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ABSTRACT 

Poorly damped oscillations that occur between the generators in large interconnected 

power systems often limit the amount of power that can be transmitted through a 

transmission corridor and are a threat to secure system operation. Coordinated 

insertion and removal of capacitors in series with a transmission line is one of the 

approaches that has been known for many years to be capable of enhancing the 

damping of power system oscillations. Unfortunately however, this approach 

historically relied on the operation of mechanical circuit breakers which were too 

slow and unreliable for the high-speed and repetitive operation that such an 

application demands. Recently-emerged, high-speed power-electronic-based 

switching devices are finding increasing use in modem power systems in the so-called 

Flexible AC Transmission Systems (F ACTS) concept. One particular FACTS 

impedance controller, namely the inverter-based series compensator, can rapidly alter 

the magnitude of capacitive compensating reactance in series with the line to make it 

practically feasible to enhance the damping of power system oscillations via 

dynamically-controlled series compensation. 

This thesis identifies, in the literature, an insightful approach to the design of an 

idealised controllable series compensator (CSC) damping scheme; such an approach 

has been considered in the analyses of the thesis. Three mathematical models of a 

single-machine infinite bus (SMIB) system are developed and are subsequently used 

in the initial design and analysis of a CSC damping controller carried out in the thesis. 

The simple SMIB system case study is used to identify and investigate the factors that 

have a significant impact on the performance of a CSC damping controller before 

studying the more complex issue of inter-area mode damping using a CSC. 

This thesis successfully confirms the results of a previous analytical study in which an 

idealised representation of the CSC was used, and extends the scope of that previous 

study by also considering a detailed representation of one particular type of CSC: the 

inverter-based series compensator. The two key findings of this extended 

investigation are that the inverter-based form of controllable series compensator can 

successfully be used to damp power oscillations and that, where the damping of 
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oscillations is the particular focus of study, an idealised representation of the inverter­

based CSC is suitable for the analyses. 

In the case of the inter-area mode damping problem, the selection of an appropriate 

input signal to the CSC damping controller is a key issue, since the oscillations that 

are to be damped involve a number of participating generators. This thesis examines 

the suitability of a few candidate input signals that have been proposed in the 

literature using the conceptually simpler SMIB system analytical models that have 

been developed. Finally, the thesis applies the understanding of CSC damping 

controller design gained from the SMIB study to the problem of inter-area mode 

damping on a four-generator study system. Time-domain simulation results are 

presented to demonstrate the impact of the controlled inverter-based series 

compensator on the damping of the inter-area mode of this system. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General 

A steady growth in load demand coupled with the cost of land required to 

accommodate new power lines, limited availability of right-of-ways, regulatory 

policies, and the cost of building new generation plant to meet this increased power 

demand will inevitably require better utilisation of existing generation and 

transmission facilities. This situation, in turn, calls for the review of traditional power 

generation and transmission system theory and practice in order to address the issue of 

how to operate the existing power system much closer to its stability limits without 

compromising the security of the system itself. Historically, safe and stable operation 

of an ac electric power system has been achieved by operating the system far away 

from its theoretical stability limits. However, it has long been recognised that 

improved dynamic control of ac power systems would allow better utilisation of these 

systems [Kimbarkl,Smith]. While conventional methods to solve power system 

dynamic problems have been known for many years [Gyugyi3], these methods have 

relied on the slow and unreliable operation of mechanical circuit breakers which made 

them unsuitable for the high-speed use demanded by a dynamic control application. 

As a result these ideas remained on hold for nearly two decades. Despite these trends, 

the needs for electric energy have continued to increase. 

One response to these pressures, internationally, has been the emergence of the 

Flexible AC Transmission Systems or FACTS concept: FACTS aims to bring the 

factors which influence the transfer of power in a transmission system under rapid 

control by means of modem, power-electronic-based compensating devices in order to 

allow the system safely to be pushed closer to its limits. The high-speed response of 

FACTS devices provides fast and efficient control of the power transmitted through 

transmission lines, and dynamic control applications using these devices have now 

become practically feasible. As a consequence, a number of FACTS technologies 
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have emerged with which to improve power system stability, thus allowing the system 

to be operated closer to its stability limits. 

Fig. 1.1 shows a simplified diagram of a two-area power system connected by a 

transmission corridor. The power Pt, transferred down the line is shown by the 

equation of Fig. 1.1 and reaches a maximum Pt, max = I Vsll VRI / XL when the 

transmission angle 0 reaches 90 degrees, where I Vsl and I VRI are the transmission 

system voltage magnitudes and XL is the series (inductive) reactance of the 

transmission line. This maximum power transfer Pt, max is the steady-state power 

transfer limit of the system. However, the dynamic and transient stability 

characteristics of the synchronous generators in the system mean that the transmission 

line must in practice be operated at a power level much lower than this steady state 

limit in order to allow sufficient margin for the generators to remain in synchronism 

following disturbances. Flexible AC Transmission Systems devices aim to enhance 

the control of the electromechanical power oscillations between the generators and the 

transmission system so as to reduce the need for such large transient or dynamic 

stability margins inherent with conventional power systems. 

Fig. 1.1: Simplified two-area power system illustrating the factors which influence 

power flow. 

From the system in Fig. 1.1 it is apparent that three possible levers exist for control of 

power flow: voltage magnitude (lVsl, IVRI), voltage phase (0), and the transmission 

line reactance (XL)' Various traditional approaches to control each of these levers 

using mechanical controllers can now be implemented with modern power-electronic­

based devices such as: all-solid state implementation of Static Var Compensator 

(SVC) for transmission voltage magnitude control; phase-shifters for voltage phase 

control; controllable series compensators for line reactance control. However, this 

thesis is concerned with one particular lever, namely the compensation of the series 
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reactance of the transmission line. In addition the thesis focuses on one application of 

this lever to system stability, which is to improve the damping of the 

electromechanical oscillations of the generators in the system. 

Traditionally, fixed capacitor banks have been used in series with transmission lines 

to reduce their net inductive reactance and thereby to increase their maximum power 

transfer capability: with a capacitive compensating reactance Xcsc introduced in series 

with the line of Fig. 1.1 the steady state power transfer limit is increased to P tr mox = 

I Vsll VRI / (XL - Xcsc). In this way, the improvement in transient stability margin can be 

achieved because of the increased power transfer capability at steady-state for a given 

voltage phase angle and not because of any dynamic control. Modem, FACTS series 

compensators now allow such series compensating reactance to be controlled 

dynamically resulting in even further potential improvement in stability margins. 

Various FACTS series compensators have subsequently emerged, based on the 

thyristor (for example, the Thyristor Controlled Series Capacitor (TCSC) 

[Choi,DolanD or on Gate-Turn-Off (GTO) inverters (for example, the Static 

Synchronous Series Compensator (SSSC) [Sen,Mihalic 1 D. Any of these FACTS 

series compensators can now, in principle, be used to provide a dynamically varying 

series compensating reactance for the purpose of enhancing system stability in general 

and, in particular, the damping of electromechanical oscillations in power systems. 

1.2 Thesis Background and Objectives 

Power system stability problems can be classified according to whether they involve 

transient (first-swing) conditions or dynamic (small-signal) conditions. For many 

modem power systems the amount of power a synchronous generator can be used to 

deliver is severely limited by small-signal stability concerns [Kundur,Swift1] and for 

these power systems the problem is one of insufficient damping of the 

electromechanical system oscillations. As such, adding damping to these oscillations 

is a prerequisite for a secure system operation. The small-signal stability of a power 

system manifests itself in two types of electromechanical oscillations namely, local 

oscillations and inter-area oscillations. In a large power network, oscillations are due 

to the dynamics of inter-area power transfers between groups of generators 

interconnected by weak tie-lines, and these oscillations usually exhibit poor damping 
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when power transfers over a transmission line corridor are high relative to the strength 

of the transmission lines [Larsen]. On the other hand, local mode oscillations 

associated with a single generator are well-known and have been studied using a 

detailed system representation in the neighbourhood of the generator of interest 

[Kleinl]. 

The aim of this thesis is to investigate the use of a particular type of FACTS series 

compensator, that is inverter based series compensation, to damp a particular type of 

dynamic power system instability, the so-called inter-area form of oscillation. The 

theory of operation of the inverter-based series compensator that is considered in the 

investigations of this thesis has been presented in [Rigby 1]. The studies in [Rigby 1 ] 

have shown that the inverter-based series compensator is capable of providing 

dynamically controllable series compensation; these findings have been reconfirmed 

in a later study in [Chonc03] using a particular power systems simulation software 

package. In this thesis the inverter-based series compensator in [Rigbyl] is now 

considered for the specific purpose of damping inter-area mode oscillations in power 

systems. 

1.3 Thesis Layout 

This thesis consists of five further chapters and appendices. In order to present the 

analyses of this thesis, the development of various system models, the results and 

main findings of the thesis, the material has been arranged as follows. 

Before an investigation of this kind could be carried out it was necessary to review the 

technical literature on the subject of controllable series compensation as applied to the 

damping of electromechanical oscillations. Chapter Two of this thesis, in particular, 

provides the background to the theory of power oscillation damping using controllable 

series compensators. This chapter also provides a literature review of the control 

strategies proposed for varying series compensation to damp electromechanical 

oscillations in power systems and identifies important design and implementation 

approaches to be adopted in the subsequent chapters. 
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A number of design and analysis tools used to represent various subsystems and 

devices have been developed during the course of the thesis work. Chapter Three 

presents three mathematical models developed for a single-machine infinite bus 

power system and explains the purpose of each of the models. These system models 

are later verified along with a more-detailed simulation model of the system. 

Chapter Four presents the results of a case study of a single-machine infinite bus 

power system in which an inverter-based compensator is used in series with the 

transmission line. This case study reconfirms and extends the findings of a previous 

study into local mode damping using controllable series compensation that was 

carried out by others. An external (damping) controller is used to modulate the 

compensating reactance provided by the inverter-based series compensator so as to 

damp out the oscillations of the single generator that occur following system 

disturbances. However, although in the initial phase of the study an idealised 

representation of the inverter-based series compensator itself is used, subsequent 

investigations in the chapter include a detailed representation of the compensator itself 

(including its internal power electronics and controls). The factors that affect the 

damping controller performance are investigated and various input signals are 

synthesised for the damping controller input. 

Chapter Five presents a brief case study of a four-generator system in order to 

investigate the mitigation of the inter-area mode damping problem using an inverter­

based series compensator. This chapter uses the concepts developed in Chapter Four 

to show that the inverter-based series compensator is another useful tool for inter-area 

mode damping. 

Finally, Chapter Six summarises the main results from the studies carried out in the 

thesis and suggests further research that could be undertaken in future. 
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1.4 Main Achievements and Findings of the Thesis 

The previous section has outlined the contents and arrangement of the thesis. This 

section now summarises the main findings of the thesis and the achievements made. 

This thesis has: 

(i) derived and programmed MATLAB [Mathworks] time-domain 

simulation models and linearised eigenvalue programs for the analysis of 

a single-machine infinite bus (SMIB) power system containing a 

controllable series compensator. In addition, a detailed model of the same 

system, and a model of a four-generator system (including a detailed 

representation of the inverter-based series compensator itself) have been 

developed in the power systems simulation package PSCADIEMTDC 

[Manitoba] ; 

(ii) presented a detailed analysis that shows that the generator speed deviation 

is the logical input signal for a controllable series compensator (CSC) 

damping controller in a SMIB power system; in addition, the thesis has 

identified and examined other signals similar to the generator speed 

deviation that can be measured remotely in the transmission system and 

that are therefore more suited to the inter-area mode damping problem 

where the actual generator speed deviation cannot be easily obtained; 

(iii) shown that, for the inverter-based form of series compensation, a 

simplified representation of the controlled compensator is reasonable for 

damping studies; 

(iv) demonstrated that an inverter-based CSC can successfully be used to add 

damping to the inter-area mode of a well-known study system. 
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1.5 Research Publications 

Some of the findings of this thesis have been presented at national conferences 

[Choncol,2]. 
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CHAPTER TWO 

REVIEW OF STRATEGIES TO DAMP POWER OSCILLATIONS 

2.1 Introduction 

The previous chapter has described the problems facing power utilities today and 

explained that Flexible AC Transmission Systems (FACTS) aim to alleviate these 

problems by allowing power systems to be operated closer to their stability limits 

without risking the security of the system. The discussions of that chapter showed that 

since transmission line reactance has a direct influence on transmitted power and can 

rapidly be controlled with modem FACTS devices, the series line reactance can 

therefore be used to dynamically control the power flow in a manner that tends to 

stabilise power swings. 

While series compensation usmg dynamically controllable FACTS series 

compensators is often regarded as a new technology, the idea itself has been around 

for some time. Hence this chapter initially provides a historical perspective on the 

damping of power system oscillations using switched series capacitive compensation. 

The chapter also describes how a variable series capacitive reactance is able to damp 

electromechanical system oscillations in power systems using an example of a 

simplified two-area power system subjected to a large disturbance; from this example, 

the fundamental operating principle of damping system oscillations using dynamically 

variable series capacitive compensation is established. 

Finally, this chapter reviews various control approaches proposed in the literature for 

damping power oscillations in power systems. Approaches suited to the inter-area 

mode-damping problem are identified and the factors with considerable bearing on 

the variable series impedance controller are discussed. 
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2.2 Historical Perspective 

In 1966, E. W. Kimbark [Kimbarkl] proposed the use of a switched series capacitor 

to change the power flow in a transmission line following a disturbance. Kimbark 

used the equal area criterion to predict that the transient stability of an electrical 

power system can be improved by bypassing and inserting a series capacitor. The 

advantage of switched versus fixed series compensation is that it increases both the 

steady-state and transient stability limit allowing the system to be operated closer to 

theoretical stability limits, and it is more economical than fixed compensation 

[Kimbarkl]. It must be noted that the analyses in [Kimbarkl] referred to one 

switching in of a series capacitor after a fault. In 1969, O. 1. Smith [Smith] proposed 

that the electromechanical power oscillations between a generator and a transmission 

system could be damped by inserting and removing a series capacitor in a 

transmission line. While reference [Kimbarkl] proposed a single switching in of a 

series capacitor, Smith appears to be the first to propose a coordinated insertion and 

removal during the transient power swings. Reference [Smith] states that even a small 

amount of switched series compensation can provide a dramatic increase in the power 

system stability. In a subsequent paper by Smith and Webster [Webster], the ideas in 

[Smith] were practically implemented in a laboratory and it was shown that a 

generator which would otherwise have pole-slipped following a particular system 

fault was successfully stabilised using coordinated switching of series capacitance. 

At the time the ideas in [Kimbarkl,Smith,Webster,RamaRao] were proposed, 

dynamically variable series compensation could only be achieved using capacitor 

banks switched in and out with mechanical circuit breakers; however such devices 

were in practice too slow and unreliable for the repeated high-speed use demanded by 

a dynamic control application and as a result these ideas remained on hold for nearly 

two decades. Recently however, progress in the field of power electronics has led to 

the development of high-power electronic switches with which to implement 

dynamically controllable (FACTS) series compensating devices. The later sections of 

this chapter review the particular methods which have been proposed for controlling 

such dynamically variable compensating reactance for the specific purpose of 

damping electromechanical power oscillations. However, the following section first 
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explains conceptually how a variable series capacitive compensating reactance is able 

to actively damp out electromechanical system oscillations. 

2.3 Theory of Power Oscillation Damping via Controllable Series Reactance 

If the system in Fig. 1.1 is subjected to a disturbance, the generator rotor angle 

oscillates about a new equilibrium angle provided that, after the disturbance, the 

system maintains stability. If there is no damping provided to the system the generator 

rotor angle will oscillate indefinitely. In practice however, there are sources of 

positive damping such as rotor damper windings and field flux variations. Once again 

a simplified two-area power system is considered for analysis, but the transmission 

line is now compensated with a variable series reactance Xcsc as shown in Fig. 2.1 

below. 

Turbine 

Fig. 2.1: 

Generator 

A simplified two-area power system with a dynamically variable series 

compensating reactance. 

If the torques caused by friction, windage and core loss in a machine are ignored, any 

difference between the mechanical (shaft) torque and electromagnetic torque 

developed must cause acceleration or deceleration of the generator rotor. If Tm 

represents mechanical input torque from the turbines, and Te is electromagnetic 

torque, the net torque causing acceleration or deceleration is Ta = Tm - Te. A similar 

equation holds for accelerating or decelerating power Pa = Pm - Pe, where Pm is the 

mechanical power input to the system, and Pe is the electrical power developed for a 

generator. If the resistance of the transmission line is neglected, then the electrical 

power developed is the same as power transmitted by the line to the receiving end 

(that is, Pe = Ptr) . Under steady-state operating conditions the mechanical power input 
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is equal to the electrical power developed, the accelerating power Pais zero, the 

generator speed remains constant at synchronous speed and the generator rotor angle 

o remains constant. However, following a disturbance any imbalance between the 

mechanical input power and the electrical output power results in non-zero 

accelerating power P a which accelerates the shaft of the generator changing its rotor 

angle according to the swing equation: 

2H d 2g 
= Pm -Pe Pa (2.1) --- = 

010 dt 2 

where, 

Pe = I Vs 11 V R I sin g (2.2) 
XL-X CSC 

and: Pe = electrical power output; 

Pm == mechanical power input to the system; 

Pa == accelerating power; 

H == inertia constant of the machine; 

g == generator rotor angle; 

Wo == synchronous speed; 

t == time. 

At steady-state when the machine runs at constant speed, do / dt is zero since it is the 

difference between the generator electrical speed and synchronous speed (do / dt == w­

Wo = ll.w), and cio/ dt is likewise zero. The mechanical power input to the system is 

assumed to be constant throughout this analysis. If the system experiences a sudden 

disturbance, such as a three-phase short circuit fault at the receiving end (as illustrated 

at point F in Fig. 2.1), the power Plr transmitted to the receiving end in Fig. 2.1 is zero 

while VR remains zero. From equation (2.1) it becomes apparent that the speed of the 

machine must change since there is power imbalance between the input Pm and the 

output Pe = P tr = 0 during the period of the fault. The speed of the machine therefore 

rises, under the influence of the positive accelerating power, from the initial operating 

point and the generator rotor angle increases. Once the fault is cleared, VR is assumed 

to return to its pre-disturbance value, and from equation (2.2) the electric power 
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transmitted by the line is now higher than the pre-disturbance value since the rotor 

angle has advanced. The power imbalance Pa = Pm - Pe is now negative and the 

machine starts to decelerate. However, although the machine decelerates, its rotor 

angle continues to increase as long as its rotor speed remains greater than 

synchronous speed. The machine remains transiently stable provided it can decelerate 

to synchronous speed before its rotor angle increases beyond the transient stability 

limit as determined by the equal area criterion. 

Consider a case where the generator does remain transiently stable: while its rotor 

angle increases immediately following the fault clearance, Pe is greater than Pm, and 

the generator rotor speed continues to decrease (in order to return the energy gained 

during prefault acceleration back into the transmission system) and the speed at some 

point drops below Wo. At that instant, the generator rotor angle begins to decrease 

such that some time later Pe is again equal to Pm. However, although Pe and Pm are 

once again equal, the generator speed deviation ll.w is now negative and the generator 

rotor angle continues to decrease, whereupon the electrical power Pe falls below Pm 

and the generator rotor begins to accelerate, so returning its speed deviation back 

towards zero. When the generator speed deviation once again becomes positive under 

the influence of this positive accelerating power, the generator rotor angle then begins 

to increase back towards its equilibrium value. Without any source of positive 

damping the generator rotor angle and speed deviation will each continue to oscillate 

indefinitely in this manner about their post-fault equilibrium values with constant 

amplitude. However, if damping is present these oscillations decrease in amplitude 

with time, and the generator rotor ultimately returns to some post-disturbance steady 

state value of rotor angle. In this analysis, the value Ptr max = I VIII V2i!(XL - Xcsc) has 

been considered to be constant throughout these generator rotor oscillations; hence 

from equation (2.2) the power transmitted becomes a function of the generator rotor 

angle swings, and oscillations in the generator rotor angle <5 correspond to oscillations 

in the transmitted power. The dynamic series compensation aims to provide an 

additional source of damping, over and above any sources of damping inherent in the 

system, so as to quickly damp out these system oscillations. It will now be explained 

how a variable series reactance is able to affect the power transfer in a manner that 

tends to damp out the power system oscillations. 
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Again consider a temporary three phase short-circuit fault at the receiving end in point 

F of Fig. 2.1. While this fault is applied VR is zero and from eqn. (2.2) Pe = P tr =0. 

From eqn. (2.2) it is apparent that until such time as the short circuit fault is cleared 

(that is, whilst VR remains zero), the impedance of the line has no influence on the 

accelerating power ofthe machine. However, once the fault is cleared the controllable 

capacitive reactance Xcsc can be used to influence the transmitted power Ptr, and 

hence the accelerating power imbalances in the generator as explained below. 

In simple terms eqn. (2.2) shows what action can be taken in order to influence the 

power flow (and hence the generator rotor angle) oscillations: when there is 

insufficient power transferred out of the generator during the post-disturbance 

transient (that is, when Pe = Ptr is less than Pm) then the accelerating power Pa is 

greater than zero; this transient power imbalance needs to be reduced by increasing 

the transmitted power P tr such that the magnitude of the positive accelerating power 

Pais decreased towards zero. Equation (2.2) shows that the required increase in P tr 

can be achieved by increasing the magnitude of the controlled capacitive 

compensating reactance Xcsc. Likewise, during the post-disturbance transient 

whenever there is too much power transferred out of the generator (that is, when Pe = 

P tr is greater than Pm) then the accelerating power Pais less than zero; hence during 

this period there is a need to reduce the transmitted power Ptr such that the magnitude 

of the negative accelerating power is decreased back towards zero. Equation (2.2) 
, 

shows that the required decrease in P tr can be achieved by decreasing the magnitude 

of the controlled capacitive reactance Xcsc. 

From the above discussion it is apparent what the basic control action should be in 

order for a controlled compensating reactance to quench a generator's transient rotor 

oscillations: when the machine accelerates the positive accelerating power must be 

reduced by an increase in Xcsc; when the machine decelerates, the negative 

accelerating power must be reduced by a decrease in Xcsc. However, at the most 

basic level an additional amount of compensating reactance Xcsc can be inserted 

whenever the generator speed deviation is positive and removed whenever the speed 

deviation is negative [Gyugyi3]. Later in this chapter, various other control algorithms 

that have been proposed for varying Xcsc are reviewed. 
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Fig. 2.2 (a similar figure appears in [Gyugyi3]) now shows an example of this basic 

technique whereby the improvement in damping is obtained by changing Xcsc 

dynamically according to the generator speed deviation as proposed in [Gyugyi3]. 

The light curves show an uncontrolled system with no sources of damping after 

clearing a three-phase short circuit fault; there are sustained oscillations in the 

generator rotor speed deviation Aw and the electric power output (hence rotor angle) 

of the generator. The solid curves show the same system when a small amount of 

controlled series capacitive reactance Xcsc is used. Following the disturbance, 

whenever the generator rotor speed deviation Aw becomes positive the controlled 

capacitive reactance Xcsc is switched into the line; whenever the generator rotor speed 

deviation A VJ is negative the controlled reactance Xcsc is switched out of the line. The 

overall effect is to return the system to its equilibrium state as seen in the solid curves 

for Pe and A w. 
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The improvement in power oscillation damping which can be obtained 

by dynamically controlled series compensation. (a) electric power 

output (b) generator speed deviation (c) degree of switched capacitive 

compensation in series with the line. 

Review of Strategies to Damp Power Oscillations 



Chapter 2 Page 2.8 

It should be pointed out that the simple example described here (Fig. 2.2) shows the 

dynamic series compensation varied in a discrete fashion between maximum and 

minimum values, the so-called bang-bang type of control. It may however be 

desirable, as discussed later in this chapter, to vary this controlled series capacitive 

compensation continuously in sympathy with the power transfer changes, the so­

called continuous control approach. The applicability of each of these two types of 

control strategies will be discussed in more detail in the ensuing sections. 

The purpose of this simple example has been to explain the fundamental operating 

principles of variable series reactance control to damp power oscillations which may 

be summarised as: 

(i) to decrease the overall line impedance (by increasing the magnitude of the 

dynamically controlled series capacitive reactance) so as to absorb excess 

accelerating power; and 

(ii) to increase the overall line impedance (by decreasing the magnitude of the 

dynamically controlled series capacitive reactance) so as to minimise 

excess decelerating power. 

This fundamental principle has been shown using the example of a bang-bang control 

where a fixed capacitive reactance is inserted when All) is positive and removed when 

Acu is negative. In practice, a variety of approaches have been proposed for varying 

the compensating reactance (for example, bang-bang, continuous) and for 

synthesising input signals to the controller which contain information about 

accelerating power. In addition, the problem becomes conceptually more complex 

when the controlled reactance is to be used to damp the oscillations of one group of 

machines against another - the inter-area mode oscillation problem. The following 

section reviews these proposed approaches and discusses their suitability to the 

particular application of damping inter-area mode oscillations. 
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2.4 Power Oscillation Damping Strategies by Variation of Compensating 

Reactance in the Literature 

2.4.1 Introduction 

This section now presents a review of the various strategies proposed in the technical 

literature on the broad subject of controllable capacitive reactance Xcsc to damp 

power system oscillations. Since this thesis focuses in particular on the inter-area 

mode oscillation damping problem, special attention is paid to those control 

approaches suited to alleviating this problem. The review covers a number of aspects 

pertinent to the issue of power oscillation damping, namely: 

(i) the types of controls (control laws) which are appropriate to different 

applications of power oscillation damping; 

(ii) the types of signals that can be used as the input to a variable series capacitive 

reactance damping controller; 

(iii) the factors that govern the ability of a variable series capacitive reactance to 

provide additional damping to the system; and 

(iv) possible techniques for the design and correct placement of a controlled 

capacitive reactance within the transmission network in order to mitigate the 

power oscillation damping phenomenon. 

In addition to a general overview, the review also outlines in more detail some of the 

more important control and design approaches presented in the literature, where it is 

deemed necessary. The following subsection reviews the control approaches that 

have been proposed for the variation of a capacitive reactance Xcsc to damp power 

system oscillations. 
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2.4.2 Control Approaches 

The original idea for damping power system oscillations usmg variable series 

compensation was based on switching the series capacitor in a capacitor bank in and 

out of the transmission line during transient power swings. Control laws, which were 

bang-bang in nature, were proposed to either insert or bypass the controlled series 

reactance Xcsc at appropriate instants in the transmission line. It is important to note 

that at the time this idea originated, continuous control was not possible to achieve as 

circuit breakers had to be used to either insert or remove a series capacitor in a 

capacitor bank. Nowadays power electronic FACTS devices allow continuous 

variation of the controlled series reactance Xcsc. This means that either bang-bang or 

continuous control of series reactance can now be used to damp the power system 

oscillations following a power system disturbance. The decision as to which of these 

approaches to employ is an important one and depends on the nature of the power 

oscillation phenomenon under consideration. 

As mentioned previously, Smith [Smith] appears to be the first to move from 

Kimbark's [Kimbarkl] earlier idea of a single insertion of a series capacitor to 

propose mUltiple and timed insertion and removal of a switched series capacitor to 

damp the post-disturbance electromechanical oscillations of a synchronous generator. 

Smith in [Smith] considered a two-generator system, in which the machines were 

connected by a switched series capacitor (for stabilisation) and a double parallel 

transmission line and proposed two significant control approaches. Smith proposed an 

optimal approach to insert the series capacitor (after a disturbance caused by a loss of 

one of the transmission lines) in an interconnecting transmission line at the beginning 

of the transient and to remove it when the derivative of the power flow in the line 

becomes zero; a further insertion was proposed if the kinetic energy due to the 

generator's speed deviation matched the amount of kinetic energy that could be 

removed during the rest of the swing. A second control law was also proposed in 

[Smith] whereby immediate insertion of the capacitor occurs after the disturbance and 

its first removal occurs when dtldt< 0; subsequent re-insertion and removal is based 

on a decision function. 

The stated aim of the control laws proposed in [Smith] is to return the generators to 

steady state in a dead-beat (non-oscillatory) manner, but these laws require the use of 
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complicated decision functions which in turn require a knowledge of system angular 

frequency, shaft angular velocity, moments of inertias of the two machines, target 

steady-state power flow, reactance of the series capacitor and the voltage behind 

quadrature axis reactance in each machine. The measurements required for the 

controller are machine angular velocity w, transmitted power P1r, a knowledge of 

which line has been lost as well as pre-transient information. An optimal approach for 

multi-machine systems was proposed which involves a sequence of insertions and 

removals of several capacitors used to control different machine swings. Despite the 

complexity of these control approaches, Smith [Smith] notes that even simple 

switching based on angle excursions (Xcsc switched in for increasing angle 

differences and Xcsc switched out for decreasing) will greatly improve the transient 

stability, although it will not yield a dead-beat response. 

RamaRao and Reitan in reference [RamaRao] use optimal control theory to propose 

an approach with two intermittent-duty series capacitors to improve the transient 

stability of a single-machine infinite bus power system. The proposed optimal control 

is bang-bang in nature and results from the application of Pontryagin's maximum 

principle; a switching function is described as the product of an adjoint variable 

(obtained using the maximum principle) and sin( 0). This approach is also aimed at 

returning the power system transients back to steady-state in a non-oscillatory 

manner. 

The dead-beat control proposed in [Smith] is complicated and is likely to be 

impractical; indeed the author himself adopts a far simpler and more practical control 

approach in a subsequent paper [Webster]. Smith and Webster [Webster] describe a 

practical, laboratory-scale implementation of the ideas in [Smith] using a far simpler 

control law. The control law adopted is to insert and bypass a series capacitor based 

on the speed deviation (w - wo) between generator shaft speed w and synchronous 

speed wo. The proposed bang-bang algorithm is as follows: 

insert Xcsc if w - Wo > 0 

bypass Xcsc if w - Wo < o. 
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The authors chose the value of Xcsc using successive trials, but show, by means of an 

equation, that a maximum value of Xcsc exists above which negative damping can be 

introduced. A further, and well-known, problem with this bang-bang approach is that 

of controller chatter: near steady state, small speed deviations can introduce unwanted 

operation of the control. The authors of [Webster] avoid this problem by including a 

time-based, exponentially-decreasing override function: this approach enables the full 

benefit of the bang-bang control when the system is far away from target (steady­

state) and gradually phases out the control as the system nears steady-state. These 

earlier control approaches discussed so far involved the use of a conventional series 

capacitor with a mechanical circuit breaker used to insert and bypass it. 

Essentially, the bang-bang control law proposed in [Webster], shown here in eqn. 

(2.3), has in one way or another appeared in a number of subsequent studies 

[Angquist,Gyugyi3,Rigby2] all of which employ modern FACTS series compensators 

to damp power system oscillations. In reference [Rigby2] the problem of controller 

chatter was avoided by introducing a small dead-band e into the basic switching 

algorithm of eqn. (2.3) such that the series compensating reactance is not altered for 

small deviations in generator speed. The control algorithm then becomes: 

insert Xcsc if W - Wo > e 

remove Xcsc if w - Wo < -e (2.4) 

Again this control algorithm simply senses the speed difference between the machines 

at either end of the transmission line and changes the power transfer by modulating 

the line impedance as required in order to damp the system oscillations. 

Reference [Noroozian2] also proposes a bang-bang control approach, where the series 

compensating reactance inserted in the line is varied between a maximum and 

minimum value; however, [Noroozian2] uses energy functions to derive the following 

control law: 
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if ~cos(B) ~ 0 then switch inXcsc 
dt 

if ~cos«(}) > 0 then switch outXcsc 
dt 

Page 2.13 

(2.5) 

where () is the angular difference between the voltage at each end of the compensated 

line. The control law in eqn. (2.5) is in some respects similar to that proposed in eqn. 

(2.3) since the term d/dt(cos({})) is expected to contain similar system information to 

the speed deviation Aw in eqn. (2.3). 

The control strategies reviewed thus far have all concentrated on damping the power 

swings of one or more generators in cases where the behaviour of each individual 

generator is of direct concern. However, poorly damped power swings also frequently 

occur in transmission systems as a result of a large group of generators in one area 

oscillating against a large group of generators in another, geographically remote, area. 

Damping such inter-area mode power oscillations using controllable series 

compensators typically requires a distinct control approach, namely continuous 

control. 

Reference [Noroozianl] examines the control of inter-area mode oscillations using 

controllable series compensators in a two-area system, with each area represented as 

an aggregate machine; a continuous control law is proposed as follows: 

(2.6) 

with the control signal selected as the difference between the angular velocity 

deviations AWl and AW}. of the two aggregate machines and Kcsc being the variable 

series compensator controller gain. In practice it would be necessary to synthesise the 

signals AWl and AW}. from measured variables in each area, although this aspect is not 

considered in [Noroozianl]. The analyses in [Noroozianl] show that in the case of the 

inter-area mode phenomenon the damping due to the controllable series compensator 

increases with line loading; this is shown to be advantageous since normally under 

this condition of increased loading the damping of inter-area modes decreases. 
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Gronquist [Grongquist] considers the problem of power oscillation damping using a 

Thyristor Controlled Series Capacitor (TCSC) and exclusively locally measurable 

variables for its control. The control law derived in [Grongquist] is based on the 

voltage drop V across the line in which TCSC is placed and its derivative. The voltage 

V is synthesised by multiplying the measured line current by the known reactance of 

the line and adding this to the voltage V TCSC across the TCSC itself as follows: 

V = IXUNE + V TCSC (2.7) 

The input to the controller is then the product of the synthesised voltage V and its 

. 
derivative V; based on this input signal a continuous damping-control law is 

proposed which can be summarised as: 

• 
V * V > 0 : increase TCSC reactance 

• 
V * V < 0 : decrease TCSC reactance 

• 
V * V = 0 : keep TCSC reactance at nominal. (2.8) 

The control approach proposed in [Grongquist] is worth noting in a number of 

respects. Firstly, the basic control law is derived using a Lyapunov (energy function) 

approach without linearising the system equations. Furthermore, the scheme has the 

advantage of being simple and of relying solely on locally-measured variables, and in 

this respect it is more desirable than other schemes such as that in [Noroozianl] in 

which aggregate machine speed signals must be synthesised. Finally, the authors of 

[Grongquist] show simulation results that indicate that the proposed approach can 

successfully be used to damp a multi-machine (i.e., three machine) system. For these 

reasons the control approach proposed in [Grongquist] could be a candidate for 

consideration for damping the inter-area mode phenomenon. Similarly, de Mello 

[deMello 1] proposes that in the case of controllable series compensation, continuous 

control using locally-measured variables is the appropriate control approach for inter­

area mode damping control; in particular de Mello proposes using the rate of change 

of the power flowing through the controllable series compensator itself as the most 
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logical input control signal for power oscillation damping of inter-area modes. The 

relative performance of the two input signals proposed by Grongquist and deMello is 

evaluated in a damping control scheme in Chapter Four of this thesis. 

The issue of bang-bang versus continuous control of series compensation for power 

oscillation damping has received a thorough theoretical treatment by Swift et al. 

[Swift! ,2]. In particular, reference [Swift!] investigates the controllable series 

compensator's (CSC's) damping control by studying a single-machine infinite bus 

(SMIB) system; the authors integrate a model of the CSC into the well-known 

Phillips-Heffron model of a synchronous generator infinite bus system. The Phillips­

Heffron model of a single machine system has been used for design and analysis of 

conventional excitation systems and power system stabilisers. The advantage of the 

Phillips-Heffron model (and its modification to include a controllable series 

compensator) is that it provides insight into how the CSC and its controller design 

affect the damping torques of the machines connected to the system, and hence to the 

damping of system oscillations involving these machines. 

In reference [Swift2] a control law is assumed for the CSC of the form: 

(2.9) 

where the input to the CSC control is the generator speed deviation Aw, Tcsc is the 

time constant of the signal conditioning on the input signal, the output of the control is 

the change AXcsc in the series compensation and Kc is the controller gain. Closed 

form linearised equations for the damping torque contributed by the control action are 

derived in [Swift!] and are used to show the effect of the controller gain Kc on 

damping as well as the necessary conditions for successful improvement of damping 

by the scheme. The authors present a detailed analysis to show that the damping 

provided by the CSC control increases with increasing gain Kc; the findings of 

Swift's analysis therefore provide a theoretical justification for the control approach 

adopted in [Webster] and shown here in eqn. (2.3): for a given magnitude of 

controllable series capacitive reactance, the best improvement in damping is shown to 
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occur for infinite controller gain Kc (Le., bang-bang control). The analysis in [Swiftl] 

also suggests that for robust control perfonnance, the CSC damping control must be 

designed at conditions of light line loading and weak system connections (the 

conditions for which the control is least effective). The attraction of the analytical 

approach of Swift et al. is that it yields insightful design equations for the 

synchronising and damping torques provided to the system by the CSC's damping 

control. 

In support of the findings of Swift et aI, Choi in [Choi] also concludes that bang-bang 

control of the controllable series compensating element is the most efficient method 

of increasing the damping of the electromechanical oscillations of the synchronous 

generators in a power system. Thus, damping power system oscillations by means of a 

bang-bang control results in the optimum utilisation of the available controllable 

series compensator. Notwithstanding the theoretical advantages of the bang-bang 

control shown in [Choi,Swiftl], this approach does nevertheless have the significant 

disadvantage of the chatter problem mentioned previously, which is still relevant 

today even with the use of modem FACTS devices: bang-bang control can excite 

unwanted interactions in the system at the later stages of the transient process when 

the oscillations are no longer severe. Although the analytical techniques of Swift et al. 

[Swiftl,2] are able to identify the synchronising and damping torques obtained using 

continuous CSC control, no definitive method has been proposed for designing the 

magnitude of controllable series compensating reactance which should be employed 

in a bang-bang regimen of control. Further, even the optimisation for the bang-bang 

controller is mathematically complicated which makes the realisation more difficult 

than in the case of a linear controller [Lerch]. 

From the review of the literature presented thus far, it is apparent that the bang-bang 

method of controlling series compensating reactance is most suited for use in the short 

time period following a severe system disturbance in order to improve the first swing 

stability of the generators feeding the transmission system. Furthennore, although 

continuous control of the series compensating reactance has less impact on power 

swings, this approach is nevertheless more suited to the requirements of damping 

inter-area mode oscillations, since these oscillations are in effect a small-signal, 

dynamic stability problem. 
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In practice the most effective approach to controlling the reactance of a FACTS series 

compensator would probably involve combining the bang-bang and continuous 

control methods in some coordinated manner in order to cater for damping of realistic 

power system transients under both large and small signal conditions. Indeed some 

authors such as Choi [Choi] have proposed such an approach using, for example, 

bang-bang control of a thyristor-switched capacitor to suppress large power swings 

and continuous control of a thyristor controlled reactor to damp out small oscillations. 

However, since the focus of this thesis is specifically on the inter-area mode-damping 

problem the investigations to be carried out in the main part of the work have been 

concentrated solely on continuous control approaches. 

The additional challenge in using controllable series compensation to damp inter-area 

modes is the selection of a suitable input signal to the controller. However, as the 

previous discussions have shown, a number of different possible input signals can be 

obtained in practice. The advantage of the continuous control approach to damping 

inter-area mode oscillations is that powerful, small-signallinearised analysis methods 

(eigenvalues, eigenvectors, participation factors, etc.) may be used to great assistance 

in designing and locating the controlled compensator [Chenl,Choi,Yang]. The 

following section of the review considers the types of input signals that can be used 

for the controller and discusses which ones are more suited to the inter-area mode 

damping problem. 

2.4.3 Types of Input Signals for the Controller 

This subsection discusses different types of input signals that have been proposed in 

the literature for damping power system oscillations using variable series capacitive 

reactance. The control approaches discussed in the previous subsection for the single­

machine infinite bus system show that, at the most basic level, the generator speed 

deviation llw is a logical choice of input signal for the controller as evident in the 

control algorithms of eqns. (2.3), (2.4), and (2.6). The speed deviation signal contains 

information about the acceleration of the machine and, as explained in section 2.3, the 

transient imbalances in accelerating power in the generator are what cause the 

electromechanical power oscillations which are to be damped. In the case of the 

multi-machine and inter-area mode oscillation damping problem the underlying 
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mechanism is the same but, as pointed out in [Noroozianl], the oscillations now 

involve one group of machines oscillating against another group of machines; as 

explained in the previous subsection, the approach proposed in [Noroozianl] for inter­

area mode damping control is also to use speed deviation, but to synthesise the speed 

deviation between the two aggregate machines involved in the inter-area mode of that 

study. Such an approach may however present some practical difficulties with 

geographically remote measurements and may also become more difficult in cases 

where the inter-area mode oscillations involve more than two groups of machines 

oscillating against one another as considered in [Noroozianl]. 

Speed deviation is however not the only input signal which has been proposed for the 

series impedance controller. In fact, any input signal which contains information 

about the relative acceleration of machines participating in the inter-area oscillation is 

a candidate as an input to the power oscillation damping controller. Smith in [Smith] 

proposed, for a multi-machine system, a frequency deviation controller whereby the 

series capacitor is inserted and removed based on the sign of the frequency deviation 

of the group of machines it affects most strongly. The previous section has also 

discussed the control approaches proposed in [Choi] and [deMello 1] whose input 

signal is based on the instantaneous power imbalances and rate of change of power 

flow in the system, respectively, each of which are then used to determine switching 

instants of the variable series capacitive reactance. 

However, in a large interconnected power system inter-area mode oscillations are 

more complex and there are generally many modes, each involving large numbers of 

generators. When a series connected FACTS impedance controller is placed in the 

transmission network for damping such inter-area mode oscillations, the speed 

deviations of the machines of interest are not easily obtainable and hence the need to 

look at other alternatives. In practice input signals should be synthesised from local 

measurements whenever possible [Larsen, Grongquist, Yang]. Reference [Grongquist] 

proposes using only local measurements in the transmission line in which the 

controlled device is placed to create a synthesised input for the controller (that is, a 

synthesised voltage V and its derivative as shown in eqn. (2.8)). 

Review of Strategies to Damp Power Oscillations 



Chapter 2 Page 2.19 

Reference [Larsen] discusses a measurement synthesis which has shown promise for 

damping of inter-area modes: the angular phase difference between synthesised 

remote voltages on either side of the controllable element is described and is shown to 

contain information about inter-area modes of interest. Indeed, references [Dolan] and 

[Larsen] propose a speed deviation controller in which local measurements are used to 

synthesise an angle difference; this synthesised angle difference is then converted to a 

speed measurement using a filtered derivative circuit in order to represent the speed at 

which the ends of the system are moving in relation to each other. References 

[Choi,deMellol,Yang] propose the use of tie-line power flow as an input signal to the 

controller for damping inter-area oscillations since this signal can be obtained from 

local measurements only. Thus, for the inter-area mode damping problem, input 

signals such as the generator speed deviations and the tie-line power flows can be 

synthesised from local measurements in practice. 

As the above discussion of the literature reveals, the proper selection of the input 

signal for the controllable series compensator damping controller to be used is one of 

the most important control design decisions to be made. This decision has an 

important bearing on the performance of the inter-area mode oscillation damping 

control and this thesis later examines a number of important suggestions in the 

literature for suitable input signals and compares the effect of these signals on 

damping. The following section of the review looks at the relative performance of the 

variable series compensating reactance to provide damping and the factors that govern 

its ability to improve damping in the power system. 

2.4.4 Factors Governing the Ability of Variable Impedance Control to Improve 

Damping 

The opening sections of this chapter have described, in simple physical terms, how 

the coordinated control of series compensating capacitance can be used to improve the 

damping of electromechanical power system oscillations. More recently, in the 

literature, a number of papers have appeared which attempt to qualify more 

thoroughly the extent to which controlled series capacitance can improve the damping 

of power system oscillations and the factors which influence this improved damping. 

As explained in the opening chapter, the electromechanical oscillations in power 

systems are one of the factors that can limit the amount of power transfer in a 
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transmission network. Reference [deMello 1] states that power system stabilisers are 

the most efficient means to provide the required additional damping in power systems 

but that the use of controllable series compensators can also provide important 

damping benefits in the system in cases where other system considerations dictate this 

approach. 

In contrast to [deMellol] , reference [Angquist] states that for low frequency power 

oscillations power system stabilisers are less effective and suggests the use of 

controllable reactance to damp out these oscillations. However, the issue of whether 

power system stabilisers are a more effective solution than controllable series 

compensators for damping power system oscillations (as debated in [deMello 1] and 

[AngquistD lies outside the scope of this thesis; for the purposes of this study the 

important conclusion to be taken from these references is simply that controllable 

series compensation in itself offers a significant potential benefit to the damping of 

such oscillations. Reference [Angquist] provides a comparison between the Static Var 

Compensator (SVC) and the controllable series compensator (CSC), evaluating their 

relative improvement of system dynamic performance in a two-machine power 

system. Reference [Angquist] shows that the damping effect obtained with the CSC is 

higher than that of a SVC per installed MV Ar and the authors claim that the CSC 

improves power transfer ten times more than the SVC, per installed MV Ar. The 

authors of [Angquist] also show, using the two-machine system, that the location of 

the CSC damping controller (that is, where CSC could be placed) has no significant 

influence on its performance whereas in the case of the SVC location plays a very 

crucial role. However, in multi-machine environments, there is an optimum point in 

the power system for the location of a CSC damping controller as discussed in the 

next subsection (section 2.4.5). 

In reference [Noroozianl] closed form equations are derived for various types of 

controllers (CSC, SVC, phase shifter) in order to compare the efficacy of different 

schemes on line loading and their relative performance is considered. Reference 

[Noroozianl] also compares the power ratings of controlled series capacitance 

required for a specified damping factor at different line loadings and concludes that 

the CSC can have several times more leverage than a SVC or a phase shifter of 

comparable rating. The important conclusions reached by the authors are, firstly, that 
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the damping effect due to a CSC increases with line loading, which is very 

advantageous since damping of system oscillations normally decreases with increased 

loading of lines and, secondly, that the CSC damping effect is not dependent on load 

characteristics, as in the case of the SVC. 

Reference [Wang2] integrates, in turn, an SVC, a CSC, and a controllable phase 

shifter into the Phillips-Heffron model of a power system for the single-machine 

infinite bus case and draws analytical conclusions about the damping effect of each 

device. The robustness of the damping controllers associated with each of these 

devices to variations in system operating conditions is compared. The results in 

[Wang2] also show that at high load conditions more damping is provided by SVC 

and CSC damping controllers, but that at low load conditions the damping effect of 

the SVC is negative whilst that of the CSC remains positive over the entire range of 

system load conditions, which is in accordance with the findings in [Noroozianl]. The 

following subsection will now review the techniques proposed in the literature for the 

design and placement of the controlled series compensation for the specific purpose of 

damping power system oscillations. 

2.4.5 Techniques for the Design and Placement of Variable Impedance Control 

This subsection of the review presents a summary of the methods proposed in the 

literature for the design and placement of controlled series capacitive reactance for 

improved system damping. The previous discussions of section 2.4.2 described Swift 

and Wang's approach [Swiftl] whereby the Phillips-Heffron model of a power system 

for a single-machine infinite bus system is used to establish a design relationship, 

using a particular controller input, between the controller gain and damping torque 

added into the system; an approximately linear relationship was shown to exist 

between the controller gain and the resulting damping torque component. Further 

work by Swift and Wang [Swift2] extends the ideas presented in [Swiftl] into a multi­

machine application and, using the sensitivities of the controllable series compensator 

(CSC) damping torque to the device location, successfully determines the optimum 

location of the CSC damping controller in a multi-machine environment. The analysis 

techniques and concepts of [Swift2] are the same as in [Swift!] but the additional 

aspect treated, arising out of multi-machine application, is the derivation of indices to 

determine the best location of a CSC damping controller. Reference [Swi:ft2] proposes 
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that to optimally utilise the available CSC damping controller in a multi-machine 

power system, the CSC should be installed close to that generator which is most 

sensitive to the oscillation mode which is to be damped in the power system. 

In reference [Chenl], Chen et al. investigate the design of CSC damping controllers 

for improving the stability of multi-machine power systems using a numerical pole 

placement technique, which in turn is used to work out feedback controller gains. 

Reference [Chenl] states that there are no basic guidelines for best position of the 

poles to improve damping, and therefore this technique for pole placement primarily 

relies on sound engineering judgement. The technique used to decide on the location 

of the CSC controller is based on the magnitude of the residue (controllability) of 

each natural mode of oscillation in the system, as calculated from the system 

eigenvalues. Further work by Chen [Chen2] employs sophisticated design techniques 

such as eigenvalue assignment, sequential design methods, least squares 

approximation, and linear optimisation in order to design a TCSC controller for a 

multi-machine, multi-controller system. Mode controllability and mode observability 

are used to select the Thyristor Controlled Series Capacitor (TCSC) controller sites 

and effective control signals for a TCSC control scheme. 

Reference [Noroozian2] considers the design of TCSC controllers in a two-TCSC, 

three-generator study example in which the particular TCSC controller inputs used 

can readily be synthesised from local measurements. Reference [Noroozian2] then 

considers the effect on performance and robustness of different locations of the 

FACTS device. In accordance with Swift's [Swift2] findings, simulation results 

presented in [Noroozian2] show that the effect of the larger TCSC placed on the main 

system inter-tie is to provide better damping than a smaller size of TCSC placed 

elsewhere in the system. Reference [Noroozian2] also notes an added advantage of 

using the particular control approach in eqn. (2.5), which is that controllers situated at 

different locations do not adversely interact with each other. 

Reference [Yang] considers an example of a three-area, six-machine power system 

and employs the residue method, together with modal sensitivities to determine the 

best location of the TCSC, and proposes that for a given TCSC and controller design, 

a larger residue will give a larger change in the damping of the corresponding mode. 
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References [Chenl] and [Yang] use a similar approach to select the most effective 

location for a CSC and propose that the best combination of the controller input and 

output is that which yields the largest residue (that is, sufficient degree of 

controllability) for the desired mode. Reference [Grongquist] investigates the 

damping of power swings using energy functions in a three-generator power system 

with two TCSCs, each rated at 50% of maximum compensation, at different sites of 

the transmission line system. Grongquist successfully shows the damping effect of 

these two TCSCs; however, the investigations of [Grongquist] do not compare the 

amount of damping provided by each TCSC. 

2.5 Conclusion 

This chapter has presented an overview of the strategies suitable for damping power 

system oscillations using controllable FACTS series compensators. The review has 

shown that the choice of control regimen should be guided by the nature of the power 

oscillation phenomenon to be damped: discontinuous (bang-bang) control of series 

reactance is suited to maintaining system stability in the first swing following a major 

disturbance, whilst the various forms of continuous control of series reactance are best 

suited to damping inter-area mode oscillations. 

The review has also identified some promising approaches to the control of series 

compensation to mitigate inter-area type oscillations, notably those of Grongquist 

[Grongquist] and de Mello [deMellol] as well as Larsen [Larsen]. Finally, the review 

has identified in the literature [Swiftl,2] an insightful approach to the design of the 

variable reactance controller itself in order to provide quantifiable increases in system 

damping. 

Chapter Four of this thesis presents the results of an investigation into the methods 

proposed in [Swiftl,2] as applied to the specific case of a single machine infinite bus 

system, and where the controlled element is an inverter-based FACTS series 

compensator. These investigations are carried out in order to gain confidence in the 

techniques proposed in [Swiftl,2] in the conceptually simpler single machine case 

before considering, in Chapter Five of the thesis, the inter-area mode damping 

problem itself. The investigations in Chapter Four of the thesis also -consider and 
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compare the control approach proposed In [Grongquist] and the ideas in 

[deMellol,Larsen]. Chapter Five of the thesis investigates the ideas in [Swiftl,2] as 

applied to an inter-area mode damping problem in a particular four-generator study 

system described in [Kundur]. The next chapter now presents and develops the 

mathematical models of the SMIB power system used in the analyses and simulation 

studies of this thesis, including both the detailed and simplified representation of the 

inverter-based series compensator. 
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CHAPTER THREE 

MATHEMATICAL MODELLING 

3.1 Introduction 

The analysis and modelling of various system components for power system stability 

studies has always been a challenge since, for any power system dynamic study, the 

most appropriate mathematical model must be chosen according to the phenomena 

being investigated. Whilst the use of an over-simplified system model often leads to 

erroneous results, an over-represented system model results in an enonnous increase 

in computational costs. Thus, it is essential that the simplifications made be based on 

a thorough understanding of the phenomena being studied. Since this thesis focuses 

on the (small-signal) damping of power system oscillations, the usual assumptions 

associated with such studies [Heffron, Kundur] are applied to the system model and 

these assumptions are then tested using more-detailed system models. 

This chapter develops three mathematical models of a single-machine infinite bus 

system that are to be used to analyse the behaviour of the system for a range of system 

operating conditions. In Chapter Four these models are used, in particular, to analyse 

the influence of the controllable series compensator and its damping controls on the 

stability of the system. This chapter first derives a simplified non-linear model of the 

single-machine infinite bus system before describing a detailed non-linear 

mathematical model of the same system. The simplified model is then linearised to 

yield the linear Phillips-Heffron model of the system that is used for small-signal 

eigenvalue analysis. Finally, this chapter presents results where these different models 

of the system are used to analyse the influence of various important system 

parameters and subsystems (especially the influence of the exciter and automatic 

voltage regulator) on system stability. 

To date much industry effort in the field of power system stability has been devoted to 

the issue ()f transient stability, and high-response exciters are known to enhance the 

transient stability of the system [Kundur] . Unfortunately however, as a consequence 
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of the introduction of such exciters, modem power systems have been found to exhibit 

poorly damped oscillations and hence their introduction has often adversely affected 

small-signal stability by introducing negative damping. Power system stabilisers have 

been exclusively designed to provide the desired additional damping to overcome this 

problem where it exists. This thesis however, addresses the issue of whether a 

particular FACTS series compensator - an inverter-based series compensator - can be 

used as another tool to provide additional damping in power systems. 

Fig. 3.1 shows a single-machine infinite bus (SMIB) power system considered in the 

analyses of Chapter Four of the thesis. Before developing various mathematical 

models of the system, the following section introduces three levels of system 

modelling and explains the purpose of each level. 

3.2 Different Models of the System and Objectives 

Fig. 3.1 shows a diagram of the single-machine infinite bus power system, together 

with an idealised CSC, that is considered in the investigations of Chapter Four of this 

thesis. This section briefly presents and discusses the various mathematical models of 

the single-machine infinite bus system in Fig. 3.1 that are used for the simulation and 

analysis studies presented in the thesis. Three different levels of model of the system 

in Fig. 3.1 are used in the analyses; these three levels of modelling, and the purpose of 

each level, can be summarised as follows. 

3.2.1 Non-Linear Model of the System Using an Idealised Representation of the 

Controllable Series Compensator 

These non-linear differential equations are used to build up a (simplified) MATLAB 

model for time-domain simulation studies but the primary purpose of this model is to 

be linearised so as to provide an analytical model with which to study the effect of 

damping controller design with an idealised CSC representation. 

3.2.2 Linearised (Phillips-Heffron) Model 

Linearisation of the model in 3.2.1 yields the linear Phillips-Heffron (P-H) model 

equations of a single-machine infinite bus power system [Heffron]. The purpose of 
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this model is to provide a graphical, linearised block diagram model together with 

analytical equations to show how design of the CSC controller affects damping 

[Swift1]. 

3.2.3 Detailed Non-Linear Simulation Model 

This model once again represents the system shown in Fig. 3.1 using non-linear 

differential equations, but with two differences from the non-linear model described 

in 3.2.1: firstly, the mathematical model of the synchronous machine is slightly more 

detailed than in the case of the non-linear model in 3.2.1; secondly, the inverter-based 

CSC itself is now modelled in detail, with both its power-electronic switching, and its 

internal controls being accurately represented. This more-detailed non-linear model 

has been developed in the power systems simulation software package 

PSCADIEMTDC. The purpose of this non-linear model is twofold: firstly, to serve as 

a benchmark against which to evaluate the models described in 3.2.1 and 3.2.2 so that 

the assumptions made in deriving these models can be tested; secondly, to act as the 

primary time-domain simulation tool for these and later (multi-machine) studies in the 

thesis. 

For the time-domain studies carried out in the thesis the PSCADIEMTDC simulation 

environment was chosen over MA TLAB environment, because the former is a 

dedicated power systems simulation tool. The advantage of PSCADIEMTDC is that 

the extension of the study to a multi-machine power system and the investigation of 

various input signals to the controller is made easier; the disadvantage is that the 

powerful control analysis and design features of MA TLAB (linearisation and 

eigenvalue calculation to name two) are no longer available. The following section 

develops various mathematical models of a single-machine infinite bus system in Fig. 

3.1 that are used in the analyses of the thesis. 
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A single-machine infinite bus power system with two parallel lines in 

series with a fixed and a controllable compensating reactance. 
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3.3 System Modelling 

3.3.1 Introduction 

In the single-machine infinite bus power system under consideration in this study 

(Fig. 3.1), the transmission line consists of two parallel lines of lumped impedance 

RL+jXL. At the receiving end of the power system (infinite bus) the controllable series 

compensator is inserted in a single line; the compensation provided by the CSC is 

made up of a fixed component of compensating reactance -jXcsco and a dynamically 

variable component -jXcscv. In the analyses of Chapter Four, the generator feeding the 

line is considered to have an automatic voltage regulator (A VR) and a high-gain, 

thyristor-type exciter with transient gain reduction (lead-Iag network). The purpose of 

including a high-gain thyristor exciter with transient gain reduction and A VR in the 

generator model is twofold: firstly, whilst realistic, this particular combination of 

conditions is also known [Kundur] to adversely affect the inherent damping torque in 

the system and it therefore constitutes an example of a poorly damped system with 

which to test the ability of the CSC controller to restore this component of torque; 

secondly, since the exciter and A VR characteristics are known to have a significant 

impact on damping torques in a power system it is important to represent these 

devices in the system model in order to ensure a realistic representation of the 

problem being studied. 

The effect of the turbine-governor dynamics in these studies is ignored such that the 

mechanical input torque T m to the turbine is assumed to be constant over the time 

frame of the investigation. Finally, the power oscillation damping controller is 

considered to have, as its input, the generator speed deviation ~w, the controller itself 

comprises a simple proportional gain Kc and first order lag term. In the idealised 

representation of the CSC the change in compensation Xcscv demanded at the output 

of the controller is assumed to occur instantaneously in the transmission line. The 

system in Fig. 3.1, and the derivation of the Phillips-Heffron (P-H) model that 

follows, is based on the work of Swift and Wang [Swiftl,2] as well as Phillips and 

Heffron [Heffron]. The Phillips-Heffron equations are obtained by linearising a set of 

non-linear differential equations for the system in Fig. 3.1 consisting of the generator 

equipped with an automatic voltage regulator (A VR) and thyristor-type excitation 
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system; the extension of the Phillips-Heffron model to include an idealised 

representation of the CSC is the work of Swift and Wang. 

3.3.2 Simplified Non-Linear System Model 

Synchronous generator electrical system 

The two-axis model of a synchronous generator is shown in Fig. 3.2. Amortisseur 

effects are represented by one damper winding on the d-axis and one damper winding 

on the q-axis; these windings are short circuited. The following assumptions for the 

system in Fig. 3.1 are made: 

(i) the synchronous generator is ideal with a sinusoidal air gap mmf and a 

linear magnetic circuit; 

(ii) iron and stray losses are negligible; and 

(iii) the generator and network to which it is connected are balanced. 

Fig. 3.2: Two-axis representation of a synchronous machine. 
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To write the equations for this machine, a generator convention has been adopted for 

the stator windings and a motor (load) convention has been adopted for the rotor (field 

and damper) windings; the convention is that used in [Kundur]. The per-unit system 

has been described in Appendix A. With these conventions the voltage equations of 

the five coils of Fig. 3.2 in the rotor reference frame are as follows: 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where the terms 'l'0J and P 'I' are speed and transformer voltages, respectively. 

The stator and rotor flux linkages are: 

'I'd -Ld Lad Lad 0 0 id 

'I' fd -Lad Lffd Lad 0 0 ifd 

'l'kd = -Lad Lad Lw 0 0 ikd (3.6) 

'l'q 0 0 0 -L q Laq iq 

'l'kij 0 0 0 -Laq L/dcq ikij 

where all inductances are constant and saturation effects are ignored. 

The electromagnetic torque is given by: 
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(3.7) 

The above equations (3 .1) to (3.7) describe the generator electrical behaviour and 

together with two differential equations which describe its mechanical behaviour in 

the next subsection form a seventh-order model. This seventh-order model represents 

the stator and rotor electrical transients and mechanical transients. For the purposes of 

this study, the following assumptions are applied to the fifth-order electrical model of 

the generator in Fig. 3.2: 

(i) the effects ofthe generator stator transients (P'l'terms in eqns. (3.1-2)) are 

neglected, and a further simplification is added by neglecting the effect of 

generator speed variations; however, this does not mean that the 

generator speed is considered to be constant - rather, the generator speed 

changes are assumed to be too small to have a significant effect on the 

generator stator voltages; 

(ii) damper (amortisseur) windings are neglected. 

With these assumptions, the stator flux linkages from eqn. (3.6) are: 

(3.8) 

(3.9) 

and the rotor flux linkage equation is: 

(3.10) 

or in terms ofreactances equations (3.8-10) become, 
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OJo'l/d = - X did + X ad i Id (3.11 ) 

OJo'l/q = - Xqiq (3.12) 

OJ 0'1/ Id = - X adid + X ffd i Id (3.13) 

where OJo is the system synchronous speed. 

The rotor voltage equation remains the same as in eqn. (3.3) and is now the only 

differential equation associated with the electrical characteristics of the generator. In 

order to write these equations in an alternative form [Kundur] consider the following 

variables: 

voltage proportional to ifd 

X 
E '= ll} -!!!L'If 

q Ox Tfd 
ffd 

voltage proportional to 'l'Jd 

voltage proportional to Vfd 

and with the reactances defmed as: 

Xd = XL+ Xad = direct-axis reactance of the generator; 

Xq = XL + Xaq = quadrature-axis reactance of the generator; 

Xffd = Xad + Xjd = self-inductive reactance of the generator field circuit; 

Xd' = XL + XarJXjd / (Xad + Xjd) = direct -axis transient reactance of the generator; 

and 
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Tdo' = Xffdl(OJoRj) = direct-axis open circuit transient time constant of the 

generator. 

U sing the above variables eqn. (3.11) now becomes, 

(3.14) 

Multiplying eqn. (3.13) through by Xadl Xffd and using the above variables yields 

(3.15) 

Finally, multiplying eqn. (3.3) through by Xad I Xffd and using the definition of the 

direct-axis open circuit transient time constant of the generator yields 

(3.16) 

The state variable representing the dynamic changes in rotor flux linkage is now Eq', 

the q-axis component of the voltage behind transient reactance Xd'; hence this model 

is sometimes called the voltage behind transient reactance model of the synchronous 

generator [Kundur]. Equation (3.16) is the only differential equation representing the 

electrical characteristics of the synchronous machine, in particular the dynamic 

variations in the field circuit of the machine. Field flux variations within the machine 

make an important contribution to the small-signal stability (damping) of the swing 

dynamics, and their effect (and hence that of the AVR and exciter) should therefore be 

represented in the system model; however, although the electrical model of the 

synchronous machine derived in this section neglects the contribution to system 

stability of the generator stator transients, this transient model contributes to 

computational simplicity [Kundur] and is shown in a later section of this chapter to be 

reasonable for those stability analyses for which it is used in the thesis. 
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Synchronous generator mechanical system 

Eqn. (2.1) in Chapter Two of this thesis describes the power balance of a generator in 

an electric power system, and a similar equation holds for torque balance of the 

generator in terms of the angular position 0 of its rotor. The second order equation 

(eqn. 2.1) may further be written as two first-order differential equations to describe 

the mechanical motion with an additional damping term as follows: 

Pl1m = m 0 (T - T - Bl1m) 
2H m • 

(3.17) 

(3.18) 

The differential equations (3.17) and (3.18) together form the so-called swing 

equation of the machine; this is the fundamental equation which governs the 

electromechanical oscillations of the synchronous machine in stability studies. For the 

purposes of the analyses of this thesis, the mechanical input torque to the machine Tm 

is considered to be constant at any given operating condition; the electrical torque Te 

in eqn. (3.17) corresponds to the net air-gap power in the machine and accounts for 

the total output power of the generator plus losses in the armature winding. The 

parameter B in eqn. (3.17) represents the damping of the synchronous generator as a 

result of dissipative forces acting on its mechanical shaft system. 

A VR and exciter model equations 

The automatic voltage regulator and the excitation system are subsystems that impact 

significantly on both transient (first-swing) and dynamic (small-signal) stability 

[Kundur,deMell02]: a high-gain thyristor exciter and AVR have a beneficial effect on 

the synchronising component of torque produced by the generator but can have a 

detrimental effect on the damping component of torque produced by the generator. It 

is therefore essential for the study of inter-area mode damping that the A VR and 

excitation systems are accurately represented [Klein]. In this study, a voltage regulator 

and a thyristor-type excitation system with transient gain reduction are represented as 

shown schematically in Fig. 3.3. 
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A voltage regulator and thyristor-excitation system with Transient 

Gain Reduction (I'GR). 

The differential equations describing the A VR and exciter model may be written by 

inspection of Fig. 3.3 as follows. From the block labelled (1) in Fig. 3.3, the following 

expression may be written: 

(3.19) 

where Et is the machine terminal voltage and TR is the voltage transducer time 

constant. Re-arranging eqn. (3.19) yields the first order differential equation 

associated with the voltage regulator: 

(3.20) 

Similarly, from block (3A) in Fig. 3.3 the following differential equation is obtained: 

(3.21) 

From block (3B), the expression for the voltage Efd applied to the generator field 

winding in the synchronous machine model is 
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this expression in conjunction with eqn. (3.21) yields: 

(3.22) 

where TA and TB are the lead and lag time constants, respectively, in the transient gain 

reduction stage. 

From Fig. 3.3 it is seen that Vx = KA (Vrej- Elm); eqns. (3.21) and (3.22) then become: 

(3.23) 

(3.24) 

The mathematical model that describes the A VR and exciter under consideration is 

therefore given by eqns. (3.20), (3.23) and (3.24). 

Controllable series compensator model equation 

Eqn. (2.9) in Chapter Two describes a CSC damping controller where the generator 

speed deviation /).0) is assumed as the controller input, filtered by a first-order lag term 

1 / (1+sTcsd as proposed by Swift and Wang in [Swift1,2]; the output of the damping 

controller is the change AXcsc = Xcscv in the capacitive reactance required from the 

CSC, and the controller gain is Kc. The differential equation describing this 

controllable series compensator and power oscillation damping controller is obtained 

by re-arranging eqn. (2.9) as follows: 

(3.25) 
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In this model the CSC itself is assumed to be ideal; that is, it is assumed that the CSC 

is able to ensure that whatever variable compensating reactance Xcscv is demanded at 

the output of the damping controller appears instantaneously in the transmission line. 

The total series compensation provided by the CSC at any instant is then given by 

Xcsc = Xcsco + Xcscv (3.26) 

Summary of non-linear equations 

Non-linear differential equations for the system in Fig. 3.1 have been derived in this 

section and are now summarised below. 

P/1OJ = OJ 0 (T - T - B/1OJ) 
2H m e 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

where eqns. (3.27) and (3.28) represent mechanical dynamics of the machine while 

eqn. (3.29) represents electrical dynamics of the synchronous machine. Eqns. (3.30-

3.32) represent the AVR and exciter subsystems and eqn. (3.33) represents the 

controllable series compensator and its damping controls. 
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3.3.3 Detailed Non-Linear Mathematical Model of the System 

The previous subsection discussed a simplified non-linear model of a single-generator 

infinite bus system with an idealised controllable series compensator. This subsection 

now briefly describes a detailed non-linear simulation model of the same system, 

developed in the simulation package PSCADIEMTDC, that is used to establish the 

validity of the simplified model of the previous subsection. 

The PSCAD (Power System Computer Aided Design) program has been designed to 

help simulate power systems; a graphical diagram of the system is built in PSCAD 

using pre-coded building blocks. The EMTDC (Electro-Magnetic Transient Direct 

Current) program, provided with PSCAD, contains a library of power system 

component models and is the software which performs the electromagnetic transients 

analysis on a user-defined power system; these two software packages are normally 

referred to as PSCADIEMTDC. For the purposes of this study, a detailed simulation 

model of the system in Fig. 3.1 was developed in the PSCADIEMTDC program; the 

graphical block diagram for this PSCADIEMTDC model is shown in Fig. 3.4. The 

different segments of the detailed system in Fig. 3.4 may be explained as follows. 

The PSCADIEMTDC graphical representation of the system once again comprises, at 

the sending end, a synchronous generator, with AVR and exciter in a single block, 

synchronised through a transmission line to an infinite bus (ideal three-phase voltage 

source) at the receiving end. The synchronous machine in this model is a full two-axis 

model; the amortisseur windings are once again neglected but the stator transients in 

the machine model are now represented. The transmission line consists of a single 

line, with all three phases shown, and is once again represented by lumped 

impedances (with resistances in ohms units and inductances in henries units). 

However, the dynamic behaviour of the transmission line is now represented: that is, 

transmission line components are no longer represented simply as fundamental 

frequency (50Hz) impedances in this PSCADIEMTDC simulation model. 

Finally, the controllable series compensator used in the non-linear model in Fig.3.4 is 

a detailed representation of an inverter-based series compensator. This compensator 

comprises a voltage-source inverter based on gate-turn-off (GTO) thyristors; the 

compensator' s internal control circuits ensure that the inverter inserts a voltage in 
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series with the transmission line in lagging quadrature with the transmission line 

current via series injection transformers. In this way, the device replicates in the 

transmission line the voltage drop across a series capacitive reactance whose 

magnitude can rapidly be controlled. The voltage-source inverter is switched using 

sinusoidal pulse width modulation (SPWM) at 1 KHz as in [Rigbyl]; the SPWM 

switching frequency affects the achievable bandwidth of the inverter controller, 

although 1 KHz is typical of inverters used in high power FACTS applications 

[Rigbyl]. The theory of the operation of this inverter-based compensator scheme to 

ensure that the inserted voltages always maintain the correct phase relationship 

relative to the transmission line currents at different system operating conditions has 

been described in [Rigbyl]. In this PSCADIEMTDC model of the study system in 

Fig. 3.1 , the inverter-based compensator is modelled in detail: the opening and closing 

of each power-electronic device in the inverter and the snubber circuit across each 

power-electronic device is represented, as well as the charging dynamics of the 

inverter's dc capacitor, and the internal controls that ensure the device behaves as a 

capacitive reactance of the desired magnitude Xcsc commanded at its input. 

The power oscillation damping controller external to the compensator in Fig. 3.4 is 

identical to that in the simplified system model of the previous section: the input AlA) 

(labelled deltaW in Fig. 3.4) is fed through a first order filter and proportional gain to 

yield the value of the variable component of compensating reactance Xcscv. This 

variable component Xcscv is added to the magnitude of the fixed component of 

compensating reactance Xcsco to yield the overall commanded value Xcsc that is fed to 

the inverter controls. Thus, whereas in the simplified model of the previous subsection 

the compensator was assumed to be ideal (that is, the commanded value of Xcscv 

appeared instantaneously in the transmission line) in the detailed model of Fig. 3.4, 

the internal dynamics and response of the compensator itself are now represented in 

the system model. 

This subsection has described the development of the detailed time-domain simulation 

model of the SMIB system that is to be used in the analyses of this thesis. The 

following subsection now derives a linearised Phillips-Heffron model of the system in 

Fig. 3.1. 
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Fig. 3. 4: A detailed PSCADIEMIDC representation of a SMIB system with an 

inverter-based series compensator, including its controls and power 
electronic switching. 
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3.3.4 Linearised Phillips-Heffron Mathematical Model 

In order to consider the small-signal stability of a single-machine infInite bus power 

system, the non-linear differential equations in eqns. (3.27) to (3.33) may be 

linearised about a particular operating point and the relations shown in Fig. 3.5 are 

obtained; these relations, sometimes called Phillips-Heffron model equations, have 

been treated previously in [Swiftl,Heffron]. The linearised system equations from 

which the block diagram in Fig. 3.5 is obtained have been derived in Appendix B and 

are presented below. The extension of the P-H model to include the CSC and its 

damping controls is due to Swift and Wang [Swiftl,2]. 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

I1E = [(1 + STA)K ](v -( 1 )11E J 
id 1 + sTB A rei 1 + STR ' 

(3.38) 

Kc 
I:!. X csc = (j) 0 I:!. m 

1 + sT csc 
(3.39) 

The terms Kl to K6, Kq, Kv, and Kp in these equations are coefficients that depend on 

the operating point of the system; the detailed expressions for these coefficients 

(except Kq and Kv) can be found in Appendix B. The coefficients Kq, Kvand Kp in the 

linearised model are of particular interest since they describe the influence of changes 

in the controlled element (the CSC reactance AXcsd on key system variables 

associated with the electromechanical swing mode of the generator. These latter 

coefficients are derived from the linearisation of the system model as follows: 

Kv = oE, /oMcsc represents the sensitivity of the generator terminal voltage 

to changes in the CSC reactance at a given operating point; 
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K q = aE q '/ aM csc represents the sensitivity of the generator field flux linkages to 

changes in the CSC reactance at a given operating point; 

K p = aPe / aM csc represents the sensitivity of the electrical power output of the 

generator to changes in the CSC reactance at a given operating point. 

Fig. 3.5: Phillips-Heffron linear model of a single-machine infinite bus power 

system with CSC damping scheme. 

The following subsections describe and explain each of the subsystems of the 
linearised system model shown in the block diagram of Fig. 3.5. 

The electromechanical generator loop 

The dotted box (1) in Fig. 3.5 represents the electromechanical loop of the generator 

which relates the mechanical dynamics of the generator rotor angle to changes IlTe in 

the electrical output torque of the machine. The small-signal stability of the system 

requires that, under dynamic conditions following a system disturbance, sufficient 

synchronising and damping torque components are present in the electrical torque 

signal ATe. Synchronising torque is defined as the component of the electrical torque 

variation ATe that is in phase with the generator's rotor angle deviations AO, whilst 

damping torque is defined as the component of ATe in phase with the generator's 

speed deviations AlA). Thus when examining the performance of a power oscillation 

damping scheme, one is interested in determining from Fig. 3.5 how the controller 
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affects the electromagnetic torque ATe at the input to the electromechanical loop and, 

in particular, how it affects the component of ATe in phase with ACt) (damping torque). 

The diagram in Fig. 3.5 illustrates that, with no external damping controls in place 

(that is, with dotted box (3) removed), stabilising torques are applied via two distinct 

loops containing the gain terms KJ and K2. Of these, the output of the block KJ is 

purely a synchronising torque since it is fed from the rotor angle deviation Aa directly 

through the algebraic gain term KJ; the output of the block K2 however represents a 

torque that results from dynamic variations in the field flux linkages which in turn 

result from variations in generator rotor angle A 0; thus, the output of block K2 

contains both synchronising and damping components of torque whose relative 

magnitudes depend on the operating conditions of the system. 

A VR and exciter loop 

The dotted box labelled (2) represents the small-signal dynamics of the AVR and 

exciter system; the deviation AEt in the terminal voltage of the machine is the input to 

this subsystem and its output is the deviation AEfd in the field voltage. The terminal 

voltage deviations AEt are themselves determined by the changes Aa in the generator 

rotor angle (through coefficient Ks) and by the changes AEq ' in the rotor flux linkages 

(through coefficient K6). 

The CSC damping control scheme 

The dotted box (3) shows the CSC damping scheme where the output of the damping 

controller is the change in the series capacitive reactance !l.Xcsc provided by the 

controllable series compensator. Chapter Two of this thesis reviewed a number of 

possible input signals that have been proposed for power oscillation damping; in the 

initial analyses presented in Chapter Four of this thesis the input signal to the 

controller has been chosen as the generator speed deviation ACt) as suggested in 

references [Webster,Rigby2,Noroozianl]. Alternative input signals, synthesised from 

locally-measured variables, are also considered for analysis in Chapter Four. In the 

linearised system model of Fig. 3.5 the controller block comprises the numerator term 

Kc (simple proportional controller gain) and the denominator term 1+ sTcsc (first 

order input filter on the controller input signal). 
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This section has presented the non-linear models and linearised Phillips-Heffron 

model of the SMIB system in Fig. 3.1 that are used in Chapter Four to analyse the 

effects of the CSC damping controller and its contribution to synchronising and 

damping torques in this system. The following section presents the results of a case 

study to establish the validity of the models presented thus far. 

3.4 Results Using the Simplified and Detailed System Models 

3.4.1 Introduction 
The previous section has developed three mathematical models of the SMIB system in 

Fig. 3.1. This section presents the results of a case study of the system in Fig. 3.1 

using these different levels of models before considering the key issue of the damping 

of electromechanical system oscillations of this system in Chapter Four. The purpose 

of simulations carried out in this section using various system models is explained for 

each study presented below. 

(i) Non-linear time-domain simulation results using the simplified MATLAB 

model are compared to the simulated responses of the same system 

obtained using the more-detailed model of the generator in 

PSCADIEMTDC; this study is carried out in order to examine the extent 

to which the level of detail in the generator model affects the predicted 

response of the system. 

(ii) The simplified MATLAB non-linear model, together with the linearised 

model, is then used to investigate the impact of system parameters and 

operating point on system stability using both the linearised eigenvalue 

analysis and non-linear time-domain simulation. The mathematical 

models of the generator used in these initial studies of parts (i) and (ii) 

above (both simplified and detailed) correspond to those described in 

sections 3.3 but without the AVR and exciter subsystems included in each 

case. 
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(iii) The simplified MA TLAB models (both non-linear and linearised) are then 

extended to include the effects of the generator exciter and automatic 

voltage regulator subsystems in order to examine how these subsystems 

affect the stability of this system. 

(iv) Finally, simulated results of the inverter-based series compensator model 

that has been developed in PSCADIEMTDC are presented to confirm the 

correctness of this model and to show that the device replicates a series 

capacitive reactance whose magnitude can rapidly be controlled. 

Appendix C shows the parameters of the system considered in the investigations to be 

carried out in this section. In the analyses of this section, the total transmission line 

impedance between the sending and receiving end (excluding the compensator) is 

(0.01 + jO.6) p.u. The initial steady-state operating conditions at the infinite bus are in 

each case Pb = 0.5 p.u., Qb = 0.03 p.u., and Eb = 1.0 p.u. The disturbance considered 

in each case is a temporary three-phase short circuit fault at point F in Fig. 3.1 lasting 

100 milliseconds. 

3.4.2 Simulation Results Using the Simplified and Detailed Models 

In this study, the generator model used for the simplified non-linear time-domain 

simulation studies is the voltage behind transient reactance model of the synchronous 

generator; the non-linear differential equations that describe this generator model 

reduce to eqns. (3.27) to (3.29) (when the AVR and exciter subsystems are ignored). 

Since the purpose of this study is to examine the level of detail in the generator model, 

the characteristics of the system dynamics with this simplified model are compared to 

the characteristics of the system dynamics with the more-detailed two-axis model in 

PSCADIEMTDC. In both models of the system, the effects of the exciter and A VR, 

and CSC with its damping controls are ignored in order to concentrate on the 

suitability of the simplified generator model equations (eqns. (3 .27) to (3.29)) for 

small-signal analyses. 

Fig. 3.6 now shows the predicted responses of the single-machine infinite bus power 

system under consideration following the temporary fault at F: the bold curves show 

the response predicted using the voltage behind transient reactance model equations 
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(3.27) to (3.29), and the light curves show the response predicted using the more­

detailed two-axis equation model in PSCADIEMTDC. The comparison of the 

predicted results using the two simulation models shows that although both models 

predict the generator rotor angle to be stable (light damping), the predicted amplitude 

of the rotor angle oscillations in each swing is slightly smaller in the case of the more­

detailed two-axis model of the generator. This phenomenon can be explained briefly 

as follows. 

As explained before, the more-detailed two-axis generator model (in 

PSCADIEMTDC) represents the generator stator transient (P'l/) terms; these stator 

transients can have a significant impact in the generator particularly for symmetrical 

(three-phase) faults close to the generator terminals. The stator transient terms 

contribute a dc braking component of torque and an oscillatory component of torque 

whose combined effect is to reduce the amplitude of the rotor swings following a 

disturbance [Kundur]. As such, the amplitude of the generator rotor angle oscillation 

is expected to be smaller in each swing where the more-detailed two-axis model is 

used than in the case of the voltage behind transient reactance model where the effects 

of the generator stator transients are not represented. 

However, the simulation results shown in Fig. 3.6 demonstrate that the damping 

characteristics of the system predicted using the two models agrees very closely (that 

is, both models show the generator rotor angle oscillations decreasing at the same 

rate). Thus, while the effects of the generator stator transients could be important in 

cases where the first-swing stability is of primary concern, the damping of system 

oscillations is the primary focus of the studies to be conducted in the main part of this 

thesis; therefore, it is reasonable to neglect the generator stator transients in the 

system model of Fig. 3.1. 
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Fig. 3.6: Time-domain simulation results of the simplified MATLAB non-linear 
model (dark curves) and a more-detailed PSCADIEMTDC non-linear 
model (light curves) of a SMIB system, with constant field voltage in each 
case. 

3.4.3 Influence of Various System Parameters on Stability Using the Linearised 

Model 

The previous subsection has briefly illustrated, via a time-domain simulation result, 

that the assumptions made in the simplified (MATLAB) non-linear model are 

reasonable if the objective is to analyse the small-signal stability (damping) of the 

system. In this subsection, the linearised model is now used to calculate the 

eigenvalues of the system for a range of system parameters. The small-signal stability 

characteristics of the system predicted by these eigenvalues are then confirmed using 

the simplified non-linear time-domain simulation model. In this study, the generator 

model is once again considered to have a constant field voltage with the exciter and 

A VR subsystems neglected; the linearised system model of this section has been 
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obtained by linearising a set of non-linear differential equations (3.27) to (3.29). In 

order to analyse the dynamic behaviour of the system using the eigenvalue technique, 

it is necessary to review a few basic concepts. The small-signal stability 

characteristics of a power system may be determined from the eigenvalues of its 

linearised model as follows. 

(i) A real eigenvalue corresponds to a non-oscillatory mode; a positive real 

eigenvalue represents an increasing (unstable) mode and a negative real 

eigenvalue represents a decaying (stable) mode. 

(ii) Complex eigenvalues occur in conjugate pairs of the form A. = a ± j Wd; 

each pair corresponds to an oscillatory mode. The real component a of the 

eigenvalue pair gives the damping and the imaginary component Wd gives 

the frequency of oscillation of the mode. An eigenvalue with a negative 

real part represents a damped (stable) oscillation whilst an eigenvalue 

with a positive real part represents an oscillation of increasing amplitude 

(unstable). The damping ratio ( determines the rate of decay of the 

amplitude of the oscillation. 

The operating point of the single-machine infinite bus system considered in this study 

is the same as in the previous subsection. The eigenvalues of the system are now 

presented for various combinations of system parameters in Tables 3.1 to 3.4 below. 

The changes in parameters in these studies are of arbitrary magnitude and are intended 

simply to show the broad relationships between system parameters and system 

characteristics. 

Table 3.1 Base-case: Tdo' = 9.2065 S, XL = 0.6 p.u., H = 4.0 s. 

Eigenvalue Real part Imaginary part wdand ( 

FLD -0.1348 0 

SM -0.0041 ±j5.855 Wd= 0.93Hz, (= 0.0007 

Table 3.2 Change infieldjIux variations: Tdo' = 0.2 S, XL = 0.6 p.u., H = 4.0 s. 

Eigenvalue Real part Imaginary part wdand ( 

FLD -6.4096 0 

SM -0.0854 ±j5.7602 Wd= O.92Hz, (= 0.0148 
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Table 3.3 Change in inertia constant : Tdo' = 9.2065 S, XL = 0.6 p.u., H = 2.0 s. 

Eigenvalue Real part Imaginary part wd and , 

FLD -0.1348 0 

SM -0.0041 ±j8.2803 Wd= 1.32Hz, ,= 0.0005 

Table 3.4 Change in line reactance: Tdo' = 9.2065 S, XL = 0.4 p.u., H = 4.0 s. 

Eigenvalue Real part Imaginary part wdand, 

FLD -0.1472 0 

SM -0.0037 ±j6.3961 Wd= 1.02Hz, ,= 0.0006 

The small-signal characteristics of the SMIB power system for these combinations of 

system parameters may be explained as follows. 

Base-case 

The linearised eigenvalue results in Table 3.1 show that the system has two 

eigenvalues associated with different modes of the system: the real eigenvalue FLD is 

associated with the field circuit dynamics which constitute a non-oscillatory mode; the 

complex conjugate eigenvalue SM is associated with the electromechanical swing 

mode of the generator which constitutes an oscillatory mode. The real eigenvalue 

FLD is negative, thus representing the stability of the non-oscillatory mode: the 

component of system's response associated with this eigenvalue is stable. The 

complex eigenvalue SM has a small but positive damping ratio (' = 0.0007), hence 

this eigenvalue predicts the electromechanical swing mode oscillations to be lightly 

damped with a frequency of 0.93 Hz. Field flux linkage variations and stator 

resistance are the sources of positive damping in the system under study (mechanical 

damping is here assumed to be zero). 

Change in field flux variations 

Table 3.2 now shows the eigenvalues of the system with the same operating 

conditions and system parameters as in Table 3.1 but with the direct-axis open circuit 

transient time constant of the generator reduced from a value of Tdo' = 9.2065 s to a 

value of Tdo' = 0.2 s. In the case of a reduced Tdo', the eigenvalue associated with field 

circuit dynamics FLD lies further into the left-hand plane; thus the component of the 

system's response associated with this eigenvalue is more stable at this operating 

point. The eigenvalue SM has an improved damping ratio ('= 0.0148) as a result of 
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the increased contribution of field flux linkage variations to damping with the reduced 

time constant of the field circuit. 

Change in inertia constant 

Table 3.3 now shows the eigenvalues of the system with the same operating 

conditions and system parameters as in Table 3.1 but with the generator inertia 

constant reduced from a value of H = 4.0 s to a value of H = 2.0 s. Despite this change 

in inertia constant, the eigenvalue FLD predicts that the component of system's 

response associated with the field flux linkage variations has the same effect as in 

Table 3.1; the eigenvalue SM predicts that the electromechanical swing mode 

oscillations are once again lightly damped with a small positive damping ratio (( = 

0.0005) but with a higher oscillation frequency of 1.32 Hz than is the case in Table 

3.1. These results illustrate that, as expected, the generator inertia primarily affects the 

frequency of oscillation of the generator swing dynamics. 

Change in transmission line reactance 

Table 3.4 now shows the eigenvalues of the system with the same system operating 

conditions and parameters as in Table 3.1 but with the transmission line reactance 

reduced from a value of XL = 0.6 p.u. to a value of XL = 0.4 p.u. At this operating 

point, the eigenvalue FLD once again predicts this non-oscillatory mode to be stable 

and the eigenvalue SM predicts the electromechanical swing mode oscillations to be 

lightly damped with a positive damping ratio ((= 0.0006) and an oscillation frequency 

of 1.02 Hz. The increased value of (Vd of the swing mode oscillation from Table 3.1 

illustrates that, as expected, a strengthening of the transmission line (reduction in XL) 

increases the synchronising torque and natural frequency of the system. 

3.4.4 Influence of Various System Parameters on Stability Using the Simplified 

Non-Linear Model 

The previous subsection has presented the linearised system eigenvalues used to 

examine the small-signal behaviour of the SMIB power system under consideration 

for various system parameter combinations. This subsection now presents time­

domain simulation results of the SMIB system using the voltage behind transient 

reactance model (eqns. (3.27) to (3.29)) for the same operating conditions and system 

parameters considered in Tables 3.1 to 3.4 in order to confinn the predictions of the 
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linearised model. Three plot windows in Fig. 3.7 show the predicted response of the 

system when subjected to a temporary three-phase fault at point F lasting 100 

milliseconds for each of these combinations of system parameters. 

Base-case simulation 

The linearised eigenvalues of the system for the base-case in Table 3.1 predicted that, 

at that operating point and combination of system parameters, the electromechanical 

swing mode oscillations are lightly damped. The time-domain simulation response 

corresponding to the same combination of factors is shown in the dark curves of Fig. 

3.7, repeated in each plot window (a), (b) and (c). The base-case time-domain 

simulation therefore confinns that, as predicted in Table 3.1, the generator rotor angle 

response is lightly damped with an oscillation frequency of about 0.93 Hz. 

Change in field flux linkage variations 

The linearised eigenvalues of the system in Table 3.2 predicted, with the direct-axis 

transient open circuit time constant of the generator reduced from a value of Tdo' = 

9.2065 s (as in Table 3.1) to a value of Tdo' = 0.2 s, the electromechanical swing mode 

oscillations to have an improved damping factor. The simulation results in Fig. 3.7 

(a) now compare the time-domain response of the system with the parameters as in 

Table 3.1 (bold curve) to the time-domain response of the same system with the 

parameters as in Table 3.2 (light curve); in each case the operating point of the system 

is the same. The significance of the time-domain results in Fig. 3.7 (a) is two-fold: 

firstly, the results confinn that the damping of the swing mode oscillations is 

improved when Tdo' is reduced as predicted by the linearised model; secondly, the 

results show that the amplitude of the generator's first swing is increased (that is, that 

the synchronising torque has been reduced) as a result of the ability of the field flux 

linkages to vary more rapidly. 

Change in inertia constant 

The linearised eigenvalue results of the system in Table 3.3 predicted, with the 

generator inertia constant reduced from a value of H = 4.0 s (as in Table 3.1) to a 

value of H = 2.0 s, the electromechanical swing mode oscillations to be lightly 

damped with a higher oscillation frequency of 1.32 Hz. The simulation results in Fig. 

3.7 (b) now compare the time-domain response of the system with the base-case 
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parameters (bold curve) to the time-domain response of the system with a low 

generator inertia constant (light curve). As predicted in the linearised analysis, the 

time-domain response in each case is lightly damped but the oscillation frequency is 

higher (at 1.32 Hz) with the reduced inertia constant. The time-domain response of the 

system also shows that, as would be expected, the amplitude of the rotor oscillations 

is larger when the generator inertia has been reduced. 

Change in transmission line reactance 

The linearised eigenvalue results of the base-case and those of Table 3.4 predicted 

that reducing the transmission line reactance from a value of XL = 0.6 p.u. to a value 

of XL = 0.4 p.u increases the frequency of the electromechanical swing mode 

oscillations from 0.93 Hz to 1.02 Hz, with the oscillations lightly damped in each 

case. To confirm this effect, the simulation results in Fig. 3.7 (c) now compare the 

time-domain response of the system in the base-case (bold curve) to that of the system 

with the reduced transmission line reactance (light curve). This result confirms that, 

while the generator rotor angle response in each case remains lightly damped, in the 

case of a reduced line reactance the generator rotor angle has a higher oscillation 

frequency. The simulation results in Fig. 3.7 (c) also show that by reducing the 

transmission line reactance, a lower value of steady-state rotor angle is required for 

the same active power transfer to the infinite bus as would be expected. 

The results presented thus far (both non-linear and linearised) have shown the impact 

of system parameters on the SMIB system stability while at the same time providing 

confirmation of the validity of the linearised system model to be used later in the 

thesis. The following subsection now presents the results of a case-study of the SMIB 

system when the AVR and exciter are represented in the system model. 
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Fig. 3.7: Time-domain simulation results showing the influence of various 
parameters of a single-machine infinite bus system on system stability using 
the voltage behind transient reactance model. 

3.4.5 Influence of A VR and Exciter Subsystems on System Stability 

Results using linearised model 

The analyses of the previous subsections have been carried out using both non-linear 

and linearised models where the influence of the A VR and exciter subsystems have 

been neglected in the system; this subsection now extends the analyses to include the 

effect of these subsystems on the system characteristics. The linearised model of this 

subsection has been obtained by linearising a set of non-linear differential equations 

(3.27) to (3.32) which include the thyristor-type exciter (with lead-Iag network) and 

A VR in the system model. The purpose of this subsection is to examine the extent to 

which the exciter and AVR subsystems influence the small-signal stability of a SMIB 
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power system, in particular its small-signal (damping) characteristics, and to verify 

the models of the system themselves. The system operating conditions and parameters 

for this study are once again those of the base-case study in the previous subsection, 

and the exciter and A VR parameters are shown in Appendix C. The eigenvalues of the 

system in Tables 3.5 and 3.6 below have been calculated at two different values of 

exciter gain KA• 

Table 3.5 Low-gain exciter: KA = 1.0 

Eigenvalue Real part Imaginary part lUdand( 

AVR -99.99 

SM -0.0041 ±j5.827 lUd= 0.93 Hz, (= 0.0007 

EXC -0.120 ±jO.070 lUd= 0.01 Hz, (= 0.864 

Table 3. 6 High-gain exciter: KA = 200.0 

Eigenvalue Real part Imaginary part lUdand( 

AVR -98.955 

SM +0.075 ±j5.828 lUd= 0.93 Hz, (= -0.0129 

EXC -0.719 ±jO.839 lUd= 0.13 Hz, (= 0.651 

The small-signal characteristics of the SMIB power system shown in Tables 3.5 and 

3.6 at these two values of exciter gain may be explained as follows. 

Low-gain exciter 

Table 3.5 shows that there are now three eigenvalues associated with different modes 

of the system: the real eigenvalue A VR is associated with the automatic voltage 

regulator with its value (-99.99) detennined by the voltage transducer time constant 

TR; the complex conjugate eigenvalue SM is associated with the electromechanical 

swing mode of the generator; the complex conjugate eigenvalue EXC is associated 

with the dynamics of the field and excitation system. The eigenvalues of the system 

for this set of conditions show that the component of the system response associated 

with the eigenvalue A VR decays rapidly as it lies far into the left-hand plane. The 

complex eigenvalue EXC, although it lies close to the imaginary axis, is stable and 

has a very high damping ratio ((= 0.864); therefore the component of system's 

response associated with this eigenvalue decays rapidly. Finally, the complex 

eigenvalue SM lies close to the imaginary axis; however, this eigenvalue also has a 
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very low damping ratio ((= 0.0007) and therefore the electromechanical swing mode 

is the dominant component of system's response with an oscillation frequency of 0.93 

Hz. 

High-gain exciter 

Table 3.6 now shows the eigenvalues of the system at the same operating conditions 

as in Table 3.5 but with the exciter gain increased from a value of KA = 1.0 to a value 

of KA = 200. For this set of conditions, once again, the component of system's 

response associated with each of the eigenvalues A VR and EXC decays rapidly; 

however, the eigenvalue SM now has a negative damping ratio ((= -0.0129). Thus, 

the component of system's response associated with electromechanical swing mode 

oscillations is unstable and these oscillations increase with time. This result therefore 

indicates that with an A VR and a high-gain thyristor exciter the electromechanical 

swing mode oscillations in this system have become negatively damped. 

Simplified non-linear model with A VR and exciter 

The linearised eigenvalue results in Tables 3.5 to 3.6 have been used to examine the 

small-signal characteristics of the SMIB power system with a thyristor-type exciter 

with lead-Iag network and AVR in the system model. In order to confirm the findings 

of the linearised model, this subsection now presents time-domain simulation results 

of this system using the set of non-linear differential equations (3.27) to (3.32). 

Fig. 3.8 now shows the predicted response of the system (including AVR and exciter) 

following a temporary three-phase fault at point F in Fig 3.1 lasting 100 milliseconds 

with the initial operating conditions and system parameters corresponding to those of 

Tables 3.5 and 3.6. However, the bold curve in Fig 3.8 shows the time-domain 

response with the low-gain exciter (KA = 1.0 as in Table 3.5) while the light curve 

shows the time-domain response with the high-gain exciter (KA = 200 as in Table 3.6). 

The significance of the time-domain simulation results Fig. 3.8 is two-fold: firstly, 

with a low-gain exciter the generator rotor angle swings are lightly damped and 

therefore stable at this operating point, whereas in the case of a high-gain exciter the 

generator rotor angle swings increase with time and are therefore unstable at this 

operating point; secondly, the amplitude of the first rotor swing (and hence the 
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synchronising torque) of the system in the case of an A VR and high-gain exciter is 

noticeably improved as would be expected [Kundur]. 

The studies conducted in this chapter have presented linearised eigenvalue results and 

non-linear time-domain simulation results of the SMIB system both with and without 

the exciter and A VR in the system models. In these studies the CSC and its damping 

controls have not been included in the system models since the impact of the CSC is 

the subject of later chapters in the thesis. The following subsection briefly presents 

time-domain simulation results of the inverter-based series compensator in order to 

confirm the correctness of the model of this system component before it is used in the 

investigations of Chapter Four. 
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Fig. 3. 8: Time-domain simulation results of a SMIB system including A VR and 
exciter subsystems at two different values of exciter gain KA following a 
temporary disturbance. 

KA = 1.0 (bold curve), KA= 200.0 (light curve). 
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3.4.6 The Inverter-Based Series Compensator in PSCADIEMTDC 

This subsection briefly presents simulation results of the inverter-based compensator 

scheme that demonstrate that the device replicates a variable series compensating 

reactance. This scheme, which was proposed in [Rigbyl], has been modelled in detail 

in PSCADIEMTDC for the investigations of this thesis. In the results shown here, the 

inverter-based series compensator has been inserted into a three-phase transmission 

system fed from ideal ac voltage sources at each end, just as it was considered in 

[Rigbyl]. The studies of Chapter Four and Five examine the performance of this 

compensator in a more realistic transmission system connected to a synchronous 

machine (or multiple synchronous machines). 

As explained previously, the inverter-based series compensator provides a senes 

compensating reactance whose magnitude can rapidly be controlled. While various 

time-domain simulation results of the inverter-based series compensator scheme in 

PSCADIEMTDC were presented in [Chonc03], and were shown to be in accordance 

with those in [Rigby3], the time-domain simulation results presented in this 

subsection are intended to show that while the inverter-based series compensator in 

PSCADIEMTDC does replicates the behaviour of a 50 Hz compensating reactance, 

the magnitude of its series compensating reactance can rapidly be controlled. 

In this study, the parameters of the inverter-based series compensator and its controls 

were deliberately chosen to correspond to those of reference [Rigbyl] for ease in 

comparing the results. The simulated performance of the inverter-based series 

compensator in PSCADIEMTDC is shown in Fig. 3.9: the results show the simulated 

response of the inverter-based series compensator scheme to a step increase in the 

commanded value of Xcsc from a value of 50 to a value 90 and back to 50. The 

transmission line current has been scaled by a factor of 5 so that with a value of Xcsc 

= 50 the transmission line current ia and the compensating voltage Vxa have the same 

amplitude on the graph. The time-domain response in Fig 3.9 shows that at all values 

of Xcsc the compensating voltage lags the line current by 90 degrees so that the device 

appears as a capacitive reactance. Also, Fig. 3.9 shows that when the commanded 

value of Xcsc is changed the effective magnitude of this compensating reactance (the 

ratio of the amplitude of Vxa to ia ) responds very rapidly (within one ac cycle). The 
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results in Fig. 3.9 and the response of the compensator are in accordance with those 

shown in [Rigby 1]. 

A detailed explanation of how the inverter-based senes compensator is able to 

maintain the correct phase relationship between the injected voltages and the 

transmission line currents, and to control rapidly the magnitude of reactance in a 

transmission line it is connected to, can be found in [Rigby 1]. For the purposes of this 

study, it can be seen that the inverter-based series compensator modelled in 

PSCADIEMTDC provides a rapidly controllable compensating reactance of known 

magnitude. In the chapters that follow in the thesis, this feature of the inverter-based 

series compensator is made use of to damp the electromechanical oscillations in 

power systems. 
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Fig. 3.9: Simulated response of the inverter-based series compensator to a step 
increase in the commanded value Xcsc from 50 to 90 in PSCADIEMI'DC 
with two voltage sources at either end of the transmission line system. 
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3.5 Conclusion 

This chapter has developed three mathematical models of the single-machine infinite 

bus system to be considered in the studies of Chapter Four, and has explained the 

significance of each model. The development of the simplified system models has 

been described, and a more-detailed model of the system has been used to assess the 

validity of the simplified models. The studies have been conducted in the chapter in 

order to examine the influence of various important system parameters and the 

influence of the A VR and exciter subsystems on system stability using the various 

system models. 

The results presented have shown that the assumptions made in deriving the 

simplified models of the system are reasonable since the chief-objective of this thesis 

is to analyse the small-signal behaviour of the power systems considered in the thesis. 

The simplified system models have been used to investigate the influence of various 

system parameters on system stability. The subsequent investigations involving the 

use of the A VR and exciter models have shown the effect of these subsystems on 

system stability: a high-gain exciter can have a beneficial effect on the generator 

synchronising torque while destroying the generator damping torque which is small in 

itself. 

A particular inverter-based series compensator has been described in this chapter, and 

it is intended to use this compensator, together with an external damping controller, 

to provide a dynamically variable series compensating reactance in a manner that 

yields additional damping torque in the generators of the system; both an idealised 

and a detailed representation of the inverter-based series compensator have been 

described. Simulated results using the detailed model of the inverter-based series 

compensator have shown that this scheme is capable of providing a series capacitive 

reactance whose magnitude can rapidly be controlled. In the chapter that follows, 

detailed theoretical analyses using the different models of the SMIB system in Fig. 3.1 

are carried out to examine the influence of the CSC and its damping controls on the 

stability of the system, using both the idealised and the detailed representation of the 

inverter-based series compensator. 
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CHAPTER FOUR 

THEORETICAL ANALYSIS OF THE CSC APPLIED TO THE 
LOCAL MODE DAMPING PROBLEM USING THE 

PHILLIPS-HEFFRON MODEL 

4.1 Introduction 

Chapter One of this thesis explained that since the transmission line impedance has a 

direct influence on transmitted power, a controllable series compensating reactance 

can be used to control accelerating power in the generators connected to the system in 

order to bring them back to steady state more rapidly. Chapter Two of the thesis then 

discussed the basic theory of dynamic variation of transmission line impedance to 

control the electromechanical oscillations of generators in power systems; in that 

chapter, the basic control action for the variable series compensating reactance to 

improve the damping of generator power swings was explained using a specific two­

area power system. 

Chapter Two of the thesis also provided a review of what possible control signals can 

be used as inputs to a CSC-based power oscillation damping scheme. The review 

highlighted that, particularly for the inter-area mode damping phenomenon, it would 

be desirable to use an input signal to the damping scheme that is synthesised from 

measurements that can be made at the location of the CSC within the network, since 

generator variables would not, in practice, be easily obtainable. Chapter Two also 

reviewed possible control strategies for damping electromechanical system 

oscillations (either bang-bang control or some form of continuous control of series 

compensating reactance) and showed that the decision as to which approach to use 

depends on the power oscillation phenomenon to be damped. Finally, the review 

considered the work of Swift and Wang [Swiftl,2] who proposed a simplified 

modelling and analysis method for CSC-based power oscillation damping schemes; 

the major attraction of the analytical approach of Swift and Wang is that it provides 

insightful design equations for the synchronising and damping torques provided to the 

system by the CSC's damping control scheme, and this approach was considered in 
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the mathematical modelling of the system in Chapter Three. 

This chapter now presents the results of a study in which a controllable inverter-based 

series compensator is used to damp the electromechanical system oscillations of a 

single-machine infinite bus (SMIB) system. The study initially confirms Swift and 

Wang's findings [Swiftl,2] using a SMIB system that is compensated with an 

idealised CSC and damping control scheme; their findings are then reconfirmed using 

a more accurate SMIB system representation in which the inverter-based series 

compensator used as the controllable element is modelled in detail. Finally, the study 

compares the performance of the power oscillation damping scheme using the 

generator speed deviation as the controller input with the performance of the same 

scheme but using a controller input signal synthesised from variables measured 

locally to the CSC. 

The objective of the studies conducted in this chapter has been to investigate the 

effects of issues such as controller design and signal selection on the performance of a 

CSC power oscillation damping scheme in a conceptually simple case (SMIB) before 

considering (in Chapter Five) the issue of using the CSC to damp the more complex, 

inter-area oscillations of a multi-generator system. Different models of a SMIB power 

system were developed in Chapter Three of the thesis. The following section now 

reviews the work of Swift and Wang, where detailed theoretical analyses using the 

linearised Phillips-Heffron model were used to examine the influence of an idealised 

CSC and damping controller on the stability of the system. 

4.2 Theoretical Insights From the Linearised Phillips-Heffron Model 

4.2.1 Introduction 

Chapter Three of the thesis has described the single-machine infinite bus power 

system (Fig. 3.1) to be considered in the studies of this chapter and has presented the 

various mathematical models to be used and explained the purpose of each model. In 

the simplified non-linear model, the non-linear equations of the system with an 

idealised CSC representation were presented and it was pointed out that although 

these equations can be used for time-domain simulation of the system, the primary 

purpose of the model is to be linearised about a chosen operating point so as to yield 
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the linearised Phillips-Heffron (P-H) model. Chapter Three subsequently presented 

the linearised P-H model of the system and, in this chapter, this model is used to 

analyse the stabilising torques contributed to the system by the CSC controller. The 

aim of this section is to review the work of Swift and Wang [Swiftl,2] where a 

detailed treatment of the linearised P-H model is used to show the effect of the CSC 

on the stability of a single-generator infinite bus power system. The issues to be 

discussed may be summarised as follows: 

(i) the manner in which dynamic variations in series compensating reactance 

Mcsc influence the synchronising and damping torques of the generator; 

(ii) those factors that have a considerable bearing on synchronising and 

damping torques contributed to the system by variations in series 

compensating reactance Mcsc; and 

(iii) what type of input signal should be considered in the analysis in order to 

ensure that variations in series compensating reactance Mcsc yield the 

desired component of torque. 

This section therefore summarises the theoretical insights that can be gained from the 

analyses of Swift and Wang using the linearised Phillips-Heffron model of Fig. 3.5 

before reconfirming their results in the later sections of this chapter. 

4.2.2 Mechanism ofStabilisation as a Result of Variations in llXcsc 

In order to achieve stable operation of a power system, sufficient damping and 

synchronising torques are required to successfully bring the system to the post­

disturbance steady-state condition following a disturbance. Hence, to be able to 

analyse the influence of the CSC damping control scheme in Fig. 3.5 on the stability 

of the system, it is necessary that the torque contributed to the electromechanical 

generator loop due to variations in Mcsc be resolved into its components: one in 

phase with the generator rotor angle deviation /la (synchronising torque component); 

the other in phase with the generator speed deviation /lw (damping torque 

component). In the analysis of Swift and Wang [Swiftl,2], the control input signal to 
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the CSC damping scheme is assumed to be generalised, that is, it is assumed to have a 

component partially in phase with both 6.cu and 6.0. However, in the Phillips-Heffron 

model shown in Chapter Three of this thesis (Fig. 3.5) the input to the CSC controller 

is the generator speed deviation 6.cv. In order to understand the reason for this specific 

choice of controller input signal for this study, consider first the generalised case of 

Swift and Wang, where the input signal 6.qJ to the CSC controller is some function 

f(6.o, 6.cv). 

In this general case, the output of the controller (variation in series compensating 

reactance !::'xcsc) will likewise have a component in phase with 6.cv and a component 

in phase with 6.0, thus contributing to both the synchronising and damping torques in 

the system. With this generalised CSC controller input 6.qJ, the resulting controller 

output 6Xcsc can be expressed in the 6.0 - j6.cv plane as follows. 

(4.1) 

where, !::'xcsc = the variation in series compensating reactance (CSC output); 

Kc = controller gain; 

6.qJ = f (6.0, 6.cv) = generalised control input signal; 

C(s) 1 / (1 + sTcsc) = signal conditioning of the CSC controller; 

Kscsc = synchronising torque coefficient due to !::'xcsc; 

Kocsc = damping torque coefficient due to !::'xcsc. 

From the linearised system model in Fig. 3.5 it can be seen that the influence of the 

controller output !::'xcsc on the electromechanical generator loop is through blocks Kq, 

Kv, and Kp. However, the output from the blocks Kq and Kv is attenuated by first­

order lag loops before contributing, via a single block K2, to the electromechanical 

generator loop. The torque output from the channels Kq and Kv (via K2) as a result of 

variations in !::'xcsc is therefore referred to [Swift 1 ,2] as the indirect torque 

contribution of the CSC damping controller. By contrast, variations in the controller 

output !::'xcsc have a direct effect on the torque in the electromechanical generator 

loop via the algebraic gain block Kp in Fig. 3.5. The torque at the output of this 
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channel Kp as a result of variations in the CSC output AXcsc is therefore referred to 

[Swift1,2] as the direct torque contribution due to the CSC damping controller. 

The analyses carried out by Swift and Wang [Swift 1 ,2] have shown that the amplitude 

of the indirect torque contribution due to variations in AXcsc is significantly smaller 

than the amplitude of the direct torque contribution due to variations in AXcsc. Thus, 

in order to study the effect of variations in CSC output on system stability it is 

reasonable to neglect the indirect torque contribution and consider only those 

variations in torque !:lTe that result from variations in CSC reactance AXcsc through 

the algebraic channel Kp. 

Therefore, considering only this direct torque contribution via channel Kp (now 

referred to as !:lTdirect), by inspection of Fig. 3.5 the following expression is obtained: 

(4.2) 

which from eqn. (4.1) is 

(4.3) 

Eqn. (4.3) shows that with a generalised input signal containing components in phase 

with both !:lw and !:lo the CSC controller contributes to both the synchronising and 

damping torques of the system; the magnitude and sign of each of these torque 

components (that is, whether they are stabilising or de stabilising) depends on the 

controller gain Kc and the operating point of the system (through the operating-point­

dependent term Kp). However, in the particular study being conducted in this thesis, 

the specific focus of the investigation is the use of the controllable series 

compensation to provide system damping. Equation (4.3) shows that if, as in this case, 

the objective is only to provide additional damping torque, then not only is it 

unnecessary to have any component of the input signal in phase with !:l 0, in fact the 

input signal should ideally be the speed deviation of the generator !:lw, Thus, since the 

objective of this study is in fact to provide damping, all further linearised analysis 
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assumes that the input to the CSC damping controller is simply the generator speed 

deviation 6.6) as shown in Fig. 3.5. 

4.2.3 Factors Affecting Stabilisation 

The previous subsection discussed the impact of the CSC controller output llXcsc on 

the small-signal stability of the electromechanical generator loop via the three 

channels Kq, Kv, and Kp by considering a generalised input signal as in [Swift 1 ,2]. 

The analysis showed that there are direct and indirect torque contributions due to 

variations in llXcsc; of these torques, the indirect component can be neglected and 

only the direct component is considered to make a significant contribution to the 

electromechanical loop of the generator via the Kp channel. Whilst this direct torque 

component could be made to contribute both synchronising and damping torques, the 

investigations to be carried out in this chapter are focused on the provision of 

damping torque and, as a consequence, the input signal to the CSC has been chosen as 

the generator speed deviation 6.6). This section now analyses the direct torque 

contribution resulting from variations in AXcsc for this particular input signal 6.6) and 

considers the factors with a considerable bearing on the ability of llXcsc variations to 

provide additional damping torque to the system. 

With the assumptions made in the previous subsection (that is, neglecting the indirect 

damping torque, and input signal only comprising 6.6)) then the expression for the 

stabilising torque contributed by CSC controller in eqn. (4.3) reduces to 

(4.4) 

Furthermore, provided the signal conditioning C(s) does not introduce a significant 

phase shift between 6.r.u and llXcsc within the CSC controller itself, the stabilising 

torque in eqn. (4.4) is purely a damping torque. Hence the linearised expression for 

the direct damping torque 6.TD contributed to the system from the CSC controller, 

with the generator speed deviation as input, may be written as 

(4.5) 
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This subsection now uses eqn. (4.5) to examine, for the particular controller input /lw, 

the factors that affect the amount of damping torque contributed by the CSC 

controller in the system. 

Appendix B shows the full expression for the term Kp in eqn. (4.5), and from this 

expression it is evident that Kp is a function of both the system operating point as well 

as the system parameters. Firstly, the expression for Kp predicts that as the machine 

loading Pea increases, the value of Kp also increases and hence from eqn. (4.5) the 

damping torque produced as a result of variations in series compensating reactance 

llXcsc increases; thus, the expression for Kp in conjunction with eqn. (4.5) shows that 

the CSC damping scheme becomes more effective at high values of machine (and 

hence transmission line) loading. Secondly, the expression for Kp shows that as the 

transmission line reactance XL increases (a condition corresponding to a weakening of 

the system connection), the value of Kp decreases and hence from eqn. (4.5) the 

damping torque produced as a result of variations in controller output llXcsc 

decreases; thus, the CSC damping scheme's effectiveness deteriorates as the line 

reactance increases. These two findings taken together therefore suggest that, in order 

to ensure robust control performance of the CSC damping scheme, the design of its 

controller should be carried out for worst case conditions of light loading and a weak 

system connection. 

Finally, eqn. (4.5) predicts that for a given value of Kp the damping torque increases 

approximately linearly with the controller gain Kc. Therefore at a high value of the 

controller gain the CSC damping scheme is most effective (large controller action); 

however, there is a maximum value of reactance beyond which series capacitive 

compensation may yield negative damping [Webster,Chenl] and hence in practice, 

since the compensator has finite capacity, limits are placed on the allowable series 

compensation and the controller output llXcsc becomes bang-bang with a very high 

controller gain. At low values of the controller gain, Kc, the output of the CSC 

damping scheme is continuous; the review of literature in Chapter Two showed that 

this latter form of control approach is more suited to the damping of inter-area mode 

oscillations. 
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4.2.4 Input Signal 

The discussions of this section have shown that in order to maximise the benefits of 

the CSC damping controller, the ideal input signal is the generator speed deviation 

t:.w since, with this particular input signal, all of the torque added to the 

electromechanical loop via the Kp channel is in phase with t:.w provided that the time 

constant T csc of the signal conditioning is sufficiently small so as not to introduce any 

phase lag between this input and the output I1Xcsc in the frequency range of interest. 

However, although the generator speed deviation t:.w is the logical signal to use for 

the input to the CSC damping controller in this single-machine case, in a large 

interconnected power system obtaining such a signal may present some practical 

difficulties, with geographically remote measurements making the speed deviations of 

the machines of interest difficult to obtain [Larsen,Noroozian2]. The later studies of 

this chapter therefore examine whether it is possible to synthesise a signal using only 

variables that are measured locally to the CSC in the transmission line, but which 

nevertheless contains similar information to the generator speed deviation signal t:.w. 

The following section now presents the results of a study of the SMIB system in Fig. 

3.1 assuming the generator speed deviation t:.w as an input to the CSC controller; first 

the linearised Phillips-Heffron model is used to verify the theoretical predictions of 

this section (and hence those of Swift and Wang [Swift 1 ,2]), and then these 

predictions are further reconfrrmed by means of non-linear time-domain simulation 

results. 

4.3 Results and Analysis Using the Idealised CSC Representation 

4.3.1 Confirmation of Swift and Wang's Findings Using Linearised Model 

This section presents and discusses the results of a linearised analysis of the sample 

single-machine infinite (SMIB) bus power system shown in Fig. 3.1; the findings 

from these linearised results are later confirmed using non-linear time-domain 

simulation studies. The reasons for the linearised eigenvalue studies of this section are 

twofold: firstly, to get a thorough understanding of how linearisation and eigenvalue 

methods could be used to design a controllable series compensator (CSC) damping 

Theoretical Analysis of the CSC Applied to the Local Mode Damping Problem Using P-H Model 



Chapter 4 Page 4.9 

control for the SMIB case; secondly, to demonstrate the general analytical findings of 

Swift and Wang (outlined in the previous section) using numerical analysis 

techniques for the particular study system being considered. The results will show 

how the performance of the CSC damping scheme is affected by changes in the 

controller gain, system connection, and the machine loading. 

Eigenvalue analysis has already been used in the previous chapter to demonstrate the 

small-signal dynamic behaviour of the SMIB system with no CSC in place. This 

section now presents the eigenvalues of the SMIB system in Fig. 3.1 with AVR and 

exciter in place as well as with the idealised controllable series compensator of Swift 

and Wang [Swiftl,2]. In the studies of this section a double parallel transmission line 

is considered, as shown in Fig. 3.1, in series with a fixed component of series 

compensating reactance (Xcsco = 0.1 p.u.) and a variable component of series 

compensating reactance. The parameters of the system, unless stated otherwise, are as 

shown in Appendix C. The eigenvalues of this system, calculated using the linearised 

Phillips-Heffron model of Fig. 3.5, are now examined for a number of different 

operating conditions in order to establish the impact of the CSC damping scheme on 

the system stability. 

Table 4.1: Eigenvalues o/the system with Peo = 0.2 p.u., XL = 0.8 p.u., Kc = O. 

Eigenvalue Real part Imaginary part (Vd and , 
AVR -99.648 0 
IPF -100 0 
SM 0.003 ±j6.698 (Vd = 1.07 Hz" = -0.00045 

EXC -0.306 ±jO.530 (Vd = 0.084 Hz, , = 0.50 

Table 4.2: Eigenvalues o/the system with Peo = 0.2 p.u., XL = 0.8 p.u., Kc = 0.1. 

Eigenvalue Real part Imaginary part (.Vd and , 
AYR -99.598 0 
IPF -99.1727 0 
SM -0.4354 ±j6.715 (.Vd = 1.07 Hz, , = 0.065 

EXC -0.306 ±jO.530 (.Vd = 0.084 Hz, , = 0.50 
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Table 4.3: Eigenvalues o/the system with Peo = 0.8 p.u., XL = 0.8 p.u., Kc = 0.1. 

Eigenvalue Real part Imaginary part wd and , 

AVR -99.5403 0 
IPF -96.5265 0 
SM -1.7604 ±j6.5922 (Ud - 1.05 Hz, , - 0.258 

EXC -0.330 ±jO.575 (Ud = 0.0915 Hz, ,= 0.50 

Table 4.4: Eigenvalues o/the system with Peo = 0.8 p.u., XL = 1.6 p.u., Kc = 0.1. 

Eigenvalue Real part Imaginary part wd and , 

AVR -99.1612 0 
IPF -97.82 0 
SM -1.1537 ±j5.556 (Ud= 0.88Hz, , = 0.203 
EXC -0.476 ±jO.717 (Ud= 0.11Hz, , = 0.55 

The small-signal stability of the single-machine infinite bus power system under 

consideration may be understood from the eigenvalues of Tables 4.1 to 4.4 as follows. 

No CSC damping control 

Firstly, Table 4.1 shows the eigenvalues of the system with the CSC damping scheme 

inactive (damping scheme controller gain Kc set to zero). Table 4.1 shows that there 

are four eigenvalues associated with different modes of the system: the real 

eigenvalue A VR is associated with the voltage regulator of the generator and its value 

(-99.648) is determined by the voltage transducer time constant TR; the real 

eigenvalue IPF is associated with the input filter in the CSC damping controller and 

its value (-100) is determined by the time constant of this filter Tcsc; the complex 

eigenvalue SM is associated with the electromechanical swing mode of the generator; 

the complex eigenvalue EXC is associated with the dynamics of the field and 

excitation system. 

The real eigenvalues A VR and IPF lie far into the left-hand complex plane and hence 

the components of the system's response associated with each of these eigenvalues 

will decay rapidly. The complex eigenvalue EXC lies close to the imaginary axis but 

has a high damping factor (' = 0.50); hence the generator field flux variations that are 

associated with this eigenvalue are well damped but do not decay rapidly. This 

eigenvalue EXC indicates that although well damped, the field flux variations are (as 
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expected) an important component of the system's dynamic response. Finally, the 

complex eigenvalue SM is also close to the imaginary axis but, for this set of 

operating conditions, it has a negative damping factor (' = -0.00045). Thus, for the 

steady-state operating conditions in Table 4.1 (and with no CSC damping control 

active) the electromechanical swing mode of the system is unstable. As suggested in 

[Kundur] and subsequently shown in the analyses of Chapter Three, for a generator 

with a high-gain thyristor exciter, transient gain reduction and A VR, and with the 

damper windings neglected, the system damping is expected to be adversely affected; 

this combination of factors has been chosen deliberately to provide a poorly damped 

base-case system on which to study the influence of the CSC damping controller on 

the damping of the swing mode oscillations. 

CSC damping control 

Table 4.2 now shows the eigenvalues of the system at the same operating point as 

considered in Table 4.1, but with the CSC damping control now in operation with a 

controller gain Kc = 0.1. Comparison of Tables 4.1 and 4.2 shows that with the 

addition of the CSC damping control the damping factor of the swing mode 

eigenvalue becomes positive (' = 0.065). The eigenvalues in Table 4.2 therefore 

indicate that the CSC damping control is able to stabilise the swing mode oscillations 

of the system at this operating point, but that these oscillations nevertheless remain 

poorly damped. This situation can be worsened or improved depending on the system 

operating conditions and hence the following subsections now consider the factors 

with significant influence on the performance of the damping scheme. 

CSC damping control with increased line loading 

Table 4.3 now shows the eigenvalues of the system with the CSC damping control in 

operation as in the previous case (Table 4.2) but with the real power delivered by the 

generator increased from 0.2 p.u. to a value of 0.8 p.u. Although there is no change in 

the gain of the CSC damping controller from Table 4.2 to Table 4.3 (Kc = 0.1) the 

swing mode eigenvalue in Table 4.3 now has a higher damping factor (C = 0.258). 

Comparison of Tables 4.2 and 4.3 shows that the effectiveness of the CSC damping 

control scheme is increased at high line loadings. 
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CSC damping control with increased line reactance 

Table 4.4 now shows the eigenvalues of the system with the CSC damping control in 

operation and at the same line loading of Table 4.3 but with an increase in the line 

reactance from 0.8 p.u. to a value of 1.6 p.u. Once again there is no change in the 

damping controller gain (Kc = 0.1) but the electromechanical swing mode eigenvalue 

SM in Table 4.4 now has a lower damping factor (( = 0.203) than is the case in Table 

4.3 (( = 0.258). Comparison of Tables 4.3 and 4.4 shows that the effectiveness of the 

CSC damping control scheme is reduced when the system interconnection is 

weakened. 

The eigenvalues of Tables 4.1 to 4.4, therefore, have shown that the CSC damping 

control is able to stabilise the electromechanical swing mode of the system in Fig. 3.1. 

Furthermore, the results show how the operating conditions and parameters of the 

system affect the performance of the CSC damping control for a given controller 

design. The following subsection examines how, for a given operating point, the 

design of the CSC controller itself influences the damping of the swing mode 

oscillations. 

Effect of CSC controller gain Kc 

Fig. 4.1 shows the loci of the eigenvalues of the system in Fig. 3.1 as the CSC 

damping controller gain Kc is increased from Kc = 0 to Kc = 1.4. In this study the 

transmission line once again has an inductive reactance XL = 0.8 p.u. and transmits a 

steady state electrical power of Peo = 0.2 p.u. but the controller gain Kc is increased 

from 0 to 1.4. It can be observed that as Kc increases, the eigenvalue associated with 

the machine rotor angle dynamics (SM) moves further into the left-hand plane, 

corresponding to an improvement in the damping of the swing mode oscillations. As 

the controller gain Kc increases, the damped natural frequency (Vd of the eigenvalue 

associated with swing mode oscillations SM is decreasing and therefore the swing 

mode frequency is reduced whilst its damping factor is increasing. The eigenvalues 

associated with the voltage regulator (A VR), and exciter (EXC) are relatively 

unchanged and those associated with the input filter of the damping controller (IPF) 

make a slight but insignificant shift to the right. Fig. 4.1 (b) is an enlarged section of 

Theoretical Analysis of the CSC Applied to the Local Mode Damping Problem Using P-H Model 



Chapter 4 Page 4.13 

Fig. 4.1 (a) showing the rotor angle oscillatory mode eigenvalue as the value of Kc 

increases. 

a 

6 -IJ) :u 4 
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0>2 AVR EXC~ ro 
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Fig. 4.1: Eigenvalue loci of the SMIB system as the controller gain Kc of the 

damping controller is increased. 

4.3.2 Relationship Between Damping and Controller Gain 

The analytical discussions of section 4.2 have explained, using the linearised Phillips­

Heffron model, that the damping torque added to the system by the CSC controller is 

expected to increase almost linearly with the controller gain Kc, and it has been 

further shown that this component of torque is dependent on the value of the system 

coefficient Kp which in turn depends on the system operating conditions and system 

parameters. The aim of this subsection therefore is twofold: flrstly, to reconfmn by 

means of numerical calculations using the linearised model that the damping torque 

contributed to the system by the CSC damping scheme is a linear function of the 

controller gain Kc; secondly, to determine for the system under consideration (Fig. 

3.1) whether the value of the coefficient Kp is always positive for various system 
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operating conditions m order to ensure positive damping of the swing mode 

oscillations. 

Consider again the full expression for the term Kp in Appendix B which is shown to 

depend on the system parameters as well as machine loading. Firstly, for a 

synchronous generator the quadrature-axis reactance (Xq) is larger than the direct-axis 

transient reactance (X/) [Kundur] and consequently in the expression for Kp in 

Appendix B, XqT is greater than XdT' . Secondly, for any given system operating 

condition, the steady state electrical power term P ea in the expression for Kp is greater 

than the steady state electrical power term corresponding to the reluctance torque P ea2, 

and therefore the difference between Pea and P ea2 is always positive. These two 

observations mean, firstly, that the value of Kp is always positive so that for a positive 

controller gain Kc the damping torque contributed by the CSC is a stabilising torque; 

in addition, at higher values of the transmitted electrical power the difference between 

Pea and P ea2 increases, and hence so does the positive value of Kp. 

Fig. 4.2 now shows the numerical calculation of Kp at different generator loadings for 

two conditions of the system in Fig. 3.1: only one of the two parallel transmission 

lines in service (representing a weak system connection) and both of the parallel 

transmission lines in service (representing a strong system connection). The numerical 

result shown in Fig. 4.2 confirms that at the various operating conditions of the 

system the value of Kp is always positive. Fig. 4.2 further confirms that, for a given 

transmission system connection, as the generator loading increases, the value of Kp 

also increases. Finally Fig. 4.2 confirms that, for a given generator loading, the value 

of Kp is lower for a weak system connection when compared to that of a strong 

system connection. 

The analytical discussions in the previous section of this chapter have predicted that 

the damping torque contributed to the system by the CSC damping scheme increases 

with the controller gain Kc. Indeed, the eigenvalue loci shown in the previous 

subsection (Fig. 4.1) have shown that as the CSC controller gain increases the 

damping factor of the SM eigenvalue, and hence the performance of the CSC, 

increases. Fig. 4.3 now shows the results of numerical calculation of the damping 
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contribution of the CSC at different values of the controller gain Kc; these results 

show not only that the damping factor increases as the controller gain is increased, but 

that the increase in damping is, as expected, approximately a linear function of the 

controller gain. 

Fig. 4.2: 
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Theoretical Analysis of the CSC Applied to the Local Mode Damping Problem Using P-H Model 



Chapter 4 Page 4.16 

In summary, this subsection has reconfirmed that the value of Kp in the expression for 

the damping torque (eqn. (4.5)) added to the system by the CSC damping controller, 

at various system operating conditions, is always positive, and has subsequently 

shown that the damping torque contribution by the CSC controller is a linear function 

of the controller gain Kc. This subsection further re confirmed the influence of various 

factors that contribute to the performance of the CSC damping controller namely, the 

generator loading, system parameters and controller gain. The following subsection 

reconfirms the predictions of the linearised P-H model using an idealised 

representation of the CSC by means of non-linear time domain simulation studies. 

4.3.3 Non-Linear Simulation Results Using Idealised CSC Model 

The previous subsection considered the linearised Phillips-Heffron (P-H) model of the 

single-generator infinite bus power system of Fig. 3.1. The influence of the CSC 

controller on the damping of the system oscillations, and the factors affecting its 

performance, were studied using both the P-H graphical model (Fig. 3.5) and via 

eigenvalue analysis techniques. In this subsection the predictions of the linearised 

model of the system are now examined further by means of time-domain simulation 

studies using the simplified non-linear differential equation model (eqns. (3.27) to 

(3.33)) in which the CSC response is assumed to be ideal. In a later section of this 

chapter these predictions are re-confirmed using the detailed model of the system in 

which the internal dynamics of the CSC element are accurately represented. In each of 

the studies that follow, the time-domain simulation model is used to predict the 

response of the system when it is subjected to a temporary three-phase short circuit at 

the terminals of the infinite bus (point F in Fig. 3.1), lasting 100 milliseconds. The 

three plot windows in Fig. 4.4 compare the time response of the system in Fig. 3.1 to 

this disturbance for the same combination of operating conditions which were 

considered in the eigenvalue predictions of Tables 4.1 to 4.4 in section 4.3.1 of this 

chapter. 

Time-domain response with and without CSC damping control 

The light curve in Fig. 4.4 (a) shows the response of the system in Fig. 3.1 to the 

disturbance at the infinite bus with no CSC damping control action (controller gain Kc 

= 0), with the steady state value of power Peo equal to 0.2 p.u. and with the line 
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reactance XL = 0.8 p.u.; the system eigenvalues corresponding to this combination of 

operating conditions were shown in Table 4.1 of section 4.3.1. The linearised results 

in Table 4.1 predicted that, under these conditions, the swing mode oscillation is 

unstable with the CSC damping control inactive; the time-domain simulation shown 

by the light curve in Fig. 4.4 (a) now confirms that the generator rotor angle response 

in this base-case study is, as predicted, negatively damped such that the rotor angle 

oscillations grow with time (oscillatory instability) when the CSC damping control is 

inactive. 

The dark curve in Fig. 4.4 (a) shows the response of the system in Fig. 3.1 with the 

values of power Pea = 0.2 p.u. and XL = 0.8 p.u. unchanged from the base-case study, 

but with the CSC damping controller now active (controller gain Kc = 0.1); the 

system eigenvalues corresponding to this combination of operating conditions was 

shown in Table 4.2 of section 4.3.1. The linearised results in Table 4.2 predicted that 

with the CSC damping controls operative and with this value of controller gain Kc, 

the swing mode of the system becomes stable but remains lightly damped; the dark 

curve shown in Fig. 4.4 (a) now confirms this prediction via time-domain simulation. 

Taken together, the two curves in Fig. 4.4 (a) visually demonstrate the change in the 

damping of the generator rotor oscillations of the system in Fig. 3.1 for a given 

system connection (XL = 0.8 p.u.) and steady state power transfer (Pea = 0.2 p.u.) 

when the CSC damping controls are activated. 

Effect of line loading on the CSC damping controller performance 

Comparison of Tables 4.2 and 4.3 in section 4.3.1 predicted that, for a given CSC 

damping controller gain and transmission line reactance, a higher value of the 

transmitted electrical power yields a higher damping ratio, hence more damping 

torque is contributed by the CSC controller in the system. The time-domain 

simulation results in Fig. 4.4 (b) are now intended to demonstrate this effect of 

transmission line loading on the performance of the CSC damping controls at a 

particular value of controller gain Kc. The light curve in Fig. 4.4 (b) once again shows 

the time-domain response of the generator rotor angle with the CSC damping controls 

active (Kc = 0.1) and with the values of Pea = 0.2 p.u. and XL = 0.8 p.u. from the base­

case study (the same response that is shown as the dark curve in the previous plot 
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window of Fig 4.4 (a)); the dark curve in Fig. 4.4 (b) now shows the response of the 

generator rotor angle when the line loading has been increased to Peo = 0.8 p.u. but 

with Kc= 0.1 and XL = 0.8 p.u. unchanged. A comparison of the light and dark curves 

in Fig. 4.4 (b) clearly shows that at the higher line loading the generator swing mode 

is noticeably more damped, despite the fact that the CSC damping controls are the 

same in each case. 

Effect of line reactance on the CSC damping controller performance. 

Comparison of Tables 4.3 and 4.4 in section 4.3.1 predicted that, for a given 

controller gain and machine loading, an increase in the transmission line reactance 

reduces the damping ratio of the eigenvalue associated with the swing mode 

oscillations and hence deteriorates the CSC damping scheme's effectiveness. The 

time domain simulation results in Fig. 4.4 (c) are now intended to demonstrate this 

effect of the strength of system interconnection on the performance of the CSC 

damping controls at a particular value of controller gain Kc. The light curve in Fig. 

4.4 (c) once again shows the time-domain response of the generator rotor angle with 

the CSC damping controls active (Kc = 0.1) and with the values of Peo = 0.8 p.u. and 

XL = 0.8 p.u. from the eigenvalue study of Table 4.3 (the same response that is shown 

as the dark curve in the previous plot window of Fig 4.4 (b)); the dark curve in Fig. 

4.4 (c) now shows the response of the generator rotor angle when the line reactance 

has been increased to XL = 1.6 p.u. but with Kc = 0.1 and Peo = 0.8 p.u. unchanged. A 

comparison of the light and dark curves in Fig. 4.4 (c) confirms that with the 

increased line reactance (weaker system interconnection) the generator swing mode is 

less damped for the same real power transfer and CSC controller gain, as predicted in 

the eigenvalues of Tables 4.3 and 4.4. 

Theoretical AnalYSis of the CSC Applied to the Local Mode Damping Problem Using P-H Model 



a 
20 

III 
Q) 

~ 10 
Cl 
Q) 

Cl 

0 
0 

b 
60 

~ 40 
~ 
Cl 
Q) 20 
Cl 

0 
0 

80 
C 

~ 60 
Q) ... 
Cl 40 
Q) 

Cl 
20 

0 

Fig. 4.4: 

1 

1 

1 

Chapter 4 Page 4.19 

Generator Load Angle 

(\ 
\ 

V 
2 3 4 5 6 

__ ~ ___ _ ____ 4 _________ ~ ___ _ ____ 4 __ _ __ _ _ _ 

I I 

2 3 4 5 

I 

I I 

I I I I --- ------ - - ---- -- -- - - - --- - -- 1"---- --- -

2 3 
Time(s) 

4 

I 

5 

6 

6 

Time-domain simulation results of the SMIB system in Fig. 3.1 using 

the simplified non-linear system model in eqns. (3.27) to (3.33). 

Effect of CSC controller gain Kc 

The time-domain results of Fig. 4.4 have confirmed the predictions of the linearised 

analysis in section 4.3.1 regarding the effect of system conditions on the performance 

of the CSC damping controls at a given controller design. However, the linearised 

analyses have also predicted (Figs. 4.1 and 4.3) how the performance of the CSC 

damping controller is related to its own controller gain Kc at any given system 

operating point. Moreover, the linearised analyses indicated that a very high controller 

gain results in the best performance of the CSC damping scheme. In practice 

however, it is necessary that limits are placed on the maximum allowable controlled 

series compensating reactance [Webster,Chen] and hence high values of the controller 

gain Kc would be expected simply to drive the CSC controller output into limit. The 

linearised model is valid only for small disturbances around the system operating 

point, and hence the eigenvalues of the linearised (Phillips-Heffron) model only 
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predict what the damping of the system oscillations will be when these oscillations 

have decayed to a small enough amplitude that the output of the CSC is continuous. 

Thus in cases where the CSC output is driven into limit, it is necessary to check the 

perfonnance of the system (via simulation) using the non-linear model in order to 

determine whether the system can successfully come out of limit and return to steady­

state following a disturbance; that is, it is necessary to ensure that the system does not 

get into a limit cycle (the relay chatter problem referred to in Chapter Two of the 

thesis). 

Fig. 4.5 now shows the time-domain response of the system in Fig. 3.1 to a three­

phase fault at the infinite bus (at the same system operating point in each case) but for 

two different values of damping controller gain Kc: the light curve shows the response 

for a modest value of Kc = 0.2 whilst the dark curve shows the response for a high 

value of Kc = 2.0. In each case the CSC has its output (capacitive reactance) limited to 

variations of ±0.1 p.u. around its steady state set point value of 0.1 p.u, with the 

inductive reactance of the transmission line changing from XL = 0.8 p.u to XL = 1.6 

p.u. after the clearance of the fault. The results of Fig. 4.5 confinn that, while a high 

value of Kc does in fact drive the output of the CSC into limit, the CSC controller is 

able successfully to come out of limit. 

This section has successfully reconfinned Swift and Wang's theoretical findings using 

an idealised controllable series compensator model. The following section now 

considers a more-detailed generator model and the detailed representation of the 

inverter-based series compensator scheme in order to access the validity of these 

findings in a more complete system model. 
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Time-domain simulation results of the single-machine infinite bus 

system at two values of the controller gain. 

4.4 Results and Analysis Using the Detailed Model of the Inverter-Based Series 

Compensator 

4.4.1 Introduction 

The investigations presented thus far (both linearised and non-linear) have been 

carried out using a simplified generator model and have assumed an idealised, generic 

controllable series compensator in which the compensating reactance can be varied 

instantaneously. This section now examines the time-domain response of the single­

machine infinite bus power system using a more-detailed simulation model as shown 

in Fig. 3.4, in which the controllable series compensator itself is modelled in detail. 

The objective of this investigation is twofold: firstly, to determine whether the 

specific type of CSC considered in this thesis (inverter-based series compensation) is 

in fact suitable for damping swing mode oscillations; secondly, to determine whether 

the assumption made in the analytical work of Swift and Wang (repeated in section 
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4.3 of the thesis) of an idealised CSC IS valid for the case of inverter-based 

compensation. 

However, in order to accommodate a more detailed compensator model in the system 

of Fig. 3.1 it has also been necessary to employ a model of a synchronous generator in 

which the stator (and hence transmission line) current dynamics are represented; this 

change in machine model from the simplified representation of Fig. 3.1 (no generator 

stator transients) is in itself expected to affect the predicted response of the system to 

some extent. Thus, in order to isolate the various contributing factors, the 

investigation has been carried out, and is presented, as follows. 

(i) Non-linear time-domain simulation results obtained with the simplified 

MA TLAB model are compared with those of a more-detailed model of a 

generator in PSCADIEMTDC with no CSC damping control in each case. 

In this study, a fixed amount of series capacitive compensating reactance 

is considered for both models of the system. The objective of this study is 

to isolate, via time domain simulations, the extent to which the level of 

detail of the synchronous generator model affects the predicted response 

of the system; 

(ii) The time-domain response of the system in the simplified MA TLAB 

model (once again, with a fixed amount of conventional series 

compensating reactance) is then compared with response predicted by the 

detailed PSCADIEMTDC model; however m the detailed 

PSCADIEMTDC model, the fixed amount of series compensating 

reactance is now provided by the inverter-based series compensator. The 

objective of this analysis is to determine the extent to which an inverter­

based compensator affects the response of the system with no damping 

controls in place; 

(iii) Finally, the response of the system predicted usmg the simplified 

MA TLAB model with an idealised CSC and damping controller in place 

is compared to the response predicted using the system model developed 

in PSCADIEMTDC with a detailed representation of an inverter-based 
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series compensator and the same damping controller in place. This 

comparison, in conjunction with those described in parts (i) and (ii) 

above, will allow the validity of the simplified representation of a CSC to 

be assessed. 

Appendix C shows the slightly modified transmission system parameters for the 

investigations of this particular section; for both the simplified and detailed non-linear 

simulations in this section the transmission system comprises a single rather than a 

double line as shown in Fig. 3.1. As explained in Chapter Three, for the purposes of 

this study, an inverter-based series compensator scheme in PSCADIEMTDC has been 

implemented as shown in Fig. 3.4, and its internal controls have been presented in 

[Rigbyl]. 

4.4.2 Simulation Results Using a Fixed Amount of Conventional Series 

Capacitive Reactance 

Fig. 4.6 compares the time-domain response of the SMIB system to a temporary three 

phase fault at the infinite bus lasting lOO milliseconds as determined using the 

simplified model equations (3.25) to (3.31) and the detailed model implemented in 

PSCADIEMTDC (Fig. 3.4). In both cases the transmission line is compensated with a 

fixed amount of conventional series capacitive reactance. The results show that the 

time-domain response predicted by two models agrees very closely: the small 

differences that are present between the simulation results are due to the effects of 

generator stator transients being ignored in the simplified model, since this is the only 

modelling difference in the two studies. Therefore, the significance of the non-linear 

simulation results in Fig. 4.6 is twofold: firstly, they confirm that neglecting the 

generator stator transients in the simplified model used to derive the Phillips-Heffron 

equations is in fact reasonable; secondly, these results indicate that the presence of 

generator stator transients in the detailed PSCADIEMTDC model of the system is not 

responsible for any significant differences in the behaviour that may be predicted by 

this model and that predicted by the simplified model when controllable series 

compensators are subsequently introduced into the study. 
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Fig. 4.6: Simplified MATLAB and detailed PSCADIEMI'DC non-linear time 

domain SMIB simulation models of the same system using a fixed 

amount of conventional capacitive series compensating reactance. 

4.4.3 Simulation Results Using a Fixed Amount of Inverter-Based Series 

Compensation 

Fig. 4.7 once again compares the time-domain response of the SMIB system predicted 

using both the simplified and detailed system models with a fixed amount of series 

compensating reactance: the light curve shows the generator rotor angle swing using a 

simplified generator model and a fixed amount of conventional series compensating 

reactance; the bold curve shows the response predicted using the detailed model of the 

system, but with the fixed amount of capacitive compensating reactance now provided 

by an inverter-based series compensator. The comparison of the responses in Fig. 4.7 

shows that the amplitude of the predicted generator rotor angle oscillations is smaller 

in each swing when the inverter-based series compensator is modelled in detail than is 
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the case when the inverter-based compensator is modelled as an ideal capacitive 

reactance. Thus the results of Fig. 4.7 indicate that the simplified representation of an 

inverter-based compensator does lead to a degree of error in the predicted results. 

However, examining Fig. 4.7 more closely indicates firstly that this error is 

conservative (that is, the simplified representation of the inverter-based compensator 

predicts a larger amplitude of rotor oscillation than is actually the case). Secondly, 

Fig. 4.7 shows that despite the error in predicted amplitude of the rotor oscillations, 

the damping of the oscillations predicted by the two models is in close agreement 

(both models predict the oscillations to increase at the same rate). 
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Fig. 4.7: 

Time (s) 

Simplified MATLAB and detailed PSCADIEMIDC non-linear models 
showing the generator rotor swing following a temporary 
disturbance. 

The differences in the predicted responses of Fig. 4.7 can be isolated to the different 

level of modelling of the inverter-based series compensator between the two studies. 

Consequently, these differences indicate that the internal behaviour of the inverter­

based compensator and its controls does in fact have an influence on the response of 

the system following a disturbance. The reasons for the influence of the 

compensator's internal characteristics on the response of the system as a whole have 
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not yet been examined in detail and lie outside the scope of this thesis. However, 

given the observations that (i) the simplified representation of the CSC results in a 

conservative error in the predicted amplitude of generator rotor oscillations and (ii) 

that the damping of these oscillations predicted with the simplified model agrees with 

that predicted by the detailed compensator model, the simplified representation of the 

CSC in the linearised analyses seems reasonable for power oscillation damping 

studies involving an inverter-based series compensator. 

4.4.4 Simulation Results Using Controlled Inverter-Based Series Compensation 

Fig. 4.8 now shows the time response of the SMIB system following the temporary 

three-phase fault when the damping controller is active and is used to modulate the 

series capacitive reactance provided by the CSC. The light curves in Fig. 4.8 show the 

response predicted with the simplified model of the CSC whilst the dark curves show 

the response when the inverter-based CSC is modelled in detail. In both cases the 

CSC damping controller is identical and has controller gain Kc = 0.05. Comparison of 

the predicted responses in Fig. 4.8 shows, once again, that the amplitude of the rotor 

oscillations for a system with a detailed model of an inverter-based compensator is 

smaller than that of a system with an idealised CSC, but that the damping of these 

oscillations is similar in each case. 

The results in Fig. 4.8 provide confirmation that the particular type of CSC considered 

in this study (that is, inverter-based series compensation) is capable of being used to 

vary the line reactance with sufficient speed to damp out unstable generator rotor 

oscillations when used as the variable reactance element in a power oscillation 

damping scheme. (Recall that in this study, prior to the introduction of the damping 

controls, the oscillations are unstable at this operating point as shown in Fig. 4.6). The 

results also provide further confirmation that the resulting positive value of damping 

obtained with the inverter-based CSC and its external controls agrees closely with that 

predicted using the simplified representation of the CSC as an ideal variable 

reactance. 

The results in Fig. 4.8 illustrate the performance of the inverter-based compensator at 

a moderate value of damping controller gain Kc for which the controlled series 

capacitive reactance is in limit for only a brief period follo"ling the disturbance. In 
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order to examine the behaviour of the detailed inverter-based compensator scheme 

when driven into limit for a longer period, Fig. 4.9 now shows the response of the 

system to the same fault when the damping controller gain is increased tenfold to Kc = 

0.5. The transient response of the system predicted using the two models is almost 

identical in limit but differs in the way the CSC comes out of limit. Despite the 

difference in the predicted responses, with the detailed model of the CSC system, the 

controller is still able to maintain the stable, damped response at high controller gains 

when the CSC is driven into limit. 

In summary, from the time-domain simulation studies presented in this section two 

important conclusions can be made regarding the use of inverter-based series 

compensation for damping of swing mode oscillations: 

(i) the inverter-based form of series compensation is suitable for damping 

swing mode power oscillations both for small-signal damping control as 

suited to inter-area mode damping applications, and for large-signal 

(transient) damping of local-mode type swings where the CSC is driven 

into limit by a high value of controller gain; and 

(ii) the use of an idealised CSC model to represent the inverter-based series 

compensator for the design and analysis of the damping controller is 

reasonable, in particular for small-signal damping control studies and 

hence inter-area mode damping studies. 
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curves) following a temporary disturbance with Kc=0.05 in each 
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simulation models of the SMIB system showing the predicted 
responses of the system following a disturbance with a high 

controller gain Kc= 0.5 in each case. 
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4.5 Results and Analysis Using Locally-Measured Input Signals 

4.5.1 Introduction 

The previous sections of this chapter have considered the single-machine infinite bus 

power system in Fig. 3.1 , both under small signal and large signal conditions, and 

have considered the influence of various contributing factors to the controllable series 

compensator (CSC) damping controller performance and have found that the 

predicted responses of the system are in accordance with the findings in [Swift1 ,2]. In 

addition, subsequent studies have shown firstly that the particular inverter-based 

series compensator scheme considered in these analyses (as presented in [Rigby1]) 

can be used as another tool to damp the electromechanical system oscillations and 

secondly that the simplified approach employed in the analyses of Swift and Wang 

[Swift1,2] to represent a controllable series reactance can reasonably be applied in the 

case of an inverter-based series compensator. However, the analyses of the previous 

sections were carried out for a specific damping controller input AW, since it was 

shown that this particular input signal is desirable in order to develop a component of 

torque which is in phase with the generator speed deviation AW, thus maximising the 

CSC damping controller performance for given system operating conditions. 

The particular problem being studied with the SMIB system of Fig. 3.1 is that of 

damping a local mode, where the oscillations of an individual generator are of direct 

concern and can be damped using the generator's speed deviation for the CSC 

controller input; however, the end-objective of this study is to re-apply the design and 

analysis techniques, which have been presented here for a simple case in Fig. 3.1, to 

investigate the inter-area mode damping problem where poorly damped oscillations 

occur as a result of a large group of generators in one area oscillating against a large 

group of generators in another area. Practically, in such an environment, the CSC 

controller is likely to be situated in the transmission network between the two groups 

of generators and is therefore likely to be physically far from the generators connected 

to the system; hence the speed deviations of those machines of interest are not readily 

available for the controller [Larsen]. 

Indeed, Chapter Two of this thesis reviewed a number of proposed input signals to the 

CSC damping controller: those suited to the inter-area mode damping problem were 
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identified as those that can be synthesised using variables measured locally at the site 

of the CSC in the system. Thus, while the generator speed deviation has been shown 

to be an ideal and logical input signal to the CSC damping controller, in the case of 

the inter-area mode damping problem this input signal must in practice be synthesised 

from other system variables measured locally at the controllable series compensator 

itself. This final section of this chapter now considers three of the proposed input 

signals that were reviewed in Chapter Two and compares these signals to the 

generator speed deviation in order to assess their suitability as locally-measured 

inputs to a CSC damping controller. 

4.5.2 Review of Input Signals 

This subsection briefly describes three types of local measurements as proposed in 

references [deMellol], [Larsen] and [Grongquist] that could each potentially be used 

to synthesise the generator speed deviation in order to act as an input to a CSC 

controller in the damping of an inter-area oscillation in Chapter Five of the thesis. 

These three approaches are presented below as follows. 

Rate of change of power flow through the controllable series element 

In reference [deMello 1] deMello proposes that the power flowing through the CSC 

itself is the appropriate variable to measure for a damping controller since this signal 

can be calculated from local voltage and current measurements and is suited to the 

damping of inter-area oscillations. deMello proposed that the derivative of power flow 

• 
in the series compensating element Pcsc should, after proper filtering at the frequency 

range of interest, be fed directly to the input of a CSC damping controller. 

Synthesised speed deviation 

In reference [Larsen] Larsen et al. propose, for control of inter-area mode oscillations, 

the synthesis of angular difference between the voltages at each end of the line in 

which the CSC is placed; this synthesised angular difference is then differentiated in 

order to convert it to a synthesised speed deviation measurement IlWsynth. The remote 

voltages, Vsynthl and Vsynth2 , on each side of the CSC are synthesised as functions of 

synthesising impedances, and the synthesised angular difference in [Larsen] as, 
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(4.6) 

where 812 represents the angular difference between the group of machines of the two 

areas; the synthesised remote voltages Vsynthl and Vsynth2 are themselves obtained from 

local current and voltage measurements. The proposed damping controller in 

[Larsen] is of the form, 

(4.7) 

where the terms [s / (1 +STDC)] [1 / (1 +STDC)] are the filtered derivative circuits used to 

convert the angle difference measurement AOsynth to a speed deviation measurement 

A Wsynth, sT ws / (1 +sT ws) is a washout circuit, and Km is the damping controller gain. 

The synthesised output of this scheme AWsynth is then the input to the CSC damping 

controller. In the studies of this section, it is this synthesised speed deviation AWsynth 

that is compared to the actual speed deviation in the simplified SMIB study. 

Voltage drop across the controllable series element 

Grongquist et al. in reference [Qrongquist] propose a control approach based on the 

magnitude of voltage drop across the transmission line in which the controllable 

reactance controller is placed; this signal is synthesised as shown in eqn. (2.7) of 

Chapter Two. The variables JLINE and XL/NE are locally-measured line current and line 

reactance respectively, and Vrcsc is the voltage across the controllable element itself. 

The input to the CSC controller has been described as the product of the synthesised 

. 
voltage V and its derivative with respect to time V . 

This subsection has provided a brief review of three locally-measured input signals to 

be examined for the CSC damping controller input. The following subsection now 

presents time-domain simulation results of the study system in Fig. 3.1 with the 

detailed mathematical model of the inverter-based compensator in PSCADIEMTDC 

to compare the characteristics of each these synthesised signals to that of the actual 
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generator speed deviation /lw. 

4.5.3 Non-Linear Simulation Results 

This subsection once again considers the simulated response of the detailed single­

machine infinite bus power system in Fig. 3.1 where the controlled reactance is 

provided by the inverter-based series compensator. The first simulation result 

presented compares the characteristics of each of the three input signals reviewed in 

the previous subsection to those of the generator speed deviation /lw. Initially, the 

synthesised signals are not actually used as inputs to the CSC damping controller. 

Rather, the actual generator speed deviation remains as the input signal to the CSC 

controller in each case but each of the three locally-synthesised candidate signals is 

compared in the time-domain to the actual signal/l w that is being used as the input to 

the controller. 

Characteristics of the candidate input signals 

This subsection now compares the characteristics of the three locally synthesised 

signals to those of the measured generator speed deviation /lw in order to determine 

which of these signals might be used as a replacement for generator speed deviation in 

an inter-area mode damping controller. Fig. 4.10 shows the response of the SMIB 

system in Fig. 3.1 when subjected to a temporary three-phase disturbance at the 

infinite bus terminals with /lw used at the CSC input; each plot window in Fig. 4.10 

compares the time response of the actual speed deviation with that of a locally­

synthesised candidate input signal. 

In Fig. 4.10 (a) the actual speed deviation /lw (bold curve) is compared with the 

synthesised speed deviation signal /lWsynth proposed by Larsen et al. [Larsen] (light 

curve). The magnitude of the synthesised signal /lWsynth has been scaled such that it 

corresponds to the magnitude of /lw in the later (small-signal) stages of the 

oscillation. The comparison in Fig. 4.10 (a) shows that, after appropriate magnitude 

scaling, the time response of the synthesised signal/lwsynth corresponds closely to that 

of the actual speed deviation /lw, but that there is nevertheless a small phase lag in 

/lWsynth with respect to /lw. The phase relationship between /lWsynth and /lw at the 

frequency of the generator oscillations is determined by the value of the time constant 
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TDC chosen for the differentiator-filter stage that is used to convert the synthesised 

angle difference into a synthesised speed deviation (eqn. (4.7». This time constant 

TDc can be set to give a signal 6.Wsynth exactly in phase with 6.w at a particular 

operating point if desired; however it is better practice [Larsen] to design the 

differentiator-filter block to allow a small phase lag in 6.Wsynth with respect to Aw 

thereby introducing a small positive component of synchronising torque when the 

signal is used as a CSC controller input. The consequence of erring on the side of 

phase lead between 6.Wsynth and 6.w would be to introduce negative synchronising 

torque which is clearly undesirable. Fig. 4.10 (a) thus confirms that the small-signal 

behaviour of the locally-measured signal AWsynth is therefore a slightly conservative 

(and hence reasonable) approximation to the generator speed deviation Aw. However, 

Fig. 4.10 (a) also shows that there is a significant difference between the 

characteristics of 6.Wsynlh and 6.w during the fault and in the period shortly after the 

fault is cleared. Thus while the locally measured signal AWsynth is clearly suitable for 

small-signal damping in the post-fault period, it is still necessary to check its effect on 

the system response during, and immediately after a system fault occurs. 

In Fig. 4.10 (b) the actual speed deviation Aw(bold curve) is compared with the rate 

. 
of change of power Pcsc flowing through the CSC (light curve) (the input signal 

proposed by deMello [deMello 1 D. Once again the locally-measured signal is scaled 

such that its magnitude corresponds to that of generator speed deviation 6.w during 

• 
small signal oscillations. The results of Fig. 4.10 (b) show that this input signal Pesc 

exhibits much the same characteristics as the synthesised speed deviation 6.Wsynth of 

• 
Larsen (Fig. 4.10 (a»: the signal Pese exhibits a small phase lag with respect to Aw 

for small-signal variations in generator speed but does not correspond to 6.w during 

the fault period and for a short period immediately following the clearance of the 

• 
fault. Thus, as with the signal 6.Wsynth, the locally-measured signal Pese proposed by 

deMello is a reasonable signal to use in place of generator speed deviation as an input 

to a CSC damping controller but the effect of this signal on the system response 

during, and immediately after a system fault needs examination. 
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Finally, in Fig. 4.10 (c) the speed deviation ~U) (bold curve) is compared with the 

. 
signal V * V (light curve) (the input signal proposed by Grongquist et al. 

[Grongquist]). Once again, the magnitude of the synthesised signal (light curve) has 

been scaled such that it corresponds to the magnitude of ~U) during small signal 

• 
oscillations. Fig. 4.10 (c) shows that, unlike the signals ~U)synth and P csc , the locally 

• 
synthesised signal V * V is not in phase with ~U); rather, the oscillations in the signal 

V * Vare found to lag those of ~U) by close to 90°. The results of Fig. 4.10 (c) 

• 
therefore indicate that the signal V * V proposed by Grongquist in fact synthesises the 

deviation in generator rotor angle ~o rather than the generator speed deviation ~U). 

As a result, while such a signal could be expected to provide positive synchronising 

torques if used as an input to the CSC, it would not be expected to result in addition of 

. 
significant small-signal damping torques. Thus the signal V * V is not suitable as an 

input for a CSC damping controller as applied to the inter-area mode damping 

problem. 

This subsection has examined three locally-measured input signals for the CSC 

controller that have been proposed in the literature, and the studies have identified two 

of these signals that can be considered suitable for the damping of inter-area 

oscillations namely, the locally-synthesised speed deviation measurement of Larsen et 

al. in [Larsen] and the rate of change of power flowing through the controllable series 

reactance of deMello in [deMellol]. The following subsection now examines the 

performance of the CSC damping controller when each of these two signals is 

actually used as the input to the controller in place of the ideal signal AU). 

Theoretical Analysis of the CSC Applied to the Local Mode Damping Problem Using P-H Model 



Chapter 4 Page 4.36 

a deltaw,synthesised deltaw 
5 

---- s~ deItaw 
- deItaw 

~o 
~ 

-5 
0 2 3 4 5 6 

b del taw, dPcsddt 
5 

:1 = :cft j 
~o 
~ 

-5 
0 2 3 4 5 6 

c deltaw, V"cNldt 
5 

!I= ~cft j 
~o 
CIl 

~ 

-5 
0 2 3 4 5 6 

lirre (s) 

Fig. 4.10: Time-domain simulation results comparing various synthesised 

signals to the actual speed deviation /:l.£c). 

Simulation results using the synthesised signals 

• 
Fig. 4.10 has shown that the two locally-measured signals /:l.£c)synth andPcsc can, after 

suitable magnitude scaling, be used as replacements for the generator speed deviation 

/:l.£c) at the input of the CSC damping controller for small-signal variations in /:l.£c). 

However it has also been shown that these signals differ significantly from the signal 

/:l.£c) during, and immediately after clearing of, a large system disturbance. It is 

therefore necessary to evaluate how the CSC controller responds when such signals 

are actually used as inputs to the damping controller. This subsection now examines 

the performance of the CSC damping controller when the input signal/:l.£c) (for which 
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• 
the controller has been designed) is replaced first by the signal P csc and then by the 

signal/:lwsynth. The time-domain simulation results of this subsection show, for each of 

these signals, the response of the system following a temporary three-phase short 

circuit fault lasting 100 milliseconds applied at the terminals of the infinite bus. 

Fig. 4.11 compares the performance of the CSC damping controller in the detailed 

SMIB system of Fig. 3.4 with /:lw as input (bold curve) with the response of the same 

• 
system with Pcsc as input (light curve) to the damping controller. As in the previous 

• 
subsection, the input Pcsc is appropriately scaled to correspond in magnitude to /:lw 

before being used as a replacement for /:lw; in this way the effective gain of the CSC 

damping controller is unchanged and its small-signal performance can be expected to 

remain the same for both signals. However, consider firstly the initial response of the 

system shown in Fig. 4.11 (b) and (c): Fig. 4.10 (b) showed a significant difference 

. 
between /:lw and P csc during, and immediately after a fault which is observed again 

in Fig. 4.11 (b) (light curve); Fig. 4.11 (c) now shows the effect that this difference 

• 
has on the system when Pcsc is used as input to the CSC damping controller. During 

. . 
the fault, when P csc is negative and /:lw positive, the synthesised signal P csc in Fig. 

4.11 (c) drives the controller output into negative limit (light curve) whereas the 

actual speed signal /:lw drives the controller output into positive limit (bold curve) . 

• 
Immediately after clearance of the fault P csc has the correct sign but is much greater 

in magnitude than the actual speed deviation /:lw, so the locally-measured signal now 

drives the CSC controller output into positive limit. However even in the case when 

the actual speed deviation is used as the input signal, the CSC output is driven into 

positive limit immediately after the fault; as a result, there appears to be no significant 

difference in the predicted response of the system in the post-fault period for this 

• 
particular disturbance. Clearly, the large signal behaviour of the system with P csc as 

input to the CSC controller will depend on the type, location, and severity of a fault; 

however, the analyses of this section have considered a three-phase short circuit fault 

(a severe disturbance) and the results indicate that, despite the discrepancy between 

• 
/:lwand Pcsc under large signal conditions, the CSC controller performance during 
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the first swing is not significantly altered from that with l1lU as input to the damping 

controller. 

Finally, Fig. 4.11 (c) confirms, as expected, that for small-signal system oscillations 

• 
(when Pcsc closely approximates lllU) the performance of the CSC damping 

• 
controller with Pcsc as input to the CSC controller is very close to that when l1lU is 

used as the input to the damping controller. The small-signal damping of the generator 

rotor oscillations is the primary focus of this study and Fig. 4.11 (a) shows that the 

. 
damping is virtually identical for both Pcsc and l1lU as inputs. The time-domain 

simulation results in Fig. 4.11 therefore confirm that, for the inter-area mode damping 

problem, P csc is a reasonable locally-measured substitute for the generator speed 

deviation l1lU. 

Fig. 4.12 now compares the performance of the CSC damping controller in the single­

machine infinite bus system (Fig. 3.1) with lllU as input (bold curve) with the 

response of the same system when the synthesised speed deviation signal l1lUsynth is 

used as input (light curve) to the damping controller. Once again, the input lllUsynth has 

been appropriately scaled to correspond in magnitude to lllU before actually using it as 

a replacement for l1lU such that the effective gain of the CSC damping controller is 

unchanged when the signals are swapped. Fig. 4.12 (b) shows that, once again, there 

is a significant difference between l1lUsynth and l1lU during and immediately after a 

temporary three-phase short circuit fault. The effect of this initial difference can be 

observed in Fig. 4.12 (c): the synthesised signal l1lUsynth at first drives the damping 

controller output into negative limit whilst the actual speed deviation l1lU drives the 

controller output into the positive limit. However, immediately after the clearance of 

the fault lllUsynth has the correct sign but is much greater in magnitude than l1lU, thus 

correctly driving the CSC output into positive limit such that there is no significant 

difference in the controller performance in post-fault from when l1lU is used as the 

input. Thus, the results show that despite a large discrepancy between lllU and l1lUsynth 

under large disturbance conditions, the controller performance during the first swing 

is not significantly altered from that with l1lU as input to the CSC. 
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Finally, when the controller output comes out oflimit (that is, for small-signal system 

oscillations) the performance of the CSC damping controller is, as expected, very 

close with each of the signals used as inputs to the CSC controller. The small-signal 

damping of generator rotor swings in Fig. 4.12 (a) once again shows that the damping 

is virtually identical for both /lw and /lWsynth as inputs to the CSC damping controller . 

. 
As in the case of the input signal P csc , a similar conclusion can be reached regarding 

the use of a synthesised speed deviation /lWsynth signal as input to the CSC controller 

for the inter-area mode damping problem: the synthesised speed deviation /lWsynth is a 

reasonable locally-measured substitute for the generator speed deviation /lw. 

This section has presented the results of a simulation study using a detailed single­

machine infinite bus system model in order to compare the performance of each of the 

proposed locally-measured signals in [Larsen] and [deMellol] when used as inputs to 

the CSC damping controller to that of the generator speed deviation /lw. The results 

have indicated that both these signals are reasonable candidate input signals for 

consideration in the damping of inter-area oscillations of the multi-machine system in 

[Kundur] that is to be studied in Chapter Five of this thesis. 
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Non-linear simulation of the system response in PSCADIEMI'DC 
following a temporary disturbance using, for the CSC controller input, 

the generator speed deviation and the synthesised rate of change of 
power flow. 
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Non-linear simulation of the system response in PSCADIEMTDC 
following a temporary disturbance using, for the CSC controller input, 

the generator speed deviation and the synthesised speed deviation 
measurement. 
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4.6 Conclusion 

This chapter has presented studies of a single-machine infinite bus power system 

which are similar to those of Swift and Wang in references [Swiftl,2] where an 

idealised controllable series compensator, with an external damping controller, is used 

to damp electromechanical system oscillations. Initially, a linearised Phillips-Heffron 

model was used to analyse the damping and synchronising torques added to the 

system by the CSC damping controller. In this chapter, although a generalised signal 

was initially assumed for the CSC damping controller input (as in the analyses of 

Swift and Wang [Swiftl,2]), it was however established that if all the torque 

contributed by the CSC controller to the system is actually desired to add to system 

damping, then the generator speed deviation is the appropriate signal to use (subject to 

minimal phase lag between this input and the output of the CSC controller). 

This chapter subsequently demonstrated, using the generator speed deviation for the 

damping controller input, the factors with considerable bearing on the CSC damping 

controller performance in the SMIB study system namely, the generator loading, the 

damping controller gain, and system interconnection strength. The influence of these 

factors on the performance of the CSC damping controller was found to be in 

accordance with the findings of Swift and Wang in [Swiftl,2] using the linearised 

Phillips-Heffron model with further confirmation provided from non-linear models of 

the system. The non-linear system models were also used to predict the system's 

response when the CSC damping controller output is driven into limit in order to 

determine the performance of the damping controller with very high controller gains. 

This chapter further extended the scope of the analytical study carried out in 

[Swiftl,2] where the performance of a power oscillation damping scheme was 

predicted using an idealised representation of the CSC; in this chapter the 

performance of the same damping scheme was considered but using a detailed 

representation of an inverter-based CSC. The significance of the findings of this 

extended investigation is twofold: firstly, an inverter-based series compensator is a 

suitable device to use particularly for small-signal damping of system oscillations; 

secondly, subject to a small degree of conservative error in the predicted response of 

the system, the use of a generic, idealised CSC model as has been proposed in 
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[Swift! ,2] to represent the inverter-based series compensator itself for design and 

analysis of the damping controller is in fact reasonable. 

Finally, in this chapter, alternative input signals to the CSC damping controller were 

considered, recognising that for the inter-area mode damping problem the speed 

deviations of the generators of interest are not likely to be readily available. The 

chapter therefore examined three of the proposed locally-synthesised input signals for 

the CSC controller as proposed in the literature and compared each of the signal's 

characteristics to those of the actual generator speed deviation. The time-domain 

simulation results showed that two of the locally-synthesised signals considered in the 

analyses in fact contain similar information to the actual generator speed deviation 

and can therefore be considered as reasonable substitutes for the generator speed 

deviation in the inter-area mode damping problem. 

Since an understanding of the correct design approach for a CSC damping controller, 

and the factors that influence its performance have been made clear from the SMIB 

system studies conducted in this chapter, the following chapter now makes use of this 

understanding by considering a particular four-generator study system and examining 

the more-complex, inter-area mode damping problem that manifests itself in this 

system. 
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CHAPTER FIVE 

APPLICATION OF THE CSC TO DAMPING INTER-AREA 
MODE OSCILLATIONS 

5.1 Introduction 

The previous chapter of this thesis has described in detail the design and analysis of a 

CSC damping controller for the relatively simple case of a single-machine infinite bus 

(SMIB) power system, initially using an idealised representation of the CSC; 

subsequent investigations considered the use of a detailed representation of an 

inverter-based CSC in the system model. In each case, factors with significant impact 

on the ability of the CSC damping scheme to provide additional damping torques in 

the system were examined. The analyses of Chapter Four concluded that the inverter­

based series compensator considered in the thesis is in fact a suitable device to use 

particularly for enhancing small-signal damping. 

In addition, the SMIB studies of Chapter Four showed that generator speed deviation 

is the logical input signal to a CSC damping controller but identified that such a signal 

could present practical difficulties in an inter-area mode (multi-generator) 

environment. Chapter Four then identified two alternative input signals to a CSC 

damping controller that have been proposed in the literature; each of these input 

signals is synthesised from variables measured locally to the CSC and has been shown 

in Chapter Four to be a suitable replacement for generator speed deviation, at least in 

the case of a SMIB system. Chapter Four thus concluded that each of these signals 

can be considered as reasonable substitutes for generator speed deviation when the 

CSC is applied to the inter-area mode damping problem. This chapter now considers 

the application of the inverter-based CSC to damping the inter-area mode of a 

particular four-generator study system, and examines the perfonnance of the CSC 

damping controller with each of these proposed input signals. 

This chapter begins by describing the four-generator power system to be considered in 

the analyses, as well as the development of the simulation model of this system in 
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PSCADIEMTDC. Simulation results are then presented to demonstrate the nature of 

the inter-area mode oscillation problem, and to show that the inverter-based series 

compensator can be used to mitigate the problem. The following section begins by 

describing the four-generator power system that is considered in the analyses of this 

chapter. 

5.2 System Description 

5.2.1 The Two-Area Power System 

An eleven-bus, four-generator, two-area power system that is considered in the 

analyses of this chapter is shown in Fig. 5.1; this study system has been considered in 

references [Kundur,Kleinl ,2] for the study of inter-area mode oscillations. While 

inter-area oscillations in large interconnected power systems are actually more 

complex, the system in Fig. 5.1 is chosen because it has the advantage of being simple 

and hypothetical, and thus allows the characteristics of inter-area oscillations that are 

present in the system to be seen readily. Despite the size of the system of Fig. 5.1 

being small, the system parameters (in Appendix D) and its structure are realistic, and 

hence the general conclusions drawn using this system will also apply to large 

systems [KJeinl]. The researchers [Kundur,KJeinl,2] who have previously considered 

this system have examined the mitigation of its inter-area mode damping problem via 

power system stabiliser design. This chapter considers the mitigation of the problem 

with an inverter-based CSC; therefore, the CSC shown in the diagram of Fig. 5.1 is 

not part of the original study system. 

The system in Fig. 5.1 consists of four synchronous generators: generators Gland G2 

in Area 1 and generators G3 and G4 in Area 2; each generator is directly connected to 

a three-phase step-up transformer. The generating units, in this study system, are each 

represented by a detailed two-axis model; each generator is considered to have an 

automatic voltage regulator and a high-gain thyristor exciter with transient gain 

reduction: a particular combination of the factors that is known (as discussed already) 

to adversely affect the small-signal damping of power systems. 

The effects of the governor-dynamics in these investigations are once again neglected 

such that the mechanical input torque to the synchronous generators is assumed to be 
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constant over the time frame of the investigation. Each synchronous generator is 

considered to have a single lumped inertia shaft representing the combined inertia of 

all the turbine stages. The transmission line system in this study is assumed to have 

negligible shunt capacitance, and as such is represented simply by its series lumped 

impedance. 

The inverter-based controllable series compensator is inserted into the system of Fig. 

5.1 in the main inter-tie between buses 7 and 9 as shown by the dotted box; for the 

purposes of these analyses, the inter-tie between buses 7 and 9 is modelled as a single 

transmission line whose reactance is half that of the two lines connecting buses 7 and 

9 in the original system model. 

As mentioned before, this chapter investigates the inter-area mode damping problem 

using the two-area power system of Fig. 5.1. This system is characterised by both 

inter-area and local mode oscillations as will be seen in the linearised results that are 

presented later in the chapter. In this study system, the Areas 1 and 2 are identical and 

are connected by a relatively weak tie-line. The constant impedance loads L7 and L9 

assumed in this study are connected as shown at buses 7 and 9 in Fig. 5.1. In order to 

ensure a satisfactory voltage profile in this four-machine system, additional reactive 

power is supplied by shunt capacitors C7 and C9 connected at buses 7 and 9, 

respectively. 

This subsection has described the constituents and layout of the study system of Fig. 

5.1. The following subsection now describes the development of a detailed, time­

domain simulation model of this system in PSCADIEMTDC. 

5.2.2 Two-Area Power System in PSCADIEMTDC 

The previous subsection has briefly described the two-area power system (in Fig. 5.1) 

which is considered in the studies of this chapter. Fig. D.1 in Appendix D shows the 

graphical representation of this four-generator power system in PSCADIEMTDC, 

excluding the inverter-based series compensator. In the PSCADIEMTDC graphical 

representation of the system in Fig. D.l, the synchronous generators are represented 

by their detailed two-axis model: generator stator transients and damper windings are 

now represented, the automatic voltage regulator and thyristor exciter with transient 
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gain reduction are also represented as shown in a single block labelled (exciter 

(SCRX)). In this PSCADIEMTDC representation, the loads L7 and L9 are represented 

simply as constant impedances. Each area consists of two coupled generating units, 

and each unit has a rating of 900 MY A base power and 20 kV base voltage. The 

active power transfer from Area 1 to Area 2, over the single tie-line reactance, is 400 

MW, and it is created by an uneven distribution of the system load amongst the 

generators; the generating units are loaded as shown in Appendix D. 

Fig. D.2 in Appendix D now shows the same system in PSCADIEMTDC as in Fig. 

DJ, but the system in Fig. D.2 now includes the detailed representation of the 

inverter-based controllable series compensator (and its damping controls), including 

its power-electronic switching and internal controls, which ensure that the device 

behaves as a capacitive reactance of the desired magnitude as has been described in 

Chapter Three (Fig. 3.4) of this thesis. The parameters of the inverter-based series 

compensator and its internal controls have been adjusted from those in previous 

chapters in order to suit the characteristics of the study system in Fig. 5.1; these 

parameters, and how they have been obtained, can be seen in Appendix D. 

Once again, the power oscillation damping controller external to the compensator in 

Fig. D.2 is identical to that of Chapter Three: the input signal to the damping 

controller is in each case passed through a first-order filter, the output of which forms 

the commanded value of variable compensating reactance Xcscv at the input to the 

inverter controls; however, the input to the damping controller used in these studies is 

now synthesised from measurements local to the CSC itself. The variable component 

Xcscv of series compensating reactance is once again added to the fixed component 

Xcsco to yield the overall commanded value Xcsc that is supplied to the inverter 

controls. 

This section has described the four-generator study system to be considered in this 

chapter, and the development of a detailed model for time-domain simulation of this 

system in PSCADIEMTDC. The following section now discusses the various 

oscillatory modes that characterise this system. 
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5.3 Small-Signal Characteristics of the Study System 

5.3.1 Eigenvalues of the System 

It was pointed out in section 3.2.3 of Chapter Three that one of the drawbacks of the 

PSCADIEMTDC simulation program is that powerful control analysis and design 

features (that is, the ability to calculate eigenvalues, eigenvectors and participation 

factors) are not available. However, the linearised eigenvalues and mode shapes of the 

four-generator power system under consideration (Fig. 5.1) which illustrate the 

system's small-signal behaviour, have been examined previously in reference 

[Kundur]. Hence this section reviews the linearised results of the system as presented 

in [Kundur] in order to form the basis for understanding the time-domain response of 

the system that is to be presented in later sections of this chapter. 

The parameters of the four-generator power system in Fig. 5.1 are shown in Appendix 

D. The linearised eigenvalues of the system at this operating point, reproduced from 

[Kundur], are shown in Table 5.1 below. 

Table 5.1: Eigenvalues of the system in Fig. 5. 1 with high-gain exciter and transient 

gain reduction and A VR, reproduced from [Kundur]. 

Rotor Oscillation Mode Eigenvalues Frequency, Damping Ratio 

Area 1 local mode -0.450±j6.86 If)d= 1.09 Hz, (= 0.06 

Area 2 local mode -0.462±j7.05 If)d = 1.12 Hz, (= 0.06 

Inter-area mode +0.123±j3.46 If)d = 0.55 Hz, (= -0.036 

The small-signal stability characteristics of the four-generator power system may be 

explained from these eigenvalues in Table 5.1 as follows. 

Table 5.1 shows that there are three complex conjugate eigenvalues associated with 

different oscillatory modes of the system: there are two inter-machine (local) modes 

of oscillation (one in Area 1 and one in Area 2) which have the same degree of 

positive damping ((= 0.06) and one inter-area mode of oscillation which is negatively 

damped ((= -0.036) and therefore unstable. The frequencies of oscillation of the two 

inter-machine modes (which are stable for this set of operating conditions) are 1.09 
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Hz and 1.12 Hz in Areas 1 and 2, respectively, whilst the frequency of the inter-area 

mode oscillation is 0.55 Hz. In the time-domain simulation studies that follow, it 

would be clearly desirable to improve the damping of the inter-area mode oscillations 

of this system using the inverter-based CSC and its damping controls. 

This subsection has discussed the small-signal behaviour of the four-machine system 

via eigenvalue analysis. The following subsection now discusses the mode shapes of 

this system. 

5.3.2 Mode Shapes of the System 

Fig. 5.3 now shows the mode shapes of the system, that is, the nonnalised eigenvector 

components corresponding to the rotor speed deviations of each of the four 

synchronous generators of the system in Fig. 5.1 (as presented in [KundurD. From the 

mode shapes in Fig. 5.3 (a) three observations can be made with regard to the inter­

area mode: firstly, from the relative phase of the eigenvectors, in the inter-area mode 

the synchronous generators Gland G2 of Area 1 swing against the synchronous 

generators G3 and G4 of Area 2; secondly, again from the phase of the eigenvectors, 

the generators of each area swing almost in-phase with each other in the inter-area 

mode; thirdly, from the relative sizes of the eigenvectors, the amplitude of the 

oscillations of the Area 2 generators (G3 and G4) is larger than the amplitude of the 

oscillations of the Area 1 generators (Gl and G2) in the inter-area mode. Fig. 5.3 (b) 

shows that in the inter-machine oscillation local to Area 1, generator G 1 swings in 

anti-phase with generator G2. Similarly, Fig. 5.3 (c) shows that in the inter-machine 

oscillation mode local to Area 2, generator G3 swings in anti-phase with generator 

G4. 

In summary, this section has described the small-signal characteristics of the four­

machine system under consideration (Fig. 5.1) and has shown the nature of all the 

various modes present in the system by means of eigenvalue analysis and mode 

shapes. The following section now presents time-domain simulation results of the 

system in Fig. 5.1, using the detailed system model developed in PSCADIEMTDC, in 

order to confinn the small-signal behaviour predicted thus far, and subsequently 

investigates the use of the inverter-based series compensator to damp the inter-area 

mode oscillations. 
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Gl 

(a) Inter-area mode 

G2 

(b) Area 1 local mode 

G4 

G3 

Cc) Area 2 local mode 

Fig. 5.2: Mode shapes of the oscillatory modes of the system in Fig. 5.1, as 

presented in [Kundur]. 
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5.4 Simulation Results 

5.4.1 Introduction 

The previous section has described the linearised eigenvalues of the system in Fig. 5.1 

that were presented in reference [Kundur]. This section now presents time-domain 

simulation results of this system, using the detailed model developed in 

PSCADIEMTDC, in order to detennine whether the inverter-based series 

compensator and its damping controls are able to mitigate the inter-area mode 

problem. The investigations carried out in this final part of the thesis are structured as 

follows. 

(i) The time-domain response of the four-generator power system is initially 

considered for the case when there is no inverter-based compensator in the 

inter-tie. The purpose of this study is to confinn (by comparison with the 

linearised results of [Kundur]) the correctness of the small-signal behaviour of 

this system (and hence the model developed in PSCADIEMTDC), particularly 

the characteristics of its inter-area mode oscillations, prior to the introduction 

of the inverter-based compensator. 

(ii) The time-domain response of the four-generator power system is then 

considered for the case when the inverter-based compensator is used to 

provide a fixed amount of series compensating reactance in the inter-tie. The 

purpose of this study is to examine the impact of the inverter-based 

compensator on the system when its damping controller is inactive as well as 

to observe the characteristics of the locally-synthesised controller inputs 

before they are each used as inputs to the damping scheme. 

(iii) Finally, the time-domain response of the system is considered for the case 

when the inverter-based compensator is included in the inter-tie and its 

damping controls are activated. This study is repeated for each of the two 

controller input signals identified in Chapter Four in order to demonstrate the 

perfonnance of the damping controller for both of these input signals. 
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These simulation studies will therefore serve as a basis to assess the ability of a 

damping controller based on an inverter-based series compensator to mitigate the 

problem of poorly damped inter-area modes in power systems. 

5.4.2 Simulation Results with No Series Compensation 

As described before, a detailed model of the system of Fig 5.1 has been developed in 

PSCAD/EMTDC, both with and without an inverter-based compensator in series with 

the main inter-tie. This section now presents time-domain simulation results of the 

system in Fig. 5.1 for the case where there is no compensator in the main inter-tie. 

The detailed PSCADIEMTDC model for this study is shown in Fig. D.I of Appendix 

D, and the parameters and operating conditions of the four-generator system are also 

shown in appendix D. 

Fig. 5.3 now shows the time-domain response of the system following a disturbance 

caused by reducing the mechanical power input to generator G2 from its initial 

steady-state value of 700 MW to 540 MW and back to 700 MW after one second. The 

predicted response shown in Fig. 5.3 shows the active power outputs of all the 

generating units in the system as well as the active power transfer over the inter-tie 

between buses 7 and 9. Fig. 5.3 (a) shows the active power outputs of generators Gl 

to G4 during the first ten seconds of the simulation whilst Fig. 5.3 (c) shows these 

same variables during the last six seconds of the simulation study. 

In Fig. 5.3 (a), it is seen that during, and immediately after the disturbance the 

generating units in Area I (generators Gland G2) oscillate in anti-phase with each 

other with a frequency of 1 Hz; these oscillations are associated with the local mode 

of Area 1 and remain positively damped as expected. Comparison of Figs. 5.3 (a) and 

(c) however shows that, in the later stages of the simulation, there is no longer any 

anti-phase oscillation between generators G I and G2. In fact, in the later stages of the 

post-disturbance response (Fig. 5.3 (c)) when the positively damped local mode 

oscillations have died out, the generators in Area 1 (Gland G2) are seen to oscillate 

in phase with each other, as are the generators in Area 2 (G3 and G4). However, in the 

later stage of the response, the oscillations of generators G I and G2 in Area 1 are out 

of phase with those of generators G3 and G4 in Area 2; furthermore these oscillations 

are seen to have a frequency of approximately 0.5 Hz and to be slightly negatively 
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damped. Finally, the generators in Area 2 (G3 and G4) are seen to oscillate with a 

higher amplitude than the generators in Area 1 as noted in [Kleinl]. Each of these 

characteristics of the oscillations in generators G 1 to G4 is consistent with the small­

signal characteristics of the inter-area mode of this system as predicted by the inter­

area mode eigenvalue in Table 5.1 and by the inter-area mode shape in Fig. 5.2 (a). 

The simulation results of Fig. 5.3 thus confinn that the detailed model of the four­

generator system developed in PSCADIEMTDC faithfully reproduces the known 

characteristics of the inter-area mode oscillation problem associated with this system. 

b 
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Fig. 5.3: 
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Time-domain simulation results of the four-machine system showing 

various oscillatory modes of the system following a disturbance to 

the input power of generator G2. 

Fig. 5.3 (b) shows how the inter-tie active power transfer between the two areas is 

affected by the negatively damped inter-area mode oscillations. Superimposed on the 

desired power transfer of 400 MW from Area 1 to Area 2 is a slowly increasing power 

oscillation of significant amplitude at approximately 0.5 Hz. This section has thus 
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both illustrated how the inter-area mode damping problem manifests itself in this 

study system as well as confirming the validity of the PSCADIEMTDC simulation 

model of that system. A later section of this chapter will consider the use of the 

inverter-based compensator and its damping controls in order to improve the inter­

area mode damping situation in this study system. 

5.4.3 Simulation Results with CSC and No Damping Controls Active 

The previous subsection has presented simulation results from the four-generator 

study system in Fig. 5.1 from which the nature of the various oscillatory modes of the 

system has been observed. This subsection now presents the time-domain response of 

the same system but with a fixed amount of compensating reactance in the main 

system inter-tie provided by the inverter-based series compensator. The time-domain 

simulation model used in this subsection (and the remainder of this chapter) is shown 

in Fig. D.2 in appendix D. The steady-state inter-tie active power transfer with the 

inverter-based series compensator included is once again approximately 400 MW. 

Fig. 5.4 shows the predicted time-domain response of the system when the 

mechanical power input to generator G2 is reduced from a value of 700 MW to 585 

MW and back to 700 MW after one second. 

The curves shown in Fig. 5.4 illustrate the behaviour of the active power output from 

each generating unit, the inter-tie active power transfer, as well as the characteristics 

of the two locally-measured signals that are to be used as inputs to the CSC damping 

controller in the next subsection. The behaviour of the system variables indicates that 

with a fixed amount of inverter-based series compensation, the inter-area oscillations 

in the system are once again negatively damped. Thus, the results in Fig. 5.4 show 

that, as was the case in the SMIB system in Chapter Four, the introduction of an 

inverter-based series compensator with no damping controls (that is, with a fixed 

magnitude of series compensating reactance), does not improve the inter-area mode 

damping situation. 

Finally, the results in Fig. 5.4 show the characteristics of the locally-measured signals 

that are to be considered as inputs to the damping controller, namely the rate of 

• 
change of power flow through the controlled series element P csc of deMello 
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[deMellol] and the synthesised speed deviation !1(Usynth of Larsen [Larsen]. The 

synthesis of these two signals was discussed in Chapter Four. As was the case in 

Chapter Four, these signals have been scaled to have equal amplitudes in the small­

signal region prior to their being used as inputs to the CSC damping scheme. This 

magnitude scaling has been carried out to ensure that the effective gain of the CSC 

controller remains unchanged with either signal in use; in this way, the small-signal 

performance with each signal would be expected to be similar for the same value of 

damping controller gain Kc. However, the small phase lag that is seen between these 

two signals means that the small-signal performance will nevertheless be expected to 

differ slightly when each of these signals is in use. The following subsection will 

examine the performance of the CSC and its damping controls with each of these 

signals used as the input to the damping controller. 
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Time-domain simulation results of the four-machine system with a fixed 

amount of inverter-based series compensation and the damping controls 
inactive. 
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5.4.4 Simulation Results with CSC and Damping Controls Active 

Rate of change of power flowing through the controllable element used as input 

to the damping controller 

Fig 5.5 now shows the predicted time-domain response of the four-generator system 

of Fig. 5.1 with the inverter-based series compensator in the main inter-tie and with 

the damping controls now activated. In the case of the results shown in Fig. 5.5, the 

• 
rate of change of power flowing through the controllable series element P csc is used 

as the input to the CSC damping controller, and the controller gain is set at Kc = 

0.0025. The time-domain response predicted in the results of Fig. 5.5 was considered 

for the same disturbance as in Fig. 5.4, where the mechanical power input to generator 

G2 was reduced from its steady-state value of 700 MW to 585 MW and back to 700 

MW after one second. 

The results in Fig. 5.5 show the predicted behaviour of the active power output in all 

the generating units, the active power transfer over the main inter-tie between buses 7 

and 9, as well as the CSC damping controller output (that is, the total series 

compensating reactance Xcsc). Firstly, in contrast with the response predicted in Fig. 

5.4 where the amplitude of the inter-area oscillations increases with time, the 

predicted response in Fig. 5.5 now shows that with the inverter-based compensator's 

damping controls activated, the amplitude of these oscillations decreases with time. 

Furthermore, while the frequency of the inter-area oscillations is once again 

approximately 0.5 Hz with the damping controls activated, it is seen that after only 

three cycles of these oscillations, they have now decayed to a small amplitude relative 

to that of the steady-state inter-tie power transfer. 

Secondly, the damping controller outputXcsc in Fig. 5.5 is not driven into limit at any 

stage during the post-disturbance transient such that the controller output remains 

continuous. (In this study the upper and lower limits on the variations in Xcsc were set 

at ±5.29 Cl around the steady-state value of Xcsco = 29.6 Cl). Indeed, it was pointed out 

in the literature review of Chapter Two that a continuous control approach is suited to 

the requirements of damping inter-area type oscillations since these oscillations are a 

small-signal stability problem. 
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These results therefore demonstrate that, with the signal P csc used as input to the 

CSC damping controller, the series compensating reactance provided by the inverter­

based compensator is modulated in such a way that sufficient damping torques are 

introduced into the synchronous generators of the system to successfully overcome 

the inter-area mode oscillation problem that manifests itself in the original study 

system. 
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Time-domain simulation results showing the damping effect of the 

inverter-based series compensator using dPcsddt as input to the 

damping controller for inter-area mode oscillations. 

Synthesised speed deviation used as input to the damping controller 

Fig 5.6 now shows the predicted time-domain response of the four-generator system 

of Fig. 5.1 with the inverter-based series compensator in the main inter-tie and with 

the damping controls once again activated. In the case of the results shown in Fig. 5.6, 

the synthesised speed deviation measurement AlIJsynth is used as the input to the CSC 

damping controller, and the controller gain is set at Kc = 0.0025. The time-domain 
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response predicted in the results of Fig. 5.6 was also considered for the same 

disturbance as in the previous studies, where the mechanical power input to generator 

G2 was reduced from its steady-state value of 700 MW to 585 MW and back to 700 

MW after one second. 

The results in Fig. 5.6 show the predicted behaviour of the active power output in all 

the generating units, the active power transfer over the main inter-tie between buses 7 

and 9, as well as the CSC damping controller output (that is, the total series 

compensating reactance Xcsc) . Firstly, once again in contrast with the response 

predicted in Fig. 5.4 (where the amplitude of the inter-area oscillations increases with 

time), the predicted response in Fig. 5.6 shows that with the inverter-based 

compensator' s damping controls activated, the amplitude of these oscillations now 

decreases with time. Furthermore, while the frequency of the inter-area oscillations is 

once again approximately 0.5 Hz, it is seen that after only three cycles of these 

oscillations, they have decayed to a small amplitude relative to the steady-state inter­

tie power transfer. 

Secondly, the damping controller outputXcsc in Fig. 5.6 is not driven into limit at any 

stage during the post-disturbance transient such that the controller output remains 

continuous. (As in the previous study the upper and lower limits on the variations in 

Xcsc are set at ±5.29 n around the steady-state value of Xcsco = 29.6 Cl). These results 

therefore demonstrate that, with the signal !::t.Wsynth used as input to the CSC damping 

controller, the series compensating reactance provided by the inverter-based 

compensator is modulated in such a way that sufficient damping torques are 

introduced into the synchronous generators of the system to successfully overcome 

the inter-area mode oscillation problem that manifests itself in the original study 

system. 

The results of Figs. 5.5 and 5.6 show that both the locally-measured signals 

• 
considered (P csc and !::t.Wsynth) can successfully be used as inputs to an inverter-based 

compensator damping control scheme to mitigate the inter-area mode damping 

problem in the four-generator study system. In the results presented in Figs. 5.5 and 

5.6, the damping controller gain is in each case set at Kc = 0.0025. However, the 
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results of the investigations into the local-mode damping problem in Chapter Four 

showed that the extent of the positive damping added to an oscillatory mode by the 

CSC's damping controls depends on the controller gain Kc (as well as on the 

operating point of the system). The following subsection therefore briefly examines 

how the performance of the CSC's damping controller is influenced by its controller 

gain in the multi-machine (inter-area mode) environment. 
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Time-domain simulation results showing the damping effect of the 

inverter-based series compensator using the synthesised speed 

deviation as input to the damping controller for inter-area mode 
oscillations. 
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Effect of the CSC controller gain Kc on the inter-area mode damping 

Various factors with significant influence on the performance of a CSC damping 

control scheme were examined in the SMIB system studies of Chapter Four; in 

particular the influence of system interconnection, generator loading, and the damping 

controller gain were examined. In the case of the inter-area mode damping problem in 

the four-machine study system, these factors could also be expected to contribute 

significantly to the CSC damping controller' s performance. In order to illustrate this 

point with one example, Fig 5.7 now shows the time-domain response of the four­

generator study system for three different values of the damping controller gain Kc, 

for the particular case of the synthesised speed deviation measurement ll.ltJsynth used as 

input to the damping controller. The same initial disturbance to the system as in 

previous studies is once again considered in Fig. 5.7. 

The predicted time-domain response of the system in Fig. 5.7 firstly shows that, for 

three different values of controller gain Kc, as the damping controller gain is 

increased, the damping added to the inter-area mode oscillations of the system also 

increases. This is in accordance with the local-mode damping studies conducted in 

Chapter Four, where the damping added to the oscillatory mode by the CSC was 

shown to increase with the damping controller gain Kc; in fact, a linear relationship in 

the SMIB system (in Chapter Four) was established between the damping torque 

added by the damping control scheme and the controller gain Kc. However, although 

in the time-domain simulation in Fig. 5.7 the same trend is shown to exist for the 

inter-area mode oscillation problem (that is, damping increases with the controller 

gain), it would be difficult to assess whether a fairly linear relationship exists in this 

case due to difficulties in determining the damping ratios from time-domain results 

(particularly in cases of well-damped responses that decay rapidly as in Fig. 5.7). 

In the case of all three values of the controller gain that have been considered in the 

time-domain study in Fig. 5.7, the damping controller output has not been driven into 

limit, and hence the controller action remains continuous in each case. Thus, at least 

for moderate values of gain Kc at the operating point considered, the results indicate 

that not only is the CSC's damping controller able to damp out the inter-area mode 

oscillations of this system, but that the extent of the positive damping added to the 
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inter-area mode can be chosen by an appropriate choice of damping controller gain 

Kc. 
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Fig. 5. 7: Time-domain simulation results of the four-generator power system at 

various damping controller gains Kc using the synthesised speed 
deviation measurement as input to the damping controller in each case. 

5.5 Conclusion 

This chapter has examined the issue of inter-area mode damping in a well-known 

four-generator power system that has been considered by others [Kundur, Kleinl,2]. 

For the time-domain simulations considered in this chapter, a detailed model of the 

four-generator power system was developed in PSCADIEMTDC. Initially, linearised 

eigenvalue results of the study system (as presented in reference [KundurD were 

reviewed; the system was shown to have two stable inter-machine (local) modes and 

an unstable inter-area mode. Time-domain simulation studies, using the detailed 

model developed in PSCADIEMTDC, were conducted flrstly to confirm that 

simulation model correctly predicts the nature of the inter-area mode damping 

problem of the four-generator power system and secondly, to examine whether the 

inverter-based CSC and its damping controls is able to mitigate the inter-area mode 

oscillation problem. 

Application of the CSC to Damping Inter-Area Mode Oscillations 



Chapter 5 Page 5.20 

The time-domain simulation studies presented in the chapter have confirmed the 

nature of various oscillatory modes in the study system, particularly the characteristics 

of the negatively-damped inter-area mode that manifests itself in the system. The 

results of the simulation studies have also shown that the introduction of an inverter­

based series compensator in the main inter-tie between the two areas participating in 

this inter-area mode, together with appropriate damping controls to dynamically vary 

the reactance of this compensator, is able to mitigate the inter-area mode oscillation 

problem. Two candidate input signals to the inverter-based compensator's damping 

controls have been considered, each signal being synthesised from measurements 

made locally to the compensator itself, and the CSC controller with each of these 

signals has been shown to result in successful addition of positive damping to the 

inter-area mode. 

In the simulation studies presented in the chapter, the performance of the damping 

control scheme has been considered for different values of damping controller gain, 

but the influence of other factors on damping performance (in particular operating 

point changes and system interconnection changes) have not been examined. As such, 

the study presented here constitutes a preliminary investigation into the use of an 

inverter-based CSC to damp inter-area modes. Nevertheless, the results of this 

preliminary study have clearly demonstrated that an inverter-based series 

compensator can, in principle, be used to damp the ' inter-area modes of a power 

system. Furthermore, the investigation has shown how, once a detailed insight into the 

nature of the power oscillation damping problem has been gained from a single­

machine case, the selection and evaluation of appropriate input signals to a damping 

controller for the inter-area mode problem is made conceptually straightforward. 

While the results of this chapter have shown how an inverter-based compensator can 

be used to mitigate the inter-area mode damping problem in power systems, it was 

recognised in the literature review of Chapter Two that other, more traditional 

approaches to solving this problem already exist, in particular the use of the power 

system stabiliser (PSS). While it is not the aim of this thesis to judge the relative 

merits of the two approaches, some discussion of this issue is appropriate. 
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As indicated before, reference [Klein2] has examined the damping of the 

electromechanical system oscillations of the same four-generator power system using 

power system stabilisers. The findings of that study showed that a PSS provides 

additional damping to the system by modulating the system loads, and therefore that 

the stabiliser's performance depends on the characteristics of the loads; in addition the 

PSS location was shown to influence its performance with respect to the inter-area 

mode damping phenomenon. By contrast, as identified in the literature review of 

Chapter Two, the exact location of a CSC in a transmission line connecting two 

groups of generators that are involved in an inter-area oscillation has no significant 

bearing on its performance as a damping controller, provided that the CSC is located 

somewhere in between the two areas. Similarly, the literature suggests that the 

performance of the CSC's damping controls are not likely to be significantly affected 

by load characteristics. Neither of these issues has been examined in the preliminary 

study considered here, but they are issues that must be considered in detail if a 

meaningful comparison of the damping performance of power system stabilisers and 

controllable series compensators is to be made. However, at the very least, the results 

of the preliminary study presented here demonstrate the relative ease (in terms of 

damping controller design, placement and choice of input signal) with which the 

inter-area mode damping problem can be overcome using a CSC in comparison with 

the design challenge presented by the siting and tuning of a single, or mUltiple power 

system stabilisers for inter-area mode damping. 

In the design of power system stabilisers, particularly in multi-generator 

environments, residue techniques and participation factors are commonly used in 

order to decide where the stabilising device could be placed to effectively control the 

oscillations of the mode of interest. However, at times, residues have led to erroneous 

results when used to determine PSS location as discussed in [Klein2]. Reference 

[Klein2] works out the eigenvalues of the four-generator study system considered in 

this chapter for various stabiliser gains with a stabiliser located at each one of the four 

generating units in turn, so as to understand the influence of a PSS on the modes of 

interest; subsequently, [Klein2] examines the case where stabilisers have been placed 

on all four of the generating units. This analysis procedure illustrates that, even in 

such a small study system, the correct placement and tuning of power system 

stabilisers in order to achieve better damping is often difficult to achieve. 

Application of the CSC to Damping Inter-Area Mode Oscillations 
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On the other hand, a strong argument in favour of the power system stabiliser is that it 

requires little capital expenditure (a supplementary signal to an existing excitation 

control system) whereas a controllable series compensator (either inverter-based or 

TCSC-based) requires a more significant capital outlay. An appraisal of the cost­

benefit of installing a controllable series compensator for damping control will by its 

very nature be different for each application, and lies outside the scope of this thesis. 

However, any such assessment will still require a comparison of the performance of a 

CSC-based damping controller relative to that of PSS-based damping controls, and in 

this area there is certainly scope for further work as will be discussed in the 

concluding chapter of the thesis which now follows. 

Application of the CSC to Damping Inter-Area Mode Oscillations 
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CHAPTER SIX 

CONCLUSION 

6.1 Introduction 

This thesis has examined the specific issue of damping the electromechanical 

oscillations in power systems using a particular form of FACTS controllable series 

compensation, namely inverter-based series compensation. The investigations have 

shown that such a FACTS device is capable of being used as another tool to damp 

power system oscillations in general and, in particular, the inter-area mode oscillation 

phenomenon. This chapter summarises and reviews the principal findings and 

conclusions of the thesis before suggesting further research work that could be 

undertaken in this area. 

6.2 Salient Points of the Literature Review 

Chapter Two presented a thorough review of the technical literature on the subject of 

controlling power system oscillations by variable series compensating reactance. This 

review highlighted that while the idea of enhancing system damping using variable 

series compensating reactance has been around for some time, this technique did not 

find serious application for many years owing to the impracticality of repeated high­

speed switching of series capacitors using mechanical circuit breakers. However, with 

the emergence of modem FACTS series compensators, dynamic control of series 

compensation to damp power system oscillations has become practically feasible. 

The literature review in Chapter Two also considered a number of control signals that 

could potentially be used as inputs to a power oscillation damping scheme. The 

review indicated that particularly where a CSC is to be used to damp inter-area mode 

oscillations, the CSC itself is likely to be physically far from the generators in the 

system. In this case, input signals to the damping controller such as generator speed 

deviations or generator accelerating powers would not, in practice, be easily 

obtainable. The review therefore concluded that, particularly for the inter-area mode 

Conclusion 
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damping phenomenon, it would be desirable to use an input signal to the CSC 

damping scheme that is synthesised from local measurements; a selection of 

promising input signals that meet this criterion was outlined in Chapter Two. 

The review in Chapter Two discussed the two different control strategies that have 

been considered for damping electromechanical system oscillations, bang-bang 

control and continuous control of the series compensating reactance. It was shown 

that while continuous control is more suited to the inter-area mode-damping problem, 

the bang-bang method is most suited for use in the short time period following a 

severe system disturbance. Finally, the review in Chapter Two identified an insightful 

approach for simplified modelling and analysis of a CSC-based power oscillation 

damping scheme due to Swift and Wang. 

6.3 Mathematical Models Developed for Analysis of a SMIB System 

Chapter Three described the development of the mathematical models of a single­

machine infinite bus power system required for the design and analysis of a CSC 

damping controller using the approach of Swift and Wang. Three different models of 

a SMIB system were presented, namely a simplified non-linear model of the system 

with an idealised representation of the CSC, a linearised Phillips-Heffron model of the 

system again with an idealised representation of the CSC, and a more-detailed non­

linear model of the system including a detailed representation of the inverter-based 

CSC. The validity of the simplified analysis models was assessed both by comparison 

with a detailed model of the system and by examining the characteristics of the SMIB 

system model against the known characteristics of such a system for various operating 

conditions and parameter changes. 

The investigations subsequently carried out in the thesis made use of the models 

developed in Chapter Three and led to the findings and conclusions outlined in the 

following section. 
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6.4 Findings and Conclusions of the Thesis 

6.4.1 Local Mode Damping Studies Using CSC 

As mentioned before, the literature review identified an insightful approach to the 

analysis of a controllable series compensator (CSC) damping controller due to Swift 

and Wang [Swiftl,2] for a simple case of a single-generator infinite bus power system 

using Phillips-Heffron linear design equations; this approach was considered in detail 

in the analyses of Chapter Four of the thesis. Chapter Four presented the results of an 

investigation where a controllable series compensator was used to damp the 

electromechanical system oscillations of a single-machine infinite bus system, the aim 

of the investigation being to properly understand the damping controller design issues 

and the factors that affect the CSC damping controller performance in a relatively 

simple system (local mode damping), before tackling the more complex issue of inter­

area mode damping in Chapter Five. In order to isolate the various factors that 

contribute to system damping, a base-case of a poorly damped system was chosen 

with no damping controls in place so that any damping observed when the CSC is 

introduced is due only to the effect of the CSC and its damping controls. 

The linearised Phillips-Heffron model of Swift and Wang has been used to examine 

the influence of the CSC damping controller on the stabilising torques of the single­

machine infinite bus system. Initially, the linearised analysis considered the case of a 

generalised signal as the input to the CSC's damping controller (as in the analyses of 

Swift and Wang); however, Chapter Four established that if all the torque contributed 

by the CSC controller is actually desired to add to system damping (as in the case in 

the investigations of this thesis), then the generator speed deviation is the appropriate 

signal to use as input to the CSC's damping controller. Subsequently, Chapter Four 

repeated the linear analysis of Swift and Wang for this special case where the 

damping controller input is the generator speed deviation. The findings of this linear 

analysis were similar to those reached by Swift and Wang, in particular that: 

(i) the damping torque added to the system by the CSC and its damping 

controls is always positive for positive values of damping controller gain 

Kc when the input to the controller is generator speed deviation; 
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(ii) at a given damping controller gain Kc an increase in generator loading 

causes an increase in the damping torque contributed by the CSC's 

damping controls; 

(iii) with a weak system inter-connection the CSC damping controller 

performance is degraded; and 

(iv) at a given system operating point the damping torque provided by the 

CSC controller is a fairly linear function of the controller gain Kc. 

As in the original work of Swift and Wang, the above findings, reached from 

linearised analysis, were then confirmed by means non-linear time-domain simulation 

studies using an idealised representation of the CSC. However, Chapter Four then 

extended the work of Swift and Wang by carrying out further non-linear time-domain 

simulation studies in which the system was modelled in detail, including a detailed 

representation of the inverter-based CSC's power electronics and internal controls. 

The results from these simulation studies showed that while the level of detail in the 

generator model (that is, neglecting the generator stator transients in the simplified 

model used to derive Phillips-Heffron linear equations) is reasonable for damping 

studies, the use of a simplified representation of the inverter-based series compensator 

does lead to a degree of conservative error in the predicted time-domain response of 

the system; however, the results showed that the damping of system oscillations, 

which is the particular focus of this thesis, is not significantly affected by the level of 

detail in the compensator model. 

The conclusions drawn from the extended investigations into the use of an inverter­

based CSC to damp local mode oscillations are twofold: firstly, an inverter-based 

series compensator is a suitable device to use for this application, particularly for 

small-signal damping of power system oscillations; secondly, the use of a generic, 

idealised CSC model, as has been proposed by Swift and Wang, to represent the 

inverter-based series compensator itself for design and analysis of the damping 

controller is in fact reasonable for studies where damping is the particular focus -

however, if accurate prediction of the amplitude of the oscillations is of concern, then 

a more detailed representation of the inverter-based compensator is required. 
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Chapter Four used the linearised Phillips-Heffron model of Swift and Wang to 

provide analytical justification for the type of input signal that is required for the 

specific CSC control objective considered in this thesis, namely enhancement of 

small-signal damping of the electromechanical oscillations in the system. It was 

shown that in such a case, where the modulation of the CSC reactance is intended to 

add a component of positive damping torque to the system, the input to the CSC 

controller should be a signal in phase with generator speed deviation. However, the 

ultimate objective of this thesis has been to apply the CSC to the inter-area mode 

damping problem, in which the intent is to damp oscillations between two groups of 

generators. In such cases, where the CSC is likely to be situated between the two 

groups of generators (and is therefore likely to be physically far from the generators) 

the speed deviations of the generators are not readily available. 

Thus, for the inter-area mode damping problem, it was necessary to consider 

alternative input signals to generator speed deviation that could in practice be 

synthesised from locally-measured variables at the CSC installation in the 

transmission system. To this end, Chapter Four then examined three locally­

synthesised candidate input signals for the CSC's damping controller (as identified in 

the literature review of Chapter Two) and compared each of these signal's 

characteristics to those of the actual generator speed deviation. The results showed 

that two of the locally-synthesised candidate signals considered in the analyses were 

directly suitable for inter-area mode damping; each of these two signals was tested as 

an input to the damping control scheme in the SMIB system, and each signal's 

performance was compared against that of the damping controls with the actual 

generator speed deviation as input. The results of these comparisons confirmed that 

each of these signals could be considered as a CSC damping controller input for the 

inter-area mode damping studies that were to be considered in the final part of the 

thesis. 

6.4.2 Inter-Area Mode Damping Problem Using Inverter-Based CSC 

Finally, Chapter Five of the thesis considered a well-known four-generator study 

system (considered previously in references [Kundur, Kleinl,2]) in which to 

investigate the application of the CSC to the inter-area mode-damping problem. A 

detailed simulation model of the four-generator, two-area power system was 
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developed in PSCADIEMTDC; however, owing to the unavailability of any 

linearisation and linear analysis tools in PSCADIEMTDC, the eigenvalues and mode 

shapes of this study system were reviewed from a previous study in [Kundur]. 

Comparison of the small-signal characteristics of the study system as predicted by the 

eigenvalues and mode shapes in [Kundur] with the time-domain simulation results 

obtained from the PSCADIEMTDC model of the system developed in this thesis was 

used to establish the validity of this latter model. Hence the time-domain simulation 

model was used to confirm the characteristics of the poorly damped inter-area mode 

oscillations in the study system before being used to examine the mitigation of the 

inter-area mode problem by means of an inverter-based CSC and its damping 

controls. 

Chapter Five then considered the introduction the inverter-based series compensator 

into the four-generator study system in the main inter-tie between the two areas that 

participate in its inter-area mode. The two locally-synthesised candidate input signals 

that were identified in the local mode damping studies of Chapter Four, namely the 

rate of change of power flowing through the controllable series element and the 

synthesised speed deviation measurement, were then each considered as inputs to the 

inverter-based compensator's damping controller. The analysis of the four-generator 

study system then confirmed that the CSC damping controller, with either of these 

signals in use, does in fact modulate the series compensating reactance in a manner 

that yields additional damping torques in the system, and as such is able to 

successfully mitigate the inter-area mode oscillation problem of this system. 

Furthermore, Chapter Five examined the performance of the CSC damping control 

scheme for various damping controller gains, and the trend was shown to be similar to 

that found in the local mode damping study of Chapter Four, in that the positive 

damping added to the inter-area mode also increases with increasing damping 

controller gain. Thus the conclusion drawn from the study conducted in Chapter Five 

is that an inverter-based CSC can successfully be used to mitigate inter-area mode 

damping problems in power systems. 

Conclusion 



Chapter 6 Page 6.7 

6.5 Suggestions for Further Work 

It has not been possible to cover every aspect of the research problem considered in 

this thesis. As it stands, while some important issues have been addressed on the 

particular subject of damping electromechanical system oscillations using an inverter­

based form of series compensation, the thesis has uncovered further areas of concern. 

Therefore the scope that exists in this area for further research work is outlined below. 

(i) The results presented in this thesis have shown that although an idealised 

model of an inverter-based controllable series compensator is suitable for 

damping studies, it does nevertheless lead to a degree of conservative error in 

the amplitude of the power and generator rotor oscillations predicted in 

simulations of interconnected power systems. A more detailed examination of 

this finding, and an assessment of the level of detail required in an inverter­

based compensator for studies other than damping investigations, should be 

considered. 

(ii) This thesis has focused exclusively on input signals to a controllable series 

compensator that are suitable for damping power system oscillations and has 

identified two suitable substitutes for the generator speed deviation. However, 

one of the input signals evaluated was found to synthesise the generator load 

angle deviation rather than the generator speed deviation. A CSC controller 

using this type of input signal might be expected to provide additional 

synchronising torque to the power system and thus improve its transient 

stability characteristics. The influence of a CSC that uses such an input signal 

(or that uses an input signal partially in phase with both generator speed 

deviation and generator load angle) could be examined. 

(iii) The investigation could be extended to examine the factors that influence the 

performance of the CSC's damping controls in the four-generator system in 

the same way as has been done for the SMIB studies of this thesis, in 

particular by developing a suitable linearised model of this multi-machine 

system. The influence on the damping controller performance of system load 
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characteristics and the location of the CSC within the system also needs 

examination. 

(iv) The issue of whether FACTS controllable series compensators are a more 

effective means than power system stabilisers for mitigating the inter-area 

mode damping problem requires a thorough theoretical treatment; the 

evaluation of the two devices' relative performance with respect to the inter­

area mode damping problem is essential. 

(v) Finally, practical confirmation of the findings of this thesis could be 

considered by implementing a laboratory-scale test system of a small power 

system, including an inverter-based series compensator equipped with 

damping controls. 

Conclusion 
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APPENDIX A 

PER-UNIT SYSTEM 

A.l Introduction 

In power systems it is convenient to normalise system variables by using per-unit 

systems. The per-unit system offers computational facility since it eliminates units 

and expresses system quantities as dimensionless ratios. While various per-unit 

systems exist for analysis of electrical power systems, each with its own inherent 

advantages and disadvantages, one of the significant distinctions between per-unit 

systems is the choice of the time base. The time base is normally chosen as either one 

second or the reciprocal of the nominal speed. The per-unit system used in this thesis 

has a time base of one second; the advantage of this approach is that the per-unit 

values of power and torque are then numerically equal at nominal speed. 

In order for the machine equations to be independent of the number of pole pairs in a 

per-unit system, a multi-pole machine is converted to an equivalent two-pole machine 

of the same power. This effectively requires a separate set of base values for the 

electrical parameters and mechanical parameters of the machine. 

A.2 Derivation of the Per-Unit System 

Four base values are chosen independently for this per-unit system, namely the base 

armature power p/, the base armature voltage V/, the base time tb, and the base 

electrical angle 8/. The remaining quantities' base values are calculated from these 

four. The base field power is fixed by the particular Park's transform used while the 

base field current is chosen in order for Xad and Xjd to be equal in per-unit. 

Electrical base values 

Base armature power P ab = total three phase rating in Watts (W) 

Per-Unit System 
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Base armature voltage v/ = rated rms voltage per phase in ac Volts (V) 

Base armature current lab = p/ / (3 V/) in rms ac Amps (A) 

Base armature impedance 

Base field power pJ = 1.5 (p/ /3) in Watts 

Base field current IJ = lab Xmd / Xjd in dc Amps 

Base field voltage vJ = pJ /IJ in dc Volts 

Base field impedance vJ = VJ / IJ in Ohms 

Base time tb = 1 second 

Base electrical angle fJ/ = 1 electrical radian (rade
) 

Base electrical speed 

Base electrical acceleration 

Base electrical torque is defined as that torque which produces base power at nominal 

electrical speed Wen. 

Base electrical torque T/ = p / / Wen = p / / Wo 

where Wo is the system electrical speed expressed in electrical rad/s. 

The per-unit value of torque in the two-axis theory is calculated from the per-unit 

values of d and q axis currents and flux linkages as follows: 

In physical units 

Per-Unit System 
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Normalising this equation (and using the subscript 'u' to denote the per-unit value of a 

parameter) yields 

In order for the mechanical angles, speeds, acceleration and torques to be equal to the 

corresponding electrical quantities when expressed as per-unit values (for an 

equivalent two-pole machine) the following base values are chosen with 'n' as the 

number of pole pairs and (Umn as the mechanical nominal speed: 

Mechanical base values 

Base mechanical angle 8m
b = 8/ In in mechanical radians (radm

) 

Base mechanical speed 

Base mechanical acceleration 

Base mechanical torque 

Per-Unit System 
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In physical units the mechanical and electrical parameters are related as follows: 

and since the mechanical power Pm and the electrical power Pe must be equal at 

steady state: 

and thus 

The mechanical parameters of inertia Jm and shaft stiffness Km in physical units are 

normalised into per-unit values by considering the second order differential equation 

of motion in physical units as follows: 

or 

and normalising it yields (in per-unit) 

where 

Per-Unit System 



Appendix A Page A.5 

Base inertia 

Base stiffness 

Physical inertias can also be expressed in terms of the inertia constant H in seconds 

where 

H = 

Thus 

Stored kinetic energy at synchronous speed [W -sec] 

Turbo-generator rated power [V A] 

J ( / 2)2 2 b b JU H - m Wo n n ae _ J ae Olo Wo _ Wo 
- 2pb -2-b - m-pb -2 b ---b-

a n ae n2 a ae 2ae 

Thus .F = 2 H a} / (,)0 

= 2 H / (,)0 

where H and (,)0 are in per-unit (or in seconds and electrical radls respectively since 

the base time and base electrical speed are both numerically equal to one). The 

equation of motion in per-unit is then given by 

Per-Unit System 
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APPENDIXB 

LINEARISATION OF THE PHILLIPS-HEFFRON MODEL 

B.I Introduction 

Chapter Three of this thesis has shown the linearised Phillips-Heffron model 

equations together with a block diagram (Fig. 3.5) representation of these linear 

equations. This Appendix shows the linearisation procedure of the simplified non­

linear model described in Chapter Three in order to arrive at a model which is suitable 

for small-signal stability studies. 

B.2 Linearisation of the Simplified Non-Linear Model 

The non-linear equations of a SMIB system in Chapter Three describe the 

synchronous generator with no damper windings, stator transient (p 'I/J terms 

neglected, and connected to an infinite busbar with voltage Eb. Consider now a SMIB 

system with an external impedance jXe; with this external impedance, the stator 

voltage equations in eqns. (3.1) and (3.2) in Chapter Three become 

Vd = -If/qpB 

Vq =If/dpB 

The transmission line equations are 

Vd = pXeid - XeiqpB + eb sin8 

V q = pXeiq + XeidpB + eb cos8 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

where cv = pO. Furthermore, the simplified non-linear equations of Chapter Three are 

re-written as follows. 

Linearisation of the Phillips-Heffron Model 
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(B.5) 

(B.6) 

(B.7) 

(B.S) 

(B.9) 

(B.lO) 

where eqn. (B. 1 0) is the terminal voltage equation. Now considering small variations 

of these variables around a particular operating point, and noting that 

p{}= 1+ p (118) = 1+ p (110) 

equations (B. 1 ) to (B. 1 0) reduce to: 

I1Vd =-I1/f/q -[/f/qopl1o] 

I1v q = 11/f/ d + [/f/ doP110] 

I1vd = [Xepl1id] - Xe l1iq + (ebo cos 00 )110 - [iqoXepl1o] 

I1Vq = [XePl1iq] + Xe l1id -(ebo sinoo )l1o + [ido X epl1o] 

V-' Vqo M = _U_'O I1v + -l1v , d q 

V'o v'o 

(B.ll) 

(B.l2) 

(B.l3) 

(B.l4) 

(B.15) 

(B.16) 

(B.l7) 

(B.lS) 

(B.19) 

(B.20) 

The square bracketed terms in the above equations are now neglected. The next step is 

to eliminate all the variables in the above expressions except I1Et, 110, I1Eq ', I1Tm and 

I1Efd using the following additional equations: 

Linearisation of the Phillips-Heffron Model 
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(B.2l) 

(B.22) 

(B.23) 

(B.24) 

Now consider first re-writing the torque equation (eqn. B.l9) in terms of the variables 

mentioned above. Initially, !liq and !lid are determined using the relationships in eqns. 

(B.ll) and (B.13) in conjunction with eqn (B.16) to write !liq as follows. 

l1i = Ebollo cos 00 

q X. +Xq 
(B.25) 

Using eqns. (B.l2) and (B.14) in conjunction with eqn. (B.lS) to write !lid yields 

(B.26) 

Substituting eqns. (B.25) and (B.26) into the torque expression in eqn. (B.19), using 

the relationships in eqns. (B.2l-B.23) gives 

(B.27) 

Now, consider eqn. (B.17) and use eqns. (B.lS), (B.26) and (B.24) to obtain: 

(B.28) 

Finally, expressing !:::.Et (eqn. B.20) in terms of these variables using eqns. (B. 11) to 

(B.l4) gives 
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v X [v 0 X v 0 X I ] M = ~ e M '+ -q- q E cos8 - -q- d E sin8 
, X X' q X X bo 0 X X' bo 0 

V,O e + d v'o e + q V'O e + d 

(B.29) 

In order to draw a block diagram for the system described by eqns. (B.27) to (B.29), 

these equations are now shortened by defining constants KJ to K6 as shown below. 

From the linearised torque expression in eqn. (B.27), this equation can be written as 

(B.30) 

where the linearised electrical torque expression from eqn. (B.27) is 

(B.31) 

In terms of coefficients KJ to K6 the linearised electric torque equation (eqn. B.31), 

the field voltage equation (eqn. B.28) and the generator terminal voltage equation 

(eqn. B.29) are: 

!1T. = K1!18 + K2M q I (B.32) 

!!.Eq ' = 1 (K3!!.Efd -K4!18) 
1+ pTdz' 

(B.33) 

(B.34) 

and these eqns. (B.30), (B.32) to (B.34) are thus used to construct the block diagram 

of a single-machine infinite bus system in Fig. B.1 for small-signal stability studies, 

where the coefficients KJ to K6 are defined as: 

Linearisation of the Phillips-Heffron Model 
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(B.35) 

(B.36) 

(B.37) 

(B.38) 

e X eX' 
K do E s: q _ ....!L0 sl'n s: d 5 =- ocos uo u. 

eto X.+Xq eto 0 X.+Xd' 
(B.39) 

(B.40) 

Using the above expressions, the linearised Phillips-Heffrom model block diagram 

representation is now shown in Fig. B.l . 

In order to extend the block diagram in Fig. B.l to include the influence of the exciter 

with transient gain reduction and A VR, consider the thyristor-type exciter and A VR 

shown in Fig. 3.3 of Chapter Three. For small variations around a particular operating 

point, the following expressions can be written (by inspection ofFig.3.3): 

(B.41) 

(B.42) 

A D TA ( TA) I.J..l.Jjd = -KA(-!1Etm) + 1-- ~Vy 
TB TB 

(B.43) 

The block diagram representation of the system with the exciter and A VR equations 

above (eqns. (B.41) to (B.43)) is shown in Fig. B.2. 
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Fig. B.2: 
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Linearised Phillips-Heffron model of a single-machine infinite bus system. 

Linearised Phillips-Heffron model of a single-generator equipped with the 

AVR and exciter and transient gain reduction, connected to an infinite bus. 

Finally, the extension of the block diagram in Fig. B.2 to include an idealised CSC 

and its damping controls is the work of Swift and Wang [Swiftl,2] and is now shown 

in Fig. B.3 in the dotted box labelled (3). 

Linearisation of the Phil/ips-Heffron Model 



Appendix B Page B.7 
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Fig. E.3: Linearised Phillips-Heffron model of a single-machine infinite bus system 

with the A VR and exciter with transient gain reduction and CSC damping 

scheme. 

where, 

Kp = BP' = _l_[EOEqo'Sinc5o _ Eo2(Xq - X/)Sin(2c5o)] __ 1_ E02(Xq - X/)sin(2c5o) 

BMcsc Xar' Xar' 2Xar'XqT X qT 2Xar'XqT 

1 1 
=-p --p X ' eo X e02 

dT qT 

and 

X ar ' = X d '+ X e - (X csco + X cscv ) 

Linearisation of the Phil/ips-Heffron Model 
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(B.46) 
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APPENDIXC 

PARAMETERS OF THE SMIB SYSTEM 

This appendix lists the parameters used in the studies of the single-machine infinite 

bus system in Chapters Three and Four. 

C.l Parameters of the Single-Machine Infinite Bus System in Per-Unit 

C.l.t Generator 
Ra = 0.005 

Xad = 0.85 

X~ = 0.15 

Xaq = 0.45 

Xjd = 1.03 

Rid = 0.00065 

B =0.0 

H =4.0 s 

C.1.2 Thyristor Exciter with TGR and Automatic Voltage'Regulator 
KA = 100.0 

TA = 1.0 s 
= 10.0 s 
= 0.01 s 

C.1.3 Transmission Line System Parameters 
For simplified studies 
RL = 0.0 

XL = 0.8 

Xcsco = 0.1 

MCSCMAX = 0.1 

MCSCMlN = -0.1 

For detailed PSCADIEMTDC studies 
RL = 0.01 

XL = 0.8 

Xcsco = 0.2 

Mcscv MAX = 0.1 

Mcscv MIN = -0.1 

Parameters of the System 
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C.1.4 Controllable Series Compensator Damping Controller 

Tcsc = 0.01 s 

Kc = 0.1 

C.1.S Initial Operating Conditions 

Peo = 0.2 (low loading) 

Peo = 0.8 (high loading) 

Qb = 0.03 

= 1.0 

C.1.6 Base-values 

Base time 

Base armature power 

Base armature voltage (phase) 

Base armature current 

Base armature impedance 

Base electrical angle 

Base electrical speed 

1 s 

3 kVA 

127 V 
7.87 A 

16.133 Cl 

1 rade 

1 rade 
/ s 

Parameters of the System 
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APPENDIXD 

PARAMETERS OF THE FOUR-GENERATOR SYSTEM AND ITS 

PSCAD/EMTDC MODELLING 

This Appendix lists the parameters used in the four-machine study system in Chapter 

Four and further shows the PSCADIEMTDC models of the system. 

D.1 Parameters of the Four-Machine System in Per-Unit 

D.1.1 Generators 

Ra = 0.0025 

XL = 0.2 

Xd = 1.8 

Xd' = 0.3 

Xd" = 0.25 

TdO' = 8.0 S 

TdO" = 0.03 s 

ASa/ = 0.015 

T/ln = 0.9 

Tqo' = 0.4 s 

Tqo" = 0.05 s 

BSa/ = 9.6 

B=O 
H = 6.5 s (for G1 and 02) 

H = 6.175 s (for 03 and 04) 

Base power = 900 MV A 

Base voltage = 20 kV 

D.1.2 Transmission Line System 

r 

XL 

be 
Base power 

Base voltage 

Transformers 

RT 
XT 

Base power 

Base voltage 

= 0.0001 p.u. / km 
= 0.001 p.u. / km 
= 0.00175 p.u. / km 
= 100MVA 

= 230 kV 

= 0.0 

= 0.15 

= 900MVA 

= 20/230 kV 

Parameters of the Four-Machine System and Its PSCAOIEMTOC Modelling 
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D.L3 Initial Conditions 

G1: P= 700 MW, Q= 185 MVAr, Et = 1.03L20.2° 

G2: P=700MW, Q=235 MVAr, Et = LOlL 10.5° 

G3: P=719 MW, Q=176MVAr, Et = 1.03L-6.8° 

G4: P=700MW, Q=202 MVAr, Et= 1.01L-17.00 

D.L4 Loads 

Bus 7: 

Bus 9: 

PL= 967 MW, 

PL = 1767 MW, 

QL = 100 MVAr, 

QL= 100 MVAr, 

Qc=200MVAr 

Qc=350MVAr 

D.LS Thyristor Exciter with TGR and Automatic Voltage Regulator 

KA = 200.0 

TA = 1.0 S 

TB = 10.0 S 

TR =0.01 S 

D.2 PSCADIEMTDC Representation With and Without Inverter-Based Series 

Compensator 

Fig D.1 shows the graphical representation of the four-generator power system that 

excludes the inverter-based series compensator in PSCADIEMTDC as outlined in 

Chapter Five. Fig. D.2 shows the graphical representation of the same four-generator 

power system that includes the inverter-based series compensator In 

PSCADIEMTDC. The parameters and gains of the inverter-based series compensator 

used in Fig. D.2 were determined by converting those of the SMIB system (Fig. 3.17) 

into per-unit using the per-unit system described in Appendix A as follows. 

C = 0.0075 pu. 

Hv= 0.1 pu. 

Hp = 0.3 pu. 

Vdco = 1.18 pu. 

(across V dcap label in Fig. 3.17) 

(gain block of 0.1 in Fig. 3.17 in the control scheme) 

(gain block of 0.3 in Fig. 3.17 in the control scheme) 

(gain input of 150 in desired voltages in Fig 3.17) 

KAJ = 3.4 * 6.)0 pu. (gain block of 1068.14 in Fig 3.17 in the control scheme) 

Kvp = 12.7 pu. (gain block of 100 in Fig. 3.17 in the control scheme) 

Parameters of the Four-Machine System and Its PSCADIEMTDC Modelling 
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Fig. D.2: A detailed PSCADIEMTDC representation of the four-machine system, 
including the inverter-based series compensator. 

Parameters of the Four-Machine System and Its PSCADIEMTDC Modelling 



Appendix E Page E.1 

APPENDIXE 

SIMPLIFIED SMIB SYSTEM MATLAB CODE 

E.1 General 

In Chapter Three the non-linear time-domain simulation model (in eqns. 3.27 to 3.33) 

and the linearised model of the single-machine infinite bus system were derived. Non­

linear simulation studies and linearised eigenvalue analyses were presented in Chapter 

F our using the simplified models which have been programmed in the MATLAB 

software package. The linearised model of the simplified SMIB system has been 

obtained by numerical linearisation of the non-linear model, using the linearisation 

functions provided in the MATLAB programming environment [Math Works]. The 

abbreviated MATLAB M-files which follow show the programmed non-linear model 

equations, and the accompanying numerical linearisation procedure; sections of the 

code, where necessary, have been omitted in the interest of conciseness. 

E.2 Non-Linear SMIB System Code 

% Non-linear model of the single-machine infinite bus with the 
% AVR and high-gain exciter and idealised CSC and the damping 
% controls - generator damper windings and stator transient are 
% not represented . 
clc 
clf 
clear 

% ----Initial conditions at the generator terminals in p.u . ---% 
Pb 0.8; 
Vinf 1. 0; 
Qb 0.03; 

% - ------ System Parameters in p.u.-----------% 

% Generator 
Xad 0.85; 
Xaq 0.45; 
Xl 0.15; 
Xfd 1. 03; 
Xd Xad + Xl; 
Xq Xaq + Xl; 
Xffd Xad + Xfd; 
Xdpr Xl + Xad* Xfd/(Xad + Xfd); 
Ra 0 . 005; 
Rfd 0 . 00065; 

Simplified SMIB System MA TLAB Code 
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H 4.0; 
Wo 100 * pi; 
Jm 2*H / wo; 
B 0.0; 
Tdopr Xffd/(Wo * Rfd) ; 

% Transmission line parameters 
Rline 0.0; 

0.4; 
0.1 ; 

Xline 
xcscO 
Zline Rline + j*(Xline-XcscO); 

Ra 
Xd 
Xq 
Xdpr 

Ra + Rline; 
Xd + Xline-XcscO; 
Xq + Xline-XcscO; 
Xdpr + Xline-XcscO; 

%AVR and Exciter initialisation data 
Ka 100; 
Ta 1 . 0; 
Tb 10.0; 
Tr 0.01; 

% Variable impedance parameters 
Tcsc 0.01; 
Kc 0.1; 
Xcscv 0; 

%------Simulation Time Settings-----------% 
deltat 0.002; 
TO 0.5; 
Tfinal 6; 
Tflt 0.1; 

%------------------------------------------
disp('Calculations in progress ... '); 
%------------------------------- -- ---------
% Calculate the machine terminal current 
It = (Pb-j*Qb) / Vinf; 
pfAng = -angle (It); 

% Calculate the load angle 
Eq = Vinf+(Ra + j*Xq)*It; 
Langle = angle(Eq); 

Id abs(It)*sin(Langle+pfAng); 
Iq abs(It)*cos(Langle+pfAng); 
la Id + j*Iq; 

vq Vinf * cos (Langle) ; 
vd = Vinf * sin (Langle) ; 

Eqpr = vq + Ra*Iq + Xdpr*Id; 
Eo Eqpr + (Xd - Xdpr)*Id; 
Fi sqrt(2)*Eo/Xad; 
Te Eqpr*Iq + Id*Iq*(Xq - Xdpr); 
Pm = Te; 

Vto = abs(vd+j*vq+la*Zline); 
Vtm Vto; 

Simplified SMIB System MA TLAB Code 
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Vref = Vto + Eo/Ka; 
Vy = Ka * (Vref - Vto); 

% States initialisation 
t=O; 
x(l) 0; 
x(2) Langle; 
x(3) Eqpr; 
x(4) Vtm; 
x (5) Vy; 
x(6) Xcscv; 

% Non-linear differential equations are in subroutine swiftplt.m 
% Given the parameters and initial operating conditions the 
% subroutine calculates and returns the state variables. 

[xdot,Id,Iq,Ia,Vt,Te,Efd] = 
swiftplt(x,Zline,Vinf,Ra,Xd,Xdpr,Xq,Jm,B,Pm,Tdopr,Ka,Ta,Tb,Tr,Vref,Kc 
,Tcsc) ; 

% Integration loop 
for h = O:deltat: (Tfinal-deltat), 

% Applying a 3-phase disturbance at the generator terminals. 
if (t>=TO), 

vinf = 0; 
end 

\ Clearing the fault . 
if (t>= TO+Tflt), 

Vinf = 1.0; 
end 

%Integrate differential equations 
y = x+xdot*deltat; 
[ydot,Id,Iq,Ia,Vt,Te,Efd] = 
swiftplt(y,Zline,Vinf,Ra,Xd,Xdpr,Xq,Jm,B,Pm,Tdopr,Ka,Ta,Tb,Tr,Vref,Kc 
,Tcsc); 

x = x+deltat*(xdot+ydot)/2; 
[xdot,Id,Iq,Ia,Vt,Te,Efd] = 
swiftplt(x,Zline,Vinf,Ra,Xd,Xdpr,Xq,Jm,B,Pm,Tdopr,Ka,Ta,Tb,Tr,Vref,Kc 
,Tcsc); 

t = t+deltat; 

%Field current 
Fi = sqrt(2)/Xad*(x(3) + Id*(Xd-Xdpr-2*x(6))); 

%Setting Xcscv limits 
if (x(6) >= 0.1), 

x(6)= 0.1; 
end 
if(x(6) <= -0.1), 

x(6) = -0.1; 
end 
z = [z;t]; 
xo = [xo; x(2) abs(Ia) abs(Vt) Te Efd x(6) Fi x(l)]; 
end; 

Simplified SMIB System MA TLAB Code 



Appendix E Page E.4 

% Subroutine swiftplt.m 
% Solves the differential equations and returns the state variables 

function [xdot,Id,Iq,Ia,Vt,Te,Efd] = 
swiftplt(x,Zline,Vinf,Ra,Xd,Xdpr,Xq,Jm,B,Pm,Tdopr,Ka,Ta,Tb,Tr,Vref,Kc 
,Tcsc) 

Vinfd 
Vinfq 

(Vinf)*sin(x(2)) ; 
(Vinf)*cos(x(2)); 

Xq = Xq - x ( 6) ; 
Xd = Xd - x ( 6) ; 
Xdpr = Xdpr - x(6); 

Id 
Iq 
Te 
EfdI 

(x(3) - Vinfq - Ra*Vinfd/Xq) / 
(Vinfd + Id*Ra) / Xq; 
x(3) * Iq + Id*Iq*(Xq - Xdpr); 
= x(3) + Id*(Xd - Xdpr); 

la = Id + j*Iq; 

(Xdpr + Ra*Ra/Xq) ; 

Vt = abs(Vinfd+j*Vinfq+la*(Zline-j*x(6))); 
Efd = Ta*Ka*(Vref - x(4))/Tb + (1 - Ta/Tb)*x(s); 

% State 
xdot(l) 
xdot(2) 
xdot(3) 
xdot(4) 
xdot(s) 
xdot(6) 

variables 
(Pm - Te - B * x(l)) / Jm; 
x(l) ; 
(Efd - EfdI) / Tdopr; 
(Vt - x(4)) / Tr; 
(Ka* (Vref - x(4)) - x(s)) / 
(Kc*x(l) - x(6)) /Tcsc; 

E.3 Linearised SMIB System Code 

Tb; 

% Linearisation of the single-machine infinite bus 
% non-linear model with the AVR and high-gain exciter 
% and idealised CSC and the damping controls. 
% Generator damper windings and stator transients are 
% not represented. 

global Ra Xd Xdpr Xq Jm B Pm Tdopr Ka Ta Tb Tr Kc Tws Zline Vref 

% Initial conditions at the generator terminals 

Pb = 0.8; 
Vinf = 1. 0; 
Qb = 0.03; 

% Generator Parameters 

Xad 0.85; 
Xaq 0.45; 
Xl = 0.15; 
Xfd 1. 03 i 
Xd Xad + Xli 
Xq Xaq + Xli 
Xffd = Xad + Xfdi 
Xdpr = Xl + Xad* Xfd/(Xad + Xfd)i 

Simplified SMIB System MA TLAB Code 
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Ra 0.005; 
Rfd 0.00065; 
H 4.0; 
Wo 100 * pi; 
Jm 2*H j Wo; 
B 0.0; 
Tdopr Xffdj (Wo * Rfd) ; 

% Transmission line parameters 

Rline 
Xline 
Zline 

Ra 
Xd 
Xq 
Xdpr 

0; 
0.6; 
Rline + j*Xline; 

Ra + Rline; 
Xd + Xline; 
Xq + Xline; 
= Xdpr + Xline; 

% Calculate the machine terminal current 
It = (Pb-j*Qb) j Vinf; 
pfAng = -angle (It); 

% Solving for the internal angle 
Eq = vinf+(Ra + j*Xq)*It; 
Langle = angle (Eq) ; 

Id abs(It)*sin(Langle+pfAng); 
Iq abs(It)*cos(Langle+pfAng); 
la Id + j*Iq; 

vq Vinf * cos (Langle) ; 
vd Vinf * sin (Langle) ; 

Eqpr = vq + Ra*Iq + Xdpr*Id; 
Eo Eqpr + (Xd - Xdpr)*Id; 
Fi sqrt(2)*EojXad; 
Te Eqpr*Iq + Id*Iq*(Xq - Xdpr); 
Pm Te; 

% AVR and Exciter initialisation data 
Ka 200; 
Ta 
Tb 
Tr 
Vto 
Vtm 
Vref 
Vy 

1. 0; 
10.0; 
0.01; 
abs(vd+j*vq+la*Zline) ; 
Vto; 
Vto + EojKa; 
Ka * (Vref - Vto); 

% Variable impedance parameters 
Kc 0.1; 
Tcsc 0.01; 
Xcscv O· I 

% Input vector at the steady state operating point about 
% which to linearise numerically 
u = [Vinf; Eo; Pm; Vto]; 
XXO = [0; Langle; Eqpr; Vtm; Vy; Xcscv]; 

% Test this steady-state vector for correctness if necessary 

Simplified SMIB System MA TLAB Code 
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[xdots] = avrpltsmiblin(O,XXO,u,l); 

% Form linearised state space matrices using function linmod 
% non-linear model equations for the SMIB 
% are in subroutine avrsmiblin.m; steady-state operating 
% point in state vector XXO 
[AA,BB,CC,DD] = linmod('avrsmiblinblk',XXO,u,le-8); 

eval = eig(AA); 

x real (eval) ; 
y imag (eval) ; 

% Subroutine avrsmiblin.m 
% Contains the non-linear, differential equations 
% describing the SMIB 

function [sys,xO,str,ts] = avrpltsmiblin(t,x,u,flag) 
%AVRPLTSMIBLIN General M-file S-function template 

Page E.6 

global Ra Xd Xdpr Xq Jm B Pm Tdopr Ka Ta Tb Tr Kc Tcsc Zline Vref 
switch flag, 

% Initialization % 

case 0, 
[sys, xO, str, ts] mdlInitializeSizes; 

% Derivatives % 
case 1, 
sys=mdlDerivatives(t,x,u) ; 

end 

% Outputs % 
case 3, 

sys=mdlOutputs(t,x,u) ; 

% Unused Flags% 
case { 2, 4, 9 } 

sys=[] ; 

% Unexpected flags % 
otherwise 
error(['Unhandled flag 

% end avrpltsmiblin 

',num2str(flag)]) ; 

%==================================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the 
% S-function. 
%==================================================================== 

function [sys,xO,str,ts] = mdllnitializeSizes 

sizes = simsizes; 

sizes.NumContStates 6; 
sizes.NumDiscStates 0; 
sizes.NumOutputs 2; 
sizes.NumInputs 4; 
sizes.DirFeedthrough 0; 

Simplified SMIB System MA TLAB Code 
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sizes.NumSampleTimes = 1; % at least one sample time is needed 

sys = simsizes(sizes); 

% initialize the initial conditions 
xO zeros(6,1); 

% str is always an empty matrix 
str = [); 

% initialize the array of sample times 
ts [0 0]; 

% end mdlInitializeSizes 
%==================================================================== 
% mdlDerivatives 
% Return the derivatives for the continuous states. 
%==================================================================== 

function sys = mdlDerivatives(t,x,u) 
global Ra Xd Xdpr Xq Jm B Pm Tdopr Ka Ta Tb Tr Kc Tcsc Zline Vref 

Vinf 
Eo 
Pm 
Vto 

Vinfd 
Vinfq 

U(l, 1) ; 

u(2,1); 
u(3,1); 
u (4,1) ; 

(Vinf)*sin(x(2» ; 
(Vinf)*cos(x(2» ; 

% Equations to be linearised 
Xq = Xq - x(6); 
Xd = Xd - x(6); 
Xdpr = Xdpr - x(6); 

Id 
Iq 
Te 
EfdI 

(x(3) - Vinfq - Ra*Vinfd/Xq) / 
(Vinfd + Id*Ra) / Xq; 
x(3) * Iq + Id*Iq*(Xq - Xdpr); 
= x(3) + Id*(Xd - Xdpr); 

(Xdpr + Ra*Ra/Xq) ; 

la = 
Vt 
Efd = 

Id + j*Iq; 
abs(Vinfd+j*Vinfq+Ia*(Zline-j*x(6») ; 
Ta*Ka*(Vref - X(4»/Tb + (1 - Ta/Tb)*x(S); 

sYS(l,l) 
sys(2,1) 
sys(3,1) 
sys(4,1) 
sys(S,l) 
sys(6,1) 

(Pm - Te - B * x(l» / Jm; 
x(l) ; 
(Efd - EfdI) / Tdopr; 
(Vt - x(4» / Tr; 
(Ka* (Vref - x(4» - x(S» / Tb; 
(Kc*l*x(l) - x(6» /Tcsc; 

% end mdlDerivatives 

%==================================================================== 
% mdlOutputs 
% Return the block outputs. 
%==================================================================== 

function sys=mdlOutputs(t,x,u) 

sys (1 , 1) = x ( 1 , 1) ; 

Simplified SMIB System MA TLAB Code 



sys(2,1)= x(2,1); 

% end mdlOutputs 
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