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ABSTRACT 

Methicillin-resistant Staphylococcus aureus (MRSA) causes nosocomial, community and 

livestock-associated infections. MRSA strains harbor diverse mobile genetic elements 

(MGEs), including plasmids, pathogenicity islands, transposons, integrons and prophages, 

which comprise 15-25% of the genome encoding resistance and virulence genes. We 

investigated resistance and virulence genes in the plasmids of 27 MRSA clinical isolates from 

the private healthcare sector in Durban, South Africa. 

 

MRSA was confirmed by mecA gene identification on plasmids extracted using a commercial 

plasmid extraction kit. The isolates were subjected to antimicrobial susceptibility testing and 

molecular characterization of 4 common resistance encoding genes and four frequently 

encountered virulence factors: blaZ, aac (2’)-aph (6’’), ermC, and tetK, and, hla, hld, eta and 

LukS/F-PV by PCR using plasmid DNA as the template. The genetic relatedness between the 

isolates was determined by pulsed field gel electrophoresis (PFGE). 

 

All MRSA isolates contained plasmids, and were resistant to ampillicin, while 85.2% were 

resistant to ciprofloxacin, 74.1% to gentamicin, 70.4% to rifampicin, 66.7% to tetracycline, 

63.0% to erythromycin, and 11.1% to clindamycin. They were also all susceptible to 

daptomycin, linezolid, vancomycin, tigecycline and fusidic acid.  Multidrug resistance (MDR) 

was found in 74.1% (20/27) of the MRSA isolates. The frequency of the resistance genes blaZ, 

aac (2’)-aph (6’’) and ermC were 100%, 92.6%and 48.2% respectively, while tetK was not 

found in any of the MRSA isolates. The prevalence of virulence genes hla and hld were 96.3% 

and 92.6% respectively, however, eta and LuKS/F-PV were not detected. PFGE analysis 

revealed 10 pulsotypes, designated A–J, which correlated with the resistance profile and 

mechanism of the isolates in each group. 85.2% (23/27) of the isolates clustered into six major 

PFGE types, giving an indication of similar circulating MRSA clones. Type F was the major 

pulsotype (29. 6%) and was found in eight of the 27 MRSA isolates. Hospital centers 1 and 
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10 were found to contain pulsotypes C and H, whiles identical pulsotypes F and G were 

identified in nine of the 15 centers, indicating the possibility of inter health centers spread of 

MRSA in the province. 

The complexity and diversity of molecular resistance and virulence profiles poses a challenge 

for MRSA infection management.  A comprehensive understanding of the molecular 

epidemiology is essential to inform treatment and contain dissemination. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Staphylococcus aureus has persisted as one of the fundamental human pathogens, causing a 

variety of infections in hospital and community settings.  S. aureus possess a remarkable 

number of resistance and virulence factors, and a unique capacity to adapt and survive under 

different host conditions, making it successful as a pathogen (1). Although Staphylococci were 

naturally susceptible to penicillin G, the distribution of penicillinase-encoding plasmids in the 

1950s caused the rapid emergence of resistance. Penicillinase production has become a 

species-related trait of most staphylococcal strains (2),  the main challenge being depicted by 

methicillin-resistance (MR), mediated by the acquisition of the penicillin-binding protein 2A 

(PBP2A), which the mecA gene encodes. This PBP2A enables the staphylococci to escape 

inhibition by methicillin and other penicillinase-stable beta-lactams by taking over the 

functions of the other PBPs (3). Methicillin-resistant Staphylococcus aureus (MRSA) strains 

also harbor other mobile genetic elements (MGEs), including plasmids, pathogenicity islands, 

transposons, integrons and prophages, which comprise 15-25% of the genome. MGEs carry 

the majority of the genes, through which strains of staphylococcal vary from each other, such 

as resistance and virulence genes (4). MGEs play a significant role in bacterial survival and 

adaptability, as they encode many antibiotic resistance determinants and virulence factors, 

hence understanding their composition will broaden our knowledge on their genetic 

determinants  (5). 

 

Glycopeptide vancomycin is currently used as a primary treatment for MRSA, as the number 

of therapeutic options has decreased over time. Predictably, the increase in vancomycin usage 

has caused the emergence of resistance, with the resulting reduction in its efficacy against 

MRSA. Reports of infection by strains resistance to the newest drugs available (daptomycin, 

vancomycin, teicoplanin), and their rapid dissemination, are of major concern as they introduce 

new challenges in the therapeutic and diagnostic fronts. Ascertaining potential risk factors for 



 

2 

 

MRSA acquisition, and completely characterizing the molecular epidemiology and clinical 

properties of these strains are vital for effectively managing infections (6). 

Epidemiological and pathogenicity studies on MRSA in most African countries are limited, 

with South Africa being no exception (7). The Pan-European Antimicrobial Resistance Using 

Local Surveillance (PEARLS) study showed resistance to methicillin to be 33.3% for South 

African strains isolated during the 2001–2002 national survey (8).  Prevalence studies of 

MRSA in specific South African settings have been conducted, with the varying rates being 

influenced by the geographical location, study population and clinical practices (9, 10). MRSA 

infection increases health care cost and treatment complications, and is associated with higher 

mortality rates (11, 12). All efforts should be geared towards preventing the spread of resistant 

and virulent MRSA worldwide clones. 

 

1.2 Staphylococcus aureus 

Staphylococcus aureus is a Gram-positive, facultative anaerobic, coagulase- and catalase-

positive, coccus-shaped bacterium in the family Micrococcaceae. S. aureus is an opportunistic 

pathogen that can be found in human as well as animals, such as cats, dogs, pigs and horses. A 

typical 24-h Staphylococcal colony is large, β-haemolytic and cream-yellow pigmented on 

blood agar (13, 14). It is protected against many toxic molecules by an outer layer, the cell wall 

consisting of teichoic acids and peptidoglycan, which are connected to the cytoplasmic 

membrane (15). In addition, the staphylococcal cell wall is connected to many supporting 

surface proteins. The majority of all clinical S. aureus strains are protected by a polysaccharide 

capsule, with 11 unique putative capsule serotypes (16).The genome of the S. aureus is 

composed of a single circular chromosome with transposons, insertion sequences, genomic 

islands and plasmids. Prophages and pathogenicity islands are also considered to play vital 

roles in the virulence and evolution of S. aureus (22). Complete Staphylococcal genomes have 

been obtained through various genome sequencing methods (23). 

 

Although S. aureus has been regarded as an extracellular pathogen, various studies have shown 

that it can survive in different eukaryotic cells, including osteoblasts, fibroblasts, epithelial 

cells, endothelial cells and keratinocytes. Staphylococci  also survive within neutrophils and 
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human monocyte-derived macrophages (17), which contributes to the recurrent and/or 

persistent nature of certain infections.  S. aureus mutants, known as ‘small colony variants’ 

(SCVs), are slow-growing colonies that are 10-fold smaller than normal bacteria, and have 

characteristics such as reduced haemolytic activity, low coagulase activity, decreased pigment 

formation, decreased toxin production and resistance to aminoglycosides (18). SCVs show 

similar metabolic characteristics in the central metabolism regardless of the fundamental 

auxotrophism, and have the ability to persist intracellularly as well as to cause persistent and 

recurrent infections (19). 

  

1.2.1 Infections  

Staphylococcus aureus causes many infections, ranging from soft skin to lethal conditions. The 

most common infection by S. aureus is superficial skin inflammation, which presents as a boil 

or furuncle. Common subcutaneous and skin infections caused by S. aureus include impetigo, 

folliculitis, carbuncles, mastitis and cellulitis. S. aureus can also cause chronic skin infections 

within human populations with some major disorders such as. More severe S. aureus infections 

include myocarditis, arthritis, pericarditis, osteomyelitis, endocarditis, scalded skin syndrome, 

pneumonia, and bacteraemia (20, 21).  S. aureus bacteraemia often emanates from various 

infection sources, such as deep tissue abscesses, osteomyelitis, pneumonia and septic 

pulmonary emboli (22, 23). Foreign bodies, such as endoprostheses and intravenous catheters, 

can also originate S. aureus bacteraemia (20). Several infections caused by Staphylococcal are 

toxin-mediated, including toxic shock syndrome (TSS), impetigo, food poisoning and 

necrotising pneumonia. TSS is caused by a potent super-antigen called toxic shock syndrome 

toxin 1, he symptoms including rash, hypotension, high fever and the involvement of multiple 

organ systems (24). Self-limiting staphylococcal food poisoning is caused by ingested 

enterotoxins via contaminated food, with the symptoms including headache, vomiting and 

diarrhea (25).  

 

S. aureus bacteraemia in the era of pre-antibiotics was mostly fatal, with reported mortality 

rates observed over a seven year period in the early 1940s in Boston City Hospital being 82% 

among 122 consecutive patients, and 98% in people aged over 50 years (26). S. aureus remains 
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a main cause of hospital-associated infections, with a large proportion of these being caused 

by MRSA (27). The mortality rate associated with  MRSA infections differs noticeably 

between studies in various locations (28). In a large cohort study in Europe, the duration and 

mortality of bloodstream infections attributable to S. aureus were evaluated. The outcomes 

demonstrated the clinical significance of S. aureus invasive bacteria, and highlighted the extra 

burden imposed by resistance for 30 day mortality (29). In a Canadian study (2000-2006), S. 

aureus bacteraemia mortality rate was 4–6 deaths per 100 00 persons (30). In Africa, few 

studies targeting only S. aureus infections have been reported, with the percentage of S. aureus 

bacteraemia  differing considerably between countries, with as high as 52% in Egypt, 45% in 

Algeria, 44% in Botswana and 19% in Morocco (31, 32). The prevalence rate of S. aureus 

bacteraemia within South Africa varies, based on the population studied and geographical 

setting (33-35).  

 

1.2.2 Carriage 

S. aureus colonises multiple sites in the body, with the anterior nares of the nose being the 

most consistent carriage site in humans. Other typical sites for S. aureus colonisation include 

the skin, pharynx, gastrointestinal tract, axillae, perineum and vagina (36). Recent studies 

suggests that approximately 25–35% of healthy humans carry S. aureus on the mucous or skin 

membranes (36). Predictions from careful estimations based on the US and Dutch prevalence 

data indicate that approximately 53 million individuals carry MRSA (37). In a longitudinal 

carrier studies on S. aureus, three carrier patterns have been assigned: non-carriers, intermittent 

carriers and persistent carriers, with various criteria for assigning an individual to specific 

carriage patterns. Most studies use a cross-sectional study design with a single nasal culture, 

with  Van Belkum and co-workers in their 2009 studies predicting persistent and non-persistent 

as the only two types of S. aureus nasal carriers (38). Persistent nasal carriage is known as the 

main risk factor for causing infections in different locations. It is also the major risk factor in 

patients with intravascular devices and human immunodeficiency virus (HIV) infection, and 

those undergoing haemodialysis and surgery. The prevalence of nasal colonisation with S. 

aureus varies among countries, with a study in Lebanon during 2006 and 2007 reporting rates 
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of 38.4% (39). In the USA, similar studies conducted in 2008 reported a decrease in S. aureus 

nasal colonisation from 32.4% to 26.8% (40).  

 

1.2.3 Genome Composition 

The S. aureus genome has a comparatively low G+C content and a size of approximately 2.5 

- 2.9 Megabase pairs (Mbp), with up to 3 additional-chromosomal plasmids. It also harbors 

between 2600 and 2750 genes (41). The complete structure of the S. aureus genome is made 

up of a core and accessory genomes, which are well conserved (4) with only the accessory 

genomes being explored in this study.  

 

The accessory genome of  S. aureus was acquired through lateral gene transfer from other 

bacterial species, and accounts for approximately 25% of any S. aureus genome (5). The 

accessory genome mainly consists of mobile genetic elements that transfer horizontally 

between strains and make S. aureus a notorious hospital pathogen. These mobile genetic 

elements that will be explored further include plasmids, transposons, chromosome cassettes, 

pathogenecity and genomic islands (4). Many of these genetic determinants carry genes with 

antibiotic resistance, as well as virulence molecules and functions. Mobile genetic elements 

identification and characterization provides insight into infection, pathogenesis and the 

evolution of S. aureus. The horizontal transfer and distribution of these determinants can 

therefore have significant clinical consequences (42).  

 

a. Staphylococcal Cassette Chromosome (SCC): SCC is a fundamental mobile genetic 

element that serves as the medium for gene transmission within the staphylococcal species.  It 

belongs to the SCC family and specialises as a methicillin resistance carrier. It is a genomic 

island fixed at the 3‘end of open reading frame X (orf X), and is found near the origin of 

replication of S. aureus. The structure of SCCmec consists of the ccr and the mec gene 

complexes. The ccr gene complex encodes the recombinases responsible for its mobility and 

contains two site specific recombines genes, ccrA and ccrB.  The mec gene complex encodes 

methicillin resistance (43). 
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b. Pathogenecity Islands of S. aureus: S. aureus pathogenicity islands  are a group of 15-27 

kb genetic elements that usually carry one or more super-antigen genes, encoding toxic shock 

syndrome toxin 1 (TSST-1) and/or enterotoxins. Pathogenecity Islands of S. aureus are firmly 

integrated at distinct chromosomal sites, but can be moved following infection by certain 

staphylococcal bacteriophages or by inducting endogenous prophages (44). S. aureus 

pathogenicity islands are believed to be formed by integrating extra chromosomal DNAs 

(plasmids) or by incorporating bacteriophages carrying toxin genes, which may transform a 

non-toxic into toxic strain (45). 

 

c. Plasmids in S. aureus: Plasmids are significant genetic vehicles that carry antibiotic 

resistance and virulence genes. Various forms of plasmids encoding for specific genes has been 

reported in staphylococci. For example, the plasmid pUB110 is found embedded into the type 

II SCCmec of some strains of S. aureus and encodes resistance to tobramycin, kanamycin, 

aminoglycosides and bleomycin.  The plasmid pI258 encodes resistance to heavy metals and 

penicillins, while the pT181 plasmid also encodes tetracycline resistance (46, 47). 

 

d. Transposons in S. aureus: Transposons (Tn) are minute transferable fragments of DNA 

that are located in the chromosome of S. aureus. They inactivate or modify certain cellular 

functions by transposing beside or into the genes involved in the function (48). Macrolide-

lincosamide-streptogramin B (MLSB) and spectinomycin resistance is located on the Tn 554. 

Transposons carrying genes responsible for resistance to gentamycin, tobramycin and 

kanamycin are the Tn552 containing the blaZ pencillinase gene and Tn4001 containing aacA-

aphD gene (42, 49). 

 

e. Genomic islands (GIs): This is a term given to non-SCC genomic and non-phage islands 

(20-30 kb in size) found exclusively in S. aureus (50). These GIs frequently encode virulence 

determinants inserted at a specific locus in the chromosome. In S.aureus each genomic island 

is found in various allelic forms with diverse sets of resistance or virulence genes. As each 

allelic form of GIs encodes different properties, identifying the allelic set of GIs that the isolate 
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carries provides information on the overall properties of the isolate, i.e. its pathogenic potential 

and the antibiotic susceptibility patterns (51).   

 

1.2.4 Virulence factors and pathogenesis 

The ability of bacteria to cause an infection in humans is largely due to an evasion of the host’s 

immune system, with S. aureus playing a role in disease pathogenesis by expressing a number 

of distinct virulence factors. The complex interaction between the virulence factors of the S. 

aureus infecting strain and host defence mechanisms determines the severity and form of the 

infection. Each virulence factor may have various functions in pathogenesis, and multiple 

virulence factors may execute an identical function. Pathogenesis in Staphylococci is 

multifactorial, involving three factors that are directly or indirectly injurious: cell surface 

components, cell-surface-bound proteins, and secreted proteins. Secreted proteins, including 

tissue-degrading enzymes (lipases, proteases), cytotoxins [e.g. α, β, γ, δ–haemolysin, Panton-

Valentine leukocidin (PVL)], and super-antigens [e.g. enterotoxins A-D, exfoliatins A-B, toxic 

shock syndrome toxin-1 (TSST-1)], allow bacteria to penetrate and destroy the local structural 

and cellular elements of host organs and tissues (52-54).  

 

Two genes are found on the prophage encode the PVL toxin (55), which is harmful to 

neutrophils causing tissue necrosis. It is associated with severe necrotising pneumonia as well 

as soft and skin tissue infections (56). The release of PVL has also been associated with 

community-acquired methicillin-resistant S. aureus (CA-MRSA) strains (57). Microbial 

surface components recognising adhesive matrix molecules (MSCRAMMs) are among the 

numerous surface proteins found in S. aureus, and include collagen-binding, fibrinogen-

binding and fibronectin-binding protein, as well as adhesins (58). MSCRAMMs play an active 

role in mediating their attachment to bacterial cells, host tissues, the inert and extracellular 

surfaces.  They also aid in initiating prosthetic-device, endovascular, joint and bone infections 

(17, 53).  

 

The Staphylococcal protein A (Spa) is the best known surface protein of S. aureus, being first 

isolated in 1972 from S. aureus after lysostaphin digestion (59). It is made up of five closely 



 

8 

 

related immunoglobulin G (IgG)-binding domains, a polymorphic region X and C- terminal 

cell wall attachment sequence (60, 61), with the X region containing a highly polymorphic 

sequence of 24 bp repeats (62). Spa blocks the normal function IgG by binding to its Fc region, 

which causes an inhibition of the phagocytosis that are disguising the bacterium from the innate 

immune system by preventing opsonisation-dependent activation of the complement cascade 

(63). Due to the highly variable X-region, spa typing is a universally used genotyping method 

for comparing S. aureus isolates (64).  Each cell surface component has a different role in the 

pathogenesis of S. aureus, with the mucoid capsule inhibiting phagocytosis by covering C3b 

complement factor bound to the cell wall (65). However, the function of the capsules involved 

in the pathogenesis of S. aureus is controversial.  

 

A complex regulatory network controls the staphylococcal virulence factors encoding genes. 

The surface protein genes are released shortly after the pre-exponential growth phase during 

the establishment of an infection. This enables adherence to the host tissues and protects the 

bacteria from host defenses, such as complement-mediated killing and opsonisation-

phagocytosis. Other genes encoding secreted enzymes and cytotoxins are released during the 

post-exponential growth phase to aid in spreading the bacteria, acquiring nutrients and killing  

phagocytes (52). The accessory gene regulation (agr) locus is the main global regulatory 

system of S. aureus (66). Additionally, three other two-component signalling modules are 

known to be involved in staphylococcal virulence genes regulation. Environmental factors, 

such as temperature, CO2, O2 and pH levels, also affect the overall regulatory system by 

helping the bacterium to recognise and respond appropriately to its local environments (52, 

66).  

 

1.3 Molecular detection 

Many molecular based techniques are available to identify MRSA, the ‘gold standard’ being 

mecA gene detection. Multiplex PCR assays that concurrently target mecA gene and that are 

specific for some S. aureus, including spa, coa, femA, nuc or all staphylococci, e.g. 16S rDNA 

conserved genus sequences, have been developed (67-69). Genomic DNA extracts from broth 

culture lysates or bacterial colonies are usually used to perform these assays. However, these 
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methods can produce false positive results if the culture contains a mixture of methicillin-

susceptible and methicillin resistant coagulase negative staphylococci. Recently, MRSA was 

detected within one to six hours directly from screening swabs using commercially available 

real-time PCR assays.  

 

1.4 Typing methods 

Phenotypic or genotypic characters are generated by typing strains within a species to predict 

the routes and sources of spread of the micro-organisms. Typing contributes to understanding 

the study bacterial genetic population structures and infectious diseases pathogenesis. Data 

from typing help to define the relatedness of isolates implicated in an outbreak and elucidates 

its chain of transmission (70). Microbial typing systems should be evaluated and validated with 

respect to different performance criteria, including typeability, discriminatory power, 

reproducibility, stability, convenience criteria and epidemiological concordance (71). It can be 

used at various levels: (i) globally, through international surveillance networks; (ii) 

nationally/regionally, in reference laboratories, or (iii) locally at hospital or health-care 

institutions. The choice of methods and quality assessment depends solely on the level at which 

typing is performed, with phenotypic characters showing limited performance, reliability and 

specificity. In genotyping, comparisons based on the sequence polymorphism or genomic 

DNA fragments are the most preferred techniques. Typing systems can be grouped as 

definitive (‘library’ system) or comparative, which are often the same ‘typing run’, and enable 

comparisons of isolates in the same laboratory. The latter can be enough for an outbreak 

investigation, but it poses difficulties when comparing results with future or past data samples. 

In contrast, a definitive typing system has the advantage to compare typing data produced in 

various laboratories, by different investigators at a range of time intervals, and generates 

standardised and reproducible data. The most frequently used molecular typing methods are 

pulsed field gel electrophoresis, multi locus sequence typing, SCCmec typing and spa typing 

(72).  
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1.4.1 Pulsed-field gel electrophoresis (PFGE) 

This typing methodology employs a restriction enzyme (SmaI in the case of S. aureus) for 

digesting chromosomal DNA and agarose gel electrophoresis using an alternating voltage 

gradient. A software package was used to analyze the banding patterns, this being one of the 

most popular methods, which helps to detect genetic variation between staphylococcal strains 

(73). However, PFGE is less reproducible and does not involve a selective amplification step, 

hence it has a limited use for long-term epidemiology surveillance or for studying the 

phylogenetic and evolutionary relationship among Staphylococcus aureus strains (74).  

 

1.4.2 Multi locus sequence typing (MLST) 

MLST is a genotypic technique for bacterial strain characterization that uses DNA sequencing 

to reveal allelic variants in various conserved genes (75). MLST offers the advantages of high 

degrees of typeability, unambiguous identification and reproducibility based on the nucleotide 

sequences of 450-500bp internal fragments of seven housekeeping genes. Data obtained by 

MLST also permits an investigation of the population structure, and the development and 

testing of evolutionary hypotheses (76). The main advantage of this technique is its ability for 

sequence data to be compared and contrasted between different laboratories through the MLST 

website, making it suitable for local and global epidemiology of S. aureus and other bacterial 

pathogens (77). 

1.4.3 Spa typing 

Spa typing is based on variations of the polymorphic X region of staphylococcal protein A 

(spa) locus (78). The highly polymorphic X region is suited directly upstream of the region 

encoding the C-terminal cell wall attachment sequence, and is characterized by a variable 

number of 24 bp repeats (70, 73). Its discriminatory power falls between that of MLST and 

PFGE. Spa typing involves sequencing only one locus, which makes the technique simple 

compared to MLST. Another advantage over MLST is its ability to investigate both hospital 

outbreaks of MRSA and molecular evolution (79). It also allows laboratories to use diverse 

sequencing platforms and specialised software (Bionumerics software) to interpret the 

chromatograms of resulting sequence (72). 

 



 

11 

 

1.4.4 SCCmec Typing 

This is a technique used to investigate the structure of SCCmec. A multiplex PCR assay for 

identifying mecA and various loci on SCCmec was developed to determine the specific 

SCCmec types, which are based on the allotype of ccr genes and the mec gene complex (80-

82).  

 

1.4.5 Whole Genome Sequencing (WGS) 

WGS is a technology that is advancing our understanding of MRSA evolution, especially 

during epidemics, with various WGS studies of MRSA isolates from outbreaks having been 

published (83-85). This method includes sequencing DNA fragments and aligning them to a 

complete and well-annotated reference genome sequence. It can be used to detect lineage, as 

well as single nucleotide polymorphisms (SNPs) variation in the core genome (86). A few 

studies have also investigated additional DNA found in the test isolates that are not found in 

the reference genome, indicating that it is also a reliable method for identifying mobile genetic 

elements (MGE) variation. Bioinformatic data analysis is currently complex, and user friendly 

algorithms to identify spa, MLST type and the presence of key virulence and resistance genes 

are being developed. There are good prospects that this technology could be widely 

incorporated into infection control outbreak investigation in real time (87).  

 

1.5 Justification for the study 

Although research has been done on MRSA in South Africa, few have been done on its genetic 

determinants, with little information being available on the content and resistance of MRSA 

plasmids in the private health sector in South Africa. There is therefore a need to delineate 

antibiotic resistance patterns, compare their plasmids profiles and establish the possible genetic 

relatedness of MRSA in the private sector, as this will increase the evidence base to optimize 

infection management, and inform control policies and practices. 

 



 

12 

 

1.6 Aim 

The study aims to establish the clonality and characterize the plasmid-encoded antibiotic 

resistance and virulence profile of 27 clinical MRSA isolates collected from a private 

pathology laboratory in Durban, South Africa. 

 

1.7 Objectives 

1. To verify the identity of the clinical isolates using cefoxitin disc diffusion (CDD) test and 

polymerase chain reaction (PCR) - based mecA gene detection technique. 

2. To determine the minimum inhibitory concentration (MIC’s) to the following antibiotics: 

ampicillin, ciprofloxacin, gentamicin, erythromycin, clindamycin, tetracycline, linezolid, 

daptomycin, fusidic acid, tigecycline, rifampicin and vancomycin.   

3. To establish the presence of resistance genes (blaZ, tetK, ermC, aac-aph) and specific 

virulence genes (PVL genes (lukS/F-PV, eta, hla, hld) on plasmids DNA using PCR. 

4. To study the clonal relatedness of the isolates using pulse field gel electrophoresis (PFGE). 

5. To establish possible correlations between particular plasmid types, antimicrobial 

susceptibility and the clonal lineages of isolates for their genetic relatedness using PFGE. 

 

1.8 Outline  

This study is presented in three chapters, the first outlining the rationale for the research, as 

well as the Aim and Objectives.  As this dissertation is presented in manuscript format, it 

contains the following two chapters:  

Chapter 2 outlines the characterization of plasmid-mediated resistance and virulence genes in 

clinical MRSA isolates in private sector in KZN province and their genetic relatedness. This 

section has been submitted to the International Journal of Infectious Diseases and formatted 

according to the journal’s standards.  

Chapter 3, the final chapter presents the conclusions, limitations and recommendations arising 

from the study.  
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      Abstract 

Objectives: There is limited information on the plasmid content of MRSA strains from South 

Africa. We investigated resistance and virulence genes in the plasmids of 27 MRSA clinical 

isolates from the private healthcare sector in Durban, South Africa and their genetic 

relatedness. 

Methods: MRSA was confirmed by mecA gene identification in plasmids extracted using a 

commercial plasmid extraction kit. The isolates were subjected to antimicrobial susceptibility 

testing and molecular characterization of four common resistance encoding genes and four 

frequently encountered virulence factors: blaZ, aac (2’)-aph (6’’), ermC, tetK, hla, hld, eta and 

LukS/F-PV respectively by PCR using plasmid DNA as the template.  The genetic relatedness 

between the isolates was determined by pulsed field gel electrophoresis (PFGE). 

Results: All MRSA isolates contained plasmids. The isolates were 100% resistant to 

ampillicin, 85.2% were resistant to ciprofloxacin, 74.1% to gentamicin, 70.4% to rifampicin, 

66.7% to tetracycline, 63.0% to erythromycin, and 11.1% to clindamycin. They were all 

susceptible to daptomycin, linezolid, vancomycin, tigecycline and fusidic acid.  Multidrug 

resistance (MDR) was found in 74.1% (20/27) of the MRSA isolates. The frequency of the 

resistance genes blaZ, aac (2’)-aph (6’’) and ermC were 100%, 92.6% and 48.2% respectively, 

but tetK was not found in any of the MRSA isolates. The prevalence of virulence genes hla 

and hld were 96.3% and 92.6% respectively, however, eta and LuKS/F-PV were not detected. 

PFGE analysis revealed 10 pulsotypes, designated A–J, which correlated with the resistance 

profile and mechanism of the isolates in each group. Of note, 85.2% (23/27) of the isolates 

clustered into six major PFGE types giving an indication of similar circulating MRSA clones. 

Type F was the major pulsotype (29. 6%) and was found in eight of the 27 MRSA isolates. 

Hospital centers 1 and 10 contained pulsotypes C and H, whiles identical pulsotypes F and G 

were spread across nine of the 15 facilities, intimating the possibility of inter-health center 

spread of MRSA in the province. 

Conclusions: The complexity and diversity of the molecular resistance and virulence profiles 

poses a challenge for managing MRSA infections. A comprehensive understanding of the 

molecular epidemiology is essential to inform treatment and contain dissemination. 

     Keywords: MRSA, plasmids, PCR, PFGE 
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1. Introduction 

The World Health Organization (WHO) and the African Health Observatory (AHO) have 

increasingly recognized the significance of  tracking  antibiotic resistance, specifically the 

resistance mechanisms and their dissemination, to optimize managing infections and provide 

the basis for evaluating the effectiveness of infection control programmes.1, 2 One of the 

fundamental human pathogens is Staphylococcus aureus, an adaptive bacterium that causes 

superficial, deep and fatal diseases. The ability of S. aureus strains to cause infection depends 

on various resistance and virulence factors that contribute to its colonization and disease 

development in the host.3  S. aureus has gradually developed resistance towards all the main 

classes of antibiotics to which it was once susceptible.4 

 

MRSA strains, whose definitive characteristic is the mecA carrier element called 

staphylococcal cassette chromosome mec (SCCmec), confer resistance to methicillin,  causing 

nosocomial, community and livestock-associated infections that have resulted in major public 

health, economic and social problems worldwide 5, 6 These strains also harbor mobile genetic 

elements (MGEs), including plasmids, pathogenicity islands, transposons, integrons and 

prophages, which comprise 15-25% of the genome.  MGEs carry the majority of the genes, 

through which strains of staphylococcal may be differentiated from each other.7 As MGEs play 

a significant role in bacterial survival and adaptability because they encode many resistance 

and virulence genes, understanding their composition will broaden our knowledge on the 

genetic determinants of antibiotic resistance.8  

 

The most significant MGEs are plasmids, which aid antibiotic resistance genes transmission 

and carriage. Plasmids of staphylococcal vary in size from 1 to over 200 kb, and are classified 

according to their mutual incompatibility, size and replication mechanism.9 S. aureus possess 

a wide variety of plasmid-borne genes, with many of the currently sequenced plasmids 

containing open reading frames (ORFs) that have not been described.10 

 

Although research has been conducted on MRSA in Africa, the recently available information 

on the plasmid content of these strains from African countries is comparatively scarce, and 
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data on their resistance in the South Africa private sector being lacking.  A study of this nature 

is a necessity, as understanding antibiotic resistance patterns, comparing the plasmids profiles, 

and assessing the possible relatedness of MRSA isolates is useful for epidemiological studies 

and evaluating the effectiveness of infection control. The aim of this study was to ascertain the 

clonality, and characterize the plasmid-encoded antibiotic resistance and virulence profile of 

27 clinical MRSA isolates obtained from a private laboratory in Durban, KwaZulu-Natal 

Province, South Africa. 

 

2. Materials and Methods 

 

2.1. MRSA isolates and mecA gene confirmation 

A total of 27 consecutive non-repetitive MRSA isolates were obtained from a pathology 

laboratory based in Durban, South Africa, over a three months period, from June to August, 

2015, that caters for the private healthcare sector. The isolates were identified using Vitek 2 

(bioMerieux, Durham, NC, USA) and confirmed by matrix assisted laser desorption ionization 

time of flight mass spectrometry (MALDI-TOF/MS).  The cefoxitin disc diffusion (CDD) test 

was used to identify putative MRSA11, 12, which were confirmed by PCR detection of the mecA 

gene.13 S. aureus ATCC 29213 (susceptible to methicillin) and S. aureus ATCC 43300 

(resistant to methicillin) were used as controls. 

 

2.2. Antimicrobial agents and MIC determinations 

    The minimum inhibitory concentration (MIC) was determined for 12 antibiotics by the 

broth microdilution method.14 They included ampicillin (β-lactams), ciprofloxacin 

(fluoroquinolones), erythromycin (marcolides), gentamicin (aminoglycosides), tetracycline 

(tetracyclines), rifampicin (ansamycins), clindamycin (lincosamides), linezolid, daptomycin 

(lipopeptides), fusidic acid, vancomycin (glycopeptides) and tigecycline (glycylcyclines). The 

Clinical and Laboratory Standards Institute (CLSI) Guideline14  was used for interpreting the 

results, and Staphylococcus aureus ATCC 29213 was used as the control. Isolates resistant to 

β-lactams, and at least three classes of antibiotics, were defined as multidrug resistant (MDR).  
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2.3. Molecular characterization of plasmid-borne resistance and virulence determinants by 

PCR 

     A plasmid DNA extraction kit (GeneJET Plasmid Miniprep kit, Thermoscentific) was used 

to purify the plasmid DNA from all 27 MRSA strains, according to the manufacturer’s 

instructions. The presence of resistance genes conferring resistance to ampicillin-penicillin 

(blaZ), aminoglycoside (aac (6’)–aph (2’’)), macrolide-lincosamide-streptogramins B [MLSB] 

(ermC) and tetracycline (tetK) were determined using PCR.15 The virulence determinants 

encoding the bio-component Panton-Valentine leukocidin (LukS/F-PV gene), exfoliative toxin 

(eta), alpha and delta hemolysin genes (hla and hld) were also ascertained by PCR.16 All 

specific primers and programs for detecting antibiotic resistance and virulence determinants 

can be found in Table 1.15,16. Positive and negative controls were included in all PCR assays. 

 

2.4. Pulsed-field gel electrophoresis (PFGE)  

     PFGE was used to determine the genetic relationship between the isolates17. The 

Bionumerics software version 6.6 (Applied Maths NV, Belgium) using the Dice coefficient, 

and represented by unweighted pair group method with arithmetic mean (UPGMA) with 

optimization settings and position tolerance set at 0.5% and 1% respectively was used to 

analyze the electrophoretic patterns. Clusters were defined using the criterion of a difference 

of ≤ 6 bands, as described by Tenover et al 18, and a similarity cut-off of ≥70.0%.  Salmonella 

serotype Braenderup strain H9812 was used as the quality control strain for normalization 

between gels.  

 

3. Results 

 

3.1. Patient demographics and clinical sources of infection 

    All 27 laboratory-confirmed mecA-positive MRSA isolates constituted the study sample. 

Of the available isolates, 22 had complete data, such as hospital center, specimen source, ward 

type, date of sample collection, gender and age (Table 3). Demographic data reflected 10 males 

(37.0%) and 13 females (48.2%), while four patients had no record for gender. The median age 

was 43.8 (SD 26.7) years, ranging from day 0 to 86 years, and patient age was missing in four 
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isolates. Five (18.5%) were classified as paediatric isolates, and 18 isolates (66.7%) as adult 

isolates. Nineteen isolates (70. 4%) were collected from in-patients, three (11.1%) from 

outpatients, with five (18.5%) being unknown. The intensive care unit (ICU) yielded nine 

(33.3%) isolates, that largest number of all ward types.  

 

3.2. Antimicrobial resistance pattern  

    The resistance patterns of the 27 MRSA isolates and the MIC distributions of the tested 

antimicrobial agents are shown in Tables 2 and 3. Ampicillin showed no activity against 

MRSA isolates, while 85.2% (23/27) were resistant to ciprofloxacin, 74.1% (20/27) to 

gentamicin, 70.4% (19/27) to rifampicin, 66.7% (18/27) to tetracycline, 63.0% (17/27) to 

erythromycin, and 11.1% (3/27) to clindamycin.  All isolates were susceptible to daptomycin, 

linezolid, fusidic acid, tigecycline and vancomycin. Multidrug resistance (MDR) was 

determined in 74.1% (20/27) of the MRSA isolates. 

 

3.3. Prevalence of the genetic determinants of resistance and virulence 

     The prevalence of four resistance genes and four virulence factors on extracted plasmids 

of the 27 clinical MRSA isolates are shown in Table 3. The penicillin resistance gene, blaZ, 

was amplified from all 27 MRSA isolates. The aac (6’)–aph (2’’) gene for aminoglycoside 

resistance and the ermC gene for macrolide-lincosamide-streptogramins [MLSB] resistance 

were amplified from 25 (92.6%) and 13 (48.2%) isolates respectively. The tetracycline 

resistance gene (tetK) was not detected in any of the 27 MRSA isolates. The most prevalent 

virulence gene was alpha hemolysin hla, which was identified in 26 (96.3%) isolates, followed 

by delta hemolysin hlddentified in 25 (92.6%) of isolates. However, Panton-Valentine 

leukocidin lukS/F-PV and exfoliative toxin eta were not detected. 

 

3.4. Genetic relationship by PFGE 

    The PFGE profiles and the dendrogram of the MRSA isolates are shown in Figure 3. PFGE 

analysis grouped the 27 isolates into 10 pulsotypes designated A-J, displaying 70.0% 

similarity, and correlating with their resistance profile and the genetic determinants tested in 

this study. Of note, 85.2% of the isolates were clustered into six major PFGE types: pulsotypes 
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F (8/27 strains; 29.6%), G (5/27; 18.5%), C, I (3/27; 11.1%) and A, H (2/27; 7.4 %). Pulse 

types B, D, E and J were each represented by single isolates. PFGE types F and G were 

subdivided into five and three subtypes respectively.  Hospital centers 1 and 10 were found to 

contain pulsotypes C and H, while identical pulsotypes F and G were spread across nine 

centers, intimating the possibility of inter-health centers spread of MRSA in the province. 

 

4. Discussion 

Antibiotic resistance is a global health problem and MRSA remains a prominent multi-drug 

resistant bacterial species, which presents a challenge to clinicians, as the introduction of new 

classes of antibiotics is usually followed by the emergence of resistant pathogenic forms. 

Antibiotic resistance surveillance and delineating resistance and virulence genes in MRSA 

isolates is essential to understand their genetic basis and inform their management. 

 

The majority of the MRSA isolates in this study were resistant to ciprofloxacin, gentamicin, 

rifampicin, tetracycline and erythromycin. Notwithstanding the small sample size of 27 

isolates, resistance rates in this study were in some cases lower than those seen in another KZN 

study on 61 confirmed MRSA isolates by Shittu et al19, particularly for gentamicin (74.1% vs. 

96.7%), rifampicin (70.4% vs. 73.8%), tetracycline (66.7% vs. 90.2%) and erythromycin 

(63.0% v. 82.0%). Resistance to clindamycin of 11.1% was also much lower in this 

investigation than the rates of 82%19, 62.5%20, 34%21 reported in other studies conducted on 

MRSA isolates in KZN and South Africa. Only the ciprofloxacin resistance rate in our study 

was notably higher (85.2% v. 18%19), with its resistance on MRSA isolates in South Africa 

having been reported to 69.7% and 88.7% in the private sector.20 Multidrug resistance rate was 

lower (74.1% vs. 87%) than those reported by Shittu et al19 but similar to a study by Heysell 

et al22 in KZN with a rate of 79% on 19 clinical MRSA.    

 

All MRSA isolates were susceptible to daptomycin, vancomycin, linezolid, fusidic acid and 

tigecycline, while only ampillicin showed 100% resistance. The susceptibility patterns of the 

isolates in this study were comparable to studies conducted on MRSA in South Africa19, 20, 23 

and Nigeria24, which were fully susceptible to daptomycin, vancomycin, linezolid, fusidic acid 
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and tigecycline. The full susceptibility of MRSA to these antibiotics observed in this study 

confirms their use as treatment options for infections in South Africa.  

 

There was a relationship between resistance to methicillin and to other antibiotics, as noted in 

other investigations25-27.  The presence of mecA is an absolute requirement for S. aureus to 

express methicillin resistance28. The structural component of mecA encodes the penicillin-

binding protein 2a (PBP2a) that establishes resistance to methicillin, other semisynthetic 

penicillinase-resistant beta-lactams that are frequently co-carried with genes conferring 

resistance to aminoglycosides, macrolide-lincosamide-streptogramin B [MLSB] and 

spectinomycin29. All the isolated plasmids of the 27 MRSA isolates contained the mecA and 

blaZ resistance genes, indicating the correlation between MICs and the presence of genes 

encoding resistance against beta-lactams. The gentamicin resistance gene aac (6’)–aph (2’’) 

was identified in 92.6% of the isolates, which varied from the phenotypic resistance profile of 

74.1%, indicating that gene carriage does not necessarily translate into the resistance 

phenotype. This result was similar to the studies conducted in Turkey by Duran et al30, where 

17 gentamicin-susceptible isolates were found to be positive, in terms of one or more 

gentamicin resistance genes mostly aac (6’)–aph (2’’). The ermC gene responsible for 

macrolide-lincosamide-streptogramins B [MLSB] resistance was amplified in 48.2% (13/27) 

of the MRSA isolates, while it was not found in those that were susceptible to both 

erythromycin and clindamycin. The 23.5% (4/17) with phenotypic resistance to MLSB that did 

not contain the ermC gene indicates the occurrence of other resistance mechanism, ermA, ermB 

and msrA, which was not investigated in this study but have been previously reported.31 This 

confirms that the incidence of MLSB phenotypes and genotypes vary according to country, 

patterns of infections and drug use.31, 32 Although there was high tetracycline resistance, the 

tetK gene was not detected, indicating that it this may be due to different mechanisms and not 

mediated by active drug efflux, as tetK resistance has so far not been reported in clinical MRSA 

studies in South Africa. 

 

The prevalence of virulence factors in all isolated plasmids showed a similar trend, with the 

hemolysin genes, hla and hld being the most abundant, with frequencies of 96.3% (26/27) and 
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92.6% (25/27) respectively. Comparatively, this was similar to other studies conducted from 

Iran16, Uganda33 and United States34, with either hla being more frequent than the hld genes, 

or both showing 100% co-dominance. The prevalence rate of eta in our study was 0%, which 

was similar to studies conducted in Japan35 and China36, where no eta was detected in 197 and 

62  clinical MRSA isolates respectively. However, the prevalence of eta differed among 

studies, which could be associated with a variety of geographical and health conditions37. 

LuKS/F-PV was not detected in any of the 27 clinical MRSA isolates, which was comparable 

to a study conducted in South Africa on 320 clinical MRSA isolates with only one positive 

LuKS/F-PV gene being detected38. Generally, the resistance and virulence profiles showed a 

similar trend in all the plasmids, indicating closely related MRSA isolates. 

 

PFGE, which is the gold standard for strain typing, was able to predict the genetic relatedness 

of the MRSA isolates.17 The analysis revealed 10 pulsotypes, designated A–J, which correlated 

with the resistance profile and mechanism of the isolates in each group (Fig. 2). Isolates of 

group G were all resistant to the five antibiotics, and were clustered in 3 subtypes. These 

isolates also clustered at a similarity of 0.75 when analyzed by smaI PFGE. Pulsotype C 

showed susceptibility to both tetracycline and rifampicin. Of note was that 85.2% (23/27) of 

the isolates clustered into six major PFGE types, indicating similar circulating MRSA clones 

in health centers in the province, as predicted by Shittu et al39 and Moodley et al38 in their 

study in KZN and South Africa respectively. Although the sample size was too small to show 

a definite correlation, the assertion of similar circulating clones in the province was supported 

by our study, as the PFGE analysis revealed some form of association between pulsotypes and 

the centers of sample collection. Centers 1 and 10 were found to contain pulsotypes C and H, 

while identical pulsotypes F and G were spread across nine of the 15 centers, intimating the 

possibility of similar clones of MRSA within the health care centers in the province. However, 

the study could not relate the pulsotypes to specific reported clones, as spa, SCCmec and multi 

locus sequence typing (MLST) are needed in tandem, with the PFGE for to predict the 

population clonal structure not being performed in this study. 
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To the best of our knowledge this is the first study of clinical MRSA isolates in the private 

sector in KZN Province characterizing the plasmid-mediated resistance and virulence genes. 

The study provides a private sector perspective of antibotic suscepbility patterns, and strongly 

affirms reports of interhealth centres spread of identical and closely related clones of MRSA 

in Durban, South Africa, highlighting the need for implementing efficeint and effective 

infection control programs.    
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Figure 1. Patterns of agarose gel electrophoresis showing PCR products for isolated MRSA plasmid genes. 

Lanes M: DNA molecular size maker (1-Kb ladder; Thermo Fisher Scientific Inc, Massachusetts, USA) 

Lane 1: mecA; Lane 2: blaZ; Lane 3: ermC; Lane 4: aac (6’)-aph (2’’) Lane 5: hla Lane 6: hld   
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Figure 2: PFGE Smal genotypic types generated from 27 clinical MRSA isolates from private sector in KZN. Pretested 

Salmonella serotype Braenderup strain H9812 was used as the quality control strain. The R and S indicate resistance 

or susceptibility for ciprofloxacin, gentamicin, erythromycin, tetracycline and rifampicin respectively. The alphabets 

A –J shows the main pulsotype and subtype of each isolate. The numbers 1 – 15 indicates codes of the hospital centers 

where the MRSA isolates were collected. 
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        Table 1 

        PCR primers and cycling parameters for genes presented in this study 

Gene Primer/sequence                                                                  PCR conditions PCR size (bp)     Reference 

mecA F-AACAGGTGAATTATTAGCACTTGTAAG 

R-ATTGCTGTTAATATTTTTTGAGTTGAA 

30 s 94 °C, 30 s 55 °C, 1 min 72 °C       174            15 

blaZ F-ACTTCAACACCTGCTGCTTT 

R-TGACCACTTTTATCAGCAAC 

30 s 94 °C, 30 s 55 °C, 1 min 72 °C       173            15 

ermC 

  

aac(6’)-aph(2’’) 

F-CTTGTTGATCACGATAATTTCC 

R-ATCTTTTAGCAAACCCGTATTC 

F-TAATCCAAGAGCAATAAGGGC 

R-GCCACACTATCATAACCACTA 

30 s 94 °C, 30 s 55 °C, 1 min 72 °C 

 

30 s 94 °C, 30 s 55 °C, 1 min 72 °C 

 

      190  

 

      227  

          15 

 

          15 

tetK F-TCG ATA GGA ACA GCA GTA 

R-CAG CAG ATC CTA CTC CTT 

30 s 94 °C, 30 s 55 °C, 1 min 72 °C       169            15 

hla F-CTGATTACTATCCAAGAAATTCGATTG 

R-CTTTCCAGCCTACTTTTTTATCAGT 

30 s 95 °C, 45 s 58 °C, 1 min 72 °C       209            16 

hld F-AAGAATTTTTATCTTAATTAAGGAAGGAGTG 

R-TTAGTGAATTTGTTCACTGTGTCGA 

30 s 95 °C, 45 s 58 °C, 1 min 72 °C       111            16 

eta F-GCAGGTGTTGATTTAGCATT 

R-AGATGTCCCTATTTTTGCTG 

30 s 95 °C, 45 s 54 °C, 1 min 72 °C        93            16 

LukS/F-PV F-ATCATTAGGTAAAATGTCTGGACATGATCCA 

R-GCATCAAGTGTATTGGATAGCAAAAGC 

30 s 95 °C, 45 s  60 °C, 1 min 72 °C        443            16 
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Table 2  

         Minimum inhibitory concentration (MIC) distributions of antimicrobial agents for 27 MRSA isolates    

Antibiotic  

Resistance pattern, n (%)                 

 

   Distribution of MIC (mg/ ml) 

 R  S     <0.25       0.5          1        2       4              8       16      32       64      128       256       >512 

Ampicillin 27 (100)  0         0 0   0 0 0 0 0 0 0 1 1 25 

Ciprofloxacin 23 (85.2)  4 (14.8)         0 2   2 0 4 1 1 0 2 5 8 2 

Gentamicin 20 (74.1)  7 (25.9)         2 3   1 0 1 0 2 4 7 7 0 0 

Erythromycin 16 (59.3)  11 (40.7)         0 8   2 1 0 2 6 4 4 0 0 0 

Rifampicin 19 (70.4)  8 (29. 6)         7 1   0 0 0 0 0 0 1 5 8 5 

Tetracycline 18 (66.7)  9 (33.3)                   6 1   1 2 0 0 1 1 8 5 2 0 

Clindamycin 3   (11.1)  24 (88.9)         24 0   1 1 0 0 0 0 0 0 0 1 

Daptomycin 0  27 (100)         7 16   4 0 0 0 0 0 0 0 0 0 

Vancomycin 0  27 (100)         1 10  16 0 0 0 0 0 0 0 0 0 

Linezolid 0  27 (100)         0 0   4 23 0 0 0 0 0 0 0 0 

Fusidic acid 0  27 (100)         26 1   0 0 0 0 0 0 0 0 0 0 

Tigecycline 0  27 (100)         27 0   0 0 0 0 0 0 0 0 0 0 

R, resistant; I, intermediate; S, susceptible, All intermediate MIC values were taken as resistant. 
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Table 3 

Clinical data, minimum inhibitory concentrations (MIC), and results of PCR for 27 MRSA isolates 
Isolate 

No. 

 Clinical data                                                           MIC (mg/l)b                                         PCR 

  

Hos 
cod 

 

Source 

 

Ward 
type 

S

e
x 

 

Age 

 

AP 

 

CP 

 

GT 

 

ET  

 

RF 

 

TT 

 

CM 

 

DP 

 

VM 

 

LZ 

 

FA 

  

TG 

 

mecA 

 

blaZ 

 

ermC 

 

aac-
aph 

 

tetK 

 

hla 

 

hld 

 

eta 

 

lukS/
F-PV 

B11970 1 Blood Neo ICU F  NB  >512 0.5   32 8 ≤0.25 2 ≤0.25 1 1 2 ≤ 0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

P10781 15 Nasal OPD M 86 >512 256   64 32  512 256 ≤0.25 0.5 1 2 ≤0.25 ≤0.25  +     +     +      +       -   +       +     -    - 

P10747 2 CVP ICU F 66 >512 4 >64 64  512 128 ≤0.25 0.5 0.5 1 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

S37938 -  - - - - >512 256   16 32  256 64    2 0.5 1 2 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

S18155 3 ETT  ICU F 76 >512 256   64 64  256 128 ≤0.25 0.25 0.5 2 ≤0.25 ≤0.25  +  +  -   +    -   +    -  -    - 

B13178 5 Blood LW F 26 >512 256 >64 64  512 128 ≤0.25 0.5 1 2 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

440260 -  - - - - >512 >512 >64 64  256 128 ≤0.25 0.5 1 2 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

S18970 -  - - - - >512 256   64 32  512 64 ≤0.25 0.5 0.5 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

P11520 6 Pus  OPD M 62   512 >512  0.25 0.5 ≤0.25 ≤0.25 ≤0.25 0.5 1 2 ≤0.25 ≤0.25  +  +  -   -    -   +    +  -    - 

T5683 7 Nasal  OPD F 43 >512  8  0.5 0.5  256 32 ≤0.25 0.5 1 1 ≤0.25 ≤0.25  +  +  -   -    -   +    +  -    - 

B15227 1 Blood Neo ICU F NB >512  4  64 8 ≤0.25 ≤0.25 ≤0.25 1 1 1 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

P13563 -     - - M 49 >512 128 >64 0.5  128 16 ≤0.25 0.5 1 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

S22589 4 Sputum ICU M 49 >512 128 >64 0.5  128 64 ≤0.25 1 1 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

B15612 8 Blood ICU M 46 >512 128 >64 16  512 256 ≤0.25 1 1 2 ≤0.25 ≤0.25  +  +  -   +    -   +    -  -    - 

B15810 5 Pus  Surgical M 41 >512 256  32 16  128 64 ≤0.25 0.5 1 2 0.5 ≤0.25  +  +  +   +    -   +    +  -    - 

B15583 1 Blood ICU F 37 >512 16 >64 2  64 2 ≤0.25 0.5 1 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

S24463 10 ETT  ICU F 59   512  1  32 1 ≤0.25 ≤0.25   1 0.5 0.5 2 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

P15045 1 Wound  Surgical F 47 >512 64  64 16  256 64 ≤0.25 0.25 0.25 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

P15028 10 Eye  Nursery F NB    512 4  16 0.5  0.5 ≤0.25 ≤0.25 0.25 1 2 ≤0.25 ≤0.25  +  +  -   +    -   -    +  -    - 

P14890 11 Wound  ICU F 41   512 256  64 0.5  256 128 ≤0.25 0.5 1 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

P15558 1  CVP  Medical F 94   512 >512 0.12 1  256 ≤0.25 >512 0.5 0.5 1 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

P15469 12 Humerus General F 68   128  64  1 0.5 ≤0.25 0.5 ≤0.25 0.25 0.5 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

P15490 13 Bone  General M 63 >512 128   32 16  128 64 ≤0.25 0.25 0.5 2 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

P15742 6 cheek  Trauma M 29   256  0.5  0.5 16 ≤0.25 64 ≤0.25 0.25 0.5 2 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

P15825 14 Buttock  Paediatri M 5   512  1  0.5 0.5 ≤0.25 0.25 ≤0.25 0.25 1 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

P15793 2 Head Surgical M 10   512 256  64 32  256 32 ≤0.25 0.5 0.5 2 ≤0.25 ≤0.25  +  +  +   +    -   +    +  -    - 

T8060 -     - - - -   512  4  4 16  128 64 ≤0.25 0.5 0.5 2 ≤0.25 ≤0.25  +  +  -   +    -   +    +  -    - 

 

a. ETT, Endotracheal tube; CVP, Central venous cathete; ICU, Intensive/High care unit; LW, Labour ward: OPD, outpatient department, NB, Newborn (day 0), -, No information. 
b AP,  ampicillin; CP,  ciprofloxacin; GT,  gentamicin; ET,  erythromycin; RF,  rifampicin; TT, tetracycline; CM,  clindamycin; DP,  daptomycin; VM, vancomycin; LZ, linezolid; FA, fusidic acid; TG, tigecycline. 

c. The numbers 1 – 15 indicates codes of the hospital centers where the MRSA isolates were collected. 
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CHAPTER 3 

 

This study describes the antibiotic resistance pattern, characterizes plasmid-mediated 

resistance and, virulence genes and assesses the genetic relatedness of 27 clinical MRSA 

isolates from the private sector in KZN, South Africa. 

 

3.1 Conclusions 

The following conclusions were drawn from the study with respect to the study objectives:  

 All MRSA isolates contained the plasmid-mediated mecA gene.  

 The isolates were all (100%) resistant to ampillicin, 85.2% were resistant to 

ciprofloxacin, 74.1% to gentamicin, 70.4% to rifampicin, 66.7% to tetracycline, 63.0% 

to erythromycin, and 11.1% to clindamycin. 

 All MRSA isolates showed no resistance to daptomycin, linezolid, vancomycin, 

tigecycline and fusidic acid.   

 Multidrug resistance (MDR) defined as resistant to β-lactams along with at least three 

classes of antibiotics was found in 74.1% (20/27) of the MRSA isolates.  

 The frequency of the resistance genes blaZ, aac (2’)-aph (6’’) and ermC were 100%, 

92.6% and 48.2% respectively but tetK was not found in any of the MRSA isolates.  

 The prevalence of virulence genes hla and hld were 96.3% and 92.6% respectively, 

however eta and LuKS/F-PV were not detected.  

 PFGE analysis revealed 10 pulsotypes; designated A–J with 70.0% similarity which 

correlated with the resistance profile isolates in each group.  

 Type F was the major pulsotype (29. 6%). It was found in 8 of the 27 MRSA isolates. 

subdivided into 5 subtypes  

 Of note, 85.2% (23/27) of the isolates clustered into 6 major PFGE types giving an 

indication of similar circulating MRSA clones in the KZN province.  

 The hospital centers 1 and 10 were found to contain similar pulsotypes C and H, whiles 

identical pulsotypes of F and G were spread across 9 out 15 different centers intimating 

the possibility of inter health centers spread of MRSA in the KZN province. 

 



 

43 

 

3.2 Limitations  

The following limitations are acknowledged for this study:  

 The short collection period of isolates yielded a small sample size which may have 

under- and/or over-estimated results. 

 The study sample for molecular profiling was limited to isolates from only one private 

laboratory in eThekwini Municipality hence the results cannot be extrapolated to KZN 

or to South African private health sector in general. 

 Detailed patients’ records were unavailable making it difficult to discuss the PFGE 

results appropriately. 

 

3.3 Recommendations 

That the following recommendations are made as a result of the findings from this study: 

 Further molecular studies should be conducted to investigate the mechanism of 

tetracycline resistance, including the role of efflux proteins (TetA, TetB, TetC, TetL), 

ribosomal protection (TetO, TetM) and modification proteins (Tet37, TetX). 

 Additional mechanisms of macrolide-lincosamide resistance, including the role of 

efflux pumps mediated by mrsA, the acquisition of ribosomal methylase enzyme (ermA, 

ermB) and drug modification (lnuA, lnuB) should be investigated. 

 The mechanisms of rifampicin and fluroquinolone resistance need to be studied in 

similar isolates. 

 Additional virulence factors, such as enterotoxins (sea-see, seg-seo, and seq), gamma 

hemolysins (hlg), toxic shock syndrome toxin (tst) and adhesive proteins (clfA/B, fib, 

fnbA/B) should be investigated to ascertain the repertoire of virulence genes.   

 Other molecular typing techniques that work in tandem with PFGE, such as spa, 

SCCmec and multi locus sequence typing (MLST) must be performed to determine the 

clonal clusters (CC). 

 Further studies involving larger sample sizes from geographically distinct areas in 

South Africa should be conducted to investigate the clonal evolution of MRSA 

overtime.   
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