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SYNOPSIS 

A new mathematical model is proposed for the recovery of the complete dynamical 

interactions of cell growth of single wine yeast strains of Saccharomyces cerevisiae. This 

new model is extended and applied for two species competing over a common ecological 

niche, revealing theoretical and experimental evidence of extinction and coexistence 

during batch fermentation. The computational results were shown to compare well with 

the new experiments conducted for both the pure and mixed cultures. The results of the 

proposed model show that the batch yeast growth in a limited nutrient media (5% grape 

juice and pure water) is associated with substantial oscillations, which damp out over 

time, allowing the cell concentration to stabilise at the stationary equilibrium. In addition, 

the proposed model recovers effects that are frequently encountered in experiments such 

as a "lag phase" as well as an inflection point in the ''In curve" of the cell concentration. 

The proposed model also recovers the Logistic Growth Curve as a special case. 

Keywords: Yeast growth; Nutritional stress; Population dynamics; Competitive 

exclusion. 
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CHAPTER! 

INTRODUCTION 

1.1 Background 

The significant importance of mathematical modelling in food microbiology was 

discussed extensively by Roberts, (1995) and Baranyi and Roberts, (1995). In particular, 

the growth of yeast is reported widely in connection with classical as well as more 

modern developments of mathematical models. From the very early stages of the 

application of models in population dynamics, yeast growth was used in their validation. 

The choice of modelling approach depends on the purpose of the model. A common view 

in (evolutionary) biology is that mathematical models are mainly useful for making 

predictions that can be used in experimental work. However, the testable predictions of a 

model are not necessarily its main contribution to science. Insights, quantitative as well as 

qualitative aspects, provided by models, their ability to train ones intuition about complex 

phenomena, to provide a framework for studying such phenomena, and to identify key 

components in complex systems, are at least as important as specific predictions. For 

these purposes, the most useful tools are simple models and metaphors. 

There are inconsistent theoretical results that, in some cases, recover excellently the 

growth curve of microorganisms (Pearl, 1927) while other cases show substantial 

qualitative as well as quantitative discrepancies (Baranyi and Roberts, 1994). Some of 

these discrepancies are the existence of a "lag phase", the existence of an inflection point 

on the "log curve" of the cell concentration, and the existence of overshooting and an 

oscillatory mode of growth. Figure 1.1 (Vadasz, A.S., 1999) reveals few of the 

unrecovered characteristics of batch yeast growth under nutritional stress, such as the 

existence of an inflection point on the "log curve" of the cell concentration, a possible 
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existence of overshooting and an oscillatory mode of growth. These indicate the 

limitations of the existing models to capture all the possibilities of the macro growth 

nature, which is affected by various dynamical internal and external conditions. These 

facts motivate the current study. 

Mathematical models of populations (plants and organisms) aim to understand the way 

different kinds of biological and physical interactions affect the dynamics of the various 

species. There are many important elements to consider in constructing mathematical 

models, such as factors that determine the numerical magnitude of the population, 

parameters that determine the time scale of an adaptive response to environmental 

changes, and accordingly the type of response, tracing the environmental variations or 

averaging over them (May, 1981). 

There are two broad categories of models. The first, spatially homogeneous (when the 

population concentration distribution in space is assumed to be uniform), deals with the 

dependence of population changes over time such as continuous, discrete or delay. 

(Krebs, 1978; May, 1981; Edelstein-Keshet, 1988). The second, spatially heterogeneous, 

deals with spatial distribution of population concentrations and includes types as "spatio­

temporal" or "patches" (Krebs, 1978; May, 1981; Edelstein-Keshet, 1988). At one 

extreme, continuous growth is when there is a complete overlap between generations and 

the population changes continuously in time. At the opposite extreme, discrete growth is 

where there is no overlapping between generations, the population growth occurs in 

discrete time steps and reproduce at fixed intervals. Most real life regulatory mechanisms 

are likely to operate with some built-in delay, therefore, delay models were developed, 

first introduced by Hutchinson, (1948) (May, 1975). Spatially heterogeneous models are 

concerned with the distribution over space and time. 
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1.2 Literature review 

1.2.1 Discrete versus continuous modelling 

Both discrete and continuous models of population growth studied so far, deal with a 

population as a continuous, rather than discrete variable, where n denotes a population 

size and x = n / A where A is area, or x = n / V where V is volume. When the size of a 

population is large, the approximation of a continuous n is reasonable especially when 

one normalises it: n. = n / nmax • Therefore, the distinction between continuous and 

discrete models refers to continuous and discrete in time and both consider the population 

size as a continuous variable. While for some species their reproduction habits are 

season-linked, for others they are not. For those which exhibit affinity to seasons, a 

discrete model in time indicating the reproduction rate from one reproduction season to 

another is possible, and most probably more accurate than the model that is continuous in 

time. However, for the others a continuous model in time seems more appropriate. 

1.2.2 Continuous modelling of an isolated species 

1.2.2.1 A pure culture 

Naturally, populations of plants and organisms tend to interact with their biological and 

physical environment. Simple models of environmentally controlled single species 

capture the general principles of behavioural patterns. 

1.2.2.1.1 Malthus' model (Simple birth and death) 

This model applies in an unlimited habitat (a suitable ecological environment). 
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Life support system (LSS) is defined as the collection of all life support elements in the 

culture environment, allowing for active growth. These include nutrition, temperature and 

a vital range of pH levels. Pertinent to active growth, the following parameters are 

considered: 

Natural birth rate: ax where a is the specific (relative) natality rate. 

Natural death rate: bx where b is the specific (relative) morality rate. 

The rate of change of the population size x is 

dx 
-=(a-b)x 
dt 

The specific (relative) growth rate, f.1, is defined in the form 

f.1=(a-b) 

Substituting (1-2) into (1-1) 

(1-1) 

(1-2) 

(1-3) 

This is an equation for a single species without competition and with an unlimited supply 

of life support elements. 

The solution of (1-3) is obtained via direct integration 

x- x e lll 
- 0 (1-4) 

where Xo is the initial cell concentration, l.e. at t = O. This solution is presented 

graphically in Figure 1.2. 
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From (1-3) one can observe that 

1 dx 
--=J1 
x dt 

Therefore, J1, indeed represents the relative (or specific) growth rate. 

Another form of equation (1-5) is 

d(1nx) = J1 
dt 

suggesting the introduction of a new variable, Y K 

YK = In x 

Then equation (1-6) becomes 

dYK 
-=J1 
dt 

leading to the solution 

Where YKo is the initial value of YK' i.e. at t = O. 

(1-5) 

(1-6) 

(1-7) 

(1-8) 

(1-9) 

The major problem with MaLthus' modeL is that the solution is not bound as t ---7 00 , 

for J1 > o. The solution (1-3) yields the following limits: 

as t ---7 00 ~ x ---7 00 for J1 > 0, and x = 0 for J1 < 0 (as t ---7 00) (1-10) 
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1.2.2.1.2 Pearl- Verhulst model (Logistic growth model or LGM) 

In order to obtain a more realistic representation of the dynamics of the interaction 

between the yeast population and its habitat, one needs to consider a finite size of the 

habitat. In a finite habitat (ecological environment), it is expected that crowding 

somehow affects the relative growth rate, e.g. by exerting excessive demands upon food 

supply and thereby decreasing fecundity or even causing starvation. In other words, the 

relative growth rate, 11 in equation (1-3), should, therefore, be decreased by a term 

proportional to the population size or its concentration; 

dx 
- = (11 - {3x)x 
dt 

(1-11) 

This is an equation for a single species (strain) without competition from other species 

(strains), but including internal competition on the source ofLSS (1.2.2.1.1). 

Integrating equation (1-11) 

dx f 
( f3) 

= dt + Co 
11- x x (1-12) 

yields 

(1-13) 

where 

(1-14) 
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Substituting equation (1-14) into (1-13) yields 

(1-15) 

The stationary points (or steady state solutions) of equation (1-11) are obtained by setting 

dx/dt = 0 in equation (1-11), in the form 

x = 0 and (1-16) 

One can observe from equation (1-15) that for an initial condition Xo = 0 the solution (1-

15) is x = 0 for all values of t. However, for any other value of xo, one can observe the 

long term solution by representing equation (1-15) after dividing both numerator and 

denominator by e lll
, to obtain 

(1-17) 

From equation (1-17) one clearly obtains 

as t -7 00 (1-18) 

or 

x = J.L 
f3 

as t -7 00 for Xo 1:- 0 (1-19) 

Therefore, the steady-state solution x = 0 is obtained only when the initial conditions are 

Xo = 0, i.e. in absence of x -yeast at t = o. The steady-state solution x = J.L/ f3 is obtained 

for any other initial conditions (naturally x> 0). The linear stability analysis of these two 
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steady-state solutions is presented in Appendix A.I (A.!. I). This analysis concludes that 

the steady-state solution x = pi f3 is stable and x = 0 is unstable if p> 0, while x = pi f3 

becomes unstable and x = 0 becomes stable if p< O. 

As the case when p> 0 is the one of relevance to this study, it is convenient to use the 

notation 

(1-20) 

Therefore, equation (1-11) can be presented in the form 

(1-21) 

For p > 0 the effective growth rate, (1- ~ ), is positive if x < 0, and negative if x> o. 

It leads to a globally stable equilibrium point at x = o. This value x = 0 = pi f3 may be 

thought of as the "carrying capacity of the habitat (environment)", as determined by the 

life support system (LSS). 

The solution 0-15) can be presented in terms of 0 in the form 

Oe JU 

0-22) 
x = (Ill 0 ) 

e + xo -1 

or 

(1-23) 
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with x = 8 as t ---7 00 (Jor X o 1= 0). 

At t= 0 

(1-24) 

and at t ---7 00 

( ~;) = 0 
t-'l~ 

[(1-21) and x=8] (1-25) 

From eq. (1-24) it is clear that the only cases when the initial slope of the growth curve is 

zero are (i) when Xo = 8 or (ii) when Xo = O. Otherwise, the initial slope of the growth 

curve is positive if Xo < 8 or negative if Xo > 8 . The inflection point of the growth curve 

represents the point where the curve changes its shape from concave to convex. Applying 

the second derivative of x on equation (1-21) and equating to zero gives the inflection 

points in the resulting solution x(t) 

(1-26) 

8 f.1 
Xillfl .pt. = '2 = 2{3 (1-27) 

which upon substitution in (1 -23) yields 
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eJlr = ~-1 
xo 

t,,,,,, = In(:' -I r (1-28) 

The solution (1-22) or (1-23) represents a .sigmoid as presented graphically in Figure 1.3, 

for different values of Ko ' (f1 = 0.2 S -I). From equations (1-27) and (1-28), one observes 

that while the value of x at the inflection point is independent of the initial conditions 

(x inj/.pt. does not depend on xo), the time value when the inflection point occurs does 

depend on the initial conditions (i.e., t inj/pr. does depend on xo)' 

For initial conditions Xo > 8/ 2 the solution does not pass through an inflection point (the 

inflection point occurs then at t < 0). Furthermore, for Xo > 8, at t = 0: t = 0 dx < 0 
dt ' 

and the solution (1-13) x = 8/ [1- (1- 8/xo)e- Jl1 ] , can be represented graphically as 

shown in Figure 1.3 by the top two curves. 
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Figure 1.3 Graphical description of the family of Logistic Growth curves 

corresponding to the analytical solution, equation (1-23), of the Logistic Growth Model 

(LGM), equation (1-24). (a) The family of curves for cell concentration versus time, and 
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A slightly more general class of equations proposed by Blumberg (1968) gives the 

possibility to adjust the inflection point according to the specific population growth 

characteristics. It should be realised that the right hand side of equation (1-11) could be 

the first terms of a Taylor expansion of a function f(x) as indicated by Edelstein-Keshet, 

(1988), e.g. 

dx = f(x) 
dt 

where 

As the growth rate is zero when x = 0, since at least one individual must exist for the 

population to grow at all, thus Co = o. 

There are at least two qualitative discrepancies between this model and the experimental 

evidence in the growth of yeast: 

1. The present model does not recover the "lag" phase of the growth dynamics curve. 

2. The present model does not recover the inflection point on the "In curve" of the cell 

concentration. 

1.2.2.1.3 Hutchinson model (Logistic population growth with delay) 

In the attempt to address the first qualitative discrepancy indicated previously, i.e. the 

lack of a "lag" phase (where x = constant , i.e. dx/dt = 0) in the logistic population 

growth solution, one can introduce a correction to the Pearl- Verhulst model. 

The Hutchinson model was developed in an attempt to correct the fact that in equation (1-

21) the density (concentration) dependent regulatory mechanism as represented by the 

factor (1- x18) operates instantaneously. By considering that these regulatory effects are 
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likely to operate with some built-in time lag, whose characteristic magnitude may be 

denoted by 't, one can incorporate such time delays in equation (1-21) in the form of 

dx _ [1 x(t - r)] --J1x -
dt 8 

(1-29) 

This delay-differential equation was first introduced into ecology by Hutchinson, (1948) 

and Wangersky and Cunningham, (1957) and reviewed by May, (1975). More 

realistically, the regulatory term is likely to depend not on the population at a time 

exactly 't minutes (or other time units) earlier, but rather on some smooth average over 

past populations (e.g. May, 1973) 

~~ =J1X[I- f~ Q(t-tl)X(tl)dtl] (1-30) 

Equation (1-29) is the special case when Q is a delta-function Q(t) = ~(t - r)j8. 

1.2.2.2 Continuous modelling of two species competing over a common 

ecological niche 

Some strains of yeast, called "killer", secrete into the growth medium toxins, which are 

lethal for other yeast strains, called "sensitive". The killer yeast is immune to the toxin it 

releases . Viral RNA, which inhabits the killer yeast encodes the killer toxin. This may 

suggest that the virus that produces the mycotoxin lives in a mutual - symbiotic 

relationship with its yeast host (Wickner, 1976). 

The model of competition to be developed in this study is applied to the interaction 

between a killer and a sensitive strain of yeast growing in a mixed culture, as well as to 

the interaction between two different sensitive strains of yeast. 
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There are two general approaches in attempting modelling of physical phenomena. The 

first is the "microscopic" approach, which tends to describe mathematically all possible 

known effects up to most of the relevant details. The second is a "macroscopic" approach, 

which attempts to find the simplest possible mathematical representation of a physical 

reality and introduce lumped parameters into the latter in order to represent the global 

impact of the more complicated "microscopic" details on the system. 

The first approach was used, for example by Ramon-Portugal et ai. (1997) for modelling 

the interaction between one killer and one sensitive strain of yeast growing in a mixed 

culture. They formulated their mathematical model by expressing rate equations for the 

evolution of the killer toxin concentration as well as the interaction and growth between 

the killer and sensitive strains of yeast. They obtained eventually a set of five non-linear 

ordinary differential equations and solved the system numerically. An even more 

microscopic approach to the same problem would require including in the model the 

mutually symbiotic relationship between the virus and killer-yeast host. 

The second approach is applied in this study, where an attempt is made to represent the 

effect of the killer-toxin as a lumped parameter in a model of two species competing over 

a common ecological niche. The logical derivation of the model is provided along with a 

critical review of the fundamental competition models, starting with the classical 

competition model of Lotka-Volterra. The relevance and possible introduction of the 

killer-toxin effect in such models is introduced along with the presentation of this critical 

review. 
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1.2.2.2.1 Classical model for two species (sensitive or killer) competing over a 

common ecological niche 

The classical model for two species competing over a common ecological niche was 

introduced as an extension of the Logistic Growth Model (LGM), which applies for one 

species in isolation and in an homogenous habitat. Considering XI and x2 to represent the 

concentration of these two different species (in the present case the two strains of yeast), 

respectively, then III and 112 represent their corresponding maximum specific growth 

rates in isolation. The quantity of available nutrition will diminish in proportion to the 

total population size (or cell concentration). However, the two different species (strains) 

affect the food supply in different degrees. The first species, carrying the index 1, 

diminishes the nutrition supply by hlxl per unit time while the second species, carrying 

the index 2, diminishes the nutrition supply by h2x2 , giving a total nutrition consumption 

rate of (hlxl + h2x2) > 0 (hI> 0 and h2 > 0). The diminished nutrition supply affects the 

specific growth rates at different degrees depending on the effectiveness of food 

utilisation of each species. Introducing these considerations into the Logistic Growth 

Model yields the following classical system of equations 

(1-31) 

(1-32) 

where YI and Y2 are food utilisation factors for each species, which depends for example 

on the species metabolism and its consequent level of effectiveness in utilising the 

available nutrition for growth. The system of equations (1-31)-(1-32) can be presented in 

the following equivalent form 
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(1-33) 

(1-34) 

where the following notation is introduced. A further notation will be used later 

(1-35) 

The steady state solutions of the system of equations (1-33)-(1-34) are obtained by setting 

(dxJdt) = (dx2/dt) = 0 and obtain 

(1-36) 

(1-37) 

Solving the algebraic system of equations (1-36) and (1-37) provides the following steady 

state solutions 

SI: and (1-38) 

S2: and (1-39) 

S3: and (1-40) 

(1-41) 
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The steady states S 1-S3 are stationary points, while S4 is a stationary line. The latter is 

the solution of the linear system 

(1-42) 

It is obvious from equation (1-42) that the determinant of the coefficients' matrix H 

vanishes, i.e. det[ H] = ~h2 - h,h2 = O. Therefore, the only possible solution for S4 

corresponds to the necessary condition <p, = <P2 = <p. Then, the solution lies on the straight 

line expressed by 

(1-43) 

The linear stability of these steady states is presented in Appendix A.I (A.1.2), and they 

are summarised in the following Table 1.1. 

Table 1.1 Linear stability of steady state solutions for the classical model of 

competition 

Steady State Solution Linear Stability Conditions 

Sl XIS =0 & x2S =0 11, <0 & 112 <0 

S2 XIS =0 & x2S = 82 h,8, < h282 & 112> 0 

S3 XIS = 8, & X2S = 0 h,8, > h282 & 11, > 0 

S4 h,x,s + h2x2S = <p Globally Stable if 11, > 0 & 112 > 0 

subject to <p, = <P2 = <p . 
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The results expressed by the steady states S1-S3 introduced "Volterra's Competitive 

Exclusion Principle" which can be formulated in the following form: "If two species are 

competing over a common ecological niche and h,b, < h2b2 , then the first species 

(carrying the index 1) is doomed to extinction, and the second species (carrying the index 

2) survives and attains a limit population size of x2S = b/'. In all these cases, the marginal 

stability is monotonic and neither periodic solutions nor overshooting are, therefore, 

possible. 

The only possibility of coexistence of the two species occurs if the steady state S4 

materialises. The condition for its existence, i.e. ¢, = ¢2 = ¢, is extremely limiting and 

implies that both species behave similarly as far as their growth to food utilisation ratio is 

concerned. Nevertheless, in nature, there are plenty of examples where coexistence of 

species does occur in the same habitat. The latter motivated DeBach, (1966) to 

reformulate the "Competitive Exclusion Principle" and present it as the "Coexistence 

Principle" in the form: "Different species which coexist indefinitely in the same habitat 

must have different ecological niches, that is they must not be ecological homologues". 

Furthermore, the concept of niches within the same habitat was developed substantially 

(MacArthur, 1968). Excellent reviews of the niche theory and niche overlap is presented 

by May, (1981b) and Pianka, (1981). Furthermore, May, (l981b) suggests that a major 

motivation for investigations along the lines of the niche theory was driven by the need to 

estimate the values of the coefficients h, and h2 in equations (1-31)-(1-34). 

Yet, the experimental results of two yeast strains grown in a mixed culture in pure water 

(see section 3.3.4.2 and Figures 3.36-3.46) show that for initial conditions at a ratio of 1: 1 

between each two strains considered, the result was always one of coexistence. It is very 

unlikely to believe that in the pure water habitat there is a multiplicity of different 

ecological niches, nor that the very stringent condition corresponding to the steady state 
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solution S4 above is fulfilled by all yeast strains used in the experiments. Since the reason 

for the very stringent condition of coexistence in the classical model presented above is 

the fact that det[ H] = hlh2 - hlh2 = O. A modification of the classical model is, therefore, 

needed by imposing the requirement det[ H] 1= 0 that may accommodate coexistence 

subject to less stringent conditions. 

A mycovirus-cured derivative of the killer yeast Saccharomyces cerevisiae T206 was 

produced by cycloheximide treatment (Fink and Styles, 1972) and used as the killer 

control (3.2.2.2). This treatment or curing of the killer yeast deletes its ability to produce 

and release toxin. 

The complete and correct modelling of the interaction between killer and sensitive cells 

needs to take into consideration the individual dynamics of the killer and sensitive yeast 

in isolation, as well as the additional component of the killer-toxin effects on the sensitive 

yeast population (Chapter 3). 

The killer toxin has the ability to perforate the cell wall of the sensitive cells (Vadasz, 

A.S. 1999; Vadasz et aI., 2000), and this can be the reason for adding vital nutrients from 

within the killed cells. Although the toxin destruction of the sensitive cells was observed 

while growing under conditions of extreme limiting vital nutrients, the percent of 

sensitive dead cells was relatively low in comparison with cells growing in a rich 

medium. Growing under nutritional stress affects the levels of production and activity of 

the killer toxin. Also, examination of cells under electron microscopy revealed that 

healthy cells develop physical protective structures (Vadasz, A.S. 1999; Vadasz et al., 

2000). 

21 



1.3 Unanswered questions and motivation for the proposed research 

Pearl, (1927), whose Logistic Growth Model (LGM) is still widely used, reported 

experimental results of yeast growth based on Carlson, (1913) and compared them to his 

proposed Logistic Growth Model (LGM) results. The experimental results fitted 

excellently with Pearl's logistic curve that represented the solution of the LGM. Pearl, 

(1927) suggested the LGM as a universal model for population growth and not only for 

yeast. However, experiments carried out in populations other than yeast indicated that the 

LGM does not recover essential features and, therefore, might not be appropriate in all 

cases, reducing its general applicability as well as the claim of its universality. In some 

cases, a strong point was made in favour of using models that are discrete rather than 

continuous in time, even in spatially-homogeneous media (May, 1995). Excellent reviews 

of this and other relevant topics are presented by Pielou, (1969), Krebs, (1978), May, 

(1975, 1981) and Edelstein-Keshet, (1988). 

The two most common substantial qualitative features that the LGM does not recover but 

they appear in experiments is the existence of a "Lag Phase" at the initial stage, and the 

existence of an inflection point on the "In curve" of the cell concentration (or "log 

curve "). Baranyi and Roberts, (1994) provide an excellent explanation of the reason why 

the LGM can not recover the inflection point on the "In curve" of the cell concentration 

in the cases where a "Lag Phase" is present. The inability of the LGM to recover the two 

basic qualitative features mentioned above (i.e. the existence of the "Lag Phase" and the 

existence of an inflection point in the "In curve" of the cell concentration) provided a 

strong motivation to develop other models that resolve these discrepancies. Baranyi and 

Roberts, (1994) report such a new model proposed by Baranyi et al., (1993). Their new 

model is essentially an extended non-autonomous version of the Logistic Growth Model 

(LGM). Non-autonomous models are indeed acceptable in natural environments where 
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diurnal or other time variations of temperature, pH as well as other medium parameters 

occur, therefore, imposing on the growth parameters a time dependence. There is 

substantial experimental evidence that the latter parameters affect substantially the 

results. However, the motivation provided by Baranyi and Roberts, (1994) for suggesting 

a non-autonomous model was for recovering the microbial growth in a well-controlled 

batch culture experiment for a constant environment, and in particular, in recovering the 

"lag phase". Their argument is that the "lag phase" is a result of the "inertia" that the 

cell population possesses from growing previously in another environment, prior to being 

inoculated and grown in the actual environment. This is indeed the process that typical 

batch experiments follow. However, other explanations for the existence of the "lag 

phase" support the view that it is essentially linked to the time delay needed for the cells 

to transfer available nutrition from the medium into the cell before they can use it for 

growth and cell division. 

There are additional qualitative as well as quantitative discrepancies between the LGM 

solution and experimental results. More recent experimental results suggest the existence 

of overshooting and oscillations either in spatially homogeneous yeast growth media 

(Davey et al., 1996) as well as in spatio-temporal experiments of Boiteaux and Hess, 

(1978) and Haken, (1979). While there are a large number of reports which suggest that 

oscillations in the enzyme and metabolite concentrations are linked to the cells' growth 

(e.g. De la Funte, 1999; Wolf and Heinrich, 1997), very limited results suggest the 

existence of oscillations in the cell concentration itself. The former results are controlled 

by autocatalytic chemical reactions that are known to exhibit oscillations. The latter 

correspond to measuring the yeast growth in continuous cultures. 

The aim of this study is to present a new autonomous, dynamical growth model. The 

proposed model is compared with new experimental results in order to confirm the 
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existence of overshooting as well as oscillations during the batch yeast growth of 

Saccharomyces cerevisiae in pure and mixed cultures, subjected to nutritional stress (5% 

grape juice and pure water). Furthermore, the new autonomous, dynamical model needs 

to recover all the qualitative features that the LGM fails short, and to present the LGM 

solution as one optional solution of the model. 
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CHAPTER 2 

PROBLEM FORMULATION 

2.1 Problem formulation for a single species 

Some repetition of matters discussed in Chapter 1 is required in order to formulate the 

present problem and to place it in proper context. 

Pearl, (1927) suggested an extraordinarily simple model for population growth and 

applied it for a wide variety of experimental data, indicating in most cases an outstanding 

fit. While there were substantial challenges to fitting his model as a universal law, he 

showed in the case of yeast an excellent match with experimental results based on 

Carlson, (1913). The Logistic Growth Model (LGM) suggested independently by Pearl, 

(1927) was derived earlier also by Verhulst, (1838) but was practically forgotten and 

overlooked for almost ninety years . It essentially suggests that the concentration of a 

particular population, yeast cells in our case, is governed by the following equation 

dx ( x) 
dt =J1 1- 8 x (2-1) 

where x is the viable cell concentration, 8 is the carrying capacity of the environment, 

and J1, the maximum specific growth rate. 

The analytical solution to Equation (2-1) expressed in the form, 

(2-2) 

25 



where x is the initial cell concentration, yields the familiar "s" shaped logistic curve. 
D 

The family of curves represented by the solution (2-2) of the LGM equation (2-1) is 

presented in Figure 1.3a. From the figure, it can be observed that there are two types of 

curves corresponding to whether X o < 8, or whether X o > 8. It seems that there is no 

experimental evidence that recovered the type of curve associated with X o > 8. It has 

been shown, and it can be observed in Figure 1.3a that for initial conditions 

corresponding to X o < 8/2 (for f.1 > 0) an inflection point exists in the logistic curve 

solution x(t) according to equation (2-2). The inflection point is recovered at a value of 

x = x · ifI . = 8/2. However, when a logarithm of this solution is presented, i.e. In(x(t)) 
in .pOll1l 

or log(x(t)), this inflection point disappears, i.e. the logarithm of the cell count 

concentration according to the LGM's solution (2-2) can not recover an inflection point, 

as can be observed in Figure 1.3b. Actually, these are convex curves monotonically 

increasing (for X o < 8/2 < 8) and stabilizing at the non-trivial stationary value x = 8. The 

trivial stationary value x = 0 is unstable for f.1 > O. Pearl, (1927) showed an excellent 

match between the LGM solution expressed by equation (2-2) and experimental results 

reported by Carlson, (1913). 

On the other hand, there is substantial evidence from other, more recent, experimental 

results indicating that an inflection point is recovered on the logarithm of the cell-

concentration graph (Baranyi and Roberts, 1994). 

One way to incorporate a "Lag Phase " in a Logistic Growth Model was proposed by 

Hutchinson, (1948) and Wangersky and Cunningham, (1957). Hutchinson's model was 

developed in an attempt to correct the fact that in equation (2-2) the concentration 

dependent regulatory mechanism represented by the factor [1- x/8] operates 

instantaneously. By considering that these regulatory effects are likely to operate with 

26 



some built -in time lag, r, one can incorporate such time delays in the LGM equation as 

suggested in equations (1-29) and (1-30). 

The major objection to using the delay-models proposed in equations (1-29) and (1-30) is 

the fact that if there is a regulatory delay mechanism in the system it should be recovered 

as part of the solution and not provided as part of the input data or parameters. The time 

delay, r, or the delay delta function, Q, become input parameters in the delay models. 

Other formulations of growth models were proposed as variations of the LGM equation 

(2-1) by considering different forms of the specific growth rate. In general, this can be 

presented in the form 

dx = xl1f(x) 
dt 

(2-3) 

where 11 f(x) is the relative growth rate and different forms of the function f( x) have 

been proposed. Edelstein-Keshet, (1988) proposes for a sufficiently smooth function to 

consider its Taylor series form f( x) = ~x + a2x
2 

+ a3x
3 

+ a4x 
4 

+ .... The reason that the 

right hand side of equation (1-30) does not include a free constant term is motivated by 

the requirement that (d xl d t t=o = 0 in order "to dismiss the possibility of spontaneous 

generation of living organisms from inanimate matter". The latter is referred by 

Edelstein-Keshet (1988) as the "Axiom of Parenthood: every organism must have 

parents". Baranyi and Roberts (1994), for example, preferred to use a Richards' family of 

growth curves in the form f( x) = [1- (xl 8)'" ]. 

Baranyi and Roberts, (1994) suggested a new model to resolve the problem of lack of 

recovery of a "lag phase" and an inflection point in the logarithm of the cell 

concentration curve by the LGM and its different variations. They realised that the only 
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way that a recovery of both the lag phase and the inflection point on the logarithm of the 

cell concentration curve can be accomplished is via a non-autonomous model. They, 

therefore, suggested including a time-dependent adjustment function a( t) in the form 

dx = xlla(t)j(x) 
dt 

(2-4) 

where j(x) takes one of the forms of the Richards' family of growth curves discussed 

above. They present different forms of the adjustment function, a(t) which recover 

different forms of previously proposed models as well as the Lag Phase and the inflection 

point on the logarithm of the cell concentration curve. The major limitation of this 

proposed model is the fact that it is non-autonomous, i.e. it requires for each experiment 

to evaluate an adjustment function, which depends on time explicitly, rather than a series 

of constants. 

The question that arises is how to derive an autonomous model that captures inherently 

the fact that "the environment may be changing during the growth" as suggested by 

Baranyi and Roberts (1994). The answer to the latter question forms the objective of the 

present study. One is faced with substantial experimental evidence that shows excellent 

qualitative and quantitative match with the solution of the LGM on one hand. On the 

other hand, other experimental results indicate substantial qualitative and quantitative 

discrepancies between the LGM solution and the experimental data, such as the lack of 

recovery of a lag phase and an inflection point on the logarithm of the cell concentration 

curve. 
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2.2 Problem formulation for interaction between two competitive 

species: the modified classical model for two species competing 

over a common ecological niche 

The "modified classical model" was introduced for example by Pielou, (1969) as well as 

May, (1981b) as an extension of the "classical model" (presented in section 1.2.2.2.1) 

and was motivated by pure mathematical arguments of generality. Vadasz P. and Vadasz 

A.S. (2000) are showing that the same model is derived from first principles if 

environmental pollution (deterioration) due to metabolic waste or other natural and 

virulent toxins are being considered. Their arguments lead to the unavoidable conclusion 

that the h' s in the coefficients' matrix H usually carry four unequal values, i.e. hlP h12 , 

h21 and h22 ' transforming equations (1-31) and (1-32) into the modified classical form 

(2-5) 

(2-6) 

The terms (hlIXI + ~2X2 ) and (h21XI + h 22 X 2) in equations (2-5) and (2-6), respectively, do 

not represent anymore only the nutrition depletion rate but rather a more complex impact 

of both nutrition depletion as well as environmental pollution on the birth and death rates 

of the respective species. The environmental deterioration due to metabolic as well as 

other sources of toxin released into the environment is particularly essential in batch 

growth typical to some laboratory experiments as the ones conducted in this study. If for 

example the killer strain of yeast is allocated the index 1, then the impact of its toxin on a 

sensitive yeast strain (carrying the index 2) will be reflected in the value of the coefficient 

h21 · When the metabolic waste released by the sensitive yeast strain is affecting the killer 
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strain, it is reflected in the value of the coefficient h12 . It is sensible to assume that under 

conditions when the killer strain is effective in the competition with the sensitive one 

because of its toxin the condition h 21 » hl 2 applies. Since now the impact of YI and Y 2 is 

more subtle that in the previous classical case it is convenient to combine the coefficients 

by using the following notation 

(2-7) 

and represent equations (2-5) and (2-6) in the form 

(2-8) 

(2-9) 

The steady states of the modified classical model (2-8) and (2-9) are obtained by setting 

(dx,/dt) = (dx2/d t) = 0, and yield 

(2-10) 

(2-11) 

Solving the algebraic system of equations (2-10) and (2-11) provides the following steady 

state solutions 

Sl : X J1I =0 and (2-12) 

S2: and (2-13) 

S3: - PI - 8 
Xs1I --{3 - I 

II 

and (2-14) 
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(2-15) 

The stationary point S4 is obtained as the solution to the system of linear equations 

(2-16) 

and yields 

S4: (2-17) 

where .1 = det[ H] = ,811,822 - ,81 2,821. Vadasz, P. and Vadasz, A.S . (2000) presented a non-

linear global stability analysis of the stationary points S 1-S4, which is summarised in 

Table 2.2. 

Table 2.2 Global stability conditions of the stationary points for the modified classical 

model (Vadasz, P. and Vadasz, A.S., 2000) 

Steady State Solution Global Stability Conditions 

SI XIS = 0 & x 2S =0 J.11<0& J.12 < 0 

S2 XIS = 0 & x 2S = 82 ( LI> 0 & " , > 11. ) O{'I< 0 & " , > jJ" ) 
81 ,81 2 81 ,822 

S3 XIS = 81 & x 2S = 0 
( Ll < 0 & " , > 11. ) or ( Ll > 0 & " , > jJ" ) 

81 ,81 2 81 ,822 

S4 hlxlS + h 2x 2S = ct> ,821 < 82 < fu (implies also .1 > 0) 
,822 81 ,81 2 
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In addition, S2 and S3 can be locally stable if (13, J 13,2) < (82/8,) < (132, /1322) (implies also 

L1 < 0). For this case, the choice between whether S2 or S3 are stable depends on the 

initial conditions. 

From Table 2.2, it is obvious that coexistence is possible within a wide range of 

parameter values. The stability condition of the coexistence stationary point, S4, does not 

limit substantially the values of the parameters as in the classical model. In addition, 

extinction of one species or the other can be obtained depending on the values of the 

parameters, and for parameters' values that fulfil the inequality 

(1311 /13,2) < (8)8,) < (f32J f32J, the extinction of one or the other species depends on the 

initial conditions. In all cases, the solution reaches a stationary point monotonically; i.e. 

no oscillations, nor overshooting seem possible, in contrast to experimental evidence 

presented in Chapter 3. The latter forms another objective of the present study. 
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CHAPTER 3 

NEW EXPERIMENTS OF YEAST GROWTH UNDER 

EXTREME NUTRITIONAL STRESS 

3.1 Background 

Yeast, unicellular eukaryotes, are used widely as a model system in basic and applied 

fields of life science, medicine and biotechnology, and almost certainly, have been used 

by humans since the dawn of civilisation. Yeast, a typical fungus, has fundamentally the 

same sub-cellular structure as higher animal and plant cells. The cell wall is the sole yeast 

structure lacking in animal cells. It is significant, and in keeping with the genetically 

dependent cell shape, that the cell wall is situated on the outer surface of the cell, and it 

plays an important role in the transport of materials into and out of the cell (Klis, 1994). 

The cell wall is the first line of specific recognition, cell-to-cell communication and 

protection. 

Ascomycetous yeast strains are noted particularly for their ability to ferment 

carbohydrates; hence, the name Saccharomycetes. Fermentation was a welcome 

discovery because it has the effect of preservation by lowering the pH and, in some cases, 

producing alcohol, in conditions, which few microorganisms prosper. Because of this 

property and the resultant alcohol and carbon dioxide produced, brewers, wine makers, 

distillers and bakers employ yeast in their industries. It was only relatively recently in the 

fermentation history that the yeast 'function' came to be understood (Pasteur, 1866). 

Since that time progress in the knowledge of yeast has been rapid, driven in part by the 

great economic importance of the organisms. Many commercial strains available had 

been placed in the Saccharomyces cerevisiae group. 
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Strains of Saccharomyces cerevisiae survive and proliferate in their natural habitats 

through constant adaptation within the constraints of a dynamic ecosystem. This 

facultative anaerobic organism has the ability to select from its environment those food 

sources that will enable it the best possible chance of surviving. S. cerevisiae, like many 

other microorganisms, is able to adjust its enzymatic composition according to the quality 

of its food sources. Expression of genes for utilisation of food sources is induced by these 

sources, and is highly regulated. The tight gene regulation encoding such enzymes in S. 

cerevisiae is reviewed by Johnston and Carlson, (1992), Magasanik, (1992), Hinnebusch, 

(1992) and Paltauf et ai., (1992), for the assimilation of carbon, nitrogen, amino acids and 

lipid sources, respectively. 

Growth and reproduction patterns in yeast are inherited, and are reviewed by Herskowits 

and Oshima (1981), Herskowitz et ai.,(1992) and Sprague and Thorner, (1992). A strain­

inherited basal growth pattern, that is not affected by the available nutrition, but by cell 

specific properties, cell inertia and storage energy (Lillie and Pringle, 1980; Barton et at., 

1982; Hartig et at., 1990; Binder et at., 1991; Herskowitz et ai., 1992; Sprague and 

Thorner, 1992; Waterham et at., 1993; Klis, 1994; Osumi, 1998) should be known when 

growing a particular strain in the absence of nutrients, but pure water. 

Growth of yeast cells cannot easily be separated from the fermentation process and is 

pertinent to both substrate assimilation and production of the fermentation end-product. 

The control of fermentation is achieved by monitoring the changes in the fermentation 

medium resulting from the metabolic activities of the proliferating yeast cells. During 

fermentation, environmental factors affecting the yeast growth tend to vary. In mixed 

cultures, it may include the effect of a mycoviral toxin, which is produced by killer 

strains (reviewed by Wickner, 1976, 1986, 1992) against a sensitive strain (Hutchins and 

Bussey, 1983; Bussey, 1991; Van Vuuren and Jacobs, 1992; Carrau et at., 1993; Franken 
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et at., 1998; Ahmed et at., 1999; Vadasz et aI., 2000), and may adversely affect the 

production of the final desired product. 

In general, the aim of fermentation, like any other industrial process, is to obtain the 

highest efficiency in the use of raw materials and the production plant without distorting 

the quality of the end product. Thus, the most important properties for fermenting yeast 

are: 

• A rapid fermentation rate without excessive yeast growth; 

• An efficient utilisation of a carbon source with good conversion to the desired 

product; 

• An ability to withstand the stresses imposed by the alcohol concentrations and 

osmotic pressures encountered during fermentation; 

• A reproducible production of the correct levels of flavour and aroma compounds; 

• An ideal flocculation character for the process employed; 

• Good 'handling' characters such as retention of viability during storage and genetic 

stability. 

The basic growth pattern of wine strains of Saccharomyces cerevisiae under extreme 

nutritional stress media (5% grape juice and pure water) is examined in this study in 

order to develop a model simulating the dynamical interactions of killer and sensitive 

yeast strains in single and mixed cultures. Therefore, the aim is in understanding of the 

macro qualitative features controlling the dynamics of these interactions. Cycloheximide­

curing of the M dsRNA viral genome in a killer yeast yields a non-toxin producing 

derivative which can be is used as the killer control (3.2.2.2). 
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3.2 Materials and methods 

3.2.1 Yeast strains and materials 

3.2.1.1 Yeast strains 

Sensitive wine strains of Saccharomyces cerevisiae VIN7 and CSIR Y217 were obtained 

from the Institute for Wine Biotechnology, University of Stellenbosch, South Africa and 

from the Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa, 

respectively. The killer strain of S. cerevisiae T206 was obtained from the Department of 

Microbiology and Biochemistry, University of Pretoria, South Africa. 

3.2.1.2 Materials 

Yeast extract, malt extract, D - glucose, peptones, agar, (NH4)2 HP04 ,NaH2P04 , citric 

acid, absolute ethanol, sea sand (grade GR), paraformaldehyde, glutaraldehyde, sodium 

cacodylate and NaOH were purchased from Merck, Darmstadt. WLN (Bacto W.L. 

Nutrient) medium was purchased from Difco laboratories, Detroit, Michigan, USA. 

Hanepoot white grape juice (Ceres, South Africa) was used. Loeffer's methylene blue 

and cycloheximide were obtained from BDH Chemicals, Poole, UK. Acetic acid, 

ammonia, ethanol and glycerol test kits were obtained from Boehringer Mannheim 

GmbH, FRG (Appendix A.3). DNase I (Grade I) and bovine pancreatic Ribonuclease A 

(Type I-AS, protease free), agarose (DNA Grade), molecular weight marker III were also 

obtained from Boehringer Mannheim GmbH, FRG. Ethidium bromide was from Sigma 

Chemical Company, St. Louis, MO, USA. All other reagents used were of analytical 

grade. Millex-GS and HA type filters (0.22 and 0.451lm pore size) were purchased from 

Millipore Corporation, MA, USA. 
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3.2.2 Experimental methods 

The preparation of the different chemical solutions and media are presented in Appendix 

A.2. 

3.2.2.1 Maintenance of Saccharomyces cerevisiae cultures 

Saccharomyces cerevisiae strains, VIN 7, CSIR Y217, T206 and T206q, were grown on 

yeast malt extract agar (YMA) plates (Appendix A.2) stored at 4°C and sub-cultured 

according to the work process, every 2-3 weeks. Cultures were activated by re-streaking 

on freshly prepared sterile YMA-plates and incubated for 4 days at 2SoC prior to 

experimental work. 

3.2.2.2 Curing the killer yeast, S. cerevisiae T206 

The K2 killer T206 strain from freshly prepared 4 days old YMA plates was re-streaking 

on YMAcyc plates (Appendix A.2) containing cycloheximide (Fink and Styles, 1972) in 

ratio of 1flg cycloheximide per 4ml YMA volume and incubated for 7 days at 2S°C. From 

these, a minute inoculum was passed on YMAcyc plates of the same constituents and 

further re-streaked on YMAcyc plates of the same and increasing cycloheximide : YMA 

ratio (Appendix A.2). Re-streaked plates were incubated as described above. 

The success of the curing process was regularly tested (3.2.2.9) on methylene blue agar 

plates (Appendix A.2). Also, nucleic acids from both killer (T206) and killer-cured 

(T206q) strains were isolated in order to observe if the mycoviral double - stranded RNA 

species would be recovered (3.2.2.3). 
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3.2.2.3 Isolation of the mycoviral double - stranded RNA 

Total yeast nucleic acids were isolated from Saccharomyces cerevisiae T206 and T206 

cured, T206q, by modifying the method of Fried and Fink, (1978). Triplicates of 200ml 

YMB medium (Appendix A.2) in SOOml Erlenmeyer flasks were inoculated aseptically 

with a loopful of 4 days re-activated T206 and T206q cultures, respectively. These were 

incubated in an incubator shaker (New Brunswick Scientific, classic series C24, Edison, 

NJ, USA) set at 80 oscillations per minute, (rpm) and 2SoC for 24 hours. Then, cells were 

harvested by centrifugation at 4000rpm for 30 minutes (Hettich Universal centrifuge), 

and pellets of three flasks were combined. Each of the combined pellets (T206 and T206q 

separately) were washed by different solutions, each treatment followed by centrifuged as 

described above and the washing discarded. Firstly, pellets were washed twice with 

100ml autoclaved sterile distilled water, followed a wash with TE buffer (pH 7.S) 

(Appendix A.2), then re-suspended in 20ml Tris - mercaptoethanol buffer (pH 8.7) 

(Appendix A.2) for 20 minutes at room temperature, and washed twice with sterile Tris -

H2S04 (pH 9.3) (Appendix A.2). TSE buffer (pH 7.S) (Appendix A.2) was added to 

pellets (lml per gram of wet weight of the cells). These suspensions were pipetted into 

chilled porcelain mortars pre-washed with TE buffer (pH 7.S) and situated on crushed 

ice. Wet sterile sea sand (approximately 4-Sg) (Appendix A.2) was added to each of the 

mortars, and cells were firmly ground in a circular motion with a chilled pestle, until cell 

homogenates became slightly viscous. This required a few minutes, depending on the 

force applied to a certain amount of cells. Cell slurries were separated from the sea sand, 

each was transferred to 2S0ml Erlenmeyer flasks and mixed with TSE + SDS buffer 

(Appendix A.2) and phenol (Appendix A.2) at the ratio of 1 :4:4 (v/v/v), respectively. 

These flasks were rotated (80 rpm) in an incubator shaker for 2 hours at 2SoC, and then 

centrifuged as described above. The upper aqueous phase containing the nucleic acids 
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was removed and adjusted to 0.7M NaCl. Two and a half volumes of chilled absolute 

ethanol were added to these aqueous solutions, where nucleic acids were precipitated 

for12 hours at minus 20°C, then centrifuged at 27000rpm for 30 minutes (Beckman LS-

6S ultracentrifuge, USA), using type 40 rotor and polyallomer centrifuge tubes. Each 

pellet was re-suspended in a total volume of 100111 TE buffer (pH 7.S). Diluted samples 

(with TE buffer, depending on each sample concentration) of these were examined 

spectrophotometrically (Shimadzu UV -160A ultraviolet/visible wavelength 

spectrophotometer) between wavelengths of 210 to 310nm in order to estimate the purity 

and amount of the isolated nucleic acids . The rest of isolated samples were used for 

agarose gel electrophoresis analyses and stored at OOC until required for further 

examinations. 

3.2.2.4 Agarose gel electrophoresis analyses 

Equal aliquots of the isolated nucleic acids from Saccharomyces cerevisiae T206 cured, 

T206q and T206 were treated as indicated in Table 3.1. 

A gel (70xI00x3mm2
) was made up of ultra pure DNA grade agarose suspension (I % 

w/v) that was heated to boiling while being stirred continuously, until it became 

translucent. Electrophoresis-buffer (lOx) (Appendix A.2) was added to the solution (10% 

v/v) when it was cooled to about 7S°C. At 60°C it was poured into a clean, dry, level 

surface ultraviolet light translucent plastic (UVTP) casting tray with an 8 well-former 

comb placed in approximately Icm from the top position (cathode end). After 2 hours of 

gel setting, the tray was placed into a horizontal electrophoresis apparatus (Bio-Rad mini 

sub DNA cell apparatus), and filled with electrophoresis-buffer (lx) (Appendix A.2) up 

to Smm above the gel surface. A peristaltic pump (Gilson Minipuls 2, France) was 

connected to the sub-cell buffer compartments to re-circulate the buffer. Then, wells were 
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loaded with 8~l of the total volume obtained from the treated DNA Marker III (EcoRI­

HindIII A digest), undigested and endonuclease-digested isolated nucleic acid samples, as 

indicated in Table 3.1. Electrophoresis was carried out at a constant 40 volts current 

(Consort model E455, microcomputer electrophoresis power supply) for about 3 hours or 

until the blue colour gel loading buffer (Appendix A.2) had traversed about two third of 

the gel. 

When the electrophoresis procedure ceased, the gel was stained in ethidium bromide 

solution (l.O~g/rnl) for about a hour. The separation of the DNA fragments was observed 

under UV 254nm illumination and printed (White/UV Transilluminator video graphic 

monitor and printer, Sony). Photographs were taken using a red filter (screw-in-type, 

Marumi, 55mm R2) fitted to the camera lens (MINOLTA, MD Zoom 35-70mm 1:3.5, 

55mm, Japan). 
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Table 3.1 Endonuclease digestion analyses of the isolated nucleic acids from 

Saccharomyces cerevisiae T206q and T206 

Lanes T206q T206 
1-------. .. __ ._---_. _._._.--_.- _ ...... _._._._--

1 2 3 4 5 6 7 8 

DNA Marker lIt 6111 6111 

(O.2Smg/ml) 

Isolated nucleic 10111 10111 10111 20111 20111 20111 

acids 

Bovine pancreatic 2111 2111 

DNase I 

(lmg/ml) 

Bovine pancreatic 2111 2111 

RNase A 

(lmg/ml) 

Incubation for one hour: Solutions contained RNase ¢ 37°C, DNase (and all the rest) ¢ 4°C 

EDTA 2111 2111 2111 2111 2111 2111 

(lOOmM) 

Gel loading buffer 3111 3111 3111 3111 3111 3111 3111 3111 

Total volume 9111 17111 17111 17111 27111 27111 27111 9111 

Volume loaded 8111 8111 8111 8111 8111 8111 8111 8111 

* DNA Marker III (EcoRI-HindIII A digest), Boehringer Mannheim GmbH, FRG. 
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3.2.2.5 Determination of the biomass of yeast cells 

Saccharomyces cerevisiae VIN7, Y217, T206 and T206q cultures were prepared by 

inoculating a superficial loopful 4 days old culture from YMA medium into 50ml 0-

medium (Appendix A.2) in 125rnl Erlenmeyer flasks. These cultures were built up at 

about 20 - 23°C, 80 rpm, in an incubator shaker (New Brunswick Scientific, classic series 

C24, Edison, NJ, USA) over 24 hours. From these, fermentation inocula were adjusted to 

106 viable cells / rnl using a Bright Line haemacytometer (American Optical Co. New 

York, USA). Dead cells were differentiated from viable ones by staining in 0.1 % 

methylene blue stain. Fermentation were performed in triplicates using 300rnl stressed 

(5% grape juice) and complex (O-medium) media (Appendix A.2) in 500rnl Erlenmeyer 

flasks in the shaker as described but for 96 hours. Aliquots of 2ml from each suspension 

were withdrawn aseptically at different times during the fermentation. Cells were 

harvested by micro-centrifugation (Micro Centaur, MSE, Sanyo, UK) at 12000rpm for 15 

minutes, and supernatant discarded. Cell pellets were washed three times, re - suspended 

in 2ml 20°C autoclaved sterile distilled water and re-centrifuged as described above. 

Thereafter, washed cells were re - suspended as above and the optical densities of the 

cells were obtained at wavelength of 600nm, using distilled water as blank. These cell 

suspensions were passed (lml x 2 per sample) through a wet (lrnl distilled water) pre -

weighed dry nitrocellular filter (RA type 0.45Jlm pore size), using a syringe and a plastic 

filter holder. Fine forceps were used to remove the filters with the cells from the filter 

holder. Filters were placed in a 105°C pre - heated oven for about 10 - 15 minutes to dry, 

then cooled in a desiccator for a few minutes, weighed, put back in the oven for another 5 

-10 minutes, and so on, until each sample reached a constant mass value. The cell 

biomass was estimated in duplicate by deducting the dry mass of the filter from the 

constant mass value of the filter with the cells. Correction for the maximum medium-
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components, was achieved with cell free aliquots as described and reduced from the 

biomass values. However, no correction was achieved for metabolites accumulated 

during fermentation, which possibly dried at 1050e as a solute. For each strain, results 

were recorded separately, as cell biomass (gil) versus the optical density (OD6oonm) plots, 

for both media. 

3.2.2.6 Fermentation 

Saccharomyces cerevisiae strains VIN7, Y217, T206 and T206q cultures were prepared 

by inoculating a superficial loopful of 4 days old culture from YMA medium into 25rnl 

of stressed media, 200e autoclaved distilled water and filter-sterilised (0.22)lm pore size) 

5% grape juice (Appendix A.2), respectively. The cells were collected by centrifugation 

(2500rpm for 3 minutes), then twice washed with lOrnl of the respective medium. These 

washed cells were re-suspended in 20ml of the respective new media. From these, 

inocula were adjusted to a total of 106 (and to 107 when examined the affect of initial 

concentration on the steady state phase) viable cells / ml using a haemacytometer. Dead 

cells were stained blue (0.1 % methylene) and thus differentiated from viable ones. 

Pure (single strain or control) and mixed batch fermentation were performed in triplicates 

using 300ml of both distilled water and 5% grape juice media, respectively, in 500ml 

Erlenmeyer flasks at 25°e, 80rpm, in an incubator shaker over 350 hours. The flasks were 

unflushed and fitted with cotton wool bungs. 

The sensitive wine-yeast strains (S), VIN7 and Y217, were challenged at the early 

logarithmic phase of growth (T9h) and at TOh with the K2 killer yeast T206 (K) and the 

killer-cured derivative (Kq), T206q, separately, at a killer: sensitive (K/S) and killer 

cured: sensitive (Kq/S) cell ratio of approximately 1: 100 and 1: 1, respectively. Also, 
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examined cultures of the killer yeast T206 (K) challenge at T9h its cured derivative (Kq) 

at ratio 1: 100 (KlKq) and two sensitive strains, VIN7 and Y217, mixed at TOh at ratio 1: 1. 

Aliquots of O.lml fermentation medium were withdrawn aseptically for counting the 

viable and dead cells at relatively short time intervals at different periods of growth (15-

30 minutes and 2-3 hours) until it was estimated that a steady state was reached. Aliquots 

of 3m1 were withdrawn once a day and every second or third day at the stationary phase 

for further analyses. In total, the aliquots withdrawn comprised of less than 9% of the 

initial volume. 

Inoculating the samples on WLN plates (Appendix A.2) yielded the survival ratio of the 

strains in mixed cultures, and methylene blue agar plates (Appendix A.2) monitored the 

killer toxin effect and the efficiency of the curing process. Boehringer Mannheim (FRG) 

kits were used to evaluate the concentrations of acetic acid (Cat. No. 542946), ammonia 

(Cat. No. 542946), ethanol (Cat. No. 176290) and glycerol (Cat. No. 148270). The 

instructions to these diagnostic kits are given in Appendix A.3. Reducing sugar 

concentration (DNS technique) and pH of media were also monitored. 

3.2.2.7 Determination of residual sugar (DNS technique) 

Redusing grape juice sugar (mainly D-fructose) concentrations were determined 

spectrophotometrically by a modification (Gupthar, 1987) of the dinitrosalicylic acid 

method of Miller, (1959). Standard curves of optical densities versus D-fructose standard 

and diluted grape juice were compared (Vadasz, A.S., 1999). Sterile triplicate samples of 

0.0,0.05,0.1,0.2,0.3,0.5, 0.7 and 1.0% w/v D-fructose, and diluted Hanepoot grape 

juice (Ceres, SA) containing expected sugar levels (Vadasz, A.S. , 1999) of 0.0,0.5, 1.0, 

2.0,4.0, 5.0 and 10 g /litre were used. To 25/ll sample (of the standard curves and yeast 

fermenting media) was added 2475/l1 autoclaved distilled water (dH
2
0). The control 
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(0.0% w/v) sample was used to zero the spectrophotometer. To each sample was added 

250Jll 2N NaOH and 250Jll DNS reagent (Appendix A.2). The samples were mixed and 

incubated for 5 minutes at 85°C. After heating, 2.5ml dH20 was added per sample and 

samples were allowed to cool at room temperature. Optical densities of samples were 

read against the control at 540nm using a spectrophotometer. In order to estimate 

reducing sugar concentrations of control and challenged fermentations investigated, their 

absorption results were compared with the results obtained for the reliable standard 

grape-juice sugar curve. 

3.2.2.8 WLN (Bacto Wallerstein Laboratory Nutrient) differential medium 

Four days re-activated yeast cultures growing on YMA plates were inoculated on WLN 

medium plates (Appendix A.2) . Plates were inoculated with small inocula of sensitive 

wine yeast strains, VIN 7 and Y217, the killer strain T206 and, the killer-cured, T206q, 

respectively. Plates were incubated at 25°e for 4-5 days. These were used in order to 

identify the typical colony of each strain. 

Samples of these strains growing in pure dH20 (section 3.2.2.6) were diluted in 

autoc1aved 200e distilled water (dH20) to a viable cell concentration of about 101 cells 

per ml after cell counting. These diluted samples were filtered through Milipore filters 

(type HA, 0.22Jlm pore size), and washed with cooled autoc1aved distilled water (lml 

x2). Then, with 1ml dH20 cells were washed off the filter onto the WLN plates, spread 

on the medium surface, allowed to be absorbed for 1 hour, and then incubated as 

described above. 

Samples were withdrawn from pure and mixed cultures at the same times. The pure 

cultures were used as the controls of the mixed ones in order to differentiate the relative 
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survival of each strain in the mixed cultures, while growing in the exact set of conditions. 

The filtration aimed to wash out spores, possibly liberated from asci. 

3.2.2.9 Methylene blue agar: a medium for the killer phenotype test 

A loopful of KK cells of VIN 7and Y217 , was added separately to autoclaved cooled 

20ml distilled water. An optical density of about 0.6 at 600nm was adjusted for the cell 

suspensions. Aliquots of 0.1m! per plate were spread onto methylene blue agar plates 

(Appendix A.2). The KK cell suspensions were allowed to absorb for 1 hour. Thereafter, 

a thin but heavily inoculated streak of both, the designated K2 killer T206 (K+ R+) and its 

cured strain, T206q (KR+), respectively, were applied separately on these plates. The 

methylene blue agar plates were incubated at 2SoC for 3-4 days to observe the killer toxin 

effect and the success of the curing. T206 and T206q, from freshly prepared YMA plates 

(4 days), were used as the killer and killer-cured controls, respectively. Samples of the 

sensitive, killer and killer cured strains growing in pure dH20 (section 3.2.2.6) were 

plated on methylene blue agar plates at the inception, mid-stream and at the end of the 

experimental duration, where sensitive cells were challenged by both T206 and T206q as 

described above. 
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3.2.2.10 Electron microscopy 

3.2.2.10.1 Preparation for scanning electron microscopy (SEM) 

Agar medium 

Sensitive wine strains VIN7 and Y217 were spread inoculated on 3% (v/v) grape juice 

agar plates (Appendix A.2). An hour after the inoculation, both were challenged (section 

3.2.2.9) with the killer T206, and incubated 7 days at 25°C. Plates were flooded with 3% 

Karnovskys fixative (1:3 dilution of stock containing 5% (w/v) paraformaldehyde and 

4% (v/v) glutaraldehyde) in 0.2M sodium cacodylate buffer (pH 7.2) at room temperature 

(about 25°C) for an hour. After removing the fixative, the agar was washed with 0.2M 

sodium cacodylate buffer for 15 minutes. Wedges of agar, incorporating part of the 

concentric growth inhibition (clearing) zone induced by the toxin (section 3.3.2.1), 

followed by a flanking region of superficial growth, were removed from the plates, 

immersed in 1 % aqueous osmium tetroxide (OS04) (Appendix A.2) at "room 

temperature" (ca. 25°C) in a dark cupboard for 30 minutes. The material was washed 

with buffer as described and dehydrated through a graded series of ethanol (i.e. 20 

minutes each in 50%, 70%, 90% ethanol, and 3 changes of 30 minutes each in 100% 

ethanol, using 'dry' alcohol for the last change). Thereafter, critical point drying was 

achieved with liquid CO2 in a Biorad CPD 750 critical point dryer. Dried samples were 

attached to brass stubs using a double-sided sticky carbon conductive tape. Growth was 

uppermost, and edges of the agar blocks were firmly pressed onto the surfaces of the 

stubs. Samples were coated with 10nm gold in an atmosphere of argon in a Polaron 

Sputter E5000 coating unit for 5 minutes at 30-40 amps. Specimens were viewed in a 

Philips SEM 500 at 6-12kV. 
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Liquid medium 

Cells were harvested from fermentation medium (5% grape juice) by centrifugation at 

6000 rpm for 5 minutes and washed twice in 0.89% saline. Cells were similarly treated as 

those from the 3% grape juice agar plates till the last change of 100% 'dry' alcohol, as 

described above, with centrifugation to re-pellet. Cells were gently spread with a drop of 

100% alcohol on thin round pieces of glass, which were attached to fitted brass stubs 

using the same double-sided sticky carbon conductive tape, then sputter coated with gold 

and examined as described above for the solid medium (Vadasz et ai., 2000). 

3.2.2.10.2 Preparation for transmission electron microscopy (TEM) 

Cell pellets (3.2.2.10.1, liquid medium) were flooded with 3% Karnovskys fixative in 

0.2M sodium cacodylate buffer (pH 7.2) at room temperature for an hour, then 

centrifuged. After removing the supernatants, the pellets were washed well with 0.2M 

sodium cacodylate buffer for 10 minutes, then re- centrifuged. Pellets were re-suspended 

in 1 % aqueous osmium tetroxide (OS04) (Appendix A.2) at "room temperature" (ca. 

25°C) in a dark cupboard for an hour. Then, they were washed twice with the buffer as 

described above, and dehydrated through a graded series of ethanol (i.e. 30 minutes each 

in 50% and 70%, twice in 90% ethanol and 3 changes in 100% ethanol, using 'dry' 

alcohol for the last change). The samples were re-suspended in 3 changes of propylene 

oxide for 20 minutes each and taken through increasing concentrations of low viscosity 

resin of Spurr (1969) (Appendix A.3), diluted with propylene oxide (i.e. 50% - 12h, 75% 

- 12h and 100% - 24h at room temperature) leaving the lids open in a fume extractor 

cupboard. Drops of the pellets were transferred into labelled Beem capsules were 100% 

Spurr' resin polymerised for 48h at 60°C under vacuum (Vadasz et ai., 2000). Ultra-thin 

sections were cut with Drukker diamond knife using a Reichert OMU2 ultramicrotome 
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and collected on uncoated 200-square mesh copper grids and were post-stained with 2% 

aqueous uranyl acetate (Appendix A.2) for 7 minutes followed by lead citrate (Appendix 

A.2) for 7 minutes. Sections were observed and photographed with a Philips 301 

transmission electron microscopy (TEM) . 

. 3.3 RESULTS AND DISCUSSION 

3.3.1 Analyses of the killer and killer-cured nucleic acids 

Most strains of Saccharomyces cerevisiae carry one or more double-stranded RNA 

(dsRNA) viruses (Wickner, 1992). Killer strains secrete virally-encoded protein toxins 

that are lethal to strains, which lack the toxin specific immunity. The exceptions are the 

killer and neutral strains that are carrying that specific immunity genome. This confers a 

growth advantage to its host, increasing its survival in ecosystems of clinical, 

environmental and industrial significance (Starmer et aI., 1992; Wickner, 1996; Magliani 

et al.; 1997). Commercial fermentation exploits killer strains (Van Vuuren and Jacobs, 

1992) that may influence the pathophysiology of opportunistic infections (Pettoello­

Mantovani et al., 1995), and offer candidates for novel antimycotic medications 

(Polonelli et aI., 1986). Yeast viruses show striking parallels to pathogenic dsRNA 

viruses of higher eukaryotes (Cheng et aI., 1994). 

The killer phenomenon in S. cerevisiae strains IS controlled by two types of 

cytoplasmically inherited dsRNA plasmids (Ramon-Portugal et aI., 1997) separately 

encapsulated in virus-like particles (VLPs), which show neither an infective nor lytic 

cycle. Therefore, they are termed (Lemke, 1977) latent mycoviruses. VLPs contain the L 

(large) and M (medium) dsRNA genome (Herring and Bevan, 1974). 
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The L-dsRNA molecules are approximately 5.1 kilobases (kb) in size (Van Vuuren and 

Wingfield, 1986; Franken et al., 1998), linear and code for an RNA polymerase which 

produces single stranded transcripts that encode the protein coat of the VLPs (Tipper and 

Bostian, 1984). There are also indications that this polymerase is involved in replication 

of both Land M genomes. 

The M-dsRNA genome codes for the toxin and a related immunity factor. KJ and K2 

toxins are encoded by variant M J (about 1.8 kb) and M2 (about 2.0 kb) dsRNAs, 

respectively. The size of these two M-dsRNAs varies rapidly by up to 300bp (base pairs) 

without affecting the copy number, the toxin production or the immunity. The site of this 

variation is probably the poly rA/poly rU region. The K2 phenotype of strain T206 (Van 

Vuuren & Wingfield, 1986) is found almost exclusively among fermentation 

contaminants. 

Genetic evidence clearly demonstrates that M-dsRNA is the determinant of both toxin 

production and immunity (Wickner, 1976). A schematic model for the preprotoxin 

maturation via the yeast secretion pathway has been proposed by Tipper and Bostian, 

(1984). Immunity to the toxin is conferred by the toxin precursor and its open reading 

frame is sufficient. The immunity component could compete with a required toxin 

receptor, or interact with the toxin to prevent lethal channel formation (Bussey, 1991). 

Boone and co-workers, (1986) had shown that the immunity is conferred by the precursor 

protein that can act as a competitive inhibitor of the mature toxin, by saturating a cell 

membrane receptor that normally mediates toxin action. Genetic deletion of TOKl, which 

encodes a potassium selective ion channel in the plasma membrane, confers K
J 

toxin 

resistance, where over expression increases susceptibility (Ahmed et al., 1999). 
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Hutchins and Bussey, (1983) reported that after a certain lag period the killer toxin is 

bound to a cell wall receptor, that is ~-1 ,6-D-glucan for KJ and K2 killer yeast cells on 

both sensitive and killer strains. It appears that the killing process involved two 

components for toxin action, one is the cell-wall receptor and the other is a receptor 

involved on the plasma membrane. The events occurring after the binding of the toxin to 

the plasma membrane remain unclear. They assumed that toxin binding of cell membrane 

receptors results in the liberation of K+ ions, ATP and other metabolites, leading to 

destruction of the cellular membrane pH gradient. 

In this study the K2 killer yeast S. cerevisiae T206 strain was cured of its killer phenotype 

by treatment with cycloheximide, modifying Fink and Styles' (1972) method (section 

3.2.2.2). Nucleic acids from both killer (T206) and killer cured (T206q) strains were 

isolated (3.2.2.3) and examined spectrophotometrically (Figures 3.1 and 3.2). Peaks were 

observed at wavelength of 259.4 and 257.8nm, and valleys at 232.7 and 232.3nm, 

respectively. A2&:!A280 ratios were 1.895 and 1.947, respectively , indicating that the 

nucleic acid extracts were relatively highly purified or free of excessive protein 

contamination. From about 4g wet cells approximately 3.74 and 2.34mg/ml, respectively 

of the nucleic acids were isolated. 

The success of the curing process was assessed by agarose gel electrophoresis (Figure 

3.3). S. cerevisiae T206 and T206q genomic DNA bands were found in both undigested 

and bovine pancreatic RNase-digested samples of the isolated nucleic acids, but not in 

DNase I-digested samples, as expected, and migrated alongside the 21.2kb EcoRI­

Hindlll digest A DNA marker band. Undigested and DNase I digested samples marked 

the isolated RNAs on the gel. The killer T206 strain yielded both Land M2 dsRNA 

species, estimated to be approximately 5.0 and 2.Okb, respectively (Figure 3.3). Only L 

dsRNAs band was observed for the killer cured (T206q) strain. The deletion of the M 
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viral genome using cycloheximide treatments is well documented (Fink and Styles, 

1972). 

Low molecular weight nucleic acids «O.83kb) were found to be susceptible to bovine 

pancreatic RNase (absent in lanes 4 and 7), but not to DNase I (observed in lanes 2 and 3 

and more pronounced in lanes 6 and 7). Considering the relative high concentration of 

nucleic acids of the killer samples compared with that of those applied for the killer­

cured, the amount of L dsRNA of the cured strain seemed to be relatively larger and of 

slightly higher molecular weight (5.1kb). It is a well known phenomenon that killer-cured 

strains, devoid of M-dsRNA, generally show increased L -dsRNA copy number (Radler 

et aI., 1992; Wickner, 1986). 
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Figure 3.1 Spectrophotometric analysis of the total nucleic acids isolated from 

Saccharomyces cerevisiae T206 (K+ R+), the K2 killer strain. 
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Figure 3.2 
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Spectrophotometric analysis of the total nucleic acids isolated from 

Saccharomyces cerevisiae T206q, the cured-killer derivative of strain TI06. 
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Figure 3.3 Agarose gel electrophoresis of total nucleic acids of the K2 killer strain 

Saccharomyces cerevisiae T206 and its cured derivative, T206q. 

Lanes 1 and 8: DNA marker III (EcoRl-HindIII A digest). Lanes 2 and 5: undigested 

nucleic acid samples, lanes 3 and 6: DNase I digest, and lanes 4 and 7: bovine 

pancreatic RNase digest, of the killer-cured and killer strains' nucleic acids, 

respectively. 
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3.3.2 Yeast strain identification 

3.3.2.1 Medium identifies the killer phenomenon 

The killer-cured strain could easily regain its killer nature on contact with the killer strain 

(Wickner, 1986). Therefore, working with these two strains required a simple test 

reassuring their purification, by testing the killer effect on sensitive strains. The success 

of the curing process was regularly tested on methylene blue agar plates (3.2.2.9) (Figure 

3.4) of spread-inoculated sensitive cells (wine yeast strains, VIN7 and Y217) challenged 

by both the killer (T206) and its cured derivative, T206q (Figure 3.4: 1.1, 2.1). Daily 

observations revealed the killer effect. Within a few days, presumably dependent on the 

relative strength and amount of the toxin released by the killer yeast, killer colonies were 

surrounded by a clearing zone in which no growth of the seeded sensitive strains occurred 

(Figure 3.4: 1.2, 2.2). Also, a zone of dead sensitive cells became pronounced, staining 

dark blue in the presence of the methylene blue around the zone of clearing (Figure 3.4: 

1.3, 2.3). Killer colonies continued to grow, showing a progressive "white line" away 

from the killer inocula keeping a zone of clearance while further killing sensitive cells 

beyond the zone of clearing. The killer phenomenon was observed with the K2 killer 

yeast T206 but not with the killer-cured strain T206q (Figure 3.4). Different factors could 

influence the sensitivity of the assay. The ratio of cell concentration between the killer 

and the sensitive strains; the initial concentration, cell specific growth rate at a certain set 

of conditions, cell growth phase on production of or exposure to the killer toxin and the 

degree of sensitivity of specific sensitive cells to a certain mycotoxin. The clearing 

(inhibition) zone was found to be directly proportional to the activity of the killer toxins 

(Radler and Knoll, 1988; Ramon-Portugal et at. , 1997). 
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Figure 3.4 A methylene blue agar plate of the sensitive strain YIN7 challenged by 

both T206, and T206q growing in the liquid media (3.2.2.6). TI062 sample taken 

from a YMA plate. T206, and T2062 showed the same growth pattern of the killer 

toxin effect, which was not observed for the cured strain, T206q. 

1.1 and 2.1 are the killer growing colonies, 1.2 and 2.2 are the typical clear zones of 

growth inhibition, and 1.3 and 2.3 are the darker stained rings around the clearing 

zones of the dead cells of the sensitive strain (VIN7). 
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3.3.2.2 Medium differentiates yeast strains 

WLN is a very hygroscopic medium recommended for the cultivation of yeast and 

bacteria encountered in brewing and industrial fermentation process. It contains Bacto­

bromcresol green that characterises the green colour of the medium, and is considered as 

a differential medium for sensitive and killer strains of S. cerevisiae. 

The WLN plates (3.2.2.8) containing single (Figure 3.S) and mixed of two (Figure 3.46) 

strain cultures of the sensitive wine yeast strains, VIN7 and Y217, killer strain T206 and 

killer-cured T206q had grown strain typical colonies within 4 days of inoculation. The 

medium gradually lost its intense green colour and became totally clear after about 4-5 

days. In 7 to 10 days of inoculation, growing cultures also gradually changed their typical 

colony phenotypes, staining with intensity. Therefore, it was necessary to sample pure 

cultures on this differentiating medium as controls, parallel to the sampling of the mixed 

ones. 

The colonies of all four wine-yeast strains had a round configuration, smooth margins 

and convex elevation, but each had a unique staining appearance. The colonies of the 

killer T206 strain (Figure 3.Sa) showed a gradient of yellowish to dark green- at the top 

and a cream opaque to transparent appearance at the circumference. All killer-cured 

T206q colonies (Figure 3.Sb) were whitish with typical light yellowish-stained tops. 

The phenotypes of sensitive yeast colonies were strain-specific. VIN7 (Figure 3.Se) 

produced colonies of pointed yellowish evergreen stained tops, and relative to the killer 

strain, had larger whitish circumferences. Y217 (Figure 3.Sd) produced grey-evergreen 

colonies with centres of cream-opaque in colour, and circumferences opaque to 

transparent. 
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T206 T206q 

VIN7 Y217 

Figure 3.5 Typical colonies of Saccharomyces cerevisiae strains T206, T206q, VIN7 

and Y217, respectively, growing on WLN differentiation medium. 
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3.3.3 Biomass of the yeast cells 

Biomasses of pure cultures of Saccharomyces cerevisiae VIN7, Y217, T206 and T206q, 

growing in stressed (5% grape juice) and complex (G-medium) media (Appendix A.2) 

were estimated using a gravimetric technique (section 3.2.2.5). For each strain, results 

were recorded as cell biomass (gil) versus the optical density (OD6oonm) plots, using both 

media separately (Figures 3.6 to 3.9). Cell biomass found to be directly proportional to 

the cell turbidity, which was measured as optical density at a wavelength of 600nm. Cell 

biomass also found to be strain specific, correlating with the physical cell size, increasing 

in this order: Y217 < T206q < T206 < VIN7, as regularly observed under the light 

microscope. T206 biomass was slightly larger than that of T206q, which could be due to 

the presence of the VLPs in the killer strain. 

But cells growing in the rich medium were found to have a relative higher specific 

biomass than those growing in the stressed medium. That could be explained by the 

changes occurring to the physical cell size. Cells, growing in the rich medium, reached 

the maximum potential size at specific growth conditions and while those growing in the 

stressed medium did not. Cells, growing in the rich medium, presumably stored excess 

consumed nutrients, while those growing under extreme nutritional limitations used their 

potential stored energies. Different cell sizes could be observed. Also, the cell shape 

switched from a typical spheroid shape to an elongated one and unicellular cells 

aggregated, showing a pseudo hyphae growth pattern as could be observed under the light 

microscope (see 3.3.5 Electron microscopy). 

Spore staining revealed that the degree of sporulation of cells growing under nutritional 

stress was much more pronounced than that occurring rich medium (3.3.4.1), although 

some germination and budding did occur. This could also affect the absorbance readings 

and, therefore, the biomass versus the optical density values. 
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of Saccharomyces cerevisiae Y217 
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growing in 5% grape juice and G- media, respectively. 
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Strain specific ratios of biomass obtained for stressed medium versus the ones obtained 

for the rich medium dependent on physical cell size and its specific growth rate 

(increased in this order: VIN7 < T206 < T206q :::; Y217), and was found to decrease in 

this order: T206 > T206q > Y217 > VIN7, respectively. 

3.3.4 Analyses of microscale vinifications 

3.3.4.1 Cell growth pattern 

The growth results of pure cultures are presented in Figures 3.10 to 3.25. For initial cell 

concentration of about 106 cells/mI, cell counts and % dead cells are presented in Figures 

3.10 to 3.13 and In of cell counts in Figures 3.14 to 3.21. Figures 3.18 to 3.21 present the 

In of cell growth from inoculation throughout the log phase till stationary phase was 

obtained, yielding a typical sigmoidal pattern. Growth results for initial approximate cell 

concentration of 107 cells/ml, cell counts and % dead cells are presented in Figures 3.22 

to 3.23 and In of cell counts in Figures 3.24 to 3.25. 

All mixed cultures presented here were growing III pure water at the initial cell 

concentration of 106 cells/ml. The results of cell counts and % dead cells of sensitive 

cultures challenged by a killer (T206) and its cured derivative (T206q), separately, at 

ratios of 1: 100 and 1: 1 are presented in Figures 3.26-3.27 and 3.28-3.29, respectively. 

Their Ln forms are presented in Figures 3.30-3.31 and 3.32-3.33, respectively, and their 

relative survivals growing on WLN plates are presented in Figures 3.36-3.39 and 3.40-

3.43, respectively. Also are presented results of the killer, challenged its killer-cured 

derivative at ratio of 1:100 (Figures 3.34 and 3.44) and a mixture (1:1) of two sensitive 

strains (VIN7 and Y217) (Figures 3.35 and 3.45). 
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Figure 3.10 Mean cell number per ml and % dead cells of microscale batch fermentation 
involving single cultures of Saccharomyces cerevisiae, (a) the killer strain T206 and (b) its 
cured derivative, T206q, growing in 5% grape juice (GJ). 

66 



(a) 

• Av. ceU no.lml I %dead cells I 

6106 
T206 (dH

2
O) 

25 I -, 
T • 

5 106 1 
20 ! -

. ! 
e 4106 i i T - 15 ..!!l 

I t 
Q) -- 1 u 0 
~ C 

~ t v 

3 106 

1: t 
10 '" U 1 

t i I #. > t 
<: : i ± \ I 2 106 1 f - 5 

t 

'- t 

! 
1 106 I I I I I I 0 

0 50 100 150 200 250 300 
Time(h) 

(b) 
T206q (dH

2
O) 

8 106 
I ,. 20 

T 

710
6 f- • t 

6 106 
f- 15 

e 5 106 
f-

., , 
'" T 

i ~ -- I 0 i f 
u c 

4 106 
f- I 10 '" 

f t , oj Q) v • , '" 
U .li. : 

~ 
,;. 

~ :::R 
310

6 t 0 f- . • 1. 

t ? . ; 

2 106 r 5 

i 

1 106 i 
I I 0 
0 50 100 150 200 250 300 

Time(h) 

Figure 3.11 Mean cell number per ml and % dead cells of microscale batch growth 
involving single cultures of Saccharomyces cerevisiae, (a) the killer strain T206 and 
(b) its cured derivative, T206q, in pure water (dH 0 ). 
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Figure 3.12 Mean cell number per ml and % dead cells of microscale batch fermentation 
involving single cu ltures of Saccharomyces cerevisiae sensitive strains, (a) VIN7 and (b) Y217, 
growing in 5% grape juice (GJ). 
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Figure 3.13 Mean cell number per ml and % dead cells of microscale batch growth 
involving single cu ltures of Saccharomyces cerevisiae sensitive strains, (a) VIN7 and 
(b) Y217, in pure water (dH 0). 
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Figure 3.14 Ln of cell number per ml of microscale batch fermentation of single 
cultures of Saccharomyces cerevisiae, (a) the killer strain T206 and (b) its cured 
derivative, T206q, growing 5% grape juice (GJ). 
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Figure 3.15 Ln of celt number per ml of microscale batch growth involving single 
cultures of Saccharomyces cerevisiae, (a) the killer strain T206 and (b) its cured derivative, 
T206q, in pure water (dH 0). 
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Figure 3.16 Ln of cell number per ml of microscale batch fermentation involving 
single cultures of Saccharomyces cerevisiae sensitive strains (a) VIN7 and (b) Y217, 
growing in 5% grape juice (GJ). 
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Figure 3.17 Ln of cell number per ml of microscale batch growth involving single 
cultures of Saccharomyces cerevisiae sensitive strains, (a) VIN7 and (b) Y217, in pure 
water (dR 0). 
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Figure 3.18 Ln of cell number per ml of microscale batch fermentation involving 
single cultures of Saccharomyces cerevisiae, (a) the killer strain T206 and (b) its cured 
derivative, T206q, growing in 5% grape juice (GJ) zooming into the log phase of growth . 
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Figure 3.19 Ln of cell number per ml of microscale batch growth involving single 
cultures of Saccharomyces cerevisiae, (a) the killer strain T206 and (b) its cured 
derivative, T206q, in pure water (dH

2
0) zooming into the log phase of growth. 
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Figure 3.20 Ln of cell number per ml of microscale batch fermentation involving 
single cultures of Saccharomyces cerevisiae sensitive strains, (a) VIN7 and (b) Y217, 
growing in 5% grape juice (OJ) zooming into the log phase of growth. 
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Figure 3.21 Ln of cell number per ml of microscale batch growth involving single 
cultures of Saccharomyces cerevisiae sensitive strains, (a) VIN7 and (b) Y217, in 
pure water (dH

2
0) zooming into the log phase of growth. 
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Figure 3.22 Mean cell number per ml and % dead cells of microscale batch growth 
involving single cultures of Saccharomyces cerevisiae, (a) the killer strain T206 and 
(b) its cured derivative, T206q, each inoculated at initial approximate cell concentration 
of I07cells/mi in pure water (dH
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Figure 3.23 Mean cell number per ml and % dead cells of microscale batch growth 
involving single cultures of Saccharomyces cerevisiae sensitive strains, (a) VIN7 and 

(b) Y217, each inoculated at an initial approximate cell concentration of 107cells/mi in 
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Figure 3.24 Ln of cell number per ml of microscale batch growth involving single 
cultures of Saccharomyces cerevisiae, (a) the killer strain T206 and (b) its cured 
derivative, T206q, each inoculated at an initial approximate cell concentration of 

107 cells/ml in pure water (dH
2
0). 
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Figure 3.25 Ln of cell number per ml of microscale batch growth involving single 
cultures of Saccharomyces cerevisiae sensitive strains, (a) VIN7 and (b)Y217, each 

inoculated at an initial approximate cell concentration of 107 cells/ml in pure water 
(dHP)· 
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Figure 3.26 Mean cell number per ml and % dead cells of microscale batch growth 
in pure water (dH20) of mixed cultures of Saccharomyces cerevisiae, (a) killer strain 

T206 (K) and (b) its cured derivative T206q (Kq), separately challenging the sensitive 
strain VIN7 (Sv) at a K or Kq:Sv cell ratio of 1:100. 
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Figure 3.27 Mean cell number per ml and % dead cells of microscale batch growth 
in pure water (dH20) of mixed cultures of Saccharomyces cerevisiae, (a) killer strain 

T206 (K) and (b) its cured derivative T206q (Kq), separately challenging the sensitive 
strain Y217 (Sy) at a K or Kq:Sy cell ratio of 1: 100. 
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Figure 3.28 Mean cell number per ml and % dead cells of microscale batch growth 
in pure water (dH20) of mixed cultures of Saccharomyces cerevisiae, (a) killer strain 

T206 (K) and (b) its cured derivative T206g (Kg), separately challenging the sensitive 
strain VIN7 (Sv) at a K or Kg:Sv cell ratio of 1: 1. 
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Figure 3.29 Mean cell number per ml and % dead cells of microscale batch growth 
in pure water (dH

2
0) of mixed cultures of Saccharomyces cerevisiae, (a) killer strain 

T206 (K) and (b) its cured derivative T206q (Kq), separately challenging the sensitive 
strain Y217 (Sy) at a K or Kq:Sy cell ratio of 1:1. 
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Figure 3.30 Ln of cell number per ml of microscale batch growth in pure water 
(dH

2
0) of mixed cultures of Saccharomyces cerevisiae, (a) killer strain T206 (K) 

and (b) its cured derivative T206q (Kq), separately challenging the sensitive strain 
YIN7 (Sv) at a K or Kq:Sv cell ratio of 1 :100. 
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Figure 3.31 Ln of cell number per ml of microscale batch growth in pure water 
(dHP) of mixed cultures of Saccharomyces cerevisiae, (a) killer strain T206 (K) 

and (b) its cured derivative T206q (Kq), separately challenging the sensitive strain 
Y217 (Sy) at a K or Kq:Sy cell ratio of 1:100. 
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Figure 3.32 Ln of cell number per ml of microscale batch growth in pure water 
(dH

2
0) of mixed cultures of Saccharomyces cerevisiae, (a) killer strain T206 (K) 

and (b) its cured derivative T206q (Kq), separately challenging the sensitive strain 
YIN7 (Sv) at a K or Kq:Sv cell ratio of 1:1. 
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Figure 3.33 Ln of cell number per ml of microscale batch growth in pure water 
(dH

2
0) of mixed cu ltures of Saccharomyces cerevisiae, (a) killer strain T206 (K) 

and (b) its cured derivative T206q (Kq), separately challenging the sensitive strain 
Y217 (Sy) at a K or Kq:Sy cell ratio of 1: 1. 
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Figure 3.34 (a) Mean cell number per ml and % dead cells and (b) In of cell number 
per ml of microscale batch growth in pure water (dH

2
0) of mixed cultures of 

Saccharomyces cerevisiae killer cured derivative T206q (Kq) challenged by the 
killer strain T206 (K) at a K:Kq cell ratio of 1: 100. 
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Figure 3.35 (a) Mean cell number per ml and % dead cells and (b) In of cell number 
per ml of microscale batch growth in pure water (dH

2
0) of mixed cu ltures of 

Saccharomyces cerevisiae sensitive strains, VIN? (Sv) challenged by Y21? (Sy) 
at a Sv:Sy cell ratio of 1: 1. 
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Cell counts and % dead cells were determined as described (section 3.2.2.6). The 

experimental error was estimated by averaging the readings and recording the minimum 

and maximum cell counts. The difference between the minimum and maximum and the 

average was assumed to represent the experimental error for the cell count. Since all the 

reading process extended over one half an hour period, the reading time was recorded 

within a 15 minutes margin of error. 

Pure and mixed cell cultures grew actively, attaining the stationary phase by damped 

oscillations, yielding a strain-dependent cell concentration. For about Ix 106 initial cell 

concentration, pure cultures attained the stationary phase within a range of 2.0-4.5 x107 

cells/ml growing in 5% grape juice (Figures 3.10,3.12,3.14 and 3.16) and of 2.0-4.5 

X 106 cells/ml growing in pure water (Figures 3.11, 3.13, 3.15 and 3.17). Growing in water 

at an initial concentration of about lx107 cells/ml, the strain-specific stationary phase cell 

concentration ranged between 1.3-1.8x107 per ml (Figures 3.22 and 3.23). Mixed cultures 

of two strains of about lx106 initial cell/ml concentration attained the stationary phase 

within a range from 1.5 to 3.5 x106 cells/ml when grown in pure water (Figures 3.26 to 

3.29,3.34 and 3.35). 

Oscillatory mode of growth was observed for both pure and mixed cultures. Growing in 

pure water, one inflection point and an over shooting of growth was clearly observed 

before reaching the stationary phase. Data of cells, growing in 5% grape juice, showed 

relatively rapid cell growth rate, reaching about one order of magnitude higher cell 

concentration than observed in pure water. This data also revealed more than one 

inflection point, possibly due to diauxic shifts occurring when grape juice sugars were 

depleted rapidly within 24 to 42 hours from inoculation. The rate of sugar assimilation in 

different strains was as follows in increasing order: Y217 < T206 ::; T206q < VIN7. Both 

sugar and ammonium were simultaneously depleted (section 3.3.4.3). However, an over 
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shooting of the growth of cells in 50/0 grape juice could be attributed to the utilisation of 

other nutrients found in the medium as is in the case of most diauxic shifts. 

Oscillatory modes of substance levels in cell media of ammonium (section 3.3.4.3.3), 

ethanol (section 3.3.4.3.2), acetic acid (section 3.3.4.3.4), and glycerol (section 3.3.4.3.5) 

were also observed. These metabolites could also be consumed by the cells as nutrients 

(Magasanik, 1992; Hinnebusch, 1992; Johnston and Carlson, 1992; Paltauf et ai., 1992). 

Cells growing in the stressed media constantly sporulated as was revealed by spore 

staining (see Electron microscopy, Figure 3.54). Although spores were not counted, it 

was clear that their numbers were many times more of those of the cells. It was estimated 

that the number of spores growing in pure water was substantially larger than their 

corresponding number associated with growth in 50/0 grape juice. Most of the sporulated 

Saccharomyces cerevisiae asci produced four ascospores, which upon release can 

germinate pending on environmental conditions. The availability of water, may be 

sufficient as the sole nutrient for germination (Dix and Webster, 1995). 

Spores have several functions, such as the migration and distribution of genetic 

variabilities, bringing together compatible mating types for sexual reproduction. Spores 

may also function as survival structures and, thus, have particular selective advantages 

for cells, all of which can be affected by rapidly changing environmental conditions. In 

general, the main function of spores dictates their structure, such as the spore wall 

thickness and constituents as well as the reserved food types and amounts. Spores' 

wastage is high because food reserves are often insufficient to overcome the effects of 

severe antibiosis. Many also fail to germinate due to the effect of severe competition for 

the uptake of exogenouse nutrients (fungistasis). Ungerminated spores deplete food 

reserves by slow respiration, and as they age, membranes deteriorate and then become 
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progressively more leaky and more sensitive to fungistasis (Dix and Christie, 1974). The 

loss of metabolites brings on starvation and ultimately autolysis sets in. The process of 

deterioration is exacerbated by the activities of other cells whose growth can create a 

nutrient sink around the spore into which metabolites and metabolic substrates from the 

spores are drained (Ko and Lockwood, 1970). It is difficult to find any very precise 

information on the survival time of spores under natural conditions and for the majority 

the survival time may be relatively short. The enormous numbers that are produced 

compensates for the high wastage of spores. 

A growth lag phase where the growth rate is by definition zero is not observed in both 

nutritionally stressed media (5% grape juice and pure water). The initial growth rate is 

relatively smaller than the subsequent growth at later times prior to the stationary phase 

for cells growing in 5% grape juice medium. This might be a period when cells adapt to 

the new environment and while using the "inertia" (1.3), they produce the enzymes which 

permit the absorption and the assimilation of the available nutrients in the new medium. 

Growing in pure water, the log phase recovered ,is of a relatively uniform growth rate. 

Cells presumably use internal storage energy, therefore the active transport of nutrients 

from their surrounding into cells does not appear to limit the growth rate during the log 

phase. 

The percentage of dead cells oscillated in pure cultures, reaching a maximum value 

between 20 to 25%. Larger amplitudes of dead cell concentrations were observed in pure 

water (between 0 to 12%) than in 5% grape juice (between 0 to 5%), when stabilised, for 

initial cell concentration of about 106 cells/mI. 

Growing in water, when the initial cell concentration was about 107 cells/mI, the dead cell 

percentage decreased to about 5% or below, usually less than 0.5%. That could be due to 
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sporulation, mode of reproduction, budding, production of physical protective sheath 

structures and formation of large body of cell aggregates (see 3.3.5 Electron microscopy). 

Also, relatively higher discharge of possible nutrients to the environment, such as ethanol 

production, substrate that could be consumed as a carbon source (Johnston and Carlson, 

1992). 

The frequency of sampling and the mixing of cultures prior to counting positively 

affected the percentage of dead cells. Leaving cultures for a longer period of time without 

interruption yielded lower dead cell percentage readings, ranging between zero to 3 

percent, usually less than 1%. This might be due to the degree of breakage of the 

protective mucoid structures (3.3.5) of the cells growing under extreme nutritional stress 

on mixing before drawing a sample (see 3.3.5 Electron microscopy). 

It is evident that true flocculation of bottom yeast cells and cell aggregation due to 

incomplete separation of daughter cells from mother cells during proliferation (Dengis et 

ai., 1995) do not spread evenly throughout the medium space. These cells gradually sink 

to the bottom, as observed during the experimental work. Therefore, the cell 

concentration might be dependent more on total initial cell inoculum than on the medium 

volume after cells had sunk and aggregated. For purposes of cell counts or staining, it is 

necessary to re-suspend yeast floes by agitation or swirling of the medium, as was 

practice here (3.2.2.6). 

The killer effect was observed in mixed cultures when the killer strain (T206) challenged 

the sensitive strain. Few hours after exposure to the killer toxin (K2), the dead cell 

percentage reached an extreme peak point of about 30%, less than half of that was found 

when the killer-cured derivative challenged the sensitive strains. Sensitive cells in the 

exponential growth phase are more susceptible to the killer toxin than in the stationary 
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growth phase (Woods and Bevan, 1968). The formation of cell protective structures 

observed under the scanning and transmission electron microscopes (section 3.3.5) 

physically blocked the toxin effects on the sensitive cells. Also the chemical changes in 

the medium may influence the toxin activity. Growth conditions can affect the copy 

number of L-dsRNAs per cell. Cells grown oxidatively on ethanol (section 3.3.4.3.2), as 

a carbon source, have elevated levels of L-dsRNAs compared with those grown on 

glucose. During nitrogen starvation (section 3.3.4.3.3), an extensive, but not complete, 

degradation of L-dsRNA takes place (Van Vuuren and Jacobs, 1992), which may affect 

the killer toxin production and activity. In this study, toxin levels were not quantified. 

According to Bussey, (1974) and Carrau et ai., (1993) dead cells do not release any 

nitrogen source, such as ammonia, into the medium, causing killer cells to alter the 

fermentation prematurely on nutrient depletion. After ammonium addition, approximately 

100% of the viable cells were composed of the killer yeast population, which suggested 

that nitrogen source could have been the killer growth - limiting factor. This may also 

affect the influence of the killer toxin on the sensitive cells. 

Skipper and Bussey, (1977) showed that after toxin addition there is a lag period of about 

40 minutes during which measurements of metabolic and macromolecular biosynthetic 

events effects are not seen, followed by a shut-off of macromolecular synthesis and 

plasma membrane damage which results in the loss of potassium ions and ATP. 

Maximum killing is attained after two or three hours depending on the strain. 

Bussey , (1991) found that KJ heterodimeric killer toxin is secreted into the growth 

medium during the exponential phase of growth. The KJ toxin is active within a narrow 

pH range of 4.2 to 4.6, and causes rapid inhibition of the net proton extrusion and 

potassium uptake by sensitive cells. Soon the inside-outside differences in pH decreases 
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and, later potassium and ATP efflux are observed along with cell death and the cessation 

of macromolecular synthesis (Van Vuuren and Jacobs, 1992). 

Pfeiffer and Radler, (1984) found that the K2 toxin is a 16kD glycoprotein, active 

between pH 2.8 and 4.8, but optimally at pH range 4.2 to 4.4. In this study, although the 

concentrations of dead cells were relatively very low as described above, dead cell 

concentrations found to oscillate correlating to the pH levels, yielding an optimal pH 

range between 3.6 to 4.4 for the yeast strains used at the specified conditions (3.2.2.6). 

Cells grown in 5% grape juice medium, where the pH ranged between 3.0 to 3.8 (Vadasz, 

A.S., 1999, usually about 3.0-3.3) and in pure water, the pH oscillated between 4.2 to 6.9 

(usually about 4.8-5.3). These pH ranges affected the toxin activity, and thus the damage 

induced by the killer toxin on the sensitive strains. 

3.3.4.2 Cell survival in mixed cultures 

The WLN plates (section 3.2.2.8) had grown strain typical colonies (section 3.3.2.2), and 

allowed to differentiate the relative survival of cells of the mixed cultures (Figure 3.36-

3.46). Because of the tedious, complex and time-consuming measurement process linked 

to the differentiation experiments, it was not possible to capture high-resolution data sets. 

But, observing the experimental data for the total viable cell concentration, which 

correspond to the ongoing cell count of total viable cells clearly reinforces results of the 

differentiation process that the strains growing in mixed cultures also yielded the same 

qualitative features of growth as those growing in pure cultures (3.3.4.1). 
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Figure 3.36 Relative survival of two strains of Saccharomyces cerevisiae growing 
in distilled water, following a challenge of a 9h culture of the sensitive strain (S), VIN7 
by the killer strain (K), T206, at a K:S cell concentration of approximately 1: 1 00, 
(a) Total and individual strain cell number per ml medium versus time; (b) Ratio of 
the number of colonies on WLN plates. 
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Figure 3.37 Relative survival of two strains of Saccharomyces cerevisiae growing in 
distilled water following a challenge of a 9h culture of the sensitive strain (S), Y217 by 
the killer strain (K), T206, at a K:S cell concentration of approximately 1: 1 00, (a) Total 
and individual strain cell number per ml medium versus time; (b) Ratio of the number 
of colonies on WLN plates. 
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Figure 3.38 Relative survival of two strains of Saccharomyces cerevisiae growing in 
distilled water, following a challenge of a 9h culture of the sensitive strain (S), VIN7 by 
the killer-cured strain (Kq), T206q, at a Kq:S cell concentration of about 1: 1 00, (a) Total 
and individual strain cell number per ml medium versus time; (b) Ratio of the number 
of colonies on WLN plates. 
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Figure 3.39 Relative survival of two strains of Saccharomyces cerevisiae growing in 
distilled water, following a challenge of a 9h culture of the sensitive strain (S), Y217 by 
the killer-cured strain (Kq), T206q, at a Kq:S cell concentration of about 1: 1 00, (a) Total 
and individual strain cell number per ml medium versus time; (b) Ratio of the number of 
colonies on WLN plates. 
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Figure 3.40 Relative survival of two strains of Saccharomyces cerevisiae growing 
in a mixed culture. Both killer strain (K), T206, and the sensitive strain (S), VIN7 were 
inoculated into distilled water, at K:S cell concentration ratio of about 1: 1, (a) Total and 
individual strain cell number per mJ medium versus time; (b) Ratio of the number of 
colonies on WLN plates. 

102 



(a) 

• Av. cell no.lml 
0 [T206] cells/ml 
o(lo [Y217] cells/ml 

T206:Y217 (1:1) (dH
2
O) 

4106 
I T I I 

3.5 106 

i T 

t 3 106 • ! -1. 

T 
S T -... 2.5 106 -
0 
c: 
~ 210

6 -u 

~ o(lo 

1.5 106 o(lo 0 o(lo 9 f-
r::J 0 

0 

1 10
6 

f-- 0 

5 105 ~ I I 

0 40 80 120 160 200 240 280 

Time (h) 

(b) !!illJ T206/Totai cell no. 
D Y217/Totai cell no. 

0.8 

0 c: 
>. 0.6 c: 
0 

-0 
u 

...... 
0 0.4 .9 ... 
o:s ex: 

0.2 

0 
0 24 72 120 168 214 244 

Time (h) 

Figure 3.41 Relative survival of two strains of Saccharomyces cerevisiae growing 
in a mixed culture. Both killer strain (K), T206, and a sensitive strain (S), Y217 were 
inoculated into distilled water, at K:S cell concentration ratio of about 1: 1, (a) Total 
and individual strain cell number per ml medium versus time; (b) Ratio of the number 
of colonies on WLN plates. 
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Figure 3.42 Relative survival of two strains of Saccharomyces cerevisiae growing in a 
mixed culture. Both killer-cured derivative (Kq), T206q, and the sensitive strain (S), VIN7 
were inoculated into distilled water, at Kq:S cell concentration ratio of about 1: 1 (a) Total 
and individual strain cell number per ml medium versus time; (b) Ratio of the number of 
colonies on WLN plates. 
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Figure 3.43 Relative survival of two strains of Saccharomyces cerevisiae growing in a 
mixed culture. Both killer-cured derivative (Kq), T206q, and the sensitive strain (S), Y217 
were inoculated into distilled water, at Kq:S cell concentration ratio of about 1: 1, (a) Total 
and individual strain cell number per ml medium versus time; (b) Ratio of the number of 
colonies on WLN plates. 
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Figure 3.44 Relative survival of two strains of Saccharomyces cerevisiae growing 
in distilled water, following a challenge of a 9h culture of the killer-cured derivative 
(Kq), T206q, by its killer (K) progenitor, T206, at a K:Kq cell concentration ratio of 
about I :100, (a) Total and individual strain cell number per ml medium versus time; 
(b) Ratio of the number of colonies on WLN plates. 
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Figure 3.45 Relative survival of two strains of Saccharomyces cerevisiae growing in 
a mixed culture. Two sensitive strains YIN7 (Sv) and Y217 (Sy) were inoculated into 
distilled water, at an Sv:Sy cell concentration ratio of about 1: 1, (a) Total and individual 
strain cell number per ml medium versus time; (b) Ratio of the number of colonies on 
WLN plates. 
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VIN7ff206q 

Figure 3.46 WLN agar plates reveal the relative survival of two strains growing in 

mixed cultures at cell concentration ratio of about 1: 1. Samples of mixed cultures of 

Saccharomyces cerevisiae growing in distilled water; sensitive strains VIN7 and Y217, 

separately challenged by both the killer T206 and killer cured T206q, respectively, were 

inoculated on WLN plates. Individual cultures of each strain served as controls and for 

identification based on colony trait (Figure 3.5). 
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T206 strain yields few types of colonies, one of these, although slightly darker at the 

colony top, characterised that of the killer-cured derivative (Figure 3.5). Growing under 

extreme nutritional stress, it seemed that more typical killer colonies resembled those of 

the cured colonies. Therefore, it could be assumed that the amount of the VLPs (virus­

like particles) per cell caused the multiple (or gradient) appearance of the killer strain 

colonies, and while growing in nutrient limiting medium, VLP reproduction presumably 

decreases and so the mycotoxin production. Inoculation of the stressed killer on 

methylene blue agar plates (3.3.2.1) revealed that killer phenomenon did not disappear, 

that is, no curing occurred. 

The challenge of killer cured (Kq) cells by the killer (K) at a K:Kq ratio of 1: 100 in pure 

water at (9h) early logarithmic phase (Figure 3.44) revealed that the killer-cured 

phenotype dominated and the killer strain disappeared between 28 to 56 hours from 

inoculation, although after 9 hours of the challenge the number of the killer cells 

increased for a while. This could have happened due to the transfer of VLPs from the 

killer to the killer-cured strain. Transmission of yeast viruses has been thought to occur 

only by cytoplasmic mixing of cells (Figure 3.52) during budding, mating, cytoduction or 

protoplast fusion (Wickner, 1986). Clearly, the killer strain T206 failed to kill its cured 

derivative, T206q. 

Growing under nutritional stress, seemed to be a limiting factor in VLP reproduction, 

which might permit better survival of their host cells. VLPs that yeast cells contain per 

cell varies widely (Wickner, 1976), and although the basis for this variation is not 

understood (Van Vuuren and Jacobs, 1992) the extreme stressed environment could be 

one possible explanation. 
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Because strain T206 yielded a few types of colonies, it was harder to differentiate these 

growing in a mixed culture. A killer:sensitive cell ratio of 1: 100 (Figures 3.36 and 3.37) 

strongly revealed dominance of the sensitive strain and extinction of the killer strain, 

even though a short while after the challenge there was an increase in killer cell counts 

and sensitive dead cells. In this period (T76h) , VIN7 seemed to be more susceptible to the 

toxin or results present the onset of the oscillatory growth stage and the difference in 

growth rate at a particular time at the stationary phase. Samples of 312 hours, at the end 

of this work, revealed that the killer strain was extinct from the mixed cultures (Figures 

3.36 and 3.37). The latter is associated with the substantial difficulty that the killer strain 

has to grow in limited nutrient conditions and support the viral parasite that produces the 

killer toxin, which is necessary in order to overcome the competition with the sensitive 

strains . As a result, the efficiency of the killer system, yeast host- viral parasite 

relationship of symbiosis with the virus deteriorates, leading eventually to the extinction 

of the killer yeast, in some cases or coexistence with the sensitive strains in other. 

The killer-cured derivative (Kg) which challenged Y217 (Sy) at a ratio of 1:100 (Kg:Sy) 

(Figure 3.39), also seemed to be extinct at this time (T3 12h). Relative growth rates of the 

yeast strains in the mixture or differences in the ability to sporulate due to the 

environmental conditions could mask the real ratio of surviving cells. 

A ratio of killer:sensitive cells of 1:1 (Figures 3.40 and 3.41) strongly supports the 

survival of the sensitive strains according to their relative growth rates. The killer did not 

dominate the mixed cultures, and in comparison with the killer-cured derivative (1: 100 

Kg:S ratio, Figures 3.38 and 3.39 and 1: 1 Kg:S ratio, Figures 3.42 and 3.43), it seemed to 

have a disadvantage while growing under nutritional stress . These might be due to the 

decrease in VLP reproduction, toxin production and activity, and the relative slower 

growth rate of the killer strain in comparison with the killer-cured strain's growth rate 
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and again the oscillatory stage at a particular time in the stationary phase. Both sensitive 

strains survived in these mixed cultures (Figure 3.40, 3.41 and 3.46) being, as expected, 

affected by their relative ability to adjust and to grow under extreme nutritional stress. 

3.3.4.3 Metabolic analyses 

Metabolic analyses (Appendix A.3) were performed throughout the cell growth (3.2.2.6) 

until reaching stable readings, for single and mixed 1: 100 (K:S) and (Kq:S) ratio of 

cultures in 5% grape juice and pure water, separately. The T206 (K) and T206q (Kq) at a 

K:Kq cell ratio of 1:100, and between sensitive strains, VIN7 (Sv) and Y217 (Sy), at a 

Sv:Sy ratio of 1: 1 were also examined in pure water. Trends of the yield of the different 

metabolites were as described by Vadasz, A.S. (1999). 

3.3.4.3.1 Reducing sugar concentration 

Sugar was always absent in pure the water growth medium. The initial concentration of 

sugar in the 5% grape-juice liquid medium was obtained from the standard curve 

(3 .3.2.7) (approximately 0.56 gil), (Vadasz, A.S., 1999). The different strains of S. 

cerevisiae, namely, VIN7, Y217, T206 and T206q utilised the sugar in this grape medium 

maximally but at different rates during the logarithmic phase of growth. VIN7 cells 

exhibited the relatively fast rate, whereas Y217 cells, showed the slowest rate of sugar 

assimilation. Using the DNS technique (3 .3.2.7), revealed that total reducing sugar 

depleted from the medium (5% grape juice) between the 24 to 36 hours by the fermenting 

yeast strains T206, T206q and VIN7, separately, and between 36 to 42 hours when the 

fermenting strain was Y217. No trace of residual sugar was detected further. Challenged 

fermentation showed depletion of sugar between 24 to 33 hours in T206/VIN7 and 
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T206q/VIN7 cultures, and between 33 to 42 hours in T206/Y217 and T206q/Y217 

cultures, respectively. 

3.3.4.3.2 Ethanol production 

Analyses of the fermenting media revealed that maximum ethanol concentrations 

produced by the killer and the killer-cured cells, growing in 5% grape juice, was about 

1.58 and 1.63g/l, respectively, after about 150 hours. Afterwards, ethanol concentration 

decreased and fluctuated about 1.27 and 1.33gll until the end of these fermentation 

experiments in about 280 hours. The sensitive strains, VIN7 and Y217, produced 

maximum ethanol concentrations of about 1.68 and 1.72g/1, respectively, in about 180 

hours. Afterwards, ethanol concentrations decreased, reaching stable levels of about 1.53 

and 1.52g/1. The rate of ethanol production seemed to correlate with the cell growth rate 

and concentration. 

Growing in pure water, extracellular ethanol concentrations gradually reached maximum 

levels of approximately 1.5 x 10-2 gil between 24 to 48 hours of inoculation. Afterwards, 

keeping a damped oscillatory mode, ethanol concentration decreased. Then, between 100 

to 120 hours of inoculation, cultures reached stable oscillations between zero detection to 

about 5.0 X 10-3 gil until the end of the experimental work in about 280 hours. 

Challenges in pure water, involving a mixture of the two sensitive strains VIN7 and Y217 

at a cell ratio of 1: 1 seemed to be the best combination for ethanol production, followed 

by the 1:100 cell ratio challenges in decreasing order: T206q:VIN7 ~ T206q:Y217 > 

T206:T206q > T206:VIN7 > T206:Y217. 

In general, the rate of ethanol production seemed to increase at the logarithmic growth 

phase then gradually decrease to minimum oscillatory levels of ethanol concentrations. 
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Over short periods, the rate of ethanol production seemed to be constant with the 

concomitant to depletion of sugar and ammonium from the media (3.3.4.1). This was 

found to be more pronounced when using the killer and killer - cured strains than with the 

sensitive strains. 

3.3.4.3.3 Ammonium production 

Saccharomyces cerevisiae can utilise ammonia as the sole source of nitrogen. Analyses 

of fermenting media revealed that initially, the ammonium concentrations in 5% grape 

juice, both in controls and challenges were about 5.0 xlO-3 gil, reaching a minimum level 

between 36 to 48 hours of inoculation. Ammonium levels, generally, increased after 48 

hours, oscillated between zero to about 5.0 xlO-2 gil. This increase could be linked to 

metabolism of other constituents in the medium such as amino acids. 

In pure water medium, ammonium was absent, but later detected in concentrations that 

seemed to correlate with dead cell counts in a delay phase mode. Ammonium levels 

increased in 56 to 72 hours of inoculation to about 1.5 xlO-31l, reaching a maximum levels 

in 100 to 120 hours of inoculation to about 4.5 xlO-3/l. Then, keeping an oscillatory mode 

of decrease, final stabilisation of levels recorded between zero to about 1.8 xl0-3 gil. 

3.3.4.3.4 Acetic acid production 

In this study, levels of acetic acid were examined only in pure water medium, revealing 

that the single and mixed cultures produced minute amounts of acetic acid in an 

oscillatory mode. Acetic acid concentrations in pure and mixed cultures were detected 

about 48 and 24 hours of inoculation, respectively, reaching a maximum value of about 

1.0 xl0-
2
gll within a few hours. Then, gradually decreased in an oscillatory mode until 

stabilisation was achieved between zero to about 4.5 xlO-3g/l. 
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3.3.4.3.5 Glycerol production 

In this study, levels of glycerol were examined only in pure water medium, revealing that 

the single and mixed cultures produced similar minute amounts of glycerol in an 

oscillatory mode. Glycerol was detected about 24 hours of inoculation, reaching a 

maximum value of about 1.8 xlO·2g/l within 72 hours. Then, concentrations gradually 

decreased, and reached stable oscillations between zero to about 1 xlO·2g/l. 

3.3.5 Electron microscopy 

Scanning electron microscopy (SEM 3.2. 2. 10.1) and transmission electron microscopy 

(TEM 3.2.2.10.2) produced typical images (Osumi, 1998) of unchallenged (control) S. 

cerevisiae cells from liquid and agar media, which revealed similar features. Undamaged 

cells bearing an intact cell wall (Vadasz et at. , 2000 Figure 2a; Figures 3.48, 3.49,3.50 

and 3.52) and smooth cell surface, interrupted by bud scars, usually located at the polar 

axes, were seen. 

Yeast cells switched from the typical spheroidal to elongated shape (Figure 3.47 and 

3.48a), and also grew pseudohyphae on stress medium to presumably forage for scarce 

nutrients (Figure 3.48b). Invasive growth (Figure 3.49) and cell aggregation (Figures 

3.48a, 3.50 and 3.51) could also be revealed using scanning electron microscopy (section 

3.2.2.10.1). 

An attempt to use the methylene blue agar plates' material for the electron microscopy 

(Van Vuuren and Wingfield, 1986) failed. The methylene blue gave an undesirable 

reaction with the fixative, coupled with solubilization of the agar. Therefore, 3% grape 

juice agar was used for the challenge, coupling together the effects of limiting nutrients 

and the K2 killer toxin. 
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(a) 

(b) 

Figure 3.47 SEM images of several alternative morphologies of Saccharomyces 

cerevisiae wine strains growing under severe nutrient limitation, in (a) in 5% grape 

juice liquid and (b) on 3% grape juice agar media, of the sensitive strain VIN7 (Sv) 

challenged by the killer, T206. 

Abbreviations: bg, budding; bir.s, birth scar; bs, bud scar; ds; doughnut shaped cell; eg 
elongated cell; rc, rippled cell; sc, smooth cell. 
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(a) 

(b) 

Figure 3.48 SEM images of Saccharomyces cerevisiae wine strains growing under 

severe nutrient limitation, (a) in 5% grape juice liquid and (b) on 3% grape juice agar 

media. (a) Bipolar budding (bp) of daughter cells, which stay attached to elongated 

mother cells, forming pseudohyphae; (b) Mucoid sheath (ms) on the outer cell surface 

of cells growing pseudohyphae (ph), which forage for limited nutrients. 
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(a) 

(b) 

Figure 3.49 SEM images of Saccharomyces cerevisiae wine strains growing on 3% 

grape juice agar stress medium, revealing an invasive cell growth pattern (a and b). 
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(a) 

(b) 

Figure 3.50 SEM images of Saccharomyces cerevisiae wine strains growing on 3% 

grape juice agar stress medium, showing that cells are covered by protective sheaths 

(ps) (a and b) and a mucoid matrix (b). 

Abbreviations: bs, birth or bud scar; eg, elongated cell; oc, old cell. 
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(a) 

(b) 

Figure 3.51 SEM images of Saccharomyces cerevisiae wine strains growing, (a) in 

5% grape juice liquid medium and (b) on 3% grape juice agar stress media, 

respectively, showing formation of large bodies, which are aggregated cells 

surrounded by mucoid sheaths, presumably served as protective covers. 
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(a) (b) 

Figure 3.52 SEM (a) and TEM (b) images of Saccharomyces cerevisiae wme 

strains growing on stress media, (a) 3% grape juice agar and (b) 5% grape juice liquid 

medium, respectively, revealing cell to cell "communication channels" (cc), or likely 

conjugation tubes facilitating the potential transfer of cytosolic elements. 
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(a) (b) 

0.2 ~nl x20K) 

(c) 

Figure 3.53 TEM images of Saccharomyces cerevisiae wine strains growing under 

nutrient limitation, (a) forming transport vesicles for the endocytosis or (b & c) 

exocytosis of materials, which are potential nutrients or/and toxins. 

Abbreviations: cw, cell wall; ipm, invagination of the plasma membrane or fusion of Golgi 
cisternae of the plasma membrane; ps, peri plasmic space. 
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(a) 

(x30K 

(b) 

Figure 3.54 TEM images of Saccharomyces cerevisiae wine strains growing under 

severe nutritional stress condition, which induces ascospore formation. 

Abbreviations: cpi, invagination of cytoplasmic membrane; n, nuclear material; sp, spore; spc, 
spore cortex. 
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(a) (b) 

-O.2flm 

(c) 
Figure 3.55 Micrographs of sensitive S. cerevisiae cells damaged by the K2 killer 

toxin. 

Abbreviations: bs, bud scar; cr, crack; cw, cell wall; In, lobular nucleus; m, mitochondria; p, 
pore; pm, plasma membrane; r, ribosomes; re, rough endoplasmic reticulum; ve, plasma 
membrane-associated vesicle; wd, cell wall damage. 
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Sensitive wine yeast cells growing on the stressed media (section 3.2.2.10.), produced a 

mucoid, sheath-like structure over some cells (Figure 3.50 and 3.51). It is postulated that 

the mucoid secretion is mucin and that it masks the K2 toxin from binding effectively to 

its cognate receptor. This would explain the poor killing of cells under stress conditions 

as the FL011 structural gene is induced to produce a mucin-like (flollp) protein. This 

feature was also found on the agar wedges (3.2.2.10.1) taken away from the zone of 

clearing and superficial growth. Cells, taken at the perimeter of the concentric zone of 

inhibition, were damaged by the K2 toxin (Figures 3.47 & 3.55). Cells of normal yeast­

like structure, which were embedded in the mucoid matrix or sheath, appeared to be 

physically protected from the toxin effects (Figure 3.50 and 3.51). A closer examination 

of the mucoid matrix revealed imprints as if cells had been dislodged from the pits 

(Figure 3.50b), perhaps during the preparatory steps for microscopy. 

Scanning and transmission electron microscopy of K2 - toxin damaged sensitive cells 

(Figure 3.55) revealed cell shrinkage (also observed in pure culture subjected to extreme 

nutritional stress), characteristic of cytoplasmic efflux, and presumably the result of the 

interaction of the K2 mycotoxin to specific cell wall receptors. This interaction is 

followed by formation (Martinac et ai., 1990) or activation of endogenous ion channels in 

the plasma membrane of the target cells , such as the TOK1 potassium-selective ion 

channels in S. cerevisiae (Ahmed et ai., 1999). K2 - toxin damaged cells (Vadasz et ai., 

2000) were characterised by cell wall disruption at different positions, by way of cracks 

or/and pores, resulting in the extrusion of cytosol at these points (Figure 3.55). However, 

disruption of a crenulated plasma membrane could not be proven. 

Toxin - induced membrane damage is an energy (ATP) - dependent event (Skipper and 

Bussey, 1977). Shortly after the killer toxin binds to the receptor in the cell wall, this 

causes a decrease in the ion gradient across the membrane, interrupting the coupled 
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transport of protons and amino acids. This event may induce pore formation, allowing for 

the penetration of ions such as potassium and low-molecular weight metabolites. Hence, 

the formation of pores is assumed to be associated with the lethal effect of the killer toxin 

(Vadasz et aI., 2000; Van Vuuren and Jacobs, 1992). 

Bussey, (1974) found that the membrane-damaged cells shrunk in volume owing to the 

loss of small metabolites through the large pores in the membrane, however, no cell lysis 

occurred. Carrau and co-workers, (1993) supported this showing that sensitive cells in the 

presence of K\ did not lyse and that macromolecules were not released from the killed 

cells. However, the data presented in Figure 3.53 may suggest otherwise. Sensitive cells, 

damaged by the K2 toxin, were not associated with a mucoid matrix but were 

characterised by the loss of turgidity and disruption of the cell (Figure 3.55), resulting in 

the extrusion of the cytosol at these points. The K2 toxin of T206 strain appears to 

resemble the K\ mycotoxin, which is known to induce cytosolic efflux through pore 

formation (Bussey, 1991). The plasma membrane of toxin-damaged cells was retracted 

from the perimeter of the periplasmic space and irregular folds and 'pinocytotic type' 

vesicles were also associated with the plasma membrane. However, plasma membrane­

associated vesicles (Figures 3.53a and 3.55), originating from Golgi cisternae, could be 

linked to the exocytosis of secretory compounds to the periplasmic space (Osumi, 1998). 

The well-defined cristae observed in mitochondria of unchallenged cells could not be 

easily detected in damaged cells. Also, toxin - affected cells showed the induction of a 

lobular nucleus. Ribosomes and most vacuoles in the cytosol stained darkly in both 

control and challenged cells. Ribosomes were arranged in clusters whilst attached to the 

rough endoplasmic reticula connecting between plasma membrane and the nucleus 

(Figure 3.55). 
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The most intensively studied M-dsRNA species is MI' KJ killer heterodimeric toxin is 

secreted into the growth medium during the exponential phase of growth. As a pore­

forming protein, which is processed from a precursor in the Golgi, it has allowed for 

identification of the KES2- and KESI- encoded proteases. The toxin binds to a ~-1,6-

glucan component of the receptor on the cell wall of the target yeast. This binding of the 

KJ killer toxin is specific and has been used in its purification procedure. Both the a- and 

~- toxin subunits are implicated in receptor binding. The hydrophobic a-subunit -

encoding region is the site controlling channel formation. It is still unknown if the a­

subunit is sufficient to form a pore, or if the ~-subunit is also involved (Bussey, 1991). 

The resilient degree of a sensitive strain to the toxin might be attributed to differences in 

the structure of the yeast cell wall or properties of the K2 toxin binding receptors 

(Hutchins and Bussey, 1983; Bussey, 1991) and flocculation properties (reviewed by 

Vadasz, A.S. , 1999b). 

Nutritionally-stressed media may negatively affect the copy number of VLPs in the killer 

cells (3 .3.4.2), and thus influence the amount and degree of activity of the killer toxin. It 

is known that the depletion of nutrients in growth media potentially activates the FLO 11-

MSS10 gene system in S. cerevisiae strains (Gagiano et ai., 1999). The decrease in both 

ammonium and sugar concentrations could induce the FL01l (MUe1) structural genes to 

produce a flocculin (flollp) or mucin-like protein (muc1p) and manifest in 

pseudohyphae formation (Gagiano et aI., 1999; Lambrechts et ai., 1996). In this study, 

invasive growth (Figure 3.49) and pseudohyphal formation (Figure 3.48) was detected in 

all of the investigated S. cerevisiae strains (T206, T206q, VIN7 and Y217), subjected to 

nutritional stress. It is likely that yeast cells anchor to the agar medium, with the mucin-
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like protein possibly promoting adhesion or aggregation of cells (Figure 3.50 and 3.51), 

while pseudo hyphae forage for the limited nutrients (Figure 3.48). 

Nitrogen starvation also induces morphological changes in haploid ellipsoidal cells of S. 

cerevisiae when the GDH3 gene is partially deleted, forming a pseudohyphal growth 

pattern. The GDH3 gene codes for the nicotinamide adenine dinucleotide (NADP+, 

oxidised form)-linked glutamate dehydrogenase involved in the production of L­

glutamate by the cell, which contributes to the fixed nitrogen present in cells. This gene 

might also be involved in the recognition of available nitrogen source. Haploids, bearing 

the partially deleted GDH3 gene, form wrinkled colonies showing pseudohyphal growth 

patterns, when grown on either rich or stressed medium. Addition of glutamine to a yeast 

nitrogen-base medium increases the amount of pseudohyphae, which suggests that 

nitrogen starvation is not the only reason for the formation of the pseudohyphal 

phenotype (Wilkinson et ai., 1996). 

3.4 Conclusions 

This study aimed develop a new mathematical model simulating the dynamical 

interaction of killer and sensitive yeast strains in single and mixed cultures, in order to 

understand the macro qualitative features controlling the dynamics of these interaction. 

The growth pattern features of wine strains of Saccharomyces cerevisiae under extreme 

nutritional stress media (5 % grape juice and pure water) were examined here. Genetic 

alteration of the viral dsRNA that inhabits a killer yeast, was induced by cycloheximide 

treatment (see 3.2.2.2; 3.3.1) in order to delete the ability of the killer yeast to produce its 

viral killer toxin, and therefore used as the killer control (see 3.2.2.9; 3.3.2.1; Figure 3.4). 
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A lag phase of growth is not observed in both nutritional stressed media (5% grape juice 

and pure water), although the initial growth rate is relatively lower than the subsequent 

growth at later times prior to the stationary phase for cells growing in the 5% grape juice, 

but not in pure water. Oscillatory mode of growth, an over shooting and one or more 

inflection point(s) in the "In curve" (3.3.4.1 , 3.3.4.2, 3.3.4.3; Figures 3.10-3.25) were 

observed for both pure and mixed cultures (see 3.3.4.1; 3.3.4.2). Oscillatory modes of pH 

and substance levels (3.3.4.3) in cell media of ethanol (3.3.4.3.2), ammonium (3.3.4.3.3), 

acetic acid (3.3.4.3.4), glycerol (3.3.4.3.5) were also observed. These substances were 

produced orland released by the constant adapted cells (3.3.5, Figure 3.53) and could be 

consumed by the cells as nutrients. 

s. cerevisiae, under extreme nutritional stress, sporulate. Although spores were not 

counted (3.3.4.1; 3.3 .5, Figure 3.54), it was estimated that their number while grown in 

pure water was substantially larger than their corresponding number associated with 

growth in 5% grape juice. The spores survived the stressed environmental conditions, 

reproduced orland germinated, others wasted and could be used as "nutrient sink" for the 

cells. 

Growing in mixed cultures, the killer effect was observed only when the killer strain, not 

the killer-cured, challenged a sensitive strain (see 3.3.2.1, Figure 3.4; 3.3.5, Figure 3.55). 

Few hours after exposure to the killer toxin, dead cell percentage reached an extreme 

peak point less the half of that was found when the killer cured challenged a sensitive 

strain. The formation of cell protective structures observed under the scanning and 

transmission electron microscopes (section 3.3.5) physically blocked the toxin effects on 

the sensitive cells. Also, limited nutrient sources, possibly decreases VLP reproduction, 

and thus the toxin production and the chemical changes in the medium influence the toxin 

activity. 
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Growing on the WLN medium (3 .2.2.8) of single (Figure 3.5) and mixed of two (3.3.4.1; 

3.3.4.2, Figure 3.46) allowed to differentiate the relative survival of cells of the mixed 

cultures (Figure 3.36-3.45). Killer-cured cells growing in pure water, challenged by the 

killer at a K:Kq cell ratio of 1: 100 (Figure 3.44) revealed that the killer-cured phenotype 

dominated and the killer strain phenotypes disappeared. A ratio of killer:sensitive 1: 100 

(Figures 3.36 and 3.37) revealed dominance of the sensitive strain and extinction of the 

killer strain. A ratio of killer:sensitive 1: 1 (Figures 3.40 and 3.41) strongly support the 

survival of the sensitive strains according to their relative growth rates. The killer did not 

dominate the mixed cultures, and in comparison with the killer-cured (l: 100 Kq:S ratio, 

Figures 3.38 and 3.39 and 1: 1 Kq:S ratio, Figures 3.42 and 3.43), it seemed to have a 

disadvantage while growing under nutritional stress. 
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CHAPTER 4 

FORMULATION OF THE NEW MODEL 

4.1 The conceptual model 

The objective of the proposed new model is to address the following points: 

• The new model is expected to recover a Lag Phase as a particular possibility. 

• The new model is expected to recover an inflection point on the logarithm of the cell 

concentration curve as a particular possibility. 

• The new model is expected to recover the Sigmoid Curve (LGM) as a special case. 

• The new model is expected to recover an overshooting and an oscillatory mode of 

yeast growth. 

To accomplish these goals a new model proposed and derived by Vadasz, (2000) is 

applied. This model that takes into account the reason for the limitation of the LGM, that 

might be its lack of kinetics is presented here. To clarify the matter one needs to 

emphasise accurately the definition of the terminology that is being used. In particular the 

term "kinetics" is at times used in misleading connotations. The correct meaning is 

related to its basic definition that is linked to the two branches of Dynamics, namely 

Kinematics and Kinetics. Kinematics is the study of the Dynamics of a system including 

displacement and velocities but without reference to the forces associated with this 

Dynamics. On the other hand, Kinetics is the branch of Dynamics which relates the 

action ofJorces and accelerations to their resulting displacement and velocities. Clearly, 

the LGM equation (2-1) and all its variations presented in Chapter 2 represent "rate 

equations" relating the growth velocity (growth rate) to its displacement (instantaneous 
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cell concentration) and is therefore a Kinematic model. As a matter of fact it was Pearl, 

(1927) who introduced the concept of forces in his classical paper. His paper starts by 

indicating that "The primary biological variables involved in the growth of population 

are .. . .' the force of natality, measured by the birth rate, on the one hand; and the force of 

mortality, measured by the death rate, on the other hand. " He later introduces a third 

factor affecting population growth in the form of migration. While Pearl, (1927) seems to 

be the first to introduce the concept of natural forces that affect the population growth, he 

did not translate the latter into a mathematical balance of forces in his proposed equation. 

The LGM as indicated above is a "rate equation" and therefore does not account for this 

balance of forces. One needs, therefore to extend the LGM in order to include a balance 

of forces and accelerations, representing therefore the Kinetics of the system. 

4.2 Derivation of the new model 

In order to mathematically present the "forces", which are involved in a population 

growth, the LGM equation (2-1) is used as the starting point, multiplying it by a 

coefficient c and introducing a change of momentum term, in the form (Vadasz, 2000) 

~(m dX)+c dx =C I1 [1- x]x 
dt dt dt 8 (4-1) 

where c is now a "damping coefficient" and m is referred to as a "virtual mass". There is 

no evidence to suggest that m is in any way related to the cell average biomass or density 

although this possibility does not exclude and may serve as a future objective for study. 

In the most general case one need to allow both m as well as c to depend on the cell 

concentration x, i.e. m == m( x) and c == c( x). With these clarifications one can present 

equation (4.1) in the form 
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d (dX) dx 2 - m- +c--bx+K x =0 
dt dt dt 0 

(4-2) 

where b= cll and Ko = cll/8. The term m(dx/dt) represents the virtual momentum of 

the cell growth and the first term in equation (4.2) is therefore the virtual inertial force. 

The second term is a damping force inhibiting growth if c > O. The third term represents 

a central attracting force (analogous to a virtual magnetic force) and the last term 

represents a restoring force of a non-linear virtual hardening spring with Ko as the 

"reference virtuaL spring's stiffness" (Kox representing the virtual hardening spring's 

stiffness). Equation (4.2) can be presented in the following form 

.. [dm. ]. b K 2 0 mx+ dx x+c x- x+ oX = (4-3) 

where Newton's time derivative notation is introduced i = d x/d t and x = d 
2 
xl d t

2 
, for 

simplicity. As previously indicated, both the virtual mass as well as the damping 

coefficient may in general be functions of concentration, i.e. m == m(x) and c == c(x). As 

a result, both coefficients affect the growth differently at different times during the cells' 

growth, but the time dependence is not explicit as proposed by Baranyi and Roberts, 

(1994) but only implicitly included via their dependence on the cell concentration x(t). 

The consequence is that the model remains autonomous while preserving the advantages 

of Baranyi and Roberts, (1994) model that accounts for "inertial" effects. In addition, it is 

by far easier formulating for the new model an inverse problem that is sufficiently 

general, in order to establish the values of the coefficients as well as the accurate 

functional form of m(x) and c(x). In particular, interesting objectives for further studies 

relate to the fact that for c == c( x) there are additional stationary points of the system (4-1) 
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that correspond to c( x) = o. The existence of multiple stationary points is consistent with 

experimental results on yeast growth presented in section 3.3.4.1 Figures 3.10 to 3.25. 

4.3 Constitutive relationships and a simplified version of the new 

model 

Since for this first presentation of the proposed new model there is no accurate form of 

these functions no formulation of the inverse problem yet, nor corresponding experiments 

performed, only an approximation for these functions is applied for demonstration 

purposes. Therefore, in the demonstrated examples to be presented in this study it is 

assumed following Vadasz, (2000) that c = Co = constant , and a two-term Taylor 

expansion for m( x ), in the form 

(4-4) 

where S = (1/ mo)( d m/ d x) ::::: constant, and mo is the value of m at x = x,. In addition, it 

is assumed that m is a weak function of x, i.e. the value of s is small and can be 

expressed in the form s = c s o' where c« 1 and So is another constant. Naturally, these 

assumptions are quite limiting and future research that may reveal the accurate forms of 

m( x) and c( x) will allow the relaxation of these limitations. Nevertheless, one will see 

that even with these limiting assumptions the model recovers a wide range of growth 

curves as well as a quite good fit with the experimental data of this study (Figures 3.10-

3.35). Substituting equation (4.4) and the weak-function assumption s = cSo into equation 

(4.4) and dividing the whole equation by mo yields 

[ 1 + c So ( x - x,)] i + [ c sox + v 0] x - a 0 x + (j 0 X 2 = 0 (4-5) 

where the following notation was used 
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(4-6) 

It is sensible to assume that (x - x,) is of a unit order of magnitude, i.e. (x - x,) = 0(1), 

and therefore the term £ so( x - x,) is much smaller than the first term in the same 

brackets which is 1, because £«1. Hence the term £so(x-x,) can be neglected at 

leading order. On the other hand, one can not apply the same argument to the term (£ sox) 

because it is not sensible to speculate about the resulting order of magnitude of x that can 

be quite large, especially if very short time scales are involved. As a result the leading 

order form of equation (4-5) subject to these assumptions is 

(4-7) 

where the original parameter £ So = s is reintroduced at this stage. Equation (4-7) was 

used in this study for demonstration of the proposed model subject to the limiting 

assumptions indicated above. Four constant parameters, namely s, v
o

' a
o 

and er
o

' and 

two initial conditions, namely 

x(O) = X o and (4-8) 

are needed as input data to solve the initial value problem. Equation (4-7) as well as its 

more general original form, equation (4.3), retain the same stationary points as the 

original LGM, i.e. x = 8 and x = O. s s 

To solve the initial value problem (4-7) and (4-8) computationally, the second order 

ordinary differential equation (4-7) is firstly expressed in the form of the following two 

first order equivalent equations 
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(4-9) 

that need to be solved subject to the following initial conditions 

t=O: x(O)=xo and y(O) = x(O) = Yo (4-10) 

yielding 

{

X = y = 0 Sl 

Y = X(lXo - <J"ox) 

(4-11) 

4.4 Derivation of the new model for two species competing over a 

common ecological niche 

The experimental results of mixed wine yeast cultures presented in Chapter 3 (section 

3.3.4.2) are being considered in order to establish whether they are consistent with the 

modified classical model analysis or not. The experimental results for the differentiation 

between the killer-strain T206 and the sensitive Y217 grown in mixed culture in water at 

an initial concentration ratio of 1: 1 (Figure 3.41) are presented in Figure 4.1a, where a 

cubic-spline curve fitting (standard within the graphical software) was applied to the data. 

Because of the tedious and time consuming measurement process linked to the 

differentiation experiments there is no possibility of capturing a high-resolution data set. 

From Figure 4.1a it is evident that both strains coexist and moderate oscillations of both 

strains concentration are observed, especially on the curve of the total viable cells. One 

may be even tempted to fit a logistic curve to these data. However, observing the 

experimental data for the total viable cell concentration that is presented in Figure 4.1b, 

which corresponds to the ongoing cell count of total viable cells (i.e. not via the 
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differentiation process) clearly indicates that this is not the case. The data presented in 

Figure 4.1h was captured at higher resolution. As a result, a cubic-spline curve fit 

(standard within the graphical software used) suggests wild oscillations in the total viable 

cell count. The extremely high spike between t = 100 hours and t = 170 hours is likely to 

be a curve-fitting artifact due to the lack of data during this long period of time. Similar 

results apply for competition between the two sensitive strains of yeast Y217 and VIN7 at 

an initial concentration ratio of 1: 1 (Figure 3.45), and are presented in Figure 4.2. On the 

other hand, the experimental results presented in chapter 3 for the killer and sensitive 

strains (T206 and VIN7 or T206 and Y217) grown in a mixed culture in pure water, but at 

an initial concentration ratio of 1: 100, respectively, show that the sensitive strains survive 

while the killer strain is subject to extinction (Figure 3.36 and 3.37). 

The major two conclusions are therefore: (1) Coexistence of both strains as well as 

extinction of one of them was recovered experimentally, and some results seem to depend 

on initial conditions, (2) Oscillations in the cell count of both the individual cell 

concentration as well as in the total viable cell count were recovered experimentally. The 

first conclusion is perfectly consistent with the analysis results pertaining to the Modified 

Classical Model, i.e. equations (2-8)-(2-9). The second conclusion is, however, 

inconsistent with the Modified Classical Model because the latter can not accommodate 

oscillations. A new model is required to recover the experimentally observed oscillatory 

growth. 
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an initial concentration ratio of 1: 1. (a) Cell differentiation data; (b) Total viable cells. Aliquots 
of mixed cell population were plated onto WLN medium to determine the relative concentration 
of each as individual strains showed peculiar colony traits (Figure 3.46). 
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Figure 4.2 Experimental results of total viable cell concentration and differentiation between 
the two sensitive strains of yeast Y217 and VIN7 grown in mixed culture in pure water at an 
initial concentration ratio of 1: 1. (a) Cell differentiation data; (b) Total viable cells. Aliquots of 
mixed cell population were plated onto WLN medium to determine the relative concentration 
of each as individual strains showed peculiar colony traits (Figure 3.46). 
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4.5 The new model for two species competing over a common 

ecological niche 

Extending the application of the new model that was developed (Vadasz, 2000) for a 

single species growing in isolation to apply for two species competing over a common 

ecological niche, by considering some of the analysis results from the modified classical 

model produces the following set of equations (Vadasz, 2000) 

(4-11) 

(4-12) 

These equations can be presented in the form 

(4-13) 

(4-14) 

where the following notation was used 

bl=C11I1 ; b2=c_1I2 ,' K11 =c1f311" KI2= c f3· K -cf3 . K -cf3 (415) 
fA' 2t'" 1 12 ' 21 - 2 21' 22 - 2 22 -

Considering now rnl == rnl(xl), rn2 == rn2(x2), C1 = constant and c
2 

= constant, and 

assuming 

(4-16) 

(4-16) 
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then for s «1 and s «lone obtains from equations (4-13)-( 4-14), after substituting 
" 2 

(4-16)-( 4-17) and dividing by mIO and m20 respectively a simplified version of the new 

model in the form 

where 

c b 
v,=-' ; lX,=-' ; 

mIO mIO 

c b2 v
2 
=_2 ; lX2=-

m20 m20 

K 11 __ " . 
11- , 

mIO 

K 11 __ 2' . 
2' - , 

m20 

K 
'11 - --R . 
'/ 22 - , 

m20 

Converting each one of these equations into a pair of first order equations yields 

(4-17) 

(4-18) 

(4-20) 

(4-21) 

(4-22) 

(4-23) 

(4-24) 

(4-25) 

The system of equations (4-22)-(4-24) was solved for different combinations of 

parameters and different initial conditions in an attempt to check whether the 

experimental results can be recovered qualitatively. There was no attempt to fit the 

experimental results quantitatively because the process involving the variation of 10 

parameters and 2 additional unknown initial conditions for y,(O) = X,(O) and 

Y2(0) = x2(0) becomes unmanageable by trial and error. A more systematic way is 
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needed along the lines of introducing an inverse problem, in order to establish accurately 

the values of the parameters. 
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CHAPTERS 

ANALYSIS OF THE PROPOSED MODEL 

5.1 Linear stability analysis 

The first step in applying the simplified version of the proposed new model for the 

solution of population growth is carrying out a linear stability analysis of the 

corresponding stationary points. The system of equations (4-9) has the general form 

i = f(x) and the stationary points x st are defined by f(x) = 0, corresponding in this case 

to the trivial solution xst ' = (xst = 0; Y st = 0) and the non-trivial stationary solution 

xst 2 = (xst = ao / ao = f3 / Ko = 0; Y st = 0). 

Substituting x = xst + £x, and Y = Y st + t)', where £« 0 into equation (4-9) yields 

and after elimination of the basic solution of the set of equations (4.9) for (x
st 

;Y
st

) ' and 

£ 2 terms 

(5-1) 

or 
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(5-2) 

or 

(5-3) 

Substituting the first equation of (5-3) into the second equation yields 

or 

(5-4) 

Substituting X
S1 

values of equation (4-9) solutions into equation (5-4) yields the 

eigenvalues Ai (i = 1,2). 

The linear stability of the trivial stationary point x s1 1 = 0 is controlled by 

(5-5) 

Both eigenvalues are real as long as ao > 0 , corresponding to positive specific growth 

rates and a positive damping coefficient, co' as well as a positive value of mo. The first 

eigenvalue AI = -vo [1 + ~1 + 4aj v~ J/2 is negative as long as Vo > O. The second 

eigenvalue A2 =-Vo [I-~1+4ajv~ J/2 is positive as long as vo>O. The trivial 

stationary point x s1 1 = (XSI = 0; YS1 = 0) is therefore an (unstable) saddle point if a
o 

> O. 
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The instability of the trivial stationary point is identical to the result obtained from the 

LGM. The type of instability is naturally different. 

The linear stability of the other stationary point xsI2 = (XSI = ao /0'0 = f3 / Ko = 8 IS 

controlled by the following quadratic equation for the eigenvalues, Aj (i = 1,2) 

(5-6) 

For a > 0 and v > 0 both eigenvalues are real if i > 4 a , and they become a pair of o 0 0 0 

complex conjugate eigenvalues if v~ < 4ao' The former is associated with over-damping 

conditions, while the latter corresponds to under-damping. When the over-damping 

condition holds (and the eigenvalues are 

.1'1,2 = -va [1=1:: ~1- 4aj v~ J/2 < 0, and therefore the non-trivial stationary point is a 

stable node. For under-damping, v~ < 4ao (and ao > 0, V o > 0), the eigenvalues become 

A, ,2 = -va [1 + i~4aj v~ -1 J/2 = A, + iAi' and therefore the non-trivial stationary point 

is a stable spiral because the real part of the complex eigen values, A, = -vol2 < 0, is 

negative. 

5.2 Analysis of the corresponding Hamiltonian system 

The results of the linear stability analysis apply in the neighbourhood of the 

corresponding stationary point. When the initial conditions or the solution deviate 

substantially from this neighbourhood the linear stability results are not anymore correct 

because of their local domain of validity implied in the linearisation of the equations. In 

order to obtain further information about the anticipated behaviour of the new model's 

simplified version we carried out an analysis of the corresponding Hamiltonian problem, 
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which is obtained by setting Vo = S = 0 in equation (4.9) leading to the Hamiltonian 

system 

{

x=Y , 

• 2 
Y = aox - a OX • 

(5 -7) 

(5 - 8) 

The Hamiltonian energy of the system (5-7) and (5-8) can be obtained by dividing 

equation (5-8) by (5-7) to yield the following differential equation 

d y / d X = (aox - a ox2
) / y , which can be integrated analytically to provide the result 

ao 3 ao 2 1 2 
H=-x --x +-y 

3 2 2 
(5-9) 

where H stands to represent the Hamiltonian energy. The phase diagram of the solution 

of the Hamiltonian system (5-7) and (5-8) is presented in Figure 5.1 for two sets of 

parameter values. Figure S.la represents the phase diagram corresponding to a 0 = 1 and 

a
o 

= 2 . It is associated with a non-trivial stationary point located at 

(xs = ajao = 2; Ys = 0). Negative values of x are not consistent with population 

dynamics, as there is no physical meaning to negative population sizes. From the figure 

one can observe the existence of a homoclinic orbit associated with the equation 

Ho = aox
3 /3- aox

2
/2 + //2 = O. Inside the closed domain embraced by the homoclinic 

orbit the solution remains finite moving on the limit cycles as described in the Figure 

S.la. However, outside the homoclinic orbit the solution diverges, initially via physically 

non-acceptable negative values, and eventually towards -00 . This suggests that the initial 

conditions as well as the parameters be constrained by physically realistic values. As the 

value of a o decreases or the value of a o increases the non-trivial stationary point on 

Figure S.la moves to the left towards the origin. At a o = 0 the two stationary points 

overlap at the origin as presented on Figure S.lh. At this point no realistically feasible 
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solutions are possible, except decay towards extinction. The latter applies for negative 

values of au as well. This result indicates that the possible set of initial conditions and 

parameters is constrained to a set that is compatible with physically feasible results. This, 

however, in no way limits the applicability of the model since in any case one has the 

limitation of positive values of x imposed on the system. 
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Figure 5.1 The phase diagram for the solution of the new model associated with the 

corresponding Hamiltonian problem. 
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CHAPTER 6 

NUMERICAL AND COMPUTATIONAL METHODS OF 

SOLUTIONS FOR THE NEW MODEL 

Considering the two first order equations (4-9) and (4-10), which for reader convenience 

are repeated here 

(4-9) 

subject to the following initial conditions 

{ 

x(O)=xo 

t=O: y(O) = i(O) = Yo 
(4-10) 

Initially, some solutions of these equations were obtained by using a standard library 

package based on the Rung-Kutta method (IMSL Library, 1991). Eventually, the solution 

was accomplished by using Adomian ' s decomposition method of solution (Adomian, 

1988, 1994) which was demonstrated to produce extremely accurate results in a 

substantial number of non-linear problems including cases which are extremely sensitive 

to initial conditions (see Vadasz and Olek, 1999, 2000 a, b). An algorithm developed 

originally by Olek, (1994) and modified by Vadasz and Olek, (1999, 2000 a, b) was used. 

Essentially, the method provides an accurate analytical solution in the form of an infinite 
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power senes for each dependent variable. The solution follows Olek, (1994) and 

considers the following more general dynamical system of equations 

'II i = 1,2, .... ,m (6-1) 

given the initial conditions Xi (0), i = 1,2, ... ,m . It can be easily observed that the system 

of equations (4-9) is just a particular case of equation (6-1). It provides the following 

analytical solution 

~ til 
X(t)=" c· -

I L.. I ,n , 
11 =0 n. 

'II i = 1,2, .... ,m (6-2) 

where 

c·o=X(O) 
I . I 

'II i = 1,2, .... ,m (6-3) 

The convergence of the series (6.4) is difficult to assess apriori. Irrespective of this 

difficulty, the practical need to compute numerical values for the solution at different 

values of time requires the truncation of the series and, therefore, its convergence needs 

to be established in each particular case. To achieve this goal, the decomposition method 

can be used as an algorithm for the approximation of the dynamical response in a 

sequence of time intervals [0, tl), [t" t2), ... , [tn- I' t,,) such that the solution at t p is taken 

as initial condition in the interval [tp,t,,+I)' which follows. This approach has the 

following advantages : (i) in each time-interval one can apply a theorem proved by 

Repaci, (1990), which states that the solution obtained by the decomposition method 

converges to a unique solution as the number of terms in the series becomes infinite, and 

Oi) the approximation in each interval is continuous in time and can be obtained with the 

desired accuracy corresponding to the desired number of terms. For more details on 
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Adomian's decomposition method the reader is referred to Adomian, (1988, 1994), Olek, 

(1994), and Vadasz and Olek, (1999,2000 a, b). 

The latter procedure is adopted in the computation of the solution to equations (4-9). One 

can easily observe that this set of equations is just a particular case of equations (6-1) 

with m = 2. The set of equations (4-9) provides the following non-zero coefficients for 

substitution in equation (6-1) bl2 = 1; b2 1 = ao ; b22 = -vo ; a2 11 = -0'0 ; a222 = -so 

Except for these coefficients all others are identically zero. Therefore, the coefficients ci,n 

in equation (6-2) take the particular form 

(a) 

(6-4) 

n- I (n -I)! CI ,k cI ,(n- k- l) 

c2, 11 = ao CI,(II _I) - V o c2,(n - l) - a 0 ~ k' ( _ k -1)' 
k- O • n . 

s I: (n -I)! C2,k c2,(n - k- l) 

k=O k! (n-k-l)! 
(b) 

In all computations, 15 terms were used in the series, a time interval of Lit= 10-
3 

hours, 

and all computations were performed up to a value of t = tmax .of 280 or 350 hours (see 

Chapter 7). All computations were carried out to double precision on an Apple Power 

Macintosh G3 computer and the elapsed time for each computation was -20 seconds. A 

few solution results obtained by using the present method were compared with 

corresponding numerical results obtained by using the fifth order Runge-Kutta-Verner 

method (IMSL Library, 1991) of solution with an error tolerance parameter equal to 10-6 . 

In all compared cases, the results between the two methods were identical to all 

significant digits of the double precision computations at all times. 
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The method of solution for the mixed cultures was identical to the one presented for the 

single species case, with the only necessary modifications related to the extension from 

two equations to four. 
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CHAPTER 7 

RESULTS AND DISCUSSION 

7.1 Pure cultures 

To realise how the original non-Hamiltonian problem relates to the Hamiltonian system 

described in Chapter 5 (section 5.2) the simplified version of the new classical model, 

equations (4-9)-(4-10), was solved by using Adomian' s decomposition method as 

presented in Chapter 6. The solution was sought for parameters values identical to the 

ones used for the Hamiltonian system in Chapter 5 (section 5.2), i.e. eJo = 1 and aD = 2, 

but in addition in this case the values of va and s did not vanish. The computational 

results corresponding to eJo=l, ao=2, s=0.03, va=O.I, xo=0.5 and yo=O are 

presented in Figure 7.1a in the time domain and in Figure 7.1b on a phase diagram. From 

Figure 7.1b it is evident that the trajectory crosses the limit cycles presented in Figure 

5.1a for the corresponding Hamiltonian system and spirals towards the non-trivial 

stationary point (xs = ajeJ 0 = 2; Ys = 0). Furthermore, it is also evident that in this case 

v~ < 4 aD (v~ = 0.01 and 4ao = 8) reinforcing the linear stability result, which suggests 

that the solution approaches the stationary point via damped oscillations. In general, as 

long as va> 0 and s i > 0, the solution always moves towards the stationary point if it 

starts within the domain embraced by the homoclinic orbit associated with the 

Hamiltonian system. However, even if va> 0, the condition s i < 0, which occurs 

whenever (s > 0 and i < 0) or (s < 0 and i > 0), may cause the solution to move 

momentarily away from the stationary point. This may occasionally cross the homoclinic 

orbit associated with the Hamiltonian system and still eventually restore the trajectory 

back within the domain embraced by the homoclinic orbit, as the value of i changes sign 
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in this process. However, this result suggest the real possibility that for some values of 

the parameters restoring the trajectory back within the realistically feasible domain does 

not occur and the solution diverges, initially via physically non-acceptable negative 

values, and eventually towards -00. This reinforces the previous conclusion regarding the 

existence of a set of initial conditions and parameters that is constrained by compatibility 

with physically feasible results, such as population saturation levels, etc. 

For purposes of comparison of the simplified new model with experiments, one would be 

interested, ideally, to use experimental results obtained over a large period of time (300 to 

600 hours) with a sufficient resolution as to capture all the substantial qualitative as well 

as quantitative features of the growth. Then, one could use the computational solution of 

the problem (4-9) - (4-10) in order to establish the values of the parameters in equations 

(4-9) that correspond to the performed experiment. To accomplish such a task one needs 

to formulate and analyse the corresponding inverse problem. In addition, it turns out that 

the formulation of the inverse problem dictates a particular experimental strategy that 

allows an accurate evaluation of these parameters, such as the need to capture three 

consecutive readings for each available data point in the experimental results. The latter 

is needed in order to approximate accurately the second derivative in equation (4-7). As 

the inverse problem was not yet formulated, nor analysed there is no systematic way to 

evaluate the parameters in equation (4-7), or its equivalent form (4-9). To make things 

worse, there is still no way of accurately specifying the derivative initial condition 

y(O) = i(O) = Yo' The latter may be expected to be linked to the "inertia" of the cell 

growth in the previous environment, prior to being inoculated and grown in the actual 

environment. Therefore, at this stage the less systematic approach was adopted to 

determine the model's coefficients by trial and error. This process is extremely tedious, 

however for the purposes of the present demonstration it is sufficient for indicating a very 
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good match between the proposed new model and the experimental results, even for its 

simplified version. In this trial and error process the initial condition were treated for 

y( 0) = x( 0) = Yo as an unknown parameter to be determined. Based on the previous 

analysis one needs to reiterate that when the term [sx+vo] in equation (4-7) becomes 

negative it may drive the solution to diverge (negative damping), i.e. by crossing the 

homoc1inic orbit without the ability to recover back into the domain embraced by that 

orbit, los sing its stability. This fact and the consequent conditions that constrain the 

possible range of feasible parameter values make the trial and error process manageable. 

The computational results corresponding to initial conditions: X o = 1 Mcell/ml and 

Yo = 0 Mcell/ (ml· h), are presented in Figure 7.2a and compared with the experimental 

data (Figure 7.2 b) for growth of the T206 strain of Saccharomyces cerevisiae in a 

nutrient limited medium (5% grape juice). 

The computational results obtained for the following set of parameters: 

ao = 0.0225 (McelIjmlr'h-2 , Vo = 0.01 h - ', ao = 0.0475 h -2 , S = -0.97 (Mcell/m1r', 

xo=1.46 Mcell/ml and Yo =0.04 Mcell/(ml·h) , are presented in Figure 7.3 and 

compared with the experimental data for yeast growth of the T206 strain of 

Saccharomyces cerevisiae in pure water. 

It is evident from the figures that both the computational as well as the experimental 

results indicate a damped oscillation process that eventually tends to decay to the 

stationary point. The computational solutions according to the new proposed model 

presented in Figures 7.2a and 7.3a recovers very well the experimental results (Figures 

7.2b and 7.3a) despite the simplifying assumptions in assuming a constant value of c in 

equation (4-3) and a small value of Isl« 1. From the parameter values listed above that 

were obtained via the trial and error process it is evident that I s 1= 0(1), violating the 
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original assumption. Nevertheless, the computational results fit quite well with the 

experimental ones while the slight discrepancies may be associated with the violation of 

the latter assumption. Future work should be directed in establishing more accurate 

relationships for m(x) and c(x). The latter will allow an even better fit between the 

proposed model solution and experimental data. The spiralling approach of the solution 

towards the stationary point as observed in Figure 7.3b is consistent with the linear 

stability condition for under-damping, i.e. v~ < 4 a o (v~ = 10-4 h -2 and 4ao = 0.19 h-\ 

In order to demonstrate the capability of the new model to capture different effects that 

were reported in previous growth experiments, numerous computations were performed 

representing solutions of the problem (4-9)-(4-10) within a wide range of parameter 

values. In particular, it was interesting to find out whether the model can recover the 

inflection point on the" In curve" of the cell concentration and the "Lag Phase", the latter 

not being recovered in pure water growth for the reasons specified before (2.1). Typical 

computational results are presented in Figure 7.4 for In( x) versus time, zooming into the 

initial time range of 0 < t < 40 hours . It is evident from the figure that the curve is 

initially concave and at a later time it becomes convex, indicating the recovery of the 

inflection point on the "In curve". Two additional computational results corresponding to 

different combinations of parameters are presented in Figure 7.5, where the "Lag Phase" 

is recovered by the proposed model. Figure 7.5a shows the "Lag Phase" on a growth 

curve that stabilises at the stationary point via an overshooting, while in Figure 7.5b the 

growth process decays to the stationary point via damped oscillations. 

In addition, it may be observed from the proposed model represented by equation (4-3) 

that when the virtual mass vanishes, i.e. m = 0, the new model reduces to the special case 

of the Logistic Growth Model (LGM). An attempt was made to check if the 

computational results based on the new model could recover the LGM solution for the 
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case when m is not identically zero or when m« 1. The computational results 

representing the solution of the new model corresponding to the latter case are presented 

in Figure 7.6 for initial conditions compatible with the LGM solution for yeast growth 

presented by Pearl, (1927) and compared to experimental data based on Carlson, (1913). 

The parameter values and initial conditions used in these computations are: (J 0 = 4.5 h -2, 

vo =8h-
1

, a o =4.5h-
2

, s=0.02, (xoi8) =0.0145, Yo=0.FromFigure7.6aitisevident 

that a smooth logistic curve is recovered, identical to the one recovered by Pearl, (1927) 

when applying the LGM solution, the latter being presented in Figure 7.7. Figure 7.6a 

shows the resulting logistic curve, which fits well with the experimental data, while 

Figure 7.6b shows that there is no inflection point on the "In curve" of the cell 

concentration. Therefore, it may be concluded that in addition to recovering a wide 

spectrum of qualitative features that were identified in different experiments, such as 

overshooting and oscillations, a "Lag Phase" and an inflection point in the "In curve" of 

the population size, the new model was shown to recover the Logistic Growth Curve as a 

special case. 
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7.2 Mixed cultures 

The presentation of the computational results from the simplified version of the new 

model is divided in two parts. The first part deals with parameter values unrelated to the 

experimental data, in order to demonstrate some qualitatively different type of results. In 

the second part, an attempt was made to fit at least the stationary points to the ones 

obtained experimentally. 

The different qualitative features revealed by the computational solution of the new 

model of competition between two species are presented in Figures 7.8 to 7.12. An 

example of a solution of coexistence between the two species is presented in Figure 7.8 

showing also damped oscillations which are more pronounced in Figure 7.8b, 

representing the curve of the total population size. Figure 7.9 shows an example of 

extinction of one of the species while the surviving species attains a steady state via 

damped oscillations. The extinction of one species is presented in Figure 7.10 as well, 

however in this case the surviving species grows and reaches steady state monotonically. 

Figure 7.11 presents a similar example of extinction of one species while the surviving 

species reaches steady state via damped oscillations, however, in this case the growth 

phase of the surviving species is linked to oscillations as well. Finally, in Figure 7.12 an 

example of a solution is presented where both species become extinct with positive 

values of their corresponding maximum specific growth rates, i.e. J11 > 0, J12 > 0 (or 

actually their corresponding values of a l > 0 and a2 > 0). 
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Figure 7.11 New model results for competition showing extinction of one species (x ) 
I 

and damped oscillation in the concentration of the surviving species (x ). 
2 
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No attempt was made to fit the experimental results with the computational ones since it 

is futile to attempt to fit 10 parameter values and two unknown derivative initial 

conditions by trial and error. Nevertheless, from the experimental data it is possible to 

estimate the values of the stationary points and as a result to limit the trial and error 

process as far as reaching the neighbourhood of the stationary points is concerned. 

Furthermore, in order to be confident that the parameter values, which yield a 

computational solution that fits the experimental data, are indeed correct, one needs a 

much better resolution of experimental data points, at least for the total cell 

concentration. Therefore, the results presented here show a few computational results 

compared with the corresponding experimental data. For each set of experimental data 

one or more computational results corresponding to slightly different values of the 

parameters are presented. 

The computational results related to the growth of the killer-T206 (carrying index 1) and 

sensitive Y -217 (carrying index 2) strains of yeast in a mixed culture with initial 

concentrations at a ratio of 1: 1 are presented in Figures 7.13 to 7.15. The set of parameter 

values corresponding to Figure 7.13 are v, = 0.04 h-', 

s, = -0.5 (Mcell/rnlr', S2 = -0.4 (Mcell/rnlr' , -2 a, =0.2h , 

11" = 0.1 (MCell/mlr'h -2, 11'2 = 0.04115 (MCell/rnlr'h -2 , 112, = 0.1 (MCell/rnlr'h -2 , 

1122 = 0.08 (MCell/rnlr'h - 2 , and the initial conditions are x, (0) = x
2 
(0) = 0.5625 

Mcell/ rnl and x, (0) = x2 (0) = O. Somewhat different computational results for the same 

set of experimental data are presented in Figure 7.14 corresponding to- slightly less 

damping than In Figure 7.13 with the following parameter values v, = 0.02 h-', 

O -, v2 = .002 h , S, = -0.3 (Mcell/rnlr', S2 = -0.4 (Mcell/rnlr', a, = 0.2 h-2
, 
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(MCell/mlr'h -2 , 1]22 = 0.08 (MCell/mlr'h -2 and the same initial conditions , i.e. 

x,(0)= x
2
(0)=0.5625 Mcell/ml and x,(0)= x2(0)=0. A completely different set of 

parameters was used for the computational results presented in Figure 7.15 and compared 

to the same experimental data. The parameter values used in Figure 7.15 are v, = 0.02 h-' , 

-, 
v2 = 0.002 h , s, = -0.2 (Mcell/mlr' ' S2 = -0.35 (Mcell/mlr' , 

-2 a, = 0.03593 h , 

a2 = 0.528 h-2, 1]" = 0.0179629 (MCell/mlr'h-
2

, 1]12 = 0.0072394 (MCell/mlr'h-
2

, 

1]2' = 0.02 (MCell/mlr'h - 2 , 1]22 = 0.016 (MCell/mlr'h -2 and the same initial conditions 

x,(O) = x2(0) = 0.5625 Mcell/ml and x,(O) = x2(0) = O. The results presented in all 

figures compare well with the experimental data, certainly in the light of not attempting 

to undergo an extremely tedious process of trial and error for curve fitting. 

The computational results related to the growth of the two sensitive strains of yeast Y-

217 (carrying index 1) and VIN7 (carrying index 2) in a mixed culture with initial 

concentrations at a ratio of 1:1 are presented in Figures 7.16 and 7.17. The set of 

parameter values corresponding to Figure 7.16 are v, = 0.008 h-' , v2 = 0.02 h -', 

S, =-0.2 (Mcell/mlr' , S2 =-0.35 (Mcell/mlr' , a, =0.028 h-
2

, a2 =0.04 h-
2

, 1]" =0.018 

(MCell/mlr'h -2 , 1]' 2 = 0.007 (MCell/mlr'h -2, 1]2' = 0.02 (MCell/mlr'h -2 , 1]22 = 0.016 

(MCell/mlr'h-
2

, and the initial conditions are x,(0)= x2(0)=0.515 Mcell/ml and 

x, (0) = x2 (0) = O. A somewhat different set of parameters was used for the computational 

results presented in Figure 7.17. Their values are v,=0.014h-', v
2
=0.02h-' , 

S, = -0.2 (Mcell/mlr', S2 = -0.35 (Mcell/mlr' , a, = 0.07 h-2, a2 = 0.04 h -2, 1]" = 0.045 

(MCell/mlr'h -2 , 1]' 2 = 0.0175 (MCell/mlr'h -2, 1]2' = 0.02 (MCell/mlr'h -2 , 1]22 = 0.016 

(MCell/mlr'h -2 , and the initial conditions are x , (0) = x2(0) = 0.515 Mcell/ml and 

x, (0) = x2 (0) = O. In this case of sensitive versus sensitive competition the results also 
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compare not badly with the experimental data given the lack of a substantial (or 

systematic) effort for curve fitting . 

In all considered cases of mixed cultures with initial concentrations at a ratio of 1: 1 both 

the experimental as well as the computational results recovered a mode of coexistence of 

both species. 

The experimental results corresponding to the growth of two strains of yeast in mixed 

culture with initial concentrations at a ratio of 1:100 showed that one species survives 

while the other becomes extinct. The model results presented generally in Figures 7.9 and 

7.10 recovered the possibility of extinction as well. 
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Figure 7.13 Computational results of the new model compared with experimental data for a 
mixed culture of killer-T206 and sensitive-Y217 strains of yeast. The parameter values are listed 
in the text. 
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Figure 7.14 Computational results of the new model compared with experimental data for a 
mixed culture of killer-T206 and sensitive-Y217 strains of yeast. The parameter values are listed 

in the text. 
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mixed culture of two sensitive strains of yeast Y217 and VIN7. The parameter values are listed 
in the text. 
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CHAPTERS 

CONCLUSIONS 

A new model that includes the complete cell growth dynamics was presented and showed 

to recover both qualitatively as well as quantitatively a wide variety of features that were 

captured experimentally from new experimental results of batch fermenting yeast in a 

limited nutrient media (5% grape juice and pure water). Both the experiments and the 

model results show that the growth of Saccharomyces cerevisiae strains, such as the killer 

T206 strain, in pure and mixed cultures is associated with damped oscillations. The 

proposed model also recovers effects that are frequently encountered in experiments, 

such as a "Lag Phase" as well as an inflection point in the ''In curve" of the cell 

concentration. The model also recovers the Logistic Growth Curve as a special case. The 

computational results presented were obtained for a simplified version of the proposed 

new model due to obvious reasons that were discussed. It is anticipated that further 

studies will reveal more accurate functional forms of the "virtual mass" as well as the 

"damping coefficient" a result that will enhance the accuracy as well as the ability of the 

proposed new model to recover a complete variety of growth curves. New experimental 

results for growth of yeast in pure water are presented and compared with results from the 

proposed dynamical model indicating a very good match. 

Theoretical and experimental evidence of extinction and coexistence during batch 

interactions of two mixed strains of Saccharomyces cerevisiae (section 3.3.2.6) grown in 

pure water is provided. The experimental results show that in the limited nutrient 

conditions of growth, in pure water, the killer yeast was subjected to extinction when 

challenging the sensitive strain at 1: 100 killer: sensitive concentration ratio, 9 hours from 

the sensitive strain inoculation (Figures 3.36 and 3.37). However, if the initial 

178 



concentration ratio is 1: 1 (Figures 3.40 and 3.41), both strains in the mixed cultures 

coexist. Substantial oscillations are associated with the growth process in the mixed 

cultures. A new theoretical model that was originally developed for recovering the 

growth of single species in isolation was extended and applied for two species competing 

over a common ecological niche. The solutions of the model are shown to recover all the 

qualitative features captured in the experiments. 
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APPENDICES 

Appendix A.I Linear stability analyses 

A.l.l Linear stability analysis of the logistic growth model (LGM) (1.2.2.1.2) 

The LGM Equation (1-11) dx / dt = (11- {3x)x has the general form x = f(x) and the 

stationary points xsc are defined by f(x) = 0, corresponding in this case to the solutions 

xsc ' = 0 and xsc2 = 11 / {3. 

Equation (1-11) can be presented as 

d f3 2 -x-J1X+ oc =0 
dt 

(A.1.1-1) 

Substituting x = xsc + £x, where E« 0 into equation (A.1.1-1) yields 

(A. 1. 1-2) 

(A. 1. 1-3) 

The term {3E
2
x,2 «0 and therefore it may be neglected. 

Also, dxsc / dt - l1(xsc ) + /3(xsc )2 = 0 because it is equal to the basic solution (A.1.1-1) for 

x = xsc. Equation (A. 1.1-3) becomes 

(A. 1. 1-4) 

or 
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(Al.l-5) 

yielding the characteristic equation for the eigenvalue, A 

(A. 1. 1-6) 

and 

(Al.l-7) 

The eigenvalue obtained from Equation (Al.l-7) is A = J1 for x s11 = 0 and A = -J1 for 

X
sI2 

= J1 / {3. The growth rate value J1 may obtain positive or negative values . . 

x -A/" 1-

or 

Assuming that the constant {3 > 0 when J1 > 0 and {3 < 0 when J1 < 0 in order to 

eliminate the possibility of non-feasible negative stationary values one concludes from 

the linear stability analysis as follows. For xs11 = 0, when J1 > 0, A> 0, the solution at 

this stationary point grows exponentially and therefore is unstable, and when J1 < 0 (and 

{3 < 0), A < 0, this point is stable. For xsI2 = J1 / {3, A = - J1, therefore, when J1 > 0, 

A < 0, yielding a stable point, and when J1 < 0 (and {3 < 0), A> 0, the solution becomes 

unstable. When both stationary points equal to zero, at J1 / {3 = 0 or J1 = 0, the solutions 

overlap at a critical point, yielding a transcritical bifurcation (see Figure A.l.l). 

Global stability analysis of (1-11) dx / dt = (J1- {3x)x (Figure A.1.2) yields the same 

solutions. 
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Figure A.I.I Bifurcation diagram and linear stability analysis of equation (1-11) 

dx / dt = (/.1- f3x)x. 
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Figure A.l.2 Global stability analysis of equation (1-11) dx/dt=(l-l-~x)x for (a) /J.>O 

and (b) W:O . 
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A.1.2 Linear stability analysis of the classical model for two species competing 

over a common ecological niche (1.2.2.2.1) 

The classical model for two species competing over a common ecological niche was 

introduced as an extension of the Logistic Growth Model (LGM), which applies for one 

species in isolation. The classical model Equations (1-31) dXl = [,ul - rl(~Xl + ~X2)] Xl 
dt 

and (1-32) dX2 =[,u2-r2(~Xl+~XJ]X2 have the general form x=f(x) and the 
dt 

stationary points xJ1 are defined by f(x) = 0 , corresponding in this case to the following 

solutions: 

S1 X J1l = 0 and X J12 = 0 

S2 X J1l = 0 and xs12 ::j: o. In this case xs12 > 0, therefore, ,u2 - r 2 (~XJ12 ) = 0, and thus 

S4 xs1l ::j: 0 and X J12 ::j: 0, and both xs1l > 0 and xs12 > 0, therefore, 

Naturally, xJ1 ~ 0, therefore, X S1 = 0, denote the absence of cells, and X
S1 

> 0, denote any 

other cell concentration. 
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Equations (1-31) and (1-32) can be presented as 

(a) 

(A. 1.2-1) 

(b) 

where x = dx / dt. 

Substituting XI = xs1 1 + t:xll and x2 = xsI2 + t:x21 where £« 0 into equation A. 1.2-1 yields 

(A. 1.2-2) 

/-12 (Xs12 + t:x21 ) - Y 2~ (Xs12 + t:x21)2 - Yi~ (Xsl l + t:xll )(XsI2 + t:x21) - xsI2 - & 21 = 0 (b) 

Reducing the basic solutions from (A. 1.2-1) (a) for xs11 and (b) for xsI2 from (A. 1.2-2) (a) 

and (b), respectively, and cancelling £ 2 terms 

Both sides of Equation (A. 1.2-3) are divided by £ 

(a) 

(A. 1.2-3) 

(b) 

or 

(a) 

(A. 1.2-4) 

(b) 
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Equation (A. 1.2-4 ) can be presented as 

(a) 

(A. 1.2-5) 

(b) 

where 

(A. 1.2-6) 

From (A.1.2-5) (a) X21 =-axil / b, therefore (A.1.2-5) (b) can be equal to 

eX11 + d(-axil / b) = 0 or xl l(e - da / b) = O. XII :;t 0 , therefore, e - da / b = 0 , and thus, 

eb = da. 

[
a;b][XII] Sx= =0 
e;d X21 

det[S] = ad - eb = 0 

or 

det[S] = 

(A. + 2Ylhlxs11 + Ylhz xsI2 - f.11 )(,1, + 2Y2hzxsI2 + yA xs11 - f.12) - (YzI~XsI 2 )(Ylhzxsll) = 0 

(A. 1.2-7) 
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I
-A Air + L1 A2r XII - Ie ''2e 

Air A2r 
X21 = Ble + B2e 

(A. 1.2-8) 

therefore, the linear stability condition is achieved when both AI < 0 and A2 < O. 

Substituting each solution into (A. 1.2-8) reveals the linear stability condition for each of 

the four possible solutions, as are presented in Table A.l.2.1. 

Table A.1.2.1 Linear stability analyses of the steady state solutions for the classical 

model of two species competing over a common ecological niche (1.2.2.2.1) 

Steady State Solutions Linear Stability Conditions 

SI x srl = 0 andxsr2 = 0 AI = f.11 < 0 and A2 = f.12 < 0 

S2 x srl = 0 and x sr2 = f.12 / (Y2~) AI = f.11 - (YI / Y 2) f.12 < 0 ~ f.11 / Yl < f.12 / Y2 

and A2 =-f.12 <o~ f.12 >0 

S3 Xsr2 = 0 and x srl = f.11 / (Ylhl) AI = - f.11 < 0 ~ f.12 > 0 and 

A2 = f.12 - (Y2 / Yl)f.11 < 0 ~ f.12 / Y2 < f.11 / YI 

S4 x srl = (f.1 / Y - ~xs(2) / I; and Globally Stable if f.11 > 0 & f.12 > 0 subject to 

Xsr2 = (f.1 / Y -I;xsrl) / ~ I; xsr I = ~xsr2· 
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Appendix A.2 Materials and Solutions 

Filter sterilisation: Passing through 0.221lm pore size filter (Millex-GS, Millipore). 

Autoclave sterilisation: 20 minutes at 1.2 kg/cm2, with rapid exhausting. 

DNS reagent (Miller, 1959) 

250mI 2.13N sodium potassium tartrate 

100mI NaOH containing 0.21M 3,5 dinitrosalicylic acid 

150mI distilled water (autoclaved) 

All components were mixed aseptically and stored in a dark bottle for not more than 30 

days at room temperature. 

Growth media 

G-medium 

100mI white Hanepoot grape juice (Ceres , SA) (filter sterilised) 

Ig yeast extract in 50mI distilled water (autoclaved) 

O.lg (NH4)2 HP04 in 50mI distilled water (autoclaved) 

All components were mixed aseptically at room temperature 

pH 4.02. 
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Grape juice agar 

lOml Ceres Hanepoot white grape juice (filter sterilised) 

2.0g agar in 90ml distilled water (autoclaved) 

The lOml juice was filtered aseptically into the autoclaved cooled (45°C) agar medium. 

The medium was thoroughly mixed, aseptically poured into sterile petri dishes and left to 

solidify for about an hour at room temperature in the laminar flow. 

Adjusting the amounts of the Ceres Hanepoot white juice (3ml) and distilled water 

(97ml) produces the 3% (v/v) grape juice agar. 

Grape juice liquid medium 

5% (v/v): 15ml Ceres Hanepoot white juice (filter sterilised) was mixed with cool 285m! 

distilled, autoclaved water. 

Methylene blue medium 

Solution a: Methylene blue agar medium: 

Yeast extract 0.6g 

Malt extract 0.6g 

D - glucose 1.0g 

Peptones 1.0g 

Agar 4.0g 

All components were mixed in 120ml distilled water, adjusted to pH 4.6 and autoclaved. 
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Solution b: Citric-phosphate buffer: 

0.1M Citric acid 

0.2M NaH2P04 

All components were mixed in 60rnl distilled water, adjusted to pH 4.6 and autoclaved. 

Solutions a and b were mixed together. 

Methylene blue of lOmg (Loeffer's methylene blue, BDH, UK) was added into 

autoclaved cooled 20rnl distilled water, and filtered aseptically into the autoclaved cooled 

agar - citric phosphate buffer. The medium was thoroughly mixed, aseptically poured 

into sterile petri dishes, and left to solidify for about an hour at room temperature in the 

laminar flow. 

WLN (Bacto W.L. Nutrient) medium 

WLN - powder was mixed in distilled water in ratio of 8g powder to 100ml water and 

then autoclaved. The clear evergreen medium was cooled (45°C), aseptically poured into 

sterile petri dishes, and left to solidify for about an hour at room temperature in the 

laminar flow. 

YMA (Yeast malt agar) (Wickerham, 1951) 

Yeast extract 0.6g 

Malt extract 0.6g 

D - glucose 1.0g 

Peptones 1.0g 

Agar 3.0g 

204 



All components were mixed in 200ml distilled water and autoclaved. The medium was 

cooled (4SoC), thoroughly mixed, aseptically poured into sterile petri dishes, and left to 

solidify for about an hour at room temperature in the laminar flow. 

YMB (Yeast malt broth) 

YMB medium (200mI) was made up of all YMA medium components except the agar 

and autoclaved. 

YMAcyc 

Cycloheximide was filtered aseptically into the cooled (4SoC) YMA medium, at ratios of 

1, 2, 3 and 4f.lg cycloheximide per 4 mI YMA volume, thoroughly mixed and aseptically 

poured into sterile petri dishes. A single YMAcyc petri dish contained a maximum volume 

of 20ml medium. 

Reagents used for RNA islolation 

Agarose gel electrophoresis buffer (xIO) 

Tris - HCI 

Na2HP04 

EDTA 

0.39M 

0.3M 

O.IM 

These components were mixed in distilled water, adjusted to pH 7.S with 10% (v/v) HCI, 

then autoclaved. 
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Gel loading buffer 

50% (v/v) Glycerol 

0.05% Bromophenol blue 

0.05% Xylene cyanol 

These components were mixed in distilled water, adjusted to pH 7.5 with 10% (v/v) HCl. 

Phenol 

Melted phenol crystals of 70% (v/v), were mixed in cooled - autoclaved TE buffer (pH 

7.5), and kept in a tightly closed dark bottle in a fume cupboard. 

Sea sand (grade OR) 

The sea-sand was thoroughly washed with sterile distilled water, followed by TE buffer 

(pH 7.5), then covered with the buffer and autoclaved in a foiled beaker. On setting, the 

repeated washing ensured that the pH of the suspension was 7.5. 

TE buffer 

Tris - HCI 

EDTA 

10mM 

1mM 

These components were mixed in distilled water, adjusted to pH 7.5 with 10% (v/v) Hel, 

then autoclaved. 

Tris - H2S04 

Tris - H2S04 50mM 
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This was mixed in distilled water and adjusted to pH 9.3 with 10% (V/V) H2S04 , then 

autoclaved. 

Tris - mercaptoethanol buffer 

Tris - HCl 100rnM 

2.5% (v/v) 2-P- mercaptoethanol (99% v/v) 

97.5% v/v distilled water 

These components were mixed and adjusted to pH 8.7 with 10% (v/v) HCl, then 

autoclaved. 

TSE buffer 

Tris - H2S04 

NaCl 

EDTA 

lOrnM 

0.1M 

1rnM 

These components were mixed in distilled water, adjusted to pH 7.5 with 10% (v/v) 

H2S04 , then autoclaved. 

TSE + SDS buffer 

Tris - H2S04 

NaCI 

EDTA 

SDS 

10rnM 

O.lM 

1mM 

0.2% (w/v) 

These components were mixed in distilled water, adjusted to pH 7.5 with 10% (v/v) 

H2S04 , then autoclaved. 
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Sample-preparation solutions for electron microscopy 

Lead citrate stain solution (Reynolds, 1963) 

In a 50ml volumetric flask were weighed: 

Lead nitrate 

Sodium citrate 

Distilled water 

1.33g 

1.76g 

30ml 

The mixture was shaken vigorously for 1 minute then intermittently for 30 minutes, 

allowing the formation of lead citrate. After addition of 8ml NaOH OM), the solution 

was mixed by inversion until all precipitations dissolved, brought to 50ml total volume 

by addition of distilled water, decanted into a tightly-closed bottle and stored in an 

undisturbed place at 4°C. This stain was used by pipetting it from the centre, not touching 

bottle sides and bottom, where precipitation might have occurred. 

Osmium tetroxide (1 % v/v) 

4% solution from sealed vial 2ml 

Distilled water 6ml 

This was prepared in a fume cupboard. The used solution was discarded and washed into 

a bottle found in a fume cupboard for re-cycling. 
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Spurr (1967) standard resin mixture 

(S024 Spurr's resin kit) 

ERL 4206 (VCD) 

DER 

NSA 

SI 

109 

6g 

26g 

O.4g 

These solutions weighed directly into a SOmI ointment-jar and stirred for 30 minutes. The 

magnetic stirrer was dropped into acetone immediately after it was used, then washed 

with soap and water. The jar was covered and stored at -20°C. In order to avoid moisture 

from the resin solution, it was defrosted before opening the jar. 

Uranyl acetate (2% w/v) 

Uranyl acetate 

Distilled water 

2g 

100mI 

The solution was stored in a dark bottle at 4°C. 
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Appendix A.3 Kits specifications 

Acetic acid detection test 

Acetic acid . 
1 UV-method 

for the determination of acetic acid ill foodstuffs 
and other materiats 

Cat. No. 148261 
Test-Combination for ca. 3 x 10 determinations 

Principle (Ref. 1-3) 
Acetic acid (acetate) is converted in tile presence of the enzyme 
acetyl-CoA synthetase (ACS)' with adenosine-5'-triphosphate (ATP) 
and coenzyme A (GoA) to acetyl-CoA (1). 

AGS' 
(1) Acetate + AlP + GoA ------'acetyl-GoA + AMP:·+ pyrophosphate 

Acetyl-GoA reacts with oxaloaJ:;etate to citrate in the presence of 
citrate synthase (GS) (2). 

GS . G A (2) Acetyl-GoA + oxaloacetate + H20 ------ citrate + 0 

The oxaloacetate required for reaction (2) is formed from malate and 
nicotinamide-adenine dinucleotide (NAD) in the presence of malate 
dehydrogenase (MDH) (3). In this reaction NAD is reduced to NADH. 

MDH • 
(3) Malate + NAD' = oxaloacetate + NADH + H 

Tile determination is based on the formation of NADH measured by 
the increase in absorbance at 340, 334 or 365 mn. Since a pre­
ceding indicator reaction is used, the amount of NADH formed is not 
linearly proportional to the acetic acid concentration (for calcula­
tions, see below). 

The Test-Combination contains 
1. Bottle 1 with approx. 32 ml of solution, consisting of: 

triethanolamine buffer, pH 8.4; L-malic acid, 134 mg; magnesium 
chloride, 67 mg; stabilizers. 

2. Bottle 2 with approx. 28U mg Iyophilisate, consisting of: 
ATP, 175 mg; GoA, 16 mg; NAD, 86 mg; stabilizers. 

3. Bottle 3 with approx. 0.4 ml of enzyme suspension, consisting of: 
malate dehydrogenase, 1100 U; citrate synthase, 270 U. 

4. 3 Bottles 4, with Iyophilisate acetyl -GoA-synthetase, 5 U each. 
5. Standard solution. 

Preparation of solutions 
1. Use solution of bottle 1 undiluted. 
2. Dissolve contents of bottle 2 with 7 ml redis!. water. 
3. Use suspension of bottle 3 undiluted. 
4. Dissolve contents of one bottle 4 with 0.25 ml red is!. water. 

Stability of solutions 
Solution 1 is stable for 1 year at +4°G. 
Bring solution 1 to 20-25"C before use. 
Solution 2 is stable for 4 weeks at +4"C. 
Gontents of bottle 3 are stable for 1 year at +4 "C. 
Solution 4 is stable for 5 days at +4 "G. 

Procedure 
Wavelength]: 340 nm, Hg 365 nm or Hg 334 nm 
Glass cuvette': 1 cm light path 
Temperature: 20-25"G 
Final volume: 3.23 1111 
Read against air (without a cuvette in the light ~ath) or against water. 
Sample solutron: 1-30 I1g acetic acid/cuvette' (in 0.1-2 .0 ml sample 

volume). 

ACS. :1lso knowll .. s acetate Ituokj":lse 
AMP = rldenosine-S'· mollophosptlalp. 
The absorption maxilllum of NAOH is al 3·10 nm. On spectropholometers. 
measurements are taken al UIP. absorption 1lI.1x!mum;. when spectralhne pilato­
'm~te's eQuirlPt:!d with a IlIe,cl~ .. ~ i:1Q.9t'r .. lt1'np are useu, measurelllonts are 
lakp.n at a wavelength of 365 nm o r "J:f" 11111:' . 
II desired , disposable cuvelles may he tI~ed instead 0' glass cuvelles. 
See Instruc tions for performance 0{ ... 1! ·.~ assay. 210 
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Biochemical analysis , ,. ,.... . :: 
Food analysis .·. : ::·.·'.'. :: ·- '··· ,:" .":::, ',' ' . ~ :':-.,:: :. 

Not for use in !n vitro diagnostic procedures for clinical diagnosis. 

Recommendations to methods and standardized procedures see 
references. 

Pipette into cuvettes blank sample 

solution 1 1.00 ml 1.00 ml 
solution 2 0.20 ml 0.20 ml 
redis!. water 2.00 ml 1.90 ml 
'Sample 'Solution· - .IllD m! 

mix·· and read absorbances of the solutions (Ao). 
Addition of 

suspension 3 0.01 ml 0.01 ml 

mix·· and read absorbances of the solutions (A,) after approx. 
3 min. Start reaction by addition of 

solution 4 0.02 ml 0.02 rnl 

mix'·, wait until the reaction has stopped (approx. 10-15 min) and 
read the absorbances of the solutions (A2)' 
If the reaction has not stopped after 15 min, continue to read the 
absorbances at 2 min intervals until the absorbance increases 
constantly for 2 min. 

• Rinse tfle enzyme pipette or the pipette tip 01 the piston pipette with sample 
solution "before dispensing the sample solution . 

•• For example. with a plastic spiltu la or by gentle swirling after closing the 
cuvette with Parafilm- (registered trademark 0' the American Can Company. 
Greenwich, Ct., USA). 

If the absorbance A2 increases constantly, extrapolate the absor­
bance to the time of the addition of solution 4. 
Determine the absorbance differen~es (Ar -Ao) and (A,-Ao) for the 
blank and the sample. 
With preceding indicator reactions, there is no linear proportionality 
between the measured absorbance difference and the acetic acid 
concentration, I 
The following formula , which should generally be used for preceding 
indicator reactions, serves to calculate the t:JA,c."c acid (see Ref. 2). 

tlA - [(A A) (A,-Ao)~'."'Pla ] 
acelic 3cid - 2-'""0 sample - (A _A) -

2 "'" ,omp'a (A A)? 
[(A -Ao) - ,-"", b'ank] 

2 b'ank (A2-Ao)b'.nk 

The absorbance differences measured should as a rule be at least 
0.100 absorbance units to achieve sufficielltly accurate results (see 
"Instructions for performance of assay"). 

Calculation 
According to the general equation for calculating the concentration: 

c 

v 
v 
MW= 
d 

VxMW 
£; x d x v x 1000 x tlA [gil], where 

final volume [ml] 
sample volume [ml] 
molecular weight of the substance to be assayed [g/rnol] 
light path [cm] 
absorption coefficient of NADH at: 

340 nm = 6.3 [I x mmol-' x crn-Ij 
Hg 365 nm = 3.4 [I x mmol-' x cm- I 

Hg 334 nm = 6.18 [I x mmol-' x cm- I 

It follows for acetic acid; 
3.23 x 60.05 1.940 

c = 1 01 1000 x t:JA = -- x t:JA [g acetic acidll sample 
£; x x . X £; solution] 

If the sample has been diluted during preparation, the result must be 
multiplied by the dilution factor F. 
When analyzing solid and semi-solid samples which are weighed out 
for sample preparation, the result is to be calculated from the amount 
weighed: . 
content - C,calic acid [gil sample solut'on] 100 [/100 ] 

.cohc ,c'd - c,am.'a [gil sample solution] x g g 

BOEIIRINGER MANNIIEIM 



Instructions for performance of assay 
The amount of acetic acid present in the cuvette should range 
between 2 pg and 3ClIJg (measurement at 365 nm) or 1 IJg and 15IJg 
(measurement at 340, 334 nm), respectively. The sample solution 
must therefore be diluted sufficiently to yield an acetic acid concen­
tration between 0.02 and 0.3 gI l or 0.01 and 0.15 gI l, respectively. 

Dilution table 
- - --.- -- --- - - - ._ . 

estimated amount of acetic acid dilution dilution 
per liter with water factor F 

measurement at 
340 or 334 "'11 365 nm 

< 0.15 g 0.3 g - 1 
0.15-1 .5 g 0.3-3.0 g 1 + 9 10 

1.5-15 g 3.0-30 g 1 + 99 100 
> 15g > 30 g 1 + 999 1000 

If the absorbance difference measured (lIA) is too low (e. g. < 0.100), 
tile sample solution sllould be prepared anew (weigh out more 
sal llple or dilute less strongly) or the sample volume to be pipetled 
into the cuvette can be increased up to 2.0 ml. The volume'of water 
<ldded must then be reduced so as to obtain the same final volume 
for the sample and blank in the cuvetles. The new sample volume 
v must be taken into account in the calculation. 

1. Instructions for sample prepara tion 
1.1. Liquid foodstuffs 
Filter turbid solutions and dilute to obtain an acetic acid concen­
tration of less than 0.3 gi l. The diluted solution can be used for the 
assay. even if it is slightly colored. When intensely colored juices 
are used undiluted for the assay because of their low acetic acid 
concentration. they must be decolorized by means of activated 
chal soal. polyamide or polyvinylpoly-pyrrolidone (PVPP). 

Examples: 
Determination of aceiic acid in fruit juices 
a) Fluit juices with a high acetic acid content (for example, in the 

range of approx. 0.3 gil): Dilute the sample with water 1 + 1; use 
0.1 1111 for the assay. 

b) Fruit juices with a low acetic acid content (less than approx. 
0 .02 gi l) : 

Decolorize colored juices: 
Add 1 % (w/v) activated cllarcoal to the sample, stir for approx. 30 s 
and filter. Use 0.5 ml for the assay (take into account the altered 
sample volume v in the calculation) . 

In certain situations (when using a large sample volume), adjust acid 
juices to pH 8. 

Determination of acetic acid in wine (Ref. 6) 
Use 0.1 ml of white wine undiluted for the assay (this volume may be 
increased up to 2.0 ml, if necessary). 

Us e 0.1 ml of red wine containing about 0.2 g of acetic acidl l un­
dIluted for the assay without decolorizing . 

To red wine containing less than 0.1 g acetic acidl l add 1 % (w/v) 
polyamide or PVPP. stir for arprox. 1 min and filter. Adjust an aliquot 
volul11e of the largely decolorized sample to pH 8 (indicator paper) 
With sodium hydroxide (0.1 mol/ l) . dilute with water to give double the 
volume. Use up to 2.0 ml. if necessary. for the assay (take into 
account the altered sample volume v in the calculations). 

High alcohol concentrations in the sample may delay the acetate 
reaction. rile absorbances A, should tllerefore be read after 20 min . 

Determination of acetic acid in vinegar 
Dilute the sample according to tile dilution table and use 0.1 ml for 
the assay. 

Determination of ;)\;etic acid in sour dressings and sauces 
Separate solids from ihe sample and place into a refrigerator for 
20 nlln to obtain separation offal . Filter, adjusl filtrate to room tempe­
rature and dilute according to tile dilution table, if necessary. 

Determination of acetic acid in beer (Ref. 9, 10) 
To remove the carbonic acid stir aflprox . 5-10 ml of beer for 30s 
with a glass rod or filter. The largely CO2-free sample is used for the 
assay without further dilution. 

211 

1.2. Solid foodstuffs (Ref. 4, 8) 
Homogenize solid and semi-solid samples (e.g. vegetable and fruit 
products, yogurt and leaven) in an electric mixer. meat grinder or 
mortar, extract or dissolve with water, and filter, if necessary. 

Extract fat-and protein-containing samples (e.g. meilt products) with 
water of about 60°C (condenser). allow to cool, fill up to a cel1ain 
volume in the volumetric flask and keep it in a refrigerator for 20 min 
to obtain separation of fat. and filter. 

Add perchloric acid (1 molll) to protein-containing sample solutions 
in a ratio of 1 : 3 (1 + 2), centrifuge, neutralize an aliquot volume of the 
supernatant solution with KOH (2 mol/l) (measure the volume of KOH 
used for neutralization). keep it in a refrigerator for 20 min in order to 
precipitate the KCIO. and filter. Use the clear solution, which may be 
diluted, if necessary, adjusted to room temperature, for the assay. 

For calculating the content (in gl100 g) according to the above­
mentioned formula (see calculation) the content of the sample in the 
sample solution is needed. When applying the above-mentioned 
sample preparation and considering the water content of the sample 
the concentration of the sample is calculated according to the 
following furmula: 

"'11")( l000-xe 
C S;lmnle = (b + a x w) x (d + e) 197fJ 

It is: 
a: the weighed sample in g 
b: volume of perchloric acid in ml 
d: volume of supernatant in IllI 
e: volume of KOH in ml 
w: water content of the sample (%; w/w : 1.00) 
1000: factor for g expressed in mg 
(The specific gravity of water from the sample at room temperature is 
approx. 1 g/ml. It can be neglected for the calculation.) 

E)(amples: 
Determination of acetic acid in hard cheese 
Weigh approx. 2 g of ground cheese accurately into a 100 ml 
volumetric flask, add about 70 ml water and incubate at approx. 
60°C for 20 min. Shake flask from time to time. After cooling to room 
temperature, dilute to 100 ml with water. For separation of fat , 
place the flask in a refrigerator for 20 min, filter, discard the first 
few ml of the filtrate . Use the clear solution, which may also be 
slightly opalescent, adjusted to roolTl temperature, for the assay. 

Determination of acetic acid in mayonnaise or yogurt 
Weigh approx. 5 g of sample accurately into a 100 ml volumetric 
flask, add approx. 50 ml redis!. water and heat for 20 min in a water­
bath at 50-60°C; shake from time to time. After cooling to room 
temperature, fill up to 100 ml with redis!. water. For separation of fat, 
place the mixture for 20 min in a refrigerator. Filter solution and 
use the clear or slightly turbid solution, adjusted to room tempe­
rature, for the assay. 

2. Specificity 
The method is specific for acetic acid. 

3. Further applications 
The method may also be used in the examination of paper. pharma­
ceuticals (e. g. infusion solutions. acetylsalicylic acid preparations) 
emulSifiers (after alkaline hydrolysis) and in research when analyzing 
biological samples. 
For details of sampling, treatment and stabilify of the sample see 
8ergmeyer, H. U. & Mbllering, H. (1974) in Methods of Enzymatic 
Analysis (8ergmeyer, H. U., ed.) 2nd ed .. Vol. 3. p. 1523-1525, Verlag 
Chemie, Weinheim. Academic Press, Inc. New York and London; 
Holz. G. & 8ergmeyer, H. U. (1974) in Metliods of Enzymatic Analysis 
(8e:gmeyer, H. U.,. ed.) 2nd ed., Vol. 3, p. 1530, Verlag Chemie, 
Welnhelm, AcademiC Press, Inc. New York and London; Lundquist , 
F. (1974) in Methods of Enzymatic Analysis (8ergmeyer. H. U., ed.) 
2nd ed., Vol. 3, p. 1534-1535. Verlag Chemie, Weinheim, Academic 
Press, Inc. New York and London. 

3.1. Determination of acetic acid in serum and plasma (Ref. 3) 
Serum and plasma can be used directly for the determination of 
acetic acid. 
Dilute dialysate (from liemodialysis) with water in the ratio 1 : 10 
(1 + 9) (dilution factor F = 10). __ 
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Pipette into centrifuge tubes reagent blank sample 

50lulion 1 1.00 ml 1.00 ml 
sulutioll 2 0.2U ml U.2U ml 
sample solution - 0.50 ml 
redis!. water 1.50 rnl 1.00 ml 

Mix contents of the tubes thoroughly and centrifuge for <lpprox. 
5 min. Pipette into cuvettes ----_ .•. 

I 1.00 ml I 
supernatant sample 1.00 ml 
supernatant raagent blank -

read absorbances of the solutions (Ao) . Add 

suspension 3 0.01 mt 0.01 ml _ .. 
mix thoroughly; read the absorbances of the solutions (A,) after 
approx. 3 min. Add 

I 
-

solution 4 0.02 ml 0.02 ml 

mix thoroughly; read the absorbances of the solutions (A2) after 
<lPProx . 15 min . 
---

Calculation: 

0.3340 x D.A x F 
c = ---;;._-- [g acetic acid/ l sampleJ 

5.562 x D.A x F 
c = £ [mmol acetic acid/ l sampleJ 

Wavelength Hg 365 nm 340 nm Hg 334 nm 

c [g/ IJ 0.0982 x D.A x F 0.0530 x D.A x F 0.0541 x D.A x F 

c [mmol/ ll 1.636 x D.A x F 0.8829 x D.A x F 0.9000 x D.A x F 

3.2. Determination of acetic acid in fermentation samples and 
cett culture media 
Place the sample. after centrifugation. if necessary, in a water-bath 
of 80 "C (cover the tube because of the volatility of acetic acid) to 
stop enzymatic reactions. Centrifuge and use the supernatant, 
diluted according to the dilution table, if necessary, for the assay. 
Alternatively, deproteinization can be carried out with perchloric 
acid. See the abovementioned examples. 

Homogenize gelatinous agar media with water and treat further 
as described. 

--.. : "--- -:;;. 
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4. Interferences 
Esters of acetic acid may be saponified under test conditions 
(examples: ethylacetate in wine; acetylsalicylic acid in phmrna­
ceuticals). Acetic acid formed is responsible for creep reilctions 
which have to be drawn into consideration when catculating results 
(extrapolation of A2 to the time of the addition of ACS = solution 4). 

Detection of interferences of the test system 
When the enzymatic reaction is complete after the time given in "Pro­
cedure" it can be concluded in general that the reaction is not inter­
fered. For assurance of results a re-start of the reaction (quillit<l­
tively or quantitatively) by the addition of 'slandard material' (e.g. 
sodium acetale) can be done: a further change of absorbance proves 
suitilbility of measurements. 

For the detection of gross errors when performing the assays and of 
interfering substances in .the sample material it is recommended to 
analyze a sample solution in a double determination with two 
different sample volumes (e.g. 0.10 ml and 0.20 ml): the measured 
ausorbance differences have to be proportional to the sampte 
votumes. 

When analyzing solid samples it is recommended to weigh in two dif­
ferent amounts (e.g. 19 and 2g) into 100 mt volumetric flasks and to 
perform the determinations with the same sample volume: Ihe 
absorbance differences have to be proportional to the amounts 
weighed in. 
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Acetic acid 
standard solution 

for the Test-Combination Acetic acid 
IN-method, Cat. No. 148261 

Concentration: sae bottle label. 
Acelic acid standard solution is a stabilized aqueous solution 
of acetic acid. It serves as standard solution for the enzymatic 
analysis of acetic acid in foodstuffs and other materials. 

Application 
1. Addition of acetic acid standard solution to the assay mixture: 
Instead of sample solution the standard solution is used for the 
assay. 

2. Restart of the reaction, quantitatively: 
After comple/ion of the reaction with sample solution and measuring 
of A, . add 0.05 ml standard solutiotl to the assay mixture. Read 
absorbance A, after the end of the reaction (approx. 20 min.). An 
increase of absorbance is observed. 

992.105 .1 52J 716 <Ii) 

With coutesy: Boehringer Mannheim, FRG. 

A calculation of results is not possible because of the preceding 
equi librium reaction with MDH (3). 

3. Internal standard 
The standard solution can be used as an internal standard in order 
to check the determination for correct performance (gross 
errors) and to see whether the sample solution is free from interfering 
substances: 

Pipette into blank sample standard sample + 
cuvettes standard 

solution 1 1.00ml 1.00 ml 1.00 ml 1.00 ml 
solution 2 0.20 ml 0.20 ml 0.20 ml 0.20 ml 
redist. water 2.00 rnl 1.90 ml 1.90 ml - 1.90 ml 
sample solution - 0.10 ml - 0.05 ml 
standard solution - - 0.10 ml 0.05 ml 

mix, and read absorbances of the solutions (Ao). Continue as de-
scribed in the pipetting scheme under "Procedure". Follow the 
instructions given under "Instructions for performance of assay" 
and the footnotes. 

The recovery of the standard is calculated according to the following 
1ormu/re . . . 

2 X ~Asample + standard -I1A f 
recovery = ,amp. X 100 [%] 

©1992 
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Alnmonia detection test 

Ureal Ammonia 
1 UV method 

for the determination of urea and ammonia in foodstuffs and other 
materials and for the determination of nitrogen after Kjeldahl 
digestion (see pI. 12.2) 

Cat. No. 542946 
Test-Combination for approx. 25 determinations each 

Prinziple (Ref. 1) 
Urea is hydrolyzed to ammonia and carbon dioxide in the presence of 
the enzyme urease (1) . 

(1) Urea + H,O urease, 2 NH
J 

+ CO
2 

In the presence of glutamate dehydrogenase (GIDH) and reduced 
nicotinamide-adenine dinucleotide (NADH), ammonia reacts with 
2-oxoglutarate to L-glutamate, whereby NADH is oxidized (2). 

GIDH 
(2) 2-0xoglutarate + NADH: NH: --->L-glutamate + NAD' + H20 

The amount of NADH oxidized in the above reaction is stoichiometric 
to the amount of ammonia or with half the amount of urea, respec­
tively. NADH is determined by means of its light absorbance at 334, 
340 or 365 nm. 

The Test-Combination contains: 
1. Bottle 1 with approx. 60 ml solution. consisting of: 

triethanolamine buffer, pH approx. 8.0; 2-oxoglutarate. 220 mg; 
stabilizers 

2. Botlle 2 with approx. 50 tablets; each tablet contains: 
NADH. approx. 0.4 mg; stabilizers 

3. Bottle 3 with approx. 0.7 ml urease solution. approx. 80 U 
4. Bottle 4 with approx. 1.2 ml glutamate dehydrogenase solution, 

approx. 1000 U 

Preparation of solutions 
1. Use con tents of bottle 1 undiluted. 
2. Dissolve one tablet of bottle 2 with one ml solution of bottle 1 in a 

beaker or in a reagent tube for each assay (blank and samples) 
depending on lI,e number of determinations. Use forceps for 
taking the tablets out of bottle 2. This results in reaction mixture 2'. 

3. Use contents of bottle 3 undiluted. 
4. Use contents of bottle 4 undiluted. 

Stability of reagents 
Solution 1 is stable at +4 DC (see pack label). 
Bring solution I to 20-25 "C before use. 
Tablets 2 are stable at +4"C (see pack label). 
Reaction mixture 2 is stable for 3 days at +4 DC. 
Bring reaction mixture 2 to 20-25 "C before use. 
The contents of bottle 3 and 4 are stable at +4"C (see pack label). 

Procedure 
Wavelength': 340 nm, Hg 365 nm or Hg 334 nm 
Glass cuvette7

: 1.00 cm light path 
Temperature: 20-25-C 
Final volume: 3.040 ml 
Read against air (without a cuvette in the light path) or against water 
Sample solution:0.3-14 pg urea/cllvette' or 

0.2- 8 pg amlnonia/cuvette 1 

(in 0.100-2.000 rnl sample volume) 

Pipette into Blank Urea Blank Ammonia 
cuvettes urea sample ammonia sample 

reaction mixture 2' 1.000 rnl 1.000 ml 1.000 ml 1.000 ml 
sample solution" - 0.100ml - 0.100ml 
solution 3 0.020,nl 0.02U ml - -
redist. water 2.000 ml 1.900ml 2.020 ml 1.920 ml 

Mix~". and read absorbances of the solutions (A,) after approx. 
5 mIn at 20-25'C. Start reaction by addition of: 

solution 4 0.0201111 
1-------

0.020 ml 0.020 rnl 0.020 ml 

Mix .. •. wait for completion of the reaction (approx. 20 min) and 
read absc~bances of the solutions (A,). If the reaction has not 
stopped affer 20 min. read abscrbances at 2 min intervals until 
the abscrbances decrease constant.ly over 2 min. 

- , -" . -

Enzymatic BioAnalysis 
Food Analysis 

Not for use in diagnostic procedures for clinical purposes 
FOR IN VITRO USE ONLY 

For recommendations for methods and standardized procedures see 
references (2) 

If the absorbance A7 decreases constanlly, extrapolate the absorb­
ance to the .time of the addition of solution 4. 

Determine the absorbance differences (A,-A,) for both. blanks and 
samples. Subtract the absorbance difference of the blank from the 
absorbance difference of the corresponding sample. 

/j,A = (A, - A')"mpl. - (A, - A').',n' 

This results in /j,A" •• , .mmonl. (from urea sample) and 

/j,A.mmonl. (from ammonia sample). 

The difference of these values results in /j,A",,, . 

The measured absorbance differences should. as a rule . be at least 
0.100 absorbance units to achieve sufficienlly accurate results (see 
"Instructions for performance of assay"). , 

If the absorbance differences of the samples (/j,A" n.pl.) are higher than 
1.000 (measured at 340 nm or Hg 334 nm respectively) or 0.500 
(measured at 365 nm). the concentration of urea (or ammonia. 
respectively) in the sample solution is too high. The sample is to be 
diluted according to the dilution table in that case. 

Calculation 
According to the general equation for calculating the concentration: 

VxMW 
c g x d x v x 1000 x /j,A [gi l J 

v final volume [mlJ I 

v 
MW= 
d 

sample volume [mlJ . 
molecular weight of th~ substance to be assayed [g/rnolJ 
light path [cmJ 

g extinction coefficient of NADH at 
340 nm = 6.3 [I x mmol- ' x cm-'J 

Hg 365 nm = 3.4 [I x mmol-' x crn- Ij 
Hg 334 nm = 6.18 [I x mrnol- ' x cm-' 

It follows for urea: 

c 3.040 x 60.06 0.9129 
e; x 1.00 x 0.100 x 2 x 1000 x /j,A", •• = -g-X /j,A,,, •• 

for ammonia: 
[g urea/I sample solutionJ 

c 3.040 x 17.03 0.5177 
g x 1.00 x 0.100 x 1000 x /j,A,",""nl, = --e;- x /j,A,mmo,,'. 

[g amrnonia/I sample solutionJ 
If the sarnple has been diluted on preparation. the result must be 
multiplied by the dilution factor F. 

1 The absorption maximum of NAOH is al 340 JlITI. 0 /1 !=neC lrQpholom~lf'rs. "W:tSUf(! ' 
menls are laken at the absorption mmdlllurn: if spec.tralline pholomelE'IS eqllirpcd with 
;~~e~~~fY vapor lamp are used, measurements are faken at a wavelength 01 J65 nm or 

If desired. disposable cuveltes lII:1y be usp.d illsleild of glass cuvellcs 
See instruclions for performance of the (lssay 

For silTl~lifical.ion of the assay performance it is also possible 10 pip'!lte diH!clly t .non 011 
01 solullOI1 1 mlo Ihe cuvelte and "dd 1 lablet from boltle 2. After dissolution of Itle 
t~blet with. Ihe aid of a spatula r:Olllinue working as describ'!o in the ptC'cedure The 
drffp.rP.Ilr.e In volume o f ca. 1 % (int:rqase of volume by t 1:1blel r er J 0,10 1111 il~S:1V 
volume, has to be laken i"Io account in Ihe c{\h:ulalion by murtipli(:alioll ()f Ih", result 
wdh 1.01. 

•• Rinse thl'.! enZYlIle pipeUe or tile rin"!lIe lip of the piston pi~~tle with ~all1rle SQlu lion 
beforF! dispellsillg the stl"'ple solu lion . 

'" For e~m~p'e. W~1t1 a plastic spatula or by gentle swi rling aHer cfosing Ihe cuv~lf~ ..... ith 
Parnhlm (registered trademark 01 the American Can Company. Gf~~., .... ;ch, 
CI .. USII) 

~ . . 
-., 
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Wilen analyzing solid and semi-solid samples wlli c ll are weighed out 
for sample preparation. tile result is to be calculated from the amount 
weighed: 

ontent = __ c,,,.a [gi l samfJle solution]. x 100 [g/100 g] 
C u.·a weight,ample in gi l sample solution 

Contelltammorll3 c.mmo .... [g /t sample solution]. x 100 [g/ l 00 g] 
weight"mpl' in gil sample solution 

1. Instructions for performance of assay 
The amount of urea (ammonia) present in the cuvette has to be 
between 0.3 pg and 14 Ilg(0.2 Ilg and8Ilfl).I~order toget.a sufficient 
absorbance dirrerence. the sample solution IS diluted to Yield an urea 
(ammonia) concentration between 0.02 and 0.14 gil (0.01 and 
0.08 gil). 

Dilution table 

Estimated amount of urea Dilution Dilution 
(ammonia) per liter with water factor F 

< 0.14 g « 0.08 g) - 1 
0.14-1.4 g (0.08-0.8 g) 1 + g 10 

1.4-14 g (0.8-8.0 g) . 1 +gg 100 

If the measured absorbance dirrerence (£lA) is too low (e.g. < 0.100). 
the sample solution should be prepared again (weigh out more sam­
ple or dilute less strongly)or the sample volume to be plpetted Into the 
cuvette can be increased up to 2.000 ml. The volume of water added 
must then be reduced so as to obtain the same final volume in the 
cuve ltes for the sample and blank. The new sample volume v must be 
taken into account in the calculation. 

2. Technical information 
2.1 Use only freshly distilled water for the assay. 

2.2 Work in an atmosphere free from ammonia (ban smoking in the 
laboratory) . 

3. Specificity (Ref. 1) 
The metllod is specific for urea and ammonia. 

In the analysis of commercial urea and ammonium sulfate. results of 
approx. 100% have to be expected. 

4. Sensitivity and detection limit (Ref. 1.4) 
The smallest differentiating absorbance for the procedure is 0.005 
absorbance units. This corresponds to a maximum sample volume 
v = 2.000 ml and measurement at 340 of a ammonia concentration 
of 0.02 mgl l sample solution. resp. of an urea concentration of 
0.04 mg/ l (if v = 0.100 mi. this corresponds to 0 .4 mg ammonia/I. 
resp. 0.8 my urea/I sample solution). 

The detec tion limit of 0.08 mg ammonia/I. resp. 0.15 Illg urea/I is 
derived from the absorbance difference of 0.020 (as measured at 
340 nm) and a maximum sample volume v = 2.000 ml. 

5. linearity 
Linearit y of the determination exists from approx. 0.2 Ilg ammonial 
assay (0.08 mg ammonia/I sample solution; sample volume v = 
2. 0001111) to 8 pg anlmonia/assay (0.08 g ammoniall sample solution; 
sample volume v = O. 1001111) . resp. from 0.3 pg urea/assay (0. 15 mg 
ureall sampte solution: sample volume v = 2.000 ml) to 14 Ilg ureal 
assay (0. 14 g urea/I sample solution: sample volume v = 0.100 ml). 

6. Precision 
Ammonia: . 
In a douhle determination using one sample solution. a difference of 
0.005 to 0.010 absorbance ulli ts may occur. With a sample volume of 
v = 0.100 ml and measurement at 340 nm. this corresponds to an 
ammonia concentration of approx. 0.4-1 mg/ l. (If the sample is 
diluted during sample preparation. the result has to be multiplied by 
the dilution factor F. If the sample is weighed in for sample pre­
paration. e.g . using I g sample/ l00 ml = 10 gil. a difference of 
0.00"-0.01 gil 00 Y can be expected.) 
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The following data for the determination of ammonia have been 
published in the literature: 

CV = 1.6% (plasma) 
CV = 0.88-1 .16% (ammonium chloride solutions) 

(Ref. 1.2) 
(Ref. 1.4) 

CV = 0.34% (ammonium chloride solutions) 

CV = 0.36-0.96% (meat samples) (Ref. 3.2) 

Urea: 
In a double determination using one sample solution. a difference of 
0.005 to 0.015 absorbance units may occur. With a sample volume of 
v = 0.1 00 ml and measurement at 340 nm. this corresponds to an urea 
concentration of approx. 0.7-2mg/ 1. (/I the samp!e is diluted dur!ng 
sample preparation. the result has to be mulliplled by the. dllulion 
factor F. If the sample is weighed in for sample preparation. e.g . 
using 1 g sample/ l00 ml = 10 gil. a difference of 0.007-0.02 g/l 00 g 
can be expected.) 

The following data for the determination of urea have been published 
in the literature: 

CV=2.7% 
CV=3% 

(serum) 
(serum) 

Analysis of swimming-pool water (Lit. 3.7): 

x = 0.611 mgll r = 0.1854 mgll 
R = 0.2145 mgll 

x = 2.323 mgll r = 0.1247 mgll 
R = 0.1883 my II 

x = 5.749 mgll r = 0.0707 mg/ l ' 
R = 0.1707 mgl l 

7. Interference/sources of error 

(Ref. 1.1) 

(Ref. 1.3) 

S"I = ± 0.066 mgl l 
s,nl -= .±D.DID mgll 
S"I = ± 0.044 mgl l 
S'AI = ± 0.067 mgl l 
S"I = ± 0.025 mgl l 
SIAl = ± 0.060 mgl l 

During protein precipitation with perchloric acid which is to be 
carried out in foodstuffs . protein fragmentsareoccaslonallyobtalned. 
These protein fragments are kept in solution and can gradually form 
ammonia in alkaline buffer systems leading to creep reactions. This 
formation of ammonia is very low and can be differentiated and calcu­
lated from the ammonia content of the sample by extrapolation of the 
absorbance A.., . 

The common ingredients of foodstuffs do not interfere with the assay 
of urea and ammonia. Only high concentrations of tannins in fruit 
juices can cause an inhibition of the GIDH reaction. Fruit juices 
should therefore always be treated with PVPP. 

As high concentrations of heavy metals cause turbidity they make 
also a reliable determination of urea and ammonia difficult. In most 
cases high concentrations df I]letal ions can be removed as hydrox­
ides by alkalization of the saniple solution (pH> 7.5). 

Sodium thiosulfate. occasionally added to samples of swimming­
pool water. does not interfere with the assay up to 1 mg per cuvette. 

8. Recognizing interference during the assay procedure 
8.1 If the conversion of urea and ammonia has been completed, 
according to the time given under ·determination·. it can be con­
cluded in general that no interference has occurred. 

8.2 On completion of the reaction. the determination can be 
restarted by adding urea and/or ammonium chloride or ammonium 
sulfate (qualitative or quantitative) : if the absorbance is altered sub­
sequent to the addition of the standard material, this is also an indi­
cation that no interference has occurred. 
8.3 Operator error or interference of the determination through the 
presence of substances contained in the sample can be recognized 
by carrying out a double determination using two different sample 
volumes (e.g. 0.100 ml and 0.200 ml): the measured differences in 
absorbance should be proportional to the sample volumes used. 
When analyzing solid samples. it is recommended that different 
quantities(e.g. 1 g and 2 g) be weighed into 100 ml volumetric flasks. 
The absorbance differences measured and the weights of sample 
used should be proportional for identical sample volumes. 

8.4 Possible interference caused by substances contained in the 
sample can be recognized by using an internal standard as a control : 
in addition to the sample. blank and standard determinations. a fur­
ther determination should be carried out with sample and standard 
solution in the same assay. The recovery can then be calculated from 
the absorbance differences measured. 

8.5 Possible losses during the determination can be recognized by 
carrying out recovery tests: the sample should be prepared and anal­
yzed with and without standard material. The additive should be 
recovered quantitatively within the error range of the method. 
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9. Reagent hazard 
The reagents used in the determination of urea and arnmonia are not 
hazardous materials in the sense of the Hazardous Substances Reg­
"1,,liolls. IIle Cheillicals L."w or EC negulalion 67 /548/ EEC and sub­
sequent alleration. supplernentation and adaptation guidelines. 
However. Ihe general safely measures thai apply to all chemical sub­
stances should be adhe:ad to. 

Afler use. the reagents can be disposed of with laboratory waste. but 
local regulations must always be observed. Packaging material can 
be disposed of in waste destined for recycling. 

10. General information on sampfe preparation 
In carrying out the assay: 
Use clear, colorless and practically neutral liquid samples 
directly. or after dilution according to the dilution table, and of a 
volume lip to 2.000 ml ; 
Filter turbid soluti ons; 
Degas samples containing carbon dioxide (e.g. by filtration); 
Adjust acid samples to approx. pH 7-8 by adding sodium or potas­
sium hydroxide solution; 
Adjust acid and weakly colored samples toapprox. pH 7-8 by add­
ing sodiurn or potassiurn hydroxide solulion and incubate for 
<1pprox . 151l1in; 
Tre<1t 'strongly colored' samples that are used undiluted or with a 
higher sample volume with polyvinylpolypyrrolidone (PVPP), e.g. 
2.5-S g/1 00 ml; 
Crush or homogenize solid or semi-solid samples, extract with 
water or dissolve in water and filter if necessary; 
Deproteinize samples containing protein with perchloric acid or 
wi III trichloroacetic acid; 
extract samples containing fat with hot water (extraction tempera­
ture should be above the melting point of the fat involved) . Cool to 
allow the fat to separate. make up to the mark, place the volumetric 
fl ask in an ice balll for t 5 min and filter; 
Break up emulsions with trichloroacetic acid . 

Irnportant note 
The Carrez-clarification should not be used in the sample prepara­
tion for ureal ammonia determination due to a too low recovery 
rate (adsorption of ureal ammonia). 

11. Application examples 
Determination of ammonia in fruit juices 
Add 0.S-1 .0 g polyvinylpolypyrrolidone (PVPP) to 10 ml fruit juice 
(clear. turbid or colored juices) - when the sample volume is in­
creased, neutralize, if necessary, and fill upt020 ml with water-into a 
beaker and stir for 1 min (magnetic stirrer). Filter sample solution 
immediately and use it for the assay. 
In the assay, only "blank ammonia" and "sample amlllonia" are 
lTIeasured. 

Determination of urea and ammonia in water (swimming-pool 
water) 
Dilute the clear sarnple solution according to the dilution table or use 
up to v = 2.000 ml sample volume for the assay. 

Determination of urea in milk 
Mix 1 ml milk with 4 ml trichloroacetic acid (0.3 mol/ l) . After approx. 
S min centrifuge for separalion of Ihe precipitate (for 3 min, ca. 
4000 rpm). Use O. 1 00 IllI olthe supernatant clear solution for the assay. 

Determination of ammonia in milk 
Mix 1 1111 milk with 4 mltrichloroacetic acid (0.3 mol/l) . After approx. 
5 min centrifuge for separation of the precipitate. Decant the super­
natant and neutralize with KOH (to molll) (dilution factor can be 
neglected due to the high concentration of KOH), filter and use 1.000-
2.000 ml sample solution for the assay. 
In tile assay, only "blank ammonia" and "sampleamrnonia" are meas­
ured. 

Determination of ammonia in bakery products 
Accurately weigh approx. 109 of the minced sample into a homoge­
nizer beaker, add approx. 20 ml perchloric acid (imol/l) and homoge­
nize for approx. 2 min. Proceed as stated under "meat and rneat prod­
ucts". Use at most 1.000 rnl for the assay. 
In Ihe assay only "blank ammonia" and "sample ammonia" are to be 
measured. 

Determination of urea and ammonia in meat and meat products 
Accurately weigh approx. S g of the homogenized sample (from a 
sample of 100 g, that has been groulld and homogeneously mixed 
in n mixer) into a homogenizer beaker. add npprox. 20 ml perchlonc 
acid (1 mol/l) and homogenize for approx. 2 mill . Transfer the con­
tents quantitatively with approx. 40 1111 water into a beaker. Adjust to 
pH 7.0 « 7.S) first with potassium hydroxide (S mol/l) alld then 
exactly with potassium hydroxide (2 mol/l) . Transfer the contents 
quantitatively with water into a 1001111 volumetric flask, fill up to the 
mark with waler, whereby care must be taken that the fatty layer is 
above the mark and the aqueous layer is at the mark. 

For separation of fat and for precipitation of the potassium per­
chlorate refrigerate for 20 min. Afterwards filter. Discard the first few 
ml. Use the clear, possibly slightly turbid solution for the assay. 

Calculation of the amount of urea and ammonia according to the 
aforementiQned calculation formula, whereby it must be multiplied 
with the volume displacemE1nt factor K = 0.98. 

12. Further applications 
The method may also be used in the examination of fertilizers, 
pharmaceuticals, cosmetics, paper (Ref. 2.1) and in research when 
analyzing biological samples. For details of sampling, treatmellt and 
stability of the sample see Ref. 1.1-1.4. 

'Exampl~ 

12.1 Determination of urea and ammonia in fertilizers 
Grind approx. 109 of the sample and mix thoroughly. Accurately 
weigh approx. 100 mg of the homogeneous material into a 100 ml 
beaker and add approx. 50 to 60 ml water. Adjust to pH 7-8 with 
diluted hydrochloric acid (1 molll) or in the case of acidic fertilizer with 
diluted sodium hydroxide (1 mol/l) . Warm on a heatable magnetic stir­
rer for approx. 10 min to 60-70· C. Allow to cool, transfer quantita­
tively into a 100 ml volumetric flask and fill up to the mark with water. 
Mix the solution and filter, if necessary. 
Use 0.1 00 ml of the clear solution diluted, if necessary, for the assay. 

12.2 Determination of nitrogen after Kjeldahldigestion 
The determination of total nitrogen can be obtained via the ammunia 
determination in a sample mineralized according to the Kjeldahl­
method. Normally, the samples have to be incinerated wet (sulfuric 
acid). The ammonia, formed from nitrogen, is determined according 
to the procedure as follows. 

Accurately weigh approx. 2 g of the ground and homogenized sample 
intoa 100 ml Kjeldahl-flask, add 20 ml sulfuric acid (specific gravity = 
1.84 g/ml) and approx. 30 mg catalyst mixture (e.g. acc. to Wieninger) 
or one Kjeldahl tablet, heat for approx. 2-3 h until the sample is disin­
tegrated (yellowish or blue-g~enish soitltion). Allow the sample to 
cool and carefully (protective glasses) transfer quantitatively into a 
bealler filled with 600 ml ice-cold water while stirring all the lime 
(magnetic stirrer, icebath). Neutralize with approx. 60 ml KOH 
(10 mol/l) (pH 6-8). Transfer the neutralized solution quantitatively into 
a 1 I volumetric flask, fill up tothemark with water and mix. If necessary, 
filter the mixture (sometimes necessary after disintegration with Kjel­
dahl tablets); discard the first few ml. Use the solution diluted, if nec­
essary, for the assay. 

Calculation: 

Nitrogen content of the sample (in %) 

6A x V x MW x 100 

1: x d x v x 1000 x amount weighed [gJ 

6A x 3.04 x 14.01 x 100 

1: X lOO x 0.100 x 1000 x amount weigiled [gJ 

12.3 Determination of urea in urine 
Dilute urine according to tile dilution table with physiological sodium 
chloride solution (dilution factor = F). 

12.4 Determination of urea in serum and plasma (Ref. 1.I,I.3) 
Dilute serum or plasma, respectively , according to the dilution table 
with physiological sodium chloride solution (dilution factor = F) and 
use for the assay. 

Calculation: 

0.9129x6AxF 
c = 1: [g ureall sampleJ 
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15.2 x 1lI\ x F 
e = c [11111101 ureal l sample] 

Wavelellg'Ii Ilg :lG5 11111 31\U 11111 Ily 33'111111 

ely/ lj 0.2685x6AxF 0.1449x6AxF 0.1477x6AxF 

cll1ln1ol/lj 4.471 x6AxF 2.413x6AxF 2.460x6AxF 

12.5 Determination of urea and ammonia in fermentation samples 
and cell culture media 
Place the sample (after centrifugation, if necessary) in a waterbath 
at 80 'C for 15 min to stop enzymatic reactions. Centrifuge and use 
the supernatant (diluted according to the dilution table, if necessary) 
for the assay. Alternatively, deproteinization can be carried out with 
perctlloric acid. See the above-mentioned examples. 
Homogenize gelatinous agar media with water and treat further as 
described. 
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Urea standard solution 
The standard solution serves as a control for the enzymatic determi­
nation of urea in foodstuffs and other materials. 

Reagents 
Urea, AR grade 

Preparation of the standard solution 
Accurately weigh approx. 11\0 mg urea to the nearest 0.1 mg into a 
1000 ml volumetric flask, fill up to the mark with redist. water, and 
mix tlloroughly. 

Prepare standard solution freshly before use. The standard solution 
may be frozen in portions. 

Application 
1. Addition of urea solution to tile assay mixture: 
Instead of sample solution the standard solution is used for the assay, 

2. Restart of reaction, quantitatively: 
After compfetion of the reaction with sample solution and measuring 
A7 , add 0.050 ml standard solution to the assay mixture. Read ab­
sorbance AJ after the end of the reaction (approx. 20 min). 
Calculate the concentration from the difference (A? - A,) according to 
the general equation for calculating the concentration . The altered 
total volume must be taken into account. Because of the dilution of 
the assay mixture by the addition of the standard solution, the result 
differs insignificantly from the result got according to pt. 1. 
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3. Internal standard: 
The standard solution can be used as internal standard in order to 
check the determination for correct performance (gross errors) and to 
see whether the sample solution is free from interfering substances: 

Pipette into Blank Sample Standard Sample + 
cuvettes: Standard 

reaction mixture 2 1.000 ml 1.000 ml 1.000 ml 1.000 ml 
sample solution - 0.100ml - 0.050 ml 
standard solution - -, 0.100 ml 0.500 ml 
solution 3 0.020 ml 0.020 ml 0.020 ml 0.020 ml 
redist. water 2.000 ml 1.900 ml 1.900 ml 1.900 ml 

Mix, and read absorbances of the solutions (A,) after approx. 5 min. 
Continue as described in the pipetting scheme under "Procedure': 
Follow the instructions given under "Instructions for performance 
of assay" and the footnotes. 

The recovery of the standard is calculated according to the following 
formula: 

recovery = 2 x L\A,.,mpl, • 'land"d - L\A,.,mpl' x 100 [% J 
l!iA,tandatd 
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Ethanol detection test 

Ethanol 
1 UV-method 

for the determination of ethanol in foodstuffs and other materials 

SirlipillieLi procedure for the determination of ethanol in alcoholic 
bevera\jes see pI. 1.2. 

Cat. No. 176290 
Test-Combination for ca. 30 determinations 

Principle (Ref. 1.2) 
Ethanol is oxidized to acetaldehyde in the presence of the enzyme 
alcohol dehydrogenase (AD H) by nicotinamide-adenine dinucleotide 
(NAD) (1). 

, ADH H 1-" (1) Ethanol ~ NAD = acetaldehyde + NAD +, 

The equilibrium of this reaction lies on the side of ethanol and NAD. 
It can. however. be completely displaced to the right at alkaline 
conditions and by trapping of the acetaldehyde formed. Acetal­
dehyde is oxidized in the p'resence of aldehyde dehydrogenase 
(AI -DH) quantitatively to acetic acid (2). 

(2) Acetaldehyde + NAD ' ~ H~O AI-DI·!. acetic acid + NADH + H' 

NADH is determined by means of its absorbance at 334, 340 or 
365 nm. 

) he Test-Combination contains 
1. Boille 1 with approx. 100 ml solution, consistin\j of: 

potassium diphosphate buffer, pH 9.0; stabilizers. 
2. Boille 2 with approx. 30 tablets, each tablet contains: 

NAD. approx . 4 mg; aldehyde dehydrogenase, 0.8 U; stabilizers. 
3. Bottle 3 with approx. 1.6 ml enzyme suspension, consisting of: 

ADH. 7000 U; stabilizers. 
4. Ethanol standard solution. 

Preparation of solutions 
1. Use contents of bottle 1 undiluted . 
2. Dissolve one tablet of boille 2 with 3 ml solution of bottle 1 in a 

beaker or in a centrifuge tube for each assay (blank or samples) 
depending on the number of determinations. Use forceps for 
taking the tablets out o f bottle 2. This results in reaction mixture 2'. 

3. Use contents of bottle 3 undiluted. 

Stability of solutions 
Solution 1 is stable for one year at +4 "C. 
Bring solution 1 to 20-25 ' C before use. 
Reaction mixture 2 is stable for one day at +4 "C. 
Bring reaction mixture 2 to 20-25 "C before use. 
Contents of bottle 3 are stable for one year at +4 "C. 

Procedure 
Waveleng lh': 340 nm, Hg 365 nl11 or H\j 334 nm 
Glass cuvette': 1 cm light path 
Temperature: 2U-25 "C 
Final volume: 3.15 ml 
Read against air (without a cuvette in the light path), against water 
or against blankJ . 

Sample solution: 0.5-12 pg ethanol/cuvette" (in 0.1-0.5 ml sample 
volume) 

'he <1h!iorpI1oll IIltJ XlIlItJ'" 0 1 NAill I is ill 3d() filII . 011 Spp.clrophQlolllelers, meilS­
lIf ,,!o'~fl l !i :l'e laken ill tile jlh!iorpllO Fl mmd'''IIIf1; when snecllil lhne nlio1ornelers 
e(ltJIppeu With il H1ercury .... lPQU' lamp ale useu, measurements are taken at a 
wavelp.flglh of 365 nrn or 334 Hill . 

2 II deSired. djs;l'1~abte cuvellp.s may be used il1s tead of glass cuvelles. 
:1 rnr example. when ;;':'I"q a double -be:un pllolomeler. 
4 S'1e inslrucltons for perlorOlar.~p. 01 the assay. 

~: -~~- : ,; ..... 
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Enzymatic BioAnalysis 
Food Analysis . . 

Not for use in ill vitro diagnostic procedures for clinical diagnosis. 

Recommendations to methods and standardized procedures see 
references. 

Pipette into cuvettes blank sarnple 

reaction mixture 2' 3.00 ml 3.00 ml 
redist. water 0.10 ml -
sample solution" - 0.10 ml 

--
mix''', after approx. 3 min read absorbances of the solutions (A,). 
Start reaction by addition 'Of .< 

suspension 3 0.05 ml 0.05 ml 
--

mix''', after completion of the reaction (approx. 5-10 min) read 
absorbances of the solutions immediately one after another (A2)' 

It is absolutely necessary to stopper the cuvettes, e.g ., with Parafilm", 
during measurement (see "Instructions for performance of assay"). 

For Simplification of Ihe assay performance il is also possible to pipelle direclly 
3 011 of solulion 1 into Ihe cuvelle. Afterwards add 1 tablel of bailie 2 Lind dis­
solve it (lor solubilization crush the lablel with a glass rod. if necessary) . Continue 
as desr.ribed in tile scheme. The volume error 01 appro • .. I % (the incre~~e of volume 
caused by one lableV3 15 ml linal volumE") has 10 be laken into accounl in Ihe 
calculnlion by nlultiplic<1tion 01 the result with 1.0 , . 

•. flinse the enzyme pipette or the pipelte lip of the piston pipelle wilh sample solu­
lion before dispensing Ihe sample solution. 
For example, with II plastic spatula or by genUe swirling atler clOSing the cuvelle 
with Paralilm- (registered trademark 01 Ihe Amelican Can Company. Greenwich. 
CI .. USA). 

Determine the absorbance differences (A2-A,) for both blank and 
sample. Subtract the absorbance difference of the blank from the 
absorbance difference of the sample. 

D.A = D.t.amp,. - D.At>.nk 

1 he absorbance differences measured should as a rule be at least 
0.100 absorbance units to achieve sufficiently accurate results (see 
"Instructions for performance of assay"). 

Calculation 
According to the general equation for calculating the concentration 
in reactions in which the amount of NADH formed is stoichiometric 
with half the amount of substrate: 

V x MG 
c = E X d x v x 2 x 1000 x D.A [g/IJ. where 

V = final volume [rnlJ 
v = sample volume [mlJ 
MW= molecular weight of the substance to be assayed [g/molJ 
d = light path [cmJ 
E = absorption coefficient of NADH at: 

3,10 nm = 6.3 [I x mlTlOl- ' x crn-' I 
Hg 365 nm = 3.4 II x mmol - ' x cm-' ] 
Hg 334 11m = 6.18/1 x nrmol - ' x cm-'J 

It follows for ethanol: 

c = 3.15 x 46.07 D.A 0.7256 
E x 1 x 0.1 x 2 x 1000 x = -- x D.A Ig ethanol/I 

E sample solutionl 

If the sample has been diluted durin\j preparation, the result rnust be 
multiplied by the dilution factor F. 

When analyzing solid and serni-solid samples which are weighed 
out for sample preparation, lile result is to be calculated fr om the 
amount weighed: 

C.'h.no' [gi l sample solutionJ 
content.'''.no' = . x 100 [g/100 gJ 

C,.mole [gi l sample solullonl 

--------.;;.-;:._. -, •... ~. 
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Instructions for performance of assay 
The amount of ethanol present in the cuvette should range between 
1 I-Ig (lmJ 12 pg (measurernent at 365 nrn) or 0.5 I-Ig and 6 iJg (mea­
surement (It 340, 334 mil) , respectively . The sarnple solutIon must 
therefore be diluted sufliciently to yield an ethanol concentratIon 
between 0.01 and 0.12 gil or 0.005 and 0.06 gil, respec tively . 

Uecause of the high sensitivity of the method it has to be taken 
C<lre thilt eth(lnol free water is used and it is worked In an ethanol 
Iree atnlosphere. 

Dilution table 

estim(lted amount of 
ethanol per liter 

measurements at 

3_~_. or .~~~t- 3G5 nm -
< 0.06g < 0.1 2g 

0.OG-0.6 g 0.12-1 .2 g 
0.6 -GOg 1.2 -12 g 
6.0 -60 g 12 -120 g 

. . _"?_60 g _____ :::~~~_ 

dilution with 
water 

dilution 
factor F 

1 
I. 9 10 
1 + 99 100 
1 + 999 1000 
I + 9999 10000 _ __ L--. __ _ 

Because of tile volatility of ethanol, the dilution of samples should 
be carried out as follOWS: 

Fill the volumetric flask half with water and pipette the sample with 
<In enzyme test pipette or a pist0n type pipette under the surface of 
tile water. Fill u;J to the mark with water and mix. 

If tile absorbance difference measured (lIA) is too low (e.g. < 0.100), 
the sarnple solution should be prepared anew (weigh out more 
s<llllple or dilute less strongly) or the sample volume to be pI petted 
into the cuvette can be increased up to 0.5 ml. The volume of solu­
tion I or reaction mixtule 2, respectively, remains the same (3.00 ml). 
The volume of water pipet ted into the blank cuvette lIlust then be 
increased so as to obtain tile same final volume for the sample and 
blank in the cuvettes. The new sample volume (v) and the new final 
volume (V) must be taken into account in the calculation. 

1. Instructions for sample preparation 
1.1. Liquid food~tufh: 

Use clear, colorless or slightly colored solutions directly or after 
dilution according to the dilution table for the assay. Filter turbid 
solu tiolls or clarify with Carrez reagents. Strongly colored solutions, 
Wllich are used undiluted for the assay because of their low ethanol 
concentration, are to be decolorized with polyamide or polyvinyl­
polypyrrolidone (PVPP). Carbonic acid containing beverages are 
to be degassed, beverages with low ethanol content should be ad­
justed to the alkaline pH range. During the whole procedure it is to 
be taken care that the ethanol is not evaporated. For example, when 
diluting an ethanol containing sample, it is to be pi petted under tile 
surface of the water . 

Examples: 
Determination of ethanol in fruit juices 
a) Use clear light juices after neutralization or dilution, depending on 
the etllanol content. for the assay (see dilution table). 

b) Decolorize intensely colored juices by addition of 2% polyamide 
or polyvinylpolypyrrolidone (PVPP) (e.g. 5 ml juice + 100 mg poly­
amide or PVPP), stir for 2 min (vesselll1ust be stoppered) and filter. 
Use tile mostly cle[lr solution after neutralization for the assay. De­
colorization can olten be omitted on dilution. 

c) Filter turbid juices and clarify with Carrez-solutions, if necessary: 
Pipette 10 ml of juice into a 25 ml volumetric flask, add 1.25 ml 
C(lrrez-t-solution (3.60 g potassium hexacyanoferrate-II , K, (Fe(CNr,)j 
. 3 fI /O/ IOO ml) , 1.25 ml Carrez-Ii -solution (7.20 g zinc sulfate, 
ZnSO" . 7 H,O/100 ml) and 2.50 ml NaOH (0. I mol/l), shake vigor­
ously nfter each addition, dilule to 25 ml with water, filter (dilution 
factor F = 2.5). Use the dear sample solution, which may be weakly 
opalescent, for the <lssay directly or diluted, if necessary. 

Determination of ethanol in alcohol-deficient and alcohol-free 
beer 
Add solid potassium hydroxide or solid sodium hydroxide to approx. 
100 ml si1l11ple in a beaker while stirring carefully until a pH value of 
<1pr:rox . pH 8-9 is obtained. Use solu lion, diluted according to the 
dilution l<lble, if necess<Jry, for the assay. 

Determination of ethanol in vinegar 
Filter, if necessary and neutralize vinegar. Neutralization can be 
omitted on dilution. 

Determination of ethanol in alcoholic beverages 
a) Wine (Ref. 14): Dilute wine with reelis!. water to the appropriate 
concentration (see dilution table). Decolorlzallon and neulraiJzatlon 
are not necessary. 
b) Beer: To remove carbonic acid, stir approx. 5-10 ml of beer in a 
beaker for approx. 30 s using a glass rod or filter. Dilute the s~l11ple 
1 : 1000 (1 + 999) with water and use tile dIluted sample solutIon for 
the assay. 
c) Liqueur: Pipette liquid liqueurs for dilution into an appropriate 
volumelric flask and fill up with water to the mark. WeIgh approx . 1 g 
of viscous lii-lueurs (e.g. ~gg liqueur) accurately into a 100. ml volu­
melric flask, fill up to Ihe mark with redis!. water, keep 11.ln a refri­
gerator for separation of fat, and filter. Difute the clear solution 1 : 100 
(1 + 99) with water and use il for the assay. 

d) Brandy: Take care as mentioned for taking the sample of alcoholic 
beverages and dilute to a certain concentration (e.g. 1 + 9999) . 
Convert the measured values (g ethanolll solution) inlo volume per­
centage (v/v) with the aid of conversion tables. 

1.2. Simplified determination of ethanol'inbeer, Wine ('Re~ . 'll) 
and brandy 
Sample preparation 
Dilute beer, wine and brandy according to the dilution table. 

Reagent solution for 10 determinations 
Dissolve 10 tablets of bottle 2 with 30 ml solution from bottle I, add 
0.5 ml suspension from bottle 3, and mix. • 
(Attention: Prepare reagent solution with alcohol-free waler in alco­
hol -free atmosphere. Store in a container tiglltly stoppered .) 

Stability 
The reagent solution is stable for 811 at 20"C. 

Procedure 
Pipette 3.00 ml reagent solulion into the cuvette and read <Jbsor­
bance A,. Start reaction by addition of 0.1 ml diluted sample. On 
completion of the reaction (approx. 5 min) read absorbance A2 · 

Determine absorbance difference of A2-A, = lIA. 

Calculation 
0.714 I i 

c = - e; - . lIA . F (g ethanolll sample] 

F = dilution factor 

1,3. Pasty foodstuffs 
Homogenize semi-solid samples, exIJact with water or dissolve, 
respectively, and filter, if necessary. Clarify with Carrez-solutions or 
decolorize. 

Examples: 
Determination of ethanol in chocolates, sweets and other alco­
holcontaining chocolate products 
Chocolates with liquid filling compound (brandy balls, brandy cher­
ries): 
Open, e.g., one brandy ball carefully, pipette 0.50 ml of the liquid 
filling into a 50 ml volumelric flask filled with approx. 25 ml water, 
laking care that the tip of the pipette dips into the water. Fill up to 
tile mark wilh water, stopper and mix. Dilute the solution with water 
in a ratio of 1 : 20 (1 + 19). Use 0.1 ml of the diluted solution for the 
assay (dilution factor F = 2000). 

Chocolate products with flighly viscous filling: 
Weigh accurately the filling of one or several sweels or chocolates 
into a 50 ml volumetric flask filled with approx. 5 ml water (when 
Ihe sample is weighed by means of a pipette, the tip of the pipette 
llluSt not louch the water surface). Fill up 10 Ihe mark wilh water, 
mix, filter, if necessary, and dilute ulltil the alcohol content of Ihe 
sample is less than 0.12 gi l. 

Determination of ethanol in jam 
Homogenize sample thoroughly (mixer, elc.) and weigh approx . 10-
20 g into a beaker. Add some water. mix and neutralize Ihe mixture 
with KOH , if necessary. Transfer the mixture quanlitatively into a 
100 1111 volumetric flask and fill up to the mark with redist. water. 
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Decolorize solution with 2% polyamide or PVPP, if necessary (see 
"Instructions 1. l .b") and filter . Use the filtrate for the assay undiluted. 

Determination of ethanol in honey 
Wei4" approx. 20 9 hOlley accuralely illto a 100 /fI1 volullletric 
1I00sk ,HId dissolve with some water under slightly ngitntion Lltl1PProX . 
50 'C (ascending tulJe!), coot to rOOIll telllperature and fill up to the 
mark with redist. water. Use the solution for the assay, clmify with 
Call ez ·solutions (see "Instructions I. l.c"), if necessary (dilution fac­
tor F = 2.5) . Use the clear solution for the assay after filtration. 

Determination of ethanol in dairy products (e.g. curds, kefir) 
Weigh applox. 10 g of the homogenized snmple accurately into a 
100 ml volumetric flask, add npprox. 50 ml water and keep the flask 
(ascending tube!) at 50"C for 15 min under slightly ngitation. For 
protein precipitation add 5 ml Carrez-I-solution. 5 ml Carrez-II­
so lution and 10 ml NaOH (0.1 mol/I) (see "Instructions 1. l .c") , shake 
vigorously after each addition. Allow to cool to room temperature 
and fill up to Ihe mnrk with water. Mix and filter. Use the clear, 
possibly slightly turbid solution for the assay. 

1.4. Solid foodstuffs 
Homogenize solid or semi-solid samples (using a mortar, etc.) , ex­
tract with water or dissolve; filter, if necessary. 

Extract fat-containing samples with wmm water (approx. sonG) in a 
slllall flask with ascending tube. Allow to cool for separation of fat, 
rinse the nscending tube with )'later and filter. 

Deproteinize protein-containing sample solulions with perchloric 
acid (1 mol/ I) in a ratio of 1 : 3 (1 + 2) and centrifuge. Neutralize with 
KOH (2 11101/ 1) . 

2. Specificity 
The influence of aldehydes and ketones is eliminated by the order 
of reagent addition during the assay. Methanol is not converted be­
cause of tile unlavourable K",-values of Ihe used enzymes. 
n·Propanol and n-butanol is quantitatively converted under assay 
conditions. higher primary alcohols lead to sample dependent creep 
reactions. Secondary. teliiary and aromatic alcohols do not react. 
Even higller concentrations of glycerol do not disturb the assay. 

3. Sources of error 
ThE; presence of ethanol in the used redist. water or in air results 
111 Increased blanks or in creep reactions, respectively. Therefore it 
IS necessary to cover the cuvette during the assay. 

Detection of interferences of the test system 
When the enzymatic reaction is complete after the time given in 
"Procedure" it can be concluded in general that the reaction is not 
Interfered. For 2~surance of results a re-start of the reaction (quali­
tatively or quantitativeiy) by the addition of 's tandard material' can be 
done: a further change of absorbance proves suitability of measure­
ments. 

For the detection of gross errors when performing the assays and 
01 In terfenng substances In tile sample materinl it is recommended 
to analyze a sample solution in a double determination with two 
different sample volumes (e.g. 0.10 1111 and 0.20 ml): the measured 
absorbance differences have to be proportional to the sample 
volumes. 

When analyzing solid samples it is recoll1mended to weigh in two 
dlflerent amounls (e.g. 1 g and 2 g) into a 100 ml volumetric flask and 
to perform the determinations with tile same sample volume: the 
absorbance differences have to be proportional to the al110unts 
weighed in. 

4. Further applications (s. References) 
The method may also be used in the examination of cosmetics 
ph<lrmaceuticals. and in research when analyzing biological samples: 

For details of sampling, treatment and stability of the sample see 
Bernt. E. & Gutmann. I. (t974) in Methods of Enzymatic Analysis 
(Bergmeyer. H. U .. ed.) 2nd ed. vol. 3. p. 1500, Verl<lg Chemie Wein -
heirn. Academic Press. Inc. New York and London. ' 

Examples; 

4.1. Determination of ethanol in blood plasma or serum respec-
tively (Ref. 2) , , 

Mix 0.5 ml blood with 4 .0 1111 ice-cold perchloric acid (0.33 11101/1) 
and centnluge. L1se 0.1 1111 for tile assay. 

The dilution factor F (depending on sample preparation) is obtained 
from the sample volume (0.5 ml), the perchloric acid volume (4.0 1111), 
tile specific gravity of the sample material (1 .06 g/ml blood, 1.03 g/ml 
pl<lsl11n or serum) and the fluid content (0.80 in case of blood "nd 
0.92 in case of plasma or serul11) : 

F = 0.5 x 1.06 x 0.80 + 4.0 = 8 85 
~- 0.5 . 

0.5 x 1.03 x 0.92 + 4.0 
F,tl i\5I1la.,etlllll =. 0.5---- = B.95 

Calculation: 

0.7256 x 6A x F 
c = [g ethanollf sampleJ E: _ 

15.75 x 6Ax F 
c = - --- --- [mmol ethanollf sal1lpleJ 

, !: 

Ethanol in blood: 

Wavelength Hg 365 nll1 340 nm 

c [g/IJ 1.889 x 6A 1.019 x 6A 

c [mmollfJ 41.00 x {sA 22."f3 x T1'A 

Ethanol in plasma or serum, respectively: 

Wavelength Hg 365 nm 340 nm 

c [glfJ 1.91Ox6A 1.031x6A 

c [mmollfJ 41.46 x 6A 22.38 x 4A 

4.2. Determination of ethanol in urine (Ref. 12) 

Hg 334 nm 

1.039 x 6A 

"l2.~ x t.1\ 

Hg 334 nm 

1.051 x6A 

22 .81 x 6A 

Dilute urine with bid est. water according 10 tile dilution table. Use the 
diluted sample for the assay (dilution factor = F). 

Calculation: 

0.7256 x 6A x F 
c = !: [g ethanol/I sampleJ 

15.75x6AxF 
c = !: [mmol ethanol/I sampleJ 

Wavelength 

c [glf] 

c [mmol/IJ 

Hg 365 nm ' 340 mn Hg 334 nm 

0.2134x6AxF 0.1152x6AxF 0.1174x6A·F 

. 4.632 x 6Ax F 2.500 x 6Ax F 2.549 x 6Ax F 

4.3. Determination of ethanol in fermentation samples and cell 
culture media 
Place the sample (after centrifugation, if necessary) into a water­
bath at 80°C for 15 min (cover the tube because of the volatility 
of ethanol) to stop enzymatic reactions. Centrifuge and use the 
supernatan t (diluted according to the dilution table. if necessary) 
for tile assay. Altematively, deproteinization can be carried out with 
pelchloric acid or with Carrez-solutions. See the above-mentioned 
examples. 

Homogenize gelatinous agar media with water and treat further as 
described. 

5. Technical instructions 
1. Ethanol is very volatile. Therefore it is necessary to be very careful 
when handling ethanol containing samples, diluting samples and pi­
petting sample solutions into tile assay system. 

When filtering solutions the filtrate should not drop into the container 
but rinse down the waft. 

When dispensing ethanol containing solutions. always pipette these 
solutions under the surface of water (when difuting) or of buffer 
(when performing the assay). 

2. When pipetting hil:1hly diluted sample solutions into the assay 
system, nnse measun~g glass plP.et (enzyme test pipet) at least 5 
times. The tiP of the piston type pipet should be rinsed 3 times. 

3: Do not use the same piston t)'pe pipet for diluting the sample and 
pi petting the sample solution into the assay system. 

4. Always work in alcohol-free atmosphele with ejhanol-free water. 
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Ethanol-
standard solution 

for tile Test-Combination Etilanol 
UV-metilod, Cat. No. 176290 

Concentration 
see bottle label. 
Ethanol standard solution is a stabilized aqueous solution of ethanol. 
It '5erves as standard solution for the enzymatic analysis of ethanol 
in foodstuffs and other materials. 

Application 
, . AdditIon of ethanol stalldald solution to the assay mixture: 
Instead of sample solution the standard solution is used for the 
assay. 

2. Restalt of the reaction. quantitatively: 
After completion of the reaction with sample solution and measuring 
of A, . add 0.05 ml standard solution to the assay mixture. Read ab­
sorbance AJ after the end of tile reaction (approx. 5 min). Calculate 
the concentration from the difference of (AJ-A,) according to tile 

992.20J 668559 '. 

With coutesy: Boehringer Mannheim, FRO. 

Henniger, G. & Hoch, H. (1981) Enzymalische Subsltatbestimmungen in der 
pharmazeutischen Analytik. dargestellt an den BestilOfIltillgen von L-Ascorbin­
saure, Ethanol und Lactose. DelJlsche Apolheker Zeilling 121 . 6·13-6,19. 

10 KohiN. P . (19M~) EI11YI1"'li5dH~ F.lllanol¥nc5tillllltUl1g in GI<rce- ul1d Schoko­
IflIJ"pruduklcll. Mitt. Gebil'!le Lchellsm. 11Y9 73. 401 - 019 . 

11 Jlll1g. G. & Fetard. G. (1978) Enzyme-coupled me<1surelllE'nt 01 ethanol in whule 
blood and plasma with a centtilllqal an .. lyzer, Clin. Chern. 24, 873-876. 

12 Deuller, H.-O. (1985) unpublished resulls . 
13 Pfandl. A. & Menschig, O. (1984) Ein 8elh:19 lur enzyrnalischen Glycerill- ulld 

Ethnnolbestimrnung. Pharm. Ind. 46. 403-'107. 
14 Oie Methode isl zugel:'tssell br,i uer UntetsuchunQ von Wein im A.:ahnllm der 

OU;'Ilit:1tsweinprt.ifung in Rheinland -Pfalz (1985: LandwirlschaftSkarnmer B;'Id 
Kleuznach) und in Hessen (198n: MinislcriulII fOr lanuwitlschall und Forsten). 
, he u!;e of the method is ndrnilled for Ille invesligalion of wine within qU<llity 
wine examination in Rheinland -Pfalz (1985; Lnndwirtschaftskammer Bad Kreuz­
nllch) and in Hessen (1986; Minislerium tor Landwirlschaft und FOlsten). 

15 Btlckee, G. K. & Baker, C. O. (1986) Enzymatic Oelmlllination of ElhcHlOI in 
Alcohol-Free and low Alcohol Beers, Monnlssctuift tOr 8rauwissenschaft 39, 
257-259. 

general equation for calcutating the concentration. The altered total 
volume must be taken into accpunt. Because of the dilution of the 
assay mixture by addition of tile standard solution. tile result dif­
fers inSignificantly from the data stated on the bottle label. 

3. Internal standard 
The standard solution can be used as nn internal standard in order 
to check the determination for correct performance (gross errors) 
and to see whether the sarnple solution is free from interfeting 
substances: 

Pipette into blank sample standard sample + 
cuvettes standard 

reaction 
mixture 2 3.00 ml 3.00 rnl 3.00 rnl 3.00 ml 
redist. water 0.10 ml - - -
sample solution - O. \0 rnl - 0.05 rnl 
standard solution - - 0.10ml 0.05 ml 

mix, and read absorbances of the solutions (A,) after approx. 
3 min. Continue as described in the pipetting scileme under "Pro-
cedure". Follow the instructions given under "Instructions for per-
forrnance of assay" and the footnotes. 

The recovery of the standard is calculated according to the fol­
lowing formula: 

2 x 6Asamp'e • standard - l1As::JrTlpre 
recovery = x 100 [%] 

©1992 
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Glycerol detection test 

GI cerol 
1 UV-method 

for the determination of glycerol in foodstuffs and other materials 

Dp.t p.rminiltion of yly(;erol and dihydroxY(lcetone in cosmetics see 
under PI. S. 

Determination of triglycerides: see separate instructions 

Cat. No, 148270 
5 Test-Combination for ca. 3 x 10 determinations 

Principle (Ref. 1) 
Glycerol is phosphorylated by adenosine-S'-triphosphate (ATP) to 
L-n lycerol-3-phosphate in the reaction catalyzed by glycerokinase 
(GK) (1). 

(1) Glycelol + ATP ~ L-glycerol-3-phosphate + ADP 

Tile adenosille-S' -diphospll(lte (ADP) formed in the above I eaction is 
reconver ted by phosphoenolpyruvate (PEP) with the aid of pyruvate 
k,nilse (PK) into A TP with the formation of pyruvate (2) . 

PK • . 
(2) ADP + PEP ~ A TP + pyruvate 

In the presence of the enzyme lacta te dehydroyellase (L-LDH) 
pyruv(lte is redu(;ed to L-Iactate by reduced nicotinamide-adenine 
dinucleotide (NADH) with the oxidation of NADH to NAD (3). 

(3) Pyruvate + NADH + H' ~ L-Iac tate + NAD ' 

lile alnount of NADH oxidized in the above reaction is stoichiometric 
wilh the amount of glycerol. NADH is determined by means of its 
absorptiun at 334, 340 or 365 nm. 

The Test-Combination contains 
1. lhlee bollies 1, with approx. 2 g coenzyme/buffer mixture each, 

consisting of: 
glycylglycine buffer, pH 7.4 ; NADH, 7 mg;ATP, 22 mg; PEP, 11 mg; 
magnesium sulfate: stabilizers. 

2. Boll Ie 2 with 0.4 ml enzyme suspension, consisting of: 
pyruv<1te kinase, approx. 240 U; lactate dehydrogenase, approx. 
220 U. 

3. BOllie 3 with 0.4 ml glycerokinase suspension, approx. 34 U. 
4. Standard solution . 

Preparation of solutions for 10 determinations 
1. Dissolve cont~"ts of one boltle 1 with 11 ml redis!. water. Before 

use allow the solution to stand for approx. 10 min at room tem­
perature. 

2. Use contents of bollie 2 undiluted. 
3. Use contents of bollie 3 undiluted. 

Stability of solutions 
Solution 1 is stable for 4 days at +4"C. 
Bring solution 1 to 20-2S "C before use. 
Suspension of bot lies 2 and 3 are stable for 1 year at +4°C. 

Procedure 
Wavelenyth': 34011111. Hg 36S nm or Hg 334 nm 
Glnss cuve tte': 1 Clll liyl.t path 
Tempemture: 20-25"C 
Final volume: 3.02 IlII 
Rend against air (without a cuvelle in the light path) or ayainst water. 
S<JIllple solution: 3-40 I1g glycerol/cuvette" (in 0.1-2.0 ml sample 

volume). 

I IlIfO <1ho;(lIp I IO Il 1Il<l'llrnUIII 0 1 NI\UH IS <1' 3110 /HII. a ll spec ll opilololllf!lers. 
II1p.<1sur [!lIlefll s :"Ire laken 011 the ahsorption miudll1um: when spectraUine photo­
rnel ef~ pqll 'ppeu wilh a mercllly vapour lamp are used, measurements are taken 
il l <I wi1vr.l~nq l" o f 305 nrl'! or 3:111 nm, 

II dl"slrI?d. (hspostliJle CUv"IIC5 lIIay be usP.d IIIslead uf glass cuvelfes . 

Se~ Inc; lflJcllons for perforlltance o f thp. ilSS<ry . 

,I II IS npc:ess:u y II') wml (or COlnplelton of Ihi5 pre-renclion (AOP III AlP and 
pYfl: v.:l le In PEP reacll . olherwlse the resulls WIll be 100 high. 
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Biochemical Analysis 
Food Analysis 

Not for use in in vitro diagnostic procedures for clin ical diagnosis. 

Recommendations to methods and standardized procedures see 
references. 

Pipette into cuvettes blank sample 
r--' 

solution 1 1.00 ml 1.00 ml 
redis!. water 2.00 ml 1.901111 
sample solution' - 0.10 ml 
suspension 2 0.01 ml 0.01 ml 

mix", wait for completion of the reaction' (approx. 5-7 min) 
and read absorbances of tile solutions (A,), Start reaction by 
'addition~ 

suspension 3 0.01 ml 0.01 ml 

mix", wait for completion of the reaction (approx. 5-10 min) 
and read tile absorbances of blank and sample immediately one 
after anotiler (A2). If the reaction has not stopped after 15 min, 
continue to read the absorbances at 2 min intervals until the 
absorbance decreases constantly over 2 min . 

Rillse the enzyme pipette or the pipelle tip of the piston pipette with sarnple solu­
tion before dispensing the sample solulion. 

.- For example, with a plastic spatula or by genlle swirling alter clOsing 1I1e cuvette 
with Parafilm· (registered tr ademark of the American Can Company. Greenwich , 
Cr., USA). 

If the absorbance A2 decreases constantly, extrapolate the absor­
bances to the time of the addition of suspension 3. 
Determine tile absorbance differences (A,-A,) for both, blank and 
sample. Subtract the absorbance difference of lIle blank frolll t/le ab­
sorbance difference of the sample. 

I1A = t.A,~mp'e - t.Abll'lnk 

The absorbance differences measufed should as a rule be at least 
0. 100 absorbance units to achieve sufficiently accurate results (see 
"Instructions for performance of assay"). 

If tile absorbance difference of tile sample (6A'."'e
'
. ) is higher than 

1.000 (measured at 340 nm, Hg 334 nm resp.) or 0.000 (measured at 
Hg 365 nm) respectively, the concentration of glycerol in the sample 
solution is too high . The sample is to be diluted according to tile 
dilution table in tilat case. 

Calculation 
According to the general equation for cal(;ulating tile concentration: 

VxMW 
c e: x d x v x 1000 x 6A [gi l], where 

v 
v 
MW= 
d 
e: 

final volume [mil 
sample volume [mil 
molecular weight of the substance to be assayed [g /moll 
light path [cm] 
absorption coefficient of NADH at 

340 nm = 6.3 [I x nllTlol- ' x crn -II 
Hg 365 nm = 3.4 [I x mmol- ' x cm- 'J 
Hg 334 nm = 6.18 [I x nrnlOl- ' x cm- '] 

It follows for glycerol: 

3.02 x 92 .1 2.781 
e: x 1 x 0.1 1000 x 6A = -- x 6A [9 glyceroll l sarnf1le 

x e: solutionl 
c 

If tile sample hilS been diluted during preparation, the result must 
be multiplied by the dilution factor F. 

Wilen analyzing solid and semi-solid samples which are weighed out 
for snmple preparation, the result is to be calculated from the amount 
weighed: 

Cglyce,oI [gi l sample solutionl 
conientylyc<'oi = [--------. - x 100 [g/100 gl 

C,.mpl. gi l sample solutlonJ 
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Instructions for performance of assay 
Tile glycerol contellt present in tile cuvette should rallQe betwee!, 
3 pg allel 40 pg. The sample solution must therelore be diluted suflr­
<;i","tly to yie ld a glycerol cOllcentratioll betweell 0.03 and 0.4 gil. 

Dilution table 

u_'''''''"'', ;";0";" 01 --- I -d'I"';;;;;;;U;--d~-t;~~;-
glycerol per liter water factor F 

_.- --- -- -- ----- . 

-: 04g - 1 
o 4-4 0 g 1. 9 10 
4 0-40 g 1 + 99 100 

> 40 g 1 + 999 1000 
- ---......::.... 

If tI,e absorbance difference measured (61\) is. too low (e. g., < 0.100), 
the sample solution should be prepared anew (weigh out more 
sample or dilute less strOllgly) or the sample volume to be pipetted 
illto the cuvette can be increased up to 2.0 ml. The volume of water 
added lIlust then be reduced so as to obtain the same final volume 
for the sample and blank in the cuvettes. The new sample volume v 
IIlUSt be taken into accoullt in tile calculation. 

1. Instructions for sample preparation 
1.1. Liquid foodstuffs 
Use clear. colorless or sli~lhtly colored solutions directly or after 
dilution for the assay. Filter turbid solutions or clarify with Carrez 
reagenls. Sirongly colored solutions which are used undiluted for the 
assay because of tlleir low glycerol concentration are to be 
decolorized with polyamide or polyvillylpolypyrrolidone (PVPP). 
Carbonic acid containing beverages are to be degassed. 

Examples: 
Deterrninatior: of glycerol in fruit juices 
Dilute the sample to Yield a glycerol concelltration of less than 0.5 gil 
(see dilution table). 
Filler turbid juices. Use the clear solution for the assay, even if it is 
slightly colored. 
When analyzing strongly colored juices (e. g., sour cherry juice, 
grape juice). decolorize the sample as follows: 
Mr< 10 IIlI of juice and approx. 0.1 9 of polyamide powder or poly­
vinylpolypyrrolidone (PVPP), stir for 1 min and filter. Use tile clear 
solution, which may be slightly colored, for the assay. 

Determination or glycerol in wine 
Dilute the sample according to the dilution table. 
In general, red wine can also be analyzed without decolorization. 

Determination of glycerol in beer 
To remove Ille carbonic acid, stir about 5-10 ml of beer for approx. 
1 min using a glass rod or filter; dilute the largely CO2 -free sample 
according to the dilution table. 

1.2. Solid foodstuffs 
Mince the sample (using a mortar, meat grinder or homogenizer) 
alld mix thoroughly. Weigh out the sample and extract with water 
heated to 60 "C, if necessary. 1ransfer to a volumetric flask and fill 
up to the mark with water. Filter and use the clear solution for the 
assay. Dilute the solutioll, if necessary (see dilution table). 

Examples: 
Determination of glycerol in marzipan 
Remove chocolate coating of the marzipan if necessary. Weigh 
applox. 1 g of marzipan accurately into a small porcelain cup con­
tall1lllg approx. 2. 9 sea-sand. grilld thoroughly, mix with approx. 
50 ml water and Incubate al approx. 60"C for 20 min . Pour super­
niltant solution into a 100 ml volumetric flask. Wash the residue 
(se<1 -sand) twice with portions of 10 ml water each and transfer the 
w<1sh solution into the volullletric flask . Allow the solution in the 
volumetric flask to cool to room temperature and fill up to the mark 
With water. For separation of fat. place in a refrigerator for 15 min. 
Filter tile solution, centrifuge. if necessary, at 3000 rpm. Use the 
laruely clear solution for the assay, dilute, if necessary (see dilution 
table). 

Determination of glycrol in tobacco products 
MIX and mince salllple .thoroughly (grain size max. 0.2 mm). Weigh 
approx. 1 g accurately Into a 100 ml volumetric flask. After addition 
of approx. 70 ml water stir vigorously (magnetic stirrer) for approx. 
1 h at room temperature. Fill up to Ihe mark with water, mix and filter. 
Pipette 25 ml filtrate into a 50 ml volumetric flask, add successively 
and stir vigorously after each addition: 5 ml Calrez-I-solution 
(3.60 g K.,[Fe(CNsJi . 3H20/100 ml). 5 rnl Carrez-II-solution (7.20 g 
ZnSO, . 7 H, O/IOO ml) and 10 ml NaOH (0.1 molll) . Fill up to the mark 
With water, mix and filter. Use the filtrate for the assay (0,1-0.5 ml). 

2. Specificity 
The method is specific for glycerol. Dihydroxyacetone is not con­
verted under the given conditions (see also pI. 5). 

3. Sources of error 
The stow hydrolysis of ATP and phosphoenolpyruvale as well as the 
air oxidation of NADH results in a slow creep reaction which can 
be taken into account by extrapotation. An extrapolation is not abso­
lutely necessary if the absol bance of blank and sample are 
measured immediately one after another. 

Detection of interferences of the test system 
When the enzymatic reaction is comf'Jlete after the time given in 
"Procedure" it can be concluded in generat that the reaction is not 
interfered. For assurance of results a re-start of the reaction (quali ­
tatively or quantitatively) by the addition of 'standard material' can be 
done: a further change of absorbance proves suitability of mea­
surements. ' 
For the detection of gross errors when performing the assays and of 
interfering substances in the sample material it is recommened to 
analyze a sample solution in a double determination with two 
different sample volumes (e. g., 0.10 ml and 0.20 ml): the measured 
absorbance differences have to be proportional to the sample 
volumes. 
When analyzing solid samples it is recomrnened !o wejgh ill 4'Jo 
different amounts (e. g., 1 g and 2 g) into 100 ml volumetric flasks 
and to perform the determinations with the sample volume: the 
absorbance differences have to be proportional to the amounts 
weighed in. 

4. Further applications 
The method may also be used in the examination of paper (Ref. 3), 
cosmetics (Ref. 9) and in research when .analyzing biological 
samples. For details of sampling, tleatment and stability of the 
sample see Ref. 1. 

4.1 Determination of glycerol in cosmetics 
Determination of glycerol in skin tonic 
Dilute sampte as far as the glycerol concentration lies under 0.4 gi l. 
Use undiluted or diluted salTlf'Jle for the assay. 

Determination of glycerol in pre-shave, after-shave 
If the after-shave is mixable with water withou t the occurance of a 
turbidity, proceed according to skin tonic. 

If a turbidity occurs after diluting the after-shave with water, this 
turbidity has to be removed with polyamide or activated charcoal 
(Clarocarbon~ F; registeled tradem<yk of E. Merck, Darmstadt, W.­
Germany): 

Mix 1.0 ml after-shave wi lh 9.0 I~I water, add 100 mg polyamide or 
activated charcoal, mix again and filter (dilution factor: 10). 
I! tile glycerol concentration in the filtrate is lower than 0.02 gil, the 
sample volume which has to be pipetted inlo the cuvette, can be in­
creased up to 2.0 m!. The quantity of water which has to be added 
must be reduced accordingly. 

Determination of glycerol in skin cream 
Weigll approx. 1 g skin cream accurately into a 100 ml volumetric 
flask. add apf'Jrox. 70 ml water and keep at 60 n C for 30 min, While 
occasionally shaking. After cooling to room temperature, fill up to the 
mark with water. Ptace volumetric flask in a refrigerator or better in an 
ice-bath for 15 min. Filter or centrifuge solution. 
I! necessary dilute filtrate or supernatant and use for the assay. 

Determination of glycerol in toothpaste 
Weigh approx. 1 g toothpaste accurately into 100 mt beaker, add 
af'Jprox. 70 ml water and extract for 30 min at 60°C while stirring 
(I 'eatable magnetic stirrer). Transfer suspension into centrifuge tube. 
Pour the clear supernatant int:) a 250 Illi volumetric flask after centri­
fugation. Rinse precipitate with water into a beaker and repeat 
extraction olle to two times. Fill up the volumetric flask to the mark 
filter, if necessary. ' 
Depending. on the !;j'ycero' concentration use clear solution, respec­
trvely the Itltrate dlreclly or after dilution with water for the deter­
mination. If the glycerol concentration in the clear solution or in the 
filtrate is lower than 0.02 gi l the sample volume, which has to be 
plpetted Into the cuvette, can be increased up to 2.0 m!. 1he water 
quantity, to be added, has to be reduced accordingly. 

Determination of glycerol in soap 
Weigh approx. 1 g grated soap accu~ately into a beaker, add approx. 
50 rnl Hel (0 .1 mol/ l) and while strrnng vigorously incubate on a 
heatable magnetic stirrer until boiling. Transfer aqueous phase with 
a pipette Into a 100 ml volumetric flask . Repeat extractiOn with 
approx. 30 ml HCI (0.1 mOI/I). Bring volumetric flask to room 
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telnperature and fill up to the mark with redist. water. Place volu­
metric flask in an ice-bath or refrigerator for 15 min. Filter through 
a fluted filter. Use filtrate, depending on the expected glycerol con­
centration. diluted or undiluted for the determination. 
If I"e !-jlycerol cUllcclllraliuII is luwer 1";:111 0.02 q/ l, the vulullIe which 
lIas to be pi petted into the cuvette can ue Increased up to 2.0 1111. 
In Ihis case the volume of the water quantity to be added has to 
be reduced accordingly. 

4.2 Determination of glycerol in plasma and serum (Ref. 1,2) 
Mix 1.0 1111 of plasl11a or serulll with 4.0 1111 of redist. waler in a 
cenli iluge tube and incubilte in iluoiling water-bath lor 5 Illin, centri­
fuge . Use 0.5 ml of the supernatant for the assay. 
The dilution factor F (depending on sample preparation) is obtained 
fro 111 the sample volume (t .O ml). the volume of redist. water (4.0 rnl), 
the specific gravity of the sample material (1.03 gl ll1l plasma or 
serum) and the fluid content (0.92 in case of plasma or serum): 

1.0 x 1.03 x 0.92 + 4.0 
F = --- - .. ----- = 4.95 

1.0 

Ca/Cll/atlon: 

0.5563 x IJ.A x F 
c = --- ---- [g glycerolll samplel 

E 

6.040 x IJ.A x F 
c = [mmol glycerolll sample] 

E 

Wavelength Hg 365 nm 340 nm Hg 334 nm 

c [g / lJ 0.8099 x IJ.A 
- ---t---

0.4371 x IJ.A 0.4456 x IJ.A 
---~.------

c [mmol/ il 8.794 x IJ.A 4.746 x IJ.A 4.838 x IJ.A 

4.3 Determination of "total glycerol" (= free and esterified gly­
cerol; Ref. 10) in serum 
Mix 0.2 ml of serum with 0.5 ml of ethanolic potassium hydroxide 
(0.5 mol/I ; free of glycerol!) in a centrifuge tube. Cover the tube with 
Parafilrn' (Iegistered trademark of American Can Co., Greenwich, 
Ct .. USA) and incubate for 30 min at 55"C (or for 60 min at 37"C, res­
pectively) in a water-bath. Allow to cool to room temperature, add 
1.0 ml of magnesium sulfate solution (0.15 mol/l ; free of glycerol), mix 
and centrifuge. Use 0.5 1111 of the clear supernatant for the assay. 

The dilution factor F (depending on sample preparation) is obtained 
from the sample volume (0.2 ml). the volume of the ethanolic potas­
sium hydroxide (0.5 1111). the specific gravity of the sample material 
(1.03 gl ml serum), and the fluid content (0.92 in case of serum): 

0.2 x 1.03 x 0.92 + 0.5 + 1.0 
F = = 8.45 

0.2 

Calculation: 

0.5563 x IJ.A x F 
c = E [g "total glycerol"/ l sample] 

6.040 x IJ.A x F 
c = ---f."-- [nllnol "total glycerol "/l sample] 

Wavelength Hg 365 nm 340 nrn Hg 334 nm 

c [gI ll 1.383 x IJ.A 0.7 462' x 6A 0.7606 x IJ.A 
----------jl-------

c [mmol/ il 15.01 x IJ.A 8.101 x 6A 8.259 x IJ.A 

4.4 Determination of glycerol in fermentation samples and cell 
culture media 
Place the sample (after centrifugation, if necessary) into a water-bath 
at 80 "C for 15 min to stop enzymatic reactions. Centrifuge and use 
the supernatant (diluted according to the dilution table, if necessary) 
for the assay. Alternatively, deproteinization can be carried out with 
perchloric acid or with Carrez-solutions. See the above-mentioned 
examples . 

HOlllogellize gelantinous agar rnedia with water and treat further as 
described. 

4.5 Determination of triglycerides by means of glycerol after 
enzymatic hydrolysis 
I\n especially advantageous mel hod of mlalyzing the fat con lent in 
dilrry products, such as milk, yugUl t or fresh cheese. is effected by 
means of glycerol deterlllination aller ellzymatic hydrolysis of the 
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triglycerides. The assay is carried out without. sample prepamtion 
and does, in particular, not Include preceding Isolation of fat In the 
diluted sample. Using this method, it is possible to determine the fat 
contenl in milk, even in low-fat products (see separate instructions 
"Triglycerides"). 

5. Determination of glycerol and dihydroxyacetone (Ref. 13, 14) 
in cosmetics • 
III the enzymatic reaction catnlyzed by GK. dihydroxyacetone is also 
phosphorylated (4) by ATP to dihydloxyacetone phosphate (DAP). 

. GK 
(4) Dihyroxyacetone + A TP ---> DAP + ADP 

The ADP formed hereby is converted according to the renctions (2, 3). 
Also here NADH is determined by rneans of its absorbance. 
The actually C<;)flsumed NADH amoullt _is stoichiometric with the 
dihydroxyacetone amount. 
Because both reactions are catalyzed by GK. a differentiation be­
tween glycerol and dihydroxyacetone can only be made by different 
GK activities in the assay. A slight GK activity is necessary for the 
conversioll of glycerol. Glycerol is converted with approx. 0.2 U GKI 
assay in approx. 10 min whereas dihydroxyacetone is converted 
practically not at all . After completion of the glycerol reaction, di­
hydroxy acetone is also converted entirely by increase in activity of 
GK (4 U) in approx. 40 min. 

Reagents . 
1. Test-Combination Glycerol , Cat. No. 148270' 
2. Glycerokinase, Cat. No. 127795' 
3. Ammonium sulfate, (NH,bSO" A. R. 
4. Dihydroxyacetone (for standard solution only) 

Preparation of solutions 
I. Buffer coenzyme solution 

Dissolve contents of one bottle 1 of 1he Test-Combination 
Glycerol with 11 ml redist. water. Leave approx. 10 min at room 
temperature before use. 

II. Pyruvate kinase/Lactate dehydrogenase, PKiLDH 
Use contents of bottie 2 of the Test-Combination undiluted. 

III. Glycerokinase, GK, diluted 
(0,25 mg/ml): 
Mix 0.1 ml of the contents of bottle 3 of Ihe Test-Combination 
with 0.3 ml ammonium sulfate solution M. 
The diluted suspension is stable for 6 months at +4 "C. 

IV. Glycerokinase, GK, concentrated 
(5 mg/ml): 
Use suspension undiluted. 
The suspension is stable for 1 year at +4 "C. 

V. Ammonium sulfate solution ; 
(3.211101/1) : I 

Dissolve 42.3 g (NH,bSO, in a 100 1111 volumetric flask with 
approx. 80 ml redist. 'water, afterwards fill up to 100 ml with 
redist. water. 
1he solution is stable for 1 year at 20-25 ' C. 

VI. Standard solution 
(0.40 g Dihydroxyacetone/l): 
Dissolve 40 mg dihydroxyacetone with 100 ml redist. water. 
Prepare freshly befof!! use. 
The measuring of the standards is only necessary (or checking 
the procedure. 

,----
Pipette into cuvettes blank sample 

solution (I) 1.00 ml 1.00 ml 
suspension (II) 0.011111 0.01 ml 
redist. water 2.00 ml 1.90 ml 
sample solution - 0.10 rnl 

Mix, alter approx. 5-7 mill read absorbances of the solutions 
(AI)' Start reaction by addition of 

suspension (III) 0.01 ml 0.01 ml 

mix, wait for completion of the reaction (approx. 10-15 min) 
and read the absorbances of the solutions (A,). If the reaction 
has not stopped after 15 min (e. g., with high concentratiolls of 
dihydroxyacetone), continue to read the absorbances at 2 min 
intervals until the absorbances decrease constantly over 2 min. 
Further addition of 

suspension (IV) I 0.01 ml J 0.01 ml 

mix, after completion of the reaction (approx. 40-45 min) read 
absorbances of the solutions (AJ). 

" he reaction is finished when samlJle and blank show the S<lnle nbsorballce change. 

5 Available frorn Boehringer Mannheilll GmbH . 
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If the nllsorb,Hlce of A:. decreases constanlly. Ihe nbsorbance is 
<)xlrafJolaledlo the nddition of sU5pension III. Oeterllline IIle absor­
iJance drfferences (A,-A,) for both blank and sarnple. Substractthe 
"lJsorbance difference of the blank frol11 the absorbance difference 
01 tile sarllple. thereby obtaining ClAu"'."'" 

Delermine the absorbance differences for both blank and sarnple 
(extrupol . A,-A,) . Subtract the absorbance difference of tile blank 
from the absorbance difference of the sample. thereby obtaining 
[j,AIJIIIYI Il O ~ Y'1r:C I !1I1~' 

Calculation 
It follows for glycerol : 

3.02 x 92.1 2.781 
c = .-. - .------- -.. x [:'A = --- [:, A [g glycerol/I sample 

£ x 1 x 0.1 x 1000 £ solution] 

for dihydroxyacetone: 

3.03 x 90.1 2.730 
c = .----.----.- x [:'A = -- [:, A [g dihydroxyacetone/ 

£ x t x 0.1 x 1000 £ I sample solution] 

If the salllple has been difuted during preparation. the resuft must be 
multiplied by tile dilution fuctor F. 

Instructions for sampfe preparation 
Cosmetics in emulsion form 
(milk. oil in water emulsion) 

Weigh approx. 5 g of the salllple material accurately into a 250 Illi 
volullletric flask. add approx. 200 mt water and keep at approx. 
60"C for 15 min. Swirl flask frequently. After cooling to room tem­
perature fill up to 250 ml with wuter. mix. Filter the solution through 
a fluted filter. Disca.d the first few ml. Mix 10 ml of the frequently 
opniescent solution with 10 ml trichloroacetic acid solution 
(30 11111101/1). centrifuge after 5 Illin (10 Illin. 5000 rpm). Use the clear 
solution. diluted if necessnry. for the assay. 

Cosmetics in lotion form 
(Lotion. solid purticles suspended in wuter) 

Wei~h approx . 5 g sumple material accurately into a 250 ml volu­
Illetrlc flask. add approx. 200 ml water and keep at 60"C for 15 min. 
Further procedures see "emulsions". 

GI cerol 
standard solution 
for Test -Combination Glycerol 

UV-method. Cat. No. 148270 

Concentration: see bottle label. 
Glycerot standard solution is a stabilized aqueous solution of gly­
cerol. It is used as standard solution for enzymatic determination of 
glycerol in foodstuffs and other sample materials. 

Application 
1. Addition of glycerol standard sO/lition to tile assay mixture: 
The standard solution is used for the determination instead of the 
sample solution. 

2. R<Jstar1 of tile reaction. quantitatively: 
After completion of the reaction with ~alllple solution and measuring 
of A, . add 0.02 1111 standard solution to the assay mixture. Read ab­
sorbance A., after the end of ttle reaction (approx . 15 min). Calculate 
the concentration frolll the difference of (A, -A,) according to the 
general equation for calculating the concentration. The altered total 
volume must be taken into account. Because of the dilution of tile 
assay mixture by addition of the standard solution. the result differs 
insignificantly from the data stated on the bottle label. 

02.9J.151.249041 '0 

With coutesy: Boehringer Mannheim, FRG. 

Cosmetics in oinhnentforrn 
(Ointlllents. creams. water in oil emulsions) 

Weigh approx. 2 g sample accurately into a 250 Illi volullletric flask. 
add approx. 2001111 water and keep at 60"C for 15 min. Swirl flask 
frequently. After cooling to room temperature fill up to the mark with 
water, mix. Place inside refrigerator for 20 min in order to separate 
the fat. filter. Discard the first few ml. Mix 10 ml of the possibily still 
opalescent solution with 10 ml trichloroacetic acid solution 
(30 mllloi/i), and centrifuge after 5 min (10 min at 5000 rpm). Use 
tile clear solution for assay. 
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3. Iliternal stalldard 
The standard solution can be used as an internal standard in order to 
check the determination for correct performance (gross errors) and 
to see whether the sample solution is free from interfering substan­
ces: 

Pipette into blank sample standard 
sample + 

cuvettes standard 

solution 1 1.00 ml 1.00 ml 1.00 ml 1.00 ml 
suspension 2 0.01 ml 0.01 ml 0.01 rnl 0.01 1111 
redist. waler 2.00 rnl 1.90 ml 1.901111 1.901111 
sample solution - 0.10 ml - 0.05 ml 
standard solution - - 0. 10 ml 0.05 ml 

--
mix. and read absorbances of the solutions (Ad after approx. 
7 min. Continue as described in the pi petting scheme under 
"Procedure". Follow tile instructions given under "Instructions for 
performance of assay" and the footnotes . 

The recovery of the standard is calcula'ted according to the following 
formula : 

recovery = 

© 1993 

2 x ~Asamp'e ~ stand<lfd - lJ.Asample 

6Ast:mdard 

-------_._-------_._. - .. -.. 
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Spurr' resin 

TAAB LABORATORIES EQUIPMENT LIMITED 

SPURR'S RESIN 
J '.I"'F."I& 'tOt/5E C.lllE" A '"f}vsrn' ''l r4nl( 
"lCE~II",,,S;O" 9E?I(Slune . e"GUtlQ pc: "f)'o'I 

TE J~J .. ItI::-:S 'J.. ~::a >11:881 THEe /JJ:.l:!a 

,;'IS !C· .... '/ isc:JSI:'j er:;bedding resin de': elcped lor ~Ie~::on r.1ic:osc~cv Ilo:!S ;:Ho'leo;: • .. er'! pooular for mere lilan 

20 'Ie~r3 but mere re~e!ltly ilas been tile slIiJleC! 01 muc!l spec:Jl.!tit;n O\'Gf its !cxic:'Y. This h3S resu!!ed in an 

inc:~=se in the use 0: TAAS premix resin kits wl ~i c:: 'i:;':it lile 1'211:Jlir.g v! i/.;; cc.-r.;:::;r.e!1:s 3nd unused reSin 

rr.:xt:J(~ :301 be leit in !he cont2!ners to harder. beio'e dispcsal elim i n'?"ir~g ,r.e ne"d lor weshing up ·"itil its 

as:;c: ;~!e-j ":;:<5. F:.JII ::eialls of tile resin are 0biail~E·:.! frOlii lhe 9aDer refarel1:::ed !.)e~c·lI . 

The sugges:ec stal1~ilrd embedding llIediurr. is !orrnu!a:ed as :olle"/s;, 

E.'l L ,1;:U6 resin 

DE::; 736 lfle:obilise'l 

NSA hardener 

'S; acceleralOr 

6.0r.l1 

25.0ml 

Tills mlAture ilas a pot ·:Je 01 3·4 days and silould be C:J'2C lor 8 hou,s at iO~C. r;a,der or sci;er blocks ::!Il !Je 
ot:ainaj l,y ·.'~'I'/t:g :I~e quarllily 01 DE::l 736 be,ween • . 01',1 and 8.0ml , increasing ,he quantit" 0: C~::l 736 ."ivi:lg 
scl:er blccks. 

A ;apia cure may te ;::ec:ed in J hour:; by increasing ,he quar.:il'{ of 5: to 1.0ml , Du! lbs re::uces ,ile pOI ·,iie to 
2 ·ja:.z. 

Tile cC l n~C:lEnt ::1 Spl.!rr resin giving most concern over its toxic:t\' is Ei;L o.l~06 . thare hu'/ e 2!S: Jeen c:ai;': 
regJrClii~~i tile calc:::oge!lic:ty. It sllould be assulIled il1e!e:ore 111~[ E;;L ':;:05 is :'8::~ :o:\ic 3:~~ C3i'::I~:gedc c::c 
e:-: ~;~;Hne C2Ll~!on should ai'.Iu'/S be exercised when USir:g ihe cl1emic31 ::nd its \.! s =~~ ~;lv l::J :;-.: "t:.i;[iC:cC :C 

c:Jr.;pe~E(jt \ec~~'iiciJflS Ollly, 3 t ec:J(Till1e!Jca:ton we 'llcule give 'Nith !~~e 'Jse or ai.r ,·;51ns . 

. '/ie are n.J'1I su ~ pl iing S: in qua:llitles of :!5mi ir. ilia ': ,:2·l S~lir:" ;,;1 S ;:~: 2' :~E: 1r:~::- " 31 has :i rr. :: i (: .;~.c.': ~ :::2: t:..; : 
:0 5 n::n:;,s, we fe'J! t:-,a! c~r de::sion '11i11 pre'. e! ~t ~r. e :ni!d'/~I!c!li ...::='2 of ck; : ;·. Z:2 ~ :~1. il~~~~t / iJr~ ' ~Il: : r~;; 
ir~C:)r; :S~<:; tEn! r(?3L!irs 

.~. ~t! l i . .H .~ . S;)UI(, J.~ ;:lI(.!s~ructure Research, 25.:; i . -l:j {1959J. 

HMICl.!NG ;=REC.~CiTlmIS : 

All ,,~cx -,. res:r~s may causa derrr.atilis and therefc ra CJre 5/IOU/0 ::e tal,en i:J a. ,Jid skin or ~'/e co,~::::. S;:: r. 

r.13Y ce '::asI1ed ·.vitl, s0ap ana plent'i of water. t 't es s:lcdd be ir"gJted ':;i~h cC;:Jio~s ql1a'~:;tfe.s :i '.vater . 

CoJr.taminate:! clo<lling sh,Juld be changed irnmediz:,,;\,. Cu:ed r~s :~s ue inert a ! t!~:;l1Gh resin d l ~~i ~h'J;,;!d iJe 
c';l)ICGG. A!v;Jys ... ".'ea: glo'J es alld use a :L!rr.~fllJcd ·,.-r.cne'/ er :Joss;b:~ . 

Catalogue reler~nce 

S024 Spurr 'S resin kit 

S031 Spurr P,emix kit, hard 

5032 Spurr Premix kit, medium 

SOJJ 5pIJrr Premix l<it, 50ft 

A full range of embedding moulds Jnd c~psule;, togeth~r witll sille!;' and I=ro!ec!ion equipment. chemicJls 
and clothing are listed in TA/\S's lull 232 page c.JtJlogue No.4. 

o H .:.eE~rr JC'tH \ !MMGltH'; o,neCion 
;- -.v '::C?!:~ Je",;- ·.I~IUGI"G omE';;oq 
J ...... 36v--O ~Ecro~ 
'.I.t .:.eecrr .. ..: .. ,~:..".,. SECRE;-~R Y 

QE 'jIS;:::!lE'J It, E'IGLHIO r,o '.19;--"', 
m: ':;:S-~ =EC' CFr:'C:: J -HOtHIBUR" CLCSE 
r; nC '.";I-1CRNE . 3E~KSHIRE , E'IGlAtJO 

With coutesy:TAAB laboratories equipment limited, England, 
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