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ABSTRACT 

Engineers rely on design hydrological information for the design of hydraulic structures, such 

as dams, bridges, and drainage culverts. No single Design Flood Estimation (DFE) method has 

been identified internationally as the most appropriate method to use and, in many texts and 

manuals, the use of a combination of these are recommended. In South Africa, some of the 

currently recommended and widely used methods were developed outside of South Africa with 

little or no local adaptation or assessment, and most of the recommended methods were 

developed prior to 1990. The development of new and updated methods can therefore benefit 

from the use of much longer observed data sets and new and innovative approaches applied 

internationally. Four Regional Flood Frequency Analysis (RFFA) approaches widely adopted 

internationally are direct quantile estimation methods, Probabilistic Rational Method (PRM), 

Index Flood (IF), and Regional Growth Curve (RGC) methods. The Standard Design Flood 

(SDF) method is a locally developed PRM. However, the method has been recommended for 

review in a number of studies, and the IF has been shown to have potential for implementation 

at a national scale in South Africa.  

 

The aim of this study was to develop and assess RFFA approaches for the estimation of design 

flood quantiles within South Africa utilising the currently available data. This process required 

the compilation of a hydrological descriptors database, including quality controlled gauged 

flow data. This data was then utilised to identify a suitable probability distribution for FFA in 

South Africa, which can be applied at a regional scale through the identification of 

homogeneous flood producing regions and regional flood models. 

 

DFE methods require a range of catchment descriptors to be determined for use in models. 

Considering the literature reviewed and the available datasets, 17 catchment descriptors were 

selected for inclusion in the study. The descriptors range from geographic and catchment 

descriptors to design rainfall quantiles. After data screening, a total of 383 stations were 

utilised, in the study. The available record lengths and number of gauges were compared to 

prominent studies undertaken previously and was found to be comparative to the data 

availability in Australia and the United Kingdom. 

 

Linear moments (LM) were adopted for the estimation of the distribution parameters. Five 

distributions were selected for evaluation based on local recommendations as well as recent 

international developments: (i) General Extreme Value (GEV), (ii) Generalised Pareto (GPA), 
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(iii) 3-parameter Kappa (KAP3), (iv) Log Pearson Type III (LP3) and (v) Pearson Type III 

(PE3). The evaluation process relied on an iterative elimination approach, reviewing graphical 

fits to theoretical distributions, Goodness-of-fit (GoF) criteria, model fit criteria and model 

uncertainty to identify the most suitable distribution. The graphical fit favoured the GPA, 

KAP3 and LP3 distributions equally, with the GoF methods ranking LP3 as the most suitable 

method. Conversely, the GPA was ranked highest for the model fit criterion and displayed the 

least model uncertainty and is thus recommended as the most suitable distribution for general 

FFA in South Africa.  

 

Two regionalisation approaches were considered to undertake the formation of the pooling 

groups, i.e. Clustering, and Region of Influence (RoI). For each regionalisation approach the 

hydrological descriptors were grouped into parameter sets, that constituted all potential 

descriptor combinations, which were tested for homogeneity as a selection criterion. Using the 

RoI approach, a maximum of 51% of the regions identified were relatively homogeneous. The 

super region approach was also applied to identify five dominant regions within which the RoI 

was applied in an attempt to refine the RoI approach. Using the combination of super regions 

and RoI provided little additional benefit, increasing the percentage of relatively homogeneous 

regions identified to only 52.6%. Conversely, the Clustering approach was able to identify 42 

relatively homogeneous clusters in South Africa.  

 

To assess the suitability of Quantile Regression Technique (QRT) and Parameter Regression 

Technique (PRT) models in South Africa, four models were developed: (i) a QRT model, (ii) 

IF with equal station weighting (IF1), (iii) IF with station weighting applied (IF2) and (iv) 

PRM. Regression models were developed at two scales to estimate the required Scaling 

Factors, i.e. national and regional, with regional models performing best based on the Nash-

Sutcliffe model Efficiency (NSE) coefficient. 

 

Six key performance indicators were utilised to assess the quantile estimation of the developed 

models: (i) NSE, (ii) Relative Error (RE), (iii) Root Mean Square Error (RMSE), (iv) Relative 

RMSE (RMSEr), (v) BIAS, and (iii) BIASr. The models that performed best in the RE 

assessment were the IF1 for both regionalisation schemes and the IF2 and PRM models using 

the RoI. When comparing the BIAS and RMSE of the four best performing clustering and RoI 

based models, the IF1 and QRT using Clustering models are the dominant models when 
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considering both the RMSEr and the BIASr, the models improved on the results of the 

remaining models by up to a factor of two.  

 

The IF1 and QRT using Clustering models are therefore the best performing models on a 

national scale. The IF1 however has the added advantage of being able to estimate the entire 

growth curve as to the predefined QRT models. The IF1 is therefore the recommended model 

at a national scale, however cognisance needs to be taken when applying the model on the 

eastern coast due to poor BIASr performance. 

 

The new knowledge generated by the study can be divided into data, in the form of potentially 

the largest database of design flood specific descriptors concentrating on South Africa, and 

theoretical applications thereof. The theoretical knowledge generated ranges from the 

investigation into the most suitable frequency distribution to use for FFA in South Africa, to 

the application of multi-variate regionalisation approaches, which have not been applied in 

South Africa before. However, one of the key contributions was the development and 

performance assessment of four DFE models at multiple scales for South Africa for the 

estimation of peak design flood values.  
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EXTENDED ABSTRACT 

 

Engineers rely on design hydrological information for the design of hydraulic structures, such 

as dams, bridges, and drainage culverts (Smithers and Schulze, 2003). This information is often 

estimated at ungauged sites using models to estimate flood frequencies (Schulze et al., 2004, 

Smithers et al., 2015). No single Design Flood Estimation (DFE) method has been identified 

internationally as the most appropriate method to use and, in many texts and manuals, the use 

of a combination of these are recommended (e.g. Pilgrim and Cordery, 1993, Alexander, 

2002b, Chadwick et al., 2004, SANRAL, 2013). In South Africa, some of the currently 

recommended and widely used methods were developed outside of South Africa with little or 

no local assessment, and most of the recommended methods were developed prior to 1990. The 

development of new and updated methods can therefore benefit from the use of much longer 

observed data sets and new and innovative approaches used internationally. 

 

Internationally there has been a general shift from conventional at-site Flood Frequency 

Analysis (FFA) to Regional FFA (RFFA), which utilises regional knowledge to supplement 

temporal knowledge. The RFFA models generally fall into one of two categories, Quantile 

Regression Technique (QRT), or Parameter Regression Technique (PRT). QRT directly 

estimates the peak flows of the required Annual Exceedance Probability (AEP), whereas PRT 

methods estimate descriptive statistics of the regional growth curves to estimate the AEP 

events.  

 

Four RFFA approaches widely adopted internationally are direct quantile estimation methods, 

such as the Regional Maximum Flood (Kovács, 1988),  Probabilistic Rational Method (PRM), 

Index Flood (IF), and Regional Growth Curve (RGC) methods. The Standard Design Flood 

(SDF) method developed by Alexander (2002a) is a locally developed PRM. However, the 

method has been recommended for review in a number of studies (Görgens, 2002, Smithers 

and Schulze, 2003, Van Bladeren, 2005, Gericke, 2010, Van Vuuren et al., 2013). Kjeldsen et 

al. (2002) applied the IF in the KwaZulu-Natal (KZN) province in South Africa and showed 

the potential for implementation at a national scale. Haile (2011) applied the IF approach on a 

national scale in South Africa but utilised a limited dataset. Nathanael et al. (2018) reviewed 

the national scale RFFA models developed for South Africa and found that none of the current 

models were satisfactory. The IF approach is also favoured over the PRM approach 
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internationally as is evident from the recent exclusion of the PRM in the revised Australian 

Rainfall and Runoff (ARR) guidelines (Rahman et al., 2015b). 

 

Aims and Objectives of Research 

The aim of this study was to develop and assess RFFA approaches for the estimation of design 

flood quantiles within South Africa utilising the currently available data, which required the 

fulfilment of the following objectives: 

(a) Compilation of a hydrological descriptors database. 

(b) Collation and quality control of selected gauged flow data in South Africa. 

(c) Identification of a suitable probability distribution for FFA in South Africa. 

(d) Identify and verify homogeneous flood producing regions. 

(e) Regional flood model development and performance assessment. 

 

Hydrological Descriptor Database 

DFE methods require a range of catchment descriptors to be determined for use in models. 

Considering the literature reviewed and the available datasets 17 catchment descriptors were 

selected for inclusion in the study. The descriptors range from geographic and morphological 

descriptors to design rainfall quantiles. A hydrologically corrected Digital Elevation Model 

(DEM) was developed using the Shuttle Radar Topography Mission (SRTM) (NASA-JPL, 

2013) data, producing a 30 x 30m DEM for the extraction of various topographic catchment 

descriptors. 

 

Streamflow Data 

The Department of Water and Sanitation (DWS) is the custodians of the flow monitoring 

network in South Africa and currently has 1 458 streamflow gauging stations within South 

Africa. The data were screened by considering a minimum record length of 20 years, after 

which, a total of 383 stations remained and were utilised in the study, totalling 18 349 Annual 

Maximum Series (AMS) records. The stations are divided into 296 river gauges and 87 

synthetic dam inflow records generated by the DWS flood studies group (Naidoo, 2019). The 

available record lengths and number of gauges were compared to prominent studies undertaken 

previously and was found to be comparative to the data availability in Australia and the United 

Kingdom. 

 



(xi) 

 

Identification of a Distribution Suitable for use in South African FFA 

SANRAL (2013) and Van der Spuy and Rademeyer (2018) list methods to undertake FFA and 

provide the most commonly used probability distributions in South Africa, which are generally 

applied using the traditional Method of Moments (MM) approach. The distribution selected 

can, however, provide large differences in flood estimates and hence the selection of the most 

suitable distribution for use in South Africa is required for FFA. Given the prevalence of Linear 

moments (LM) (Hosking, 1990) and it’s reduced sensitivity to outliers, LMs were adopted for 

the estimation of the distribution parameters. Five distributions were selected for evaluation 

based on local recommendations as well as recent international developments: (i) General 

Extreme Value (GEV), (ii) Generalised Pareto (GPA), (iii) 3-parameter Kappa (KAP3), (iv) 

Log Pearson Type III (LP3) and (v) Pearson Type III (PE3). The evaluation process relied on 

an iterative elimination approach, reviewing graphical fits to theoretical distributions, 

Goodness-of-fit (GoF) criteria, model fit criteria and model uncertainty to identify the most 

suitable distribution. The graphical fit favoured the GPA, KAP3 and LP3 distributions equally, 

with the GoF methods ranking LP3 as the most suitable method. Conversely, the GPA was 

ranked highest for the model fit criterion and displayed the least model uncertainty. Given the 

overall ranking of the distributions, the GPA is thus recommended as the most suitable 

distribution for FFA in South Africa.  

 

Regionalisation 

Two approaches widely used internationally were considered to undertake the formation of the 

pooling groups, i.e. Clustering, and Region of Influence (RoI). The size of the pooling groups 

was motivated by the 5T rule (Robson and Reed, 1999), which requires that pooling groups 

have a combined record length of five times the desired storm recurrence interval. Where data 

is limited however, the lower recommended value of 2T was enforced in this study, with 

emphasis placed on the 1% AEP. This ensures that each group has a combined minimum record 

length of 200 years, fulfilling the 2T requirement for the 1% AEP. For each regionalisation 

approach the hydrological descriptors were grouped into parameter sets, that constituted all 

potential descriptor combinations, which were tested for homogeneity as a selection criterion. 

The homogeneity test applied was the H-test developed by Hosking and Wallis (1993) and 

utilised the AMS data for the sites considered.  
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Using the RoI approach, a maximum of 51% of the regions identified using the Latitude, 

Longitude, Distance from the Coastline (Dc), and mean runoff percentage were relatively 

homogeneous. The super region approach (Mostofi Zadeh and Burn, 2019) was also applied to 

identify five dominant regions within which the RoI was applied in an attempt to refine the RoI 

approach. The number of super regions was identified using elbow plots and refining the 

regions using T-distributed Stochastic Neighbour Embedding (TSNE) (van der Maaten and 

Hinton, 2008), Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 

2018) and geographic distribution. Using the combination of super regions and RoI provided 

little additional benefit, increasing the percentage of relatively homogeneous regions identified 

to 52.6%. The RoI approach performed particularly poor in super Region 5, in the Western 

Cape where a maximum of 28.8% of regions were deemed to be relatively homogeneous. 

 

Conversely, the Clustering approach was able to identify 42 relatively homogeneous clusters 

in South Africa. Initial clustering was performed using the outlet location (Latitude and 

Longitude) and the distance from the coast to define 36 clusters, 17 of which were deemed 

relatively homogeneous. Further refinement was required to identify the final 42 relatively 

homogeneous clusters and consisted of further clustering within large clusters, merging of 

clusters and/or exclusion of discordant sites. The final number of sites used to define the 42 

relatively homogeneous clusters was 331, as the exclusion of 52 discordant sites was required. 

 

Model Development and Assessment 

Regional flood model development generally falls within one of two categories, QRT or PRT. 

QRT models directly estimate the quantile flows in question, e.g. the 1% AEP flood event, 

whereas PRT relies on regional growth curves or and estimation of model parameters. 

Numerous model formulations exist for the development of regional flood models, but the 

formulation most widely used in the literature are the Index Flood and regional growth curve 

approach. To assess the suitability of QRT and PRT models in South Africa four models were 

developed: (i) a QRT model, (ii) Index Flood with equal station weighting (IF1), (iii) Index 

Flood with station weighting applied (IF2) and (iv) Probabilistic Rational Method (PRM) were 

developed.  

 

The adopted methods required the estimation of Scaling Factors (SF) and the adopted SFs for 

the IF1 and IF2 approaches was the Mean Annual Flood (MAF) and the 10% AEP C-value 
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(C10) was used for the PRM. Regression models were developed to estimate the required SFs 

and QT and the development was undertaken at two scales, national and regional, based on the 

clustering and RoI regionalisation schemes. Hence a total of four combinations of development 

scale and regionalisation scheme was used: (i) Clustering with cluster-based models, (ii) 

Clustering with a national scale model, (iii) RoI with super region based models, and (iv) RoI 

with a national scale model. 

 

Eight catchment descriptors were included as potential predictor variables for regression 

development and these ranged from outlet elevation to design rainfall values. The p-value, 

which provides an indication of the correlation between the predictor and the response 

variables, was used for the selection of significant catchment descriptors and the developed 

models were limited to the use of three predictor variables. Catchment Area and MAP were 

identified as significant catchment descriptors in the SF regressions. The models developed for 

MAF at a regional scale performed well with an Nash-Sutcliffe model Efficiency (NSE) 

coefficient (Nash and Sutcliffe, 1970) value of up to 0.78 achieved. The national scale models, 

however, performed poorly only achieving maximum NSE values of 0.28. The regional models 

were therefore used to undertake the quantile estimation assessment. 

 

The SF and QRT regression models were used to estimate design peak flows at the sites 

considered and assessed using six key performance indicators: (i) NSE, (ii) Relative Error (RE), 

(iii) Root Mean Square Error (RMSE), (iv) Relative RMSE (RMSEr), (v) BIAS, and (iii) BIASr. 

The assessment approach consisted of two steps, initially the four best performing regression 

models were identified using the model accuracy which used the NSE and RE, followed by the 

RMSE and BIAS assessment, which was used to identify the best performing model. The 

regional models achieved NSE values up to 0.77, but tended to underestimation, which needs 

to be taken into consideration if the models are applied.  

 

The RE assessment relied on the ratio bounds developed by Rahman et al. (2012) and Naidoo 

(2020). The models that performed best in the RE assessment were the IF1 for both 

regionalisation schemes and the IF2 and PRM models using the RoI. The four models were 

able to estimate the peak flows within the Rahman et al. (2012) RE bounds at between 64.8 

and 75.2% of the sites considered, improving on the models assessed by Nathanael et al. 

(2018). The percentages drop to between 53.1 and 65.3% when applying the more stringent RE 
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bounds defined by Naidoo (2020). When considering an overall rank for the model accuracy 

assessment the four top performing models were the IF1 and QRT using clustering and the IF1 

and IF2 using RoI. 

 

The final assessment compared the BIAS and RMSE of the four best performing clustering and 

RoI based models. The IF1 and QRT using Clustering models are the dominant models when 

considering both the RMSEr and the BIASr, the model achieved median RMSEr values ranging 

between 0.52 and 0.61, improving on the results of the remaining models by up to a factor of 

two. The BIASr values for the IF1 and QRT also improve on the results of the remaining 

models, in particular for AEPs in excess of 10%. The BIASr values for the IF1 using clustering, 

however, performs poorly in clusters 34 and 37 on the east coast of South Africa. 

 

The IF1 and QRT using Clustering models are therefore the best performing models on a 

national scale. The IF1 however has the added advantage of being able to estimate the entire 

growth curve as to the predefined QRT models. The IF1 is therefore the recommended model 

at a national scale, however cognisance needs to be taken when applying the model on the 

eastern coast due to the poor BIASr performance. 

 

Research Contributions 

The following items are considered to be the most prominent unique contributions that have 

been developed as part of this study: 

(i) The database of design flood specific descriptors is potentially the largest database 

concentrating on South Africa and this study thus provides a basis for further development 

and refinement of models for DFE in South Africa.  

(ii) To the knowledge of the author, it is the first study to perform a detailed investigation into 

the most suitable probability distribution to use for FFA in South Africa and to recommend 

the use of the GPA in South Africa. 

(iii)The first application of model uncertainty used for the selection of a suitable design flood 

distribution. 

(iv) The first application of the KAP3 methodology and determination of a national Kappa h 

value for South Africa. 

(v) The RoI, super-region and multi-variate clustering approaches have also not been applied 

in South Africa before and previously geographic and morphological maps were used, or 
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reliance was often placed on historically defined homogeneous regions. 

(vi) A new and unique set of relatively homogenous clusters for use with DFE have been 

developed. 

(vii) Development and performance assessment of four models using QRT and PRT 

modelling approaches at multiple scales for South Africa. This included the comparison of 

the models’ predictive ability and identified that the equally weighted IF approach 

outperformed the record length and Euclidian distance weighted record length weighting, 

which is in contrast with international findings. 

 

In addition to the above, the study also identified that in the South African context, which was 

shown to be relatively data rich, the Clustering regionalisation scheme provided the best overall 

quantile flow estimates, which is in contrast to international findings where in data rich regions, 

RoI is generally favoured. The result in this study does not exclude the RoI, but only in the 

current form applied, the inclusion of additional descriptors, weighting schemes and model 

formulations may improve the RoI performance. Similarly, the equally weighted IF was found 

to perform best, in contrast to international findings where generally record length weighting 

has been shown to improve results.  

 

In addition this research has contributed to the following key projects identified by the National 

Flood Studies Programme (NFSP) as outline by Smithers et al. (2014): 

(a) A.1.2.2 Guide for AEP distribution for floods 

(b) A.1.2.3 Spatial and Temporal distribution of available streamflow data 

(c) A.1.2.6 Refined regionalised / pooled Index flood methods 

(d) A.1.2.7.1/3 Update and refine the RMF method and its regionalisation 

(e) A.1.2.8.2/3 Modernise the Standard Design Flood Method 

(f) A.1.2.8.5 and A.1.2.4 Modernise existing synthetic unit hydrographs and related 

homogeneous flood regions 

(g) A.1.2.8.6 Modernise existing empirical methods for small catchments 

(h) C.2 Web-based framework of methods on SANCOLD website 

(i) C.6 Web-based GIS database/geodatabase 
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1 INTRODUCTION 

 

Engineers rely on design hydrological information for the design of hydraulic structures, such 

as dams, bridges, and drainage culverts (Smithers and Schulze, 2003). This information is often 

estimated at ungauged sites using models to estimate flood frequencies (Schulze et al., 2004, 

Blöschl et al., 2013, Smithers et al., 2015). The over or underestimation of design floods could 

lead to significant economic losses, loss of lives or under or over design of a structure, which 

results in loss of critical resources if under designed or a waste of capital resources if over 

designed. The financial impacts of flooding in South Africa have been reported to be up to R1 

billion per storm event in regions such as the Western Cape in 2008 by Holloway et al. (2010). 

Table 1.1 contains selected statistics of damage caused by recent flood events in South Africa. 

 

Table 1.1 Social and monetary flood damages of recent flooding events in South Africa 

Year Region Estimated Damage Reference 

2019 
KwaZulu-Natal 

(KZN) 
60 Deaths – R650 Million Singh (2019) 

2017 KZN 3112 households – R576 Million eNCA (2017) 

2016 
KZN 7 Deaths 

Davies (2017) 
Western Cape 10 000 – 15 000 people displaced 

2011 

Northern Cape R50 Million 

Shiceka (2011)  North West R6 Million 

KZN R300 Million 

2008 Western Cape R1 Billion 
Holloway et al. 

(2010)  

 

Accordingly to Rahman et al. (2009), the estimated cost of projects involving the determination 

of design floods for small to medium-sized rural catchments was approximately AU$ 250 

million in 1985 in Australia. This was estimated to increase to the equivalent of AU$ 600 

million (approximately R4 billion) in 2009 (Rahman et al., 2009). Stedinger and Griffis (2008) 

noted that the death toll caused by floods in the United States of America (USA) is 

approximately 140 per annum, with a financial cost of US$ 6 billion annually, excluding recent 

events such as Hurricane Katrina. 
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Design Flood Estimation (DFE) techniques can be broadly categorised as analysis of 

streamflow data or rainfall-based methods (Smithers and Schulze, 2003), and Figure 1.1 shows 

the categories of DFE methods available in South Africa. Analysis of streamflow data uses 

statistics of observed floods to derive estimation techniques such as flood envelopes or 

empirical formulae. Alternatively, Flood Frequency Analysis (FFA) can be performed to fit a 

probability distribution to the observed data. Rainfall-based methods use either design or 

observed rainfall and rainfall-runoff models to estimate design floods, which range from event-

based models, which utilise design rainfall as input, to the use of continuous simulation 

modelling using observed rainfall. 

 

 
Figure 1.1 Design flood estimation methods available for use in South Africa (after Smithers, 

2012) 

 

No single DFE method has been identified as the most appropriate method and, in many texts 

and manuals, the use of a combination of these are recommended (eg. Pilgrim and Cordery, 

1993, Alexander, 2002b, Chadwick et al., 2004, SANRAL, 2013). When estimating design 

floods for a site, although several methods might be applicable, they may produce vastly 

different results, which poses the practitioners with the dilemma of which results to use. Pilgrim 

(1989) identified the following four requirements of a DFE method to ensure the selection of 

the best possible approach to DFE: 
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(a) needs to be based on observed flood data, 

(b) needs to be simple, lack ambiguity and have familiarity in its application, 

(c) should be probabilistic rather than deterministic, and 

(d) should incorporate regional differences in hydrological responses. 

 

In the South African context the majority of methods shown in Figure 1.1 were developed in 

the 1970’s and 1980’s (Smithers et al., 2014). Additionally, Alexander (2002b), Smithers and 

Schulze (2003), Görgens (2007a), Smithers (2012) and Van Vuuren et al. (2013) highlight the 

need to revise existing methods and develop new DFE methods for South Africa.  

 

Nathanael et al. (2018) assessed the performance of four regional DFE methods applicable to 

South Africa: (i) Meigh et al. (1997), (ii) Mkhandi et al. (2000), (iii) Joint Peak-Volume (JPV) 

(Görgens, 2007a), and (iv) Haile (2011). Nathanael et al. (2018) utilised the  desirable range 

of model estimated versus statistical flood quantiles of 0.5 – 2, as defined by Rahman et al. 

(2012), and identified that the percentage of estimated values within the desirable range varied 

between 48 and 60% for the various Annual Exceedance Probabilities (AEPs). This is further 

exacerbated when considering catchment areas less than 100 km2 where the percentage of sites 

within the desirable range varied between 28 and 57 % for the methods considered. A survey 

undertaken by Van Vuuren et al. (2013) identified that majority of catchments for which DFE 

are undertaken are relatively small (< 15 km2), which raises concern regarding the performance 

of the regional models.  

 

Based on the assessments and recommendations identified in the literature, a National Flood 

Studies Programme for South Africa (NFSP) was initiated by the South African Committee on 

Large Dams (SANCOLD) and the Water Research Commission (WRC) (Smithers et al., 2014). 

The NFSP established working groups which identified 36 research topics grouped into four 

overarching categories: (i) Rainfall, (ii) Data, (iii) Analysis/Methods, and (iv) Products. 18 of 

the proposed research topics focus on the analysis of flood data and the refinement of existing 

or development of new DFE methods. The delineation of new/refined homogeneous flood 

producing regions (Projects A.1.2.7.1/3. A.1.2.8.5, A.1.2.4, and A.1.3.1), refinement of 

existing regional DFE methods (Project A.1.2.2) , and a review and guidance on identification 

of the most suitable frequency distribution/s (Project A.1.2.6) for use in South Africa are 

identified as key research projects by the NFSP (Smithers et al., 2014) and require the 

development of a regional flood model. A refinement and extension of the regionalised Index 
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flood (Dalrymple, 1960) based studies undertaken (Mkhandi et al., 2000, Kjeldsen et al., 2001, 

2002, Haile, 2011) is also proposed. The availability of extended datasets and improvements 

or development of new DFE methods applied internationally further substantiates the needs to 

develop new methods applicable to South Africa. 

 

Where adequate observed flood data are available, FFA is the recommended approach and can 

be implemented locally or regionally. Even if flow data are available at the site of interest, the 

augmentation of at-site information can be achieved through applying Regional Flood 

Frequency Analysis (RFFA) approaches, which can substantially improve the accuracy of the 

frequency analysis (Kjeldsen et al., 2014, Rahman et al., 2019). In the United Kingdom (UK) 

(Kjeldsen et al., 2008b), Europe (Castellarin et al., 2012), USA (England et al., 2018) and 

Australia (Rahman et al., 2019) the use of regionalised approaches to FFA is widely adopted. 

A general framework for the development of a regional flood model can be divided into three 

steps: (i) Collation of catchment descriptors and quality-controlled streamflow data, (ii) 

Selection and application of a regionalisation scheme for the formation of pooling groups, and 

(iii) regional knowledge transfer model development. 

 

The Department of Water and Sanitation (DWS) are the custodians of hydrological streamflow 

monitoring in South Africa and the catalogue of stations with data available consists of a 

network of 1 458 flow gauging stations across the country with a combined record length in 

excess of 40 000 years. Pitman (2011), however, highlights that the dataset contains numerous 

inconsistencies and requires critical review prior to use. In addition the fact that the number of 

useful DWS flow gauges open in each year has been declining since the late 1980’s, as shown 

in Figure 1.2. Kjeldsen et al. (2002) also noted the difficulties of the flow monitoring dataset, 

more specifically referring to the exceedance of gauging station rating curves and the unknown 

associated uncertainty in the calculation of extreme flood flows exceeding these. Nathanael 

(2015) assessed 1097 stations to identify the extent of rating table exceedance and found that 

only 39% of the stations did not contain rating table exceedances.  

 

There exists an abundance of catchment descriptor datasets for use in South Africa, from  

studies such as the Water Resources 2012 (de Groen et al., 2015) and the South African 

Agrohydrology and Climatological Atlas (Schulze et al., 1997) having been developed 

historically. Extracting relevant descriptors from these datasets for model application are, 

however, continually repeated by practitioners, on an as and when needed basis, at a catchment 
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scale due to a lack of a centralised database. This leads to a duplication of effort and the 

improvement of data quality and availability forms one of the principal requirements set out by 

the NFSP (Smithers et al., 2014). The catchment descriptors are imperative for the 

development of regional flood models and provide both an indication of catchment similarity, 

or dissimilarity, and are utilised as predictor variables in flood models. 

 

 

Figure 1.2 Number of useful flow gauges open in each year (after Pitman, 2011) 

 

The use of catchment descriptors to characterise catchment similarity is used for the 

identification of pooling groups or regions, which allows for the transfer of knowledge from 

gauged to ungauged sites, which is a key benefit of RFFA. There is no clear consensus on the 

best method of identifying the pooling groups in hydrology (Oudin et al., 2008, He et al., 2011, 

Blöschl et al., 2013, Mostofi Zadeh and Burn, 2019), but it has been shown to be dependent on 

region and climate (Razavi and Coulibaly, 2013), with spatial proximity identified as offering 

the best solution (Merz and Blöschl, 2005, Oudin et al., 2008, Mostofi Zadeh and Burn, 2019). 

When considering the forming of pooling groups, Smithers and Schulze (2003) and Van 

Bladeren (2005) both recommend that a rigorous statistical based approach to regionalisation 

be adopted. Numerous regionalisation schemes exist for the formation of pooling groups, with 

the most eminent of the schemes being the Region of Influence (RoI) proposed by Burn (1990) 
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and clustering approaches as adopted by Rahman et al. (2019). Regionalisation for DFE 

purposes in South Africa have been performed by HRU (1972), Kovács (1988), Meigh et al. 

(1997), Mkhandi et al. (2000), Kjeldsen et al. (2001) for the KZN province, Alexander (2002a), 

Görgens (2007a) and Haile (2011) but, with the exception of HRU (1972), have not been 

widely adopted for local use. Mkhandi et al. (2000), Kjeldsen et al. (2001) and Haile (2011) 

can be considered the only studies that have performed statistically based flood regionalisation 

within South Africa. Mkhandi et al. (2000) and Haile (2011) grouped catchments through 

manual inspection of geographic data and verified homogeneity through statistical testing. 

Kjeldsen et al. (2001), however, adopted the clustering procedure outlined by Hosking and 

Wallis (1993, 1997), but only within the KZN province, and compared the homogeneity of the 

regions formed to those delineated by Mkhandi et al. (2000) and Kovács (1988), and improved 

the homogeneity in relation to these delineations, thereby warranting further investigation at a 

national scale. 

 

After suitable pooling groups have been formed, the knowledge of the stations needs to be 

shared to improve the overall estimates within the group. This is achieved through a number 

of methods that generally rely on the use of a regional model. As with all models the response 

variable is estimated through some combination of predictor variables. The RFFA response 

variables are associated with the estimation of flood frequency curves or flood quantiles at a 

pooling group scale, which requires the identification of a suitable distribution for the 

estimation of the flood quantiles. For DFE purposes at ungauged sites, modelling approaches 

include regional methods (e.g. index flood method), direct regional regression of quantiles, and 

regional regression of distribution parameters (Aronica and Candela, 2007). Suitable predictor 

variables are then utilised for the estimation of the required response variables at ungauged 

sites, e.g. Mean Annual Flood (MAF), 1% AEP flood or distribution parameters such as skew 

and standard deviation. 

 

FFA requires the identification of an appropriate frequency distribution for fitting the historical 

data and is generally performed at an at-site basis, conversely, the selection of an appropriate 

distribution for RFFA is undertaken considering the identified pooling groups and is required 

for the development of the regional knowledge transfer models. The choice of distribution can 

have a considerable impact on the estimated peaks. For example, Alexander (2002a) 

demonstrated that the design flood estimate of a 0.5% AEP flood obtained using different 

distributions fitted to the same data set could result in variations of up to 38%. For conducting 
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FFA in South African catchments the distributions recommended for application are the Log-

Pearson Type 3 (LP3), Log-Normal (LNO), and Generalised Extreme Value (GEV) 

(Alexander, 1990, 2000, Görgens, 2007b, Gericke, 2010, SANRAL, 2013, Van der Spuy and 

Rademeyer, 2018), but these texts do not provide guidance or indication for the selection of 

the most suitable distribution. Kjeldsen et al. (2002), Mkhandi et al. (2000) and Haile (2011) 

performed statistical verification of suitable distributions and found that the Generalised 

Normal (GNO), LNO, Pearson Type 3 (PE3) and Generalised Pareto (GPA) distributions were 

all suitable candidates. The studies were, however, performed in specific geographic regions 

or utilised limited datasets. The literature therefore supports the need identified by the NFSP 

for additional verification of a suitable distributions for use in South Africa. 

 

1.1 Problem Definition 

 

Practitioners are often required to select the most appropriate design flood method to apply, a 

choice which incorporates the financial and societal risks that affect the design being 

undertaken. The methods currently available in South Africa were either developed outside of 

the country or decades before and based on limited datasets. Currently more extensive data sets 

and modelling approaches are available to provide a better understanding of the South African 

flood risk regime. Therefore, it is hypothesised that, by utilising the extended data sets, and 

refined modelling approaches, a regional model which provides results with a higher level of 

confidence can be developed. 

 

1.2 Research Question 

 

Based on the above overview, the research question this study is addressing is: Can a regional 

DFE model be developed, utilising the most appropriate statistical distribution, coupled with a 

statistically developed regionalisation scheme utilising the most recent instantaneous AMS 

data, that provides improved estimated design flood estimates in relation to the currently 

available regional flood estimation methods?  

 

The research question can be divided into the following sub-questions: 

(a) What is the most suitable distribution for FFA in South Africa on an at-site scale for use on 

a national scale?  
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(b) Can South Africa’s catchments be divided into statistically homogeneous flood producing 

regions? 

(c) Given the data sparsity in South Africa, which regional DFE model is most suitable?  

 

1.3 Aims and Objectives 

 

The aims of this study are to develop an improved and refined regionalised DFE model for 

South Africa, through the development and assessment of regional model development 

approaches. Specific objectives that are required to answer the research questions posed include 

the following: 

(a) Compilation of a hydrological descriptors database. 

(b) Collation and quality control of selected gauged flow data in South Africa. 

(c) Identification of a suitable probability distribution for use in South Africa. 

(d) Identify and verify homogeneous flood producing regions. 

(e) Regional flood model development and performance assessment. 

 

1.4 General Methodology and Thesis Structure 

 

RFFA studies can be loosely divided into four distinct steps, as shown in Figure 1.3, within 

which the basis of FFA also exists. This thesis has been written based on the four steps: i) Data 

collection, ii) Identification of a suitable frequency distribution, iii) Formation of homogeneous 

flood producing regions, and iv) Model development, each of which has been dedicated an 

independent chapter.  

 

Chapter 2, refers to step i) of the RFFA process, and details the development of a national 

descriptor and streamflow database. The various data sources are outlined for both streamflow 

data and catchment descriptors. A review of relevant literature will be presented describing the 

selection of the adopted catchment descriptors. Additionally, the streamflow data screening 

process is outlined, and an analysis of the available data is presented. 
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Figure 1.3 RFFA process flow diagram 
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The identification of the most suitable probability distribution for FFA in South Africa is 

detailed in Chapter 3. The Chapter reviews existing practise and recommendations in South 

Africa and internationally for the selection of a suitable distribution. A detailed investigation 

identified five potentially applicable distributions for South Africa. The selected distributions 

consisted of distributions commonly applied in South Africa and additional more flexible 

distributions applied elsewhere. An assessment was then developed considering four selection 

criteria, i) Graphical methods, ii) Goodness-of-fit, iii) Model selection criterion, and iv) 

predictive ability. Through ranking the performance of the frequency distributions for the 

different selection criteria, a recommendation on the most suitable frequency distribution is 

presented. 

 

Chapter 4 describes the process undertaken for forming the homogeneous pooling groups. A 

review of existing flood regions developed for South Africa was undertaken, highlighting the 

adopted methods and potential shortcomings. The two most commonly applied and potentially 

applicable multi-variate pooling group techniques were applied to the catchment descriptors 

and streamflow data collated in Chapter 2, for the forming of homogeneous flood producing 

regions. Additionally, an approach combining the methods was undertaken in an attempt to 

improve the homogeneity of the developed regions. 

 

Following the formation of the homogeneous flood producing regions, the development and 

performance assessment of four regional flood models was undertaken and is presented in 

Chapter 5. The flood models were developed at two scales, national and regional, based on the 

two regionalisation techniques employed in Chapter 4. Six performance metrics were adopted 

to assess the predictive ability of the developed models and undertake a comparative 

assessment. Using the adopted metrics, it was possible to identify the best performing model, 

as well as identify potential regions where the model performs less adequate than the remaining 

models. 

 

The overall study results are discussed in Chapter 6 and the conclusions and recommendations 

for future research are presented in Chapter 7. 

 

Chapters 2 to 5 have been written with the intent of being published as individual papers, and 

as such may replicate previously stated information. This has, however, been limited to only a 

few instances and in the opinion of the author improves the readability of the thesis.  
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2 DEVELOPMENT OF THE HYDROLOGICAL DESCRIPTOR 

DATABASE 

 

The development of a unified hydrological catchment descriptor database for use across 

multiple studies is a critical requirement for the development and application of methods for 

DFE in South Africa. A unified database would move much of the focus of flood studies from 

the extraction of catchment descriptors to the application of the methods and hydrological 

judgements, thus reducing duplication of efforts. The NFSP has identified the collation of a 

hydrological database as a key project, which further justifies the need for its development. 

The descriptors and flow data are also critical for the development of regional flood models, 

simultaneously being used for the forming of pooling groups and as predictor variables in the 

final models. 

 

2.1 Base Data Collation 

 

Estimation of the hydrological descriptors required the collation of the following base data sets: 

(a) topographic data, 

(b) rainfall data, and 

(c) DWS catchment, river network and streamflow data. 

 

2.1.1 Topographic data 

 

The Shuttle Radar Topography Mission (SRTM) (NASA-JPL, 2013) data were utilised for the 

development of the Digital Elevation Model (DEM). A hydrological conditioning process 

adjusts the DEM to ensure that flow directions derived from the surface defines the expected 

flow directions. A common methodology followed for hydrological conditioning is filling 

(Fernandez et al., 2016), whereby the DEM is assessed for any potential voids or impressions 

that could prevent the derivation of natural flow lines. After the voids or impressions have been 

identified, the elevations are increased until the water would flow along a natural pathway. 

Fernandez et al. (2016) identified that, although alternative methods are available for 

hydrological conditioning, the filling procedure maintained the slope descriptors of the 

catchment. 
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The 30 x 30 m SRTM grid was used and, where necessary, infilling was undertaken using the 

90 x 90m grid. Infilling was, however, limited to a small region in the Eastern region of the 

Western Cape province. The infilled DEM was used for the determination of topographic 

descriptors such as catchment area (A) and elevation at the outlet (EO). 

 

2.1.2 Rainfall 

 

Three sets of rainfall data were utilised for the study, the Mean Annual Precipitation (MAP), 

the daily rainfall data set, collated and infilled by Lynch (2004) and design rainfall depths 

(Smithers and Schulze, 2003).  

 

The MAP data sets utilised was extracted from the Water Resources 2012 study (de Groen et 

al., 2015) and the data set developed by Lynch (2004). The data sets consist of national MAP 

depth grids with a minute by minute grid spacing. The minute by minute design rainfall grid 

developed by Smithers and Schulze (2003) was utilised to derive the design rainfall depths. 

 

2.1.3 DWS data 

 

The DWS data utilised in the study included river networks, primary to quaternary catchment 

boundaries, gauging station locations, and flow monitoring data. These data were utilised for 

verification, location purposes and statistical analysis of the instantaneous Annual Maximum 

Series (AMS). The quality and limitations of the flow data received are further discussed in 

Section 2.3. 

 

2.2 Descriptor Extraction 

 

As identified in previous flood studies (McDermott and Pilgrim, 1982, Robson and Reed, 1999, 

Mkhandi et al., 2000, Alexander, 2002a, Van Bladeren, 2005, Görgens, 2007a, Kjeldsen et al., 

2008a, Gericke, 2010, Haile, 2011, Rahman et al., 2015b), the geographic location, rainfall 

intensity, MAP and catchment area are potential descriptors used for the regionalisation of the 

peak flow estimation. Taking both the literature and the requirement of ease of application by 

practitioners into consideration, the descriptors summarised in Table 2.1 which are readily 

available, or simple to estimate, were selected for inclusion in the study: 
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Table 2.1 Catchment descriptors selected for use in the study, including sources where 

relevant 

Descriptor Unit Range Source* 

Min Max 

Outlet latitude 
Decimal 

degrees 
-34.36 -22.63  

(DWS, 2011) 

Outlet longitude 
Decimal 

degrees 
18.69 32.18 

Outlet elevation masl 11.00 1969.00 (NASA-JPL, 2013) 

Catchment area km2 0.26 361994.80  

Catchment 

perimeter 
km 2.94 6075.93  

Rainfall 

region/cluster 
Unitless 1 76 

(Smithers and Schulze, 

2003) 

Rainfall seasonality radians -3.11 3.08  

Catchment runoff 

(Cro) 
Percent 4.00 97.00 (Schulze, 2011) 

SCS soil 

classifications 
Unitless 0 7 

(Schulze and Schütte, 

2020) 

Distance from the 

coastline (Dc) 

Decimal 

Degrees 
0.03 6.84  

Hydraulic length km 0.81 1896.13  

Length to centroid km 0.07 978.10  

Slope m/m 0.0004 0.26  

Time of 

concentration 
Hours 0.17 435.72  

Areal reduction 

factor (ARF) 
Percent 57.91 100.00  

Mean Annual 

Precipitation 

(MAP) 

mm 60.00 3312.00 
(Lynch, 2004, de Groen 

et al., 2015) 

Design rainfall mm 9.30 416.40 
(Smithers and Schulze, 

2003) 
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* Where no source is specified the parameters were estimated as part of the study and are 

detailed in the following sections 

 

2.2.1 Catchment area (km2) 

 

The catchment areas for each of the DWS gauging stations was programmatically delineated 

using the Terrain Analysis Using Digital Elevation Models (TauDEM) suite of programs 

(Tarboton, 2016). A problem was encountered with the delineation of catchment areas, where 

the gauging stations were not located on the drainage paths defined by the hydrological 

conditioning, as undertaken in Section 2.1.1. Two approaches were adopted to correct the 

delineation: (i) allowing for a 200 m clipping radius, which moves the gauging station location 

to the point of highest flow accumulation within a 200m radius, or (ii) by manual manipulation 

of the gauging station locations to coincide with the defined drainage paths. On a national scale 

this will, however, not be significant as the descriptors are derived on a 30 x 30 m grid, and the 

drainage paths will be available for practitioners to assess the location of the ungauged site 

relative to the drainage path to ensure the correct catchment descriptors can be extracted. A 

comparison of the catchment areas calculated automatically from the corrected DEM and the 

catchment areas from DWS are shown in Figure 2.1, and indicates that the method used to 

estimate catchment area is similar to the areas from DWS. Due to the values ranging from 1 to 

160 000 km2 the values are presented on a log scale. 

 

 

Figure 2.1 Catchment area comparison 
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2.2.2 Time of concentration (h) 

 

Given the lack of locally developed methods historically SANRAL (2013) and Van der Spuy 

and Rademeyer (2018) recommend the use of international methods. The method 

recommended for defined watercourses was developed by the US Bureau of Reclamation 

(USBR, 1973), which utilises the Hydraulic Length (L), and is shown in Equation 2.1.  

 

 Tc = (
0.87 𝐿2

1000 𝑆10−85
)
0.385

 (2.1) 

 

Locally Gericke (2015) developed a regional time to peak (Tp) equation, but the development 

has been limited to date for selected DWS drainage regions, as shown in Figure 2.2. The Tp is 

estimated using Equation 2.2 and relates the MAP, A, length to centroid (Lc), L and SDEM to the 

Tp through the use of calibration coefficients x1-5. provided in Table 2.2. 

 

 

Figure 2.2 South African time to peak (Tp) development catchments (from Gericke, 2015) 

 

 Tp =𝑥1
𝑀𝐴𝑃𝑥2

𝐴𝑥3
𝐿𝑐𝑥4

𝐿𝑥5
𝑆𝐷𝐸𝑀  (2.2) 
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Table 2.2 Tp regional calibration coefficients (after Gericke, 2015) 

Region 
Regional calibration coefficients 

x1 x2 x3 x4 x5 

Northern Interior 1.00280 0.99993 0.99865 1.01612 0.91344 

Central Interior 1.00313 0.99984 1.06106 0.98608 0.98081 

Southern Winter Coastal 1.00174 0.99931 1.01805 1.04310 0.99648 

Eastern Summer Coastal 1.00297 0.99991 0.99594 1.01177 0.97529 

 

Given the absence of development within the regions surrounding the study areas used by 

Gericke (2015), the four regions were expanded based on the seasonality and topographic 

variability to develop expanded regions as shown in Figure 2.3. The expansion of the regions 

allowed for the estimation of the Tp outside of the original development regions. 

 

 

Figure 2.3 Expanded Tp regions 

 

As an additional validity check of the regional expansion, a comparison between the Tp and Tc 

values was undertaken. When considering the ratio of Tc:Tp a median value of 0.788 and an 

interquartile range of 0.357 and 1.425 is achieved indicating that the Tc tends to under-
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estimation of the catchment response times in relation to Tp. The validity of the Tp models 

outside of the catchment size ranges used for development, however, comes into question as, 

for large catchments, there is a gross under-estimation present regardless of the allocated 

region. This is particularly evident at stations D7H002, D7H005 and D7H008, where due to 

the large size of the catchments, the estimated Tp values range between 6.4 x 10-67 and 23 hours 

depending on the region allocation. In contrast the Tc values range between 373 and 435 hours 

for the same catchments. Given the variability of the Tp estimates outside of the developed 

catchment sizes and bounds, and the current level of adoption of Tc in practise it has been 

utilised for this study. 

 

2.2.3 Slope (m/m) 

 

SANRAL (2013) details three methods for the estimation of slope, all of which were calculated 

for each of the sites investigated: 

(a) 10-85 (S10-85); 

(b) equal area (Sea); and  

(c) overland catchment slope (Soc). 

 

Van der Spuy and Rademeyer (2018) also recommend the use of the Taylor-Schwarz method 

for the estimation of mean river slopes. However, given the adoption of the USBR method for 

estimation of Tc, the use of S10-85 and Sea is required. The above are considered estimations of 

the average slope calculated along the longest flow paths, utilising variations of the height 

difference along the flow paths to estimate the average catchment slope. In addition to the 

above methods, a DEM based catchment slope estimator, SDEM, was calculated and estimates 

the average catchment slope through determining the average of the maximum slope between 

neighbouring cells of the DEM. A comparison of the slopes estimated using S10-85 and Sea, as 

shown in Figure 2.4, was undertaken to assess the variability of the estimates. 

 

It is evident from Figure 2.4 that there is a large variation of up to 86% between the estimation 

methods, with S10-85 consistently estimating steeper slopes than Sea by an average of 15%. This 

will lead to estimates of shorter time of concentration (Tc) and increased peak flows, which 

could be considered a more conservative approach. Therefore, S10-85 was utilised in this study. 
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Figure 2.4 Average slope comparison 

 

2.2.4 Areal reduction factor (%) 

 

The method currently recommended by SANRAL (2013) and proposed by Alexander (2001), 

is shown in Eq. 2.3, and relates the catchment area (A) and Tc to the ARF.  

 

 ARF = (90 000 – 12 800 lnA + 9 830 ln(60Tc))
0.4 (2.3) 

 

In addition to the above SANRAL (2013) and Van der Spuy and Rademeyer (2018) also 

provide a number of adjustment curves, but no clear guidance is provided on which method is 

preferable. As such Eq. 2.3 was adopted for the estimation of ARF. 

 

2.2.5 Rainfall based descriptors 

 

The MAP and design rainfall values were calculated at a catchment scale by averaging the 

gridded values over the catchment. For smaller catchments which contained no grid points 

within the catchment, the grid point closest to the catchment centroid was utilised to estimate 

the rainfall descriptors. 

 

Similarly, MAPmax, MAPmin and MAPmean, which represent the maximum, minimum and mean 

MAP values within the catchment, were derived. The use of the 30 x 30 m grid allows for the 

identification of the variation of the MAP within a catchment. 
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411 streamflow gauges. The data consists of instantaneous peak flows and were assessed both 

in terms of length of record and data quality using a number of criteria for extraction of the 

AMS. In order to provide reliable design values, long records of data are required. Hence, 

selecting a minimum record length of 20 years for inclusion in the analysis reduced the number 

of stations that could potentially be utilised. The second screening process required the 

identification of human impacts on flow, such as dams, abstractions, and urban development. 

The registers of dams and abstractions from the WR2012 (de Groen et al., 2015) study, was 

used for the identification of potentially impacted stations, and secondary manual checks were 

also performed using aerial imagery to verify and supplement the WR2012 data.  

 

The last criterion considered was the quality of the data. The DWS flow data contain many 

quality flags ranging from user errors to technical errors. Examples of this include the incorrect 

manual capturing of data and hardware malfunction. Of the 411 streamflow gauges considered, 

historical AMS data were available for 160 of the sites as part of the data set prepared by Van 

Bladeren (1993). The historical peak flow data ware included in the study and was extended to 

the 2017 hydrological year for the available sites and a combined data set was used in the study. 

Table 2.3 provides a summary of the screening criteria, similar to the methodology described 

by Nathanael (2015), and data errors which were used to exclude stations from this study. 

 

As the national available data sets contain many thousands of years of data, it was deemed to 

be impractical to assess the screening criteria and data errors manually. Therefore, as part of 

the study the above selection and quality criteria were automated, and recommendations 

generated based on the primary data received from DWS.  
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Table 2.3 Data errors and recommendations 

Screening Criteria and Data Error Recommendation 

Records shorter than 20 years Exclusion of site for at-site FFA 

Negative/null records Exclusion of erroneous data 

Recorded depth of flow exceeded discharge 

rating table at flow-gauging station (i.e. 

“Over-topping”) 

Possible extension of the rating tables, 

otherwise exclusion of erroneous data 

Missing periods Annual records were assessed based on the 

number of records/days of missing data with 

possible exclusion of the year. AMS events 

were immediately excluded if less than 91 

days of data were present in a year, otherwise 

further investigation was undertaken. 

 

In some instances, the recorded river stage exceeded the available discharge rating curves for 

the flow-gauging stations. Where the rating curve of a station was exceeded, the viability of 

extending the existing rating curve was assessed. For example, as shown in Figure 2.7, the 

maximum rated level is 0.96 m, however, the maximum recorded water level for the station is 

approximately 3.20 m. In such cases simple extension of the rating curve could potentially 

produce major under or overestimation of peak flow events. Due to the nature of flow gauging 

weirs, as shown in Figure 2.8, an accurately extended rating curve would require an extensive 

survey and calibration beyond the structural limit. A general rule was therefore adopted that a 

rating curve may only be extended up to a maximum of 20% of the original maximum stage, 

as shown in Figure 2.7. In addition, a limitation of 20% increase in flow discharge exceedance 

was adopted, similar to Gericke and Smithers (2018), which led to the exclusion of 215 (1%) 

records. Alternative approaches adopted in other studies include Haddad et al. (2010) who 

adopted a Rating Ratio (RR) which is the ratio of estimated flow to the maximum observed 

flow. Where a rating curve is extended, a small grouping of 5% of the total number of points 

located at the upper end of the rating table was considered and a best-fit linear extension was 

applied. Ninety-five stations had records excluded due to exceedances in excess of the 20% 

criteria. Although the number of stations that required extensions was not excessive, these 

values still need to be used with caution due to the uncertainty in the estimation of flow from 

the recorded stage. 
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Figure 2.7 Example of a rating curve exceedance and extension the adopted extension 

methodology 

 

 

Figure 2.8 Example of a flow gauging weir on the Tongati River at Riet Kuil (DWS, 2015) 

 

The DWS is currently operating 1 458 streamflow gauging stations through-out South Africa. 

A total of 383 gauging stations, as shown in Figure 2.9, remained after careful data screening, 

assessment and cleaning and were utilised in the study. The gauging stations are divided into 

296 river gauges and 87 synthetic dam inflow records. The synthetic dam inflow records were 
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generated by the DWS Flood Studies section and consists of a combination of at site dam 

inflow measurements, regional regressions of upstream flow gauges and reservoir routing 

back-routing from monitored dam outflows and is similar to the flow extension methodology 

adopted in Bulletin 17C (England et al., 2018). 

 

Figure 2.9 Map indicating the DWS gauging stations (blue) and the synthetic dam stations 

(orange) selected for use in study  

 

2.4 Record lengths of quality controlled annual maximum series 

 

Table 2.4 contains the breakdown of records lengths per DWS drainage region before and after 

data quality control was undertaken. Figure 2.10 provides a spatial indication of the number of 

gauging stations after quality control was undertaken. Figure 2.11 shows a histogram of the 

distribution of the record lengths for the gauging stations considered. The quality-controlled 

dataset contains a combined total of 18 349 AMS events, with a mean record length of 48 years. 

These data compares well to the data utilised by Kjeldsen et al. (2008a) which contained 602 

gauging stations and a total number of 19 679 AMS event, albeit with a lower mean record 

length of 33 years. Although the data set presents a similar number of AMS events, the data 

are not evenly distributed across the country, with the centre of the country having a low density 

of gauging stations. The density of the gauging network relative to the surface area in South 
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Africa equates to one station per 3 185 km2, whereas in the UK this drops to one station per 

402 km2. Although this may seem like a poor comparison, Australia holds an even lower 

density of one station per 9 017km2 based on the dataset described by Rahman et al. (2015c), 

but includes approximately 31 200 AMS events at the 853 stations. The data available for this 

study can this be considered a good basis for the development of regional models, given the 

above comparison. 

 

Table 2.4 Number of DWS flow-gauging stations and record lengths 

DWS 

Drainage 

Region 

No. of 

Gauging 

Stations 

Cumulative Record Length  

(years) 

Mean Record Length  

(years) 

Raw 
Quality 

Controlled 
Raw 

Quality 

Controlled 

A 62 3347 3314 54 53 

B 47 2265 2253 48 48 

C 34 1636 1432 48 42 

D 20 1147 981 57 49 

E 5 290 229 58 46 

G 21 868 800 41 38 

H 19 791 760 42 40 

J 19 1091 1043 57 55 

K 10 518 475 52 48 

L 5 263 252 53 50 

N 4 294 263 74 66 

P 2 99 92 50 46 

Q 14 635 628 45 45 

R 4 176 146 44 37 

S 3 179 171 60 57 

T 13 782 625 60 48 

U 12 619 570 52 48 

V 28 1297 1511 46 54 

W 19 916 890 48 47 

X 42 2039 1914 49 46 

TOTAL 383 19252 18349 50 48 
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Figure 2.10 Number of gauging stations per DWS primary drainage region across South Africa 

 

 

Figure 2.11 Histogram depicting the distribution of the station record lengths for the selected 

383 gauging and synthetic dam stations 
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3 IDENTIFICATION OF A DISTRIBUTION SUITABLE FOR AT-SITE 

FLOOD FREQUENCY ANALYSIS IN SOUTH AFRICA 

 

3.1 Abstract 

 

Selection of a probability distribution is a critical part of FFA, and potentially affects the 

estimated magnitudes of the estimated design floods. In South Africa, the LP3, three parameter 

LNO, GEV, PE3 and GPA distributions are advocated in literature. However, only a few of 

these recommendations are based on scientific investigation using limited datasets, the 

remainder rely on subjective experience by practitioners and international studies. In this study, 

the three parameter Kappa (KAP3) distribution has been included to identify whether the 

inherent flexibility can describe the South African hydrological conditions. Statistical 

approaches are utilised to identify the suitability of the distributions for use in South Africa. 

Goodness-of-Fit (GoF) measures favoured the LP3 method; however, model selection criterion 

and graphical methods favoured the GPA. The final recommendation was based on the 

predictive ability of the models, which takes into account the uncertainty associated with 

estimates derived from the LP3 and GPA distributions. Utilising bootstrapping it was identified 

that the GPA distribution provided narrower uncertainty bands and is therefore recommended. 

Future work will focus on verifying the suitability of the GPA on a homogeneous region level. 

 

3.2 Introduction 

 

South Africa experience considerable negative economic impact of floods. For example, 

Holloway et al. (2010) reported flood losses of  R1 billion in the Western Cape in 2008, and 

Davies (2016, 2017) reports that between 10 000 and 15 000 people were displaced in 2016 in 

the Western Cape alone. These impacts highlight the ongoing challenges for improving flood 

management in South Africa. Engineers rely on hydrological information, e.g., rainfall and 

streamflow data, for the design of hydraulic structures, such as dams, bridges and drainage 

culverts (Maidment, 1993), and to guide spatial planning more generally through risk maps 

showing areas at risk of inundation during extreme events. The design is guided by the 

anticipated frequency (e.g. return period or AEP) and magnitude of future floods in the form 

of design flood estimates. 
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When adequate streamflow data are available at a site, the relationship between frequency and 

magnitude of future floods can be established using FFA involving the fitting of a probability 

distribution to an AMS of peak flow events. The  probability distribution selected form the 

sample of available observed events is then assumed to be the best distribution to fit the entire 

population of events can be used for estimating the magnitude of a flood that will be exceeded 

with a specified probability each year, e.g. an AEP of 1% (Pilgrim and Cordery (1993). In 

South Africa, the Road Drainage Manual (SANRAL, 2013) is considered as one of the 

authoritative guidance documents on FFA, while procedures applied by the DWS are 

summarised in a manual by Van der Spuy and Rademeyer (2018). A key aspect of FFA is the 

identification of a suitable distribution that can describe the probabilistic behaviour of the 

available flood data. 

 

The choice of distribution can have a considerable impact on the estimated peaks. For example, 

Alexander (2002a) demonstrated that the design flood estimate of a 0.5% AEP flood obtained 

using different distributions fitted to the same data set could result in variations of up to 38%. 

For conducting FFA in South African, Alexander (1990, 2000) recommended using the LP3 

distribution. Gericke (2010) proposed that the best distributions for use in South Africa are the 

three parameter LNO, LP3 and GEV. Van der Spuy and Rademeyer (2018) describe the LNO, 

LP3 and GEV distributions as the most suitable distributions for FFA but provide no evidence 

to support these. Görgens (2007b) used both the LP3 and GEV distribution in South Africa, 

simply stating that the methods are commonly used in practice, and no further motivation for 

their use is provided. Görgens (2007a) found that the LP3 distribution showed significant 

variation in its estimation, whereas the GEV provided improved results. In addition to these 

distributions, Haile (2011) found that the GPA, LNO and PE3 distributions were the best suited 

distributions in South Africa. However, Haile (2011) only utilised 73 flow-gauging stations 

within South Africa, where the DWS currently has 1458 registered river gauges. Kjeldsen et 

al. (2002) found that the infrequent occurrence of very extreme events resulting from cyclone 

activity in the coastal region of KZN resulted in poor performance of standard distributions. 

However, for the inland region of KZN, the GNO, PE3 and GPA distributions were all suitable 

candidates. Mkhandi et al. (2000) reviewed seven distributions and two parameter estimation 

methods in southern Africa for their descriptive ability, through the use of LM Ratio Diagrams, 

and their predictive ability, based on Monte Carlo simulated bias. Mkhandi et al. (2000) found 

that the predictive ability test identified the PE3 as most suitable in 12 of the 13 regions 

considered, with LP3 being most suitable for the last remaining region, whereas the descriptive 
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ability was divided between the PE3, LNO and GPA distributions and were favoured in six, 

six and two regions respectively. Mkhandi et al. (2000) based the final recommendations on 

the predictive ability results, however the approach adopted used the average percent bias of 

the 1%, 0.5% and 0.2% AEP for simulated records with lengths ranging from 15 to 50 years. 

The majority of the tests therefore exceeded the general “rule-of-thumb” by extrapolating more 

than twice the available record length. Conversely, Zhang et al. (2019) adopted the 

recommendation by Robson and Reed (1999) when assessing distributions for use in Canada, 

that a minimum of two times the record length is required for estimates, e.g. the 1% AEP 

requires 200 years of data, to gauge the predictive ability. 

 

Internationally, numerous scientific studies have been undertaken to validate and substantiate 

the selection of suitable flood distributions, primarily in Europe, USA, and Australia. Although 

the hydrological climates and responses vary significantly from prevailing conditions in South 

Africa, experience can still be drawn from the studies.  

 

Castellarin et al. (2012) compiled an inventory of streamflow data and statistical methods used 

for FFA across Europe. The study compiled data received from 17 countries, which includes 

distribution selection, FFA and regional FFA procedures. Across Europe, a number of different 

distributions are recommended, including: GEV, GPA, LP3, LNO, PE3, GUM, Weibull (WEI) 

and Two Component Extreme Value (TCEV). Salinas et al. (2014) investigated the 

applicability of the GEV distribution as a pan-European distribution and found that the GEV 

cannot fully describe the differences in flood series characteristics between catchments. 

However, not enough statistical evidence was found to reject the hypothesis for general 

applicability of the GEV. Kjeldsen et al. (2017) tested the application of the four parameter 

Kappa (KAP) distribution at a regional scale in the UK, motivated by the fact that several of 

the commonly used three parameter distributions are special cases of the KAP distribution 

(Hosking, 1994). Kjeldsen et al. (2017) proposed the application of a national KAP 

distribution, by reducing the KAP distribution to a 3-parameter distribution through estimation 

of a national shape parameter. The KAP3 improved the description of the regional distribution 

in the UK compared to both the Generalised Logistic (GLO) and GEV distributions.  

 

In the USA, two predominant studies focussed on the identification of a suitable distribution 

for DFE. Benson (1968) details testing performed on six different distributions (LP3, GUM, 

Gamma (GAM), log-GUM, LNO, Hazen), these were tested at 10 stations with record lengths 
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ranging from 40 to 97 years. Recommendations of the methods were based on deviations 

between design flood estimates, as opposed to statistical methods. From the distributions 

reviewed, the LNO, LP3 and Hazen methods resulted in the smallest deviations and bias. The 

LP3 was, however, recommended based on popularity of use, the use of a skew parameter thus 

increasing its flexibility, and its rigorous mathematical backing. Six years later Beard (1974) 

tested eight distributions at 300 sites and the two distributions deemed to preform best were 

the LNO and LP3 with a regional skew (LPR). Apart from these studies there has been little 

further investigation into the selection of an appropriate distribution in USA. Emphasis has 

rather been placed on improving the moment estimations for use with the LP3 through the use 

of moment adjustments as presented by Cohn et al. (2013). 

 

South-eastern Australia presents the most climatologically similar region to South Africa. 

Haddad and Rahman (2008) investigated the performance of 12 distributions and fitting 

combinations at 18 sites in South-East Australia and concluded that GPA with the use of Linear 

moment (LM) fitting (Hosking, 1990) (GPA-L) and the GEV with the use of LH-moments 

(LHM), a generalisation of LM (Wang, 1997), fitting provided the best fits to the data, which 

was not consistent with the recommendations of the 1987 ARR manual (ARR, 1987). Haddad 

and Rahman (2011) revisited the assessment of distribution selection in Tasmania to possibly 

modify the selection criteria. They considered seven distributions and identified that the most 

suitable model for use in Tasmania was the LNO distribution combined with Bayesian Markov 

Chain Monte Carlo (MCMC) fitting. The climate and hydrological responses in Tasmania are, 

however, different to conditions in most parts of South Africa. In the latest revision of the ARR 

guidelines, it is noted that the GEV and LP3 are reasonable initial choices for FFA, and it is 

recommended that a single distribution is not prescribed due to the potential sampling 

variability of the relatively short record lengths (Rahman et al., 2019). In addition, it is 

recommended that a review of the data at a regional scale can be used to identify the best fit 

distribution through the use of an LM diagram (Rahman et al., 2019). 

 

From the above summary of the practical and scientific literature it is evident that South African 

hydrological practise is not well aligned with recent findings of scientific studies regarding 

choice of flood distributions, and recommendations for particular distributions have generally 

not been based on any substantial evidence.  
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This paper aims to identify the distribution most suitable for FFA at an at-site scale taking into 

consideration the existing recommendations for South Africa. A review of the FFA procedures 

as applied in South Africa is provided, and through the application of statistical analyses, the 

most suitable flood distribution applicable to South African streamflow records is identified. 

This will potentially enhance the credibility of design flood estimates and also provide a more 

reliable benchmark against which the performance of other methods of estimating design 

floods at the site could be evaluated. 

 

3.3 Flood Frequency Analysis 

 

FFA requires the selection and fitting of a distribution to a series of data either graphically or 

analytically (Stedinger et al., 1993, Basson and Pegram, 1994, Smithers and Schulze, 2000a, 

Alexander, 2002a, Smithers and Schulze, 2003, Gericke, 2010, SANRAL, 2013, Van der Spuy 

and Rademeyer, 2018). The series of data can consist of AMS or Partial Duration Series (PDS).  

Karim et al. (2017) highlights the main differences between AMS and PDS and notes that PDS 

requires the investigation of additional complexities, such as the selection of an appropriate 

threshold. Given the additional complexities inherent with PDS, and in the interest of 

computational convenience and the assumption of independence between flood events AMS 

have been utilised in this study. The design value computed from the observed data is then 

assumed to be the best estimate of the design flood at the site and the performance of the other 

methods of estimating design floods at the site can be assessed using the design flood estimated 

from the observed data. In order to perform FFA the following aspects need to be considered: 

(a) Selection of a parameter estimation method. 

(b) Identification of applicable distributions. 

(c) Selection of most suitable distribution. 

 

In this study an investigation was undertaken to identify the most suitable distribution for FFA 

in South Africa, applying four categories of model selection methods to judge the quality of 

distribution fits: (i) graphical methods, (ii) GoF tests, (iii) model selection criterion, and (iv) 

predictive ability. Selection of a suitable distribution is a task that is often subjective, even 

though, there are numerous methods available to assess the quality of fit for different 

distributions. Similarly, validation of the appropriateness of the selected distribution is often 

difficult as multiple distributions may statistically fit the data but may appear less well suited 
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when interpreted graphically and result in vastly different estimates of high return period 

floods.  

 

3.3.1 Parameter estimation methods 

 

Some of the methods available for parameter estimation include: Method of Moments (MM), 

LM (Hosking, 1990), LHM (Wang, 1997), Probability Weighted Moments (PWM) 

(Greenwood et al., 1979) and Maximum Likelihood procedure (ML) (R.A. Fisher, 1912 as 

referenced in Aldrich, 1997). In South Africa, Görgens (2007b) used both the MM and PWM 

methods, whereas Alexander (2002b), SANRAL (2013) and Van der Spuy and Rademeyer 

(2018) recommend the use of MM, which is sensitive to the presence of outliers in the data 

(Bastianin, 2020).. England et al. (2018) prescribes the use of MM in simple cases, where data 

are not censored, and where data censoring is present the Expected Moment Algorithm (EMA) 

is recommended in the USA. In Australia, a number of studies were undertaken to identify both 

the best fit distribution and best fitting procedure. The most notable study was undertaken by 

Haddad and Rahman (2008), who reviewed twelve distribution/fitting combinations and the 

LP3, Normal (NOR), LNO, GUM, GEV and GPA were fitted using the MM, LM, LHM and 

Bayesian Maximum Likelihood (BML) fitting procedures and identified that the three top 

performing combinations are GPA-LM, GEV-LHM and LP3-BML. 

 

The method of LM (Hosking and Wallis, 1993) is a parameter estimation technique which has 

gained in popularity and proven successful both locally (e.g. Mkhandi and Kachroo, 1997, 

Kjeldsen et al., 2002, Smithers and Schulze, 2003, Haile, 2011) and internationally (e.g. 

Pearson, 1991, Vogel et al., 1993, Zrinji and Burn, 1996, Chen et al., 2007, Borujeni and 

Sulaiman, 2009, Castellarin et al., 2011, Hassan and Ping, 2012, Rutkowska et al., 2016, 

Cassalho et al., 2018, Mostofi Zadeh and Burn, 2019). The LM (λr) and LM ratios (τr), of order 

r and the estimation procedures are detailed in Eqs. 3.1 to 3.3, using an observation dataset X 

of length n, with an expected value E(X). 

 

 𝜆𝑟 = 𝑟
−1  ∑ (−1)𝑗 (𝑟−1

𝑗
)𝐸(𝑋𝑟−𝑗:𝑟)

𝑟−1
𝑗=0  (3.1) 

  𝜏𝑟 = 
𝜆𝑟

𝜆2
, 𝑟 = 3, 4, … (3.2) 

  𝜏1 = 
𝜆2

𝜆1
 (3.3) 
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In addition, the LM technique is theoretically superior to the MM due to lower weighting being 

applied to the larger values within the dataset and LM are therefore more robust for use in the 

presence of high outliers (Hosking, 1990). Given that South African flood hydrology is highly 

variable, which often results in the existence of potential outliers in the datasets LM was 

therefore adopted for use. 

 

3.3.2 Probability distributions  

 

As is evident from a review of the literature of studies undertaken both in South Africa and 

internationally, there are numerous differences between the recommendations and applications 

of distributions and the parameters estimation methods for FFA. The distributions most 

commonly recommended in literature for use in South Africa are the GEV and LP3. However, 

the wide-spread use of the GPA and PE3 internationally and the findings by Kjeldsen et al. 

(2002) and Haile (2011), substantiate further investigation into the adoption of these 

distributions within South Africa. In addition, Kjeldsen et al. (2017) provided a methodology 

to utilise the KAP distribution on a regional scale by determining a regional h shape parameter 

value, reducing the four-parameter distribution to the three-parameter KAP3.. Eight other 

distributions are special cases of the KAP distribution for fixed values of the h and k 

parameters, including the GPA (h = 1), GEV (h = 0) and GLO (h = -1) distributions (Hosking, 

1994). The additional flexibility may be better suited to describe the hydrological variability of 

flood series across the contrasting geographic and climatological regions of South Africa. Thus, 

the KAP3 distribution utilising a national record length weighted mean h value was included 

in the assessment.  

 

Hence a total of five distributions (GEV, GPA, KAP3, LP3 and PE3) distributions, shown in 

Table 3.1, with parameters fitted using LM were assessed to identify the most suitable general 

distribution for DFE in South African. 

 

It is important to note that this study adopted the use of a T% AEP to represent the probability 

of flood event occurrence and is related to the Average Recurrence Interval (ARI), where AEP 

is equivalent to the inverse of ARI. 
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Table 3.1 Cumulative distribution functions of the statistical distributions selected for 

assessment 

Distribution Cumulative Distribution Function Parameters 

KAP 
𝐹(𝑥) =  {1 − ℎ[1 − 𝑘(𝑥 −  𝜉)/𝛼] 

1
𝑘⁄ }
1
ℎ⁄
 

𝛼 = scale parameter, 

𝜉 th location parameter, and 

𝑘 and ℎ are shape parameters 
GPA 𝐹(𝑥) =  [1 − 𝑘(𝑥 −  𝜉)/𝛼] 

1
𝑘⁄  

GEV 𝐹(𝑥) =  𝑒𝑥𝑝{−[1 −  𝑘(𝑥 − 𝜉)/𝛼]1 𝑘⁄ } 

PE3 and 

LP3 𝐹(𝑥) =  

{
 
 

 
 𝐺(𝛼,

𝑥− 𝜉

𝛽
)

Γ(𝛼)
, 𝛾 < 0

1 − 
𝐺(𝛼,

𝜉−𝑥

𝛽
)

Γ(𝛼)
, 𝛾 ≥ 0

When 𝛾 ≠ 0 

let: 

𝛼 =
4

𝛾2
, 𝛽 = 0.5𝜎|𝛾|, 𝜉 =  𝜇 −

2𝜎

𝛾
   

𝜇 = mean, 

𝜎 = standard deviation, 

𝛾 = skewness, 

𝐺 = incomplete gamma 

function, and 

Γ = gamma function 

 

3.3.3 Selection of the most suitable distribution 

 

The four most common methods for the selection of a distribution found in the literature was: 

(i) graphical methods (e.g. Mkhandi et al. (2000), Haddad and Rahman (2008)), (ii) GoF tests 

(e.g. Laio (2004)), (iii) model selection criterion (e.g. Laio et al. (2009), Haddad and Rahman 

(2011)) and, (iv) predictive performance (e.g. Mkhandi et al. (2000), Zhang et al. (2019)). The 

most widely used approach for selection of distribution types in South Africa are graphical 

methods, whereas the literature indicates that internationally graphical, GoF and model 

selection criterion are commonly applied in combinations. In this study, the model uncertainty, 

defined by the 95% confidence bands, was used as an additional selection criterion to 

complement the assessment of the predictive performance. To identify the 95% confidence 

bands for each of the distributions the bootstrapping methodology was selected as it is not 

reliant on the assumption that the sample parameters represent the population, and that no 

distribution needs to be assumed a priori. As a final consideration, the data utilised was divided 

into four distinct sets based on record lengths: (i) less than 40 years of data, (ii) greater than or 

equal to 40 years, but less than 60 years, (iii) greater than or equal to 60 years, but less than 80 

years, and (iv) greater than or equal to 80 years. Given the use of AMS’ as short as 20 years in 

the analysis the record length categories were created to identify whether the length of record 
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available affects the distribution selections. In theory the longer record lengths have a higher 

probability of representing the true underlying distribution. 

 

 Graphical methods 

 

Graphical methods are often employed to identify the flood distributions that are least suitable 

reducing the number of distributions to consider in further detail. The simplest graphical test is 

the use of plotting positions for observed data on an at-site basis. The observed data are plotted 

against the calculated distributions to provide a graphical comparison of the distribution to the 

observed data. The plotting positions identified by DWS (Van der Spuy and Rademeyer, 2018) 

and SANRAL (2013) are the Weibull, Blom, Gringörten, Cunane, Beard and Greenwood 

methods. SANRAL (2013) describe these in further detail. Bulletin 17C (England et al., 2018) 

proposes the use of the plotting positions described by Stedinger et al. (1993).  

 

Product Moment Diagrams (PMD) are an additional graphical measure that can be used, 

however, Vogel and Fennessey (1993) recommend the use of LM Ratio Diagrams (LMRDs) 

as developed by Hosking (1990) in favour of PMDs due to the LM being nearly unbiased. 

LMRDs have become a common method for the identification of best fit regional flood 

distribution and have been used by numerous authors for this purpose (e.g. Vogel et al., 1993, 

Zafirakou-Koulouris et al., 1998, Peel et al., 2001, Castellarin et al., 2012, Salinas et al., 2014, 

Kjeldsen et al., 2017). LMRDs are constructed by plotting the L-kurtosis (τ4) versus the L-

skew (τ3).  

 

Generally the assessment of the most suitable distribution is undertaken using two methods: (i) 

plotting the mean of the LMs of the region, and (ii) plotting a best fit line and comparing the 

result to the theoretical distributions for a set of standard three-parameter distributions (GLO, 

GEV, GNO, LP3). Kjeldsen and Prosdocimi (2015) proposed a modification to the use of 

LMRD, referred to as KP test hereafter, by applying the assumption that τ3 and τ4 share a 

bivariate normal relationship which allows for the derivation of a 90% confidence ellipse. The 

confidence ellipse identifies the suitable distributions for the estimated LMs, and a selection is 

then undertaken through the estimation of the Mahalanobis distance for each distribution.  
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 Goodness-of-fit tests 

 

The purpose of a GoF test is to identify, in a statistical manner, the most suitable distribution 

for the data being fitted. Zeng et al. (2015) reviewed the Chi-squared (CS) (Pearson, 1900), 

Kolmogorov-Smirnov (KS) (Massey, 1951) and Anderson-Darling (AD) (Anderson and 

Darling, 1952) GoF tests for use in FFA considering the PE3, Uniform, GNO and Weibull 

distributions. Zeng et al. (2015) concluded that most powerful GoF tests for the PE3, GNO and 

Weibull are the AD, KS and AD. Haddad and Rahman (2008) applied two additional GoF tests, 

Cramer von-Mises (CvM) (Cramér, 1928, von Mises, 1928) and the Filliben Correlation 

Coefficient (FCC) test (Filliben, 1975). Laio (2004) tested the power of the AD, CS, CvM, KS, 

FCC and LM based GoF tests for the GUM, WEI, GNO, GEV, GAM, LNO, and LP3 

distributions. For the GEV, GAM and GUM distributions the power of the GoF tests were 

consistently below 50%, whereas the AD and CvM had power exceeding 80% for the LP3 and 

LNO distributions. The variation in the power of the GoF tests can be attributed to the fact that 

the tests apply larger weighting to different components (tail, head or entire curve) of the 

distribution functions (Kottegoda and Rosso, 2008) and it is therefore recommended that 

multiple GoF tests be considered simultaneously. AD applies additional weighting to the tails 

of distributions, favouring the higher or lower observations, whereas CvM weights the centre 

of the distribution more heavily. Lastly KS can be considered an intermediate test between AD 

and CvM and weights the entire distribution more evenly. Sinclair et al. (1990) noted that when 

applying FFA, the upper tail of distributions are of more importance, highlighting the use of 

the 0.99 quantile, or the 1% AEP, for the design for hydraulic structures. Sinclair et al. (1990) 

therefore proposed two modifications to the AD test that place emphasis on the upper or lower 

tails of the distribution. The upper tails are of particular importance for flood estimation, 

whereas the lower tails may conversely be beneficial for the analysis of droughts. The GoF 

tests listed above are generally applied on an at-site scale, but when reviewing regional data, 

can be used to identify the distribution through identifying the percentage of sites that are 

accepted for each test (Haddad and Rahman, 2008, Ul Hassan et al., 2019). 

 

The Chi-Squared test, Eq. 3.4, is a measure of the difference between the observed (O) and the 

expected (E) frequencies of ordered observations (xi, …, xn) in a sample of size n. The KS test 

shown in Eq. 3.5 measures the GoF, in relation to a distribution with a parameter vector θ, 
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through the maximum variance between the hypothetical (F(xi, θ)) and Empirical Distribution 

Functions (Fn(x)).  

 

 Χ2 = ∑
(𝑂𝑖− 𝐸𝑖)

2

𝐸𝑖

𝑛
𝑖=1  (3.4) 

𝐾𝑆 =  𝑚𝑎𝑥𝑥|𝐹𝑛(𝑥) −  𝐹(𝑥𝑖, 𝜃)| (3.5) 

 

Alternatively, quadratic statistics, Eq. 3.6, can be utilised, from which the AD, CvM and upper 

tail modified AD test (AU), shown in Eqs. 3.7, 3.8 and 3.9 respectively, are derived (Cramér, 

1928, von Mises, 1928, Anderson and Darling, 1952). 

 

𝑄2 =  𝑛 ∫ [𝐹𝑛(𝑥) −  𝐹(𝑥𝑖 , 𝜃)]
2Ψ(𝑥)𝑑𝐹(𝑥)

𝑎𝑙𝑙 𝑥
 (3.6) 

 𝐴𝐷 =  −𝑛 − 
1

𝑛
∑ [[𝐹(𝑥𝑖, 𝜃) − 

2𝑖−1

2𝑛
] + (2𝑛 + 1 − 2𝑖)𝑙𝑛[1 −  𝐹(𝑥𝑖, 𝜃)]]

𝑛
𝑖=1  (3.7) 

𝐴𝑈 =  
𝑛

2
−  2∑ 𝐹(𝑥𝑖, 𝜃)

𝑛
𝑖=1 − ∑ [2 − 

2𝑖−1

2𝑛
] ln [1 − 𝐹(𝑥𝑖, 𝜃)]

𝑛
𝑖=1  (3.8) 

 𝐶𝑣𝑀 =  ∑ [𝐹(𝑥𝑖, 𝜃) − 
2𝑖−1

2𝑛
]
2

+ 
1

12𝑛

𝑛
𝑖=1  (3.9) 

 

where Ψ(𝑥) is a weighting function, which is 1 for CvM and [𝐹(𝑥𝑖, 𝜃)(1 −  𝐹(𝑥𝑖, 𝜃))]
−1 for 

AD.  

 

Hosking and Wallis (1993) also provide a regional GoF measure, Z, shown in Eq. 3.10. The 

test statistics Z is a measure of the difference between regional sample (𝑡4̅) and theoretical L-

kurtosis (𝜏4
𝐷), in relation to the standard deviation of theoretical L-kurtosis (σ4) estimated using 

Monte-Carlo simulations. An absolute value of less than 1.64 signifies a suitable distribution, 

and the distribution (Dist) with the lowest Z is often accepted.  

 

 𝑍𝐷𝑖𝑠𝑡 = (𝑡4̅ − 𝜏4
𝐷𝑖𝑠𝑡) 𝜎4⁄  (3.10) 

 

The test relies on the assumption that the regional values used are from a homogeneous region. 

Kjeldsen and Prosdocimi (2015) leverage the assumption that the joint distribution of the L-

skew and L-kurtosis is normally distributed to develop confidence ellipses for the selection of 

candidate distributions. In addition, the distribution that minimises the Mahalanobis distance 

(Dm), shown in Eqs. 3.11 to 3.13, is deemed to be the best fit. Kjeldsen and Prosdocimi (2015) 
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proved, through undertaking a predictive power test using Monte Carlo simulations, that the 

new method improved on the results achieved by Hosking and Wallis (1993) even where sites 

are moderately correlated.  

 

 Um = 
1

𝑛
∑ 𝑈𝑖
𝑛
𝑖=1  (3.11) 

 S = 
1

𝑛−1
∑ (𝑈𝑖 − 𝑈𝑚)
𝑛
𝑖=1 (𝑈𝑖 − 𝑈𝑚)

𝑇 (3.12) 

 Dm = √(𝑈𝑖 –  𝑈𝑚)𝑇𝑆−1(𝑈𝑖 – 𝑈𝑚) (3.13) 

 

The measure uses the relative proximity of an individual site, i, relative to the remaining sites 

by comparing the site specific LM vectors (Ui) with the regional mean matrix (Um) and the 

covariance matrix S. 

 

 Model selection criteria 

 

Laio et al. (2009) investigated the use of model selection criterion for use with FFA, which 

was also adopted by Haddad and Rahman (2011). The criterion chosen were the Akaike 

Information Criterion (AIC, Eq 3.14) (Akaike, 1974), second order AIC (AICc, Eq 3.15) 

(Sugiura, 1978), Bayesian Information Criterion (BIC, Eq 3.16) (Schwarz, 1978), and a 

modified Anderson-Darling Criterion (ADC) (Laio et al., 2009). The ADC requires distribution 

dependent coefficients to be applied, however, these parameters have only been derived for 

seven of the more commonly used hydrological distributions and has therefore not been 

included in this study. Model criterion consider relative fit of models to data, of sample size n, 

by measuring the information lost in the process of fitting through the likelihood function 

(L(ϑ)). Models (j) are penalised for the number of parameters (p) utilised, and as such a lower 

value indicates a better model fit.  

 

 𝐴𝐼𝐶𝑗 = −2𝑙𝑛 (𝐿𝑗(�̂�)) + 2𝑝𝑗 (3.14) 

𝐴𝐼𝐶𝑐𝑗 = 𝐴𝐼𝐶𝑗 + 
2𝑝𝑗

2+2𝑝𝑗

𝑛−𝑝𝑗−1
 (3.15) 

𝐵𝐼𝐶𝑗 = −2𝑙𝑛 (𝐿𝑗(�̂�)) + ln (𝑛)𝑝𝑗 (3.16) 
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The criterion is applied at an at-site level to identify the distribution that provides the best 

model fit per site. The at-site results are summarised at a regional scale by calculating the 

percentage of sites where each distribution provides the best fit, thus providing an indication 

of the regional distribution. 

 

 Predictive ability 

 

The predictive ability of the distributions was based on the “true” fit as described by Zhang et 

al. (2019) and the uncertainty associated with the distributions. Zhang et al. (2019) define the 

“true” fit of data as the Gringorton plotted AMS and used the 4% AEP for sites with record 

lengths exceeding 50 years as a test of the predictive ability. The 5% AEP was chosen for this 

study for sites having record lengths of 50 years or greater, exceeding the minimum 

requirement of two times the AEP as suggested by Robson and Reed (1999). 

 

In the application of FFA, it is generally assumed that the data being used, after pre-processing 

of the data, are free of errors. In contrast the model errors can be quantified and are represented 

by the error introduced by misrepresentation of the actual events by the fitted distribution. 

Hence it is assumed that the sample data are accurate and that the selected distributions 

introduce uncertainty into the estimates, which can be determined. Typical approaches used to 

determine the uncertainty associated with distributions include the following: (i) Analytical 

methods (e.g. Kjeldsen and Jones, 2006); (ii) Monte Carlo simulations (e.g. Silva et al., 2012); 

and (iii) Bootstrapping (e.g. Burn, 2003). 

 

Taylor approximation is an analytical method that attempts to approximate non-linear functions 

with a linear function within a set of known parameters. The performance is linked with the 

degree of non-linearity of the function in question and a critical assumption for its use it that 

the known parameters are true reflections of the population parameters.  

 

Similarly, Monte Carlo (MC) simulations assume that the parameters estimated from the 

sample are a true reflection of the population parameters. However, instead of undertaking an 

analytical approach, a resampling approach is used. MC simulations resample from a known 

distribution and generate a number of iterations of random samples with each sample 

containing the same record length as the original sample. The T% AEP runoff event is then 
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generated for each of the samples generated and the variance in relation to the original dataset 

calculated and used to estimate the confidence bands. 

 

Bootstrapping refers to a resampling method where N number of iterations are considered to 

identify the variation in estimates, whereby the confidence intervals (uncertainty) can be 

determined. To determine the variation of a T% AEP event, a synthetic record is created from 

the observed record using resampling with replacement. This process involves the random 

selection of flood events from the observed records until the synthetic record length matches 

the observed record length, and FFA of the synthetic record is performed, which is considered 

a single iteration. Bootstrapping can be undertaken in a balanced or an unbalanced approach. 

The balanced approach ensures that the mean of the overall sample set is maintained as each 

sample can only be reproduced N number of times, whereas for unbalanced bootstrapping no 

limitation is applied to the number of occurrences of any sample. When considering 5% and 

1% confidence intervals, it is recommended to use N=1 000 and N=10 000, respectively.  

 

3.4 Results 

 

Given the large number of methods available to identify the suitability of a distribution and the 

recommendations that all methods be applied, the distributions are to be tested using an 

iterative approach as indicated in Figure 3.1. The GoF tests being applied are provided in Table 

3.2. Given the fact that the graphical methods rely on the theoretical LMRD’s to determine the 

selection of the distributions, it will be used as the initial test to identify the three most suitable 

methods, after which the GoF, model fit criterion and uncertainty analyses are to be undertaken. 

The graphical approach will assess the selected distributions, based on the assumption of there 

is an overarching parent distribution that is most suitable for general use in South Africa, 

thereafter the at-site analysis will refine the selection through identifying the percentage of sites 

at which these distributions are deemed suitable. The at-site analysis will rank each of the three 

most suitable distributions based on the performance in each test. The ranks are combined to 

identify the most suitable distribution for use, with the distribution scoring the lowest total 

rankings being most preferred distribution. Prior to undertaking the testing, the National Kappa 

h value was determined for use with the KAP3 distribution. 
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Table 3.2 List of test categories and the selected methods for selection of an appropriate 

Distribution 

Test Category Methods 

Graphical KP method 

Goodness-of-fit Modified Anderson-Darling (AU), Chi Squared (CS), Cramer 

von Mises (CvM), Kolmogorov Smirnov (KS) 

Model Selection Criterion Akaike (AIC), second order Akaike (AICc), and Bayesian 

Information Criterion (BIC) 

Model Uncertainty Balanced bootstrapping 

 

Figure 3.1 Methodology flow diagram for the selection of a suitable distribution 

 

Distribution with lowest 

overall cumulative rank is 

deemed most suitable 

Perform Goodness-of-fit, Model fit criterion and 

predictive ability analyses and rank the three distributions 

based on relative performance at an at-site scale 

 

Graphical L-moment Ratio 

Diagram goodness-of-fit 

Kjeldsen and 

Prosdocimi (2015) 

Identify the three most suitable PDs at a National Scale 

 

Refine selection of most suitable distributions at site scale 
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3.4.1 National Kappa h Value Estimation 

 

Prior to undertaking the selection process, the estimation of a national KAP3 distribution h 

value was required. Figure 3.2 shows the LM diagram with the KAP h value contours, ranging 

from -1 to 1 at 0.25 intervals, and the record length weighted mean L-skew and L-kurtosis 

values. From the mean coordinates the h value was estimated to be 0.77. Having established 

the h value at a national scale, the number of distributions being assessed increased to five: (i) 

GEV, (ii) GPA, (iii) KAP3 (h = 0.77), (iv) LP3, and (v) PE3.  

 

 

Figure 3.2 LM ratio diagram for all 383 selected sites using untransformed data indicating 

the KAPPA distribution h value contours at 0.25 intervals and the record length 

weighted mean L-skew and L-kurtosis. 

 

3.4.2 Graphical methods 

 

When considering the graphical approach, all distributions considered were ranked for the 

performance at a national scale. When considering the graphical data representation using LM 

diagram, as shown in Figure 3.3, the most suitable regional distributions appear to be the LP3, 

GPA or KAP3 as the data points tend to cluster around the theoretical lines representing these 

distributions. Table 3.3 provides the geometric rank of the GEV, GPA, KAP3, LP3 and PE3 



 

33 

distributions based on the KP test (Kjeldsen and Prosdocimi, 2015). The ranked order of 

selection is the KAP3 (h = 0.77), GPA, LP3, GEV and PE3 distributions. 

 

The average LM within each DWS drainage region is shown in Figure 3.4, and it is evident 

that the regional averages are largely clustered around the GPA and KAP3 theoretical 

distributions for untransformed data, whereas the variation of the log transformed regional 

averages are grouped around an L-skew of -0.6 around the theoretical LP3. Figure 2.10 

provides the geographic locations of the DWS drainage regions for reference. 

 

Given that the KAP3, GPA and LP3 distributions are shown to be the graphical best fit 

distributions, they were further assessed at an at-site level to identify the most suitable 

distribution. 

 

 

Figure 3.3 LM ratio diagram for all 383 selected sites using untransformed (left) and log 

transformed (right) data. The record length weighted mean (red cross) and 

moving average line are indicated (solid) in relation to the GEV, GPA, GNO, 

PE3, LNO and LP3 distributions. 
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Table 3.3 Rank of distributions based on the KP test in relation to the theoretical GEV, GPA, 

KAP3 (h = 0.77), LP3 and PE3 distributions 

Distribution Rank 

KAP3 1 

GPA 2 

LP3 3 

GEV 4 

PE3 5 

 

 

Figure 3.4 LM ratio diagram indicating the position of the record length weighted mean L-

skew and L-kurtosis per DWS drainage region, represented by the relevant 

alphabetic numeral, for natural (blue) and log transformed (black) data as well as 

the record length weighted means of the entire dataset 

 

3.4.3 Goodness-of-fit 

 

The GoF tests applied include the AU, CS, CvM and KS tests. Table 3.4 contains a summary 

of the number of sites (%) that were accepted for each GoF test and distribution considered. It 

is evident from the GoF test acceptance that the distribution that is accepted most frequently is 

the LP3. However, all distributions under consideration can generally be considered suitable 

options for the use in South Africa.  
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The distinction between selection of the different the distributions varies between 1.5 and 6.1% 

when considering all sites and does not indicate the dominance of a single distribution for use. 

Even though the gap in the level of acceptance increases to 13.9% for the LP3 for sites with 

record lengths exceeding 80 years, this dataset is limited to 27 sites and indicates equates to 4 

sites. Taking into consideration the rankings for each distribution and record length category 

the LP3 is deemed to have performed best, followed by the GPA and KAP3 respectively. 

 

Table 3.4 Summary of the modified Anderson-Darling, Chi-squared, Cramer-von-Mises and 

Kolmogorof-Smirnov GoF test results for 383 sites in South Africa* 

Record Length Distribution 
GoF Test Acceptance (% of sites) 

Rank 
AU CS CvM KS Average 

All sites 

20 <= x 

(383 sites) 

GPA 83.2 78.1 92.9 97.5 87.9 2 

KAP3 84.5 77.1 91.6 97.5 87.7 3 

LP3 80.9 83.2 96.7 99 90.0 1 

20 <= x < 40 

(136 sites) 

GPA 85.6 82.9 96.6 100.0 91.3 2 

KAP3 88.4 82.9 97.3 100.0 92.2 1 

LP3 81.5 87.7 97.3 97.9 91.1 3 

40 <= x < 60 

(162 sites) 

GPA 80.2 78.4 93.2 96.3 87.0 2 

KAP3 80.9 78.4 90.7 96.9 86.7 3 

LP3 79.0 82.7 96.3 99.4 89.4 1 

60 <= x < 80 

(58 sites) 

GPA 82.8 72.4 93.1 98.3 86.7 2 

KAP3 86.2 65.5 91.4 96.6 84.9 3 

LP3 84.5 75.9 96.6 100.0 89.3 1 

80 <= x 

(27 sites) 

GPA 88.9 63.0 70.4 88.9 77.8 2 

KAP3 81.5 63.0 66.7 88.9 75.0 3 

LP3 81.5 77.8 96.3 100.0 88.9 1 

*Distribution with the highest acceptance rate is highlighted in bold 

 

3.4.4 Model selection criteria 

 

The next assessment utilised the model fit criteria: AIC, AICc and BIC, which provide 

selections based on the relative best fits by comparing the information lost in the model fitting 

procedure for each distribution. The summary in Table 3.5 show the results of the assessment 

divided into the four distinct record length categories. Throughout the analysis the KAP3 

distribution was the least favoured distribution with a selection rate for being the best PD of 

0% for all record length categories and criterion. When considering the entire dataset, the GPA 

is the most highly ranked distribution, however, only by 12%, which does not suggest that 

either of the GPA or LP3 distributions outperforms the other at a national scale. Reviewing the 
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analysis based on the record length categories, the GPA distribution is identified as the most 

selected model for all sites with record lengths less than 80 years and is marginally second 

(3.8% or one site) for sites with record lengths of 80 years or greater. The GPA and LP3 

distributions perform equally well for record lengths less than 40 years and 80 years or greater. 

The GPA is, however, more dominant in the medium record length ranges being favoured at 

up to 27.6% more sites. 

 

Table 3.5 Summary of model criterion test selections for South Africa, the distribution with 

the highest selection rate for each record length category is indicated in bold 

Record 

Length 
Distribution 

Model Fit Criteria Selection (% of sites) 
Rank 

AIC AICc BIC Average 

All sites 

20 <= x 

(383 sites) 

GPA 56.1 56.1 56.1 56.1 1 

KAP3 0 0 0 0 3 

LP3 43.9 43.9 43.9 43.9 2 

20 <= x < 40 

(136 sites) 

GPA 52.1 52.1 52.1 52.1 1 

KAP3 0 0 0 0 3 

LP3 47.9 47.9 47.9 47.9 2 

40 <= x < 60 

(162 sites) 

GPA 58 58 58 58 1 

KAP3 0 0 0 0 3 

LP3 42 42 42 42 2 

60 <= x < 80 

(58 sites) 

GPA 63.8 63.8 63.8 63.8 1 

KAP3 0 0 0 0 3 

LP3 36.2 36.2 36.2 36.2 2 

80 <= x 

(27 sites) 

GPA 48.1 48.1 48.1 48.1 2 

KAP3 0 0 0 0 3 

LP3 51.9 51.9 51.9 51.9 1 

 

An additional review ranking of the distributions for each criterion and record length category 

is shown in Table 3.6 and Figure 3.5. The ranking of distributions provides additional insight 

into the performance of the distributions, most prominently that the GPA was in all instances 

chosen as the first or second choice, whereas the LP3 and KAP3 were divided between second 

and third choice when the GPA was the first choice. Given these insights, the GPA can be 

considered the most suitable distribution followed by the LP3 and KAP3 respectively with 

regards to model selection criterion. An investigation into the relationship between catchment 

descriptors and selected distribution provided no suitable descriptor to describe the variance in 

selection.
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Table 3.6 Model criterion test selections for South Africa indicating the percentage of sites selected per rank of the distribution and record length 

category. 

Record Length Rank 
GPA LP3 KAP3 

AIC AICc BIC AIC AICc BIC AIC AICc BIC 

All Sites 

20 <= x 

(383 sites) 

1 56.1 56.1 56.1 43.9 43.9 43.9 0.0 0.0 0.0 

2 43.7 43.7 43.7 23.9 26.9 34.1 32.4 29.4 22.2 

3 0.2 0.2 0.2 32.2 29.2 22 67.6 70.6 77.8 

20 <= x < 40 

(136 Sites) 

1 52.1 52.1 52.1 47.9 47.9 47.9 0.0 0.0 0.0 

2 47.3 47.3 47.3 24.7 30.8 34.2 28.1 21.9 18.5 

3 0.7 0.7 0.7 27.4 21.2 17.8 71.9 78.1 81.5 

40 <= x < 60 

(162 Sites) 

1 58.0 58.0 58.0 42.0 42.0 42.0 0.0 0.0 0.0 

2 42.0 42.0 42.0 21.0 22.2 31.5 37.0 35.8 26.5 

3 0.0 0.0 0.0 37.0 35.8 26.5 63.0 64.2 73.5 

60 <= x < 80 

(58 Sites) 

1 63.8 63.8 63.8 36.2 36.2 36.2 0.0 0.0 0.0 

2 36.2 36.2 36.2 31.0 32.8 43.1 32.8 31.0 20.7 

3 0.0 0.0 0.0 32.8 31.0 20.7 67.2 69.0 79.3 

80 <= x 

(27 Sites) 

1 48.1 48.1 48.1 51.9 51.9 51.9 0.0 0.0 0.0 

2 51.9 51.9 51.9 22.2 22.2 29.6 25.9 25.9 18.5 

3 0.0 0.0 0.0 25.9 25.9 18.5 74.1 74.1 81.5 
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Figure 3.6 Boxplot of the estimated vs the Gringorton plotted AMS data, for the 5% AEP 

design flows, and the GPA, KAP3 (h=0.77) and the LP3 distributions for 148 sites 

with record lengths of 50 years or greater 

 

The uncertainty associated with the distributions being considered, shown in Figure 3.7, is 

based on the 90% confidence limits derived using balanced bootstrapping resampling, which 

generated 1000 replicates for each sites considered. The variance of the confidence bands is 

calculated as a percent variance of the FFA of the bootstrap replicates in relation to the FFA 

results using the original data set. The assessment of the uncertainty associated with the 

distributions was based on the 1% and 5%s AEPs. Limiting the sites for the assessment to sites 

with record lengths of 50 years or greater allows for the use of the 5% AEP as discussed above. 

In addition, when applying the “rule-of-thumb” of not extrapolating beyond two times the 

record length, an indication of the associated uncertainty can be assessed for the 1% AEP. The 

1% AEP is also of importance due to it being commonly applied in practice and being a 

requirement in regulatory documents in South Africa. 

 

Figure 3.7 shown the variation of the 90% confidence bands for the GPA, KAP3 and LP3 

distributions for various AEPs. Across the analysis it is evident that the GPA and KAP3 
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distributions perform equally well, with the KAP3 marginally outerforming the GPA for the 1 

and 0.5% AEPs. Conversely, the LP3 distribution has a much higher associated level of 

uncertainty, particularlry for AEPs less than 10%. Considering both the predictive ability and 

uncertainty analyses, although the LP3 may perform better than the GPA and KAP3 when 

estimating the “true” fit, the associated uncertainty of the distribution brings into question 

whether this perfomance will be consistent for extended data sets. When considering the 

predictive ability and uncertainty criterion, the KAP3 has the lowest level of uncertainty, and 

coupling this with the estimation of the “true” fit, is the most suitable distribution, followed by 

the GPA and the LP3 respectively. 

 

 

Figure 3.7 Variation of the 90% confidence bands presented as percentage variance of the 

balanced bootstrap confidence bands for the GPA, KAP3 (h = 0.77), and LP3 

distributions for 148 sites with record lengths of 50 years or greater. 
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3.4.6 Distribution ranking 

 

Each distribution was ranked based on the performance for each test undertaken and is shown 

in Table 3.7. The KAP3 ranks highest in two of the approaches undertaken, followed by the 

GPA and LP3 both performing best in one of the two remaining approaches. The combined 

rank however indicates that the GPA distribution is most suitable with a combined rank of 7, 

followed by the KAP3 and LP3 with combined ranks of 8 and 9 respectively. 

 

Table 3.7 Rank of distributions for the Goodness-of-fit, model fit criterion, graphical and 

uncertainty tests. The best performing distribution is highlighted in bold 

Distribution Graphical GoF 
Model Fit 

Criterion 

Predictive 

Ability 

Total 

GPA 2 2 1 2 7 

KAP3 1 3 3 1 8 

LP3 3 1 2 3 9 

 

3.5 Discussion and Conclusions 

 

The literature indicates that many distributions for FFA are available and are prescribed 

internationally. However, in South Africa, little scientifically justifiable investigation has been 

undertaken into the most suitable distributions to use for DFE. There is therefore a need for a 

detailed scientific investigation to identify the most suitable distribution for use based on South 

African peak flow data.  

 

Four separate approaches were applied at 383 locations, consisting of 296 river gauges and 87 

synthetic dam inflows, for the selection of the most suitable distributions using a combination 

of graphical methods, GoF tests, model fit criterion and model predictive ability.  

 

The graphical method was utilised at a national scale as the initial screening process to identify 

the three most suitable distributions. This approach was adopted to ensure that the distributions 

assessed stemmed from a set of potentially overarching parent distributions as opposed to 

assessing all potential distributions. LM diagrams and the KP test (Kjeldsen and Prosdocimi, 

2015), identified the KAP3 as the most suitable, followed by the GPA and LP3 distributions.  
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The GoF tests indicated that the distribution with the highest acceptance rate is the LP3. 

However, given the high acceptance rates of all of the candidate distributions, little clarity was 

provided as nearly all three candidate distributions considered were accepted at the majority of 

the sites for all tests applied (AU, CS, CvM, and KS) and for all of the record length categories 

considered.  

 

The model fit criteria (AIC, AICc, and BIC) provided further guidance on the suitability of the 

distributions. The results were assessed based on the four record length criteria and the KAP3 

distribution was not selected as the most suitable model for any of the criteria or record length 

categories. The LP3 was chosen as the most suitable distribution for sites with 80 years of 

records or more only, and the GPA was the chosen model for the remaining categories. The 

GPA performed particularly well for sites with records between 40 and 80 years, being the 

highest ranked distribution at up to 27.6% more sites than the LP3. Each distribution was also 

ranked for each criteria and record length category which gives an indication of the overall 

performance of the model. The GPA was identified as always being either first or second most 

suitable, whereas the GPA and LP3 were divided for second most suitable distribution. This 

led to the GPA being deemed as the most suitable distribution for the model selection criterion, 

followed by the LP3 and KAP3 distributions. 

 

The final consideration for distribution selection was the predictive ability, which was 

established based on two indicators: (i) the ratio of the estimated vs the Gringorton plotted 5% 

AEP, and (ii) the uncertainty of estimated values associated with the selected distributions. The 

5% AEP was utilised to adhere to the recommendations of Robson and Reed (1999). To assess 

the uncertainty of estimates the 1% AEP adopted due to the general “rule-of-thumb” applied 

in practise the quantiles should not be extrapolated beyond two times the available record 

length. Although the uncertainty is not traditionally used for the selection of a distribution, it 

has become an important consideration in hydrological modelling (Montanari et al., 2013), and 

provides an indication of the reliability of estimates. Balanced bootstrapping was used to 

determine the 90% uncertainty bands associated with each distribution for each site considered 

by generating 1000 bootstrap replicates for analysis. No clear most suitable distribution was 

identified through the “true” fit analysis, although the LP3 marginally outperformed the GPA 

and KAP3. Similarly the uncertainty analysis was not able to identify a clear favourite between 

the GPA and KAP3 distributions, however, it did indicate that the use of the LP3 results in high 
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uncertainty and was therefore ranked as the least suitable distribution based on the predictive 

ability.  

 

Based on the assessment undertaken it is thus recommended that the GPA, which is a special 

case of the KAP, is the most suitable distribution to use when applying FFA on a national scale 

in South Africa.  

 

This paper forms part of a larger project identified by the NFSP for the improvement of the 

status of design flood-based research. The project aims to develop new regional flood 

frequency models to improve on estimates made by existing models. Future work will focus 

on the identification of hydrologically similar flood producing regions and develop regional 

flood models utilising the most suitable distributions for South Africa. 
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4 FORMATION OF HYDROLOGICALLY SIMILAR POOLING 

GROUPS FOR USE IN DESIGN FLOOD ESTIMATION IN SOUTH 

AFRICA 

 

4.1 Abstract 

 

The pooling of hydrological data, through the formation of pooling groups or regions, has been 

shown to improve the reliability of design flood estimates by supplementing at-site data with 

spatial knowledge. In South Africa a number of geographic region classifications exist but have 

been developed either subjectively or through the use of limited datasets. Only three studies 

have been identified that utilised statistical verification of homogeneity and only a single study 

performed multivariate classification analysis for the formation of the pooling groups, albeit in 

a limited geographical region. Since the development of these regions, decades of additional 

data and new approaches to regionalisation have become available to validate and refine the 

existing regions. In this study both clustering and the RoI approaches are applied to data from 

383 flow gauging stations and were able to identify 42 statistically relatively homogeneous 

pooling groups within South Africa for use in DFE.  

 

4.2 Introduction 

 

The design of hydraulic structures and water resources management require the determination 

of the anticipated flow rates for a predetermined AEP. To this end practitioners often rely on 

the use of statistical analysis of at-site data, however, short record lengths increase the 

uncertainty of estimates. At-site statistical analysis is also limited to the site in question and 

transferring of the analysis to ungauged sites is not simple to do. 

 

The use of RFFA addresses the transfer of knowledge from gauged sites to ungauged sites, thus 

using spatial knowledge to supplement temporal knowledge. The pooling of knowledge 

between sites has been shown to improve the confidence of estimates, through the formation 

of adequately similar pooling groups (Burn, 1988, Blöschl et al., 2013). It is, therefore, 

imperative that the method selected for the identification of suitable donor sites is robust. When 

performing regionalisation, it is necessary to determine what information is best transferred, 

how to transfer the information and what catchments are used to derive the information. The 
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selection of catchments to use is generally based on spatial proximity or hydrological 

similarity, which are often based on catchment descriptors (e.g. catchment size, land use, 

geology, elevation, soil characteristics as well as climate variables such as MAP as surrogates 

for hydrological response (Merz and Blöschl, 2005).  

 

Contiguous fixed region, non-contiguous fixed region, and hydrological neighbourhood type 

are approaches used for regionalisation (Gado and Nguyen, 2016). Geographic locations and/or 

administrative and political boundaries have traditionally been used for regionalisation and 

more recent techniques include cluster analysis (e.g. Tasker, 1982), discriminant analysis (e.g. 

Wiltshire, 1986b) and discordancy measures (e.g. Hosking and Wallis, 1993), all of which 

require some subjectivity in region formation and are dependent on the similarity measures and 

classification techniques employed (Ilorme and Griffis, 2013, Gado and Nguyen, 2016). 

Hydrological homogeneity is generally determined by statistical homogeneity (Ilorme and 

Griffis, 2013). In order to overcome the subjectivity involved, Ilorme and Griffis (2013) 

introduced a new statistical metric to identify physically discordant sites and a new 

methodology to identify the physical attributes that are the most indicative of extreme 

hydrologic responses. Sites which were both hydrologically discordant, as determined by the 

Hosking and Wallis (1993) H-test, and physically discordant as determined using principal 

component analysis performed on all available physical variables, were excluded from a 

region. A combination of cluster analyses, principal component analyses, canonical correlation 

analyses and multiple discriminant analyses applied to flood statistics and physical variables 

were used as an intermediary step to identify the most relevant physical variables to use in a 

cluster analysis for the regionalisation process (Ilorme and Griffis, 2013). When this approach 

was compared to physically-based regionalisation procedures typically employed in practice, 

it resulted in more homogeneous regions and more efficient quantile estimation at ungauged 

sites and also enabled the flood regime and estimated quantiles to be inferred at sites outside 

the extent of the area used for model development (Ilorme and Griffis, 2013). 

 

Merz and Blöschl (2005) evaluated the predictive performance of various flood regionalisation 

methods in 575 ungauged catchments in Austria and found that spatial proximity is a 

significantly better predictor of regional flood frequencies than catchment attributes and a 

combination of spatial proximity and catchment attributes yielded the best predictive 

performance. When comparing a regression-based approach, an approach based on physical 

similarity and a spatial proximity approach to regionalisation, it was found that the spatial 



 

46 

proximity offers the best solution for regionalisation (Oudin et al., 2008), confirming the 

findings by Merz and Blöschl (2005). Additionally Gado and Nguyen (2016) identified that 

generally non-contiguous fixed region, and hydrologic neighbourhood type regionalisation 

approaches provide more accurate flood estimation than contiguous fixed region approaches. 

 

From a review of the literature in regionalisation in modelling, Razavi and Coulibaly (2013) 

conclude that variability in catchment physical attributes and climatic variability result in 

different performances for different regionalisation methods. Razavi and Coulibaly (2013) also 

confirmed that generally spatial proximity and physical similarity have shown satisfactory 

performance in arid to warm temperate climate (e.g. Australia) and in cold and snowy regions 

(e.g. Canada), while spatial and regression-based methods have performed better in warm 

temperate regions (e.g. most European countries). The performance of regionalisation using 

three regionalisation approaches was assessed at 57 catchments in Québec, Canada and the 

results indicate that flood quantiles estimated using a scaling approach were the most accurate 

and robust (Gado and Nguyen, 2016). 

 

In South Africa there have been eight studies undertaken, which focus on DFE and which 

developed pooling groups. Five of the studies published spatially defined regions shown in 

Figure 4.1. The most prominent of the studies, and the only widely adopted region definitions, 

are the veld type zones (HRU, 1972), K-regions (Kovács, 1988) and the SDF regions 

(Alexander, 2002a). HRU (1972) and Kovács (1988) performed hydrological analysis on 

available data sets and derived dimensionless 1-h unit hydrographs and Franco-Rodier K 

values, respectively. These parameters were then utilised in conjunction with physiographical 

maps to manually delineate homogeneous flood regions.  
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Figure 4.1 National homogeneous region definitions for South Africa as developed by HRU (1972), Kovács (1988), Mkhandi et al. (2000), 

Alexander (2002a), and Haile (2011) 
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The regions defined as part of the JPV method (Görgens, 2007a) were formed through grouping 

of the veld type zones into three groups, similarly grouping was undertaken for the K-regions 

into high, middle and low K-regions as a separate regional definition. Meigh et al. (1997), 

Mkhandi et al. (2000), and Haile (2011) relied on geographic and climatological parameters 

for the delineation of their regions, with Haile (2011) utilising the regions defined by Mkhandi 

et al. (2000) as a basis. Meigh et al. (1997) manually assessed the frequency curves of the sites 

considered and identified two pooling groups that are divided by a MAP of 1250 mm, and notes 

that additional work is required to improve the MAF flood model developed. Kjeldsen et al. 

(2001) performed clustering in the KZN province and successfully identified two homogeneous 

clusters using catchment descriptors and recommended further investigation into suitable 

regionalisation schemes and descriptors.  

 

From the above, no consistency is evident between studies with regards to the number of 

regions that South Africa is divided into with the number of regions varying between two 

(Meigh et al., 1997) and 29 (Alexander, 2002a), with a number of studies recommending that 

the number of regions be increased to accommodate for the hydrological diversity of South 

Africa (Van Bladeren, 2005, Gericke, 2010, Smithers, 2012, Van Dijk et al., 2013). In addition, 

Nathanael et al. (2018) assessed the performance of the methods developed by Meigh et al. 

(1997), Mkhandi et al. (2000), Görgens (2007a), and Haile (2011) and found that the methods 

only performed adequately in approximately 57 % of catchments assessed. The methods used 

for formation of the pooling groups are also largely subjective, which has led to 

recommendations of refinement of the regions by the NFSP (Smithers et al., 2014). 

 

Conventional regionalisation techniques form groups of fixed pooling groups or regions that 

only have an interdependence with the catchments within their respective regions (Burn, 1990). 

However, Burn and Goel (2000) investigated the use of overlapping fixed regions in areas with 

limited hydrological data availability with promising results. From a literature review on 

regionalisation, Ridolfi et al. (2016) identified the fixed region and RoI as the most widespread 

approaches to regionalisation. However, there is no clear consensus on the best method of 

regionalisation in hydrology (Blöschl et al., 2013). Similarly, both Oudin et al. (2008) and He 

et al. (2011) concluded that no single method was the best solution to regionalisation, but 

studies have shown the need to improve both the understanding and quantification of catchment 

hydrological responses (He et al., 2011).  
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Rahman et al. (2012) noted that the formation of regions can be performed on both geographic 

or attribute space proximity, indicating that geographic proximity may not equate to 

hydrological similarity. When considering regionalisation using the attribute space approach, 

the regional placement of an ungauged catchment may be difficult; however, the catchment 

can still be placed in a regional grouping based on the attribute space locality (Rahman et al., 

2012). This was also identified by Dalrymple (1960) who highlights that within a single state 

in the USA, there may be a number of homogeneous flood producing regions. However, these 

regions may be grouped across states and could potentially lead to pockets of homogeneous 

regions spread across a large area. Non-contiguous regionalisation has also been adopted in the 

UK (Robson and Reed, 1999, Kjeldsen et al., 2008b) and data rich regions of Australia 

(Rahman et al., 2019). In data sparse regions of Australia contiguous fixed region approaches 

have been shown to be the preferred method (Rahman et al., 2019). 

 

This paper describes the application of both the RoI and Clustering multi-variate 

regionalisation approached in South Africa, with the aim to develop statistically homogeneous 

flood producing regions. The applicability of the methods across the South Africa is discussed 

and recommendations are made based on a new regionalisation for DFE within South Africa. 

 

4.3 Methodology 

 

The formation of hydrologically similar pooling groups requires a variety of preliminary 

assumptions and decisions to be made to take into consideration the measure of similarity, what 

similarity will be based on, anticipated grouping size or requirements, as well as what metric 

will be used to verify the validity of the pooling groups. The final consideration is the grouping 

scheme or multivariate classification technique to be utilised. 

 

4.3.1 Similarity measure 

 

To form pooling groups an indication of the similarity between sites is required. To measure 

similarity between sites the Euclidian distance (Djk) was used, with the aim being to minimise 

the combined distance between p number of catchment descriptors (Ci) at different sites (j and 

k), be it geographic or descriptor related. The Euclidian distance is calculated using Eq. 4.1. 
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 𝐷𝑗𝑘 = √∑ (𝐶𝑗
𝑖 − 𝐶𝑘

𝑖)
2𝑝

𝑖=1  (4.1) 

 

The Euclidian distance is used to provide an indication of the catchment similarity or 

dissimilarity on a multi-dimensional scale and relies on the catchment descriptors to define 

similarity. The catchment descriptors used are detailed in the following section.  

 

4.3.2 Catchments and descriptors 

 

The study utilised 383 sites, which are divided into 296 river gauges and 87 synthetic dam 

inflow records as shown in Figure 4.2. Each site has an associated set of catchment descriptors 

for use in the regionalisation process. 

 

Figure 4.2 Map indicating the DWS gauging stations (blue) and the synthetic dam stations 

(orange) selected for use in study 

 

Various catchment descriptors have been used for the formation of pooling groups in the 

literature, but it is important to note that the descriptive statistics of the AMS were excluded 

from the regionalisation to ensure that the homogeneity testing and pooling group formation 

remain independent. The catchment descriptors utilised in the formation of the pooling groups 
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is shown in Table 4.1. All possible combinations of catchment descriptors were investigated 

and the combination that generated the largest number of relatively homogeneous regions 

without manual intervention was adopted for further investigation. 

 

Table 4.1 Catchment descriptors selected for the formation of pooling groups 

Descriptor Unit 
Range 

Source 
Min Max 

Outlet latitude Decimal degrees -34.36 -22.63  (DWS, 2011) 

Outlet longitude Decimal degrees 18.69 32.18 (DWS, 2011) 

Outlet elevation masl 11.00 1969.00 (NASA-JPL, 2013) 

A km2 0.26 361994.80 DEM derived 

Mean Cro Percent 4.00 97.00 (Schulze, 2011) 

Areal mean SCS soil 

classification 
Unitless 0 7 

(Schulze and 

Schütte, 2020) 

MAP mm 60.00 3312.00 
(Lynch, 2004, de 

Groen et al., 2015) 

10-year design 

rainfall intensity  
mm/hr 0.55 148.00 

(Smithers and 

Schulze, 2003) 100 vs 2-year design 

rainfall depth ratio  
Unitless 2.06 4.50 

Dc Decimal degrees 0.03 6.84 DEM Derived 

Catchment Slope m/m 0.0004 0.26 DEM Derived 

 

Given that the descriptors utilised for the study vary in order of magnitude, normalisation (xn) 

was undertaken to reduce the bias towards a single descriptor. The normalisation adopted and 

shown in Eq. 4.2 ensured that all parameters at site i (xi) were within the range of 0 – 1 by 

scaling them within the maximum and minimum range of each parameter (x).  

 

 xn = 
𝑥𝑖−min (𝑥)

max(𝑥)−min(𝑥)
 (4.2) 

 

Merz and Blöschl (2005) found that spatial proximity is the most significant predictor of 

regional flood frequencies. Hence, the location parameters (latitude and longitude) were double 

weighted in comparison with the remaining catchment descriptors. 
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4.3.3 Selection of the number of pooling groups 

 

Selection of the number of pooling groups is often an issue that researchers are faced with when 

performing RFFA, in particular when using more than three catchment descriptors for 

regionalisation. This is attributed to the fact that it is not possible to visualise data beyond three 

dimensions. One approach for the selection of a suitable number of regions is the use of 

inertia/elbow plots, attributed to Thorndike (1953). Inertia plots compare the within-cluster 

sum-of-squares with an increasing number of regions. The plots tend to show a significant 

decrease in inertia with an initial increase in groups, but the trend decreases as the number of 

groups increases, generating plots that resemble elbow joints. The elbow point in the plots 

generally indicate an optimal number of pooling groups as increasing the pooling groups 

beyond this point provides little reduction in the inertia. 

 

Further to the use of inertia plots, dimensionality reduction techniques are often utilised to 

reduce the multi-dimensional nature of the descriptor space into a two- or three-dimensional 

space which allows for the visual inspection of the data to define groupings. Additionally, the 

reduced components can be utilised for the identification of regions. Principal Component 

Analysis (PCA) (Pearson, 1901) is considered as a traditional dimensionality reduction 

technique. PCA is a linear reduction technique that aims to visually separate dissimilar data 

and maintain the global structure of the data but is highly affected by outliers in the data.  

 

More recent advancements in dimensionality reduction techniques include T-distributed 

Stochastic Neighbour Embedding (TSNE) (van der Maaten and Hinton, 2008) and Uniform 

Manifold Approximation and Projection (UMAP) (McInnes et al., 2018). These methods are 

non-linear techniques that preserve the local structures within the data through considering the 

neighbourhood around the points. McInnes et al. (2018) compared the TSNE, UMAP and PCA 

techniques for the identification of clusters in four multi-dimensional datasets and found that 

UMAP and TSNE outperformed PCA for the identification of individual data clustering, with 

UMAP outperforming TSNE for preserving the global structure of the data. The importance of 

these findings depends on the intended use of the reduced dimension components. The loss of 

the global structure by TSNE lends itself more to a pure visualisation technique, as opposed to 

when the global structure is maintained, as is the case with UMAP, allowing the components 

to be more effectively used for further analysis.  
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When selecting the number of pooling groups a balance between the number of stations in a 

pooling group must be found, as identified by Hosking and Wallis (1997), as groups that are 

too large may bias the data set, whereas too small a group, may add little benefit over at-site 

FFA. Robson and Reed (1999) recommend as a rule of thumb that the record length of the 

donor sites be five times the required AEP being estimated, i.e. a 1:20 year (5% AEP) flood 

estimate requires a donor set that has a combined record length of at least 100 years. This is 

referred to as the 5T rule and, if it is not possible to achieve a data set of five times the return 

period, then a minimum of two times (2T) is recommended. 

 

For this study the elbow plot and dimensionality reduction techniques were utilised for the 

definition of the Super Regions. The size of the smaller pooling groups was motivated by the 

5T rule (Robson and Reed, 1999), however, the lower recommended value of 2T was enforced 

when refinement was required, with emphasis placed on the 1% AEP. This ensures that each 

group has a combined minimum record length of 200 years, fulfilling the 2T requirement for 

the 1% AEP.  

 

4.3.4 Homogeneity testing 

 

Homogeneity testing refers to the calculation of test statistics to validate the assumption of 

homogeneity for a grouping of donor catchments in a pooling group. Hosking and Wallis 

(1993) provide test statistics that may be used during homogeneity testing, namely H and LM 

Discordance (Di). The H statistics are derived using LMs (λr) and LM ratios (τr), of order r and 

the estimation procedures are detailed in Eqs 4.3 – 4.5 using an observation set X of length n, 

with an expected value E(X). 

 

 𝜆𝑟 = 𝑟
−1  ∑ (−1)𝑗 (𝑟−1

𝑗
)𝐸(𝑋𝑟−𝑗:𝑟)

𝑟−1
𝑗=0  (4.3) 

  𝜏𝑟 = 
𝜆𝑟

𝜆2
, 𝑟 = 3, 4, … (4.4) 

  𝜏1 = 
𝜆2

𝜆1
 (4.5) 

 

H calculated using Eqs. 4.6 and 4.7, uses Monte Carlo simulations to create simulated 

homogeneous regions based on the Kappa distribution with regional record length weighted 
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averaged LMs (𝜏�̅� ), which Hosking and Wallis (1997) use to emulate all distributions. H 

compares the observed weighted standard deviation (V) of the at-site (i) LM coefficient of 

variations (L-CV) (𝜏1
𝑖 ) with the mean (𝜇𝑉) and standard deviation (𝜎𝑉) of the L-CV of the 

simulated homogeneous regions.  

 

 V = 
∑ 𝑛𝑖(𝜏1

𝑖  − �̅�1)
2

𝑘

𝑖=1

∑ 𝑛𝑖
𝑘
𝑖=1

 (4.6) 

 H = 
𝑉 − 𝜇𝑉

𝜎𝑉
 (4.7) 

 

If the value of H is less than one, a region is considered to be homogeneous (Hosking and 

Wallis, 1993). Hosking and Wallis (1993) also classified a value between one and two as 

possibly homogeneous and a value in excess of two, is considered possibly heterogeneous, 

however, Guse et al. (2010) applied less stringent homogeneity definitions. Guse et al. (2010) 

defined four categories: (i) strong homogeneity (H < 1), (ii) possibly homogeneous (1 < H < 

2), (iii) slightly heterogeneous (2 < H < 4), and (iv) strong heterogeneity (H > 4). Guse et al. 

(2010) assessed the deterioration of the performance of probabilistic regional envelope curves 

when varying the homogeneity level of acceptance. The H values of 1, 2, and 4 were chosen 

as the acceptable upper bounds and, based on comparing the mean values of the Mean Absolute 

Relative Error (MARE) and the standard deviation of absolute relative error, an increase in the 

H value led to an increase of the MARE from 0.54 to 1.12. Based on the results from Guse et 

al. (2010), Ilorme and Griffis (2013) adopted an H value of 4 as an indication of a pooling 

group that, although having heterogeneity present, still improves on at-site estimates. Rahman 

et al. (2019) notes that in several attempts have been made at defining potentially homogeneous 

regions in Australia with little success and have therefore not enforced the requirement in the 

model development. Similarly, in the UK homogeneity is not enforced as a requirement in the 

formation of pooling groups (Robson and Reed, 1999). 

 

The H statistic, however, does not provide insight into the homogeneity of individual sites 

within the proposed region. Therefore, Hosking and Wallis (1997) developed a discordancy 

measure, shown in Eqs. 4.8 - 4.10, as a means to screen the selected sites. Considering a group 

of n sites, the discordancy measure (Di) provides a parametric measure of relative proximity of 

an individual site, i, relative to the remaining sites by comparing the site specific LM vectors 
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(Ui) with the regional mean matrix (Um) and the covariance matrix S. A site with a Di in excess 

of three is considered to be discordant. 

 

 Di = 
1

3
 (Ui – Um)TS-1(Ui – Um) (4.8) 

 Um = 
1

𝑛
∑ 𝑈𝑖
𝑛
𝑖=1  (4.9) 

 S = 
1

𝑛−1
∑ (𝑈𝑖 − 𝑈𝑚)
𝑛
𝑖=1 (𝑈𝑖 − 𝑈𝑚)

𝑇 (4.10) 

 

Kachroo et al. (2000) described a regional “graphical” homogeneity testing methodology used 

by Mkhandi et al. (2000) which, similar to the H statistics, relies on synthetically generated 

regions to test against. The simulated regions used by Kachroo et al. (2000), however, utilised 

the selected distributions rather than only the Kappa distribution. The “graphical” method 

identifies whether the regional t3 falls within the simulated maximum and minimum simulated 

values, and an additional more stringent check is to identify whether the historical data lie 

within the approximate 95% bounds, which are estimated using the standard deviation. 

Kachroo et al. (2000) compared the proposed approach to that of Hosking and Wallis (1997) 

for twelve regions identified in Tanzania and found that the stringent “graphical” approach 

provided similar results. 

 

Viglione et al. (2007) compared some of the common homogeneity tests for RFFA, including 

H, the Bootstrap Anderson Darling (BAD) test (Scholz and Stephens, 1987) and the Durbin 

and Knott test (Durbin and Knott, 1972). It was suggested that the homogeneity testing be 

performed based on the location of a site on the LM t3 versus t4 plot. Where the t3
R value is less 

than 0.23, the H measure is to be used for homogeneity testing, however, if t3
R is larger than 

0.23, the BAD test is to be used. The H measure was also noted for its performance and its 

extensive use in hydrology. 

 

In this study, the Hosking and Wallis (1993) H test statistic (Eq. 4.7) was used in conjunction 

with the discordancy measure D for homogeneity testing. Although the H measure defined by 

Hosking and Wallis (1993) considers a region to be homogeneous if the value is less than one, 

it is considered relatively homogeneous with an H value of between one and two, and relatively 

homogeneous regions are anticipated to provide more accurate DFE than single site FFA. 

Hence, H values less than 2 were deemed suitable for application in this study. 
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4.3.5 Classification of pooling groups 

 

The most eminent regionalisation schemes applied in the literature are the RoI and clustering-

based methods, or a combination of these, for the identification of pooling groups. Each method 

has a unique set of benefits, e.g. the RoI method is often used in data rich regions, whereas 

clustering, is often utilised in data poor regions. It is therefore anticipated that a combination 

of these methods could be a best suited solution for South Africa. 

 

 Cluster analysis 

 

Cluster analysis does not require the restriction of contiguous regions, and both Hosking and 

Wallis (1997) and Blöschl et al. (2013) regard it as the most practical method of forming 

pooling groups. Cluster analysis is used to group catchments that have similar characteristics 

and hence is performed in the attribute space. Each cluster will therefore contain catchments 

with similar characteristics, which emphasises the importance of the selection of catchment 

descriptors and their respective weighting. Cluster analysis aims to minimise the total Euclidian 

distance for the entire study by ensuring that the Euclidian distance within each defined cluster 

is minimised. The method can thus be seen as a fixed region approach, which may be non-

contiguous. 

 

Clustering aims to group catchments with similar hydrological responses into clusters. Two 

commonly used approaches are hierarchical (Agglomerative or divisive) and k-means 

clustering, both of which require the selection of an appropriate number of clusters (k). 

Agglomerative hierarchical clustering initially assumes that each station being considered is its 

own cluster, after which clusters are grouped by Euclidian distance until only a single overall 

cluster remains, while divisive clustering performs this process in reverse order. Due to the 

Euclidian distances remaining constant between sites, the process is easily reproducible.  

 

Alternatively, k-means clustering requires the definition of the number of clusters prior to 

undertaking the division into a set of k disjoint clusters (Cl), the initial cluster centroids are 

randomly generated and iteratively refined until no further reduction in the overall within-

cluster sum-of-squares, also known as the inertia, is achieved. Each cluster can be described 
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with a cluster centroid, which is equivalent of the mean location (µ) of the stations in Euclidian 

space. The inertia minimisation function for a group of n stations (s) is shown in Eq 4.11.  

 

 ∑ min
𝜇 ∈𝐶𝑙

(‖𝑠𝑖 −  𝜇‖
2)𝑘

𝑖=0  (4.11) 

 

The random nature of the generation of the initial centroids when applying k-means can cause 

varied results between multiple analyses of the same data set. It is therefore widespread practice 

to use clusters defined through hierarchical clustering as an initial estimate of the centroids, 

followed by refining the clusters through k-means clustering, making the process reproducible. 

 

Hosking and Wallis (1997) noted that the results from the clustering analysis should not be 

considered final and that subjective adjustments may improve the homogeneity of the identified 

clusters, and listed potential subjective adjustments that can be made. Wiltshire (1986a) used 

an iterative relocation algorithm to adjust the clusters, which iteratively increases or reduces 

the number of clusters and adjusts the included stations to achieve the lowest total Euclidian 

distance. Alternatively, Smithers (1998) and Smithers and Schulze (2003) used a more 

subjective approach to refine extreme rainfall clusters and Kjeldsen et al. (2002) recommends 

further investigation into the use of clustering for the formation of homogeneous regions in 

South Africa. 

 

The clustering efficiency was tested by performing the clustering multiple times to assess the 

impact of the selected catchment descriptors and the methodology is outlined in Figure 4.3. 

 

 Region of influence and Super Regions 

 

Burn (1990) deviated from conventional fixed regions methods and details the RoI approach 

which produces a unique region for each catchment or station that is being assessed. The 

development of the RoI approach has also been attributed to Acreman (1987) and Acreman 

and Wiltshire (1987). Similar to clustering, the RoI approach uses a similarity metric, for the 

definition of pooling groups or regions. The RoI, however, forms a unique region for each site 

investigated based on the similarity between the site in question and each of the donor sites 

available.  
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Burn (1990) identifies the need that each identified region requires a threshold distance (THL), 

which provides an upper bound allowable Euclidian distance to be accepted. Burn (1990) 

highlighted the importance of selecting an appropriate THL as it affects the number, size, and 

homogeneity of the proposed regions. Considering that the donor sites will not all be equally 

close in Euclidian measure to the site being considered, a weighting factor between sites j and 

k (WFjk) is proposed by Burn (1990) which considers a Djk based weighting, as shown in 

Equation 4.12. 

 

𝑊𝐹𝑗𝑘 = 1 − (
𝐷𝑗𝑘

𝑇𝐻𝐿
)
𝑛

 (4.12) 

 

The value of WFjk can thus vary between zero and one. The n value can be used to control the 

rate of decreased influence based on the distance measure. Eng et al. (2005) investigated the 

use of an alternative approach whereby the number of closest stations was predetermined 

which, in some instances, allows for stations of a distance in excess of the initial THL to form 

part of the region and found that the simple count based cut off provided optimal results. Zrinji 

and Burn (1996) provide a revised RoI approach, combining it with the Hierarchical approach 

which uses a number of RoIs per catchment being investigated, depending on the variable being 

estimated. Haddad et al. (2015) compared the RoI approach to fixed region approaches in 

Tasmania and identified that the RoI methods generally presented improved results over the 

fixed region approaches. The methodology adopted by Haddad et al. (2015) is detailed by Reis 

et al. (2003) and Haddad et al. (2012). 

 

Noteworthy studies that use the RoI approach for the formation of homogeneous regions 

include the development of the UK Flood Estimation Handbook (FEH) (Robson and Reed, 

1999, Kjeldsen et al., 2008b) and the ARR Regional Flood Frequency Estimation (RFFE) in 

Australia (Rahman et al., 2015a), both of which have been adopted in national DFE guidelines. 

 

A more recent development introduces the concept of super regions (Mostofi Zadeh and Burn, 

2019), which applies a hierarchical regionalisation methodology. The approach is a more 

formalised approach to the method used by Eng et al. (2005), who applied the RoI to a 

geographic subregion, rather than a classified grouping. As an initial step clustering is 

performed, to minimise the hydrological variability, within which secondary regionalisation is 

undertaken using RoI. Mostofi Zadeh and Burn (2019) describe the super region approach as a 



 

60 

hierarchical regionalisation aimed at improving the homogeneity of the secondary 

regionalisation that is undertaken. The super region approach proved successful in Canada, 

where the percentage of heterogeneous pooling groups per super region was less than 7% for 

the worst performing super region.  

 

An iterative process of ensuring all parameter combinations were assessed using the H 

measure, was also applied. The RoI approach proposed by Burn (1990) and used by the UK 

FEH (1999), was applied, and allows for the determination of regions based on the required 

record length, using the 5T rule. The RoI process is outlined in a flow diagram shown in Figure 

4.4. 

 

Given the success of the use of super region in Canada (Mostofi Zadeh and Burn, 2019), a 

similar approach was investigated in this study using a combination of clustering and RoI. The 

applied methodology is outlined in Figure 4.5. Initially the available streamflow gauges were 

divided into larger clusters, based on the catchment descriptors, to form the initial super 

regions. The number of super regions was selected based on the use of inertia/elbow plots, 

attributed to Thorndike (1953), in conjunction with T-distributed Stochastic Neighbour 

Embedding (TSNE) (van der Maaten and Hinton, 2008) and Uniform manifold approximation 

and projection (UMAP) (McInnes et al., 2018) dimensionality reduction and geographic 

assessment. After suitable super regions were identified, the RoI approach in Figure 4.4 was 

applied to each super region to identify the descriptor set which identifies the largest percentage 

of homogeneous regions within the super region. 
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Figure 4.4 Region of Influence methodology flow diagram 

 

 

Figure 4.5 Super region methodology flow diagram 

 

Perform Region of Influence 

 Maintaining minimum record 

length of 500 years 

 

Accept methodology and 

continue onto comparison 

of regionalisation methods 

Identify descriptor set that identifies the 

largest percentage of homogeneous regions 

Assess homogeneity of regions 

formed 

 

Repeated for each descriptor combination and site 

Perform K-means clustering 

 

Perform region of influence methodology 

(Figure 4.4) on each super region and continue 

onto comparison of regionalisation methods 

Generate inertia diagrams 

Repeated for each descriptor combination and number of clusters. 

Generate UMAP and TSNE graphs  

Review diagrams and graphs to select number of super regions 

Generate spatial maps of super regions and refine if necessary, based on 

spatial and dimensionality reduction results 
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4.4 Results 

 

In this section the results of the homogeneity testing of the DWS primary drainage regions is 

presented and Clustering, RoI and super region approaches are applied to assess the ability of 

the methods to define homogeneous pooling groups in South Africa.  

 

4.4.1 Homogeneity of the DWS primary drainage regions 

 

As an initial preliminary assessment and staying true to historical approaches of utilising 

physiographic and/or administrative boundary definitions as homogeneous regions, the DWS 

Primary Drainage Regions were assessed for homogeneity. The regions divide South Africa 

into 20 major catchments, as shown in Figure 4.6. Table 4.2 indicates the homogeneity of all 

stations and stations per regions prior to and after removal of discordant sites. However, it is 

still evident that even with the removal of the discordant stations the potentially homogeneous 

(H < 2) requirement is generally not met, both national and for 15 of the 20 regions. The number 

of discordant sites removed was determined by iteration after each exclusion, which required 

the further exclusion of additional sites. 

 

 

Figure 4.6 DWS primary drainage regions in relation to the primary rivers of South Africa 
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Euclidian distance, or inertia, with an increasing number of clusters. It is evident that the elbow 

point in the graph is at five clusters given the sharp decline in the slope up to this point and was 

used as an initial selection for the number of super regions.  

 

 

Figure 4.7 Inertia plot of the chosen super region descriptor set indicating the chosen number 

of clusters (five) with the black line using Latitude, Longitude, Catchment Area, 

MAP, Dc, Catchment Slope (10-85) and 24-hour 10% AEP design rainfall 

 

Following the identification of the number of clusters, further refinement was undertaken 

through the use of the TSNE, UMAP unitless two dimensional components and spatial 

variation, shown in Figure 4.8 and Figure 4.9. From the dimensionality reduction and spatial 

plots, adjustments were made to the regions based on the TSNE results. Refinement of the 

TSNE clusters improved the spatial variation, however, the UMAP results still indicated 

potential improvements through the addition of an additional region. The inclusion of an 

additional region and improvement of the UMAP results also defined acceptable TSNE results, 

however, the spatial variation in DWS drainage regions V, W, and X deteriorated with 

overlapping super regions. Given the TSNE, elbow plot and spatial variation, the five super 

regions were adopted for use as opposed to the six regions defined by UMAP as the spatial 

overlap may lead to spatial inconsistencies of estimates. 
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Table 4.3 contains a summary of the characteristics of the five identified Super Regions. Super 

Region 1, located on the eastern seaboard of South Africa consists of 74 sites and is 

characterised by catchment altitudes ranging from nearly sea level to the highest catchment 

altitudes in the study. The catchments in the region are limited to a maximum A of 6 905 km2.  

 

Table 4.3 Catchment characteristics of the five identified super regions 

Parameter Super Region Minimum Median Maximum 

Outlet 

Elevation 

(masl) 

1 35 1074 1969 

2 44 671 1584 

3 732 1247 1625 

4 142 846 1626 

5 11 349 1180 

A (km2) 

1 0.68 640.15 6905.58 

2 0.61 1292.11 16812.53 

3 4.63 1126.58 361994.77 

4 5.59 263.44 13373.77 

5 0.56 52.28 43413.86 

MAP (mm) 

1 565 899 1107 

2 232 468 1206 

3 423 637 737 

4 477 842 1457 

5 173 573 1793 

Cro  

(%) 

1 0.19 0.50 0.72 

2 0.44 0.56 0.72 

3 0.27 0.43 0.64 

4 0.22 0.45 0.65 

5 0.37 0.74 0.94 

Catchment 

Slope 

(m/m) 

1 0.0019 0.0085 0.0702 

2 0.0022 0.0055 0.1292 

3 0.0004 0.0036 0.0460 

4 0.0015 0.0122 0.1298 

5 0.0012 0.0372 0.2642 

 



 

66 

 

 

 

Figure 4.8 Verification of super region selection indicating the original (left), refined 5 regions (middle) and refined 6 regions (right) using the 

unitless two dimensional components of the TSNE (top) and UMAP (bottom) dimensionality reduction techniques 
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Figure 4.9 Geographic validation of super region selection indicating the original (top-left), refined 5 regions (top-right) and refined 6 regions (bottom) 



 

68 

As shown in Table 4.4 none of the super regions identified are considered relatively 

homogeneous, however the regions will be subjected to further regionalisation through the use 

of RoI. Super Region 2 represents the portion of the country where the catchment runoff 

variation is the least throughout the country. The 107 sites in the interior section of South Africa 

encompass Region 3 and have the mildest slopes, with a maximum slope of 0.046 m/m. Region 

3 is also the driest of the super regions with a maximum MAP of 737 mm. Region 5 is 

predominantly located in the Western Cape province, where the mountainous catchments lead 

to the steepest catchments located within this region. Similarly, the catchments also present the 

highest runoff percentages coupled with the highest MAP. 

 

Table 4.4 Homogeneity of defined super regions 

Super Region 1 2 3 4 5 

H 27.0 11.5 11.5 7.9 15.2 

 

4.4.3 Classification of pooling groups 

 

Classification of the pooling groups was undertaken using both RoI and Clustering approaches 

and both schemes were investigated due to the variation in the flow measuring network 

densities and data availability. As identified in the literature, clustering is often the preferred 

approach in data sparse regions as per the inland region of South Africa, whereas the RoI is 

often preferred in data rich regions. 

 

 Region of Influence  

 

At each site investigated the full set of potential descriptor combinations were tested in order 

to identify the best descriptors for use in the selection of donor catchments in the RoI approach. 

Enforcing the 5T rule reduced the homogeneity of the regions in many instances and resulted 

in an increase of H beyond the adopted maximum value of 2. The best performing set of 

descriptors included Latitude, Longitude, Dc, and mean runoff percentage. Using these four 

descriptors resulted in 16% and 51% of the regions being relatively homogeneous for 500- and 

200-year minimum record lengths approaches, respectively. 
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Having identified the five super regions, the RoI approach was also applied within each of the 

super regions to identify the descriptor combinations that identify the largest percentage of 

homogeneous regions, with each site forming a unique region, and the results are summarised 

in Table 4.5. The use of super regions has not significantly increased the percentage of 

relatively homogeneous regions on a national scale, yielding, from a homogeneity perspective, 

little additional benefit for the additional complexity.  

 

Table 4.5 Descriptors and percentage of homogeneous regions identified per super region 

Super 

Region 

No. of 

sites 
Descriptors 

Number of 

relatively 

homogeneous 

regions (%) 

1 80 Lat, Lon, A, MAP, Dc, H2410% 82.4 

2 89 Lat, Lon 54.5 

3 74 Lat, Lon, A, Dc 47.7 

4 33 Lat, Lon, A, MAP, H2410% 62.9 

5 107 Lat, Lon, MAP 28.8 

All 383  52.6 

 

Super Regions 1 and 4, located in the Eastern part of the country, contain the highest number 

of relatively homogeneous regions, 82.4 and 62.9 % respectively. In contrast, Super Region 5 

performed poorly with only 28.8 % of relatively homogeneous regions identified. Super 

regions one and four are climatologically similar and affected by similar rainfall generating 

conditions, as opposed to super region five which is climatologically disparate, which may 

indicate that the descriptors investigated are better suited for the identification of 

hydrologically similar catchments in the eastern regions of South Africa. The use of the super 

regions is, however, anticipated to provide improvements for model development as the refined 

regions may better capture hydrological variations across South Africa. 

 

 Clustering 

 

The clustering efficiency was tested by performing the clustering multiple times to assess the 

impact of the catchment descriptors, as per Figure 4.3. The descriptors were tested in an 





 

71 

utilised in the relatively homogeneous clusters is 332. The formation of the relatively 

homogeneous clusters therefore required the exclusion of 51 sites (13% of sites), and further 

investigation into the excluded sites did not present any clear spatial distribution or trends. 

Table 4.7 lists the final accepted clusters. 

 

A total of 42 relatively homogeneous clusters were created that all satisfy the H < 2 

requirement, however, in some instances the minimum record length of 200 years was relaxed 

with a minimum accepted record length of 129 in Cluster 18. The spatial distribution of the 

accepted clusters is shown in Figure 4.10. In addition, it must be noted that three of the 

relatively homogeneous clusters contain fewer than 5 sites, which may limit the predictive 

ability in these clusters. 

 

Table 4.7 Accepted 42 relatively homogeneous clusters 

Cluster 

No. 

No. of 

Stations 
H1 

Record 

Length 

(years) 

  

Cluster 

No. 

No. of 

Stations 
H1 

Record 

Length 

(years) 

1 10 1.5 357 22 8 1.9 263 

2 15 1.6 860 23 5 1.3 182 

3 5 1.0 325 24 5 1.0 192 

4 11 1.9 530 25 6 1.9 368 

5 12 1.5 540 26 5 1.5 299 

6 6 1.2 329 27 6 1.9 280 

7 5 1.8 184 28 5 0.2 252 

8 7 1.5 431 29 8 2.0 400 

9 10 0.8 424 30 5 1.9 241 

10 8 1.9 424 31 8 0.1 374 

11 9 1.8 389 32 7 1.5 317 

12 6 1.3 198 33 11 1.4 507 

13 8 1.8 405 34 9 2.0 387 

14 12 1.3 517 35 18 0.7 1015 

15 8 1.1 340 36 6 1.6 301 

16 7 0.6 276 37 9 1.1 407 

17 3 0.6 191 38 3 0.2 192 

18 4 1.0 129 39 8 2.0 440 

19 7 1.2 296 40 9 1.4 437 

20 6 0.4 240 41 13 1.8 660 

21 8 1.8 230 42 10 1.5 371 
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The geographic distribution of the clusters presents an even spread of clusters across the 

country, with data sparse regions in the inland DWS primary drainage Regions D, E and F. 

These regions have a small number of stations that met the selection criteria of the study and 

future studies may need to consider a relaxation of the criteria to improve the spatial coverage 

in these regions. Conversely, the data rich DWS drainage Regions B and H have clusters that 

overlap where Region B has a single cluster which overlaps spatially with three other clusters. 

Figure 4.11 provides the spatial bounds of each cluster at a scale of 0.1 degrees across the 

country, based on the Euclidian distance using the location and distance from sea of each of 

the points.  

 

Figure 4.10 Distribution of the 42 relatively homogeneous clusters within South Africa 

identified enclosed by the convex hulls  

 

When taking into consideration the physiographical catchment boundaries further refinement 

was undertaken as shown in Figure 4.12. The application of the physiographical boundaries is 

only used to determine the cluster membership of the sites and did not restrict the clusters from 

containing sites from neighbouring catchments. When developing the physiographical cluster 

membership map Cluster 7 was removed, as the cluster overlapped with three other clusters. 
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Figure 4.11 Delineation of national cluster association based on the Euclidian distance using the location and distance to coastline in relation to the DWS 

primary drainage regions (green) at a scale of 0.1 degrees 
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Figure 4.12 Delineation of national cluster association based on the Euclidian distance using the location and distance to coastline taking into consideration the 

physiographical catchments, shown in relation to the DWS primary drainage regions (green)  
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4.5 Discussion and Conclusions 

 

An assessment of the national and DWS drainage regions as potential homogeneous flood 

producing regions was undertaken, utilising the 383 sites, to verify whether further division of 

the country was required. It was identified that majority of the drainage regions, except for 

Regions L, N, P, R and S were deemed heterogeneous. Of the five homogeneous regions, two 

had cumulative record lengths less than 200 years, therefore only three of the twenty regions 

were acceptable and substantiated the need for additional regionalisation to be undertaken. 

Eleven catchment descriptors were investigated for use and were applied in an iterative fashion 

with all of the regionalisation schemes investigated. This ensured that all potential 

combinations of catchment descriptors were assessed for its ability to identify homogeneous 

pooling groups. 

 

The RoI approach is flexible to the needs of the user; however, once the rules of application 

are defined, adjusting regions becomes difficult due to each site defining a unique region. 

Latitude, longitude, Dc, and mean Cro were the catchment descriptors that identified the largest 

percentage of homogeneous pooling groups, albeit only for 51% of sites. The rigid nature, 

coupled with the low level of identification of homogeneous regions could limit the uptake of 

the developed models, although statistical homogeneity is not a prerequisite of the RoI 

approach.  

 

The super region approach, when applied in South Africa, adds an additional layer of 

complexity to the estimation for little additional benefit with regards to the identification of 

additional homogeneous regions (52.6%). The super regions, however, provide an indication 

that the RoI approach performs relatively well along the Eastern coast of South Africa, 

identifying 82.4% and 62.9% homogeneous regions in Super Regions 1 and 4, respectively. 

The performance is, however, particularly poor in Region 5, located in the south western region 

of South Africa. The inability of the RoI to form relatively homogeneous regions does, 

however, not prevent the development of flood estimation models. Both the ARR (Rahman et 

al., 2019) and the FEH (Kjeldsen et al., 2008a) do not rely on the formation of statistically 

homogeneous regions for model development and application. 

 

In contrast to RoI, clustering forms fixed pooling groups and has been noted as the most 

practical approach to regionalisation. The catchment descriptor combination that identified the 
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highest number of homogeneous clusters was: (i) Latitude, (ii) Longitude, and (iii) Dc. Initial 

clustering formed 36 clusters of which 44% were considered relatively homogeneous. 

Although the initial performance of RoI outperforms Clustering for 36 clusters, clustering 

allows the flexibility of further refinement. Manual adjustments and modifications led to the 

identification of 42 relatively homogeneous regions that are distributed geographically 

resulting in fixed regions. The use of physiographical catchment boundaries in the definition 

of the regions has led to a quasi-fuzzy clustering scheme as some regions incorporate sites 

located outside of the defined regions. The simpler definition and geographic distribution of 

the regions provide an approach that has a higher probability of acceptance with practitioners. 

The 42 relatively homogeneous clusters therefore, from a regionalisation perspective, is the 

recommended approach.  

 

It is also important to note that the ability of the methods to form homogeneous regions is 

directly dependent on whether the catchment descriptors selected are well suited for this 

purpose. The inclusion of additional parameters may therefore lead to an improved ability to 

define homogeneous regions where the methods performed poorly. International guidelines 

also do not consistently require statistical homogeneity to be satisfied, in particular when 

applying the RoI, but emphasis is rather placed on the accuracy of the models developed based 

on the regionalisation approach adopted. 

 

Future work will focus on the development of regional flood models for the regionalisation 

schemes investigated to further assess the viability of these in South Africa. 
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5 DEVELOPMENT AND ASSESSMENT OF REGIONAL MODELS 

FOR DESIGN FLOOD ESTIMATION IN SOUTH AFRICA 

 

5.1 Abstract 

 

The ideal situation for DFE modelling has been considered to be when flow data are available 

at the site in question. This is, however, not possible in many instances and the development 

of regional flood models has become prominent and allows for the estimation of design floods 

at ungauged sites. Regional flood models pool temporal and spatial data, thus supplementing 

data sparse regions with information from neighbouring regions. Through the use of 

dimensionless growth curves and regional regressions regional flood responses can be applied 

to an ungauged site analysis. In the South African context, a number of regional flood models 

have been developed, but have been shown to perform inadequately. Utilising the latest 

available streamflow data and homogeneous flood regions, four DFE models have been 

developed that improve on previously observed modelling results. Adopting an ordinary least 

square modelling approach in conjunction with both Quantile Regression Technique and 

Parameter Regression Technique model development, four model formulations were 

developed. Applying the models at both a regional scale and a national scale revealed that the 

regional models provide improved results, with the equally weighted Index Flood approach 

applied within a clustering regionalisation scheme performing best. Using a leave-one-out 

performance assessment the models are shown to estimate design floods within a desirable 

ratio at 76% of sites considered, improving on previously developed models by up to 28%. 

 

5.2 Introduction 

 

Design flood practitioners are often required to estimate design floods at sites where no 

hydrological flow monitoring has been undertaken. In situations such as these, practitioners are 

faced with a choice of which method to implement from a wide variety of DFE methods 

available. In South Africa, it is generally recommended that all appropriate techniques are 

applied and to use the results from the most appropriate technique based on professional 

judgement (Van der Spuy and Rademeyer, 2018). The estimation of floods in ungauged 

catchments has been a challenge faced by hydrologists for many years, so much so that the 
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International Association of Hydrological Sciences (IAHS) dedicated a decade of research 

from 2003 – 2012 to the reduction of uncertainty in hydrological predictions (Sivapalan, 2003). 

 

DFE techniques can be broadly categorised as based on an analysis of streamflow data or 

rainfall-based methods (Smithers and Schulze, 2003), and Figure 5.1 shows the relevant 

categories of the DFE methods available in South Africa. Rainfall-based methods rely on 

rainfall data to estimate design floods, which range from event-based models, which utilise 

design rainfall as input, to the use of continuous simulation modelling, which requires long 

rainfall records. Streamflow analysis uses the statistics of observed floods to derive estimation 

techniques such as flood envelopes or empirical formulae. Alternatively, FFA can be 

performed to fit a distribution to the observed data and, when adequate periods of good quality 

data are available, is the recommended option for DFE. FFA is performed at an at-site scale, 

where the data from a single site is analysed to determine the design floods and is only 

applicable to the site being considered.  

 

 
Figure 5.1 Design flood estimation methods available for use in South Africa (after Smithers, 

2012) 

 

Regional FFA (RFFA) has become more prominent in recent years as it has been shown to 

reduce the uncertainty associated with design flood estimates through the pooling of data 
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(Burn, 1990). This is generally applied in hydrological pooling groups, identified through 

regionalisation techniques such as RoI or Clustering. Once a set of pooling groups have been 

identified, regional models need to be developed to estimate the design floods at ungauged 

sites.  

 

From a literature review the most common method of regional flood information transfer is the 

use of regression analysis. Weisberg (2005) describes regressions as the “study of 

dependence”, i.e. the dependence of the response variable on predictor variables. Regional 

flood model development generally falls within one of two categories, Quantile Regression 

Techniques (QRT) or Parameter Regression Techniques (PRT). QRT models directly estimate 

the quantile flows in question, e.g. the 1% AEP flood event, whereas PRT relies on regional 

growth curves and estimation of model parameters. Numerous model formulations exist for the 

development of regional flood models, but the formulation most widely reported in the 

literature is the Index Flood approach. 

 

Rahman et al. (2012) notes that QRT may lead to an inconsistent growth curve, which can be 

avoided through the use of PRT which estimate parameters used to generate a growth curve at 

an ungauged site, thus providing a smooth increase with increased AEP. In addition, PRT can 

estimate floods for any AEP and is not limited to the derived QRT relationships. 

 

The foremost PRT modelling methods currently implemented are the Index Flood (IF) 

(Dalrymple, 1960, Robson and Reed, 1999, Rahman et al., 2019), and Probabilistic Rational 

Method (PRM) (McDermott and Pilgrim, 1982) methods. The IF relies on the estimation of 

Scaling Factors (SFs) to scale dimensionless growth curves to estimate the at-site quantile 

growth curves, whereas the PRM approach scales the dimensionless runoff coefficient curves 

for application with the RM. Each of these methods have been implemented internationally in 

well-established design guidelines (e.g. Robson and Reed, 1999, Rahman et al., 2019).  

 

Comparisons between QRT and PRT was undertaken on 53 catchments in Tasmania (Haddad 

et al., 2012). A and design rainfall intensity were found to be the most important predictor 

variables in the QRT and four predictor variables were used in the PRT (Haddad et al., 2012). 

The QRT was found to provide more accurate flood quantile estimates for the higher return 

periods while the PRT resulted in relatively better flood estimates for smaller return periods 

(Haddad et al., 2012).  
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A similar comparison between QRT and PRT was undertaken on 237 catchments in North-

Eastern USA and the PRT is recommended due to its accuracy, computational simplicity, and 

ability to estimate design floods for any return period, even though the QRT gave a slightly 

better performance for all return periods (Ahn and Palmer, 2016). From a study in 1 535 

catchments in France, Odry and Arnaud (2017) found that inconsistencies between floods 

estimated for different return periods were possible when the QRT approach was used and 

therefore recommend the use of the PRT. 

 

In South Africa studies have been undertaken to develop PRT flood models, however, it has 

been identified that the availability of catchment descriptor data was a limitation in these 

studies, with the studies mostly relying on only the A and MAP for the development of the 

regression models (Kjeldsen et al., 2001). More recently, Görgens (2007a) developed the JPV 

approach which expanded the number of descriptors utilised. In addition, Nathanael et al. 

(2018) assessed the performance of the methods developed by Meigh et al. (1997), Mkhandi 

et al. (2000), Görgens (2007a), and Haile (2011) and found that the methods only performed 

adequately in approximately 57 % of catchments assessed. 

 

The aim of the study is to develop and assess the performance of regional flood models utilising 

the currently available data. Specific objectives include the following:  

(a) The development of PRT and QRT models, developed using Clustering and RoI 

regionalisation schemes, and considering national and regional scale model development 

for South Africa.  

(b) Assessment and comparison of the developed models to identify the best performing 

model formulation in combination with regionalisation scheme and model development 

scale. 

 

5.3 Model Formulations 

 

The development of a regional flood model can be divided into three processes: (i) 

development of regional growth curves for the hydrological pooling groups, (ii) selection of a 

suitable response variable/s used to describe and/or scale the regional growth curve, and (iii) 

developing relationships between catchment descriptors and the response variable/s selected. 

As per Section 3.3.1, LM (Hosking, 1990) have been adopted as the parameter estimation 
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method to fit the data to the most suitable distribution. Considering the results presented in 

Chapter 3, the GPA distribution was utilised for the estimation of the at-site quantiles using the 

observed AMS data. The at-site quantiles were then used to derive at-site and regional growth 

curves using the clustering and RoI regionalisation schemes presented in Chapter 4. 

 

Four distinct modelling approaches were investigated for the development of models for the 

estimation of design floods at ungauged sites: (i) QRT, (ii) IF with equal weighting (IF1), (iii) 

IF with varied weighting (IF2), and (iv) PRM.  

 

5.3.1 Quantile Regression Technique 

 

The US Geological Survey (USGS) adopted a QRT approach that uses the catchment 

descriptors as predictor variables to estimate the T% AEP peak flow (QT) event using predictor 

variables (B, C, D, …) and regression parameters (a, b, c, d, …) (Benson, 1962, 1964, Cruff 

and Rantz, 1965, Riggs, 1973). The regression equations generally take the form of Eqs. 5.1 or 

5.2. 

 

 QT = a Bb Cc Dd…. (5.1) 

 QT = a + b*B + c*C + d*D…. (5.2) 

 

Benson (1962) noted that when developing flood models, using statistical methods such as IF 

and distribution fitting assumes a relationship between all AEP flood events. This assumption, 

however, does not hold for the QRT approach as each AEP is considered separately allowing 

for the identification of significant factors for each AEP. Cruff and Rantz (1965) compared the 

QRT approach for the 50% and 1% AEP against five other statistical DFE methods, including 

the IF, in the coastal region of California. The IF and QRT were found to perform best.  

 

More recently investigations have been undertaken to develop regional QRT flood models in 

Australia (Rahman, 2005, Rahman et al., 2011, Haddad and Rahman, 2012, Haddad et al., 

2012). Rahman (2005) developed a set of QRT models for South-East Australia using 88 

catchments and a combination of hydrological and climatological descriptors. The models 

achieved median relative errors ranging between 15 and 39%, proving the viability of the 

approach. Rahman et al. (2011) compared the performance of the PRM and a newly developed 

QRT. The QRT developed used the same formulation as the PRM and parameter to provide a 
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sound basis for comparison and the QRT models outperformed the PRM approach at the 107 

catchments considered. Haddad et al. (2012) compared the performance of PRT and QRT 

approaches at 53 sites in Tasmania and the models provided mixed results, with the PRT 

performing best for higher AEPs and the QRT for lower AEPs. 

 

5.3.2 Index Flood Method 

 

Dalrymple (1960) describes the methodology for the IF method and divides the approach into 

two distinct parts: 

(a) the development of a dimensionless scaled growth curve for a hydrologically 

homogeneous region, which relates scaled at-site flood peaks to exceedance probability 

or return period, and 

(b) determining relationships between catchment descriptors and the scaling variable used, 

e.g. the MAF. 

 

The IF method assumes a constant coefficient of variation within pooling groups and the 

dimensionless growth curve is derived by scaling the at-site AMS values by a SF, referred to 

as the index flood (QIND). The scaling in the original IF approach used the MAF and another 

commonly used index flood is the Median Annual Flood (MEF) (Robson and Reed, 1999, 

Kjeldsen et al., 2001, 2002, Nobert et al., 2014). Traditionally the growth curve is applied as 

shown in Eq. 5.3, whereby the desired T% AEP flood event (QT) is related to the index flood 

by means of a T% AEP linked growth factor (GFT), derived from the dimensionless growth 

curve.  

 

 QT = QIND x GFT (5.3) 

 

The IF approach has, since the original development, been implemented in international 

guidelines by Robson and Reed (1999) and Rahman et al. (2019) . The implementation has 

also been modified to develop a site-specific growth curve, through the development of models 

to estimate the descriptive statistics of the adopted distribution. For example, when considering 

the LP3 distribution, the standard deviation, mean and coefficient of skewness are required and 

each of these parameters are individually estimated for a selected site using separate 

regressions. In theory, estimating each of these parameters allows the models the flexibility to 
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more closely mimic the observed growth curves as opposed to relying on a regionally averaged 

growth curve. 

 

Relating QIND to catchment descriptors enables the user to estimate QIND at an ungauged site. 

The IF method has been successfully applied in a number of studies including the UK Flood 

Engineering Handbook (Kjeldsen et al., 2008b), South Africa (HRU, 1972, Kovács, 1988, Van 

Bladeren, 1993, Mkhandi and Kachroo, 1997, Kachroo et al., 2000, Mkhandi et al., 2000, 

Kjeldsen et al., 2001, 2002, Görgens, 2007a, Haile, 2011) and Australia for data poor regions 

(Rahman et al., 2015a).  

 

 Regional weighting scheme 

 

The regional growth curves are derived by pooling all of the data within the identified pooling 

groups, but given the variation in record length and data quality within pooling groups, a 

weighting scheme is generally applied. Three weighting schemes were applied as part of this 

study to assess the impacts thereof. For both regionalisation schemes an equally weighted IF 

approach was applied, where each station in the pooling group was applied equal weighting 

and is referred to as IF1. In the second approach which was applied for both sets of 

regionalisation, a station weighting scheme was applied (IF2). When using the 42 

homogeneous clusters a record length weighting within the clusters was used, thereby applying 

a higher weighting to stations with a longer available dataset. For the RoI and super region 

approaches the regional LM were estimated by applying a Euclidian distance (D) scaled record 

length weighting, calculated using Eq. 5.4, for the station weighting scheme. 

 

 RWi = 

(
𝑁𝑖

∑𝑁
 ∗  (1 − 

𝐷𝑖

∑𝐷
))

∑(
𝑁𝑖

∑𝑁
 ∗  (1 − 

𝐷𝑖

∑𝐷
))

⁄  (5.4) 

where  

 RWi  = regional weighting for site i, 

 Ni = record length for site i, and 

 Di = Euclidian distance between site i and the ungauged estimation location. 
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This allowed for the integration of catchment similarity, through Di, into the weighting scheme. 

The Di of each site is weighted based on the total D of the pooling group and inverted by 

subtracting the weighting from one. The D based weighting is then further utilised to scale the 

traditional record length weighting, which is then finally normalised to provide the final 

weighting of the site within the pooling group considered. 

 

 Scaling factor selection  

 

The SFs refers to the variable(s) required to scale the regional flood model and varies based on 

the model formulation being applied. Some of the SFs used in flood studies include, but are 

not limited to: 

(a) Distribution descriptive statistics (Rahman et al., 2015b), 

(b) MEF (Robson and Reed, 1999), 

(c) MAF (Dalrymple, 1960, Kjeldsen et al., 2001), and 

(d) average rainfall intensity (McDermott and Pilgrim, 1982). 

 

A critical assumption in the development of regional flood models is that at-site flood responses 

are assumed to be similar within a pooling group after scaling the at-site growth curve. Hence 

the choice of a suitable SF is important.  

 

For the development of the IF, the use of the MAF or MEF are widely reported in the literature. 

The Institute of Hydrology (IH, 1999) utilised the MEF to minimise the impact of outliers, but 

models developed for South Africa have largely been based on MAF. Haile (2011) highlights 

the existence of outliers in the South African flow datasets when reviewing the data at an at-

site basis, but also notes that when considering the data at a regional scale only two 

observations were considered unacceptably high. Kjeldsen et al. (2002) also highlights the 

AMS records in the South African dataset that generated uncharacteristically high flows, given 

the short record length, and affecting nearly all South African catchments. Hence, both the 

MAF and MEF values were assessed for use in the study, however, the MAF value proved to 

be most representative and reduced the spread of the dimensionless growth curves within the 

clusters, as shown in Figure 5.2. The MAF was therefore adopted for use. 
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Similarly, the at-site growth curves, LMs and the site MAF were used to derive at-site 

dimensionless growth curves and LMs for the development of the IF1 and IF2 approaches. The 

growth curves developed for all clusters are included in Appendix B. Reference can be made 

to Figure 4.12 to identify the location of the clusters. Appendix C and Appendix D contain the 

IF1 dimensionless growth factors and IF2 LMs, respectively.  

 

 

Figure 5.2 Comparison of the dimensionless growth curves for sites within Cluster 42 derived 

using the MEF (left) vs the MAF (right) annual floods for selection of a suitable 

scaling factor 

 

5.3.3 Probabilistic Rational Method 

 

The PRM relies on the traditional Rational Method (Mulvaney, 1850, cited by Stephenson, 

1981, Shaw, 1994, Thompson, 2007), which takes the form shown in Eq 5.5 and relates the T% 

AEP peak flow (QT) to the A (km2), design rainfall intensity (mm/h) for a known critical 

duration Tc (I(Tc, T)), and the dimensionless runoff coefficient CT. A unit factor (UF) is also 

incorporated to convert peak flows to the desired units (m3/s). To calibrate the RM, the 

relationship between the runoff coefficient CT and the remaining parameters needs to be 

defined for each AEP and is provided in Eq 5.6.  

 

 QT = UF CT I(Tc,T) A   (5.5) 
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 CT = 
𝑄𝑇

𝑈𝐹 𝐴 𝐼(𝑇𝑐,𝑇 )
    (5.6) 

 

 PRM applications 

 

McDermott and Pilgrim (1982) developed a PRM for Australia, which utilises regional runoff 

coefficient (C value) curves scaled by the 10% AEP C value (C10). Similar to the original IF 

approach the T% AEP C value is estimated through the use of GFT derived from the regional 

C value curves. McDermott and Pilgrim (1982) developed regional C10 maps by mapping the 

at-site C10 values and manually drawing isopleths. The approach developed by McDermott and 

Pilgrim (1982) estimated C10 values with an accuracy of 30% at 42% of sites and was adopted 

in the Australian Rainfall and Runoff manual as one of the recommended methods. Alsuwaidi 

et al. (2015) developed a new PRM method, through assessing twelve different forms of PRM, 

in New South Wales, Australia, and achieved good results in small to medium sized 

catchments. The best performing PRM form was linking the inverse distance weighted C10 

value of the three nearest sites coupled with the median GFT for all 106 sites considered. The 

latest revision of the ARR (Rahman et al., 2019) has, however, recommended an alternative 

approach to the PRM and which is based on the PRT approach which yields improved results.  

 

In the South African context, the SDF method developed by Alexander (2002a) is a locally 

developed PRM. However, the method has been recommended for revision in a number of 

studies (Görgens, 2002, Smithers and Schulze, 2003, Van Bladeren, 2005, Gericke, 2010, Van 

Vuuren et al., 2013). 

 

Görgens (2002) found that when estimating the 2% AEP floods the SDF estimates could be up 

to 210% in excess of the observed estimates. In the development of the SDF, Alexander (2002a) 

does state that conservative “upper envelope” coefficients were derived, which could cause the 

overestimation, but are within the uncertainty levels related to hydrological estimation. 

Smithers and Schulze (2003) expressed the need to assess the SDF method and provide further 

refinement. Van Bladeren (2005) proposed modifications to the SDF method, but in the DWS 

C5 secondary drainage region these only resulted in improved estimates in 26% of the 

catchments assessed. Gericke (2010) reviewed the SDF method and found that the SDF 

overestimated design floods by up to 230% in the C5 secondary drainage region. Gericke 

(2010) also determined correction factors for the SDF method. The corrected SDF method 
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provided the most accurate results in the majority of the study area (Gericke, 2010). The ratios 

of calibrated SDF: FFA ranged between 0.85 and 1.15, and resulted in a major improvement 

on the standard SDF results. Van Vuuren et al. (2013) identified inconsistencies in the 

estimation of catchment parameters during the development of the SDF as one of the potential 

problems that needs further research and refinement. 

 

Calitz (2016) developed a PRM for selected regions in South Africa and successfully 

regionalised the flood distributions in ten homogeneous regions, which were used to calibrate 

PRM C value relationships for the estimation of the design floods. Calitz (2016) investigated 

the use of mapping and regression development for estimation of C10, coupled with GFT 

estimated as the regional median or through regressions. The best performing combination was 

the use of regression estimated C10 values coupled with the median GFT, and as such has been 

adopted in this study for application of the PRM.  

 

 CT value growth curves 

 

By applying Equation 5.6 at-site CT value growth curves were developed for each site being 

considered. The calibrated CT values were found to have some inconsistencies, as summarised 

in Appendix A for each pooling group. Similar to the findings of Parak and Pegram (2006), the 

calibrated CT values were found at some sites to not be consistent with the assumption that the 

CT values should increase with a decrease in AEP. This occurred at 79 of the 383 sites 

investigated. Parak and Pegram (2006) identified that the calibrated CT values used in their 

study were within reasonable bounds when compared to Chow et al. (1988) and hence 

tentatively included the inconsistent results for the remainder of their study. Similarly, the sites 

with a decrease of CT with AEP have been tentatively included in this study. It should also be 

noted that AEP’s lower than 5% contain CT values in excess of 1 at six sites for the 0.5% AEP 

and at a single site for 5% AEP. These values could have been the result of design rainfall 

estimates being restricted to use of the median values and the use of a catchment based average 

design rainfall. Smithers and Schulze (2003) do, however, provide upper and lower 90% 

confidence bounds for estimates and these bounds could be investigated to restrict the CT values 

to not exceed 1. Similarly, the use of the median, or an alternative percentile of point rainfall 

within the catchment could be used to reduce the estimated CT values. Attaining CT values 

below 1 are, however, not critical to the results of the study, and, is only anticipated to affect 
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the uptake of the model, should it be identified as the most suitable approach in terms of 

quantile estimation. 

 

Having calibrated the RM at each site, regional dimensionless growth curves were developed 

using the C10 value to scale the individual at-site curves. An example of the dimensionless C 

value curves for Cluster 42 is shown in Figure 5.3and the C value curves for all clusters are 

included in Appendix B. Reference can be made to Figure 4.12 to identify the location of the 

clusters. Appendix E contains the detailed cluster-based CT.  

 

 

Figure 5.3 Scaled PRM growth curves for Cluster 42 indicating the record length weighted 

average curve (red dash) in relation to the sites within the cluster (coloured solid 

lines) 

 

5.4 Development of regression models to estimate scaling factors 

 

Having identified the C10 and MAF as suitable SFs for use, the required set of response 

variables was complete and are shown in Table 5.1. These variables are now required to be 

estimated at ungauged sites, which was achieved through the use of regression models 

developed using the ordinary least squares framework. When considering the development of 

the QRT models emphasis was placed in the 1% AEP value for the selection of important 



 

89 

catchment descriptors as predictor variables. 

 

Table 5.1 Scaling Factors for each of the selected model formulations 

Model Formulation Scaling Factor / Response Variable 

QRT QT 

PRM C10 

IF1 (equal weighting) MAF 

IF2 (varied weighting) MAF 

 

Kjeldsen et al. (2008b) reported on the development of a national scale regression model in the 

UK linking the IF to four different catchment descriptors, thereby providing a model for 

estimating the IF in ungauged catchments. In contrast, Rahman et al. (2019), developed a set 

of regional regression models for Australia as a result of hydrological variability and variation 

in station density across the country. The advantage of using a national scale SF regression is 

that more data are utilised for the development, reducing the effect of potential outliers, 

however, any regional trends may be lost in the overall analysis. Given the similarity of climate 

variability between South Africa and Australia, both national and regional scale models were 

developed and assessed for application in South Africa. 

 

 The clustering and RoI approaches described in Chapter 4 were adopted for the identification 

of pooling groups, within which the SF regression models were developed at two scales, 

national and regional. This resulted in four different SF model development scenarios being 

adopted: (i) Clustering with cluster-based models, (ii) Clustering with a national scale model, 

(iii) RoI with super region based models, and (iv) RoI with a national scale model.  

 

The pooling groups vary in size and contain as few as three sites. Developing regressions fitted 

to a small number of sites could severely impact the ability of the models to be used. In an 

attempt to improve the robustness of the models a minimum number of required sites was 

imposed for regression development. Where pooling groups contain less than 30 stations 

(approximately 10 % of the available data), the closest geographic pooling groups were 

included until a minimum of 30 sites was reached. Geographic proximity was defined by the 

distance between pooling group centroids. The minimum number of stations imposed is a 

consideration that can be refined in future research. 
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5.4.1 Catchment descriptors considered for regression development 

 

McDermott and Pilgrim (1982) divided catchment descriptors into two groupings, natural and 

introduced. Natural variables refer to descriptors such as area, soil, rainfall, and topography, 

whereas introduced variables, consider man-made effects such as land use and urbanisation. 

Since introduced variables change more rapidly than natural variables, they are often difficult 

to quantify. It is evident from the literature that the use of natural variables is widely adopted 

(Dalrymple, 1960, Riggs, 1973, McDermott and Pilgrim, 1982, Pilgrim, 1989, Mkhandi and 

Kachroo, 1997, Mkhandi et al., 2000, Kjeldsen et al., 2001, 2002, Smithers and Schulze, 2003, 

Merz and Blöschl, 2005, Görgens, 2007a, Rao and Srinivas, 2008, Rahman et al., 2015b). 

Rahman et al. (2009, 2012) identified that increasing the number of predictor variables does 

not necessarily increase the accuracy of the flood model and has a diminishing returns effect. 

Out of a pool of ten potential predictor variables, five were used for the final Australian 

Regional Flood Frequency Estimation model and the selected variables consisted solely of 

natural variables, such as A, shape and rainfall intensity (Rahman et al., 2015b). 

 

Historically the availability of catchment descriptors have been identified as a limitation on the 

development of regional models in South Africa as only limited data was available (Kjeldsen 

et al., 2001). Based on a review of the literature and the descriptors extracted as described in 

Chapter 2, eight descriptors were considered as potential regression predictor variables, shown 

in Table 5.2. 
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Table 5.2 Catchment descriptors identified as potential predictor variables for the 

development of the SF regression models 

Descriptor Unit Range Source 

Min Max 

Outlet elevation masl 11.00 1969.00 (NASA-JPL, 2013) 

A km2 0.26 361994.80 DEM Derived 

Cro  Percent 4.00 97.00 (Schulze, 2011) 

Dc Decimal Degrees 0.03 6.84 
(Smithers and 

Schulze, 2003)? 

Slope m/m 0.0004 0.26 DEM Derived 

MAP mm 60.00 3312.00 
(Lynch, 2004, de 

Groen et al., 2015) 

Tc linked 10% AEP 

design rainfall depth 
mm 15.60 241.50 

(Smithers and 

Schulze, 2003) 

24 hour 1% AEP 

deign rainfall depth 
mm 72.50 524.30 

(Smithers and 

Schulze, 2003) 

 

The selection of the catchment descriptors for use as predictor variables in the regressions 

models was based on the p-value of the model parameters. The p-value estimates the 

probability of the assumption that the inclusion of the descriptor parameter has no effect on the 

model. This is termed the null hypothesis. A level of significance of 0.05 has been selected for 

the study, hence any parameter with a p-value in excess of 0.05 is rejected. A p-value of 0.05 

signifies a 5% probability of the null hypothesis being correct. Rahman et al. (2011) noted that 

models containing a large number of predictor variables become difficult to apply and highlight 

that acceptably accurate results can be achieved with as few predictor variables as two or three. 

Given the number of models to be developed in the study and the findings of Rahman et al. 

(2011) a maximum number of three parameters has been adopted. The selection process of the 

most significant catchment descriptors was undertaken by including all the chosen descriptors 

as an initial model, thereafter descriptors with the highest p-value or with a p-value in excess 

of 0.05 were eliminated until a maximum of three descriptors remained. Further refinement of 

the best performing model is recommended as further research. 
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5.4.2 Model development within the clustering scheme 

 

For both the C10 and MAF the most significant descriptors was identified on a national scale, 

the adopted descriptors were the A  (km2), MAP (mm) and the Dc (decimal degree), whereas 

the most significant descriptors for Q1% were A, 10% AEP design rainfall (DR10%) and the Dc. 

Equation 5.7 provides the equation for the estimation of the SFs (C10 or MAF) and Equation 

5.8 provides the adopted model for the QRT model based on the estimation of the 1% AEP 

flood quantile. 

 

 Ln(SF) = a * Ln(A) + b * Ln(MAP) + c * Ln(Dc) + Const (5.7) 

 Ln(QT) = a * Ln(A) + b * Ln(DR10%) + c * Ln(Dc) + Const (5.8) 

where  

 SF  = Scaling Factor (MAF or C10), 

 a, b, c = model coefficients, and 

 Const = intercept (constant). 

 

The adopted SF model coefficients, using the minimum station requirement of 30 sites, are 

contained in Table 5.3 and a comparison between the observed and estimated values are shown 

in Figure 5.4 for the C10 and MAF models at both National and regional scales. The regression 

statistics for the MAF and C10 models are listed in Appendix F. In addition, the same approach 

was adopted for the estimation of the QRT approach and the model coefficients for each cluster 

and AEP are provided in Appendix G. 
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Figure 5.4 Observed versus estimated MAF (top) and C10 (bottom) for the national- (left) and 

cluster based (right) models for the clustering regionalisation 
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Table 5.3 Scaling Factor model parameter coefficients for estimation of the MAF and C10 for application with the IF1/IF2 and PRM models using 

the 42 relatively homogeneous clusters 

Scale 
No. of 

Sites 
MAF C10 

Constant Area MAP Distance from Coast R2 Constant Area MAP Distance from Coast R2 

National 332 -5.88 0.69 0.90 -0.24 0.79 -4.26 0.11 0.24 -0.26 0.13 

Cluster 1 32 -18.32 0.49 3.19 -0.82 0.76 -12.99 -0.11 2.09 -1.39 0.33 

Cluster 2-3 30 2.34 0.50 0.43 -2.52 0.68 12.02 -0.14 -1.37 -2.82 0.45 

Cluster 4 43 -39.34 0.63 6.03 0.23 0.83 -39.39 0.06 5.67 -0.10 0.34 

Cluster 5 35 -6.01 0.64 1.00 -0.30 0.64 -5.78 0.13 0.51 -0.71 0.13 

Cluster 6 35 -21.52 0.66 3.09 1.13 0.85 -8.92 0.08 0.85 0.65 0.11 

Cluster 7 35 -18.34 0.70 2.60 0.79 0.86 -11.35 0.10 1.21 0.46 0.15 

Cluster 8 37 -35.46 0.64 5.10 1.96 0.85 -18.84 0.02 2.32 1.24 0.29 

Cluster 9 31 -6.40 0.80 0.76 0.52 0.83 3.67 0.19 -1.08 0.02 0.40 

Cluster 10 33 -8.67 0.85 1.08 0.28 0.79 -6.82 0.29 0.29 1.02 0.30 

Cluster 11 35 -6.01 0.64 1.00 -0.30 0.64 -5.78 0.13 0.51 -0.71 0.13 

Cluster 12 30 -5.23 0.74 0.73 0.16 0.73 -3.47 0.16 0.05 -0.12 0.16 

Cluster 13 30 -10.59 0.51 1.77 0.20 0.59 -5.55 -0.03 0.51 0.65 0.05 

Cluster 14 32 -8.95 0.62 1.41 -0.17 0.90 4.82 0.04 -0.79 -1.52 0.21 

Cluster 15 47 -8.45 0.63 1.37 -0.15 0.75 -0.17 0.09 -0.29 -0.17 0.09 

Cluster 16 42 -8.38 0.57 1.40 0.02 0.69 1.06 0.04 -0.44 -0.06 0.05 

Cluster 17 31 -11.82 0.70 1.83 -0.03 0.74 -7.39 0.07 0.82 -0.01 0.03 

Cluster 18 33 -9.27 0.82 1.37 -0.32 0.80 -9.08 0.24 0.90 -0.40 0.28 

Cluster 19 42 -3.36 0.66 0.54 -0.52 0.89 -4.76 0.06 0.38 -0.35 0.22 

Cluster 20 - 24 32 -13.04 1.02 1.87 0.39 0.88 -11.03 0.36 1.16 0.08 0.45 

Cluster 25 34 -5.17 0.74 0.77 -0.32 0.85 -4.81 0.14 0.27 -0.50 0.37 

Cluster 26 - 27 34 -2.16 0.69 0.30 -0.50 0.82 -2.56 0.08 -0.03 -0.55 0.29 

Cluster 28 34 -3.21 0.67 0.50 -0.38 0.84 -3.97 0.08 0.22 -0.38 0.30 

Cluster 29 42 0.15 0.47 0.17 -0.41 0.71 3.53 -0.21 -0.65 -0.36 0.15 
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Scale 
No. of 

Sites 
MAF C10 

Constant Area MAP Distance from Coast R2 Constant Area MAP Distance from Coast R2 

Cluster 30 - 32 33 -7.48 0.68 1.16 -0.16 0.84 -3.44 -0.01 0.26 -0.13 0.02 

Cluster 33 31 -2.45 0.67 0.45 -0.05 0.74 4.72 0.10 -1.03 -0.05 0.13 

Cluster 34 46 4.42 0.68 -0.55 -0.05 0.80 8.71 0.09 -1.60 -0.08 0.21 

Cluster 35 37 2.34 0.61 -0.20 -0.02 0.70 10.03 0.03 -1.75 -0.02 0.13 

Cluster 36 33 -6.21 0.60 1.06 0.10 0.70 2.85 0.04 -0.71 -0.01 0.10 

Cluster 37 32 4.15 0.66 -0.50 -0.06 0.79 8.23 0.07 -1.52 -0.08 0.16 

Cluster 38 - 39 43 -4.41 0.77 0.53 0.05 0.82 5.48 0.17 -1.30 -0.34 0.35 

Cluster 40 34 -7.92 0.78 1.05 -0.09 0.85 -6.23 0.20 0.36 -0.26 0.32 

Cluster 41 33 -10.56 0.90 1.38 -0.22 0.79 -9.58 0.34 0.75 0.06 0.32 

Cluster 42 32 -11.46 0.85 1.48 0.32 0.83 -10.36 0.27 0.88 0.20 0.28 
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5.4.3 Model development within the Region of Influence scheme 

 

When considering the RoI approach on a national scale, the MAF and QRT regressions 

developed in Section 5.4.2 were unchanged. The regressions for the remaining modelling 

approaches varied and the significant descriptors were also estimated at a Super Region scale 

and are provided in Table 5.4. The regression parameters for the estimation of the MAF and 

C10 are provided in Table 5.5, and the QRT regression parameters are provided in Appendix 

H. Figure 5.5 shows the estimated versus observed plots for the estimation of the MAF and C10, 

from the plots it can be seen that the models perform poorly for the estimation of C10, achieving 

a maximum NSE of 0.28, and similarly the estimation of the MAF using the national model 

also performs poorly. The regional MAF model however performs well, achieving an NSE of 

0.69. This is further substantiated by the R2 values achieved by the models, shown in Table 5.5, 

where the MAF regressions achieve values between 0.78 and 0.83, and conversely the C10 

regressions achieve values between 0.18 and 0.45. 

 

Table 5.4 Super region SF predictor variables per modelling approach 

Model 
Dependent 

Variable 
Super Region Predictor Variables 

IF1 and 

IF2 
MAF 

National A, MAP, Dc 

1 A, MAP 

2 A, S10-85, DR10% 

3 A, EO, Dc 

4 A, 24-hour 1% AEP design 

rainfall depth (H241%) 

5 A, MAP, S10-85 

PRM C10 

National Dc, MAP, S10-85 

1 A, MAP, H241% 

2 DR10%, EO, H241% 

3 EO, Cro, H241% 

4 DR10%, Cro, H241% 

5 A, MAP, EO 

QRT Q1% 

National A, DR10%, Dc 

1 A, DR10%, H241% 

2 A, S10-85, DR10% 

3 A, EO, H241% 

4 A, EO, MAP 

5 A, MAP, S10-85 
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Table 5.5 Scaling Factor model parameter coefficients and regression statistics for estimation of the MAF and C10 for application with the IF1, 

IF2 and PRM models using the 5 super regions 

Scaling 

Factor 

Super 

Region 

Predictor 

Variables 

Predictor Variable Coefficients Performance Metrics Descriptor Standard Error 

Const 1 2 3 AIC BIC R2 RMSE Const 1 2 3 

MAF 

National A, MAP, Dc -5.88 0.69 0.90 -0.24 848.99 864.78 0.79 214.86 0.78 0.02 0.11 0.04 

1 A, MAP -21.02 0.66 3.25 -0.18 227.22 237.91 0.82 122.49 5.22 0.03 0.74 0.37 

2 
A, S10-85, 

DR10% 
-3.99 0.70 0.65 -0.06 151.07 160.28 0.76 136.91 3.96 0.05 0.56 0.09 

3 A, EO, Dc -11.02 0.90 1.59 -0.05 183.78 193.31 0.83 165.83 1.60 0.05 0.22 0.10 

4 A, H241% -8.45 0.80 1.07 0.71 178.62 188.58 0.80 67.62 2.63 0.05 0.35 0.22 

5 
A, MAP, S10-

85 
-4.02 0.61 0.69 -0.19 35.71 41.70 0.79 64.21 1.90 0.06 0.26 0.10 

C10 

National 
Dc, MAP, 

S10-85 
-5.17 0.12 0.36 -0.26 824.86 840.66 0.16 0.12 0.76 0.02 0.11 0.04 

1 
A, MAP, 

H241% 
-20.01 0.11 2.74 -0.52 215.15 225.84 0.26 0.08 4.93 0.03 0.70 0.35 

2 
DR10%, EO, 

H241% 
2.43 0.12 -0.72 -0.08 147.46 156.67 0.14 0.14 3.87 0.05 0.55 0.09 

3 
EO, Cro, 

H241% 
-8.64 0.24 0.84 -0.19 179.00 188.53 0.29 0.14 1.56 0.05 0.22 0.10 

4 
DR10%, Cro, 

H241% 
-4.64 0.20 0.11 0.43 169.89 179.85 0.23 0.08 2.50 0.05 0.34 0.21 

5 A, MAP, EO -5.02 0.05 0.40 -0.15 60.37 66.35 0.10 0.07 2.75 0.09 0.38 0.15 
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Figure 5.5 Observed versus estimated MAF (top) and C10 (bottom) for the national- (left) and 

super region based (right) models for the RoI and super region regionalisation 
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5.5 QT Estimation Performance Assessment 

 

Prior to application of the methods on a national scale, the method that yields the best 

performance statistics needs to be identified. The performance statistics utilised to assess the 

performance of the regionalisation methods are the BIAS, relative BIAS (BIASr), Root Mean 

Square Error (RMSE) relative RMSE (RMSEr) as adopted by Gado and Nguyen (2016). 

Additional measures used for the estimation of model accuracy were the Nash-Sutcliffe model 

efficiency coefficient (NSE) (Nash and Sutcliffe, 1970) and Relative Error (RE). The NSE is 

generally used for the estimation of the efficiency of continuous models and when considering 

regression analysis is equivalent to the coefficient of determination (R2). The relative errors of 

the models give an indication of the performance relative to the growth curve derived peak 

flows. Rahman et al. (2012) and Naidoo (2020) utilised the ratio of modelled vs estimated 

values as an indication of model performance. Rahman et al. (2012) categorised ratios of 0.5 – 

2 as acceptable, whereas Naidoo (2020) provided additional categories of potentially 

acceptable for over and under-estimation, the entire range of potentially acceptable ratios 

ranges between 0.5 and 1.5. Rahman et al. (2012) notes that the limits provided are arbitrary 

limits but provide a guide with regards to relative accuracy between models. The RE of -50% 

- + 100% and -50% - +50% are equivalent to the Rahman et al. (2012) and Naidoo (2020) 

ratios respectively. Eqs. 5.9 - 5.14 provide the six performance statistics adopted, which 

compare the modelled (Qm) with the observed (Qo) design flows for a set of n sites. 

 

RMSE PG,T = √
1

𝑛
∑(𝑄𝑚  −  𝑄𝑜)2 (5.9) 

 

RMSEr
 PG,T = √

1

𝑛
∑
(𝑄𝑚 − 𝑄𝑜)2

(𝑄𝑜)
 (5.10) 

 

BIAS PG,T = 
1

𝑛
∑|𝑄𝑚  −  𝑄𝑜| (5.11) 

 

BIASr PG,T = 
1

𝑛
∑(

|𝑄𝑚 − 𝑄𝑜|

𝑄𝑜
) (5.12) 

 

NSE = 1 − 
∑ (𝑄𝑚

𝑖 − 𝑄𝑜
𝑖 )
2𝑛

𝑖=1

∑ (𝑄𝑜
𝑖− �̅�𝑜)

2𝑛
𝑖=1

 (5.13) 
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REi,T = 100 × 
𝑄𝑚− 𝑄𝑜

𝑄𝑜
 (5.14) 

where, 

 RMSEPG,T = root mean squared error (m3.s-1) for each pooling group (PG) and AEP% (T), 

BIASPG,T = bias for each PG and AEP% (T), 

 REi,T = relative error for each site (i) and AEP% (T), 

 �̅�𝑜 = mean of the observed design flows, and 

r = indicates relative values (BIASr and RMSEr) 

 

Rahman et al. (2012) utilised a “Leave-one-out” (LOO) assessment approach to assess the 

performance of models. This approach “hides” each gauging station from the model 

development for a single iteration, hence creating a number of models equal to the number of 

stations being considered, plus an iteration including all gauging stations. This facilitates a 

statistical test of proof of concept, which thereafter allows for the use of all sites in the final 

model development. After the LOO resampling, the evaluation statistics can be computed for 

the final QT values estimated using the developed models. 

 

The chosen performance metrics can be categorised into two groups: individual performance 

and relative performance, respectively. The NSE and RE are classified as individual 

performance metrics that indicate a model’s ability to estimate the observed design peak 

discharges, with an ideal result for the metrics being 1 and 0, respectively. BIAS and RMSE, 

however, are generally used as relative performance metrics, providing an indication of which 

model, from a number of models, performs best. As such, the NSE and RE will first be 

employed to refine the number of models to the four best performing models. The top four 

models will then be compared through the use of RMSE and BIAS to identify the best 

performing single model. 

 

5.5.1 Model accuracy and relative error 

 

Figure 5.6 shows the modelled versus the observed QT for the IF1, IF2, PRM, and QRT 

approaches when using regional scale regressions, respectively, in the 42 relatively 

homogeneous clusters. It is evident that the PRM model does not perform adequately, and IF2 

performs adequately for AEPs greater than 2%. The best performing cluster based modes are 
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IF1 and QRT and nearly equally well. The IF1 and QRT models achieve NSE values between 

0.54 and 0.77 and slopes between 0.87 and 1.07. 

 

Figure 5.7 provides the estimated versus observed plots using regionally based regressions for 

each modelling approach and AEP considered using RoI regionalisation.  In comparison to the 

cluster based models, the RoI models do not perform as well, with NSE values ranging between 

-0.34 and 0.69, and the slopes ranging between 0.76 and 1.13. The best performing RoI models 

are the IF1 and the IF2 and the models perform nearly identically well. The model performance, 

however, deteriorates for AEPs below 5% with NSE values dropping below 0.55 and as low as 

0.35 in these ranges.  

 

Table 5.6 provides the ranking of the modelling approaches based on the NSE achieved for all 

AEPs and regionalisation type. The top ranked modelling approaches are the QRT, IF1 and 

IF2, respectively, within the clustering framework and regional scale model development. 

These models performed well when considering the slope between estimated and observed 

values, with majority of the slopes ranging between 0.9 and 1.1. 

 

A breakdown of the percentage of estimates that are within, under or in excess of the desirable 

REs prescribed by Rahman et al. (2012) and Naidoo (2020) are provided in Figure 5.8 and 

Figure 5.9. When comparing the percentages of sites within the desirable REs between 

modelling frameworks it is evident that, even though some of the models perform better, the 

improvement is limited to a maximum of 12.2%, which when considering the uncertainty 

inherent in hydrological estimations is not a significant improvement. 

 

Reviewing the results for the models developed in the 42 homogeneous clusters the IF1 and 

IF2 models perform best. The performance of the IF2, however reduces for AEPs lower than 

2%, the QRT model also indicates a similar trend of reduced accuracy for AEPs less than 5%. 

The IF1 and PRM models show a similar level of consistency of estimates across all AEPs, 

however, the PRM model tends more to over estimation than the IF1. Similar trends in the 

models are observed in the models developed using the RoI approach. The best performing 

models are the IF1 and PRM, however the PRM accuracy reduces and tends to overestimate 

for AEPs less than 2%. 
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Figure 5.6 Estimated vs observed QT for the IF1, IF2, PRM and QRT approaches for the 50, 20, 10, 5, 2, 1 and 0.5% annual exceedance probabilities utilising 

the 42 homogeneous clusters
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Figure 5.7 Estimated vs observed QT for the IF1, IF2, PRM and QRT approaches for the 50, 20, 10, 5, 2, 1 and 0.5% annual exceedance probabilities utilising 

the region of influence regionalisation methodology 
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Table 5.6 Ranking of the IF1, IF2, PRM and QRT models based on the NSE scores achieved 

through the application of national and regional scale regressions 

Scale 
Region 

Type 
Model 

Rank per AEP (%)* Overall 

Rank 50 20 10 5 2 1 0.5 

R
eg

io
n
al

 

C
lu

st
er

 IF1 3 3 2 2 2 1 1 2 

IF2 1 2 3 3 5 5 6 3 

PRM 11 8 8 7 7 6 4 7 

QRT 2 1 1 1 1 2 2 1 

R
o
I 

IF1 4 5 5 5 4 4 5 4 

IF2 7 6 6 6 3 3 3 5 

PRM 4 6 7 8 8 9 11 8 

QRT 6 4 4 3 6 7 8 6 

*  Numbers in bold indicate the top three performing models 

 
Figure 5.8 Percentage of QT estimates within the desirable RE ranges defined by Rahman et 

al. (2012) and Naidoo (2020) for the IF1, IF2, PRM and QRT approaches for both 

regional scale regressions and the 42 homogeneous clusters 
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Figure 5.9 Percentage of QT estimates within the desirable RE defined by Rahman et al. (2012) 

and Naidoo (2020) using the IF1, IF2, PRM and QRT approaches for regional scale 

regressions and the region of influence regionalisation approach 

 

As an additional an analysis of the performance of the RE was compared relative to the 

catchment areas as shown in Figure 5.10 and Figure 5.11. The results from the 42 homogeneous 

cluster models indicate a higher level of accuracy when estimating peak flows for small (<100 

km2) and large (>10 000 km2) catchments relative to the RoI models. In particular, the RIF 

model developed in the 42 homogeneous clusters indicates a more balanced level of accuracy 

across catchment areas in relation to the other models developed. 
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Figure 5.10 Percentage of QT estimates within the desirable RE defined by Rahman et al. (2012) 

and Naidoo (2020) using the IF1, IF2, PRM and QRT approaches for regional scale 

regressions and the clustering regionalisation approach at different catchment area 

ranges 
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Figure 5.11 Percentage of QT estimates within the desirable RE defined by Rahman et al. (2012) 

and Naidoo (2020) using the IF1, IF2, PRM and QRT approaches for regional scale 

regressions and the region of influence regionalisation approach at different 

catchment area ranges 

 

To undertake a holistic comparison Table 5.7 provides a ranking of the percentage of sites that 

are within acceptable or potentially acceptable RE ranges, for each modelling approach and 

AEP using the regional regression development.  
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Table 5.7 Ranking of models based on the percentage of sites within acceptable or potentially 

acceptable RE ranges for each AEP and modelling approach at a regional scale. 

Ratio Category 
Region 

Type 
Model 

Model Rank per AEP (%) Overall 

Rank 50 20 10 5 2 1 0.5 

Rahman et al. (2012) 

Cluster 

IF1 2 3 7 5 1 3 2 3 

IF2 4 3 6 6 5 6 6 5 

PRM 4 8 8 8 7 5 4 8 

QRT 1 1 4 7 8 8 8 6 

RoI 

IF1 6 2 5 4 4 1 1 3 

IF2 3 6 1 1 2 4 5 1 

PRM 7 5 2 1 2 2 3 1 

QRT 8 6 2 3 5 7 7 7 

Naidoo (2020)  

Cluster 

IF1 1 3 6 6 4 4 1 3 

IF2 4 7 7 7 6 6 5 7 

PRM 7 8 8 8 8 8 4 8 

QRT 3 1 5 1 7 5 6 5 

RoI 

IF1 2 3 3 4 2 2 3 2 

IF2 5 2 2 2 3 3 8 3 

PRM 6 3 3 2 1 1 2 1 

QRT 8 6 1 5 5 7 7 6 

 

When combining the ranks achieved for the NSE and the average RE rank as shown in Table 

5.8, the IF1 and QRT approaches perform best for the clustering regionalisation, however, 

when considering the RoI approach, the IF1 and IF2 approaches perform the best. The IF1 and 

QRT developed in the homogeneous clusters and the IF1 and IF2 models developed using RoI 

were therefore assessed further to identify the best performing model. 

 

Table 5.8 Combined model accuracy ranking 

Region 

Type 
Model NSE 

Rank 

RE 

Average 

Rank 

Combined 

Rank 

Cluster 

IF1 2 3 5 

IF2 3 6 9 

PRM 7 8 15 

QRT 1 5.5 6.5 

RoI 

IF1 4 2.5 6.5 

IF2 5 2 7 

PRM 8 1 9 

QRT 6 6.5 12.5 
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5.5.2 RMSE and BIAS 

 

The full set of RMSE, RMSEr, BIAS and BIASr results are provided in Appendices I to K. When 

considering the summarised RMSEr and BIASr values presented in Table 5.9 and Table 5.10, 

respectively, it is evident that the IF1 model developed at a clustering scale is the dominant 

model. The IF1 model developed using RoI   produces the largest maximum RMSEr values 

(3.56). The IF2 and IF1 using RoI scale presents similar estimation performance with the 

RMSEr, with the IF1 only performing inconsistently for AEPs less than 5%. The IF1 RMSEr 

values reach maximums of 3.18 and 3.56 for the 1 and 0.5% AEPs, but the median values do 

not increase significantly, caused by the poor performance of Super Region 5, on the South 

Western coast of South Africa, for all the RoI models developed. The IF1 using clustering 

RMSEr values range between 0.19 and 2.17 and the median values range between 0.54 and 

0.59, improving on the results of the IF1 and IF2 using RoI models by up to a factor of two. 

The QRT model developed at a cluster scale performs similarly well achieving median RMSEr 

values ranging between 0.52 and 0.61 and performing best for AEPs ranging between 1 and 

20%. 

 

Table 5.9 RMSEr statistics for the best performing model formulations  

Model Form. Statistic 

AEP (%) Avg. 

Rank 50 20 10 5 2 1 0.5 

IF1 

(RoI) 

Minimum 0.61 0.54 0.52 0.53 0.56 0.60 0.60 

4 
Median 0.74 0.69 0.70 0.74 0.81 0.87 0.94 

Mean 1.01 1.03 1.07 1.12 1.21 1.29 1.39 

Maximum 1.92 2.03 2.19 2.43 2.82 3.18 3.56 

IF2 

(RoI) 

Minimum 0.62 0.52 0.51 0.52 0.54 0.57 0.60 

3 
Median 0.83 0.74 0.74 0.78 0.86 0.95 1.06 

Mean 1.07 1.10 1.11 1.13 1.18 1.22 1.28 

Maximum 2.06 2.37 2.48 2.53 2.51 2.44 2.33 

QRT 

(Clustering) 

Minimum 0.19 0.20 0.19 0.19 0.20 0.23 0.26 

1 
Median 0.58 0.56 0.56 0.52 0.53 0.57 0.61 

Mean 0.72 0.63 0.62 0.63 0.66 0.71 0.78 

Maximum 2.69 1.80 1.56 1.43 1.60 1.81 2.04 

IF1c 

(Clustering) 

Minimum 0.25 0.23 0.19 0.20 0.20 0.20 0.19 

1 
Median 0.55 0.56 0.54 0.54 0.54 0.56 0.59 

Mean 0.70 0.69 0.69 0.69 0.70 0.72 0.74 

Maximum 1.76 2.08 2.13 2.11 2.03 2.09 2.17 
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The BIASr values for the RoI models are consistent across all of the models with values ranging 

between 0.37 and 1.06. The median values range between 0.64 and 0.84 and do not significantly 

deviate from the mean values. The IF1 using clustering models shows similar consistencies, 

but lower median BIASr values are observed, the maximum BIASr values are however 

significantly higher with values between 1.07 and 1.76. The QRT using clustering model again 

performs similarly to the IF1 model, except for the 2% AEP, where a maximum BIASr value 

of 3.17 is observed. The difference in the model performance per regionalisation scheme 

observed is believed to be caused by the regionalisation scheme differences, i.e. fixed region 

versus hydrological neighbourhood. The IF1 using RoI BIASr performs poorly in Clusters 34 

and 37 on the east coast of South Africa. 

 

Table 5.10 BIASr statistics for the best performing model formulations 

Model Form. Statistic 

AEP (%) Avg. 

Rank 50 20 10 5 2 1 0.5 

IF1 

(RoI) 

Minimum 0.44 0.38 0.38 0.41 0.48 0.57 0.68 

3 
Median 0.66 0.64 0.64 0.66 0.71 0.74 0.80 

Mean 0.70 0.64 0.63 0.64 0.67 0.73 0.80 

Maximum 1.03 0.87 0.80 0.75 0.78 0.83 0.90 

IF2 

(RoI) 

Minimum 0.41 0.37 0.38 0.42 0.48 0.55 0.63 

4 
Median 0.73 0.68 0.66 0.66 0.69 0.75 0.84 

Mean 0.73 0.66 0.64 0.65 0.68 0.74 0.81 

Maximum 1.06 0.89 0.82 0.78 0.79 0.83 0.90 

QRT 

(Clustering) 

Minimum 0.19 0.19 0.22 0.25 0.24 0.22 0.23 

2 
Median 0.49 0.50 0.48 0.53 0.51 0.54 0.59 

Mean 0.68 0.59 0.58 0.59 0.64 0.69 0.78 

Maximum 3.17 1.91 1.48 1.32 1.37 1.41 1.54 

IF1 

(Clustering) 

Minimum 0.23 0.20 0.20 0.21 0.19 0.19 0.23 

1 
Median 0.50 0.51 0.50 0.57 0.65 0.69 0.68 

Mean 0.59 0.57 0.58 0.59 0.62 0.66 0.71 

Maximum 1.46 1.23 1.11 1.07 1.29 1.50 1.76 

 

When combining the rank of the models, shown in Table 5.11, it is evident that the clustering 

regionalisation scheme produced the best performing models. This may be attributed to the size 

of the pooling groups. In contrast to findings internationally the IF1, which utilises equal 

weighting of the pooling group as opposed to applying a record length or combined record 

length and Euclidian distance weighting. 
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Table 5.11 Combined model RMSEr and BIASr ranking 

Region 

Type 
Model RMSEr 

Rank 

BIASr 

Rank 

Combined 

Rank 

Cluster 
IF1 1 1 2 

QRT 1 2 3 

RoI 
IF1 4 3 7 

IF2 3 4 7 

 

5.6 Discussion and Conclusions 

 

Regional flood model development tends to fall within one of two categories, QRT or PRT. 

QRT models directly estimate the quantile flows in question, e.g. the 1% AEP flood event, 

whereas PRT relies on regional growth curves. PRT has the advantage of allowing the 

estimation of the entire growth curve as opposed to QRT, which develops individual models 

for each AEP being considered. PRT growth curves are generally scaled using a SF, most 

commonly the MAF or MEF, to ensure that the regional values are scale independent allowing 

for estimation at ungauged sites within a homogenous region. 

 

Numerous model formulations exist for the development of regional flood models, but the 

formulation most prominent in the literature is the IF. To assess the suitability of QRT and PRT 

models in South Africa, a QRT model as well as three PRT model formulations: (i) IF with 

equal weighting (IF1), (ii) IF with varied weighting (IF2) and (iii) PRM were developed. The 

SF adopted for the IF approach was the MAF and the 10% AEP C-value (C10) was used for the 

PRM. 

 

Regression models were developed to estimate the required SFs and QT and the development 

was undertaken at two scales, national and regional, based on two regionalisation schemes. The 

regionalisation schemes adopted were Clustering, which consisted of 42 relatively 

homogeneous clusters, and RoI, which included the use of five Super Regions to refine the 

regression model development. As such a total of four combinations of development scale and 

regionalisation scheme was used: (i) Clustering with cluster-based models, (ii) Clustering with 

a national scale model, (iii) RoI with super region based models, and (iv) RoI with a national 

scale model. 
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A key assumption for the development of the SF and QT regression models is the use of a 

minimum number of 30 sites. This restriction was imposed due to some of the 42 clusters 

containing as few as three sites and to improve the robustness of the models developed. 

Although the use of a minimum number of 30 sites has proven to develop models that perform 

adequately it is considered an aspect of the study where further research can be undertaken to 

improve estimates. 

 

Eight catchment descriptors were included as potential predictor variables for regression 

development that ranged from outlet elevation through to design rainfall values. Due to the 

number of models developed, the p-value was used for the selection of significant catchment 

descriptors and the developed models were limited to the use of three predictor variables and 

is an aspect of the study where further refinement could be considered. A, MAP and Dc were 

identified as significant catchment descriptors in the SF regressions, whereas the QT regression 

favoured the use of the 10% AEP design rainfall above the MAP. The models developed for 

MAF at a regional scale performed well with an NSE value of 0.78 achieved. The NSE values 

for the national MAF both C10 models performed poorly achieving 0.05 and 0.00 respectively. 

 

The regression models developed for the RoI approach varied significantly between model 

formulation and Super Region, with A and MAP being dominant descriptors. Similar to the 

cluster based models, the RoI MAF regional models performed relatively well achieving an 

NSE of 0.69. The regional C10 value performs better than the clustering, albeit still poorly, with 

an NSE of only 0.28. The national models again only achieve values of up to 0.05. Due to the 

poor performance of the national scale models, only the regional models were assessed further. 

 

The SF and QT regression models were used to estimate the anticipated design peak flows at 

the sites considered and assessed using six key performance indicators: (i) NSE, (ii) RE, (iii) 

RMSE, (iv) RMSEr, (v) BIAS, and (iii) BIASr. The assessment approach consisted of three 

steps, initially the best performing regression development scale was identified using the NSE, 

followed by the identification of the four best performing models with regards to RE and, 

finally the RMSE and BIAS was used to identify the best performing model. 

 

The accuracy of the regional models was measured through the use of NSE and RE. The cluster 

based IF1 and QRT models and the RoI based IF1 and IF2 models were the best performing 

models for the regional scale models when considering the NSE, significantly improving on 
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the results from the national models. The regional models achieved NSE values up to 0.77, but 

tended to underestimate, which needs to be taken into consideration if the models are applied.  

 

The RE assessment relied on the ratio bounds developed by Rahman et al. (2012) and Naidoo 

(2020). Rahman et al. (2012) notes that the acceptable ratio bounds, termed “desirable”, are 

arbitrary, but provide a guide for model assessment and adopted a ratio bound of 0.5 – 2 as 

acceptable. Naidoo (2020) further refined the bounds of acceptable ratios through the inclusion 

of potentially acceptable bounds and reducing the strictly acceptable bounds. For comparative 

purposes the potentially acceptable and acceptable bounds defined by Naidoo (2020) were 

used. The two ratio bounds considered acceptable were therefore 0.5 – 2 and 0.5 – 1.5. The 

models that performed best in the RE assessment were the IF1 for both regionalisation schemes 

and the IF2 and PRM models using the RoI. The four models were able to estimate the peak 

flows within the Rahman et al. (2012) RE bounds at between 64.8 and 75.2% of the sites 

considered. The percentages drop to between 53.1 and 65.3% when applying the more stringent 

RE bounds defined by Naidoo (2020). 

 

The four best performing models from the model accuracy assessment were the IF1 and QRT 

using clustering and the IF1 and IF2 using RoI. The final assessment compared the BIAS and 

RMSE of the above models. The IF1 and QRT using clustering are the best performing models 

when considering both the RMSEr and the BIASr, the models achieved median RMSEr values 

ranging between 0.52 and 0.61, improving on the results of the remaining models by up to a 

factor of two. The RIF using RoI BIASr values also improve on the results of the remaining 

models, in particular for AEPs in excess of 10%. The IF1using Clustering BIASr, however, 

performs poorly in clusters 34 and 37 on the east coast of South Africa. When ranking the 

models based on the RMSEr and BIASr the IF1 and QRT using clustering were the top two 

performing models. This result is in contrast to international recommendations, where it has 

generally been found that using a record length weighting improves the results of developed 

models. In addition alternative weighting schemes have also been shown to benefit the quantile 

estimates, as such additional investigation into an appropriate weighting scheme may also 

prove beneficial.  

 

The IF1 and QRT using Clustering models are therefore the best performing models on a 

national scale. The IF1 however has the added advantage of being able to estimate the entire 

growth curve whereas QRT models only estimated for pre-defied AEPs. The IF1 using 
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Clustering is therefore the recommended model at a national scale, however cognisance needs 

to be taken when applying the model on the eastern coast due to the poor BIASr performance. 

Practitioners can also use the provided performance metrics to compare the models at a regional 

scale and select the best performing model.  
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6 DISCUSSION 

 

The main purpose of this study was to develop and assess the performance of regional DFE 

models for application in South Africa, utilising currently available streamflow data. Three 

main research questions were identified that needed to be answered: 

(a) What is the most suitable distribution for FFA in South Africa on an at-site scale for use on 

a national scale?  

(b) Can South Africa’s catchments be regionalised into statistically homogeneous flood 

producing regions? 

(c) Given the data sparsity in South Africa, which regional DFE model is most suitable?  

 

Specific objectives that were achieved through the study were: 

(a) Compilation of a hydrological descriptors database. 

(b) Collation and quality control of selected gauged flow data in South Africa. 

(c) Identification of a suitable distribution for use in South Africa. 

(d) Identify and verify homogeneous flood producing regions. 

(e) Regional flood model development and assessment of the performance. 

 

6.1 Data Collation and Screening 

 

The collection of the required data for the study was considered to be a two-phased approach, 

whereby both the catchment specific descriptors, and the hydrological streamflow data were 

collated. 

 

6.1.1 Catchment specific descriptors 

 

The methods used in this study are based on internationally accepted DFE procedures. This 

was used to ensure familiarity in the approach and ease of application. These methods require 

nearly identical catchment parameters to be estimated for use in the four DFE methods 

developed and range from meteorological parameters to topographic and land use parameters.  

 

DFE methods require a range of catchment descriptors to be determined for use in models. 

Considering the requirement of ease of application by practitioners, 17 catchment descriptors 
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that are readily available, or easy to estimate, were selected for inclusion in the study. The 

descriptors ranged from geographic and morphological to design rainfall descriptors. A 

hydrologically corrected DEM was developed using the SRTM (NASA-JPL, 2013) data, 

producing a 30 x 30m DEM for the extraction of various catchment descriptors. The derived 

catchment parameters were verified against DWS data sets. 

 

6.1.2 Development of a quality-controlled streamflow data set 

 

The DWS is the custodian for streamflow data for all the sites across South Africa. In addition, 

the data set compiled by Van Bladeren et al. (2007) was used to supplement the available data 

from DWS. The entire data set received consisted of 474 flow-gauging stations with a total 

record length exceeding 15 000 years. The data were screened to identify potential errors and 

to summarise the primary data into annual, monthly, weekly, and daily peak values. This 

screening process allowed for the inclusion of additional years that would conventionally have 

been excluded due to the extent of missing information and the time at which these occurred. 

 

The screening process considered multiple steps. Firstly, the selection of a minimum record 

length of 20 years, secondly, identifying stations impacted by upstream developments and, 

lastly, data quality assessment. The quality assessment included the identification of missing 

data, verification of the regional occurrence of floods, error identification and quality control. 

Some of the stations considered also required rating curve extensions to be performed, and this 

was limited to a maximum of 20% increase in the currently maximum rated stage and flow. 

After the screening, a total number of 383 sites remained for further processing and 

development of the models. 

 

6.2 Selection of a suitable Distribution for Flood Frequency Analysis 

 

At-site design peak discharges were required to form the basis of the model development and 

performance assessment processes. It was identified that several parameter estimation methods 

have been suggested to fit probability distributions to the data in South Africa, ranging from 

standard MM estimation techniques to LM. The wide use of LM both locally  and 

internationally  resulted in the adoption of LM to fit probability distribution to the data used in 

this study.  
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An integral part of the FFA is the selection of an appropriate distribution.  The distributions 

that have been recommended in the literature for South Africa are the GEV, LP3, GPA and 

PE3 distributions. More recently Kjeldsen et al. (2017) reviewed the KAP3 distribution for 

application in RFFA, which provides improved fits to regional data. Given the 

recommendations listed above, and the higher level of flexibility of the KAP3 five distributions 

were selected for evaluation: (i) GEV, (ii) GPA, (iii) KAP3, (iv) LP3 and (v) PE3. The national 

KAP3 h-value for South Africa was estimated to be 0.77. The evaluation process relied on an 

iterative elimination approach, reviewing graphical fit to theoretical distributions, GoF, model 

fit criterion and model predictive ability for identification of the most suitable distribution.  

 

The graphical fit test, which utilises LM diagrams and the Mahalanobis distance (Kjeldsen and 

Prosdocimi, 2015) to identify the most suitable distributions, identified the KAP3 as the most 

suitable, followed by the GPA and LP3 distributions. The GoF tests included the modified 

Anderson Darling, Chi-Squared, Cramer von Mises and Kolmogorov Smirnov tests and were 

applied in four record length categories. For the record lengths less than 80 years no dominant 

distribution was identified as the maximum selection rate difference between distributions was 

only 4.4%. For sites with record lengths exceeding 80 years, the LP3 distribution on average 

accepted at 13.9% more sites, however the number of stations within this category is only 27, 

therefore the higher level of acceptance only equates to 4 sites. The LP3 was deemed most 

favourable, followed by the GPA and KAP3 when strictly applying the GoF test acceptance 

percentages to determine rankings  

 

When applying the model fit criterion, AIC, AICc and BIC, record length categories were also 

applied. The model fit criterion identified the KAP3 as the worst performing distribution, never 

being selected as the most suitable distribution. However, the GPA was selected as the most 

suitable distribution for record lengths less than 80 years, with the most dominant category 

being for sites having between 60 and 80 years of records, where the GPA was selected at 

27.6% mor sites. When considering sites with record lengths in excess of 80 years, the LP3 

was selected at only one site more than the GPA. The GPA was therefore deemed as the best 

performing distribution followed by the LP3 and KAP3 respectively. 

 

The final consideration adopted for the selection of a suitable distribution was the predictive 

ability of the distributions and consisted of a comparison of the estimated and Gringorton 

plotted AMS, dubbed the “true” fit, and the estimation of the uncertainty associated with the 
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distributions being considered. The 5% AEP was adopted to test the “true” fit as the indicative 

AEP and this allowed for the use of 148 sites (39%) when only considering sites with 50 years 

or more of records, which exceeds the 2T requirement prescribed by Robson and Reed (1999). 

It was identified that the GPA and KAP3 distributions tend to underestimate the 5% AEP event 

with an interquartile range between 0.87 and 1.04 and median values of 0.97, whereas LP3 

distribution tends to overestimate with an interquartile range between 0.92 and 1.11 and a 

median of 1.01. These results however did not clearly identify any of the distributions as the 

most suitable distribution. 

 

The uncertainty associated with the distributions considered, was based on the 90% confidence 

limits derived using balanced bootstrapping resampling. The variance of the confidence bands 

was calculated as a percent variance of the FFA of the bootstrap replicates in relation to the 

FFA results using the original AMS data set. The assessment of the uncertainty associated with 

the distributions was based on the 1 and 5%s AEPs, when restricting the sites for the assessment 

to sites with record lengths of 50 years or greater. This restriction adhered to the 2T rule and 

when applying the “rule-of-thumb” of extrapolating to two times the record length an indication 

of the associated uncertainty was assessed for the 1% AEP. It was identified that the uncertainty 

associated with the GPA and KAP3 was very similar, and was anticipated due to the GPA being 

a special case of the Kappa distribution. The KAP3 marginally outperformed the GPA for the 

1 and 0.5% AEPs. Conversely, the LP3 distribution has a much higher associated level of 

uncertainty for AEPs less than 10%, with uncertainty bands reaching up to 240% as opposed 

to 95% for the 0.5% AEP. Considering both the predictive ability analyses, although the LP3 

may perform marginally better than the GPA and KAP3 when estimating the “true” fit, the 

associated uncertainty of the distribution brings into question whether this perfomance will be 

consistent for extended data sets. The KAP3 has the lowest level of uncertainty, and coupling 

this with the estimation of the “true” fit has been deemed the most suitable distribution when 

considering the predictive ability, followed by the GPA and the LP3 respectively. 

 

Taking into consideration the tests undertaken, the LP3, KAP3 and GPA distributions were 

ranked to identify the most suitable distribution. The final ranking indicated that the GPA was 

most suitable followed by the KAP3 and the LP3 respectively. 
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6.3 Regionalisation 

 

Clustering and RoI regionalisation approaches were applied, with both methods requiring 

multiple adjustments and further refinement of the regional delineation. The regionalisation, 

modification and recommendations are discussed below. 

 

6.3.1 Clustering 

 

K-means clustering aims to estimate the minimum overall Euclidian distance for all clusters 

being considered. The identified clusters were also required to adhere to homogeneity 

requirements as stipulated by Hosking and Wallis (1997) as well as the 5T rule. The 

homogeneity measures adopted in the study were the H statistic and the discordancy measure 

(D). 

 

Using the national streamflow dataset, the homogeneity testing identified that the dataset 

contained discordant sites, which would need to be moved, replaced, or excluded to improve 

the homogeneity. After removing the discordant sites for the entire data set, homogeneity was 

still not achieved. Following the same approach further discordant sites were excluded when 

the primary drainage regions were considered independently of each other. Removal of the 

discordant sites did not improve the homogeneity of the primary drainage regions and only 5 

of the regions were deemed relatively homogeneous, two of which did not adhere to the 2T 

requirement. Therefore, a re-clustering approach was adopted to identify relatively 

homogeneous clusters within the entire data set. 

 

The clustering was performed in the attribute space and the catchment descriptors were 

normalised to a range of 0 to 1. This reduced the bias of large values such as the MAP that may 

unduly influence the clustering. The longitude and latitude were double weighted in relation to 

other parameters due to the literature identifying that spatial proximity is a key indicator of 

homogeneity. An iterative cluster analysis process was followed, whereby each potential 

descriptor combination was included for a cycle of cluster analyses. The homogeneity measures 

were also calculated for each iteration and each iteration ranked based on the level of 

homogeneity achieved. Clustering was performed using site descriptors, whereas the 

homogeneity of the clusters, was assessed using the site specific quantitative FFA parameters.  
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The descriptor sets that were able to identify the highest percentage of homogeneous clusters 

were largely meteorological and geographic parameters, with the combination of latitude 

longitude and Dc being deemed as the most suitable parameters for clustering. It should be 

noted that the additional rainfall descriptive statistics can be used, such as the growth curve 

slope, rainfall seasonality, and rainfall clusters, and further investigation is recommended into 

the validity of their use. 

 

The preferred number of clusters was determined using the 2/5T approach adopted by Robson 

and Reed (1999) as a minimum criterion for the sizing of clusters. This specifies the absolute 

minimum required record length for RFFA as two times the design event being estimated, with 

five times being preferable. As an initial estimate a maximum of 36 clusters was adopted, which 

provides an average of approximately 500 years per cluster. The initial clustering identified 17 

homogeneous clusters. The remaining heterogeneous clusters were further analysed using the 

same clustering approach to ensure continuity and prevent any potential subjectivity. The initial 

selection of the number of clusters was such that the clusters varied in size from two to 29 sites. 

Hosking and Wallis (1997) noted that there is no set standard for the selection of the cluster 

sizes and that the size will affect the model’s capabilities to identify regional differences or 

bias.  

 

A total of 42 relatively homogeneous clusters were identified through adjusting the initial 36 

clusters. The process, however, required the exclusion of 51 sites due to discordancy and 

inconsistencies with geographic variance. To the knowledge of the author this is the first 

complete multi-variate clustering analysis that has been undertaken on a national scale for DFE 

in South Africa. Previous studies relied on historically defined homogeneous regions and 

amalgamated morphological and historical homogeneous region definitions for the definition 

of the homogeneous regions. 

 

6.3.2 Region of Influence 

 

A RoI approach which enforces a minimum required record length was investigated, which 

allowed for an assessment of whether the enforcement of the 2/5T rule generates homogeneous 

flood regions. The descriptor set that identified the highest percentage of relatively 

homogeneous regions consisted of Latitude, Longitude, Dc, and mean runoff percentage, which 



 

121 

identified 16% and 51% homogeneous regions for 500- and 200-year minimum record lengths 

approaches, respectively. 

 

To improve the homogeneity achieved through RoI, the use of Super Regions was investigated 

as developed by Mostofi Zadeh and Burn (2019). Through the use of elbow plots, TSNE, 

UMAP and geographic plots, five super regions were identified based on the Latitude, 

Longitude, A, MAP, Dc, Catchment Slope (10-85) and 24-hour 10% AEP design rainfall. 

Although the UMAP plots indicated the potential for an additional super region, the additional 

super region affected the geographic plots negatively. Within each of the super regions, the 

parameter set identifying the highest percentage of relatively homogeneous clusters was 

identified and utilised for the model development steps. The parameter sets, however, only 

identified 52.6% relatively homogeneous sites on a national scale, yielding slight improvement 

over the conventional RoI approach. One key finding was that the RoI performed particularly 

poor in super region 5, located on the South Western coastline of South Africa, only identifying 

homogeneous regions for 28% of sites. 

 

6.4 Model Development 

 

Four distinct modelling approaches were adopted for the estimation of QT, i.e. RIF, PGC, CRM 

and the DQE approaches, and each approach was developed on a national and a cluster-based 

scale. The national and regional scale models refer to the sites used for the formation of the 

regressions to estimate the SF, i.e. for the national models all sites were utilised, whereas 

regional models relied only on the sites within the defined clusters or super region. As such a 

total of four combinations of development scale and regionalisation scheme was used: (i) 

Clustering with cluster-based models, (ii) Clustering with a national scale model, (iii) RoI with 

super region based models, and (iv) RoI with a national scale model. Prior to application of the 

modelling approaches the at-site RM calibration and selection of suitable SFs was undertaken. 

 

6.4.1 RM calibration 

 

The calibrated CT-values were derived from the design rainfall determined by Smithers and 

Schulze (2003) and design peak discharges determined from the observed flow data using the 

GPA distribution. Some inconsistencies in the CT values were identified resulted as some C 

values exceeded one, with a maximum and minimum of 1.569 and 0.002, respectively. In 
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theory the CT value will increase as the AEP decreases, however, 20 sites, had negative CT 

value growth curves after the regional calibration process was undertaken. These 

inconsistencies have been identified in previous studies both locally and internationally 

(McDermott and Pilgrim, 1982, Parak, 2007) Although, the stations potentially introduce errors 

into the derived models, it is anticipated that due to the use of regional analysis that the effect 

will be limited. However, further investigation is necessary to resolve these inconsistencies. 

 

6.4.2 Scaling factor and dimensionless growth curves 

 

Both the MAF and MEF were assessed for viability for use as a SF for the developed growth 

curves. The MAF reduced the spread of the dimensionless growth curves in relation to the 

MEF, particularly for AEPs less than 5% and was therefore adopted. The C10 value, as adopted 

by Pilgrim (2001) and Calitz and Smithers (2020), was used as the SF for the at-site C value 

growth curves. 

 

Two sets of regional growth curves were developed, the C value and Quantile, additionally 

regional LMs were derived, the latter allows for the derivation of growth curves from additional 

distributions for comparative purposes.  

 

6.4.3 Regression development 

 

For the development of the regressions to estimate the required SFs the predictor variable p-

values were used to identify the three most suitable descriptor variables. Three variables were 

chosen as a means to reduce model complexity and to aid in the adoption of the model by 

practitioners. 

 

The regressions developed for the clustering regionalisation scheme and estimation of the SFs 

utilised a combination of A, MAP, Dc and the 10% AEP design rainfall depth. Given the small 

size of some of the defined clusters, the regressions were found to be extremely sensitive when 

applying LOO resampling performance assessment and a minimum requirement of 30 sites 

was adopted for the development of the cluster scale regressions. The developed models to 

estimate the MAF performed well with R2 values ranging between 0.59 and 0.9, however the 

C10 models only achieved R2values between 0.05 and 0.45. Additionally, when comparing the 

estimated vs. the observed values, the regional MAF model achieved an NSE of 0.78, as 
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opposed to values between 0 and 0.05 for the remaining models. The QRT modelling approach 

regressions also achieved well when considering the R2 values achieving values ranging 

between 0.49 and 0.91 with a median value of 0.79.  

 

The RoI and Super Region regressions were unable to improve on those developed for the 

clustering scheme. Regressions were developed, including the estimation of the most suitable 

parameters, at a Super Region scale in an attempt to improve estimates. The developed 

regressions achieved R2 values ranging between 0.78 and 0.83 for estimation of the MAF, but 

the NSE values indicated that the national based models were again a poor fit, however the 

regional MAF performed adequately achieving an NSE of 0.69. Additionally, the C10 

regressions were improved, however still performed poorly, only achieving maximum NSE and 

R2 values of 0.28 and 0.45, respectively. The developed QRT models performed well with R2 

values ranging between 0.66 and 0.86 and a median value of 0.78.  

 

6.4.4 Model performance assessment and application recommendations  

 

The regional models were assessed using the BIAS, RMSE, BIASr, RMSEr, RE and the NSE 

values. The NSEs were used to identify the best performing modelling scale, after which the 

four best performing models were selected based in the RE, the final assessment was 

undertaken using the BIAS, RMSE, BIASr, and RMSEr.  

 

The model accuracy was assessed using the NSE and RE. The regional models achieved NSE 

values up to 0.77 but tended to underestimation. The RE assessment relied on the ratio bounds 

developed by Rahman et al. (2012) and Naidoo (2020). Rahman et al. (2012) notes that the 

acceptable ratio bounds, termed “desirable”, are arbitrary, but provide a guide for model 

assessment and adopted a ratio bound of 0.5 – 2 as acceptable. Naidoo (2020) further refined 

the bounds of acceptable ratios, taking into consideration the type of error, e.g. over or under 

estimation, and introduced potentially acceptable bounds and firm acceptance bounds. The 

refined bounds reduce the potentially acceptable upper and lower bounds to range between 0.5 

and 1.5. For comparative purposes the potentially acceptable and acceptable bounds defined 

by Naidoo (2020) were considered as acceptable as no guidance is provided on how to identify 

whether an estimate within the potentially acceptable bounds is approved or rejected. The two 

ratio bounds considered were therefore 0.5 – 2 and 0.5 – 1.5. The models that performed best 

in the RE assessment were the IF1 for both regionalisation schemes and the IF2 and PRM 
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models using the RoI. The four models were able to estimate the peak flows within the Rahman 

et al. (2012) RE bounds at between 64.8 and 75.2% of the sites considered. The percentages 

drop to between 53.1 and 65.3% when applying the more stringent RE bounds defined by 

Naidoo (2020). When considering an overall rank for the model accuracy assessment the four 

top performing models were the IF1 and QRT using clustering and the IF1 and IF2 using RoI. 

 

The final assessment compared the BIAS and RMSE of the Clustering based (IF1, QRT) and 

the RoI based (IF1 and IF2) models. The IF1 and QRT using Clustering models are the best 

performing models when considering both the RMSEr and the BIASr, the models achieved 

median RMSEr values ranging between 0.52 and 0.61, improving on the results of the 

remaining models by up to a factor of two. The BIASr values for the IF1 and QRT also improve 

on the results of the remaining models, in particular for AEPs in excess of 10%. The BIASr 

values for the IF1, however, performs poorly in clusters 34 and 37 on the east coast of South 

Africa. 

 

The IF1 and QRT using Clustering models are therefore the best performing models on a 

national scale. However, the IF1 has the added advantage of being able to estimate the entire 

growth curve and is not limited to predefined AEP quantiles with the QRT models. The IF1 is 

therefore the recommended model at a national scale, however cognisance needs to be taken 

when applying the model on the eastern coast due to the poor BIASr performance. Practitioners 

can also use the provided performance metrics to compare the models at a regional scale and 

select the best performing model. 
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7 CONCLUSIONS AND RECOMMENDATIONS 

 

The main findings of the study can be summarised into the following: 

(i) The South African streamflow database can be considered equally rich in data to other 

countries such as Australia and the United Kingdom. 

(ii) Out of five potential frequency distributions utilised both locally and internationally, the 

most appropriate distribution for application in South Africa, based on four selection 

criteria, was the GPA distribution. 

(iii)Two methods for the formation of pooling groups were assessed for application in South 

Africa, and through applying strict homogeneity requirements 42 homogeneous clusters 

were identified. The homogeneous clusters were also mapped out geographically to ease 

the application process. 

(iv) The super region approach, which applied dimensionality reduction methods, for the 

identification of five super regions, combines RoI and Clustering showing potential for 

application in South Africa. 

(v) When developing models for the estimation of the SFs at an at-site basis regional scale 

models outperformed the use of national scale models. 

(vi) Of the modelling approaches adopted, the Index flood approach, applying equal station 

weighting, and the Quantile Regression Techniques were deemed best performing models, 

however, due to the IF1 estimating the entire growth curve it is the recommended approach. 

 

7.1 Unique Contributions from This Study 

 

The following items are considered to be the most prominent unique contributions that have 

been developed as part of this study: 

(i) The database of design flood specific descriptors is potentially the largest database 

concentrating on South Africa and this study thus provides a basis for further development 

and refinement of models for DFE in South Africa.  

(ii) To the knowledge of the author, it is the first study to perform a detailed investigation into 

the most suitable probability distribution to use for FFA in South Africa and to recommend 

the use of the GPA in South Africa. 

(iii)The first application of model uncertainty used for the selection of a suitable design flood 

distribution. 
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(iv) The first application of the KAP3 methodology and determination of a national Kappa h 

value for South Africa. 

(v) The RoI, super-region and multi-variate clustering approaches have also not been applied 

in South Africa before and previously geographic and morphological maps were used, or 

reliance was often placed on historically defined homogeneous regions. 

(vi) A new and unique set of relatively homogenous clusters for use with DFE have been 

developed. 

(vii) Development and performance assessment of four models using QRT and PRT 

modelling approaches at multiple scales for South Africa. This included the comparison of 

the models’ predictive ability and identified that the equally weighted IF approach 

outperformed the record length and Euclidian distance weighted record length weighting, 

which is in contrast with international findings. 

 

In addition to the above, the study also identified that in the South African context, which was 

shown to be relatively data rich, the Clustering regionalisation scheme provided the best overall 

quantile flow estimates, which is in contrast to international findings where in data rich regions, 

RoI is generally favoured. The result in this study does not exclude the RoI, but only in the 

current form applied, the inclusion of additional descriptors, weighting schemes and model 

formulations may improve the RoI performance. Similarly, the equally weighted IF was found 

to perform best, in contrast to international findings where generally record length weighting 

has been shown to improve results.  

 

This research has contributed to the following key projects identified by the NFSP as outlined 

by Smithers et al. (2014): 

(i) A.1.2.2 Guide for AEP distribution for floods 

(ii) A.1.2.3 Spatial and Temporal distribution of available streamflow data 

(iii)A.1.2.6 Refined regionalised / polled Index flood methods 

(iv) A.1.2.7.1/3 Update and refine the RMF method and its regionalisation 

(v) A.1.2.8.2/3 Modernise the Standard Design Flood Method 

(vi) A.1.2.8.5 and A.1.2.4 Modernise existing synthetic unit hydrographs and related 

homogeneous flood regions 

(vii) A.1.2.8.6 Modernise existing empirical methods for small catchments 

(viii) C.2 Web-based framework of methods on SANCOLD website 

(ix) C.6 Web-based GIS database/geodatabase 
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7.2 Recommendation for Future Research 

 

The following recommendations for future research and development are made: 

(a) Investigation into the impacts of non-stationarity on regionalisation, 

(b) Potential relaxation of data requirements in data sparse regions to improve regionalisation 

coverage in these regions, 

(c) Further improvement of the RoI approach within South Africa, such as an improved 

weighting scheme or additional parameters for region formation, 

(d) Investigation into the applicability of Bayesian statistics in South African hydrology, 

(e) Compilation of a national hydrological descriptor database, beyond flood estimation, 

similar to the databases implemented internationally, 

(f) Refinement of the estimation of ARFs,  

(g) Further refinement of the developed models to improve estimates, e.g. through application 

of Bayesian models, inclusion of additional catchment descriptors, weighting scheme 

modifications, etc., 

(h) Update of the National Design Rainfall Database, and 

(i) Improvement of time of concentration estimation at a national scale. 
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Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

1 

Max 0.326 0.327 0.345 0.377 0.402 0.412 0.415 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.167 0.217 0.234 0.237 0.205 0.184 0.178 

Average 0.166 0.211 0.219 0.218 0.210 0.202 0.192 

2 

Max 0.052 0.094 0.124 0.152 0.212 0.273 0.350 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.030 0.060 0.082 0.109 0.137 0.166 0.201 

Average 0.031 0.060 0.081 0.104 0.138 0.168 0.202 

3 

Max 0.030 0.063 0.097 0.143 0.230 0.326 0.462 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.028 0.048 0.072 0.092 0.120 0.144 0.171 

Average 0.025 0.049 0.070 0.095 0.140 0.187 0.251 

4 

Max 0.036 0.080 0.118 0.161 0.230 0.294 0.372 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.025 0.063 0.078 0.096 0.109 0.117 0.123 

Average 0.023 0.050 0.069 0.091 0.123 0.152 0.188 

5 

Max 0.135 0.247 0.299 0.391 0.533 0.663 0.818 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.030 0.062 0.087 0.114 0.165 0.215 0.266 

Average 0.047 0.090 0.120 0.152 0.201 0.248 0.307 

6 

Max 0.084 0.174 0.237 0.300 0.385 0.454 0.528 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.054 0.099 0.129 0.157 0.196 0.220 0.251 

Average 0.055 0.107 0.141 0.173 0.215 0.248 0.283 

7 

Max 0.146 0.182 0.176 0.162 0.157 0.158 0.156 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.082 0.112 0.115 0.111 0.102 0.094 0.088 

Average 0.089 0.120 0.123 0.121 0.114 0.108 0.101 

8 

Max 0.062 0.119 0.159 0.199 0.254 0.298 0.345 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.040 0.072 0.100 0.130 0.172 0.207 0.247 

Average 0.044 0.080 0.104 0.127 0.158 0.183 0.211 

9 

Max 0.123 0.181 0.194 0.195 0.186 0.178 0.213 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.050 0.078 0.090 0.111 0.142 0.162 0.164 

Average 0.055 0.088 0.104 0.117 0.130 0.138 0.146 

10 

Max 0.226 0.361 0.413 0.440 0.451 0.446 0.434 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.060 0.106 0.134 0.152 0.173 0.186 0.198 

Average 0.070 0.118 0.145 0.165 0.188 0.202 0.216 

11 
Max 0.071 0.150 0.207 0.268 0.358 0.437 0.655 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 
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Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

Median 0.024 0.053 0.074 0.104 0.140 0.171 0.208 

Average 0.030 0.060 0.084 0.112 0.158 0.206 0.270 

12 

Max 0.160 0.314 0.434 0.567 0.772 0.960 1.185 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.065 0.123 0.161 0.198 0.251 0.292 0.322 

Average 0.071 0.138 0.184 0.231 0.296 0.353 0.417 

13 

Max 0.238 0.397 0.462 0.499 0.519 0.521 0.515 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.080 0.151 0.198 0.239 0.266 0.307 0.377 

Average 0.116 0.196 0.238 0.271 0.308 0.334 0.361 

14 

Max 0.123 0.252 0.343 0.434 0.561 0.663 0.776 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.045 0.083 0.101 0.118 0.143 0.170 0.186 

Average 0.054 0.106 0.138 0.168 0.205 0.233 0.263 

15 

Max 0.435 0.632 0.712 0.786 0.885 0.945 0.996 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.115 0.180 0.211 0.233 0.258 0.274 0.299 

Average 0.172 0.276 0.329 0.368 0.408 0.432 0.454 

16 

Max 0.114 0.239 0.343 0.459 0.638 0.801 0.995 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.081 0.139 0.177 0.213 0.263 0.309 0.360 

Average 0.082 0.146 0.192 0.238 0.304 0.361 0.426 

17 

Max 0.150 0.266 0.365 0.478 0.660 0.830 1.036 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.084 0.145 0.170 0.208 0.290 0.366 0.458 

Average 0.095 0.173 0.230 0.290 0.381 0.463 0.562 

18 

Max 0.068 0.135 0.184 0.236 0.316 0.387 0.469 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.021 0.049 0.074 0.105 0.159 0.216 0.293 

Average 0.033 0.070 0.098 0.129 0.178 0.226 0.286 

19 

Max 0.041 0.065 0.075 0.089 0.107 0.120 0.132 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.032 0.058 0.074 0.080 0.091 0.098 0.103 

Average 0.035 0.060 0.073 0.083 0.094 0.100 0.106 

20 

Max 0.425 0.534 0.552 0.546 0.519 0.494 0.467 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.166 0.204 0.205 0.198 0.183 0.172 0.161 

Average 0.208 0.265 0.276 0.274 0.263 0.251 0.239 

21 

Max 0.388 0.501 0.544 0.585 0.673 0.733 0.787 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.098 0.124 0.141 0.153 0.170 0.184 0.197 

Average 0.162 0.226 0.258 0.283 0.306 0.321 0.332 
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Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

22 

Max 0.059 0.134 0.187 0.242 0.321 0.387 0.460 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.025 0.049 0.073 0.098 0.122 0.160 0.209 

Average 0.030 0.057 0.078 0.101 0.139 0.174 0.219 

23 

Max 0.107 0.161 0.174 0.177 0.172 0.165 0.157 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.047 0.063 0.069 0.071 0.072 0.071 0.069 

Average 0.062 0.085 0.089 0.089 0.086 0.082 0.077 

24 

Max 0.159 0.251 0.312 0.391 0.534 0.665 0.819 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.117 0.218 0.284 0.303 0.312 0.310 0.304 

Average 0.089 0.153 0.192 0.229 0.277 0.316 0.359 

25 

Max 0.225 0.401 0.479 0.528 0.565 0.578 0.682 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.050 0.102 0.142 0.185 0.228 0.301 0.379 

Average 0.072 0.130 0.166 0.199 0.245 0.282 0.325 

26 

Max 0.112 0.203 0.266 0.328 0.412 0.481 0.602 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.045 0.118 0.177 0.221 0.238 0.245 0.248 

Average 0.059 0.118 0.156 0.195 0.249 0.297 0.352 

27 

Max 0.264 0.388 0.453 0.500 0.546 0.571 0.588 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.140 0.212 0.240 0.253 0.259 0.256 0.249 

Average 0.167 0.236 0.262 0.275 0.280 0.279 0.274 

28 

Max 0.392 0.707 0.879 1.021 1.176 1.276 1.365 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.123 0.216 0.267 0.310 0.358 0.390 0.420 

Average 0.148 0.272 0.345 0.411 0.491 0.551 0.611 

29 

Max 0.074 0.114 0.155 0.213 0.312 0.414 0.547 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.046 0.085 0.115 0.136 0.157 0.173 0.194 

Average 0.050 0.087 0.111 0.136 0.171 0.203 0.241 

30 

Max 0.072 0.164 0.248 0.345 0.506 0.662 0.859 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.045 0.106 0.153 0.219 0.325 0.390 0.518 

Average 0.048 0.115 0.170 0.235 0.343 0.451 0.590 

31 

Max 0.060 0.110 0.143 0.173 0.210 0.238 0.267 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.039 0.064 0.083 0.098 0.126 0.146 0.163 

Average 0.039 0.067 0.085 0.103 0.127 0.145 0.165 

32 
Max 0.128 0.180 0.235 0.289 0.362 0.419 0.481 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 
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Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

Median 0.081 0.149 0.142 0.164 0.199 0.227 0.255 

Average 0.081 0.130 0.154 0.174 0.197 0.213 0.230 

33 

Max 0.293 0.413 0.461 0.487 0.498 0.502 0.583 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.148 0.200 0.211 0.209 0.213 0.216 0.235 

Average 0.151 0.219 0.250 0.270 0.287 0.295 0.301 

34 

Max 0.137 0.294 0.429 0.589 0.853 1.109 1.430 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.053 0.101 0.108 0.124 0.154 0.214 0.286 

Average 0.075 0.135 0.176 0.217 0.278 0.333 0.400 

35 

Max 0.256 0.361 0.397 0.411 0.410 0.471 0.574 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.108 0.177 0.220 0.245 0.268 0.307 0.339 

Average 0.116 0.173 0.206 0.233 0.266 0.291 0.318 

36 

Max 0.179 0.266 0.300 0.318 0.325 0.323 0.317 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.104 0.152 0.176 0.194 0.211 0.213 0.211 

Average 0.109 0.158 0.178 0.190 0.198 0.201 0.201 

37 

Max 0.217 0.445 0.614 0.793 1.060 1.296 1.569 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.086 0.139 0.174 0.215 0.280 0.360 0.461 

Average 0.093 0.173 0.234 0.300 0.401 0.494 0.606 

38 

Max 0.103 0.157 0.177 0.187 0.190 0.187 0.189 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.050 0.078 0.094 0.106 0.121 0.129 0.138 

Average 0.053 0.081 0.095 0.106 0.117 0.125 0.132 

39 

Max 0.124 0.216 0.297 0.394 0.558 0.715 0.914 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.049 0.082 0.110 0.129 0.165 0.194 0.226 

Average 0.057 0.096 0.125 0.155 0.202 0.246 0.302 

40 

Max 0.099 0.159 0.207 0.256 0.320 0.368 0.419 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.036 0.065 0.093 0.124 0.149 0.167 0.186 

Average 0.045 0.081 0.105 0.128 0.159 0.186 0.216 

41 

Max 0.048 0.063 0.071 0.078 0.085 0.090 0.093 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.015 0.023 0.025 0.025 0.030 0.034 0.039 

Average 0.020 0.028 0.032 0.035 0.038 0.040 0.042 

42 

Max 0.049 0.096 0.131 0.166 0.218 0.260 0.308 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.033 0.070 0.091 0.118 0.164 0.194 0.227 

Average 0.035 0.067 0.089 0.112 0.145 0.173 0.204 
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APPENDIX B: DIMENSIONLESS GROWTH CURVES FOR EACH OF 

THE 42 RELATIVELY HOMOGENEOUS CLUSTERS 
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APPENDIX C: DIMENSIONLESS IF1 GROWTH CURVES FOR EACH 

OF THE 42 RELATIVELY HOMOGENEOUS CLUSTERS 
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Cluster 
RIF Growth Factor (GFT) per AEP (%) 

50 20 10 5 2 1 0.5 

1 0.85 1.54 1.95 2.28 2.63 2.83 2.99 

2 0.53 1.41 2.28 3.38 5.30 7.20 9.61 

3 0.44 1.27 2.19 3.45 5.89 8.57 12.28 

4 0.45 1.40 2.38 3.66 5.96 8.32 11.40 

5 0.50 1.40 2.31 3.48 5.56 7.65 10.33 

6 0.59 1.52 2.35 3.30 4.76 6.07 7.56 

7 0.83 1.67 2.15 2.52 2.89 3.10 3.27 

8 0.56 1.44 2.29 3.32 5.04 6.69 8.69 

9 0.70 1.55 2.21 2.89 3.81 4.54 5.29 

10 0.64 1.53 2.28 3.11 4.33 5.37 6.51 

11 0.44 1.32 2.27 3.56 5.98 8.57 12.09 

12 0.56 1.55 2.44 3.47 5.11 6.58 8.29 

13 0.63 1.52 2.28 3.14 4.42 5.53 6.77 

14 0.59 1.59 2.44 3.39 4.81 6.01 7.35 

15 0.64 1.51 2.25 3.08 4.33 5.40 6.59 

16 0.62 1.49 2.25 3.13 4.50 5.72 7.11 

17 0.55 1.45 2.30 3.35 5.10 6.77 8.82 

18 0.44 1.41 2.40 3.69 6.01 8.38 11.46 

19 0.69 1.61 2.31 3.02 3.97 4.70 5.44 

20 0.92 1.52 1.80 1.99 2.14 2.22 2.27 

21 0.78 1.46 1.97 2.46 3.09 3.56 4.02 

22 0.52 1.40 2.29 3.40 5.35 7.30 9.76 

23 0.88 1.58 1.94 2.21 2.45 2.57 2.66 

24 0.57 1.46 2.30 3.32 4.99 6.56 8.46 

25 0.55 1.49 2.37 3.42 5.14 6.75 8.68 

26 0.46 1.39 2.34 3.59 5.86 8.20 11.26 

27 0.76 1.56 2.12 2.64 3.29 3.74 4.16 

28 0.56 1.50 2.37 3.39 5.03 6.54 8.32 

29 0.54 1.42 2.29 3.37 5.23 7.04 9.31 

30 0.34 1.20 2.20 3.65 6.62 10.06 15.05 

31 0.64 1.49 2.23 3.07 4.37 5.50 6.79 

32 0.69 1.58 2.27 2.97 3.94 4.68 5.45 

33 0.76 1.50 2.05 2.60 3.32 3.86 4.39 

34 0.56 1.40 2.21 3.23 4.99 6.71 8.86 

35 0.71 1.45 2.06 2.74 3.73 4.56 5.47 

36 0.80 1.52 2.01 2.44 2.94 3.27 3.57 

37 0.47 1.32 2.23 3.45 5.74 8.17 11.45 

38 0.67 1.49 2.19 2.95 4.07 5.01 6.05 

39 0.61 1.45 2.23 3.14 4.61 5.96 7.56 

40 0.55 1.42 2.27 3.31 5.09 6.81 8.94 

41 0.72 1.47 2.08 2.71 3.61 4.32 5.08 

42 0.54 1.43 2.30 3.38 5.22 7.00 9.22 
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APPENDIX D: REGIONAL L-MOMENTS FOR THE 42 RELATIVELY 

HOMOGENEOUS CLUSTERS FOR USE IN THE IF2 APPROACH 
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Regional LMs per relatively homogeneous cluster 

Cluster λ2 τ3 

 

Cluster λ2 τ3 

1 0.359 0.200 22 0.588 0.532 

2 0.590 0.513 23 0.360 0.167 

3 0.642 0.580 24 0.571 0.473 

4 0.670 0.534 25 0.593 0.471 

5 0.619 0.513 26 0.651 0.534 

6 0.562 0.436 27 0.423 0.296 

7 0.430 0.172 28 0.586 0.455 

8 0.568 0.475 29 0.583 0.495 

9 0.471 0.353 30 0.738 0.635 

10 0.514 0.410 31 0.510 0.430 

11 0.657 0.558 32 0.491 0.341 

12 0.610 0.452 33 0.402 0.345 

13 0.520 0.395 34 0.545 0.493 

14 0.587 0.413 35 0.426 0.392 

15 0.509 0.414 36 0.378 0.261 

16 0.522 0.438 37 0.628 0.570 

17 0.573 0.473 38 0.476 0.394 

18 0.678 0.523 39 0.518 0.449 

19 0.506 0.342 40 0.567 0.494 

20 0.310 0.120 41 0.424 0.380 

21 0.372 0.329 42 0.589 0.511 
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APPENDIX E: DIMENSIONLESS C VALUE GROWTH CURVES FOR 

EACH OF THE 42 RELATIVELY HOMOGENEOUS CLUSTERS 
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Cluster 
CT Growth Factor (GFT) per AEP (%) 

50 20 10 5 2 1 0.5 

1 0.75 0.96 1.00 1.00 0.97 0.93 0.89 

2 0.39 0.74 1.00 1.27 1.68 2.03 2.45 

3 0.37 0.71 1.00 1.34 1.93 2.54 3.36 

4 0.31 0.70 1.00 1.33 1.85 2.34 2.97 

5 0.39 0.74 1.00 1.28 1.72 2.13 2.65 

6 0.40 0.77 1.00 1.22 1.50 1.72 1.94 

7 0.72 0.97 1.00 0.98 0.93 0.89 0.84 

8 0.44 0.78 1.00 1.20 1.48 1.70 1.95 

9 0.51 0.83 1.00 1.14 1.28 1.38 1.47 

10 0.46 0.80 1.00 1.17 1.37 1.51 1.65 

11 0.38 0.73 1.00 1.31 1.83 2.35 3.05 

12 0.40 0.77 1.00 1.21 1.50 1.72 1.97 

13 0.46 0.80 1.00 1.18 1.40 1.58 1.77 

14 0.39 0.77 1.00 1.21 1.47 1.66 1.87 

15 0.49 0.81 1.00 1.17 1.37 1.52 1.67 

16 0.44 0.77 1.00 1.23 1.54 1.81 2.12 

17 0.41 0.76 1.00 1.24 1.60 1.92 2.30 

18 0.32 0.71 1.00 1.32 1.83 2.33 2.97 

19 0.47 0.82 1.00 1.14 1.29 1.38 1.45 

20 0.76 0.97 1.00 0.99 0.94 0.89 0.84 

21 0.61 0.86 1.00 1.11 1.24 1.33 1.41 

22 0.40 0.73 1.00 1.31 1.81 2.30 2.92 

23 0.71 0.95 1.00 1.00 0.96 0.91 0.86 

24 0.42 0.77 1.00 1.23 1.54 1.81 2.11 

25 0.43 0.78 1.00 1.21 1.50 1.74 2.01 

26 0.37 0.75 1.00 1.26 1.64 1.97 2.36 

27 0.67 0.92 1.00 1.03 1.03 1.00 0.97 

28 0.41 0.77 1.00 1.22 1.51 1.74 1.99 

29 0.43 0.77 1.00 1.23 1.56 1.85 2.18 

30 0.28 0.67 1.00 1.39 2.06 2.73 3.62 

31 0.47 0.79 1.00 1.20 1.45 1.66 1.88 

32 0.55 0.86 1.00 1.11 1.22 1.30 1.37 

33 0.61 0.88 1.00 1.08 1.16 1.20 1.24 

34 0.48 0.80 1.00 1.19 1.48 1.73 2.05 

35 0.56 0.83 1.00 1.15 1.34 1.49 1.65 

36 0.64 0.90 1.00 1.06 1.09 1.10 1.10 

37 0.41 0.75 1.00 1.27 1.67 2.03 2.47 

38 0.52 0.83 1.00 1.15 1.33 1.47 1.62 

39 0.46 0.79 1.00 1.22 1.53 1.82 2.19 

40 0.43 0.77 1.00 1.23 1.55 1.82 2.14 

41 0.60 0.86 1.00 1.11 1.22 1.29 1.36 

42 0.41 0.75 1.00 1.25 1.60 1.89 2.23 
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APPENDIX F: MAF AND C10 REGRESSION STATISTICS FOR THE 42 

RELATIVELY HOMOGENEOUS CLUSTERS 
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Scale No. Sites 

MAF C10 

AIC BIC R2 RMSE 
Descriptor Standard Error 

AIC BIC R2 RMSE 
Descriptor Standard Error 

Const A MAP Dc Const A MAP Dc 

National 332 848.99 864.78 0.79 214.86 0.78 0.02 0.11 0.04 745.82 761.05 0.13 1.18 0.87 0.02 0.12 0.04 

Cluster 1 32 55.01 60.87 0.76 58.36 13.59 0.07 1.96 0.75 49.54 55.41 0.33 0.07 12.48 0.07 1.80 0.69 

Cluster 2 - 3 30 51.37 56.98 0.68 53.94 19.26 0.07 2.58 1.62 43.84 49.45 0.45 0.06 16.98 0.06 2.28 1.43 

Cluster 4 43 79.85 86.90 0.83 56.43 8.83 0.05 1.31 0.65 80.64 87.68 0.34 0.07 8.91 0.05 1.32 0.65 

Cluster 5 35 81.60 87.82 0.64 98.18 4.88 0.11 0.62 0.54 74.45 80.67 0.13 0.10 4.40 0.10 0.56 0.49 

Cluster 6 35 51.11 57.33 0.85 66.67 11.16 0.05 1.62 0.65 53.77 59.99 0.11 0.09 11.59 0.06 1.68 0.67 

Cluster 7 35 52.45 58.68 0.86 52.02 5.17 0.05 0.69 0.61 49.71 55.93 0.15 0.06 4.97 0.05 0.67 0.59 

Cluster 8 37 47.86 54.31 0.85 51.68 9.45 0.05 1.38 0.36 45.87 52.32 0.29 0.06 9.20 0.05 1.35 0.35 

Cluster 9 31 62.27 68.00 0.83 38.82 6.76 0.08 0.90 0.76 61.83 67.56 0.40 0.06 6.71 0.08 0.89 0.75 

Cluster 10 33 69.22 75.21 0.79 38.32 4.44 0.08 0.58 0.83 71.06 77.05 0.30 0.07 4.57 0.09 0.60 0.86 

Cluster 11 35 81.60 87.82 0.64 98.18 4.88 0.11 0.62 0.54 74.45 80.67 0.13 0.10 4.40 0.10 0.56 0.49 

Cluster 12 30 62.38 67.98 0.73 54.71 4.31 0.11 0.56 0.50 58.67 64.28 0.16 0.09 4.05 0.10 0.52 0.47 

Cluster 13 30 44.70 50.31 0.59 71.64 9.69 0.09 1.36 0.64 41.94 47.54 0.05 0.09 9.25 0.08 1.30 0.62 

Cluster 14 32 45.70 51.56 0.90 107.76 7.31 0.04 0.99 0.84 42.51 48.38 0.21 0.05 6.96 0.04 0.94 0.80 

Cluster 15 47 76.79 84.19 0.75 129.51 3.64 0.06 0.52 0.15 77.63 85.03 0.09 0.14 3.68 0.06 0.52 0.15 

Cluster 16 42 65.63 72.58 0.69 101.45 4.57 0.07 0.64 0.28 59.05 66.00 0.05 0.09 4.22 0.06 0.59 0.26 

Cluster 17 31 49.09 54.82 0.74 98.34 2.90 0.08 0.40 0.11 99.96 105.70 0.03 3.85 6.59 0.18 0.91 0.25 

Cluster 18 33 77.31 83.30 0.80 190.12 3.20 0.10 0.45 0.23 79.59 85.57 0.28 0.12 3.31 0.10 0.46 0.23 

Cluster 19 42 78.71 85.66 0.89 171.99 1.51 0.04 0.23 0.10 87.98 94.93 0.22 0.13 1.69 0.05 0.26 0.11 

Cluster 20 - 24 32 69.96 75.82 0.88 92.84 2.74 0.08 0.39 0.18 72.46 78.33 0.45 0.10 2.85 0.08 0.40 0.18 

Cluster 25 34 69.81 75.91 0.85 150.94 3.01 0.08 0.43 0.14 75.86 81.97 0.37 0.11 3.30 0.09 0.47 0.15 

Cluster 26 - 27 34 76.23 82.34 0.82 167.73 3.54 0.09 0.53 0.19 82.17 88.27 0.29 0.16 3.86 0.10 0.58 0.21 

Cluster 28 34 77.83 84.78 0.84 104.65 2.57 0.06 0.39 0.14 79.48 86.43 0.30 0.14 2.62 0.06 0.40 0.14 

Cluster 29 42 39.72 45.71 0.71 43.14 2.18 0.07 0.30 0.12 98.57 104.56 0.15 3.73 5.31 0.17 0.73 0.29 

Cluster 30 - 32 33 26.06 31.80 0.84 53.94 2.04 0.06 0.28 0.10 95.90 101.64 0.02 3.85 6.29 0.19 0.86 0.31 

Cluster 33 31 81.97 89.29 0.74 133.99 3.89 0.06 0.56 0.09 85.32 92.64 0.13 0.15 4.03 0.06 0.58 0.10 
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Scale No. Sites 

MAF C10 

AIC BIC R2 RMSE 
Descriptor Standard Error 

AIC BIC R2 RMSE 
Descriptor Standard Error 

Const A MAP Dc Const A MAP Dc 

Cluster 34 46 76.72 83.17 0.80 132.96 7.05 0.07 1.00 0.12 70.64 77.08 0.21 0.11 6.49 0.06 0.92 0.11 

Cluster 35 37 59.16 65.15 0.70 120.60 6.89 0.08 0.99 0.11 55.27 61.26 0.13 0.09 6.49 0.07 0.94 0.10 

Cluster 36 33 55.07 60.93 0.70 115.65 5.13 0.08 0.72 0.32 49.63 55.49 0.10 0.10 4.71 0.07 0.66 0.29 

Cluster 37 32 86.09 93.14 0.79 141.62 6.49 0.07 0.92 0.11 80.36 87.40 0.16 0.11 6.07 0.06 0.86 0.10 

Cluster 38 - 39 43 73.38 79.48 0.82 31.38 8.15 0.08 1.06 1.27 71.90 78.01 0.35 0.06 7.97 0.08 1.03 1.25 

Cluster 40 34 65.00 70.98 0.85 89.49 4.32 0.09 0.59 0.54 65.93 71.91 0.32 0.06 4.38 0.09 0.60 0.55 

Cluster 41 33 68.25 74.11 0.79 64.71 5.14 0.09 0.71 1.02 71.08 76.94 0.32 0.08 5.37 0.10 0.75 1.07 

Cluster 42 32 70.10 76.08 0.83 87.15 4.50 0.09 0.62 0.52 72.40 78.38 0.28 0.08 4.66 0.09 0.65 0.54 
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APPENDIX G: QRT MODEL COEFFICIENTS AND REGRESSION 

STATISTICS FOR THE 42 RELATIVELY HOMOGENEOUS 

CLUSTERS 
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Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

National 

50 -2.13 0.52 0.62 -0.25 818.47 833.69 0.73 112.44 0.51 0.03 0.14 0.05 

20 -1.60 0.52 0.70 -0.26 736.98 752.20 0.79 272.97 0.45 0.03 0.12 0.04 

10 -1.37 0.53 0.74 -0.26 703.23 718.45 0.81 442.56 0.43 0.02 0.12 0.04 

5 -1.20 0.53 0.77 -0.27 687.22 702.44 0.82 670.32 0.42 0.02 0.12 0.04 

2 -1.05 0.53 0.82 -0.28 695.31 710.53 0.82 1090.68 0.43 0.02 0.12 0.04 

1 -0.97 0.53 0.86 -0.28 722.50 737.72 0.81 1528.21 0.44 0.02 0.12 0.04 

0.5 -0.90 0.53 0.89 -0.29 764.14 779.36 0.79 2103.49 0.47 0.03 0.13 0.05 

1 

50 10.14 0.46 -1.36 -2.13 69.51 75.37 0.63 54.47 6.55 0.18 1.71 0.86 

20 10.00 0.54 -1.47 -1.50 58.91 64.78 0.73 97.92 5.55 0.15 1.45 0.73 

10 9.73 0.59 -1.53 -1.10 52.59 58.45 0.78 127.40 5.03 0.14 1.31 0.66 

5 9.38 0.63 -1.57 -0.72 48.42 54.28 0.82 162.20 4.71 0.13 1.23 0.62 

2 8.85 0.68 -1.62 -0.22 47.44 53.31 0.84 232.91 4.64 0.13 1.21 0.61 

1 8.40 0.72 -1.65 0.15 50.21 56.07 0.84 319.84 4.84 0.13 1.26 0.63 

0.5 7.93 0.76 -1.67 0.52 55.22 61.08 0.82 449.85 5.24 0.14 1.37 0.69 

2 - 3 

50 12.43 0.60 -1.37 -3.97 59.49 65.10 0.61 44.20 7.22 0.22 1.93 0.90 

20 11.95 0.64 -1.46 -3.09 50.48 56.09 0.69 81.28 6.21 0.19 1.66 0.78 

10 11.41 0.67 -1.49 -2.51 45.96 51.56 0.73 107.00 5.76 0.18 1.54 0.72 

5 10.76 0.69 -1.50 -1.95 44.21 49.81 0.76 137.32 5.60 0.17 1.49 0.70 

2 9.77 0.71 -1.49 -1.23 46.61 52.22 0.76 197.58 5.83 0.18 1.56 0.73 

1 8.97 0.73 -1.48 -0.69 51.30 56.90 0.75 274.49 6.30 0.19 1.68 0.79 

0.5 8.13 0.74 -1.46 -0.14 57.39 62.99 0.74 401.22 6.97 0.22 1.86 0.87 
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Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

4 

50 -0.57 0.49 0.55 -0.96 122.32 129.36 0.61 46.48 6.21 0.21 1.76 1.10 

20 1.10 0.55 0.16 -0.58 104.30 111.34 0.71 83.65 5.04 0.17 1.43 0.89 

10 1.91 0.59 -0.07 -0.32 93.79 100.84 0.76 111.14 4.46 0.15 1.26 0.79 

5 2.57 0.63 -0.28 -0.06 84.82 91.86 0.80 145.89 4.02 0.14 1.14 0.71 

2 3.31 0.68 -0.55 0.29 76.61 83.66 0.84 216.98 3.65 0.13 1.03 0.65 

1 3.82 0.71 -0.74 0.55 74.54 81.58 0.85 302.38 3.56 0.12 1.01 0.63 

0.5 4.29 0.74 -0.93 0.81 76.59 83.63 0.85 428.99 3.65 0.13 1.03 0.65 

5 

50 -5.04 0.38 1.53 -0.86 76.29 82.51 0.69 45.46 2.38 0.08 0.55 0.48 

20 -4.76 0.37 1.68 -0.77 72.34 78.56 0.72 124.18 2.25 0.08 0.52 0.45 

10 -4.58 0.36 1.73 -0.68 72.73 78.95 0.72 209.21 2.26 0.08 0.52 0.46 

5 -4.45 0.36 1.77 -0.58 75.13 81.35 0.71 330.63 2.34 0.08 0.54 0.47 

2 -4.35 0.36 1.81 -0.44 80.81 87.03 0.67 579.06 2.54 0.09 0.59 0.51 

1 -4.32 0.35 1.85 -0.33 86.43 92.65 0.64 868.95 2.75 0.09 0.64 0.55 

0.5 -4.33 0.35 1.88 -0.21 92.69 98.91 0.60 1293.24 3.01 0.10 0.70 0.61 

6 

50 -4.60 0.43 1.25 0.07 61.02 67.24 0.79 48.48 2.12 0.09 0.58 0.59 

20 -3.31 0.49 1.05 0.14 55.57 61.80 0.83 100.62 1.97 0.09 0.54 0.55 

10 -2.50 0.53 0.88 0.18 52.64 58.86 0.85 140.54 1.89 0.08 0.52 0.52 

5 -1.77 0.57 0.70 0.23 52.03 58.25 0.86 187.55 1.87 0.08 0.51 0.52 

2 -0.87 0.63 0.46 0.30 54.86 61.09 0.86 272.69 1.95 0.08 0.54 0.54 

1 -0.21 0.67 0.28 0.37 59.18 65.40 0.85 365.16 2.07 0.09 0.57 0.57 

0.5 0.42 0.71 0.10 0.45 64.67 70.89 0.83 492.76 2.24 0.10 0.62 0.62 
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Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

7 

50 -5.80 0.42 1.64 -0.41 56.53 62.76 0.84 33.68 1.69 0.08 0.42 0.48 

20 -4.79 0.44 1.59 -0.46 52.54 58.77 0.86 85.11 1.59 0.07 0.39 0.45 

10 -4.28 0.45 1.55 -0.51 51.91 58.13 0.86 142.05 1.58 0.07 0.39 0.45 

5 -3.85 0.47 1.50 -0.55 54.03 60.25 0.86 220.35 1.63 0.07 0.40 0.46 

2 -3.37 0.49 1.45 -0.59 60.16 66.38 0.84 366.26 1.78 0.08 0.44 0.50 

1 -3.06 0.50 1.40 -0.61 66.28 72.50 0.82 518.10 1.94 0.09 0.48 0.55 

0.5 -2.76 0.51 1.36 -0.62 72.94 79.17 0.79 716.38 2.13 0.10 0.53 0.60 

8 

50 -4.45 0.37 1.03 1.26 69.69 76.13 0.73 45.88 2.23 0.09 0.62 0.43 

20 -3.20 0.43 0.89 1.06 60.62 67.06 0.80 86.43 1.98 0.08 0.54 0.38 

10 -2.46 0.47 0.76 0.96 56.31 62.75 0.82 121.38 1.86 0.08 0.51 0.36 

5 -1.80 0.51 0.64 0.89 55.08 61.52 0.84 169.29 1.83 0.08 0.51 0.35 

2 -1.01 0.56 0.47 0.81 58.04 64.49 0.84 264.39 1.91 0.08 0.53 0.36 

1 -0.44 0.59 0.34 0.76 62.88 69.32 0.83 368.92 2.04 0.09 0.56 0.39 

0.5 0.11 0.63 0.21 0.72 69.00 75.45 0.81 510.12 2.21 0.09 0.61 0.42 

9 

50 -5.72 0.59 1.17 0.67 56.81 62.54 0.87 25.55 1.94 0.10 0.51 0.48 

20 -4.31 0.60 1.05 0.47 58.15 63.89 0.85 49.38 1.98 0.10 0.52 0.49 

10 -3.35 0.61 0.94 0.23 60.01 65.74 0.84 70.47 2.04 0.11 0.54 0.51 

5 -2.46 0.62 0.82 -0.02 63.09 68.82 0.83 98.94 2.14 0.11 0.56 0.54 

2 -1.33 0.64 0.67 -0.34 68.68 74.42 0.79 158.11 2.35 0.12 0.62 0.59 

1 -0.51 0.66 0.54 -0.57 73.64 79.38 0.76 231.56 2.54 0.13 0.67 0.63 

0.5 0.29 0.67 0.42 -0.80 78.90 84.64 0.73 347.19 2.77 0.14 0.73 0.69 



 

180 

Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

10 

50 -10.61 0.45 2.09 2.74 56.96 62.95 0.85 22.11 2.36 0.11 0.51 0.90 

20 -9.71 0.45 2.12 2.51 58.73 64.71 0.85 51.00 2.43 0.11 0.53 0.93 

10 -9.47 0.43 2.19 2.40 59.69 65.68 0.84 74.43 2.46 0.11 0.54 0.94 

5 -9.35 0.41 2.27 2.30 61.25 67.24 0.84 102.09 2.52 0.11 0.55 0.96 

2 -9.27 0.39 2.38 2.16 64.54 70.53 0.82 150.93 2.65 0.12 0.58 1.01 

1 -9.25 0.36 2.47 2.04 67.91 73.90 0.81 202.71 2.79 0.13 0.61 1.07 

0.5 -9.24 0.34 2.56 1.92 71.88 77.86 0.79 273.32 2.96 0.13 0.64 1.13 

11 

50 -5.04 0.38 1.53 -0.86 76.29 82.51 0.69 45.46 2.38 0.08 0.55 0.48 

20 -4.76 0.37 1.68 -0.77 72.34 78.56 0.72 124.18 2.25 0.08 0.52 0.45 

10 -4.58 0.36 1.73 -0.68 72.73 78.95 0.72 209.21 2.26 0.08 0.52 0.46 

5 -4.45 0.36 1.77 -0.58 75.13 81.35 0.71 330.63 2.34 0.08 0.54 0.47 

2 -4.35 0.36 1.81 -0.44 80.81 87.03 0.67 579.06 2.54 0.09 0.59 0.51 

1 -4.32 0.35 1.85 -0.33 86.43 92.65 0.64 868.95 2.75 0.09 0.64 0.55 

0.5 -4.33 0.35 1.88 -0.21 92.69 98.91 0.60 1293.24 3.01 0.10 0.70 0.61 

12 

50 -1.54 0.57 0.41 -0.20 65.09 70.69 0.70 31.12 2.77 0.11 0.67 0.52 

20 -1.23 0.58 0.52 -0.07 61.40 67.01 0.74 70.62 2.60 0.11 0.63 0.49 

10 -1.16 0.58 0.59 -0.01 61.49 67.10 0.74 114.18 2.61 0.11 0.63 0.49 

5 -1.18 0.58 0.67 0.05 63.13 68.73 0.73 184.73 2.68 0.11 0.65 0.51 

2 -1.30 0.57 0.77 0.13 67.32 72.93 0.71 348.76 2.87 0.12 0.69 0.54 

1 -1.44 0.57 0.86 0.20 71.66 77.26 0.69 555.34 3.09 0.13 0.75 0.58 

0.5 -1.62 0.56 0.95 0.26 76.62 82.23 0.65 870.73 3.36 0.14 0.81 0.63 



 

181 

Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

13 

50 -8.74 0.24 2.61 -0.26 49.63 55.23 0.52 55.49 7.10 0.18 1.71 0.61 

20 -6.76 0.26 2.24 0.10 46.21 51.81 0.56 116.49 6.71 0.17 1.62 0.57 

10 -5.35 0.29 1.93 0.26 45.07 50.68 0.59 166.75 6.58 0.16 1.59 0.56 

5 -3.97 0.32 1.60 0.38 45.39 50.99 0.61 228.90 6.62 0.16 1.60 0.56 

2 -2.14 0.38 1.15 0.52 48.01 53.61 0.62 346.98 6.91 0.17 1.67 0.59 

1 -0.76 0.42 0.81 0.62 51.37 56.97 0.62 481.10 7.31 0.18 1.76 0.62 

0.5 0.62 0.46 0.46 0.70 55.54 61.14 0.61 673.89 7.84 0.19 1.89 0.67 

14 

50 2.06 0.61 -0.15 -1.28 46.33 52.19 0.90 56.89 2.64 0.11 0.79 0.80 

20 2.25 0.59 0.05 -1.23 43.72 49.58 0.91 128.53 2.54 0.10 0.75 0.77 

10 1.97 0.57 0.20 -1.11 45.17 51.04 0.91 203.03 2.59 0.10 0.77 0.79 

5 1.55 0.54 0.36 -0.96 48.27 54.13 0.90 311.68 2.72 0.11 0.81 0.83 

2 0.85 0.51 0.58 -0.74 54.34 60.20 0.88 543.71 2.99 0.12 0.89 0.91 

1 0.25 0.49 0.75 -0.55 59.94 65.80 0.85 819.72 3.27 0.13 0.97 0.99 

0.5 -0.39 0.46 0.92 -0.36 66.01 71.87 0.83 1219.50 3.59 0.14 1.07 1.09 

15 

50 -2.66 0.48 0.94 -0.29 94.33 101.73 0.67 109.57 3.25 0.11 0.84 0.19 

20 -1.68 0.50 0.85 -0.21 87.60 95.00 0.70 215.81 3.02 0.10 0.78 0.18 

10 -1.14 0.51 0.79 -0.18 82.37 89.77 0.72 295.18 2.86 0.10 0.74 0.17 

5 -0.64 0.52 0.73 -0.15 77.94 85.34 0.74 381.31 2.73 0.09 0.71 0.16 

2 0.00 0.53 0.64 -0.12 74.77 82.17 0.76 523.04 2.64 0.09 0.68 0.16 

1 0.47 0.54 0.56 -0.10 75.24 82.64 0.75 669.31 2.65 0.09 0.69 0.16 

0.5 0.95 0.55 0.48 -0.08 78.39 85.79 0.74 870.04 2.74 0.09 0.71 0.16 



 

182 

Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

16 

50 -12.95 0.09 3.75 -0.03 64.30 71.25 0.70 65.74 3.23 0.11 0.83 0.24 

20 -10.38 0.17 3.22 0.05 61.27 68.22 0.73 137.92 3.12 0.10 0.80 0.23 

10 -8.32 0.24 2.75 0.01 59.86 66.81 0.74 197.84 3.07 0.10 0.79 0.23 

5 -6.21 0.31 2.24 -0.06 60.02 66.98 0.75 269.08 3.07 0.10 0.79 0.23 

2 -3.35 0.41 1.54 -0.17 63.01 69.96 0.74 393.81 3.18 0.10 0.82 0.24 

1 -1.15 0.49 0.99 -0.26 67.16 74.11 0.73 524.73 3.35 0.11 0.86 0.25 

0.5 1.09 0.57 0.43 -0.35 72.54 79.49 0.72 703.77 3.57 0.12 0.92 0.26 

17 

50 1.42 0.45 -0.10 0.17 73.64 79.38 0.49 106.58 1.73 0.11 0.44 0.18 

20 1.88 0.46 -0.01 0.05 69.28 75.01 0.51 222.02 1.62 0.10 0.41 0.17 

10 2.02 0.47 0.04 0.01 67.54 73.27 0.53 314.02 1.57 0.10 0.40 0.16 

5 2.06 0.49 0.08 -0.03 67.10 72.84 0.55 417.38 1.56 0.10 0.39 0.16 

2 2.02 0.51 0.15 -0.08 68.71 74.44 0.56 590.48 1.60 0.10 0.40 0.16 

1 1.93 0.53 0.20 -0.12 71.43 77.17 0.55 771.84 1.67 0.10 0.42 0.17 

0.5 1.82 0.54 0.25 -0.16 75.18 80.92 0.54 1026.93 1.78 0.11 0.45 0.18 

18 

50 -0.64 0.47 0.30 -0.55 98.35 104.34 0.60 83.23 2.38 0.10 0.68 0.30 

20 -0.42 0.52 0.38 -0.56 86.79 92.77 0.73 163.95 2.00 0.08 0.57 0.25 

10 -0.48 0.55 0.46 -0.56 81.03 87.02 0.78 259.29 1.83 0.08 0.52 0.23 

5 -0.62 0.58 0.53 -0.56 76.94 82.92 0.82 413.97 1.72 0.07 0.49 0.21 

2 -0.85 0.61 0.63 -0.56 74.48 80.47 0.85 755.26 1.66 0.07 0.47 0.21 

1 -1.05 0.64 0.70 -0.56 75.07 81.06 0.86 1158.70 1.67 0.07 0.47 0.21 

0.5 -1.26 0.66 0.76 -0.55 77.62 83.60 0.86 1736.17 1.74 0.07 0.49 0.22 



 

183 

Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

19 

50 -2.97 0.53 0.76 -0.47 88.46 95.41 0.87 93.88 1.25 0.07 0.38 0.11 

20 -1.60 0.53 0.66 -0.47 82.47 89.42 0.88 220.79 1.17 0.07 0.36 0.10 

10 -0.92 0.54 0.60 -0.47 81.10 88.05 0.88 358.49 1.15 0.07 0.35 0.10 

5 -0.32 0.54 0.54 -0.48 81.38 88.33 0.88 550.21 1.15 0.07 0.35 0.10 

2 0.39 0.55 0.45 -0.50 84.28 91.23 0.87 913.58 1.19 0.07 0.36 0.11 

1 0.90 0.56 0.38 -0.51 88.23 95.18 0.85 1296.15 1.25 0.07 0.38 0.11 

0.5 1.40 0.57 0.31 -0.52 93.41 100.37 0.83 1800.72 1.33 0.08 0.41 0.12 

20 - 24 

50 1.54 1.04 -0.59 0.48 99.29 105.15 0.74 90.16 2.56 0.25 0.86 0.30 

20 1.23 0.96 -0.27 0.32 91.09 96.95 0.78 163.69 2.25 0.22 0.76 0.26 

10 0.96 0.91 -0.09 0.21 86.87 92.73 0.80 197.70 2.11 0.21 0.71 0.24 

5 0.68 0.86 0.07 0.10 83.47 89.33 0.81 213.18 2.00 0.20 0.67 0.23 

2 0.28 0.79 0.28 -0.05 80.28 86.15 0.81 203.67 1.90 0.19 0.64 0.22 

1 -0.02 0.75 0.42 -0.16 79.04 84.90 0.81 173.92 1.87 0.18 0.63 0.22 

0.5 -0.32 0.70 0.57 -0.26 78.92 84.78 0.80 138.64 1.86 0.18 0.62 0.22 

25 

50 -1.42 0.53 0.36 -0.48 81.81 87.91 0.77 37.41 1.61 0.08 0.48 0.15 

20 -0.74 0.57 0.38 -0.46 72.89 79.00 0.84 112.59 1.41 0.07 0.42 0.13 

10 -0.53 0.59 0.41 -0.45 69.85 75.96 0.86 208.97 1.35 0.07 0.40 0.12 

5 -0.41 0.61 0.44 -0.44 69.05 75.16 0.87 353.16 1.33 0.07 0.40 0.12 

2 -0.34 0.63 0.49 -0.42 71.31 77.41 0.87 644.49 1.38 0.07 0.41 0.13 

1 -0.32 0.64 0.53 -0.41 75.11 81.22 0.86 967.86 1.45 0.07 0.43 0.13 

0.5 -0.33 0.66 0.57 -0.39 80.18 86.28 0.85 1410.15 1.57 0.08 0.47 0.14 



 

184 

Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

26 - 27 

50 -0.31 0.66 -0.14 -0.67 79.20 85.31 0.80 93.69 1.45 0.09 0.45 0.15 

20 0.15 0.65 0.01 -0.60 76.39 82.50 0.82 220.61 1.39 0.08 0.43 0.14 

10 0.20 0.64 0.14 -0.56 76.50 82.61 0.82 330.08 1.40 0.08 0.43 0.14 

5 0.16 0.63 0.26 -0.51 77.52 83.63 0.82 455.21 1.42 0.09 0.44 0.15 

2 0.02 0.61 0.43 -0.45 80.07 86.17 0.82 653.45 1.47 0.09 0.45 0.15 

1 -0.13 0.60 0.57 -0.40 82.78 88.88 0.81 838.89 1.53 0.09 0.47 0.16 

0.5 -0.30 0.59 0.70 -0.36 86.04 92.15 0.80 1069.61 1.61 0.10 0.50 0.17 

28 

50 0.55 0.64 -0.32 -0.53 88.12 95.07 0.77 63.80 1.28 0.09 0.42 0.14 

20 0.38 0.62 0.01 -0.49 81.69 88.64 0.82 134.36 1.18 0.09 0.39 0.13 

10 0.19 0.60 0.20 -0.46 81.17 88.12 0.83 193.99 1.18 0.09 0.39 0.13 

5 -0.06 0.58 0.39 -0.43 82.43 89.38 0.83 264.66 1.19 0.09 0.40 0.13 

2 -0.48 0.56 0.64 -0.38 86.48 93.43 0.83 395.58 1.25 0.09 0.42 0.14 

1 -0.84 0.54 0.84 -0.35 91.07 98.02 0.82 552.31 1.32 0.10 0.44 0.14 

0.5 -1.23 0.52 1.03 -0.31 96.66 103.61 0.81 799.62 1.41 0.10 0.47 0.15 

29 

50 3.28 0.43 -0.55 -0.28 45.89 51.88 0.60 21.12 0.90 0.07 0.26 0.15 

20 3.64 0.48 -0.50 -0.46 40.41 46.39 0.67 54.23 0.83 0.07 0.24 0.13 

10 3.77 0.51 -0.49 -0.55 41.38 47.37 0.70 87.93 0.84 0.07 0.24 0.14 

5 3.80 0.55 -0.47 -0.62 44.97 50.96 0.70 133.01 0.89 0.07 0.25 0.14 

2 3.76 0.59 -0.45 -0.73 52.40 58.39 0.70 222.02 0.99 0.08 0.28 0.16 

1 3.68 0.63 -0.44 -0.81 59.08 65.07 0.68 327.31 1.10 0.09 0.31 0.18 

0.5 3.57 0.67 -0.42 -0.89 66.07 72.05 0.67 488.15 1.22 0.10 0.35 0.20 



 

185 

Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

30 - 32 

50 2.03 0.43 -0.26 0.00 46.10 51.83 0.65 44.56 1.14 0.07 0.30 0.16 

20 2.28 0.48 -0.18 -0.16 42.52 48.25 0.70 106.12 1.08 0.07 0.28 0.15 

10 2.33 0.52 -0.15 -0.23 44.06 49.80 0.71 172.74 1.10 0.07 0.29 0.15 

5 2.29 0.55 -0.12 -0.30 47.87 53.61 0.72 264.57 1.17 0.08 0.31 0.16 

2 2.15 0.61 -0.09 -0.39 55.16 60.89 0.71 443.55 1.32 0.08 0.35 0.18 

1 1.99 0.65 -0.06 -0.46 61.51 67.24 0.69 643.88 1.46 0.09 0.38 0.20 

0.5 1.80 0.69 -0.03 -0.54 68.06 73.79 0.67 928.10 1.62 0.10 0.43 0.23 

33 

50 -5.21 0.58 1.33 0.22 87.00 94.31 0.75 87.46 3.11 0.10 0.80 0.16 

20 -4.20 0.55 1.32 0.15 84.00 91.32 0.74 181.47 3.01 0.10 0.77 0.15 

10 -3.55 0.53 1.28 0.12 81.00 88.31 0.74 257.19 2.92 0.10 0.75 0.15 

5 -2.91 0.51 1.23 0.08 79.14 86.45 0.74 343.91 2.86 0.09 0.73 0.14 

2 -2.09 0.49 1.15 0.04 80.01 87.33 0.72 491.86 2.89 0.10 0.74 0.14 

1 -1.46 0.47 1.08 0.00 83.60 90.92 0.69 646.68 3.00 0.10 0.77 0.15 

0.5 -0.82 0.46 1.01 -0.03 89.43 96.74 0.64 860.90 3.20 0.11 0.82 0.16 

34 

50 -3.74 0.58 1.00 0.20 76.55 82.99 0.82 62.54 3.32 0.14 0.90 0.16 

20 -5.12 0.47 1.62 0.16 73.16 79.61 0.82 134.83 3.17 0.14 0.86 0.16 

10 -5.57 0.43 1.86 0.14 72.16 78.61 0.82 208.98 3.13 0.13 0.85 0.15 

5 -5.92 0.39 2.06 0.12 73.09 79.53 0.82 323.37 3.17 0.14 0.86 0.16 

2 -6.36 0.35 2.29 0.09 77.64 84.08 0.79 580.22 3.37 0.15 0.91 0.17 

1 -6.69 0.32 2.46 0.08 83.22 89.66 0.76 896.93 3.63 0.16 0.98 0.18 

0.5 -7.03 0.29 2.63 0.06 90.02 96.46 0.72 1371.64 3.98 0.17 1.08 0.20 



 

186 

Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

35 

50 -10.25 0.32 2.79 0.43 50.35 56.34 0.80 61.37 3.22 0.12 0.85 0.13 

20 -10.01 0.26 2.97 0.33 50.97 56.96 0.78 130.39 3.25 0.12 0.85 0.13 

10 -8.90 0.27 2.81 0.26 51.94 57.93 0.76 189.16 3.30 0.13 0.87 0.14 

5 -7.56 0.28 2.56 0.18 54.45 60.44 0.73 259.30 3.43 0.13 0.90 0.14 

2 -5.60 0.30 2.16 0.07 60.19 66.17 0.67 384.30 3.74 0.14 0.98 0.15 

1 -4.04 0.32 1.83 -0.02 65.88 71.87 0.62 521.30 4.08 0.16 1.07 0.17 

0.5 -2.42 0.35 1.49 -0.11 72.22 78.21 0.56 719.58 4.49 0.17 1.18 0.18 

36 

50 -13.94 0.07 4.00 0.05 53.54 59.40 0.73 68.85 4.07 0.14 1.07 0.27 

20 -11.26 0.16 3.43 0.10 51.38 57.25 0.75 142.82 3.94 0.14 1.04 0.26 

10 -9.09 0.23 2.92 0.04 49.89 55.75 0.76 201.34 3.85 0.13 1.01 0.26 

5 -6.85 0.31 2.38 -0.04 49.26 55.12 0.76 266.78 3.81 0.13 1.00 0.25 

2 -3.81 0.42 1.63 -0.18 50.10 55.96 0.76 370.55 3.86 0.13 1.02 0.26 

1 -1.45 0.51 1.03 -0.29 51.98 57.84 0.75 467.84 3.98 0.14 1.05 0.27 

0.5 0.96 0.60 0.42 -0.40 54.76 60.63 0.74 588.23 4.15 0.14 1.09 0.28 

37 

50 -4.31 0.53 1.18 0.23 84.20 91.25 0.82 67.81 3.04 0.13 0.82 0.14 

20 -5.48 0.44 1.74 0.17 81.49 88.53 0.81 148.38 2.95 0.12 0.79 0.14 

10 -5.76 0.40 1.93 0.13 81.57 88.62 0.80 229.78 2.95 0.12 0.79 0.14 

5 -5.94 0.37 2.08 0.09 84.00 91.05 0.79 347.41 3.03 0.13 0.81 0.14 

2 -6.11 0.34 2.24 0.04 90.79 97.84 0.75 599.18 3.28 0.14 0.88 0.15 

1 -6.23 0.31 2.35 0.00 97.99 105.04 0.71 905.00 3.57 0.15 0.96 0.17 

0.5 -6.36 0.29 2.45 -0.05 106.23 113.27 0.67 1362.87 3.93 0.16 1.05 0.18 



 

187 

Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

38 - 39 

50 -4.20 0.64 0.80 0.31 74.59 80.69 0.82 20.38 3.63 0.14 0.86 1.10 

20 -2.34 0.65 0.56 0.14 73.35 79.46 0.82 41.78 3.57 0.14 0.85 1.08 

10 -1.30 0.67 0.41 -0.03 72.88 78.99 0.82 60.38 3.54 0.14 0.84 1.07 

5 -0.34 0.69 0.27 -0.21 73.48 79.58 0.81 86.00 3.57 0.14 0.85 1.08 

2 0.87 0.71 0.07 -0.47 76.21 82.32 0.80 142.06 3.72 0.14 0.88 1.13 

1 1.77 0.73 -0.08 -0.68 79.64 85.75 0.78 213.80 3.91 0.15 0.93 1.18 

0.5 2.67 0.75 -0.23 -0.89 83.99 90.09 0.76 327.32 4.17 0.16 0.99 1.26 

40 

50 -5.93 0.58 1.23 0.42 56.73 62.71 0.88 30.28 1.88 0.08 0.44 0.49 

20 -5.32 0.55 1.35 0.14 57.62 63.60 0.88 76.63 1.91 0.08 0.44 0.50 

10 -5.00 0.56 1.38 0.07 60.51 66.50 0.87 122.32 2.00 0.09 0.46 0.52 

5 -4.75 0.56 1.40 0.03 64.73 70.72 0.86 183.46 2.13 0.09 0.49 0.56 

2 -4.46 0.57 1.41 0.00 71.86 77.85 0.84 305.20 2.37 0.10 0.55 0.62 

1 -4.27 0.59 1.41 -0.02 77.96 83.94 0.82 449.36 2.60 0.11 0.60 0.68 

0.5 -4.09 0.60 1.41 -0.03 84.31 90.30 0.80 667.02 2.86 0.12 0.66 0.75 

41 

50 -7.77 0.59 1.53 1.39 60.44 66.30 0.83 17.67 2.15 0.10 0.49 0.95 

20 -6.86 0.58 1.57 1.12 63.11 68.97 0.82 43.23 2.24 0.11 0.51 0.99 

10 -6.33 0.59 1.55 0.95 65.48 71.34 0.81 68.45 2.32 0.11 0.53 1.03 

5 -5.84 0.59 1.53 0.78 68.50 74.36 0.80 103.49 2.43 0.12 0.55 1.08 

2 -5.23 0.61 1.50 0.55 73.59 79.45 0.78 177.04 2.64 0.13 0.60 1.17 

1 -4.78 0.62 1.46 0.37 78.10 83.97 0.75 266.75 2.83 0.14 0.64 1.25 

0.5 -4.34 0.63 1.43 0.18 83.00 88.86 0.73 403.25 3.05 0.15 0.69 1.35 
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Cluster 
AEP 

(%) 

Predictor Variables Performance Metrics Descriptor Standard Error 

Constant Area DR10% Dc AIC BIC R2 RMSE Const Area DR10% Dc 

42 

50 -8.67 0.54 1.84 0.82 58.54 64.52 0.88 29.74 1.76 0.09 0.43 0.44 

20 -8.18 0.52 1.97 0.64 59.06 65.05 0.88 71.07 1.77 0.10 0.43 0.44 

10 -7.95 0.51 2.03 0.55 59.95 65.94 0.88 107.26 1.79 0.10 0.44 0.45 

5 -7.79 0.51 2.08 0.46 61.60 67.59 0.88 153.25 1.84 0.10 0.45 0.46 

2 -7.63 0.50 2.15 0.35 65.25 71.24 0.87 246.97 1.94 0.11 0.48 0.48 

1 -7.54 0.50 2.19 0.27 69.04 75.03 0.86 364.78 2.06 0.11 0.50 0.51 

0.5 -7.46 0.49 2.24 0.18 73.51 79.50 0.85 550.80 2.20 0.12 0.54 0.55 
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APPENDIX H: QRT MODEL COEFFICIENTS AND REGRESSION 

STATISTICS FOR THE FIVE SUPER REGIONS 
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Super 

Region 

Predictor 

Variables 

AEP 

(%) 

Descriptor Number Performance Metrics Descriptor Standard Error 

CONST 1 2 3 AIC BIC R2 RMSE Const 1 2 3 

National A, DR10%, Dc 

50 -1.90 0.53 0.56 -0.28 989.42 1005.22 0.70 108.79 0.52 0.03 0.14 0.05 

20 -1.49 0.53 0.66 -0.29 896.05 911.85 0.76 257.69 0.46 0.03 0.13 0.04 

10 -1.33 0.53 0.72 -0.29 858.49 874.29 0.78 412.86 0.44 0.02 0.12 0.04 

5 -1.25 0.53 0.77 -0.30 841.66 857.45 0.79 620.66 0.43 0.02 0.12 0.04 

2 -1.19 0.53 0.84 -0.31 852.36 868.15 0.79 1004.62 0.44 0.02 0.12 0.04 

1 -1.18 0.53 0.89 -0.32 883.62 899.42 0.79 1405.64 0.45 0.02 0.13 0.04 

0.5 -1.19 0.53 0.95 -0.33 930.59 946.38 0.77 1935.36 0.48 0.03 0.13 0.04 

1 
A, DR10%, 

H241% 

50 2.83 0.61 -0.32 -1.26 271.88 282.57 0.74 71.44 2.62 0.10 0.75 0.41 

20 3.55 0.63 -0.39 -1.03 247.61 258.30 0.79 130.79 2.34 0.09 0.67 0.37 

10 3.91 0.65 -0.45 -0.90 237.92 248.61 0.81 191.71 2.24 0.08 0.64 0.35 

5 4.18 0.67 -0.50 -0.78 233.96 244.66 0.81 306.24 2.20 0.08 0.63 0.34 

2 4.47 0.68 -0.57 -0.62 237.46 248.16 0.81 581.01 2.23 0.08 0.64 0.35 

1 4.65 0.70 -0.61 -0.51 246.02 256.72 0.80 905.31 2.32 0.09 0.67 0.36 

0.5 4.81 0.71 -0.66 -0.39 258.52 269.21 0.79 1354.95 2.46 0.09 0.71 0.39 

2 
A, S10-85, 

DR10% 

50 -4.10 0.61 1.03 0.16 162.41 171.62 0.77 85.80 2.48 0.09 0.65 0.13 

20 -3.79 0.55 1.22 0.10 153.56 162.77 0.77 179.31 2.34 0.09 0.62 0.12 

10 -3.61 0.52 1.31 0.07 149.12 158.34 0.76 263.76 2.27 0.08 0.60 0.12 

5 -3.47 0.49 1.38 0.04 147.92 157.14 0.76 374.52 2.25 0.08 0.59 0.12 

2 -3.33 0.45 1.48 0.01 152.47 161.69 0.73 595.44 2.32 0.09 0.61 0.12 

1 -3.26 0.42 1.56 -0.02 160.35 169.56 0.69 855.57 2.45 0.09 0.64 0.13 

0.5 -3.20 0.39 1.63 -0.05 171.13 180.35 0.64 1240.72 2.63 0.10 0.69 0.14 
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Super 

Region 

Predictor 

Variables 

AEP 

(%) 

Descriptor Number Performance Metrics Descriptor Standard Error 

CONST 1 2 3 AIC BIC R2 RMSE Const 1 2 3 

3 A, EO, H241% 

50 -4.08 0.38 1.34 -0.19 240.26 249.79 0.66 66.04 1.22 0.08 0.38 0.13 

20 -3.17 0.44 1.24 -0.24 214.99 224.52 0.75 114.66 1.04 0.07 0.33 0.11 

10 -2.68 0.47 1.16 -0.27 202.96 212.49 0.79 155.31 0.96 0.06 0.30 0.10 

5 -2.28 0.50 1.09 -0.30 194.85 204.38 0.81 217.19 0.92 0.06 0.29 0.10 

2 -1.82 0.54 1.00 -0.34 190.84 200.37 0.83 367.24 0.89 0.06 0.28 0.10 

1 -1.51 0.56 0.94 -0.37 193.25 202.78 0.83 562.78 0.91 0.06 0.29 0.10 

0.5 -1.22 0.59 0.88 -0.40 199.95 209.48 0.82 863.48 0.95 0.06 0.30 0.10 

4 A, EO, MAP 

50 -4.01 0.58 0.84 0.25 175.69 185.64 0.80 35.08 1.05 0.06 0.28 0.21 

20 -4.30 0.54 1.14 0.29 167.74 177.70 0.82 83.87 1.01 0.06 0.27 0.20 

10 -4.45 0.52 1.29 0.29 168.14 178.10 0.82 137.79 1.01 0.06 0.27 0.20 

5 -4.63 0.50 1.43 0.29 173.57 183.52 0.81 219.24 1.04 0.06 0.28 0.21 

2 -4.91 0.48 1.60 0.29 187.64 197.59 0.79 395.54 1.13 0.06 0.30 0.22 

1 -5.16 0.46 1.73 0.29 202.04 212.00 0.77 609.08 1.22 0.07 0.32 0.24 

0.5 -5.42 0.45 1.85 0.29 218.29 228.25 0.74 928.37 1.34 0.07 0.35 0.26 

5 A, MAP, S10-85 

50 1.86 0.44 -0.23 -0.04 48.25 54.23 0.65 43.17 1.09 0.07 0.29 0.15 

20 2.22 0.49 -0.18 -0.21 44.54 50.53 0.69 104.19 1.03 0.07 0.27 0.14 

10 2.29 0.53 -0.15 -0.28 46.17 52.15 0.71 170.15 1.06 0.07 0.28 0.14 

5 2.26 0.57 -0.13 -0.36 50.11 56.09 0.71 260.85 1.12 0.07 0.30 0.15 

2 2.12 0.62 -0.10 -0.45 57.66 63.65 0.71 436.98 1.26 0.08 0.33 0.17 

1 1.97 0.66 -0.07 -0.52 64.28 70.26 0.69 633.46 1.39 0.09 0.37 0.19 

0.5 1.79 0.70 -0.04 -0.60 71.13 77.11 0.68 911.48 1.54 0.10 0.41 0.21 
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APPENDIX I: RMSE AND RMSER PERFORMANCE METRICS FOR 

MODELS DEVELOPED USING CLUSTERING 
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Model Scale 

RMSE RMSEr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

QRT 

National 115.17 280.87 456.70 693.38 1131.02 1587.00 2186.60 1.17 1.21 1.31 1.43 1.59 1.71 1.81 

Cluster 1 58.63 92.64 103.95 109.39 115.54 124.46 140.05 0.74 0.66 0.59 0.54 0.50 0.49 0.52 

Cluster 2 29.35 75.44 119.51 175.22 276.74 386.64 540.85 0.64 0.62 0.61 0.60 0.60 0.61 0.63 

Cluster 3 19.36 48.55 80.11 128.53 246.14 411.66 693.53 0.42 0.38 0.38 0.39 0.44 0.50 0.58 

Cluster 4 17.00 31.42 46.13 71.86 141.78 239.78 397.75 0.68 0.41 0.35 0.35 0.41 0.48 0.57 

Cluster 5 58.17 167.84 287.20 456.96 799.59 1192.25 1755.27 0.81 0.86 0.91 0.97 1.06 1.12 1.19 

Cluster 6 40.01 97.52 153.47 225.91 358.57 497.60 681.38 0.55 0.51 0.51 0.52 0.55 0.58 0.61 

Cluster 7 54.74 88.24 113.48 141.78 182.88 215.39 248.20 0.56 0.45 0.45 0.48 0.53 0.57 0.61 

Cluster 8 77.81 156.43 233.22 335.31 529.34 739.40 1023.88 0.48 0.38 0.36 0.36 0.38 0.40 0.42 

Cluster 9 30.31 56.80 73.64 91.05 120.15 150.13 189.20 0.68 0.60 0.56 0.54 0.55 0.59 0.64 

Cluster 10 37.64 87.98 123.05 155.53 195.49 225.35 258.10 0.68 0.70 0.66 0.62 0.57 0.53 0.50 

Cluster 11 21.63 60.82 100.55 155.65 277.54 447.69 751.41 1.00 0.90 0.85 0.81 0.80 0.85 0.93 

Cluster 12 41.95 107.16 212.09 408.16 873.61 1447.09 2289.16 0.29 0.27 0.33 0.44 0.60 0.74 0.88 

Cluster 13 81.18 163.21 214.85 261.41 322.73 380.03 464.59 0.50 0.43 0.39 0.35 0.31 0.29 0.29 

Cluster 14 126.15 254.13 362.58 495.22 737.43 997.16 1347.47 0.58 0.43 0.39 0.38 0.39 0.41 0.44 

Cluster 15 158.86 336.91 469.06 600.39 775.99 912.83 1055.38 0.88 0.88 0.87 0.87 0.86 0.86 0.86 

Cluster 16 54.39 126.28 203.71 312.69 531.38 780.02 1132.24 0.36 0.36 0.38 0.41 0.47 0.52 0.59 

Cluster 17 133.52 313.97 513.37 789.15 1318.93 1894.50 2679.49 0.89 0.85 0.87 0.90 0.95 0.98 1.01 

Cluster 18 87.85 198.48 276.75 345.55 429.15 540.67 821.78 1.82 1.21 0.94 0.71 0.50 0.42 0.43 

Cluster 19 226.03 610.93 1079.00 1746.28 2981.26 4216.41 5743.52 0.19 0.22 0.27 0.33 0.42 0.50 0.57 

Cluster 20 85.80 126.70 151.28 171.64 193.43 206.78 217.91 0.69 0.61 0.60 0.60 0.60 0.61 0.62 

Cluster 21 63.53 105.15 130.57 151.43 172.91 185.10 194.22 1.42 1.34 1.29 1.24 1.18 1.13 1.08 

Cluster 22 9.95 13.16 13.38 11.66 15.17 33.62 68.28 2.06 0.93 0.57 0.33 0.27 0.43 0.64 

Cluster 23 8.38 13.38 13.51 11.30 7.90 11.91 22.31 0.71 0.61 0.49 0.36 0.22 0.32 0.57 
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Model Scale 

RMSE RMSEr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

Cluster 24 16.04 25.48 35.18 48.31 74.66 105.78 152.17 0.55 0.34 0.29 0.27 0.26 0.26 0.27 

Cluster 25 226.49 424.63 591.26 777.02 1071.58 1357.83 1735.38 2.69 1.80 1.56 1.41 1.27 1.21 1.17 

Cluster 26 15.71 37.29 57.06 83.98 142.32 214.84 323.52 0.29 0.26 0.24 0.24 0.27 0.30 0.34 

Cluster 27 14.77 36.59 59.29 88.64 140.18 191.07 254.55 0.71 0.79 0.90 1.03 1.23 1.40 1.59 

Cluster 28 22.56 57.87 91.72 134.36 210.87 291.23 399.63 0.39 0.36 0.35 0.35 0.35 0.35 0.36 

Cluster 29 21.81 45.80 72.16 108.03 185.93 290.48 465.85 0.26 0.20 0.19 0.19 0.20 0.23 0.26 

Cluster 30 20.00 54.80 94.15 157.59 312.80 525.34 876.32 0.48 0.40 0.38 0.39 0.44 0.48 0.54 

Cluster 31 39.58 99.23 152.86 218.19 331.84 448.04 601.51 0.67 0.73 0.74 0.76 0.80 0.84 0.88 

Cluster 32 30.05 69.26 106.46 154.12 241.46 334.75 462.09 0.57 0.56 0.59 0.63 0.71 0.79 0.88 

Cluster 33 80.02 140.63 205.84 305.39 512.98 743.17 1052.69 0.33 0.30 0.32 0.38 0.49 0.59 0.71 

Cluster 34 51.73 138.03 235.98 375.57 654.57 972.96 1432.78 0.72 0.83 0.94 1.06 1.22 1.34 1.46 

Cluster 35 81.61 155.89 200.04 240.86 308.73 390.83 519.74 0.50 0.48 0.44 0.41 0.39 0.41 0.45 

Cluster 36 107.01 228.56 344.65 479.52 686.81 866.90 1068.98 0.86 0.99 1.16 1.34 1.60 1.81 2.04 

Cluster 37 47.51 153.08 300.00 534.03 1048.47 1673.73 2606.40 0.54 0.65 0.75 0.85 0.96 1.04 1.11 

Cluster 38 22.13 45.15 61.38 78.83 108.38 139.54 181.89 0.53 0.52 0.50 0.49 0.50 0.52 0.56 

Cluster 39 19.04 60.62 115.95 201.04 383.73 603.17 929.89 0.31 0.45 0.57 0.69 0.85 0.98 1.11 

Cluster 40 49.87 123.15 192.03 285.84 488.47 748.11 1157.11 0.42 0.42 0.42 0.42 0.46 0.52 0.59 

Cluster 41 6.72 15.40 23.91 34.34 51.66 67.98 87.64 0.82 0.97 1.08 1.20 1.37 1.49 1.63 

Cluster 42 16.43 35.66 58.74 93.13 164.69 247.60 365.91 0.49 0.39 0.39 0.41 0.46 0.50 0.55 

IF1 

National 152.40 355.17 516.07 688.07 945.62 1181.06 1478.38 1.55 1.53 1.48 1.42 1.33 1.27 1.22 

Cluster 1 42.39 69.25 80.57 89.05 99.91 109.38 120.47 0.53 0.49 0.46 0.44 0.43 0.43 0.45 

Cluster 2 28.03 71.09 111.03 159.94 245.60 335.33 459.03 0.62 0.59 0.57 0.55 0.53 0.53 0.53 

Cluster 3 19.79 43.85 63.71 92.12 174.04 307.72 549.93 0.43 0.35 0.30 0.28 0.31 0.38 0.46 

Cluster 4 13.69 35.05 60.50 98.90 181.61 282.26 433.71 0.55 0.46 0.46 0.48 0.52 0.57 0.62 
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Model Scale 

RMSE RMSEr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

Cluster 5 79.08 229.95 387.30 599.87 1004.16 1444.60 2052.67 1.11 1.18 1.23 1.28 1.33 1.36 1.39 

Cluster 6 28.42 84.61 141.41 214.85 346.47 481.08 655.87 0.39 0.44 0.47 0.49 0.53 0.56 0.59 

Cluster 7 39.91 82.49 110.85 138.85 176.47 205.42 234.59 0.41 0.43 0.44 0.47 0.51 0.55 0.58 

Cluster 8 76.74 157.74 230.50 315.76 452.39 578.20 728.23 0.47 0.38 0.36 0.34 0.32 0.31 0.30 

Cluster 9 30.24 61.37 81.68 100.98 126.86 147.66 170.08 0.68 0.65 0.62 0.60 0.59 0.58 0.58 

Cluster 10 38.35 84.04 117.65 151.08 197.04 235.59 280.53 0.70 0.66 0.63 0.60 0.57 0.55 0.54 

Cluster 11 20.74 61.58 103.90 161.73 282.39 440.94 716.28 0.96 0.92 0.87 0.84 0.82 0.83 0.89 

Cluster 12 64.72 194.91 317.37 476.09 785.53 1146.97 1682.96 0.44 0.49 0.50 0.51 0.54 0.59 0.64 

Cluster 13 119.88 257.58 358.98 461.01 599.67 709.98 829.55 0.73 0.68 0.65 0.62 0.58 0.55 0.52 

Cluster 14 117.69 250.68 357.12 478.18 684.58 900.40 1193.75 0.54 0.42 0.39 0.37 0.36 0.37 0.39 

Cluster 15 160.38 316.31 428.86 540.56 693.12 817.02 952.35 0.89 0.82 0.80 0.78 0.77 0.77 0.77 

Cluster 16 51.71 137.15 224.20 337.37 546.64 773.32 1089.33 0.34 0.39 0.42 0.44 0.48 0.52 0.57 

Cluster 17 81.56 164.28 268.79 427.19 758.22 1141.70 1689.19 0.54 0.45 0.46 0.49 0.54 0.59 0.64 

Cluster 18 52.41 148.26 234.97 336.15 503.40 680.69 956.53 1.09 0.90 0.79 0.70 0.58 0.52 0.50 

Cluster 19 333.70 674.75 896.07 1111.78 1443.97 1780.00 2230.50 0.28 0.24 0.22 0.21 0.20 0.21 0.22 

Cluster 20 81.04 139.75 176.56 207.79 241.77 262.82 280.50 0.65 0.67 0.70 0.72 0.75 0.78 0.80 

Cluster 21 30.09 46.42 54.64 60.56 66.82 71.82 78.13 0.67 0.59 0.54 0.50 0.46 0.44 0.43 

Cluster 22 2.07 5.56 9.75 15.50 26.58 38.72 55.46 0.43 0.39 0.41 0.44 0.47 0.49 0.52 

Cluster 23 4.32 9.60 12.41 14.55 16.69 17.96 19.00 0.37 0.44 0.45 0.46 0.47 0.48 0.48 

Cluster 24 7.48 17.36 22.73 35.48 88.85 171.41 306.59 0.25 0.23 0.19 0.20 0.30 0.42 0.54 

Cluster 25 132.08 327.32 525.36 780.57 1234.76 1696.30 2294.05 1.57 1.39 1.39 1.42 1.47 1.51 1.55 

Cluster 26 28.82 59.34 80.29 98.72 120.75 141.30 177.29 0.54 0.41 0.34 0.29 0.23 0.20 0.19 

Cluster 27 21.62 40.51 55.14 70.70 93.71 113.71 136.55 1.04 0.88 0.84 0.82 0.82 0.83 0.85 

Cluster 28 30.74 72.12 104.78 144.57 233.51 360.97 577.57 0.53 0.45 0.40 0.38 0.39 0.44 0.52 

Cluster 29 22.98 60.10 110.42 198.04 415.37 706.77 1173.51 0.27 0.26 0.30 0.35 0.45 0.55 0.66 
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Model Scale 

RMSE RMSEr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

Cluster 30 18.54 50.44 83.61 128.98 222.81 340.84 531.59 0.45 0.37 0.34 0.32 0.31 0.31 0.33 

Cluster 31 44.51 100.36 141.88 181.52 228.40 257.26 278.56 0.75 0.73 0.69 0.63 0.55 0.48 0.41 

Cluster 32 20.08 51.16 85.08 130.38 213.09 298.52 410.06 0.38 0.42 0.47 0.54 0.63 0.70 0.78 

Cluster 33 88.52 166.86 242.49 344.62 543.04 760.20 1054.96 0.37 0.36 0.38 0.43 0.52 0.61 0.71 

Cluster 34 75.51 229.56 400.78 633.22 1065.32 1520.18 2127.92 1.05 1.38 1.59 1.78 1.98 2.09 2.17 

Cluster 35 102.91 194.13 245.12 283.20 321.27 352.95 408.73 0.64 0.60 0.54 0.48 0.41 0.37 0.36 

Cluster 36 156.64 326.78 451.08 568.14 709.77 806.75 895.40 1.26 1.42 1.51 1.59 1.65 1.69 1.71 

Cluster 37 75.76 197.27 342.62 557.34 1004.54 1531.57 2305.61 0.86 0.84 0.86 0.88 0.92 0.95 0.98 

Cluster 38 21.22 47.28 67.19 88.73 122.21 153.59 192.83 0.50 0.54 0.55 0.55 0.56 0.57 0.59 

Cluster 39 108.51 279.42 435.22 618.99 916.77 1197.92 1548.72 1.76 2.08 2.13 2.11 2.03 1.94 1.84 

Cluster 40 111.15 302.58 483.54 704.68 1079.85 1451.23 1932.81 0.94 1.03 1.05 1.04 1.02 1.00 0.99 

Cluster 41 9.71 19.26 27.00 35.20 46.76 56.06 65.88 1.18 1.21 1.23 1.23 1.24 1.23 1.22 

Cluster 42 15.79 51.48 88.51 137.34 227.15 321.75 448.31 0.47 0.56 0.58 0.61 0.63 0.65 0.67 
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APPENDIX J: BIAS AND BIASR PERFORMANCE METRICS FOR 

MODELS DEVELOPED USING CLUSTERING 
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Model 

Scale 

BIAS BIASr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

QRT 

National 53.25 116.85 175.30 247.97 386.80 540.20 749.47 0.83 0.70 0.66 0.64 0.66 0.71 0.77 

Cluster 1 38.95 63.02 74.85 82.37 87.73 90.44 96.67 0.46 0.44 0.42 0.40 0.38 0.38 0.41 

Cluster 2 16.90 43.78 72.32 112.77 191.05 276.37 393.80 0.38 0.40 0.41 0.43 0.47 0.50 0.53 

Cluster 3 13.62 35.90 65.94 116.19 232.07 381.98 620.55 0.33 0.39 0.51 0.66 0.92 1.18 1.50 

Cluster 4 11.89 22.01 34.70 55.21 95.03 160.86 260.26 3.17 1.91 1.48 1.18 0.90 0.76 0.66 

Cluster 5 31.67 94.39 169.22 276.36 488.88 728.87 1096.03 0.34 0.35 0.41 0.49 0.62 0.75 0.95 

Cluster 6 32.14 80.70 133.40 199.49 316.88 439.73 595.63 0.88 0.85 0.87 0.89 0.93 0.98 1.03 

Cluster 7 43.08 75.26 96.01 114.75 137.70 153.98 169.36 0.46 0.39 0.41 0.44 0.47 0.50 0.52 

Cluster 8 70.69 133.49 190.72 274.50 438.06 604.95 827.13 0.97 0.79 0.72 0.69 0.69 0.70 0.74 

Cluster 9 19.08 36.76 49.92 63.74 84.58 104.12 127.03 0.37 0.37 0.39 0.41 0.45 0.49 0.53 

Cluster 10 23.70 60.43 88.02 115.47 152.44 181.55 211.70 0.30 0.39 0.42 0.42 0.43 0.44 0.45 

Cluster 11 14.70 39.31 63.25 92.73 190.27 317.71 522.96 0.72 0.58 0.60 0.65 0.83 1.01 1.24 

Cluster 12 40.77 93.88 202.48 381.64 773.56 1236.60 1901.55 0.74 0.71 0.80 0.93 1.13 1.32 1.54 

Cluster 13 75.83 144.98 179.56 207.43 277.55 339.08 414.45 0.63 0.52 0.43 0.37 0.35 0.35 0.35 

Cluster 14 90.54 189.10 263.77 351.25 485.83 645.20 891.02 0.39 0.33 0.32 0.32 0.34 0.36 0.41 

Cluster 15 118.86 253.04 344.30 426.80 521.58 582.23 658.65 1.17 0.97 0.85 0.75 0.63 0.54 0.47 

Cluster 16 49.32 101.43 158.55 239.60 409.68 597.27 858.40 0.41 0.35 0.34 0.36 0.42 0.48 0.55 

Cluster 17 79.19 203.98 341.51 532.32 900.46 1301.90 1852.04 0.27 0.37 0.40 0.42 0.44 0.44 0.46 

Cluster 18 60.83 136.94 188.33 224.88 327.88 472.42 680.08 1.23 0.95 0.88 0.86 0.96 1.08 1.22 

Cluster 19 222.98 517.13 1007.32 1659.96 2805.63 3916.25 5267.24 0.19 0.19 0.25 0.32 0.41 0.49 0.59 

Cluster 20 54.16 76.76 87.06 93.19 97.25 101.99 115.76 0.49 0.52 0.54 0.57 0.62 0.68 0.77 

Cluster 21 38.03 63.41 79.24 92.45 106.21 113.97 119.54 0.69 0.61 0.58 0.55 0.51 0.47 0.44 

Cluster 22 4.94 6.89 6.89 7.29 8.71 20.26 41.04 1.47 1.10 0.93 0.87 0.90 1.03 1.23 

Cluster 23 6.91 10.00 10.00 9.13 6.24 8.64 17.47 0.56 0.40 0.32 0.29 0.27 0.36 0.59 
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Model 

Scale 

BIAS BIASr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

Cluster 24 12.40 22.82 32.46 44.53 66.43 90.06 123.18 1.45 1.31 1.31 1.32 1.37 1.41 1.45 

Cluster 25 84.87 171.92 255.67 366.85 563.18 764.40 1031.49 1.01 0.86 0.84 0.86 0.91 0.97 1.05 

Cluster 26 12.33 29.16 45.01 64.32 97.65 134.58 195.43 0.51 0.39 0.34 0.30 0.24 0.22 0.23 

Cluster 27 10.00 23.89 37.13 53.20 79.62 107.30 141.89 0.42 0.53 0.60 0.68 0.80 0.91 1.03 

Cluster 28 18.16 50.33 82.53 123.12 193.13 262.10 349.08 0.28 0.31 0.33 0.34 0.36 0.37 0.38 

Cluster 29 18.29 39.09 61.13 96.66 164.26 237.67 364.99 0.38 0.37 0.37 0.40 0.44 0.47 0.51 

Cluster 30 14.36 36.67 75.52 138.09 272.96 434.52 672.94 0.81 0.50 0.45 0.42 0.38 0.37 0.35 

Cluster 31 28.87 73.45 113.43 159.62 232.07 296.87 410.46 0.47 0.53 0.53 0.53 0.50 0.48 0.51 

Cluster 32 21.00 47.03 77.94 117.90 182.38 240.41 345.02 0.31 0.30 0.40 0.55 0.79 1.03 1.36 

Cluster 33 60.80 103.06 139.81 205.24 333.05 466.69 656.65 0.23 0.22 0.22 0.25 0.30 0.35 0.43 

Cluster 34 40.95 105.63 173.79 262.38 454.75 701.41 1077.20 0.65 0.66 0.68 0.72 0.84 1.03 1.29 

Cluster 35 54.07 99.31 127.65 156.49 208.96 285.97 399.43 0.40 0.37 0.36 0.36 0.39 0.43 0.48 

Cluster 36 67.30 144.47 210.58 281.88 392.59 494.91 609.87 0.39 0.50 0.62 0.75 0.98 1.20 1.45 

Cluster 37 29.09 90.89 176.76 316.94 625.98 1005.62 1574.43 1.15 1.08 1.11 1.16 1.25 1.37 1.49 

Cluster 38 17.67 37.02 50.07 61.45 72.99 86.03 107.10 1.41 1.20 1.06 0.93 0.77 0.68 0.63 

Cluster 39 13.10 43.52 83.46 143.39 271.37 428.67 661.87 0.30 0.36 0.40 0.42 0.46 0.51 0.58 

Cluster 40 34.08 84.40 151.01 244.54 429.79 641.52 946.58 0.36 0.33 0.37 0.41 0.48 0.55 0.65 

Cluster 41 4.35 9.66 15.01 21.52 32.00 42.05 55.71 0.52 0.62 0.67 0.75 0.88 1.02 1.18 

Cluster 42 13.40 29.59 45.55 71.07 122.98 180.76 273.41 0.55 0.49 0.48 0.49 0.51 0.52 0.56 

IF1 

National 55.54 129.18 191.56 263.46 385.69 509.55 671.82 0.71 0.69 0.69 0.70 0.73 0.77 0.82 

Cluster 1 29.95 51.53 62.67 71.38 80.71 86.78 93.53 0.44 0.43 0.41 0.39 0.37 0.36 0.36 

Cluster 2 17.06 43.70 67.69 98.62 161.06 230.78 326.67 0.38 0.39 0.39 0.42 0.46 0.50 0.53 

Cluster 3 12.81 33.10 55.79 88.91 159.98 270.53 499.52 0.28 0.36 0.46 0.57 0.75 0.92 1.16 

Cluster 4 8.94 21.84 35.31 56.74 103.84 160.42 243.43 1.00 0.83 0.78 0.73 0.69 0.70 0.71 
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Model 

Scale 

BIAS BIASr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

Cluster 5 52.68 152.83 262.59 411.71 692.11 993.64 1404.94 0.66 0.70 0.75 0.81 0.91 1.00 1.12 

Cluster 6 22.74 71.87 122.75 188.47 304.43 422.07 572.25 0.66 0.74 0.79 0.84 0.91 0.96 1.02 

Cluster 7 35.98 69.66 89.26 105.31 123.32 135.49 146.89 0.49 0.43 0.44 0.45 0.45 0.45 0.44 

Cluster 8 52.93 112.93 174.68 249.19 368.98 476.83 600.08 0.44 0.46 0.52 0.59 0.70 0.82 0.96 

Cluster 9 19.65 39.72 53.59 66.95 84.91 99.63 115.37 0.39 0.40 0.41 0.42 0.43 0.45 0.47 

Cluster 10 24.44 58.86 85.27 112.21 149.08 178.34 211.78 0.42 0.43 0.43 0.42 0.41 0.40 0.41 

Cluster 11 13.13 35.98 58.95 99.17 193.38 314.67 508.33 0.59 0.52 0.57 0.67 0.85 1.04 1.27 

Cluster 12 59.14 174.40 277.76 394.69 633.93 974.08 1451.93 0.78 0.77 0.80 0.83 0.90 0.98 1.07 

Cluster 13 115.49 243.57 328.29 415.78 544.41 633.09 708.34 0.85 0.76 0.68 0.62 0.58 0.55 0.53 

Cluster 14 80.46 183.54 272.45 374.09 535.94 685.08 857.09 0.36 0.32 0.32 0.32 0.34 0.36 0.38 

Cluster 15 113.63 225.19 300.70 392.69 516.36 610.29 703.27 0.91 0.90 0.85 0.81 0.76 0.72 0.68 

Cluster 16 44.14 118.06 189.26 282.92 463.06 647.79 889.01 0.36 0.39 0.41 0.44 0.50 0.55 0.60 

Cluster 17 55.84 118.39 191.53 298.57 521.48 798.53 1193.10 0.34 0.32 0.30 0.27 0.25 0.34 0.44 

Cluster 18 37.59 101.84 155.32 214.82 371.80 550.31 808.30 0.72 0.68 0.71 0.77 0.96 1.14 1.37 

Cluster 19 273.07 619.57 863.48 1079.37 1303.58 1469.06 2009.42 0.25 0.23 0.22 0.21 0.19 0.19 0.23 

Cluster 20 49.78 85.57 107.93 126.69 146.77 158.96 169.03 0.34 0.32 0.32 0.33 0.33 0.33 0.34 

Cluster 21 16.36 26.21 32.68 37.99 43.62 47.06 49.99 0.49 0.41 0.38 0.37 0.35 0.35 0.34 

Cluster 22 1.30 3.95 6.56 9.69 14.91 19.87 25.92 0.91 0.95 0.94 0.91 0.85 0.81 0.76 

Cluster 23 3.40 7.33 9.64 11.52 13.49 14.68 15.68 0.27 0.31 0.33 0.35 0.37 0.38 0.39 

Cluster 24 6.98 16.63 19.88 34.48 70.10 115.07 183.39 1.46 1.20 1.08 1.00 0.91 0.84 0.77 

Cluster 25 58.89 151.00 245.35 374.46 612.70 864.75 1200.43 0.84 0.81 0.83 0.86 0.93 1.00 1.09 

Cluster 26 19.33 42.82 59.85 75.38 91.63 103.15 151.20 0.41 0.41 0.40 0.38 0.36 0.34 0.39 

Cluster 27 12.12 24.24 34.38 45.40 61.46 74.89 89.56 0.50 0.54 0.59 0.65 0.72 0.77 0.82 

Cluster 28 25.91 58.71 79.97 116.63 205.59 307.83 455.05 0.41 0.37 0.34 0.35 0.38 0.39 0.41 

Cluster 29 18.95 48.91 82.40 137.48 264.33 444.05 727.02 0.23 0.20 0.20 0.24 0.31 0.41 0.53 
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Model 

Scale 

BIAS BIASr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

Cluster 30 15.94 42.90 68.58 99.65 165.54 283.35 480.56 0.64 0.46 0.40 0.33 0.27 0.28 0.30 

Cluster 31 32.40 74.22 106.05 137.28 175.75 200.63 219.29 0.52 0.52 0.50 0.47 0.42 0.39 0.36 

Cluster 32 15.44 36.15 59.46 90.98 147.52 201.48 274.30 0.31 0.34 0.42 0.51 0.65 0.75 0.87 

Cluster 33 67.08 125.34 183.08 257.98 384.70 514.72 675.97 0.27 0.29 0.30 0.32 0.34 0.38 0.41 

Cluster 34 48.88 150.41 262.53 414.00 694.00 986.35 1372.04 0.69 0.84 0.95 1.07 1.29 1.50 1.76 

Cluster 35 75.16 138.98 173.92 195.24 198.03 193.90 260.89 0.55 0.51 0.47 0.41 0.35 0.31 0.33 

Cluster 36 89.20 185.05 250.56 308.94 381.34 437.63 490.84 0.51 0.61 0.67 0.73 0.82 0.90 0.97 

Cluster 37 46.93 119.09 203.69 327.47 584.52 895.58 1357.97 0.98 0.91 0.93 0.98 1.09 1.22 1.39 

Cluster 38 16.81 39.04 54.42 67.93 81.51 92.22 108.83 1.40 1.23 1.11 0.98 0.83 0.73 0.68 

Cluster 39 50.97 134.70 214.04 314.89 495.74 683.92 939.20 0.48 0.57 0.59 0.62 0.66 0.69 0.75 

Cluster 40 91.12 242.35 381.58 550.50 825.03 1083.67 1396.13 0.67 0.71 0.72 0.73 0.73 0.75 0.78 

Cluster 41 7.40 14.12 19.50 25.08 32.69 38.63 45.21 1.16 1.08 1.05 1.03 1.02 1.02 1.05 

Cluster 42 11.01 33.85 58.33 91.34 153.46 220.11 312.76 0.28 0.32 0.35 0.37 0.40 0.42 0.45 
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APPENDIX K: RMSE AND RMSER PERFORMANCE METRICS FOR 

MODELS DEVELOPED USING REGION OF INFLUENCE 
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Model 

Scale 

RMSE RMSEr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

IF2 

National 133.26 329.02 512.95 736.71 1112.36 1477.66 1940.74 1.43 1.51 1.58 1.63 1.68 1.71 1.73 

Super 1 97.47 207.26 303.47 423.58 650.23 909.4 1290.89 0.7 0.72 0.74 0.78 0.85 0.94 1.06 

Super 2 44.21 94.95 148.05 220.39 362.42 524.87 761.31 0.62 0.52 0.51 0.52 0.54 0.57 0.6 

Super 3 118.82 232.86 297.85 369.41 567.61 882.08 1402.49 0.95 0.75 0.64 0.57 0.6 0.72 0.9 

Super 4 39.46 102.4 165.71 252.89 429.57 638.43 950.24 0.65 0.7 0.73 0.78 0.87 0.96 1.07 

Super 5 112.92 291.66 451.09 634.71 921.46 1179.74 1486.98 2.06 2.37 2.48 2.53 2.51 2.44 2.33 

IF1 

National 130.54 348.2 539.51 758.71 1103.82 1422.55 1814.55 1.4 1.6 1.66 1.68 1.67 1.65 1.62 

Super 1 97.75 199.78 291.23 404.77 610.45 832.4 1143.35 0.7 0.69 0.71 0.74 0.8 0.86 0.94 

Super 2 43.98 97.07 150.48 223.51 372.92 553.59 829.69 0.61 0.54 0.52 0.53 0.56 0.6 0.66 

Super 3 97.08 209.75 300.58 403.13 568.93 729.14 934.4 0.78 0.68 0.64 0.62 0.6 0.6 0.6 

Super 4 39.66 97.73 157.64 239.36 398.17 576.87 834.25 0.66 0.67 0.7 0.74 0.81 0.87 0.94 

Super 5 105.51 250.15 398.72 607.91 1036.72 1539.72 2274.79 1.92 2.03 2.19 2.43 2.82 3.18 3.56 
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APPENDIX K: BIAS AND BIASR PERFORMANCE METRICS FOR 

MODELS DEVELOPED USING CLUSTERING 
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Model 

Scale 

BIAS BIASr 

50 20 10 5 2 1 0.5 50 20 10 5 2 1 0.5 

IF2 

National 54.52 123.12 183.33 257.42 390.26 528.46 713.79 0.88 0.79 0.76 0.75 0.79 0.83 0.9 

Super 1 59.78 124.6 181.57 252.48 384.97 533.09 738.13 0.68 0.66 0.65 0.66 0.7 0.75 0.83 

Super 2 25.04 55.87 87.37 130.27 217.53 319.94 463.75 0.41 0.37 0.38 0.42 0.48 0.55 0.63 

Super 3 54.29 115.42 158.67 202.33 315.63 480.13 720.69 0.79 0.7 0.67 0.66 0.68 0.71 0.77 

Super 4 24.72 61.67 97.47 143.73 236.36 342.06 506.22 0.58 0.56 0.58 0.61 0.68 0.76 0.85 

Super 5 44.6 103.38 151.05 202.98 282.13 362.64 475.03 1.06 0.89 0.82 0.78 0.78 0.81 0.88 

IF1 

National 51.42 122.53 185.39 260.78 391.09 524.4 703.75 0.81 0.75 0.74 0.75 0.78 0.83 0.9 

Super 1 58.76 121.03 175.31 239.85 356.73 484.55 662.19 0.61 0.61 0.63 0.65 0.71 0.78 0.88 

Super 2 25.99 57.59 86.15 128.79 213.19 312.64 462.22 0.44 0.38 0.38 0.41 0.48 0.57 0.68 

Super 3 47.15 106.48 156.32 212.99 313.29 416.52 552.77 0.71 0.66 0.66 0.67 0.71 0.76 0.82 

Super 4 24.78 60.35 94.61 138.05 221.64 316.65 454.28 0.58 0.56 0.57 0.58 0.63 0.7 0.78 

Super 5 43.27 95.77 140.68 193.9 283.96 374.83 504.76 1.03 0.87 0.8 0.75 0.72 0.73 0.76 
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I couldn’t quite find my own words to describe how it feels completing this work, so I am 

relying on somebody else’s: 

 

“It was quite impossible to describe. 

 

Here is what it looked (read: feels) like. 

 

It looked like a piano sounds shortly after being dropped down a well. It tasted yellow, and it 

felt Paisley. It smelled like the total eclipse of the moon.” - Pratchett (1988) 

 

Thank you for taking the time to read this work.  




