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Abstract

This thesis is dedicated to the study of flows on a network. In the first part of the work, we
describe notation and give the necessary results from graph theory and operator theory that will
be used in the rest of the thesis. Next, we consider the flow of particles between vertices along an
edge, which occurs instantaneously, and this flow is described by a system of first order ordinary
differential equations. For this system, we extend the results of Perthame [48] to arbitrary
nonnegative off-diagonal matrices (ML matrices). In particular, we show that the results that
were obtained in [48] for positive off diagonal matrices hold for irreducible ML matrices. For
reducible matrices, the results in [48], presented in the same form are only satisfied in certain

invariant subspaces and do not hold for the whole matrix space in general.

Next, we consider a system of transport equations on a network with Kirchoff-type conditions
which allow for amplification and/or absorption at the boundary, and extend the results obtained
in [33] to connected graphs with no sinks. We prove that the abstract Cauchy problem associated
with the flow problem generates a strongly continuous semigroup provided the network has no
sinks. We also prove that the acyclic part of the graph will be depleted in finite time, explicitly

given by the length of the longest path in the acyclic part.
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Chapter 1

Introduction

The study of flows on networks has been carried out for several years and is still an active area of
research mainly due to its applications in the applied sciences. From the classical work of L.R.
Ford and D. R. Fulkerson [20], much interest has been directed towards network flows. In the
earlier works on flows [13], [6], [20], [12], most of the attention was directed towards finding a
maximum flow from a source towards a certain destination (sink) subject to certain constraints,
along certain links (edges). The constraints constitute what is referred to as the capacity of the
edge; that is, the maximum amount that can flow along each edge. In addition to satisfying
capacity restrictions, the flow is expected to obey Kirchoff's law at every intermediate vertex.
That is; the total inflow at a vertex v; must equal the total outflow at v; if it is an intermediate
vertex. Towards this goal, the famous Max- Flow Min-cut Theorem (or the generalised Max-Flow
Min-Cut Theorem) gives the required flow by considering only the flow through the minimum
cut. That is, the maximum flow in a network is equal to the capacity of the minimum cut, [13]

Chapters 3, 4, or [6], Theorem 3.5.3.

Later, interest shifted from static flows to dynamic processes on networks. Differential operators
were then considered on the edges of connected graphs, and such graphs have been called
quantum graphs (for instance, see [35]). A quantum graph is a graph consisting of a set of
vertices V' and a set of edges £ C V x V, where each edge e¢; = (u,v) € E is associated
with an interval [0,/;] and a differential operator acting on the functions of the graph [34]. The
number [; is the length of edge e;. Quantum graphs are often used in physics and engineering to

approximate models of waves in complex structures [35], [37]. The operators considered are of
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second order (or higher). Examples of such operators include —J‘%, —% +v(x) [35], and they
are often considered to be self adjoint, which then requires specific boundary/vertex conditions.
It is therefore not surprising that a lot of effort has been placed on finding those vertex conditions
that allow the operator to be self adjoint. For more on this topic, see [35], [37], [42], [57]. The
article [35] provides numerous examples of boundary conditions and characterises those that

allow the operator to be self adjoint.

In addition to looking for boundary conditions to ensure that the operator is self adjoint, other
problems often discussed in this field include spectral theory (for example see [36], [55], [56],
[58]) and inverse spectral problems, [26], [19]. For instance, certain authors have tried to show a
relationship between the spectrum of differential operators and the graph itself. For example, the
article [37] discusses the spectrum of the Laplace operator on a graph and relates it to certain
geometric properties of the underlying graph, and in [38], it was proved that for a Laplace
operator on a graph with m edges, the point 0 is an eigenvalue for the Laplacian with algebraic

multiplicity m + 1.

For the inverse spectral problem, one tries to reconstruct the graph from the spectrum of the
differential operator defined on it. For example, the authors in [38] showed that a graph can be
reconstructed in a unique way from the spectrum of the Laplace operator with free boundary
conditions defined at its vertices, provided the lengths of the edges are rationally independent;
that is, if there exists no positive number k such that

(bl L) en
where m is the number of edges in the graph. For more information on wave propagation on

networks, see [43], [42], [47], [42], [56].

But while a lot has been done for second order differential operators on graphs, very little
attention had been given to first order differential operators. Recently however, various authors
[33], [14], [40], [18], have considered the flow problem described by a transport equation on
a simple directed graph. To state the problem briefly, suppose that GG is a simple, connected,
directed graph with a finite number of vertices and edges and flow of particles occurs on the
edges, in the direction of the arrows. On edge e;, particles move with speed ¢; and, at position
xz € [0,1;] and time t, the density of these particles is given by u;(x,t). Since the density

depends on both time and space, the resulting flow problem is described by a partial differential



equation, in this case a transport equation:

Owuj(z,t) = cj0puj(x,t),
’LLj(ZU,O) :fj(w)y
accompanied by the Kirchoff law at the vertices as the boundary condition. This describes the

interaction of the particles in the vertices before they are redistributed into the outgoing edges

at the vertex in question.

For such flows, the focus has been mainly on determining solvability of the problem and its
asymptotics [14], [33]. In this regard, semigroup methods have been the primary tool used and
we shall follow this trend here. First, one reformulates the problem as an Abstract Cauchy
Problem (ACP)

u'(t) = Au(t)

u(0) =f
for f in the domain D(A) for which the flow problem on the graph and the abstract problem both
make sense, and this domain must be chosen with care so that it captures the boundary/vertex
conditions of the flow problem. One then proceeds to investigate the well-posedness of this
problem. By this, we mean that one must show that a solution to (ACP) exists and it is unique.
In addition, this solution must depend continuously on initial data. If (A, D(A)) generates a
semigroup, then, by Corollary 11.6.9 of [16], it is well-posed and hence the transport problem on
the network is solvable and its solution is unique. The asymptotic behaviour of the solution can
then be studied through the spectrum of the semigroup, if the explicit formula is available, but
since this is rarely the case, we can instead study the spectrum of the operator (A, D(A)) and
use spectral mapping theorems to understand the spectrum of the semigroup (see Chapter IV

of [16], [17], 3] or [46]).

Sikolya [33], Matrai and Sikolya [40], Dorn [14], Engel et al [18], have used a semigroup approach
to study transport equations on networks. In most papers, it is assumed that the graph is strongly
connected with a Kirchoff type law at the boundary (vertices). Moreover, it is assumed that
every vertex has an incoming and outgoing edge and that there is no loss or generation of
material in the vertices. In this thesis, we follow the work of these authors but we do not
assume strong connectedness of the graph. We also allow for absorption and/or generation
to take place in the vertices, which results in a modified Kirchoff law at the boundary. We

then investigate the conditions on the graph for the operator (A, D(A)) to generate a strongly



continuous semigroup, which will imply existence of a unique solution to the transport equation
on the network. We then study the asymptotic behaviour of this solution, and then we interpret

these results from a graph theoretic point of view.

The first part of this work is a preliminary chapter where we give the notation and terminology
that will be used in the thesis. We give some background information from graph theory, with
illustrations and examples. In the section for graphs, we give some proofs for certain results
that will be used here, some of which are not easily available in literature. We also give a brief
overview of Banach lattices and semigroup theory, focusing on those established results which
will be used in this thesis. We discuss the Perron-Frobenius theorems for non-negative matrices
and ML matrices, which will be used later to study the asymptotic behaviour of the solutions of
both the finite dimensional flow problem and the flow problem described by a partial differential

equation.

In Chapter 3, we consider a simplified model of the flow of particles from one vertex to another.
In this model, the change of state occurs instantaneously and thus, the flow problem is described
by a system of ordinary differential equation. We study the asymptotic behaviour of the flow
and extend the results obtained by Perthame [48] to arbitrary ML matrices. In particular, we
show that the discrete Poincaré lemma, Lemma 6.4 of [48], formulated for positive off diagonal
matrices, extends to irreducible matrices, but does not hold in the same way for reducible
matrices. Instead, it only holds in certain invariant subspaces of reducible matrices. We use
these results together with the help of the relative entropy function to show that there is a norm
on R™ in which the quadratic entropy function is dissipative in the space complementary to that
spanned by the Perron eigenvector. This chapter provides a more detailed description of the

results in the paper [4].

In Chapter 4, we consider connected finite graphs which are not strongly connected. We improve
and extend the results of Sikolya and Kramar [33] to allow for vertices with no incoming flow
(sources). We note that the Kirchoff law stated in Equation 3 of [40], [33] and in Equation (2.2)
of [14] is incorrect if ¢; # 1 for all j. We rectify this problem and also state a more generalised
boundary condition that allows for absorption and/or generation to take place in the vertices.
We show that (A, D(A)) described in problem (ACP) associated with the flow problem (with
absorption and generation at the vertices) generates a strongly continuous semigroup if and only

if the outgoing incident matrix is surjective, which is equivalent to saying that every vertex has



at least one outgoing edge. We then study the asymptotic behaviour of the semigroup solution

using Perron-Frobenius type theorems.

Next, we interpret the results from Chapter 4 from a graph view point in Chapter 5. In particular,
we show that asymptotically the mass will collect in the strongly connected components of the
graph which have no outgoing flow and the acyclic part of the graph will be depleted in finite
time which depends on the length of the longest path (that is, the longest path in the acyclic
part of the graph), while the strongly connected components of the graph (with outgoing flow)

will be depleted asymptotically.

We conclude the thesis with a brief summary of this research and give other problems related

to the networks that could lead to further research in the future.



Chapter 2

Preliminaries

In this chapter, we give some background information necessary to develop the theory of partial
differential equations on networks. We start with a few definitions and results in graph theory

which will be important in our study of flows on networks.

2.1 Notation

Let A be an n x n matrix. We write A > 0 to mean that all the entries in A are non-negative
and if the inequality is strict, then all the entries in A are strictly positive. The notation |A|
will mean [A]| := (laij|),<; j<,- Likewise, x = (z1,22,...,2y) is a non-negative vector if all
the components x; are non-negative and we write x > 0 and, if all the components are strictly
positive, the inequality is strict. We shall use the notation |x| to mean |x| = (|z;|)i1<i<pn. In

this thesis, C,R, N, QQ are sets of complex, real, natural, and rational numbers, respective

2.2 Digraphs

Definition 2.2.1. A graph G is a finite non-empty set V of elements called vertices together
with a set of unordered pairs of distinct vertices of G (called edges). A digraph is an ordered
pair G = (V, E) containing a finite non-empty set of vertices V and a (possibly empty) set of

ordered pairs (u,v) € E; u,v € V (called the edges, ECV x V).



Let u,v be two vertices of a digraph . If there is an edge with head at v and tail at u, we
represent this as u — v. If the edges are labelled or if the label on the edge is important, we
shall indicate the label on the arrow (for example u —£ v shows an edge e with tail at u and

head at v), otherwise no labels will be provided.

Throughout this thesis, we shall sometimes, where there is no danger of confusion, simply write

graph to mean a digraph. Let G = (V| E) be a directed graph with E C V' x V.

Definition 2.2.2. Let u,v be vertices of a graph. A u—wv walk of graph G is a finite alternating
sequence of vertices and edges, beginning at u and ending with vertex v, [10]. The number of

edges in a walk is the length of the walk.

A u — v path is a walk in which no vertex is repeated.

Definition 2.2.3. G is said to be connected if for every pair u,v of vertices in G, there is either
au—v orav—u path. It is called strongly connected if for every pair u,v € V, there is a

u—v and av —u path in G.

A subgraph of G is a graph G’ whose vertex set V(G') is a subset of V' and E(G’) C E and
it is an induced subgraph if two vertices in G’ are connected if and only if they are connected
in G, [23]. Strongly connected components of the graph G are the maximal induced subgraphs
which are strongly connected. If G’ is a strongly connected component of G, then its vertex set
V1 is a subset of V' and there is a directed path from each vertex in V] to every other vertex
in V1. If V1 and V4 are vertex sets of strongly connected components of G and Vi # V5, then
ViNnVa =0, [6] on p. 17, or [7]. In this thesis, when we say that a subgraph is a strongly

connected component of a graph, then its vertex set must contain at least two elements.

If a vertex has no outgoing edges, it is called a sink and a source if it has no incoming edges.
If it has no outgoing or incoming edges, we say that it is isolated. When we say that a strongly
connected component has no outgoing edges (or no outgoing flow), we mean that there exists no
vertex v € V'\ V7 such that u — v for any u € Vi, where V] is the vertex set of this component.
Similarly, when we say that a strongly connected component has no incoming edges, we mean

that there is no vertex v € V'\ V4 such that v — wu for any u € V3.

Definition 2.2.4. Let G be a digraph with vertex set V. = {vy,va,---v,}. The outgoing ®~

and incoming ®T incidence matrices of this graph are defined, respectively, as ®~ = (qb;j) and



- 1 ifo =% . 1 if <Ly,
Pij = _and gy = .
0 otherwise. 0 otherwise.

Remark 2.2.5. Note that both the outgoing and incoming incidence matrices can have at most
one non-zero entry in each column, otherwise an edge would have more than one tail or head,

respectively.

The incidence matrix ® of the graph is then given by ® = & — &~
Definition 2.2.6. The adjacency matrix A of a graph G is defined as A = (@ij), where

B 1 if there exists ey, € E such that v; % v;
aij =
0 otherwise.
Remark 2.2.7. We note that in most texts on graph theory, the adjacency matrix of a digraph
G is the transpose of the matrix defined in Definition 2.2.6. Transposing the adjacency matrix
of any directed graph does not change important graph properties like connectedness but simply

reverses the direction of the arcs (edges) in the graph. Throughout this thesis, we shall refer to

the matrix in Definition 2.2.6 whenever we mention the adjacency matrix of G.

Example 2.2.8. Consider the following graph. For this graph, the matrices ®~,®" are given

Qe——9
3 eb 34
below.
1100000 0 000 O0O0OTPO
0011000 1 00 0 0 00O
=loo0oo00100], ®=]l01010 10|,

0 00O0O0OT1TPQO 000 0001
000 O0O0OTO 0?1 001 01 00
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while the adjacency matrix is given by

00000
10000
A=l11010
0000 1
01100

A permutation of any two rows of the matrix A followed by a permutation of the corresponding

columns does not change the graph, but will simply change the order of the vertices, [12].

Definition 2.2.9. The line graph of a digraph G is the graph L(G) = (V(L), E(L)), where
V(L) = E(G) and

E(L) = {e;j if there exist e;, e; in G such that the head of e; coincides with the tail of e;}.

In other words, the line graph of a directed graph G is the graph obtained from G by letting
the edges in G be the vertices of L(G) (that is, V(L(G)) = E(G)). If e; is an edge in G, we

transform this into a vertex in the line graph and label it as v} and if v} and v;- are vertices

- . i e;
" to v; if in G, there is a vertex v such that < v -3,

in L(G), then there is an edge from v

~

~

otherwise there is no edge from v} to v’.

<

Remark 2.2.10. Any u — v path in G corresponds to a unique path in L(G). To see this,

suppose that u,e;,,u1,€;,,...,€;,Uu = v is a path; that is,
€iq €ig €4
U—= Uy — - — Uy =V

is a path. Then, from the definition of a line graph, the edges e;, translate into vertices u;h,

forallh =1,...,1 in L(G) and there is a path connecting them:

y Cipig p Cigyig Ci_1.4
Wy = g, = e = U

Conversely, any u' —v' path in L(G) corresponds to a path in G,

2 k

u/:u6e_>u,1 e—>...e—)u§€:'0,,
Vertices u} in L(G) correspond to edges e, in G, for all i = 0,...,k. For edge €' to exist in

L(G), there must be a vertex u in G which is the head of e, and the tail of e,,. Similarly,
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there exists a vertex uy in G with the head of e,, and the tail of e,,. If we continue with this

process, we obtain the following

ey Ceuq €y ev
w-—Uu—Uy —> U — T

which is a path in G.

The adjacency matrix B of the line graph L(G) is the matrix defined as B = (Z)i]’), where

; 1 if there exists v € V(G) such that R v —,
ij =
0 otherwise.

Remark 2.2.11. Notice that the definition for the adjacency matrix of the line graph agrees
with the general definition of adjacency matrix of a graph given in (2.2.6). If we treat the line

graph of G as any graph, we can write down its adjacency matrix using Definition 2.2.6 as

H / /
- 1 /fvj%vi,

0 otherwise.

Recalling the relationship between G and L(G), we note that vg- — v} means that there is

€j 7 3 . . - .
u € V(G) such that — u =%, which is equivalent to the above definition.

If there are no parallel edges in G and there is more than one outgoing edge at some vertex v;,
we may place weights on these edges. Let the weight on edge e; (whose tail is at vertex v;) be

wj;. Then the weighted outgoing incidence matrix ® is the matrix defined as

_ wi; it ¢ =1,
(Pw)ij = v (2.1)
0 otherwise.
The weighted adjacency matrix for the line graph (denoted here as B) is defined as
Wy i s v
bij _ ki k ’ (22)

0 otherwise.
Below we provide another representation of matrix B and the weighted adjacency matrix A.
Lemma 2.2.12. [33]

Let ®* be the incoming incidence matrix and ®;, be the weighted outgoing incidence matrix

for a directed graph G. Then the following statements hold:
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1. The weighted adjacency matrix of the line graph is given by B = (®,)T®™.

2. The weighted adjacency matrix A satisfies the equation A = &+ ((I);)T.

3. If every vertex has an outgoing edge and
> wiy =1, (2.3)

JjeJi
where J; is the set of indices of the outgoing edges of vertex v;, then B is column stochastic.
Proof. Let D = (®,)"®*. Then dij = ((®,)7)i(®")35, where ((®,)7); is the i' row of
(®,)7 and (@)% is the 4™ column of ®T. @ has at most one non zero entry in each column
hence (®,)7 has at most one non-zero entry in each row. Let the non-zero entry in ((®,)7);
be in the k" column. This would imply that the element in the k™ row and i** column of @

is not zero and (¢, )k = wy; and, from (2.1), we have
€4
Vg — . (2.4)

Then dij = ((9,,)7)i(®"); = (0,...,w;,0,...,0)(®1)%. This product is positive if the non-
zero entry in (<I>+)";~ is in the k' row, otherwise d;; = 0. But if qﬁZ}. =1, then

€j

— V. (2.5)

Combining (2.4) and (2.5) gives d;; = wy,; if there is k such that 2, vy, -, and zero otherwise.

Hence bl'j = dij for all Z,]

To prove the second item (2), we show first that ® (®~)” is indeed the adjacency matrix

described in the Definition 2.2.6. Let F' = ®* (CIJ_)T. Then

)

fiig = (&7, by 0) Dik

= ¢hon

1
The sum is positive if there is at least one k such that both QS;; and qb}k are positive. But

;;6 > 0 implies — v; and gb;k > 0 implies that v, =%, . Hence Vj =%, v;. Now we note that
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for fixed 7 and j, there is at most one £ such that v; <%, v;. This is because of the assumption
that there are no parallel edges. So f;; is either equal to 0 or 1 and f;; =1 if v; =5, v; and 0

otherwise. Hence F' = A.
From this we have that the weighted adjacency matrix A = & ((I);)T or, explicitly,

w if v; 5

ik j i

aij = ) (26)
0 otherwise.

From Equation (2.2), computing the column sums of B, we obtain

m m
Zbij = Zwki =1
i=1 i=1

for each j € {1,...,m}. For the last equality, we have used (2.3). =

Recall that for an n x n matrix A, we say that it is irreducible if there is no permutation that

puts it in the form
. A 0
A = , (2.7)
Az1 As
where A; and Aj are square matrices. Let A > 0 be an n x n reducible matrix. Then by
permuting its rows, followed by similar permutation of the columns, we can put it in the form
(2.7) and, if A; or Ay are still reducible, we repeat the process for these sub matrices until all

the square matrices on the main diagonal are either irreducible or 0. We say that the matrix A

is in normal form if it is written in the form

Ay 0 e 0 0 0
0 Ay e 0 0 e 0
A= o 0 A 0 o0 , (2.8)
A!H—l,l Ag+172 T Ag-&-l,g Ag+1 - 0
As,l As,2 e As,g As,g—l—l to As
where A; are n; X n; matrices for all ¢ = 1,2,...,s and they are either irreducible or zero

matrices of dimension 1 (see [21], Equation 69).

Definition 2.2.13. A graph G is isomorphic to a graph G4 if there exists a one to one mapping
f from V(G1) onto V(G2) such that (u,v) € E(G1) if and only if (f(u), f(v)) € E(G2).
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We note that important graph properties like connectedness and orientation are preserved under
graph isomorphisms. Let G be a graph with a finite number of vertices and edges. The following

result holds:

Lemma 2.2.14. [44], p.671

The adjacency matrix A of a graph G is irreducible if and only if G is strongly connected.

Proof. Suppose that A is reducible, then there is a permutation matrix P that such that

Aprap— | M ° ,
A1 A
where A is an 7 x r matrix and Ay is (n — ) x (n — r) matrix. The zero matrix in A means
that the vertices from the set Vi = {v1,--- ,v,} are not accessible from any vertex in the set
Vo = {vr41, - ,un}; thatis, if v; € V1 and v; € V5, then there is no path (of any length) from
v; to v;. Therefore, the directed graph of A is not strongly connected. Since the graph of A,

G 4, is isomorphic to that of A, we conclude that the graph of A is not strongly connected.

Now suppose that G 4 is not strongly connected. Then there are at least two vertices v; and v;
such that one is inaccessible from the other. If v; is inaccessible from v;, then relabel the vertices

such that v; becomes v; and v; becomes v,,. Any other vertices that are inaccessible from v; are

renamed v, - - -, v,. Therefore the set of vertices that are inaccessible from v; (relabelled v,,) is
Vi = {v1, - ,v.}. All other vertices that are accessible from v; are relabelled v, 1, -+, v
and no vertex v; € V] can be accessed from any vertex vy € Vo = {vy41,--+ ,v,} because if

there is a v, € V5 such that the edge (vg, v;) exists, then the vertex v; would be accessible from

vy, by taking the path v, — v — v; which is not possible.

Let IT be a permutation on the set {1,---,n} such that if i € {1,--- ,n}, then II transforms
i into m;. Then ar, -, = 0 for each 7; € {r +1,--- ,n} and m; € {1,--- ,r}. So, if P is the
permutation matrix defined by IT and A = PT AP, then ij = Qmym; = 0 for mj € {r+1,--- ,n}
and m; € {1,--- ,r}. Thus
i A 0
Axq As

We state another important result which will be used in this thesis. Although the result is not

new, we could not find its proof in the texts we read. So we provide a proof below.



15

Proposition 2.2.15. Let G be a connected digraph. Then L(G) is strongly connected if and

only if G is strongly connected.

Proof. Suppose that G is strongly connected. Take an arbitrary pair of vertices v/, v’ in L(G).
A vertex in L(G) is obtained from an edge in G. Let the corresponding edges in G be ¢, and
€y, respectively. Let u be the head of e, and v be the tail of e,. Since G is strongly connected,
there is a path from u to v and from v to u. Let the path be

ey el Cig iy ey
Uy — U — Uy, — - — UV — 1.

But each edge on the u — v path in G translates into a vertex in L(G) and these vertices are
connected. Hence there is a v/ — v’ path in L(G) (see Remark 2.2.10). Since u/,v" were chosen

arbitrarily, we conclude that L(G) is strongly connected.

Conversely, suppose that L(G) is strongly connected. Then every vertex in L(G) has an incoming
and outgoing edge. Let u be a vertex in G. Since G is connected, then for u there is either
an incoming or outgoing edge. Assume that we have an outgoing edge but no incoming edge.
This edge will become a vertex in L(G), say «'. But since there is no incoming edge at u,
u in L(G) will have no incoming edge (and therefore its a source), implying that L(G) is not
strongly connected, which is a contradiction. So u must have an incoming edge. If we assume
that u has an incoming edge and no outgoing edge, then this edge will become a vertex, v’ in
L(G) and since u has no outgoing edge, v' will have no outgoing edges, which again implies
that L(G) is not strongly connected, a contradiction to the hypothesis that L(G) is strongly
connected. Therefore, if L(G) is strongly connected and G is connected, then every vertex of
(G must have incoming and outgoing edges. Pick two vertices u,v in G. Let e;, be an outgoing
edge of u and let e;, be an incoming edge of v (u # v). If there is no u — v path in G, then by
Remark 2.2.10, there is no path from vertex u} to vertex uj in L(G), which implies that L(G)
is not strongly connected. This is a contradiction since L(G) is strongly connected. Therefore,

there exists a u — v path in G for every ordered pair (u,v). ®

From the preceding result, we see that for a connected graph G, B is irreducible if and only if
G is strongly connected. For more interesting results on line digraphs, see Section 4.5 of [6] on

p. 182; [10] or [23].

Remark 2.2.16. In general, it is not true that if L(G) is strongly connected then G is strongly

connected as well. For example, the graph G below is not connected, but its line graph is
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Figure 2.1: Graph G

strongly connected.

=
O——s0

Figure 2.2: Its line graph L(G)

In this thesis, we use the term "reducible network” to refer to a simple graph (a graph with no
self loops and no parallel edges) which is not strongly connected. The reducible part of this
term comes from the fact that its adjacency matrix is a reducible matrix. From now onwards,

we assume that the graph is simple.

Lemma 2.2.17. Let G be a digraph. Let m be the number of edges and n the number of
vertices (m > n). If there is at least one incoming (outgoing) edge at every vertex of G, then

the matrix ®, (respectively, ®~) is surjective. Moreover, ®~(®,,)T = I,,.

Proof. We show this for &~ only. Since each vertex has an outgoing edge, there is a non-
zero entry in each row in ®~ and exactly one non-zero entry in each column. Therefore, by
construction of this matrix, all the rows are linearly independent, implying that it has full row

rank, n. Hence, ®~ must have a right inverse. If n = m, then ®~ is invertible.

Moreover, Equation (2.3) implies that (®,)7 is column stochastic, and since the non-zero terms

in @~ coincide with those in @, the (i,)" entry in ®(®;,)7 is given by

(51w

($i1s- s Bt Pim) | (05w Z a ﬁw—Z%wﬂ

(@5m)w
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If i = j, then wy > 0 if and only if ¢;; = 1. By Equation (2.3), the sum becomes

m
Z wj; = 1.
=1

If i # j, then ¢;; =1 implies that ¢ ; = 0 (and hence (qu_l)w = 0). This is because the edge ¢;

cannot have two tails. Similarly, (gbﬁ)w =1 implies ¢, = 0. Hence

Therefore,
(o) =1,. (2.9)
[
In general, @~ is not invertible even when G is strongly connected. But as a result of (2.9), we
have
(@)787)" = (2,)70(2,)72 = (9,)7@" (2.10)
and
(1 = (@3)797)" = (1 - (@3)"®7)(I — (23)7%7)
= (1= (2,)07) = (2,) @ (1 — (2,)" @7)
=1—(2,)'0" — (®,)"®" +(2,) "
=1 (o,)To".
Hence (®,)7® is a projection.

Using Lemma 2.2.12, we can see that B(®,, )’ = (®,)T®*(®,)" = (®,)T A and

B(2,)" = (0,)" 2T (2,) 01 (2,)"

= (,)"A%

By induction, we obtain B"(®.)T = (®,)TA" for all n € Nj.

In the following, we state the relationship between the spectrum of B to that of A. We found

this to be interesting although we did not find it in literature.

Lemma 2.2.18. Let G be a digraph whose every vertex has an outgoing edge. Then the

matrices A and B have the same eigenvalues.
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Proof. Let Bx = Ax for some A\ € C and x # 0. Then using Lemma 2.2.12, we have
APtx = ¢TBx = (0, )T d+x = Ad+x. Since every vertex has an outgoing edge, every
column has exactly one non-zero entry (by Remark 2.2.5). Hence x # 0 = ®*x # 0, implying

that (A, ®Tx) is an eigenpair of A.
Conversely, if « is an eigenvalue of A, then ay = Ay for some y # 0. Then

a(®@,)y = (2,) Ay = (@,) 2" (D,

o)’

y

The matrix @~ has no zero rows since every vertex has an outgoing edge, and by Remark
2.2.5, there is exactly one non-zero entry in each column of @, hence there is exactly one
non-zero entry in each row of (®,,)7 and every column of (®,)7 has at least one positive entry.

Therefore, y # 0 implies that (®,;)”y # 0, hence (o, (®;)"y) is an eigenpair of B. m

Remark 2.2.19. Since A is an n x n matrix and B an m x m matrix with m > n, it follows
that some eigenvalues of B are repeated whenever m > n. Since there are at most n linearly
independent eigenvectors of A, it follows that B is a defective matrix since it can only have
n linearly independent eigenvectors (< m). That is, B is singular whenever m > n. If A is

defective, then B must also be defective.

Example 2.2.20. Consider the graph below. We will place weights such that

e 5

é"';"""-u.._
10—}0—:»

W‘Le 4

1000 0
1 2
b-_ | 03003
00010
00 100

We compute the weighted adjacency matrix A = &+ ((I);)T and the weighted adjacency matrix
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for the line graph B = (<I>[U)T &t to get

00001
0200
10300
1001
A= ; B=[0 00 10
0200
01000
0010
20200

The eigenvalues of A are

{071’_31:5\/5@}.

Note that B has the same eigenvalues, with A = 0 being a repeated eigenvalue of algebraic

multiplicity 2.

Definition 2.2.21. [13], p. 121.
A cut set of a connected graph G is a set S of edges such that both of the following conditions
hold:

e the removal of all the edges in S disconnects G,

e the removal of some but not all of the edges in S does not disconnect G.

A directed graph can have more than one cut set, but any cut set divides the set of vertices

into two disjoint sets.

Example 2.2.22. For the graph below, the following are cut sets of this graph:

C1 ={es,e5,e9}; Co={e1,e2}; Cs5={eq,e9,e10};
Cy = {es,e8,€9,€5};  Cs = {es, €5, €9,€10}

On the other hand, the set {eg,eq} is not a cut set of G.
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2.3 Perron-Frobenius Theorems

As we have seen in the previous section, graphs and non-negative matrices are closely related.
Due to the relationship between irreducibility of the adjacency matrix A and the structure of
the graph (Lemma 2.2.14), it is sometimes easier to study the graph via its adjacency matrix.
Since adjacency matrices are non-negative, their spectral properties fall into the scope of the
Perron-Frobenius Theory. Here we provide a brief overview of the theory. The presentation is

based on [51], [44] and [21].

Definition 2.3.1. For an n x n matrix A, the spectrum of A (denoted o(A)) is the set of

eigenvalues and its spectral radius r(A) is the number

r(A) = max ||
A€o (A)

Theorem 2.3.2. (Perron-Frobenius theorem for positive matrices)

Let A > 0 be an n x n matrix. Then r(A) > 0 has an associated positive eigenvector X.
Moreover, r(A) > |\| for any other eigenvalue X of A and its algebraic multiplicity is 1.
Proof. This theorem and its proof appear in [44], Section 8.2. m

Lemma 2.3.3. (Perron-Frobenius Theorem for irreducible matrices)

Let A > 0 be an irreducible matrix. Then there exists an eigenvalue r such that

1. risreal and r > 0,

2. there exists strictly positive left and right eigenvectors associated with the eigenvalue r,

@

r is a simple root of the characteristic polynomial of A,

A

. the eigenvectors associated with r are unique up to constant multiples.
5. r =r(A), the spectral radius of A.
The proof of this result can be found in [44], Section 8.3. Notice that when A is not strictly

positive, the eigenvalue r = r(A) is no longer dominant but satisfies the inequality 7(A4) > ||

for any other eigenvalue \ of A.

When the matrix A is reducible, r(A) is still an eigenvalue but the associated eigenvector x

may not be strictly positive as in the case of positive and irreducible matrices.
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Theorem 2.3.4. [21]
To the maximal eigenvalue r(A) of a reducible matrix A > 0, there corresponds a positive
eigenvector if and only if each A; fori =1,...,g in the normal form of A (2.8) has eigenvalue

r satisfying r ¢ o(A;) forany j =g+1,...,s.

Even when the right eigenvector x is positive, typically the left eigenvector will not be strictly
positive, or vice versa. Indeed, we have the following theorem regarding existence of positive

left and right eigenvectors.

Theorem 2.3.5. [21]
Let A > 0 be a reducible matrix and r(A) be its spectral radius. Both A and AT have positive
eigenvectors corresponding to r(A) if and only if A is block diagonal and r(A) € o(A;) for all

1=1,...,8s.

Definition 2.3.6. A non-negative off-diagonal matrix A is called an ML-matrix. It is called
irreducible if there exists a non-negative irreducible matrix A and ) € R such that A= A —nlI,

otherwise we say that it is reducible.

ML matrices are of interest because they are some of the simplest generators of positive semi-
groups in finite dimensional spaces, [17]. They are commonly used in modelling basic phenomena
in the natural sciences in continuous time, like birth and death problems, migration between
different patches of land or transition from one age group to another. Due to their obvious
relationship with non-negative matrices, we can formulate a Perron-Frobenius type theorem for

ML matrices through the associated non-negative matrix.

Theorem 2.3.7. Theorem 2.6, [51]

Let A be an irreducible ML matrix. Then there exists an eigenvalue T such that

1. 7 is real

2. T Is associated with strictly positive right and left eigenvectors which are unique up to

constant multiples.

3. 7 > R(A) for any other eigenvalue A # T of A

For reducible ML matrices, we have the following result.
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Theorem 2.3.8. [39], p.205
Let A be an ML matrix. Then there exists a real number T and a non-negative vector x such

that

o Ax = 7x;
e if A £ 7 is any other eigenvalue of A, then R\ < 7.

Remark 2.3.9. Note that for an ML matrix A, the dominant eigenvalue is the number T
satisfying T > R\, for any other eigenvalue \ of A. This property of T is very important in the
study of long term behaviour of systems of ordinary differential equations, where the coefficient
matrix is an ML matrix (see Chapter 3). In contrast, for difference equations, we consider the

dominant eigenvalue to be the number r with maximum modulus.

In this thesis, we study flows in networks using semigroup theory. In particular, we investigate
existence of positive semigroups for (ACP) associated with the network flow problem. In order
to discuss positive semigroups, we need some introduction and results from the theory of Banach

lattices.

2.4 Banach Lattices

An ordered set is a set endowed with the binary relation < which is transitive, reflexive and
antisymmetric. If (Y, <) is an ordered set, then y > x means that x < y, x < y means that
x <y,z#y. IfYisa subset of R, then x < y means that x; < y; for each i € {1,...,n}

and z,y €Y.

Definition 2.4.1. An ordered vector space is a vector space X equipped with a partial order

which is compatible with the vector space structure

e x>y implies that x +z > y+ z for all x,y,z € X;
e x >y implies that ax > ay for all x,y € X and o > 0.

Definition 2.4.2. Let X be an ordered set and S be a non empty subset of X. An element

b € X is said to be an upper bound of S if x < b for any x € S. The least upper bound
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(supremum) is the element | € X which satisfies | < b for any upper bound b of S. We call the
element a a lower bound of S if x > a for all x € S. It is called the greatest lower bound (or

infimum) if it greater or equal to any other lower bound of S.

Definition 2.4.3. An ordered set (X, <) is called a lattice if for each pair (x,y) € X x X, the
supremum and infimum of x,y denoted x V y := sup{z,y} and x Ay := inf{z,y}, both exist

in X.

So a lattice vector space X is an ordered vector space such that the infimum and supremum of
any pair of elements in X is also contained in X. For an element z in a lattice vector space,

the positive and negative parts of , denoted, respectively as 2™ and 2™, are defined as
zt=xVv0;, 27 =-xVO0
and the absolute value of = denoted |z|, is the element
|z| =z V (—x).

For example, if we consider the vector lattice R* and 2 = (1, 2,3, —4)T, thenz* = (1,0,3,0)7,
r~ =(0,2,0,4)T and |z| = (1,2,3,4). If X is an ordered vector space, then X+ = {x € X :

x > 0} is called the positive cone of X.

Examples of vector lattices include the usual sequence spaces ¢y, 1, £>°. Other examples include
the function spaces L,(2). Let f,g € L,(€2), then we say that f < g if f(x) < g(z) for almost

all z € Q2. Equipped with such an order, L,(€2) becomes a vector lattice, [3], p.43.

Definition 2.4.4. Let X be a vector lattice. A subset Y of X is called a solid if |x| < |y| and

y €Y both imply that x € Y. A solid subspace of X is called an ideal.

For example, the sequence space ¢! is an ideal in ¢g. We note first that £ C ¢y. To see that ¢
is an ideal of cg, suppose that y = (y1,¥2,...) € £}. Then since
€N

y; — 0 as i — oo. Hence y € ¢p. Let |z| <|y|. Thatis, |z;| < |y;| for all i € N. Then

[e.e] [e.e]
D lwil < fyil < oo,
i=1 i=1

Therefore, = € ¢*, implying that ¢! is an ideal of cg.
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Example 2.4.5. Let X = R". Define
A = Span{ey,...,em; m<n}; wheree;=(0,...,0,1,0,...,0),
where 1 is in the i'" position. Then A is an ideal of X.

Definition 2.4.6. An ordered set E is called directed if any pair of elements in the set has an
upper bound. Then, by a net we refer to a function (x4 )acp Which maps elements of E into

X [3], p. 55.

A net (xq)ack in an ordered set X is said to be decreasing if xo, > xo, for any aj,as € E

with a1 < a, and it said to be increasing if xo, > o, [3].

If (z4) is decreasing and x is the infimum of z, for all & € E, we write this as x, | = and

conversely if (x4) is increasing.

Definition 2.4.7. A net (x,) of arbitrary elements of X is said to be order convergent to x if
there exist nets (Yo )acn,, (28)seB, Such that y, 1 x, 23 | « and, for any «, 3, there is N such

that yo < x, < zg for alln > N.

. . . (o]
If x,, is order convergent to x, we write this as x,, — .

Definition 2.4.8. A subset A of a partially ordered set is said to be order closed if (z,)nen € A

and xz,, — x both imply that x € A. An order closed ideal is called a band.

For example, the set A defined in Example 2.4.5 is a band in X: Choose a sequence 0 <
(zx)ken € A and let zy 2 z. But (zk)ken € A implies that xZLH = xZ”Q =--=2p=0.If
this sequence converges, the pointwise limit must equal to the limit. Hence 2, = 2% = 2’ = 0

foralli=m+1,...,n, implying that z € A.

The space ¢! is an ideal of £>° but it is not a band: consider the sequence z,, whose terms are

given by
z1 = (1,0,0,0,...),

zo = (1,1,0,0,...),

z5 = (1,1,1,0,...)

then z, > (1,1,1,...,1,...) ¢ (..
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Definition 2.4.9. A norm on a vector lattice is called a lattice norm if |x| < |y| implies that

Izl < llyll-

If X is an ordered vector lattice and || - || is a lattice norm on X, then (X,| -||) is a normed
vector lattice and it is called a Banach lattice if it is complete [53]. Examples of Banach lattices

include X = L;([0, 1])™, with || - || defined as

mo .
= (2)|da.
111 ;Au@m

To see that this is indeed a lattice norm, let | f| < |g|. Then this implies that |fi(z)| < |gi(z)]

almost everywhere. Then

m 1 m 1
= i dx < i(x)|dr = .
111 ;Au@x<;éwm| Il

Definition 2.4.10. Let X, Z be two ordered vector spaces. A linear operator T : X — Z is
called positive if x > 0 implies Tx > 0, for x € X. It is called strictly positive if x > 0 implies
Tx >0 forallz e X.

Let T : X — Z be positive and z € X. From the definition of absolute value |z|, we have the
following relations: < |z| and —|z| < . Hence, |z| — 2 > 0 and |z| + x > 0. Since T is
positive, we have T'(|z| —x) > 0 and T'(|x| + ) > 0. Since T is linear, we have T'|z| — Tx > 0
and T'(|z| + z) = T|z| + Tx > 0. Hence, —=T'|z| < Tx < T'|z|. This implies that |Tz| < T'|z|,

forall z € X.

If X is a normed space with lattice structure, and T is a positive operator on X, then the
behaviour of T on X can be determined by studying its behaviour on the positive cone X, [3],

p. b3.

Definition 2.4.11. Let X,Y be two Banach lattices and A,B : X — Y. Then A < B if for

every x € X, Ax < Bux.

Proposition 2.4.12. [3], Proposition 2.67

If A is a positive operator, then its norm is given by

[All+ = sup Azl

x>0,]|z]|<1
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If 0 < Az < Buz, then from the definition of the lattice norm, we must have ||Az| < ||Bz||.

Using this and Proposition 2.4.12, we see that if A and B are positive operators satisfying

A < B, then
[Als = sup Azl < sup |[Bz| = |Bl,
z>0,]|z]|<1 >0, z[ <1
therefore, if || - || is a lattice norm, then
[A]l« < |IBlls, (211)
where || - ||« is the operator norm.

2.5 Positive Semigroups

Let X be a non trivial Banach space. Consider the abstract Cauchy problem
(2.12)

where A is a linear operator acting on a subspace D(A) of X. Thatis, A: D(A) — X, where
D(A) is a subspace of X where Au makes sense. First, we assume the solution to the abstract
Cauchy problem is unique. Let u(¢,ug) be the solution subject to the initial condition u(0) = ug
and let T'(t)ug = u(t, up); with T(0)ug = ug. For u(-,up) to be a solution to (2.12), it must
be continuously differentiable, hence T'(¢)uy is also continuously differentiable. Let vg € D(A)
be another initial condition and «, 5 € R. Then aug + vy € D(A) and since A is assumed to

be a linear operator, we have

(au(t,ug) + Bu(t,v)) = au(t,up) + Bu/(t, vo)
= aAu(t,ug) + SAu(t,vg)
= A(ou(t,uo) + Bu(t,vo))

o (T (t)uo) + 5T (0o

Hence au(t,up) + Su(t,vy) solves the abstract Cauchy problem with initial condition u(0) =

aug + Pvg. That is, oT'(t)ug + BT(t)vg is a solution. By definition, u(t, aug + Bvg) solves the

problem (2.12) with initial condition aug + Buvg. Hence, by uniqueness,

u(t, aug + Buo) = T(t)(auo + Bro) = au(t, uo) + Bu(t,vo) = oT(t)uo + BT (t)vo.
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Therefore, T'(t) is a linear map.

If t,s > 0, then if u(t,u(s)) and u(t+ s,u,) are solutions to (ACP), we have u(t,u(s)) =
T(t)u(s) and u(t + s,u,) = T'(t + s)u,. By uniqueness of the solution, we have u(t + s, u,) =
u(t,u(s)), hence T(t + s)uo, = T'(t)u(s) = T(t)T(s)uo, hence T'(t +s) = T(t)T(s).

Below, we formally define families of operators T'(t) with the above properties below.

Definition 2.5.1. A family of linear bounded operators (T'(t)):>0 which satisfies the conditions:

e T(0)x =x for all x € D(A),

o T(t+s)=T()T(s),
is called a one parameter semigroup of bounded operators.

The semigroup (T'(t)):>0 is called a strongly continuous semigroup if, in addition, the maps
t — T(t)z are continuous from R™ to X, for every z € X. Strongly continuous semigroups
are also referred to as Cjy semigroups. As seen above, semigroups arise naturally in dynamical
systems, [3], Chapters 1, 3. However, (2.12) does not always have a solution on the whole space
X, but only if restricted to some subspace of X. This motivates the following definitions. The

operator (A, D(A)), where D(A) is the space

T(t)xr —
D(A) = {x €X: lim Mz =2 exists in X}
t—0
and
Az ;= lim M, x € D(A),
t—0+ t

is called the generator of the semigroup (7'(t))¢>0. Typically, we expect that this operator A
should coincide with the operator A in (2.12), but this is not always the case. So the operator
(A, D(A)) defined above is the realisation of A in (2.12). If (A, D(A)) generates a semigroup
(T'(t))¢>0, then solutions to (2.12) are then given by u(t,up) = T'(t)ug. We will now list a few

useful facts about strongly continuous semigroups that will be used in this thesis.
Theorem 2.5.2. Let (A, D(A)) be a generator of a strongly continuous semigroup. Then

(A,D(A)) is linear, closed and densely defined.

Proof. Linearity of the generator follows from the definition of (A, D(A)). The rest of the

proof can be found in [16], Chapter Il, Theorem 1.4. m
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Lemma 2.5.3. [3], p.70
Let (T'(t))i>0 be a strongly continuous semigroup. Then there exist constants w and M > 0

such that ||T(t)|| < Me*t.

Recall that the spectrum of an operator is the set 0(A) = {\ € C: A\I — A is not bijective}.
The complement of this set is called the resolvent set p(A) and the operator R(\, A) :=

(A — A)~L, X € p(A), is called the resolvent operator.

Definition 2.5.4. Let X be a Banach lattice. The semigroup (T'(t)):>0 is said to be positive
if, for all z € X* and t > 0, one has T'(t)x > 0. The operator (A, D(A)) is called resolvent

positive if there exists w such that (w,00) € p(A) and R(\,A) > 0 for all A > w.

Remark 2.5.5. Let X be a Banach lattice and A be a positive operator on X. If |A\| > r(A),
then the resolvent of A, R(\, A) is also positive, [1], p.254.

We often have information about the operator (A, D(A)) but have no explicit formula for the
semigroup or its resolvent. The following result due to Hille and Yosida enables us to draw

certain conclusions about the semigroup from the structure of its generator.

Theorem 2.5.6. Hille-Yosida, [3], Theorem 3.5
Let (A, D(A)) be a linear operator on a Banach space X and let M > 1;w € R be constants.

Then the following assertions are equivalent

1. The Cy semigroup (T(t))i>0 generated by (A, D(A)) satisfies | T(t)|| < Me** for all
t >0 and (w,0) € p(A).

2. (A, D(A)) is closed, densely defined and for every A € C with R\ > w, we have \ € p(A)

and
M

1RO A < =y

n>1,RA\>w.

Theorem 2.5.7. Theorem II. 1.10, [17]
Let (T'(t))i>0 be a Cy semigroup on the Banach space X and let w € R, M > 1 be constants
such that ||T(t)|| < Me*“* for all t > 0. Then for (A, D(A)), the generator of (T(t))¢>0, the

following properties hold.

1. If RO\)(z) := [ e MT(t)adt exists for some A € C and for all z € X, then X € p(A)
and R(A\)z = R(\, A)x.
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2. If RX\ > w, then A € p(A), and the resolvent is given by the integral given in item (1)

above.

The proof can be found in [16], p.55.
Definition 2.5.8. A semigroup (T'(t))+>0 is called a contraction semigroup if | T(t)|| < 1.

Corollary 2.5.9. A linear, closed and densely defined operator (A, D(A)) generates a semigroup

of contractions if and only if (0,00) € p(A) and

1
IR\, A)z|| < XHx”’ VA > 0. (2.13)

Sometimes, it is easier to find the resolvent of the operator (A, D(A)) rather than the semigroup
itself. Therefore, we need to establish a relationship between resolvents and semigroups. We
note that if X is a Banach lattice and the resolvent R(\, A) is known to be a positive operator
for A > w, for some w € R, then each T'(t),t > 0 will be a positive operator as well (see [3], p.
97).

Definition 2.5.10. Let A be a linear operator on a Banach space X. The spectral bound of A
is the number

s(A) =sup{RA: A e o(A4)}.

Theorem 2.5.11. [3], Theorem 3.39
Let (A, D(A)) be a densely defined linear operator with positive resolvent. If there exists
Ao > s(A) and ¢ > 0 such that for all z > 0, |R(Xo, A)x||x > c||x||x, then (A, D(A)) is the

generator of a positive semigroup on X .

Definition 2.5.12. A positive semigroup (T'(t))i>0 with generator (A, D(A)) on a Banach
lattice X is called irreducible if it has no non trivial closed invariant ideals. That is; if I is an

ideal of X and T'(t)I € I, then either I = {0} or I = X.



Chapter 3

Finite Dimensional Flows

3.1 Introduction

In this chapter, we employ techniques related to Perron-Frobenius theorems to investigate long
time behaviour of flow on networks. To prepare the ground, we begin with some results pertaining
to simpler problems, such as finite dimensional flows where the Perron-Frobenius structure of
the governing matrix plays an essential role. The results of this chapter not only allow us to
further develop and explore a number of necessary techniques but also the obtained results are

of independent interest. First, however, we introduce the models discussed in this chapter.

3.1.1 Direct modelling with ML matrices

ML matrices have been introduced in Definition 2.3.6. Here, we present a typical way they
appear in applications and explain how they are related to flows on networks which is the main

topic of this thesis.

Consider a population that is divided into n subgroups according to a certain criteria (like age,
sex, size, geographical location, etc). Let u;(t) be the size of the population in the i" state at
time ¢t. At any time ¢, individuals in any state can die, migrate to other states or give birth to
other individuals. Let b;,d; and aj; be the birth rate, death rate and the rate at which individuals

in state ¢ migrate to state j, respectively. Then the change in the number of individuals in state

30
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7 in a small interval of time At can be expressed as

n
wilt + At) = ui(t) + bui(H AL — diwi (AL + Y ajiug(t)At. (3.1)
=15
Note that in the above equation, d; also includes the rate at which individuals migrate from
state i to other states. Assuming w;(t) is differentiable, we rearrange the terms in (3.1) and

take limits as At — 0 to get

n

= uj(t) = (b — d)us(t) + > agu(t).

J=1j#1

lim ui(t + At) — ’U,Z(t)
At—0 At

Therefore, the dynamics of the whole population can be summarised in the following problem
(32)

The matrix A is an ML matrix and so if uy > 0, the solution is non-negative. The total
population will then be given by the sum of the individuals in all the states. From Theorem 2.3.8,
A has a dominant eigenvalue 7 which determines the long term behaviour of the population.

Note that

n

> ajiui(t)
J=1j#i

represents the total number of individuals leaving state ¢ through migration at time ¢. In
particular, if in the described model the number of births and the total number of individuals
leaving (due to migration and death) each state are equal, the diagonal coefficients are sums of
the other terms in the respective columns taken with negative sign and thus, the sum of each
column is zero. Such matrices are called Kolmogorov matrices and it is known that they have
dominant eigenvalue 0, and they describe conservative processes. That is, processes in which

the total number of individuals in the population remains constant, [4].

Any problem of the form (3.2) with ML matrix A can be reduced to an equivalent problem with
matrix A having 0 as the dominant eigenvalue, although not a Kolmogorov matrix. Indeed, let

r be the dominant eigenvalue of A and consider the following. Let v = e~"'u. Then

vi(t) =(A—-rl)v=Av;
v(0)  =u(0),

(3.3)

and since o(A) = o(A) —r, 0 is the dominant eigenvalue of A. The solutions v(t) are non-

negative if u(0) is non-negative.
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Remark 3.1.1. We observe that a Kolmogorov model in (3.2) can be considered as a simplified
network transport problem in which the states form vertices and the transport between them
occurs instantaneously with the rates given by the coefficients of the matrix A. A more detailed

Justification is given in Remark 4.1.6.

The main aim of this chapter is to extend the results in [48]. In [48], Perthame showed decay
of the general relative entropy function for (3.2) in the case of strictly positive off-diagonal
matrices A. Under this assumption on A, he also proved a discrete Poincaré inequality which
allowed him to establish that, under suitable renorming of the state space, the solutions to (3.2)
decay exponentially (strictly) in the space complementary to that spanned by the Perron vector
of A. He also noted that 'interesting things occur for non-negative matrices'. In this chapter,
we explore this statement. In particular, we extend the result in Lemma 6.3.1 of [48] to general
irreducible matrices (see Lemma 3.2.3) and also show that this result does not hold for reducible

matrices in general, but only holds in certain invariant subspaces of the reducible matrix A.

More precisely, we will work with the problem (3.2), rescaled as in (3.3) for arbitrary irreducible
matrix A. Instead of writing A, we shall simply write A and A has dominant eigenvalue 0. Let
N and v be the positive right and left eigenvectors of A, respectively. Then the relative entropy
function,

-~ ul(t)
ZviNiH (Ni )

=1
where H(-) is any convex function is non increasing. This allows us to prove a number of
classical estimates for the solution of (3.3) in a unified way. Moreover, using H(u) = u? and

extending the Poincaré inequality, we will show that the semigroup generated by A is strictly

contractive in the subspace orthogonal to N with respect to the scalar product,

n

Vs
i=1 """

for all x,y € R™. In the second part of this chapter (Section 3.3), we reformulate these results

in a more restricted case so that they can be applied to reducible matrices.

3.2 Irreducible matrices

Let A be an ML matrix with dominant eigenvalue 0. If A is irreducible, then strictly positive

right and left Perron eigenvectors N and v, respectively, exist as seen in Section 2.3. We fix a
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unique right eigenvector N by normalising it in the following way:
n n
i=1 i=1

In the next result, we show that Proposition 6.6 in [48] for solutions to the system (3.3), where
A has strictly positive off-diagonal entries still holds when A is irreducible but not necessarily

strictly positive off-diagonal.

Theorem 3.2.1. Let A be an ML matrix with s(A) = 0 and corresponding right and left
eigenvectors N and v, respectively. Let H(-) be a differentiable convex function on R. Then

the solution to the initial value problem (3.3) satisfies

%ZleiH (“Ji\(ft)> <o.
i=1 ¢

Proof.

45 (40) -3 i <“§$’)
= >0 iy N <uJ\<ft)>

i=1 j=1
_ z; ;vlal]u] <“]§t))
) izn;jzn;waij]\]jﬂ/ (u;\i)) [uj\gﬁ) B u]z\(f:f)}

The last equation is due to the fact that AN = 0, hence

ZZW”N il (“j&) “]\(ft) = zn:vl-H’ (“ > “A(ft Zam =

i=1 j=1 =1

Since H(.) is convex, we have

(-0 () ()

hence
2y e () [ -5 = R e [ (57) - (57
=0.

This completes the proof. m
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Remark 3.2.2. In some applications of this result, we use convex functions like | - | or the
maximum which are not differentiable. However, every convex function on R is absolutely
continuous ([50], Chapter 5.5, Proposition 17) and therefore differentiable almost everywhere.
The composition of an absolutely convex continuous function and a differentiable function is
differentiable almost everywhere. We also use the result that if an absolutely continuous function

f satisfies f' <0, then it is non increasing.

Let x € R™, then the function || - || defined as

1
n 2
(%
x| = ( Nﬁ) (3-5)

i=1
is a norm on R™ if N > 0 and v > 0, which is the case for irreducible matrices. However, if A
is reducible and IN > 0, then v may not be strictly positive, hence || - || is just a seminorm on

R™. The result below is the discrete version of Poincaré’'s lemma for irreducible matrices.

Lemma 3.2.3. Let (aij)i<i j<n be an irreducible matrix with Perron eigenvectors v,N > 0.

Then there is a constant « > 0 such that for any vector m satisfying
n
Z Vimy; = 0, (36)
i=1

the inequality )
n n n
S viag (Z - %) >0y U (37)
i=1 j=1 J i i=1
holds.

Proof. Let us introduce a new inner product between two vectors x and y defined as

n

(¥ n
xy) =Y N tiYi vy €RY (3.8)
i=1 """

This inner product defines a norm (defined in (3.5)) on R™ which is equivalent to any other
norm on R"™, by completeness. Let m # 0 be a vector satisfying (3.6). We shall normalise m

and call this normalised vector m so that

We notice that m still satisfies

3
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Dividing Equation (3.7) with |m||?, where |/m]|| is given by (3.5), gives
n.n T+ T 2
j i
szia’iij < — ) >a>0. (310)
i=1 j=1 Ny Ni
Now suppose that there is no « satisfying (3.10). This means that for each k there exists a
vector (mF)>1, satisfying
n

n

.
D owimy =0, Y oo (mf)’ =1,
i—1 i

=1

and

Lo w1
a N | L —
ZZUZGZJNJ <N] Nz) < L (311)

i=1 j=1
The sequence (ﬁk)kzl is bounded and its terms are on the n—sphere of radius 1. This sphere
is compact, so by the Bolzano-Weierstrass theorem, there exists a subsequence of (my);>1 that
converges to a vector m which is also on the n—sphere. Taking limits on both sides of inequality
(3.11), we find that

n n = =2

;;viai]’]\]j’ <”j\2 - ;’\j) = 0. (3.12)
Aisirreducible, so for every pairi and j (i # j), there exists a sequence of indices j, iy, ip_1, - , 41,1
such that a;;, @i, ip -+ - @i, 4, i, j > 0 (see [44], p. 671). This means that a;;, > 0, which
implies that for that particular pair i,i1, Equation (3.12) holds if and only if

mi My

ﬁ’i_Nil,

iy iy > 0 which implies that Equation (3.12) holds if and only if

miy My, My

N; N,, N;

If we continue with the same reasoning for all the terms in the product, we find that

mi,_, _ Mj, mi,

M
Ni, ., Ni, N
hence
R N S
N,  Ni, N, N._, N, N

By the process we have just described, it follows that for every pair, 4,5, m;/N; = m;/Nj.

Therefore, m; = vN; for some constant v. Then, using the assumption in (3.6)

n n
0= E ﬁivi = E VNZ‘UZ‘ = V.
i=1

i=1
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But if v = 0, then m; = 0 for all 1 < i < n. This implies that the sequence of vectors (ﬁk)kzl
converges to a zero vector, a contradiction since the zero vector is not contained on the unit

sphere. Therefore, a > 0 satisfying (3.10) does exist. Hence (3.7) holds. m

Remark 3.2.4. The above result holds for any irreducible matrix A, regardless of its dominant
eigenvalue. That is, Lemma 3.2.3 holds even when s(A) # 0. In particular, it holds for non-

negative irreducible matrices as well.

As a consequence of Theorem 3.2.1 together with Lemma 3.2.3, we have the following theorem
regarding the solution of the problem (3.3) (an extension of Proposition 6.5 in [48] to irreducible

matrices).

Theorem 3.2.5. Let A be an irreducible ML matrix with s(A) = 0. Then for any solution u(t)

satisfying (3.3), the following is true:

L
p = Zviui(t) = Zviui(()), (3.13)
i=1 i=1
2. . .
Zvilui(t)l < sz’\ui(o)h (3.14)

3. there exist o« > 0 such that

- wi(t) = pNi\* _ i ui(0) — pN; \?
;UiNi < N, <e Z%’Nz‘ N , (3.15)

i=1

4. if there exist constants Cy,Co such that C1N; < u;(0) < CoN;, then

ClNi S ’U,Z(t) S CQNZ', t Z 0. (316)

Proof. We pick H(u) = u and use Lemma 3.2.1.

S ()35 ()

From this, we conclude that

Zvluz ) < szul(O). (3.17)
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The function H(u) = —u is also convex and, using this function in Lemma 3.2.1, yields

D wiui(t) =) v (0). (3.18)
=1 =1

From these equations ((3.17) and (3.18)), we can conclude that (3.13) holds.
To prove the inequality (3.14), we use the function H(u) = |u|, which is convex. Then

d & i(t d &
7 2 viNH (uNi)> = i 2 vilVi

=1

U; (t)
N;

Thus, from Remark 3.2.2,

D wilui()] <D vilui(0)
i=1 i=1

To prove the third item, let H(u) = u? and h(t) = u(t) — pN. Then

n

d hi(t) - d  (ui(t) — pN;
ZNH = Ni—H [ 22
dt =" < N; ) ;” dt ( N;

—sz e <u )NZ» pN)
_ QZZUiaijuj(t) <W()MPNZ)

i=1 jfl
_2;;%% ( )ijN> ( ()]\Z.pNi>
- ; ; viai; N, < )Nj pN; Uz‘(t)]\; PNz'>2

Using the result in equation (3.13) together with the normalising conditions in (3.4), we see

that the vector m = u(t) — pN satisfies the conditions of Lemma 3.2.3 above, hence, we use

the mentioned lemma to get

Y wagh, < )ijN uz(t)NiPNz) < a3 2 ) - o

=1 j=1

hence
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Hence,
d o= v; LY
1. — 1 N22 — 1t Nz2<0
it 2 3 ((0) = PN 4 30 lt) ~ o
implies
d + "~ Ui 2
— @ — Uy — pN; <0.
o (6 ;:1 Ni(u (t) — pINi) ) <0
Thus

at - Vi . N2
E N (u;(t pN) E ﬁ(uz(O) —pN;)* <0
and from this, we get (3.15).

Finally, for the upper bound, we use the function H(u) = [(u — C5)4]%, where (u— Cy),. refers
to the positive part of u(t) — Cy. For this function, we write (u — C2)y = 0 if u — Cy <0
on some interval. Note that although the function y = (u — C3)4 is not differentiable in
general, its square, [(u — Cy)1]? is a differentiable function. If the assumptions are satisfied,
then u;(0)/N; < Cs, thus

S (1) -S4 -0) [ o

=1

Hence by Lemma 3.2.1, we have

d & w; (t) d & i (t) 2
dt;uzz\aﬂ< N, ) dtZUZNZ [( N, Oy X < 0;

that is

|
Q
N———
+
| I—
[\)
IA
NE
S
=2
| ——
VR
£
SIS
|
o
N———
_l’_
|
[\)
I
\‘O

n
ui(t
> b, [( N
i=1
which implies that u;(t) < CyN;.

For the lower bound, we choose H (u) = [(u — C1)_]?, where (u — C7)_ is the negative part of
u(t)—C1. Note that u(t)—C7 > 0 on some interval of time if and only if (u(t)—C1)- = 0 on that

interval. Then if the assumptions are satisfied, that is, C1V; < u;(0), then u;(0)/N; — C; > 0.

S (42) [ (0-) '

Hence

By Lemma 3.2.1,

S (50) - 5[50 0) =
= ;%N [(

) o[9[

i=1
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Since all the terms of the sum are positive, we must have

S (50 6) T <o

i=1
and hence, )
u; (1) u; (1)
_ — — >
[( NZ‘ Cl>_] 0= NZ‘ Cl = 0

for each i € {1,...,n}. Therefore, u;(t) > C1N;. m

3.3 Reducible matrices

If Ais a reducible ML matrix, then Lemma 3.2.3 does not hold in general. To illustrate this,

consider the following examples.

Example 3.3.1. Let

1 00
A=]10 1 0
1 0 05

A is reducible with v = 1, one of the right (and respectively, left) eigenvectors is N =
0.25(1,1,2)T ( respectively, v = 2(1,1,0)). Pick

1 1
m = <:i:4,IF4,m>, m € R.

This vector satisfies the requirements in Lemma 3.2.3 but the lemma does not hold since

3 3 ms; m; 2
S>3 ey () =0
i=1 j=1 Nj N
while X
S e 2 (1 L2 -1V
(< N, " 1/4 \4 1/4 \ 4
=1

Clearly, there is no positive number « for which (3.7) holds.

If A is reducible, write A in the normal form given by (2.8). Then N is non-negative but may
not be strictly positive and the eigenvalue 0 may not be simple, [21]. It is important to note
that even when a positive right eigenvector N exists, it is not always unique (up to constant
multiples). It is possible to have two vectors N1, N2 > 0 both satisfying AN; = 0, ANy =0,
but Ny # BN for any § € N.
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To be able to extend the results from the previous section to reducible matrices, we need to be
able to divide by NV;. But this, in general, is not possible. However, further developments (as

will be seen below) allow for the vector N to have zeros.

As seen in Example 3.3.1, Lemma 3.2.3 does not hold for reducible matrices, even when a positive
right eigenvector exists. This is because the eigenvalue 0 may have algebraic multiplicity greater
than one and v may have zeros. Indeed if N > 0, then the right eigenspace corresponding to

0 are spanned by the vectors
NZ:(O,NZ,O,Yerl,,y,f),’tzl,,g, (319)

where N > 0 is a normalised right eigenvector for A; corresponding to 0 and

1 B .
y?+ = (—Ag+1) 1Ag+1,z’NZ

j—1
yi= (A7 AN+ Y AT
h=g+1
The vectors y! are well defined since s(Ay) < 0 for all h =g +1,...,s. The matrices A; and
Ay, j described here are the matrices in the normal form (2.8). Since Aj,,h =g+1,...,s are all

irreducible, Theorem 2.1 of [51] guarantees that the matrices (—Aj) ™! are all strictly positive,

hence ylh > 0. The left eigenspace is then spanned by the vectors
Vi = (Ovvivo) Vi = 1)"'59 ViAi =0. (320)

In order to state analogous results (to Lemma 3.2.3 and Theorem 3.2.5) for reducible matrices,

regardless of whether a positive eigenvector exists or not, we need the following definitions.

We partition the set {1,...,n} into sets I, = {n; +---+ng_1 +1,...,n1 + - + ng} for

1 < k < s corresponding to matrices A that have r as an eigenvalue. Define

I° =1, U---Ul, (3.21)
where © = {ky,...,k} C {1,...,s} is arbitrary. Further, we define

X© = Span{e;};cso, (3.22)

where €; = (d;x)1<k<n and d; is the Kronecker delta. Let X} = X1k} so that for general ©

defined above, X® = X3, @ --- @ Xj,. Let N = (N!,... |N*®) be an eigenvector of A. For
1 1
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a non-negative left eigenvector of A, we shall write v = (v!,--- v®). Then using the normal

form of A in (2.8), we see that v' = 0 if s(4;) < 0.

To make this indexing clearer, suppose in the normal form of A in (2.8), and the matrices
Ay, Ay and A,_; all have r = 0 as an eigenvalue (and s(A4;) < 0 for i # 1,g9,5s —1). Then
L ={1,....m}LIg={m+ - +ng1+1nm+-+n1+2,...,n1 + -+ ng} and
Isci={m+ +nso+lni+-+nso+2...,n+ +ns1} I®=LUI, UL,
where © = {ry,m,r3} ={1,9,s — 1} C{1,...,s}.

Consider an arbitrary reducible ML matrix A with dominant eigenvalue s(A) = 0. The following

result holds for this matrix.

Lemma 3.3.2. Let © be an arbitrary set of indices from the set {1,...,s} such that X® is

invariant under A. Let A® = A|ye : X® — X© N® = (N*),co and v© = (vF)rco. Then

1. vOA® =o.
2. If A;j = 0 wheneveri € © and j ¢ ©, then A°N® = 0.

3. If ASN® = 0 and A;N* = 0 for some k € O, then Ay =0 forallk > 1€ ©. Hence if
ANk =0 for all k € ©, then v!A4; =0 for all | € O.

Proof. For X© to be invariant, Ajj=0fori¢ © and j € ©. Since vA =0, then if k € O,

S
VkAk + Z VlAl,k =0.
l=k+1
This together with the invariance of X®© under A implies that

s
VkAk + Z VlAZVk =0 Vkeo,
I=k+1,l€0

hence vO A° = 0.

To prove item (2), pick k € ©. Then

k—1 k—1
0=ANF+ ) AN = A4,NF+ Y A4 N = 49N,
=1 I=1,le®

Finally, for k € ©,
k—1

k—1
(A9N®), =) AN'+ ANF =) " AN'=0.
=1 =1
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If 1 € ©, then N > 0 and Ap > 0 hence Ap; = 0. Therefore,

s
0= VlAl + Z VkAkJ = VlAl.
k=l+1

This gives the required result. m

Lemma 3.3.3. Let I® be an arbitrary set of indices defined by (3.21) and N = (Ny,...,N,)
be any right eigenvector of A with N; > 0 fori € I® and A,N" = 0 for any r € ©. Then there

is a positive constant « such that for any non zero vector m = (myq, ..., m;,) € R"™ satisfying
> vimi =0 (3.23)
i€},

for each k € ©, the following inequality holds:

2
Z Z viag; N. < - T;\?) > o %m? (3.24)

iel® jel®

Proof. By Lemma 3.3.2, vk >0 for k € ©. Thus
y
= [ Sem?
ico "
is a norm on the space Y = {e;},cro. If m = 0, the result holds trivially, so we assume that
m # 0. We now divide both sides of Equation 3.24 by |m||? to get

> viaiN <N — Z)z > o (3.25)

i€I® jel®
where m = m/|lm. Note that the vector m satisfies the assumptions of the lemma. Now
suppose that (3.3.3) is false. Then there exists a sequence (m');>q on the unit sphere in Y’
satisfying the relation

l 5 2
> viaiN <N - %) < % (3.26)

i€l® jeI®
Since the sequence is on the unit sphere in Y, it contains a convergent subsequence, whose
limit is m € Y. This limit also exists on the unit sphere (Bolzano-Weierstrass) and it satisfies

the assumptions of the lemma. Taking limits on (3.26), we get

- N
S 3 wviaN; (N %) = 0. (3.27)

i€l® jelI®
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For 74,...,m, € I®, equation (3.27) is equivalent to the equation below:

= = 2 = ~ 2
m; m; m; mg

i€l jEIr i€ly, jElr,
For i = j the terms of the term are all equal to zero. For ¢ # j, a;; > 0 and v, > 0, N, > 0
provided k € I®. So equation (3.27) holds if and only if each term on the left hand side of
the equation is zero. Consider the term corresponding to A, , for 1 < i < k. Since A,, is
irreducible, for every pair k, j € I,,, there exists a sequence of indices j, ky, ky—1, - - , k1, k such
that ag p, ky ko - Ok, g, Ok, ; > 0. Therefore, Equation 3.28 holds if and only if

my o Mk, Tk T
N;  Ng, Ne,  DNi

Therefore, my, = °N}, for some constant %, hence from (3.23), we obtain

0= Z Ukﬁbk :Vi Z Nkvk

kelr, kelr,

and since N"i, v™ > 0, we have v = 0. But this also means that ﬁlk =0forall k € I,. If we

repeat this procedure for all k € ©, we obtain m = 0 in Y, a contradiction. m

Remark 3.3.4. If A has a positive right eigenvector, then any vector m € R™ which satisfies

(3.23) also satisfies
E vim; = 0
i=1

trivially.

Example 3.3.5. Let

210 0 O
120 0 0
A=1000 050
0 0 18 0 O
110 1 05

For this matrix, r = 3, and if we pick N = (5/61)(1,1,1,6,16/5)T andv = (61/70)(1,1,6,1,0),

we see that AN = 3N and vA = 3v. We select a vector m such that
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Let m = (—k,k, ki, —6k;,m)”, where m,k,ky € R are arbitrary. This vector satisfies the

requirements of Lemma 3.2.3.

5 5 2 5 2 2
m;  m; 5 61 my 5 61 my

E § Vitii N 3_1> :E vi | —a, <—k—2) +a,(k_2)
g <Nj N; ‘[61 a | (R N; 261\ 5 N,

i=1 j=1 i=1
ta S (k )Q_@ 24_@ 30 (—6k )@_@ 2+a, 16 (m)@—ﬁ ’
Be1 \\"Vs TN, “61 Y30 N 61 16 N,
1222 1222
= k% + 9k?) = ———(k® + 9k?).
and the right hand side of the inequality is
5
612 , 5
=15 (k* + 6k7)
< viai~N~ a—

Therefore, for some o > 0, the result holds.

From Example 3.3.5 above, we observe that I} = {1,2}; I, = {3,4}, I® = {1,2,3,4} and

© = {1,2}. In the first case when m = (—k, k, k1, —6k1, m)T, we observe that

2 4
E vim; =0 = g VM,
=1 i=3

hence the assumption in (3.23) is satisfied, and hence the result holds. In general, any vector
m of the form m = (—k,k, k1, —6k;,m)’,m € R yields a positive result for this matrix in

Example 3.3.5, regardless of the vector v used.

Remark 3.3.6. If A is a 3 x 3 block triangular matrix in normal form with g = 2, A1 and As
being 1 x 1 blocks (i.e scalars) and N > 0, v > 0, then the only vectors m for which equation
3.23 holds are vectors of the form (0,0, m?*)T, where m3 is a vector whose dimension depends
on the dimension of Az. This is because if m = (my, mg, m3)T, then (3.23) holds if and only
if mp = ma = 0. But for such a vector, the left hand side of the inequalities (3.7) and (3.24)
are always 0. Therefore, there is no vector m for which the lemma holds. This explains why

Example 3.3.1 gives a negative answer.

In general, if N > 0 and 2 < g < s and A; are one dimensional, withr(A;) =r(A),i=1,...,9,

then there is no non-trivial vector m that satisfies the result.
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3.4 Relative Entropy Inequality for Reducible Matrices

We now consider the differential equation in (3.3), where A is of the form (2.8) and s(A) = 0.

We still use the indexing given in the previous section to state the following result.

Theorem 3.4.1. Let © be an arbitrary set of indices from the set {1,...,s} such that X© is
invariant under A, A°N® = 0 and N* > 0 fork € ©. Let H be a convex function on R. Then

any solution u to the initial value problem in (3.3), with ug € X©, satisfies

% Z v; N;H (“]\(ft)) <0.

2

Hence, for all t > 0,

1
Z viui(t) = Z v;u;(0); (3.29)
iel® iel®
> wilui()] <D vilui(0)]. (3-30)
iel® iel®

2. If there exists constants Cy,Cs such that C1N; < u;(0) < CoNj;, then C1N; < u;(t) <

CyN; for any i € I®, such that vi > 0;

3. If ALN¥ = 0 for any k € ©, then there is a constant o > 0 such that

v; V; 2
S (i) — pN)” <Y 2 (wal0) — p1N)’S (3:31)
icr® " zel@

where
p = Z vpuk(0) fori € I,.
kel,

Proof.

4 5o (3) - £ v (4)

i€l1® i€I1®© jeI®
_ p(wi®) [ui(@)  uit)
i€l® jel®

Using the convexity of the function H, we obtain

3 2 (50) [~ = 32 S v [ (57) — (50

i€I® jeI® i€I® jelI®
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Since APN® =0,v®A4° =0, we have
Z aiij = O, Z viaij =0
jEI® i€l1®

for each i € I, hence

> D viaiN;H (uj\g)) = | D wiai | Y NH (%j)) =0,

i€I® jeI® i€l® jeI®

i) i)
30> viaiijH< N ): 3 H< O[30 as ) =0
i€l® jel® i€I® jeI®

Therefore,

u;(t) ui(t)
S Y viag [g( i )—H( | =0
i€l® jeI®
The proof of items 1, 2 and 3 is analogous to that shown in Theorem 3.2.5. m

3.5 Positive left eigenvector

Suppose the matrix A is an ML matrix with a positive left eigenvector, but the right eigenvector
is only non-negative. In this section, we show that we can still use the results obtained in the

preceding sections in this chapter to study the long term behaviour of the solution to (3.3).

Suppose A is in normal form (2.8). If we transpose this matrix A, and note that A7 has the
same eigenvalues as A, but its right eigenvector N will now be strictly positive while its left
vector v will be non-negative. By doing this, we have a problem similar to the one in the
preceding sections. If we permute this transposed matrix and put it in the normal form (2.8),
this will reorder the diagonal blocks in the sense that (AT)i = AZ—i—i—l' foralli =1,...,s,

where (AT); is the i'" diagonal block in AT .

By Theorem 2.3.4, all blocks (AT); with s((AT);) = s(As11-;) =0, for 1 <i<1+s5—¢,
must be isolated and the others must satisfy s(As11-;) <0, for 1 +s— ¢ <i < s. Therefore,

in the normal form of A, we must have A;; =0forg <i<sand ¢ <k <i-—1.

In this case, we have N¢ > 0 for g’ <i < s. Furthermore,
0 0
X© = Span NS |,....,| o
0 N*#
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is invariant under A, and A;N' =0as A;, =0for g <k <i—1,9' <i<sand N’ =0 for

i < ¢'. Hence, Theorem 3.4.1 can now be used on this matrix, with © = {¢/, ..., s}.



Chapter 4

Reducible Networks

4.1 Introduction

In this section, we present a survey of some of the results about the transport equation on
network structures obtained in [14], [33], [40] and [15]. Consider a simple, strongly connected
digraph G with a finite number of vertices (n of them) and m edges. The edges are all assumed
to be of unit length, hence the space variable x € [0,1]. The edges are parameterised contrary
to the direction of the flow. That is, the tail of each edge is assumed to be at position 1 while
the head is at position 0. The flow of particles along edge ¢; is then described by the transport

equation
Owuj(z,t) = ci0puj(x,t), Vi=1,...,m,

uj(z,0) = fij(z),

where ¢; is the speed of the particles along the edge and u;(z,t) is the density of particles on

(4.1)

edge e; at position = and time ¢. If there is no absorption or generation of material at any
vertex, then we have the Kirchoff law at the vertices, and this gives us the boundary condition
m
dciui(1,t) = wi [Z ¢;k(ckuk(o,t))] , Vie{l,...,n}. (4.2)
k=1
Equations (4.1) and (4.2) define the transport problem on a strongly connected graph. This

problem has been studied using semigroup methods by several authors [33], [15], [40] on finite

graphs and were extended to infinite strongly connected graphs in [14].
Remark 4.1.1. If we model a mass conserving transport on the network, then the conditions at

48
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the nodes must be given by the Kirchoff law which balances the flow in each node. That is, the
total mass flowing in a node must equal to the total mass flowing out. From this point of view,

boundary condition stated in [33], [15], [40] is incorrect as it balances densities and not flow.

First, we write (4.1) together with the boundary condition (4.2) as an abstract Cauchy problem
in the state space X = L([0,1])™

d
Lu = Agu(t
dt 0 ( ) (4.3)
u(0) = (fj)j=1,...m-
where Ay is the realisation of the expression A = diag(c;j0.)1<j<m. on the domain
D(Ap) ={ue W([0,1])™; u satisfies (4.2)}. (4.4)

Following the proof given in Section 2.3 of [14], we can show that the domain D(A) can also

be written in the following way
D(Ap) = {u e WE([0,1)™ :u(1) = C_IIB%Cu(O)} , (4.5)

where C' = diag(cy, ..., cy) and B is the adjacency matrix defined in Chapter 2. Below, we list

some of their results.

Proposition 4.1.2. [33], Proposition 2.5
The operator (Ag, D(Ay)) is a generator of a positive bounded semigroup and hence the flow

problem (4.1) with a Kirchoff law (4.2) is well-posed.

Proposition 4.1.3. [15]
For a graph G and weighted adjacency matrices A, B defined in Definition 2.2.6 and equation
(2.2), respectively, and the corresponding flow semigroup (T'(t))i>0, the following statements

are equivalent.

1. G is strongly connected
2. A is irreducible
3. B is irreducible

4. (T'(t))e>0 is irreducible.
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Note that the above result is correct if we add that the graph is connected. As seen in Remark
2.2.16, the implication 3 = 1 may fail to hold. That is, by Lemma 2.2.14, B is irreducible if and
only if L(G) is strongly connected. But the example in the mentioned remark shows that it is
possible for L(G) to be strongly connected while G is not. This only occurs in the presence of

isolated vertices in G. Hence, without the assumption that G is connected, 3 = 1 fails.

Corollary 4.1.4. [14]
If c; =1 for all j, then the semigroup (T'(t)):>o is given by

(T f)(s)=B"f(t+s—n), n<t+s<n+1neN,. (4.6)

In [33], it was proved that the spectrum of (7'(¢));>0 depends not only on the structure of the
cycles in G but also on the rational dependency of the flow velocities on the edges that form a
cycle. First, suppose that the edges €;,,€;,,...,¢e; form a cycle in G, and ¢;,,¢;,,...,c;, are
the speeds of the particles flowing along these edges. Then if there is a k£ > 0 such that
f(Lr Lt rort)en “n
Ciq Ciy Ciy
then these speeds are said to be rationally dependent. The following result is due to Kramar

and Sikolya [33] (Theorem 4.5).

Theorem 4.1.5. Let G be strongly connected and (4.7) holds. Then there is a decomposition
X = X1 @& Xy such that

e The semigroup is uniformly stable on the space X,

e The semigroup (T'(t)|x,)t>0 is periodic with period T given by
1 1 1 1
T = gcd{k: <++~-+> D €iy,...,€ form a cycle},
k ci1 Cig Cil

where k > 0 is a number satisfying (4.7).

Remark 4.1.6. Having introduced the necessary notation, we provide a formal justification of
the claim that the flow in the network described in (4.1) is related to the finite dimensional
system in (3.2). For simplicity, assume that ¢; = 1 for j = 1,...,m and integrate (4.1) with

respect to x over [0, 1].

1 1
/ Oru;(Z,t)dr = / Opuj(z,t)dx
0 0
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Ifu(0) € D(Ap), we can interchange the derivative and integral to get

d 1
& | e nde = 050~ w500
dt J,
hence
d 1
7 u(z,t)dr =u(l) —u(0) = (B — I)u(0). (4.8)
0
Note that to obtain the last equation (4.8), we used the definition of the domain in (4.5).

Clearly the above system is not closed. To close it (approximately), we introduce the quantity

1
vi(t):/o ui(x, t)dz,

which is the total mass (also in this case, it is the average density) concentrated on edge e;. If
we assume that the density is almost homogeneous on each particular edge, then v ~ u(0,t).
Formally, the approximate closure of (4.8) is stated below

dv
i (B—-1I)v (4.9)

v(0) = Jy f(x)dz,
where f is the vector function defined in (4.3). That is, the closed form of (4.8) is the system
of equations (3.2) with A = B — I (note that here we refer to the matrix A in (3.2) and not
the differential expression introduced above). In particular, we note that since B is column

stochastic, A is a Kolmogorov matrix.

There are indications that (4.9) can be obtained from (4.8) as some asymptotic limit but so far,

we have not been able to provide conclusive results in this direction.

4.2 Disconnected graphs

Suppose that G is a digraph with a finite number of vertices n and a finite number of edges
m. Suppose that there is material flowing along the edges of this graph into the vertices. We
assume that no material is absorbed in each of the vertices. Let us parameterise the edges such
that the length of each edge is 1 and that the head of each edge is located at position 0 and
its tail is at 1. Let u;j(z,t) denote the amount of substance flowing in the jt edge at time t
and position = € (0, 1) with speed ¢;. We start with the disconnected graph where every vertex

has an incoming and outgoing edge. Suppose G is the graph shown in Figure 4.1 below. Since
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Figure 4.1: A disconnected network

the network consists of two completely disconnected graphs, the flow problem on this network
can be divided into two different flow problems corresponding to the two irreducible graphs and
the problem is then reduced to that solved by Sikolya in [33] for the finite dimensional case (or

that by Dorn [14] for the infinite dimensional case).

In general, if a network consists of a finite number of disjoint strongly connected graphs, we solve
the flow problem on each subgraph separately using the methods developed in [33] or in [14]. If
G is a collection of g disjoint strongly connected graphs, (Ag, D(Ap)) generates a Cy semigroup
if and only if (A}, D(A})) generate C semigroups for every i = 1,...,g, where (Ao, D(Ay))
is the operator defined in (4.3) and (4.4), defined on the whole graph G, (A4}, D(A})) is the
realisation of the same expression 0, on the i maximal strongly connected subgraph of G, and
the solution to the entire network problem is the direct sum of the solutions to the flow problem

on the separate components.

4.3 Connected graphs

From this section onwards, we consider the graph G to be connected but not strongly connected.

Suppose that on each edge ¢;, the flow of particles is described by the equation

Ovuj(x,t) = cjOpuj(z,t) + gj(x, t,uj(z,t)), =€ (0,1), t>0

F1<¢ wuj(x,0) = fj(x) (4.10)
qb;jajcjuj(l, t) = Wy, j [2?21 (b;fk(fykckuk(O, t)) + hz(t)j| , Vi (BC)

If hi(t) > 0, then there is an input term at vertex v; and if h;(t) < 0, then the vertex is losing

material. The above equation (4.10) is a more general problem which will not be discussed here.

We will only consider the homogeneous problem with h;(t) = 0 for all ¢ and g;(z,t, u;(z,t)) =0
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forall j=1,...,m. Thatis;

Oruj(z,t) = ¢;0uj(x,t), z€(0,1), t>0
(z,0 — f.
F9 uj(,0) fi(x) (4.11)
dajciui(Lt) = wij >y o wewur(0,t), Vi (BC)
0 =, (b;fk(’ykckuk(o,t)), if v; is a sink (BC2),

where «;,7; are absorption or generation coefficients at the head of the edge e; and are all

bounded above by a finite positive number «.

4.4 Existence and uniqueness

Let X := L'([0,1])™ with norm

mo a1
flly = - (z)|dz, X.
1]l x 223/0 fi(@)lde, fe

Let us denote C' = diag(Cj)lngm,G = dz’ag(aj)lgjgm and E = diag(’)/j)lgjgm. Then the

flow problem (4.11) can be written in an abstract way (ACP) in X

%u = Apu(t) (4.12)

u(0) =0 = (f3)j=1,..m-

where Ay is the realisation of the expression A = diag(c;j0x)1<j<m. With domain
D(Ap) = {u € W}([0,1])™; u satisfies the boundary conditions in (4.11)} . (4.13)
We state the following result on the existence of a C semigroup.

Theorem 4.4.1. For the flow problem in (4.11) the following statements are equivalent.

1. The operator (Ag, D(Ay)) generates a Cy semigroup.
2. The matrix ®~ is surjective.

3. Every vertex in the graph has an outgoing edge.

Proof. 2 < 3: If v; has no outgoing edge, then the it" row of &, (®7);, is a row of zeros,

hence ®~ cannot be a full row rank matrix, and thus ®~ is not surjective.
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Conversely, if &~ is not surjective, then at least one row, say, row k is a linear combination of

some other rows, i.e,
n/
= Bi(®7);
j=i
for some 3; not all equal to 0. In particular if ¢,; > 0, then (zbj_l > 0 for some j. But this is
not possible since each column must have at most one non zero entry (see Remark 2.2.5). So
if @~ is not surjective, then the only possibility is that it has a row of zeros, implying that at

least one of the vertices in the graph has no outgoing edges.

1 = 3: Let T'(t) be the semigroup generated by the realisation of the operator in (4.11) and
consider u(t) = T(t)f, £ € D(Ap). If v; has no outgoing edge, then, from the boundary

conditions, we have

Z (Z) 'ykckuk O t)) t>0
k=1

Particularly, ug(x,t) = fr(z + cxt),0 <z + et < 1= ug(0,t) = f(ext). So

1

¢Z_k('7kckfk(ckt))7 0<t< o

T
NE

>
Il

1

Define ¢! := (max{ck})_1, then
m
= o (menfrlert)), 0<t<c
k=1

There is a sequence (f"),cy in D(Ap) which approximates 1 = (1,...,1) in X. For this

sequence, we have

m c1
0 < 10y — (FL(cxDi<kemllx =3 /0 11— f(crt)dt
k=1

1/ = el

Ck

I
NE

>
Il

1

1 =
/ 11— fI(2)|dz == 0.
C

IA
WMS

Since convergence in X implies convergence almost everywhere of a subsequence of (f"),cn,

we have

m
0="> ¢hcr

k=1

almost everywhere on (0,c™1), and thus everywhere. Since the graph is connected and we have

assumed that there is no outgoing edge at v;, then there must be an incoming edge, hence, at
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least one term in the sum is positive and some are negative. This implies that the set of initial
conditions satisfying the boundary conditions BC is not dense in X. Hence (Ay, D(Ap)) cannot

generate a semigroup.

2 = 1 Conversely, suppose that &~ is surjective. Then there is at least one non-zero entry in
each of its rows. Since these rows are linearly independent, it is a full row rank matrix. So the
system of equations @~z = y is consistent for any vector y € C™. In particular, the system of
equations in

d~GCu(l,t) = ®TECu(0, 1)

is consistent. Note that
D(Ap) = {u e Wh([0,1))"|u(l) = C"'G 'BECu(0) = Pu(0)}, (4.14)

where B is the adjacency matrix of the line graph defined in (2.2). Below, we show that (4.14)
is equivalent to (4.13): From the boundary conditions in (4.11), we have

m

dogeiug(1,t) = wi Yy dhkckur(0,t)

k=1
for all i = 1,...,n. We want to show that this condition is equivalent to u(1,¢) = Pu(0,t) =
C~'G 'BECu(0,t). Fix j. Then there is exactly one i for which ¢;; = 1 and the rest is 0. For
this 1,

m
piiciajus(1) = ajcjuy(l) = wy; Zﬁbﬁck%uk(o)
k=1

m
=Y widhermur(0).
k=1

But wijquk > 0 if and only if w;; > 0 and gb:; = 1, which implies that = v; %, Since there is

only one such v; for fixed j and k, it follows that
n
Wi = szj‘éf)f;@ = Bjg.
=1

So

m
ajcjuj(l) = Z IBSjk’ykcjuk(O)
k=1

— (BECu(0)),
where (BECu(0)), is the ;" row of BECu(0). But avjcju;(1,t) = (GCu(1));, hence GCu(l,t) =
BECu(0,t) = u(l,t) = Pu(0,1).



56
Conversely, suppose that u(1,¢) = Pu(0,t). Then the j'" component of u(1,t) satisfies

uj(1,t) = ¢;'a; ! (BECu(0, 1)),

where (BECu(0,t)).

; is the j entry of BECu(0,1), hence

ajejui(1,t) = (BECu(0,t)),

_ ((q»-)T)j¢>+Ecu(o,t)

w
m
= Wiy Z qﬁ;Z’ykckuk (0, t).
k=1
We have used ((@;)T> to refer to the j™ row of () and in each row, there is only one non
J
zero entry which is w;j, in the ith column. Since we have assumed that there is an outgoing

edge at every vertex and w;; # 0 if and only if ¢;; =1, we have

m
Dt (1,6) = wiy > dfmerur(0,t)
k=1

which is our boundary condition.

We claim that (Ag, D(Ag)) is linear, closed and densely defined. It is easy to see that D(Ap)
is a linear space and Ag is linear operator. To show that it is closed, suppose that u, =
(uk,...,um™) € D(Ap) and there is u € X such that u, — u. Let y € X be a vector such
that Agu, — y. Then u,(1) = Pu,(0). Since u,, € D(Ay), it follows that u,, € L'([0,1])™
and that it has a generalised derivative in L1([0, 1])™ (by definition of (W11([0,1])™)). Let the

generalised derivative be v,,. Then

1 1
/ w, (7)¢ (z)dx :/ vp(2)((x)dx, V(¢ e C3e([0,1)).
0 0

Now u,, — u implies

/01 Vi (2)¢(z)de = — /01 up (2)¢ (z)dz — — /01 u(z)¢ (z)dz.

But v,, being a genaralised derivative of u,, means that u/, = v,,, so Cu/, = C'v,, —y. Hence

1 1
C n dr — d
/0 vpldr /0 y(dx
implying that
fol Cvp(x)Cdx = — fol Cuy,(z)¢'dx
l !

y@)C(@)ds = — [} Cu(x)¢(x)da.



57

Therefore, y is the generalised derivative of Cu, i.e; Au=1y.

To show that u € D(A4y), we note that u, € WH1([0,1])™ implies that vl (z) € C([0,1])
for each i = 1,...,m by Lemma 8.2 of [8]. Therefore, u’, — u® implies u, (1) — u(1) and
1, (0) — u(0). Now u?(1) = (Pu,(0))’. Since the operator PP is linear on D(Ap) and norm

bounded, it is continuous. So we have that
Pu, (0) — Pu(0) = (Pu,(0))" — (Pu(0))".
Hence /(1) = (Pu,(0))" — (Pu(0)), implying that

up(1) = (Pug(0))'

u'(1) = (Pu(0))’, Vi

So u(1) = Pu(0), hence u € D(Ay).

To show that D(Ap) is dense in X, note that (C5°([0, 1]))™ C D(Ayp). By Corollary 1.14, [49],
C3°(Q) is dense in LP(Q) for 1 < p < oo; thatis, C§°(2) = LP(12). Therefore, (C5°([0,1]))™ C

D(Ap) and C§°(Q2) = LP(Q2) both imply that D(Ay) = (LP([0, 1]))™.

We show existence of a Cjy semigroup by analysing the resolvent. We solve a resolvent equation
M — Cf' = g, where f € D(Ag) and g € X using the method of variation of parameters to
obtain (R(\, A)g)(x). This is equivalent to f — A\C~!'f = —C~'g. This equation implies that

A
—;fj(m):—%gj(:n) Vi=1,...,m. (4.15)
j j

fj(z)

Solving the homogeneous part of this equation gives

Ay

fi(z) =e% vy, (4.16)

A
where v; is an arbitrary constant. Let f; ,(z) = eCJ'IDj(a;), where D;(z) is an unknown function

to be determined. Then
A

fip(@) = C—je“ﬂ Dj(z) + e Dj(x).
Substituting in (4.15), we get the simple ODE, which we solve to get

so that f;,(x) is given by
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Hence the general solution to the entire problem is given by

AI AQ’J
filx) =e% " v;+e% Dj(x)

2 1 [t 2
= ecjzvj +— [ e% = S)gj(s)als.
Ci Jg

We rewrite in the form
Ay 1 A (g—s)
cifi(z) = cjei v; +/ eci gj(s)ds, (4.17)
xX

therefore

1
Cf = CeMC Ny —I—/ e)‘(x_s)cilg(s)ds.

Since £ € D(Ag), GCE(1) = GCe ™ 'v = BECE(0). But

-1

Cf(0)=Cv+ /01 AN g (5)ds,
hence
GCe*’ 'y = BECv + BE /01 e’\(_s)cilg(s)ds
= (Gcem” - IB%JEC) v =BE /0 1 A9C g (5)ds
= (I - G—lc—le—w‘lmc) v=C"'G e 'BE /0 1 A9 g (s)ds
Therefore,
v = (I - G*lcfle*m”BEc) - ClGleACﬁBE/Ol AN g ()ds. (4.18)

. —1
Since the norm of ¢=*¢

can be made as small as one wishes by taking large A, we see that v
in (4.18) is uniquely defined by the Neumann series provided A is sufficiently large and hence the
resolvent of Ay exists. We find an estimate for the resolvent by noting, first, that the Neumann
series expansion ensures that A is a resolvent positive operator and hence the norm estimates

can be obtained for non-negative entries. Next, we recall that B is column stochastic, hence

each column sums to 1. Adding the rows of the system
AC—! AR
GCe* v = BECv + BE / AN g(5)ds
0

gives

n Py
Zajcjecjuj Z%c]uj—l—z%/ e gJ s)ds. (4.19)
j=1



We integrate Equation (4.17) to get

1 1 (1ot

/fj(x)daczuj/e7dx—|— /e
0 0

, 1

:I/‘J 6%— +1/

D) A Jo

cj 2 1/t

:Vj;<€ﬂ—1>+A/0

Introducing a weighted space X with norm

Ag
cj

<

(-
(oo

Il =D sl fill oo

J=1

and considering g > 0, we get
— ! 1 & A 1
Ifllx = Zaj/o fil@)de = 5 > vicja; <€cj - 1> +3
j=1 j=1

and using (4.19), we obtain

> | =

Ifllx =

There are three cases to consider
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(s)dsdx

)e 5 g5(s)ds

) arteras

m 1 m 1 _A 1 m 1
Zyjcj(fyj—aj)+)\2('yj—aj)/o e < gj(s)ds—i—)\Zaj/O gj(x)dx. (4.20)
j=1

1. vj <ajforall j =1,...,m: Since G,E, C are diagonal matrices, they commute, so we

have

e CTIGTIBEC < (CG) !

e CT'BCG

Since (CG) ™! e 2 'BCG is similar to e "B and r (6_/\0713) =r (e_)‘cfl) r(B) <

r(B) =1, we have

r (e_)‘cilC_lG_llBBEC) <1

for any A > 0. Therefore, R(\, Ag) is well defined for A
(4.20) we get

1ROV Al =l < AZ% [

Since (Ao, D(Ap)) is dense in X, it generates a Cpy semi

> 0. Using 7; < «; and equation

*Hgllx, A>0.

igroup of contraction.

2. If v > aj forall j =1,...,m, then from Equation (4.20),

1
IR, A)glx > ~lgllx-
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Since (Ao, D(Ap)) is dense, by definition, we use Theorem 2.5.11 to conclude that
(Ao, D(Ap)) is a generator of a positive semigroup in X, and hence in X since ||.||x

is equivalent to .|| x-

3. 7 < «j for some j € I} and ; > «; for some j € Iy, where I; NI, = () and
LUl ={1,2,...,m}. Let D = diag(l;), where I; = «; for j € I} and [; = ~; for
J € I. Then
e T CTIGTIBEC < (CG) L e T B(CD).

Let Ap be the restriction of Ay to the domain
D(Ap) = {u e (W([0,1]))" : u(l) = G'C~'BDCu(0)},

then clearly, if g > 0, the resolvent R(A, Ap) is also positive. The resolvent of A and
Ap also satisfy 0 < R(X, Ag) < R(A, Ap) for any A for which R(\, Ap) exists. Using
the previous case, we see that Ap generates a positive semigroup. We also have the
inequality R(\, A)¥ < R(\, Ap)¥ for any k € N and for some w > 0, M > 1. Therefore,

using inequality 2.11, together with Theorem 2.5.6 (Hille-Yosida) we have

IR(N, Ao)* || < RO, Ap)F < M(A—w)™*, A>w.

Therefore, (Ao, D(Ap)) is a generator of a positive semigroup as well. m

Remark 4.4.2. If oj = vy}, then from Equation (4.20), we have
1 & 1 1
11l = > ay i 9;(@)dz = [|R(A, Ao)gllx = 1 lIglx-
j=1

Thus the semigroup is conservative in X.

From Corollary 2.6 of [33], the semigroup (T'(t)):>0 is contractive only when c¢; = c for all
j=1,...,m, but as seen in the above calculations this is not necessary. The semigroup was
not contractive because the Kirchoff law (boundary condition) stated in Equation (3) of [33]

was incorrect (also see Remark 4.1.1).
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4.5 Spectral properties and asymptotic behaviour

4.5.1 Same speed

In [14], the author showed that if ¢; = 1 and «,y; = 1 for all j = 1,...,m and the graph is

strongly connected, then the semigroup is given by
(Tt)f)(z) =B"f(t+x—n) 0<t+zx—n<1neN.

This formula still holds for a finite, connected graph (not strongly connected), with an outgoing

edge in every vertex, even when absorption and/or generation is allowed.

Proposition 4.5.1. Let G be a connected graph where every vertex has an outgoing edge and
cj=1forall j=1,...,m. Then the semigroup T'(t) generated by (Ag, D(Ag)) on G is given
by

Tt)f(x)=P"(t+z—n); neNy0<t+zx—n<l, (4.21)

where P = G~ 1BE.

Proof. Let us denote by 7 (¢)f the formula of the operator given by the right hand side of
(4.21). First, we observe that 7 (¢)f is strongly continuous. This can be shown in the same way

we show that translation semigroups are strongly continuous. Computing the Laplace transform

of T(t),

R(Ng(s) = /0 TN T (1)g(s)dt

1-s e 14+n—s
= / e Mg(t + s)dt + Z/ e MPg(t 4+ 5 — n)dt
0 n

n=171"%

1 00 a1
:/ e_’\(T_S)g(T)dT+ Z/ e_’\(”_S+T)P”g(T)dT.
S n=1 0

Recall, from previous calculations, that R(\, Ap) is given by

1
RO\ Alg(a) = v+ [ g(s)ds,
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where v is given by (4.18). We expand the expression for v using power series to obtain

v = i (@*%*AEE)" G leBE / 1 e 5g(s)ds

n=0 0
1 o0 n 1
= Gle)‘IB%]E/ e Mg(s)ds + Z (Gfle*)‘BE> Gle)‘]B%E/ e Mg(s)ds
0 ] 0

1 0 1
= e_/\/ e MPg(s)ds + Z e_")‘IP)”He_)‘/ e *g(s)ds.
0 0

n=1
Thus, multiplying by e** with sufficiently large X, we get

1 0 1
e)\xy _ / e—A(l—x-ﬁ-s)Pg(S)ds + Z prtl / e—A(n—x-i—l-i—s)g(S)ds
0 0

n=1

0 1
— Z / e—)\(n—:v+1+s)]Pm+1g(5)ds.
n=0"0

Therefore, the resolvent R(\, Ap) is given by

1
T

SRSt
ROV Ag(o) =3 [ et g g [ O g(a)as
n=0

o 1 1
_ Z / e—)\(n/_x+s)Pn’g(S)d8 + / eA(z—s)g(S)dS;
=1 0 T

where n’ = n + 1, and the equation is true for all z € [0,1] and g(z) € L'([0,1])™. There-
fore, R(A,Ag) = R(A) and from uniqueness of the Laplace transform ([2], Theorem 1.7.3),
(T(#))e0 = (T(t))iz0. m

Proposition 4.5.2. Ify; = «a; =1 forall j =1,...,m and X € 0,(Ay), then (e*,£(0)) is an

eigenpair of B.

Proof. Solving the eigenvalue equation Af = Af gives f(z) = e**f(0). This is an eigenvector of
A only if f(x) € D(Ap). This means that f(1) = e*f(0) = Bf(0). This implies that (e*, f(0))

is an eigenpair of B for any eigenvalue X\ of Ag. m

Since B is column stochastic, 1 is an eigenvalue of B, implying that some eigenvalues of A are
of the form 2:km. Note also that B, being column stochastic, implies that B"™ is also column
stochastic for all n € N, hence |[B"||; = 1. From Proposition 4.5.2, we see that A € 0,(A)
implies e* € ¢(B) = o(T(1)) = e7») C o(T(1)) = o(B). Hence e!?»(40)  o(T'(t)) for all

t > 0 (by the spectral mapping theorem [16], Theorem 1V.3.6).

Lemma 4.5.3. The spectrum of P is the same as the spectrum of T'(1).
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Proof.
(T f)(x) =P"f(t+z—n)

= (T)f)(z) =P f(1+z—n)=PP" Lf(0+z—(n—1))
=P(T(0)f)(z) =Pf(z)
So T'(1) =P, hence o(P) =o(7(1)) m

Since T'(t) is a strongly continuous semigroup, by Theorem V.2.6 of [17], we have e’(4) =

o(T(1)) \ {0}.

4.5.2 Same speed, with 7, = ¢;

In this section, we assume that a; = 7, for all j = 1,2,...,m, and ¢; = 1 for all j. Then
P = G~ 'BG and the two matrices P and B have the same set of eigenvalues. Suppose that
v is an eigenvector of P. Then there is A € C such that Pv = A\v = BGCv = A\GCv. So
(A, GCWV) is an eigenpair of B.

Conversely, if « is an eigenvalue of B, then By = ay = C~!G 'By = aC~'G~'y. But
C7'G B =PC~'G™!, hence PC G ly = aC~1Gy. Thus (o, (GC)~ly) is an eigenpair

of P. Since B is column stochastic, 1 is an eigenvalue of both P and B.

Similarly, vP = \v = v(GC) !B = Av(GC) ! and uB = au = uGCP = auGC. Since B is
column stochastic, (1,1) is its left eigenpair, hence the left eigenvector of P corresponding to
eigenvalue 1 is v = 1GC = (¢, aac, ..., amc) = (Crad, ..., Cmauy). If ¢; =1 for all j, then

v=1G = (a1, a2,...,Qm).

We have seen that the spectrum of the semigroup 7'(¢) is related to the spectrum of P and

hence that of B, so we shall study the long term behaviour of the semigroup via matrix B.

Since B is reducible, we can write it in normal form (2.8), from which we see that Bs is column

stochastic, so 1 € o(B;). If there is another matrix By, with 1 as an eigenvalue, then By, =0



for all h > k. Let By, Br11,...,Bs all have 1 as an eigenvalues. Then
By 0 0 0 0 O
0 Bs 0 0 0 O
0 0 -~ B, 0 .0 0
B— Bgi11 Bgt12 o+ Bgriy Byt 00
Br1 Bz ~+ By  Bkgt1 -+« B 0

Bry11 Bryi2 -+ Briig Bri1g1r - 0 Brp
Bs,l BS,Q te Bs,g Bg,g-‘,—l - 0 0

B;
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L (@22)

From the matrix representation (4.22) we see that By, - -- By are all column stochastic, hence

1 € o(B;) foreachi=k,...,sand 1 ¢ o(Bj) for j =1,...,k — 1. The right eigenvectors of

B corresponding to 7(B) = 1 are given by

N; = (0,...,0,N%0,...,0)T, where B;N‘=N¢

That is, N* > 0 are the Perron eigenvectors of B; for all i = k,...,s. The left eigenvectors of

B corresponding to 1 are vi,va,...,Vy, Where

vi = (5, yh yE L vE0,...,0)

k+1 _k+1 k+1

Vi1 = (Y7, Y5 ,...,yk_l,O,ka,O,...,O)

VS = (yi)ygu"'7ylf:—1707"'7oavs)

where v'B = v = 1,,, for each i = k,k +1,...,s. We have used the notation 1,,, to mean

By solving the system v;B = v;, we get

Vi1 =V'Biy1(I - By_1)"",
k-1
Yo=Y, ¥iBin+VBin| I-By)",
j=ht1

(4.23)
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forall1<h<k—2andi=1,...,m. The vectors in (4.23) are all positive, by Theorem 2.1

of Seneta, [51].

Lemma 4.5.4. The positive left eigenvector 1 is a sum of the linearly independent eigenvectors

Vi, Vi+1,---5 Vs-

Proof.

m
ZY};A =1y, Brg—1(I = Bi—1) "' + 1, By o1 (I — Be—1) '+
i=k

o4 1y, Bsp—1(I — By_q) ™!
= (1p, Brjp—1+ 1ny Bisr g1+ + Lo, Boj—1)(I — Br_1) ™.
Since B is column stochastic,
1o, Br—1+ 10, Brg—1+1n  Brrig—1+ -+ 1n,Bsp—1=1n,_,.
Therefore,

1o, Brgk—1+ Loy Brrig—1+ -+ 10, Bsg1 =1, —1n,_ Br1
=1p, ,(I = Bg-1).
Therefore, )
> Vi =1n,_,. (4.24)
i=k

Using this equation (4.24) and the fact that B is column stochastic, we obtain

Vi o= [1nBik-2+ ¥ 11Be-16—2] (I — By—2) ™"

S

S S
Yioo=|> 1nBis2+ Y Vi 1Br1k2| (I —Bra) "
ik ik ik

(17Lk,2 - ]-nklek‘—l,k‘—Q - 17Lk,2Bk2—2) + 1TL]€,1B]€—1,]€—2:| (I - Bk‘—2)_1

[
1

Ng—2-*

Indeed, similar calculations show that for any 1 < h < k — 2,

m
>_¥h=1u
i=1
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Let the number of distinct eigenvalues of B be v and k; be the algebraic multiplicity of A; for
every \; € o(B). Let the number of distinct eigenvalues on the spectral circle be r and let

A =1,thenk; =s—k+1, |Ao|] =--- = |\ = 1. We assume that N; are normalised so that
VzNZ = 1, 1= k‘, .o S (425)

Denote by d; the index of imprimitivity of the matrix B;, that is, d; is the number of distinct
eigenvalues of B; of modulus 1. Then these eigenvalues \; € o(B;) can be written in the form
A= e% forl =0,1,...,d; — 1 for each i =k, ..., s and each of them is simple (see [44], p.
676). Further, denote

Z={\eo(B): |\ <1}.

Theorem 4.5.5. There is a decomposition of the space X = X, @ --- ® X5 @Y such that

1. The spaces X;,l =k,...,s; andY are invariant under (T'(t))¢>0;
2. (T(t)|x,)s>q is periodic with period di,l =k, ...,s;

3. (T(t)ly )0 is exponentially stable of the type 0 > w > max{In[A[; A € Z}.

Proof. Let P, be the spectral projection onto the generalised eigenspace corresponding to .

Then, for u € R™,

s d;—1
Pru=G 'B'Gu=G"Y Y MN'P,Gu+G ' > A'py(n)PGu, (4.26)
i=k =0 NEZ

where py(n) is a matrix valued polynomial in n of order less or equal to k;. Since BN = N,
PG~'N = G~!N, the spectral projections Pyo corresponding to 1 = N € o(By), fori =
k,...,s is given by

Pyou = (Gv;u)G™'N;.

Similarly, the spectral projections P,; have analogous form,
Pyu = (Ge’;\;.u> ,Gey; (4.27)

where e is the right eigenvector of B corresponding to Al and e;‘\é is the associated left

*

eigenvector, normalised so that ey.ey = 1. Then, recalling Proposition 4.5.1 and equation
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(4.26), the semigroup generated by (Ao, D(Ag)) with ¢; =1 is given by

s di—1
T(t)u(e) = [ 'B"Gu] (t+z—n) =G> 3 A [PAZ Gu] (t+z—n)
i=k 1=0 (4.28)
+G™* Z A [pa; ()PAGul] (t+2—n);neNy, 0<t4+zx—n<Ll

MNEZ

Define X; and Y to be the spaces
Xi=@PPuX, i=k...s,
=0

Y = @PAX.

AEZ

The only element common in all these spaces is the vector 0.

To prove item (2), let u € X; = L1([0,1],X;), where X; = Span{G~'eyi};—o. 4,—1 and

i==k,...,s. Consider the equation
di—1
T (@) = (L)) = SN Pyul(t+2—n), 0<t+z-n<l  (4.29)
1=0

for i = k,...,s. Then [T;(t)u] extends to a periodic group in X; with period d;, the index of
imprimitivity of the matrix B;. To verify this, we evaluate T;(¢ +d;). First, we take n’ satisfying
0<(t+d;)+x—n'<1, thatisn’ =n+d;. Then

di—1

(T3t + di)u)(z) = Y Aé”'[P/\éu](t +di+z—n'), 0<t+z—n'<1
=0
d;i—1

= e
=0

2l (n+d;)
4 [Pyul(t+z—n), 0<t+z—-n<l1
!
di—
21nl7r
Z 2szu](t+x—n) 0<t4+z—n<l1
=0

= [T;(t)u)(z), 0<t+z—-n<1, mneN,

Hence, the period of (T;(t))i>0 is 7 < d;. We can show that the period is indeed equal to d;
by using a similar argument to that used in Theorem 4.5, [33] or Theorem 24, [14], but we give

a more elementary proof here by using the structure of the matrix given in (4.22). Taking the



68

Laplace transform of (T;(t))¢>0 with u; = Pyu,u € X; gives

d;i—1

| et mul = [T e Y A p e - o
0 0 1=0 '
d;i—1 00 o o
=> (/ e Muy(t+a)dt+ Y e 4 / e Muy(t+ 2 — n)dt)
1=0 \’0 —t 0
d;i—1 1 o o 1
= Z (/ e M=y (s)ds + Zedi/ e_’\(er”_x)ul(s)ds)
=0 r n=1 0
d;—1

1 o (2171'l —)\)TL 1
/ e M52y (s)ds + Z e\ di / e APy (s)ds | .

From this, we see that the resolvent of the generator of (7;(t)):>0 has poles at A € C which
2l

satisfy e} = ¢ & 1 = 0,1,...d; — 1. From Lemma IV. 2.25 of [16], if 7 is the period of a

=

[e=]

semigroup, then the resolvent of the generator has poles at 27:.Z /7. By comparing, we conclude

that 7 must be a multiple of d;, hence 7; = d; is the period of the semigroup (7;(t)):>0-
To prove the last item, let 7,, =t — n with 0 < 7, < 1. Using boundedness of P, we have
1 Tn
[A"[PA(n) Paul(t + . — n)|lx < c(|A"[pa(n)| / lu(s)lds + A" pa(n + 1) /0 lu(s)|ds)
tlnx

A" |ullx < Jlullxe

for some positive constants ¢,c/,¢” and [\| <A< 1€Z. =

4.5.3 The primitive case

If di =1 for some i € {k,--- s}, then B; is primitive, and thus X; is spanned by the Perron
eigenvector N extended by zero. That is, X; is spanned by the vector N; = (0,N?, 0), where
B;Ni = N*. Thus for f € D(Ay), the solution to the flow problem restricted to the space X;

is given by
[T;()f](z) = (Gvif(t + 2 —n))G'N;,n €Ny, 0 < t+ 2 —n < 1. (4.30)
If there is only one block in the normal form of B (B;) with eigenvalue 1, then this eigenvalue is

simple (because of irreducibility of By). If Py is primitive, then any other eigenvalue of B is of

magnitude less than 1. Then N = (0,...,0,N*)” and v = (1,...,1), hence X is decomposed
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into two (7(t))¢>0 invariant subspaces, X = X; @Y, where T'(¢) restricted to X is given by
T(t)x, f(z) = (G(1,...,D)f(t + 2 —n))G"'N
m
= Z aifilt +x —n)GT'N = f(t + 2 — n)G'N,
i=1

where f(t 4+ x —n) € L*([0,1]). This semigroup T'(t)|y, is periodic with period 1.

If there is more than one block with eigenvalue 1 and each of them is not cyclic, then the

semigroups (1'(t)|x, ), defined in Theorem 4.5.5 are periodic with period 1.

4.5.4 Same speed, 7, # q;

If there is at least one j such that v; # «;, then P = G™'BE and B are no longer similar
matrices, so the asymptotic behaviour of T'(t) cannot be studied through the spectral properties
of B. Further, 1 may not be the maximum eigenvalue of P. But we can define a new matrix
P := (1/r(P))P. This new matrix P has spectral radius r(P) = 1. We then proceed as shown

in the preceding section using the matrix P.

Using the Jordan decomposition, we can write the powers of P in terms of its eigenvectors and
generalised eigenvectors as follows.
v ki 7—1
P" = r"Npvi + -+ "N+ D DY ( )A" 'Xi -1V,
i=2 j=1 =0
where vé are left eigenvectors and generalised left eigenvectors corresponding to eigenvalue \;,

whose algebraic multiplicity is k;, for all ¢ = 2,...,v. Similarly, x; ;_; are right eigenvectors and

generalised right eigenvectors corresponding to A;. Then

v ki j—1

. P" )\"l .
= = Nevit - +Nsvs+zzz(> ——"

i=2 j=1 =
The semigroup T'(t)f(x) = P"*f(t + z — n) then satisfies Theorem 4.5.5. Since

~ 1
T(t)f(x) =P"f(t+2—n)= —P"f(t+2—n),
r
we have T (t)f(z) = T'(t)f(z) for all n € Ny such that 0 <t +x —n < 1.

If all the blocks P; are primitive, then there are no other eigenvalues of modulus r, hence taking
limits as n — oo, we get

P" — Npvg + -+ Ngvg,
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hence T'(t)f(z) = P" f(t + = — n) has asymptotic behaviour

T(t)f(x) = (vif(t+2 —n))Ng+ -+ (vsf(t + 2 —n))N,.

The asymptotic behaviour of the new matrix gives the asynchronous growth of the powers of P,
and the qualitative behaviour of the semigroup (T'(t));>o defined by T'(t)f(x) = P"f(t 4+ = —n)

is the same behaviour of the original semigroup (T'(t)):>0.

4.6 Different speed along the vertices

Until now, we have considered flow problems with ¢; = 1 for all . In this section, we show that
the flow problem can still be solved using the results we have obtained already by converting it
to a problem with ¢; = 1. In this section, we adopt the assumption from [33] that the speeds

are linearly dependent over the field of rational numbers Q. That is, for all j =1,...,m,

N
— € N for some N € N. (4.31)

Cj

1

If c; can be written in the form ¢; = -, where [; € N for all j, we make the transformation
J

Z = (1/cj)z. Then, the flow problem becomes:

Opu; (i, t) = Opuj(#,t), Te[0,}]), t=0,
F34 u;(@,0) = f;(2), (4.32)
Giciui (oo t) = wig 3oy &y (ceur(0,1)), Vi
If the speed c; can be written in the form ¢; = N/I; for some N,l; € Nand j € {1,...,m},

then we first rescale time using the transformation 7 = Nt. This will put the flow problem into

the form where 0 < ¢; < 1, considered above,

Oruj(z,T) = %&uj(xﬂ'), z € (0,1), 72>0,
u;j(x,0) = fix), (4.33)
diciui (L) = wij >ty 65 (crun(0,7)), Vi
Notice that in this, case, ¢; = 1/l;, which is the first case we considered. Then we can apply the
transformation & = zl; = (1/¢;)x and this will put the problem into the form given in (4.32).

From now on, we assume that the flow problem is in the form (4.32).

We then divide the interval [0, Ci] into unit intervals by creating artificial vertices along the edge
J

ej. The number of artificial vertices created along e; will be (% — 1). We label the edges
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joining these vertices as ¢;,,¢j,, . . In this way, we have created a larger network with

> €hiye, -

n’ vertices and m' edges and each edge is of unit length; that is s € [0, 1] with

The density of particles on edge e;, will be denoted by u;, for all 7 = 1,...,m and i =
1,2,..., L.

J

1

Foreachi=1,..., ot i —1 < Z <1, we introduce a new variable s, which is defined on [0, 1]

and depends on Z through the following equation:
s=T—1i+1, (4.34)
for each ¢ and Z defined above.

Remark 4.6.1. On the larger network, we shall again represent the outgoing incidence matrix
as ®~ and the incoming incidence matrix as ®+. These matrices are n' x m' matrices. Every
artificial vertex has exactly one incoming and outgoing edge, and the weight on the outgoing
edge of an artificial vertex is 1. If v; is not an artificial vertex and e; is an outgoing edge of v;,

then the weight on e;, w;j;, is the same as in the original network.

The flow problem on this larger network is simply the flow problem in (4.10) with a few modi-

fications:
8tujz’ (S’ t) = asujz‘ (87 t)? ERS [07 1]7 t> 07
U, (370) = ngi<8>, (435)
¢l;cjz“]z(1’ t) = wlvji Z?:l gle,rki Ck;uki (0’ t)) vz = 1a R n,'
< cj cj
where

(Pji(s> =

fi(g) ifr-1<z<t; i=1
Since each artificial vertex has exactly one incoming and one outgoing edge and the speed on

all the artificial edges is the same, the boundary condition on each of these artificial vertices is

¢l;icjiuji(17t) = Cjujvz(lvt) = ¢l—;i_1cji—luji—l(07t) = Cjuji—l((]?t) (4'36)
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foralli=2,..., % and j =1,2,...,m. If we define the operator (A, D(.A)) where
D(A) = {v e W} ([0,1])" : v(1) = C~'BCv(0)}

and Av = v/, then the flow problem on the new graph is equivalent to the abstract Cauchy

problem

vi(t) = Av(t),
v(0) = .

Here B is the adjacency matrix for the line graph of the new expanded network.
Define a function v(s) = (v1(8),...,vm(s)), where v; = (vj,,...,v;, ) is defined as
2]

vi=vj(s),s=i—i+1,1<i<c!, 1<j<m. (4.37)

Then we define u(z) by
uj(x) = vj(¢;T) (4.38)

Theorem 4.6.2. Let S : Li([0,1))™ — L1([0,1])™ be the transformation u = Sv defined by

(4.38). Then S is an isomorphism.

Proof. We note first that S is invertible, since

vls) =14 | o (4.39)

where s is as defined in (4.34) for all j =1,...,m, defines the inverse of S. Then

m 1
v =S / i ()|
=179
moL
=3 g / 7 oy (3)|di
j=1 70
/ o (@)1dz

1
¢j /0 |vj,(s)lds

1 i=1

xﬁ?"‘

I
D

<

I
I

-

S
I

I
NE

<.
I

< max{c; v
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On the other hand, ||S~1u| = ||u]|

sl = fj I s ()l + / e (o)lds -+ / 1 o, (9)lis

ur?"—‘
—_

We conclude that S is an isomorphism. m

Lemma 4.6.3. The function v € D(A) if and only ifu = Sv € D(A).

Proof. From the preceding results (in particular Theorem 4.4.1), we know that (4.35) admits

semigroup solutions. Suppose that

v(s) = (vl,l(s), UL e (8)s- s Um1(8), Um2(s), ... vvm,l/cm> € D(A).

Then Equation (4.36) gives us continuity of the flow at the artificial vertices. That is, v}, (1) =
vj, ,(0) for all i = 2,..., é So the function v;(s), defined in equation (4.37), is continuous
on [0, 2] forall j=1,...,m and

J

m 1

]f;/o Ivj@)\di:; /01 !vj(:z)|d:z+/12|vj(az>ydaz+--.+/1:f'_ |v; (%)|di

:21 [t [t [, @] <o

1
J ¢
since each vj,(z) € L1]0,1]. So v; € Li([0, %]) for any j = 1,...,m. Next, we show that
v; € W([0, %]), j=1,...,m. Since each v;, € W[([0,1]), there exists g;, € L1([0,1]) such
that
1 1
| udds = [ g0ds voe (o)
0 0

foreach j=1,...,mandi=1,..., é On the other hand, let £ € C§°([0,1/¢;]). Then

1 1

o 1 2 cj
/ijg’d:E:/ 'Ujfldfi"_/ Ujé./d.i'+"'+/] v;€'dT
0 0 1 L

J
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From this equation, using Corollary 8.10 of [8], we get

1

L 1 2 s
7 wean == [Caeds + @l = [ antdi+ a0l == [ 4, et
_ C]'

€

= (= [ st + ) + (= [ gnedn +0a21e2) - sl + -
(S (96
R ¢ ’
where §;,(Z) = gj,(s) withs =2 —i+1forj=1,...,mandi=1,...,1/c;. By the Kirchoff
law at the artificial vertices and continuity of the test functions £ on |0, é] all the boundary

terms in the integral cancel out. That is,

zmm—wmx%@wwﬂmwwwl(?—Q_WQA(l_Q.

Hence
1 1

o 1 2 e
/ T veldi = —/ gjlgd;%—/ gjzgdﬁc—---—/ ' g, &di
0 0 1 clj—l <

1
< -
= — g;v;d;
0

,

9, (%), if0<E<1,

where

9j,(%), f1<i<2

9i(%) =

9i, (@), f-1<a<.

J
Since g;() € L1 (][0, é]) v;(Z,t) € W([0, é]) for each j = 1,...,m, hence v; € W} ([0, %])
j=1,...,m. We have u € Wi ([0, 1])™, where u is defined by (4.38). Since the Kirchoff laws

at the original vertices have not been changed, we must have u € D(4p). m

Thus, the solution to (4.35) is given by

(T f)(s)=C'B"CY(t+s—n),neNy, 0<t+s—n<lse0,1],
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where
©1,1(8)
¥1,L (s)

Yeq

Om,1(8)

P, 1 (8)

and from this, we obtain the solution to the original problem through equation (4.38) above.

Using the transformation in Theorem 4.6.2, we have
T(t)ju = S™'T(Nt)Su. (4.40)

That is, in order to get uj(z,t), we take the submatrix of B which contains only the first %
rows of B and multiply it with ¢. To get us(z,t), we take the next é rows by starting from

the (% + 1)™" row up to the (% + é)th row and so on.



Chapter 5

A Graph Theoretic Point of View

5.1 Introduction

In the preceding chapter, we proved the existence of semigroup solutions to the flow problem
on the graph with no sinks. In this chapter, we extend the results of Chapter 4 to graphs with
non trivial acyclic part. We will show that asymptotically, the flow will remain in certain parts
of the graph with cycles and that these subgraphs where the flow remains asymptotically are
those cycles with no outgoing flow. We also show that the flow on the edges in the acyclic part
of the graph will be depleted in finite time while the flow in the cyclic parts of the graph with
both incoming and outgoing flow will be depleted asymptotically. We start with certain useful

graph descriptions which will enable asymptotic description of the flow to be easier.

5.2 Graph Descriptions

Let G = (V(G), E(GQ)) be a digraph with n vertices and m edges and let v € V(G). The
out-degree (denoted d~(v)) of v is the number of outgoing edges of v and the in-degree of
v (denoted d*(v)) is the number of incoming edges of v. We will assume that G(V, E) is
connected but not necessarily strongly connected. We assume that each vertex has at least one
outgoing edge (d~ (v) > 0 for every v € V). Let V, be the set of vertices which are sources in

the graph.

Let @ = (V(Q),E(Q)) = (E(G), E(Q)) be the line graph of G. As seen in the first chapter,

76



7

e; = (vjv}) is an edge of @ if there exists a vertex v € V/(G) such that % v 5. Let us put this

in a formal definition:

Definition 5.2.1. A vertex v € G is said to generate an edge e;; in @ if there exist edges e;

and e; in G such that

We introduce the map

B : B(G) — V(Q) (5.1)

by defining ®;(e) = €, where € is the vertex in @) corresponding to the edge e in G. Therefore,

it is a one-to-one function. We also define ¥ to be the multifunction
g : V(G) — 2F@), (5.2)

This function assigns to a vertex v € V(G) a set of edges generated by v. If u € V,, then it
does not generate any edges in (). Every vertex in V(G) \ V, generates at least one edge since

there are no sinks.

More precisely, if v is a vertex in V(G) \ V,, then it generates d™ (v)d™ (v) edges. To verify this,
notice that if v has out degree d(v), then every edge that is incoming at v is adjacent to all
the d~ (v) edges going out of v, hence there are d~(v) edges generated in @) for every incoming
edge at v, and since there are d* (v) incoming edges at v, there is a total of d~ (v)d™ (v) edges

in () generated by v.

On the other hand, the inverse of ¥ is a map, that is, if U (v) N Ve(v') # 0, then v = o'
Indeed if € is generated by a vertex v € V(G), then there is an incoming edge u and an outgoing
edge w such that the vertices 4 and w are incident to €. Since an edge has only one tail and
one head, if € was generated by another vertex v' € GG, then v/ would be the head of u and the

tail of w, which is impossible.

Since the graph G has no sinks, it cannot be acyclic (see Proposition 1.4.2, [6]), hence the line
graph @ is not acyclic as well. However, if G has sources, then there exists an acyclic subgraph
of G (and hence, @ has an acyclic subgraph as well). We shall see how to obtain the maximal
acyclic subgraph of @ below. Let V,(Q) be the set of sources in Q. Then V,(Q) = ®c(e;)
where e; are edges in G with their tails in V,(G). Let Q2 be the subgraph of @ which consists

of all cycles and all paths joining the cycles and ()1 be the graph obtained by deleting Q-
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from Q. Then V,(Q) C V(Q1). Let Cg be the cut set separating 1 and Q2. Then the set
E(Q) =CqU E(Q1) U E(Q2).

We can easily determine all the vertices and edges of ()1 by using a topological sorting algorithm,

[12]:

1. Pick a vertex v € V,(Q) and label it v;.

2. Delete vy from @ and call the resulting graph Q.

3. Pick another vertex v € V,(Q) and label it vs.
4. Delete vy from @ and call the resulting graph Q (again).

5. Repeat the above procedure until we get a graph Q = Q- such that VO(QQ) = () or until

all the vertices in the graph are labelled.

Lemma 5.2.2. If Q' is the subgraph of Q which was left after the execution of the topological

sorting algorithm, then it must contain a cycle.

Proof. If v € V(Q'), then v is the head of some edge in ). Since by assumption every vertex
has an outgoing edge, it follows that every vertex in @’ has an incoming and outgoing edge,

there are no sources and no sinks, so @' must have a cycle, by Proposition 1.4.2, [6]. =

Let @1 be the graph whose vertex set contains the vertices {vy,v2, ...} which were labelled by
the topological sorting algorithm. That is, V(Q1) = V(Q) \ V(Q2). Then we note that Q is a
subgraph of @ and V,(Q) C V(Q1). Clearly, if v € V(Q2), then v ¢ V(Q1). This is because
for v € V(Q2), it must either be on a cycle or an a path between two cycles. In either case

v € V(Q1) would mean that there is a cycle contained in ()1, a contradiction.

Remark 5.2.3. A graph Q (or G) may have more than one cut set, but the cut set separating
the acyclic part of Q) (that is Q1) from the cyclic part Q2 is unique. To verify this, Let Cy
and Cy be two cuts separating Q1 and Q2. Then note that E(Q) = E(Q1) U E(Q2) UCy =
E(Q1) UE(Q2) UCs. Since E(Q1) N E(Q2) =0, it follows that Cy = Cs.

We can also use the topological sorting algorithm to find the maximal acyclic subgraph of G,

and we shall call this graph G (G2 will then be the graph obtained by deleting G from G).
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Lemma 5.2.4. The function &5 maps the edges of the graph G which form cycles to the

vertices of the graph Q which are on cycles or between cycles; i.e

Oq(E(G2)) =V(Q2): Pa(E(G1))UCq =V (Q1) (5.3)
and

Ue(V(G2) = E(Q2) UCq;  ¥a(V(G1)) = E(Q1). (5.4)
Proof. Let u;,,e;,, U, ..., € ,,u; beacyclein Ga. Since e;_1 and ei; connect through u;,,

there is an edge in W (u;;) with head at ¢ (e;;) and an edge in W (u;11) with tail at @g(e;;) so
that W (u;, ) contains an edge connecting ®¢(e;,_,) and @ (e;, ). Therefore, if there is a cycle
in G, there is a corresponding cycle in Q. On the other hand, if v;,, €, vi,, €15, ..., €51, Vi, =

v, is a cycle in (2, then
(I)Eil (Uil)v \I’&l (eil)v ) ‘1151 (eil—1)7 (I)Eil (Uil)
is a cycle in G. Hence there is a cycle in G5 if and only if there is a corresponding cycle in Qs.

Let e € E(G2), then ®¢(e) is a vertex in Q. If e is on a cycle, then v is also on a cycle,
hence v € V(Q2). If e is on a path joining two cycles, then there is a v;, and v;, both on
cycles such that v;,,e;,,.. Sy €if = € Visy s €y €y Vi Let v' be a vertex on a cycle,
adjacent to the vertex v;, (that is; v'v;, is an edge on the cycle). Then ®g(v'v;,) is a vertex
in a corresponding cycle in Q2. Now since v;, has at least two outgoing edges (one edge is on
the cycle and the other is on the path leading to ®¢(e), which is not on the cycle), ¥ (v;,)
consists of at least two edges. Also, v;, has at least two incoming edges, one edge is on the
cycle and the other is on the path which contains e. Since v;, is on a cycle, there is at least one

outgoing edge on the cycle. Hence ®¢(e) is on a path joining two cycles and therefore belongs

to Q2. This shows that ®¢(E(G2)) C V(Q2).

Let u be on a path joining two cycles in Q2. Then there are vertices u;, and u;,_, both on
cycles, such that u;,, €;,,...,€j_1,u;; = u,€;;,...,u; isa path between cycles. u;, must have
at least two outgoing edges; ¢;, (leading to vertex u) and the other (call it €) on a cycle, and
at least one incoming edge. So there is some vertex v € GG3 which generates at least two edges.
In particular, e, e;, € g, (v). Indeed if this was not the case, then we see that if e is generated

by v and e;, by v (u # v), then there would be edges é;, €;, € and &, such that

€; éj € €m
— U —: — U —

) )
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where e = €;; and e;; = €;,,. Since e and ¢;; are incident from the same vertex in @, it follows
that €; = €;, which gives the implication that é; has two different heads, which is impossible.
So indeed e and e;, are generated by the same vertex in G'2. On the other hand, u;, has at
least two incoming edges; one on the cycle (call it ') and the other is the edges e;,_, and at
least one outgoing edge (on the cycle). So u;, = @' (/) with €’ on a cycle in G and the two
incoming edges of u;, are generated by the same vertex v’ in G, with v/ on a cycle. Indeed
to see that e;, ,,€’ € W (v'), suppose first that they are generated by two different vertices v;
and v’. Then there are edges €, , €,, €k, , €k, in G such that ¢’ = é,1,,e;,_, = €1, and

€ €ly €ky 4 Chy
— V] — —s v =

Since €’ and e;, , are incident to the same vertex (u;, ) in @, it follows that €, = é,, which
gives the implication that e, has two different tails, which is impossible. Thus the path
starting at <I>51(ui1) and ending at <I>E;1 (us,,) is a path joining two different cycles in G3. Hence
Pc(E(G2)) 2 V(Q2) and this gives the equality in (5.3).

From the equations E(G) = E(G1) U E(G2) U Cg and V(Q) = V(Q1) UV (Q2), we have

V(Q1) =V(Q)\V(Q2)
= ®a(E(G)) \ 26 (E(Ga))
= ®a(E(G1) UE(G2) U Cg) \ @6(E(G2))
= ®a(E(G1) U Co).

To prove that U (V(G1)) = E(Q1), suppose that v € V(G1) and let e;; € ¥g(v). Then
there exist edges e;, e; in E(G) such that %, v 25 We want to show that eij € E(Qq1). If
v € V(G1), then there is no closed path involving it or involving the edges e; and e;. In particular,
Pi(e;) is a source in Q (P (e;) € V(Q1)) as indeed is any of the d*(v) edges incoming at v.
That is, ®g(ex) € V(Q1) whenever ey, is an incoming edge of v, for all v € V(G1). Similarly,
Pi(ej) € V(Q1) as well (see from proof of (5.3)) and since e;; is an edge from ®g(e;) to
Pg(ej), it follows that e;; € E(Q1). Hence, e;j; € Yg(V(G1)) = eij € E(Q1), implying that
W6 (V(G1) C E(@Qy).

Now suppose that e = e;; € E(Q1). We want to show that this edge is generated by a vertex
vin G1. e € E(Q1) implies that ®g(e;), Pa(ej) € V(Q1), with @i (e;) 2, Pg(ej). Using

the equation in (5.3), we have

D' (e;), @5 (ej) € E(G1) U Cg.
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This implies that either ®'(e;) € E(G1) and ®5'(ej) € Cg or 5 (e;), 5  (e5) € E(Gh).

Since

both cannot be in the cut set of G because then e;; would not be in E(Q1). ®;'(e;) cannot be

in the cut set of G either because then ®'(e;) € E(G1) and this would contradict the second

(e;) € E(G1) and @' (e)) € Cg or ;' (e;), D5 (e) €
G

equation of (5.3). In either case (®
E(G1)), v € V(Q1), hence E(Q1) € Vg (V(G1)). Thus E(Q1) = Ya(V(G1)).

Using this result, we also have that

U6(V(G)) = B(Q) = Co U E(Q1) U E(Q)
= CU E(Q2) U¥g(V(Gy))
= Ve (V(G)\ V(G1)) = Co U E(Q2),

hence ¥;(V(G2)) = Co U E(Q2) which is the first equality in (5.4). =

Remark 5.2.5. In most texts on graph theory, the topological sorting algorithm is performed
on a directed acyclic graph. We have adapted this algorithm on a graph which may contain
cycles to obtain two subgraphs, one of which is acyclic, and the other containing cycles. Most of
the results obtained in this section can not be found easily in literature. However, some partial
results do exist and have been expanded in this thesis. For example, Theorem 14.4 of [12] states
that the vertices of a directed graph can be arranged in a topological order if and only if the
graph is acyclic. This can be related to Lemma 5.2.2 in this section in the sense that the vertices

of (D2, which contains cycles, can not be arranged by a topological sorting algorithm.
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5.3 Asymptotic behaviour

If now we reorder the vertices in () such that those in )1 are given smaller numbers and thus

appear first, we can then write the adjacency matrix B in the form

0 0 0 0 0 0 0 - 0

B2 1 By 0 e 0 0 0 O - 0

0 0 0 0 0 0 0 - 0

0 0 B3 0 0 0 0 - 0

B = ,

Bg-11 Bg-12 Bg-13-- Bg-15-2 By 0 0

IB39,1 Bgﬁ By,S T IB%g,gf2 Bg,gfl Ey 0 - 0
Bgr11 Bgt12 Bgtis e Bgtig—2 Bgrig-1 0 By 0

IBs,l B8,2 BS,B T IB5,972 IBs,gfl 0 0 Tt IBgs

where the first zero matrix 0 is an n; X n; matrix corresponding to the sources in (). The
matrix Bo corresponds to the other vertices in Q1 (the cardinality of V(Q1) is n1 + no, i.e
|[V(Q1)| = n1 + na) and the non zero entries in this matrix are below the main diagonal. The
matrix B3 corresponds to strong components of the graph which act as sources (subgraph of @
where there is no flow from other parts of the graph into this subgraph, but there is outflow).
The other matrices that follow (By,...,By_1) represent cyclic subgraphs with flow to other
parts of the graph. The matrices in the last section (By,...,B;) are adjacency matrices for
strong components of @ with no outflow (which is why B, ; = 0 for all h = g¢,...,s and

j=h+1,...,s). Let Z be the set of eigenvalues below:

Z={ €o(B;);3<i<s:|\ <1} (5.5)

Then
s d;—1
Blu=3) » A'Pyu+ Y A'py(n)Pau+Bju, (5.6)
i=k 1=0 NEZ
where
0 0O O
IB%O = BQJ BQ 0 . (5.7)

0 0O o
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This matrix is the adjacency matrix of the subgraph @;. The first row of zeros (in bold)
represents the ni rows of zeros which are obtained from the ny sources. This matrix By is
idempotent with index not exceeding no and its only eigenvalue is 0. That is, B} = 0,n > ns.
Note that n4 is the number of vertices in ()1 which are not sources or, if we use the original graph
G, then ng is the number of edges in GG1 plus the cut set C; minus the number of edges with tails
in the set V(G) (see Equation (5.3)). Then R™ can be decomposed as R™ = R™+"2 @ R™

where m’ = m — (n1 + ng). Note that the spectral projections onto the fixed space are given by

Pu= (v;u)N;; ueR™, (5.8)
foralli=g,g+1,...,s. Similarly, the spectral projections onto the cyclic space have the form
Py = (e%u) ez (5.9)

where ey is the right eigenvector of B corresponding to Al and e:2 is the associated left
eigenvector; normalised so that

e;é.e)\é =1 (5.10)
Then, if ¢; =1 for all j and a;; = v}, the semigroup generated by (Ao, D(Ay)) is now given by

T(t)u(z) = [P"u] (t + 2z —n)

s di—1
=Gt Z Z APy, Gul(t+x —n) + G} Z A [pa;(n)PAGu] (t + 2 —n) (5.11)
i=k 1=0 Xi€Z

+ G [BaGu] (t 4+ = — n).

Theorem 5.3.1. Foranyu € X, [T(t)u] |gq,)ucy =0 for t > na.

Proof. The matrix By is an adjacency matrix of an acyclic graph with ny + no vertices. Since
By is lower triangular and B5* = 0, hence IB%’S = 0 for all £ > no. Since By is the restriction of

B on E(G1) U Cg, we conclude that [T'(t)u] | p(q,yuc, =0 fort > na. m

This result tells us that, irrespective of the initial distribution of mass, after ¢ = nsy, all the
edges in the acyclic part of the graph will be depleted. In fact we can improve this result by
noting that if b}; is the (i,7)™ entry in B} then, by Theorem 2.2, [10], bi; gives the number of
v; — v; paths of length r. So [T'(t)u] |5, uc, = 0 for t > k + 1, where k is the length of the
longest path in Q1. The longest path in ()1 is of length at most n; + ny — 1 and this number

ny + ng — 1 is maximum when there is only one source, (n; = 1) hence k > ny.
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Remark 5.3.2. Using the argument in Theorem 4.5 of [33], we see that the period of (T'(t);)¢>0
equals the greatest common divisor of the lengths of the cycles composed of edges in G which

are among the statesni +---+mn;_1+1,...,n1+ -+ ny.

Remark 5.3.3. Using the argument in [33], Theorem 4.5 together with Lemma 5.2.4, to
ascertain that the cycles in G correspond to cycles in Q in a one-to-one way, we see that
the period of the semigroups (T;(t))i>0, described in the previous chapter, is equal to the
greatest common divisor of the cycle lengths of edges in G which are among the states
ng+---4+n_1+1,....,n1 +---+n;. In other words, those states corresponding to the

subgraph whose adjacency matrix is B;, fori =k, ...,s.

5.4 Different speeds

The results of the preceding sections in this chapter were obtained under the assumption that
the speed of particles along every edge is the same (¢; = 1). Now we revisit Section 4.6 and
give a graphical picture of the asymptotic behaviour of the flow problem. In Section 4.6, we
showed that we can transfer the problem into a flow problem with same speed on all the vertices
by expanding the network into a larger networks with more edges. We also showed that the

abstract Cauchy problem on the larger network generates a Cy semigroup 7 (t).

Consider the diagonal block B;, g < i < s in the matrix B shown above. Let ); be the digraph
whose adjacency matrix is B;. Since B; is irreducible, @); must be strongly connected (by
Lemma 2.2.14). Moreover, Q; is an invariant strongly connected component of Q). That is,
any path that originates at some vertex v of (J; remains entirely in ;. Clearly then, there
exists a subgraph G; of G whose line graph is @Q);. Indeed, by definition, the set of edges of
G; corresponds to the set of vertices of (; and each edge in Q; joins two vertices u/,v’ in Q;,
and thus there is a corresponding vertex in GG; which is the head of @&l(u’) and the tail of
@51(1;’). Moreover, G; is a strongly connected, invariant component of G. Indeed, if there was
an outgoing edge of G; with tail at v € V(G};), then this vertex would also generate an outgoing
edge in (J;. That is, there would be an edge with tail in @); and head in Q — @;, meaning that

Q; would not be invariant, a contradiction.

We now state the following result.
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Theorem 5.4.1. Under the assumptions stated in (4.31), there is a decomposition
X=X,0--0X;0Y.0Y

such that

1. the spaces X;,Y.,Y,i=g,...,s are invariant under (T'(t))¢>0;
2. (T(t)|x,)t>0 is periodic with period

1 1 1
= —ocdd N[ — 4+ .-+ —:e......e. form I 5.12
Ti = 8¢ { (Ci1 + —|—Cik>,e“, , €, for acyce} (5.12)

fori=g,...,s;

3. (T'(t)|y,)t>0 is exponentially stable of the type 0 > w > maz{N In|\|;\ € Z}, where Z
is as defined in (5.5)

4. (T(t)]y;)e=0 is nilpotent and
T(t)ly =0; > n, (5.13)

where Y) can be identified with E(G1) U Cg and

1 1
m—max{+---+ —€i,,..., e, form a path in G1UCG}. (5.14)
: c

Ciy Tk

Proof. The transformation of the graph described in Section 4.6 does not change the number
of cycles in the graph and does not affect the split between the acyclic part and the cyclic part of
the graph. However, it increases the lengths of the cycles (and the length of any u — v path, for
any u,v € V(G)) and it rescales time by N. Therefore, from representation (4.40), Theorem
4.5.5 holds with the same number of periodic semigroups. However, their periods and the time
it takes to deplete the acyclic part of the graph changes. To make this precise, note that there
is a one-to-one correspondence between cycles in (Q; and cycles in GG;, and this correspondence
extends to the cycle lengths (see Remark 5.3.3). Then, using the argument of [33], Theorem

4.5, we see that if e;,,...,¢; form a cycle in G;, then the length of the corresponding cycle in

1 1
N(+...+).
Ci1 Cik

Thus, the period of the semigroups (T;(t)|x,)+>0 is the greatest common divisor of all such num-

Q is given by

bers for which e;,, ..., e; form cycles in G;. Therefore, by (4.40), the period of (T(t)|x,)t>0
is given by (5.12) foreachi=g,...,s. m



Chapter 6

Conclusion

The original part of this thesis commences in Chapter 3. In this chapter, we considered a
simple model of transport between states described by a system of ODEs. Such a model can be
considered as a simplified model of transport on a network where exchange between states takes
place instantaneously. The main objective of Chapter 3 is to study the asymptotic behaviour of
these systems when the coefficient matrix is an ML matrix using the so called relative entropy
function and the discrete Poincaré lemma. In particular, we extended the results of Perthame
[48] to arbitrary irreducible ML matrices. In this regard, we showed that there is a norm in R”
for which the quadratic entropy function decays exponentially in the subspace orthogonal to the
Perron eigenvector N if the matrix is irreducible. We also extended the results to reducible ML

matrices.

Next, in Chapter 4, we provided a more general proof for the generation of positive semigroups
on networks. In particular, we proved that there is no semigroup if the graph has a sink. In other
words, the operator (Ag, D(Ap)) associated with the abstract Cauchy problem for the system
of transport equations on the network generates a semigroup if every vertex in the graph has an
outgoing edge. We then provided a representation theorem for the flow in the case where the

speeds along the edges are linearly dependent over Q.

Using the representation theorem we provided a more explicit description of the long term
behaviour of the flow on reducible networks where every vertex has an outgoing edge and an
incoming edge, thus improving the results in [33]. That is, we considered graphs of the form

shown in Figure 6.1. We showed that for such graphs, the flow collects in those strongly
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Figure 6.1: Connected graph with no sources

connected components with no outgoing flow. That is, sink components (every such strongly
connected component must have at least two vertices!), and the period of the semigroup T'(t),
restricted to these strong components, is given by the greatest common divisor of the cycle
lengths in these components. Further, we showed that the flow in the strongly connected source

components of the graph is depleted as t — oo.

We extended the above results to graphs with non-trivial acyclic parts, such as that shown in
Figure 6.2. In particular, we proved that the flow in the acyclic part of the graph is depleted in
finite time and that, if ¢; = 1 for all j = 1,...,m, this time of depletion does not exceed the

length of the longest path in the acyclic part of the graph.

Figure 6.2: A graph with non-trivial acyclic part

6.1 Open Problems and Further Research

One of the open problems is to show that the approximation of solutions to the full transport
equation on the network by a system of ordinary differential equations suggested in Remark
4.1.6 can be proved. We hope to show that if the length of each edge is taken to be arbitrarily
small (I; — 0), then the solution to (4.11) (with no sinks) can be approximated by solutions of

the system of ordinary differential equations in (4.9).
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We showed that the abstract (Ag, D(Ap)) in the Cauchy problem in (4.12) associated with the
transport equation on a network where some vertices have no outgoing edges does not generate
a semigroup. The problem is that for a first order partial differential equation to have a unique
solution, the boundary condition must be set at the start of the flow and not at the end, which is
what condition (BC2) does in (4.11). In order to rectify this, we modify the boundary conditions
at the sink. For example, if we introduce output functions at the sinks, and require this output
to depend on the total inflow into that sink, then the boundary condition (BC2) in 4.11 will be
given

hi(u(t) = &)Y dhwerun(0.1)
i=1

if v; is a sink, where h; is the output at v;. If, in addition we need the flow to be conservative,
then it is possible to have a unique solution for the flow problem. However, our investigations

have not yet been complete or exhaustive.

The study of flows on infinite networks has already been done by Dorn [14] where the graph
was assumed to be strongly connected. However, strong connectedness of the graph depends
on how one defines a path. For instance, in Chapter 2, we defined a strongly connected graph
as one where for every pair of vertices u, v, there is a uw — v and v — u path. For infinite graphs,
there is a possibility that this path is infinite; that is, it contains an infinite number of vertices
and edges. How one defines strong connectedness has an impact on the reducibility of the
matrices A and B. Most authors consider an infinite digraph to be strongly connected if the
u — v and v — u paths are finite for every u,v € V(G). Using this definition, A and B and the
corresponding semigroup (7'(t)):>0 for the flow problem in (4.11) are irreducible if and only if
G is strongly connected (see Proposition 36, [14] or [31]). We feel that there is still more that

can be done regarding infinite networks.

To our knowledge, a systematic study of adjoint operators for first order differential operators
on graphs have not yet been done on L!(Q), where 2 is a closed interval in R. We note that
studying these operators is a delicate process and their behaviour is intertwined with vertex
conditions. We would like to know whether the results obtained in [48], Chapter 3, for the

scalar transport equation
Ou(z,t) = Oyu(z,t),

u(x,()) = f(.T),

still hold on a network.
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