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Abstract 

The past few years have witnessed a growth in the study of the long-time behaviour 

of physical, biological and economic systems using measure-theoretic and probabilis­

tic methods. In this dissertation we present a study of the evolution of dynamical 

systems that display various types of irregular behaviour for large times. 

Large systems, containing many elements, like e.g. bacteria populations or ensembles 

of gas particles, are very difficult to analyse and contain elements of uncertainty. 

Also, in general, it is not necessary to know the evolution of each bacteria or each 

gas particle. Therefore we replace the "pointwise" description of the evolution of 

the system with that of the evolution of suitable averages of the population like e.g. 

the gas or the bacteria spatial density. In particular cases, when the quantity in the 

evolution that we analyse has the probabilistic interpretation, say, the probability 

of finding the particle in certain state at certain time, we will be talking about the 

evolution of (probability) densities. 

We begin with the establishment of results for discrete time systems and this is 

later followed with analogous results for continuous time systems. We observe that 

in many cases the system has two important properties: at each step it is determined 

by a non-negative function (for example the spatial density or the probability den­

sity) and the overall quantity of the elements remains preserved. Because of these 

properties the most suitable framework to investigate such systems is the theory of 

Markov operators. 

We shall discuss three levels of "chaotic" behaviour that are known as ergodicity, 

mixing and exactness. They can be described as follows: ergodicity means that the 

only invariant sets are trivial, mixing means that for any set A the sequence of sets 

s-n(A) becomes, asymptotically, independent of any other set B, and exactness 



implies that if we start with any set of positive measure, then, after a long time the 

points of this set will spread and completely fill the state space. 

In this dissertation we describe an application of two operators related to the gen­

erating Markov operator to study and characterize the abovementioned properties 

of the evolution system. 

However, a system may also display regular behaviour. We refer to this as the 

asymptotic stability of the Markov operator generating this system and we provide 

some criteria characterizing this property. 

Finally, we demonstrate the use of the above theory by applying it to a system that 

is modeled by the linear Boltzmann equation. 
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1 Introduction 

"Traditionally scientists have looked for the simplest world around us. Now, math­

ematics and computer power have produced a theory that helps researchers to un­

derstand the complexities of nature. The theory of chaos touches all disciplines." -

Ian Percival (Hall 1992) 

The field of dynamical systems and especially the study of chaotic systems has 

emerged as one of the important breakthroughs in recent science. Chaotic dynam­

ics has been hailed as the third great scientific revolution in physics this century, 

comparable to relativity and quantum mechanics (Smith 1998). 

A dynamical system is a system which changes over time: for example the planets 

in motion, a convecting fluid , a continuous chemical reaction etc. There are regular 

changes and chaotic ones. The entity that changes is some variable, or a set of 

variables, which determines the state of the system. The basic goal of the theory of 

dynamical systems is to understand the eventual or asymptotic behaviour of a dis­

crete or continuous process. If the process is a discrete process such as the iteration 

of a function, the theory hopes to understand the eventual behaviour of the points 

x , f(x), P(x), .. .. .. , fn(x) as n becomes large. If the process is a continuous process 

the dynamics are usually described by a differential equation whose independent 

variable is time, then the theory attempts to predict the ultimate behaviour of so­

lutions of the equation in either the distant future (t --+ (0) (or the distant past 
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(t ----t -00), which is not considered in our analysis). That is, dynamical systems 

raise the question of where do points go and what do they do when they get there. 

During the 19th century there were 2 kinds of theories for changing systems, namely 

deterministic theories and theories of probability (Hall 1992). The two approaches 

appeared to be incompatible. In the first, the future is determined from the past, 

with no apparent need for probability. In the second, the future depends in some 

random way on the past, and cannot be determined from it. The first challenge to 

this picture came with quantum theory in the 1920's and the 1930's in which theorists 

describe the behavior of an electron in terms of a "probability wave". The second 

challenge came from chaos. Analysis showed that even in simple systems which obey 

Newtons' laws of motion you cannot always predict what is going to happen next. 

The reason for this is a persistent instability. This often arises when an object feels 

the effect of more than one force. A well-known example is a pendulum with a bob 

that is attracted equally to 2 magnets below it . Its future motion becomes extremely 

sensitive to small changes in the present position and velocity, so the motion can 

become chaotic. 

Chaos in the ordinary sense, is precisely the absence of order. It is a persistent 

instability. Chaos is a dynamic phenomenon. It occurs when the state of a system 

changes. Chaos introduces an interface between determinism and randomness (La­

sota and Mackey 1985). It presents a universe that is deterministic, obeying the 

fundamental physical laws, but with a predisposition for disorder, complexity and 

unpredictability. It reveals many systems that are changing are extremely sensitive 

to their initial state - position, velocity, and so on. As the system evolves in time, 

minute changes amplify rapidly through feedback. 

Chaos is usually viewed as a nonlinear phenomenon. The original example of chaotic 

behaviour given in the paper by Lorentz, and all the subsequent results on chaotic 
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behaviour of solutions to ordinary differential equations, refer to nonlinear systems, 

that is, in the equation 

it = f(u), (1.1) 

the function f is nonlinear (possibly acting in a multi dimensional space Rn and 

However the idea of chaotic behaviour also arises in discrete and continuous linear , 

dynamical systems. But, for this they must be infinite dimensional. This means 

that the function f on the right-hand side of Equation (1.1) must be for instance 

an infinite matrix, or a differentiation operator (Banasiak 2000) . 

Modern dynamical systems theory has a relatively short history as noted in Devaney 

(1989). It began in the 19th century with the French mathematician Henri Poincare. 

He revolutionized the study of nonlinear differential equations by applying topology 

to discuss the global properties of solutions to systems. This approach turned out to 

be a powerful tool for describing types of behaviour. An understanding of the global 

behaviour of all solutions of the system was more important than the local behaviour 

of particular, analytically precise solutions. This point of view was adopted and 

furthered by Birkhoff in the first part of the twentieth century. Birkhoff realized the 

importance of the study of mappings and emphasized discrete dynamics as a means 

of understanding the more difficult dynamics arising from differential equations. 

During the last twenty years or so, several definitions of chaos have been proposed 

(Devaney 1989, Kirchgraber and Stoffer 1989, and Wiggins 1990). One of the most 

used among these definitions is that as presented by (Devaney 1989). This approach 

uses topological notions. 
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In this dissertation, chaotic behaviour of continuous linear semigroups is analysed 

by the use of measure-theoretic ergodic notions. Using measure theory, we develop 

concepts of 'measure' that enable us to talk about the measure not just of simple 

regions but, more generally of Borel sets (sets formed by repeatedly taking unions 

and intersections by starting from interval-like regions and their complements), and 

then we talk not just of Borel sets but of arbitrary subsets of H!". In parallel to 

these concepts of measure we also develop notions of integration, which allow us to 

integrate functions over sets which are not simple regions. These notions of measure 

are used to present a spectrum of theorems, although the basic results (e.g 'the 

empty set has measure zero', 'the measure of [0,2] is the sum of the measures of [0,1] 

and [1,2] ' , etc.) stay fixed . Thus, we observe the useful notions of Borel measure, 

Lesbesgue measure, Riemann integral, the Lesbesgue integral and so on. Using 

ergodic theory we associate chaotic linear semigroups with the idea of exactness 

applied to first-order partial differential equations. Exact linear semi groups are 

applied to nonlinear continuous semidynamical systems via the Frobenius-Perron 

operators and the Koopman operators. 

Suppose a real-world phenomenon has an acceptable mathematical model. We con­

sider possible definitions of chaos for (the dynamics in) a mathematical model. If 

we consider cases of mathematical models with complex behaviour for example the 

logistic map (Hall 1992 and Lasota and Mackey 1985), the tent map (Smith 1998) or 

the baker transformation (Lasota 1985) we observe that their features and structure 

present a problem in explaining natural phenomena. We overcome the problem of 

characterizing and providing a simpler physical description of large systems contain­

ing inherent elements of uncertainty by abandoning the pointwise description of the 

evolution of our system in favour of a system of suitable averages. 

In view of the above discussion of chaotic dynamical systems, our main objectives 
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in this dissertation are: 

• To construct a suitable system of averages that would replace the" pointwise" 

description of the evolution of a large system. 

• To provide descriptions based on measure theoretic properties of a system of 

the types of" chaotic" behaviour that a system may display and to demonstrate 

techniques with which we can identify these irregular behaviours. 

• To examine conditions under which our system may display irregular be­

haviour. 

• To utilize the above results and the theory of semigroups to determine the 

unique solution to the linear Boltzmann equation. 

This dissertation is organised as follows: 

• Chapter 1: Introduction 

• Chapter 2: We discuss the mathematical concepts: measures and measure 

spaces, Lesbesgue integration, convergence of sequences of functions and prob­

ability theory which are necessary for our study. 

• Chapter 3: In this chapter our aim is to derive a suitable method of describing 

the evolution of a dynamical system containing many elements. 

• Chapter 4: We motivate the use of the Markov operator as a suitable generator 

of our system. 

• Chapter 5: This chapter is the focal point of our study. We describe 3 types 

of irregular behaviour by using an approach based on measure theory. 
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• Chapter 6: We discuss a property of Markov operators known as asymptotic 

stability. 

• Chapter 7: In this chapter we introduce continuous dynamical systems and 

present a continuous time analogue of definitions and results for the discrete 

time case. We also describe a theory which enables us to determine solutions 

to a system. 

• Chapter 8: We condude our analysis by applying our results to a system 

modeled by the linear Boltzmann equation. 

• Chapter 9: Conclusion 
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2 Mathematical Preliminaries 

In this chapter we present the background knowledge that we shall use in the devel­

opment of our analysis. We briefly outline essential concepts from measure theory, 

the theory of Lebesgue integration, the theory of the convergence of sequences of 

functions and probability theory. 

2.1 Measures and Measure Spaces 

Definition 2.1 Let X be an arbitrary set. A collection A of subsets of X is called 

a (J" -algebra in X if 

(a) X E A 

(b) For each set A E A, the set AC (or X\A) EA 

(c) For each finite or infinite sequence Ai of subsets of X, Ai E A, the union 

UAi EA. 

From this definition we note the following: 

(1) From properties (a) and (b) 0 E A since 0 = XC (or X\X) and; 

(2) From (b) and (c) ni Ai E A, since, ni Ai = (Ui AC)C (From de Morgan's laws) . 
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Definition 2.2 A real-valued function ~ : A ~ [0,00), defined on a O'-algebra A is 

called a measure if 

(a) ~((/)) = 0; 

(b) ~(A) 2: 0 for all A E A; and 

(c) ~(UiAi) = Li ~(Ai) if {Ai} is a finite or infinite sequence of pairwise disjoint 

subsets of A, that is, ~ n Aj = (/) for i =I- j. 

In addition ~ is called a countably additive measure if 

~((/)) = 0 and ~(U~lAi) = L~l ~(Ai); and is called a finitely additive measure if 

Remark 2.1 Since ~(Ai) is non-negative, the sum Li ~(Ai) always exists either as 

a real number or as +00 .• 

Definition 2.3 If X is a set, A is a O'-algebra on X, and ~ is a measure on A, 

then the triple (X, A,~) is called a measure space. The sets belonging to A are 

called measurable sets, since, for them, the measure is defined. 

The following are two examples of measure spaces. 

Example 2.1 Let X be an arbitrary set and A a O'-algebra on X. Define a function 

~: A ~ [0,+00) by 

(A) = { n if A c A is a finite set with n elements, 
~ +00 if A c A is infinite. 

Then the measure ~ is called the counting measure on X . 

Example 2.2 If X = [0,1] or R, the real line, then the (J-algebra is the O'-algebra 

8(R) of all the Borel sets of R. (That is the O'-algebra generated by the collection 
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of all the open sets of R.} Then there exists a unique measure fL, called the Borel 

measure that assigns to each sub-interval of R its length i.e. fL ([a,bj) = b-a. 

In almost all applications we use a more specific measure space defined as follows: 

Definition 2.4 A measure fL in a measure space (X, A, fL) is called a (J - finite 

measure if there is a sequence Ai, Ai E A satisfying X = U~lAi and fL(A) < 00 

for all i. 

Definition 2.5 A measure space (X, A, fL) is called finite if fL(X) < 00. In partic­

ular, if fL(X) = 1, then the measure space is called normalized or probabilistic. 

Note that throughout our study, unless otherwise stated, a measure space will always 

be assumed to be (J - finite. 

Definition 2.6 Let (X,A,fL) be a measure space. A property of the points in a 

measure space X that holds everywhere except for a subset of that space having 

measure zero is said to be true almost everywhere (abbreviated as a.e). 

Definition 2.7 Let f : X ~ R be a real valued function and 6. C R an interval. 

The set of all points that will be in 6. after one application of f is called the coun­

terimage of 6. i.e 

Definition 2.8 Let (X, A, fL) be a measure space. A real-valued function f : X ~ R 

is called measurable if f-1(6.) E A for every interval 6. C R. 
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More generally we define the following for a transformation S : X ---+ X: 

Definition 2.9 Let (X, A, Jl) be a measure space. A transformation S : X ---+ X is 

called measurable if S-l(A) E A, for all AEA. 

A related concept to that of a measurable transformation is the following definition: 

Definition 2.10 A measurable transformation S : X ---+ X on a measure space 

(X, A, Jl) is called non-singular if Jl(S-l(A)) = 0, for all A E A such that Jl(A) = 

0. 

2.2 Lebesgue Integration 

In this section we introduce the Lebesgue integral, which is defined for abstract 

measure spaces (X, A, Jl). Firstly we define 

f+(x) = max(O, f(x)) and f-(x) = max(O, - f(x)); 

and we hence observe that 

Next we define the characteristic/indicator function. 
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Definition 2.11 The characteristic/indicator function for any set A is defined 

as follows 

IA(x) = {I if x E A, 
o if x (j: A. 

Let (X, A, J-l) be a measure space. We next illustrate an important property for a 

bounded, nonnegative measurable function. 

Let f : X ~ R be a bounded, nonnegative measurable function, 0 :::; f(x) < M < 

00. Take the partition of the interval [0, M], 0 = ao < al < .... < an = M, ai = 

M ~ , i = 0, ... ,n, and define the sets Ai by 

Ai = {x : f(x) E [ai, ai+l)} , i = 0, ... , n - 1, 

where ai, . .. ,an are nonnegative real numbers and AI, . . . ,An are disjoint subsets 

of X that belong to A. 

We then observe that the {Ad are measurable and 

Therefore, every bounded nonnegative measurable function can be approximated by 

finite linear combinations of characteristic functions. 

We next define a simple function. 

Definition 2.12 A function 9 : X ~ R is called a simple function if it can be 

written in the form 

11 



n 

g(x) = L AiIAi(x) 
i=l 

where Ai E R and Ai E A, i = 1, ... ,n are disjoint sets. 

We now define the Lebesgue integral in following four steps. 

Definition 2.13 Let (X, A, /1) be a measure space, and 9 a simple function as de-

fined in Definition 2.12. Then the Lebesgue integral of the function 9 is defined as 

j g(x)d/1x = L Ai/1(Ai). 
x ~ 

We note that J g(x )d/1x is the integral of 9 over the set X with respect to the 
x 

measure /1, and which in this case 9 is defined as a function of x. One sometimes 

writes J gd/1 or J g(x)/1(dx) or J g(x)d/1(x) in place of J g(x)d/1x. 
x x x x 

Definition 2.14 Let (X, A, /1) be a measure space, f : X ---+ R an arbitrary non­

negative bounded measurable function, and {gn} a sequence of simple functions con-

verging uniformly to f. Then the Lebesgue integral of f is defined as 

j f(x)d/1x = lim { gn(x)d/1x. n--->oojx 
X 

Definition 2.15 Let (X, A, /1) be a measure space, f : X ---+ R a nonnegative un­

bounded measurable function, and define 

fM(X) = {f(X) if 0 ::; f(x) ::; M, 
M if M < f(x). 

Then the Lebesgue integral of f is defined by 
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Definition 2.16 Let (X, A, tt) be measure space and f : X -t R be a measurable 

function. Then the Lebesgue integral of f is defined by 

J f(x)dttx = J f+(x)dttx - J f-(x)dttx 
x x x 

if at least one of the terms 

J f+(x)dttx, or J f-(x)dttx 
x x 

is finite. If both these terms are finite then the function f is called integrable. 

Remark 2.2 We note that Definition 2.13 to Definition 2.16 are for the Lebesgue 

integral of f over the entire space X. For A E A we have, by definition, 

J f(x)dttx = J f(x)IA(x)dttx. 
A x 

Remark 2.3 We also observe that f is integrable if and only if If I is integrable. 

Indeed, since f(x) = f+(x) - f-(x) and If I = f+ + f-, then 

if f is integrable, then so are f+ and f- and therefore 

J If(x)/dttx = J f+(x)dttx + J f-(x)dttx 
x x x 

is finite. Hence If I is integrable. 

If If(x)/ is integrable, using a similar argument J f(x)dttx is finite so that f(x) in 
x 

integrable .• 

Remark 2.4 The Lebesgue integral is an important concept for abstract measure 

spaces (X, A, tt)· In calculus the definition of the Riemann integral is related to 
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the algebraic properties of the real line. For example, if we define J-l as the Borel 

measure (see Example 2.2) , then, 

b J f(x)dJ-lx = J f(x)dx 
[a ,b] a 

where the left-hand side is the Lebesgue integral and the right-hand side is the Rie-

mann integral. This equality is true for any bounded real-valued Riemann integrable 

function f defined on a closed interval [a, b], that is if f is Riemann integrable then 

f is Lebesgue integrable (Cohn 1980 Theorem 2.5.1) .• 

The Lebesgue integral has some important properties that we will often use. They 

are as follows: 

(L1) If f ,g : X -+ R are measurable, 9 is integrable, and If(x)1 :S g(x ), then f is 

integrable and 

(L2) 

J f( x )dJ-lx :S J g(x )dJ-lx. 
x x 

J If(x)ldJ-lx = 0 if and only iff(x ) = 0 a.e. 
x 

(L3) If iI , 12 : X -+ R are integrable functions, then for AI, A2 E R the linear com­

bination AliI + A212 is integrable and 

J [A1JI(X) + A212(x )] dJ-lx 
x 

= Al J iI(x )dJ-lx + A2 J 12 (x)dJ-lx. 
x x 
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(L4) Let f, 9 : X -+ R be measurable functions and fn : X -+ R be measurable 

functions such that Ifn(X)1 :::; g(x) and fn( x ) converges to f(x) almost everywhere. 

If 9 is integrable, then f and fn are also integrable and 

n~J fn(x)djJ,x = J f(x)djJ,x. 
x x 

(L5) Let f : X -+ R be an integrable function and the sets Ai EA, i = 1,2, ... , be 

disjoint. If A = Ui Ai , then 

2;= J f( x )djJ,x = J f(x)djJ,x. 
2 Ai A 

Remark 2.5 The properties described in (L4) are oft en referred to as the Lebesgue 

dominated convergence theorem ( Ifn(x) I :::; g(x )) . It is called the Lebesgue 

monotone convergence theorem if Ifn(x )1 :::; g(x ) with an integrable 9 is replaced 

by 0 :::; fleX) :::; h(x) ......• 

Remark 2.6 Another observation is that from our construction of the Lebesgue in-

tegral, is that for every integrable function f there is a sequence of simple functions 

fn(x ) = LAi,nIAi,n(x) 
i 

such that 

Ji..I~/n(X) = f(x ) a.e. and Ifn(x)1 :::; If(x )l. 

Thus by the Lebesgue dominated convergence theorem (L4) , we have 

Ji..~J fn(x)djJ,x = J f( x )djJ,x .• 
x x 

15 



We note that the double subscript i, n refers to the double sequence where i , n E 

N, the set of natural numbers. The subscript n represents the summation of the 

sequence of simple functions fn, and the subscript i represents the summation of 

each simple function in its defined representation. 

We use this observation to simplify some of the proofs in our analysis. We do this 

by showing that if a relation holds for characteristic functions, lA; (A disjoint in A), 

then it must hold for linear simple functions f = L:i aiAi. Therefore we, 

(1) need to only verify some formula for simple functions, and then, 

(2) pass to the limit. 

Remark 2.7 From the properties and the definition of the Lebesgue integral it fol-

lows that if f : X --+ R is a nonnegative integrable function, then IIAA), defined by 

ttf(A) = J f(x)dttx, 
A 

is a nonnegative, additive and finite measure. Further, from property (L2) if tt(A) = 

0, then 

ttf(A) = J lA (x)f(x)dttx = 0 
A 

since lA(x)f(x ) = 0 a.e. Thus ttf(A) satisfies the properties of a measure and 

ttf(A) = 0 whenever tt(A) = O. This observation that every integrable nonnegative 

function defines a finite measure can be reversed by the following theorem, which 

is of fundamental importance for the development of the theory of the Frobenius­

Perron operator .• 
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Theorem 2.1 [Radon-Nikodym theorem] Let (X, A, JL) be a measure space where JL 

is a finite measure. Let v be a second finite measure with the property that v(A) = 0 

for all A E A such that JL(A) = O. Then there exists a nonnegative integrable func­

tion f : X ---+ R such that 

v(A) = J f(x)dJLx for all AEA. 
A 

The function f is in fact unique as can be seen from the following proposition. 

Proposition 2.1 If f1 and h are integrable functions such that 

J JI(x)dJLx = J h(x)dJLx for A E A 
A A 

then f1 = h a.e. 

Next we introduce the concept of an Il' space. 

Definition 2.17 Let (X, A, JL) be a measure space and p be a real number, 1 ~ p < 

00. The family of all real-valued measurable functions f : X ---+ R satisfying 

(2.1) 

is called the Il' (X, A, JL) space. 

Note that if p = 1 then the L1 space consists of all integrable functions. 

The integral appearing in Equation(2.1) is important for an element f E Il'. Thus 

it is assigned the special notation 
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1 

IIfll£, = U If(x)IPdl'x 1 ' (2.2) 

and is called the LP norm of f· 

Remark 2.8 When property L2 of the Lebesgue integral is applied to IfIP , it follows 

that the condition IIfllLP = 0 is equivalent to f(x) = 0 a.e. Or, more precisely, 

IIfllLP = 0 if and only if f is a zero element in LP(which is an element represented 

by all functions equal to zero almost everywhere) .• 

Two important properties of the norm are 

(NI) The norm is homogeneous, that is 

lIafllLP = lal . IIfllLP for f E LP, a E R. 

(N2) The norm satisfies the triangle inequality, that is 

If we think of f, 9 and f + 9 as vectors, we can consider a triangle with sides f, 9 

and f + g. Then property (N2) simply means that the length of the side (f + g) 

is not longer than the sum of the lengths of the other two sides. Futhermore, from 

(NI) it follows that for every fELl and real a, the product af belongs to LP, and 

from (N2) for every f , 9 E Ll the sum f + 9 also belongs to LP. Together properties 

(NI) and (N2) imply that LP is a vector space. 

Since the value of IIfllLP is interpreted as the length of f, we say that 
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1 

111 ~ gilL' = ~ II(x) ~ 9(X)IPdl'x];; 

is the V distance between f and g. 

However the product f 9 of two functions f, 9 E LP is not necessarily in LP, for 

example, f(x) = x-~ is integrable on [0, 1] but [f(x )J2 = X -I is not . 

This leads us to introduce the space adjoint to V. 

Remark 2.9 Let (X, A, /1) be a measure space. The space adjoint to LP(X, A, /1) 

is V' (X, A, /1) where 

1 1 
-+-=1.. 
p p' 

Remark 2.10 If p = 1, then the adjoint space consists of all measurable bounded 

almost everywhere functions, and is denoted by LOO .• 

For f E L 1 , gEL 00 , we take the Loo norm of 9 to be the smallest constant c such that 

Ig(x )1 ~ c 

for almost all .1: E X. This constant is denoted by ess sup Ig(x)1, and is called the 

essential supremum of g. 

From the Cauchy-Holder inequality (Cohn 1980, Proposition 3.3.2) if f E V and 

9 E LP' then fg E Ll i.e fg is integrable and satisfies 

19 



where 

< f,g >= J f(x)g(x)dJLx 
x 

is called the duality pairing of two functions. 

Remark 2.11 As we shall usually work in Ll, we will not indicate the space in 

which the norm is taken unless it is not Ll. Thus we will write IIfll instead of 

Ilfll£1. Further we observe from property (L3) that in Ll the norm has the property 

that the triangle inequality is sometimes an equality .• 

The following corollary provides a simplification of the Radon-Nikodym theorem in 

the space L 1 . 

Corollary 2.1 Let (X, A, JL) be a measure space and v a finite measure on A such 

that v(A) = 0 whenever JL(A) = 0, then there exists a unique element fELl such 

that 

v(A) = J f(x)dJLx for AEA. 
A 

Definition 2.18 The Cartesian product of two arbitrary sets Al and A2 is the 

set of all pairs (Xl, X2) such that Xl E Al and X2 E A2 . It is written as 

The Cartesian product of the sets AI, ... ,Ad is the set of all sequences (Xl, . .. ,Xd) 

such that Xi E Ai,i = 1, ... ,d, or 
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An important consequence following the concept of the Cartesian product is that if 

a structure is defined on each of the factors Ai, for example, a measure, then it is 

possible to extend that property to the Cartesian product. Thus, given d measure 

spaces (Xi, A , JLi) , i = 1, ... , d, we define 

(2.3) 

A to be the smallest (j- algebra of subsets of X containing all sets of the form 

Al X ... X Ad with Ai E A , i = 1, ... , d, (2.4) 

and 

(2.5) 

However, these sets by themselves they do not define a measure space (X, A , JL). 

There is no problem with either X or A, but JL is defined only on special sets, 

namely A = Al X ... X Ad, that do not form a (j-algebra. The following theorem 

shows that JL, defined by Equation (2.5) can be extended to the entire (j - algebra 

A. 

Theorem 2.2 Let (Xi, Ai, JLi), i = 1, .. . , d be measure spaces defined by Equa­

tion (2.3), (2.4), and (2.5) respectively, then there exists a unique extension of 

JL to a measure defined on A. 

The measure space (X, A, JL) in Theorem 2.2 is called the product of measure 

spaces (Xl, AI, JLI), ... , (Xd, Ad, JLd), or the product space. The measure JL is 

called the product measure. 
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From Equation (2.5) it follows that 

Thus, if all measure spaces (Xi, A, /Li) are finite or probabilistic, then (X, A, /L) will 

also finite or probabilistic. The next theorem shows that integrals on the product 

of measure spaces are related to integrals on the individual factors. 

Theorem 2.3 [Fubini's theorem] Let (X, A, /L) be the product space formed by (X}, AI, /LI) 

and (X2' A 2, /L2), and let a /L-integrable function f : X -+ R be given. Then, for 

almost every Xl, the function f(xI, X2) is /L2 integrable with respect to X2. Further-

more the function 

J f(xI, x2)d/Lx2 
Xz 

of the variable Xl is /LI integrable and 

(2.6) 

(We note that d/Lxl and d/Lx2 can also be written as /L(dXI) and /L(dX2) respectively.) 

If (X, A, /L) is the product of the measure spaces (Xi, A, d/Li) , i = 1, ...... , d, and 

f : X -+ R is /L integrable, then 
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Remark 2.12 As we noted in Example 2.2, the 'natural' Borel measure on the real 

line R is defined on the smallest a-algebra B that contains all intervals. For every 

interval [a, b] this measure satisfies J.l([a, b]) = b - a. Having the structure (R, B, J.l) 

we define by Theorem 2.2 the product space (Rd, Bd, J.ld), where 

Rd = R x ... x R, (d times ) 

Bd is the smallest a-algebra containing all sets of the form 

Al X ..• x At with Ai E B, 

and 

The measure J.ld is again called the Borel measure. It can be shown that Bd may 

be alternatively defined as either the smallest a-algebra containing all the rectangles 

or as the smallest a-algebra containing all the open subsets of Rd. The former is a 

consequence of Proposition 1.1.4 (Cohn 1980), whilst the latter follows from the fact 

that if we generate a Borel a-algebra from open intervals, then every open interval 

since it is the union of sequences of the form [a, b) is a Borel set. Furthermore, every 

interval [a , b) is the intersection of a sequence of open intervals. It therefore follows 

that 
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which is the formula for the volume of an n-dimensional box. 

The same construction may be repeated by starting, not from the whole real line 

R, but from the unit interval [0, 1] or from any other finite interval. Thus, from 

Theorem 2.2, we will obtain the Borel measure on the unit square [0,1] x [0,1] or 

on the d-dimensional cube 

[0, l]d = [0,1] x ... x [0,1] (d times ). 

In all cases we will omit the superscript d on Bd and J1d and write (~, B, J1) instead 

of (Rd, Bd, J1d) . Furthermore, in all cases when the space is R, ~, or any subset of 

these ([0,1]' [0, l]d, etc.) and the measure space and o--algebra are not specified, we 

will assume the measure space is taken with the Borel o--algebra and Borel measure. 

Finally, all the integrals on R or Rd taken with respect to the Borel measure will be 

written with dx instead of dJ1x .• 

In order to define a monotonic measure we first define partial order: 

a partial order on a set X is a relation ~ that is reflexive (x ~ x holds for each 

x EX), antisymmetric (if x ~ y and y ~ x, then x = y), and transitive (if x ~ y 

and y ~ z, then x ~ z). If ~ is a partial order on a set X, then x < y means that 

x and y satisfy x ~ y but are not equal. 

Hence from the additivity property of a measure (Definition 2.2c) it follows that 

every measure is monotonic, that is, if A and B are measurable sets and A c B 

then J1(A) ~ J1(B). 

This is so since, 
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the sets A and B - A are disjoint and satisfy B = A U (B - A) , thus the additivity 

of J1 implies that 

Since fi,(B - A) 2: 0 this implies that J1(A) :S J1(B). 

2.3 Convergence of Sequences of Functions 

We now define, using the notions of norms and duality pairings, three different types 

of convergence for a sequence of functions in LP spaces. 

Definition 2.19 A sequence of functions {fn} , fn E LP,l < p < 00 , 1,S called 

weakly Cesaro convergent to f E LP if 

1 n 

lim - L < fk,g >=< f,g > for all 9 E LP'. 
n-+oo n k-l 

Definition 2.20 A sequence of functions {fn}, fn E LP , l < p < 00 , 1,S called 

weakly convergent to f E LP if 

lim < f n, 9 > = < f, 9 > for all 9 E LP'. n-+oo 

Definition 2.21 A sequence of functions {fn} , fn E LP, l < P < 00 , 1,S called 

strongly convergent to f E LP if 
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We observe that strong convergence implies weak convergence. In fact from the 

Cauchy-Holder inequality, we have 

1< fn - f , g > I :s; Ilfn - fllLP '1Igllu', 

and thus since Ilfn - fllLP ---+ 0 as n ---+ 00 so must < fn - f, 9 > which implies the 

weak convergence of {fn} to f E V . However, to prove the condition for weak con-

vergence, it is sufficient to check weak convergence for a restricted class of functions. 

We start with the following definitions. 

Definition 2.22 A set Do C D is called dense in D if, for every hE D and E > OJ 

there is agE Do such that I/h - gl/ < E. 

Definition 2.23 A subspace K C V is called linearly dense if for each f E V 

and E > 0 there are g1, .. . ... , gn E K and constants ).1, ...... ').n such that 

where 

n 

9 = L ).igi. 
i=l 

With the use of linearly dense sets, it is possible to simplify the proof of weak 

convergence. If the sequence {fn} is bounded in norm, that is, I/fnl/LP :s; c < 00, 

and if K is linearly dense in V', then it is sufficient to check weak convergence in 

Definition 2.20 for any 9 E K . (Kreyszig 1978 Uniform Boundedness theorem) 

It is also possible to compare convergence in different LP spaces by using the follow­

ing proposition: 
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Proposition 2.2 If (X, A, fL) is a finite measure space and 1 ::; PI < P2 ::; 00, then 

IlfIILP! ::; cllfl iLP2 for every f E LP2 

where c depends on fL(X). Thus every element of V2 belongs to LP!, and strong 

convergence in V2 implies strong convergence in LP} . 

The Cauchy condition for convergence states that if {fn} is strongly convergent 

in LP to f, then 

lim Ilfn+k - fnl/LP = 0 uniformly for all k 2:: o. 
n~oo 

(2.7) 

It can be proved that all LP spaces (1 ::; p ::; 00) have the property that the above 

condition (2.7) is also sufficient for convergence. This i~ stated more precisely in the 

following theorem. 

Theorem 2.4 Let (X, A, fL) be a measure space and let {fn}, fn E LP(X, A, fL) 

be a sequence such that Equation (2.7) holds. Then there exists an element f E 

V(X, A, fL) such that {fn} converges strongly to f, that is Definition 2.21 is satis-

fied. 

The fact that Theorem 2.4 holds for V spaces is referred to by saying that LP spaces 

are complete. 

Finally to close this section we state the following theorem which will be used in 

this analysis. 

Theorem 2.5 [Hahn-Banach theorem] Let X be a normed linear space, let Z be a 

linear subspace of X, and fo be a continuous linear functional on Z. Then there is 
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a continuous linear functional f on X such that Ilfll = Ilfoll and such that fo is the 

restriction of f to z. 

2.4 Probability Theory 

In this section we review some material from probability theory that is neccessary 

to understand the Poisson processes that are discussed in Section 8.2. 

The key notion of probability theory is that of a probability space (0, F, prob) , where 

° is a nonempty set called the space of all elementary events, F is a (J- algebra of 

all subsets of 0, which are called events, and "prob" is a normalized measure on F. 

The equation 

prob(A) = p, A E F 

means that the probability of event A is p. Since prob is a measure it follows that 

prob(U Ai) = L prob(Ai) , 
i i 

where the Ai E :F are mutually disjoint , that is, Ai n Aj = 0 for all i i= j. 

Definition 2.24 A sequence of events AI, A2 , •.. (finite or not) are called inde-

pendent if, for any increasing sequence of integers kl < k2 < ... < kn, 

This simply means that the probability of all the events Ak
i 

occurring is the product 

of the probabilities that each will occur separately. 

28 



Definition 2.25 A random variable f;, is a measurable transformation from n 

into R. More precisely, f;, : n - R is a random variable if, for any Borel set B c R, 

{w En: f;,(w) E B} E F. 

This set is usually written as {f;, E B}. Thus, for any Borel set B c R, prob{f;, E B} 

is well defined. 

A function f E D(R) is called a density of the random variable f;, if 

for any Borel set B c R. 

prob{f;, E B} = J f(x)dx 
B 

Let 6,6, ... be a sequence of random variables. We say the f;,i are independent 

if, for any sequence of Borel sets Bl, B 2 , ... the events 

are independent. Thus a finite sequence of independent random variables satisfies 

and the probability that all events {f;,i E Bi } will occur is given by the product of 

the probabilities that each will occur separately. 

Using the above definitions we now define a stochastic process. 

Definition 2.26 A stochastic process {f;,t} is a family of random variables that 

depends on a parameter t, which we usually call time. 
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If t assumes only integer values, t = 1,2, ... , then the stochastic process reduces to 

a sequence {~n} of random variables called a discrete time stochastic process. 

However, if t E R or R+ then the stochastic process is called a continuous time 

stochastic process. 

A stochastic process {~t} is a function of two variables, namely, time t and event w. 

If the time is fixed, then 6 is simply a random variable. However, if ~ is fixed, then 

the mapping t -+ ~t(w) is called the sample path of the stochastic process. 

In the following definition we describe two important properties that stochastic 

processes may have. 

Definition 2.27 A continuous time process {~th2:o has independent increments 

if, for any sequence of times to < t1 < ... < tn , the random variables 

are independent. Further, if for any t1 and t2 and Borel set B c R, 

does not depend on tf, then the continuous time stochastic process {~t} has station­

aJ"Y independent increments. 

We are now able to define counting process which will enable us to define and discuss 

a Poisson process. 
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Definition 2.28 A stochastic process {~t} is called a counting process if its sam­

ple paths are non-decreasing functions of time, with integer values. 

Counting processes will be denoted by {Nt h~o. 
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3 The Relationship between Densities and Dy­

namical Systems 

3.1 Introduction 

Our main objective is to study the types of irregular behaviour displayed by any 

dynamical system as it evolves in time. We examine the conditions governing such 

behaviours and the changes, if any, that are observed. However, often for a large 

system containing many elements it is not practical to account for the evolution of 

each element within our system. 

When the quantity in the evolution that we analyse has a probabilistic interpreta­

tion, for example the probability of finding a particle in a certain state at a certain 

time, we can adopt a probabilistic approach by defining the evolution of suitable 

averages called (probability) densities. In what follows we shall discuss the notion 

of the evolution of densities under the operation of deterministic transformations in 

a dynamical system. 
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3.2 Defining a Dynamical System 

When we are talking about a system we mean a variable or a collection of variables 

describing the state of the system. The same real (physical,biological etc.) system 

may be represented in many ways. 

If we are interested in, say, the evolution of the average temperature of a body, 

then at each time the state of the system will be described by a single variable 

and thus the system will be one-dimensional. If we want to know the temperature 

at each point of the body, then for each time the state of the system is described 

by a function of three spatial variables, and, in such a case the system is infinite 

dimensional since the set, say, of all continuous functions is not a finite dimensional 

space. We describe the system by a variable taken from some set which we call the 

state space. In other words, the state space is that set consisting of all the distinct 

possible states of a system. 

A dynamical system is one whose states x E X(X is the state space) change 

with some parameter t (time). Two main types of dynamical systems occur in 

our study: if the time variable t E Z+ (or Z) , then we refer to the system as a 

discrete dynamical system, whereas if t E R+ (or R) we refer to the system as 

a continuous dynamical system. 

Discrete dynamical systems can be represented as the iteration of a function 

XH 1 = f (Xt), t E Z or tEN. 

When t is continuous, the dynamics are usually described by a differential equation 

dx 
dt = x = A (x), t E R or R+. 

33 



The functions f and A, respectively, describe mechanisms forcing the evolution of 

the system. 

Theories for discrete and continuous dynamical systems are to some extent parallel. 

3.3 Defining a Density 

As an example let us consider the system described by the transformation S : X -t 

X defined by the quadratic map 

S(x) = 4x(1- x) 

Then, S maps the closed unit interval [0,1] onto itself so that [0,1] is the state space 

of the system. 

We next pick an initial point XO E [0,1] so that successive states of the system at 

times 1,2, ... are given by the trajectory 

The following observations have been made of the typical trajectory corresponding 

to a given initial state: (Lasota and Mackey 1985 and Smith 1998). 

(1) it is visibly chaotic or erratic for almost all xo. 

(2) it shows sensitive dependence on initial conditions. 

To overcome these problems, we shall, instead of examining the trajectories of single 
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points, define suitable averages of the states of the system at each given time in the 

evolution of the system. We refer to this representation of the averages of the states 

as densities. 

Again, let us consider the transformation S : [0, 1] ~ [0,1] and pick a large number 

N of initial states 

To each of these states we apply the map S to obtain N new states denoted by 

xi = S(x~), x~ = S(xg), . .. ,x}y = S(x~). 

To define the densities of the states x? and x;, i = 1,2, ... N we use the char-

acteristic function (see Definition 2.11). We say that a function fo(x) is the 

density function for the initial states x~; ... ; x~ if for every (not too small) inter-

val .60 C [0; 1] we have 

(3.1) 

Similarly the density function !I (x) for the states xL ... , x}y satisfies for 6. C [0, 1] 

(3.2) 

Next we try to establish a relationship between fa and f1. This relationship will en-

able us to devise the means to obtain successive densities representing the subsequent 

states of our system. We use the notion of the counterimage (see Definition 2.7) 

of an interval .6 C [0,1] under the operation of the map S. 
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We note that for 6. c [0,1] 

and consequently that 

I6(S(x)) = IS-1(6)(X). (3.3) 

Hence from (3.3) we may rewrite (3 .2) as 

(3.4) 

Since 6.0 and 6. have been arbitrary up to this point we may pick 6.0 = S-l(6.). 

From this the right hand side of (3.1) and (3.4) are equal and therefore 

J fl(U)du = J fo(u)du (3.5) 
6 S-1(6) 

Thus (3.5) is the relationship that we sought between fa and !I and it tells us how a 

density of initial states fa will be transformed by a given map S into a new density 

Now, if 6. is an interval, say, 6. = [a, x], it is possible to obtain an explicit repre-

sentation for fl. In this case (3.5) becomes 

x 

J fl(U)du = J f(u)du 
a S-l([a,x]) 

and differentiating w.r.t x we obtain 
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JI(x) = d~ J f(u)du (3.6) 
S-l([a,x]) 

Since fo is arbitrary and !I depends on fo we may rewrite (3.6) as 

Pf(x) = d~ J f(u)du (3.7) 
S-l([a,x]) 

Thus, (3.7) explicitly defines the so called Frobenius-Perron operator P : L1 ~ L1 

(which we shall discuss in detail in the next Chapter) corresponding to a transfor-

mation S and it tells us how S transforms a given density f into a new density 

Pf. Successive densities are then obtained by iterates of P, namely P(Pf) = 
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4 Markov Operators 

In this chapter we motivate our use of the framework of Markov operators by high­

lighting its main characteristics. Subsequently we introduce two other operators 

which play an important role in our study: the Frobenius-Perron operator and its 

adjoint, the Koopman operator. 

4.1 Markov Operators 

We begin with a brief discussion of Markov chains. 

Consider a random movement of a mouse through a maze of rooms by assuming 

that the mouse changes rooms at times n = 1,2, .. ..... Let Xn = the number of the 

room occupied by the mouse at time n. Then the probability that the mouse will be 

in room Xn at time n depends on his location at time n - 1 and not on his earlier 

times. 

Hence if we speak of an element in a dynamical system as being in state i at time 

n -1 we mean that X n - 1 = i, but, since its movement between states is random we 

have no means of predicting its state at time n. From this we understand that the 

value of the X n - 1 depends on the state which is subject to chance. Thus the value 

38 



of X n - 1 varies in some 'random' manner. 

We can therefore predict the probability of an element being in a certain state at a 

certain time, but this is conditional to the elements' location at time n - 1. This 

conditional probability P is given by 

P[Xn = jlXn - 1 = i] 

Thus if the state of an element before the time n - 1 does not alter this conditional 

probability, we then say that the dynamical system satisfies the Markov property 

which is defined as follows: 

Definition 4.1 A stochastic process {Xk }, k = 1, 2, ... with state space S = {1, 2, ... } 

is said to satisfy the Markov property if for every n and all states il, i 2 , ... , in we 

have that 

In other words the impact of the past on the future evolution of the system is con­

centrated in the state present at the last moment at which the system was observed. 

This can also be expressed as saying that the system is "memoryless". Once in a 

certain state at a given time, the way in which the system reached that state does 

not affect its' future evolution. This does not however mean a complete absence of 

memory since the Markov system retains its most recent recollection of the past. 

This simply means that the present value of the state will depend only on its value in 

its immediate past. And in so saying, is, one step away from complete independence. 

In the analysis of a typical dynamical system, we showed (see Chapter 3) that it was 
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necessary to represent the states at a given time as a (probability) density. There 

is therefore a need to introduce a suitable operator that would serve to generate an 

evolution of the density of states within the Markov process. This operator has to 

ensure that the two important properties: 

(1) each state is defined by a nonnegative function and 

(2) the overall quantity of the elements in the system remains preserved 

These are the main characteristics of the Markov operator which is defined as follows: 

Definition 4.2 Let (X, A, 11') be a measure space. A Markov operator is a linear 

operator P : Ll __ Ll such that 

1. Pf 2: 0 for f 2: O,f ELl,' and 

2. IIPfl1 = IIfll for f 2: 0, fELl 

Hence the Markov operator is nonnegative and preserves the total number of ele-

ments in our system. 

Markov operators have many properties. We illustrate the first with the following: 

We say that a Markov operator is monotonic if for f, 9 E Ll 

Pf(x) 2: Pg(x) whenever f(x) 2: g(x). 

Further properties of the Markov operator are stated in the following proposition. 

Proposition 4.1 Let (X, A, J-l) be a measure space and P a Markov operator then , , 
for every fELl we have 

(M1) (Pf(x))+ :S Pf+(x) 
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(M2) (Pf(x))- ~ Pf-(x) 

(M3) IPf(x)1 ~ Plf(x)1 

(M4) IIPfll ~ Ilfll 

Proof: (Ml) From the linearity of the Markov operator and the definitions of f+ 

and f- (see Section 2.2) it follows that 

(Pf)+ = (Pf+ - Pf-)+ = max (0, Pf+ - Pf-) ~ max (0, Pf+) = Pf+ 

(M2) Using a similar argument we obtain property (M2). 

(M3) From (M1) and (M2) we have 

IPfl = (Pf)+ + (Pf)- ~ Pf+ + Pf­

= P(f+ + f-) = Plf(x)1 

(M4) To obtain (M4) using Definition 2.17 we integrate (M3) over X to get 

IIPfll = J IPf(x)ldJlx ~ J P If(x)1 dJlx 
x x 

= J If(x)ldJlx = Ilfll-
x 

We next state a definition of a density in the space Ll. 

Definition 4.3 Let (X, A, Jl) be a measure space and the set D(X, A, Jl) be defined 

by 

D(X, A, Jl) = {f E Ll(X, A, Jl)lf ~ ° and IIfll = I}. Any function f E D(X, A, Jl) 

is called a density. 
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Definition 4.4 The normalized measure J1f for f E D(X, A, J1) is said to be abso-

lutely continuous with respect to J1 if 

J1f(A) = f f(x)dJ1x for A E A and f is called the density of J1f(A). 
A 

Definition 4.5 The support of a function 9 is the set of all x such that g(x) =J:. 0, 

that is, supp 9 = {x/g(x) =J:. O} 

NOTE This definition is slightly different from the one used usually which uses 

topological notions. 

The following example illustrates a relationship between the Markov operator and 

the support of a function. For this example we need to note the following definition. 

A stochastic / transition matrix is an n x n matrix whose entries are all 

nonnegative and whose columns add up to 1. Another result is that for the set 

x = {1, ... , N} with the counting measure, then, for any Markov operator P : 

N 

(PJ)i = LPij!i, where i = 1, ... , N 
i=l 

and where (Pij) is the stochastic matrix, that is, Pij 2:: 0, 'Lf::l Pij = 1. 

Example 4.1 Let P : Ll(X) ---+ L1(X) be a Markov operator. We show that for 

every nonnegative f, 9 E L1 the condition supp f C supp 9 implies supp P f C supp 

Pg. 

Proof: Let P : Ll(X) ---+ Ll(X) be a Markov operator defined by the stochastic 

matrix as stated above.Then 
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N N 

(Pf)i = LPijfj and (Pg)i = LPijgj (4.1) 
i=l i=l 

where 

N 

Pij ~ 0 ,LPij = 1 , f(j) = fj and g(j) = gj. (4.2) 
i=l 

Let f, 9 E Ll(X) such that f ~ 0 and 9 ~ O. Then by definition of the Markov 

operator Pf ~ 0 and Pg ~ O. 

Suppose supp f C supp g. Then for any k E X = {1, ... , N} if k E supp f , then 

k E supp g. That is, if fk =J 0, then gk =I=- O. 

We show that if (Pfh E supp Pf then (Pgh E supp Pg, that is for any k E 1, . . . , n 

if (Pf)k > 0 then (Pg)k > O. 

Suppose that this is not true. Then there exists k E {1, ... , N} such that (Pf)k =I=- 0 

but (Pgh = O. Hence for some k it follows that 

(4.3) 

but, 

Pklgl + ... + PkNgN = 0 (4.4) 

Since each term of (4.4) represents an entry in the stochastic matrix, it can be equal 

to zero or greater than zero. This means that in order to obtain a summation to 

zero every term of (4.4) must be equal to zero. 
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This therefore implies that for all i E {l, ... , N} we have that Pki = 0 or g i = O. 

Then, for any given i, either Pki = 0, or gi = O. In the second case, from the 

assumption on supports, f i = O. Thus, each entry in the sum in (4.3) is equal to 

zero, which is a contradiction. Hence suppPf C supp Pg. 

Property (M4) of the Markov operator is called a contraction (Lasota and Mackey 

(1985) ). 

From this we observe that for any fELl we have 

IIpn fll = IIP(pn-l f)11 :S Ilpn- 1 fll 

and, thus, for any two /I, 12 ELl, /I -=I 12 

Ilpn(/I - 12)11 

< Ilpn-l(/I - 12)11 

Ilpn-l/I - pn-1hll ( 4.5) 

Equation (4.5) demonstrates that during the process of iteration of two individual 

functions the distance between them decreases. This can be seen as some indication 

that our system is becoming more stable. This is known as the stability property 

of iterates of the Markov operator. 

The contractive property (M4) can be a strict inequality as illustrated by the fol­

lowing proposition. 

Proposition 4.2 liP fll = Ilfll if and only if P f+ and P f- have disjoint supports. 

Proof: =?: Using the inequality /Pf+(x) - Pf-(x)1 :S IPf+(x)1 + IPf-(x)1 

we observe that this inequality will clearly be strong if both Pf+(x) > 0 and 
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Pf-(x) > 0, and the equality will hold if Pf+(x) = 0 or Pf-(x) = O. 

Thus by integrating over the space X we obtain 

J IPf+(x) - Pf-(x)ldp,x = J IPf+(x)ldp,x + J IPf-(x)ldp,x (4.6) 
x x x 

if and only if there does not exist a set A EA, p,(A» 0 such that Pf+(x) > 0 and 

Pf-(x) > 0 for x E A, that is, Pf+(x) and Pf-(x) have disjoint supports. 

{:::: Suppose Pf+ and Pf- have disjoint supports. Then since f = f+ - f-, the 

left hand integral in (4.6) is simply IIPfll. 

Further, from Definition 4.2 the right hand integral is 

IIPf+11 + IIPf-11 - Ilf+11 + Ilf-1I 

- Ilfll 

and so we have IIPfll = Ilfll .• 

Having developed some of the more important and elementary properties of the 

Markov operator, we now introduce the concept of a fixed point. 

Definition 4.6 If P is a Markov operator and for some fELl, P f = f, then f is 

called a fixed point of P. 

Using this definition and properties (M1) and (M2) of Proposition 4.1 we have the 

following result. 

Proposition 4.3 If P f = f then P f+ = f+ and P f- = f- . 
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Proof: Suppose P f = f. Therefore from Proposition 4.1 we have 

j[Pf+(x) - f+(x)]dJ-Lx + j[Pf-(x) - f-(x)]dJ-Lx 
x x 

j[Pf+(x) + Pf-(x)]dJ-Lx - j[J+(x) + f-(x)]dJ-Lx 
x x 

j Plf(x)ldJ-Lx - j If(x)ldJ-Lx 
x x 

- IIPlflll-lllflll 

Hence from the contractive property of P it follows that 

IIPfl1 ::; Ilfll; which implies that IIPfll-llfll ::; o. 

Since both the integrands (Pf+ - f+) and (Pf- - f-) are non-negative then IIPfll­

Ilfll can only be equal to zero; so that Pf+ = f+ and Pf- = f - ·. 

We now define a stationary density. 

Definition 4.7 Let (X, A, J-L) be a measure space and P a Markov operator. Any 

fED that satisfies P f = f is called a stationary density of P. 

4.2 The Frobenius-Perron Operator 

In Chapter 3 we briefly introduced the Frobenius-Perron operator. This operator is 

a special types of Markov operator. We will now examine its utility in our analysis 
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to describe the types of chaotic behaviour that we observe. 

Suppose S : X ----+ X is a non-singular transformation on a measure space (X, A, 11). 

We now construct the definition for an operator P : L1 ----+ L1. 

Let f 2: 0 and f EL l . Consider the following 

J f(x)dl1x (4.7) 
S-l(A) 

Since S-l(Ui Ai) = Ui S-l(Ai ), it follows from the property L5 of the Lebesgue 

integral that the integral in (4.7) defines a finite measure. 

We denote this measure by v(A) so that, v(A) = J f(x)dl1x. 
S-l(A) 

Therefore by Corollary 2.1 there exists a unique element in L1, which we denote by 

Pf, such that for A E A 

v(A) - / Pf(x)dl1x 
A 

- J f(x)dl1x (4.8) 
S-l(A) 

Next we choose fELl to be arbitrary, that is, not neccessarily nonnegative. Then 

f = f+ - f- so that, 

From this and (4.8) we obtain for A E A 

J Pf(x)dl1x 
A 

J Pf+dl1x - J Pf-dl1x 
A A 
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J Pf(x)dp,x - J f+dp,x - J f-dp,x 

A S-l(A) S-l(A) 

J Pf(x)dp,x - J f(x)dp,x (4.9) 

A S-l(A) 

It follows from Proposition 2.1 and the non-singularity of S that, (4.9) uniquely 

defines an operator P. 

We now define the Frobenius-Perron operator associated with the transformation S. 

Definition 4.8 Let (X, A, p,) be a measure space. If S : X --t X is a non-singular 

transformation, then the unique operator P : L1 --t L1 defined by (4.9) is called the 

Frobenius-Perron operator corresponding to S. 

From (4.9) P has the following properties: 

(FP1) P(Ad1 + A2h) = A1Pf1 + A2P h; for all iI,h E L1,AI,A2 E R, so P is a 

linear operator. 

(FP2) Pf 2: 0 if f 2: 0; and 

(FP3) J Pf(x)dp,x = J f(x)dp,x 
x x 

(FP4) If Sn = S··· S(n times) and Pn is the operator corresponding to Sn, then 

Pn = P, where P is the Frobenius-Perron operator corresponding to S. 

We observe that properties (FP1) and (FP2) follow from Definition 4.8. Properties 

(FP3) and (FP4) follow from (FP2) and (2.2), and (4.9) respectively. 

In special cases when the transformation S is differentiable and invertible, we can 

obtain an explicit form for P f. It follows that if X = [a, b] is an interval on the real 

line R and A = [a, x] then (4.9) becomes 
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x 

J Pf(s)ds = J f(s)ds 
a S- l ([a,x]) 

and by differentiating 

Pf(x) = d~ J f(s)ds ( 4.10) 

S-l([a,x]) 

If S is differentiable and invertible, then S must be monotone. Suppose S is increas-

ing and S-l has a continuous derivative. Then 

and applying the chain rule to the right hand side of (4.10) 

Pf(x) 
S-l(X) 

:x J f(s)ds 
S-l(a) 

f(S-l(X)) d~ [S- l(X)] . 

If S is decreasing, then the sign of the right hand side is reversed. Thus, in the 

general one-dimensional case, for S differentiable and invertible with continuous 

derivative we have, 

Pf(x) = f(S-l(X))1 ~[S-l(X)] I (4.11) 

As an application of (4.11) consider the following example. 

Example 4.2 Let Sex) = exp(x), then S-l(X) = lnx and 

d:S-l(x) = ;. Hence from (4.11) where P is the Frobenius-Perron operator associ-
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ated with S, we have 

Pf(x) ~f(lnx) 

Next we consider an initial f given by 

f(x) !I[-l,l] (x) 

so that, 

Pf(x) 

We observe two important points from Example 4.2: 

(l)For an initial f supported on a set [a, b], Pf will be supported on [S(a), S(b)], 

and, 

(2)P f is small where :~ is large and vice versa. 

We generalize the first observation with the following proposition. 

Proposition 4.4 Let S : X -+ X be a non-singular transformation and P the as-

sociated Frobenius-Perron operator. Suppose f 2: 0, fELl. Then 

supp f C S-l( supp Pf) 

and, more generally, for every set A E A, Pf(x) = 0 for x E A {:} f(x) = 0 for x E 

S-l(A). 

Proof: =?: From the definition of the Frobenius-Perron operator we have 

J Pf(x)dJ1x 
A 

J f(x)dJ1x 
S-l(A) 
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or 

.r IS-l(A)!(x)dftx 
x 

Hence, if Pf(x) = 0 on A, then, by property (L2) of the Lebesgue integral, f( x ) = 

o for x E S-l (A) and vice versa. 

Now set A = X\ supp (Pf), then we have for Pf(x) = 0 for x E A, f( x ) = 0 for x E 

S-l( A). 

This implies that supp f C X\S-l( A ). But S-l( A ) = X\ supp S-l(Pf). 

Hence supp f C S-l( supp (Pf)) .• 

We can derive a useful generalization of (4.11) for the general case X = ~ and 

where S : X --? X is invertible. We first state and prove a change of variables 

theorem based on the Radon-Nikodym theorem. 

Theorem 4.1 Let (X, A, ft) be a m easure space, fELl n Loo (that is a bounded 

integrable fun ction), and S : X --? X a non-singular transformation. Then for every 

AEA, 

J f(S(x))dftx J f(X)ftS-1(dx) 
S- l(A) A 

(4.12) 

where ftS- 1 denotes the measure ftS-l(B) = ft(S-l(B)) , for BE A and J-1 is the 

density of ftS-1 with respect to ft, that is, 

ft(S-l(B)) = J J-l(x )dftx for B EA 
B 

Proof: From the Lebesgue dominated convergence theorem and since ftf(A) = 
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J f(x)djJ,x where f is a nonnegative measurable function, we first let f(x) = lB(x) 
A 

so that f(S(x)) = lB(S(x)) = lS-l(B) (x) and, hence, 

J f(S(x) )djJ,x 
S-l(A) 

J lS-l (A) (x)f(S(x))djJ,x 
x 

J lS-l(A) (x)lS-l(B) (x)djJ,x 
x 

jJ,(S-l(A) n S-l(B)) 

jJ,(S-l(A n B)). 

For the second integral of (4.12) it follows that 

For the third integral of (4.12) we have 

J lA (x)lB (x)jJ,S-ldx 
x 

J lB(x)J-l(X)djJ,x 
A 

For functions other than f(x) = lB(x) we repeat the above for simple functions f(x) 

and apply the linearity of property (L3) of the Lebesgue integral. _ 

Using this we now prove an extension of (4.11) from this change of variables theorem. 
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Corollary 4.1 Let (X, A, Jk) be a measure space, S : X ---+ X an invertible non-

singular transformation, and P the associated Frobenius-Perron operator. Then for 

every f E L1 n V)() 

Proof: From the definition of P, we have for A EA 

J Pf(x)dJkx J f(x)dJkx 
A S-l(A) 

Next we change the variables in the right-hand integral with y = S(x) and from 

Theorem 4.1, so that we obtain 

Thus we have 

J Pf(x)dJkx 
A 

and, hence, from Proposition 2.1, 

4.3 The Koopman Operator 

Finally we introduce a third operator which is closely related to the Frobenius-Perron 

operator. We define some of its properties and demonstrate an inter-relationship 

between these two operators with an example. 
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Definition 4.9 Let (X, A, /1) be a measure space, S : X ----+ X a non-singular trans­

formation, and f E Loo. The operator U : Loo ----+ LOO defined by 

Uf(x) = f(S(x)) 

is called the Koopman operator with respect to S. 

This operator was first introduced by Koopman (1931). S is non-singular, hence U 

is well defined since !I (x) = 12 (x) a.e implies !I(S(x)) = h(S(x)) a.e. The operator 

U has some important properties: 

(K1) U()..lll + )..212) = )..lUIl + )..2Uh, 

for all !I, 12 E Loo, )..1,)..2 E R (that is U is a linear operator); 

(K2) For every I E Loo, 

IIUlllvX ) < IIIIIv)Q 

that is, U is a contraction on Loo; 

(K3) For every lE LI,g E Loo, 

< PI,g >=< I, Ug > 

so that U is adjoint to the Frobenius-Perron operator P. 

Proof: (K1) This follows by the linearity of U .. 

(K2) From the definition of the norm since 

II(x)l:s 11111u'" 

54 



a.e., this implies that 

If(S(x))1 < IlfllLoo 

a.e. Thus since Uf(x) = f(S(x)) it follows from the latter inequality that 

(K3) We first prove property (K3) with 9 = lA· Then, 

< Pf,g > = I Pf(x)lA(x)df.1x = I Pf(x)df.1x, 
x A 

while from the definition of the Koopman operator 

< f, Ug > - f f(x)UlA(X)df.1x 
x 

f f(x)lA(S(x))df.1x 
x 

f f(x)df.1x. 
S-l(A) 

From the equation defining the Frobenius-Perron operator P: 

I Pf(x)df.1x = IS-l(A) f(x)dp,x; 
A 

it follows that < Pf,g >=< f, Ug >. Since (K3) is true for g(x) = lA it is true for 

any simple function g(x). Thus by Remark (2.6) property (K3) must be true for all 

9 E U)o .• 

We conclude this section with the following result. 

Definition 4.10 Let (X, A, p,) be a measure space. A Markov operator P : L1 ---+ L1 

is called deterministic if its ad joint U = P* has the following property: 
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For every A E A the function U lA is a characteristic function, i. e., U lA = I B for 

some B EA. 

Example 4.3 We show that the Frobenius-Perron operator is a deterministic oper-

ator. 

Proof: Let P be any Frobenius-Perron operator with U = P* the adjoint operator 

of P . By definition of the adjoint operator, 

< Pf, g > < f,P*g > 
=> J Pf(x)g(x)dp,x - J f(x)P*g(x)dp,x 

x x 
=> J Pf(x )g(x)dp,x J f(x)U g(x)dp,x. 

x x 

Let 9 = lA E Loo , where AEA. Then 

J Pf(IA(X))dp,x J f(x)UIA(x)dp,x 
x x 

J Pf(x)dp,x - J f( x )UIA(x)dp,x 
A x 

J f(x)dp,x - J f( x )UIA(x)dp,x, 
S-l(A) x 

We now show that: 

UIA(x) = {01 if x E S-l(A), 
if x tf. S-l(A) 

Let S-l(A) = BE A and UIA = h(x). 

The proof then follows in two parts. 

PART 1 
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To show: h(x) = 0 a.e in X - B {::} Jorall13 C X - B such that 

13 = {x : h(x) f O} :::;, J.L(13) = O. 

On the contrary, suppose that there exists B C X - B such that B = {x : h( x) f 

O} and J.L(B) > O. (We do not consider I'/'(B) < 0 since in this analysis we define a 

measure as in Definition 2.2.) 

{ 
sgnh(x) if x E B, 

We then choose J(x) = 0 if x tf. B. 

Then 

J Ih(x)ldJ.Lx = J J(x)dJ.Lx (4.14) 

iJ B 

Since B C X - B we have that X - B contains B, if x E B then x E X - B i.e. 

x tf. 13 and it then follows that J J (x )dJ.Lx = O. 
B 

Hence we obtain in (4.14) that J Ih(x)ldJ.Lx = O. 
iJ 

But since the integral of a positive function over a set of positive (non-zero) measure 

is positive we have that J Ih(x)ldJ.Lx > O. 
iJ 

Hence (4.14) is contradictary since the left hand side is greater than zero and the 

right hand side is equal to zero; thereby contradicting our assumption that J.L(B) > O. 

It therefore follows that for any 13 C X - B such that B = {x : h(x) f O} then 

J.L(B) = o. This implies that h(x) = 0 a.e. in X - B, that is h(x) = 0 a.e if x tf. B. 

PART 2 

To show: h(x) = 1 a.e in B {:} for all B' C B such that B' = {x : h(x) f I} then 

J.L(B' ) = O. 
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Again, by contradiction suppose that this is not true. That is suppose there exists 

B' c B such that B' = {h( x) #- 1} and J-1( B') > o. (Again as stated above we do 

not consider the case J-1(B' ) < 0.) 

For :1; E B we have 

J f(x)h(x)dJ-1x 
B 

J f(x)h(x)dJ-1x - J f(x)dJ-1x 
B B 

J(f(x)h(x) - f(x))dJ-1x 
B 

J f(x)(h(x) - 1)dJ-1x 
B 

Let h(x) - 1 = H(x) to obtain J f(x)H(x)dJ-1x = O. 
B 

C () { 
sgnH (x) if x E B', 

hoose f x = o if x 1:. B' 

J f(x)dJ-1x 
B 

o 
o 
O. 

We obtain a contradiction since the integral of a positive function over a set of 

positive (non-zero) measure is positive. Thus VB' C B such that B' = {x : h(x) #-

1} ::::} J-1( B') = o. This implies that h( x) = 1 a.e. for x E B. 

From part 1 and part 2 and (4.13) we have that 

{ 
1 if x E B, 

UIA = IS-l(A) = IB = . o If x 1:. B. 

Hence the Frobenius-Perron operator is a deterministic operator. 
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4.4 Frobenius-Perron and Koopman operators in the Space 

LP 

In Chapter 5 we shall study the irregular behaviour that the transformation S 

associated with the Frobenius-Perron and Koopman operators may display. These 

results are stated for Ll and VXJ spaces. The same results can also be proven using 

adjoint spaces LP and V' instead of Ll and Ull:), respectively. We note that all 

these results have been proven in a measure space (X, A, J.l) where S is a measure-

preserving transformation. 

We now aim to associate to S a morphism of V spaces. To do this we show that 

the Frobenius-Perron and Koopman operators are isometric in LP. 

Let LO(X, A, J.l) = the space of all measurable functions of (X, A, J.l). We show that 

Lemma 4.1 Let (Xl, AI, J.lI) and (X2' A2, J.l2) be normalized measure spaces and let 

S : Xl ---+ X 2 be a measure-preserving transformation. If F E LO(X2, A2, J.l2) then 

If F is a simple function, then, since simple functions are measurable and S is 

measure-preserving, the result then follows. 

Choose a sequence of simple functions Fn i F. Then, by the definition of U, U Fn 

are also simple functions increasing to UF, so, 

n 

L aiJ.l2(Ai ) 
i=l 
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n 

- L.: ai/11 (S-l (Ai)) 
i=l 

n - J U(L.: aJAJd/11 
Xl 1=1 

U sing the above lemma we now show: 

U LP(X2, A 2, /12) C LP(X1 , Ab /11) and 

IIU fllLP = IlfllLP for all f E LP(X2, A 2, /12)' 

Theorem 4.2 Let p 2: 1. Then ULP(X2,A2,/12) C LP(X1,A1,Jtl) and IIUfllLP = 

IlfllLP for all f E LP (X2, A 2, /12)' 

Proof. Let f E LP (X2, A 2, /12)' 

Let F(x) = If(x)IP as in Lemma 4.1. Then, from Definition 4.9 

so that 

UF - U(lfIP) 
- IfIP(S(x)) 
- If(S(x))IP 

IUfIP, 
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and 

Using the above arguments and Lemma 4.1 this implies that IIUlflllLP = IllflllLP • 

For p = 1, IIUfll£1 = Ilfll£1. Since the Frobenius-Perron operator is adjoint to the 

Koopman operator, the Frobenius-Perron operator is also isometric in LP (WaIters 

1982). We therefore have shown that the Frobenius-Perron and Koopman operator 

associated with S present a morphism of LP spaces. 
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5 Various Types of Chaotic Behaviour 

There are many possible definitions of chaos, ranging from measure-theoretic notions 

of randomness in ergodic theory to the topological approach. Our main objective in 

this chapter is to understand what it means for a dynamical system to be chaotic 

from a measure-theoretic point of view. We study three types of transformations 

that exhibit gradually stronger chaotic properties: ergodicity, mixing and exactness. 

5.1 Measure-Preserving Transformations 

In this section we introduce and discuss measure-preserving transformations and we 

shall use their asymptotic properties to describe the three levels of chaotic behaviour. 

Definition 5.1 Let (X, A, J1) be measure space. A measurable transformation S : 

X ~ X is called measure-preserving if 

J1(S-l(A)) = J1(A) for all AEA. (5.1) 

If S : X ~ X is a measure-preserving transformation on (X, A , J1) we say that S 

preserves J1 or that J1 is invariant under S. 
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Further, from equation (5.1) we note that every measure-preserving transformation 

is non-singular. 

The following theorem on invariant measures provides some equivalent characteris-

tics of this concept. 

Theorem 5.1 Let (X,A,Il) be a measure space, S: X ---+ X a nonsingular trans-

formation, and P the Frobenius-Perron operator corresponding to S. Consider a 

nonnegative fELl. Then a measure III given by 

IlI(A) = J f(x)dll x 

A 

is invariant if and only if f is a fixed point of P, that is Pf = f. 

Proof: "*": Suppose III is an invariant measure. Then by definition 

so that 

J f(x)dllx = J f(x)dllx , \f A E A (5.2) 
A S-l(A) 

From the definition of the Frobenius-Perron operator, we have that 

J Pf(x)dllx = J f(x)dllx for A E A 
A S - l(A) 

(5.3) 

Hence from equations (5.2) and (5.3) we obtain 

J Pf(x)dllx 

A 
J f(x)dllx 

S-l(A) 
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J f(x)dJ1x; 
A 

which from Proposition 2.1 implies that Pf = f· 

" =}: " Suppose that f is a fixed point of P , that is, P f = f for some fELl, f 2: 0; 

and let a measure J1f be defined by J1f = J f( x )dJ1x. Hence from the definition of 
A 

the Frobenius-Perron operator we obtain 

J f(x)dJ1x - J Pf(x )dJ1x 
S-l(A) A 

J f(x)dJ1x 
A 

J1f(A) 

thereby proving that J1f is an invariant measure .• 

Remark 5.1 We note the initial measure J1 is invariant if and only if P1 = 1.. 

Next we discuss two examples of invariant measures. (See Remark 2.12.) 

Example 5.1 Consider the r-adic transformation S[O, 1J ---+ [0,1J given by 

S(x) = rx(mod 1) , 

where r > 1 is an integer on the measure space ([0,1]' B, J1) where B is the Borel 

{}"-algebra and J1 is the Borel measure {Refer to Example 2.2}. Then for any [0, xJ C 

[0,1J and any integer r > 1 the counterimage of [0, xJ under S is given by 

S-I([O xJ) = U~-=-I[i i + .:EJ ' ~-o r'r r 

and from {4·11} the Frobenius-Perron operator corresponding to S is given by 
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Pf(x) 

i+2: 
d r - l r r 1 r-l (i X) 

dx ~ ! f( u )du = -:;: ~ f -:;: + ~ 
r 

- - f(-) + f(- + -) + ... + f(- +-) 1[ X 1 X r-l X] 
r r r r r r 

Thus for f(x) = 1 we have 

PI ~[1 + ... + 1] -
1 

rxl 
r 

and hence by Remark 5.1 the Borel measure is invariant under the r-adic transfor-

mation. 

Example 5.2 [The baker transformation} This transformation is known as the baker 

transformation since it mimics some aspects of kneading dough. Let (X, 8, f-L) be a 

measure space where X = [0,1] x [0,1] (refer to Definition 2.18) is a unit square in 

a plane, 8 is the Borel O"-algebra B generated by all possible rectangles of the form 

[0, a] x [0, b] and f-L the Borel measure is the unique measure on B such that 

f-L([O, a] x [0, b]) = ab 

See Remark 2.12. (We therefore observe that the Borel measure is a generalization 

of the concept of area.) Next we define a transformation S : X -- X by 

S( ) = { (2x, !y) 0:::; X < !, ° :::; y :::; 1 
x,y 1 1 1 

(2x - 1, "2Y + "2) "2:::; X :::; 1, ° :::; y :::; 1. 

The first application of S involves a compression of X in the y direction by ! and 

a stretching of X in the x direction by the factor 2. The transformation is then 

completed by vertically dividing the compressed and stretched rectangle into two equal 
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parts and then placing the right-hand part on top of the left-hand part. The baker 

transformation is measurable since the counterimage of any rectangle is again a 

rectangle or a pair of rectangles with the same total area. 

To prove that the Borel measure under the baker transformation is invariant we cal-

culate the Frobenius-Perron operator for it. For this we distinguish two cases: we 

consider two intervals ° ::; y < ~ and ~ ::; y ::; 1. 

CASE {1}: For 0::; x < 1 and ° ::; y < ~ we obtain 

S-l([O, x] x [0, y]) = [0, !x] x [0,2y] 

so that from {4 .11} in the plane R2 we obtain 

~ 2y 

J ds J Pf(s, t)dt = J J -1 x f(s, t)dsdt. ° 0 S ([0, 21 x [O ,2y]) 

Differentiating first respect to x and then with respect to y we obtain 

Pf(x,y) 
82 ~ 2y 

8x8 J ds J f(s , t)dt 
y 0 0 

CASE {2}: For ~ ::; y ::; 1, we find that since 

we obtain that 
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Pf(x,y) 8=~ {i ds J f(s ,t)dt+ i'lL, Tf(S,t)dt} 

111 
= f(- + -x 2y - 1) - < Y < l. 2 2' ' 2--

{ 
f(!x,2y), 0 ~ y < ! 

Thus, finally, P f(x, y) = f(! ! 2 - 1) ! < < 1 
2 + 2 X , Y '2 - Y -

so that P1 = 1, and the Borel measure is, therefore, invariant under the baker 

transformation. 

5.2 Ergodicity 

The first type of irregular behaviour that we consider is ergodicity. We shall define 

this concept and discuss important results that may be used in prQving the existence 

of this behaviour. 

Let (X, A, J.L) be a probability space and S : X --+ X a measure preserving transfor-

mation. (Hence S is a non-singular transformation with invariant measure.) Then a 

transformation S is called decomposable if it can be decomposed into two disjoint 

invariant sets of positive measure, that is, X = AU B, where B = X\A, J.L(A) > 

0, J.L(B) > 0 and A and B are invariant under S which means that points of A never 

enter into B and vice versa. 

If S-l(A) = A for A E A, then also S-l(X\A) = X\A, and we could therefore study 

S by studying the two simpler transformations SIA and SIX\A. If 0 < J.L(A) < 1 this 

has simplified the study of S. If Il(A) = 0 or J.L(X\A) = 0 we can ignore A (or X\A) 
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and we have not significantly simpified S since neglecting a set of measure zero is 

allowed in measure theory. However this is not a very interesting transformation. 

This raises the idea of studying those transformations that cannot be decomposed 

as above and of trying to express every measure-preserving transformation in terms 

of the indecomposable transformations. The indecomposable transformations are 

called ergodic. 

A simple example to demonstrate the above discussion is as follows: 

Example 5.3 Let 

{ 

n+2 for n = 1, ...... , 2(N - 1) 

S(n) = ~ for n = 2N-1 

for n = 2N 

operating on the space X = {l, ...... , 2N} with the counting measure. This transfor-

mation can be studied separately on the sets A = {l, 3, ...... , 2N - 1} and X\A = 

{2, 4, ...... , 2N} of odd and even integers. 

We now have the following definition 

Definition 5.2 Let (X, A, fL) be a measure space and let a non-singular transfor-

mation S : X --+ X be given. Then S is called ergodic if every invariant set A E A 

is such that either fL(A) = 0 or f.L(X\A) = 0; that is, S is ergodic if all the invariant 

sets are trivial subsets of X. 

From this definition it follows that any ergodic transformation S must be studied 

on the entire space X. Determining ergodicity on the basis of Definition 5.2 is, in 

general, difficult except for simple examples on finite spaces. Thus, we observe the 
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transformation in Example 5.3 is not ergodic on the space X of integers, but is 

ergodic on the sets of even and odd integers. 

The next example, is however, not as simple. We briefly introduce it and will prove 

it is an ergodic transformation in detail in Section 5.4. 

Example 5.4 Consider a circle of radius 1, and let S be a rotation through an an­

gle 4>. This transformation is equivalent to the map S : [0, 211") - [0, 211") defined by 

Sex) = x + 4>( mod 211"). 

This transformation is not ergodic for!; rational but is ergodic for 2~ irrational. 

This example will be proven later in this chapter when we have more techniques at 

our disposal. 

There are several ways of stating the ergodicity condition as we do in the next theo­

rem. (Walters 1982) (Note: For A, Bc X, A6.B denotes the symmetric difference 

A\BUB\A.) 

Theorem 5.2 Let S : X - X be a measure-preserving transformation in the prob­

ability space (X, A, f-L) . Then the following statements are equivalent: 

(1) S is ergodic. 

(2) The only A E A such that f-L((S-I(A))6.A) = 0 are those with f-L(A) = 0 or f-L(A) = 

l. 

(3) For every A E A with f-L(A) > 0 we have f-L(U~=1 s-n(A)) = l. 

(4) For every A, B E A such that f-L(A) > 0, f-L(B) > 0 there exists n > 0 with f-L(s-n(A) n B) > 

o 

Proof: "(1) =* (2)" Let A E A and f-L((S- 1 A)6.A) = O. We shall construct a set 

Aoo with S-1 Aoo = Aoo and f-L(A6.Aoo) = O. For each n 2: 0 we have f-L((s- n A)6.A) = 
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o since 

n-l 
(s-nA).6A c U (S-(i+1) A).6(S-iA) 

i=O 

n-l 
U S-i((S-1 A).6A) , 
i=O 

and hence by property (c) of Definition 2.2 J.L((s-n A).6A) :S nJ.L(S-1 A.6A). 

for each n 2:: O. 

Since the sets U~n S-iA decrease with n and each has measure equal to A we have 

Therefore we have obtained a set Aoo with S-1 Aoo = Aoo and J.L(Aoo6A) = O. By 

the ergodicity of S we must have J.L(Aoo) = 0 or 1 and hence J.L(A) = 0 or 1. 

"(2) ~ (3)" : Let A E A and J.L(A) > O. Let Al = U:=1 s - n A. We have S- 1 Al C Al 

and since J.L(S-I AI) = J.L(Al ) we have J.L(S-I AI6AI ) = O. 

From (2) we get J.L(AI ) = 0 or 1. But we cannot have J.L(AI ) = 0 since S-1 A C 

Al and J.L(S- I A) = J.L(A) > O. Therefore J.L(AI ) = 1. 

"(3) ~ (4)" : Let J.L(A) > 0 and J.L(B) > O. From (3) we have J.L(U:=I s-nA) = 1, so 

that 

Therefore fl,(B n s-nA) > 0 for some n 2:: 1. 
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"(4) =? (I)" : Suppose A E A and S-lA = A. If 0 < fL(A) < 1, then 

o = fL(A n (X\A)) 

for all n ~ 1, which contradicts (4) .• 

fL(s-n An (X\A)) 

In order to study more examples we have the following theorem: 

Theorem 5.3 Let (X, A, fL) be a measure space and S : X --+ X a nonsingular 

transformation. Then S is ergodic if and only if for every measurable function 

f: X --+ R, 

f(S(x)) = f(x) for almost all x E X (5.4) 

implies that f is constant almost everywhere. 

Proof: " =? " : Suppose that S is an ergodic nonsingular transformation on a mea­

sure space (X, A, 11,). Suppose that we have a function f satisfying (5.4), but which 

is not constant a.e. Then there is some r such that the sets 

A = { x I f (x) ::; r} and B .-- { x I f (x) > r} 

have positive measure. These sets are also invariant since 

and 

{xIS(x) EA} = {xlf(S(x)) ::; r} = {xlf(x) ::; r} 

- A 

S-l(B) - {xIS(x) E B} = {xlf(S(x)) > r} = {xlJ(x) > r} 
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B. 

Since A and B are invariant sets of positive measure, this implies that S is not 

ergodic, which is a contradiction. Thus every function satisfying (5.4) must be 

constant. 

" ~ " : Suppose that f is a measurable function satisfying (5.4) which is constant 

a.e. but that S is not ergodic. Then, from Definition 5.2 there exists a nontrivial 

set A E A which is invariant. Let f = lA, and, since A is nontrivial , f cannot be a 

constant function. Furthermore, since A = S-l(A) , we have 

f(S( x )) - IA(S(x)) IS-l (A) (x) lA (x) 
- f(x) a.e 

showing that (5.4) is satisfied by a nonconstant function, which is a contradiction. 

Hence S is ergodic .• 

An immediate consequence of Theorem 5.3 in combination with the definition of the 

Koopman operator is the following corollary. 

Corollary 5.1 Let (X, A, Jl) be measure space, S : X -+ X a nonsingular transfor-

mation, and U the Koopman operator with respect to S. Then S is ergodic if and 

only if all the fixed points of U are constant functions. 

In addition to Theorem 5.3 and Corollary 5.1, we have another result which is of 

use in proving the ergodicity of S in which we use the Frobenius-Perron operator: 

Theorem 5.4 Let (X, A , Jl) be a measure space, S : X -+ X a nonsingular trans­

formation, and P the Frobenius-Perron operator corresponding to S. Then 

(1) If S is ergodic, then there is at most one stationary density f* of P. 
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(2) Further, if there is a unique stationary density f* of P and f*(x) > 0 a.e, then 

S is ergodic. 

Proof: (1) Suppose that S is ergodic but that we have two different stationary 

densities h and h of P. Set 9 = h - h so that since P is linear (from (FP1)) we 

have that 

Pg P(h-h) - Pf1- P h - h-h 

9 

Then from Proposition 4.3 it follows that 

(5.5) 

Further, since f1 and 12 are not only different but are also densities, we have 

(5.6) 

Indeed since if we suppose to the contrary that g+ = 0 or g- = 0, then if g+ = 0 by 

the definition of 9 and g+ we must have that h ::; h· By our assumption h =1= h· 

Hence h < h· This implies that there exists a set A such that A = {h, 12 : h < h} 

and J.L(A) > O. Since f1,h are densities, f1,h 2: 0 and "hll = 111211 = 1, which 

implies that J.L(A) = IIf111- 111211 = 0, contradicting J.L(A) > O. Hence g+ =1= O. By 

using a similar argument we can show that g- =1= o. 

Thus, for any function g, supp 9 = {xlg(x) =1= O} we set 

A - supp g+ - {xlg+(x) > O} 

and 
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B = supp g- = {x\g-(x) > O} 

We observe that A and B are clearly disjoint sets and from (5.6) that they both 

have positive (non-zero) measure. From (5.5) and Proposition 4.4. 

supp g+ - A c S-l( supp Pg+) 

hence A c S-l(A) and B c S-l(B). Since A and B are disjoint sets, then S-l(A) 

and S-l(B) are also disjoint. By induction it follows that 

A c S-l(A) c S-2(A) c .,. c S-n(A)and ,B c S-l(B) c S-2(B) c .,. c S-n(B) 

(5.7) 

where s - n(A) and s-n(B) are also disjoint for all n. Now let 

00 

A = U s-n(A) and B = U s-n(B) (5.8) 
n=O n=O 

Consequently, from the above argument, we have that A and B are also disjoint, 

and, furthermore they are invariant since 

00 00 00 00 

S-l(A) = U s-n(A) = U S-n(A) = A and S-l(B) = U s-n(B) = U s-n(B) = B 
n=l n=O n=l n=O 

(5.9) 

Also, since A and B both have positive (non-zero) measure, from (5.7), (5.8) and 

(5.9) we obtain that A and B are also of positive (non-zero) measure. This means 

that we have two nontrivial invariant sets, namely A and B , which by Definition 

5.2, contradicts the ergodicity of S. Therefore if S is ergodic, there is at most one 
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stationary density f* of P. 

(2) Suppose that P f* = f* where f* > 0 is the unique stationary density but sup­

pose also, by contradiction, that S is not ergodic. Therefore there exists a nontrivial 

invariant set A such that 

S-l(A) = A 

and for B = X\A 

S-l(B) = B. 

For these two sets A and B we may write f* = IAf* + IBf*, so that 

(5.10) 

But IBf* = 0 on the set X\B = A = S-l(A). Thus by Proposition 4.4 

P(IBf*) is equal to zero in the set A = X\A, and, similarly P(IAf*) 0 in 

B = X\A. Thus, from (5.10) we have 

Since f* > 0 on A and B, we may replace IAf* with fA = II~!~:II' and IBf* with 

f ~t bt' B = IIIBI*II 0 0 am 

fA = PfA and fB = PfB. 

Thus we observe that in assuming that S is not ergodic, we have constructed two 

stationary densities of P, contradicting the existence of a unique stationary density. 

Thus, if there is a unique positive stationary density f* of P, then S is ergodic. _ 
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The first major result in ergodic theory was proven in (Birkhoff 1931). We state 

without proof the Birkhoff Individual Ergodic Theorem. 

Theorem 5.5 Let (X, A, J-L) be a measure space, S : X -----4 X a measurable trans­

formation, and f : X -----4 R an integrable function. If the measure J-L is invariant, 

then there exists an integrable function f* such that 

1 n-l 

f*(x) = lim - L f(Sk(x)) for almost all x E X. 
n->oo n k=O 

(5.11) 

Although the limit f*(x) is generally difficult to determine, it can be shown that 

f*(x) satisfies 

f*(x) = f*(S(x)) for almost all x EX, (5.12) 

and when J-L(X) < 00 

J f*(x)df-£x = J f(x)dl1x (5.13) 
x x 

Theorem 5.5 is used to give information concerning the asymptotic behaviour of 

trajectories. However, since our emphasis is on densities and not on individual 

trajectories, we will seldom use this theorem. With the notion of ergodicity we now 

derive an important and often quoted extension of the Birkhoff individual ergodic 

theorem. 

Theorem 5.6 Let (X, A, J-L) be a finite measure space and S : X -----4 X be measure 

preserving and ergodic. Then, for any integrable f, the average of f along the tra­

jectory of S is equal almost everywhere to the average of f over the space X, that 
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is, 

1 n-l 1 f 
1*(x) = lim - ~ f{Sk{x)) = -(-) f{x)dJLx a.e 

n->oo n k=O JL X x 
(5.14) 

Proof: From (5.12) and Theorem 5.3 it follows that 1* is constant almost every­

where. Hence, from (5.13), we have 

f 1* {x)dJLx 
x 

1* f dJLx = 1* JL{X) 
x 

so that 

r(x) ~ Jl(~) i f(x)dJlx a.e 

Thus from (5.11) and the preceding formula we obtain (5.14) .• 

One of the most quoted consequences of this theorem is the following corollary. It 

says that every set of non-zero measure is visited infinitely often by the iterates of 

almost every x EX. This result is a special case of the Poincare recurrence theorem. 

Theorem 5.7 Let (X, A, JL) be a finite measure space and S : X -t X be measure 

preserving and ergodic. Then for any set A E A, JL{A) > 0, and almost all x E X, 

the fraction of the points {Sk (x)} in A as k -t 00 is given by :t~). 

Proof: Using the characteristic function lA of A, the fraction of points from 
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However from (5.14) this is simply ~{1~· • 

5.3 Mixing and Exactness 

We now introduce two other types of behaviour which display a higher degree of 

irregularity, namely, mixing and exactness. 

Definition 5.3 Let (X, A, J1) be a normalized measure space, and S : X --t X a 

measure preserving transformation. Then S is called mixing if 

lim J1(A n s-n(B)) = J1(A)J1(B) for all A, B EA 
n-too 

(5.15) 

This type of behaviour maybe interpreted as follows: consider points x belonging 

to the set An s-n(B). These are the points such that x E A and sn(x) E B. 

Thus, from (5.15), as n --t 00 the measure of the set of such points is j.,l(A)J1(B). 

This means that the fraction of the points starting in A that ended up in B after 

n iterations (n must be a large number) is given by the product of the measures of 

A and B and is independent of the position of A and B in X. Intuitively we may 

describe mixing as meaning that for any set B the sequence of sets s-n(B) becomes, 

asymptotically, independent of any other set A. 

Remark 5.2 One can observe that if a transformation S is mixing, then, it is er-

godic: suppose that B E A is an invariant set. Then B = S-l(B) and, even further, 
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B = s-n(B) by induction. Let A = X\B so that J1(A n B) = J1(A n s-n(B)) = O. 

However, from (5.15), we must have 

lim J1(A n s-n(B)) 
n--->oo 

J1(A)J1(B) 

(1 - J1(B))J1(B), 

and thus J1(B) is either 0 or 1, which proves ergodicity .• 

There are many examples of mixing transformations, namely, the baker, Anosov, and 

r-adic. However proving that a given transformation is mixing by ,using Definition 

5.3 is difficult. In the next section we introduce easier and more powerful tools for 

this purpose. 

The next type of irregular behaviour that we may observe demonstrates that if in a 

normalized space we start with a set A of initial conditions of nonzero measure, then 

after a large number of iterations of the transformation S the points will spread and 

completely fill the space X. Such a behaviour maybe defined as follows: 

Definition 5.4 Let (X, A, J1) be normalized measure space and S : X --+ X be a 

measure-preserving transformation such that S(A) E A for each AEA. If 

lim J1(sn(A)) = 1 for every A EA, J1(A) > 0, 
n--->oo 

then S is called exact. 

Remark 5.3 (a) It can be proven that exactness of S implies that S is mixing. 

(b) Another important fact is that invertible transformations cannot be exact. This 
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is so since for any invertible measure-preserving transformation 5, we have 

and by induction f.L(5-n (A)) = f.L(A), which then does not satisfy Definition 5.4.. 

5.4 Characterizing Chaotic Behaviour 

In this section we reformulate the concepts of ergodicity, mixing, and exactness in 

terms of the behaviour of sequences of iterates of Frobenius-Perron and Koopman 

operators and show how they can be used to determine whether a given transforma­

tion is ergodic, mixing, or exact. The techniques used in classifying these behaviours 

use the notions of weak Cesaro, weak and strong convergences, which we had defined 

in Section 2.3. 

We will first state and prove the main theorem of this section and then show its 

utility in determining the exixtence of these irregular behaviours. 

Theorem 5.8 Let (X, A, f.L) be a normalized measure space, 5: X ~ X a measure­

preserving transformation, and P the Frobenius-Perron operator corresponding to 5. 

Then 

(1) 5 is ergodic if and only if the sequence {pn f} is weakly Cesaro convergent to 1 

for all fED. 

(2) 5 is mixing if and only if {pn f} is weakly convergent to 1 for all fED. 

(3) 5 is exact if only if {pn f} is strongly convergent to 1 for all fED. 
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Before we prove this theorem we note the following: 

Remark 5.4 Since P is linear, the convergence of {pnj} to 1 for j E D is equiva­

lent to the convergence of {pn j} to < j, 1 > for every JELl. This observation is 

valid for weak, strong, and weak Cesaro convergence .• 

We now restate Theorem 5.8 in the equivalent form. 

Corollary 5.2 Let (X, A, f1,) be a normalized measure space, S : X -t X a measure-

preserving transformation, and P the Frobenius-Perron operator corresponding to S. 

Then 

(1) S is ergodic if and only ij 

n-l 
lim 1. L < pkj,g > 

n-+oo n k=O 
< j, 1 > < 1, 9 > for j E L I, gEL 00; 

(2) S is mixing ij and only ij 

lim <pnj,g> - <j,I><I,g> forjELI,gEL OO
; 

n-+oo 

(3) S is exact if and only if 

lim Ilpnj- < j, 1 > " n-+oo 
o for JELl. 

Proof of Theorem 5.8: 

(1) " :::} " : Since S is measure-preserving, we have that PI = 1 (see Remark 5.1). 

Suppose that S is ergodic, then by Theorem 5.4 j*(x ) = 1 is the unique stationary 

density of P and, from Theorem 5.4, 5.5, and 5.6 (Birkhoff individual theorem) and 

the definition of the Koopman operator we obtain that for almost all x EX 
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1 
1 n-l 1 n-l 

lim - L f(Sk(X)) = lim - L Uk f(x) 
n-+oo n k=O n-+oo n k=O 

and that for f E L1, 9 E LOO 

1 n-l 

lim - L < f, Ukg > 
n-+oo n k=O 

< f, 1 >< 1,g > 

1 n-l 

lim - L < pkf,g >, 
n->oo n k=O 

thereby proving that {pk f} is Cesaro convergent to 1 for all fED. 

n-l 

" ~ " : Again, since S is measure-preserving, P1 = 1. Then, by applying lim ~ L pk f = 
n-+oo k=l 

1 to a stationary density f gives f = 1. Thus f*(x) = 1 is the unique stationary 

density of P and by Theorem 5.4, S is ergodic. 

(2)" =? " : Suppose that S is mixing transformation. Hence by definition this im-

plies that 

lim J1(A n s-n(B)) = J1(A)J1(B) \;fA, B EA 
n->oo 

The mixing condition can be written in the integral form as follows: 

Subsequently from the definition of the Koopman operator and duality pairing we 

obtain 

lim < lA, Un IB >=< lA, 1 >< 1, IB > 
n->oo (5.16) 
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Since the Koopman operator is adjoint to the Frobenius-Perron operator, we can 

rewrite (5.16) as 

lim < pn IA,!B > - < lA, 1 >< l'!B > 
n-+oo 

or 

lim < pn 1, g > = < 1, 1 >< 1, g > 
n-+oo 

for 1 = lA and g = lB. Therefore, since this relation holds for characteristic func-

tions it must hold for simple functions that are linear in 1 and g 

1 = LAdAi and g = LadBi· 
i i 

Further, every function g E LOO is the uniform limit of simple functions gk E LOO, 

and every function 1 E L1 is the strong (in L1 norm) limit of a sequence of simple 

functions !k ELl. Hence 

1< pnI,g > 1- < 1,1 >< 1,g > 

< I < pn 1, g > - < pn Ik, gk > I 

+ 1< pnIk,gk > - < Ik , l >< 1,gk > I 

+ 1< Ik, 1 >< 1,gk > - < 1,1 >< 1,g > I (5.17) 

If IIIk - 111 ~ E and Ilgk - gllL'>O ~ E, then the first and last terms on the right-hand 

side of (5.17) satisfy 

(a) 

1< pnj,g > - < pnIk,gk > I 

< 1< pnI,g > - < pnIk,g > I + 1< pnjk,g > - < pnIk,gk > I 
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< 

< 

and similarly 

(b) 

ElIgllLoo + Ellfkll 

E(lIgllLoo + IIfll + E) 

I < A, 1 >< 1,gk > - < f,l >< 1,g > I < E(lIgllLoo + IIfll + E). 

Finally, for fixed k the middle term of (5.17) , 

(c) 

converges to zero as n ~ 00. Thus the terms in (a) and (b) are arbitrarily small 

for small E and the term in (c) converges to zero as n ~ 00, which shows that the 

right-hand side of (5.17) can be as small as we wish for large n. This proves that 

mixing implies the convergence of < pn f, 9 > to < f,1 >< 1, 9 > for all fELl 

" {=" : Suppose that lim < pnf,g >=< f, 1 >< 1,g > for f E L1,g E LOO 
n->oo 

Set f = lA and 9 = IB and rewrite the above convergence in integral form to obtain 

j lA (x)dJ-Lx j IB(x)dJ-Lx 
x x 

n1i.IIJo j pn lA (x )IB(x)dJ-Lx 
x 

- Jl.IIJoj lA (x) UnlB(x)dJ-Lx 
X 

n1i.IIJoj lA (x)IB(sn(x))dJ-Lx 
x 

and hence 
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showing that S is mixing. 

" ::::;. " : Suppose that {pn f} is strongly convergent to < f, 1 > for all f E L1. We 

shall show this implies that S is exact. Assume that f.L(A) > 0 and define 

Then, by our definition fA (x) 2 0 and 0 < fA (x) < 1 and therefore is a density. If 

the sequence {r n} is defined by 

then it follows that the sequence is convergent to zero. Furthermore, from the defi-

nit ion of rn, we have 

! pnfA(X)df.Lx - ! (pn fA(X) - l)df.Lx 
sn(A) sn(A) 

> ! pn fA (x)df.Lx - rn 
sn(A) 

From the definition of the Frobenius-Perron operator, we have 

J pn fA (x)df.Lx = J fA (x)df.Lx 
sn(A) s-n(sn(A) 
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and, since s-n(sn(A)) contains A, the last integral above is equal to 1. Thus in-

equality (5.18) gives 

but r n --7 0 as n --7 00 and J-L is a normalized measure which implies that 

For the proof of the converse see (Lin 1971). We will not prove it since we not use 

this fact in our analysis and the proof uses different techniques. 

Next we present a reformulation of Corollary 5.2 in terms of the Koopman operator 

with the following proposition. We use the fact that the Koopman and Frobenius-

Perron operators are adjoint. However this reformulation cannot be extended to 

condition (c) of Corollary 5.2 since it is not expressed in terms of a duality pairing. 

Proposition 5.1 Let (X, A, J-L) be a measure space, S: X --7 X a measure-preserving 

transformation, and U the K oopman operator corresponding to S. Then 

(a) S is ergodic if and only if 

1 n-l 

lim - L < f,Ukg >=< f,l >< 1,g > for f E L\g E Loo 
n--->oo n k=O 

(b) S is mixing if and only if 

Proof: The proof of this proposition is similar to that for Theorem 5.8 except that 

we use property (K3) 
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< f, Ung >=< pnf,g > for f E L\g E Loo,n = 1,2, ... 

so that conditions (1) and (2) of Corollary 5.2 and (a) and (b) of Proposition 5.1 

are identical.. 

We shall discuss examples of ergodic, exact and mixing transformations. 

Discussion of examples 

Theorem 5.8 and Corollary 5.2 were stated in terms of L1 and Loo spaces in which the 

Frobenius-Perron operator acts. We can prove the same results using adjoint spaces 

V and Vi also. (Refer to Section 4.4 on convergence in LP spaces). Our discussion 

in Section 4.4 shows that in applying the conditions of Theorem 5.8, Corollary 5.2, 

and Proposition 5.1 it is not necessary to check for the validity for all f E LP and 

Vi. We simply check these conditions for f and 9 in linearly dense subsets of V 

and Vi respectively. By using the concept of linearly dense sets, we can simplify 

the proof of weak convergence. It is sufficient to check for weak convergence from 

its definition for any 9 EKe Vi by 

(1) Showing that the sequence {fn} is bounded in norm, that is, Ilfnl/LP :S C < 00, 

and; 

(2) K is linearly dense in Lpl. 

Using the above discussion we now discuss the following examples of transformations 

that display ergodicity, exactness and mixing respectively. 

Example 5.5 We show that the rotational transformation 

S(x) = x + </J( mod 211') 
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is ergodic when !rr is irrational. 

Let (X, B, f.L) be measure space and S : X -+ X a measure-preserving transformation 

that preserves the Borel measure f.L and the normalized measure ~. Let the set 

consisting of the functions K = {sin kx, cos lxlk, l = 0, 1, ...... } be our linearly dense 

set in V' ([0,211"]). 

From Proposition 5.1 (a) we therefore need to show that for each g E K, we have 

1 n-I 

lim - "Ukg(x) =< 1,g > 
n~oo n L..t 

k=O 
(5.19) 

uniformly for all x thereby proving that this condition is satisfied for all g. Firstly, 

we write sin kx and cos kx in the following forms 

. k eikx_e-ikx k eikx+e-ikx 
SIn x = 2i , COS X = 2 

where i = yCI. Consequently, it is sufficient to verify (5.19) only for 

9 (x) - cos kx + i sin kx 

where k is an arbitrary (not necessarily positive) integer. Hence we consider two 

cases: k f:. 0 and k = O. 

Case (J) For k f:. 0, we have, from the definition of the Koopman operator 

(5.20) 

Using this we define the sequence un(x) as follows 

88 



(5.21 ) 

and determine if: {1} un(x) is bounded in norm, that is, if Ilun(x)IIL2 is bounded, 

and; 

(2) un(x) satisfies (5.19) 

Substituting (5.20) into (5.21) we obtain 

Un (x) 

and 

1 n-l 1 inkc/> - 1 
_ '""' eik(x+l</J) = _eikx _e_. --

- n ~ n e~k4> - 1 
l=O 

1 

[1'v~(x)'2d!'"l ' 

2 

Thus {un(x)} is bounded in L2 norm thereby showing that our proof is valid in L2 

and hence that un(x) converges in L2 to zero as n ~ 00. Furthermore, 

< 1,g > 
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~ [ ikx] 121f = ~ [e21fik - 1] 
ik e 0 ik 

o 

and condition (a) of Proposition 5.1 is satisfied when k # o. 

Case (2) For k = 0 we have since g(x) - 1 is a fixed point. Hence, 

and, 

g(x) = eikx 1· , 

n-l 
1 L Ulg(x) 
n l=O 

n-l 
1 L 1 
n l=O 

21f dx 
< 1, g > = f 21f = l. 

o 

1 

Thus from (1) and (2) we observe that (5.19) is satisfied proving that S is an ergodic 

transformation. 

Example 5.6 In this example we demonstrate that the r-adic transformation 

S(x) = rx( mod 1) 

is exact. 

By using Corollary 5.2 we shall show that {pn f} converges strongly to < f, 1 > 

for a linearly dense set in LP([O, 1]). Let that linearly dense set K = the set of all 

continuous functions on [0,1]. (Lasota and Mackey 1985) Then from Example 5.1 

1 r-l . 

Pf(x) = - Lf (:: +::), 
r i=O r r 
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and thus by induction 

However, in the limit as n --+ 00, the right-hand side of this equation approaches the 

Riemann integral of f over [0,1]' that is, 

lim pn f(x) 
n----oo 

10
1 

f(s)ds, 

uniformly in x, which, by definition, is just < f,l >. Thus S is an exact transfor-

mation. 

Example 5.7 Here we show that the Anosov diffeomorphism 

Sex, y) = (x + y, x + 2y)( mod 1) 

is a mixing transformation. Using Proposition 5.1{b) we prove that Ung(x,y) = 

g(sn(x, y)) converges weakly to < 1, 9 > for 9 in a linearly dense set in Lpl ([0, 1] x 

[0,1]) . 

Suppose that g(x, y) is periodic in x and y with period 1. Hence 

- g(S(x,y)) Ug(x , y) 

U2g(x, y) _ 

U3g(x,y) _ 

g(S2(X, y)) 

g(S3(x, y)) 

g(x+y,x+2y) 

g(2x + 3y, 3x + 5y) 

g(5x + 8y, 8x + 13y), 

and so on. By induction we can therefore conclude that 
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where the an are the Fibonacci numbers given by ao = al = 1, an+l = an + an-I· 

Thus if we take 

g(x, y) = exp [21ri(kx + ly)], 

and 

f(x, y) = exp [-21ri(px + qy)], 

where the k, l, p, q are integers, we obtain that 

I 1 

< f, Ung >= J J exp {21ri[( ka2n-2 + la2n-l - p)x + (ka2n-1 + la2n - q)y]}dxdy, 
o 0 

and by integrating the exponential function we have 

< J,Ung >= { ~ if (ka2n-2 + la2n-1 - p) = ka2n-l + la2n - q = 0 

otherwise 

We now determine the conditions under which ka2n-2+la2n-I-P and ka2n-l +la2n-q 

are zero. This means that we need to show that either ka2n-2 + la2n-l - p or 

ka2n-l + la2n - q is not equal to zero if at least one of k, l,p, or q is not zero: 

(1) If k = 1 = 0 but p =I 0 or q =I 0 then clearly both of these two expressions will be 

equal to zero. 

(2) Suppose k =I 0 or I =I 0, then if k =I 0 and ka2n-2 + la2n-l - p = 0 for infinitely 

many n. Then we have 

k
a2n- 2 1 P --+ ---=0 
a2n- l a2n-l 
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From a proven result in (Hardy and Wright 1959) and (Fraleigh and Beauregard 

1990) namely 

hence 

1
. a2n-2 2 
lIll -- = 

n->oo a2n-l 1 + .J5 and lim an = 00, 

lim [k(a2n
-

2
) + l- _P-

n->oo a2n-l a2n-l 

n-->oo 

2k 
,r,; + l]. 

1 + v5 

Since k and 1 are integers this limit cannot be zero. Thus ka2n-2 + la2n-l - p#-O 

for large n. Similarly ka2n-l + la2n - q #- 0 for large n, so that for 

ka2n-2 + la2n-l - P = ka2n-l + la2n - q = 0 we must have that k = 1 = p = q = 0 

Therefore, for large n, 

{ 
1 if k = 1 = P = q = 0; 

< f,Ung >= 0 
otherwise 

But 

so that 

1 1 
< 1,g > - J J exp [21ri(kx + ly)]dxdy 

O( ~ for k = 1 = 0; 

for k #- 0 or 1 #- 0 

1 1 

< j, 1 >< 1, g > J J < 1,g > exp [-21ri(px + qy)]dxdy 
o 0 

_ { < 1,g > if P = q = 0; 

o if p#-O or q #- 0 

{0
1 if k = I = p = q = 0; 

otherwise 
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Thus 

< f, Ung > = < f, 1 > < 1, 9 > 

for large n, and as a consequence, {Ung} converges weakly to < 1,g > . Therefore 

the Anosov diffeomorphism is mixing. 

Finally, we note that since the Frobenius-Perron is a special type of Markov operator 

we can extend the notions of ergodicity, mixing, and exactness for transformations 

to Markov operators as follows: 

Definition 5.5 Let (X, A, J.L) be a normalized measure space and P : L 1 (X, A, J.L) --+ 

Ll(X, A, J.L) a Markov operator with stationary density 1, that is, P1 = 1. Then we 

say: 

(a) The operator P is ergodic if {pn f} is Cesaro convergent to 1 for all fED. 

(b) The operator P is mixing if { pn f} is weakly convergent to 1 for all fED; and 

(c) The operator P is exact if {pn f} is strongly convergent to 1 for all fED. 

5.5 Other Types of Chaotic Behaviour 

The three types of chaotic behaviors that we have discussed are not the only the 

only types. However they are probably the most important, but it is also possible 

to find some intermediate types, which we will not discuss in detail in this analysis. 

For example, between ergodicity and mixing there is a class of weakly mixing trans­

formations defined as follows: 
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Definition 5.6 Let (X, A, J-l) be a normalized measure space and S X --t X a 

measure-preserving transformation. Then S is weakly mixing if 

1 n-l 

lim - " 1J-l(A n S-k(B)) - J-l(A)J-l(B) I = 0 for A, B EA. 
n->oo n ~ 

k=O 

Another type of transformation that may display chaotic behaviour is the class of 

Kolmogorov automorphisms, abbreviated K-automorphisms. These are invertible 

transformations and therefore cannot be exact but are stronger than mixing. They 

are defined as follows: 

Definition 5.7 Let (X, A, J-l) be a normalized measure space and let S : X --t X 

be an invertible transformation such that Sand S-l are measurable and measure-

preserving. The transformation S is called a K-automorphism if there exists a 

a--algebra Ao C A such that the following three conditions are satisfied: 

(a) S-l(Ao) C Ao ; 

(b) the a--algebra 

00 n s-n(Ao) 
n=O 

is trivial, that is, it contains only sets of measure 0 or 1; and 

(c) the smallest a--algebra containing 

00 

is identical to A. 
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More information concerning K-automorphisms can be found in the books by (WaI­

ters 1982) and by (Parry 1981). 
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6 Asymptotic Stability of Markov Operators 

6.1 Introduction 

An important notion in the study of dynamical systems is the stability or persistence 

of the system under small changes or perturbations. This is the concept of stability 

which is very important in applications of the theory of dynamical systems, since if 

the dynamical system in question is not stable, then small errors or approximations 

made in the model have a chance of dramatically changing the real solution to the 

system. That is, our solution could be radically wrong or unstable. If, on the other 

hand, the dynamical system in question is stable, then the small errors introduced 

by approximations and experimental errors may not matter at all: the solution to 

the model system maybe equivalent to the actual solution. 

We shall observe that in the midst of this random behaviour within a system, we 

nevertheless may have an element of regularity in the form of asymptotic stability. 

Our focal point in this chapter is, in particular, the asymptotic stability of the 

Markov operator. We introduce this concept, examine ways and techniques that 

can be used to demonstrate this property and then discuss related examples. 
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6.2 Asymptotic Properties of the Averages {An!} 

In this section we examine the convergence of the sequences {Anf} of averages and 

show how this may be used to determine the existence of a stationary density of P. 

We begin with two definitions which establish sufficient conditions for the existence 

of convergent subsequences. Let (X, A, fJ) be a measure space and F a set of func­

tions in LP. 

Definition 6.1 The set F is called strongly precompact if every sequence of 

functions {fn}, fn E F, contains a subsequence {fan} that converges strongly to an 

J E LP. 

Definition 6.2 The set F is called weakly precompact if every sequence of func­

tions {in}, in E F, contains a subsequence {fan} that converges weakly to an! E LP. 

Remark 6.1 The prefix "pre-" is used since we take J E LP rather than! E F. 

The two definitions are often applied to sets consisting of sequences of functions. 

Hence the precompactness of F = {fn} simply means that every subsequence {fan} 

contains a convergent subsequence .• 

There are several simple and general criteria useful for demonstrating the weak pre­

compactness of sets in LP (see Dunford and Schwartz 1957). The two criteria that 

we will use are as follows: 

Criterion 1 Let g E L1 be a nonnegative function. Then the set of all functions 

fELl such that 

If(x)1 ~ g(:z;) for x E X a.e 
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is weakly precompact in L1. 

Criterion 2 Let M > 0 be a positive number and p > 1 be given. If J-l(X) < 00, 

then the set of all functions fELl such that 

(6.2) 

is weakly precompact in L1. 

We note that in Criterion 2 the set of all functions fELl is weakly precompact in 

L1 if it is bounded in LP norm. 

Next we define sequence of averages. 

Definition 6.3 Let (X, A, J-l) be a measure space and a Markov operator P : L1 ~ 

L1. The sequence {Anf} of averages is defined by 

(6.3) 

The two following propositions are useful tools in proving our next theorem. 

Proposition 6.1 For all f E L1, 

n~~ IIAnf - AnPf" - o. 

Proof: From Definition 6.3 we have 
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!(f - pnf) 
n 

and thus 

Using the contractive property of the Markov operator that Ilpn fll :::; Ilfll, we have 

< ~llfll ~ 0 
n 

as n ~ 00 .• 

Proposition 6.2 If, for fELl , there is a subsequence {Al:n } of the sequence 

{Anf} that converges weakly to f* E Ll, then P f* = f*· 

Proof: We first apply P to the sequence {Aanf} so that , since PAanf = AanPf, 

then {AanPf} converges weakly to Pf* . From Proposition 6.1 , since {AanPf} has 

the same limit as {Aanf}, we have Pf* = f* .• 

We now state and prove a special case of the Kakutani-Yosida abstract ergodic 

theorem (see Dunford and Schwartz 1957) . This theorem is useful in defining a 

condition for the existence of a stationary density for a given Markov operator P 
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by simply demonstrating the weak convergence of the sequence {Anf}. As we shall 

observe in Section 6.4 the existence of a stationary density serves as a basis in 

defining the concept of asymptotic stability. If P is a Frobenius-Perron operator, 

then, in this case it is sufficient to prove the existence of an invariant measure. 

Theorem 6.1 Let (X, A , 1-£) be a measure space and P : Ll -+ Ll a Markov op­

erator. If for a given fELl the sequence {Anf} is weakly precompact, then it 

converges strongly to some f* E Ll that is a fixed point of P, namely, Pf* = f* . 

Furthermore, if fED, then f* E D, so that f * is a stationary density. 

Proof: Suppose that for fELl the sequence {Anf} is weakly precompact, then 

from Definition 6.1 there exists a subsequence {Aanf} that converges weakly to 

some f * ELl. Further, from Proposition 6.2 we know Pf* = f *. 

Next we show that {Anf} converges strongly to f* ELl . We write f ELl in the form 

(6.4) 

and assume for the time being that for every E > 0 the function f - f * can.be written 

in the form 

f - f* = Pg - 9 + r , 

where 9 E Ll and IIrll < E. Hence from (6.4) and (6.5) , we have 

Anf = An(Pg - g) + Anr + Anf* 

Since P f* = f*, Anf* = f*, we obtain 

I/Anf - f*1I - I/AnU - f*)11 
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From Proposition 6.1, we know that 11 An (Pg - g)11 is strongly convergent to zero as 

n -+ 00 and by our assumptions IIAnr11 :S Ilrll < E. Thus, for sufficiently large n, 

we must have 

Since E is arbitrary, this therefore implies that {Anf} is strongly to f*· 

Finally, to show that if fED, then f* E D, we recall that from Definition 4.3 that 

fED means that f ~ 0 and Ilfll = 1. 

Therefore since P is a Markov operator from Definition 4.3 Pf ~ 0 and IIPfl1 = 1. 

From Proposition 6.1 we consequently have that Anf ~ 0 and IIAnfl1 = 1 and, since 

{Anf} is strongly convergent to f*, it follows that f* E D. This completes the proof 

that under the supposition that (6.5) is valid for every E. 

In proving this assumption, we use a simplified version of the Hahn-Banach theorem. 

Suppose that for some E there does not exist an r such that (6.5) is true. Then, in 

this case we have f - f* tf. (P - I)Ll(X) and, thus, by the Hahn-Banach theorem, 

there must exist a go E LOO such that 

(6.6) 

and 

< h, go > - 0 for all hE (P - I)Ll(X). 

In particular, 
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< (P - I) pi /,90> O. 

Thus 

< pi+l /,90 > = < pj /,90 > for j = 0, 1, ...... , 

and by induction we must, therefore, have 

As a result 

or 

< pi /,90 >=< /,90>' 

n-} 

1. L < pi /, 90 > 
n j=O 

n-l 
1. L < /,90 > 
n j=O 

< An/, 90 >=< /,90 > . 

< /,90 > 

Since we assumed {A.l:n / ' 90} to converge weakly to /*' we have 

and, from (6.8), 

which gives 

< / - f~, 90 > = O. 

(6.7) 

(6.8) 

This clearly contradicts (6.6), and therefore we conclude that the (6.5) is, indeed, 

always possible .• 
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We now state two simple and useful corollaries to Theorem 6.1. 

Corollary 6.1 Let (X, A, J-L) be a measure space and P : L1 ---+ L1 a Markov oper­

ator. If, for some fED there is agE L1 such that 

for all n, then there is an f* E D such that P f* = f*, that is, f* is a stationary 

density. 

Proof: Since, pn f :s; 9 we have that 

< 9 

and thus, IAnfl :s; g. By applying our first criterion for weak precompactness (6.1), 

we know that {Anf} is weakly precompact. Then the result that f* is a stationary 

density follows from Theorem 6.1 .• 

Corollary 6.2 Let (X, A, J-L) be a measure space and P : L1 ---+ L1 a Markov oper­

ator. If for some fED there exists M > 0 and p > 1 such that 

for all n, then there is an f* E D such that P f* = f*. 
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Proof: We have 

1 
< -(nM) 

n 

- M. 

Hence, by our second criterion for weak precompactness (6.2), {Anf} is weakly 

precompact, and again from Theorem 6.1 we obtain that f* is a stationary density .• 

We have proved that convergence of {Anf} implies the existence of a stationary 

density. We may reverse the question to ask whether the existence of a stationary 

density gives us any clues to the asymptotic properties of sequences {Anf}. The 

following theorem provides a partial answer to this question. 

Theorem 6.2 Let (X, A, J1) be a measure space and P : Ll ~ Ll a Markov opera-

tor with a unique stationary density f*. If f* (x) > 0 for all x EX, then 

lim Anf 
n-->oo 

f* for all fED. 

Proof: We firstly assume that t is bounded, and, then set c = sup(!.), to obtain 

that 

Thus the sequence {Anf} is weakly precompact and from Theorem 6.1, is convergent 
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to a stationary density. Since f* is the unique stationary density, {Anf} must 

converge to f*. Hence the theorem is proved when £ is bounded. 

In the second case when f. is not bounded, write fe = min (j, cf*)· We then have 

(6.9) 

where 

Since f*(x) > 0, we also have that 

lim fe(x) = f(x) for all x, 
e~oo 

which follows from the fact that cf* -+ 00 as c -+ 00. Then, applying the definition 

of fe , we observe that, fe(x) ~ f(x). Thus, from the Lebesgue dominated conver-

gence theorem, life - fll -+ 0 and IIfell -+ IIfll = 1 as c -+ 00. Hence the remainder 

re is strongly convergent to zero as c -+ 00. By choosing E > 0 we can find a value 

c such that lire 11 < ~. Then 

(6.10) 

However, since 117:11 is a density bounded by cllfell-1 f*, from the first part of our 

proof we have, 

(6.11) 

for sufficiently large n. Combining inequalities (6.10) and (6.11) with the decompo­

sition (6.9), we obtain 
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for sufficiently large n thereby proving the convergence of {Anf} to f* .• 

In the case that P is the Frobenius-Perron operator corresponding to a non-singular 

transformation S, Theorem 6.2 offers a convenient criterion for ergodicity. From 

Theorem 5.4, the ergodicity of S is equivalent to the uniqueness of the solution to 

Pf = f· Using this relationship, we can now prove the following corollary which 

implies that if S is ergodic then the sequence of averages {Anf} converges to 1. 

Corollary 6.3 Let (X, A, /1) be a normalized measure space, S : X ----+ X a measure-

preserving transformation, and P the corresponding Frobenius-Perron operator. Then 

S is ergodic if and only if 

1 n-l 

lim - " pk f = 1 for every fED. 
n->oo n L 

k=O 
(6.12) 

Proof: " ::::} " : Since S is measure-preserving, we have from Theorem 5.1 that 

P1 = 1. If S is ergodic, then from Theorem 5.4, f*(x) = 1 is the unique stationary 

density of P and, from Theorem 6.2 and Definition 6.3 of the sequence of averages 

{Anf} , the convergence of (6.12) follows. 

" {= " : Suppose that the convergence (6.12) holds. Then by applying (6.12) to a 

stationary density f gives f = 1. Thus f* (x) = 1 is the unique stationary density 

of P and again from Theorem 5.4, the transformation S is ergodic .• 
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6.3 The Existence of a Stationary Density 

In this section we show that almost any kind of upper bound on the iterates pn f of 

a Markov operator P is sufficient to establish that {pn f} will also have very regular 

(asymptotically periodic) behaviour. Subsequently we examine ways determining 

the ergodicity, mixing, and exactness for the Markov operator P which displays 

asymptotically periodic behaviour in a normalized measure space (X, A, fL). 

We begin by developing the concept of an upper bound by introducing the definitions 

of the convergence of a sequence of functions to a set. 

Definition 6.4 Let F be nonempty set in Ll and let g ELl. Then the distance 

d between g and F is defined as the "shortest of the distances" between g and the 

elements f E F, or, more pr·ecisely, 

d (g, F) = j~J.11 f - g 11· 

Definition 6.5 A sequence of functions {in}, in E Ll, is convergent to a set 

lim dUn, F) = O. 
n---->oo 

Definition 6.6 A Markov operator P will be called strongly (weakly) constric­

tive if there exists a strongly (weakly) precompact set F such that 

lim d(pn f, F) = 0 for all fED. 
n---+oo 

A property that holds for strongly (weakly) constrictive Markov operators is stated 

in the following theorems: 
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Theorem 6.3 Let (X, A, I-l) be a measure space, and P : L1 ----+ L1 a Markov oper-

ator. If P is weakly constrictive, then it is strongly constrictive. _ 

We shall henceforth refer to a strongly (weakly) Markov operator as simply just a 

constrictive operator. 

Another property which is useful in proving ergodicity, mixing, and exactness is 

proven in (Lasota, Li, and Yorke 1984), is as follows: 

Theorem 6.4 [Spectral decomposition theorem} Let P be constrictive M arkov oper-

ator. Then there is an integer r, two sequences of nonnegative functions gi E D and 

ki E Loo,i = 1, ....... r, and an operatorQ: L1 ----+ L1 such that for all f E Ll,Pf 

may be written in the form 

r 

Pf(x) = L Ai (J)gi (x) + Qf(x), (6.13) 
i=1 

where 

Ai(J) = J f(x)ki(x)dl-lx . (6.14) 
x 

The functions gi and operator Q have the following properties: 

(l) gi(X)gj(x) = 0 for all i ==1= j, so that functions gi have disjoint supports; 

(2) For each integer i there exists a unique integer a( i) such that Pgi = ga(i). Further 

a( i) ==1= a(j) for i ==1= j and thus operator P just serves to permute the functions gi. 

(3) IIpnQfll----+ 0 as n ----+ 00 for every f E L1. 

Remark 6.2 We observe from (6.13) that the operator Q is automatically deter­

mined if we know the functions gi and ki' that is, 
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r 
Qf(x) = Pf(x) - I: >-i(f)gi(X). 

i=l 

From (6.13) of Theorem 6.4 for Pf, it immediately follows that the structure of pnf 

is given by 

r 

pn f(x) = L >-i(f)gan(i) (x) + Qnf(x), (6.15) 
i=l 

where Qn = pn-lQ, and an(i) = a(an-1(i)) = ... , and IIQnf11 --+ 0 as n --+ 00. 

The terms under the summation in (6.15) are just permuted with each application 

of P, and since r is finite, the sequence 

r 

L >-i(f)gan(i)(x ) (6.16) 
i=l 

must be periodic with a period T ~ r!. Since {an(l), ..... . ,an(r)} is a permutation 

of {1, .. .... , r}, there must exist a unique i corresponding to each an(i) . Thus it is 

clear that summation (6.16) may be written as 

r 

L: >-a-n(i) (f)gi(X) , 
i=1 

where {a-n(i)} denotes the inverse permutation of {an(i)} .• 

In the next two propositions we demonstrate that every constrictive Markov operator 

has a stationary density and then give an explicit representation for pn f when this 

stationary density is constant. 

Proposition 6.3 Let (X, A., /1) be a measure space and P : L1 --+ L1 be a constric-

tive Markov operator. Then P has a stationary density. 

110 



Proof: Let a density f be defined by 

1 r 
f(x) = - L9i(X), 

r i=l 

(6.17) 

where rand 9i are defined as in Theorem 6.4. From property (2) of Theorem 6.4 

and (6.17) we have 

Pf(x) = ~ t 9a(i)(X) 
i=l 

and thus P f = f, hence proving that P has a stationary density .• 

Let us now assume that the measure f.J, is normalized [f.J,(X) = 1] and examine 

the consequences for the representation of pn f when we have a constant stationary 

density f = Ix. Note that if P is a Frobenius-Perron operator, then this is equivalent 

to f.J, being invariant. 

Proposition 6.4 Let (X, A, f.J,) be a measure space and P : L1 ~ L1 a constrictive 

M arkov operator. If P has a constant stationary density) then the representation for 

pn f in Theorem 6.4 takes the form 

r 

pnf(x) = L Aa-n(i) (f)lAi (x) + Qnf(x) for all f E L1, (6.18) 
i=l 

where 

The sets Ai form a partition of X) that is) 
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Proof: Suppose that P has constant stationary density f = Ix. This then implies 

that P Ix = Ix so that pn Ix = Ix. However, if P is constrictive, then, from Theo-

rem 6.4, 

r 

pnIx(X) = L Ao-n(i) (IX)gi(X) + QnIX(x). (6.19) 
i=l 

From our discussions following Theorem 6.4, we know that the summation in (6.19) 

is periodic. Let T be the period of the summation portion of pn (remember that 

T ::; r!) so that a-nT(i) = i 

and 

Passing to the limit as n -+ 00 and using the fact that Ix is a stationary density, 

we have 

r 

Ix(x) = L Ai (Ix )gi(X). (6.20) 
i=l 

However, since the functions gi are supported on disjoint sets, therefore, from (6 .20) , 

we must have each gi constant or, more specifically, 

where Ai C X denotes the support of gi, that is, the set of all x such that gi(X) i:- O. 

From (6.20) it also follows that U Ai = X. 
i 
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Next we apply the operator pn to (6.20) to obtain 

pn Ix(x) - Ix (x) 
r 

L:: Ai(IX)gan(i)(X) , 
i=l 

and, similarly as above, we have 

Hence, the functions gi(X) and gan(i) must be equal to the same constant. Further, 

since the functions gi(X) are densities, we must have that 

gi(X) 

We shall now show that if the explicit representation in (6.13) for PI for a given 

Markov operator P is known, then it easy to check for the existence of invariant 

measures and hence to determine ergodicity, mixing, or exactness. However, we 

seldom have an explicit representation for a given Markov operator P, but in the 

remainder of this section we show that the mere existence of the representation in 

(6.13) allows us to deduce some interesting properties. 
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We shall assume throughout that f-L(X) = 1 and that PIx = Ix· Further, we note 

that a permutation {a(l), ...... ,a(r)} of the set {l, ...... ,r} (Refer to Theorem 6.4) 

for which there is no invariant subset is called a cycle or cyclical permutation. 

Theorem 6.5 Let (X, A, f-L) be a normalized measure space and P : L1 -- L1 a 

constrictive Markov operator. Then P is ergodic if and only if the permutation 

{a(l), ...... , a(r)} of the sequence {I, ...... , r} is cyclical. 

Proof:" {:::" : Firstly we recall from (6.3) that the average Anf is defined by 

n-1 
Anf(x) = 1. ~ pj f(x). 

n j=O 

Hence, from (6.18), Anf can be written as 

where the remainder is given by 

We now consider the coefficients 

(6.21) 

Since, as we showed in the discussion following Theorem 6.4, the sequence {Aa-j(i)} 

is periodic in j, the summation in (6.21) will always have a limit as n -- 00. Let 

this limit be )..i(f). Suppose that there are no invariant subsets of {I, ...... , r} under 

the permutation a. Then the limits )..i(f) must be independent of i since every piece 

of the summation in (6.21) of length r for different i consists of the same numbers 
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but in a different order. Thus, 

Further, since a is cyclical, Proposition 6.4 implies that fL(Ai) = fL(Aj) = ~ for all 

lim AnI = r)..(J). 
n ->oo 

Hence, for I E D, )..(J) = ~. Thus, we have proved that if the permutation {a(l), ...... , a(r)} 

of {I, ...... , r} is cyclical, then {pn I} is Cesaro convergent to 1, so that from Defini-

tion 5.5 is ergodic. 

" ::::}- " : Suppose that P is ergodic and that {a( i)} is not a cyclical permutation. 

Then {a(i)} has an invariant subset I. As an initial I take 

where 

Then 

c#o 
o 

if i belongs to the invariant subset I of the permutation of {I, ...... , r}, 
otherwise. 

where )..i(J) # 0 if i is contained in the invariant subset I, and )..i(J) = 0 otherwise. 

Thus the limit of AnI as n -t 00 is not a constant function with respect to x, so 

that P cannot be ergodic. This is a contradiction, hence, if P is ergodic, {a( i)} 

must be a cyclical permutation .• 
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Theorem 6.6 Let (X, A, f.l) be a normalized measure space and P : L1 -t L1 a 

constrictive M arkov operator. If r = 1 in the representation (6.13) for P, then P is 

exact. 

Proof: Suppose r = 1, so that from (6.18) we have 

pnf(x) = )..(f)Ix(x) + Qnf(x ) 

and, then, 

lim pn f = )..(f)Ix . 
71,->00 

In particular, when fED )..(f) = 1 since P preserves the norm. Hence, for all 

fED, {pn f} converges strongly to 1, and from Definition 5.5 P is therefore exact 

(and, hence, also mixing) .• 

The converse to this theorem is interesting, since we prove that P mixing implies 

that r = 1. 

Theorem 6.7 Let (X, A, f.l) be a normalized measure space and P : L1 -t L1 a 

constrictive M arkov operator. If P is mixing, then in the representation in (6.13) 

r = 1. 

Proof: Suppose P is mixing but r > 1 and take an initial fED given by 

f( x ) 
1 

C1IAl (x), where c -
1 - f.l(Ai)· 
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Therefore 

where A(n) = Ao:n(l)' Since P was assumed to be mixing, again from Definition 5.5 

{ pn f} converges weakly to 1. However, we note that 

{

Cl 
< pnf, lA! >= 0 

if a n (l) = 1, 

if a n (l) =1= 1. 

Hence {pn f} will converge weakly to 1 only if a n(l) = 1 for all sufficiently large 

n. Since a is a cyclical permutation, r cannot be greater than 1, thus showing that 

r = 1.. 

6.4 Asymptotic Stability of {pn} 

We now establish the conditions under which we obtain asymptotic stability of the 

Markov operator and then show how the lower bound function technique maybe 

used to demonstrate asymptotic stability within our system. Here we assume the 

general case in which (X, A, f-L) is taken to be an arbitrary measure space. 

Definition 6.7 Let (X, A, f-L) be a measure space and P : L1 ----+ L1 a Markov op­

erator. Then {pn} is said to be asymptotically stable if there exists a unique 

f* E D such that p f* = f* and 

o for every fED. 

When P is a Frobenius-Perron operator the following definition holds. 
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Definition 6.8 Let (X, A, /L) be a measure space and P : Ll --+ Ll the Frobenius­

Perron operator corresponding to a nonsingular transformation S : X --+ X. If {pn} 

is asymptotically stable, then the transformation S is called statistically stable. 

The next theorem is a direct consequence of the spectral decomposition theorem. It 

stipulates one of the prerequisites for the asymptotic stability of {pn} where P is 

the Markov operator. 

Theorem 6.8 Let P be a constrictive Markov operator. Suppose there is a set 

A c X , /L(A) > 0, with the properly that for every fED there is an integer no(f) 

such that 

pnf(x) > ° (6.22) 

for almost all x E A and all n > no(f). Then {pn} is asymptotically stable. 

Proof: Since P is constrictive we can apply (6.13) of Theorem 6.4 and write P fin 

the form 

r 

Pf(x) = L Ai (f)gi (x) + Qf(x) 
i=l 

We will first show that l' = 1. 

Suppose that l' > 1, and choose an integer io such that A is not contained in the 

support of gio· Let fED be a density of the form f(x) = gio(X) and let T be the 

period of the permutation a. Then we have 
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Hence, clearly pnr is not positive on the set A since A is not contained in the support 

of gio' But, this result contradicts (6.22) of the theorem and, thus, we must have 

r = 1. 

Since r = 1, (6.15) reduces to 

pn f(x) = >.(f)g(x) + Qnf(x) 

so that 

lim pn f = >.(f)g. 
n--->oo 

If fED then lim pn fED also, therefore, by integrating over X we have 
n--->oo 

1 = >.(f) . 

Thus lim pn f = 9 for all fED, that is, hm Ilpn f - f*11 = 0 for all fED, thereby 
n-+oo n-+oo 

proving that {pn f} is asymptotically stable .• 

However, the disadvantage of this theorem is that it requires checking two different 

criteria that: 

(1) P is constrictive, and 

(2) there exists a set A c X, M(A) > O. 

We can, by a slight modification of the assumption that pn f is positive on a set A, 

completely eliminate the necessity of assuming P to be constrictive. To do this, we 

first introduce the notion of a lower-bound function. 
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Definition 6.9 A function hELl is called a lower-bound function for a Markov 

operator P : Ll -+ Ll if 

lim II(pn f - h)-II = 0 for every fED. 
n->oo 

(6.23) 

Condition (6.23) may be rewritten as 

where IIEnll -+ 0 as n -+ 00 or, even more explicitly, as 

Remark 6.3 From the above we observe that IIhll < 1 + IIEnll so, in particular 

IIhll :S 1.. 

Remark 6.4 If lim IIpn f - hI! -+ 0, then I!(pn f - h)+ - (pn f - h)- 11 -+ 0 so that 
n->oo 

lim I!(pn f - h)-I! = o .• 
n->oo 

Thus, a lower-bound function h is one such that, for every density j , successive 

iterates of that density by P are eventually almost above h. Hence, any nonpositive 

function is a lower-bound function, but, since fED and thus pn fED and all 

densities are positive, a negative lower-bound function is of no interest. Hence we 

have a second definition. 

Definition 6.10 A lower-bound function h is called nontrivial if h 2: 0 and IIhl! > 

o. 
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Having introduced the concept of nontriviallower-bound functions , we can now state 

the following theorem. 

Theorem 6.9 Let P : Ll -+ Ll be a Markov operator. {pn} is asymptotically 

stable if and only if there is a nontrivial lower-bound function for P. 

Proof:" ::::} " : Suppose P : Ll -+ Ll is a Markov operator and that {pn} is asymp-

totically stable. Then from Definition 6.7 this means that there exists a unique 

f* E D such that p f* = f* and that 

lim Ilpn f - f*11 = 0 for every fED. 
n-+oo 

so h = f* can be taken as lower-bound function. It is also a nontriviallower-bound 

as IIf*II = 1 > 0 and f* 2 o. We hence obtain that 

lim IIpnf - hI! = 0 for every fED 
n-+oo 

which from Remark 6.4 implies Condition (6.23) so that h is a nontriviallower-bound 

function for P. 

" ~ " : The proof of the" if' part will be done in two steps. 

STEP 1. Let iI, 12 E D. We first show that 

(6.24) 

and then proceed to construct the function f. Since every Markov operator is con-

tractive (see (4.5)): IIPfll ~ IIfll, so that 
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Hence for every pair of densities h, 12 E D, the Ilpn(h - 12)11 is a decreasing func-

tion of n. 

If h = 12, then (6.24) is trivial. Assume then that g = h - 12 and note that , since 

h,h E D, g > 0, and from the definition of g, g+ and g-, 

(Note c > 0 since g+ i= 0 and g- i= 0 by using a similar argument to that in the 

proof Theorem 5.4.) Since c> 0, we have from g = g+ - g- that 

(6.25) 

where h is the nontriviallower bound for P. Since ~ and 7 belong to D , from 

(6.23), there must exist an integer nl such that for all n 2: nl 

and 

We now try to establish upper bounds for Ilpn(~) - hll and Ilpn(7) - hll. 

122 



To do this, we first note that, for any pair of nonnegative real numbers a and b, 

la - bl = a - b+ 2(a - b)-. 

Hence, by applying this we obtain 

IlPn (gc+) -hll - jlP't:) (x) -h(x)ldi'x 

- J pn (g:) (x)dJ-Lx - J h(x)dJ-Lx + 2 J (pn (gc+) (x) - h(x))-dJ-Lx 
x x x 

_ IIpn(g:) II-IIh ll +211 (pn(g:) -h)- II 

1 
< 1 - IIhl! + 2· 4"hll 

1 
- 1 - 2"hll for n ~ nl 

Similarly we obtain, 

Note from Remark 6.3 that 1 - ~IIh" > o. Thus (6.25) gives 

Ilpngll < cllPn (g:) -hll + cliP" (9c-) - hll 

< c(2 - IIhll) 
1 

- //g//(1 - 2//hll) for n ~ nl. 
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Hence from this equation, for any iI, 12 E D , we can find an integer nl such that 

By applying the same argument to the pair pnl iI, pnlh, we may find a second 

integer n2 such that 

After k repetition of this procedure, we have 

and we observe that since 0 < 1 - ! 11 hI! < 1, (1 - ! IIhll)k --+ 0 as k --+ 00 . Therefore 

by the "Sandwich theorem" lim IIpn1+ ... +nk(fl - 12)11 = 0, and since Ilpn(iI - 12)11 
n--->oo 

is a decreasing and bounded sequence of n this then implies (6.24). 

STEP 2 Next we construct a maximal lower-bound function for P. Thus, let 

p = sup{llhll : h is a lower bound function for P}. 

Since by assumption, from the first part of this proof, there is a nontrivial h, we 

must have 0 < p :s: 1. We then observe that for any two lower-bound functions 
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hI, h2 ' the function h = max (hI, h2) is also a lower-bound function. To see this, 

note that 

We now choose a sequence {hj} of lower-bound functions such that IIhjll --t p. 

Replacing, if necessary, hj by max ( hI, ...... , hj), we can construct an increasing 

sequence {hj } of lower functions, which will always have a limit (finite or infinite). 

This limiting function 

is also a lower-bound function since 

and by the Lebesgue dominated convergence theorem, 

Ilhj - h*II = J h(x)df-lx - J hj(x)df-lx --t 0 as J --t 00. 

X X 

Now the limiting function h* is also the maximal lower function. To see this, note 

that for any other lower function h, the function max (h, h*) is also a lower function 

and that 

which implies that h ::; h*. 
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Observe that, from Property M2, since (Pj)- :::; Pf-, for every m and n(n > m), 

II(pnf - pmh*)-II :::; Ilpm(pn-mf - h*)-II :::; II(pn-mf - h*)-II, 

which implies that, for every m, the function pmh* is a lower function. Thus, since 

h* is the maximal lower function, pm h* :::; h* and, since pm preserves the integral, 

pmh* = h*. Thus the function f* = II~:II is a density satisfying Pf* = f*· 

Finally, from (6.23), we have 

which implies from Definition 6.7 that {pn} is asymptotically stable .• 

In checking the conditions of Theorem 6.9, it is necessary to show that (6.23) is 

satisfied for all fED and, this is difficult to do. In fact it is sufficient to check that 

this is true only for an arbitrary class of functions f E Do CD, where the set Do is 

dense in D. (See Definition 2.23) 

6.5 Asymptotic Stability of the Markov Operator defined 
by a Stochastic Kernel 

In this section we show that Theorem 6.9 can be applied to operators P defined by 

stochastic kernels and, in fact, gives a simple sufficient condition for the asymptotic 

stability of {pn}. 
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Definition 6.11 Let (X, A, p,) be a measure space and K : X x X ~ R be measur-

able function that satisfies 

and 

0:::; K(x,y) 

J K(x, y)dx = 1 [dx = dp,x] 

x 

Any function K satisfying (6.26) and (6.27) is called a stochastic kernel. 

We now define an integral operator P by 

Pf(x) = J K(x,y)f(y)dy for fELl. 

X 

We observe the following properties of the operator P: 

(1) P is linear and nonnegative. Since we have that 

J Pf(x)dx - J dx J K(x, y)f(y)dy 
x x x 

J f(y)dy J K(x,y)dx 
x x 

- J f(y)dy, 
x 

(6.26) 

(6.27) 

(6.28) 

therefore P is a Markov operator. Particularly if X is a finite space and p, is a 

counting measure, then P is a stochastic matrix (refer to Example 6.1.) 

(2) PaPb is also an integral operator. 

Consider two Markov operators Pa and H and their corresponding stochastic ker-
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nels, Ka and K b. Thus, 

Pa(Hf) (X) 

- J Ka(X, z)(Pbf(z))dz 
x 

j Ka(x, z) {j Kb(z, y)f(y)dy } dz 

- j {j Ka(x, Z)Kb(Z, y)dz } f(y)dy. 

Then PaPb is also an integral operator with the kernel 

K(x, y) = J Ka(x, Z)Kb(Z, y)dz. 
x 

We denote this composed kernel K by 

and note that the composition has the properties: 

(a) Ka * (Kb * Kc) = (Ka * Kb) * Kc (associative law) and 

(b) Any kernel formed by the composition of stochastic kernels is stochastic. 

We are able to state the following corollary. 

(6.29) 

(6.30) 

Corollary 6.4 Let (X, A, J.l) be a measure space, K : X x X ---+ R a stochastic 

kernel, i.e. K satisfies {6.26} and {6.27}, and P the corresponding Markov oper­

ator defined by {6. 28}. Denote by Kn the kernel corresponding to pn. If, for some m, 

J iW Km(x, y)dx > 0, 
x 
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then {pn} is asymptotically stable. 

Proof:Let us fix m for which (6.31) holds. From the definition of Km, for every 

f E D(X) we have that 

pn f(x) = f Kn(x, y)f(y)dy. 
x 

Furthermore, from the associative property of the composition of kernels, 

so that 

If we set 

Kn+m(x, y) = J Km(x, z)Kn(z, y)dz, 
x 

f Kn+m(x,y)f(y)dy 
x 

f {[ Km (x, z)Kn(z, Y)dZ} f(y)dy. 

h(x) = inf Km(x,y), 
y 

then, since Kn is a stochastic kernel we have 

pn+mf(x) > h(x) f {[ K.(Z,y)dZ} f(y)dy 
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h(x) J f(y)dy 
x 

Futhermore, since f E D(X), 

J f(y)dy = 1, 
x 

and therefore, 

pn+m f(x) ~ h(x) for n 2': 1,1 E D(X). 

Thus 

which implies that condition (6.23) holds, thereby proving that {pn} is asymptoti-

cally stable .• 

Although condition (6.31) on the kernel is quite simple, it is seldom satisfied when 

K(x, y) is defined on an unbounded space. In such a case, where condition (6.31) 

is not satisfied, an alternative approach offers a way to examine the asymptotic 

properties of iterates of densities by Markov operators. 

Definition 6.12 Let G be an unbounded measurable subset of ad-dimensional Eu-

clidean space R d
, G c ~. We call any continuous nonnegative function V : G ---+ R 

satisfying for x E G, 

lim V(x) = 00 
Ixl->oo 

(6.32) 
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a Liapunov function. 

With this definition we now introduce the Chebyshev inequality through the 

following proposition. 

Proposition 6.5 Let (X, A, JL) be a measure space, V : X -+ R an arbitrary non-

negative measurable function, and for all fED set 

E(VIf) = .I V(x)f(x)dJLx. 
x 

IfGa = {x: V(x) < a}, then 

.I f(x )dJLx > 1 _ E(~If) (6.33) 
Ga 

(the Chebyshev inequality). 

Proof: Since V and fare nonnegative it follows that, 

E(VIf) > .I V(x)f(x)dJLx 
X\Ga 

> a .I f(x)dJLx 
X\Ga 

> a{l - .I f(x)dJLx} 
Ga 

thereby proving the Chebyshev inequality .• 

Now with the lower-bound Theorem 6.9 and the Chebyshev inequality, it is possible 

to prove the following theorem. 

131 



Theorem 6.10 If the kernel K(x,y) satisfies 

J inf K(x, y)dx > 0 for every r 2: 0, 
lyl::O;r 

G 

and has a Liapunov function V : G ~ R such that 

(6.34) 

J K(x, y)V(x)dx ~ aV(y) + 13, 0 ~ a < 1,13 2: O. (6.35) 
G 

then for the Markov operator P : LI(G) ~ LI(G), defined by (6.28) {pn} is asymp-

totically stable. 

Proof We first define the function 

En(VIf) = J V(x)pn f(x)dx (6.36) 
G 

that can be thought of as the expected value of V(x) with respect to the density 

pn f (x). From the definition of pn f, we have 

En(VIf) = J V(x)dx J K(x,y)pn-If(y)dy = J pn-If(y)dy J K(x,y)V(x)dx. 
G G G G 

(6.37) 

Substituting (6.35) into (6.37) yields 

En(VIf) < J pn-I f(y)dy[f3 + aV(y)]dy 
G 

13 + a J pn-If(y)V(y)dy 
G 
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Hence by an induction argument, we observe that from this equation we obtain that 

Even though Eo(VIf) is dependent on our initial choice of j, we observe that, for 

every j such that 

Eo(VIf) < 00, (6.38) 

there is some integer no = no(f) such that 

En(VIf) ::; (1 ~ a) + 1 for all n 2: no· (6.39) 

Now let 

Ca = {x E C: V(x) < a} 

so that from the Chebyshev inequality we have 

(6.40) 

Further, set 

(3 
a>l+( ). I-a 

From (6.39) we have 
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En(VIf) < ! (1 + f3 ) < 1 for n ~ no 
a - a (1- a) 

and thus (6.40) becomes 

j 
pn f(x)dx ~ 1 - ! (1 + _f3_) = E > 0 for n ~ no· 

a 1- a 
Ga 

Since V(x) _ 00 as Ixl - 00, there is an r > 0 such that V(x) > a for Ixl > r. 

Thus the set Ca is entirely contained in the ball Ixl ~ r, and we may write 

for all n ~ no. By setting 

j K(x, y)pn f(y)dy 
G 

> j K(x,y)pnf(y)dy 
Ga 

> inf K(x,y)jpnf(y)dy 
yEGa 

Ga 

> inf K(x, y) j pn f(y)dy 
lyl:S;r 

Ga 

> EinfK(x,y) 
lyl::S:r 

h(x) = E inf K(x, y) 
lyl:S;r 

in inequality (6.41) we therefore have from assumption (6.34), that 
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Ilhll>O. 

Finally, as a result of the continuity of V, the set Do C D of all f such that (6.38) is 

satisfied is dense in D. Thus all the conditions of Theorem 6.9 are satisfied, proving 

that {pn f} is asymptotically stable .• 

6.6 Examples of Asymptotic Stability 

Here we shall present two examples in which the Markov operator displays asymp-

totic stability. In the first example we discuss an alternative concept of asymptotic 

stability namely the existence of absorbing states. 

Example 6.1 Let X = {1, ... , n} be a finite set, fL a counting measure and P a 

stochastic matrix. We now prove that in an absorbing chain with a single absorbing 

state, for any density f, pn f approaches the density containing 1 in the component 

that corresponds to the absorbing state and zeros elsewhere. 

For the purpose of this example the events are described by the components of the 
n 

density f = (fI, . .. ,fn), fi ~ 0, L fi = 1. The components of the vector are called 
i 

states. (Fraleigh and Beauregard 1990) 

Definition 6.13 A state in a Markov chain is called absorbing if it is impossible 

to leave that state over the next time period. 
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Definition 6.14 A Markov chain is called absorbing if: 

(1) it contains at least one absorbing state. 

(2) it is possible to get from any state to an absorbing state in some number of time 

periods. 

Let 

Pn PIn 

p = Pkl pkn 

pnl pnn 

be any stochastic matrix, and 

be any initial density. Let k be an absorbing state. Then it follows that 

Pn ... 0 . .. pIn 

p= Pkl ... 1 . .. pkn 

pnl ... 0 . .. pnn 

where the k-th column contains 1 in the k-th row and O's everywhere else. 
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From Definition 6.14(2) we know that there exists m > 0 such that it is possible to 

reach the absorbing state from any state in m time periods. Rising P to the power 

m, we get 

, 
0 

, 
h Pn .. . ... PIn 

pmf= , 
1 

, 
fk PkI .. . ... Pkn 

, 
0 

, 
fn PnI .. . ... Pnn 

From the property of m let q = P~i be the smallest entry in the row of pm corre-

sponding to the absorbing state. We prove that q -1= o. 

Firstly, we note that the absorbing state is given by 

Suppose that q = O. This then implies that P~i = 0, and that there is no repre-

sentative from the state i in the absorbing state k after m time intervals, which is 

contrary to the definition of m. Hence q -1= O. 

We now prove that as n -t 00, 

o 

o 

Define, for any r ~ 1 
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then, using the definitions of q and the stochastic matrix we have the estimate 

> A + q(/I + .... + A-I + fk+I + .... + fn) 

(6.42) 

Similarly 

so that from (6.42) we obtain 

fk2) - I /1) 1 f,u) I (1) PkI 1 + .... + . k + .... + Pknfn 

> fP) + q(l - fP») 

fP)p+ q 

> ikp2 + qp + q (6.43) 
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Thus we make the induction conjecture: 

f(r) > f r (r-l + r-2 + + 1) J k - HP + q pp .. .. 

Suppose that this true for some r > 1. 

We therefore prove that : 

Hence, from Equation (6.44) we have 

ft+!) - I i r) I i r) 1 i r) I f(r) Pkl 1 + .... + Pk,k-l k-l + . k + .... + Pkn n 

> ft) + q(1 - fkr)) 

- ft)p+q 

> (Apr + q(pr-l + pr-2 + .... + 1))p + q 

- fkpr+! + q(pr + pr-l + .... + 1) 

Since p(r) --t 0 as r --t 00 we obtain from (6.44) that 

1 1 
lim pr > 0 + q-- = q­

r-+oo k 1 _ p q 

- 1 

(6.44) 

(6.45) 

In addition to this from the definition of the stochastic matrix we therefore obtain 

that 
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and from the "sandwich theorem" we can conclude that p~r) = 1 as r -+ 00. Our 

final result is that as r -+ 00 

o 

(6.46) 

o 

It can be shown that the convergence (6.46) holds not only for {pmr f}rEN but for 

the sequence {pn f}nEN. Thus in the notation of this chapter) we see that if P is a 

Markov operator generating an absorbing Markov chain, then { pn} is asymptotically 

stable by Definition 6.7. 

Example 6.2 An example of the applicability of results in this chapter, is a simple 

model for the cell cycle (Lasota and M ackey 1984). 

Proof Firstly, it is assumed that there exists an intracellular substance (mitogen), 

necessary for mitosis and that the rate of change of mitogen is governed by 

dd7 = g(m), m(O) = r 

with solution m(r, t). The rate g is a Cl function on [0, (0) and g(x) > 0 for x> O. 

Secondly, we assume that the probability of mitosis in the interval It, t+ 6t] is given 

by cjJ(m(t))6t + o(6t), where cjJ is a Cl function on [0, (0) such that 

cjJ(O) = ° and lim inf q(x) > 0, 
x~oo 
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h () ~ were q x = g(x). 

Finally, we assume that at mitosis each daughter cell receives exactly one-half of the 

mitogen present in the mother cell. 

Under these assumptions it can be shown that for a distribution fn-1(X) of mitogen 

in the (n - 1) generation of a large population of cells, the mitogen distribution in 

the following generation is given by 

where 

00 

fn(x) = J K(x,r)fn-1(r)dr, 
o 

K(x, r) = 2x 
{ 

0 

2q(2x) exp[- f q(y)dy] 

for x E [0, !r) 

for x E [!r, (0) 

Then, clearly K(x, r) satisfies conditions (6.26) and (6.27) and is, thus, a stochastic 

kernel. Hence the operator P : L1 --+ L1 defined by 

00 

Pf(x) = .I K(x, r)f(r)dr 
o 

is a Markov operator. 

We use Theorem 6.10 to show that there is a unique stationary density f* E D to 

which {pn f} converges strongly. First we examine the integral 

00 00 [2X 1 I xK(x,r)d.~ = ! 2xq(2x) exp -! q(y)dy d:£. 
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Integrating by parts, we have 

lXK(x,r)dX = - xexp [-lq(Y)dY[~ + 1 exp [-lq(Y)dY] dx. 

Since lim inf q(x) > 0, it follows that there is an E > 0 and d ~ 0 such that 
x->oo 

q(x) ~ E for x ~ d, 

and, as a consequence, 

Futhermore, 

1 exp [-1 q(y )dY] dx < 1 exp { -f[2x - max(r, dll} dx 
2 2 

1 
2E exp {-E[r - max(r, d)]} 

1 
< 2E exp(Ed). 

Consequently we obtain 

00 

J r 1 
xK(x , r)dx < - + - exp(Ed) 

o 2 2E 
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so that the kernel satisfies inequality (6.35) of Theorem 6.10. Hence it only remains 

to show that K satisfies (6 .34). 

Let ro 2: 0 be an arbitrary finite real number. Consider K(x, r) for 0 :::; r :::; ro and 

x 2: ~r. Then 

K(x , r) 2q(2x) exp [-1 q(Y)dV] 

> 2q(2x) exp [-1 q(Y)dV] 

and, as a consequence, 

Further, 

(X) 

J h(x)dx 
o 

for x < ~ro , 

for x 2: ~ro. 

]2q(2X) exp [-1 q(Y)dY] dx 

2 

> 0; 

and, hence K(x, r) satisfies condition (6.34) of Theorem 6.10. Thus, in the sim­

ple model of cell division, we know that there is a globally asymptotically stable 

distribution of mitogen. 
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7 An Introduction to Continuous Time Systems 

7.1 Introduction 

We have, thus far, introduced some of the basic techniques in the study of irregular 

behaviour from the theory of dynamical systems in a setting that was simple. This 

setting was that of an iterative procedure in a discrete time dynamical system. Our 

goal in this chapter is now to introduce the concept of continuous time systems since 

these systems are much easier to understand once the basic behaviour of discrete 

time systems has been established. 

We will also present an extension of many results previously found for discrete time 

systems, as well as the development of tools and techniques specifically designed for 

studying continuous time systems. 

7.2 Continuous Time Dynamical Systems 

In this section we define a continuous time dynamical system. We also establish the 

concepts of invariance, ergo dici ty, mixing, and exactness for continuous dynamical 

systems. In what follows we will be concerned with continuous dynamical systems. 
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We now state a more precise definition of a continuous dynamical system in a mea­

sure space that is also equipped with a topology. Let X be a topological Hausdorff 

space and A the a-algebra of Borel sets. (Note that a topological space is called a 

Hausdorff space if every two distinct points have nonintersecting neighbourhoods.) 

Definition 7.1 A dynamical system {SthER on X is a family of transformations 

St : X -t X, t ER, satisfying 

(a) So(x) = x for all x EX; 

(b) St(St'(x)) = SHt' for all x E X, with t, t' E R; 

(c) the mapping (t,x) -t St(x) from X x R into X is continuous. 

Definition 7.2 A semidynamical system {Sdt20 on X is a family of transfor­

mations St : X -t X, t E R+, satisfying 

(a) So(x) = x for all x EX; 

(b) St(St'(x)) = SHt/(X) for all x E X, with t, t' E R+; 

(c) The mapping (t, x) -t St(x) from X x R+ into X is continuous. 

Remark 7.1 The only difference between dynamical and semidynamical lies in 

property (b). We shall discuss only systems for t 2: 0, that is, semidynamical 

systems. Thus by a continuous dynamical system we will understand a family of 

functions {Sth20 that satisfies properties (a) to (c) of Definition 7.2 .• 

Remark 7.2 Property (b) simply means that the dynamics governing the evolution 

of the system are the same on the interval [0, t'] and [t, t + t1. From the algebraic 

point of view it means that the (semi-) dynamical system has a semi group structure 

and therefore in the linear case, it is called a semigroup of operators .• 

Next we define an invariant measure and an invariant set for a continuous dynamical 

system. Firstly we note from the continuity property (c) of Definition 7.2 that all 
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our transformations {St} are measurable, that is, for all A E A , t ~ 0, 

We now state the following definition. 

Definition 7.3 A measure /-l is called invariant under a family {St} of measur-

able transformations St : X ---t X if 

For a given finite invariant measure /-l, we can now formulate a continuous time 

analogue of the Birkhoff individual ergodic theorem. 

Theorem 7.1 Let /-l be a finite invariant measure with respect to the continuous 

dynamical system {Sdt2:o1 and let f : X ---t R be an arbitrary integrable function. 

Then the limit 

T 

f*(x) = lim T1 jf(St(x»dt 
T->oo 

(7.1) 
o 

exists for all x E X except perhaps for a set of measure zero. 

Proof: We prove this in a similar way to the corresponding discrete time result 

in Theorem 5.5. We shall not however provide a proof for an arbitrary integrable 

function, but shall assume that for almost all x E X the integrand f(St(x») is a 
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bounded measurable function of t and shall set 

1 

g(x) = .I f(St(x))dt 
o 

and assume at first that T is an integer, T = n . From property (b) of Definition 7.2 

we obtain 

Then the integral on the right-hand side of (7.1) may be written as 

1 T 
T J f(St(x))dt 

1 .In -:;; f(St(x))dt 
o o 

1 n-l k+l 
-:;; L .I f(St(x))dt 

k=O k 

1 n-l 1 

-:;; L .I f(St' (Sk(x)))dt' 
k=O 0 

1 n-l 

- L g(Sk(X)). 
n k=O 

However, Sk = SI 0 Sk-l = SI 0 •.. 0 SI = S:, so that 

n 
1 .I 1 n-l 

lim - f(St(x))dt = fun - " g(Slk(X)) 
n---+oo n n---+oo n L , 

o k=O 

and the right-hand side exists from Theorem 5.5. We call this limit f*(x). 
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HT is not an integer, let n be the largest integer such that n < T. Then we may write 

TnT If n If If T f(St(x))dt = T . -; f(St(x))dt + T f(St(x))dt. 
o 0 n 

As T -+ 00, then from Theorem 5.6 the first term on the right-hand side converges 

to f*(x) , as we have previously shown, whereas the second term converges to zero 

since f(St(x)) is bounded. This is so since n < T therefore T - 1 < n < T and 

n -+ 00 as T -+ 00 .• 

As in the discrete time case, the limit f*(x) satisfies two conditions: 

(l)f*(St(x)) = f*(x), a.e in x for every t ;:::: 0 and 

(2) f f*(x)dx = f f(x)dx. 
x x 

We now define ergodicity, mixing and exactness for continuous dynamical systems. 

To begin we note that for a continuous dynamical system {St h20 a set A E A is 

called invariant if 

S; 1 (A) = A for t ;:::: 0 (7.2) 

By using this notion of invariant sets, we can now define ergodicity for continuous 

dynamical systems. 

Definition 7.4 A continuous dynamical system {Sth20 consisting of nonsingular 

transfor-mations St : X -+ X is called ergodic if every invariant set A E A is such 

that either J1(A) = 0 or J1(X\A) = 0, that is, every invariant set A is trivial. 

Example 7.1 As an example of ergodicity we consider rotations on the unit circle , 

that we introduced in Example 5.5. Let X = [0, 21r) and 
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St(X) = x + wt( mod 271-). (7.3) 

St is measure preserving with respect to the Borel measure on the circle and, for 

w =I- 0, it is also ergodic. 

To prove this we first pick t = to such that '1: is irrational. Then the transformation 

Sto : X -+ X is ergodic, as was shown in Example 5.5. Therefore since Sto is ergodic 

for at least one to, every invariant sat A that satisfies St;;l(A) = A must be trivial 

from Definition 5.2. Thus any set A that satisfies (7.2) must likewise be trivial, and 

the semidynamical system {St h2:o with St given by (7. 8) is ergodic. 

Definition 7.5 A continuous dynamical system {Stlt2:O on a measure space (X, A, J.l) 

with a normalized invariant measure J.l is called mixing if 

(7.4) 

The example of the continuous dynamical system {Sth2:o consisting of rotation on 

the unit circle as defined in (7.3) is not mixing. This result can be proven as follows: 

Consider any two nontrivial disjoint sets A, B E A. 

Then, An St-I(B) is always zero for wt = 21T'n (n an integer), so that the left-hand 

side of (7.4) is always zero. On the other hand the right-hand side J.l(A)J.l(B) =I- 0, 

thereby showing that (7.4) does not hold in this case. 

Since continuous dynamical systems are defined for t 2: 0, they cannot be invertible 

and may therefore display exactness. 

Definition 7.6 Let (X, A, J.l) be a normalized measure space. A measure-preserving 

continuous dynamical system {St h2:o such that St (A) E A for A E A is called exact 
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if 

tim p,(St(A)) = 1 for all A E A, p,(A) > O. 
t ..... oo 

(7.5) 

Remark 7.3 As in discrete time systems, exactness of {Sth~o implies that {Sth~o 

is mixing .• 

7.3 Semigroups of the Frobenius-Perron and Koopman Op­

erators 

As we have observed in the discrete time case many properties of dynamical systems 

containing a large number of elements are more easily studied using suitable averages 

e.g. (probability) densities. In the discrete time case our system is generated by the 

iterates of a linear operator. In the continuous time case this approach leads to a 

semigroup of linear operators which thereby enables us to apply the techniques of 

linear functional analysis in our study. 

We now introduce the concept of the semi group of Frobenius-Perron operators. 

Suppose that a measure p, on X is given and that all transformations St of a con-

tinuous dynamical system {Sth~o are nonsingular, that is, 

for each AEA. 

Then, as in (4.9), the condition 

150 



J Ptf(x)dJ-Lx = J f(x)dJ-Lx for A E A 
A S;l(A) 

(7.6) 

for each fixed t 2:: 0 uniquely defines the Frobenius-Perron operator Pt : L1(X) -7 

L1(X), corresponding to the transformation St. Then, from (7.6) Pt has the following 

properties: 

a linear operator; 

(FP2)Ptf 2:: 0 if f 2:: 0; 

(FP3)f Ptf(x)dJ-Lx = J f(x)dJ-Lx for all f E L1. 
X X 

Thus, for every fixed t, the operator Pt : L1(X) -7 L1(X) is a Markov operator. 

It is also observed that the entire family of Frobenius-Perron operators Pt : L1 (X) -7 

L1(X) satisfies properties (a) and (b) of Definition 7.2. This is so since: 

(a) From So(x) = x, we have Sol(A) = A, it follows that for any A 

J Pof(x)dJ-Lx = J f(x)dJ-Lx = J f(x)dJ-Lx 
A Sol(A) A 

which implies that 

Pof = f for all f E L1(X). (7.7) 

(b)To show property (b) we first note that since 8t+t , - 8 (8) then S-1 
t t', t+t' = 

fAPt+t'f(x)dJ-Lx - f f(x)d ll 

J) Js;te(A)""'x 

= fs
t
"71(s;1(A» f(x)dJ-Lx 

151 



This implies that 

(7.8) 

and thus Pt satisfies the semigroup property of Definition 7.2. 

Hence, it can be called a semigroup of Frobenius-Perron operators. 

Definition 7.7 Let (X, A , fl) be a measure space. A family of operators satisfying 

properties FP1, FP2, FP3, (7. 7) and (7.8) is called a stochastic semigroup. Fur­

ther, if, for every f ELl and to 2: 0, 

lim IIPd - Ptofll = 0, t->to 

then we say that this semigroup is continuous. 

A very useful and important property of stochastic semigroups arising as a result of 

the contractive property of the Markov operator is that 

IIPtiI - Pthll ::; lIiI - 1211 for iI, 12 E L\ (7.9) 

and thus from the semigroup property in (7.8), the function t --+ IIPdl - Pthll is a 

nonincreasing function of t, since from (7.9) we observe that 
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We now use this property to prove a continuous time analogue of Theorem 6.9 

demonstrating the asymptotic stability of {Pth~o for large times. 

Theorem 7.2 Let {Pt}t~O be a semigroup of Markov operators, not necessarily con-

tinuous. Suppose that there exists an h E L\ h(x) 2: 0, Ilhl! > 0 such that 

lim IICPtf - h)-II = 0 for every fED. 
t---->oo 

(7.10) 

Then there exists a unique density f* such that Ptf* = f* for all t 2: O. Furthermore, 

lim Ptf = f* for every fED 
t---->oo 

(7.11) 

Proof: Take any to > 0 and define P = Pto so that Pnto = pn. Then, from (7.10) 

lim II(pn f - h)-II = 0 for each fED. 
n---->oo 

Hence, from Theorem 6.9, there is a unique f* E D such that P f* = f* and 

lim pnf = f* for every fED 
n---->oo 

Thus we have shown that Pd* = f* for the set {to, 2to, ...... }. We shall prove that 

Ptf* = f* for all t. For this we choose a particular time t', set f1 = Pt, f*, and note 

that f* = pnf* = Pntof*. Therefore, 

IIPt,(Pntof*) - f*1I 

I1 Pnto (Pt, f*) - f* 11 
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- Ilpn(Pt,!*) - !*II 

- IlpniI-!*II· (7.12) 

Thus, since, 

and the left-hand side of (7.12) is independent of n, we must have I I Pt, !* - !*II = 0, 

so, Pt'!* = !*. Since tf is arbitrary, we must have PtI* = !* for all t 2: O. 

Finally, to show (7.11), we choose a function! E D so that 11 Pt! - !* 11 = 11 Pt! - Ptl* 11 

is a non-increasing function of t . Then choose a subsequence tn = nto· Since 

Jl.~ IIPt
n
! - !*II = 0 it follows that we have a non-increasing function that con­

verges to zero on a subsequence, therefore 

lim IIPt! - !*II = 0 .• 
t--->oo 

Next, we define the semigroup of Koopman operators. 

Let! E LOO. Then, from Definition 4.9 of the Koopman operator the function Uti, 

defined by 

Ud(x) = !(St(x)), (7.13) 

is again a function in LOO. Equation (7.13) defines, for every t 2: 0, the Koopman 

operator associated with the transformation St. The family of operators {Uth::::o, 

defined by (7.13), satisfies all the properties of the discrete time Koopman operator 

in Definition 4.9. 

We now prove that {Ut h::::o is a semigroup. 

154 



(a) We observe that, Uof(x) = f(So(x)), or 

Uof = f for all f E Loo. 

(b) Furthermore, from (7.13) we have that 

Ut+ttf(x) 

which implies that 

f(St+tt (x)) 

f(St(Stt(x) ) 

Ut(U:!(x)), 

UHtt f - Ut (Utt f) for all f E Loo. 

Hence from (a) and (b) it follows that {Utlt;:::o is a semigroup. 

Finally, the Koopman operator is adjoint to the Frobenius-Perron operator, or 

< Ptf,g >=< f, Utg > for all f E L1 ,g E Loo and t 2: 0 (7.14) 

However, the family of Koopman operators is, in general, not a stochastic semigroup 

since Ut does not map L1 into itself unless St is measure-preserving (though it does 

map Loo into itself). In general the Koopman operator preserves neither the L1 nor 

Loo norm but satisfies the inequality 

IIUtllvX) = ess sup IUdl S; ess sup If I = IlfllvX ) . 
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The next definition provides a common notion for families of operators such as {Pt} 

and {Ut}. Let L be a space V. Let L be a space LP or in general an arbitrary 

Banach space. 

Definition 7.8 A family {Tt}t;:::o of operators Tt : L --+ L, defined for t ~ 0, is 

called a semigroup of contracting linear operators (or a semigroup of con­

tractions) if for each t, tf ~ 0, Tt satisfies the following conditions: 

(a) Tt(Alfl + A212) = AlTdl + A2Td2 for iI, 12 E L, AI, A2 E R, that is, Tt is a linear 

operator; 

(b) IITdIlL::; IIfllL for f E L; 

(c) Tof = f for f E L; and 

(d)Tt+t' f = Tt (Tt' f) for f E L. 

Moreover, if 

lim IITtf - TtofllL = ° for f E L, to ~ 0, t->to 

then this semigroup is called continuous. 

One may observe that the study of continuous time systems is more difficult than 

in discrete time systems. This is due to the continuity of processes over time. 

Corresponding formulations of discrete and continuous time properties may appear 

more complicated in the continuous case because of the use of integrals rather than 

summations, for example, in the Birkhoff ergodic theorem. However, we are able to 

define an important tool in the study of continuous time problems. It is called the 

infinitesimal generator and is defined as follows: 
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Definition 7.9 Let {Tdt20 be a semigroup of contractions. We define D(A) to be 

the set of all f E L such that the limit 

Af=limTt!-f 
t--->O t 

(7.15) 

exists, where the limit is considered in the sense of strong convergence. {Refer to 

Definition 2.21}. Thus {7.15} is equivalent to 

lim IIAf - Tt! - III = o. 
t ....... o t L 

The operator A : D(A) ~ L is called the infinitesimal generator. 

From (7.15) we observe that the subspace D(A) is a linear subspace and the operator 

A : D(A) ~ L is linear. 

In general, the domain D(A) of the generator A is not the entire space L. 

We now state a theorem that presents a relation between semi groups of contractions 

and infinitesimal generators. We first define the strong derivative of a function. 

Definition 7.10 Let u : 6 ~ L be a function, where 6 C R, and to E 6. We 

define the strong derivative u' (to) by 

'(t ) 1· u(t) - u(to) u 0 = lm , 
t ....... to t - to 

where the limit is considered in the sense of strong convergence. 

Hence we see that the value of the infinitesimal generator for I E D(A), AI, is 

simply the derivative of the function u(t) = Tt! at t = O. The following theorem 
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provides a more explicit relation between the strong derivative and the infinitesimal 

generator. 

Theorem 7.3 Let {Tt}t;:::o be continuous semigroup of contractions acting on L, and 

A : V(A) ~ L the corresponding infinitesimal generator. Further, let u(t) = Ttf for 

fixed! E V(A). Then u(t) has the following properties: 

(1) u(t) E V(A) for t 2: 0; 

(2) u'(t) exists for t 2: 0; and 

(3) u(t) satisfies the differential equation 

u'(t) = Au(t) for t 2: 0 (7.16) 

and the initial condition 

u(O) =!. (7.17) 

Proof: From our assumption the properties (1) - (3) are satisfied for t = O. 

We then consider t > O. Let to > 0 be fixed. From the definition of u(t), we have 

u(t) - u(to) Tt! - Tto! 
t - to t - to 

Since Tt = Tt-toTto for t > to, this differential equation may be written as 

u(t) - u(to) = fTJ
to 

(Tt-to! - !) 
1, for t > to. t - to t - to 

Since! E V(A), the limit of 

Tt-to! -! 
t - to 
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exists as t -+ to and gives Af. Thus the limit of (7.18) also exists and is equal to 

TtoAf. Similarly, if t < to, we have Tto = T/Tto-t and, as a consequence, 

u(t) - u(to) = Tt (Tto-d - f) for t < to 
t-to to-t 

(7.19) 

and 

IIU(t; = :(to) - T"At < liT, (T,,~,~ ~ f - Af l + IIT,Af - T"AfIIL 

< r"t~'~ / -Aflll, + IIT,Af - T"AfIIL 

Again, since TtAf converges to TtoAf as t -+ to, the limit of (7.19) exists as t -+ 0 

and is equal to TtoAf. Thus the existence of the derivative u'(to) is proved. We can 

therefore rewrite the (7.18) in the form 

u(t) - u(to) Tt-to(Ttof) - (Ttof) c 
----= . lort>to· 

t - to t - to 

Since the limit of the differential quotient on the left-hand side exists as t -+ to , we 

obtain 

u'(to) = ATtof, 

which proves that Ttof E V(A) and that u'(to) = Au(to) .• 

Remark 7.4 The main property of the set V(A) that follows directly from this 
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theorem is that, for f E V(A), the function u(t) = Ttf is a solution of (7.16) and 

(7.17) .• 

Since we have now developed the concept of the semigroup of the Frobenius-Perron 

operators and the notion of infinitesimal generators we can now examine applications 

of these semigroups in determining the invariance of a measure and the ergodicity 

of a transformation. 

Theorem 7.4 Let (X, A, f1,) be a measure space, and St : X -+ X a family of non-

singular transformations. Also let Pt : Ll -+ Ll be the Frobenius-Perron operator 

corresponding to {St h2:o. Then the measure 

f1,f(A) = J f(x)df1,x 
A 

is invariant with respect to {St} if and only if Ptf = f for all t 2 o. 

Proof: The proof is similar to that in Theorem 5.1. If f1,f is invariant, then 

which, from the definition of Pt, implies that Ptf = f. 

To proof the converse we apply the equality Ptf = f to f1,f(A) = J f(x)df1,x to obtain 
A 

that f1,f is invariant .• 

Remark 7.5 Now we examine the inter-dependence between App , the infinitesimal 

generator for the semi group of Frobenius-Perron operators, and the existence of an 

invariant measure. 
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Suppose that /LI is invariant. Then, from Theorem 7.4 we know that Ptf = f, and 

since 

. Ptf-f 
Appf=hm , 

t -+O t 

then Appf = O. Thus, if /LI is invariant then Appf = O. However, to show that 

if App f = 0, then /LI is invariant is not so easy since the proof requires that we 

pass from the infinitesimal generator to the semigroup. The solution to this problem 

lies in establishing the way in which semi groups are constructed from infinitesimal 

generators. We shall describe this in detail in the next section .• 

Next we investigate the way in which the semigroup of the Koopman operator is 

used to study the ergodicity of a continuous dynamical system {Sth~o. We state 

this in the following theorem. 

Theorem 7.5 A continuous dynamical system {Sth~o with nonsingular transfor-

mations St : X --+ X is ergodic if and only if the fixed points of {ut}t~O are constant 

functions. 

Proof: The proof is similar to that of Theorem 5.3. 

" =} " : Suppose that {St}t~O is not ergodic. Then, there is an invariant nontrivial 

subset Cc X, that is, 

St-1(C) = C for t ~ O. 

By setting f = le, we have 
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Since C is not a trivial set, f is not a constant function. Thus, if {Sth,2:0 is not 

ergodic, then there is a nonconstant fixed point of {Uth~o. 

" ~ " : Suppose that there exists a nonconstant fixed point f of {Utlt~o. Then it 

is possible to find a number r such that the set 

C = {x: f(x) < r} 

is nontrivial. Since for each t ~ 0, 

St-1(C) - {x: St(x) E C} = {x: f(St(x)) < r} 

{x: Ud < r} = {x : f(x) < r} 

- C, 

subset C is invariant, implying that {Sth~o is not ergodic. 

7.4 The Hille-Yosida Theorem 

We now state and discuss the applications of an important result that forms part of 

our analysis: the Hille-Yosida theorem. This result serves primarily to demonstrate 

the existence of a semigroup corresponding to a given linear operator. 

Theorem 7.6 (Hille- Yosidaj Let A: D(A) -* L be a linear operator, where D(A) C 

L is a linear subspace of L. In order for A to be an infinitesimal generator for a 

continuous semigroup of contractions, it is necessary and sufficient that the follow­

ing three conditions are satisfied: 
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(a) D(A) is dense in L, that is, every point in L is a strong limit of a sequence of 

points from D(A); 

(b) For each f E L, there exists a unique solution 9 E D(A) of the resolvent equation 

Ag - Ag = f; (7.20) 

(c) For every 9 E D(A) and A > 0, 

(7.21) 

Further, if A satisfies (a) to (c), then the semigroup generated by A is unique and 

is given by 

T,f = lim etA).f f E L 
t A-->OO ' , 

(7.22) 

where AA = AAR).., and R)..J = g (the resolvent operator) is the unique solution of 

Ag - Ag = J. 

(The meaning of etA). is explained in (7.31)) 

The proof of this theorem can be found in (Dynkin 1965 or Dunford and Schwartz 

1957). 

We now derive an expression which represents etA). by writing the operator A).. = 

AAR).. in different forms, each of which is useful in different applications. 

Firstly, if we substitute 9 = RAJ into (7.20) we have 

(7.23) 

Next we apply the operator R).. to both sides of (7.20) and by also using 9 = R)..J 

we obtain 
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>'RAg - RAAg = 9 for 9 E V(A). (7.24) 

Then from (7.23) and (7.24) we have 

RAAf = ARAf for f E V(A). (7.25) 

Re-arranging (7.23) we also obtain 

ARAf = (>.RA - I) f for f E L. (7.26) 

Where I is the identity operator (If = f for all f). Thus we have three possible 

representations for AA: 

(1) the original definition 

(7.27) 

(2) from (7.26) 

(7.28) 

(3) from (7.25) 

(7.29) 

The representations in (7.27) and (7.28) hold in the entire space L, whereas (7.29) 

holds in V(A). 

Now, from conditions (b) and (c) of the Hille-Yosida theorem, and also by using 

9 = RAf, it follows that 

IlfllL > >.IIR,\fIlL. 
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Hence from (7.28) and (7.30), 

IIAdllL IIA2R,d - A!IIL ~ IIA2R,dIIL + IIA!IIL 

< 2AII!IIL, 

so that the operator etA>. is defined as the series 

etA>. ! = f t~ A~!, 
n=O n. 

(7.31) 

which is strongly convergent for all t. (Strong convergence of the above series follows 

since ItA~ I < 00.) 

The Hille-Yosida has many applications. 

Suppose we have an operator A : V(A) ---* L that satisfies conditions (a) to (c) of 

the Hille-Yosida theorem, and such that the solution 9 = R:d ~ 0 for ! ~ o. 

(a) Then, as we shall show next, Tt! ~ 0 for every ! ~ o. 

By substituting from (7.28) we have 

where from (7.31) 

Further, for any ! ~ 0, RA! ~ O. Therefore, by induction, R~f ~ O. 

(7.32) 

(7.33) 

Thus, from (7.33), since A > 0 and t ~ 0, exp(tA2 RA)! ~ 0 and so, from (7.32), 

etA>.! ~ O. From (7.22), we finally have Tt! ~ 0 since it is the limit of nonnegative 

functions . 
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(b) Now suppose that the operator )"R).. preserves the integral, that is, 

).. J R)..f(x)df1x = J f(x)df1x for all f E L\)" > O. (7.34) 
x x 

We now show that these properties imply that 

J Ttf(x)df1x = J f(x)df1x, f 2:: 0, t 2:: o. 
x x 

Since the series in (7.33) is strongly convergent, and by using (7.34), we obtain 

00 tn)..n 

~ 7! i f(x)df1x 

et)" J f(x)df1x. (7.35) 
x 

Then, from (7.32) and (7.35), 

J Ttf(x)df1x 
x 

J f(x)df1x 
x 

thereby showing that IITdl1 = Ilfll. 

Hence, from the above results in (a) and (b) we have the following corollary. 
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Corollary 7.1 Let A : V(A) ~ Ll be an operator satisfying conditions (a) to (c) 

of the Hille- Yosida theorem. If the solutions 9 = R>..j of (7.20) is such that )"RA is a 

Markovoperator, then {Tth2:o generated by A is a continuous semigroup of Markov 

operators. 

In fact, in this corollary only conditions (a) and (b) of the Hille-Yosida theorem need 

to be checked, as condition (c) is automatically satisfied for any Markov operator. 

This is so since if we set f = )..g - Ag and write inequality (7.21) in the form 

then, from the contractive property of the Markov operator the above inequality is 

always satisfied if )"RA is a Markov operator. 

Another important application of the Hille-Yosida theorem is that it provides an 

immediate and simple way to demonstrate that AFP = 0 is a sufficient condition 

that J-Lf is an invariant measure as discussed in Remark 7.5. 

Thus, A! = 0 implies, from (7.29), that AA! = 0 and from (7.31) 

This, combined with (7.22) and Theorem 7.4 gives 

Tt! =! for all t 2: O. 

Thus, in the special case AFP! 

invariant. 

o this implies that Pt! - ! and thus J-Lf IS 
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Finally, we investigate one more application of the Hille-Yosida theorem. Thus far, 

one of the main uses of this theorem was to demonstrate the existence of a semigroup 

corresponding to an infinitesimal generator A, and to study the properties of this 

semigroup and the resolvent equation (7.20). Our next objective is to determine the 

semigroup corresponding to an infinitesimal generator A. 

Let X = Rand L = Ll(R), and for f E L1, consider the infinitesimal generator 

Af = d
2
f 

dx2 
(7.36) 

Let V(A) be the set of all fELl such that f"(x) exists almost everywhere, is 

integrable on R and is such that 

1'(x) = f(O) + fox f"(S)ds. 

Hence V(A) is the set of all f such that f' is absolutely continuous and f" is integrable 

on R. This then implies that l' can always be determined since f' is differential and 

integrable. 

We will show that there exists a unique semi group corresponding to the infinitesimal 

generator A. To do so we must show that the three conditions of the Hille-Yosida 

theorem are satisfied. 

(l)V(A) is dense in Ll. 

(2) From (7.21) and (7.36) the resolvent equation has the form 

(7.37) 

which is a second order differential equation in the unknown function g. Using stan­

dard arguments, the general solution of (7.37) may be written as 
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where a = .j).., and Cl, C2 ,xo and Xl are arbitrary constants. Next we observe 

that since the functions e-a(x-y) and ea(x-y) are continuous functions on the inter-

vals [xo, x] and [x, Xl] respectively, they are therefore integrable over these intervals. 

Furthermore, for f(y) E Ll( -00, +(0) 

(1) if Y ::; x and a > 0, then - a(x - y) ::; 0, so that 

le-a(x-y)I ::; 1 "* le-a(x-y) f(y)1 ::; If(y)l. Hence, 

x x 
lim J e-a(x-y) f(y)dy = J e-a(x-y) f(y)dy. 

~--oo~ -00 

Similarly, 

(2) if y > x, and a < 0, then a(x - y) > ° so that 

lea(x-y)I > 1,,* lea(x-y) f(y)1 > /f(y)/, and therefore 

Xl +00 

lim J ea(x-y) f(y)dy = J ea(x-y) f(y)dy. 
Xl-+OO X X 

Then, by the use of improper integrals we are able to assign Xo = -00 and Xl = +00. 

Now set 

(7.38) 

so that the solution to (7.37) can be written in the more compact form 

(7.39) 

It follows that K(x-y)f(y) is integrable over Rx R, so by (7.38), Fubinis' Theorem 

2.3 and the equality a = .j).. 
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00 00 

J K(x - y)dx J f(y)dy 
-00 -00 

00 

~ J f(y)dy. (7.40) 
-00 

Thus, since neither e-ocx nor eOCX are integrable over R, a necessary and sufficient 

condition for f to be integrable over R is that Cl = C2 = O. In this case we have 

shown that the resolvent (7.36) has a unique solution 9 E L1 given by 

g(x) = R>.f(x) = 1.: K(x - y)f(y)dy, (7.41 ) 

and thus condition (b) of the Hille-Yosida theorem is satisfied. 

Combining (7.40) and (7.41) it follows that the operator >"R>. preserves the integral. 

Moreover, >"R>.f 2: 0 if f 2: 0, so that >"R>. is a Markov operator. Thus condition (c) 

of the Hille-Yosida theorem is satisfied, and we have shown that the operator ~ 

is an infinitesmal generator of a continuous semigroup {1th2:0 of Markov operators, 

where 

(7.42) 

and R>. is defined by (7.38) and (7.41). 
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8 An Application 

8.1 Introduction 

Our main objective in this chapter is to demonstrate the use of the theory that 

we have developed in our study thus far. We discuss a system that is governed 

by a Poisson process and show that the equation governing its dynamics can be 

alternatively derived using methods of linear kinetic theory. We call this equation 

the abstract linear Boltzmann equation of kinetic theory. Finally we examine some 

properties of the linear Boltzmann equation which enable us to describe asymptotic 

behaviour of the system. 

8.2 The Abstract linear Boltzmann Equation 

In this section we provide two approaches to derive the linear Boltzmann equation. 

One is based on the analysis of a deterministic discrete time process coupled with a 

Poisson process and the other by using a hypothetical system of N particles. 

Refer to Section 2.4 so as to recall key concepts namely stationary independent 

increments, random variables, stochastic process and counting process. 
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Definition 8.1 A Poisson process is a counting process {Nth:::::o with stationary 

independent increments satisfying: 

(a) No = 0; 

(b) lim(i) prob {Nt 2: 2} = 0; 
t-tO 

(c) The limit 

exists and is positive; and 

. 1 
). = hm- prob {Nt = I} 

t-tO t 

(d) prob {Nt = k} as functions of t are continuous. 

As an example of a Poisson process we shall consider a decay of a radioactive sub-

stance placed in a chamber equipped with a device for detecting and counting the 

total number of atomic disintegrations N t that have occurred up to a time t. It 

is also assumed that the amount of substance must be sufficiently large such that 

during the time of observation there is no significant decrease in mass. This pro-

cess has stationary independent increments, that is, the number of disintegrations 

that occur during any given interval of time is independent of the number occurring 

during any other interval. It therefore satisfies the Markovian property. 

In addition we observe that for this example we may explain conditions (a) to (c) 

of Definition 8.1 as follows: 

(a) simply means that we have zero (no) disintegrations when we start to count at 

t = o. 

(b) means that we cannot have two or more disintegrations in a very short space of 

time. 

( c) means that we will most definitely have at least one disintegration in a short 

space of time. 
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We now derive an explicit formula for 

Pk(t) = prob {Nt = k} (8.1) 

We do this in two steps: 

STEP(l) We derive an ordinary differential equation for Pk(t). 

Firstly we rewrite conditions (a) to (c) of Definition 8.1 using the notation of (8.1): 

Po(O) = 1, (8.2) 

1 00 

lim - LPi(t) = 0, 
t---+O t i=2 

(8.3) 

and 

(8.4) 

To obtain the differential equation for Pk(t), we start with Po(t) and note that 

Po(t + h) prob {Nt+h = O} 

prob {Nt+h - Nt + Nt - No = O} 

Then, since Nt is not decreasing in time, it follows that (NHh - Nt) + (Nt - No) = 0 

if and only if (NHh - Nt = 0) and (Nt - No) = O. Thus, using the property of 

stationary independent increments we have 

po(t + h) prob {(Nt+h - Nt) = 0 and (Nt - No) = O} 

prob {NHh - Nt = O}prob {Nt - No = O} 
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_ prob {Nh - No = O}prob {Nt - No = O} 

- Po(h)Po(t) 

From (8.5) above we obtain 

po(t + h) - po(t) = po(h) - 1 (t) 
h h Po 

00 

Since L:= Pi(t) = 1, we have 
i =O 

po(h) - 1 
h h 

_ _Pl(h) _ ! tpi(h) 
h h i=2 

and thus by taking the limit as h -+ 0 of both sides of (8.6) we obtain 

dpo(t) = -APo(t) 
dt 

00 

where from (8.3) and (8.4) A = lim t L:= pi(t). 
t--->O i=l 

(8.5) 

(8.6) 

(8.7) 

We can now derive the differential equation for Pk(t) in a similar manner. Thus 

Pk(t + h) - prob{NHh = k} 

prob{NHh - N t + N t - No = k} 

- prob{Nt - No = k and Nt+h - N t = O} 

+ prob{ N t - No = k - 1 and NtH - Nt = 1} 
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k 

+ Lprob{Nt - No = k - i and Nt+h - Nt = i} 
i=2 

k 

Pk(t)Po(h) + Pk-I (t)PI (h) + LPk-i(t)Pi(h). 
i=2 

Again as above in (8.6) we have 

and taking the limit as h --+ 0 we obtain 

(8.8) 

STEP(2) Our next step is to solve the differential equations (8.7) and (8.8). 

The initial conditions for Po(t) and Pk(t), k 2: 1, are just Po(O) = 1 (by definition), 

and this immediately gives Pk(O) = 0 for all k 2: 1. Thus, from (8.7) we have 

(8.9) 

Substituting this into (8.8) when k = 1 gives 

dpI(t) = -,\ (t) +,\ ->.t 
dt PI e, 

whose solution is 

Repeating this procedure for k = 2, 3, ...... we find, by induction, that 
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() 
(At)k -At 

Pk t = -,;re . 

This therefore shows Pk(t) as a function of t and hence the dependence of the process 

on time. 

Subsequently, we now consider the following problem: 

given an initial distribution of points x E X , with density f, how does this distri­

bution evolve in time? We denote this time-dependent density by u(t, x ) and set 

u(O, x) = f(x) . 

Let S : X --+ X be a non-singular transformation on a measure space (X, A, f.1) 

coupled with a Poisson process {Nth~o such that the times at which the transfor-

mation S operate are dependent on the Poisson process, that is, each point x E X 

is transformed into SNt (x). 

Since the dynamics of our system is stochastic, this again allows us to build our 

derivationf,3 based on calculating the probability of an arbitrary outcome. We begin 

by calculating the probability that SNt(X) E A for a given set A C X and time 

t > O. This probability depends on two factors: the initial density f and the 

counting process {Nt }. 

This means that we need to calculate the measure of the set 

{(w, x) : SNt(w)(x ) EA} (8.10) 

To do this we define the product space (see Definition 2.18) n x X given by 

n x X = {(w,x): wE n,x E X} 
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that contains all sets of the form (8.10). In the space n x X we define a product 

measure (see Theorem 2.2) that, for the sets C x A, C E F, A E A, is given by 

Prob(C x A) or 

Prob(C x A) = prob(C)J1'!CA), (8.11) 

where, as usual, 

ILf(A) = J f(x)dILx. 
A 

This measure is denoted by "Prob" since it is a probability measure. We now calcu-

late the measure of the set in (8.10). This set maybe written as the union of disjoint 

sets as follows: 

<Xl 

U {Nt(w) = k, Sk(X) EA} 
k=O 

<Xl 

U {Nt(w) = k} x {Sk(x) EA}. 
k=O 

Thus using (8.1) and the definition of the Frobenius-Perron operator, the measure 

of this set is 

<Xl 

Prob{ SNt EA} L Prob{Nt(w) = k, Sk(x) EA} 
k=O 

<Xl 

- Lprob{Nt(w) = k}ILf(X E S-k(A)} 
k=O 

<Xl 

LPk(t) J f(x)dILx 
k=O S-k(A) 
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'fPk(t) j pkf(x)d/-Lx 
k=O A 

(8.12) 

so that 

Prob{SNt EA} = j'fPk(t)Pkf(x)d/-Lx 
A k=O 

(8.13) 

for A E A, where as before, P denotes the Frobenius-Perron operator associated 

with the non-singular transformation S : X --+ X. (Note that we can change the 

00 

order of integration and summation in (8.13) since Ilpkfll = 1 and L Pk(t) = 1.) 
k=O 

Then, the integrand on the right-hand side of (8.13) is the density u(t,x): 

00 

u(t, x) = L Pk(t)pk f(x). (8.14) 
k=O 

The sequence on the right-hand side of (8.14) is strongly convergent in L 1 . Differ­

entiating (8.14) with respect to t and using (8.8), we have 

au(t, x) 
at 

00 00 

-A LPk(t)pk f(x) + A L Pk_1(t)pkf(x). 
k=O k=l 

Since the last two series are strongly convergent in L1, the initial differentiation was 

correct. Thus by substituting (8.8) and (8.14) we have 

au(t, x) 
at 

00 

-AU(t,X) + A LPk(t)pk+1f(x) 
k=O 

00 

- -AU(t,X) + APLPk(t)pkf(x) 
k=O 

-AU(t, x) + APU(t, x). 
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Therefore' u( t, x) satisfies the differential equation 

au(t, x) 
---'-- = ->..u(t,x) + >"Pu(t,x) 

at 

with, from (8.14) and (8.2), the initial condition 

00 

u(O, x) - po(O)po f(x) + L Pk(O)pk f(x) 

f(x) + 0 

- f(x). 

k=l 

(8.15) 

Next we aim to obtain a more" intuitive" derivation of the equation for u( t, x) based 

on the kinetic theory of interacting particles. 

Suppose that we have a system consisting of N particles enclosed in a container, 

where N is a large number. Each particle may change its velocity x = (VI, V2, V3) 

from x to S (x) only by colliding with the walls of the container. (We are considering 

the linear case.) 

We want to determine how the velocity distribution of particles evolves with time. 

Thus we must determine the function u(t, x) such that 

N ju(t,x)dx 
A 

is the number of particles having, at time t, velocities in the set A. 
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The change in the number of particles, whose velocity is in A, between t and t + 6.t 

is given by 

N J u(t + 6.t, x)dx - N J u(t,x)dx. 
A A 

(8.16) 

From our assumption, such a change can only take place through collisions with 

the walls of the container. Choose 6.t to be sufficiently small so that a negligible 

number of particles make two or more collisions with a wall during 6.t. Thus, the 

number of particles striking the wall during a time 6.t with a velocity in A before 

the collision and therefore having velocities in S (A) after the collision is 

N )'6.t J u( t, x )dx, 
A 

(8.17) 

where )'N is the number of particles striking the walls of the container per unit 

time. In this idealized, abstract example we neglect the important physical fact 

that the faster particles are striking the walls of the container more frequently than 
I 

the slower particles. 

Conversely, to find the number of particles whose velocity is in A after the collision, 

we must calculate the number having velocities in the set S-l(A) before the colli­

sion. (That is, the state (in this case velocity) of the particle at t = n - 1.) Again, 

we assume 6.t to be sufficiently small to make the number of double collisions by 

single particles negligible, we have 

N)'6.t J u(t,x)dx. (8.18) 
S-l(A) 

Hence the total number of particles with velocity in the set A over a short time 6.t 

is given by the difference between (8.17) and (8.18) 
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N)"6t J u(t,x)dx - N)"6t J u(t,x)dx. 
S-l(A) A 

(8.19) 

By combining (8.16) with (8.19), we have 

N J [U(t + 6.t, x) - U(t, x)] dx = )"N 6.t { j U(t, x)dx - j U(t, X)dX} , 
A S-l(A) A 

and, since 

j U(t, x)dx = j PU(t, x)dx, 
S-l(A) A 

where P is the Frobenius-Perron operator associated with S, we have 

N j[u(t + 6.t,x) - u(t,x)]dx 
A 

)"N 6.t j[-u(t, x) + Pu(t, x)]dx. 
A 

(8.20) 

Equation (8.20) above is exact to within an error that is small compared to 6.t. By 

dividing (8.20) through by 6t and passing to the limit 6t -+ 0, we obtain 

J au(t,x) J at dx=).. [-u(t,x)+Pu(t,x)]dx, 
A A 

which gives 

ou(t, x) 
at = -)..u(t, x) + )..Pu(t, x). 
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Thus we again arrived at Equation (8.15). 

In these two approaches we see how uncertainty (and therefore probability) appears 

in the study of deterministic systems. 

In this example we adopted a simplifying assumption that the particle upon striking 

the wall, changed its velocity from x to S(x ), where S : X -+ X is a point-to-point 

transformation. A more realistic point of view would be to assume that the change in 

velocity is not uniquely determined but another probabilistic event. Thus, if before 

the collision the particles have a velocity distribution with density g, then after the 

collision they have a distribution with density Pg, where P : Ll(X) -+ Ll(X) is a 

Markov operator. 

As before, we assume that u( t, x) is the density of the distribution of particles having 

velocity x at time t, so 

N J u(t,x)dx 
A 

is the number of particles with velocities in A. Once again, 

)'N 6.t J u( t, x )dx 
A 

is the number of particles with velocity in A that will collide with the walls in a 

time 6.t, whereas 

)'N 6.t J Pu(t, x)dx 
A 
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is the number of particles whose velocities go into A because of collisions over a time 

6t. Thus, 

-AN~t J u(t,x)dx + AN6t J Pu(t,x)dx 
A A 

is the net change, due to collisions over a time 6t in the number of particles whose 

velocities are in A. 

Combining this result with (8.16), we immediately obtain the balance equation 

(8.20), which once again leads to (8.15). The only difference is that P is no longer a 

Frobenius-Perron operator corresponding to a one-to-one deterministic transforma-

tion S, but is an arbitrary Markov operator. 

Remark 8.1 Since in the above derivations we have used arguments that are used 

to derive the Boltzmann equation, we call (8.15) a linear abstract Boltzmann 

equation corresponding to a collision (Markov) operator P. Note that x corre-

sponds to the particle velocity and not to position. Furthermore, the equation is 

called linear since we assume that our only source of change for particle velocity is 

collisions with the wall, that drift and external forces are not considered .• 

8.3 Solutions of the Linear Boltzmann Equation 

In order to solve the linear Boltzmann equation we let the solution be the function 

u(t,x). 
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Then, by writing (8.15) in the form 

du 
dt = (P-1)u, (8.21 ) 

where P is a given Markov operator and I is the identity operator, we can apply 

the Hille-Yosida Theorem 7.6 to the study of (8.15) . 

We show that conditions (a) to (c) of the Hille-Yosida theorem are satisfied by the 

linear Boltzmann equation using the operator A = (P - 1). 

(a) Firstly, since A = P - I is defined on the whole space Lt, V(A) = Ll and 

property (a) satisfied. 

(b) To show property (b) we rewrite the resolvent equation >..f - Af = g using 

A = P - I to obtain 

g - >..f - (P - 1)f 

- >..f - Pf + f 

- (>..+l)f-Pf (8.22) 

(8.22) may then be solved by using the method of successive approximations. Start­

ing from an arbitrary fo we define fn by 

(>.. + l)fn - Pfn-l = g, 

where fn --7 f and fn-l --7 f so that, 

f - 1 pnf ~ 1 k-l 
n-(>"+l)n JO+6(>"+1)k P g. (8.23) 

in which C!l) --70 and IIpnloll ::; 11111. 
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From the contractive property of the Markov operator 11 pk gll ::; Ilg 11 and since 

1_1 _1 < 1 the series in (823) is therefore convergent, and the unique solution f of 
(.HI)' . 

the resolvent equation (8.22) above is 

(8.24) 

We note that the method of successive approximations applied to to an equation 

such as (8.22) will always result in a solution (8.23) that converges to a unique limit, 

as n -+ 00, when IIPII =::; ,\ + 1. 

( c) Finally, to show that property of the Hille-Yosida theorem is satisfied, we inte-

00 

grate (8.24) over the entire space X. It is to be noted that L (l;,\)k = t + 1. 
k=O 

J R,\g(x )dJ-lx 
x 

00 1 
- t; (,\ + 1)k 1 g(x)dJ-lx 

- ± J g(x)dJ-lx 
x 

1 
,\' 

where we used the integral preserving property of the Markov operator. Thus, 

J '\R,\g(x)dJ-lx = 1, 
x 

and, since ,\R,\ is linear, nonnegative, and also preserves the integral, it is a Markov 

operator. Thus, from Corollary 7.1 condition (c) is satisfied. 
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Therefore, by the Hille-Yosida theorem, the linear Boltzmann equation (8.15) gen­

erates a continuous semigroup of Markov operators, {Pth~o. 

To determine an explicit formula for Pt, we first write 

A>.f - )"AR>.f = )..(P - I)R>.f 

~ 1 k-l 
- )"(P-I)~()"+l)kP f 

~ 1 pkf ).. ~ 1 pk-l f 
- ).. ~ ().. + l)k - ~ ().. + l)k ' 

so that 

Thus, by the Hille-Yosida theorem and (7.21), the unique semigroup corresponding 

to A = P - I is given by 

Pt! = et(P-I) f, (8.25) 

and the unique solution to (8.15) with initial condition u(O, x) = f(x) is 

u(t,x) = et(P-I) f(x). (8.26) 

Remark 8.2 Although we have determined the solution of (8.15) using the Hille-

Yosida theorem, it is possible to obtain the same result by applying the method 

of successive approximations to (8.21). However our derivation illustrates the tech-

niques involved in using the Hille-Yosida theorem and also establishes that (8.15) 

generates a continuous semigroup of Markov operators .• 
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In addition to the existence and uniqueness ofthe solution of (8.15) other properties 

of Pt may be demonstrated. 

Property 1. From inequality (7.9) it follows that , given /1,12 E Ll , the norm 

is an nonincreasing function of time t. 

Property 2. If for some fELl the limit 

f* = lim Af t->oo 
(8.27) 

exists, then for the same f* 

(8.28) 

Property 3. The operators P and A commute, that is, P Pd = PtP f for all fELl. 

Property 4. If for some fELl the limit (8.27) , f* = limt->oo Af, exists, then f* is 

a fixed point of the Markov operator P , that is,P f * = f*· 

Property 5. If P f* = f* for some f* E Ll , then also Af* = f*· 

Our objective in determining behaviour to our evolving system is to be able to 

identify, using the results that we have established thus far, patterns of behaviour: 

be they regular or irregular. We shall now show that A always converges to a limit. 

Recall our definitions of precompactness Definition 6.1 and Definition 6.2. 

Theorem 8.1 If the trajectory {Pd} is weakly precompact, then there exists a fixed 

point of P. 
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Proof: Suppose that {Pd} is weakly precompact, then there exists a sequence {tn } 

such that 

lim itf = f* weakly 
n-+oo 

(8.29) 

exists. From Property 2 this implies the weak convergence of 

(8.30) 

However, from (8.28) we have 

lim Ptn(f - Pf) = 0, 
n-+oo 

and, thus, from (8.29) and (8.30), we have 

proving that there exists a fixed point of P. We also observe from Property 5 of Pt 

that this implies that Pd* = f*·. 

Theorem 8.2 For a given fELl , if the trajectory {Pd} is weakly precompact, 

then Pd strongly converges to a limit. 

Proof: The proof is similar to that of Theorem 6.1 in the discrete time case. 

Let fELl. Suppose that the trajectory {Pd} is weakly precompact. Then from 

Theorem 8.1 Pd converges weakly to an f* that is a fixed point of P and Pt. Write 

f in the form 
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Suppose that for every E > ° the function f - f* may be written in the form 

f - f* = Pg - g + r, (8.31) 

where g E L1 and Ilrll ~ E. 

We prove that this representation is possible. From (8.31) we have 

But Af* = f* and, thus, 

From (8.28) it follows that limt--+oo AU - Pf) = 0, so that, the first term on the 

right-hand side approaches zero as t ~ 00, whereas the second term is not greater 

than E. Thus, 

for t sufficiently large, and, since E is arbitrary, 

thereby proving that Af converges strongly to f* when (8.31) is true. 
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Suppose that (8.31) is not true. Then this implies that 

j - j* rf. (P - I)Ll(X). 

This, in turn, implies that from the Hahn-Banach theorem (see Proposition 6.2) 

that there is a go E Loo such that 

(8.32) 

and 

< h,go >#- 0 

for all h E (P - I)Ll(X). In particular 

< (P - I)pnj,go >= 0, 

since (P - I)pn j E (P - I)Ll(X), so 

for n = 0, 1, .... Thus, by induction, we have 

< pnj, go >=< j,go >. (8.33) 

Furthermore, since by definition Aj = e-t f t~ pn j where e-t f t n = 1 we may 
O n. n' , n= n=O . 

multiply both sides of (8.33) by e-tt~ and sum over n to obtain 
n. 
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or 

< Aj,90 >=< j,90 > . (8.34) 

Substituting t = Tn and taking the limit as t ~ 00 in (8.34) gives 

and, thus, 

< j* - j,90 >= 0, 

contradicting (8.32). Thus (8.31) is true .• 

8.4 The Effect of the Properties of the Markov Operator on 

Solutions of the Linear Boltzmann Equation 

To conclude this chapter we state and demonstrate some important results regarding 

the effect of the properties of the Markov operator P on the convergence of solutions 

We begin with the following corollary. 
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Corollary 8.1 If for fELl there exists agE Ll such that 

(8.35) 

then the (strong) limit 

lim Af t->oo 
(8.36) 

exists. That is, either Pt! is not bounded by any integrable function or A is strongly 

convergent. 

Proof: From the first criterion for precompactness (see Section 6.2) it follows that 

{Af} is weakly precompact. Thus, from Theorem 8.1 the limit (8.36) exists .• 

The next corollary is a direct consequence from a property of the Markov operator. 

Corollary 8.2 If the Markov operator has a positive fixed point f*, f*(x) > 0 a.e., 

then the strong limit, limt->oo Af, exists for all fELl. 

Proof: The proof follows in two steps. 

Firstly we note that when the initial function f satisfies 

(8.37) 

for some sufficiently large constant c > 0, and since f* is a fixed point of P we have 
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Multiply both sides bye-t !:; and sum the result over n to get 

The left-hand side of this inequality is just IAfl, so that 

and, since Af is bounded, Corollary 8.1 implies that the strong limit limt->oo Pt! 

exists. 

Secondly, we consider the more general case when the initial function f does not 

satisfy (8.37). Define a new function by 

fe(x) = {f(X) if If(x)1 ::; cf*(x); 
o if If(x)1 > cf*(x). 

It follows from the Lebesgue dominated convergence theorem that 

lim life - fll = o. 
e->oo 

Thus, by writing f = fe + f - fe, we have 

Since fe satisfies 
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from (8.37) we know that in this case {Pde} converges strongly. Now take E > O. 

Since {Pde} is strongly convergent, there is a to > 0, which in general depends on 

c, such that 

(8.38) 

Further, 

IIFtf - Pdell :S Ilf - fell :S E for t 2 0 (8.39) 

for a fixed but sufficiently large c. From (8.38) and (8.39) it follows that 

I I Ft+t,f - Pdll :S 3E for t 2 to, t
f 2 0, 

which is the Cauchy condition for {Pd}. Thus {Pd} also converges strongly .• 

Remark 8.3 Although the existence of a limit is interesting, from the point of view 

of applications we would like to know what the limit is and whether it is unique. In 

the next corollary we give a sufficient condition for this .• 

Corollary 8.3 Assume that in the set of all densities fED the equation P f = f 

has a unique solution f* and f* (x) > 0 a. e. Then, for an initial density, fED 

(8.40) 

and the convergence is strong. 
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Proof: From Corollary 8.2 the limt-+oo Af exists and is also a nonnegative nor­

malized function. However, from Property 4 of A (see Section 8.3), we know that 

this limit is a fixed point of the Markov operator P. Since, by our assumption, the 

fixed point is unique it must be f*·. 

We now compare and relate these results to those which identify and define the 

irregular behaviour of dynamical systems as discussed in Chapter 5. 

In the special case that P is a Frobenius-Perron operator for a non-singular trans­

formation S : X -* X, the condition Pf* = f* (from Theorem 5.1) is equivalent to 

the fact that the measure 

ILl. (A) = J f*(x)dILx 
A 

is invariant with respect to S. Thus, in this case, from Corollary 8.2 the existence 

of an invariant measure IL 1* with a density f* (x) > 0 is sufficient for the existence 

of the strong limit (8.36) of the solution of the linear Boltzmann equation (8.15). 

Recall from Theorem 5.5 that for ergodic transformations f* is unique, we can thus 

summarize these results in the following corollary. 

Corollary 8.4 Suppose S : X -* X is a nonsingular transformation and P is 

the corresponding Frobenius-Perron operator. Then with respect to the trajectories 

{Af} that generate the solutions of the linear Boltzmann equation {8.15} we have 

that: 

{1} If there exists an absolutely continuous invariant measure /11. with a positive 

density f*(x) > 0 a.e., then for every fELl the strong limit, limt-+oo Af exists, 

and 

{2} If, in addition, the transformation S is ergodic, then 
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(8.41) 

for all fED. 

Now consider the special case where (X, A, f-l) is a finite measure space and S : X -+ 

X is a measure preserving transformation. Since S is measure preserving, f* exists 

and is given by 

1 
f*(x) = f-l(X) for x E X. (8.42) 

Thus lim Pt! always exists. Furthermore, this limit is unique, that is, 
t->oo 

~ 1 
lim Pt! = f* = (X) 
t->oo f-l 

if and only if S is ergodic. (see Theorem 5.5) 

Finally, in closing this chapter we now compare this conclusion with that of exact-

ness. We recall that from Definition 5.5, a Markov operator P : L1 -+ L1 is exact if 

and only if the sequence {pn f} has a strong limit that is a constant for every fELl. 

Although we have never talked about exactness when describing the behaviour of 

stochastic semigroups, for the situation when (8.42) holds, then, the behaviour of 

the trajectory {A!} is similar to our original definition of exactness. Figuratively 

speaking, in such a case we can say that S is ergodic if and only if {Ah~o is exact. 

Note also that mixing implies ergodicity, exactness implies mixing and hence ergod-

icity. Now we have also, informally, deduced that ergodicity implies that exactness, 

thereby making these three types of irregular behaviour equivalent to each other. 
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9 Conclusion 

We shall now briefly summarize the results discussed in this dissertation. 

Our main objective was to present an analysis of some types of irregular behaviour 

that may be displayed by dynamical systems. To this end we have, by using measure­

theoretic notions, described these behaviours and the conditions under which they 

exist in terms of the properties as displayed by non-singular transformations and 

the asymptotic properties of measure-preserving transformations. 

In the first part we focused on discrete dynamical systems generated by pointwise 

deterministic transformations and introduced the concepts of ergodicity, mixing and 

exactness to describe their long-time properties. The central idea behind the anal­

ysis of these notions was to replace the pointwise description of the evolution by 

the evolution of the corresponding density function and thus to embed the process 

in the the space of integrable functions and to replace the direct analysis of the 

ergodicity, mixing and exactness of the original transformation by the investigation 

of some analytic properties of the associated isometries called Frobenius-Perron and 

Koopman operators. The main advantage of this method is that the analysis of a 

possibly nonlinear transformation was reduced to the analysis of associated linear, 

though in an infinite-dimensional space. 

The Frobenius-Perron and Koopman operators are particular examples of Markov 

197 



operators and therefore the above results allowed to define the notions of ergodicity, 

mixing and exactness for all Markov operators. Following this we considered two 

types of asymptotic behaviour of a general Markov operator. The first was that 

of asymptotic periodicity that turned out to be closely related to the notion of 

a constrictive Markov operator, that is, the Markov operator with a precompact 

attracting set. The other type was that of asymptotic stability where we required 

that this attracting set reduced to a point. These two concepts were subsequently 

related to the ergodicity, mixing and exactness of the Markov operator in question. 

Next we proceeded from discrete to continuous dynamical systems and described 

the semigroup theory which is used to solve abstract Cauchy problem. We also 

discussed continuous analogues of the notions introduced and analysed earlier for 

discrete systems. 

As the final example we discussed the abstract linear Boltzmann equation that can 

be used to model some dynamical system involving an element of randomness. We 

were able to draw a number of conclusions regarding the asymptotic behaviour of 

solutions to this equation. 

However, although perceive the discussed behaviours as being "chaotic", we have 

not conclusively stipulated its relation to that of the topological definition of a 

chaotic dynamical system as stated by e.g. Devaney. An interesting subject for future 

research would be to compare the measure-theoretic and topological definitions of 

"chaos" so as to form a link between these two approaches by definitely deducing 

whether or not they are equivalent. 
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