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  Abstract 

Globally, the Invasive Alien Plant (IAPs) species pose a great threat to global biodiversity, 

agro-ecological systems and socio-economic development. In particular, Lantana camara (L. 

camara) is amongst the most notorious and problematic of all invasive plants globally. Its 

threats and effects are undeniably recognizable and it is ranked amongst the world’s ten worst 

weeds.  As a result, it is one of the most documented weeds in the world. Most studies have 

focused mainly on detecting and mapping the spatial distribution of L. camara. Although its 

spatial distribution remains rudimentary, the mechanisms driving its distribution are not yet 

fully understood, especially in savanna rangelands. This study aimed at modelling and 

explaining the distribution of L. camara in South African savanna ecosystems (the Kruger 

National Park and Bushbuckridge communal lands). Specifically, the study sought to identify 

the environmental factors influencing the spatial distribution of L. camara in savanna 

ecosystems using the Maximum Entropy (Maxent) algorithm, coupled with remotely-sensed 

derivatives from Sentinel-2 satellite data.  The performance of the model was assessed by using 

the Area Under Curve (AUC), the True Skills Statistic (TSS) and the Kappa Statistic. From the 

findings, the Bushbuckridge communal lands had the highest L. camara infestations, with the 

weed covering an area of 10%, when compared to the Kruger National Park, which had an 

estimated coverage of 7%. The derived spatial distribution maps from Maxent revealed that 

communal lands of Bushbuckridge are more vulnerable to L. camara invasion than the 

protected area. The study also demonstrates that bioclimatic factors influence the occurrence, 

spread and infestation of this invasive weed species. Comparatively-speaking, elevation was 

found to have the greatest influence on the infestation and spatial distribution of L. camara. 

The model that was derived from a composite of all the variables yielded the highest AUC 

score of 0.96. Subsequently, the model based on indices alone (Model 4) achieved the lowest 

accuracies, with an AUC score of 0.85.  This work is critical for providing the necessary 

information to assist in effective management and clearing practices by informing the strategic 

planning, control and rehabilitation of the affected areas. 

Keywords: agroecosystems; bioclimatic data, bush encroachment; satellite data; species 

distribution.         
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CHAPTER ONE 

 General Introduction 

 

1.1 Introduction 

 

Savanna rangeland ecosystems remain one of the most significant natural ecosystems, globally. 

They cover almost half of the world’s land surface and provide numerous ecosystem services. 

For instance, they mitigate climate change through carbon sequestration, serve as forage for 

wildlife and livestock and store generic diversity, to name a few (Mutanga et al., 2004). The 

intrusion of non-indigenous plant species is one of the most formidable and growing threats to 

these natural ecosystems. Invasion by Invasive Alien Plant (IAP) species is among the leading 

non-climatic drivers of global change. The intrusion of these species influences the 

modification of disturbance regimes, as well as the metabolism of various ecosystems. The 

impacts of IAP species on savanna ecosystems include the diminution of nutrients, 

modifications in vegetation succession, the enrichment of fire frequency and sternness, the 

reduction of native plant species richness, as well as changes in the microclimates, amongst 

others.  In addition, IAP species, such as L. camara, result in extreme economic losses (Ayele, 

2007). For example, Australia alone loses approximately USD 2.2 million per annum 

(Goncalves et al., 2014), while the United States experiences an estimated loss of 120 US 

billion dollars annually (Pimentel et al., 2005). In South Africa the financial losses associated 

with cattle being poisoned by L. camara are estimated to be R 1 728 900 per annum 

(Kellerman et al., 1996).  

L. camara is a small bushy shrub that continues to intrude vast masses of land. It is usually 

found in forest ecosystems where it is known to substitute native understory vegetation 

(Ghisalberti, 2000). However, L. camara is now commonly found in various areas, such as 

agricultural fields and grazing lands, as well as alongside rivers and roads. The weed has rich 

leaves with unstable vital oils and its intrusion has resulted in a significant reduction of the 

biomass and thickness of the native vegetation (Grice, 2006). Furthermore, it releases different 

toxic chemicals from its leaves, remains as well as its vital oils which is capable of affecting 

the native species negatively (Dobhal et al., 2010). In grazing areas, L. camara causes major 

forage shortages, which affect livestock. Its fruit is poisonous to livestock and children, and its 

toxicity may eventually cause mortality after consumption. L. camara has a wooden stem, 
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which is a fire hazard increasing the occurrence fires, due to its high lignin content (Kohli et 

al., 2006). 

The devastating effects of L. camara have led to it being one of the most documented weeds 

globally. Traditional methods, such as field surveys, are labor-intensive, time-consuming, 

costly, and therefore limited, in terms of the detection and mapping of L. camara (Wakie et al., 

2014; Taylor et al., 2011; Thamaga and Dube, 2018). Previously, various studies have 

successfully used remote sensing (RS) strategies in modeling the spread of L. camara, but they 

have not explained the reasons behind its invasion in the environments of concern. According 

to literature, various environmental factors (soil conditions, topography, climatic conditions) 

have an effect on the performance of IAP in an environment (Wang et al., 2017; Guisan and 

Thuiller 2005). Understanding the nature of the interaction between L. camara and the 

environment can help to enhance the knowledge of its versatility in the intrusion of new 

environments. Furthermore, this information can assist and improve the performance of Spatial 

Distribution Models (SDMs) in the estimation of the likelihood of the species occurring in the 

areas of concern.        

 

SDMs have been introduced as feasible tools that are able to identify, summarize and estimate 

areas suitable/vulnerable to IAPs invasion. SDMs statistically relate the identified distribution 

of a species (presence/absence) with selected environmental variables (Martins et al., 2016). 

The incorporation of SDMs with advanced GIS, RS and predictive algorithms can determine 

the foremost variables responsible for the spatial distribution patterns of IAPs in areas of 

concern (Adhikari et al., 2015). For instance, Zhu et al. (2007) and Ramírez-Albores et al. 

(2016), successfully used SDMs to identify and predict areas vulnerable to the invasion of 

IAPs. However, to our knowledge, the most significant environmental variables responsible for 

the invasion of L. camara in South African savanna ecosystems have not been fully explored. 

Vulnerability maps as well as identifying key environmental factors influencing the 

distribution and spread of IAPs may serve as valuable tools in preventing species invasions, 

controlling their spread and improving the knowledge of IAPs invasion. It is, therefore, on this 

premise that this research seeks to map and explain the spatial distribution of L. camara in 

South African savanna ecosystems.     

 

1.2 Aims and objectives  

The main goal of this research was to model and explain L. camara’s spatial distribution in 

South African savanna ecosystems, and it was achieved through the following objectives: 
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 To review the advances and future prospects of monitoring L. camara in semi-arid 

savanna agroecosystems.  

 To model localities vulnerable to L. camara infestation in semi-arid savanna 

ecosystems of Bushbuckridge communal lands and Kruger National Park, South Africa  

1.3 Key research questions  

 Which environmental variables significantly influence L. camara’s spatial distribution?   

 Which areas are most susceptible to be invaded by L. camara? 

 

1.4 Main hypothesis  

The distribution of L. camara is influenced by bioclimatic variables such as moisture.  

 

1.5 Study area 

This research was carried out in the communal area of Bushbuckridge and Kruger National 

Park (KNP).  Bushbuckridge (-24.82789° S, 31.0464° E) is located between the Drakensberg 

escarpment and the Kruger National Park which is close to the Sabie-Sand Game (Tollman, 

2009). The precipitation rate is between 1200mm per annum in the western region to 500 mm 

in the eastern region, while the average yearly temperature is roughly 22˚C, with little or no 

frost (Govere et al., 2000). The terrain of the area is characterized by flat to undulant surfaces. 

The dominant soil type in the area is thin sandy lithosol, however, the base the incline is made 

up of various soil types. The standard vegetation is open extensive grasslands and deciduous 

forests. The utmost livestock found in the area are domesticated animals, such as cattle and 

goats, while the agricultural activities include crop planting (Shackleton et al., 2002).     

The Kruger National Park known as one of the largest in the world (19,485 km2) is located 

along the eastern part of Mpumalanga and Limpopo provinces in South Africa. It is about 65 

and 360 kilometers in width and length, respectively. The region is characterised by subtropical 

climate type with hot and humid summer days. Rainy season begins around September all 

through to the month of May. 
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Figure 1.1: Location map of the study area 

1.6 Structure of the research  

CHAPTER ONE: General introduction.  

This chapter presents an overview of the study, stressing the global environmental and socio-

economic impacts of IAPs including the role of SDMs in identifying areas vulnerable to them. 

Moreover, the main aim, objectives, hypothesis and structure of the study are outlined.   

 

CHAPTER TWO: Advances and future prospects in monitoring L. camara in semi-arid 

savanna agroecosystems. 

This chapter has been submitted to a journal and is under review, it is therefore presented in the 

form of a publishable paper. The chapter reviews the advances and future prospects in 

monitoring L. camara in semi-arid savanna agroecosystems. It highlights RS techniques and 

classification algorithms previously utilized in modeling L. camara and their short comings. 

The study discusses the influence of environmental factors on the distribution and spread of L. 

camara. Finally, the chapter also highlights gaps and potential future directions in 

understanding the spatial distribution of L. camara.        
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CHAPTER THREE: Modelling localities vulnerable to L. camara infestation in semi-arid 

savanna ecosystems of Bushbuckridge communal lands and Kruger National Park, South 

Africa  

This chapter will be submitted to a peer review journal and has therefore been presented in 

form of a publishable paper. The chapter discusses various SDMs used in estimating areas 

likely to be invaded by IAPs. Maximum Entropy (Maxent) is used to investigate the most 

significant environmental variables influencing L. camara’s spatial distribution as well as the 

areas vulnerable to its invasion.    

   

CHAPTER FOUR: Synthesis   

Chapter four summarizes the findings of the research, discussions and overall conclusions. 

Based on the limitations outlined in the study, the chapter draws recommendations for future 

research.  
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CHAPTER TWO 

Advances and future prospects in monitoring Lantana camara in semi-arid 

savanna agroecosystems 

 

 

 

This chapter is based on a review paper under review.  

Xivutiso G. Maluleke ., O. Mutanga. and T. Dube. (Under Review). Advances and future 

prospects in monitoring Lantana camara in semi-arid savanna agroecosystems of South Africa. 

Geocarto Journal. 
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Abstract  

The intrusion of natural ecosystems by notorious Invasive Alien Plant (IAP) species is among 

the most important environmental concerns globally. Biological invasions are usually a natural 

process; however, anthropogenic activities have enhanced the process. Lantana camara (L. 

camara) is one of the major contributors to global rangeland ecosystem change. It has been 

classified to be among the world’s 100 worst IAP species and is also amongst the world’s 10 

worst weeds. It threatens ecological systems and the socio-economic status due to its ability to 

colonize diverse ecosystems. We review the progress in RS L. camara’s spatial distribution in 

South African rangeland ecosystems. In the quest of understanding L. camara, various 

available methods used in detecting and mapping the weed were assessed, in order to help gain 

adequate knowledge on its distribution and configuration. Previous studies have noted that 

conventional strategies including field surveys are unable to accurately detect and map L. 

camara’s spatial distribution. Since the introduction of RS techniques, the field of research has 

greatly improved, and more work has been done on the weed. RS offers well-documented 

advantages, including multispectral data, synoptic views, multi-temporal coverage as well as 

cost-effectiveness amongst others. Previous work has mainly focused on the detection and 

mapping of the distribution of L. camara. However, it is not enough as it does not fully explain 

the occurrence of these species in the affected areas. Therefore, there are shortcomings on the 

explanation of the mechanisms that drive its occurrence. According to the literature, 

environmental variables, such as soil moisture, light and climate, influence the occurrence of L. 

camara. The current study recommends that future research incorporates environmental 

variables for understanding some of the abiotic reasons behind the occurrence of the weed.     

Keywords: agroecosystems; ecosystem restoration; environmental variables; invasive species; 

rangelands; satellite data; species distribution .    
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2.1 Introduction  

Rangelands are defined as all those environments where natural ecological processes prevail 

and where values and benefits are based primarily on natural resource areas which have not 

been intensively developed for primary production (Foran et al., 2019). These ecosystems 

cover almost half of the world’s land surface and, as such, they provide various important 

ecosystem services and functions, including sources of forage for livestock and wildlife, 

mitigating climate change through carbon sequestration, storing generic diversity, eco-tourism, 

as well as opportunities for ranching and mining (Mutanga et al., 2004). In South Africa alone, 

these ecosystems cover an estimated of 70% of the land, which contributes roughly R2.88 

billion to the country’s Gross Domestic Product (GDP) per year (Shoko et al., 2016). The 

protection and management of these ecosystems is therefore vital for ecological, socio-

economic and the survival/livelihoods of the entire human species. The degradation of these 

ecosystems is occurring at an alarming pace, due to the increasing level of invasion of 

notorious IAP species, including anthropogenic activities as well as climate variability and 

change, amongst others (Dlamini, 2016).  

 

As an ornamental and medicinal plant, L. camara was introduced in South Africa for 

landscaping and horticultural purposes. More specifically, the introduction of invasive alien 

plant species in South African rangelands has had a devastating effect, as it affects human 

health, as well as the biodiversity and the functionality of ecosystems (Dvorak, et al., 2015). 

For example, Van Wilgen et al. (2008) indicated that if IAP spread to their full potential 

without disturbance, large grazing and pasture lands could be reduced by about 71%. L. 

camara is considered to be the principle IAP species, and it is thus classified as one of the 

world's top 100 invasive species by the invasive species specialist group (IUCN 2001) as well 

as ranks amongst the top 10 weeds in the world. This has resulted in it being one of the most 

documented IAP species globally (Qin et al., 2016; Sharma et al., 2005). Its invasive ability is 

evident, as it occurs in diverse habitats with a variation of soil types. According to Shackleton 

et al. (2017) the intrusive ability of L. camara is derived from the following biological 

attributes: its phenotypic plasticity, its fitness homeostasis, its dispersal benefits from 

destructive foraging activities, its widespread geographic range, resilience to fire, vegetative 

reproduction, highly competitive ability, as compared to its native vegetation as well as 

allelopathy.  

 

The spread of L. camara is encouraged mostly by anthropogenic activities including 

cultivation, road construction and changes in fire regime. The spreading of the species is 
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further exacerbated by climate change (Sharma, et al., 2005). Sahu and Singh, (2007) found 

that L. camara has invaded a vast area of native forest and protected land in India, and that it 

has become the dominant understory species, as well as a major threat. It reduces the 

availability of resources and microhabitats essential for various native plants and animals. 

Furthermore, Belay and Hailu, (2017) reported that communities have lost their productive 

assets including pasture land, arable lands and local medicinal plant species since the 

introduction of L. camara in Bahir Dar Nile River Millennium Park in Ethiopia. Various 

methods have previously been utilized to map and monitor L. camara’s spread. Initially, 

traditional methods were used to map invasive species, but they have proved to be spatially 

restricted, time-consuming and labor-intensive (Thamaga and Dube, 2018; Taylor et al., 2011). 

The introduction of RS techniques has since proved to offer better results in terms of mapping 

the spatial distribution of IAP species and it has become a great tool for assisting ecologists, 

environmentalists and land managers as well as other disciplines.      

Most researchers have focused mainly on successfully mapping L. camara’s spatial 

distribution. For instance, Dhau, (2008) utilized Landsat TM and Aster datasets for mapping 

and monitoring the invasion of L. camara in Zimbabwe across three different land tenure 

systems. Kimothi and Dasari, (2010) also explored the Indian satellite data in mapping the 

spatial distribution of the intrusive L. camara in forest landscapes. Furthermore, the study 

demonstrated the ability of Linear Imaging Self-Scanning Sensor (LISS) IV and Cartosat-1 

data for the detection and mapping of L. camara. Regardless of the successful mapping of L. 

camara worldwide, there is a lack of understanding regarding the factors that affect its 

versatility in the adapting to new environments. As such, the mapping of L. camara alone is 

not enough as it does not explain why the species occurs in these regions; hence, there is need 

to incorporate environmental variables in the RS of L. camara in rangeland ecosystems.  

This review draws attention to the advent of RS strategies in the detection, mapping as well as 

monitoring of L. camara in rangeland ecosystems. Firstly, information on the impacts of L. 

camara on rangelands is provided, followed by a discussion on some characteristics that RS 

data provide for the mapping of L. camara. An overview of previous techniques utilized to 

map L. camara and their limitations is also provided. The influence of environmental variables 

on the distribution of the species is then discussed and, finally, suggestions are provided 

regarding the direction that is to be taken in future.  
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2.2 Origin and geographic distribution of L. camara  

L. camara belongs to the Verbenaceae family and is a genus of both shrub and herbaceous 

plants with about 150 species (Khan, et al., 2015). It is of the genus Lantana and an evergreen 

climbing aromatic woody shrub with the ability to grow up to 2 m when supported by the 

surrounding flora (Day et al., 2003). L. camara is originally from the tropical regions of South 

and Central America. However, the weed is currently being used for the purpose of aesthetics 

(ornamental plants) in South Africa and other parts of the world. It has been totally naturalized 

in most tropical and subtropical parts of the world due to its capability to easily and rapidly 

grow as well as thrive in harsh weather conditions (Sharma et al., 2007). Additionally, in a 

recent global review by Richardson and Rejmánek (2011), 12 of the 15 regions evaluated 

depicted the invasion of L. camara, hence, making it one of the topmost wide spread IAP 

species globally. 

L. camara’s natural range stretches from Mexico to Brazil, however, the species has been 

reported to have established populations in more than 60 nations globally, resulting in massive 

economic losses in most of those countries (Goncalves et al., 2014). Initially, the species was 

introduced in Europe from Brazil in the 17th century.  One hundred years after its introduction, 

the weed was exported to other regions including Africa, America, Asia and Oceania. 

However, the weed only became intrusive in the tropical, subtropical and warm temperate 

areas (Goncalves et al., 2014; Vardien et al., 2011). According to Taylor et al. (2012). The 

appropriate climatic regions for L. camara in Africa are anticipated to be only within parts of 

Angola, Ethiopia, Tanzania, Gabon, Zambia, Uganda, and the Republic of Congo remain 

suitable in 2070 however, some parts of South Africa are currently heavily-infested with the 

species.   

Thus far, there have been only three recorded cases of its introduction into South Africa, with 

the earliest dating back to 1858 in Cape Town, Western Cape Province. By the year 1998, L. 

camara was found over a total area of over two million hectors (Vardien et al., 2012; Urban, 

2011). More than fifty variations of L. camara are predicted to occur in South Africa. The wide 

breeding and intra- and inter-specific hybridization have resulted in structural varieties of the 

weed. The effective distribution of the weed has therefore been backed by its biological and 

structural features. This includes its generation of fleshy fruits and it being able to flower all 

year, with some birds acting as the chief dispersal factors. Furthermore, L. camara can 

reproduce asexually.      

L. camara is present in the major biomes of most countries, where it is naturalized in the warm, 

moist subtropical and temperate areas of Kwazulu-Natal, Eastern Cape, and Mpumalanga 
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provinces. It is not found in the dry and heavily-frosted areas of the country (Vardien et al., 

2011). Mukwevho et al. (2018) reported that the provinces of KwaZulu-Natal, Mpumalanga, 

Limpopo and Gauteng in South Africa are the provinces that are severely invaded by L. 

camara. This was further confirmed by Urban et al. (2011), who reported that the species is 

increasing in density and spreading mainly in the provinces of Mpumalanga and Limpopo, as 

well as in the Gauteng, Eastern Cape, and North West the southern part of Western Cape. 

  

Figure 2.1: Recorded localities of L. camara in South Africa, as on Southern African Plant 

Invaders Atlas (SAPIA) Database (Henderson, 2001) 

2.3 The impacts of L. camara on rangeland ecosystems  

Savanna rangeland ecosystems are one of the largest ecosystems globally. They are made up of 

a mixture of trees and grasses that are of ecological importance and play an enormous role in 

ecosystem services (Adjorlolo, 2008). The impacts of L. camara on rangelands are several, 

diverse and undeniable. On a broad scale, these impacts include alterations to the native 

disturbance regimes, changes in the native diversity, as well as changes in the ecological 

processes. L. camara is a threat to biodiversity and can dramatically affect the structure and 

functioning of rangelands. For example, L. camara has been known to replace native 

vegetation such as grass, a vital source of food for herbivores (Prasad, 2013). This affects the 

carnivores that depend on the herbivores and thus a threat to important wildlife populations as 

well as endangered species which may even lead to the extinction of some species. For 
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example, the Global Invasive Species Database (2020), reported that L. camara competition 

may have caused the extinction of the shrub Linum cratericola Eliasson (Linaceae), and is a 

major threat to other endangered species in the Galapagos Archipelago (Day et al. 2003).  

According to Priyanka and Joshi, (2013), in the presence of soil moisture, light and soil 

nutrients, L. camara can be a vicious competitor to native colonizers. In regions infested by L. 

camara, the weed is capable of shifting and outcompeting native vegetation for various 

resources namely, sunlight, moisture and soil nutrients leading to the reduction of biodiversity 

(Chatterjee 2015; Taylor et al., 2012). For instance, in a study conducted by Fernando et al. 

(2016), it was found that the impacts of the L. camara on the Udawalawe National Park 

included the out-competing of the native species, resulting in decreased biodiversity and a 

reduction in the richness of the species, which caused the malnutrition of elephants and a 

disturbance of the succession process in the areas that it covered. Furthermore, results in a 

study conducted by Gooden et al., (2009) revealed that species richness of native species in 

North Coast Wet Sclerophyll Forest along the south-east Coast Ranges of New South Wales, 

Australia, declined significantly with an increase in the area covered by L. camara.   

The most common change observed to occur due to the understory plants being replaced is the 

decrease of the biomass in communities. The characteristic of Allelopathy enables the weed to 

survive secondary succession and become monospecific thickets. Reduced or no growth has 

been observed in species such as Lolium multiflorum L. (rye), Christella dentata (fern), 

Morrenia odorata L. (milkweed vine), as well as on other vicious crops such as corn (Zea 

mays), wheat (Triticum aestivum) and soyabean (Glycine max) results due to the allelopathic 

effect in various areas (Sharma et al., 2005). L. camara outcompetes the pasture species by 

affecting the frequency, density and dominance of the natives. This is possible as the leaves 

and flowers of L. camara release some phenolic acids and volatile oils. Under environmental 

stress, L. camara has extra selective advantages over the native species as it can release vast 

amounts and types of secondary metabolites. As such L. camara is able to quickly colonize at 

the cost of the surrounding native species (Kohli et al., 2006). Furthermore, the species has the 

ability to pollute the gene pool of native as well as rare plant species resulting in the 

endangerment of those plant species (Chatterjee, 2015). According to Lyons and Schwartz, 

(2001) native and or rare plant species are important for maintaining ecosystem processes in 

ecological communities. Tilman et al. (1998) and Doak et al. (1998) also suggested a variation 

of species in rangeland ecosystems results in a peak of ecosystems processes. 

L. camara causes mustering of cattle resulting in the death of livestock by poisoning through 

incidental consumption of seeds (Urban et al., 2011; Chatterjee, 2015). The field cases have 
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been reported to mainly occur in the young and newly introduced animals in areas infested by 

L. camara (Sharma and Raghubansh, 2007). Besides causing the death of livestock, L. 

camara’s sub-lethal toxin doses are also manifested in abortions, they reduce the potential in 

production, they induce the loss of milk production in dairy cows and chronic wastage among 

beef cattle (Kohli et al., 2006). L. camara has been found to have direct impacts and 

consequences on the community structure of various bird species. It is responsible for the 

decrease in species richness by the allelopathic interaction (El-Kenany and El-Darier, 2013). 

The dense thickets nature of L. camara also houses disease-causing agents, such as mosquitoes 

and tsetse flies (Glossina sp.), which cause health problems in the society, whereas, direct 

contact with it may cause irritation and or allergic reactions (Mack and Smith.,2011; Vardien et 

al., 2012).  

L. camara has a wooden stem with a high lignin content, which is responsible for causing fire 

hazards and increasing the occurrence of fires (Bajwa et al., 2016). As such, the presence of L. 

camara in rangelands alters fire regimes as the weed burns readily in hot and dry conditions 

(Hiremath and Sundaram, 2005). Furthermore, L. camara alters the nutrient cycling and 

influences burn intensity, which, in turn, leads to the reduced forage quality in the rangelands 

(Masters and Sheley, 2001). L. camara is able to rapidly yield large amounts of biomass due to 

its high productivity which can fuel more fires. As a result, rangelands that have previously 

been invaded by L. camara can easily be subject to a fire-lantana cycle. (Hiremath and 

Sundaram, 2005). Furthermore, Hiremath and Sundaram, (2005) also suggest that L. camara 

has characteristics similar to other fire-maintaining and fire-maintained invasive species 

globally.   

L. camara has a negative impact on various water sources. For instance, expanding thickets of 

L. camara barricade access to water sources for various animals also utilizing vast amounts of 

water and reducing water quality in various river catchments such as Hartenbos and Klein Brak 

(Taylor and Kumar, 2014). According to Richardson et al. (2011) L. camara utilizes about 

3.300 million cubic meters of water yearly which is more than what is used by native plants 

and accounts for 7% of the country’s runoff. As a result, water scares countries such as South 

Africa spend more money in importing water from neighboring countries.     

The devastating impacts of L. camara have become an economic concern globally as the 

intrusion of the weed has led to large economic losses. According to Goncalves et al. (2014) 

the economic losses caused by the introduction and expansion of L. camara have been 

estimated to be approximately $2.2 million per annum in Australia alone. While in the US the 

introduction of L. camara species has caused economic losses of about $137 billion yearly, 
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with an estimate of $35 billion of that annual cost being due to its intrusion alone (Ustin et al., 

2014).  

 

 

Figure 2.2: Impacts of L. camara (replacement of native vegetation by the intrusion of L. 

camara thickets), photograph (Ghisalberti. 2000). 

2.4 Remote sensing of L. camara 

The devastating impacts of invasive species have triggered a global concern and resulted in an 

urgent need for an essential tool to identify and monitor invasive species. The tool is also 

needed for obtaining reliable and up to date information for improved management of invaded 

areas, as well as vulnerable areas (Underwood et al., 2007). RS has proved to be significantly 

useful for across-the-board environmental studies. As a result, earth observation studies have 

increased and improved over the years (Martins et al., 2016). RS and Geographic Information 

Systems (GIS) are convenient tools for the detection, mapping and monitoring of IAP species 

as well as predicting areas vulnerable to IAP invasion. They enhance the control and 

monitoring of invaded areas by providing multi-temporal records that can be assimilated and 

used in the GIS environment (Joshi et al., 2004).  

 

Advantages of RS include multispectral data, synoptic views, multi-temporal coverage, and 

cost efficiency amongst others. It offers a feasible approach for the study of various remote 

ecosystems as well as complex geographic terrain types. Aerial photographs, ground-based 

spectrometer measurements, satellite imagery, high and low spectral resolution and airborne 

multi-spectral scanners are some of the variety of sensor systems provided by the tool.  (Joshi 

et al., 2004). Furthermore, satellite-borne sensors provide a better means of gathering 

information on different features on the surface of earth that is from land cover, land use or 

even the extent of environmental hazards (Thamaga and Dube, 2018; Matongera et al., 2016).  
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The use of RS in studying the notorious weed L. camara has been on a rise over the years. 

Researchers have attempted using different remote sensors and techniques to study the weed 

and have been successful, to some extent. For example, Moderate spatial/spectral resolution 

sensors are one of the data sources previously used to map and monitor L. camara in RS. These 

sensors collect data at a spatial resolution of between 10 and 100 in less than 20 bands (Huang 

and Gregory, 2009). The data sources include the Advanced Space-borne Thematic Emission 

and Reflection Radiometer (ASTER), Satellite Pour l’Observation de la Terre (SPOT) and 

Landsat Enhanced Thematic Mapper Plus (ETM+)/ Landsat Thematic Mapper (LTM). For 

instance, in South Africa, Oumar, (2016) used vegetation indices which include Simple Ratio 

and Normalized Difference Vegetation Indices, as well as, SPOT 6 to map L. camara within 

the rangelands of Kwazulu-Natal. The standard bands of SPOT 6 were combined with the two 

vegetation indices to classify L. camara, which produced an overall accuracy of 75%. 

Similarly, Peerbhay et al. (2016) used a fusion of WorldView-2 (a high spatial resolution 

dataset) with LiDAR and an AISA Eagle airborne hyperspectral dataset for the detection of 

Bugweed in Kwazulu-Natal’s commercial plantation forests. The fusion of LiDAR and AISA 

produced high classification accuracy results of 78%, while the fusion of LiDAR with 

WorldView-2 produced a classification accuracy 74%. However, WorldView-2, AISA and 

LiDAR individually produced classification accuracies of 63%, 68% and 64%. According to 

Huang and Gregory, (2009) the use of moderate spatial/spectral resolution images on IAP 

mapping and monitoring is not clearly understood in the background of native vegetation and 

are therefore difficult to detect. Huang and Gregory, (2009) stated that this data can only be 

used to detect large patches of weeds that rely more on the phonological time. For instance, 

Joshi., et al. (2004) mapped L. camara at the species level, using the 30 m Landsat TM and 

SPOT data with 20 m spatial resolution and the results were found to be unsatisfactory. 

Using high spatial resolution images is one of the greatest intuitive and frank RS approaches in 

mapping and monitoring IAP species. This approach enables one to locate L. camara species 

based on their unusual spatial patterns (Beck et al., 2008). For example, Adam et al. (2017) 

used high-resolution WorldView-2 imagery to map the invasive Prosopis glandulosa 

(mesquite) in the South African semi-arid environments. The results revealed that P. 

glandulosa was effectively detected and distinguished among the coexisting native species of 

acacia at 2 m resolution by WorldVview-2 imagery with an overall classification accuracy of 

86%. Monitoring studies were conducted in the USA by Evritt and his colleagues using aerial 

photographs taken during the flowering seasons of Eurasian Euphorbia asula and Asian 

Tamarix chinensis. The results showed that the visible-wavelength (400-700 nm) reflectance of 

infested locations was significantly higher as a result of the bright-coloured inflorescences 
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(Everitt et al., 1995; Underwood et al., 2003). Due to its various brightly-coloured 

inflorescences, it is anticipated that similar results would be observed for the mapping of L. 

camara, if the same method is used. 

Most plant species have distinctive features occurring in a narrow bandwidth which is only 

detectable through the use of narrow-band sensors. As a result, hyperspectral sensors become 

more advantageous over multispectral sensors as they obtain data in a numerous number of 

spectral bands, while multispectral sensors only record reflectance in a few number of bands 

within the electromagnetic spectrum. Therefore, hyperspectral sensors are more suitable for 

invasive species detection as their narrow bandwidths are able to provide more data on the fine 

spectral feature of different flora (Taylor et al., 2012). 

Hyperspectral RS is able to record electromagnetic radiations at a narrow wavelength interval 

which then allows the differentiation of vegetation types that appear similar on multispectral 

data to be observed as a result, hyperspectral RS has been used successfully in several studies 

to characterize plants including in studies on L. camara (Dubula et al., 2016). For instance, 

Taylor et al. (2012) conducted a study to determine the ideal hyperspectral wavelengths based 

on the spectroscopy data within the spectral range of 450-2500 nm in order to detect L. camara 

from seven surrounding species in the area. The method was established through the use of 

statistical analysis of the reflectance and 86 as well as 18 bands were identified by the 

derivative reflectance. L. camara was found to be different from the other coexisting species in 

the area.  Furthermore, it was anticipated that it was more likely for L. camara to spread further 

inland into new parts of South Africa in the future. Hyperion imagery was used to evaluate the 

efficiency of the acknowledged ideal bands. The original Hyperion image containing 155 

bands resulted in an overall accuracy of 80% as compared to 77% and 76% from the 86- and 

18-band spectral subsets. No significant variation was found in the accuracy when the three 

error matrices were compared. Furthermore, the combination of the statistical analysis and the 

FDR analysis demonstrated the significance of the procedure for the reduction of data by 

refining the variation to less optimum bands for detection of L. camara without any adverse 

effect on the classification accuracy. 

The Landsat 8 OLI sensor offers improved mapping capabilities of IAP species, due to its 

assortment of spectral, spatial, radiometric and temporal resolutions merged with post-launch 

calibration. The sensor has a range of spectral bands that make it capable of identifying the 

spectral responses of various vegetation across the near infrared (NIR) as well as panchromatic 

band. Furthermore, the sensor is able to characterize various seasonal phenological patterns of 

vegetation through the use of its radiometric resolution of 8 to 12 bits. Landsat 8 OLI is made 



17 
 

up of 11 spectral bands that provide endless seasonal coverage of the landmass worldwide at a 

spectral resolution of 30 m, with a temporal resolution of 16 days (Matongera et al., 2016).   

For example, Fernando et al. (2016) successfully mapped L. camara using Landsat 8 in the 

Udawalawe National Park, where the weed covered 8.5% of the area within the park.  

There have been recent new developments of new-generation imagery, such as Sentinel, 

Worldview and RapidEye, amongst others. These imageries have enhanced spatial and spectral 

resolutions which are valuable for the mapping of land use and land cover (Odindi et al., 

2014). Sentinel-2 is a multispectral dataset characterized with a high spatial resolution as well 

as a temporal resolution of six days which is usually higher as it is able to adjust the angle of 

the image acquisition qualifying the sensor to be among the vital data sources suitable 

specifically when considering large spatial extent mapping and predominantly in regions with 

inadequate resources (Sibanda et al., 2016). The spectral characteristics of Sentinel-2 provide 

better means of mapping invasive species. For example, Rima et al. (2017) utilized Sentinel-2, 

together with Pleiades, to detect IAP species in Kenya whereby the results showed that the 

IAPs were more profuse in the Sentinel classification compared to Pleiades sensor. Regardless 

of the success of using Sentinel-2 in detecting and mapping IAP species, little work has been 

done in using the sensor to detect and map L. camara.  

Vegetation indices were originally developed to use spectral measurements for the qualitative 

and qualitative assessment of vegetation cover (Bannari et al., 1995). Vegetation indices (VI) 

like the Transformed Vegetation Index (TVI), the Normalised Difference Vegetation Index 

(NDVI), the Soil Adjusted Vegetation Index (SAVI), the Transformed SAVI (TSAVI), etc., 

have potential in the classification of vegetation. Spectral and statistical analyses have revealed 

that vegetation indices assist in the discrimination of L. camara from other classes such as 

agriculture, barren and urban water (Kandwalet et al., 2009). In a study conducted by 

Kandwalet et al. (2009), SAVI was found to be the best index for separating L. camara from 

other classes because it produced the highest producer and overall accuracy. The high errors of 

commission and omission were anticipated to have been caused by the wrong assignment class 

labels while thresholding. Overall, the success of various RS techniques on the detection and 

mapping of L. camara including that of vegetation indices in separating it from other classes 

has not been able to explain why the weed occurs in the areas of concern. As such there is need 

to incorporate environmental variables in understanding some of the abiotic reasons behind the 

occurrence of the weed. 
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Table 2.1: A summary of satellite remote sensing sensors mostly in used South Africa 

Sensor Spatial 

resolution 

Spectral 

resolution 

Temporal 

resolution 

Accessibility Application 

scale 

Accuracy  

Aster  

 

15–90m 14 bands 16 days Free Local to 

regional 

Very low 

to low 

Landsat 5 

TM  

30–120m 7 bands 16 days Free Regional Low to 

moderate 

Landsat 7 

ETM+  

15–60m 8 bands 16 days Free  Local to 

regional 

Moderate 

Landsat 8 

OLI 

15–100m 11 bands  16 days  Free  Local to 

regional 

Moderate  

Quickbird  65 cm to 

2.90m 

5 bands 1–3 days Expensive Local  Very high 

Sentinel 1A 

and 2  

10–60 m 13 bands  5 days Free  Local to 

regional 

 

High   

Spot 5 2.5–20m 4 bands  2–3 days Free in 

South Africa 

Local to 

regional 

Moderate 

Spot 6  4 bands  Daily  Free in 

South Africa 

Local to 

regional 

High  

Worldview 0.46–

2.4m 

8 bands  1–3 days Expensive Local  Very high 

 

2.5 Classification algorithms used to map L. camara and their challenges 

Numerous variations of IAP such as L. camara species in South Africa are now entrenched and 

cause critical harm, while others are at the early phase of introduction (Rouget et al., 2004). 

Therefore, the monitoring and management of not only well-established IAPs, but also the 

newly-introduced invaders through mapping, are important in managing these species. Initially, 

conventional strategies including field surveys, visual interpretations, literature reviews, map 

interpretation and ancillary and collateral data analyses, were used to map IAP (Gil et al., 

2002). These methods are time-consuming, costly and labor-intensive as they require intensive 

field work with large volumes of ancillary data for analysis, and are therefore ineffective 

(Thamaga and Dube 2018). Moreover, the methods are environmentally distractive and 

impractical for large-scale implementation (Dube et al., 2016). For example, within the Kruger 

National Park, Martin and Foxcroft (2002) used historical to map invasive species. However, 
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the data used were largely disjoined, resulting in loss of information and significant gaps. 

However, the data captured in the GIS database were the first of their kind to be used for alien 

biota section. The data proved to be reliable and has the potential to be a useful reference 

database of invasive species within the park in future (Martin and Foxcroft, 2002). For 

mapping areas invaded by L. camara. Le Maître et al. (2002) used field mapping for the 

Sonderent and Sanbie-sand catchments. GPS was used to map invaders in the Keurbooms 

River catchment. Lastly, high spatial resolution aerial photographs were used to map invasion 

on the upper part of Wilge river catchment (Le Maître et al. (2002). 

According to Shackleton, et al. (2017) roadside surveys provide a better and quick 

understanding of the distribution of IAP species, particularly where data is rare and missing 

due to their cost effectiveness. Shackleton, et al. (2017) used Roadside surveys for detecting 

and mapping status of L. camara in countries such as Kenya, Uganda, Ethiopia, Tanzania and 

Rwanda. However, the degree of the surveys was restricted due to inaccessible roads in some 

areas of these countries. Furthermore, the distance of the IAP from the road made it very 

challenging and time-consuming for recoding the precise locations of the species. A hand-held 

GPS unit was used to record coordinates of areas within 1 km where L. camara was either 

present, intrusive or naturalized. As such, it is therefore highly likely that L. camara’s precise 

distribution in eastern Africa was under-represented. 

RS is currently one of the most commonly-used methods for mapping. Since most vegetation 

has a similar spectral signature, the spectral discrimination between the different vegetation can 

be challenging. However, the inclusion of different classification algorithms provides a better 

means of discriminating between different vegetation types (IAP’s included) species from 

other lands cover classes (Xie et al., 2008). Generally, images are classified through the use of 

either unsupervised or supervised classification algorithms (Lass et al., 2005; Strand et al., 

2007). The categorization of image classification algorithms is based on various parameters, 

accessible data from the sensor as well as the nature of the training dataset (Nath et al., 2014; 

Royimani et al., 2019). 

Examples of supervised classification are the Minimum and distance Maximum Likelihood 

(ML) classifiers. The Maximum Likelihood is a supervised classification algorithm which is 

commonly used for satellite images laying on statistical distribution patterns. (Thamaga and 

Dube, 2018; Hara et al., 1994). These supervised algorithms operate by training the classifier 

extracting evaluations of applicable statistics or parameters for each class and using measured 

exemplars. It becomes difficult to achieve the automatic operation of supervised classifiers, 
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due to the necessity for operator intervention to designate the training areas of identified 

terrains, from which the characteristics of each class might be determined (Hara et al., 1994). 

The Migrating Means clustering method (alternatively known as ISODATA method) and 

Random Forest (RF) are some of the examples of unsupervised classification algorithms. 

ISODATA has been widely used for images attained by infrared or optical sensors and thus, 

historically, it is the most popular unsupervised classification algorithm (Kumara et al., 2011). 

ISODATA reduces the requirements on image analyst and has been mostly used processing 

supervised classification techniques (Hara et al., 1994). Unsupervised classification makes use 

of algorithms as well as the information found in the measured data to automatically classify 

the landscape. Furthermore, these classifiers do not require specification of training regions 

(Gil et al., 2011). Unsupervised classifiers identify the clustering of feature vectors that are 

measured and designate each separate cluster as a new class, which is why they are preferred 

for various applications specifically for those whereby real-time processing is required (De 

Ca´ceres and Wiser, 2012).     

Classification algorithms can further be divided into parametric and non-parametric image 

classifiers.  Spectral angle mapper (SAM), Maximum Likelihood (ML) and Minimum Distance 

to Mean (MDM) are examples of parametric classifiers. These algorithms are recommended 

for the discrimination of IAP species due to their ability to decrease the level of redundancy in 

remotely-sensed data (Lu and Weng, 2007). In addition, algorithms are easily accessible and 

have been successfully used however, there are challenges associated with their overall 

performance (Fernández et al., 2013; Matongera et al., 2016). For example, parametric 

classifiers are prone to mixed pixel problems, these increase on heterogeneous terrain.  They 

also make assumptions that the selected dataset used in training the model in the classification 

procedure represents an ideal (100%) cover of the feature or surface (Campbell and Wynne, 

2011). Furthermore, parametric image classifiers compromise the accuracy of the classification 

by providing the output of the classification at a pixel level (Kumar and Min, 2008). 

Support Vector Machines (SVM), Random forest (RF) and Artificial Neutral Networks (ANN) 

are examples of non-parametric classifiers. These classifiers have the capability of retrieving 

the biophysical features in various vegetation and are also able to recover single pixels as end-

members and combinations of pure materials (Curatola Fernández et al., 2013). For example, 

Naidoo et al. (2012) used a composite of hyperspectral and Light Detection as well as Ranging 

(LiDAR)-derived structural parameters, in a form of predictor datasets using the approach of 

automated Random Forest modeling for the classification of eight savanna tree species 

commonly found in the Kruger National Park region.  The results of the study revealed that the 
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hybrid predictor dataset Random Forest model provided the best prediction and classification 

accuracy of 87.68% for the vegetation of interest. Artificial neutral network is an example of a 

non-parametric classifier that is effective in extracting vegetation type data including in 

heterogeneous terrain as it is not driven by statistical properties (Gil et al., 2011). This makes 

these classifiers more suitable for the classification of change, unlike the parametric classifiers 

(Royimani et al., 2019). 

 

2.6 Influences of environmental variables on L. camara 

Environmental factors affect plant species in various ways; they are known to either limit, 

disturb or provide resources to the species (Guisan and Thuiller, 2005). For example, results in 

a study conducted by Masocha et al. (2017) revealed that rainfall had a positive effect on the 

rate of spread of L. camara in Southern Africa whereby during wet periods, L. camara spread 

faster than during dry periods. Habitats with poor resources have also been found to favor the 

performance of IAP species over native species (Burke and Grime, 1996). However, this is 

reversed in some areas (Funk and Vitousek, 2007). The mortality rate of L. camara is known to 

be low under conditions such as low soil moisture, poor soil nutrients and high light, therefore, 

areas that are moister are more likely to be vulnerable to invasion than areas that are more arid 

(Sharma et al., 2005). From figure 2.1, it can be seen that the invasion of L. camara is more 

pronounced in the eastern parts of South Africa, which is more humid, rather than in the arid 

western parts of the country. On the other hand, in arid regions L. camara benefits from its 

proximity to stream-side habitats. Thus, invasion in unsuitable areas could be enabled by a 

combination of temporal and spatial in moisture.  

Light plays a significant role in the regulation of various processes in vegetation. For example, 

light is vital for the process of photosynthesis in plants, it is also a vital sign for seed 

germination and seedling development (Nishii et al., 2012). L. camara is a shade intolerant 

species which has an adaptive mechanism enabling it to avoid low light environments. In a 

study done by Matsoukis and Chronopoulou-Sereli, (2003), it was reported that there was a 

significant decrease in the amount of flower heads of L. camara plants due to an increase of 

shading from 0% to 66% in the area. It was anticipated that the great reduction of flowering 

was due to the low light level, which, in general, causes such effects (Matsoukis and 

Chronopoulou-Sereli, 2003). The significance of disturbance, topography as well as 

environmental gradients for the spatial distribution of IAP species has rarely been explored in a 

single study. However, it has been noted by McConnachie et al. (2011) and Tamado et al. 

(2002) that elevation has an influence on the spatial distribution of spatial distribution of IAPs 
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such as L. camara. Furthermore, Lambert et al. (2017) and Othman et al. (2015) also stated 

that elevation is a significant variable that has an effect on the spatial variability of the top soil 

properties as well as microclimate. This is supported by the findings of Priyanka, (2013), who 

observed the predominance of elevation gradients in accordance with the expected species, L. 

camara thrives at lower altitudes, whereby there is a decline in species occurrence as a result of 

an increase in L. camara infestations. Similar trends have been observed in South Africa. For 

example, Ndlovu et al. (2018) used remotely sensed data combined with topo-climatic data to 

map the potential occurrence and spread of the invasive bramble (rubus cuneifolius), in the 

Kwazulu-Natal Drakensberg, South Africa. Results revealed that elevation was identified as 

one of the strongest predictors of the species. Similarly, Adeola. (2017) found similar results 

for the invasive Parthenium Hysterophorus. 

 

According to the study conducted by Vardien et al. (2012), environmental factors, such as 

climate, have an influence on the distribution and spread of L. camara. The weed is already 

present in several parts of South Africa specifically those with sub-optimal climatic conditions, 

typically in human-modified habitats or riparian zones having a minimal effect from macro-

climatic parameters as compared to natural habitats (Vardien et al., 2012). Although climate 

sets favorable conditions for the spatial distribution of L. camara, its life history is highly 

influenced by near-term weather conditions.  The invasiveness of L. camara is also influenced 

by its ability to respond swiftly to prevailing weather conditions (Raghu et al., 2014). Rivers, 

natural disturbances, extreme weather events, as well as anthropogenic disturbances such as 

land use, have been shown to be significant vectors of the distribution and abundance of the 

weed (Catford et al., 2012; Foxcroft and Richardson, 2003).  

 

The episodic occurrence of unexploited resources, such as fresh water and nutrients in space 

and time, are assumed to facilitate biological invasions. These resource occurrences are due to 

the disturbances caused by anthropogenic activities as well as inherent variability in the 

environment, which then creates the atmosphere for IAP species to grow and thrive in an 

introduced range. Moreover, this kind of variation in resources availability has been reported to 

favor invasion in cases where there is heterogeneity in the resources in space or time, or both 

(Ramaswami and Sukumar, 2014).   
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Ecological Heterogeneity regulates the occurrence of a larger amount of IAP species within an 

ecosystem, specifically on the larger scale. Ramaswami and Sukumar, (2014) assumed that the 

presence of environmental variables, including periodic disturbances influences the 

spatiotemporal distribution in resources such as moisture, light and nutrients. Habitat 

boundaries are usually characterized by advanced availability of resources, such as light, and 

propagules in comparison to adjoining areas and as such are prone to invasion. According to 

Kumar et al. (2006) invasive species richness is associated with the number of boundaries in 

landscapes. Boundaries naturally occur along riparian habitats whereby invasive species often 

occur more than adjoining habitats. These riparian ecosystems are prone to flooding making 

them extremely vulnerable to invasion by L. camara as they are influenced by various 

processes including removal of existing vegetation and sedimentation (Richardson et al., 

2011).    

 

2.7 Future research direction 

Spatial analysis of plant invasions continues to show incredible growth in the field of research. 

The use of RS for mapping ecological invasions is a relatively specialized research topic, 

where the spatial cover, morphology and seasonality of various invaded versus native 

ecosystems suggest that more IAP species could be detected using RS. (Bradley, 2014). RS has 

proved a vital tool for large-scale ecological studies in the past three decades, however, it was 

not commonly utilized in modeling IAP species until the mid-1990s.  

With the increasing improvement of the RS technology, this tool has been increasingly utilized 

in studies related, not only to invasive species, but specifically to L. camara. L. camara is 

regarded as being one of the most significant IAP species worldwide and has been the target 

for intensive management efforts for over a century (Raghu et a., 2014). The studies done on 

the species have been successful; for example, several authors, such as Dhau, (2008), Kimothi 

and Dasari, (2010) and Taylor et al. (2011), have successfully mapped the species. However, 

more work needs to be done in terms of long-term monitoring and seasonal mapping of the 

species (Matongera et al., 2017). Researchers are advised to explore the freely available and 

accessible new generation multispectral sensors such as Sentinel-2 and Landsat 8 which are 

characterized with high to moderately fine spatial-resolution. These sensors possess     

strategically positioned spectral bands and improved temporal and radiometric properties 

capable of discriminating IAP species. It is further advised for researchers to weigh and select 

optimal bands appropriate for mapping L. camara as these bands can inform optimal spectral 

indices to use for reliable model predictions of the species.   
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Advanced and robust classification algorithms have been valuable for the detection and 

monitoring of L. camara. However, it has been argued that land cover maps usually comprise a 

component of uncertainty resulting from classification errors. These algorithms are able to 

significantly improve the classification accuracy of L. camara and to advance the precision 

mapping of the species. Therefore, it is advised that future research explores the potential of 

the above-mentioned classifiers with the newly-launched multispectral data sets. These datasets 

have upgraded spectral and spatial characteristics for improved functional scale detection and 

mapping of L. camara. In addition, it is recommended that future research investigates the 

similarities and differences in the L. camara reflectance quantities, and those of other 

vegetation types.  

The several studies done on the L. camara have not given much information on the reasons 

behind the location and/or spatial distribution of the species. Understanding whether 

environmental factors have an influence on the spread of L. camara may enhance the 

understanding of species invasion dynamics, leading to informed and improved decisions in 

IAP species management (Masocha et al., 2017). To the best of our knowledge, there is paucity 

in literature as regards the use of a Composite of RS datasets, species distribution models and 

environmental variables in detecting, mapping and predicting the spatial distribution of 

invasive L. camara in rangeland ecosystems. Therefore, there is need for research that will 

incorporate RS, species distribution models and environmental factors to give clear direction 

on the cause of the distribution of L. camara. This is a necessity, as it will give ecologists, 

environmental managers and decision-makers the means to adequately manage L. camara. 

 

2.8 Conclusions  

This study successfully reviewed existing literatures on the application of RS to modeling L. 

camara in Rangeland ecosystems. Literature has shown that the use of traditional methods 

such as field surveys in L. camara detection, mapping and distribution has been a challenge in 

most parts of the world. RS strategies have proved to be able to provide better means of 

detecting and mapping L. camara. The majority of the studies have focused mainly on 

mapping the spatial distribution of L. camara; this then leaves a gap in fully understanding the 

mechanisms of the species’ diverse ability to invade various ecosystems. There is a need to 

incorporate environmental factors to give a clear understanding of the spatial spread of L. 

camara, therefore future research should focus on assessing the factors that play a role in this. 

 

 



25 
 

CHAPTER THREE 

Modelling localities vulnerable to Lantana camara infestation in semi-arid savanna 

ecosystems of Bushbuckridge communal lands and Kruger National Park, South 

Africa 
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localities vulnerable to L. camara infestation in semi-arid savanna ecosystems of 

Bushbuckridge communal lands and Kruger National Park, South Africa. Journal of Arid 
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Abstract  

We mapped and modelled the potential areas vulnerable to Lantana camara (L. camara) 

infestation in the semi-arid savanna ecosystems of Bushbuckridge communal land and Kruger 

national park, South Africa. To achieve this objective, first we modelled the potentially 

vulnerable areas based on remotely sensed data and selected environmental variables using the 

Maximum entropy (Maxent) algorithm. The performance of the model was evaluated, using 

True Skills Statistic (TSS) Area Under Curve (AUC) and Kappa statistic. Results showed that 

the Bushbuckridge communal lands are more vulnerable to the highest L. camara infestation 

with a prediction of 10% of the area anticipated to be covered by the weed as compared to the 

7% in the Kruger National Park.  The optimum model was derived from a composite of all 

variables, yielding an AUC score of 0.95. Model 4, which was developed based on the indices 

alone, achieved the lowest accuracies, with an AUC score of 0.85. The spatial distribution 

maps derived from Maxent indicated that L. camara was more likely to invade the communal 

lands, rather than the protected area. The overall findings of this study showed that elevation is 

the variable which highly influences the spatial distribution of L. camara. The study is critical 

in providing pro-active planning tools for prioritising areas for urgent control intervention 

Keywords:  environmental variables; invasive plants encroachment; L. camara; Maxent; 

Mpumalanga province, rangelands; rangeland ecosystems.  
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 3.1 Introduction  

Non-native species are important agents of global ecological modification. They are perceived 

as the worst threat to worldwide biodiversity, after anthropogenic environmental damage and 

natural ecosystem destruction (Gooden et al., 2009). Plant intruders of natural environs, 

similarly named environmental weeds, change ecosystem structure and utility as well as 

influences the size and variety of native vegetation (Mack et al., 2000). L. camara is 

recognised to be one of the predominant invasive alien plant (IAP’s) species globally and has 

become a major invader of agricultural areas as well as natural ecosystems (Dobhal et al., 

2011). Once established, this species poses a serious threat to savanna rangelands and become 

extremely difficult to manage, maintain and eradicate. Therefore, preventing its introduction or 

rehabilitating of the affected areas may be the most cost-effective management strategy 

(Gallien et al., 2012).  

L. camara has been introduced as an ornamental plant in various countries globally. It has 

become invasive in most countries including South Africa whereby the invasive species 

specialist group (IUCN 2001) has ranked it amongst the world’s top invasive species (Sharma, 

2005). The invasion of L. camara in South Africa has been associated with the reduction of 

grazing pastures, invertebrate diversity and it has been known to result in the mortality of some 

livestock and humans the after consumption of its fruit (Vardien et al., 2012). By the year 

2000, L. camara had invaded an area of about two million ha in South Africa, with increasing 

thickets obstructing pathways to sources of water and reducing the quality of water within 

various river catchments such as Hartenbos and Klein Brak (Taylor and Kumar, 2014). A good 

example is Bushbuckridge, which is an area located at the edge of the Kruger National Park, 

where most of the land is reserved for wildlife and livestock grazing. The intrusion of L. 

camara in this area has resulted in increased replacement of natural ecosystems such as 

grasslands, which are vital for the provision of forage for livestock and wildlife (Masocha et 

al., 2017).  

The distribution of the L. camara species differs, depending on the biotic and abiotic 

conditions (West et al., 2016). These environmental factors affect the plant species in various 

ways and are known to limit, disturb or provide resources to them (Guisan and Thuiller, 2005). 

Environmental variables such as topography and climate impact on the spatial distribution of 

alien invasive plants (Guisan and Thuiller, 2005). For example, topographic variables such as 

slope, elevation and aspect influence the amount and quality of soil nutrients and light 

availability, therefore, influencing the microclimate (Wang et al., 2017). In addition, rainfall 

and temperature have a significant effect on the establishment and dispersal of the IAP’s 

species (Zhu et al., 2007). The relationship between the species and their overall environment 
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can result in a variation of spatial trends, which can be witnessed at various scales (Pearson et 

al., 2004). Hence, for the estimation of the potential niche of the IAP’s species and their spatial 

distribution, it is important to establish precise environmental factors limiting its distribution as 

well as those that favour its growth. However, such detailed information is lacking for most 

species (Priyanka and Joshi, 2013). As such, the inclusion of environmental factors in 

explaining the spatial distribution of L. camara can enhance an understanding of these species.  

To date, two broad approaches namely field traditional based methods and RS techniques have 

been developed to quantify alien invasive species. Although traditional methods based on 

visual interpretations and field surveys are highly accurate, they are often difficult to conduct 

across large regions and are time consuming, expensive, as well as labour intensive (Odindi et 

al., 2014; Thamaga and Dube, 2018; Taylor et al., 2011). In contrast, RS technique offers the 

ability to acquire valuable and relatively cheap primary data that is necessary for timely and 

accurate quantification of different species (Thamaga and Dube, 2018). Additionally, RS has 

successfully overcome the challenges associated with conventional approaches, such as time, 

cost and the accessibility of large geographic unit (Dube et al., 2017). The increasing number 

of sensors have provided ecologists with spatial data, creating opportunities to advance the use 

of RS together with Geographic Information System (GIS) strategies in mapping and 

modelling the distribution of invasive species  

The utilization of RS technologies in mapping invasive species has gained increasing attention 

globally (Dube and Mutanga, 2015). Over the years, many types of sensors have been used by 

researchers in L. camara modelling, with different degrees of accuracy. However, there has 

been paradigm shift from sensor to sensor, because of their limitations and challenges and the 

need for continuous improvement in mapping (DeFries et al., 2004). The application of 

medium spatial resolution in L. camara modelling has been limited by insufficient spatial and 

spectral capabilities (Xie et al., 2008). The application of moderate spatial resolution sensors 

including Landsat 8 OLI, Landsat 7 ETM+ and Spot 5 to name a few has been restricted to 

some extent when dealing with the world’s worst understory plant species such as L. camara, 

mainly because they are unable to detect species found in smaller patches (Zhang and Foody, 

1998). For example, Müllerová et al. (2013) tested the effects of image classification as well 

data resolution on the detection of the invasive Heracleum mantegazzianum (Giant hogweed). 

Between the two tested satellite data sets, the results revealed that the high spatial resolution 

VHR performed better than the Rapid Eye 2010 which is a medium spatial resolution in 

detecting the invasive Giant hogweed. 
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According to Huang and Gregory, (2009), the use of the above-mentioned moderate spatial 

resolution images on IAP mapping and monitoring is not clearly understood in a background of 

native vegetation and it is therefore challenging, in terms of detection. Huang and Gregory, 

(2009) further noted that this data can only be used to detect large patches of weeds that rely 

more on the phonological time. For instance, a study done by Fernando et al. (2016), produced 

low accuracies in mapping L. camara at the species level, using the 30 m Landsat TM and 

SPOT data that have a spatial resolution of 20 m. Nonetheless, the spatial, spectral and 

temporal characteristics of Sentinel-2 provide unique opportunity (Addabbo et al., 2016).  

Sentinel-2 is a high spatial resolution (10–60 m) sensor with a temporal resolution of five days, 

which is usually higher due to its image acquisition angle adjustment capability. Hence making 

the sensor a key data provider appropriate for large-scale mapping especially in resource scares 

zones (Sibanda et al., 2016). It is also the first optical sensor to have red edge bands which 

increases the sensitivity of vegetation and its spectral response. The use of a sensor with a 

wider width and spectral characteristics such as those of Sentinel-2 may provide an 

improvement on detecting and predicting the geographic distribution of L. camara across a 

landscape from mapped environmental variables. The integration of RS data in Species 

Distribution Models (SDMs) has improved the estimation of likelihoods of species occurrence 

in areas of concern as well as the performance of SDMs (Kazak et al., 2008; Rocchini et al., 

2015). 

SDMs have been introduced as tools that can aid in understanding and predicting current and 

future species invasion. SDMs are a fixed portrayal of habitats that are suitable for species 

(Bateman et al., 2012).  They are based on straightforward correlation between the occurrence 

of species and ecological features, whereby their functionality is built on the establishment of a 

relations between a species identified range and environmental variables in the area. 

Thereafter, the relationship is used to detect other areas that may be inhabited by the species. 

(Beaumont et al., 2008). The spatial distribution of IAPs species has previously been modelled 

using different SDMs. Most SDMs use presence and absence data however; there has been a 

limitation with regards to acquiring absence data (Phillips et al., 2009). In the research 

conducted by Hernandez et al. (2006), Maximum entropy (Maxent) was the best modelling 

method compared to Multivariate distance (DOMAIN), GARP and Envelope model 

(BIOCLIM). The four modelling methods were compared with sample sizes of 5, 10 and 25 

occurrences. It was anticipated that Domain, GARP and Bioclim performed poorly due to the 

small sample sizes. In a study done by Wisz et al. (2008) it was found that Boosted decision 

trees (GBM), Regression; multivariate adaptive regression splines (MARS) AND Regression, a 

rapid application of a GAM (BRUTO) performed exceptionally well and superior to other 
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techniques especially when dealing with bigger sample sizes. However, they performed very 

poorly in reduced sample sizes. Rule and DOMAIN sets determined by genetic algorithms as 

well as open modeller version (OM-GARP) were some of the foremost performers when 

considering smaller sample sizes. However, they produce average results with bigger sample 

sizes. Additionally, Maxent was found to be less sensitive to different sample size and was the 

best model to predict species distribution with the use of both large and small sample size.  

Maxent is an SDM with great potential for identifying invasive species distribution. Maxent is 

a correlative approach that has been identified among the best SDM for present-only data 

analysis (Ficetola et al., 2007). Maxent requires present-only data and a low number of 

locations to construct models. It has a higher performance compared to other present-only 

models due to its sensitivity to spatial errors that are related to low data (Phillips et al., 2006).  

Furthermore, Maxent allows the usage of both continuous and categorical variables. Its 

regularization procedure makes it prone to overfitting as it compensates for small occurrence 

data (Phillips et al., 2006; Merow et al., (2017).  

As aforementioned, there has been considerable level of success recorded in modelling the 

spatial spread of L. camara. However, regardless of the recorded success, there are still 

shortcomings in understanding the factors affecting its versatility in the invasion of new 

environments. As such, the mapping of L. camara alone is not enough as it does not explain 

why the species is occurring in those regions, hence there is need to incorporate environmental 

variables in RS of L. camara in Savanna rangelands. Therefore, the objective of this study was 

to determine the environmental variables influencing the spatial variability of L. camara in 

savannah ecosystems, utilizing the Maxent algorithm in concert with remotely-sensed data 

derived from the Sentinel-2 satellite.   

3.2 Materials and methods 

3.2.1 Field data collection 

The filed data was collected in the month of July 2017. Stratified random transects were 

generated in ArcGIS 10.4 using the study area map. The generated points were then uploaded 

on a Trimble Juno 3B hand-held Global Positioning System (GPS), and subsequently used to 

locate the sampling sites on the field. A systematic sampling procedure was adopted. This was 

done through the measurement of a quadrant within the 30-40 transect after every 10 m 

interval. Eighty (80) sample points were generated from the field and then divided into 70% for 

model training and 30% for model validation. GPS captured coordinates were presented in a 

table format using Microsoft Excel Version 4.0 and then imported into the ArcGIS 10.4 

software environment to be overlaid on the study area shape file. For the compatibility of  
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Maxent, the measured GPS points for L. camara were changed to comma-separated values 

(csv) and used for the modelling of potential vulnerable areas.   

3.2.2 Image acquisition and processing   

The freely-accessible Sentinel-2 imagery was used in this study. A cloudless satellite dataset of 

Sentinel-2 covering the study area was accessed from Geocento portal for analysis 

(https://imagery.geocento.com). The acquired images coincided with field data collection 

period. Sentinel-2 is a multispectral sensor that was launched on 23 June 2015. It comprises 

two indistinguishable satellites, namely, Sentinel-2A and Sentinel-2B. The satellite is 

characterized by a high temporal resolution with five-day intervals in the image acquisition. 

The satellite collects data at 10 m (blue, green, red and near-infrared-1) and 20 m (red edge1 to 

3, close infrared-2, short waves infrared 1 and 2) respectively. For this study, bands 1,9 and 10 

were excluded due to the course spatial resolution of 60 m (Table1). Atmospheric correction of 

the acquired images was carried out with the aid of a toolbox called Sen2cor within the 

Sentinel Application Platform (SNAP) tool Version 4.0.  

Table 3.1: Sentinel-2 spectral characteristics used in this study 

 

Band no Band name Band width (µm) Resolution  

2 Blue  0.490 10 

3 Green 0.560 10 

4 Red 0.665 10 

5 Vegetation red edge 0.705 20 

6 Vegetation red edge 0.740 20 

7 Vegetation red edge 0.783 20 

8 Near infrared (NIR) 0.842 20 

8a Vegetation red edge 0.865 10 

11 Shortwave infrared (SWIR) 1.610 20 

12 Shortwave infrared (SWIR) 2.190 20 

https://imagery.geocento.com/
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3.2.3 Topographic data  

A 30m Digital Elevation Model (DEM), which is a 3D representation of the terrain, was 

acquired freely from the Advanced Space-born Thermal Emission and Reflection Radiometer 

(ASTER) which covers 99% of the globe. The spatial analyst tool in ArcGIS was used to 

derive the following topographic variables from the DEM; Topographic Wetness Index (TWI), 

slope, aspect elevation, and Topographic Position Index (TPI). Sentinel-2 data was used to 

generate four vegetation indices (Table 2) namely; Normalized Difference Vegetation Index 

(NDVI) (Rouse et al., 1973), Transformed Vegetation Index (TVI) (Deering, 1975), Ratio 

Vegetation Index (RVI) (Baret, 1991), and Green Normalized Difference Vegetation Index 

(GNDVI) (Gitelson, 1998). From the electromagnetic spectrum, NDVI is derived utilizing the 

red and near-infrared bands to evaluate changes in the phenology of vegetation which therefore 

uses the utmost absorption and reflection and reflectance of the chlorophyll. Additionally, TVI 

is utilized in the elimination of negative values as well as the transformation of NDVI 

histograms to an ordinary distribution (Deering et al., 1975; Mroz and Sobieraj, 2004). RVI is 

based on the principle that leaves absorb more red wavelengths than infrared light. RVI is 

sensitive to vegetation and also have a significant relationship with plant biomass; as such it is 

mostly used for estimating and monitoring vegetation (green) biomass (Xue and Su, 2017). 

GNDVI is an index of plant and one of the most generally-utilized indices to assess canopy 

variation in biomass (Gitelson et al., 1996). 

Table 3.2: Selected vegetation indices used in this study  

 

 3.2.4 Bioclimatic data  

Bioclimatic variables were derived as raster grid format of a 30 arc-seconds spatial resolution 

from the current WorldClim climatic conditions database (http://www.worldclime.org./). These 

climatic datasets are an average of long-term measurements (30 years of data) and contain 

grids of rainfall, temperature and derived bioclimatic summary variables (Hijmans et al., 

S/N Indices      Formula References 

1 Normalized Difference  

Vegetation Index(NDVI)  
 

Rouse  1974 

2 Transformed Vegetation Index (TVI) 
 

Deering  1975 

3 Ratio Vegetation Index (RVI) 

 

Baret 1991 

4 Green Normalized Difference Vegetation 

Index (GNDVI)  

Gitelson et al., 

(1996) 

http://www.worldclime.org./
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2005). The variables were categorized into temperature and moisture variables, where those 

that are biologically-relevant were used. As such, all other variables were resampled to 30m 

spatial resolution and projected to the Universal Transverse Mercator (UTM) projection to 

match topographic variables. To ensure that all variables match, the variables were converted 

from raster format to ASCII so as to ensure their compatibility with Maxent in order to run the 

model (Jarnevich and Reynolds 2011).  

Table 3.3: Bioclimatic variables from WorldClim database (Hijmans et al., 2005) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.5 Modelling L. camara distribution 

The freely available maximum entropy (Maxent) was downloaded from 

(http://biodiversityinformatics.amnh.org/open_source/maxent/) and used to model areas 

vulnerable to the inversion of L. camara. The remaining model parameters were set to default 

replication of 1 with 500 iterations using cross-validation run type. To reduce over fitting, 

regularization multipliers were set to 4 (Ndlovu et al., 2018). The clog-log output format was 

Abbreviation                 Name Units 

  Temperature variables   

Bio01 mean annual temperature o C 

Bio02 mean diurnal range in temperature o C 

Bio03 Isothermality (bio 02/bio 07) X100 o C 

Bio04 temperature seasonality  o C 

Bio05 maximum temperature warmest month o C 

Bio06 minimum temperature coolest month o C 

Bio07 annual temperature range o C 

Bio10 mean temperature warmest quarter o C 

Bio11 mean temperature coolest quarter o C 

  Moisture variables   

Bio12 mean annual rainfall mm 

Bio13 rainfall wettest month mm 

Bio14 rainfall driest month mm 

Bio15 rainfall seasonality (coefficient of variation) mm 

Bio16 rainfall wettest quarter mm 

Bio17 rainfall driest quarter mm 

   

http://biodiversityinformatics.amnh.org/open_source/maxent/
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used due to its ability to strongly predict area of moderately high output as compared to the 

logistic output (Kumbula et al., 2019). Furthermore, a jack-knife test was used to assess the 

relative importance of predictor variables that explain the spatial distribution of the species, 

including the unique information provided by each variable (Phillips and Dudík, 2008). This 

method was used to analyse the effects of environmental variables on model results to indicate 

influential variables as it can estimate parameters and adjust the deviation without assumptions 

of distribution probability (Kumbula et al., 2019).    

Table 3.4: Model scenarios with selected environmental inputs   

Model scenario  variables No of variables  

Model 1 Aspect, elevation, slope, TPI, TWI.  5 

Model 2 Bands 2, 3, 4, 5, 6, 7, 8, 8a, 11, 12.  10 

Model 3 Bios 01, 02, 05, 06, 07, 12, 13, 14, 17.  9 

Model 4 GNDVI, NDVI, RVI, TVI. 4 

Model 5  Aspect, elevation, slope, TPI, TWI, bands 2, 3, 

4, 5, 6, 7, 8, 8a, 11, 12. 

15 

Model 6 Aspect, elevation, slope, TPI, TWI, bios 01, 

02, 05, 06, 07, 12, 13, 14, 17. 

15 

Model 7 Aspect, elevation, slope, TPI, TWI, Bands 2, 3, 

4, 5, 6, 7, 8, 8a, 11, 12, Bios 01, 02, 05, 06, 07, 

12, 13, 14, 17, GNDVI, NDVI, RVI, TVI.  

28 

 

3.2.6 Model evaluation  

To evaluate the model’s performance and accuracy, AUC which is a threshold-independent 

measure of accuracy was used as well as TSS and Cohen’s Kappa, which are threshold-

dependent measures of accuracy. The AUC tests the agreement between the observed species 

presence and the estimated distribution, indicating whether the probability of presence 

(sensitivity) versus absence (specificity) was correctly ordered by the classifier (Phillips et al., 

2006). An AUC value of 0.5 shows that model predictions are not better than random; <0.5 are 

worse than random; 0.5–0.7 indicates poor performance; 0.7–0.9 reasonable/moderate 

performance; and >0.9, high performance (West et al., 2016). Kappa has been previously used 

to measure model performance; however, it has been highly criticized for dependence on 

prevalence (Allouche et al., 2006). As such, TSS has been presented as an alternative measure 

of accuracy as it corrects this dependence while retaining the advantages of Kappa. 

Furthermore, the error matrix was used to derive specificity, sensitivity, Kappa and TSS values 
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using background samples as absence data. The 10 percentile threshold value was used to 

evaluate classification accuracy.  

3.3 Results  

3.3.1 Model accuracy 

Table 3.5 shows the values of AUC, which are threshold-independent, as well as those of TSS 

and Kappa, which are threshold-dependent. The model that used all variables achieved the 

highest predictive accuracies and had the highest performance, attaining an AUC of 0.96, a 

TSS of 0.77 and a Kappa of 0.39. On the other hand, the model developed based on indices 

alone achieved the lowest accuracies, yielding an AUC of 0.854, a TSS of 0.549 and a Kappa 

0.295. 

Table 3.5: Evaluation results for all model scenarios 

MODEL 

SCENARIOS 

AUC TSS KAPPA 

MODEL 1  0.924 0.667 0.338 

MODEL 2 0.906 0.621 0.328 

MODEL 3  0.925 0.751 0.397 

MODEL 4  0.854 0.549 0.295 

MODEL 5  0.952 0.773 0.401 

MODEL 6  0.928 0.698 0.367 

MODEL 7 0.955 0.765 0.387 

 

Figure 3.1 shows the results of the jack-knife test of variable importance. The findings ranked 

elevation as the overall most influential variable in predicting areas most vulnerable to the 

invasion of L. camara. As observed in Models 1(a), 5(e), 6(f) and 7(g), elevation is the 

environmental variable with the highest gain, when it is used in isolation, and it therefore 

appears to have the most useful information by itself. Furthermore, it is also the only 

environmental variable with the highest mean decrease in accuracy omitted from the model and 

it also appears to have the most information that is not present in the other variables. Models 3 

(c) and 4 (d) depicted bio 12 (mean annual rainfall) and GNDVI yielded the highest gain when 

used in isolation and leads to poor model performance omitted, whereas Model 7 (g) depicted 

band 5 (vegetation red edge) as the most important variable. 
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Figure 3.1: Jacknife test of variable importance (a) topographic variables, (b) Sentinel bands 

(c) bioclimatic variables (d) selected vegetation indices (e) topographic variables and sentinel 

bands (f) topographic and bioclimatic variables (g) composite of all variables.   

3.3.2 Spatial distribution of L. camara 

Figure 3.2. shows the predicted potential habitats suitable for L. camara. The warm colours 

illustrate high level of invasion while the cooler colours illustrate low level of invasion. The 

resultant map shows that invasion is more likely to occur in the communal area of the study 

area, that is Bushbuckridge, specifically within areas that are moister. Although invasion is 

taking place in the protected area, the level of invasion is lower. Dry areas within the 

protected area have low level of invasion while the areas that have more moisture have some 

invasion taking place, specifically the central eastern part of the protected area. Overall, the 

maps seem to agree with the areas that are most vulnerable to the invasion of L. camara.    
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Figure 3.2: The spatial distribution of L. camara as predicted by Maxent where the following variables were used for each model: (a) topographic variables, (b) 

Sentinel bands (c) bioclimatic variables (d) selected vegetation indices (e) topographic variables and sentinel bands (f) topographic and bioclimatic variables (g) 

composite of all variables.   
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3.4 Discussion  

The aim of the study was to model the potential spatial distribution of L. camara in savanna 

ecosystems using Maxent. Results revealed that the communal lands of Bushbuckridge are more 

vulnerable to the invasion of L. camara when compared to the protected area. Similar trends 

have been observed in other studies; for example, Rodgers et al. (2003) compared two tourist 

islands (the St. Simons Island and Jekyll Island) and two protected National Wildlife Refuge 

Islands (the Blackbeard Island and Wassaw Island) to find the island that is the most highly 

invaded by alien plants. It was found that Alien plant cover was appreciably greater in severely 

disturbed sites than in less disturbed sites on all islands and within both habitats. This is further 

supported by a study done by Lin, (2005) whereby major roadsides of Moorea, French Polynesia, 

were surveyed for L. camara cover in association with environmental factors. It was found that 

the roadside area covered by L. camara was 1.99% whereby the presence was correlated to the 

roadside habitat type with the highest being in areas of agricultural disturbance. The area covered 

by L. camara was also positively correlated to soil moisture and slope.  According to Shrama et 

al. (2005), disturbed areas such as railway tracks, roadsides and canals, are more favourable for 

the species distribution. This is because the performance of IAPs is increased by the availability 

of more resources, and the altered disturbance regimes that are caused by anthropogenic 

activities increases the performance of the invading species over that of native species (Daehler, 

2003). As a result, IAPs are usually invading disturbed areas (Hobbs, 1992). Disturbance 

decreases the cover and the vigour of competitors, and it increases the resource levels, which, in 

turn, facilitate invasions (Kneitel and Perrault, 2006).  

Results further indicated that some variables highly influence the spatial distribution of L. 

camara while others have no significant contribution. The model built with all variables yielded 

the highest predictive accuracies and had the highest performance. Previous studies have 

established similar results where by models built with a composite of various variables 

performed better than those based exclusively on one set of variables (Parviainen et al., 2013; 

Parra et al., 2004; Buermann et al., 2008; Saatchi et al., 2008). Furthermore, all the models 

achieved AUC values of above >0.85. These results are consistent with those of Phillips and 

Dudík, (2008) and therefore indicate that the models were able to predict areas vulnerable to L. 

camara invasion.       
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In addition, the findings of this study have indicated that the elevation was the only 

environmental variable with the highest gain, when used as independent model dataset in 

modelling the distribution of L. camara. Our results are in line with those of Ndlovu et al. (2018) 

and Adeola. (2017) whose work demonstrated that elevation explained probability of occurrence 

(p> 0.5). According to Adeola. (2017) elevation is a variable that has an influence on the spatial 

distribution of plant species as well as soil properties amongst others. This is supported by the 

findings of Priyanka, (2013) who observed the superiority of elevation gradients in accordance 

with the expected species since L. camara flourishes well at lower altitudinal ranges and as it 

increases, the species occurrence tends to diminish. 

Furthermore, Band 5 (vegetation red edge) derived from Sentinel-2 was depicted as another 

variable that is important in modelling invasive L. camara. According to Delegido et al. (2011) 

the inclusion of red edge bands is important for Sentinel-2 to enable the delivery of an accurate 

green canopy and chlorophyll. The red edge is important for the prediction of L. camara as the 

sensitivity of its presence to the red-edge bands is in line with the assertion that subtle vegetation 

changes and characteristics or variations are prominent in some portions of the electromagnetic 

spectrum (Zhu et al., 2007). Hence, its attributes can be probabilistically determined in terms of 

the red-edge band reflectance. Vegetation red edge bands contribute to vegetation mapping and 

offer broader discrimination. The potential of vegetation red edge in vegetation mapping and 

prediction has been stressed by authors such as Dhau et al. (2017).  

3.5 Conclusions  

The findings of this work demonstrate that communal areas of Bushbuckridge are more likely to 

be infested by invasive L. camara when compared to the protected park area. Almost 10% of the 

communal area is more likely to be infested, whereas only 7% of the park is anticipated to be 

infested. Further, findings of this study revealed that the models performed exceptionally well 

with AUC scores >0.85. The model developed using all the variables yielded the highest 

predictive accuracies and had the highest performance. Further, the results demonstrated that 

elevation plays a critical role in the spatial distribution of L. camara when compared to other 

variables considered for this study. The findings of this study could assist in conservation 

planning and management of invasive species and also protected areas. Moreover, such 

information is vital for ecologists, land managers and policy-makers in the monitoring of areas 

that are vulnerable to the invasion of L. camara and where early response mechanisms could be 

put in place.  
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CHAPTER FOUR 

 Synthesis  
 

4.1 Introduction  

The main aim of this study was to explain the spread of L. camara and to assess the 

environmental factors influencing its spatial distribution in the semi-arid savanna rangelands of 

South Africa. This chapter therefore reviews the aims and objectives presented in chapter one, 

and it also highlights the major conclusions and future research recommendations.     

4.2 Objectives reviewed  

 

To review the advances and future prospects in monitoring L. camara in semi-arid savanna 

agroecosystems. 

The study reviewed the advances and future prospects in monitoring L. camara in semi-arid 

savanna agroecosystems. Rangeland ecosystems are one of the largest ecosystems in world, they 

play a significant role in the global economy, in sustaining livelihoods and in combating global 

warming. The encroachment of L. camara into these ecosystems has had a devastating effect, 

which requires a reliable and operational monitoring framework. Traditional methods have in 

accurately detecting and mapping invasive species, such as L. camara, have proved to be limited. 

RS techniques have been presented as an alternative tool that is able to precisely detect and map 

the spatial distribution of L. camara. Various studies have successfully used the RS datasets, in 

conjunction with classification algorithms, to detect and map the spatial distribution of the weed. 

However, there is limited knowledge about the reasons behind the invasion of the weed in 

rangeland ecosystems. Previous studies such as Burke and Grime, (1996), Sharma et al. (2005), 

Funk and Vitousek, (2007) and Masocha et al. (2017) have investigated the effect of various 

biotic and abiotic factors on invasive species. The effects of these variables on invasive species 

could thus fully explain the dynamics of the ability of L. camara to intrude into new 

environments, which is an aspect that, to our knowledge, remains rudimentary in savanna 

rangelands.  
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To model localities vulnerable to L. camara infestation in semi-arid savanna ecos ystems of 

Bushbuckridge communal lands and Kruger National Park, South Africa 

This work aimed at identifying the most significant environmental variables influencing the 

distribution of L. camara in savanna ecosystems. The obtained results demonstrated that selected 

environmental variables play a significant role in the spatial distribution of L. camara. For 

instance, the mean annual rainfall (Bio12) and the calculated GNDVI yielded the highest gain, 

when used in isolation, and led to poor model performance, when omitted. However, elevation is 

the prime influencer of the spread of L. camara. Furthermore, the study appraised areas that are 

most vulnerable to the invasion of the weed, and it showed that the area between the communal 

lands of Bushbuckridge and the Kruger National Park (KNP), had the least L. camara 

infestation. The areas covered by L. camara within the KNP was estimated to be approximately 

7% whereas 10% of Bushbuckridge is covered by the weed. The high infestation rates observed 

in the communal lands is believed to be caused by the various anthropogenic activities or land 

management practices in the area and they thus serve as a disturbance. Our study demonstrated 

that environmental variables as well as environmental disturbance play a significant role in the 

spatial distribution of L. camara in semi-arid savanna ecosystems. This study provides the basis 

for identifying areas in which the management and monitoring of invasions should be focused     

 

4.3 Conclusions 

The aim of the study was to model and explain the spatial distribution of L. camara in South 

African savanna ecosystems. Findings of the study highlighted that the derived topographic, 

bioclimatic and remotely sensed variables significantly influence the spatial distribution of L. 

camara. Based on these findings, the following conclusions are drawn:  

 

 All models had better than random predictions where by the strength of model 

predictions varied with use of different variable. However, the model based on the 

composite of all variables yielded the highest AUC score. 

 Vulnerability maps derived from Maxent revealed that L. camara infestation is 

predominant in the communal lands of Bushbuckridge than the protected area of 

Kruger National Park whereby the area covered by L. camara in the communal lands is 

10% while in area covered L. camara in the protected area is 7%.    
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 Although other selected environmental variables play a significant role in the spatial 

distribution of L. camara, elevation is the major variable that influences the distribution 

of L. camara.   

 The information derived from the results of this study form as a basis for identifying 

areas where control and management interventions of the weed should be focused. 

 

4.4 Recommendations   

The results obtained in this study provide an insight into the spatial distribution of L. camara, as 

well as the utility and potential of SDMs, and they provide useful information about the factors 

that influence the distribution of L. camara in vulnerable areas. There is a need to explore eco-

hydrological impacts of invasive species on rangeland ecosystems. This study makes the 

following recommendations for future research: 

 

 There is need to estimate the amount of water used by L. camara as well as the amount of 

water loss from this weed over time, especially along rivers or in water-scares countries 

like South Africa. This information will be useful for prioritizing the removal of the 

species in highly affected areas.  

 There is need for long-term monitoring and the seasonal mapping of L. camara on a 

larger scale this is crucial for monitoring the rate of infestation taking place and the level 

of control strategies required.   

 It is advised for future studies to strive to detect other pre-visual physiological indicators 

of vegetation, stress like chlorophyll and leaf area index, using RS. 
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