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Abstract

The collocation method for solving ordinary differential equations is examined. A

detailed comparison with other weighted residual methods is made. The orthogonal

collocation method is compared to the collocation method and the advantage of

the former is illustrated. The sensitivity of the orthogonal collocation method to

different parameters is studied. Orthogonal collocation on finite elements is used

to solve an ordinary differential equation and its superiority over the orthogonal

collocation method is shown. The orthogonal collocation on finite elements is also

used to solve a partial differential equation from chemical kinetics. The results

agree remarkably with those from the literature.
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Notation

L Linear differential operator

R Residual

φi Basis function

w(x) Weight function

K Condition number

X Domain of interest

C (X ) Continuous function over the domain X

y Exact solution to differential equations

ya Approximate solution to weighted residual methods

ea Error from the approximate solution ya

yc Approximate solution by the collocation method

ys Approximate solution by the sub-domain method

yl Approximate solution by the least square method

ym Approximate solution by the moment method

yg Approximate solution by the Galerkin method

‖ · ‖2 Euclidean norm in R
n

〈 , 〉 Inner product on C (X )

N Order of polynomial

TN Chebyshev Polynomial of the first kind of order N

UN Chebyshev Polynomial of the second kind of order N

PN Legendre Polynomial of order N
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xk Interpolation nodes

lk Lagrange polynomial function

ψ(x) Nodal polynomials

Ne Number of finite elements

hi Length of the ith element

yi Approximate solutions using equally spaced finite elements

ei Error from the approximate solution yi

ȳi Approximate solutions using unequally spaced finite elements

ēi Error from the approximate solution ȳi

ye Exit solution

P Peclet number

viii



List of Tables

1.1 Numerical comparison of the different approximations in Example

1.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Approximate solutions for Example 1.3.2. . . . . . . . . . . . . . . . 14

1.3 Numerical comparison of the different approximations in Example

1.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Numerical comparison of the different approximations in Example

1.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Numerical comparison of y , yc and yc̄ for Example 1.3.3. . . . . . . 25

2.1 Numerical comparison for one point collocation for Example 2.5.1

with α = 1 and order N = 2. . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Numerical comparison for one point collocation for Example 2.5.1

with α = 10 and order N = 2. . . . . . . . . . . . . . . . . . . . . . 40

2.3 Numerical comparison of the errors for Example 2.5.1 for different

orders N, with collocation points chosen as the shifted roots of TN−1,

UN−1 and PN−1 respectively. . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Numerical comparison for Example 2.5.2 for order N = 3, with

collocation points chosen as roots of T2. . . . . . . . . . . . . . . . 50

ix



2.5 Numerical comparison of the total errors for Example 2.5.2 for dif-

ferent orders, with collocation points chosen as the roots of TN−1,

UN−1 and PN−1 respectively. . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Numerical comparison of y , y2 and ȳ2 at different values of x . . . . . 65
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Introduction

Differential equations are used for mathematical modeling in science and engineer-

ing. However, it is apparent that there may be no known analytic solution to such

differential equations and even when it does exist it might be very difficult to ob-

tain. In such cases, the numerical approximations are used. Of special interest are

numerical techniques that reduce excessive demand for computational time and at

the same time giving a close approximation to the exact solution.

In this thesis, we present a simple but effective numerical technique called the

orthogonal collocation method for solving differential equations.

Chapter 1 gives an overview of the five different methods of weighted residuals. We

introduce the orthogonal collocation method in chapter 2. Chapter 3 explains the

features of the orthogonal collocation method on finite elements and it is then used

to solve an ODE. Chapter 4 gives a practical example of the orthogonal collocation

on finite elements applied to a PDE problem in chemical engineering. Each chapter

gives the details of the numerical procedures used.

1



Chapter 1

Method of Weighted Residuals

1.1 Introduction

The method of weighted residuals was used to find approximate solutions to dif-

ferential equations before the finite element method came into existence [21]. The

method was introduced by Crandall [16] in 1956 . Other scientists like Finlayson

and Scriven (1966) [23], Vichnevetsky (1969) [71] and Finlayson (1972) [22] have

also used this method. The method is used to solve boundary value problems

arising from fluid flow, structural mechanics and heat transfer. It is well known

because of the interactive nature of the first step. The user provides an initial guess

for the solution which is then forced to satisfy the governing differential equations

and its boundary conditions. The guessed solution is chosen to satisfy the bound-

ary conditions, however it does not necessarily satisfy the differential equations

[28, 59].

The method of weighted residuals requires two types of functions namely the trial

functions and the weight functions. The former is used to construct the trial

solution while the latter is used as a criterion to minimize the residual [21].

2
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Consider a linear differential equation

L y(x) = f (x), (1.1)

together with k boundary conditions. Here L is a bounded linear differential oper-

ator and f (x) ∈ C (X ), where X denotes the domain. The unknown solution y(x)

is approximated by a function ya(x) and we write

y(x) ≈ ya(x) =

N∑

i=1

ciφi(x), (1.2)

where the set {φi(x)|i = 1, 2, ..., N} constitutes a basis for a finite dimensional

subspace of C (X ) and the ci ’s are constant coefficients. When substituted into the

differential equation (1.1) we obtain

L ya(x) = fa(x), (1.3)

where in general

fa(x) 6= f (x). (1.4)

Subtracting equation (1.1) from equation (1.3) yields the residual equation

R(x) = L (ya(x) − y(x)) = L ya(x) − L y(x) = L ya(x) − f (x) 6= 0. (1.5)

From equation (1.5), it is easy to show that

‖ya(x) − y(x)‖ = ‖L−1R(x)‖ ≤ ‖L‖‖L−1‖
‖L‖ ‖R(x)‖ =

K

‖L‖‖R(x)‖, (1.6)

where K is the condition number of L and ‖ · ‖ denotes compatible operator and

function norms on C (X ). Hence for a well conditioned problem, the closer the

residual is to zero, the better is the approximate solution. The unknown coefficients

ci ’s are chosen to force the residual to zero in some average sense over the domain

X by requiring that
∫

X

R(x)wi(x) dx = 0, i = 1, 2, ..., N − k, (1.7)

where the weight functions wi(x) are specified and we require N − k of them to

yield N − k equations which together with k boundary conditions are sufficient to

determine the unknowns ci .
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1.2 Variation on Theme of Weighted Residuals

There are five widely used variations of the method of weighted residuals for engi-

neering and science applications, namely

1. The collocation method,

2. The sub-domain method,

3. The least squares method,

4. The moment method,

5. The Galerkin method.

The distinguishing factor between these methods is the choice of the weight func-

tions used in minimizing the residual. We shall briefly discuss the different features

of each method.

1.2.1 Collocation Method

In this method, the weight functions are taken from the family of the Dirac delta

(δ) functions in the domain X , that is wi(x) = δ(x − xi). The Dirac delta function

is defined by [47]

δ(x − xi) =







1 x = xi ,

0 otherwise

(1.8)

and has the property that
∫

X

f (x)δ(x − xi)dx = f (xi). (1.9)

Hence the integration of the weighted residual (1.7) results in forcing the residual

to zero at specific points in the domain. That is, with this choice of the weight

function, equation (1.7) reduces to
∫

X

R(x)δ(x − xi)dx = R(xi) = 0, i = 1, 2, ..., N − k. (1.10)
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As the number of collocation points xi increases, we satisfy the differential equation

at more points and hence force the approximate solution to approach the exact

solution. The ease of performing integrals with the Dirac delta function is an added

advantage of the collocation method.

The collocation method was first used by Frazer et al [24] in 1937 . Thereafter

Bickley [7] used it in 1941 along with the least squares method and the Galerkin

method to solve unsteady heat condition problems. In 1962, Jain introduced an

extremal-point collocation by sampling the residual at the zeros xi of the Chebyshev

polynomials and requiring that

R(xi+1) − (−1)i
R(x1) = 0, i = 1, 2, ..., N − k. (1.11)

He chose the zeros of the Chebyshev polynomials because they are known to min-

imize the maximum error [30]. Jain combined this method with the Newton’s

method to solve a viscous fluid problem.

In 1963, Schetz applied the low-order collocation method to a number of boundary-

layer problems [63]. In 1975, Panton and Sallee applied a collocation method to

problems of unsteady heat conduction and boundary layer flows [52]. They used B-

splines as trial functions and compared their results with results obtained from the

finite-difference method. The results were more accurate than those obtained from

the finite-difference method. Viviand and Ghazzi in 1974 applied a collocation

method to the problem of computing the viscid flow about an inclined three-

dimensional wing [74].

The collocation method has been used over a wide range of problems in recent

times [15, 32, 68, 70].

1.2.2 Sub-domain Method

Here the weight function is always w(x) ≡ 1. The domain is split into N − k

subsections Xi called sub-domains sufficient to evaluate the unknown parameters
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ci , hence
∫

X

R(x)wi(x)dx =
N−k∑

i=1

(∫

Xi

R(x)dx

)

. (1.12)

This method forces the residual to be zero over the various sub-domains, that is
∫

Xi

R(x)dx = 0. (1.13)

This method originated from the work of Biezeno and Koch in 1923 [8]. Pallone

[51] and Bartlett [5] used it to solve Laminar boundary layers and Murphy has

used it to solve incompressible Navier-Stokes equations [46] .

1.2.3 Least Squares Method

In this method, we minimize the Euclidean norm of the residual, namely

S = ‖R(x)‖2
2 =

∫

X

R2(x)dx . (1.14)

To obtain the minimum of this scalar function, the derivatives of S with respect

to the unknown parameters ci must be zero. This yields,
∫

X

R(x)
∂R(x)

∂ci

dx = 0. (1.15)

Comparing equation (1.7) and equation (1.15), the weight functions for the least

squares method are identified as the derivatives of the residual with respect to the

unknown constants:

wi(x) =
∂R(x)

∂ci

. (1.16)

The least squares method is the oldest of all the methods of weighted residuals [25].

Crandall stated in his work in 1956 that “the least square method was discovered

by Gauss in 1775” [16]. In 1937, Frazer et al [24] also used this method.

1.2.4 Moment Method

In this method, the weight functions are chosen from the family of polynomials.

That is

wi(x) = x i−1, i = 1, 2, ..., N − k. (1.17)
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In 1948, Yamada applied this method to a nonlinear diffusion problem [77]. His

formulation is described in Ames [2].

1.2.5 Galerkin Method

This method is a modification of the least squares method. The weight functions

are chosen as the derivative of the approximating function with respect to ci , that

is

wi(x) =
∂ya(x)

∂ci

. (1.18)

From equation (1.2), it is easily seen that wi(x) is identical to the basis function

φi(x). Hence the unknowns ci are determined so that the residual R(x) is perpen-

dicular to the subspace spanned by {φi p(x)|p = 1, 2, ..., N − k} where

{ip|p = 1, 2, ..., N − k} ⊆ {1, 2, ..., N}.

This method was first introduced by Galerkin in 1915 [26]. Duncan used it to study

the dynamics of aeronautical structures [19, 18]. It was later used by Bickley to

solve unsteady heat conduction problems [7].

1.3 Numerical Examples

We illustrate the five variations of the method of weighted residuals with some

examples.

Example 1.3.1 Consider the differential equation defined on [0, 1] with its bound-

ary conditions which represents a diffusion-reaction equation in chemistry given by

d2y

dx2
+

dy

dx
− α2y = 0,

y ′(0) = 0,

y(1) = 1, (1.19)
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where α is a constant parameter that denotes the reaction rate which is termed

slow for small values of α and fast for larger α’s. The solution y(x) describes the

concentration of a chemical substance at distance x .

The exact solution to this equation is given by

y(x) =
e( 1

2
− x

2 ) (2β cosh (βx) + sinh (βx))

2β cosh (β) + sinh (β)
, (1.20)

where β =
√

4α2+1
2

. We find an approximate solution to equation (1.19), with α = 1

using the five different methods of weighted residuals.

1.3.1 Two Terms Trial Solution for a Slow Reaction Rate

Let us pick the trial solution from a subspace of dimension two of C [0, 1] as

ya(x) = c1 + c2(1 − x2). (1.21)

Here φ1(x) = 1 and φ2(x) = (1−x2) are the basis functions. The requirement that

ya(x) satisfies the boundary condition y(1) = 1 implies that c1 = 1. It is noted that

the boundary condition y ′(0) = 0 is automatically satisfied by ya(x) because of the

clever choice of the basis function φ2(x). We therefore need one more condition to

evaluate c2.

Substituting the trial solution in equation (1.21) into the differential equation

(1.19) gives the residual (since f (x) = 0):

R(x) = −2c2 − 2c2x − (1 + c2(1 − x2)). (1.22)

Substituting the residual in equation (1.22) into equation (1.7) gives

〈R(x), w1(x)〉 =

∫ 1

0

[
−2c2 − 2c2x − (1 + c2(1 − x2))

]
w1(x)dx = 0, (1.23)

where 〈 , 〉 denotes the inner product on C [0, 1]. We evaluate c2 by choosing

different weight functions which depends on the method of weighted residuals used.
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1. The Collocation Method

The test function is w1(x) = δ(x − x1), where x1 is the unknown colloca-

tion point which must be chosen from the domain [0, 1]. So equation (1.23)

becomes

〈R(x), w1(x)〉 =

∫ 1

0

[
−2c2 − 2c2x − (1 + c2(1 − x2))δ(x − x1)

]
dx . (1.24)

Applying the property of the Dirac delta function (see equation (1.10)) gives

−2c2 − 2c2x1 − (1 + c2(1 − x2
1 )) = 0, (1.25)

and simplifying yields c2 = −1

(2+2x1+(1−x2
1 ))

. Choosing x1 = 0.5, we obtain

c2 = −4/5 and the trial solution by the collocation method is,

yc(x) = 1 − 4(1 − x2)/5. (1.26)

2. Sub-domain Method

Since we have only one unknown, we only need one sub-domain which is the

whole domain [0, 1]. Hence the weight function is w1(x) = 1, for 0 ≤ x ≤ 1

and equation (1.23) becomes

〈R(x), w1(x)〉 =

∫ 1

0

[
−2c2 − 2c2x − (1 + c2(1 − x2))

]
dx = 0. (1.27)

Integrating with respect to x and evaluating gives c2 = −3/11.

Hence the trial solution by the sub-domain method is

ys(x) = 1 − 3(1 − x2)/11. (1.28)

3. The Least Squares Method

The weight function is w1 = ∂R
∂c2

and equation (1.23) becomes

∫ 1

0

R
∂R

∂c2

dx =
1

2

∂

∂c2

∫ 1

0

[
−2c2 − 2c2x − (1 + c2(1 − x2))

]2
dx = 0. (1.29)

Integrating with respect to x and then differentiating with respect to c2 we

obtain c2 = −55/203. Hence the trial solution by the least squares method

is

yl(x) = 1 − 55(1 − x2)/203. (1.30)
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4. The Moment Method

The weight function is w1 = x0 = 1 which is similar to that of the sub-domain

method. Since only two terms are retained with one unknown, the solution

will be the same as that of the sub-domain method, hence

ym(x) = 1 − 3(1 − x2)/11. (1.31)

5. Galerkin Method

The weight function is the same as that of the trial function, so we choose

w1(x) = (1 − x2). Thus equation (1.23) becomes

〈R(x), w1(x)〉 =

∫ 1

0

[
−2c2 − 2c2x − (1 + c2(1 − x2))

]
(1 − x2)dx . (1.32)

Integrating and evaluating gives c2 = −20/71. Hence the trial solution by

the Galerkin method is

yg(x) = 1 − 20(1 − x2)/71. (1.33)

The plots of the solutions and the errors for the above five methods are given in

Figures 1.1 and 1.2 respectively.
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Figure 1.1: Comparison of y and ya for Example 1.3.1.
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We will sample the exact solution y(x) and the approximate solutions ya(x) at a

discrete set of twenty one equally spaced points xi , i = 1, 2, ..., 21 and denote these

vectors by ȳ(x) and ȳa(x). We define the total error by

total error = ‖ȳ(x) − ȳa(x)‖2, (1.34)

where ‖ · ‖2 denotes the Euclidean norm in R
21.

Table 1.1 gives the approximations and the total error for Example 1.3.1 for dif-

ferent values of x .

The results of the numerical solutions for different values of x agree closely with the

analytic solutions (see Figure 1.1). Moreover, all the methods show small errors

(see Figure 1.2) and the solution values agree closely with the exact solution (see

Table 1.1) even though only two terms were retained in the trial solution. This

is because of the slow reaction rate α = 1. Hence the concentration profile of the

chemical substance is shallow and can easily be described by only two terms. From

Table 1.1, we see that the Galerkin method has a slightly lower total error and

hence gives the best approximation to this particular problem. If we allow a higher

reaction rate, the concentration profile becomes steep and the trial solution with

two terms is unable to track the solution. Let us illustrate this by picking α = 10

in equation (1.19).
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x y yc ys yl yg

0 0.7157 0.7333 0.7273 0.7291 0.7183

0.0500 0.7165 0.7340 0.7280 0.7297 0.7190

0.1000 0.7191 0.7360 0.7300 0.7318 0.7211

0.1500 0.7233 0.7393 0.7334 0.7352 0.7246

0.2000 0.7291 0.7440 0.7382 0.7399 0.7296

0.2500 0.7364 0.7500 0.7443 0.7460 0.7359

0.3000 0.7451 0.7573 0.7518 0.7534 0.7437

0.3500 0.7552 0.7660 0.7607 0.7623 0.7528

0.4000 0.7666 0.7760 0.7709 0.7724 0.7634

0.4500 0.7794 0.7873 0.7825 0.7839 0.7753

0.5000 0.7935 0.8000 0.7955 0.7968 0.7887

0.5500 0.8087 0.8140 0.8098 0.8110 0.8035

0.6000 0.8253 0.8293 0.8255 0.8266 0.8197

0.6500 0.8430 0.8460 0.8425 0.8435 0.8373

0.7000 0.8619 0.8640 0.8609 0.8618 0.8563

0.7500 0.8820 0.8833 0.8807 0.8815 0.8768

0.8000 0.9033 0.9040 0.9018 0.9025 0.8986

0.8500 0.9257 0.9260 0.9243 0.9248 0.9218

0.9000 0.9493 0.9493 0.9482 0.9485 0.9465

0.9500 0.9741 0.9740 0.9734 0.9736 0.9725

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Total error ⇒ 0.0455 0.0274 0.0325 0.0165

Table 1.1: Numerical comparison of the different approximations in Example 1.3.1.
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1.3.2 Two Terms Trial Solution for a Fast Reaction Rate

We now solve equation (1.19) with a fast reaction rate relative to diffusion.

Example 1.3.2 Using only two terms as in Example 1.3.1 and picking α = 10 in

Equation (1.19), our residual becomes

R(x) = −2c2 − 2c2x − 100
(
1 + c2(1 − x2)

)
. (1.35)

We will again apply the five different weighted residuals methods as in Example

1.3.1. The summary of the approximate solutions using the five different methods

is given in Table 1.2. Hence forth we will approximate the coefficients to four

decimal places.

Method Approximate Solution

Collocation yc(x) = 1 − 1.2821(1 − x2)

Sub-domain ys(x) = 1 − 1.4354(1 − x2)

Least squares yl(x) = 1 − 1.2202(1 − x2)

Moment ym(x) = 1 − 1.4354(1 − x2)

Galerkin yg(x) = 1 − 1.2085(1− x2)

Table 1.2: Approximate solutions for Example 1.3.2.

The plots of the solutions and their errors are shown in Figures 1.3 and 1.4 respec-

tively. A table of values resulting from the different approximations is shown in

Table 1.3.

We notice from Figure 1.3 that the approximate solutions deviate sharply from the

exact solution hence the error between the approximate and the exact solution is

large (See Figure 1.4). This is due to the sharp concentration profile. We notice

from Table 1.3 that even the Galerkin method which on the average is the best

approximation is still not a very good approximation to the exact solution. We
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can reduce the error by increasing the dimension of the approximation space. In

general, the more terms used in the trial solution, the better the accuracy but the

computation becomes expensive.
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Figure 1.3: Comparison of y and ya for Example 1.3.2.
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x y yc ys yl yg

0 0.0001 −0.2821 −0.4354 −0.2202 −0.2085

0.0500 0.0002 −0.2789 −0.4318 −0.2171 −0.2055

0.1000 0.0002 −0.2693 −0.4210 −0.2080 −0.1964

0.1500 0.0003 −0.2533 −0.4031 −0.1927 −0.1813

0.2000 0.0005 −0.2308 −0.3780 −0.1714 −0.1602

0.2500 0.0008 −0.2020 −0.3457 −0.1439 −0.1330

0.3000 0.0013 −0.1667 −0.3062 −0.1104 −0.0997

0.3500 0.0021 −0.1250 −0.2596 −0.0707 −0.0605

0.4000 0.0033 −0.0770 −0.2057 −0.0250 −0.0151

0.4500 0.0053 −0.0225 −0.1447 0.0269 0.0362

0.5000 0.0086 0.0384 −0.0766 0.0849 0.0936

0.5500 0.0138 0.1057 −0.0012 0.1489 0.1571

0.6000 0.0223 0.1795 0.0813 0.2191 0.2266

0.6500 0.0358 0.2596 0.1711 0.2953 0.3021

0.7000 0.0576 0.3461 0.2679 0.3777 0.3837

0.7500 0.0927 0.4391 0.3720 0.4662 0.4713

0.8000 0.1492 0.5384 0.4833 0.5607 0.5649

0.8500 0.2401 0.6442 0.6017 0.6614 0.6646

0.9000 0.3863 0.7564 0.7273 0.7682 0.7704

0.9500 0.6215 0.8750 0.8600 0.8810 0.8822

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Total error ⇒ 1.1154 1.3327 1.0854 1.0841

Table 1.3: Numerical comparison of the different approximations in Example 1.3.2.
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Figure 1.4: Errors ea = y − ya for Example 1.3.2.

1.3.3 Three Terms Trial Solution for a Fast Reaction Rate

We seek to improve the accuracy of the results obtained in Example 1.3.2 by using

a subspace of dimension three.

Example 1.3.3 In order to improve the accuracy of the solution for a fast reaction

rate α = 10, we retain three terms in the trial solution. Hence the new trial solution

is

ya = c1 + c2(1 − x2) + c3x
2(1 − x2), (1.36)

where the basis functions are {1, 1 − x2, x2(1 − x2)} and c1 = 1 because of the

boundary condition y(1) = 1 in equation (1.19). The boundary condition y
′

(0) = 0

is automatically satisfied by ya(x).

The residual becomes

R(x) = −2c2 + 2c3 − 12c3x
2 − 2c2x + 2c3x − 4c3x

3

− 100(1 + c2(1 − x2) + c3x
2(1 − x2)).

(1.37)
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1. The Collocation Method

Since we have two unknowns, we will need two weight functions given by

w1(x) = δ(x − x1) and w2(x) = δ(x − x2) , where x1 and x2 are the unknown

collocation points which we choose as x1 = 1/3 and x2 = 2/3. Next we

evaluate the following two inner products

〈R(x), w1(x)〉 =

∫ 1

0

[R(x)δ(x − x1)] dx = 0 (1.38)

and

〈R(x), w2(x)〉 =

∫ 1

0

[R(x)δ(x − x2)] dx = 0, (1.39)

by applying the property of the Dirac delta function (equation (1.10)), and

evaluating at the collocation points x1 = 1/3 and x2 = 2/3 to obtain

R(x1) = 0 (1.40)

and

R(x2) = 0. (1.41)

Simplifying equations (1.40) and (1.41) yields the linear system

−91.5577c2 − 8.6894c3 = 100

−58.8845c2 − 27.8778c3 = 100, (1.42)

which we solve simultaneously to yield c2 = −0.9403 and c3 = −1.6010. So

the trial solution by the collocation method is

yc(x) = 1 − 0.9403(1− x2) − 1.6010x2(1 − x2). (1.43)

2. Sub-domain Method

Since we have two unknowns, we will split the interval [0, 1] into two sub-

domains: [0, 0.5] and [0.5, 1]. The weight functions are w1(x) = w2(x) = 1.

So we will need to evaluate the following two inner products

〈R(x), w1(x)〉 =

∫ 0.5

0

R(x)dx = 0 (1.44)
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and

〈R(x), w2(x)〉 =

∫ 1

0.5

R(x)dx = 0. (1.45)

These give the linear system

−47.0833c2 − 2.8542c3 = 50

−22.5833c2 − 12.4792c3 = 50, (1.46)

which we solve simultaneously to yield c2 = −0.9200 and c3 = −2.3418.

Hence the trial solution by the sub-domain method is

ys(x) = 1 − 0.9200(1 − x2) − 2.3418x2(1 − x2). (1.47)

3. The Least Squares Method

The weight functions are w1 = ∂R
∂c2

and w2 = ∂R
∂c3

. So we will need to evaluate

the following inner products

〈R(x), w1(x)〉 =

∫ 1

0

R
∂R

∂c2
dx =

1

2

∂

∂c2

∫ 1

0

R2(x)dx = 0 (1.48)

and

〈R(x), w2(x)〉 =

∫ 1

0

R
∂R

∂c3
dx =

1

2

∂

∂c3

∫ 1

0

R2(x)dx = 0. (1.49)

Integrating equations (1.48) and (1.49) with respect to x and then differen-

tiating with respect to c2 and c3 respectively gives the linear system

11418.70c2 + 1647.01c3 = 13933.30

1647.01c2 + 717.10c3 = 3066.67, (1.50)

which we solve simultaneously to obtain c2 = −0.9029 and c3 = −2.2000.

Hence the trial solution by the least squares method is

yl(x) = 1 − 0.9029(1− x2) − 2.2000x2(1 − x2). (1.51)

4. The Moment Method

Here the weight functions are w1 = 1 and w2(x) = x . So we will need to

evaluate the integrals

〈R(x), w1(x)〉 =

∫ 1

0

R(x)dx = 0 (1.52)
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and

〈R(x), w2(x)〉 =

∫ 1

0

R(x)xdx = 0. (1.53)

Evaluating the integrals in equations (1.52) and (1.53) gives the linear system

−69.6667c2 − 15.3333c3 = 100

−26.6667c2 − 10.4667c3 = 50, (1.54)

and solving simultaneously yields c2 = −0.8742 and c3 = −2.5498. Hence

the trial solution by the moment method is

ym(x) = 1 − 0.8742(1 − x2) − 2.5498x2(1 − x2). (1.55)

5. The Galerkin Method

The weight functions are chosen as w1(x) = (1− x2) and w2(x) = x2(1− x2).

Evaluating the integrals

〈R(x), w2(x)〉 =

∫ 1

0

R(x)(1 − x2)dx = 0 (1.56)

and

〈R(x), w2(x)〉 =

∫ 1

0

R(x)[x2(1 − x2)]dx = 0, (1.57)

yields the linear system

−56.0000c2 − 7.71905c3 = 66.6667

−8.15238c2 − 2.95873c3 = 13.3333. (1.58)

Solving simultaneously yields c2 = −0.9179 and c3 = −1.9772. The trial

solution by the Galerkin method is

yg(x) = 1 − 0.9179(1 − x2) − 1.9772x2(1 − x2). (1.59)

The plots of the solutions and the errors for the above five methods are given

in Figures 1.5 and 1.6 respectively. A table of values resulting from different

approximations is shown in Table 1.4.

From Figure 1.6 and Table 1.4, we notice that the error is now reduced but is still

large.
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Figure 1.5: Comparison of y and ya for Example 1.3.3.
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Figure 1.6: Errors ea = y − ya for Example 1.3.3.
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x y yc ys yl ym yg

0 0.0001 0.0597 0.0800 0.0971 0.1258 0.0821

0.0500 0.0002 0.0581 0.0765 0.0939 0.1216 0.0795

0.1000 0.0002 0.0533 0.0660 0.0843 0.1093 0.0717

0.1500 0.0003 0.0456 0.0492 0.0690 0.0894 0.0593

0.2000 0.0005 0.0358 0.0269 0.0487 0.0629 0.0429

0.2500 0.0008 0.0247 0.0003 0.0246 0.0310 0.0236

0.3000 0.0013 0.0132 −0.0290 −0.0018 −0.0044 0.0028

0.3500 0.0021 0.0028 −0.0590 −0.0288 −0.0412 −0.0180

0.4000 0.0033 −0.0050 −0.0875 −0.0541 −0.0770 −0.0368

0.4500 0.0053 −0.0084 −0.1119 −0.0753 −0.1090 −0.0513

0.5000 0.0086 −0.0054 −0.1291 −0.0897 −0.1337 −0.0592

0.5500 0.0138 0.0063 −0.1358 −0.0940 −0.1477 −0.0574

0.6000 0.0223 0.0293 −0.1284 −0.0847 −0.1470 −0.0430

0.6500 0.0358 0.0663 −0.1027 −0.0582 −0.1270 −0.0125

0.7000 0.0576 0.1204 −0.0544 −0.0103 −0.0830 0.0378

0.7500 0.0927 0.1946 0.0212 0.0636 −0.0100 0.1118

0.8000 0.1492 0.2926 0.1292 0.1681 0.0978 0.2140

0.8500 0.2401 0.4181 0.2752 0.3084 0.2462 0.3489

0.9000 0.3863 0.5749 0.4648 0.4899 0.4415 0.5213

0.9500 0.6215 0.7674 0.7042 0.7184 0.6904 0.7365

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Total error ⇒ 0.3725 0.4022 0.3403 0.4679 0.3060

Table 1.4: Numerical comparison of the different approximations in Example 1.3.3.
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1.3.4 Different Choice of Collocation Points

For the collocation method in Example 1.3.3, we chose equally spaced collocation

points on the domain [0, 1] as x1 = 1/3 and x2 = 2/3. If instead we choose

unequally spaced collocation points as x1 = 1/4 = 0.25 and x2 = 3/4 = 0.75, then

we will obtain c2 = −0.9587 and c3 = −1.8513 and the trial solution becomes

yc̄(x) = 1 − 0.9587(1− x2) − 1.8513x2(1 − x2). (1.60)

From Figures 1.7 and 1.8, we notice that with this new choice of collocation points,

the approximate solution yc̄ by the collocation method gives a better approximation

as compared to yc . Moreover the total error 0.3012 obtained from the former is

better than the value 0.3725 obtained from the latter (see Table 1.5). With this

choice of collocation points, the collocation method gives the best approximation

to this particular problem. This means that the choice of the collocation points is

very critical to getting good results for the collocation method [22, 72]. We will

expatiate on this in chapter 2. However, note that it does not necessarily mean

that unequally spaced collocation points are the best.

Remark 1.3.4 We have seen that of all the five variations of the method of

weighted residuals, the collocation method is the easiest to work with. This is be-

cause of the property of the Dirac delta function which makes computation easier.

The sub-domain and least squares method are tedious to use. The Galerkin method

gives good accuracy to most problems but the collocation method is preferred for

most practical problems because of the ease of computation [21, 59].
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Figure 1.7: Comparison of y , yc and yc̄ for Example 1.3.3.
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Figure 1.8: Errors ec = y − yc and ec̄ = y − yc̄ for Example 1.3.3.
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x y yc yc̄

0 0.0001 0.0597 0.0413

0.0500 0.0002 0.0581 0.0391

0.1000 0.0002 0.0533 0.0326

0.1500 0.0003 0.0456 0.0222

0.2000 0.0005 0.0358 0.0086

0.2500 0.0008 0.0247 −0.0073

0.3000 0.0013 0.0132 −0.0240

0.3500 0.0021 0.0028 −0.0403

0.4000 0.0033 −0.0050 −0.0541

0.4500 0.0053 −0.0084 −0.0635

0.5000 0.0086 −0.0054 −0.0661

0.5500 0.0138 0.0063 −0.0593

0.6000 0.0223 0.0293 −0.0401

0.6500 0.0358 0.0663 −0.0054

0.7000 0.0576 0.1204 0.0484

0.7500 0.0927 0.1946 0.1250

0.8000 0.1492 0.2926 0.2283

0.8500 0.2401 0.4181 0.3628

0.9000 0.3863 0.5749 0.5329

0.9500 0.6215 0.7674 0.7436

1.0000 1.0000 1.0000 1.0000

Total error ⇒ 0.3725 0.3012

Table 1.5: Numerical comparison of y , yc and yc̄ for Example 1.3.3.



Chapter 2

Orthogonal Collocation Method

2.1 Introduction

We have seen from Example 1.3.2 and 1.3.3 in chapter 1 that the choice of the

collocation points is critical and has to be judiciously selected. This clever selection

of the collocation points marks the difference between the collocation method and

the orthogonal collocation method.

The orthogonal collocation method was first introduced by Villadsen and Stewart

in 1967. They discovered that collocation points chosen as the roots of orthogonal

polynomials gave good results due to some attractive features of these polynomials

[72]. They chose the trial functions as the Jacobi polynomials and picked the

collocation points as the corresponding zeros of these polynomials [72]. Thereafter

in 1972, Finlayson used it to solve many problems in chemical engineering [22].

Fan, Chen and Erickson used it to solve equations arising from chemical reactors

[20]. Finlayson applied it to nonlinear problems in 1980 [21]. In recent times, so

many investigators [1, 34, 36, 61] have applied this method to solve a variety of

chemical engineering problems.

We now lay some basic foundations.

26
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2.2 Orthogonal Polynomials

Let [a, b] be an interval in the real line R. Let w(x) : [a, b] → R be a function such

that w(x) > 0 on (a, b). Here w(x) is the weight function and it must satisfy the

finite integral
∫ b

a
φN(x)w(x)dx < ∞ for any polynomial φN(x) of degree N [36].

Two polynomials φN(x) and φM(x), where N 6= M , satisfying the above condition

are said to be orthogonal to each other with respect to w(x) on the interval [a, b]

if their inner product is zero, that is

〈φN(x),φM(x)〉 =

∫ b

a

φN(x)φM(x)w(x)dx = 0. (2.1)

Orthogonal polynomials have useful properties that are exploited in the solution

of mathematical and physical problems. These features provide a natural way to

solve, expand and interpret many important differential equations.

2.2.1 Useful Properties of Orthogonal Polynomials

1. Recurrence Relation

A set {φk |k = 1, 2, ..., N} of orthogonal polynomials satisfies the three point

recurrence relation

φk+1(x) = (akx + bk)φk(x) + ckφk−1(x), (2.2)

where ak , bk , ck are constant coefficients.

2. Existence of Real Roots

Each polynomial in an orthogonal sequence has all of its roots real, distinct,

and strictly inside the interval of orthogonality. This property is not common

with other polynomials.

3. Interlacing of Roots

The roots of φk(x) strictly separate the roots of φk+1(x).
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Remark 2.2.1 Villadsen and Stewart [72], Carey and Finlayson [11], Villadsen

and Sorensen [72] and Finlayson [22], have proposed choosing the collocation points

as the zeros of Jacobi polynomials. However in this present study, we shall use the

zeros of the Chebyshev polynomials of the first and second kind and the Legendre

polynomials. We now summarize the properties of these orthogonal polynomials.

2.2.2 Chebyshev Polynomials of the First Kind TN(x)

The Chebyshev polynomials of the first kind [60] arise as the solution to the Cheby-

shev differential equation

(1 − x2) y
′′

(x) − x y
′

(x) + N2 y(x) = 0. (2.3)

They are defined by the recurrence relation

T0(x) = 1, (2.4)

T1(x) = x , (2.5)

TN+1(x) = 2xTN(x) − TN−1(x). (2.6)

They can alternatively be defined by the trigonometric identity:

TN(x) = cos(N cos−1 x), (2.7)

where TN(cos(θ)) = cos(Nθ), for N = 0, 1, 2, 3, ....

The Chebyshev polynomials of the first kind are orthogonal with respect to the

weight function w(x) = 1/
√

1 − x2 on the interval [−1, 1], that is

∫ 1

−1

TN(x)TM(x)√
1 − x2

dx =







0 N 6= M ,

π N = M = 0,

π
2

N = M 6= 0.

(2.8)

One can easily show that the roots of TN(x) are

xk = cos

(
(2k − 1)π

2N

)

, k = 1, 2, ..., N. (2.9)
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2.2.3 Chebyshev Polynomials of the Second Kind UN(x)

The Chebyshev polynomials of the second kind [39] arise as the solution to the

Chebyshev differential equation

(1 − x2) y
′′

(x) − 3x y
′

(x) + N(N + 2) y(x) = 0. (2.10)

They are defined by the recurrence relation

U0(x) = 1, (2.11)

U1(x) = 2x , (2.12)

UN+1(x) = 2xUN(x) − UN−1(x). (2.13)

They can alternatively be defined by the trigonometric identity:

UN(x) =
sin((N + 1)θ)

sin θ
, (2.14)

with x = cosθ. They are orthogonal with respect to the weight function w(x) =
√

1 − x2 on the interval [−1, 1], that is

∫ 1

−1

UN(x)UM(x)
√

1 − x2 dx =







0 N 6= M ,

π
2

N = M .

(2.15)

The roots of UN(x) are given by

xk = cos

(
k π

N + 1

)

, k = 1, 2, ..., N. (2.16)

2.2.4 Legendre Polynomials PN(x)

The Legendre polynomials [47, 59] are solutions to the Legendre’s differential equa-

tion:

(1 − x2) y
′′

(x) − 2x y
′

(x) + N(N + 1) y(x) = 0. (2.17)

They may be determined using Rodrigues formula, that is

PN(x) =
1

2NN!

dN

dxN

[
(x2 − 1)N

]
. (2.18)
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They are orthogonal with respect to the weight function w(x) = 1 on the interval

[−1, 1], that is
∫ 1

−1

PN(x)PM(x) dx =
2

2N + 1
δNM , (2.19)

where δNM denotes the Kronecker delta defined by

δNM =







1 if N = M ,

0 otherwise.

(2.20)

Unfortunately, there is no formula for the roots of of the Legendre polynomials

hence they are usually determined numerically. By differentiating (x2 − 1)
N
, N

times with respect to x and then substituting into the Rodrigues formula equation

(2.18) we obtain the expression

PN(x) =
1

2N

N
2∑

k=0

(−1)
N
2
−k(N + 2k)!x2k

(N
2

+ k)!(N
2
− k)!(2k)!

, for n even (2.21)

and

PN(x) =
1

2N

N−1
2∑

k=0

(−1)
N−1

2
−k(N + 2k + 1)!x2k+1

(N+1
2

+ k)!(N−1
2

− k)!(2k + 1)!
, for n odd, (2.22)

we can then use the MATLAB built in function polyroot to evaluate the roots

since the coefficients are known.

Remark 2.2.2 Using the linear transformation L : x → (b − a)/2x + (a + b)/2,

orthogonal polynomials on [−1, 1] can be shifted into any interval [a, b]. The roots

in [a, b] can then be determined. This is equivalent to shifting the roots in [−1, 1]

to [a, b] using the same linear transformation.

2.3 Lagrange Interpolation

The Lagrange polynomial was first published by Waring in 1779, then rediscovered

by Euler in 1783 and published by Lagrange in 1795 [60, 47]. They are useful in
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interpolation theory. Polynomials in general are preferred for interpolation because

they have derivatives and integrals which are themselves polynomials hence making

them easy to work with.

As discussed by Villadsen and Stewart [72], we use the Lagrange interpolation

polynomial to effect an approximate solution, that is

ya(x) =
N+1∑

k=1

ck lk(x), (2.23)

where N is the order of the polynomial and lk(x) is the Lagrange polynomial

function defined by

lk(x) =

N+1∏

j=1
j 6=k

x − xj

xk − xj

. (2.24)

where {xj | j = 1, 2, ..., N+1} are the interpolation nodes. The Lagrange polynomial

function has the property that

lk(xj) =







1, j = k,

0, j 6= k,

(2.25)

moreover the set {lk(x)|k = 1, 2, ..., N + 1} is linearly independent and forms a

basis for the space of the polynomials of degree less than or equal to N on the

interval [a, b].

For second order differential equations, we require only the first two derivatives of

the Lagrange polynomial which are given in equations (2.26) and (2.27) respec-

tively,

dya(x)

dx
=

N+1∑

k=1

ck l
′

k(x), (2.26)

d2ya(x)

dx2
=

N+1∑

k=1

ck l
′′

k (x). (2.27)

Using property (2.25), it is clear that ck = ya(xk) and hence the approximate

solution at the nodes xk are just the coefficients in equation (2.23).
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The Lagrange function in equation (2.24) can easily be rewritten as

lk(x) =
ψ(x)

(x − xk)ψ
′(xk)

, (2.28)

where ψ(x) is a N + 1 degree polynomial, called the nodal polynomial and it is

defined by

ψ(x) =
N+1∏

j=1

(x − xj), (2.29)

where {xi | j = 1, 2, ..., N + 1} are the interpolation points. Equation (2.28) can be

rearranged as

lk(x)(x − xk)ψ
′

(xk) = ψ(x). (2.30)

We obtain the expression for the first derivative of the Lagrange function evaluated

at xj by differentiating equation (2.30) with respect to x , that is

l
′

k(xj) =
ψ

′

(xj)

ψ′(xk)(xj − xk)
, for j 6= k. (2.31)

Similarly, we obtain the second derivative evaluated at xj by differentiating equa-

tion (2.30) twice with respect to x to yield

l
′′

k (xj) =
ψ

′′

(xj)

(xj − xk)ψ
′(xk)

− 2l
′

k(xj). (2.32)

We can also obtain an expression for the first derivative of the Lagrange function

evaluated at xk by differentiating the Lagrange function in equation (2.24) with

respect to x , that is

l
′

k(xk) =

N+1∑

j=1
j 6=k

1

(xk − xj)
. (2.33)

Differentiating equation (2.24) twice with respect to x and evaluating at xk yields

l
′′

k (xk) =
N+1∑

i ,j=1
i ,j 6=k
i<j

1

(xk − xi)(xk − xj)
. (2.34)
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2.3.1 Chebyshev Interpolation Nodes

When f (t) ∈ C [−1, 1] is approximated by the Lagrange interpolation polynomial

PN(t) of degree at most N, the error at the point x ∈ [−1, 1] is given by

EN(x) = f (x) − PN(x) =
f N+1(ξ(x))

(N + 1)!
ψ(x), (2.35)

where

ψ(t) = (t − x1)(t − x2) · · · (t − xN+1), (2.36)

is a monic polynomial and ξ(x) ∈ (−1, 1) is usually unknown.

From equation (2.35),

|EN(x)| =
|f N+1(ξ(x))|

(N + 1)!
|ψ(x)| ≤ ‖f N+1(t)‖∞

(N + 1)!
‖ψ(t)‖∞ = M‖ψ(t)‖∞, (2.37)

where ‖ψ(t)‖∞ = Max
t∈[−1,1]|ψ(t)| and M = ‖f N+1(t)‖∞

(N+1)!
= Max

t∈[−1,1]
|f N+1(t)|
(N+1)!

.

Let q(t) ∈ C [−1, 1] be a monic polynomial of degree N + 1 such that ‖q(t)‖∞ ≤
‖ψ(t)‖∞, then it is shown in [60] that q(t) = TN+1(t)

2N and ‖q(t)‖∞ = 1
2N . Hence in

order to minimize the interpolation error we require that

TN+1(t)

2N
= (t − x1)(t − x2) · · · (t − xN+1). (2.38)

From this we clearly see that the optimal choice of the interpolation nodes

{xk |k = 1, 2, ..., N+1} are the roots of the Chebyshev polynomial TN+1(t) of degree

N + 1 which are easily obtained from equation (2.9), [40].

2.4 Relationship Between Galerkin and Colloca-

tion Method

From Examples 1.3.1 and 1.3.2 in chapter 1, we have seen that the Galerkin method

is the best of all the five weighted residual methods to provide a good accuracy

which is in agreement with the work done by Finlayson [22]. However, we noticed
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from chapter 1 that the Galerkin method can be very expensive especially when we

retain more terms in the trial solution. For the Galerkin method we require that

〈R(x),φj(x)〉 = 0, for j = 1, 2, ..., N, where R(x) = R(x , a1, a2, ..., aN) is the residual

and {φj(x)| j = 1, 2, ..., N} are the basis functions which in this discussion will be

assumed to also be an orthogonal set that automatically satisfies the boundary

conditions. We approximate 〈R(x),φj(x)〉 numerically by an N point quadrature

formula

〈R(x),φj(x)〉 =

∫

X

R(x)φj(x)dx ≈
N∑

k=1

wkR(xk)φj(xk), (2.39)

where wk are the quadrature weights and xk are the quadrature points in X . If

{xk |k = 1, 2, ..., N} are the zeros of φN(x) then 〈R(x),φN(x)〉 ≈ 0. Since φj(xk) 6= 0

for j = 1, 2, ..., N − 1 and k = 1, 2, ..., N (recall property 3, section 2.2.1), we

force 〈R(x),φj(x)〉 ≈ 0 for j = 1, 2, ..., N − 1 by requiring that R(xk) = 0, for

k = 1, 2, ..., N which is simply the collocation method.

Thus if the collocation method is used with the collocation points chosen as roots

of the orthogonal polynomial φN(x), then the collocation method will closely ap-

proximate the Galerkin method. If φN(x) were not an orthogonal polynomial then

its roots could be complex and also may lie outside the domain X . The collocation

method is easy to apply and to program and its accuracy can be comparable to

the Galerkin method if the collocation points are judiciously chosen [21, 22].

Remark 2.4.1 We are now ready to illustrate the orthogonal collocation method

with an example. Note that our choice of collocation points x1 = 0.25 and x2 = 0.75

in chapter 1 (See section 1.3.4) gave good results because we used the shifted roots

of the Chebyshev polynomial of the second kind which falls under the family of

orthogonal polynomials.
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2.5 Numerical Examples

Example 2.5.1 Consider the differential equation (1.19) which we solved in chap-

ter 1 using the five different methods of weighted residuals. Let us solve the same

equation using the orthogonal collocation method.

2.5.1 One Point Collocation for Example 2.5.1

The one point collocation method is normally used to quickly investigate the be-

havior of the solution to any particular differential equation as a function of the

parameters [68]. In this particular example, we can use it to investigate the be-

havior of the solution as we increase the reaction rate α.

Here we assume a quadratic approximate solution:

ya(x) =

3∑

k=1

ck lk(x). (2.40)

We pick the first and last interpolation points to coincide with the left and right

boundary points respectively, that is x1 = 0 and x3 = 1 and pick the third interpo-

lation point as the shifted zero of the Chebyshev polynomial T1, that is x2 = 0.5.

The collocation point xc
2 is chosen as the shifted root of T1 and hence coincides with

the internal interpolation point x2. Hence we have three second order Lagrange

polynomials given by

l1(x) = 2x2 − 3x + 1, (2.41)

l2(x) = 4x − 4x2, (2.42)

l3(x) = 2x2 − x . (2.43)

Substituting the approximate solution (2.40) into the differential equation (1.19)

gives the residual equation

R(x) = (−2α2x2 + 3α2x + 4x − α2 + 1)c1 + (4α2x2 − 4α2x − 8x − 4)c2

+ (−2α2x2 + α2x + 4x + 3)c3.
(2.44)
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Substituting the collocation point xc
2 = 0.5 into the residual equation (2.44) gives

R(xc
2 ) = 3c1 − (8 + α2)c2 + 5c3 = 0. (2.45)

Satisfying the boundary conditions yield

−3c1 + 4c2 − c3 = 0 (2.46)

and

c3 = 1, (2.47)

where we have employed property (2.25) of the Lagrange polynomial in evaluating

c3. Hence the approximate solution for the one point collocation method is given

by

ya(x) = c1l1(x) + c2l2(x) + l3(x), (2.48)

where c1 = 12−α2

3(4+α2)
and c2 = 4

4+α2 . The plots of the solutions and the error

are shown in Figures 2.1 and 2.2 for α = 1 and Figures 2.3 and 2.4 for α = 10

respectively.

Hence forth, we will sample the total error with 21 mesh points. Tables 2.1 and

2.2 give the numerical comparison for different values of x .

From Tables 2.1 and 2.2, we observe that the total error is high especially for

α = 10. From Figure 2.4 we notice that the error is unacceptably high. The

solution which represents the concentration of the chemical becomes negative for

α = 10 and since this cannot happen in reality, we infer that more collocation

points are needed to produce a higher degree approximation.
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Figure 2.1: Comparison of y and ya for Example 2.5.1 with α = 1 and order N = 2.
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Figure 2.2: Error between y and ya for Example 2.5.1 with α = 1 and order N = 2.
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Figure 2.3: Comparison of y and ya for Example 2.5.1 with α = 10 and order

N = 2.
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Figure 2.4: Error between y and ya for Example 2.5.1 with α = 10 and order

N = 2.
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x y ya

0 0.7157 0.7333

0.0500 0.7165 0.7340

0.1000 0.7191 0.7360

0.1500 0.7233 0.7393

0.2000 0.7291 0.7440

0.2500 0.7364 0.7500

0.3000 0.7451 0.7573

0.3500 0.7552 0.7660

0.4000 0.7666 0.7760

0.4500 0.7794 0.7873

0.5000 0.7935 0.8000

0.5500 0.8087 0.8140

0.6000 0.8253 0.8293

0.6500 0.8430 0.8460

0.7000 0.8619 0.8640

0.7500 0.8820 0.8833

0.8000 0.9033 0.9040

0.8500 0.9257 0.9260

0.9000 0.9493 0.9493

0.9500 0.9741 0.9740

1.0000 1.0000 1.0000

Total Error ⇒ 0.0456

Table 2.1: Numerical comparison for one point collocation for Example 2.5.1 with

α = 1 and order N = 2.
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x y ya

0 0.0001 −0.2821

0.0500 0.0002 −0.2788

0.1000 0.0002 −0.2692

0.1500 0.0003 −0.2532

0.2000 0.0005 −0.2308

0.2500 0.0008 −0.2019

0.3000 0.0013 −0.1667

0.3500 0.0021 −0.1250

0.4000 0.0033 −0.0769

0.4500 0.0053 −0.0224

0.5000 0.0086 0.0385

0.5500 0.0138 0.1058

0.6000 0.0223 0.1795

0.6500 0.0358 0.2596

0.7000 0.0576 0.3462

0.7500 0.0927 0.4391

0.8000 0.1492 0.5385

0.8500 0.2401 0.6442

0.9000 0.3863 0.7564

0.9500 0.6215 0.8750

1.0000 1.0000 1.0000

Total Error ⇒ 1.1154

Table 2.2: Numerical comparison for one point collocation for Example 2.5.1 with

α = 10 and order N = 2.
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2.5.2 Generalization of Example 2.5.1

We can improve the accuracy of our approximation by increasing the number of

collocation points but as the number of collocation points increases, the number

of equations and unknowns also increases, thus making computation by hand very

tedious. Thus we will first generalize the problem and reduce it to a linear system.

We can then use any programming language with a high speed computer to solve

for the unknowns.

In general, we substitute the approximate solution of the form (2.40) into the

differential equation (1.19) to obtain

N+1∑

k=1

[

ck l
′′

k (x) + ck l
′

k(x) − α2ck lk(x)
]

= 0. (2.49)

We first satisfy the left hand boundary condition at x1, then evaluate the residual

(2.49) at the collocation points xc
j , j = 2, 3, ..., N, and finally satisfy the right hand

boundary condition at xN+1. The resulting linear system of equations can be cast

in the matrix vector form Ac = b, where A = aij is a (N + 1) × (N + 1) matrix

with

a1j = l
′

j (x1), (2.50)

ai ,j = l
′′

j (xc
i ) + l

′

j (x
c
i ) − α2lj(x

c
i ), (2.51)

aN+1,j = lj(xN+1), (2.52)

for j = 1, 2, ..., N + 1, i = 2, 3, ..., N, b is a column vector of dimension N + 1 with

bj = 0; j = 1, 2, ..., N, (2.53)

bN+1 = 1 (2.54)

and

c = cj ; j = 1, 2, ..., N + 1, (2.55)

is the vector of the unknowns. Hence the solution vector is c = A−1b. This system

has been coded in MATLAB and the code is given in Appendix A.
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We first solve the problem by choosing the collocation points xc
j , j = 2, 3, ..., N

as the shifted roots of the Chebyshev polynomial of the first kind, TN−1. In this

instance we emphasize that the collocation points agree with the internal interpo-

lation points, that is xc
j = xj for j = 2, 3, ..., N. The plots of the solutions and the

errors for orders N = 3, 4 and 5 are given in Figures 2.5 and 2.6 respectively. The

case N = 16 is displayed in Figure 2.7.

In Table 2.3 we summarize the total error for different orders N. We notice the

gradual decrease in the total error as we increase the order of the polynomial. The

total error for orders N ≥ 9 are small. If we use polynomials of orders N = 16 and

above, the error levels off at 3.1380e − 006.
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Figure 2.5: Comparison of y and ya for Example 2.5.1 for orders N = 3, 4, 5, with

collocation points chosen as the shifted roots of TN−1.
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Figure 2.6: Errors for Example 2.5.1 for orders N = 3, 4, 5, with collocation points

chosen as the shifted roots of TN−1.
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Figure 2.7: Error for order N = 16 for Example 2.5.1, with collocation points

chosen as the shifted roots of T15.
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Secondly we choose the collocation points as the shifted roots of the Chebyshev

polynomial of the second kind, UN−1. The plots of the solutions and the errors for

orders N = 3, 4 and 5 are given in Figures 2.8 and 2.9 respectively.

Thirdly we choose the collocation points as the shifted roots of the Legendre poly-

nomial, PN−1. The plots of the solutions and the errors for orders N = 3, 4 and 5

are given in Figures 2.10 and 2.11 respectively.

Comparing the total error from Table 2.3, we observe that the total error is least

for UN−1. However, in all cases due to truncation error, the total error levels off at

order N = 16 with value 3.1380e − 006.
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Figure 2.8: Comparison of y and ya for Example 2.5.1 for orders N = 3, 4, 5, with

collocation points chosen as the shifted roots of UN−1.
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Figure 2.9: Errors for Example 2.5.1 for orders N = 3, 4, 5, with collocation points

chosen as the shifted roots of UN−1.
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Figure 2.10: Comparison of y and ya for Example 2.5.1 for orders N = 3, 4, 5, with

collocation points chosen as the shifted roots of PN−1.
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Figure 2.11: Errors for Example 2.5.1 for orders N = 3, 4, 5, with collocation points

chosen as the shifted roots of PN−1.

Order N TN−1 UN−1 PN−1

2 1.1154 1.1154 1.1154

3 0.9755 0.4047 0.4925

4 0.4908 0.1554 0.2406

5 0.1631 0.0568 0.0913

6 0.0460 0.0181 0.0277

7 0.0120 0.0051 0.0073

9 6.1817e − 004 2.9281e − 004 3.9050e − 004

11 2.3159e − 005 1.2620e − 005 1.5287e − 005

13 3.2087e − 006 3.1525e − 006 3.1684e − 006

15 3.1382e − 006 3.1379e − 006 3.1381e − 006

16 3.1380e − 006 3.1380e − 006 3.1380e − 006

Table 2.3: Numerical comparison of the errors for Example 2.5.1 for different

orders N, with collocation points chosen as the shifted roots of TN−1, UN−1 and

PN−1 respectively.
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Example 2.5.2 In order to investigate how well the collocation method can track

a hump, we solve the following non homogeneous boundary value problem on the

interval [0, 3.5]:

d2y

dx
+ 6

dy

dx
+ 9y = e−3x ,

y(0) = 0,

y(3.5) = 9.625e−10.5. (2.56)

Note that in the previous example, we shifted the roots of the orthogonal polyno-

mials from [−1, 1] to the domain of the problem namely [0, 1]. Here we choose to

transform the domain [0, 3.5] of the problem to the interval [−1, 1] by using the

linear transformation L : x → 2x/h − 1, where h = 3.5 is the length of the domain

[0, 0.35]. With this transformation, the differential equation (2.56) together with

its boundary conditions becomes

4

h2

d2y

dx2
+

12

h

dy

dx
+ 9y = e−1.5h(x+1),

y(−1) = 0,

y(1) = 9.625e−10.5. (2.57)

The exact solution to equation (2.56) is given by

y(x) = xe−3x + 0.5x2e−3x . (2.58)

The exact solution in equation (2.58) has a maximum value at x ≈ 0.3874 and

damps off quickly as illustrated in Figure 2.12.

2.5.3 Two Points Collocation for Example 2.5.2

Here we assume a cubic approximate solution:

4∑

k=1

ck lk(x). (2.59)
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We pick the first and last interpolation points to coincide with the left and right

boundary points respectively, that is x1 = −1 and x4 = 1 and pick the remaining

interpolation points as the zeros of the Chebyshev polynomial T2, that is x2 =

−1/
√

2 and x3 = 1/
√

2. The two collocation points xc
2 and xc

3 are chosen as the

roots of T2 and hence coincides with the internal interpolation points x2 and x3

respectively. Hence we have four cubic Lagrange polynomials given by

l1(x) = −x3 + x2 + 0.5000x − 0.5000, (2.60)

l2(x) = 1.4142x3 − x2 − 1.4142x + 1.0000, (2.61)

l3(x) = −1.4142x3 − x2 + 1.4142x + 1.0000, (2.62)

l4(x) = x3 + x2 − 0.5000x − 0.5000. (2.63)

Substituting the approximate solution (2.59) into the differential equation (2.57)

and forming the residual gives

R(x) =
(
−9.0000x3 − 1.2857x2 + 9.3977x − 2.1326

)
c1

+
(
12.7278x3 + 5.5462x2 − 16.8141x + 3.4981

)
c2

+
(
−12.7278x3 − 23.5459x2 + 3.10011x + 13.1955

)
c3

+
(
9.0000x3 + 19.2853x2 + 4.3163x − 5.5610

)
c4 = e−1.5h(x+1).

(2.64)

Upon substituting the collocation points xc
2 = −1/

√
2 and xc

3 = 1/
√

2 into the

residual (2.64) and requiring that R(xc
2 ) = R(xc

3 ) = 0, we obtain the linear system

R(xc
2 ) = −6.2387c1 + 13.6606c2 + 3.7305c3 − 2.1524c4 = 0.2149

R(xc
3 ) = 0.6879c1 − 1.1183c2 − 0.8850c3 + 10.3154c4 = 0.0001. (2.65)

We also satisfy the boundary conditions obtaining

ya(−1) = c1 = 0, (2.66)

ya(1) = c4 = 9.625e−10.5. (2.67)

Hence c1 = 0 and c4 ≈ 0.0003. Solving the system of equations (2.65) simulta-

neously yields c2 = 0.0228 and c3 = −0.0259. Hence the approximate solution

is

ya(x) = 0.0228l2(x) − 0.0259l3(x) + 0.0003l4(x). (2.68)
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The plots of the solutions and the error are shown in Figures 2.12 and 2.13 respec-

tively. Table 2.4 gives the numerical comparison for different values of x .

Notice from Table 2.4 that the numerical solution for different values of x does

not closely agree with the analytic solution. Moreover the error is high (see Figure

2.13), hence we require more collocation points to obtain a better approximation.
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Figure 2.12: Comparison of y and ya for Example 2.5.2 for order N = 3, with

collocation points chosen as roots of T2.

2.5.4 Generalization of Example 2.5.2

In order to improve the accuracy of our result, we generalize to higher orders as

done in Example 2.5.1. In general, when we substitute the approximate solution

of the form (2.59) into the differential equation (2.57), we obtain

N+1∑

k=1

[
4

h2
ck l

′′

k (x) +
12

h
cj l

′

k(x) + 9 ck lk(x)

]

= e−1.5h(x+1). (2.69)
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x y ya

0 0 0.000

0.1750 0.1126 0.0112

0.3500 0.1439 0.0188

0.5250 0.1372 0.0231

0.7000 0.1157 0.0245

0.8750 0.0911 0.0235

1.0500 0.0686 0.0205

1.2250 0.0501 0.0160

1.4000 0.0357 0.0102

1.5750 0.0250 0.0037

1.7500 0.0172 −0.0032

1.9250 0.0117 −0.0100

2.1000 0.0079 −0.0163

2.2750 0.0053 −0.0218

2.4500 0.0025 −0.0259

2.6250 0.0023 −0.0283

2.8000 0.00015 −0.0285

2.9750 0.00010 −0.0262

3.1500 0.0006 −0.0209

3.3250 0.0004 −0.0122

3.5000 0.0001 0.0003

Total error ⇒ 0.7472

Table 2.4: Numerical comparison for Example 2.5.2 for order N = 3, with colloca-

tion points chosen as roots of T2.
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Figure 2.13: Error for Example 2.5.2 for order N = 3, with collocation points

chosen as roots T2.

Hence we have the matrix vector form Ac = b, where A = aij is a (N +1)× (N +1)

matrix with

a1j = lj(x1), (2.70)

ai ,j =
4

h2
l
′′

j (xc
i ) +

12

h
l
′

j (x
c
i ) + 9lj(x

c
i ), (2.71)

aN+1,j = lj(xN+1), (2.72)

for j = 1, 2, ..., N + 1, i = 2, 3, ..., N, b is a column vector of dimension N + 1 with

b1 = 0, (2.73)

bj = e−1.5h(xc
j +1); j = 2, ..., N, (2.74)

bN+1 = 9.625e−10.5, (2.75)

and

c = cj ; j = 1, 2, ..., N + 1. (2.76)

A MATLAB code to this system is given in Appendix B .

The plots of the solutions and the errors for orders N = 4, 6, 8, 10 are given in
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Figures 2.14 and 2.15 respectively. In Figure 2.16 we present the plot for N = 20.

Table 2.5 summarizes the total errors for different orders.

From Figure 2.14, we observe that as we increase the order of the polynomial, the

approximate solution gradually converges to the exact solution and the error is

simultaneously lessened as shown in Figure 2.15 and Table 2.5. However notice

from Figures 2.14 and 2.15 that the solution obtained from order N = 10 is not

a very good approximation. Due to truncation error, the total error levels off at

order N = 20 with value 1.4216e − 005. This is one limitation of higher order

polynomials and we will have to consider other means if we want to obtain more

accurate results.

Secondly if we choose the roots of the Chebyshev polynomial of the second kind,

UN−1 as the collocation points, then we obtain the plots of the solutions and the

corresponding errors for orders N = 4, 6, 8, 10 as shown in Figures 2.17 and 2.18

respectively. The error levels off at order N = 21 with value 1.4216e − 005.

Thirdly, we choose the roots of the Legendre polynomials PN−1 as the collocation

points. The plots of the solution and errors are presented in Figures 2.19 and 2.20

respectively.

Notice from Table 2.5 that the Legendre polynomial gives better results for higher

orders (orders 10 and above). The error levels off at order N = 17 while the error

from the Chebyshev polynomials of the first and second kind levels off at order

N = 20 with value 1.4216e − 005. From the error plots in Figures 2.15, 2.18 and

2.20 , we notice that the approximate solution is far better in the region x ≥ 2

where the solution flattens as compared to the region near the hump or peak.

Remark 2.5.3 Notice from Examples 2.5.1 and 2.5.2 that higher order polynomi-

als are limited in their accuracy since the total error levels off for higher orders.

Thus it is advisable to devise other means to obtain better results.
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Figure 2.14: Comparison of y and ya for Example 2.5.2 for orders N = 4, 6, 8, 10,

with collocation points chosen as the roots of TN−1.
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Figure 2.15: Errors for Example 2.5.2 for orders N = 4, 6, 8, 10, with collocation

points chosen as the roots of TN−1.
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Figure 2.16: Error for order N = 20 for Example 2.5.2, with collocation points

chosen as the roots of T19.
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Figure 2.17: Comparison of y and ya for Example 2.5.2 for orders N = 4, 6, 8, 10

with collocation points chosen as the roots of UN−1.
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Figure 2.18: Errors for Example 2.5.2 for orders N = 4, 6, 8, 10, with collocation

points chosen as the roots of UN−1.
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Figure 2.19: Comparison of y and ya for Example 2.5.2 for orders N = 4, 6, 8, 10,

with collocation points chosen as the roots of PN−1.
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Figure 2.20: Errors for Example 2.5.2 for Orders N = 4, 6, 8, 10, with collocation

points chosen as the roots of PN−1.

Order N TN−1 UN−1 PN−1

3 0.2504 0.2735 0.2678

4 0.1982 0.2418 0.2208

6 0.1479 0.1656 0.1587

8 0.1144 0.0915 0.0892

9 0.0252 0.0082 0.0035

10 0.0385 0.1393 0.2776

13 1.2784e − 004 1.5388e − 004 1.7086e − 005

17 1.4114e − 005 1.4404e − 005 1.4216e − 005

20 1.4216e − 005 1.4215e − 005 1.4216e − 005

21 1.4216e − 005 1.4216e − 005 1.4216e − 005

Table 2.5: Numerical comparison of the total errors for Example 2.5.2 for differ-

ent orders, with collocation points chosen as the roots of TN−1, UN−1 and PN−1

respectively.



Chapter 3

Application of Orthogonal

Collocation on Finite Elements

(OCFE) to Solving ODE’s

3.1 Introduction

The orthogonal collocation method exhibits slow convergence in the case of stiff

systems of boundary value problems [4, 65]. To circumvent this problem, we com-

bine the features of the collocation method and the finite element method which

gives rise to the orthogonal collocation on finite elements method, hence forth

simply referred to as OCFE.

The finite element method is a widely used general purpose technique for the nu-

merical solution of differential equations in engineering and applied mathematics.

It involves a mesh discretization of a continuous domain into a set of discrete sub-

domains, called elements [35, 50]. The finite element method originated from the

need for solving complex elasticity and structural analysis problems in civil and

aeronautical engineering [6, 58, 75]. It was first proposed by Alexander Hrennikoff

57
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(1941) and Richard Courant (1942) [14, 13]. Since then it has found its uses in

fields of engineering and applied mathematics [27, 37, 56]. The accuracy, compat-

ibility and easy adaptability of the finite element method makes it convenient to

apply along with the collocation method [53, 61, 66].

OCFE was first proposed by Paterson and Cresswell [53]. Thereafter, Carey and

Finlayson [11] used it to solve problems arising from chemistry. Many other in-

vestigators have used this method to solve several problems [4, 38]. The OCFE is

particularly useful in the field of chemical engineering. In the case of orthogonal

collocation, when the reaction rate is very high compared to the diffusion rate, the

concentration profile of the chemical is very sharp, hence a high order polynomial

will be required to achieve a reasonable accuracy [45, 62, 67]. This is not always

advisable as discussed in chapter 2 (see Remark 2.5.3).

3.2 Methodology

Assume that a second order differential equation in the dependent variable y and

independent variable x is defined on the domain [a, b], with two known boundary

conditions. This domain [a, b] is divided into Ne smaller sub-domains of finite

length called elements, then the orthogonal collocation method is applied within

each element. The solution is hence a function of the number of elements Ne and

will sometimes be denoted by yNe
for equally spaced elements and ȳNe

for unequally

spaced elements in order to avoid confusion.

Let xi , i = 1, 2, ..., Ne + 1 denote the coordinates of the element boundaries and

hi = xi+1−xi , for i = 1, 2, ..., Ne denote the length of the ith element. Each element

[xi , xi+1] is mapped to the interval [a, b] by using the linear transformation

ui =
b − a

hi

(x − xi) + a. (3.1)

Hence forth we shall simply use the variable u to denote this transformation and

bear in mind that u is a function of the element boundaries. As x varies from xi
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to xi+1, u varies from a to b. This notation is illustrated in Figure 3.1.

x1 x2 xi xi+1 xi+2 xNe
xNe+1

a b
hi

︷︸︸︷

Figure 3.1: Arrangement of sub-domains in the OCFE method.

Let y i(u) denote the trial solution in the ith element, then we can write

y i(u) =
N+1∑

k=1

c i
k lk(u), (3.2)

where N denotes the degree of the polynomial solution and

lk(u) =

N+1∏

j=1
j 6=k

u − uj

uk − uj

(3.3)

is the Lagrange polynomial of degree k in the variable u. Here uj , j = 1, 2, ..., N +1

are the interpolation points with u1 = a, uN+1 = b and uj , j = 2, 3, ..., N are

the roots of TN−1 shifted to the interval [a, b]. We note that the first and the

last interpolation points coincide with the left and right boundaries respectively.

There are therefore a total of Ne(N + 1) unknown coefficients c i
k , i = 1, 2, ..., Ne,

k = 1, 2, ..., N + 1 to solve for.

We shall satisfy the boundary conditions and for a smooth solution require that

the solution and its first derivative be continuous at the boundary of the elements

xi , i = 2, 3, ..., Ne . There are a total of 2(Ne − 1) + 2 = 2Ne conditions. We require

Ne(N + 1)− 2Ne = Ne(N − 1) additional conditions to solve the problem uniquely.

This is achieved by choosing N−1 collocation points per element and satisfying the

residual here, giving a total of Ne(N − 1) additional conditions. These collocation

points will be denoted by uc
i , i = 2, 3, ..., N. This notation is illustrated in Figure

3.2.

If we require the approximate solution of the differential equation at a point x ∈
[a, b], we first check in which element x lies. If x belongs to the ith element, that is
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u1 = a uc
2 uc

3 uc
i uc

i+1
uc

N
uN+1 = b

xi xi+1

Figure 3.2: Arrangement of the collocation points in the ith element [xi , xi+1].

x ∈ [xi , xi+1], then we evaluate u from equation (3.1) and recover the approximate

solution from equation (3.2).

3.2.1 Distribution of Elements

Identifying how to distribute elements within any given domain [a, b] is a com-

plicated step that has been quite challenging in the method of finite elements.

Investigators like Carey and Finlayson [11], Paterson and Cresswell [53], Liu and

Jacobsen [37], Arora, Dhaliwal and Kukreja [3] have given several formulas for

placing elements. However, we will stick to the convention given by Finlayson [22].

He proposed that better results can be obtained in the case of unequal element

spacing than the equal element spacing. For the unequal element spacing, we will

place smaller elements in regions where the solution is steep and larger elements

where the solution varies less.

3.3 Numerical Example

Example 3.3.1 Consider the differential equation (2.57) in Example 2.5.2, chap-

ter 2. We are particularly interested in overcoming the poor approximation obtained

in the region close to the hump of the exact solution (see Figure 2.12) so we solve

this problem using the OCFE method.
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3.3.1 Two Finite Elements for Example 3.3.1

We use two elements (Ne = 2) with sub-domains [x1, x2] and [x2, x3]. Each element

is then mapped to the domain [−1, 1] using the transformation

u =
2

hi

(x − xi) − 1, i = 1, 2, (3.4)

which is obtained from equation (3.1). Using a polynomial of order N = 3 for the

trial solution, we write

y i(u) =
4∑

k=1

c i
k lk(u), i = 1, 2. (3.5)

The approximate solution in equation (3.5) satisfies the differential equation

16

h2h2
i

d2y i

du2
+

24

hhi

dy i

du
+ 9y = e−1.5h[hi (u+1)/2+xi +1], i = 1, 2, (3.6)

where h = 3.5 is the length of the original domain [0, 3.5]. Since we require two

collocation points per element, they will be chosen as the roots of an orthogonal

polynomial of order two, namely uc
2 and uc

3 . Together with the boundary points

u1 = −1 and u4 = 1, we have four nodes: u1 = −1, uc
2 , uc

3 and u4 = 1.

Substituting the approximate solution in equation (3.5) into the differential equa-

tion (3.6) gives the residual in the ith element

R i(u) =

4∑

k=1

[
16

h2h2
i

c i
k l

′′

k (u) +
24

hhi

c i
k l

′

k(u) + 9c i
k lk(u)

]

− e−1.5h[hi (u+1)/2+xi +1], i = 1, 2.

(3.7)

We satisfy the residual equation for each element at the collocation points uc
2 and

uc
3 to obtain

R i(uc
j ) = 0, i = 1, 2. j = 2, 3. (3.8)

The left boundary condition falls in element one, hence y 1(x1) = y 1(u1) = 0. This

yields

c1
1 = 0. (3.9)
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Similarly the right boundary condition falls in element two, hence y 2(x3) = y 2(u4) =

9.625e−10.5. This yields

c2
4 = 9.625e−10.5. (3.10)

Since we have a total of eight unknowns, we need two more additional equations

for a unique solution. These are obtained from the continuity conditions

y 1(x2) = y 2(x2) and dy1

dx
|x2

= dy2

dx
|x2

which are equivalent to y 1(u4) = y 2(u1) and

2
h1

dy1

du
|u4

= 2
h2

dy2

du
|u1

in the variable u. The continuity of the functions yields

4∑

k=1

c1
k lk(u4) =

4∑

k=1

c2
k lk(u1), (3.11)

which simplifies to

c1
4 − c2

1 = 0. (3.12)

and the continuity of the derivatives yields

4∑

k=1

[

c1
k

l
′

k(u4)

h1
− c2

k

l
′

k(u1)

h2

]

= 0. (3.13)

Thus we have a system of equations which we choose to arrange in the order, (3.9);

(3.8), for i = 1, j = 1, 2; (3.12); (3.13); (3.8), for i = 2, j = 1, 2 and (3.10). This

gives a matrix vector form Ac = b which is depicted in the system of equations

(3.14).























1 0 0 0 0 0 0 0

a21 a22 a23 a24 0 0 0 0

a31 a32 a33 a34 0 0 0 0

0 0 0 1 −1 0 0 0

l
′

1(u4)

h1

l
′

2(u4)

h1

l
′

3(u4)

h1

l
′

4(u4)

h1

−l
′

1(u1)

h2

−l
′

2(u1)

h2

−l
′

3(u1)

h2

−l
′

4(u1)

h2

0 0 0 0 a65 a66 a67 a68

0 0 0 0 a75 a76 a77 a78

0 0 0 0 0 0 0 1













































c1
1

c1
2

c1
3

c1
4

c2
1

c2
2

c2
3

c2
4























=























0

b2

b3

0

0

b6

b7

9.625e−10.5























(3.14)
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where

aij =
16

h2h2
1

l
′′

j (uc
i ) +

24

hh1

l
′

j (u
c
i ) + 9lj(u

c
i ), (3.15)

ai+4 j+4 =
16

h2h2
2

l
′′

j (uc
i ) +

24

hh2
l
′

j (u
c
i ) + 9lj(u

c
i ), (3.16)

and

bi = e−1.5h[h1(uc
i
+1)/2+x1+1], (3.17)

bi+4 = e−1.5h[h2(u
c
i +1)/2+x2+1], (3.18)

for j = 1, 2, 3, 4 and i = 2, 3.

Firstly, we use two equally spaced elements with sub-domains [−1, 0] and [0, 1].

The interpolation points are u1 = −1, u2 = −1/
√

2, u3 = 1/
√

2 and u4 = 1. Where

u2 and u3 are chosen as the roots of T2. The collocation points uc
2 = −1/

√
3 and

uc
3 = 1/

√
3 are chosen as the roots of the Legendre polynomial, P2 since they gave

good results in chapter 2. The solution y2 is given in Figure 3.3 and the error is

shown in Figure 3.4.

We observe from Figure 3.3 that the approximate solution y2 is poor in the interval

(0, 1). Hence we consider the case of two unequally spaced elements [0, 1] and

[1, 3.5] which corresponds to [−1,−0.4286] and [−0.4286, 1] on the domain [−1, 1]

and denote the solution by ȳ2. The solution and error are also presented in Figures

3.3 and 3.4 respectively.

A set of discrete numerical results is summarized in Table 3.1 for y2 and ȳ2. Com-

paring the the total error for y2 and ȳ2 from Table 3.1, we note a reduction of

17.24% for the latter case as compared to the former. Hence it is obvious from

our analysis that properly chosen unequal element spacing gives superior results

as proposed by Finlayson [22].
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Figure 3.3: Comparison of y , y2 and ȳ2.
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Figure 3.4: Errors e2 = y − y2 and ē2 = y − ȳ2.
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x y y2 ȳ2

0 0 −0.0000 0

0.1750 0.1126 0.0138 0.0288

0.3500 0.1439 0.0232 0.0443

0.5250 0.1372 0.0287 0.0494

0.7000 0.1157 0.0310 0.0473

0.8750 0.0911 0.0307 0.0411

1.0500 0.0686 0.0283 0.0336

1.2250 0.0501 0.0246 0.0269

1.4000 0.0357 0.0200 0.0210

1.5750 0.0250 0.0153 0.0159

1.7500 0.0172 0.0111 0.0115

1.9250 0.0117 0.0077 0.0079

2.1000 0.0079 0.0052 0.0049

2.2750 0.0053 0.0035 0.0025

2.4500 0.0035 0.0025 0.0007

2.6250 0.0023 0.0018 −0.0005

2.8000 0.0015 0.0015 −0.0012

2.9750 0.0010 0.0013 −0.0015

3.1500 0.0006 0.0011 −0.0013

3.3250 0.0004 0.0008 −0.0007

3.5000 0.0003 0.0003 0.0003

Total error ⇒ 0.2227 0.1843

Table 3.1: Numerical comparison of y , y2 and ȳ2 at different values of x .
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3.3.2 Generalization of Example 3.3.1

We can improve the accuracy of the result by using more elements (Ne elements).

In general substituting the approximate solution of the form equation (3.5) into the

differential equation (3.6) for i = 1, 2, ..., Ne gives the residual in the ith element,

thus the residual equation in equation (3.7) holds for i = 1, 2, ..., Ne. We satisfy

the residual equation for each element at the collocation points uc
2 and uc

3 , thus

equation (3.8) holds for i = 1, 2, ..., Ne.

The left boundary condition will always lie in the first element hence equation

(3.9) holds. The right boundary conditions falls in the last element Ne , hence

yNe(u4) = 9.625e−10.5. This yields

cNe

4 = 9.625e−10.5. (3.19)

The continuity conditions at xi+1 are y i(u4) = y i+1(u1) and 2
hi

dy i

du
|u4

= 2
hi+1

dy i+1

du
|u1

in the variable u. The continuity of the function yields

4∑

k=1

c i
k lk(u4) =

4∑

k=1

c i+1
k lk(u1), i = 1, 2, ..., Ne − 1 (3.20)

which simplifies to

c i
4 − c i+1

1 = 0, (3.21)

and the continuity of the derivative yields

4∑

k=1

[

c i
k

l
′

k(u4)

hi

− c i+1
k

l
′

k(u1)

hi+1

]

= 0, i = 1, 2, ..., Ne − 1. (3.22)

Thus we have a system of equations which gives the matrix vector form Ac = b

having a similar form as the one given in the system of equation (3.14) where A

is a 4Ne × 4Ne matrix and b and c are 4Ne × 1 column vectors. A MATLAB code

for this system is given in Appendix C .

Of particular interest is the solution y3 for three equally spaced elements and ȳ3

for the corresponding unequally spaced elements. The solution y3 for three equally
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spaced sub-domains [−1,−1/3], [−1/3, 1/3] and [1/3, 1] is given in Figure 3.5 and

the error is shown in Figure 3.6.

The negative slope near the origin for y3 is a cause for concern (see Figure 3.5). In

addition, the function is negative on (0, 0.5) and concave up. Therefore we consider

using three unequally spaced sub-domains, namely [0, 0.1], [0.1, 1.5], and [1.5, 3.5]

which corresponds to [−1.0000,−0.9429], [−0.9429,−0.3143], and [−0.3143, 1.0000]

on the domain [−1, 1]. As observed from Figure 3.5, we obtain a better approxi-

mation ȳ3.

A set of discrete numerical results for y3 and ȳ3 is summarized in Table 3.2, from

which we deduce that the error is reduced by 28.92% when we use unequally

spaced elements. Hence it is obvious from our analysis that properly chosen un-

equal element spacing gives superior results as proposed by Finlayson [22]. The

corresponding error plot is as shown in Figure 3.6.

As we increase the number of elements, the approximate solution tends to converge

to the exact solution as shown in Figure 3.7 for y6 and ȳ6. The corresponding error

plots are given in Figure 3.8. The error plots for y18, y21, y24 and y27 for more

elements are given in Figure 3.9. Observe the gradual decrease in the error as

we increase the number of elements. If we use Ne = 75 elements, the total error

levels off at 2.7509e − 007 which is better than the corresponding total error of

1.4216e − 005 obtained in chapter 2, Example 2.5.2 (see Table 2.5).

We can optimize the OCFE method by concentrating elements in areas with steep

gradients [11]. Table 3.3 gives a comparison of the total error for different number

of equal and unequally spaced elements Ne .
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Figure 3.5: Comparison of y , y3 and ȳ3.
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Section 3.3. Numerical Example Page 69

x y y3 ȳ3

0 0 −0.0000 0

0.1750 0.1126 −0.0194 0.0239

0.3500 0.1439 −0.0166 0.0378

0.5250 0.1372 −0.0004 0.0427

0.7000 0.1157 0.0201 0.0412

0.8750 0.0911 0.0361 0.0357

1.0500 0.0686 0.0385 0.0290

1.2250 0.0501 0.0207 0.0234

1.4000 0.0357 0.0059 0.0191

1.5750 0.0250 0.0000 0.0151

1.7500 0.0172 −0.0000 0.0115

1.9250 0.0117 0.0027 0.0083

2.1000 0.0079 0.0052 0.0055

2.2750 0.0053 0.0044 0.0032

2.4500 0.0035 −0.0001 0.0013

2.6250 0.0023 −0.0024 −0.0001

2.8000 0.0015 −0.0025 −0.0010

2.9750 0.0010 −0.0015 −0.0015

3.1500 0.0006 −0.0001 −0.0014

3.3250 0.0004 0.0007 −0.0009

3.5000 0.0003 0.0003 0.0003

Total Error ⇒ 0.2794 0.1986

Table 3.2: Numerical comparison of y3 and ȳ3.
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Figure 3.7: Comparison of y , y6 and ȳ6.
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i Total error for yi Total error for ȳi

2 0.2227 0.1937

3 0.2794 0.1893

15 4.7522e − 004 9.4921e − 005

18 2.6755e − 004 6.4803e − 005

21 1.5664e − 004 5.6105e − 005

24 6.8622e − 005 9.4835e − 006

27 4.3342e − 005 9.4578e − 006

30 3.0521e − 005 9.2446e − 006

75 2.7509e − 007 3.2246e − 008

Table 3.3: Total error as a function of the number of elements(i) for equal and

unequal element spacing.
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Remark 3.3.2 Notice that we have used a local numbering for the coefficients

c i
k in the ith element for i = 1, 2, ..., Ne, k = 1, 2, 3, 4, there are therefore 4Ne

unknowns. However since c i
4 = c i+1

1 , i = 1, 2, ..., Ne − 1 from equation (3.21), the

number of unknowns can be reduced to 3Ne + 1 and the solution in the ith element

written as

y i(u) =
4∑

k=1

ck+3(i−1)lk(u), i = 1, 2, ..., Ne. (3.23)

This yields a global numbering as shown in Figure 3.10. The advantage of this is

that the dimension of the matrix is reduced and so is the numerical effort for the

solution of the linear system.

G l o b a l  N u m b e r i n g

L o c a l  N u m b e r i n g

c1 c2 c3c4 c4 c5c6c7 c7c8 c9 c10 c3Ne−2 c3Ne−1 c3Ne c3Ne+1

c1
1 c1

2 c1
3c1

4 c2
1 c2

2 c2
3c

2
4 c3

1 c3
2c

3
3 c3

4 cNe

1
cNe

2 cNe

3 cNe

4

Figure 3.10: Global and local numbering of coefficients for the OCFE method.



Chapter 4

Application of Orthogonal

Collocation on Finite Elements

(OCFE) to Solving PDE’s

4.1 Introduction

Partial differential equations in engineering can be solved analytically by using

techniques like the separation of variables and the Laplace transform. However

some of these techniques have limited applications. In particular the Laplace

transform which is a useful tool for solving partial differential equations in chemical

engineering could involve the solution of complicated and transcendental equations

which are time consuming [32, 73].

The solutions to these partial differential equations can be approximated by using

the method of OCFE. Here, the process is more complicated than OCFE applied

to ODE’s since it gives rise to a combination of ordinary differential equations

and algebraic equations. Hence we obtain a set of coupled differential algebraic

equations which we call DAE’s for short [49, 54].

73
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4.2 Numerical Example

Example 4.2.1 Consider a linear diffusion convection problem with mixed bound-

ary conditions and initial condition which is encountered in different branches of

chemical engineering:

∂y(x , t)

∂t
=

1

4P

∂2y(x , t)

∂x2
− ∂y(x , t)

∂x
,

y(x , t) − 1

4P

∂y(x , t)

∂x
= 0, at x = 0, for t ≥ 0,

∂y(x , t)

∂x
= 0, at x = 1, for t ≥ 0,

y(x , 0) = 1, for all x . (4.1)

The problem is used to describe the displacement of an initial homogeneous solute

from a medium (called bed in chemistry) of finite length x (in this case x = 1) by

the introduction of a solvent. Here y represents the concentration profile of the

solute and P is a constant parameter called the Peclet number.

Equation (4.1) has been solved analytically by Brenner [9]. The solution is given

by

y(x , t) = 2eP(2x−t)

∞∑

k=1

Pλk

(λ2
k + P2 + P)(λ2

k + P2)
(λk cos 2λkx + P sin 2λkx)e−λ2

k
t/P ,

(4.2)

where λk for k = 1, 2, ... are the positive roots taken in order of increasing magni-

tude of the transcendental equation

tan 2λk =
2λkP

λ2
k − P2

. (4.3)

4.2.1 Exit Solution

Chemical engineers are particularly interested in the exit solution, that is

ye1(1, t) = eP(2−t)
∞∑

k=1

e−λ2
k
t/P λk sin 2λk

λ2
k + P2 + P

, (4.4)
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of the solute leaving the bed which is obtained from equation (4.2) by setting

x = 1. However, the exit solution given in equation (4.4) converges too slowly to

be of much practical use for large P and/or small t. Hence Brenner [9] derived

an asymptotic solution using Laplace transforms for large P and/or small t. This

asymptotic concentration is given by

y(x , t) = 1 − 0.5 erfc(z1) − (4Pt/π)0.5
e−P(x−t)2/t

+ 0.5 [1 + 4P(x + t)] e4Pxerfc(z2)

− 2 (4Pt/π)0.5 [1 + P(2 − x + t)]e4P−P(2−x+t)2

t

+ 2P
[
2(2 − x + t) + t + 2P(2 − x + t)2

]
e4Perfc(z3),

(4.5)

where

z1(x , t) = (P/t)0.5 (x − t), z2(x , t) = (P/t)0.5 (x + t), z3(x , t) = (P/t)0.5 (2− x + t)

and erfc denotes the complimentary error function defined in terms of the error

function erf, that is

erfc(z) = 1 − erf(z) =
2√
π

∫ ∞

z

e−y2

dy . (4.6)

We obtain the required exit solution by setting x = 1 in equation (4.5) and sim-

plifying, thus we have

ye2(1, t) = 1 − 0.5 erfc(z1) − (4Pt/π)0.5 [3 + 2P(1 + t)]e−P(1−t)2/t

+
(
0.5 + 2P(3 + 4t) + 4P2(1 + t)2

)
e4Perfc(z2),

(4.7)

where z1(1, t) = (P/t)0.5 (1 − t) and z2(1, t) = z3(1, t) = (P/t)0.5 (1 + t).

Here we choose to work with the original domain [0, 1]. As in the case of OCFE

applied to ODEs, the domain [0, 1] is split into Ne elements. Each element is then

mapped to the domain [0, 1] using the transformation u = x−xi

hi
, where as before

hi = xi+1 − xi is the ith element width.

We obtain the approximate solution in the ith element by using a cubic Lagrange

polynomial as in chapters 3, but noting that the approximate solution is a function

of both u and t, we write

y i(u, t) =

4∑

k=1

c i
k(t)lk(u). (4.8)
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The approximate solution in equation (4.8) satisfies the partial differential equation

∂y i(u, t)

∂t
=

1

4P h2
i

∂2y i(u, t)

∂u2
− 1

hi

∂y i(u, t)

∂u
,

y 1(u, t) − 1

4P h1

∂y 1(u, t)

∂u
= 0, at u = 0, for t ≥ 0,

1

hNe

∂yNe (u, t)

∂u
= 0, at u = 1, for t ≥ 0,

y(u, 0) = 1, for all u. (4.9)

The interpolation points u2 = 1
2
(1− 1√

2
) and u3 = 1

2
(1+ 1√

2
) are chosen as the roots

of the Chebyshev polynomials T2 shifted to [0, 1]. So together with the boundary

points u1 = 0 and u4 = 1 we have four interpolation points. The collocation

points uc
2 = 1

2
(1− 1√

3
) and uc

3 = 1
2
(1 + 1√

3
) are chosen as the roots of the Legendre

polynomial P2 shifted to [0, 1].

Substituting the approximate solution in equation (4.8) into the partial differential

equation (4.9) gives the residual in the ith element, that is

R i(u) =
4∑

k=1

[

c i
k(t)l

′′

k (u)

4P h2
i

− c i
k(t)l

′

k(u)

hi

− dc
i

k(t)

dt
lk(u)

]

, i = 1, 2, ..., Ne . (4.10)

We satisfy the residual equation at the collocation points uc
j , for j = 2, 3, that is

R i(uc
j ) = 0, i = 1, 2, ..., Ne , j = 2, 3. (4.11)

The continuity of the function and its first derivative at xi+1, i = 1, 2, ..., Ne − 1

yields

4∑

k=1

[
c i
k(t)lk(u4) − c i+1

k (t)lk(u1)
]

= 0, (4.12)

4∑

k=1

[

c i
k(t)

l
′

k(u4)

hi

− c i+1
k (t)

l
′

k(u1)

hi+1

]

= 0. (4.13)

The left and right boundary conditions are given by

4∑

k=1

[

c1
k (t)lk(u1) − c1

k (t)
l
′

k(u1)

4Ph1

]

= 0, (4.14)

4∑

k=1

cNe

k (t)l
′

k(u4) = 0. (4.15)
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The system can be written in the form

M
dc

dt
= Jc, (4.16)

where M, which is called the mass matrix, is the coefficient matrix of dc
dt

. The

vector c represents the unknown entries, that is

c(t) =
[
c1
1 (t) c1

2 (t) c1
3 (t) c1

4 (t) c2
1 (t) ... cNe

4 (t)
]T

and J is the coefficient matrix of the vector c which coincides with the Jacobian

of the system given in equation (4.16). Since the mass matrix M is singular, we

obtain a differential algebraic system. There is a total of 4Ne coupled DAE’s which

we solve using MATLAB with the ode15s subroutine [64]. The code is given in

Appendix D. It should be noted that for this particular problem, we will only

consider equal element spacing. For simplicity, the approximate solution from the

OCFE method using Ne equally spaced elements will be denoted by yNe
.

To obtain the exit solution in equation (4.4) for P = 0.8, we need to find the

corresponding λk ’s which satisfy equation (4.3). Although the first six roots for

different Peclet numbers have been given by Carslaw and Jaeger [12], we will show

how more roots can be obtained. Define the function f (λ) by

f (λ) = tan 2λ− 2λP

λ2 − P2
. (4.17)

The zeros of f (λ) are the roots of equation (4.3). From a plot of f (λ), we ascertain

approximations to the zeros and these are refined by using the built in Newton

root finder fsolve in MATLAB. The code has been incorporated into the general

code in Appendix D. The values of the first 17 roots for P = 0.8 are given in

Appendix E . The error plot for y7 at x = 1 with P = 0.8 is given in Figure 4.1.

Notice from Figure 4.1 that the error for as low as 7 elements is small for P = 0.8.

Figure 4.2 gives the graphical representation of y3 at x = 1 with P = 20 and the

corresponding error plot is presented in Figure 4.3. As we increase the number of

elements, the approximate exit solution yi rapidly converges to the exit solution



Section 4.2. Numerical Example Page 78

ye2 and the error is decreased. This is clearly seen from the error plots in Figure

4.4. The error levels off at y37 with value 1.1948e − 004. A similar trend is seen

in Figure 4.5 for P = 40. Here the error levels off at y43 with value 9.8323e − 005

(see Figure 4.6).
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Figure 4.1: Error ye1 − y7 at x = 1 for P = 0.8.
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Figure 4.2: Comparison of ye2 and y3 at x = 1 for P = 20.
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Figure 4.3: Error ye2 − y3 at x = 1 for P = 20.
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Figure 4.4: Errors ei = ye2 − yi at x = 1 for P = 20 .
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Figure 4.5: Errors ei = ye2 − yi at x = 1 for P = 40 .
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Figure 4.6: Error e43 = ye43 − y43 at x = 1 for P = 40 .

4.2.2 General Solution

For the purpose of mathematical interest, let us investigate the behavior of the

general solution given in equation (4.2) at particular times in space.

The plots of the solutions and the corresponding errors for y2, y3 and y4 at t =

0.001, t = 1 and t = 2 are presented in Figures 4.7 to 4.12. Notice from Figure 4.7

that at t = 0.001 which is close to t = 0, the exact solution deviates very slightly

from y = 1 which is in agreement with the initial condition given in equation

(4.1). As we increase the number of elements, the approximate solution yi tends

to converge to the exact solution y and the error is decreased as expected (see

Figures 4.13 and 4.14 for y50 at t = 0.001). A similar trend occurs for t = 1 and

t = 2 as evident from Figures 4.15 and 4.16 respectively.
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Figure 4.7: Comparison of y with yi at t = 0.001 for P = 40.
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Figure 4.8: Errors ei = y − yi at t = 0.001 for P = 40 .



Section 4.2. Numerical Example Page 83

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Distance, x

S
ol

ut
io

n

 y 

 y
2
 

 y
3
 

 y
4
 

Figure 4.9: Comparison of y with yi at t = 1 for P = 40.
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Figure 4.10: Errors ei = y − yi at t = 1 for P = 40.
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Figure 4.11: Comparison of y with yi at t = 2 for P = 40 .
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Figure 4.12: Errors ei = y − yi at t = 2 for P = 40.
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Figure 4.13: Comparison of y and y50 at t = 0.001 for P = 40.
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Figure 4.14: Error y − y50 at t = 0.001 for P = 40.
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Figure 4.15: Error y − y50 at t = 1 for P = 40.
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Figure 4.16: Error y − y50 at t = 2 for P = 40.
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4.2.3 Limiting Cases

It is of mathematical and chemical importance to examine the solution profile of

the diffusion equation given in (4.1) for extreme values of the parameters P, x and

t. We now discuss three limiting cases.

Perfect Mixing P → 0

When the Peclet number approaches zero, the leading term e−λ2
1t/P in the infinite

summation in equation (4.4) dominates the other terms because of its exponential

nature. Notice from equation (4.3) that as P tends to zero (P → 0), tan 2λ1

becomes small and using tan 2λ1 ≈ 2λ1, equation (4.3) reduces to

2λ1 ≈
2λ1P

λ2
1 − P2

, (4.18)

and it is obvious from equation (4.18) that as P → 0, λ1 ≈
√

P. In this limit,

the exit solution given in equation (4.4) reduces to e−t . Thus the solution takes

the shape of an exponential graph for P small. This is depicted in Figure 4.17 for

P = 1.0 × 10−5. This is called perfect mixing in chemistry. That is, the solvent

introduced into the bed mixes with the content of the bed and an equal volume of

liquid is displaced from the bed [9].

Perfect Displacement P → ∞ and or t → 0

Consider the asymptotic solution given in equation (4.5). As P → ∞, both z2 and

z3 → ∞ and using the fact that erfc(∞) = 0, it is only necessary to retain the first

two terms, hence

lim
P→∞

y(x , t) = 1 − 0.5 lim
P→∞

erfc((P/t)0.5(x − t)). (4.19)

From this it is clear that the solution y(x , t) depends entirely on the algebraic sign

of (x − t). Using the fact that
∫ ∞
−∞ e−y2

dy =
√
π, it is easy to show from equation
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(4.6) that erfc(−∞) = 2. Thus in the limit P → ∞, y(x , t) from equation (4.19)

satisfies

y(x , t) =







1 for x > t,

0.5 for x = t,

0 for x < t.

(4.20)

In Figure 4.18 we consider P = 1000 (large) and fix x = 0.4. The solution using

100 elements y100 is plotted as a function of time. The behaviour predicted in

equation (4.20) is obvious since for t = x = 0.4, the concentration is y ≈ 0.5 and

rises rapidly to 1 for t < 0.4 and declines sharply to 0 for t > 0.4.

Behavior as t → ∞

As t → ∞, it becomes sufficient to retain only the lead term (that is for k = 1) in

the exit solution given in equation (4.4) since the other terms vanish rapidly owing

to the exponential nature of the term e−λ2
k
t/P which approaches zero quicker for

larger λk ’s. Hence we obtain

ye1(1, t) ≈ eP(2−t)e−λ1
2t/P λ1 sin 2λ1

λ1
2 + P2 + P

, (4.21)

Using sin 2λ1 = 2λ1P

λ1
2+P2 , equation (4.21) can be written as

ye1(1, t) ≈ e−(P+λ1
2/P)t 2λ1

2Pe2P

(λ1
2 + P2 + P)(λ1

2 + P2)
, (4.22)

where λ1 = 0.791034 has been calculated (see Appendix E ). The plot of the

solution (4.22) and the OCFE solution for y100 is shown in Figure 4.19. We see a

close agreement between the solutions for large t.
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Figure 4.17: Almost perfect mixing for y7 at x = 1 for P = 1.0 × 10−5.
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Figure 4.18: Almost perfect displacement at x = 0.4 for y100 for P = 1000.
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Figure 4.19: Solution for y100 and ye1 from equation (4.22) for P = 0.8.



Chapter 5

Conclusion

5.1 Conclusion

The research done in this thesis clearly explains the orthogonal collocation method

and the orthogonal collocation on finite elements method.

Prior to the work of Villadsen and Stewart [72], the choice of the collocation

points was arbitrary. However, in the orthogonal collocation method, the zeros

of the orthogonal polynomials are chosen to be the collocation points owing to

their attractive features as discussed in section 2.2.1. Within the framework of the

method of weighted residuals, the orthogonal collocation method is well known for

its simplicity, since it avoids integration (see the Dirac delta property in equation

(1.10)), and accuracy due to the optimal choice of the collocation points (see section

1.3.4).

In this present study, we chose a Lagrange basis which has the advantage that the

approximate solution at the nodes xk , k = 1, 2, ..., N +1, are just the coefficients of

the basis polynomials given in (2.23). However, higher order Lagrange polynomials

can be expensive to evaluate and program. One could however use an orthogonal

basis which can easily be evaluated by using a three point recurrence relation of the

91
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form given in equation (2.2). In this case one loses the advantage of the Lagrange

basis.

One could also apply OCFE using a cubic Hermite polynomial basis. These basis

polynomials are automatically continuous at the element boundaries and so are

their first derivatives. This reduces the number of equations to be solved hence

reducing the computational time.

The method of OCFE which combines the features of the orthogonal collocation

method with the finite element method was found to be more numerically stable

and reliable than the orthogonal collocation method especially for problems with

steep gradients (see Example 3.3.1). The orthogonal collocation method provides

the accuracy whereas the finite element provides the stability to the numerical

results. Moreover the method of OCFE is comparable with the high-order finite

difference method in terms of the CPU time and average numerical errors. The

computational time is compensated for by the accuracy achieved by using more

elements.

For the OCFE applied to an ODE using Ne equally spaced elements, the 4Ne ×4Ne

matrix A is sparse and only involves 16 different entries to be evaluated (see rows

2, 3 and 5 of (3.14)). The sub matrix defined by rows 2 to 5 is simply repeated,

however translated to the right by an integer multiple of 4.

For the orthogonal collocation method using an order N approximation, we require

to evaluate (N − 1) × (N + 1) entries of the sub matrix defined by rows 2 to N of

A (see equation (2.71)). These corresponds to evaluating the residuals at N − 1

collocation points. This is an expensive process compared to the OCFE, moreover

the matrix is dense.

Most investigators have studied the exit solution (see equations (4.4) and (4.7))

to the diffusion convection equation given in (4.1). However the solution profile of

the exact solution given in equation (4.2) at particular time in space has only been

studied by Arora, Dhaliwal and Kukreja [4]. This thesis further expatiates on the



Section 5.1. Conclusion Page 93

solution profile of equation (4.2).

Most investigators of the orthogonal collocation method [21, 36] have solved initial

and boundary value problems using the zeros of the Jacobi polynomials. However,

in this thesis, we have explored the orthogonal collocation method and the OCFE

method with collocation points chosen as the roots of the Chebyshev polynomials

of the first and second kind and the Legendre polynomials and the results are

comparable with previous work [21]. In the course of this study, the Legendre

polynomials were found to give good results to some problems as compared to other

orthogonal polynomials used (see Examples 2.5.2). However in Example 2.5.1, the

difference in the errors are negligible. Hence one could choose the collocation

points as the roots of any of the orthogonal polynomials, unless in cases where

investigations have shown otherwise.

In the case of the OCFE method, we restricted the trial solution to lower order

polynomials (order 3 to be specific) and the results are comparable to the ones

given in previous work (see [4]).

As mentioned in section 3.2.1, the placing of the elements can be a very difficult

task. In this present study, we improved the solution obtained from equal ele-

ment spacing by concentrating smaller unequally spaced elements in regions with

steep solutions. However, one of the draw backs of this method is that one might

sometimes need to think intuitively to determine the exact points to place smaller

elements. Alternatively, one could concentrate elements in regions with steep gra-

dients by noting that the essence of all weighted residual methods is to make the

residual close to zero as much as possible. Hence we try to insert more elements

in regions with large residuals, thus forcing the residual to zero at those points

and making the solution converge faster. This implies that the residual has to be

forced to zero over each element.

Carey and Finlayson used this idea and observed that the largest residual usually

occurred at the end points of the elements since a continuity condition is imposed
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at the nodes xi (i = 2, 3, ..., Ne), rather than setting the residual to zero. Thus

they deduced that the function values at the end points of each element should be

the criteria for inserting more elements rather than considering the residual on the

whole domain which can be very cumbersome and expensive to implement. The

function values at these end points are denoted by

yNe
(xi), i ∈ I = {1, 2, ..., Ne + 1} . (5.1)

Let ǫ denote 1/100
th

of the difference between the maximum and minimum values

obtained from (5.1), that is

ǫ = 0.01(max
i∈I

yNe
(xi) − min

i∈I
yNe

(xi)). (5.2)

The absolute solution difference between consecutive end points, that is

|yNe
(xi) − yNe

(xi+1)|, i = 1, 2, ..., Ne , (5.3)

is compared with the value of ǫ obtained from equation (5.2). If

|yNe
(xi) − yNe

(xi+1)| > ǫ, i = 1, 2, ..., Ne, (5.4)

then additional elements are inserted between xi and xi+1.

Notice that all the examples we looked at in this thesis already had known exact

solutions. However in real situations, the exact solutions to differential equations

might not be readily available. In such cases, we could resort to a similar approach

given above for the placing of elements. We could also solve the problem by using

equal element spacing h and denote the solution by y 1. We could then solve the

problem using equal element spacing of 1
2
h and denote the solution by y 2. We

could then check if ‖y 2 − y 1‖∞ < ǫ for some predefined tolerance ǫ. If not we

could continue the process by halving the element spacing until the tolerance is

met. There is much investigations which has to be done in the area of placement

of elements.

There are so many other interesting aspects of orthogonal collocation which we

have not been able to investigate in this thesis. Research has shown that the finite
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element method handles partial differential equations over complex geometries and

boundaries with relative ease [17, 10, 44, 48], unlike the finite difference method

which is restricted to rectangular shapes. Thus a possible area of future research

is the application of the OCFE method to higher dimensional problems. However,

it should be noted here that the finite difference method also gives good results to

some practical problems like computational fluid dynamics. One could also inves-

tigate the application of OCFE to non-linear PDE’s as done by Ma and Guiochon

[38] and also the spline collocation method as done by several investigators like

Juha Anttila [33], Costabel, Saranen [15] and Greenwell-Yanik and Fairweather

[29]. Spectral collocation is another interesting area which can be used to solve

singular PDE’s (see the work done by Huang and Sun [31]). Collocation using

wavelet basis is another new area of research.
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Appendix A

Programme for Example 2.5.1

% Specifying the order, m of the polynomial

clear all

for m = 3:1:6

n=m-1;

nn=m+1;

h=0.001;

v=1;

v2=v*v;

p=10;

j=n:-1:1;

% Commnent the one that is not applicable

% Shifted roots of T_m-1

xin(n+1-j) = 0.5*(cos((2*j-1)*pi/(2*n))+1)

% Shifted roots of U_m-1

col(n+1-j)= 0.5*(cos((j*pi)/(n+1))+1)

% Shifted roots of P_m-1

% Replace all fact with factorial

xi=zeros(n+1,1);

if mod(n,2)==0;

for P=0:2:n;
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np1=(n-P)/2;

np2=(n+P)/2;

np3=n+P;

xi(n+1-P)=(-1)^np1*fact(np3)/(fact(np2)*fact(np1)*fact(P));

end

else

for P=1:2:n;

np1=(n-P)/2;

np2=(n+P)/2;

np3=n+P;

xi(n+1-P)=(-1)^np1*fact(np3)/(fact(np2)*fact(np1)*fact(P));

end

end

xii=xi/max(xi);

y=roots(xii);

col=sort(y)’;

col=(col+1)/2;

% Collocation points

col=[0 col 1];

% Interpolation points

xin=[0 xin 1];

x= xin;

% Boundary conditions

y1=0;ynn=1;

% Divisors of the Lagrange polynomials

for j=1:nn;

prod=1.0;

for k=1:nn;

if(k~=j);

prod=prod*(xin(j)-xin(k));

else prod=prod*1;

end
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end

d(j)=prod;

end

h=0.001;

% Evaluating the Lagrange polynomials at x

for j=1:nn;

prod=1.0;

for k=1:nn;

if(k~=j);

prod=prod.*(x-xin(k));

else prod=prod.*1;

end

end

l(:,j)=prod/d(j);

end

l

xh=x+h;

% Evaluating the derivatives of the Lagrange polynomials

for j=1:nn;

prod=1.0;

for k=1:nn;

if(k~=j);

prod=prod.*(xh-xin(k));

else prod=prod.*1;

end

end

lh(:,j)=prod/d(j);

end

xhh=x-h;

for j=1:nn;

prod=1.0;

for k=1:nn;
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if(k~=j);

prod=prod.*(xhh-xin(k));

else prod=prod.*1;

end

end

lhh(:,j)=prod/d(j);

end

dl=(lh-lhh)/(2*h);

ddl=(lh+lhh-2*l)/(h*h);

% Assigning the matrix elements

for i=2:m;

% for i= 1:nn;

for j=1:nn;

a(i,j)=ddl(i,j)+dl(i,j)-p^2*l(i,j);

end

b(i)=0;

end

b(1)=y1;

b(nn)=ynn;

b=b’;

for j=1:nn;

a(1,j)=dl(1,j);

a(nn,j)=l(nn,j);

end

c=a\b;

% Evaluating the approximate solution

f=101;

t=linspace(0,v,f)’;

size(t);

tp=2*t/v-1;

for j=1:nn;
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prod=1;

for k=1:nn;

if(k~=j);

prod=prod.*(t-xin(k));

else prod=prod.*1;

end

end

lp(:,j)=prod/d(j);

end

yaprox=lp*c;m;

% Exact solution

r=sqrt(4.*p.^2+1)./2;

yexact = (exp(1./2-t./2).*(2.*r.*cosh(r.*t)+...

sinh(r.*t)))./((2.*r.*cosh(r))+sinh(r));

% Plotting the solutions

plot(t,yexact);

hold on

plot(t,yaprox);

xlabel(’Distance, x’)

ylabel(’Solution’)

% Plotting the errors

% plot(t,(y - yapp));

clear all;

hold on

end



Appendix B

Programme for Example 2.5.2

% Specifying the order, m of the polynomial

clear all

for m = 4:2:10;

n=m-1;

nn=m+1;

h=0.001;

v=3.5;

r=101;

v2=v*v;

j=n:-1:1;

% Comment the one that is not applicable

% Roots of T_m-1

xin(n+1-j)= cos((2*j-1)*pi/(2*n));

% Roots of the U_m-1

col(n+1-j)= cos((j*pi)/(n+1));

% Roots of P_m-1

% Replace all fact with factorial

xi=zeros(n+1,1);

if mod(n,2)==0;

for p=0:2:n;
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np1=(n-p)/2;

np2=(n+p)/2;

np3=n+p;

xi(n+1-p)=(-1)^np1*fact(np3)/(fact(np2)*fact(np1)*fact(p));

end

else

for p=1:2:n;

np1=(n-p)/2;

np2=(n+p)/2;

np3=n+p;

xi(n+1-p)=(-1)^np1*fact(np3)/(fact(np2)*fact(np1)*fact(p));

end

end

xi=xi/max(xi);

y=roots(xi);

col=sort(y)’;

col=[-1 col 1];

% Interpolation points

xin =[-1 xin 1];

% The collocation points

x = col;

% Boundary conditions

y1=0;ynn =(0.5*v2+v)*exp(-3*v);

% Defining the divisors of Lagrange polynomials

for j=1:nn;

prod=1.0;

for k=1:nn;

if(k~=j);

prod=prod*(xin(j)-xin(k));

else prod=prod*1;

end

end
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d(j)=prod;

end

h=0.001;

% Evaluating the Lagrange polynomials at x

for j=1:nn;

prod=1.0;

for k=1:nn;

if(k~=j);

prod=prod.*(x-xin(k));

else prod=prod.*1;

end

end

l(:,j)=prod/d(j);

end

xh=x+h;

% Evaluating the derivatives of the Lagrange polynomials

for j=1:nn;

prod=1.0;

for k=1:nn;

if(k~=j);

prod=prod.*(xh-xin(k));

else prod=prod.*1;

end

end

lh(:,j)=prod/d(j);

end

xhh=x-h;

for j=1:nn;

prod=1.0;

for k=1:nn;

if(k~=j);

prod=prod.*(xhh-xin(k));
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else prod=prod.*1;

end

end

lhh(:,j)=prod/d(j);

end

dl=(lh-lhh)/(2*h);

ddl=(lh+lhh-2*l)/(h*h);

% Assigning the matrix elements

for i=2:m;

for j=1:nn;

a(i,j)=4*ddl(i,j)/v2+2*6*dl(i,j)/v+9*l(i,j);

end

b(i)=exp(-3*0.5*v*(x(i)+1));

end

for j=1:nn;

a(1,j)=l(1,j);

a(nn,j)=l(nn,j);

end

b(1)= y1;

b(nn)= ynn;

b=b’;

c=a\b;

% Evaluating the approximate solution

t=linspace(0,v,r)’;

tp=2*t/v-1;

for j=1:nn;

prod=1;

for k=1:nn;

if(k~=j);

prod=prod.*(tp-xin(k));

else prod=prod.*1;
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end

end

lp(:,j)=prod/d(j);

end

% Exact solution

yexact = t.*exp(-3.*t)+0.5.*t.^2.*exp(-3.*t);

yaprox=lp*c;m;

% Plotting the solutions

plot(t,yexact,’linewidth’, 2);

hold on

plot(t,yaprox,’linewidth’, 2);

xlabel(’Distance, x’)

ylabel(’Solution’)

% Ploting the error

% plot(t,(yy-yaprx))

clear all;

hold on

end



Appendix C

Programme for Example 3.3.1

clear all

% Specify the number of elements

for ne = 18:3:27;

% Initilizing the matrices

a = zeros(4*ne,4*ne);b = zeros(4*ne,1);

% Step size for the Lagrange function

h = 0.001; h1=2*h;h2=h^2;

r = 101;

% Original variable

t = linspace(0,3.5,r);

% Transformed variable

tt = (2*t/3.5)-1;

x = linspace(-1,1,ne+1);

% Step size of elements

for i = 1:ne;

H(i) = (x(i+1)-x(i));

end

% Constants

aa = 16/(3.5)^2; bb = 24/3.5; cc = 3.5/2;

% Interpolation points with internal points chosen as roots of T_2
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u1=-1;u2=-1/sqrt(2);u3=1/sqrt(2);u4 = 1;u = [u1 u2 u3 u4];

% Collocation points with internal points chosen as roots of P_2

v1=-1;v2=-1/sqrt(3);v3=1/sqrt(3);v4=1;v=[v1 v2 v3 v4];

% Defining the divisors of the Lagrange function

for i = 1:4;

prod = 1.0;

for j = 1:4;

if (i~=j)prod=prod*(u(i)-u(j));

else prod = prod*1;

end

end

d(i) = prod;

end

% The Lagrange functions

l1 = @(t)(t-u2).*(t-u3).*(t-u4)/d(1);

l2 = @(t)(t-u1).*(t-u3).*(t-u4)/d(2);

l3 = @(t)(t-u1).*(t-u2).*(t-u4)/d(3);

l4 = @(t)(t-u1).*(t-u2).*(t-u3)/d(4);

% The first derivative of the Lagrange functions

l1d = @(t)(l1(t+h)-l1(t-h))/(h1);

l2d = @(t)(l2(t+h)-l2(t-h))/(h1);

l3d = @(t)(l3(t+h)-l3(t-h))/(h1);

l4d = @(t)(l4(t+h)-l4(t-h))/(h1);

% The second derivatives of the Lagrange functions

l1dd = @(t)(l1(t+h)+l1(t-h)-2*l1(t))/(h2);

l2dd = @(t)(l2(t+h)+l2(t-h)-2*l2(t))/(h2);

l3dd = @(t)(l3(t+h)+l3(t-h)-2*l3(t))/(h2);

l4dd = @(t)(l4(t+h)+l4(t-h)-2*l4(t))/(h2);
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% Cell array for the Lagrange functions and their derivatives

l={l1 l2 l3 l4};ld={l1d l2d l3d l4d};ldd={l1dd l2dd l3dd l4dd};

l=repmat(l,1,4*ne);ld=repmat(ld,1,4*ne);ldd=repmat(ldd,1,4*ne);

% Assigning matrix elements

% Residues

for s = 1:ne;

for j = 1:4;

a(2*s,4*s-4+j)=aa/(H(s))^2*ldd{j}(v2)+ bb/H(s)*ld{j}(v2)+9*l{j}(v2);

a(2*s+1,4*s-4+j)=aa/(H(s))^2*ldd{j}(v3)+bb/H(s)*ld{j}(v3)+9*l{j}(v3);

end

end

% The boundary conditions

for s = 1:ne-1;

for j=1:4;

a(1,j) = l{j}(u1);

a(4*ne,4*ne-4+j) = l{j}(u4);

end

end

% Continuity of the elements

for s = 1:ne-1;

for j = 1:4;

a(2*ne+s+1,4*s-4+j) = l{j}(u4);

a(2*ne+s+1,4*s+j)= -(l{j}(u1));

end

end

% Continuity of the derivatives

for s = 1:ne-1;

for j=1:4;

a(2*ne+ne+s,4*s-4+j) = ld{j}(u4)/H(s);

a(2*ne+ne+s,4*s+j) = -(ld{j}(u1))/H(s+1);

end



Page 117

end

% Defining the b’s

b(4*ne) = 9.625*exp(-10.5);

for s = 1:ne;

b(2*s) = exp(-5.25*(H(s)/2*(v2+1)+ x(s)+1));

b(2*s+1) = exp(-5.25*(H(s)/2*(v3+1)+ x(s)+1)) ;

end

% Determining the coefficients

c = inv(a)*b

for s = 1:4;i = 1:ne;

C(i,s)=c(4*(i-1)+s);

end

% The approximate solution

for i = 1:ne;

for k = 1:r;

uu =((2*(tt(k)-x(i)))/(x(i+1)-x(i)))-1;

if(x(i)<=tt(k) & tt(k)<=x(i+1))j=i;

yaprx(k) = C(i,1)*l1(uu) + C(i,2)*l2(uu)+ C(i,3)*l3(uu)+ C(i,4)*l4(uu);

end

end

end

% Exact solution

y = t.*exp(-3.*t)+0.5*t.^2.*exp(-3.*t);

% Plotting the solutions

plot(t,y);

hold on

plot(t,yaprx);

xlabel(’Distance, x’)

ylabel(’Solutions’)

% Total error

[sqrt(sum((y-yaprx).^2))]
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clear all;

hold on

end



Appendix D

Programme for Example 4.2.1

clear all

% Enter the number of elements

for ne= 2:1:5;

% Initializing the matrices

M = zeros(4*ne,4*ne);

J = zeros(4*ne,4*ne)’;

% Peclet number

p = 40;

t1 = 2 ;

t2 = 1;

r = 101;

% Step size for the Lagrange function

h = 0.001;

x = linspace(0,1,ne+1);

%step size of elements

H = 1/ne;

% The interpolation points chosen as the roots of T_n-1

u1 = 0; u2 = (-1/sqrt(2)+1)/2 ;u3 = (1/sqrt(2)+1)/2;u4 = 1; u = [u1 u2 u3 u4];

% The collocation points chosen as the roots of P_n-1

v1 = 0; v2 = (-1/sqrt(3)+1)/2 ;v3 = (1/sqrt(3)+1)/2;v4 = 1; v = [v1 v2 v3 v4];
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% The divisors of the Lagrange function

for i = 1:4;

prod = 1.0;

for j = 1:4;

if (i~=j)prod = prod*(u(i)-u(j));

else prod=prod*1;

end

end

d(i)=prod;

end

% The lagrange functions

l1 = @(t)(t-u2).*(t-u3).*(t-u4)/d(1);

l2 = @(t)(t-u1).*(t-u3).*(t-u4)/d(2);

l3 = @(t)(t-u1).*(t-u2).*(t-u4)/d(3);

l4 = @(t)(t-u1).*(t-u2).*(t-u3)/d(4);

% The first derivative of the Lagrange functions

l1d = @(t)(l1(t+h)-l1(t-h))/(2*h);

l2d = @(t)(l2(t+h)-l2(t-h))/(2*h);

l3d = @(t)(l3(t+h)-l3(t-h))/(2*h);

l4d = @(t)(l4(t+h)-l4(t-h))/(2*h);

% The second derivatives of the Lagrange functions

l1dd = @(t)(l1(t+h)+l1(t-h)-2*l1(t))/(h^2);

l2dd = @(t)(l2(t+h)+l2(t-h)-2*l2(t))/(h^2);

l3dd = @(t)(l3(t+h)+l3(t-h)-2*l3(t))/(h^2);

l4dd = @(t)(l4(t+h)+l4(t-h)-2*l4(t))/(h^2);

% Cell array for the Lagrange functions and their derivatives

l = {l1 l2 l3 l4};ld = {l1d l2d l3d l4d};ldd = {l1dd l2dd l3dd l4dd};

l = repmat(l,1,4*ne);ld = repmat(ld,1,4*ne);ldd = repmat(ldd,1,4*ne);
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% Assigning matrix elements

% Defining the mass matrix for the DAE

for s = 1:ne;

for j = (4*s)-3:4*s;

M((2*s),j) = l{j}(v2);

M(2*s+1,j) = l{j}(v3);

end

end

% Defining the Jacobian matrix

% The residual entries

for s=1:ne;

for j=1:4;

J(2*s,4*s-4+j) = (ldd{j}(v2)/(H^2*4*p)) -(ld{j}(v2)/H);

J(2*s+1,4*s-4+j) =(ldd{j}(v3)/(H^2*4*p)) -(ld{j}(v3)/H);

end

end

% Boundary conditions

% The left bc and right bc

for s = 1:ne-1;

for j = 1:4;

J(1,j) = -l{j}(u1)+ (ld{j}(u1))/(4*p*H);

J(4*ne,4*ne-4+j) = -(ld{j}(u4))/H;

end

end

% Continuity of the elements

for s=1:ne-1;

for j=1:4;

J(2*ne+s+1,4*s-4+j) = -l{j}(u4);

J(2*ne+s+1,4*s+j) = l{j}(u1);

end
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end

% Continuity of the derivatives

for s=1:ne-1;

for j=1:4;

J(2*ne+ne+s,4*s-4+j) = -ld{j}(u4)/H;

J(2*ne+ne+s,4*s+j)= ld{j}(u1)/H;

end

end

% Solving the DAE

tspan =linspace(0.01,t1,r);tspan = tspan’;

c0 = ones(4*ne,1);

options = odeset(’Mass’,M,’Jacobian’,J);

f = @(t,c) J*c;

sol = ode15s(f,[0 t1],c0,options);

% Uncommnet this to obtain the exit solution at x = 1

% yaprox = deval(sol,[0, 2],4*ne)

c = deval(sol,[t2],[1:4*ne]);

for i=1:ne;

for j = 1:4;

C(i,j) = c(4*(i-1)+j);

end

end

tt = linspace(0,1,r);

for i = 1:ne;

for k = 1:r;

uu =(tt(k)-x(i))/(x(i+1)-x(i));

if(x(i)<=tt(k) & tt(k)<=x(i+1))j=i;

yaprox(k) = C(i,1)*l1(uu)+C(i,2)*l2(uu)+C(i,3)*l3(uu)+C(i,4)*l4(uu);

end

end
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end

% The exact solution

if(p>1);

% Uncomment this to get the exit solution at x = 1

% x = 1;

% The solution at different values of t

t = t2;

x = tt;

z1=(p./t).^(0.5).*(x-t);

z2=(p./t).^(0.5).*(x+t);

z3 = (p./t).^0.5.* (2-x+t);

% The exact solution for large p’s

yexit = 1-0.5.*erfc(z1)-(4*p.*t./pi).^(0.5).* exp(-p.*(x-t).^2./t)+...

(0.5.* (1 + 4.*p.*(x+t))).*exp(4.*p.*x).*erfc(z2)...

-2.*( 4.*p.*t./pi).^0.5.*(1+p.*(2-x+t)).*exp(4.*p-(p.*(2-x+t).^2)./t)+...

(2.*p.* (2.*(2-x+t) + t + 2.*p.*(2-x+t).^2).*exp(4.*p)).* erfc(z3);

else

% Calculating the exact solution for small p’s

% Finding the roots x1 in the exact solution for small p’s

g = @(x1) tan(2*x1)-(2*x1*p)./(x1.^2-p^2);

% Initial guess

x1(1) = fsolve(g,(pi/4 + 0.8)/2);

% Finding the subsequent roots

for k=0:15

x1(k+2)=fsolve(g,2*(k+1)*pi/4);

end

L= [x1’];

for i = 1:length(t);

sum=0;

for k = 1:length(L);

sum = sum+L(k)*sin(2*L(k))/(L(k)^2+p^2+p)*exp(-L(k)^2*t(i)/p);

end
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% Exact solution for small p’s

yexit(i)= exp(p*(2-t(i)))*sum;

end

end

% if p<=1

% yexit = yexit’;

% end

% Ploting the approximate solutions

% Uncomment this to plot the exit solution against time

% tt = t

% plot(x,yexit);

% hold on

% plot(x,yaprox)

% xlabel(’Distance, x’)

% ylabel(’Solution’)

% Plotting the error

plot(tt,yexit-yaprox,’-’)

xlabel(’Distance, x’)

ylabel(’Error’)

% Total error

[sqrt(sum((yexit-yaprox).^2))]

clear all;

hold on

end



Appendix E

First 17 Roots of (4.17), P = 0.8.

0.79103365241119

1.95857472200193

3.37437573129271

4.87504049558401

6.40739819058517

7.95422009780640

9.50871385303978

11.06773107291779

12.62962923880507

14.19347132241174

15.75868538705734

17.32490312439622

18.89187688116745

20.45943410516168

22.02745093960250

23.59583620712632

25.16452131511047
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