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Abstract

Determining the electric quadrupole moments of gas molecules from measurements of
birefringence induced in the gas by an applied electric field gradient is widely recognised
as being the most direct experimental technique for this purpose. This thesis presents
a new molecular theory of the experiment, and also describes the apparatus used in
the measurement of the quadrupole moments of a number of gases and the revisions
made to the manner in which the experiment was performed. _

A recent eigenvalue theory of light propagation in matter has been used to derive an
expression relating the induced birefringence to the electric quadrupole moment of the
molecule, whether this be dipolar or not. This expression is different from that which
has previously been applied to dipolar molecules. It is shown that the new expression
is independent of molecular origin only if it is cast in terms of the primitive quadrupole
moment, as opposed to the traceless moment.

Previous work using the same set of apparatus yielded results for carbon dioxide
which were significantly lower than those reported by other workers. By using the Jones
calculus to re-examine the cascade of optical components used in the experiment, it
was found that the previous method of performing the experiment did not completely
eliminate the effects of an imperfect retardance in the quarter-wave plate used, nor of
strain-induced birefringence in the windows of the the cell containing the gas. These
effects could cause results to be underestimated by as much as 8%. It is shown that
a better method of performing the experiment is to amplify the optical signal by de-
liberately offsetting the analysing prism, rather than the quarter-wave plate as was
previously done.

The results of measurements made using this technique are reported for carbon
dioxide, carbon monoxide, nitrogen, ethene, chlorine, and boron trifluoride. The mea-
sured quadrupole moment of carbon dioxide is in good agreement with the most recent
values found by other workers using a similar experiment, and with the latest theoret-
ical value of this quantity.
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Chapter 1

INTRODUCTION AND REVIEW

1.1 The Multipole Expansion

The interaction between two molecules, as the simplest intermolecular process, is in
reality a many-body problem if one were to consider the effects of all the charges on each
other. To reduce this to a tractable description, simplifying assumptions are made. In
particular, the internal motion of the electrons in a molecule is often ignored, as is the
motion of the molecule as a whole, so that electrostatic theory may be employed. The
justification for this is that magnetic effects due to charges moving at non-relativistic
speeds are negligible when compared with the electrostatic interaction. Furthermore,
it is often sufficient to assume that the molecules are well-separated, in which case
the electrostatic field of the molecule need be determined only at distances in excess
of the molecular dimensions. The usual approach then is to expand the electrostatic
potential of a molecule about an arbitrary origin close to the charges, giving rise to a
series of moments of charge which may then be measured and used to characterize the
molecule.

Consider a distribution of charges ¢; in a vacuum with displacements r; from an
arbitrary origin O, which is within, or close to, the distribution. The electrostatic
potential to which the charge distribution gives rise at a point P having displacement
R from O is given by

Z q:
R

%

1
N 47T€()

¢(R)

If the distance from the field point P is much greater than the dimensions of the charge
distribution then we may use the binomial theorem to expand the denominator in the
summation, giving

11 R, 3R.Rs — R?8,p
p(R) = TE E;%*-ﬁ;%‘?”m-l- VT ;qir,—armﬁ—--- . (L.1)

In this expression, and throughout this work, Greek subscripts are used to denote

Cartesian components, a repeated Greek subscript implies a summation over z, y, and
z, and d,4 is the Kronecker delta tensor.



From (1.1) we may extract and name the various moments of charge of the distri-
bution. These are:

1. The total charge

¢=2 @
2. The electric dipole moment

B, == Z GiTia; (1.2)

3. The electric quadrupole moment

dop = ZQz’TmTiﬂ- (1.3)

Higher-order moments are named octopole, hexadecapole etc., but, because they make
successively smaller contributions to the electrostatic potential of molecules possessing
an electric quadrupole moment, we will not consider them here. It is worth remarking
at this point that the definition of the electric quadrupole moment given above is one
of two in current use; indeed, it would be true to say that it has hitherto been the less
favoured of the two. This matter is discussed at length in §1.2.

Written in terms of the moments of charge, the electrostatic potential of the charge
distribution becomes

1 R, 3RoRs — R%50p

oR) = RIT paket VG

Qop+ - . (1.4)

From this expression it is evident that terms involving successively higher multipole mo-
ments make contributions to the electrostatic potential which are successively smaller
by a factor of order %. So the usefulness of the multipole expansion is that the leading
non-vanishing moment describes the expanded property to a good approximation at
large R. Each multipole moment is regarded as being located at the origin O, because
its contribution to the expanded property depends only on the displacement R of the
field point P from O.

An electrostatic field E applied to the distribution will cause it to experience a net
force F, given by

Fa = ZQiEia
= q(Ea)o + 115(VpEos)o + 548/(VsVyEa)o + - -, (1.5)

in which the bracketed field derivatives are evaluated at the origin O about which
the field has been Taylor-expanded. This expression may be used to show that a
quadrupolar distribution will experience a torque in a region of uniform field gradient,.



It may also be used to find the potential energy of the charge distribution in the field,
given by

7‘2(E=E)
v=- F, dr,
r1(E=0)

E E
—a- [ HadBo =} [~ dapd(VpEL) — -+ (1.6)

It the distribution is rigid then only permanent moments contribute to (1.6), which
then becomes

U=q¢p—pOE, — 1qOVeEs —--- . (1.7)

The superscripted () on a multipole moment is used throughout this work to denote a
permanent moment of charge.

1.2 Definitions of Quadrupole Moments

Many authors [1, 2] prefer not to use the definition of quadrupole moment given in
(1.3), and which we shall henceforth refer to as the primitive quadrupole moment, but
choose an alternative definition of a traceless quadrupole moment

oy = 300~ o) = § KOs ), a8

so named because 0,, = 0. This definition is now almost universally accepted!, par-
ticularly by experimentalists, and is represented in the literature by either 8,5 or Q.
In this work 6,5 and ©,4 denote, respectively, the traceless quadrupole moment of a
single molecule and the macroscopic traceless quadrupole moment density; and g,s and
Qop are used to represent the corresponding quantities for the primitive quadrupole
moment.

Through suitable choice of a system of principal axes for a charge distribution, the
off-diagonal components of 6,5 and g¢,s may be made to vanish. Inspection of (1.8)
shows that the two definitions of quadrupole moment will share the same set of principal
axes for a given charge distribution. Referred to such axes, only the three diagonal
elements remain. These are independent in the case of dag, but related by 0,, = 0 in
the case of the traceless tensor. This means that only two independent components
are, in general, needed to specify 6,5. For a molecule having an axis of 3-fold or higher
rotational symmetry, taken to be the z-axis, only one independent component, 6,.,,
exists. It is this single component of the traceless quadrupole moment which authors

often denote by 6 or @, and which is referred to simply as the quadrupole moment of
a linear molecule.

"The factor % is occasionally omitted by some authors.



Since it generally requires one less number to specify a traceless quadrupole mo-
ment than it does to specify a primitive one, it appears advantageous to adopt the
traceless definition. In this case one should consistently use traceless definitions for
higher multipole moments, in the sense of these being traceless in any two of their
tensor subscripts. Raab [3] has shown that traceless moments of higher order than the
quadrupole are unable to specify the interaction Hamiltonian describing the interaction
between an electromagnetic field and a system of charged particles; nor are they able
to describe the radiation field of such a system. Furthermore, the necessarily fewer in-
dependent components needed to specify traceless moments are sometimes inadequate
when describing a dynamic process. For instance, a molecule having Cy,, symmetry
has only one independent component of its traceless octopole moment, but this single
number is insufficient to describe its interaction with a plane light wave. The primitive
octopole moment, on the other hand, has two independent components which together
are able to account completely for octopole interactions in general.

Buckingham [1] motivates the use of the traceless quadrupole definition by pointing
out that it gives a measure of the departure from spherical symmetry of a charge
distribution. The primitive quadrupole moment ¢,4 is not, in general, zero for a sphere.
Nuclear physicists define the nuclear quadrupole moment to be traceless for much the
same reason.

It is shown in (1.7) that the primitive quadrupole moment contributes to the energy
of a rigid charge distribution in a vacuum in an externally applied field through the

term —%qg)ﬁ) Vo Eg. From (1.8) we may solve for the primitive quadrupole moment,

Gap = 500 + 39vr0ap, (1.9)
and then rewrite the quadrupolar energy contribution as

0 0
~3055VaEs — 2OV E, = ~160)V, By,
since, from Laplace’s equation V,E, = 0, the trace term vanishes. Thus, when describ-

ing the energy of a system of charges in an applied field, it is sufficient to replace %qgg

with %922, despite the fact that these are not identical. To see that we have gained
nothing by doing so, we may expand the tensor contraction of the energy contribution

from the primitive quadrupole moment, referred to principal axes, and rearrange it to
give

—30 3 VaEp = ~L[(OV,E, + ¢OV,E, + (OV,E,]
= —3l¢y — dDV,Ey + (42 - ¢9)V.E,],

in which Laplace’s equation has been used to express one component, of the field-
gradient tensor in terms of the other two. From this it may be seen that the interaction
energy requires the specification of only two quadrupole parameters; these being the
differences between any two primitive quadrupole components and the third. Con-
versely, any experiment, such as the birefringence experiment described in this work,



in which the observable is a manifestation of the effects due to the energy of interaction
between a molecule and an applied field, can at most measure these two parameters.
Redefining these quantities as a new tensor may lead to erroneous results if, on re-
placing the primitive quadrupole moment with the traceless form, exact equivalence
between the two definitions is violated.

An example of this concerns the form of the quadrupolar contribution to the D-
vector in Maxwell’s equations, when expressed in terms of the traceless quadrupole
moment. This expression may be shown to have the form [4, 5]

D, =¢cyE,+ P, — %V5Qaﬁ+'°' 5 (110)

in which P, is the macroscopic electric dipole moment density. As with the energy, we
may substitute into this the macroscopic equivalent of the identity in (1.9) to obtain

Do =e0Eq+ Po— 3V3O0ap — 1VaQyy + -+ . (1.11)
However, the form used by some workers [6, 2] in the past has been
Do =€0Ey+ Po — 3VO0p + -+, (1.12)

despite the fact that @), is not necessarily uniform everywhere.

Logan [7] has used (1.12) in considering the non-linear dielectric response of an
ideal gas to an externally applied non-uniform electrostatic field, and has found that
the dielectric vector so obtained is dependent on the arbitrary origin to which the
molecular moments are referred. This is physically untenable since the interpretation
of experiments in which measurements are made of bulk physical observables of matter
in order to obtain estimates of multipole moments cannot depend on an arbitrary choice
of origin in a charge distribution.

Graham et al. [5] have taken this further and have shown that this form for D,
leads to a set of Maxwell equations which are themselves origin-dependent. This is not
the case if the trace term in (1.11) is retained. In their analysis of the birefringence
experiment based on the use of Maxwell’s equations, Imrie and Raab [8] have also
found that the use of (1.12) leads to an expression for an observable which is not
origin-independent.

For the above reasons, the primitive quadrupole moment will be used in this work,

except in certain cases where reference is made to the work of authors who have adopted
the traceless definition.

1.3 Experimental Determination of Electric Quad-
rupole Moments

1.3.1 The importance of measuring quadrupole moments

A number of methods are available for measuring electric dipole moments with good
accuracy, whereas the electric quadrupole moment is somewhat more difficult to es-
tablish. Judging from the number and diversity of experimental methods which have



been used to measure electric quadrupole moments, it is apparent that endeavouring to
obtain these experimental values is considered a worthwhile pursuit. Justification for
the experimental determination of electric quadrupole moments is well-documented,
since seemingly few authors appear willing to begin a paper on the subject without
including at least a few lines vindicating their work. Reasons given usually fall into
one of two broad groupings.

The first group includes all the interaction effects which are greatly illuminated by
the inclusion of the quadrupole term in expressions for the intermolecular forces and
energies. This is of greatest importance in those molecules for which the leading contri-
bution in the interaction is quadrupolar. In an early review Buckingham [1] showed that
a number of effects and properties arise as a consequence of significant contributions
being made by the electric fields of quadrupole moments to the orientation-dependent
part of intermolecular forces . Knowing the form of the intermolecular potential for
two similar molecules may yield valuable information regarding the condensed phase
of a substance. In the case of nitrogen, the properties of the solid and liquid phase
are primarily dependent on the intermolecular potential energy, which Béhm [9] has
shown to be quite sensitive to the quadrupole moment. The possibility of predicting
the structure of van der Waals molecules using theoretical models based on electric
moments of the monomers has also highlighted the need for accurate values for these
quantities [10]. ‘

In the second class of reasons are those which require an accurate experimental
quadrupole moment to test a theoretical prediction. The importance of this becomes
apparent when one considers that molecular quadrupole moments are sensitive to the
distribution of charge in the outer regions of the molecule, in contrast to the energy
which is largely determined by the electron density closer to the nuclei. This makes
quadrupole moments a very good test of the correctness of the wave functions used
to predict them. Once quadrupole moments are able to be calculated with accuracy,
greater confidence will be placed in theoretical values of higher multipole moments
which do not lend themselves to accurate experimental determination.

1.3.2 The method of induced birefringence

Although (1.7) suggests that the quadrupole moment of a molecule might be measured
through the change in energy when a known field gradient is applied to it, this approach
is impracticable owing to the difficulty of producing a sufficiently large field gradient
over molecular dimensions.

An experiment first proposed by Buckingham [11] in 1958 provides an elegant vari-
ation on this idea. Gas molecules with permanent quadrupole moments are contained
in a cell having on its axis a region of uniform high field gradient which, through the
torque it exerts on a quadrupole, partially orientates the molecules, causing the gas to
become anisotropic and to exhibit birefringence. Within certain approximations the
induced birefringence may be shown to be proportional to the product of a compo-

nent of the field gradient tensor and the expression 3qg)ﬁ)aag — qfﬂlaﬁﬂ, in which a,g



is the high frequency polarizability tensor of the molecule. It is easily shown that, for
a molecule having 3—fold or higher axial symmetry about the z-axis, this molecular
factor becomes (¢'9 — ¢)(a,. — azz). The difference a,, — a,, may be found from
light-scattering experiments, thereby allowing the induced birefringence experiment to
yield a value for ¢{9 — ¢{9 for linear molecules. Whilst there is no doubt that this is
the most direct way of measuring this difference, it is certainly a drawback that the
components of the quadrupole tensor cannot be separated using this experiment. An
example of the analysis of birefringence measurements performed on non-linear gas
molecules is given in §5.3.6 which deals with the results of measurements performed
on ethene.

Since it is only the leading moment of charge which is independent of origin [1], it
follows that the quadrupole moment of a dipolar molecule must necessarily be depen-
dent on the origin to which it is referred. Just where this origin is located in polar
molecules was a matter first investigated by Buckingham and Longuet-Higgins [12]
and later by Imrie and Raab [8]. Although the results from these calculations do not
coincide, they do establish that the origin of the quantity ¢{?) — ¢'%9 measured in the
birefringence experiment is a point within the charge distribution at which a certain
linear combination of molecular tensor components vanishes. This point is usually re-
ferred to as the effective quadrupole centre [12] and is certainly not the centre of mass of
the molecule, which is the point usually taken as the origin when quadrupole moments
are calculated theoretically, or when other experiments to determine this quantity are
performed. In the case of linear molecules, for which both these points lie on the molec-
ular axis of rotational symmetry (taken as the z-axis), quadrupole moments referred
to these two different origins are easily shown to be related through the equation

00 (c.m.) — 09 (e.q.c.) = 2Ru® (1.13)

z )

in the case of the traceless quadrupole moment, or

(cm.) - ¢D(e.qe) =0 (1.14)

and
¢ (cm.) — ¢ (e.qe.) = 2Ru?, (1.15)
in the case of the primitive quadrupole moment. In these equations u{® = @]

is the electric dipole moment and R is the distance from the inertial centre to the
effective quadrupole centre of the molecule. From this it may be argued that molecules
having relatively small dipole moments, as is the case with carbon monoxide (CO)
(1) = 0.366 x 1072 Cm), will possess quadrupole moments which should show very
little dependence on which of these two origins is used, whereas the specification of
the origin is very important in highly polar molecules, such as carbon sulphide (CS)
(1 = 6.54 x 1073 Cm) [13]. Furthermore, if the quadrupole moment is measured
by two different experiments which refer it to these two different origins, then the
above relationships may be used, together with the dipole moment of the molecule,



to determine the displacement of the effective quadrupole centre from the centre of
mass [13]. However, if this displacement is not known from some other method, then
it is not possible to compare meaningfully the quadrupole moments of strongly polar
molecules as measured by the optical birefringence method with those found from other
experiments or from theoretical calculations.

1.3.3 The second virial coefficient method

Deviations from ideal behaviour in a gas are entirely due to the effects of interactions
between the gas molecules. One may expand the deviation from the ideal gas law in
inverse powers of the molar volume V,,,, thereby obtaining
(%_1> :&+&+&+...,
RT Vi Vo ¥

where B, C,, and D, are, respectively, the second, third, and fourth pressure virial
coefficients, and are, in general, functions of the temperature of the gas. Other symbols
in this equation have their usual meanings. An explicit expansion for B, in terms of
the interaction potential for non-polar molecules has as its leading unknown parameter,
the electric quadrupole moment [14]. Since the second virial coefficient of a gas may be
experimentally determined with good accuracy, such data may then be used to provide
an estimate of the electric quadrupole moment. The results are, however, dependent
on the choice of model used to describe the interaction potential. Spurling and Mason
[15] have obtained estimates of molecular quadrupole moments from pressure virial
coefficient data, as well as from viscosity measurements, but agreement with results
obtained from more accurate experiments, such as the optical birefringence technique,
is, in most cases, poor.

Whilst the second pressure virial coefficient no longer finds favour as a means of
determining electric quadrupole moments, Bose et al. [16, 17, 18, 19, 20] have, for
more than two decades, been publishing work relating to the determination of quad-
rupole moments from the second dielectric virial coefficient . In this approach it is the
Clausius-Mosotti function z;; Vin which is expressed in inverse powers of the molar

volume: { B C
Er — € 3
Vm=Ac+ —+—+---
D M L VAR 7o AL
where ¢, is the static dielectric constant, and A., B,, and C. are, respectively, the first,
second, and third dielectric virial coefficients, accounting for contributions from single

molecules, pairs, and three-body interactions. In the case of a non-polar gas, such as
nitrogen, the first dielectric virial coefficient is given by

o Noa
B 360 '

A,

where Ny is Avogadro’s Number and « is the polarizability of the molecule. From the
classical statistical theory of Buckingham and Pople [21], the second dielectric virial



coefficient may be expressed as the sum of two terms:
B. = Bip + Bor,

in which Binp accounts for the effect of interactions between the external field and
the dipole moment induced in a pair of molecules, whilst Bog is due to the moments
induced in one molecule of the pair by the multipole field of the other. It is Bogr which,
for a non-polar molecule, may be expressed in terms of the electric quadrupole moment
[22], and so it is necessary to eliminate Biyp from the the above expression for B,. This
may be accomplished by considering another virial coefficient expansion; this time it
is the optical frequency analogue of the Clausius-Mosotti equation, the Lorenz-Lorentz

equation , -
n°—1 BR R
nQ—HVm:AR-f-V—m-f—V—T%'F‘“,
in which n is the refractive index, and Ag, Bg, and Cg are the first, second, and third
refractivity virial coefficients, respectively. At optical frequencies Bgr = Binp [22], and
hence measurements of the second dielectric and refractivity virial coefficients will yield
a value for Bog, from which the electric quadrupole moment may be obtained. As in
the case with the second pressure virial coefficient method, the result is dependent on
the model chosen for the interaction potential. A recent result reported by Bose and
Huot [22] in which they used this approach with a Lennard-Jones pair potential to
determine the quadrupole moment of molecular nitrogen, is in very good agreement
with results obtained from induced birefringence measurements.

1.3.4 The anisotropic magnetic susceptibility method

By the end of the 1960s microwave spectroscopy had been established as an effective
technique for measuring the molecular Zeeman effect in diamagnetic molecules. Until
about this time measurements in the microwave region were restricted to the mea-
suring of effects linear in the applied magnetic field, yielding values for the diagonal
components of the molecular g-tensor. However, it now became possible to separate
out effects which are quadratic in the field, and from such experiments to obtain values
for the g-tensor and the anisotropy in the magnetic susceptibility of a linear molecule.

These two pieces of information may be used in the determination of molecular
quadrupole moments, since Hiittner et al [23] have shown that, in the system of cgs
units, for linear molecules,

hle|g 4mc?
00 — 40) _ 40 — 2 -
zz qx:c qu 47TMpB 16' (XZZ X:rx),

in which e is the electronic charge, M, and m are the proton and electron masses, B
is the rotational constant, c the speed of light, and y the magnetic susceptibility.

The measurement of molecular g-tensors and susceptibilities is an important under-
taking in its own right; the determination of electric quadrupole moments is just one



of several important molecular properties which may be deduced from these results.
Another is the direction of the electric dipole moment, which may be determined for
molecules having at least two different isotopic species. Flygare et al. [24] have reported
the construction of a very large magnet capable of producing fields in excess of 30 kG
over a length of 1.8 m which they have used to perform measurements of high precision
on various molecules [25, 26, 27] . Despite the precision of these measurements the
quadrupole moments obtained are not always of great accuracy, because the two terms
in the above expression for the quadrupole moment are often large in comparison with
their difference. This is, for example, the case with carbon monoxide [13].

A useful feature of this method, which is not shared by the optical birefringence
technique, concerns the number of components of the quadrupole moment that may
be determined. In general, the measurement of the magnetic effects allows one to
measure the sign and magnitude of the diagonal components of the quadrupole moment
tensor along the principal inertial axes of the molecule. In the case of symmetric tops
or asymmetric top molecules with a two-fold symmetry axis, the principle axes of
the quadrupole and inertial tensors coincide, and so for these molecules the entire
quadrupole moment tensor may be measured [28].

1.3.5 Other methods

Probably the most popular quadrupole measuring technique not yet discussed is that
which uses measurements of collision-induced line broadening in the infrared and mi-
crowave spectra of molecules. As with all indirect approaches, results from this tech-
nique are dependent on the model adopted to describe the interaction potential. Some
workers have succeeded in obtaining results which are in reasonable agreement with
those obtained from birefringence measurements [29, 30], but the precision of reported
values is seldom better than 10%, whereas the birefringence technique is now capable
of far greater accuracy than this.

An entirely different approach, to which only a single reference was found, entails
calculating molecular quadrupole moments using data obtained from ion-molecule scat-
tering experiments [31]. Low-energy ions were scattered off various simple molecules,
and the molecular cross-sections calculated. Scattering of low energy particles is es-
sentially determined by the long-range potential which, for the molecules chosen, is
quadrupolar in nature. Results reported for nitrogen and carbon dioxide are in excel-
lent agreement with the best birefringence results available at that time, but again the
precision is to only two significant figures.

The last experimental method worth mentioning is that which relates the quad-
rupole moment to the nuclear spin relaxation times for gas molecules. Bloom et al.
[32] have reported a series of such experiments on elementary gas molecules . De-
spite several approximations in the theory, the quadrupole moments thus found are in
surprisingly good agreement with birefringence results.

There is no doubt that the induced optical birefringence experiment, being the
only direct technique, is currently the most accurate experiment for determining the
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electric quadrupole moments of gas molecules. Other methods, however, should not be
summarily dismissed, since they are very often capable of producing results in cases
where the optical birefringence technique is inapplicable due to the smallness of the
effect. Furthermore, they may also be able to render additional information about the
quadrupole moment tensor, as is the case with the anisotropic susceptibility method.

11



Chapter 2
THEORY

2.1 Outline of the Experiment

The method of determining electric quadrupole moments of gas molecules by measur-
ing birefringence induced in the gas was first described by Buckingham in 1959 [11].
Containing the gas is a cell made from a hollow conducting cylinder, down the length
of which are strung two thin wires, separated by a small distance!. By earthing the
cylinder and holding the wires at a high potential, a region of high electric field gra-
dient and zero electric field is created on the axis of the cylinder. Choosing Cartesian
axes such that the wires lie in the yz-plane and the z-axis coincides with that of the
cylinder, it may be shown (see Appendix A) that the electric field-gradient tensor in
the region between the wires has the form

E.. 0 0
VoBy=Eyy= |0 —E, 0|, (2.1)

On, or near, the axis of the cell, a molecule possessing a permanent electric quadru-
pole moment will experience an orientating torque analogous to that experienced by
dipoles in a region of uniform field; the molecule will attempt to orient itself in such
a way as reduce its potential energy by an amount —%q&o) o3 LThe partial alignment
of molecules results in the gas in this region becoming anisotropic and exhibiting bire-
fringence. This effect, though small, may be measured through the use of techniques
described in Chapter 3. The problem discussed in this chapter is that of relating the
measured birefringence to the permanent electric quadrupole moment of a single gas
molecule.

'Buckingham originally proposed generating the field gradient by using a quadrupolar arrangement
of four wires, but this was rejected in favour of the two-wire configuration because of the smaller
likelihood of arcing occurring at high voltages.
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2.2 The Special Case of Non-Polar Molecules

Historically, the problem under discussion was first solved by Buckingham [11] in 1959
for the special case of non-polar molecules. Because this theory has since been super-
seded by the more general theories of Buckingham and Longuet-Higgins (1968) [12]
and Imrie and Raab (1991) [8], only the main result is presented here. Many of the
techniques employed in obtaining this result, such as expressing the molecular moments
in terms of polarizability tensors and the field and field gradient, and the principle of
orientational averaging, are common to all three theories and will be discussed in §2.4.

There is an important check for the theories that followed the earlier work: the
expressions from these theories should reduce to that from the original theory for
the special case p, = 0. The result from the original theory is this: The optical
birefringence induced in a dilute gas by the electric field gradient is

L 471']\/.()E‘:uC [ + 1 H(O)CY ]
T Ny = = aevr apa PG o «
3 V" 4mey 15V, Pap T pT op =P

in terms of the traceless quadrupole moment, and

(2.2)

1 47TN0E:IB$

Toe = Mg = 4rey 15V,

[%(3baﬁaﬂ — baapp) + %(31152%;3 - qg&)aﬁﬂ)] (2.3)
in terms of the primitive quadrupole moment. The symbols appearing in these equa-
tions have the following meanings: n, and n, are the indices of refraction for monochro-
matic light passing along the axis of the cell and polarized in the z- and y-directions,
respectively; €¢ is the permittivity of free space; Ny is Avogadro’s number; V,, is the
molar volume of the gas; E!  is the single independent component of the electric field-
gradient tensor; k is Boltzmann’s constant; 7" is the absolute temperature of the gas;
and o,p is the polarizability at the frequency of the light wave. The tensor Bogys
describes the traceless quadrupole moment induced in a molecule by a uniform electric
field, whilst b,s,s is the corresponding tensor for the primitive quadrupole moment.
The existence of a non-zero electric field off the axis of the cell means that there
will exist additional birefringence in the region traversed by the light beam due to the
Kerr effect, and proportional to the square of the electric field. By modulating the
field at a frequency f and using phase-sensitive detection techniques, we may eliminate
Kerr effect contributions since these may be resolved into a static component and a

component of frequency 2f. Hence it is unnecessary to include expressions for the Kerr
effect in (2.2) and (2.3).

2.3 The Buckingham and Longuet-Higgins Theory—
A Forward-Scattering Approach

Birefringence measurements may equally well be performed on polar molecules as on
non-polar molecules and then (2.3) may be used to find their ‘quadrupole moments’.
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But the quadrupole moment of a polar molecule depends on the origin to which it is
referred, so the question arises as to just where the origin is located if the quadrupole
moment is evaluated in this way. Buckingham and Longuet-Higgins [12] tackled this
problem by using a radiation or ‘forward-scattering’ approach. Their result disagrees
with that found by Imrie and Raab [8] whose eigenvector approach based on Maxwell’s
equations is described in §2.4. In order to be able to compare these two theories and the
expressions which they yield, an account of Buckingham and Longuet-Higgins’ forward-
scattering theory is presented here, reworked in terms of the primitive quadrupole
moment.

We begin by rotating the axes chosen in §2.1 by —7 about the z-axis. If we consider
only field points r = (z,v, z) lying close to the z-axis, then the forms of the field and
field gradient are

E(r) = (ny,nz,0) (24)

and

n
!
0

o3I O
= < i ]

in which 7 is a constant of proportionality which depends on the geometry of the cell
and the wire voltage.

Consider a molecule whose origin, assumed to lie close to the molecule, is arbitrarily
taken to be at the point S = (x,y,0). From (1.7) the orientational energy of interaction
of the molecule with the field to terms which are of first order in the field and field
gradient is given by

A1 0)
U ——Mg Eq - ‘qaﬂE;ﬁ
z—nmyy+u”x+¢m+ ). (2.6)

The number of molecules in a volume element dv is given by Ndv, where N is the
number density of molecules in a field-free region and is assumed to be unaffected by
small fields. For infinitesimal dv, Ndv represents the probability of finding a molecule
in this volume element. The assumption of small fields also allows us to assume that
the rotational energy levels of the molecule are continuously distributed, having a
Boltzmann distribution factor e"V(")/*T where 7 is an orientational element. Hence
the probability of finding a molecule in the volume element dv at S(x,y,0) and in the
orientational element dr at 7 is

P(‘Tay70,7')d'l)d7' :ie_U(T)/devdT
[dr

N
f— (1 + g[u(x Jy + pOz + ¢ + ]) dv dr. (2.7)
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This expression will be used later as a weighting factor when integrating over the beam
aperture.

An electromagnetic plane wave polarized in the z-direction and propagating in the
z-direction with velocity c is incident on on the molecule at (x,y,0). Then the radiation
field at this point is

éox = (goOzeiwta

where w is its angular frequency . Buckingham and Longuet-Higgins [12] make the
following observation:

A weak out-of-phase and perpendicular plane wave i&,*) exp(iw(t — z/c) is
generated in front of the detector at the point D = (0,0, z) by a wave plate
or a Kerr cell. The observable is the intensity at the detector D which
varies linearly with n and is polarized in the y-direction.

Understanding this statement requires some knowledge of how the experiment is per-
formed. This is discussed in the next chapter, but it suffices to say here that the
quadrupole cell is located between two crossed polarizers, so that for an incident beam
polarized in the z-direction, only emergent light with y-polarization is ‘seen’ by the
detector. Furthermore, a wave-plate (or Kerr cell) is located between the quadrupole
cell and the analyser for the purpose of converting elliptically-polarized light emerging
from the quadrupole cell back into a state of linear polarization. Even in the absence
of birefringence within the cell, this wave-plate will, because its fast and slow axes do
not coincide exactly with the z- and y-axes, give rise to a component of emergent light
that will pass through the analyser.

The electromagnetic wave induces in the molecule at S(z,y,0) oscillating electric
and magnetic moments

Na(t) = ﬂaniwta
QQ,B (t) = q0aﬁeiwt’

Mq(t) = moae™, (2.8)

where the magnetic dipole is given by

Mo = Z ;n (i X Pi)a, (2.9)
in which ¢;, m;, and p; are, respectively, the charge, mass, and linear momentum of
the ith particle; and r; is its displacement from the origin. Since effects due to electric
quadrupole moments are comparable to those due to magnetic dipole moments, we shall
consistently retain terms which are of similar order in the electric quadrupole /magnetic
dipole approximation.

The oscillating moments give rise to a vector and scalar potential at D which may
be used to find the radiation electric field. The general expression for the field in
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vacuum is given by Raab [3]; to terms linear in the electric quadrupole and magnetic
dipole it is

1

én(R,t) = e

[{(RaRp — R*dap)/c*R*Hiiip(t) + (Ry/2¢R) T (t') + -+ }

+ earg(Rr/SR*)1ng(t) + - -], (2.10)

in which ¢ = ¢t — R/c is the retarded time, R is the vector from S(z,y,0) to D(0,0, z),
and £,)s is the alternating tensor. When applying (2.10) to the geometry considered
here, we must, therefore, set R, = —z, R, = —y, and R, = z. Time derivatives of the
moments of charge are evaluated from (2.8) and then substituted in the expression for
the y-component of (2.10), since it is this component that reaches the detector. The
total electric field at D with y-polarization is then given by

1 w26—iw(R—Z)/c 0| T
&y = [iéay(o) + (uy + g,uz) == (mz + —mz)
z Cc z

4meg zc?

w Yy T w(t—z/c
5 (qyz + (0 — ay) — ZQyz) cALE }le (p=efel, (2.11)

in which it has been recognised that R,, R, < R, and R, =~ z for molecules on or near
the axis of the cell. As expected, the orthogonal component of the #-field of the light
wave is given by

H, = -6,

Y

so that the intensity recorded at D(0,0, z) , given by the time-averaged Poynting vector,
is

Cc Cc
By = .= &y + 6y A = — &y8y, (2.12)

where the bar denotes a statistical average over all molecular positions and orientations
with the weighting of (2.7), and the superscripted * denotes a complex conjugate.

If the beam diameter 27y is much smaller than the distance to the detector z then
we may replace R — z with (2% + y?)/2z. This approximation is good to within 0.25%
for = > 1079. Replacing R with z in places other than in the exponential to obtain
(2.11) introduces an error of less than 0.5% if z > 10r,. Integrating the expression for
&y&, over the aperture of the beam introduces three kinds of integrals:

1.

/TO /TO eﬂ:iw(22+y2)/22cd$ dy,
—ro J—ro

/TO /TO xeﬂ:iw(z2+y2)/2zcdx dy,

=16 J=10
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/TO /TO I2€:tiw(m2+y2)/22cdz dy
—ro J =70

Buckingham and Longuet-Higgins replace these integrals with the limiting case ro — oo.
We consider here the validity of doing so.

The integrand in the second case is an odd function of x so this integral is always
zero. The third case is reducible to integrals of the first and second case through the
technique of integrating by parts. Thus we need only consider the first integral, which
may be rewritten in the following way:

Ty T 2 T 2 2
/ ) / ) i@ +y?)/2ze g dy =4 l/ i cos <£> dz j:z'/ ’ sin (£> da:]
A ) 0 22¢ 0 2zc
s 2
/TO Y7 cos <Et2> dt + z/ "V sin (Eﬁ) dt
0 2 0 2
2
= i [C’ <r0\/i> +iS (ro i)] '
w mze T2C
where C(z) and S(x) are Fresnel integrals defined by [33]
z T
C(a) = [ cos (3 ) dt,
(z) | cos 2t
z m
S(@) = [sin (5¢) d.
(z) | sin 2t

The limiting cases of these integrals are

dmzc
w

(2.13)

23, Ole) = lim S(z) = 5.
Convergence to these limits is relatively slow; the expressions given on page 300 of [33]
which generate approximate values for Fresnel integrals for > 5 may be used to show
that C'(z) and S(z) are bounded within 1% of their limits only when z > 60. Thus,
if we are to replace the Fresnel integrals in (2.13) with their limiting values, we must

ensure that
[ [ 2
7o e o4/ — > 60.
TZC ZA

If we use a He-Ne laser wavelength of 638nm and consider the case of z — 107y,
then this leads to the restriction 7y > 11mm. Typical laser beam diameters are of
the order of 1 mm, whilst z may be as much as 2m. This raises questions about the
validity of using the limiting case 7y — co. Furthermore, it is clear that the range
of ratios of z to ro that make all the above approximations valid is bounded above
and below. If the pathlength of the beam through the gas 1s much greater than the
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diameter of the beam then some of these restrictions must necessarily be experimentally
violated. Notwithstanding these reservations concerning the cogency of this step, we
shall present the remainder of the forward-scattering theory on the assumption that
all these approximations are valid.

If distortion of the molecule by the field and field gradient is ignored then (2.11)
and (2.12) yield

8?”11/ _ (gy(o))z o 47350 27erCé”y(0)Zo <%qu {(My + 1) — %(mx +m?)
+;ﬂc(qyz —q;‘z)}
= CchnTuiO) {uz ~ = ;_acj(ny +hy — G — q;‘z)}
4 0 2 — ) + e ) )

(2.14)

Expressions for the induced moments and quantum-mechanical expressions for the
polarizability tensors should properly be introduced and justified here. However, in
order that the discussion of the alternative theory to be presented in §2.4.1 might be
self-contained, we shall not do so here and instead use the results given in (2.16), (2.17),
(2.18) and (2.24). These express the oscillating moments as:

Mo = aaﬁéaﬂ + %aaﬁ'yvygﬁ + wan;ﬂ%ﬁ —+ .- 5

Qap = Qyapby + -+,

Mo = —w ' Gyob+ -+ .
Since the only non-zero component of &, is

éax - éaneiw(t—z/c)’

the amplitudes of these moments become
B w ; 0)
Hoa = (aaz = 2_caazz + EGay) éag; )
doap = amaﬂéag:(())7
Mmoo = —’LG;aéZEO)
Substituting these into (2.14), making use of the fact that the polarizability tensors

are real (see (2.22) - (2.26)), and using the isotropic averages given in (2.37) to perform
the averaging, yield the final expression for the intensity at the detector:

87 1 TNw&® L0z
ST e L palisg g @y 207 1. (0) _ o.(0)
e e [ [6a53025 — 20205

20
— /"1’((10) (6aﬁga = 2aaﬁg + U€aﬁ7 ,IB’Y>1| (215)
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Buckingham and Longuet-Higgins have also investigated the distorting effect of the
applied field and field gradient on the polarizability tensors. We shall include this effect
in the presentation of the new theory, but do not consider it here since it provides no
further insight into the principles of the forward-scattering approach. Discussion and
interpretation of (2.15) are deferred until §2.5 where comparison with the analogous
result from §2.4 will be made.

2.4 Theory of Induced Birefringence Based on Max-
well’s Equations

The molecular theory of the induced birefringence experiment presented in this section
was developed as an alternative approach to the radiation treatment outlined in §2.3.
Its presentation here closely mirrors the manner in which it has been reported [8].

2.4.1 Molecular multipole moments induced by a light wave

In the treatment that follows we shall consider a dilute gas of neutral diamagnetic
molecules.

We begin by considering the effects due to a plane monochromatic light wave of
angular frequency w impinging on an isolated gas molecule. The multipole moments
induced by the oscillating electric and magnetic fields, & and %, and the space and
time derivatives of these fields are given by

Mo = Ozaﬁéag - %aaﬂ7V7<5”5 o w_lG;ﬂ,@[; F e g (216)
qap :aaﬂ'yéa'y STkl y (217)
Mo =w Gy + - (2.18)

Buckingham [34] has discussed the expression of induced moments in terms of polar-
izability tensors and applied electromagnetic and electrostatic fields. Moments may
be induced by these fields, their space derivatives, and the first time derivative of the
electromagnetic fields. There are two reasons why not all such terms are included in
(2.16)—(2.18). Firstly, in terms of Neumann'’s principle a diamagnetic molecule may not
possess any time-antisymmetric properties; thus we do not include polarizability tensors
that are time-antisymmetric. Secondly, only terms which are of comparable magnitude
to within the electric quadrupole/magnetic dipole approximation are retained. The
relative magnitudes of the polarizability tensors can be gauged by inspection of their
quantum-mechanical expressions.

The applied electrostatic field E, and field gradient V3E, may also perturb the
internal electronic and vibrational states of a molecule, and we account for this by
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extending the equations describing the induced moments to

o = Qapbp + BapyEply + %baﬁvégﬂvﬁEv + %aag7V7£’5 + %(’aﬂwvvgﬂEts

+w Gl By +w g BB + - (2.19)
Gop :aaﬁvé‘; + daﬂ—ﬂsg.yE(s [tk (2.20)
Mo =w ' Gosbs+w™ Fls EsEy+ - . (2.21)

For a low-intensity light wave it is sufficient to include in (2.19)—(2.21) only terms which
are linear in the fields of the light wave. The new tensors which have been introduced
really describe the distortion of the polarizability tensors in (2.16)—(2.18) by the static
field and its gradient, and are referred to as hyperpolarizability tensors.

2.4.2 Quantum-mechanical expressions for the polarizability
tensors

We require quantum-mechanical expressions for the tensors appearing in (2.16)—(2.18)
in order that any relationships which exist between them may be established, together
with any symmetry in the tensor subscripts. Furthermore, it will be necessary to check
the origin dependence of tensor expressions for observables, and hence we will need to
know the effects of a shift in origin on the individual tensors. These may be determined
only from the quantum-mechanical expressions for the tensors.

To obtain these expressions, use is made of first-order time-dependent perturbation
theory. Details of these calculations may be found in Appendix B; only the results are
presented here, which, for quantum state n, are

Qap = 2071 3 Zjnwin Re{(nlpal5)(jlusIn)} = apa, (2.22)
;

Gapy = 207" Z Zjnwjn Re{(n|1ta]7) (719811} } = Gars, (2.23)

dapy = 207" ij Zinwin Re{(n|gap|i) (il In)} = ayas, (2.24)

G =—2h"" Z Zinw Im{(nptal5)(jlma|n)}, (2:25)

Gop = —207" Z Zjnw Im{(n|maj)(jlusln)} = —Gl,. (2.26)

In these expressions, fiq, ¢as, and m, are operators based on the corresponding classical
quantities defined in (1.2), (1.3), and (2.9), whilst

iy 2= h_l(Ej - E;), (2.27)
and, for energies far from a transition,
2)—1_
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It is also shown in Appendix B how expressions for the hyperpolarizability tensors
introduced in (2.19)-(2.21) are found by perturbing the state vectors |n) and |j) in
(2.22)-(2.26) and the transition frequency in (2.27) with the applied electrostatic field
and its gradient. Comparison of the results obtained from first-order time-independent
perturbation theory with the explicit expressions for the distortion of the polarizability
tensors by the electrostatic field and field gradient yields

Bupy = Bpay = 2 2Re{222 B+ ) (1) — Ol el il gl

+ ké: Zinwin Winl 1y ) (k1|3 Gl p 1) + (nl1tal ) (5|11 ) (k12 )]

+ 3 Dyl 1)Kl ) ) + <n|ua|j><j|u7|k><k|uﬁ|n>1},

(2.28)

bagiys = bpans = bapsy = 2l "Re {Z Z3 (Wi + ) (lars17) = (nlgysin)]

X (ual)(Tlupln) + D Zinwimwinl(nlayslk) (kluals)(ilusln)
3.k#n

+ (nlald) (G k) (k|gys|n)]
%,; nWig Winl (nltal k) (k|ays|7) (5l 1eslm)

n <n|ﬂa|j><j|q7,s|k><k|uﬁ|n>]}, (2.20)

Gapos = Bangs = 20" 2Re{222 @2+ D)L} — el

X (nltialg){dlas,In) + ; Zinwinwinl(nls|k) (l1al7) (GlasyIn)

+ (nltals) (Glapy | k) (Kl us|n)]

+ A%,;Zjnwk"jlen[<"|ﬁba|k>(k'u5|j)(jlqﬂ7|n)
1LRF)

e |j><j|u5|k><k1qﬂ~,ln>1}, (2.30)
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0 = 2071 { 225l = (i3 s

+ D Zinwin wl(nlpsy k) (Kl al3) (GImsn) + (nlali) (ilmes k) (ks m)]

J,k#n
+ D Zjnwig wl(nlpal k) (Kl uy]5) (ilmsln) + (nlualﬁ(J’iuvlkﬂklmﬁln)]},

J.k#g

(2.31)

dapys = Brapss  Fapy = ~Jpay-
From the results of this section, (2.20) and (2.21) become
Qop = a.,aﬁé'i, ~+ &7a35£7E5 S R (2.32)
Mgy == N agg = w_ljéa,yé.ﬁﬂE.y + - (233)

2.4.3 Orientational averaging

The induced multipole moments in (2.19), (2.32), and (2.33) are those for a given
orientation of the molecule relative to laboratory-fixed axes. In practice, the orientation
of any given molecule changes rapidly with time, and so we must find expressions for the
time-averaged values of the induced moments as seen by an observer who is stationary
in the laboratory. When we write 1, we are taking a component of the induced
electric dipole moment relative to the laboratory axes. Clearly, this is a function
of the orientation of the molecule relative to these axes, which in turn depends on
the rotational energy state of the molecule. In the absence of external fields, it is
apparent that all orientations are equally probable, and the time-averaging is achieved
by performing an isotropic average. However, in the presence of an applied electric
field E and field gradient VE, the distribution of the rotational energy states of the
molecule is no longer flat, but takes on a Boltzmann distribution. If we assume that
the distribution is unaffected by weak light wave fields, then the probability that the
molecule lies within an orientational element dr at an orientation 7 is

exp(-U(E, VE, 7)/kT)dr
[ exp(—U(E, VE, 7)/kT)dr’

in which the energy U(E, VE, 1) is given by

U(E,VE,7) =U® — JO(1)E, - 1¢)(r)VsE, — - - . (2.34)

In this x® and qg)ﬂ) are the permanent electric dipole and quadrupole moments, re-

spectively.

At room temperature the rotational energy levels of most molecules lie close enough
together for their orientation to be regarded as continuous, and the average of a molec-
ular quantity X in the presence of E and VE is then found by integrating over all
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orientations, namely

w=v= JX(E,VE,7)exp(-U(7)/kT)dr
X(E, VE) = Tt . (2.35)

In the cases of molecules in which the rotational energy states are too widely spaced
to assume continuity, a discrete summation must be performed over the energy levels.
This is discussed further in §2.6.

By Taylor-expanding X in powers of the independent quantities E, and V4E,
about E, =0 and VgE, = 0 we obtain from (2.35)

BV =+ 2 (55.) - | (X5 - 0 (20|}

S {<avafE> - % KX 8$ZE> 2 <3V8;JE > } } 4 (236

where (- - -) denotes an isotropic average for zero field and field gradient. Non-vanishing
isotropic averages are well documented [35], and those used in this work are

<iaiﬂ> = <jajﬂ> = <kakﬁ> = %(5&5,
<iajﬂk'y> = égaﬁvﬁ (2-37)
<iaiﬁ7;7i5> = <jajﬂj7j6> = (kakﬁk7k6> — 11_5(5aﬁ675 + 6076&5 + 50455/37)’
(laipiyis) = (Jadskyks) = (kakpiyis) = 55(40ap0ys — ayOps — Gasdpy),

where 1, j, k are unit vectors along the z,v, z axes, respectively, of a Cartesian system
fixed in space. All other averages up to 4th rank are zero. It follows from the antisym-
metric property of .4, that the average of any third-rank tensor with permutation
symmetry in two of its subscripts will be zero.

By applying (2.36) and (2.34) to (2.19), (2.32), and (2.33) one obtains

fo = (ap) & + W (Glg) Bp + Es{(8aprs) V&5 + W™ (Jl,) B

+ (RT) ™ (315 0y} V185 + 0 D Gl5) B} + AV B { (bans)

+ (KT) 7 ({653 ctap) — (059 ) (tap)) Y5 + -+ -, (2.38)
Gop = Bs{(&raps) + (kT) (1 arap)} &, + - - | (2.39)
Mo = ~w ™ {{Gha) + Ey[(Jpar) + (KT) (OGS )} Es + - - . (2.40)

In these equations only terms with magnitude greater than that of qg)ﬁ)av,;e have been
retained.
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2.4.4 Electromagnetic theory
The electric field of the light wave in the gas is represented by
& =& exp{—iw(t —nr-o/c)}, (2.41)

where o is the unit vector in the direction of propagation and n is the refractive index
of the gas for the polarization state of the wave described by the complex amplitude
&, From (2.41) and the Maxwell equation

Vx&=-RB
it follows that
Vby = iwnc o, (2.42)
2, = nc"leamagé‘;. (2.43)

Use of (2.41)—(2.43) in (2.38)—(2.40) yields

,aa - Raﬁéaﬁv
(Z)zﬁ = Saﬁ'yéa'ya (244)
My = aﬂéoﬂa

in which
Rag = (ap) +inc " €p150,(Gls) + iwnc ™ oy E{ L (fapye)
+w e pys(Tase) + (BT) T (3(uPaasy) + wles,s (uOGL)}

+ 3 Vs Ey{(baps) + (kT) (0P as) — (6D ap))} + -+,

(2.45)
Sapy = Es{(6raps) + (kT) " (1" ayap)} + - - , (2.46)
Top = {{Gla) + E[{(Jpay) + (KT) (DGR} + -+ . (2.47)

The macroscopic multipole moment densities for electric dipole, electric quadrupole,
and magnetic dipole are given by [36]

Pa = Nﬂa, Qaﬁ = Nqaﬂa Ma = Nmon (248)

where N is the number density of molecules.

These macroscopic quantities are substituted in the Maxwell equation for a source-
free medium

V xH=D, (2.49)

giving
Do =e0Eo+ Po— 1V5Qup+ -+, (2.50)
Hy=p "By —~ My 4+~ . (2.51)
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Combining (2.48)—(2.51) and (2.44) yields

saﬁvvg{n(uoc)_lsﬁsae + NT,YJ}(/% = iw{s()(f’a + NRaﬁéaﬂ o %NVﬁSag.y(o@.y},(2 52)

in which V differentiates & and also E in 7.5 and S,g, in (2.46) and (2.47). When the
experiment is performed, the applied field is modulated to facilitate the use of phase-
sensitive detection techniques. Despite this, the time-derivative expressed in (2.49) is
not extended to the applied field E and its gradient, which enter (2.50) and (2.51)
through (2.45)-(2.47), since this would give rise to terms containing the modulation
frequency as a factor, and which would therefore be several orders of magnitude smaller
than the corresponding terms which arise as a consequence of taking the time-derivative
of &. After the differentiation in (2.52) we set E = 0, since the light beam in the
quadrupole experiment travels along, or close to, the axis of the cell, where the field
gradient is uniform and the electric field is zero. In fact, it is not correct to set E = 0
for this reason, since there are off-axis regions which the beam traverses and where the
electric field very clearly is not zero. However, we have already discussed how this is
accounted for experimentally in §2.2. One finally obtains

¢ (0205 — 8ag) 85" + 10208 + o N{{as) — i 0 (€456 (Gl) +Eare (G5 )) }EO
+ o NVsEy{5(bagns) — 3{6pasy) — w_1€a55<‘][/35'y> (KT)~ ( <.“7 )aﬁats)

N 0

+ W ease (P Glo) + 3059 (@ap) — 3053 )} 57 = 0. (253)
In this the phase factor in (2.41) has been suppressed since (2.53) applies for all ¢
and r. Within the electric quadrupole/magnetic dipole approximation this is the basic

equation for describing light propagation in a dilute gas in a region of zero field and
uniform field gradient.

2.4.5 Expression for the induced birefringence

We have already established that the applied electric field may be taken to be zero
whilst, by choosing Cartesian axes such that the wires lie in the zy-plane with the
z-axis coinciding with the axis of the cell, the electric field gradient tensor has only
two non-zero components (see Appendix A), namely

VZEE:L' == —vyEy - El.

Setting o = z,y, z in turn in (2.53), and considering propagation of the beam in the z-
direction so that 0, = 1,0, = oy = 0, we obtain, on performing the isotropic averages,

(kogo — n’c™? + Lo Naga + o NsE)EO + Zinc ' NG, &0 = 0,

(2.54)

—%'I;’I”LC—IUONG;aéZ(O) + (,U()EO — n2¢2 + %NONaaa — MONSEI)(goy(O) =1
(2.55)

(kogo + 310N 0tae) 8 = 0,
(2.56)
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where, relative to molecule-fixed axes,

S = gla{(ibagag — Qbaaﬁﬁ - &aaﬂﬂ — 35—aﬁ5a — 10(,()_16&57];57
+ (KT) 60230 — 2082085 — 1 (30app + Agpa + 100 eapy Gl I} (2.57)
The solution of (2.56) is &) = 0, as expected. That of (2.54) and (2.55) is equally

simple if we limit consideration to optically inactive molecules, since for them G, =
0 [2]. Then, for the polarization eigenvectors,

EO#£0, V=0 nlc? = poeo + tuoNaga + o NsE,

£0) =9, é"y(o) =k an_z = MoEo + %,UONaaa — woNsE',

where n,, is the refractive index for light linearly polarized parallel to the plane of wires,
and n, for the perpendicular polarization. Thus the birefringence induced by the field
gradient is

ng —ny = e’ NsE' = ;' NsE', (2.58)

since, for a dilute gas, n,+n, = 2 to a very good approximation. For a linear molecule,
the symmetry axis of which is the z-axis of the molecular system, (2.57) and (2.58)
yield

ng —ny = 365 'NE'{b+ 2(15kT) ' [¢V Aa — 14D (2a; + ay + 3a3 + 10w71G")]},

(2.59)
where
p® =0,
¢ = ¢ — 49,

Aa = O;z; — Oy,
A1 = Qzzzy QA2 = Qzzz = Qyyz, A3 = Qzgqp = Azyy,
R /
G =0,=—G,.

The form for a linear molecule of the temperature-independent term in (2.59) is not
detailed, as there is evidence that it is negligible relative to the term in (kT)~! [37].

2.5 Effect of an Origin Shift

When the origin in a neutral molecule is displaced through R, the multipole moment
operators based on (1.2), (1.3), and (2.9) change by

Aﬂa =0,
AQQB = _Ra,u,b’ - Rﬁuaa
Amg = —€qpyRp Z(%/Zmi)pm-
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The shifts in the polarizability tensors in (2.22), (2.23), (2.25), and (2.29)—(2.31) are
then found to be

Aaag — 0,
Aaam, = —Rga,w = Ryaaﬂ,

AGixﬁ = %u) E,@fy(sR,yOlm;,

Abaﬂ'y& — —R'yﬁaﬂé - Réﬁaﬁ'ya
A‘g‘aﬁ'yé = _Rﬁ/Ba'yJ - R’yﬁaﬁ&v
AJ(’),IQ'Y = %w 5,666R5Ba57-

From these results and (2.57) and (2.58) it is readily shown that the birefringence
expression obtained from the theory in §2.4 does not depend on the choice of origin in
the molecule; the temperature-dependent and temperature-independent parts are, of
course, separately origin-independent. These same results may also be used to show
that the expression for the intensity (2.15) obtained from the forward-scattering theory
discussed in §2.3 is also independent of the origin chosen.

Buckingham and Longuet-Higgins [12] present their theory in terms of the traceless
quadrupole moment and obtain as the molecular part of the final expression for the
intensity I,

Bagap — Baaps — 5w capy gy + (KT) 0D s — 1O (Agpe + 5w-1aaﬂvag72], )
2.60

in which the polarizability tensors Bugys, Bags, and Aqs, are the traceless-quadrupole
analogues of bag,s, a5, and aqp,. This expression may also be shown to be indepen-
dent of the choice of origin to which the multipole moments are referred. However,
if the theory presented in §2.4 is repeated in terms of the traceless quadrupole mo-
ment, and (1.12) is taken as the form for the D-vector, then the molecular part of the
birefringence expression is found to be

. — 0 —
Bapap — §Boaps — 2w eapy Sy + (KT) l[eggaaﬂ_ugm(%Aﬂﬁﬁgw 'eaprGls,)],
(2.61)

which is not origin-independent. This is not unexpected in view of the findings of
Graham and Raab [5] who show that (1.12) is an incorrect form for the D-vector which
leads to an origin-dependent set of Maxwell equations. Buckingham and Longuet-
Higgins’ result when expressed in terms of the primitive quadrupole moment is also
origin-independent since their forward-scattering theory does not make explicit use of
the D-vector.

Origin-independence is a necessary test for expressions describing observables in
terms of molecular property tensors. Both molecular theories presented in this chapter
pass this test despite giving different results. Therein lies a paradox, since these two
different results cannot both describe the same observable. If we consider the special
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case of non-polar molecules, then both expressions reduce to (2.3), the expression given
by the original theory for non-polar molecules. We shall not attempt to resolve this
paradox here, except to suggest that the solution may lie in the bounded range of
detector-distance to beam-diameter ratios for which the approximations used in the
forward-scattering theory are valid.

The need for a theory describing induced birefringence measurements in polar
molecules arose out of the ambiguity concerning the origin to which quadrupole mo-
ments were referred, when these are evaluated by using (2.3). Since the expression
3aapp + appa + 10w €43, G, in (2.57) depends on origin, there must exist at least one
point at which it vanishes. This point is not unique but, in the case of a linear polar
molecule, there exists only one point on the axis of the molecule at which the expression
is zero. One may then interpret this point, called by Buckingham and Longuet-Higgins
the effective quadrupole centre, as the origin to which ¢(® in (2.59) is referred. One of
the discrepancies between the two molecular theories discussed in this chapter is in the
expression giving the location of the effective quadrupole centre.

2.6 Quantum Corrections to the Classical Birefrin-
gence Expressions

The use of classical Boltzmann averaging in (2.35) is valid only if the rotational energy
levels of the molecules are sufficiently closely spaced as to give a good approximation of
continuity. This is usually true for polyatomic molecules with large moments of inertia
I, but may not hold for small diatomic molecules such as molecular hydrogen.

Buckingham and Pariseau [38] have given the quantum-mechanical derivation of
an expression for the birefringence induced in a non-polar gas and its application to
diatomic molecules. Not only is the temperature-dependent term in the classical ex-
pression modified due to the discrete nature of the rotational energy levels, but a
further contribution arises as a consequence of the nuclear motion. If we ignore the
latter effect then the birefringence may be written as

1 47TNOE/

Ny =Ny =
Y 4mey 15V,

|B'+ (kT)'0Aaf(T)]

in which the correction factor f(T') is given by

» i B2 ) B2 \?
1) = _zlkT+ﬁ<m> i
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Chapter 3

BIREFRINGENCE MEASURING
TECHNIQUES

3.1 Introduction

Having derived in the previous chapter an expression for the birefringence induced in
a gas by an electric field gradient in terms of molecular property tensors, we consider
in this chapter how best the induced birefringence might be measured.

References in this chapter to the azimuths of polarization states and the orientations
of the axes of optical components are made with respect to the system of right-handed
Cartesian axes shown in Figure 3.1. The z-axis is chosen to coincide with the path
of the light beam propagating along the axis of the cell containing the gas in which
birefringence has been induced, and which shall hereafter be referred to as the quadru-
pole cell. This light is monochromatic and linearly polarized at an azimuth, measured
counterclockwise from the positive z-axis, which we define to be exactly 7 radians.
We have thus fixed the position of the z-axis, preferring to locate it relative to the
polarization azimuth of the incident beam rather than with respect to the plane of the
wires in the quadrupole cell in order that we may later consider the effects of a small
rotational offset in the orientation of the cell. For the present, however, we shall assume
that the plane of the wires coincides with the yz-plane as indicated in Figure 3.1.

The beam of light entering the cell may be resolved into two components having
orthogonal electric vectors &, and &, which experience different refractive indices n, and
ny. If the geometric path length of the beam in the gas is [, then the two components
will emerge from the cell with a relative phase difference § given by

2ml
0= T(nx - ny)a (31)
in which A is the wavelength of the light. We may therefore model the quadrupole
cell as a linear retarder of azimuth 0 and retardation &. Conventionally, the azimuth
of a linear retarder is specified by the orientation of its fast axis; we have arbitrarily

chosen this to be the axis lying perpendicular to the plane of the wires. We show later
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plane of polarization of
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light propagates in
z-direction

Figure 3.1 System of axes used in specifying all azimuths

that the experiment requires the electric field gradient to be modulated, in which case
making an arbitrary choice for the fast-axis direction at this stage does not result in
any loss of generality later.

Recombining &, and &, at the point of emergence of the light beam from the cell
shows that the beam is now elliptically polarized in general, although its azimuth is still
7- If the beam is next passed through a quarter-wave plate (hereafter called a %—plate)
with its fast axis set at an azimuth of 7 and having retardation 7, then, through the
use of elementary analytical techniques, it may be shown that the light will emerge
linearly polarized with azimuth § + %. The net effect of the quadrupole cell and the
%—plate has been to rotate the plane of polarization of the incident beam by g

If 6 was large then it could be measured as being twice the angle through which
the analyser would have to be offset from its initial crossed position in order to achieve
extinction. However, d is not large; typically it is of the order 10~¢ radians and must
be determined to within 1%. This suggests the employment of the technique of phase-
sensitive detection, which requires that the signal be modulated and an opto-electrical
transducer be used to monitor the intensity of the light passing through the analyser.
These requirements are met experimentally by applying a high ac voltage of angular
frequency w to the wires in the cell, and locating a photomultiplier behind the analyser.

Because of the smallness of §, mechanical rotation of the analyser is not a viable
method for nulling the effect due to the induced birefringence. A calibrated optical
rotator capable of rotating the plane of polarization by small amounts is required.
Because of the experience of Pierrus [39], a Faraday cell was chosen for this purpose in
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preference to a Kerr cell. The Faraday cell is described in §4.5 but, for the purposes
of this chapter, it will suffice to model it as an optical rotator capable of producing a
variable but known rotation . This effect is also modulated at angular frequency w
but is in antiphase with 9.

With the polarizer and analyser crossed and the fast axis of the i\——plate set at an
azimuth of 7, the intensity of the light reaching the photomultiplier as a consequence of
the induced birefringence alone is far too small to produce a signal which is discernible
from the background noise inherent in the photomultiplier and the electronics. The
solution is to amplify the optical signal by several orders of magnitude by deliberately
allowing more light to reach the photomultiplier. Examples of how this might be
achieved include: deliberately offsetting the %—plate by a small angle; doing likewise
with the analyser; passing a sufficient dc current through the windings of the Faraday
cell; and introducing a %—plate with a small offset between the %—plate and the Faraday
cell. Performing the analysis for any of these methods reveals that the expression for
the intensity I at the photomultiplier now contains terms which are proportional to the
product of the small offset angle and both J and 6 separately. Since any offset couples
with ¢ and 6 in exactly the same way, it is possible to measure I as a function of  and
then to find ¢ from a graphical analysis.

Deliberately allowing more light to pass through the analyser will also produce
a very large dc term in the expression for I. However, the phase-sensitive detector
(hereafter abbreviated to psd) is better at isolating a good signal in a large background
of noise than it is at locking on to a very small signal hidden in a smaller background.

Two of the suggested methods for providing a small offset may be discarded at this
point. The current required in the coil of the Faraday cell in order to produce a suitable
rotation (~ 1°) would dissipate sufficient heat to cause turbulence in the liquid in the
cell. Introducing an additional component, the %—plate, 1s also a poor idea because of
complications that arise as a consequence of any small inaccuracies in its retardance,
and because of the loss in transmitted intensity due to reflections off its surfaces. Thus
we are left with the choice of offsetting either the i—-plate or the analyser.

Previous work on this apparatus [39] employed the option of offsetting the %~plate
by a small angle ¢ from the position in which the fast axis is at 7+ It was subsequently
found that the value of § measured in this way depended on the sign of . An ex-
planation for this unexpected behaviour was put forward [39] in which the effect was
attributed to the presence of small amounts of residual strain in the glass windows of
the cell. This strain causes the windows to exhibit birefringence which, it was shown,
can largely be eliminated by plotting graphs of I vs  for offsets of +¢e; and —e,, and
then finding 6, from the point where these lines intersect.

Results obtained using this method are not always in agreement with those obtained
by other workers. For example, the quadrupole moment found for the carbon dioxide
molecule differs by 8% from the best values reported at the time. In an attempt to
explain this discrepancy a more comprehensive analysis of the optical cascade was
undertaken, with the consequence that the experiment has now been redesigned and
results obtained which are in good agreement with those of other workers. This analysis

31



of the optical cascade is presented in the remainder of this chapter.

3.2 The Jones Calculus

The effects which the components in the optical cascade have on the polarization state
of the light beam could be determined by tracing the two orthogonal components of the
incident beam &, and &), through each component in turn and then recombining them
at the photomultiplier in order to determine the intensity there. Such an approach
is both complicated and tedious, especially when one includes all the ‘extra’ effects
such as the presence of strain in the cell windows. A more elegant approach is to
make use of either the Mueller or the Jones calculus. In the Mueller calculus the
polarization state of the incident beam is represented by a 4 x 1 column vector; that
of the transmitted beam is found by multiplying the incident beam vector by a 4 x 4
Mueller matrix representing the optical component. The Jones calculus is similar but
uses 2 x 1 column vectors for the polarization states and 2 x 2 matrices for the optical
components. In our case either would serve the purpose but we choose to use the Jones
calculus because of a useful property of some Jones matrices.

Piazza et al [40] have shown that the Jones matrices for certain optical components
are expressible as linear combinations of the unit and Pauli matrices

1o] . [i o] . 01 0 i
I:[o 1}’ ‘Z[o —i]’ J:[—1 0}’ k:[z’ 0]’ (3.2)

which combine in the following ways:
==k ==I
j=k, jk=i ki=j. (3.3)

In the analysis of the optical cascade for the birefringence experiment we treat three
types of components: polarizers, linear retarders, and optical rotators. The Jones
matrix for a linear retarder of retardance p and azimuth ¢ is given by [40]

J(p, ®) = cos g I+ sin g cos 2¢ 1 + sin g sin 2¢ k, (3.4)
and that for an optical rotator having rotation v by

R(¢) = cosy I+ sinvj. (3.5)

The Jones matrix for a polarizer of azimuth o has the form

2

P(o) = cos’c  cososing
cososino  sin‘o ’

(3.6)

which cannot be expressed in terms of the L i,j, and k matrices. The normalised Jones
vector for a linearly-polarized light beam of azimuth n is

_ | cosp
Yy = [ sy } : (3.7)
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3.3 An Optical Cascade Between Nearly-Crossed
Polarizers

Suppose that we have, situated between two crossed polarizers, a series of optical
components which are either linear retarders or optical rotators. A light source precedes
the first polarizer and a photomultiplier detects the intensity of light which passes
through the analyser.

We shall assume that light leaving the first polarizer is entirely linearly polarized
at an azimuth of exactly . From (3.7) the Jones vector for this beam is

VO:%“J. (3.8)

We now allow the azimuth of the analyser to deviate from its crossed position by
a small angle a. This may be due either to a deliberate offset or to an unavoidable
error in the crossing of the prisms. From (3.6) it follows that the Jones matrix for this
analyser may be written

1+4+sin2a — cos22«a
_T .
P( 4+a) 2[ — oS 2« 1—sin2a]

_ 2
~1[ 1+2a -1+2a J (3.9)

T2 142 1-2a

In spite of the fact that « is small we initially retain terms which are quadratic in «,
while neglecting terms of order o?, pending a consideration of orders of magnitude in
Appendix C.

Let the Jones matrices for the optical components between the polarizer and the
analyser be My, M,,... ,M,. Then the Jones vector for the light beam leaving the
analyser is given by

v=P(-F+a)MpM,_;--- M, (3.10)

in which My, M,, ... ,M,, being Jones matrices for linear retarders and optical ro-
tators, are all expressible as linear combinations of the I, i, J, and k matrices in (3.2).
It is easily shown that these matrices form a closed set under the operation of matrix
multiplication, from which it follows that the product MuM,,_1 ---M; may also be
expressed as a linear combination of these matrices. We write this as

MyMu_;---My=al+bi+cj+dk. (3.11)

From (3.2), and (3.8)~(3.11) we may show that the Jones vector for the beam at the
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Figure 3.2 Optical components which lie between the crossed polarizers in the bire-
fringence experiment

photomultiplier is given by

P | 1+2a -1+ 202
V—Q\/E —1+2a® 1-2a

10 i 0 0 1 0 i 1
o vl 5] 5] T ]
1 [ bi+c+ala+bi+c+di) + o?(a — bi — c + di) J

V2 —bi —c+ a(—a+bi+c —di) + o*(a + bi + ¢ + di)
(3.12)

It Ip is the intensity of the beam leaving the first polarizer, then the intensity of the
beam at the photomultiplier is given by

I = I/*I/IQ.
This, together with (3.12), gives
I
= b* + ¢* + 2a(ac + bd) + a*(a® — b2 — 2 + d?), (3.13)
0

in which we have again retained terms up to order a2. The problem has now been
reduced to finding the coefficients a, b, ¢, and d for a given optical cascade.

3.4 Jones Matrices for the Birefringence Experi-
ment

The cascade of optical components lying between the polarizer and the analyser in

the induced-birefringence experiment is shown in Figure 3.2. Included as separate

components in the cascade are the windows of the quadrupole cell since Pierrus [39]
has shown that the outcome of the experiment may be influenced by the existence of
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birefringence in these windows. The glass from which the windows are cut is of the low-
strain Pockels variety; so the manifestation of any birefringence in these components
is attributed to mechanical strains caused largely by clamping the windows into their
mountings and, to a lesser extent, by the high pressure difference which may exist
across the glass. The windows of the Faraday cell are also cut from Pockels glass but
are not subjected to conditions of high mechanical strain, so it is considered most
unlikely that they can affect the polarization state of the light beam to anywhere near
the same extent. Accordingly, the Faraday cell windows are not included in the cascade
of optical components which we are considering here.

Assuming that the entry window of the quadrupole cell exhibits birefringence, we
may model it as a linear retarder of small retardance ; and arbitrary azimuth 6;.
From (3.4) the Jones matrix for the entry window is given by

S1(B1,61) = cos % I + sin % cos 201 1 + sin % sin 26, k. (3.14)

A similar expression exists for the exit window.

The behaviour of the quadrupole cell as a linear retarder of retardance § and an
azimuth of 0 has been discussed in §3.1. Since the cell must be physically rotated in
order to bring the wires into a vertical plane, there is bound to be some small error
7 in the azimuth. However, the procedure for rotating the cell is very accurate (see
§4.4.1) and it is therefore unlikely that v ever exceeds 1°. The Jones matrix for the
quadrupole cell is

{0, ¥) = cos%l%—sin%cos 27i+singsin 27 k. (3.15)

The most complicated component to allow for is the %-plate. Ideally this should,
for a specified wavelength of light, have a retardance of 5 radians; but in practice
the retardance may deviate from this by a few degrees and also have some small
temperature dependence. For this reason we allow for a retardance in the %—plate of
5+¢ radians, where ¢ is not necessarily small and may be of either sign. The purpose of
the %—plate is to convert the elliptically-polarized light leaving the quadrupole cell back
to a state of linear polarization, and it serves this purpose equally well with its fast axis
at an azimuth of —% or +7 radians. Besides accommodating both these possibilities we
must also allow for a small offset ¢ from either of these nominal azimuths. Depending
on the circumstances ¢ may represent either a deliberate offset or an unavoidable
inaccuracy in the alignment; in either case it may be positive or negative, and checks
made on the repeatability of this setting showed that it never exceeded 1°. The Jones

35



matrix for the %-plate is thus given by

Jrja(3 +é,£7 +e) =cos(§ + =) I+sin(Z + %) cos(+% + 2¢) i

SRS

)sin(£5 +2¢) k
¢ L . ¢ 1 ¢ .

1 . 1
=—=cos-I—-—sin—IF —=cos—sin2eciF —s
W2 2 2T 2 T A 2 V2

1 10) 1 ¢
+ —cos = cos2cs k + —ssin = cos 2¢ k.
V2 2 V2 2

n 5 sin 2¢ i

(3.16)

Finally, we consider the Faraday cell which is simply an optical rotator giving a
small rotation 6. From (3.5) the Jones matrix for the Faraday cell is given by

R(0) = cos 61+ sinfj. (3.17)

We now turn our attention to the solution of (3.11) which, for the particular cascade
of optical components shown in Figure 3.2, may be written

R(8) Jyja(% + 6, £ +€) S2(Bs, 02) Jo(6,7) S1(B1,61) = aT +bi+cj+ dk .
(3.18)

The left-hand side of (3.18) comprises 324 terms when multiplied out. It is clear that
these terms are not all of similar magnitude and so it has become necessary to decide
the magnitude of the smallest term which we are to retain. Before doing so we must
establish the relative magnitudes of the small angles which appear in (3.13) and (3.18).
We have stated elsewhere that § is typically of the order 107% radians; hence 6 is of
similar magnitude. A deliberate offset of the %—plate or of the analyser is seldom more
than %o, so € and « have maximum order 102 radians. The error in the orientation of
the quadrupole cell is unlikely to be more than 1° so it, too, has order 1072 radians.
Estimating the magnitudes of 3, and 3, at this stage is difficult, but it is most unlikely
that they are as great as 10~2 radians. Nonetheless, we shall make provision for them
to be of the same order as ¢, «, and 7.

The seven small angles in (3.13) and (3.18) have now been divided into two groups:
the very small angles § and 6, and the moderately small angles ¢, a, v, ;, and Bs.
Grouping the last five angles together covers all possible circumstances, although it
is improbable that all five will be of comparable size in any given experiment. For
instance, if « is a deliberate offset of the analyser then ¢ is an unintentional alignment
error in the azimuth of the %-plate, and should therefore be considerably smaller.

In the final intensity expression (3.13) we need retain only those terms which are
linear in either one of the modulated quantities 6 and 6, since it is these terms alone
which are detected by the psd. Thus the expression for the intensity will have the form

I
1_0:5(...)+3(...)_ (3.19)
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Terms in the brackets, being independent of § and 6, have orders of magnitude deter-
mined by their dependence on ¢, o, 7, 1, and ;. Because these angles are all small we
may make the approximations

cosz~1-— %x2, simz~z, z€({ea,/0,/pH}

In order to explain the behaviour discussed in §3.6, it is necessary to retain second
order terms in the brackets in (3.19). This includes the possibility of terms such as &2
appearing in the intensity expression and it therefore appears that we must retain the
——%:1?2 term in the approximation for the cosine of these angles. On the other hand 42
and 6% do not appear in (3.19) and so for these angles we may make the approximations

sind =9, sinf =6, cosd=-cosf=1.

With these approximations, (3.14)—(3.17) become, respectively,

Sn(Bn,0n) =1 — 8"1-1—%(:0329 1+62n sin 20, k, (3.20)
o

Jy(8,7) =1+ 2 i—d6v%i+ vk, (3.21)

1
JA/4( +¢,£7+¢) = ﬁ 21—7 I¥f€008§1$f551n§1
1
iﬂcos?kq:\/—s cosgki%smgk
F V2% sin 5 k, (3.22)
R(6) =1+86j. (3.23)

The use of these expressions in (3.18) produces 1024 terms on multiplying out. An
argument is presented in Appendix C which shows that terms in equations (3.20)-
(3.23) which are quadratic in any one of ¢, 7, 8;, and B2 do not contribute to the final
intensity expression. Despite being rather lengthy this argument is very useful because
it allows the quadratic terms to be dropped from (3.20)~(3.23), thereby simplifying the
algebra considerably. It is further argued in Appendix C that there can be no term

in o? in the final intensity expression, which means that we may drop this term from
(3.13), giving

I
T =V + +2a(ac+ bd). (3.24)
0
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The final forms which we shall use for the Jones matrices in (3.18) are then

S1(61,601) =1+ %cos 20,1+ %sin 20, k
=I+Cii+ Sk, | (3.25)
Jgld, ) = I+gi+57k, (3.26)
S2(Ba,02) =1+ Chi+ S, k, (3.27)

1 1 .
JA/4(§+¢,:E§+5):ﬁcosgl—ﬁsmglq:ﬂscosgl
¢ ¢

. 0. 1 I
2 -1+ — —k+ —sin -k,
:F\/—gsln 5 1 \/icos 5 NG n 5 -

R(6) =1+46j, (3.29)
in which we have adopted the following notation used by Pierrus [39]:

Sy 22 %sin 20, C,= %cos 20,,. (3.30)

3.5 Performing the Algebra

The problem which remains is to multiply together the expressions for the Jones ma-
trices given in (3.25)—(3.29), discard those terms which are smaller than the smallest
order of magnitude that we are retaining, and then to use (3.3) to simplify the products
of the 1,1, j, and k matrices which appear in each of the remaining terms. Coefficients
of these matrices may then be identified as a,b,c, and d, and combined as shown in
(3.24) to give an expression for the intensity that is ‘seen’ by the psd. In combining
the coefficients a,b, ¢, and d, we must again discard small terms together with those
which are not linear in § or 6.

Apart from the tedium of performing these steps by hand, a pen-and-paper ap-
proach is also undesirable because of the ample opportunities that exist for errors to
arise; even a single incorrect sign early on in the calculation can make a significant
difference to the final result. This, together with the fact that the calculation may be
broken up into a sequence of elementary steps, suggests that the aid of a computer
might be enlisted. Commercially-available mathematics packages do not easily lend
themselves to the solution of this problem because they are unable to make decisions
regarding which terms to discard and which to retain. For this reason a symbolic man-
ipulation program was written specifically to perform this calculation. A listing of this
program appears in Appendix D together with a brief explanation of how it uses (3.18),
(3.24), and (3.25)(3.29) to yield an expression for the intensity at the photomultiplier,
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which in this case is
Ii = 0[C1 + Cy + e(F cos ¢ + 2S5 + 25, sin @)
0
+ (= cos ¢ — 25, sin @)]

+ 9[—20151 sin (b — 20252 sin ¢) = 40152 sin ¢
+ 2C) cos ¢ + 2C; cos ¢ + (—2 — 28in ¢) + 2a/, (3.31)

in which the two nominal azimuths of the %—plate of +% and —7 radians are accounted
for by the upper and lower signs, respectively.

3.6 Interpretation of the Intensity Expression

Suppose that we deliberately offset the %—plate by a small angle £; and then plot the
psd output (which is proportional to the intensity I/I,) as a function of . From (3.31)
we see that zero psd output does not occur when 6 = %5, as we would like, but when

01 C1+ Cy +e1(Ecosd + 255 + 2S5 sin @) + (£ cos ¢ — 2.5, sin ¢)
270,18 5in ¢ + CyS,sin ¢ + 2C1.S; sin ¢ F C cos ¢ F Cycos¢p+e1(1+sing) — 2a°

We shall refer to the value of § which is equal to %(5 as Onun, since it is this rotation which,
for ideal components in perfect orientations, is required to null the induced birefringence
in the quadrupole cell. Because of strain in the cell windows, of alignment inaccuracies
in the quadrupole cell and analyser, and of deviations from the ideal retardance of the
%—plate, it is clear that the intensity at 6, is not zero. However, in the absence of
any other procedure, the experimentalist is likely to conclude that 6, is the value of
¢ corresponding to zero intensity.

Pierrus [39] has demonstrated an alternative procedure whereby 6,,; may be found.
By plotting a second line corresponding to a different offset 5 on the same graph, it
follows from (3.31) that the two lines will intersect at a value of @ given by

T cos¢p — 2S5, — 2S5 8in ¢

Oint = —16 .
¢ 2 1+ sin ¢ (3.32)
If ¢ is small then this approximates to
+1 — 285,
Bt == — A ————2 - .
T 14 (3.33)

Although the two offsets ¢; and e, of the %—plate may have the same sign, the statistical
error in iy is minimized experimentally if they are arranged to have opposite signs
and similar magnitudes.

The corresponding result obtained by Pierrus ((4.7) of [39]),

Oins = —50(1 — 25,), (3.34)
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is a special case of (3.33) in which the effects of deviations from the ideal retardance
of the %-plate have not been considered, and in which the nominal azimuth of this
component is assumed to be +7 radians. In that work it is stated that S, is small in
comparison with 1 so that ;,; may be used as a good approximation of #,,,;. However,
if Sy is not negligibly small then it may be seen from (3.33) to contribute additively
for one position of the %-plate and subtractively for the other!. It may therefore
be eliminated by performing the experiment for both positions of the %—plate and
averaging the results. The retardance of the %—plate may be measured using a Soleil-
Babinet compensator and from this we may find a value for ¢ and use it to correct
the averaged result. In this way it is possible to obtain a good value for 6,,; which is
certainly a better estimate than that found by using the method of two offsets for only
one of the two possible nominal azimuths of the %-plate.

The importance of performing the experiment for the two orthogonal azimuthal
orientations of the %-plate and then averaging the results depends on how large S is in
comparison with 1, and this may be experimentally gauged by comparing the results
obtained with the %—plate azimuth in both positions. Measurements carried out with
carbon dioxide in the quadrupole cell have shown that these may differ by as much as
3.5%. Furthermore, the retardance of the %-plate used by Pierrus has been measured
at 632.8nm to be 93.3 & 0.3°. This fact alone suggests that the results reported in
[39] are likely to be at least 5% too low. When the carbon dioxide results for the
two %—plate positions are averaged and then corrected for the imperfect %-plate by
multiplying by 1+ ¢, the result is found to be in good agreement with values measured
by other workers.

Performing the experiment in this way is time-inefficient because it takes twice as
long to obtain the same number of readings as before. Furthermore, it is implicitly
assumed that the birefringence in the second window will remain constant over a pe-
riod of several hours, which may not be case. For these reasons other experimental
configurations for providing the offset previously provided by the %—plate were investi-
gated. The most satisfactory one found was to fix the azimuth of the %—plate at either
of the £7 settings and then to plot two lines corresponding to oppositely-signed offsets
oy and az of the analysing prism. From (3.31) it may be shown that these lines will
intersect at

Oint = —36( cos ¢ — 25, sin ¢). (3.35)

In this case it is the term 25, sin ¢ which contributes additively for one %-plate position
and subtractively for the other. If ¢ is small then this term is at least two orders of
magnitude smaller than the corresponding strain contribution 2, in (3.33). Since it
was found to account for a few percent in that case, it appears that we may ignore it
here. This was checked experimentally and it has been verified that the outcome of

' The overall change in sign on the right-hand side of (3.33), which occurs on changing between the
two orthogonal %—plate positions, is accommodated experimentally by introducing a phase lag of 7

radians between the driving signals which modulate ¢ and 6.

40



the experiment performed using this analyser-offset method does not depend on which
of the two orthogonal %—plate azimuths is used. For small ¢ we may approximate
cos ¢ &~ 1 in which case (3.35) simplifies to

Oint = F30. (3.36)

Thus, if a %—plate in which the retardance is very nearly 7 radians is used in the
experiment, the value of 6 at the point of intersection of two graphs of intensity vs 6
corresponding to two offsets a; and ay of the analyser provides an excellent estimate
of O,un. A mounted %—plate having a measured retardance of 91.2 + 0.3° at 638.2 nm
was used in obtaining all the measurements reported in Chapter 5, thereby ensuring
that the error introduced by the approximation cosf ~ 1 is less than 0.03%.
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Chapter 4

DESCRIPTION OF THE
EXPERIMENT

4.1 Introduction

The apparatus and techniques first used to measure electric quadrupole moments
through induced birefringence have been described by Buckingham and Disch [41].
In the early 1980s a modified version of this early apparatus was manufactured in the
Mechanical and Electronic Workshops of the Department of Physics at the University
of Natal, Pietermaritzburg. Work carried out using this apparatus was reported first
by Stuckenberg [42] and later by Pierrus and [39, 43]. Shortcomings of the apparatus
were described by Pierrus which, together with the new theoretical considerations pre-
sented in the preceding chapter, led to modifications to the apparatus being carried
out at the onset of the work reported here. Of greatest significance were the changes to
the manner in which the experiment was performed and the addition of an extension
to the existing quadrupole cell. This chapter describes the entire experimental set-up,
paying particular attention to apparatus modifications.

4.2 The Gas Line

Gases were introduced to and exhausted from the quadrupole cell via a manifold con-
structed from i—inch 316-stainless steel tubing and Hoke Gyrolok fittings, also made of
316-stainless steel. Flow control was through needle valves selected from the Hoke 3700
series, with the most critical valves having soft Kel-F tips to ensure excellent sealing.

Before entering the cell the gas passed through two filters; a 1 pm sintered glass filter
and a 0.22 um Millipore paper filter. These filters could be bypassed when removing
the gas from the cell.

For all the gases studied with the exception of chlorine, a Budenberg 0-4 MPa
Master Test Gauge was used for measuring the gauge pressure of the gas. The accuracy
of this gauge was checked periodically against a Budenberg dead-weight tester. In

42



searching for a pressure dependence in the results for nitrogen, pressures up to 6 MPa
were used. To measure pressures in the range 4-6 MPa, special provision was made
'whereby the pressure of the gas in the cell was balanced directly against the dead-
weight tester. Precautions were taken to ensure that oil vapours from the dead-weight
tester did not contaminate the gas in the cell.

After work had been carried out on either the manifold or the cell, the entire system
was checked for leaks. Occasionally, a helium leak-detector was used for this purpose,
but a more effective method was to fill the cell and manifold with carbon dioxide at a
pressure of 4 MPa and then to paint all joints with soap solution whilst looking for the
formation of tell-tale bubbles. The pressure differential in this case is some 40 times
greater than when testing the system under vacuum.

Before filling with gas, the cell and manifold were flushed out by repeatedly evacu-
ating the cell and then filling it to about 1 MPa with the gas to be tested. Evacuation
was achieved using a rotary oil pump, whilst gas was introduced into the cell in all
cases under the pressure of the cylinder in which it was purchased.

Before measurements on chlorine were begun, an entirely new gas manifold was
constructed and located close to the cell, thereby minimizing the length of tubing that
would be exposed to the gas. For the purpose of measuring the pressure, a 0-600 kPa
Blanes chlorine service gauge was acquired. This was calibrated frequently against the
dead-weight tester in order to achieve an accuracy of measurement which was an order
of magnitude better than that yielded by a face reading of this gauge.

4.3 The Light Source, Passive Optical Components,
and Detector

The arrangement of the electronic and optical components used in the experiment is
shown schematically in Figure 4.1. All the optical elements were securely mounted on
an optical bench constructed from a 4m length of 230 mmx90 mm mild steel chan-
nel. A 2m-long side arm was butt-welded to the bench to provide stability, and the
entire bench was supported on three rubber anti-vibration mounts resting on a mas-
sive free-standing concrete slab. This was of the same width as the optical bench and
stood 600 mm high on a 50 mm-thick cork foundation. This arrangement served to
provide adequate isolation of the optical components from the vibrations of the build-
ing in which the experiment was housed, and which would otherwise have contributed
significantly to the signal noise.

Throughout the work reported here the light source employed was a Spectra-Physics
model 107B-2 He-Ne laser having a nominal output power rating of 35mW. Over the
three year period during which it was used, the absolute power output of this laser was
observed to fall from 38 mW to 30mW. The separation of the e% points of the beam
was specified as being 1.7mm, which was an important consideration in deciding on a
clear aperture of 1.6 mm for the passage of the beam through the quadrupole cell. An
adjustable three-point support for the laser made provision for levelling and alignment
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with respect to the optical bench.

The sensitivity of the experiment is partly dependent on the intensity of the light
entering the cell; it is therefore desirable that as much of the laser light as possi-
ble should pass through the first polarizing prism. This was achieved by inserting a
%—plate between the laser and the polarizer and rotating the %—plate until the plane
of polarization of the laser light coincided with that of the polarizer. The %—plate was
a 25 mm-diameter disc cut from a sheet of mica selected for 632.8 nm and which had
been sandwiched between two discs of low-strain Pockels glass. This arrangement was
mounted in a divided circle and supported in a stand with a magnetic base.

The polarizing prisms used to polarize and analyse the light beam were of the air-
spaced Glan-Taylor variety. That used as the polarizer was mounted in a divided circle
having a resolution of 2 minutes of arc. In the Jones Calculus analysis presented in
Chapter 3, departures of the azimuths of various optical components in the cascade
from their ideal values are measured with respect to the plane of polarization of the
light entering the quadrupole cell. It was therefore important that the polarizer be
set up in such a manner as to permit these orientational errors to be minimized. To
facilitate this a platform of surface-ground gauge plate was attached to the optical
bench with a three-point support. This platform was levelled using an engineer’s level
before the magnetic base of the polarizer support was affixed to it. Through an iterative
technique of rotating the polarizer about its stem, rotating the analyser for extinction
of the beam, and then correcting the azimuth of the polarizer, it was possible to polarize
the beam in a plane orthogonal to the platform. By then offsetting the polarizer by 45°
a state was achieved in which the plane of the polarized beam entering the cell was at
45° to the level. This permitted a spirit-level to be used as a, reference when orienting
the plane of the wires within the cell.

Like the %—plate, the %—plate was cut from clear mica and was mounted and sup-
ported in similar fashion. Sandwiching the mica between discs of Pockels glass was
found by Pierrus to reduce markedly the undesirable effects caused by differential re-
flection of the beam off the plate. A %-plate having a measured retardance of 91.2 4 (.3°
at 632.8 nm was used for this work.

A view, looking down the optical bench, of the analyser housing is shown in Fig-
ure 4.2. Two large taper-roller bearings are pulled up into their housings at opposite
ends of a 200 mm-long thick-walled cylinder by lock nuts threaded on to a steel tube
running through the centres of the bearings. The inside of this tube was painted matt
black and the analyser prism was mounted in cork on the axis of the tube at the end
nearest the laser. Attached to the other end was an arm of length 1300 mm cut from
o mm-thick sheet aluminium. A 50 mm length of square section brass was mounted at
a distance of 1000 mm from the axis of the bearings in such a way that a V-groove ma-
chined along its length was co-linear with the centre of rotation of the bearings. This
v-groove served to locate a steel ball mounted on the end of a micrometer head which
was coupled through a chain and sprocket arrangement to a stepper motor. A pulley
and weight served to hold the arm against the micrometer with a constant force. By
placing the stepper motor under computer control the micrometer could be advanced
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Figure 4.3 Side view of the quadrupole cell

in very small steps enabling small, known, and reproducible rotations of the analyser
to be made.

An EMI 9698B photomultiplier tube, having its peak sensitivity in red light, was
used as the detector throughout this work. The tube was well shielded from magnetic
and electric fields, and baffled and shielded to detect light from the forward direction
only. The photomultiplier was operated at 360 V—well within its region of linear
response. Coherent radiation from the high-voltage supply to the quadrupole cell
was excluded from the signal path by providing additional screening of the co-axial
cables which carried the signal from the photomultiplier to the psd. Indeed, great care
was taken with the earthing of all the components used in the experiment since an
experiment of this sensitivity is particularly prone to picking up spurious earth-loop
signals.

4.4 The Quadrupole Cell

4.4.1 Construction of the cell

A side view of the cell containing the gas in which birefringence was induced is shown
in Figure 4.3, and the extension, enclosed in the broken line in this diagram, is shown
sectioned in Figure 4.4.  To understand fully the design and construction of the
quadrupole cell, it is helpful to consider first its various functions. Most obviously it
had to contain the gas on which measurements were to be performed without, leaking.
Because of the smallness of the effect being studied it was important to be able to
work at small molar volumes which often implied working at high pressures; 4 MPa was
typical, although pressures of 6 MPa were used for some measurements on nitrogen.
In order to be able to contain these pressures, special consideration had to be given
to the seals used. The quadrupole cell had also to contain the means for generating
the high electric field gradient on its axis. Furthermore, this field gradient had to be
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Figure 4.4 Section through the extension to the quadrupole cell
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correctly oriented with respect to the plane of polarization of the incident beam. Since
the electric field gradient was to be generated by earthing the cell and holding the
wires at a high voltage, careful consideration had to be given to the means whereby
this high voltage was led into the cell.

The original cell was constructed from a 1450 mm length of Hastelloy C-276 pipe
having a 52.4mm internal diameter and a wall thickness of 3.8 mm. Hastelloy C-276
(hereafter, Hastelloy) was selected for its excellent resistance to chemical attack by
a large range of substances which are normally regarded as corrosive. Gases such as
chlorine and boron trifluoride were used in this cell with no visible signs of surface
degradation. To the ends of the pipe were welded the flanges on to which the end caps
were bolted, and three uniformly-spaced observation portholes were drilled along the
length of the tube on both sides. Threaded turrets were welded over these holes and
into five of these were screwed stoppers which sealed against Teflon washers, whilst the
sixth porthole served as the connection to the gas line. The portholes enabled the wire
separation at high voltages to be measured using a travelling microscope. Two more
threaded stoppers were made to seal off those holes in the cell which had previously
been used to house the lead-through for the high-voltage line. These holes became
redundant once the extension described in the next section had been fitted to the cell.

The cell was closed at its ends by bolting the window holders to the end flanges, and
using a washer cut from 3 mm-thick Teflon sheet as a seal. Figure 4.5 shows a section
through the end of the cell at which the beam exits. The window holders were machined
from 12 mm Hastelloy plate and had a 6 mm hole drilled through their centres. Discs of
clear, low-strain Pockels glass measuring 25 mm in diameter served as windows. From
time to time these would be polished to remove a stained or etched surface and so their
thickness decreased slightly over the duration of the work reported here. Typically, the
windows were 5mm thick making them the limiting factor in determining the greatest
pressure which the cell could safely contain. The mounting of the windows is most
easily understood by studying Figure 4.5. A disc of Hastelloy clamped the windows in
place on the inside of the cell with Teflon washers again being used to seal and cushion
the window. By mounting the window on the inside of the cell the pressure of the
gas in the cell provided additional clamping of the window against the seal. A Teflon
cap placed over the clamping plate reduced the likelihood of electrical arcing occurring
between the plate and the wire-holder.

The entire cell was held by two supports which provided for independent vertical
and lateral adjustments to the position of the cell. Once aligned, the position of the cell
could be fixed by locking all the travelling mechanisms. The split-ring clamps which
held the cell were lined with thin felt and were tightened by compression springs,
thereby enabling the cell to be rotated about its axis. On to one of these mounts was
bolted a 500 mm-long arm having an upright post attached to the outermost end. A
second arm was clamped to the cell in an adjacent position, and at the end of this arm
was mounted a micrometer head in such a way that the end of the micrometer thrust
against a steel ball pressed into the end of the afore-mentioned post. The two arms
were pulled together by tension springs, enabling small rotations of the cell in either
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Figure 4.5 Longitudinal section through that end of the quadrupole cell at which the

laser beam exits, in which the arrangement for clamping the window to the end of the
cell is shown together with the use of Teflon gaskets for sealing

50



sense to be carried out by adjusting the micrometer.

4.4.2 The cell extension

Buckingham and Disch’s [41] original quadrupole cell made use of a spark-plug to lead
the high-voltage signal through the earthed cell and on to the wires. Although the
apparatus described here does not make use of an actual spark-plug for this purpose,
the term ‘spark-plug’ has been retained to describe the device which is used in its
place. Pierrus [39] reports that the previous spark-plug design was prone to arcing
at high voltages. That version consisted of a solid Teflon cylinder with a metal rod
running through its centre to conduct the high voltage applied to the outer end to the
wire-holder inside the cell. A decision was made to provide for a spark-plug of similar
design but having superior insulation in the form of a greater diameter Teflon rod.
This larger device could not easily be housed in the existing cell and so an extension
was machined from a 150 mm length of 120mm diameter Hastelloy round bar. The
form of this extension and of the new spark-plug may be seen in Figure 4.4.

The spark-plug was held against the sealing surface on the extension by a threaded
stainless steel collar. Flats machined on the collar enabled it to be tightened using
a large shifting spanner. No problems were ever experienced with this seal, although
several designs for the fitting of the conducting rod to the spark-plug were tried before
arriving at the satisfactory design shown in the figure. The rod was turned from
Hastelloy with a small threaded spigot at the upper end. A 0.5mm hole was drilled
through the spigot at its base, and a threaded cap was used to clamp in this hole the
end of the short length of wire which conducted the high voltage to the wire-holder.
Three Viton o-rings fitted to the broad part of the rod prevented the gas from seeping
down the centre of the spark-plug. A 4mm banana-plug socket was screwed on to
the exposed end of the conducting rod providing a means whereby the pressure on
the bottom o-ring could be increased in the event of a small leak developing, and a
banana-plug soldered to the end of the high-voltage lead fitted tightly in this socket.

Not shown in Figure 4.4, but indicated in Figure 4.3, is a platform mounted above
the extension. This platform was constructed from flat gauge plate and could be levelled
by means of the adjustable three-point support on which it rested. The purpose of this
platform is described in the following section.

4.4.3 The wires and wire-holders

Shown sectioned in Figure 4.6 are the two wire-holders which serve to maintain the
wires at the correct orientation, separation, and tension. The keys to locating the wires
accurately with respect to the axis of the cell are the 0.5 mm-thick plates which are
located by short dowel pins in the shallow recesses at the inner ends of the holders.
These pins also serve to locate the wire-holders in the Teflon sleeves.

The plates were produced by parting thin discs off a length of round bar, lapping
them to a uniform thickness and good surface finish, and then drilling in a single pass
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the holes required for the wires and the aperture through which the beam passed. This
ensured that that the two wires were symmetrically disposed about the beam.

To ensure that the wires lay in a vertical plane, the following procedure was adopted.
One wire-holder was located in its Teflon sleeve in an orientation which appeared to be
vertical. This sleeve and wire-holder were then placed in the cell and the three holes
at the centre of the plate were projected onto a screen using a He-Ne laser and a series
of lenses. A plumb-line was set up near the screen and the cell was rotated until the
centres of the three projected holes coincided with the shadow cast by the plumb-line.
The platform atop the extension was then levelled using an engineer’s level, and locked
in this position. The position of the hole used to locate the second wire-holder in the
other sleeve was then found by rotating this holder until its projected holes coincided
with the plumb-line and then marking the sleeve with a pointed locating dowel. After
assembly, the wires in the cell could be brought into a vertical plane by rotating the
cell until the platform on the cell extension was level.

At the spark-plug end of the cell the wires were attached with threaded fasteners
to a plate which rode on compression springs located on four posts inside the hollow
wire-holder. When stringing the wires within the cell, these springs were compressed
by the action of a bolt which screwed into the lid of the holder and forced down the
plate to which the wires were attached. The wires, which were cut some 500 mm longer
than the cell, were then threaded through the wire-holder at the other end of the cell
before being attached to weight holders. With the cell firmly secured to the bench,
the wires were hung over pulleys and tensioned by placing weights on the holders. The
wires were each loaded to just below their breaking strain; 0.5 mm Hastelloy wire was
loaded typically to 160 N. A conical plug was then secured in the second wire-holder by
a threaded fastener having a hole bored through its centre and a slot cut into one end
to enable it to be tightened using a screwdriver. Once the conical plug had securely
Jammed the wires in place, the wires were broken off at the surface of the wire-holder
by fatiguing them. The bolt was then removed from the hollow wire-holder so that the
tension in the wires was maintained by the four compression springs.

Measurements reported here for all gases except chlorine were carried out using wire-
holder components made from Monel metal and fastened with stainless steel screws.
Prior to the commencement of this work only stainless steel wires had been available
for use in the cell. Measurements on chlorine gas are deemed to be of considerable
theoretical interest and, since this had been the primary motivation in constructing
the cell from Hastelloy, a roll of 0.500 mm-diameter Hastelloy wire was acquired at the
beginning of this work for use with corrosive gases. Since chlorine gas will corrode both
stainless steel and Monel metal, the wire-holder components were initially plated with
silver in an attempt to form a silver chloride barrier against attack by the chlorine.
An unexpected outcome of this was the formation of an unidentified deposit on the
cell windows which severely blocked the passage of light through the cell. At this
point a decision was made to remake all the wire-holder components, including the
screws but excluding the springs, from Hastelloy. The springs were protected from
attack by binding them tightly with Teflon tape. This proved to be a very satisfactory
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arrangement since the only surfaces in the cell which were exposed to chlorine were of
Hastelloy, Teflon, or glass.

Prior to the arrival of the Hastelloy wire, stainless steel wire of diameter 0.35 mm
or 0.40 mm had been used at a spacing of 3.0 mm between centres. Before the plates
for the new wire thickness could be prepared, a decision had to be made regarding
the spacing of the thicker wires. There exist opposing criteria governing the optimal
separation of wires of a given diameter. As shown in Appendix A, the strength of the
electric field gradient on the axis of the cell is inversely proportional to the square of the
distance separating the centres of the wires. Since the birefringence is proportional to
the on-axis field gradient, we would like to place the wires as close together as possible.
Two important factors oppose this. Firstly, since the wires carry equal charge, there
exists a force of repulsion between them which also varies as the inverse square of their
separation. A first-order correction is made for the resultant outward bowing of the
wires, but the validity of this correction becomes doubtful if this bowing is too great.

Secondly, and more importantly, the derivation of the expression for the field gradi-
ent on the axis of the cell given in Appendix A makes implicit assumptions regarding
the geometry of the conducting surfaces within the cell. Briefly, the derivation involves
replacing the wires with line charges having magnitudes such that the potential at the
surface of the wire, as determined by this model, is equal to the potential of the wire.
This assumes the line charge equipotential at the wire surface to be circular so that it
coincides with the entire wire surface. A computer program was written which plots
the equipotential at the wire surface superimposed on the wire surface itself. It was
found that this equipotential surface was very nearly round for large wire separations
but became noticeably distorted as the wire separation was decreased. For a given
wire thickness, a minimum separation was selected based on these plots, a selection
of which is included in Appendix E. In the case of 0.5mm wire a spacing of 4.0 mm
between centres was used.

4.4.4 The high-voltage power supply

A Philips PM5190 LF synthesizer was used to generate the modulating signal used in
the experiment. This signal was sinusoidal having a frequency chosen to be well away
from the line frequency and from that at which resonance in the wires was observed to
occur. Usually, a frequency of either 363 Hz or 463 Hz was used and the amplitude was
set at an rms value of 50 mV, this being the optimum amplitude of the driving signal
for the high-voltage power supply. This supply was essentially a two-stage high-voltage
amplifier, the first stage of which fed into the primary coil of a high-voltage transformer
immersed in oil. A Teflon-insulated high-voltage lead conducted the voltage from the
secondary coil to the spark-plug of the quadrupole cell.

A feedback circuit was included in the amplifier to ensure that the output was kept
constant to within 0.1%, as well as to provide a means whereby the high-voltage output
could be accurately monitored. Part of the feed-back signal was rectified and attenu-
ated so that a reading of 1V dc on the digital voltmeter used to monitor this output
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corresponded to 1kV rms on the wires of the cell. After evaluating several different
methods for performing this calibration, that chosen was to adjust the attenuation for
an output of 1kV, using a 1kV ac 4%—digit digital voltmeter as a standard, and then
to assume that the linearity which was observed in the range 0-1kV extended up to
the operating voltage of, typically, 8 kV. Linearity was observed over the whole range
using a high-voltage probe, whilst the ratio of input voltage of the primary coil to that
of the secondary of the high-voltage transformer was observed to be constant to within
0.1% over the range 0-1kV. With the calibration method described, the uncertainty
in the high voltage was estimated to be no more than 0.2%.

4.4.5 Determining the electric field gradient

The electric field gradient on the axis of the cell was determined indirectly using the
relationship derived in Appendix A together with an accurate knowledge of the cell
geometry. An inside micrometer was used to measure the internal diameter of the
cell whilst the wire thickness under tension was found with a micrometer screw gauge.
Since the wires tended to repel each other when held at a high voltage it was necessary
to measure the wire separation in situ with the high voltage applied. This was accom-
plished by using a travelling microscope to view the wires at each of the three viewing
ports. A 1pm dial-gauge indicator was fitted to the vertical axis of this instrument in
order to achieve an accuracy of measurement which was an order of magnitude better
than that which was possible using the vernier scale of the travelling stage.

Once the separation was known at three points along the wires an effective wire
separation was calculated by fitting parabolas to these points and then integrating the
difference along the length of the wires.

4.5 The Faraday Nulling Cell

4.5.1 Design and construction

The Faraday cell was of a comparatively simple design, being essentially a glass tube
filled with toluene located on the axis of a solenoid. The glass tube was 400 mm long,
had an internal diameter of 12mm, and was closed at both ends by Teflon caps in
which were located Pockels glass windows identical to those used in the quadrupole
cell. The solenoid actually comprised two separate coils wound on a former having an
outside diameter of 75mm. The coil which was used to provide the magnetic field for
nulling was of 100 turns of heavy-gauge wire, whilst the other consisted of 10 000 turns
of much thinner wire and was used only in the set-up employed in calibrating the first
coil.

Perspex holders located the cell at the centre of the solenoids and provided the
means for applying sealing pressure to the windows. Standard optical bench traversing
mechanisms were used to support these holders, thereby permitting the cell to be
aligned with respect to the beam. To ensure that the light travelled down the centre
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Figure 4.7 Schematic diagram of the Faraday cell circuit used in the experiment

of the cell, the Teflon caps which held the windows were machined to have a central
clear aperture only slightly bigger than the waist diameter of the beam.

4.5.2 Circuit and power supply

The experimental arrangement for supplying current to the Faraday cell is shown in
Figure 4.7. A decade resistance box was included as a current-limiting resistor in series
~with the 100-turn coil of the Faraday cell. Across this resistance was connected a high-
impedance digital voltmeter to permit an accurate determination of the current flowing
in the circuit. An AC power supply incorporating a phase-shifting circuit was used to
supply current to the Faraday cell circuit via a 1:1 transformer; a feed-back path to
the power supply maintained this current at a steady level. The waveform synthesizer
which provided the signal for the high-voltage amplifier also supplied that for this ac
current supply.

The high-voltage signal on the wires of the quadrupole cell was required to be in
antiphase with the current in the Faraday cell. In order to achieve this the Lissajous
figure of the two signals was monitored on an oscilloscope and the phase of the current
was adjusted using the phase-shifting circuit.

Since the required experimental data were a set of psd output readings as a function
of the current through the Faraday cell, a facility was needed whereby the computer
would be able to control the current flowing in the Faraday cell circuit. To this end,
the ac power supply was made ‘programmable’ through an input voltage, supplied in
this case by a custom-built digital-to-analogue converter.
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4.5.3 Calibration of the Faraday cell

Since the signal from the quadrupole cell was measured essentially by nulling it with
that from the Faraday cell, it was important that the Faraday cell be accurately cali-
brated. This, too, was carried out using a nulling technique—in this case nulling the
effect of a Faraday rotation of the plane of polarization with a mechanical rotation of
the analysing prism. Small, known rotations of the analyser were achieved using a mi-
crometer head acting on a 1 m-long arm used to pivot the prism, as described in §4.3.
The micrometer was driven by a stepper motor under the control of the computer,
presenting the possibility of automatically calibrating the Faraday cell. Attempts to
achieve this were unsuccessful, due largely to the effects of the vibrations set up by
the stepper motor which added greatly to the noise in the experiment. When running
the main experiment, these effects were dealt with by allowing sufficient time for the
vibrations to decay before taking measurements. In the case of the calibration proce-
dure, this approach was impracticable because of the need to monitor constantly the
output signal whilst rotating the analyser. On account of this, the micrometer was
decoupled from the motor for purposes of calibration and could then be adjusted by
hand. Calibrations were performed regularly and on each occasion many readings were
taken and averaged.

The experimental set-up for calibrating the Faraday cell is depicted schematically in
Figure 4.8. Optical components not directly involved in the calibration are not shown
in this diagram, but in practice it was found that the outcome of the measurements
was not affected if they remained in place, and for convenience they usually were.
Cancelling the effect of a Faraday rotation of the plane of polarization of the light beam
by physically rotating the analysing prism requires that the signal from the Faraday
cell should be both static and large. When used in the experiment, the Faraday cell
produces a modulated signal which is of the order 1078 radians, clearly unsuitable for
purposes of calibration. Since the Faraday cell could be be calibrated accurately only
for rotations which were not smaller than about %O, the assumption had to be made
that the Faraday effect was linear in the current over this interval. Furthermore, in
order that phase-sensitive detection techniques could still be used in the calibration
procedure, a small ripple had to be superimposed on the dc signal to enable the psd to
observe the coupled term in the intensity. This was achieved by driving a much smaller
current through the second coil of the Faraday cell. A toroidal air-core inductor was
included in the dc circuit to minimise coupling between this and the ac circuit.

A set of Faraday rotation vs current readings was obtained and fitted with the best

least-squares line, the slope of which yielded the calibration constant F in units of
radians per milliampere.

4.6 Experiment Control and Data Acquisition

Because of the smallness of the effect being measured and the fact that the signal was
buried in a background of comparable noise, a great deal of data had to be processed
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in order to extract a meaningful result. This naturally suggested that the entire ex-
periment should be placed under computer control and, because of the availability of
Hewlett Packard equipment, an HP86 microcomputer was selected for the task. This
was furnished with an HPIB interface, thereby enabling the data acquisition unit, HP
multimeters and the custom-built digital-to-analogue converter to be addressed with
ease.

The phase-sensitive detector used in this work was an EG&G Princeton Applied
Research model 5210 Lock-In Amplifier. This model incorporated an integral current
amplifier, thereby allowing the signal from the photomultiplier to be fed directly into
the psd. Another useful feature of this model is the existence of several in-line filters
in the signal path; those selected for this work were the bandpass filter, tuned to the
frequency of the reference signal, and the line-frequency notch filters.

Throughout this work a current amplifier setting of 105 VA~! was found to be
most appropriate, whilst the sensitivity most frequently chosen was 100 xV full-scale
deflection. A time constant of 1s was selected for all but the very noisiest signals for
which a 3s time constant was sometimes used.

A facility was available whereby the phase difference between the reference signal
and the detected signal could be displayed in degrees, and the phase of the reference
signal could then be shifted to be exactly in phase with the signal from the photo-
multiplier. An output channel on the psd provided a dc signal in the range —10V to
+10V, corresponding to psd readings of —100% to +100% of the selected range. An
HP3478A multimeter measured this output, and this reading, being proportional to the
modulated light intensity at the photomultiplier, was then recorded by the computer.
As mentioned in §4.5.2, the current through the Faraday cell was monitored by using
an identical multimeter to measure the ac voltage across a known resistance in series
with the Faraday cell. A four-wire measurement of this resistance was made each time
the experiment was performed.

All other data were collected by an HP3421A data acquisition unit. This was fitted
with the multiplexer card option configured to have eight multimeter channels and two
channels which served as relays. In order to monitor the temperature of the cell three
calibrated 10kQ thermistors were attached along the length of the cell, and three of
the data acquisition unit channels were used to monitor these resistances. These values
were then used by the computer to obtain a mean value for the temperature of the
gas in the cell. Another channel was used to monitor the dc voltage produced by the
high-voltage amplifier in the ratio 1:1000 of the rms potential on the wires in the cell.
The two relay channels provided the switching and direction control needed for the
stepper motor, whilst another channel was configured as a counter to track the stepper
motor position.

A listing of the HP86 program used to control the experiment is given in Ap-
pendix F. At the start of a series of measurements the alignment of the optical com-
ponents would be checked to ensure that the maximum possible light intensity passed
through the system. The current through the Faraday cell was then set in antiphase
with the high voltage on the wires in the quadrupole cell, and the reference signal at
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the psd was brought into phase with the signal from the quadrupole cell. A reading
of the gauge pressure of the gas in the cell would then be entered into the computer
together with the barometric pressure in the room. This information was logged in the
same file as that in which the experimental data was stored. Other important variables
such as the date, time, gas, wire separation, wire thickness, wire length, and Faraday
cell constant were also recorded in the header of this file.

The computer would then proceed to find the positive and negative limits for the
analyser offset which produced full scale deflection on the psd. Once these had been
determined, the corresponding currents through the Faraday cell which yielded full
scale deflections of the opposite sign were found. The program then began a cycle of
measurements to find the current at the cross-over points which was repeated until
interrupted by human intervention. In this cycle the analyser would first be positioned
at one of its offset positions and the temperature of the gas in the cell would be
measured and recorded. A reading of the high voltage in the cell was also taken.
Twenty equally-spaced current values in the range from zero to that current giving full
scale deflection in the opposite sense were then determined, and the current through
the coil of the Faraday cell was set to each of these in turn. As a precaution these
values were used in a non-sequential order thereby reducing the effect that any slow
drift in other variables, such as the temperature of the gas, might have on the results.

At each current setting the computer waited for a fixed period equal to several times
the time constant of the psd, and then took fifty readings of the psd output which were
averaged and stored with a measured value for the current. After all twenty values
for the current had been used, a least-squares linear regression was performed and the
slope and intercept of the best-fit line were stored. The analyser would then be rotated
to its second offset position and, after waiting for at least a minute for vibrations to
decay, the process would be repeated and the slope and intercept of a second line were
found. Finding Iy, the value of the current at the point of intersection of the second
line with the first, enabled a value for 6 in (3.36) to be calculated.

At the end of each cycle, the data would be written to magnetic disk and then
printed on a line printer so that a copy was available in the event of the magnetic
disk data being corrupted. Information contained in the HP86 magnetic disk files had
to be processed in order to extract values for the electric quadrupole moments of the
gas molecules from the measured cross-over points of the two lines. This analysis was
performed using an IBM AT computer because of its greater convenience of use. A

special program was used to convert the HP86 files to ones which could be read by this
computer.
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Chapter 5
PRESENTATION OF RESULTS

5.1 Theoretical Considerations

A general expression in terms of molecular quantities for the phase retardation induced
between orthogonally-polarized components of the light beam on passing through the
quadrupole cell may be found by substituting (2.58) in (3.1), to give

_2rlNE's  2nl NyE's

d A €o n T VmSO '

(5.1)

in which all symbols retain their previous meanings. In §4.6 it is noted that the output
of the experiment is iy, the value of the current through the Faraday cell at the point
of intersection of the two graphs of psd output vs Faraday cell current. This may be
related through the calibration constant F' of the Faraday cell to 6, in (3.36) by

Hint = Fliy. (5‘2)
Substituting this in (3.36) and solving for ¢ yields
§ = +£2F Iy, (5.3)

in which the sign is determined by the orientation of the fast axis of the %-plate. In
practice, an ab nitio determination of signs in the experiment is difficult, so the sign
of Sq(g%) Gap ~ qggaﬂg for a given gas was determined by comparing the sign of the psd
output for a given offset of the analyser with that found with the same analyser offset
for carbon dioxide, for which the sign of ¢(® — ¢{? is known to be negative [41]. In
view of this we shall henceforth drop the sign from the notation.

Combining (5.3) and (5.1) allows us to solve for the molecular expression s in terms
of experimental observables, yielding

o — FliudeoVmm
~ 7lE'N,
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In order to extract from this an expression for the quadrupole moment of a molecule
we must consider the special cases in which the expression for s may be simplified. For
carbon dioxide, carbon monoxide, nitrogen, and chlorine, which are all linear molecules,
and boron trifluoride, which is planar with an axis of 3-fold rotational symmetry,
simplifying the molecular expression for s yields (2.59). We shall neglect at this stage
the hyperpolarizability term b in comparison with the other terms, although we shall
later consider the validity of doing so for each of the gases investigated. Furthermore,
we may omit the term containing the permanent dipole moment x(®). In the case
of carbon monoxide, a polar molecule, this is interpreted as referring the quadrupole
moment to an origin located at that point in the molecule at which the origin-dependent
coefficient of 4(*) vanishes. The remaining part of (2.59) is substituted in (5.4) to yield

© _ 15\ Ve F L kT
~ niNoE'Aa

(5.5)

in which

Aa = Oz — Qgg,

(0) (0) (0)

q =4z, — Gz

and the z-axis is the axis of highest symmetry of the molecule. We loosely refer to ¢(¥)
as the ‘quadrupole moment’ of a linear molecule.

The relationship between the primitive and traceless quadrupole moment definitions
has been discussed at some length in §1.2. From (1.8) it is a simple matter to show
that, for a linear molecule, ¢ =4@,,. A direct comparison may therefore be made in
this case between the 6..' ‘quadrupole moment’ reported by experimentalists using the
traceless definition and the ¢(® ‘quadrupole moment’ reported here.

Ethene is a non-polar molecule belonging to the symmetry point group Ds,. It
therefore has three independent polarizabilities and its primitive quadrupole moment
is also specified by three numbers. If we again assume that the hyperpolarizability
terms are negligible then the appropriate form of (5.4) for ethene is

%[ g(egc (202 — Oy — 022) + qg(;(g);)(zayy — @y — Q) + qgg)@azz — Qgz — Qyy )]
_ 1NVoeoF LT o o
. ﬂ'lN()E’ . )

The factor % is introduced on the left-hand side of (5.6) so that the right-hand side
differs from that of (5.5) only by the missing A« in the denominator.

Further simplification of (5.6) is possible only if certain assumptions are made
regarding the relationships between the quantities on the left-hand side. This appears
to be common practice amongst experimentalists and is considered further in §5.3.6
where such approximations are made in order to compare the results reported here
with those obtained by other workers.

'Often denoted simply by 6.
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5.2 Experimental Variables

5.2.1 General considerations

The right-hand sides of (5.5) and (5.6) comprise several experimental variables and
three fundamental physical constants. Values used for the latter were [44]:

g0 =8.8542 x 10712 C2N"1;m 2
k =1.38066 x 1072 JK,
Ny =6.0220 x 10%® mol 1.

The wavelength A of the He-Ne laser light used in the experiment is well known to be
632.8nm; whilst the geometric path length of the light beam through the quadrupole
cell was taken to be the distance between the exposed faces of the plates on the wire-
holders. This distance was measured each time the cell was reassembled although it
always fell within a one millimetre range centred on 1466 mm. The maximum error in
this measurement was estimated to be 0.1%.

Another experimental variable which was checked frequently but varied little was
the calibration constant of the Faraday cell. A typical value for this constant would be
3.31 x 10~ %radians per milliampere having a standard deviation of the mean of 0.6%,
due almost entirely to the uncertainty in finding the null position during the calibration
procedure, since the current through the cell and the rotation of the analyser could both
be determined with far greater precision. By the same token, the error in determining
Iy was also due to uncertainties in finding the point of intersection of the the two
graphs of psd output vs Faraday cell current, rather than an uncertainty in measuring
the Faraday cell current itself.

The remaining variables, temperature, molar volume, and electric field gradient,
require a more detailed discussion.

5.2.2 Temperature

Since the quadrupole cell was not designed to be heated or cooled, all measurements
were made at room temperature. Over the course of a year this temperature ranged
from 15°C to 32°C whereas the thermal insulation encasing the cell ensured that the
temperature of the gas seldom varied by more than 0.2°C over the period required to
determine a single null point.

An accurate determination of the gas temperature was vital since it not only appears
in its own right in (5.5) but also plays an important role in determining the molar
volume and, to a lesser extent, the dielectric constant of the gas. The temperature
of the gas in the cell was found by measuring the resistance of the three thermistors
mentioned in §4.6. These had been individually calibrated in a constant-temperature
oil bath against a Beckman mercury thermometer over a slightly wider temperature
range than was encountered experimentally. Discrepancies between the temperatures
inferred from resistance measurements made on each of the three thermistors were
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generally of the order of 0.1°C. Confidence could therefore be placed in the temperature
measurement obtained by averaging the three individual readings, the maximum error
in which was estimated to be 0.1%.

5.2.3 The molar volume

Measurements on most of the gases reported in this chapter were made over a range of
gas densities. An exception was chlorine, largely because the condition of the windows
deteriorated steadily from the moment the gas entered the cell, thereby presenting a
need to obtain accurate results as swiftly as possible. For this reason, measurements on
chlorine were made at the highest usable pressures. Even in the cases of the remaining
gases, higher pressures were favoured as it is at the smallest molar volumes that the
birefringence induced in a gas is greatest. The highest pressure used was generally
just below the critical pressure of the gas, providing that this was less than the 4 MPa
upper limit imposed by the Budenberg Master Test Gauge.

Deviations in the behaviour of a gas from the ideal gas law are described by the
virial equation of state,

PV, B, C, D
m_ NP, S Dy
(RT ) Vo V2 Tyt

in which B, C,, and D, are, respectively, the second, third, and fourth pressure virial
coefficients, and are, in general, functions of the temperature of the gas. Other symbols
in this equation have their usual meanings. If the virial equation of state is truncated
after the term in V_Z% then it becomes an equation which is cubic in the molar volume
and for which V,, may, therefore, be solved exactly.

Dymond and Smith [45] have compiled extensive tables of reported virial coefficient
data for most gases. This data is tabulated over a range of temperatures, thereby per-
mitting the user to select the data which are considered to be the most reliable over a
given temperature range and then to fit to them a smooth curve for purposes of inter-
polation. For the work reported here, polynomials of typically fifth order were fitted by
‘least-squares’ to selected data for the second and, where available, the third pressure
virial coefficient. The coefficients so found were stored in the computer program used
to analyse the results so that the virial coefficients of the gas could be found at the
recorded temperature. These values were then substituted, together with the absolute
pressure of the gas, into an exact expression for the required root of the truncated
virial equation of state in order to determine the molar volume Vi of the gas.

Based on maximum error of 0.3% in the pressure measurement at a typical pressure
of 3 MPa the maximum error in Vi was estimated to be 0.5%.

5.2.4 The electric field gradient

The principle used to calculate the electric field gradient on the axis of the cell is
outlined in §4.4.5. Measured values for the wire spacing at three places along the cell
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were passed to the analysis program along with the other experimental data so that the
average wire separation could be calculated for each experimental run. Line charges
which are used to model the set-up as described in Appendix A were then positioned
so that those equipotential surfaces at the potential of the measured high voltage on
the wires coincided with the wire surfaces. Once the geometry had been established
the field gradient per volt was calculated, thereby enabling the electric field gradient to
be found from the value of the high voltage recorded for each cycle of the experiment.
In practice, drift in the high voltage output was inconsequential over a typical 12-hour
run period.

The point is made in Appendix A that a factor Ei should be included in the expres-
sion for the electric field gradient to account for the dielectric properties of the gas.
Pierrus [39] has noted that this correction can amount to several percent in certain
cases. The dielectric constant of a gas has a density-dependence described by expand-
ing the Clausius-Mosotti function &=LV, in inverse powers of the molar volume:

Er+2
e — 1 B, C;
T Vp =A== ...
5 +Vm+V,3+

in which A, B, and C, are, respectively, the first, second, and third dielectric virial
coefficients. Unfortunately, there is a relative paucity of data giving the temperature
dependence of dielectric virial coefficients for gases. Where such data exists they have
usually been carefully measured in order to infer from them the value of some molecular
quantity such as the electric quadrupole moment, and in these cases the approach used
to determine ¢, was analogous to that employed in finding the molar volume.

In the cases of carbon monoxide, chlorine, and boron trifluoride, no dielectric virial
coefficient data were available. The dielectric constant of carbon monoxide was calcu-
lated using the expression [46]

B e -1

A+ —= .
+T €y + 2

(5.7)

A tabulated value for A and the permanent electric dipole moment ;¥ were available
[46], the latter enabling B to be found using the expression

B = 471']\]’0/,1.2 ‘
9k

In the cases of chlorine and boron trifluoride, published values of the polarizability «
were used to approximate the first dielectric virial coefficient A, as %oﬂ

Taking into consideration the maximum uncertainty of 0.2% in the measured value
of the high voltage and the method of calculating a mean wire spacing, the maximum
uncertainty in the electric field gradient is estimated to be 0.4%.
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5.3 Results

5.3.1 Statistical analysis

The apparatus and techniques described in the previous chapter were used to perform
induced-birefringence measurements on six gases: carbon dioxide, carbon monoxide,
nitrogen, ethene, boron trifluoride, and chlorine.

In order that these results, presented in the subsections which follow, serve as use-
ful a purpose as possible, it is important that careful attention be paid to assigning
them the most realistic bounds of uncertainty. This uncertainty contains elements
of both random scatter and of a ‘scale-limited’ nature. In evaluating and combining
the uncertainties from various sources, the writings of Baird [47] have proved helpful.
The theory which follows is necessarily based on the assumption that measurements of
the quadrupole moment in this experiment are normally distributed about the mean.
Histograms of runs of measurements on carbon dioxide have shown that this is a rea-
sonable assumption. For convenience, we will use the notation pertaining specifically
to the case of a linear molecule. The statistical treatment of other cases is exactly
analogous.

We begin by considering the process of arriving at a measured value of the quadru-
pole moment of a molecule. Before starting a run of the experiment, the pressure of the
gas in the cell was set to the desired value, the apparatus was left to stand in order to
allow the turbulence in the gas to decay, and the optical components were realigned in
order to maximize the light intensity passing through them. After determining limits
for the offset of the analyser, the computer would begin to take readings of the psd
output for various currents passing through the Faraday cell. Since these currents were
actively maintained at a steady level and were measured by a 5%-digit ac voltmeter
connected across a resistance which was known to a precision of better than 0.01%, the
most important uncertainties in these readings were entirely due to the noise in the
psd output. To counter this noise, which necessarily depended on the signal strength
and was therefore greatest at lower pressures and was more significant in some gases
than in others, a number of psd output readings were taken in quick succession and
averaged. This number was typically twenty but as many as fifty readings per point
were taken in particularly noisy cases.

In all instances, readings were taken for twenty uniformly-spaced current settings
for both offsets of the analyser. Straight lines were fitted to these data sets using
least-squares linear regression and a correlation coefficient r was calculated for each
line. From the slopes and intercepts of these two lines, the current at the point of
intersection was calculated. A single spurious reading, due, say, to a spike in the mains
supply, could introduce considerable error into the value of the current at the point of
intersection. For this reason, if either line had a correlation coefficient which was less
than 0.99 then the quadrupole moment calculated from the current at that cross-over
point was not included in the average for that run.

A run would be terminated by human intervention, whereupon the mean quadrupole
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moment ¢® and standard deviation s of the sample were calculated from those n
measurements which had been accepted on the basis of the above test. The standard
deviation was calculated, not as a measure of the standard deviation of a single reading
from the mean of the sample, given by

Y

[
S =

n

but as the best estimate of the standard deviation o of a single measurement in the
universe of measurements for that particular configuration of the experiment, given by

o) _ (0)
oS = \J @0 —a ) (5.8)

n—1

However, the quadrupole moment quoted is an average of several independent mea-
surements so the measure of probable deviation of this value from the ‘true’ quadrupole
moment that would be measured with this particular experimental configuration is o,,,
the standard deviation of the mean of a random sample of n measurements, which is
best estimated in this case by

a oy \] Z(q(o) B Q§O))2. (59)

G n(n—1)

n

It is this value which has been recorded with the mean in the last column of Table 5.1,
and in all the tables of results which follow. There is, of course, inherent uncertainty
in estimating o and, therefore, in estimating o, based on only a small sample of
measurements. The standard deviations of sets of n measurements of quadrupole
moments for a given experimental configuration will themselves be normally distributed
about ¢ with an uncertainty o, given by

o
Oy = ——.

2(n—1)

In view of this, greater confidence may be placed in those estimates of o,, which are
based on many readings.

A brief inspection of the last column of Table 5.1 reveals that the the best estimate
of o, in almost every run is considerably smaller than a typical deviation between
a randomly chosen run and the mean of all the runs, recorded at the foot of the ta-
ble. This suggests that each o,, and the corresponding value of the mean quadrupole
moment are applicable only to the universe of measurements for that particular exper-
imental configuration. Between runs of the experiment, variables such as the pressure
and temperature of the gas and the electric field gradient changed. Every effort was
made to account for these changes but residual effects such as slightly differing wire
separation, misalignment of the optics, temperature of the Faraday Cell, and scattering
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from deteriorated inner surfaces of the cell windows are virtually impossible to measure
and model and will therefore give rise to small differences between runs. It does not
seem unreasonable to assume that the results for ¢°) from all the runs run are nor-
mally distributed about some value: presumably the quadrupole moment which would
be considered correct if there were no uncertainties in the other variables such as the
electric field gradient and Faraday cell constant.

If these values had all been measured under the same, or nearly similar, conditions,
then the recommended course of action would be to obtain from this data an average
quadrupole moment weighted by the inverse square of each of the om values. Under
the circumstances described above, the validity of doing so is highly questionable. The
most prudent strategy is probably to discard the individual o,, values and to treat the
mean values from each run as individual measurements of q©. An overall value for
7 and for o,, may then be calculated in exactly the same way as before. The benefit
of having performed many measurements in each run is not lost in this way since the
universe of measurements to which the mean values of q© from each run belong must
necessarily have a smaller standard deviation ¢ than would be the case had just one
measurement been made in each run.

The above procedure was adopted in analysing the data shown in each of the tables
of results which follow. The mean value is shown together with the best estimate of
om in the bottom row of each table. This value of Om 1S merely the uncertainty due to
effects which may be considered to be random and does not include the uncertainties
of a more systematic nature.

Uncertainties in the measured and calculated quantities appearing in (5.5) have
been discussed in §5.2. Briefly, these are :

T The absolute temperature of the gas has a maximum uncertainty of 0.1%.

Vi The molar volume of the gas was calculated from measurements of the absolute
pressure and temperature of the gas and has a maximum uncertainty of 0.5%.

[ The length of the wires in the cell was measured with & maximum uncertainty of
0.1%.

E’"  The on-axis electric field gradient was calculated from measurements of the wire
spacing and of the potential difference between the cell and the wires. It has a
maximum uncertainty of 0.4%.

F The calibration constant of the Faraday cell was found by averaging a large
number of readings. A statistical treatment of this data yields a value for the
standard deviation of the mean which was never greater than 0.6%.

The uncertainty in the anisotropy in the polarizability A« also contributes to the
uncertainty in the value of ¢(® calculated using (5.5). Bogaard et al. [48] have per-
formed light-scattering measurements from which the anisotropy in the molecular po-
larizability may be deduced, and it is from this source that A« values for all the gases
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investigated, excepting chlorine and boron trifluoride, were taken. The value for chlo-
rine was taken from an earlier paper by Bridge and Buckingham [49] in which the
same technique was employed. Light-scattering experiments measure the intensity of
light scattered by a molecule in a direction perpendicular to the incident beam in two
orthogonal polarization planes. Suppose that the molecule is located at the origin of
a set of right-handed axes and that the incident beam is polarized in the z-direction
and propagates along the z-axis. Then the ratio of the intensity of light scattered by
the molecule in the y-direction and polarized in the z-direction to that scattered in the
y-direction and polarized in the z-direction is known as the depolarization ratio py,
and is related to the polarizability of a linear molecule via the expressions [48]

32 Aa
_—— K=—,
5+ 4k2’ 3o

from which may be deduced the expression

[ 5
Ao = . 5.11
a =3« 3 dp ( )

Bogaard et al. [48] state that one should assume their values of po to contain an error
of ~ £3%. Of all the gases considered here, that having the greatest depolarization
ratio is carbon dioxide, for which A« is 0.00405 at 632.8 nm [48]. It is immediately

apparent that the maximum error in ,/ 3_54p0 will be considerably smaller than that in

po- Indeed, a +3% range in the p, value for carbon dioxide causes an uncertainty of only
0.02% in the value of this quantity. Clearly, the greatest source of uncertainty in Aa
in (5.11) must stem from that in the polarizability o. Bogaard et al. [48] deduce these
values from refractivity data obtained from a number of sources but do not discuss
the uncertainties associated with them. In an earlier paper Bridge and Buckingham
[49] suggest that realistic uncertainties in o range from 0.5% for diatomic gases to 5%
in the case of heavy vapours. In view of this, an uncertainty of 2% for all cases is
probably over-cautious, but this is the maximum error which has been assigned to A«
in calculating the overall uncertainty in ¢(© in the present study.

Baird [47] has pointed out the difficulties in combining uncertainties of both the
maximum error and standard deviation types. He has outlined an approach for doing so
which yields an uncertainty in the calculated quantity having a % probability associated
with it. This is the approach which has been adopted in this work to produce the final
uncertainty quoted for the quadrupole moment of each gas studied. It must be borne
in mind that this uncertainty is neither a maximum error nor a standard deviation of
the mean, but instead represents an interval over which the probability of finding the
true quadrupole moment is estimated to be %

Po (5.10)

5.3.2 Carbon dioxide

Being a ‘well-behaved’ gas and having as it does a comparatively large value for the
product of ¢{% —¢(% and Aaq, carbon dioxide is a useful gas for checking the behaviour of
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apparatus designed to measure quadrupole moments of gases. Indeed, the first induced-
birefringence measurements made for this purpose were performed on carbon dioxide
[41]. Since then, many workers have reported values for the quadrupole moment of this
molecule found using the birefringence technique [37, 39] as well as a variety of other
methods [32, 50, 16, 51, 52, 15]. Establishing the quadrupole moment of carbon dioxide
with great certainty is an appealing idea since it would then provide a standard against
which apparatus could be calibrated and techniques evaluated. For these reasons, a
great many measurements spanning a period of about three years were made on carbon
dioxide in the present study.

Coleman-grade (99.99% minimum purity) carbon dioxide was used in all the mea-
surements reported here. The second and third virial coefficient data used in calculating
the molar volume were taken from Butcher and Dadson [53], whilst the dielectric con-
stant e, was found using the dielectric virial coefficient data of Bose and Cole [16].
A value of 2.350 x 107*° C?2m2J~! for Aw of carbon dioxide as measured by Bogaard
et al. [48] at 632.8nm was used to calculate ¢(®).

A feature of the carbon dioxide measurements is the variety of conditions under
which they were made. Especially noteworthy are the two different combinations of
wire thicknesses and spacings which were used in performing the measurements. These
two sets of data have been tabulated separately in Table 5.1 and Table 5.2. Since the
mean values obtained from these two tables are not significantly different, both sets
of data have been used to obtain a mean value for the quadrupole moment of carbon
dioxide, this being (—14.53 4 0.22) x 10~ Cm?2,

Battaglia et al. [37]. have reported a value of (—14.98 + 0.50) x 107*° Cm? for the
quadrupole moment of carbon dioxide measured using the same induced-birefringence
technique. By making measurements over a range of temperatures they showed that
the hyperpolarizability term b in (2.59) contributes less than 2% to the induced bire-
fringence. Calculations of an ab initio nature performed by Amos [54] suggest that the
hyperpolarizability contribution may be less than 0.5%. Ignoring this contribution in
comparison with that of the quadrupole moment term is then well justified. The dis-
crepancy between our value and that of (—13.4 + 0.4) x 107*° Cm? reported by Pierrus
[39, 43] has been considered in §3.6.

Amos [54] has reported an ab initio calculated value for the quadrupole moment
of carbon dioxide of —15.2 x 10~ Cm2. A more recently calculated value due to
Maroulis and Thakkar [55] of —14.54 x 10~40 Cm? is in excellent agreement with the

value reported here. These authors obtain this value using an SDQ-MP4 calculation
which they suggest is accurate to within 3%.
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Table 5.1 Carbon dioxide results for 0.5 mm wire thickness

Number of | T P Vi, €, E!_ ¢ +o,,
null points | (K) | (MPa) | (cm®mol™!) (10°Vm=2) | (107*° Cm?)

22 293.3 | 2.574 796.7 1.028 5.76 —14.68 +0.03
19 292.2 | 2.546 802.5 1.028 5.76 —14.38 +£0.01
5 293.3 | 2.555 803.7 1.028 5.76 —14.51 +0.02
15 294.0 | 2.564 804.2 1.028 5.77 —14.48 +0.03
5 294.2 | 2.481 837.9 1.027 6.05 —14.21 +0.05
7 292.0 | 2.440 844.3 1.027 6.05 —14.16 +0.04
16 293.7 | 2.454 846.8 1.027 6.06 —14.25 +0.01
7 292.9 | 2.437 850.2 1.026 6.06 —14.32 +0.02
16 293.6 | 2.440 852.0 1.026 6.05 —14.28 +0.01
6 292.1 | 2.415 855.4 1.026 6.05 —14.36 £+ 0.03
15 292.2 | 2.413 856.7 1.026 6.05 —14.30 +0.01
T 290.2 | 2.379 861.8 1.026 6.03 —14.18 +0.02
15 291.4 | 2.389 863.1 1.026 6.03 —14.29 4+ 0.02
9 2904 | 2.370 866.6 1.026 6.03 —14.20 + 0.02
13 291.7 | 2.380 868.9 1.026 6.03 —14.60 + 0.07
12 296.9 | 4.005 446.4 1.051 6.07 —14.37 £ 0.02
7 295.7 | 3.910 458.4 1.051 6.06 —14.78 £ 0.16
12 295.4 | 3.812 475.6 1.048 6.06 —14.24 £+ 0.03
6 294.0 | 3.705 490.4 1.046 6.06 —15.34 4 0.05
12 294.6 | 3.600 514.8 1.044 6.06 —14.61 4+ 0.02
13 295.2 | 3.402 561.0 1.040 6.06 —14.69 4+ 0.05
6 293.6 | 3.305 577.1 1.039 6.06 —15.32 + 0.03
7 294.7 | 3.105 633.0 1.036 6.06 —14.46 + 0.04
12 295.8 | 2.993 669.2 1.034 6.06 —14.23 +0.01
6 295.6 | 2.901 695.7 1.032 6.07 —14.52 +0.01
18 296.9 | 2.907 699.7 1.032 6.07 —14.34 +0.04
36 297.7 | 2.802 736.7 1.031 6.07 —14.35+0.03
7 299.5 | 4.027 454.1 1.050 6.08 —14.27 4+ 0.09
11 299.6 | 4.014 456.7 1.050 6.07 —14.35 +0.04
9 296.5 | 3.928 458.7 1.050 6.09 —14.44 4+ 0.02
9 296.0 | 3.889 463.1 1.049 6.09 —14.41 + 0.01
11 295.3 | 3.865 465.1 1.049 6.09 —15:23 +0.17
12 299.0 | 3.637 526.2 1.043 6.18 —14.41 +0.02
30 298.1 | 3.617 526.5 1.043 6.18 —14.40 4+ 0.04
15 298.0 | 3.613 529.9 1.043 6.18 —14.64 4+ 0.03
27 297.6 | 3.604 527.1 1.043 6.18 —14.39 4+ 0.04

continued
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continued from previous page

Number of | T P Vin € E’. 79 +o,,

null points | (K) | (MPa) | (cm®mol™) (10°Vin=2) | (10~*° Cm?)
40 298.6 | 3.620 528.1 1.043 6.18 —-15.13 £0.07
26 301.1 | 3.669 528.4 1.043 6.19 —14.42 £+ 0.02
16 301.2 | 3.667 529.4 1.043 8.27 —14.34 £0.01
28 302.3 | 3.691 528.9 1.043 8.27 —14.17 £+ 0.02
31 301.5 | 3.673 529.2 1.043 8.95 —14.50 £0.01
15 300.9 | 3.663 528.8 1.043 8.95 —14.45 £ 0.05
25 301.6 | 3.675 529.3 1.043 8.95 —~14.23 + 0.02
17 302.0 | 3.682 529.6 1.043 9.60 —14.05 +0.20
25 300.5 | 3.652 529.5 1.043 6.98 —14.84 +£0.02
17 300.2 | 3.644 529.9 1.043 6.98 —14.59 +0.11
25 300.8 | 3.654 530.2 1.043 7.50 —14.56 +0.01
29 301.8 | 3.227 631.6 1.036 8.31 —14.16 £ 0.06
6 304.2 | 3.707 533.4 1.043 7.58 —14.44 £ 0.01
33 304.0 | 3.704 533.2 1.043 7.59 —14.52 £0.02
30 305.8 | 3.734 534.4 1.042 8.90 —14.76 £ 0.06
10 307.0 | 3.754 535.3 1.042 8.18 —15.16 + 0.05
41 306.7 | 3.747 535.5 1.042 8.87 —14.45 + 0.02
18 302.5 | 3.655 537.1 1.042 9.58 —14.66 £ 0.05
25 302.8 | 3.663 536.8 1.042 9.58 —14.58 +0.02

mean | —14.49 +0.04

5.3.3 Carbon monoxide

Shown in Table 5.3 are the results for measurements performed on CP-grade (minimum
99.5% purity) carbon monoxide. The pressure virial coefficient data of Michels et al.
[56] were used in determining the molar volume of the gas. No dielectric virial coefficient
data for carbon monoxide could be found, so the dielectric constant of the gas was cal-
culated using the method described in §5.2.4 and the tables of dielectric constants and
dipole moments in [46]. A value of 0.592 x 10~%° C2m2J-! for Aw as reported by Bo-
gaard et al. [48] at 632.8 nm was used to calculate ). The quadrupole moment of car-
bon monoxide measured in this way had a mean value of (—9.47 £0.15) x 1070 Cm?2,

This result is somewhat greater than the value of (—8.34 4 1.00) x 10~%° Cm? re-
ported in 1968 by Buckingham et al. [57]. That of (—8.58 + 0.35) x 107*° Cm? obtained
by Pierrus [39, 43] is in good agreement with the Buckingham value, but differs from
that reported here by approximately the same percentage (-9%) as did his value for
carbon dioxide (-8%).

No comparisons with data from other experiments can be made since these measure
the quadrupole moment with respect to an origin located at the centre of mass of the
molecule. However, knowing the quadrupole moment of carbon monoxide with respect
to both the centre of mass and the effective quadrupole centre of the molecule permits
additional information to be calculated. If the permanent electric dipole moment is
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Table 5.2 Carbon dioxide results for 0.4 mm wire thickness

Number of | T 2 Vi Er E!_ 79 +o0,,
null points | (K) | (MPa) | (cm®mol™?) (10°Vm=2) | (10~*° Cm?)

9 294.2 | 3.985 437.5 1.052 8.72 —14.80 £ 0.46
7 294.4 | 4.002 435.4 1.052 8.70 —15.13 £0.26
11 296.6 | 4.052 436.6 1.052 9.83 —14.51 + 0.07
9 295.4 | 4.019 437.1 1.052 9.92 —14.53 £0.10
9 295.4 | 4.021 436.6 1.052 9.92 —14.70 £ 0.45
8 295.2 | 4.012 437.3 1.052 9.94 —14.49 +0.18
10 296.5 | 3.104 641.3 1.035 9.99 —13.84 £0.31
10 295.7 | 3.081 644.0 1.035 9.92 —14.25 +0.21
5 298.4 | 3.125 643.8 1.035 9.96 —14.49 £ 0.07
9 299.7 | 3.149 643.1 1.035 9.96 —14.40 £+ 0.04
22 300.0 | 3.161 641.2 1.035 9.96 —14.39 £ 0.18
8 3014 | 3.175 643.5 1.035 8.79 —13.63 +£0.40
11 297.5 | 3.935 461.8 1.049 9.94 —14.90 +0.28
11 2984 | 3.954 462.4 1.049 9.96 —14.94 £ 0.19
20 300.9 | 3.990 466.6 1.049 8.65 —14.77 £ 0.10
6 301.8 | 3.970 473.9 1.048 9.88 —14.89 £+ 0.05
5 300.5 | 4.092 447.1 1.051 9.89 —15.13 £0.18
21 301.1 | 2.693 789.3 1.028 9.87 —14.43 £0.20
13 301.1 | 2.704 785.2 1.029 9.87 —14.61 £0.21
20 302.1 | 2.714 786.2 1.029 9.87 —14.61 £0.22
20 302.5 | 2.725 784.1 1.029 9.87 —14.73 £0.12
9 299.3 | 2.685 783.8 1.029 9.89 —14.63 +0.29
7 2959 | 2.645 782.7 1.029 9.85 —14.75 £ 0.07
22 295.8 | 2.644 782.7 1.029 9.87 —14.57 £0.10
9 296.7 | 2.654 783.1 1.029 9.87 —14.42 £ 0.04
14 297.7 | 2.667 783.0 1.029 9.88 —14.45+0.13
21 299.3 | 2.691 781.7 1.029 9.89 —14.73 £0.10
13 298.9 | 2.685 782.2 1.029 9.89 —14.49 + 0.08
14 299.7 | 2.694 782.7 1.029 9.89 —14.95 +0.05
5 299.5 | 2.693 781.8 1.029 9.88 —14.54 £+ 0.09
21 300.5 | 2.704 782.5 1.029 9.92 —14.45+0.13
9 300.3 | 2.703 782.0 1.029 9.92 —-14.73 £0.11
23 301.8 | 2.723 781.6 1.029 9.92 —14.74 £ 0.07
9 302.1 | 2.726 781.9 1.029 9.92 —14.47 +£0.08
34 303.6 | 2.745 782.0 1.029 9.93 —14.91 £0.10
18 303.8 | 2.746 782.7 1.029 9.93 —14.674+0.15

mean | —14.60 4 0.05
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Table 5.3 Carbon monoxide results

Number of | T P Vo &s E’. 79 +o,,

null points | (K) | (MPa) | (cm® mol~1) (108 Vm~2) | (107%° Cm?)
1.3 293.0 | 4.052 594.2 1.027 9.39 —9.26 +0.08
7 291.9 | 4.044 593.0 1.027 9.40 —9.50 £0.13
18 293.0 | 4.064 992.5 1.027 9.40 —9.53 +£0.15
17 293.1 | 4.037 596.7 1.026 9.38 —9.50 +£0.20
9 291.3 | 4.026 594.3 1.027 9.37 —-9.51 £0.12
17 293.4 | 4.059 594.1 1.027 9.38 —9.50 £ 0.09
6 292.2 | 4.034 595.1 1.026 9.38 —9.60 £+ 0.06
17 293.9 | 3.829 631.3 1.025 9.38 —9.51 +£0.09
8 293.0 | 3.811 632.2 1.025 9.38 —9.52 +£0.09
17 292.5 | 3.804 632.1 1.025 9.37 —9.54 +0.20
6 290.6 | 3.557 671.4 1.023 9.37 —9.37 £ 0.21
16 291.1 | 3.565 671.2 1.023 9.37 —9.44 +0.15
16 290.3 | 3.548 672.5 1.023 9.36 —9.28 +£0.21
9 289.7 | 3.540 672.5 1.023 9.37 —9.47 +0.21
14 299.5 | 3.951 624.6 1.025 8.93 —-9.21 +£0.09
25 299.9 | 3.949 625.8 1.025 9.56 —-9.27 +£0.07
12 301.6 | 3.964 627.3 1.025 9.27 —9.58 +0.04
4 301.4 | 3.956 628.2 1,025 8.59 —9.59 £ 0.03
28 302.1 | 3.956 629.7 1.025 9.61 —-9.77 £ 0.06
mean | —9.47 +0.03

known then (1.15) may be used to establish the displacement of the effective quadrupole
centre from the centre of mass in the molecule. Several ab initio calculations of the
centre-of-mass quadrupole moment of carbon monoxide have been reported [58, 59, 60,
61, 62]. Maroulis and Thakkar [61] report the results of coupled cluster calculations for
a variety of different basis sets; that which they appear to consider most reliable is a
CCD+ST(CCD) value of —6.74 x 10~ Cm?, which is identical to the value obtained
by Amos [58] using an SCF calculation. This may be used in (1.15) together with the
quadrupole moment reported here and a value of —3.659 x 103! Cm (C~Ot) [63] for
the dipole moment of carbon monoxide to yield 3.7 x 107" m for the displacement of
the effective quadrupole centre from the centre of mass in the direction of the carbon
nucleus.

9.3.4 Nitrogen

Ultra High Purity grade nitrogen (99.998% minimum purity) was used in obtaining
the results presented in Table 5.4. It was suspected at one stage that the results for
nitrogen exhibited some small pressure dependence and for this reason provision was
made for making measurements using pressures of up to 6 MPa. However, further
measurements provided no statistically significant evidence of a trend in the results,
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and so they have simply been grouped together and averaged in obtaining the result
below.

The molar volume was calculated using pressure virial coefficient data taken from
Michels et al. [64], whilst the data of Johnston et al. [65] were used to calculate the
dielectric constant of the gas. A value of 0.783 x 1074 C2m2J~! for Aa as measured
by Bogaard et al. [48] at 632.8 nm was used in calculating ¢ for nitrogen, the mean
value of which was found to be (—5.25 4 0.08) x 10~40 Cm2,

In terms of the traceless quadrupole moment the quantity measured by the ex-
periment is B + £-0,30,4, in which 2B represents the hyperpolarizability term
[12], calculated by Amos [54] to have a value of —0.43 x 10-60 (3p4]-2 Although the
theory used in the present work has been cast in terms of the primitive quadrupole
moment, there is no reason why Amos’ value for the total contribution of the hyper-
polarizability term to the birefringence should not also be used to correct the present
result. The effect of doing so is to decrease the value for ¢©) measured at 300K by
—0.23 x 107% Cm?, giving a corrected value of (—5.02 + 0.07) x 1070 Cm?.

Buckingham et al. [66] have measured the quadrupole moment of nitrogen and
found it to be (—4.90+0.3) x 10 Cm2. No correction for the hyperpolarizability
terms was made in obtaining this value. The uncorrected quadrupole moment reported
by Pierrus [39, 43] is (—4.72 £ 0.26) x 10~%0 Cm?, this being 10% less in absolute mag-
nitude than the uncorrected figure presented here.

Calculated values of the quadrupole moment of nitrogen [59, 60, 67, 62] and those
found using techniques other than induced birefringence [68, 32, 22] are free from hy-
perpolarizability contributions and may, therefore, be more usefully compared with
the corrected value quoted above. Making use of an MPPT(4) calculation, Maroulis
and Thakker [67] obtained a value of —4.99 x 107° Cm? which is in good agree-
ment with our corrected value. Wolinski et al. [62] have recently reported a value of
—5.10 x 107*° Cm? obtained from an SDQ-MBPT(4) calculation, also in good agree-
ment with the corrected value reported here. Based on measurements of the second
dielectric virial coefficient, Huot and Bose [22] have recently deduced the quadrupole
moment of nitrogen to be (—4.90 4 0.23) x 10~%° Cm2,
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Table 5.4 Nitrogen results

Number of | T P Vo Er E!. 79 +o0,,

null points | (K) | (MPa) | (cm®mol™) (10° Vm=2) | (107 Cm?)
8 295.0 | 3.956 614.7 1.022 6.07 —5.35 £ 0.03
7 290.4 | 3.978 600.8 1.022 6.07 —5.12 4+ 0.08
9 291.1 | 3.942 607.9 1.022 6.07 —5.18 £0.09
7 292.2 | 3.911 615.2 1.022 6.07 —5.22 £ 0.05
8 293.3 | 3.893 620.8 1.021 6.07 —5.22 £0.08
8 293.4 | 3.859 626.6 1.021 6.07 —5.26 +£0.13
9 292.1 | 3.804 637.7 1.021 6.07 —5.24 £0.18
7 291.1 | 3.752 639.1 1.021 6.07 —5.27+0.19
10 292.2 | 3.666 657.0 1.020 6.04 —5.32 +£0.06
8 2924 | 3.595 670.5 1.020 6.05 —5.38 £ 0.04
6 294.5 | 3.380 719.0 1.018 6.05 —5.40 £ 0.02
10 295.1 | 3.199 761.7 1.017 6.05 —5.30 £0.08
8 290.8 | 3.006 798.2 1.017 6.04 —5.38 £0.06
10 292.1 | 2.881 837.2 1.016 6.04 —5.52 £ 0.06
8 292.6 | 2.777 870.4 1.015 6.05 —5.45+0.09
10 295.0 | 2.654 919.0 1.014 6.05 —5.37 £ 0.05
' 295.4 | 2.531 965.4 1.014 6.05 —5.44 £0.03
11 295.9 | 2.385 1026.4 1.013 6.05 —5.32 £0.04
11 295.9 | 4.044 603.3 1.022 6.38 —5.27 £ 0.06
13 2949 | 3.911 621.7 1.021 6.38 —5.16 = 0.06
8 294.0 | 3.756 645.4 1.021 6.37 —5.33 £0.03
11 295.2 | 3.578 680.8 1.019 6.37 —5.27 £ 0.08
10 296.6 | 3.367 727.6 1.018 6.38 —5.22 4+ 0.05
8 295.2 | 3.201 761.6 1.017 6.38 —5.23 £ 0.07
10 295.1 | 3.046 800.3 1.017 6.38 —5.20 £ 0.06
8 294.1 | 2.921 831.6 1.016 6.38 —5.15£+0.06
11 295.6 | 2.761 885.1 1.015 6.38 —5.16 £ 0.06
8 296.0 | 2.644 925.8 1.014 6.38 —5.17 4+ 0.09
10 297.4 | 2.505 982.2 1.013 6.39 —5.20 +0.11
8 296.3 | 2.394 1024.2 1.013 6.38 —5.18 £ 0.07
11 296.0 | 3.695 661.1 1.020 6.35 —5.18 +£0.05
8 296.0 | 3.557 686.9 1.019 6.35 —5.154+0.05
10 296.5 | 3.380 724.3 1.018 6.35 —5.19 £ 0.04
8 295.9 | 3.171 770.7 1.017 6.35 —5.19 £ 0.06
10 298.3 | 2.964 832.1 1.016 6.35 —5.11 £0.08
8 298.9 | 2.788 887.0 1.015 6.35 —5.09 £+ 0.06
continued
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continued from previous page
Number of | T P V.. €y E!. 7 to,,
null points | (K) | (MPa) | (cm®mol~?) (10° Vmn=2) | (107%° Cm?)
10 297.0 | 2.600 944.8 1.014 6.35 —5.02 +0.06
6 304.3 | 4.083 616.2 1.022 9.90 —5.26 £ 0.08
18 304.8 | 4.099 614.8 1.022 9.90 —5.29 +£0.09
9 303.5 | 4.084 614.2 1.022 9.87 —5.45+0.37
19 304.3 | 4.094 614.5 1.022 9.89 —5.23 £0.16
8 302.6 | 4.073 613.9 1.022 9.89 —5.22 4 0.25
19 303.2 | 4.081 614.1 1.022 9.89 —5.36 £0.14
13 299.2 | 5.158 477.9 1.028 8.64 —5.39 £ 0.04
7 298.1 | 5.178 474.1 1.028 8.69 —5.35+0.05
17 298.5 | 5.184 474.2 1.028 8.67 —5.29 +£0.06
8 295.5 | 5.143 472.7 1.028 9.90 —5.174+0.09
18 297.1 | 5.168 473.2 1.028 9.91 —5.14 £0.05
9 293.8 | 6.134 392.8 1.034 8.69 —5.22 +£0.07
17 296.1 | 6.153 395.1 1.034 8.83 —5.23 £0.04
10 294.3 | 6.107 395.3 1.034 8.83 —5.21 £0.03
18 295.6 | 6.131 395.8 1.034 9.69 —5.16 £ 0.07
9 294.5 | 6.110 395.5 1.034 9.90 —5.14 £ 0.07
16 295.7 | 6.123 396.5 1.034 8.64 —5.21 £0.04
mean | —5.25 4+ 0.01

5.3.5 Chlorine

The special modifications made to the apparatus for the purpose of performing mea-
surements on chlorine have been discussed in 4.2 and §4.4.3. Chlorine gas with a
minimum purity of 99.5% was used in obtaining the measurements shown in Table 5.5.
A second pressure virial coefficient of —274 x 10~m3mol~! due to Morrison [69] was
used to calculate the gas density. Bridge and Buckingham [49] have reported a value
for the anisotropy in the polarizability Aa at 632.8nm of 2.89 x 10~40C2m2J-1. Ip the
absence of any published dielectric virial coefficient data for chlorine the polarizability
@, which at this wavelength is 5.13 x 10~40(2m2J-1 [46], was used to estimate the first
dielectric virial coefficient as 82 A mean value of (+9.99 £ 0.16) x 10~ Cm? was
obtained for ¢(® for chlorine.

Emrich and Steele [70] were the first to perform induced-birefringence measurements
of the quadrupole moment of chlorine, reporting a value of (+16.6 £+ 1.7) x 10~4° Cm2.
The result obtained by Buckingham et al. [66], (+10.79 & 0.54) x 10~%° Cm?2, is in bet-
ter agreement with that reported here. Pierrus [39] has reported a quadrupole moment
of (10.57 £ 0.95) x 10%° Cm?, which runs contrary to the expectation that his mea-
surements should be some 9% lower than those reported here. No explanation could be
found for this, although our value is based on considerably more readings than was the
case with Pierrus. The modifications to the cell made it possible to use field gradients
some 50% higher than those used by Pierrus without any sign of electrical breakdown
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Table 5.5 Chlorine results

Number of | T P Vin £, E.. 7@ +o,,
null points | (K) | (MPa) | (cm®mol~1) (10°Vm=2) | (10 Cm?)
5 299.0 | 0.605 3815 1.009 8.87 +10.16 £+ 0.22
22 298.6 | 0.606 3804 1.009 9.62 +10.43 £+ 0.26
19 300.3 | 0.609 3803 1.009 9.56 +9.92 +0.42
11 299.5 | 0.605 3816 1.009 9.64 +10.27 £0.29
22 299.2 | 0.605 3818 1.009 9.64 +9.94 +0.09
16 300.2 | 0.606 3825 1.009 9.65 +9.81 +£0.14
25 300.7 | 0.606 3833 1.009 9.60 +9.81 +0.16
17 301.0 | 0.606 3836 1.009 9.60 +9.64 +0.17
18 298.9 | 0.612 3762 1.009 9.58 +10.17 £0.16
24 300.9 | 0.606 3835 1.009 8.88 +9.76 4+ 0.28
16 299.8 | 0.613 3767 1.009 9.59 +10.19 + 0.20
26 300.6 | 0.614 3772 1.009 9.59 +9.79 +0.19
19 300.1 | 0.612 3783 1.009 9.59 +9.98 +0.24
22 300.2 | 0.605 3832 1.009 9.59 +10.00 £ 0.35
mean | +49.99 4 0.06

occurring within the cell.

Amos [54] has reported the results of ab initio calculations of the quadrupole mo-
ment of chlorine and of the contribution of the hyperpolarizability term to the induced
birefringence, showing the latter to be less than 1% of the entire effect. He obtained a
quadrupole moment of +11.9 x 10~40 C'm?2.

5.3.6 Ethene

Ethene having a minimum purity of 99% was used in obtaining the measurements
presented in Table 5.6. Pressure virial coefficient data reported by Douslin and Harrison
[71] were used to determine the gas density. The first and second dielectric virial
coefficient data of David et al. [72] was used to calculate the dielectric constant of the
gas.

The measured quantity T' tabulated in the right-hand column of Table 5.6 is the
left-hand side of (5.6), that is,

D= 31052 (200 = oy — 022) + ) 20y — 01 — 00) + 9 (201, — s — 1),
(5.12)

The mean value of I" obtained here is (+15.59 + 0.14) x 1073 C®m?s%kg~1. Amos [54]
has performed calculations which suggest that this value is likely to be underestimated
by about 3.5% due to hyperpolarizability effects which contribute subtractively to the
induced birefringence.

Because ethene lacks axial symmetry (5.12) can be simplified further only by making
certain approximations. We begin by choosing axes such that the molecule lies in the
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zz-plane with the carbon double bond coinciding with the z-axis. In terms of the
traceless quadrupole moment 6,4,

I'= emzazz + eyyayy + szazz

gy —
- (szz -« ) (ezz + emx yy) y (513)
vy Oy — ayy

in which we have made use of the traceless nature of 6,5. An estimate of jf”—:zjj
of 0.019 has been communicated privately by Buckingham to Stogryn and Stogryn
[73]. Maroulis [74] has calculated very similar values for 0z and 6., which suggests
that we may safely make the approximation in (5.13) that I' &~ (a,, — Qyy)0... This
is equivalent to treating ethene as though it were a linear molecule with Ozz = Qlyy.
In order to solve for 6,. (or ¢\, in the case of the primitive quadrupole moment),
we require a value for a,, — ay,,. Bogaard et al. [48] have deduced from gas-phase
refractivity data given in [75] a value for the polarizability of ethene at 632.8 nm of
4.70 x 107*° C?m?2J~!, and have obtained from light-scattering measurements a value
of 2.014 x 107*° C?m?2J~! for the quantity 3alk|, in which

2 _ 303,00y — AppQLyy
20500,

K

In the case of a linear molecule this simplifies to

Oz — Qg

3o

KR =

Buckingham et al. [57] have used a value of 3a|k| obtained from earlier light-scattering
measurements reported by Bridge and Buckingham [49] to obtain an estimate for f.. of
(+6.6 £ 0.5) x 107% Cm?. If we use the value of 3alk| quoted above together with our
value for I' then our estimate of 6, is (+7.74 £0.12) x 1074 Cm?2. This agrees rather
poorly with the estimate of Buckingham et al. and even less well with Maroulis’ [74]
calculated value of (+5.56 & 0.22) x 10~%° Cm2. It is worth noting that the dielectric
constant of ethene rises fairly rapidly with increasing pressure—more so than is the
case with the other gases in the present study. At room temperature and a pressure of
40 atmospheres it is about 1.08, at 80 atmospheres it has climbed to 1.38 [72]. It appears
that the effect of the dielectric constant has not been considered by Buckingham et al.
[57] in arriving at their value, which could lead to their value being somewhat too low
since they report using pressures up to 80 atmospheres for measurements performed on
certain gases, of which ethene may have been one.

5.3.7 Boron trifluoride

Boron trifluoride having a minimum purity of 99.5% was used in obtaining the results
shown in Table 5.7. Measurements of the anisotropy in the polarizability of boron
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Table 5.6 Ethene results

Number of | T P Vi € E.. I'to,
null points | (K) | (MPa) | (cm®mol™) (10° Vm~—?) | (10780 C®m?s?kg~)

8 295.6 | 4.025 433.7 L9707 7.42 +15.81 £0.21
10 297.7 | 4.080 433.6 1.077 8.70 +16.10 + 0.66
8 296.7 | 4.054 433.6 1.077 8.70 +15.58 £0.10
5 298.4 | 4.095 434.1 1.077 8.70 +15.74 £ 0.46
6 296.7 | 4.053 433.8 1.077 9.90 +15.78 £0.24
3 294.8 | 4.004 433.8 1:077 8.68 +15.09 £ 0.30
6 297.4 | 4.071 433.7 1.077 8.69 +15.05 £0.17
8 295.8 | 4.026 434.7 1.077 8.74 +16.07 £ 0.15
18 297.5 | 4.073 434.0 1.077 8.64 +15.84 £0.16
7 296.1 | 4.034 434.3 1.077 8.64 +15.34 £ 0.16
5 296.9 | 4.054 434.4 1.077 8.64 +16.12 £+ 0.42
13 296.1 | 3.229 596.4 1.055 8.84 +15.78 £ 0.38
12 294.9 | 3.206 596.9 1.055 8.84 +15.16 £ 0.27
15 296.5 | 3.234 596.9 1.055 8.84 +15.57 +0.43
10 295.0 | 3.211 596.2 1.055 8.84 +15.04 £0.14
15 295.1 | 2.285 915.3 1.035 8.80 +15.37 £ 0.39
9 294.3 | 2.284 911.9 1.036 8.80 +15.50 £ 0.34
16 295.4 | 2.291 913.9 1.036 8.80 +15.61 £0.41

mean +15.59 4+ 0.08

trifluoride appear not to have been performed, which has made it necessary to quote
a value for the combined quantity q¢©Aa. The second pressure virial coefficient data
of Schramm and Gehrmann [76] were used to calculate the molar volume of the gas.
No dielectric virial coefficient data for boron trifluoride could be found, S0, as was
the case with chlorine, the dielectric constant was estimated as %02 Tabulations of
polarizabilities [46] list the polarizability of boron trifluoride as 3.68 x 10740 C2m2J-1,

As far as is known, these are the first measurements of this nature to be performed
on boron trifluoride. Once a value for Aa becomes available, it may be used to deduce
the value for ¢(” from the value (—7.93 + 0.08) x 1078 C3m2s?kg~! obtained here as
the mean value of ¢(® A« for boron trifluoride.

5.4 Discussion
The results reported in §5.3.2-85.3.7 are summarised in Table 5.8.

Before making any new birefringence measurements, the initial aim of this study
was to reproduce the results for carbon dioxide which had previously been obtained
with this apparatus [39], or to explain the large discrepancy between these results and
those obtained by other workers [57, 37]. Re-examining the experiment using the Jones
calculus suggested a better way to perform the experiment in which it is the analyser,

80



Table 5.7 Boron trifluoride results

Number of | T P Vi Er E:. qQAa+ o,
null points | (K) | (MPa) | (cm®mol!) (10° Vin—2) | (1078 C®m?s?kg~!)
10 294.2 | 3.100 655.3 1.039 9.44 —7.88 £0.17
8 294.0 | 3.093 656.3 1.039 9.44 —8.27+0.03
13 294.7 | 3.102 656.8 1.039 9.44 —8.20 £ 0.02
14 293.6 | 3.093 654.4 1.039 9.44 —8.16 +0.03
11 293.3 | 3.090 654.0 1.039 9.44 —8.08 +0.06
18 294.4 | 3.104 655.0 1.039 9.44 —7.84 £0.03
18 294.4 | 3.622 535.9 1.047 9.44 792 1+0.23
4 294.1 | 3.612 536.7 1.047 9.61 —8.06 + 0.05
18 294.3 | 3.614 537.1 1.047 9.60 —8.03 £ 0.03
5 292.8 | 3.584 536.9 1.047 9.60 —7.92 £0.20
16 293.5 | 3.622 532.2 1.048 9.60 -7.92 +0.04
19 2914 | 3.856 478.6 1.053 8.80 —7.79 £ 0.02
10 290.4 | 3.834 478.2 1.053 8.81 —7.83 £0.03
14 291.1 | 3.844 479.4 1.053 8.80 —7.46 £+ 0.02
8 290.3 | 3.842 476.3 1.054 8.81 ~ 162k 0.07
mean —7.93 +0.06
Table 5.8 Summary of results
Gas Quantity determined UHE o3 units

Carbon dioxide q© —14.53 +0.22 10-%0 Cm?

Carbon monoxide q© =947+ 0.15 107%° Cm?

Nitrogen q© —5.25 £ 0.08 10740 Cm?

Chlorine q© 4+9.99 +0.16 100 Cm?
Ethene [ (see (5.12)) +15.59 £+ 0.14 | 1078 C3m?s%kg 1
Boron Trifluoride 79 Aa —7.93 +£0.08 | 10-% C3m?s?kg !
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rather than the %—plate, as was previously the case, which is deliberately offset in order
to amplify the signal. The quadrupole moment of carbon dioxide obtained using the
new method is in much better agreement with the measured values of other workers,
and is in excellent agreement with the figure predicted by Maroulis and Thakkar [55]
using what is probably the most elaborate calculation of this quantity to date.

It is of some importance that the measurements of the quadrupole moment of
carbon dioxide which were made using two different wire thicknesses and separations
have been shown to be essentially the same. This is strong evidence that the method
used to calculate the electric field gradient on the axis of the cell is sound.

After demonstrating that Pierrus’ measurement of the quadrupole moment of car-
bon dioxide was likely to be too low by about 8%, it was essential to perform new
measurements on the more important gases which had been included in the previous
study. In the cases of nitrogen and carbon monoxide the new measurements are again
greater than the previous ones by about the same margin. The value for nitrogen is
in fair agreement with that reported by Buckingham et al. [66], and, after correcting
for the contribution of hyperpolarizability terms to the induced birefringence, is in
excellent concurrence with that predicted by Maroulis and Thakkar [67]. The only
other birefringence measurement of the quadrupole moment of carbon monoxide was
reported in 1968 by Buckingham et al. [57] and is in poor agreement with that reported
here. Calculations of this quantity and those values measured using other techniques
generally refer the quadrupole moment to the centre of mass of the molecule and are,
therefore, of little help in deciding which of the two birefringence values is more likely
to be correct. Another independent birefringence measurement of this quantity might
help to resolve this matter.

The poor agreement between Maroulis’ [74] calculated value of ¢ for ethene
and that obtained from the birefringence measurement by treating ethene as a lin-
ear molecule casts doubt on the validity of the latter approximation. It is probably
best, therefore, to place confidence only in the measured quantity I in (5.12). A the-
oretical check of this quantity will be possible once ab initio calculations of oy,
and o, have been performed.

The most recent ab initio calculation of the quadrupole moment of chlorine appears
to be that of Amos [54] and is some 20% higher than that measured in this study. That
reported by Buckingham et al. [66] is 8% higher than our value but is in better agree-
ment with that reported by Pierrus [39]. The fact that the latter value is higher than
that reported here runs contrary to the trend predicted by the analysis in Chapter 3
and confirmed experimentally in the cases of carbon dioxide, carbon monoxide, and
nitrogen. Our result was obtained with very good repeatability and the analysis of
the results was performed using the same data to find the molar volume, dielectric
constant, and polarizability anisotropy as were used by Pierrus [39].

The measurements performed on boron trifluoride are believed to be new, and await
only a measurement of Aa to enable the quadrupole moment to be extracted. No ab
initio calculations of this quadrupole moment appear to have been made.

The birefringence experiment remains a difficult one to perform, accounting for the

Qyy
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apparently few sets of apparatus in existence. Great care has been taken in the present
study to eliminate systematic errors so that the results may be presented with 67%
confidence intervals of less than 2% of the mean. Nonetheless, discrepancies between
these results and those measured with other apparatus using the same technique are
as great as 8% in some cases. These differences highlight the need for measurements
to be repeated by independent workers, preferably using independent apparatus.
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Appendix A

CALCULATION OF THE
ELECTRIC FIELD GRADIENT

The method used here to calculate the on-axis electric field gradient in the quadrupole
cell was communicated privately by Graham to Pierrus [39], and was described in full
by the latter. It is repeated here only for completeness.

A section through the quadrupole cell is shown in Figure A.1 in which the size and
position of the wires have been exaggerated for clarity. If the length of the wires is large
in comparison with the diameter of the cell, then the problem is one of determining
the electric field gradient due to two infinitely-long and equally-charged conducting
cylinders symmetrically disposed about the axis of a hollow cylinder of radius R which
is earthed. The problem is more easily solved by replacing the charged wires and
earthed cylinder with infinitely-long line charges in such a way as to ensure that the
boundary conditions of the two problems are very nearly identical. In other words, the
line charges must be positioned so as to produce equipotential surfaces which coincide
as closely as possible with the surfaces of the wires, and the line charge density must be
chosen to give the correct potential difference between this equipotential surface and
one coinciding with the inner surface of the cell.

The symmetry of the infinitely-long line charges reduces the problem to one in only
two dimensions. We locate a set of Cartesian axes as shown in Figure A.1 so that the
centres of the wires are located on the y-axis at (0,d) and (0, —d). From symmetry it
is clear that the line charges should also be located on the y-axis, in this case at (0, d’)
and (0, —d’) as shown in Figure A.2. We shall consider later how these positions are
to be determined.

The vacuum electric field due to a single infinitely-long line charge of uniform charge
density A is radial, given at a distance r by

E(r) = —2
dmeg T

(A1)

The potential at a point a distance r from the line charge relative to one at a distance
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Figure A.1 Section through the quadrupole cell (not to scale) showing the orientation
of the axes used in the electric field-gradient calculation

85



> <

line charge (density A)
at (0,d")
0,d) i .
wire surface
P(x.y)
3 >» X
r2

(0,-d) <
line charge (density A)

at (0,-d")

Y

Figure A.2 Positions of the line charges with which the high-voltage wires are replaced
in calculating the electric field gradient in the quadrupole cell

R is then given by

r 22 . R
=—{ B(r)dr= In—. A2
8(r) =~ [ Br)dr= > (4.2)
Now consider the case shown in Figure A.2 in which we seek the potential at the point
P(z,y) relative to that at a distant point (not shown) which is displaced by R; from
one line charge and by R, from the other. The point P is displaced from these line
charges by the much smaller distances r; and r5. By superposition the potential at P
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relative to that at the more distant point is given by

2\ R, RQ}
= In —+In—
¢(z,9) 4meg { " T Lk T
2\ R R,
= In
47T€0 rireo
2k 1 P i

A R4
A e e i .

in which R is the distance from the point midway between the two line charges to the
distant point. By evaluating the function Rz;[g& around the circumference of the
cell the effect of this approximation may be shown to be very small. For the ‘worst
case’ in the present research, in which the wire separation is 4 mm, this function varies
between +0.0058 and —0.0058. The approximation is therefore an undercorrection for
some regions and an overcorrection for others, suggesting that the overall error will be
considerably smaller than these 0.6% extremes.

Using the potential in (A.3) to find the the electric field E(z,y) = —Vé(x, y) gives

E(z,y) = 2 x " 4 p
0 Cdmeg |\ (y—d)2+22  (y+d)?+ a2

y—d y+d' I |
“ {(y—d’)2+:c2 T (y + d')? + 22 Y| (A.4)

from which the electric field gradient E,; = V,Ez may be shown to have non-zero
components

;2 [ y-d)P -z (y+d)P—g?
= e\l o * T AP )
o —4\ x(y —d) z(y +d)
By = 47eg {[(y —d2+22? " [(y+d)2+ 12]2} , (A.6)

't .
E,=E,, and E, =-E_.
Buckingham and Disch [41] have shown that the average of these quantities over the
circular area which is sampled by the laser beam is equal to their value on the axis of
the cell. Thus E;, and E;, vanish on averaging, whilst

Elmr = E;m(oao) = L

= Tneo (@7 (2

In practice the wires are located in a dense gas which acts as a dielectric having a rela-
tive permittivity e, greater than 1. This is accounted for by replacing the permittivity
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of free space ¢y in (A.7) with the permittivity of the gas €,&¢ to yield

_ 1 4\
B i (A.8)

™~ Ao g (d')?

It is this quantity which is referred to in the main body of this text simply as ‘the
electric field gradient’, and is given the symbol E'.

The remaining problem is to position the line charges and to assign them a charge
density. The computer program which analyses the data determines the most suitable
position for the line charges by moving them outwards from the centres of the wires in
very small increments until the potential evaluated using (A.3) at point a in Figure A.1
is within a given tolerance of that evaluated at point b. We may then be assured that
the equipotential line passing through these two points coincides very closely with the
entire wire surface because the separation of the two wires for any given wire thickness
was chosen so as to ensure that that such an equipotential is circular.

Finally, (A.3) describes an electrostatic potential which is necessarily zero at a
distance R, so the line charge density A may be found by setting the potential at either
point a or point b in Figure A.1 to the voltage on the wires, and then solving for .
In practice the electric field gradient per volt was calculated for a given cell geometry
and then scaled by the measured high voltage to yield the absolute field gradient.
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Appendix B

PERTURBATION THEORY
CALCULATIONS

B.1 Time-Dependent Perturbation Theory Calcu-
lation

Time-dependent perturbation theory is concerned with the solution of the time-dependent
Schrédinger equation

H(@)In(0) = ih 2/ n(t)

for the case in which the Hamiltonian may be expressed as H(t) = H® + H'(t), where
H®O is a time-independent contribution whose eigenvalue problem has been solved, and
H'(t) is a small time-dependent perturbation. We assume that H'(t) may be expanded
in powers of the perturbation,

H(t)=HY()+ HAO®t) -,
and that a similar expansion exists for the eigenket |n(t)), so that
[n(t)) = [ (@) + In® () + [ (2)) + -

The example which we will consider here is to find the effect of the laser beam on the
electric dipole moment of a molecule in the quadrupole cell. In this case, H® is the
Hamiltonian for an isolated molecule and H(!)(¢) is that for the linear components of a
weak electromagnetic field. We begin by expressing the expectation value of the dipole
moment (u,) in terms of the expanded eigenkets,

(ko) = (n(t)|1aln(?))
= <n(0) (t) + n(l)(t) 53 |Ma|n(0) (t) + n(l)(t) 40
= (O ®)aln®@ () + (1O (O)|1aln® (1)) + (0O (@) 1aln® @) + - -
= (1) + 2Re{(n®@ (®) paln® (@)} +--- .
(B.1)
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Since the eigenkets [(©) of H©® form a basis set it is possible to express [n(!)(t)) and
(a0 (0) as

[nM @) = c|n@ @) + 3 a;(t and
J#n

(W (@) = (O () + 3 a5 () (B.2)
J#n

From the normalization condition (n(t)|n(t)) = 1, it follows that (n(®(¢)|n(®(2)) = 1
and (n@(#)|nM(2)) + (nM (¢)|n©(¢)) = 0. Using (B.2) in the latter equation, together
with the orthogonality result (n(®(t)[;(t)) = 0 for j # n, one obtains the result
¢+ c¢* = 0. Hence c in (B.2) is imaginary.

For a perturbation applied at time ¢ = 0, the mixing coefficients a;(t) in (B.2) are
given by [77]

t .
ajt) =~ | et HO)(8) dt, § #n, (B.3)

where .
HY = (GO 0)|HV [n©(0)),
and

was = KHED - BY).

In this, EJ(-O) is the unperturbed energy of state j. It may be shown that [77]

n® (6) = e~ (0)), (B.4)
which, when used with (B.2) in (B.1), gives
() = (1 (1) B =Bt/ %
Ha) = (43") +2Re ¢ 3 a;(t)e’ (n©(0)|al 5 (0)) p + -
J#n
= (u®) + 2Re {Z aj(t)ei“’"ftuanj} i
i#n
(B.5)

Because 4, is Hermitian, so that (n(® (¢)|uq|n(®)(t)) is real, the effect of taking the real
part in (B.1) is to eliminate the imaginary c in (B.2). It is for this reason that j = n
is not included in the summation in (B.5).

To the order of electric quadrupole and magnetic dipole the form of the perturbation
Hamiltonian in (B.3), when expressed in the Barron-Gray gauge [78], is

HWY = Q[¢(r’ t)]O = Ua[éaa(r’ t)]O T %qaﬁ[vﬁéaa(rv t)]O T ma[‘@a(r’ t)]o S (B6)

in which [ ] indicates a value taken at the origin.
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We take as an explicit form for the oscillating electric field

& =& cosw(t — T’B—:ﬁ-), (B.7)
which, when used in (B.6) together with the Maxwell equation V x & = — B, yields
from (B.3) the explicit form of the mixing coefficients

e—iwn]'t

a;(t) = -

(w2 —

5 )[uajn(wnjé; — i6a) + 30ap,, (Wn;V p6a — iV p62)

wnj

+ May, (WnjBa — i%Ba) +++]. (B.8)

When (B.8) is substituted in (B.5) the resultant expression for (i,) may be compared
with the total dipole moment implicit in (2.16), namely

Ha = 1Y) + Capbs + 300py VG5 + W Gls B+ -+, L

to obtain the expressions

Qop = 20~ Z — Re{(n((0)[1al i (@))(5 (0) 5[ (0))} =
Gagy = 2171 3 ——— Re{(n®(0)|11al5® (0)) (5 (0)1,51n (7 (0))} = g,
Fm Vi (B.11)
Gup = =207" Y Zjnw In{(n( (0) |15 (0)) (5 (0) [ n( (0)) }. (B.12)
J#n

These are the expressions given in (2.22), (2.23), and (2.25). The remaining relation-
ships contained in (2.24) and (2.26) may be derived in a similar manner by finding the
expectation values of the electric quadrupole and magnetic dipole moment operators
in perturbed states.

B.2 Time-Independent Perturbation Theory Cal-
culation

The distorting effect that the applied electric field gradient has on a molecule in the
quadrupole cell is essentially electrostatic in nature and may, therefore, be investigated
using time-independent perturbation theory. As an example of this type of calculation
we shall consider the perturbations due to the applied field E and field gradient VE
on the polarizability aqs of the molecule. A quantum-mechanical expression for Qap
has been derived in §B.1 and is given in (B.10). We begin by considering the effect of
the perturbation on the transition frequency wjn through which the transition energy
enters this expression.

Shankar [77] shows that the eigenvalue problem may be solved approximately if
the time-independent perturbation Hamiltonian H’ is small in comparison with the
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unperturbed Hamiltonian H(®. The procedure is to assume that the eigenvalues and
eigenkets of the Hamiltonian H = H® + H' may be expanded in a convergent pertur-
bation series and then to extract terms of similar order from the eigenvalue equation
so expressed. We need consider here only those terms of zeroth and first order, and
will quote [77] any general results that are needed.

The perturbation Hamiltonian for a system of charges in a non-uniform electrostatic
field is

H = QQSO - NaEa - %QaﬁVﬁEa - (B13)

Since all the field terms are linear, the second- and higher-order terms in the general
expansion
H =HY L g@ 4 gG 4 ...

are zero, and H' = H. It then follows that
hw]'n = EJ‘ 8 En
—EO+EM +...—(EQO+ED +...)
- E](O) — EO 4 (jO1HD ;) — (n@|HD|p©®) 4 ...
= ) + (51g60 — taFa — 14apVpEa + -+ [1®)
- <’I’L(O)|q¢0 - ,U*aEa T %QaﬂvﬂEa s |TL(O)>,
(B.14)

in which the result EJ(-I) = (jOIHW|;©) [77] was used. From (B.14) it is a simple
matter to show that

0 e y ;
Win = Wi = B Ea((Oali®) — (n¥]saln®))
— 20 VEEL((1914apli®) — (n®|gap|n®)) +---, (B.15)
and
0 = . .
w2, = (W2 = 287 WD B (GO |y [5@) — (O, [n®))
— KWV E (79,5159 — (n@gysn©@)) + -+ . (B.16)

For w >> |wjn| it follows from (B.15) and (B.16) that

~

wi, — w? . wt hod E7(<j(0)|ﬂv|j(0)> = <n(0)|u7|n(0)>)

win__ (@) +w?) | 3w +u?

3(Win)? + w? |
—BTVJEV(O(O’I%&U(O)) — (n9)g,sn@)) +--- . (B.17)
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Furthermore, if w > |w](?l)l then, to a very good approximation,

( (0)) +(.U - 3((4.1,5:)7))2—"0)2

~ (B.18)
(Wh)? = w?)? ot
Substituting (B.18) in (B.17) gives
(0) (0)y2 2
Win Win (Wjn )* +w (0) (0) (0)
= + Eo((5™ |1ali (n™ |paln™))
7 n e Ao e r R L
(wﬁ-%))z—sz 0 0 0
+ v E q ]() ()qa n() +..., B'lg
=g B0l = (o) (B.19)

which is the expression we shall use for the perturbed form of —— in (B.10).

In order to perturb the remaining part of the expression for a,p we use from Chapter
17 of [77] the eigenket expansions

1) = eli) + 3 aii k@), Gl = GO+ Y af; (RO, (B.20)
[y ks

in which c is imaginary and

H}S) HIS)
Combining (B.10) and (B.19)—(B.21) gives
oos = 37 Re § 3 [ (S22 4 =22 B i) —
af = 3 - W2, — w2 h(w]zn — W) Jluy17) = (nlpyln))
w + w? . .
ﬂ——)VJEv((quwl.?) — (nlgysn)) + - )
(<| )+ 3 T8 iy + 3
n|ua|j) + (n|palk) + (klpald) +
k#j hw;i k#n h‘*’nk
( (1) (1)
(7 taln) +Z (3luslk) + :
k+#j k k#n hwnk g >
(B.22)

in which we have dropped all the superscripted (0)s on the understanding that only
unperturbed quantities and states are referred to in this expression. Expanding (B.22)
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and grouping terms which are linear in the applied field and field gradient yields

aap =2Re {Z Wﬂﬁ(nlualmjluﬁm)}

£ 28, Re {; o) = ool 3 sl
+ 3 oy i K)ol ) lis )
+ (klmasy n) Gl ) (1o ))
+ 3 oz (klmas o nlal ) s )
+ <j|mu7lk><k|uﬂ|n><n|uau>>}
+ V3B, Re { > hﬁgf “‘;) (Glgsal5) = (nlgsalnd) (olpsal ) Gl )
+ 3 o oy ol kil Gl
+ (nlmaj) (Klaral) (Gl sl))
+ 3 Tt oy (Hanli) el ) Gl

v <nimua1j><j|q7,s|k><k|uﬁ|n>)} .

(B.23)
Comparison of this with the expansion implicit in (2.19), namely
Cap(Ey, VsE,) = at(xo,g + Bapy By + %baﬂvtsvt?Ev s b L (B.24)

allows one to extract the following quantum-mechanical expressions for the hyperpo-
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S = e —————— e ——_

larizability tensors:

Bapy = Bpay = 2h"Re {Z o +w)) (711417} = (liy )| pal) (il 1slm)

] n

3 )l )+ el )l )
jin Wen(Wn — @
b 5 ol Rl ol + <n|ua|j><j|u7;k><k|uﬁ|n>]},
5.k#3 ki (Whn —w
(B.25)
bapys = bgays = bapsy = 25 2Re {E (:;J_)E[(quwglﬁ <n|Q’75|n>]

X (nlpalf)(ilusln) + D m[(nl%é|k><k|ﬂa|j><jluﬂ|n>
jk#n Ykn\Win

+ (nltalg) (Gl ms k) (Klgys|n)]
+ 2 —wg)[ml/‘a|k><k|%5|j><j|ﬂﬂ|n>

J:k#3 wJ"

; <n|ua|j><jiq75|k><k|uﬂ|n>1}.
(B.26)

These expressions are, respectively, (2.28) and (2.29). A similar treatment of (2.24)
and (2.25) yields (2.30) and (2.31), respectively.
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Appendix C

COSINE APPROXIMATIONS
FOR THE ANALYSIS IN
CHAPTER 3

An argument is presented in this appendix in which it is shown that terms quadratic
in €,7, 51,02, and o in (3.13) and (3.20)—(3.23), and which we shall hereafter refer
to as the small angles, do not contribute to the expression for the intensity at the
photomultiplier. We recall that we retain in this expression only those terms which are
linear in either § or 6, hereafter referred to as the modulated angles, and for which the
remaining factor is of an order less than or equal to that of o?.

In Table C.1 are listed (3.20)—(3.23) together with the terms in them, each term
being assigned a label in the form of a number. In multiplying the five Jones matrices
together to obtain expressions for a,b,c, and d in (3.18) we must consider all combi-
nations in which one term is selected from each matrix. We shall refer to these terms
by the appropriate combination of the afore-mentioned labels. For example, we would
write 5 5

1
[1][4][11][16][19] = (T) x (—ﬁ sinEI) x (I) x (51) x (I).

Combining the matrices which appear in this example gives ITTil = i, so this partic-
ular term contributes to the coefficient b which appears in (3.18). Shown in Table C.2
are all possible combinations which are independent of § and 6 or which are linear in
only one of them, and which are either independent of ¢, v, 3;, and B2 or which have a
quadratic dependence on either € or 3; and on no other small quantity except possibly
0 or 6. These terms have also been labelled so that they can be referred to in the
discussion which follows.

The expression for the intensity at the photomultiplier as given by (3.13) is
I
= = 0"+ + 2a(ac + bd) + a*(a® — b — &2 + d?). (C.1)

0

The only way in which € can enter this expression is via b% or c2, otherwise it will
contribute to a term which has at least a third-order small-angle dependence. Suppose
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Table C.1 Labels assigned to terms in the expressions for the Jones matrices

Ri#)y=1 (1]
+0], [2]
J,\/4(-’25+¢,:l:§+€)=%cos—§l (3]
- % e g I 4
F V2¢ cos % i [5]
F V2¢esin g i 6]
+ % cos % k (7]
F V22 cos g k 8]
I .
+ 7 sin ; k 9]
F V2e?sin % k, [10]
Sy(0a,0) =1 [11]
- % I [12]
+ % cos 26, i [13]
+ %sin 20, k, [14]
J(0,9) =1 [15]
+2i [16]
—6v%i (17]
+ dvk, (18]
S1(B1,61) =1 [19]
- % I [20]
+ % cos 260, i [21]
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Table C.2 Terms through which &? and 37 could enter the intensity expression

Small | Modulated Term Coefficient | Label
angle angle
none none [1][3][11][15][19] a [A]
none none (1][4][11][15][19] a [B]
none none (1][7][11][15][19] d C]
none none [1][9][11][15][19] d D]
none ) [1][3][11][16][19] b [E]
none ) [1][4][11][16][19] b [F]
none ) (1][7][11][16][19] c [G]
none ) [1][9][11][16][19] ¢ [H]
none 6 [2][3][11][15][19] c 1]
none 6 [2][4][11][15][19] c [J]
none 9 [2][7])[11][15][19] b K]
none 6 [2][9][11][15][19] b (L]
2 none (1][8][11][15][19] d M]
e? none (1][10][11][15][19] d [N]
e? ) (1][8][11][16][19] c [O]
e ) [1][10][11][16][19] c [P]
- o |@BnuEse | b | (@
e? 6 [2][10][11][15][19] b [R]
h none (1][3][11][15][20] a [S]
¢ none (1][4][11][15][20] a ey
i none | [1][7][11][15][20] d [U]
4 none [1][9][11][15][20] d V]
; o [1][3][11][16][20] b (W]
f 0 | Qe | b | ]
e g [L][7][11][16][20] c [Y]
i o [1][9](11][16][20] c [Z]
i 0 [21[3][11][15][20] c [AA]
i 0 [2][4][11][15][20] ¢ [BB]
i 0 [2][7][11][15][20] b [CC]
] 0 [2][9][11][15][20] b [DD]
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strings are internally separated by a single space so that the variables of which they
are composed may be easily identified later on. The results must then pass an order-
of-magnitude test in the subroutine in lines 540-640 before being stored in the array
T$O.

Execution then jumps to line 710 which is the start of a procedure to filter out and
simplify the products of the 1,1, j, and k matrices. These are referred to in the program
as the quaternians because they form a mathematical group which is isomorphic to
the quaternian group, the multiplication rules for which are given in lines 940-1230.
In these lines, RM$ is the string to be removed, and RP$ is the one which replaces
it. This operation is carried out in the subroutine at lines 3240-3280. Each entry
in the T$() array now has a corresponding entry in Q$() which must correspond to
one of the options listed in lines 1440-1510. The occurrence of the matrices in T$ is
now superfluous, so these are removed in lines 1270-1370. Depending on the matrix
remaining in Q$(), the terms in T$ are assigned in lines 1380-1580 to a row in the
two-dimensional array E§( , ). The rows of this array correspond to the unknowns
a,b,c,and d in (3.18).

Further multiplication is carried out in lines 1700-2220 in which the elements of
E$ are combined according to (3.24) and the results stored in the array SQ$, which
essentially stores the expression for the intensity at the photomultiplier. Small-order
terms and terms which are not linear in either of the modulated quantities, but not
both, are discarded and then each term is rearranged so that its factors appear in a
standard order. This enables similar terms to be identified and combined with due
regard for the sign and numeric constant. Lines 2450-2970 perform these tasks.

Finally, terms in each of the modulated quantities are separated and the final in-
tensity expression is printed to the line printer. This is, of course, encoded in the same
manner as the data in lines 650-690, leaving a small amount of decoding to be done by
hand before the expression may be interpreted. The program terminates at line 3180;
the code which follows this line constitutes a number of small utility subroutines.

10 REM  skskokoskok s sk ok o o ok ok o ok ok ok ok o ok oo o o ok o ok
12 REM * JONES ANALYSIS PROGRAM *

14 REM =* *
16 REM * written by *
18 REM =* David A Imrie *
20 REM * March 1991 «
22 REM  skokokoskok ok 3k sk 3k sk sk sk ok ok ok ook sk ok ok ok ok ok ok ok ok
30 CLS

40 REM SET UP BRACKETS FOR MULTIPLYING QUT
50 DIM B(20)

60 DIM P(20)

70 DIM PD(20)

80 DIM FACT$(100)

90 DIM SQ$(1000)

100 DIM B$(10,15)
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110
120
130
140
150
160
170

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

DIM MAG(100):DIM S$(100)

F$(1)="d":F$(2)="TH" :REM DEFINE OSCILLATING TERMS
DIM Q$(700)

DIM C0(700)

DIM T$(500) :REM HOLDS TERMS AFTER EXPANDING

DIM E$(4,500) :REM HOLDS TERMS MULTIPLYING I,i,j,k
B(0)=5:B(1)=2:B(2)=6:B(3)=3:B(4)=3:B(5)=3:REM B(0) IS
NUMBER OF BRACKETS

DIM HOLD$(100)

NS=9:REM NUMBER OF SMALL TERMS

OM=2.1:REM MIN ORDER OF MAGNITUDE THAT WE WILL REJECT
FOR I=1 TO B(0)

LPRINT "TERM";I:REM DUMP EACH TERM TO PRINTER TO AID CHECKING
FOR J=1 TO B(I)

READ B$(I,J)

LPRINT B$(I,J);" "

NEXT J

LPRINT

NEXT I

FOR I=1 TO NS

READ S$(I),MAG(I)

NEXT I

REM MULTIPLY QOUT AND PUT TERMS INTO T$
PRINT"MULTIPLYING OUT...";TIME$:REM LOG START TIME TO MONITOR
TN=0:REM CURRENT TERM NUMBER

FOR K=1 TO B(0)

LET P(K)=1

NEXT K

TN=TN+1

LET T$(TN)=""

FOR I=1 TO B(0)

LET T$(TN)=T$(TN)+B$(I,P(I))+" "

NEXT I

REM UPDATE POSITIONS OF POINTERS

REM FIND BRACKET FOR UPDATING

UB=B(0) :P(0)=999

IF P(UB)= B(UB) THEN P(UB)=1:UB=UB-1:GOTO 460

IF UB=0 THEN GOTO 520

P(UB)=P(UB)+1

GOSUB 540

IF INSTR(T$(TN),"*")<>0 THEN TN=TN-1

GOTO 380

REM ALL MULTIPLICATION COMPLETED

GOTO 710

REM DISCARD ENTRIES WITH TOO SMALL ORDER OF MAGNITUDE

F=0
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560
570
580
590
600
610
620
630
640
650
660

670
680
690
700

710
720
730
740
750
760
770
780
790
800
810

820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980

FOR J=1 TO NS

N=1

LET PO=INSTR(N,T$(TN),S$(J))

IF P0=0 THEN 620

F=F+MAG(J) :N=P0+1

GOTO 580

NEXT J

IF F>=0M THEN T$(TN)=T$(TN)+"x*"

RETURN

DATA "I","j TH"

DATA "I 1/r2 cf","- I 1/r2 sf","- i s r2 e cf","-1is r2 e sf",
"% s 1/r2 cf", "k s 1/22 sf%

DATA “I","i C2","k S2"

DATA "I","1/2 i 4","k d g"

DATA "I","i C1","k S1"

DATA “A“,.5,"e",.5,"C1",.5,"C2",.5,"81", .5, "82", .5, "¢g", .5,
"d",1,"TH",1

REM SIMPLIFY PRODUCTS OF I,i,j,k MATRICES

PRINT" FILTERING QUATERNIANS...";TIME$

REM

REM filter out i,j,k and - signs

FOR I=1 TO TN

IF INSTR(T$(I),"*")<>0 THEN GOTO 830

FOR J=1 TO LEN(T$(I))

IF MID$(T$(I),J,1)="j" THEN Q$(I)=Q$(I)+"j"

IF MID$(T$(I),J,1)="k" THEN Q$(I)=Q$(I)+"k"

IF MID$(T$(I),J,1)="-" THEN Q$(I)=Q$(I)+"-"

IF MID$(T$(I),J,1)="i" AND MID$(T$(I),J+1,1)=" "
THEN Q$(I)=Q$(I)+"i"

NEXT J

NEXT I

REM SIMPLIFY THESE PRODUCTS

PRINT" SIMPLIFYING QUATERNIAN PRODUCTS...";TIME$

FOR I=1 TO TN

IF INSTR(T$(I),"x")<>0 THEN GOTO 1260
S=1

REM FILTER NEGATIVE SIGNS

FOR J=1 TO LEN(Q$(I))

IF MID$(Q$(I),J,1)="-" THEN S=Sx-1
NEXT J
LET L$=Q$(I):LET RM$="-":GOSUB 3190:LET Q$(I)=L$

IF INSTR(Q$(I),"ii")=0 THEN GOTO 970
L$=Q$(I) :RM$="1i":S=S*-1:G0SUB 3190:Q$(I)=L$
GOTO 940

IF INSTR(Q$(I),"jj")=0 THEN GOTO 1000

L$=Q$ (I) :RM$="73j" :S=S*-1:GOSUB 3190:Q$(I)=L$
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990 GOTO 940

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440

IF INSTR(Q$(I),"kk")=0 THEN GOTO 1030
L$=Q$(I) :RM$="kk" :S=S*-1:GOSUB 3190:Q$(I)=L$
GOTO 940

IF INSTR(Q$(I),"ij")=0 THEN GOTO 1060
L$=Q$(I) :RM$="1ij" :RP$="k" :GOSUB 3240:Q$(I)=L$
GOTO 940

IF INSTR(Q$(I),"jk")=0 THEN GOTO 1090
L$=Q$(I) :RM$="jk" :RP$="1i":GOSUB 3240:Q$(I)=L$
GOTO 940

IF INSTR(Q$(I),"ki")=0 THEN GOTO 1120
L$=Q$(I) :RM$="ki" :RP$="3":GOSUB 3240:Q$(I)=L$
GOTO 940

IF INSTR(Q$(I),"ji")=0 THEN GOTO 1160
L$=Q$(I) :RM$="ji" :RP$="k":GOSUB 3240:Q$(I)=L$
S=S*-1

GOTO 940

IF INSTR(Q$(I),"kj")=0 THEN GOTO 1200
L$=Q$(I) :RM$="kj" :RP$="1i":GOSUB 3240:Q$(I)=L$
S=S%-1

GOTO 940

IF INSTR(Q$(I),"ik")=0 THEN GOTO 1240
L$=Q$(I) :RM$="ik" :RP$="3":GOSUB 3240:Q$(I)=L$
S=S*-1

GOTO 940

REM SIMPLIFICATION COMPLETED

IF S=-1 THEN Q$(I)="-"+Q$(I)

NEXT I

REM CLEAN UP T$

PRINT" CLEANING UP...";TIME$

FOR I=1 TO TN

IF INSTR(T$(I),"*")<>0 THEN GOTO 1370
L$=T$(I) :RM$="i ":GOSUB 3190

RM$="j ":GOSUB 3190

RM$="k ":GOSUB 3190

RM$="-":GOSUB 3190

RM$="I ":GOSUB 3190

T$(I)=L$

NEXT I

REM SEPARATE OUT FOUR ELEMENTS OF MATRIX

REM
Al=1:42=1

Bi=1:B2=1

FOR I=1 TO TN

IF RIGHT$(T$(I),1)="+" THEN GOTO 1580
IF Q$(I)="" THEN S=1:Q=1
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1450 IF Q$(I)="-" THEN S=-1:Q=1

1460 IF Q$(I)="i" THEN S=1:Q=2

1470 IF Q$(I)="-i" THEN S=-1:Q=2

1480 IF Q$(I)="j" THEN S=1:Q=3

1490 IF Q$(I)="-j" THEN S=-1:Q=3

1500 IF Q$(I)="k" THEN S=1:Q=4

1510 IF Q$(I)="-k" THEN S=-1:Q=4

1520 IF S=1 THEN T$(I)="+ "+T$(I)

1530 IF S=-1 THEN T$(I)="- "+T$(I)

1540 IF Q=1 THEN E$(1,A1)=T$(I):Al=A1+1
1550 IF Q=2 THEN E$(2,A2)=T$(I):A2=A2+1
1560 IF Q=3 THEN E$(3,B1)=T$(I):B1=Bi+1
1570 IF Q=4 THEN E$(4,B2)=T$(I) :B2=B2+1
1580 NEXT I

1590 A1=A1-1:A2=A2-1:B1=B1-1:B2=B2-1
1600 FOR I= 1 TO TN:T$(I)="":NEXT I

1610 FOR I=1 TO A1:LPRINT E$(1,I);" ";:NEXT I
1620 LPRINT:LPRINT:LPRINT

1630 FOR I=1 TO A2:LPRINT E$(2,I);" ";:NEXT I
1640 LPRINT:LPRINT:LPRINT

1650 FOR I=1 TO B1:LPRINT E$(3,I);" ";:NEXT I
1660 LPRINT:LPRINT:LPRINT

1670 FOR I=1 TO B2:LPRINT E$(4,I);" ";:NEXT I
1680 LPRINT:LPRINT:LPRINT

1690 REM

1700 REM

1710 REM WE MUST SQUARE AND ADD THESE TERMS

1720 REM NO. OF ELEMENTS IN E$(2,I) IS A2, IN E$(3,I) IS Bi

1730 PRINT" ANALYSING THE BEAM...";TIME$

1740 REM WE WILL REJECT ALL TERMS INDEPENDENT OF DELTA AND THETA
OR WHICH ARE QUADRATIC IN THEM

1750 REM SQUARE Im(a) AND PUT RESULT IN SQ$

1760 PT=1

1770 FOR I=1 TO A2

1780 FOR J=1 TO A2

1790 IF INSTR(E$(2,I),F$(1))=0 AND INSTR(E$(2,I),F$(2))=0
AND INSTR(E$(2,J),F$(1))=0 AND INSTR(E$(2,J),F$(2))=0
THEN GOTO 1850

1800 IF (INSTR(E$(2,I),F$(1))<>0 OR INSTR(E$(2,I),F$(2))<>0)
AND (INSTR(E$(2,J),F$(1))<>0 OR INSTR(E$(2,J),F$(2))<>0)
THEN GOTO 1850

1810 LET SQ$(PT)=" "+E$(2,I)+" "+E$(2,1)+"

1820 FLG=0:GOSUB 2240

1830 LET PT=PT+1

1840 IF FLG=1 THEN PT=PT-1

1850 NEXT J
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1860 NEXT I

1870 PRINT"A"

1880 REM SQUARE Re(b) AND ADD RESULT TO SQ$

1890 FOR I=1 TO Bi

1900 FOR J=1 TO Bi

1910 IF INSTR(E$(3,I),F$(1))=0 AND INSTR(E$(3,I),F$(2))=0
AND INSTR(E$(3,J),F$(1))=0 AND INSTR(E$(3,J),F$(2))=0
THEN GOTO 1970

1920 IF (INSTR(E$(3,I),F$(1))<>0 OR INSTR(E$(3,I),F$(2))<>0)
AND (INSTR(E$(3,J),F$(1))<>0 OR INSTR(E$(3,J),F$(2))<>0)
THEN GOTO 1970

1930 LET SQ$(PT)=" "+E$(3,I)+" "+E$(3,J)

1940 FLG=0:GOSUB 2240

1950 LET PT=PT+1

1960 IF FLG=1 THEN PT=PT-1

1970 NEXT J

1980 NEXT I

1990 PRINT"B"

2000 REM MULTIPLY Re(a) AND Re(b) AND ALPHA AND ADD RESULT TO Q$

2010 FOR I=1 TO A1

2020 FOR J=1 TO B1

2030 IF INSTR(E$(1,I),F$(1))=0 AND INSTR(E$(1,I),F$(2))=0
AND INSTR(E$(3,J),F$(1))=0 AND INSTR(E$(3,J),F$(2))=0
THEN GOTO 2090

2040 IF (INSTR(E$(1,I),F$(1))<>0 OR INSTR(E$(1,I),F$(2))<>0)
AND (INSTR(E$(3,J),F$(1))<>0 OR INSTR(E$(3,J),F$(2))<>0)
THEN GOTO 2090

2050 LET SQ$(PT)="  "+"2 A "+E$(1,I)+" "+E$(3,J)+" "

2060 FLG=0:GOSUB 2240

2070 LET PT=PT+1

2080 IF FLG=1 THEN PT=PT-1

2090 NEXT J

2100 NEXT I

2110 PRINT"C"

2120 REM MULTIPLY Im(a) AND Im(b) AND ALPHA AND ADD RESULT TO Q$

2130 FOR I=1 TO A2

2140 FOR J=1 TO B2

2150 IF INSTR(E$(2,I),F$(1))=0 AND INSTR(E$(2,I),F$(2))=0
AND INSTR(E$(4,J),F$(2))=0 AND INSTR(E$(4,J),F$(2))=0
THEN GOTO 2210

2160 IF (INSTR(E$(2,I),F$(1))<>0 OR INSTR(E$(2,I),F$(2))<>0)
AND (INSTR(E$(4,J),F$(1))<>0 OR INSTR(E$(4,J),F$(2))<>0)
THEN GOTO 2210

2170 LET SQ$(PT)="  "+"2 A "+E$(2,I)+" "+E$(4,J)+" "

2180 FLG=0:GOSUB 2240

2190 LET PT=PT+1
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2200 IF FLG=1 THEN PT=PT-1

2210 NEXT J

2220 NEXT I

2230 GOTO 2440

2240 REM DISCARD SMALL ORDER TERMS

2250 F=0

2260 FOR K=1 TO NS

2270 N=1

2280 LET PO=INSTR(N,SQ$(PT),S$(X))

2290 IF P0=0 THEN 2320

2300 F=F+MAG (K) :N=P0+1

2310 GOTO 2280

2320 NEXT K

2330 IF F>=0M THEN FLG=1:RETURN

2340 REM CHECK IF TERM IS QUADRATIC IN F$(1) OR F$(2)
2350 F=0

2360 FOR K=1 TO 2

2370 N=1

2380 PO=INSTR(N,SQ$(PT),F$(K))

2390 IF P0=0 THEN GOTO 2410

2400 F=F+1:N=P0+1:G0TO 2380

2410 NEXT K

2420 IF F>1 THEN FLG=1

2430 RETURN

2440 PS=PT-1

2450 REM CLEAN UP TERMS

2460 PRINT" CLEANING UP AGAIN...";TIME$
2470 REM BUILD EACH TERM UP IN STANDARD FORMAT
2480 FOR I=1 TO PS

2490 REM BREAK EACH TERM UP INTO ITS FACTORS
2500 LET FG=0

2510 FOR J=2 TO LEN(SQ$(I))

2520 IF MID$(SQ$(I),J-1,1)<>" " OR MID$(SQ$(I),J,1)=" " THEN GOTO 2570
2530 P=J:FG=FG+1:FACT$(FG)=""

2540 FACT$(FG)=FACT$(FG)+MID$(SQ$(I),P,1)
2550 P=P+1

2560 IF MID$(SQ$(I),P,1)<>" " THEN GOTO 2540
2570 NEXT J

2580 REM FACTORIZATION IS COMPLETE

2590 REM DETERMINE SIGN

2600 S=1

2610 FOR K=1 TO FG

2620 IF FACT$(K)="-" THEN S=Sx-1

2630 NEXT K

2640 SG$="+":IF S=-1 THEN SG$="-"

2650 REM DETERMINE NUMERIC FACTOR
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2660 REC8=0:TW0=0:RT2=0:RECRT2=0:REC2=0

2670 FOR K=1 TO FG

2680 IF FACT$(K)="r2" THEN RT2=RT2+1

2690 IF FACT$(K)="1/r2" THEN RECRT2=RECRT2+1

2700 IF FACT$(K)="1/2" THEN REC2=REC2+1

2710 IF FACT$(K)="2" THEN TWO=TWO+1

2720 IF FACT$(K)="1/8" THEN REC8=REC8+1

2730 NEXT K

2740 NFACT=(SQR(2)) RT2*(1/SQR(2)) "RECRT2#*(.5) “REC2%*(1/8) “REC8*2"TW0

2750 CO(I)=S*NFACT

2760 SQ$(I)=""

2770 FOR K=1 TO FG

2780 IF FACT$(K)<>"2" AND FACT$(K)<>"1/8" AND FACT$(K)<>"r2"
AND FACT$(K)<>"1/r2" AND FACT$(K)<>"1/2" AND FACT$(K)<>"-"
AND FACT$(K)<>"+" THEN SQ$(I)=SQ$(I)+" "+FACT$(K)

2790 NEXT K

2800 L$=SQ$(I):GOSUB 3290:REM ORDER TERMS

2810 RM$="s s ":GOSUB 3190

2820 SQ$(I)=L$

2830 NEXT I

2840 PRINT " GROUPING TERMS...";TIME$

2850 FOR I=1 TO PS-1

2860 IF SQ$(I)="COMBINED" THEN GOTO 2920

2870 FOR K=(I+1) TO PS

2880 IF SQ$(I)<>SQ$(K) OR SQ$(K)="COMBINED" THEN GOTO 2910

2890 CO(I)=CINT((CO(I)+CO(K))*1000)/1000

2900 SQ$(K)="COMBINED"

2910 NEXT K

2920 NEXT I

2930 REM DROP ALL THE ’COMBINED’ TERMS

2940 TOP=1

2950 FOR I=1 TO PS

2960 IF SQ$(I)<>"COMBINED" THEN SQ$(TOP)=SQ$(I):CO(TOP)=CO(I):TOP=TOP+1

2970 NEXT I

2980 TOP=TOP-1

2990 PS=TOP

3000 REM GROUP TERMS

3010 PPS=PS

3020 PRINT " FACTORING OUT OSCILLATING FACTORS...";TIME$

3030 REM USE E$(A,B) TO HOLD MULTIPLES OF OSCILLATING FACTORS

3040 FOR K=1 TO 2

3050 RM$=F$(K) :P0=0

3060 FOR I=1 TO PPS

3070 IF INSTR(SQ$(I),F$(K))=0 THEN GOTO 3120

3080 IF CO(I)=0 THEN GOTO 3120:REM DROP TERMS WITH ZERO COEFFICIENTS
3090 PO=PO+1
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3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550

L$=SQ$(I) :GOSUB 3190

E$(K,P0)=STR$(CO(I))+" "+L$

NEXT I

IF K=1 THEN N1=PO

IF K=2 THEN N2=PO

NEXT K

LPRINT F$(1):FOR I=1 TO N1:LPRINT E$(1,I):NEXT I
LPRINT F$(2):FOR I=1 TO N2:LPRINT E$(2,I):NEXT I

END

REM ROUTINE TO REMOVE ALL OCCURENCES OF RM$ IN L$

LET PZ=INSTR(L$,RM$)

IF PZ=0 THEN RETURN

LET L$=LEFT$(L$,PZ-1)+RIGHT$(L$,LEN(L$)-PZ+1-LEN(RMS$))
GOTO 3200

REM ROUTINE TO REPLACE FIRST OCCURENCE OF RM$ IN L$ WITH RP$
LET PZ=INSTR(L$,RM$)

IF PZ=0 THEN RETURN

LET L$=LEFT$(L$,PZ-1)+RP$+RIGHT$(L$,LEN(L$)-PZ+1-LEN(RM$))
RETURN

REM ROUTINE TO ORDER THE SPACED ELEMENTS OF L$

LET L$=" "+L$+" "

IND=1

REM BREAK STRING UP AND PUT ELEMENTS IN HOLD$

FOR JJ= 2 TO LEN(L$)

LET HOLD$(IND)=""

IF MID$(L$,JJ-1,1)<>" " OR MID$(L$,JJ,1)=" " THEN GOTO 3410
LET LP=JJ

LET HOLD$ (IND)=HOLD$(IND)+MID$(L$,LP,1)
LET LP=LP+1

IF MID$(L$,LP,1)<>" " THEN GOTO 3370
IND=IND+1

NEXT JJ

REM NOW REBUILD L$ IN CORRECT ORDER
NC=0

L$=" n

LET TEST$=HOLD$(1)

FOR JJ=1 TO IND-1

IF HOLD$(JJ)<=TEST$ THEN TEST$=HOLD$(JJ):MIN=JJ
NEXT JJ

L$=L$+HOLDS (MIN)+" "

HOLD$ (MIN)="}"

NC=NC+1

IF NC=IND-1 THEN RETURN

GOTO 3450

FOR I=1 TO PS:LPRINT CO(I);" ";SQ$(I): NEXT I
RETURN
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Appendix E

BOUNDARY CONDITIONS FOR
THE LINE-CHARGE MODEL

Mention was made in §4.4.3 of the need to consider how the boundary conditions
assumed in the line-charge model presented in Appendix A may be compromised by
selecting too small a wire spacing for a given wire thickness. Simply stated, these
boundary conditions assume that two line charges may be positioned in the quadrupole
cell in such a way that one of the equipotential surfaces to which they give rise will
coincide with the inner surface of the cell, and one with each of the wire surfaces.

In order to select a spacing for a given thickness of wire, the equipotentials at the
cell and wire surfaces calculated for different separations were plotted on top of a line
representing the physical surface. A suitable spacing was then chosen based on a fairly
subjective assessment of how well the two surfaces coincided. A sample of these plots
is given for 0.5 mm-thick wire in Figures E.1-E.6. After examining these, it was
decided to use a separation of 4.0mm between centres for the 0.5mm wire. The 0V
equipotential for this configuration may be seen in Figure E.1 to coincide extremely
closely with the surface of the cell, drawn in a broken line in this diagram. Only half of
the 0V equipotential has been plotted in order to emphasize the presence of the broken
line representing the cell surface. The other nine equipotential lines in Figure E.1 are
plotted for equal increments of the potential.

In Figures E.2-E.6, the equipotential at the wire surface is shown for a single wire.
The wire separation between centres ranges in these plots from 2.0mm to 4.0 mm in
steps of 0.5 mm. In all cases, the solid line represents the equipotential and the broken
line is the surface of the wire.
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Figure E.1 Calculated equipotential surfaces in the quadrupole cell for 0.5 mm-thick
wires spaced 4.0 mm between centres
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Figure E.2 Calculated equipotential surface (solid line) at the surface of a 0.5 mm-
thick wire (broken line) for a spacing of 2.0 mm between centres

Figure E.3 Calculated equipotential surface (solid line) at the surface of a 0.5 mm-
thick wire (broken line) for a spacing of 2.5 mm between centres
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Figure E.4 Calculated equipotential surface (solid line) at the surface of a 0.5 mm-
thick wire (broken line) for a spacing of 3.0 mm between centres

Figure E.5 Calculated equipotential surface (solid line) at the surface of a 0.5 mm-
thick wire (broken line) for a spacing of 3.5mm between centres
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Figure E.6 Calculated equipotential surface (solid line) at the surface of a 0.5 mm-
thick wire (broken line) for a spacing of 4.0 mm between centres
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Appendix F

HP86 PROGRAM FOR
CONTROLLING THE
EXPERIMENT

10 REM  skokokokokokokokok ok ok sk ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok o o o o ok ok ok ok ok ok ok ok ok ok ok ok K kK 3k ok ok
20 REM * PROGRAM FOR FINDING THE NULL CURRENT IN THE QUADRUPOLE
30 REM * EXPERIMENT USING A FARADAY NULLING CELL. THIS PROGRAM
40 REM * IS STORED UNDER THE NAME "QUADNUL". THIS VERSION WAS
50 REM * WRITTEN BY DAVID A IMRIE IN THE PIETERMARITZBURG DEPT
60 REM * OF PHYSICS. JANUARY 1991.
TO REM skokokokokokokokokok sk sk ok sk ok okook ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok o o o o o o o ok ok ok ok ok ok ok ok ok o ok ok ok o ok
80 REM
90 REM
100 REM DEFINE VARIABLES AND ARRAYS
110 NR=50 @ ! NUMBER OF PSD READINGS TO AVERAGE FOR A NULL
120 REM THE FOLLOWING VARIABLES ARE DEFINED AS ARRAYS FOR
HP86->IBM CONVERSION PURPOSES
130 L$="1466" ! LENGTH OF WIRES IN mm
140 D$="0.499" ! WIRE DIAMETER IN mm
150 SA$="2.914" ! LASER END SEPARATION OF WIRES IN mm
160 SB$="2.896" ! CENTRE SEPARATION OF WIRES IN mm
170 SC$="2.874" ! EXIT END SEPARTATION OF WIRES IN mm
180 FC$="3.260e-06" ! FARADAY CELL CONSTANT IN radians/mA
AS AT 19/01/93
190 WL$="632.8" ! WAVELENGTH OF RADIATION IN nm
200 R1=950000 ! INPUT IMPEDANCE OF HP3478A VOLTMETER ON AC RANGE
210 REM *** THERMISTOR CALIBRATION COEFFICIENTS x**x
220 AA=-.043826 @ CA=22.3283
230 AB=-.043596 @ CB=22.1737
240 AC=-.043363 @ CC=22.0845
250 DI=1 @ COUNTS=0 @ PS$="DUMMY" @ NM=0
260 DIM ZERO$(4)

L B A
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270
280
290
300
310
320
330
340
350
360
370
380
390

400
410
420
430
440
450
460
470
480
490

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700

ZER0$="0000"

DIM NAME$[50],NOTE$[80]

DIM V$(20)

REM SET ORDER OF MEASUREMENTS

DIM OM(20)

FOR I=1 TO 20

READ OM(I)

NEXT I

DATA 20,10,19,9,18,8,17,7,16,6,15,5,14,4,13,3,12,2,11,1
QUTPUT 509 ;"OPN"

NM$ (0)="[QWP OFFSET]" @ NM$(1)="[ANALYSER OFFSET]"
CLEAR

DISP @ DISP @ DISP "THROW THE JUNCTION-BOX TOGGLE SWITCH TO THE
‘OHMS’ POSITION AND HIT ‘CONT’..."

BEEP 100,40 @ BEEP 30,80

PAUSE

BEEP 40,50

REM *** TAKE 4-WIRE MEASUREMENT OF THE STANDARD RESISTANCE #xx*

OUTPUT 525 ;"H4"

ENTER 525 ; SR

DISP SR

R=1/(1/R1+1/SR) ! EFFECTIVE STANDARD RESISTANCE
REM *** RESET MULTIMETER MODE TO AC VOLTS **x*
DISP @ DISP "RETURN THE JUNCTION-BOX TOGGLE SWITCH TO THE
‘VOLTS’ POSITION AND HIT ‘CONT’..."

BEEP 100,40 @ BEEP 30,80

PAUSE

OUTPUT 525 ;"F2R-2RAZ1N4T1"

BEEP 40,50

PRINTER IS 701

OUTPUT 509 ;"OPNO" @ OUTPUT 509 ;"OPN1"
OUTPUT 509 ;"OPN3"

DISP

DISP "ENTER THE PSD TIME CONSTANT IN SECONDS"
BEEP 100,40 @ BEEP 30,80

INPUT PSDTC

BEEP 40,50

DISP

DISP "ENTER THE PRESENT DATE AND TIME"

BEEP 100,40 @ BEEP 30,80

INPUT DT$

BEEP 40,50

DISP @ DISP "ENTER THE NAME OF THE GAS"

BEEP 100,40 @ BEEP 30,80
INPUT NAME$
BEEP 40,50
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710 REM GET ADDITIONAL NOTES FOR LOG FILE

720 DISP @ DISP "ENTER ANY NOTES FOR THIS RUN"
730 BEEP 100,40 @ BEEP 30,80

740 INPUT NOTE$

750 BEEP 40,50

760 DISP

770 DISP "ENTER THE ATMOSPHERIC PRESSURE IN mmHg"
780 BEEP 100,40 @ BEEP 30,80

790 INPUT AP

800 BEEP 40,50

810 DISP

820 DISP "ENTER THE GAUGE GAUGE PRESSURE OF THE GAS IN THE CELL IN MPa"
830 BEEP 100,40 @ BEEP 30,80

840 INPUT GP

850 BEEP 40,50

860 DISP

870 DISP "ENTER A NAME FOR THE DATA FILE"

880 INPUT DF$

890 FOR J=1 TO 10 @ DISP @ NEXT J

900 DISP
910 DISP
920 DISP " sk 3k ok ok 3k ok 3k ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k 3k ok 3k ok ok sk ok 1!
930 DISp " **x*x HIT °CONT’ TO BEGIN THE EXPERIMENT "
940 DISP " kK ok ok 3 oK ok oK ok 3 ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok 3k 3 ok ok k ok ok !

950 FOR J=1 TO 7 @ DISP @ NEXT J

960 BEEP 100,40 @ BEEP 30,80

970 PAUSE

980 FOR I=1 TO 100 STEP 4

990 BEEP I,8%(400-I)/300

1000 NEXT I

1010 FOR I=100 TO 1 STEP -4

1020 BEEP I,8%(400-I)/300

1030 NEXT I

1040 REM *x*x TAKE INITIAL TEMPERATURE MEASUREMENTS #x*x
1050 QUTPUT 509 ;"TwW02"

1060 NM=1

1070 ENTER 509 ; DR

1080 IF DR<50000 THEN NM=0 ! DETERMINE MODE OF THE EXPERIMENT
1090 NOTE$=NOTE$&NM$ (NM)

1100 GOSUB 1820

1110 TI=TBAR

1120 REM *** PRINT INITIAL DATA *x*x

1130 PRINT

1140 PRINT " DATE & TIME:";DT$
1150 PRINT " GAS:";NAME$
1160 PRINT " NOTES:" ;NOTE$
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1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310

1320

1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600

PRINT "ATMOSPHERIC PRESSURE (mmHg):";AP
PRINT "GAUGE PRESSURE OF GAS (MPa):";GP

PRINT "INITIAL GAS TEMPERATURE (C):";TI

PRINT " DATA FILE:";DF$

REM *** OPEN DATA FILE AND STORE HEADER INFORMATION k%
AP$=VAL$ (AP) @ GP$=VAL$ (GP) @ TI$=VAL$ (TI)

CREATE DF$,12 ! SEQUENTIAL FILE OF 3k

ASSIGN# 1 TO DF$

PRINT# 1; DT$,NAME$,NOTE$,AP$,GP$,TI$,L$,D$,SA$,SBS$,SC$,FCS,WL$
ON KEY# 7,"END EXPT." GOTO 1740

GOSUB 1970 @ REM FIND ANALYSER LIMIT POSITIONS

REM *x* ROUTINE FOR FINDING NULL CURRENT s

BEEP 50,50 @ BEEP 40,40 @ BEEP 30,30 @ BEEP 20,20 @ BEEP 40,70
FOR L=1 TO 2

IF L=1 AND PS$ <> "NEG" THEN PS$="NEG" @ NS=COUNTS @ D=-(1xDI)
@ GOSUB 2700

IF L=2 AND PS$ <> "POS" THEN PS$="POS" @ NS=COUNTS @ D=DI
@ GOSUB 2700

GOSUB 1820

T(L)=TBAR

GX,GY,XY,X2,Y2=0

FOR P=1 TO 20

TOTX=0 @ TOTY=0

OUTPUT 510 ;V$(OM(P))

IF OM(P)=20 OR OM(P)=19 THEN WAIT 60000%PSDTC

WAIT 15000%PSDTC

BEEP 10,20 @ BEEP 40,10 @ BEEP 15,30

ENTER 525 ; TOTX

FOR I=1 TO NR

ENTER 523;Y

TOTY=TOTY+Y

NEXT I

ENTER 525 ; X @ TOTX=(TOTX+X)/2

XBAR=TOTX/R*1000

YBAR=TOTY/NR

GX=GX+XBAR

GY=GY+YBAR

XY=XY+XBAR*YBAR

X2=X2+XBAR"2

Y2=Y2+YBAR"2

NEXT P

M(L)=(20*XY-GX*GY) / (20*xX2-GX"2)
C(L)=(GY*X2-GX*XY) / (20*X2-GX"2)
R(L)=(20%XY-GX*GY) ~2/ ((20%X2-GX"2) * (20%Y2-GY"2) )

OUTPUT 509 ;"DCV3"

ENTER 509 ; HV(L)
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1610
1620
1630
1640
1650
1660
1670
1680

1690

1700
1710
1720

1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030

HV(L)=ABS (HV(L))

BEEP 100,50 @ BEEP 50,30 @ BEEP 100,50

NEXT L

I_NULL=ABS ((C(2)-C(1))/M(1)-M(2)))
HV=(HV(1)+HV(2))/2

T=(T(1)+T(2))/2

I_NULL=INT (1000%I_NULL)/1000 @ HV=INT (1000%HV)/1000
M(1)=INT (1000%M(1))/1000 @ C(1)=INT (1000%C(1))/1000
@ R(1)=INT (10000%R(1))/10000

M(2)=INT (1000%M(2))/1000 @ C(2)=INT (1000%C(2))/1000
@ R(2)=INT (10000%R(2))/10000

PRINT I_NULL;HV;T;" ";M(1);C(1);R(1);" ";M(2);C(2);R(2)
PRINT
PRINT# 1 ; VAL$ (HV),VAL$ (T),VAL$ (M(1)),VAL$ (C(1)),VAL$ (R(1)),

VAL$ (M(2)),VAL$ (C(2)),VAL$ (R(2))

GOTO 1280

REM *** EXPERIMENT TERMINATED BY USER »*x*x*
OUTPUT 509 ;"OPNO" @ OUTPUT 509 ;"OPN1"
DISP @ DISP @ DISP

BEEP 100,50 @ BEEP 50,30 @ BEEP 100,50
PRINT# 1 ;"END"

ASSIGN# 1 TO = ! CLOSE DATA FILE

DISP "EXPERIMENT TERMINATED BY USER"

END

REM

REM * TEMPERATURE MEASUREMENTS SUBROUTINE *
REM

OUTPUT 509 ;"TW06"

ENTER 509 ; TRA

OUTPUT 509 ;"TWO7"

ENTER 509 ; TRB

OUTPUT 509 ;"TW0O8"

ENTER 509 ; TRC

OUTPUT 509 ;"DCV5" ! DUMMY MEASUREMENT
TA=INT ((LOG (TRA)-CA)/AA*1000)/1000-273.15
TB=INT ((LOG (TRB)-CB)/AB*1000)/1000-273.15
TC=INT ((LOG (TRC)-CC)/AC*1000)/1000-273.15
TBAR=INT ((TA+TB+TC)/3*10)/10

RETURN

REM *xx SUBROUTINE TO FIND ANALYSER POSITIONS FOR +-105% FSD #*x
REM

IF NM=0 THEN GOTO 2220

REM GET INITIAL PSD READING

GOSUB 2830

PSD1=PSD

REM NOW TAKE 100 STEPS FORWARD
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2040 D=1 @ NS=100 @ GOSUB 2700

2050 REM CHECK WHETHER READING HAS INCREASED OR DECREASED
2060 GOSUB 2830

2070 PSD2=PSD

2080 DI=1

2090 IF PSD1>PSD2 THEN DI=-1 @ REM DI IS DIRECTION OF INCREASE
2100 REM NOW STEP UNTIL POSITION OF +105% FSD IS REACHED
2110 GOSUB 2830

2120 D=DI

2130 IF PSD>11 THEN D=-(1%DI)

2140 DL=ABS (11-PSD)

2150 NS=20

2160 IF DL>1.5 THEN NS=60

2170 IF DL>4 THEN NS=200

2180 IF DL>10 THEN NS=500

2190 GOSUB 2700

2200 GOSUB 2830

2210 IF PSD<10.5 OR PSD>11 THEN GOTO 2120

2220 REM SET AC CURRENT SPAN FOR THIS ANALYSER POSITION
2230 VS1=5

2240 VS1$=ZERO$[1,4-LEN (VAL$ (INT (VS1%100)))]I&$VAL$ (INT (VS1%100))
2250 OUTPUT 510 ;VS1i$

2260 WAIT 5000%PSDTC

2270 IF VS1=5 THEN WAIT 15000%PSDTC

2280 GOSUB 2380

2290 IF PSD>-10.5 AND VS1<7 THEN VS1=VSi1+.2 @ GOTO 4264
2300 OUTPUT 510 ;"0000"

2310 DISP Vs1

2320 WAIT 15000%PSDTC

2330 REM NOW STEP TO -105% FSD

2340 IF NM=0 THEN OUTPUT 509 ;"CLS0" @ GOTO 2530

2350 REM STEP LARGE DISTANCE TO -80% FSD FIRST

2360 IF DI=1 THEN OUTPUT 509 ;"CLS1"

2370 OUTPUT 509 ;"CLSO"

2380 OUTPUT 509 ;"TOT4"

2390 ENTER 523 ; V

2400 IF V>-8 THEN GOTO 2390

2410 ENTER 509 ; COUNTS

2420 QUTPUT 509 ;"OPNO" @ OUTPUT 509 ;"OPN1"

2430 COUNTS=COUNTS+3 @ REM COMPENSATE FOR ’OVERWIND’
2440 REM NOW ZERO IN

2450 GOSUB 2830

2460 IF PSD<-10.5 AND PSD>-11 THEN GOTO 2520

2470 IF PSD<-11 THEN D=DI

2480 IF PSD>-10.5 THEN D=-(1x*DI)

2490 NS=30 @ GOSUB 2700
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2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910

COUNTS=COUNTS+30

GOTO 2450

PS$="NEG"

REM SET SECOND AC CURRENT SPAN

VsS2=5

VS2$=ZERO$[1,4-LEN (VAL$ (INT (VS2%199)))]&VAL$ (INT (VS2%100))
OUTPUT 510 ;VS2$

WAIT 5000%PSDTC

IF VS2=5 THEN WAIT 15000%PSDTC

GOSUB 2830

IF PSD<10.5 AND VS2<7 THEN VS2=VS2+.2 @ GOTO 2550
QUTPUT 510 ;"0000"

WAIT 15000%PSDTC

VS=VS1 @ IF VS2<VS1 THEN VS=VS2

DISP VS2 @ DISP VS

FOR I=1 TO 20

V=INT (100%((I-1)/19%VS))

V$(I)=ZERO$[1,4-LEN (VAL$ (V))I&VAL$ (V)

NEXT I

RETURN

REM *** SUBROUTINE FOR STEPPING NS STEPS IN DIRECTION D #x**
IF NM=0 AND PS$="NEG" THEN OUTPUT 509 ;"OPNO" @ RETURN
IF NM=0 AND PS$="POS" THEN OUTPUT 509 ;"CLSO" @ RETURN
REM FORWARD: D=1 REVERSE: D=-1

OUTPUT 509 ;"OPNO" @ OUTPUT 509 ;"OPN1"

IF D=-1 THEN OUTPUT 509 ;"CLS1"

OUTPUT 509 ;"CLSO"

OUTPUT 509 ;"TOT4"

ENTER 509 ; ST

IF ST<NS-4 THEN GOTO 2780

OUTPUT 509 ;"OPNO" @ OUTPUT 509 ;"OPN1"

DISP ST

RETURN

REM *** ROUTINE TO OBTAIN TIME-AVERAGED PSD READINGS s**x
WAIT 6000*PSDTC @ REM WAIT FOR PSD TO CATCH UP

TOTV=0

FOR I=1 TO 20

ENTER 523 ; V

TOTV=TOTV+V

NEXT I

PSD=TOTV/20

RETURN
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