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Abstract

This thesis is dedicated to the study of flows on a network. In the first part of the work, we

describe notation and give the necessary results from graph theory and operator theory that will

be used in the rest of the thesis. Next, we consider the flow of particles between vertices along an

edge, which occurs instantaneously, and this flow is described by a system of first order ordinary

differential equations. For this system, we extend the results of Perthame [48] to arbitrary

nonnegative off-diagonal matrices (ML matrices). In particular, we show that the results that

were obtained in [48] for positive off diagonal matrices hold for irreducible ML matrices. For

reducible matrices, the results in [48], presented in the same form are only satisfied in certain

invariant subspaces and do not hold for the whole matrix space in general.

Next, we consider a system of transport equations on a network with Kirchoff-type conditions

which allow for amplification and/or absorption at the boundary, and extend the results obtained

in [33] to connected graphs with no sinks. We prove that the abstract Cauchy problem associated

with the flow problem generates a strongly continuous semigroup provided the network has no

sinks. We also prove that the acyclic part of the graph will be depleted in finite time, explicitly

given by the length of the longest path in the acyclic part.
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hospitality during my short stay there. I especially thank Prof. Dr. Rainer Nagel and Dr.

Britta Dorn for the helpful discussions and support, and Retha Heymann for making my stay as

comfortable as possible.

Finally, I thank my sister M. Nankinga and brothers D. Ssemwogerere, Elijah Kibirango and J.

B Mbogo for those frequent phone calls, emails and sms’s, you helped me stay in touch with

the rest of the family. I thank the entire family for their encouragement and words of support.



Contents

1 Introduction 2

2 Preliminaries 7

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Perron-Frobenius Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Banach Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Positive Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Finite Dimensional Flows 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Direct modelling with ML matrices . . . . . . . . . . . . . . . . . . . . 30

3.2 Irreducible matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Reducible matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Relative Entropy Inequality for Reducible Matrices . . . . . . . . . . . . . . . . 45

3.5 Positive left eigenvector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Reducible Networks 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



1

4.2 Disconnected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Connected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Spectral properties and asymptotic behaviour . . . . . . . . . . . . . . . . . . 61

4.5.1 Same speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.2 Same speed, with γj = αj . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.3 The primitive case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.4 Same speed, γj 6= αj . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Different speed along the vertices . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 A Graph Theoretic Point of View 76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Graph Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Asymptotic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Different speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusion 86

6.1 Open Problems and Further Research . . . . . . . . . . . . . . . . . . . . . . 87



Chapter 1

Introduction

The study of flows on networks has been carried out for several years and is still an active area of

research mainly due to its applications in the applied sciences. From the classical work of L.R.

Ford and D. R. Fulkerson [20], much interest has been directed towards network flows. In the

earlier works on flows [13], [6], [20], [12], most of the attention was directed towards finding a

maximum flow from a source towards a certain destination (sink) subject to certain constraints,

along certain links (edges). The constraints constitute what is referred to as the capacity of the

edge; that is, the maximum amount that can flow along each edge. In addition to satisfying

capacity restrictions, the flow is expected to obey Kirchoff’s law at every intermediate vertex.

That is; the total inflow at a vertex vi must equal the total outflow at vi if it is an intermediate

vertex. Towards this goal, the famous Max- Flow Min-cut Theorem (or the generalised Max-Flow

Min-Cut Theorem) gives the required flow by considering only the flow through the minimum

cut. That is, the maximum flow in a network is equal to the capacity of the minimum cut, [13]

Chapters 3, 4, or [6], Theorem 3.5.3.

Later, interest shifted from static flows to dynamic processes on networks. Differential operators

were then considered on the edges of connected graphs, and such graphs have been called

quantum graphs (for instance, see [35]). A quantum graph is a graph consisting of a set of

vertices V and a set of edges E ⊆ V × V , where each edge ei = (u, v) ∈ E is associated

with an interval [0, li] and a differential operator acting on the functions of the graph [34]. The

number li is the length of edge ei. Quantum graphs are often used in physics and engineering to

approximate models of waves in complex structures [35], [37]. The operators considered are of

2
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second order (or higher). Examples of such operators include − d2

dx2 ,− d2

dx2 + v(x) [35], and they

are often considered to be self adjoint, which then requires specific boundary/vertex conditions.

It is therefore not surprising that a lot of effort has been placed on finding those vertex conditions

that allow the operator to be self adjoint. For more on this topic, see [35], [37], [42], [57]. The

article [35] provides numerous examples of boundary conditions and characterises those that

allow the operator to be self adjoint.

In addition to looking for boundary conditions to ensure that the operator is self adjoint, other

problems often discussed in this field include spectral theory (for example see [36], [55], [56],

[58]) and inverse spectral problems, [26], [19]. For instance, certain authors have tried to show a

relationship between the spectrum of differential operators and the graph itself. For example, the

article [37] discusses the spectrum of the Laplace operator on a graph and relates it to certain

geometric properties of the underlying graph, and in [38], it was proved that for a Laplace

operator on a graph with m edges, the point 0 is an eigenvalue for the Laplacian with algebraic

multiplicity m+ 1.

For the inverse spectral problem, one tries to reconstruct the graph from the spectrum of the

differential operator defined on it. For example, the authors in [38] showed that a graph can be

reconstructed in a unique way from the spectrum of the Laplace operator with free boundary

conditions defined at its vertices, provided the lengths of the edges are rationally independent;

that is, if there exists no positive number k such that

k

(
1

l1
+

1

l2
+ · · · + 1

lm

)

∈ N,

where m is the number of edges in the graph. For more information on wave propagation on

networks, see [43], [42], [47], [42], [56].

But while a lot has been done for second order differential operators on graphs, very little

attention had been given to first order differential operators. Recently however, various authors

[33], [14], [40], [18], have considered the flow problem described by a transport equation on

a simple directed graph. To state the problem briefly, suppose that G is a simple, connected,

directed graph with a finite number of vertices and edges and flow of particles occurs on the

edges, in the direction of the arrows. On edge ej , particles move with speed cj and, at position

x ∈ [0, lj ] and time t, the density of these particles is given by uj(x, t). Since the density

depends on both time and space, the resulting flow problem is described by a partial differential
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equation, in this case a transport equation:







∂tuj(x, t) = cj∂xuj(x, t),

uj(x, 0) = fj(x),

accompanied by the Kirchoff law at the vertices as the boundary condition. This describes the

interaction of the particles in the vertices before they are redistributed into the outgoing edges

at the vertex in question.

For such flows, the focus has been mainly on determining solvability of the problem and its

asymptotics [14], [33]. In this regard, semigroup methods have been the primary tool used and

we shall follow this trend here. First, one reformulates the problem as an Abstract Cauchy

Problem (ACP)

ACP







u′(t) = Au(t)

u(0) = f

for f in the domain D(A) for which the flow problem on the graph and the abstract problem both

make sense, and this domain must be chosen with care so that it captures the boundary/vertex

conditions of the flow problem. One then proceeds to investigate the well-posedness of this

problem. By this, we mean that one must show that a solution to (ACP) exists and it is unique.

In addition, this solution must depend continuously on initial data. If (A,D(A)) generates a

semigroup, then, by Corollary II.6.9 of [16], it is well-posed and hence the transport problem on

the network is solvable and its solution is unique. The asymptotic behaviour of the solution can

then be studied through the spectrum of the semigroup, if the explicit formula is available, but

since this is rarely the case, we can instead study the spectrum of the operator (A,D(A)) and

use spectral mapping theorems to understand the spectrum of the semigroup (see Chapter IV

of [16], [17], [3] or [46]).

Sikolya [33], Matrai and Sikolya [40], Dorn [14], Engel et al [18], have used a semigroup approach

to study transport equations on networks. In most papers, it is assumed that the graph is strongly

connected with a Kirchoff type law at the boundary (vertices). Moreover, it is assumed that

every vertex has an incoming and outgoing edge and that there is no loss or generation of

material in the vertices. In this thesis, we follow the work of these authors but we do not

assume strong connectedness of the graph. We also allow for absorption and/or generation

to take place in the vertices, which results in a modified Kirchoff law at the boundary. We

then investigate the conditions on the graph for the operator (A,D(A)) to generate a strongly
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continuous semigroup, which will imply existence of a unique solution to the transport equation

on the network. We then study the asymptotic behaviour of this solution, and then we interpret

these results from a graph theoretic point of view.

The first part of this work is a preliminary chapter where we give the notation and terminology

that will be used in the thesis. We give some background information from graph theory, with

illustrations and examples. In the section for graphs, we give some proofs for certain results

that will be used here, some of which are not easily available in literature. We also give a brief

overview of Banach lattices and semigroup theory, focusing on those established results which

will be used in this thesis. We discuss the Perron-Frobenius theorems for non-negative matrices

and ML matrices, which will be used later to study the asymptotic behaviour of the solutions of

both the finite dimensional flow problem and the flow problem described by a partial differential

equation.

In Chapter 3, we consider a simplified model of the flow of particles from one vertex to another.

In this model, the change of state occurs instantaneously and thus, the flow problem is described

by a system of ordinary differential equation. We study the asymptotic behaviour of the flow

and extend the results obtained by Perthame [48] to arbitrary ML matrices. In particular, we

show that the discrete Poincaré lemma, Lemma 6.4 of [48], formulated for positive off diagonal

matrices, extends to irreducible matrices, but does not hold in the same way for reducible

matrices. Instead, it only holds in certain invariant subspaces of reducible matrices. We use

these results together with the help of the relative entropy function to show that there is a norm

on Rn in which the quadratic entropy function is dissipative in the space complementary to that

spanned by the Perron eigenvector. This chapter provides a more detailed description of the

results in the paper [4].

In Chapter 4, we consider connected finite graphs which are not strongly connected. We improve

and extend the results of Sikolya and Kramar [33] to allow for vertices with no incoming flow

(sources). We note that the Kirchoff law stated in Equation 3 of [40], [33] and in Equation (2.2)

of [14] is incorrect if cj 6= 1 for all j. We rectify this problem and also state a more generalised

boundary condition that allows for absorption and/or generation to take place in the vertices.

We show that (A,D(A)) described in problem (ACP) associated with the flow problem (with

absorption and generation at the vertices) generates a strongly continuous semigroup if and only

if the outgoing incident matrix is surjective, which is equivalent to saying that every vertex has
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at least one outgoing edge. We then study the asymptotic behaviour of the semigroup solution

using Perron-Frobenius type theorems.

Next, we interpret the results from Chapter 4 from a graph view point in Chapter 5. In particular,

we show that asymptotically the mass will collect in the strongly connected components of the

graph which have no outgoing flow and the acyclic part of the graph will be depleted in finite

time which depends on the length of the longest path (that is, the longest path in the acyclic

part of the graph), while the strongly connected components of the graph (with outgoing flow)

will be depleted asymptotically.

We conclude the thesis with a brief summary of this research and give other problems related

to the networks that could lead to further research in the future.



Chapter 2

Preliminaries

In this chapter, we give some background information necessary to develop the theory of partial

differential equations on networks. We start with a few definitions and results in graph theory

which will be important in our study of flows on networks.

2.1 Notation

Let A be an n× n matrix. We write A ≥ 0 to mean that all the entries in A are non-negative

and if the inequality is strict, then all the entries in A are strictly positive. The notation |A|
will mean |A| := (|aij |)1≤i,j≤n. Likewise, x = (x1, x2, . . . , xn) is a non-negative vector if all

the components xi are non-negative and we write x ≥ 0 and, if all the components are strictly

positive, the inequality is strict. We shall use the notation |x| to mean |x| = (|xi|)1≤i≤n. In

this thesis, C,R,N,Q are sets of complex, real, natural, and rational numbers, respective

2.2 Digraphs

Definition 2.2.1. A graph G is a finite non-empty set V of elements called vertices together

with a set of unordered pairs of distinct vertices of G (called edges). A digraph is an ordered

pair G = (V,E) containing a finite non-empty set of vertices V and a (possibly empty) set of

ordered pairs (u, v) ∈ E; u, v ∈ V (called the edges, E ⊆ V × V ).

7
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Let u, v be two vertices of a digraph G. If there is an edge with head at v and tail at u, we

represent this as u −→ v. If the edges are labelled or if the label on the edge is important, we

shall indicate the label on the arrow (for example u
e−→ v shows an edge e with tail at u and

head at v), otherwise no labels will be provided.

Throughout this thesis, we shall sometimes, where there is no danger of confusion, simply write

graph to mean a digraph. Let G = (V,E) be a directed graph with E ⊂ V × V .

Definition 2.2.2. Let u, v be vertices of a graph. A u−v walk of graph G is a finite alternating

sequence of vertices and edges, beginning at u and ending with vertex v, [10]. The number of

edges in a walk is the length of the walk.

A u− v path is a walk in which no vertex is repeated.

Definition 2.2.3. G is said to be connected if for every pair u, v of vertices in G, there is either

a u − v or a v − u path. It is called strongly connected if for every pair u, v ∈ V , there is a

u− v and a v − u path in G.

A subgraph of G is a graph G′ whose vertex set V (G′) is a subset of V and E(G′) ⊆ E and

it is an induced subgraph if two vertices in G′ are connected if and only if they are connected

in G, [23]. Strongly connected components of the graph G are the maximal induced subgraphs

which are strongly connected. If G′ is a strongly connected component of G, then its vertex set

V1 is a subset of V and there is a directed path from each vertex in V1 to every other vertex

in V1. If V1 and V2 are vertex sets of strongly connected components of G and V1 6= V2, then

V1 ∩ V2 = ∅, [6] on p. 17, or [7]. In this thesis, when we say that a subgraph is a strongly

connected component of a graph, then its vertex set must contain at least two elements.

If a vertex has no outgoing edges, it is called a sink and a source if it has no incoming edges.

If it has no outgoing or incoming edges, we say that it is isolated. When we say that a strongly

connected component has no outgoing edges (or no outgoing flow), we mean that there exists no

vertex v ∈ V \V1 such that u→ v for any u ∈ V1, where V1 is the vertex set of this component.

Similarly, when we say that a strongly connected component has no incoming edges, we mean

that there is no vertex v ∈ V \ V1 such that v → u for any u ∈ V1.

Definition 2.2.4. Let G be a digraph with vertex set V = {v1, v2, · · · vn}. The outgoing Φ−

and incoming Φ+ incidence matrices of this graph are defined, respectively, as Φ− = (φ−ij) and
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Φ+ = (φ+
ij), where

φ−ij =







1 if vi
ej−→

0 otherwise.
and φ+

ij =







1 if
ej−→ vi

0 otherwise.

Remark 2.2.5. Note that both the outgoing and incoming incidence matrices can have at most

one non-zero entry in each column, otherwise an edge would have more than one tail or head,

respectively.

The incidence matrix Φ of the graph is then given by Φ = Φ+ − Φ−.

Definition 2.2.6. The adjacency matrix Ã of a graph G is defined as Ã = (ãij), where

ãij =







1 if there exists ek ∈ E such that vj
ek−→ vi

0 otherwise.

Remark 2.2.7. We note that in most texts on graph theory, the adjacency matrix of a digraph

G is the transpose of the matrix defined in Definition 2.2.6. Transposing the adjacency matrix

of any directed graph does not change important graph properties like connectedness but simply

reverses the direction of the arcs (edges) in the graph. Throughout this thesis, we shall refer to

the matrix in Definition 2.2.6 whenever we mention the adjacency matrix of G.

Example 2.2.8. Consider the following graph. For this graph, the matrices Φ−,Φ+ are given

below.

Φ− =














1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1














, Φ+ =














0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 1 0 1 0

0 0 0 0 0 0 1

0 0 1 0 1 0 0














,
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while the adjacency matrix is given by

Ã =














0 0 0 0 0

1 0 0 0 0

1 1 0 1 0

0 0 0 0 1

0 1 1 0 0














.

A permutation of any two rows of the matrix Ã followed by a permutation of the corresponding

columns does not change the graph, but will simply change the order of the vertices, [12].

Definition 2.2.9. The line graph of a digraph G is the graph L(G) = (V (L), E(L)), where

V (L) = E(G) and

E(L) = {eij if there exist ei, ej in G such that the head of ei coincides with the tail of ej}.

In other words, the line graph of a directed graph G is the graph obtained from G by letting

the edges in G be the vertices of L(G) (that is, V (L(G)) = E(G)). If ei is an edge in G, we

transform this into a vertex in the line graph and label it as v′i and if v′i and v′j are vertices

in L(G), then there is an edge from v′i to v′j if in G, there is a vertex v such that
ei→ v

ej→,

otherwise there is no edge from v′i to v′j .

Remark 2.2.10. Any u − v path in G corresponds to a unique path in L(G). To see this,

suppose that u, ei1 , u1, ei2 , . . . , eil , ul = v is a path; that is,

u
ei1−→ ui1

ei2−→ · · ·
eil−→ uil = v

is a path. Then, from the definition of a line graph, the edges eih translate into vertices u′ih ,

for all h = 1, . . . , l in L(G) and there is a path connecting them:

u′i1
ei1,i2−→ u′i2

ei2,i3−→ · · ·
eil−1,il−→ u′il .

Conversely, any u′ − v′ path in L(G) corresponds to a path in G,

u′ = u′0
e1

−→ u′1
e2

−→ · · · ek

−→ u′k = v′,

Vertices u′i in L(G) correspond to edges eui in G, for all i = 0, . . . , k. For edge e1 to exist in

L(G), there must be a vertex u in G which is the head of eu and the tail of eu1 . Similarly,
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there exists a vertex u1 in G with the head of eu1 and the tail of eu2 . If we continue with this

process, we obtain the following

w
eu−→ u

eeu1−→ u1 −→ · · · euk−→ uk
ev−→ x

which is a path in G.

The adjacency matrix B of the line graph L(G) is the matrix defined as B̃ = (b̃ij), where

b̃ij =







1 if there exists vk ∈ V (G) such that
ej−→ vk

ei−→,

0 otherwise.

Remark 2.2.11. Notice that the definition for the adjacency matrix of the line graph agrees

with the general definition of adjacency matrix of a graph given in (2.2.6). If we treat the line

graph of G as any graph, we can write down its adjacency matrix using Definition 2.2.6 as

b̃ij =







1 if v′j −→ v′i,

0 otherwise.

Recalling the relationship between G and L(G), we note that v′j −→ v′i means that there is

u ∈ V (G) such that
ej−→ u

ei−→, which is equivalent to the above definition.

If there are no parallel edges in G and there is more than one outgoing edge at some vertex vi,

we may place weights on these edges. Let the weight on edge ej (whose tail is at vertex vi) be

wij . Then the weighted outgoing incidence matrix Φ−
w is the matrix defined as

(φ−w)ij =







wij if φ−ij = 1,

0 otherwise.
(2.1)

The weighted adjacency matrix for the line graph (denoted here as B) is defined as

bij =







wki if
ej−→ vk

ei−→,

0 otherwise.
(2.2)

Below we provide another representation of matrix B and the weighted adjacency matrix A.

Lemma 2.2.12. [33]

Let Φ+ be the incoming incidence matrix and Φ−
w be the weighted outgoing incidence matrix

for a directed graph G. Then the following statements hold:
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1. The weighted adjacency matrix of the line graph is given by B = (Φ−
w)T Φ+.

2. The weighted adjacency matrix A satisfies the equation A = Φ+ (Φ−
w)

T
.

3. If every vertex has an outgoing edge and

∑

j∈Ji

wij = 1, (2.3)

where Ji is the set of indices of the outgoing edges of vertex vi, then B is column stochastic.

Proof. Let D = (Φ−
w)T Φ+. Then dij = ((Φ−

w)T )i(Φ
+)∗j , where ((Φ−

w)T )i is the ith row of

(Φ−
w)T and (Φ+)∗j is the jth column of Φ+. Φ−

w has at most one non zero entry in each column

hence (Φ−
w)T has at most one non-zero entry in each row. Let the non-zero entry in ((Φ−

w)T )i

be in the kth column. This would imply that the element in the kth row and ith column of Φ−
w

is not zero and (φ−w)ki = wki and, from (2.1), we have

vk
ei−→ . (2.4)

Then dij = ((Φ−
w)T )i(Φ

+)∗j = (0, . . . , wki, 0, . . . , 0)(Φ+)∗j . This product is positive if the non-

zero entry in (Φ+)∗j is in the kth row, otherwise dij = 0. But if φ+
kj = 1, then

ej−→ vk. (2.5)

Combining (2.4) and (2.5) gives dij = wki if there is k such that
ej−→ vk

ei−→, and zero otherwise.

Hence bij = dij for all i, j.

To prove the second item (2), we show first that Φ+ (Φ−)
T

is indeed the adjacency matrix

described in the Definition 2.2.6. Let F = Φ+ (Φ−)
T
. Then

fij =
(
φ+

i1, . . . , φ
+
ik, . . . , φ

+
im

)














φ−j1
...

φ−jk
...

φ−jm














=

m∑

k=1

φ+
ikφ

−
jk.

The sum is positive if there is at least one k such that both φ+
ik and φ−jk are positive. But

φ+
ik > 0 implies

ek−→ vi and φ−jk > 0 implies that vj
ek−→. Hence vj

ek−→ vi. Now we note that
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for fixed i and j, there is at most one k such that vj
ek−→ vi. This is because of the assumption

that there are no parallel edges. So fij is either equal to 0 or 1 and fij = 1 if vj
ek−→ vi and 0

otherwise. Hence F = A.

From this we have that the weighted adjacency matrix A = Φ+ (Φ−
w)

T
or, explicitly,

aij =







wjk if vj
ek−→ vi,

0 otherwise.
(2.6)

From Equation (2.2), computing the column sums of B, we obtain

m∑

i=1

bij =
m∑

i=1

wki = 1

for each j ∈ {1, . . . ,m}. For the last equality, we have used (2.3).

Recall that for an n × n matrix A, we say that it is irreducible if there is no permutation that

puts it in the form

A∗ =




A1 0

A2,1 A2



 , (2.7)

where A1 and A2 are square matrices. Let A ≥ 0 be an n × n reducible matrix. Then by

permuting its rows, followed by similar permutation of the columns, we can put it in the form

(2.7) and, if A1 or A2 are still reducible, we repeat the process for these sub matrices until all

the square matrices on the main diagonal are either irreducible or 0. We say that the matrix A

is in normal form if it is written in the form

A =





















A1 0 · · · 0 0 · · · 0

0 A2 · · · 0 0 · · · 0
...

. . .
...

... · · · ...

0 0 · · · Ag 0 · · · 0

Ag+1,1 Ag+1,2 · · · Ag+1,g Ag+1 · · · 0
...

...
...

...
. . .

...

As,1 As,2 · · · As,g As,g+1 · · · As





















, (2.8)

where Ai are ni × ni matrices for all i = 1, 2, . . . , s and they are either irreducible or zero

matrices of dimension 1 (see [21], Equation 69).

Definition 2.2.13. A graph G1 is isomorphic to a graph G2 if there exists a one to one mapping

f from V (G1) onto V (G2) such that (u, v) ∈ E(G1) if and only if (f(u), f(v)) ∈ E(G2).
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We note that important graph properties like connectedness and orientation are preserved under

graph isomorphisms. Let G be a graph with a finite number of vertices and edges. The following

result holds:

Lemma 2.2.14. [44], p.671

The adjacency matrix A of a graph G is irreducible if and only if G is strongly connected.

Proof. Suppose that A is reducible, then there is a permutation matrix P that such that

Ã = P TAP =




A1 0

A2,1 A2



 ,

where A1 is an r × r matrix and A2 is (n− r) × (n− r) matrix. The zero matrix in Ã means

that the vertices from the set V1 = {v1, · · · , vr} are not accessible from any vertex in the set

V2 = {vr+1, · · · , vn}; that is, if vi ∈ V1 and vj ∈ V2, then there is no path (of any length) from

vj to vi. Therefore, the directed graph of Ã is not strongly connected. Since the graph of A,

GA, is isomorphic to that of Ã, we conclude that the graph of A is not strongly connected.

Now suppose that GA is not strongly connected. Then there are at least two vertices vi and vj

such that one is inaccessible from the other. If vi is inaccessible from vj , then relabel the vertices

such that vi becomes v1 and vj becomes vn. Any other vertices that are inaccessible from vj are

renamed v2, · · · , vr. Therefore the set of vertices that are inaccessible from vj (relabelled vn) is

V1 = {v1, · · · , vr}. All other vertices that are accessible from vj are relabelled vr+1, · · · , vn−1

and no vertex vl ∈ V1 can be accessed from any vertex vk ∈ V2 = {vr+1, · · · , vn} because if

there is a vk ∈ V2 such that the edge (vk, vl) exists, then the vertex vl would be accessible from

vn by taking the path vn → vk → vl which is not possible.

Let Π be a permutation on the set {1, · · · , n} such that if i ∈ {1, · · · , n}, then Π transforms

i into πi. Then aπi,πj = 0 for each πj ∈ {r + 1, · · · , n} and πi ∈ {1, · · · , r}. So, if P is the

permutation matrix defined by Π and Ã = P TAP , then ãij = aπiπj = 0 for πj ∈ {r+1, · · · , n}
and πi ∈ {1, · · · , r}. Thus

Ã =




A1 0

A2,1 A2



 .

We state another important result which will be used in this thesis. Although the result is not

new, we could not find its proof in the texts we read. So we provide a proof below.
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Proposition 2.2.15. Let G be a connected digraph. Then L(G) is strongly connected if and

only if G is strongly connected.

Proof. Suppose that G is strongly connected. Take an arbitrary pair of vertices u′, v′ in L(G).

A vertex in L(G) is obtained from an edge in G. Let the corresponding edges in G be eu and

ev, respectively. Let u be the head of eu and v be the tail of ev. Since G is strongly connected,

there is a path from u to v and from v to u. Let the path be

u0
eu−→ u

e1−→ ui1

ei2−→ · · ·
eil−→ v

ev−→ v0.

But each edge on the u − v path in G translates into a vertex in L(G) and these vertices are

connected. Hence there is a u′− v′ path in L(G) (see Remark 2.2.10). Since u′, v′ were chosen

arbitrarily, we conclude that L(G) is strongly connected.

Conversely, suppose that L(G) is strongly connected. Then every vertex in L(G) has an incoming

and outgoing edge. Let u be a vertex in G. Since G is connected, then for u there is either

an incoming or outgoing edge. Assume that we have an outgoing edge but no incoming edge.

This edge will become a vertex in L(G), say u′. But since there is no incoming edge at u,

u′ in L(G) will have no incoming edge (and therefore its a source), implying that L(G) is not

strongly connected, which is a contradiction. So u must have an incoming edge. If we assume

that u has an incoming edge and no outgoing edge, then this edge will become a vertex, v′ in

L(G) and since u has no outgoing edge, v′ will have no outgoing edges, which again implies

that L(G) is not strongly connected, a contradiction to the hypothesis that L(G) is strongly

connected. Therefore, if L(G) is strongly connected and G is connected, then every vertex of

G must have incoming and outgoing edges. Pick two vertices u, v in G. Let ei1 be an outgoing

edge of u and let eil be an incoming edge of v (u 6= v). If there is no u− v path in G, then by

Remark 2.2.10, there is no path from vertex u′i1 to vertex u′il in L(G), which implies that L(G)

is not strongly connected. This is a contradiction since L(G) is strongly connected. Therefore,

there exists a u− v path in G for every ordered pair (u, v).

From the preceding result, we see that for a connected graph G, B is irreducible if and only if

G is strongly connected. For more interesting results on line digraphs, see Section 4.5 of [6] on

p. 182; [10] or [23].

Remark 2.2.16. In general, it is not true that if L(G) is strongly connected then G is strongly

connected as well. For example, the graph G below is not connected, but its line graph is
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Figure 2.1: Graph G

strongly connected.

Figure 2.2: Its line graph L(G)

In this thesis, we use the term ”reducible network” to refer to a simple graph (a graph with no

self loops and no parallel edges) which is not strongly connected. The reducible part of this

term comes from the fact that its adjacency matrix is a reducible matrix. From now onwards,

we assume that the graph is simple.

Lemma 2.2.17. Let G be a digraph. Let m be the number of edges and n the number of

vertices (m ≥ n). If there is at least one incoming (outgoing) edge at every vertex of G, then

the matrix Φ+, (respectively, Φ−) is surjective. Moreover, Φ−(Φ−
w)T = In.

Proof. We show this for Φ− only. Since each vertex has an outgoing edge, there is a non-

zero entry in each row in Φ− and exactly one non-zero entry in each column. Therefore, by

construction of this matrix, all the rows are linearly independent, implying that it has full row

rank, n. Hence, Φ− must have a right inverse. If n = m, then Φ− is invertible.

Moreover, Equation (2.3) implies that (Φ−
w)T is column stochastic, and since the non-zero terms

in Φ− coincide with those in Φ−
w , the (i, j)th entry in Φ−(Φ−

w)T is given by

(φ−i1, . . . , φ
−
ik, . . . , φ

−
im)














(φ−j1)w

...

(φ−jk)w

...

(φ−jm)w














=
m∑

l=1

φ−il (φ
−
jl)w =

m∑

l=1

φ−ilwjl.
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If i = j, then wjl > 0 if and only if φ−jl = 1. By Equation (2.3), the sum becomes

m∑

l=1

wjl = 1.

If i 6= j, then φ−il = 1 implies that φ−jl = 0 (and hence (φ−jl)w = 0). This is because the edge el

cannot have two tails. Similarly, (φ−jl)w = 1 implies φ−il = 0. Hence

m∑

l=1

φ−il (φ
−
jl)w = 0, i 6= j.

Therefore,

Φ−(Φ−
w)T = In. (2.9)

In general, Φ− is not invertible even when G is strongly connected. But as a result of (2.9), we

have
(
(Φ−

w)T Φ−
)2

= (Φ−
w)T Φ−(Φ−

w)T Φ− = (Φ−
w)T Φ− (2.10)

and
(
I − (Φ−

w)T Φ−
)2

= (I − (Φ−
w)T Φ−)(I − (Φ−

w)T Φ−)

= (I − (Φ−
w)T Φ−) − (Φ−

w)T Φ−(I − (Φ−
w)T Φ−)

= I − (Φ−
w)T Φ− − (Φ−

w)T Φ− + (Φ−
w)T Φ−

= I − (Φ−
w)T Φ−.

Hence (Φ−
w)T Φ− is a projection.

Using Lemma 2.2.12, we can see that B(Φ−
w)T = (Φ−

w)T Φ+(Φ−
w)T = (Φ−

w)T A and

B2(Φ−
w)T = (Φ−

w)T Φ+(Φ−
w)T Φ+(Φ−

w)T

= (Φ−
w)T A2.

By induction, we obtain Bn(Φ−
w)T = (Φ−

w)T An for all n ∈ N0.

In the following, we state the relationship between the spectrum of B to that of A. We found

this to be interesting although we did not find it in literature.

Lemma 2.2.18. Let G be a digraph whose every vertex has an outgoing edge. Then the

matrices A and B have the same eigenvalues.
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Proof. Let Bx = λx for some λ ∈ C and x 6= 0. Then using Lemma 2.2.12, we have

λΦ+x = Φ+Bx = Φ+(Φ−
w)T Φ+x = AΦ+x. Since every vertex has an outgoing edge, every

column has exactly one non-zero entry (by Remark 2.2.5). Hence x 6= 0 ⇒ Φ+x 6= 0, implying

that (λ,Φ+x) is an eigenpair of A.

Conversely, if α is an eigenvalue of A, then αy = Ay for some y 6= 0. Then

α(Φ−
w)Ty = (Φ−

w)T Ay = (Φ−
w)T Φ+(Φ−

w)Ty

= B(Φ−
w)Ty.

The matrix Φ− has no zero rows since every vertex has an outgoing edge, and by Remark

2.2.5, there is exactly one non-zero entry in each column of Φ−, hence there is exactly one

non-zero entry in each row of (Φ−
w)T and every column of (Φ−

w)T has at least one positive entry.

Therefore, y 6= 0 implies that (Φ−
w)Ty 6= 0, hence (α, (Φ−

w)Ty) is an eigenpair of B.

Remark 2.2.19. Since A is an n × n matrix and B an m ×m matrix with m ≥ n, it follows

that some eigenvalues of B are repeated whenever m > n. Since there are at most n linearly

independent eigenvectors of A, it follows that B is a defective matrix since it can only have

n linearly independent eigenvectors (< m). That is, B is singular whenever m > n. If A is

defective, then B must also be defective.

Example 2.2.20. Consider the graph below. We will place weights such that

Φ−
w =











1 0 0 0 0

0 1
3 0 0 2

3

0 0 0 1 0

0 0 1 0 0











.

We compute the weighted adjacency matrix A = Φ+ (Φ−
w)

T
and the weighted adjacency matrix
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for the line graph B = (Φ−
w)

T
Φ+ to get

A =











0 2
3 0 0

1 0 0 1

0 1
3 0 0

0 0 1 0











; B =














0 0 0 0 1

1
3 0 1

3 0 0

0 0 0 1 0

0 1 0 0 0

2
3 0 2

3 0 0














.

The eigenvalues of A are {

0, 1,
−3 ±

√
3ı

6

}

.

Note that B has the same eigenvalues, with λ = 0 being a repeated eigenvalue of algebraic

multiplicity 2.

Definition 2.2.21. [13], p. 121.

A cut set of a connected graph G is a set S of edges such that both of the following conditions

hold:

• the removal of all the edges in S disconnects G,

• the removal of some but not all of the edges in S does not disconnect G.

A directed graph can have more than one cut set, but any cut set divides the set of vertices

into two disjoint sets.

Example 2.2.22. For the graph below, the following are cut sets of this graph:

C1 = {e4, e5, e9}; C2 = {e1, e2}; C3 = {e4, e9, e10};

C4 = {e6, e8, e9, e5}; C5 = {e6, e8, e9, e10}.

On the other hand, the set {e8, e9} is not a cut set of G.
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2.3 Perron-Frobenius Theorems

As we have seen in the previous section, graphs and non-negative matrices are closely related.

Due to the relationship between irreducibility of the adjacency matrix A and the structure of

the graph (Lemma 2.2.14), it is sometimes easier to study the graph via its adjacency matrix.

Since adjacency matrices are non-negative, their spectral properties fall into the scope of the

Perron-Frobenius Theory. Here we provide a brief overview of the theory. The presentation is

based on [51], [44] and [21].

Definition 2.3.1. For an n × n matrix A, the spectrum of A (denoted σ(A)) is the set of

eigenvalues and its spectral radius r(A) is the number

r(A) = max
λ∈σ(A)

|λ|.

Theorem 2.3.2. (Perron-Frobenius theorem for positive matrices)

Let A > 0 be an n × n matrix. Then r(A) > 0 has an associated positive eigenvector x.

Moreover, r(A) > |λ| for any other eigenvalue λ of A and its algebraic multiplicity is 1.

Proof. This theorem and its proof appear in [44], Section 8.2.

Lemma 2.3.3. (Perron-Frobenius Theorem for irreducible matrices)

Let A ≥ 0 be an irreducible matrix. Then there exists an eigenvalue r such that

1. r is real and r > 0,

2. there exists strictly positive left and right eigenvectors associated with the eigenvalue r,

3. r is a simple root of the characteristic polynomial of A,

4. the eigenvectors associated with r are unique up to constant multiples.

5. r = r(A), the spectral radius of A.

The proof of this result can be found in [44], Section 8.3. Notice that when A is not strictly

positive, the eigenvalue r = r(A) is no longer dominant but satisfies the inequality r(A) ≥ |λ|
for any other eigenvalue λ of A.

When the matrix A is reducible, r(A) is still an eigenvalue but the associated eigenvector x

may not be strictly positive as in the case of positive and irreducible matrices.
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Theorem 2.3.4. [21]

To the maximal eigenvalue r(A) of a reducible matrix A ≥ 0, there corresponds a positive

eigenvector if and only if each Ai for i = 1, . . . , g in the normal form of A (2.8) has eigenvalue

r satisfying r /∈ σ(Aj) for any j = g + 1, . . . , s.

Even when the right eigenvector x is positive, typically the left eigenvector will not be strictly

positive, or vice versa. Indeed, we have the following theorem regarding existence of positive

left and right eigenvectors.

Theorem 2.3.5. [21]

Let A ≥ 0 be a reducible matrix and r(A) be its spectral radius. Both A and AT have positive

eigenvectors corresponding to r(A) if and only if A is block diagonal and r(A) ∈ σ(Ai) for all

i = 1, . . . , s.

Definition 2.3.6. A non-negative off-diagonal matrix Ã is called an ML-matrix. It is called

irreducible if there exists a non-negative irreducible matrix A and η ∈ R such that Ã = A− ηI,

otherwise we say that it is reducible.

ML matrices are of interest because they are some of the simplest generators of positive semi-

groups in finite dimensional spaces, [17]. They are commonly used in modelling basic phenomena

in the natural sciences in continuous time, like birth and death problems, migration between

different patches of land or transition from one age group to another. Due to their obvious

relationship with non-negative matrices, we can formulate a Perron-Frobenius type theorem for

ML matrices through the associated non-negative matrix.

Theorem 2.3.7. Theorem 2.6, [51]

Let A be an irreducible ML matrix. Then there exists an eigenvalue τ such that

1. τ is real

2. τ is associated with strictly positive right and left eigenvectors which are unique up to

constant multiples.

3. τ > ℜ(λ) for any other eigenvalue λ 6= τ of A

For reducible ML matrices, we have the following result.
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Theorem 2.3.8. [39], p.205

Let A be an ML matrix. Then there exists a real number τ and a non-negative vector x such

that

• Ax = τx;

• if λ 6= τ is any other eigenvalue of A, then ℜλ < τ .

Remark 2.3.9. Note that for an ML matrix A, the dominant eigenvalue is the number τ

satisfying τ > ℜλ, for any other eigenvalue λ of A. This property of τ is very important in the

study of long term behaviour of systems of ordinary differential equations, where the coefficient

matrix is an ML matrix (see Chapter 3). In contrast, for difference equations, we consider the

dominant eigenvalue to be the number r with maximum modulus.

In this thesis, we study flows in networks using semigroup theory. In particular, we investigate

existence of positive semigroups for (ACP) associated with the network flow problem. In order

to discuss positive semigroups, we need some introduction and results from the theory of Banach

lattices.

2.4 Banach Lattices

An ordered set is a set endowed with the binary relation ≤ which is transitive, reflexive and

antisymmetric. If (Y,≤) is an ordered set, then y ≥ x means that x ≤ y, x < y means that

x ≤ y, x 6= y. If Y is a subset of Rn, then x ≤ y means that xi ≤ yi for each i ∈ {1, . . . , n}
and x, y ∈ Y .

Definition 2.4.1. An ordered vector space is a vector space X equipped with a partial order

which is compatible with the vector space structure

• x ≥ y implies that x+ z ≥ y + z for all x, y, z ∈ X;

• x ≥ y implies that αx ≥ αy for all x, y ∈ X and α > 0.

Definition 2.4.2. Let X be an ordered set and S be a non empty subset of X. An element

b ∈ X is said to be an upper bound of S if x ≤ b for any x ∈ S. The least upper bound
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(supremum) is the element l ∈ X which satisfies l ≤ b for any upper bound b of S. We call the

element a a lower bound of S if x ≥ a for all x ∈ S. It is called the greatest lower bound (or

infimum) if it greater or equal to any other lower bound of S.

Definition 2.4.3. An ordered set (X,≤) is called a lattice if for each pair (x, y) ∈ X ×X, the

supremum and infimum of x, y denoted x ∨ y := sup{x, y} and x ∧ y := inf{x, y}, both exist

in X.

So a lattice vector space X is an ordered vector space such that the infimum and supremum of

any pair of elements in X is also contained in X. For an element x in a lattice vector space,

the positive and negative parts of x, denoted, respectively as x+ and x−, are defined as

x+ = x ∨ 0; x− = −x ∨ 0

and the absolute value of x denoted |x|, is the element

|x| = x ∨ (−x).

For example, if we consider the vector lattice R4 and x = (1,−2, 3,−4)T , then x+ = (1, 0, 3, 0)T ,

x− = (0, 2, 0, 4)T and |x| = (1, 2, 3, 4). If X is an ordered vector space, then X+ = {x ∈ X :

x ≥ 0} is called the positive cone of X.

Examples of vector lattices include the usual sequence spaces c0, ℓ
1, ℓ∞. Other examples include

the function spaces Lp(Ω). Let f, g ∈ Lp(Ω), then we say that f ≤ g if f(x) ≤ g(x) for almost

all x ∈ Ω. Equipped with such an order, Lp(Ω) becomes a vector lattice, [3], p.43.

Definition 2.4.4. Let X be a vector lattice. A subset Y of X is called a solid if |x| ≤ |y| and

y ∈ Y both imply that x ∈ Y . A solid subspace of X is called an ideal.

For example, the sequence space ℓ1 is an ideal in c0. We note first that ℓ1 ⊂ c0. To see that ℓ1

is an ideal of c0, suppose that y = (y1, y2, . . .) ∈ ℓ1. Then since

∑

i∈N

|yi| <∞,

yi → 0 as i→ ∞. Hence y ∈ c0. Let |x| ≤ |y|. That is, |xi| ≤ |yi| for all i ∈ N. Then

∞∑

i=1

|xi| ≤
∞∑

i=1

|yi| <∞.

Therefore, x ∈ ℓ1, implying that ℓ1 is an ideal of c0.
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Example 2.4.5. Let X = Rn. Define

A = Span{e1, . . . , em; m < n}; where ei = (0, . . . , 0, 1, 0, . . . , 0),

where 1 is in the ith position. Then A is an ideal of X.

Definition 2.4.6. An ordered set E is called directed if any pair of elements in the set has an

upper bound. Then, by a net we refer to a function (xα)α∈E which maps elements of E into

X [3], p. 55.

A net (xα)α∈E in an ordered set X is said to be decreasing if xα1 ≥ xα2 for any α1, α2 ∈ E

with α1 < α2, and it said to be increasing if xα2 ≥ xα1 , [3].

If (xα) is decreasing and x is the infimum of xα for all α ∈ E, we write this as xα ↓ x and

conversely if (xα) is increasing.

Definition 2.4.7. A net (xn) of arbitrary elements of X is said to be order convergent to x if

there exist nets (yα)α∈B1 , (zβ)β∈B2 such that yα ↑ x, zβ ↓ x and, for any α, β, there is N such

that yα ≤ xn ≤ zβ for all n ≥ N .

If xn is order convergent to x, we write this as xn
o→ x.

Definition 2.4.8. A subset A of a partially ordered set is said to be order closed if (xn)n∈N ∈ A

and xn → x both imply that x ∈ A. An order closed ideal is called a band.

For example, the set A defined in Example 2.4.5 is a band in X: Choose a sequence 0 ≤
(xk)k∈N ∈ A and let xk

o→ x. But (xk)k∈N ∈ A implies that xm+1
k = xm+2

k = · · · = xn
k = 0. If

this sequence converges, the pointwise limit must equal to the limit. Hence xi
k = xi ⇒ xi = 0

for all i = m+ 1, . . . , n, implying that x ∈ A.

The space ℓ1 is an ideal of ℓ∞ but it is not a band: consider the sequence xn whose terms are

given by

x1 = (1, 0, 0, 0, . . .),

x2 = (1, 1, 0, 0, . . .),

x3 = (1, 1, 1, 0, . . .)

... =
...

then xn
o→ (1, 1, 1, . . . , 1, . . .) /∈ ℓ1.
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Definition 2.4.9. A norm on a vector lattice is called a lattice norm if |x| ≤ |y| implies that

‖x‖ ≤ ‖y‖.

If X is an ordered vector lattice and ‖ · ‖ is a lattice norm on X, then (X, ‖ · ‖) is a normed

vector lattice and it is called a Banach lattice if it is complete [53]. Examples of Banach lattices

include X = L1([0, 1])m, with ‖ · ‖ defined as

‖f‖X =
m∑

i=1

∫ 1

0
|fi(x)|dx.

To see that this is indeed a lattice norm, let |f | ≤ |g|. Then this implies that |fi(x)| ≤ |gi(x)|
almost everywhere. Then

‖f‖X =
m∑

i=1

∫ 1

0
|fi(x)|dx ≤

m∑

i=1

∫ 1

0
|gi(x)|dx = ‖g‖.

Definition 2.4.10. Let X,Z be two ordered vector spaces. A linear operator T : X → Z is

called positive if x ≥ 0 implies Tx ≥ 0, for x ∈ X. It is called strictly positive if x > 0 implies

Tx > 0 for all x ∈ X.

Let T : X → Z be positive and x ∈ X. From the definition of absolute value |x|, we have the

following relations: x ≤ |x| and −|x| ≤ x. Hence, |x| − x ≥ 0 and |x| + x ≥ 0. Since T is

positive, we have T (|x| − x) ≥ 0 and T (|x|+ x) ≥ 0. Since T is linear, we have T |x| − Tx ≥ 0

and T (|x| + x) = T |x| + Tx ≥ 0. Hence, −T |x| ≤ Tx ≤ T |x|. This implies that |Tx| ≤ T |x|,
for all x ∈ X.

If X is a normed space with lattice structure, and T is a positive operator on X, then the

behaviour of T on X can be determined by studying its behaviour on the positive cone X+, [3],

p. 53.

Definition 2.4.11. Let X,Y be two Banach lattices and A,B : X → Y . Then A ≤ B if for

every x ∈ X, Ax ≤ Bx.

Proposition 2.4.12. [3], Proposition 2.67

If A is a positive operator, then its norm is given by

‖A‖∗ = sup
x≥0,‖x‖≤1

‖Ax‖.
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If 0 ≤ Ax ≤ Bx, then from the definition of the lattice norm, we must have ‖Ax‖ ≤ ‖Bx‖.
Using this and Proposition 2.4.12, we see that if A and B are positive operators satisfying

A ≤ B, then

‖A‖∗ = sup
x≥0,‖x‖≤1

‖Ax‖ ≤ sup
x≥0,‖x‖≤1

‖Bx‖ = ‖B‖∗,

therefore, if ‖ · ‖ is a lattice norm, then

‖A‖∗ ≤ ‖B‖∗, (2.11)

where ‖ · ‖∗ is the operator norm.

2.5 Positive Semigroups

Let X be a non trivial Banach space. Consider the abstract Cauchy problem







u′(t) = Au,

u(0) = u0,
(2.12)

where A is a linear operator acting on a subspace D(A) of X. That is, A : D(A) → X, where

D(A) is a subspace of X where Au makes sense. First, we assume the solution to the abstract

Cauchy problem is unique. Let u(t, u0) be the solution subject to the initial condition u(0) = u0

and let T (t)u0 = u(t, u0); with T (0)u0 = u0. For u(·, u0) to be a solution to (2.12), it must

be continuously differentiable, hence T (t)u0 is also continuously differentiable. Let v0 ∈ D(A)

be another initial condition and α, β ∈ R. Then αu0 + βv0 ∈ D(A) and since A is assumed to

be a linear operator, we have

(αu(t, u0) + βu(t, v0))
′ = αu′(t, u0) + βu′(t, v0)

= αAu(t, u0) + βAu(t, v0)

= A(αu(t, u0) + βu(t, v0))

= α
d

dt
(T (t)u0) + β

d

dt
T (t)v0.

Hence αu(t, u0) + βu(t, v0) solves the abstract Cauchy problem with initial condition u(0) =

αu0 + βv0. That is, αT (t)u0 + βT (t)v0 is a solution. By definition, u(t, αu0 + βv0) solves the

problem (2.12) with initial condition αu0 + βv0. Hence, by uniqueness,

u(t, αu0 + βv0) = T (t)(αu0 + βv0) = αu(t, u0) + βu(t, v0) = αT (t)u0 + βT (t)v0.
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Therefore, T (t) is a linear map.

If t, s ≥ 0, then if u(t, u(s)) and u(t+ s, uo) are solutions to (ACP), we have u(t, u(s)) =

T (t)u(s) and u(t+ s, uo) = T (t+ s)uo. By uniqueness of the solution, we have u(t+ s, uo) =

u(t, u(s)), hence T (t+ s)uo = T (t)u(s) = T (t)T (s)uo, hence T (t+ s) = T (t)T (s).

Below, we formally define families of operators T (t) with the above properties below.

Definition 2.5.1. A family of linear bounded operators (T (t))t≥0 which satisfies the conditions:

• T (0)x = x for all x ∈ D(A),

• T (t+ s) = T (t)T (s),

is called a one parameter semigroup of bounded operators.

The semigroup (T (t))t≥0 is called a strongly continuous semigroup if, in addition, the maps

t 7→ T (t)x are continuous from R+ to X, for every x ∈ X. Strongly continuous semigroups

are also referred to as C0 semigroups. As seen above, semigroups arise naturally in dynamical

systems, [3], Chapters 1, 3. However, (2.12) does not always have a solution on the whole space

X, but only if restricted to some subspace of X. This motivates the following definitions. The

operator (A,D(A)), where D(A) is the space

D(A) :=

{

x ∈ X : lim
t→0+

T (t)x− x

t
exists in X

}

and

Ax := lim
t→0+

T (t)x− x

t
, x ∈ D(A),

is called the generator of the semigroup (T (t))t≥0. Typically, we expect that this operator A

should coincide with the operator A in (2.12), but this is not always the case. So the operator

(A,D(A)) defined above is the realisation of A in (2.12). If (A,D(A)) generates a semigroup

(T (t))t≥0, then solutions to (2.12) are then given by u(t, u0) = T (t)u0. We will now list a few

useful facts about strongly continuous semigroups that will be used in this thesis.

Theorem 2.5.2. Let (A,D(A)) be a generator of a strongly continuous semigroup. Then

(A,D(A)) is linear, closed and densely defined.

Proof. Linearity of the generator follows from the definition of (A,D(A)). The rest of the

proof can be found in [16], Chapter II, Theorem 1.4.
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Lemma 2.5.3. [3], p.70

Let (T (t))t≥0 be a strongly continuous semigroup. Then there exist constants ω and M > 0

such that ‖T (t)‖ ≤Meωt.

Recall that the spectrum of an operator is the set σ(A) = {λ ∈ C : λI − A is not bijective}.
The complement of this set is called the resolvent set ρ(A) and the operator R(λ,A) :=

(λI −A)−1, λ ∈ ρ(A), is called the resolvent operator.

Definition 2.5.4. Let X be a Banach lattice. The semigroup (T (t))t≥0 is said to be positive

if, for all x ∈ X+ and t ≥ 0, one has T (t)x ≥ 0. The operator (A,D(A)) is called resolvent

positive if there exists ω such that (ω,∞) ∈ ρ(A) and R(λ,A) ≥ 0 for all λ > ω.

Remark 2.5.5. Let X be a Banach lattice and A be a positive operator on X. If |λ| > r(A),

then the resolvent of A, R(λ,A) is also positive, [1], p.254.

We often have information about the operator (A,D(A)) but have no explicit formula for the

semigroup or its resolvent. The following result due to Hille and Yosida enables us to draw

certain conclusions about the semigroup from the structure of its generator.

Theorem 2.5.6. Hille-Yosida, [3], Theorem 3.5

Let (A,D(A)) be a linear operator on a Banach space X and let M ≥ 1;ω ∈ R be constants.

Then the following assertions are equivalent

1. The C0 semigroup (T (t))t≥0 generated by (A,D(A)) satisfies ‖T (t)‖ ≤ Meωt for all

t ≥ 0 and (ω,∞) ∈ ρ(A).

2. (A,D(A)) is closed, densely defined and for every λ ∈ C with ℜλ > ω, we have λ ∈ ρ(A)

and

‖R(λ,A)n‖ ≤ M

(ℜλ− ω)n
, n ≥ 1,ℜλ > ω.

Theorem 2.5.7. Theorem II. 1.10, [17]

Let (T (t))t≥0 be a C0 semigroup on the Banach space X and let ω ∈ R, M ≥ 1 be constants

such that ‖T (t)‖ ≤ Meωt for all t ≥ 0. Then for (A,D(A)), the generator of (T (t))t≥0, the

following properties hold.

1. If R(λ)(x) :=
∫∞
0 e−λtT (t)xdt exists for some λ ∈ C and for all x ∈ X, then λ ∈ ρ(A)

and R(λ)x = R(λ,A)x.
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2. If ℜλ > ω, then λ ∈ ρ(A), and the resolvent is given by the integral given in item (1)

above.

The proof can be found in [16], p.55.

Definition 2.5.8. A semigroup (T (t))t≥0 is called a contraction semigroup if ‖T (t)‖ ≤ 1.

Corollary 2.5.9. A linear, closed and densely defined operator (A,D(A)) generates a semigroup

of contractions if and only if (0,∞) ∈ ρ(A) and

‖R(λ,A)x‖ ≤ 1

λ
‖x‖, ∀λ > 0. (2.13)

Sometimes, it is easier to find the resolvent of the operator (A,D(A)) rather than the semigroup

itself. Therefore, we need to establish a relationship between resolvents and semigroups. We

note that if X is a Banach lattice and the resolvent R(λ,A) is known to be a positive operator

for λ > ω, for some ω ∈ R, then each T (t), t ≥ 0 will be a positive operator as well (see [3], p.

97).

Definition 2.5.10. Let A be a linear operator on a Banach space X. The spectral bound of A

is the number

s(A) = sup{ℜλ : λ ∈ σ(A)}.

Theorem 2.5.11. [3], Theorem 3.39

Let (A,D(A)) be a densely defined linear operator with positive resolvent. If there exists

λo > s(A) and c > 0 such that for all x ≥ 0, ‖R(λo, A)x‖X ≥ c‖x‖X , then (A,D(A)) is the

generator of a positive semigroup on X.

Definition 2.5.12. A positive semigroup (T (t))t≥0 with generator (A,D(A)) on a Banach

lattice X is called irreducible if it has no non trivial closed invariant ideals. That is; if I is an

ideal of X and T (t)I ∈ I, then either I = {0} or I = X.



Chapter 3

Finite Dimensional Flows

3.1 Introduction

In this chapter, we employ techniques related to Perron-Frobenius theorems to investigate long

time behaviour of flow on networks. To prepare the ground, we begin with some results pertaining

to simpler problems, such as finite dimensional flows where the Perron-Frobenius structure of

the governing matrix plays an essential role. The results of this chapter not only allow us to

further develop and explore a number of necessary techniques but also the obtained results are

of independent interest. First, however, we introduce the models discussed in this chapter.

3.1.1 Direct modelling with ML matrices

ML matrices have been introduced in Definition 2.3.6. Here, we present a typical way they

appear in applications and explain how they are related to flows on networks which is the main

topic of this thesis.

Consider a population that is divided into n subgroups according to a certain criteria (like age,

sex, size, geographical location, etc). Let ui(t) be the size of the population in the ith state at

time t. At any time t, individuals in any state can die, migrate to other states or give birth to

other individuals. Let bi, di and aji be the birth rate, death rate and the rate at which individuals

in state i migrate to state j, respectively. Then the change in the number of individuals in state

30
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i in a small interval of time ∆t can be expressed as

ui(t+ ∆t) = ui(t) + biui(t)∆t− diui(t)∆t+
n∑

j=1,j 6=i

ajiuj(t)∆t. (3.1)

Note that in the above equation, di also includes the rate at which individuals migrate from

state i to other states. Assuming ui(t) is differentiable, we rearrange the terms in (3.1) and

take limits as ∆t→ 0 to get

lim
∆t→0

ui(t+ ∆t) − ui(t)

∆t
= u′i(t) = (bi − di)ui(t) +

n∑

j=1,j 6=i

aijuj(t).

Therefore, the dynamics of the whole population can be summarised in the following problem






u
′

(t) = Au(t),

u(0) = u0.
(3.2)

The matrix A is an ML matrix and so if u0 ≥ 0, the solution is non-negative. The total

population will then be given by the sum of the individuals in all the states. From Theorem 2.3.8,

A has a dominant eigenvalue τ which determines the long term behaviour of the population.

Note that
n∑

j=1,j 6=i

ajiui(t)

represents the total number of individuals leaving state i through migration at time t. In

particular, if in the described model the number of births and the total number of individuals

leaving (due to migration and death) each state are equal, the diagonal coefficients are sums of

the other terms in the respective columns taken with negative sign and thus, the sum of each

column is zero. Such matrices are called Kolmogorov matrices and it is known that they have

dominant eigenvalue 0, and they describe conservative processes. That is, processes in which

the total number of individuals in the population remains constant, [4].

Any problem of the form (3.2) with ML matrix A can be reduced to an equivalent problem with

matrix Ã having 0 as the dominant eigenvalue, although not a Kolmogorov matrix. Indeed, let

r be the dominant eigenvalue of A and consider the following. Let v = e−rtu. Then






v
′

(t) = (A− rI)v = Ãv;

v(0) = u(0),
(3.3)

and since σ(Ã) = σ(A) − r, 0 is the dominant eigenvalue of Ã. The solutions v(t) are non-

negative if u(0) is non-negative.
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Remark 3.1.1. We observe that a Kolmogorov model in (3.2) can be considered as a simplified

network transport problem in which the states form vertices and the transport between them

occurs instantaneously with the rates given by the coefficients of the matrix A. A more detailed

justification is given in Remark 4.1.6.

The main aim of this chapter is to extend the results in [48]. In [48], Perthame showed decay

of the general relative entropy function for (3.2) in the case of strictly positive off-diagonal

matrices A. Under this assumption on A, he also proved a discrete Poincaré inequality which

allowed him to establish that, under suitable renorming of the state space, the solutions to (3.2)

decay exponentially (strictly) in the space complementary to that spanned by the Perron vector

of A. He also noted that ’interesting things occur for non-negative matrices’. In this chapter,

we explore this statement. In particular, we extend the result in Lemma 6.3.1 of [48] to general

irreducible matrices (see Lemma 3.2.3) and also show that this result does not hold for reducible

matrices in general, but only holds in certain invariant subspaces of the reducible matrix A.

More precisely, we will work with the problem (3.2), rescaled as in (3.3) for arbitrary irreducible

matrix A. Instead of writing Ã, we shall simply write A and A has dominant eigenvalue 0. Let

N and v be the positive right and left eigenvectors of A, respectively. Then the relative entropy

function,
n∑

i=1

viNiH

(
ui(t)

Ni

)

,

where H(·) is any convex function is non increasing. This allows us to prove a number of

classical estimates for the solution of (3.3) in a unified way. Moreover, using H(u) = u2 and

extending the Poincaré inequality, we will show that the semigroup generated by A is strictly

contractive in the subspace orthogonal to N with respect to the scalar product,

〈x,y〉 =
n∑

i=1

vi

Ni
xiyi

for all x,y ∈ Rn. In the second part of this chapter (Section 3.3), we reformulate these results

in a more restricted case so that they can be applied to reducible matrices.

3.2 Irreducible matrices

Let A be an ML matrix with dominant eigenvalue 0. If A is irreducible, then strictly positive

right and left Perron eigenvectors N and v, respectively, exist as seen in Section 2.3. We fix a
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unique right eigenvector N by normalising it in the following way:

n∑

i=1

Ni = 1,

n∑

i=1

Nivi = 1. (3.4)

In the next result, we show that Proposition 6.6 in [48] for solutions to the system (3.3), where

A has strictly positive off-diagonal entries still holds when A is irreducible but not necessarily

strictly positive off-diagonal.

Theorem 3.2.1. Let A be an ML matrix with s(A) = 0 and corresponding right and left

eigenvectors N and v, respectively. Let H(·) be a differentiable convex function on R. Then

the solution to the initial value problem (3.3) satisfies

d

dt

n∑

i=1

viNiH

(
ui(t)

Ni

)

≤ 0.

Proof.
d

dt

n∑

i=1

viNiH

(
ui(t)

Ni

)

=
n∑

i=1

viNi
d

dt
H

(
ui(t)

Ni

)

=
n∑

i=1

n∑

j=1

viNiaij
uj(t)

Ni
H ′

(
ui(t)

Ni

)

=
n∑

i=1

n∑

j=1

viaijujH
′

(
ui(t)

Ni

)

=

n∑

i=1

n∑

j=1

viaijNjH
′

(
ui(t)

Ni

)[
uj(t)

Nj
− ui(t)

Ni

]

.

The last equation is due to the fact that AN = 0, hence

n∑

i=1

n∑

j=1

viaijNjH
′

(
ui(t)

Ni

)
ui(t)

Ni
=

n∑

i=1

viH
′

(
ui(t)

Ni

)
ui(t)

Ni





n∑

j=1

aijNj



 = 0.

Since H(.) is convex, we have

H ′

(
ui(t)

Ni

)[
uj(t)

Nj
− ui(t)

Ni

]

≤ H

(
uj(t)

Nj

)

−H

(
ui(t)

Ni

)

hence

n∑

i=1

n∑

j=1

viaijNjH
′

(
ui(t)

Ni

)[
uj(t)

Nj
− ui(t)

Ni

]

≤
n∑

i=1

n∑

j=1

viaijNj

[

H

(
uj(t)

Nj

)

−H

(
ui(t)

Ni

)]

= 0.

This completes the proof.
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Remark 3.2.2. In some applications of this result, we use convex functions like | · | or the

maximum which are not differentiable. However, every convex function on R is absolutely

continuous ([50], Chapter 5.5, Proposition 17) and therefore differentiable almost everywhere.

The composition of an absolutely convex continuous function and a differentiable function is

differentiable almost everywhere. We also use the result that if an absolutely continuous function

f satisfies f ′ ≤ 0, then it is non increasing.

Let x ∈ Rn, then the function ‖ · ‖ defined as

‖x‖ =

(
n∑

i=1

vi

Ni
x2

i

) 1
2

(3.5)

is a norm on Rn if N > 0 and v > 0, which is the case for irreducible matrices. However, if A

is reducible and N > 0, then v may not be strictly positive, hence ‖ · ‖ is just a seminorm on

Rn. The result below is the discrete version of Poincaré’s lemma for irreducible matrices.

Lemma 3.2.3. Let (aij)1≤i,j≤n be an irreducible matrix with Perron eigenvectors v,N > 0.

Then there is a constant α > 0 such that for any vector m satisfying

n∑

i=1

vimi = 0, (3.6)

the inequality
n∑

i=1

n∑

j=1

viaijNj

(
mj

Nj
− mi

Ni

)2

≥ α
n∑

i=1

vi

Ni
m2

i (3.7)

holds.

Proof. Let us introduce a new inner product between two vectors x and y defined as

〈x,y〉 =
n∑

i=1

vi

Ni
xiyi ∀x,y ∈ Rn. (3.8)

This inner product defines a norm (defined in (3.5)) on Rn which is equivalent to any other

norm on Rn, by completeness. Let m 6= 0 be a vector satisfying (3.6). We shall normalise m

and call this normalised vector m so that

n∑

i=1

vi

Ni
m2

i = 1.

We notice that m still satisfies
n∑

i=1

vimi = 0. (3.9)
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Dividing Equation (3.7) with ‖m‖2, where ‖m‖ is given by (3.5), gives

n∑

i=1

n∑

j=1

viaijNj

(
mj

Nj
− mi

Ni

)2

≥ α > 0. (3.10)

Now suppose that there is no α satisfying (3.10). This means that for each k there exists a

vector (mk)k≥1, satisfying

n∑

i=1

vim
k
i = 0,

n∑

i=1

vi

Ni
(mk

i )
2 = 1,

and
n∑

i=1

n∑

j=1

viaijNj

(

mk
j

Nj
− mk

i

Ni

)2

≤ 1

k
. (3.11)

The sequence (mk)k≥1 is bounded and its terms are on the n−sphere of radius 1. This sphere

is compact, so by the Bolzano-Weierstrass theorem, there exists a subsequence of (mk)k≥1 that

converges to a vector m which is also on the n−sphere. Taking limits on both sides of inequality

(3.11), we find that
n∑

i=1

n∑

j=1

viaijNj

(
mj

Nj
− mi

Ni

)2

= 0. (3.12)

A is irreducible, so for every pair i and j (i 6= j), there exists a sequence of indices j, ir, ir−1, · · · , i1, i
such that ai,i1ai1,i2 · · · air−1,irair,j > 0 (see [44], p. 671). This means that ai,i1 > 0, which

implies that for that particular pair i, i1, Equation (3.12) holds if and only if

mi

Ni
=
mi1

Ni1

;

ai1,i2 > 0 which implies that Equation (3.12) holds if and only if

mi1

Ni1

=
mi2

Ni2

=
mi

Ni
.

If we continue with the same reasoning for all the terms in the product, we find that

mir−1

Nir−1

=
mir

Nir

=
mij

Nij

,

hence
mi

Ni
=
mi1

Ni1

=
mi2

Ni2

= · · · =
mir−1

Nir−1

=
mir

Nir

=
mj

Nj
.

By the process we have just described, it follows that for every pair, i, j, mi/Ni = mj/Nj .

Therefore, mi = νNi for some constant ν. Then, using the assumption in (3.6)

0 =
n∑

i=1

mivi =
n∑

i=1

νNivi = ν.
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But if ν = 0, then mi = 0 for all 1 ≤ i ≤ n. This implies that the sequence of vectors (mk)k≥1

converges to a zero vector, a contradiction since the zero vector is not contained on the unit

sphere. Therefore, α > 0 satisfying (3.10) does exist. Hence (3.7) holds.

Remark 3.2.4. The above result holds for any irreducible matrix A, regardless of its dominant

eigenvalue. That is, Lemma 3.2.3 holds even when s(A) 6= 0. In particular, it holds for non-

negative irreducible matrices as well.

As a consequence of Theorem 3.2.1 together with Lemma 3.2.3, we have the following theorem

regarding the solution of the problem (3.3) (an extension of Proposition 6.5 in [48] to irreducible

matrices).

Theorem 3.2.5. Let A be an irreducible ML matrix with s(A) = 0. Then for any solution u(t)

satisfying (3.3), the following is true:

1.

ρ :=
n∑

i=1

viui(t) =
n∑

i=1

viui(0), (3.13)

2.
n∑

i=1

vi|ui(t)| ≤
n∑

i=1

vi|ui(0)|, (3.14)

3. there exist α > 0 such that

n∑

i=1

viNi

(
ui(t) − ρNi

Ni

)2

≤ e−αt
n∑

i=1

viNi

(
ui(0) − ρNi

Ni

)2

, (3.15)

4. if there exist constants C1, C2 such that C1Ni ≤ ui(0) ≤ C2Ni, then

C1Ni ≤ ui(t) ≤ C2Ni, t ≥ 0. (3.16)

Proof. We pick H(u) = u and use Lemma 3.2.1.

d

dt

n∑

i=1

viNiH

(
ui(t)

Ni

)

=
d

dt

n∑

i=1

viNi

(
ui(t)

Ni

)

=
d

dt

n∑

i=1

viui(t) ≤ 0.

From this, we conclude that
n∑

i=1

viui(t) ≤
n∑

i=1

viui(0). (3.17)
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The function H(u) = −u is also convex and, using this function in Lemma 3.2.1, yields

n∑

i=1

viui(t) ≥
n∑

i=1

viui(0). (3.18)

From these equations ((3.17) and (3.18)), we can conclude that (3.13) holds.

To prove the inequality (3.14), we use the function H(u) = |u|, which is convex. Then

d

dt

n∑

i=1

viNiH

(
ui(t)

Ni

)

=
d

dt

n∑

i=1

viNi

∣
∣
∣
∣

ui(t)

Ni

∣
∣
∣
∣

=
d

dt

n∑

i=1

vi |ui(t)|

≤ 0 a.e.

Thus, from Remark 3.2.2,
n∑

i=1

vi|ui(t)| ≤
n∑

i=1

vi|ui(0)|.

To prove the third item, let H(u) = u2 and h(t) = u(t) − ρN. Then

d

dt

n∑

i=1

viNiH

(
hi(t)

Ni

)

=
n∑

i=1

viNi
d

dt
H

(
ui(t) − ρNi

Ni

)

=
n∑

i=1

viNi
d

dt

(
ui(t) − ρNi

Ni

)2

= 2
n∑

i=1

n∑

j=1

viaijuj(t)

(
ui(t) − ρNi

Ni

)

= 2
n∑

i=1

n∑

j=1

viaijNj

(
uj(t) − ρNj

Nj

)(
ui(t) − ρNi

Ni

)

= −
n∑

i=1

n∑

j=1

viaijNj

(
uj(t) − ρNj

Nj
− ui(t) − ρNi

Ni

)2

.

Using the result in equation (3.13) together with the normalising conditions in (3.4), we see

that the vector m = u(t) − ρN satisfies the conditions of Lemma 3.2.3 above, hence, we use

the mentioned lemma to get

−
n∑

i=1

n∑

j=1

viaijNj

(
uj(t) − ρNj

Nj
− ui(t) − ρNi

Ni

)2

≤ −α
n∑

i=1

vi

Ni
(ui(t) − ρNi)

2 ,

hence
d

dt

n∑

i=1

viNi

(
ui(t) − ρNi

Ni

)2

≤ −α
n∑

i=1

vi

Ni
(ui(t) − ρNi)

2 ,
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Hence,
d

dt

n∑

i=1

vi

Ni
(ui(t) − ρNi)

2 + α
n∑

i=1

vi

Ni
(ui(t) − ρNi)

2 ≤ 0

implies

d

dt

(

eαt
n∑

i=1

vi

Ni
(ui(t) − ρNi)

2

)

≤ 0.

Thus

eαt
n∑

i=1

vi

Ni
(ui(t) − ρNi)

2 −
n∑

i=1

vi

Ni
(ui(0) − ρNi)

2 ≤ 0

and from this, we get (3.15).

Finally, for the upper bound, we use the function H(u) = [(u− C2)+]2, where (u−C2)+ refers

to the positive part of u(t) − C2. For this function, we write (u − C2)+ = 0 if u − C2 ≤ 0

on some interval. Note that although the function y = (u − C2)+ is not differentiable in

general, its square, [(u − C2)+]2 is a differentiable function. If the assumptions are satisfied,

then ui(0)/Ni ≤ C2, thus

n∑

i=1

viNiH

(
ui(0)

Ni

)

=
n∑

i=1

viNi

[(
ui(0)

Ni
− C2

)

+

]2

= 0.

Hence by Lemma 3.2.1, we have

d

dt

n∑

i=1

viNiH

(
ui(t)

Ni

)

=
d

dt

n∑

i=1

viNi

[(
ui(t)

Ni
− C2

)

+

]2

≤ 0;

that is
n∑

i=1

viNi

[(
ui(t)

Ni
− C2

)

+

]2

≤
n∑

i=1

viNi

[(
ui(0)

Ni
− C2

)

+

]2

= 0,

which implies that ui(t) ≤ C2Ni.

For the lower bound, we choose H(u) = [(u−C1)−]2, where (u−C1)− is the negative part of

u(t)−C1. Note that u(t)−C1 ≥ 0 on some interval of time if and only if (u(t)−C1)− = 0 on that

interval. Then if the assumptions are satisfied, that is, C1Ni ≤ ui(0), then ui(0)/Ni −C1 ≥ 0.

Hence
n∑

i=1

viNiH

(
ui(0)

Ni

)

=
n∑

i=1

viNi

[(
ui(0)

Ni
− C1

)

−

]2

= 0.

By Lemma 3.2.1,

d

dt

n∑

i=1

viNiH

(
ui(t)

Ni

)

=
d

dt

n∑

i=1

viNi

[(
ui(t)

Ni
− C1

)

−

]2

≤ 0;

⇒
n∑

i=1

viNi

[(
ui(t)

Ni
− C1

)

−

]2

≤
n∑

i=1

viNi

[(
ui(0)

Ni
− C1

)

−

]2

= 0.



39

Since all the terms of the sum are positive, we must have

n∑

i=1

viNi

[(
ui(t)

Ni
− C1

)

−

]2

= 0,

and hence,
[(

ui(t)

Ni
− C1

)

−

]2

= 0 ⇒ ui(t)

Ni
− C1 ≥ 0

for each i ∈ {1, . . . , n}. Therefore, ui(t) ≥ C1Ni.

3.3 Reducible matrices

If A is a reducible ML matrix, then Lemma 3.2.3 does not hold in general. To illustrate this,

consider the following examples.

Example 3.3.1. Let

A =








1 0 0

0 1 0

1 0 0.5







.

A is reducible with r = 1, one of the right (and respectively, left) eigenvectors is N =

0.25(1, 1, 2)T ( respectively, v = 2(1, 1, 0)). Pick

m =

(

±1

4
,∓1

4
,m

)

, m ∈ R.

This vector satisfies the requirements in Lemma 3.2.3 but the lemma does not hold since

3∑

i=1

3∑

j=1

viaijNj

(
mj

Nj
− mi

Ni

)2

= 0;

while
3∑

i=1

vi

Ni
m2

i =
2

1/4

(
1

4

)2

+
2

1/4

(−1

4

)2

= 1.

Clearly, there is no positive number α for which (3.7) holds.

If A is reducible, write A in the normal form given by (2.8). Then N is non-negative but may

not be strictly positive and the eigenvalue 0 may not be simple, [21]. It is important to note

that even when a positive right eigenvector N exists, it is not always unique (up to constant

multiples). It is possible to have two vectors N1,N2 > 0 both satisfying AN1 = 0, AN2 = 0,

but N1 6= βN2 for any β ∈ N.
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To be able to extend the results from the previous section to reducible matrices, we need to be

able to divide by Ni. But this, in general, is not possible. However, further developments (as

will be seen below) allow for the vector N to have zeros.

As seen in Example 3.3.1, Lemma 3.2.3 does not hold for reducible matrices, even when a positive

right eigenvector exists. This is because the eigenvalue 0 may have algebraic multiplicity greater

than one and v may have zeros. Indeed if N > 0, then the right eigenspace corresponding to

0 are spanned by the vectors

Ni = (0,Ni,0,yg+1
i , · · · ,ys

i ); i = 1, . . . , g; (3.19)

where Ni > 0 is a normalised right eigenvector for Ai corresponding to 0 and

y
g+1
i = (−Ag+1)

−1Ag+1,iN
i

y
j
i = (−Aj)

−1



Aj,iN
i +

j−1
∑

h=g+1

Aj,hy
h
i



 .

The vectors yh
i are well defined since s(Ah) < 0 for all h = g + 1, . . . , s. The matrices Aj and

Ah,j described here are the matrices in the normal form (2.8). Since Ah, h = g+1, . . . , s are all

irreducible, Theorem 2.1 of [51] guarantees that the matrices (−Ah)−1 are all strictly positive,

hence yh
i ≥ 0. The left eigenspace is then spanned by the vectors

vi = (0,vi,0) ∀i = 1, . . . , g viAi = 0. (3.20)

In order to state analogous results (to Lemma 3.2.3 and Theorem 3.2.5) for reducible matrices,

regardless of whether a positive eigenvector exists or not, we need the following definitions.

We partition the set {1, . . . , n} into sets Ik = {n1 + · · · + nk−1 + 1, . . . , n1 + · · · + nk} for

1 ≤ k ≤ s corresponding to matrices Ak that have r as an eigenvalue. Define

IΘ = Ik1 ∪ · · · ∪ Ikl
, (3.21)

where Θ = {k1, . . . , kl} ⊂ {1, . . . , s} is arbitrary. Further, we define

XΘ = Span{ei}i∈IΘ , (3.22)

where ei = (δik)1≤k≤n and δik is the Kronecker delta. Let Xk = X{k} so that for general Θ

defined above, XΘ = Xk1 ⊕ · · · ⊕ Xkl
. Let N = (N1, · · · ,Ns) be an eigenvector of A. For
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a non-negative left eigenvector of A, we shall write v = (v1, · · · ,vs). Then using the normal

form of A in (2.8), we see that vi = 0 if s(Ai) < 0.

To make this indexing clearer, suppose in the normal form of A in (2.8), and the matrices

A1, Ag and As−1 all have r = 0 as an eigenvalue (and s(Ai) < 0 for i 6= 1, g, s − 1). Then

I1 = {1, . . . , n1}, Ig = {n1 + · · · + ng−1 + 1, n1 + · · · + ng−1 + 2, . . . , n1 + · · · + ng} and

Is−1 = {n1 + · · · + ns−2 + 1, n1 + · · · + ns−2 + 2, . . . , n1 + · · · + ns−1}. IΘ = I1 ∪ Ig ∪ Is−1,

where Θ = {r1, r2, r3} = {1, g, s− 1} ⊂ {1, . . . , s}.

Consider an arbitrary reducible ML matrix A with dominant eigenvalue s(A) = 0. The following

result holds for this matrix.

Lemma 3.3.2. Let Θ be an arbitrary set of indices from the set {1, . . . , s} such that XΘ is

invariant under A. Let AΘ = A|XΘ : XΘ → XΘ, NΘ = (Nk)k∈Θ and vΘ = (vk)k∈Θ. Then

1. vΘAΘ = 0.

2. If Aij = 0 whenever i ∈ Θ and j /∈ Θ, then AΘNΘ = 0.

3. If AΘNΘ = 0 and AkN
k = 0 for some k ∈ Θ, then Ak,l = 0 for all k > l ∈ Θ. Hence if

AkN
k = 0 for all k ∈ Θ, then vlAl = 0 for all l ∈ Θ.

Proof. For XΘ to be invariant, Aij = 0 for i /∈ Θ and j ∈ Θ. Since vA = 0, then if k ∈ Θ,

vkAk +

s∑

l=k+1

vlAl,k = 0.

This together with the invariance of XΘ under A implies that

vkAk +
s∑

l=k+1,l∈Θ

vlAl,k = 0 ∀k ∈ Θ,

hence vΘAΘ = 0.

To prove item (2), pick k ∈ Θ. Then

0 = AkN
k +

k−1∑

l=1

Ak,lN
l = AkN

k +

k−1∑

l=1,l∈Θ

Ak,lN
l = AΘNΘ.

Finally, for k ∈ Θ,

(AΘNΘ)k =
k−1∑

l=1

ANl +ANk =
k−1∑

l=1

ANl = 0.
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If l ∈ Θ, then Nl > 0 and Ak,l ≥ 0 hence Ak,l = 0. Therefore,

0 = vlAl +
s∑

k=l+1

vkAk,l = vlAl.

This gives the required result.

Lemma 3.3.3. Let IΘ be an arbitrary set of indices defined by (3.21) and N = (N1, . . . , Nn)

be any right eigenvector of A with Ni > 0 for i ∈ IΘ and ArN
r = 0 for any r ∈ Θ. Then there

is a positive constant α such that for any non zero vector m = (m1, . . . ,mn) ∈ Rn satisfying

∑

i∈Ik

vimi = 0 (3.23)

for each k ∈ Θ, the following inequality holds:

∑

i∈IΘ

∑

j∈IΘ

viaijNj

(
mj

Nj
− mi

Ni

)2

> α
∑

i∈IΘ

vi

Ni
m2

i . (3.24)

Proof. By Lemma 3.3.2, vk > 0 for k ∈ Θ. Thus

‖m‖ =

√
∑

i∈Θ

vi

Ni
m2

i

is a norm on the space Y = {ek}k∈IΘ . If m = 0, the result holds trivially, so we assume that

m 6= 0. We now divide both sides of Equation 3.24 by ‖m‖2 to get

∑

i∈IΘ

∑

j∈IΘ

viaijNj

(
m̃j

Nj
− m̃i

Ni

)2

> α; (3.25)

where m̃ = m/‖m. Note that the vector m̃ satisfies the assumptions of the lemma. Now

suppose that (3.3.3) is false. Then there exists a sequence (m̃l)l≥0 on the unit sphere in Y

satisfying the relation

∑

i∈IΘ

∑

j∈IΘ

viaijNj

(

m̃l
j

Nj
− m̃l

i

Ni

)2

≤ 1

l
. (3.26)

Since the sequence is on the unit sphere in Y , it contains a convergent subsequence, whose

limit is ˜̃m ∈ Y . This limit also exists on the unit sphere (Bolzano-Weierstrass) and it satisfies

the assumptions of the lemma. Taking limits on (3.26), we get

∑

i∈IΘ

∑

j∈IΘ

viaijNj

(
˜̃mj

Nj
−

˜̃mi

Ni

)2

= 0. (3.27)
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For ri, . . . , rk ∈ IΘ, equation (3.27) is equivalent to the equation below:

∑

i∈Ir1

∑

j∈Ir1

viaijNj

(
˜̃mj

Nj
−

˜̃mi

Ni

)2

+ · · · +
∑

i∈Irk

∑

j∈Irk

viaijNj

(
˜̃mj

Nj
−

˜̃mi

Ni

)2

= 0. (3.28)

For i = j the terms of the term are all equal to zero. For i 6= j, aij ≥ 0 and vk > 0, Nk > 0

provided k ∈ IΘ. So equation (3.27) holds if and only if each term on the left hand side of

the equation is zero. Consider the term corresponding to Ari , for 1 ≤ i ≤ k. Since Ari is

irreducible, for every pair k, j ∈ Iri , there exists a sequence of indices j, kr, kr−1, · · · , k1, k such

that ak,k1ak1,k2 · · · akr−1,krakr,j > 0. Therefore, Equation 3.28 holds if and only if

˜̃mj

Nj
=

˜̃mkr

Nkr

= · · · =
˜̃mk1

Nk1

=
˜̃mk

Nk
.

Therefore, ˜̃mk = νiNk for some constant νi, hence from (3.23), we obtain

0 =
∑

k∈Iri

vk
˜̃mk = νi

∑

k∈Iri

Nkvk

and since Nri ,vri > 0, we have νi = 0. But this also means that ˜̃mk = 0 for all k ∈ Iri . If we

repeat this procedure for all k ∈ Θ, we obtain ˜̃m = 0 in Y , a contradiction.

Remark 3.3.4. If A has a positive right eigenvector, then any vector m ∈ Rn which satisfies

(3.23) also satisfies
n∑

i=1

vimi = 0

trivially.

Example 3.3.5. Let

A =














2 1 0 0 0

1 2 0 0 0

0 0 0 0.5 0

0 0 18 0 0

1 1 0 1 0.5














.

For this matrix, r = 3, and if we pick N = (5/61)(1, 1, 1, 6, 16/5)T and v = (61/70)(1, 1, 6, 1, 0),

we see that AN = 3N and vA = 3v. We select a vector m such that

5∑

i=1

vimi = 0.
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Let m = (−k, k, k1,−6k1,m)T , where m, k, k1 ∈ R are arbitrary. This vector satisfies the

requirements of Lemma 3.2.3.

5∑

i=1

5∑

j=1

viaijNj

(
mj

Nj
− mi

Ni

)2

=

5∑

i=1

vi

[

5

61
ai1

(

(−k)61

5
− mi

Ni

)2

+ ai2
5

61

(

k
61

5
− mi

Ni

)2

+ai3
5

61

(

(k1)
61

5
− mi

Ni

)2

+ ai4
30

61

(

(−6k1)
61

30
− mi

Ni

)2

+ ai5
16

61

(

(m)
61

16
− mi

Ni

)2
]

=
1222

25(7)
(k2 + 9k2

1) =
1222

175
(k2 + 9k2

1).

and the right hand side of the inequality is

5∑

i=1

vi

Ni
m2

i =
61

70
× 61

5

[

(−k)2 + k2 + 6k2
1 +

1

6
.(−6k1)

2

]

=
612

175

(
k2 + 6k2

1

)

<

5∑

i=1

5∑

j=1

viaijNj

(
mj

Nj
− mi

Ni

)2

.

Therefore, for some α > 0, the result holds.

From Example 3.3.5 above, we observe that I1 = {1, 2}; I2 = {3, 4}, IΘ = {1, 2, 3, 4} and

Θ = {1, 2}. In the first case when m = (−k, k, k1,−6k1,m)T , we observe that

2∑

i=1

vimi = 0 =
4∑

i=3

vimi,

hence the assumption in (3.23) is satisfied, and hence the result holds. In general, any vector

m of the form m = (−k, k, k1,−6k1,m)T ,m ∈ R yields a positive result for this matrix in

Example 3.3.5, regardless of the vector v used.

Remark 3.3.6. If A is a 3 × 3 block triangular matrix in normal form with g = 2, A1 and A2

being 1 × 1 blocks (i.e scalars) and N > 0, v ≥ 0, then the only vectors m for which equation

3.23 holds are vectors of the form (0, 0,m3)T , where m3 is a vector whose dimension depends

on the dimension of A3. This is because if m = (m1,m2,m
3)T , then (3.23) holds if and only

if m1 = m2 = 0. But for such a vector, the left hand side of the inequalities (3.7) and (3.24)

are always 0. Therefore, there is no vector m for which the lemma holds. This explains why

Example 3.3.1 gives a negative answer.

In general, if N > 0 and 2 ≤ g ≤ s and Ai are one dimensional, with r(Ai) = r(A), i = 1, . . . , g,

then there is no non-trivial vector m that satisfies the result.
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3.4 Relative Entropy Inequality for Reducible Matrices

We now consider the differential equation in (3.3), where A is of the form (2.8) and s(A) = 0.

We still use the indexing given in the previous section to state the following result.

Theorem 3.4.1. Let Θ be an arbitrary set of indices from the set {1, . . . , s} such that XΘ is

invariant under A, AΘNΘ = 0 and Nk > 0 for k ∈ Θ. Let H be a convex function on R. Then

any solution u to the initial value problem in (3.3), with u0 ∈ XΘ, satisfies

d

dt

∑

i∈IΘ

viNiH

(
ui(t)

Ni

)

≤ 0.

Hence, for all t ≥ 0,

1.
∑

i∈IΘ

viui(t) =
∑

i∈IΘ

viui(0); (3.29)

∑

i∈IΘ

vi|ui(t)| ≤
∑

i∈IΘ

vi|ui(0)|. (3.30)

2. If there exists constants C1, C2 such that C1Ni ≤ ui(0) ≤ C2Ni, then C1Ni ≤ ui(t) ≤
C2Ni for any i ∈ IΘ, such that vi > 0;

3. If AkN
k = 0 for any k ∈ Θ, then there is a constant α > 0 such that

∑

i∈IΘ

vi

Ni

(
ui(t) − ρiNi

)2 ≤ e−αt
∑

i∈IΘ

vi

Ni

(
ui(0) − ρiNi

)2
; (3.31)

where

ρi =
∑

k∈Ir

vkuk(0) for i ∈ Ir.

Proof.

d

dt

∑

i∈IΘ

viNiH

(
u(t)

Ni

)

=
∑

i∈IΘ

∑

j∈IΘ

viaijuj(t)H
′

(
ui(t)

Ni

)

=
∑

i∈IΘ

∑

j∈IΘ

viaijNjH
′

(
ui(t)

Ni

)[
uj(t)

Nj
− ui(t)

Ni

]

.

Using the convexity of the function H, we obtain

∑

i∈IΘ

∑

j∈IΘ

viaijNjH
′

(
ui(t)

Ni

)[
uj(t)

Nj
− ui(t)

Ni

]

≤
∑

i∈IΘ

∑

j∈IΘ

viaijNj

[

H

(
uj(t)

Nj

)

−H

(
ui(t)

Ni

)]

.
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Since AΘNΘ = 0,vΘAΘ = 0, we have

∑

j∈IΘ

aijNj = 0,
∑

i∈IΘ

viaij = 0

for each i ∈ IΘ, hence

∑

i∈IΘ

∑

j∈IΘ

viaijNjH

(
uj(t)

Nj

)

=




∑

i∈IΘ

viaij




∑

j∈IΘ

NjH

(
uj(t)

Nj

)

= 0,

∑

i∈IΘ

∑

j∈IΘ

viaijNjH

(
ui(t)

Ni

)

=
∑

i∈IΘ

viH

(
ui(t)

Ni

)



∑

j∈IΘ

aijNj



 = 0.

Therefore,
∑

i∈IΘ

∑

j∈IΘ

viaijNj

[

H

(
uj(t)

Nj

)

−H

(
ui(t)

Ni

)]

= 0.

The proof of items 1, 2 and 3 is analogous to that shown in Theorem 3.2.5.

3.5 Positive left eigenvector

Suppose the matrix A is an ML matrix with a positive left eigenvector, but the right eigenvector

is only non-negative. In this section, we show that we can still use the results obtained in the

preceding sections in this chapter to study the long term behaviour of the solution to (3.3).

Suppose A is in normal form (2.8). If we transpose this matrix A, and note that AT has the

same eigenvalues as A, but its right eigenvector N will now be strictly positive while its left

vector v will be non-negative. By doing this, we have a problem similar to the one in the

preceding sections. If we permute this transposed matrix and put it in the normal form (2.8),

this will reorder the diagonal blocks in the sense that (AT )i = AT
s−i+1, for all i = 1, . . . , s,

where (AT )i is the ith diagonal block in AT .

By Theorem 2.3.4, all blocks (AT )i with s((AT )i) = s(As+1−i) = 0, for 1 ≤ i ≤ 1 + s − g′,

must be isolated and the others must satisfy s(As+1−i) < 0, for 1 + s− g′ ≤ i ≤ s. Therefore,

in the normal form of A, we must have Aik = 0 for g′ ≤ i ≤ s and g′ ≤ k ≤ i− 1.

In this case, we have Ni > 0 for g′ ≤ i ≤ s. Furthermore,

XΘ = Span














0

Ng′

0







, . . . ,








0

0

Ns
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is invariant under A, and AiN
i = 0 as Ai,k = 0 for g′ ≤ k ≤ i− 1, g′ ≤ i ≤ s and Ni = 0 for

i < g′. Hence, Theorem 3.4.1 can now be used on this matrix, with Θ = {g′, . . . , s}.



Chapter 4

Reducible Networks

4.1 Introduction

In this section, we present a survey of some of the results about the transport equation on

network structures obtained in [14], [33], [40] and [15]. Consider a simple, strongly connected

digraph G with a finite number of vertices (n of them) and m edges. The edges are all assumed

to be of unit length, hence the space variable x ∈ [0, 1]. The edges are parameterised contrary

to the direction of the flow. That is, the tail of each edge is assumed to be at position 1 while

the head is at position 0. The flow of particles along edge ej is then described by the transport

equation






∂tuj(x, t) = cj∂xuj(x, t), ∀j = 1, . . . ,m,

uj(x, 0) = fj(x),
(4.1)

where cj is the speed of the particles along the edge and uj(x, t) is the density of particles on

edge ej at position x and time t. If there is no absorption or generation of material at any

vertex, then we have the Kirchoff law at the vertices, and this gives us the boundary condition

φ−ijcjuj(1, t) = wi,j

[
m∑

k=1

φ+
i,k(ckuk(0, t))

]

, ∀i ∈ {1, . . . , n}. (4.2)

Equations (4.1) and (4.2) define the transport problem on a strongly connected graph. This

problem has been studied using semigroup methods by several authors [33], [15], [40] on finite

graphs and were extended to infinite strongly connected graphs in [14].

Remark 4.1.1. If we model a mass conserving transport on the network, then the conditions at

48
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the nodes must be given by the Kirchoff law which balances the flow in each node. That is, the

total mass flowing in a node must equal to the total mass flowing out. From this point of view,

boundary condition stated in [33], [15], [40] is incorrect as it balances densities and not flow.

First, we write (4.1) together with the boundary condition (4.2) as an abstract Cauchy problem

in the state space X = L1([0, 1])m







d
dtu = A0u(t)

u(0) = (fj)j=1,...,m.
(4.3)

where A0 is the realisation of the expression A = diag(cj∂x)1≤j≤m, on the domain

D(A0) =
{
u ∈W 1

1 ([0, 1])m;u satisfies (4.2)
}
. (4.4)

Following the proof given in Section 2.3 of [14], we can show that the domain D(A0) can also

be written in the following way

D(A0) =
{
u ∈W 1

1 ([0, 1])m : u(1) = C−1BCu(0)
}
, (4.5)

where C = diag(c1, . . . , cm) and B is the adjacency matrix defined in Chapter 2. Below, we list

some of their results.

Proposition 4.1.2. [33], Proposition 2.5

The operator (A0, D(A0)) is a generator of a positive bounded semigroup and hence the flow

problem (4.1) with a Kirchoff law (4.2) is well-posed.

Proposition 4.1.3. [15]

For a graph G and weighted adjacency matrices A, B defined in Definition 2.2.6 and equation

(2.2), respectively, and the corresponding flow semigroup (T (t))t≥0, the following statements

are equivalent.

1. G is strongly connected

2. A is irreducible

3. B is irreducible

4. (T (t))t≥0 is irreducible.
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Note that the above result is correct if we add that the graph is connected. As seen in Remark

2.2.16, the implication 3 ⇒ 1 may fail to hold. That is, by Lemma 2.2.14,B is irreducible if and

only if L(G) is strongly connected. But the example in the mentioned remark shows that it is

possible for L(G) to be strongly connected while G is not. This only occurs in the presence of

isolated vertices in G. Hence, without the assumption that G is connected, 3 ⇒ 1 fails.

Corollary 4.1.4. [14]

If cj = 1 for all j, then the semigroup (T (t))t≥0 is given by

(T (t)f)(s) = Bnf(t+ s− n), n ≤ t+ s ≤ n+ 1, n ∈ N0. (4.6)

In [33], it was proved that the spectrum of (T (t))t≥0 depends not only on the structure of the

cycles in G but also on the rational dependency of the flow velocities on the edges that form a

cycle. First, suppose that the edges ei1 , ei2 , . . . , eil form a cycle in G, and ci1 , ci2 , . . . , cil are

the speeds of the particles flowing along these edges. Then if there is a k > 0 such that

k

(
1

ci1
+

1

ci2
+ · · · + 1

cil

)

∈ N, (4.7)

then these speeds are said to be rationally dependent. The following result is due to Kramar

and Sikolya [33] (Theorem 4.5).

Theorem 4.1.5. Let G be strongly connected and (4.7) holds. Then there is a decomposition

X = X1 ⊕X2 such that

• The semigroup is uniformly stable on the space X1

• The semigroup (T (t)|X2)t≥0 is periodic with period τ given by

τ =
1

k
gcd

{

k

(
1

ci1
+

1

ci2
+ · · · + 1

cil

)

: ei1 , . . . , eil form a cycle

}

,

where k > 0 is a number satisfying (4.7).

Remark 4.1.6. Having introduced the necessary notation, we provide a formal justification of

the claim that the flow in the network described in (4.1) is related to the finite dimensional

system in (3.2). For simplicity, assume that cj = 1 for j = 1, . . . ,m and integrate (4.1) with

respect to x over [0, 1].
∫ 1

0
∂tuj(x̃, t)dx =

∫ 1

0
∂xuj(x, t)dx
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If u(0) ∈ D(A0), we can interchange the derivative and integral to get

d

dt

∫ 1

0
uj(x, t)dx = uj(1) − uj(0);

hence
d

dt

∫ 1

0
u(x, t)dx = u(1) − u(0) = (B − I)u(0). (4.8)

Note that to obtain the last equation (4.8), we used the definition of the domain in (4.5).

Clearly the above system is not closed. To close it (approximately), we introduce the quantity

vi(t) =

∫ 1

0
ui(x, t)dx,

which is the total mass (also in this case, it is the average density) concentrated on edge ei. If

we assume that the density is almost homogeneous on each particular edge, then v ≈ u(0, t).

Formally, the approximate closure of (4.8) is stated below







dv

dt
= (B − I)v

v(0) =
∫ 1
0 f(x)dx,

(4.9)

where f is the vector function defined in (4.3). That is, the closed form of (4.8) is the system

of equations (3.2) with A = B − I (note that here we refer to the matrix A in (3.2) and not

the differential expression introduced above). In particular, we note that since B is column

stochastic, A is a Kolmogorov matrix.

There are indications that (4.9) can be obtained from (4.8) as some asymptotic limit but so far,

we have not been able to provide conclusive results in this direction.

4.2 Disconnected graphs

Suppose that G is a digraph with a finite number of vertices n and a finite number of edges

m. Suppose that there is material flowing along the edges of this graph into the vertices. We

assume that no material is absorbed in each of the vertices. Let us parameterise the edges such

that the length of each edge is 1 and that the head of each edge is located at position 0 and

its tail is at 1. Let uj(x, t) denote the amount of substance flowing in the jth edge at time t

and position x ∈ (0, 1) with speed cj . We start with the disconnected graph where every vertex

has an incoming and outgoing edge. Suppose G is the graph shown in Figure 4.1 below. Since
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1 2

3

4 5

e _ 1

e _ 2e _ 3

e _ 4

e _ 5

Figure 4.1: A disconnected network

the network consists of two completely disconnected graphs, the flow problem on this network

can be divided into two different flow problems corresponding to the two irreducible graphs and

the problem is then reduced to that solved by Sikolya in [33] for the finite dimensional case (or

that by Dorn [14] for the infinite dimensional case).

In general, if a network consists of a finite number of disjoint strongly connected graphs, we solve

the flow problem on each subgraph separately using the methods developed in [33] or in [14]. If

G is a collection of g disjoint strongly connected graphs, (A0, D(A0)) generates a C0 semigroup

if and only if (Ai
0, D(Ai

0)) generate C0 semigroups for every i = 1, . . . , g, where (A0, D(A0))

is the operator defined in (4.3) and (4.4), defined on the whole graph G, (Ai
0, D(Ai

0)) is the

realisation of the same expression ∂x on the ith maximal strongly connected subgraph of G, and

the solution to the entire network problem is the direct sum of the solutions to the flow problem

on the separate components.

4.3 Connected graphs

From this section onwards, we consider the graph G to be connected but not strongly connected.

Suppose that on each edge ej , the flow of particles is described by the equation

F1







∂tuj(x, t) = cj∂xuj(x, t) + gj(x, t, uj(x, t)), x ∈ (0, 1), t ≥ 0

uj(x, 0) = fj(x)

φ−ijαjcjuj(1, t) = wi,j

[
∑m

k=1 φ
+
i,k(γkckuk(0, t)) + hi(t)

]

, ∀i (BC).

(4.10)

If hi(t) > 0, then there is an input term at vertex vi and if hi(t) < 0, then the vertex is losing

material. The above equation (4.10) is a more general problem which will not be discussed here.

We will only consider the homogeneous problem with hi(t) = 0 for all i and gj(x, t, uj(x, t)) = 0
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for all j = 1, . . . ,m. That is;

F2







∂tuj(x, t) = cj∂xuj(x, t), x ∈ (0, 1), t ≥ 0

uj(x, 0) = fj(x)

φ−ijαjcjuj(1, t) = wi,j
∑m

k=1 φ
+
i,kγkckuk(0, t), ∀i (BC)

0 =
∑m

k=1 φ
+
i,k(γkckuk(0, t)), if vi is a sink (BC2),

(4.11)

where αj , γj are absorption or generation coefficients at the head of the edge ej and are all

bounded above by a finite positive number α.

4.4 Existence and uniqueness

Let X := L1([0, 1])m with norm

‖f‖X =
m∑

i=1

∫ 1

0
|fi(x)|dx, f ∈ X.

Let us denote C = diag(cj)1≤j≤m,G = diag(αj)1≤j≤m and E = diag(γj)1≤j≤m. Then the

flow problem (4.11) can be written in an abstract way (ACP) in X







d
dtu = A0u(t)

u(0) = u0 = (fj)j=1,...,m.
(4.12)

where A0 is the realisation of the expression A = diag(cj∂x)1≤j≤m, with domain

D(A0) =
{
u ∈W 1

1 ([0, 1])m;u satisfies the boundary conditions in (4.11)
}
. (4.13)

We state the following result on the existence of a C0 semigroup.

Theorem 4.4.1. For the flow problem in (4.11) the following statements are equivalent.

1. The operator (A0, D(A0)) generates a C0 semigroup.

2. The matrix Φ− is surjective.

3. Every vertex in the graph has an outgoing edge.

Proof. 2 ⇔ 3: If vi has no outgoing edge, then the ith row of Φ−, (Φ−)i, is a row of zeros,

hence Φ− cannot be a full row rank matrix, and thus Φ− is not surjective.
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Conversely, if Φ− is not surjective, then at least one row, say, row k is a linear combination of

some other rows, i.e,

(Φ−)k =
n′

∑

j=i

βj(Φ
−)j

for some βj not all equal to 0. In particular if φ−kl > 0, then φ−jl > 0 for some j. But this is

not possible since each column must have at most one non zero entry (see Remark 2.2.5). So

if Φ− is not surjective, then the only possibility is that it has a row of zeros, implying that at

least one of the vertices in the graph has no outgoing edges.

1 ⇒ 3: Let T (t) be the semigroup generated by the realisation of the operator in (4.11) and

consider u(t) = T (t)f , f ∈ D(A0). If vi has no outgoing edge, then, from the boundary

conditions, we have

0 =
m∑

k=1

φ+
i,k(γkckuk(0, t)), t > 0

Particularly, uk(x, t) = fk(x+ ckt), 0 ≤ x+ ckt ≤ 1 ⇒ uk(0, t) = f(ckt). So

0 =
m∑

k=1

φ+
i,k(γkckfk(ckt)), 0 ≤ t ≤ 1

ck
.

Define c−1 := (max{ck})−1, then

0 =
m∑

k=1

φ+
i,k(γkckfk(ckt)), 0 ≤ t ≤ c−1.

There is a sequence (f r)r∈N in D(A0) which approximates 1 = (1, . . . , 1) in X. For this

sequence, we have

0 ≤ ‖1|(0,c−1) − (f r
k (ck.))1≤k≤m‖X =

m∑

k=1

∫ c−1

0
|1 − f r

k (ckt)|dt

=
m∑

k=1

1

ck

∫ ckc−1

0
|1 − f r

k (z)|dz

≤
m∑

k=1

1

ck

∫ 1

0
|1 − f r

k (z)|dz r→∞−→ 0.

Since convergence in X implies convergence almost everywhere of a subsequence of (f r)r∈N,

we have

0 =
m∑

k=1

φ+
ikγkck

almost everywhere on (0, c−1), and thus everywhere. Since the graph is connected and we have

assumed that there is no outgoing edge at vi, then there must be an incoming edge, hence, at
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least one term in the sum is positive and some are negative. This implies that the set of initial

conditions satisfying the boundary conditions BC is not dense in X. Hence (A0, D(A0)) cannot

generate a semigroup.

2 ⇒ 1 Conversely, suppose that Φ− is surjective. Then there is at least one non-zero entry in

each of its rows. Since these rows are linearly independent, it is a full row rank matrix. So the

system of equations Φ−x = y is consistent for any vector y ∈ Cm. In particular, the system of

equations in

Φ−GCu(1, t) = Φ+ECu(0, t)

is consistent. Note that

D(A0) =
{
u ∈W 1,1([0, 1])m|u(1) = C−1G−1BECu(0) = Pu(0)

}
, (4.14)

where B is the adjacency matrix of the line graph defined in (2.2). Below, we show that (4.14)

is equivalent to (4.13): From the boundary conditions in (4.11), we have

φ−ijαjcjuj(1, t) = wij

m∑

k=1

φ+
ikγkckuk(0, t)

for all i = 1, . . . , n. We want to show that this condition is equivalent to u(1, t) = Pu(0, t) =

C−1G−1BECu(0, t). Fix j. Then there is exactly one i for which φ−ij = 1 and the rest is 0. For

this i,

φ−ijcjαjuj(1) = αjcjuj(1) = wij

m∑

k=1

φ+
ikckγkuk(0)

=
m∑

k=1

wijφ
+
ikckγkuk(0).

But wijφ
+
ik > 0 if and only if wij > 0 and φ+

ik = 1, which implies that
ek→ vi

ej→. Since there is

only one such vi for fixed j and k, it follows that

wijφ
+
ik =

n∑

l=1

wljφ
+
lk = Bjk.

So

αjcjuj(1) =
m∑

k=1

Bjkγkcjuk(0)

= (BECu(0))j ,

where (BECu(0))j is the jth row of BECu(0). But αjcjuj(1, t) = (GCu(1))j , hence GCu(1, t) =

BECu(0, t) ⇒ u(1, t) = Pu(0, t).
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Conversely, suppose that u(1, t) = Pu(0, t). Then the jth component of u(1, t) satisfies

uj(1, t) = c−1
j α−1

j (BECu(0, t))j ,

where (BECu(0, t))j is the jth entry of BECu(0, t), hence

αjcjuj(1, t) = (BECu(0, t))j

=
((

Φ−
w

)T
)

j
Φ+ECu(0, t)

= wij

m∑

k=1

φ+
ikγkckuk(0, t).

We have used
(

(Φ−
w)

T
)

j
to refer to the jth row of (Φ−

w) and in each row, there is only one non

zero entry which is wij , in the ith column. Since we have assumed that there is an outgoing

edge at every vertex and wij 6= 0 if and only if φ−ij = 1, we have

φ−ijαjcjuj(1, t) = wij

m∑

k=1

φ+
ikγkckuk(0, t)

which is our boundary condition.

We claim that (A0, D(A0)) is linear, closed and densely defined. It is easy to see that D(A0)

is a linear space and A0 is linear operator. To show that it is closed, suppose that un =

(u1
n, . . . , u

m
n ) ∈ D(A0) and there is u ∈ X such that un → u. Let y ∈ X be a vector such

that A0un → y. Then un(1) = Pun(0). Since un ∈ D(A0), it follows that un ∈ L1([0, 1])m

and that it has a generalised derivative in L1([0, 1])m (by definition of (W 1,1([0, 1])m)). Let the

generalised derivative be vn. Then

−
∫ 1

0
un(x)ζ ′(x)dx =

∫ 1

0
vn(x)ζ(x)dx, ∀ζ ∈ C∞

0 ([0, 1]).

Now un → u implies
∫ 1

0
vn(x)ζ(x)dx = −

∫ 1

0
un(x)ζ ′(x)dx→ −

∫ 1

0
u(x)ζ ′(x)dx.

But vn being a genaralised derivative of un means that u′
n = vn, so Cu′

n = Cvn → y. Hence
∫ 1

0
Cvnζdx→

∫ 1

0
yζdx

implying that
∫ 1
0 Cvn(x)ζdx = −

∫ 1
0 Cun(x)ζ ′dx

↓ ↓
∫ 1
0 y(x)ζ(x)dx = −

∫ 1
0 Cu(x)ζ ′(x)dx.
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Therefore, y is the generalised derivative of Cu, i.e; Au = y.

To show that u ∈ D(A0), we note that un ∈ W 1,1([0, 1])m implies that ui
n(x) ∈ C([0, 1])

for each i = 1, . . . ,m by Lemma 8.2 of [8]. Therefore, ui
n → ui implies un(1) → u(1) and

un(0) → u(0). Now ui
n(1) = (Pun(0))i. Since the operator P is linear on D(A0) and norm

bounded, it is continuous. So we have that

Pun(0) → Pu(0) ⇒ (Pun(0))i → (Pu(0))i.

Hence ui
n(1) = (Pun(0))i → (Pu(0))i, implying that

ui
n(1) = (Pun(0))i

↓ ↓
ui(1) = (Pu(0))i , ∀i.

So u(1) = Pu(0), hence u ∈ D(A0).

To show that D(A0) is dense in X, note that (C∞
0 ([0, 1]))m ⊂ D(A0). By Corollary 1.14, [49],

C∞
0 (Ω) is dense in Lp(Ω) for 1 ≤ p <∞; that is, C∞

0 (Ω) = Lp(Ω). Therefore, (C∞
0 ([0, 1]))m ⊂

D(A0) and C∞
0 (Ω) = Lp(Ω) both imply that D(A0) = (Lp([0, 1]))m.

We show existence of a C0 semigroup by analysing the resolvent. We solve a resolvent equation

λf − Cf ′ = g, where f ∈ D(A0) and g ∈ X using the method of variation of parameters to

obtain (R(λ,A)g)(x). This is equivalent to f ′ − λC−1f = −C−1g. This equation implies that

f ′j(x) −
λ

cj
fj(x) = − 1

cj
gj(x) ∀j = 1, . . . ,m. (4.15)

Solving the homogeneous part of this equation gives

fj(x) = e
λ
cj

x
νj , (4.16)

where νj is an arbitrary constant. Let fj,p(x) = e
λ
cj

x
Dj(x), where Dj(x) is an unknown function

to be determined. Then

f ′j,p(x) =
λ

cj
e

λ
cj

x
Dj(x) + e

λ
cj

x
D′

j(x).

Substituting in (4.15), we get the simple ODE, which we solve to get

Dj(x) =
1

cj

∫ 1

x
e
− λ

cj
s
gj(s)ds,

so that fj,p(x) is given by

fj,p(x) =
1

cj
e

λ
cj

x
∫ 1

x
e
− λ

cj
s
gj(s)ds.



58

Hence the general solution to the entire problem is given by

fj(x) = e
λ
cj

x
νj + e

λ
cj

x
Dj(x)

= e
λ
cj

x
νj +

1

cj

∫ 1

x
e

λ
cj

(x−s)
gj(s)ds.

We rewrite in the form

cjfj(x) = cje
λ
cj

x
νj +

∫ 1

x
e

λ
cj

(x−s)
gj(s)ds, (4.17)

therefore

Cf = CeλxC−1
ν +

∫ 1

x
eλ(x−s)C−1

g(s)ds.

Since f ∈ D(A0), GCf(1) = GCeλC−1
ν = BECf(0). But

Cf(0) = Cν +

∫ 1

0
eλ(−s)C−1

g(s)ds,

hence

GCeλC−1
ν = BECν + BE

∫ 1

0
eλ(−s)C−1

g(s)ds

⇒
(

GCeλC−1 − BEC
)

ν = BE

∫ 1

0
eλ(−s)C−1

g(s)ds

⇒
(

I − G−1C−1e−λC−1
BEC

)

ν = C−1G−1e−λC−1
BE

∫ 1

0
eλ(−s)C−1

g(s)ds

Therefore,

ν =
(

I − G−1C−1e−λC−1
BEC

)−1
C−1G−1e−λC−1

BE

∫ 1

0
eλ(−s)C−1

g(s)ds. (4.18)

Since the norm of e−λC−1
can be made as small as one wishes by taking large λ, we see that ν

in (4.18) is uniquely defined by the Neumann series provided λ is sufficiently large and hence the

resolvent of A0 exists. We find an estimate for the resolvent by noting, first, that the Neumann

series expansion ensures that A0 is a resolvent positive operator and hence the norm estimates

can be obtained for non-negative entries. Next, we recall that B is column stochastic, hence

each column sums to 1. Adding the rows of the system

GCeλC−1
ν = BECν + BE

∫ 1

0
eλ(−s)C−1

g(s)ds

gives
m∑

j=1

αjcje
λ
cj νj =

m∑

j=1

γjcjνj +
m∑

j=1

γj

∫ 1

0
e

−λ
cj

s
gj(s)ds. (4.19)
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We integrate Equation (4.17) to get

∫ 1

0
fj(x)dx = νj

∫ 1

0
e

λ
cj

x
dx+

1

cj

∫ 1

0

∫ 1

x
e
− λ

cj
(x−s)

gj(s)dsdx

= νj
cj
λ

(

e
λ
cj − 1

)

+
1

λ

∫ 1

0

(

e
λ
cj

s − 1

)

e
− λ

cj
s
gj(s)ds

= νj
cj
λ

(

e
λ
cj − 1

)

+
1

λ

∫ 1

0

(

1 − e
− λ

cj
s
)

gj(s)ds.

Introducing a weighted space X with norm

‖f‖X =
m∑

j=1

αj‖fj‖L1([0,1])

and considering g ≥ 0, we get

‖f‖X =
m∑

j=1

αj

∫ 1

0
fj(x)dx =

1

λ

m∑

j=1

νjcjαj

(

e
λ
cj − 1

)

+
1

λ

m∑

j=1

αj

∫ 1

0

(

1 − e
− λ

cj
s
)

gj(s)ds

and using (4.19), we obtain

‖f‖X =
1

λ

m∑

j=1

νjcj(γj − αj)+
1

λ

m∑

j=1

(γj − αj)

∫ 1

0
e
− λ

cj
s
gj(s)ds+

1

λ

m∑

j=1

αj

∫ 1

0
gj(x)dx. (4.20)

There are three cases to consider

1. γj ≤ αj for all j = 1, . . . ,m: Since G,E, C are diagonal matrices, they commute, so we

have

e−λC−1
C−1G−1BEC ≤ (CG)−1 e−λC−1

BCG

Since (CG)−1 e−λC−1
BCG is similar to e−λC−1

B and r
(

e−λC−1
B

)

= r
(

e−λC−1
)

r(B) ≤
r(B) = 1, we have

r
(

e−λC−1
C−1G−1BEC

)

≤ 1

for any λ > 0. Therefore, R(λ,A0) is well defined for λ > 0. Using γj ≤ αj and equation

(4.20) we get

‖R(λ,A)g‖X = ‖f‖X ≤ 1

λ

m∑

j=1

αj

∫ 1

0
gj(x)dx =

1

λ
‖g‖X, λ > 0.

Since (A0, D(A0)) is dense in X, it generates a C0 semigroup of contraction.

2. If γj ≥ αj for all j = 1, . . . ,m, then from Equation (4.20),

‖R(λ,A)g‖X ≥ 1

λ
‖g‖X.
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Since (A0, D(A0)) is dense, by definition, we use Theorem 2.5.11 to conclude that

(A0, D(A0)) is a generator of a positive semigroup in X, and hence in X since ‖.‖X

is equivalent to ‖.‖X .

3. γj < αj for some j ∈ I1 and γj ≥ αj for some j ∈ I2, where I1 ∩ I2 = ∅ and

I1 ∪ I2 = {1, 2, . . . ,m}. Let D = diag(lj), where lj = αj for j ∈ I1 and lj = γj for

j ∈ I2. Then

e−λC−1
C−1G−1BEC ≤ (CG)−1 e−λC−1

B(CD).

Let AD be the restriction of A0 to the domain

D(AD) =
{
u ∈

(
W 1

1 ([0, 1])
)m

: u(1) = G−1C−1BDCu(0)
}
,

then clearly, if g ≥ 0, the resolvent R(λ,AD) is also positive. The resolvent of A0 and

AD also satisfy 0 ≤ R(λ,A0) ≤ R(λ,AD) for any λ for which R(λ,AD) exists. Using

the previous case, we see that AD generates a positive semigroup. We also have the

inequality R(λ,A)k ≤ R(λ,AD)k for any k ∈ N and for some ω > 0,M ≥ 1. Therefore,

using inequality 2.11, together with Theorem 2.5.6 (Hille-Yosida) we have

‖R(λ,A0)
k‖ ≤ ‖R(λ,AD)k‖ ≤M (λ− ω)−k , λ > ω.

Therefore, (A0, D(A0)) is a generator of a positive semigroup as well.

Remark 4.4.2. If αj = γj , then from Equation (4.20), we have

‖f‖X =
1

λ

m∑

j=1

αj

∫ 1

0
gj(x)dx⇒ ‖R(λ,A0)g‖X =

1

λ
‖g‖X.

Thus the semigroup is conservative in X.

From Corollary 2.6 of [33], the semigroup (T (t))t≥0 is contractive only when cj = c for all

j = 1, . . . ,m, but as seen in the above calculations this is not necessary. The semigroup was

not contractive because the Kirchoff law (boundary condition) stated in Equation (3) of [33]

was incorrect (also see Remark 4.1.1).
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4.5 Spectral properties and asymptotic behaviour

4.5.1 Same speed

In [14], the author showed that if cj = 1 and αj , γj = 1 for all j = 1, . . . ,m and the graph is

strongly connected, then the semigroup is given by

(T (t)f)(x) = Bnf(t+ x− n) 0 ≤ t+ x− n ≤ 1, n ∈ N0.

This formula still holds for a finite, connected graph (not strongly connected), with an outgoing

edge in every vertex, even when absorption and/or generation is allowed.

Proposition 4.5.1. Let G be a connected graph where every vertex has an outgoing edge and

cj = 1 for all j = 1, . . . ,m. Then the semigroup T (t) generated by (A0, D(A0)) on G is given

by

T (t)f(x) = Pnf(t+ x− n); n ∈ N0, 0 ≤ t+ x− n ≤ 1, (4.21)

where P = G−1BE.

Proof. Let us denote by T (t)f the formula of the operator given by the right hand side of

(4.21). First, we observe that T (t)f is strongly continuous. This can be shown in the same way

we show that translation semigroups are strongly continuous. Computing the Laplace transform

of T (t),

R(λ)g(s) =

∫ ∞

0
e−λtT (t)g(s)dt

=

∫ 1−s

0
e−λtg(t+ s)dt+

∞∑

n=1

∫ 1+n−s

n−s
e−λtPng(t+ s− n)dt

=

∫ 1

s
e−λ(τ−s)g(τ)dτ +

∞∑

n=1

∫ 1

0
e−λ(n−s+τ)Png(τ)dτ.

Recall, from previous calculations, that R(λ,A0) is given by

R(λ,A0)g(x) = eλxν +

∫ 1

x
eλ(x−s)g(s)ds,
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where ν is given by (4.18). We expand the expression for ν using power series to obtain

ν =
∞∑

n=0

(

G−1e−λBE

)n
G−1e−λBE

∫ 1

0
e−λsg(s)ds

= G−1e−λBE

∫ 1

0
e−λsg(s)ds+

∞∑

n=1

(

G−1e−λBE

)n
G−1e−λBE

∫ 1

0
e−λsg(s)ds

= e−λ

∫ 1

0
e−λsPg(s)ds+

∞∑

n=1

e−nλPn+1e−λ

∫ 1

0
e−λsg(s)ds.

Thus, multiplying by eλx with sufficiently large λ, we get

eλxν =

∫ 1

0
e−λ(1−x+s)Pg(s)ds+

∞∑

n=1

Pn+1

∫ 1

0
e−λ(n−x+1+s)g(s)ds

=
∞∑

n=0

∫ 1

0
e−λ(n−x+1+s)Pn+1g(s)ds.

Therefore, the resolvent R(λ,A0) is given by

R(λ,A0)g(x) =

∞∑

n=0

∫ 1

0
e−λ(n−x+1+s)Pn+1g(s)ds+

∫ 1

x
eλ(x−s)g(s)ds

=

∞∑

n′=1

∫ 1

0
e−λ(n′−x+s)Pn′

g(s)ds+

∫ 1

x
eλ(x−s)g(s)ds;

where n′ = n + 1, and the equation is true for all x ∈ [0, 1] and g(x) ∈ L1([0, 1])m. There-

fore, R(λ,A0) = R(λ) and from uniqueness of the Laplace transform ([2], Theorem 1.7.3),

(T (t))t≥0 = (T (t))t≥0.

Proposition 4.5.2. If γj = αj = 1 for all j = 1, . . . ,m and λ ∈ σp(A0), then (eλ, f(0)) is an

eigenpair of B.

Proof. Solving the eigenvalue equation Af = λf gives f(x) = eλxf(0). This is an eigenvector of

A only if f(x) ∈ D(A0). This means that f(1) = eλf(0) = Bf(0). This implies that (eλ, f(0))

is an eigenpair of B for any eigenvalue λ of A0.

Since B is column stochastic, 1 is an eigenvalue of B, implying that some eigenvalues of A0 are

of the form 2ıkπ. Note also that B, being column stochastic, implies that Bn is also column

stochastic for all n ∈ N, hence ‖Bn‖1 = 1. From Proposition 4.5.2, we see that λ ∈ σp(A)

implies eλ ∈ σ(B) = σ(T (1)) ⇒ eσp(A) ⊂ σ(T (1)) = σ(B). Hence etσp(A0) ⊂ σ(T (t)) for all

t > 0 (by the spectral mapping theorem [16], Theorem IV.3.6).

Lemma 4.5.3. The spectrum of P is the same as the spectrum of T (1).
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Proof.

(T (t)f)(x) = Pnf(t+ x− n)

⇒ (T (1)f)(x) = Pnf(1 + x− n) = PPn−1f(0 + x− (n− 1))

= P(T (0)f)(x) = Pf(x)

So T (1) = P, hence σ(P) = σ(T (1))

Since T (t) is a strongly continuous semigroup, by Theorem V.2.6 of [17], we have eσ(A) =

σ(T (1)) \ {0}.

4.5.2 Same speed, with γj = αj

In this section, we assume that αj = γj for all j = 1, 2, . . . ,m, and cj = 1 for all j. Then

P = G−1BG and the two matrices P and B have the same set of eigenvalues. Suppose that

v is an eigenvector of P. Then there is λ ∈ C such that Pv = λv ⇒ BGCv = λGCv. So

(λ,GCv) is an eigenpair of B.

Conversely, if α is an eigenvalue of B, then By = αy ⇒ C−1G−1By = αC−1G−1y. But

C−1G−1B = PC−1G−1, hence PC−1G−1y = αC−1G−1y. Thus (α, (GC)−1y) is an eigenpair

of P. Since B is column stochastic, 1 is an eigenvalue of both P and B.

Similarly, vP = λv ⇒ v(GC)−1B = λv(GC)−1 and uB = αu ⇒ uGCP = αuGC. Since B is

column stochastic, (1,1) is its left eigenpair, hence the left eigenvector of P corresponding to

eigenvalue 1 is v = 1GC = (α1c, α2c, . . . , αmc) = (c1α1, . . . , cmαm). If cj = 1 for all j, then

v = 1G = (α1, α2, . . . , αm).

We have seen that the spectrum of the semigroup T (t) is related to the spectrum of P and

hence that of B, so we shall study the long term behaviour of the semigroup via matrix B.

Since B is reducible, we can write it in normal form (2.8), from which we see that Bs is column

stochastic, so 1 ∈ σ(Bs). If there is another matrix Bk with 1 as an eigenvalue, then Bh,k = 0
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for all h > k. Let Bk, Bk+1, . . . , Bs all have 1 as an eigenvalues. Then

B =






























B1 0 · · · 0 0 · · · 0 0 · · · 0

0 B2 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

... · · · ... · · · ...

0 0 · · · Bg 0 · · · 0 0 · · · 0

Bg+1,1 Bg+1,2 · · · Bg+1,g Bg+1 · · · 0 0 · · · 0
...

...
...

...
. . .

... · · · ...

Bk,1 Bk,2 · · · Bk,g Bk,g+1 · · · Bk 0 · · · 0

Bk+1,1 Bk+1,2 · · · Bk+1,g Bk+1,g+1 · · · 0 Bk+1 · · · 0
...

...
...

...
...

. . .
...

Bs,1 Bs,2 · · · Bs,g Bs,g+1 · · · 0 0 · · · Bs






























, (4.22)

From the matrix representation (4.22) we see that Bk, · · ·Bs are all column stochastic, hence

1 ∈ σ(Bi) for each i = k, . . . , s and 1 /∈ σ(Bj) for j = 1, . . . , k − 1. The right eigenvectors of

B corresponding to r(B) = 1 are given by

Ni = (0, . . . , 0,Ni, 0, . . . , 0)T , where BiN
i = Ni.

That is, Ni > 0 are the Perron eigenvectors of Bi for all i = k, . . . , s. The left eigenvectors of

B corresponding to 1 are v1,v2, . . . ,vm where

vk = (yk
1 ,y

k
2 , . . . ,y

k
k−1,v

k, 0, . . . , 0)

vk+1 = (yk+1
1 ,yk+1

2 , . . . ,yk+1
k−1, 0,v

k+1, 0, . . . , 0)

...
...

vs = (ys
1,y

s
2, . . . ,y

s
k−1, 0, . . . , 0,v

s)

where viB = vi = 1ni for each i = k, k + 1, . . . , s. We have used the notation 1ni to mean

1ni = (1, 1, . . . , 1
︸ ︷︷ ︸

ni times

).

By solving the system viB = vi, we get

yi
k−1 = viBi,k−1 (I −Bk−1)

−1 ,

yi
h =





k−1∑

j=h+1

yi
jBj,h + viBi,h



 (I −Bh)−1 ,
(4.23)
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for all 1 ≤ h ≤ k − 2 and i = 1, . . . ,m. The vectors in (4.23) are all positive, by Theorem 2.1

of Seneta, [51].

Lemma 4.5.4. The positive left eigenvector 1 is a sum of the linearly independent eigenvectors

vk,vk+1, . . . ,vs.

Proof.

m∑

i=k

yi
k−1 = 1nk

Bk,k−1(I −Bk−1)
−1 + 1nk+1

Bk+1,k−1(I −Bk−1)
−1+

· · · + 1nsBs,k−1(I −Bk−1)
−1

= (1nk
Bk,k−1 + 1nk+1

Bk+1,k−1 + · · · + 1nsBs,k−1)(I −Bk−1)
−1.

Since B is column stochastic,

1nk−1
Bk−1 + 1nk

Bk,k−1 + 1nk+1
Bk+1,k−1 + · · · + 1nsBs,k−1 = 1nk−1

.

Therefore,

1nk
Bk,k−1 + 1nk+1

Bk+1,k−1 + · · · + 1nsBs,k−1 = 1nk−1
− 1nk−1

Bk−1

= 1nk−1
(I −Bk−1).

Therefore,
s∑

i=k

yi
k−1 = 1nk−1

. (4.24)

Using this equation (4.24) and the fact that B is column stochastic, we obtain

yi
k−2 =

[
1niBi,k−2 + yi

k−11Bk−1,k−2

]
(I −Bk−2)

−1

s∑

i=k

yi
k−2 =

[
s∑

i=k

1niBi,k−2 +

s∑

i=k

yi
k−1Bk−1,k−2

]

(I −Bk−2)
−1

=
[(

1nk−2
− 1nk−1

Bk−1,k−2 − 1nk−2
Bk−2

)
+ 1nk−1

Bk−1,k−2

]
(I −Bk−2)

−1

= 1nk−2
.

Indeed, similar calculations show that for any 1 ≤ h ≤ k − 2,

m∑

i=1

yi
h = 1nh

.
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Let the number of distinct eigenvalues of B be ν and ki be the algebraic multiplicity of λi for

every λi ∈ σ(B). Let the number of distinct eigenvalues on the spectral circle be r and let

λ1 = 1, then k1 = s− k+ 1, |λ2| = · · · = |λr| = 1. We assume that Ni are normalised so that

vi.Ni = 1, i = k, . . . , s. (4.25)

Denote by di the index of imprimitivity of the matrix Bi, that is, di is the number of distinct

eigenvalues of Bi of modulus 1. Then these eigenvalues λi ∈ σ(Bi) can be written in the form

λl
i = e

2lıπ
di for l = 0, 1, . . . , di − 1 for each i = k, . . . , s and each of them is simple (see [44], p.

676). Further, denote

Z = {λ ∈ σ(Bi) : |λ| < 1}.

Theorem 4.5.5. There is a decomposition of the space X = Xk ⊕ · · · ⊕Xs ⊕ Y such that

1. The spaces Xl, l = k, . . . , s; and Y are invariant under (T (t))t≥0;

2. (T (t)|Xl
)t≥0 is periodic with period dl, l = k, . . . , s;

3. (T (t)|Y )t≥0 is exponentially stable of the type 0 > ω > max{ln |λ|;λ ∈ Z}.

Proof. Let Pλ be the spectral projection onto the generalised eigenspace corresponding to λ.

Then, for u ∈ Rm,

Pnu = G−1BnGu = G−1
s∑

i=k

di−1∑

l=0

λln
i PλiGu + G−1

∑

λi∈Z

λn
i pλi(n)PλGu, (4.26)

where pλ(n) is a matrix valued polynomial in n of order less or equal to ki. Since BN = N,

PG−1N = G−1N, the spectral projections Pλ0
i

corresponding to 1 = λ0
i ∈ σ(Bi), for i =

k, . . . , s is given by

Pλ0
i
u = (Gvi.u)G−1Ni.

Similarly, the spectral projections Pλl
i

have analogous form,

Pλl
i
u =

(

Ge∗
λl

i
.u
)

,G−1eλl
i
; (4.27)

where eλl
i

is the right eigenvector of B corresponding to λl
i and e∗

λl
i

is the associated left

eigenvector, normalised so that e∗
λl

i
.eλl

i
= 1. Then, recalling Proposition 4.5.1 and equation
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(4.26), the semigroup generated by (A0, D(A0)) with cj ≡ 1 is given by

T (t)u(x) =
[
G−1BnGu

]
(t+ x− n) = G−1

s∑

i=k

di−1∑

l=0

λln
i

[

Pλl
i
Gu
]

(t+ x− n)

+ G−1
∑

λi∈Z

λn
i [pλi(n)PλGu] (t+ x− n);n ∈ N0, 0 ≤ t+ x− n ≤ 1.

(4.28)

Define Xi and Y to be the spaces

Xi =

di−1⊕

l=0

Pλl
i
X, i = k, . . . , s,

Y =
⊕

λ∈Z

PλX.

The only element common in all these spaces is the vector 0.

To prove item (2), let u ∈ Xi = L1([0, 1],Xi), where Xi = Span{G−1eλl
i
}l=0,...,di−1 and

i = k, . . . , s. Consider the equation

[T (t)|Xiu] (x) := [Ti(t)u](x) =

di−1∑

l=0

λln
i [Pλl

i
u](t+ x− n), 0 ≤ t+ x− n ≤ 1 (4.29)

for i = k, . . . , s. Then [Ti(t)u] extends to a periodic group in Xi with period di, the index of

imprimitivity of the matrix Bi. To verify this, we evaluate Ti(t+di). First, we take n′ satisfying

0 ≤ (t+ di) + x− n′ ≤ 1, that is n′ = n+ di. Then

(Ti(t+ di)u)(x) =

di−1∑

l=0

λln′

i [Pλl
i
u](t+ di + x− n′), 0 ≤ t+ x− n′ ≤ 1

=

di−1∑

l=0

e
2ılπ(n+di)

di [Pλl
i
u](t+ x− n), 0 ≤ t+ x− n ≤ 1

=

di−1∑

l=0

e
2ınlπ

di e2ıπl[Pλl
i
u](t+ x− n), 0 ≤ t+ x− n ≤ 1

= [Ti(t)u](x), 0 ≤ t+ x− n ≤ 1, n ∈ N0.

Hence, the period of (Ti(t))t≥0 is τi ≤ di. We can show that the period is indeed equal to di

by using a similar argument to that used in Theorem 4.5, [33] or Theorem 24, [14], but we give

a more elementary proof here by using the structure of the matrix given in (4.22). Taking the
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Laplace transform of (Ti(t))t≥0 with ul = Pλl
i
u,u ∈ Xi gives

∫ ∞

0
e−tλ[Ti(t)u](x)dt =

∫ ∞

0
e−tλ

di−1∑

l=0

λln
i [Pλl

i
u](t+ x− n)dt

=

di−1∑

l=0

(
∫ ∞

0
e−λtul(t+ x)dt+

∞∑

n=1

e
2ıπln

di

∫ ∞

0
e−λtul(t+ x− n)dt

)

=

di−1∑

l=0

(
∫ 1

x
e−λ(s−x)ul(s)ds+

∞∑

n=1

e
2ıπln

di

∫ 1

0
e−λ(s+n−x)ul(s)ds

)

=

di−1∑

l=0

(
∫ 1

x
e−λ(s−x)ul(s)ds+

∞∑

n=1

e

(
2ıπl
di

−λ
)

n
∫ 1

0
e−λ(s−x)ul(s)ds

)

.

From this, we see that the resolvent of the generator of (Ti(t))t≥0 has poles at λ ∈ C which

satisfy eλ = e
2ıπl
di , l = 0, 1, . . . di − 1. From Lemma IV. 2.25 of [16], if τ is the period of a

semigroup, then the resolvent of the generator has poles at 2πı.Z/τ . By comparing, we conclude

that τ must be a multiple of di, hence τi = di is the period of the semigroup (Ti(t))t≥0.

To prove the last item, let τn = t− n with 0 ≤ τn < 1. Using boundedness of Pλ, we have

‖λn[pλ(n)Pλu](t+ .− n)‖X ≤ c(|λ|n|pλ(n)|
∫ 1

τn

|u(s)|ds+ |λ|n+1|pλ(n+ 1)|
∫ τn

0
|u(s)|ds)

c′λ
n‖u‖X ≤ c′′‖u‖Xe

t ln λ

for some positive constants c, c′, c′′ and |λ| < λ < 1 ∈ Z.

4.5.3 The primitive case

If di = 1 for some i ∈ {k, · · · , s}, then Bi is primitive, and thus Xi is spanned by the Perron

eigenvector Ni extended by zero. That is, Xi is spanned by the vector Ni = (0,Ni,0), where

BiN
i = Ni. Thus for f ∈ D(A0), the solution to the flow problem restricted to the space Xi

is given by

[Ti(t)f ](x) = (Gvi.f(t+ x− n))G−1Ni, n ∈ N0, 0 ≤ t+ x− n ≤ 1. (4.30)

If there is only one block in the normal form of B (Bs) with eigenvalue 1, then this eigenvalue is

simple (because of irreducibility of Bs). If Ps is primitive, then any other eigenvalue of B is of

magnitude less than 1. Then N = (0, . . . , 0,Ns)T and v = (1, . . . , 1), hence X is decomposed
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into two (T (t))t≥0 invariant subspaces, X = X1 ⊕ Y , where T (t) restricted to X1 is given by

T (t)|X1
f(x) = (G(1, . . . , 1)f(t+ x− n))G−1N

=
m∑

i=1

αifi(t+ x− n)G−1N = f(t+ x− n)G−1N,

where f(t+ x− n) ∈ L1([0, 1]). This semigroup T (t)|X1
is periodic with period 1.

If there is more than one block with eigenvalue 1 and each of them is not cyclic, then the

semigroups (T (t)|Xl
)t≥0 defined in Theorem 4.5.5 are periodic with period 1.

4.5.4 Same speed, γj 6= αj

If there is at least one j such that γj 6= αj , then P = G−1BE and B are no longer similar

matrices, so the asymptotic behaviour of T (t) cannot be studied through the spectral properties

of B. Further, 1 may not be the maximum eigenvalue of P. But we can define a new matrix

P̃ := (1/r(P))P. This new matrix P̃ has spectral radius r(P̃) = 1. We then proceed as shown

in the preceding section using the matrix P̃.

Using the Jordan decomposition, we can write the powers of P in terms of its eigenvectors and

generalised eigenvectors as follows.

Pn = rnNkvk + · · · + rnNsvs +

ν∑

i=2

ki∑

j=1

j−1
∑

l=0

(
n

l

)

λn−l
i xi,j−lv

i
j ,

where vi
j are left eigenvectors and generalised left eigenvectors corresponding to eigenvalue λi,

whose algebraic multiplicity is ki, for all i = 2, . . . , ν. Similarly, xi,j−l are right eigenvectors and

generalised right eigenvectors corresponding to λi. Then

P̃n =
Pn

rn
= Nkvk + · · · + Nsvs +

ν∑

i=2

ki∑

j=1

j−1
∑

l=0

(
n

l

)
λn−l

i

rn
xi,j−lv

i
j .

The semigroup T̃ (t)f(x) = P̃nf(t+ x− n) then satisfies Theorem 4.5.5. Since

T̃ (t)f(x) = P̃nf(t+ x− n) =
1

rn
Pnf(t+ x− n),

we have rnT̃ (t)f(x) = T (t)f(x) for all n ∈ N0 such that 0 ≤ t+ x− n ≤ 1.

If all the blocks Pi are primitive, then there are no other eigenvalues of modulus r, hence taking

limits as n→ ∞, we get

P̃n → Nkvk + · · · + Nsvs,
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hence T̃ (t)f(x) = P̃nf(t+ x− n) has asymptotic behaviour

T̃ (t)f(x) ≈ (vkf(t+ x− n))Nk + · · · + (vsf(t+ x− n))Ns.

The asymptotic behaviour of the new matrix gives the asynchronous growth of the powers of P,

and the qualitative behaviour of the semigroup (T̃ (t))t≥0 defined by T̃ (t)f(x) = P̃nf(t+x−n)

is the same behaviour of the original semigroup (T (t))t≥0.

4.6 Different speed along the vertices

Until now, we have considered flow problems with cj = 1 for all j. In this section, we show that

the flow problem can still be solved using the results we have obtained already by converting it

to a problem with cj ≡ 1. In this section, we adopt the assumption from [33] that the speeds

are linearly dependent over the field of rational numbers Q. That is, for all j = 1, . . . ,m,

N

cj
∈ N for some N ∈ N. (4.31)

If cj can be written in the form cj = 1
lj

, where lj ∈ N for all j, we make the transformation

x̃ = (1/cj)x. Then, the flow problem becomes:

F3







∂tuj(x̃, t) = ∂x̃uj(x̃, t), x̃ ∈ [0, 1
cj

], t ≥ 0,

uj(x, 0) = fj(x),

φ−ijcjuj(
1
cj
, t) = wi,j

∑m
k=1 φ

+
i,k(ckuk(0, t)), ∀i.

(4.32)

If the speed cj can be written in the form cj = N/lj for some N, lj ∈ N and j ∈ {1, . . . ,m},
then we first rescale time using the transformation τ = Nt. This will put the flow problem into

the form where 0 < c̃j < 1, considered above,






∂τuj(x, τ) = 1
lj
∂xuj(x, τ), x ∈ (0, 1), τ ≥ 0,

uj(x, 0) = fj(x),

φ−ijcjuj(1, τ) = wi,j
∑m

k=1 φ
+
i,k(ckuk(0, τ)), ∀i.

(4.33)

Notice that in this, case, c̃j = 1/lj , which is the first case we considered. Then we can apply the

transformation x̃ = xlj = (1/c̃j)x and this will put the problem into the form given in (4.32).

From now on, we assume that the flow problem is in the form (4.32).

We then divide the interval [0, 1
cj

] into unit intervals by creating artificial vertices along the edge

ej . The number of artificial vertices created along ej will be ( 1
cj

− 1). We label the edges
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joining these vertices as ej1 , ej2 , . . . , ej1/cj
. In this way, we have created a larger network with

n′ vertices and m′ edges and each edge is of unit length; that is s ∈ [0, 1] with

m′ =
m∑

j=1

1

cj
; n′ = n+

m∑

j=1

(
1

cj
− 1

)

= n+m′ −m.

The density of particles on edge eji will be denoted by uji for all j = 1, . . . ,m and i =

1, 2, . . . , 1
cj

.

For each i = 1, . . . , 1
cj

, i− 1 ≤ x̃ ≤ i, we introduce a new variable s, which is defined on [0, 1]

and depends on x̃ through the following equation:

s = x̃− i+ 1, (4.34)

for each i and x̃ defined above.

Remark 4.6.1. On the larger network, we shall again represent the outgoing incidence matrix

as Φ− and the incoming incidence matrix as Φ+. These matrices are n
′ ×m

′

matrices. Every

artificial vertex has exactly one incoming and outgoing edge, and the weight on the outgoing

edge of an artificial vertex is 1. If vi is not an artificial vertex and ej is an outgoing edge of vi,

then the weight on ej , wij , is the same as in the original network.

The flow problem on this larger network is simply the flow problem in (4.10) with a few modi-

fications:






∂tuji(s, t) = ∂suji(s, t), s ∈ [0, 1], t ≥ 0,

uji(s, 0) = ϕji(s),

φ−lji
cjiuji(1, t) = wl,ji

∑m
k=1 φ

+
l,k 1

cj

ck 1
cj

uk 1
cj

(0, t), ∀l = 1, . . . , n′.

(4.35)

where

ϕji(s) =







fj(x̃) if 0 ≤ x̃ ≤ 1; i = 1,

fj(x̃) if 1 ≤ x̃ ≤ 2; i = 2,
...

...

fj(x̃) if 1
cj

− 1 ≤ x̃ ≤ 1
cj

; i = 1
cj

Since each artificial vertex has exactly one incoming and one outgoing edge and the speed on

all the artificial edges is the same, the boundary condition on each of these artificial vertices is

φ−lji
cjiuji(1, t) = cjuji(1, t) = φ+

lji−1
cji−1uji−1(0, t) = cjuji−1(0, t) (4.36)
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for all i = 2, . . . , 1
cj

and j = 1, 2, . . . ,m. If we define the operator (A, D(A)) where

D(A) = {v ∈W 1
1 ([0, 1])m′

: v(1) = C−1BCv(0)}

and Av = v′, then the flow problem on the new graph is equivalent to the abstract Cauchy

problem






v′(t) = Av(t),

v(0) = ϕ.

Here B is the adjacency matrix for the line graph of the new expanded network.

Define a function v(s) = (v1(s), . . . , vm(s)), where vj = (vj1 , . . . , vj 1
cj

) is defined as

vj = vji(s), s = x̃− i+ 1, 1 ≤ i ≤ c−1
j , 1 ≤ j ≤ m. (4.37)

Then we define u(x) by

uj(x) = vj(cj x̃) (4.38)

Theorem 4.6.2. Let S : L1([0, 1])m′ → L1([0, 1])m be the transformation u = Sv defined by

(4.38). Then S is an isomorphism.

Proof. We note first that S is invertible, since

vj(s) =







uj(x̃) if 0 ≤ x̃ ≤ 1; i = 1

uj(x̃) if 1 ≤ x̃ ≤ 2; i = 2
...

...

uj(x̃) if 1
cj

− 1 ≤ x̃ ≤ 1
cj

; i = 1
cj
,

(4.39)

where s is as defined in (4.34) for all j = 1, . . . ,m, defines the inverse of S. Then

‖Sv‖ =

m∑

j=1

∫ 1

0
|uj(x)|dx

=
m∑

j=1

cj

∫ 1
cj

0
|vj(x̃)|dx̃

=
m∑

j=1

cj

1
cj∑

i=1

∫ i

i−1
|vji(x̃)|dx̃

=
m∑

j=1

cj

1
cj∑

i=1

∫ 1

0
|vji(s)|ds

≤ max{cj}‖v‖.
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On the other hand, ‖S−1u‖ = ‖u‖

‖S−1u‖ =
m∑

j=1

[∫ 1

0
|vj1(s)|ds+

∫ 1

0
|vj2(s)|ds+ · · · +

∫ 1

0
|vj 1

cj

(s)|ds
]

=
m∑

j=1

1
cj∑

i=1

∫ 1

0
|vji(s)|ds

=
m∑

j=1

1
cj∑

i=1

∫ i

i−1
|vj(x̃)|dx̃

=

m∑

j=1

∫ 1
cj

0
|vj(x̃)|dx̃ =

m∑

j=1

1

cj

∫ 1

0
|uj(x)|dx

≤ max
j

(
1

cj

)

‖u‖.

We conclude that S is an isomorphism.

Lemma 4.6.3. The function v ∈ D(A) if and only if u = Sv ∈ D(A).

Proof. From the preceding results (in particular Theorem 4.4.1), we know that (4.35) admits

semigroup solutions. Suppose that

v(s) =
(
v1,1(s), . . . , v1,1/c1(s), . . . , vm,1(s), vm,2(s), . . . , vm,1/cm

)
∈ D(A).

Then Equation (4.36) gives us continuity of the flow at the artificial vertices. That is, vji(1) =

vji−1(0) for all i = 2, . . . , 1
cj

. So the function vj(s), defined in equation (4.37), is continuous

on [0, 1
cj

] for all j = 1, . . . ,m and

m∑

j=1

∫ 1
cj

0
|vj(x̃)|dx̃ =

m∑

j=1





∫ 1

0
|vj(x̃)|dx̃+

∫ 2

1
|vj(x̃)|dx̃+ · · · +

∫ 1
cj

1
cj

−1
|vj(x̃)|dx̃





=
m∑

j=1

1

cj

[∫ 1

0
|vj1(x)|dx+

∫ 1

0
|vj2(x)|dx+ · · · +

∫ 1

0
|vj 1

cj

(x)|dx
]

<∞

since each vji(x) ∈ L1[0, 1]. So vj ∈ L1([0,
1
cj

]) for any j = 1, . . . ,m. Next, we show that

vj ∈ W 1
1 ([0, 1

cj
]), j = 1, . . . ,m. Since each vji ∈ W 1

1 ([0, 1]), there exists gji ∈ L1([0, 1]) such

that
∫ 1

0
vjiφ

′ds = −
∫ 1

0
gjiφds, ∀φ ∈ C∞

0 ([0, 1]),

for each j = 1, . . . ,m and i = 1, . . . , 1
cj

. On the other hand, let ξ ∈ C∞
0 ([0, 1/cj ]). Then

∫ 1
cj

0
vjξ

′dx̃ =

∫ 1

0
vjξ

′dx̃+

∫ 2

1
vjξ

′dx̃+ · · · +
∫ 1

cj

1
cj

−1
vjξ

′dx̃
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From this equation, using Corollary 8.10 of [8], we get

∫ 1
cj

0
vjξ

′dx̃ = −
∫ 1

0
ĝj1ξdx̃+ (vj1ξ)|10 −

∫ 2

1
ĝj2ξdx̃+ (vj2ξ)|10 − · · · −

∫ 1
cj

1
cj

−1
ĝj 1

cj

ξdx̃

+ (vj 1
cj

ξ)

∣
∣
∣
∣

1
cj

1
cj

−1

=

(

−
∫ 1

0
ĝj1ξdx̃+ vj1(1)ξ(1)

)

+

(

−
∫ 2

1
ĝj2ξdx̃+ vj2(2)ξ(2) − vj2(1)ξ(1)

)

+ · · ·

+



−
∫ 1

cj

1
cj

−1
ĝj 1

cj

ξdx̃− vj 1
cj

(
1

cj
− 1

)

ξ

(
1

cj
− 1

)


 ,

where ĝji(x̃) = gji(s) with s = x̃− i+ 1 for j = 1, . . . ,m and i = 1, . . . , 1/cj . By the Kirchoff

law at the artificial vertices and continuity of the test functions ξ on [0, 1
cj

], all the boundary

terms in the integral cancel out. That is,

vj1(1) = vj2(1), vj2(2) = vj3(2), · · · , vj 1
cj

(
1

cj
− 1

)

= vj 1
cj

−1

(
1

cj
− 1

)

.

Hence
∫ 1

cj

0
vjξ

′dx̃ = −
∫ 1

0
ĝj1ξdx̃−

∫ 2

1
ĝj2ξdx̃− · · · −

∫ 1
cj

1
cj

−1
ĝj 1

cj

ξdx̃

= −
∫ 1

cj

0
gjvjdx̃;

where

gj(x̃) =







ĝj1(x̃), if 0 ≤ x̃ ≤ 1,

ĝj2(x̃), if 1 ≤ x̃ ≤ 2,
...

...

ĝj 1
cj

(x̃), if 1
cj

− 1 ≤ x̃ ≤ 1
cj
.

Since gj(x̃) ∈ L1([0,
1
cj

]), vj(x̃, t) ∈W 1
1 ([0, 1

cj
]) for each j = 1, . . . ,m, hence vj ∈W 1

1 ([0, 1
cj

]),

j = 1, . . . ,m. We have u ∈W 1
1 ([0, 1])m, where u is defined by (4.38). Since the Kirchoff laws

at the original vertices have not been changed, we must have u ∈ D(A0).

Thus, the solution to (4.35) is given by

(T (t)f)(s) = C−1BnCψ(t+ s− n), n ∈ N0, 0 ≤ t+ s− n < 1 s ∈ [0, 1],
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where

ψ(s) =





















ϕ1,1(s)
...

ϕ1, 1
c1

(s)

...

ϕm,1(s)
...

ϕm, 1
cm

(s)





















and from this, we obtain the solution to the original problem through equation (4.38) above.

Using the transformation in Theorem 4.6.2, we have

T (t)u = S−1T (Nt)Su. (4.40)

That is, in order to get u1(x, t), we take the submatrix of B which contains only the first 1
c1

rows of B and multiply it with ϕ. To get u2(x, t), we take the next 1
c2

rows by starting from

the ( 1
c1

+ 1)th row up to the ( 1
c1

+ 1
c2

)th row and so on.



Chapter 5

A Graph Theoretic Point of View

5.1 Introduction

In the preceding chapter, we proved the existence of semigroup solutions to the flow problem

on the graph with no sinks. In this chapter, we extend the results of Chapter 4 to graphs with

non trivial acyclic part. We will show that asymptotically, the flow will remain in certain parts

of the graph with cycles and that these subgraphs where the flow remains asymptotically are

those cycles with no outgoing flow. We also show that the flow on the edges in the acyclic part

of the graph will be depleted in finite time while the flow in the cyclic parts of the graph with

both incoming and outgoing flow will be depleted asymptotically. We start with certain useful

graph descriptions which will enable asymptotic description of the flow to be easier.

5.2 Graph Descriptions

Let G = (V (G), E(G)) be a digraph with n vertices and m edges and let v ∈ V (G). The

out-degree (denoted d−(v)) of v is the number of outgoing edges of v and the in-degree of

v (denoted d+(v)) is the number of incoming edges of v. We will assume that G(V,E) is

connected but not necessarily strongly connected. We assume that each vertex has at least one

outgoing edge (d−(v) > 0 for every v ∈ V ). Let Vo be the set of vertices which are sources in

the graph.

Let Q = (V (Q), E(Q)) = (E(G), E(Q)) be the line graph of G. As seen in the first chapter,

76
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e′i = (v′iv
′
j) is an edge of Q if there exists a vertex v ∈ V (G) such that

ei→ v
ej→. Let us put this

in a formal definition:

Definition 5.2.1. A vertex v ∈ G is said to generate an edge eij in Q if there exist edges ei

and ej in G such that

ei−→ v
ej−→ .

We introduce the map

ΦG : E(G) → V (Q) (5.1)

by defining ΦG(e) = ē, where ē is the vertex in Q corresponding to the edge e in G. Therefore,

it is a one-to-one function. We also define ΨG to be the multifunction

ΨG : V (G) → 2E(Q). (5.2)

This function assigns to a vertex v ∈ V (G) a set of edges generated by v. If u ∈ Vo, then it

does not generate any edges in Q. Every vertex in V (G) \ Vo generates at least one edge since

there are no sinks.

More precisely, if v is a vertex in V (G) \Vo, then it generates d−(v)d+(v) edges. To verify this,

notice that if v has out degree d−(v), then every edge that is incoming at v is adjacent to all

the d−(v) edges going out of v, hence there are d−(v) edges generated in Q for every incoming

edge at v, and since there are d+(v) incoming edges at v, there is a total of d−(v)d+(v) edges

in Q generated by v.

On the other hand, the inverse of ΨG is a map, that is, if ΨG(v) ∩ ΨG(v′) 6= ∅, then v = v′.

Indeed if ǫ is generated by a vertex v ∈ V (G), then there is an incoming edge u and an outgoing

edge w such that the vertices ū and w̄ are incident to ǫ. Since an edge has only one tail and

one head, if ǫ was generated by another vertex v′ ∈ G, then v′ would be the head of u and the

tail of w, which is impossible.

Since the graph G has no sinks, it cannot be acyclic (see Proposition 1.4.2, [6]), hence the line

graph Q is not acyclic as well. However, if G has sources, then there exists an acyclic subgraph

of G (and hence, Q has an acyclic subgraph as well). We shall see how to obtain the maximal

acyclic subgraph of Q below. Let Vo(Q) be the set of sources in Q. Then Vo(Q) = ΦG(ej)

where ej are edges in G with their tails in Vo(G). Let Q2 be the subgraph of Q which consists

of all cycles and all paths joining the cycles and Q1 be the graph obtained by deleting Q2
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from Q. Then Vo(Q) ⊂ V (Q1). Let CQ be the cut set separating Q1 and Q2. Then the set

E(Q) = CQ ∪ E(Q1) ∪ E(Q2).

We can easily determine all the vertices and edges of Q1 by using a topological sorting algorithm,

[12]:

1. Pick a vertex v ∈ Vo(Q) and label it v1.

2. Delete v1 from Q and call the resulting graph Q̃.

3. Pick another vertex v ∈ Vo(Q̃) and label it v2.

4. Delete v2 from Q̃ and call the resulting graph Q̃ (again).

5. Repeat the above procedure until we get a graph Q̃ = Q2 such that Vo(Q̃2) = ∅ or until

all the vertices in the graph are labelled.

Lemma 5.2.2. If Q′ is the subgraph of Q which was left after the execution of the topological

sorting algorithm, then it must contain a cycle.

Proof. If v ∈ V (Q′), then v is the head of some edge in Q′. Since by assumption every vertex

has an outgoing edge, it follows that every vertex in Q′ has an incoming and outgoing edge,

there are no sources and no sinks, so Q′ must have a cycle, by Proposition 1.4.2, [6].

Let Q1 be the graph whose vertex set contains the vertices {v1, v2, . . .} which were labelled by

the topological sorting algorithm. That is, V (Q1) = V (Q) \ V (Q2). Then we note that Q̃ is a

subgraph of Q and Vo(Q) ⊆ V (Q1). Clearly, if v ∈ V (Q2), then v /∈ V (Q1). This is because

for v ∈ V (Q2), it must either be on a cycle or an a path between two cycles. In either case

v ∈ V (Q1) would mean that there is a cycle contained in Q1, a contradiction.

Remark 5.2.3. A graph Q (or G) may have more than one cut set, but the cut set separating

the acyclic part of Q (that is Q1) from the cyclic part Q2 is unique. To verify this, Let C1

and C2 be two cuts separating Q1 and Q2. Then note that E(Q) = E(Q1) ∪ E(Q2) ∪ C1 =

E(Q1) ∪ E(Q2) ∪ C2. Since E(Q1) ∩ E(Q2) = ∅, it follows that C1 = C2.

We can also use the topological sorting algorithm to find the maximal acyclic subgraph of G,

and we shall call this graph G1 (G2 will then be the graph obtained by deleting G1 from G).
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Lemma 5.2.4. The function ΦG maps the edges of the graph G which form cycles to the

vertices of the graph Q which are on cycles or between cycles; i.e

ΦG(E(G2)) = V (Q2); ΦG(E(G1)) ∪ CG = V (Q1) (5.3)

and

ΨG(V (G2)) = E(Q2) ∪ CQ; ΨG(V (G1)) = E(Q1). (5.4)

Proof. Let ui1 , ei1 , ui2 , . . . , eik−1
, uik be a cycle in G2. Since ej−1 and eij connect through uij ,

there is an edge in ΨG(uij ) with head at ΦG(eij ) and an edge in ΨG(uj+1) with tail at ΦG(eij ) so

that ΨG(ui1) contains an edge connecting ΦG(eik−1
) and ΦG(ei1). Therefore, if there is a cycle

in G, there is a corresponding cycle in Q. On the other hand, if vi1 , ei1 , vi2 , ei2 , . . . , eil−1
, vil =

vi1 is a cycle in Q2, then

Φ−1
G (vi1),Ψ

−1
G (ei1), . . . ,Ψ

−1
G (eil−1

),Φ−1
G (vil)

is a cycle in G. Hence there is a cycle in G2 if and only if there is a corresponding cycle in Q2.

Let e ∈ E(G2), then ΦG(e) is a vertex in Q. If e is on a cycle, then v is also on a cycle,

hence v ∈ V (Q2). If e is on a path joining two cycles, then there is a vi1 and vik both on

cycles such that vi1 , ei1 , . . . , eij = e, vij+1 , eij+1 , . . . , eik−1
, vik . Let v′ be a vertex on a cycle,

adjacent to the vertex vi1 (that is; v′vi1 is an edge on the cycle). Then ΦG(v′vi1) is a vertex

in a corresponding cycle in Q2. Now since vi1 has at least two outgoing edges (one edge is on

the cycle and the other is on the path leading to ΦG(e), which is not on the cycle), ΨG(vi1)

consists of at least two edges. Also, vik has at least two incoming edges, one edge is on the

cycle and the other is on the path which contains e. Since vik is on a cycle, there is at least one

outgoing edge on the cycle. Hence ΦG(e) is on a path joining two cycles and therefore belongs

to Q2. This shows that ΦG(E(G2)) ⊆ V (Q2).

Let u be on a path joining two cycles in Q2. Then there are vertices ui1 and uik , both on

cycles, such that ui1 , ei1 , . . . , ej−1, uij = u, eij , . . . , uik is a path between cycles. ui1 must have

at least two outgoing edges; ei1 (leading to vertex u) and the other (call it e) on a cycle, and

at least one incoming edge. So there is some vertex v ∈ G2 which generates at least two edges.

In particular, e, ei1 ∈ ΨG2(v). Indeed if this was not the case, then we see that if e is generated

by u and ei1 by v (u 6= v), then there would be edges ēi, ēj , ēl and ēm such that

ēi−→ u
ēj−→;

ēl−→ v
ēm−→,
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where e = ēij and ei1 = ēlm. Since e and ei1 are incident from the same vertex in Q, it follows

that ēi = ēl, which gives the implication that ēi has two different heads, which is impossible.

So indeed e and ei1 are generated by the same vertex in G2. On the other hand, uik has at

least two incoming edges; one on the cycle (call it e′) and the other is the edges eik−1
and at

least one outgoing edge (on the cycle). So uik = Φ−1
G (e′) with e′ on a cycle in G and the two

incoming edges of uik are generated by the same vertex v′ in G2, with v′ on a cycle. Indeed

to see that eik−1
, e′ ∈ ΨG(v′), suppose first that they are generated by two different vertices v1

and v′. Then there are edges ēl1 , ēl2 , ēk1 , ēk2 in G such that e′ = ēk1k2 , eik−1
= ēl1l2 and

ēl1−→ v1
ēl2−→;

ēk1−→ v′
ēk2−→ .

Since e′ and eik−1
are incident to the same vertex (uik) in Q, it follows that ēl2 = ēk2 , which

gives the implication that ēk2 has two different tails, which is impossible. Thus the path

starting at Φ−1
G (ui1) and ending at Φ−1

G (uik) is a path joining two different cycles in G2. Hence

ΦG(E(G2)) ⊇ V (Q2) and this gives the equality in (5.3).

From the equations E(G) = E(G1) ∪ E(G2) ∪ CG and V (Q) = V (Q1) ∪ V (Q2), we have

V (Q1) = V (Q) \ V (Q2)

= ΦG(E(G)) \ ΦG(E(G2))

= ΦG(E(G1) ∪ E(G2) ∪ CG) \ ΦG(E(G2))

= ΦG(E(G1) ∪ CG).

To prove that ΨG(V (G1)) = E(Q1), suppose that v ∈ V (G1) and let eij ∈ ΨG(v). Then

there exist edges ei, ej in E(G) such that
ei−→ v

ej−→. We want to show that eij ∈ E(Q1). If

v ∈ V (G1), then there is no closed path involving it or involving the edges ei and ej . In particular,

ΦG(ei) is a source in Q (ΦG(ei) ∈ V (Q1)) as indeed is any of the d+(v) edges incoming at v.

That is, ΦG(ek) ∈ V (Q1) whenever ek is an incoming edge of v, for all v ∈ V (G1). Similarly,

ΦG(ej) ∈ V (Q1) as well (see from proof of (5.3)) and since eij is an edge from ΦG(ei) to

ΦG(ej), it follows that eij ∈ E(Q1). Hence, eij ∈ ΨG(V (G1)) ⇒ eij ∈ E(Q1), implying that

ΨG(V (G1)) ⊆ E(Q1).

Now suppose that e = eij ∈ E(Q1). We want to show that this edge is generated by a vertex

v in G1. eij ∈ E(Q1) implies that ΦG(ei),ΦG(ej) ∈ V (Q1), with ΦG(ei)
eij−→ ΦG(ej). Using

the equation in (5.3), we have

Φ−1
G (ei),Φ

−1
G (ej) ∈ E(G1) ∪ CG.
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This implies that either Φ−1
G (ei) ∈ E(G1) and Φ−1

G (ej) ∈ CG or Φ−1
G (ei),Φ

−1
G (ej) ∈ E(G1).

Since
Φ−1

G (ei)−→ v
Φ−1

G (ej)−→ ,

both cannot be in the cut set of G because then eij would not be in E(Q1). Φ−1
G (ei) cannot be

in the cut set of G either because then Φ−1
G (ej) ∈ E(G1) and this would contradict the second

equation of (5.3). In either case (Φ−1
G (ei) ∈ E(G1) and Φ−1

G (ej) ∈ CG or Φ−1
G (ei),Φ

−1
G (ej) ∈

E(G1)), v ∈ V (Q1), hence E(Q1) ⊆ ΨG(V (G1)). Thus E(Q1) = ΨG(V (G1)).

Using this result, we also have that

ΨG(V (G)) = E(Q) = CQ ∪ E(Q1) ∪ E(Q2)

= CQ ∪ E(Q2) ∪ ΨG(V (G1))

⇒ ΨG(V (G) \ V (G1)) = CQ ∪ E(Q2),

hence ΨG(V (G2)) = CQ ∪ E(Q2) which is the first equality in (5.4).

Remark 5.2.5. In most texts on graph theory, the topological sorting algorithm is performed

on a directed acyclic graph. We have adapted this algorithm on a graph which may contain

cycles to obtain two subgraphs, one of which is acyclic, and the other containing cycles. Most of

the results obtained in this section can not be found easily in literature. However, some partial

results do exist and have been expanded in this thesis. For example, Theorem 14.4 of [12] states

that the vertices of a directed graph can be arranged in a topological order if and only if the

graph is acyclic. This can be related to Lemma 5.2.2 in this section in the sense that the vertices

of Q2, which contains cycles, can not be arranged by a topological sorting algorithm.
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5.3 Asymptotic behaviour

If now we reorder the vertices in Q such that those in Q1 are given smaller numbers and thus

appear first, we can then write the adjacency matrix B in the form

B =






























0 0 0 · · · 0 0 0 0 · · · 0

B2,1 B2 0 · · · 0 0 0 0 · · · 0

0 0 0 · · · 0 0 0 0 · · · 0

0 0 B3 · · · 0 0 0 0 · · · 0

...
...

. . .
...

...
...

... · · · ...

Bg−1,1 Bg−1,2 Bg−1,3 · · · Bg−1,g−2 Bg−1 0 0 · · ·
Bg,1 Bg,2 Bg,3 · · · Bg,g−2 Bg,g−1 Bg 0 · · · 0

Bg+1,1 Bg+1,2 Bg+1,3 · · · Bg+1,g−2 Bg+1,g−1 0 Bg+1 · · · 0

...
...

... · · · ...
...

...
...

. . .
...

Bs,1 Bs,2 Bs,3 · · · Bs,g−2 Bs,g−1 0 0 · · · Bs






























,

where the first zero matrix 0 is an n1 × n1 matrix corresponding to the sources in Q. The

matrix B2 corresponds to the other vertices in Q1 (the cardinality of V (Q1) is n1 + n2, i.e

|V (Q1)| = n1 + n2) and the non zero entries in this matrix are below the main diagonal. The

matrix B3 corresponds to strong components of the graph which act as sources (subgraph of Q

where there is no flow from other parts of the graph into this subgraph, but there is outflow).

The other matrices that follow (B4, . . . ,Bg−1) represent cyclic subgraphs with flow to other

parts of the graph. The matrices in the last section (Bg, . . . ,Bs) are adjacency matrices for

strong components of Q with no outflow (which is why Bh,j = 0 for all h = g, . . . , s and

j = h+ 1, . . . , s). Let Z be the set of eigenvalues below:

Z = {λ ∈ σ(Bi); 3 ≤ i ≤ s : |λ| < 1}. (5.5)

Then

Bnu =
s∑

i=k

di−1∑

l=0

λln
i Pλiu +

∑

λi∈Z

λn
i pλi(n)Pλu + Bn

0u, (5.6)

where

B0 =








0 0 0

B2,1 B2 0

0 0 0







. (5.7)
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This matrix is the adjacency matrix of the subgraph Q1. The first row of zeros (in bold)

represents the n1 rows of zeros which are obtained from the n1 sources. This matrix B0 is

idempotent with index not exceeding n2 and its only eigenvalue is 0. That is, Bn
0 = 0, n ≥ n2.

Note that n2 is the number of vertices in Q1 which are not sources or, if we use the original graph

G, then n2 is the number of edges in G1 plus the cut set CG minus the number of edges with tails

in the set V0(G) (see Equation (5.3)). Then Rm can be decomposed as Rm = Rn1+n2 ⊕ Rm′

where m′ = m− (n1 +n2). Note that the spectral projections onto the fixed space are given by

Piu = (vi.u)Ni; u ∈ Rm, (5.8)

for all i = g, g+ 1, . . . , s. Similarly, the spectral projections onto the cyclic space have the form

Pλl
i
u =

(

e∗
λl

i
.u
)

eλl
i
, (5.9)

where eλl
i

is the right eigenvector of B corresponding to λl
i and e∗

λl
i

is the associated left

eigenvector; normalised so that

e∗
λl

i
.eλl

i
= 1 (5.10)

Then, if cj = 1 for all j and αj = γj , the semigroup generated by (A0, D(A0)) is now given by

T (t)u(x) = [Pnu] (t+ x− n)

= G−1
s∑

i=k

di−1∑

l=0

λln
i [PλiGu](t+ x− n) + G−1

∑

λi∈Z

λn
i [pλi(n)PλGu] (t+ x− n)

+ G−1 [Bn
0Gu] (t+ x− n).

(5.11)

Theorem 5.3.1. For any u ∈ X, [T (t)u] |E(G1)∪CG
= 0 for t ≥ n2.

Proof. The matrix B0 is an adjacency matrix of an acyclic graph with n1 + n2 vertices. Since

B0 is lower triangular and B
n2
2 = 0, hence Bk

0 = 0 for all k ≥ n2. Since B0 is the restriction of

B on E(G1) ∪ CG, we conclude that [T (t)u] |E(G1)∪CG
= 0 for t ≥ n2.

This result tells us that, irrespective of the initial distribution of mass, after t = n2, all the

edges in the acyclic part of the graph will be depleted. In fact we can improve this result by

noting that if brij is the (i, j)th entry in Br
0 then, by Theorem 2.2, [10], brij gives the number of

vi − vj paths of length r. So [T (t)u] |E(G1)∪CG
= 0 for t ≥ k + 1, where k is the length of the

longest path in Q1. The longest path in Q1 is of length at most n1 + n2 − 1 and this number

n1 + n2 − 1 is maximum when there is only one source, (n1 = 1) hence k ≥ n2.
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Remark 5.3.2. Using the argument in Theorem 4.5 of [33], we see that the period of (T (t)l)t≥0

equals the greatest common divisor of the lengths of the cycles composed of edges in G which

are among the states n1 + · · · + nl−1 + 1, . . . , n1 + · · · + nl.

Remark 5.3.3. Using the argument in [33], Theorem 4.5 together with Lemma 5.2.4, to

ascertain that the cycles in G correspond to cycles in Q in a one-to-one way, we see that

the period of the semigroups (Ti(t))t≥0, described in the previous chapter, is equal to the

greatest common divisor of the cycle lengths of edges in G which are among the states

n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni. In other words, those states corresponding to the

subgraph whose adjacency matrix is Bi, for i = k, . . . , s.

5.4 Different speeds

The results of the preceding sections in this chapter were obtained under the assumption that

the speed of particles along every edge is the same (cj = 1). Now we revisit Section 4.6 and

give a graphical picture of the asymptotic behaviour of the flow problem. In Section 4.6, we

showed that we can transfer the problem into a flow problem with same speed on all the vertices

by expanding the network into a larger networks with more edges. We also showed that the

abstract Cauchy problem on the larger network generates a C0 semigroup T (t).

Consider the diagonal block Bi, g ≤ i ≤ s in the matrix B shown above. Let Qi be the digraph

whose adjacency matrix is Bi. Since Bi is irreducible, Qi must be strongly connected (by

Lemma 2.2.14). Moreover, Qi is an invariant strongly connected component of Q. That is,

any path that originates at some vertex v of Qi remains entirely in Qi. Clearly then, there

exists a subgraph Gi of G whose line graph is Qi. Indeed, by definition, the set of edges of

Gi corresponds to the set of vertices of Qi and each edge in Qi joins two vertices u′, v′ in Qi,

and thus there is a corresponding vertex in Gi which is the head of Φ−1
G (u′) and the tail of

Φ−1
G (v′). Moreover, Gi is a strongly connected, invariant component of G. Indeed, if there was

an outgoing edge of Gi with tail at v ∈ V (Gi), then this vertex would also generate an outgoing

edge in Qi. That is, there would be an edge with tail in Qi and head in Q−Qi, meaning that

Qi would not be invariant, a contradiction.

We now state the following result.
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Theorem 5.4.1. Under the assumptions stated in (4.31), there is a decomposition

X = Xg ⊕ · · · ⊕Xs ⊕ Ye ⊕ Yl

such that

1. the spaces Xi, Ye, Yl, i = g, . . . , s are invariant under (T (t))t≥0;

2. (T (t)|Xi)t≥0 is periodic with period

τi =
1

N
gcd

{

N

(
1

ci1
+ · · · + 1

cik

)

; ei1 , . . . , eik form a cycle

}

(5.12)

for i = g, . . . , s;

3. (T (t)|Ye)t≥0 is exponentially stable of the type 0 > ω > max{N ln |λ|;λ ∈ Z}; where Z

is as defined in (5.5)

4. (T (t)|Yl
)t≥0 is nilpotent and

T (t)|Yl
= 0; t ≥ κ, (5.13)

where Yl can be identified with E(G1) ∪ CG and

κ = max

{
1

ci1
+ · · · + 1

cik
; ei1 , . . . , eik form a path in G1 ∪ CG

}

. (5.14)

Proof. The transformation of the graph described in Section 4.6 does not change the number

of cycles in the graph and does not affect the split between the acyclic part and the cyclic part of

the graph. However, it increases the lengths of the cycles (and the length of any u− v path, for

any u, v ∈ V (G)) and it rescales time by N . Therefore, from representation (4.40), Theorem

4.5.5 holds with the same number of periodic semigroups. However, their periods and the time

it takes to deplete the acyclic part of the graph changes. To make this precise, note that there

is a one-to-one correspondence between cycles in Qi and cycles in Gi, and this correspondence

extends to the cycle lengths (see Remark 5.3.3). Then, using the argument of [33], Theorem

4.5, we see that if ei1 , . . . , eik form a cycle in Gi, then the length of the corresponding cycle in

Q is given by

N

(
1

ci1
+ · · · + 1

cik

)

.

Thus, the period of the semigroups (Ti(t)|Xi)t≥0 is the greatest common divisor of all such num-

bers for which ei1 , . . . , eik form cycles in Gi. Therefore, by (4.40), the period of (Ti(t)|Xi)t≥0

is given by (5.12) for each i = g, . . . , s.



Chapter 6

Conclusion

The original part of this thesis commences in Chapter 3. In this chapter, we considered a

simple model of transport between states described by a system of ODEs. Such a model can be

considered as a simplified model of transport on a network where exchange between states takes

place instantaneously. The main objective of Chapter 3 is to study the asymptotic behaviour of

these systems when the coefficient matrix is an ML matrix using the so called relative entropy

function and the discrete Poincaré lemma. In particular, we extended the results of Perthame

[48] to arbitrary irreducible ML matrices. In this regard, we showed that there is a norm in Rn

for which the quadratic entropy function decays exponentially in the subspace orthogonal to the

Perron eigenvector N if the matrix is irreducible. We also extended the results to reducible ML

matrices.

Next, in Chapter 4, we provided a more general proof for the generation of positive semigroups

on networks. In particular, we proved that there is no semigroup if the graph has a sink. In other

words, the operator (A0, D(A0)) associated with the abstract Cauchy problem for the system

of transport equations on the network generates a semigroup if every vertex in the graph has an

outgoing edge. We then provided a representation theorem for the flow in the case where the

speeds along the edges are linearly dependent over Q.

Using the representation theorem we provided a more explicit description of the long term

behaviour of the flow on reducible networks where every vertex has an outgoing edge and an

incoming edge, thus improving the results in [33]. That is, we considered graphs of the form

shown in Figure 6.1. We showed that for such graphs, the flow collects in those strongly

86
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Figure 6.1: Connected graph with no sources

connected components with no outgoing flow. That is, sink components (every such strongly

connected component must have at least two vertices!), and the period of the semigroup T (t),

restricted to these strong components, is given by the greatest common divisor of the cycle

lengths in these components. Further, we showed that the flow in the strongly connected source

components of the graph is depleted as t→ ∞.

We extended the above results to graphs with non-trivial acyclic parts, such as that shown in

Figure 6.2. In particular, we proved that the flow in the acyclic part of the graph is depleted in

finite time and that, if cj = 1 for all j = 1, . . . ,m, this time of depletion does not exceed the

length of the longest path in the acyclic part of the graph.

Figure 6.2: A graph with non-trivial acyclic part

6.1 Open Problems and Further Research

One of the open problems is to show that the approximation of solutions to the full transport

equation on the network by a system of ordinary differential equations suggested in Remark

4.1.6 can be proved. We hope to show that if the length of each edge is taken to be arbitrarily

small (lj → 0), then the solution to (4.11) (with no sinks) can be approximated by solutions of

the system of ordinary differential equations in (4.9).
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We showed that the abstract (A0, D(A0)) in the Cauchy problem in (4.12) associated with the

transport equation on a network where some vertices have no outgoing edges does not generate

a semigroup. The problem is that for a first order partial differential equation to have a unique

solution, the boundary condition must be set at the start of the flow and not at the end, which is

what condition (BC2) does in (4.11). In order to rectify this, we modify the boundary conditions

at the sink. For example, if we introduce output functions at the sinks, and require this output

to depend on the total inflow into that sink, then the boundary condition (BC2) in 4.11 will be

given

hi(u(t)) = ξi(t)

m∑

i=1

φ+
ikγkckuk(0, t)

if vi is a sink, where hi is the output at vi. If, in addition we need the flow to be conservative,

then it is possible to have a unique solution for the flow problem. However, our investigations

have not yet been complete or exhaustive.

The study of flows on infinite networks has already been done by Dorn [14] where the graph

was assumed to be strongly connected. However, strong connectedness of the graph depends

on how one defines a path. For instance, in Chapter 2, we defined a strongly connected graph

as one where for every pair of vertices u, v, there is a u− v and v− u path. For infinite graphs,

there is a possibility that this path is infinite; that is, it contains an infinite number of vertices

and edges. How one defines strong connectedness has an impact on the reducibility of the

matrices A and B. Most authors consider an infinite digraph to be strongly connected if the

u− v and v − u paths are finite for every u, v ∈ V (G). Using this definition, A and B and the

corresponding semigroup (T (t))t≥0 for the flow problem in (4.11) are irreducible if and only if

G is strongly connected (see Proposition 36, [14] or [31]). We feel that there is still more that

can be done regarding infinite networks.

To our knowledge, a systematic study of adjoint operators for first order differential operators

on graphs have not yet been done on L1(Ω), where Ω is a closed interval in R. We note that

studying these operators is a delicate process and their behaviour is intertwined with vertex

conditions. We would like to know whether the results obtained in [48], Chapter 3, for the

scalar transport equation






∂tu(x, t) = ∂xu(x, t),

u(x, 0) = f(x),

still hold on a network.
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