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ABSTRACT 

 

The overall aim of this PhD study was to develop protocols to improve the efficiency 

of eucalypt controlled pollinations (CPs) in order to make it more cost-effective for 

forestry companies to perform them on a commercial scale on small-flowered species.  

To achieve this, three research areas were explored, namely pollen handling, 

breeding systems and controlled pollination technique.  Study species were 

Eucalyptus grandis, E. dunnii, E. smithii, E. nitens, E. urophylla and E. macarthurii.    

 

The first specific aim of the study was to identify a suitable liquid in vitro germination 

medium for reliably testing pollen viability of all six study species.  Six levels of 

sucrose [0, 10, 20, 30, 40 and 50% (w/v)] were tested, both with (0.15 mg l-1) and 

without boric acid.  The optimal sucrose concentration was found to be 30% (w/v), 

with boric acid stimulating pollen tube growth.  A second aim was to determine 

temperatures suitable for the short-, medium- and long-term storage of E. smithii, E. 

nitens and E. grandis pollen.  Pollen samples were stored at room (25oC), refrigerator 

(4oC), freezer (-10oC) and liquid nitrogen (-196oC) temperatures, and pollen viability 

tested every two months over a 12-month period.  There was a rapid decline in the 

germination of pollen stored at 25oC, while temperatures cooler than 4oC appeared to 

maintain pollen viability for the duration of the 12-month study.  Recommendations 

were thus to use a refrigerator for short-term (< 2 months), a freezer for medium-term 

(up to 10 months) and cryopreservation for longer-term storage. 

 

In the second part of the study, breeding systems of E. urophylla and E. grandis were 

examined by studying pollen-tube growth in the style after single-donor self- and 

cross-pollinations.  Results showed that, in addition to both species exhibiting 

reduced seed yields following self-pollination, pollen tubes from self-pollen took 

significantly longer than those from cross-pollen to grow to the base of the style.  This 

suggested the presence of both late-acting self-incompatibility and cryptic self-

incompatibility (CSI) as possible mechanisms responsible for outcrossing in these 

two species.  In a follow-up study, the siring ability of self- and cross-pollen was 

examined after single- and mixed-donor pollinations were performed on E. grandis.  

Once again, single-donor cross-pollinations resulted in a significantly higher number 

of seeds compared to self-pollinations.  In addition, microsatellite molecular markers 
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revealed that 100% of the progeny from mixed (self + outcross) pollinations were 

outcrossed, confirming the competitive advantage of cross-pollen.  To date, CSI has 

never been associated with Eucalyptus, making this the first study to suggest its 

presence in the genus.    

 

For the final study area, three CP-techniques were compared, namely the 

Conventional method, One Stop Pollination (OSP) and Artificially Induced Protogyny 

(AIP), in E. grandis, E. smithii and E. macarthurii maternal parents.  Although the AIP 

technique produced the highest seed yields in all three species, it also resulted in 

high self- and foreign-pollen contamination (determined using microsatellite markers).  

This necessitated exploration of different methods of isolating the pollinated flower, 

and this led to the identification of a novel method which uses sodium alginate gel.  

Flowers hand-pollinated and isolated with sodium alginate produced progeny that 

were 100% outcrossed with the applied pollen, confirming the superiority of this 

innovative isolation technique compared to the currently used exclusion bag.  Sodium 

alginate isolation also increased the efficiency of CPs as the gel was naturally shed, 

removing the need for operators to return to the tree to remove the isolation material, 

and thereby reducing the cost per seed. 

 

Application of these results should make commercial CP-seed production of small-

flowered eucalypts a practical reality. 
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CHAPTER 1: INTRODUCTION 

 

Eucalypts are the most widely planted hardwood trees in the world, occupying more 

than 17 million hectares globally (FAO 2000).  While Eucalyptus globulus is the 

premier species for temperate zone plantations in Portugal, Spain, Chile and 

Australia, elite hybrid clones involving E. grandis and E. urophylla are extensively 

used by the pulp and paper industry in tropical regions of Brazil, South Africa, India 

and Congo because of their superior wood quality, rapid growth, disease resistance 

and high volumetric yield (Eldridge et al. 1993).  In 2000, the FAO estimated a total of 

17.9 million hectares of planted Eucalyptus worldwide, with India the largest planter 

at over 8 million hectares, followed by Brazil with 3 million hectares (FAO 2000).  In 

South Africa, of the approximately 1.33 million hectares planted to forestry, around 

524 000 hectares are dedicated to eucalypts (DWAF 2005). 

 

The genus Eucalyptus contains in excess of 700 species, all belonging to the family 

Myrtaceae, and most being endemic to Australia (Johnson and Briggs 1984).  It is 

divided into 8 subgenera, viz. Blakella, Corymbia, Eudesmia, Symphyomyrtus, 

Idiogenes, Gaubaea, Monocalyptus and Telocalyptus (Pryor and Johnson 1981).  

The subgenus Symphyomyrtus is not only the largest, including more than 300 

species, but also the most widespread (Potts and Pederick 2000).  The genus 

contains the tallest hardwood species in the world, reaching heights of over 100 m 

(Mace 1996).  From north to south, the Australian climate changes from summer to 

winter rainfall and from warm to cooler seasons which, combined with the effect of 

variations in altitude, aspect and soils, has resulted in an immense diversity of 

habitats to which eucalypts have adapted.  They show exceptional differentiation and 

there are often large genetic differences, both within and between species.  This 

variation provides the basis for selection and breeding of variants adapted to a wide 

range of plantation environments (Potts and Pederick 2000).  

 

Throughout the world, eucalypts are cultivated to meet a wide range of needs, 

including amenity plantings for shade and shelter.  Young trees are a source of paper 

pulp, charcoal and fuelwood, poles, mining timber and fibreboard (Eldridge et al. 

1993).  Mature trees provide strong, durable timber, while all sizes are capable of use 

for other forest products such as volatile oils for pharmaceutical and industrial uses, 
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and honey (Boland et al. 1991). The greatest production of industrial eucalypt wood 

is for the pulp and paper industry, mainly bleached kraft pulp which is in demand 

because of the excellent properties it imparts to printing, writing and tissue papers, as 

well as its availability and price (Sidaway 1988).   

 

Although eucalypt breeding is currently a dynamic and technically advanced 

operation, the challenge to the forestry industry is that eucalypts are still in the early 

stages of domestication when compared to crop species, with most eucalypt 

breeding programmes only one or two generations removed from the wild (Myburg et 

al. 2006).  Improvement depends on the effectiveness in developing new, superior 

genotypes.  In nature and most current forestry operations, new genotypes are 

created through a process of open pollination (Faegri and van der Pijl 1979), but the 

time frame is long and there is no control over the pollen parent.   

 

Controlled pollination (CP) could be used to combine genetic material of selected 

elite trees to produce high quality, and consequently high value, seed (Frampton 

1997).  The attractiveness of this type of pollination is that there is more control over 

the parental genotypes.  The technique has been used to improve seed yield, control 

the level of outcrossing in seed orchards, improve breeding through knowledge of 

both female and male parents, achieve interspecific hybridisation, and study self-

incompatibility levels in Eucalyptus species (Harbard et al. 1999; Moncur 1995).  

However, the high cost of performing controlled crosses and the relatively low seed 

production often obtained has necessitated the use of lower quality, open pollinated 

seed for the establishment of the majority of commercial tree plantations.  

 

The aim of this PhD study was to develop techniques to improve the efficiency of 

controlled pollinations in order to make them more cost-effective for forestry 

companies to perform on a commercial scale.  In countries like Australia, Chile and 

Portugal, commercial CPs are routinely carried out on large-flowered eucalypts like 

Eucalyptus globulus.  However, the technique still needs to be adapted for use on 

small-flowered species and for this reason, the present study focused on the 

following eucalypt species: E. grandis, E. urophylla, E. smithii, E. nitens, E. dunnii 

and E. macarthurii.  All belong to the subgenus Symphyomyrtus.  Eucalyptus nitens, 

E. smithii, E. dunnii and E. macarthurii are cold-tolerant species, belonging to the 
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section Maidenaria (Pryor and Johnson 1981).  Eucalyptus grandis and E. urophylla 

are better suited to warmer climates and belong to the section Latoangulatae 

(George 1988).  

 

1.1 THE STUDY SPECIES 

For the South African forestry industry, the most important hardwood species has 

historically been E. grandis (Schonau 1991).  However, an increasing demand for 

hardwoods, particularly for the pulp and paper industry, has led to expansion into 

much cooler areas where E. grandis does not survive (Pallett and Sale 2004).  This 

has consequently led to the introduction of the cold tolerant eucalypts.  Species trials 

have confirmed the superiority of E. nitens on high altitude cold sites on the Highveld 

plateau, and E. dunnii and E. smithii as species of good growth potential over a 

range of sites in the mid altitudes (Shaw 1994).  In South Africa, hybrids of E. grandis 

and E. urophylla are routinely deployed on the warmer, low altitude sites to alleviate 

disease (Wingfield et al. 1997; Morris 2007). 

 

1.1.1 Eucalyptus grandis 

Eucalyptus grandis is the most widely used species in plantation forestry worldwide 

in tropical and subtropical areas, not only as a pure species, but also as a parental 

species in hybrid breeding (Myburg et al. 2006).  It displays the fastest growth rates 

and widest range of adaptability of all other Eucalyptus species, most likely due to its 

extensive natural distribution in Australia.  It has a natural occurrence extending from 

Newcastle in New South Wales to Bundaberg in Queensland, where the altitude 

varies from 500 – 1100 m above sea level, with overall latitude range from 25 – 33oS.  

The mean maximum and minimum temperatures of the hottest and coolest months 

are 30oC and 3oC respectively in the south and 32oC and 10oC respectively in the 

north (Boland et al. 1989).  The greatest area of plantations of E. grandis and its 

hybrids are those established in Brazil and several other Central and South American 

countries.  It has been planted extensively in India, South Africa, Zambia, Zimbabwe, 

Tanzania, Uganda and Sri Lanka (Myburg et al. 2006).   

 

1.1.2 Eucalyptus macarthurii 

The natural occurrence of E. macarthurii is restricted to the central and southern 

tablelands of New South Wales, from the Blue Mountains to Goulburn.  The altitude 
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varies from 500 – 1200 m above sea level, with overall latitude range from 33 – 35oS.  

The mean maximum and minimum temperatures are 25oC and -1oC respectively, 

with frosts severe and frequent, and light snowfalls regular.  Of the six species 

included in the study, E. macarthurii is the most frost-tolerant (Boland et al. 1989).  It 

is mostly grown on low productivity sites for pulp and paper production, although 

there is presently some controversy about the pulp properties of the species (Swain 

and Gardner 2003).  Within its optimum temperature range, E. macarthurii is 

considered to be the most hardy of the eucalypt species. 

 

1.1.3 Eucalyptus nitens 

In its natural habitat in Australia, E. nitens occurs between 600 and 1200 m above 

sea level in the Victoria Alps, eastern Victoria and southern New South Wales 

provinces.  Two distinct populations are also found at Barrington Tops and Ebor in 

northern New South Wales, at altitudes of up to 1600 m, with overall latitude range 

from 30 to 38oS (Boland et al. 1989).  The mean maximum and minimum 

temperatures of the hottest and coolest months are 26oC and -5oC respectively.  In 

South Africa, E. nitens is the most snow and cold tolerant of all the eucalypts grown 

commercially (Swain and Gardner 2003).  It was traditionally grown for mining timber 

in the cold, high altitude areas of the summer rainfall regions of South Africa, but has 

since been established for pulp and paper production.  Eucalyptus nitens is classified 

as frost tolerant, but is not as hardy as E. macarthurii (Darrow 1996) and is also very 

sensitive to fire (Swain and Gardner 2003). 

 

1.1.4 Eucalyptus dunnii 

Eucalyptus dunnii has a restricted natural occurrence on northeastern New South 

Wales extending into southeastern Queensland.  The distribution covers 

approximately 250 km from west of Coffs Harbour in New South Wales northwards to 

the McPherson range.  The altitude varies from 300 – 750 m above sea level, with 

overall latitude range from 28 – 30oS.  The mean maximum and minimum 

temperatures of the hottest and coolest months are 30oC and 0oC respectively, with 

frosts varying from 20 to 60 every winter (Boland et al. 1989).  This species grows 

better than E. grandis on cooler sites with more frost and snow tolerance (Swain and 

Gardner 2003).  Of the cold tolerant eucalypt species, E. dunnii has the best natural 

stem form, with very little taper.  In South Africa, E. dunnii has a growth rate, form 

 4



and gum bark similar to that of E. grandis and is considered the alternative species 

choice on sites too dry and/or cold for E. grandis (Swain and Gardner 2003). 

 

1.1.5 Eucalyptus smithii 

The fast growth, high density and exceptional pulp properties of Eucalyptus smithii 

makes it a commercially desirable species, provided it is planted on sites which are 

well drained and which do not encourage Phytophthora root rot (Swain and Gardner 

2003).  The species occurs naturally along the eastern edge of the tablelands of 

southeastern New South Wales and adjacent coastal escarpment and lowlands.  

Scattered populations are also found in the eastern Gippsland district of Victoria.  

The altitude varies from 50 – 1150 m above sea level, with overall latitude range from 

34 to 38oS (Boland et al. 1989).  The mean maximum and minimum temperatures of 

the hottest and coolest months are 28oC and -2oC respectively.  During the drought 

which occurred in South Africa from 1991 to 1993, E. smithii proved to be one of the 

most drought hardy species, as tolerant of drought as E. dunnii (Darrow 1994).  

However, the species is not as frost tolerant as E. macarthurii, but is again similar to 

E. dunnii in this respect (Darrow 1996).  

 

1.1.6 Eucalyptus urophylla 

Eucalyptus urophylla is one of two eucalypts that do not originate from Australia (the 

other is E. deglupta).  The species naturally occurs on volcanically derived soils on 

seven islands in eastern Indonesia (Flores, Adonara, Lomblen, Pantar, Alor, Wetar 

and Timor) at altitudes that range from 180 – 3000 m (Eldridge et al. 1993).  It is one 

of the most commercially important exotic forest species in the world, and is often 

crossed with E. grandis to produce hybrids that are well adapted to tropical 

conditions and which are more disease resistant than the E. grandis parent.  

Eucalyptus urophylla grows best in climates that are tropical to warm-temperate and 

humid, with mean maximum and minimum temperatures between 27 – 30oC and 8 – 

12oC, respectively.     

 

1.2 EUCALYPT FLORAL BIOLOGY 

In developing an effective controlled pollination system, it is essential to have an 

understanding of the floral biology of the species of interest (van Wyk 1987; Oddie 

and McComb 1998; Moncur and Boland 2000).  The floral characteristics will 
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determine the steps to be taken during controlled pollination to ensure that the flower 

is only fertilised by the applied pollen. 

   

All the species in the present study have flowers that are bisexual, with the style 

surrounded by numerous anthers (Griffin 1982).  During development, these flower 

buds (Figure 1.1A and B) are covered by two cap-like opercula, which protect the 

male and female reproductive structures.  The presence of opercula is one of the 

most distinctive features of Eucalyptus and is derived from fusion of the petals and 

sepals (Pryor 1976).  In species that have two opercula, the outer operculum is shed 

early during bud development, while the inner one is shed only at anthesis (when 

pollen is released from anthers) (Figure 1.1C).  There is much variation in the size 

and shape of eucalypt flower buds, although within a species this tends to be 

relatively stable (Potts et al. 1995).  Flowers generally occur in clusters in an 

inflorescence (referred to as an ‘umbel’), in units of 3, 7, 9, 11 and 15 (Potts et al. 

1995).  Single flowers in the axil of a leaf are found in only a few species, for example 

E. globulus.  The study species all have 7 flowers per umbel (Figure 1.1D).   

 

Within Eucalyptus, stigma and style morphology vary greatly but are related to the 

taxonomic groupings (Boland and Sedgley 1986).  In all species the stigma is wet 

(Heslop-Harrison and Shivanna 1977), covered by a sticky mucilagenous secretion at 

receptivity (Anderson 1984).  Most Symphyomyrtus species (which include the study 

species) have blunt or pin-head shaped stigmas with a heavily cutinised stylar canal, 

whereas Monocalyptus species have blunt stigmas with few papillae and hollow 

styles (Boland and Sedgley 1986).  Stigma morphology may be important in allowing 

pollen to remain on the stigma for a certain time before germination (Griffin and Hand 

1979).  Generally, the stigmas of Symphyomyrtus species have a larger surface for 

pollen to contact than the stigmas of Monocalyptus species (due to papillae number), 

and hence the timing of controlled pollination would be more crucial in the latter 

subgenus.  Studies on E. camaldulensis (subgenus Symphyomyrtus) have shown 

that pollen was able to remain on the stigma for three days, until stigma receptivity, 

after which the pollen began to germinate (Oddie and McComb 1998).  Hodgson 

(1976) also demonstrated that pollen grains remain ungerminated on the stigmas of 

E. grandis for several days. 
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The time from anthesis to the onset of stigma receptivity, and the duration of 

receptivity, vary from species to species.  For example, the stigma is receptive 4 – 6 

days after anthesis in E. grandis (Hodgson 1976), compared to 6 – 10 days in E. 

globulus (Harbard et al. 1999) and 10 – 14 days in E. regnans (Eldridge and Griffin 

1983).  The sequence of anthesis and receptivity is also affected by environmental 

conditions, proceeding more rapidly at higher temperatures (Hodgson 1976).  

Individual flowers in an inflorescence and within a tree vary in their timing and so, 

despite the protandrous nature of the flowers (whereby pollen is shed before the 

stigma of the same flower is receptive), there is ample opportunity for geitonogamous 

self-pollination, particularly for the later-opening flowers within the crown of a 

flowering eucalypt tree (Eldridge et al. 1993; Hardner et al. 1996; Tibbits 1989).  

Thus, to produce an effective control-pollination system, it is evident that the 

development of an appropriate flower-isolation method to control selfing is highly 

desirable.  

 

After flowering, the stamens wither and fall (Figure 1.1E) and there is some evidence 

to suggest this senescence of the stamens is triggered by pollination and/or 

fertilisation of the flower (Savva et al. 1988).  The resulting eucalypt capsule (Figure 

1.1F) is a false fruit (Williams and Woinarski 1997), which on drying will liberate 

seeds through openings formed by the spreading of valves on the top (Boland et al. 

1985).  The time period from pollination to seed-set varies between species, and for 

the tropical and subtropical species in the present study (E. urophylla and E. grandis) 

is between 8 and 10 months, while the cold-tolerant species (E. nitens, E. smithii, E. 

dunnii and E. macarthurii) take 12 months for seed maturation (personal 

observation).   

 

The capsule contains fertile seed, aborted seed and chaff, all of which is normally 

found in a seedlot.  The chaff is derived from the non-functional ovulodes towards the 

top of the ovary as well as abnormal or unpenetrated ovules which have aborted 

early in their development (Sedgley 1989).  The number of viable seed obtained per 

capsule under open (natural) pollination varies between species, but in E. nitens 

(Tibbits 1989), E. regnans (Eldridge and Griffin 1983) and E. globulus (Potts et al. 

1995), ranges from 2 – 4 per capsule.  However, following controlled outcrossing, 

seed set per capsule has been reported to increase in virtually all species examined 
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(Tibbits 1989; Eldridge and Griffin 1983; Potts et al. 1995).  This suggests that the 

amount of outcrossed pollen transferred to the stigma may be a factor limiting seed 

set in natural pollinations and once again emphasises the importance of controlled 

pollinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Eucalyptus grandis floral morphology: A) green flower buds; B) ripe flower 

buds showing colour change from green to yellow; C) operculum fall and spreading of the 

stamens; D) open flowers; E) anther senescence after fertilisation; F) woody capsules 

housing fertile seed, aborted seed and chaff. Bars = 1 cm 
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1.3 STUDY FOCAL AREAS 

In the present study, three areas were identified as key to improving controlled 

pollination efficiency of the eucalypt study species, viz. pollen handling, breeding 

systems and controlled pollination technology.  Pollen was chosen as the starting 

point, because availability of viable pollen when trees are flowering is essential for 

controlled pollinations to be undertaken.  The second focal area was the breeding 

system, since the essence of controlled pollination is the manipulation of the flower’s 

reproductive biology, while the final area targeted controlled pollinations and in 

particular, trying to find ways to reduce the costs associated with this technique.   

 

1.3.1 Pollen research 

Pollen grains embody the male partners in sexual reproduction and develop inside 

the anther (Shivanna and Johri 1985).  Before or just after anther opening, the pollen 

is desiccated to varying degrees (Heslop-Harrison 1987).  It becomes functional and 

desiccation-tolerant a few days before anthesis, when starch breaks down and 

sucrose, the primary soluble carbohydrate, doubles in quantity (Hoekstra and van 

Roekel 1988).  At the same time new proteins responsible for desiccation tolerance 

(known as dehydrins) are synthesised, allowing the desiccated pollen to become 

more resistant to the abiotic stresses associated with dispersal (Campbell and 

Cloose 1997). 

 

After dispersal, pollen is affected by natural variations in temperature and relative 

humidity, which cause the pollen water content and carbohydrate levels to fluctuate, 

ultimately affecting pollen viability (Pacini and Hesse 2005).  Pollen of different 

species have different sensitivities to environmental changes.  For example, grass 

pollen remains hydrated and viable for an extremely short time and is particularly 

sensitive to environmental stress (Heslop-Harrison 1979).  On the other hand, 

Eucalyptus pollen has a long presentation, during which it is subjected to, and 

survives, severe environmental stresses, with about 30% of eucalypt pollen grains 

still remaining viable after exposure to 60oC for 24 h, and a small proportion surviving 

at 70oC (Heslop-Harrison and Heslop-Harrison 1985).  Griffin et al. (1982) reported 

storing pollen from E. regnans satisfactorily at room temperature for 36 days.  

However, when pollen is subjected to cyclic environmental stress, such as repeated 

hydration and desiccation, it tends to lose its viability (Heslop-Harrison and Heslop-
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Harrison 1992).  Guarnieri et al. (2006) showed that maintenance of pollen viability in 

Trachycarpus fortunei is associated with the maintenance of low water content and 

high levels of sucrose. 

 

Pollen viability is generally considered to indicate the ability of the pollen grain to 

perform its function of delivering the sperm cells to the embryo sac following 

compatible pollination (Shivanna et al. 1991).  However, assessment of pollen 

viability on the basis of its function is cumbersome, time-consuming, and not always 

feasible, and many short-cut methods have been devised.  Pollen viability has been 

evaluated by various staining techniques (e.g., tetrazolium salts to detect 

dehydrogenase activity, aniline blue to detect callose in pollen walls and pollen tubes, 

iodine to determine starch content, fluorescein diacetate to determine esterase 

activity and the intactness of the plasma membrane), by in vitro and in vivo 

germination tests, or by analysing final seed set (Adhikari and Campbell 1998; Dafni 

and Firmage 2000).  The choice of method depends on the species and particular 

application.   

 

Viable pollen is necessary for controlled pollination to be successful, and it becomes 

important to know the variability in pollen viability when considering a specific mating 

design (Beineke et al. 1977).  In addition, sources in the seed orchard with low pollen 

viability would require compensation for the lack of viable pollen from these sources.  

A reliable method for testing pollen viability is essential in this regard.  Staining 

techniques for assessing pollen viability are not popular because the researcher has 

to determine subjectively when a pollen grain is stained darkly enough to be 

classified as “viable”, often leading to overestimation of pollen viability.  The results of 

staining tests also do not always correlate well with other measures of pollen viability 

(Dafni 1992).  Although the stigma provides a suitable site for pollen germination, in 

vivo studies are not easy because of the complications involving pistillate tissue 

(Shivanna and Johri 1985).  In vitro pollen germination is believed to provide the best 

estimate of pollen viability in vivo (Stone et al. 1995).  In fact, in most of the studies 

on staining techniques, the effectiveness of staining methods was evaluated based 

on their correlation with pollen germination in vitro (Dafni and Firmage 2000).     
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A number of culture media and methods have been used for in vitro germination and, 

in general, most media contain boron, combined with sucrose as an osmoticum and 

nutritional source (Brewbaker and Kwack 1963). However, the optimal medium 

composition is species-dependent and for many species, ideal testing conditions 

remain to be determined.  For this reason, one of the aims of the present study was 

to identify a suitable liquid in vitro germination medium for the reliable testing of 

pollen viability of E. grandis, E. dunnii, E. smithii, E. nitens and E. macarthurii.   

 

Storage of Eucalyptus pollen is generally required for controlled hybrid crosses 

(Harbard et al. 1999), since some Eucalyptus species flower asynchronously and 

successful crosses are seldom accomplished with fresh pollen due to non-availability 

of the seed parent when the pollen parent is in full bloom (Eldridge et al. 1993).  In 

this instance, stored pollen, recovered with acceptable viability, is necessary to 

accomplish the breeding objective (Griffin 1982).  Special storage conditions are, 

however, needed to preserve the viability of pollen for long periods.   

 

For a wide range of species, practical storage procedures, effective for months to 

several years, have been developed by simple reduction of environmental 

temperature and humidity (Barnabas and Kovacs 1997).  For example, pollen of 

Simmondsia stored at 24oC showed marked reduction in viability during the first 

week, and the percentage germination came down to zero in two months (Beasley 

and Yermanos 1976).  In the sample stored at 4oC, viability was comparable to fresh 

pollen up to two months, and germination decreased to 0% by eight months.  When 

stored at -20oC, there was very little reduction in viability up to ten months, and 

germination came down by only 25% over fresh pollen, even after one year (Beasley 

and Yermanos 1976).  This is understandable because the major cause of loss of 

viability in long-term storage appears to be the deficiency of metabolites due to 

continued metabolic activity of the pollen (Shivanna and Johri 1985).  Lowering the 

temperature as well as the humidity drastically reduces the metabolism of the pollen 

and prolongs viability.   

 

A second aim of the present study was therefore to determine temperatures suitable 

for the short-, medium- and long-term storage of E. smithii, E. nitens and E. grandis 

pollen.   
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1.3.2 Breeding system research 

One of the unique features of sexual reproduction in flowering plants is the 

interaction of the pollen grain and microgametophyte with the massive sporophytic 

tissue of the pistil (the stigma and style).  This is referred to as pollen-pistil interaction 

and when it results in successful fertilisation, allows the two primary functions of 

sexual reproduction, viz. maintenance of stability of the species and maintenance of 

a reasonable degree of genetic variability within the species, to be fulfilled (Shivanna 

and Johri 1985).  These functions are fulfilled because all sexually reproducing 

organisms have the ability to recognise and select suitable gametes for fertilisation.  

In flowering plants, the pistil has developed mechanisms to recognise pollen grains 

and to permit the growth of tubes from compatible ones, while incompatible pollen 

tubes are effectively prevented from reaching the female gamete (Shivanna and Johri 

1985). 

 

Incompatibility is an integral part of pollen-pistil interaction and results in the arrest of 

post-pollination events at various levels.  Shivanna and Johri (1985) define it as “the 

inability of functional male and female gametes to effect fertilisation in particular 

combinations”.  It can operate between species (interspecific), as well as within a 

species (intraspecific).  In the former, fertilisation between gametes which originate 

from unrelated parents is prevented, while in the latter, fertilisation is prevented 

between gametes which originate from two individuals of the same species.  Thus, 

interspecific incompatibility maintains the integrity of the species, whereas 

intraspecific incompatibility promotes genetic variation within the species by 

encouraging outbreeding (Shivanna and Johri 1985). 

 

Barriers to gene flow between and within species are often categorised according to 

whether they reduce the likelihood that gametes will combine to form a viable zygote 

(prezygotic) or whether they reduce the viability or reproductive potential of the 

progeny (post-zygotic).  These barriers can be further divided into pre- and post-

pollination mechanisms.  Pre-pollination barriers, which are exclusively pre-zygotic, 

include ecological factors that prevent individuals from different lineages from 

growing close enough to exchange gametes and reproductive factors that result from 

genetic differences in flowering times and divergence of floral characters (Levin 

1978).  Post-pollination isolation, on the other hand, may result from pre-zygotic or 
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post-zygotic mechanisms (Snow 1994).  Pre-zygotic mechanisms include pollen-pistil 

interactions that manifest themselves as low pollen germination rates, slow pollen 

tube growth and failure of pollen tubes to penetrate ovules.  Post-zygotic 

mechanisms include offspring inviability and sterility. 

 

Self-incompatibility (SI) is a form of intraspecific incompatibility and can be defined as 

“the inability of a fertile hermaphrodite seed plant to produce zygotes after self-

pollination” (Lundqvist 1964).  The significance of self-incompatibility is that it leads to 

obligate outbreeding and the maintenance of heterozygosity within a species 

(Stebbins 1950).  It also provides a way to hybridise two genotypes without 

emasculation, nuclear or cytoplasmic sterility, or resorting to gametocides.  However, 

the negation of self-seed is not always 100% and may be dependent upon 

environmental conditions.  Furthermore, not all species possess natural self-

incompatibility.  For this reason, isolating the eucalypt flower during controlled 

pollination is highly desirable to prevent geitonogamous self-pollination. 

 

One of the main effects of selfing is inbreeding depression, i.e. the lower success of 

selfed compared to outcrossed progeny, which is considered as a strong evolutionary 

force because of its negative effects on different components of individual fitness 

(Charlesworth and Charlesworth 1987).  Inbreeding depression is thought to be a 

selective agent preventing the evolution of selfing and its effects often increase 

throughout the life cycle of many plant species (Lande and Schemske 1985; 

Charlesworth and Charlesworth 1987). This suggests that deleterious alleles 

contributing to inbreeding depression vary in their effects across the life cycle, with 

more weakly deleterious alleles expressed later in the life history (Husband and 

Schemske 1996).  For this reason, a perennial woody species such as Eucalyptus is 

more likely to harbour a higher genetic load than an annual species because of the 

increased number of cell divisions and greater difficulty of purging weakly vs. strongly 

deleterious alleles from the population (Barrett and Eckert 1990).  Eucalyptus, being 

a largely outcrossing group, would thus be expected to express greater inbreeding 

depression compared to a selfer (Lande and Schemske 1985). 

 

Self-incompatibility is one way of preventing uniparental inbreeding depression, and 

studies in the early 1950s unraveled two distinct forms, viz. sporophytic and 
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gametophytic (de Nettancourt, 2001; McCubbin and Kao, 2000; Silva and Goring, 

2001).  Sporophytic SI generally results in inhibition of pollen germination on the 

stigma (de Nettancourt, 1977) and features associated with this mechanism are 

trinucleate pollen, with short storage capacity and poor germination in vitro 

(Brewbaker, 1967), and dry stigmas (Heslop-Harrison and Shivanna, 1977).  

Gametophytic SI is the most frequently reported SI mechanism in woody species 

(Sedgley, 1994).  It generally results in pollen tubes ceasing growth in the style 

following self-pollination and is more often associated with species that have wet 

stigmas (Heslop-Harrison and Shivanna, 1977), and those that produce binucleate 

pollen, with good storage capacity and the ability to germinate well in vitro 

(Brewbaker, 1967).   

 

The concept of late-acting SI, also termed ovarian SI, was introduced by Seavey and 

Bawa (1986) to accommodate the increasing number of reports where the self-

incompatibility mechanism does not act in the stigma or in the style.  In this type of 

SI, self-pollen germinates and reaches the ovules, but no fruit is set (Seavey and 

Bawa, 1986; Sage et al., 1994).  It can manifest pre-zygotically with deterioration of 

the embryo sac prior to pollen tube entry, or post-zygotically with malformation of the 

zygote or embryo (Sage et al., 1994).  Reduced ovule penetration by self-pollen 

tubes compared with cross-pollen tubes has been found in Eucalyptus woodwardii 

(Sedgley and Smith, 1989) and E. morrisbyi (Potts and Savva, 1988), suggesting 

late-acting pre-zygotic control, while in E. regnans (Sedgley et al., 1989), E. 

cladocalyx, E. leptophylla (Ellis and Sedgley, 1992) and E. nitens (Pound et al., 

2003) the SI mechanism appears to be post-zygotic, with no difference in the 

development of selfed- and crossed-seed from 4 to 16 weeks after pollination.  Both 

pre- and post-zygotic SI barriers have been reported to occur in E. spathulata, E. 

platypus (Sedgley and Granger, 1996) and E. globulus (Pound et al., 2002), as not 

only were pollen-tube penetration and fertilisation reduced following self-pollination, 

but there was also a reduction in the number of fertilised ovules achieving zygotic 

division.   

 

In another type of self-incompatibility, viz. cryptic SI, the simultaneous presence of 

cross and self pollen on the stigma results in higher seed set from cross pollen 

relative to self pollen (Bateman, 1956).  However, as opposed to complete or 

 14



absolute self-incompatibility, in cryptic SI, self-pollination without the presence of 

competing cross pollen results in successful fertilisation and seed set.  In this way 

reproduction is assured, even in the absence of cross-pollination.  Cryptic SI acts at 

the stage of pollen tube elongation in the style and leads to faster elongation of cross 

pollen tubes relative to self pollen tubes (Bateman, 1956).  To date, this type of self-

incompatibility has never been associated with Eucalyptus.   

 

Cytological details of rejection following interspecific pollinations have not been 

subjected to as in-depth an investigation as for self-incompatibility and in most 

instances, crosses have been classified as compatible or incompatible on the basis 

of their seed set.  From the limited information available, it is apparent that the 

rejection reaction may occur at any level, depending on the extent of reproductive 

isolation of the male partner.  Closely related species would accomplish more of the 

post-pollination events compared to distantly related species (Potts et al. 1987; 

Griffin et al. 1988). 

 

Breeding systems of different Eucalyptus species have been investigated using a 

variety of methods and found to be one of mixed mating with preferential outcrossing 

(Moran and Bell 1983; Yeh et al. 1983; Fripp et al. 1986; Potts and Savva 1988).  

This has largely been demonstrated in a reduction in capsule production, seed yield 

and seedling vigour after self pollination compared with cross pollination (Griffin et al. 

1987; Eldridge et al. 1993).  Within species, individual trees may vary in their 

capacity to set self-pollinated seed (Ellis and Sedgley 1992) and outcrossing is 

promoted by the protandrous nature of the flower, as well as by pollinator behaviour 

(Williams and Woinarski, 1997).  In a study carried out by Jones et al. (2008) on E. 

grandis, the outcrossing rate was estimated to be in the range of 0.64 to 1.00, similar 

to a previous estimate of 0.84 by Moran and Bell (1983).  This is also similar to the 

outcrossing rates estimated in seed orchards and breeding populations of other 

eucalypt species: 0.75 in E. nitens and E. camaldulensis, 0.77 in E. globulus (Moncur 

et al. 1995); 0.91 for E. regnans (Moran et al. 1989); and 0.89 – 0.93 for E. urophylla 

(Gaiotto et al. 1997).  The level of self-pollination in individual E. grandis trees was 

shown to range from 0 – 36%, with an overall observed selfing rate of 14% (Jones et 

al. 2008). 
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In the literature there is a notable lack of information on comparative growth rates of 

self- and cross-pollen in the eucalypt pistil, and pollen-pistil interactions have been 

studied in just eight species to date, viz. Eucalyptus morrisbyi (Potts and Savva 

1988), E. regnans (Sedgley et al. 1989), E. woodwardii (Sedgley 1989; Sedgley and 

Smith 1989), E. spathulata, E. cladocalyx, E. leptophylla (Ellis and Sedgley 1992), E. 

globulus (Pound et al. 2002) and E. nitens (Pound et al. 2003).  The present study 

thus also aimed to examine the breeding systems of E. urophylla and E. grandis, 

using epifluorescence microscopy to study pollen-pistil interaction after controlled 

self- and cross-pollinations.    

 

1.3.3 Controlled pollination research 

In small populations, such as seed orchards used for long-term breeding 

programmes, genetic diversity can decrease due to random genetic drift, and the 

probability of crossings between closely related individuals could be increased, 

resulting in inbreeding (Paschke et al. 2002).  Inbreeding can strongly reduce both 

population and individual viability, and negative effects of small population size on 

offspring fitness have been found in many species (Kery et al. 2001; Keller and 

Waller 2002).  To increase the vigor of plants in such populations, increasing the 

gene flow between populations to enhance levels of heterozygosity has been 

suggested (Oostermeijer et al. 1995).   

 

Many plants, including Eucalyptus, rely on animal pollinators for the transfer of pollen 

onto their stigmas for ovule fertilisation.  However, in small populations plant-

pollinator interactions may become disrupted, and reproduction may be reduced 

because of insufficient pollination (i.e. pollen limitation).  In addition to these plants 

being less attractive to pollinators (and thus visited less frequently), in small 

populations the local density of plants is often reduced and there is less pollen 

transfer between individuals (Roll et al. 1997; Bosch and Waser 2001).  Self-

incompatible species (which include most forest tree species) are more likely to be 

affected by pollen limitation than self-compatible species because they cannot 

compensate for reduced pollinator services by selfing.  Also, because the diversity of 

pollen genotypes in these small populations is reduced, it is more likely that flowers 

will receive incompatible pollen (Byers 1995).  Pollen limitation may also reduce 

progeny vigor by reducing the selectivity among gametes (i.e. pollen competition) 
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before and during fertilisation (Winsor et al. 2000).  This was seen in Scorzonera 

humilis (Asteraceae), where pollen limitation resulted in a reduction in both the 

number and quality of offspring produced (Colling et al. 2004).   

 

Controlled pollination can be used to alleviate the above problems.  In forestry the 

technique plays an important role in combining the genetic material of selected elite 

trees to produce high quality, high value seed (Frampton 1997; Eldridge et al. 1993).  

However, the high cost of performing such crosses and the relatively low seed 

production results in reliance on lower quality, open pollinated seed for the 

establishment of the majority of commercial forests.  Since controlled crossing is 

integral to rapid genetic improvement, any increase in the efficiency of controlled 

pollinations would be highly desirable to the forestry industry.   

 

Eucalypt pollen is difficult to collect and handle in any appreciable quantity and thus 

supplementary pollination techniques which work well with wind-pollinated species, 

like conifers (Webber 1987), and large-flowered eucalypt species, like E. globulus 

(Potts et al. 2008), are unlikely to prove as applicable for the majority of small-

flowered eucalypt trees.  However, as Griffin (1989) points out, there is considerable 

scope for innovative developments in the methodology of controlled pollination.  The 

most costly steps are emasculation and bagging, and the question is whether these 

are essential.  Emasculation is carried out to avoid selfing, but application of the 

desired outcrossed pollen at the optimal time, combined with careful stage-matching 

of flowers in an isolation bag so that pollen has been shed by the time the stigmas 

are receptive, may obviate the need for this (Griffin 1989).  Isolation bags are used to 

prevent visits from vectors carrying pollen of unknown origin.  They may not be 

needed if the vectors can be excluded from the vicinity or the attractiveness of 

flowers is diminished.  Some citrus breeders favour pollination on depetalled flowers 

which are left unbagged (Soost and Cameron 1975).  Placing the whole plant in an 

insect proof environment can also be effective, but will only be practical with a move 

to a containerised planting system (Sedgley and Alexander 1983). 

 

For Eucalyptus, the first-developed CP-method, termed the ‘Conventional method’, 

took advantage of the natural protandry of the eucalypt flower (van Wyk 1977).  The 

technique, however, involved three flower visits (emasculation, subsequent 
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pollination of receptive stigmas and bagging, removal of bags), and was 

consequently very time consuming.  In addition, low seed returns due to cross-

incompatibility or poor pollen quality made this a very expensive exercise.  A more 

efficient cross-pollination method was later developed, originally for Eucalyptus 

globulus, requiring only one visit to the flower (emasculation and immediate 

pollination of stigmas cut to induce receptivity, followed by bagging) and 

consequently named One Stop Pollination (OSP;  Harbard et al. 1999).  However, 

the flowers of E. globulus are considerably larger than those of the study species, 

necessitating careful adaptation of OSP to be successful on smaller flowers.  

Artificially Induced Protogyny (AIP) is an exciting new technique, recently developed 

in Brazil (Assis et al. 2005).  It involves cutting off the tip of the operculum of the 

mature flower bud, just prior to anthesis, to expose the cut surface of the upper style 

to which the target pollen is applied, without emasculating or isolating the flower.  

However, due to differences in flower morphology, the method once again needs to 

be adapted to suit different eucalypt species.  

 

The final part of this PhD study was aimed at establishing an efficient controlled 

pollination technique that would allow CPs to be performed on a commercial scale on 

small-flowered eucalypts.  An innovative isolation mechanism was developed in order 

to reduce contamination from self- and foreign-pollen sources during controlled 

pollinations. 

 

1.4 SCOPE OF THIS THESIS 

Of particular importance to efficient controlled pollinations is being able to optimally 

store pollen for various lengths of time, due to differences in flowering time between 

the species.  However, before this pollen can be used in controlled pollinations, the 

viability has to be assessed, and thus a reliable in vitro testing protocol has to first be 

established.  Chapter 2 concentrated on identification of a suitable liquid in vitro 

germination medium for testing the viability of both freshly collected and stored 

eucalypt pollen.  Suitable temperatures for short-, medium- and long-term pollen 

storage were then addressed by comparing the viability of pollen stored at room 

(25oC), refrigerator (4oC), freezer (-10oC) and liquid nitrogen (-196oC) temperatures.  

Since controlled pollination is in essence the manipulation of the reproductive 

biology, an attempt  was made to learn more about the breeding systems of the study 
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species.  In chapter 3, epifluorescence microscopy was used to study the growth 

rates of pollen tubes within the style, in addition to comparing seed yields, after self- 

and cross-pollinations.  In order to confirm the type of breeding system, microsatellite 

markers were then used in chapter 4 to examine the siring ability of self- and cross-

pollen after both mixed- and single-donor pollinations.  Chapters 5 and 6 focused on 

establishing an efficient commercial control-pollination technique, specifically 

applicable to small-flowered eucalypts.  In chapter 5, three different CP-techniques 

were compared, while chapter 6 explored a novel method of isolating the pollinated 

flower.   

 

1.5 SPECIFIC STUDY AIMS 

The specific aims of this PhD study were to: 

i. Maximise the use of pollen by developing a reliable pollen-viability testing 

protocol. 

ii. Enhance short-, medium- and long-term storage of pollen to facilitate use in 

controlled pollinations. 

iii. Understand the eucalypt breeding system by studying pollen tube growth in the 

style following self- and cross-pollinations.  

iv. Identify a commercial controlled pollination technique for use on small-flowered 

eucalypts. 

v. Develop an efficient method of isolating the flower bud during commercial 

controlled pollinations. 
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CHAPTER 2: OPTIMISING STORAGE AND IN VITRO GERMINATION OF 

EUCALYPTUS POLLEN 

 

2.1 ABSTRACT  

The best sucrose solution for maximum in vitro germination of Eucalyptus pollen was 

investigated in order to evaluate pollen germination rate as an indicator of pollen 

viability.  In vitro germination of both freshly collected and one-year old pollen (stored 

at 4oC) of Eucalyptus grandis, E. smithii, E. nitens, E. dunnii and E. macarthurii was 

carried out in 0, 10, 20, 30, 40 and 50% (w/v) sucrose solutions, with (0.15 mg l-1) 

and without boric acid.  Similar trends were obtained for both fresh and one-year old 

pollen, with all species responding most favourably to 30% (w/v) sucrose and 0.15 

mg l-1 boric acid.  When an optimal in vitro germination medium had been 

established, the viability (% germination) of E. smithii, E. nitens and E. grandis pollen, 

stored at room (25oC), refrigerator (4oC), freezer (–10oC) and liquid nitrogen (–196oC) 

temperatures, were compared.  For all tested species, germination declined as 

storage temperature increased, and by 8 months, the highest survival was obtained 

with cryostored pollen.   

 

2.2 INTRODUCTION 

Due to its fast growth and production of high value timber, Eucalyptus has been a 

major focus of forestry industries world-wide for raw material for pulp, paper and solid 

wood markets (Eldridge et al. 1994).  However, the genus is still in its earliest stages 

of breeding and improvement depends on the ability to combine characteristics from 

different parents in order to develop new, superior genotypes.  One way of achieving 

this is through controlled pollination (Frampton 1997), for which high quality pollen is 

a pre-requisite (Matthews and Bramlett 1986). 

 

Storage of Eucalyptus pollen is generally required for controlled crosses, either to 

achieve a desired breeding objective, or to overcome a constraint involved in seed 

production (Harbard et al. 1999).  For example, in some breeding programmes, 

interspecific crosses are attempted to introgress genetic traits into desirable species, 

from pollen parents known for providing resistance to biotic stresses.  However, 

some Eucalyptus species flower asynchronously and successful crosses are seldom 

accomplished with fresh pollen due to non-availability of the seed parent when the 
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pollen parent is in full bloom (Eldridge et al. 1994).  Stored pollen, recovered with 

acceptable viability, can be used in crosses with the desired female genotype, 

thereby accomplishing the breeding objective (Griffin et al. 1982). 

 

Practical storage procedures, effective for months to several years, have been 

developed for a wide range of species (Barnabas and Kovacs 1997).  The properties 

required for a successful storage system are: the ability to maintain pollen viability at 

the highest possible level; maintenance of full developmental and functional potential 

when pollen is returned to normal physiological conditions; minimal growth and 

development in storage; and significant savings in labour input and materials (Grout 

1995).  In addition, pollen grains that survive drying, like Eucalyptus, can be stored 

more easily than those requiring a high moisture content (Buitink et al. 1998).   

 

The most ideal method for long-term pollen storage is that of cryopreservation 

(Engelmann 1997).  This refers to storage at ultra-low temperatures (usually that of 

liquid nitrogen).  At these low temperatures all cellular activities are arrested and in 

this state, genetic material can theoretically be stored without alteration or 

modification for indefinite periods.  Furthermore, the material is protected from 

contamination and requires very little maintenance.  However, the development of 

cryopreservation methods requires the empirical determination, on a species basis, 

of the optimal conditions for cryostorage (Watt et al. 2000).   

 

The viability of stored pollen samples can be estimated by using vital stains, in vitro 

germination, or in vivo assays (Kearns and Inouye 1993).  Vital stains are difficult to 

quantify, requiring the researcher to determine subjectively when a pollen grain is 

stained darkly enough to be classified as “viable”.  Personal experience with vital 

staining of stored Eucalyptus pollen suggests that certain enzymes may remain 

active, although the pollen grain itself may be dead, leading to overestimates in 

pollen longevity.  The results of vital-stain tests also do not always correlate well with 

other measures of pollen viability (Dafni 1992).  Because the ultimate purpose of 

pollen storage is successful fertilisation and seed production, it follows that well-

designed in vivo tests should most accurately reflect the utility of stored samples.  An 

important point to bear in mind, however, is that genetic incompatibility systems can 
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confound the results of in vivo germination and seed-set assays (de Nettancourt 

1977).  For this reason, in vitro tests were used in the present study. 

 

In vitro pollen germination is rapid, reasonably simple and fully quantitative (Kearns 

and Inouye 1993).  In a number of taxa the percentage in vitro germination of stored 

pollen can be correlated with its ability to set fruits and seeds following in vivo 

pollination (Janssen and Hermsen 1980).  A major limitation of the test, however, is 

the difficulty in achieving in vitro germination in several taxa.  In addition, the medium 

that gives optimal germination of fresh pollen may not be optimal for stored pollen.  

 

Successful germination of eucalypt pollen has been obtained using either liquid 

(Griffin et al. 1982) or semi-solid agar media (Heslop-Harrison and Heslop-Harrison 

1985) with sucrose and boron (usually boric acid) normally the sole constituents.  

However, the optimal medium composition is species-dependent and for many 

species, ideal testing conditions remain to be determined.  For this reason, the first 

aim of the present study was to identify a suitable liquid in vitro germination medium 

for the reliable testing of pollen viability of five commercially important Eucalyptus 

species, viz. E. grandis, E. dunnii, E. smithii, E. nitens and E. macarthurii.  The 

second aim was to determine temperatures suitable for the short-, medium- and long-

term pollen storage.  This was done by comparing the viability of E. smithii, E. nitens 

and E. grandis pollen stored at room (25oC), refrigerator (4oC), freezer (–10oC) and 

liquid nitrogen (–196oC) temperatures.    

 

2.3 MATERIAL AND METHODS 

2.3.1 Plant material used in study 

Pollen samples of all species were collected from clonal (grafted) orchards planted at 

the Sappi, Shaw Research Centre (SRC) in KwaZulu-Natal, South Africa.  The 

orchards were situated at 29o 29'S, 30o 11'E at 1100 m above sea level.  Breeding 

populations for all species were made up of open-pollinated families from selections 

made in the land-race in South Africa and from provenances in the natural range in 

Australia.   

 

For the first part of the study, viz. developing an optimal in vitro germination medium, 

five eucalypt species were used: E. grandis, E. smithii, E. dunnii, E. macarthurii and 
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E. nitens.  Pollen from three ramets was mixed in equal quantities to provide a 

polymix of three genotypes for each species.  In addition, both freshly collected and 

one-year old pollen (stored at 4oC) were included as separate samples.  For the 

second part of the study, viz. pollen storage, freshly-collected pollen from three 

eucalypt species, E. smithii, E. nitens and E. grandis, were used. Three genotypes of 

E. smithii, three of E. nitens and one of E. grandis were collected.  Pollen from E. 

smithii and E. nitens was mixed separately to give a single representative pollen 

sample for each species.   

 

2.3.2 Pollen collection and processing 

For pollen extraction, branches containing ripe flower buds were collected and kept in 

100 ml bottles containing water to prevent drying out of the branch.  To ensure that 

there was no contamination from other pollen, all open flowers were removed from 

the branches before placing them in the laboratory overnight.  When the operculum 

had shed and the filaments unfolded, the anthers were excised and left in an 

incubator in the presence of silica gel to dry for approximately 48 hours at room 

temperature.  When the relative humidity (RH) had reached 10% (as measured with 

an hygrometer), the dried anthers were sieved through a 30 micron mesh to remove 

debris.  The resulting pollen was placed into polypropylene vials and then sealed in 

glass bottles containing silica gel. 

 

2.3.3 In vitro pollen germination 

Before use, pollen samples were left at room temperature (approximately 80% RH) 

for 8 hours to rehydrate.  For the determination of an optimal in vitro testing medium, 

6 levels of sucrose 0, 10, 20, 30, 40 and 50% (w/v) were tested with (0.15 mg l-1) and 

without boric acid in a liquid medium.  For the pollen storage part of the study, 

samples were germinated in a standard liquid solution of 30% (w/v) sucrose and 0.15 

mg l-1 boric acid.   

 

For pollen germination, polymixes from each species were placed into separate test 

tubes containing germination medium (three tubes per species per treatment) and left 

to incubate in a germination chamber in a completely randomised design for 48 hours 

at 29oC.  After the required time period had elapsed, 5 µl was transferred from the 

test-tube to a glass slide.  Percent germination was scored using a light microscope 
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(x100 magnification) to count the number of pollen grains germinated out of a total of 

50 grains.  Six glass slides per species (two slides per test tube) were scored for 

germination (sub-samples), giving a total of 300 pollen grains counted per treatment.  

Pollen was deemed to have germinated if the pollen tube length was greater than 

one-half of the diameter of the pollen grain (Potts and Marsden-Smedley 1989).   

 

To obtain consistent results, some precautions had to be observed.  Firstly, similar 

quantities of pollen (by visual inspection) were used for all samples.  The reason for 

maintaining optimal pollen density is that the pollen grains of many species exhibit a 

population effect (Shivanna and Rangaswamy 1992).  In such cases, pollen 

germination is strictly dependent on pollen density and below a critical threshold no 

germination occurs (Brewbaker and Kwack 1964).  This dependence of germination 

on pollen density is related to a dependence on calcium leakage from pollen grains 

(Shivanna and Rangaswamy 1992), the optimum level of which is reached in the 

presence of a minimum number of germinating grains.  Similarly, too large an amount 

of pollen grains is undesirable, as the nutrients in the culture medium may become 

limiting.   

 

To avoid erratic results, pollen grains were uniformly distributed in the medium before 

scoring germination in the present study.  In addition, since the pollen of most 

eucalypts is somewhat sticky, with the grains tending to adhere in clusters of varying 

size and thus making accurate microscopic counts of an entire field difficult, 

assessments were generally made of single grains and smaller groups where all 

grains were readily discernible. Germination counts were thus based on three to four 

fields until 50 or more pollen grains could be recognised as germinated or 

ungerminated per microscope slide. 

 

2.3.4 Pollen storage treatments 

Pollen samples (in polypropylene vials, sealed in glass bottles containing silica gel) 

were stored at each of the following temperatures: room (+/- 25oC); refrigerator (4oC); 

freezer (–10oC) and liquid nitrogen (-196oC) for 12 months.  Pollen samples for 

cryogenic storage were transferred to 2 ml volume cryovials of which 0.2 ml was the 

maximum volume of the sample.  Based on the previous use of a pre-cooling period 

by several researchers (Ganeshan 1986; Bowes 1990; Lanteri et al. 1993), the pollen 
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was pre-cooled at –10oC for 8 hours before dipping into liquid nitrogen.  During 

storage, the level of liquid nitrogen in the storage vessel was regularly monitored and 

replenished as appropriate.  Every two months, a subsample was thawed by removal 

of the vial from liquid nitrogen and placement in a freezer for 8 hours (to prevent 

damage from rapid thawing) before being left at room temperature for 8 hours, and 

then assessed for viability (% germination).   

 

2.3.5 Statistical Analysis 

To normalise the data distribution, values for the proportion of pollen germination 

were angular transformed prior to analysis.  For the optimisation of in vitro 

germination medium, GenStat Release 8.1 was used to perform an analysis of 

variance (ANOVA), and consequently establish the statistical significance of 

observed differences between treatments for both fresh and one-year old pollen.  

The data were analysed as a completely randomised design and pseudo-replication 

taken into account by using the mean of the two slides scored for each test-tube.  For 

the optimisation of pollen storage, SPSS Version 11.51 was used to calculate 

ANCOVA and consequently establish the statistical significance of observed 

differences between treatments in the percentage of pollen that germinated.  Fresh 

pollen was excluded from the analysis and a full factorial model used.  Time was 

treated as the covariate.  

 

2.4 RESULTS  

2.4.1 Optimising liquid  in vitro germination medium  

There were highly significant differences in pollen germination between media 

containing boric acid compared to media without (p < 0.001) (Tables 2.1 and 2.2) for 

all species tested, with the former resulting in higher germination.  This effect 

became more pronounced as the sucrose concentration was increased, reaching a 

maximum in 30% (w/v) sucrose and then decreasing as the sucrose concentration 

was further increased to 50% (Figure 2.1).  Pollen tube length also tended to be 

greater in the presence of boric acid, suggesting improved pollen vigour (Figure 2.2).  

Furthermore, highly significant species differences (p < 0.001) were evident for both 

freshly collected (Table 2.1) and one-year old (Table 2.2) pollen germination.  With 

the exception of E. macarthurii, there was also a clear decrease in pollen germination 

for the older pollen sample (Figure 2.1).   
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Table 2.1: Analysis of variance for transformed values of percentage germination of 

fresh pollen, used in the determination of an optimal in vitro germination medium. 

Source of variation Degrees 
of freedom

Mean square F value Probability 

species 4 993.21 105.66 <0.001 

sucrose 5 4997.42 531.65 <0.001 

boric acid 1 8904.38 947.30 <0.001 

species x sucrose 20 195.84 20.83 <0.001 

species x boric acid 4 597.06 63.52 <0.001 

sucrose x boric acid 4 776.58 82.62 <0.001 

species x sucrose x boric acid 16 103.37 11.00 <0.001 

residual  108 9.4   
 

Table 2.2: Analysis of variance for transformed values of percentage germination of 

stored pollen, used in the determination of an optimal in vitro germination medium. 

Source of variation Degrees of 
freedom 

Mean 
square 

F value Probability 

species 4 2597.05 253.56 <0.001 

sucrose 5 2585.20 252.40 <0.001 

boric acid 1 4159.44 406.10 <0.001 

species x sucrose 20 244.73 23.89 <0.001 

species x boric acid 4 363.35 35.48 <0.001 

sucrose x boric acid 4 588.70 57.48 <0.001 

species x sucrose x boric 
acid 

16 120.29 11.74 <0.001 

residual  108 10.24   
 

In the absence of boric acid, both 30% and 40% (w/v) sucrose proved suitable when 

germinating stored pollen (Figure 2.1c).  For fresh pollen germinated in the absence 

of boric acid, 30% (w/v) sucrose resulted in higher germination for most species.  

There was no significant difference between 30% and 40% (w/v) sucrose for fresh E. 

nitens pollen germinated in the absence of boric acid (Figure 2.1d).  There were 

highly significant interactions (P < 0.001) between all main effects for both fresh and 

stored pollen (Tables 2.1 and 2.2, respectively).  
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Figure 2.1: Percentage germination of fresh and stored (1-year old) pollen of five 

Eucalyptus species, incubated in media containing various concentrations of sucrose, 

with or without boric acid: (a) stored pollen with boric acid; (b) fresh pollen with boric acid; 

(c) stored pollen without boric acid; (d) fresh pollen without boric acid.  Symbols indicate 

means ± s.e. 
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Figure 2.2: Pollen tube growth of E. macarthurii pollen incubated in in vitro 

germination medium containing 30% (w/v) sucrose and (a) 0.15 mg l-1 boric acid and 

(b) without boric acid supplementation (x20).  This was the typical response to boric acid 

for all species tested. 

 

2.4.2 Optimising pollen storage regimes 

There was no overall effect of storage time on pollen germination (p = 0.439), as well 

as no significant overall effect of species on pollen germination (Table 2.3).  There 

was, however, a significant species-by-storage time interaction (p = 0.002) and a 

highly significant treatment-by-storage time interaction (p < 0.001).   

  

Table 2.3: Analysis of covariance for transformed values of percentage germination of 

pollen used in the determination of temperature regimes for optimal pollen storage. 

Source of variation 
Degrees of 
freedom  Mean square F value  Probability  

species 2 279.25 2.83 0.062 

treatment 3 195.20 1.98 0.119 

time 1 59.39 0.60 0.439 

species x time 2 634.16 6.42 0.002 

species x treatment 6 262.45 2.66 0.017 

treatment x time 3 3522.03 35.65 0.000 

species x treatment x time 6 179.17 1.81 0.098 

residual 192 98.80    
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Figure 2.3: Effect of storage temperature over a 12-month period on in vitro pollen 

germination of (a) Eucalyptus nitens, (b) E. smithi and (c) E. grandis.  Symbols indicate 

means ± s.e.  
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By 8 months, cryostored pollen from all three species appeared to germinate better 

than pollen stored at any of the other temperatures (Figure 2.3).  On the other hand, 

germination declined as storage temperature increased, with virtually no germination 

of room-stored pollen by 8 months.  Surprisingly, there was a noticeable reduction in 

germination of E. grandis pollen after 12 months of storage in liquid nitrogen.     

 

2.5 DISCUSSION 

A liquid medium consisting of 30% (w/v) sucrose and 0.15 mg l-1 boric acid appeared 

to be optimal for the in vitro germination of both fresh and stored Eucalyptus pollen of 

all species used in the study.  However, as the sucrose concentration of the in vitro 

germination medium was decreased, pollen integrity began to deteriorate and grains 

appeared to burst in 0% (w/v) sucrose (with and without boric acid).  Dumont-BeBoux 

and von Aderkas (1997) also observed this plasmolysis in Douglas-fir (Pseudotsuga 

menziesii) pollen cultured on medium without sucrose.  In Eucalyptus globulus, E. 

morrisbyi, E. ovata and E. urnigera, Potts and Marsden-Smedley (1989) found that 

virtually no pollen germination (<10%) occured in the absence of sucrose when 

examining the effect of boric acid (0 – 0.45 mg l-1) and sucrose (0 – 40% w/v) on 

pollen germination.  Similar to the present study, those authors reported 30% (w/v) 

sucrose to be optimal for maximum in vitro pollen germination.   

 

The results clearly indicate the importance of sucrose in the pollen germination 

medium and Leduc et al. (1990) have suggested that sucrose functions as an 

osmoticum rather than energy source.  Osmotic conditions above and below the 

optimum have been found to reduce pollen germination and pollen-tube lengths 

(Loguercio 2002).  Like in the present study, Logeurcio (2002) also found that at low 

osmotic potential, a high proportion of burst pollen grains were evident and 

suggested that this was due to the rapid influx of water into the grains, causing 

excessive leakage of endogenous soluble substances and ions.  

 

The stimulatory effect of boric acid, although not occurring in all species (eg. Pinus), 

is widespread and increasing evidence suggests that boron plays an important role in 

the growth and development of vascular plants (Stangoulis et al. 2001).  Although 

boron seems to be involved in many processes including sugar transport, cell wall 

synthesis and maintenance, membrane integrity, and RNA metabolism (Loomis and 
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Durst 1992; Dordas and Brown 2000), its precise role has not yet been elucidated.  It 

is believed to promote pollen germination by affecting H+-ATPase activity, which 

initiates pollen germination and tube growth (Feijo et al. 1995; Obermeyer and Blatt 

1995).  Similar to the present study, Wang et al. (2003) found that boron deficiency 

reduced pollen germination rate, leading to retardation of pollen tube growth.  From 

their study on Eucalyptus, Potts and Marsden-Smedley (1989) recommend the 

inclusion of between 0 – 0.1 mg l-1 boric acid in the in vitro germination medium, 

while Vasil (1964) recommends slightly higher concentrations of 0.1 – 0.15 mg l-1. 

   

Since the success of controlled pollination is often dependent on the quality of stored 

pollen (Bonnet-Masimbert et al. 1998), the second part of the study focused on 

determining suitable temperature regimes for the short-, medium- and long-term 

storage of E. nitens, E. smithii and E. grandis pollen.  In this part of the study, the 

optimal in vitro medium of 30% (w/v) sucrose and 0.15 mg l-1 boric acid was used to 

measure the germination of pollen stored at various temperatures over a 12 month 

period.  There was a rapid decline in the germination of pollen that had been stored 

at room temperature, suggesting that temperatures of around 25oC are not suitable 

for long-term pollen storage.  However, while undertaking operational controlled 

pollinations within a season, storage of pollen at room temperature, or even at 4oC, is 

feasible over short periods of up to two months, thereby saving processing time.  In 

the present study, temperatures cooler than 4oC appeared to maintain pollen viability 

for the duration of the 12-month study.   

 

An interesting phenomenon of increased germination in the first months of storage 

was observed in E. nitens and E. smithii samples (Figure 3).  The same phenomenon 

was observed by Lanteri et al. (1993), who stored Picea abies, Pinus nigra, P. pinea, 

P. strobus, P. sylvestris and P. uncinata pollen at –18oC and –196oC for 24 months, 

and tested for viability every 2 months.  They found an increase in pollen germination 

during the first months of storage at –196oC in Picea abies, P. sylvestris and P. 

uncinata.  The authors suggested that the increase in germination could be due to 

the freezing process, which causes the release of some necessary nutrients into the 

medium.  Since the increased germination in the present study was also observed in 

pollen stored at room temperature, in this case it is suggested to either be 
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attributable to after-ripening processes occurring in the pollen grains after shedding, 

or perhaps random variation in media quality and testing conditions. 

 

The drastic reduction in germination of E. grandis pollen after 12 months of storage 

at cryogenic temperatures could be due to a different person handling the final E. 

grandis sample (due to logistical problems); there may have been too long a time-

lapse between removing the sample from liquid nitrogen and placing it in the freezer, 

and the consequent rapid thawing could have resulted in damage to the pollen 

grains.  This was corroborated by the appearance of burst pollen grains and 

abnormal pollen tubes.   

 

The present results are similar to those obtained by Boden (1958) on E. maculosa, in 

which pollen storage was carried out in a deep freeze (–16oC), refrigerator (2oC) and 

room temperature and germination tested monthly.  The authors reported that after 1 

month there was no germination in room-stored pollen and the germination of pollen 

subjected to deep freeze and refrigerator treatments had fallen by 20%.  After 3 

months storage, pollen stored in the refrigerator had begun to lose viability and by 6 

months very few grains were capable of germination.  On the other hand, pollen 

stored in the deep freeze maintained its germination percentage after the initial fall-

off in the first month and after 7 months was still approximately 60%.  Craddock et al. 

(2000) also arrived at the conclusion that storage temperature has a significant effect 

on pollen germination, after studies performed on Cornus florida revealed that pollen 

stored at –196oC and at –20oC germinated significantly better than that stored at 5oC. 

 

The gradual freezing of pollen by placement in a freezer for 8 hours before direct 

immersion in liquid nitrogen, as well as gradual thawing by again placing in a freezer 

for 8 hours before being left at room temperature overnight, appeared to be 

favourable for the cryopreservation of eucalypt pollen in the present study.  This was 

suggested by the relatively high in vitro germination sustained by cryostored pollen 

for the duration of storage.  Water content is possibly the principle factor to consider 

in preparation for cryostorage, as it controls the amount of ice crystal formation within 

the sample.  Both the rate of water loss and the water content to which the material is 

dried are critically important (Pammenter et al. 1999).  Slow freezing dehydrates the 

pollen by drawing water to extracellular centres of ice nucleation (Benson 1994).  
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Consequently, when the material is placed in liquid nitrogen, little or no lethal ice 

crystal damage should occur.   

 

Although untested, it would appear that cryoprotectants are not necessary for the 

cryostorage of the Eucalyptus species’ pollen used in the present study.  This is 

inferred from the relatively good germination and integrity of pollen grains after 

retrieval from liquid nitrogen.  Cryoprotectants are a heterogeneous group of 

compounds which depress both the freezing and supercooling points of pure water, 

thereby reducing the volume of water in the cells available to freeze (Finkle et al. 

1985).  Certain cryoprotectants can, however, be toxic to plant tissues (e.g. 

dimethylsulfoxide), the extent of toxicity varying with the type and concentration of 

cryoprotectant and plant species (Grout 1995).  It is therefore sometimes necessary 

to remove the cryoprotectant after retrieval from the frozen state, making pollen 

germination estimates difficult.   

 

2.6 CONCLUSION 

Of the combinations tested, an optimal in vitro germination medium was found to be 

30% (w/v) sucrose and 0.15 mg l-1 boric acid.  This medium could be used to test the 

viability of both fresh and stored pollen of the species used in the present 

investigation, thereby allowing generalised procedures for pollen viability testing.  

Although not quantified, boric acid was visually found to stimulate the rate of pollen 

tube growth.  General recommendations for pollen storage are that storage at –10oC 

can be useful in Eucalyptus breeding programmes where the pollen of the male 

parent must be stored from one season to another.  On the other hand, the more 

elaborate procedure of storage in liquid nitrogen would be advantageous for the 

preservation of male germplasm in gene banks.  Storage at room temperature and at 

4oC is only acceptable if the pollen will be utilised within 1 to 2 months.     

 

2.7 REFERENCES 

Barnabas B, Kovacs G (1997) Storage of Pollen. In ‘Pollen Biotechnology for Crop 

Production and Improvement’. (Eds KR Shivanna, VK Sawhney) Cambridge 

University Press. 

 43



 

Benson EE (1994) Cryopreservation. In ‘Plant Cell Culture: A practical approach 

(Second edition)’. (Eds RA Dixon, RA Gonzales) pp. 147 – 167. (IRL Press: Oxford)  

Boden RW (1958) Handling and storage of pollen in Eucalyptus breeding. Australian 

Forestry 22, 73 – 81. 

Bonnet-Masimbert M, Baldet P, Paques L, Phillipe G (1998) From flowering to 

artificial pollination in Larch for breeding and seed orchard production. Forestry 

Chronicles 74, 195 – 202. 

Bowes SA (1990) Long-term storage of Narcissus anthers and pollen in liquid 

nitrogen. Euphytica 48, 275 – 278. 

Brewbaker JL, Kwack BH (1964) The Calcium Ion and Substances Influencing Pollen 

Growth. In ‘Pollen Physiology and Fertilisation’. (Ed HF Linskens). pp 143 – 151. 

North Holland, Amsterdam.  

Buitink J, Walters C, Hoekstra F, Crane J (1998) Storage behaviour of Typha latifolia 

pollen at low water contents: Interpretation on the basis of water activity and glass 

concepts. Physiologia Plantarum 103, 145 – 153. 

Craddock JH, Reed SM, Schlarbaum SE and Sauve RJ (2000) Storage of Flowering 

Dogwood (Cornus florida L.) Pollen. HortScience 35, 108 – 109. 

Dafni A (1992) ‘Pollination Ecology: A Practical Approach’. Oxford University Press, 

New York. 

De Nettancourt D (1977) ‘Incompatibility in Angiosperms’. Springer-Verlag. Berlin. 

Heidelberg. New York.  

Dordas C and Brown PH (2000) Permeability of boric acid across lipid bilayers and 

factors affecting it. Journal of Membrane Biology 175: 95 – 105. 

Dumont-BeBoux N, von Aderkas P (1997) In vitro Pollen Tube Growth in Douglas-fir. 

Canadian Journal of Forestry Research 27, 674 – 678. 

Eldridge KG, Davidson J, Harwood C, Van Wyk G (1994). ‘Eucalypt Domestication 

and Breeding’. Oxford University Press Inc, New York. pp 288.  

Engelmann F (1997) Importance of desiccation for the cryopreservation of 

recalcitrant seed and vegetatively propagated species. Plant Genetic Resources 

Newsletter 112, 9 – 18. 

 44



 

Feijo JA, Malho R and Obermeyer G (1995) Ion dynamics and its possible role during 

in vitro pollen germination and tube growth. Protoplasma 187: 155 – 167. 

Finkle JF, Zavala ME and Ulrich JM (1985) Cryoprotective compounds in viable 

freezing of plant tissues. In ‘Cryopreservation of Plant Cells and Organs’. (Ed KK 

Kartha). pp. 75 – 113. (CRC Press: Boca Raton)  

Frampton J (1997) Controlled-Pollination of Fraser Fir. Limbs & Needles 24 (2), 10 – 

15. 

Ganeshan S (1986) Cryogenic preservation of papaya pollen. Scientia Hort. 28, 65 – 

70. 

Griffin AR, Ching KK, Johnson KW, Hand FC, Burgess IP (1982) Processing 

Eucalyptus pollen for use in controlled pollination. Silvae Genetica 31, 198 – 203. 

Grout BWW (1995) Introduction to the in vitro preservation of plant cells, tissues and 

organs. In ‘Genetic Preservation of Plant Cells In Vitro’. (Ed BWW Grout). pp. 1 – 20. 

(Springer-Verlag:  Berlin. Heidelberg. New York)  

Harbard JL, Griffin AR and Espejo J (1999) Mass controlled pollination of Eucalyptus 

globulus: a practical reality. Canadian Journal of Forest Research 29: 1457 – 1463. 

Heslop-Harrison J, Heslop-Harrison Y (1985) Germination of Stress-tolerant 

Eucalyptus Pollen. Journal of Cell Science 73, 135 – 137. 

Janssen AWB, Hermsen JGT (1980) Estimating pollen fertility in Solanum species 

and haploids. Euphytica 25, 577 – 586. 

Kearns CA, Inouye DW (1993) ‘Techniques for Pollination Biologists’. University 

Press of Colorado. Niwot Ridge. 

Lanteri S, Belletti P, Lotito S (1993) Storage of pollen of Norway Spruce and different 

pine species. Silvae Genetica 42, 2 – 3. 

Leduc N, Monnier M and Douglas GC (1990) Germination of trinucleated pollen: 

formulation of a new medium for Capsella bursapastoris. Sexual Plant Reproduction 

3: 228 – 235. 

Loguercio LL (2002) Pollen treatment in high osmotic potential: a simple tool for in 

vitro preservation and manipulation of viability in gametophytic populations. Brazilian 

Journal of Plant Physiology 14: 65 – 70. 

 45



 

 46

Loomis WD and Durst RW (1992) Boron and cell walls. Current Topics in Plant 

Biochemistry and Physiology 10: 149 – 178. 

Matthews FR, Bramlett DL (1986) Pollen quantity and viability affect seed yields from 

controlled pollinations of Loblolly Pine. Southern Journal of Applied Forestry 10, 78 – 

80. 

Obermeyer G and Blatt MR (1995) Electrical properties of intact pollen grains of 

Lilium longiflorum: characteristics of the non-germination grain. Journal of 

Experimental Botany 46: 803 – 813. 

Pammenter NW, Berjak P, Walters C (1999) The effect of drying rate on recalcitrant 

seeds: “lethal water contents”, causes of damage, and quantification of recalcitrance. 

In ‘Sixth International Workshop on Seeds’. (Eds M Black, KJ Bradford, JM Vazquez-

Ramos). CAB International. Wallingford. UK. 

Potts BM, Marsden-Smedley JB (1989) In vitro Germination of Eucalyptus Pollen: 

Response to Variation in Boric Acid and Sucrose. Australian Journal of Botany 37, 

429 – 441. 

Shivanna KR, Rangaswamy NS (1992) ‘Pollen Biology: A Laboratory Manual’. 

(Springer-Verlag: Berlin. Heidelberg. New York) 

Stangoulis JCR, Reid RJ, Brown PH and Graham RD (2001) Kinetic analysis of 

boron transport in Chara. Planta 213: 142 – 146. 

Vasil IK (1964) Effect of Boron on Pollen Germination and Pollen Tube Growth. In 

‘Pollen Physiology and Fertilisation’. (Ed HF Linskens). pp 107 – 119. North Holland, 

Amsterdam. 

Wang Q, Lu L, Wu X, Li Y and Lin J (2003) Boron influences pollen germination and 

pollen tube growth in Picea meyeri. Tree Physiology 23: 345 – 351. 

Watt MP, Mycock DJ, Blakeway FC, Berjak P (2000) Applications of in vitro methods 

to Eucalyptus germplasm conservation. Southern African Forestry Journal 187, 3 – 

10. 



CHAPTER 3: IS EUCALYPTUS CRYPTICALLY SELF-INCOMPATIBLE? 

 

3.1 ABSTRACT 

The probability that seeds will be fertilised from self versus cross pollen depends 

strongly on whether plants have self-incompatibility systems, and how these systems 

influence the fate of pollen tubes.  In this study of breeding systems in Eucalyptus 

urophylla and Eucalyptus grandis, epifluorescence microscopy was used to study 

pollen tube growth in styles following self- and cross-pollinations.  Pollen tubes from 

self-pollen took significantly longer than those from cross-pollen to grow to the base 

of the style in both E. urophylla (120 h vs 96 h) and E. grandis (96 h vs 72 h).  In 

addition, both species exhibited reduced seed yields following self-pollination 

compared to cross-pollination.  The present observations suggest that, in addition to 

a late-acting self-incompatibility barrier, cryptic self-incompatibility could be a 

mechanism responsible for the preferential outcrossing system in these two eucalypt 

species. 

 

3.2 INTRODUCTION 

To develop sound breeding strategies it is necessary to understand both the 

reproductive biology and breeding system of a species (Eldridge and Griffin, 1983).  

The breeding system includes, in its broadest sense, all aspects of sex expression 

which affect the relative genetic contribution to the next generation of individuals 

(Wyatt, 1983).  Thus an understanding of the breeding system, and the variables that 

influence it, is essential for a thorough understanding of the ecology, dynamics and 

long-term viability of populations, not to mention the opportunity for commercial 

exploitation of the species (Ellis and Sedgley, 1992).  

 

Breeding systems of different Eucalyptus species have been investigated using a 

variety of methods, including isozyme analysis (Moran and Brown, 1980; Yeh et al., 

1983; Fripp et al. 1986) and controlled pollinations (Potts and Savva 1988).  

However, information on comparative growth rates of self- and cross-pollen in the 

eucalypt pistil is still lacking.  Pollen-pistil interactions have been studied in just eight 

species to date, viz. Eucalyptus morrisbyi (Potts and Savva, 1988), E. regnans 

(Sedgley et al., 1989), E. woodwardii (Sedgley, 1989; Sedgley and Smith, 1989), E. 
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spathulata, E. cladocalyx, E. leptophylla (Ellis and Sedgley, 1992), E. globulus 

(Pound et al., 2002) and E. nitens (Pound et al., 2003).   

 

Eucalyptus is considered to have a breeding system that is preferentially outcrossing, 

although selfing is not uncommon (Griffin et al., 1987; Eldridge et al., 1994).  High 

outcrossing rates, of between 0.69 and 0.84, have been found in the genus (Moran 

and Bell, 1983) and are aided by protandry (Pryor, 1976) and reinforced by selection 

against the products of self-fertilisation in later stages of the life cycle (Potts et al., 

1987).  Most species exhibit a marked reduction in seed yield following self-

pollination compared to outcrossing (Potts and Savva, 1988; Ellis and Sedgley, 

1992).  In fact, there have been reports of more than one self-incompatibility (SI) 

mechanism operating in a species, which may act at both the pre- and post-zygotic 

levels (Sedgley and Griffin, 1989).  The situation is further complicated by the fact 

that even in the natural situation, few species are completely selfing or outcrossing, 

and there are many reports of partial or variable self-incompatibility (Sedgley et al., 

1990). 

 

One possible explanation for the variability in outcrossing rates in Eucalyptus is the 

existence of a system of cryptic self-incompatibility.  Cryptic SI usually acts at the 

stage of pollen tube elongation in the style and leads to faster elongation of cross 

pollen tubes relative to self pollen tubes (Bateman, 1956).  As opposed to complete 

or absolute self-incompatibility, self-pollination without the presence of competing 

cross pollen in plants with cryptic SI results in successful fertilisation and seed set 

(Bateman, 1956).  To date, this type of self-incompatibility has never been associated 

with Eucalyptus.   

 

The aim of the present study was to examine the breeding systems of Eucalyptus 

urophylla and E. grandis, by using epifluorescence microscopy to study pollen tube 

growth in the style following controlled self- and cross-pollinations.   

 

3.3 MATERIAL AND METHODS 

3.3.1 Plant material used in study 

The experiments were conducted on mature trees located in clonal (grafted) orchards 

planted at the Sappi, Shaw Research Centre in KwaZulu-Natal, South Africa.  The 

  48



orchards were situated at 29o 29'S, 30o 11'E at 1100 m above sea level.  Breeding 

populations for all species were made up of open-pollinated families from selections 

made in the land-race in South Africa and from provenances in the natural range in 

Australia.  Trees were chosen on the basis of floral abundance and accessibility for 

hand-pollinations.  All trees had previously produced seed crops for several years.  

Two genotypes from each species, viz. M1401 and M1413 from E. urophylla, and 

P1362 and P1369 from E. grandis, were used as maternal parents in the study.  

Pollen was also collected from these genotypes for use in self- and intraspecific 

cross-pollinations.   

 

3.3.2 Pollen collection and processing 

For pollen extraction, branches containing ripe flower buds were collected and kept in 

100 ml bottles containing water to prevent drying out of the branch.  To ensure that 

there was no contamination from other pollen, all open flowers were removed from 

the branches before placing them in the laboratory overnight.  When the operculum 

had shed and the filaments unfolded, the anthers were excised and left in a 

desiccator in the presence of silica gel to dry for approximately 48 h at room 

temperature.  When the relative humidity (RH) in the desiccator had reached 10%, 

the dried anthers were sieved through a 30 micron mesh to remove debris.  The 

resulting pollen was placed into polypropylene vials, sealed in glass bottles 

containing silica gel and stored in a freezer at -10oC until needed. 

 

3.3.3 In vitro pollen germination 

Pollen viability was tested under laboratory conditions before use in controlled 

pollinations.  Pollen was left at room temperature and RH for 8 hours to rehydrate.  In 

vitro germination was carried out using 30% (w/v) sucrose, supplemented with 0.15 

mg l-1 boric acid in a liquid medium (Horsley et al., 2007).  Pollen from each genotype 

was placed into glass vials containing the in vitro medium (three replications per 

genotype) and left to incubate in a germination chamber in a completely randomised 

design for 48 hours at 29oC.  After the required time period had elapsed, 5 ul was 

transferred from the test-tube to a glass slide.  Percent germination was scored using 

a light microscope (x100 magnification) to count the number of pollen grains 

germinated out of a total of 50 grains.  Six glass slides per genotype (two slides per 

test tube) were scored for germination (sub-samples), giving a total of 300 pollen 
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grains counted per treatment.  Pollen was deemed to have germinated if the pollen 

tube length was greater than one-half of the diameter of the pollen grain (Potts and 

Marsden-Smedley, 1989).   

 

3.3.4 Controlled pollination 

Pollinations were carried out using two ramets per genotype of each species.  The 

number of flowers suitable for pollination (in terms of accessibility) determined the 

number of pistil samples that could be fixed for microscopic analysis.  This 

consequently led to differences in sampling time between the different species.  Ripe 

flower buds were emasculated and isolated at anthesis.  Each isolation bag enclosed 

three umbels, with seven flowers per umbel.  Treatments were separately isolated, 

with only one treatment occurring in an isolation bag.  Pollen was applied seven days 

later, when the stigmas were receptive, and then re-isolated.  For E. urophylla, 1600 

flowers were pollinated.  Pistil samples were then taken at 24, 30, 48, 96, 120, 144 

and 216 hours after pollination and immediately fixed in formalin-acetic acid-alcohol 

(FAA) solution.  For E. grandis, 400 flowers were pollinated and pistil samples taken 

at 24, 48, 72 and 96 hours after pollination.  Controls consisted of flowers that were 

not hand-pollinated.  Fixed samples of both species were stored at room temperature 

until needed.  Capsules were also left on the tree for estimation of seed yield.   

 

3.3.5 Seed set 

All capsules remaining at maturity (12 months after pollination) were harvested and 

allowed to dry out in the laboratory and release their seed.  The number of viable 

seeds in each capsule was counted.  Seeds were considered viable if they were 

rounded, solid and dark in colour as opposed to flat and possessing a light-brown 

colour (Pound et al., 2002).  Seed-set data were used to determine the level of self-

incompatibility in each species from the following formula: 

   ISI = [(Vc – Vs) / Vc] x 100 

where ISI = index of self-incompatibility, Vc = viable seed per flower cross-pollinated 

and Vs = viable seed per flower self-pollinated (Pound et al., 2002).  

 

3.3.6 Sample preparation for epifluorescence microscopy 

For each species, eight pistils from each treatment and time interval were studied.  

Fixative was removed from the pistil samples by rinsing with tap water.  The styles 
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were then excised from the buds and left to soften in 4N NaOH for either 48 h (E. 

grandis) or 72 h (E. urophylla).  After the required time period had elapsed, NaOH 

was replaced with tap water and samples left for 60 min to rinse.  Samples were then 

placed in analine blue-0.1N K3PO4 to stain overnight. The next day, samples were 

mounted with a drop of glycerol onto glass slides and viewed under UV light.  Pollen 

tubes were studied at five levels in the pistil, viz. stigma surface (0% style 

penetration), upper style (25% style penetration), middle style (50% style 

penetration), lower style (75% style penetration) and base of style (100% style 

penetration).  The data were summarised as the number of samples per treatment in 

which pollen tubes had successfully penetrated to the five different regions of the 

pistil.   

 

3.3.7 Statistical Analysis 

To test for differences in self- and cross-pollen tube growth in the pistil, Analysis of 

Covariance using SPSS Version 13.0 was used to establish the statistical 

significance of observed differences between treatments within each species, with 

“number of samples with pollen tubes at the base of the style” as the dependent 

variable and time as a covariate.  A count of pollen tubes at various regions of the 

style was not possible as pollen tubes were too close to each other to be identified 

individually.  As it was common for more than one capsule to be harvested from 

within a pollination bag, the mean number of seeds set per flower pollinated was 

calculated for each bag, and these values were analysed using T-tests.  Observed 

differences between the percentage of capsules set after self- vs cross-pollinations 

were compared using G-tests.  Pollen viability data were angular transformed prior to 

Analysis of Variance and Tukey Tests. 

 

3.4 RESULTS  

3.4.1 In vitro pollen germination 

Significant genotypic differences with respect to in vitro pollen tube growth were 

displayed by both species.  Of all the genotypes, E. grandis P1369 had the highest 

pollen germination (76 ± 2.52%), while E. grandis P1362 had the lowest (19 ± 

2.96%).  For E. urophylla, genotype M1413 pollen had higher in vitro germination (69 

± 3.18) than M1401 pollen (35 ± 0.33).   
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3.4.2 Seed set following controlled pollinations 

Capsule retention following cross-pollination was greater than that following self-

pollination in E. urophylla (64 vs 37% capsule set), while the opposite occurred in E. 

grandis (6 vs 11% capsule set).  However, in both species cross-pollination produced 

more seeds per flower pollinated compared to self-pollination (Table 3.1).  These 

differences in average number of seeds per flower were significant in E. urophylla.  

However, seed yields for E. grandis could not be analysed statistically due to 

insufficient replication of individual plants.  Of the two species, E. urophylla was 

slightly more self-incompatible (62.5%) compared to E. grandis (46%).   

 

Table 3.1: Mean number of seeds per flower following self- and cross-pollination in 

Eucalyptus urophylla and E. grandis, and calculated levels of self-incompatibility. SP 

self-pollinated, CP cross-pollinated, N number of replicates, ISI index of self-incompatibility,  

* P < 0.05. 

Species Flowers pollinated % Capsules set Sig. Mean seed set 
per flower 

Sig. ISI 
(%) 

 SP CP N SP CP  SP CP   

E. urophylla 96 75 6 37 64 * 3.1 8.3 * 62.5 

E. grandis 37 28 3 11 6 * 10.7 19.8 - 46.0 

- E. grandis seed set could not be statistically analysed due to insufficient data 
 

3.4.3 In vivo pollen tube growth 

Significant differences in the growth rate of self- and cross pollen tubes were 

observed in Eucalyptus urophylla (Table 3.2), with self pollen tubes taking 

approximately 120 h to penetrate 100% of the style, compared to 96 h taken by cross 

pollen tubes (Figure 3.1a).  Self pollen tubes of E. grandis also showed a slower rate 

of growth in the style (Table 3.3), taking 96 h to reach 100% of the style, compared to 

the 72 h taken by cross pollen tubes (Figure 3.1b).  In addition to the reduced rate of 

growth, observed pollen tube abnormalities (such as twisting) were increased 

following selfing in both species (Figure 3.2a), although this was not quantified.  The 

majority of the controls exhibited pollen grains germinating on the stigma surface, 

even though these buds had not been hand-pollinated.   
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Table 3.2: Analysis of covariance of in vivo pollen-tube growth after controlled self- 

and cross-pollinations in Eucalyptus urophylla.   

Source of variation d.f. Mean square F-value  P-value 

treatment 1 1811.07 8.80 0.003

genotype 1 151.26 0.74 0.392

time 1 112915.67 548.70 0.000

treatment x genotype 1 396.81 1.93 0.166

treatment x time 1 924.17 4.49 0.035

genotype x time 1 74561.95 362.33 0.000

treatment x genotype x time 1 0.03 0.00 0.990

residual 381 205.79   

R2 = 0.794 (adjusted R2 = 0.790) 
 

Table 3.3: Analysis of covariance of in vivo pollen-tube growth after controlled self- 

and cross-pollinations in Eucalyptus grandis.   

Source of variation d.f. Mean square F-value  P-value 

treatment 1 1589.34 7.32 0.008

genotype 1 503.11 2.32 0.130

time 1 205555.60 947.21 0.000

treatment x genotype 1 184.47 0.85 0.358

treatment x time 1 1017.01 4.69 0.032

genotype x time 1 1418.31 6.54 0.012

treatment x genotype x time 1 134.67 0.62 0.432

residual 149 217.01  

R2 = 0.875 (adjusted R2 = 0.869) 
 

3.5 DISCUSSION 

For the species in the present study, no evidence of self-incompatibility was found at 

the stage of pollen adhesion and germination in the stigmatic exudate.  The 

expression of SI occurred as pollen tubes grew down the style and resulted in a 

reduction in the pollen tube growth rate following self-pollinations, relative to those 

following cross-pollinations.  This self-pollen tube growth retardation is suggested to 

be a form of cryptic SI and is in agreement with many reports of SI in the Solanaceae 

(McGuire and Rick, 1954; Hardon, 1967; Ascher, 1976).  While this phenomenon has 

been investigated in several wild plant species (Bateman, 1956; Waser et al., 1987; 
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Aizen et al., 1990), no evidence of selective stylar inhibition of pollen tube growth has 

been presented in any of the eucalypt species studied to date.  To the authors’ 

knowledge, this is the first study to suggest cryptic SI in Eucalyptus. 
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Figure 3.1: Comparison of in vivo pollen tube growth after controlled self- and cross-

pollinations in (a) Eucalyptus urophylla and (b) Eucalyptus grandis.  Cross-pollinations 

were performed within each species (intraspecific). 
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Figure 3.2: Fluorescence micrographs of squashed Eucalyptus styles harvested after 

different pollination treatments and stained with aniline blue. (a) Twisted pollen tubes 

after self-pollination in E. urophylla; (b) Straight pollen tubes after cross-pollination in E. 

urophylla; (c), (d) & (e) Pollen tube pathway in an E. grandis cross 72 h after pollination 

where (c) shows pollen grains germinating on the stigma, (d) shows pollen tubes growing in 

the middle style and (e) shows pollen tubes at the cut end of the style (at the style base). 

 

Direct measurement of pollen tube growth in Amsinckia grandiflora (Weller and 

Ornduff, 1989), Erythronium grandiflorum (Cruzan, 1989), and Delphinium nelsonii 

(Waser et al., 1987) have also shown differences in pollen tube growth rate between 

self and cross-pollen.  As appears to be the case for E. urophylla and E. grandis, 

these species can be considered cryptically self-incompatible, because growth of 

incompatible pollen tubes was slower than that of compatible ones, rather than being 
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completely inhibited.  Recent studies have shown that there may be more plasticity in 

the growth of self-pollen tubes than has previously been appreciated (Stephenson et 

al., 2003; Travers et al., 2004).  In the study by Stephenson et al. (2003), self-pollen 

tube growth in Solanum carolinense was arrested when cross-pollen was available, 

but when cross-pollen was scarce, the growth of self-pollen tubes (and hence the 

strength of SI) became a quantitative trait that varied among individuals.  Stephenson 

et al. (2003) and Travers et al. (2004) have subsequently suggested that the 

plasticity in SI systems be viewed as a mechanism that promotes outcrossing by 

modulating the intensity with which it handicaps the growth of self pollen. 

 

Recorded effects of selfing in eucalypts include reduced seed set (Potts and Savva, 

1988; Sedgley and Smith, 1989; Tibbits, 1989), decreased germination percentage 

(Eldridge and Griffin, 1983), increased frequency of abnormal phenotypes (Potts et 

al., 1987), depressed field growth and decreased nursery and field survival (van Wyk, 

1981; Eldridge and Griffin, 1983; Potts et al., 1987).  In the present study, in addition 

to the reduced self-pollen tube growth rates in E. urophylla and E. grandis, there was 

a reduction in seed yields following self-pollinations, as well as an observed increase 

(not quantified) in the number of pollen-tube abnormalities at various locations in the 

pistil and at different times after self-pollination (Figure 3.2a).  Similar pollen-tube 

abnormalities have been reported in Rhododendron L., a woody plant genus that 

shows some similarities with Eucalyptus, including a wet stigma and mixed mating 

system (Williams et al., 1982).   

 

Eucalyptus grandis exhibited particularly low fruit set overall, retaining only 6 – 11% 

of the pollinated capsules, compared to 37 – 64% capsule retention in E. urophylla.  

This is similar to levels reported in E. regnans, where an average fruit set of only 9% 

was reported by Sedgley et al. (1989).  The reason for the differences in capsule 

retention between E. grandis and E. urophylla is unclear.  Both species had near-

identical floral morphology and experienced similar temperatures during the course of 

the experiment (both were pollinated in summer).  As in E. woodwardii (Sedgley and 

Smith, 1989), it is possible that some E. grandis flowers started to shed their 

opercula prematurely and so were pollinated at an immature stage.       

 

  56



Late-acting self-incompatibility appears to be an additional SI mechanism operating 

in E. urophylla and E. grandis on account of the low number of seeds set following 

self-pollination relative to the number of self-pollen tubes in the style (pollen tubes 

were so abundant that they could not be quantified).  Pound et al. (2003) came to the 

same conclusion in their study on E. nitens, where, like in the present study, seed 

yields were reduced following self-pollinations even though both self- and cross-

pollen tubes had grown down the style.  Since most self-fertilised E. nitens ovules 

had begun to degenerate within the first few weeks following pollination instead of 

being spread over the entire seed development time, Pound et al. (2003) suggested 

that ovule breakdown was a self-incompatibility response.  At present it is difficult to 

experimentally determine which system is operating within a species.  Seavey and 

Bawa (1986) suggest that uniform ovule abortions may indicate a self-incompatibility 

response, whereas ovule abortions occurring at various stages of embryo 

development would be indicative of inbreeding depression.  However, Waser and 

Price (1991) question whether inbreeding depression could account for very high 

levels of ovule abortion.   

 

The observed pollen grains on the stigma of most control treatments emphasises the 

importance of isolating the flower after hand-pollinations.  There are several possible 

sources of contamination during the controlled pollination process, one of these 

being the presence of pollen on the anthers of mature buds, which could result in 

self-pollination during the emasculation process (Hodgson, 1975).  Another source of 

self-pollen could be from flowers higher up in the canopy of the tree, with 

contamination of lower flowers through the action of gravity and wind movement 

(Eldridge and Griffin,1983).   

 

A potential drawback of the present study is that single-donor pollinations, as 

opposed to mixed-pollinations, were used to study differences in pollen tube growth 

rate.  The reason for utilising single-donor pollinations was to avoid the difficulty in 

distinguishing respective self- and cross-pollen tubes in the style after mixed-

pollinations.  The sources of pollen included in mixtures could additionally confound 

breeding system observations, where differences in pollen tube growth rate could be 

due to differing pollen viability and pollen-pollen interactions (Waser et al., 1987).  In 

a follow-up study (Chapter 4), microsatellite markers were used to distinguish the 
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contribution of self- and cross-pollen to seed set after both single- and mixed-donor 

pollinations were performed on Eucalyptus grandis.   
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CHAPTER 4: RELATIVE SUCCESS OF SELF AND OUTCROSS POLLEN AFTER 

MIXED- AND SINGLE-DONOR POLLINATIONS IN EUCALYPTUS GRANDIS 

 

4.1 ABSTRACT  

A previous observation that self-pollen tubes traversed the style at a slower rate than 

cross-pollen tubes in Eucalyptus grandis and E. urophylla, suggested the presence of 

cryptic self-incompatibility (CSI) in these species.  The aim of the present study was, 

with the help of molecular markers, to examine the siring ability of self- and cross-

pollen in E. grandis, after both mixed- and single-donor pollinations, in order to 

confirm the presence of CSI.  Single-donor cross-pollinations set a significantly 

higher number of seeds per flower pollinated compared to those performed with self-

pollen, while there were no significant differences between the open control and 

single-donor self-pollinations.  Molecular markers revealed that 100% of the progeny 

from mixed-donor pollinations were outcrossed, confirming the competitive 

advantage of cross-pollen.  In addition, there was a significant change in the 

self:outcross seed ratio between single- and mixed-donor pollinations, suggesting 

that the observed deficit of selfed seeds in mixed-donor fruits could be the result of 

differential pollen tube growth.  From the extremely low seed yields following single-

donor self-pollinations, it is clear that an additional incompatibility mechanism is 

operating in E. grandis, and this is suggested to be late-acting self-incompatibility, 

acting before fertilisation. 

 

4.2 INTRODUCTION 

Many plants have mechanisms to avoid deposition of self-pollen, such as the 

separation of male and female functions in time and space.  However, as pollen 

deposition in animal-pollinated species, such as Eucalyptus, depends on the 

activities of the pollinators, which in turn depend on variable factors, such as the 

weather, the actual proportion of self- vs outcross-pollen on stigmas is quite 

unpredictable (McCall and Primack 1992).  Also, paternity success often does not 

reflect the composition of pollen loads, as maternal plants may exert some control 

over which pollen grains successfully fertilise ovules and/or which zygotes are 

matured into viable seeds (Marshall and Folsom 1992).  In order to compare the 

post-pollination performance of pollen from different individuals, hand pollinations are 

frequently made using pollen from different donors to pollinate different flowers on 
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one or more recipient plants.  This technique has the advantage that resultant seeds 

are readily assigned to particular donors (Bertin 1990).  However, the above 

assessments of post-pollination male performance will be erroneous if paternal 

success in mixed-pollen loads differs from that in single-donor loads.   

 

Single-donor pollen loads are undoubtedly rare on plant stigmas in nature.  

Furthermore, during natural pollination it is likely that the fraction of pollen on a 

stigma contributed by a particular donor will vary greatly in time and space (Bertin 

1990).  In the absence of data, it is usually assumed that a plant’s male success is 

directly related to pollen production or pollen export (Lloyd 1984).  This assumption 

requires that pollen is deposited on stigmas in proportion to its availability on or 

removal from anthers, and that its success in siring offspring is proportional to its 

abundance on a stigma.  However, several studies have found that mixtures of self- 

and outcross-pollen yield a lower proportion of selfed offspring than expected based 

on the proportion of self-pollen on stigmas (Bateman 1956; Weller and Ornduff 

1977).  This selective filtering of pollen or zygotes can occur in a variety of forms, 

including the rejection of self-pollen or selfed ovules due to self-incompatibility (de 

Nettancourt 1997; Seavey and Bawa 1986), cryptic self-incompatibility caused by 

differential pollen tube growth (Bateman 1956), differential provisioning of outcrossed 

versus selfed embryos or fruits (Rigney 1995), and death of selfed embryos 

expressing lethal recessive alleles (Husband and Schemske 1996).  It is often difficult 

to identify the actual mechanism of post-pollination selection.  For example, some 

forms of late-acting self-incompatibility are difficult to distinguish from early-acting 

inbreeding depression (Seavey and Bawa 1986) and many post-pollination 

mechanisms can be environmentally and developmentally plastic (Goodwillie et al. 

2004). 

 

In mass-flowering species in the genus Eucalyptus, the ranges in time of anthesis 

within inflorescences and within branches ensure high levels of geitonogamous self-

pollination, even though individual flowers are protandrous (Griffin 1980).  Estimates 

of the outcrossing rate, however, have been found to be consistently high in these 

species (tm = 0.79 – 0.96), suggesting an outbreeding mechanism operating between 

the stages of pollination and seed maturation (Moran and Bell 1983; Moran 1992).  

Horsley and Johnson (2007) observed that self-pollen tubes traversed the style at a 
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slower rate compared to cross-pollen tubes in E. grandis and E. urophylla, and 

therefore suggested the presence of cryptic self-incompatibility (CSI) in these 

species.   In species with CSI, self-pollination without the presence of cross pollen 

results in successful fertilisation and seed set (Bateman 1956).  The advantage of 

CSI, according to Bateman (1956), is that it can enforce outcrossing when foreign 

pollen is available, yet still allow for seed-set should foreign pollen not arrive at the 

stigma.     

 

There are two principle types of evidence for CSI, both of which are usually required 

for understanding its potential impact on mating patterns in natural populations.  First, 

the siring success of self- and cross-pollen can be compared after mixed pollinations 

using marker genes (Eckert and Allen 1997).  This approach can demonstrate siring 

differences among pollen types but usually provides little information on the 

mechanism causing the observed siring differences.  The second line of evidence for 

CSI comes from direct observations of pollen tube growth, and although this 

approach can identify possible mechanisms through which cross-pollen might 

outcompete self-pollen, it does not provide direct evidence for siring differences 

(Montalvo 1992).  Despite the complementarity of these two methods for detecting 

CSI, most investigations have used only one or the other approach.  Both types of 

data are available for only a handful of taxa, viz. Amsinckia grandiflora (Weller and 

Ornduff 1989), Erythronium grandiflorum (Rigney 1995), Hibiscus moscheutos (Snow 

and Spira 1991), Aquilegia caerulea (Montalvo 1992) and Eichhornia paniculata 

(Cruzan and Barrett 1993).  

 

The aim of the present study was, with the help of molecular markers, to examine the 

siring ability of self- and cross-pollen after both mixed- and single-donor pollinations 

in E. grandis, in order to confirm the presence of CSI in this eucalypt species.   

 

4.3 MATERIAL AND METHODS 

4.3.1 Plant material used in study 

Conventional controlled pollinations were conducted on a mature E. grandis tree 

located in a clonal (grafted) orchard planted at the Sappi, Shaw Research Centre in 

KwaZulu-Natal, South Africa.  The orchard was situated at 29o 29'S, 30o 11'E at 1100 

m above sea level.  The breeding population for this species was made up of open-
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pollinated families from selections made in land-races in South Africa and from 

provenances in the natural range in Australia.  The maternal tree was chosen on the 

basis of floral abundance and accessibility for hand-pollinations.  To take into 

account different micro-climates, replications were evenly distributed around the tree 

(viz. north, south, east and west).   

 

4.3.2 Pollen collection and processing 

For pollen extraction, branches containing ripe flower buds were collected and kept in 

100 ml bottles containing water to prevent drying out of the branch.  To ensure that 

there was no contamination from other pollen, all open flowers were removed from 

the branches before placing them in the laboratory overnight.  The following morning, 

when the opercula of unopened flowers had shed and the filaments unfolded, the 

anthers were excised and left in a desiccator in the presence of silica gel to dry for 

approximately 48 h at room temperature.  When the relative humidity (RH) in the 

desiccator had reached 10%, the dried anthers were sieved through a 30 micron 

mesh to remove debris.  The resulting pollen was placed into polypropylene vials, 

sealed in glass bottles containing silica gel and stored in a freezer at -10oC until 

needed.  For the mixed-donor pollen treatment, pollen from self- and outcross-

genotypes were mixed according to their pollen viability to give a representative 

pollenlot.   

 

4.3.3. In vitro pollen germination 

Pollen viability was tested under laboratory conditions before use in controlled 

pollinations.  Pollen was left at room temperature and RH for 8 hours to rehydrate.  In 

vitro germination was carried out using 30% (w/v) sucrose, supplemented with 0.15 

mg l-1 boric acid in a liquid medium (Horsley et al. 2007).  Pollen from each genotype 

was placed into glass vials containing the in vitro medium (three replications per 

genotype) and left to incubate in a germination chamber in a completely randomised 

design for 48 hours at 29oC.  After the required time period had elapsed, 5 μl was 

transferred from the test-tube to a glass slide.  Percent germination was scored using 

a light microscope (x100 magnification) to count the number of pollen grains 

germinated out of a total of 50 grains.  Six glass slides per genotype (two slides per 

test tube) were scored for germination (sub-samples), giving a total of 300 pollen 

grains counted per treatment.  Pollen was deemed to have germinated if the pollen 
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tube length was greater than one-half of the diameter of the pollen grain (Potts and 

Marsden-Smedley 1989).   

 

4.3.4 Controlled pollination  

Conventional controlled pollinations were performed on E. grandis flowers, maternal 

genotype T1144, using one of the following pollen treatments: (1) single-donor self-

pollen (paternal genotype T1144), (2) single-donor outcross-pollen (paternal 

genotype T1087) and (3) mixed-donor self- and outcross-pollen (paternal genotypes 

T1144 + T1087).  On average, 50 flowers were pollinated per treatment (Table 4.1).  

During controlled pollinations, the operculum was removed from ripe flower buds and 

the anthers excised to prevent self-pollination.  An isolation bag (Quick-dry nappy-

liners, manufactured by Unsgaard Packaging Ltd, South Africa) was placed over the 

emasculated flowers to prevent access by insect pollinators.  A week later, when the 

stigma had ripened, the isolation bag was opened and the relevant pollen applied.  

The pollinated flowers were then re-isolated.  Isolation bags were only removed when 

the stigma had fully oxidised, which occurred two weeks after pollination.  The final 

step involved collecting ripe capsules 10 months after pollination.  Open controls 

consisted of buds that had not been artificially pollinated nor isolated and were 

included to give an indication of natural pollination success. 

 
Table 4.1: Mating design showing number of Eucalyptus grandis flowers pollinated 

per treatment.  N refers to the number of isolation bags (or replications).   

CROSS POLLEN TREATMENT FLOWERS 
POLLINATED 

N 

T1144 x T1144 Single-donor self 53 5 

T1144 x T1087 Single-donor outcross 55 4 

T1144 x (T1087 + T1144) Mix-donor  56 4 

T1144 open control Open control 131 3* 
*For the open control, N refers to the number of pollination events (i.e. number of branches containing 
pollinated flowers).  Open-pollinated controls were not manually isolated. 

 
4.3.5 Seed set 

All capsules remaining at maturity (10 months after pollination) were harvested and 

allowed to dry out in the laboratory and release their seed.  The number of viable 

seeds in each capsule were counted.  Seeds were considered viable if they were 
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rounded, solid and dark in colour as opposed to flat and possessing a light-brown 

colour (Pound et al. 2002).   

 

4.3.6 Molecular marker analysis of progeny  

Molecular marker analysis was performed on leaf samples from progeny of seed 

parent T1144 in order to distinguish progeny derived from cross-pollinations to those 

derived from self-pollinations.  DNA was extracted using the Qiagen DNeasy Plant 

Kit (QIAGEN, Valencia, CA, USA) and samples fingerprinted using the eight markers 

shown in Table 4.2.  Fourteen samples were analysed from the single-donor self-

pollinations, 20 samples from the open control and 150 samples from mixed-donor 

pollinations.  Sample sizes were dependent on viable seedlings obtained after 

germinating seed in the nursery.     

 

Table 4.2: Polymorphic microsatellite markers used to analyse T1144 seed parent and 

seedlings obtained from controlled pollinations. 

MARKER COLOUR SIZE RANGE (base pairs) 

Embra 28 6-FAM 170 – 230  

Eg 126 6-FAM 325 – 350 

En 16 VIC 145 – 180 

Eg 65 VIC 230 – 280 

Embra 168 NED 70 – 80 

Embra 27 NED 110 – 150 

Embra 186 PET 130 – 190 

Embra 227 PET 302 – 320 
 

4.3.7 Statistical analysis 

SPSS Version 15.0 was used for all statistical analyses.  Pollen viability data were 

angular transformed prior to Analysis of Variance (ANOVA) and Duncan Multiple 

Range tests.  Percentage capsule retention and seed set per flower were analysed 

by ANOVA, followed by Duncan Multiple Range tests.  As it was common for more 

than one capsule to be harvested from within a pollination bag, the mean number of 

seeds set per flower pollinated was calculated for each bag.  Percentage capsule 

retention was angular transformed prior to analysis.  A Chi-square Contingency test 

was performed to compare the proportion of selfs in single-self and mixed-donor 

pollinations.  To determine if mixed-donor results were additive and predictable from 

 67



  

results of single-donor pollinations, a Chi-Square Goodness of Fit test was 

performed, examining differences between observed and expected proportions of 

selfed- and outcrossed seeds. 

 

4.4 RESULTS  

4.4.1 In vitro pollen germination 

There were no significant differences in pollen viability between paternal samples 

used in the controlled pollination experiments (F = 0.640; P = 0.560), with 

germination ranging between 61.7 and 64.0% (Table 4.3).    

 

Table 4.3: In vitro germination of Eucalyptus grandis pollen used in controlled 

pollinations. There were no statistically significant (P < 0.05) differences between 

treatments. 

PATERNAL GENOTYPE N MEAN ±  STD ERROR (%) 

T1087 3 64.0 ± 1.7 

T1144 3 64.0 ± 1.5 

T1087 + T1144 mix 3 61.7 ± 1.8 
 

4.4.2 Controlled pollination 

There were no significant differences for capsule retention (F = 1.095; P = 0.389), 

with 95 – 100% of the pollinated buds setting seed.  Seed yields, on the other hand, 

differed significantly between treatments (F = 4.548; P = 0.024).  Single-donor 

pollinations performed with outcross-pollen set a significantly higher number of seeds 

per flower pollinated (23.63 ± 8.4) compared to those performed with self-pollen (2.47 

± 0.9), while there were no significant differences between the open control (1.67 ± 

0.3) and single-donor self-pollinations (Figure 4.1).  Seed yields from mixed-donor 

pollinations (16.20 ± 5.4 seeds per flower pollinated) were not significantly different 

from single-donor outcross pollinations. 
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Figure 4.1: Seed per flower after different pollen treatments were used in control-

pollinations on Eucalyptus grandis.  Letters (a) and (b) indicate statistical significance, 

where treatments indicated by the same letter are not significantly different.  Error bars 

represent standard error of the mean. Sample sizes at the base of each bar refer to number 

of replications (isolation bags) per treatment. 

 

4.4.3 Molecular marker analysis of progeny 

Maternal genotype T1144 was confirmed in all seedlings.  For the mixed-donor 

pollinations, the presence of alleles unique to the outcross-pollen parent T1087 were 

detected in all progeny, with none from the self-pollen parent T1144 (i.e. progeny 

were 100% outcrossed).  Of the 14 progeny analysed from the single-donor self-

pollinations (the total germinants produced from this cross), 8 were confirmed selfs 

and 6 were outcrossed with paternal parent T1087 (which was a neighbouring tree in 

the orchard).  All 20 open control samples were found to be outcrossed (Table 4.4).  

Chi-square analysis revealed significant differences between the proportion of selfs 

in single-self and mixed-donor pollinations [χ2 (1df) = 55.1; P < 0.001].  In addition, 

the self:outcross ratio of 0:150, obtained from molecular analysis of progeny from the 

mixed-donor pollinations, was found to differ significantly from the expected 

self:outcross ratio of 120:1208 generated from single-donor seed yields [χ2 (1df) = 

13.566; P < 0.001].   
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Table 4.4: Molecular marker analysis of Eucalyptus grandis progeny after mixed- and 

single-donor pollinations were performed on seed parent T1144.  

PATERNAL CONTRIBUTION TO PROGENY (%) POLLEN 
TREATMENT 

N 

T1144 T1087 Foreign 

Mixed-donor 150 0 100 0 

Single-donor self 14 57 43 0 

Open control 20 0 0 100 
 

4.5 DISCUSSION 

A previous study (Chapter 3) showed that self-pollen tube growth in E. grandis and E. 

urophylla styles was slower than cross-pollen tube growth, leading to the suggestion 

of cryptic self-incompatibility in these species (Horsley and Johnson 2007).  From 

those observations it was expected that, following mixed pollinations, the relatively 

faster-growing cross-pollen tubes would be the first to arrive at the ovary and thus 

penetrate the majority of the ovules before the arrival of self-tubes.  Using molecular 

markers, the present study on E. grandis confirmed the competitive advantage of 

cross-pollen, showing that 100% of the progeny was sired from outcrossed donors 

following mixed pollination with self- and outcross-pollen.  This is in accordance with 

other studies which have found that in species that exhibit CSI, outcross-donors sire 

an average of 76 – 92% of the seeds per fruit following pollinations with equal 

amounts of self- and outcross-pollen (Bateman 1956; Weller and Ornduff 1977; 

Bowman 1987).   

 

The results of single-donor self-pollinations would suggest that E. grandis is self-

compatible to some extent since self-seed was set, although at a much reduced rate 

compared to outcross seed-set (Figure 4.1).  However, these results differ from other 

CSI studies on species such as Cheiranthus cheiri (Bateman 1956), Amsinckia 

grandiflora (Weller and Ornduff 1977), Decodon verticillatus (Eckert and Barrett 

1994) and Clarkia gracilis (Jones 1994), which have found no differences in seed set 

when self- and outcross-pollen were applied to separate flowers.  Waser (1992) used 

the term “pseudo incompatibility” to describe responses that occur even after single-

donor pollinations but which are partial, and Montalvo (1992) has warned that this 

phenomenon may obscure the detection of CSI.  Despite these difficulties, the fact 

that there were significant differences in the proportion of selfed seeds from mixed-
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donor fruits compared to expected values based on averages for single-donor self- 

and outcross fruits (χ2 = 13.566; P < 0.001), the case for CSI is strengthened in E. 

grandis.  This significant change in the self:outcross seed ratio suggests that the 

observed deficit of selfed seeds in mixed-donor fruits could be the result of 

differential pollen tube growth. 

 

From the results of single-donor self-pollinations (2.47 ± 0.9 seeds per flower 

pollinated), it is clear that an additional incompatibility mechanism is operating in E. 

grandis, and this is suggested to be late-acting self-incompatibility (LSI).  Generally, 

in this type of self-incompatibility, self-pollen germinates and reaches the ovules, but 

no fruit is set (Seavey and Bawa 1986; Sage et al. 1994).  It can manifest pre-

zygotically, with deterioration of the embryo sac prior to pollen tube entry (Sage et al. 

1999), or post-zygotically, with malformation of the zygote or embryo (Sage and 

Williams 1991).  The concept of LSI, also termed ovarian self-incompatibility, was 

introduced by Seavey and Bawa (1986) to accommodate the increasing number of 

reports where the self-incompatibility mechanism does not act in the stigma or in the 

style.       

 

The suggestion of LSI in the study species is strengthened by the observation that 

seed yields from mixed-donor (16.20 ± 5.4 seeds per flower pollinated) and single-

donor outcross pollinations (23.63 ± 8.4 seeds per flower pollinated) were not 

significantly different (Figure 4.1), suggesting that the incompatibility reaction likely 

occurred before fertilisation.  If the absence of selfed progeny from mixed-donor 

pollinations were due to the abortion of selfed embryos, we would expect seed yields 

to be more markedly reduced following mixed pollinations, due to ovules being 

discounted by self-pollen.  A more likely scenario is the combination of slower self-

pollen tube growth (CSI), together with LSI (occurring before fertilisation), resulting in 

outcross-pollen having the competitive advantage during mixed pollinations.  Similar 

to the present study, Horsley and Johnson (2007) also suggested the presence of 

LSI in E. grandis.  In that study, a much lower number of seeds were set following 

self-pollination relative to the number of self-pollen tubes observed in the style 

(Horsley and Johnson 2007).    
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In contrast to mixed pollinations, open controls showed a marked reduction in seed 

yield, setting an average of 1.66 ± 0.3 seeds per flower pollinated.  This could be as 

a result of the time delay in pollen deposition during open pollination, as opposed to 

simultaneous placement of both self- and outcross-pollen during mixed pollinations.  

In addition, during mixed pollinations, equal quantities of the two pollen donors were 

placed on the stigma, whereas unknown quantities of self- and outcross-pollen were 

involved in the open controls.  If self-pollen was deposited in sufficient quantity and 

well ahead of outcross-pollen, self-pollen tubes would be expected to traverse the 

style ahead of outcross-pollen tubes.  By the time outcross-pollen landed on the 

stigma, it is possible that oxidation could have already occurred and thus the stigma 

would no longer have been receptive to pollen germination.  An alternative 

hypothesis is that self-pollen was indeed able to fertilise the ovules, which 

subsequently aborted due to early-acting inbreeding depression, resulting in the 

observed low seed yields from the open controls. 

 

The difference in male performance in single and mixed pollen loads is not surprising 

because of the different levels at which interactions are possible in the two cases 

(Bertin 1990).  In single-donor pollinations, any seeds sired in a fruit are sired by the 

single-donor, and while seed number may vary among fruits sired by different 

donors, a maximum is set by the number of ovules and a minimum by the recipient’s 

tendency to abort few-seeded fruits (Bertin 1982).  The major determinant of success 

is the production or non-production of a fruit.  In mixed pollinations, however, success 

of a donor’s pollen will be determined firstly by its ability to fertilise ovules in 

competition with other pollen, secondly by the relative success of its fertilised ovules 

and thirdly by the likelihood of fruit maturation (Bertin 1990).  Slower growth of pollen 

tubes from poorer donors would have little detrimental effect in single-donor 

pollinations but would be detrimental in mixed pollinations because of the presence 

of competing pollen tubes.  Similar to the present study, a comparison of male 

performance in single- and mixed-donor pollinations in Raphanus sativus showed 

that the poorest donor in the single-donor pollinations tended to do even worse in the 

mixed-donor loads, suggesting the presence of differential pollen tube growth 

(Marshall and Ellstrand 1986).   
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Eckert and Allen (1997) have suggested that CSI might be favoured over more 

stringent forms of SI in species that: (1) exhibit strong inbreeding depression, (2) 

experience wide spatial or temporal variation in the availability of outcross pollen, and 

(3) experience selection for maximum fecundity during any given reproductive period.  

The first of these criteria simply provides the selective force maintaining outcrossing 

over self-fertilisation, while the second follows the logic that plasticity of any form is 

most likely selected when the environment is variable (Eckert and Allen 1997).  The 

final criterion recognises that while the default option of selfing when cross pollen is 

limited might be advantageous in annual species, its value would be eroded in 

perennial species if the maturation of selfed ovules reduces residual reproductive 

value.  Because E. grandis is a long-lived perennial, it is possible that maturing selfed 

ovules reduces future survival and/or reproductive output, much like it does in 

Decodon verticillatus (Eckert and Allen 1997).  This could be the reason for the 

evolution of the additional LSI mechanism in E. grandis.   

 

It should be noted that the genetic base for this experiment was extremely narrow.  

Travers and Mazer (2000) warn against generalising about CSI from the results of a 

single population, after their study on Clarkia unguiculata showed much lower 

outcross siring success compared to previous studies by Bowman (1987) and Jones 

(1994).  Travers and Mazer (2000) have suggested that the advantage of outcross-

pollen relative to self-pollen may vary among populations that differ in the amount of 

outcross-pollen typically deposited on stigmas.  Alternatively, populations that differ 

in their genetic load will differ in their strength of selection favouring processes (such 

as CSI) that lower the rate of inbreeding.   In the case of Eucalyptus, a more general 

case could be made by repeating this study using additional genotypes.  Future 

investigations of the effect of environmentally induced stress on inbreeding 

depression, pseudo and cryptic SI, and maternal control over seed provisioning are 

warranted.   

 

4.6 CONCLUSION 

The combination of pseudo incompatibility and late-acting self-incompatibility makes 

it difficult to confirm the presence of CSI in E. grandis.  However, due to the absence 

of selfed progeny after mixed pollinations (a significant deviation from the expected 

self:outcross ratio based on seed set in single-donor experiments), combined with 
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the slower self-pollen tube growth compared to cross-pollen tubes in a previous study 

(Chapter 3), CSI is still strongly suspected in this eucalypt species. 

 

4.7 REFERENCES 

Bateman, A. J. 1956. Cryptic self-incompatibility in the wallflower: Cheiranthus cheiri 

L. Heredity 10: 257 – 261. 

Bertin, R. I. 1982. Paternity and fruit production in trumpet creeper (Campsis 

radicans). American Naturalist 119: 694 – 709. 

Bertin, R. I. 1990. Paternal success following mixed pollinations of Campsis radicans. 

American Midland Naturalist 124: 153 – 163. 

Bowman, R. N. 1987. Cryptic self-incompatibility and the breeding system of Clarkia 

unguiculata (Onagraceae). American Journal of Botany 74: 471 – 476. 

Cruzan, M. B. and Barrett, S. C. H. 1993. Contribution of cryptic incompatibility to the 

mating system of Eichhornia paniculata. Evolution 47: 925 – 934. 

de Nettancourt, D. 1997. Self-incompatibility in angiosperms. Sexual Plant 

Reproduction 10: 185 – 199. 

Eckert, C. G. and Allen, M. 1997. Cryptic self-incompatibility in tristylous Decodon 

verticillatus (Lythraceae). American Journal of Botany 84: 1391 – 1397. 

Eckert, C. G. and Barrett, S. C. H. 1994. Post-pollination mechanisms and the 

maintenance of outcrossing in self-compatible Decodon verticillatus. Heredity 72: 396 

– 411. 

Goodwillie, C., Partis, K. L. and West, J. W. 2004. Transient self-incompatibility 

confers delayed selfing in Leptosiphon jepsonii (Polemoniaceae). International 

Journal of Plant Science 165: 387 – 394. 

Griffin, A. R. 1980. Floral phenology of a stand of mountain ash (Eucalyptus regnans 

F. Muell.) in Gippsland, Victoria. Australian Journal of Botany 28: 393 – 404. 

Horsley, T. N. and Johnson, S. D. 2007. Is Eucalyptus cryptically self-incompatible? 

Annals of Botany 100: 1373 – 1378. 

Horsley, T. N., Johnson, S. D. and Stanger, T. K. 2007. Optimising storage and in 

vitro germination of Eucalyptus pollen.  Australian Journal of Botany 55: 83 – 89. 

 74



  

Husband, B. C. and Schemske, D. W. 1996. Evolution of the magnitude and timing of 

inbreeding depression in plants. Evolution 50: 54 – 70. 

Jones, K. N. 1994. Nonrandom mating in Clarkia gracilis (Onagraceae): a case of 

cryptic self-incompatibility. American Journal of Botany 81: 195 – 198. 

Lloyd, D. G. 1984. Gender allocations in outcrossed cosexual plants. In: Dirzo, R. 

and Sarukhan, J, (eds) Principles of plant population ecology. Sinauer, Sunderland. 

pp 277 – 300. 

Marshall, D. L. and Ellstrand, N. C. 1986. Sexual selection in Raphanus sativus: 

experimental data on nonrandom fertilisation, maternal choice, and consequences of 

multiple paternity. American Naturalist 127: 446 – 461. 

Marshall, D. L. and Folsom, M. W. 1992. Mechanisms of non-random mating in wild 

radish. In: Wyatt, R. (ed) Ecology and evolution of plant reproduction: new 

approaches. Chapman and Hall, New York, NY. pp. 91 – 118. 

McCall, C. and Primack, R. B. 1992. Influence of flower characteristics, weather, time 

of day, and season on insect visitation rates in three plant communities. American 

Journal of Botany 79: 434 – 442. 

Montalvo, A. M. 1992. Relative success of self and outcross pollen comparing mixed- 

and single-donor pollinations in Aquilegia caerulea. Evolution 46: 1181 – 1198. 

Moran, G. F. 1992. Patterns of genetic diversity in Australian tree species. New 

Forests 6: 49 – 66. 

Moran, G. F. and Bell, J. C. 1983. Eucalyptus. In: Isozymes in Plant Genetics and 

Breeding. Part B. (Eds. S. D. Tanksley and T. J. Orton). Elsevier. Amsterdam. pp. 

423 – 441. 

Potts, B. M. and Marsden-Smedley, J. B. 1989. In vitro germination of Eucalyptus 

pollen: response to variation in boric acid and sucrose. Australian Journal of Botany 

37: 429 – 441. 

Pound, L. M., Wallwork, M. A. B., Potts, B. M. and Sedgley, M. 2002. Early ovule 

development following self- and cross-pollinations in Eucalyptus globulus Labill. ssp. 

globulus. Annals of Botany 89: 613 – 620. 

 75



 

 

 

76

Rigney, L. P. 1995. Postfertilisation causes of differential success of pollen donors in 

Erythronium grandiflorum (Liliaceae): non-random ovule abortion. American Journal 

of Botany 82: 578 – 584. 

Sage, T. L. and Williams, E. G. 1991. Self-incompatibility in Asclepias. Plant Cell 

Incomp. Newsl. 23: 55 – 57. 

Sage, T. L., Bertin, R. I. and Williams, E. G. 1994. Ovarian and other late-acting self-

incompatibility systems. In: (eds. William, E. G., Clarke, A. E. and Knox, R. B.) 

Genetic control of self-incompatibility and reproductive development in flowering 

plants. Kluwer. Dordrecht. pp 116 – 140. 

Sage, T. L., Strumas, F., Cole, W. and Barrett, S. P. H. 1999. Differential ovule 

development following self- and cross-pollination: the basis of self-sterility in 

Narcissus triandrus (Amaryllidaceae). American Journal of Botany 86: 855 – 870. 

Seavey, S. R. and Bawa, K. S. 1986. Late-acting self-incompatibility in Angiosperms. 

Botanical Review 52: 195 – 219. 

Snow, A. A. and Spira, T. P. 1991. Differential pollen-tube growth rates and 

nonrandom fertilisation in Hibiscus mosheutos (Malvaceae). American Journal of 

Botany 78: 1419 – 1426. 

Travers, S. E. and Mazer, S. J. 2000. The absence of cryptic self-incompatibility in 

Clarkia unguiculata (Onagraceae). American Journal of Botany 87(2): 191 – 196. 

Waser, N. M. 1992. Population structure, optimal outbreeding, and assortative mating 

in angiosperms. In: Thornhill, N. W. (ed) The natural history of inbreeding and 

outbreeding: theoretical and empirical perspectives. University of Chicago Press, 

Chicago, IL, USA. 

Weller, S. G. and Ornduff, R. 1977. Cryptic self-incompatibility in Amsinckia 

grandiflora. Evolution 31: 47 – 51. 

Weller, S. G. and Ornduff, R. 1989. Incompatibility in Amsinckia grandiflora 

(Boraginaceae): distribution of callose plugs and pollen tubes following inter- and 

intramorph crosses. American Journal of Botany 76: 277 – 282. 



 

CHAPTER 5: COMPARISON OF DIFFERENT CONTROL-POLLINATION 

TECHNIQUES FOR SMALL-FLOWERED EUCALYPTS 

 

5.1 ABSTRACT 

Controlled pollination (CP) is a labour-intensive, but useful procedure applied in tree 

improvement programmes.  However, the high costs involved and relatively low seed 

yields often obtained has, in most cases, necessitated the use of lower quality, open 

pollinated seed.  The aim of the present study was to compare control-pollination 

methods for combinations among small-flowered eucalypt species.  By making 

crosses within and among Eucalyptus grandis, E. smithii and E. macarthurii, we 

compared effectiveness, in terms of seed production and level of genetic 

contamination, of three CP techniques, namely emasculation of bagged flowers and 

subsequent pollination of receptive stigmas (Conventional method), emasculation 

and immediate pollination of stigmas with induced receptivity followed by bagging 

(One Stop Pollination), and pollination of cut styles without emasculation and bagging 

(Artificially Induced Protogyny).  Although Artificially Induced Protogyny using ripe 

and semi-ripe buds produced the highest seeds/flower pollinated in the majority of 

crosses carried out in this study, the technique, when performed on green buds, 

resulted in the highest capsule abortion.  Molecular analysis using microsatellite 

markers also revealed that progeny from the Artificially Induced Protogyny method, 

when using green and semi-ripe buds, were highly contaminated by self- and 

external pollen.  Of the three CP-techniques tested, One Stop Pollination had the 

lowest genetic contamination.  However, this technique also had one of the lowest 

seed yields, while the Conventional method was intermediate in performance.       

  

5.2 INTRODUCTION 

In forestry, controlled pollination (CP) allows the combining of genetic material of 

selected elite trees to produce high quality, and consequently high value, seed 

(Eldridge et al. 1993).  The technique has been used to improve seed yields, control 

the level of outcrossing in seed orchards, improve breeding through knowledge of 

both female and male parents, achieve interspecific hybridisation, and study self-

incompatibility levels in Eucalyptus species (Harbard et al. 1999; Moncur 1995).  

However, the high cost of performing controlled crosses and the relatively low seed 
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production often obtained has necessitated the use of lower quality, open pollinated 

seed for the establishment of the majority of commercial tree plantations.   

 

Moran and Bell (1983) have warned that the use of open-pollinated seed in 

plantations, as opposed to controlled outcrossed seed, may result in a significant loss 

of productivity.  Potts et al. (1987) suggest that this effect is the result of inbreeding 

depression and that at least 10 – 30% of open-pollinated seed arises from self-

fertilisation.  In addition to inbreeding, genetic gains from open-pollinated orchards 

may be reduced by high contamination from external pollen sources, particularly 

when they are established from thinned open-pollinated progeny trials planted near 

plantations or native forests (Potts et al. 2008).  For example, contamination of open-

pollinated orchards of Eucalyptus grandis have been reported to be as high as 39% 

(Chaix et al. 2003) and 46% (Jones et al. 2007).  For these reasons, it is highly 

desirable for the forestry industry to deploy control-pollinated elite seed.   

 

For Eucalyptus, the first-developed CP-method (termed the ‘Conventional method’ 

throughout this paper) took advantage of the natural protandry of the eucalypt flower 

(van Wyk 1977).  The technique, however, involved three flower visits (emasculation 

and bagging, subsequent pollination of receptive stigmas and re-bagging, removal of 

bags), and was consequently very time consuming.  A more efficient cross-pollination 

method was later developed, originally for Eucalyptus globulus, requiring only one 

visit to the flower (emasculation and immediate pollination of stigmas cut to induce 

receptivity, followed by bagging) and consequently named One Stop Pollination 

(OSP;  Harbard et al. 1999).  The yield of E. globulus seeds per flower pollinated by 

OSP were reportedly as high as those from conventional CP (Williams et al. 1999), 

and because OSP involved less labour, the cost per seed produced was also 

reduced.  For E. globulus, with its large, easily-pollinated flowers and capsules 

bearing up to 20 – 30 seeds each, OSP is now used to mass-produce seeds of elite 

crosses for operational deployment in plantations in Chile, Portugal and Australia 

(Assis et al. 2005; Potts et al. 2008).  Although OSP has been used with some 

success on a range of eucalypt species, including E. grandis (Harbard et al. 2000) 

and E. dunnii (Barbour and Spencer 2000), small-flowered species such as E. nitens 

have displayed unacceptably low seed set with this CP-technique (Williams et al. 

1999).  
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Artificially Induced Protogyny (AIP) is a new technique for the controlled pollination of 

eucalypt trees (Assis et al. 2005).  It involves cutting off the tip of the operculum of 

the mature flower bud just prior to anthesis (release of pollen from anthers), with the 

cut positioned so as to remove the stigma and expose the cut surface of the upper 

style to which the target pollen is applied, without emasculating or isolating the 

flower.  Trials in Australia, using E. grandis mother plants and E. camaldulensis 

pollen, showed that it was possible to produce 528 seeds per hour with the AIP 

method, compared to 240 seeds per hour with OSP and 98 seeds per hour with the 

Conventional method (Assis et al. 2005).  However, despite this high productivity, 

Assis et al. (2005) warn that contamination, especially of highly self-compatible 

mothers by self pollination, could present a problem when using AIP.  Those authors 

suggest the examination of isolated and non-isolated flowers following AIP under 

field conditions, since their study was conducted in a climate-controlled greenhouse 

(Assis et al. 2005). 

 

The aim of the present study was to compare the Conventional, OSP and AIP 

pollination methods, in terms of seed yield and degree of genetic contamination, for 

the controlled crossing of small-flowered eucalypt species.     

 

5.3 MATERIAL AND METHODS 

5.3.1 Plant material used in study 

The experiments were conducted on mature trees located in three separate clonal 

(grafted) orchards planted at the Sappi, Shaw Research Centre in KwaZulu-Natal, 

South Africa.  All three orchards were situated at 29o 29'S, 30o 11'E at 1100 m above 

sea level.  Species included in the study were Eucalyptus grandis Hill ex Maiden, E. 

smithii R. T. Baker and E. macarthurii Deane & Maiden, all belonging to the family 

Myrtaceae in the subgenus Symphyomyrtus (Brooker 2000).  Eucalyptus grandis 

belongs to the section Latoangulatae (George 1988), while E. smithii and E. 

macarthurii fall under Maidenaria (Pryor and Johnson 1981).  Breeding populations 

for all species were made up of open-pollinated families from selections made in 

land-races in South Africa and from provenances in the natural range in Australia.  

Genotypes occurring in the E. grandis orchard were seven years old, those in the E. 

smithii orchard were four years old, while those in the E. macarthurii orchard were 

three years old.  All three orchards had previously been treated with paclobutrazol to 
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stimulate flowering (two years after orchard establishment).  Pollinations were carried 

out during peak flowering (approximately 80% of genotypes flowering in the orchard), 

with trees chosen on the basis of floral abundance and accessibility for hand-

pollinations.  In general, flower bud sizes were approximately 0.8 x 0.5 cm for E. 

grandis, 0.7 x 0.4 cm for E. smithii and 0.5 x 0.3 cm for E. macarthurii (Brooker and 

Kleinig 1983). 

 

5.3.2 Pollen collection and processing 

For pollen extraction, branches containing ripe flower buds were collected and kept in 

100 ml bottles containing water to prevent drying out of the branch.  To ensure that 

there was no contamination from other pollen, all open flowers were removed from 

the branches before placing them in the laboratory overnight.  The following morning, 

when the opercula of unopened flowers had shed and the filaments unfolded, the 

anthers were excised and left in a desiccator in the presence of silica gel to dry for 

approximately 48 h at room temperature.  When the relative humidity (RH) in the 

desiccator had reached 10%, the dried anthers were sieved through a 30 micron 

mesh to remove debris.  The resulting pollen was placed into polypropylene vials, 

sealed in glass bottles containing silica gel and stored in a freezer at -10oC until 

needed.  For the polymix crosses, pollen from three unrelated genotypes were mixed 

in equal quantities (by weight) to give a representative polymix pollen-lot per species.   

 

5.3.3 In vitro pollen germination 

Pollen viability was tested under laboratory conditions before use in controlled 

pollinations.  Pollen was left at room temperature and RH for 8 hours to rehydrate.  In 

vitro germination was carried out using 30% (w/v) sucrose, supplemented with 0.15 

mg l-1 boric acid in a liquid medium (Horsley et al. 2007).  Pollen samples were 

placed into glass vials containing the in vitro medium (three replications per 

genotype) and left to incubate in a germination chamber in a completely randomised 

design for 48 hours at 29oC.  After the required time period had elapsed, 5 μl was 

transferred from the test-tube to a glass slide.  Percent germination was scored using 

a light microscope (x100 magnification) to count the number of pollen grains 

germinated out of a total of 50 grains.  Six glass slides per genotype (two slides per 

test tube) were scored for germination (sub-samples), giving a total of 300 pollen 

grains counted per treatment.  Pollen was deemed to have germinated if the pollen 
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tube length was greater than one-half of the diameter of the pollen grain (Potts and 

Marsden-Smedley 1989).   

 

5.3.4 Controlled pollination  

Three different CP techniques were performed, namely the Conventional method 

(van Wyk 1977), One Stop Pollination (OSP, Harbard et al. 1999) and Artificially 

Induced Protogyny (AIP, Assis et al. 2005).  Figures 5.1 A – F illustrate the steps 

taken when performing the Conventional and OSP techniques, while G – H depict 

AIP.   

 

For the Conventional method, the operculum was removed from ripe flower buds and 

the anthers excised to prevent self-pollination.  An isolation bag was placed over the 

emasculated flowers to prevent access by insect pollinators.  A week later, when the 

stigma had ripened, the isolation bag was opened and the relevant pollen applied.  

The pollinated flowers were then re-isolated.  Isolation bags were only removed when 

the stigma was thought to be fully oxidised, at about two weeks after pollination.  The 

final step involved collecting ripe capsules 10 months after pollination of E. grandis, 

and 12 months after pollination of E. smithii and E. macarthurii.   

 

For the OSP method, a horizontal cut was made through the stigma after the flower 

had been emasculated, and pollen immediately applied to the cut surface.  The 

pollinated flowers were then isolated.  As with the Conventional method, these 

isolation bags were removed two weeks after pollination.  The final step involved 

collection of ripe capsules.   

    

The AIP method involved cutting off the tip of the operculum prior to anthesis to 

expose the cut surface of the upper style, to which the target pollen was applied.  

AIP-pollinated flowers were not isolated.  Three types of buds were tested using this 

method, viz. green (up to 20 – 10 days before operculum lift), semi-ripe (10 – 3 days 

before operculum lift) and ripe (2 – 0 days before operculum lift) (Assis et al. 2005).   

 

 

 

 81



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: A – F show steps taken when performing the Conventional and One Stop 

Pollination (OSP) techniques, while G – H depict Artificially Induced Protogyny (AIP).  

(A) Flower buds at the operculum-lift stage of development (O) are chosen for both the 

Conventional and OSP methods; (B) buds are emasculated by removing all anthers; (C) a 

horizontal cut is made to the stigma during OSP to induce stigma receptivity; (D) pollen is 

applied to the receptive stigma; (E) pollinated buds are isolated; (F) ripe capsules are 

collected 6 – 12 months after pollination, depending on the species; (G) for AIP, a horizontal 

cut is made through flower buds prior to the operculum-lift stage of development, without 

removing the operculum; (H) pollen is applied immediately to the cut surface. Ripe capsules 

would also be collected 6 – 12 months after pollination. Bars = 1 cm 

 82



 

The maternal parents used in these CP-experiments were E. smithii (genotype S12) 

and E. macarthurii (genotype M196), pollinated with a polymix of three E. grandis 

paternal genotypes (EG45, T902 & P1376), and E. grandis (genotype P1369), 

pollinated with a polymix of three E. smithii paternal genotypes (S12, S20 & S8) and 

a polymix of three E. macarthurii paternal genotypes (M198, M199, M212).  

Eucalyptus grandis was also pollinated with self-pollen (P1369), as well as with 

intraspecific cross-pollen (T902).  Open controls consisted of buds that had not been 

artificially pollinated nor isolated and were included to give an indication of natural 

pollination success. 

 

5.3.5 Seed set 

All capsules remaining at maturity (10 – 12 months after pollination) were harvested 

and allowed to dry out in the laboratory and release their seed.  The number of viable 

seeds in each capsule were counted.  Seeds were considered viable if they were 

rounded, solid and dark in colour as opposed to flat and possessing a light-brown 

colour (Pound et al. 2002).   

 

5.3.6 Molecular marker analysis of pollen contamination  

Leaf samples from the five CP-treatments (AIP-ripe buds; AIP-semi-ripe buds; AIP-

green buds; OSP and Conventional method) were collected for molecular marker 

analysis, with twenty randomly selected progeny sampled from each of the following 

crosses: E. grandis x E. smithii interspecific cross; E. grandis x E. grandis 

intraspecific cross; E. grandis self-pollination.  DNA extraction was performed using 

the Qiagen DNeasy Plant Kit (QIAGEN, Valencia, CA, USA).  The contamination rate 

of each of the treatments was determined using microsatellite markers (Brondani et 

al. 1998) to test for non-parental (contaminant) alleles in each progeny set.  Eight 

highly informative microsatellite markers (viz. EMBRA 37, EMBRA 45, EMBRA 48, 

EMBRA 56, EMBRA 94, EMBRA 98, EMBRA 219, EMBRA 227) were used to ensure 

adequate power to discriminate closely related pollen contaminants from pollen used 

in the CP trials.  

 

 83



 

5.3.7 Statistical analysis 

SPSS Version 15.0 was used for all statistical analyses.  Species were treated as 

replicates of the pollination methods since pollination occurred in the same way in all 

three maternal genotypes.  As it was common for more than one capsule to be 

harvested from within a pollination bag in the Conventional and OSP pollination 

methods, the mean number of seeds set per flower pollinated was calculated for 

each bag.  In the case of AIP pollinations, mean number of seeds set per pollination 

event was calculated, with a pollination event consisting of three umbels.  Seed set 

per flower pollinated was analysed using the General Linear Model (GLM) Univariate 

procedure (with Type III sum of squares).  Due to the unbalanced nature of the 

experimental design, the CP-data had to be split and two separate analyses 

perfomed.  The first analysis compared the performance of the CP-techniques across 

three maternal parents (E. grandis, E. macarthurii and E. smithii) when pollinations 

were done using E. grandis outcross pollen, while the second analysis looked at CP-

performance when pollinations were done on a common maternal parent (E. grandis) 

using four different pollen parents (E. grandis self, E. grandis outcross, E. macarthurii 

and E. smithii).  The independent variables ‘tree’, ‘pollen’ and ‘CP’ were specified as 

fixed effects, while ‘seed per flower pollinated’ was the dependent variable.  A full 

factorial model was used to analyse all main effects and their interactions.  Pollen 

viability data were angular transformed prior to Analysis of Variance (ANOVA) and 

Duncan multiple range tests.      

 

5.4 RESULTS  

5.4.1 In vitro pollen germination 

In vitro germination rates varied among pollen samples, ranging from 35.3 to 66.0%, 

with significant differences between treatments (P < 0.001; Table 5.1).  
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Table 5.1: In vitro germination of Eucalyptus pollen used in controlled pollinations. 

Letters (a) and (b) indicate statistical significance (P < 0.05), where treatments indicated by 

the same letter are not significantly different. 

Species Genotype N Mean ±  std error (%) 

E. grandis (polymix) EG45; T902; P1376 3 66.0 ± 0.6a 

E. grandis  P1369 3 64.7 ± 0.3a 

E. smithii (polymix) S12; S20; S8 3 57.7 ± 3.5a 

E. grandis  T902 3 42.3 ± 2.3b 

E. macarthurii (polymix) M198; M199; M212 3 35.3 ± 5.9b 
  

5.4.2 Controlled pollination 

There were statistically significant differences in seed/flower pollinated between the 

different maternal parents (P < 0.001) and between the different CP-techniques (P < 

0.001), as well as a significant interaction between these two fixed effects (Table 

5.2).   

 

Table 5.2: Univariate analysis of variance of seed per flower following controlled 

pollinations of three maternal parents crossed with E. grandis pollen.  In the table, 

‘Tree’ refers to maternal parents E. grandis, E. macarthurii and E. smithii, while ‘CP’ refers to 

the following six pollination treatments: Conventional, OSP, AIP with green buds, AIP with 

semi-ripe buds, AIP with ripe buds and Open controls. 

Source of variation d.f. Mean Square F-value P-value

Tree 2 2490.81 26.12 0.000

CP 5 480.57 5.04 0.000

Tree x CP 10 441.51 4.63 0.000

Error  77 95.37  
 

After pollinations, a higher percentage of capsules were retained on the E. grandis 

maternal parent, compared to E. macarthurii and E. smithii parents (Table 5.3).  For 

all species, high capsule abortion occurred when AIP was performed on green buds, 

compared to AIP on semi-ripe and ripe buds.  OSP also tended to result in abortion 

of capsules.  The highest seed yields were obtained from the E. grandis intraspecific 

outcross, particularly when using the AIP technique on semi-ripe buds (44 ± 10.4 

seeds/flower pollinated), while AIP performed on ripe buds yielded a similar amount 

of seed to the open-pollinated control in this type of cross (Table 5.3).   



 

Table 5.3: Seed yields obtained after different control-pollination techniques were performed on three maternal parents, viz. 

Eucalyptus grandis (genotype P1369), E. macarthurii (genotype M196) and E. smithii (genotype S12) using different pollen donors.   

Pollination 
treatments 

Flowers 
pollinated 

N Capsules 
set (%) 

Seed/flower 
± std error 

Flowers 
pollinated 

N Capsules 
set (%) 

Seed/flower 
± std error 

Flowers 
pollinated

N Capsules 
set (%) 

Seed/flower 
± std error 

 E. grandis x E. grandis (single-donor) 
intraspecific outcross 

E. macarthurii x E. grandis (polymix) 
interspecific outcross 

E. smithii x E. grandis (polymix) 
interspecific outcross 

Conventional 60  3 71 9.8 ± 0.6 81 6 5 0.4 ± 0.3 58 5 15 0.5 ± 0.2 

OSP 55 4 31 0.0 ± 0.0 66 5 12 0.8 ± 0.7 56 5 1 0.1 ± 0.1 

AIP ripe 60 7 82 27.9 ± 7.7 52 4 26 0.4 ± 0.3 54 15 19 0.3 ± 0.2 

AIP semi-ripe 75 7 80 44.0 ± 10.4 84 6 18 0.8 ± 0.3 52 6 22 1.0 ± 0.6 

AIP green 55 2 32 5.8 ± 3.3 87 6 20 1.0 ± 0.7 93 3 2 0.0 ± 0.0 

Open control 70 2 83 26.0 ± 10.5 98 5 16 0.3 ± 0.2 66 4 9 0.1 ± 0.1 

 E. grandis x E. grandis (single-donor) 
intraspecific self-cross 

E. grandis x E. macarthurii (polymix) 
interspecific outcross 

E. grandis x E. smithii (polymix) 
interspecific outcross 

Conventional 57 4 24 1.1 ± 0.4 60 4 19 10.5 ± 10.1 58 5 49 18.3 ± 16.6 

OSP 60 4 59 1.7 ± 0.7 58 7 46 2.0 ± 0.5 50 5 60 7.7 ± 2.3 

AIP ripe 55 7 71 7.2 ± 2.0 54 10 75 32.8 ± 13.9 78 6 71 11.3 ± 3.0 

AIP semi-ripe 63 7 79 7.1 ± 3.0 62 3 73 14.8 ± 10.1 52 2 70 8.2 ± 6.8 

AIP green 63 3 30 8.8 ± 8.1 86 5 19 0.4 ± 0.2 51 2 29 2.9 ± 2.9 

N refers to number of replications (i.e. isolation bags / pollination events), OSP to One Stop Pollination and AIP to Artificially Induced Protogyny.  The E. grandis 
polymix was made up of EG45, T902 and P1376 paternal genotypes, E. smithii polymix consisted of S12, S20 and S8, and E. macarthurii consisted of M198, M199 
and M212.  The single-donor pollen used in the E. grandis intraspecific outcross was genotype T902. 
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In contrast to E. grandis, the remaining maternal parents (E. macarthurii and E. 

smithii) exhibited extremely low seed yields (less than 1 seed/flower pollinated on 

average) across all pollination treatments, including the open-pollinated controls.  

Although there were no statistically significant differences between pollen donors (E. 

grandis self, E. grandis outcross, E. smithii and E. macarthurii) when pollinations 

were performed on a common E. grandis maternal parent (P = 0.309), there were 

significant differences between the CP-techniques (P = 0.039; Table 5.4).  On this 

maternal parent, the lowest seed yields were generally obtained from OSP and AIP 

green-bud treatments.  Conventional pollinations produced higher seed yields on 

average, across all species, compared to OSP (Table 5.3).     

 

Table 5.4: Univariate analysis of variance of seed per flower for an E. grandis maternal 

parent control-pollinated with four different pollen parents, viz. E. grandis self, E. 

grandis outcross, E. macarthurii and E. smithii.  In the table, ‘Pollen’ refers to the paternal 

parents, while ‘CP’ refers to the following five pollination treatments: Conventional, OSP, AIP 

with green buds, AIP with semi-ripe buds and AIP with ripe buds. 

Source of variation d.f. Mean Square F-value P-value

Pollen 3 527.25 1.22 0.309

CP 4 1150.99 2.66 0.039

Pollen x CP 12 511.50 1.18 0.311

Error  77 432.54  
 

Indicative costs, based on mean seed yields obtained from E. grandis (viz. 10 seeds 

per flower pollinated), showed that the AIP method could lead to a substantial 

reduction in total costs, with approximately 50% reduction in labour costs alone.  This 

was due to the higher number of flowers that could be pollinated in one hour by one 

labour unit when using AIP (viz. 300 flowers), compared to the Conventional method 

and OSP (56 and 75 flowers, respectively).  However, in the case of E. smithii and E. 

macarthurii, there were no cost reductions when using AIP compared to the other 

CP-techniques, due to the low number of seed per flower pollinated in the genotypes 

tested. 
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5.4.3 Molecular marker analysis of pollen contamination 

Molecular analysis of progeny from the E. grandis x E. smithii cross revealed that 

controlled pollinations using the AIP method on green buds resulted in high 

contamination by self (65%) and external (foreign) pollen (35%), with none of the 

applied pollen contributing to the progeny (Table 5.5).  A similar trend was observed 

when semi-ripe buds were used in the E. grandis x E. smithii cross, with progeny 

showing 80% selfing and 15% external contamination.  On the other hand, molecular 

analysis of the E. grandis self and intraspecific outcross (Table 5.5) performed on 

ripe buds using the AIP method, showed acceptable levels of external pollen 

contamination (5%).  In the samples tested, OSP had the lowest self-pollen 

contamination (0%), followed by the Conventional method (5%).     

 

Table 5.5: Molecular analysis of pollen contamination, where ‘gran’ and ‘smit’ refer to 

E. grandis and E. smithii, respectively.  A total of 20 progeny from each treatment were 

fingerprinted using microsatellite markers. 

Contribution to progeny (%) CP method Cross Bud stage 

Applied 
pollen 

Self pollen Foreign 
pollen 

AIP gran x smit green 0 65 35 

AIP gran x smit semi-ripe 5 80 15 

AIP gran self ripe 95 * 5 

AIP gran x gran ripe 60 35 5 

OSP gran x smit ripe 95 0 5 

Conventional gran x smit ripe 70 5 25 
*Self-pollen was manually applied for this treatment and therefore occurs in the applied pollen column 
 

5.5 DISCUSSION 

Of the three CP-techniques, the AIP method not only produced the highest 

seeds/flower pollinated when ripe and semi-ripe buds were used (Table 5.3), but also 

reduced the time to perform pollinations since flowers were not emasculated.  

However, determining the exact levels of contamination became a key issue, as 

flowers were also not isolated from non-intended sources of pollen when using this 

technique.  Microsatellite markers revealed contamination present for all three CP 

methods.  This is of concern, especially in the case of Conventional and OSP (both 

being well-established CP-techniques) and a possible cause could be the use of 
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inadequate isolation material when bagging flowers.  Harbard et al. (2000) have 

suggested a contamination rate of around 10% as acceptable for commercial CP-

seed production.  In the present study, self-pollen contamination ranged between 5 – 

80% in the samples tested, while outcross-pollen contamination was found to be 

between 5 – 35%, across all techniques (Table 5.5). 

 

For the E. grandis maternal parent, there was a significant reduction in seed set 

following self-pollination (5 seeds/flower on average), compared to the open-

pollinated control (26 seeds/flower) and cross-pollinations (10 –18 seeds/flower).  

Similar results were obtained in Chapters 3 and 4, where both E. grandis and E. 

urophylla set fewer seeds following single-donor self-pollinations compared to cross-

pollinations.  Reduced self-seed yields have also been demonstrated in E. globulus 

(Potts and Savva 1988), E. nitens (Tibbits 1989) and E. gunnii (Potts et al. 1987).  

Furthermore, Griffin et al. (1987) found that preferential outcrossing took place in E. 

regnans following pollination with mixed self- and outcross-pollen. 

 

The present results support Pryor’s (1961) observations that selfing can occur in 

Eucalyptus, but less readily than outcrossing and frequently less readily than 

interspecific hybridisation.  Barriers to self-fertilisation have been noted in other 

Eucalyptus species (Pryor 1961; Hodgson 1976; van Wyk 1981; Eldridge and Griffin 

1983; Potts and Savva 1988; Sedgley et al. 1989; Sedgley and Smith 1989; Ellis and 

Sedgley 1992; Pound et al. 2002; Pound et al. 2003) and Pryor (1961) indicates 

there is some evidence for a gene-controlled self-incompatibility system in some 

species.  Horsley and Johnson (2007) suggest the presence of cryptic self-

incompatibility in E. grandis and E. urophylla since, in addition to reduced self-seed 

yields, the growth of self (incompatible) pollen tubes was slower than that of 

outcrossed (compatible) ones, rather than being completely inhibited.  Studies by 

Stephenson et al. (2003) and Travers et al. (2004) have shown that there may be 

more plasticity in the growth of self-pollen tubes than has previously been 

appreciated, and those authors have subsequently suggested that the plasticity in 

self-incompatibility systems be viewed as a mechanism that promotes outcrossing by 

modulating the intensity with which it handicaps the growth of self pollen. 
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The very high rate of selfing obtained with the AIP method was unexpected, raising a 

number of questions: Firstly, is an internal barrier to self-fertilisation overcome by this 

method?  Secondly, where did the self pollen come from?  Mislabelling does not 

appear to be the case, since no selfing was detected for OSP even though the same 

pollen was used as for AIP.  Brazilian and Australian researchers reported 

acceptable levels of contamination, viz. less than 5% foreign-pollen contamination 

and 0% selfing, when using the AIP method (Assis et al. 2005).  However, those 

authors used potted trees in an enclosed environment in a greenhouse, compared to 

field trees which were used in the present study.   

 

In addition to natural movement of pollen within a flower, another possible source of 

the self pollen contamination in the present study could be from flowers within the 

canopy of the same tree, and there is evidence that this occurs in most eucalypt 

species (Eldridge et al. 1993; Potts and Cauvin 1988; Pryor 1976).  Wind plays a 

major role under field conditions and can result in increased self-pollination by 

vibrating the branches of the tree, causing pollen to fall from the anthers of flowers 

higher in the canopy onto the receptive stigmas of branches lower down (Eldridge 

and Griffin 1983).  In the study by Assis et al. (2005), wind was not a factor since the 

trees were protected from the elements, and this could explain the absence of selfing 

in that study.  Those authors also conceded that there was a possibility that the E. 

grandis genotype subjected to molecular marker analysis in their study could have 

been self-incompatible, since no seed was set following controlled self-pollinations 

(Assis et al. 2005).   

 

Controlled pollination efficiency is to a large extent dependent on the synchronous 

timing of pollen application with stigma receptivity (Potts and Potts 1986; Tibbits 

1989).  A possible reason for the high self- and external contamination when using 

green buds in the present study could be that since the buds were immature, the 

applied pollen could not adhere to the non-receptive stigma and was thus easily 

removed by insects or wind.  When the buds later became ripe, self and external 

pollen were able to contribute to pollinations.  Assis et al. (2005) have shown that 

contamination potential in E. grandis may exist for at least 7 – 10 days after the style 

is cut, and in studies on E. nitens (Tibbits 1989) and E. globulus (Williams et al. 

1999), there have also been reports that applied pollen easily fell off stigmas which 
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were not sticky.  The natural duration of stigma receptivity can vary between clones 

and is affected by environmental conditions (Hodgson 1976), and similar variability 

may be anticipated for the receptivity of cut style surfaces.  Differences in self-

compatibility, flower morphology or flowering phenology after AIP are possible 

causes (Assis et al. 2005). 

 

There is evidence to suggest that both pre-zygotic (Ellis et al. 1991) and post-zygotic 

(Potts et al. 1987; Griffin et al. 1988) barriers to crossing within subgenera of 

Eucalyptus increase with increasing taxonomic distance between species.  The work 

of Ellis et al. (1991) has shown that if flower size is kept constant, then the severity of 

pollen tube abnormalities and the probability of pollen tube arrest in the pistil 

increases with increasing taxonomic distance between the parents.  In the present 

study, the higher seed yields obtained from the intraspecific outcross compared to 

the interspecific ones could be related to taxonomic distance.  Crosses between E. 

grandis and E. smithii and between E. grandis and E. macarthurii are potentially 

difficult, since even though the species are in the same subgenus (Symphyomyrtus), 

E. grandis belongs to the section Latoangulatae (George 1988), while E. smithii and 

E. macarthurii belong to section Maidenaria (Prior and Johnson 1981).  Assis (2000) 

considers that abnormal phenotypes are more often encountered when species from 

the section Maidenaria are involved in intra- or inter-sectional crosses.  This 

emphasises the need for considering potential crosses not only for their combination 

of desirable characters, but also for taxonomic affinities and possible structural and 

physiological barriers (Delaporte et al. 2001).   

 

The fact that the E. grandis maternal parent produced higher seed yields compared 

to E. smithii and E. macarthurii could be related to flower size, since the latter 

species generally have smaller flowers compared to E. grandis (Brooker and Kleinig 

1983), that are possibly more easily damaged during controlled pollinations.  It is also 

feasible that the smaller-flowered species could possess fewer ovules compared to 

E. grandis, resulting in fewer seeds being formed.  This differential pollination-

success between large and small flowered eucalypt species has been previously 

reported (Pryor 1956; Tibbits 1986, 1989; Gore et al. 1990).  Such an effect can have 

important implications in breeding programmes, as plants with limited reproductive 

capabilities are difficult to use, and are therefore often excluded from mating designs, 
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even if they exhibit other, more desirable, characters (Delaporte et al. 2001).  A 

better understanding of the flower anatomy and associated pollen behaviour of the 

species to be included in the mating design may improve the success rate of 

controlled pollinations (Williams et al. 1999).  

 

Eucalypts are largely insect-pollinated and successful pollinations are influenced by a 

number of factors, including diversity of flowering times, diversity in flowering 

intensity and number of pollen vectors present at flowering (Eldridge et al. 1993).  

The lower seed yields obtained from the E. smithii and E. macarthurii open-pollinated 

controls in comparison to the E. grandis open-pollinated control (Table 5.3) could be 

attributed to limited insect activity in the E. smithii and E. macarthurii orchards.  

Eucalyptus grandis has larger flowers with more prominent anthers, compared to E. 

smithii and E. macarthurii, and is therefore presumed to be more attractive to bees 

(the main insect pollinator of these species; Eldridge et al. 1993).  The former 

species also flowers more abundantly than the latter two, further contributing to 

attractiveness to insect pollinators (House 1997; Hayes et al. 2005).  In addition, 

genotypes occurring in the E. grandis orchard (7 years old) were more mature than 

the E. smithii (4 years old) and E. macarthurii (3 years old) genotypes, possibly 

adding to the differences in flowering intensity.    

 

A potential weakness of the present experimental design is that only one maternal 

genotype was tested per species.  Both Callister (2007) and McGowen (2007) have 

warned that the choice of female genotype can have a significant effect on the costs 

of seed production, due to genetic based differences in reproductive success.  

Delaporte et al. (2001) showed that the mean number of seeds produced per flower 

pollinated and the mean seed weight generally varied more between female plants 

than between crosses in E. macrocarpa, E. pyriformis and E. youngiana.  Harbard et 

al. (1999) have also shown large genotypic variation in seed yields of E. globulus, 

both in terms of harvest percentage and viable seed per capsule.  The present 

results should therefore be used with caution when extrapolating to the species level, 

as different genotypes might behave differently.     
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5.6 CONCLUSION 

In Australia and Brazil, AIP is a technique showing great promise for the mass 

controlled pollination of small-flowered eucalypts, and subsequent commercial 

deployment of elite seed.  From the present study, however, it is evident that high 

levels of pollen contamination and high selfing can result when this CP-method is 

conducted on open-air field trees, in addition to high capsule abortion when the 

technique is performed on green buds.  Of the three CP-techniques tested, OSP had 

the lowest genetic contamination.  However, this CP-method also produced one of 

the lowest seed yields.  The Conventional method was intermediate in performance, 

producing, on average, both higher seed yields, as well as higher genetic 

contamination, compared to OSP.  These results should, however, be regarded with 

caution, due to the limited number of genotypes that were available for this study.     
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CHAPTER 6: A NOVEL GEL-BASED METHOD FOR ISOLATION OF STIGMAS 

DURING CONTROLLED POLLINATION EXPERIMENTS 

 

6.1 ABSTRACT 

In forestry, controlled pollination (CP) allows the combining of genetic material of 

selected elite trees to produce high quality, and consequently high value, seed.  The 

aim of the present study was to develop a novel isolation method that would allow the 

technique to be conducted without expensive and time-consuming bagging, making 

CPs on small-flowered eucalypts commercially viable.  We compared the current 

method of isolating inflorescences using exclusion bags to a novel method which 

uses sodium alginate gel.  Sodium alginate was effective in keeping external pollen 

away from the stigma, since no seed was produced in those treatments that were not 

manually pollinated but isolated in this way.  In addition, flowers hand-pollinated and 

isolated with sodium alginate produced progeny that were 100% outcrossed with the 

applied pollen.  The exclusion bags, on the other hand, were not as effective in 

protecting the stigma as seed was produced in those treatments that were isolated 

with an exclusion bag without being hand-pollinated.  Sodium alginate isolation also 

increased the efficiency of control-pollinations as the gel was naturally shed, 

removing the need for operators to return to the tree to remove the isolation material.  

 

6.2 INTRODUCTION 

Most flowering plants rely on pollinators to deposit compatible pollen onto stigmas for 

ovule fertilisation and seed set (Ramsey and Vaughton, 2000).  However, pollen 

quantity may be limiting if pollinators are rare, or if plants compete for the services of 

pollinators (Groom, 1998).  Pollen quality may also be limiting, despite adequate 

pollination, if pollinators deposit self- or incompatible pollen onto stigmas, or deposit 

closely-related pollen which may lead to early-acting inbreeding depression lowering 

seed set (Pound et al., 2003).  These limitations of natural pollination can largely be 

overcome with controlled pollination (CP), which allows the quality and quantity of 

pollen deposited on the stigma to be optimised.  In one study, CPs resulted in 

increased survival, size and reproduction of the progeny in subsequent years (Lehtila 

and Syrjanen, 1995).  In forestry, the technique has been used to improve seed 

yields, control the level of outcrossing in seed orchards, improve breeding through 
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knowledge of both female and male parents, achieve interspecific hybridisation, and 

study self-incompatibility levels (Harbard et al., 1999; Moncur, 1995). 

 

For Eucalyptus, the first-developed CP-method, termed the Conventional method, 

took advantage of the natural protandry (where pollen is released before the stigma 

becomes receptive) of the eucalypt flower (van Wyk, 1977).  The technique involved 

three flower visits (emasculation and bagging, subsequent pollination of receptive 

stigmas and re-bagging, removal of bags), and was consequently very time 

consuming.  A more efficient cross-pollination method was later developed, originally 

for E. globulus, requiring only one visit to the flower (emasculation and immediate 

pollination of stigmas cut to induce receptivity, followed by bagging) and 

consequently named One Stop Pollination (OSP; Harbard et al., 1999).  However, 

although OSP has been used with some success on a range of eucalypt species 

(Harbard et al., 2000; Barbour and Spencer, 2000), small-flowered species have 

displayed unacceptably low seed set (Williams et al., 1999). 

 

Artificially Induced Protogyny (AIP; Assis et al., 2005) is a relatively new technique 

for the controlled pollination of eucalypt trees.  It involves cutting off the tip of the 

operculum of the mature flower bud just prior to anthesis (release of pollen from 

anthers), with the cut positioned so as to remove the stigma and expose the cut 

surface of the upper style to which the target pollen is applied, without emasculation 

or isolation of flowers (Figure 1A and B).  A recent study (Chapter 5) has, however, 

identified the need for self- and external-pollen exclusion in order for the AIP 

technique to be effective under field conditions (Horsley et al., submitted).   

 

Effective flower isolation is highly desirable during controlled pollinations, since it can 

enhance the accuracy of breeding through full pedigree control (Dutkowski et al., 

2006).  The main sources of pollen contamination during eucalypt CPs are foreign 

pollen from nearby trees and self pollen transferred geitonogamously from other 

flowers within the canopy of the tree (Snow et al., 1996).  Self-pollination within a 

eucalypt flower is generally prohibited by the protandrous nature of the flower 

(Eldridge et al., 1993).  To prevent unwanted pollen transfer during controlled 

pollinations, flowers must be physically isolated, with the method of isolation 

dependant on the flower characteristics, sexual compatibility between genotypes, 
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pollen quantity and viability, and mode of pollen dissemination (Sundstrom et al., 

2002).   

 

For Eucalyptus pollinations, bagging is the simplest method of isolation and involves 

covering the flowers with breathable material, such as a nappy-liner, paper bag, 

glassine or fine cloth (Moncur, 1995).  Individual styles may also be isolated with a 

small piece of plastic tubing, sealed at one end (Harbard et al., 1999).  After 

fertilisation, the stigma abscises taking the tube with it.  Use of this method allows all 

available flowers to be pollinated, unlike bag isolation where flowers that are pre- or 

post-anthesis, and likely to be enclosed in the bag, must be removed to prevent 

contamination (Williams et al., 1999).  The plastic-tube isolation method is, however, 

restricted to large-flowered eucalypt species, such as E. globulus, which have single 

flowers.  In small multi-flowered inflorescences, such as in E. grandis, it becomes 

expensive and logistically difficult to isolate individual flowers in this way (Barbour, 

1997; Harbard et al., 2000). 

 

Isolation efforts may need to be increased depending on the type of pollinations 

being carried out (Bradford, 2006).  For example, with interspecific or hybrid crosses, 

in which contamination can be readily observed in the progeny (phenotypic 

observations), isolation is not imperative.  However, when controlled pollinations are 

performed intraspecifically, it is important that a reliable isolation method be 

employed since contaminants are not as easily phenotypically observed and the 

more expensive route of molecular marker analysis may have to be employed.   

 

The aim of the present study was to develop a practical isolation method for 

application when using the AIP technique to perform controlled pollinations on small-

flowered eucalypts. 

 

6.3 MATERIAL AND METHODS 

6.3.1 Plant material used in study 

The experiments were conducted on mature trees located in two separate clonal 

(grafted) orchards planted at the Sappi, Shaw Research Centre in KwaZulu-Natal, 

South Africa.  Both orchards were situated at 29o 29'S, 30o 11'E at 1100 m above sea 

level.  Eucalyptus grandis was the study species in which intraspecific crosses were 
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performed.  The breeding population for this species was made up of open-pollinated 

families from selections made in land-races in South Africa and from provenances in 

the natural range in Australia.   

 

Maternal genotypes included in the study were B0133 (in orchard 1), T1099 and 

T1144 (in orchard 2).  Paternal genotypes included T1074, B0133 and T1087.  

Pollinations in orchard 1 were carried out during peak flowering (approximately 80% 

of genotypes flowering in the orchard), while those in orchard 2 took place at the end 

of the flowering season (approximately 20% of genotypes flowering in the orchard).  

Trees were chosen on the basis of floral abundance and accessibility for hand-

pollinations, leading to one ramet from each genotype being pollinated.  To take into 

account different micro-climates, replications were evenly distributed around each 

tree (viz. north, south, east and west).   

 

6.3.2 Pollen collection and processing 

For pollen extraction, branches containing ripe flower buds were collected and kept in 

100 ml bottles containing water to prevent drying out of the branch.  To ensure that 

there was no contamination from other pollen, all open flowers were removed from 

the branches before placing them in the laboratory overnight.  The following morning, 

when the opercula of unopened flowers had shed and the filaments unfolded, the 

anthers were excised and left in a desiccator in the presence of silica gel to dry for 

approximately 48 h at room temperature.  When the relative humidity (RH) in the 

desiccator had reached 10%, the dried anthers were sieved through a 30 micron 

mesh to remove debris.  The resulting pollen was placed into polypropylene vials, 

sealed in glass bottles containing silica gel and stored in a freezer at -10oC until 

needed.     

 

6.3.3 In vitro pollen germination 

Pollen viability was tested under laboratory conditions before use in controlled 

pollinations.  Pollen was left at room temperature and RH for 8 hours to rehydrate.  In 

vitro germination was carried out using 30% (w/v) sucrose, supplemented with 0.15 

mg l-1 boric acid in a liquid medium (Horsley et al., 2007).  Pollen from each genotype 

was placed into glass vials containing the in vitro medium (three replications per 

genotype) and left to incubate in a germination chamber in a completely randomised 
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design for 48 hours at 29oC.  After the required time period had elapsed, 5 μl was 

transferred from the test-tube to a glass slide.  Percent germination was scored using 

a light microscope (x100 magnification) to count the number of pollen grains 

germinated out of a total of 50 grains.  Six glass slides per genotype (two slides per 

test tube) were scored for germination (sub-samples), giving a total of 300 pollen 

grains counted per treatment.  Pollen was deemed to have germinated if the pollen 

tube length was greater than one-half of the diameter of the pollen grain (Potts and 

Marsden-Smedley, 1989).   

 

6.3.4 Controlled pollination  

Two controlled pollination experiments were performed, one in 2005 and the other in 

2007, both employing the AIP method of controlled pollination (Assis et al., 2005).  In 

the 2005 study, B0133 x T1074 crosses were carried out in orchard 1 to test the 

effect of sodium alginate on pollen tube growth (i.e. to see if sodium alginate would 

interfere with pollen germination and tube growth).  A follow-up study was conducted 

in 2007 in orchard 2, where T1099 x B0133, T1099 x T1087, T1144 x B0133 and 

T1144 x T1087 crosses were performed.  This was to confirm the 2005 results, as 

well as test an additional treatment, viz. sodium alginate isolation of non-pollinated 

buds, to determine if sodium alginate would be effective in keeping extraneous pollen 

away from the stigma.  A secondary aim was to examine the effect of flowering 

intensity on open-pollinated (OP) seed production in order to determine whether CPs 

would increase quantity and quality of seed yields towards the end of the flowering 

season.  Appendix A shows the number of flowers pollinated per treatment.   

 

Artificially Induced Protogyny involved cutting off the tip of the operculum of a mature 

flower bud prior to anthesis to expose the cut surface of the upper style, to which the 

target pollen was applied, without emasculating the flower.  Pollinated flowers were 

then subjected to either nappy-liner isolation (also referred to as ‘bagging’), sodium 

alginate isolation or non-isolation treatments.  During bagging, a nappy-liner (Quick-

dry nappy-liners, manufactured by Unsgaard Packaging Ltd, South Africa) was 

placed over three umbels (maximum of 21 flowers) and secured at each end using 

twist wires.  These bags were removed when the stigma had fully oxidised, which 

occurred two weeks after pollination.  For sodium alginate isolation, pollinated buds 

were first sprayed with 100 mM calcium nitrate solution for 5 seconds and then 
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immediately sprayed with 2.2% sodium alginate solution for 5 seconds, allowing a gel 

to form around the buds (Figure 6.1).  The sodium alginate gel was shed naturally 

upon operculum-fall.  Open controls consisted of buds that had been neither 

artificially pollinated nor isolated and were included to give an indication of natural 

pollination success.  

 

Figure 6.1: Sodium alginate isolation of AIP-pollinated Eucalyptus grandis buds. (a) A 

horizontal cut was made through the top quarter of a ripe flower bud without removing the 

operculum, (b) pollen was applied directly to the cut surface; (c) pollinated buds were 

sprayed with 100 mM calcium nitrate solution for 5 sec; (d) buds were then immediately 

sprayed with 2.2% sodium alginate solution for 5 sec; (e) a protective gel formed around 

pollinated buds. Bars = 1 cm 
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6.3.5 Seed set 

All capsules remaining at maturity (10 months after pollination) were harvested and 

allowed to dry out in the laboratory and release their seed.  The number of viable 

seeds in each capsule were counted.  Seeds were considered viable if they were 

rounded, solid and dark in colour as opposed to flat and possessing a light-brown 

colour (Pound et al., 2002).   

 

6.3.6 Molecular marker analysis of pollen contamination  

Molecular marker analysis was performed on leaf samples from progeny of seed 

parents B0133 and T1144, with 20 individuals per treatment chosen for parentage 

analysis.  DNA was extracted using the Qiagen DNeasy Plant Kit (QIAGEN, 

Valencia, CA, USA).  The contamination rate of each of the treatments was 

determined using microsatellite markers (Brondani et al., 1998) to test for non-

parental (contaminant) alleles in each progeny set.  Eight highly informative 

microsatellite markers (viz. EMBRA 37, EMBRA 45, EMBRA 48, EMBRA 56, EMBRA 

94, EMBRA 98, EMBRA 219, EMBRA 227) were used to ensure adequate power to 

discriminate closely related pollen contaminants from pollen used in the CP trials. 

 

6.3.7 Statistical analysis 

SPSS Version 15.0 was used for all statistical analyses.  Pollen viability and seed set 

per flower pollinated data were subjected to Analysis of Variance (ANOVA) and 

Duncan multiple range tests.  Percentage pollen viability was angular transformed 

prior to the analysis.   

 

6.4 RESULTS  

6.4.1 In vitro pollen germination 

There were significant differences between pollen batches used in the controlled 

pollination experiments (F = 11.492; P = 0.009).  Genotype T1087 exhibited the 

highest in vitro pollen germination (64.0 ± 1.7%) and genotype T1074 the lowest 

(38.7 ± 6.1%; Table 6.1).     
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Table 6.1: In vitro germination of Eucalyptus grandis pollen used in controlled 

pollinations. Letters (a) and (b) indicate statistical significance (P < 0.05), where treatments 

indicated by the same letter are not significantly different. 

Species Genotype N Mean ±  std error (%) 

E. grandis T1087 3 64.0 ± 1.7a 

E. grandis  B0133 3 58.0 ± 2.1a 

E. grandis  T1074 3 38.7 ± 6.1b 

P = 0.009 
 

6.4.2 Controlled pollination 

In terms of seeds per flower pollinated, there were significant treatment effects in 

genotype T1099 (F = 3.872; P = 0.006), with exclusion bag isolation achieving the 

highest seed yields in both T1099 x T1087 and T1099 x B0133 crosses (Figure 6.2).   
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Figure 6.2: Seeds per flower pollinated observed in Eucalyptus grandis maternal 

genotype T1099, after performing AIP-controlled pollinations in combination with 

different methods of floral bud isolation. NI refers to non-isolation, NL to exclusion bag 

isolation and SA to sodium alginate isolation. Error bars represent standard error of the 

mean, with numbers above the error bars showing the number of replications per treatment. 

On average, each replicate consisted of three umbels, with seven flowers per umbel. 
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For all three isolation treatments conducted on T1099, no seed was obtained when 

AIP was performed without manual application of pollen.  Genotype T1144 also 

displayed significant differences (F = 5.225; P < 0.001) for seeds per flower 

pollinated, with the non-pollinated sodium alginate isolation the only treatment not 

producing any seed (Figure 6.3).       

 

 

Figure 6.3: Seeds per flower pollinated observed in Eucalyptus grandis maternal 

genotype T1144, after performing AIP-controlled pollinations in combination with 

different methods of floral bud isolation. NI refers to non-isolation, NL to exclusion bag 

isolation and SA to sodium alginate isolation. Error bars represent standard error of the 

mean, with numbers above the error bars showing the number of replications per treatment. 

On average, each replicate consisted of three umbels, with seven flowers per umbel. 

 

There were no significant differences (F = 0.743; P= 0.596) between isolation 

treatments in genotype B0133.  In all three maternal genotypes, controlled pollination 

generally led to an increase in seed yields compared to natural pollination (open 

controls).  
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6.4.3 Molecular marker analysis of pollen contamination 

Sodium alginate isolation was effective in excluding both self- and foreign-pollen from 

the stigma, and progeny derived from this isolation method were found to be 100% 

outcrossed with the applied pollen (Table 6.2).  The exclusion bag, on the other 

hand, was not as effective, with the no-pollen treatment of seed parent B0133 being 

particularly contaminated with high amounts of self-pollen (67% selfing).  Non-

isolated treatments had lower contamination than the exclusion bag treatments, 

although selfing was still evident (11% selfing in the no-pollen treatment of seed 

parent B0133).  There was an unexpectedly high amount of selfing in the B0133 

open control (45%), compared to an absence of selfing in the T1144 open control 

(Table 6.2).   

 

Table 6.2: Molecular marker analysis of pollen contamination in Eucalyptus grandis 

progeny created by the AIP method of controlled pollination in combination with 

different methods of flower isolation.  A total of 20 progeny from each treatment were 

fingerprinted. 

Isolation method Contribution to progeny (%) 

 

Maternal 
parent 

Pollen 
applied 

Applied 
pollen 

Self 
pollen 

Foreign 
pollen 

sodium alginate B0133 T1074 100 0 0 

sodium alginate T1144 B0133 100 0 0 

sodium alginate T1144 T1087 100 0 0 

exclusion bag B0133 T1074 95 0 5 

exclusion bag B0133 none  * 67 33 

exclusion bag T1144 B0133 95 5 0 

exclusion bag T1144 T1087 100 0 0 

exclusion bag T1144 none  * 0 100 

non-isolated B0133 T1074 100 0 0 

non-isolated B0133 none * 11 89 

non-isolated T1144 B0133 100 0 0 

non-isolated T1144 T1087 100 0 0 

non-isolated T1144 none * 0 100 

OP control B0133 none * 45 55 

OP control T1144 none * 0 100 
* no pollen manually applied 
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6.5 DISCUSSION 

Of the two CP-isolation methods tested here, sodium alginate isolation appears to be 

the most promising for application in eucalypt commercial controlled pollinations 

when using the AIP technique.  Sodium alginate was effective in keeping external 

pollen away from the stigma, since no seed was produced in those treatments that 

were not manually pollinated but isolated in this way.  In addition, flowers hand-

pollinated and isolated with sodium alginate produced progeny that were 100% 

outcrossed with the applied pollen.  The exclusion bag, on the other hand, was not as 

effective in protecting the stigma.  Seed was produced in those treatments that were 

isolated with an exclusion bag without being hand-pollinated.   

 

There is no doubt that the floral biology of eucalypts needs to be considered when 

developing a controlled pollination system (Moncur and Boland, 2000).  Although 

there is a time separation between pollen-shed and stigmatic receptivity in a single 

flower, it is still possible for a high degree of selfing to occur in the crown of a single 

tree.  Moran and Bell (1983) have predicted this to be in the region of 30% in natural 

eucalypt populations, but the present study suggests that the selfing rate in orchards 

can go as high as 45% (Table 6.2).   

 

Prior deposition of self-pollen on the stigma may interfere with the flower’s ability to 

use available cross-pollen, resulting in reduced seed set (Ramsey and Vaughton, 

2000).  Potential mechanisms of interference include clogging or blocking of stigma 

surfaces, stylar tissues or ovular micropyles and fertilising ovules that are later 

aborted due to late-acting self-incompatibility (Seavey and Bawa, 1986) or inbreeding 

depression (Waser and Price, 1991).  In addition to late-acting SI, a previous study 

identified Eucalyptus grandis as also being cryptically self-incompatible (Horsley and 

Johnson, 2007).  In species with cryptic SI, plants are able to set self-seed in the 

absence of competing cross-pollen (Bateman, 1956).  Thus to produce a useful CP-

system, it is evident that we need to develop methods to control selfing.  Sodium 

alginate isolation appears to be useful in this regard, since there was no selfing in 

both 2005 and 2007 studies when using this method of isolation.  

 

Eucalypts are largely insect-pollinated and successful pollinations are influenced by a 

number of factors, including diversity of flowering times, diversity in flowering 

 108



  

intensity and number of pollen vectors present at flowering (Eldridge et al., 1993).  

The lower fruit set of naturally pollinated flowers (open controls) in 2007 compared to 

2005 could be attributed to limited insect activity in the orchard.  The 2005 study was 

carried out during peak flowering and seed yields from the B0133 open control were 

relatively high (10.72 seeds per flower), which is suggested to be the result of high 

insect activity.  On the other hand, the 2007 study was carried out at the end of the 

flowering season and this could have resulted in less insect pollinators being present 

in the orchard (due to low numbers of flowers).  This is reflected in the seed yields 

obtained from genotypes T1099 and T1144 open controls (0.77 and 1.56 seeds per 

flower, respectively).      

 

Differences in flowering intensity between the 2005 and 2007 studies could also 

explain the differences observed in selfing rate between B0133 and T1144 open 

controls (45 vs 0%).  In the 2005 study, individual trees had a higher flower density, 

which might have caused insect pollinators to remain within the canopy of the tree, 

thereby increasing selfing (Snow et al. 1996).  In contrast, trees had a lower volume 

of flowers in 2007 (being at the end of the flowering season) and there were also 

fewer trees flowering in the orchard, making insect pollinators travel further distances 

and more often between trees, and thereby increasing outcrossing (Griffin and 

Ohmart, 1986; House, 1997).  Levri (1998) noticed a similar effect of flowering 

intensity on selfing rate in Kalmia latifolia (Ericaceae).  In that study, flowers receiving 

a mixed pollen load early in the flowering season exhibited a higher selfing rate, 

compared to flowers of the same age that received pollen later in the season (Levri, 

1998).   

 

Apart from physiological and biochemical factors, pollination is undoubtedly affected 

by weather conditions, such as wind and rain (Ortega et al., 2007), making isolation 

of the control-pollinated flower imperative under field conditions.  The major effect of 

wind is that it increases self-pollination by vibrating the branches of the tree, causing 

pollen to fall from the anthers of flowers higher in the canopy onto the receptive 

stigmas of branches lower down (Eldridge and Griffin, 1983).  Rain reduces or 

inhibits pollinator activity and delays flower opening and anther dehiscence 

(Eisikowitch et al., 1991).  With respect to controlled pollinations, rain could also 

wash pollen off the stigma (Ortega et al., 2007).  All pollinations in the present study 
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were carried out during summer, which in KwaZulu-Natal, South Africa, is the rainy 

season, and thus could be a contributing factor to some of the low seed yields 

obtained.  Genotype B0133 occurred in an orchard that consisted of more closely 

spaced trees than genotypes T1099 and T1144, and therefore B0133 may have 

been better shielded from rain and wind, giving rise to generally higher seed yields 

from both open- and control-pollinations.  In addition to these environmental effects, 

the observed genotypic differences could also be attributed to genetic based 

differences in reproductive success (Callister, 2007; McGowen, 2007).  Patterson et 

al. (2004) have shown that the proportion of capsules set following controlled 

pollination in E. globulus can range from 10 – 90% between female trees. 

 

By reducing overlap between male and female reproductive functions, protandry is 

thought to reduce autogamous self-pollination (i.e. pollination of a flower by its own 

pollen) and self-pollen interference (Bertin and Newman, 1993).  However, the E. 

grandis flowers in the present study were made artificially protogynous (stigma made 

receptive before anthesis) during the AIP method of controlled pollination, and were 

thus only partially effective in reducing within-flower selfing.  This was confirmed by 

the high selfing (67%) obtained in the no-pollen exclusion bag isolated treatment 

from maternal genotype B0133 (Table 6.2).  Since the stigma is made receptive 

before the flower opens during AIP, contamination may occur just after flower 

opening, when the cut style is still receptive and self-pollen is at its maximum viability 

(Assis et al., 2005).  It is therefore extremely important in the AIP method of 

controlled pollination that the isolation technique employed be highly efficient in 

excluding self-pollen.   

 

6.6 CONCLUSION 

From these results it is recommended that AIP-pollinated flowers be isolated to 

exclude foreign- and self-pollen when pollinations are performed under field 

conditions.  Sodium alginate appears to be the isolation method of choice as, in 

addition to providing maximum protection to the stigma, it can be left on the tree to be 

disposed of by the ripening flower.  Upon flower opening, the sodium alginate gel is 

shed naturally, increasing labour productivity as operators do not need to return to 

the tree to remove the isolation material, and hence reducing the cost of producing 

control-pollinated seed.  The risk of physical damage to flower buds is also reduced 
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when using sodium alginate isolation, as flowers are not exposed to the stresses 

resulting from a hot and humid atmosphere as they would be within the bag during 

exclusion bag isolation.  
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Appendix A: Mating design showing number of Eucalyptus grandis flowers pollinated 

per treatment 

CROSS ISOLATION TREATMENT 

 None Exclusion bag Sodium alginate 

B0133 x T1074 102 106 110 

B0133 x no pollen 116 102 * 

T1099 x B0133 50 41 42 

T1099 x T1087 40 39 43 

T1099 x no pollen 81 95 73 

T1144 x B0133 50 45 47 

T1144 x T1087 42 50 48 

T1144 x no pollen 80 91 78 
*treatment not included 
 



CHAPTER 7: SUMMARY AND CONCLUSIONS 

 

In this study, I set out to develop techniques to improve the efficiency of eucalypt 

controlled pollinations in order to make it more cost effective for forestry companies 

to perform them on a commercial scale.  Small-flowered species such as E. grandis, 

E. urophylla, E. dunnii, E. smithii, E. nitens and E. macarthurii were targeted, since I 

saw this as the gap in the application of eucalypt controlled pollination technology.  I 

identified three study areas as key to the achievement of my aim, viz. pollen handling 

(Chapter 2), breeding systems (Chapters 3 and 4) and controlled pollination (CP) 

technique (Chapters 5 and 6). 

 

At the very beginning, I thought it imperative to estimate pollen germination capacity 

before use in controlled pollinations, in order to avoid the costly use of non-viable 

pollen.  Thus, one of my first aims was to determine an optimal medium for in vitro 

pollen germination, which could be used to reliably test the pollen viability of all six 

study species.  I was able to identify a generalised liquid in vitro medium, consisting 

of 30% sucrose (w/v) and 0.15 mg l-1 boric acid, for testing both fresh and 1-year old 

eucalypt pollen (Chapter 2).  This made the task of pollen viability testing a lot 

simpler, since the same medium could be used to not only test different species, but 

to also test both fresh and stored pollen.   

 

In addition to viability testing, storage of eucalypt pollen is generally required for 

controlled crosses, due to the asynchronous flowering of some species.  My next aim 

was therefore to identify optimal temperatures for short-, medium- and long-term 

pollen storage.  This led me to test the following four storage temperatures: 25oC 

(room), 4oC (refrigerator), -10oC (freezer) and -196oC (liquid nitrogen).  Pollen 

samples of E. grandis, E. smithii and E. nitens were stored at these four 

temperatures for a 12-month period, with pollen viability tested every two months.  I 

quickly ascertained that temperatures of around 25oC were not suitable for pollen 

storage, since there was a rapid decline in the germination of pollen that had been 

stored at room temperature (Chapter 2).  On the other hand, temperatures cooler 

than 4oC appeared to maintain pollen viability for the duration of the 12-month study.   
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In light of these results, my recommendations were the following: while undertaking 

operational controlled pollinations within a season, storage of pollen at 4oC would be 

feasible over short periods of up to two months, -10oC would be suitable for medium-

term storage (up to eight months), while cryopreservation would be ideal for storing 

pollen in gene banks over the longer term.  In addition, an efficient cryopreservation 

protocol was also recommended for the study species, viz. gradual freezing of pollen 

by placement in a freezer for 8 hours before direct immersion in liquid nitrogen.  

Before use in controlled pollinations, the recommendation was to gradually thaw 

pollen by again placing in a freezer for 8 hours before leaving at room temperature 

overnight.  Cryoprotectants were deemed unnecessary after I achieved relatively 

good germination and integrity of pollen grains upon retrieval from liquid nitrogen, 

adding to the simplicity and cost-effectiveness of the cryopreservation protocol. 

 

Since the breeding system can have a major impact on seed set (Byers 1995), I 

thought it wise to first study the breeding systems of at least two of the study species 

before turning my attention to the development of a commercial CP-technique.  

During my literature search, I found a notable lack of information on comparative 

growth rates of self- and cross-pollen in the eucalypt pistil, with pollen-pistil 

interactions having only been studied in eight species to date, viz. E. morrisbyi (Potts 

and Savva 1988), E. regnans (Sedgley et al. 1989), E. woodwardii (Sedgely 1989; 

Sedgley and Smith 1989), E. spathulata, E. cladocalyx, E. leptophylla (Ellis and 

Sedgley 1992), E. globulus (Pound et al. 2002) and E. nitens (Pound et al. 2003).  

From this the third aim of the study was borne, namely to examine the growth rates of 

self- and cross-pollen tubes in the style following single-donor pollinations in E. 

urophylla and E. grandis.  These two species were chosen since according to the 

literature, they had not been investigated before.   

 

No evidence of self-incompatibility (SI) was found at the stage of pollen adhesion and 

germination in the stigmatic exudate, ruling out sporophytic self-incompatibility in the 

study species.  The expression of SI occurred as pollen tubes grew down the style, 

resulting in a reduction in growth rate of self-pollen tubes relative to that of cross-

pollen tubes (Chapter 3).  This led me to suspect the presence of cryptic self-

incompatibility (CSI), since the growth of self-pollen tubes was slower than 

compatible ones rather than completely inhibited, which according to Bateman (1956) 
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is a classic sign of CSI.  Like Pound et al. (2003), I suggested late-acting self-

incompatibility (LSI) as an additional SI mechanism on account of the low number of 

seeds set following self-pollinations relative to the abundant self-pollen tubes in the 

style.  Generally in species with LSI, self-pollen germinates and reaches the ovules, 

but no fruit is set (Seavey and Bawa 1986).  This is in contrast to species that exhibit 

CSI, where self-seed is set in the absence of competing cross-pollen.  Another 

difference between CSI and LSI is that the latter can manifest both pre-zygotically 

with deterioration of the embryo sac prior to pollen tube entry or post-zygotically with 

malformation of the zygote (Sage et al. 1994), while CSI only manifests 

prezygotically by reducing pollen-tube growth rate (Bateman 1956).  In the study 

species, the presence of both CSI and LSI contributes to the complexity of the 

breeding system.     

 

Early-acting inbreeding depression could also be responsible for the reduced self-

seed yields in the present study.  However, this phenomenon is experimentally 

difficult to distinguish from LSI in a species (de Nettancourt 1977).  In early-acting 

inbreeding depression, selfed pistil abortion is triggered by embryonic and/or 

endospermic lethal recessives (Klekowski 1988), while in LSI abortion of selfed pistils 

is a consequence of genetically controlled self-pollen tube recognition and rejection 

(Lipow and Wyatt 2000).  These two types of self-sterility systems manifest 

themselves similarly, i.e. by low or no self-seed set, despite the apparently normal 

pollen tube growth into the ovary in self-pollinated pistils, and thus the confusion in 

distinguishing between them.  Seavey and Bawa (1986) suggest that uniform ovule 

abortions may indicate an SI-response, whereas ovule abortions occurring at various 

stages of embryo development would be indicative of inbreeding depression.  I tend 

to agree with Waser and Price (1991) who question whether inbreeding depression 

could account for very high levels of ovule abortion – hence my suggestion of LSI as 

being responsible for the observed low self-seed yields in E. urophylla and E. 

grandis.    

 

In a follow-up study, molecular markers were employed to examine the siring ability 

of self- and cross-pollen after both mixed- and single-donor pollinations were 

performed on E. grandis.  According to Bateman (1956), the simultaneous presence 

of cross- and self-pollen on the stigma of species exhibiting CSI should result in 
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higher seed-set from cross-pollen relative to self-pollen, while self-pollination without 

the presence of competing cross-pollen should result in successful self-fertilisation 

and seed set.  I discovered that not only were progeny resulting from the mixed (self 

+ outcross) pollinations 100% outcrossed, but that 57% of the progeny resulting from 

single-donor self-pollinations were selfs (Chapter 4).  In addition, there was a 

significant change in the self:outcross seed ratio between single- and mixed-donor 

pollinations (χ2 = 13.566; P < 0.001).  This suggested that the observed deficit of 

selfed seeds in mixed-donor fruits could be the result of differential pollen tube 

growth, strengthening the case for CSI in E. grandis.  Seed yields from mixed-donor 

pollinations were not significantly different from those of single-donor outcross-

pollinations, once again suggesting LSI.  These results also suggested that the 

occurrence of LSI was likely pre-zygotic.  If the absence of selfed progeny from 

mixed-donor pollinations were due to the abortion of selfed embryos (i.e. post-

zygotic), we would expect seed yields to be more markedly reduced following mixed-

donor pollinations compared to single-donor outcross-pollinations, due to ovules 

being discounted by self-pollen.  A more likely scenario is the combination of slower 

self-pollen tube growth (CSI), together with LSI (occurring before fertilisation), 

resulting in outcross-pollen having the competitive advantage during mixed-donor 

pollinations.     

 

After gaining some insight into the breeding system, I turned my attention to the final 

area of research, viz. controlled pollination technique.  In seed orchards, pollen 

limitation and availability of compatible mates may interact to decrease seed set.  If 

plants receive little pollen, and most of it is not compatible, the resulting seed set 

would be expected to be especially low.  Besides limited seed set, additional 

consequences of limited pollen quantity are a decrease in the quality of seed (due to 

lack of competition among pollen-donors) or an increase in self-pollination (Karoly 

1992; Richardson and Stephenson 1992).  Self-incompatible species receiving 

mostly self-pollen will have reduced seed set due to either interference by self-pollen 

or reception of inadequate compatible pollen (Whistler and Snow 1992).  Controlled 

pollination can aleviate these limitations by controlling both the quantity and quality of 

pollen available to the flower. 
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In an effort to identify a technique that could be used for commercial CP-seed 

production of small-flowered eucalypts, I compared the efficiency of three CP-

methods, viz. the Conventional method (van Wyk 1977), One Stop Pollination (OSP, 

Harbard et al. 1999) and Artificially Induced Protogyny (AIP, Assis et al. 2005).  

Three types of buds were tested while carrying out AIP, viz. green (20 – 10 days 

before operculum lift), semi-ripe (10 – 3 days before operculum lift) and ripe (2 – 0 

days before operculum lift).  Species included as maternal parents were E. grandis, 

E. smithii and E. macarthurii, and even though only one genotype was tested per 

species, the fact that pollination occurred in the same way in all three species 

allowed me to treat the genotypes as replicates of the pollination methods.  I used 

seed yield and degree of genetic contamination as criteria for comparing CP-

techniques.   

 

Of the three techniques, the AIP method not only produced the highest seeds/flower 

pollinated when ripe and semi-ripe buds were used, but also reduced the time to 

perform pollinations since flowers were not emasculated, nor isolated when 

performing this technique (Chapter 5).  Indicative costs based on mean seed yields 

obtained from E. grandis (viz. 10 seeds/flower pollinated) showed that this technique 

could lead to a substantial reduction in total costs, with approximately 50% reduction 

in labour costs alone.  This was due to the higher number of flowers that could be 

pollinated in one hour by one labour unit when using AIP (300 flowers), compared to 

OSP and Conventional methods (75 and 56 flowers, respectively).  However, 

molecular marker analysis revealed extremely high levels of genetic contamination in 

resulting progeny, with 5 – 80% self-pollen contamination and 5 – 35% outcross-

pollen contamination across all three CP-methods.  In the case of OSP and 

Conventional CPs, I suspected that inadequate isolation material (Quick-dry nappy-

liners, manufactured by Unsgaard Packaging Ltd, South Africa) could have been the 

cause of such high contamination, given the fact that these were well established 

CP-techniques.  It was also obvious that flowers needed to be isolated when 

performing AIP under field conditions, especially when using self-compatible 

genotypes.   

 

In addition to high capsule abortion, none of the applied pollen contributed to the 

progeny when AIP was performed on green buds, possibly due to the inability of 
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pollen to adhere to the stigma.  I would therefore recommend that green buds be 

avoided when carrying out CPs.  A better understanding of flower anatomy and 

associated pollen behaviour of the species may improve CP success rate, as pointed 

out by Williams et al. (1999).  In the present study, E. grandis produced higher seed 

yields (10 – 18 seeds/flower) following cross-pollinations, compared to E. smithii and 

E. macarthurii (both exhibiting less than 1 seed/flower) and this could be related to 

flower size.  Flowers are generally larger in E. grandis (0.8 x 0.5 cm), followed by E. 

smithii (0.7 x 0.4 cm), with E. macarthurii (0.5 x 0.3 cm) being the smallest (Brooker 

and Kleinig 1983).  As a result, E. smithii and E. macarthurii flowers were possibly 

more easily damaged during controlled pollinations compared to E. grandis flowers.  

It is also feasible that the smaller-flowered species could possess fewer ovules 

compared to E. grandis, resulting in fewer seeds being formed.  This differential 

pollination-success between large and small flowered eucalypts has been previously 

reported (Pryor 1956; Tibbits 1986, 1989; Gore et al. 1990).   

 

The combination of small flower size and seven-flower umbel arrangement in the 

study species made emasculation of flowers during the OSP and Conventional 

methods quite tedious.  In addition, I felt that these CP-techniques could work out to 

be prohibitively expensive when carried out on a large scale, due to labour costs.  

The fact that flowers were not emasculated during AIP, in addition to the high seed 

yields obtained, made this technique a very attractive option.  However, the high 

rates of pollen contamination suggested that an effective flower-isolation method was 

needed to complement this technique.  Apart from physiological and biochemical 

factors, pollination is undoubtedly affected by weather conditions, such as wind and 

rain, making isolation of the control-pollinated flower imperative under field 

conditions.  The major effect of wind is that it could increase self-pollination by 

vibrating the branches of the tree, causing pollen to fall from the anthers of flowers 

higher in the canopy onto the receptive stigmas of branches lower down (Eldridge 

and Griffin 1983), while rain could possibly wash pollen off the stigma (Ortega et al. 

2007).  An additional point to bear in mind is that since the style is cut before the 

flower opens during AIP, contamination may occur just after flower opening, when 

the cut style is still receptive and self-pollen is at its maximum viability (Assis et al. 

2005).  I therefore thought it extremely important that the isolation technique 

employed be highly efficient in excluding self-pollen.   
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I compared the current method of flower isolation using exclusion bags to a novel 

method which used sodium alginate gel.  The idea of sodium alginate isolation was 

borne after a discussion with a collegue about ‘artificial seed’ technology.  Artificial 

seeds are created during somatic embryogenesis, where somatic embryos are 

coated with sodium alginate in order to protect them.  Since the sodium alginate gel 

allowed embryos to successfully germinate, I hoped that it would have a similar effect 

on pollen tube germination.  Molecular markers revealed that progeny were 100% 

outcrossed with the applied pollen, indicating that the gel did not inhibit pollen 

germination and pollen tube growth.  Results also showed that the sodium alginate 

gel was naturally shed from around the flower upon operculum-fall, therefore still 

keeping the cost of AIP-pollinations low (Chapter 6).  The risk of physical damage to 

flower buds was also reduced during sodium alginate isolation, as flowers were not 

exposed to the stresses resulting from a hot and humid atmosphere as they were 

within the exclusion bag.  In addition, sodium alginate was effective in keeping 

external pollen away from the stigma, since no seed was produced in those 

treatments that were not manually pollinated but isolated in this way.  On the other 

hand, the exclusion bag proved inferior for flower isolation, since seed was produced 

in those treatments that were isolated with the bag without being hand-pollinated.  

This is in accordance with previous results (Chapter 5), where I suspected that 

inadequate isolation material could have contributed to the high pollen-contamination 

observed after OSP and Conventional pollinations.     

 

This is the first study to provide recommendations for efficient pollen handling of 

species such as E. nitens, E. grandis, E. dunnii, E. smithii, E. macarthurii and E. 

urophylla.  The very few pollen studies in the literature have concentrated on E. 

maculosa (Boden 1958), E. globulus, E. morrisbyi, E. ovata and E. urnigera (Potts 

and Marsden-Smedley 1989).  This is also the first study to identify cryptic self-

incompatibility as a possible incompatibility barrier in the Eucalyptus genus.  The 

difference in in vivo pollen tube growth rate observed between cross- and self-pollen 

tubes is noteworthy.  No other study on Eucalyptus has looked at pollen tube growth 

rate per se.  Previous work has concentrated on numbers of pollen tubes in the style, 

percentage of ovules penetrated, and amount of seed produced (Potts and Savva 

1988; Sedgley et al. 1989; Ellis and Sedgley 1992; Pound et al. 2002, 2003).  During 

the controlled pollination studies, a novel flower-isolation method using sodium 
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alginate was developed, which in conjunction with AIP, could make commercial CPs 

on small-flowered eucalypts a practical reality.   

 

As a final point, it should be noted that the genetic base for the breeding system and 

controlled pollination experiments were extremely narrow.  The results should 

therefore be used with caution when extrapolating to the species level, as different 

genotypes may behave differently.  A more general case could be made by repeating 

this study using additional genotypes.  A limitation of the statistical analysis for the 

CP-studies is that the mean number of seeds set per flower pollinated was calculated 

for each isolation bag / pollination event (i.e. data were pooled).  To provide more 

statistical power, future studies should keep seed per capsule data separate.  

Investigations on the effect of environmentally induced stress on inbreeding 

depression, pseudo- and cryptic-SI, and maternal control over seed provisioning are 

also warranted.   
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