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ABSTRACT

Hillslope mechanisms and processes are a complex and dynamic set of
interactions, but are nevertheless vital components of hydrology due to their
critical interactions with surface and groundwater (Lorentz, 2001a). In order to
observe and quantify these flow generating mechanisms, the Weatherley
subcatchment was selected where the components of streamflow generation
have been studied and can be quantified separately. Surface, shallow
subsurface and the deeper groundwater interactions are particularly important
when quantifying runoff generation from within hillslope, riparian and wetland
zones as they are the dominant runoff generating zones within the Weatherley
catchment. These components of flow are important to quantify for the further
study of flow generation mechanisms, their dynamics and fluxes at the
hillslope and small catchment scale, low flow contributions, climate change as
well as the consequences of land use change (Lorentz, 2001b).

Transfer functions were found to be the best adaptation of hydrograph
separation for distributed hydrological modelling purposes when attempting to
guantify the various streamflow hydrograph components. In this study, the
runoff components were simulated along transects using the HYDRUS-2D
model, where the simulated soil water dynamics are compared with the
observed tensions and water contents at different depths within the soil profile
in order to quantify the contributing hillslope fluxes to streamflow generation.
The 2001 data set was used with the rainfall and potential evapotranspiration
data being converted into rates according to the breakpoint rainfall data. The
HYDRUS-2D modelling exercise is performed to calculate the variety of flux
rates (timing and quantities) within the subcatchment, so that the overall
stream hydrograph can be properly deduced when modelling this catchment
with transfer functions in the future. An understanding of the driving forces as
well as the behaviour of sources and flow paths was extracted from this
thesis, along with gaining some knowledge about the mechanisms and
behaviour of streamflow generating mechanisms at the hillslope and small
catchment scale.



Troch et al (2003) clearly encapsulates the essence of modern day catchment
hydrology in stating that hillslope response to rainfall remains one of the most
central problems of catchment hydrology in order to quantify catchment
responses. The processes whereby rainfall becomes runoff continue to be
difficult to quantify and conceptualise (Uhlenbrook et al., 2003) and this is
because the characterisation of subsurface water flow components is one of
the most complex and challenging tasks in the study of the hydrologic cycle
(Achet et al., 2002). Since trying to understand the temporal and spatial
variability of moisture content and the subsurface flow mechanisms is a
complicated problem (Achet et al., 2002), an attempt is made in this thesis to
gain insights into the temporal and spatial variability of soil tensions and soil
moisture content at various depths on hillslope transects by combining
modelling exercises with field observations. From this modelling, the hillslope
water balance and contributing fluxes are derived in effort to augment, at a

later stage, the hillslope response functions.
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1. INTRODUCTION

Hillslope hydrology mechanisms and processes are a complex and dynamic
set of interactions, but are nevertheless vital components of hydrology due to
their critical interactions with surface and groundwater. These hillslope
processes describe the streamflow generation mechanisms that may vary in
time, magnitude and space are well defined in the Weatherley Catchment;
located in the north Eastern Cape (Lorentz, 2001a). Lorentz (2001b) said that
“the study of flow generation mechanisms at the hillslope and small catchment
scale is important in quantifying runoff generation dynamics, low flow
contributions as well as the consequences of land use change” and followed
that “this is important because mechanisms of water storage during wet
periods and subsequent release from hillslopes during dry periods affect the
sustainability of small catchment practices and can have significant control on
the low-flow rates at the large catchment scale”. It was deemed valuable to
define flow generation and its’ subsequent storage as components of the
hydrograph within the hillslopes of the Weatherley catchment. These
processes were studied and it was decided from reviewing literature that
these mechanisms should be considered in terms of hydrograph separation
and transfer function modelling. From this review, it was found that transfer
functions were the best adaptation of hydrograph separation for distributed
hydrological modelling purposes when attempting to quantify the various
streamflow hydrograph components. They are particularly attractive because
they use readily available hydrological inputs. Transfer functions also
embrace the temporal and spatial variability of rainfall (both in depth and
intensity) and can aptly simulate the long “tail” phenomenon often
encountered on the receding limb of the hydrograph, which is especially
important in times of low flow. Normally, different transfer functions are
associated with different source areas within the catchment and there can
theoretically be any number of combinations of the streamflow sources
contributing to the total streamflow hydrograph. A further complication is that
hillslopes are dynamically different, with local factors being known to have a



greater control in the spatial distribution of soil moisture than the
distinguishable topographic attributes (Puigdefabregas et al., 1998).

The objective of this study was therefore to provide the hillslope flux
responses for translation into transfer functions, at a later stage, for simulating
the hillslopes soil water component of catchment responses. In order to do
this, the aims of this study are to stimulate the need for hillslope response
function modelling; observe hillslope responses; simulate vertical and lateral
fluxes at the hillslope scale and to provide a guide to transfer function
development for hillslope reponse mechanisms.

Surface, shallow groundwater and the deeper groundwater interactions are
particularly important when quantifying runoff generation from hillslope,
riparian and wetland zones as they are generally the dominant runoff
generating zones within the Weatherley catchment. These zones are all well
represented in the Weatherley catchment. These source area flow
components are therefore grouped in this thesis according to the contributing
hillslope transects that they represent, as the overland flow component, the
macropore flow component, the seepage flow component, the perched
groundwater and the deep groundwater flow component within the upslope,
wetland and the riparian streamflow generating zones, because they have
been recognized as the first-order qualitative controls on hydrological
behaviour of the Weatherley catchment. Following this, Troch et al., (2003)
clearly encapsulates the essence of modern day catchment hydrology in
stating that hillslope response to rainfall remains one of the most central
problems of catchment hydrology in order to quantify catchment responses.
Troch et al.,, (2003) holds that hillslopes are indeed the basic landscape
elements of catchments, therefore understanding the interactions and
feedbacks between hillslope forms and the processes responsible for the
transportation of water, sediments, and pollutants is of great importance for
catchment scale water and land management. The processes whereby rainfall
becomes runoff continue to be difficult to quantify and conceptualise
(Uhlenbrook et al., 2003) and this is because the characterisation of

subsurface water flow components is one of the most complex and



challenging tasks in the study of the hydrologic cycle (Achet et al., 2006). The
various mechanisms of soil moisture accumulation at the base of the slope
under unsaturated semi-arid conditions are not well understood (Achet et al.,
2002).

In fact, following Achet et al., (2002), there is a unique and typical control on
soil moisture content and thus according to Bogaart and Troch (2003),
streamflow generating mechanisms are therefore subject to a complex
interplay of several factors including antecedent moisture conditions,
snowmelt or precipitation input, soil depth, soil hydraulic properties, slope
angle, vegetation characteristics, depth to water table, surface and bedrock
topography as well as other ecological properties of the catchment. In order to
observe and quantify these flow generating mechanisms, the Weatherley
catchment was selected. The Weatherley catchment is situated near the town
of Maclear in the Mooi river catchment that contributes to the Umzimvubu
basin, which supplies water to the people of the old rural Transkei “homeland”
area where there is a demand for potable and agricultural water. This basin is
sensitive to many anthropogenic influences, where commercial agriculture,
irrigation, domestic and rural settlements and forestry all compete for water
use (Lorentz, 2001b).

Since trying to understand the temporal and spatial variability of moisture
content and the subsurface flow mechanisms is a complicated problem (Achet
et al., 2006), an attempt is made in this thesis to gain insights into the
temporal and spatial variability of soil tensions and soil moisture content at
various depths on hillslope transects by combining modelling exercises with
field observations from the Weatherley catchment. From these simulations of
the Weatherley catchment, conclusions can be drawn as to the source of low
flows either being sustained by accumulations of localized upslope water
contributions at the subcatchment scale or from contributions from deep

regional groundwater bodies.

Nevertheless, in order to use the transfer functions at the hillslope scale, the

runoff components need to be quantified along the transects that run through



the Weatherley research catchment. This is done with the HYDRUS-2D
model, where the simulated soil water dynamics at different depths are
compared to the measurements that were observed in the Weatherley
catchment in 2001 from detailed hydrometric data such as tensiometers
(automatically logged at twelve minute intervals), perched groundwater
observation holes (physically measured monthly) and neutron meter probes in
order to quantify the different contributions from the various source areas. The
2001 data set was used, with the rainfall and potential evapotranspiration data
being converted into rates according to the breakpoint rainfall data. The
HYDRUS-2D modelling exercise is performed to calculate the variation of flux
rates (timing and quantities) within the catchment, so that the overall stream
hydrograph can be properly separated into components of flow when
modelling the catchment with transfer functions in the future. The fluxes are
guantified at different depths within the soil profile and also for the various
source areas in order to develop transfer functions for surface flow, perched
groundwater and deep groundwater type flows along the hillslope, wetland

and riparian zones.

From quantifying these source area fluxes, the correct transfer function for
application in a convolution integral can be selected for the various
contributing areas apparent within the Weatherley catchment. In order to
accurately differentiate between the various source areas, Geographic
information systems (GIS) are used as a tool to delineate the various source
areas for distributed modelling purposes within the Weatherley catchment.
The areas of streamflow generating mechanisms are then identified and
delineated. The soils, land use and the digital elevation model (DEM) grids
are used for this distributed type delineated modelling. McGlynn and
McDonnell (2003) adopted a new approach, which identifies the most basic
units of the watershed, and examines how they store, receive, and deliver
water during and between rainfall events. These basic units can be identified
because the topographic, hydrologic and pedologic variability that exists
between hillslope and riparian areas offer a clear, unambiguous differentiation
and thus allow mapping based on solute signatures, soils, landform
(toposequence) and observed responses to storm precipitation.



These same transfer functions that are to be developed for the specified
source areas within the small Weatherley catchment (1.5 km?) can then be
applied to guide the modelling of the much larger Mooi river catchment (about
360 km?) in a similar way with distributed hydrological modelling. Once this is
achieved, the effects of climate change, forestry and pollution as well as
sediment studies can be applied to various catchments without intensive data

collection surveys being necessary.



2. HYDROGRAPH SEPERATION AS A TOOL FOR DISTRIBUTED
HYDROLOGICAL MODELLING

The catchment landscape systems controlling storm runoff generation, it's
timing, and the runoff mixing dynamics are inadequately tacit (McGlynn and
McDonnell, 2003). While much work continues on watershed-scale models of
runoff formation, pioneering tools for clear, unambiguous separation and
simplification of the runoff hydrograph is still being sought after by researchers
(Weiler et al., 2003). According to McGlynn and McDonnell (2003), while the
geographic source areas (Hooper and Shoemaker, 1986; McDonnell et al.,
1991; Noguchi et al., 1999; Lorentz et al., 2003; Lorentz and Hickson, 2001,
Scanlon et al., 2000) and temporal sources (Sklash et al., 1986; McDonnell,
1990; Asano et al.,, 2002) of stormflow have been extensively studied, a
generalizable perception of which landscape units contribute to which parts of
the stormflow hydrograph remains elusive. This is important because, “until
we can relate the catchment hydrologic mechanisms to the stream response,
models of landuse change, non-point source pollution, and low flow estimation
will be poorly understood” (McGlynn and McDonnell, 2003). This frequently
researched subject on disaggregating the land surface into sub-areas of
similar behaviour such as hydrological response units or dynamic contributing
areas is well covered by a plethora of literature over the last few decades.
Most studies, however, focus rather on the qualitative investigation of these
flowpaths with little quantitative understanding of the individual processes
within the catchment or their integration. Thus, the amalgamation of
techniques using various extensive methodologies from subsurface resistivity
to time domain reflectometry (TDR) surveys, hydrometric, isotopic and solute
tracer data in a landscape discretization context are necessary to acquire an
undeniable understanding and quantification of both spatial and temporal
runoff sources (McGlynn and McDonnell, 2003).

Confusion and mishandling follow the utilization of tracer studies alone for
hydrograph separation, with multiple combinations of tracer concentrations

and volumes occurring with similar outflow tracer dynamics. Also, only



external information is used and the outcomes are routinely accepted as the
unequivocal results by the majority of model users, resulting with the
processes often being somewhat misunderstood. Within the plethora of
hydrograph separation knowledge there are a number of techniques that can
be used as tools for expressing the components of streamflow qualitatively
and quantitatively. Throughout the world, many chemical and natural isoptope
tracer experiments have been used to identify hillslope flowpaths with varying
precision, but are indeed useful in the process of quantifying the components
of streamflow from different contributions within catchments. The component
hydrograph separations are useful, but end-member mixing analysis (EMMA)
portrays the streamflow components graphically (“mixing diagrams”) as well
as quantitatively and gives some information as to the residence times on an
event basis based on a subscribed statistical approach. These experiments
have helped considerably in the building up of methodologies for two, three
and five component hydrograph separation. EMMA has also been used to
assess the involvement of a particular component in catchments where the
dominant hydrological flowpaths are known (Katsuyama et al., 2001). More
recently these tracer experiments have been used in union with the
application of transfer functions in unfolding the travel times of event and pre-
event water as well as the overall water flux response (Weiler et al., 2003).
Despite the many studies that have been done this past decade by combining
tracer and hydrometric rainfall-runoff data, we still do not identify with the
timing, flow path, and source behaviour of catchments (Burns, 2002).

Hydrograph separation models allow the simulation of catchment runoff
response to storm events, but do not divulge how the catchment system
actually works (Kendall et al.,, 2001). It has become clear that the real
restriction on predicting catchment runoff is not the detail involved in the
model configuration but in defining the features of the individual areas being
modelled (Alila et al., 2001; Beven, 2001). This includes identifying those
areas where high saturated hydraulic conductivities, high antecedent moisture
conditions, lateral flows, macropore flows and preferential pathways dominate
the landscape features (Ballantine and Dunne, 2001; Elsenbeer, 2001). Also,
according to McGlynn and McDonnell (2003), we have known for some time



that hillslope and near-stream riparian zones perform and respond in different
ways to storm precipitation. Therefore, there is no quick and easy way of
accomplishing a hydrograph separation and according to Fluhler and
Hagedorn (2