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Abstract

In this thesis, we study the gravitational collapse of generalized Vaidya spacetimes

which describe a combination of lightlike and timelike matter fields, commonly known

as Type I and Type II fields, respectively, in the context of the cosmic censorship con-

jecture. This conjecture suggests that singularities forming in gravitational collapse

should always be covered by event horizons of gravity. Many studies have been made

to establish this conjecture in a rigorous mathematical framework but it still remains

an open problem. We develop a general mathematical framework to study the con-

ditions on the mass function of generalized Vaidya spacetimes so that future directed

nonspacelike geodesics can terminate at the singularity in the past. Our result gener-

alizes earlier works on gravitational collapse. There exist classes of generalized Vaidya

mass functions for which the collapse terminates with a locally naked central singu-

larity. We calculate the strength of these singularities, to show that they are strong

curvature singularities, and there can be no extension of spacetime through them. We

then extend this analysis to higher dimensions and present sufficient conditions on the

generalized Vaidya mass functions that will generate a locally naked singular end state.

With specific examples, we show the existence of classes of mass functions that lead

to a naked singularity in four dimensions, which gets covered on transition to higher

dimensions. Hence for these classes of mass functions, cosmic censorship gets restored

in higher dimensions, and the transition to higher dimensions restricts the set of initial

data that results in a naked singularity.
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ṁ0 = 0.0015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



Chapter 1

Introduction

When a massive star has exhausted its nuclear fuel which provides a balance against the

internal pull of gravity, such a star undergoes continual gravitational collapse. In this

situation, gravity dominates other forces of nature, particularly the weak and strong

nuclear forces in such a way that the entire matter cloud collapses and shrinks under the

force of its own gravity. The dynamical evolution of gravitational collapse is governed

by the Einstein’s field equations (EFE). The study of collapse dynamics of the matter

clouds is very important because it is this study that would decide whether the ultra-

strong gravity regions are visible or not to the external universe. The visibility of these

regions is usually determined by the formation of the event horizon during the collapse

evolution. If the event horizons of gravity develop before the spacetime singularity

forms, then these regions are hidden from the external observers, and this results in

a black hole formation. Contrarily, if such horizons are delayed or fail to develop

during the process of gravitational collapse, as governed by the internal dynamics of

the collapsing cloud, then the naked singularity forms and these extreme gravity regions

are visible to the external universe.

The questions then remains about what is the final fate of this continual gravita-

tional collapse. There have been extensive studies on the gravitational collapse and its

final end state. Several collapse models developed provide useful insights into the final
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fate of a massive star within the framework of Einsteins theory of gravity in the past

two decades. Many of these models conclude that the final outcome of the continual

collapsing star depends on the initial mass of the star on the ground that the gravi-

tational collapse evolves and develops from regular initial data, defined on an initial

surface of the collapsing matter.

Landau (1932) pointed out that there exists a critical mass in the quantum the-

ory above which greater masses must collapse to a point. This conclusion came after

the discovery of the Schwarzschild solution to the Einstein’s field equations. Then,

Chandrashekhar (1934) developed a model in the quantum theory of white dwarfs, and

pointed out that the life-history of a star of small mass must be different from that

of a large mass in such a way that a large mass star cannot pass into the white-dwarf

stage. A further question was about the amount of time that a collapsing star would

take to settle down to its final end state. Oppenheimer & Snyder (1939) pointed out

that for an observer comoving with the stellar matter, the total time of collapse of a

spherically symmetric homogeneous and marginally bound dust cloud is finite, and that

an external observer sees the star asymptotically shrinking to its gravitational radius.

After this study, it was suggested that the spacetime settles to a vacuum Schwarzschild

geometry at the end of the gravitational collapse and the central spacetime singularity

is hidden by the event horizon which leads to a black hole.

Studies have also shown that a star, with a mass below two or three solar masses

will, stabilize as a white dwarf or neutron star during the collapse as it loses some of

its original mass. In these cases, after an initial collapse of the cloud when the star

has exhausted its nuclear fuel, the star again stabilizes at a much smaller radius due to

internal balancing forces provided by either electron or neutron degeneracy pressures.

For heavier stars that are several solar masses, they may again settle to a neutron star

final state if the star could throw away the excess mass in the process of its evolu-

tion. However, for more massive stars, none of the above internal pressures can achieve

the required balance, and a continual gravitational collapse becomes inevitable. The
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collapse then must proceed towards creating a spacetime singularity, as predicted by

general relativity theorems, which may be hidden within a black hole or may be visible

to the external universe. In his book, Joshi (1993) defines a spacetime singularity as a

region where the physical parameters such as mass, energy density, and the spacetime

curvature go to their extreme values and blow up, so that the usual laws of physics

break down at such a singularity. This can clearly be seen in Figure 1.1. In this re-

gion, the time scales and the length are comparable to the Planck scales and therefore

the quantum theory combined with the effects of gravity must be taken into account.

Some studies suggest that if the quantum gravity theory is correct, then naked singu-

larities should exist in nature (Goswami et al. 2006; Goswami & Joshi 2007; Martin

2005). Raychaudhuri (1955) introduced a famous equation, commonly known as the

Figure 1.1: Gravitational collapse of the matter cloud

Raychaudhuri equation, to study the effects of gravitational field on timelike and null

geodesics under general conditions. Before that, the spacetime singularity was consid-

ered to be a result of solving the EFE by assuming exact symmetry conditions. Based

on the EFE, the Raychaudhuri equation attempted to study the behaviour of gravi-
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tating cloud under general conditions. However, several other extensive studies later

showed that spacetime singularities are not a result of the exact symmetries assumed

in solving EFE (Hawking & Ellis 1973). This analysis showed that under some general

and physical conditions such as energy, the spacetime singularities is inevitable.

Despite all the spacetime singularity theorems developed so far, there was still a fun-

damental problem to whether the spacetime singularity developed during gravitational

collapse would always be hidden below the event horizon or it would be communicated

to the external observers. Penrose (1969) proposed a conjecture commonly known

as the Cosmic Censorship Conjecture (CCC) stating that the singularities forming in

gravitational collapse should always be covered by event horizons of gravity and remain

invisible to any external observer. “We are thus presented with what is perhaps the most

fundamental unanswered question of general-relativistic collapse theory, namely: does

there exist a cosmic censor who forbids the appearance of naked singularities, clothing

each one in an absolute event horizon?...it is not known whether singularities observ-

able from outside will ever arise in a generic collapse which starts off from a perfectly

reasonable nonsingular initial state”. The conjecture can be stated in two forms, the

strong and weak forms. The strong form proposes that no null rays could emerge from

the singularity in a reasonable spacetime, and hence it is invisible for all observers.

That is, there occurs no naked singularity for any observer. The weak form of the CCC

states that null rays can emerge from the singularity which is however covered by an

event horizon and hence they cannot reach the external observer. In this case there is

a possibility of forming a locally naked singularity, say for an observer sitting on the

collapsing star, but it is globally not because it is hidden behind an event horizon. De-

spite many studies, this conjecture has not been established in a rigorous mathematical

framework to confirm the already widely accepted and applied theory of black holes

and dynamics.

Some models with counter examples have been formulated to show that there exist

shell focusing naked singularities occurring at the centre of spherically symmetric dust,
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radiation shells or perfect fluids. Christodoulou (1984) and Newman (1986) established

models in which the matter was assumed to be marginally or non-marginally bound

dust, and the initial data functions are smooth profiles. In these models it was shown

that there exist a naked singularity at the end state of continual gravitational collapse.

These singularities can only, in principle, be ruled out by pointing out that perfect fluids

or dust are not really fundamental forms of matter. However, since the formulation of

these models is based on the assumption that the matter satisfies all the reasonable

energy conditions, the ruling out of the above models should be made in terms of clear

and simple restrictions on the energy momentum tensor so that the cosmic censorship

is well established.

Though the general mathematical proof of this conjecture still remains indefinable,

there are a number of important counter-examples that give light to the solution. In-

vestigations of spherically symmetric dynamical collapse models in general relativity

for large classes of matter fields in four dimensional spacetimes, indicate that there

exist sets of initial data of non-zero measure at the epoch of the commencement of the

collapse, that lead to the formation of a locally naked singularity. In these cases the

trapped surfaces are delayed during the collapse process, i.e. they do not form early

enough to shield the singularity (or the spacetime fireball) from external observers. It

is also shown in these studies that there exist families of future outgoing non-spacelike

geodesics that emerge from such a naked singularity, providing a non-zero measure set

of trajectories escaping away (Baier et al. 2015; Joshi 2007; Lemos 1992). Though these

examples are mainly presented in the case of spherical symmetry (with a few exceptions

of non-spherical models), they can be considered to be relevant; if the censorship is one

of the key aspects of gravitation theory, then it should not depend on symmetries of

spacetime.

This thesis is organized as follows:

Chapter 1 is the introduction of this thesis where we give the general overview of

gravitational collapse and spacetime singularities. With counter-examples, we explain
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the importance of this study and indicate how some studies in this field, since the intro-

duction of cosmic censorship conjecture, have transformed the general understanding

about the final fate of the collapsing star under its own gravity.

Chapter 2 gives a brief introduction to the spacetime manifold and field equations.

We define a manifold, differentiable manifold and and some objects (tensors) that char-

acterize a manifold.

In Chapter 3 we study the gravitational collapse of generalized Vaidya spacetimes

in the context of the cosmic censorship conjecture. We establish a mathematical frame-

work to study how the tangent vectors behave near the central singularity. We find the

differential equation that governs the behaviour of these tangent vectors near the central

singularity. We analyse the nature of this equation using usual techniques of differential

equations, where we give the conditions of the generalized mass function for which the

singular points become a node and the outgoing non-spacelike geodesics can come out

of the singularity with a definite value of the tangent. We use the contracting mapping

to show the existence and uniqueness of the solution to this differential equation. We

also calculate the equation of the apparent horizon. With a well chosen and defined

generalized Vaidya mass function (i.e. the generalized Vaidya mass function that obeys

the energy conditions), we show with a specific example that there exists a class of

parameter values for which the apparent horizon is always above the event horizon and

that the central singularity is locally naked. We show that this singularity is strong in

the sense that no extension of spacetime is possible through them. We also recover some

already known solutions of the generalized Vaidya spacetimes such as charged Vaidya,

charged Vaidya de-Sitter and Husain solutions using the same differential equation near

the central singularity.

In Chapter 4 we extend the analysis of the gravitational collapse of generalized

Vaidya spacetimes to arbitrary N -dimensional spacetimes. Though the general math-

ematical framework remains similar to that in the previous chapter, the conditions on

the mass function and it’s derivatives for the collapse leading to a locally naked singu-

6



larity, change as we make a transition to higher dimensional spacetimes. Using explicit

examples we show that there exist classes of mass functions, that lead the collapsing

star to a naked singularity in four dimensions, will necessarily end in a black hole end

state in dimensions greater than four. The reason for this remains the same as in dust

models: formation of trapped surfaces is favoured in higher dimensions, and hence the

vicinity of the central singularity gets trapped even before the singularity is formed.

This gives a definite indication that the dynamics of trapped regions do depend on the

spacetime dimensions for a large class of matter fields and the occurrence of trapped

surfaces advance in time in higher dimensions.

Chapter 5 is about the covariant description of the generalized Vaidya spacetime,

where we calculate quantities that entirely define the spacetime covariantly, with respect

to the gravitational collapse.

Chapter 6 is the conclusion of this thesis, where we give a short summary and

outlook of the main results of this study.
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Chapter 2

Spacetime manifold and Einstein

field equations

2.1 Introduction

As stated in Chapter 1, the end state of the collapsing star, whether locally naked or

a black hole is usually determined by the initial data of the collapsing matter within

Einstein’s theory of gravity. In this chapter we introduce and give some preliminaries

on the spacetime manifold, the objects characterising it, called tensors, and the Einstein

field equations governing the dynamics of matter in spacetime in the context of general

relativity.

2.2 The manifold model

A manifoldM of dimension n (or n−manifold) is a topological space which is Hausdorff,

locally Euclidean and has a countable basis of open sets (Boothby 1986). In general

relativity, the universe is usually modelled as a four-dimensional spacetime manifold

M together with a Lorentzian metric tensor g (defined in section 2.4).
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However, recently, several studies have focused on studying the possible existence

of spacetimes in more than four dimensions and the observational consequences to

both cosmological and black holes contexts. This has mainly resulted from different

approaches in studying particle physics to the unification of all forces including gravity.

Some theories such as Kaluza-Klein and string theories that address some gravitational

issues in higher dimensions have emerged in recent times.

In Kaluza-Klein theories for instance, issues such as dimensional reduction through

generalized Kasner solutions, solution to the vacuum field equations of general relativ-

ity in 4 + 1 spacetime dimensions that leads to a cosmology which at the present epoch

has 3 + 1 observable dimensions in which the Einstein-Maxwell equations are obeyed

(Chodos & Detweiler 1980), presence of entropy flow from the extra dimensions greater

than the usual four to the main spacetime (Alvarez & Gavela 1983), the effects of ther-

mal history of the early universe (Sahdev 1984), classification of the 11− dimensional

classical homogeneous Kaluza-Klein cosmologies (Demianski et al. 1987) and so on,

were addressed.

On the other hand, string theory emerged in the late 1960s as a result of attempts

to understand the strong nuclear force, that is responsible for holding protons and

neutrons together inside the nucleus of an atom as well as quarks together inside the

protons and neutrons. In this theory, a quantum theory in 11-dimensions, called M-

theory, where two of the superstring theories (the type IIA superstring and the E8×E8

heterotic string) exhibit an eleventh dimension at strong coupling, emerged. At low

energies the M-theory is approximated by a classical field theory called 11-dimensional

supergravity (Berker et al. 2007; Green et al. 1987). Also in this theory the issue of

dealing with the extra dimensions called the brane-world scenario was addressed. In

this approach the four dimensions are identified with a defect embedded in a higher-

dimensional spacetime (Berker et al. 2007).

Several other works in dimensions greater than four include the solutions of spher-

ically symmetric spacetimes in higher dimensions such as Schwarzschild and Reisnner-
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Nordström black holes (Chodos & Detweiler 1980), thermodynamics and Hawking radi-

ation (Myers and Perry 1986), the generalization of the rotating Kerr black hole (Frolov

et al. 1987; Mazur and Bombelli 1987; Myers and Perry 1986), higher-dimensional black

holes in compactified spacetime (Myers 1987), and the generalization of the Vaidya met-

ric in higher dimensions (Iyer & Vishveshwara 1989). Other works done in the context

of higher dimensions, particularly in gravitational collapse, are discussed in Chapter 4.

The manifold model for the universe naturally incorporates the observed continuity

of space and time at the classical level, and the basic principle of general relativity where

the locally flat regions combine to produce a globally curved continuum in such a way

that we can make a transition from one coordinate system to another (Joshi 2007).

2.3 Differentiable manifold

If Rn denotes the Euclidean space of n dimensions, that is, a set of all n−tuples

(x1, x2, · · · , xn) such that −∞ < xi < ∞, i = 1, 2, · · ·n, with the usual topology of

the open interval, and 1
2
Rn denotes the lower half of Rn with x1 ≤ 0 then:

Definition 2.3.1. A map φ from an open set O ∈ Rn to an open set O′ ∈ Rm

is said to be of class Cr if the coordinates (n-tuples) (x1′ , x2′ , · · · , xn′) of the image

point φ(p) in O′ are r−times continuous differentiable functions (rth derivatives exist

and are continuous) of the coordinates (x1, x2, · · · , xn) of p in O. An n-dimensional

differentiable manifold is simply a set that is locally similar to an open set of Rn.

Definition 2.3.2. If a map is Cr for all r ≥ 0, then it said to be C∞ map.

Definition 2.3.3. A function f from an open set O of Rn to R, f : Rn −→ R is said

to be locally Lipschitz, if for each open set u ∈ O with compact closure, there is some

constant L, such that for each pair of points p, q ∈ u, |f(p)− f(q)| ≤ L |p− q|.
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2.4 The metric tensor

The metric tensor defines a notion of distance between any two infinitesimally separated

points of the spacetime manifold. It is a tensor that acts on pairs of vectors to give a

number, and is symmetric in its indices. In terms of coordinate basis, the metric tensor

is defined as

g = gabdx
a ⊗ dxb, (2.1)

where gab = g(∂/∂xa, ∂/∂xb). For any two vectors V and W, we can write this as

g(V,W) = gabV
aW b (Joshi 2007), which can be written in the form of a distance

between two infinitesimally separated points in spacetime as

ds2 = gabdx
adxb. (2.2)

The matrix [gab] is nonsingular with inverse gab such that

gabg
bc = δ c

a , (2.3)

where δ c
a is the Kronecker delta. If [gij] defines an entry of the matrix

[
gab
]
, we can

compute each entry using the formula

gij =
G(ij)

det g
, (2.4)

where G(ij) is the cofactor of [gij]. The tensors gab and gab can be used to define the

relationships between the covariant and the contravariant vectors as

Xa = gabX
b, Xa = gabXb. (2.5)

For a second rank tensor T, the relationships are given as

Tab = gacgbdT
cd, T ab = gacgbdTcd, T ab = gacTcb. (2.6)

The metric is indefinite in the sense that the magnitude of a nonzero vector could be

positive, negative or zero. The vector X ∈ Tp is called timelike, null, or spacelike if

g(X,X) < 0, g(X,X) = 0, or g(X,X) > 0 (2.7)
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respectively (Joshi 2007), where Tp is a tangent space at a point p ∈M. The signature

of the metric g at a point p is the difference between the number of positive eigenvalues

and the number of negative eigenvalues. For a nondegenerate and continuous metric

tensor, the signature is constant on the entire manifold. A four dimensional manifold

has signature (−,+,+,+).

2.5 Connection and covariant derivatives

For a metric tensor g, it is possible to have a unique torsion-free connection ∇ which

preserves the metric such that

∇g = 0 or gab;c = 0, (2.8)

where ; denotes a covariant derivative. The special connection called the Levi-Cevita

connection with the coefficients known as Christoffel symbols is defined by

Γcab =
1

2
gcd
(
∂gbd
∂xa

+
∂gad
∂xb
− ∂gab
∂xd

)
≡ 1

2
gcd(gbd,a + gad,b − gab,d) (2.9)

(Boothby 1986). This connection is symmetric in its lower indices, i.e. Γabc = Γacb. The

Christoffel symbols contain all the information about the curvature of the coordinate

system and can therefore be transformed to zero when a suitable coordinate transfor-

mation is chosen, therefore it is not a tensor. However, it can be considered as any

other ordinary tensor in terms of index notation.

For a vector field Xa, the covariant derivative is defined as

∇bX
a = ∂bX

a + ΓabcX
c, ∇bXa = ∂bXa − ΓcabXc. (2.10)

For a tensor T ab, we then have

∇cT
ab = ∂cT

ab + ΓacdT
db + ΓbcdT

ad, (2.11)

and for a mixed tensor T ab we have

∇cT
a
b = ∂cT

a
b + ΓacdT

d
b − ΓdabT

a
d. (2.12)
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2.6 Geodesics

In Euclidean space, a geodesic is a straight line, defined by two equivalent properties.

First, its tangent vector always points in the same direction (along the line) and, second,

it is the curve of shortest length between two points (Hobson et al. 2006). In the general

torsion-free manifold however, the geodesic is considered as a curve xa(u) described by

a parameter u by the fixed direction of its tangent vector t(u) and satisfies the condition

dt

du
= λ(u)t, (2.13)

where λ(u) is a parametric function of u. Generally, the equations satisfied by both

null and non-null geodesics parametrized by a parameter u are given by

d2xa

du2
+ Γabc

dxb

du

dxc

du
= λ(u)

dxa

du
. (2.14)

The curve can be parametrized in such a way that λ(u) vanishes. Then the geodesics

are defined by the equations

d2xa

du2
+ Γabc

dxb

du

dxc

du
= 0, (2.15)

where u is called an affine parameter. A geodesic in (M, g) is timelike, spacelike, or

null if its tangent vector is timelike, spacelike, or null respectively.

2.7 Riemann and Ricci tensors

The Riemann or the Curvature tensor, Ra
bcd, is a tensor of the fourth rank defined as

Ra
bcd = Γabd,c − Γabc,d + ΓaecΓ

e
bd − ΓaedΓ

e
bc. (2.16)

where Γabd,c = ∂cΓ
a
bd. The curvature tensor has symmetry properties which can be

observed by changing from mixed components Ra
bcd to covariant components Rabcd =

gaeR
e
bcd. By simple transformation, it can easily be seen that

Rabcd = −Rbacd = −Rabdc, (2.17)

Rabcd = Rcdab. (2.18)
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Thus, the tensor is antisymmetric in each of the index pairs a, b, c and d, and is

symmetric under the interchange of any two pairs with one another. The cyclic sum

of the components of Rabcd, obtained by permutation of any three indices, is equal to

zero; for example,

Rabcd +Racdb +Radbc = 0. (2.19)

The curvature tensor can also be used to prove the following Bianchi identity

Ra
bcd;e +Ra

bde;c +Ra
bec;d = 0. (2.20)

The Ricci tensor is a tensor of the second rank formed by contracting the curvature

tensor. The Ricci tensor can therefore be defined as

Rab = gdcRdacb = Rc
acb. (2.21)

According to (2.16), we have

Rab = Rc
acb = Γc ab,c − Γc ac,b + Γc abΓ

e
ce − Γc beΓ

e
ac. (2.22)

The Ricci tensor is symmetric, i.e.

Rab = Rba. (2.23)

If we contract the Ricci tensor, Rab, we obtain the invariant

R = gabRab = gacgbdRabcd, (2.24)

which is called the scalar curvature or Ricci scalar of space. The Gaussian curvature

K, also known as the total curvature (Kreyszig 1991), of a two-dimensional surface, is

an intrinsic property of the space independent of the coordinate system used to describe

it. The curvature of a two-dimensional surface is defined by (Hobson et al. 2006)

K =
R1212

det g
. (2.25)

For a 2−surface sphere metric defined by ds2 = r2(dθ2 + sin2 θdφ2), the Gaussian

curvature is given by K = r−2.
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2.8 The Einstein tensor

The Einstein tensor, named after Albert Einstein, is used to express the curvature

of a manifold. In general relativity, the Einstein tensor occurs in the Einstein field

equations for gravitation describing spacetime curvature in a manner consistent with

energy considerations. It is defined in terms of the Ricci and metric tensors as

Gab = Rab −
1

2
Rgab. (2.26)

The Einstein tensor can easily be derived from the Bianchi identity (2.20), which can

also be written as

∇eRabcd +∇cRabde +∇dRabec = 0. (2.27)

Raising a and contracting with d gives

∇eRbc +∇cR
a
bae +∇aR

a
bec = 0. (2.28)

On using the antisymmetry property (2.17) in the second term we get

∇eRbc −∇cRbe +∇aR
a
bec = 0. (2.29)

If we now raise b and contract with e, we find that

∇bR
b
c −∇cR +∇aR

ab
bc = 0. (2.30)

Using the antisymmetric properties (2.17), the third term may be written as

∇aR
ab
bc = ∇aR

ba
cb = ∇aR

a
c = ∇bR

b
c. (2.31)

It can be seen that the first and last terms in (2.30) are identical, so that

2∇bR
b
c −∇cR = ∇b(2R

b
c − δbcR) = 0. (2.32)

Finally, raising the index c, we obtain the result

∇b(R
bc − 1

2
gbcR) = 0. (2.33)
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The term in brackets is called the Einstein tensor and is denoted as

Gab ≡ Rab − 1

2
gabR. (2.34)

Similarly,

Gab ≡ Rab −
1

2
gabR. (2.35)

2.9 Energy momentum tensor

The energy momentum tensor (also known as stress energy tensor), Tab, is an attribute

of matter, radiation, and non-gravitational force fields in the spacetime. It is the source

of the gravitational field in the Einstein field equations. The energy momentum tensor,

T ab can be described as the flux of the a-th component of four-momentum across a

surface of constant xb, such that:

• T 00 is the flux of 0−th component of four-momentum (energy) across the time

surface (x0), called the energy density.

• T 0i = T i0 is the energy flux across surface of constant xi, called the heat conduc-

tion.

• T ij is the flux of i−momentum across the j-surface, called the stress.

• T ii is the pressure in the i-th direction (no sum over i).

For example: A perfect fluid (a fluid with no heat conduction and viscosity and moves

through spacetime with constant four-velocity ua with respect to any inertial frame),

when considered in the ‘instantaneous rest frame’, is uniquely characterised by its rest

energy density ρ and rest isotropic pressure p, i.e, T 00 = ρ, T 0i = T i0 = 0 and T ij = pδij
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(for T ij to be diagonal for any orientation of axes). Thus,

T ab =



ρc2 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


, (2.36)

where c is the speed of light. This can generally be written as

T ab =
(
ρ+

p

c2

)
uaub + pgab, (2.37)

which can be considered as the definition of a perfect fluid in general relativity (Lan-

dau & Lifshitz 1971). The conservation of energy momentum tensor throughout the

manifold implies that ∇aT
ab = 0.

2.10 The Einstein field equations

The Einstein field equations, also called the gravitational field equations, were derived

by Albert Einstein (1916). These equations describe how matter and energy (described

by the energy momentum tensor Tab) curve the geometry of the manifold. As we have

already seen, the conservation of the energy tensor gives

∇aG
ab = 0 = ∇aT

ab. (2.38)

Hence, it is natural to equate these two equations to obtain

Rab −
1

2
gabR = κTab, (2.39)

where κ is a constant given by κ = 8πG
c4

, G is a gravitational constant and c is the speed

of light. Equations (2.39) are known as Einstein field equations (EFE). An alternative

form of EFE can be obtained by writing equation (2.39) in terms of mixed components,

Ra
b −

1

2
δabR = κT ab, (2.40)
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and contracting by setting a = b. This gives R = −κT (in four dimensions), where

T ≡ T aa. Therefore, equations (2.39) can be written as

Rab = κ(Tab −
1

2
Tgab). (2.41)

Since Tab in general, contains all forms of energy and momentum in the matter fields

(including electromagnetic radiation if present), then for an empty region (a region of

spacetime in which Tab = 0), the gravitational field equations are given by

Rab = 0. (2.42)

In four dimensions, gab has ten independent components. Hence, the gravitational field

equations give a set of ten nonlinear differential equations and twenty independent

components of the curvature tensor Rabcd that describe the fundamental interaction of

gravitation of matter and energy. This shows that the field equations can be satisfied

in empty space with a nonvanishing curvature tensor, and thus gives a conclusion that

gravitational fields can exist in empty space in four or more dimensions only.

The Einstein field equations as derived here are however not unique because if we

add Λgab (where Λ is a universal constant of nature, commonly known as the cosmolog-

ical constant) to either Gab or Tab, they will continue to be divergence-free. Therefore,

these equations can generally be written as

Rab −
1

2
gabR + Λgab = κTab. (2.43)
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Chapter 3

Gravitational collapse of generalized

Vaidya spacetime

3.1 Introduction

The Vaidya spacetime, also known as the radiating Schwarzschild spacetime, describes

the geometry outside a radiating spherically symmetric star (Vaidya 1951). The radi-

ation effects are important in the later stages of gravitational collapse of a star, when

a considerable amount of energy in the form of photons or neutrinos is ejected from

the star. This makes the collapsing star to be surrounded by an ever expanding zone

of radiation. If we treat the complete nonstatic configuration of the radiating star

and the zone of radiation as an isolated system within an asymptotically flat universe,

then beyond the expanding zone of radiation the spacetime may be described by the

Schwarszchild solution. The Vaidya solution is of Petrov type D and possesses a normal

shear-free null congruence with nonzero expansion. In terms of exploding (imploding)

null coordinates the metric is given as

ds2 = −
[
1− 2m(v)

r

]
dv2 + 2εdvdr + r2dΩ2, (3.1)
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where ε = ±1 describes incoming (outgoing) radiation shells respectively, the function

‘m(v)’ is the mass function and dΩ2 describes the line element on the 2-sphere.

One of the earliest counterexamples of the Cosmic Censorship Conjecture (CCC),

with a reasonable matter field satisfying physically reasonable energy conditions, was

found in the shell focussing singularity formed by imploding shells of radiation in the

Vaidya-Papapetrou model (Dwivedi & Joshi 1989; Papapetrou 1985). In this case,

radially injected radiation flows into an initially flat and empty region, and is focussed

into a central singularity of growing mass. It was shown that the central singularity

at (v = 0, r = 0) becomes a node with definite tangent for families of nonspacelike

geodesics, for a non-zero measure of parameters in the model. Hence the singularity

at (v = 0, r = 0) is naked in the sense that families of future directed nonspacelike

geodesics going to future null infinity terminate at the singularity in the past. The

existence of naked singularities is important because it would be possible for external

observers to observe the gravitational collapse of a star to infinite density. This would

help to address some foundational problems in general relativity since it cannot make

predictions about the future evolution of spacetime near a singularity. This is not the

problem in generic black holes as an outside observer cannot observe the spacetime

within the event horizon. For a detailed discussion on the censorship violation in

radiation collapse we refer to Joshi (1993).

3.2 Generalized Vaidya spacetimes

The generalization of the Vaidya solution, also known as the generalized Vaidya space-

time, that includes all the known solutions of Einstein field equations with combination

of Type I and Type II matter fields, was given by Wang and Wu (1999). This general-

ization comes from the observation that the energy momentum tensor for these matter

fields are linear in terms of the mass function. As a result, the linear superposition of

particular solutions is also a solution to the field equations. Hence, by superposition
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we can explicitly construct solutions such as the monopole-de Sitter-charged Vaidya

solution and the Husain solution. Generalized Vaidya spacetimes are also widely used

in describing the formation of regular black holes (Sean 2006), dynamical black holes

(Dawood & Ghosh 2004) and black holes with closed trapped regions (Frolov 2014).

Recently, it was shown that the generalized Vaidya model can be matched to a heat con-

ducting interior of a radiating star (Maharaj et al. 2004). Also, the generalized Vaidya

spacetime emerges naturally while solving many other astrophysical and cosmological

scenarios (Alishahiha et al. 2014; Sungwook et al. 2010).

Unless otherwise specified, we use natural units (c = 8πG = 1) throughout this

work, Latin indices run from 0 to 3. The symbol ∇ represents the usual covariant

derivative and ∂ corresponds to partial differentiation. We use the (−,+,+,+) signa-

ture and the Riemann tensor defined by equation (2.16).

The Hilbert–Einstein action in the presence of matter is given by

S =
1

2

∫
d4x
√
−g [R− 2Λ− 2Lm] , (3.2)

variation of which also gives the Einstein field equations (2.39).

We know that the most general spherically symmetric line element for an arbitrary

combination of Type I matter fields (whose energy momentum tensor has one timelike

and three spacelike eigenvectors) and Type II matter fields (whose energy momentum

tensor has double null eigenvectors) is given by (Barrabes & Israel 1991)

ds2 = −e2ψ(v,r)

[
1− 2m(v, r)

r

]
dv2 + 2εeψ(v,r)dvdr

+r2(dθ2 + sin2 θdφ2), (ε = ±1). (3.3)

Here ‘m(v, r)’ is the mass function related to the gravitational energy within a given

radius r (Lake & Zannias 1991). When ε = +1, the null coordinate v represents

the Eddington advanced time, where r is decreasing towards the future along a ray

v = constant and depicts ingoing null congruence while ε = −1 depicts an outgoing

null congruence.
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The specific combination of matter fields that makes ψ(v, r) = 0 gives the general-

ized Vaidya geometry. In this thesis, as we are considering a collapse scenario, we take

ε = +1. Particularly, we consider a line element of the form

ds2 = −
(

1− 2m(v, r)

r

)
dv2 + 2dvdr + r2dΩ2. (3.4)

We use the following definitions

ṁ(v, r) ≡ ∂m(v, r)

∂v
, m′(v, r) ≡ ∂m(v, r)

∂r
. (3.5)

We find the connections (Christoffel symbols) using equation (2.9). This gives the

following nonvanishing components

Γvvv =
m(v, r)

r2
− m′(v, r)

r
, (3.6a)

Γvθθ = −r, (3.6b)

Γvφφ = −r sin2 θ, (3.6c)

Γrvv =
ṁ(v, r)

r
+
m(v, r)

r2
− 2m(v, r)2

r3
− m′(v, r)

r
+

2m(v, r)m′(v, r)

r2
, (3.6d)

Γrvr = Γr rv =
m′(v, r)

r
− m(v, r)

r2
, (3.6e)

Γrθθ = 2m(v, r)− r, (3.6f)

Γrφφ = 2m(v, r) sin2 θ, (3.6g)

Γθrθ = Γθθr =
1

r
, (3.6h)

Γθφφ = − sin θ cos θ, (3.6i)

Γφrφ = Γφφr =
1

r
, (3.6j)

Γφθφ = Γφφθ = cot θ. (3.6k)

The Ricci tensor is calculated using equation (2.22), which gives the following nonvan-

ishing components

Rvv =
2m(v, r)m′′(v, r)

r2
− m′′(v, r)

r
+

2ṁ(v, r)

r2
, (3.7a)

Rvr = Rrv =
m′′(v, r)

r
, (3.7b)

Rθθ = 2m′(v, r), (3.7c)

Rφφ = 2m′(v, r) sin2 θ. (3.7d)
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If we express the above components of the Ricci tensor in the form of mixed tensors

Ra
b, we obtain

Rv
v = Rr

r =
m′′(v, r)

r
, (3.8a)

Rθ
θ = Rφ

φ =
2m′(v, r)

r2
. (3.8b)

The Ricci scalar is calculated using equation (2.24). This gives

R =
2m′′(v, r)

r
+

4m′(v, r)

r2
. (3.9)

The Einstein tensor is defined by the formula in equation (2.26), from which we get the

following nonvanishing components

Gvv =
2ṁ(v, r)

r2
+

2m′(v, r)

r2
− 4m(v, r)m′(v, r)

r3
, (3.10a)

Gvr = Grv = −2m′(v, r)

r2
, (3.10b)

Gθθ = −rm′′(v, r), (3.10c)

Gφφ = −rm′′(v, r) sin2 θ. (3.10d)

If we express the above components in the form of Ga
b = gacGbc, we get

Gv
v = Gr

r = −2m′(v, r)

r2
, (3.11a)

Gr
v =

2ṁ(v, r)

r2
, (3.11b)

Gθ
θ = Gφ

φ = −m
′′(v, r)

r
. (3.11c)

Using the Einstein field equations (2.39) (Λ = 0), the corresponding energy momentum

tensor can be written in the form

Tab = T
(n)
ab + T

(m)
ab , (3.12)

where

T
(n)
ab = ϑlalb, (3.13a)

T
(m)
ab = (ρ+ %)(lakb + lbka) + %gab, (3.13b)
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with la and ka being two null vectors defined by,

la = δ0
a, ka =

1

2

[
1− 2m(v, r)

r

]
δ0
a − δ1

a, (3.14)

where lal
a = kak

a = 0 and lak
a = −1 (Husain 1996).

Equation (3.12) can be considered as a generalized energy momentum tensor of

the Vaidya solution, with the component T
(n)
ab being considered as the matter field

that moves along the null hypersurfaces v = constant while T
(m)
ab describes the matter

moving out along timelike trajectories. When ρ = % = 0, the solutions reduce to the

Vaidya solution with m = m(v).

If the EMT of equation (3.12) is projected to the orthonormal basis, defined by the

four vectors,

E(0)
a =

la + ka√
2

, E(1)
a =

la − ka√
2

,

E(2)
a =

1

r
δa2 , E(3)

a =
1

r sin θ
δa3 , (3.15)

it can be found that

[
T(a)(b)

]
=



ϑ
2

+ ρ ϑ
2

0 0

ϑ
2

ϑ
2
− ρ 0 0

0 0 % 0

0 0 0 %


, (3.16)

where

ϑ =
2ṁ(v, r)

r2
, ρ =

2m′(v, r)

r2
, % = −m

′′(v, r)

r
, (3.17)

(Wang & Wu 1999). This form of the energy momentum is a combination of Type I

and Type II fluids (Hawking & Ellis 1973), with the following energy conditions

a) The weak and strong energy conditions :

ϑ ≥ 0, ρ ≥ 0, % ≥ 0, (ϑ 6= 0). (3.18)
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b) The dominant energy conditions :

ϑ ≥ 0, ρ ≥ % ≥ 0, (ϑ 6= 0). (3.19)

These energy conditions can be satisfied by suitably choosing the mass function m(v, r).

In particular, when m = m(v), all the energy conditions (weak, strong, and dominant)

reduce to ϑ ≥ 0, while when m = m(r) we have ϑ = 0, and the matter field degenerates

to a Type I fluid with the usual energy conditions (Hawking & Ellis 1973).

3.3 Collapsing model

In this section, we examine the gravitational collapse of imploding radiation and matter

described by the generalized Vaidya spacetime. For this situation, a thick shell of

radiation and Type I matter collapses at the centre of symmetry (Joshi 1993).

If Ka is the tangent to nonspacelike geodesics with Ka = dxa

dk
, where k is the affine

parameter, then Ka
;bK

b = 0 and

gabK
aKb = B, (3.20)

where B = 0 for null vectors and B = ∓1 for timelike and spacelike vectors respectively.

The equations for dKv/dk and dKr/dk are calculated from the Lagrangian

L =
1

2
gabẋ

aẋb, (3.21)

where ẋa = dxa

dk
, and Lagrange-Euler equations

∂L

∂x
− d

dk

(
∂L

∂ẋ

)
= 0. (3.22)

Using (3.4), the Lagrangian is given by

L = −1

2

(
1− 2m(v, r)

r

)
v̇2 + v̇ṙ +

1

2
r2(θ̇2 + sin2 θφ̇2). (3.23)
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• v-component
∂L

∂v
− d

dk

(
∂L

∂v̇

)
= 0, (3.24)

∂L

∂v
=

1

r
ṁ(v, r)v̇2, (3.25)

∂L

∂v̇
= −

(
1− 2m(v, r)

r

)
v̇ + ṙ, (3.26)

dKr

dk
+

1

r
ṁ(v, r)(Kv)2 −

(
1− 2m(v, r)

r

)
dKv

dk

− 2

r2
(m(v, r)− rm′(v, r))KvKr = 0.

(3.27)

• r-component
∂L

∂r
− d

dk

(
∂L

∂ṙ

)
= 0, (3.28)

∂L

∂r
=

(
1

r
m′(v, r)− m(v, r)

r2

)
v̇2 + r(θ̇2 + sin2 θφ̇2), (3.29)

∂L

∂ṙ
= v̇, (3.30)

dKv

dk
−
(
m′(v, r)

r
− m(v, r)

r2

)
(Kv)2 − r

(
(Kθ)2 + sin2 θ(Kφ)2

)
= 0. (3.31)

• θ-component
∂L

∂θ
− d

dk

(
∂L

∂θ̇

)
= 0, (3.32)

∂L

∂θ
= r2 sin θ cos θ(Kφ)2, (3.33)

∂L

∂θ̇
= r2θ̇, (3.34)

dKθ

dk
+

2

r
KrKθ − sin θ cos θ(Kφ)2 = 0. (3.35)

• φ-component
∂L

∂φ
− d

dk

(
∂L

∂φ̇

)
= 0, (3.36)

∂L

∂φ
= 0, (3.37)

∂L

∂φ̇
= r2 sin2 θφ̇, (3.38)
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dKφ

dk
+

2

r
KrKφ + 2 cot θKθKφ = 0. (3.39)

We can write the above Lagrange-Euler equations as

d

dk
(r2 sin2 θKφ) = 0, (3.40a)

d

dk
(Kθ) +

2

r
KrKθ − sin θ cos θ(Kφ)2 = 0, (3.40b)

dKv

dk
−
(
m′(v, r)

r
− m(v, r)

r2

)
(Kv)2 − r

(
(Kθ)2 + sin2 θ(Kφ)2

)
= 0, (3.40c)

dKr

dk
+

1

r
ṁ(v, r)(Kv)2 −

(
1− 2m(v, r)

r

)(
m′(v, r)

r
− m(v, r)

r2

)
(Kv)2

− 2

r2

(
m(v, r)− rm′(v, r)

)
KvKr

− r
(

1− 2m(v, r)

r

)(
(Kθ)2 + sin2 θ(Kφ)2

)
= 0.

(3.40d)

Using the condition in equation (3.20), we can write equations (3.40c) and (3.40d) as

dKv

dk
+

(
m(v, r)

r2
− m′(v, r)

r

)
(Kv)2 − `2

r3
= 0, (3.41a)

dKr

dk
+
ṁ(v, r)

r
(Kv)2 − `2

r3

(
1− 2m(v, r)

r

)
−B

(
m(v, r)

r2
− m′(v, r)

r

)
= 0, (3.41b)

where B is a constant defined by equation (3.20).

If we write

Kv =
P (v, r)

r
, (3.42)

then KaK
a = gabK

aKb = B gives

Kv =
dv

dk
=
P

r
, P = P (v, r), (3.43)

Kr =
dr

dk
=
P

2r

(
1− 2m(v, r)

r

)
− `2

2rP
+
Br

2P
. (3.44)

From (3.40a), it can be observed that Kφ = const./r2 sin2 θ. Substituting this in

(3.40b), we can integrate (3.40a) and (3.40b) to get

Kθ =
` cos β

r2 sin2 θ
, (3.45)
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Kφ =
` sin β cosφ

r2
, (3.46)

where ` and β are constants of integration (Joshi 1993). ` is the impact parameter and

β is the isotropy parameter given by the relation sinφ tan β = cot θ. Using equation

(3.42), we get
dKv

dk
=

d

dk

(
P

r

)
=

1

r

dP

dk
− P

r2

dr

dk
. (3.47)

Thus
dP

dk
=

1

r

(
r2dK

v

dk
+ P

dr

dk

)
. (3.48)

Substituting equations (3.41a) and (3.44) into equation (3.48) gives

dP

dk
=
P 2

2r2

(
1− 4m(v, r)

r
+ 2m′(v, r)

)
+

`2

2r2
+
B

2
, (3.49)

which is the equation satisfied by the function P . The value of P can be obtained by

integrating this equation when the form and conditions for the mass function m(v, r)

are specified.

3.4 Conditions for locally naked singularity

In this section we examine, given the generalized Vaidya mass function, how the final

fate of collapse is determined in terms of either a black hole or a naked singularity. If

there are families of future directed non-spacelike trajectories reaching faraway observers

in spacetime, which terminate in the past at the singularity, then we have a naked

singularity forming as the collapse final state. Otherwise when no such families exist

and event horizon forms sufficiently early to cover the singularity, we have a black hole.

The equation for the radial null geodesics (` = 0, β = 0) for the line element (3.4) can

be easily found, using equations (3.42) and (3.44), which is given by

dv

dr
=

2r

r − 2m(v, r)
. (3.50)

The above differential equation has a singularity at r = 0, v = 0. The nature of this

singularity can be analysed by the usual techniques of the theory of ODE’s (Tricomi
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1961; Perko 1991). Whereas the procedures used below are standard, we shall describe

the case treated here in some detail so as to give the exact picture of the nature of the

central singularity at r = 0, v = 0.

3.4.1 Structure of the central singularity

We can generally write equation (3.50) in the form

dv

dr
=
M(v, r)

N(v, r)
, (3.51)

with the singular point at r = v = 0, where both the functions M(v, r) and N(v, r)

vanish. Hence we should carefully analyze the existence and uniqueness of the solution

of the above differential equation in the vicinity of this singularity. At this point it is

useful to introduce a new independent variable t with differential dt such that

dv

M(v, r)
=

dr

N(v, r)
= dt, (3.52)

so that the differential equation (3.51) can be replaced by the system

dv(t)

dt
= M(v, r),

dr(t)

dt
= N(v, r). (3.53)

We would like to emphasise here that all the solutions of equation (3.51) are solutions

of the system (3.53) and hence we study the behaviour of this system of equations near

the singular point r = v = 0 in the (r, v) plane. We can easily see that the singular

point of (3.51) is a fixed point of the system (3.53). To find the necessary and sufficient

conditions for existence of the solutions of this system in the vicinity of the fixed point

r = v = 0, let us write (3.53) as a differential equation of the vector x(t) = [v(t), r(t)]T

on R2 as
dx(t)

dt
= f(x(t)) (3.54)

Now to show the existence and uniqueness of the solution with respect to the initial

conditions arbitrarily near the fixed point of the above system (since the initial con-
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ditions on the fixed point will imply the system stays on the fixed point) we give the

following definitions:

Definition 3.4.1. The function f : R2 → R2 is differentiable at x = x0, if the partial

derivatives of the functions M and N with respect to r and v exist at that point. The

derivative of the function, Df , is given by the 2× 2 Jacobian matrixM,v M,r

N,v N,r


Definition 3.4.2. Suppose U is an open subset of R2, then f : U → R2 is of class C1

iff the partial derivatives M,v,M,r, N,v, N,r exist and are continuous on U .

Henceforth we will consider the function f to be of class C1 throughout the space-

time. Let us now show that there exists a unique solution to the system (3.54) subject

to the initial condition x(t0) = x0, where x0 is arbitrarily near the fixed point of the

equation. Let us define an operator T in the following way:

Definition 3.4.3. Let T : R2 → R2 be an operator acting on all continuous and

differentiable vectors y(t) on R2 and takes them to the image Ty(t) defined as

Ty(t) = x0 +

∫ t

t0

f(y(s))ds .

We now prove an important property of this operator T , subject to the function f

being class C1,

Lemma 3.4.4. Let U 3 x0 be an open subset of R2 and f : U → R2 is of class C1 and

y(t), z(t) are continuous and differentiable vectors on U . Then there always exists an

ε-neighbourhood Bε(x0) of x0 in which |Ty(t)−Tz(t)| ≤ κ|y(t)−z(t)| where 0 ≤ κ ≤ 1.

In other words T is an contraction mapping on Bε(x0).

Proof. Let K0 = max|x−x0|≤ε||Df(x)||. Then we have

|Ty(t)− Tz(t)| =
∣∣∣∣∫ t

t0

(f(y(s))− f(z(s))) ds

∣∣∣∣ . (3.55)
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The above equation can be written as

|Ty(t)− Tz(t)| =

∣∣∣∣∣
∫ t

t0

(∫ y(s)

z(s)

Df(r)dr

)
ds

∣∣∣∣∣ , (3.56)

and therefore we get the inequality

|Ty(t)− Tz(t)| ≤ K0|(t− t0)| |y(t)− z(t)|. (3.57)

Hence there always exists an open interval (t0−h, t0 +h) (that corresponds to a neigh-

bourhood around x0) where K0|(t− t0)| ≤ 1 and T is a contraction mapping.

Having established the existence of a contraction mapping in a neighbourhood of

the point x0 and recalling that R2 is a complete metric space, we now use the following

theorem to establish the existence and uniqueness of the solution of the system (3.54)

subject to the initial condition x(t0) = x0.

Theorem 3.4.5. If T : X → X is a contraction mapping on a complete metric space

X, then there is exactly one solution of the equation Tx = x.

The above theorem establishes a unique solution of the system (3.54) with the

initial condition x(t0) = x0 in an ε-neighbourhood of the point x0 which is given by

x(t) = x0 +

∫ t

t0

f(x(s))ds . (3.58)

The assumption that f : U → R2 is of class C1 assures the solution to be continuous

and differentiable in this neighbourhood. Let us now find the nature of the fixed point

r = v = 0 of the system (3.54). As the partial derivatives of the functions M and N

exist and are continuous in the neighbourhood of the fixed point, we can linearise the

system near the fixed point and hence the general behaviour of this system near the

singular point is similar to the characteristic equations (Tricomi 1961).

dv

dt
= Av +Br

dr

dt
= Cv +Dr, (3.59)
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where A = Ṁ(0, 0), B = M ′(0, 0), C = Ṅ(0, 0), N ′(0, 0) = D, with the dot denoting

partial differentiation with respect to the variable v while the dash denotes partial

differentiation with respect to the coordinate r and AD − BC 6= 0. By using a linear

substitution of the type

ξ = αv + ωr

η = γv + δr, (3.60)

where αδ − ωγ 6= 0, and the equation

dη

dξ
=
χ2η

χ1ξ
, (3.61)

the system (3.59) can be reduced into the form

dξ

dt
= χ1ξ,

dη

dt
= χ2η. (3.62)

Using equations (3.59), (3.60) and (3.62), it can be found that

α(Av +Br) + ω(Cv +Dr) = χ1(αv + ωr),

γ(Av +Br) + δ(Cv +Dr) = χ2(γv + δr).

By equating the coefficients of v and r in the above equations, we obtain

(A− χ1)α + Cω = 0,

Bα + (D − χ1)ω = 0, (3.63)

and

(A− χ2)γ + Cδ = 0,

Bγ + (D − χ2)δ = 0. (3.64)

The above equations in α, ω and γ, δ may be satisfied by the values of α, ω, γ, δ not

all zero if the determinant of the coefficients is zero. That is∣∣∣∣∣∣∣
A− χ C

B D − χ

∣∣∣∣∣∣∣ = 0, (3.65)
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or

χ2 − (A+D)χ+ AD −BC = 0. (3.66)

This is the characteristic equation with roots (eigenvalues) χ1 and χ2 given by

χ =
1

2

(
(A+D)±

√
(A−D)2 + 4BC

)
. (3.67)

The singularity of equation (3.59) is classified as a node if (A − D)2 + 4BC ≥ 0 and

BC > 0. Otherwise, it may be a centre or focus.

Now, for the equation (3.50) we have M(v, r) = 2r, N(v, r) = r − 2m(v, r). If at

the central singularity, v = 0, r = 0, we define the following limits

m0 = lim
v→0,r→0

m(v, r), (3.68a)

ṁ0 = lim
v→0,r→0

∂

∂v
m(v, r), (3.68b)

m′0 = lim
v→0,r→0

∂

∂r
m(v, r), (3.68c)

then the null geodesic equation can be linearized near the central singularity as

dv

dr
=

2r

(1− 2m′0)r − 2ṁ0v
. (3.69)

Clearly, this equation has a singularity ar v = 0, r = 0. We can determine the

nature of this singularity by observing the value of the discriminant of the characteristic

equation. Using equation (3.67), the roots of the characteristic equation are given by

χ =
1

2

(
(1− 2m′0)±

√
(1− 2m′0)2 − 16ṁ0

)
. (3.70)

For the singular point at r = 0, v = 0 to be a node, it is required that

(1− 2m′0)2 − 16ṁ0 ≥ 0 and ṁ0 > 0. (3.71)

Thus, if the mass function m(v, r) is chosen such that the condition in equation (3.71)

is satisfied, then the singularity at the origin (v = 0, r = 0) will be a node and outgoing

nonspacelike geodesics can come out of the singularity with a definite value of the

tangent.
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3.4.2 Existence of outgoing nonspacelike geodesics

Let us now return to the physical problem of the collapsing generalized Vaidya space-

time, and choose the mass function that has the following properties

1. The mass function m(v, r) obeys all the physically reasonable energy conditions

throughout the spacetime.

2. The partial derivatives of the mass function exist and are continuous on the entire

spacetime.

3. The limits of the partial derivatives of the mass function m(v, r) at the central

singularity obey the conditions: (1− 2m′0)2 − 16ṁ0 ≥ 0 and ṁ0 > 0.

The choice of the mass function with the above properties would ensure the existence

and uniqueness of the solutions of the null geodesic equation in the vicinity of the

central singularity, and will also make the central singularity a node of C1 solutions

with definite tangents.

To find the condition for the existence of outgoing radial nonspacelike geodesics

from the nodal singularity, we consider the tangent of these curves at the singularity.

Suppose X denotes the tangent to the radial null geodesic. If the limiting value of X

at the singular point is positive and finite then we can see that outgoing future directed

null geodesics do terminate in the past at the central singularity. The existence of these

radial null geodesics characterises the nature (a naked singularity or a black hole) of

the collapsing solutions. In order to determine the nature of the limiting value of X at

r = 0, v = 0 we define

X0 = lim
v→0,r→0

X = lim
v→0,r→0

v

r
. (3.72)

Using equation (3.69) and L’Hospital’s rule (for the C1 null geodesics) we get

X0 = lim
v→0,r→0

v

r
=
dv

dr
=

2

(1− 2m′0)− 2ṁ0(v
r
)
, (3.73)
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which simplifies to

X0 =
2

(1− 2m′0)− 2ṁ0X0

. (3.74)

Solving for X0 gives

X0 = b± =
(1− 2m′0)±

√
(1− 2m′0)2 − 16ṁ0

4ṁ0

. (3.75)

If we can get one or more positive real roots by solving equation (3.74), then the

singularity may be locally naked if the null geodesic lies outside the trapped region. In

the next subsection we will calculate the dynamics of the trapped region to find the

conditions for the existence of such geodesics.

3.4.3 Apparent horizon

The occurrence of a naked singularity or a black hole is usually decided by causal

behaviour of the trapped surfaces developing in the spacetime during the collapse evo-

lution. The apparent horizon is the boundary of the trapped surface region in the

spacetime. In spherically symmetric spacetime, the equation of the apparent horizon is

generally given as,

gabR ,aR ,b = 0. (3.76)

For the generalized Vaidya spacetime the equation of the apparent horizon is given as

2m(v, r)

r
= 1. (3.77)

Thus, the slope of the apparent horizon can be calculated in the following way: we

know
2dm(v, r)

dr
= 1, (3.78a)

2

(
∂m

∂v

)(
dv

dr

)
AH

+
2∂m

∂r
= 1, (3.78b)

which finally gives the slope of the apparent horizon at the central singularity

(v → 0, r → 0) as (
dv

dr

)
AH

=
1− 2m′0

2ṁ0

. (3.79)
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Thus now we have sufficient conditions for the existence of a locally naked central

singularity for a collapsing generalized Vaidya spacetime, which we state in the following

proposition:

Proposition 3.4.6. Consider a collapsing generalized Vaidya spacetime from a regu-

lar epoch, with a mass function m(v, r) that obeys all the physically reasonable energy

conditions and is differentiable in the entire spacetime. If the following conditions are

satisfied:

1. The limits of the partial derivatives of the mass function m(v, r) at the central

singularity obey the conditions: (1− 2m′0)2 − 16ṁ0 ≥ 0 and ṁ0 > 0,

2. There exist one or more positive real roots X0 of equation (3.75),

3. At least one of the positive real roots is less than
(
dv
dr

)
AH

at the central singularity,

then the central singularity is locally naked with outgoing C1 radial null geodesics es-

caping to the future.
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Figures 3.1 and 3.2 show the values of X0 and
(
dv
dr

)
AH

when m′0 is varied in the

interval −3.0 ≤ m′0 ≤ 0.42 for a fixed value of ṁ0. It can be observed from the figures

that the value of X0 = b± is always below the value of
(
dv
dr

)
AH

, and thus there exist

open sets of parameter values for which the singularity is locally naked.

3.5 Strength of singularity

To compute the strength of singularity according to Tipler (1961), which is the measure

of its destructive capacity in the sense that whether extension of spacetime is possible

through them or not (Ghosh & Dadhich 2001), we consider the null geodesics param-

eterized by the affine parameter k and terminating at the shell focusing singularity

r = v = k = 0. Following Clarke and Krolack (1985), a singularity would be strong if

the condition

lim
k→0

k2ψ = lim
k→0

k2RabK
aKb > 0, (3.80)

as defined by Tipler (1977), (which is the sufficient condition for the singularity to be

Tipler strong) and Rab is the Ricci tensor, is satisfied. We find the scalar ψ = RabK
aKb

using equations (3.8a) (3.42) and (3.44) as

ψ = (2ṁ0)

(
P

r2

)2

, (3.81)

and therefore,

k2ψ = (2ṁ0)

(
Pk

r2

)2

. (3.82)

Using equations (3.42), (3.44) and L’Hospital’s rule, we can evaluate the limit along

nonspacelike geodesics as k → 0. This limit is found to be

lim
k→0

k2ψ = (2ṁ0) lim
k→0

(
Pk

r2

)2

. (3.83)

If we assume that P 6= 0, ∞, then by using L’Hospital’s rule we have

lim
k→0

(
Pk

r2

)
= lim

k→0

(
P

2r

dk

dr

)
. (3.84)
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From equation (3.42), P
r

= dv
dk

. Therefore

lim
k→0

(
Pk

r2

)
=

1

2

dv

dk

dk

dr
=

1

2

dv

dr
=

1

2
X0. (3.85)

Thus, we finally get

lim
k→0

k2ψ =
1

4
X2

0 (2ṁ0). (3.86)

We observe that the strength of the central singularity depends only on the limit of the

derivative of mass function with respect to v and the limiting value X0.

With the suitable choice of the mass function (see Table 3.1 for some special cases),

it can be shown that

lim
k→0

k2ψ =
1

4
X2

0 (2ṁ0) > 0. (3.87)

If this condition is satisfied for some real and positive root X0, then we conclude that

the observed naked singularity is strong. It is interesting to note that when the energy

conditions are satisfied, then if a naked singularity is developed as a end state of the

collapse, then that naked singularity is always strong.

3.6 Some special sub-classes of generalized Vaidya

spacetimes

Using equation (3.74) we calculate the equations of tangents to the null geodesics at

the central singularity for some special sub-classes of the generalized Vaidya spacetimes

with the specific mass function, m(v, r). In all these mass functions, we can see that it

is possible to obtain at least one or more real and positive value of X0.

i. The self-similar Vaidya spacetime

In this case we consider the situation of a radial influx of null fluid in an initially

empty region of Minkowski spacetime (Dadhich & Ghosh 2001; Joshi 1993). The

first shell arrives at r = 0 at time v = 0 and the final shell at v = T . A central
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singularity of the collapsing mass is developed at r = 0. For v < 0 we have

m(v, r) = 0 and for v > T we have m(v, r) = M0 where M0 is the constant

Schwarzschild mass. For the weak energy conditions to be satisfied, it is required

that ṁ(v, r) to be a nonnegative. We define the mass function as

m(v, r) = m(v), (3.88)

where

m(v) =


0, v < 0,

1
2
λv, 0 ≤ v ≤ T,

M0, v > T.

(3.89)

The mass function is a nonnegative increasing function of v for imploding radiation.

For 0 ≤ v ≤ T , the solution is the self-similar Vaidya spacetime. For this choice of

mass function, using equation (3.74), we get

X0 =
2

1− λX0

or X0 =
1±
√

1− 8λ

2λ
. (3.90)

This is similar to the solution obtained by Joshi (1993). This equation gives positive

values of X0 for all values of λ in the range 0 < λ ≤ 1
8
. It can also be observed that

lim
k→0

k2ψ = 1
4
λX2

0 > 0 for all positive values of X0; hence the singularity is strong.

ii. The charged Vaidya spacetime

This subclass of the generalized Vaidya spacetime has been studied in great detail

(Israel 1967; Lindquist et al. 1965; Patil et al. 1967). We consider here the form

of the mass function

m(v, r) = f(v)− e2(v)

2r
, (3.91a)

where f(v) and e(v) are arbitrary functions representing the mass and electric

charge respectively (limited only by the energy conditions), at the advanced time v

(Dadhich & Ghosh 2001; Wang & Wu 1999). Particularly, we define these functions
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as

f(v) =


0, v < 0,

λv(λ > 0) 0 ≤ v ≤ T,

f0(> 0), v > T,

(3.91b)

and

e2(v) =


0, v < 0,

c2v2(µ2 > 0), 0 ≤ v ≤ T,

e2
0(> 0), v > T

(3.91c)

(Beesham & Ghosh 2003). For this choice of mass function, using equation (3.74)

we obtain

c2X3
0 − 2λX2

0 +X0 − 2 = 0. (3.92)

This equation is a polynomial of degree three with the negative last term and pos-

itive first coefficient. By the theory of polynomial functions, every equation of this

nature must have at least one root which is positive. The existence of these roots

signifies that the singularity is naked. In particular, when c2 = 0.001, λ = 0.01,

then one of the roots of equation (3.92) is 2.077 and lim
k→0

k2ψ = 1
2
X2

0 (λ− c2X0) =

0.0171 > 0. Therefore the condition for a strong naked singularity is satisfied.

iii. The charged Vaidya-deSitter spacetime

The charged Vaidya-deSitter solution is a generalized Vaidya solution of a charged

null fluid in an expanding de-Sitter background (Beesham & Ghosh 2003). We

define the mass mass function as

m(v, r) = m(v)− e2(v)

2r
+

Λr3

6
, (3.93)

where f(v) and e(v) are arbitrary functions representing the mass and electric

charge respectively, and Λ 6= 0 is the cosmological constant. For the weak energy

condition to be satisfied, it is required that rṁ(v) − e(v)ė(v) to be nonnegative

(Beesham & Ghosh 2003; Wang & Wu 1999). We specifically define the functions
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similar to that of charged Vaidya and the algebraic equation that governs the

behaviour of the tangent vectors near the central singularity comes out to be the

same.

iv. The Husain solution

This is a solution of the Einstein field equations for the null fluid with the equation

of state % = kρ where ρ = g(v)
4πr2k+2 , k 6= 1

2
(Husain 1996; Wang & Wu 1999). This

solution is a subclass to the generalized Vaidya solutions with the mass function

given by

m(v, r) =

q(v)− g(v)
(2k−1)r2k−1 , k 6= 1

2
,

q(v) + g(v) ln r, k = 1
2
,

(3.94a)

where q(v) and g(v) are arbitrary functions which are restricted only by the energy

conditions. For the dominant energy conditions to be satisfied, it is required that

g(v) ≥ 0 and either ġ(v) > 0 for k < 1
2

or ġ(v) < 0 for k > 1
2
. The weak or strong

energy conditions are satisfied when ρ ≥ 0, % ≥ 0. We consider the case when

k 6= 1
2

and define the mass function as

q(v) =


0, v < 0,

1
2
λv(λ > 0), 0 ≤ v ≤ T,

q0(> 0), v > T,

(3.94b)

and

g(v) =


0, v < 0,

c2v2k, 0 ≤ v ≤ T,

g0(> 0), v > T.

(3.94c)

For this mass function using equation (3.74), we get

2c2

(
1− 2k

2k − 1

)
X2k+1

0 + λX2
0 − 2X0 + 4 = 0. (3.95)

This equation can be solved to get some positive roots X0 for some particular values

of c2, k and λ. In particular, when c2 = 0.001, k = λ = 0.01, then one of the roots
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of equation (3.95) is 2.00408 and lim
k→0

k2ψ = 1
4
X2

0

(
λ− 4kc2

2k−1
X2k−1

0

)
= 0.506 > 0.

This shows that the singularity is naked and strong.

Table 3.1 gives a summary of the equations of tangent to the singularity curve X0 and

the value of lim
k→0

k2ψ for chosen mass functions in some sub-classes of the generalized

Vaidya spacetime.

Table 3.1: Equations of tangents to the singularity curve X0 and values of lim
k→0

k2ψ for

some special sub-classes of generalized Vaidya spacetime

Spacetime Equation for tangent to the sin-

gularity curve

lim
k→0

k2ψ

Vaidya X0 = 2
1−λX0

or 1
4
λX2

0

X0 = 1±
√

1−8λ
2λ

, 0 < λ ≤ 1
8

Charged Vaidya c2X3
0 − 2λX2

0 +X0 − 2 = 0 1
2
X2

0 (λ− c2X0)

Charged Vaidya-de Sitter c2X3
0 − 2λX2

0 +X0 − 2 = 0 1
2
X2

0 (λ− c2X0)

Husain solution 2c2
(
1− 2k

2k−1

)
X2k+1

0 + λX2
0

−2X0 + 4 = 0 1
4
X2

0 (λ− 4kc2

2k−1
X2k−1

0 )
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Chapter 4

Cosmic censorship in higher

dimensions

4.1 Introduction

In this chapter, we extend the analysis of gravitational collapse of generalized Vaidya

spacetimes to higher dimensions. One obvious question that arises (influenced by higher

dimensional and emergent theories of gravity - e.g string theory or braneworld models),

is as follows:

Does the transition to higher dimensional spacetimes (with compact or non-compact

extra dimensions) restrict the set of initial data that leads to a naked singularity?

In other words, how does the number of spacetime dimensions dictate the dynamics

of trapped regions in the spacetime? This question is important as most of the proofs of

the key theorems of black hole dynamics and thermodynamics demand the spacetimes

to be future asymptotically simple, which is not possible if the censorship is violated

(Hawking & Ellis 1973). If the locally naked singularities in 4-dimensional spacetime

are naturally absent in higher dimensions, then that will be an argument in favour of

higher dimensional (or emergent theories) of gravity, as in those cases the important
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results of black hole dynamics and thermodynamics would be more relevant.

To answer the above question, at least partially, Goswami and Joshi (2004a, 2004b)

established the following important result: The naked singularities occurring in dust

collapse from smooth initial data (which include those discovered by Eardley and Smarr

(1979), Christodoulou (1984), and Newman (1986)) are eliminated when we make tran-

sition to higher dimensional spacetimes. The cosmic censorship is then restored for dust

collapse, which will always produce a black hole as the collapse end state for dimensions

D ≥ 6, under conditions such as the smoothness of initial data from which the collapse

develops, which follow from physical grounds.

The physical reason behind the above result is that higher dimensional spacetimes

favour trapped surface formation and the formation of horizons advance in time. Hence

for dimensions greater than five, the vicinity of the singularity always gets trapped even

before the singularity is formed, and hence the singularity is causally cut-off from any

external observer.

Several other works on higher dimensional radiation collapse and perfect fluid col-

lapse have been done (Beesham & Ghosh 2003; Ghosh & Dadhich 2001; Ghosh &

Dawood 2008; Ghosh & Deshkar 2007; Ghosh & Saraykar 2000; Dadhich et al. 2005;

Patil 2003), where the matter field is taken to be of a specific form (for example, perfect

fluids with linear equation of state, pure radiation, charged radiation etc.). All of these

studies give an indication that higher dimensions do favour trapping and hence the

epoch of trapped surface formation advances as we go to higher dimensions.

The main criticism of the dustlike models or pure perfect fluid models is that they

are far too idealised. For any realistic massive astrophysical body, which is undergoing

gravitational collapse, the pressure and the radiative processes must play an important

role together. One of the known spacetimes that can closely mimic such a collapse

scenario is the generalized Vaidya spacetime, where the matter field is a specific com-

bination of Type I matter (whose energy momentum tensor has one timelike and three

spacelike eigenvectors) that moves along timelike trajectories and Type II matter (whose
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energy momentum tensor has double null eigenvectors) that moves along null trajec-

tories. Thus, a collapsing generalized Vaidya spacetime depicts the collapse of a usual

perfect fluid combined with radiation. Therefore the collapse scenario here is much

closer to what is expected for the collapse of a realistic astrophysical star. In our earlier

work (Mkenyeleye et al. 2014), we investigated the gravitational collapse of generalized

Vaidya spacetime in four dimensions and developed a general mathematical framework

to study the conditions on the mass function such that future directed nonspacelike

geodesics can terminate at the singularity in the past.

4.2 Higher dimensional generalized Vaidya space-

times

The spherically symmetric line element for an N -dimensional generalized Vaidya space-

time is given as

ds2 = −
(

1− 2m(v, r)

r(N−3)

)
dv2 + 2dvdr + r2dΩ2

(N−2), (4.1)

where

dΩ2
(N−2) =

N−2∑
i=1

[
i−1∏
j=1

sin2(θj)

]
(dθi)2, (4.2)

is the metric on the (N − 2) sphere in polar coordinates with θi being spherical coor-

dinates. ‘m(v, r)’ is the generalized mass function related to the gravitational energy

within a given radius r (Lake & Zannias 1991), which can be carefully defined so

that the energy conditions are satisfied. The coordinate v represents the Eddington

advanced time where r is decreasing towards the future along a ray v = constant (in-

going). When N = 4, the line element reduces to the generalized Vaidya solution in

4-dimensions (Wang & Wu 1999).
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The nonvanishing components of the Ricci tensor are given as

Rv
v = Rr

r =
m′′(v, r)

r(N−3)
− (N − 4)m′(v, r)

r(N−2)
, (4.3a)

Rθ1

θ1 = Rθ2

θ2 = · · · = Rθ(N−2)

θ(N−2) =
2m′(v, r)

r(N−2)
. (4.3b)

The Ricci scalar is given by

R =
2m′′(v, r)

r(N−3)
+

4m′(v, r)

r(N−2)
, (4.4)

while the nonvanishing components of the Einstein tensor are given by

Gv
v = Gr

r = −(N − 2)m′(v, r)

r(N−2)
, (4.5a)

Gr
v =

(N − 2)ṁ(v, r)

r(N−2)
, (4.5b)

Gθ1

θ1 = Gθ2

θ2 = · · · = Gθ(N−2)

θ(N−2) = −m
′′(v, r)

r(N−3)
. (4.5c)

The energy momentum tensor (EMT) can be written in the form

Tab = T
(n)
ab + T

(m)
ab , (4.6)

where

T
(n)
ab = ϑlalb, (4.7a)

T
(m)
ab = (ρ+ %)(lakb + lbka) + %gab (4.7b)

(Husian 1996). In the above,

ϑ =
(N − 2)ṁ(v, r)

r(N−2)
, ρ =

(N − 2)m′(v, r)

r(N−2)
, (4.8)

% = −m
′′(v, r)

r(N−3)
,

with la and ka being two null vectors,

la = δ0
a, ka =

1

2

[
1− 2m(v, r)

r(N−3)

]
δ0
a − δ1

a, (4.9)

where lal
a = kak

a = 0 and lak
a = −1.
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Equation (4.6) is taken as a generalized energy momentum tensor for the generalized

Vaidya spacetime, with the component T
(n)
ab being considered as the matter field that

moves along the null hypersurfaces v = constant, while T
(m)
ab describes the matter

moving along timelike trajectories. If the EMT of equation (4.6) is projected to the

orthonormal basis, defined by the vectors,

E(0)
a =

la + ka√
2

, E(1)
a =

la − ka√
2

, E(2)
a =

1

r
δa2 , · · · ,

E(N)
a =

1

r sin θ1 sin θ2 sin θ3 · · · sin θ(N−2)
δaN , (4.10)

it can be found that the symmetric EMT can be given as the N ×N matrix,

[
T(a)(b)

]
=



ϑ
2

+ ρ ϑ
2

0 · · · 0

ϑ
2

ϑ
2
− ρ 0 0 0

0 0 % 0 0

... · · · 0 %
...

0 0 0 · · · %


. (4.11)

For this fluid the energy conditions are given as (Hawking & Ellis 1973)

1. The weak and strong energy conditions :

ϑ ≥ 0, ρ ≥ 0, % ≥ 0, (ϑ 6= 0). (4.12)

2. The dominant energy condition:

ϑ ≥ 0, ρ ≥ % ≥ 0, (ϑ 6= 0). (4.13)

These energy conditions can be satisfied by suitable choices of the mass function m(v, r).

4.3 Higher dimensional collapse model

In this section, we examine the gravitational collapse of a collapsing matter field in

the generalized Vaidya spacetime when a spherically symmetric configuration of Type I
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and Type II matter collapse at the centre of symmetry in an otherwise empty universe

which is asymptotically flat far away (Joshi 1993).

If Ka is the tangent to nonspacelike geodesics with Ka = dxa

dk
, where k is the affine

parameter, then Ka
;bK

b = 0 and

gabK
aKb = β, (4.14)

where β is a constant that characterizes different classes of geodesics with β = 0 for

null geodesic vectors, β < 0 for timelike geodesics and β > 0 for spacelike geodesics

(Joshi 1993). Here we consider the case of null geodesics, that is, β = 0.

We calculate the equations dKv/dk and dKr/dk using the Lagrangian given by

L = 1
2
gab

dxa

dk
dxb

dk
and the Euler-Lagrange equations

∂L

∂xa
− d

dk

(
∂L

∂xa,k

)
= 0, (4.15)

In the case of the higher dimensional generalized Vaidya spacetime, these equations are

given by

dKv

dk
+

(
(N − 3)m(v, r)

r(N−2)
− m′(v, r)

r(N−3)

)
(Kv)2 = 0, (4.16a)

dKr

dk
+
ṁ(v, r)

r(N−3)
(Kv)2 = 0. (4.16b)

All other components are considered to be 0. If we follow Dwivedi and Joshi (1989)

and write Kv as

Kv =
P (v, r)

r
, (4.17)

then using KaK
b = 0 we get

Kv =
dv

dk
=
P (v, r)

r
, (4.18a)

Kr =
dr

dk
=
P

2r

(
1− 2m(v, r)

r(N−3)

)
. (4.18b)
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4.4 Conditions for locally naked singularity

The nature (for a locally naked singularity or a black hole) of the collapsing solutions can

be characterized by the existence of radial null geodesics coming out of the singularity

(Ghosh & Dadhich 2001; Joshi 1993).

The radial null geodesics of the line element (4.1) can be calculated using equations

(4.18a) and (4.18b). These geodesics are given by the equation

dv

dr
=

2r(N−3)

r(N−3) − 2m(v, r)
. (4.19)

This differential equation has a singularity at r = 0, v = 0. Using the same techniques

(Mkenyeleye et al. 2014; Perko 1991; Tricomi 1961), equation (4.19) can be re-written

near the singular point as

dv

dr
=

2(N − 3)r(N−3)

(N − 3)r(N−3) − 2m′0r − 2ṁ0v
, (4.20)

where

m0 = lim
v→0,r→0

m(v, r), (4.21a)

ṁ0 = lim
v→0,r→0

∂

∂v
m(v, r), (4.21b)

m′0 = lim
v→0,r→0

∂

∂r
m(v, r) . (4.21c)

4.4.1 Existence of outgoing nonspacelike geodesics

We can clearly see that equation (4.20) has a singularity at v = 0, r = 0. The clas-

sification of the tangents of both radial and nonradial outgoing nonspacelike geodesics

terminating at the singularity in the past can be given by the limiting values at v = 0,

r = 0. The conditions for the existence for such geodesics have been described in detail

(Mkenyeleye et al. 2014) using the concept of contraction mappings. The existence of

these radial null geodesics also characterizes the nature (a naked singularity or a black
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hole) of the collapsing solutions. If we let X to be the limiting value at r = 0, v = 0,

we can determine the nature of this limiting value on a singular geodesic as

X0 = lim
v→0,r→0

X = lim
v→0,r→0

v

r
. (4.22)

Using a suitably chosen mass function, equation (4.20) and l’Hopital’s rule, we can

explicitly find the expression for the tangent values X0 which governs the behaviour of

the null geodesics near the singular point. Thus, the nature of the singularity can then

be determined by studying the solution of this algebraic equation. This expression can

be calculated as

X0 = lim
v→0,r→0

dv

dr

= lim
v→0,r→0

2(N − 3)r(N−4)

(N − 3)r(N−4) − 2m′0 − 2ṁ0X0

. (4.23)

4.4.2 Apparent horizon

The existence of the apparent horizon, which is the boundary of the trapped surface

region in the spacetime also determines the nature of the singularity. If at least one

value of the limiting positive values X0 is less than the slope of the apparent horizon at

the central singularity, then the central singularity is locally naked with the outgoing

radial null geodesics escaping from the past to the future.

For the generalized higher dimensional Vaidya spacetime, the apparent horizon is

defined by

2m(v, r) = r(N−3). (4.24)

The slope of the apparent horizon can be calculated as follows:

2
dm

dr
= (N − 3)r(N−4), (4.25a)

2

(
∂m

∂v

)(
dv

dr

)
AH

+ 2
∂m

∂r
= (N − 3)r(N−4). (4.25b)

Thus, the slope of the apparent horizon at the central singularity is given by

XAH =

(
dv

dr

)
AH

= lim
v→0,r→0

(N − 3)r(N−4) − 2m′0
2ṁ0

. (4.26)
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4.4.3 Sufficient conditions

We can now write the sufficient conditions for the existence of a locally naked central

singularity for a collapsing generalized Vaidya spacetime in arbitrary dimensions N ,

which we state in the following proposition:

Proposition 4.4.1. Consider a collapsing N-dimensional generalized Vaidya spacetime

from a regular epoch, with a mass function m(v, r), that obeys all physically reasonable

energy conditions and is differentiable in the entire spacetime. If the following condi-

tions are satisfied :

1. The limits of the partial derivatives of the mass function m(v, r) exist at the central

singularity,

2. There exist one or more positive real roots X0 of the equation (4.23),

3. At least one of the positive real roots of X0 is less than the smallest root of equation

(4.26),

then the central singularity is locally naked with outgoing C1 radial null geodesics es-

caping to the future.

We emphasise here, that all the previous works of higher dimensional generalized

Vaidya collapse (Beesham & Ghosh 2003; Ghosh & Dadhich 2001; Patil 2003), are spe-

cial cases of the general analysis presented above. In the next section, we give a specific

example to transparently demonstrate the effect of transition to higher dimensions on

the nature of the central singularity.
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4.5 A general Laurent expandable mass function

We consider here a Laurent expandable mass function of the generalized Vaidya space-

time in higher dimensions in the general form as

2m(v, r) = λ1m1(v)− λ2
m2(v)

r(N−3)
− λ3

m3(v)

r(N−2)
+ · · · , (4.27)

where

mn(v) = v(2N+n−8), n = 1, 2, · · · and λn’s are constants.

Using equation (4.23) and (4.26), we get the expression of the tangent to the null

geodesics X0 and tangent to the apparent horizon XAH in higher dimensions as

X0 =
2(N − 3)

(N − 3)− (2N − 7)λ1X
(2N−7)
0 + (N − 3)

(
λ2X

2N−6
0 + λ3X

(2N−5)
0 + · · ·

) ,
(4.28)

and

XAH =
(N − 3)− (N − 3)λ2X

(2N−6)
AH − (N − 2)λ3X

(2N−5)
AH − · · ·

λ1(2N − 7)X
(2N−8)
AH − (2N − 6)λ2X

(2N−7)
AH − (2N − 5)λ3X

(2N−6)
AH − · · ·

,

(4.29)

respectively. These expressions can be written in the general form as

∞∑
n=1

(
fn(N, λi)X

(2N+n−7)
0

)
+ (N − 3)X0 − 2(N − 3) = 0, (4.30)

and
∞∑
n=1

gn(N, λi)X
(2N+n−8)
AH − (N − 3) = 0, (4.31)

where fn(N, λi) and gn(N, λi) are some functions of N and the λi’s.

These expressions can explicitly be solved for X0 and XAH using some specific

values of n, N and λi’s (see Table 4.1) and then we can make conclusions about the

nature of the singularity by using the following conditions:

(i) If there is no positive real solution for X0, then there are no outgoing null geodesics

from the singularity and the singularity is causally cut off from the external ob-

server.
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(ii) If there is no real solution for XAH , then there are no trapped surfaces and the

singularity is globally naked, provided there is at least one positive real root of

X0.

(iii) If there are one or multiple real solutions for XAH with the smallest solution less

than X0, then it can be concluded that the collapse results in a black hole end

state.

(iv) If the smallest solution Min[XAH ] is greater than any one of the positive solutions

of X0, then there will be future directed null geodesics from the singularity and

hence the singularity is locally naked.

We can easily see from Table 4.1, that the general expression obtained here contains the

expressions for X0 and XAH corresponding to Vaidya collapse in 4-D (n = 1, N = 4)

(Dwivedi & Joshi 1989; Joshi 1993), charged Vaidya-de Sitter in 4-D (n = 2, N = 4)

(Beesham & Ghosh 2003) and charged Vaidya in 5-D (n = 2, N = 5) (Patil 2003).

Table 4.1: Algebraic equations for X0 and XAH for different values of n and N

n and N Expression for X0 Expression for XAH

n = 1, N = 4 λ1X
2
0 −X0 + 2 = 0 XAH = 1

λ1

n = 2, N = 4 λ2X
3
0 − λ1X

2
0 +X0 − 2 = 0 λ2X

2
AH − λ1XAH + 1 = 0

n = 2, N = 5 2λ2X
5
0 − 3λ1X

4
0 + 2X0 − 4 = 0 2λ2X

4
AH − 3λ1X

3
AH + 2 = 0
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4.5.1 Example: Class of naked singularity in 4D being elimi-

nated in higher dimensions

In this section we will consider a specific example, that can be easily generalized to an

open set, to show explicitly how a naked singularity in four dimensions gets covered in

higher dimensions. Let us consider a scenario where n = 4. In this case the expression

for X0 and XAH become

(2N − 7)λ1X
2N−6
0 − (N − 3)λ2X

2N−5
0 − (N − 3)λ3X

2N−4
0

− (N − 3)λ4X
2N−3
0 − (N − 3)X0 + 2(N − 3) = 0,

(4.32)

and

(2N − 7)λ1X
2N−7
AH − (N − 3)λ2X

2N−6
AH − (N − 3)λ3X

2N−5
AH

− (N − 3)λ4X
2N−4
AH − (N − 3) = 0,

(4.33)

respectively. We can solve these equations numerically to get the values of X0 and XAH

in different dimensions. For our calculations we took λ1 = 5.0, λ2 = 0.01, λ3 = 2.3,

λ4 = 0.05. From Table 4.2 we can easily see that in 4 dimensions, this class of mass

function leads to a naked singularity, as the trapped surfaces do not form early enough

to shield the singularity from outside observers. However when we make the transition

to higher dimensions we see that the value of the tangent to the outgoing null geodesic

from the central singularity is greater than the slope of the apparent horizon curve at

the central singularity. In this case the outgoing null direction is within the trapped

region and hence the singularity is causally cut off from the external observer. By the

continuity of the mass function considered above, this can be easily converted to a open

set in the mass function space, where this scenario continues to be true and we shall

explicitly prove this in the following subsection.
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Table 4.2: Values of X0 and Min[XAH ] for different dimensions for λ1 = 5.0, λ2 = 0.01,

λ3 = 2.3, λ4 = 0.05.

N X0 Min[XAH ]

4 0.204 1.472

5 1.806 0.526

6 1.902 0.672

7 1.948 0.751

4.5.2 Proof of existence of open set of mass functions with the

above properties

Having found out a specific example of a mass function for which the naked singularities

in 4D are eliminated when we go to higher dimensions, we are now required to prove

that such a mass function is generic in the sense that there exists an open set of such

mass functions in the function space. Since this problem of deducing the nature of

the central singularity is reduced to finding and comparing real roots of polynomials

(4.32) and (4.33), all we need to show here is the real roots of these polynomials are

continuous functions of the coefficients.

To do this, first of all we observe that the roots that are given in the Table 4.2

are all of multiplicity one. This can be easily seen by differentiating the LHS of (4.32)

and (4.33) and substituting the roots to find nonzero values. Now, for any complex

polynomial p(z) of degree n ≥ 1 with m distinct roots {α1, · · · , αm}, (1 ≤ m ≤ n), let

us define the quantity R0(p) as follows:

R0(p) =


1
2
, if m = 1.

1
2
min|αi − αj|, i ≤ j ≤ m, if m > 1.

(4.34)
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We now state the well known result of complex analysis (Alen 2015):

Theorem 4.5.1. Let p(z) be a polynomial of degree n ≥ 1, with real coefficients {µk}.

Suppose α be a real root of p(z) of multiplicity one. Then for any ε with 0 ≤ ε ≤ R0(p),

there exists a δ(ε) > 0 such that any polynomial q(z) with real coefficients νk and

|µk − νk| ≤ δ, has a real root β with |α− β| ≤ ε.

The above theorem shows that if a polynomial p(z) with real coefficients has a

real root α of multiplicity one, then any polynomial q(z) obtained by small (real)

perturbations to the coefficients of p(z) will also have a real root in a neighbourhood of

α. That is, not only the root depends continuously on coefficients, but it also remains

real, under sufficiently small perturbations of coefficients.

This results directly translates to our problem of open set of mass functions in

the mass function space. Once we have a specific example as shown in Table 4.2,

any perturbations around that will have the same outcome as far as the nature of the

singularities are concerned. Hence this class of mass functions is not fine tuned, but

quite generic and the outcome is stable under perturbations.

Table 4.3: Range for X0 and Min[XAH ] for different dimensions: {λ1 = 5.2, 0.009 <

λ2 < 0.012, λ3 = 2.3, 0 ≤ λ4 < 0.4}

N Range for X0 Range for Min[XAH ]

4 1.3934 < X0 < 1.3941 1.5010 < Min[XAH ] < 1.5017

5 1.8406 < X0 < 1.8412 0.5184 < Min[XAH ] < 0.5185

6 1.9387 < X0 < 1.9393 0.6658 < Min[XAH ] < 0.6659

7 1.9865 < X0 < 1.9872 0.7431 < Min[XAH ] < 0.7432
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4.5.3 Numerical verification

We would now like to verify explicitly, with the aid of numerical calculations, the

results in the previous subsection. We numerically solve equations (4.32) and (4.33) to

get the values of X0 and XAH in different dimensions to show that there exists a set

of parameter intervals for which the mass function leads to a naked singularity in four

dimensions and a black hole in higher dimensions. For example, some of the intervals

are {4.8 < λ1 < 5.25, 0.009 < λ2 < 0.012, 2.25 < λ3 < 2.38, λ4 = 0.05} with the range

of values shown in Table 4.4 and {λ1 = 5.2, 0.009 < λ2 < 0.012, λ3 = 2.3, 0 ≤ λ4 < 0.4}

as shown in Table 4.3, we can easily see that in four dimensions, these classes of mass

function lead to a naked singularity, as the trapped surfaces do not form early enough.

However when we make the transition to higher dimensions, the final outcome is a black

hole.

Table 4.4: Range for X0 and Min[XAH ] for different dimensions: {4.8 < λ1 <

5.25, 0.009 < λ2 < 0.012, 2.25 < λ3 < 2.38, λ4 = 0.05}

N Range for X0 Range for Min[XAH ]

4 0.194 < X0 < 0.213 1.377 < Min[XAH ] < 1.483

5 1.789 < X0 < 1.818 0.517 < Min[XAH ] < 0.534

6 1.884 < X0 < 1.915 0.665 < Min[XAH ] < 0.678

7 1.930 < X0 < 1.962 0.745 < Min[XAH ] < 0.756
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As a result of our detailed analytical and numerical investigations of the previous

subsections, we can state the following proposition:

Proposition 4.5.2. There exist classes of mass function in generalized Vaidya space-

times, that produce a locally naked central singularity in four dimensions, but this naked

singularity gets eliminated in higher dimensions due to temporal advancement of trapped

surface formation.
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Chapter 5

Covariant description of generalized

Vaidya spacetime

5.1 Introduction

The spacetime manifold can be described using different approaches such as: expressing

the metric gab(x
i) of the manifold in terms of coordinates xi, with its connection given

through the Christoffel symbols; using the tetrad formalisms, such as the Newman-

Penrose null tetrad method (Newman & Penrose 1962), with the connection given

through the Ricci rotation coefficients; and using the covariant approach developed by

Ehlers (1961), Ellis (1971), and Ellis & Elst (1999), where variables are defined with

respect to a partial frame formalism such as the 1+3 decomposition and later extended

to the 1 + 1 + 2 decomposition of general relativity (Clarkson & Barret 2003).

While the first and second approaches are more useful for studying particular space-

times by choosing coordinates with respect to the symmetries, the covariant approach

has been proven to be a strong tool to describe spacetimes since it clearly and easily

gives the physics or/and geometry of the spacetime by tensor quantities and relations,

which are independent of the coordinate system. In this chapter, we calculate the quan-
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tities that describe the geometry of the generalized Vaidya spacetime using 1 + 1 + 2

approach.

5.2 Covariant formalisms

In 1 + 3 formalism, the spacetime manifold is decomposed into ‘time’ and ‘space’ by

means of a fundamental observer. This approach is more useful for investigating small

deviations from homogeneity and isotropy in cosmological models. In this method,

spacetime is entirely described in terms of scalars, 3-vectors and projected symmetric

trace-free (PSTF) 3-tensors and their naturally associated equations obtained by using

the Ricci and Bianchi identities (Ehlers 1961; Ellis 1971; Gerold & Clarkson 2004;

Maartens 1997; MacCallum 1973; Trumper 1965). A spacetime (M, g) is split into

space and time relative to a congruence of observers with a 4-velocity defined by

ua =
dxa

dτ
, uau

a = −1, (5.1)

where τ is proper time measured along the observers’ worldlines. These observers are

referred to as ‘fundamental observers’ if they represent the average motion of matter.

The 1 + 3 formalism has been a strong and useful tool for understanding different

aspects of relativistic cosmology and fluid flows such as the gauge invariant or covariant

perturbation formalism (Bruni et al. 1992; Dunsby et al. 1992; Ellis et al. 1990). In the

treatment of Dunsby et al. (1992), the kinetic and dynamical variables are employed

to describe nature with both physical and geometric significance that remain valid in

all coordinate systems. This is different from the metric approach which is based on

the choice of a reference coordinate system. Recently, the 1 + 3 approach was used

to develop the linear pertubation theory for fourth order theories of gravity (FOG)

(Ananda et al. 2008, 2009; Carloni et al. 2008). This approach has also been used to

study the physics of the cosmic microwave background (CMB) (Challinor & Lasenby

1998; Dunsby 1997; Maartens et al. 1999).
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The 1 + 1 + 2 covariant formulation of spacetimes on the other hand is a natural

extension of the 1+3 formalism, that suits spherically symmetric spacetimes, including

the Schwarzschild solution, Lemâıtre-Tolman-Bond (LTB) models, Vaidya spacetimes

and other classes of Bianchi models. This approach was studied and developed by

Clarkson and Barret (Clarkson & Barret 2003), and involves a ‘semi-tetrad’ where, in

addition to the timelike vector field, ua of the 1 + 3 approach, an arbitrary unit vector

na orthogonal to ua is introduced such that:

nana = 1, uana = 0. (5.2)

The projection tensor

N b
a ≡ h b

a − nanb = g b
a + uau

b − nanb (5.3)

then projects vectors orthogonal to na and ua, (naNab = 0 = uaNab) onto 2-spaces

(N a
a = 2), called the sheet. This sheet carries a natural 2-volume element (Levi-Civita

2-tensor) defined by

εab ≡ εabcn
c = udηdabcn

c ε(ab) = 0 = εabn
b, (5.4)

where εabc is the volume element of 3−spaces. The following relations can be worked

out using equations (5.3) and (5.4):

εabc = naεbc + nbεca + ncεab, (5.5)

εabε
cd = N c

a N
d
b −N d

a N
c
b , (5.6)

ε ca εbc = Nab, (5.7)

εabεab = 2. (5.8)

Any 3−vector ψ can be split into a scalar, Ψ, which is part of the vector parallel to na,

and a 2-vector, Ψa, lying in the sheet orthogonal to na:

ψa = Ψna + Ψa, (5.9)
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where Ψ ≡ ψan
a and Ψa ≡ Nabψb ≡ ψā. Here a bar over the index denotes projection

with Nab. Any projected symmetric trace free (PSTF) tensor ψab, can therefore be split

into scalar, a 2−vector, and 2−tensor parts given as

ψab = ψ〈ab〉 = Ψ

(
nanb −

1

2
Nab

)
+ 2Ψ(anb) + Ψab, (5.10)

where

Ψ = nanbψab = −Nabψab, (5.11a)

Ψa = N b
a n

cψbc = ψā, (5.11b)

Ψab = Ψ{ab} ≡
(
N(a

cN d
b) −

1

2
NabN

cd

)
ψcd. (5.11c)

Curly brackets represent the part of a tensor which is PSTF with respect to na. For

any object ψ ...
... , two new derivatives are defined:

ψ̂ c...d
a...b ≡ neDeψ

c...d
a...b , (5.12)

δeψ
c...d

a...b ≡ N j
e N

f
a · · ·N

g
b N c

h · · ·N d
i Djψ

h...i
f ...g , (5.13)

where the hat-derivative is the derivative along the vector field na in the space orthog-

onal to ua and the δ-derivative is a projected derivative on the sheet, with projection

on every free index.

The 1 + 1 + 2 formalism is suitable for studying the pertubations of the so-called

local rotationally symmetric (LRS) spacetimes (Betschart & Clarkson 2004; Clarkson

& Barret 2003; Clarkson et al. 2004). Recently, this covariant approach was used to

study exact solutions and perturbations of rotationally symmetric spacetimes in f(R)

gravity in FOG (Nzioki, 2013; and references therein). The 1 + 1 + 2 formalism has

also been used to review and study the cosmic censorship conjecture of spherically

symmetric spacetimes (Aymen et al. 2014), dynamics of black holes and black hole

entropy (Giovanni et al. 2015).
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5.2.1 LRS spacetimes

In this section, we discuss the local rotationally symmetric (LRS) spacetimes basing on

(Clarkson & Barret 2003; Ellis 1967). These are spacetimes in which each point has a

unique preferred spatial direction that constitutes a local axis of symmetry, that is, all

observations are identical under rotations about it and are the same in all directions

perpendicular to it. LRS spacetimes may be characterized covariantly by the following

scalar quantities (Gerold & Clarkson 2004)

{A, θ, φ, ξ,Σ,Ω, E ,H, µ, p,Q,Π,Λ}, (5.14)

where A is the observer’s acceleration, θ is expansion of the spacetime, φ represents the

sheet expansion, Σ is the shear, Ω is the vorticity, E represents the Weyl curvature, ξ

is the twisting of the sheet, H is the magnetic Weyl curvature, µ is the energy density,

p represents the isotropic pressure of matter, Q is the heat flux, Π is the anisotropic

pressure and Λ is the cosmological constant.

5.2.2 LRS class II spacetimes

In LRS class II spacetimes, the vorticity, Ω and hence the twisting ξ are considered to

be zero. This also causes the magnetic Weyl curvature H to vanish. Thus, the LRS

class II spacetimes are described by the scalars

{A, θ, φ,Σ, E , µ, p,Q,Π,Λ}, (5.15)

defined by the following systems of equations

Propagation:

φ̂ = −1

2
φ2 +

(
1

3
θ + Σ

)(
2

3
θ − Σ

)
− 2

3
(µ+ Λ)− E − 1

2
Π, (5.16)

Σ̂− 2

3
θ̂ = −3

2
φΣ−Q, (5.17)

Ê − 1

3
µ̂+

1

2
Π̂ = −3

2
φ

(
E +

1

2
Π

)
+

(
1

2
Σ− 1

3
θ

)
Q; (5.18)
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Evolution:

φ̇ = −
(

Σ− 2

3
θ

)(
A− 1

2
φ

)
+Q, (5.19)

Σ̇− 2

3
θ̇ = −Aφ+ 2

(
1

3
θ − 1

2
Σ

)2

+
1

3
(µ+ 3p− 2Λ)− E +

1

2
Π, (5.20)

Ė − 1

3
µ̇+

1

2
Π̇ =

(
3

2
Σ− θ

)
E +

1

4

(
Σ− 2

3
θ

)
Π +

1

2
φQ− 1

2
(µ+ p)

(
Σ− 2

3
θ

)
; (5.21)

Propagation/evolution:

Â − θ̇ = − (A+ φ)A+
1

3
θ2 +

3

2
Σ2 +

1

2
(µ+ 3p− 2Λ) , (5.22)

µ̇+ Q̂ = −θ (µ+ p)− (φ+ 2A)Q− 3

2
ΣΠ, (5.23)

Q̇+ p̂+ Π̂ = −
(

3

2
φ+A

)
Π−

(
4

3
θ + Σ

)
Q− (µ+ p)A. (5.24)

The intrinsic Ricci-curvature is given by (Gerold & Clarkson 2004)

3Rab =
[

2
3
(µ+ Λ) + E + 1

2
Π + Σ2 − 1

3
θΣ− 2

9
θ2
]
nanb

+
[

2
3
(µ+ Λ)− 1

2
E − 1

4
Π + 1

4
Σ2 + 1

6
θΣ− 2

9
θ2
]
Nab.

(5.25)

This then gives the intrinsic Ricci-scalar of the 3-surface as

3R = −2

[
µ+ Λ− 1

3
θ2 +

3

4
Σ2

]
. (5.26)

The vanishing of the sheet distortion, ξ, implies that the sheet is a genuine 2-surface.

Using the the Gauss equation for na and the 3-Ricci identities, the 3-Ricci curvature

tensor of the spacelike 3-surfaces orthogonal to ua is found to be

3Rab = −
[
φ̂+

1

2
φ2

]
nanb −

[
1

2
φ̂+

1

2
φ2 −K

]
Nab, (5.27)

where K is the Gaussian curvature of the sheet defined as 2Rab = KNab. The 3-Ricci

scalar is therefore given as

3R = −2

[
ˆ

φ+
3

4
φ2 −K

]
. (5.28)
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Using equations (5.16), (5.27) and (5.28), the Gaussian curvature, K can be written in

the form (Gerold & Clarkson 2004)

K =
1

3
(µ+ Λ)− E − 1

2
Π +

1

4
φ2 −

(
1

3
θ − 1

2
Σ

)2

. (5.29)

The evolution and propagation equations for K are given by (Gerold & Clarkson 2004)

K̇ = −
(

2

3
θ − Σ

)
K, (5.30)

K̂ = −φK. (5.31)

Every scalar φ in LRS class II spacetimes has to satisfy the commutation relation

ˆ̇ψ − ˙̂
ψ = −Aψ̇ +

(
1

3
θ + Σ

)
ψ̂. (5.32)

5.3 Generalized Vaidya spacetime

The generalized Vaidya spacetime, also known as the generalised Vaidya solution, de-

scribes the geometry outside a radiating spherically symmetric star. It was given by

Wang and Yu (1999), and includes all the known solutions of Einstein field equations

with combination of Type I and Type II matter fields.

For the incoming radiation, the metric of the generalized Vaidya spacetime is defined

by equation (3.4). The corresponding energy momentum tensor (EMT) can be written

as (Husain 1996; Wang & Wu 1999)

Tab = µkakb + (ρ+ %)(kalb + kbla) + %gab. (5.33)

If we define the null vectors ka and la as

ka =
1√
2

(ua + na) and la =
1√
2

(ua − na) , (5.34)

then, using the generalized Vaidya metric in equation (3.4) and the energy momentum

tensor (5.33), an observer in a static frame (ṙ = 0) will experience the radiation fluid
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with the energy density µ, the isotropic pressure p = 1
3

(µ− ρ+ 2%), the radial heat

flux Q = µ and the anisotropic sheet pressure Π = 2
3

(µ− ρ− %).

If we consider a static frame (ṙ = 0), for nonstationary spherically symmetric

generalized Vaidya spacetime, the above equations give the following constraints:

Σ =
2

3
θ, (5.35a)

µ = −θφ, (5.35b)

E = µ−Aφ− 1

3
(ρ− %) , (5.35c)

K =
1

4
φ2 − E +

1

3
(2ρ+ %) . (5.35d)

We observe that equation (5.35) consists of four equations in six unknowns, A, φ,Σ, θ, E

and µ. If we choose the splitting vectors defined by (Gerold & Clarkson 2004)

ua =

(
1− 2m(v, r)

r

)− 1
2
(
∂

∂u

)a
(5.36)

and

na = −
(

1− 2m(v, r)

r

)− 1
2
(
∂

∂u

)a
+

(
1− 2m(v, r)

r

) 1
2
(
∂

∂r

)a
, (5.37)

then we can solve for A using the formula (Clarkson & Barret 2003)

A = Aana, (5.38)

where A = ub∇au
a, and the metric (3.4). We find that

A =

(
m(v, r)

r2
− m′(v, r)

r

)(
1− 2m(v, r)

r

)− 1
2

− ṁ(v, r)

r

(
1− 2m(v, r)

r

)− 3
2

. (5.39)

The energy density is calculated from equation (5.33) as µ = Tabl
alb. This then gives

µ =

(
2ṁ(v, r)

r2
+

6m′′(v, r)

r

)(
1− 2m(v, r)

r

)−1

. (5.40)

Now, having calculated A, µ and knowing also that K = r−2 (for spherical 2-geometry),

all other quantities in equation (5.35) can directly be obtained as

φ = 2

[(
1− 2m(v, r)

r

)−3

C2(v, r) + B(v, r)

]1/2

− 2A, (5.41)

68



E =

(
2ṁ(v, r)

r2
+

6m′′(v, r)

r

)(
1− 2m(v, r)

r

)−1

− 1

3

(
2m′(v, r)

r2
+
m′′(v, r)

r

)
−Aφ,

(5.42)

θ = −
(

2ṁ(v, r)

r2
+

6m′′(v, r)

r

)(
1− 2m(v, r)

r

)−1

φ−1, (5.43)

where

C =

(
m(v, r)

r2
− m′(v, r)

r

)(
1− 2m(v, r)

r

)
− ṁ(v, r)

r
,

B =

(
2ṁ(v, r)

r2
+

6m′′(v, r)

r

)(
1− 2m(v, r)

r

)−1

− 2m′(v, r)

r2
+ r−2.

It can easily be shown that for m(v, r) = m(v), these quantities simplify to those of the

Vaidya spacetime with outgoing radiation (Gerold & Clarkson 2004)

µ = −ṁ(v)

r2

(
1− 2m(v)

r

)−1

, (5.44)

A =
m(v)

r2

(
1− 2m(v)

r

)−1/2

− ṁ(v)

r

(
1− 2m(v)

r

)−3/2

, (5.45)

φ =
2

r

√
1− 2m(v)

r
, (5.46)

E = −2m(v)

r3
, (5.47)

θ =
ṁ(v)

r

(
1− 2m(v)

r

)−3/2

. (5.48)

The quantities in the above equations, [(5.39) - (5.43)] describe the physical and ge-

ometrical properties of the generalized Vaidya spacetime with respect to gravitational

collapse, with the following meaning: µ is the energy density of the radiation fluid ex-

perienced by an observer in a static frame, A is the observer’s acceleration, φ represents

the sheet expansion, E is the electric Weyl curvature (tidal forces) experienced by a star

during gravitational collapse, and θ is the expansion of the spacetime.
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Chapter 6

Conclusions

In this thesis we developed a general mathematical formalism to study the gravitational

collapse of the generalized Vaidya spacetime in the context of the cosmic censorship

conjecture.

In Chapter 2, we began by defining the spacetime manifold and some quantities

characterizing it. We gave the meaning of a differentiable manifold and defined the met-

ric tensor and its signature. We also defined the connection (Christoffel symbols) and

covariant derivatives. We gave the meaning of geodesics and introduced the Riemann,

Ricci and Einstein tensors. We then defined the energy momentum tensor which is the

source of energy density and momentum in the Einstein field equations. In this chapter,

we also showed how the Einsteins field equations were derived using the already de-

fined tensors. Since the end state of gravitational collapse depends on the initial mass

function of the collapsing matter and dynamics of the Einstein field equations, it was

therefore important to explicitly show how these equations were obtained.

In Chapter 3, we introduced the generalized Vaidya spacetime which is considered

as the generalization of the Vaidya spacetime or the radiating Schwarzschild spacetime.

We calculated all the associated tensors and defined the energy conditions. We defined

the tangent to the nonspacelike geodesics. We studied the structure of the central
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singularity to show that it can be a node with outgoing radial null geodesics emerging

from the singular point with a definite value of the tangent, depending on the nature

of the generalized Vaidya mass function and the parameters in the problem.

We calculated the apparent horizon and gave the condition for which the central

singularity will be locally naked. We clearly showed that given any realistic mass

function, there always exists an open set in the parameter space for which the central

singularity is naked and CCC is violated. A similar result is well known for pure Type

I matter fields. Hence we can conclude that the occurrence of a naked singularity is

a “stable” phenomenon even when the nature of matter field changes by combining a

radiation-like field along with a collapsing perfect fluid.

It is also evident that for an open set in the parameter space, these naked central

singularities are strong and they cannot be regularised anyway by extension of spacetime

through them. This has far reaching consequences as their presence will no longer make

the global spacetime future asymptotically simple, and the proofs of black hole dynamics

and thermodynamics have to be reformulated.

In Chapter 4, we extended our analysis of the gravitational collapse of generalized

Vaidya spacetime in four dimensions, to spacetimes of arbitrary dimensions, in the con-

text of the cosmic censorship conjecture. We defined the generalized Vaidya spacetime

in higher dimensions and calculated all the required tensors and variables. Using the

same techniques as in Chapter 3, we found the sufficient conditions on the general-

ized Vaidya mass function, that generates a locally naked central singularity that can

causally communicate with an external observer. We carefully investigated the effect

of the number of dimensions on the dynamics of the trapped regions, by studying the

slope of the apparent horizon curve at the central singularity.

By considering specific examples, we showed that there exist classes of mass func-

tions for which a naked singularity in four dimensions gets covered as we make the

transition to higher dimensional spacetimes. Interestingly, the reason for this is same

as in the case of dust collapse. From our analysis here, we can easily see that for a wide

71



class of matter fields, a transition to higher dimensions favours trapped surface forma-

tion and the epoch of trapping advances as we go to higher dimensions. This makes

the vicinity of the central singularity trapped even before the singularity is formed, and

hence it is necessarily covered.

Therefore, we can safely conclude that for a large class of matter fields, which

include both Type I and Type II matter, transition to higher dimensions does indeed

restrict the set of physically realistic initial data, that leads to the formation of a locally

naked singularity.

In Chapter 5, we described and analyzed the generalized Vaidya spacetime covari-

antly, where we started by giving a review to the covariant methods (1+3 and 1+2+2)

of describing the spacetime manifold. In the 1 + 3 approach, a timelike vector ua which

splits spacetime into ‘time’ and ‘space’ is introduced. On the other hand, the 1 + 1 + 2

decomposes the ‘3-space’ relative to a preferred spatial vector na. The system of field

equations (evolution, propagation and their corresponding constraints) of spacetime is

derived from the Bianchi and Ricci identities in these formalisms in a gauge invariant

(coordinate independent) manner. From the structure of these equations some impor-

tant information about the spacetime can be obtained because the covariant decompo-

sition of the spacetime introduces quantities that have a clear physical or geometrical

meaning. This then gives an easy and better way of understanding the physics behind

the spacetime manifold than using the normal metric approach which depends on the

chosen coordinate system. We calculated the scalar quantities that define the spacetime

in its entirety.

Finally, the generalized Vaidya spacetime is a more realistic spacetime than pure

dust-like matter or perfect fluid, during the later stages of gravitational collapse of a

massive star. A collapsing star should always radiate and hence there should be a

combination of light-like matter along with a perfect fluid. Therefore a violation of

censorship in these models should have novel astrophysical signatures which are yet to

be properly deciphered.
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