
A similar procedure was adopted by Lütkepohl (2005). He used a partition similar to that used 
for the estimation of the VAR    model 
 

Partitioning   as,       ̌

[
 
 
 
 
    

 
  

 
  ]
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where   ̌   

[
 
 
 
 
 
             

           

    
 

         ]
 
 
 
 
 

 is a        (       matrix. 

  

The error vector  

[
 
 
 
 
    

 
  

 
  ]

 
 
 
 

    (0,        ). 

 
 

      ̌

[
 
 
 
 
    

 
  

 
  ]

 
 
 
 

 

 

 ( )       ̌

[
 
 
 
 
    

 
  

 
  ]

 
 
 
 

) 

 

              ̌ 

[
 
 
 
 
    

 
  

 
  ]

 
 
 
 

 

 
            .  
 

Var( )     ̌  

[
 
 
 
 
    

 
  

 
  ]

 
 
 
 

[
 
 
 
 
    

 
  

 
  ]

 
 
 
 
  

   ̌  

 
                ̌ (       )  ̌ . 
 
Thus      (0,   ̌ (       )  ̌  ).       (3.22) 
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Thus it follows from (3.22) that the exact likelihood function is 
 

                    ̌            ̌  
  

 exp {   

  
  ´   ̌            ̌   

   }. 
             
The conditional maximum likelihood function is obtained by regarding the values of  
              as fixed numbers. Thus the conditional likelihood function is 
 
 (   ...,   ,           

̿̿ ̿̿             
̿̿ ̿̿   

  

 exp {  

  
  ´    

̿̿ ̿̿            
̿̿ ̿̿       }   

  

  
̿̿ ̿̿  

[
 
 
 
 
 
 
 
 
        

      

      

   
        

  

          ]
 
 
 
 
 
 
 
 

 is a               matrix 

 
 (       ,             

̿̿ ̿̿  
  

         
  

    
̿̿ ̿̿   

  

 exp {   

  
      

̿̿ ̿̿    (      
  )  

̿̿ ̿̿
   

  }. 
              (3.23) 

Since   
̿̿ ̿̿  is lower triangular with identity matrices on its diagonal, its determinant will be one.  

 (3.23) can now be simplified to 
 

 (       ,           
  

  exp     

 
      

̿̿ ̿̿    (     
  )  

̿̿ ̿̿
  

         (3.24) 

                                      
  

  exp {   

 
∑    

 
     

    }   
 
The inverse of   

̿̿ ̿̿  is 
 

  
̿̿ ̿̿

  
    [

     

      

   
             

]   

 
The    coefficients are obtained from the VAR representation as has been explained for the 
VMA     process. Similarly, the conditional maximum likelihood approximation for VMA     
processes is precise for large sample sizes. 
 
There have been more recent developments with regards to estimation of the VMA model by 
methods other than that of maximum likelihood estimation. In particular, an estimator 
developed by Galbraith et al. (2002) used a VAR approximation in order to estimate the VMA 
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coefficient matrices. This method is more robust for the detection of misspecification than 
maximum likelihood estimation but it is biased for finite samples. 
 
 
3.6 Diagnostic Checking of a VMA    Model 
 
Testing for the adequacy of the VMA    model is similar to the testing for adequacy of a 
VAR    model. The residuals can be checked to see if they constitute white noise. The 

Portmanteau statistic        ∑     
    ̂       ̂      ̂        ̂        is used in a manner 

similar to that of the VAR    model with the notable exception being that the degrees of 
freedom used for    is now          As with the VAR    process, the Box-Ljung statistic can 
also be used to test the adequacy of the VMA    model. 
 
 

3.7 Forecasting VMA     Processes 
 
The forecasts for a VMA    model are similar to those performed for a univariate MA    

process.  It is important to note however that  (    )       for     and  (    )    for 

    
 
Consider the VMA    process, 
 
                        . 

 
The one step ahead forecast is 
 
 ̂                                                 

                                       . 

 
The two step ahead forecast is 
 
 ̂                                                  

                                          

 
In general for     
 
 ̂                                                       

                                             . 

 
 ̂        for     . 
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3.8 Conclusion 
 
The finite VMA    model is not as widely used as the VAR    model because it only includes 
lagged shocks of the variables and it is thus more difficult to determine the interrelationships 
amongst the variables unless the model is invertible. The estimation procedure is also more 
complicated than that of the VAR    model. 
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CHAPTER 4 

 

The Vector Autoregressive Moving Average 
      (VARMA      ) Model 
 
 
4.1 Introduction 
  
The VAR    model is used to determine the interdependence among two or more series 
however it does not take into account the effect of innovations or shocks at different time lags 
and neither is it very parsimonious. The VARMA      model which relates a group of variables 
   to past values of itself and that of other variables as well as past values of shocks of itself and 
other variables is discussed in the following section. 

 

 

4.2 Model Dynamics 
 
The VARMA model of autoregressive order   and moving average order   is represented as 
 
                                                   .      (4.1) 
 
The model (4.1) applies for all   greater than an initial time origin.    is a         vector, 
           are        autoregressive coefficient matrices,    is a      1  vector of constants 

and    is a vector white noise process with         and covariance matrix         ) =   .  
 
The model (4.1) can alternatively be expressed in backshift/lag order representation as 
 
    –                                          

      
  or                  . 
 
The diagonal elements of      and      are known as the autoregressive and moving average 
structures in each series respectively while the off diagonal elements of these matrices refer to 
the causal effects between the different pairs of series and shocks.  
 
Each element of    shows how a current value of a particular series is related to its own past 
values as well as the past values of the other series. If all the series are unrelated to each other 
then           and    will all be diagonal matrices and as a result, each individual series can 
be represented by an independent ARMA model (Montgomery   Moe, 2002). 
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Suppose there is bivariate series,    . If both of the matrices      and      are upper 
triangular, then it is said that the previous values of the second series      have an effect on 
the first series     , while there is no effect of the previous values of the    on    at the same 
time. If both the matrices      and      are instead lower triangular, then there is a 
unidirectional relationship among the series. Finally, there is a dynamic relationship among the 
series if the matrices             and    are all populated. 
 
The VARMA       process can be both stationary and invertible. It is stationary if all the roots 
of the determinantal polynomial |     | lie outside the unit circle and is invertible if all the 
roots of the determinantal polynomial |     | lie outside the unit circle. 
 
If the model (4.1) is invertible, then the VARMA      process can be written as 
 

        (         )
  

      ,  

 
where the coefficients of     are         matrices that are obtained from the autoregressive 
relation  
 

  – ∑    
  

      [                            (4.2) 
 
If equation (4.2) is multiplied from the left by     , then 
 

(           
 )   – ∑    

  
   )                           

with      for     . 
 
Thus values of    are obtained by comparing lag coefficients. In general the value of    is 
calculated from 
 

            ∑     
 
                     .                

 
Wei (2006) noted that since 

 

      
                (      is the adjoint matrix), then if the 

determinantal polynomial        is independent of  , the process can be represented as a 
finite VAR  ̈  model with  ̈          . 
 
If the VARMA      process is stationary, it can be written as  
 
                        

      (          )
  

             
         ∑       

 
    . 

 
The             matrices are obtained from the moving average relation  
 

                ∑    
  

             (4.3) 
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 If (4.3) is multiplied from the left by     , 
 

           ∑    
  

     . 
 
The values of    are obtained by comparing lag coefficients. In general the value of    is 
calculated from 
 

          ∑       
 
              with      for     and      for    . 

 
The process is a VMA  ̈  model of order at most  ̈          if the determinantal polynomial 
       is independent of   (Wei, 2006). 
 
In a univariate time series model, if the autoregressive and moving average polynomials are 
non-degenerate (i.e. if        1 and         ), then the orders of          and          will 
be infinite and a finite order AR    process will correspond to an infinite order moving average 
process while a finite MA    process will correspond to an infinite autoregressive process 
(Wei, 2006). In multivariate models this is not necessarily true since the inverse          can 
be written in the form of a determinant and an adjoint matrix as 
 
            

      
      . 

 
Since the order of       is a finite order autoregressive matrix polynomial, then conditional on 
the value of         being constant, the inverse matrix          will also have a finite order. 
 
 
4.3 Autocovariance and Autocorrelations 

 
An understanding of the autocovariances for the general VARMA       model can be gained by 
considering the simpler zero mean VARMA       model 
 
                        .           (4.4) 
 
Multiplying (4.4) by      and taking expectations gives 
 
 [    (          ) ]    [     (         ) ] .  
 
Note that  [         )  ]  
     [                       )(       )  ] 
                                                              .       (4.5) 
 
Since  (      )       (      )      and           ) = 0, 
 
 [         )   ]                      
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        (      )                 (4.6) 
 
      (                            (            (         )   ) 
                                    (      )        
                                                  
      (                                (                 (                                                                                      
                            
 
                           
 
The autocovariances of a stationary VARMA       process are found in a similar manner. Recall 
that this model is of the form  
 
                                                 .        (4.7) 
   
If (4.7) is multiplied by      and if expectations are taken,  
 
 (                   (                        (                    
 (            )        (              ) .   
 
Reinsel (1997) noted that this is equivalent to 
 

        ∑        
         Cov            ∑    (         )

 
       . 

 
From the use of the infinite moving average representation        ∑   

 
          , it then 

follows that 
 
                           . 
  
Thus the covariance for a VARMA       process is 
 

      ∑         
 
       ∑          

 
                                              .     (4.8) 

  
Since  (          )   0 for     , it follows that 
 
       ∑          

 
                                                                  .      (4.9) 

 
Using the relation that             , the first     equations are used to solve for the 
components            . This is followed by the covariances               being 
solved recursively (Brockwell   Davis, 1996). 
 
The autocorrelation matrices for the VARMA      process are obtained in a similar manner as 
that of the VAR and VMA processes, i.e. from the representation                      where 
  is a diagonal matrix with square roots of the diagonal elements of       on the diagonal. 
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4.4 Unique Representations of VARMA       Models 
 
4.4.1 Uniqueness 
 
The   dimensional zero mean stationary and invertible process VARMA       process is 
represented as 
 
   =        +                                          or 
                   .            (4.10) 
          

This standard model (4.10) is not always easy to identify because it is not unique. Box et al. 
(2008) noted that it is possible to have two VARMA      representations with different 
autoregressive and moving average operators  which result in the same infinite moving average 

representation of   , eg, the operator       ∑    
  

    can be expressed as      
                     *    where       is an autoregressive operator and  *    is a 
moving average operator.  
 
In order to further illustrate this property consider the example of the VMA    process given by 
Granger and Newbold (1986) where 
 
                              (4.11) 
          . 

 
This process (4.11) can be written in an equivalent VAR    form as 
 
                     

          . 

 
Thus, in order to ensure that the VARMA       representation is unique, there needs to be 
restrictions placed on the AR and MA operators. Dufour and Pelletier (2008) noted that for a 
given     ), there should be only one set of operators      and      which generates the 
same moving average representation. 
 
A more generalised model can be considered in practice, with the attachment of the non-
identity coefficient matrices    and    to    and   . Lütkepohl (2005) noted that this 
generalised VARMA       model with the matrices    and    attached has the following 
representation. 
 
              +                   +                        .     (4.12) 
 
This representation measures the instantaneous effects of some of the variables and assists in 
the development of unique structures for VARMA       models. (4.10) can be rewritten in the 
standard VARMA       representation as  
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(              )                  
           

                            (              
      .     (4.13) 

          
4.4.2 Unimodular and Left Coprime 
 
It is difficult to obtain a uniquely parameterised representation of a VARMA       if the 
operator has a finite order inverse because the multiplication of one operator may cancel out 
the effects of another operator even if the finite order of the process is maintained. Suppose 
     is an operator which is a common factor of both      and      but which does not 
change the structure of the process if cancelled out. If the operator      has a finite order 
inverse, then its determinant will be a nonzero constant and      will then be known as a 
unimodular operator (Lütkepohl, 2005). 
 
The operators      and      are defined as left coprime if they have a representation which 
has no common factors in the autoregressive and moving average parts except for the 
unimodular operators. This property results in no further cancellation. This concept can be 
further explained that if the matrices      and      are left coprime, then once the value of 
           is computed, the elements of      and      do cancel each other out. The 
representation            will then be said to be irreducible (Reinsel, 1997). If the 
parameters    and    are uniquely determined from the matrices    of the operator      in 
the infinite moving average representation, then the model is said to be identifiable (Reinsel, 
1997). 
 
Two representations of a process    are known as equivalent if they give rise to the same 
covariance matrix structure of a process (Reinsel, 1997). There are two forms of VARMA 
modelling which give rise to equivalent representations. These forms impose restrictions which 
are needed for uniqueness and are known as the final equations form and the echelon form. 

 
4.4.3 Final Equations Form Representation 
 
Under the assumption of a stationary, invertible VARMA    ) process                   with 
a zero mean, operators      and      that are left coprime and    which is nonsingular ,the 
VARMA representation is in final autoregressive equations form if         and          
     where        1                is a one dimensional scalar operator (Lütkepohl, 

2005). This model is identifiable if        

 
Dufour and Pelletier (2008) have argued that this representation is not advisable as the 
operator        contains lagged values of     but not lagged values of            . The 
interaction between different variables is modelled through the moving average part of the 
equation and often results in complications. The final equations representation also generally 
requires more parameters than the other representations in order for the same stochastic 
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process to be obtained which results in the final equations representation not being very 
efficient (Kascha, 2010). 
 
The VARMA      process has a final moving average representation if              where 
                     

   is a scalar polynomial. This representation has a closer 

resemblance to a finite order VAR than the final autoregressive equations form. The limitation 
of this representation is that the moving average operator is the same across all the equations 
which implies that the it has the potential to lead to a high moving average order which reduces 
the parsimony of the model (Dufour & Pelletier, 2008).  
 
A further representation for the VARMA      model is the diagonal moving average 
representation where the operator      is  
 
       diag [      ]               

  

          1                    
     0 and                   .     (4.14) 

 
This representation is easier to specify in that it is not necessary to change the off diagonal 
elements in the autoregressive and moving average operators. It is a natural extension of a VAR 
model and results in a more parsimonious representation (Dufour   Pelletier, 2008). For a 
stationary VARMA process of diagonal moving average representation, the polynomial 
operators      and      are uniquely identified if the matrices      and      are of the form  
 
                        and                     

         

where        diag                     and          1                    
       . 

 
In a similar manner, Dufour and Pelletier (2008) noted that the VARMA      model has a 
diagonal VAR representation if       diag                         where 

                           
                         . 

 
4.4.4 Echelon Form Representation 
 
The VARMA      representation (4.12) is in echelon form if the lag operators        [       ] 
            and        |       |             are left coprime and if the operators in the 
 th row of      and      ie                 and                 are of degree 

   (Lütkepohl, 2005). 
 
This form imposes the following restrictions  
 
             ∑       

                                                   
  
                

 
             ∑       

   
                                                                     

 
         ∑       

   
                                                                         .     (4.15) 
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The row degrees             are known as the Kronecker indices and are unique for a given 
VARMA      process (Box et al., 2008). These Kronecker indices are the maximum row degrees 
of each equation in a VARMA model and are the maximum degree of both the polynomials 
     and      (Lütkepohl & Poskitt, 1996). The number of Kronecker indices present in the 
model is the same as the dimension of the process. The sum of these Kronecker indices ∑   

 
    

is known as the McMillan degree and is interpreted as the number of independent linear 
combinations of the present and past vectors           required to optimally predict all of the 
future values within the ARMA structure (Box et al., 2008). The McMillan degree is also a 
measure of the overall complexity of the VARMA      model (Kascha, 2010).  
 
The McMillan degree can also be computed from the matrix    below  
 

    

[
 
 
 
             

              

   
                  ]

 
 
 
 

 
   is known as the Hankel matrix and is of dimension       . The rank of    is the McMillan 
degree (Tsay, 1989).    will have a finite VARMA      representation if and only if rank     is 
finite (Reinsel, 1997). 
 
The values of     in the operator        are calculated from the following relation 
 

    {
                                                                                     

                                                                                           
 .    

 
The term     represents the number of free coefficients in        i.e. the number of 
coefficients still required to be estimated in each operator         for     of      (Dias   
Kapetanios, 2011) while     is the number of free coefficients on the  th diagonal of      as 
well as the order of the polynomials on the corresponding row of      (Dufour   Jouini, 2008). 
The matrix that is formed by the Kronecker indices [   ]            implies that there are 
∑ ∑    

 
   

 
    free autoregressive coefficients and  ∑   

 
    free moving average coefficients 

while the maximum number of freely varying parameters in the model is   ∑    
 
   (Lütkepohl 

  Poskitt, 1996). 
 
An echelon by definition is the certain positioning of an array in the form of steps and is the 
positioning of the nonzero parameters in this context. The position of the freely varying 
parameters is dependent when      . The Kronecker indices impose a number of zero 
restrictions on the coefficient matrices which is sufficient for the echelon form model to be 
unique (Lütkepohl   Claessen, 1997). 
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The echelon form model is complicated because the choice of     depends on the diagonal 
   . The difficulties are also compounded due to the summation subscript of            
in the operator        (Dufour   Pelletier, 2008). 
 
Despite the echelon form representation being more complicated, it is usually preferred to the 
final equations form as it involves relatively fewer free parameters and is therefore more 
parsimonious. The computational difficulties which occur when maximum likelihood estimation 
is used are greatly reduced due to the parsimony in the model (Lütkepohl, 2005). 

 
 

4.5 Specification of VARMA      Models 
 
As with VAR    and VMA    models it is of prime importance to correctly specify the values of 
  and   as the number of parameters increase dramatically as   and   get larger which in turn 
makes statistical analysis difficult. Unlike for univariate processes, there is no specific method 
to specify vector ARMA      models. 
 
It is difficult to read or to detect the order of the VARMA      model from the autocorrelation 
function, the partial autocorrelation function and the cross correlation function especially if 
there are more than two time series used because there will be a large number of parameters 
involved (Lütkepohl   Poskitt, 1996). Grubb (1992) noted that the identification of the cut offs 
of these functions can be subjective and several different models might have to be fitted until a 
suitable model is found. It is also important to note that when trying to determine whether a 
VARMA      model is parsimonious, it is not always sufficient that only the minimal orders are 
chosen for the autoregressive and moving average parameters (Lütkepohl   Poskitt, 1996). 
There are various methods for specifying VARMA      models, each with its own set of 
advantages and disadvantages. In the following section, methods of specifying the two main 
forms of VARMA modelling i.e. the final equations form and the echelon form as well as an 
alternate method of specifying the VARMA      model known as the Scalar Component 
Method will be discussed. 
 

4.5.1 Specification of the Final Equations Form 
 

In the specification of the final autoregressive equations form, the main aim is to find the 
orders of   and   in the equation 
 
              .            (4.16) 
 
The specification procedure described below was discussed in detail by Lütkepohl (2005). The 
mean   is assumed to have been removed prior to the specification of this stage. 
                is a   dimensional system,                           is a one 

dimensional scalar operator and                     
 .  
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This representation (4.16), i.e.                implies that each individual component has 

the univariate ARIMA representation                ̅̅ ̅̅ ̅̅ ̅               where     is univariate 

white noise and       ̅̅ ̅̅ ̅̅ ̅ is an operator which has a maximum degree of  . This means that each 
individual component series             will have the same autoregressive operator while 
the degree of the moving average operator will be at most  . Thus, in order for the final 
equations representation to be specified, it is important that each of the univariate 
models                    are specified first. The operators       and       are defined as 
 
                         

     

                     
    . 

 
Following this, a common      operator needs to be determined. This is performed by taking 
the product of all the individual AR polynomials                     . This operator      

has a degree of     ∑   
 
   .  

 
The moving average operator      ̅̅ ̅̅ ̅̅ ̅        ∏       

        which is of degree    ∑   
 
    

is specified next. The maximum degree of all the individual operators is chosen as   which is the 
degree of the joint moving average operator. If there are common factors present in       

then the degree of      will be less than ∑   
 
    and the degree of the joint moving average 

operator will be less than the maximum of     ∑   
 
    . 

 
The final autoregressive equations form leads to VARMA models which contain a large number 
of parameters. This can result in imprecise parameter estimates (Dufour   Pelletier, 2002). 
Restrictions can be imposed on the autoregressive and moving average operators 
      and       but this will make the modelling procedure very tedious. 
 

4.5.2 Specification of Echelon Forms 
 
The main purpose of specifying a   dimensional echelon form representation of dimension   is 
to determine the   Kronecker indices and to impose further restrictions on the parameters 
(Lütkepohl, 2005). Reinsel (1997) noted that it is the knowledge of the Kronecker indices that is 
used to locate a special structure from amongst the autoregressive and moving average 
parameter matrices which in turn leads to specification of echelon form VARMA models. Dufour 
and Pelletier (2002) noted that the choice of lag orders of   and   in echelon form is 
significantly more complicated in the VARMA case than that of the univariate ARMA case. This 
is because the number of parameters is higher and the diagonal elements need to be 
considered when     is chosen. The summation subscript in the operator        is different 
across the rows and columns which further complicates the representation (Dufour   Pelletier, 
2008). 
 
If the data generating process of a   dimensional multivariate time series has an echelon 
VARMA      representation with                    (where      is a number chosen 
prior to specification), then it is possible to calculate the maximum likelihood estimates for all 
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of the Kronecker indices. The estimates   ̂      ̂   which optimise the maximum log likelihood 
function are chosen. This procedure requires many computations and is generally not used. 
However, the underlying theory is often used as the basis for other methods. 
 
Suppose the maximum likelihood estimator of the white noise residual covariance matrix is 

denoted as   ̃  ̂      ̂  . A possible criterion Cr   ̂      ̂   which can be minimised over all 
sets of Kronecker indices is 
 

Cr   ̂      ̂        |   ̃  ̂      ̂   |   
     ̂     ̂   

 
.        (4.17) 

 
   is a function of size   and    ̂      ̂   refers to the number of coefficient parameters which 
are implied by   in the echelon form (Dufour & Jouini, 2008). Since only the maximum of the 

log likelihood (or   |   ̃  ̂      ̂   |) is required, the problem of overspecification is greatly 
reduced. The criterion Cr   ̂      ̂   is a consistent estimator for a set of Kronecker indices 

  ̂      ̂    as     0 and  
  

 
  0 when    . As discussed previously for VAR processes, the 

BIC is a strongly consistent criterion, the HQ criterion is consistent and the AIC criterion is not 
consistent. A modification to the AIC criterion for echelon form VARMA models has recently 
been developed by Boubacar Mainassara (2010). This criterion led to an improvement in the 
consistency of the AIC particularly in the ‘weak case’ (where    is not assumed to be not 
identically and independently distributed). 
 
The procedure using information criteria has a significant drawback in that the log likelihood 

estimator    |   ̃  ̂      ̂  | needs to be maximised a fair number of times since it is nonlinear 
in the parameters. This means that iterative optimisation procedures which are time consuming 
need to be employed. Taking this into account, a 5 step procedure using linear least squares 
estimation was proposed for univariate models by Hannan and Rissanen (1982) and was 
extended to the vector case by Lütkepohl and Poskitt (1996). The procedure consists of the 
following steps 
 

1. Under the assumption that the VARMA       model is stationary and invertible, the first 
step is to fit a VAR process of order    to the data and obtain the estimated residual 

vectors   ̂               from the relation    ̂          ∑   
  
       

  . The 

choice of    can be derived from using a suitable criterion such as the AIC and should 
ideally be higher than the largest Kronecker index but at the same time not be 
exceptionally large (Hannan   Rissanen, 1982). Lütkepohl and Poskitt (1996) suggested 

that the value of    should be between ln    and √  . There are also criteria which 
have been developed for this specific purpose such as that which has recently been 
developed by Kascha and Trenkler (2011). In this method the value of    is chosen from 
    max(max           1,            where    and    are the upper bounds for   
and   respectively. The BIC criterion should be treated with caution for this stage as it is 
known to select a very small lag order for finite samples. These estimated residuals 
  ̂     will be good estimates of the true residuals if    approaches infinity as      
(Bartel   Lütkepohl, 1998). 
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2. In this stage, linear least squares estimation is used to fit echelon VARMA models under 

different sets of Kronecker indices           where      and   ̂     are used as the 
regressor variables (Box et al., 2008). The optimal model is selected on the basis of 
model criteria such as the AIC, BIC or HQ. Athanasopoulos, Poskitt and Vahid (2012) 
recommend from the use of Monte Carlo simulation experiments that the BIC is known 
to outperform the AIC for larger samples and HQ while for smaller samples, the HQ 
criterion generally outperforms the AIC and the BIC.  

 
The minimum information criterion (MINIC) is a criterion similar to the BIC for VARMA 
model and is defined as  

 

MINIC      |  ̃       |               

 
  

 

   ̃        denotes the estimated error covariance matrix. Granger and Newbold 
(1986) suggested that various combinations of         should be tried and the order 
        which corresponds to the minimum value of the MINIC criterion is chosen as 
the correct order for      .  

 
There has also been a recent method developed by Dufour and Pelletier (2008) which 
involves the assumption of a diagonal moving average equations form for 
                . This is done by regressing 

 

                 ∑ ∑      
 
   

  
                 ∑      

  
    ̂      . 

 
The criterion used is  

 

Duf-Pe      |   ̃(       |   
           

 
 ,        (4.18) 

 
where    is an integer which is generally set to 0.2. Kascha and Trenkler (2011) used a 
similar criterion defined as  

 

KRA-TRE      |  ̃       |   
                     

            
 .      (4.19) 

 
As with the MINIC criterion, the order       which is selected is that which corresponds 
to the minimum value of the criteria (4.18) and (4.19). 
 

3. The optimum echelon form VARMA model selected in stage 2 can be re-estimated using 
maximum likelihood estimation in order to obtain efficient estimates of the parameters. 
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4.  The parameters must now be tested for significance by using   ratios or by performing 
   tests. Zero restrictions should be placed on the coefficients if necessary in order to 
obtain a more parsimonious model. 

 
5. The model should now be tested for adequacy by performing a residual analysis and 

checking for serial correlation. 
 

The above procedure is very complicated and time consuming. The second step in particular is 
known to be very tedious especially if the dimension   of the system or the maximum 
Kronecker index    is very large. There have been various methods proposed in order to 
simplify this second stage. Hannan and Kavaliers (1984) proposed a method which carries the 
initial assumption that all of the Kronecker indices are identical. The last Kronecker index    is 
varied while the rest of the indices are fixed. The same procedure is repeated with      and so 
forth.  
    
Dufour and Jouini (2008) suggested a modification to stage 2 which involves the formulation of 
a restriction matrix for all possible sets of Kronecker indices in any dimension of the VARMA 
process. This procedure improves accuracy while reduces over parameterisation at the same 
time. 
 

4.5.3 Identification using Scalar Components 
 
There is another method of identifying VARMA      models which is known as the scalar 
component method (SCM). This method was first proposed by Tiao and Tsay (1989) and was 
further developed by Athanasopoulos and Vahid (2006). This involves checking to observe that 
if there are any linear combinations of the variables which depend on fewer than   
autoregressive lags and   moving average lags. These linear combinations should have 
consistent but not necessarily efficient estimates. The remaining parameters of the structure 
are then estimated conditional on the estimates of the linear combinations. The choice of   and 
  (the overall tentative order) is based on the zero sample canonical correlations between 
               and         ,… ,            for combinations of   and   (Athanasopoulos   

Vahid, 2008). The smallest integer values for   and  , for which there are   zero canonical 
correlations are the ones that identify the orders of   and   (Reinsel, 1997). 
 
For the   dimensional VARMA model described in (4.1), the linear combination      is said to 
follow a SCM          process if  
 
     

  0 for 0           

     
   0 for 0          

         0 for                    
          0 for                             (4.20) 
(Tiao   Tsay, 1989) . 
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The random variable      is dependent only on the lags 1 to    of all the variables and the lags 
1 to    of the innovations of the system (Athanasopoulos   Vahid, 2006). The process starts 
with the SCM      model              and   linear combinations of orders           
      are sought in such a way that the orders       are at a minimum (Reinsel 1997). 
Suppose that              ´ where         are the coefficients of the various linear 
combinations. A consistent estimator for   is constructed by using the estimated canonical 
covariates which correspond to the canonical correlations that are not significant. The resulting 
model if (4.1) is rotated by   is 
 
                                              

           ̌         ̌       ̌   ̌  ̌        ̌  ̌   ,      (4.21) 

 

where  ̌      ̌       and  ̌      
  

 . 
 
The transformation (4.21) implies that there are fewer estimated parameters which results in a 
more parsimonious model (Grubb, 1992). Tsay (1989) noted that there are still redundant 
parameters present which occur if the model of a SCM is embedded in another SCM. Tsay 
(1989) thus proposed a ‘rule of elimination’ where the number of redundant parameters     is 
calculated from 
 
   ∑          

                           (4.22) 
 
The value of    can be used to calculate the total number of parameters needed to be 
estimated in the model. This is defined as 
 

 ∑   
          ∑   

       
      

 
 .         (4.23) 

 
This procedure was once again extended by Athanasopoulos and Vahid (2006) who suggested 
that further restrictions should be placed on   in order for the number of free parameters to be 
determined. In this instance, the restrictions which account for the redundant parameters are 
set on the moving average rather than the autoregressive coefficients. This procedure leads to 
a uniquely identified VARMA representation which can be estimated by maximum likelihood 
estimation. 
 
The scalar component method generally requires more computations than other methods of 
specification which may lead to difficulties due to the evaluation of a large number of 
eigenvalues (Dufour & Jouini, 2008). Lütkepohl and Poskitt (1996) noted that unlike the echelon 
form representation, the scalar component method can be problematic with regards to the 
asymptotic inference if the transformation   is data dependent. Athanasopoulos et al. (2012) 
found that scalar component models have a better forecasting performance than echelon form 
models. They are also more flexible because the maximum autoregressive order does not have 
to be the same as that of the moving average component. The echelon form also demonstrated 
signs of being over parameterised when compared to scalar component models. The echelon 
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form models are however, more practical for application purposes and as a result, further 
research needs to be conducted in order for more refined echelon form models to be obtained 
(Athanasopoulos et al., 2012). 
 
 

4.6 Estimation of the VARMA      Model 
 
The methodology of the maximum likelihood estimation procedure which was discussed for the 
VMA    model can be extended to the VARMA      model. 
 
4.6.1 Maximum Likelihood Estimation of the VARMA      Model  
 

The easiest case of the VARMA       representation is the stationary and invertible VARMA 
      representation with a zero mean that is of the following form and will be considered first. 
The estimation procedure is based on the method used by Lütkepohl (2005).  
 
   =         +    +              
 

Under the assumption of a sample of size  ,   ,…,    can be represented as 
 
                      
                     
 
. 
. 
. 
. 
                         .          (4.24) 
 
(4.24) can be expressed in matrix form as 
 

  [

  

 
  

]  [

     

 
 
 

] =   ̌ [

  

 
  

] , 
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where      

[
 
 
 
 
 
 
 
 
 

      

        

      

    
    
      
    
     
         ]

 
 
 
 
 
 
 
 
 

 and 

 

  ̌   

(

 

       

   

   
      )

  as was previously discussed for the VMA    process. 

 
 

Now since [
  

 
  

] is a white noise process with a zero mean and a variance             
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]     
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] 

 

Thus [

  

 
  

]        
  [

    

 
 
 

] ,   
    ̌ (          ̌    

  ) .      (4.25) 

 
From the use of (4.25), the exact likelihood function is of the form 
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]                 (4.26) 

 
Since       , 
 

 (     ,        )      ̌            ̌  
  

          
                                                           

     exp{   

  
 (    [

     

 
 
 

]      ̌             ̌   
       [

     

 
 
 

]               

 
The conditional likelihood can be found by setting          0. Lütkepohl (2005) noted that  
the likelihood function is  
 

 (                 
  

  exp{   

 
       

̿̿̿̿
  

   (     
  )  

̿̿̿̿
  

      .     (4.27) 
 
Recall that a zero mean VARMA process can be represented in VAR form as 
 

     ∑       
 
    where            ∑     

 
                               

 
In a stationary and invertible zero mean VARMA       process, the summation operator is 0, as 
the lower bound in this operator exceeds the upper bound 
 
Thus           

                                  
  

         . 
         . 
         . 

                         
     

       . 
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The    coefficients can be used to obtain       ∑       
   
    and thus (4.27) can 

alternatively be represented as  
 
 (           )            exp{   

 
∑    

 
     

    } .      
 
The above discussion can be generalised for the zero mean stationary and invertible 
VARMA       case i.e. 
 
             +                    +                        .      (4.28) 

              
The process (4.28) can be rearranged as follows, 
 

  [

  

 
  

]    

[
 
 
 
 
       

 
    

 
 ]

 
 
 
 

      ̌

(

 
 
 

     

 
  

  

 
  )

 
 
 

,  

 

where       
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 . 

 
The matrix   ̌ is defined in the same way as the VMA     process.  

 

Let    
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, it follows that 
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Thus   ~  (  
       

    ̌ (            ̌      ).       (4.29) 
 
The exact likelihood function is 

 (           ,                )       
    ̌            ̌       

  

                                                  

  exp {   

  
   ´     

             ̌             ̌  
  ]         

  )}.     (4.30) 
 
These equations can be solved from the use of iterative methods discussed in Appendix A. 
 
The conditional likelihood function is obtained by assuming                      

  . 
 
Thus 

                                          
 

 
∑     

     
 
    . 

 
4.6.2 Least Squares Estimation for the VARMA      Model  
 
The method of maximum likelihood estimation is very effective when used for small sample 
sizes. However, for larger samples its effectiveness is very much diminished. There has 
unfortunately not been much research published for the estimation procedures regarding 
larger sample sizes. In addition, Kascha (2010) noted that maximum likelihood estimation can 
have various numerical problems. There has recently been an iterative least squares estimation 
procedure proposed by Dias and Kapetanios (2011) where the matrices    and    are not 
identity matrices. This model is of the form 
 
                                                     .     (4.31) 
 
The VARMA      model (4.31) in this instance is assumed to be stationary, invertible and 
uniquely defined as in the echelon form  
 
(4.31) can be rearranged as 
  
            ,             (4.32) 
 
where   = (   ,…,   ) is of dimension          
 
               is of dimension          
 
    [               , (     )            ] is the       (        vector of 

parameters. 
 
     [                        ]. 
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    [        ] is the   (     )      matrix of regressors. 
 
If the vec operator is applied to (4.35), then 
 
    (Y)   ( ′          ′)                  (4.33) 
 
Suppose there is now an echelon form transformation, i.e. a transformation in which some of 
the elements in the vector of parameters,   are equated towards  . This implies that       
and   will now be of dimension               . In this case,   can be allowed to be 
written as a linear combination of a matrix and a vector R  where R is a matrix consisting of 0’s 
and ones implied by this transformation and is of dimension                       
    .                  ,             is a                  matrix which contains all 

of the            parameters that are required to be estimated. Following this, equation 
(4.33) can be rewritten as  
 
          ( ′                            (4.34) 
 
There is still a limitation as   contains values of the error terms which are not fully observed. A 

consistent estimator  ̂   thus needs to be computed. This is performed by expressing the 
VARMA      model in a VAR representation as the model is assumed to be invertible. 
 
 ̂           ∑   

 
                  (4.35) 

 
From this, the new matrix of regressors is obtained by plugging  ̂     into the original matrix     

The resulting matrix of regressors is    . 
 
The initial estimator for   ,  ̂ 

  is  
 
 ̂ 

                                     )     ( ) .       (4.36) 
   
The parameter matrices,  ̂   ,…, ̂    ,  ̂       ̂    can now be computed recursively from a 

new set of residuals  ̂     where the first subscript represents the iteration number and the 

second subscript denotes the lag order. 
 
 ̂         ̂   

  
 ̂           ̂   

  
 ̂         ̂   

  
 ̂    ̂        

              ̂   
  

 ̂    ̂      .           (4.37) 
 
In general, the estimator at the  th iteration,  ̂ 

  is  
 
 ̂ 

                                             )     (Y) 
 
 ̂          ̂   

  
 ̂            ̂   

  
 ̂          ̂   

  
 ̂    ̂        

            ̂   
  

 ̂    ̂      .            (4.38) 
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The  th iteration in which the vector of parameter estimated converges, i.e.    ̂       ̂       
(a pre-specified constant) terminates the procedure. The least squares estimates at that stage 
are taken as  ̂ 

 . Dias and Kapetanios (2011) noted that this estimator is feasible for higher 

dimensional models in contrast to that of maximum likelihood estimation. 
 
 
 
4.7 Diagnostic Checking of the VARMA      Model 
 
Diagnostic checking for the VARMA       model is very similar to that of the VAR     and 
VMA     models in that the model is suitable if the residuals are not serially correlated. Tests 
such as the Portmanteau test are applicable for the VARMA model as well. 
 

4.7.1 Portmanteau Test 
 
Lütkepohl (2005) noted that the Portmanteau test for the VARMA       model is similar to the 

VAR     case with the exception being that the standard errors are approximated by 
 

√ 
 . 

 

The Box-Ljung statistic,   ̃    ∑         
       ̂       ̂      ̂        ̂       is also 

applicable where       is derived from the estimated residuals of the VARMA       model. The 

statistic   ̃ follows a    distribution with           degrees of freedom. The fitted model 

is inadequate for particularly large values of   ̃. If there are constraints imposed on the 

parameter coefficients, then   ̃ will follow a    distribution with        degrees of freedom 
and where   is the number of unrestricted parameters which are estimated in the model (Box 
et al, 2008). 
 

4.7.2 Other Methods of Diagnostic Checking 
 
A final diagnostic check can be performed by over fitting the model on purpose. A VARMA 
        or VARMA        model is fitted and successively reduced by restricting all of the 
parameters which are not significant to  . The alternate hypothesis when testing for a VARMA 
        model is                 while the alternative hypothesis when testing for a 

VARMA        model is               . This method makes use of the “score” 

vector as the test statistic, i.e. the vector of first order partial derivatives with respect to the 
model parameters of the alternative model which is evaluated at the maximum likelihood 
estimates of the original model. This score statistic has a    distribution with    degrees of 
freedom. The null hypothesis is rejected for particularly large values of this statistic. It is 
important to remember for this case that a rejection of the null hypothesis does not mean that 
the alternative hypothesis is accepted; rather it means that the model fitted is inadequate 
(Reinsel, 1997).   
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4.8 Forecasting the VARMA      Model 
 
The concept of forecasting for the VARMA       model is similar to that performed for the VAR 
    model. Consider the vector ARMA       model, 
 
   =    ∑   

 
             ∑   

 
        ,      (4.39) 

 
where the intercept     (               )  . 
  
It is necessary to assume that the components of the vector    are mutually independent of 
each other (Box et al., 2008). If conditional expectations are applied to both sides of the 
relation (4.39), then by making use of the property that since the future white noise process 
         is independent of the past and present values   ,          , the value of  (    | 
  ,       ) is  . 
 
The minimum mean square error predictor of the   step ahead forecast      is 
 
 ̂          (        ,         )  
                    ̂              ̂                         (      ). (4.40) 
 
          ̂             for     and              for     (Wei, 2006). 

 
If    , then (4.40) becomes 
 
 ̂             ̂              ̂                (4.41) 

 
Lütkepohl (2005) noted that the forecast at period    ̂     can also be calculated by using the 
infinite VAR representation as  ̂      ∑   

 
    ̂      .  

 
 ̂     can also be obtained from the infinite VMA representation. The future value      can be 
expressed in this form as       ∑          

 
   . Since                         , the 

minimum mean square error predictor is  ̂      ∑          
 
   (Box et al., 2008). The vector 

of forecasting errors,       ̂     is normally distributed with a zero mean and covariance 

matrix  ∑       
   
     (Tiao   Tsay, 1983). 

 
The white noise sequence                    of the model (4.41) needs to be generated 
recursively by using the past values         , ... from the equation 
 
         ∑   

 
         ∑   

 
        .         (4.42) 

 
This sequence can be obtained by using suitable starting values such as           and 

            (Box et al., 2008). 
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4.9 Conclusion 
 
Although the VAR    model can be used to determine the interdependence among two or 
more series, it does not take into account the effect of innovations or shocks at different time 
lags and neither is it very parsimonious. The VMA    model on the other hand does take into 
account the various shocks and innovations at different time periods but cannot be used to 
determine the relationships among the various time series at different time periods 
 
The VARMA      model produces the most precise estimates and the best forecasts of all of 
the multivariate time series models. It is once again not as widely used as the VAR    model, as 
the estimation procedure is complicated and tedious. The specification procedure can also be 
problematic because the standard VARMA      model is not unique. Further research needs to 
be undertaken in order for the model building procedure to be simplified. 
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CHAPTER 5 

 

Non-stationary Models 
 
 
As defined in chapter one, a process is stationary if the covariance does not depend on time   
but is instead dependent on the time interval  . In practice however, it is quite common for a 
time series to have variations and trends in the data. In this chapter the case in which there are 
unit roots present (i.e. the non-stationary case) will be discussed. The VMA model will not be 
discussed in this chapter as it is assumed to be always stationary. 
 
 

5.1 The Integrated Process 
 
A process is known as an integrated process when a unit root has an effect on the 
autoregressive operator. This occurs when the mean and variance of a process is not stationary. 
If the variation is very unpredictable, there is said to be a stochastic trend present while if the 
trends are more predictable, it is said that there is a deterministic term present (Maddala   Kim 
1999). As has been stated previously, a VAR     or VARMA       process is stationary if the 
determinant of                     has no roots in or outside a unit circle. Consider the 

case of univariate AR    model,                which is stationary if 
 
1          for       1, |     1 .            (5.1) 
 
In the borderline case where     1, equation (5.1) becomes 
 
            .             (5.2) 
 
This model (5.2) is known as the AR    model, with a unit root present because the root of the 
AR    equation is equal to one (Maddala   Kim, 1999). It is also more commonly known in the 
literature as a random walk model. By repeat substitution this model (5.2) can be expressed as 
the sum of all the disturbances and innovations (Lütkepohl, 2005). 
 
             
                          
                             
      . 
      . 
      . 
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            ∑   
 
    .             (5.3) 

 
If there is a nonzero constant term in (5.3), then the model is of the form                
and will be known as a random walk with drift. This model now has a deterministic trend in the 
mean. 
 
Lütkepohl (2005) showed that the mean of the random walk model is            and the 
variance is var          

 . In contrast to (5.1) in which the variance converges to a constant, 
the variance of the random walk model increases as     (Maddala   Kim, 1999). The 
correlation between    and      is 
 

Corr           
 [(∑   

 
   )( ∑   

   
   )]

√    
        

  
             (5.4) 

   
for any integer    0. Now the value of (5.4) converges towards one as    . This 
demonstrates that the correlation between    and     is strong even if the time interval   is 
large. 
 
A similar scenario to that of a random walk can also occur for higher order processes. Consider 
the univariate AR    model, 
 
                          .           (5.5) 

 
If there is just one unit root in the process (5.5), then the behaviour will be similar to that of a 
random walk i.e. the variance increases linearly and the correlation between the variables is 
strong when they are   time periods apart. If however, one of the roots is deep inside the unit 
circle (significantly less than one), then the variances will diverge towards infinity at a 
significantly quicker rate (Lütkepohl, 2005). 
 
A non-stationary time series can be made stationary by either transforming the data (by using a 
log transform or root transformation) or by differencing the data. Differencing is obtained by 
subtracting the previous value      from the current value    or by multiplying    by      
      where   is the lag operator. 
 
If a non-stationary univariate process    has its      th difference non-stationary but if its 

 th difference,          is stationary, then    is said to be integrated of order   or     (Wei, 
2006). A process which is      can be made stationary by taking the first differences of the 
original process. The process is integrated of order   (     ) once it has reached stationarity. 
 
The following properties for integrated variables were noted by Engle and Granger (1987) 
 
If    is an      variable with a mean of  , then the variance of    will be finite, a shock will only 
have a temporary effect on the value of    and the autocorrelations will decrease quickly in 
magnitude. The result of this is that the sum of these autocorrelations will always be finite. 
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On the contrary if           with a zero mean, then the variance of    will diverge towards 
infinity as    , and an innovation will have a permanent effect on the value of   . The 
autocorrelations for this case converge towards 1 as      . 
 
 

5.2 The Integrated Variable – Vector Case 
 
The theory used to describe the integrated variable for univariate models can also be extended 
to that of multivariate models by considering a   dimensional VAR    process with a unit root 
and without a deterministic term, 
 
              .             (5.6) 
 
For the process (5.6) to be stationary, it has to be differenced. The differencing operator 
 

        [

        

          

        

] was used by Wei (1990) in order to  

 
difference the process where           are nonnegative integers. 
 
Lütkepohl (2005) used a different approach by proposing a differencing stage in which each 
component of    is differenced by the same operator. If the left hand side of (5.6) is multiplied 
by the adjoint of     ,   ( ) 
 
             ( )    .             (5.7) 
 
All of the components of the autoregressive process (5.7) have the same operator, i.e. the 
determinant       . The process (5.7) can thus be said to have been written in a similar 
manner as that of a univariate process. Now supposing that        has   unit roots, then the 
autoregressive operator can now be rewritten as 
 
|    |                                         (5.8) 
 
The process      is a stationary process. Thus the relation (5.8) shows that each component of 
(5.7) can be made stationary upon differencing. This implies that a VAR    process is non-
stationary only because of the presence of unit roots. However, this does not always mean that 
a process with   unit roots should be differenced   times as there might be common factors 
present which means that some terms may cancel each other out. 
 
Thus it is not always suitable to fit multivariate VAR models after differencing all of the 
component series as there is a possibility of over differencing which leads to complications in 
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model fitting. These complications include model representations which are noninvertible (Box 
et al., 2008). Chatfield (2004) noted that this is a problem particularly if different degrees of 
differencing are used for each individual series. Differencing the series can also result in a rank 
deficiency in the matrix coefficients (Saidi, 2007). This happens particularly in the case of 
cointegration which will be discussed later in chapter 5.4. 
 
 

5.3 Testing for Non-stationarity : The Dickey - Fuller Test 
 
In most analyses, it is unknown whether the variables are integrated or stationary. Pre-tests for 
unit roots are often required in order to determine whether the series are stationary or not 
(Toda   Yamamoto, 1995). The most widely used and well established test for non-stationarity 
in a series is the augmented Dickey - Fuller test. It is an extension of the Dickey - Fuller test with 
the exception that the autocorrelation in a time series is removed prior to the testing for a unit 
root by the addition of extra lags of the dependent variable. 
 
The model used when testing the null hypothesis of non-stationarity against the alternative 
that a series is stationary is 
 
                                

               
              .      (5.9) 

 
   in this model represents a univariate time series where               refers to the 
differenced series. The term    is a constant while    is the coefficient of a time trend. The 
model (5.9) can be extended to allow for moving average terms in   . 
 
There are 3 cases to consider when testing for a unit root: 
 
Testing for a unit root with drift and a deterministic time trend 
                                

               
              .     (5.10) 

 
Testing for a unit root with drift        
                          

               
                     (5.11) 

 
Testing for a unit root with zero mean (          
                      

               
                     (5.12) 

 
The tests are carried out by testing the null hypothesis, 
   :     0 (There is a unit root present) 
   :    0 (There are no unit roots present). 
 

The test statistic is computed as  
 ̂

    ̂ 
 and is compared with the critical values of a Dickey - 

Fuller table. These critical values are functions of Brownian motion and are different for each of 
the models (5.10), (5.11) and (5.12). If the test statistic is less than the critical value, then the 
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null hypothesis is rejected and it can thus be concluded that there is no unit root present and 
hence the series is stationary. Therefore the insignificant parameters of unit root tests will be 
revealed if lagged values are included in the regression of (5.9). The test statistic used in SAS is 
known as the  (tau) statistic. 
 
An additional modification of the tests occurs when the estimator  ̂ is such that    ̂     has a 
large sample distribution but is not stationary. The test in this instance is known as the 
normalised bias (studentised) statistic and is known in SAS by the symbol   (rho). 

 
 

5.4 Cointegration and the VECM Model 
 
The concept of cointegration was defined by Engle and Granger (1987) as “If each element of a 
vector time series    achieves stationarity after differencing   times but if a linear combination, 
say Ω    of all of the unit root series is stationary (i.e. integrated of order 0), then there is 
cointegration present in the model. Ω is known as the cointegrating vector”. This is the same as 
saying that cointegration occurs if there exists a linear combination of various individual non-
stationary time series which result in a single stationary time series. The individual components 
of    can be integrated many times however for simplicity it is usually assumed that each series 
is      (unless otherwise specified by a rank test). The number of unit roots in a cointegrated 
time series is always less than the dimension of the process. Thus for a   dimensional unit root 
non-stationary time series there can only be cointegration present if there are less than   unit 
roots in the system. 
 
The concept of cointegration is concerned with the long term behaviour amongst the 
components of partially non-stationary time series i.e. if    is non-stationary where the 
determinantal polynomial |          has  *     (where   is the full rank of the cointegrating 
matrix) unit roots which are equal to one and where all of the other are roots outside the unit 
circle. This is an indication of a feature known as a common trend (the trend occurs 
simultaneously for all the series) (Ahn, 1997). Thus cointegration can be seen as the grouping of 
a few univariate non-stationary time series which are “moving together” (Brockwell   Davis, 
1996). This implies that each of the individual components,     share common non-stationarity 
parts which result in similar behaviour over a period of time. These common trends can be 
eliminated if there are linear combinations of all the components of     (Box et al., 2008). 
 
Cointegration implies, that even if there are many instances which cause permanent changes in 
each of the individual elements of   , there is still the possibility of a long run relation existing if 
all of the elements are put together. For instance if                represents all of the 
variables of interest, then the long run equilibrium relation is Ω                         . 
The cointegrating vector for this example is Ω              . The stationary linear 
combinations are interpreted as the long run stable equilibrium relations among   . 
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The cointegrating vector is not unique as it yields a further cointegrating vector when it is 
multiplied by a nonzero constant eg, if the cointegrating vector Ω is multiplied by a nonzero 
scalar  , then the vector  Ω  will also still be a cointegrating vector. Similarly if      is 
stationary, then the linear combination  Ω    will also be stationary. 
 
The number of cointegrating factors is defined as the number of different linear combinations 
which are stationary. The components of a vector    are cointegrated of order       if all the 
components of    are      and if there exists a vector Ω     such that    Ω            . 
In the example given in Dolado, Gonzalo and Marmol (1999), consider two series     and     
which are both     . A linear combination of these two variables under normal circumstances is 
also     . However, if there exists a vector say  1,    such that a linear combination say      
            is        where      , then it is said that     and     are cointegrated 
variables of order       with a cointegrating vector  1,    . 
 
An example of cointegration in a bivariate series can be explained in the following example 
used by Hamilton (1994) as well as by Saikonnen and Lütkepohl (1996). 
 
Consider the following bivariate system,  
 
                          (5.13) 
                 ,           (5.14) 

 

where    [
   

   
] is strictly stationary with          and positive definite covariance matrix 

               . The error series     and     are uncorrelated and are white noise processes. 
 
(5.14) can be rewritten as 
 1            or 
                    (5.15) 
 
If equation (5.13) is differenced, then from the use of relation (5.15), 
 
                                           .        (5.16) 
 
     consists of      variables which are not cointegrated while     and     are cointegrated 
(Saikonnen   Lütkepohl, 1996). 
 
The right side of (5.16) has a univariate MA    representation  
                   where    is a white noise process . 
 
Thus although both of the individual series     and     are not stationary, the linear 
combination of     and     ,          is stationary. 
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If a cointegrated VAR or VARMA model is differenced, it may lead to the model not being 
invertible. This can lead to problems regarding estimation. An alternate representation which 
overcomes much of the difficulty in the estimation of cointegrated VARMA models is known as 
the Vector Error Correction Model (VECM). The VECM model separates the cointegration and 
long run/equilibrium relations from the short term dynamics (Lütkepohl & Claessen, 1997). This 
model is of the form (under the assumption of reduced rank  *) 
 

∆            ∑   
    

                ∑       
 
        (5.17) 

 
The autoregressive coefficient matrices   

  are functions of the coefficient matrices    where 
 

  
     ∑   

 
                  –    

                                 

 
The VECM model is especially convenient as the number of unit roots in the autoregressive 
operator      is incorporated in the term       in equation (5.17) and therefore the type of 
non-stationarity which is observed in this model is dependent on the behaviour of   (Box et al.,  
2008). The term      shows the extent of disequilibrium in the variables of the previous period. 
Thus the VECM shows that changes in one variable are not only dependent on the changes of 
other variables and its own past changes but also on the extent of the equilibrium between 
levels of the variable (Dolado et al., 1999). This property means that the VECM can allow a 
number of variables to adjust simultaneously at different rates in response to a short run 
equilibrium (Kulshreshtha   Parikh, 2000). In order to distinguish the VECM from the usual 
VARMA model, the latter version is sometimes known as the levels version (Lütkepohl, 2004). 
 
The VECM model (5.17) can also be written as 
 

                        ∑       
 
      

 

where           ∑   
    

      . 

 
Under the assumptions on     ,       is a stationary operator with all of the roots of |       
outside the unit circle (Reinsel, 1997). 
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5.5 Cointegrated VAR    Models 
 
The concept of cointegration and error correction is easier to understand in the simple VAR 
case or the VARMA       case. Consider the following   dimensional VAR    series,    with 
the inclusion of a possible time trend, 
 
                           .         (5.18) 

   
              where    and     are constant vectors of dimension   and the error term    is 
assumed to be Gaussian (Normally) distributed (Tsay, 2005). 
 
The error correction representation for the VAR    model is derived as follows (Wei, 2006) 
 
The operator      can be rewritten as 
 
                          (  

         
       1 –     

where    
                   for               . 

 
As a result, (5.18) can be rewritten as  
 
(                        

         
                   

 

or        ((        ) )        
               

                      (5.19) 

 
If      is subtracted from both sides of (5.19), then 
 
                    

               
                   (5.20) 

  (       )    . 

 
If    contains unit roots, then |    |     and            will be nonsingular. There are 3 
cases to consider regarding the rank of  . 
 
Case 1: Rank        This case means that        which results in no cointegration being 
present in the model. In this case a linear combination of the      variables which is stationary 
does not exist. The VECM is reduced to  
 
                    

             
                     (5.21) 

 
The non-stationarity for this model can be removed by taking differences or using a log/root 
transformation. Thus the appropriate model which should be used is a VAR in first differences 
which does not involve any long run elements (Harris, 1995). 
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Case 2:  Rank        . This case is known as the full rank case with |        0. The vector 
process    contains no unit roots ( is      ) and is therefore stationary. As a result of this, 
information cannot be gathered from using the VECM model (Tsay, 2005).    should thus be 
studied directly and modelled in levels, not differences and there is no need for a VECM 
representation to be used. 
 
Case 3: If     Rank      *  . This is known as the partial non-stationary case where there 
are  * distinct linear combinations of     that are stationary (Mauricio, 2006). The   matrix is 
of reduced rank and is required to be reparameterised as       where   and   are      
 *  matrices of rank  , i.e. full column rank. The VECM is of the form 
 
                      

               
              .      (5.22) 

 
This equation (5.22) implies that there are  *     linear combinations of    which are 
stationary (Morin, 2010). The coefficient   is a matrix of adjustment coefficients and measures 
how quickly     reacts to the equilibrium implied by      (Morin, 2010). The coefficients   

  
and   are short run stationary parameters because of their association with the stationary 
processes       and         The parameter   is non-stationary as it is associated with the 
process      (Ahn, 1997).   also contains the  * cointegrating vectors and shows the long run 
relationship between the jointly determined variables. The term        can be regarded as a 
compensatory term for the overdifferenced system      as the vector error correction 
representation shows that      is unit root non-stationary and     is stationary (Tsay, 2005). 
Thus the only way in which     can be related to      is through the stationary series          
 
 It is important to realize that this decomposition of   as a product of two       *  matrices 
i.e.        is not a unique representation.   can also be reparametrized as          
with     α   and         where   is a   *    *  matrix (Lütkepohl, 2005). Restrictions 
can be imposed on   and   in order for them to have unique cointegrating relations. An 
implication of the model (5.22) is that while all of the  * component series have non-stationary 
behaviour, there are   linear combinations of    that are stationary which results in a reduced 
dimensionality of the non-stationarity  * terms. 
 
 In conclusion, the rank of   in the VECM tests the number of cointegrating vectors in the 
model. This result will be further elaborated on later. 
 
 

5.6 Specification of the Cointegrated VAR    Model 
 

5.6.1 Choosing the Order of   
 
In practice, the order of   is generally unknown and is needed to be chosen prior to the 
construction of the tests. If the lag order is not chosen correctly, then the tests can potentially 
have big size distortions. The sample autocorrelation, partial autocorrelation and cross 
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correlation functions are of little use when identifying the error covariance structure (Singh, 
Yadavalli   Peiris, 2002). Lütkepohl and Saikonnen (1999) showed that criteria such as the AIC 
and BIC can be used to find the order of   as they are asymptotically valid. The BIC criterion in 
addition is also more consistent than the AIC. The FPE criterion should not be used for 
cointegrated processes however as the use of the forecast mean square error is difficult to 
justify in the non-stationary case. Nielsen (2006) showed that the likelihood based tests as well 
as the information criteria can be used regardless of there being unit roots present and can be 
used in the presence of deterministic terms. 
 
Qu and Perron (2007) on the contrary, showed that the standard information criteria tests can 
lead to a model which can distort the size of the model. They provided a modification to the AIC 
in which the error term    was made more sensitive to the lag order. The modified statistic was 
defined as 
 

MAIC     |     |   
 (  )      

                  
         (5.23) 

 
The term    is the extra term of the likelihood ratio test of   cointegrating vectors against the 

alternative that there are more than   cointegrating vectors present. The above authors noted 
that this statistic led to improvements in the size of the cointegration tests. 
 
A similar and recent modification to the AIC as well as the HQ and BIC criteria was proposed by 
Athanasopoulos, de Carvalho Guillén, Issler and Vahid (2011) who included the full rank of   as 
a parameter required to be selected. 
 

5.6.2 Specification of the Deterministic Function  
 
The general VECM model is assumed to be of the form          where    is the stochastic 
part that has a VECM representation without any deterministic terms and    is the 
deterministic term. The inclusion of a deterministic term for a non-stationary process is more 
problematic than for the stationary models as it changes some of the assumptions and results 
(Lütkepohl & Claessen, 1997). Thus in the next section I will discuss various methods for the 
specification of the deterministic term. The 5 different cases mentioned by Harris (1995) and 
Tsay (2005) are, 
 
Case 1 : In the unlikely case, in which there is no deterministic term present i.e.        all the 
component series of    are      without drift and the stationary series      will have a zero 
mean. 
 
Case 2 :             where    is a   *   1  dimensional vector. This case occurs when 
there are no linear trends in the levels of the data. The deterministic term can be absorbed into 
the cointegrating relation. The resulting VECM is 
 
                      

               
              .    (5.24) 
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The components of    are      without drift and      has a nonzero mean,   . 
 
Case 3 :       where    is nonzero. This occurs when there are linear trends in the data. The 
component series of    are      with drift and      might have a nonzero mean. 
 
Case 4 :             where    is a nonzero vector. This occurs when there is no time trend 
in the short run model. The resulting VECM is  
 
                         

               
                    (5.25) 

 
In this case the components of    are      with drift    and      has a linear time trend which 
is related to    .  
 
Case 5 :              There is a time component that is included in the regression for this 
case because    is nonzero. This occurs if the constant and slope of the trend are unrestricted 
and if there are quadratic trends in   . The components of    are      are determined by the 
drift and also have a quadratic time trend while the term      has a linear time trend. If       
0, then the deterministic linear trend will be orthogonal to the cointegrating relations while if 
     0, the linear trend will be a part of the cointegrating relations (Demetrescu, Lütkepohl 
  Saikonnen, 2009). 
 
 

5.7 Maximum Likelihood Estimation for the Cointegrated VAR    
Model 
 
Two maximum likelihood estimation procedures for a cointegrated VAR    model will be 
discussed in this section. 
 
The first method is a maximum likelihood estimation procedure which does not take into 
account deterministic terms. This procedure is carried out under the assumptions of normality, 
that the long run restriction of rank    is   and the short run restriction is the rank of  
  

        
  is  *. If this is the case, then the VECM can be written in the form 

  
                [                                   .      (5.26) 

  
  is a   x  * matrix of reduced rank  *. The estimation of (5.26) is obtained by using a partial 
canonical correlation analysis between     and      that is conditional on                  . 

The following step by step procedure was proposed by Athanasopoulos et al. (2011) 
 

a) If   is known, then   and            can be estimated by using a reduced rank 
regression of     on its lagged values               while controlling for     . The 

first procedure is to estimate the values of [  ̂     ̂] from a reduced rank regression of 
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    on (               ) after controlling for     . These estimates [  ̂,    ̂] are the 

coefficients of the canonical variates which correspond to the   largest squared partial 
canonical correlations between     and (             ). 

 
b) The next procedure is to compute the partial canonical correlations between     and 

     after controlling for    ̂          ̂          ̂      . The  * canonical 

variates of        which correspond to the  * largest squared partial canonical 
correlations are taken as the estimates for the cointegrating relationships.     is then 

regressed on        and [  ̂          ̂          ̂       and the logarithm of 

the determinant of the residual variance,         is computed from this regression. 
 

c) The partial canonical correlations between     and                  are computed 

conditional on       .     is then regressed on        and    ̂        ̂      

    ̂      . This regression is used to compute the value of        . If the value of 

        is different from that obtained in step b), then it is necessary to revisit that 
particular step. If the value of        is not different then the process is terminated and 
the estimates are chosen accordingly. The value of        becomes smaller at each step 

until it reaches a minimum value. The values of  ̂ and   ̂,       ̂ which correspond to 

this minimum value are taken as maximum likelihood estimates of   and            
 
It is important to note that if there are additional constraints present, iterative procedures will 
be needed to be implemented in order for the maximum likelihood estimates to be obtained. 
 
 In the second estimation method in which there is a deterministic term present, the 
deterministic term can be written as          where           ´ and    depends on the 
specification performed in section 5.6.2. The VECM model (5.22) is simplified to 
 
                     

           
            (Tsay, 2005) . 

 
The first step is to estimate two multiple linear regressions in which the terms     and      are 
regressed from the use of ordinary least squares on the remaining set of regressors, 
               . 

 
                                                  (5.27) 

                                              (5.28) 

 
The residuals from equations (5.27) and (5.28),    and    are used to calculate the sample 
covariance matrices    ,    ,     as 
 

      
 

   
∑  ̂  ̂ 

 
     ´ 

      
  

   
∑  ̂  ̂ 

 
     ´ 
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∑  ̂  ̂ 

 
     ´ . 

 
The parameter estimates are under the restriction that the model is not of full rank with 

       and rank       *. The eigenvalue equation |            
         is solved in 

order to obtain the eigenvalues      ̂     ̂  (Lütkepohl 2004). These eigenvalues 

measure the largest squared canonical correlations between the residuals    and   . 
 
Let the matrix of eigenvectors be     [         and denote the eigenvalue/eigenvector pairs 

by    ̂     . These eigenvectors are normalised such that  ̂     ̂     (Tsay 2005). The size of  ̂  
measures how strongly the cointegrating relations  ̂    are correlated with the stationary 
section of the model (Harris, 1995). 
 
The unconstrained maximum likelihood estimator of the cointegrating vector   is  

 ̂   [           and the estimate of the normalised cointegrating vector is     ̂ (Morin, 
2010). 
  

The likelihood function     

  

  is 
 

    

  

                                     (5.29) 
 

  
                        

        

        
 

 

   
                     

         

        
 .           (5.30) 

 
Johansen and Juselius (1990) expressed the likelihood function (5.30) as a function of the 
eigenvalues that is based on the  * cointegrating vectors as 
 

    

  

        | ∏      
    ̂   .           (5.31) 

 

The values of  ̂  are the canonical correlations obtained by solving the likelihood equation 
(5.29). The short run effects   

  can be estimated once an estimate of   has been fixed. Under 
normal Gaussian innovations, the estimates of   

  are asymptotically normal and efficient. 
Lütkepohl (2004) noted that in practice, it is recommended that additional restrictions should 
be placed on the parameters in order for the dimensions of the parameter space to be reduced. 
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5.8 Testing the Order of Cointegration  
 
In this section, I will discuss the ways in which to test the order of cointegration. Let the null 
hypothesis be defined such that the rank of   is  *. Under this assumption, the VECM is 
 
                     

               
              

             .         (5.32) 
 
Defining the null hypothesis 
 
   : Rank      / there are    cointegrating vectors present 
   : Rank      / there are more than    cointegrating vectors present 
 
The first rank    in which the null hypothesis is not rejected is chosen as the cointegrating rank. 
 
From the use of the equations (5.27) and (5.28), the term   is related to the covariance 

between     and      after adjusting for the effects of    and                –     Using 

multivariate linear regression, the adjusted series for      and     are  ̂  and  ̂ . Tsay(2005) 
noted that the equation of interest used for the cointegration test is 
 

 ̂      ̂       . 
 
A likelihood ratio test statistic       

   which follows from the maximum likelihood estimation 
procedure was derived by Johansen (1988) and further elaborated by Johansen and Juselius 
(1990) was defined as 
 

      
           ∑        

        ̂           (5.33)  
                      1 . 
 
Reinsel (1997) noted that the likelihood ratio statistic (5.33) can be expressed equivalently as 
 

      
          ∑        

              .        (5.34) 
 
The term        is the       th smallest sample partial canonical correlation between ∆   
and      given         ,         . 

 
This statistic (5.34) is known as the trace statistic. The further the eigenvalues are from 0, then 

the more negative        ̂   will be and hence the larger the statistic (5.34) will be. i.e. as the 
sample size gets larger, the statistic (5.34) diverges towards infinity. This results in the test 

being consistent. If the rank of   is indeed    , then the value of  ̂  should be small for    
   which results in a smaller value for       

  . Since there are unit roots present in the 
system, the likelihood function is not   

  distributed but is instead a multivariate Dickey-Fuller 
distribution or a function of standard Brownian motions as there is an unmodelled trend found 
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in the residuals (Tsay, 2005). The distribution was derived by Johansen and Juselius (1990) as 
well as by Reinsel (1997) as  
 

tr ∫         
 

 
                        

(∫    –   
 

 
   (  –   )   –      )

   

 ∫         
 

 
                    ) .     (5.35)  

 
           is the      * dimensional standard Brownian motion process. This asymptotic 
distribution depends only on      * and the order   of the model. In addition these critical 
values can be modified in the event of no deterministic term or trend present in the model 
(Lütkepohl, 2005).  
 
An alternative sequential procedure has also been proposed by Johansen (1988). In this 
procedure, the null and alternative hypotheses are defined as 
 
   : Rank       
   : Rank          
 
The first step is to test rank     , i.e. there is no cointegration present against the 
alternative rank     , that there is one cointegrating relation. If the null hypothesis for     
    cointegrating relationships is rejected, then it is concluded that there are      
  cointegrating relationships present. 
 
The likelihood ratio test statistic for this procedure is known as the maximum eigenvalue 
statistic and is calculated from 
 

      
            1    ̂              (5.36) 

  

The nearer the value of   ̂     is to 0, the smaller the       
   statistic will be. As in the 

previous likelihood ratio test, these critical values are nonstandard and are needed to be 
calculated by using Monte Carlo simulation techniques. 
 
An asymptotically equivalent version of this statistic (5.36) was given by Reinsel (1997) as 
 
      

                          ,         (5.37) 
 
where        is the       * th sample partial canonical correlation between  
    and      given                 . 

 
It is important to note that the power of the tests is dependent on the deterministic term in the 
model and an over specified deterministic term can have a large effect on the power of the 
test. Thus when testing for a specific cointegrating rank it is important to test for the 
deterministic term first and following this, to test for cointegration by using the deterministic 
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term selected from the initial test. If the deterministic term is under specified, then it is likely to 
terminate the sequence very quickly which will result in the rank chosen being too small. In 
other words the test will be terminated too early if the likelihood ratio test        

  ) is 
performed when there is a trend present. The test statistic will then need to be modified by 
using a regression which takes into account the presence of a deterministic term. Demetresou 

et al. (2009) developed a test statistic   ̌    
   which is consistent, rejects all the false null 

hypotheses and takes into account the presence of a deterministic term. The limitation of this 
modified statistic is that it has a reduced power in small samples and tends to choose a 
cointegrating rank that is too small when there is no trend term present. 
 
If there is uncertainty regarding the deterministic term, the cointegrating rank can be chosen by 
performing tests that are based on different models with different possible deterministic terms. 
The rank can be chosen by taking into account all the different test results (Demetresou et al., 
2009). Thus when the cointegrating rank is needed to be determined, both of the likelihood 

ratio statistics       
   and   ̌    

    should be used. If none of the above tests rejects the 
null hypothesis, then the value of the cointegrating rank chosen is   . If the null hypothesis is 
rejected, the ranks       are tested until there is an acceptance of the null hypothesis. 
 
Simulation studies were performed by the Demetresou et al. (2009) in order to compare this 
procedure with a procedure in which the cointegrating rank was chosen based on the pre-test 
for a deterministic term. They found that the first procedure was more effective in choosing the 
correct rank for sample sizes between 100 and 250. However, this could not be justified for 
larger sample sizes. 
 
Information criteria such as the AIC and the BIC may also be used when specifying the rank. 
These criteria need to be modified in order to reflect the number of unknown parameters with 
a specified rank   in cointegrated form (Reinsel, 1997). Chao and Phillips (1999) developed a 
statistic which estimates both the lag order   and the cointegrating rank of the full model   
simultaneously. This statistic also takes into account the non-stationarity of the regressors 
associated with the parameters. The limitation of this statistic is that the series observed did 
not have a deterministic term. 
 
Athanasopoulos et al. (2011) demonstrated that the standard information criteria can also be 
modified simultaneously to choose   and  .These modified criteria are 
 

AIC          ∑        
          ̂           *   –   *    *    

 

BIC     )    ∑        
          ̂              *   –   *     *    

 

HQ          ∑        
          ̂                   *   –   *     *     . 

 

The value of   is the number of lagged differences in the VECM and  ̂  is the number of squared 
canonical correlations between     and [                       ].  
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Athanasopoulos et al. (2011) also suggested that the linear influence of      from     should 
be removed prior to the testing of the model, and that the Hannan-Quinn (HQ     ) is the 
preferred criterion that should be used to determine   as well as the full rank   of the model. 
This statistic can further be modified to find values of the reduced rank  * conditional on the 
values   and   which were chosen in the initial step. 
 

5.9 Comparison of the VAR and VECM Models for Cointegration 
 
It is often necessary to determine whether the VAR or the VECM model should be used when 
there is cointegration present. The general consensus is that the VECM model should be used if 
the main focus is on cointegrating relationships while the VAR model should be used if the 
central focus of interest is on determining the causal relationships and short term dynamics of 
the model (Brandt   Williams, 2007). 
 
In the field of economics, the VECM model is more appropriate when there are multiple 
variables which have the possibility of related trends. The VECM also generates better forecasts 
for non-stationary models especially when there is cointegration present in the model (Dolado, 
Gonzalo   Marmol, 1999). However these models also have their limitations. Variables which 
appear to have stochastic and deterministic trends in the short run may not have these features 
in the long run. There is also the shortcoming that the error correction method may suffer from 
a limited application in certain areas.  
 
 

5.10 Cointegration in the VARMA      Model 
 
The methodology on cointegration previously discussed for the VAR model can be extended to 
the VARMA       model. The advantage of using cointegrated VARMA       models as 
compared to cointegrated VAR models is that they are more parsimonious and have an 
improved forecasting performance (Bartel   Lütkepohl, 1998). Lütkepohl and Claessen (1997) 
suggested an estimation procedure which inverts the moving average component and uses a 
finite VAR model approximation.  
 

5.10.1 Estimation of the Cointegrated VARMA       Model 
  
Recall that the zero mean stationary and invertible VARMA       model is of the form 
 
                  
 
   is assumed to be an independent white noise process with a zero mean and covariance 
matrix   . In order for the model to be identifiable, the model is often of the form used in 
(4.13) where the vectors    and    are assumed to be nonsingular (Lütkepohl, 2004). 
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If    is cointegrated with rank  *      , then the standard VARMA       model can be 
rewritten in the VECM form as 
 

            ∑   
    

                ∑       
 
    .    (5.38) 

 
   is a non-stationary process ,     is a stationary process and   has reduced rank  *. 
 
A full rank estimation procedure using conditional maximum likelihood was first described by 
Yap and Reinsel (1995). The first step is to define the          matrix of unknown 
parameters    as 
 
     vec [ ,   

        
           . 

 
The estimator of     is 
 

 ̂    vec [ ̂,  ̂ 
 
    ̂   

 
  ̂     ̂   .         

 
This estimator (5.39) maximises the log likelihood function 
 

   ̂     
  

 
 log     

 

 
∑      

    
 
    .         (5.39) 

 
The partial derivatives of (5.39) with respect to    are 
 
     ̂  

      ∑
    

   
 
     

      .          (5.40) 

 
These normal equations of (5.40) are nonlinear in the parameters and iterative procedures such 
as the Newton-Raphson procedure discussed in Appendix A are required to be employed. The 
     th iteration of  ̂  is 
 

 ̂         ̂      ∑
    

   
 
     

     

   
    [∑

    

   
 
     

     ] .      (5.41) 

 

 ̂     is the estimate at the  th iteration and  ̂      ∑  ̂  ̂ 
 
       

 
 ̂  is computed recursively from  
 

 ̂       ̂     ∑   
    

           ∑  ̂ 
 
    ̂    . 

 
The estimation procedure discussed is not limited to the full rank case and can be extended to 
the reduced rank case. In the reduced rank model,   can be written as         where   and 
  are       *  matrices. The model in the VECM representation is 
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               ∑   
    

                ∑       
 
    .       (5.42) 

 
The vector   can be normalised as     [    ] where    is a matrix of dimension 

   *      –   *  . 
 

Let    vec [   ̂ 
 
    ̂   

 
  ̂     ̂   and  *   [         where  * is the vector of unknown 

parameters, then if a similar Newton-Raphson procedure to that performed for the full rank 
model is used, an estimate for  * is obtained from 
 

 ̂           ̂        ∑
    

   
 
     

     

   
     ∑

    

   
 
     

      .      (5.43) 

 

 ̂      is the estimate of  * at the  th iteration and  ̂     ∑  ̂  ̂ 
 
       

 
Lütkepohl and Claessen (1997) showed that the stationary echelon form can be extended to 
that of a cointegrated VARMA       process as the representation of the process is unique. The 
main difference as compared to the echelon form for stationary models is that the roots of the 
     and      operators are reversed. This form is known as the ‘reverse echelon’ form and 
occurs if the moving average parameter is set to 0 after a restriction is placed on either the 
autoregressive or moving average parameters (Athanasopoulos et al., 2012). 
 
The reverse echelon form satisfies the following restrictions 
 
             ∑       

                      
  
     =       

 
            ∑       

   
                        = 1     (      ) 

 
       ∑       

   
                                    =       

  
      =        for                         (5.44) 
 
The reverse echelon form implies that the autoregressive operator is unrestricted with the 
exception of the restrictions imposed by the Kronecker indices and the zero order matrices 
       . In addition, it also implies that there are additional restrictions placed on the moving 
average coefficient matrices (Lütkepohl, 2004). 
 
The     terms are calculated in the same way as the stationary VARMA       echelon form as 
 

    {
                                

                                    
                                       (5.45) 

 
The estimator   is the maximum of all the Kronecker indices         (Lütkepohl   Claessen, 
1997). The maximum number of freely parameters is    ∑     

 
   (Athanasopoulos et al.,  

2012). 
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The echelon VARMA       model in vector error correction form is 
 
               ∑   

    
               ∑       

 
          (5.46) 

 

  
    ∑   

 
                                –    

and                                  
 
Unlike Yap and Reinsel (1995), Lütkepohl (2005) noted that the estimation of this process (5.46) 
is similar to that of maximum likelihood estimation with the exception that the estimated 
vector of parameters  ̂  contains the free parameters of the VARMA       model in the reverse 
echelon form.  
 
The exact maximum likelihood estimation method is less common for cointegrated 
VARMA       models and has only recently been given attention. Mauricio (2006) used a 
stationary VARMA       model and obtained estimates of the parameters by manipulating the 
VECM. The first step in this method is to choose an initial guess for the parameters (through say 
a conditional likelihood estimation method) for every parameter and represent this in the 
vector of parameters   ̂  which contains all the estimates. The next step is to update the 
vector  ̂  numerically using nonlinear optimisation of the log likelihood function in the 
stationary VARMA       model. Mauricio (2006) concluded that the exact maximum likelihood 
estimation procedure has the ability to reveal features in the model which cannot be found 
when the conditional maximum likelihood estimation procedure is used especially when the 
nature of non-stationarity in the data is unclear. 

 
5.10.2 Specification of the Cointegrated VARMA       Model 
 
The specification of the Kronecker indices was first described in Lütkepohl and Claessen (1997) 
in which multivariate least squares is applied to fit a VAR     process in order to obtain the 

residuals  ̂     . The value of    should ideally be between log   and √  , where   refers to 
the sample size. This is followed by the fitting of reverse echelon VARMA models of the form 
 
                              ̂          ̂              ̂          
  .            (5.47) 
 
Under different sets of Kronecker indices        , the model which optimises a model 
selection criterion such as the AIC, BIC or HQ is chosen as the specified model. 

 
5.10.3 Testing for Cointegration in the VARMA       Model 
 

The likelihood test statistic is defined by L     
    

     
 where SS   ∑  ̂  ̂ 

 
      is the residual 

sum of squares for the unrestricted model and     is the sum of squares for the restricted 
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model under the restriction rank     *. The test was developed by Yap and Reinsel (1995) 
and is based on the null hypothesis rank     * against the alternative hypothesis that 
rank       . The critical values are based on asymptotic distributions that are functions of 
Brownian motion discussed in the cointegrated VAR case (Saikonnen   Lütkepohl, 1996). The 
sequential likelihood ratio tests are also permissible where the null hypothesis rank      * is 
tested against the ranks            . The smallest rank in which the null hypothesis is 
not rejected is taken as the rank of  . 
  
 

5.11 Model Diagnostics 
 
Diagnostic checking for non-stationary multivariate time series models is very similar to that 
performed for stationary models. Recall the VARMA model in error correction representation 
without any deterministic terms is 
 

                
             

              ∑       
 
    .   (5.48) 

 
The autocovariance and autocorrelation matrices are calculated in the same way as that for 
level VARMA models 
 

 ̂        
 

 
∑   

 
         

                             

 
The Portmanteau statistic and the LM are also applicable for non-stationary models. The 
Portmanteau statistic    is the same as that for the stationary VARMA       model 
 

        ∑     
    ̂       ̂      ̂        ̂        .        (5.49) 

 
Unlike for stationary models however, the degrees of freedom are different in that    follows 
approximately a                 –                 distribution. This is because of the 
number of degrees of freedom are adjusted relative to the stationary VAR case (Lütkepohl, 
2005). This is important as the stationary VARMA       critical values,           
     result in the null hypothesis being rejected too often.  
 
The LM statistic is calculated in a similar way by using the auxilliary regression model 
 
 ̂  =           

             
              ̂             ̂    +    

                  (5.50) 
 
Defining the following hypotheses 
 
  :             0 
   :        for at least   𝜖 {       } 
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The LM statistic is computed from (5.50) as LM        ̃   ̃ 
  

  

where  ̃  is the error covariance matrix for the unrestricted model (5.50) and  ̃  is the error 
covariance matrix obtained when the null hypothesis   :             0 is true. 
 
The LM statistic follows a    distribution with     degrees of freedom. This distribution of the 
LM statistic is unaffected by the presence of variables that are integrated.  
 
 
5.12 Forecasting 
 
The forecasting procedure for non-stationary VAR    and VARMA       models is similar to 
that for stationary models with the exception that the forecast error covariance matrices 
become increasingly unbounded as the time horizon increases. This results in the forecasts 
becoming uncertain in the distant future (Lütkepohl, 2004). 
 
Engle and Yoo (1987) noted that a level VAR does not suffer from misspecification like that of a 
VAR in first differences although the estimation procedures do not fully estimate the 
parameters which are near the unit circle. They recommend that the model should be in error 
correction form and that long run constraints should be imposed before forecasts are 
performed. Reinsel (1997) noted as well that the cointegrated model in error correction form 
produces more accurate forecasts than models which suffer from ‘over differencing’. 
 
The forecasting performance of cointegrated VAR    and VARMA      models can be 
compared with each other by using mean square errors. This has been done by Lütkepohl and 
Claessen (1997) who found that a cointegrated VARMA      model has a significantly better 
forecasting performance as compared to that of a cointegrated VAR    model. 
 
A more recent study by Kascha and Trenkler (2011) compared the forecast properties of 
cointegrated VAR, VARMA models and a random walk. Using mean square prediction errors, 
they concluded that the cointegrated VAR and VARMA models were very effective when 
forecasting at small time horizons but for longer time horizons, it was the random walk that 
was found to be more effective. 
 
 

5.13 Impulse Response Analysis for Non-stationary Models 
 
The methods discussed earlier for impulse responses are not always effective in the presence of 
unit roots/deterministic terms. Gospodinov (2004) proposed a method which takes into 
account the presence of large roots in the autoregressive dynamics of a process (i.e. roots on or 
near the unit circle). This involves a likelihood ratio statistic for a sequence of null hypotheses 
which imposes restrictions on the values of the impulse responses. The limiting distribution of 
the likelihood ratio statistic for models that were nearly non-stationary was derived and the 
acceptance region was inverted in order for interval estimates of the statistics of interest to be 
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obtained. From the use of Monte Carlo simulations this method was compared to the bootstrap 
method and was found to have a significantly better performance. 
 
 Pesavento and Rossi (2006) also proposed a similar method to construct impulse responses 
when there is a unit root is present. This method was developed for the purpose of longer 
horizons but can be modified in order to accommodate shorter time horizons. The confidence 
interval was constructed by inverting the acceptance region of different unit root tests such as 
the Dickey-Fuller test. This method was compared to a test in which the unit root was removed 
prior to the construction of the impulse responses. 

 
 

5.14 Conclusion 
 
The presence of non-stationarity in the model means that the data needs to be transformed or 
differenced in order for it to be stationary. If there is cointegration present, then the data 
should not be differenced but instead be remodelled in the VECM representation so that the 
cointegrating relations can be absorbed into the model. This representation can be used to 
determine the various interrelationships in the system. 
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CHAPTER 6 
 

Granger-Causality 
 
 
6.1 Introduction to Granger-Causality in the VAR Model 
 
An integral aspect of multivariate time series modelling is the determination of causality among 
the series. 
 
The following questions generally arise with regards to causality (Brandt   Williams, 2007) 
 
a) What value does a variable    have in predicting other variables    in a system of equations? 
b) Is the variable    exogenous in a time series model with respect to the other variables? 
 
Granger and Newbold (1986), state that a few assumptions must be made before these 
questions are answered: 
 

(i) The determination of causality is only possible when the past causes the present or 
future and hence the future cannot be responsible for causing the past. 

(ii) A cause contains unique information which is not available elsewhere. 
 

A statement which takes into account both a models forecasting ability and causality was 
proposed by Granger and Newbold (1986). They state that if a variable say    improves the 
forecasting performance of another variable say    then it is said that    has Granger-
caused   . In other words    has Granger-caused    if the current value of the variable     is 
predicted more accurately by the past values of both    and    rather than by using the past 
values of    alone. On the contrary, if    has not been helpful in improving the forecast 
performance of   , then it has been said to have failed to Granger-cause      
 
The above statement can be expressed in the form of linear functions and mean square errors 
by saying that    fails to cause    if 
 

                    ,                   [ (      |                             )]              (6.1) 

 
The relation (6.1) is interpreted as    fails to cause    if the variance of the forecast error of    
obtained from using past values of    and itself is the same as the variance of forecast error 
   obtained by only using past values of itself and not   . 
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It is important to note that if the condition of Granger-causality holds, it does not necessarily 
mean that one variable causes another variable, rather it means that the forecasting ability of 
one variable is improved if the other variables are included.  
 
The concept of Granger-causality and forecasting are explained in the example used in 
Hamilton (1994). Consider the following bivariate model, 
 

[
    

    
]   [

  

  
]   [

          

          
] [

      

      
]   [

          

          
] [

      

      
]      

 

[
          

          
] [

      

      
]   [

    

    
]              (6.2) 

 
The error terms     and     are independent and identically distributed and are white noise 
while    and    are constant terms. 
 
In this example,    has not Granger-caused    if the coefficient matrices  

[
          

          
] are lower triangular for all values of      

 

i.e. the matrices are of the form [
      
          

] for       

 
Thus if    has not Granger-caused   , then the model (6.2) will be of the form 
 

[
    

    
]   [

  

  
]   [

      
          

] [
      

      
]   [

      
          

] [
      

      
]      

 

[
      
          

] [
      

      
]   [

    

    
]              (6.3) 

 
(6.3) can be expressed in backshift/lag order notation form as 
 

[
    

    
] [

            
            

]   [
  

  
]   [

    

    
]           (6.4) 

 
                                         

 
The one step ahead forecast of      which is conditional on its past and present values is 
 

 ̂                                                                                        

                       (6.5) 
 
It can easily be seen from (6.5) that the forecast of      is dependent only on its own lagged 
values and not lagged values of      . 
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Similarly the two step ahead forecast of      is 
 

 ̂                                                                                

                                     (6.6) 

 
As with the one step ahead forecast, the two step ahead forecast is based only on lagged values 
of itself and not lagged values of      . From the principals of mathematical induction, the same 
is true for a   based ahead forecast and in general    does not Granger-cause    for          0 

            . 
 
This methodology can be extended into the multivariate case when there are more than 2 time 
series. For example, consider the trivariate model below 
 

[

                  
                  
                  

] [

    

    

    

]   [

  

  

  

]  [

    

    

    

] . 

 
For this model,    does not Granger-cause    if and only if           . In general for a model 

with   variables,    does not Granger-cause    if and only if           . Boudjellaba, Dufour 

and Roy (1992) noted that the results of a causality analysis for bivariate models do not 
necessarily correspond to those models of a dimension larger than 2. 
 
 

6.2 Testing for Granger-Causality in Stationary VAR    Models 
 
Various methods used for testing Granger-causality have been described in the literature for 
both stationary and non-stationary VAR    models. The methods used for testing for Granger-
causality for stationary models will be discussed first. 
 

a. The Granger Regression Method 
 
The most common method used for testing Granger-causality is the Granger regression 
method.  
 
Consider the bivariate model of lag length   
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]   [

  

  
]   [
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]   [
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]      

 

[
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]   [

    

    
] . 
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 Suppose that one wants to determine whether    Granger-causes   . In this case, the equation 
where    at time   is regressed on past values of itself and    is considered, i.e. 
 
                                                                                      

                                 

 

                ∑            
 
      ∑             

 
                  (6.7) 

 
The error term     is assumed to be white noise. The choice of the order of   is usually 
obtained from the information criteria using the methods described in section 2.4 and is usually 
set quite high. Under the assumption that all the variables in a VAR are stationary, a   test or a 
   test can be perfomed in order to test the null hypothesis of non-causality, i.e. there are no 
causal relationships among the variables.    is said to have Granger-caused    if the coefficients 
of lagged values of itself are zero when    is regressed on the lagged values of itself and   . 
Thus the null and alternate hypotheses are defined as  
 
      does not Granger-cause    if                       

      does Granger-cause    if         or          or   or         . 

 
In the   test, two regression models are run, an unrestricted model such as the model used in 
(6.7) and a restricted model which is subject to the constraints that are stated in the null 
hypothesis i.e.                        

 
This restricted model is of the form 
 
                                                           .          (6.8) 

 
The first step is to compute the residual sum of squares of the unrestricted model (6.7) as  
 

RSS(unrestricted)   ∑  ̂  
  

   . 
 
The residual sum of squares for the restricted model (6.8) is  
 

RSS(restricted)   ∑  ̂  
  

   . 
 
The residual sum of squares for both the restricted and unrestricted models are used to 
compute the    statistic as 
 

    

                                 

 

                 

       

 

 

      
∑  ̂  

  
     ∑  ̂  

  
     

∑  ̂  
  

           
 .             (6.9) 
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This statistic (6.9) follows a   distribution with           degrees of freedom. If the    
statistic is greater than           at a 5 percent level of significance, then the null 
hypothesis that    does not Granger-cause    is rejected and it is concluded that    does in fact 
Granger-cause   . The Granger regression method is advantageous in that it is unaffected by 
the ordering of the VAR system (Friedman   Shachmurove, 1997). 
 
The test to check if    Granger-causes    is performed in a similar manner by considering the 
regression of    with lagged values of itself and    under the assumption of an autoregressive 
process with   lags 
 
i.e.                                                                                  (6.10) 

 
The hypotheses are defined as 
 
      does not Granger-cause    if                          

      does Granger-cause    if         or          or   or        . 

 
The restricted model that is subject to the constraints stated in the null hypothesis is 
 
                                               . 

  
This rest of the procedure is performed in a similar manner to that which was conducted for 
testing whether    Granger-causes    by using the residual sum of squares of the restricted and 
unrestricted models in order to compute the statistic (6.9) and to compare it to the critical 
values of a   distribution with           degrees of freedom.  
 
An asymptotically equivalent test which uses the    distribution as critical values was given by 
Hamilton (1994) where 
 

     
                                     

                 
       .      (6.11) 

 
The null hypothesis of non-causality that    does not Granger-cause    at a 5 percent level of 
significance is rejected if the value of    is greater than the critical values of a       
distribution. 
 
Although the   tests are simple to use, their power is limited because there are generally a 
large number of lags in the variables of a VAR model. This occurs especially when the 
numerator and denominator degrees of freedom approach the same value (Brandt   Williams, 
2007). 
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b. The Sims Method 
 
An alternative test for Granger-causality known as the Sims method is based on the premise 
that the results from a present test cannot be caused by the future. This test states that if    is 
projected linearly as an equation of the past, present and future values of     then a joint test 
for significance on the coefficients of the future values of    can determine whether    
Granger-causes    . 
 
This is expressed mathematically by considering the equation 
 
          ∑         

 
     ∑         

 
     𝜖   .        (6.12) 

 
The term 𝜖   refers to the error of      .    is said to have not Granger-caused    if the 
coefficients of all future      terms are zero (      0 for          and if the coefficients of all 

the past       terms are nonzero.  

 
The limitation of equation (6.12) is that the error term 𝜖   is generally autocorrelated with the 
dependent variables which results in the hypothesis      not being valid. A possible solution 

that has been proposed by Geweke, Meese and Dent (1983) which makes a slight modification 
to this equation by the addition of lagged values of    to the model. The resulting equation is 
 
         ∑         

 
     ∑         

 
     ∑         

 
                                 (6.13) 

   
In this instance, the error term     is uncorrelated with the dependent variables and is white 
noise (Granger   Newbold, 1986). The null hypothesis for non-causality is that    does not 
Granger-cause    if           . The same procedure as that done for the Granger 
regression method can now be used. 
 

c. The Wald Test 
 
A Wald test was developed by Granger and Newbold (1986) where the statistic GRNW is 
defined as 
 

GRNW        ̂ ´   
     ̂  .           (6.14) 

  
Suppose   refers to the vector of autoregressive parameters where the unconstrained 
estimator of   is  ̂. The set of   non-causality constraints on the model parameters is denoted 

by    ̂  which has an estimated covariance matrix  ̂ .  
  

     ̂  has a zero mean with an 

estimated covariance matrix  
 

 ̂    [
  

   
]  ̂  [ 

  

   
]´ .            (6.15) 
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 is a       matrix in which the      th element is the partial derivative of the  th element 

of    ̂  with respect to the  th element of  ̂. Under the null hypothesis of non-causality, the 

statistic follows a    distribution with   degrees of freedom. It is necessary that   
  

   
  must be 

of full rank however since this is not always the case, a sequential procedure can be used 
(Boudjellaba et al., 1992). 
 
 

6.3 Testing for Granger-Causality in Non-stationary VAR     Models 
 
Testing for Granger-causality in stationary models only has been discussed thus far. The testing 
for Granger-causality in the non-stationary case (i.e. the instance in which there are unit roots 
in the VAR model) is as important. This will be discussed next. 
 

a. The   Test 
 

If one or more of the variables present have a unit root, the test statistics for the model 
parameters will have a non-standard distribution since they are related to the case when an 
     variable is regressed on a stationary variable. Enders (2004) noted that the   test used for 
the stationary case can be used if the non-stationary causal variable can be made to appear in 
first differences. This follows from the theory based on Sims, Stock and Watson (1990) in which 
the distribution of the   test depends on the nuisance parameters. 
 
The models that are tested for a bivariate series are, 
 

           ∑      
  

            ∑      
  

                          

 

           ∑      
  

            ∑      
  

                            

 
   is a deterministic term,    and    are error correction terms, while      and      are white 
noise error terms. 
 
Oxley and Greasley (1998) noted that        Granger-causes       if 

         
        

         
   is rejected against the alternative of     at least one 

      
      for         or if       . 

 
Similarly       Granger-causes       if         

        
         

   is rejected against the 

alternative of     at least one      
      for         or if       . 

 
The distribution of this test cannot be tabulated but can be computed numerically as the 
nuisance parameters are able to be estimated consistently. This can only be possible if there is 
no cointegration present in the model otherwise there will be a rank deficiency in matrix 
coefficients due to the non-invertibility of moving average components (Saidi, 2007). It is thus 
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not advisable to test for Granger-causality in the event that cointegration is present in the 
model. 
 

b.  Wald Test 
 
Wald tests for causality were proposed by Toda and Phillips (1993) in cointegrated systems in 
which two level VAR models were constructed using      variables as well as a vector error 
correction model (estimated by using maximum likelihood). For the case of the level VAR 
models constructed using      variables, in order for a causality test to be valid asymptotically, 
a condition that requires sufficient cointegration to be present needs to be satisfied. This is with 
respect to the variables whose causal effects are being tested. This condition involves placing a 
rank restriction on a sub matrix of the cointegrating matrix  . This rank condition suffers from 
simultaneous equation bias and as a result, the Wald test should not be used in level VAR’s. 
 
Toda and Phillips (1993) also conducted Wald tests for Vector Error Correction models 
(estimated using maximum likelihood estimation). In this case there is also a rank condition for 
sufficiency based on a sub matrix of the cointegrating matrix. The estimates of a Vector Error 
Correction model are generally easier to construct than the case of level VAR estimation when 
cointegration is present and as a result, the Wald tests for Granger-causality are asymptotically 
valid    tests. Oxley & Greasley (1998) noted that if the rank condition fails, the distribution will 
then be a mixture of a    and a nonstandard distribution. Kumar, Webber and Perry (2009) 
suggested that the Wald tests are useful for determining the short run causal effects but 
recommend that the long run causal effects should be determined by testing for the 
significance of the lagged error term  . 
 
Chigira and Yamamoto (2003) noted the shortcomings of the Toda and Phillips (1993) method 
of cointegrated level VAR models that were constructed by using      variables and proposed 
two different approaches in order to test for Granger-causality. As in the study by Toda and 
Phillips (1993) they found that if the rank condition is not satisfied, the relevant matrix in the 
Wald statistic will be degenerate (there is an inability to obtain the rank) and this will result in 
the Wald statistic having an asymptotically non-standard distribution. Two procedures were 
used in order for the rank of this matrix to be obtained, one which was referred to as the lag 
augmented VAR approach and the other referred to as the generalised inverse approach. The 
two methods were compared to each other using the Monte Carlo simulation method and the 
generalised inverse method was found to have greater power in obtaining the rank of the 
matrix. 
 

c. The Brandt and Williams Method 
 

The method proposed by Brandt and Williams (2007) for testing for Granger-causality in non-
stationary models is based on a similar method initially used by Toda and Yamamoto (1995). 
According to this method, if there are   variables in the model, then the maximum number of 
roots that are present (maximum order of integration that might be suspected) in the model is 
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   which is a value less than or equal to  . In order to test for causality, a model with   
   lags is estimated and a Granger-causality test (such as the Hamilton method used in the 
stationary case) is performed on that particular model. As is the case for the Hamilton method 
the test statistic follows a    distribution with   degrees of freedom. 
 
This procedure has a major advantage in that there does not have to be any prior knowledge of 
the cointegration properties of the system and is applicable even if there is no evidence of 
cointegration present or if the rank conditions are not specified. The limitation is that there is a 
loss of power since the VAR’s are deliberately over fitted. This limitation is dependent on the 
size of the model. If there are many variables and the lag length is small, then the addition of 
just one lag might lead to a large amount of inefficiency in the parameter estimates. If there are 
a small number of variables and a large lag length, then the cost of adding a few more lags will 
not affect the model greatly. Brandt and Williams (2007) have therefore suggested that this 
method should not be used on its own, but should rather be used to compliment other 
methods. 
 
 

6.4 Granger-Causality for VARMA      Models  
 
A VAR    model which requires the estimation of a large number of parameters may result in a 
loss of power. In this instance it is worth testing for Granger-causality for VARMA      models. 
Testing for Granger-causality in a VARMA      model however is usually more complicated 
than for pure VAR    models (Boudjellaba et al., 1992). Consider the example of a bivariate, no 
intercept VARMA      model described in Granger and Newbold (1986)  
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]        (6.16) 

 
where                         and                       

  

   
 Under the assumption that the process is invertible, (6.16) can be rewritten as 
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]             (6.17) 

 
The direction of causality between    and    is the same as that between |    |    and 
|    |    . Thus    does not cause    if and only if 
 
                                    (6.18) 
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If the above condition (6.19) holds but    does not Granger-cause   , then the variable    is 
said to be exogenous (Box et al., 2008). 
 
In general for a stationary, invertible and   dimensional VARMA       process,        
      ,    does not Granger-cause    if and only if det                    where       is the 

 th column of the matrix      and         is the matrix      without its  th column 

(Boudjellaba et al., 1992). 
 
The Wald test derived by Granger and Newbold (1986) that was discussed for VAR    models 
can also be used to test for causality in the VARMA      model with the main difference being 

that   is now the vector of autoregressive and moving average parameters, 
  

   
 is a         

      matrix instead of a       matrix and the Wald statistic follows a         distribution 
instead of a       distribution. 
 
A log likelihood test has also been developed by Boudjellaba et al. (1992). If    ̂  denotes the 
log likelihood function of   and if  ̃  is the maximum likelihood estimate of  ̂ under the 
restrictions that    ̂    0, then the likelihood ratio test statistic is  
 
LR         ̂       ̃  ].         (6.19) 
 
The above authors showed that the likelihood ratio test statistic is asymptotically equivalent to 
the Wald statistic and follows a    distribution with     degrees of freedom. 
 
 

6.5 Granger-Causality at Long Forecast Horizons 
 
With reference to longer forecast horizons, it is important to note that if there has not been any 
causality at horizon 1, it does not necessarily mean that causality has not occurred at horizon 2. 
This was discussed in detail in the paper by Dufour and Taamouri (2010). They propose that a 
simulation based technique should be used in order to obtain causality measures for any time 
horizons that are greater than 1.  In this technique, the first step required is to simulate a large 
sample by using an unconstrained model in which the parameters are already known. The next 
step is to simulate a sample from a constrained model in which the condition for non-causality 
has already been imposed. The variance – covariance matrices for these unconstrained and 
constrained forecasting errors at horizon   are then computed and compared in order to detect 
Granger-causality. 
 
 

6.6 Granger-Causality and Confounding Variables 
 
Granger-causality can also be tested in the event of a confounding variable, i.e. when two 
variables appear to be the cause of each other but it is in fact a third and hidden variable that is 
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responsible for the causation of both the variables. Asghar (2008) used different Granger-
causality tests to test the performance of a confounding variable. In all the simulation 
experiments it was observed that the association between the two variables was in fact due to 
the presence of another variable. 
 

6.7 Limitations of Granger-Causality 
 
 A finding of Granger-causality in the model needs to be met with some caution because: 
 

a. Granger-causality is only applicable if the coefficients of the lagged variables are 
nonzero, i.e. it does not explicitly specify the direction of the relationship. It is possible 
that there could be more than one direction of causality in the model, i.e.    causes    
as well as    causes   . This is known as a feedback relationship and is not uncommon 
especially in the financial sector (Brandt & Williams, 2007). If there is no evidence of a 
causal relationship between    and    as well as    and   , then the variables    and    
are said to be independent of each other. It is therefore important to understand the 
theory upon which the finding is based before assuming Granger-causality. 

 
b. Although Granger-non-causality infers that the past values of a series are not predictive 

of each other, it does not necessarily mean that the different series in a multiple time 
series are uncorrelated. If there is a correlation between the series, then even if no 
Granger-causality takes place, the innovations/shocks will still be highly correlated. 

 
c. The problem of misspecification should also be considered. If there are too few lags 

included in the VAR model, then the VAR estimates will be biased and inefficient. The 
lags omitted will lead to the residuals being serially correlated. This results in the null 
hypothesis for Granger-non-causality being rejected more times than it should and 
Granger-causality may be assumed in the model when it is not actually present (Brandt 
  Williams, 2007). 

 
d. It is also possible that there have been too many lags included in the VAR model. If this 

is the case, the resulting estimates will not be efficient, even in the event that they are 
unbiased. This leads to the possibility of a type 1 error, i.e. failing to reject the null 
hypothesis when it is in fact true. In contrast to the case where too few lags are fitted 
however, this result does not affect the testing for non-causality. 

 
e. A causal model is not necessarily the best model when it comes to analysing the overall 

fit of the model. A study by Lanne and Saikonnen (2009) showed that non-causal models 
can explain the data better than those models where Granger-causality is present. 
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6.8 Conclusion 
 
Granger-causality is useful for determining the direction of causality in a multivariate process 
especially for bivariate series. It is also useful for the prediction of future values of a variable 
based on its past values. 
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CHAPTER 7 
 

A Review of the Literature on Model Selection 
and the Application of Multivariate Time 
Series Modelling 
 
Data generated from many clinical, political science, geographical, economics and 
environmental science studies can be constituted into a time series. Multivariate time series 
analysis is of particular use in the fields of economics because time dependent financial and 
economic data is frequently available to calculate future risk. In order to illustrate practical 
applications of the technique and to emphasise the utility of the different models, a brief 
literature review of studies which employed multivariate time series modelling was undertaken.  
 
 

7.1 Applications of Multivariate Time Series in the Discipline of 
Economics 
 
The most widespread application of multivariate time series analysis in economics is in the field 
of macro economics. 
 
James, Koreisha and Povteh (1985) used a VARMA model to investigate the relationship 
between stock returns, real output and nominal interest rates. They found a strong association 
between stock returns, expected real output and the growth rate in the monetary base. They 
also found that expected changes in the real output activity and money supply growth are 
important predictors of the changes in the expected values of inflation. 
 
Fackler and Krieger (1986) studied the sensitivity of the forecasting performance of various 
univariate and multivariate time series models such as the ARIMA, VAR and VARMA models on 
macroeconomic variables such as money stock, interest rate, GDP deflator and total domestic 
non financial liabilities. They made use of the forecasting errors for each model and came to the 
conclusion that there is evidence to suggest that the VARMA technique had the potential to 
outperform the ARIMA and VAR models in terms of forecasting. 
 
Haden and VanTassel (1988) used a VAR model in order to determine if there were any 
relationships present between the different variables (price of milk, price of daily ration, 
number of cows, production per head , price of daily cows) of the US dairy sector at different 
time lags. The price of milk responded quickly to a shock on itself. However, it took a few 
months for the number of dairy cows to show a significant response to the milk price.  
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Chen and Lee (1990) used a VARMA model to investigate the dynamic relationship between 
prices and interest rates. The authors found some evidence that prices are influenced by 
interest rates but could not find any evidence that interest rates are influenced by prices. 
 
Grubb (1992) compared various VAR and VARMA models at three different locations by making 
use of monthly US flour price data from August 1972 to November 1980. His objective was to 
determine if there was any relationship amongst the various locations. The forecast errors for 
each model at different time lags showed that the VAR(2) model had the best fit. 
 
Simkins (1995) compared the performance of two different VAR models to forecast 
macroeconomic time series, one of which was unrestricted and the other subjected to business 
cycle restrictions. Using the Theli U statistics, he found that the business cycle restrictions only 
lead to a small improvement in the forecasting accuracy of the model. 
 
Stergiou and Christou (1995) compared the forecasting performance of three models:, the 
regression model, univariate and multivariate time series, to analyse annual fisheries catches. 
They found that the regression model fitted the data better than both the time series models, 
as they had a smaller mean percentage error. However, in terms of actual forecasting 
performance, there was inconclusive evidence to suggest any model was better. 
 
Ansari (1996) used a vector autoregressive approach in order to compare the effects of 
monetary policy with that of fiscal policy. He investigated the effects of each policy on the GDP, 
money supply, government expenditure and national income and by modelling them as VAR 
equations and using F tests to test for the significance of the lagged polynomials. The fiscal 
policy was found to yield more significant results and was hence more effective. 
 
Kulshreshtha and Parikh (2000) used a vector autoregressive model in order forecast coal 
demand in India, as well as to determine whether there was a relationship between the coal 
price and power, cement and steel. Their findings were that the coal prices were exogenous in 
all the sectors (does not depend on any variables) except cement. 
 
Veenstra and Haralambides (2001) used a multivariate autoregressive model to forecast sea-
borne trade flows in four community markets (The crude oil, iron ore, grain and coal markets) 
on the major trade routes. They also tested whether a vector autoregressive model was 
accurate in producing long term seaborne trade flow estimates. They came to the conclusion 
that the model was suitable because the mean square forecasting errors were small. 
 
Tahir and Ghani (2004) applied a VAR technique on yearly Bahraini data (1971 – 2002) in order 
to determine the interrelationships between five macroeconomic variables (Money supply, 
GDP, government expenditures, oil prices and CPI) .They found that all of the macroeconomic 
variables are linked, and that they all influence each other to a certain extent. They also used 
impulse responses in order to see whether fiscal or monetary policy is more effective. The 
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impulse response curves showed evidence that fiscal policy is more effective in the short run 
while monetary policy is more effective in the long run. 
 
Chien, Lee and Tsai (2006) made use of a VARMA model to determine if there is an association 
between the monthly values of sales and stock prices of Taiwan. The VARMA model suggested 
that there was a uni-directional relationship between sales figures and the stock prices but that 
there was no evidence of the stock prices influencing sales. 
 
Hanson (2006) used a vector autoregressive model to compare different monetary policy 
regimes in the USA pre 1984 and post 1984 in the USA. He found that most of the changes in 
volatility were attributed to breaks in the non policy portion of the structural VAR. 
 
Papaikonomou and Pires (2006) used a vector autoregressive model to determine if there was 
sufficient evidence to suggest that the US output expectations were unbiased. They used 
impulse responses in order to conclude that the expectations were unbiased in the long run. 
 
Kargbo (2007) compared four different time series models, the VAR, ARIMA, Euler Granger 
single equation and Vector Error Correction Models to forecast agricultural exports and imports 
in South Africa. Using the Theli U statistic, he found that the univariate ARIMA and Euler 
Granger methods outperformed that of the VAR and VECM 
 
Marcucci and Quagliariello (2008) used a vector autoregressive model in order to analyse the 
extent to which macroeconomic shocks affect the banking sector. They constructed impulse 
response functions and found that shocks have significant impacts on the banking sector. 
 
Raghavan et al. (2009) compared three different multivariate time series models, the VAR, 
SVAR (Structured VAR) and VARMA models in order to analyse the Malaysian monetary policy. 
The variables used were money supply, effective rate, industrial production, consumer price 
index and overnight interbank rate. The impulse response curves were constructed for each 
model in order to determine the effect of a shock on each variable. Of all the models in the 
study, the VARMA model produced the results which were the most consistent with prior 
theoretical expectations. 
 
Gupta, Jurgilas and Kabundi (2010) used a factor augmented vector autoregressive approach in 
order to determine the impact of monetary policy on the real house price growth in South 
Africa from the first quarter of 1980 to the final quarter of 2006. They made use of impulse 
response functions, and found that in general a monetary policy shock triggers a negative 
response in house price inflation. However, there were a range of varied responses amongst 
the various sectors of the housing market. The luxury, large middle and medium middle 
segments showed a significant response to a shock in the monetary policy while the response 
of the small middle and affordable housing segments was minimal. 
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 7.2 Applications of Multivariate Time Series in the Discipline of 
Natural Sciences 
 
Hagnell (1991) compared two separate models, a VAR model and a VARMA model to study the 
relationships between fertility, mortality for ages 20 - 50 years (which they referred to as adult 
mortality), nuptiality and real wages in Sweden in the period 1751 -1850. A VARMA (1,1) model 
was identified by analysing the cross correlation function. In order to reduce the number of 
parameters in the model, he also fitted a restricted VARMA (1,1) model by setting the 
insignificant parameters in the original model to zero. The results indicated that fertility is 
influenced by past real wages and past nuptiality. Adult mortality was found to depend only on 
real wages while nuptiality was influenced by both lagged values of real wages and lagged 
values of adult mortality. The real wages were found to be exogenous or independent of the 
other variables. A VAR    model was also identified and as in the previous case of the 
VARMA      model, the insignificant parameters were set to zero in order to obtain a more 
parsimonious model. This model yielded results similar to that of the VARMA (1,1) model with 
the exception that adult mortality was influenced by past nuptiality. Using mean square errors, 
the author showed that the VARMA model provides more accurate forecasts than the VAR. 
 
Chin (1995) used a multivariate time series in order to determine the variation in the monthly 
and annual rainfall in South Florida. For monthly rainfall, it appeared that the deviations were 
caused by regional scale phenomena that had a temporal structure while the majority of the 
variance for annual rainfall was associated with regional scale phenomena that were randomly 
and normally distributed. 
 
Lu (2001) used a vector autoregressive approach in order to describe the dynamics of the US 
population between 1910 and 1990, and to investigate whether there were any associations 
between the total population, birth rate, immigration and GDP per capita variables. The results 
indicated that the population of the USA was dependent on its historical population as well as 
the past values of birth rate and immigration, but did not show any signs of dependency on 
GDP per capita. 
 
Grimaldi, Tallerini and Serinaldi (2005) applied the commonly used VAR    model as well as the 
more optimal VAR     models and in order to analyse daily rainfall series. The study showed 
that rainfall series can be simulated by modelling and that it is more favourable to use the 
general VAR     models instead of the basic VAR    one. 
 
Gan (2006) used a vector autoregressive modelling approach in order to investigate the 
causality relationships amongst wildfire, the El Nino Southern Oscillation (ENSO), timber 
harvest and urban sprawl. The author found that an individual factor may not affect wildfire 
activity when acting alone but can be significantly influential when coupled with other factors. 
There was also evidence of a feedback effect of wildfire activity on the other variables. Impulse 
responses were also constructed and the results revealed that the wildfire activity was more 
responsive to a shock in the urban population density than that of the other variables. 
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Ewing, Riggs and Ewing (2007) used a VAR model to investigate the dynamic relationships of a 
predator prey system as well as to analyse the responses of this system to unexpected shocks. 
The population densities of predator and prey were studied and the results indicated that there 
were significant responses of the population density growth of the predator to shocks in the 
growth rate of the prey (and vice versa). This result is not generally found when normal 
regression modelling is used. 
 
Ewing et al. (2007) used a VAR model to examine whether there was a relationship between the 
wind speeds at a particular location at different heights (13, 33, 70 and 160 feet). The wind 
speeds at each height were regressed on the lagged periods of the other heights. The wind 
speed at 13 feet was shown to be the most dependent on the current and previous wind 
speeds at other heights, while the wind speeds at 33 feet and 160 feet were shown to be the 
most independent of the speeds at other heights. They also constructed impulse response 
curves to determine the response of the wind speed at each height to a random shock. Impulse 
responses showed that the wind speeds at 70 feet were the most vulnerable to a shock. 

 
 
7.3 Applications of Multivariate Time Series in Other Disciplines 

 
This study is used to illustrate the versatility of the method. Enders and Sandler (1993) used a 
vector autoregression analysis in order to determine if there was any relationship amongst the 
various modes of attack used by terrorists. They found that some modes of attack are 
substitutes in that they fulfill a similar purpose while others are complements in that they 
enhance each other’s effectiveness. They also studied the effectiveness of six policies designed 
to counter terrorism and found that there is evidence to suggest that while some policies have 
an effect in reducing the number of incidents for one mode of attack, they can actually lead to 
an increase the number of incidents for another mode of attack. A possible explanation put 
forward by the authors is that when terrorists find one mode of attack is not successful, they 
resort to other measures. 
 
 

7.4 Strengths of the VARMA      model 
 
The VARMA       model has several strengths. These are: 
 

a. It is possible that for a data generating process, the order   in a VAR    model could be 
very large which in turn results in a large number of parameters that are required to be 
estimated. This leads to parameter estimates which are imprecise. The VARMA      
model is able to represent this same data generating process in a more parsimonious 
manner (Lütkepohl, 2005). This is because VARMA      models on the other hand have 
the ability to summarise the high order autoregressive lags into low order lagged shocks. 
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Athanasopoulos et al. (2012) recommend that in order to avoid misspecification, any 
modelling of microeconomic time series should include the moving average dynamics of 
the process even when it is assumed that the components of the time series follow 
finite VAR’s. 

 
b. The performance of the VAR    model deteriorates with large sample sizes. This can 

lead to a large number of parameter estimates which are not significantly different from 
0. The VARMA      models, by virtue of being more parsimonious, are able to improve 
the efficiency of the estimated parameters while at the same time not taking away the 
important associations among the variables (Fackler   Krieger, 1986). The model 
dimension of the VARMA      model can be reduced by setting some of the 
parameters to 0 (Dias   Kapetanios, 2011). A simulation study by the above authors 
showed that for large samples and forecast horizons, the VARMA      model 
outperforms the VAR   . 

 
c. The VARMA      model is preferred to that of the VAR    when analysing financial and 

economic theory as the VAR    model fails to uncover the true impulse responses by 
generally producing results contrary to the underlying economic theory (Kascha, 2010). 
Dufour and Pelletier (2004) conducted a study in order to find out whether the VAR    
model or the VARMA      model is more accurate in the determination of a shock to 
output, price level and the federal fund rate. They used linear methods to estimate the 
VARMA      model and constructed impulse response curves with a one standard 
deviation confidence interval band. They noted that while the shapes of the impulse 
response curves were similar, the width of the confidence bands for the VARMA      
models was much smaller which indicates a greater accuracy for the VARMA      
model. 

 
d. There have also been published studies which compared the forecasting performance of 

the VAR    and VARMA      models. Hagnell (1991) found that by using mean square 
errors based on the differences between forecasts and actual observations, the 
VARMA      model produced superior forecasts compared to that of the VAR    
model. A comparison between the forecasting performances of the VARMA      
models with unrestricted and restricted VAR models (The restrictions being that the 
insignificant parameters were set to 0) with lag orders chosen by the AIC and BIC was 
conducted by Athanasopoulos and Vahid (2008). These authors used mean square 
errors for each model and found out that the forecasting performance of the 
VARMA      model was significantly better than for all the other models. This is 
important, because if the parameter estimates of a VAR    model are imprecise, they 
can have a major impact on the forecasting performance of the model (Lütkepohl, 
2004). 

 
e. Raghavan et al. (2009) also noted that VARMA       models generally produce more 

reliable impulse response functions than that of VAR    models. 
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7.5 Weaknesses of the VARMA      model 
 

There are some distinct weaknesses in the use of the VARMA      model which may account 
for it receiving less attention. These are:  
 

a.  Challenges when it comes to identifying the unique VARMA      representations 
(Raghavan et al., 2009). This means that, if more than three time series are analysed, it 
can become difficult to find the orders of the operators due to the large number of 
autocorrelation, cross-correlation and partial autocorrelation functions present 
(Lütkepohl   Poskitt, 1996). The VAR     model is easier to specify as only one lag order 
needs to be chosen (Dufour   Pelletier, 2008) and 
  

b.  Dufour and Pelletier (2004) noted that VARMA      models are complicated by 
estimation difficulties. The standard estimation methods (maximum likelihood 
estimation and least squares estimation) usually require nonlinear optimisation and are 
not always feasible because the number of parameters in the model can increase 
quickly. This was confirmed in the authors own analysis which was described earlier in 
this thesis. The VARMA       model required a large number of iterations which the 
program was unable to run for shorter time periods. In addition, in order to simplify 
modelling and estimation, researchers tend to approximate a VARMA       model of 
order which is much higher than selected by AIC/BIC which can lead to a loss of 
information and the reliability of the impulse responses. 
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CHAPTER 8 
 
Application of Multivariate Time Series 
Analysis 
 
 
8.1 Application of Multivariate Time Series for the Analysis of South 
African Wage and Inflation Data  
 
Multivariate time series analysis was applied to data collected by the author in order to 
illustrate the use of the method. A topical and often controversial issue in the field of 
economics is the study of the relationship between wages and inflation. There is a perception 
based on Keynesian economics that higher wages lead to an increase in prices which in turn 
leads to increasingly higher wages (Todani, 2006). This is known as the wage- price spiral. On 
the other hand authors such as Jonsson and Palmqvist (2004) have found evidence to suggest 
that it is inflation which is actually responsible for wage increases. South Africa has a highly 
unionized work force and there have been increasing calls by the Congress of South African 
Trade Unions (COSATU) for wage increases (Fin24, 2010). This has been met by resistance from 
the government who argue that wage increases will impact negatively on the economy by 
driving inflation upward. This is a highly emotive issue and the debate will benefit from 
evidence. I have thus used a multivariate time series approach to investigate whether there is 
indeed a relationship between wages and inflation in South Africa from 1996-2008.  
 

Source of data 
 
In order to proceed with this analysis, the domestic inflation rate and the average change in 
gross earnings over a fixed time period were required. Quarterly changes in gross earnings were 
obtained from the Statistics South Africa (Stats SA) electronic data base extending from the 
second quarter of 1996 to the fourth quarter of 2008. This survey is called the Quarterly Labour 
force survey (Formally known as the Survey of Employment and Earnings) and is published 
quarterly. It reflects the percentage change in the gross earnings from the previous quarter as 
well as the percentage change in earnings of each sector from the previous quarter. 
 
 In order to calculate the inflation rate, I needed to find a data set consisting of consumer price 
index (CPI) values. The CPI is a yardstick of the general prices in the economy. These CPI values 
are calculated monthly by Stats SA and they represent the cost of a basket of goods and 
services bought by a typical South African household. The monthly inflation rate is calculated by 
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comparing a month’s CPI with the corresponding month of the previous year. This is done by 
calculating the difference between the CPI index of any month in the year and the CPI index of 
the corresponding month in the previous year and then dividing by the CPI index of that 
particular month. In other words, the inflation rate for January 2011 is 
 
                            

             
 

 
However, for my analysis I required the quarterly inflation rate because the inflation rate had to 
be aligned with the percentage changes in gross earnings which were calculated quarterly. The 
quarterly inflation rate was calculated by taking the difference between the current average CPI 
index for a quarter and the average CPI index of the corresponding quarter of the previous year 
and dividing it by the average CPI index of that quarter. For example, the inflation rate for the 
first quarter of 2011 is calculated as  
 

[
                                           

 
]  [

                                           
 

] 

                                           
 

 

 
The statistical package SAS version 9.2 was used to analyse the data by use of the VARMAX 
procedure. The graphs were performed by the use of Microsoft Excel 2007. 
 
 

8.2 Results and discussion 
 
The first procedure is to do an analysis of each variable individually. The first variable that will 
be considered is that of inflation. Figure 8.1 illustrates the time series plot of inflation over the 
time period specified. 

 

 
 
Figure 8.1 Time series plot of inflation 
 
The inflation rate fluctuated between 2 to 10 percent from 1996 to 2001, but for the most part 
it was a stable at around 6 percent.  However from the first quarter of 2001 there was a sharp 
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increase for the next year when the rate reached a peak of over 12%. The rate then declined 
sharply until the last quarter of 2003 reaching an all time low of just above 0%. For the years 
2003 to 2008 there was a gradual but steady increase reaching a peak of almost 14% in the 2nd 

quarter of 2008 after which there was evidence of a decline. The summary statistics for 
inflation are presented in the table below. 
 

N 51 

Minimum Value 0.437 

Maximum Value 13.404 

Mean 6.329 

Median 6.441 

Variance 9.803 

Standard Deviation 3.131 

Skewness 0.136 

Kurtosis - 0.432 

 
Table 8.1: Summary statistics for inflation 
 
The inflation rate ranges from a minimum of 0.437% (1st quarter of 2004) to a maximum of 
13.404% ( 3rd quarter of 2008). The average inflation rate over the period concerned was a 
moderately high figure (mean = 6.329).The amount of standard deviation in the model (3.131%) 
indicates that there is a fair amount of variability. This is especially prominent from the period 
of the 3rd quarter of 2001 up until the 1st quarter of 2004. The skewness coefficient (0.136) 
indicates that the distribution of values is slightly positively skewed and implies that a slight 
majority of the values lie to the left of the mean. The kurtosis coefficient ( -0.432) is negative 
which indicates that the tails of the distribution of values are thinner than that of a normal 
distribution and in addition have a lower and wider peak around the mean. 
 
The second variable which has been analysed is that of wage increases. The time series plot of 
wage increases over the period specified is illustrated in Figure 8.2 below. 
 

 
 
Figure 8.2 Time series plot of wage increases  
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The pattern for wage increases demonstrates less noticeable trends than that for inflation. 
There is a significant drop in the rate of wage increases from the end of 1998 until the end of 
1999. The summary statistics for wage increases are revealed in Table 8.2 below.  
 
N 51 

Minimum Value 2.5 

Maximum Value 15.7 

Mean 9.614 

Median 10.1 

Variance 10.143 

Standard Deviation 3.185 

Skewness 0.013 

Kurtosis - 0.535 

 
Table 8.2 Summary statistics for wage increases 
 
The wage increase percentage ranges from a minimum of 2.5% (4th quarter of 1999) to a 
maximum of 15.7% (1st quarter of 2008). The mean and median figures (9.614 and 10.1 percent 
respectively) indicate that on average, wages increase at a significantly quicker rate than 
inflation. A possible reason for this could have been mounting pressure from organized labour 
to increase wages at the time. The standard deviation (3.185) indicates that the variability for 
wage increases is similar to that for inflation. The skewness coefficient (0.013) is very slightly 
above 0 observations which indicate that the distribution is almost symmetrical. The kurtosis 
coefficient (  0.535) demonstrates that the distribution of wage increases has a lower and 
wider peak as well as thinner tails when compared to inflation. 
 
We then superimposed the values of inflation on the rate of wage increases in order to 
determine if there was a relationship between the two series. Figure 8.3 shows the time series 
plots of both the series simultaneously.   
 

 
 
Figure 8.3: Time series plots of inflation and wage increases 
 

0
2
4
6
8

10
12
14
16
18

Q
2

 1
9

9
6

Q
1

 1
9

9
7

Q
4

 1
9

9
7

Q
3

 1
9

9
8

Q
2

 1
9

9
9

Q
1

 2
0

0
0

Q
4

 2
0

0
0

Q
3

 2
0

0
1

Q
2

 2
0

0
2

Q
1

 2
0

0
3

Q
4

 2
0

0
3

Q
3

 2
0

0
4

Q
2

 2
0

0
5

Q
1

 2
0

0
6

Q
4

 2
0

0
6

Q
3

 2
0

0
7

Q
2

 2
0

0
8

P
e

rc
e

n
t 

Inflation

Wage Increases



 

120 
 

 There appears to be a clear relationship between inflation and wage increases from the1st 
quarter of 1997 up to the 3rd quarter of 2003 where both series appear to move in the same 
direction.  The inflation rate decreases at a quicker rate than wage increases around 2003. 
Wage increases fluctuate around the 10% level from 2004 – 2008 while the rate of inflation 
shows a gradual increase around the same period.   
 
In order to investigate the relationship between inflation and wage increases further, it was 
decided to perform a correlations analysis between the two variables at different time lags.  
   denotes the inflation rate while    refers to the rate of wage increases. 
 
Lag Variable       

    
0      1          0.285 

      0.285          1 

1      0.843    0.087 

       0.448          0.495 

2      0.520        - 0.104 

      0.376           0.408 

3      0.195      - 0.211 

      0.156          0.342 

4    - 0.026        - 0.153 

    - 0.054       - 0.056 

5    - 0.079        - 0.055 

    - 0.195         0.160 

 
Table 8.3: Correlations between inflation and wage increases 
 
The correlation between inflation with itself at lag 1 (r = 0.843) is very strong and positive. It 
weakens considerably thereafter with each increase in lag but is still positive at lags 2 and 3      
(r    0.520 and 0.195 at lags 2 and 3 respectively). The correlation between inflation and itself 
is very small and slightly negative at lags 4 and 5 (r =   0.026 and – 0.079 at lags 4 and 5 
respectively).  
 
There are very little signs of any significant cross correlation between inflation and wage 
increases at all time lags.   
 
The correlation between wage increases and itself is not as strong as that of between inflation 
and itself at lag 1 (r = 0.495). However there is a positive correlation with itself at all time lags 
barring lag 4 when it shows signs of a slight negative correlation. 
 
There are signs of a positive correlation between wage increases and inflation at lag 1  
(r = 0.448). This is a surprising finding as the correlation between wage increases and inflation 
at lag 0 is 0.285. This indicates that wage increases are more closely related to the previous 
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value of inflation rather than the current value and that a change in the inflation rate may 
prompt a demand in the increase of wages.  
 
The next procedure is to determine if there is a unit root in the data. This is important because 
if there is one or more unit roots present, it could influence the Granger-causality test results 
(Brandt & Williams, 2007). The testing for unit roots in the data is performed by using the 
Dickey-Fuller test under the null hypothesis that there is a unit root present in the data. 
 
                                  

Variable Type Rho Pr < Rho Tau Pr < Tau 

      
   Zero Mean - 6.12 0.0829         1.71       0.0827 

 Single Mean - 49.27       0.0004       - 4.42       0.0008 
 Trend - 50.76       < .0001       - 4.36       0.0058 
      

   Zero Mean - 1.14       0.4462       - 0.77       0.3778 
 Single Mean - 15.74       0.0225       - 2.74 0.0748 
 Trend - 21.28       0.0297       - 3.33 0.0736 
 

Table 8.4: Dickey-Fuller unit root tests 
 

In view of the fact that I am including a deterministic term in the model, the results indicate 
that for inflation     , the null hypothesis that a unit root is present for the mean and trend 
terms is rejected at a 5 percent level of significance (       50.76, p < 0.0001). For wage 
increases     , the null hypothesis that a unit root is present is rejected (       21.28, p < 
0.0001) . It can thus be concluded that there is no unit root present in the data. 
 
The specification of the order of the model is performed by using the Minimum information 
criterion (discussed in chapter 4.6.2).  
 

Lag MA 0 MA 1 MA 2 MA 3         MA 4                              MA 5        MA 6       

AR 0 4.449  4.487       3.983  3.143 3.047 2.958      3.180 

AR 1 2.866  3.113    2.956  2.426  2.373  2.267   2.572   

AR 2 2.208   2.541    2.530   2.061   2.059  2.245   2.602   

AR 3 2.109  2.292   2.350  2.229   2.314  2.574  3.007   

AR 4 2.052   2.381   2.394  2.387   2.706   3.004   3.446  

AR 5 2.204  2.204   2.403   2.665   3.076   3.253   3.821   

AR 6 2.266  
  

2.641   2.892   3.217   3.732  4.058   4.639   

AR 7 2.318 2.767   3.289   3.831   4.496   5.049   5.883   

 

Table 8.5: Minimum information criterion 
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The Minimum information criterion table demonstrates that a VAR 4  model has the lowest 
value (2.052). However, the value for the VARMA  2,4  model is only marginally higher (2.061). 
We have decided to run both models in order to determine whether similar conclusions can be 
drawn for both models. 
 
The selection of the VAR    model can be confirmed from the methods employed by Tiao & 
Box (1981) in which the partial autocorrelation functions for both of the variables are 
determined simultaneously in a VAR model.  
 
         Schematic Representation of Partial Autocorrelations 
        Variable/ 
        Lag          1    2    3    4    5    6    7    8    9   10    11     
 
        y1           +    -    .    .    .    .    .    .    .    .    .     
        y2           +    .    .    -    .    .    .    .    .    .    .     
 
                       is      std error,    is      std error,  . is between 

 
The above representation shows that it is clear that the appropriate model is of an order of at 
most 4. Figures 8.4 and 8.5 illustrate the graphical depictions of the partial autocorrelation 
functions for each series when they are analysed independently of each other i.e. as two 
univariate time series. 
 
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
|              .     |*****************   | 
|       *************|     .              | 
|              .     |***  .              | 
|              .     |*    .              | 
|              .     |*****.              | 
|              .*****|     .              | 
|              .    *|     .        
|              . ****|     .              | 
|              .   **|     .              | 
 
 Figure 8.4 Partial autocorrelation function for inflation              
 
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
|              .     |**********          | 
|              .     |**** .              | 
|              .     |**   .              | 
|           *********|     .              | 
|              .     |*******             | 
|              .     |***  .              | 
|              .  ***|     .              | 
|              .     |**   .              | 
|              .   **|     .              | 
|              .     |     .              | 
|              .     |**   .              | 
 
Figure 8.5 Partial autocorrelation function for wage increases              
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The results show that the inflation series should have a maximum autoregressive order of 2 
while the wage increase series should have a maximum order of 5. 
 
The VAR 4  model is the first model which we have estimated and is performed by using the 
least squares estimation procedure discussed in chapter 2.6.1. This is the default estimation 
procedure used in SAS for the estimation of VAR models. The parameters and their standard 
errors are listed in Table 8.6. 
 
Equation     Parameter Estimate Standard 

Error 

t- value Pr > |t| 

      
      Constant   1.398 0.788 1.77 0.086 

          1.398 0.172 8.12 0.000 

          0.218 0.066 3.31 0.002 

        - 0.586 0.298 -1.97 0.057 

        - 0.086 0.068 -1.26 0.216     

        - 0.073        0.295      -0.25       0.805   

        - 0.129          0.068      -1.92       0.063    

          0.104       0.159       0.65       0.517   

        - 0.05         0.077    0.65       0.519  

      

     Constant   3.797          1.871        2.03       0.049     

          0.114       0.409         0.28       0.782    

          0.376       0.156         2.41       0.021     

        - 0.291        0.708      - 0.41       0.684    

          0.312         0.162         1.92       0.062     

          0.413 0.701       - 0.59       0.559    

         0.359         0.161        2.23       0.032    

          0.506      0.378       1.34       0.188    

        - 0.397        0.183    - 2.17       0.037     

 
Table 8.6: Parameter estimates for inflation and wage increases in the VAR(4) model 
 
The above results indicate that the relationship between the current value of    (inflation) and 
its previous value at lag 1 is statistically significant (t   8.12, p   0.0001).  The relationship 
between inflation and wage increases at lag 1 is also statistically significant (t    3.3, p   
 0.002). There is no significant evidence to suggest an association between inflation and its past 
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values as well as past values of wage increases at larger time lags (p > 0.05 at lags 2, 3 and 4). 
This suggests that inflation is significantly influenced from recent events. 
 
The relationship between wage increases       and its own past values at all lags are 
statistically significant (t   2.41, 1.92, 2.23, 2.17 and p   0.021, 0.062, 0.032, 0.037 at lags 1, 2, 
3, 4 respectively). There is a positive association between wages and its past values at lags 1, 2 
and 3 and a significant negative association at lag 4. The relationship between wage increases 
and past values of inflation at all time horizons is not statistically significant (t  
 0.28,  0.41,  0.59 , 1.34 and p   0.782, 0.684, 0.559, 0.188 at lags 1, 2, 3, 4 respectively. This 
proves that wage increases    ) is a more exogenous variable than inflation (  ). 
 
We have furthermore, conducted a Granger-causality Wald test (discussed in chapter 6.3) 
under the null hypothesis that inflation and wage increases do not cause each other. Test 1 
tests the alternate hypothesis that inflation is caused by wage increases and Test 2 tests the 
alternate hypothesis that wage increases are caused by inflation.  
 
 

Test Degrees of Freedom Chi-square P-Value 

1 4 14.83 0.0051 

2 4 6.55 0.1617 

 
Table 8.7: Granger-causality Wald tests for the VAR(4) model 
 
The null hypothesis of non-causality that inflation is not caused by wage increases is rejected 
(   (4)   14.83, p   0.0051). This is consistent with the view expressed in Keynesian economic 
theory. 
 
Test 2 tests whether wage increases are influenced by inflation. The results for test 2 show that 
there is an acceptance for the null hypothesis of non-causality (   (4)   6.55, p   0.1617).This 
means that there is good evidence to suggest that wage increases are not caused by inflation. 
This result is again consistent with the estimation procedure. It should be noted however, that 
Granger-causality tests have been proven to be biased if there is a possibility that the series is 
non-stationary (Hamilton, 1994). 
      
The next stage in the model building procedure is to determine whether the VAR 4  model is 
an adequate model. In order to do this, we ran the schematic representation of cross 
correlation of the residuals as well as the Portmanteau test up until lag 12. 
 
                  Schematic Representation of Cross Correlations of Residuals 
    Variable/ 
    Lag          0     1     2     3     4     5     6     7     8     9     10    11    12 
 
    y1           ++    ..    ..    ..    -.    ..    ..    ..    ..    ..    ..    ..    .. 
    y2           ++    ..    ..    ..    ..    ..    ..    ..    ..    ..    ..    ..    .. 
 

                       is     std error,    is      std error,  . is between 
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This representation demonstrates very little evidence of serial correlation in the residuals which 
indicates that the model is adequate. Table 8.8 reveals the results of the Portmanteau test. 
 
 
Up to 

lag 
Degrees  

of Freedom 
Chi-square p-value 

5 4 14.44 0.0060 

6 8 15.93 0.0434 

7 12 16.11 0.1862 

8 16 16.97 0.3875 

9 20 17.8 0.6004 

10 24 22.32 0.5602 

11 28 25.46 0.6025 

12 32 28.89 0.6249 

 

Table 8.8:  Portmanteau statistics for the VAR(4) model 
 
 

The Portmanteau test is conducted under the null hypothesis that there is no cross correlation 
in the residuals. The results show that the model is adequate due to the presence of relatively 
low Chi-square values and large p values with the exception of up to lags 5 and 6.  
 
In view of the fact that one of the main purposes of multivariate time series is forecasting, we 
have conducted the 3 step ahead forecasts for the 1st, 2nd  and 3rd  quarters of 2009 
(observations 52 – 54) with their 95% confidence intervals. In order to determine how accurate 
the forecasts for this model are, we ran a test to determine the difference between the actual 
forecasts for observations 50 and 51 and their predicted values based on the trends of 
observations 1–49. Tables 8.9 and 8.10 show the 3 step ahead forecasts for inflation and wage 
increases respectively. 
 

Variable Obs Forecast Standard 

Error 

95% Confidence Limits          Actual Residual 

   50 11.686      1.057        9.615      13.758    13.404      1.718 

 51 10.068      2.023         6.104      14.032      11.155      1.087 

 52 7.349       2.738         1.981      12.716   

 53 4.622      3.066      - 1.387      10.633   

 54 2.911       3.139      - 3.241       9.063   
    
 

Table 8.9:  3 step ahead forecasts for inflation generated from the use of the VAR(4) model    
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Variable Obs Forecast Standard 

Error 

95% Confidence Limits          Actual Residual 

   50 14.461 2.511       9.540     19.383      13.400      -1.061 

 51 11.985       2.698       6.697      17.273      10.100   -1.885 

 52 10.046       2.942       4.279      15.812   

 53 9.339      3.308       2.856      15.822   

 54 9.141      3.371       2.533      15.749   
 

Table 8.10:  3 step ahead forecasts for wage increases generated from the use of the VAR(4)    
model    
 

The differences between the actual and forecasted values of inflation for observations 50 and 
51 are very small (residuals of 1.718 and 1.087) respectively which indicates that the 
forecasting accuracy of this model is very good. This is confirmed by the relatively small range 
between the lower and upper values of the 95% confidence limits. The forecasts for 
observations 52, 53 and 54 indicate that a significant dip in the inflation rate is expected for the 
following 3 quarters. 
 
The results for wage increases also show that the differences between actual and forecasted 
values for observations 50 and 51 are small  residuals of   1.061 and  1.885 respectively) 
which indicates that the forecasts are precise. A dip in the wage increases for observations 52, 
53 and 54 is also expected, though this decrease is not expected to be as sharp as the drop in 
the inflation rate. A possible explanation for this phenomenon is that wage increases are only 
dependent on their own past values and inflation is dependent on its own past value as well as 
the past values of wage increases. 
 
In the final procedure for this part of the analysis, a forecast error decomposition analysis was 
performed for inflation and wage increases respectively. For this we needed to determine how 
much the values in the model fitted differed from the actual values of the vector of endogenous 
variables. If the innovations in one variable do not help explain the variation in the other 
variable, then both variables are said to be exogenous of each other (Brandt & Williams, 2007). 
 
Variable Lead       

   1 1 0 
 2 0.934       0.066 
 3 0.896         0.104 
 4 0.884         0.116 
 5 0.879          0.121 
 6 0.875          0.125 
 7 0.843         0.157 
 8 0.799         0.201 
 9 0.758          0.242 
 10 0.742          0.258 
 11 0.743          0.257 
 12 0.748         0.252 
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 13 0.750          0.250 
 14 0.751          0.249 
 15 0.749          0.251 
 
Table 8.11: Forecast error decomposition analysis for inflation  
 
Variable Lead       

   1 0.094         0.906 

 2 0.105          0.895 

 3 0.097        0.903 

 4 0.081         0.919 

 5 0.115         0.885 

 6 0.136        0.864 

 7 0.149         0.851 

 8 0.149         0.851 

 9 0.151         0.849 

 10 0.158      0.842 

 11 0.166       0.834 

 12 0.167        0.833 

 13 0.166          0.834 

 14 0.167          0.833 

 15 0.169          0.831 

 
Table 8.12: Forecast error decomposition analysis for wage increases  
 
Since inflation is first in the ordering of the variables, the variance decomposition assumes that 
the first period contains all of the variance of the forecasts which are attributed to inflation, 
and none which are attributed to wage increases. For both variables, the forecast errors are 
explained mainly by themselves and most of the variance in prediction is due to their own 
shocks. After a period of 15 quarters (3.75 years), approximately 25 % of the forecast error in 
inflation is attributed to shocks/innovations in wage increases while for the same period, 
approximately 17 % of the forecast variation in wage increases is attributed to innovations in 
inflation. It is important to note that the proportion of variance of   (inflation) explained by 
itself has decreased at a quicker rate than   . This indicates that unexpected changes in the 
wage rate have a more profound effect on inflation than inflation has on wage increases. This 
finding is in contrast to that reported by Agénor and Hoffmaister (1997) who used variance 
decompositions to demonstrate that wage increases are greatly influenced by its own shocks at 
short time horizons while inflation is influenced to a greater extent by its own shocks at longer 
time horizons. 
 
In conclusion, the current value of inflation is dependent on its previous value as well as on the 
previous value of wage increases. The current value of wage increases is highly dependent on 
its own past values and there is evidence to suggest that higher inflation rates do not lead to an 
increase in wages. 
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A regression of the VARMA 2,4  model was then performed in order to determine whether it 
would yield results similar to that of the VAR 4  model and if it fits the data better. The default 
procedure used for estimating the VARMA model in SAS is maximum likelihood estimation. As 
discussed earlier, the maximum likelihood equations are nonlinear in the parameters and need 
to be solved using iterative methods. The first method used to solve these equations is the 
Quasi-Newton method which is where successive gradient matrices are computed in order to 
obtain the Hessian matrix. Table 8.13 shows the parameter estimates for inflation and wage 
increases estimated from the use of the Quasi-Newton method 
 
Equation     Parameter Estimate Standard 

Error 

t- value Pr > |t| 

       Constant    3.815          0.000                            1 
           0.598          0.353   1.69 0.097     

           0.199          0.121   1.64 0.108     

        -  0.216          0.243 - 0.89 0.379     

           0.187         0.070   2.68 0.010     

         - 0.863          0.412 - 2.09 0.042     

        -  0.154        0.189 - 0.81 0.419     

        -  0.740         0.422 - 1.76 0.086    

        -  0.096          0.098 - 0.98 0.333    

           0.931         -0.353 - 2.63 0.011     

        -  0.046         0.099 - 0.46 0.649     

         - 0.095          0.278 - 0.34 0.735     

         -  0.132         0.180 - 0.73 0.470     

 
 
Equation     Parameter Estimate Standard 

Error 

t- value Pr > |t| 

       Constant     12.808          0.000                          1 
          - 1.428          1.303       - 1.10       0.279     

            0.916          0.238          3.84       0.000     

            0.737          0.601          1.23       0.226     

            0.511          0.530         0.96       0.340     

          - 0.385          1.410       - 0.27       0.786     

            0.208          0.284          0.73       0.468     

          - 0.990          1.310       - 0.76       0.454     

          - 0.239          0.197       - 1.21       0.231     

          - 1.454          1.456       - 1.00       0.323     

          - 0.780          0.232       - 3.37       0.002     

          - 0.547          1.760       - 0.31       0.757     

             0.702          0.323          2.14       0.038     

 
Table 8.13: Parameter estimates for the VARMA(2,4) model obtained from using the Quasi-
Newton method 
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There does not appear to be evidence of an association between inflation and lagged values of 
itself and wage increases. This method has unfortunately not provided the t statistics in order 
to test for the significance of the parameters. We have thus decided to evaluate the equations 
by the use of the Newton-Raphson iterative procedure instead of Quasi-Newton iterations. We 
have used a large number of maximum iterations (50 000) and function calls (100 000). The 
results for the Newton-Raphson parameter estimates are shown below. 
 
Equation     Parameter Estimate Standard 

Error 

t- value Pr > |t| 

       Constant    3.815          0.000                            1 
           0.598          0.353   1.69 0.097     
           0.199          0.121   1.64 0.108     
        -  0.216          0.243 - 0.89 0.379     
           0.187         0.070   2.68 0.010     
         - 0.863          0.412 - 2.09 0.042     
        -  0.154        0.189 - 0.81 0.419     
        -  0.740         0.422 - 1.76 0.086    
        -  0.096          0.098 - 0.98 0.333    
           0.931         -0.353 - 2.63 0.011     
        -  0.046         0.099 - 0.46 0.649     
         - 0.095          0.278 - 0.34 0.735     
         -  0.132         0.180 - 0.73 0.470     
 
 
Equation     Parameter Estimate Standard 

Error 

t- value Pr > |t| 

      Constant   12.808          0.000                          1 
          - 1.428          1.303         -1.10       0.279     

            0.916          0.238           3.84       0.000     

            0.737          0.601           1.23       0.226     

            0.511          0.530          0.96       0.340     

         -  0.385          1.410        - 0.27       0.786     

            0.208          0.284           0.73       0.468     

          - 0.990          1.310        - 0.76       0.454     

          - 0.239          0.197        - 1.21       0.231     

          - 1.454          1.456        - 1.00       0.323     

          - 0.780          0.232        - 3.37       0.002     

          - 0.547          1.760        - 0.31       0.757     

             0.702          0.323           2.14       0.038     

 
Table 8.14: Parameter estimates for the VARMA(2,4) model obtained from using the Newton-
Raphson method  
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This procedure is computationally burdensome (It took approximately 1 and a half hours on 
SAS) however the test statistics for the significance of the parameters have been successfully 
computed. The current value of inflation      demonstrates a statistically significant 
relationship with the past value of wage increases at lag 2 (t   2.68, p   0.010). It also shows a 
significantly negative dependence on its own past shocks at time lags 1 and 3 in particular (p   
0.042 and 0.011 at lags 1 and 3 respectively). There is very little evidence to suggest that 
inflation is dependent on the past innovations of wage increases at all time horizons (p > 0.4 at 
all time horizons). 
 
The current value of wage increases shows a positive and very significant association with its 
previous value at lag 1 ( t   3.84, p   0.000). There is very little association between any of the 
other lagged variables apart from its own shocks at time lags 3 and 4 ( p   0.002 and 0.038 at 
lags 3 and 4 respectively). 
 
Next, a Granger-causality test under the null hypothesis of non-causality was conducted. Test 1 
tests the alternative hypothesis that inflation is Granger-caused by wage increases and Test 2 
tests the alternative that wage increases are Granger-caused by inflation.  
 
Test Degrees of Freedom Chi-square P-Value 

1 2 10.89 0.0043 

2 2 4.13 0.1267 
 
 

Table 8.15: Granger-causality Wald tests for the VARMA(2,4) model 
 
 

There is sufficient evidence to reject the null hypothesis that inflation is not Granger-caused by 
wage increases (   (2)   10.89, p   0.0043). Conversely, the null hypothesis that wage 
increases are not Granger-caused by inflation is accepted (   (2)   4.13, p   0.1267). It can be 
concluded therefore that inflation does not have a major impact on future values of wage 
increases. These findings are similar to that found when the VAR 4  model was tested for the 
direction of Granger-causality. 
 
The final step of the model building process is diagnostic checking and I have decided to 
compare the goodness of fit between the VARMA 2,4  and VAR 4  models. The first step is to 
compare the information criteria of the two models. 
 
Information    Information 
Criteria VAR(4)           Criteria VARMA(2,4) 
 
AICC     2.375  AICC     2.297 
HQC     2.460  HQC     2.259 
AIC       2.193  AIC       1.873 
SBC      2.902  SBC      2.897                                                                                                            
FPEC    9.052  FPEC     6.706 
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The values for all of the information criteria are lower for the VARMA 2,4  model than the 
VAR 4  which indicates that in theory, the VARMA 2,4  model should be selected instead of 
that of the VAR 4 . The residual plot and Portmanteau statistics however reveal the following. 
 
 
                  Schematic Representation of Cross Correlations of Residuals 
    Variable/ 
    Lag          0     1     2     3     4     5     6     7     8     9     10    11    12 
 
    y1           ++    .+    -.    --    +.    ++    -.    --    +.    ++    .+    --    .- 
    y2           ++    -.    -.    +-    ++    ..    -.    .-    ++    ..    -.    .-    +. 
 
  
                      is      std error,    is       std error,  . is between 

 
                                  

Up to 

lag 
Degrees  

of Freedom 
Chi-square p-value 

7 4 266.39 < .0001 

8 8 304.37 < .0001 

9 12 327.40 < .0001 

10 16 368.60 < .0001 

11 20 423.23 < .0001 

12 24 446.22 < .0001 
  

Table 8.16: Portmanteau statistics for the VARMA(2,4) model 
 

The residual plots demonstrate that a large number of the residuals are outside the 2 standard 
error bounds which indicate that there is a strong possibility that the residuals are serially 
correlated. The presence of high Chi-square values results in a rejection of the null hypothesis 
that the model is adequate. This can be confirmed by p < 0.0001 up to all lags. It can thus be 
concluded that the VARMA(2,4) model is not a suitable model to analyse this data set. 
 
Despite the VARMA 2,4  model not showing signs of adequacy, we have still decided to 
compute the forecasts in order to confirm the popular assertion that imprecise parameter 
estimates result in poor forecasts. The 3 step ahead forecasts as well as the predicted forecasts 
for observations 50 and 51 (based on the trends shown for observations 1 to 49) for inflation 
and wage changes are shown in Tables 8.17 and 8.18 respectively. 
 
Variable Obs Forecast Standard 

Error 

95% Confidence Limits          Actual Residual 

   50 16.518       0.677        15.192      17.845     13.404    - 3.114 
 51 19.383       1.617        16.215      22.551     11.155     - 8.228 
 52 24.596      2.780        19.147      30.045   
 53 27.780       3.924        20.089      35.470   
 54 30.957       4.910        21.335      40.580   

 
Table 8.17 : 3 step ahead forecasts for inflation generated from the use of the VARMA(2,4) 
model  
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Variable Obs Forecast Standard 

Error 

95% Confidence Limits          Actual Residual 

   50 24.302       2.283      19.827      28.777      13.400    -10.902 
 51 30.463       3.018     24.548      36.378     10.100    -20.363 

 52 44.995      3.905      37.341     52.650   
 53 46.389       5.291      36.019      56.760   
 54 55.024       5.819      43.619     66.430   
 

Table 8.18: 3 step ahead forecasts for wage increases generated from the use of the 
VARMA(2,4) model  
 

In sharp contrast to the VAR 4  model estimated earlier, there is a substantial difference 
between the actual values and forecasted values (residuals of   3.114 and   8.228) for 
observations 50 and 51. This combined with a large interval of the confidence limits for 
observations 53 and 54 (the 2nd and 3rd quarters of 2009) indicates that the forecasts are not 
accurate. This confirms the fact that a model which does not have accurate parameter 
estimates produces poor forecasts. 
 
The results are even more spurious for the forecast of wage increases. The difference between 
the actual and the predicted values is more than 20 for the 51st observation (the 4th quarter of 
2008). There is also expected to be a large increase in wages in contrast to the VAR 4  model. 
 
For completeness, we also conducted separate tests under the assumption that the data is non-
stationary. I have not reported these results but they confirmed that the VAR model fitted this 
dataset better than the VARMA model. 
 

In conclusion, we ran 3 models, a VAR 4  model estimated using least squares estimation under 
the assumption that both the series are stationary, and two stationary VARMA 2,4  models 
estimated using maximum likelihood with the nonlinear equations solved using both Quasi- 
Newton and Newton-Raphson methods. The VAR model fitted the data well and produced 
accurate forecasts. The VARMA model evaluated with Quasi-Newton estimation was unable to 
generate t statistics to test for the significance of the parameter estimates while the model that 
was evaluated using Newton-Raphson estimation produced estimates which did not fit the data 
well. This shows that a more complex model does not necessarily lead to more accurate results. 
The VAR model shows that there is strong evidence that wage increases occur independently of 
inflation and while inflation is also dependent on past values, there is evidence which points to 
an association between itself and wage changes at short time horizons. The values of both 
inflation and rate of wage increases were expected to decrease in the following 3 quarters. 
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CHAPTER 9 
 
 

Conclusion 

 
The main objective of this study was to describe and compare model building procedures and 
the forecasting performance of the VAR   , VMA     and VARMA       models in an attempt 
to identify factors which could explain model selection. 
 
The popularity of the VAR    model is largely due to the fact that it is easy to specify because 
only one lag order needs to be chosen. The estimation methods such as that of least squares 
estimation and Yule-Walker estimation are relatively easy to use and in addition, there is also 
the maximum likelihood estimation procedure which is more efficient. The VAR    model also 
produces reliable forecasts. 
 
The VAR    model has the ability to determine the association between different variables. 
However, although the VAR    model can be used to determine the interdependence among 
two or more series, it does not take into account the effect of innovations or shocks at different 
time lags and neither is it parsimonious. A finite multivariate time series model which only takes 
into account the relationship between    and its various shocks at   time lags is known as the 
vector moving average model of order   (VMA   ). 
 
The VMA    model has received very little attention in the literature, probably because it 
cannot be used to determine the relationship between a variable and its own past values as 
well as the past values of all the other variables in the system. It is instead used to measure the 
effects of shocks/innovations in the system. Consequently, there has not been much literature 
on the model building process and the estimation procedure is limited to the maximum 
likelihood procedure. 
 
The VARMA      model can be used to investigate the relationship between a variable and its 
past values and shocks of itself and other variables in the system. It has several advantages over 
the VAR    model. The main advantage is that it represents the data generating process in a 
more parsimonious manner due to its ability to summarise the high order autoregressive lags 
into low order lagged shocks. This parsimony improves the efficiency of the parameter 
estimates without taking away the associations amongst the variables. In addition, 
VARMA      models are also known for producing superior forecasts and impulse responses 
than VAR    models. 
 
However, there are some distinct weaknesses in the use of the VARMA      model which may 
account for it receiving less attention. It has not been as popular as the VAR    model, because 
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more than one lag order is required to be chosen and the standard form of the model is not 
unique. This means that two different representations can lead to the same infinite moving 
average representation. As a result of this, restrictions have to be placed in order to ensure 
uniqueness. These restrictions make the specification and estimation procedures significantly 
more complicated. 
 

The two most common approaches to model specification include the scalar component model 
(SCM) developed by Tiao and Tsay (1989) and the echelon form representation developed for 
the univariate case by Hannan and Rissanen (1982) and extended to the multivariate case by 
Lütkepohl and Poskitt (1996). The SCM and the echelon form representation have the same 
general appearance even though the specification procedures are not equivalent and do not 
normally give rise to the same model specification (Mélard, Roy & Saidi, 2004). 
 
The main advantage of echelon forms is that the asymptotic inference is straightforward while 
there are problems in scalar component models if the transformation of the variables is not 
data dependent (Lütkepohl & Poskitt, 1996). The echelon form is also practical and feasible as 
the process can be fully automated unlike the scalar component model which can be partly 
automated but requires discretion and judgement from the analyst (Athanasopoulos et al., 
2012).  
 
 The main advantage of scalar component models is that they are very flexible because the 
maximum autoregressive order does not have to be of the same order as that of the moving 
average component. They also produce better forecasts than the echelon form VARMA models 
(Athanasopoulos et al., 2012). Scalar component models however, may lead to computational 
difficulties due to the evaluation of a large number of eigenvalues (Dufour & Jouini, 2008).   
 
The maximum likelihood estimation procedure is the most commonly used estimation 
procedure used to estimate VARMA models. It is not easy to maximise the likelihood function if 
the model is not identified properly and it usually requires nonlinear optimisation as well as 
iterative methods in order to evaluate the parameter estimates (Kascha, 2010). In addition, 
unlike that for the VAR model, the method of least squares estimation requires iterative 
procedures and has only recently begun to gain attention in the literature. 
 
The VAR    model does not accurately capture the dynamics of the system if there is non-
stationarity present in the data particularly if there is cointegration present i.e. the variables 
share a common trend. The model then needs to be written in VECM form which separates the 
cointegration and long run relations from the short term dynamics of the model. Gupta (2006) 
confirmed that the Bayesian VECM model produced the most accurate out of sample forecasts 
for chosen South African macroeconomic indicators. As is the case with stationary models, co 
integrated VARMA models have not gained much attention in the literature as compared to 
cointegrated VAR models even though they are more parsimonious and produce better 
forecasts. 
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In order to demonstrate the technique and to illustrate model selection, we analysed quarterly 
South African wage and inflation data from April 1996 to December 2008 using the program 
SAS version 9.2. The adequacy of the VAR    and VARMA       models was compared and 
their forecasting performance was evaluated. 
 
In this application, three models were run, a VAR model and two VARMA models. The VAR 
model was estimated using the least squares method. Both VARMA models were estimated 
using maximum likelihood methods and solved using two optimisation techniques. The first 
model employed the Quasi-Newton method and the second, the Newton-Raphson procedure. 
The model with the best fit was the VAR model as the forecasts were reliable (there was not 
much difference between the observed and the predicted values), while the small values of the 
Portmanteau statistic indicated that there was little serial correlation in the residuals. The 
VARMA models in contrast, had large values of the Portmanteau statistic as well as unreliable 
forecasts and were thus were found not to fit the data well. 
 
Analysis of this data shows the current value of inflation is dependent on its previous value as 
well as on the previous value of wage increases. The current value of wage increases is highly 
dependent on its own past values and there is evidence to suggest that higher inflation rates do 
not lead to an increase in wages. 

 
This study has extended the understanding of multivariate time series models by describing the 
model building procedures and their more recent modifications in the literature. Modelling of 
multivariate time series is demonstrated by an application of the technique to local wage – 
inflation data which confirms that model selection is important to avoid obtaining spurious 
results.     

 
In conclusion, multivariate time series analysis is a dynamic statistical procedure, which is used 
extensively to analyse the interrelationships between variables over a period of time and is 
supported by a large body of literature demonstrating its utility globally in the fields of 
economics. 
 
Further research needs to be undertaken in order to simplify the model building procedures for 
the VARMA model. The echelon form models tend to show more signs of over parameterisation 
than scalar component models and hence research needs to be conducted to make them more 
parsimonious. There is also a need to develop methods for simplifying the second stage of the 
specification procedure. 
 
 Research incorporating more current wage and inflation data is required and the use of 
multivariate time series modelling techniques should be expanded in the natural and health 
sciences where it is underutilised.  
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Appendix 
 

Computation of the Maximum likelihood estimates 
 
 As discussed earlier, it is not always easy to solve the maximum likelihood estimates.If the 
normal equations are nonlinear in the parameters, then as noted by Dufour   Jouini (2008), 
maximizing the likelihood function can be computationally burdensome to determine the order 
of   and  . The equations thus need to be evaluated by using optimisation techniques, i.e. 
finding the coefficients which minimise the likelihood function that is specified. These methods 
are based on those described in Lütkepohl (2005). 
 
In order to proceed, it is necessary to make an assumption that the objective is to minimise a 
log likelihood function which can be partially differentiated twice say     . If for a given vector 
  , in order to minimise the likelihood function     , it is important to determine the direction 
  in which the objective function declines as well as a step of length say   which is performed in 
that particular direction. Hence in mathematical terms, the objective is to find suitable values of 
  and   such that the relation                 is satisfied 
 
The objective function will always decrease if the step length   is small and the direction   is 
downward. Thus for a decreasing function, the partial derivative of           with respect to 
the step length   is   
 
           

  
        [

           

  
|   ]       ) ,      (A.1) 

 

where         
      

  
 is the gradient of      evaluated at point   . 

 
Suppose   is related to the gradient matrix     ) matrix from the relation             ) 
where    is any positive definite matrix. If the gradient vector of      evaluated at    is 
nonzero, then              ) < 0.     
 
The local minimum occurs when the gradient vector is zero (    )   0) and from this it follows 
that the direction   is also 0. 
 
The next step is to evaluate the gradient vector which evaluated at the     th iteration is  
 
                    . 
 
This method is known as the steepest descent method.    is the step length in the  th direction 
and    as defined earlier is a positive definite matrix. The main limitation of this method is that 
a large number of iterations are needed. This can be overcome using a modification known as 
the Newton-Raphson procedure. 
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In this procedure, note that the objective function       can be extended in a Taylor Series 
around    
 

                         )   
 

 
                    .    (A.2) 

 

     
       

     
 is known as the Hessian matrix and defined as the matrix of partial derivatives of 

second order with respect to      which are evaluated at   . This Hessian matrix can 
altenatively be computed by updating the successive gradient matrices. If the Hessian matrix is 
computed in this way, then the optimisation method used will be known as the Quasi-Newton 
optimisation method. 
 
The aim of the Newton-Raphson method is to choose the value of   in order to minimise        
If      is a quadratic function, then the right hand side of (A.2) is equal to      and thus in 
order for a minimum to be located, the right hand side needs to be partially differentiated once 
and set equal to  . 
 
    )                    .         (A.3) 
 
(A.3) can be used to obtain   iteratively by starting with an initial guess and then updating using 
the representation, 
 

             
      ) . 

 
This is a suitable approximation because    should converge to   as    . 
 

Thus a suitable choice of the positive definite matrix    is    
   .The minimum of    can be 

reached in a step of length    = 1 and should converge at a quicker rate than for the previous 
method. Hamilton (1994) noted that if      is not a quadratic function, then the Newton-
Raphson procedure is not very powerful, however Lütkepohl (2005) noted that even if      is 

not a quadratic function, a suitable choice of    will still be    
  . 

 
Since it can become complicated to find the first and second order partial derivatives, the 
information matrix can be used to estimate the values. The information matrix is defined as  
 

           
          

     
  . 

 

In most cases, the value of        is estimated using an iteration,    ̂      and the update      
is calculated from an algorithm which is known as the scoring algorithm from 
 
                 ) . 
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Despite this simplified form, there are still some conditions required for this algorithm to be 
effective. The first is that the value for the initial iteration    needs to be a number close to the 
minimising vector. Secondly, the step length    has to be decided, however for the purposes of 
simplicity, the value of    chosen is usually chosen to be equal to one. 
 
THE KRONECKER PRODUCT 
 
Suppose there are two matrices A and B where 
 

A   [

       

   
       

] and B   [

       

   
       

] 

 
The Kronecker product, A  B is defined as 
 

A   B   [
         

   
         

] 

 
SAS CODES 
 
title'Analysis of South African wage and inflation data';  

data inflation;  

date = intnx( 'qtr', '01apr96'd, _n_-1 );  

format date yyq. ;  

input y1 y2  ;  

 

label y1 = 'quarterly inflation rate' 

      y2 = 'quarterly wage increases';  

datalines;  

6.042741341 11.9 

7.675438596 11.9 

9.130434783 11.9 

9.709425939 12 

9.381514941 11.6 

8.621860149 8.4 

7.038512616 4 

5.426356589 8.9 

5.146124524 10.6 

7.6875 8.3 

9.05707196 14.7 

8.455882353 6.2 

7.311178248 5.5 

3.308183401 6.4 

1.934015927 2.5 

2.824858757 5.1 

4.898648649 5.5 

6.685393258 5.2 

7.03125 7.2 

7.417582418 7 

6.441223833 5.5 
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4.739336493 6.7 

4.223149114 9 

5.677749361 8.3 

7.715582451 8.8 

10.40723982 15.2 

12.75637819 8.4 

10.64859632 10.3 

7.771535581 10.4 

4.690346084 5.4 

0.798580302 8.5 

0.437445319 10.6 

0.651607298 11 

1.304915181 14.8 

3.125       10.7 

2.87456446 12.3 

3.236944325 12.5 

3.821382568 6.83 

3.627827571 11.8 

3.767993226 8.63 

4.013377926 10.8 

5.252274607 11.3 

5.560131796 8.05 

5.956752346 10.5 

6.953376206 10.1 

6.99410609 9.7 

8.427623878 14.7 

9.857527917 15.7 

11.68733559 15.5 

13.40433346 13.4 

11.15509176 10.1 

; 

 
proc univariate data = inflation plots; 
var y1; 
run; 
 
proc univariate data = inflation plots; 
var y2; 
run; 

 
proc arima data=inflation; 
  identify var=y1   
  ; 
run; 
 
proc arima data=inflation; 
  identify var=y2   
  ; 
run; 
 
 
proc varmax data=inflation; 
  model y1 y2 / lagmax=7 print=(pcorr(12)) print=(covy(5)) 
print=(corry(5)) print=(parcoef(5)) 
  minic=(p=7 q=7) dftest; 
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     run; 

 
proc varmax data=inflation; 
model y1 y2 / p=4 print=(decompose(15)) 
printform=univariate; 
causal group1=(y1) group2=(y2); 
causal group1=(y2) group2=(y1); 
output lead=5 back=2; 
run; 

 
proc varmax data=inflation; 
model y1 y2 / p=2 q=4 print=(decompose(15)) 
printform=univariate; 
causal group1=(y1) group2=(y2); 
causal group1=(y2) group2=(y1); 
output lead=5 back=2; 
run; 

 
proc varmax data=inflation; 
nloptions maxiter=50000 maxfunc=100000; 
model y1 y2 / p=2 q=4 print=(decompose(15)) 
printform=univariate; 
causal group1=(y1) group2=(y2); 
causal group1=(y2) group2=(y1); 
output lead=5 back=2; 
run; 

 
SAS OUTPUTS 
 
                                    The UNIVARIATE Procedure 
                            Variable:  y1  (quarterly inflation rate) 
 
                                             Moments 
 
                 N                          51    Sum Weights                 51 
                 Mean               6.32869223    Sum Observations    322.763304 
                 Std Deviation      3.13104977    Variance            9.80347266 
                 Skewness           0.13614801    Kurtosis            -0.4320656 
                 Uncorrected SS     2532.84324    Corrected SS        490.173633 
                 Coeff Variation    49.4738827    Std Error Mean      0.43843466 
 
 
                                   Basic Statistical Measures 
 
                         Location                    Variability 
 
                     Mean     6.328692     Std Deviation            3.13105 
                     Median   6.441224     Variance                 9.80347 
                     Mode      .           Range                   12.96689 
                                           Interquartile Range      4.63450 
 
 
                                   Tests for Location: Mu0=0 
 
                        Test           -Statistic-    -----p Value------ 
 
                        Student's t    t  14.43474    Pr > |t|    <.0001 
                        Sign           M      25.5    Pr >= |M|   <.0001 
                        Signed Rank    S       663    Pr >= |S|   <.0001 
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    The UNIVARIATE Procedure 
                            Variable:  y2  (quarterly wage increases) 
 
                                             Moments 
 
                 N                          51    Sum Weights                 51 
                 Mean               9.61392157    Sum Observations        490.31 
                 Std Deviation      3.18479643    Variance            10.1429283 
                 Skewness           0.01319907    Kurtosis            -0.5354843 
                 Uncorrected SS      5220.9483    Corrected SS        507.146416 
                 Coeff Variation    33.1269234    Std Error Mean       0.4459607 
 
 
                                   Basic Statistical Measures 
 
                         Location                    Variability 
 
                     Mean      9.61392     Std Deviation            3.18480 
                     Median   10.10000     Variance                10.14293 
                     Mode      5.50000     Range                   13.20000 
                                           Interquartile Range      4.90000 

 
 

 
Simple Summary Statistics 
                                           Standard 
Variable   Type            N         Mean      Deviation      Min            Max 
 
  y1         Dependent     51        6.32869     3.13105      0.43745      13.4043 
  y2         Dependent     51        9.61392     3.18480      2.50000     15.70000 
 
                                    Simple Summary Statistics 
 
                               Variable   Label 
 
                               y1         quarterly inflation rate 
                               y2         quarterly wage increases 

 
 
 
                            Dickey-Fuller Unit Root Tests 
 
             Variable    Type               Rho    Pr < Rho        Tau    Pr < Tau 
 
                y1       Zero Mean        -6.12      0.0829      -1.71      0.0827 
                         Single Mean     -49.27      0.0004      -4.42      0.0008 
                         Trend           -50.76      <.0001      -4.36      0.0058 
                y2       Zero Mean        -1.14      0.4462      -0.77      0.3778 
                         Single Mean     -15.74      0.0225      -2.74      0.0748 
                         Trend           -21.28      0.0297      -3.33      0.0736 

 
 
   Lag   MA 0       MA 1       MA 2       MA 3       MA 4       MA 5       MA 6    
    
  AR 0  4.4497394  4.4867851  3.983289   3.1432471  3.0464515  2.9582079   3.180371   
 
  AR 1  2.8663686  3.1129495   2.956916  2.4259054  2.3728138  2.2660139  2.5721951   
 
  AR 2  2.2074759  2.540936   2.5304398  2.0613891  2.0589693  2.2445299  2.6022467   
 
  AR 3  2.1090981  2.2924446  2.3495812  2.2287159  2.3135218  2.5742089  3.0074063   
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  AR 4  2.052167   2.3811605  2.3935697  2.3867772  2.7058879  3.0049428  3.4461994   
 
  AR 5  2.2036022  2.2035825  2.402616   2.6649135  3.0764695  3.2534078  3.8206427   
 
  AR 6  2.2659342  2.6409342  2.891706   3.2162643  3.7329068  4.0556353  4.6388246   
 
  AR 7  2.3175016  2.7670546  3.2885361  3.8310036  4.4958937  5.0486499  5.8833136   
 
                                   Schematic Representation 
                                   of Partial Autoregression 
 
                            Variable/ 
                            Lag          1     2     3     4     5 
 
                            y1           ++    --    ..    ..    .. 
                            y2           .+    ..    ..    .-    .. 
 
 
 
                              Cross Correlations of Dependent Series 
 
                           Lag    Variable              y1              y2 
 
                             0    y1               1.00000         0.28485 
                                  y2               0.28485         1.00000 
                             1    y1               0.84276         0.08733 
                                  y2               0.44766         0.49537 
                             2    y1               0.51968        -0.10352 
                                  y2               0.37562         0.40790 
                             3    y1               0.19518        -0.21137 
                                  y2               0.15565         0.34206 
                             4    y1              -0.02642        -0.15330 
                                  y2              -0.05428        -0.05553 
                             5    y1              -0.07850        -0.05494 
                                  y2              -0.19474         0.15917 

                                
 
 
                                      The VARMAX Procedure 
 
                                   Model Parameter Estimates 
 
                                               Standard 
 Equation    Parameter         Estimate           Error    t Value    Pr > |t|    Variable 
 
 y1          CONST1             1.39137         0.78768       1.77      0.0854    1 
             AR1_1_1            1.39767         0.17216       8.12      0.0001    y1(t-1) 
             AR1_1_2            0.21729         0.06567       3.31      0.0021    y2(t-1) 
             AR2_1_1           -0.58608         0.29791      -1.97      0.0565    y1(t-2) 
             AR2_1_2           -0.08602         0.06829      -1.26      0.2155    y2(t-2) 
             AR3_1_1           -0.07334         0.29494      -0.25      0.8050    y1(t-3) 
             AR3_1_2           -0.12947         0.06755      -1.92      0.0628    y2(t-3) 
             AR4_1_1            0.10414         0.15903       0.65      0.5165    y1(t-4) 
             AR4_1_2           -0.05022         0.07716      -0.65      0.5190    y2(t-4) 
 y2          CONST2             3.79718         1.87147       2.03      0.0495    1 
             AR1_2_1            0.11414         0.40903       0.28      0.7817    y1(t-1) 
             AR1_2_2            0.37584         0.15603       2.41      0.0210    y2(t-1) 
             AR2_2_1           -0.29076         0.70781      -0.41      0.6835    y1(t-2) 
             AR2_2_2            0.31155         0.16226       1.92      0.0624    y2(t-2) 
             AR3_2_1           -0.41308         0.70076      -0.59      0.5590    y1(t-3) 
             AR3_2_2            0.35861         0.16049       2.23      0.0314    y2(t-3) 
             AR4_2_1            0.50622         0.37785       1.34      0.1883    y1(t-4) 
             AR4_2_2           -0.39704         0.18333      -2.17      0.0367    y2(t-4) 
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                                   Granger-Causality Wald Test 
 
                             Test        DF    Chi-Square    Pr > ChiSq 
 
                                1         4         14.83        0.0051 
                                2         4          6.55        0.1617 
 
 
                                 Test 1:  Group 1 Variables:  y1 
                                          Group 2 Variables:  y2 
 
 
                                 Test 2:  Group 1 Variables:  y2 
                                          Group 2 Variables:  y1 
 
                                  Portmanteau Test for Cross 
                                   Correlations of Residuals 
                         Up To 
                         Lag            DF    Chi-Square    Pr > ChiSq 
 
                               5         4         14.44        0.0060 
                               6         8         15.93        0.0434 
                               7        12         16.11        0.1862 
                               8        16         16.97        0.3875 
                               9        20         17.80        0.6004 
                              10        24         22.32        0.5602 
                              11        28         25.46        0.6025 
                              12        32         28.89        0.6249 
       
 
Forecasts 
 
                                   Standard 
 Variable     Obs     Forecast        Error   95% Confidence Limits         Actual     Residual 
 
 y1            50     11.68644      1.05676      9.61522     13.75765     13.40433      1.71790 
               51     10.06815      2.02256      6.10400     14.03230     11.15509      1.08694 
               52      7.34850      2.73846      1.98122     12.71577 
               53      4.62249      3.06628     -1.38730     10.63229 
               54      2.91102      3.13883     -3.24097      9.06300 
 
 
Variable      Obs     Forecast        Error   95% Confidence Limits         Actual     Residual 
 
 y2            50     14.46145      2.51080      9.54038     19.38252     13.40000     -1.06145 
               51     11.98510      2.69797      6.69718     17.27303     10.10000     -1.88510 
               52     10.04560      2.94229      4.27883     15.81238 
               53      9.33889      3.30776      2.85581     15.82198 
               54      9.14098      3.37140      2.53316     15.74880 
 
                                Proportions of Prediction Error 
                                    Covariances by Variable 
 
                      Variable       Lead              y1              y2 
 
                      y1                1         1.00000         0.00000 
                                        2         0.93410         0.06590 
                                        3         0.89583         0.10417 
                                        4         0.88394         0.11606 
                                        5         0.87939         0.12061 
                                        6         0.87490         0.12510 
                                        7         0.84260         0.15740 
                                        8         0.79929         0.20071 
                                        9         0.75826         0.24174 
                                       10         0.74161         0.25839 
                                       11         0.74271         0.25729 
                                       12         0.74771         0.25229 
                                       13         0.75032         0.24968 
                                       14         0.75056         0.24944 
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                                       15         0.74943         0.25057 
 
                      y2                1         0.09428         0.90572 
                                        2         0.10479         0.89521 
                                        3         0.09684         0.90316 
                                        4         0.08076         0.91924 
                                        5         0.11473         0.88527 
                                        6         0.13590         0.86410 
                                        7         0.14870         0.85130 
                                        8         0.14860         0.85140 
                                        9         0.15120         0.84880 
                                       10         0.15844         0.84156 
                                       11         0.16644         0.83356 
                                       12         0.16655         0.83345 
                                       13         0.16646         0.83354 
                                       14         0.16739         0.83261 
                                       15         0.16930         0.83070 
 
 
The VARMAX Procedure 
 
                       Type of Model                           VARMA(2,4) 
                       Estimation Method    Maximum Likelihood Estimation 
 
 
                                       Constant Estimates 
 
                                    Variable      Constant 
 
                                    y1               3.73696 
                                    y2              12.74667 
 
 
                                    AR Coefficient Estimates 
 
                          Lag    Variable              y1              y2 
 
                            1    y1               1.15791         0.01765 
                                 y2              -0.27098         0.46715 
                            2    y1              -0.39890         0.08994 
                                 y2               0.04077         0.60299 
 
 
                                    MA Coefficient Estimates 
 
                          Lag    Variable              e1              e2 
 
                            1    y1              -0.38776        -0.31232 
                                 y2               0.32227        -0.43611 
                            2    y1              -0.19622        -0.25146 
                                 y2              -0.54982        -0.15947 
                            3    y1              -0.63903        -0.11136 
                                 y2              -1.04289        -0.66730 
                            4    y1               0.16698        -0.20811 
                                 y2              -0.06508         0.06941 
 
 
                        Schematic Representation of Parameter Estimates 
 
                    Variable/ 
                    Lag          C    AR1    AR2    MA1    MA2    MA3    MA4 
 
                    y1           *    **     **     **     **     *-     +* 
                    y2           *    **     **     *-     **     **     -* 
 
                               + is > 2*std error,  - is < -2*std 
error,  . is between,  * is N/A 
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                                      The VARMAX Procedure 
 
                                   Model Parameter Estimates 
 
                                               Standard 
 Equation    Parameter         Estimate           Error    t Value    Pr > |t|    Variable 
  
 y1          CONST1             3.73696         0.00000                           1 
             AR1_1_1            1.15791         0.00000                           y1(t-1) 
             AR1_1_2            0.01765         0.00000                           y2(t-1) 
             AR2_1_1           -0.39890         0.00000                           y1(t-2) 
             AR2_1_2            0.08994         0.00000                           y2(t-2) 
             MA1_1_1           -0.38776         0.00000                           e1(t-1) 
             MA1_1_2           -0.31232         0.00000                           e2(t-1) 
             MA2_1_1           -0.19622         0.00000                           e1(t-2) 
             MA2_1_2           -0.25146         0.00000                           e2(t-2) 
             MA3_1_1           -0.63903         0.00000                           e1(t-3) 
             MA3_1_2           -0.11136         0.00000    -999.00      0.0001    e2(t-3) 
             MA4_1_1            0.16698         0.00000     999.00      0.0001    e1(t-4) 
             MA4_1_2           -0.20811         0.00000                           e2(t-4) 
 y2          CONST2            12.74667         0.00000                           1 
             AR1_2_1           -0.27098         0.00000                           y1(t-1) 
             AR1_2_2            0.46715         0.00000                           y2(t-1) 
             AR2_2_1            0.04077         0.00000                           y1(t-2) 
             AR2_2_2            0.60299         0.00000                           y2(t-2) 
             MA1_2_1            0.32227         0.00000                           e1(t-1) 
             MA1_2_2           -0.43611         0.00000    -999.00      0.0001    e2(t-1) 
             MA2_2_1           -0.54982         0.00000                           e1(t-2) 
             MA2_2_2           -0.15947         0.00000                           e2(t-2) 
             MA3_2_1           -1.04289         0.00000                           e1(t-3) 
             MA3_2_2           -0.66730         0.00000                           e2(t-3) 
             MA4_2_1           -0.06508         0.00000    -999.00      0.0001    e1(t-4) 
             MA4_2_2            0.06941         0.00000                           e2(t-4) 

 
                                      The VARMAX Procedure 
  
                       Type of Model                           VARMA(2,4) 
                       Estimation Method    Maximum Likelihood Estimation 
 
 
                                       Constant Estimates 
 
                                    Variable      Constant 
 
                                    y1               3.81465 
                                    y2              12.80784 
 
 
                                    AR Coefficient Estimates 
 
                          Lag    Variable              y1              y2 
 
                            1    y1               0.59802         0.19855 
                                 y2              -1.42826         0.91630 
                            2    y1              -0.21608         0.18711 
                                 y2               0.73688         0.51096 
 
 
                                    MA Coefficient Estimates 
 
                          Lag    Variable              e1              e2 
 
                            1    y1              -0.86262        -0.15374 
                                 y2              -0.38548         0.20832 
                            2    y1              -0.74015        -0.09590 
                                 y2              -0.99028        -0.23890 
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                            3    y1              -0.93062        -0.04554 
                                 y2              -1.45365        -0.78026 
                            4    y1              -0.09462        -0.13181 
                                 y2              -0.54736         0.70188 
 
 
                        Schematic Representation of Parameter Estimates 
 
                    Variable/ 
                    Lag          C    AR1    AR2    MA1    MA2    MA3    MA4 
 
                    y1           *    ..     .+     -.     ..     -.     .. 
                    y2           *    .+     ..     ..     ..     .-     .+ 
 
                               + is > 2*std error,  - is < -2*std 
error,  . is between,  * is N/A 
 
                                      The VARMAX Procedure 
 
                                   Model Parameter Estimates 
 
                                               Standard 
 Equation    Parameter         Estimate           Error    t Value    Pr > |t|    Variable 
 
 y1          CONST1             3.81465         0.00000                           1 
             AR1_1_1            0.59802         0.35338       1.69      0.0972    y1(t-1) 
             AR1_1_2            0.19855         0.12121       1.64      0.1081    y2(t-1) 
             AR2_1_1           -0.21608         0.24323      -0.89      0.3789    y1(t-2) 
             AR2_1_2            0.18711         0.06976       2.68      0.0101    y2(t-2) 
             MA1_1_1           -0.86262         0.41240      -2.09      0.0419    e1(t-1) 
             MA1_1_2           -0.15374         0.18866      -0.81      0.4192    e2(t-1) 
             MA2_1_1           -0.74015         0.42172      -1.76      0.0858    e1(t-2) 
             MA2_1_2           -0.09590         0.09796      -0.98      0.3326    e2(t-2) 
             MA3_1_1           -0.93062         0.35355      -2.63      0.0114    e1(t-3) 
             MA3_1_2           -0.04554         0.09936      -0.46      0.6488    e2(t-3) 
             MA4_1_1           -0.09462         0.27833      -0.34      0.7354    e1(t-4) 
             MA4_1_2           -0.13181         0.18078      -0.73      0.4696    e2(t-4) 
 y2          CONST2            12.80784         0.00000                           1 
             AR1_2_1           -1.42826         1.30266      -1.10      0.2785    y1(t-1) 
             AR1_2_2            0.91630         0.23837       3.84      0.0004    y2(t-1) 
             AR2_2_1            0.73688         0.60088       1.23      0.2262    y1(t-2) 
             AR2_2_2            0.51096         0.52952       0.96      0.3395    y2(t-2) 
             MA1_2_1           -0.38548         1.40968      -0.27      0.7857    e1(t-1) 
             MA1_2_2            0.20832         0.28449       0.73      0.4676    e2(t-1) 
             MA2_2_1           -0.99028         1.31007      -0.76      0.4535    e1(t-2) 
             MA2_2_2           -0.23890         0.19693      -1.21      0.2312    e2(t-2) 
             MA3_2_1           -1.45365         1.45597      -1.00      0.3232    e1(t-3) 
             MA3_2_2           -0.78026         0.23179      -3.37      0.0015    e2(t-3) 
             MA4_2_1           -0.54736         1.75971      -0.31      0.7571    e1(t-4) 
             MA4_2_2            0.70188         0.32836       2.14      0.0378    e2(t-4) 

 
Granger-Causality Wald Test 
 
                             Test        DF    Chi-Square    Pr > ChiSq 
 
                                1         2         10.89        0.0043 
                                2         2          4.13        0.1267 
 
 
                                 Test 1:  Group 1 Variables:  y1 
                                          Group 2 Variables:  y2 
 
 
                                 Test 2:  Group 1 Variables:  y2 
                                          Group 2 Variables:  y1 
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Portmanteau Test for Cross Correlations of Residuals 
 
                         Up To 
                         Lag            DF    Chi-Square    Pr > ChiSq 
 
                               7         4        266.39        <.0001 
                               8         8        304.37        <.0001 
                               9        12        327.40        <.0001 
                              10        16        368.60        <.0001 
                              11        20        423.23        <.0001 
   
                              12        24        446.22        <.0001 
Forecasts 
 
                                   Standard 
 Variable     Obs     Forecast        Error   95% Confidence Limits         Actual     Residual 
 
 y1            50     16.51844      0.67678     15.19198     17.84490     13.40433     -3.11411 
               51     19.38295      1.61659     16.21450     22.55140     11.15509     -8.22786 
               52     24.59603      2.78026     19.14683     30.04524 
               53     27.77922      3.92403     20.08826     35.47018 
               54     30.95718      4.90962     21.33451     40.57985 
 
Variable      Obs     Forecast        Error   95% Confidence Limits         Actual     Residual 
 
 y2            50     24.30200      2.28313     19.82714     28.77685     13.40000    -10.90200 
               51     30.46294      3.01800     24.54776     36.37812     10.10000    -20.36294 
               52     44.99528      3.90537     37.34089     52.64967 
               53     46.38927      5.29124     36.01863     56.75991 
               54     55.02422      5.81945     43.61831     66.43013 
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