
 

 

 

AN INVESTIGATION OF STRESS-RESPONSES IN 

PREGNANT WOMEN EXPOSED TO AMBIENT 

AIR POLLUTION IN DURBAN, SOUTH AFRICA 

By 

SAMANTHA MARY ANDERSON 

B.Sc., B.Med.Sc. (Hons), M.Med.Sc. (UKZN) 

 

Submitted in fulfilment of the requirements for the degree of 

Doctor of Philosophy 

in the 

Discipline of Medical Biochemistry and Chemical Pathology 

School of Laboratory Medicine and Medical Sciences 

College of Health Sciences 

University of KwaZulu-Natal 

 

2017 



ii 

 

DECLARATION 

 

 

I, Samantha Mary Anderson, declare as follows: 

 

i. The research reported in this thesis, except where otherwise indicated, is my original 

work. 

ii. This thesis has not been submitted for any degree or examination at any other 

university. 

iii. This thesis does not contain other persons’ data, pictures, graphs or other information, 

unless specifically acknowledged as being sourced from other persons. 

iv. This thesis does not contain other persons’ writing, unless specifically acknowledged as 

being sourced from other researchers. Where other written sources have been quoted, 

then: 

a. their words have been re-written but the general information attributed to them 

has been referenced; 

b. where their exact words have been used, their writing has been placed inside 

quotation marks, and referenced. 

v. Where I have reproduced a publication of which I am author, co-author or editor, I have 

indicated in detail which part of the publication was actually written by myself alone 

and have fully referenced such publications. 

vi. This thesis does not contain text, graphics or tables copied and pasted from the Internet, 

unless specifically acknowledged, and the source being detailed in the thesis and in the 

references sections. 

 

 

Signed:  

 

          30 November 2017 

 ___________________________     ________________ 

      Samantha Mary Anderson                  Date 

 

 



iii 

 

ACKNOWLEDGEMENTS 

 

Prof. Anil A. Chuturgoon 

Thank you for all your guidance that you have imparted to me. It has been a privilege to be a 

part of your research team and I am grateful for all the techniques and knowledge that I have 

acquired because of it. Thank you for all your assistance, advice and encouragement throughout 

my PhD study.  I am also grateful for being given the opportunity to be a part of the MACE 

study; it certainly challenged me but I have become a better scientist as a result. 

 

Prof. Rajen N. Naidoo and the MACE team 

I thank Prof Naidoo for allowing me the opportunity to be a part of the MACE study. This study 

has helped me grow academically and broadened my knowledge on public health and pollution 

exposure issues that I hope to positively influence in the future. I am also thankful too all 

MACE team members for all their effort and help they put into the MACE project. 

 

Study Participants 

Thank you to all study participants who unselfishly donated blood samples. 

 

Discipline of Medical Biochemistry and Chemical Pathology (2014-2017) 

Thank you to everyone within our department, I appreciate all the help and friendly 

conversations. I would especially like to thank: Dr Charlette Tiloke for always being ready to 

listen and for your friendship and Yashodani Pillay for the much appreciated assistance in 

optimising the RT-PCRs. 

 

My Family 

I am so grateful for all your help, guidance and love that you have given me. You have all 

helped shape me into the person I am today.  Thank you for your continuous encouragement and 

faith in me, without it I wouldn’t be where I am today. Thanks Mom and Dad for all that you 

have sacrificed for me and my siblings, you truly are the best parents. 

 

Sheldon Tyler Blom 

Thank you for everything. You helped me every step of the way, through your never-ending 

encouragement, faith in me and love.  

 

 



iv 

 

PUBLICATIONS 

 

1. Anderson, S.M., Naidoo, R.N., Ramkaran, P., Phulukdaree, A., Muttoo, S., Asharam, K., 

Chuturgoon, A.A. 2017. The effect of NOx pollution on oxidative stress in pregnant women 

living in Durban, South Africa. Archives of Environmental Contamination and Toxicology. 

(2018) 74:228-239.  Published. (Original Article) 

 

2. Anderson, S.M., Naidoo, R.N., Ramkaran, P., Asharam, K., Muttoo, S., Chuturgoon, A.A. 

2017. OGG1 Ser326Cys polymorphism, HIV, obesity and air pollution exposure influences 

adverse birth outcome susceptibility, within South African Women. Reproductive 

Toxicology. In Review. (Manuscript number RTX_2017_374) (Original Article). 

 

3. Anderson, S.M., Naidoo, R.N., Tiloke, C., Pillay, Y., Muttoo, S., Asharam, K., Chuturgoon, 

A.A. 2017. HIV induces nitric oxide and lipid peroxidation, which influences neonatal 

birthweight in a South African population. Free Radical Biology and Medicine. In Review. 

(Manuscript number FRBM-D-17-01167) (Original Article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

PRESENTATIONS 

 

The paper entitled: The effect of NOx pollution on oxidative stress in pregnant women living in 

Durban, South Africa by Anderson, S.M., Naidoo, R.N., Ramkaran, P., Phulukdaree, A., 

Muttoo, S., Asharam, K., Chuturgoon, A.A. was presented at the following local and 

international conferences (Poster): 

 

1. eThekwini-University Research Symposium (MILE-EURS2016) 5-6
th
 April, Municipal 

Institute of Learning, Inkosi Albert Luthuli International Convention Centre, Durban, 

South Africa, 2016  

2. School of Laboratory Medicine and Medical Sciences Research Day 5
th
 August, 

University of KwaZulu-Natal, Durban, South Africa, 2016 – won 1
st
 prize in best oral 

poster presentation category 

3. 28th Annual Conference International Society for Environmental Epidemiology 

(ISEE2016) – Focal theme: “Old and new risks: challenges for environmental 

epidemiology”, 1-4
th

  September, Auditorium Parco della Musica, Rome, Italy, 2016 

(Presentation abstract can be found online: https://ehp.niehs.nih.gov/isee/2016-p2-

065-4157/) 

 

The paper entitled: OGG1 Ser326Cys polymorphism, HIV, obesity and air pollution exposure 

influences adverse birth outcome susceptibility, within South African Women by Anderson, 

S.M., Naidoo, R.N., Ramkaran, P., Asharam, K., Muttoo, S., Chuturgoon, A.A. was presented at 

the following local conferences (Poster): 

 

1. School of Laboratory Medicine and Medical Sciences Research Day 4
th
 August, 

University of KwaZulu-Natal, Durban, South Africa, 2017 – won 1
st
 prize in best oral 

poster presentation category 

2. College of Health Science Research Symposium 5-6
th
 October, University of KwaZulu-

Natal, Durban, South Africa, 2017 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

DECLARATION ii 

ACKNOWLEDGEMENTS iii 

PUBLICATIONS iv 

PRESENTATIONS v 

LIST OF FIGURES ix 

LIST OF TABLES xiv 

LIST OF APPENDICES xvii 

LIST OF ABBREVIATIONS xviii 

ABSTRACT xxiii 

INTRODUCTION 1 

RESEARCH RATIONALE, AIM, HYPOTHESIS, OBJECTIVES AND STUDY DESIGN 4 

CHAPTER 1 6 

LITERATURE REVIEW 6 

1.1. Ambient air pollution 6 

1.1.1. Gaseous pollutants 6 

1.1.2. Particulate Matter 9 

1.2. Durban south Industrial Basin 11 

1.3. Pregnancy, Adverse birth outcomes and Ambient air pollution exposure 13 

1.3.1. Pregnancy 14 

1.3.2. Adverse birth outcomes and Ambient air exposure 14 

1.3.2. Adverse birth outcomes and Oxidative stress 17 

1.4. Oxidative Stress 19 

1.4.1. Reactive oxygen species 19 

1.4.2. Antioxidants 20 

1.4.3. Imbalance 23 

1.5. Base excision repair pathway 25 



vii 

 

1.5.1. Human 8-oxoguanine glycosylase 1 26 

1.5.2. 8-oxoguanine glycosylase 1 serine-326-cysteine polymorphism 27 

1.6. Nuclear factor (erythroid-derived 2)-like 2 and Kelch-like ECH-associated protein 1 

signalling 29 

1.6.1. Under basal conditions, Nrf2 is suppressed by Keap1 30 

1.6.2. Activation of Nrf2 by ARE inducers 31 

1.6.3. Target genes for Nrf2 regulation 32 

1.6.4. Epigenetic regulation of Nrf2 33 

1.7. Reactive nitrogen species 35 

1.7.1. Chemistry of NO 35 

1.7.2. Lipid peroxidation 36 

1.7.3. NO inhibition of OGG1 and other zinc-finger motifs 38 

1.7.4. Human immunodeficiency virus’s induction of Nitric oxide 38 

1.8. Oxidative stress and Endoplasmic reticulum stress 39 

1.8.1. Mitochondrial ROS generation as a result of increased intracellular calcium occurs 

via the following mechanisms: 41 

1.8.2. Unfolded protein repair induces ROS generation by the following proposed 

mechanism: 42 

1.8.3. Ambient air pollution, Adverse birth outcomes and Endoplasmic reticulum stress 42 

1.9. Future considerations for ambient air pollution induction of adverse birth outcomes 43 

1.10. References 44 

CHAPTER 2 64 

The effect of NOx pollution on oxidative stress in pregnant women living in Durban, South 

Africa 64 

CHAPTER 3 90 

OGG1 Ser326Cys polymorphism, HIV, obesity and air pollution exposure influences adverse 

birth outcome susceptibility, within South African Women. 90 

CHAPTER 4 113 



viii 

 

HIV induces nitric oxide and lipid peroxidation, which influences neonatal birthweight in a 

South African population 113 

CHAPTER 5 144 

Discussion, Conclusion and Recommendations 144 

APPENDIX 1 152 

APPENDIX 2 154 

APPENDIX 3 156 

APPENDIX 4 157 

APPENDIX 5 160 

APPENDIX 6 161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

 

CHAPTER 1 

 

Figure 1.1 Sources of Nitrogen oxides. The major outdoor sources are depicted in A) motor 

vehicle emissions, which produce 60-70% total NOx emissions in urban areas, and E) stationary 

combustion sources such as factories. The main indoor sources are depicted in image B) 

smoking and burning of C) wood and D) gas, common practices in the majority of households 

for cooking and heating (Images adapted from the internet [41]). .............................................. 7 

 

Figure 1.2 The Fenton- Haber-Weiss reaction. The Haber-Weiss net reaction produces hydroxyl 

radicals from hydrogen dioxide and superoxide, which is catalysed by Fe [61]. ....................... 10 

 

Figure 1.3 South Durban – Residential communities living within close proximity to industrial 

activity [70]. ........................................................................................................................... 11 

 

Figure 1.4 Location of south Durban in South Africa, depicting the entanglement of residential 

and industrial areas [71]. ......................................................................................................... 12 

 

Figure 1.5 Ambient air pollution’s potential mechanism for foetal toxicity leading to adverse 

birth outcomes. Inhaled AP enters the alveolus resulting in free radical production, which 

targets macromolecules present within the alveolus tissue. This results in OS and inflammation 

which is able to cross into the maternal blood stream and subsequently affect foetal growth 

through increased OS and inflammation within the placenta [98]. ............................................ 17 

 

Figure 1.6 Mitochondrial reactive oxygen species production. During oxidative 

phosphorylation within the ETC, a leakage of electrons from complex I and III react with 

oxygen to form superoxide. This is a highly reactive molecule and undergoes the Fenton-Haber-

Weiss reaction to produce hydroxyl radicals. The ROS are free to react and damage 

macromolecules within their proximity [111]. ......................................................................... 20 

 

Figure 1.7 Dismutation of the superoxide radical into oxygen and hydrogen peroxide (Prepared 

by author). .............................................................................................................................. 21 

 

Figure 1.8 Catalase detoxification of hydrogen peroxide (Prepared by author). ....................... 21 



x 

 

Figure 1.9 Glutathione peroxidase reduction of hydrogen peroxide to water (Prepared by 

author). ................................................................................................................................... 22 

 

Figure 1.10 Oxidative damage induced by reactive oxygen species [109]................................ 24 

 

Figure 1.11 DNA damage repair initiated by 8-oxoguanine DNA glycosylase. The OGG1 

recognises 8-OHdG and subsequently cleaves the DNA backbone which generates an AP site 

within the 3’-blocking end of the DNA. The cleaved DNA is subsequently cleaved by AP 

endonuclease 1 to remove the aldehyde residue to for a 3’ hydroxyl end, followed by the 

addition of a guanine base by DNA polymerase β which is ligated by DNA ligase III to form a 

complete DNA strand [145]. ................................................................................................... 26 

 

Figure 1.12 Domain structures present on a) Keap1 and b) Nrf2 genes. a) The DC domain 

present on the C-terminal of Keap1 binds Nrf2 whilst the N-terminal domain BTB 

homodimerises and binds Keap1 to Cul3. b) The Neh1 domain, present on the C-terminal region 

of Nrf2, mediates the heterodimerisation of small Maf proteins and the ARE on target genes, 

whilst the Neh2 domain present on the N-terminal binds to Keap1[168]. ................................. 30 

 

Figure 1.13 Transcriptional activation of Nrf2. a) Under Basal conditions, Nrf2 is bound to 

Keap1 within the cytoplasm and undergoes proteasomal degradation. b) Upon endogenous or 

exogenous toxic insult, Keap1’s conformation is altered resulting in the release of Nrf2 into the 

cytoplasm where it translocates to the nucleus, heterodimers with small Maf proteins and binds 

to the ARE of its target gene resulting in its transcriptional activation (Prepared by author). .... 31 

 

Figure 1.14 microRNA Biogenesis. The transcription of miRs from genomic DNA by RNA 

polymerase II, its subsequent cropping by Drosha and exportation out of the nucleus via 

Exportin-5, is followed by cleavage of the precursor miR by DICER. This results in the 

formation of mature miRs that binds to Argonaut proteins to form the RISC complex which 

leads to the transcriptional inhibition of target genes (Prepared by author). .............................. 34 

 

Figure 1.15 Synthesis of nitric oxide as a reaction by-product from the conversion of L-arginine 

to L-citrulline [200]................................................................................................................. 36 

 



xi 

 

Figure 1.16 The lipid peroxidation chain reaction. Polyunsaturated fatty acids are oxidised to 

form fatty acid radicals that propagate the chain reaction until final termination into detectable 

products of LP including MDA, 4-hydroxyalkenals and 2-alkenals [202]. ............................... 37 

 

Figure 1.17 The unfolded protein response pathway. In stress free conditions, luminal protein 

chaperone binding immunoglobulin protein (BiP) also known as  78 kDa glucose-regulated 

protein (GRP78) binds to the intraluminal domain of the three UPR sensors: PERK, inositol-

requiring enzyme 1α (IRE1α) and ATF6, rendering them inactive. Upon ER stress and the 

accumulation of UP and increased protein cargo within the ER, BiP dissociates from the UPR 

sensors and sequesters UP within the ER lumen, due to its higher affinity for UP. The 

dissociation of BiP from IRE1α and PERK causes the oligomerisation, auto-phosphorylation 

and activation of these sensors and downstream signalling pathways. The activation of the 

PERK arm leads to the phosphorylation of eukaryotic initiation factor 2 (eIF2) α which 

subsequently induces ATF4 mRNA translation and the inhibition of global protein translation. 

Pro-apoptotic genes such as CCAAT/enhancer-binding protein (C/EBP) homologous protein 

(CHOP) are induced by ATF4 resulting in cellular death. Global translational inhibition results 

in decreased translation of antioxidant proteins leading to increased ROS and apoptosis. Whilst 

the dissociation of BiP from ATF6, allows the translocation of ATF6 to the Golgi apparatus 

where it is processed by serine protease 1 (S1P) and metalloprotease site-2 protease (S2P) to 

yield an active transcription factor which enters the nucleus. The UP sequestered on BiP are 

translocated to the cytosol for proteasomal degradation by ER-associated degradation (ERAD) 

machinery. These three arms of UPR pathway endeavour to mitigate ER stress by facilitating 

protein degradation, increasing the ER’s protein folding capacity by inducing protein chaperone 

production and by suppressing protein synthesis [18, 19, 228]. ................................................ 40 

 

CHAPTER 2 

Figure 1: The concentrations of (A) atmospheric NOx (µg/cm3) and (B) maternal serum 8-

OHdG (log(ng/mL)) for patients living in the North [(A) n=142; (B) n=59] and South [(A) 

n=185; (B) n=97]. Statistical significance: *** p<0.0001 and * p<0.05................................... 71 

Figure 2: Relationship between the concentrations of atmospheric NOx (log(µg/cm
3
)) and 

maternal serum 8-OHdG (log(ng/mL)) for all patients (A) [Spearman r=0.2173; 95%CI 0.03657 

to 0.3843; *p=0.0158; n=123], patients living in the North (B) [Spearman r=0.1270; 95%CI -

0.1652 to 0.3987; p=0.3795; n=50] and South (C) [Spearman r= 0.2337; 95%CI -0.003195 to 



xii 

 

0.4457; *p=0.0466; n=73]. Dotted lines represent 95%CI interval. Statistical significance: 

*p<0.05 .................................................................................................................................. 72 

Figure 3: Maternal serum 8-OHdG adduct (log(ng/mL)) concentration between HIV positive 

(n=52) and HIV negative (n=113) patients in the total sample group. ...................................... 73 

Figure 4: Maternal serum 8-OHdG adduct (log(ng/mL)) concentration between the GSTM1 (A) 

and GSTP1 (B) genotypes for patients living in the North and South. Statistical significance: 

*p<0.05. ................................................................................................................................. 75 

 

 

CHAPTER 3 

Figure 1 Birthweight disruption within obese (BMI>30) and non-obese (BMI<30) patients that 

are HIV+ and HIV- for trimester one (a) and three (b) Statistical significance: **p<0.01, 

*p<0.05 ................................................................................................................................ 101 

 

CHAPTER 4 

Figure 1 The concentrations of atmospheric NOx (µg/cm
3
) (A), maternal serum NO (µM) (B) 

and maternal serum MDA (µM) (C) for patients living in the North ([A] n=109, [B] n=114, [C] 

n=113) and South ([A] n=135, [B] n=183, [C] n=181). Statistical significance: ***p<0.0001, 

*p<0.05. ............................................................................................................................... 123 

 

Figure 2 Atmospheric NOx (A and D), maternal serum NO (B and E) and maternal serum 

MDA (C and F) concentrations in HIV+ and HIV- patients, including patients subdivided by 

their living location (D, E and F). Statistical significance: ***p<0.0001, **p<0.001. ............ 124 

 

Figure 3 Maternal serum NO (µM) (A) and MDA (µM) (B) concentrations in patients who 

delivered infants with low BW (LBW) (<2500g) ([A] n=36 and [B] n=36) and normal BW 

(NBW) (>2500g) ([A] n=230 and [B] n=228). Statistical significance: *p<0.05. ................... 127 

 

Figure 4 The mRNA fold change of oxidative stress markers: A) Keap1, B) Nrf2, C) OGG1, D) 

SOD2, E) CAT, F) GPx found within the third trimester for HIV- and HIV+ patients living in 

the north and south. Statistical significance: ***p<0.0001, **p<0.01, *p<0.05. .................... 130 

 



xiii 

 

Figure 5 The expression of (A) miR-144 and (B) miR-28 within third trimester for HIV- and 

HIV+ patients living in the North and South. Statistical significance: **p<0.0001, ***p<0.01.

 ............................................................................................................................................. 131 

 

Figure 6 The mRNA fold change of ER stress markers found within third trimester for HIV- 

and HIV+ patients living in the North and South. Statistical significance: ***p<0.0001, 

**p<0.01, *p<0.05. .............................................................................................................. 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

LIST OF TABLES 

 

CHAPTER 1 

Table 1.1 Evidence of ambient air pollution and its association/non-association with low 

birthweight and pre-term birth ................................................................................................. 15 

Table 1.2 Evidence for Oxidative stress as a mechanism for LBW and PTB............................ 18 

 

CHAPTER 2 

Table 1: Primer sequences for PCR ..................................................................................... 69 

Table 2: Maternal and neonate characteristics .................................................................... 71 

Table 3: Genotypic frequency of GSTM1 in patients living in the North and South 

(n=372)................................................................................................................................... 74 

Table 4: Genotype and allele frequencies of GSTP1 in patients living in the North and 

South (n=377). ....................................................................................................................... 74 

Table 5: Relationship between the concentrations of atmospheric NOx (log(µg/cm
3
)) and 

maternal serum 8-OHdG (log(ng/mL)) among the different SNP genotypes (GSTM1 and 

GSTP1) for the total patient sample and those living in the North and South. ................... 76 

Table 6: Impact of atmospheric NOx (log) concentration on maternal serum 8-OHdG 

adduct (log) concentration – linear regression analysis for total mothers and  subdivided 

into area, GSTM1 and GSTP1 SNP with adjustments for maternal characteristics.  ......... 77 

Table 7: Impact of atmospheric NOx (log) concentration on gestational age – linear 

regression analysis for total mothers and subdivided into area, GSTM1 and GSTP1 SNP 

with adjustments for maternal characteristics. .................................................................... 79 

 

CHAPTER 3 

Table 1 Maternal clinical characteristics ................................................................................. 96 

Table 2 Association of HIV and Obesity for trimester one (n=496) and three (n=472) ............. 97 



xv 

 

Table 3 Genotypic and allelotypic frequencies of OGG1 patients that are HIV+ or HIV- 

(n=302) and non-obese (BMI<30) or obese (BMI>30) in trimester one (n=301) and three 

(n=288) ................................................................................................................................... 98 

Table 4 OGG1 Genotypic and obesity frequency distributions among patients delivering LBW 

or NBW neonates, at term (TB) or pre-term (PTB) that are HIV+ and HIV- (n=302) ............. 100 

Table 5 Association of OGG1 Ser326Cys genotypes with maternal clinical parameters in LBW 

and PTB neonates ................................................................................................................. 102 

Table 6 Sub-analysis of  body mass index, iron and OGG1 Ser326Cys for all groups ............ 103 

Table 7 Impact of maternal clinical characteristics on the risk of pre-term birth – a multi-variate 

logistic regression analysis (n=128) ....................................................................................... 104 

 

CHAPTER 4 

Table 1 RT-PCR Primer sequences and annealing temperatures ............................................ 120 

Table 2 Maternal and neonatal characteristics ....................................................................... 122 

Table 3 Relationship between the maternal serum NO (log(µM)) concentration and maternal 

serum MDA (log(µM)) for all patients living in the North and South, as well as HIV status ... 124 

Table 4 Impact of atmospheric NOx (log) and HIV on maternal serum NO and MDA (log) 

concentrations – linear regression analysis for total mothers and subdivided into HIV status and 

area with adjustments for maternal characteristics ................................................................. 126 

Table 5  Relationship between the maternal serum NO (log(µM)) concentration and neonatal 

birthweight (log(g)) for all patients living in the North and South, as well as HIV status ........ 127 

Table 6 Relationship between the maternal serum MDA (log(µM)) and neonatal birthweight 

(log(g)) for all patients  living in the North and South, as well as HIV status ......................... 128 

Table 7 Impact of atmospheric NOx (log), maternal serum NO and MDA (log) concentrations 

on neonate birthweight (g) – linear regression analysis for total mothers and subdivided into 

HIV status, area and neonate gender with adjustments for maternal and neonate characteristics

 ............................................................................................................................................. 129 



xvi 

 

Table 9 Relationship among miR-28, miR-144 and Nrf2 RT-PCR fold changes and the 

antioxidant and oxidative stress markers for all patients (n=76) ............................................. 130 

Table 10 Impact of atmospheric NOx, HIV status and living in the south on the expressions of 

miR-144 and miR-28 (n=68) ................................................................................................. 131 

Table 8 Relationship between maternal serum NO (log(uM)) and the fold change of antioxidant 

and ER stress markers for all patients (n=76), and those living in the North (n=39) and South 

(n=37) ................................................................................................................................... 132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 

 

LIST OF APPENDICES 

 

APPENDIX 1 

Ethical Approval ................................................................................................................... 152 

 

APPENDIX 2 

Determination of Single Nucleotide Polymorphism Genotypes .............................................. 154 

 

APEPENDIX 3 

Quantification of 8-oxoguanosine – Standard curve for Chapter 2 ......................................... 156 

 

APPENDIX 4 

Chapter 3 – OGG1 Ser326Cys polymorphism, HIV, obesity and air pollution exposure 

influences adverse birth outcome susceptibility, within South African Women – Supplementary 

Material ................................................................................................................................ 157 

 

APPENDIX 5 

Quantification of nitrites and nitrates – Standard curve for Chapter 4..................................... 160 

 

APPENDIX 6 

Chapter 4 – HIV induces nitric oxide and lipid peroxidation, which influences neonatal 

birthweight in a South African population – Supplementary Material .................................... 161 

 

 

 

 

 

 

 

 

 

 

 

 



xviii 

 

LIST OF ABBREVIATIONS 

 

8-OHdG 8-oxo-7,8-dihydro-2’-deoxyguanosine 

AA  Amino acid 

AAP  Ambient air pollution 

AIDS  Acquired immune deficiency syndrome 

ANOVA Analysis of variance 

AP  Air pollution 

ARE  Antioxidant response element 

ART  Antiretroviral treatment 

ATF  Activating transcription factor 

ATP  Adenosine triphosphate 

BD  Becton Dickinson 

BER  Base excision repair 

BH4  Heme and tetrahydrobiopterin 

BiP  Binding immunoglobulin protein 

BMI  Body mass index 

bp  Base pair 

BP  Blood pressure 

BTB  Broad complex/tramtrack/bric-a-brac 

BW  Birthweight 

bZip  Basic leucine-zipper 

C  Carboxyl 

Ca
2+

  Calcium ion 

CAT  Catalase 

CD4  Cluster of differentiation 4 

cDNA  complementary deoxyribonucleic acid 

CHOP  CCAAT/enhancer-binding protein (C/EBP) homologous protein 

CI  Confidence interval 

CNC  Cap ‘n’ collar 

cNOS  Constitutive nitric oxide synthases 

CO  Carbon monoxide 

Cu  Copper 

Cul  Cullin 

Cys  Cysteine 



xix 

 

DGR  Double glycine receptor 

dH2O  deionised water 

DNA  Deoxyribonucleic acid 

dNTP  Deoxynucleotide 

ds  Double stranded 

DSIB  Durban south industrial basin 

EDTA  Ethylenediaminetetraacetic acid 

eIF  Eukaryotic initiation factor 

ELISA  Enzyme-linked immunosorbent assay 

eNOS  Endothelial nitric oxide synthases 

ER  Endoplasmic reticulum 

ERAD  Endoplasmic reticulum-associated degradation 

ETC  Electron transport chain 

ETS  Environmental tobacco smoke 

FAD  Flavin adenine dinucleotide 

Fe  Iron 

Fig.  Figure 

FMN  Flavin mononucleotide 

Fpg  Zinc-finger motif 

GA  Gestational age 

gp  Glycoprotein 

GPx  Glutathione peroxidase 

GRP78  78 kDa glucose-regulated protein 

GSH  Glutathione 

GSSG  Glutathione disulfide 

GST  Glutathione S transferase 

GSTM1 Glutathione S transferase Mu 1 

GSTP1  Glutathione S transferase Pi 1 

H
+
  Hydrogen ion 

H2O2  Hydrogen peroxide 

H3PO4  Phosphoric acid 

Hb  Haemoglobin 

HCl  Hydrochloric acid 

HIV  Human immunodeficiency virus 

HIV-  Human immunodeficiency virus negative 



xx 

 

HIV+  Human immunodeficiency virus positive 

IC  Intracellular 

IFN  Interferon 

IL  Interleukin 

Ile  Isoleucine 

Inc.  Incorporation 

iNOS  Inducible nitric oxide synthases 

IP3R  Inositol-1,4,5,triphosphate receptor 

IRE  Inositol-requiring enzyme 

IUGR  Intrauterine growth restriction 

IVR  Intervening region or linker region 

JNK  c-Jun N-terminal kinases 

Keap1  Kelch-like ECH-associated protein 

LBW  Low birthweight 

LP  Lipid peroxidation 

m  Minutes 

MACE  Mother and Child in the Environment 

Maf  Musculoaponeurotic fibrosarcoma 

MDA  Malondialdehyde 

methHB Methaemoglobin 

MgCl2  Magnesium chloride 

min  Minutes 

miR  Micro-ribonucleic acid 

mRNA  Messenger ribonucleic acid 

N  Nitrogen 

n  Sample size 

NADPH Nicotinamide adenine dinucleotide phosphate 

NBW  Normal birthweight 

ND  North Durban 

NEDD  N-(1-Naphthyl)ethylenediamine 

Neh  Nrf2-ECH homology 

nNOS  Neural nitric oxide synthases 

NO  Nitric oxide 

NO2  Nitrogen dioxide 

NOS  Nitric oxide synthases 



xxi 

 

NOx  Oxides of nitrogen 

Nrf2  Nuclear factor (erythroid-derived 2)-like 2 

ns  Non-significant 

O2  Molecular oxygen 

O2
-
  Superoxide 

OGG1  8-oxoguanine glycolase 1 

OR  Odds ratio 

ORAC  Oxygen radical absorbance capacity (Total antioxidant activity) 

OS  Oxidative stress 

PAH  Polycyclic aromatic hydrocarbons 

PBS  Phosphate-buffered saline 

PCR  Polymerase chain reaction 

PDI  Protein disulfide isomerase 

PERK  Protein kinase RNA-like endoplasmic reticulum kinase 

PK  Protein kinases 

PM  Particulate matter 

PM0.1  Ultrafine particulate matter 

PM10  Coarse particulate matter 

PM2.5  Fine particulate matter 

POM  Polycyclic organic matter 

PTB  Pre-term birth 

PTP  Permeability transition pore 

PUFA  Polyunsaturated fatty acid side chains 

QH·  Ubisemiquinone radical intermediate 

RFLP  Restriction fragment length polymorphism 

RISC  Ribonucleic acid -induced silencing complex 

RNA  Ribonucleic acid 

RNS  Reactive nitrogen species 

ROS  Reactive oxygen species 

RR  Relative risk 

RT  Room temperature 

RT-PCR Real-Time polymerase chain reaction 

s  Seconds 

S1P  Serine protease 1 

S2P  Metalloprotease site-2 protease 



xxii 

 

SA  South Africa 

SD  South Durban 

sec  Seconds 

Ser  Serine 

SNP  Single nucleotide polymorphism 

SO2  Sulphur dioxide 

SOD  Superoxide dismutase 

Sp  Specific protein 

ss  Single stranded 

SST  Serum-separating tubes 

SULF  Sulfanilic acid 

T1  Trimester one 

T3  Trimester three 

TB  Term birth 

TBA/BHT Butylated hydroxytoluene solution 

TBARS  Thiobarbituric acid reactive substances 

TNF  Tumour necrosis factor 

TSP  Total suspended particles 

UP  Unfolded proteins 

UPR  Unfolded protein response 

USA  United States of America 

UTR  Untranslated region 

Val  Valine 

VCl3  Vanadium trichloride 

wt  Wild-type 

Zn  Zinc 

 

 

 

 

   

 

 

 



xxiii 

 

ABSTRACT 

 

Living or working within an unhealthy environment is attributed to 12.6 million deaths 

worldwide and 2.2 million deaths in Africa. Ambient air pollution (AAP) exposure is amongst 

the major contributors of environmental and air quality decay. Durban South Africa (SA) is a 

rapidly developing city that requires increased infrastructure, transportation, and energy 

production to support the growing urban population. This leads to air quality degradation, in 

addition to the heavy burden of human immunodeficiency virus (HIV) and obesity SA faces 

increase the susceptibility of pathological conditions including respiratory diseases and adverse 

birth outcomes. Infants in utero are particularly vulnerable to adverse AAP effects, attributed to 

oxidative stress (OS), inflammation and genetic susceptibility, due to their biological 

vulnerability, sensitivity to their environment and rapid differentiation and growth.  

 

South Durban (SD) comprises a complex mix of dense residential settlements and heavily 

industrialised areas with high levels of air pollution (AP). This makes SD an ideal location to 

investigate the effects of AAP, in particular, traffic-related AP (atmospheric oxides of nitrogen 

(NOx)), on OS and endoplasmic reticulum (ER) stress responses within third trimester pregnant 

women. A comparison sample of pregnant women, located within north Durban (ND) of similar 

socio-economic status were used for this study. The susceptibility of OS markers, including 8-

oxo-7,8-dihydro-2’-deoxyguanosine (8-OHdG) DNA adducts, lipid peroxidation (LP) and nitric 

oxide (NO) levels, on adverse birth outcomes, including low birthweight (LBW) and pre-term 

birth (PTB), were also determined. Additional risk factors such as HIV, obesity and single 

nucleotide polymorphisms (SNP) within genes of the antioxidant response pathway were 

investigated for OS and adverse birth outcome susceptibility. Atmospheric NOx pollution data 

were obtained from land use regression modelling that was previously reported. 

 

Atmospheric NOx and maternal serum 8-OHdG adducts were significantly elevated within SD 

living pregnant women. This induction of DNA damage was found to be the direct consequence 

of NOx exposure. Pregnant women carrying the variant and wild-type (wt) genotypes of 

glutathione S transferase (GST) P1 and M1 SNPs, respectively, increased the susceptibility of 

NOx induced OS. Exposure to increased NOx levels significantly reduced the gestational age 

(GA) of these pregnant women, with increased susceptibility for mothers carrying male 

neonates. 
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The wt 8-oxoguanine glycosylase 1 (OGG1) Ser326Cys genotype was found to be associated 

with both HIV and obesity. Therefore pregnant women infected with HIV (HIV+) and carrying 

the wt genotype significantly increased the risk for HIV associated LBW and PTB. In addition, 

living within SD and being exposed to higher levels of AAP significantly increased the 

susceptibility for PTB. Comorbid HIV and obesity were identified as additional risk factors for 

birthweight (BW) reduction. 

 

Increased maternal serum NO levels were observed within HIV+ women, with reciprocal 

activity on malondialdehyde (MDA) levels. Increased levels of NO directly reduced BW, 

especially for HIV+ and SD living women. This suggests NO may play a key role in LBW 

aetiology as a consequence of HIV infection and traffic-related AP.  HIV was shown to 

differentially modulate MDA’s effect on neonatal BW. Exposure to increased levels of NOx and 

HIV infection induced the expression of microRNA (miR)-144, which was shown to negatively 

regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This transcription factor, Nrf2, was 

shown to significantly increase antioxidant gene expressions. Therefore the induction of miR-

144 was implicated as a mechanism for increased OS due to HIV and NOx exposure. In 

addition, elevated ER stress genes were observed within HIV negative SD living patients.  

Hence, exposure to higher levels of AAP within SD led to increased ER stress, which may act 

reciprocally on the induction of ROS leading to increased OS. 

 

These findings indicate that exposure to atmospheric NOx, elevated AAP levels within SD and 

exposure to HIV infection resulted in increased OS with increased susceptibility towards 

adverse birth outcomes within pregnant women. Further studies into the mechanisms proposed 

within a larger population including multiple pollutants and gene interactions may give 

additional insight into the aetiology of adverse birth outcomes as a consequence of AAP 

exposure. 
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INTRODUCTION 

 

The atmosphere is an essential shared source that protects and supports life. However, the 

atmosphere is threatened by anthropogenic activities where large amounts of pollutants are 

released into the ambient air daily. This threatens the air quality, where pollution load has 

become greater than pollutant dispersion, leading to ambient air pollution (AAP). 

 

 Ambient air pollution has been implicated in a wide range of pathological conditions that have 

contributed to 5.4% of deaths worldwide [1]. These conditions include cardiovascular disease, 

asthma, acute respiratory infections and lung cancer [2, 3]. Adverse effects of AAP on human 

health have gained global interest. The most vulnerable population are infants in utero. 

Exposure to AAP has been linked to adverse birth outcomes such as low birth weight (LBW) 

and pre-term birth (PTB) and is associated with infant morbidity, mortality and risk of 

development of respiratory and neurocognitive disorders later in life [4]. The exact mechanism 

by which AAP exposure leads to adverse birth outcomes has yet to be determined, however 

oxidative stress (OS) and inflammation have been implicated including genetic susceptibility. 

 

South Africa (SA) is a developing country with a growing urban population which requires 

increased infrastructure, energy and natural resources for human consumption [5]. This has led 

to the deterioration of the environment and air quality. A major consequence of urbanisation is 

increased road traffic due to the lack of functional public transport, increased vehicle fleets with 

increased emissions from traffic congestion, poor vehicle maintenance, and aged vehicles. 

Additionally, due to poor land use planning, dense human settlements are in close proximity to 

heavily industrialised areas [5]. This is most noticeably observed within the Durban south 

industrial basin (DSIB) or south Durban (SD) in SA, where a large portion of the population 

resides in low-income households or informal settlements.  They form dense communities in 

close proximity to busy roads, for easy access to transport for daily activities, and amidst 

industrialised areas. These communities also rely heavily on domestic fuels, such as coal, 

paraffin, and wood, for cooking and heating. Upon burning of these fuels, pollutants such as 

oxides of nitrogen (NOx) are released [5]. As a result, large communities are exposed daily to 

large amounts of AAP and this in combination with the heavy burden of human 

immunodeficiency virus (HIV) and obesity that SA is facing, drastically impacts human health. 

 

Oxides of nitrogen comprise 60-70% of pollution associated with vehicle emissions [5]. These 

nitrogen (N) centred free radicals, upon inhalation, are absorbed into the lung tissue and produce 
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free radicals which enter the blood stream. Subsequently, they react with macromolecules 

(proteins, lipids and deoxyribonucleic acids (DNA)) present causing damage including lipid 

peroxidation (LP) and the production of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-OHdG) 

mutagenic lesions [6–8]. Cytoprotection against these insults are provided by antioxidant 

enzymes including glutathione S-transferases (GSTs) that scavenge and eliminate reactive 

oxygen species (ROS) to prevent oxidant-related damage [9, 10].  Repair mechanisms including 

the DNA repair pathway and its key enzyme human 8-oxoguanine glycosylase 1 (OGG1), help 

mitigate stress through the repair of damaged macromolecules [11, 12].  

 

The antioxidant response is regulated via the antioxidant response element (ARE) and its key 

transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) [13–15]. Upon increased 

oxidative damage, Nrf2 dissociates from kelch-like ECH-associated protein 1 (Keap1) and 

translocates to the nucleus. It then binds to the ARE resulting in transcriptional activation of 

specific target genes including antioxidants e.g., superoxide dismutase 2 (SOD2) and catalase 

(CAT) [9, 16]. However, if the production of ROS exceeds the scavenging capacity of 

antioxidants, OS results leading to extensive macromolecular and cellular damage. 

 

Excessive OS may lead to the disruption of cellular calcium homeostasis. The endoplasmic 

reticulum (ER) acts as a major reservoir of intracellular (IC) calcium and therefore plays a 

critical role in calcium homeostasis [17, 18]. This homeostasis is necessary for the proper 

function of the protein folding machinery; disruption results in the activation of the unfolded 

protein response (UPR) pathway that endeavours to restore balance within the ER [19]. 

 

Genetic susceptibility is an important determinate of an individual’s response to toxic insult, 

viz. AAP exposure, HIV infection or obesity [20]. Single nucleotide polymorphisms (SNP) 

within antioxidant genes including OGG1, GST Mu (M) 1 and GST Pi (P) 1 affect their 

enzymatic activity and scavenging potential which could lead to increased OS and subsequent 

damage [10, 21, 22]. Epigenetics influence and regulate gene expression [23]. Non-coding or 

micro- ribonucleic acids (RNA) (miR) are important for Nrf2 regulation. MiR-144 inhibits the 

expression of Nrf2 messenger RNA (mRNA) [24] whilst miR-28 regulates Nrf2 post-

transcriptionally by promoting Nrf2 degradation [25].  These genetic changes in human genes 

may lead to increased susceptibility to disease and neonatal conditions including LBW and 

PTB.  
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An unhealthy environment is linked to ~2.2 million deaths within Africa, of these, ~270,000 

deaths are due to neonatal conditions [26]. In addition, ~57% of the total SA population living 

with HIV are women [27] with 68% being obese [28], suggesting that women and infants in 

utero are greatly at risk for negative impacts of AAP exposure.  Pregnancy, a physiological state 

characterised by its high-energy and elevated basal oxygen demand, favours ROS production 

and increased susceptibility to OS [29]. In the presence of external or internal stressors viz. 

AAP and infection, the antioxidant stores would become saturated leading to increased OS [30, 

31]. Exposure to tobacco smoke and traffic-related air pollution (AP) have been associated with 

increased OS markers within pregnant women [32–34] and reduced foetal growth, LBW and 

PTB [35, 36]. Although OS has been implicated in adverse birth outcome aetiology [37], no 

mechanism linking AAP induced OS to adverse birth outcomes have been identified. In 

addition, HIV and obesity influences need to be considered, due to the heavy burden of these 

conditions in SA. 
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RESEARCH RATIONALE, AIM, HYPOTHESIS, OBJECTIVES AND STUDY 

DESIGN 

 

Research Rationale 

In order to reduce the incidence of adverse birth outcomes due to AAP exposure, improvements 

in diagnosis, interventions, and treatments are mandatory. For this to occur it is essential to 

understand how exposure to AAP induces adverse birth outcomes. This will ensure that novel 

biomarkers and targeted interventions can be developed. Oxidative stress has been implicated 

and exploring associated mechanisms may give insight into the aetiology of adverse birth 

outcomes which could help in its proper management. 

 

In SA, we have a unique population, heavily burdened with HIV and obesity. In addition to 

genetic susceptibility, these conditions may affect an individual’s response to environmental 

exposures. Investigating these interactions is therefore paramount for biomarker and 

intervention research. 

 

Aim 

The study aimed to investigate the effect of ambient air pollution exposure on oxidative and 

endoplasmic stress profiles within third trimester (T3) pregnant women, their subsequent effect 

on neonatal adverse birth outcomes and whether HIV and obesity influenced these effects. The 

study was conducted by comparing pregnant women living in the heavily polluted south 

Durban, with pregnant women living in the less-industrialised north Durban (ND), SA. 

 

Hypothesis 

Exposure to high pollution levels and HIV infection would induce oxidative stress profiles 

within pregnant women and lead to increased incidence of adverse birth outcomes including 

reduced foetal growth. 

 

Objectives 

The study was designed to determine: 

1. The effect NOx pollution had on oxidative stress markers within T3 and their subsequent 

effect on adverse birth outcomes  

2. Whether polymorphisms within genes of the antioxidant response pathways: GSTP1 and 

GSTM1, and DNA repair pathway: OGG1, affected the susceptibility of adverse birth 

outcomes within pregnant woman exposed to AAP, HIV, and obesity. 
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3. Whether epigenetic regulation of the Nrf2-Keap1 pathway by miR-144 and miR-28 within 

T3, was influenced by exposure to higher or lower pollution levels and HIV infection. 

4. The effect NOx pollution exposure in SD and ND had on the induction of the endoplasmic 

reticulum stress pathway within T3 and their subsequent effect on adverse birth outcomes. 

 

Study Design 

This study was conducted as a branch of the Mother and Child in the Environment (MACE) 

birth cohort study. Ethical clearance from the Biomedical Research Ethics Committee of the 

University of Kwa-Zulu Natal (BF263/12) (Appendix 1) and informed consent from study 

participants was obtained. 

 

Briefly, women were recruited from public antenatal clinics present within three hospitals 

(Wentworth, Prince Mshiyeni and King Edward VIII Hospitals) in the heavily polluted SD. 

Whilst, a comparison sample of women with similar socio-economic status were recruited from 

public antennal clinics present within three hospitals (Addington, Mahatma Gandhi and King 

George V Hospitals) in the less-industrialised ND, in SA. 

 

Upon enrolment, a questionnaire was completed which included the following relevant 

information: demographics, residential and antenatal history and potential confounding factors 

such as environmental and occupational exposures, maternal smoking, dietary history and pre-

existing medical conditions. Follow up interviews were conducted at each trimester subsequent 

to enrolment and prior to delivery, to evaluate any changes such as exposures, dietary changes 

and pregnancy complications. In addition, clinical parameters of the mother were assessed at 

trimester one (T1) and T3 visits including height, weight and the levels of haemoglobin (Hb), 

iron (Fe) and blood pressure (BP) that were used in subsequent analyse discussed in the 

following chapters. 

 

The basic clinical data of all neonates were obtained from birth records, including intra-labour 

history, birthweight (BW) and other anthropometric data. These were used in subsequent 

analyse discussed in the following chapters. 

 

Environmental exposure data and other biochemical data collection methods are discussed in 

detail within the relevant chapters. 
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1.  Ambient air pollution 

The deterioration of air quality and general environmental degradation are frequently observed 

within developing countries. Rapid industrialisation, economic expansion, increased 

urbanisation due to the natural growth of the urban population and rural migration are 

implicated [5, 38]. This deterioration of air quality is of major public health concern, as 

exposure to AAP has been associated with adverse health consequences ranging from 

pulmonary to neurological conditions, including cardiovascular diseases, cancer and most 

notably adverse birth outcomes [2–4].  

 

Anthropogenic activities are the major cause of environmental AP; emitted from industrial 

facilities, motor vehicles, forest fires, tyre burning and burning of fossil fuels among others. 

Various pollutants have been identified; differing in their chemical composition and reactivity, 

whether they are transported via long or short ranges and their persistence within the 

environment. Their composition within ambient air ranges from gaseous pollutants, such as 

NOx and sulphur dioxide (SO2), to particulate matter (PM), such as dust, pollen and ultrafine 

particles (PM0.1). The main route of exposure is via inhalation, with ingestion and dermal 

contact minor routes of exposure. Upon inhalation, pollutants are absorbed and depending on 

their mode of action may enter general circulation and propagate their effects [3, 38].  The 

induction of OS within the lung, whether by inducing oxidants or impairing antioxidants; which 

initiates a cascade of responses, has been implicated in AAP mode of toxicity on human health. 

An influx and activation of inflammatory cells is one such response, where large quantities of 

free radicals are generated and released which may potentiate the pollutant effects [6]. 

 

1.1.1. Gaseous pollutants 

1.1.1.1. Nitrogen oxides 

Several forms of NOx exist within the ambient air, however, the two main forms are nitrogen 

dioxide (NO2) and nitric oxide (NO) [39]. Nitrogen oxides are generated by reactions between 

oxygen and N at high temperatures from combustion processes. Greater quantities of NO (90-

95%) compared to NO2 (5-10%) are released into the air. In ambient air, NO rapidly oxidises 

with oxidants present (oxygen, ozone, and volatile organic compounds) to form NO2 [6, 39, 40].  
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Major outdoor sources of NOx, are combustion processes from motor vehicles and stationary 

sources (i.e. power generation and heating). In urban areas, road traffic is the major contributor 

to atmospheric NOx. Principal indoor sources include tobacco smoke and burning of fossil 

fuels, wood, gas, oil, and kerosene for cooking or heating (Figure 1.1). Indoor levels are also 

determined by outdoor sources; poor ventilation and close proximity to heavily congested roads, 

would increase NOx levels indoors [39, 40]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Sources of Nitrogen oxides. The major outdoor sources are depicted in A) motor vehicle 

emissions, which produce 60-70% total NOx emissions in urban areas, and E) stationary combustion 

sources such as factories. The main indoor sources are depicted in image B) smoking and burning of C) 

wood and D) gas, common practices in the majority of households for cooking and heating (Images 

adapted from the internet [41]). 

 

Nitrogen dioxide has limited solubility in aqueous solutions and is an N-centred free radical 

with strong oxidising potential [6]. Inhalation of atmospheric NO2 and subsequent absorption 

and degradation in the lung fluids, forms metabolically activate and stable nitrites and nitrates. 

These metabolites are rapidly absorbed and translocated via the blood stream. Due to their 

strong oxidising potential, they are capable of interacting directly with lung-tissue components 

(protein and lipids) present resulting in a cascade of radical production, thereby exerting its 

A 

B 

D 

C 
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effect [3, 34]. Studies have shown, in animal models and under environmentally relevant levels 

of NO2, atmospheric NO2 elevates LP (dose and time-dependent), reduces antioxidant enzyme 

activities including SOD, glutathione reductase and glutathione peroxidase (GPx) [42] and 

decreases reduced glutathione (GSH) [43–45]. Exposure in utero has been associated with 

placental LP, impaired neonatal development and PTB [34, 46, 47]. 

 

1.1.1.2. Ozone 

Ozone is highly reactive and formed through the interaction of sunlight with NOx and reactive 

hydrocarbons [48]. It is the main component within photochemical smog and the inhalation of 

slightly elevated concentrations (60–120 ppb) may cause several respiratory symptoms 

including decreased lung function, pulmonary inflammation, and increased airway hyper-

reactivity. Ozone is a relatively insoluble gas and powerful oxidant; it directly oxidises the 

substrate present (cells present at the air-tissue interface, including protein and lipids) resulting 

in a cascade of secondary ozonation products [6] and LP [48]. Studies have reported oxidative 

damage due to the activation of heat shock proteins, Nrf2, pro-inflammatory cytokines and c-

Jun onco genes [49, 50]. 

 

1.1.1.3. Carbon monoxide 

Carbon monoxide (CO) is formed through the incomplete combustion of carbonaceous fuels 

including wood, kerosene, petrol, coal and natural gas. The main outdoor sources of exposure 

are from road transportation and parking areas, whilst indoor sources include combustion of 

domestic fuels for cooking and heating [39, 40]. It is a reproductive toxicant that interferes with 

oxygen delivery to the foetus. Carbon monoxide displaces oxygen from Hb which shifts the 

oxyhaemoglobin dissociation equilibrium. It has been demonstrated that CO crosses the 

placental barrier which leads to its accumulation. This leads to low levels of oxygen within 

foetal blood as a result of CO-poisoning and causes oxidative injury [46, 51]. 

 

1.1.1.4. Sulphur dioxide 

Sulphur dioxide is generated through the combustion of sulphur-containing fossil fuels, such as 

coal and heavy oils. It is also produced through the smelting of sulphur containing ores [3].  The 

induction of OS, as a consequence of SO2 reactivity properties within an aqueous environment, 

has been implicated in the role of SO2 toxicity [52]. Studies in mice have reported reduced 

antioxidant activity (SOD and GPx) [53], elevated LP in mice testicles [54], brains, liver, lungs, 
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and heart [53]. Exposure in utero has been associated with functional and developmental 

toxicities [46, 55]. 

 

1.1.2. Particulate matter 

Particulate matter consists of a broad spectrum of particle types, of which a large portion 

induces OS via radical formation. The major sources of PM include power plants, factories, 

refuse incinerator fires, motor vehicles and windblown dust [40]. Particles are classified by their 

relative diameter (µm); coarse (PM10), fine (PM2.5), PM0.1 and nanoparticles. Inhaled PM10 

particles are mainly deposited on the upper airways and removed via mucociliary clearance; 

whilst PM2.5 and PM0.1 (about 50% of PM10 composition) are able to reach the lung parenchyma. 

Thus suggesting, PM2.5 and PM0.1 contribute more significantly to PM toxicity [3, 38, 56]. 

 

The relatively small size of PM allows it to escape phagocytosis, be absorbed into the blood 

stream and disperse into various organs, upon entry into the lung. This PM entry into the body 

could result in oxidative injury and pro-inflammatory processes within the lungs and other 

target organs, including the placenta [46, 57]. Ultrafine particles have been shown to cross the 

placental barrier and interact with membrane proteins, especially growth factor receptors and 

impair their function. This could lead to decreased placental size and impaired nutrient and 

oxygen exchange; which has been associated with increased blood coagulation and viscosity 

which alters blood perfusion [57]. 

 

Major constituents of PM are transition metals and polycyclic aromatic hydrocarbons (PAH). 

They have been associated with OS, cytokine induction, and inflammation [58, 59]. 

 

1.1.2.1. Transition metals 

Transition metals present on the particle surface have the ability to induce OS. These metals 

enter the environment through waste-water discharges, combustion, and manufacturing facilities 

[3]. Metals such as Fe, cobalt, and chromium undergo redox cycling, whilst lead, nickel, and 

mercury deplete GSH and protein-sulphydryl groups resulting in the production of ROS [56]. 

Metal catalysts are important in the Fenton oxidation reaction, where superoxide and hydrogen 

peroxide interact with transition metals, i.e. Fe and copper (Cu), via Fenton- Haber-Weiss 

reaction (Figure 1.2) to form hydroxyl radicals. Metal ions are also capable of direct interaction 

with cellular molecules and generate radicals such as thiol radicals. Thiol radicals may react 

with other thiol molecules to generate singlet oxygen which is converted to hydrogen peroxide 
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and induces additional ROS generation [60]. Metal ions also bind to proteins which disrupt 

antioxidant enzyme function and attack nucleic acids and proteins that result in the disruption of 

gene expression [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 The Fenton- Haber-Weiss reaction. The Haber-Weiss net reaction produces hydroxyl radicals 

from hydrogen dioxide and superoxide, which is catalysed by Fe [61]. 

 

1.1.2.2. Polycyclic aromatic hydrocarbons 

Polycyclic aromatic hydrocarbons are organic components carried on particulate surfaces. They 

indirectly induce OS, by cytochrome P450 biotransformation and generation of redox active 

quinones that act as free radical catalysts [6]. Polycyclic aromatic hydrocarbons have been 

associated with increased DNA-adduct formation [62–64], that is dose-dependent [65, 66]. 

Particulate matter has been implicated in the transfer of PAH from its surface across the 

placental barrier. The PAH within the placenta, interferes with placental development and the 

delivery of nutrients and oxygen to the foetus. This leads to reduced foetal nourishment in utero, 

as a consequence of increased blood viscosity and decreased placental blood flow [46, 58, 59]. 

 

Determining the exact mechanism by which pollutants exert their toxicity is challenging. This 

could be due to the differing concentrations of pollutants in the ambient air among locations, 

each possessing its own unique microenvironment. In addition, potential pollutant interactions, 

due to temperature differences and environmental pressures may affect their toxicity. 

Developing countries, such as SA, allow for the unique environment and ideal location for 
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investigating AAP effects on human health, especially those most vulnerable including woman, 

children, and infants in utero, due to the limited AAP monitoring sites and controls and a 

rapidly growing population in close proximity to pollution sources. 

 

1.2. Durban South Industrial Basin 

Durban, located within the province of KwaZulu-Natal, SA, is the second largest city by 

population in the country. It is home to the largest and busiest port including the primary route 

for exported petroleum and imported crude oil [67]. 

 

Apartheid-era policies that prioritised national strategic growth resulted in the heavy 

industrialisation of SD, with little regard for pollution load on the atmosphere and the effects of 

pollutant interactions. Thus it is considered one of the most heavily polluted and highly 

industrialised areas within SA. Today, SD comprises approximately 600 industries, including 

SA’s two largest oil refineries , pulp and paper mills, petroleum industries, a sugar refinery, 

waste-water treatment works, major chemical and petrochemical storage facilities, motor 

industries, breweries and other small industries [67, 68].  

 

Poor historic land use planning resulted in the juxtaposition of dense labour communities 

amongst industrial activity, with over 400,000 people living within this industrial hub today 

(Figure 1.3). In addition, to the continuous growth of vehicular traffic, aggravated by the 

dysfunctional rail service and public transport, shipping pollution and heavy truck traffic, 

creates a unique AP exposure setting [68, 69].  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 South Durban – Residential communities living within close proximity to industrial activity 

[70]. 
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The south Durban or often termed “South Durban Industrial Basin” is approximately 24km long 

and 4km wide, ranging from the central Durban business district southward to Umbogintwini 

(Figure 1.4).  The ‘basin’ like topography, due to the seaward ancient sand dunes at the coast 

(70-110m in height) and a ridge of hills landward (100-150m in height), in combination with the 

multiple pollutant sources in close proximity to dense residential areas in SD, create and possess 

adverse public health impacts. Dispersion of pollutants during the night and early morning is 

minimal, resulting in high levels of pollution; this deteriorates further in winter where surface 

temperature inversions prevent the upward migration of pollutants [67, 68]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Location of south Durban in South Africa, depicting the entanglement of residential and 

industrial areas [71]. 

 

Major pollutants of interest within this area include: SO2 emissions from stationary refineries 

and paper mills, NOx emitted from road traffic and industry and PM10 mainly emitted from 

traffic and industry with additional influences from biomass burning, dust, and salt. High levels 
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of these pollutants have been measured within SD [67, 72]. The communities living within SD 

are majority low-income households and informal settlements that rely heavily on domestic 

fuels such as coal, wood, and paraffin for cooking and heating. In addition to poor ventilation, 

the use of small-scale appliances that are poorly maintained, result in increased emissions of 

indoor AP including NOx, which puts them at risk for adverse health impacts of AAP [5]. 

 

Previous studies have shown that although the AAP levels fell below the national and 

international guidelines; SO2 and PM10 were significantly associated with adverse health 

outcomes; including moderate to severe asthma documented within children of school going 

age, within SD [69, 73]. In addition, higher levels of OS markers were observed in pregnant 

women exposed to AAP in SD compared to the less industrialised ND [74]. However, this study 

did not link these increased markers of OS to a particular pollutant, nor determined what impact 

these markers had on neither neonatal birth outcomes nor health later in life, if any. The adverse 

health outcomes associated with SD AAP emissions resulted in the monitoring of these toxic 

emission levels from industries within SD [67]. 

 

South Durban located within the city’s major transport routes including the national roads and 

highways, exposes residents to high levels of traffic-related AP, especially during morning and 

evening traffic (also times of low pollutant dispersion) [67]. Traffic-related AP, e.g. NOx, is 

rapidly worsening due to increased vehicle fleets, increased distance travelled, and high rates of 

emission from motor vehicles. High emission rates are due to road congestion which increases 

the rate of emission to km travelled, poor vehicle maintenance, and high age of vehicles [5]. The 

close proximity of these communities to heavily congested highways and roads, allows for the 

continuous exposure to traffic-related AP. Therefore, SD residents are highly vulnerable to 

traffic-related AP effects, especially those most susceptible to AAP adverse effects. 

 

1.3. Pregnancy, Adverse birth outcomes and Ambient air pollution exposure 

Infants in utero are among the most vulnerable to toxicant exposure, viz. AAP exposure. This 

susceptibility due to their biological vulnerability, sensitivity and rapid rates of replication and 

differentiation puts them at risk for impaired organ function and disease susceptibility later in 

life [38, 57]. 
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1.3.1. Pregnancy 

Pregnancy is a physiological state that is characterised by elevated basal oxygen demand and 

high-energy requirement for various organ functions including the foeto-placental unit [30, 31], 

which exhibits increased susceptibility to OS and OS-related injury. The human placenta is rich 

in mitochondria [29] and consumes about 1% of maternal basal energy production; it is highly 

vascular and exposed to high partial pressures of oxygen [31].  

 

During the first few months of development, the placental barrier is >20µm thick and under 

hypoxic conditions; as no perfusion can occur. Nutrient exchange occurs only through passive 

diffusion. Increased capillary production, occurs as pregnancy continues, which decreases the 

placental barrier thickness [57]. This results in a fully developed foeto-placental unit that 

favours the exchange of gas, nutrients and metabolic products from the foetal to the maternal 

blood circulation. 

 

Oxygen exchange across the placental barrier from maternal to foetal circulation is favoured by 

the low oxygen partial pressure, foetal Hb that has high affinity for oxygen and low pH of foetal 

blood [31]. The oxygen rich environment, increased energy consumption and abundant 

mitochondria mass within the placenta favours ROS production. The macrophage rich placenta 

also favours local production of free radicals, including NO metabolites and reactive nitrogen 

species (RNS) [31]. These increases in ROS and RNS can contribute to OS during in utero 

exposure to AAP. 

 

Exposure to PM and PAH in utero have been shown to affect placental development [57, 59]. 

Studies have shown that OS in pregnancy has been associated with placental ischemia, 

repetitive hypoxia-reperfusion injury that results from improper spiral arteriole development 

[75, 76]. The alteration in utero-placental and umbilical cord flow, glucose and oxygen transport 

across the placental barrier negatively influences foetal growth [77].   

 

1.3.2. Adverse birth outcomes and Ambient air exposure 

Ambient air pollution exposure has been implicated in adverse birth outcomes including LBW, 

intrauterine growth retardation (IUGR), preeclampsia and PTB. These adverse birth outcomes 

have been significantly associated with increased infant morbidity; that ranges from neural to 

pulmonary conditions as well as infant mortality.  They have also been shown to pre-dispose an 

individual to chronic diseases in adulthood [4].  
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Low birthweight affects 20 million people worldwide [78], whilst PTB has been implicated in 

75% of neonatal morbidities and 70% of neonatal deaths [38]. These adverse birth outcomes 

occur as a result of restricted foetal growth and/or reduced length of gestation; with neonates  

weighing <2500 g at birth and premature delivery of a foetus before 37weeks of gestation, 

respectively. Environmental factors have been associated with reduced BW and gestational age 

(GA) [79]. 

 

Many studies have been done to determine whether environmental tobacco smoke (ETS) 

elevates the risk for adverse birth outcomes, including LBW (reviewed elsewhere [32, 33]). 

Among these Ahluwalia et al. found that ETS exposure increased the risk for adverse birth 

outcomes and was modified by maternal age [80]. However, exposure to ETS can potentially be 

avoided, unlike ambient air exposure.   

 

The effects of AAP on foetal outcomes have become an important topic of study and are of 

great public health concern [51]. The first report of LBW babies were born to mothers living in 

highly polluted areas in Los Angeles (United States of America); in the early 1970s [81]. 

Following this initial report, publications sharply increased and extensive reviews were done 

which highlight all the current data about LBW  [2, 4, 46, 57, 82] and PTB [4, 46, 83], and their 

association with AAP. Studies have shown both an association and no association between 

LBW, PTB and AAP; however, there is extensive evidence that supports the idea that exposure 

to AAP whilst pregnant, increases the risk for LBW and PTB (Table 1.1). 

 

Table 1.1 Evidence of ambient air pollution and its association/non-association with low birthweight and 

pre-term birth 

Author AAP type LBW- Association Trimester of Exposure Country (Year) 

Wang et al. 1997 Total suspended 

particles (TSP), 

SO2, complex 

pollution mix 

Increased risk of LBW 3rd Trimester Beijing (1988-1991) 

Ritz & Yu 1999 CO Significant increased risk for LBW 3rd Trimester Los Angelas, CA 

(1989-1993) 

Bobak & Leon 

1998 

SO2, NO2, TSP LBW associated with SO2 and TSP  Czech Republic 

(1986-1988) 

Bobak 2000 SO2, NO2, TSP LBW and PTB associated with SO2 and 

TSP 

1st Trimester Czech Republic 

(1991) 

Rogers et al. 2000 SO2, TSP VLBW associated with very high levels  George Health Care 
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of SO2, TSP District 9, USA 

(1986-1988) 

Maisonet et al. 

2001 

SO2, CO, PM10 SO2 and CO increase risk of LBW 

PM10 no association to LBW 

Increased ambient levels associated 

increased risk of LBW 

3
rd

 Trimester North-eastern USA 

(1994-1998) 

Vassilev et al. 2001 Polycyclic 

organic matter 

(POM) 

High POM concentrations associated 

with LBW and PTB 

 New Jersey (1990-

1991) 

Maroziene & 

Grazuleviciene 

2002 

NO2, Ambient 

formaldehyde 

Ambient formaldehyde associated with 

increased risk of LBW. 

10µg/m3 increase in NO2 concentrations 

increased risk of PTB by 25% 

1st Trimester City of Kaunas 

(1998) 

Liu et al. 2003 SO2, CO, Ozone, 

PM10, NO2 

Increased SO2 associated with LBW 

PTB associated with SO2 and CO 

exposure 

1st Trimester (LBW) 

3rd Trimester (PTB) 

Vancouver, Canada 

(1985-1998) 

Mishra et al. 2004 Biomass cooking 

fuels (wood, 

dung) 

Preliminary data -high pollution cooking 

fuels associated with LBW 

 Zimbabwe (1994-

1999) 

Seo et al. 2007 PM10, CO, SO2, 

NO2 

PM10, SO2 and NO2 increased risk of 

LBW 

CO increased personal risk of LBW 

3rd Trimester Seoul, South Korea 

(2002-2003) 

Nascimento & 

Moreira 2009 

SO2, ozone, PM10 SO2 and ozone associated with LBW – 

also risk factors for LBW 

PM10 not associated with LBW 

 São Paulo State, 

Brazil (2001) 

Ballester et al. 

2010 

NO2 Exposure to NO2 (>40µg/cm3) associated 

with reduced birth length, BW and head 

circumference 

1st Trimester Valencia, Spain 

(2003-2005) 

Kloog et al. 2012 PM2.5 PM2.5 associated with increased risk of 

LBW and PTB 

3rd Trimester Massachusetts (2000-

2008) 

Clemente et al. 

2016 

NO2 10µg/m3 increases in NO2 associated 

with 48g decrease in BW 

1st, 2nd and 3rd Trimester Spain and Belgium 

(2004-2008) 

Hao et al. 2016 NO2, CO, PM2.5 All pollutants investigated were 

associated with PTB 

1st, 2nd and 3rd Trimester Georgia, USA (2002-

2006) 
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1.3.2. Adverse birth outcomes and Oxidative stress 

The aetiology of adverse birth outcomes due to AAP exposure is not fully understood. 

However, factors that have been associated with AAP induced LBW and PTB pathology are 

OS, inflammation, endothelial dysfunction, reduced oxygen transport across the placenta and 

abnormalities of the placenta (Figure 1.5) [4].   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Ambient air pollution’s potential mechanism for foetal toxicity leading to adverse birth 

outcomes. Inhaled AP enters the alveolus resulting in free radical production, which targets 

macromolecules present within the alveolus tissue. This results in OS and inflammation which is able to 

cross into the maternal blood stream and subsequently affect foetal growth through increased OS and 

inflammation within the placenta [98]. 

 

Pregnancy favours ROS production and presents with increased susceptibility to OS, due to the 

limited levels of foetal antioxidants [99], therefore several studies have investigated OS as a 

potential risk factor for LBW and PTB (Table 1.2). These studies demonstrate that increased OS 

markers as well as decreased antioxidant defence result in OS observed in LBW and PTB 

neonates.  
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Table 1.2 Evidence for Oxidative stress as a mechanism for LBW and PTB 

 

Although studies have reported AAP exposure and OS, individually increase the risk of adverse 

birth outcomes, and OS is implicated in AAP toxicity. Investigating the biological mechanisms 

through which OS induced by AAP affects neonatal birth outcomes, could allow for their 

targeted interventions and treatments. In addition, identifying other factors such as genetic 

predisposition and periods of infant vulnerability would allow for the better understanding of 

AAP induced toxicities and disease susceptibility.  

 

Author Oxidative stress markers LBW- Association Country (Year) 

Matsubasa et al. 

2002 

Urinary 8-OHdG levels Increased 8-OHdG levels associated with LBW 

and PTB 

Japan 

Gupta et al. 2004 Cord blood – SOD, CAT, GSH and serum 

malondialdehyde (MDA) 

Increased MDA and decreased SOD, catalase, 

GSH (OS) associated with LBW 

New Delhi, India 

Kim et al. 2005 Maternal urinary 8-OHdG levels and 

MDA 

Increased 8-OHdG and MDA levels associated 

with PTB and reduced BW in full-term neonates 

Korea (2000-

2001) 

Kamath et al. 

2006 

Maternal and foetal MDA and proteolytic 

activity 

Increased LP and protein oxidant damage 

associated with IUGR (SGA) 

Manipal 

Chadha et al. 2007 Maternal blood and urine NO metabolites 

levels 

Increased levels of NO metabolites associated 

with PTB 

India 

Saker et al. 2008 Total antioxidant activity (ORAC), 

vitamin A, C and E, carbonyl proteins,   

hydro-peroxides, erythrocyte CAT, GPx, 

glutathione reductase, SOD, lipid and 

lipoprotein 

Decreased ORAC, vitamin C and E values, high 

plasma hydro-peroxide and carbonyl protein, 

decreased SOD and CAT – OS associated with 

LBW 

Algeria 

Gveric-

Ahmetasevic et al. 

2009 

MDA, serum peroxide and antioxidant 

capacity 

Mothers and babies exposed to OS associated 

with LBW 

Placental LP may be associated with LBW 

pathophysiology 

Croatia 

Rossner et al. 

2011 

Placental- 8-OHdG levels Increased 8-OHdG associated with LBW Czech Republic 

(1994-1998) 

Negi et al. 2012 Cord blood – MDA, carbonyl proteins, 

total antioxidant capacity, vitamin A, E 

and C 

Increased LP and protein oxidation with 

decreased vitamin A, E, C and antioxidant 

capacity (OS) associated with preterm-LBW 

India 

Kumarathasan et 

al. 2016 

Plasma 8-isoprostane (OS marker) The 8-isoprostane was negatively associated 

with BW and GA 

Canada 
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1.4. Oxidative Stress 

Interest in prenatal exposure to AAP and its subsequent effects on adverse birth outcomes is 

growing rapidly. As the pollutants discussed previously, act either as free radicals or have the 

potential to generate free radicals, and pregnancy favours ROS production due to its highly 

oxygen-rich and energy requiring state, OS has therefore been suggested as a mediator of AAP 

toxicity leading to adverse birth outcomes. 

 

Oxidative stress, within the human body, is the biochemical imbalance of oxidants and 

antioxidants that refers to a disturbance in the excessive production of oxidants over 

antioxidants [105]. Human redox biochemistry is predominantly made up of oxygen, as cells 

and cellular mechanisms require a reducing environment to function. Therefore, human cells are 

under constant threat by highly ROS as a natural consequence of aerobic respiration [106]. In 

analogy to OS, RNS function and are able to react with ROS to potentiate OS-damage [107]. 

Oxidative stress has been implicated in pathological conditions such as Parkinson’s disease, 

Rheumatoid arthritis and adverse birth outcomes [105, 108]. 

 

1.4.1. Reactive oxygen species 

Mitochondrial respiration is essential for energy production within human cells. A natural by-

product of this process is ROS, which includes both radicals and nonradicals. A radical is a 

chemical species that possesses one or more unpaired electrons and the ability for its 

independent existence. Radicals are less stable than non-radicals [108]. Radicals of importance 

in humans: include hydroxyl ions, superoxide, NO, and singlet oxygen. Non-radicals contain 

only paired electrons, with most biological molecules being nonradicals. Other non-radical 

compounds produced in high concentrations include hydrogen peroxide, ozone, and molecular 

oxygen (O2) [109]. This reactivity is necessary for normal molecular function through high-

energy transfers within the mitochondria to produce adenosine triphosphate (ATP), an essential 

energy source for cellular processes [105]. 

 

Oxidative phosphorylation, a process that involves the transfer of electrons through the 

mitochondrial electron transport chain (ETC), creates a proton gradient across the inner 

mitochondrial membrane that drives ATP synthesis.  This transfer of electrons results in the 

reduction of each protein complex until the electron is accepted by O2 to form water. However, 

about 1-3% of electrons entering the ETC are not accepted by O2 to form water but are instead 

catalysts for the reduction of oxygen into superoxide. These reduction reactions occur at 
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complexes I (nicotinamide adenine dinucleotide dehydrogenase) and III (ubiquinone-

cytochrome c reductase), where complex III is the main site of superoxide production 

(Figure1.6) [110]. The ROS produced via the ‘leaky’ ETC are highly reactive and their close 

proximity to their targets which include DNA, protein and lipids have great potential to cause 

deleterious effects [106].   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Mitochondrial reactive oxygen species production. During oxidative phosphorylation within 

the ETC, a leakage of electrons from complex I and III react with oxygen to form superoxide. This is a 

highly reactive molecule and undergoes the Fenton-Haber-Weiss reaction to produce hydroxyl radicals. 

The ROS are free to react and damage macromolecules within their proximity [111]. 

 

1.4.2. Antioxidants 

The human body has developed an antioxidant defence system that scavengers free radicals, as a 

result of continuous reactive metabolic insult. This defence system maintains the delicate 

balance between oxidants and antioxidants to prevent cellular damage [112]. There are two 

types of antioxidants: enzymatic and non-enzymatic. 

 

1.4.2.1. Enzymatic antioxidants 

Enzymatic antioxidants possess a transition metal core which allows them to move between 

valences and scavenge free electrons from ROS, during the detoxification process.  
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1.4.2.1.1. Superoxide dismutase 

The enzyme SOD exists as three isoforms: SOD1 which contains a metal co-factor comprising 

Cu-zinc (Zn) and is present within the cytosol, nucleus and plasma. Superoxide dismutase 2 has 

a manganese (Mn) core and is primarily located within the mitochondria. Lastly, the 

extracellular SOD3 comprises a Zn and Cu core similar to SOD1 [75, 109]. Superoxide 

dismutase catalyses the removal of superoxide and generates hydrogen peroxide as the reaction 

product (Figure 1.7). 

 

   2O2
-
 + 2H

+
               H2O2 + O2 

Figure 1.7 Dismutation of the superoxide radical into oxygen and hydrogen peroxide (Prepared by 

author). 

 

1.4.2.1.2. Catalase 

Catalase is an enzyme that removes hydrogen peroxide present in high concentrations, and is 

found in peroxisomes in most tissue. The enzyme consists of four protein subunits that contain 

ferric ions of the haem group. Two molecules of hydrogen peroxide are reduced to O2 by CAT. 

The ferric ions of CAT are oxidised after interaction with the first molecule of hydrogen 

peroxide to produce Fe
4+

 (compound 1). The second molecule of hydrogen peroxide acts as an 

electron donor resulting in the production of O2 (Figure 1.8) and the complete detoxification of 

two hydrogen peroxide molecules [109]. 

 

 

  H2O2         Compound 1 
 

  H2O2  + compound 1                   O2 + 2H2O 

 

  2H2O2         O2 + 2H2O 

Figure 1.8 Catalase detoxification of hydrogen peroxide (Prepared by author). 

 

1.4.2.1.3. Glutathione peroxidase 

Glutathione peroxidase exists in five isoforms and possesses high affinity for and removes 

hydrogen peroxide, generated by SOD in the cytosol and mitochondria. Its catalytic function is 

dependent on the presence of selenium within its active site and is important in protecting the 

lipid environment against oxidative damage [113].  

SOD 

CAT 

CAT 
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Glutathione is an essential thiol antioxidant that is formed within all human cells of the body. 

The formation of GSH occurs within the cytosol; it comprises of cysteine (Cys), glycine and 

glutamate, and is regulated by its de novo synthesis that is catalysed by ƴ-glutamylcysteine 

synthase and glutathione synthase [75]. Glutathione participates in various detoxifying reactions 

forming glutathione disulphide (GSSG). Glutathione is restored by glutathione reductase which 

requires reduced nicotinamide adenine dinucleotide phosphate (NADPH); generated in the 

pentose phosphate pathway [105]. The removal of hydrogen peroxide by GPx utilises GSH, as 

electron donors, where it is oxidised to form GSSG. The oxidation of two GSH molecules by 

hydrogen peroxide results in the formation of oxidised GSSG and two molecules of water 

(Figure 1.9) [105, 109]. 

 

 2GSH + H2O2    GSSG + 2H2O  

Figure 1.9 Glutathione peroxidase reduction of hydrogen peroxide to water (Prepared by author). 

 

1.4.2.1.4. Glutathione S transferase 

Glutathione S transferase inactivates secondary metabolites such as epoxides, unsaturated 

aldehydes and hydro-peroxides. There are three families of GSTs: cytosolic, mitochondrial and 

membrane-associated microsomal GSTs. The cytosolic GSTs are further divided into seven 

classes: Alpha, Mu, Pi, Sigma, Theta, Omega and Zeta. During non-stressed cells, Mu and Pi 

classes of GST interact with kinases apoptosis signal-regulating kinase 1 and c-Jun N-terminal 

kinases (JNK). It has been shown that GSTP1 dissociates from JNK in response to OS [60]. 

However, GST function has been shown to be influenced by genotypic differences from SNPs, 

common polymorphisms have been found in GSTP1 and GSTM1 genes [114]. These genetic 

polymorphisms may influence an individual’s susceptibility to OS and subsequent OS-related 

conditions, including adverse birth outcomes. 

 

The GSTM1 gene, a member of the Mu family, is located on chromosome 1p13.3 [115]. A 

homozygous deletion of this gene results in the complete loss of enzyme activity; and is known 

as the null genotype [116, 117]. This deletion has been associated with increased asthma and 

wheezing among children who were exposed to ETS in utero [10, 118, 119], cardiovascular 

disease [120, 121] and increased levels of 8-OHdG adduct in individuals exposed to organic 

carbon and SO2 [122]. This polymorphism was also suggested to increase the susceptibility of 

mothers to gestational diabetes mellitus [123]. 

 

GPx 
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The GSTP1 gene contains 7 exons and is located on chromosome 11q13 [115]. A functional 

polymorphism (Ile105Val; AA  AG/GG) in GSTP1 occurs due to the substitution of valine 

(Val) for isoleucine (Ile) at codon 105 within GSTP1. This affects the enzymes active site’s 

substrate specificity [124, 125]. Studies have shown that the wt (A105) has a threefold higher 

catalytic activity than the variant (G105) for 1-chloro-2,4-dinitrobenzene; however, the reverse is 

observed for PAH diol epoxides with a seven-fold difference [126]. This polymorphism’s 

variant genotype has been linked to an increased risk in cancer [127–129], increased 

susceptibility to NOx in individuals exposed to traffic-related AP [130] and increased levels of 

8-OHdG in oesophageal cancer patients [131]. 

 

1.4.2.2. Non-enzymatic antioxidants 

Non-enzymatic antioxidants are mainly comprised of synthetic antioxidants and dietary 

supplements such as GSH, selenium, vitamin C and E, and Zn that act as ROS scavengers 

resulting in their neutralisation. 

 

Ascorbic acid i.e., vitamin C is a water-soluble, redox catalyst that reduces and neutralises ROS. 

It is an essential cofactor for many enzymes, such as proline hydroxylase and dopamine-β-

hydroxylase. It is an efficient scavenger that acts as an electron donor and neutralises ROS. The 

relative stability of ascorbyl makes it a powerful antioxidant [109]. 

 

Glutathione is a thiol-containing tripeptide; the reduced form of glutathione is glutamic acid-

cysteine glycine. Glutathione is an important cofactor for enzyme peroxidase, therefore serves 

as an indirect antioxidant by donating electrons to detoxify hydrogen peroxide. It is important in 

many other biological functions including metabolism, Cu transport and preventing oxidation of 

sulphydryl protein groups. It also acts as a ROS scavenger where GSH interacts with hydroxyl, 

alkoxyl and peroxyl radicals as well as superoxide. Glutathione is also able to bind transition 

metals and prevent their participation in the Fenton- Haber-Weiss reaction, which requires 

transitional metals, to act as electron donors. In the absence of free transition metals the reaction 

does not occur which inhibits the production of hydroxyl radicals, as described in figure 1.2 

[109].  

 

1.4.3. Imbalance 

Reactive oxygen species are of biological importance as they act as important signalling 

molecules and transcription factors in a diverse range of cell functions, this is comprehensively 
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reviewed elsewhere [105]. However, if ROS production exceeds the capacity of antioxidant 

scavenging, OS results leading to extensive damage of macromolecules such as lipids, proteins, 

and DNA.  

 

Lipid peroxidation occurs as a result of the oxidation of polyunsaturated fatty acid side chains 

(PUFA) by hydroxyl radicals. Protein carbonyl groups are formed from the direct oxidation of 

protein side chains. Abstraction of hydrogen ions (H
+
) within thiol groups of cysteine leads to 

disulfide bond generation which results in misfolded proteins. Hydroxyl radicals also attack 

DNA which generates DNA-adducts such as 8-OHdG. 

 

Mitochondrial DNA is highly susceptible to oxidative attack. It is located close to the site of 

ROS production, has minimal repair mechanisms present, lacks protective histones and has a 

high mutation rate [105, 132, 133].  Mitochondrial DNA encodes proteins that are essential 

within the ETC, therefore mutations within the mitochondria due to ROS attack may lead to 

impaired ATP production which could further increase ROS production, potentiating the 

original OS (Figure 1.10) [105, 109]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 Oxidative damage induced by reactive oxygen species [109]. 
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Pregnancy is a condition exhibiting increased susceptibility to OS, evidence from studies has 

associated increased OS markers [29] and raised lipid hydro-peroxides and MDA [134, 135] 

within normal pregnancies. It has been suggested that due to the high energy requirement 

necessary for placental and foetal development and increased inflammation, ROS production is 

favoured [136]. It should be noted that Fe supplementation during pregnancy, may also be a 

source for free radical production, as Fe is used within the Fenton- Haber-Weiss reaction to 

produce hydroxyl radicals [135]. Therefore any exogenous or endogenous toxicant is able to tip 

the balance between oxidant and antioxidant causing OS and OS-related damage. It has been 

reported that the DNA adduct, 8-OHdG, can be used as a biomarker of OS within clinical 

studies [7]. 

 

1.4.3.1. DNA damage- 7,8-dihydro-8-oxoguanine adduct  

ROS generates a variety of mutagenic DNA lesions, including abasic or apurinic/apyrimidinic 

(AP) sites, DNA single (ss) or double strand (ds) breaks and base oxidation. Due to guanine’s 

low redox potential, it is highly susceptible to oxidation. This results in the abundant production 

of 8-OHdG mutagenic lesions, with approximately 10
3
 lesions generated per cell per day [137, 

138]. 

 

The hydroxyl radical, when produced adjacent to nuclear and mitochondrial DNA, attacks DNA 

strands leading to the incorporation of radical adducts opposite 8-OHdG which induces the G:C 

 T:A transversion, where it aberrantly pairs with cytosine in an anti-conformation [139, 140]. 

This may lead to the accumulation of GC to TA mutations, if left unrepaired [22]. In addition, 

ROS are able to oxidise nucleotide pools [139]. 

 

Although an increase in modified DNA frequently occurs, the excessive accumulation of 8-

OHdG in DNA has been linked to various inflammatory diseases and adverse birth outcomes 

[138]. The level of genomic 8-OHdG has been shown to correlate well with the dose and length 

of exposure to environmental agents, as well as inhaled environmental pollutant chemical 

composition and physical nature [138, 141, 142]. However, repair mechanisms are present 

within human cells in order to reduce or remove DNA modified bases. 

 

1.5. Base excision repair pathway 

Several repair DNA damage pathways exist, each targeting specific types of damage, to 

counteract the effects of ROS [139]. The base excision repair (BER) pathway preferentially 
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repairs oxidised bases within nuclear and mitochondrial DNA [131]. It comprises short- and 

long- patch pathways, which repair single and two or more nucleotides, respectively [106]. The 

BER preserves genome integrity by utilising glycosylases that excise the mutagenic adduct, 

which subsequently allows endonucleolytic cleavage and gap filling [138]. 

 

In eukaryotes, the 8-oxoguanine DNA glycosylase (OGG1) plays a pivotal role in the BER. It 

recognises 8-OHdG G:C base pairs, catalyses the expulsion of 8-OHdG and the cleavage of the 

DNA backbone which forms an AP site [11, 143]. The cleaved DNA is subsequently completed 

by AP endonuclease, DNA polymerase β and DNA ligase III to repair the oxidative damage 

(Figure 1.11) [144].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 DNA damage repair initiated by 8-oxoguanine DNA glycosylase. The OGG1 recognises 8-

OHdG and subsequently cleaves the DNA backbone which generates an AP site within the 3’-blocking 

end of the DNA. The cleaved DNA is subsequently cleaved by AP endonuclease 1 to remove the 

aldehyde residue to for a 3’ hydroxyl end, followed by the addition of a guanine base by DNA 

polymerase β which is ligated by DNA ligase III to form a complete DNA strand [145]. 

 

1.5.1. Human 8-oxoguanine glycosylase 1 

The OGG1 gene, mapped on chromosome 3p26.2 encodes the human OGG1 protein. This 

region consists of 7 exons and encodes 345 amino acids (AA) and a bifunctional glycosylase. 

The OGG1 carboxyl (C) –terminus undergoes alternative splicing and generates α-OGG1or β-
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OGG1. The N-terminus, comprising a mitochondrial target sequence, is similar between α-

OGG1 and β-OGG1 proteins, whilst the C-terminus is extensively different. Therefore, the 

production of either α- or β- OGG1 is dependent on the presence of a C-terminal nuclear 

localisation sequence. This sequence, present within α-OGG1 but absent from β-OGG1, 

suppresses the mitochondrial target sequence and is localised in the nucleus. The β-OGG1 

which only consists of the mitochondrial target sequence is localised within the mitochondria 

[137, 139]. Although the α-isoform is located within the nucleus, it is thought to be responsible 

for nuclear and mitochondrial 8-OHdG repair [137]. 

 

The bifunctional glycosylase, OGG1, specifically recognises 8-OHdG paired with cytosine. 

This allows it to cleave oxidative base pairs and degrades adducts within the nucleoside pool 

[139].  The recognition of 8-OHdG by OGG1 occurs through the enzyme’s ability to interact 

directly with a proton present on N7 instead of identifying its 8-oxo-carbonyl feature [106]. 

 

The human OGG1 protein comprising 8 cysteine residues, two of which (Cys253 and Cys255) 

are present within the active site, may be susceptible to regulation through oxidative 

modifications [11]. Cysteines are surrounded by a positive AA sequence which makes it 

susceptible to form reactive thiolate anions; which are particularly predisposed to oxidative 

modifications [22]. Reversible modifications of cysteine residues affect OGG1’s enzyme 

activity [11, 22, 144]. 

  

The activity and expression of OGG1 has been found to be modulated post-transcriptional by 

OS [137] with the OGG1 promoter having binding sites for the specific protein 1 (Sp1) 

transcription factor and Nrf2 antioxidant response element. Its expression was also found to be 

inhibited by NO [11, 144, 146]. 

 

1.5.2. 8-oxoguanine glycosylase 1 serine-326-cysteine polymorphism 

Several DNA repair genes have been shown to be highly polymorphic which alters protein 

structure and function. These changes could influence the genetic susceptibility individuals have 

towards certain diseases, such as carcinogenesis, cardiovascular and inflammatory diseases 

[147, 148]. 

 

Structural analysis of the OGG1 gene demonstrated the presence of several SNPs, the most 

common of these is the serine-326-cysteine (Ser326Cys) rs1052133 OGG1 SNP [143]. Within 

the OGG1 gene, a CG transversion occurs at position 1245 in exon 7, which results in a 
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serine to cysteine AA substitution at codon 326 of the OGG1 protein. Ethnicity determines 

allelic frequency, where Caucasians have a 23-41% frequency for the G allele, the Asian 

population has a frequency of 40-60% [22, 139] and Sub-Saharan African populations were 

found to have 14.4% G allele frequencies [149]. However, limited data is available in African 

populations for the OGG1 Ser326Cys SNP and disease risk [149–152]. 

 

Functional studies have been broadly investigated, in vitro, with purified proteins and in 

cells/cells extracts, to determine the phenotypic impact the OGG1 Ser326Cys SNP has on 

enzyme repair activity [148].  Several studies revealed the Cys326 (G) allele was associated 

with reduced DNA adduct repair activity and posed an increased risk for 8-OHdG formation 

[22]. However, Janssen and colleagues reported no difference in repair activity amongst the wt 

and variant alleles [153]. 

 

Kohno and colleagues’ study revealed the Ser326 wt allele had a repair capacity 7 fold greater 

than the Cys326 variant in Escheria Coli [154]. The greater repair rate of Ser326 compared to 

the C326 variant was also observed by Aka et al. [155]. A similar result was obtained in a 

lymphocyte study where the Cys326 variant protein had 40% reduced repair activity [156]. 

Bravard and colleagues’ demonstrated the Cys326 variant cells presented with a greater genetic 

instability and decreased DNA repair rate [22]. They also showed Cys326 variant protein’s 

repair capacity was sensitive to the cell redox status. Their analyses indicated the reduced 

enzymatic activity within the variant protein was due to the oxidation of its extra cysteine 

residue, which was also suggested by Lee et al. [157].  Bagryantseva and colleagues 

demonstrated a higher level of 8-OHdG in Cys326 variant patients compared to Ser326 wt 

patients exposed to traffic PAH [158]. A Japanese study reported reduced BW and birth length 

in neonates whose mother’s carried the variant genotype, exposed to cigarette smoke; however, 

this association was removed when the study area was controlled [159].  

 

Hill and Evans demonstrated, the Cys326 variant excised 8-OHdG from the dsDNA and cleaved 

AP sites at a rate 2-6 fold lower than Ser326 wt, depending on the base opposite to lesion [160]. 

This was further investigated by Simonelli and colleagues, who demonstrated that homozygous 

Cys326 variant carriers present with decreased cleavage activity, whilst the OGG1 mRNA 

expression remained unaffected [148]. The extra cysteine residue also promoted dimerization of 

Cys326 variant, and the formation of disulfide bond which suggested several factors occur in 

order to impair repair activity. The variant was shown to affect the efficiency of the BER, and 
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this affect in protein conformation and stability was amplified under mild oxidative conditions 

[148].  

 

Although the variant protein is prone to oxidation and undergoes conformational modifications, 

which modulates its cell localisation and catalytic activity, the precise nature of the functional 

defect remains unclear. In addition, no studies have reported the effect of AAP such as NOx and 

PM, has on the susceptibility of adverse birth outcomes in pregnant women carrying the 

Ser326Cys OGG1 SNP. 

 

1.6. Nuclear factor (erythroid-derived 2)-like 2 and Kelch-like ECH-associated protein 1 

signalling 

Cytoprotection against toxic insult within the human body is provided through the expression of 

antioxidant proteins and phase 2 detoxifying enzymes. Under normal conditions, these 

protective proteins are expressed minimally but are highly inducible by transcriptional 

activation, in the presence of low levels of ROS. This co-ordinated response is regulated 

through a cis-acting element known as the ARE which is located on the upstream regulatory 

sequence present on each gene in either single or multiple copies [9, 16].  

 

The laboratories of Kan [13] and Yamamoto [14], simultaneously discovered that Nrf2 is the 

key transcription factor that regulates xenobiotic metabolism via ARE regulated genes. 

Jaiswal’s group subsequently provided evidence for NADPH quinone oxidoreductase positive 

regulation by Nrf2 via its ARE [15]. Nrf2 belongs to a subset of basic leucine-zipper (bZip) 

genes that share a conserved structural domain known as a cap ‘n’ collar (CNC)-domain, 

therefore, the C-terminus of Nrf2 comprises a characteristic bZip CNC domain (Figure 1.12b) 

[13, 161].  DNA binding occurs at the basic region, whilst the leucine-zipper heterodimerises 

with small musculoaponeurotic fibrosarcoma (Maf) proteins. These Maf proteins act as essential 

heterodimeric partners for the binding of large CNC bZip proteins to the GC dinucleotide of 

ARE [16, 162, 163]. Transcriptional activation of Nrf2 is conferred within its N-terminus and at 

the end of its C-terminus. A Nrf2-ECH homology (Neh) 2 domain is present within the N-

terminus, which has been shown to negatively regulate Nrf2 activation via Keap1 [164]. 

 

The suppressor of Nrf2, Keap1 was initially discovered by Yamamoto and colleagues, who 

demonstrated a negative regulatory control of Keap1 over Nrf2 by sequestering it within the 

cytoplasm [164]. Keap1 is a member of the Kelch family that contains two known protein-

interaction domains: the broad complex/tramtrack/bric-a-brac (BTB) and the double glycine 
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receptor (DGR) domain. They are located within the N- and C-terminal region, respectively 

(Figure 1.12a) [9, 16, 165]. The BTB domain mediates homodimerisation and binding of Keap1 

to Cullin 3 (Cul3), a Nrf2 ubiquitin ligase (E3) scaffolding protein. Whereas, binding of Keap1 

to the Neh2 domain of Nrf2, is mediated by the DGR domain. Between the two domains, a 

region abundant in cysteine residues, known as the intervening region (IVR) or linker region 

exists [161, 166, 167]. These three components are important for the regulation of the protective 

response against environmental stresses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 Domain structures present on a) Keap1 and b) Nrf2 genes. a) The DC domain present on the 

C-terminal of Keap1 binds Nrf2 whilst the N-terminal domain BTB homodimerises and binds Keap1 to 

Cul3. b) The Neh1 domain, present on the C-terminal region of Nrf2, mediates the heterodimerisation of 

small Maf proteins and the ARE on target genes, whilst the Neh2 domain present on the N-terminal binds 

to Keap1[168]. 

 

1.6.1. Under basal conditions, Nrf2 is suppressed by Keap1 

Keap1 interacts directly with the actin cytoskeleton and is co-localised within the cytoplasm 

[169]. Under normal physiological conditions, Nrf2 is sequestered by Keap1 (Figure1.13a). The 

β-propeller within Keap1’s DGR domain initially binds the conserved motif (ETGE) within the 

C-terminus of Nrf2’s Neh2 domain, followed by the Nrf2’s DLG motif. The stability of this 

complex is maintained through extensive inter- and intra-blade hydrogen bonds [9, 161, 167]. 

This Keap1-Nrf2 complex promotes the rapid degradation of Nrf2 by the ubiquitin-proteasome 

pathway, which accounts for the low levels of Nrf2 observed in many cell types due to its short 

a) 

b) 
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half-life of approximately 20 minutes. Keap1-Nrf2 interaction promotes the basal expression of 

cytoprotective genes and proteins within senescent cells [170, 171].   

 

1.6.2. Activation of Nrf2 by ARE inducers 

Upon oxidative insult, as a result of exogenous or endogenous stimuli viz. environmental 

pollution or infection, Nrf2 dissociates from Keap1 and translocates to the nucleus. Nrf2 and 

small Maf proteins form a heterodimer; which then binds to the ARE in the promoter region 

resulting in the transcriptional activation of specific target genes (Figure 1.13b) [9, 161]. Studies 

have shown that c-Jun and activating transcription factor (ATF) 4 can heterodimerise with Nrf2 

and enhance the activation of ARE-driven reporter genes [172, 173]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13 Transcriptional activation of Nrf2. a) Under Basal conditions, Nrf2 is bound to Keap1 within 

the cytoplasm and undergoes proteasomal degradation. b) Upon endogenous or exogenous toxic insult, 

Keap1’s conformation is altered resulting in the release of Nrf2 into the cytoplasm where it translocates to 

the nucleus, heterodimers with small Maf proteins and binds to the ARE of its target gene resulting in its 

transcriptional activation (Prepared by author). 
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A variety of chemicals including environmental agents induce ARE genes through Nrf2 

transcriptional activation [9, 161]. These inducers are all structurally diverse, however, share a 

common property; the ability to modify sulphydryl groups by alkylation, oxidation or reduction 

[174]. This ability of cells to recognise these inducer properties, suggest that they contain 

sensors rich in highly reactive cysteine residues. Therefore, as Keap1 contains 27 cysteine 

residues within its IVR, with Cys257, Cys273, Cys288 and Cys297 being the most reactive, it 

was proposed as a sensor for Nrf2 inducers [16, 174]. This was confirmed within mutational 

studies where Cys151, Cys273 and Cys288 were found to be essential for Keap1 regulation of 

Nrf2 [175, 176].  

 

Several mechanisms result in the dissociation of Nrf2 from Keap1. Inducers are able to change 

the conformational structure of Nrf2-Keap1 complex, by modifying Keap1’s cysteine thiols, 

resulting in the inhibition of Nrf2 ubiquitination. Whilst, other inducers bind directly to Keap1’s 

IVR cysteines thereby preventing the formation of the stability complex, mentioned above, 

which prevents the ubiquitination of the Neh2 domain. Therefore, Nrf2 is able to bypass Keap1, 

enter the nucleus and facilitate transcriptional activation. However, other inducers such as toxic 

metals, are able to directly dissociate Nrf2 from Keap1, allowing Nrf2 stabilisation. In addition, 

Nrf2 transcriptional activation, nuclear translocation and degradation is regulated by covalent 

acetylation/deacetylation or phosphorylation/de-phosphorylation modifications within the Nrf2 

gene [161]. 

 

Protein kinases (PK) have also be identified as possible sensors, where studies have 

demonstrated PKC and protein kinase RNA-like endoplasmic reticulum kinase (PERK) directly 

phosphorylate Nrf2 which results in the dissociation of Nrf2 from Keap1-Nrf2 complex [177–

179]. Therefore suggesting, ER stress may play a role in Nrf2 activation and subsequent 

antioxidant transcription. 

 

1.6.3. Target genes for Nrf2 regulation 

Nrf2 regulates a substantial number of genes. The induction of the Nrf2 transcription factor, 

targets two main groups of regulation which include drug metabolism and disposition and 

antioxidant defence. In addition, Nrf2 regulates cell proliferation, proteasomal protein 

degradation, metabolic reprogramming and oxidative signalling [161, 168, 180, 181].  
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In response to environmental toxins, Nrf2’s induction of drug metabolism enzymes and 

transporters such as cytochrome P450 [182] and GSTs [183, 184], control the metabolic fate of 

numerous pro-oxidants within the body.  

 

An essential regulatory feature of Nrf2 transcriptional activation is the control of ROS 

homeostasis within the cell by its induction of antioxidant enzymes. This control occurs via 

several mechanisms: the induction of stress response proteins such as HO-1, regeneration of 

oxidised cofactors and proteins such as GSSG reduced to GSH, the synthesis of reducing factors 

such as NADPH and GSH and the induction of antioxidant enzymes such as SOD, CAT and 

GPx. Without Nrf2, the induction of cytoprotective proteins are insufficient resulting in 

increased susceptibility of tissues to toxic insult [161, 185, 186].  

 

1.6.4. Epigenetic regulation of Nrf2 

Human genetic susceptibility towards diseases has been an important feature in discovering how 

alterations in the genome predispose an individual to certain adverse conditions. The study of 

epigenetics has been highlighted most notably as a potential mechanism for the regulation of the 

Nrf2-Keap1 pathway. It is defined as the study of heritable changes in gene expression that does 

not alter the DNA sequence [187]. Several epigenetic mechanisms exist that regulate gene 

expression including non-coding RNAs, chromatin remodelling, histone modification and DNA 

methylation [188]. 

 

The non-coding RNAs or miRs are of particular interest in Nrf2 regulation. They are a class of 

small non-coding ssRNAs that are approximately 21-23 nucleotides in length. They exert their 

control over cellular functions including cell proliferation, differentiation and apoptosis through 

post-transcriptional regulation of gene expression. RNA polymerase II transcribes miRs from 

genomic loci, which is then processed by Drosha and transported to the nucleus as short hairpin 

precursors. Dicer then cleaves the miR precursors to generate mature miRs. The mature miRs 

are then loaded onto Argonaut proteins to form the RNA-induced silencing complex (RISC). 

This complex, together with base pairing of the miR onto the 3’- untranslated region (UTR) of 

target mRNAs, results in the inhibition of targeted gene expression. This occurs through either 

mRNA degradation or inhibition of protein translation (Figure 1.14) [24, 25, 189]. 
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Figure 1.14 microRNA Biogenesis. The transcription of miRs from genomic DNA by RNA polymerase 

II, its subsequent cropping by Drosha and exportation out of the nucleus via Exportin-5, is followed by 

cleavage of the precursor miR by DICER. This results in the formation of mature miRs that binds to 

Argonaut proteins to form the RISC complex which leads to the transcriptional inhibition of target genes 

(Prepared by author). 

 

Several studies have identified miRs that regulate Nrf2 and Keap1 signalling. Sangokoya and 

colleagues demonstrated that the miR-144 inhibited the expression of Nrf2 mRNA within a 

myelogenous leukaemia cell line [190]. This was later verified by Yamamoto et al., who 

showed a negative association of miR-144 with Nrf2 and downstream enzymes in response to 

diesel exhaust exposure [24]. The miR-28 was found to post-transcriptionally regulate Nrf2 

expression by binding directly to Nrf2’s mRNA 3’UTR which resulted in Nrf2 mRNA 

degradation. In addition, miR-28 also directly promoted Nrf2 protein degradation. This was not 

as a result of Keap1 protein expression or the Keap1-Nrf2 interaction but rather supressed 

mRNA expression through translational inhibition [25].  

 

The controlled regulation and induction of Nrf2 is important to combat oxidative damage due to 

toxic insult from endogenous and exogenous sources to maintain homeostasis within the body. 

This prevents and helps fight against oxidative injury which may lead to inflammatory diseases, 

cardiovascular disorders, adverse birth outcomes and carcinogenesis. Investigating this pathway 

in response to AAP, and understanding how AAP affects this pathway may identify specific 

targets for potential therapeutic interventions for diseases associated with OS-damage such as 

adverse birth outcomes. 
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1.7. Reactive nitrogen species 

Nitric oxide plays a major role in a variety of physiological processes including: the regulation 

of vasodilation, modification of neurotransmission, memory formation and has anti-microbial 

activity [191–193]. However, its elevated production has also been implicated in several 

inflammatory diseases, neurotoxicity, ischaemia and adverse birth outcomes [34, 107]. The term 

‘nitrosative stress’ was coined by Stamler and colleagues [194], to describe the excessive 

production and dysregulated formation of NO and NO-metabolites.  

 

1.7.1. Chemistry of NO 

NO is a simple heterodimeric molecule that is highly reactive and unstable. It has a half-life of 

about 6-10 seconds [47] and degrades rapidly to form nitrites and nitrates. NO is produced 

endogenously and has exogenous sources. Within the body, NO is synthesised by a family of 

enzymes known as nitric oxide synthases (NOS). There are three isoforms that produce NO: 

neural (nNOS), endothelial (eNOS) and inducible (iNOS); each dependent on structural and 

functional properties including its tissue of origin [195, 196].  

 

The constitutive NOS (cNOS) comprise eNOS and nNOS, which are found within vascular 

endothelial cells, neurons, smooth muscles and platelets. They have been shown to be positively 

modulated by IC levels of calcium and calmodulin binding [197]. NO produced via cNOS act as 

important signalling molecules within the cardiovascular and neural system. 

 

The iNOS are found within immune cells such as macrophages, lymphocytes and neutrophils. It 

does not require activation by calcium and calmodulin, but is rather positively or negatively 

regulated by cell-cell contact in lymphocytes, inflammatory cytokines, bacterial and viral 

endotoxins. The production of NO via iNOS occurs over long periods of time and has been 

shown to be cytostatic or cytotoxic to tumour cells and microbial organisms [197]. 

Inflammatory cytokines that induce iNOS include interleukin (IL)- 1β, IL-6, IL-17, tumour 

necrosis factor (TNF)-α and interferon (IFN)- ƴ,  whilst TNF-β, IL-4, 10, 11 and IL-13 suppress 

iNOS [198]. 

 

All NOS are haemoproteins that produce NO as a reaction by-product, during the catalytic 

conversion of L-arginine to L-citrulline. This reaction requires NADPH and O2 with flavin 

mononucleotide (FMN), flavin adenine dinucleotide (FAD), heme and tetrahydrobiopterin 

(BH4) acting as cofactors (Figure 1.15) [195, 199]. 
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Figure 1.15 Synthesis of nitric oxide as a reaction by-product from the conversion of L-arginine to L-

citrulline [200]. 

 

NO is able to diffuse across the cell membrane and has high affinity for Hb. At low levels of 

NO, it is rapidly inactivated by binding to Hb to form methaemoglobin (methHb) followed by 

degradation to inorganic nitrites and nitrates [201]. However, at higher levels of NO, it rapidly 

reacts with superoxide and O2 to form peroxynitrite and dinitrogen trioxide, respectively. These 

NO intermediates and NO are highly reactive and result in macromolecular damage. The 

modification of peptides and proteins occurs as a result of S-nitrosylation, where NO directly 

modifies cysteine AA of target proteins to form S-nitrothiol adducts, as well as nitration of 

tyrosine in proteins. NO has been shown to directly oxidise to nitrite, which induces DNA 

damage, along with highly reactive peroxynitrite [107, 195, 196, 199]. 

 

Peroxynitrite is the most reactive intermediate of NO oxidation. It exists in two forms: 

nucleophilic or protonated peroxynitrite, it is highly reactive with a half-life <1second. 

Depending on its cellular environment and availability of reactive targets, it undergoes a variety 

of chemical reactions that not only cause nitration of tyrosine but also triggers LP, inactivate 

aconitases, inhibit the ETC and oxidise biological thiol-containing compounds. Peroxynitrite 

decays to form nitrates and undergoes homolytic decomposition to form highly reactive and 

toxic hydroxyl
 
and nitrite radicals [196, 199]. 

 

1.7.2. Lipid peroxidation 

Lipid peroxidation is the oxidative degradation of PUFA to products known as lipid peroxides 

or MDA. It consists of three stages: initiation, propagation and termination. Initiation strictly 

refers to the initial H
+
 abstraction. Termination or LP decomposition is catalysed by transition 

metals and metal complexes [8]. 
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The accumulation of NO within lipid bilayers and lipoproteins (hydrophobic cell regions) 

occurs due to its partition coefficient in octanol/water being 5.5 [199]. In addition, hydroperoxyl 

radicals, formed through the protonation of superoxide, a ROS produced via the ETC, are able 

to accumulate within this hydrophobic environment. This confers increased susceptibility of 

these areas to peroxynitrite attack and subsequent damage [199].  

 

Peroxynitrite then undergoes decomposition to form hydroxyl and nitrite radicals that initiate 

LP chain reactions. These radicals abstract H
+
 from the methylene group within the PUFA 

which leaves being an unpaired electron on the carbon. This C-centred radical undergoes 

molecular rearrangement to form conjugated dienes that react with O2 to form peroxyl radicals, 

which is able to abstract H
+
 itself, which subsequently sets up a chain reaction [199]. The 

peroxyl radical will continue to react with substrates present unless the chain reaction is 

terminated (Figure 1.16). Antioxidants such as vitamin E and other enzymes are able to end the 

reaction [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 The lipid peroxidation chain reaction. Polyunsaturated fatty acids are oxidised to form fatty 

acid radicals that propagate the chain reaction until final termination into detectable products of LP 

including MDA, 4-hydroxyalkenals and 2-alkenals [202]. 
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Lipid peroxidation has been associated with various inflammatory conditions [8, 203], 

cardiovascular disorders [204, 205] and adverse birth outcomes [103, 206, 207]. 

 

1.7.3. NO inhibition of OGG1 and other zinc-finger motifs 

NO and its intermediates, not only directly target tissue components (lipids, DNA and proteins) 

but are able to inhibit or suppress antioxidant protective systems [208, 209]. The BER is an 

important pathway responsible for the repair of damaged DNA; with OGG1 function of utmost 

importance, as mentioned previously. OGG1, a Zn-finger protein, possess a cysteine rich-

environment and critical thiol moieties that are necessary for catalytic activity [11]. NO and its 

intermediates, have a high affinity for cysteine-rich environments and are potent scavengers of 

cysteine, therefore suggests NO targets OGG1 directly [146]. A study by Jaiswal and 

colleagues, demonstrated that NO directly S-nitrosylates OGG1 which results in the loss of 

bound Zn and the irreversible loss of enzyme activity [12]. This was predated by Wink and 

Laval ‘s study on Zn-finger motif (Fpg) proteins; which showed that NO dramatically inhibited 

the Fpg proteins [146]. It was also found that the Cys326 variant of OGG1 SNP was more 

susceptible to oxidation by NO compared to the Ser326 wt [208]. Other enzymes containing Zn-

finger motifs are possible targets of NO, with studies confirming this that showed cytochrome 

P450 [210] and SOD activity [211] were suppressed by NO action [146]. 

 

1.7.4. Human immunodeficiency virus’s induction of Nitric oxide 

NO plays a pivotal role in the generation of the innate immune response against IC pathogens, 

such as HIV. NO passes readily into viral-infected cells and causes non-specific damage, which 

leads to various pathological events. NO acts as a host response modulator rather than an 

antiviral agent [198, 212]. 

 

HIV is a lentivirus that infects and kills vital immune cells within the body, which leads to 

acquired immune deficiency syndrome (AIDS) when the immune system is completely 

compromised and opportunistic infections are present [213]. HIV, is a ss-positive sense 

enveloped RNA virus, that consists of 9 genes within its genome. These genes encode 19 

proteins essential for its function. The pol gene encodes reverse transcriptase, integrase and 

protease enzymes, the env gene generates glycoprotein (gp) 160 that is cleaved into gp120 and 

gp41 and the gag gene ensures the production of the capsid, matrix and nucleocapsid proteins. 

The 6 remaining genes regulate proteins that control the virus’s ability to infect cells and 

replicate new copies [214]. 
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Upon entry into the target cell, HIV reverse transcribes its RNA genome to dsDNA, by reverse 

transcriptase, and is transported into the nucleus and integrated into the host genome by 

integrase. Once HIV is integrated into the host genome, it either becomes latent to avoid 

detection or it undergoes viral replication. During viral replication, the genome transcribes and 

translates new copies of the viral proteins that are packaged and released from the host cell as 

new viral particles that are able to infect other target cells [214, 215]. 

 

Several studies have found an increase in NO production within HIV infected individuals: 

adults with AIDS showed increased NO production [216], Zangerle and colleagues found HIV 

infected patients had greater nitrites and nitrates compared to blood controls, with even greater 

levels being observed in low CD4 count individuals [217]. The same effect was observed in 

HIV infected children, with an increase in circulating cytokines IL-1β, TNF-α and INF-ƴ, also 

observed [218]. Groeneveld’s study showed serum nitrate was positively associated with cell-

associated and plasma viral loads of HIV [219]. NO was reported to inhibit HIV replication and 

induce HIV reactivation within infected cells. It is speculated that the overproduction of NO is 

able to activate viral replication, especially within the primary infection and late stages of 

disease. However, the low production of NO may inhibit viral replication, most notably 

observed within the symptomless stage of disease or during treatment with antiretroviral drugs 

[198, 220–223]. HIV infected patients have been reported to be under chronic OS, other than the 

increased NO already noted, the tat gene has been shown to enhance Nrf2 expression, therefore, 

leading to the activation of the ARE and decreased GSH levels which induces RO. In addition, 

HIV infection has been reported to compromise SOD activity, increase LP and decrease the 

antioxidant response [212, 224–226]. 

 

HIV has been implicated in NO-mediated RNS, the degradation of the antioxidant system and 

increased risk for adverse birth outcomes such as LBW and PTB (reviewed by Xiao et al. [227]. 

This chronic OS environment could be detrimental to foetal growth and development within 

pregnant woman. However, no studies linking these effects of HIV and the effects of AAP on 

HIV toxicity have been reported. Understanding the combined effect of HIV and AAP exposure 

may identify potential biomarkers or targets of intervention; especially within SA.  

 

1.8. Oxidative stress and Endoplasmic reticulum stress 

The imbalance of ROS, as a result of endogenous or exogenous toxicants, leads to the disruption 

of cellular calcium homeostasis [105].  
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The ER acts as a major reservoir of IC calcium and therefore plays a critical role in calcium 

homeostasis [17, 18]. This homeostasis is necessary for the proper functioning of the protein 

folding machinery; disruption results in the activation of the UPR pathway that endeavours to 

restore balance within the ER (Figure 1.17). This is achieved through co-ordinated steps that 

reduce the misfolded/unfolded protein (UP) concentration through the suppression of protein 

synthesis, facilitation of protein degradation and increasing the protein folding capacity of the 

ER (reviewed elsewhere [18, 19, 228]). Failure to mitigate ER stress can lead to cellular death 

[105]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17 The unfolded protein response pathway. In stress free conditions, luminal protein chaperone 

binding immunoglobulin protein (BiP) also known as  78 kDa glucose-regulated protein (GRP78) binds 

to the intraluminal domain of the three UPR sensors: PERK, inositol-requiring enzyme 1α (IRE1α) and 

ATF6, rendering them inactive. Upon ER stress and the accumulation of UP and increased protein cargo 

within the ER, BiP dissociates from the UPR sensors and sequesters UP within the ER lumen, due to its 

higher affinity for UP. The dissociation of BiP from IRE1α and PERK causes the oligomerisation, auto-

phosphorylation and activation of these sensors and downstream signalling pathways. The activation of 

the PERK arm leads to the phosphorylation of eukaryotic initiation factor 2 (eIF2) α which subsequently 

induces ATF4 mRNA translation and the inhibition of global protein translation. Pro-apoptotic genes 
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such as CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) are induced by ATF4 

resulting in cellular death. Global translational inhibition results in decreased translation of antioxidant 

proteins leading to increased ROS and apoptosis. Whilst the dissociation of BiP from ATF6, allows the 

translocation of ATF6 to the Golgi apparatus where it is processed by serine protease 1 (S1P) and 

metalloprotease site-2 protease (S2P) to yield an active transcription factor which enters the nucleus. The 

UP sequestered on BiP are translocated to the cytosol for proteasomal degradation by ER-associated 

degradation (ERAD) machinery. These three arms of UPR pathway endeavour to mitigate ER stress by 

facilitating protein degradation, increasing the ER’s protein folding capacity by inducing protein 

chaperone production and by suppressing protein synthesis [18, 19, 228]. 

 

A reciprocal interplay between ROS production and increased ER stress due to calcium release 

has been suggested. Calcium release channels on the ER membrane, including the ryanodine 

receptor and the inositol-1,4,5-triphosphate receptor (IP3R), are activated by ROS. This induces 

calcium ions (Ca
2+

) to migrate into the cytosol from the ER lumen. Increased IC Ca
2+ 

results in 

the loss of ER chaperone proteins which impairs ER function. This leads to increased UP levels 

that can generate ROS in its attempt to repair UP. Increased IC Ca
2+ 

also adversely affects 

mitochondrial activity which further increases ROS production [105]. This will be discussed in 

detail in sections: 1.8.1. and 1.8.2. below. 

 

1.8.1. Mitochondrial ROS generation as a result of increased intracellular calcium occurs via 

the following mechanisms: 

The mitochondria experiences increased calcium loading; which generates increased ROS 

production. Calcium loading inhibits the ETC at complex III through the opening of the 

permeability transition pore (PTP). This releases cytochrome c from the inner mitochondrial 

membrane which blocks complex III. Calcium inhibition of complex III results in the increase 

of ubisemiquinone radical intermediate (QH·) (the quantity of QH· reflects the amount of 

mitochondrial ROS produced) which increases ROS production. There is also an increase in 

QH· generation observed when the ETC turnover occurs more rapidly [229, 230]. 

 

Additional increases in ROS occur via the following mechanisms: 

 Increased cytosolic Ca
2+

 stimulates the tricarboxylic acid cycle leading to increased O2 

consumption and ROS production. 

 The Ca
2+

 induced opening of the PTP may result in GSH leakage into the cytosol from the 

mitochondrial matrix. This indirectly causes increased ROS generation as a result of 

reduced antioxidant capability. 



42 

 

The amplified levels of mitochondrial ROS generation; further activates Ca
2+

 release from the 

ER due to their close proximity. Increased Ca
2+

 close to the mitochondria causes increased ROS 

production, as a result of Ca
2+ 

loading and the opening of the PTP. Generation of ROS then acts 

on Ca
2+

 release channels further increasing Ca
2+

. A feedback loop is then established where 

increased IC Ca
2+ 

induces ROS production which increases Ca
2+

 release into the cytosol, which 

loops back around. Therefore, suggesting a reciprocal interaction between ROS and ER stress 

that threatens cell survival [105, 229, 231]. 

 

1.8.2. Unfolded protein repair induces ROS generation by the following proposed 

mechanism: 

The ER is a vast membranous organelle [18] that is the site of synthesis, folding, maturation and 

modification and trafficking of secreted and transmembrane proteins [19, 232]. The addition of 

a disulphide bonds are required for the stability, function and maturation of secretory proteins.  

 

Misfolded proteins, formed as a result of incorrectly paired cysteine residues, may have an 

inappropriate disulfide bond that requires removal [229].  The formation of disulfide bonds 

generates about 25% of ROS in the cell, during ER oxidation protein folding [233].  Disulfide 

bond formation is driven by protein disulfide isomerase (PDI), where PDI becomes oxidized 

and subsequently reduced by ER oxidoreductin 1 that transfers electrons onto O2. This leads to 

the generation of ROS. Reduced GSH may assist this process in UP which results in the 

generation of oxidized GSSG. The depletion of GSH induces ROS formation [229, 234]. 

 

Reactive oxygen species can be generated independent of disulfide bond formation. The 

accumulation of UP, within the ER lumen, causes Ca
2+

 to leak into the cytosol which generates 

ROS production. Alternatively, due to the high energy dependent processes of folding and 

refolding proteins within the ER, ATP depletion could result from UP accumulation. This would 

induce the mitochondrial oxidative phosphorylation pathway to increase ATP turnover thereby 

increasing ROS production [229]. 

 

1.8.3. Ambient air pollution, Adverse birth outcomes and Endoplasmic reticulum stress 

There are a few studies that have investigated the effect of AAP on ER stress. Andersson et al. 

demonstrated that exposure to low levels of 1-nitropyrene (diesel exhaust) increased DNA 

damage which resulted in increased ROS and GRP78, a marker of ER stress [64]. Watterson et 

al. associated PM levels with the induction of ER stress [235]. Laing et al. demonstrated that 
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PM2.5 induced PERK-dependent CHOP expression in mouse lung, liver and macrophage models 

[236]. This induction was dependent on ROS production for PM2.5 induced apoptosis to occur. 

This gives evidence for AAP induced ER stress as a result of ROS production; demonstrating a 

reciprocal interaction between OS and ER stress. 

 

The effect of ER stress on LBW has only been briefly investigated. Kawakami et al. has 

demonstrated that ER stress markers are increased in LBW neonates [237]. This area of research 

is important due to the reciprocal interaction shown between OS and ER stress, as well as the 

strong relationship observed between OS and LBW. It could be a potential mechanism linking 

OS and adverse birth outcome pathology to AAP toxicity. 

 

1.9. Future considerations for ambient air pollution induction of adverse birth outcomes 

In developing and developed countries, low birthweight and preterm birth are important 

indicators of infant morbidity [79]. Ambient air pollution has also increased within countries 

due to large industrial services such as power plants, coal-mines and petroleum factories. The 

vulnerable and highly susceptible state of foetuses in utero, due to their fast differentiation, high 

sensitivity to signals and rapid developmental processes, makes exposure to AAP during 

pregnancy highly risky and harmful.  

 

As mentioned in this review, several studies have shown the negative effect of AAP and foetal 

development, with OS playing an important role in adverse birth outcomes. The mechanism by 

which OS causes these adverse birth outcomes needs further investigation, with ER stress and 

NO metabolism playing an important role in its pathology. The link between ER stress, RNS 

and OS is minimally understood and needs further analysis.  

 

However, in the context of SA, two crucial factors need to be taken into account when 

investigating AAP exposure effects on adverse birth outcomes. These include obesity and the 

HIV status of the pregnant women.  

 

Sub-Saharan Africa is heavily burdened with HIV where approximately 25.6 million people are 

living with HIV, of these about 27.4% are living within SA, with women accounting for more 

than half the total infected population [27]. In addition, SA has the highest obesity rate within 

sub-Saharan Africa, with more than 68% of women classified as overweight or obese [28]. The 

interaction between these conditions and AAP exposure may affect an individual’s 

susceptibility to oxidative injury and disease, as both these conditions are associated with 
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chronic stress and inflammation. In addition, these conditions individually have been associated 

with adverse birth outcomes and infant morbidity; in combination, their effect may be 

potentiated [227, 238, 239]. 

 

The discovery of novel biomarkers and targeted interventions for the prevention of adverse birth 

outcomes, especially within the context of SA, requires the consideration of obesity and HIV 

status of the pregnant women. Identifying risk factors would allow for the better stratification of 

mother’s disease susceptibility and risk, which could lead to better surveillance of AAP as well 

as guide potential targeted interventions. 
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Abstract 

The purpose of the study was to evaluate the effect nitric oxide (NOx) pollution had on maternal 

serum 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-OHdG) levels and neonatal outcomes in 

pregnant women living in Durban, South Africa (SA). Women, in their third trimester with 

singleton pregnancies, were recruited from the heavily industrialised south (n=225) and less 

industrialised north (n=152).  Biomarker levels of serum 8-OHdG concentrations were analysed 

and the women were genotyped for glutathione-S-transferases pi 1 (GSTP1) and glutathione-S-

transferases mu 1 (GSTM1) polymorphisms. The level of NOx pollution in the two regions was 

determined using land use regression modelling. The serum 8-OHdG was shown to significantly 

correlate with NOx levels; this relationship was strengthened in the south (p<0.05). This 

relationship was still observed after adjusting for maternal characteristics. GSTP1 was 

significantly associated with the south region, where the variant (AG+GG) genotype was 

associated with increased 8-OHdG levels as a result of NOx exposure (p<0.05). GSTM1 null 

genotype was associated with a positive correlation between NOx and 8-OHdG levels (p<0.05). 

NOx levels was found to marginally reduce gestational age (p<0.05), with mothers carrying 

male neonates, variant GSTP1 and living in the north being factors that contributed to 

gestational age reduction (p<0.05). Our study demonstrated that NOx exposure resulted in 

increased 8-OHdG levels in pregnant women living in Durban, SA which then led to gestational 

age reduction. The GSTP1 variant increased susceptibility of individuals to harmful effects of 

NOx. 
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1.  Introduction 

 

Durban, South Africa (SA), is a rapidly developing city with increased road traffic and 

industrial development in close proximity to residential areas. Durban is divided into a heavily 

industrial south region (also known as the South Durban Industrial Basin) and a less industrial 

north region; however both regions are undergoing increased urbanisation and development. 

This is of major health concern due to increased levels of ambient air pollution (AAP) in both 

these areas (Naidoo et al. 2013). Ambient air pollution and associated oxidative stress has been 

implicated in many pathological conditions, including cancer, asthma, acute respiratory 

infections and adverse birth outcomes (Šrám et al. 2005; Kampa and Castanas 2008; Wu et al. 

2009; Fleischer et al. 2014; Chen et al. 2015; Moorthy et al. 2015). Pregnant females are highly 

susceptible to oxidative stress due to increased basal oxygen and changes in energy 

consumption during placental and foetal development. Infants in utero are highly susceptible to 

the harmful effects of AAP; exposure has been associated with low birth weight (LBW), inter-

utero growth restrictions, preterm birth (PTB) and pre-eclampsia (Glinianaia et al. 2004; Negi et 

al. 2012a; Proietti et al. 2013). High levels of pollutants, including sulphur dioxide, carbon 

monoxide (CO), particulate matter (PM) and nitric oxides (NOx), have been reported 

(Kistnasamy et al. 2008). Oxides of nitrogen are of particular interest as they are by-products of 

vehicle combustion, smoking and cooking with gas, and have a nitrogen-centred free radical. 

They interact directly with macromolecules (DNA, lipids and proteins) and often result in a 

cascade of radical production and compromised cellular antioxidant function (Kelly 2003).  

 

The increase in reactive oxygen species (ROS) and decrease in antioxidants lead to oxidative 

stress. The premutagenic deoxyguanosine DNA lesion is highly susceptible to oxidative stress, 

resulting in the hydroxylation of the guanosine residue at position C8. This produces oxidative 

8-oxo-7,8-dihydro-2’-deoxyguanosine (8-OHdG) and acts as a biomarker for oxidative DNA 

damage (Kim et al. 2005). 

 

Glutathione-S-transferases (GST) are a family of phase II isoenzymes that protect against 

oxidative stress. This occurs through the conjugation of glutathione to electrophilic species that 

can react with and form protein or DNA adducts (Romieu et al. 2006). Two common and highly 

polymorphic antioxidants that have been implicated in health effects in response to chemical 

exposure are GST mu (M) and pi (P) 1(Wong et al. 2008). Common single-nucleotide 

polymorphisms (SNP) in the GSTM1 GSTP1 affect the enzymatic activity of GST, and have 

been associated with AAP associated health effects and increased oxidative stress (Romieu et al. 
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2006; Mustafa et al. 2010). A homozygous deletion in the GSTM1 gene results in the complete 

absence of enzyme activity (Seidegård et al. 1988; Xu et al. 1998), whilst a single nucleotide 

substitution of adenine (A) for guanine (G) results in the amino acid change of isoleucine for 

valine in GSTP1, at codon 105. This codon forms part of the active site of the enzyme, therefore 

this change results in the alteration of the substrate-specificity of the enzymes’ binding site 

(Johanssona et al. 1998; Moyer et al. 2008). These polymorphisms have been associated with 

adverse birth outcomes due to AAP, such as increased risk of PTB (Sram et al. 2006; Mustafa et 

al. 2010; Slama et al. 2010). 

 

To investigate a possible correlation between NOx and maternal oxidative stress, this study 

measured serum 8-OHdG in third trimester bloods of women, living in the south and north 

regions of Durban. To determine whether NOx and maternal oxidative stress impacted on 

neonatal birth weight (BW) and gestational age (GA), associations were investigated between 

NOx, 8-OHdG adduct concentration and neonatal BW and GA. Multivariate analyses were 

performed to assess whether the relationship held, when confounding factors were controlled. 

The study further investigated the prevalence of GST polymorphisms in South African women 

and their potential to affect the susceptibility of mothers, exposed to AAP, to oxidative stress. 

 

2.  Methodology 

 

2.1  Study Population 

 

The Mother and Child in the Environment (MACE) longitudinal cohort study recruited pregnant 

women from public sector anti-natal clinics in the heavily-polluted south Durban (n=225). A 

comparison sample of women with similar socio-economic statuses was recruited from the less-

industrialised north Durban (n=152). The women were residents of the geographical area for the 

full duration of the pregnancy. Women with hypertension, multiple pregnancies, diabetes, 

placenta previa, genital tract infections and other complications which result in adverse growth 

effects were excluded from the study. 

 

The study was approved by the Biomedical Research Ethics Committee of the University of 

Kwa-Zulu Natal (BF263/12) (Appendix 1) and informed consent from study participants was 

obtained. 
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2.2  Nitric Oxide levels 

 

Land use regression modelling was used to determine the exposure levels of NOx for individual 

study participants. The method was developed following the ESCAPE approach (Beelen and 

Hoek 2010). Model development entailed measurement of NOx at selected locations and 

regressing these measurements against site-specific a priori defined (i.e. direction of effect) 

geographic predictors such as road length, land use types, topography and population and 

housing density in a multivariate regression model. NOx measurements were conducted over 

two, two-week periods during mid-winter and mid-summer using Ogawa samplers which were 

deployed at 40 randomly selected sites in the north & south Durban areas.  The sampling 

periods selected are representative of the two distinct seasons to occur in Durban (Tyson and 

Preston-Whyte 2004; Tularam and Ramsay 2013), thus accounting for seasonal variation.  The 

adjusted NOx measurements were then used in model development of which the regression 

coefficients were applied to each participant. This determined individual NOx exposure levels 

for each study participant (Muttoo et al. 2017). 

 

2.3  Collection and Preparation of Samples 

 

Third trimester blood was collected from pregnant women during the period between 2013 and 

2015. The serum and whole blood was stored (-80°C) for analyses. Isolated serum was used for 

8-OHdG adduct quantification and whole blood for genotyping of polymorphisms. 

 

2.4  Polymorphisms of GSTM1 and GSTP1  

 

DNA was isolated from whole blood using the Qiagen FlexiGene
®
 DNA Kit (as per 

manufacturer’s instructions). Isolated DNA was quantified using the Nanodrop 2000 

spectrophotometer and standardised to 10ng/µl. 

 

Differentiation polymerase chain reaction (PCR) was performed to assess the GSTM1 

polymorphism (n=372), using β-globin as a reference gene. GSTM1 (215 base pair (bp)) and β-

globin (268bp) PCR products were amplified using 40pmol of GSTM1 and β-globin primers 

(Inqaba Biotech, SA - Table 1) in a 30µl reaction (1x Green GoTaq Flexi buffer, 1.25mM 

MgCl2, 0.5U GoTaq DNA polymerase (Promega), 200µM of each deoxyribonucleotide (dNTP), 

10ng DNA template). Initial denaturation was applied (96°C, 5min), followed by 30 cycles of 

denaturation (96°C, 30sec), annealing (57°C, 30sec) and extension (72°C, 30sec), concluding 
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with final extension occurring at 72°C for 5min. Amplification products were electrophoresed 

on agarose gel (4%, 2µl GelRed) and visualised on the Bio-Rad ChemiDoc
TM

 XRS+ System, 

using the Image Lab
TM

 software. The presence of a single 268bp is indicative of homozygous 

null genotype and the presence of 218bp indicates either a homozygous positive or 

heterozygous (wild-type (wt)) genotype (Appendix 2:Fig.A2.1). 

 

PCR- restriction fragment length polymorphism (RFLP) was used to investigate GSTP1 

genotypes (n=377). A 176bp PCR product was amplified using 10pmol of GSTP1 primers 

(Inqaba Biotech, SA - Table 1) in a 25µl reaction (1x Green GoTaq Flexi buffer, 1.5mM MgCl2, 

0.5U GoTaq DNA polymerase (Promega), 200µM of each dNTP, 10ng DNA template). Initial 

denaturation was applied (96°C, 5min), followed by 30 cycles of denaturation (96°C, 30sec), 

annealing (55°C, 30sec) and extension (72°C, 30sec), concluding with final extension (72°C, 

5min). Amplification products were electrophoresed on agarose gel (3%, 1µl GelRed) and 

visualised. The PCR amplicon underwent restriction endonuclease digestion to determine the 

presence of the polymorphic restriction site. An overnight digestion (37°C) was performed in 

28µl reactions:  10µl PCR product and 18µl (18µl nuclease free water, 2µl 10x Buffer Tango, 

1µl Alw261 (BsmA1) (Thermo Fisher Scientific)). Amplicons completely digested into 2 

restriction fragments (91bp and 85bp) were homozygous for G105 allele (Appendix 2: Fig.A2.2). 

The restriction fragments were electrophoresed on an agarose gel (3%, 2µl GelRed) and 

visualised on the Bio-Rad ChemiDoc
TM

 XRS+ System, using the Image Lab
TM

 software. 

 

Table 1: Primer sequences for PCR 

Primer Primer Sequence 

GSTM1 forward 5’-GAACTCCCTGAAAAGCTAAAGC-3’ 

GSTM1 reverse 5’-GTTGGGCTCAAATATACGGTGG-3’ 

β-globin forward 5’-CAACTTCATCCACGTTCACC-3’ 

β-globin reverse 5’-GAAGAGCCAAGGACAGGTAC-3’ 

GSTP1 forward 5’-ACCCCAGGGCTCTATGGGAA-3’ 

GSTP1 reverse 5’-TGAGGGCACAAGAAGCCCCT-3’ 

 

2.5  Determination of 8-Hydroxydeoxyguanosine 

 

The amount of serum 8-OHdG adduct was determined using a competitive OxiSelect
TM

 

Oxidative DNA Damage ELISA Kit (Cell Biolabs, Inc.), with a sensitivity range of 100pg/mL 

to 20ng/mL. Non-haemolysed serum samples (n=166) were chosen, at random by region, from 

the study population; diluted (1:5) in assay diluent and assayed as per manufacturer’s 

instructions. A 1:5 dilution was recommended as per manufacture protocol, an initial 
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experiment was performed using this dilution and the levels of 8-OHdG fell within the range of 

the 8-OHdG standards and therefore this dilution was used for all subsequent analysis. A 

standard curve was set up using known concentrations of 8-OHdG standards (0-20ng/mL); the 

logarithmic equation for the best fit line was used to extrapolate the concentrations of the 

unknown samples (Appendix 3: Fig.A3.1). Each 96-well plate that was used had its own set of 

standards, to ensure human-error and variation between experiments was accounted for. The 

final concentration of 8-OHdG adduct was the anti-log multiplied by the dilution factor of 5.  

 

2.6  Statistical Analysis 

 

Statistical analyses were preformed using GraphPad Prism V5 Software Package (GraphPad 

Software Inc., San Diego, California, USA). Comparisons between north and south groups for 

maternal and neonatal characteristics, atmospheric NOx levels and maternal serum 8-OHdG 

adduct concentrations were determined using the Student t test. Data was log transformed to 

ensure normalcy, and allow graphical representation of the data. Correlations among 

atmospheric NOx, maternal serum 8-OHdG and neonatal BW, neonatal GA and genotypes of 

GSTM1 and GSTP1 were done using the non-parametric Spearman correlation. The Chi square 

and Fischer’s exact tests were used to test the significant difference in the prevalence of GSTM1 

and GSTP1 genotypes between north and south groups. A one way ANOVA was performed to 

determine the level of difference for maternal serum 8-OHdG adduct concentrations among the 

genotypes of GSTM1 and GSTP1. All statistical tests were two-sided. Multivariate linear 

regression was used to determine whether the relationship between atmospheric NOx and 

maternal serum 8-OHdG was affected by potential confounders, namely: maternal age, maternal 

body mass index (BMI), HIV status, area, maternal systolic and diastolic blood pressure (BP) 

and haemoglobin (Hb) levels. The relationship between neonatal GA and atmospheric NOx and 

maternal serum 8-OHdG was also determined using linear regression, and potential confounders 

were controlled. The linear regression analyses were done using STATA version 13.1. 

 

3.  Results 

 

Maternal and neonatal characteristics of study participants are described in Table 2. The 

maternal age was slightly higher in the north compared to the south (p=0.0844). Mothers in the 

north were significantly shorter with higher BMI levels; compared to the south mothers who 

were taller and had lower BMI levels (p<0.0001). Maternal Hb levels were higher in the north 

compared to the south (p=0.0002). The systolic and diastolic BP measurements were 
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significantly lower in the north compared to the south (p<0.05). Mean GA and BW were lower 

in the north compared to the south (p=0.0540 and 0.0951 (Table 2), respectively) but did not 

reach significance. 

 

The level of atmospheric NOx in the south (37.04 ± 7.46) was significantly greater than in the 

north (33.26 ± 8.51, p<0.0001) (Fig.1A).   This corresponds to a significant increase in maternal 

serum 8-OhdG concentration observed in the south (20.26 ± 40.88ng/mL) compared to the north 

(11.51 ± 18.51ng/mL, p=0.0197) (Fig.1B).  

 

 

 

 

 

 

 

 

 

 

Figure 1: The concentrations of (A) atmospheric NOx (µg/cm3) and (B) maternal serum 8-OHdG 

(log(ng/mL)) for patients living in the North [(A) n=142; (B) n=59] and South [(A) n=185; (B) n=97]. 

Statistical significance: *** p<0.0001 and * p<0.05. 

Table 2: Maternal and neonate characteristics 

 North South 
 

 n Mean (SD) n Mean (SD) p-value 

Maternal Age (years) 152 26.38 (5.90) 225 25.32 (5.67) 0.0844 

Maternal height (cm) 152 142.3 (19.85) 224 159.0 (6.28) ***<0.0001 

Maternal BMI 152 34.12 (12.41) 224 25.99 (6.64) ***<0.0001 

Haemoglobin (g/dL) 152 10.96 (1.73) 224 7.79 (5.50) ***0.0002 

BP systolic (mmHg) 152 109.1 (13.20) 224 111.8 (11.97) *0.0143 

BP diastolic (mmHg) 152 67.75 (9.187) 224 70.34 (8.58) **0.002 

Gestational age (weeks) 137 38.55 (1.81) 202 38.85 (1.76) 0.0540 

Birthweight (g) 139 3003 (670.7) 202 3125 (610.1) 0.0951 

n= sample size, SD= standard deviation. Statistical significance: *p<0.05, **p<0.01, ***p<0.0001 
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A significant positive correlation (Spearman r=0.2173; p=0.0158) was found between the levels 

of maternal serum 8-OHdG and atmospheric NOx (Fig.2A). When the specific area was taken 

into consideration, the south (Spearman r= 0.2337; p=0.0466) atmospheric NOx was correlated 

significantly with maternal serum 8-OHdG concentration (Fig.2C) whilst the north (Spearman 

r=0.1270; p=0.3795) showed a positive trend, although not significant (Fig.2B). No relationship 

was observed between NOx and neonate BW (Spearman r=0.09865; 95%CI -0.016-0.210; 

p=0.0814) and NOx and neonatal GA (Spearman r= -0.0716; 95%CI -0.185 – 0.043; p=0.0814). 

When area was considered a negative trend is suggested for NOx and BW in both north 

(Spearman r= -0.1135; 95%CI -0.282-0.062; p=0.19) and south (Spearman r=-0.060; 95%CI -

0.211 – 0.093; p=0.43).  A similar negative trend is observed between NOx and GA in both the 

north (Spearman r= -0.1135; 95%CI -0.282 – 0.062; p=0.19) and south (Spearman r= -0.060; 

95%CI -0.211 – 0.093; p=0.43).  Maternal serum 8-OHdG was not shown to correlate with BW 

(Spearman r=0.058; 95%CI -0.1521 – 0.2635; p=0.58) and GA (Spearman r= 0.044; 95%CI -

0.121 – 0.207; p=0.59). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Relationship between the concentrations of atmospheric NOx (log(µg/cm3)) and maternal serum 

8-OHdG (log(ng/mL)) for all patients (A) [Spearman r=0.2173; 95%CI 0.03657 to 0.3843; *p=0.0158; 

A) 

B) C) 
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n=123], patients living in the North (B) [Spearman r=0.1270; 95%CI -0.1652 to 0.3987; p=0.3795; n=50] 

and South (C) [Spearman r= 0.2337; 95%CI -0.003195 to 0.4457; *p=0.0466; n=73]. Dotted lines 

represent 95%CI interval. Statistical significance: *p<0.05 

 

Maternal HIV status was thought to influence maternal serum 8-OHdG adduct concentration, 

however no difference between HIV positive (16.02±21.39ng/mL) and negative (18.48 

±40.23ng/mL) 8-OHdG concentration was observed (Fig.3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Maternal serum 8-OHdG adduct (log(ng/mL)) concentration between HIV positive (n=52) and 

HIV negative (n=113) patients in the total sample group. 

 

The genotypic prevalence of GSTM1 and GSTP1 amongst study participants are shown in 

Table 3 and Table 4, respectively. For all subjects, the prevalence of the GSTM1 null (0/0) and 

wt (0/+ or +/+) type was 25.3% and 75.7%, respectively. The frequencies of the A105 and G105 

allele of GSTP1 were 44.2% and 55.8%, respectively. A significantly greater fold increase 

(p=0.0144) was observed in the south for the GSTP1 A105 allelotype compared to G105 allelotype 

(1.8 and 1.2, respectively). The prevalence of GSTP1 AA (wt) and AG+GG (variant) 

(p=0.0281) was significantly different between the north and south; whilst the prevalence of 

GSTM1 (p=0.9038) did not differ significantly. The GSTP1 AG and GG genotypes were 

combined for analysis, as it has been shown that subjects with a single GSTP1 G105 allele have 

reduced enzyme activity compared to those with the GSTP1 A105 allele (Zimniak et al. 1994). 
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No difference was observed in the levels of maternal serum 8-OHdG among the GSTM1 

genotypes between the north and south (Fig.4A). Maternal serum 8-OHdG concentration was 

higher in AA genotyped mothers (29.31±10.10ng/mL, n=38) compared to AG+GG genotyped 

mothers (13.16±1.772, n=127, p=0.1589), although not significant. When area was considered, 

the level of maternal serum 8-OHdG was higher in the north GSTP1 AA (21.11±8.9ng/mL) 

mothers compared to the GSTP1 AG+GG (8.70±2.0ng/mL) mothers but did not reach 

Table 3: Genotypic frequency of GSTM1 in patients living in the North and 

South (n=372). 

 Total North South 
p-value 

 n (%) n (%) n (%) 

Genotype frequency  
   

GSTM1 0/0 94 (25.3) 39 (41.5) 55 (59.5) 0.9038
#
 

GSTM1 0/+ or +/+ 278 (75.7) 113 (40.7) 165 (59.3) 
 

     

#
RR (1.021, 95%CI: 0.7722 - 1.349); OR (1.035, 95%CI: 0.6438 – 1.665) 

n= sample size, RR= relative risk, OR= Odds ratio, CI= confidence interval
 

Table 4: Genotype and allele frequencies of GSTP1 in patients living in the North 

and South (n=377). 

 Total North South 
p-value 

 n (%) n (%) n (%) 

Genotype frequency     

GSTP1 A105/A105 92 (24.4) 28 (30.4) 64 (69.6) *0.0281
#1

 

GSTP1 A105/G105 and G105/G105 285 (75.6) 124 (43.5) 161 (56.5) 
 

Allelotype frequency  
   

GSTP1 A105 361 (44.2) 129 (35.7) 232 (64.3) *0.0144
#2

 

GSTP1 G105 456 (55.8) 175 (44.5) 218 (55.5) 
 

     
#1

RR(0.6995; 95%CI: 0.4998 - 0.9790); OR(0.5680; 95%CI: 0.3438 - 0.9386) 

#2
RR(0.8025, 95%CI: 0.6723 - 0.9579); OR (0.6927, 95%CI: 0.5166 - 0.9286) 

n= sample size, RR= relative risk, OR= Odds ratio, CI= confidence interval. 
Statistical significance: *p<0.05 
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significance (p=0.1421).  The south GSTP1 AG+GG (13.50±2.0ng/mL) mothers had 

significantly greater levels of maternal serum 8-OHdG compared to the north (8.70±2.0ng/mL, 

p=0.0188) (Fig .4B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Maternal serum 8-OHdG adduct (log(ng/mL)) concentration between the GSTM1 (A) and 

GSTP1 (B) genotypes for patients living in the North and South. Statistical significance: *p<0.05. 

 

 

The relationship between the atmospheric NOx and maternal serum 8-OHdG concentration was 

investigated among the different genotypes in Table 5. A significant correlation was observed 

between the atmospheric NOx and the level of maternal serum 8-OHdG within the GSTM1 null 

genotype (Spearman r=0.4227, p=0.0199) and the GSTP1 AA+GG genotype (Spearman 

r=0.2105, p=0.0395).  No relationship was observed when north and south was taken into 

consideration. 
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Table 5: Relationship between the concentrations of atmospheric NOx (log(µg/cm
3
)) and maternal 

serum 8-OHdG (log(ng/mL)) among the different SNP genotypes (GSTM1 and GSTP1) for the total 

patient sample and those living in the North and South. 

 
 

GSTM1 SNP Genotypes 

 
 

0/0 0/+ or +/+ 

Total Spearman r (95%CI) 
p-value 

0.4227 (0.06250 to 0.6855) 

*0.0199 

0.1566 (-0.05478 to 0.3546) 
0.1338 

North Spearman r (95%CI) 

p-value 

0.5758 (0.0816) 

ns 

0.03247 (-0.2907 to 0.3490) 

0.8424 

South Spearman r (95%CI) 

p-value 

0.3046 (-0.1732 to 0.6663) 

0.1916 

0.2218 (-0.05980 to 0.4707) 

0.1104 

 
 

GSTP1 SNP Genotypes 

 
 

A105/A105 A105/G105 and G105/G105 

Total Spearman r (95%CI) 

p-value 

0.2525 (-0.1527 to 0.5851) 

0.2038 
0.2105 (0.004413 to 0.3995) 

*0.0395 

North Spearman r (95%CI) 

p-value 

-0.1459 (0.6876) 

ns 

0.07900 (-0.2474 to 0.3893) 

0.6280 

South Spearman r (95%CI) 
p-value 

0.3887 (-0.1284 to 0.7397) 
0.1231 

0.1864 (-0.08845 to 0.4348) 
0.1690 

CI= confidence interval, ns= not significant. Statistical significance: *p<0.05 

 

 

The relationship between atmospheric NOx and maternal serum 8-OHdG concentration, 

controlled for potential confounders, is described in Table 6. The β-coefficient and regression 

model for the total samples was strengthened when maternal characteristics were controlled 

(unadjusted =1.14, adjusted
2
=1.21, p<0.05). For every 1% increase in NOx it would lead to a 

1.21% increase in maternal serum 8-OHdG. This almost doubled when area was taken into 

consideration, where a 1% increase in atmospheric NOx would result in a 1.99% increase in 

maternal 8-OHdG, in the south (p=0.004). When polymorphisms were considered, a 1% 

increase in atmospheric NOx would lead to a 1.14% increase in maternal 8-OHdG for the 

variant GSTP1 genotype (p=0.026) whilst an almost equal change in percent was observed 

between NOx and 8-OHdG for the GSTM1 wt genotype (p=0.076). The neonate gender was 

shown to influence the concentration of maternal serum 8-OHdG, where a 1% increase in NOx 

would result in a 2.48% increase in maternal serum 8-OHdG for women carrying female 

neonates (p=0.002). 



77 

 

Table 6: Impact of atmospheric NOx (log) concentration on maternal serum 8-OHdG adduct (log) 

concentration – linear regression analysis for total mothers and  subdivided into area, GSTM1 and 

GSTP1 SNP with adjustments for maternal characteristics. 

  
Maternal serum 8-OHdG (log) concentration 

  
β-coefficient (95%CI) p-value R-squared (p-value) 

Atmospheric NOx (log)     

Total      

 

Unadjusted 

(n=123) 
1.14 (0.251 – 2.02) *0.012 0.0507 (*0.012) 

 

Adjusted
1

 
(n=123) 

1.14 (0.256 – 2.03) *0.012 0.0517 (*0.041) 

 

Adjusted
2

 
(n=123) 

1.21 (0.244 – 2.18) *0.015 0.1423 (*0.022) 

Area      

 

North 

(n=50) 

0.317 (-1.41 – 2.04) 0.713 0.1061 (0.662) 

 

South 
(n=73) 

1.99 (0.679 – 3.30) **0.004 0.1818 (0.060) 

GSTP1 
 

    

 

AA 
(n=27) 

1.29 (-1.70 – 4.28) 0.378 0.3063 (0.350) 

 

AG+GG 

(n=96) 
1.14 (0.137 – 2.14) *0.026 0.1195 (0.118) 

GSTM1 
 

    

 

0/+ or +/+ 

(n=93) 

1.01 (-0.108 – 2.13) 0.076 0.1171 (0.144) 

 

0/0 
(n=30) 

0.824 (-1.36 – 3.01) 0.442 0.3835 (0.101) 

Neonate Gender      

 
Male 
(n=70) 

0.75 (-0.588 – 2.08) 0.268 0.1445 (0.185) 

 
Female 

(n=48) 

2.48 (1.02 – 3.95) **0.001 0.2932 (*0.040) 

Adjusted
1
: HIV status; Adjusted2: HIV status, area, maternal age, body mass index, haemoglobin, blood pressure systolic and 

diastolic. 
Area, GSTP1 and GSTM1 results were all adjusted for HIV status, maternal age, body mass index, haemoglobin, blood pressure 
systolic and diastolic. 
CI= confidence interval, n= sample size. Statistical significance: *p<0.05, **p<0.01 
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The relationship between atmospheric NOx and GA, controlled for potential confounders, is 

described in Table 7. Controlling for potential maternal and neonate confounders, strengthened 

the β-coefficient and regression model for the total samples (unadjusted =-0.464, adjusted
2
=-

1.64, p<0.05). Therefore for every 1% increase in NOx there would be a 0.0164% reduction in 

GA. The maternal serum 8-OhdG did not significantly impact GA; however when it was not 

included in the regression model, NOx was also not found to influence GA. Controlling for 8-

OHdG, therefore was an important factor for NOx influencing GA. When area was considered, 

a 1% increase in NOx would result in a 0.0196% decrease in GA (p=0.023). The GSTP1 variant 

caused a 0.013% reduction in GA, whilst the GSTM1 wt genotype caused a 0.0126% decrease 

in GA if a 1% increase in NOx is observed (p<0.05, Table 7). Mothers carrying a male foetus, 

were significantly associated with a 0.0156% decrease in GA if NOx were to increase by 1% 

(p=0.027). This decrease was almost doubled (0.0203% change) with mothers carrying a female 

foetus, although not significant (p=0.097).  
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Table 7: Impact of atmospheric NOx (log) concentration on gestational age – linear regression 

analysis for total mothers and subdivided into area, GSTM1 and GSTP1 SNP with adjustments for 

maternal characteristics. 

  Gestational Age (weeks) 

  β-coefficient (95%CI) p-value R-squared (p-value) 

Atmospheric NOx (log)     

Total      

 

Unadjusted 

(n=311) 

-0.464 (-1.12 – 0.194) 0.166 0.2075 (***<0.0001) 

 
Adjusted

1 

(n=118) 
-1.49 (-2.60 – -0.377) **0.009 0.3384 (***0.003) 

 

Adjusted
2

 
(n=64) 

-1.64 (-3.21 – -0.066) *0.042 0.5597 (***0.0008) 

Area      

 

North 
(n=49) 

-1.96 (-3.63 – -0.287) *0.023 0.5254 (**0.0093) 

 

South 

(n=69) 

-0.688 (-2.59 – 1.21) 0.471 0.3030 (0.0884) 

GSTP1 
 

    

 

AA 

(n=27) 

-1.35 (-4.15 – 1.46) 0.316 0.7943 (*0.0222) 

 

AG+GG 
(n=91) 

-1.30 (-2.52 – -0.072) *0.038 0.2553 (*0.0445) 

GSTM1 
 

    

 

0/+ or +/+ 
(n=88) 

-1.26 (-2.66 – -0.109) *0.034 0.3115 (**0.0093) 

 

0/0 

(n=30) 

-1.38 (-4.39 – 1.88) 0.407 0.6875 (0.0554) 

Neonate Gender 
 

    

 

Male 

(n=70) 
-1.56 (-2.95 – -0.184) *0.027 0.3541 (*0.0135) 

 

Female 
(n=48) 

-2.03 (-4.44 – 0.385) 0.097 0.3550 (0.1922) 

Unadjusted: birthweight; Adjusted
1
: neonatal characteristics: birthweight , child gender, Apgar scores: 1m and 5m, body: brain 

ratio, ponderal index and maternal characteristics: HIV status, area, maternal age, body mass index, haemoglobin, blood pressure 
systolic and diastolic, GSTP1 and GSTM1; Adjusted2: same as Adjusted1 with parity included 
Area, GSTP1, GSTM1 and neonate gender results were all adjusted for neonatal characteristics: birthweight, child gender, Apgar 
scores: 1m and 5m, body: brain ratio, ponderal index and maternal characteristics: HIV status, maternal age, body mass index, 
haemoglobin, blood pressure systolic and diastolic. 

CI= confidence interval, n= sample size. Statistical significance: *p<0.05, **p<0.01, ***p<0.0001 
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4.  Discussion 

 

Exposure to NOx was shown to directly influence maternal serum 8-OHdG concentrations in 

pregnant women living in Durban, SA. Gestational age of these women was also shown to 

significantly decrease as a result of increased NOx exposure. This is the first study in Durban, 

SA to link the increase in oxidative stress in pregnant women to increased NOx pollution. 

 

Oxides of nitrogen, a by-product of combustion, have been linked to several adverse health 

conditions, including respiratory diseases, cardiovascular diseases, low birth weight and preterm 

birth (Seo et al. 2007; Wu et al. 2009; César et al. 2015). This nitrogen centred free radical, 

upon inhalation, is absorbed in lung fluids producing free radical products that enter the blood 

stream. These free radicals are then able to react directly with macromolecules (protein, lipids 

and DNA) present resulting in ROS production (Tabacova et al. 1998). Guanine, having the 

lowest redox potential among the nucleic bases, is highly susceptible to oxidation by ROS; 

which results in the production of 8-OHdG mutagenic lesions (Kershaw and Hodges 2012; Ba 

et al. 2015). Therefore this accounts for the significant increase in maternal serum 8-OHdG 

adduct concentration as a result of NOx exposure (Fig. 1 and 2).  

 

The Durban south region has been shown previously to have higher levels of air pollution 

(Naidoo et al. 2013) and in the present study with significantly increased NOx concentration 

(Fig.1A) compared to the north. Previously, pregnant women in the south region have been 

shown to exhibit increased markers of oxidative stress compared to the north (Nagiah et al. 

2015). This finding was corroborated in our study, where pregnant women in the south had 

increased levels of serum 8-OHdG compared to the north (Fig.1B). Our study went further and 

investigated the relationship between NOx and 8-OHdG, the influence of GST polymorphisms 

as well as linking NOx to GA.  

 

Several studies have found an association of pollution (polycyclic aromatic hydrocarbon (PAH), 

diesel-exhaust smoke and smoking) to increased 8-OHdG and oxidative stress (Risom et al. 

2005; Lewtas 2007; Leonardi-Bee et al. 2008; Ren et al. 2010). Studies have also observed that 

a dose-effect relationship occurs between PAH exposure and levels of urinary 8-OHdG (Kuang 

et al. 2013; Li et al. 2015). Our study found a significantly positive correlation between 

atmospheric NOx and maternal serum 8-OHdG (Fig.2A, p=0.158). As mentioned above, the 

south region is considered to have a higher pollution level than the north. When area was taken 

into consideration, the relationship between NOx and 8-OHdG was strengthened in the heavily 
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industrialised south (Fig.2C, p=0.0466) whilst the relationship was lost in the less industrialised 

north (Fig.2B). This relationship was further investigated by controlling for potential 

confounding factors, to determine whether this effect was indeed a response to NOx exposure. 

The results confirmed that NOx exposure caused a significant increase in 8-OHdG 

concentration when controlled for maternal characteristics (Table 7). It was found that a 1% 

increase in NOx results in a 1.21% (p=0.015) increase in 8-OHdG, with an even higher increase 

(1.99%, p=0.004) observed for south living mothers. The results provide evidence that exposure 

to atmospheric NOx increases serum 8-OHdG levels in pregnant women.  

 

An important controller of oxidative stress, are antioxidants that help reduce and eliminate 

oxidants to prevent oxidative stress-related damage. However, genetic susceptibility plays an 

important role in determining the effect and responses an individual has to oxidative damage. 

Therefore the risk for cancer, adverse reproductive outcomes and cardiovascular diseases are a 

consequence of air pollution exposure and genetic susceptibility (Lewtas 2007; Lagadu et al. 

2010). GSTs are antioxidant enzymes that protect against oxidative stress by conjugating 

electrophilic species and thereby neutralising their effect. These GSTs have two common 

polymorphisms that influence an individual’s genetic susceptibility to oxidants. A homozygous 

deletion in GSTM1 results in the enzyme inactivation (Mustafa et al. 2010), while the 

substitution of isoleucine for valine at codon 105 in GSTP1 reduces substrate specificity (Wong 

et al. 2008).  

 

Our results indicate that GSTP1 is associated with the heavily industrialised south (Table 4, 

p=0.0281), with increased serum 8-OHdG observed in the GSTP1 AG+GG genotypes compared 

to the AA genotype. This suggests that wt GSTP1 is able to scavenge oxidants more effectively 

than the variant which leads to reduced serum 8-OHdG concentrations observed. When 

subdivided into areas, no difference in 8-OHdG was observed in north and south wt GSTP1 

whilst the north variant mothers had significantly lower 8-OHdG levels compared to the south 

variant mothers (Fig.4B, p<0.05). This suggests that at low pollution levels (north) the variant 

GSTP1 enzymes, with its reduced specificity is still able to conjugate electrophiles and reduce 

their effect whilst at higher pollution levels (south) the variant genotype is overwhelmed and 

becomes inefficient at scavenging which leads to increased oxidants present that attack DNA 

leading to increased 8-OHdG levels.  

 

It has been shown that the variant GSTP1 allele has a 7 fold greater efficacy against PAH diol 

epoxides than wt allele, whilst 3 fold less effective against 1-chloro-2,4-diinitrobenzene 
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(Strange et al. 2000). However, this study showed that the variant genotype is less efficient 

compared to the wt, at detoxifying oxidant products. A significant positive correlation was 

observed between NOx and 8-OHdG levels in AG+GG GSTP1 genotyped mothers (Table 5, 

p=0.0395); further confirming that the variant GSTP1 mothers when exposed to NOx are unable 

to effectively scavenge oxidants leading to increased DNA damage. No association was 

observed between GSTM1 and the heavily industrialised south (Table 3), with no difference in 

serum 8-OHdG levels observed between the null and wt GSTM1 genotypes. A significant 

positive correlation was observed between NOx and serum 8-OHdG for null GSTM1 mothers 

(Table 5, p=0.0199), thus suggesting that the inactive enzyme GSTM1 was unable to neutralise 

oxidants leading to increased DNA damage. These results were further analysed in multivariate 

analyses to determine whether the results observed in bivariate correlations remained when 

controlling for maternal characteristics as potential confounders.  

 

The GSTP1 variant mothers where shown to have increased serum 8-OHdG (1.14%) with 

increasing NOx (1%, p=0.026, Table 6), whilst in GSTM1 null mothers this relationship was 

lost. This could be a result of small sample size, once all confounding factors were taken into 

account, only 30 GSTM1 null mothers remained, which could account for the lack of 

association between NOx and 8-OHdG. Other studies have shown no association between 

GSTM1 null individuals, DNA damage and pollution (PAH (Marczynski et al. 2002; Garte et al. 

2007) and particulate matter (Sørensen et al. 2003)). The multivariate analysis however, 

suggests a parallel increase in 8-OHdG (1.01%) as a result of NOx (1%) exposure for GSTM1 

wt mothers (Table 6, p=0.076). The results provide evidence that GSTP1 variant genotype 

increases the susceptibility of mothers to NOx exposure leading to increased oxidative stress. 

 

Pregnancy, a physiological state characterised by increased basal oxygen demand and high 

energy requirement, favours ROS production and has been shown to exhibit increased 

susceptibility to oxidative stress in normal pregnancies (Saker et al. 2008). This already highly 

susceptible condition in the presence of high AAP would exasperate antioxidant stores and lead 

to increased oxidative stress. Exposure to traffic-related air pollution (i.e. NOx, CO and primary 

exhaust particles) have been implicated in deceased foetal growth, LBW and PTB (Seo et al. 

2007; Darrow et al. 2011). Several studies have also reported oxidative stress as a potential 

mechanism for LBW and PTB, with reports showing increased 8-OHdG in LBW and PTB (Kim 

et al. 2005; Mustafa et al. 2010; Rossner et al. 2011).  
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Our study first set out to find an association between NOx and serum 8-OHdG with neonate 

BW and GA. Using simple correlations, no association was observed between serum 8-OHdG 

and BW, with a negative trend suggested between NOx and BW in north and south.. This 

negative trend was not significant; however this could be due to our small sample size as 

previous studies have shown a link between AAP and BW reduction (Lacasana et al. 2005; 

Darrow et al. 2011; Wilhelm et al. 2012). Next our study used bivariate linear regression to 

determine whether NOx was associated with reductions in GA. The results from the unadjusted 

bivariate analysis again suggested a negative trend but remained non- significant; also observed 

using simple correlation. We then controlled for maternal and neonatal characteristics, which 

revealed a small significant reduction in gestational age as a result of NOx exposure (Table 7, 

p=0.042). This relationship was only found to be significant when maternal serum 8-OHdG was 

controlled for, suggesting 8-OHdG may affect GA.  

 

Previous studies have found increased 8-OHdG in mothers who give birth prematurely 

(Matsubasa et al. 2002; Nassi et al. 2009; Darrow et al. 2011; Negi et al. 2012b). When area was 

considered, the north showed a significantly higher reduction in GA compared to the total 

mothers, with south mothers having no reduction observed. This study only measured the levels 

of NOx; however other pollutants or environmental factors may have been present in high 

concentrations within the north area. These pollutants or environmental factors may be potent 

enough to cause the reduction in GA observed within the north. This would be an ideal follow 

up study. The GTSP1 variant and GSTM1 wt mothers were susceptible to GA reduction as a 

consequence of NOx exposure (p=0.034 and p=0.038 (Table 7), respectively). Neonatal gender 

was also found to be associated with reduced gestational age due to NOx exposure, where 

mothers carrying male infants exposed to NOx had a significant reduction in GA. These 

reductions in GA observed, were small (<0.1 weeks per percent change in NOx), therefore 

would not impact on clinical significance for individual neonate. However, a negative shift in 

GA on the population level could result in increased PTB nationwide. 

 

The findings of our study must be interpreted in light of the following limitations. Firstly, upon 

subdivision, by area and genotype, our sample size becomes relatively small. Secondly, due to 

our relatively small sample size, ethnicity was not taken into account; this could be addressed in 

a future study with increased population numbers. Although significant results are obtained, 

increasing population numbers in future studies could give further insight into the conclusions 

observed. Thirdly, measuring other pollutants in study areas could give further insight into their 
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effects on 8-OHdG levels and GA. A combined effect of NOx and other pollutions such as 

particulate matter would also be interesting to investigate. 

 

In conclusion, this study demonstrated increased maternal serum 8-OHdG in pregnant women 

exposed to higher levels of NOx pollution in the south. This increase in DNA damage was 

found to be a direct consequence of increased NOx exposure, with increased susceptibility 

found in GSTP1 variant carriers and GSTM1 wt carriers. Gestational age was also found to be 

reduced as a consequence of NOx exposure, with male neonates making mothers more 

susceptible to GA reduction. This study highlights the need for better systems in place to reduce 

traffic-related air pollution close to residential areas, so that vulnerable individuals are better 

protected against oxidative stress related injury. 
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Abstract: 

The global HIV and obesity epidemics are major public health concerns; particularly as both are 

associated with increased risk of adverse birth outcomes. Despite extensive research, their 

combined effect, in terms of birth outcomes, has not been investigated. A single-nucleotide 

polymorphism (SNP) within 8-oxoguanine glycosylase 1 (OGG1) (Ser326Cys) has been 

suggested to affect body mass indices and therefore could predispose South African (SA) 

women to adverse effects of obesity. This study investigated the associations of OGG1 

Ser326Cys SNP in relation to HIV and obesity on the susceptibility of low-birthweight (LBW) 

and pre-term birth (PTB) in SA women exposed to ambient air-pollution living in Durban. In 

our study population, the OGG1 SNP was associated with HIV and obesity. Wild-type (CC)-

carrying patients had increased susceptibility for HIV-associated LBW and PTB. Co-morbid 

HIV and obese patients delivered neonates with decreased birthweights. Living within the 

heavily-polluted south-Durban and carrying the CC-genotype increased the risk for PTB within 

our study population. 

 

Keywords: 

Low birthweight, HIV, obesity, OGG1 Ser326Cys polymorphism, pre-term birth, air pollution 

 

Highlights 

 OGG1 Ser326Cys polymorphism associated with HIV 

 Comorbid HIV and obesity associated with decreased neonatal BW 

 Wild-type OGG1 Ser326Cys genotype increased risk of PTB and HIV associated LBW 

 Living in heavily polluted south Durban increased susceptibility of PTB 

 

Introduction 

The global human immunodeficiency virus (HIV) epidemic affects approximately 36.5 million 

people worldwide, with majority of these infected people living in low- and middle-income 

countries. Sub-Saharan Africa represents the highest number of people living with HIV (25.6 

million people) with approximately 27.4% living within South Africa (SA). Women account for 

more than half the infected population [1]. In addition to the HIV epidemic, SA has the highest 

obesity rate in sub-Sahara Africa, with more than 68% of women classified as overweight or 

obese [2]. Women being the most vulnerable to these diseases are cause for concern because not 

only does it affect the health of women but the health of future generations. With obesity and 

HIV both individually associated with increased susceptibility to adverse birth outcomes, 
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neonate morbidity and mortality, together they could potentially pose a significant threat to 

public health [3–6]. 

 

Various adverse birth outcomes linked to obesity include gestational diabetes and hypertension, 

neonatal macrosomia, intrauterine growth restriction and pre-term birth (PTB) [5,7,8]. HIV 

infection has been shown to increase the risk for low birthweight (LBW) and PTB [3,4,9]. As 

HIV infection was most commonly associated with reduced weight, which has been shown to 

increase the risk of LBW and PTB, a shift to increased obesity in HIV infected patients has been 

observed in developed countries [10]. Studies in developing countries however have shown 

decreased BMI in HIV positive (HIV+) patients, even with the increased use of antiretroviral 

therapy [11,12]. Therefore the combined effect of obesity and HIV could further potentiate risk 

for adverse birth outcomes. Studies have shown that both HIV and obesity affect the metabolic 

state of the infected person, with oxidative stress and inflammation implicated in LBW and PTB 

aetiology [13,14]. 

 

It has been reported that ambient air pollution (AAP) exposure is linked to increased risk of 

LBW and PTB [13,15,16]. In developing countries, e.g. SA, increased industrialisation and 

urbanisation leads to increased AAP which negatively impacts on the health of the population. 

This is most notable observed within the Durban South Industrial basin (DSIB) where high 

levels of AAP have been reported. Studies have associated these AAP to adverse health effects 

in children including moderate to severe asthma, wheezing and airway hyperactivity [17,18]. 

 

The combined effect of both external and internal exposures, either through infection, obesity or 

pollution exposure, on birth outcomes is important to fully understand the complex aetiology of 

these adverse outcomes. However, an important determinate of an individual’s response to toxic 

insult, either by HIV infection, obesity or AAP exposure, is their genetic susceptibility. Genes 

of the DNA repair pathway have been shown to be highly polymorphic which affects structure 

and function of its proteins. The human 8-oxoguanine glycosylase 1 (OGG1) gene, a key 

component of the DNA repair pathway, consists of eight cysteine residues within its active site 

and is susceptible to oxidative modification [19–21]. A functional single nucleotide 

polymorphism (SNP) exists within the OGG1 gene, as a result of an amino acid substitution of 

serine with cysteine at positon 326 (Ser326Cys) within exon 7 [22]. This polymorphism has 

been suggested to reduce the repair activity of OGG1, with carriers of the homozygous C326 

(G) allele (rs1052133 GG variant) and heterozygous (CG) genotypes having reduced activity 
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compared with the homozygous S326 (CC) wild-type (wt) genotype, and may affect an 

individual’s response to external insults [22,23]. 

 

Limited data is available within the indigenous African population for the OGG1 Ser326Cys 

SNP, and its effect on adverse birth outcomes. The high incidence of obesity and HIV within 

this population group together with their known metabolic abnormalities and well-established 

link between HIV and adverse birth outcomes, necessitates an investigation of OGG1 (an 

enzyme involved in metabolic activities) Ser326Cys SNP that may give further insight to the 

susceptibility of adverse birth outcomes within this population.  This longitudinal birth cohort 

study was therefore conducted to investigate the effects of the OGG1 Ser326Cys SNP, HIV and 

obesity on the susceptibility of LBW and PTB in woman exposed to AAP living in Durban, SA.  

Additionally, the effect of the exposed woman’s clinical parameters on LBW and PTB 

susceptibility was also explored. 

 

Methods 

Study Population 

The Mother and Child in the Environment (MACE) longitudinal cohort study recruited HIV 

negative (HIV-) (n=282) and HIV+ (n=155) pregnant women from public sector anti-natal 

clinics in the heavily-polluted DSIB and less-industrialised Durban north region. Ethical 

approval from the Biomedical Research Ethics Committee of the University of Kwa-Zulu Natal 

(BF263/12) (Appendix 1) and informed consent from study participants was obtained. The 

female participants were residents of the geographical area for the full duration of the 

pregnancy. Women with hypertension, multiple pregnancies, diabetes, placenta previa, genital 

tract infections and other complications which result in adverse growth effects were excluded 

from the study. 

 

Clinical Parameters of Study Population 

Upon enrolment, at trimester one (T1), study participants underwent clinical tests to determine 

the following parameters: weight, height, body mass index (BMI), iron and haemoglobin (Hb) 

levels, systolic and diastolic blood pressure (BP) and age. The study population was followed 

up at trimester three (T3), where the above parameters were measured once again. 

 

Collection and Preparation of Samples 

Third trimester blood was collected in BD Vacutainer® EDTA, aliquoted and stored at -80°C 

for genotyping of polymorphisms. 
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OGG1 rs1052133 Ser326Cys Polymorphism 

DNA was extracted from whole blood using the Qiagen FlexiGene® DNA Kit (Qiagen, 

ID:51206), as per manufacturer’s instructions. Extracted DNA was quantified using the 

Nanodrop 2000 spectrophotometer and standardised to 10ngµl
-1

. 

 

Polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) was used to 

investigate OGG1 SNP genotypes (n=309). A 234bp PCR product was amplified using 6pmol 

of primers (Inqaba Biotech, SA; OGG1 forward: 5’-CCCAACCCCAGTGGATTCTCATTGC-

3’, OGG1 reverse: 5’-GTGCCCCATCTAGCCTTGCGGCCCTT-3’). The 30µl reaction 

consisted of 1x Green GoTaq Flexi buffer, 1.25mM MgCl2, 0.5U GoTaq DNA polymerase 

(Promega), 200µM of each dNTP, and 10ng DNA template. Initial denaturation was applied 

(94°C, 4min), followed by 35 cycles of denaturation (94°C, 30sec), annealing (60°C, 1min) and 

extension (72°C, 30sec), concluding with final extension (72°C, 5min). Amplification products 

were electrophoresed on agarose gel (1.8%, 1µl Gel Red (catalogue no.41003, Biotium Inc., 

Hayward, CA)) and visualised on the Bio-Rad ChemiDocTM XRS+ System, using the Image 

Lab
TM

 software. The PCR amplicon underwent restriction endonuclease digestion to determine 

the presence of the polymorphic restriction site. An overnight digestion (37°C) was performed 

in 28µl reactions; each reaction consisting of 10µl PCR product, nuclease-free water, 2µl 10x 

Buffer G, and 1µl Sat1 (Fnu4HI) (Thermo Fisher Scientific). A 21bp fragment was present in 

all samples due to a Sat1 invariant site induced by the mismatch. Amplicons digested 

completely with 164bp, 49bp and 21bp restriction fragments were homozygous for the G-allele 

(Appendix 2: Fig.A2.3). The restriction fragments were electrophoresed on an agarose gel 

(1.8%, 2µl GelRed) and visualised as mentioned above. 

 

Statistical Analysis 

Statistical Analyses were performed using GraphPad Prism V5 Software Package (GraphPad 

Software Inc., San Diego, California, USA) and STATA version 13.1. Measurements taken 

during the mothers’ T1 and T3 were used for BMI, iron, Hb and systolic and diastolic BP data. 

The Student t test with Welch’s correction was used to determine statistical significance 

between the HIV-/+ and obesity groups for maternal and neonatal characteristics. The Chi 

square and Fischer’s exact tests were used to test the significant difference in the prevalence of 

OGG1 genotypes between HIV-/+ and obesity groups, including PTB and LBW and maternal 

characteristics: BMI, Hb, iron and diastolic and systolic BP. All statistical tests were two-sided. 

The relationship between PTB, HIV and location of birth was determined using logistic 

regression, and potential confounders were controlled. 
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Results 

Maternal Clinical Characteristics 

The study participants were divided into two categories: normal birthweight (NBW)/LBW and 

term birth (TB)/PTB, these were then further subdivided by HIV status. The mean gestational 

age (GA) for women giving birth to NBW and LBW infants were 39.1 weeks and 36.9 weeks, 

respectively (p<0.0001). The mean birthweight (BW) for term and pre-term infants were 

3135.95g and 2393.02g, respectively (p<0.0001). The distribution of age, height and BMI was 

significantly different among all groups in LBW/NBW and TB/PTB categories (p<0.0001) 

(Table.1). 
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Table 1 Maternal clinical characteristics 

 
NBW HIV- 

(n=260) 
NBW HIV+ 

(n=125) 
LBW HIV- 

(n=34) 
LBW HIV+ 

(n=27) 
ap-value 

TB HIV- 
(n=270) 

TB HIV+ 
(n=132) 

PTB HIV- 
(n=23) 

PTB HIV+ 
(n=18) 

ap-value 

Age (years) 24.35 ± 0.319 28.37 ± 0.476 23 ± 0.931 29.07 ± 1.41 ***<0.0001 24.17 ± 0.312 28.82 ± 0.479 24.65 ± 1.25 26.67 ± 1.62 ***<0.0001 

Age Range (years) 15 – 43 17 – 42 15 – 37 16 – 44  15-43 19-44 15-37 16 - 38  

Height (m) 1.55 ± 0.009 1.47 ± 0.017 1.54 ± 0.021 1.45 ± 0.040 **0.0053 1.55 ± 0.008 1.47 ± 0.017 1.54 ± 0.029 1.48 ± 0.052 **0.0076 

Height Range (m) 1 – 1.76 1 – 1.82 1.06 – 1.68 1.02 – 1.66  1 – 1.76 1 – 1.82 1.06 – 1.68 1 – 1.67  

BMI T1 (kg/m2) 28.77 ± 0.641 34.21 ± 1.20 24.67 ± 1.69 35.64 ± 2.71 ***<0.0001 28.28 ± 0.624 34.93 ± 1.19 27 ± 2.25 29.78 ± 2.78 ***<0.0001 

BMI T3 (kg/m2) 31.92 ±0.694 37.95 ± 1.31 28.19 ± 2.09 37.35 ± 2.53 ***<0.0001 31.50 ± 0.687 38.23 ± 1.28 30.35 ± 2.44 33.14 ± 2.32 ***<0.0001 

Results described: mean ± standard error 

NBW = normal birth weight, LBW = low birth weight, TB = term birth, PTB = pre-term birth, n=sample size, T1= trimester one, T3= trimester three, BMI= body mass index 
a
Comparison between all four groups 

Statistical significance: ** *p<0.0001, ** p<0.01 
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Association between OGG1 polymorphism, HIV and obesity 

A significant association between HIV and obesity for both T1 and T3 are shown in Table 2. 

The frequency of obese patients in T1 increased 1.4 fold in HIV+ patients compared to the 0.4 

fold decrease observed in non-obese HIV+ patients (p<0.0001).  In T3, a 0.9 decrease in 

frequency was observed in HIV+ obese compared to a 0.4 fold decrease in HIV+ non-obese 

patients (p<0.0001). 

 

Table 2 Association of HIV and Obesity for trimester one (n=496) and three 
(n=472) 

 Total 
n (%) 

HIV- 
n (%) 

HIV+ 
n (%) 

p-value 

Obesity     

Trimester 1     

         Non-obese 306 (66.9) 222 (72.6) 84 (27.4) ***<0.0001
a

 

        Obese 190 (33.1) 104 (54.7) 86 (45.3) 
 

Trimester 3     

         Non-obese 240 (50.8) 186 (77.5) 54 (22.5) ***<0.0001
b

 

         Obese 232 (49.2) 126 (54.3) 106 (45.7) 
 

n=sample size, RR= risk ratio, OR= odds ratio, CI= confidence interval, BMI= body mass index,  non-
obese (BMI<30), obese (BMI>30) 
Statistical significance: ***p<0.0001; **p<0.01 
aRR(1.325; 95%CI 1.145, 1.535); OR(2.185; 95%CI 1.494, 3.197) 

bRR(1.427, 95%CI 1.245, 1.635); OR (2.898, 95%CI 1.946, 4.315) 

 

 

The genotypic and allelotypic prevalence of OGG1 amongst HIV and obese study participants 

are shown in Table 3. For all subjects, the prevalence of the OGG1 CC and CG+GG genotypes 

was 66.9% and 33.1%, respectively. The C and G allele frequencies were 81.1% and 18.9%, 

respectively.  The frequency and prevalence of the allelotypes and genotypes were significantly 

different among HIV+ and HIV- individuals. The frequency of the G-allelotype decreased 0.7 

fold whilst the C-allelotype increased 1.1 fold (Table.3: p=0.0089) in HIV+ patients.  

 

The prevalence of OGG1 allelotypes and genotypes were significantly different between obese 

and non-obese individuals in T1 (Table.3). In T1, both CC and CG+GG genotype frequencies 

were decreased in obese patients by 0.7 and 0.4, respectively (Table.3: p=0.0324). However, the 

C-allelotype increased by 1.1 fold versus the 0.6 decrease in G-allele frequency observed in 

obese patients (Table.3: p=0.0410). In T3, the CC-genotype frequency increased 1.1 fold whilst 

the CG+GG-genotype decreased 0.7 fold in obese patients (Table.3: p=0.08). Both allele 
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frequencies decreased in obese patients by 0.99 fold and 0.7 fold, respectively (Table.3: 

p=0.0863). The genotypic frequency distributions were consistent with the Hardy-Weinberg 

equilibrium for this study (Chi
2
 test: p>0.05). 

 

Table 3 Genotypic and allelotypic frequencies of OGG1 patients that are HIV+ or 
HIV- (n=302) and non-obese (BMI<30) or obese (BMI>30) in trimester one (n=301) 

and three (n=288) 

  HIV   

 Total 

n (%) 

HIV- 

n (%) 

HIV+ 

n (%) 
p-value 

Genotype frequency     

        OGG1 CC 202 (66.9) 82 (40.6) 120 (59.4) **0.0048
a

 

        OGG1 CG and GG 100 (33.1) 24 (24) 76 (76)  

Allelotype frequency     

        OGG1 C 490 (81.1) 306 (78.1) 184 (86.8) **0.0089
b

 

        OGG1 G 114 (18.9) 86 (21.9) 28 (13.2)  

  Obesity   

 

Total 

n (%) 

Non-obese 

n (%) 

Obese 

n (%) 
p-value 

Genotype frequency     
Trimester 1     

        OGG1 CC 201 (66.8) 117 (58.2) 84 (41.8) *0.0324
c

 

        OGG1 CG and GG 100 (33.1) 71 (71) 29 (29)  

Trimester 3     

        OGG1 CC 194 (67.4) 94 (48.5) 100 (51.6) 0.08
d

 

        OGG1 CG and GG 94 (32.6) 56 (59.6)  38 (40.4)  

Allelotype frequency     

Trimester 1     

        OGG1 C 488 (81.1) 295 (78.1) 193 (86.8) *0.0410
e

 

        OGG1 G 114 (18.9) 81 (21.9) 33 (13.2)  

Trimester 3     

        OGG1 C 469 (81.4) 236 (50.3) 233 (49.7) 0.0863
f

 

        OGG1 G 107 (18.6) 64 (59.8) 43 (40.2)  

n=sample size, RR= risk ratio, OR= odds ratio, CI= confidence interval, BMI= body mass index 
Statistical significance: *p<0.05 
aRR(0.7817; 95%CI 0.6671, 0.9160); OR(0.4621; 95%CI 0.2698, 0.7916) 
bRR(0.8278, 95%CI 0.7303, 0.9383); OR (0.5415, 95%CI 0.3404, 0.8612) 
cRR(0.8198; 95%CI 0.6906, 0.9733); OR(0.5689; 95%CI 0.3399, 0.9522) 
dRR(0.8133, 95%CI 0.6521, 1.014); OR (0.6379, 95%CI 0.3872, 1.051) 
eRR(0.8508, 95%CI 0.7415, 0.9761); OR (0.6227, 95%CI 0.3996, 0.9705) 
fRR(0.8413, 95%CI 0.7030, 1.007); OR (0.6805, 95%CI 0.4441, 1.043) 
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Effect of OGG1 polymorphism and HIV on the risk of LBW and PTB 

Obesity and the genotypic influence of OGG1 Ser326Cys genotypes on the association between 

HIV, obesity and LBW or PTB are described in Table 4. HIV infection was suggested to be 

associated with LBW in the total population (p=0.071), this was found to be significant for CC-

carrying patients (p=0.034). Where being HIV+ increased the susceptibility of having LBW by 

a 1.45 fold change and PTB by a 2.26 fold increase (Table.4, p=0.034 and p=0.036, 

respectively). 

 

Being obese in both T1 and T3 increased the susceptibility of delivering a LBW infant for HIV+ 

patients by 5.4 fold and 2.4 fold, respectively (Table.4: p=0.006 and p=0.017, respectively). 

Additionally, being obese in T3 and carrying CC-genotype increased the susceptibility of 

delivering a LBW infant by 3.4 fold in HIV+ patients (Appendix 4: Table A4.1: p=0.029) and 

being obese in T1 and living in the south increased the risk of HIV associated LBW by 8.01 fold 

(Appendix 4: Table A4.1: p=0.022). Whilst, carrying the CC-genotype and being non-obese in 

T3 increased the susceptibility of PTB in HIV+ patients by 3 fold (Appendix 4: Table A4.1: 

p=0.024). 
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The distribution of BW for obesity and HIV are shown in Figure 1. In T1, obese patients gave 

birth to higher BW infants compared to non-obese (Fig.1A, p=0.0331) whilst HIV+ patients 

gave birth to smaller BW infants compared to HIV- (Fig.1A, p=0.0547). In HIV- patients this 

trend was also observed where obese patients gave birth to higher BW infants than non-obese, 

Table 4 OGG1 Genotypic and obesity frequency distributions among patients delivering 

LBW or NBW neonates, at term (TB) or pre-term (PTB) that are HIV+ and HIV- 

(n=302) 

 Birth Weight (g) Gestational Age (weeks) 

 
NBW 

n(%) 

LBW 

n(%) 
p-value TB n(%) PTB n(%) p-value 

Total       

HIV- 
260 

(88.44) 
34 (11.56) 

0.071 

270 
(92.15) 

23 (7.85) 

0.154 

HIV+ 
125 

(82.24) 
27 (17.76) 132 (88) 18 (12) 

CC       

HIV- 98 (89.91) 11 (10.09) 
*0.034 

100 

(91.74) 
9 (8.26) 

*0.036 

HIV+ 59 (78.67) 16 (14.67) 61 (81.33) 14 (18.67) 

CG+GG       

HIV- 62 (86.11) 10 (13.89) 
0.621 

66 (91.67) 6 (8.33) 
0.864 

HIV+ 18 (81.82) 4 (18.18) 19 (90.48) 2 (9.52) 

Non-obese       

T1       

HIV- 
172 

(85.57) 
29 (14.43) 

0.680 

183 

(91.04) 
18 (8.96) 

0.146 
HIV+ 61 (83.56) 12 (16.44) 62 (84.93) 11 (15.07) 

T3       

HIV- 
146 

(85.38) 
25 (14.62) 

0.851 

155 

(90.64) 
16 (9.36) 

0.100 
HIV+ 43 (84.31) 8 (15.69) 42 (82.35) 9 (17.65) 

Obese       

T1       

HIV- 88 (94.62) 5 (5.38) 
**0.006 

87 (94.57) 5 (5.43) 
0.357 

HIV+ 64 (81.01) 15 (28.99) 70 (90.91) 7 (9.09) 

T3       

HIV- 111 (92.5) 9 (7.5) 
*0.017 

112 

(94.12) 
7 (5.88) 

0.496 

HIV+ 81 (81.82) 18 (18.18) 89 (91.75) 8 (8.25) 

n=sample size, NBW= normal birth weight, LBW= low birth weight, TB=term birth, PTB= pre-term birth, 
T1= trimester one, T3= trimester three, BMI= body mass index 
NBW (>2500g), LBW (<2500g), TB (>37 weeks), PTB (<37 weeks), non-obese (BMI<30), obese (BMI>30) 
Statistical significance: **p<0.01, *p<0.05 
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however HIV+ obese patients gave birth to significantly smaller BW infants than HIV- obese 

patients (Fig.1A p=0.0039). A similar trend was also observed in T3 (Fig.1B, p=0.0177), where 

HIV+ obese patients gave birth to smaller BW infants compared to HIV- obese patients. The 

OGG1 SNP genotypes showed no significant change in BW among HIV-/+ and obesity, 

however CC-carrying HIV+ patients (2952.23±84.05) had lower BW than CC HIV- patients 

(3115.85±46.51, p=0.0911). This same trend was observed in obese HIV+ CC patients (T1: 

2990.15±116.77; T3: 2967.08±112.11) compared to obese HIV- CC patients (T1: 3167±67.07, 

p=0.1939; T3: 3143.60±58.09, p=0.1663).  The effect of OGG1 SNP, obesity and HIV on GA 

was also determined. No change was observed between obese patients, however in non-obese 

patients those that were HIV- CC-carrying (T1: 38.96±0.207; T3: 38.90±0.225) gave birth later 

than compared to HIV+ CC-carrying patients (T1:37.92±0.329, p=0.0095; T3: 37.75±0.357, 

p=0.0091). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Birthweight disruption within obese (BMI>30) and non-obese (BMI<30) patients that are HIV+ 

and HIV- for trimester one (a) and three (b) Statistical significance: **p<0.01, *p<0.05 

 

OGG1 polymorphism association with maternal clinical parameters 

The association between the OGG1 CC and CG+GG genotypes and LBW/PTB among the 

maternal clinical characteristics are described in Table 5. No significant difference between the 

genotypes for clinical characteristics was observed in PTB. However, a significant increase in 

BMI for both T1 and T3 was observed in LBW for CC-carrying patients compared to CG+GG 

(T1:p=0.0104 and T3:p=0.0076, Table.5). This was also observed for iron, where the CC-

carrying patients had significantly higher iron levels compared to CG+GG for both trimesters 
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for LBW (T1:p=0.0314,  T3:p=0.0454, Table.5). A similar trend was observed for PTB, where 

iron in T3 was higher in CC-carrying patients compared to CG+GG (p=0.0992). 

 

Table 5 Association of OGG1 Ser326Cys genotypes with maternal clinical parameters in LBW and PTB 
neonates 

 (a) LBW (n=41)  (b) PTB (n=31)  

Variable CC vs CG+GG p-value CC vs CG+GG p-value 

BMI T1 33.55 ± 2.71 vs 23.06 ± 1.33 *0.0104 30.04 ± 2.10 vs 26.56 ± 2.25 0.3701 

BMI T3 36.50 ± 2.66 vs 25.19 ± 2.34 **0.0076 32.00 ± 1.82 vs 29.17 ± 2.57 0.4139 

Hb T1 11.20 ± 0.246 vs 9.29 ± 1.41 0.0776 9.23 ± 0.992 vs 9.53 ± 1.47 0.8759 

Hb T3 10.48 ± 0.469 vs 9.46 ± 1.14 0.3318 9.70 ± 0.796 vs 8.19 ± 1.88 0.3898 

Iron T1 10.16 ± 0.599 vs 6.88 ± 1.70 *0.0314 7.89 ± 1.13 vs 4.11 ± 2.08 0.1073 

Iron T3 10.01 ± 0.536 vs 7.24 ± 1.54 *0.0454 9.07 ± 0.918 vs 5.65 ± 2.21 0.0992 

BP systolic T1 110.07 ± 2.44 vs 106 ± 3.40 0.3356 111.17 ± 2.51 vs 115.5 ± 3.91 0.3795 

BP systolic T3 110.12 ± 2.13 vs 108 ± 2.99 0.5643 105.05 ± 2.37 vs 103 ± 5.68 0.6958 

BP diastolic T1 66.63 ± 1.44 vs 67 ± 2.11 0.8836 67.57 ± 1.95 vs 70.38 ± 2.63 0.4490 

BP diastolic T3 65.46 ± 1.86 vs 66.64 ± 1.68 0.6789 64.27 ± 1.69 vs 63.88 ± 2.73 0.9034 

Results described: mean ± standard error of mean (n=sample size) 
n=sample size, LBW= low birth weight, PTB= pre-term birth, BMI= body mass index, Hb= haemoglobin, BP= blood pressure, T1= 

trimester one, T3= trimester three 
Statistical significance: **p<0.01, *p<0.05 

 

A sub-analysis of BMI and iron for T1 and T3 are represented in Table 6. The data showed that 

the BMI for T1 and T3 was significantly greater in CC-carrying patients compared to CG+GG 

for all LBW and NBW (T1: p=0.0104 and p=0.0269, T3: p=0.0076 and p=0.0453, respectively). 

HIV infection was associated with a higher BMI (T1) in LBW compared to NBW (p=0.621: 

35.64±2.71 and 34.21±1.20, respectively) whilst HIV- was significantly associated with lower 

BMI (T1) in LBW compared to NBW (p=0.030: 24.67±1.67 and 28.77±0.641, respectively) for 

all patients. This pattern was also observed between BMI T1/T3 and LBW for CC- and 

CG+GG-carrying patients, although not significant. 

 

Iron is significantly greater in CC-carrying patients compared to CG+GG patients giving birth 

to LBW infants (Table.6: T1:p=0.0314 and T3:p=0.0454). HIV infection greatly influences this 

relationship where HIV+ CC-carrying patients have greater iron levels compared to HIV- CC 

patients whilst the opposite is observed within CG+GG-carrying patients. No association 

between iron for T1/T3 was observed for NBW and OGG1 genotypes, however it was observed 

that HIV infection increased iron levels significantly for both CC and CG+GG-carrying patients 

(p=0.0022 and p=0.0424, respectively). 
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Table 6 Sub-analysis of  body mass index, iron and OGG1 Ser326Cys for 

all groups 

Groups CC vs CG+GG p-value 

BMI T1   

All LBW 33.55 ± 2.71 (27) vs 23.06 ± 1.33 (14) *0.0104 

LBW HIV- 24.96 ± 2.18 (11) vs 22.30 ± 1.54 (10) 0.3401 

LBW HIV+ 39.46 ± 3.68 (16) vs 24.94 ± 2.70 (4) 0.0728 

All NBW 30.67 ± 0.875 (157) vs 27.62 ± 0.855 (80) *0.0269 

NBW HIV- 29.58 ± 0.917 (98) vs 26.27 ± 0.818 (62) 0.0824 

NBW HIV+ 34.13 ± 1.68 (59) vs 32.27 ± 2.27 (18) 0.5732 

BMI T3   

All LBW 36.50 ± 2.66 (26) vs 25.19 ± 2.34 (14) **0.0076 

LBW HIV- 30.07 ± 2.95 (11) vs 24.51 ± 3.14 (10) 0.2121 

LBW HIV+ 41.22 ± 3.67 (15) vs 26.89 ± 2.78 (4) 0.0691 

All NBW 34.09 ± 0.972 (157) vs 31.01 ± 0.926 (78) *0.0453 

NBW HIV- 31.82 ± 1.04 (98) vs 29.79 ± 0.929 (60) 0.1822 

NBW HIV+ 37.85 ± 1.83 (59) vs 35.10 ± 2.36 (18) 0.4443 

Iron T1   

All LBW 10.16 ± 0.599 (27) vs 6.88 ± 1.70 (14) *0.0314 

LBW HIV- 9.3 ± 1.24 (11) vs 8.13 ± 1.82 (10) 0.5957 

LBW HIV+ 10.74 ± 0.539 (16) vs 3.75 ± 3.75 (4) **0.0029 

All NBW 7.61 ± 0.411 (157) vs 7.56 ± 0.600 (80) 0.9498 

NBW HIV- 6.75 ± 0.540 (98) vs 6.71 ± 0.729 (62) 0.9621 

NBW HIV+ 9.04 ± 0.584 (59) vs 10.53 ± 0.445 (18) 0.1774 

Iron T3   

All LBW 10.02 ± 0.536 (26) vs 7.24 ± 1.54 (14) *0.0454 

LBW HIV- 9.4 ± 1.08 (11) vs 8.74 ± 1.52 (10) 0.7243 

LBW HIV+ 10.47 ± 0.489 (15) vs 3.5 ± 3.5 (4) **0.0021 

All NBW 8.50 ± 0.378 (157) vs 8.33 ± 0.564 (78) 0.7963 

NBW HIV- 7.62 ± 0.520 (98) vs 7.71 ± 0.700 (60) 0.9172 

NBW HIV+ 9.97 ± 0.458 (59) vs 10.41 ± 0.496 (18) 0.6195 

Results described: mean ± standard error of mean (n=sample size) 
NBW= normal birth weight, LBW= low birth weight, T=trimester 

Statistical significance: **p<0.01, *p<0.05 
 

 

Multiple-variables logistic regression analysis 

We further analysed the impact of maternal characteristics on PTB as shown in Table 7. The 

logistic regression was used to control for any potential confounding factors that may have 

influenced the relationships observed thus far. The results show that HIV increased the odds of 
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PTB although not significantly (p=0.244).  Patients living in the heavily polluted DSIB or 

carrying the CC-genotype have significantly greater odds (13.06 and 15.66, respectively) for 

PTB. Maternal clinical characteristics had no impact on the risk of PTB. The impact of maternal 

characteristics on LBW showed no significant results (Appendix 4: Table A4.2). 

 

Table 7 Impact of maternal clinical characteristics on the risk of pre-term birth – a 
multi-variate logistic regression analysis (n=128) 

Variable OR
a
 (95%CI) p-value 

 Pre-term Birth 

HIV 2.73 (0.505, 14.74) 0.244 

Maternal age 0.922 (0.771, 1.10) 0.372 

BMI 1.00 (0.998, 1.00) 0.482 

Hb 0.984 (0.953, 1.02) 0.324 

Iron 1.00 (0.973, 1.03) 0.886 

BP systolic 1.00 (0.999, 1.00) 0.170 

BP diastolic 1.00 (0.998, 1.00) 0.491 

OGG1 (CC genotype) 15.66 (1.10, 222.32) *0.042 

Area (South) 13.06 (1.10, 155.17) *0.042 

NOx levels 0.912 (0.809, 1.03) 0.132 

 R
2
 = 0.4248 (**p=0.0040) 

Results described: OR, (95%CI), p-value with regression model R2-value and p-value 

n= sample size, OR= odds ratio, CI= confidence interval, HIV= HIV positive, BMI= body mass index, 
Hb= haemoglobin, BP= blood pressure, OGG1 represents CC genotype, Area represents heavily polluted 
south 
aAdjusted for maternal characteristics: HIV status, BMI, area, NOx levels, maternal age, haemoglobin, 
iron, blood pressure systolic and diastolic, OGG1 CC SNP and neonatal characteristics: low birth weight, 
neonate gender, neonate length, head circumference,  parity, body: brain index, ponderal index, Apgar 
scores 1min and 5min 
Statistical significance: **p<0.01, *p<0.05 
 

 

Discussion 

To the best of our knowledge, this is the first study to show the association between Ser326Cys 

OGG1 SNP with HIV infection and its influence on LBW and PTB, in a South African 

population. It was observed that co-morbid HIV infection and obesity resulted in decreased 

neonatal BW; with the wild-type OGG1 genotype increasing the risk for PTB and HIV 

associated LBW. Patients exposed to higher levels of AAP within the DSIB were also shown to 

have an increased risk for PTB. 

 

In developed countries, a shift from HIV associated wasting to obesity has been observed. This 

shift is in response to HIV being a chronic condition with infected people living longer and 
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gaining weight, similar to the general population [10,14]. This study is in agreement to those 

done in developed countries, where being HIV+ significantly increases the odds for being obese 

(Table.2, T1:OR 2.185, T3: OR:2.898) [14,24,25]. Other studies done in SA have shown the 

opposite where HIV+ patients have been reported to have reduced BMI, even with ART 

treatment [11,12]. The discrepancy between this study and those previously done in SA, could 

be due to the increased use of ART therapy within HIV+ patients from 31.2% in 2012 to 47% in 

2014 [26]. In addition to the socio-behavioural attitudes, where ethnic black obese women are 

perceived as attractive and is associated with affluence, wealth, respect and dignity. Excessive 

loss of weight is also associated with HIV; therefore being overtly overweight masks the disease 

from relatives and acquaintances [12,14]. 

 

Individual genetic susceptibility is highly important when considering interactions between the 

environment and health outcomes. These genetic differences influence the response individuals 

have to external and internal stresses. Both obesity and HIV infection have been associated with 

metabolic abnormalities and increased oxidative stress [14]. Increased BMI has been associated 

with the OGG1 Ser326Cys SNP within a Japanese population; however this association was 

removed when the population area was controlled [27]. Our study investigated and showed that 

obesity in T1 and HIV infection was associated with OGG1 Ser326Cys SNP (Table.3: p=0.0048 

and p=0.0324, respectively). To our best knowledge, this is the first study to show an 

association between HIV infection and OGG1 Ser326Cys SNP. 

 

Our study then investigated the effect HIV and obesity had on adverse birth outcomes. It was 

observed that HIV was suggested to increase the frequency of LBW (Table.4, p=0.071). In CC-

carrying patients, this association strengthened and became significant. Carrying the CC-

genotype therefore increased the susceptibility of HIV+ associated PTB and LBW (Table.4). It 

is well known that male neonates generally have larger BW for GA than female neonates [28] 

therefore it was interesting to note that carrying a female neonate and the CC genotype 

increased the susceptibility of HIV associated LBW (Appendix 4: Table A4.3, p=0.024); whilst 

carrying a male neonate increased the susceptibility of HIV associated PTB (Appendix 4: Table 

A4.3, p=0.024). 

 

There was increased BMI observed in CC-carrying versus variant mothers, for both LBW and 

NBW neonates. However an increased BMI was observed for LBW delivering HIV+ CC-

carrying mothers compared to NBW mothers, whilst the opposite is true for HIV- CC-carrying 

mothers. Therefore, HIV infection has been shown to increase the BMI of LBW delivering 
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mothers (Table 6, p=0.621) whilst being HIV- significantly reduced BMI in LBW delivering 

mothers (Table.6, p=0.03). This may suggest a differential effect of HIV and the OGG1 SNP on 

BMI levels within mother’s delivering LBW neonates. This correlates well with the observed 

increased risk of HIV associated LBW, in patients that are obese (Table.4, T1:p=0.006 and 

T3:p=0.017). Although obesity has been shown previously to be associated with macrosomia 

(large BW) and reduced BMI associated with LBW [5,8], HIV infection has never been taken 

into consideration. It was observed that neonates born to obese versus non-obese mothers had 

significantly greater BW; this is in line with what is observed within literature [5,29]. However, 

obese mothers with HIV co-infection gave birth to neonates with significantly smaller BW than 

HIV- obese mothers (Fig.1, p=0.0039). It has been suggested that restriction of foetal growth is 

related to increased oxidative stress, coagulation and alterations in endothelial and vascular 

functions which compromises blood flow and oxygen transfer between the foetus and mother 

[4,13]. HIV and obesity both result in increased inflammation and oxidative stress, with obesity 

linked to endothelial dysfunction and atherosclerosis which could result in reduced blood flow 

to the foetus resulting in foetal growth restriction [5,30]. 

 

Although the OGG1 SNP had no direct impact on neonatal BW, it was observed that carrying 

the CC-genotype increased the susceptibility of PTB by 15.66 (Table.7, p=0.042). Previously, 

the variant was shown to have reduced BW compared to the wt, although not significant and the 

study sample size was small [31]. Studies have also reported conflicting reports that the variant 

has reduced repair capacity [22,32], whilst others show no difference in repair capacity 

[22,33,34]. The combined effect of HIV, obesity and pollution on the OGG1 SNP has not be 

considered, therefore in light of these interactions this study suggests that that co-morbid 

infection with HIV and OGG1 CC-genotype increases the risk for LBW and PTB. 

 

The DSIB has been shown previously to have high levels of AAP that affect children’s health 

[17,18,35]. This study shows that those living with the DSIB have a 13.06 fold increased risk of 

PTB (Table.7, p=0.042). The DSIB has been shown to have increased levels of nitrogen oxides 

(NOx), compared to the less polluted north Durban [36]. Nitrogen oxides are common by-

products of vehicle combustion, cooking with gas and smoking [37]. These pollutants are free-

radicals and as such upon inhalation result in increased oxidative stress, with high levels of NO 

being reported in PTB [38]. Several studies have reported AAP increases the risk of PTB [39–

41]. Therefore patients exposed to higher levels of AAP within the DSIB, compared to the north 

Durban are at greater risk for delivering prematurely, which puts them at a greater risk for PTB-



107 

 

associated morbidities, such as asthma, respiratory complications and neurodevelopmental 

impairments [42]. 

 

Limitations of our study include the relatively small sample size; a larger study population 

would increase the power of our results. Additionally, the effect antiretroviral drug use and 

ethnicity was not controlled for; this could be further investigated in future larger studies. 

 

In conclusion this study identifies patient’s carrying the OGG1 Ser326Cys CC genotype are at 

greater risk for HIV associated LBW, and delivering prematurely. Living within the DSIB and 

being exposed to higher levels of AAP increased the susceptibility of PTB. Co-morbid HIV 

infection and obesity are additional risk factors for BW reduction within this South African 

population. To better improve the prevalence of adverse birth outcomes, education on the effect 

of HIV and obesity on pregnancy should be improved to reduce pre-pregnancy HIV and obesity 

rates. This is of particular importance in SA, due to the high incidence of obesity and HIV. 

Education and identifying risk factors are important preventive measures which are essential for 

reducing adverse birth outcomes in all populations. 
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Abstract  

HIV has been implicated in adverse birth outcomes, due to increased oxidative stress and 

inflammation. In addition, HIV has been reported to increase nitric oxide levels. Therefore the 

combined exposures to HIV and traffic-related air pollution, within south Durban, South Africa 

(SA), may lead to adverse birth outcomes. However, the exact mechanism of action is still 

unknown, therefore this study aimed to identify a potential mechanism. HIV’s influence on 

oxidative and nitrosative stress markers within pregnant women was first assessed. Second, the 

effect of these stress makers and oxides of nitrogen (NOx) exposure have on neonatal 

birthweight (BW) was evaluated. Finally, the effect HIV and traffic-related pollution exposure 

has on the oxidative and endoplasmic profile and epigenetic regulation of Nrf2-Keap1 pathway 

by miR-144 and miR-28 in pregnant women was determined. Women, in their third trimester 

with singleton pregnancies, who were HIV+ and HIV-, were recruited from Durban, SA. 

Biomarker levels of serum nitrites/nitrates (NO) and malondialdehyde (MDA) were analysed 

and mRNA expression levels of oxidative and endoplasmic stress response genes were assessed. 

Land regression modelling was performed to determine NOx exposure levels. HIV exposure 

during pregnancy was associated with increased NO levels. NO was shown to reduce neonatal 

BW. NO and MDA was found to reciprocally increase each other, with HIV differentially 

influencing MDA effect on BW. HIV downregulated miR-144 which was negatively associated 

with Nrf2, suggesting a potential mechanism for HIV associated chronic oxidative stress.  This 

study proposes that NO plays a key role in neonatal BW reduction in response to HIV and 

traffic-related air pollution. 

 

Keywords 

HIV, oxidative stress, NO, MDA, adverse birth outcomes, traffic-pollution, Nrf2-Keap1 

pathway, ER stress, epigenetics 

 

Highlights 

 HIV exposure increased serum NO, with reciprocal action on MDA levels 

 HIV induced miR-144 suggested as a mechanism for increased oxidative stress 

 Exposure to heavily polluted south Durban activated the ER stress 

 Maternal serum NO reduced neonatal birthweight, in heavily polluted Durban south 
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Introduction 

An estimated 36.7 million people in the world are living with the human immunodeficiency 

virus (HIV). Of these, 7 million are living in South Africa (SA) and women account for more 

than half of the total HIV infected population in SA [1]. This is of major concern, not only due 

to the associated morbidity and mortality, but due to increased risk of adverse birth outcomes 

associated with HIV infection [2]. 

 

HIV infection in pregnant women has been reported to increase the susceptibility of neonates to 

shunting, wasting and reduced weight with increased risk of low birth weight (LBW) and 

preterm births (PTB) [2]. Factors that affect LBW and PTB pathology include oxidative stress, 

inflammation, endothelial dysfunction, reduced oxygen transport across the placenta and 

abnormalities of the placenta [3]. HIV is a lentivirus that infects and kills vital cells of the 

immune system [4]. Upon HIV infection, it triggers the innate immune response activating 

macrophages to produce nitric oxide (NO), which is a major mediator of inflammation and 

apoptosis [5]. Studies have shown increased levels of NO and inflammatory markers in HIV 

infected patients [5,6]. HIV has also been associated with increased oxidative stress, where 

decreased antioxidant capacity and increased oxidative damage have been reported [4,7]. 

Therefore HIV could illicit LBW and PTB as a result of increased inflammation and oxidative 

stress, with NO potentially playing a key role. 

 

Nitric oxide is an inorganic free radical that is produced endogenously by a family of 

isoenzymes as a reaction by-product, during the catalytic conversion of L-arginine to L-

citrulline [8]. Three isoenzymes of NO synthases (NOS) have been identified; neural (nNOS), 

endothelial (eNOS) and inducible (iNOS). NO readily diffuses across cell membranes; at low 

concentrations it binds to haemoglobin (Hb) and becomes inactive, whilst in excess NO reacts 

with superoxide and oxygen to form peroxynitrite and dinitrogen trioxide, respectively. NO and 

its intermediates are highly reactive and result in macromolecular damage; including modifying 

cysteine amino acids of target proteins, triggering lipid peroxidation (LP), inhibiting the 

electron transport chain and oxidising biological thiol-containing compounds. Both NO and 

peroxynitrite are highly unstable and degrade to nitrates and nitrites, which act as markers of 

NO concentration [9,10]. Increased levels of NO have been associated with PTB [11].  

 

Lipid peroxidation is the oxidative conversion of polyunsaturated fatty acids (PUFA) to 

products known as malondialdehyde (MDA) or lipid peroxides, which act as biomarkers. The 

decomposition of NO and peroxynitrite to form hydroxyl radicals and nitrite radicals initiate LP 
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chain reactions, where hydroxyl radicals and nitrite abstract hydrogen ions from the methylene 

group of PUFA resulting in an unpaired electron on carbon that reacts with oxygen present to 

form peroxyl radicals. This sets up the chain reaction of LP, which can continue to cause 

macromolecular damage or is terminated by antioxidants [12]. Several studies have associated 

increased LP with adverse birth outcomes, especially PTB [13,14]. 

 

Alternatively, exogenous sources of NO include vehicle exhaust fumes and cigarette smoke 

[15,16]. Durban, in SA, is a rapidly developing city with increased urbanisation and road traffic, 

all factors associated with an increase in oxides of nitrogen (NOx) pollution within the 

atmosphere. This in combination with residential areas in close proximity to busy highways and 

roads makes individuals highly susceptible to adverse effects of NOx exposure, with infants’ in 

utero being highly vulnerable to the negative effects. It has been reported previously that 

exposure to NOx and other air pollution (AP) have been associated with increased risk of LBW 

and PTB [13,17–20]. Durban, consisting of a highly industrialised south region (SD) and a less 

industrialised north region (ND), is an ideal location to investigate the effects of traffic-related 

AP on birth outcomes. 

 

Endogenous and exogenous toxic insult, viz. exposure to HIV or traffic-related AP, results in 

macromolecular and cellular damage leading to increased stress responses. Cytoprotection 

against these insults is provided by antioxidant enzymes such as catalase (CAT), superoxide 

dismutase 2 (SOD2) and glutathione peroxidase (GPx) [21] and repair enzymes including the 

human 8-oxoguanine glycosylase 1 (OGG1) gene which is a key component within the DNA 

repair pathway. OGG1 is highly susceptible to oxidative modification and has been shown to be 

inhibited by NO [22,23]. These responses are regulated via the antioxidant response element 

(ARE) where nuclear factor (erythroid-derived 2)-like 2 (Nrf2) acts as the key transcription 

factor. Upon increased oxidative damage and subsequent dissociation from kelch-like ECH-

associated protein 1 (Keap1), Nrf2 translocates to the nucleus where it binds to the ARE 

resulting in transcriptional activation of specific target genes, including antioxidants [24]. 

Epigenetic regulation of  Nrf2-Keap1 pathway by microRNA (miR)-144 and miR-28 has been 

found to be an important determinate of an individual’s response to certain adverse conditions 

[25,26]. The endoplasmic reticulum (ER) stress response is also activated when there is 

increased oxidative insult resulting in increased unfolded proteins (UP). Increased UP and ER 

stress is sensed by ER chaperones, including BiP, which activates the UP response pathway 

(UPR) to mitigate ER stress [27]. 
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A pilot study conducted by Nagiah and colleagues reported increased markers of oxidative 

stress within pregnant women living in the heavily industrialised south [28]. However this study 

did not investigate the effects HIV may have on these stress profiles, due to their small sample 

size, nor the subsequent effect on adverse birth outcomes. As a follow on study we aimed to 

determine whether HIV infection influenced oxidative and nitrosative stress markers within 

pregnant women, with consideration taken for the NOx exposure and living area of each 

women. The effect of the stress markers and NOx exposure on neonatal birth weight (BW) was 

then investigated. To further understand the oxidative profile of HIV and locational effect on 

these mothers, gene expression for oxidative and ER stress markers, including epigenetic 

regulation of the Nrf2-Keap1 pathway by miR-144 and miR-28 were also investigated.  

 

Methodology 

Study population 

The Mother and Child in the Environment (MACE) longitudinal cohort study recruited HIV 

negative (HIV-) (n=230) and positive (HIV+) (n=126) pregnant women from public sector anti-

natal clinics in the heavily-polluted Durban south region and less-industrialised Durban north 

region KwaZulu-Natal, SA). Ethical approval from the Biomedical Research Ethics Committee 

of the University of KwaZulu-Natal (BF263/12) (Appendix 1) and informed consent from study 

participants was obtained. The women participants were residents of the geographical area for 

the full duration of the pregnancy. Women with hypertension, multiple pregnancies, diabetes, 

placenta previa, genital tract infections and other complications which result in adverse growth 

effects were excluded from the study.  

 

NOx pollution  

The exposure levels of atmospheric NOx for individual study participants was determined using 

land use regression modelling, developed following the ESCAPE approach [29]. NOx 

measurements were collected using Ogawa samplers over two-week periods during mid-

summer and mid-winter. Measurements were taken at 40 randomly selected sites in the north 

and south Durban areas.  The regression-derived parameter estimates were used to determine 

pollutant levels at un-monitored locations such as participant homes [30]. 

 

Sample collection and preparation  

Third trimester blood was collected in BD Vacutainer® EDTA and SST tubes. The SST tubes 

were centrifuged at 1000xg for 10min to isolate serum and stored at -80°C until NO and MDA 
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quantification. Equal parts whole blood and RNALater® (ThermoFischer Scientific; AM7021) 

was stored at -80°C for the assessment of various gene expressions. 

 

Nitrates and Nitrites Assay 

NO has a short half-life, approximately 6-10s, and thus degrades rapidly to nitrites and nitrates 

[11]. The detection of these NO metabolites was used to determine the NO concentration within 

each individual. This was performed using vanadium (III) chloride as the reducing agent and an 

acidic Griess reaction for detection. Non-haemolysed serum samples (n=301) were chosen, at 

random, from the study population recruited above and diluted (1:4) in deionised water (dH2O). 

Sodium nitrate (200µM) was serial diluted to make up standards (0-200µM). 50µl of samples 

and standards (in duplicate) were pipetted into a 96-well microtitre plate. Into each well, 50µl 

VCl3 was added. Rapidly 25µl SULF followed by 50µl NEDD was added into each well. The 

plate was incubated for 45min at 37°C. The absorbance was measured at 540nm using the 

BioTek
®
 µQuant

TM
 Microplate Spectrophotometer (BioTek

®
 Instruments, Inc.). A standard 

curve was constructed and the linear equation used to extrapolate the concentration of the 

unknown samples (Appendix 5: Fig.A5.1). The final concentration (µM) of NO was multiplied 

by the dilution factor (4). 

 

Lipid peroxidation 

The amount of serum lipid peroxidation was determined using the thiobarbituric acid reactive 

substances (TBARS) assay, which quantified MDA as described by Halliwell and Gutteridge 

[31]. Non-haemolysed serum samples (n=299) were diluted (1:2) in phosphate-buffered saline 

(PBS). Then, 100µl 2% H3PO4, 100µl 7% H3PO4 and 200µl thiobarbituric acid (1%,w/v)/0.1 

mM butylated hydroxytoluene solution (TBA/BHT) was added to the 1.5ml tube containing 

100µl diluted serum. A positive and negative control were prepared, 0.5µl 1% MDA (200µl 

TBA/BHT) and 200µl 3mM HCl, respectively. Samples were vortexed, 100µl 1M HCl was 

added to ensure optimal pH. The samples were boiled for 45min (100°C) and allowed to cool to 

room temperature (RT). Butanol (750µl) was added to each tube, vortexed and allowed to 

separate for 20min at RT into two phases. The butanol phase was transferred to a 96-well plate 

(100µl), following aspiration and centrifugation at 18,506xg for 6min (RT). The absorbance was 

measured at wavelength 532nm, with a reference wavelength of 600nm, using the BioTek
®

 

µQuant
TM

 Microplate Spectrophotometer (BioTek
®
 Instruments, Inc.).  The MDA concentration 

was calculated by dividing the mean absorbance of the samples by the absorption coefficient 

156mM
-1

. 
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RNA isolation 

Complementary DNA (cDNA) was synthesised from total RNA and used in Real-Time (RT) 

PCR for analysis of gene expression. Total RNA was isolated from whole blood stored in equal 

parts RNALater® using an in house protocol. Briefly, 500µl of whole blood was mixed with red 

blood cell lysis buffer (2,500µl), incubated on ice for 15min  and centrifuged (400xg, 10min, 

4°C). The supernatant was discarded, 1000µl lysis buffer was added, vortexed and centrifuged 

(400xg, 10min, 4°C). Thereafter, the supernatant was removed and discarded. QIAzol lysis 

reagent (Qiagen #79306) (500µl) was added and incubated overnight at -80°C. Following 

incubation, chloroform (100µl) was added, and centrifuged (12,000xg, 15min, 4°C). The 

aqueous phase was transferred to a fresh 1.5ml tube, cold isopropanol (250µl) added and stored 

overnight at -80°C. Following incubation, samples were centrifuged (12,000xg, 20min, 4°C) 

and the supernatant was removed. The pellet was washed with cold 75% ethanol and finally 

centrifuged (7,400xg, 15min, 4°C). The ethanol was aspirated and the pellet was allowed to air-

dry. The pellet was resuspended in 15µl nuclease free water and quantified using the Nanodrop 

2000 spectrophotometer. The RNA were subsequently standardised to a concentration of 

300ng/µl. 

 

cDNA synthesis and mRNA expression  

Isolated RNA was pooled into groups (25 participants per group) according to their 

geographical area (ND and SD) and HIV status. The pooled RNA was converted to cDNA using 

the iScript
TM

 cDNA synthesis kit (Bio-Rad #170-8891). A total reaction volume of 20µl (4µl 5x 

iScript reaction mix, 1µl iScript Reverse transcriptase, 1000ng of RNA template and nuclease 

free water) was incubated under the following conditions: 25°C for 5min, 42°C for 30min, 85°C 

for 5min and a final hold at 4°C. 

 

Antioxidant gene expression, ER and oxidative stress markers were investigated using RT-PCR. 

The mRNA expression levels of the relevant genes (Table 1) were measured using the 

commercially available iQ
TM

 SYBR
®
 Green Supermix kit (Bio-Rad #170-8882). Briefly, a 10µl 

reaction volume consisting of 25µM of each sense and antisense primer (Inqaba Biotech, SA - 

Table 1), 1µl cDNA template, 5µl IQ
TM

 SYBR
®
 Green supermix and nuclease free water) was 

used. Following initial denaturation (95°C, 8min), amplification was carried out over 37cycles 

of denaturation (95°C, 15sec), annealing (Table 1, 40sec) and extension (72°C, 30sec). A 

housekeeping gene (ribosomal 18S, Table 1) was amplified under the same conditions. The RT-

PCR was carried out using the CFX96 Touch
TM

 Real-Time PCR Detection System (Bio-Rad). 



120 

 

The fold change (2
-ΔΔCt

) was calculated using the method described by Livak and Schmittgen 

[32]. 

 

Table 1 RT-PCR Primer sequences and annealing temperatures 

Gene  Sequence 
Annealing Temperature 

(°C) 

Antioxidant Genes 
  

SOD2 
Sense 5’ GAGATGTTACACGCCCAGATAGC 3’ 

57 
Antisense 5’ AATCCCCAGCAGTGGAATAAGG 3’ 

CAT 
Sense 5’ TAAGACTGACCAGGGCATC 3’ 

58 
Antisense 5’ CAACCTTGGTGAGATCGAA 3’ 

GPx 
Sense 5’ GACTACACCCAGATGAACGAGC 3’ 

58 
Antisense 5’ CCCACCAGGAACTTCTCAAAG 3’ 

Oxidative stress markers 
  

Nrf2 
Sense 5’ AGTGGATCTGCCAACTACTC 3’ 

58 
Antisense 5’ CATCTACAAACGGGAATGTCTG 3’ 

Keap1 
Sense 5’ CCTTCAGCTACACCCTGGAG 3’ 

57 
Antisense 5’ AACATGGCCTTGAAGACAGG 3’ 

OGG1 
Sense 5’ GCATCGTACTCTAGCCTCCAC 3’ 

60 
Antisense 5’ AGGACTTTGCTCCCTCCAC 3’ 

ER Stress Markers 
  

BiP 
Sense 5’ CGGGCAAAGATGTCAGGAAAG 3’ 

55 
Antisense 5’ TTCTGGACGGGCTTCATAGTAGAC 3’ 

eIF2 
Sense 5’ CCTCACCATTTGCCTAAGGA 3’ 

57 
Antisense 5’ GGGGGACTTTCCTTCTTCTG 3’ 

ATF4 
Sense 5’ GTTCTCCAGCGACAAGGCTA 3’ 

65 
Antisense 5’ ATCCTCCTTGCTGTTGTTGG 3’ 

CHOP 
Sense 5’ ACCAAGGGAGAACCAGGAAACG 3’ 

55 
Antisense 5’ TCACCATTCGGTCAATCAGAGC 3’ 

Housekeeping   

18S 
Sense 5’ CAAATCGCTCCACCAACTAA 3’  

Antisense 5’ ACACGGACAGGATTGACAGA 3’  

 

miScript cDNA synthesis and microRNA expression 

RNA grouped according to their geographical area (ND and SD) and HIV status, was converted 

to miScript cDNA using the miScript II RT kit as per manufacturer instructions (Qiagen 

#218160). Briefly, a 20µl total reaction volume (4µl 5x miScript HiFlex, 2µl 10x miScript 

nucleics mix, 2µl miScript reverse transcriptase mix, 1000ng of RNA template and nuclease 

free water) was incubated for 60min at 37°C followed by 5min at 95°C. The miScript cDNA 

was then diluted (1:3).  
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The expression of miR-144 and miR-28 were investigated using RT-PCR. The miRNA 

expression of miR-144 (Qiagen #218300, MS00020328) and miR-28 (Qiagen #218300, 

MS00003255) were determined using commercially available primer assays and the miScript 

SYBR Green PCR Kit (Qiagen #218073). The RT-PCR control RNU6-2 (Qiagen #218300, 

MS00033740) was used alongside the miRNA of interest to ensure normalcy. The reaction was 

carried out according to the manufacturer’s instructions. Briefly a total reaction volume of 

12.5µl (6.25µl 2x Quantitect SYBR green master mix, 1.25µl Universal primer, 10x primer 

assay (miR-144/miR-28/RNU6-2), 1µl cDNA and nuclease free water) underwent initial 

denaturation  at 95°C for 15min, followed by 40 cycles of denaturation (94°C, 15s), annealing 

(55°C, 30s) and extension (70°C, 30s). The RT-PCR was carried out using the CFX96 Touch
TM

 

Real-Time PCR Detection System (BioRad). The fold change (2
-ΔΔCt

) was calculated using the 

method described by Livak and Schmittgen [32]. 

 

Statistical Analysis 

Statistical Analyses were preformed using GraphPad Prism V5 Software Package (GraphPad 

Software Inc., San Diego, California, USA). NO, NOx and MDA data was log transformed to 

ensure normalcy, and allow graphical representation of the data. Measurements taken during the 

mothers’ third trimester was used for body mass index (BMI), iron, Hb, systolic and diastolic 

blood pressure (BP) data. The Student t test was used to determine statistical significance 

between the HIV- and HIV+ groups for maternal and neonatal characteristics, atmospheric NOx 

levels and maternal NO and MDA concentrations. Correlations among atmospheric NOx, 

maternal serum NO and MDA and neonatal BW were done using the non-parametric Spearman 

correlation. A one way ANOVA was performed to determine the level of difference for the 

oxidative and ER stress markers and miRNA analysed in RT-PCR. Multivariate linear 

regression was used to determine whether the relationship between maternal serum NO and 

MDA and atmospheric NOx was affected by potential confounders, namely: maternal age, 

maternal BMI, HIV status, area, maternal systolic and diastolic blood pressure and Hb and iron 

levels. The relationship between neonatal BW and atmospheric NOx and maternal serum NO 

and MDA was also determined using linear regression, and potential confounders were 

controlled. The linear regression analyses were performed using STATA version 13.1. 

Statistical significance was set at p < 0.05. 

 

Results 

Maternal and Neonatal Characteristics 
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Maternal and neonatal characteristics of study participants are described in Table 2. The 

maternal age is greater in HIV+ compared to HIV- (p<0.0001) patients. HIV+ mothers are 

shorter (p<0.0001) and have larger BMIs (p<0.0001) compared to HIV- mothers (Table 2). The 

level of Hb and iron in HIV+ are greater than HIV- mothers (p=0.0186 and p<0.0001, 

respectively). BP measurements showed no difference (Table 2). The mean gestational age 

(GA) is shorter (p=0.0344), and BBR greater (0.0175) for HIV+ mothers compared to HIV- 

mothers. No difference was observed for PI, 1min and 5min Apgar scores (Table 2). 

 

Table 2 Maternal and neonatal characteristics 

  
HIV-  

 
HIV+  

 
 

n Mean (SD) n Mean (SD) p-value 

Maternal Characteristics      

Maternal Age (years) 230 24.48 (5.39) 126 28.21 (5.67) ***<0.0001 

Maternal height (cm) 230 156.0 (11.65) 125 148.5 (18.56) ***<0.0001 

Maternal BMI 219 30.53 (9.58) 120 37.23 (13.94) ***<0.0001 

Haemoglobin (g/dL) 219 9.40 (4.49) 120 10.36 (3.01) *0.0186 

Iron 219 7.51 (5.25) 120 9.69 (3.82) ***<0.0001 

BP systolic (mmHg) 219 108.8 (12.42) 120 109.0 (13.68) 0.9002 

BP diastolic (mmHg) 219 67.34 (9.29) 120 67.28 (7.83) 0.9543 

Neonatal Characteristics      

Gestational age (weeks) 207 38.86 (1.84) 113 38.44 (2.03) *0.0448 

Birthweight (g) 208 3107 (625.9) 114 2974 (668.7) 0.0874 

Body: brain ratio (BBR) 208 12.49 (10.94) 114 13.41 (12.43) *0.0175 

Ponderal Index (PI) 208 2.59 (0.845) 114 2.54 (0.999) 0.0965 

Apgar score (1min) 208 8.26 (0.901) 114 8.184 (1.28) 0.6703 

Apgar score (5min) 208 9.29 (0.685) 114 9.254 (1.189) 0.3466 

n= sample size, SD= standard deviation, g= grams, BMI= body mass index  
Statistical significance: ***p<0.0001, *p<0.05. 

 

 

HIV and location effects on maternal serum NO and MDA levels 

The level of atmospheric NOx is significantly greater in the south (37.35±0.66µM) compared to 

the north (33.54 ± 0.80µM, p=0.0007) (Fig.1A). Maternal serum NO concentration is 

significantly higher in the north (67.75 ± 4.45µM) compared to the south (56.18 ± 2.69µM, 

p=0.0111) (Fig.1B).  However, no correlation was observed between total atmospheric NOx and 
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maternal serum NO levels (Spearman r=-0.06334, 95%CI -0.2076 to 0.08358, p=0.3840, 

including correlations between patients living in the north (Spearman r=0.02235, 95%CI -

0.1979 to 0.2404, p=0.8391) and south (Spearman r=-0.08259, 95%CI -0.2744 to 0.1156, 

p=0.4000). The maternal serum MDA concentrations did not differ between the north and south. 

A significant positive correlation was observed between maternal serum NO and MDA 

concentration as well as for patients living in the north and south (Total: Spearman r=0.2339, 

95%CI 0.1202 to 0.3415, p<0.0001; North: Spearman r=0.2502, 95%CI 0.06309 to 0.4203, 

p=0.0075; South: Spearman r=0.2113, 95%CI 0.063136 to 0.3503, p=0.0043). 

 

 

 

 

 

 

 

 

Figure 1 The concentrations of atmospheric NOx (µg/cm3) (A), maternal serum NO (µM) (B) and 

maternal serum MDA (µM) (C) for patients living in the North ([A] n=109, [B] n=114, [C] n=113) and 

South ([A] n=135, [B] n=183, [C] n=181). Statistical significance: ***p<0.0001, *p<0.05. 

 

Atmospheric NOx showed no difference between HIV+ (36.64 ± 0.80µg/cm
3
) and HIV- (35.07 

± 0.69µg/cm
3
, p=0.1911) patients (Fig.2A), whilst maternal serum NO levels were significantly 

greater in HIV+ (75.29 ± 4.31µM) compared to HIV- (52.84 ± 2.72µM, p<0.0001) patients 

(Fig.2B). The atmospheric NOx levels in HIV+ patients living in the north (36.47 ± 

1.09µg/cm
3
) were significantly higher compared to HIV- patients (31.31 ± 1.07µg/cm

3
, 

p=0.0021), with north HIV- patients having significantly lower atmospheric NOx levels 

compared to south HIV- patients (37.60 ± 0.79µg/cm
3
, p<0.0001) (Fig.2D). The maternal serum 

NO concentration was significantly higher in HIV+ patients in the north (76.35 ± 5.89µM, 

p=0.0022) and south (74.03 ± 6.38µM, p<0.0001) compared to their respective HIV- patients 

(North= 59.45 ± 6.50µM, South= 50.02 ± 2.69µM) (Fig.2E). No relationship between 

atmospheric NOx and maternal serum NO was observed among HIV+ and HIV- patients living 

in the north and south. Maternal serum MDA concentrations showed no difference among 

patients irrespective of HIV status and living location (Fig.2C and 2F). A significant negative 

correlation was observed in HIV- patients between atmospheric NOx and maternal serum MDA 

(Spearman r=-0.1926, 95%CI -0.3635 to -0.009263, p=0.0343), this correlation was 

strengthened in south living HIV- patients (Spearman r=-0.2368, 95%CI -0.4470 to -0.001832, 

North South
0

20

40

60 ***

Area

A
tm

o
s
p

h
e
ri

c
 N

O
x
 (


g
/c

m
3
)

North South
0

100

200

300

400 ***

Area

M
a
te

rn
a
l 
s
e
ru

m
 N

O
 [


M
]

North South
0.0

0.1

0.2

0.3

0.4

0.5

Area

M
a
te

rn
a
l 
s
e
ru

m
 N

O
 [


M
]

A B C



124 

 

p=0.0422).  However, no correlation is observed in north living patients (Spearman r=-0.09837, 

95%CI -0.3825 to 0.2027, p=0.5106). A significant positive correlation was observed between 

NO and MDA across all subdivisions of HIV status and living location, except HIV+ north 

patients (Table 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Atmospheric NOx (A and D), maternal serum NO (B and E) and maternal serum MDA (C and 

F) concentrations in HIV+ and HIV- patients, including patients subdivided by their living location (D, E 

and F). Statistical significance: ***p<0.0001, **p<0.001.  

 

Table 3 Relationship between the maternal serum NO (log(µM)) concentration and maternal serum 

MDA (log(µM)) for all patients living in the North and South, as well as HIV status 

  
Total HIV+ HIV- 

Total 

Spearman r 

(95%CI) 

p-value 

0.2339 

(0.1202 to 0.3415) 

***<0.0001 

0.2301 

(0.03045 to 0.4122) 

*0.0206 

0.2525 

(0.1112 to 0.3838) 

***0.0004 

          

North 

Spearman r 

(95%CI) 

p-value 

0.2502 

(0.06309 to 0.4203) 

**0.0075 

0.09260 

(-0.1849 to 0.3564) 

0.5013 

0.3378 

(0.07932 to 0.5538) 

**0.0095 

          

South 

Spearman r 

(95%CI) 

p-value 

0.2113 

(0.06316 to 0.3503) 

**0.0043 

0.4450 

(0.1690 to 0.6563) 

**0.0019 

0.2099 

(0.03738 to 0.3703) 

*0.0145 

Statistical significance: ***p<0.0001, **p<0.01 *p<0.05 
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Multivariate analysis for inducers of NO and MDA 

The relationship among maternal serum NO and MDA, atmospheric NOx and HIV status, 

controlled for maternal characteristics, is described in Table 4. An increase in maternal serum 

MDA was associated with a significant increase in maternal serum NO, when controlled for 

potential confounders (Table 4).  For every 1% increase in MDA there would be a 0.6% 

increase in NO for the total population (p<0.0001), 0.76% increase for HIV- mothers 

(p<0.0001), 0.71% for HIV+ mothers (p=0.037), 0.56% for the north (p=0.026) and 0.84% for 

the south (p<0.0001).  A reciprocal increase in MDA resulted from an increase in NO was 

observed in Table 4. Where every 1% increase in NO would lead to a 0.12% increase in MDA 

for the total population (p<0.0001), 0.14% for HIV- mothers (p<0.0001), 0.1% for HIV+ 

mothers (p=0.037), 0.11% for the north (p=0.026) and 0.14% for the south (p<0.0001). In 

HIV+ south living mothers a 1% increase in serum NO would result in a 1.56% increase in 

MDA (β-coefficient: 1.562, 95%CI 0.571 to 2.55, p=0.0003; R
2
=0.4301, p=0.0699). Mothers 

living in the north was associated with a 0.5% reduction in maternal serum NO if atmospheric 

NOx increased by 1% (p=0.051). The negative correlation between atmospheric NOx and 

serum MDA observed in HIV- patients previously, was further investigated controlling for 

potential confounders. This result was confirmed, were every 1% increase in atmospheric NOx 

would cause a 0.16% reduction in MDA (p=0.045) in HIV- mothers. In HIV- south living 

mothers a reduction of 0.24% in MDA (β-coefficient: -2.375, 95%CI -0.457 to -0.018, p=0.034; 

R
2
=0.1890, p=0.0814) would result from a 1% increase in atmospheric NOx. Being HIV+ 

significantly increased maternal serum NO for the total population, those living in the north and 

south (Table 4). 
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The effects of HIV, location and maternal serum NO and MDA levels on neonatal BW 

Maternal serum NO was significantly greater in patients who delivered babies with a LBW 

(70.00 ± 6.761µM) compared to normal BW (NBW) (57.59 ± 2.340µM, p=0.0292) (Fig.3A). 

No difference was observed for maternal serum MDA (Fig.3B). No difference was observed 

between NO and MDA levels when the patients for LBW and NBW were divided into HIV+ 

and HIV- (Appendix 6: Fig.A6.1). 

 

 

 

Table 4 Impact of atmospheric NOx (log) and HIV on maternal serum NO and MDA (log) 

concentrations – linear regression analysis for total mothers and subdivided into HIV status and 

area with adjustments for maternal characteristics 

 Maternal serum NO (log) concentration 

 
Total HIV Status Area 

 
 (n=189) 

HIV-  
(n=120) 

HIV+ 
(n=69) 

North 
(n=84) 

South 
(n=105) 

Serum MDA (log) 
0.672 

(0.342 - 1.00) 
***<0.0001 

0.759 
(0.344 - 1.17) 
***<0.0001 

0.707 
(0.043 - 1.37) 

*0.037 

0.564 
(0.068 - 1.06) 

*0.026 

0.837 
(0.379 - 1.30) 
***<0.0001 

Atmospheric NOx 
(log) 

-0.153 
(-0.441 - 0.134) 

0.282 

-0.037 
(-0.411 - 0.337) 

0.845 

-0.325 
(-0.854 - 0.203) 

0.369 

-0.444 
(-0.89 - 0.002) 

0.051 

0.113 
(-0.294 - 0.521) 

0.582 

HIV+ 
0.373 

(0.222-0.524) 
***<0.0001 

  

0.493 
(0.236 - 0.750) 

***<0.0001 

0.332 
(0.132 - 0.531) 

**0.001 

 
R2 = 0.2576 

(***p<0.0001) 
R2 = 0.1667 
(*p=0.0142) 

R2 = 0.1585 
(p=0.2920) 

R2 = 0.2720 
(**p=0.0035) 

R2 = 0.3032 
(***p<0.0001) 

 Maternal serum MDA (log) concentration 

 
Total HIV Status Area 

 
(n=189) 

HIV- 
(n=120) 

HIV+ 
(n=69) 

North 
(n=84) 

South 
(n=105) 

Serum NO (log) 
0.124 

(0.063 - 0.184) 

***<0.0001 

0.141 
(0.064 - 0.218) 

***<0.0001 

0.101 
(0.006 - 0.196) 

*0.037 

0.115 
(0.014 - 0.216) 

*0.026 

0.145 
(0.066 - 0.225) 

***<0.0001 

Atmospheric NOx 
(log) 

-0.081 
(-0.205 - 0.042) 

0.193 

-0.161 
(-0.320 - -0.003) 

*0.045 

0.0001 
(-0.202 - 0.203) 

0.999 

-0.031 
(-0.237 - 0.176) 

0.768 

-0.136 
(-0.304 - 0.031) 

0.110 

HIV+ 
-0.047 

(-0.116 - 0.021) 
0.174 

  

-0.034 
(-0.160 - 0.093) 

0.599 

-0.056 
(-0.143 - 0.031) 

0.204 

 

R2 = 0.1213 

(**p=0.009) 

R2 = 0.1800 

(**p=0.0074) 

R2 = 0.32752 

(*p=0.0175) 

R2 = 0.0999 

(p=0.5191) 

R2 = 0.1713 

(*p=0.0299) 

Results described: β-coefficient, (95%CI), p-value with regression model R2-value and p-value. 
Adjusted for maternal characteristics: HIV status, BMI, area, maternal age, Hb, iron and blood pressure systolic and 
diastolic 
Statistical significance: ***p<0.0001, **p<0.01, *p<0.05 
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Figure 3 Maternal serum NO (µM) (A) and MDA (µM) (B) concentrations in patients who delivered 

infants with low BW (LBW) (<2500g) ([A] n=36 and [B] n=36) and normal BW (NBW) (>2500g) ([A] 

n=230 and [B] n=228). Statistical significance: *p<0.05. 

 

A negative trend is suggested between neonatal BW and maternal serum NO (Table 5, 

p=0.0843) concentration. When the HIV status of the patient is taken into consideration the BW 

is significantly correlated with NO, with an increase in NO resulting in a decrease in BW (Table 

5, p=0.0249). This is also observed in patients living in the south (Table 5, p=0.0224). This 

relationship between BW and NO strengthens and is most strongly correlated in HIV+ patients 

living in the south (Spearman r= -0.5167, p=0.0005; Table 5). 

 

In HIV+ patients, a significantly negative correlation was observed between maternal serum 

MDA and neonatal BW (Table 6, p=0.02). This correlation was strengthened in south living 

Table 5  Relationship between the maternal serum NO (log(µM)) concentration and neonatal 

birthweight (log(g)) for all patients living in the North and South, as well as HIV status 

  
Total HIV+ HIV- 

Total 

Spearman r 

(95%CI) 

p-value 

-0.1060 

(-0.2269 to 0.01802) 

0.0843 

-0.2325 

(-0.4215 to -0.02405) 

*0.0249 

0.009826 

(-0.1440 to 0.1632) 

0.8979 

     

North 

Spearman r 

(95%CI) 

p-value 

0.04468 

(-0.1578 to 0.2436) 

0.6573 

-0.04905 

(-0.3279 to 0.2376) 

0.7325 

0.2173 

(-0.07349 to 0.4740) 

0.1296 

     

South 

Spearman r 

(95%CI) 

p-value 

-0.1777 

(-0.3259 to -0.02107) 

*0.0224 

-0.5167 

(-0.7139 to -0.2437) 

***0.0005 

-0.05843 

(-0.2381 to 0.1251) 

0.5209 

Statistical significance: ***p<0.0001, *p<0.05 
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patients (Table 6, p=0.0129), but lost in north living patients (Table 6, p=0.3213). No 

correlation was observed in HIV- patients (Table 6).  

 

Table 6 Relationship between the maternal serum MDA (log(µM)) and neonatal birthweight 
(log(g)) for all patients  living in the North and South, as well as HIV status 

  
Total HIV+ HIV- 

Total 

Spearman r 

(95%CI) 

p-value 

-0.01026 

(-0.1344 to 0.1142) 

0.8682 

-0.2423 

(-0.4310 to -0.03326) 

*0.0200 

0.09462 

(-0.06028 to 0.2451) 

0.2169 

          

North 

Spearman r 

(95%CI) 

p-value 

-0.01905 

(-0.2203 to 0.1838) 

0.8508 

-0.1431 

(-0.4124 to 0.1492) 

0.3213 

0.1039 

(-0.1879 to 0.3789) 

0.4726 

          

South 

Spearman r 

(95%CI) 

p-value 

-0.007495 

(-0.1650 to 0.1504) 

0.9241 

-0.3807 

(-0.6195 to -0.07756) 

*0.0129 

0.08815 

(-0.09635 to 0.2668) 

0.3343 

Statistical significance:*p<0.05 

 

Multivariate analysis determined factors associated with BW reduction 

Factors affecting neonatal BW, controlled for maternal and neonatal characteristics, are 

described in Table 7. Gestational age increased BW significantly across all divisions (Table 7). 

For every 1 unit increase in parity there would be a 9.271g increase in BW for the total 

population (p=0.049) and a 18.1g increase in BW for HIV- mothers (p=0.017). Maternal serum 

NO was negatively correlated with BW in Table 5, this was further investigated and controlled 

for potential confounders in Table 7, which was shown to cause a significant decrease in BW. 

Every 1% increase in maternal serum NO would cause a 18.93g decrease in BW for the total 

population (p=0.022). This strengthened in the HIV- population, where a 1% increase in NO 

resulted in a 23.85g decrease in BW (p=0.02). For south living mothers, a 36.5g decrease in 

BW (p=0.01) resulted from every 1% increase in NO. Mothers carrying male neonates were 

associated with a 37.5g decrease in BW for every 1% increase in NO (p=0.006). Maternal 

serum MDA showed both an increase and decrease in neonatal BW (Table 7). Every 1% 

increase in MDA for HIV- mothers would cause a 61.9g increase in BW (p=0.011) while for 

HIV+ mothers a 107.6g decrease (p=0.052) in BW was observed.  Mothers carrying female 

neonates were associated with a 66.8g increase in BW when a 1% increase is observed in 

atmospheric NOx. Controlling for HIV+ patients showed no significant change in BW (Table 

7).
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Table 7 Impact of atmospheric NOx (log), maternal serum NO and MDA (log) concentrations on neonate birthweight (g) – linear regression 

analysis for total mothers and subdivided into HIV status, area and neonate gender with adjustments for maternal and neonate characteristics 

 Neonate Birthweight (g) 

 
Total HIV Status Area Neonatal Gender 

 
(n=103) 

HIV- 
(n=56) 

HIV+ 
(n=47) 

North 
(n=50) 

South 
(n=53) 

Male 
(n=60) 

Female 
(n=43) 

Gestational 

Age 

101.13 

(50.23 - 152.02) 
***<0.0001 

100.62 

(30.68 - 170.62) 
**0.006 

167.41 

(48.43 - 286.39) 
**0.007 

74.5 

(-13.15 - 162.14) 
*0.093 

109.7 

(33.45 - 185.95) 
**0.006 

123.74 

(33.62 - 213.86) 
**0.008 

68.14 

(0.610 - 135.68) 
*0.048 

Parity 

92.71 
(0.244 - 185.17) 

*0.049 

180.91 
(34.20 - 327.61) 

*0.017 

22.52 
(-118.49 - 163.52) 

0.746 

65.25 
(-59.60 - 190.1) 

0.295 

129.85 
(-47.59 - 307.29) 

0.146 

96.85 
(-57.75 - 251.45) 

0.213 

124.28 
(-3.64 - 252.20) 

0.056 

Serum NO 

(log) 

-189.29 
(-350.57 - -28.01) 

*0.022 

-238.54 
(-437.09 - -39.99) 

*0.02 

-55.82 
(-358.88 - 247.23) 

0.709 

-48.57 
(-289.09 - 191.95) 

0.683 

-364.99 
(-636.81 - -93.17) 

*0.010 

-375.17 
(-636.66 - -113.69) 

**0.006 

-19.38 
(-312.78 - 274.02) 

0.893 

Serum MDA 

(log) 

372.55 
(-30.87 - 775.967) 

0.070 

619.03 
(150.50 - 1087.55) 

*0.011 

-1075.65 
(-2160.52 - 9.23) 

0.052 

309.54 
(-314.97 - 934.04) 

0.320 

414.07 
(-239.56 - 1067.71) 

0.207 

581.63 
(-19.49 - 1182.76) 

0.058 

47.26 
(-635.80 - 730.32) 

0.888 

HIV+ 

-33.01 
(-202.53 - 136.50) 

0.699 
  

-155.57 
(-476.21 - 165.08) 

0.330 

34.4 
(-233.45 - 302.25) 

0.796 

-0.645 
(-240.02 - 238.73) 

0.996 

-96.60 
(-411.67 - 218.46) 

0.533 

Atmospheric 

NOx (log) 

146.32 
(-191.32 - 483.97) 

0.391 

221.93 
(-211.34 - 655.20) 

0.306 

491.71 
(-226.36 - 1209.79) 

0.172 

275.72 
(-287.48 - 838.91) 

0.326 

121.05 
(-424.8 - 666.91) 

0.655 

296.43 
(-270.84 - 863.71) 

0.297 

668.07 
(9.12 - 1327.02) 

*0.047 

 
R2 = 0.6600 

(***p<0.0001) 
R2 = 0.7778 

(***p<0.0001) 
R2 = 0.7057 

(**p=0.0009) 
R2 = 0.7562 

(***p<0.0001) 
R2 = 0.6881 

(**p=0.0002) 
R2 = 0.6990 

(***p<0.0001) 
R2 = 0.7918 

(**p=0.0002) 

Results described: β-coefficient, (95%CI), p-value with regression model R2-value and p-value 
Adjusted for maternal characteristics: HIV status, BMI, area, maternal age, Hb, iron, blood pressure systolic and diastolic, OGG1 Ser326Cys SNP (this polymorphism was taken 
into consideration due to it previously (unpublished data) being associated with HIV and influences birthweight) and neonatal characteristics: gestational age, parity, body: brain 
index, ponderal index, neonate gender, Apgar scores 1min and 5min. 
Statistical significance: ***p<0.0001, **p<0.01, *p<0.05 
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Effects of HIV and location on oxidative and ER stress markers 

Oxidative stress markers’ gene expressions are shown in Figure 4. HIV- mothers living in the 

south were shown to have decreased expression levels of Keap1, OGG1 and CAT with increased 

Nrf2, SOD2 and GPx expression levels compared to the north. In HIV+ south living mothers the 

gene expression of Keap1, OGG1 and GPx decreased, whilst Nrf2, SOD2 and CAT increased 

compared to the north. The OGG1 gene expression (Fig.4C) was increased in HIV+ compared 

to HIV- mothers, however when area was considered, HIV+ south living patients had 

significantly reduced OGG1 gene expression compared to the total HIV+ mothers. Nrf2 was 

positively correlated with CAT and GPx, where an increase in Nrf2 gene expression would lead 

to an increase in CAT and GPx gene expression (Table 9, p<0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 The mRNA fold change of oxidative stress markers: A) Keap1, B) Nrf2, C) OGG1, D) SOD2, 

E) CAT, F) GPx found within the third trimester for HIV- and HIV+ patients living in the north and south. 

Statistical significance: ***p<0.0001, **p<0.01, *p<0.05. 

 

Table 9 Relationship among miR-28, miR-144 and Nrf2 RT-PCR fold changes and the 

antioxidant and oxidative stress markers for all patients (n=76) 

 Nrf2 Keap1 OGG1 SOD2 CAT GPx 

miR-144 -0.6290* -0.0033 0.4995* -0.0453 -0.1719 -0.0015 

miR-28 -0.5965* 0.7977* 0.8158* 0.3228* 0.2440 0.1889 

Nrf2 1.00 -0.0002 -0.1640 -0.7455 0.6167* 0.6020* 

Results described: Spearman r. 
Statistical significance:*p<0.05 
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The expression of miR-144 and miR-28 were significantly reduced in both HIV- and HIV+ 

south living patients compared to the north living patients (Fig.5, p<0.0001). The expression of 

miR-144 and miR-28 both were negatively correlated with Nrf2 (Table 9, p<0.05) and miR-28 

was positively associated with Keap1, OGG1 and SOD2 (Table 9, p<0.05). Living in the 

heavily polluted south reduced the expression of both miR-144 and miR-28 by -95.73 and -

11.73 fold respectively (Table 10, p<0.0001). Being HIV positive decreased miR-28 expression 

by -4.5 fold whilst it increased the expression of miR-144 by 51.07 fold (Table 10, p<0.0001). 

 

 

 

 

 

 

 

 

 

Figure 5 The expression of (A) miR-144 and (B) miR-28 within third trimester for HIV- and HIV+ 

patients living in the North and South. Statistical significance: **p<0.0001, ***p<0.01. 

 

Table 10 Impact of atmospheric NOx, HIV status and living in the south on the expressions of 

miR-144 and miR-28 (n=68) 

 miR-144 miR-28 

Atmospheric NOx (log) 

17.08 

(-7.8 to 41.97) 
0.174 

-2.29 

(-5.62 to 1.04) 
0.174 

HIV+ 

51.07 

(37.58 to 64.55) 
***<0.0001 

-4.50 

(-6.29 to -2.68) 
***<0.0001 

Area (South) 

-95.73 

(-108.26 to -83.20) 
***<0.0001 

-11.73 

(-13.41 to -10.05) 
***<0.0001 

 
R

2
=0.8908 

(***<0.0001) 

R
2
= 0.8538 

(***<0.0001) 

Results described: β-coefficient, (95%CI), p-value with regression model R2-value and p-value. 
Adjusted for maternal characteristics: BMI, maternal age, Hb, iron and blood pressure systolic and diastolic, NO and 

MDA 
Statistical significance: ***p<0.0001 
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It was interesting to note that SOD2 gene expression was shown to be influenced by maternal 

serum NO concentrations (Table 8). For the total population a positive correlation was observed 

between serum NO and SOD2 fold change. When area is taken into account, the south living 

mothers had a stronger positive correlation (Table 8, p<0.05) whilst north living mothers had a 

stronger negative correlation (Table 8, p<0.05) between serum NO and SOD2 gene expression. 

The gene expression for ER stress markers are shown in Figure 6. In HIV- mothers the gene 

expression for eIF2, ATF4 and CHOP were significantly increased within the south living 

(eIF2: 1.019±0.046; ATF4: 1.161±0.042; CHOP: 1.655±0.075) mothers compared to the north 

(eIF2: 0.763±0.021, p<0.05; ATF4:0.765±0.079, p<0.01; CHOP: 1.215±0.105, p<0.01). The 

expression of BiP increased (SHIV-:1.087±0.015; NHIV-: 1.057±0.029, p=0.536), although not 

significant. The gene expression of all ER stress markers were greater in HIV- south living 

patients compared to HIV+ south living patients (eIF2: 0.8593±0.080; ATF4: 1.141±0.061; 

CHOP: 0.5436±0.015; BiP: 0.7380±0.036), with CHOP (p<0.0001) and BiP (p<0.0001) fold 

changes significantly different. In HIV+ mothers the eIF2 and ATF4 gene expressions are 

greater in the south compared to north (eIF2: 0.8264±0.069, p>0.05; ATF4: 0.7967±0.019, 

p<0.05) living mothers, whilst both CHOP and BiP are significantly greater in the north 

(CHOP: 0.946±0.013, p<0.05; BiP: 0.9549±0.010, p<0.0001) compared to south living 

mothers. The gene expression of ER stress markers’ eIF2 and ATF4 were found to have a 

negative correlation with maternal serum NO for the total population (Table 8). This negative 

correlation was strengthened in south living mothers (Table 8, p<0.05) whilst it was reversed to 

a positive correlation in north living mothers (Table 8, p<0.05). 

 

 

 

 

 

 

Table 8 Relationship between maternal serum NO (log(uM)) and the fold change of antioxidant and ER stress markers for all 

patients (n=76), and those living in the North (n=39) and South (n=37) 

 RT-PCR Fold Change (2-ΔΔCt) 

 
OGG1 SOD2 CAT GPx Keap1 Nrf2 BiP eIF2 ATF4 CHOP 

Maternal serum NO 

Total -0.0653 0.2040 -0.3917* -0.3917* -0.3386* -0.3290* -0.3386* -0.1412 -0.1412 -0.3917* 

North -0.4540* -0.4540* -0.4540* -0.4540* -0.4540* -0.4540* -0.4540* 0.4540* 0.4540* -0.4540* 

South -0.4346* 0.4346* -0.4346* -0.4346* -0.4346* -0.4346* -0.4346* -0.4346* -0.4346* -0.4346* 

Results described: Spearman r. 

Statistical significance: *p<0.05. 
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Figure 6 The mRNA fold change of ER stress markers found within third trimester for HIV- and HIV+ 

patients living in the North and South. Statistical significance: ***p<0.0001, **p<0.01, *p<0.05. 

 

 

Discussion 

Macrophages, play a pivotal role in the innate immune response, are among the first cells in 

contact with HIV and have been implicated as a major reservoir of HIV during its subclinical 

infection [33]. HIV has shown to stimulate macrophages to produce NO, with HIV env gp120 

[34] and regulatory Tat protein considered inducers of NO through the activation of iNOS and 

eNOS genes [5,33]. Several studies have also shown increased sera NO production in 

asymptomatic HIV-infected patients [35], children and adults with acquired immune deficiency 

syndrome (AIDS) and especially those with opportunistic diseases [36–38]. Pro-inflammatory 

cytokines, such as TNFα and INFγ, increase NO production from HIV-infected macrophages 

[36,39]. Increased levels of NO have been reported in blood plasma of women during gestation 

[40]. Our study showed increased levels of serum NO concentrations in HIV+ mothers 

compared to HIV- mothers (Fig.2B and 2E), with being HIV+ shown to induce NO production 

(Table 4). 

 

NO’s highly reactive intermediate peroxynitrite, inhibits the electron transport chain, causes 

oxidation of biological thiol compounds and induces LP [10]. Therefore an increase in NO, 

within a highly aerobic environment would lead to increased peroxynitrite formation and 

subsequent LP. Our study supports this observation where increased serum NO was shown to 

increase serum MDA concentrations (Table 3 and 4). Interestingly, a reciprocal activity was 

observed between NO and MDA concentrations, where one increased the other and vice versa 
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(Table 3 and 4). Although an increase in MDA concentrations in HIV patients has been reported 

previously [41,42], HIV was shown to have no direct effect on MDA concentrations within our 

study population (Table 4), suggesting MDA increased as a result of the indirect activity of HIV 

through increased NO production. 

 

Additionally, exposure to pollutants in the heavily industrialised SD and less industrialised ND, 

especially traffic-related NOx AP, was hypothesised to have an effect on NO and MDA levels 

[28].  Atmospheric NOx was shown to have no effect on serum NO levels, however it was 

suggested to cause a decrease in NO levels in ND (Table 4, p=0.051). The north was shown to 

have a lower concentration of atmospheric NOx compared to the south (Fig.1A), thus proposing 

that low exogenous sources of NOx had a minimal effect on the endogenous production of NO. 

Inhalation of NOx from the environment enters the blood stream and is taken up by Hb, through 

this low levels of NOx become inactive [43]. Nagiah et al. reported increased MDA levels 

within SD [28], however this was not significant and increasing the sample size within this 

study showed no change was observed between ND and SD (Fig.1C). Taking into consideration 

HIV and a specific pollutant altered the initial finding. Atmospheric NOx was shown to 

decrease levels of MDA in HIV- patients (Table 4), with only a slight decrease in NOx levels 

observed in these patients (Fig.2A) and lower levels of NO (Fig.2B). This inhibition of LP as a 

result of NOx could be due to NO’s ability to terminate LP propagation, as the unpaired NO 

radical reacts with an unpaired peroxyl radical, thereby neutralising the reaction [44]. 

 

Our study further investigated the effects of maternal serum NO and MDA, HIV-infection and 

atmospheric NOx had on neonatal BW. Previous studies have shown that NOx pollution was 

associated with LBW [17], increased levels of NO and MDA in PTB [11,13] and HIV 

associated with risk of LBW and PTB [2].  

 

Our study shows NO may play a role in the aetiology of LBW, with HIV having no direct 

influence on the reduction of BW. The levels of NO increased within mothers delivering LBW 

neonates (Fig.3A), with the HIV status of the mother having no affect (Appendix 6: Fig.A6.1). 

In addition BW was reduced by increasing NO (Table 5 and 7). It has been proposed that the 

inhibition or restriction of foetal growth could be a consequence of pulmonary and placental 

inflammation, increased blood viscosity and coagulation. These alterations in endothelial and 

vascular functions thereby compromise placental blood flow and transfer of oxygen (O2) and 

nutrients between mother and foetus [45]. As mentioned previously, NO is readily absorbed into 

the blood stream and binds to Hb which forms methemoglobin (MethHb) [16]. MethHb is 
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known to have reduced O2 carrying capacity, which could in turn lead to reduced O2 transfer at 

the utero-placental interface thereby negatively impacting on foetal growth [13]. Although SD 

NOx concentrations did not directly increase NO (Table 4), other pollutants in the area (not 

measured) [46] could be responsible for the increasing NO which may lead to BW reduction. It 

was interesting to note that carrying a male neonate significantly impacted on NO concentration 

leading to reduced BW, while carrying a female neonate and being exposed to high levels of 

NOx increased BW (Table 7). Since, it is well known that male infants compared to female 

infants have a larger BW for GA [47]. 

 

Our results indicate that HIV may play a differential role in MDA induced effect on BW (Table 

7). It was observed that HIV- mothers were associated with an increase in BW (p=0.011) and 

HIV+ mothers were associated with a reduction in BW (p=0.052), as a consequence of 

increasing MDA (Table 6 and 7). Pregnancy is characterised by a high energy requirement and 

increased basal O2 demand that favours reactive oxygen species (ROS) production [43], and as 

such increased levels of ROS would be expected in HIV- mothers leading to increased MDA 

levels. However, this may not impact negatively on the foetus as scavengers of oxidants are 

present to help reduce ROS. This is observed in Figure 4, where SOD2 (Fig.4, p<0.05) and CAT 

(Fig.4, p>0.05) gene expression levels were greater in HIV- mothers compared to HIV+ 

mothers. The chronic oxidative stress observed in HIV+ patients [4] and increased NO 

production would lead to increased MDA concentrations, and potentially further increase NO 

levels (reciprocal interaction observed, Table 3 and 4), above antioxidants capacity. This could 

lead to vascular tissue damage, increased inflammation and alterations in placental O2 transfer 

which could impact negatively on foetal growth [45]. 

 

The Nrf2-Keap1 pathway is responsible for the regulation of antioxidants in response to 

oxidative damage to maintain homeostasis. Upon oxidative damage, Nrf2 dissociates from the 

Keap1 complex, allowing it to translocate to the nucleus where it binds to the ARE and induces 

the transcriptional activation of specific target genes, including SOD2, CAT and GPx [48]. This 

study showed that Nrf2 was positively associated with CAT and GPx (Table 9, p<0.05), with a 

significant increase observed in Nrf2, CAT and GPx expressions in HIV- south living patients 

compared to the total HIV- patients (Fig.4). A reduced Nrf2 expression was observed by Nagiah 

et al. [28], however HIV infection was not considered in their study and may explain the 

difference observed as HIV+ SD living patients had significantly reduced Nrf2 mRNA 

expression levels as compared to HIV- SD patients in this study (Fig.4B). It was interesting to 

note that the mRNA expression of SOD2 was significantly reduced in HIV+ patients compared 
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to HIV- patients; whilst HIV+ patients living in SD had greater SOD2 expressions than ND 

(Fig.4). The reduction of SOD2 in HIV+ patients could be due to the inhibition of SOD2 by the 

HIV Tat protein. It has been shown to inhibit the binding of Sp1 and Sp3 transcriptional factors 

to SOD2 gene promoter and binds to its mRNA [4]. The increase in SOD2 in south living HIV+ 

patients, also reported within Nagiah et al. SD patients [28], could be a result of increased 

maternal serum NO as it was observed within this study that serum NO was positively 

associated with SOD2 gene expression for SD patients whilst ND patients had a negative 

correlation between serum NO and SOD2 gene expression (Table 8). Reduced expression of 

OGG1 was observed for both HIV- and HIV+ SD patients compared to ND, which was also 

reported by Nagiah et al. [28]. However, this study identified a negative association that exists 

between maternal serum NO and OGG1 gene expression for both ND and SD patients (Table 

8). This is in agreement with literature where studies have reported that NO inhibits OGG1 gene 

expression [23,49]. 

 

Genetic susceptibility is highly important when considering interactions between the 

environment and health outcomes [50]. The study of epigenetics, defined as the study of 

heritable differences in gene expression that does not alter the DNA sequence, has been most 

notably highlighted as an important potential mechanism for regulation of the Nrf2-Keap1 

pathway [51]. Studies have shown that miR-144 and miR-28 are negatively associated with 

Nrf2 [25,26]. This study observed a similar effect, where an increase in miR-144 and miR-28 

expression levels led to a decrease in Nrf2 expression (Table 9), whilst miR-28 was positively 

associated with Keap1 (Table 9). The expression of miR-144 was reduced as a consequence of 

living in the industrialised SD but increased in HIV+ patients and exposure to atmospheric NOx 

(Table 10). MiR-144 has been shown previously to be upregulated in high viral load HIV+ 

patients [52]. The expression of miR-28 was decreased in HIV+ patients living in the 

industrialised SD (Table 10). MiR-28 has been reported to target the 3’-UTR of the HIV 

genome, thereby inhibiting HIV replication and contributing to viral latency [53]. These results 

suggest that HIV and atmospheric NOx induced miR-144 expression leading to reduced Nrf2 

expression levels and thus reducing antioxidant capacity with increased oxidative stress. 

 

The increase in oxidative stress, as a result of high pollution levels within the south could lead 

to the disruption of cellular calcium homeostasis. This homeostasis is necessary for the proper 

function of the ER’s protein folding machinery and disruption would lead to the activation of 

the UPR pathway [54,55]. The UPR endeavours to restore balance to the ER, failure to mitigate 

ER stress can lead to cellular death [56]. Upon increase in ER stress, the ER chaperone BiP 
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dissociates from UP sensors and activates the UPR. The UPR comprises of three separate arms 

initiated by PERK, IRE1α or ATF6. The PERK arm phosphorylates eIF2α which in turn induces 

translation of ATF4 mRNA. The PERK-eIF2α-ATF4 regulatory arm induces antioxidant stress-

response genes and pro-apoptotic genes including CHOP [57]. HIV- south living patients had 

increased eIF2, ATF4 and CHOP (Fig.6) gene expression levels compared to ND patients. 

Therefore the high levels of pollution found within the south, including atmospheric NOx would 

lead to increased ER stress via the PERK-eIF2-ATF4 pathway, thus increasing expression levels 

of CHOP which could lead to increased apoptosis. 

 

In conclusion, this study demonstrated increased maternal serum NO as a consequence of HIV 

infection, with reciprocal action on MDA levels. The induction of the miR-144 was implicated 

as a mechanism for increased oxidative stress due to HIV exposure. The PERK-eIF2α-ATF4 

pathway is proposed as a mechanism for increased ER stress due to exposure to the heavily 

polluted south Durban. Increased NO levels was observed to reduce BW, especially mothers 

exposed to higher levels of pollution. HIV was shown to differentially influence MDA effect on 

neonatal BW. The results of this study indicate that NO may play a key role in neonatal BW 

reduction as a consequence of traffic-related AP and HIV infection. This is of particular 

importance for SA, due to the high number of individuals with HIV infection and increased 

urbanisation. By identifying risks for LBW and PTB, it allows for the proper management and 

prevention of these adverse birth outcomes in developing countries. 

 

Acknowledgements 

All the participants in the MACE study.  

 

Funding 

SMA was supported by the National Research Foundation Innovative Doctoral Scholarship 

(Grant UID: 88564). This work was supported by the National Research Foundation (Grant 

UID: 90550), Medical Research Council, SA, AstraZeneca, SA and the College of Health 

Science, UKZN. The authors declare they have no actual or potential conflicts of interest. 

 

References 

[1] UNAIDS, UNAIDS Fact sheet November 2015: Global HIV Statistics, 2015. 

 http://www.unaids.org/en/regionscountries/countries/southafrica/ (accessed January 16, 

 2017). 



138 

 

[2] P.-L. Xiao, Y.-B. Zhou, Y. Chen, M.-X. Yang, X.-X. Song, Y. Shi, Q.-W. Jiang, 

 Association between maternal HIV infection and low birth weight and prematurity: a 

 meta-analysis of cohort studies, BMC Pregnancy Childbirth. 15 (2015) 1–11. 

 doi:10.1186/s12884-015-0684-z. 

[3] N.L. Fleischer, M. Merialdi, A. Van Donkelaar, F. Vadillo-Ortega, R. V. Martin, A. van 

 Donkelaar, F. Vadillo-Ortega, R. V. Martin, A.P. Betran, J.P. Souza, M.S. O’Neill, A. 

 Van Donkelaar, F. Vadillo-Ortega, R. V. Martin, A. van Donkelaar, F. Vadillo-Ortega, 

 R. V. Martin, A.P. Betran, J.P. Souza, M.S. O’Neill, Outdoor Air Pollution , Preterm 

 Birth , and Low Birth Weight : Analysis of the World Health Organization Global 

 Survey on Maternal and Perinatal Health, Environ. Health Perspect. 122 (2014) 425–

 430. doi:10.1289/ehp.1306837. 

[4] A. Ivanov, V.T. Values-Elliston, O.N. Ivanova, S.N. Kochetkov, E. Starodubova, B. 

 Bartosch, M. Isaguliants, Oxidative Stress During HIV Infection: Mechanisms and 

 Consequences, Oxid. Med. Cell. Longev. 2016 (2016) 1–18. 

 doi:10.1155/2016/8910396. 

[5] D. Torre, A. Pugliese, F. Speranza, Reviews Role of nitric oxide in HIV-1 infection : 

 friend or foe ?, 2 (2002) 273–280. 

[6] G. Giovannoni, R.F. Miller, S.J.R. Heales, J.M. Land, M.J.G. Harrison, E.J. Thompson, 

 Elevated cerebrospinal fluid and serum nitrate and nitrite levels in patients with central 

 nervous system complications of HIV-1 infection: A correlation with blood-brain-

 barrier dysfunction, J. Neurol. Sci. 156 (1998) 53–58. doi:10.1016/S0022-

 510X(98)00021-5. 

[7] A.N.C. Simão, V.J. Victorino, H.K. Morimoto, E.M.V. Reiche, C. Panis, Redox-driven 

 events in the human immunodeficiency virus type 1 (HIV-1) infection and their clinical 

 implications., Curr. HIV Res. 13 (2015) 143–50. 

 http://www.ncbi.nlm.nih.gov/pubmed/25771095. 

[8] X. Deng, R.A. Deitrich, Ethanol Metabolism and Effects: Nitric Oxide and its 

 Interaction, Curr. Clin. Pharmacol. 2 (2007) 145–153. 

[9] V. Calabrese, C. Cornelius, E. Rizzarelli, J.B. Owen, A.T. Dinkova-Kostova, D.A. 

 Butterfield, Nitric Oxide in Cell Survival: A Janus Molecule, Antioxid. Redox Signal. 

 11 (2009) 2717–2739. doi:10.1089/ars.2009.2721. 



139 

 

[10] E. Bakan, S. Taysi, M.F. Polat, S. Dalga, Z. Umudum, N. Bakan, M. Gumus, Nitric 

 oxide levels and lipid peroxidation in plasma of patients with gastric cancer, Jpn J Clin 

 Oncol. 32 (2002) 162–166. http://www.ncbi.nlm.nih.gov/pubmed/12110642. 

[11] S. Chadha, V. Jain, I. Gupta, M. Khullar, Nitric oxide metabolite levels in preterm 

 labor., J. Obstet. Gynaecol. Res. 33 (2007) 710–7. doi:10.1111/j.1447-

 0756.2007.00639.x. 

[12] J.M.C. Gutteridge, Lipid-peroxidation and antioxidants as biomarkers of tissue-damage, 

 Clin. Chem. 41 (1995) 1819–1828. doi:7497639. 

[13] S. Tabacova, D.D. Baird, L. Balabaeva, Exposure to oxidized nitrogen: lipid 

 peroxidation and neonatal health risk, Arch Env. Heal. 53 (1998) 214–221. 

 doi:10.1080/00039899809605698. 

[14] S.W. Walsh, Y. Wang, Secretion of lipid peroxides by the human placenta, Am. J. 

 Obstet. Gynecol. 169 (1993) 1462–1466. doi:https://doi.org/10.1016/0002-

 9378(93)90419-J. 

[15] F.J. Kelly, Oxidative stress: its role in air pollution and adverse health effects., Occup. 

 Environ. Med. 60 (2003) 612–616. doi:10.1136/oem.60.8.612. 

[16] N. Castiglione, S. Rinaldo, G. Giardina, V. Stelitano, F. Cutruzzolà, Nitrite and Nitrite 

 Reductases: From Molecular Mechanisms to Significance in Human Health and 

 Disease, Antioxid. Redox Signal. 17 (2012) 684–716. doi:10.1089/ars.2011.4196. 

[17] J. Seo, E. Ha, O. Kim, B. Kim, H. Park, J. Leem, Y. Hong, Y. Kim, Environmental 

 health surveillance of low birth weight in Seoul using air monitoring and birth data [in 

 Korean]., J. Prev Med Public Heal. 40 (2007) 363–370. 

 doi:https://doi.org/10.3961/jpmph.2007.40.5.363. 

[18] I. Kloog, S.J. Melly, W.L. Ridgway, B. a Coull, J. Schwartz, Using new satellite based 

 exposure methods to study the association between pregnancy pm2.5 exposure, 

 premature birth and birth weight in Massachusetts, Environ. Heal. 11 (2012) 40. 

 doi:10.1186/1476-069X-11-40. 

[19] Z.P. Vassilev, M.G. Robson, J.B. Klotz, Outdoor exposure to airborne polycyclic 

 organic matter and adverse reproductive outcomes: A pilot study, Am. J. Ind. Med. 40 

 (2001) 255–262. 



140 

 

[20] X. Wang, H. Ding, L. Ryan, X. Xu, Association between air pollution and low birth 

 weight: a community-based study., Environ. Health Perspect. 105 (1997) 514–520. 

 doi:10.1289/ehp.97105514. 

[21] T.W. Kensler, N. Wakabayashi, S. Biswal, Cell survival responses to environmental 

 stresses via the Keap1-Nrf2-ARE pathway., Annu. Rev. Pharmacol. Toxicol. 47 (2007) 

 89–116. doi:10.1146/annurev.pharmtox.46.120604.141046. 

[22] M. Jaiswal, N.F. LaRusso, K. Nishioka, Y. Nakabeppu, G.J. Gores, Human Oggl, a 

 protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide (vol 61, pg 

 6388, 2001), Cancer Res. 61 (2001) 7705. 

[23] A. Bravard, M. Vacher, B. Gouget, A. Coutant, F.H. de Boisferon, S. Marsin, S. 

 Chevillard, J.P. Radicella, Redox regulation of human OGG1 activity in response to 

 cellular oxidative stress., Mol. Cell. Biol. 26 (2006) 7430–6. doi:10.1128/MCB.00624-

 06. 

[24] M. Kobayashi, M. Yamamoto, Molecular Mechanisms Activitating the Nrf2-Keap1 

 Pathway of Antioxidant Gene Regulation, Antioxid. Redox Signal. 7 (2005) 385–394. 

 doi:10.1089/ars.2005.7.385. 

[25] M. Yamamoto, A. Singh, F. Sava, M. Pui, S.J. Tebbutt, C. Carlsten, MicroRNA 

 expression in response to controlled exposure to diesel exhaust: attenuation by the 

 antioxidant N-acetylcysteine in a randomized crossover study., Environ. Health 

 Perspect. 121 (2013) 670–5. doi:10.1289/ehp.1205963. 

[26] M. Yang, Y. Yao, G. Eades, Y. Zhang, Q. Zhou, MiR-28 regulates Nrf2 expression 

 through a Keap1-independent mechanism., Breast Cancer Res. Treat. 129 (2011) 983–

 91. doi:10.1007/s10549-011-1604-1. 

[27] J.D. Malhotra, R.J. Kaufman, The Endoplasmic Reticulum and the Unfolded Protein 

 Response, Semin. Cell Dev. Biol. 18 (2007) 716–731. 

 doi:10.1016/j.semcdb.2007.09.003.The. 

[28] S. Nagiah, A. Phulukdaree, D. Naidoo, K. Ramcharan, R. Naidoo, D. Moodley, A. 

 Chuturgoon, Oxidative stress and air pollution exposure during pregnancy: A molecular 

 assessment., Hum. Exp. Toxicol. 34 (2015) 838–847. doi:10.1177/0960327114559992. 

[29] R. Beelen, G. Hoek, ESCAPE Exposure assessment manual, 2010. 

 http://www.escapeproject.eu/manuals/ESCAPE_Exposure-manualv9.pdf. 



141 

 

[30] S. Muttoo, L. Ramsay, B. Brunekreef, R. Beelen, K. Meliefste, R.N. Naidoo, Land Use 

 Regression Modelling Estimating Nitrogen Oxides Exposure in Industrial South 

 Durban, South Africa, Sci. Total Environ. 610–611 (2017) 1439–1447. 

 doi:10.1016/j.scitotenv.2017.07.278. 

[31] B. Halliwell, J.M. Gutteridge, Free radicals in biology and medicine, 3rd Editio, Oxford 

 Univeristy Press, Oxford, 1999. 

[32] K.J. Livak, T.D. Schmittgen, Analysis of Relative Gene Expression Data Using Real- 

 Time Quantitative PCR and the 2-ΔΔCt Method, Methods. 25 (2001) 402–408. 

 doi:10.1006/meth.2001.1262. 

[33] F. Chen, Y. Lu, V. Castranova, Y. Rojanasakul, K. Miyahara, Y. Shizuta, V. 

 Vallyathan, X. Shi, L.M. Demers, Nitric Oxide Inhibits HIV Tat-Induced NF- ␬ B 

 Activation, Nitric Oxide. 155 (1999) 275–284. doi:10.1016/S0002-9440(10)65121-8. 

[34] D. Pietraforte, E. Tritarelli, U. Tesra, M. Minetti, gp120 HIV envelope glycoprotein 

 increases the production of nitric oxide in human monocyte-derived macrophages., J. 

 Leukoc. Biol. 55 (1994) 175–182. 

[35] P.H. Groeneveld, F.P. Kroon, P.H. Nibbering, S.M. Bruisten, P. Van Swieten, R. Van 

 Furth, Increased production of nitric oxide correlates with viral load and activation of 

 mononuclear phagocytes in HIV-infected patients, Scand. J. Infect. Dis. 28 (1996) 341–

 345. doi:http://dx.doi.org/10.3109/00365549609037916. 

[36] D. Torre, G. Ferrario, F. Speranza, R. Martegani, C. Zeroli, Increased levels of nitrite in 

 the sera of children infected with human immunodeficiency virus type 1., Clin. Infect. 

 Dis. 22 (1996) 650–3. http://www.ncbi.nlm.nih.gov/pubmed/8729204. 

[37] D. Torre, G. Ferrario, G. Bonetta, F. Speranza, C. Zeroli, Production of nitric oxide 

 from peripheral blood mononuclear cells and polymorphonuclear leukocytes of patients 

 with HIV-1, AIDS. 9 (1995) 979–980. 

[38] R. Zangerlf, D. Fuchs, G. Reibnegger, G. Werner-Felmayer, H. Gallati, H. Wachter, 

 E.R. Werner, Serum Nitrite Plus Nitrate in Infection with Human Immunodeficiency 

 Virus Type-l, Immunobiol. 193 (1995) 59–70. doi:10.1016/S0171-2985(11)80155-5. 

[39] M.I. Bukrinsky, H.S. Nottet, H. Schmidtmayerova, L. Dubrovsky, C.R. Flanagan, M.E. 

 Mullins, S.A. Lipton, H.E. Gendelman, Regulation of nitric oxide synthase activity in 

 human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for 

 HIV-associated neurological disease., J. Exp. Med. 181 (1995) 735–45. 



142 

 

 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2191885&tool=pmcentrez&

 rendertype=abstract. 

[40] R. Huozha, S. Pandita, M. Ashutosh, Production of nitric oxide by Murrah buffalo 

 lymphocytes during gestation, Rev. Vet. 21 (2010) 895–899. 

[41] P.T. Ronaldson, R. Bendayan, HIV-1 viral envelope glycoprotein gp120 produces 

 oxidative stress and regulates the functional expression of multidrug resistance protein-

 1 (Mrp1) in glial cells, J. Neurochem. 106 (2008) 1298–1313. doi:10.1111/j.1471-

 4159.2008.05479.x. 

[42] A. Shah, S. Kumar, S.D. Simon, D.P. Singh, A. Kumar, HIV gp120- and 

 methamphetamine-mediated oxidative stress induces astrocyte apoptosis via 

 cytochrome P450 2E1., Cell Death Dis. 4 (2013) e850. doi:10.1038/cddis.2013.374. 

[43] M. Saker, N. Soulimane Mokhtari, S.A. Merzouk, H. Merzouk, B. Belarbi, M. Narce, 

 Oxidant and antioxidant status in mothers and their newborns according to birthweight, 

 Eur. J. Obstet. Gynecol. Reprod. Biol. 141 (2008) 95–99. 

 doi:10.1016/j.ejogrb.2008.07.013. 

[44] M.B. Grisham, D. Jourd’Heuil, D. a Wink, Nitric oxide. I. Physiological chemistry of 

 nitric oxide and its metabolites:implications in inflammation., Am. J. Physiol. 276 

 (1999) G315–G321. 

[45] L.A. Darrow, M. Klein, M.J. Strickland, J.A. Mulholland, P.E. Tolbert, Ambient air 

 pollution and birth weight in full-term infants in Atlanta, 1994-2004, Environ. Health 

 Perspect. 119 (2011) 731–737. doi:10.1289/ehp.1002785. 

[46] R.N. Naidoo, T. Robins, S. Batterman, G. Mentz, C. Jack, Ambient pollution and 

 respiratory outcomes among schoolchildren in Durban, South Africa, South African J. 

 Child Heal. 7 (2013) 127–134. doi:10.7196/sajch.598. 

[47] M.S. Kramer, R.W. Platt, S.W. Wen, K.S. Joseph, A. Allen, A New and Improved 

 Population-Based Birth Weight for Gestational Age, Pediatrics. 108 (2001) e35. 

 doi:10.1542/peds.108.2.e35. 

[48] Q. Ma, Role of Nrf2 in oxidative stress and toxicity, Annu. Rev. Pharmacol. Toxicol. 53 

 (2013) 401–426. 



143 

 

[49] D. Wink, J. Laval, The Fpg protein, a DNA repair enzyme, is inhibited by the 

 biomediator nitric oxide in vitro and in vivo., Carcinogenesis. 15 (1994) 2125–2129. 

 http://www.ncbi.nlm.nih.gov/pubmed/7955043. 

[50] I. Romieu, H. Moreno-Macias, S.J. London, Gene by environment interaction and 

 ambient air pollution., Proc. Am. Thorac. Soc. 7 (2010) 116–22. 

 doi:10.1513/pats.200909-097RM. 

[51] X. Cheng, C.H. Ku, R.C.M. Siow, Regulation of the Nrf2 antioxidant pathway by 

 microRNAs: New players in micromanaging redox homeostasis, Free Radic. Biol. Med. 

 64 (2013) 4–11. doi:10.1016/j.freeradbiomed.2013.07.025. 

[52] K. Duskova, P. Nagilla, H.-S. Le, P. Iyer, A. Thalamuthu, J. Martinson, Z. Bar-Joseph, 

 W. Buchanan, C. Rinaldo, V. Ayyavoo, MicroRNA regulation and its effects on cellular 

 transcriptome in human immunodeficiency virus-1 (HIV-1) infected individuals with 

 distinct viral load and CD4 cell counts., BMC Infect. Dis. 13 (2013) 250. 

 doi:10.1186/1471-2334-13-250. 

[53] J. Huang, F. Wang, E. Argyris, K. Chen, Z. Liang, H. Tian, W. Huang, K. Squires, G. 

 Verlinghieri, H. Zhang, Cellular microRNAs contribute to HIV-1 latency in resting 

 primary CD4+ T lymphocytes, Nat. Med. 13 (2007) 1241–1247. doi:10.1038/nm1639. 

[54] C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress 

 and beyond, Nat. Rev. Mol. Cell Biol. 13 (2012) 89–102. 

[55] G.S. Hotamisligil, Endoplasmic reticulum stress and the inflammatory basis of 

 metabolic disease, Cell. 140 (2010) 900–917. 

[56] G.J. Burton, E. Jauniaux, Oxidative stress., Best Pract. Res. Clin. Obstet. Gynaecol. 25 

 (2011) 287–299. doi:10.1016/j.bpobgyn.2010.10.016. 

[57] J.D. Malhotra, R.J. Kaufman, Endoplasmic reticulum stress and oxidative stress: a 

 vicious cycle or a double-edged sword?, Antioxid. Redox Signal. 9 (2007) 2277–2293. 

 doi:10.1089/ars.2007.1782. 

 

 

 

 

 

 



144 

 

CHAPTER 5 

Discussion, Conclusion and Recommendations 

 

In the African region, approximately 2.2 million deaths per annum are linked to living or 

working within an unhealthy environment. Of these 270,000 deaths are associated with neonatal 

conditions including PTB and LBW [1]. South Africa, a rapidly developing country that is 

heavily burdened by HIV/AIDS [2] and obesity [3], faces rapid deterioration of the environment 

and air quality as a consequence of a growing urban population. This is most notably observed 

within SD, where residents that largely comprise low-income households or informal 

settlements are living within close proximity to heavily industrialised areas. In addition to these 

dense communities living near busy roads, they rely mostly on domestic fuels for cooking and 

heating [4]. Therefore, these dense human settlements are continuously exposed to large 

amounts of AAP and are greatly at risk for adverse AAP effects including respiratory conditions 

and adverse birth outcomes [5].  

 

In SA, individuals living within low-income households or informal settlements rely largely on 

healthcare within government hospitals. These hospitals are often overcrowded and have limited 

provisions to care for premature babies or those born with adverse birth outcomes [6, 7]. 

Therefore, it is essential to identify novel biomarkers or interventional therapies to help reduce 

the burden of adverse birth outcomes. To do this understanding the aetiology of adverse birth 

outcomes is crucial and to determine risk factors associated with individual susceptibility to 

these conditions. Ambient air pollution and OS have been implicated in adverse birth outcome 

aetiology, including genetic susceptibility.  Pregnant women living within the SD have been 

reported to have increased OS markers [8], in addition to high pollution levels detected within 

SD [9, 10] makes for an ideal follow up study to determine their effects on adverse birth 

outcome susceptibility within this population. Therefore this study was conducted to investigate 

oxidative and endoplasmic stress responses within pregnant women exposed to AAP living 

within Durban (SA) and determined their effect on PTB and LBW susceptibility. In addition, 

HIV infection, obesity and gene-environment interactions were determined; this is paramount 

within SA context due to the heavy burden of these conditions. 

 

First, it was shown that an increase in atmospheric NOx exposure induced OS via the formation 

of 8-OHdG adducts within pregnant women, this was most noticeably observed within SD and 

for women carrying female neonates. This direct association was identified after the initial 
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finding that SD had higher levels of atmospheric NOx and pregnant women living in SD had 

greater concentrations of serum 8-OHdG. Inhalation of atmospheric NOx and subsequent 

absorption into the lung leads to the formation of free radicals that are able to directly interact 

with macromolecules present including DNA. This induces the production of mutagenic 8-

OHdG lesions leading to increased OS [11, 12]. Antioxidants such as GST are important 

controllers of OS; however, polymorphisms exist within GSTM1 and GSTP1 which have been 

shown to influence an individual’s response to toxic insult viz. exposure to AAP [13–15]. 

Pregnant women carrying the variant GSTP1 genotypes had increased susceptibility to OS 

following NOx exposure.  Although an increase in 8-OHdG did not directly influence the 

susceptibility to adverse birth outcomes, it may play a role in the reduction of GA. This 

reduction of GA as a consequence of increased atmospheric NOx levels was found to be 

significant only after maternal serum 8-OHdG levels were controlled within the multi-

regression analysis. In addition, carrying the variant GSTP1 genotypes and a male neonate 

increased the risk of reduced GA. It should be noted that although the individual reduction of 

GA was minimal, on a global scale this negative shift may lead to increased incidence of 

nationwide PTB. 

 

A polymorphism exists within OOG1; the key component within the DNA repair pathway that 

removes 8-OHdG adducts and reduces OS. This polymorphism (OGG1 Ser326Cys) has been 

suggested to affect BMI and therefore may predispose SA women to adverse effects of obesity 

[16]. In addition to obesity, SA is also heavily burdened with HIV infections where more than 

half the infected population are women [2, 3], which makes them susceptible to oxidative-

related injury including adverse birth outcomes [17–19].   The OGG1 Ser326Cys polymorphism 

was associated with HIV and obesity.  Pregnant women carrying the wt OGG1 Ser326Cys 

genotype were at greater risk for HIV associated LBW and PTB, this risk was found to increase 

in comorbid obese and HIV infected CC-carrying patients with those living in SD even more 

susceptible to HIV associated LBW. Women who were HIV+ and obese delivered larger BW 

neonates compared to HIV- obese women, therefore suggesting that comorbid HIV and obesity 

increases the risk for reduced BW and delivering LBW neonates. Women living within the 

heavily polluted SD and carrying the wt OGG1 Ser326Cys genotype had increased risk of 

delivering PTB neonates. Further investigation into the possible mechanism by which HIV, 

obesity and carrying the wt Ser326Cys OGG1 genotype increases the susceptibility of LBW and 

PTB may identify potential intervention strategies to help reduce the incidence of PTB with SA. 
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It has been reported that NO inhibits zinc-finger proteins, such as OGG1 [20, 21]. In addition, 

HIV patients present with increased levels of NO [22–24]. The levels of maternal serum NO 

were next investigated, as it may identify a potential pathway for adverse birth outcome 

susceptibility as a result of HIV or NOx exposure. As NO metabolites are known to initiate LP 

[25], maternal serum MDA levels were investigated in conjunction with NO levels.  HIV 

infection within pregnant women induced maternal serum NO production with reciprocal action 

on MDA levels. Atmospheric NOx was not shown to directly affect the concentration of NO, 

however living within SD strengthened the reciprocal activity of NO and MDA. 

 

This increase in NO, as a result of HIV induction, was shown to play a role in LBW aetiology 

through its ability to reduce neonatal BW and increased levels of NO present within mothers 

giving birth to LBW neonates.  The reduction or inhibition of foetal growth may be due to 

placental and pulmonary inflammation, with changes in endothelial and vascular functions 

leading to reduced placental blood flow and transfer of oxygen and nutrients between mother 

and foetus. Upon entry into the blood stream, NO binds to Hb and forms methHb that has 

reduced oxygen carrying capacity. This may prevent sufficient oxygenation of the foetus 

leading to reduced foetal growth [11, 26]. It was interesting to note that women carrying male 

neonates where highly susceptible to reduced BW as a consequence of increased NO 

concentrations, similarly observed above with reduced GA due to increased NOx exposure.  

 

In addition, HIV was shown to differentially affect MDAs effect on BW. In the presence of HIV 

infection, increased levels of MDA reduced neonatal BW. Whilst in the absence of HIV, 

increased levels of MDA increased neonatal BW. In the absence of HIV, antioxidants are able 

to scavenge free radicals which reduce the harmful effect of ROS and therefore would not 

impact negatively on foetal growth. However in the presence of HIV, the body is under chronic 

OS which induces high levels of NO and MDA above antioxidant capacity (decreased 

expression of SOD2 and CAT were observed). Furthermore, NO inhibited OGG1 gene 

expression, evidence by a negative association between serum NO and OGG1 expression, 

which may compromise the efficiency of the DNA repair pathway leading to increased DNA 

adducts and OS. This may cause vascular tissue damage, increased inflammation and alterations 

of placental oxygen exchange which may reduce foetal growth [27, 28].  

 

The key regulator of the antioxidant response, that endeavours to control oxidant homeostasis, is 

the transcription factor Nrf2 [29]. The expression of Nrf2 is under epigenetic control, where 

non-coding miRs including miR-144 and miR-28 have been described to suppress its expression 
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thereby preventing it from preforming its function [30–32]. This study provides further evidence 

for the inhibition of Nrf2 expression as a result of miR-144 and miR-28 induction, as observed 

by the negative association between miR-144/miR-28 and Nrf2. The exposure to HIV infection 

and increased levels of atmospheric NOx induced miR-144 expression within pregnant women. 

This has been proposed as a possible mechanism for OS induction and subsequent reduction in 

GA and BW as a consequence of HIV/NOx exposure. Targeting this pathway, through the 

suppression of Nrf2 inhibitors or the induction of Nrf2, may be a potential therapeutic invention 

strategy for the reduction of adverse birth outcome incidences. Where upon the activation of 

Nrf2, stimulates antioxidant gene transcription leading to reduced OS which may mitigate 

oxidative related injuries. However, further investigation into this pathway using a larger study 

size, is required to confirm these findings.  

 

Excessive ROS production, as observed within OS in response to high levels of pollution within 

SD, may lead to cellular calcium homeostasis. This disruption impairs the efficacy of the ER 

protein folding machinery resulting in the accumulation of UP and subsequent activation of the 

UPR [33]. It was observed that HIV- south living pregnant women were at greatest risk for ER 

stress, via the activation of the PERK-eIF2-ATF4 pathway, evidence by increased expression of 

eIF2, ATF4 and CHOP. This may further increase ROS production, due to the reciprocal 

activity of ER stress on OS and vice versa, potentiating oxidant-related injury [34]. This may 

predispose pregnant women living within SD to adverse birth outcomes. Investigating the other 

two arms of UPR, i.e. IRE1α and ATF6, in future studies would give further insight into the 

mechanism of ER stress induced OS and possible negative impacts on foetal growth. 

 

In conclusion, pregnant women living within SD and exposed to increased levels of atmospheric 

NOx and HIV infection have elevated OS which predisposes them to adverse birth outcomes. 

Implicated in the elevation of OS: induction of miR-144 leading to reduced Nrf2 control and 

antioxidant response, activation of the PERK-eIF2-ATF4 UPR pathway and the induction of 

NO, which plays a key role in HIV associated LBW/PTB. Pregnant women carrying the variant 

GSTP1 and wt OGG1 Ser326Cys genotypes were found to be susceptible to reduced GA and 

PTB, respectively. However, as disease aetiologies involve complex interactions between 

different genes and the environment, future studies focusing on multiple gene and environment 

interactions may give further insight into adverse birth outcome susceptibility as a result of 

AAP exposure. 
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The limitations for this study include a relatively small sample size; the power of the results 

would increase with a larger study population. In addition, this study focused on only one 

specific pollutant (NOx). As individuals are exposed to several pollutants within the air at once 

(e.g. PM. SO2, CO and NOx), studying pollutant interactions, gene-pollutant and multiple gene-

pollutant interactions may give further insight into the mechanistic link between elevated OS 

and adverse birth outcomes. Furthermore, the ethnicity of study participants should be 

considered (even though the majority of our study participants were black South Africans), as 

polymorphic susceptibilities vary among different racial groups. 
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APPENDIX 1 

Ethical Approval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



154 

 

APPENDIX 2 

 

Determination of Single Nucleotide Polymorphism Genotypes 

As described within the methodology sections of chapter 2 and 3, the genotypes of SNPs were 

determined using the differential PCR or PCR-RFLP. The visualisation of the amplification 

products after electrophoresis was done using the Bio-Rad ChemiDoc
TM

 XRS+ System and 

Image Lab
TM

 Software. The following band images were obtained to represent the genotypes of 

the SNPs investigated: 

 

Chapter 2 – The effect of NOx pollution on oxidative stress in pregnant women living in Duran, 

South Africa 

 

GSTM1 SNP genotypes 

 

 

 

 

Figure A2.1 Visualisation of GSTM1differential PCR amplicons after electrophoresis, representing the 

genotypes of the GSTM1 SNP. The 0/+ genotype is represented by two bands, a 268bp and 218bp 

amplicon. The 0/0 genotype is represented by one band, the 268bp amplicon. 

 

GSTP1 SNP Genotypes 

 

 

 

 

 

 

 

Figure A2.2 Visualisation of GSTP1 PCR-RFLP amplicons after electrophoresis, representing the 

genotypes of the GSTP1 SNP. The homozygous AA genotype is represented by a single band (176bp), 

the heterozygous AG genotype is represented by three bands (176bp, 91bp and 85bp), whilst the 

homozygous GG genotype is represented by two bands (91bp and 85bp). 
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Genotypes       AA   AA    AG    GG    AG    AG   AG    AA    AG    AG    AG     GG   GG 

176bp 

91bp 
85bp 



155 

 

Chapter 3 – OGG1 Ser326Cys polymorphism, HIV, obesity and air pollution exposure 

influences adverse birth outcome susceptibility, within South African Women 

 

OGG1 SNP genotypes 

 

 

 

 

 

 

 

 

 

Figure A2.3 Visualisation of the OGG1 PCR-RFLP amplicons after electrophoresis, representing the 

genotypes of the OGG1 SNP. All genotypes have a 21bp amplicon due to a Sat1 invariant site induced by 

the mismatch. The homozygous CC genotype is represented by a one band (213bp), the heterozygous CG 

genotype is represented by three bands (213bp, 164bp and 49bp), whilst the homozygous GG genotype is 

represented by two bands (164bp and 49bp). 
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APPENDIX 3 

 

Quantification of 8-oxoguanosine – Standard curve for Chapter 2 

The OxiSelect™ Oxidative DNA Damage ELISA Kit (Cell Biolabs. Inc.) was used to quantify 

the concentration of 8-OHdG within maternal serum samples.  Ten 8-OHdG standards were 

prepared through serial dilution, where 10µL of the 8-OHdG was diluted in 990µL of assay 

diluent, followed by 8 dilutions of 500µL assay diluent. The last standard would contain only 

assay diluent which would set up 10 standards of 8-OHdG with concentrations ranging from 0-

20ng/mL. A standard curve was set up following the completed assay as per manufacturer’s 

instructions (Figure A3.1). This was used to generate a logarithmic equation for the best fit line 

which was used to extrapolate the concentrations of the unknown samples. 

 

 

Figure A3.1 Standard curve using known 8-OHdG concentrations (in duplicate) to extrapolate the 8-

OHdG concentration within unknown serum samples using the OxiSelect™ Oxidative DNA Damage 

ELISA. 
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APPENDIX 4 

 

Chapter 3 – OGG1 Ser326Cys polymorphism, HIV, obesity and air pollution exposure 

influences adverse birth outcome susceptibility, within South African Women – 

Supplementary Material 

 

Table A4.1 OGG1 Genotypic and obesity frequency distributions among patients delivering 

LBW or NBW neonates, at term (TB) or pre-term (PTB) that are HIV+ and HIV- (n=302) 

 Birth Weight (g) Gestational Age (weeks) 

 NBW n(%) LBW n(%) p-value TB n(%) PTB n(%) p-value 

Non-obese, CC genotype      

T3       

    56 (90.32) 6 (9.68) 
*0.024 

    17 (70.83) 7 (29.17) 

Obese, CC genotype      

T3       
HIV- 44 (93.62) 3 (6.38) 

*0.029 
   

HIV+ 39 (78) 11 (22)    

Obese, South living      

T1       
HIV- 45 (97.83) 1 (2.17) 

*0.022 
   

HIV+ 19 (82.61) 4 (17.39)    
n=sample size, NBW= normal birth weight, LBW= low birth weight, TB=term birth, PTB= pre-term birth 

NBW (>2500g), LBW (<2500g), TB (>37 weeks), PTB (<37 weeks) 

Statistical significance: *p<0.05 
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Table A4.2 Impact of maternal clinical characteristics on the risk of low birth weight – 

a multi-variate logistic regression analysis (n=128) 

Variable OR
a
 (95%CI) p-value 

 Low Birth Weight 

HIV 0.844 (0.045, 15.74) 0.910 

Maternal age 1.10 (0.783, 1.55) 0.578 

BMI 1.00 (0.999, 1.00) 0.482 

Hb 1.01 (0.960, 1.06) 0.746 

Iron 0.995 (0.956, 1.04) 0.836 

BP systolic 1.00 (0.999, 1.00) 0.770 

BP diastolic 0.999 (0.996, 1.00) 0.135 

OGG1 (CC genotype) 0.407 (0.013, 12.99) 0.611 

Area (South) 0.959 (0.028, 33.34) 0.982 

NOx levels 1.23 (0.990, 1.54) 0.061 

 R2 = 0.7930 (**p<0.0001) 

Results described: OR, (95%CI), p-value with regression model R
2
-value and p-value 

n= sample size, OR= odds ratio, CI= confidence interval, HIV= HIV positive, BMI= body mass index, Hb= 

haemoglobin, BP= blood pressure, OGG1 represents CC genotype, Area represents heavily polluted south 
a
Adjusted for maternal characteristics: HIV status, BMI, area, NOx levels, maternal age, haemoglobin, iron, 

blood pressure systolic and diastolic, OGG1 CC SNP and neonatal characteristics: low birth weight, neonate 

gender, parity, body: brain index, ponderal index, Apgar scores 1min and 5min (head circumference and 

neonatal length weren’t adjusted for because of collinearity) 

Statistical significance: **p<0.01, *p<0.05 
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Table A4.3 OGG1 Genotypic frequency distributions among patients delivering male and female 

neonates that are NBW/LBW, at TB/PTB that are HIV+ and HIV- (n=302) 

 Birth Weight (g) Gestational Age (weeks) 

 NBW n(%) LBW n(%) p-value TB n(%) PTB n(%) p-value 

Male       

HIV- 128 (88.28) 17 (11.72) 0.417 137 (94.48) 8 (5.52) *0.024 

HIV+ 71 (84.52) 13 (15.48)  72 (85.71) 12 (14.29)  

Female       

HIV- 132 (88.59) 17 (11.41) 0.073 133 (89.86) 15 (10.14) 0.813 

HIV+ 54 (79.41) 14 (14.29)  60 (90.91) 6 (9.09)  

Male CC       

HIV- 53 (88.33) 7 (11.67) 0.440 56 (93.33) 4 (6.67) *0.05 

HIV+ 34 (82.93) 7 (17.07)  33 (80.49) 8 (19.51)  

Male CG+GG       

HIV- 29 (82.86) 6 (17.14) 0.726 33 (94.29) 2 (5.71) 0.322 

HIV+ 11 (78.57) 3 (21.43)  12 (85.71) 2 (14.29)  

Female CC       

HIV- 45 (91.84) 4 (8.16) *0.024 44 (89.80) 5 (10.20) 0.325 

HIV+ 25 (73.53) 9 (26.47)  28 (82.35) 6 (17.65)  

Female CG+GG       

HIV- 33 (89.19) 4 (10.81) 0.890 33 (89.19) 4 (10.81) 0.362 

HIV+ 7 (87.50) 1 (12.50)  7 (100) 0 (0)  

n=sample size, NBW= normal birth weight, LBW= low birth weight, TB=term birth, PTB= pre-term birth 

NBW (>2500g), LBW (<2500g), TB (>37 weeks), PTB (<37 weeks) 

Statistical significance: *p<0.05 
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APPENDIX 5 

 

Quantification of nitrites and nitrates – Standard curve for Chapter 4 

An in-house method for the quantification of NO metabolites (nitrites/nitrates) was used to 

determine the concentration of NO within maternal serum samples.  Nine sodium nitrate 

standards were prepared through serial dilution. The last standard would contain only dH2O 

which would set up 9 standards of known nitrate concentration ranging from 0-200µM. After 

the assay was performed, as described in chapter 4 methodology section, a standard curve was 

set up (Figure A5.1). This was used to generate a linear equation for the best fit line which was 

used to extrapolate the concentrations of the unknown serum samples. 

 

 

Figure A5.1 Standard curve set up with known sodium nitrate concentrations (in duplicate) to extrapolate 

the NO concentration within unknown serum samples. 
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APPENDIX 6 

 

Chapter 4 – HIV induces nitric oxide and lipid peroxidation, which influences neonatal 

birthweight in a South African population – Supplementary Material 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A6.1 Maternal serum NO (µM) (A) and MDA (µM) (B) levels between HIV+ and HIV- mothers 

who deliver low birthweight (LBW) (<2500g) and normal birthweight (NBW) (>2500g) neonates. 
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