
IMPLEMENTATION OF A PROPRIETARY CAD GRAPHICS

SUBSYSTEM USING THE GKS STANDARD INTERFACE

by

TREVOR ROWLAND DAVIES

Submitted in partial fulfilment of the requirements for the degree of Master of

Science (Engineering) in the Department of Electronic Engineering,

University of Natal.

1989

Durban



Preface

The experimental work described in this thesis was carried out in the

Department of Electronic Engineering, University of Natal, Durban, from

February 1986 to December 1989, under the supervision of Mr. Roger C.S.

Peplow.

These studies represent original work by the author and have not been

submitted in any form to another University. Where use was made of the work

of others it has been duly acknowledged in the text.

(i)



Acknowledgements

The author wishes to thank his supervisor, Mr. Roger C.S. Peplow for his

guidance and for displaying endless patience. The author is also grateful to the

Council for Scientific and Industrial Research for financial assistance. Thanks

are also due to Dr. G.R. Davies for his helpful criticism, and to J. Frayne for her

encouragement and for bottomless cups of coffee.

(ii )



Abstract

This project involved porting a Graphical Software Package (GSP) from

the proprietary IDS-BO Gerber CAD system onto a more modern computer that

would allow student access for further study and development. Because of the

popularity of Unix as an "open systems environment" , the computer chosen

was an HP9000 using the HP-UX operating system. In addition, it was decided

to implement a standard Graphical Kernel System (GKS) interface to provide

further portability and to cater for the expected growth of the GKS as an

international standard.

By way of introduction, a brief general overview of computer graphics,

some of the essential considerations for the design of a graphics package and a

description of the work undertaken are presented.

Then follows a detailed presentation of the two systems central to this

project i) the lDS-SO Gerber proprietary CAD system, with particular attention

being paid to the Graphical Software Package (GSP) which it uses and ii) the

Graphical Kernel System (GKS) which has become a widely accepted

international graphics standard. The major differences between the lDS-SO

Gerber GSP system and the GKS system are indicated.

Following the theoretical presentation of the GSP and GKS systems, the

practical work involved in first implementing a "skeleton" GKS interface on the

HP9000 Unix System, incorporating the existing Advanced Graphics Package

(AGP) is presented. The establishment of a GKS interface then allows an

lDS-SO Gerber GSP interface to be developed and mapped onto this. Detailed

description is given of the methods employed for this implementation and the

reasons for the data structures chosen.

The procedures and considerations for the testing and verification of the

total .system implemented on the HP9000 then follow. Original lDS-SO G-erber

2-D .applications software was used for the purpose of testing. The

implementation of the data base that this software uses is also presented.

Conclusions on system performance are finally presented as well as suggested

areas for possible further work.

(Hi)



Table of Contents

Preface

Acknowledgements

Abstract

CHAPTER 1 INTRODUCTION

i

ii

Hi

1

1.1

1.2

1.2.1

1.2.2

1.3

A'brief history of computer graphics

Software design considerations

Essential design criteria

The importance of software standards

The aim and scope of this project

1

2

3

4

6

CHAPTER 2 THE lDS-SO CAD SYSTEM 9

2.1

2.2

2.3

2.4 "

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.4.7

2.4.8

2.4.9

2.4.10

Introduction

The operating environment-on the IDS-80

Applications software

The Graphics Subroutine Package

Individual primitive output

Subfigures

Figures

Data sets

Display file

Graphical input

Keyboard and keyboard display subroutines

Modal parameter subroutines

Control functions

Error handling

(iv)

9

11

12

13

15

17

21

22

23

24

25

26

28

29



2.5 The IDS-80 CAD system and the GSP in summary 29

CHAPTER 3 THE GRAPHICAL KERNEL SYSTEM (GKS) 31

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.3

3.4

3.5

3.5.1

3.5.2

3.5.3

3.6

A History of GKS

GKS primitives and graphical output

The line primitive (Polyline)

The point primitive (Polymarker)

The shading primitive (Fill Area)

The text·primitive

The cell array primitive .

GKS graphical input

GKS segments

Workstations and the GKS environment

Co-ordinate systems

Setting workstation attributes for primitives 48

Segment storage on workstations

A summary of the GKS

31

33

34

35

37

39

40

40

42

43

45

49

49

CHAPTER 4 IMPLEMENTATION OF A GKS

INTERFACE ON THE HP 9000 51

4.1

4.2

4.3

The Advanced Graphics Package (AGP)

Implementation of software above and below

the GKS level '

Implementation of the GKS subroutines

51

52

54

CHAPTER 5 MAPPING THE GSP ONTO GKS . 58

5.1

5.2

5.3

Introduction to the mapping of the GSP

on to GKS

Simple graphical output

Graphical output using the display file

(v)

58

59

60



5.3.1

5.3.2

5.3.3

5.4

5.4.1

5.4.2

5.5

5.6

Output of simple graphical primitives from

the display file

Figures and subfigures in the display file

Location of figures in the display file

The GSP input subroutines

Graphical input subroutines

Keyboard input

System parameters and control functions

Error handling by the GSP

60

62

65

66

66

67

69

71

CHAPTER 6 TESTING THE SYSTEM 73

6.1

6.2

6.3

6.3.1

6.3.2

Requirements for testing the system

Initial testing of the GSP subroutines

Testing the GSP subroutines with IDS-80

software

The IDS-80 2-D data base and its management

Permanent storage of data and part file

conversion

73

75

77

77

. 79

CHAPTER 7 CONCLUSIONS 80

7.1

7.2

7.3

System performance in terms of the objectives

Possible areas for further work

CAD and its future in South Africa

80

83

84

"APPE NDICES

A:

B:

Summary of GSP subroutines and their

compatibility

Summary of GKS subroutines and their

compatibility

(vi)

86

93



· C:

D:

GSP Error Codes

Typical Software Examples

96

98

REFERENCES

(vI t )

103



Chapter 1

INTRODUCTION

1.1 A BRIEF HISTORY OF COMPUTER GRAPHICS

One of the world's first digital computers, the IBM Mark 1 appeared in

the 1940's at the University of Manchester, England. It comprised several

thousand radio yalves, was slow and could only perform fairly simple

arithmetic tasks [1]. The machine was programmed, in 32-bit numbers written

backwards. Laurie [2] states that Alan Turing, who was partly responsiblefor

the programming, "saw no reason why the computer should pander to its

operator's inability to think the way it did". Modern Computer Aided Design

(CAD) systems demand the opposite - high speed, complex functions and quiet

subservience in performing as much of the work as possible, and on the users'

- terms. Rapid developments in the fields of software and hardware over the last

few years have gone a long way towards realising these demands.

Whilst .. computers provide fast and accurate processing of large

quantities of numerical data and a perfect memory, they lack initiative and the

ability to relate apparently disjointed facts. Man, on the other hand, has an

exceptional visual processing ability and can relate images or symbols to

complex physical objects or properties. It is clearly desirable to combine the

1



tireless efficiency of computers with the visual processing ability of man, as it

would assist him in virtually any design field where graphics are essential. This

fundamental conceptual difference in the way man thinks (in terms of images)

and the way computers function (in terms of numbers), leads to problems of

communication between man and computer. In older programs especially, this

task of translation was left to man, but as hardware and software capabilities

improve the computer is made to perform more and more of these conversion

functions.

One of the pioneers of computer graphics was Ivan Sutherland who

developed a forerunner of today's CAD .graphics systems which he called

Sketchpad [1]. It was first introduced in 1963. Sketchpad was the first system to

represent an object by determining the image of the object from data describing
,

the object, as opposed to a simple line picture that has no association with a

physical object. Despite hardware limitations Sutherland had already

introduced a technique called "rubber-banding" where a line would have its start

point fixed and the end point attached to the cursor position. It could then be

stretched about the .screen until another fixed co-ordinate on the line was

determined. The only graphics output function provided by Sketchpad was to

place dots on a screen; a line would comprise a number of adjacent dots [1]. '

Interest in computer graphics continued to grow during the 1970's, but it

is only since 1980 that computer graphics has taken dramatic steps forward as

hardware and software have become both cheaper and more powerful. The man

in the street has begun to realise that a CAD system (which allows his

innovation to benefit from the numerical processing abilities of a computer) is a

valuable tool and yet not necessarily beyond his reach.

1.2 SOFTWARE DESIGN CONSIDERATIONS

The design of any large system may be made easier by dividing it into

more manageable portions. Software design is no exception. Sensible program

structuring and a hierarchical t_op down approach to the development of

system, programs and modules results in a more refined and cost-effective final

product. Structured programming demands a careful analysis of each stage of

2



the project including the initial design stage. Stay [3] suggests that athird of the

revision work on a system can be traced back to errors in the analysis and

design phases of the project. He offers the following stages for successful design

implementation.

- Requirement definition

- System analysis

- System design

- Program design

- Module design

- System and program documentation

A hierarchical design process, plus careful .definition of the input and output

required of each phase, allows better understanding of the system. Because all

functions are discrete, and because layered software results from this method,

error correction and program modification is localised and thus simplified.

1.2.1 Essential Design Criteria

Analysis of the basic -requirements of a good CAD system yields the

following essential design criteria. The system must maintain a comprehensive

data base for storage of all design information and must have suitable

application programs to manipulate the data base. Sophisticated I/O functions

must exist for data entry and result presentation. These should be easy to use

and, should operate in a manner as close as possible to typical human concepts

of operation. The system should support varied output .devices for the final
L .

presentation of visual data and should be fast despite the need to manipulate

large quantities of data. A good library system should also exist to store useful

parts and symbols with associated non-graphic data, and it should allow cross­

referencing to other libraries.

From a basic system analysis ·point of VIew, certain fundamental

concepts should be born in mind before a program design and structure is

developed. Newman and Sproull [4] lay down six ground rules for the design of a

simple graphics package:

3



1 Simplicity: All features and functions should be kept simple,

since features that are too complex will not be used and are thus merely .

wasteful of design time and may demand unnecessary extra hardware features

or incur processing overheads.

2 Consistency: Function names, calling sequences, error-handling

and co-ordinate systems must be kept simple and consistent throughout the

system and, if possible, should be consistent with popular software standards.

3 Completeness: Simplicity and completeness are not mutually

exclusive. Whilst maintaining simplicity, it is essential to ensure that no

necessary functions or powerful functions that could be included to the general

benefit of the system, are omitted.
f

4 Robustness: Small user errors should be handled and corrected .

by the program without comment. With larger errors the system should

provide helpful comments to assist the user in overcoming them.

5 Performance: Although performance is limited by the operating

system response and display- characteristics, software which performs highly

dynamic graphics functions should be minimised and should be particularly

efficient. The system should also offer no advantage to those who understand

. the internal system workings. At the same time, although the system should

provide easy operation for the first time user, system over-friendliness should

not irritate the experienced user.

6 Economy: As cost is an important factor, the program must

not be too bulky or too expensive to place it outside the range of the market at

which it is aimed.

1.2.2 The Importance of Software Standards

Most physical devices that are used for the graphical output (and input)

of data vary in their capabilities, and in their methods of producing graphical

output or input. It is however essential that a variety of I/O devices can be used

4



with any system. The advantages of careful system design incorporating

layered software thus become apparent since only a small portion of the

software, the layer nearest the hardware, needs to be device-dependent. This

structure lends itself to definition of standard interfaces between software

levels to formalise the process of customisation that may be required for a

particular system configuration. It is in the interest of the software designer to

use as universal a standard as possible because it will make the program more

versatile and consequently more popular. There are unfortunately no

.completely universal standards although some have gained more recognition

than others.

There are two main levels of standardisation in typical CAD program

structure (see Figure 1.1). The first is the "programmer interface" which lies

between the application program and the graphics utility programs. The two

main standards which currently exist at this level are the CORE System and the

Graphical Kernel System (GKS) [~,6]. They provide the applications programmer

with a comprehensive set of functions for modelling, viewing and describing

objects. Both systems describe views in normalised device co-ordinates (NDC).

The GKS system has recently been accepted as an international standard by

the International Standards Organisation and would thus appear to be set to

become the more universally ' recognised of the two. The second level of

standardisation describes the interface between the graphics utility programs

and the device drivers and is known as the "device level interface". S.tandards at

this level such as the Virtual Device Interface (VDI) and the North American

Presentation-Level Protocol Syntax (NAPLPS) define a standard co-ordinate and

presentation system for physical devices. A third standardisation level exists,

and this addresses the task of storing graphical data in a form that can be

transferred from one CAD system to another. This standard is described by the

Virtual .Device Metafile (VDM) and also by the Initial Graphics Exchange

Specification (IGES) [5]. These standards specify strict file formats and

conventions for the storage of graphical data. The IGES system has taken the

lead in this area,and some PC based CAD packages such as the "AutoCAD" and

"Conception-3D" CAD packages already provide the facility to convert to and

from the IGES standard [7,8}. This is likely to improve further its recognition

and popularity. The IGES system is also being considered by the United States

aerospace industry for the purpose of archiving data over prolonged periods for

5



APPLICATION

PROGRAMS

GRAPHICS

UTILITY

SYSTEM

use with future CAD systems [9].

Another recent development in standard interfaces is the Programmers

Hierarchical Interactive Graphics System (PHIGS) which is similar in many ways to

the 2-D GKS system. PHIGS allows graphics modelling based on an extension

of the segment concept used by the GKS (see chapter 3). It allows graphical

primitives to be grouped into "structures" which may hierarchically execute

each other [33]. Although this project may have benefitted by using PHIGS

system, in 1986 when -th e bulk of the work for this project was performed, this

standard was not available. This in itself is an indication of the rapid growth in

the area of graphics standardisation.

PROGRAMMER

LEVEL

INTERFACE._._._._._._._._._._._.- ._._._._._._. _._._._._.

DEVICE

LEVEL

INTERFACE_._ ._ ._ ._ ._ ._._._ ._._._ ._ ._._._._ ._ ._ ._ ._ ._ ._ ._.

I
standard
interface
device

device
driver

non-standard
physical
device

I
device
driver

I
non-standard

physical
device

Figure 1.1 Standard Interface Levels on a typical -CAD system

6



1.3 THE AIM AND SCOPE OF THIS PROJECT

Older CAD' systems such as the IDS-80 system in the Electronic

Engineering department at the University of Natal, Durban' tend to be large

systems dedicated almost entirely to CAD. Much expensive hardware was

needed to support the more sophisticated graphics functions and maintain the

large data base. Despite these limitations, the IDS-80 system mentioned above

is still capable of fairly complex functions and is indeed utilised a great deal

within the department. The major aim of this project was to provide a system

that people could develop and enhance, using a more modern processor and

operating system. Hence the aim was to port the proprietary IDS-80 graphics

software to aUNIX system which would allow IDS-80 applications software to

run on that system and thereby provide more ready access to student

development. The UNIX system chosen was HP,-UX running. on a Hewlett

Packard HP9000 computer. The project involved creating the graphic device

system calls to match those required by the IDS-80 application software. The

HP9000 supports a graphics system called the Advanced Graphics Package (AGP).

It was decided to utilise this existing system and to emulate the lDS-80's

Graphics Subr?utine Package (GSP) by mapping it onto the AGP. An intermediate

Graphics Kernel Standard (GKS) interface was also implemented to cater for ' the

expected growth of GKS and to increase the portability of the software system.

Hence the implemented system looked as in Figure 1.2. .

The IDS-80 has a data base system which interfaces to the graphical

functions of the CAD system. It allows drawings or parts of drawings to be

stored permanently on disk. They may then be recalled later as complete

drawings or incorporated into other GSP drawings. In order for the resulting

system to be of some practical use, implementation of a corresponding data

base on the HP9000 was required. This, along with the necessary software to

manipulate it, was designed. Although externally (at a user level) this data base

system looked and functioned like the original lDS-80 system, some of the

features of the more modern HP9000 which were not available on the IDS-80

were used to facilitate the implementation. The HP9000 is a virtual memory

machine which suited the definition of large arrays with the fast access times

demanded by the graphics data base. Virtual memory machines rely on the

operating system to swap data in and out of memory and may not provide

7



optimal swapping. By intelligently handling graphical data, a computer

dedicated to the graphics application may swap the data related to graphics in

and out of memory more efficiently. This is compensated for however, by the

fact that the memory on the HP9000 is much larger (potentially 8 Meg.) than

the 64K of memory available 'on the IDS-80.

1

2

3

4

IDS-80

APPLICATION

SOFTWARE

GRAPHICS

SUBROUTINE

PACKAGE

GKS

SOFTWARE

PACKAGE

AGP

..,.. - - - - - - - - - - - - - - -
Device Drivers

GSP Interface

Standard
GKS

Interface

AGP Interface

Note: Levels 2 and 3 were specifically designed in this project.

Figure 1.2Software levels on the HP 9000.

To enable previously designed parts and library entities from the IDS-80

to be utilised on the new system, conversion programs were written to translate

data from the IDS-80 format to that of the HP9000. Thus anyone of the many

drawings that have been accumulated over time on the Gerber IDS-80 CAD

system may be converted and transferred across to the HP9000 for immediate

use. In addition to providing a useful collection of drawings which could be used

as a base for further design on the HP9000, this also provided typical data for

verifying and testing the system.

8



Chapter 2

THE lDS-80 CAD SYSTEM

2.1 INTRODUCTION

The Gerber IDS-80 CAD System is a multi-functional graphics design

system. By providing the user with graphic representations of his design, it will

allow him to model interactively a 2D or 3D part throughout the design process.

This process is not restricted to mechanical parts but may also be used for

schematic layouts and printed circuit board design.

The Gerber IDS-80 CAD system comprises a central Hewlett Packard

HP1000 mini-computer which is used as a file server and as a host to satellite

. workstations. Up to four such satellite workstations may be networked

together, each workstation comprising its own HPlOOO mini-computer to drive

its display, an ASCII keyboard, a keyboard function pad, a cursor arm and an

, LED keyboard display. The graphics display is a CRT storage screen but the

system may also contain ordinary alphanumeric displays as edit stations.

Networking workstations in this manner would create a CAD environment

where processing capabilities may be distributed and data bases and other

resources may be shared [10] (see Figure 2.1). The system at the Department of

.Electronic .Engineering at the University of Natal, Durban has only one

9



los-eo

G G

MAINFRAME

lDs-eo

GRAPHICS WORKSTATION

EDIT STATION

LOCAL COMMUNICATIONS LINK

~ REMOTE COMMUNICATIONS LINK

~ SYNCHROUNOUS COMMUNICATIONS ADAPTER

Figure 2.1 A sample network of IDS-80 workstations [11].

10



workstation and uses an edit station in conjunction with the graphics

workstation for file handling and housekeeping tasks. In addition to this

hardware, there are the normal I/0 and peripheral devices.

2.2 THE OPERATING ENVIRONMENT ON THE lDS-SO

Software architecture on the IDS-80 has a layered structure and

comprises application programs on top of an operating environment (see

Figure 2.2). To the average user (as opposed to the programmer), they will

appear indistinguishable, but for this project it is necessary to examine the

structure a little more closely.

APPLICATION PROGRAMS ' I
DISK MANAGEMENT SYSTEM

FILE MANAGEMENT SYSTEM

SOFTWARE LIBRARIES

RTE-IV OPERATING SYSTEM

HP 1000 MINI COMPUTER

Figure 2.2 Software layers on the IDS-80

The operating system supplied with the IDS-80 is Hewlett Packard's

RTE-IV operating system with some GST enhancements and it lies at the

centre of all operations. It is a real-time executive system designed for a multi­

programming environment and can schedule many programs concurrently. It is

11



responsible for overall system control and swaps disk resident programs in and

out of memory in accordance with various criteria such as availability of

system resources, program priority, operator commands or other external

events.

The software libraries contain commonly executed subroutines which

may be -linked to the application programs when they are loaded. Typical

libraries might contain HP supplied software, GST operating environment
. -

software, the Graphics Subroutine Package (GSP), GST applications software

and user-supplied software [11].

The file management system is used to control the creation of files and

-to manage filing.. It also performs functions such as checking the security on

files to prevent unauthorised access, and will date and time-stamp files when'

they are accessed. The file management system can be accessed only from

within a program, or via the data management system (DMS), which is the

standard command interface between the interactive user and the lDS-80's

RTE-IV operating system. The operating system is usually transparent to the

user.

2.3 APPLICATIONS SOFTWARE

The applications software supplied with the lDS-80 has been designed

specifically for graphics-oriented functions. Applications programs allow

construction and interactive manipulation of graphic and alphanumeric data

pertaining toa design. Symbols and parts which have already been created may

be stored in libraries for repetitive use in a particular design or for future use

within another design. The applications software can be divided into two

categories (i) 3D applications for interactive design of three dimensional

mechanical parts and (ii) 2D applications for interactive design of electrical

schematic layouts and printed circuit board design. There are separate data

bases for 2D and 3D applications but all application programs use the same

Graphical Subroutine Package (GSP) for the input and output of graphical data.

12



Some important features common to both packages had to be considered

because they make significant use of special GSP features in providing an

interface between the user and the GSP.

1. The application packages are responsible for higher level .control over

drawings than the GSP provides and include data base oriented functions such

as those for the storage and retrieval of permanently stored data.

2. The application packages provide the user with more complex graphical

primitives (such as arcs, circles and connect points) that are not available

directly from the GSP interface (which defines only lines, points and text). It

terms these complex primitives entities and constructs them from the more

simple GSP primitives; an arc for example is constructed from several short

straight lines, but may be manipulated as a single object.

3. Using the application packages, it is possible to define a group of

primitives as a symbol and manipulate them collectively. In this way (on an

electrical schematic layout, for example) the symbol for a transistor could be

defined as a certain collection of lines, text and connect points (or recalled from

a library of symbols) and used repetitively in a circuit diagram.

4. Non-graphical data may also be associated with symbols which may be

of relevance in other related areas of design. An example of this would be the

data used for the generation of a bill of materials for cost estimation.

5. Edit functions are provided for the correction and validation of a

particular drawing and provide the powerful manipulation tools required for an

interactive CAD design session.

2.4 THE GRAPHICS SUBROUTINE PACKAGE

The graphics subroutine package (GSP) provides a device-independent

interface between the application specific code and the graphics subsystem. The

. graphics subsystem (which may be managed by a satellite computer) is

responsible for managing the CRT, the keyboard and its display, the cursor arm

13



and any other graphics I/O devices that may be connected. Graphical functions

are thus performed by the application program with simple calls to GSP

subroutines.

The graphics subroutine package comprises high level subroutines which

are therefore easy to use but still powerful enough to provide good control over

the hardware graphics functions performed by the satellite. The output

primitives supported by the GSP are points, lines and text. These can be

grouped together in groups called figures or subfigures (discussed shortly) to

form more complex shapes or symbols which can then be referred to

collectively by the group name. This hierarchical treatment of data simplifies

software design above the GSP interface since the programming effort required

to manipulate primitives in groups is handled by the GSP software. This is

especially beneficial when a shape or symbol is used repetitively.

The hierarchical structure implemented by the GSP for the storage and

control of its data is in the form of a display file, data sets, figures and

subfigures. Each level in this hierarchy will now be considered in turn,

beginning at the lowest and most basic level.

The Graphics Subroutine Package consists of some 60 Fortran-callable

subroutines. These are listed in Appendix A and have been grouped into eight

basic categories as follows:

1. Graphics Output

2. Subfigure Subroutines

3. Figure Subroutines

4. Graphics Input

5. Keyboard Display

6. Modal Parameters

7. Control Functions

8. Symbolic Data Entry

Some of these subroutines will be introduced in the following discussion.

14



2.4.1 Individual Graphical Primitive Output

The simplest form of graphical output involves subroutine calls to plot

individual primitives on an output device. In this instance, primitives appear on

the output on a once off basis; the GSP does not retain information as to what

has been output. Thus no moving or changing can be done once the primitive

has been output, and if the screen is erased and the image reconstructed

("repainted"), this primitive is lost and cannot be recovered. The GSP uses the

current position concept,that is, it maintains a current position pair of co­

ordinates which could represent the co-ordinate position of the CRT beam or

the position of the pen on a plotter. To plot a line, only the end co-ordinates are

specified and the line is drawn from the current position to the end co­

ordinates. The current position of the cursor is then automatically updated to

be at those final line-end co-ordinates. To leave a gap in line or to plot a line

that is not connected to a previous one, it is necessary to change the current

position by using a Move Position subroutine call.

The GSP supports only three basic primitive types; points, lines and

text. All graphical output (and input) is performed in world co-ordinates and

the GSP is responsible for the conversion to and from .device co-ordinates

taking into account any modal parameters such as scale or rotation that are in

effect. Another feature common to all GSP graphical input and output is that it

is done to logical unit. A logical unit is associated with a physical device when it

is initialised. This will be discussed in more detail in section 2.4.9. The use of

logical units helps to make the GSP software device-independent by restricting

references to physical devices to initialisation subroutines only. The following

simple Fortran programming example shows how a rectangle with a length of

100 units and a height of 50 units (in world co-ordinates) would be drawn on the

display using the GSP Plot Line (PUNE) subroutine. It assumes that the GSP has

been opened and that all variables have already been initialised. (The meaning

of those parameters that have been left as variable names is not important at

this stage.)

CALL PUNE (Iucb,ierr,nds,100.0,O.O)

CALL PUNE (Iucb,ierr,nds,100.0,50.0)

CALL PUNE (Iucb,ierr,nds,O.O,50.0)

CALL PUNE (Iucb,ierr,nds,O.O,O.O)

15



This program segment would produce the results shown in Figure 2.3.

______I

Figure 2.3 Individual Primitive Output.

To redraw this reetang.le at another position on the screen, it would be

necessary firstly to do a Move Position (MVPOS) call to set the current position of

the cursor to the desired origin. Notice from this next example (which draws

the same size rectangle but away from the origin) that all co-ordinates are .

relative to the world eo-ordinate origin which in this case (and by default) is the

lower left hand corner of the display.

CALL MVPOS (Iucb,ierr,nds,50.0,25.0)

CALL PLlNE (Iucb,ierr,nds,150.0,25.0)

CALL PLlNE (Iucb,ierr,nds,150.0,75.0)

CALL PLlNE (Iucb,ierr,nds,50.0,75.0)

CALL PLlNE (Iucb,ierr,nds,50.0,25.0)

After the above program example the "current position" of the cursor

would be at the co-ordinates (50.0,25.0). Any further output that followed this

would occur at that location. For example, if text were output after the last

program segment (using the Plot Text (PLTXT) subroutine):

16



DATA ntext /2HTE,2HXT/

CALL MVPOS (Iucb,ierr,nds,SO.O,2S.0)

CALL PLlNE (Iucb,ierr,nds,1S0.0,2S.0)

CALL PLlNE (Iucb,ierr,nds,1S0.0,7S.0)

CALL PLlNE (Iucb,ierr,nds,SO.O,7S.0)

CALL PLlNE (Iucb,ierr,nds,SO.O,2S.0)

CALL PLTXT (Iucb,ierr,nds,4,ntext)

This would produce the result shown in Figure 2.4.

Figure 2.4 Simple Graphical Output including text.

2.4.2 Subfigures

A subfigure is a collection of points, lines, text and other subfigures

which can be referred to collectively by name. A subfigure does not appear

unless specifically plotted to the output device but may appear any number of
- .

times. Subfigures have no fixed position associated with them and appear when .

17



plotted, at the current position of the cursor. A subfigure may also be nested

within a second subfigure in which case it becomes part of that subfigure but is

not plotted until the second subfigure is output. Subfigures may be nested up to

a maximum depth of thirty-two levels. Subfigure data are stored for future or

repetitive use in a display file (Section 2.4.~) but a subfigure that is not plotted as

part of a figure (Section 2.4.3) will not be redrawn on the output device after a

repaint. Because a subfigure has no fixed position associated with it and may

appear any number of times on the output, it is particularly useful, since the

programmer does not need to construct his own software loops for repetitive

images. The following program segment defines the familiar rectangle as a

subfigure.

C Begin the subfigure definition.

CALL BSFIG (Iucb,ierr,name)

C Now draw the rectangle.

CALL PUNE (Iucb,ierr,nds,100.0,O.O)

CALL PLlNE (Iucb,ierr,nds,100.0,SO.O)

CALL PLlNE (Iucb,ierr,nds,O.O,SO.O)

CALL PLlNE (IucbJerr,nds,O.O,O.O)

C Endthe subfigure definition.

CALL ESFIG (Iucb,ierr)

At this stage there IS still no output to the display, the subfigure

associated with the variable "name" has merely been defined. If, after this, the

following is executed:

C Move the currentposition andplot the subfigure.

CALL MVPOS (Iucb,ierr,nds,SO.O,2S.0)

CALL PSFIG (Iucb,ierr,name)

C Move currentposition elsewhere andplot the subfigure.
CALL MVPOS (Iucb,ierr,nds,1S0.0,1S0.0)
CALL PSFIG (lucbferrnsrne)

This would yield the result shown in Figure 2.5.

18



/

Figure 2.5 Subfigure Output on a Display Device.

The following example shows the nesting of one subfigure within

another. Suppose a subfigure defined by the variable name "square" is created as

follows:

C Begin the subfigure definition.

CALL BSFIG (Iucb,ierr,square)

C Draw a rectangle.

CALL PUNE (Iucb,ierr,nds,150.0,O.O)

CALL PLlNE (Iucb,ierr,nds,150.0,150.0)

CALL PLlNE (Iucb,ierr,nds,O.O,150.0)

CALL PLlNE Oucb,ierr,nds,O.O,O.O)

C Nest the last subfigure in this one.

CALL MVPOS Oucb,ierr,nds,25.0,25.0)

CALL PSFIG (lucblerrnarne)

C End the subfigure definition.

CALL ESFIG (lucbferr)

19



By executing a Plot Subfigure (PSFIG) call inside the definition of a

subfigure, the rectangular subfigure "name" has been nested inside the "square"

subfigure and becomes part of that subfigure (although it may simultaneously

.also be part of any number of other subfigures). It is then plotted whenever the

latter subfigure is plotted using the following subroutine call (Figure 2.6):

CALL PSRG (lucblertscuare)

,L.- --:-......

Figure 2.6Nested Subfigures.

Notice that it is not possible to have two subfigures 'bpen" at the same

time; output commands cannot be written to more than one subfigure

simultaneously. If one subfigure has been initiated with a BSFIG call, no other

subfigures can be initiated until it has been closed (with an ESFIG call).

Another feature 'of subfigures is that they may be attached to the cursor

and tracked across the screen utilising the write-through capabilities of a storage

screen. That is, a subfigure is drawn repetitively at the current cursor position.

If the cursor is moved, the subfigure appears to move with it until a final

.position has been decided upon. This provides the user with feedback by

showing him exactly how the screen will look with the subfigure in' any given

20



position and enables him to interactively select the desired final position by use

of a cursor arm or other similar locator-type input device. Once subfigure

tracking has been enabled, a sub figure may be tracked or released from tracking

with the "TSFlG" and "RSFIG" subroutines respectively.

2.4.3 Figures

Figures are collections of points, lines, text and subfigures which appear

on the output and can be referred to and manipulated by a collective name.

They may appear only once on the output device and appear simultaneously, as

they are created. They have a fixed position associated with them although this

position can be altered by suitable GSP subroutine calls (such as the Move Figure

(MFlG) subroutine). Data which are output whilst a figure is open are output to

the display device and are written to a display file (Section 2.4.8). This means

that they are retained for re-use. They are also automatically redrawn on a

screen whenever it is repainted. Again only one figure may he open at a time

and figures and subfigures may not be open simultaneously.

In the following program example. "the subfigure "square" from the

previous example is constructed as a figure instead. The rectangular subfigure is

nested inside the figure definition.

C Begin the figure definition.

CALL BFIG (Iucb,ierr,nds,square,int)

C Drawa square.

CALL PLlNE (Iucb,ierr,nds,150.0,O.O)

CALL PLlNE (Iucb,ierr,nds,150.0,150.0)

CALL PLlNE (Iucb,ierr,nds,O.O,150.0)

CALL PLlNE (Iucb,ierr,nds,O.O,O.O)

C Plot the subfigure.

CALL MVPOS (Iucb,ierr,nds,25.0,25.0)

CALLPSFIG (Iucb,ierr,name)

C Endthe subfigure definition.

CALL EFlG (Iucb,ierr)

21
,,\



After the above program code has been executed, the display will appear

as in 'Figure 2.6. It is not necessary to call a subroutine to specifically plot the

figure.

. The fact that a figure has a fixed position associated with it, and is

referred to by name is utilised by several program functions. For example, there

is a Locate Figure(LFIG) subroutine to search for the position of a figure (in world

co-ordinates] given its name. There are also subroutines to determine the name

of the closest figure (or figures) to a given point and to determine the figures

that lie within a defined window (the Find Figure (FFIG) and Find Windowed

Figures (FWFIG) subroutines respectively). Both of these subroutines are

particularly beneficial since, by reading a co-ordinate pair from the graphical

input device, they enable the programmer to relate the images that the user will

see on the screen back to the portions of the data base by simply indicating a

screen position close to the relevant figure with the cursor.

2.4.4 Data sets

-
All graphical data are also associated with a data set. A data set is a

logical collection -of primitives and figures which have some common

relationship. A single drawing may comprise data from several data sets. This

is useful since multiple data sets may be used to correspond to diff~rentphysical

components indicated in a drawing, or to different views of a certain object or

else to different layers of a particular structure. It is also possible to attribute

particular parameters (such as line style) to a particular data set. Up to sixteen

data sets may be ascribed to a given logical unit. The implementation of .

multiple data sets allows selected viewing of combinations of data and added

control over the manipulation of data since input and output are specific to a

particular data set. Subfigures are global to all data sets and may therefore be

called from any data set.

22



Data Set 1 Data set 2 . . . Data Set N

Figure 1 Figure 1

Figure 1

Figure 2
Figure 2

Figure 2

Figure 3

Figure 3

Subfig. 1 Subfig. 2 Subfig. 3

Figure 2.7 Display File Structure [after 11]

The Display File structure of the IDS-80 Graphics Subroutine Package. Up to

16 data sets are allowed. Subfigures are global to alldata sets.

2.4.5 Display file

Any application which uses the GSP may have a display file associated

with it. A display file is a memory-based storage area for graphic data that will

need to be re-displayed. It is designed for rapid access to allow the screen image

to be reconstructed as quickly as possible and is much faster than the data-base

subroutines that operate at an "entity" level. Thus all data which may be

23



required to be drawn on the output device and stored in memory for future use

is written to the display file. In other words, all data used in figures and

subfigures are written to the display file. Primitives which appear on the

display but which are not part of a subfigure or figure are not written to the

display file and will be lost when the screen is cleared (this includes repaint

operations). Subfigures which are not contained within figures are not re-drawn

on the display surface after a repaint operation but the subfigure data are still

retained in the display file and the subfigure may be recalled later. Thus, if after

each of the last two program examples (which both resulted in the display

device output shownin Figure 2.6), a repaint operation was performed, only in

the last case would the output be re-constructed to appear again as in Figure 2.6.

In the first case the screen would be blank since the output in that example was

achieved using only subfigures. The data set structure is supported by the

display file and all graphical data written to a display file in the form of figures

are associated with a particular data set. Data written to the display file in the

form of subfigures are global to all data sets. (See Figure 2.7).

2.4.6 Graphical Input

The GSP also has a full complement of graphical input subroutines and

supports a locator type input device which returns a pair of cursor co-ordinate

positions. Once initialised via a call to the "INTGD" subroutine, a graphical input

device may be enabled for use with a particular data set as follows:

t
CALL ENGID (Iucb,ierr,nds)

or disabled via:

CALL DSGID (Iucb,ierr)

While graphical input is enabled, a pair of co-ordinates may be read from

. the device using the "Read Graphics Input Device" subroutine:

CALL RDGID (locblerrnds.x.y)

24



The co-ordinates "x,y" are in world co-ordinates and include the

transformation effects of any modal parameters that may be set.

The GSP also supports other sophisticated features associated with ~

graphical input such as rubber-banding. By constantly redrawing a line from an

initial pair of co-ordinates to the current cursor position on the screen, the

appearance is given of a line being "stretched" around the screen as the cursor

moves. This provides useful feedback to the user who can see at a glance the

relationship between the starting co-ordinates of a line and the current cursor

co-ordinates. The rubber-banding feature -is implemented by two simple GSP

subroutines, one to enable this feature (and to specify the "fixed" rubber-band

co-ordinates) and another to disable it. These are the "ENRUB" and "DSRUB"

subroutines respectively.

In addition, .there are enable and disable subroutines for subroutine

"tracking" (see section 2.4.2). The "ENTRD" and "DSTRD"subroutines respectively

allow or disallow tracking for a particular input device.

2.4.7 Keyboard and Keyboard Display Subroutines

. The GSP provides a set of subroutines for supporting the keyboard and

the LED keyboard display. The "RTNKY" subroutine is used to return a single

keystroke from either the 80 function-key keypad or an alphanumeric key from

the standard ASCII keyboard. It may optionally also be used return the current

cursor position and is thus useful for many typical CAD functions, for example,

indicating by a single keystroke (and only a single call to a subroutine) that a

line should start or end at the particular current cursor position. The "RDKBD"

subroutine is similar, but allows a string of characters to he read from the

keyboard. In addition it may return a function-key value and the current cursor

co-ordinates. The syntax of the "RDKBD" subroutine (which is similar to the

"RTNKY" subroutine is as follows:

RDKBD (Iucb,ierr,ianfun,key,itext,nmax,n (,irdop,opx,opy})

where "ianfun" indicates whether only text, only a function-key or both text and

function-key were entered. Parameters "key" and 'ltext" return the function-key

value and the text string respectively. "Nmax" is the maximum number of

25



characters that may be read from the device for that particular input and "n- is

the actual number of characters read. "lrdop" is an optional parameter that may

be used to indicate whether the keyboard should simply be polled to determine

if any keys have been entered in the keystroke queue. The final parameters "opx,

opt are optional cursor co-ordinates. .

Separate subroutines exist to enable and disable the keyboard for input.

These are the "ENKBD" and "DSKBD" subroutines.

The LED keyboard display is treated separately from the keyboard but

may be used to echo keystrokes entered at the keyboard. This facility is enabled

or disabled with the "ENECO" and "DSECO" subroutines. It is also possible to

display other text on the LED disp lay. This can be done with the following

subroutine call:

CALL DTEXT(Iucb,ierr,itext In Ikolmll)

where 'ltext" contains the text string, "n-is the optional maximum number of

characters to display and 'kolm" is the starting column to be used for display. A

complementary function "ERKBD" exists to erase all or part of the keyboard

display.

2.4.8 Modal Parameter subroutines

The Modal Parameter subroutines are concerned with setting the

. relationship between the world co-ordinates and the device co-ordinates. The

following modal parameters may be set:

SCALE - This is used to adjust the relationship between the device co­

ordinate size and the world co-ordinate size. Scales may be different in both the

horizontal and vertical directions.

OFFSET - The offset sets the relationship between the device origin

(usually the lower left hand corner of the screen) and the world co-ordinate
origin.

26



ROTATION - This is used to define a rotation of the world coordinate

axes with respect to the device co-ordinates.

MIRROR - Mirror modal parameters may be set to invert the world

co-ordinate axes with respect to the device co-ordinates in either the X, the Yor

both planes.

GRID SNAP - A grid function exists which, when active, adjusts all co­

ordinates read from. the graphical input device to the nearest defined grid

location. This enables regular shapes such as rectangles to drawn accurately by

eye andmay also be used to ensure connectivity of lines.

ZOOM - Enables zooming in or out of world co-ordinates with respect to

device co-ordinates to temporarily enlarge or diminish a particular area of the

. display.

.PAN - Similar to the zoom funct ion except that it allows temporary

shift of the world co-ordinate origin with respect to the device origin.

The syntax of each of .these subroutines is of a similar nature and, as a

typical example, the syntax of the "SCALE" subroutine is as follows:

CALL SCALE (Iucb,ierr,nds,xsf,ysf)

where "nds" is the data set to which the scale parameters apply, and "xsf, ysf" are

scaling factors in the X and Y directions.

The Modal Parameter subroutines do not in themselves change the

appearance of images already displayed on the output. They merely set the .

parameters which will determine the output appearance for any subsequent

graphical output or input commands. Typically, after changes to any modal

parameters, a repaint screen command would be executed to reconstruct the

output from the display file with the relevant changes in effect.

27



2.4.9 Control Functions

The Control Function subroutines are primarily concerned with

initialisation and termination of GSP devices and also provide general house

keeping,utilities.

The "OPENG" subroutine is used to open a graphics logical unit for

graphical input or output and its use is mandatory for any graphics logical unit

before it can be used:

CALL OPENG (Iucb,ierr,lu,ioptn,mxnds)

A call to "OPENG" associates a Logical Unit Control Block (LUCB) with

the named logical unit. The LUCB is defined as an integer array and contains

the current parameters (including the modal parameters) for a particular

logical unit. It is a mandatory parameter for all GSP subroutines and is used to

indicate the logical unit which the subroutine should address on each particular

call. Despite being available as a subroutine parameter at a user level, it is not

permissible to modify the LUCB directly from the application software; all

changes to the 'contents of the LUCB should be made via the correct GSP

subroutine calls.

The "CLOSG" subroutine performs the opposite function and is used to

close a graphics logical unit to further input or output.

Some of the housekeeping functions include an "ERASE" function to

totally erase the output, a "RDRAW" subroutine which erases the output and

then reconstructs all figures that were displayed on the output from the display

file. All data that were not part of figure definition (or a subfigure definition
. .

included in a figure definition) are not redrawn. In addition display file

functions such as clearing the entire display file "CLRDF" and clearing a single

data set "CLRDS" also exist to provide complete control over all aspects of the

GSP system.

28



2.4.10 Error Handling

Included as a mandatory pa rameter to each subroutine is an error

parameter IERR. This is normallyreturned with a value of zero but in the event

.of an error is set to a code number corresponding to the particular error

condition. An error condition does not halt program execution or result in any

display on the screen unless the application program .specifically tests for _an

error and itself takes some action. This is useful since, in some circumstances,

an error condition may be acceptable. For example, an error resulting from an

attempt to close a figure which is already closed may not need to signify a fatal

error, cause the program to abort, or even warrant reporting on the display.

Obviously some errors are fatal in that proper program operation cannot

continue until the error is rectified (such as attempting to use an unopened

graphics logical unit) but the GSP treatment of errors allows the application

programmer to test for errors and decide on what action (if any) to take should
. .

an error have occurred.

2.5 THE lDS-SO CAD SYSTEM AND THE GSP IN SUMMARY

The IDS-80 CAD system supports a wide range of hardware

configurations and peripheral devices. Both 2D and 3D applications software
. .

exist for the modelling of three dimensional mechanical parts and for two

dimensional applications such as schematic drafting and printed circuit board

design. Although the dat~ base designs for the 2D and 3D applications are

different, both systems utilise the GSP package for the input and output of

graphical data.

The GSP has a hierarchical data structure comprising data sets, figures;

subfigures and stand-alone primitives. This structure is powerful since it

provides logical grouping of data at four levels and therefore simplifies the task

of the application programmer by allowing the collective manipulation of

graphical primitives. .The Display File is used for storage of figures and

subfigures and enables them to be redrawn or used repetitively within a

drawing. The input subroutines (for both the .keyboard and a graphical input

device), together with powerful search and locate subroutines (which can be

. 29



used to determine the existing positions of displayed entities), complement the

graphical output subroutines and provide a graphical system well suited to

interactive CAD applications. Thus, despite being a relatively old design and

therefore lacking some of the features found on more modern graphics

packages, the . IDS-80 Graphics Subroutine Package is a powerful graphics

software design tool.

30



Chapter 3

THE GRAPHICAL KERNEL SYSTEM (GKS)

3.1 A HISTORY OF GKS

One of the first attempts at forming a graphics standard was made in the

United States by the Graphics Standards Planning Committee (GSPC) under

the ACM Special Interest Group on Computer Graphics (SIGGRAPH). Work by

the GSPC yielded a basic core graphics system which has been refined much

since and is now generally referred to as "Core". It was first published in 1977

[14]. This publication provided an incentive for other bodies to develop computer

graphics standards, The West German Standards Organisation (DIN) began

developing a graphics standard of their own (a forerunner of the Graphical

Kernel System (GKS) system), as did the Standards Committee of the British

Computer Society. The advent of cheap raster scan screens (in comparison with

storage tube displays) and colour graphics dramatically increased the interest in

computer graphics and necessitated the creation of a standard that would be as

universal as possible and that would cater for functions suited to colour

graphics raster display devices (such as filling an area surrounded by lines with

a colour).

31



At a meeting in Toronto, a new graphics working group known as WG2

was formed with the aim of working towards a standard common to both

European and American expectations, and specifically to bring the Core and

GKS systems closer together [6].

The main differences between the Core system and the German .

Graphical Kernel System was that the latter was designed as a 2-D standard

whilst the Core system supports 3-D graphics. Other major differences occur in

the setting of attributes for output primitives. GKS has a bundled attribute

system where a group of attributes is assigned to single index number. It is thus

possible to set all the attributes for a given primitive simply by reference to the

correct index number. This has important ramifications when the application

program uses several different physical workstations (see Section 3.3.2). Core

uses the more conventional approach of individual attributes for each primitive.

Once a GKS attribute setting has been made, it remains in use for all primitives

until a new setting is made. This concept reduces the amount of data that is

associated with each primitive, making the assumption that attribute settings

usually remain constant for many primitives. Another difference between Core

and GKS is that Core supports the currentposition concept (like the IDS-80 GSP

package) and GKS does not. The current position concept is suited to the

drawing of connected lines whereas the GKS system is suited to single discrete

lines as well as connected line sequences (known as "polylines").

In 1983 the revised version of GKS was made a Draft International

Standard by the International Standards Organisation (ISO) and in 1985 was

awarded full International Standard status [15]. Further work is still progressing

in extending the GKS system to a 3-D system which will further improve its

acceptability and popularity.

The prime objective of standardisation at the application program level

is the formation and manipulation of graphical representations in a manner

that is independent of the computer or graphical device being used (refer back

to Section 1.2 and Figure 1.1). GKS provides the most universal standardisation

and, for this project, where the GKS interface is always to be used beneath the

Gerber GSP software layer (see Figure 1.2), the current lack of a 3-D version of

GKS poses no problems.

32



The programming of a graphics system that uses a GKS interface can be

split into distinct sections. The first comprises the graphical input and output

functions and the manipulation of graphical data related to a virtual device.

The second section is concerned with the defining of a graphical workstation (or

workstations) and the relating of virtual devices to physical devices. The

division of the design task into the two separate sections is facilitated

specifically by the design of the GKS itself. In order to make the entire system

as modular as possible, functions which perform graphical manipulations have

been isolated from those that concern the particular physical devices on which

the system might ru_n.

·3.2G KS PRIMITIVES AND·GRAPHICAL OUTPUT

The version of GKS that was accepted as a draft International Standard

originally supported four primitive types to perform graphical modelling and to

describe objects independently of device type. These were:

1. A Line Primitive.

2. A Point Primitive.

3. A Shading Primitive.

4. Text.

Subsequent to the publication of GKS as a draft standard and prior to its

inception as a full International Standard, a fifth, more complex primitive was

added:

5. The Cell Array Primitive.

This allows a pre-defined image of different colours or grey-shades to be

output and is suitable for raster scan displays.

33



3.2.1 The Line Primitive (POLYLINE)

The line drawing primitive POLYLlNE is the basic primitive ' for the

drawing of simple connected line sequences. It has the following form:

POLYLlNE (nxpts.ypts)

where "xpts" and "ypts" are arrays of dimension "n" and correspond to the

Cartesian co-ordinate pairs of "n" points to be connected by "n-1" lines . .

The GKS standard defines language binding, that is, it defines standard

subroutine names for each function. A subroutine to perform the "POLYLlNE"

.function for example would be called "GPL.!' and thus in a Fortran program

would appear as:

CALL GPL (nxpts.ypts)

As the defined 'subrout ine names are usually fairly cryptic, the example of

Hopgood et aL [6] will be followed and the longer function names will be used

throughout this chapter.

The following Fortran program example uses the "POLYLlNE" primitive
,

to draw a rectangle on the display device. The program assumes a workstation

to be defined and the GKS to have been initialised.

REALx(5), y(5)

DATA x / 0.0,2.0, 2.0, 0.0, 0.0 /

DATA Y/ 0.0, 0.0, to, to, 0.0 /

n=5
POLYLlNE (nx.y)

The above example would produce the output shown in Figure 3.1 on the

display device. Note that the same effect could have been achieved by drawing

each line individuallyusing four separate "POLYLlNE" subroutine calls. It would

still have been necessary however, to specify both start and end co-ordinates for

. each "POLYLlNE" call since, unlike the GSP, the current position concept is not

used.

34



I

Figure 3.1 Polyline output on a display device.

3.2.2 The Point Primitive (POLYMARKER)

The GKS "POLYMARKER" primitive has the same format as . the

"POLYLlNE" primitive but instead of connecting the co-ordinate points with

lines, it merely marks the points on the screen using the style of marker last

defined (see Section 3.5.2).

POLYMARKER (nxpts.ypts)

Thus if the "POLYLlNE" function in the last example is replaced with the

"POLYMARKER" function, the following output would result (Figure 3.2). (In this

case the marker at co-ordinates (0.0,0.0) would be drawn twice.)

35



*

*

*

*

Figure 3.2 Polymarker output.

If one' wanted to mark the points and connect them with lines, both

functions are simply executed, as illustrated in the following example and

Figure 3.3.

REAL x(5), y(5)

DATA x 10.0, 2.0, 2.0, 0.0, 0.0 I
DATA YI 0.0, 0.0, 1.0, 1.0, 0.0 I
POLYMARKER (4,x,y)

POLYLlNE (5,x,y) .

!

Figure 3.3 Combined polymarker andpolyline output.

36



3.2.3 The Shading Primitive (FILL AREA)

With the advent of raster displays which can fill areas with a colour or a

shade of grey, and some intelligent plotters which can cross-hatch areas, there is

a need to cater for this facility in any planned de facto standard. The GKS "FILL

AREP:' primitive is provided for this purpose. Once again the format common to

the last two primitive types is used.

FILL AREA (n.xpts.ypts)

Like the "POLYLlNE" function, "xpts.ypts" defines ·n~ co-ordinate pairs. The area

to be filled with a specified shade is the area which would be enclosed if these

points were connected by lines; the final co-ordinate pair is assumed to link

back to the first co-ordinate pair.

Thus if it was intended intended to shade the simple rectangle from the

previous examples, little alteration would be needed to the program (see the

following example and Figure 3.4):

REAL x(4), y(4)

DATA x 10.0, 2.0, 2.0,0.0 I
DATA YI 0.0,0.0, to,1.0 I
FILLAREA (4,x,y)

Figure 3.4 Output of the fill-area primitive.

37



Problems begin to occur however, when more complex shapes are

involved. Consider the following example.

REAL x(9), y (9)
.DATA x I 0.0, 2.0, 2.0, to, to, ts, is, 0.0, 0.0 I
DATA Y/ 0.0, 0.0, 2.0, 2.0, 0.5, 0.5, to, to, 0.0 I
POLYLlNE (9,x,y)

This would produce the display shown in Figure 3.5.

u

Figure 3.5 Polyline output of a shape.

If instead of using the "POLYLlNE" primitive one had used a "FILL ARE;':'

primitive, it may be ambiguous as to which part or parts of the drawing are

intended to be shaded. The algorithm used by the GKS is that if, from any

point in the area in question, a line drawn to infinity crosses a boundary an odd

number of times that area will be shaded and if it crosses the boundary an even

number of times (or crosses no boundary] it remains unshaded. Hence if the

last line of the previous example was replaced with:

38



FILL AREA (S,x,y)

the display shown in Figure 3.6 would result.

Figure 3.6 The effect of the fill-area primitive.

3.2.4 The Text Primitive

The text primitive is used for the annotation of drawings. The format is

as follows:

TEXT (x,y,string)

The parameter ·string" is a character string which will be drawn at the co­

ordinates (x.y). Other attributes describing the text style and orientation are set r­

separately. Since this process of setting attributes may also involve

consideration of workstations and physical devices, it will be discussed in a later

section (Section 3.5.2).

39



3.2.5 The Cell Array Primitive

The Cell Array Primitive is designed to be used with raster scan displays

and can be thought of as a map of the colours (or shades of grey) to be used for

a particular p~xel area. The cell is defined in world co-ordinates and so it is

possible for a particular cell rectangle to relate to more than a single pixel. A

cell array is specified by:

CELL ARRAY (xl,yl,xr,yr,dimx,dimy,sx,sy,dx,dy,ca)

The first four parameters specify two co-ordinate pairs defining opposite

corners of a rectangle in World Co-ordinate Space. The parameters "dx.dy"

specify the number of divisions of this rectangle into cells in the X and Y

directions. An array of colour numbers (which indicate the colour to beused

from the particular workstation colour table) of size "drnx" by "dimt is specified

by "caW, and "sx.sy" indicates the position in the colour table at which an array of

colour numbers can be obtained to be mapped onto the rectangle in world co­

ordinates.

3.3 GKS GRAPHICAL INJ.>UT

In addition to the graphical output functions, the GKS also has a full

complement of graphical input functions and supports a broad range of logical

input device types which will cater for almost all physical input devices. There

are six main types of input device defined. These are:

1. Locator - A "Locator" type device is one that returns a pair of co­

ordinates in Normalised Device Co-ordinate Space (NDC). An example of this

type of input would be co-ordinates returned by a computer "mouse".

2. Pick _ . The "Pick" logical device is used to return the name (or

segment identifier) of a segment to the application program that has been

.indicated by the pick device.

40



3. Choice - The "Choice" logical input device returns an integer value

corresponding to one of a given set of alternatives that has been chosen. This

type of input device might be used to return a choice from a menu displayed on

the screen or might be used to implement the function-key arrangement used

by the GSP to return a integer corresponding to a key number.

4. Valuator - This type of logical device is used to return a real value

to the application program. A typical use for a "Valuator" input device would

be returning the voltage across a potentiometer.

5. String - The "String" logical input device is used to return a character

or string of characters (such as from normal keyboard input). Most often it

would be used to select one of a small number of possible strings such as

indicating the name of a file to be opened.

6. Stroke - The "Stroke" input device is used to input a sequence of

points into an array of X and an array of Y co-ordinates. A typical "Stroke" .

input device is a graphics digitiser tablet.

Often, a specific physical input device will qualify as more than one of

the six logical devices. This is particularly true on some physical devices which

incorporate both output and input devices and automatically provide echoing of

the input device on the output. Therefore, although the "Locator" device

necessarily relates to the display, other types of physical input device can often

be treated as "Locator" type devices.

There are two basic methods by which most of the above devices may be

read (and this again may depend on the particular physical device). The first is

by a request to a device for an input. In this case control is transferred to the

input device and a value is read at a specific time determined by the input

device (such as when a button on top of a mouse is pressed) after which control

is then returned to the program. The other.method that may be employed is to
. . .

sample a device. In this instance the program looks to ~ee what value the input

device holds ready at the current moment and reads that immediately. This

might be used for example when employing a mouse to trace a cursor around

.the screen or to read what characters (if any) have already been input at a

keyboard.

41



3.4 GKS·SEGMENTS

The GKS provides a method of grouping primitives and referring to

them collectively by name (similar to the subfigures and figures of the Gerber

. lDS-80 GSP package), so that the group of primitives may be manipulated as a

whole and used repeatedly. These groups of primitives are called segments and

are defined in much the same way as subfigures or figures. The segment is

. opened for use by a ((CREATE SEGMENT" function and closed with a ((CLOSE

SEGMENT" call. All primitives that are output between these two functions

form part of that segment. Therefore to create a rectangle and define it as a

segment the following code might be used.

REAL x(S), y(S)

DATA x I 0.0, 2.0, 2.0, 0.0, 0.0 I
DATA YI 0.0, 0.0, to, to, 0.0 I

C Open a Segment.

CREATE SEGMENT (1)

C Draw a rectangle.

POLYUNE (S,x,y)

C Close the Segment.

CLOSE SEGMENT

By default, as the .segment is created, it appears on the display. It is,

however, possible to override this by turning the visibility of a segment off.

With segments, as with GSP subfigures and figures, only a single segment may

be open at a time and additions can not be made to a segment once it has been

closed.

The GKS supports a powerful segment transformation function for

general manipulation of segment. It enables a segment to be scaled, rotated or

moved by using a 2 X 3 matrix. Each co-ordinate pair in the segment is

transformed by performing matrix multiplication on it with the

transformation matrix. Provision is made for the easy creation of this matrix

from the required transformations by a simple subroutine call to "Evaluate the

Transformation Matrix". The parameters of this subroutine specify a scale,

42



rotation and a shift and may be given in either world co-ordinates or

Normalised Device Co-ordinates (NDC). Several segment transformations can

be combined into a single transformation by combining the matrices of each

into a single transformation matrix. A standard GKS function is used for this

.purpose,

A closed segment may be "nested" inside an open segment with the

following function:

INSERT_SEGMENT (namernat)

where "name" is the segment name and "mat" is a matrix of transformations that

are performed on it for this particular occurrence of the segment within the

segment in which it is nested. Therefore, although structurally quite different

from the corresponding GSP facility (where subfigures may be nested up to a

depth of 32 and figures may nest subfigures], it is still possible to achieve the

same end result with GKS segments as with the GSP figures and subfigures. A

distinct advantage of the GSP system, which makes use of the current position

concept, is the ability to include a subfigure within anothersubfigure directly 'at

the current cursor position with a simple "PLOT SUBFIGURE" call. Corresponding

action in GKS would require ,creat ing a transformation matrix to position the

nested segment correctly.

3.5 WORKSTATIONS AND THE GKS ENVIRONMENT

Discussion so far has centred around the output of graphical data on

virtual devices. The GKS also provides functions to relate virtual devices to real

output and input devices. This is achieved using a workstation concept which

enables a high degree of standardisation to be maintained throughout a wide

range of environments.

A workstation, as defined by the GKS, may consist of up to one output

device and several input devices. A CAD environment which uses more than

one output device, such as a graphics terminal and a non-graphics edit station,

would be considered a cluster of two or more workstations by the GKS.

43



Essentially a workstation may loosely be defined as the devices that may be

connected by a single line to the computer. The GKS provides the means to

define several different workstations and use them together with same

application program.

Before GKS can be used with a program, the program must indicate to

the computer that it requires the GI).S utilities to be available to it. This is done

with the

OPEN GKS (et)

function where the variable ·e1" specifies the name of a filewhich will be used

for reporting errors. Once the GKS is opened other GKS functions become

available to the program. Before any graphical output can be performed on an

output device, it must be defined as a workstation (or part of a workstation).

This is done with the subroutine

OPEN WORKSTATION (ws.connectidwstyp)

where ·ws" specifies a number by which the workstation will be referred to in

future by the other GKS functions. "Connectld" indicates the line number or port

on the computer to which the device will be connected. The parameter "wstyp"

will refer to the type of workstation being connected. The relationship between

the type and the number that "wstyp" represents is user-defined.

Opening .a workstation indicates to the program that that particular

physical device will be available to it for output or input (or both). In order for

input or output to be done on a workstation, it must also be active.

ACTIVATE WORKSTATION (ws)

The above function activates the workstation identified by the parameter ·ws".

Any graphical output functions now executed will update the display of that

particular workstation. Since more than one workstation may be active at a

time, it ,is possible for the application program to control complex combinations

of workstations. This is a different approach to that of the GSP where output is

performed to individual logical units. Corresponding functions also exist to

44



perform the opposite actions. They are:

DEACTIVATE WORKSTATION (ws)

CLOSE WORKSTATION (ws)

CLOSEGKS

3.5.1 Co-ordinate systems

Various graphic devices have different co-ordinate ranges, different

resolution and certain applications may require alternate co-ordinate systems,

some of which may not even be Cartesian. The GKS allows the user to define an

appropriate co-ordinate space called the World Co-ordinate Space for each

application. This co-ordinate space is mapped onto device co-ordinates in two

distinct operations. The world co-ordinates are first transformed into

Norinalised Device Co-ordinate (NDC) space by defining a working region or

window in the world co-ordinate space and mapping that onto a region in NDC

space. The NDC space acts as an abstract surface between the application

programs and the devices. Secondly, the Normalised Device Co-ordinates are

transformed into the device co-ordinates of the workstation.

When multiple workstations are used, each may command a different

view of the application by setting its own unique workstation window. For each

of these windows, the origin must be defined in the world co-ordinates and the

length and height of the window need also to be defined.

The NDC surface is defined with a visible surface in the range of 0 to 1 in

the X and Y directions. For given world co-ordinates to be visible, they must be

mapped within the NDC unit [normalised] square. The part of the world co­

ordinate space mapped onto NDC is termed the window · and the viewport

specifies the area in NDC onto .which the window will be mapped. Several

windows and viewports may be defined for a given application program.

45



(1, 1)r-------------,

Window

Word Co-ordinate
Space

WINDOW TO
VIEWPORT
MAPPING

(0. 0)

I~I
Viewport

Normalised Device
Co-ordinates

(1, 1)
r----------~

JFMAM

Workstat1on ­
Window

c=> luan
Viewport

WORKSTATION
WINDOW Ta
VIEWPoRT
MAPPING

o
o

(0,0)

Normalised Device
Co-ordinates

Physical Workstation

Figure 3.7 Relationships between windows and viewports.

The following functions are used to define windows .and viewports

respectively:

SET WINDOW (n,xwmln,ywmin,xwmax,ywmax)

SET VIEWPORT (n,xvmin,yvmin,xvmax,yvmax)

46



The parameters "xwrnin', "xwrnax', "ywmin· and "ywrnax" are the minimum

and maximum co-ordinates in the X and Ydirections in world co-ordinate space

that are to be mapped onto normalised device co-ordinates. The parameters

"xvmin·, "xvmax" "yvmin· and "yvrnax" are the co-ordinates in NDC space onto

which the window is mapped. It is thus possible to set different windows and

viewports for different segments and thereby create a composite drawing on the

display surface by positioning the different viewports onto different areas of the

display.

The parameter "n· in each of the above functions is used to identify the

window and viewport with which primitives are associated. The following

function:

SETNORMALISATION TRANSFORMATION (n)

specifies that window and viewport "n· are to be used for subsequent primitive

output.

Transformations from the NDC co-ordinates to physical device co­

ordinates are then set separately with the following functions:

SET WORKSTATION WINDOW (ws,xnmin,xnmax,ynmin,ynmax)

SET WORKSTATION·VIEWPORT (ws,xdmin,xdmax,ydmin,y~max)

where "ws· is the workstation identifier. The remaining parameters correspond

with those of the "SET WINDOW" and "SET VIEWPORT" functions in that they

map a window in NDC space onto viewport on a physical device. This is in

keeping with the GKS principle of separating workstation-related functions

from graphical output functions, thereby providing a highly portable' system

that will cater for almost any physical environment.

Unlike the normalisation window and viewport transformations,

different aspect ratios for an image in NDC and an image in device co-ordinates

are not allowed. If co-ordinates for "SET WORKSTATION WINDOW" and "SET

WORKSTATION VIEWPORT" have different aspect ratios, the window is mapped on

to the maximum viewport area that will still contain the entire window.

47



3.5.2 Setting Workstation Attributes for Primitives

It may often be necessary to use several different line styles in a given

drawing. The GKS method of ascribing line styles and other attributes is

implemented using a "bundled attribute" approach. That is, a setting is made

which remains in effect for all primitives of that type until a new setting is

made. The function:

SET POLYLlNE REPRESENTATION (wkid,index,type,width,colour)

defines the particular attributes of a line such as colour, width and line style for

a particular workstation and assigns an index number to them. Thus, a particular

index number may correspond to different attributes on different physical

devices. This is important because some physical devices may be incapable of

supporting some of the more complex attributes. Thus it enables the same

program to run, without alteration, on different devices by simply defining the

parameters for each particular device.

The above function simply defines the type of line that each index

represents. In order to invoke a desired line style, the following function is used:

SET POLYLlNE INDEX (index)

Similar functions are used to set attributes for the "POLYMARKER"

primitive such as marker type,- and for the "FILL ARE~' primitives' attributes

such as the fill-type description. The most complex set of attributes available

are those for the "TEXT" primitive. It is not only possible to select the text

representation (or font), it is also possible to set the character height, the

character up vector (which sets the ~rientation), the text path (which sets the

printing direction) and t~e text alignment.

The advantage of the "bundled attribute" concept is that often attributes

such as line style remain constant for many occurrences of a primitive and thus

need not be set each time the primitive is used.

48



3.5.3 SegmentStorage on Workstations

Segments . are associated with the particular workstation (or

workstations) that were active when the segment was created. The facility is

.implemented with intelligent workstations in mind where the hardware of the

workstation may be capable of supporting segments internally. Even for GKS

systems which do not utilise such workstations, it is still possible to logically

associate segments with workstations. This allows the application program to

only display segments on certain workstations. Functions for general segment

manipulation (such as transformation functions) apply to the segment on all

workstations with which it is associated. Segments can however be deleted on

selected workstations.

GKS also provides "Workstation Independent Segment Storage" (WISS).

WISS is treated logically like other workstations but segments associated with

WISS are available to all other workstations. WISS allows segments to be

associated with a workstation as if it were active when the segment was created.

This facility is used in order to copy a segment from one workstation to another

or to insert an existing segment within another open segment (Section 3.4). This

is essential in case the segment to be inserted does not exist on a particular

workstation that is active whilst the other segment is open.

Selectively choosing workstations for output at certain times allows

segments to be manipulated on one device (such as a CRT) and only output to a

second workstation that is also connected to the system (such as a plotter) once

the output has been finalised.

3.6 A SUMMARY OF THE GKS

The five graphical primitives supported by the GKS (Polyline,

Polymarker, Text, Fill Area and Cell Array), are suited to both conventional

software applications and more modern concepts such as the generation of

output for raster scan displays. Unlike the lDS-SO GSP system, GKS does not

support ·the current position concept and primitives are output at specific

locations. Primitives may be grouped together as segments. This provides a

49



simple yet effective means of manipulating graphical data collectively.

Although structurally different from the subfigures and figures of the lDS-SO

GSP system, the features offered by GKS segments can be used to achieve the

same results.

The GKS workstation concept and the clear distinction between

graphical output functions and workstation dependent functions ensures

maximum portability for a GKS system across various physical environments

and restricts any hardware-dependent modifications that may be required to a

small range of subprograms.

By providing a comprehensive and internationally accepted computer

graphics standard capable of encompassing almost any application, GKS seems

certain to enjoy future growth.

50



Chapter 4

IMPLEMENTATION OF A GKS INTERFACE
ON THE HP 9000

4.1 THE ADVANCED GRAPHICS PACKAGE (AGP) _

The Advanced Graphics Package (AGP) is a graphics package provided

by Hewlett Packard which can run on several - of their mini-computers

(including the HP 9000 mini-computer). It is similar to both graphics packages

previously discussed, in that .it provides ' an interface layer between the

application program and physical graphics peripheral devices which it gives

simplified device independent access -to. It is particularly similar to the

Graphical Kernal System (GKS) and for this reason it was decided to utilise this

existing package and its associated Device-independent Graphics Library (DGL)

as an interface between the GKS system and graphics devices (refer to to Figure

1.2). In this way a complete GKS system could be emulated on the HP 9000

without necessitating the writing of device drivers since the DGL contains

handlers for most commonly used devices. Figure 4.1 shows the relationship

between the application (or user) program, AGP and DGL.

51



User or Application Program

AGP Graphics Subroutines

AGP Workstation Program

DGl Routines

Device Device Device Device
Handler Handler Handler Handler

.

Device Drivers

Display locator Keyboard Other
Device Device Device Devices

Figure 4.1 TheRelationshlp between AGP andDGL

4.2 IMPLEMENTATION OF SOFTWARE ABOVE AND BELOW THE
GKSLEVEL

Because the GKS is a extensive system, there are often several means

within the GKS of achieving the same end results. Some of the features of GKS

such as its implementation of segments, simplify the manipulation of data and

remove from the application programmer the laborious and often repetitive

task of encoding similar data management routines into his own applications

software. It is still however possible to avoid the use of some of the more

complex GKS features by encoding them in software above the GKS interface.

At first there may seem little sense in doing this, but in the case of the overall

system being discussed here, there are some benefits. Firstly, it should be noted

52



that the software is being designed primarily with user of the GSP in mind. To

him the appearance of the system beneath the GSP level is irrelevant. He is

concerned only with completeness and performance of the system at his own

(GSP) level. Any decision as to where software lies relative to the GKS level

does therefore not affect the overall system performance in any way (see Figure

4.2). Secondly, provided the implementation at the GKS level is consistent with

the GKS standard specifications, reducing the overall number of GKS functions

required is no disadvantage provided the performance of the extra software

required above the GKS level does not impair the system performance.

Although only a subset of the GKS subroutines may be used, the entire system

will still run on any machine that supports a GKS interface. Finally, the

advantage in using a reduced set of GKS instructions, is that it becomes much

easier to then implement the system on other hardware or operating systems

which may not support the GKS standard since only a few simple graphical

functions will be required.

For this reason, it was decided to implement as much of the software

between the GSP and GKS levels as possible and to thereby keep to a minimum

the total set of GKS functions that would be required. Where possible, only the

most basic GKS functions are used, such as simple subroutines used for data

input or for the graphical output of primitives. In particular, none of the

segment features of GKS were used, all applications involving collective data

manipulation being handled outside of the GKS interface, but obviously still

within the GSP interface by the GSP software.

Since the object of this project was primarily to provide portability to

the GSP system, in particular by mapping it onto GKS and not the

implementation of a GKS system, only a "skeleton" GKS system needed to be

designed and implemented. Thus although the software above the GKS

interface would be fully compatible with any GKS interface, the GKS interface

itself is not complete and may not support other software using GKS. The GKS

subroutines that have been implemented (as well as those that have not been

implemented) are listed in appendix B.

53



Application

Program

GSP
System

(Extens i vel

s

GKS
System

s

Device Drivers

Many
GKS Calls

GSP Calls

Few
GKS Call

DeVice Drivel" Call

Application

Program

,

GSP
System

GKS
System

(Extensive)

Device ·Drivers

Figure 4.2Possible Alternative System Structures.

4.3 IMPLEMENTATION OF THE GKS SUBROUTINES

Because the AGP system is based loosely on the GKS system, very little

adaptation was required to map GKS subroutines onto the AGP equivalents. In

fact in many cases, particularly those which involve simple output operations,

. no additional software was needed at all and the GKS subroutines consisted of

only a single call to the relevant AGP subroutines. This is true for example with

"Draw Polyllns" subroutine. For the GKS system the syntax is:

54



GPL (n,xpts,ypts)

and the corresponding two dimensional AGP polyline is called by:

~2PLY (n,xpts,ypts)

where in both cases "xp t s " and "yp t s " are arrays of "n" co-ordinate points

for the construction of "n-1" lines.

In certain cases slight changes needed to be made, in particular

parameter adjustments such as changes of scale. It was also necessary on

occasions to make slight changes to the functionality of the subroutine where

parameters required by the AGP were not available from the GKS input. One

example of this is the GKS function "Set Character Heighf.

GSCHH (chh)

The subroutine has a single parameter which defines the character height. The

corresponding AGP function sets the character height, the width and the gap

between the characters. It is thus necessary to "improvise" slightly to determine

a reasonable character width. The resultant software is as follows:

hi te = chh * 0.05
wdth = chh * 0.035
gap = 0.0
CALL JCSIZ (wdth,hite,gap)

The gap between characters is left at "0" and the AGP will select a suitable

.default gap dependent on the character width.

A problem of similar nature occurred with the GKS "Plot Text" subroutine

which specifies an output location "x,y" and a text string "i s t ring" :

GTX (x,y, istring)

55



The AGP supports the "current position" cursor concept whilst GKS does

not and thus it is necessary to first move to correct co-ordinate location before

displaying the text. The AGP also requires the number of characters in the text

string as a parameter. This is implemented as follows: .

DO nchars = 132,1,-1
if (Ls t r ing(nchars:nchars) .f\E.' ') 00 TO 10

EN) DO
C Cal I AGP routine to Mbve to correct position.

10 CALL J2VOV (x,y)
C Cal I AGP routine to draw text.

CALL JTEXTH (nchars,istring)

Notice that although the AGP supports the "current position" concept, it

may be recalled from the "Polyline" example above that connected lines may be

drawn from specified start co-ordinates to end co-ordinates as in GKS.

Although in general, most conversion processes were as simple and

straight forward as the two examples above. In some instances, particularly

where initialisation was required, a general implementation of the GKS

subroutine was not possible. This was true for example for initialisation of GKS

and the graphics system itself as well as the initialisation of some input devices.

The GKS "Open Workstation" command for instance has the following

structure:

GOP~ (iws,connectid,wstype)

where .. lws " is the workstation identifier, .. connect id" is the identification

number of the connected workstation and "ws type" is the workstation type.

The AGP equivalent is the "Initialise Workstation" command:

JDINT (Iws ,wsp Ien ,wspnam,devl en, devnarne, ct r lwor d)

where again .. lws " is the workstation identifier but "wspnam" is a string

containing the workstation program name and "wsp Ien" is the length of the

that name. The string .. devnarne" specifies an output device and .. dev Ien" is

the length of that string. The bits in .. c t r Iwo r d " are used to set certain

56



system parameters. Obviously a generalised implementation the GKS

subroutine is not possible since the required AGP parameters cannot be derived

from the GKS input parameters., It therefore only possible to simply specify the

required parameters within the implemented subroutine as constants such as:

CALL JDINT(iws,16,16h/graphics/wsprog,8,8h/dev/tty,O)

Fortunately, most such cases occur in subroutines such as the one above

which, because they are typically used for initialisation purposes, would not

commonly require modification unless being used with different hardware.

Subroutines more commonly used (such those for graphical output) are, by their

own nature, more general in application. Usually therefore, no changes will need

to be made to any of the GKS subroutines for many different software

applications. Different hardware requirements, are likely howe.ver, to require

"one-off" changes to initialisation routines. This was not considered a major

limitation because the reason for implementing a GKS interface was to make

the software lying above the interface as portable as possible for use on any

other GKS system and not simply to supply a complete GKS system. The

compatibility of each subroutine implemented is briefly documented in

appendix B.

In summary, a basic subset of the GKS system was implemented on the

HP 9000 utilising asimilar existing graphics package AGP. This then provided

a GKS surface on which to develop the GSP software. As much of the software

was left to be implemented above the GKS interface as possible in order to

minimise the GKS graphics calls used. This would simplify any future

implementation of the GSP software on a system which does not utilise GKS.

.The commonly used subroutines are fully compatible with any other GKS

system, although some GKS subroutines, particularly the initialisation

subroutines may not fully support other applications.

57



Chapter 5

MAPPING THE GSP ONTO GKS

5.1 INTRODUCTION TO THE MAPPING OF THE GSP ONTO GKS

Since as much of the processing was excluded from the GKS level as was

possible, these tasks obviously remained to be implemented by the next level of

software above the GKS level. This and the general dissimilarity between the

. GSP software and the GKS standard resulted in the mapping of the GSP onto

the GKS being far more complex than that of GKS onto AGP. Also, because the

GSP is the critical standard in this project, it was important to achieve as

comprehensive an implementation of the GSP as possible. Some limitations

.resulting from the fact that the GSP is designed to run on a very specific ·

proprietary environment did however preclude the possibility of achieving

100% compatibility with this mapping. In order to satisfy the aim of this

project (by providing a system that was more accessible to further student

development), it was necessary to identify those subroutines and functions that

are critical to the implementation of a conceptual GSP systemon the HP 9000 .

58



computer. These critical functions were then implemented with particular

concern paid to their compatibility with the original subroutines since they

form the essential framework for further development. The subroutines that

were regarded as less critical are generally those which depended more

specifically on .the physical environment of the lDS-BD for their functionality.

Multiple data sets (see section 2.4.4) were also not implemented since it is only

rarely (onthe particular system at the University of Natal) that more than one

data set is used, and the later expansion of the system to allow the maximum .

of four data sets would be a simple matter and not require major design changes

to the planned implementation of the GSP package. A summary of the GSP

subroutines, indicating which were implemented and the compatibility of those

that were may be found in appendix A.

5.2 SIMPLE GRAPHICAL OUTPUT

. The basic treatment for the .mapping of the GSP onto the GKS for

simple graphical output commands is similar to the mapping of the GKS onto

the AGP. The input parameters (such as co-ordinates for a polyline) are scaled

to the correct units and size for graphical output. The GSP software .employs

the current position concept (see Section 2.4.1) and GKS does not, so ·it is

necessary for the GSP software to maintain a pair of "current position" co­

ordinates. Some manipulation must then be done to convert a line drawn from

a current position to an end-point into a line drawn between two absolute points

for the purpose of output to GKS. A call to the GSP subroutine to "Move

Position" has no corresponding call in the GKS system; it simply updates the

current cursor position variables which are local to the GSP software layer. (In

fact, the maintenance of the "current position" is actually somewhat more

complex than this and will be dealt with fully in the following section.)

Again with the mapping of "Text" primitive, problems of compatibility

arise. The GSP subroutine uPLTXr supports rotation, height and width scaling

attributes and also the option of mirroring the text in either the X or Y planes.

GKS does not support independent character heights and widths (even though

the AGP does) nor does it support mirroring capabilities. Because these options

59



cannot be encoded at the GKS level, slight incompatibility is unfortunately
inevitable. In addition, the GSP treats angles (such as text rotation) as being

measured in degrees counter-clockwise from the X axis. GKS uses the concept

of a "base vector" and a "character up-vector" · to describe text rotation.

Conversion was also therefore required to express angles in vector form:

5.3 GRAPHICAL OUTPUT USING THE DISPLAY FILE

In most cases, data needs to be redrawn several times on the output or

stored for use at a later time and the simple graphics primitives are not

sufficient. The GSP uses figures, subfigures and the display file for this purpose

(Section 2.4). The display file was implemented by means of an array in

memory (defined in standard Fortran 77) which comprised all primitives of each

figure and subfigure and their relevant data. This array was common to all

subroutines which used the display file and was of the "Long Integer" or 32-bit

integer type. This allowed real numbers to be equivalenced easily and stored as

integers on the list. The output of simple graphics primitives from the display

file will first be discussed without reference to figures or subfigures. The

implementation of subfigures and figures (to which all primitives in the display

file must belong) will be introduced after the basic principles are established.

Note that for display file purposes and for the following discussion, a "Move

Position" command is treated as a graphical primitive.

5.3.1 Output of Simple Graphical Primitives from the Display File

The basic concept is shown in Figure 5.1. The first item of each primitive

in the display fileis an integer indicating the type of primitive that is being read.

The following data are parameters indicating co-ordinates, sizes or other

attributes of the primitive. The initial "type indicator" automatically defines

the meaning of the following parameters to be read from the list.

For lines, position moves and points the procedure for re-constructing

graphical output from the display file is simple: an item is read from the list. ,
and if the primitive is a line or a "move position" the following two items on the

60



display file list represent the X and Y co-ordinates of the end-position of that

line, move or point whereupon the correct output action can be taken. (The

"Point" primitive uses an additional word to indicate the point style that will be

used). Thus by sequentially reading a section of the display file, the output for

that section can be constructed (or re-constructed) progressively.

.........r-,

Primitive Type indicator
(eg. 1 = Line)

X Line End Co-ordinate

y Line End Co-ordinate

Primit i ve Type Indicator
(eg. 2 = Move Position)

X Move-To Co-ordinate

y Move-To Co-ordinate

Primitive Type Indicator
(eg. 5 = Text)

.........
..... -

The Display can be con­

structed (or re-constructed)

by seQuentially reading

the items in the list.

Figure 5.1 Basic Display File Structure.

The "Text" attribute creates an additional slight problem: text strings

are not all of equal length. Since declaring enough space each time for the

longest possible text string (132 characters) is uneconomical, it is necessary to

allow a variable amount of space for text strings dependent on their length.

The number of characters in a string is therefore stored in the display file prior

to the characters themselves in order to determine the number of times the

display file must be read to retrieve all characters in the string. (Each long­

integer value on the list will be equivalent in Fortran with up .to four

61



characters). In addition, the text scaling factors in the X and Y directions and

the text rotation are also maintained in the display file.

5.3.2 Figures and Subfigures in the Display File

All data in the display file belong to either a figure or a subfigure.

Subfigures in turn can be contained (a multiple number of times) within figures

or other subfigures. As a figure or subfigure is created, the primitives that are

part of that figure or subfigure are written sequentially in to the display file.

Since only a single figure or subfigure may be open at a time, data for the figure

or subfigure will be contiguous on the list. To enable the program to find the

relevant section of the display file in order to process a "Plot Subfigure'lor "Plot

Figure" command, an index of the subfigure names and an index of figure

names are maintained. These indicate the address in the display file at which

the primitives for the subfigure or figure concerned commence. These indexes

allow the entire list of subfigure or figure names to be scanned quickly without

searching the entire display file.

A "Plot Subfigure" (PSFIG) command may be executed from within a

figure or subfigure definition. In this case it becomes part of the figure or

subfigure definition and needs to saved in the display file. It is obviously

uneconomical on display file space to duplicate the subfigure data. A "Plot

Subfigure" command is indicated simply by a different "type-indicator" which is

the first word read from the display file and determines whether the data that

follow are either the attributes of a primitive or the attributes of a subfigure. A

"Plot Subfigure" command is indicated by the value '3'. The second word read

then contains the name of the subfigure to be executed, and the following six

values are the general attributes of the subfigure. These include the X and Y

scaling factors, the rotation, mirroring parameters and a "mask" word. The

primitives comprising the subfigure will have been stored on the display file

when the subfigure was created. Once the necessary parameters have been

determined, the program then needs to look up the relevant section of the

display file (pointed to by the subfigure index) and plot the primitives belonging

to the named subfigure. The "mask" word allows the selection of several

subfigures for processing (in this case for output). The 32-bit mask is ANDed

62



with all available subfigure names (again by referencing the subfigure index)

and any masked names which match the subfigure name specified are processed.

It should be noted also that this implementation means that even though a

"Plot Subfigure" instruction may be written to the display file, it is not

necessary for a subfigure to exist until the subfigure actually needs to be

displayed on the output.

Thus if, as the display file is processed (in sequential order), a "Plot

subfigure" command is encountered, it is treated as follows: after finding the

"Plot Subfigure" type indicator, the subfigure name (which follows immediately)

and attributes are read, the subfigure name is then looked up in the subfigure
, .

index and the position of the subfigure in the display file is determined. That

section of the display file is then read and processed with the relevant subfigure

attributes being used. A primitive type indicator of '0' informs the program

that the end of the subfigure has been reached. If there are no other subfigures

that match the name and mask specified, the program then returns to its

previous location in the display file, resets its old attributes and current position

and continues processing from there. (Figure 5.2).

Obviously, the subfigure called to be plotted may contain anoth-er

subfigure to be plotted. That.subfigure could in turn call another subfigure and

they could in fact be nested to a maximum depth of 32 levels. The transfer to

each new subfigure in the display file .that needs to be plotted poses no

problems. However, to enable the program to return to its previous level requires

additional information to be maintained. The program must remember firstly

at which stage of processing the display file it was prior to the transfer to the

nested subfigure. It must also re-instate _the attributes which were current at
-,

that time. In addition, since the "current position" concept is used, it must know

what the current position was at each previous nested level. In order to

maintain this information, a stack is employed onto which the position in the

display file, the current cursor position and other attributes pertaining to the

current level are pushed just prior to moving to a deeper nested level. Once the

terminator of a subfigure is reached (type-indicator '0'), the attributes and

parameters are "popped" off the stack for the previous nested level, the system

attributes are returned to the correct state for that level and processing can .

continue from the correct position in the display file.

63



Subfigure Index

Triangle 55

Square 46

~-

List of Data
-

./-
46 Line Primitive

47 Line Primitive

48 Line Primitive

49 Line Primitive

50 End-of Figure
or Subf igure

51 Move Primitive

52
Plot ·Square·
Subfigure

53 Line Primitive

54
End of Figure -
or Subfigure

55

..-

Figure Index

Test 51

NextFig 32

Fig3 86

L-......"-

Figure 5.2 Figure and SLibfigure display file indexing.

The "mask" facility adds further complexity to the situation since there

may be several subfigures that match the mask requirements. Thus after

stepping out of a level of nesting, it is necessary to determine which other

subfigures, if any, also require processing at the same nested level. Therefore for

each level of nesting, it is necessary to store on the stack, the mask being used

and also the number of the last subfigure in the subfigure index that has already

been scanned to test for matching.

Figures are treated in a similar fashion. However, since figures cannot be

nested within each other (although they may nest subfigures) and because

figures always appear on the output whenever any "Plot Figure" call is made,

there is no need to allow recursive processing of figures that was required for

subfigures. Consequently no additional "type-indicator" for figures is required.

64



The separate index of figure names determines the position in the display file at

which the primitives and subfigures for each figure begin. After the final

primitive belonging to a figure, a type-indicator of '0' is again used to indicate

termination. Once again a mask option is available and allows the processing of

a group of figures that match the specified mask.

Another feature of figures that must be catered for in the

implementation of a display file, is the figure offset option. This is done simply

by recording the figure offset as a "move position" command before the figure's

true primitives. This initial "move position" command is also used by the

"Move Figure" (MFIG) subroutine and is updated by that subroutine according to

whether the move is absolute or relative to the existing figure position. Because

a figure only appears once on the output, only a single pair of "move" co­

ordinates is required. These co-ordinates are therefore mandatorily inserted at

the beginning of any figure definition, irrespective of whether there is any offset

or not. It is therefore a simple matter later to add or change the offset of the

figure or move the figure by merely changing its initial "move" co-ordinates.

Because at the display file level there is no differentiation between data

comprising ,figures or subfigures, a single subroutine "PLOTDF" was written to

plot either figures or subfigures from the display file. . The subroutine is

transparent at the application level (since it is not defined in the GSP) and is

called from both the "PSFIG" (Plot Subfigure) and "PFIG" (Plot Figure)

subroutines. It determines the initial starting point for reading the display file

and executes all primitives and nested subfigures (allowing for .multiple

subfigures matching "masks" at each level) until all levels of nesting have been

exhausted and a .final subfigure or figure terminator is reached.

5.3.3 Location of Figures in the Display File

The implementation of an "index" of figure names which indicates the

starting positions of the figures' data within the 'display file permits easy

location of the position of a figure on the screen. {This is the function of the

"Locate Figure" (LFIG) subroutine.)It is necessary only to scan the list of figures

to determine the position of its data in the display file and then to read the first

65 .



two "Move Position" co-ordinates (described in section 5.3.2 above) which

determine the absolute position of the defined origin of that figure.

Referencing data in the opposite direction, where a co-ordinate position

is specified and the name of the closest figure name is determined, is more

difficult. In this instance it is necessary to check all the primitives (including

those of the nested subfigures) of each figure to determine which primitive and

hence which figure lies closest to the indicated position. The GSP FFIG (Find

Figure) and FWFIG (Find All Figures within a Window) subroutines perform this

task. An initial call to the FFIG subroutine locates the five closest figures after

searching all figures in the display file and returns the name of the closest of

those. Subsequent calls to FFIG would return the names of the four next closest

figures which are retained in memory from the first call to FFIG to avoid re­

searching the display file. The FWFIG subroutine performs a similar function but

returns the names of up to 25 figures whose primitives are found to lie within or

partially within a specified window. For both of these subroutines all figures

found must also correspond with the mask word should this particular

parameter be used.

5.4 THE GSP INPUT SUBROUTINES

The subroutines used to input data from the "outside world" to the GSP

system can be divided into two sections: those for the input of graphical data in

the form of co-ordinates and those used to read data from the ASCII keyboard

and the 80 key function-key keypad.

5.4.1 Graphical Input Subroutines

The GSP does not distinguish between different types of graphical input

device, whereas the GKS caters for six different input device types (Section 3.3).

The most general of these is the locator device which returns a pair of (X:()

co-ordinates. The GSP "RDGID" (Read Graphics Input Device) subroutine was

therefore mapped onto the GKS "Sample Locator" subroutine. The "RDGID"

subroutine converts GKS screen co-ordinates (which are its input) intoGSP

66



world co-ordinates taking into account the physical screen co-ordinate size and

any scale and offset that may currently be in effect.

A call to "ROGIO- is only meaningful if the graphical input device is

currently enabled for input. The "ENGIO- and "OSGIO- subroutines are used to

enable and disable input respectively by setting and resetting a bit flag in

memory. An attempt to read a graphical input device which is not enabled

results in a GSP error code being generated.

The GSP also.has an initialisation subroutine for graphical input devices:

"INTGO-. This initialisation procedure is loosely mapped onto the GKS

subroutine "GINLC- (Initialise Locator). Because the GKS subroutine requires

much more specific parameters to initialise a graphical input device, this

particular subroutine may require some modification if used on a GKS system

with different logical devices. In particular, the ' "GINLC- subroutine allows

different locator device numbers to be selected for a given workstation identifier

(see section 3.3) whereas the GSP uses a subscripted variable called the Logical

Unit Control Block to determine which logical device is being referred to. The

Logical Unit Control Block is associated with a logical unit with the "Open

Graphics Logical Unit" subroutine (described below in section 5.5). .

5.4.2 Keyboard Input

The IDS-80 provides an 80 key "function-key keypad" as well as a

normal ASCII keyboard. By defining the 80 function-keys to perform most of

common actions used in an interactive CAD session, such as redrawing the

output on the screen or indicating the type of primitive to be used, the total

number of keystrokes required is minimised. This saves time for a user who has

become familiar with the keys. The GSP uses two basic subroutines to read

data from either set of keys. The "RTNKY- subroutine returns a single key value

from the keyboard and indicates whether it is a function-key or a normal ASCII

key. The "ROKBO- subroutine reads the keyboard, returning either a function­

key value, a string of text or both (a string.of text terminated with a function­

key). Both subroutines can also optionally return the cursor co-ordinates of a

graphical input device as well.

67



Since on most computer terminals only an ASCII keyboard is provided, it

was necessary to provide a form of keyboard emulation to simulate the 80

function-keys available on the IDS-80. Software was written so that a call to

either the "RTNKY" or "ROKBO" subroutines displayed the function-key numbers

on the screen and their meanings alongside. A function-key was then entered as

an 'F' followed by a one or two digit number 'F23' for example, would be

interpreted as "function-key 23". If a string was entered as input for the "ROKBO"

subroutine, the end of the string was checked to see if the last characters were

an 'F' followed by one or two digits. If this was the case, these characters were

stripped from the string and returned separately to the application program.

Because the meanings of eighty keys are difficult to remember, on any request

for keyboard input, the key numbers and their meanings were displayed on the

scr~en. Unfortunately this process of displaying the key meanings on the

screen and entering the function values in this manner is considerably slower

than the original means of input. For this reason, the "RTNKY" and "ROKBO"

subroutines were kept as modular as possible to allow easy future modification.

The display of the list of function-key meanings, for example, was performed

by calling a separate subroutine. In this way, if a different means is employed to

read function-key values (such as by assigning them to particular areas of a

graphics tablet), it is easy to change the "RTNKY" and "ROKBO" subroutines

simply by commenting out the call to the subroutine that displays the function­

key list.

The "RTNKY" and "ROKBO" subroutines also return the current co-ordinate

position of the cursor. This is useful in many instances, such as to return co­

ordinates when a function-key is pressed to indicate the start of a line. This was

implemented by calling the "ROGIO" (Read Graphics Input ·Device) subroutine

from inside the "RTNKY" and "ROKBO" subroutines. In these cases, errors

generated by the "ROGIO" subroutine such as "Graphical Input Not Enabled" were

ignored and not reported to the application program.

The IDS-80 also uses an LED keyboard display for displaying data which

is not needed on the graphics display such as the cursor position co-ordinates

and the echoing of characters typed at the keyboard. Since this keyboard

display is available only on the IDS-80, subroutines which specifically used this

68



were not implemented. Keyboard echo and the display of the function-key

meanings was done locally on the terminal when in "text mode". Graphics

terminals such as the Hewlett Packard HP2623a graphics terminal allow the

operator to toggle easily between text and graphics modes using a single key. In

this way the graphics display is not cluttered with unwanted temporary text.

5.5 SYSTEM PARAMETERS AND CONTROL FUNCTIONS

Several other subroutines, apart from those directly related to graphical

input and output are . also required to control and maintain the GSP

environment. On starting the GSP, it is necessary to Open the Graphics Loqiea!

Unit. This is done with the "OPENG" subroutine which initialises the logical unit

and associates a "Logical Unit Control Block" (LUCB) with the particular logical

unit (section 2.4.9). The LUCB is a subscripted variable in which are stored the

parameters of the system for a particular logical unit. The parameters that are

stored include the sizes of the axes, X and Y scaling factors, a rotation matrix

and grid sizes and offsets. There are no GKS subroutines which correspond

closely with the initialisation functions performed by the "OPENG" subroutine, a

true compatible mapping from the GSP to the GKS is therefore not possible.

\ From the "OPENG" subroutine, calls are made to open and initialise the GKS

system, and then to open and activate a GKS workstation (see section 3.5). The

parameters required by the GKS for .these .subroutines are dependent on the

GKS environment and are likely to require modification if used in .different

GKS environments. Fortunately, although the "OPENG" subroutine is essential to

any GSP application, it is only used once for a particular logical unit in a given

application. It is therefore not likely to need any further modification once it is .

set up to run in a particular GKS environment, even if used with different

software applications.

The "CLOSG" subroutine performs the converse of the "OPENG"

subroutine, closing a logical unit by calling the GKS subroutines to deactivate

and close a GKS workstation.

69



Subroutines such as the "ERASE" subroutine, which clears the graphical

output display, map more easily onto the GKS interface by calling the GKS

subroutine "Clear Workstation" which performs the same task. The "RDRAW"

GSP subroutine uses the "ERASE" subroutine internally to the clear the graphics

display prior to reconstructing the output from the display file. All the figures

currently listed in the index of figures (section 5.3.2) are read and the

corresponding parts of the display file are processed and the output generated.

The entire display file may be cleared with the "CLRDF" subroutine which simply

sets the pointers to the display file back to zero.

The modal parameters which are maintained in the LUCB are set by

separate subroutines which update the relevant portions of the LUCB. These

are as follows:

1. "SCALE" - Used to set scaling factors in the X and Y directions.

2. "OFSET" - Used to set a constant offset of the screen in the X and Y

directions.

-
3. "MIRROR" - Used to set flags indicating that output should be mirrored in

either the X or Yaxis. (Text is not mirrored).

4. "ROTAT" - Sets up a rotation matrix from the angle specified.

5. "SDSL" - Sets maximum and minimum data set limits.

6. "PAN" - Sets panning values in the X and Y directions.

7. "HlOOM" - Sets a: magnification (or demagnification) factor.

8. "GRID" - Sets grid sizes and offsets. When enabled this is used by the Read

Graphical Input (RDGID) subroutine to "snap" input co-ordinates to the nearest

grid .locat ion. This assists in drawing lines to specific points and avoids

discontinuities in lines that should be connected.

70



The setting or changing of modal parameters does not affect the

appearance of the output directly. Only primitives displayed subsequently will

be drawn using the new parameters. This includes primitives redrawn from the

display file and the "RDRAW" subroutine can therefore be used to reconstruct the

output display with the new modal parameters in effect.

5.6 ERROR HANDLING BY THE GSP

All GSP subroutines have a mandatory ' parameter "IERR" which is

returned with a non-zero integer value when an error has occurred within that

subroutine. Although some of these errors may be "fatal" to the correct

operation of a program and others may serve merely as warnings, the GSP does

not differentiate between the severity of errors and does not cause a program

which has generated a GSP error to abort. The GSP also .does not generate any

form of error message on the screen to report the occurrence of an error. The

procedure to follow in the event of a GSP error is left up to the software using

the GSP. The error codes generated by the GSP are listed in appendix C.

. Error codes can be useful tools in debugging software since they can

indicate an incorrect action or the omission of a particular procedure that the

application software should have performed. To improve the error handling by

the GSP subroutines and to assist with the testing of the GSP software as it was

developed, certain additions to the system were made. As it is tedious to check

the value of "IERR" after each and every subroutine call, it was decided to enable

error reporting directly to the screen from within the GSP software. An error­

handling subroutine called "ERHAND" was written which is not used at the GSP

interface level but is called by any GSP subroutine in which an error has been

generated. It then reports directly to the screen the name of the subroutine

which has generated the error, the error code number (with optional text brief:l.y

describing the error) and, depending on the error, information which may be

.useful in assessing the cause of the error such as the name of a figure or.

subfigure. As a typical example, an attempt to open a figure called "TEST"

where a figure of that name already exists would generate the following:

71



••• GSP error -50 in subroutine BFIG
Error -50: Dupl icate Figure Name
Figure or subfigure Name: TEST (asci i)

•••

Obviously a "non-standard GSP" addition such as this could not be

allowed to alter the execution of standard GSP software and since there may be

times when an error is generated but does not need reporting, error-reporting

should not be performed ipso facto. Another subroutine was thus written which

could easily be added to an application program to enable error-reporting. The

syntax was as follows:

CALL ENERROR (ieract.errtype.errout.nfo)

The "ieract" parameter is an input parameter for the subroutine and

specifies the type of action to perform in the event of an error. The possible

values of "leract" are as follows:

o: Disable error-reporting.

1: Report only the error code and the subroutine it occurred in.

2: As for 1 but wait for Carriage Return before proceeding.

10: As for 1 but display the error meaning and any additional

information using Integer format for any names.

20 : As for 10 but use Octal format for any names.

30: As for 10 but use ASCII format for any names.

12,22,32: As for 10,20 and 30 but wait for Carriage Return before

proceeding.

Error-reporting can thus be easily added to a program using GSP for test

purposes by adding a call to this subroutine at the start of the program.

Alternatively it is possible to enable and disable error-reporting at any number

of points within the program. The parameters "errtype, errout" and "info" are

output parameters and return the most recent error code, subroutine and

.. additional information from the last error that occurred. These can be used if

necessary by the application program even if error-reporting is disabled.

72



Chapter 6

TESTING THE SYSTEM

6.1 REQUIREMENTS FOR TESTING.THE SYSTEM

Although the testing of a software system follows the design phase, it

should be planned for at an 'early stage and testing of subsets of the system

may be undertaken before the entire system is completely written. Often the

time taken to test a system and the importance of testing a system are

. underestimated. A large software system requires extensive testing and

validation and the time taken to do this may often be longer than the time

taken to write the software initially. It is common, however, for problems

discovered during testing to be traced back to the design stages of the system.

Misconceptions about specifications and the way in which a program is intended

to function often only manifest themselves as errors once the software is

written and is being tested. Unfortunately, errors resulting from incorrect

design specifications often necessitate revision of the basic concepts and hence

revision of major portions of the software.

Testing a software system should demonstrate that it will function

correctly in all possible instances. Wulf et al [16] describe a rigorous treatment

for mathematically proving a program correct. This is not feasible for large

73



systems where the possible variations of the final results are numerous. A more

empirical method must therefore be employed. Usually this consists of selecting

"typical inputs" or sample data for a program and running the program to

determine whether or not the output produced is expected in terms of the

specifications. Since programs will differ widely, formal testing procedures for

software are not common. Some basic concepts however, form a basis for

testing a system and ensuring that the chances of error are small:

1 A Bottom-Up Approach - Ensuring the correctness of the lower level

programs and subroutines is essential before testing a complete system.

Because most lower level subroutines perform only tasks that are not complex,

it is much easier to verify that these subroutines function correctly. Once it has

been established that the basic subroutines are "correct", the higher level

programs can then be tested. Testing should therefore be done after each design

level, from the lowest modules through each level of software above them

. (including file handling) up to the system level.

2 Test Extreme Values - Often a program will be written correctly for the

general or expected areas of operation, but may overlook extreme or unusual

cases. It therefore important to check a program for extreme and exceptional

ranges of input or output data [37]. This includes testing its operation if

parameters are incorrect or missing, and checking its operation under other

error conditions.

3 Test for Looping Errors - Looping, particularly where complex looping

procedures are .employed, is a common source of error. It is necessary to

carefully validate loops for all possible conditions, and in particular to check for

"out-by-one" errors.

4 Test During Design - Whilst a "hit and miss" programming approach should

be avoided, testing as the system is being designed (after the implementation of

each design phase) can determine possible sources of error early. Since re­

writing bad code is often a better remedy than patching, errors discovered early

are easier to correct.

74



Debugging is the stage that follows testing, where known errors are

located and eliminated. A pro-active approach with careful system design, good

initial specifications, and well-structured, documented programs will minimise

the need for debugging and also the time and effort required to locate and

correct an error.

6.2 INITIAL TESTING OF THE GKS AND GSP SOFTWARE

The formal testing of a computer system and its software is an exacting

and rigorous procedure. For the software written for this project, functional

testing only was performed. No formal testing procedures were employed

because of limitations of time and it is felt that (in this case) testing is ancillary

to the main aim of the project.

Initial testing of the system was done for graphical output only. This

was first done at the AGP level, verifying the graphics system on the HP 9000

by writing simple test programs that called the basic AGP graphical output

functions directly. Once familiarity had been gained with the AGP system, the

next level of subroutines, the GKS level, was tested. Again this was done with

simple programs making direct calls to the GKS interface. Various possible uses

of each graphical primitive (such as different angles, sizes and positions for the

"Text" primitive) were tested separately and then together with other

primitives to construct simple pictures.

Programs to test the GSP subroutines were initially written on the

IDS-80 and used the original GSP package. These were then copied to the HP

9000 and executed with the GSP software that had been implemented on the

HP 9000. By using exactly the same programs on the new system as on the

original system and doing parallel runs, it was possible to compare the outputs

directly rather than comparing the output on the HP 9000 to an expected

output extrapolated from the specifications. This was essential because often

the existing GSP documentation was not comprehensive enough to describe all

possible uses of a particular subroutine adequately and so the testing of various

possibilities was necessary to determine the actual output.

75



Programs drawing simple shapes were first written to verify the output

of basic GSP graphical primitives. These were then expanded to use the display

file. Programs were carefully designed to be uncomplicated, so that the

expected outputs could be precisely defined and yet also complex enough to test

the system comprehensively and to the limits of its operation. Only by testing

in this way can it be reasoned that on the basis of the tests performed, the

system will operate correctly in all cases. The "Stand-alone" primitives which

were used in the initial test programs were therefore modified to be

incorporated in subfigures or figures. Once it was ascertained that the basic

display file operations were functioning correctly these were expanded to test

more complex actions such as nesting. Simple nesting of subfigures within each

other and then subfigures within figures were tested and verified . correct.

Because the display file is not accessed outside of the GSP interface, it was

found useful to add extra program statements to various subroutines to display

the contents of the display file and other variables on the screen or a line

printer to ensure the data contained therein were correct. Extreme areas of

program operation, especially those related to the display file, such as using the

maximum of 32 levels of subfigure nesting and different "mask" parameters

were also checked.

Since the output functions are responsible for the construction of the

display file, it was ensured that these and the display file itself were functioning

correctly before testing the GSP input subroutines. Input subroutines were also

tested at the AGP level and then the GKS level before being verified at the GSP

level. Testing of input subroutines was not difficult because the complexity of

c the display file and possible multiple levels of subfigure and figure associated

with graphical output are not present. It was necessary only to check that co­

ordinates read from a locator device were read correctly, and that their scaling

to user co-ordinates in terms of the existing modal parameters was correct.

The "RDKBD- and "RTNKY- keyboard input subroutines could be checked and

verified easily even outside of the graphics environment.

Testing of the GSP system under simulated error conditions was also

done and the error handling subroutine discussed in section 5.6 proved

invaluable for this purpose. Performance of the system under error conditions

was compared with that of the original GSP system on the IDS-80 to ensure

76



similar program behaviour with both systems. It was ensured that GSP errors

were treated elegantly so that errors would be reported back to the application

program and not interrupt or halt the GSP software operation.

6.3 TESTING THE GSP SUBROUTINES WITH lDS-SO SOFTWARE

In general, applications using the GSP software would be more complex

than the type of programs that were used initially to test the system.

Therefore as a more comprehensive test, and to provide a useful system on the

HP 9000, some of the 2-D CAD application software from the lDS-SO was

ported across to the HP 9000 to run using the GSP software that had been

implemented. Certain modifications and simplifications were made to the

original IDS:-SO software in order to enable it to function on the HP 9000. In

addition, the .lDS-SO software provides a data base external to the GSP

software which is used for the permanent storage of completed drawings on

disk. It was necessary therefore to implement such a data base system.

6.3.1 The lDS-SO 2-D Data Base and its Management

The lDS-SO 2-D application software which lies above the GSP in the

hierarchy of graphical software maintains data as "entities". Entities . may

comprise single primitives or a collection of primitives grouped together as a

symbol. Data for each entity are split into two sections. The first is an attribute

section (ATT) which describes the type of entity, the logical drawing level that

it is on and other basic information. The ATT section is of fixed length to allow

random access. The second section is the data section (DAT) which is of variable

length depending on the type of entity since different entities require different

amounts of storage space for adequate description. Points for example, have

only a single pair of co-ordinate points associated with them. An arc, on the

other hand, requires storage for a pair of centre co-ordinates, a radius, a start

angle and an angle subtending the curve. The DAT block is pointed to by the

ATT block and the access address of the ATT block forms a .unique identifier

for the entity. This organisation of data provides a structure that may be

searched quickly for a particular entity (by a random access search of the ATT

77



block), and yet is not wasteful of space (by allowing different amounts of data

required by different primitives) [11]. The relationship between the ATT and

DAT blocks is shown -in figure 6.1.

The 2-D application software employs a temporary storage system

called the »forking Part Storage (WPS) which it uses during an interactive design

session. In it, it maintains the ATT and DAT section of all entities pertaining to

the particular drawing that is being worked on. The IDS-80 has low level

subroutines which it uses for the fast access required by interactive graphics of

the WPS data on disk. Since the HP 9000 is a virtual memory machine, it was

possible to define the WPS as arrays in memory and rely on the operating

system to swap data to and from disk as needed. The IDS-80 software that was

used for managing the WPS was therefore not copied to the HP 9000 but re­

written to cater for the system implemented.

ATT ARRAY

(Fixed Record Length)

1 2 3 4 5 6 7 8 9

OAT ARRAY

(Variable Record Length)

Figure 6.1 Relationship between ATT and DAT data.

Application subroutines which use the data after it is. retrieved from the '

WPS .and which use the GSP to display or modify the data were transferred

directly across from the IDS-80 to the HP 9000 and required only trivial

modification before operating successfully on the HP 9000.

78



6.3.2 Permanent Storage of Data and Part File Conversion

For thepermanent storage of data, a collection of entities may be stored

as a "Part File" on a disk-based system. The system corresponds directly with

the WPS system and data are treated collectively as entities. It is however slow,

and therefore would not be suited to use during an interactive CAD session.

Because many completed part files have been generated on the lDS-SO, it

was decided to transfer these across to the HP 9000 to provide "realistic" CAD

drawings with which to test the system. In addition, since an existing drawing

is often the starting point for a new drawing, this would provide a strong base

and incentive for further use of the system on the HP 9000.

For these reasons, a part file system was implemented on the HP 9000

for the permanent storage of data and to allow part files from the lDS-SO to be

stored in a similar format on the new system. Because the methods used to

represent real and double-precision numbers on the two mini-computers differ,

certain conversion of data from one format to another at bit-levelwas required.

Assembly language programs. were written to mechanise this procedure.

Part files were successfully transferred from the lDS-SO to the HP 9000

and used as final confirmation of the operation of the integrated system and

the asp subroutines in particular.

79



Chapter 7

CONCLUSIONS

7.1 SYSTEM PERFORMANCE IN TERMS OF THE OBJECTIVES

The primary aim of this project was to provide an IDS-:-SO Graphical

Subroutine Package interface on a computer which would permit further

student development and enhancement.

The computer chosen was an HP9DOO running Unix because of the "open

system" flexibility that this operating system provides. The proprietary graphic

system subroutines required by the lDS-SO.application software needed to be

designed and implemented. In addition, it was decided to incorporate a GKS

interface to cater for the expected growth of GKS and to increase further the

portability of the resultant system. Furthermore, a data base system was

required, and also conversion programs to convert existing graphic data from

the lDS-SO for use on the HP9000.

The performance of a system and the measurement "thereof is a

somewhat nebulous concept. Whilst benchmark tests,giving comparisons of

speed between one system and another, may be useful up to a point, further

considerations are certainly necessary in order to evaluate system performance

80



effectively. Too often excessive attention is paid to small differences in the

. speed and response time of a system and not enough consideration is given to

other aspects of system performance.

Performance criteria may vary from person to person depending on the

relationship of the person to the system. Certain considerations will be

common to most evaluators. Performance of a system should primarily be

concerned with the proficiency with which a system performs the functions for

which it was designed. Some questions that should be posed when investigating

system performance are:

1. Does the system satisfy the goals?

2. Is the system complete?

3. Is the system easy to use (but not tedious)?

4. · Is the system error-free?

5. . Is the system fast enough?

It is of course, not coincidental that these questions are closely related to

the essential design criteria discussed in chapter 1.

The resultant software on the Unix based HP9000satisfied the major

aim of this project in _providing an accessible system that could be further

developed. The system comprised a functional suite of programs that could be

used to modify existing drawings done on the lDS-SO or to create new

drawings. The successful incorporation of a GKS interface and the resulting

modular software will allow easy adaptation of the system · for other

environments.

Whilst it is recognised that not all of the features available on the

Gerber lDS-80 were implemented on the HP9000, it is believed that all essential

and commonly used features (particularly those concerned directly with

graphical input and output functions) were implemented successfully and

81



verified to be functioning correctly. Implementation of any additional features

would not necessitate changes to the basic concepts employed in the current

design. For example, the Gerber IDS-80 allows up to four data sets to be defined

to allow segregation of figures. Since historically, on the IDS-80 at the

University of Natal, only a single data set is ever used in almost all cases, only

a single data set was implemented on the HP9000- .It would, however, be a

simple matter to implement the maximum of all four data sets by defining the

relevant arrays for each data set. The concept used for the implementation of

the display file would however not change at all.

The area which the author feels most requires modification for the

system to be used in a "realistic" CAD environment is that of keyboard input.

Because the 80 function-keys are not available on typical graphics terminals,

the current system uses standard keys to emulate the function-keys (section

5.4.2). This is slow because input that previously required only a single keystroke

now requires either two or three keystrokes. In addition, this means that the

keys are not as easy to "find""as they are on the IDS-80function-key key-pad

(where an overlay depicting the key meanings is often used and further assists

. in key location]. For this reason, the keyboard input subroutines were kept as

modular as possible to permit easy future modification. In particular, a digitiser

graphics tablet is envisaged with a certain area of the tablet divided into blocks

corresponding to each function-key. An icon drawn directly on each block of

the tablet would identify each key. In this way, the functions currently

associated with the function-keys on the IDS-80 could be executed simply by

moving the digitiser pen a short distance from the window area of the graphics

tablet used for graphical input to the region where the function-keys are

defined. Software would then interpret the device co-ordinates of the area

beneath a particular block as indicating that a function-key had been selected.

An alternative method would be to modify the appearance of the screen

slightly and use the mouse-window-icon approach which is commonly used in

several other CAD packages (such as AutoCAD and the Conception-3D CAD

packages).

Because it was not the aim of this project to provide an increase in

performance by way of small improvements in response times and speed of

processing, it was felt these measurements were not of significance. Therefore,

82



although basic benchmark tests were performed to assess the speed of the

system on the HP9000 in comparison to the speed on the IDS-80, it was felt

that such tests (such as comparing the times taken to redraw identical drawings

from the display file) were rather subjective (depending, for instance, on what

other processes were running on the HP9000 at the time) and therefore not

really relevant beyond verifying that the speed was adequate on the HP9000

and "similar" for both systems. Quantitative results from these tests have

therefore not been included. In particular, it was felt that the clumsiness of

handling function-key input mentioned above was more serious than the

system response time.

7.2 POSSIBLE AREAS FOR FURTHER WORK

Since the major aim of this project was to provide a system on which

further development could be performed , some attention should be given to

those areas which could be enhanced.

The obvious areas where such work could be done are those where some

features that were available on the Gerber lDS-80 have not been implemented

on the the HP9000, such as the two problems mentioned above (multiple data

sets and an improved function-key selection mechanism). In addition, work

could be done at .the application software level in porting and implementing

some of the other application programs such as those from the 3-D suite of

programs.

A challenging and worthwhile exercise would be to port the system to an

MS-DOS environment so that it would be commonly available on stand-alone

personal computers. Because of the small number of calls that are made to the

GKS interface, implementation of the few GKS subroutines that would be

required would not be difficult, It is also felt that for the IBM 80x86 ·type

environment it may be better to re-write the software (although using the same

algorithms), in a way that would be more memory-efficient, (in particular by by

improving the display file storage which could be done .using "dynamic

variables") and thus suited to the limited memory available on a "PC".

83



7.3 CAD AND ITS FUTURE IN SOUTH AFRICA

In South Africa in 1988 an estimated R100m was spent on computer

graphics - an increase in the market over the previous year of about 40% [17].

This formidable growth in the CAD market has attract~d fierce competition

amongst suppliers and served to further stimulate developments in this field. It

is inevitable therefore, that in this environment, current technology rapidly

becomes obsolete. Further student developments to the basic system

implemented for this project would still be worthwhile, however, since the basic

CAD concepts remain unchanged. A study of both the Gerber GSP software

and the GKS interface will provide valuable insight into CAD software

engineering.

The big increase in "PC" based CAD systems has served to whet the

appetite of the CAD market and of light industrial users in particular, Now that

the possible significant contribution of CAD systems has been experienced, the

author believes that there will be a move-to slightly larger "workstation" type ·

CAD systems as graphics hardware and software become cheaper. As the

economic and political situations change in South Africa, there is a. move away

from labour-intensive industry and towards high-technology industry with a

growing investment in modern automatic or semi-automatic manufacturing

machinery [18]. As more and more manufacturing systems become

computerised, many engineering companies are investigating the "CIM"

(Computer Integrated Manufacture) environment where the design of a product

begins with a design on a CAD system which then serves to generate the

necessary data for input to computerised production planning, production

routing, work-in-process systems and may even possibly be linked directly to

CNC equipment. The recent phenomenal growth in the South African CAD

market has provided the incentive for local hardware and software businesses

to develop their own CAD systems. These provide some temporary security for

the potential CAD investor who is concerned about the possible effect of

economic sanctions on such technology in South Africa.

84



In the last .decade, CAD has established itself as a major part of the

computer industry. In addition, further developments and enhancements to

.CAD philosophy are guaranteed because the profit opportunities created by the

growing CAD market demand leading and innovative technology. By

encouraging further study and development of CAD systems at university

level, the author believes that such innovation can easily be achieved.

85



Appendix A

SUMMARY OF GSP SUBROUTINES AND THEIR COMPATIBILITY

1. Graphical Output

PLINE (lucb,ierr,nds,x,y {,n}) - Plot Line(s).

Full compatibility.

PLPNT (lucb,ierr,nds,x,y {,n,nsym}) - Plot Points.

Full compatibility.

PLTXT (lucb,ierr,nds,n,itext {,xsf,ysf,rota,ma,mb})

The mirroring parameters ma and mb are not compatible since GKS

does not support text mirroring.

MVPOS (lucb,ierr,nds,x,y) - Move Cursor Position.

Full compatibility.

PLGRD (lucb,ierr,nds,name,nxpnts,nypnts) - Plot Subfigure at all grid locations.

Full compatibility.

2. Subfigures

BSFIG (lucb,ierr,name) - Begin Subfigure Definition.

Full compatibility.

ESFIG (lucb,ierr) - End Subfigure Definition.

Full compatibility.

DSFIG (lucb,ierr,name {,mask}) - Delete Subfigure.

Full compatibility.

PSFIG (lucb,ierr,name {,mask,xsf,ysf,rota,ma,mb}) - Plot Subfigure.

86



Full compatibility.

TSFIG (lucb,ierr,name {,mask,xsf,ysf,rota,na,nb}) - track Subfigure.

Tracking not currently implemented.

RSFIG (lucb,ierr {,name {,mask}}) - Release Subfigure from tracking.

Tracking not currently implemented.

3. Figures

BFIG (lucb,ierr,nds,name,int) - Begin Figure Definition.

Compatible, except that only a single data set is presently implemented.

(This constraint is true of all GSP subroutines that used multiple data sets.)

The "intensity" parameter is not relevant when not used on a CRT storage

screen.

EFIG (lucb,ierr,nds) - End Subfigure Definition.

Full compatibility.

PFIG (lucb,ierr,nds,name {,mask}) - Plot Figure.

Full compatibility.

MFIG (lucb,ierr,nds,name,x,y,mode {,mask}) - Move Figure.

Full compatibility.

CIFIG (lucb,ierr,nds,name,int {,mask}) - Change Figure Intensity.

Not implemented since different intensities are not possble except on a

CRT storage screen.

EAFIG (lucb,ierr,nds,name,int {,mask}) - Enable Attention.

Not currently implemented.

DAFIG (lucb,ierr,nds,name {,mask}) - Disable Attention.

Not currently implemented.

87



LFIG (lucb,ierr,nds,name,x,y) - Locate Figure by name.

Full compatibility.

FFIG (lucb,ierr,nds,name,x,y,icall {,mask,n,namef}) - Find Figure

by position.

Full compatibility.

FWFIG (lucb,ierr,nds,name,xl,yl,xu,yu,icall {,mask,n,namef}) ­

Find All Figures within Window.

Full compatibility.

4. Graphics Input

ENGID (lucb,ierr,nds) - Enable Graphics Input Device.

Full compatibility.

DSGID (lucb,ierr) - Disable Graphics Input Device.

Full compatibility.

ENTRD (lucb,ierr,nds) - Enable Tracking Display.

Tracking not currently implemented.

DSTRD (lucb,ierr) - Disable Tracking Display.

Tracking not currently implemented.

RDGID [lucb.ierr.nds.x.y] - Read Graphics Input Device.

Full compatibility.

ENRUB (lucb,ierr,nds,x,y) - Enable Rubber Band Mode.

Rubber-banding not currently implemented.

DSRUB (lucb,ierr) - Disable Rubber Band Mode.

Rubber-banding not currently implemented.

INTGD (lucb,ierr) - Initialise Graphic Input Device.

88



Full compatibility although lower level software may require modification

for different physical input devices.

5. Keyboard Display

ENKBD (lucb,ierr,ianfun {,keys}) - Enable Keyboard.

Not implemented. Since the function keyboard and LED keyboard

display is unique to the lDS-SO, most of these subroutines were not required.

DSKBD (lucb,ierr,ianfun {,keys}) - Disable Keyboard.

Not currently implemented.

ENECO (lucb,ierr,kolm) - Enable Keyboard Echo.

Not currently implemented.

DSECO (lucb,ierr) - Disable Keyboard Echo.

Not currently implemented. .

RTNKY (lucb,ierr,ianfun,key {,irdop,opx,opy}) - Return Key.

. Function keys implemented by software options.

RDKBD (lucb,ierr,ianfun,key,itext,nmax,n {,irdop,opx,opy}) - Read .

Characters from Keyboard.

Implemented using software to read function keys from screen.

DTEXT (lucb,ierr,itext {,n {,kolm}}) - Display Text on LED Display.

Not currently implemented.

ERKBD (lucb,ierr {,n {,kolm}}) - Erase Keyboard Display.

Not currently implemented.

CLRKQ (lucb,ierr) - Clear Keystroke queue.

Not currently implemented.

CRSKY [lucb.ierr.keyl,...key7) Cursor Key Definition.

89



Not currently Implemented.

6. Symbolic Data Entry Device

CLRSD (lucb,ierr) - Clear Symbolic Data Entry Device.

Not currently implemented.

RDSDE (lucb,ierr,nswch) - Read Symbolic Data Entry Device.

Not currently implemented.

7.Modal Parameters

SCALE (lucb,ierr,nds,xsf,ysf) - Set Scale Factors.

Full compatibility.

OFSET (lucb,ierr,nds,xofl',yoff) - Set Offsets.

Full compatibility.

MIRROR (lucb,ierr,nds,mira,mirb) - Set Mirrors.

Full compatibility.

ROTAT (lucb,ierr,nds,rotn {,a,b}) - Set Rotation.

Full compatibility.

GRID (lucb,ierr,nds,grx,gry {,goffx,goffy}) - Set Grid Parameters.

Full compatibility.

TOOL (lucb,ierr,nds,ntool) - Select New Tool/Aperture.

Not currently implemented.

SDSL (lucb,ierr,nds,ial,iau,ibl,ibu) - Set Data Set limits.

Not currently implemented.

PAN (lucb,ierr,nds,cxpan,ypan {,mmfiag}) - Set Pan Values.

90



Full compatibility.

HZOOM (lucb,ierr,nds,izoom) - Set Zoom Values.

8. Control Functions

,OPENG [lueb.ierr.lu.ioptn.mxnds] - Open the Graphics Logical Unit

Will require modification for different applications, ' in particular for

other physical devices associated with logical units. ·

CLOSG (lucb,ierr) - Close the Graphics Logical Unit.

Full compatibility.

RDRAW (lucb,ierr) - Erase and Redraw the output.

Full compatibility.

ERASE (lucb,ierr) - Erase the Output.

Full compatibility.

CLRDF (lucb,ierr) - Clears the Display File.

Full compatibility.

CLRDS (lucb,ierr,nds) - Clear a Data Set.

This is compatible where only a single Data Set is used.

. CALIBR (lucb,ierr) - Calibrate Pen on Plotter.

Not Implemented as this would be specific to a physical device.

CLRBF (lucb) - Clear Command Buffer.

Not implemented as a command buffer is not used.

STAT(lucb,count,lstfg) - Return Satellite Status.

Not compatible as the implemented system does not utilise a satellite.

Returns ameasure of free display file space as well as the last figure drawn. Has

also been renamed STATS since the HP 9000 has a system program called

91



STAT.

FONTS (lucb,ierr,ifnts) - Set order of text fonts.

Not implemented because of lack of generality.

GETLB (lucb,ierr,nds,start,nw,buff) - Return words from LUCB.

Fully Compatible.

92



Appendix B

SUMMARY OF GKS SUBROUTINES AND THEIR COMPATIBILITY

Since only a small subset of the total GKS package was required, only

those subroutines that were implemented are listed here together .with an

indication of their compatibility. Although some GKS subroutines are not fully

compatible in that they may not support other software using GKS, most are

compatible from a GSP point of view. On the whole, GSP software could

therefore be ported to another complete GKS system and run without altering

the calls to the GKS.

1. Output Functions

GPL (n,xpts,ypts) ...:. Draw Polyline.

Full compatibility.

GPM (n,xpts,ypts) - Draw Polymarker.

Full compatibility.

GTX (x,y,string) -Draw string of text at specified co-ordinates.

Full compatibility.

2. Output Attribute Functions

GSCHH (chh) - Set Character Height.

Full compatibility.

GSCHUP (chux,chuy) - Set Character Up Vector.

Full compatibility.

GSPMI (index) - Set Polymarkerlndex.

Full compatibility.

93



3. Input Functions

GINLC (ws,dv,nt,xp,yp,pe,xmn,ymn,ymx,ldr,dr) - Initialise Locator.

Not fully compatible; alterations will be needed for general use in other

environments but should function correctly as used by the relevant GSP

subroutines.

GRQLC (ws,dv,status,normtr,xpos,ypos) - Request Locator Input.

Not fully compatible; alterations will be needed for general use in other

environments but should function correctly as used by the relevant GSP

subroutines.

GSMLC (ws,dv,normtr,xpos,ypos) - Sample Locator Position.

Not fully compatible; alterations will be needed for general use in other

environments but should function correctly as used by the relevant GSP

subroutines.

4. Control Functions .

GACWK (iws) - Activate Workstation.

Not fully compatible; alterations will be needed for general use in other

environments but should function correctly as used by the relevant GSP

subroutines.

GCLKS - Close GKS.

Full compatibility.

GCLRWK (iws,flag) -:- Clear Workstation. ' .

Not fully compatible; alterations will be needed for general use in other

environments but should function correctly as used by the relevant GSP

subroutines.

GCLWK (iws) - Close Workstation.

94



Full compatibility.

GDAWK (iws) - De-activate Workstation.

Full compatibility.

GOPKS - Open GKS.

Full compatibility.

GOPWK (iws,connectid,wstype) - Open a GKS Workstation.

Not fully compatible; alterations will be needed for general use in other

environments but should function correctly as used by the relevant GSP

subroutines.

95



-55

-52

-51

-50

-49

-48

-47

-46

-45

-44

-43

-42

-41

-40

-39

-38

-37

-36

-35

-34

-33

-30

-26

-25

-21

-20

-10

-9

-8

Appendix C

GSP ERROR CODES AND THEIR MEANINGS

Nature of Error

Internal Data Base Error.

Subfigures Nested to a depth greater than 32.

Duplicate Subfigure Name.

Duplicate Figure Name.

Subfigure Not Found.

Figure Not Found.

Illegal Call while Figure or Subfigure is Open.

Illegal Data Set Specified.

Illegal Call for Open Type.

LUCB Not Open.

Insufficient Parameters.

-Illegal Parameters.

LU Locked.

Illegal LUCB Open Type for Device.

Illegal Logical Unit.

Illegal Subroutine Call.

Figure Not Opened - No Free Space.

Subfigure Not Opened - No Free Space.

Illegal Figure or Subfigure Name (Double Zero).

Memory Allocation Request Error.

RADS out of range.

Illegal Tool Code.

SubfigureCalling Itself (Directly or Indirectly).

Figure Not in Storage or Write-Through Mode.

First Vector in Figure Block Not 2-Word Format.

Vector Too Large.

Satellite Driver Malfunction.

More Than NMAX Characters Read From Keyboard.

Graphics Input Not Enabled.

96



+45 Rubber Band Already Enabled.

+46 Rubber Band Already Disabled.

+47 Graphic Input Already Enabled.

+48 No Figure Open.

+49 No Subfigure Open.

97



Appendix D

TYPICAL SOFTWARE EXAMPLES

i) The "Plot Subfigure" subroutine implemented for the GSP package.

$(FTIeN LIST, SJ-mT INTEGCRS

SUBROUTINE PSFIG (Iucb,ierr,name,mask,xsf,ysf,rota,ma,mb)

c:--------------
C Plot Subfigure.
C

24-2-88
HP-UX 9000 Fortran 77

TA Davies

LUCB - Logical Unit Control Block.
NPlvE - 2 'J\brd Integer Sub-Figure Name.
MASK - 32 Bi t Mask to be Anded wi th a I I

Figure Names prior to compare.
XSF - X Scal ing Factor.
YSF - Y Scal ing Factor.

PARPlv£TERS:
If\PUT:

C Prograrrmer
C Date
C Implementation
C

C This subroutine is used to output Data in the form of Lines,
CPoints, Text and other nested Sub-Figures pertaining to the
C named Sub-Figure. It can also be used to include a previously
C defined Sub-Figure in~nother Sub-Figure or Figure (ie. _ to
C nest it inside the Fgure or Sub-Figure). If this is the case,
C a Plot Sub-Figure cOTTTland is written on the Display Fi le and­
C the executionof the Plot Sub-Figure call is only performed if
C it is being plotted inside a Figure (ie. PFIG cal I). Sub-
C Figures may be nested up to 32 levels deep, but are not re-
C cur si ve. (They may not ea II each other either d i recti y or
C indirectly.) Note that the Sub-Figure~ does not have to
C exist yet if it does not need to be plotted irrmediately (ie.
C when PSFIG is cal led whi le another Sub-Figure is open. )
C

C

C

C

C

C

C

C

98



If~ = 00 Then it is Ignored.

- Error Handl ing Routine.
- Convert Short Integers to Long.
- Plot a Fig or Sub-Fig fran Display
- Fi le.

ROTA - Rotation angle in degrees.
MA - Mirror Flag A Axis.
M3 - Mi rror Flag 8 Aixs.

IERR - Error Code Returned.WTPUT:

SlBPRCX?RPM3 CALLED:
ERt-IAf'.D

M<Lf\G
PLOlDF

c
c
c
c
c
c
c
c
c
c
c
C N:>TES:

C

C~-------------

OOMMON Idisfill ifo,iso, intvals,intpnt
OOMMON Isubfigl subnames,isubpnt,isndx
DINENSICN isubpnt(2000)
INTEGeR name(2), lucb(50) ,mask(2)
INTEGER*4 subnames(2000), intvals(15000)
INTEGeR*4 name I , info,rrklng,maskl, itheta, ixsf, iysf
EOJIVALEt-(;E (ixsf,rxsf),(iysf,rysf),(itheta,theta)
PARAMETER (piby18~ = 1.745318E-2)

name I = M<Lf\G (name)
mask I = M<Lf\G (mask)

IF (mask I .EQ.O) mask I = 377777777778

i found = 0
rxsf = xsf
rysf = ysf
theta = rota * piby180
IF (r xs f .LT. 1E-4) rxs f = 1.0
IF (rysf.LT.1E-4) rysf = 1.0

C Do we need to modify the display fi le.
IF (ifo.NE.O.OR. iso.NE.O) THEN

C Fig or sub-fig open so modify display fi le.
intvals(intpnt+1) = 3

99



intvals( intpnt+2) = name I
intvals(intpnt+3) = mask I

intvals(intpnt+4) = ixsf
intvals(intpnt+S) = iysf
intvals(intpnt+6) = itheta
intvals(intpnt+7) = ma
intvals(intpnt+8) = mb
intpnt = intpnt+8

EI'l> IF

C Check if we must execute the Sub-Figure now.
IF (iso.Ea.O) THEN

00 i = 1, isndx
j = i
IF (IAND(maskl ,subnames(j)).Ea.namel) THEN

i found = 1
ipointer = isubpnt(j)

CALL PLOTDF (Iucb,ipointer,subnames(j),rxsf,
rysf, the ta.rra.ntr.f er r , tnf o)

C Report any Error Cond i ti ons ,

IF( i err .t£ .0) THEN

CALL ERHAND (ierr,'PSFIG ',info)
REllRN

Ef\D IF
EI'l> IF

EI'l> 00
IF (i found.Ea.O) THEN '

ierr = -49
·info = name I

CALL ERHAND (-49, 'PSFIG ',info)
RETl..RN

EI'l> IF
EI'l> IF

RETl..RN
Ef\D

100



ii) The "Text" subroutine implemented for the GKS package.

$eFT I(]\J LIST, SI-mT INTEGERS

SL.BROJT1r--E GTX (x.v. istring)

of String.
of String.

- Do 2D ~ve Pos i t ion. (AGP )
- DrawHighOJalityText. (AGP)

24-9-87
HP-UX 9000 Fortran 77

lR Davies

x - X Coordinate Location
y - Y Coordinate Location

ISlRlNG - Character String.

SlBPRCX?ftttM3 CALLED:.
J?NDV
JTEXH

PARPlvETERS:
If\PUT:

c:--------------
C Draw Text.
C

C Programner
C Date
C Implementation
C
C Draws Text at the given point (x,y). This subroutine
C converts a GKS cal I to an AGP cal I. GKS draws text at
C point (x,y) whereas AGP draws text at the Current Point.
C

C

C

C

C

C
C

C

C

C

C:--------------
CHARACTER*132 istring

C Check for trai I ing blanks to determine no. of chars.
DO nchars = 132,1,-1

IF (I s t r ing(nchars:nchars) .t-.E.' ') 00 TO 20
Ef\D DO

C ~ve to correct (x,y) position for string.
20 CALL J?NDV (x,y)

C Cal I AGP routine to draw text.
CALL JTEXH (nchars,istring)

101



R~

EN)

102



References

[1] LEWELL, J., Computer Graphics,

Orbis, London (1985)

[2] LAURIE, P., The Joy of Computers,

Hutchinson & Co., London (1983)

[3] STAY, J.R, HIPO and Integrated Program Design,

IBM Systems Journal, New York, voI15/2,

pp 143-154 (1976) .

[4] .NEWMAN, WF. and SPROULL, R.F., Principles of

Interactive Computer Graphics, 2nd ed.,

McGraw-Hill, New York (1979)

[5] CONRAC CORPORATION, Raster Graphics Handbook,

Conrac Division, Conrac Corporation, Covina,

California (1980)

[6]

[7]

[8]

HOPGOOD F.R.A., DUCE, D., GALLOP, J. and SUTCLIFFE, D.,

Introduction to the Graphical Kernel System (GKS),

Academic press, New York (1983)

AUTODESK, Autocad Reference Manual, Autodesk Inc.,

Release 10, pIS, Oakland California, (1988)

SERBI CONCEPTION-3D User Manual 2-D

dimensions module, SERBI SA, version 6.2,

pp 195 - 202 (1988)

[9] . MAYER, R.J., IGES, Byte Magazine, June ed.,

pp 209-214, (1987)

103



[10] GERBER SYSTEMS TECHNOLOGY, lDS-SO User

Reference Manual,Gerber Systems Technology Inc.,

South Windsor (1981)

[11] GERBER SYSTEMS TECHNOLOGY, lDS-SO

Programmer Reference Manual, Preliminary release,

Systems Technology Inc., South Windsor (1981)

[12] GERBER SYSTEMS TECHNOLOGY, Introduction to

lDS-SO DMS Programming, Gerber Systems

Technology Inc., South Windsor (1981)

[13] PELED J., Simplified Data Structure for

"Mini-Based" Turnkey CAD Systems, IEEE

puplication 0420':"'0098/82/0000/0636500.75,

pp 636-642, (1982)

[14] Status Report of the Graphic Standards Planning

Committee of ACM/SIGRAPH, Computer Graphics

vol11(3), (1977)

[15] ISO/DIS 7942 Information processing - Graphical

Kernel System (GKS) - Functional Description:

GKS Version 7.2, ISO/TC97/SC5/WG2 N163, (1982)

[16] WULF W.A., SHAW M., HILFINGER P.N. and FLON L.,

Fundamental Structures of Computer Science,

Addison-Wesley, Reading, pp 101-177, (1981)

[17] McCallum R. (Editor),Graphics Survey - The Big :

Picture, Computer Mail (Supplement to the

Financial Mail), October ed., Times Media,

Johannesburg, pp 29-34, (1988)

[18] SUNTER C., The world and South Africa in the

1990s, Human & Rousseau, Tafelberg, pp 85-111, (1987)

104



[19] ANGELL 1.0. A Practical Introduction to

Computer Graphics, Halsted Press, New York

(1981)

[20] BERGER M., Computer Graphics with Pascal,

Addison-Wesley, Menlo Park Calif. (1986)

[21] BOURNE S.R., The UNIX System,

Addison-Wesley, London (1982)

[22] BRODLIE K.W: Mathematical Methods in Computer

Graphics and Design, Academic Press, London (1980)

[23] FACULTY OF SCIENCE, Style Manual for Theses,

Univeristy of Natal, Durban (1978)

[24] FOLEY J.D., VAN DAM A., Fundamentals of inter­

active Computer Graphics, Addison-Wesley,

Reading Massachusetts (1984)

[25] HECK M., PLAEHN M., A Workstation Model for

an Interactive Graphics System, Communications

of the ACM, Vol. 29 No. 1, January ed.,

pp 30-37 (1986)

[26] HEWLETT PACKARD Co., Advanced Graphics

Package Reference Manual, Hewlett Packard Co.

Engineering Productivity Division, Part Number

97085-90001, Cupertino California (1983)

[27] HEWLETT PACKARD Co., HP-UX Reference Manual,

Hewlett Packard Co. Engineering Systems Division,

Part Number 09000-90004, Fort Collins Colorado (1983)

105



[28] HOFSTADTER D.R.Godel, Escher, Bach: An eternal

Golden Braid, Penguin Books, London (1985)

[29] McGILTON H., MORGAN R., Introducing the UNIX

System, McGraw-Hill, New York (1983)

[30] MONROn.M. Computing with Fortran IV; Edward

Arnold Ltd., London (1977)

[31] MONRO D.M. Fortran 77, Edward Arnold Ltd.,

London (1982) .

[32] PFORTMILLER L., Data Structures in CAD Soft­

ware, Byte Magazine, June ed., pp 177-184

(1987)

[33] SALMON R., SLATER M., Computer Graphics Systems

and Concepts, Addison-Wesley, Workingham

(1987)

[34] SCOTT J.E., Introduction to Interactive

Computer Graphics, WHey, New York (1982)

[35] THOMAS R., YATES J., A User Guide to the UNIX System,

Osborn / McGraw-Hill, Berkerly, California (1982)

[36] WAKERLY J.R Micro-computer Architecture and

Programming, WHey, New York, pp 370-395, (1981)

[37] VAN TASSEL D. Program Style, Design, Efficiency,

Debugging, and Testing, Prentice-Hall, Englewood

Cliffs N.J., pp 166-197, (1974)

[38] MYERS G.J., The Art of Software Testing,

WHey, New York, (1979)

106


	Davies_Trevor_Rowland_1989.front.p001
	Davies_Trevor_Rowland_1989.front.p002
	Davies_Trevor_Rowland_1989.front.p003
	Davies_Trevor_Rowland_1989.front.p004
	Davies_Trevor_Rowland_1989.front.p005
	Davies_Trevor_Rowland_1989.front.p006
	Davies_Trevor_Rowland_1989.front.p007
	Davies_Trevor_Rowland_1989.front.p008
	Davies_Trevor_Rowland_1989.p001
	Davies_Trevor_Rowland_1989.p002
	Davies_Trevor_Rowland_1989.p003
	Davies_Trevor_Rowland_1989.p004
	Davies_Trevor_Rowland_1989.p005
	Davies_Trevor_Rowland_1989.p006
	Davies_Trevor_Rowland_1989.p007
	Davies_Trevor_Rowland_1989.p008
	Davies_Trevor_Rowland_1989.p009
	Davies_Trevor_Rowland_1989.p010
	Davies_Trevor_Rowland_1989.p011
	Davies_Trevor_Rowland_1989.p012
	Davies_Trevor_Rowland_1989.p013
	Davies_Trevor_Rowland_1989.p014
	Davies_Trevor_Rowland_1989.p015
	Davies_Trevor_Rowland_1989.p016
	Davies_Trevor_Rowland_1989.p017
	Davies_Trevor_Rowland_1989.p018
	Davies_Trevor_Rowland_1989.p019
	Davies_Trevor_Rowland_1989.p020
	Davies_Trevor_Rowland_1989.p021
	Davies_Trevor_Rowland_1989.p022
	Davies_Trevor_Rowland_1989.p023
	Davies_Trevor_Rowland_1989.p024
	Davies_Trevor_Rowland_1989.p025
	Davies_Trevor_Rowland_1989.p026
	Davies_Trevor_Rowland_1989.p027
	Davies_Trevor_Rowland_1989.p028
	Davies_Trevor_Rowland_1989.p029
	Davies_Trevor_Rowland_1989.p030
	Davies_Trevor_Rowland_1989.p031
	Davies_Trevor_Rowland_1989.p032
	Davies_Trevor_Rowland_1989.p033
	Davies_Trevor_Rowland_1989.p034
	Davies_Trevor_Rowland_1989.p035
	Davies_Trevor_Rowland_1989.p036
	Davies_Trevor_Rowland_1989.p037
	Davies_Trevor_Rowland_1989.p038
	Davies_Trevor_Rowland_1989.p039
	Davies_Trevor_Rowland_1989.p040
	Davies_Trevor_Rowland_1989.p041
	Davies_Trevor_Rowland_1989.p042
	Davies_Trevor_Rowland_1989.p043
	Davies_Trevor_Rowland_1989.p044
	Davies_Trevor_Rowland_1989.p045
	Davies_Trevor_Rowland_1989.p046
	Davies_Trevor_Rowland_1989.p047
	Davies_Trevor_Rowland_1989.p048
	Davies_Trevor_Rowland_1989.p049
	Davies_Trevor_Rowland_1989.p050
	Davies_Trevor_Rowland_1989.p051
	Davies_Trevor_Rowland_1989.p052
	Davies_Trevor_Rowland_1989.p053
	Davies_Trevor_Rowland_1989.p054
	Davies_Trevor_Rowland_1989.p055
	Davies_Trevor_Rowland_1989.p056
	Davies_Trevor_Rowland_1989.p057
	Davies_Trevor_Rowland_1989.p058
	Davies_Trevor_Rowland_1989.p059
	Davies_Trevor_Rowland_1989.p060
	Davies_Trevor_Rowland_1989.p061
	Davies_Trevor_Rowland_1989.p062
	Davies_Trevor_Rowland_1989.p063
	Davies_Trevor_Rowland_1989.p064
	Davies_Trevor_Rowland_1989.p065
	Davies_Trevor_Rowland_1989.p066
	Davies_Trevor_Rowland_1989.p067
	Davies_Trevor_Rowland_1989.p068
	Davies_Trevor_Rowland_1989.p069
	Davies_Trevor_Rowland_1989.p070
	Davies_Trevor_Rowland_1989.p071
	Davies_Trevor_Rowland_1989.p072
	Davies_Trevor_Rowland_1989.p073
	Davies_Trevor_Rowland_1989.p074
	Davies_Trevor_Rowland_1989.p075
	Davies_Trevor_Rowland_1989.p076
	Davies_Trevor_Rowland_1989.p077
	Davies_Trevor_Rowland_1989.p078
	Davies_Trevor_Rowland_1989.p079
	Davies_Trevor_Rowland_1989.p080
	Davies_Trevor_Rowland_1989.p081
	Davies_Trevor_Rowland_1989.p082
	Davies_Trevor_Rowland_1989.p083
	Davies_Trevor_Rowland_1989.p084
	Davies_Trevor_Rowland_1989.p085
	Davies_Trevor_Rowland_1989.p086
	Davies_Trevor_Rowland_1989.p087
	Davies_Trevor_Rowland_1989.p088
	Davies_Trevor_Rowland_1989.p089
	Davies_Trevor_Rowland_1989.p090
	Davies_Trevor_Rowland_1989.p091
	Davies_Trevor_Rowland_1989.p092
	Davies_Trevor_Rowland_1989.p093
	Davies_Trevor_Rowland_1989.p094
	Davies_Trevor_Rowland_1989.p095
	Davies_Trevor_Rowland_1989.p096
	Davies_Trevor_Rowland_1989.p097
	Davies_Trevor_Rowland_1989.p098
	Davies_Trevor_Rowland_1989.p099
	Davies_Trevor_Rowland_1989.p100
	Davies_Trevor_Rowland_1989.p101
	Davies_Trevor_Rowland_1989.p102
	Davies_Trevor_Rowland_1989.p103
	Davies_Trevor_Rowland_1989.p104
	Davies_Trevor_Rowland_1989.p105
	Davies_Trevor_Rowland_1989.p106

