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Abstract

In this Thesis, we study the asymptotic and blow-up dynamics of Keller-Segel (KS) chemo-

taxis equations in Lebesgue-Bochner spaces of underlying Banach spaces of either type Lp(Ω)

or Bessel potential spaces (I − ∆)−
s
2Lp(Ω) = Hs,p(Ω). The model equations involve the

attraction or minimal, and the attraction-repulsion Keller-Segel (ARKS) chemotaxis equa-

tions. The treatment yielded begins with a review of the semigroup action in Bessel potential

spaces, and interpolation theory for their construction. In studying the well-posedness of

the equations we establish a natural condition between the initial data spaces and spaces

for the inhomogeneous terms of the equations, with which we prove the well-posedness of

the dynamical system for an extended analytic semigroup in Banach spaces. The best con-

stants of the function spaces embedding into Lρ-spaces yield, for either Banach �xed point

theorem, or global existence of solutions, no need for neither the time for a contraction

mapping, nor initial data of the equations to be relatively small respectively. The global

asymptotic dynamics of the system equations in time is captured in the limit setM×{0},
whereM = |Ω|L1(Ω) is of the spatial average solutions, and the approach to null states of

the orthogonal to constant solutions is due to an a priori decay to zero of the drift chemical

cues from that of the cells density. At several points in the work we have proved the existence

of a priori uniform boundedness of the solutions to the equations in time and space, yielding

via bootstrap arguments that the solutions are classical solutions. In blow-up dynamics, we

obtain non-existence of solutions at the borderline space, independent of time, when the

chemical coe�cient or di�erence is above the Moser-Trudinger threshold value.

The contributions of the work, besides being at the interface of mathematical analysis

and medical biology, lies in the fact that its mathematical analysis takes the most often used

function spaces platform for the treatment of the equations a step further in frontier to the
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customary. In this regard, some known results are obtained without strong restrictions on

the initial data spaces. The generation of an extended analytic semigroup by the system

equations imply other non-linear terms of bio-physical relevance can be taken into account in

modelling diversi�ed complex phenomena that might be possibly more precise to describing

the pathological situations arising in nature to the system of model equations. In blow-up

dynamics of the equations our analysis does not limit the scientist concerned to the case of

two dimensions corresponding to the particular case of the Hilbert space setting H1. The

non-local elliptic equation reduction of the system equations still call for important other

analysis to the topic in the general function space setting that insofar has been introduced,

for instance the establishment of Palais-Smale condition, and Pohozaev inequality for non-

existence of solutions at the borderline of the function spaces H2α,p(Ω). This last point we

have resolved in the case of Hilbert spaces.
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Introduction

0.1 Origin and Importance of the model in Biological Sciences

and Mathematics

Chemotaxis is a process characterised by the directed movement or orientation of organisms

or cells, in response to the concentration gradient of an external chemical signal. The

chemical signals can come from external sources, or they can be secreted by the organisms

themselves. The situation where the chemical is produced by the organisms themselves leads

to aggregation of organisms and to the formation of patterns.

In 1970, E.F. Keller and L.A. Segel [41] proposed a mathematical model describing this

chemotactic aggregation of cellular slime molds Dictyostelium discoideum which move (in

a domain Ω) preferentially towards relatively high concentrations of a chemical substance

cAMP (cyclic adenosine monophosphate), produced by the amoebae themselves. Their

derivation of the system of equation was, brie�y, as follows. Let u(x, t) denote the density

of amoebae, v(x, t) := ψ2 denote the concentration of the chemical attractant. Then the

four basic assumptions which underlie the derivations are (see [35, 41]):

1. The chemical attractant is produced per amoeba at a rate of f(v).

2. There exists an extracellular enzyme that degrades the chemical attractant. The
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2

concentration of the enzyme at time t in point x is denoted by w(x, t) := ψ3. This

enzyme is produced by the amoebae at a rate g(v, w) per amoebae.

3. The chemical attractant and the enzyme react to form a complex of concentration

z(x, t) := ψ4, which dissociates into a free enzyme plus the degraded product.

4. v, w and z obey Fick's Law when di�using.

It then follows from the balance of the cell density in open bounded domain Ω ⊂ RN ,

with smooth boundary ∂Ω, during aggregation that

d

dt

∫
Ω
u(x, t) dx =

∫
Ω
Q(u)(x, t) dx−

∫
∂Ω
J (u)(x, t) · ~ndσ, (0.1)

where Q(u)(x, t) represents the mass of amoeba created/dying per unit volume per unit

time, while J (u)(x, t) = uχ3∇w − uχ2∇v − ∇u is the �ux of amoeba mass. Note that the

composition of J (u)(x, t) follows from using Fick's Law and Fourier's Law for the heat �ow,

and we have also taken a linear sensitivity function χ(s, t) = χ. If we neglect reproduction

and death of the amoebae, then Q(u)(x, t) ≡ 0. Since the chemical attractant v, the enzyme

w, and the complex z di�use, we get that

d

dt

∫
Ω
ψ(t, x) dx =

∫
Ω
Q(ψ)(x, t) dx−

∫
∂Ω
J (ψ)(x, t) ~ndσ, (0.2)

where J (ψ) = −∇ψ is the �ux of either v, w or z, and Q(ψ)(x, t) is the chemical attractant

or the enzyme or the complex produced per unit volume per unit time. One then uses the
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divergence theorem on (0.1) and (0.2) to obtain the following system of equations

ut = ∆u−
∑3

i=2 Div
(
u(−1)iχi∇ψi

)
in Ω× (0, T ),

vt = ∆v − λ2vw + b2z + uf(v) in Ω× (0, T ),

wt = ∆w − λ2vw + b3z + ug(v, w) in Ω× (0, T ),

zt = ∆z + λ2vw − (b2 + b3)z in Ω× (0, T ),
∂u

∂~n
=
∂ψi
∂~n

= 0 on ∂Ω× (0, T )

u(x, 0) = u0(x), ψi(x, 0) = ψi0(x), in Ω,

(0.3)

where λ2, b2, b3 are constants representing the reaction rates mentioned in assumption 3

above.

For the minimal Keller-Segel model [32], one may assume that the concentration of

the enzyme is constant, that the complex is in a steady state with regard to the chemical

reaction, and that the rate of production of the chemical attractant is constant. The model

(0.3) then reduces to

ut = ∆u−Div (uχ∇v) in Ω× (0, T ),

vt = ∆v − λv + au in Ω× (0, T ),
∂u

∂~n
=
∂v

∂~n
= 0 on ∂Ω× (0, T )

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

(0.4)

in which

χ := chemotactic coe�cient towards attractant,

λ := rate of decay of the chemical attractant,

a := rate of production of the chemical attractant.

For notational simplicity, we will often write

P (u)v := −Div (uχ∇v)

= −∇ · (uχ∇v) .
(0.5)



4

Note that (0.5) can be viewed in the sense of distributions as the weak form

PΩ(u)v := 〈P (u)v, ϕ〉q′,q =

∫
Ω
uχ∇v∇ϕ dx (0.6)

in adequate function spaces. Similar assumptions can be made to obtain the attraction-

repulsion Keller-Segel model from (0.3). For more information regarding the derivation and

various variations of the Keller-Segel model, please consult [32, 35, 41, 42] among others,

where particularly in [32], Hillen, T. and Painter, K., have given an encyclopaedic user's

guide to in�nite dimensional models of these equations.

In addition to the aggregation of cellular slime molds, chemotaxis is believed to underlie

many social activities of micro-organisms. When there is an infection in the human body,

white blood cells are known to move to the source of in�ammation, the region where the

concentration of bacteria is high [62].

The equations can assume very general formulations. For instance, multiple species

competing for resources. Among these are attraction-repulsion equations, which for example,

model the aggregation of cells called microglia, involved in the in�ammation associated with

pathology in Alzheimer's disease [50, 87].

In the system of equations (0.4), the u−�ux moves in the direction of the concentration

gradient of the chemical concentration v. Thus, as another example, chemotaxis can be

regarded as a sort of negative drift, an example of which is appearing in reaction-di�usion

equations of electrically charged species in semiconductors [62]. The simpli�ed form of this
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process is 
at = ν1∆a−∇ · (a∇ϕ) + f

bt = ν2∆b−∇ · (b∇ϕ) + g

−∇(ε∇ϕ) = b− a,

where a and b are the densities of electrons and holes respectively, and ϕ is the electrostatic

potential. The νi are positive di�usion coe�cients, and f and g are reaction terms depending

of the carrier densities.

As mentioned earlier, the model (0.4) is made up of a set of coupled parabolic partial

di�erential equations, where the �rst equation features a divergence-0 operator acting on a

vector �eld uχ∇v of concentration of chemicals. The mathematical di�culty in handling

the system (0.4) stems from the fact that the chemotactic term and the production term in

the second equation carry opposite signs, and this brings in the possibility of the solution

blowing-up in �nite time.

The system of equations (0.4) has been studied before by many authors in this direc-

tion.1 In their pioneering work of 1998, Gajewski, H. and Zacharias, K. [26] studied the

global behaviour of the solutions of a reaction-di�usion system (0.4) (where the chemotactic

coe�cient was not necessarily equal to one) for two-dimensional bounded piecewise smooth

domains in the plane, using Lyapunov functionals.2 They found, for the �rst time, a Lya-

punov functional for the system (0.4), and they proved local existence and uniqueness of

solutions. They proved that the solutions of a transformed version of (0.4) asymptotically

1See [22, 26, 33, 37, 38, 50, 53, 54, 58, 62, 76, 83, 87, 88, 89, 90, 92] among others.
2Lyapunov functionals are functionals that decrease along solutions as time increases.
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approximate non-trivial solutions of the problem
−d2∆v + λv = γ(u− 1) in Ω

∂v
∂~n = 0 on ∂Ω

u = |Ω|ev∫
Ω e

vdΩ
,

where d1 = 1, γ = aū0 with ū0 the spatial mean of the initial value u0.

Then a year later, Post [62] built on the work in [26] by studying the system (0.4), where

the chemotactic coe�cient and a in the production term for v were functions of v. That is,

she considered the system

ut = ∆u− χ∇ · (u∇S(v)) in Ω× (0, T ),

vt = d2∆v − λv + auS′(v) in Ω× (0, T ),
∂u

∂~n
=
∂v

∂~n
= 0 on ∂Ω = Γ

u(x, 0) = u0(x), v(x, 0) = v0(x),

(0.7)

The function S is referred to as the sensitivity function. The introduction of the sensitivity

function is important because it gives a more realistic model of chemotaxis. It incorporates

into the model the ability of the amoebae u to sense the v−chemical concentration. In

this setting, she proved existence of global solutions of system (0.7) on a two-dimensional

Lipschitz domain for di�erent natural classes of sensitivity functions. This result was most

signi�cant because it enabled her to prove convergence of the trajectories of solutions to

trivial and non-trivial steady state, under di�ering conditions on the data of the system.

Uniqueness and further regularity of the solutions was shown under the assumption that

S ∈ C2(R,R) and |S′′(v)| ≤ C for all v ≥ 0, where C > 0 is a constant. She also gave

results, for the �rst time, for the fully non-stationary chemotaxis system (with or without

sensitivity functions) on higher dimensional domains.

Liu, J. and Wang, Z. A., [49] have established the existence of global classical solutions
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and non-trivial steady states of the one-dimensional attraction-repulsion system of equa-

tions. Extending the work of Zhang, Q., and Li, Y., in [93], one can easily obtain the

two-dimensional case. Kozono, H., et al proved in [43] the existence and uniqueness of so-

lutions to the system (0.4) in RN , N ≥ 3, in the scaling invariant space. More recently, in

[87], Willie, R., and Wacher, A., have proven in scales of Hilbert spaces the well-posedness

of the system of equations for a perturbed analytic semigroup, which decays exponentially

in the large time asymptotic dynamics of the problem to a subset in R3 of the spatial aver-

age solutions. They also provided uniform bounds in Ω × (0, T ) of the solution, and via a

bootstrap argument, they argued that the solutions are in fact classical solutions.

On blow-up solutions of these equations, the ground-breaking work was done in 1973 by

Nanjundiah [56], as cited in [37, 33] among others, where he suggested that

�the end-point (in time) of aggregation is such that the cells are distributed in

form of δ−function concentration."

After that, in their 1981 work [15], Childress and Percus came up with the following state-

ments for space dimension N = 2:

• The density u(x, t) cannot form a δ−function singularity, if the total density on Ω ⊂ R2

is less than some critical number dΩ.

• The density u(x, t) can form a δ−function singularity, if the total density on Ω is

greater than some critical number DΩ.

It was then believed that for the above statements, dΩ = DΩ. It was also observed that
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the density u(x, t) (and hence the chemical concentration v(x, t)) might blow-up if the total

density on Ω exceeds the critical number DΩ.

While studying the following modi�ed Keller-Segel model, where the second equation

was replaced by a stationary equation,

ut = ∆u− χ∇(u∇v)

0 = d2∆v − λv + au,
(0.8)

with homogeneous Neumann conditions and u(x, 0) = u0, Jäger and Luckhaus [39] proved

in 1992 the existence of global radial solutions when the initial values have small mass, and

they showed that the radial solutions of (0.8) blow-up at the origin in a �nite time3 T .

Following [39], in 1995, Nagai [55] studied the system (0.8), and showed that in one

dimension (N = 1), the solution does not blow-up, but it blows-up when the dimension is

greater than or equal to three (N ≥ 3). This suggests that N = 2 is the borderline case. It

was also shown there that if N = 2, the domain Ω is a ball, u0(x) is radially symmetric and

1

|Ω|

∫
Ω
u0(x) dx <

8π

χ|Ω|a
,

then there is no blow-up for (0.8). But under some conditions, if u0(x) is radially symmetric

and

1

|Ω|

∫
Ω
u0(x) dx >

8π

χ|Ω|a
,

then blow-up does occur.

In 1996, Herrero and Velázquez [31], for the �rst time, studied the system (0.4) with

an instationary v−equation. They proved existence of δ−distribution blow-up in the disc

center by inverting the ∆−operator. In particular, they showed the existence of radially

3This associates blow-up with mass.
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symmetric initial data such that the solution of a transformed version of (0.4) blows-up at

the center of a disc in �nite time when au0|Ω|
d2

> 8π.

A few years later, Gajewski and Zacharias [26] showed that if Ω is a general smooth

domain, then there is no blow-up and solutions exist globally in time when

1

|Ω|

∫
Ω
u0(x) dx <

4π

χ|Ω|a
,

while blow-up occurs when

1

|Ω|

∫
Ω
u0(x) dx >

4π

χ|Ω|a
.

In an earlier mentioned literature, Post [62] did not do a blow-up analysis of the system

(0.7). She however put forward her belief that a realistic mathematical model for chemotaxis

should be able to exclude blow-up of solutions in �nite time. Hence, she does not agree with

the interpretations of Nanjundiah [56], and Herrero and Velázquez [31] that a δ−distribution

blow-up at a point can be viewed as an approximation of the erection of fruiting body.

For the system (0.4) where no symmetry is assumed on the solution, Horstmann and

Wang [37] (also see Horstmann's survey in [33]) proved the existence of blow-up solutions for

a smooth domain Ω ⊂ R2, provided that au0|Ω|
d2

> 4π and au0|Ω|
d2
6= 4kπ, k ∈ N. Horstmann

later proved in [34], where he assumed radial symmetry,4 that there are initial data for

(0.4) that lead to blow-up in �nite or in�nite time5, provided that au0|Ω|
d2

> 8π, while if

au0|Ω|
d2

< 8π, then the solution can only converge to a steady state as t→∞.

The system (0.4) is not an easy one to treat in the Bessel potential space setting. In

the context of the semilinear evolution equations, one would prefer that the order of the

4He also assumed that the chemical consumption is paltry.
5Note that, the chemical di�usion coe�cient, d2, was not assumed to necessarily be equal to 1.
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semi-linear term be strictly less than the order of the elliptic partial di�erential operator.

However, we note that in the cell density equation (�rst equation) of (0.4), the semi-linear

term features a divergence operator, which is of the same order as the principle elliptic

partial di�erential operator. Furthermore, the equation variable appears in it as a di�usion

coe�cient (∇v), of which a priori boundedness in L∞(Ω) is not necessarily immediate.

Thus, for this term to be de�ned, H1(Ω) ∼= E
1
2
2 is only possible in R2.

We also note that the chemical concentrations equation (the second equation) is linear,

but the reaction term (data) features the cell density variable u. The di�culty here is that

the semigroup smoothness space has to be the same as the space in which the initial data to

the chemical concentration equation is considered. Moreover, to control the semi-linear term

in the cell density equation, we need to map it into the space in which its initial data are

considered to be, while at the same time the chemical drift term is controlled appropriately

so that it is well de�ned in adequate function spaces.

In this thesis, we work mainly in the Bessel potential space setting, in which the a

priori compactness is lost compared to the usual Hilbert space setting. To take care of this,

we employ the Concentration-Compactness Principle [48] in the Bessel potential spaces to

compensate for this failure of pre-compactness. Note that if we take the reaction data to be

equal to zero, then we obtain the following Liouville semi-linear elliptic equation

−∆v + λv − akev = 0, (0.9)

which has the non-linearity of so-called critical growth. The di�culty lies in controlling this

non-linearity. We note that when q = 2, for a limiting case 2α = N
2 , we have E

α
2 6⊂ L∞(Ω).
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So, to prove the existence of non-trivial solutions to the above Dirichlet problem one uses

the famous Trudinger-Moser inequality

sup
‖∇u‖L2(Ω)≤1

∫
Ω
eκu dx

 ≤ c|Ω| if κ ≤ 4π

=∞ if κ > 4π.
(0.10)

One can then use Lions' [48] (see Theorem I.6 and Remark I.18) Concentration-Compactness

Alternative for the Moser-Trudinger inequality, and deduce compactness of the embedding

of the space into an Orlicz space (see [2] for more information on Orlicz spaces).

In the same vein, when investigating the maximal time of existence for the system (0.4),

we recall a well-known nonexistence result of Pohozaev, as given in [74] among others, which

asserts that if Ω is star shaped and λ ≤ 0, then there is no nontrivial solution of the problem
−∆u = λu+ |u|2∗−2 x ∈ Ω

u > 0 x ∈ Ω

u = 0 x ∈ ∂Ω,

where 2∗ = 2N
N−2 . This is due to the fact that the standard variational arguments do not

apply since the embeddingH1
0 ⊂ L2∗(Ω) is not compact, and so, the corresponding functional

Iλ(u) =
1

2

∫
Ω

(
|∇u|2 − λ|u|2

)
dx

does not satisfy the Palais-Smale conditions. For this reason, when considering the system

(0.4), the chemical concentration equation has to be elliptic. This allows us to decouple the

system.

We mention here some alternative ideas for investigating the maximal time of existence

that has been used in literature. In [34], Hortsmann investigated the existence of radially

symmetric blow-up solutions for (0.4). He excluded the possibility of global boundedness of
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the solution for the certain class of initial data, and hence, concluded blow-up by showing

that for au0|Ω| > 8d2π, the Lyapunov functional corresponding to (0.4) is not bounded from

below. He used results from Gajewski and Zacharias [26] and Brézis and Merle [13].

Based on the same ideas as in [34] and Wang and Wei's ([83]) generalization of Brezis

and Merle's results [13], Horstmann and Wang [37] investigated the blow-up in (0.4) without

symmetry assumptions. Pohozaev identity was used in that work.

In [16], Chipot illustrated the usage of the concavity method. This method is useful

in proving that blow-up occurs, but it does not specify exactly what the maximal time of

existence of the solutions is. There is also a treatment by K. Post in [62], in which she

used the results of her existence theorem of global solutions of a chemotaxis model, where

di�erent natural classes of sensitivity functions were considered, to study the asymptotic

solution behaviour. All these are alternatives to the treatment given in this work.

With regard to the limit case of large time for the system (0.4), we exploit the invariance

principle, credited to J.P. LaSalle [47]. If (u, v) is a solution of the system of equations

(5.3), obtained through rescaling of solutions of the system (0.4), then we can write down

a Lyapunov functional, F (see (5.41)). From Theorem 3 of [47], we get that if the solutions

are unique, and the Lyapunov functional is constant on the boundary of the union of all

solutions in their maximal interval of de�nition, then these solutions are asymptotically

stable. For more information on the invariance principle, also see [28].
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0.2 Outline of the Thesis

In what follows, we want to give a brief outline of this thesis. The preliminary results

and de�nitions are given in Chapter 1. Moreover, we will also describe some mathematical

notations in this chapter, which we will be frequently using in the sequel. More speci�cally

in this chapter, we write down some basics of semigroups.

In Chapter 2, we give a brief review of interpolation theory. We will be limiting ourselves

to the (Lp,W 2,p) example for the real interpolation. On the complex interpolation, we

give the de�nition, characterize some background material, and then we state some of its

application to the construction of Bessel potential spaces. The signi�cance of this chapter

is in that no exact reference (that we are aware of) yields completely this construction, but

in most cases they are derived as particular cases of more general spaces.

In Chapter 3, we prove the existence and uniqueness of solutions to the minimal system

model (0.4) in the Bessel potential space setting, and that the system (0.4) de�nes a per-

turbed analytic semigroup to the semigroup generated by the operator A (see (3.3)), using

abstract semigroup theory results for semi-linear evolution equations from [30, 51, 60, 68, 66].

In Section 3.3, we prove the existence of a priori uniform bounds in Ω× (0, T ) of solutions

and gradient solutions to the problem. We conclude Chapter 3 by highlighting, in few de-

tails, the blow-up analysis of solutions to the system of equations at the borderline spaces

Eαq , α = N
2q .

In Chapter 4, we work in a Hilbert space setting. The treatment which we will give in

this chapter is that of a Keller-Segel system of equation with Attraction-Repulsion e�ects.
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We prove, in Section 4.3, that the system model equations (4.1)-(4.4) de�nes a perturbed

analytic semigroup to the semigroup generated by the operator −A. We then prove the

existence of a priori uniform bounds in Ω × (0, T ) of solutions and gradient solutions to

the problem in Section 4.4. We conclude this section by using a bootstrap argument to

prove that the solutions to the problem are classical solutions. In Section 4.5, we revisit

the complete system of equations coupled partial di�erential operator, to prove that it is

an in�nitesimal generator of a fundamental solution operator in scales of spaces Zδ, δ ∈ R+

as given by quasilinear partial di�erential operators. We then conclude this chapter by

numerically simulating the equations using a Gradient Weighted Moving Finite Element

method in Section 4.6.

In Chapter 5, we, in a Hilbert space setting, investigate the maximal time of existence for

the system (0.4), by using Pohozaev's Non-existence principle, guided by [37, 83]. Conditions

will be given under which blow-up occurs in �nite or in�nite time. We conclude this chapter

by brie�y doing the blow-up analysis for the system (0.4) following the Concavity method

in [16].

In Chapter 6, we revisit the attraction-repulsion Keller-Segel system of equations which

we studied in Chapter 4. In this case however, we study the asymptotic dynamics in

Lebesgue-Bochner spaces of underlying Banach spaces either Lp(Ω), or Bessel potential

spaces H2α,p(Ω). In Section 6.3, we prove the well-posedness of the system of equations

in Lσ(İ;Lp(Ω)), then we prove a priori uniform boundedness in Ω × İ of the cells density

solution in Subsection 6.3.1. In Section 6.4, we prove similar results to those of Section 6.3,

but in Bessel potential spaces Eαq , α ∈ R, 1 < q < ∞. Lastly, in Section 6.5, we give an
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overview analysis of the blow-up of solutions to the system of equations at the borderline

spaces Eαp , α = N
2p .



Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we are going to state some preliminary results and de�nitions which will be

of great use in this work. We will de�ne some notations which will be used in this regard.

We will then state the de�nition of semigroups and write down some fundamental results

about them.

1.2 Functional Setting

We are going to let Ω ⊂ RN be an open bounded domain with smooth boundary ∂Ω.

Throughout this thesis, we assume that the reader is familiar with the basic notions of

Sobolev spaces (see [2, 12, 30] among others). For 1 ≤ q ≤ ∞, the Sobolev space of functions

on Ω will be denoted by W s,q(Ω), and the standard notation of its norm is ‖ · ‖W s,q(Ω). In

particular, we will write Hs(Ω) := W s,2(Ω).

If we choose Lq(Ω), for 1 < q <∞, as the base space, then the unbounded linear operator

−A : D(A) ⊂ Lq(Ω)→ Lq(Ω), with domain D(A) = H2,q(Ω), as de�ned in (3.3), generates

16



17

an analytic semigroup in Lq(Ω), see [5, 30, 60, 66, 68].

The Bessel potential spaces1 of functions on Ω will be denoted by Hs,q(Ω), where s ∈ R

and 1 ≤ q ≤ ∞ [30, 71, 82]. Note that Hs,q(Ω) coincide with W s,q(Ω) for integer s if

1 < q <∞, or for all s if q = 2. The notation

Eαq := H2α,q(Ω), α ∈ [−1, 1], (1.1)

denote well de�ned scale spaces associated with the non-coupled system partial di�erential

operator A in (3.3), with their norm being written as

‖ · ‖H2α,q(Ω) = ‖ · ‖Eαq = ‖ · ‖α.

With this in mind, we will therefore make use of the following conventions:

E
1
2
q = W 1,q(Ω), E0

q = Lq(Ω), E
− 1

2
q′ = W−1,q′(Ω).

Furthermore, if there is no danger of confusion, we will adopt the equivalent Bessel potential

spaces norm notation. That is,

‖·‖ 1
2

= ‖·‖1,q , ‖·‖0 = ‖·‖q , ‖·‖− 1
2

= ‖·‖−1,q .

Sometimes, we will assume that the spaces are �nested". That is, for any α, β ∈ R, if

α ≥ β, we have

Eαq ⊆ Eβq , (1.2)

with a continuous embedding, and the norm of the embedding will be denoted by ‖i‖α,β ,

where the relation i is equivalent to the identity operator i : Eαq → Eβq [66]. In such a case,

1See De�nition 2.8.
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we will say that the spaces are nested, for short. This situation will be explicitly stated if

needed. Note that if we consider (1.1) above, we will have ‖i‖α,β <∞ for all α ≥ β.

Occasionally, we will use the notation

Zα(β) := Eαq × Eβq , 1 < q <∞.

Lastly for this section, we recall the Banach Contraction principle [30, 68].

De�nition 1.1. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces. A mapping T : X → Y is

said to be a contraction if there exists a positive number θ < 1 such that

‖T (x)− T (y)‖Y ≤ θ‖x− y‖X for all x, y ∈ X.

We therefore have the following Theorem.

Theorem 1.1 (The Banach Contraction Mapping Theorem). Let (X, ‖ · ‖) be a Banach

space, and T : X → X be a contraction. Then there exists a unique �xed point of T in X:

x ∈ X such that T (x) = x.

Also, for any y ∈ X, if Tn(y) = T (Tn−1(y)) is the n−fold composition, then Tn(y)→ x

as n→∞. In fact, ‖Tn(y)− x‖ ≤ θn‖y − x‖.

1.3 Semigroups

In this section, we will write down the de�nition of analytic semigroups, and state some

of their abstract properties [30, 68]. To this end, let W be a Banach space and L(W )

be a space of bounded linear operators on W . Let δ ∈ (0, π) and de�ne an open sector

∆δ := {z ∈ C : |arg z| < δ, z 6= 0}. If S(t) is a C0-semigroup [51, 68] on W generated by

the operator A, then S(t) is called an analytic semigroup generated by A if there exists an

extension of S(t) to a mapping S(t) de�ned for t in ∆δ ∪ {0} such that
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(i) t 7→ S(t) is a mapping of ∆δ ∪ {0} to L(W ),

(ii) S(t1 + t2) = S(t1)S(t2) for all t1, t2 ∈ ∆δ ∪ {0},

(iii) For each w ∈W , S(t)w → w as t→ 0 in ∆δ ∪ {0},

(iv) For each w ∈W , t 7→ S(t)w is an analytic mapping from ∆δ into W .

If, in addition, there exist a ∈ R, σ ∈ (0, π2 ), and M ≥ 1, such that Σσ(a) := {z ∈ C :

|arg(z − a)| > σ, z 6= a} ⊂ ρ(A), and ‖R(λ,A)‖ ≤ M

|λ− a|
for every λ ∈ Σσ(a), then the

operator A is called a sectorial operator2 on W .

We then say that, the operator −A, as de�ned in (3.3) (or more precisely, a suitable

realization of it) is the in�nitesimal generator of an analytic semigroup,

{S(t) = e−At : t ∈ R+ \ {0}} (1.3)

in each space of the scales H2α,q(Ω), α ∈ R [5, 30, 60, 66, 68]. This semigroup is order

preserving and satis�es the smoothing estimates

‖S(t)u0‖H2α,q(Ω) ≤
Mα,βe

µ0t

tα−β
‖u0‖H2β,q(Ω), t > 0, u0 ∈ H2β,q(Ω) (1.4)

for −1 ≤ β ≤ α ≤ 1 and some µ0 ∈ R. In addition, we have

‖S(t)u0‖Lτ (Ω) ≤
Mτ,ρe

µ0t

t
N
2

( 1
ρ
− 1
τ

)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω) (1.5)

for 1 ≤ ρ ≤ τ ≤ ∞. For any u0 in H
2β,q(Ω) or Lρ(Ω), the function u(t;u0) := S(t)u0, t > 0,

is a classical solution of the problem ut −Au = f(u)

u(0) = u0,

2ρ(A) denotes the resolvent set of A, while R(λ,A) = (A− λI)−1 is the resolvent of A.



20

provided that f(u) is locally Hölder continuous in t, and locally Lipschitzian in u. For

further properties of semigroups, please see [5, 30, 60, 66, 68].

Next, we review some abstract analytic semigroup theory results proven in [5, 30, 51,

60, 68]. To this end, we note that (1.4) can be rewritten in an abstract language as

‖S(t)‖L(Eβq ,Eαq )
≤
Mα,βe

µt

tα−β
, α ≥ β, t > 0.

We also assume that the semigroup acting on the scales satis�es, for α, β ∈ I such that

α ≥ β,

‖S(t)‖β,α := ‖S(t)‖L(Eβq ,Eαq )
≤ M0(β, α)

tα−β
, for all 0 < t ≤ 1, (1.6)

for some constant M0(β, α) > 0.

From these assumptions, the following Lemma follows.

Lemma 1.2. Assume that (1.6) is satis�ed. Then

(i) For every α, β ∈ I such that α ≥ β, and for all T > 0,

‖S(t)‖β,α ≤
M0(β, α, T )

tα−β
, for all 0 < t ≤ T (1.7)

for some constant M0(β, α, T ) > 0.

(ii) For each β ∈ I, there exists ω(β) ≥ 0 such that

‖S(t)‖β,β ≤M0(β, β)eωt, for all t > 0,

and for every α, β ∈ I such that α ≥ β there exists ω = ω(β) and M(β, α) such that

‖S(t)‖β,α ≤
M(β, α)eωt

tα−β
, for all 0 < t <∞.
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(iii) Assume that the scales are nested, that is (1.2) holds. Then, if for some �xed β0 ∈ I,

we have

‖S(t)‖β0,β0 ≤Meω0t, for all t > 0 (1.8)

for some M = M(β0) and ω0 ∈ R, then for any α ∈ I, there exists a constant

M(α) ≥ 1 such that

‖S(t)‖α,α ≤M(α)eω0t, for all t > 0. (1.9)

Moreover, given t0 > 0, de�ne δ = ‖S(t0)‖β0,β0. Then we have (1.8) with

ω0 =
ln δ

t0

and some constant M depending on t0, δ and M0(β0, β0, t0) as in (1.7). In particular,

if δ < 1, then ω0 < 0.

(iv) Under the settings of (iii), for every α, β ∈ I such that α ≥ β we have

‖S(t)‖β,α ≤


M1(β, α)t−(α−β) if 0 < t ≤ 1,

M1(β, α)eω0t if t > 1.

for some positive constant M1(β, α).

In particular, for all ε > 0 there exists Mε(β, α) > 0 such that

‖S(t)‖β,α ≤Mε(β, α)
e(ω0+ε)t

tα−β
, for all t > 0.

Lemma 1.2 and its proof appeared in [66]. For completeness, we give the proof here.

Proof. (i) Let T > 0 and de�ne n to be the smallest integer such that T ≤ n+ 1. Further,

for 0 < t ≤ T , de�ne h =
t

n+ 1
≤ 1 and sj = jh, j = 0, . . . , n+ 1. This means that

sn+1 = t and since

S(t) = S(sn+1 − sn) · · ·S(s1 − s0),
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and 0 < si+1 − si = h ≤ 1 ∀0 < t ≤ T and i = 0, . . . , n, we get from (1.6) that

‖S(t)‖β,α = ‖S(sn+1 − sn) · · ·S(s1 − s0)‖β,α

≤ ‖S(h)‖β,α‖S(h)‖nα,α

≤ M0(α, α)nM0(β, α)h−(α−β)

= M0(α, α)nM0(β, α)(n+ 1)α−βt−(α−β)

=
M0(β, α, T )

tα−β
for all 0 < t ≤ T,

where M0(β, α, T ) = M0(α, α)nM0(β, α)(n+ 1)α−β.

(ii) In a particular case of (i) when α = β, we let t > 0 and de�ne n ∈ N such that

n ≤ t < n+ 1 and we get as in (i), that

‖S(t)‖β,β ≤M0(β, β)n+1 ≤M0(β, β)t+1 ≤M0(β, β)eln(M0(β,β))t, for all t > 0.

Note that since M0(β, β) ≥ 1, ω(β) := ln(M0(β, β)) ≥ 0.

Now, if α, β ∈ I such that α ≥ β and t > 1, then we have

‖S(t)‖β,α ≤ ‖S(t− 1)‖α,α‖S(1)‖β,α ≤M0(α, α)eω(α)(t−1)M0(β, α),

while for 0 < t < 1, we have estimate (1.6). Then for any ω > ω(α), we get the result.

(iii) First we notice that from (1.6), for any α ≥ β0, we have ‖S(1)‖β0,α ≤M0(β0, α). Now,

if t > 1, then

‖S(t)u0‖α ≤ ‖S(1)‖β0,α‖S(t− 1)u0‖β0

≤ M0(β0, α)Me−ω0eω0t‖u0‖β0

≤ M0(β0, α)‖i‖α,β0Me−ω0eω0t‖u0‖α,

where ‖i‖α,β0 denotes the norm of the inclusion Eαq ↪→ Eβ0
q . Thus,

‖S(t)‖α,α ≤ Keω0t, for all t > 1,
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with K = M0(β0, α)‖i‖α,β0Me−ω0 .

On the other hand, if β0 ≥ α, then we also have from (1.6) that ‖S(1)‖α,β0 ≤

M0(α, β0), and for t > 1,

‖S(t)u0‖α ≤ ‖i‖β0,α‖S(t)u0‖β0

≤ ‖i‖β0,α‖S(t− 1)‖β0,β0‖S(1)u0‖β0

≤ ‖i‖β0,αMe−ω0eω0t‖S(1)‖α,β0‖u0‖α

≤ ‖i‖β0,αMe−ω0M0(α, β0)eω0t‖u0‖α.

Thus, we get that

‖S(t)‖α,α ≤ Keω0t, for all t > 1,

with K = M0(α, β0)‖i‖β0,αMe−ω0 .

Therefore, for any α ∈ I, we have the estimate

‖S(t)‖α,α ≤ K(α)eω0t, for all t > 1.

Hence, from (1.6), if β = α, then we get (1.9), with

M(α) =


max{K(α), M0(α, α)} if ω0 ≥ 0,

max{K(α), M0(α, α)e−ω0} if ω0 ≤ 0.

Moreover, if for a given t0 > 0 we de�ne δ = ‖S(t0)‖β0,β0 , then for t > 0 we write

t = nt0 + s, with n ∈ N and 0 ≤ s < t0. Then

‖S(t)‖β0,β0 ≤ δn‖S(s)‖β0,β0 ≤ e
ln(δ)( t−s

t0
)
M0(β0, β0, t0),

with M0(β0, β0, t0) as in (1.7), and the result follows. In particular, if δ < 1, then

ω0 < 0.
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(iv) We note that, if 0 < t ≤ 1, the estimate reduces to (1.6). On the other hand, if t > 1,

then using (1.6) and part (iii), we get

‖S(t)‖β,α ≤ ‖S(t− 1)‖α,α‖S(1)‖β,α

≤ M0(β, α)M(α)e−ω0eω0t = M1(β, α)eω0t,

where M1(β, α) = M0(β, α)M(α)e−ω0 , and the result follows easily.

Remark 1.1. We observe that if the original constants M0(β, α) in (1.6) do not depend on

(or can be taken independent of) α, β ∈ I, then the same is true forM0(β, α, T ), andM(α)

in (1.9) depends on the scales only through the norm of the embeddings ‖i‖β0,α or ‖i‖α,β0 .

The following spaces will be used immensely henceforth.

De�nition 1.2. For T > 0, γ ∈ I and ε ≥ 0, we denote the space of all locally essentially

bounded functions, u ∈ L∞loc((0, T ], Eγq ), for which sup
t∈(0,T ]

tε‖u(t)‖γ < ∞ by L∞ε ((0, T ], Eγq ),

and de�ne the quantity

|‖u‖|γ,ε = sup
t∈(0,T ]

tε‖u(t)‖γ ,

as its norm.

We then have the following Lemma;

Lemma 1.3. Let T > 0, γ ∈ I and ε ≥ 0. Then the space L∞ε ((0, T ], Eγq ), equipped with

the norm |‖ · ‖|γ,ε, is a Banach space.

Proof. Note that {uk}k is a Cauchy sequence in L∞ε ((0, T ], Eγq ) if and only if vk(t) = tεuk(t)

is a Cauchy sequence in L∞([0, T ], Eγq ), and also uk(t) converges in Eγq to some u(t) for

almost all t > 0 and, hence, in L∞([o, T ], Eγq ) topology. This implies that uk converges to u

in L∞ε ((0, T ], Eγq ), and hence the space L∞ε ((0, T ], Eγq ) is complete.
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Note that part (i) in Lemma 1.2 can be restated as

Lemma 1.4. Assume the semigroup S(t) = e−At, t > 0 and the scales of spaces satisfy

(1.6). Then, for any α, β ∈ I such that α ≥ β and T > 0, the mapping

S(·) : Eβq → L∞α−β((0, T ], Eαq ), u0 7→ S(·)u0,

is linear and continuous.



Chapter 2

Interpolation theory and Scales of

Banach spaces

The aim of this chapter is to give a basis of the theory of scales of Banach spaces. This theory

is naturally based in the methods of interpolation theory. It has, to some extent, similarities

with the theory of real number system, but in this case relating to intermediate Banach

spaces. Interpolation theory in functional analysis and applications has been developed by

many authors, of which we cite [4, 9, 29, 52, 79].

2.1 Interpolation theory background

In what follows, for notation simplicity, for T ∈ L(E,F ), we will write ‖T‖ = ‖T‖L(E,F ),

on understanding that it is the operator norm that is being considered. Within the case of

L(Lp, Lq), when emphasizing is necessary, we will use ‖T‖p,q.

It is worthwhile to mention that the classical results making up the basis of interpolation

theory are theorems of M. Riesz with Thorin's proof, and Marcinkiewicz [9]. Thorin's proof

of the Riesz-Thorin theorem contains the idea behind the complex interpolation method.

26
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Similarly, the proof of Marcinkiewicz's theorem resembles the construction of the real inter-

polation method. Following these distinctions of cited pioneer works, we state them with

their proofs in this initial section of the chapter.

Before we state Riesz-Thorin interpolation theorem, we �rst note the following:

Lemma 2.1 (Lyapunov Inequality). Let 1 ≤ pj ≤ ∞, j = 0, 1, θ ∈ [0, 1] and 1
pθ

= 1−θ
p0

+ θ
p1
.

Then,
⋂
Lpj ⊂ Lpθ and

‖f‖pθ ≤ ‖f‖
1−θ
p0
‖f‖θp1

, ∀f ∈
⋂
Lpj .

Proof. The proof uses Hölder's inequality., i.e. if f ∈ Lp, g ∈ Lq such that 1 = 1
p + 1

q then

fg ∈ L1. Now let

x := (1− θ)p, y := θp,
1

z0
:=

1− θ
p0

p,
1

z1
:=

θ

p1
p.

Then

x+ y = p,
1

z0
+

1

z1
= 1, xz0 = p0, and yz1 = p1.

Now using Hölder's inequality we obtain

‖f‖pp = ‖fp‖1 = ‖fxfy‖1 ≤ ‖fx‖z0‖fy‖z1

=

(∫
|f |xz0

) 1
z0

(∫
|f |yz1

) 1
z1

=

(∫
|f |p0

) 1−θ
p0

p(∫
|f |p1

) θ
p1
p

=
(
‖f‖1−θp0

‖f‖θp1

)p
,

and the conclusion is demonstrated to hold.

In the proof of Riesz-Thorin theorem, we will need the following result from complex

analysis (see, for instance [85]).

Proposition 2.2 (Three Lines Lemma). Let F : S = {z = x+ iy ∈ C : 0 ≤ x ≤ 1} → C be

a bounded, continuous function, analytic on S̊ := {z = x+ iy ∈ C : 0 < x < 1}. Let

Mθ := sup
y∈R
|F (θ + iy)| for θ ∈ [0, 1].
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Then,

Mθ ≤M1−θ
0 M θ

1 ,

where M0 and M1 are such that |F (z)| ≤M0 when x = 0 and |F (z)| ≤M1 when x = 1.

Proof. Case 1. M0,M1 ≤ 1⇒Mθ ≤ 1.

De�ne Fε(z) := F (z)
1+εz for z = x+ iy ∈ S̊, ε > 0, and note that this function is bounded,

continuous and analytic on S̊. Moreover,

lim
|y|→∞

Fε(z) = 0, uniformly for x ∈ [0, 1],

since |Fε(z)| ≤ F (z)
εz and F is bounded.

Now let r > |y0| be such that |F (z)| ≤ 1 for x ∈ [0, 1] and |y| ≥ r. Also let R =

[0, 1]×i[−r, r]. This implies that |Fε(z)| ≤ 1 on ∂R. Thanks to Phragmén-Lindelöf maximum

principle [63] we have |Fε(z)| ≤ 1 for all z ∈ R. In particular, if z0 = x0 + iy0 in S̊ we have

|Fε(z0)| ≤ 1 and thus |F (z0)| = lim
ε→0
|Fε(z0)| ≤ 1.

Case 2. M0,M1 arbitrary. Let G(z) = F (z)
α1−zβz where α > M0, β > M1. Then, G is

continuous, bounded and analytic on S̊ and |G(z)| ≤ 1 on ∂S. Thanks to Case 1, we have

|G(z)| ≤ 1 on S so Mθ ≤ α1−θβθ and Mθ ≤M1−θ
0 M θ

1 .

In what follows, we let Lpj , Lqj , j = 0, 1, denote Lebesgue spaces of functions, de�ned

on di�erent σ− �nite measure spaces (Ωr, µr), r = p, q.

We are now ready to state the Riesz-Thorin interpolation theorem.

Theorem 2.3 (Riesz-Thorin). Let 1 ≤ pj , qj ≤ ∞, j = 0, 1, θ ∈ [0, 1] be such that

1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
.

If T is a linear map satisfying that

T : Lpj → Lqj with ‖T‖pj ,qj = Nj
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for each j = 0, 1, then,

‖Tf‖qθ ≤ CN
1−θ
0 N θ

1 ‖f‖pθ , ∀f ∈
⋂
Lpj (2.1)

where C = 1 if K = C and C = 2 if K = R. In particular, the mapping T : Lpθ → Lqθ can be

extended to a continuous linear mapping satisfying in operator norm ‖T‖pθ,qθ ≤ CN
1−θ
0 N θ

1 .

Proof. Thanks to Lemma 2.1, by hypotheses, we have
⋂
Lpj ⊂ Lpθ and

⋂
Lqj ⊂ Lqθ ,

j = 0, 1. Thus,

f ∈
⋂
Lpj

T7−→ Tf ∈
⋂
Lqj .

Case 1. pθ < ∞ and qθ > 1. First we note that since integrable step functions are dense

in all Lp− spaces, they are dense in
⋂
Lpj . Thus we show that (2.1) holds for all such

functions, by showing that ∣∣∣∣∫ (Tf)g

∣∣∣∣ ≤ N1−θ
0 N θ

1 (2.2)

holds for all integrable step functions f, g satisfying ‖f‖pθ = ‖g‖q′θ = 1, where 1
q′θ

= 1− 1
qθ

is

the dual conjugate exponent of qθ > 1. Indeed (2.2) asserts that the functional l : Lq
′ → C

mapping g →
∫

(Tf)g obeys ‖l‖ ≤ N1−θ
0 N θ

1 . Furthermore, by [11], Riesz representation

l ∈ (Lq
′
θ)′ ∼= Lqθ is the isometrically isomorphic image of Tf and ‖Tf‖qθ ≤ N

1−θ
0 N θ

1 .

To prove the above, we de�ne step functions

f =
J∑
j=1

ajχAj , g =
J ′∑
k=1

bkχBk ,

‖f‖pθpθ =

J∑
j=1

|aj |pθ |Aj | = 1, ‖g‖q
′
θ
q′ =

J ′∑
k=1

|bk|q
′
θ |Bk| = 1, (2.3)

where |A| denotes the measure of a set A ⊂ RN , and Aj ∩Ak = Bj′ ∩Bk′ = ∅ for all j, k ∈ J

and j′, k′ ∈ J ′. Next for z ∈ C, de�ne

1

p(z)
=

1− z
p0

+
z

p1
,

1

q′(z)
=

1− z
q′0

+
z

q′1
,
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so that p(0) = p0, p(θ) = p and p(1) = p1 as well as q′(0) = q′0, q
′(1) = q′1. Using the

convention 0
0 = 0 we set

fz = |f |
p
p(z)

f

|f |
, and gz = |g|

q′
q′(z)

g

|g|
.

which are integrable step functions, in particular fz ∈ Lp1 implies that Tfz is well-de�ned.

Lastly, de�ne F : C→ C by

F (z) =

∫
(Tfz)gz

to obtain, using (2.3), that

F (z) =

J∑
j=1

J ′∑
k=1

|aj |
p
p(z)

aj
|aj |
|bk|

q′
q′(z)

bk
|bk|

∫
Bk

TχAj .

This shows that F is a linear combination of terms of the form γz, γ > 0. So F is analytic

and satis�es the assumption of Proposition 2.2 since every function γz is bounded in S (see

Proposition 2.2) by

|γx+iy| = γx ≤ max{1, γ}, ∀x+ iy ∈ S.

Now for estimating |F (θ + iy)| for θ = 0, 1, we have by Hölder's inequality, that if θ = 0,

then

|F (iy)| ≤ ‖Tfiy‖q0‖giy‖q′0 ≤ N0‖fiy‖p0‖giy‖q′0 ,

and furthermore,

‖fiy‖p0
p0

=
J∑
j=1

∣∣∣|aj | p
p(iy)

p0

∣∣∣Aj | = J∑
j=1

|aj |p|Aj | = ‖f‖pp = 1,

using (2.3) and the fact that ||aj |
p

p(iy)
p0 | = |aj |p. Similarly, we obtain ‖giy‖

q′0
q′0

= 1. Summing

up, we have sup
y∈R
|F (iy)| ≤ N0, and carrying out the calculation with θ = 1, we get sup

y∈R
|F (1+

iy)| ≤ N1. Finally, Proposition 2.2 yields that∣∣∣∣∫ Tfg

∣∣∣∣ = |F (θ)| ≤ sup
y∈R
|F (θ + iy)| ≤ N1−θ

0 N θ
1 ,



31

from which the desired estimate (2.2) follows.

Case 2. pθ = ∞. This assumption immediately implies that p0 = p1 = ∞, and if

qθ = q0 = q1 = 1, then there is nothing to prove. So suppose that qθ > 1. Now f need not

be integrable and we may choose f = fz for all z ∈ C. Analogously, we can handle the case

q = 1, p <∞ (now gz = g).

Next we prove for K = R. Luckily, this follows from the above and the following argu-

ment. Let U : LrR → LrR be a continuous linear operator between real Lp spaces. Further-

more, de�ne the canonical extension by UC = Uf + iUg. This map is C-linear, and it holds

that

‖UC‖ = sup
‖f+ig‖=1

‖UC(f + ig)‖ ≤ sup
‖f+ig‖=1

(‖U(f)‖+ ‖U(g)‖)

≤ sup
‖f‖=1

‖U(f)‖+ sup
‖g‖=1

‖U(g)‖ ≤ 2‖U‖. (2.4)

Applying this to the assumption of the theorem we obtain the results for T by using the

extension TC and (2.1)

‖Tf‖qθ = ‖TCf‖qθ ≤ ‖TC‖
1−θ
p0,q0‖TC‖

θ
p1,q1‖f‖pθ

≤ 2‖T‖1−θp0,q0‖T‖
θ
p1,q1 = 2N1−θ

0 N θ
1 ‖f‖pθ ,

and the proof of the theorem is complete.

To give Marcinkiewicz interpolation theorem, we need to introduce some concepts so as

to make its results accessible to the reader.

De�nition 2.1. (i) The distribution function λ(·, f) : R+ → R+ of a measurable function

f on RN is de�ned by

λ(σ, f) := | {x : |f(x)| > σ} |

where | · | taken on sets represent the measure of RN .
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(ii) The equivalent norms of Lp are de�ned by

‖f‖p =


(∫∞

0 σp−1λ(σ, f)dσ
) 1
p if 1 ≤ p <∞,

inf{σ : λ(σ, f) = 0} if p =∞.

(iii) The weak Lp-spaces, denoted by Lp∗, 1 ≤ p <∞, consist of all f such that

‖f‖p,∗ = sup
σ
σλ(σ, f)

1
p <∞.

In the case p =∞, we put Lp∗ = L∞. The triangle inequality of Lp in Lp∗ is

‖f + g‖p,∗ ≤ 2
1
p (‖f‖p,∗ + ‖g‖p,∗).

Thus Lp∗ is a quasi normed vector space.

(iv) For any f ∈ Lp, 1 ≤ p <∞, we have ‖f‖p,∗ ≤ ‖f‖p. That is, Lp ⊂ Lp∗.

(v) The decreasing rearrangement of f is the function f∗ : [0,∞)→ [0,∞) de�ned by

f∗(t) = inf{σ : λ(σ, f) ≤ t}

with convention that inf ∅ =∞. f∗ is a non-negative, and non-increasing function on

(0,∞), continuous on the right and has property λ(ρ, f∗) = λ(ρ, f) for ρ ≥ 0. Thus

f∗ is equi-measurable with f .

(vi) The Lorentz space Lp,q(RN ), 1 ≤ p, q ≤ ∞ is the set of all measurable functions f on

RN such that

‖f‖Lp,q =


(∫∞

0

(
t

1
p f∗(t)

)q
dt
t

) 1
q

if q <∞,

sup
t>0

t
1
p f∗(t) if q =∞

is �nite. Two functions in Lp,q are said to be equal if they are equal almost everywhere.

Lp,∞ = Lp∗ and L
p,p = Lp, L∞,∞ = L∞ = L∞∗ .
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(vii) For 1 ≤ p <∞, 1 ≤ q < r ≤ ∞ there exists a constant Cp,q,r = ( qp)
1
q
− 1
r such that

‖f‖p,r ≤ Cp,q,r‖f‖p,q. That is, Lp,q ⊂ Lp,r.

(viii) The spaces Lp,q, 1 ≤ p, q ≤ ∞ are complete with respect to their quasi-norms and are

therefore quasi-Banach spaces.

An operator T mapping functions from a measurable space (Ω0, µ0) to another measur-

able space (Ω1, µ1) is said to be quasi-linear if

(i) T (f + g) is de�ned whenever Tf and Tg are de�ned,

(ii) |T (λf)(x)| ≤ κ|λ||Tf(x)|, and

(iii) |T (f + g)(x)| ≤ K(|Tf(x)|+ |Tg(x)|)

for almost everywhere on x, with κ,K ∈ R+ being independent of f and g.

We are now ready to state the Marcinkiewicz Interpolation Theorem.

Theorem 2.4 (Marcinkiewicz Interpolation Theorem). Assume 1 ≤ pj ≤ qj ≤ ∞, p0 < p1,

q0 6= q1 and T a quasi-linear mapping de�ned on Lp0 + Lp1 which is simultaneously of weak

types (p0, q0) and (p1, q1)., i.e.

T : Lpj → L
qj
∗ for j = 0, 1, and ‖Tf‖qj ,∗ ≤ Nj‖f‖pj .

If 0 < θ < 1, and

1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
.

Then, T is of strong type (pθ, qθ), i.e.

‖Tf‖qθ ≤ N‖f‖pθ ,∀f ∈ L
pθ ,

where N = C(Nj , pj , qj , θ) and depends neither on T nor f .
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Proof. Since this proof is quite involving and delicate we skip it and make reference to the

interested reader to consult with [29]. Alternative elegant proofs are provided in [9, 52].

2.2 Real Interpolation

De�nition 2.2. (i) Let Xj = (X0, X1) be a pair of Banach spaces. A pair Xj of Banach

spaces is said to be admissible if there exists a topological vector space Z such that

entries satisfy Xj ⊂ Z, j = 0, 1 continuously.

(ii) The spaces  ⋂
j=0,1

Xj ; max{‖ · ‖j}

 , (X0 +X1; inf
xj∈Xj

‖x0‖0 + ‖x1‖1)

are Banach spaces.

(iii) X is an intermediate space with respect to the pair Xj if⋂
Xj ⊂ X ⊂ X0 +X1 (2.5)

continuously.

(iv) X,Y are interpolation spaces with respect to the pairs Xj , Yj respectively, if they are

intermediate spaces, and if for some linear mapping T : X0 + X1 → Y0 + Y1 it holds,

per corresponding entries, that

T ∈ L(Xj , Yj)⇒ T |X ∈ L(X,Y ). (2.6)

(v) Interpolation spaces X,Y with respect to the pairs Xj , Yj respectively are said to be of

exponent θ ∈ [0, 1] if there exists C > 0 such that

‖T‖X→Y ≤ C‖T‖1−θX0→Y0
‖T‖θX1→Y1

, ∀T ∈ L(Xj , Yj) (2.7)

If C = 1 then X,Y are exact interpolation spaces of exponent θ.
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Firstly, we treat the K− method for the real interpolation of Banach spaces.

De�nition 2.3. For every x ∈ X0 +X1, t > 0 let

K(t, x,X0, X1) = inf
x=a+b,a∈X0,b∈X1

(‖a‖0 + t‖b‖1). (2.8)

We de�ne the real interpolation spaces for 0 < θ < 1, 1 ≤ p ≤ ∞, by

(X0, X1)θ,p =
{
x ∈ X0 +X1 : t→ t−θK(t, x,X0, X1) ∈ Lp∗(0,+∞)

}
,

‖x‖θ,p = ‖t−θK(t, x,X0, X1)‖p

where Lp∗ is Lp with respect to the measure dt
t in (0,∞), and in abbreviation, we write

K(t, x) instead of K(t, x,X0, X1), and

(X0, X1)θ =

{
x ∈ X0 +X1 : lim

t→0+
t−θK(t, x,X0, X1) = lim

t→∞
t−θK(t, x,X0, X1) = 0

}
,

as t→ K(t, x) ∈ C(0,∞) for every x ∈ X0 +X1, we have (X0, X1)θ ⊂ (X0, X1)θ,∞. So the

spaces (X0, X1)θ are interpolation spaces.

Important to note is that K(t, x,X0, X1) = tK(t−1, x,X1, X0) for all t > 0 and by

transformation τ = t−1 which preserves Lp∗(0,∞), we get

(X0, X1)θ,p = (X1, X0)1−θ,p, 0 < θ < 1, 1 ≤ p ≤ ∞,

(X0, X1)θ = (X1, X0)1−θ.

So the order of the spaces is crucial. Immediate particular cases are the following;

Observation 2.1. (i) IfX0 = X1, thenX0+X1 = X0 andK(t, x) ≤ min{t, 1}‖x‖. Therefore,

X0 = (X0, X1)θ,p 0 < θ < 1, 1 ≤ p ≤ ∞.

(ii) If
⋂
Xj = {0}, then for each x ∈ X0 +X1, there exist unique a ∈ X0, b ∈ X1 such that

x = a+ b. Hence K(t, x) = ‖a‖0 + t‖b‖1 and t→ t−θK(t, x) 6∈ Lp∗(0,∞) unless x = 0.

Therefore, (X0, X1)θ,p = (X0, X1)θ = {0} for any θ ∈ (0, 1), 1 ≤ p ≤ ∞.
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(iii) In the important case X1 ⊂ X0, we have K(t, x) ≤ ‖x‖0 for every x ∈ X0, so t →

t−θK(t, x) ∈ Lp∗(a,∞) for a > 0. Thus, only the behaviour near t = 0 is important in

the de�nition of the interpolation spaces.

The results in the following proposition are proven in [52].

Proposition 2.5. (i) If 0 < θ < 1, 1 ≤ p1 ≤ p2 ≤ ∞, then

⋂
Xj ⊂ (X0, X1)θ,p1 ⊂ (X0, X1)θ,p2 ⊂ (X0, X1)θ ⊂ (X0, X1)θ,∞ ⊂ X0 +X1

Moreover, (X0, X1)θ,∞ ⊂
⋂
X̄j, where the closure is in X0 +X1.

(ii) If X1 ⊂ X0, 0 < θ1 < θ2 < 1, then

(X0, X1)θ2,∞ ⊂ (X0, X1)θ1,1.

Therefore, (X0, X1)θ2,p ⊂ (X0, X1)θ1,q for any 1 ≤ p, q ≤ ∞.

(iii) The interpolation spaces in De�nition 2.3 are Banach spaces, and condition (2.7) holds.

2.3 Complex interpolation method

Let X = XC be a complex Banach space,

S = {z ∈ C : 0 ≤ Rez ≤ 1} , and S̊ = {z ∈ C : 0 < Rez < 1} .

A mapping f : S̊ → X is called holomorphic if the mapping z → 〈f(z), x′〉, z ∈ S̊, is

holomorphic in the usual sense for all x′ ∈ X ′.

Theorem 2.6 (Maximum Principle). Let f : S → X be continuous, bounded, and holomor-

phic in S̊. Then,

sup
z∈S
‖f(z)‖X ≤ max

{
sup
t∈R
‖f(it)‖X , sup

t∈R
‖f(1 + it)‖X

}
.
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As a corollary, we obtain the following three lines theorem, which is the basis for the

proof of the Riesz-Thorin interpolation theorem and the complex interpolation method.

Theorem 2.7 (Three Lines Theorem). Let f : S → X be continuous, bounded, and holo-

morphic in S̊. Then,

sup
t∈R
‖f(θ + it)‖X ≤

(
sup
t∈R
‖f(it)‖X

)1−θ (
sup
t∈R
‖f(1 + it)‖X

)θ
for θ ∈ [0, 1].

De�nition 2.4. LetXj be an admissible Banach space, and F(Xj) be the set of all mappings

f : S →
⋃
Xj that are continuous, bounded, and holomorphic in S̊, such that

t→ f(it) ∈ C(R, X0), t→ f(1 + it) ∈ C(R, X1),

and equipped with norm

‖f‖F(Xj) = max

{
sup
t∈R
‖f(it)‖X0 , sup

t∈R
‖f(1 + it)‖X1

}
,

it is a Banach space. Furthermore, let F0(Xj) be the set of all f ∈ F (Xj) such that

lim
|t|↗∞

‖f(j + it)‖Xj = 0, so that it is a closed subspace of F (Xj). The linear hull of the

functions

V(Xj) =
{
eδz

2+λza : a ∈
⋂
Xj , δ > 0, λ ∈ R

}
is a dense subspace of F0(Xj).

We then de�ne the complex interpolation space

Xθ
j := [X0, X1]θ = {f(θ) : f ∈ F(Xj)} ,

endowed with the norm

‖x‖θ = inf
f∈F(Xj):f(θ)=x

‖f‖F(Xj).
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2.4 Banach scales of Bessel potential spaces

For the construction of the Bessel potential spaces, we will use the Harmonic Analysis

approach [30, 71, 82]. To this end, we start by de�ning the Schwartz space, S and its dual

S∗.

De�nition 2.5. The Schwartz space of functions de�ned on Ω ⊂ RN , denoted by S(Ω), is

de�ned as

S(Ω) :=

φ ∈ C∞(Ω) : sup
x∈Ω

(
1 + |x|2

) k
2
∑
|α|≤k

|Dαφ(x)| <∞, k ∈ N

 . (2.9)

The dual space1 of S(Ω) is denoted by S∗(Ω).

The quantities sup
x∈Ω

(
1 + |x|2

) k
2
∑
|α|≤k

|Dαφ(x)|, k ∈ N, de�ne a countable family of semi-

norms on S. Also, S∗ is a locally convex linear topological space, and it is said to be a

tempered distribution space.

Next, we de�ne the Fourier transform and its inverse on the Schwartz space and its dual

space.

De�nition 2.6. Let φ, ψ ∈ S. Then the Fourier transform, F , and its inverse, F−1, are

de�ned, respectively, as

φ̂(y) = (Fφ)(y) =
1

(2π)
n
2

∫
Ω
e−ix·yφ(x) dx,

ψ̌(x) = (F−1ψ)(x) =
1

(2π)
n
2

∫
Ω
eix·yψ(y) dy,

(2.10)

where x · y = x1y1 + . . .+ xnyn.

Recall that the convolution φ ∗ ψ on S is de�ned as follows (see, for instance, [2]).

φ ∗ ψ(x) =

∫
Ω
φ(x− y)ψ(y) dy.

1S∗(Ω) is the set of sequentially continuous linear functionals on S(Ω).
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With the de�nitions above in mind, we de�ne the Bessel potential operator as follows;

De�nition 2.7. Let s ∈ R. Then the Bessel potential of order s is a sequentially continuous

bijective linear operator Js : S(Ω)→ S(Ω) de�ned by

Jsu = (I −∆)−
s
2u = F−1

(
1 + |x|2

)− s
2 Fu, (2.11)

where I is the identity operator, ∆ =
n∑
j=1

∂2

∂x2
j
is the Laplace operator, and x ∈ RN .

It's is trivial to see from (2.11) that, for s, t ∈ R, the following hold;

Js+t = JsJt, (Js)
−1 = J−s, and J0 = I.

For u ∈ S(Ω), we also have a natural extension of Js : S∗(Ω)→ S∗(Ω) de�ned by

〈Jsu, φ〉 = 〈u, Jsφ〉, ∀φ ∈ S(Ω).

We therefore have the following de�nition of the Bessel potential space.

De�nition 2.8. Let s ∈ R and 1 < p < ∞. The Bessel potential space on Ω, denoted by

Hs,p(Ω), is de�ned by

Hs,p(Ω) = {u ∈ S∗(Ω) : Jsu ∈ Lp(Ω)}

= {u ∈ S∗(Ω) : ‖Jsu‖Lp(Ω) <∞}

= (I −∆)−
s
2Lp(Ω).

The norm on Hs,p(Ω) is given by

‖u‖Hs,p(Ω) = ‖Jsu‖Lp(Ω).

We should mention at this point that the Bessel potential spaces can also be constructed

using the complex interpolation-extrapolation procedure2, where they are de�ned by com-

plex interpolation between Lp spaces and Sobolev spaces Wm,p. That is, if s > 0 and m is

2See [2, 5, 78] for more details.
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the smallest integer greater than s, and Ω is a domain in RN , then we have

Hs,p(Ω) = [Lp(Ω),Wm,p(Ω)] s
m
,

and if s0, s1 ∈ N such that s0 6= s1, and 0 < θ < 1 such that s = s0(1− θ) + s1θ, then

Hs,p(Ω) = [W s0,p(Ω),W s1,p(Ω)]θ.

These Bessel potential spaces will provide the basic topology in this work, especially in

the well-posedness work. For this reason, we collect some of their properties below.

Proposition 2.8. Let s ∈ R and 1 < p <∞. Then

1. Hs,p is a Banach space;

2. S ⊂ Hs,p ⊂ S∗, and S(Ω) is dense in Hs,p(Ω).

3. Hs+ε,p ⊂ Hs,p, ∀ε > 0;

4. Hs,p ⊂ L∞, ∀s > N
p .

For the proof of Proposition 2.8, see [82, 71] and the references therein.

In addition to the properties in Proposition 2.8, we have the following Theorem [2, 5].

Theorem 2.9. Let −∞ < s2 ≤ s1 <∞ and 1 < p1 ≤ p2 <∞ be such that s1− N
p1

= s2− N
p2
.

Then

Hs1,p1 ⊂ Hs2,p2 . (2.12)

2.5 Banach scale spaces of positive operators

In this section, we work in the context of complex analysis mainly because of the de�nition

of the resolvent and spectrum of linear operators.
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De�nition 2.9. A linear operator A : D(A) ⊂ E → E is said to be positive if the resolvent

set of A contains (−∞, 0] and there exists M > 0 such that

‖R(λ,A)‖L(E) ≤
M

1 + |λ|
, λ ≤ 0. (2.13)

The power operator Az of a bounded positive operator A : E → E is de�ned by

Az =
1

2πi

∫
γ
λzR(λ,A)dλ,

where γ is any piecewise smooth curve surrounding σ(A) avoiding (−∞, 0] with index 1 with

respect to every µ ∈ σ(A).

Note that for a bounded positive operator the following properties are easily veri�ed:

(i) The mapping z → Az ∈ L(E) is holomorphic.

(ii) If z = k ∈ ±N, then Az = Ak.

(iii) For each z1, z2 ∈ C we have Az1Az2 = Az2Az1 = Az1+z2 etc.

If A is unbounded, then the theory is much more complicated. To de�ne Az we need

to have some control over its spectral properties. In this direction, we have the following

lemma [71, 78]

Lemma 2.10. Let A be a positive operator. Then, for

Λ =

{
λ = λ1 + iλ2 ∈ C : λ1 ∈ R−, |λ2| <

λ1 + 1

M

}
∪ {λ ∈ C : |λ| < 1

M
}

where M is as in (2.13), and for every θ0 ∈ (0, arctan 1
M ), r0 ∈ (0, 1

M ) there exists M0 > 0

such that

‖R(λ,A)‖L(E) ≤
M0

1 + |λ|
, λ ≤ 0 (2.14)

for all λ ∈ C, |λ| ≤ r0, λ1 < 0, λ1
λ2
≤ arctan θ0.
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Proof. It su�ces to recall that for every λ0 ∈ ρ(A), there exists an open ball Br(λ0) ⊂ ρ(A),

where r = 1
‖R(λ0,A)‖ , and such that for |λ− λ0| < r it holds that

R(λ,A) =
∞∑
n=0

(−1)n(λ− λ0)nR(λ0, A)n+1.

The union
⋃
Br(λ0) ⊃ Λ and the estimate follows easily.

De�nition 2.10. Let θ ∈ (π2 , π), r > 0, and consider the curve γr,θ = −γ1 − γ2 + γ3 where

γ1, γ3 are half lines parametrized respectively by

z = ξe−iθ, z = ξeiθ, ξ ≥ r,

and γ2 is the circle arc parametrized by z = reiη, −θ ≤ η ≤ θ. Then, for any

r ∈ (0,
1

M
), θ ∈ (π − arctan

1

M
,π), α = α0 + iα1 ∈ C with α0 < 0,

de�ne

Aα =
1

2πi

∫
γ
λαR(λ,A)dλ ⊂ L(E), (2.15)

satisfying that λ → λαR(λ,A) ∈ L(E) is holomorphic in Λ \ (−∞, 0], and the integral is

independent of r, θ.

Writing down the integral in (2.15), we get that

Aα =
1

2π

∫ ∞
r

ξα
(
−eiθ(α+1)R(ξeiθ, A) + e−iθ(α+1)R(ξe−iθ, A)

)
dξ

− rα+1

2π

∫ θ

−θ
eiη(α+1)R(reiη, A)dη (2.16)

for every r ∈ (0, 1
M ), θ ∈ (π − arctan 1

M , π), which can be worked out to get a simple

expression. For instance, if −1 < α0 < 0, then letting r ↘ 0, θ ↗ π leads to

Aαx = −sin(πα)

π

∫ ∞
0

ξα(ξI +A)−1xdξ. (2.17)

The following proposition yields some basic properties of the power operators Aα [2, 71, 78].
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Proposition 2.11. (i) If α = −n for n ∈ N, then Aα = (A−1)n = A−n.

(ii) If Re z < −k for k ∈ N, then the range

R(Az) ⊂ D(Ak) and AkAzx = Ak+zx, x ∈ E.

(iii) If Re z < 0 and x ∈ D(Ak) for k ∈ N, then Azx ∈ D(Ak) and AzAkx = AkAzx.

(iv) If Re z1, Re z2 < 0, then Az1Az2 = Az1+z2.

Proof. (i) Let α = −n. Then

1

2πi

∫
γr,θ

λ−nR(λ,A)dλ = lim
k↗∞

1

2πi

∫
γk

λ−nR(λ,A)dλ, (2.18)

where γk = {z : v|z| = 1
k}.

For every k ∈ N the mapping λ → R(λ,A) is holomorphic in the bounded region

surrounded by γk, and

1

2πi

∫
γk

λ−nR(λ,A)dλ = − 1

(n− 1)!

dn−1

dλn−1
R(λ,A)|λ=0 = A−n.

Back substitution of this in (2.18) yields

1

2πi

∫
γr,θ

λ−nR(λ,A)dλ = A−n.

(ii) Let k = 1, Re z < −1. Then, since

‖λzAR(λ,A)‖ = ‖λz(λR(λ,A)− I)‖ ≤ |λ|Re z(M0 + 1),

the integral in (2.16) is an element of L(E,D(A)), and

A
1

2πi

∫
γk

λzR(λ,A)dλ =
1

2πi

∫
γk

λz+1R(λ,A)dλ− 1

2πi
I

∫
γk

λzdλ.

But the last integral vanishes, so we obtain that A · Az = A1+z and the statement

holds for k = 1, the rest follows by induction or recursively.
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(iii) is obvious because Ak commutes with R(λ,A) onD(Ak), and this implies Ak commutes

with Az on D(Ak).

(iv) Let θ1 < θ2 < π, 0 < r2 < r1 <
1
M so that γr1,θ1 is on the right hand side of γr2,θ2 to

�nd that

Az1Az2 =
1

(2πi)2

∫
γr1,θ1

λz1R(λ,A)dλ

∫
γr2,θ2

µz2R(µ,A)dµ

=
1

(2πi)2

∫
γr1,θ1×γr2,θ2

λz1µz2
R(λ,A)−R(µ,A)

µ− λ
dλdµ

=
1

(2πi)2

∫
γr1,θ1

λz1R(λ,A)dλ

∫
γr2,θ2

µz2

µ− λ
dµ−

− 1

(2πi)2

∫
γr2,θ2

µz1R(λ,A)dµ

∫
γr1,θ1

λz2

µ− λ
dλ

=
1

2πi

∫
γr1,θ1

λz1+z2R(λ,A)dλ = Az1+z2 .

The proof of the proposition is complete.

Statement (iv) of Proposition 2.11 implies that Az is injective. Indeed, if Azx = 0 and

n ∈ N is such that −n < Re z, then A−nx = A−n−zAzx = 0 so that x = 0. Therefore,

it is possible to de�ne Aα if Re α > 0 as the inverse of A−α. But in this way the powers

Ait, t ∈ R remain unde�ned. So we give a uni�ed de�nition for Re α ≥ 0.

De�nition 2.11. For α = α0 + iα1 ∈ C, 0 ≤ α0 < n, n ∈ N, we de�ne

D(Aα) =
{
x ∈ E : Aα−n ∈ D(An)

}
, Aαx = AnAα−nx,

where the operator Aα is independent of n ∈ N.

In fact, the independence of Aα is a consequence of Proposition 2.11. Since, if n,m >

Re α, then Aα−mx = An−mAα−nx for n < m by part (iv), and for n > m by part (ii),
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taking z = α− n and k = n−m gives

Aα−mx ∈ D(Am) ⇐⇒ An−mAα−nx ∈ D(Am) i.e. Aα−nx ∈ D(An).

Now, if α = 0 then A0 = I. Moreover, if α0 > 0, then we get

D(Aα) = A−αE; Aα = (A−α)−1.

Indeed,

Aα−nx ∈ D(An) ⇐⇒ ∃y ∈ E such that Aα−nx = A−ny.

The uniqueness of y ∈ E is by de�nition. Furthermore,

A−nA−αy = A−αA−ny = A−αAα−nx = A−nx,

so that x = A−αy ∈ R(A−α) and Aα = (A−α)−1. Since Aα has a bounded inverse, it is

closed andD(Aα) is a Banach space endowed with the graph norm equivalent to x→ ‖Aαx‖,

the canonical norm of D(Aα).

If α0 = 0, then α = iα1 and

Aiα1 = (A−iα1)−1 ⇐⇒ ∀x ∈ D(Aiα1); Aiα1x ∈ D(A−iα1) and A−iα1Aiα1x = x

by de�nition. Therefore,

A−1−iα1Aiαx = A−1−iα1AAiα1−1x = A−1x.

Thus

A−1−iα1AAiα1−1x = AA−2x ∈ D(A)⇒ Aiα1x ∈ D(A−iα1) and A−iα1Aiα1x = x.
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Note that in general the operators Aiα1 are not bounded. Nevertheless, they are closed

operators, since A−1+iα1 is bounded and closed. Therefore, D(Aiα) is a Banach space under

the graph norm.

Clearly, from Proposition 2.11, we have D(An) ⊂ D(Aα0) continuously, since x ∈

D(An), Aα−nx ∈ D(An) using (iii) and

Aαx = AnAα−nx = Aα−nAnx⇒ ‖Aαx‖ ≤ ‖Aα−n‖‖Anx‖.

More generally in this regard, is the following theorem [71, 78].

Theorem 2.12. Let α = α0 + iα1, β = β0 + iβ1 ∈ C be such that β0 < α0. Then,

D(Aα) ⊂ D(Aβ) and

Aβx = Aβ−αAαx, ∀x ∈ D(Aα).

Moreover,

Aα−βAβx = Aαx, ∀x ∈ D(Aα), Aβx ∈ D(Aα−β),

and the converse is true.

Proof. The spaces embedding is obvious if β0 < 0. Thus, we prove the case β0 ≥ 0. If

n > α0 and x ∈ D(Aα) then A−n+αx ∈ D(An) and

A−n+βx = Aβ−αA−n+αx ∈ D(An)

thanks to Proposition 2.11-(iii). This implies that x ∈ D(Aβ) and

Aβx = AnAβ−αA−n+αx = Aβ−αAαx.

Since Aβ−α is bounded, we have that

‖Aβx‖ ≤ ‖Aβ−α‖‖Aαx‖
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holds, so that the �rst implication of the theorem is valid.

Next we notice that if x ∈ D(Aα), and n > max{α0, α0 − β0}, then

A−n+α−βAβx = A−n+α−βAβ−αAαx = A−nAαx ∈ D(An)

implying

Aβx ∈ D(Aα−β) and Aα−βAβx = Aαx.

But as well, if x ∈ D(Aβ) such that Aβx ∈ D(Aα−β), then we have

Aα−2nx = Aα−n−βA−n+βx = Aα−n−βA−nAβx = A−nAα−n−βAβx ∈ D(A2n)

yielding that x ∈ D(Aα) and Aαx = A2nAα−2nx = Aα−βAβx.

A worthwhile remark is that the condition β0 < α0 is essential in the above theorem

when α0 > 0. In fact, for every α0 > 0, α1 ∈ R we have

D(Aα0) = D(Aα0+iα1) ⇐⇒ Aiα1 ∈ L(E).

Now we give some representation formulas for Aαx when x ∈ D(Aα). First we consider, the

case 0 < α0 < 1, taking n = 1 in the de�nition, and we have

x ∈ D(Aα) ⇐⇒ Aα−1x ∈ D(A),

and in (2.17) we get

Aα−1x = −sin(πα)

π

∫ ∞
0

ξα−1(ξI +A)−1xdξ. (2.19)

Therefore,

x ∈ D(Aα) ⇐⇒
∫ ∞

0
ξα−1(ξI +A)−1xdξ ∈ D(A)
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and

Aαx = −sin(πα)

π
A

∫ ∞
0

ξα−1(ξI +A)−1xdξ

=
1

Γ(α)Γ(1− α)
A

∫ ∞
0

ξα−1(ξI +A)−1xdξ, (2.20)

which is the well-known Balakrishnan formula. Another formula holds for −1 < α0 < 1

starting from (2.16) for Aα−1 letting θ ↗ π, then integrating by parts to obtain

Aα−1 =
1 sin(πα)

πα

∫ ∞
r

ξα(ξI +A)−2xdξ − rα 1 sin(πα)

πα
(rI +A)−1x

− rα

2π

∫ π

−π
eiηα(reiηI +A)−1xdη (2.21)

(with 1 sin(πα)
πα = 1 if α = 0) and letting r ↘ 0 we get (for −1 < α0 < 1 ) that

Aα−1x =
1

Γ(1− α)Γ(1 + α)

∫ ∞
r

ξα(ξI +A)−2xdξ. (2.22)

Therefore, x ∈ D(Aα) ⇐⇒
∫∞

0 ξα(ξI +A)−2xdξ ∈ D(A). In this case

Aαx =
1

Γ(1− α)Γ(1 + α)
A

∫ ∞
0

ξα(ξI +A)−2xdξ. (2.23)

More generally, using [79] for n ∈ N+, m ∈ N, −n < α0 < m− n we have

Aαx =
Γ(m)

Γ(α+ n)Γ(m− n− α)
Am−n

∫ ∞
0

ξα+n−1(ξI +A)−mxdξ, (2.24)

for every x ∈ D(Aα). By virtue of the above formulas, we state the following proposition

from [52] Chapter 3.

Proposition 2.13. Let A : D(A) ⊂ E → E be such that

ρ(A) ⊃ (−∞, 0), ∃M > 0 such that ‖R(λ,A)‖L(E) ≤
M

1 + |λ|
, λ ≤ 0. (2.25)
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Then,

(E,D(A))θ,p =
{
x ∈ E : λ→ ϕ(λ) = λθ‖AR(λ,A)x‖ ∈ Lp(0,∞)

}
and the norms

‖x‖θ,p ≡ ‖x‖∗θ,p

are equivalent, where ‖x‖∗θ,p = ‖x‖+ ‖ϕ‖p.

More precisely, we prove the following embeddings.

Proposition 2.14. If α = α0 + iα1 ∈ C, 0 < α0 < 1, then

(E,D(A))α0,1 ⊂ D(Aα) ⊂ (E,D(A))α0,∞.

Proof. The inclusion (E,D(A))α0,1 ⊂ D(Aα) is easy, because ξ > 0

‖Aξα−1(ξI +A)−1x‖ = ξα0−1‖A(ξI +A)−1x‖

and for every x ∈ (E,D(A))α0,1 the function

ξ → ξα0‖A(ξI +A)−1x‖ ∈ L1
∗(0,∞),

using Proposition 2.13. By (2.20), we get Aα−1x ∈ D(A). That is, x ∈ D(Aα) and, by

(2.21),

‖Aαx‖ ≤ 1

|Γ(α)Γ(1− α)|

∫ ∞
0

ξα0‖A(A+ ξI)−1ξ‖dξ
ξ
≤ C‖x‖(ED(A))α0,1

.

Next let x ∈ D(Aα). Then, x = A−αy with y = Aαx, and using (2.22) for A−α−1y = x, we

obtain

x =
A

Γ(1− α)Γ(1 + α)

∫ ∞
0

ξ−α(A+ ξI)−2ydξ,
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while Proposition 2.13 imply

‖x‖E,D(A)α0,∞
≤ C(α) sup

λ>0
‖λα0A(A+ λI)−1x‖

≤ C(α) sup
λ>0

∥∥∥∥λα0A2(A+ λI)−1

Γ(1− α)Γ(1 + α)

∫ ∞
0

t−α(A+ tI)−2y dt

∥∥∥∥
≤ λα0

M

1 + λ

∫ λ

0
t−α(M + 1)2‖y‖dt +

+ λα0M(M + 1)2

∫ ∞
λ

1

tα0(1 + t)
‖y‖dt

≤ C‖y‖ = C‖Aαx‖. (2.26)

It then follows that (E,D(A))α0,∞ ⊃ D(Aα).

The theory of positive operators can be easily extended to non-negative operators in

the sense of De�nition 2.9 in which (−∞, 0) ⊂ ρ(A) and (2.13) holds with M
λ , λ > 0 as

the estimate from above. See [52] for a treatment of this situation. More delicate for our

immediate consideration is the question of the comment before the De�nition 2.11.

Lemma 2.15. Let A be a positive operator such that Aiα1 ∈ L(E) for every α1 ∈ R, and

α1 → ‖Aiα1‖ is locally bounded. Then, for every x ∈ D(A) the function C 3 z = z0 + iz1 →

Azx is continuous in the closed half-plane z0 ≤ 0.

Proof. If x ∈ D(A), then z → Azx is holomorphic for z0 < 1, so that it is trivially continuous

for z0 ≤ 0. But in the strict sense, it holds that

‖Az‖ ≤ M

π
| sin(πz)|

∫ ∞
0

ξz0

ξ + 1
dξ

≤ M | sin(πz)|
| sin(πz0)|

,

which implies that ‖Az0‖ ≤ M for z0 ∈ (−1
2 , 0), and thus, ‖Az‖ ≤ M‖Aiz0‖. In particular,

for any α1 ∈ R and r > 0 su�ciently small

‖Az −Aiα1‖ ≤ C
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in the half circle {z : |z − iα1| ≤ r, z0 ≤ 0}, where the constant is independent of z.

Consequently, for every x ∈ D(A), lim
z→iα1

Azx = Aiα1x.

Lastly, for this section we give the construction of the Banach scale spaces.

Theorem 2.16. Assume A is a positive operator with dense domain such that for every

α1 ∈ R, Aiα1 ∈ L(E), and there exists C, γ > 0 such that

‖Aiα1‖ ≤ Ceγ|α1 , α1 ∈ R.

Then, if α = α0 + iα1, β = β0 + iβ1 ∈ C satisfy 0 ≤ α0 < β0, then it holds that

[D(Aα), D(Aβ)]θ = D(A(1−θ)α+θβ).

Proof. Without loss of generality, we assume α = 0. Moreover, since Aiβ1 ∈ L(E) for any

β1 ∈ R we have D(Aβ) = D(Aβ0) for β0 > 0, so that we may assume β ∈ (0,∞).

Let x ∈ D(Aθβ) and,

f(z) = e(z−θ)2
A−(z−θ)x, 0 ≤ z0 ≤ 1.

To prove that f ∈ F(E,D(Aβ)), we observe that f is holomorphic in the strip z0 ∈ (0, 1)

and continuous up to z0 = 1 taking values in E. Since D(A) is dense in E, f is a continuous

function up to z0 = 0 with values in E. Indeed, A−(z−θ)βx = A−zβAθβx and the mapping

ν → Aνy ∈ E is continuous for ν ≤ 0 for any y ∈ D(A) = E. Similarly, t → f(1 + it) ∈

D(Aβ) is continuous. On the other hand,

‖A−(z−θ)βx‖ = ‖A−βz1A−βz0Aθβx‖ ≤ ‖A−βz0‖Ceγβz1‖Aθβx‖,

implying that f is bounded. Therefore, f ∈ F(E,D(Aβ)), while f(θ) = x imply x ∈

[E,D(Aβ)]θ and

‖x‖θ ≤ max

{
sup
t∈R
‖e−t2+θ2

A−(it−θ)βx‖, sup
t∈R
‖e−t2+(1−θ)2

A−(1+it−θ)βx‖β
}

(2.27)

≤ C ′‖Aθβx‖ ⇒ D(Aθβ) ⊂ [E,D(Aβ)]θ. (2.28)
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Conversely, let x ∈ D(Aθβ), f ∈ F(E,D(Aβ)) be such that f(θ) = x. Then the function,

F (z) = e(z−θ)2
Azβf(z) ∈ E

is continuous for z0 = 0, 1, and we have

sup
t∈R
‖F (it)‖ ≤ sup

t∈R
e−t

2+θ2
Ceγβ|t| sup

t∈R
‖f(it)‖ ≤ C ′‖f‖F(E,D(Aβ)), and

sup
t∈R
‖F (1 + it)‖ ≤ sup

t∈R
e−t

2+(1−θ2)Ceγβ|t| sup
t∈R
‖f(1 + it)‖ ≤ C ′‖f‖F(E,D(Aβ)).

Thus F is bounded with values in E, for z0 = 0, 1. If F was holomorphic in the interior

of S and continuous in S we could apply the maximum principle so as to get ‖Aθx‖ ≤

C ′‖f‖F(X,D(Aβ)). But in general, F is not even de�ned in S interior, as it takes values in E

and not in the domain of the power operator of A. So we have to modify the approach.

By de�nition

‖x‖θ = inf{‖f‖F(E,D(Aβ)) : f ∈ V(E,D(Aβ)), f(θ) = x}.

Next, de�ne

F (z) = e(z−θ)2
Azβf(z), 0 ≤ z0 ≤ 1,

which is properly de�ned, holomorphic if z0 ∈ (0, 1) and continuous taking values in E, up

to z = 0, 1. As it is further bounded, the maximum principle implies that

‖Aθβx‖ = ‖f(θ)‖ ≤ max{sup
t∈R
‖F (it)‖, sup

t∈R
‖F (1 + it)} ≤ C ′‖f‖F(E,D(Aβ),

where the last estimates follow from ones in above paragraph. The conclusion of the theorem

thus, is obtained through the fact that D(Aβ) is dense in [E,D(Aβ)]θ.



Chapter 3

Minimal KS Equation in Bessel

Potential Spaces

3.1 Introduction

Let Ω ⊂ RN be an open bounded domain with smooth boundary ∂Ω = Γ. In this chapter, we

are going to prove the local existence and uniqueness of solutions for the following minimal

prototype of the Keller-Segel models, describing the aggregation of amoebae by chemotaxis;

ut = ∆u−∇ · (uχ∇v) in Ω× (0, T ),

vt = ∆v − λv + au in Ω× (0, T ),
∂u

∂~n
=
∂v

∂~n
= 0 on ∂Ω = Γ,

u(x, 0) = u0(x), v(x, 0) = v0(x).

(3.1)

where

u := cell density of the amoebae,

v := chemical attractant concentration,

λ := rate of decay of chemical,

a := rate of production of chemical,

53
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χ := chemotactic sensitivity coe�cient,

∇· := div,

~n := unit normal vector pointing outwards of Γ.

For notational simplicity, we let I = [0, T ), İ = (0, T ).

We will be working in the Bessel potential spaces in Lq(Ω) (1 < q < ∞), hereafter

denoted by Eαq (see De�nition 2.8 and (1.1)). The system of equations (3.1) can therefore

be written in matrix form as follows: Ut +AU = P (u)U

U(0) = U0 ∈ Eβq × Eγq , β ≤ γ < β + 1,
(3.2)

where U = (u, v)>, U0 = (u0, v0)>, and

A =

 −∆ 0

0 −∆ + λ

 ,

P (u)U =

 −∇ · (uχ∇v)

au

 .

(3.3)

The domain of the operator A in (3.3), denoted by D(A), is taken to be

D(A) :=
{
U ∈ H2,q(Ω,R2) : ∂~nU = ~0 on Γ, 1 ≤ q <∞

}
. (3.4)

Furthermore, recall from Chapter 1 that the operator A : D(A) ⊂ Lq(Ω)→ Lq(Ω) in (3.3) is

sectorial (C+ operator for short). Thus, by the complex interpolation-extrapolation theory

[2, 5, 30, 67, 79], the scale spaces

Eαq := H2α,q(Ω) = (I −∆)−αLq(Ω)

are well de�ned, subject to the boundary conditions, for −1 ≤ α ≤ 1, 1 < q <∞.
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Next, we recall the embedding relations for the Bessel potential spaces as in [2, 5, 30,

67, 71]. Suppose that the boundary of Ω, ∂Ω, is C1−smooth. Then we have that

Hs,q(Ω) ⊂


Lp(Ω), s− N

q ≥ −
N
p , 1 ≤ p <∞, if s− N

q < 0,

Lp(Ω), 1 ≤ p <∞, if s− N
q = 0,

Cθ(Ω) if s− N
q > θ > 0,

(3.5)

with continuous inclusions. These embeddings are known to be optimal. The best space

embeddings constant which we will use relatively often is [27, 91]

Cα =



(2
√
π)
− 2α

2
Γ(N−2α

2 )
Γ(N+2α

2 )

(
Γ(N)

Γ(N2 )

) 2α
N

'
(
2(Neπ)−1

)α
if 1 < q <∞, 0 < 2α < N

q ,

2Γ
(
N
2q′

)
|Ω|

1
p

2
1
q+N

q π
N
2qN

1
q′
(

1− 1
q′

(
1
q′+

1
p

)) 1
q′ +

1
p [Γ(N2 )]

1
q′ Γ
(
N
2q

) if 2α = N
q , q ≤ p <∞,

(3.6)

obtained by using Stirling's formula for large N , with 1 < p <∞, and 0 < 2α < N
p .

With regards to the dual spaces for these Bessel potential spaces, we �rst recall from

Proposition 2.8 that if s ∈ R and 1 < p < ∞, then S(Ω) is dense in Hs,p(Ω). Thus, a

continuous linear functional on Hs,p(Ω) can be interpreted in the usual way as an element

of S∗(Ω). Moreover, it is known that the scales of Bessel potential spaces with negative

exponents satisfy H−s,p(Ω) =
(
Hs,p′(Ω)

)∗
. See [5, 6] for more details.

We can then easily obtain that for s > 0 we have that

H−s,q(Ω) ⊃


Lp(Ω), −s− N

q ≤ −
N
p , 1 < p ≤ ∞, if − s− N

q > −N,
Lp(Ω), 1 < p ≤ ∞, if − s− N

q = −N,
M(Ω) if − s− N

q < −N.

In (3.3), P (u)U is a linearly coupled vector function, with the �rst entry featuring a

divergence-0 operator acting on a vector �eld uχ∇v of concentration of chemicals, while

in the second component we have the productive e�ects of the amoebae. Note that, from
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the system of equations (3.1)-(3.3), neither proliferation nor death of the amoebae has been

considered1.

It is known that (see [30, 68, 66]), corresponding to the equations in (3.1) are the variation

of coe�cient formulae (also known as Integral formulae) given as

u(t) = e∆tu0 +

∫ t

0
e∆(t−s)∇(u(s)χ∇v(s)) ds,

v(t) = e(∆−λ)tv0 + a

∫ t

0
e(∆−λ)(t−s)u(s) ds,

(3.7)

assuming that they are well de�ned for given functions u and v, respectively, de�ned on

(0, T ].

The well-posedness conditions for the system (3.1)-(3.3) depend on the three embedding

cases in (3.5). We are going to �nd conditions for the system (3.1) to be well-posed in the

super-critical case (0 < 2α < N
q ).

Furthermore, we are going to prove the existence of a priori uniform bounds in Ω×(0, T )

of solutions and their gradients (3.1). We will then use a bootstrap argument to prove that

the solutions to the system (3.1) are in fact classical.

Lastly for this chapter, we are going to give some highlights on the blow-up dynamics of

the system of equations (3.1) at the borderline spaces Eαq , α = N
2q .

3.2 Well-posedness of the System

In this section, we will prove the well-posedness for the system (3.1)-(3.3) with the bounded

domain Ω ⊂ RN in the Bessel potential spaces Eαq , where 0 < 2α <
N

q
. To this end, we

1Refer to the paragraph after (0.1).
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have the following lemma.

Lemma 3.1. Consider the system (3.1) and assume that (1.2) holds. Let α, γ ∈ R, α ≥
1
2 , γ ≤ α < γ + 1 such that

α+ γ ≥ 1

2
+
N

2q
, and 2α+ γ ≥ 1 +

N

2q
. (3.8)

If u ∈ Eγq , v ∈ Eαq , then P (U) ∈ E−βq as a weak form in the sense given by

〈P (U), ϕ〉q,q′ = 〈uχ∇v,∇ϕ〉q,q′ = χ

∫
Ω
u∇v∇ϕ ∈ R, ∀ϕ ∈ Eαq′ , (3.9)

is well de�ned. Moreover,

‖P‖Llip(Eαq ,E
−γ
q′ ) := sup

‖ϕ‖α,q′≤1

∣∣∣〈P (U), ϕ〉Eαq ,Eγq′
∣∣∣

χ‖u∇v‖α,q
≤
(

2

Neπ

)α+ γ
2
− 1

2

. (3.10)

In particular, P ∈ Llip(Eαq , E
γ
q′) is true.

Proof. Let ϕ ∈ Eαq′ be a test function to the operator −Div(u∇v) in the duality passing of

Lq(Ω). Using the Sobolev type embeddings (3.5) and Hölder's inequality, we have that the

mapping

Eγq × Eαq × Eαq′ 3 (u, v, ϕ) 7→ 〈−Div(uχ∇v), ϕ〉q,q′ = χ

∫
Ω
u∇v∇ϕ ∈ R (3.11)

is well de�ned and continuous, since, if γ − 1

2
≥ 0, then ∇v ∈ E

γ− 1
2

q ⊂ E0
q . Given that

q ≥ N

2α
, we have from (3.5) that u∇v ∈ E0

q . We further see from (3.5), regarding embeddings

into E
α− 1

2
q , that

1

q
≥ N − 2γq

qN
+
N − 2αq + q

qN
⇔ N ≥ 2N − 2q(α+ γ) + q, (3.12)

from which we obtain that 2q(α+γ) ≥ N+q ⇔ α+γ ≥ 1

2
+
N

2q
, which is the �rst hypothesis

in (3.8).

Furthermore, applying again (3.5) and Hölder's inequality, we obtain that

N − 2γq

qN
+
N − 2q(α− 1

2)

qN
+
N − 2q′(α− 1

2)

q′N
≤ 1,
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which yields the second hypothesis in (3.8). As a result, we get, by using Hölder's inequality,

(3.5) and (3.6), that

|
∫

Ω
χu∇v∇ϕ dx| ≤ ‖uχ∇v‖q‖∇ϕ‖q′

≤ χ
(

2

Neπ

)α− 1
4

‖u∇v‖α,q‖∇ϕ‖α− 1
2
,q′

≤ χ
(

2

Neπ

)α− 1
2

‖u‖p0‖∇v‖α− 1
2
,q‖∇ϕ‖α− 1

2
,q′

≤ χ
(

2

Neπ

)α+ γ
2
− 1

2

‖u‖γ,q‖v‖α,q‖ϕ‖α,q′ ,

(3.13)

in which we supposed that 1
p = 1

p0
+ 1

p1
. Moreover, we get by linearity of the mapping that

it is Lipschitz continuous, and the Lemma is established.

A worthwhile observation is that the bounding estimate in (3.10) changes with the space

embedding E
N
2q
q ⊂ Lp(Ω) in the critical case 2α = N

q (see (3.6)). Furthermore, the yielding

condition in (3.8) is a special case of the condition

1

2
+
N

2

(
1

q
+

1

p
− 1

ρ

)
≤ β + γ and 1 +

N

2

(
1

q
+

1

p
− 1

ρ

)
≤ 2β + γ, (3.14)

pertinent to initial data spaces in all di�erent exponents, implying PΩ = P : Eγρ 7→

E−βρ′ , PΩ ∈ Llip(Eγρ , Eβρ′), and (3.8) is obtained when ρ = q. Since γ ≥ 1
2 , β ≤ 1, the

condition (3.14) yields Young's inequality for convolutions, and ρ ≥ q, p. Furthermore, the

sharp optimal Bessel potential space inclusions (3.5) are veri�ed, with ρ = p.

Following from Lemma 3.1, we have the main result of this section as the following

Theorem.

Theorem 3.2. Suppose that for the second equation in (3.1), u ∈ Lσ(İ , Eαq ) for 1 ≤ σ ≤ ∞

and 0 ≤ γ − α < 1
σ′ . Then
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(i) we have that

v ∈ C(I;Eαq ) ∩ C(İ;Eγq ) ∩ C(İ;Eα+1
q ) ∩ C1(İ;Eγ

′
q ), (3.15)

for any γ′ < α+ 1
σ′ , α ≤ γ < α+ 1. Furthermore, since the operator in (3.3) is a C+

operator, we have that u ∈ Lσ(0,∞;Eαq ), v ∈ Lσ(0,∞;Eγq ), α ≤ γ < α + 1, for any

α ∈ R, and

lim sup
t→∞

‖u‖γ = 0 and lim sup
t→∞

‖∇v‖γ− 1
2

= 0 (3.16)

hold.

(ii) If Lemma 3.1 holds, then

u ∈ C(I;Eβq ) ∩ C(İ;Eγq ) ∩ C(İ;Eβ+1
q ) ∩ C1(İ;Eγ

′
q ), (3.17)

for any γ′ < β + 1.

(iii) The evolution equation (3.2) admits a unique global strong solution given by (3.7), and

the converse is true. Furthermore, if

2χ+ a

q

(
2

Neπ

)α+β
2
− 1

2

< 1, (3.18)

then the complete system di�erential operator

A− P̃ (φ) =

 −∆ ∇(φχ∇·)

−a −∆ + λ

 : Zβ+α
q → Z−β−αq , (3.19)

with β ≤ α ≤ γ < α + 1, de�nes a perturbed analytic semigroup in Zβ+α
q , and the

global asymptotic dynamics satisfy

lim sup
t→∞

‖(u(t), v(t))>‖α+γ = A∗ ∈M∪ {0}, (3.20)

whereM is the limit set

M = {A ∈ R2 : A =

(
a|Ω|ū0

λ
, |Ω|v̄0

)>
}, (3.21)
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which corresponds to |Ω|L1−spatial average solutions to the system of equations (3.1)

in the distributions sense.

(iv) The global solution in (iii) is a classical solution.

We remark here that (3.18) has been shown to hold even using numerical experimental

data (see [50, 87]). Before we give a proof for Theorem 3.2, we state that with the integral

formulae (3.7) in mind, we have the following de�nition:

De�nition 3.1.

(i) If u ∈ Lσ(İ , Eαq ) for 1 ≤ σ ≤ ∞, then a function v is a strong solution if it satis�es

(3.15), (3.7) and (3.1) in distribution sense as an identity in Eαq .

(ii) A function u ∈ Eαq is a strong solution if (3.11) is veri�ed and well de�ned in Eγq , with

0 ≤ α− γ < 1, and (3.17) holds so as the equation in distribution sense as an identity

in Eγq .

(iii) If (i) and (ii) above are satis�ed, then U = (u, v)> is a strong solution to (3.2), and

the equation is veri�ed in distribution sense as an identity in Zα+γ
q = Eαq × E

γ
q .

We are now ready to give the proof for our main result.

3.2.1 Proof of Theorem 3.2

The proof of Theorem 3.2 will be given in steps. Firstly, we observe that in (3.15)-(3.17),

the initial smoothness of solutions are due to the fact that the analytic semigroup (1.3) is

also a C0−semigroup, and hence [67, 68] yield the assertions using (3.7).

We also have, using the second integral formula in (3.7), and the estimate in (1.6) for
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γ = α if σ = 1, or for 0 ≤ γ − α < 1
σ′ if 1 < σ ≤ ∞, that

‖v(t)‖γ ≤ ‖e(∆−λ)tv0‖γ + a

∫ t

0
‖e(∆−λ)(t−s)u(s)‖γ ds

≤ Mt−(γ−α)‖v0‖α +Ma

∫ t

0
(t− s)−(γ−α)‖u(s)‖α ds

≤ M

[
t−(γ−α)‖v0‖α + a

(∫ t

0
(t− s)−σ′(γ−α) ds

) 1
σ′
(∫ t

0
‖u(s)‖σα ds

) 1
σ

]

≤ M

[
t−(γ−α)‖v0‖α + a

(
1

1− σ′(γ − α)

) 1
σ′

t
1
σ′−(γ−α)‖u(t)‖Lσ(0,T,Eαq )

]
,

where the second inequality above is obtained from (1.6) and the third one from Hölder's

inequality. This means that v(t) is bounded on �nite intervals away from t = 0, and

v(t) ∈ Eγq for t > 0.

In particular,

|‖v‖|γ,γ−α = sup
t∈(0,T ]

tγ−α‖v(t)‖γ

≤ sup
t∈(0,T ]

tγ−αM
[
t−(γ−α)‖v0‖α + t

1
σ′−(γ−α)‖u(t)‖Lσ(0,T,Eαq )

]
= sup

t∈(0,T ]
M
[
‖v0‖α + t

1
σ′ ‖u(t)‖Lσ(0,T,Eαq )

]
≤ C

(
‖v0‖α + ‖u‖Lσ((0,T ),Eαq )

)
,

for some C > 0, which proves that v ∈ L∞γ−α(İ , Eγq ).

To prove continuity, �x t > 0 (or even t = 0 if v0 ∈ Eγq ), h > 0. Then, from the second

formula in (3.7) we compute

v(t+ h)− v(t) = e(∆−λ)hv(t)− v(t) + a

∫ t+h

t
e(∆−λ)(t+h−s)u(s) ds,
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so that, when we take the norm, (1.6) gives

‖v(t+ h)− v(t)‖γ ≤ ‖e(∆−λ)hv(t)− v(t)‖γ

+ aM

∫ t+h

t
(t+ h− s)−(γ−α)‖u(s)‖α ds.

(3.22)

Now, as h → 0, e(∆−λ)hv(t) → v(t), and thus the �rst term goes to zero. By the Hölder's

inequality, the second term is bounded by

aM

(∫ t+h

t
(t+ h− s)−σ′(γ−α) ds

) 1
σ′
(∫ t+h

t
‖u(s)‖σα ds

) 1
σ

≤M1−σ′(γ−α)‖u‖σ,αh
1
σ′−(γ−α),

which also goes to zero as h→ 0. Hence, continuity of the v−solution component follows.

Next, for any α, γ ∈ R such that α ≤ γ ≤ α+ 1
σ′ , if we let

cα,γ(t) = e(∆−λ)t ∈ L1(0,∞),

then it is not bounded at t = 0, unless α = γ. Also, if σ = 1, we let

φ(t) =

∫ t

0
e(∆−λ)(t−s)u(s) ds,

then, since

e(∆−λ)(t−s)v0 ∈ L1(0,∞; Eγq ),

provided that v0 ∈ Eγq , we only need to prove that φ(t) ∈ L1(0,∞; Eγq ). Thus, if s = tρ for

ρ ∈ [0, 1] �xed, then we get

‖φ(t)‖1,γ ≤
∫ t

0
‖φ(t)‖1,γ dρ =

∫ t

0

∫ ∞
0

∥∥∥e(∆−λ)t(1−ρ)u(tρ)
∥∥∥
γ
dt

≤
∫ t

0

∫ ∞
0

r

ρ2
cα,γ(r(1− ρ)ρ−1) ‖u(r)‖α drdρ

≤
(∫ ∞

0
cα,γ(s) ds

)(∫ ∞
0
‖u(r)‖α dr

)
,



63

following other changes to the time variables r = tρ, s = r
(

1−ρ
ρ

)
, then integrating with

respect to ρ. It then follows that

‖v(t)‖1,γ ≤ ‖cγ,γ(t)‖1 ‖v0‖γ + ‖cα,γ(s)‖1 ‖u(r)‖1,α .

Note that for σ =∞ the second term in (3.22) is bounded by

aM
(
‖u(t)‖L∞([0,T ],Eαq )

)∫ t+h

t
(t+ h− s)−(γ−α) ds ≤M1−σ′(γ−α)‖u‖∞,αh1−(γ−α).

If 0 ≤ γ−α ≤ 1, then we have continuity. The rest follows by using interpolation, thus, the

second from last result in (3.16) is valid.

Furthermore, we note that if we apply ∇ to the second equation in (3.7) and take the

norm in γ − 1
2 , we get

‖∇v‖γ− 1
2
≤ ‖∇

(
e(∆−λ)tv0

)
‖γ− 1

2
+ a

∫ t

0
‖∇
(
e(∆−λ)(t−s)u(s)

)
‖γ− 1

2
ds

≤Mt−(γ−α)‖v0‖α +Ma

∫ t

0
(t− s)−(γ−α)‖u(s)‖α ds

≤M

[
t−(γ−α)‖v0‖α + a

(∫ t

0
(t− s)−σ′(γ−α) ds

) 1
σ′
(∫ t

0
‖u(s)‖σα ds

) 1
σ

]

≤M

[
t−(γ−α)‖v0‖α + a

(
1

1− σ′(γ − α)

) 1
σ′

t
1
σ′−(γ−α)‖u(t)‖Lσ(0,T,Eαq )

]
,

(3.23)

since (3.8) is assumed so that if α ≥ N
2q , then γ − 1

2 ≥ α. This implies that ∇v ∈

L∞γ−α(0,∞;E
γ− 1

2
q ).

If we then consider the �rst formula in (3.7) and set h(t) = tγ−α ‖∇v‖γ− 1
2
, then we have

‖u(t)‖γ ≤ Mt−(γ−β)‖u0‖β +

∫ t

0
‖∇e∆(t−s)(uχ∇v)(s)‖γ ds

≤ Mt−(γ−β)‖u0‖β + χM

∫ t

0
(t− s)−

1
2
−(γ−α)‖(u∇v)(s)‖α ds
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≤ Mt−(γ−β)‖u0‖β + χM

(
2

Neπ

)γ+β
2
− 1

2

×

×
∫ t

0
(t− s)−

1
2
−(γ−α)‖u(s)‖β‖∇v(s)‖γ− 1

2
ds

≤ Mt−(γ−β)‖u0‖β + χM

(
2

Neπ

)γ+β
2
− 1

2

×

×
∫ t

0
(t− s)−

1
2
−(γ−α)h(s)s−(γ−α) ‖u(s)‖β ds

= Mt−(γ−β)‖u0‖β + χM

(
2

Neπ

)γ+β
2
− 1

2

Φ,

where Φ =
∫ t

0 (t− s)−
1
2
−(γ−α)h(s)s−(γ−α) ‖u(s)‖β ds. If we then make the change s = ρt in

the time variable, then we see that

Φ ≤ sup
t>0

h(t)

(∫ 1

0
t−σ

′( 1
2

+γ−α)t−σ
′(γ−α)

(
1

(1− ρ)σ
′( 1

2
+γ−α)ρσ′(γ−α)

)
dρ

) 1
σ′

‖u‖σ,α

≤ t−( 1
2

+2(γ−α)) sup
t>0

h(t)

(∫ 1

0

1

(1− ρ)σ
′( 1

2
+γ−α)ρσ′(γ−α)

dρ

)
‖u‖σ,α

≤ t−( 1
2

+(γ−α)) sup
t>0
‖∇v‖γ− 1

2

(∫ 1

0

1

(1− ρ)σ
′( 1

2
+γ−α)ρσ′(γ−α)

dρ

)
‖u‖σ,α .

(3.24)

It then follows by a backward substitution into (3.24) that lim sup
t→∞

‖u‖γ = 0. If we then

allow the exponential decay e�ect of the semigroup (1.4) in the norm estimates of (3.23)

and let σ =∞, we conclude that the last statement in (3.16) is valid. In fact:

lim sup
t→∞

‖∇v‖γ− 1
2
≤ aM

(∫ ∞
0

e−ωt

tγ−α
dt

)
lim sup
t→∞

‖u‖α = 0,

from which the result follows.

To complete the proof of (i), we need some extra results on (ii).

Lemma 3.3. Let u ∈ Eβq be as given in (3.7). Then u ∈ Cξloc(0, T ;Eαq ) is of exponent

ξ = γ − α ∈ (0, 1). That is, it is Hölder continuous in time.
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Proof. Let 0 < t < t+ h < T . Then we have that

u(t+ h)− u(t) = (e∆h − I)e∆tu0 +

∫ t

0
(e∆h − I)e∆(t−s)∇(u(s)χ∇v(s)) ds+

+

∫ t+h

t
e∆(t+h−s)∇(u(s)χ∇v(s)) ds,

Now, by virtue of Lemma 3.1, taking β = α, and taking the norm of Eαq on both sides,

and estimating, we get that

‖u(t+ h)− u(t)‖α ≤ ‖(e
∆h − I)e∆tu0‖α +

∫ t

0
‖(e∆h − I)e∆(t−s)∇(u(s)χ∇v(s))‖αds+

+

∫ t+h

t
‖e∆(t+h−s)∇(u(s)χ∇v(s))‖αds

≤Mγ−αh
γ−α ∥∥e∆tu0

∥∥
γ

+Mγ−αh
γ−α +

∫ t

0
‖∇(u(s)χ∇v(s))‖γds+

+

∫ t+h

t
‖e∆(t+h−s)∇(u(s)χ∇v(s))‖γds

≤Mγ−αMhγ−αt−(γ−α) ‖u0‖α + χMγ−αMhγ−α
∫ t

0
(t− s)−

1
2
−(γ−α)×

× ‖u(s)∇v(s)‖α ds+ χM

∫ t+h

t
(t+ h− s)−

1
2
−(γ−α) ‖u(s)∇v(s)‖α ds

≤Mγ−αMhγ−αt−(γ−α) ‖u0‖α + χM

(
2

Neπ

)γ+α
2
− 1

2

Mγ−αh
γ−α×

×
∫ t

0
(t− s)−

1
2
−(γ−α) × ‖u(s)‖α ‖∇v(s)‖γ− 1

2
ds+

+ χM

(
2

Neπ

)γ+α
2
− 1

2
∫ t+h

t
(t+ h− s)−

1
2
−(γ−α) ‖u(s)‖α ‖∇v(s)‖γ− 1

2
ds

≤

(
Mγ−αMt−(γ−α) ‖u0‖α + χ

(
2

Neπ

)γ+α
2
− 1

2

Mγ−αM1−(γ−α)t
1−(γ−α)+

+ χ

(
2

Neπ

)γ+α
2
− 1

2

M1−(γ−α) sup
t∈(0,T )

{
‖u(s)‖α ‖∇v(s)‖γ− 1

2

})
hγ−α,

which thus furnishes the desired Hölder continuity of the u−integral solution form in (3.7),

and thus the proof of the lemma is complete.

Lemma 3.4. Consider the set

W :=

{
ψ ∈ C(I;Eγq ) : sup

t∈(0,T )
‖ψ(t)‖γ ≤ C ‖ψ0‖β

}
, (3.25)
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and set the left-hand side of the �rst equation in (3.7) to F(u)(t). Then

(i) F(W ) ⊂W . That is, F maps W onto itself.

(ii) The mapping F : Eαq → Eγq is a contraction.

(iii) There exists a unique u ∈ W such that F(u)(t) = u(t) is a solution to (3.1) up to

maximal time T ∗(‖u0‖β) of existence of solutions of (3.2).

Proof. We �rst note that we can read the right-hand side of (3.7) in taking the norm of

Eγq = Eβq × Eγ−βq as in the scale spaces product, whereas, by virtue of Lemma3.1, we have

that uχ∇v is well de�ned in E0
q
∼= Lq(Ω). Therefore, if u ∈W , then we �nd that

‖F(u)(t)‖γ ≤M ‖u0‖β +M

∫ t

0
(t− s)−

1
2
−(γ−β) ‖uχ∇v‖0 ds

≤M ‖u0‖β + χ

(
2

Neπ

)γ+β
2
− 1

2

M

∫ t

0
(t− s)−

1
2
−(γ−β) ‖u‖β ‖∇v‖γ− 1

2
ds

≤M ‖u0‖β + χMC

(
2

Neπ

)γ+β
2
− 1

2

sup
t∈(0,T )

‖∇v‖γ− 1
2
‖u0‖β ×

×
∫ t

0
(t− s)−

1
2
−(γ−β)ds

≤M ‖u0‖β + χMC

(
2

Neπ

)γ+β
2
− 1

2

sup
t∈(0,T )

‖∇v‖γ− 1
2
‖u0‖β T

− 1
2
−(γ−β).

Thus, for

T =

((
1

M
− 1

C

)
1

χ supt∈(0,T ) ‖∇v‖γ− 1
2

(
2

Neπ

) 1−2γ−β
2

) 2
1−2(γ−β)

,

we obtain that (i) is satis�ed.

To prove (ii), we let u1, u2 ∈ W . Then, for 0 ≤ t ≤ T and using the same initial data,

we have that

‖F(u1)(t)−F(u2)(t)‖γ ≤
∫ t

t0

‖e∆(t−s)∇(u1χ∇v − u2χ∇v)‖γ ds

≤ M

∫ t

0
(t− s)−

1
2
−(γ−β) ‖(u1 − u2)χ∇v‖β ds
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≤ χM

(
2

Neπ

)γ+β
2
− 1

2
∫ t

0
(t− s)−

1
2
−(γ−β) ‖u1 − u2‖β ‖∇v‖γ− 1

2
ds

≤ χM

(
2

Neπ

)γ+β
2
− 1

2

T
1
2
−(γ−β) sup

t∈(0,T )
‖∇v‖γ− 1

2
sup

t∈(0,T )
‖u1 − u2‖β ,

so that for

T <

(
1

χ supt∈(0,T ) ‖∇v‖γ− 1
2

(
2

Neπ

) 1−2γ−β
2

) 2
1−2(γ−β)

,

we have that F is a contraction on W .

Thus, viewed together with (i) of this lemma, by the Banach Contraction Mapping

Theorem (Theorem 1.1) and Picard's method, or classical continuation allows the extension

of the �nite existence time to maximal time T ∗ = T (‖u0‖β), yielding the last assertion of

the lemma.

It now remains to prove (iii) of the theorem. For this, we observe on the smoothness

of solutions as given in the theorem, that (3.15) follows by [30, 67, 68]. Since (3.3) is a

C+ operator, and Lemma 3.3 holds, u(t) ∈ Lσ(İ;Eαq ) is Hölder continuous. Consequently,

linear non-homogeneous evolution equation results imply the time regularity of the solution

component with even T at ∞. In a similar manner, writing the weak form (3.11) as

f(t) = 〈(uχ∇v)(t),∇ϕ〉q, q′ for any ϕ ∈ Eγq′ , (3.26)

we conclude that (3.17) also holds, because ∇v ∈ E
γ− 1

2
q is bounded, and by Lemma 3.3,

u ∈ Cξ(İ;Eαq ) for 0 ≤ ξ = γ − α < 1, as a result, imply that (3.26) is Hölder continuous

in time. We therefore get by Lemma 3.2.1 and Theorem 3.2.2 in [30] the existence and

uniqueness of the solution to (3.1)-(3.2). The converse to the fact that the solution is given

by (3.7) is given by De�nition 3.1.

To prove the generation of a perturbed analytic semigroup, we have the following lemma.



68

Lemma 3.5. The operator in (3.19) is an in�nitesimal generator of a perturbed analytic

semigroup in scale spaces Zβ+α
q , and the strong solution of the theorem coincides with that

generated by (3.19).

Proof. We �rstly observe from what has been proven up to now that v ∈ L∞γ−α(0, T ;Eγq )

and lim sup
t→∞

tγ−α ‖v(t)‖γ ≤ M ‖v0‖α using (3.24) with σ = ∞, while still with (3.24), we

obtain lim sup
t→∞

tα−β ‖u(t)‖α ≤ M ‖u0‖β , and the assertion should follow. More precisely, to

complete ideas, we prove that (3.19) is well de�ned, continuously, coercive, strictly monotone

and is a sectorial operator in E0
q
∼= Lq(Ω).

To this end, de�ne b : Zβ+α
q × Zβ+α

q 7→ R by

b(U,Υ) =

∫
Ω
∇v∇ϕ+ λ

∫
Ω
vϕ+

∫
Ω
∇u∇ψ − χ

∫
Ω
u∇v∇ψ − a

∫
Ω
uϕ, (3.27)

where Υ = (ϕ,ψ)>, and note that since Lemma 3.1-(3.8) is assumed, continuity of the

mapping (3.27) is clear. We therefore need to prove only the coercivity, (since to apply

Browder-Minty theorem strictly monotonicity can be easily deduced).

Thus, taking Υ = U , we �nd that

b(U,U) ≥ ‖∇v‖2α− 1
2

+ ‖∇u‖2β− 1
2
− χ

(
2

Neπ

)α+β
2
− 1

2

‖u‖β ‖∇v‖α− 1
2
‖∇u‖β− 1

2
+

+ λ ‖v‖2α −
a

2q
‖u‖2β −

a

2q
‖v‖2α

≥

(
1− χ

2q

(
2

Neπ

)α+β
2
− 1

2

)
‖∇v‖2α− 1

2
+

(
1− χ

q

(
2

Neπ

)α+β
2
− 1

2

− a

2q

)
×

× ‖∇u‖2β− 1
2

+

(
λ− a

2q

)
‖v‖2α

≥

(
1− χ

2q

(
2

Neπ

)α+β
2
− 1

2

+

(
λ− a

2q

))
‖∇v‖2α− 1

2
+

+

(
1− χ

q

(
2

Neπ

)α+β
2
− 1

2

− a

2q

)
‖∇u‖β− 1

2

≥

(
1− χ

q

(
2

Neπ

)α+β
2
− 1

2

− a

2q

)
‖U‖2β+α ,

(3.28)
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implying the coercivity of (3.27), using (3.18). Thus, (3.19) is uniquely invertible using

Browder-Minty's theorem, and is a sectorial operator in E0
q
∼= Lq(Ω), since

∥∥∥(A+ µ)−γP̃
∥∥∥

0
= sup

‖U‖≤1


∥∥∥(A+ µ)−γP̃ (U)

∥∥∥
0

‖U‖0


≤ C

µγ
(a+ ‖P‖γ,0)

≤ C

µγ

(
a+

(
2

Neeπ

)γ− 1
2

)
,

for any 0 ≤ γ < 1 satisfying Lemma 3.1-(3.8), for some C ∈ R+\{0}, |π−argµ| ≥ ϑ, ϑ < π
2 ,

and the conclusion of the lemma is obtained using Corollary 1.4.5 in [30]. Clearly, (3.21)

and (3.16) imply (3.20). So, the proof of the lemma is complete.

To complete the proof of part (iv) of the theorem, if su�ces to note that since γ− 1
2 ≥

N
2q ,

we have E
γ− 1

2
q ⊂ L∞(Ω) by virtue of (3.5), and Theorem 3.2-(3.16) imply that ∇v ∈ L∞(Ω)

is bounded for all t > 0. As u ∈ E0
q
∼= Lq(Ω), q > N

2 and 1 ≥ γ − 1
2 >

N
2q , viewing the weak

form (3.26) in Lq as well as the equation in elliptic form by passing ut to the right hand

side, using [67], we get u ∈ L∞(Ω) is bounded for all t > 0. The rest is trivial or immediate.

Thus, Theorem 3.2 has been established.

�

3.3 Uniform Bounds of Solutions

In this section, we study the existence of a priori uniform bounds in Ω× (0, T ) for solutions

to the system of equations (3.1)-(3.3), and hence, proving an alternative to part (iv) of

Theorem 3.2 without using the space embeddings. We will be using the Moser-Nash-De

Giorgi technique [3, 77, 44, 67], as illustrated in [87]. Thus, we have the following theorem.



70

Theorem 3.6. Suppose that the minimal condition (3.8) is attained strictly. If β = 0, then

U = (u, v)> ∈ L∞((0,∞;L∞(Ω)×W 1,∞(Ω)),

sup
t>0
‖U‖ 1

2
,∞;∞ ≤M

(
t−(γ−α) ‖v0‖α + t−α ‖u0‖0

)
+ C, (3.29)

and the solution semigroup to (3.1) is a classical solution semigroup.

Proof. Let's assume that u0 = 0 and let N
2 < q ≤ N, |u|q−2u ∈ E

1
2
2
∼= H1(Ω). Then we get

from the second line from above of (3.13) and [30] Gagliardo-Nirenberg's inequality that,

1

q

d

dt

∫
Ω
|u|q +

4(q − 1)

q2

∫
Ω
|∇|u|

q
2 |2 = χ

∫
Ω
u∇v∇(|u|q−2u)

≤ (q − 1)χ

∫
Ω
|∇v|u|q−1∇u| = 2χ(q − 1)

q

∫
Ω
|u|

q
2∇|u|

q
2 |∇v|

≤ 2χ(q − 1)

q

(
2

Neπ

) 1
4

‖∇v‖∞,∞
(∥∥∥∇|u| q2∥∥∥

2

∥∥∥|u| q2∥∥∥
2

)
≤ 2χ(q − 1)

q

(
2

Neπ

) 1
4

‖∇v‖∞,∞
∥∥∥∇|u| q2∥∥∥

2

((
2

Neπ

) 1
4
∥∥∥∇|u| q2∥∥∥ N

N+2

2
×

×
∥∥∥∇|u| q2∥∥∥1− N

N+2

1
+

∫
Ω
|u|

q
2

)
≤ 2χ(q − 1)

q

(
2

Neπ

) 1
2

‖∇v‖∞,∞
∥∥∥∇|u| q2∥∥∥1+ N

N+2

2

∥∥∥∇|u| q2∥∥∥1− N
N+2

1
+

+
2χ(q − 1)

q

(
2

Neπ

) 1
4

‖∇v‖∞,∞
∥∥∥∇|u| q2∥∥∥

2

∫
Ω
|u|

q
2 .

After multiplying throughout by q and using Young's inequality, we get that

d

dt

∫
Ω
|u|q +

4

q′

∫
Ω
|∇|u|

q
2 |2 ≤

(
2

Neπ

) 1
2
(

1 +
N

N + 2

)∫
Ω
|∇|u|

q
2 |2+

+
(

(2qχ ‖∇v‖∞,∞)N+2 + (2qχ ‖∇v‖∞,∞)2
)(∫

Ω
|u|

q
2

)2

≤
(

2

Neπ

) 1
2
(

1 +
N

N + 2

)∫
Ω
|∇|u|

q
2 |2 + (2χN ‖∇v‖∞,∞)2×

× (1 + qN )

(∫
Ω
|u|

q
2

)2

,
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where we have used the fact that for T � 1 su�ciently large, ‖∇v‖∞,∞ � 1 is absolutely

small.

Thus, on setting

ω =
4

q′
−
(

2

Neπ

) 1
2
(

1 +
N

N + 2

)
> 0, and CΩ = (2χN)2,

we get

d

dt

∫
Ω
|u|q + ω

∫
Ω
|u|q ≤ CΩ(1 + q)N

(∫
Ω
|u|

q
2

)2

⇒
∫

Ω
|u|q ≤ CΩ(1 + q)N sup

t>0

(∫
Ω
|u|

q
2

)2

.

Consequently,

Λ(p) ≤
[
CΩ(1 + q)N

] 1
q Λ
(q

2

)
, ∀ q ≥ 2.

If we let qi = 2i, i ∈ N∗, we conclude the following;

Λ(2i) ≤ C2−i
Ω (1 + 2i)

N

2i Λ(2i−1) ≤ . . . ≤ C

i∑
k=1

2−k

Ω (1 + 2i)2−iN . . . (1 + 2)2−1NΛ(1)

≤ CΩ

[
2i2
−iN (2−i)2−iN

]
· · ·
[
22−1N (2−1)2−1N

]
Λ(1)

≤ CΩ 2
N

i∑
k=1

k2−k

× 2
N

i∑
k=1

2−k

Λ(1)

≤ CΩ23NΛ(1).

Thus, taking the limit as i→∞ gives

‖u(t)‖∞ ≤ CΩ23NΛ(1) ≤ CΩ23N‖u0‖1, <∞. (3.30)

In what's remaining of the proof, we write u(t) = ψ1(t) + ψ2(t), where ψ1(t) veri�es the

homogeneous equation in (3.1) with u(0) = u0 and ψ2(t) veri�es the non-homogeneous

equation with u0 = 0. It then follows, by (3.5) and (1.4), that ‖ψ1(t)‖∞ ≤Mt
−N

2q ‖u0‖0 for

all t > 0, while (3.30) implies that ‖ψ2(t)‖∞ ≤ C. Thus, we obtain ‖u(t)‖∞ ≤Mt−α ‖u0‖0+

C, with α = N
2q , and combining with the v−solution gives (3.29).
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3.4 Blow-up Dynamics

In this section, we give some highlights on the blow-up dynamics of the system of equations

(3.1) at the borderline spaces Eαq , α = N
2q . To this end, we �rst notice the stationary

equations to the system can be derived as the limit process at time ∞, to the Lyapunov

function

J(u, v) =

∫
Ω
u lnu− χ

∫
Ω
uv +

χ

aq

∫
Ω

(|∇v|q + λ|v|q), (3.31)

using [30] La-Salle-Hale-Henry invariance principle. For the following Theorem, let ωN−1 =

2π
N
2

Γ(N
2

)
denote the measure of a unit sphere in RN .

Theorem 3.7. The dynamical system de�ned by the equations (3.1) accepts the Lyapunov

function (3.31), and (5.22) is veri�ed at T = ∞, with, if the initial data is in spaces

Eαq , α = N
2q such that χ > χN,α =

(
N

ωN−1

) 1
q′
[
π
N
2 22βΓ(β)

Γ(N−2β
2

)

]
, then

‖(u, v)>‖β+α =∞ for any t ∈ (0,∞).

That is, the system solution semigroup blow-up independent of time.

Proof. To show that (3.31) is a Lyapunov function, we take the dual spaces product in (3.1)

with lnu− χv ∈ Eβq′ as a test function, in the u−equation, and let vt ∈ Eαq′ , to �nd

dJ(U)

dt
=

∫
Ω
ut lnu+

∫
Ω
ut − χ

∫
Ω
utv − κ

∫
Ω
vtu+

+
χ

a

(∫
Ω
|∇v|q−2∇v∇vt + λ

∫
Ω
|v|q−2vvt

)
=

∫
Ω
ut(lnu− χv)− χ

a

∫
Ω
|vt|q

=

∫
Ω
∇(∇u− χu∇v)(lnu− χv)− χ

a

∫
Ω
|vt|q

= −
∫

Ω
(∇u− χu∇v)∇(lnu− χv)− χ

a

∫
Ω
|vt|q

= −
∫

Ω
u|∇(lnu− χv)|q − χ

a

∫
Ω
|vt|q ≤ 0,
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having used the dual space function characterization for functions in Lq
′
, and the fact that∫

Ω
ut = 0, ∇(lnu− χv) = u

(
∇u
u
− χ∇v

)
,

to yield that (3.31) is a Lyapunov function for the system of equation (3.1). The proof

asserts that it decreases along trajectories of the orthogonal to constant solutions of the

equations as time increases to in�nity.

To prove the blow-up of solutions, we note that (3.28) holds using the best constant of

the inclusion Eαq , α = N
2q in (3.6), while, associated to (5.22) is the energy functional

E(v) =
1

q
‖∇v‖q

α− 1
2

+
λ

q
‖v‖qα − µ ln

(∫
Ω
eχv
)
≥ 0. (3.32)

Consequently, (3.28) yields

b(U,U) ≥ ω‖∇u‖q
β− 1

2

+
µ

ω
ln

(∫
Ω
eχv
)

using the second embedding condition in (3.6), implying the conclusion on taking U ∈

Eαq × E
β
q as a test function in the complete system of equations (3.2) then integrating in

time t ∈ (0, T ) using a reduction to absurd argument.

In fact, supposing that the conclusion was false, it would follow from

0 =
d

dt
‖U‖ρβ+α + b(U,U) ≥ d

dt
‖U‖ρβ+α + ω‖∇u‖q

β− 1
2

+
µ

ω
ln

(∫
Ω
eχv
)

⇔ ‖U0‖ρβ+α ≥ ‖U‖
ρ
β+α +

µ

ω

∫ t

0
ln

(∫
Ω
eχv
)
ds

≥ µ

ω

∫ t

0
ln

(∫
Ω
eχv
)
ds =∞,

using [46, 91], that we have the contrary to the premises holds since the norm ‖U0‖ρβ+α =

‖v0‖qα + ‖u0‖qβ is �nite. This imply that the assertion in the theorem is valid.

For an alternative, much �ne approach, see [26, 36], which can be adapted to our situation

from their results in the case of Zα+β, α = β = 1
2 , q = 2, using the Lyapunov function

(3.31), embedding into Orlicz spaces [23, 61] and properties.

The proof of the theorem is complete.



Chapter 4

Attraction-Repulsion KS Equations

in Scale of Hilbert Spaces

4.1 Introduction

In this chapter, we study the well-posedness and asymptotic global dynamics in scales of

Hilbert spaces Eα, α ∈ R de�ned by the non-coupled system partial di�erential operator

of the following chemotaxis system of equations modelling the aggregation of microglia

in Alzheimer's disease. The treatment which we will give in this chapter is that of the

Attraction-Repulsion equations of the following form. Ut +AU = P (u)U,

U(0) = U0 ∈ Eβ × Eγ × Eγ , β ≤ γ < β + 1,
(4.1)

where U = (u, v, w)> with components holding the following meaning

u := cell density of activated microglia,

v := chemical concentrations of attractant, (4.2)

w := chemical concentrations of repellent,

(4.3)
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

A =


−d1∆ 0 0

0 −d2∆ + λ2 0

0 0 −d3∆ + λ3

 ,

P (u)U =


−Div(u~d(∇v,∇w))

a2u

a3u

 , ~d(∇v,∇w) = χ2∇v − χ3∇w

(4.4)

Here, di, λj , aj , χj ∈ R+ \ {0}, i = 1, 2, 3 = j 6= 1 are all di�erent constants of biophysical

importance, with the following meanings,

d1 := motility coe�cient,

dj := di�usion coe�cients,

χ2 := chemotactic coe�cient towards attractant,

χ3 := chemotactic coe�cient away from repellent, (4.5)

λj := rates of decay of chemicals, and

aj := rates of production of chemicals.

Let Ω be a smooth open and bounded subset of RN with boundary ∂Ω = Γ. We consider

as domain for the operator A in (4.4) the following:

D(A) =




z1

z2

z3

 ∈ H2(Ω) :


d1∂~nz1

d2∂~nz2

d3∂~nz3

 = ~0 on Γ

 , (4.6)

where ~n is a unit normal vector pointing outwards of Γ. Still in (4.4), P (u)U is a linearly cou-

pled vector function, with, in the �rst component, featuring a divergence-0 operator acting

on a vector �eld ~d of concentrations of chemicals, and in the second and third components,

the productive e�ects on activated microglia cells.
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In this chapter, we prove, in twofold, that the model system of equations (4.1)-(4.4)

partial di�erential operator is an in�nitesimal generator of an analytic semigroup acting on

U0 ∈ Zδ=β+2γ = Eβ × Eγ × Eγ , where Eα, α ∈ R are scales of Banach spaces in L2(Ω)

de�ned by the operator in (4.4). In this context Section 4.2 gives some preliminaries, in

addition to the ones given in Chapter 1. In Section 4.3, we prove that the system model

equations (4.1)-(4.4) de�nes a perturbed analytic semigroup to the semigroup generated

by the operator −A, using abstract semigroup theory results for evolution equations from

[30, 60, 66]. Section 4.4, is devoted to proving the existence of a priori uniform bounds in

Ω× (0, T ) of solutions and gradient solutions to the problem. It concludes using a bootstrap

argument in proving that the solutions to the problem are classical solutions. In Section 4.5,

we revisit the complete system of equations coupled partial di�erential operator (i.e. in (4.1)

we consider the contribution of the term P (u)U of (4.4) appearing in the left hand side of the

equations), to prove that it is an in�nitesimal generator of a fundamental solution operator

in scales of spaces Zδ, δ ∈ R+, in as given by quasilinear partial di�erential operators. Since

we are considering positive time, the results agree with and are much �ner to those of

Section 4.3. An immediate consequence of our results is that the large time asymptotic

dynamics of the system of equations (4.1)-(4.4) are well-de�ned and captured by a subset

K in R3 of spatial average solutions. This conclusion coincide with other well known results

[53, 88, 59, 64, 76] related to the minimal chemotaxis model or Keller-Segel chemotactic

problem.

In appreciation, the results of this chapter imply nonlinear di�usion, proliferation and

death of cells can be incorporated into the system of equations. A proposition which agrees
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with the study given in [57], we suppose also that this citation is among others. In Section

4.6, to visualize the aggregation of microglia as in the model equations, we numerically

simulate the equations using a Gradient Weighted Moving Finite Element method. For the

simulations shown in this chapter we use the code developed in [81] using a set of model

parameters found in [50], where the parameters used there are calculated from dimensional

values found in Biology, Immunology and Neuroscience publications referenced therein. In

Section 4.6 we discuss the results of the numerical simulation.

Lastly, we point out that throughout the chapter we work in a slightly general set-up.,

i.e. without loss of particularity, we do not immediately assume positivity of the initial data

to the system of equations, which naturally imply positivity of the solutions. If positivity

of solutions is assumed note that most of the calculations in Section 4.4 are very much

simpli�ed and are relatively easier.

4.2 Preliminaries

Now for a brief review of the functional setting. To this end, clearly by Lax-Milgram's

Theorem [12, 70], A in (4.4) is a maximal monotone, self adjoint, sectorial operator in

L2(Ω) with spectrum

σ(A) =
3⋃
i=1

σ(−di∆ + λi) = {µn;n ∈ N} ⊂ R+, λ1 = 0, (4.7)

such that

0 < µ1 ≤ µ2 ≤ . . . ≤ µn ↗∞ as n↗∞, and 0 ∈ σ(A). (4.8)
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As µ ∈ σ(A), if for some i = 1, 2, 3 = j 6= 1, µ ∈ σ(−di∆ + λj), we can choose associated

eigenfunctions

ϕn = ϕn · ~ei, where {~ei; i = 1, 2, 3} ⊂ R3 (4.9)

is a canonic basis of R3, orthonormal in L2(Ω) and a Hilbert basis of this function space.

Thus, by [5, 30, 60, 68] the scales of Banach spaces Eα, α ∈ R are well de�ned. Note that

the spaces Eα, α ∈ R− de�ne the dual spaces of the scales of spaces Eα, α ∈ R+, and in

equivalent of norms, we can identify the spaces

E1 ≡ D(A), E1/2 ≡ H1(Ω) and E0 ≡ L2(Ω), E−1/2 ∼= H−1(Ω).

In general, Eα ∼= H2α(Ω) and Sobolev type space embeddings [2, 10, 12, 25, 30, 68, 60],

Eα ⊂ Lr(Ω) ⇐⇒ r


≤ ∞ if N = 1

< ∞ if N = 2

≤ 2N
N−4α if N ≥ 3

(4.10)

are satis�ed. Also,

Eα ⊂ Cθ(Ω), θ ∈ (0, 1) ⇐⇒ 2α− N

2
> θ. (4.11)

In addition, it holds that for any α, β ∈ R,

if α ≥ β, then Eα ⊂ Eβ (4.12)

continuously, densely, compactly if α > β, and constant of the inclusions is as given by (3.6).

Furthermore, if α, β ∈ R and θ ∈ [0, 1], then for every u ∈ Eγ , γ = max{α, β} we have

‖u‖θα+(1−θ)β ≤ ‖u‖θα‖u‖1−θβ . (4.13)

Next, for every α, ε ∈ R, Aε : Eα+ε → Eα is a surjective isometry with (Aε)−1 = A−ε.

Moreover, for every α, β, γ ∈ R, AαAβ = Aα+β as operators between the spaces Eα+β+γ
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and Eγ . In particular, for every δ ∈ R we can de�ne the δ− product

≺≺ u, v ��δ:=
∞∑
n=1

µδnunvn (4.14)

for every ε ∈ R, u ∈ Eδ−ε, v ∈ Eε. Clearly, if α+ β + 2γ = δ, then for every u ∈ Eα+γ and

v ∈ Eβ+γ ,

≺≺ u, v ��δ= 〈Aαu,Aβv〉γ

and the 0− product describes all the dualities between the Eα spaces, while the δ− describes

among others the scalar product in E
δ
2 . Occasionally, we will use the notation

Zδ := Eα+β+2γ = Eα+γ × Eβ+γ = Eα × Eβ × E2γ .

If there is no confusion caused we will simply write ϕ ∈ Eα with understanding that ∇ϕ ∈

Eα−
1
2 whenever its derivatives are involved.

Now, recall from Chapter 1 that the operator −A generates an analytic semigroup

{
S(t) = e−At; t ∈ R+ \ {0}

}
(4.15)

in spaces Eα, α ∈ R. We refer the reader to Section 1.3 for more on analytic semigoups.

Getting, back to (4.7)-(4.8) since 0 ∈ σ(A), if we take V = (1, 1, 1)> in (4.1)-(4.4) as a

test function, then integrating over Ω followed by over (0, t), we get as t↗∞ that

U = (u, v, w)> ∈ K :=

{
(φ, ϕ, ψ) ∈ [L1(Ω)]3 :

∫
Ω
φdx =

∫
Ω
φ0 = |Ω|φ0,

‖(ϕ,ψ)‖L1(Ω)×L1(Ω) ≤
(
a2

λ2
+
a3

λ3

)
|Ω|φ0

}
, (4.16)

which turns out [67, 86] to be a closely approximate limit set for the long time asymptotic

dynamics of the system of equations in large di�usion. Throughout this chapter, all generic

constants will be denoted by C ≥ 0, unless a distinction is necessary.
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4.3 Well-posedness of the system of equations

In this section, we �rst recall some abstract analytic semigroup theory results proved in

[30, 51, 68, 60], in addition to the ones stated in Section 1.3. We will then prove the well-

posedness of the problem (4.1)-(4.4) in the product scales of Banach spaces Zδ, δ ∈ R+. To

this end, consider the Cauchy problem ϕt +Aϕ = f(t),

ϕ(t0) = ϕ0 ∈ Eβ,
(4.17)

where f : [t0, t1) → Eβ , β ∈ R, and A is a maximal monotone, self adjoint and sectorial

operator with compact resolvent in L2(Ω). Then we have the following de�nition.

De�nition 4.1. If ϕ0 ∈ Eβ , ϕ(·) is a strong solution of (4.17) on [t0, t1) if and only if

ϕ : [t0, t1) → Eβ is a continuous function satisfying that ϕt ∈ Eβ , ϕ(t) ∈ Eβ+1 on (t0, t1),

ϕ(t0) = ϕ0 and the di�erential equation in (4.17) is veri�ed on the open interval (t0, t1) as

an equality in Eβ, β ∈ R.

The well posedness of the evolution problem (4.17) is given in the following theorem.

Theorem 4.1. Consider the Cauchy problem (4.17), and assume that f ∈ Lp(t0, t1, Eβ), 1 ≤

p ≤ ∞. Then, the solution to the problem (4.17) given by

ϕ(t) = e−A(t−t0)ϕ0 +

∫ t

t0

e−A(t−s)f(s)ds (4.18)

satis�es that

(i) ϕ ∈ C(t0, t1, E
γ) with γ < β+ 1

p′ where
1
p + 1

p′ = 1. If ϕ0 ∈ Eγ, then ϕ ∈ C([t0, t1), Eγ),

and the mapping

Eγ × Lp(t0, t1, Eβ) 3 (ϕ0, f)→ ϕ ∈ C([t0, t1];Eγ)

is Lipschitz continuous.
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(ii) For any β ∈ R and γ ∈ [β, β + 1), the mapping

Eγ × Lp(t0,∞, Eβ) 3 (ϕ0, f)→ ϕ ∈ Lp(t0,∞;Eγ)

is Lipschitz continuous. In particular, if p = 2, and γ = β + 1
2 , then, the mapping,

Eβ+ 1
2 × L2(t0, t1, E

β) 3 (ϕ0, f)

−→ (ϕ,ϕt) ∈
(
C([t0, t1], Eβ+ 1

2 ) ∩ L2(t0, t1, E
β+1)

)
× L2(t0, t1, E

β),

is continuous and the problem (4.17) is veri�ed almost everywhere on (t0, t1).

(iii) If f : (t0, t1)→ Eβ is locally Hölder continuous of exponent 0 < θ ≤ 1 and if∫ t0+ρ

t0

‖f(s)‖βds <∞, for some ρ > 0

then ϕ in (4.18) is a unique solution of (4.17) such that

ϕ ∈ C([t0, t1), Eβ) ∩ C(t0, t1, E
β+1) ∩ C1(t0, t1, E

γ) for any γ < β + θ.

Proof. The proof of the theorem is classical [30, 51, 60, 68], with of most recently in [51]

where Bessel potential function spaces have been used.

Thus in the case of (i) if we consider the formula (4.18) and let γ ≥ β, then in estimating

from above we get that

‖ϕ(t)‖γ ≤ ‖e−A(t−t0)ϕ0‖γ +

∫ t

t0

‖e−A(t−s)‖β,γ‖f(s)‖βds

where ‖e−A(t−s)‖β,γ denotes the norm of L(Eβ, Eγ). Since

‖e−A(t−s)‖β,γ ≤
M

(t− s)γ−β

on �nite time intervals, it follows, with γ = β if p = 1 or with β ≤ γ < β + 1
p′ if 1 < p <∞,

that

‖ϕ(t)‖γ ≤ ‖e−A(t−t0ϕ0‖γ + b(t)

(∫ t

t0

‖f‖pβ

) 1
p
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where

b(t) = M

(∫ t

t0

(t− s)−p′(γ−β)ds

) 1
p′

≈ t
1
p′−(γ−β)

.

So (4.18) is bounded on �nite intervals. Consequently, ϕ(t) ∈ Eγ for any t > 0. To prove

the continuity, �x t > t0 (or even t = t0 if ϕ0 ∈ Eγ). Then

‖ϕ(t+ h)− ϕ(t)‖γ

≤ ‖
(
e−Ah − I

)
ϕ(t)‖γ +

∫ t+h

t
‖e−A(t+h−s)‖β,γ‖f(s)‖βds.

Since the linear semigroup is continuous, we have that

‖
(
e−Ah − I

)
ϕ(t)‖γ → 0 as h→ 0,

while also∫ t+h

t
‖e−A(t+h−s)‖β,γ‖f(s)‖βds

≤ M

(∫ t+h

t
(t+ h− s)−p′(γ−β)ds

) 1
p′
(∫ t+h

t
‖f‖pβ

) 1
p

= 0(h
1
p′−(γ−β)

),

and we obtain the continuity of (4.18). Furthermore, if ϕ0 ∈ Eγ , then we have

‖ϕ(t)‖C[t0,t1],Eγ) ≤ b(t1)
(
‖ϕ0‖γ + ‖f‖Lp(t0,t1,Eβ)

)
,

which proves the Lipschitz continuity of the mapping (ϕ0, f) → ϕ. The proof if p = ∞

follows the same lines with obvious modi�cations and therefore we shall skip it.

To prove (ii) of the theorem, note that for every β ∈ R and γ such that β ≤ γ < β + 1,

we have that,

cβ,γ(t) := ‖e−At‖β,γ ≤
Me−ωt

tγ−β

and cβ,γ(t) ∈ L1(0,∞) but unbounded at zero, unless γ = β. Let p = 1, ϕ0 ∈ Eγ and

f ∈ L1(t0,∞, Eβ). Since

e−A(t−t0)ϕ0 ∈ L1(t0,∞, Eγ),
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we just need to prove that

ψ(t) :=

∫ t

t0

e−A(t−s)f(s)ds ∈ L1(t0,∞, Eγ) = Z.

To this end, we set s = (t− t0)σ + t0, to get that

ψ(t) =

∫ 1

0
e−A(t−t0)(1−σ)f((t− t0)σ + t0)(t− t0)dσ.

Therefore,

‖ψ‖Z ≤
∫ 1

0
‖e−A(t−t0)(1−σ)f((t− t0)σ + t0)(t− t0)‖Zdσ.

But for any �xed σ ∈ [0, 1],

‖e−A(t−t0)(1−σ)f((t− t0)σ + t0)(t− t0)‖Z

=

∫ ∞
t0

‖e−A(t−t0)(1−σ)f((t− t0)σ + t0)(t− t0)‖γdt.

Therefore, setting r = (t− t0)σ + t0, we �nd that

‖ψ(t)‖Z ≤
∫ 1

0

∫ ∞
t0

r − t0
σ2

cβ,γ

(
(r − t0)

(
1− σ
σ

))
‖f(r)‖βdrdσ.

Again, letting s = (r − t0) (1−σ)
σ , and integrating over σ we get that

‖ψ(t)‖Z ≤
(∫ ∞

0
cβ,γ(s)ds

)(∫ ∞
t0

‖f(r)‖βdr
)
,

yielding that

‖ϕ‖Z ≤ ‖cγ,γ‖1‖ϕ0‖γ + ‖cβ,γ‖1‖f‖L1(t0,∞,Eβ),

where ‖cβ,γ‖1 = ‖cβ,γ‖L1(0,∞), and the result is proven.

The case of p =∞, follows exactly as in (i), thus we have that

‖ϕ‖L∞(t0,∞,Eγ) ≤ ‖cγ,γ‖∞‖ϕ0‖γ + ‖cβ,γ‖1‖f‖L∞(t0,∞,Eβ).

Note that, in fact it holds that ϕ ∈ Cb([t0,∞), Eγ). Now from what is proven above, we get

by interpolation that the results are valid for any 1 < p < ∞. We skip the proof of (iii) as

it is exactly as in [30, pp. 50-52], with which the proof of the theorem is complete.
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Next, we consider the case of perturbations of analytic semigroups. For this, assume

that P ∈ Llip(Eα, Eβ), 0 ≤ α− β < 1 and consider the evolution problem ut +Au = Pu,

u(t0) = u0 ∈ Eβ, t0 > 0.
(4.19)

Then, following [30, 51, 60, 66] abstract semigroup theory results for semilinear equations,

let Y ⊂ Eα and P : Y → Eβ be locally Lipschitz continuous. We de�ne a solution to (4.19)

as follows:

De�nition 4.2. A continuous function u : [t0, t1)→ Eα satisfying that u(t) ∈ Eα, u(t0) =

u0, u(t) ∈ Eβ+1, ut ∈ Eβ on (t0, t1) and the evolution problem (4.19) holds on (t0, t1) as an

identity in Eβ , is called a strong solution to the problem (4.19).

On existence of solutions to (4.19) we have the following proposition.

Proposition 4.2. Consider the problem (4.19) with P ∈ Llip(Eα, Eβ), 0 ≤ α− β < 1, and

let u ∈ C([t0, t1), Eα) verify

u(t, u0) = e−A(t−t0)u0 +

∫ t

t0

e−A(t−s)Pu(s)ds. (4.20)

Then,

(i) u ∈ Cθloc(t0, t1, Eα) for some θ ∈ (0, 1).

(ii) u ∈ C([t0, t1), Eα) is a solution of the problem (4.19) if and only if (4.20) is veri�ed.

(iii) u(t, u0) given by (4.20) is a C1 strong solution of (4.19) in Eβ, and

(iv) −A + P is an in�nitesimal generator of an analytic semigroup {Sp(t); t > 0} in the

spaces Eβ, with β ∈ (α− 1, α].

Proof. See [66] Proposition 3.12 and Theorem 3.20.
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A priori yielding the main theorem of this section, note that following Theorem 4.1 -

Proposition 4.2 we look for a solution to the problem (4.1)-(4.4) of the form

U(t;U0) = e−A(t−t0)U0 +

∫ t

t0

e−A(t−s)P (u(s))U(s)ds, (4.21)

where

P (u) =


0 −Div(uχ2∇·) Div(uχ3∇·))
a2 0 0

a3 0 0

 , (4.22)

so that

P (u)U :=


Π(u)(v, w)

a2u

a3u

 ,

in which we have set Π(u)(v, w) := −Div(u~d(∇v,∇w)) as in (4.4) and U = (u, v, w)>. It is

also interesting to note that the system of equations (4.1)-(4.4) have nice regularity features

debited to their nature of coupledness, see Remark 4.1. As for the system well-posedness

we have the following theorem.

Theorem 4.3. Consider the system of equations (4.1)-(4.4) for any β, γ ∈ R such that

β ≤ γ < β + 1. Assume that v0, w0 ∈ Eγ and u ∈ C(t0, t1, E
β). Then, v, w ∈ C(t0, t1, E

γ).

Conversely, for any α′ ∈ R such that α′ ≥ α, 0 ≤ α′ − β < 1 and 2α + γ ≥ 1 + N
4 , let

u ∈ C(t0, t1, E
α), v, w ∈ C([t0, t1), Eγ). Then,

Π := Div : Eα
′ → Eβ is well de�ned, Π(u) := Div(u~d(∇·,∇·)) ∈ Llip(Eα

′
, Eβ) (4.23)

and the solution of (4.1)-(4.4), u ∈ C(t0, t1, E
β). If u0 ∈ Eα

′
, then

U ∈ C([t0, t1), Zα′(γ)) ∩ C(t0, t1, Zβ+1(γ+1)) ∩ C1(t0, t1, Zδ), (4.24)

where Zδ(ν) := Eδ ×Eν ×Eν , and Zδ := Eδ0 ×Eδ1 ×Eδ1 for any δ0 < β+ 1, δ1 < β+ θ, θ ∈



86

(0, 1). Moreover, (4.1)-(4.4) de�nes a globally well-posed strong solution, which, if

Λ = max

{
{χ2, χ3}

(
2

Neπ

)2β+γ−1

, {a2, a3}
(

2

Neπ

)β+γ
}
≤ 1 (4.25)

holds, is a perturbed analytic semigroup in the spaces Zδ(ν), δ(ν) ∈ R satisfying α′(γ) > α′(β).

It is worthwhile pointing out that unlike in Proposition 4.2 the converse statements of

this theorem require an additional condition to be veri�ed i.e. 2α + γ ≥ 1 + N
4 for the

proper-posedness of the Div operator, which if the test function space, say Eν , is chosen

di�erent from Eα, then this condition reads as ν + α+ γ ≥ 1 + N
4 . Based on this condition

α′ in the theorem can always be associated adequately in such a way that 0 < α − β < 1.

Most important is that in view of the experimental data given in the numerical section of

the chapter the assumption (4.25) is not restrictive but consistent with that data.

Proof. The �rst part of the theorem follows by Theorem 4.1-(i). To prove the converse, let

ϕ ∈ Eα be a test function to, for example, the operator−Div(uχ2∇v) in the scalar product of

L2(Ω). Then we conclude, using the Sobolev type embeddings (4.10) and Hölder's inequality,

that the mapping

Eα × Eγ × Eα 3 (u, v, ϕ) 7−→ 〈−Div(uχ2∇v), ϕ〉 = χ2

∫
Ω
u∇v∇ϕ ∈ R (4.26)

is well de�ned and continuous, provided α+ γ ≥ 1
2 + N

4 , u∇v ∈ L
r(Ω) with r = 2 if α ≥ 1

2 ,

and r > 2 if 1
2 > α. Also that −Div(uχ2∇v) ∈ Lp(Ω), with p ≥ 2N

N+4α ≥ 2 if α ≤ 0. More

concretely, as u ∈ Eα ⊂ Lr0(Ω), ∇v ∈ Lr1(Ω) then u∇v ∈ L2(Ω) if and only if

1

2
=

1

r0
+

1

r1
≥ N − 4α

2N
+
N − 4γ + 2

2N
⇒ N ≥ 2N − 4(α+ γ) + 2 (4.27)

of which we obtain 4(α+ γ) ≥ 2 +N , i.e. α+ γ ≥ 1
2 + N

4 . But also ∇ϕ ∈ E
α− 1

2 ⊂ Lr2(Ω),

r2 ≥ 2, which implies that

1

2
≥ 1

r2
≥ N − 4α+ 2

2N
⇒ N ≥ N − 4α+ 2.
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Consequently α ≥ 1/2 and from α + γ ≥ 1
2 + N

4 it is implied that γ ≥ N
4 . In the strict

case, as by Hölder inequality we need 1
r2

+ 1
r = 1, we get, using (4.10) embeddings, that

r ≥ 2N
N+4α−2 and r > 2 yields 2N > 2N + 8α − 4 of which as a result implies 1/2 > α.

On the other hand, replacing 1/2 by 1/r in (4.27) gives 2 < r ≤ 2N
2N−4(α+γ)+2 with yielding

condition α + γ > 1
2 + N

4 . Thus taking into account either of the conditions on α leads

to 2N
N+4α−2 ≤ r ≤ 2N

2N−4(α+γ)+2 , the yielding condition in the theorem 2α + γ ≥ 1 + N
4 is

obtained. The also part follows using (4.10) and Hölder's inequality directly from the inner

product expression in (4.27) without passing the partial derivative to the test function.

Now considering (4.22) we get that P (u)U ∈ Lp(Ω) × Eα × Eα ⊂ E−α
′ × Eα × Eα =

Z−α′(α), for p ≥ 2, α ≥ 0, and U = (u, v, w)> ∈ Zα(γ) ⊂ Zβ(γ) since 0 ≤ α− β < 1. Next if

we let V = (φ, ϕ, ψ) ∈ Zα(γ) in the scalar product of L2(Ω), thanks to the space embeddings

(4.12), we get by Hölder's inequality that the mapping

V = (φ, ϕ, ψ) ∈ Zα(γ) 7−→ 〈P (u)U, V 〉 ∈ [L1(Ω)]3 (4.28)

is well de�ned and continuous. Therefore, linearity implies, for any U1, U2 ∈ Zα(γ) of �nite

norm, that P (u)U ∈ Z−α′(α) is Lipschitz continuous. Thus Proposition 4.2 or abstract

semilinear evolution equations results [30, 51, 60, 68] yield the conclusion of the theorem

including (4.24). Moreover, see Theorem 4.8-(4.50)- (4.51) in the next sections.

‖P‖L(Zα(γ),Z−α′(α))
:=
{
|〈P (u)U,U〉|; ‖U‖α(γ) ≤ 1

}
≤ Λ (4.29)

and the solution to the problem (4.1)-(4.4) using (4.25) de�nes an analytic perturbed semi-

group in the scales of spaces Zδ(ν), δ(ν)) ∈ R satisfying α′(γ) > α′(β).

As the proofs are non-trivial due to the coupled nature of system of equations (4.1)-(4.4)

we produce them for completeness in what follows. Assume U ∈ C([t0, t1), Zα(γ)) veri�es

(4.21). We show that U : (t0, t1) → Zα(γ) is locally Hölder continuous. To this end, let
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t0 < t < t+ h < t1. Then

U(t+ h)− U(t) =
(
e−Ah − I

)
e−A(t−t0)U0 +

+

∫ t

t0

(
e−Ah − I

)
e−A(t−s)P (u(s))U(s)ds+

∫ t+h

t
e−A(t+h−s)P (u(s))U(s)ds.

Since (4.29) holds using the semigroup estimates (1.4) we get that,

‖e−A(t+h−s)P (u(s))U(s)‖α(γ) =

= ‖e−A(t+h−s)Π(u)(v, w)(s))‖α + (a2 + a3)‖e−A(t+h−s)u(s)‖γ

≤ M(t− s)−(α′−α)‖Π‖−α′,α‖(v, w)‖γ + (a2 + a3)M(t− s)−(γ−α)‖u(s)‖α,

and, in addition, we also have

‖
(
e−Ah − I

)
e−A(t−t0)U0‖α(γ)

≤ Cεh
ε
(
‖e−A(t−t0)u0‖α+ε + ‖e−A(t−t0)(v0, w0)‖γ+ε

)
≤ MCεh

ε(t− t0)−ε‖U0‖α,

for some ε ≤ 1.

Similarly, we get that

‖
(
e−Ah − I

)
e−A(t−s)P (u(s))U(s)‖α(γ) =

= ‖
(
e−Ah − I

)
e−A(t−s)Π(u)(v, w)(s)‖α + ‖(a2 + a3)

(
e−Ah − I

)
e−A(t−s)u(s)‖γ

≤ MCεh
ε
(

(t− s)−(α′+ε−α)‖Π‖−α,α‖(v, w)‖γ + (a2 + a3)(t− s)−(γ+ε−α)‖u(s)‖α
)

≤ MCεh
ε max{(t− s)−(α′+ε−α)‖Π‖−α′,α, (a2 + a3)(t− s)−(γ−α)} (‖(v, w)‖γ + ‖u(s)‖α)

= MCεh
ε max{(t− s)−(α′+ε−α)‖Π‖−α′,α, (a2 + a3)(t− s)−(α−β)}‖U‖α(γ).

As ‖U‖β(γ) is bounded on proper subintervals of [t0, t1] we get that ‖U(t+ h)−U(t)‖γ(β) =

O(hθ), for some θ ∈ (0, 1), on proper subintervals of [t0, t1], and U given by (4.21) is locally

Hölder continuous. In continuation, if U is a solution to the problem (4.1)-(4.4), as noted

from Theorem 4.1 and Proposition 4.2, it veri�es (4.21) and is a continuous function in Zα.
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Conversely from what was just proved in the above statements U : (t0, t1)→ Zα is locally

Hölder continuous, thus f(t) = P (u(t))U(t) : (t0, t1) → Zβ(γ) is locally Hölder continuous

and integrable on the time interval. Consequently, Proposition 4.2 concludes and Theorem

4.1 yields the regularity results. As for the globally well-posedness of the semigroup, we

note that from (4.21) it follows that

‖U(t)‖β(γ) ≤ ‖e−AtU0‖β(γ) +

∫ t

0
‖e−A(t−s)P (u(s))U(s)‖β(γ)ds

≤ Me−ωt

tα−β

[
‖u0‖α + ‖(v0, w0)‖α+ 1

2

]
+M max{a2 + a3, ‖Π(u)‖L∞(R+;L(Zα,Zβ(γ)))

}×

×
∫ t

0

e−ω(t−s)

(t− s)α−β
(
‖(v, w)‖α+ 1

2
+ ‖u‖α

)
≤ Me−ωt

tα−β
‖U0‖α +M max{a2 + a3, ‖Π(u)‖L∞(R+;L(Zα,Zβ(γ)))

}×

×
∫ t

0

e−ω(t−s)

(t− s)α−β
‖U(s)‖α,

as long as (t − s)−(α+ 1
2
−γ) ≤ (t − s)−(α−β) (with results valid in the inverse case), and the

singular Gronwall-Henry inequality [30] concludes that eωt‖U(t)‖β(γ) ≤ME1−α+β(πt)‖U0‖α

for t > 0, where π = M max{a2 + a3, ‖Π(u)‖L∞(R+;L(Zα,Zβ(γ)))
}Γ(1− α+ β).

The proof of the theorem is complete.

Now, for some remarks on the main condition yielding Theorem 4.3 we have the following.

Remark 4.1. First we note that if β = 0, we require that ∇v,∇w ∈ L∞(Ω) i.e. γ > 1
2 + N

4

and since γ < 1 this implies solvability of the problem (4.1)-(4.4) in space dimensions of

Ω ⊂ RN , N = 1.Next, if in (4.23) we take α = β, the necessary condition reads 2β+γ ≥ 1+N
4

but β ≤ γ < β+1. If we assume γ = β > 0 we get that 3β ≥ 1+ N
4 and if β = 1

2 then N ≤ 2.

If γ = 3
4 > β = 1

2 then N ≤ 3. If γ = β = 3
4 then N ≤ 5. If γ = 5

4 > β = 3
4 then N ≤ 7.

Thus the higher the regularity assumed on that data, the higher the space dimensions in

which it is possible to solve the problem (4.1)-(4.4). Lastly, we note that if 2β + γ > 3N
4

then Zδ=β+γ := Eβ × Eγ ⊂ C(Ω) × C(Ω) using (4.11) and also if 2β + γ > 1
2 + 3N

4 , then
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Zδ=β+γ− 1
2

= Eβ × Eγ−
1
2 ⊂ C(Ω)× C(Ω). In both of these cases we can solve the problem

in any space dimension.

We conclude this section with the following corollary.

Corollary 4.4. Consider the system of equations (4.1)-(4.4). Assume the hypotheses of

Theorem 4.3 holds within (4.23)

α = θβ + (1− θ)(γ − 1

2
), θ ∈ [0, 1]. (4.30)

Then,

(i) (4.24) holds in Zβ = Eβ × Eβ+ 1
2 × Eβ+ 1

2 .

(ii) If 2β + γ > 3N
4 , then the solution to the problem (4.1)-(4.4), satis�es

U ∈ C(0,∞, Cθ(Ω)) ∩ C(0,∞, C2+θ(Ω)) ∩ C1(0,∞, Cθ(Ω)),

for some θ ∈ (0, 1) and is a classical solution.

Proof. To prove (i), it su�ces to note that if α is as given in (4.30), then β > α if and

only if β > γ − 1
2 , and also α > β if and only if γ − 1

2 > β. Combining the two we �nd

that γ = β + 1
2 . We prove (ii) of this corollary in the next section of the paper. As an

alternative, using a classical approach, since by (4.11), U0 ∈ L∞(Ω), the conclusion follows

by [5, 38, 51, 76, 88, 92] and Theorem 4.3. The proof of the corollary is complete.

4.4 Uniform bounds of solutions

In this section, we study the existence of a priori uniform bounds in Ω×(0, T ) of solutions to

the system of equations (4.1)-(4.4). As an approach to this end, we use the Moser-Nash-De

Giorgi [3, 77, 44, 67] technique, and our �rst lemma is the following:
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Lemma 4.5. Consider the evolution problem (4.1)-(4.4) in context of the Theorem 4.3.

Assume that the initial data of the system of equations U0 = (u0, v0, w0)> ∈ Zβ(γ)∩[L∞(Ω)]3,

and that u ∈ L∞(0, T, Lr(Ω)), for some r > N
2 are �nitely bounded in norms. Then v, w ∈

L∞(Ω× (0, T )) are also �nitely bounded in norm of the given function space.

Proof. It su�ces only to consider one of either of the last two equations of (4.1)-(4.4) in v

or w. We adopt here for simpli�cation to use the function space H1(Ω). Thus, considering

the equation in v and taking the inner product of L2(Ω) with |v|r−1v, r > 1 we get that

1

r + 1

d

dt

∫
Ω
|v|r+1 +

(
2
√
d2r

r + 1

)2 ∫
Ω
|∇|v|

r+1
2 |2 + λ2

∫
Ω
|v|r+1 ≤ a2|

∫
Ω
u|v|r−1v|

≤ a2

(∫
Ω
|v|

N(r+1)
N−2

)Θ1
(∫

Ω
|u|r
)Θ2

(∫
Ω
|v|r+1

)Θ3

≤ a2C

(∫
Ω

(|∇|v|
r+1

2 |2 + (|v|
r+1

2 )2

)NΘ1
N−2

(∫
Ω
|u|r
) 2Θ2
N−2

(∫
Ω
|v|r+1

)Θ3

,

(4.31)

where in the second inequality above we have used the Nakao-Hölder -Sobolev inequality

[3, 77], since there exists ϑ > 0 such that r = N
2 + ϑ and

Θ1 =
N − 2

N + ϑ
, Θ2 =

2

N + ϑ
, Θ3 =

ϑ

N + ϑ
,

the third inequality is due to Sobolev space embeddings [2, 12, 25], i.e. (4.10), in α = 1/2.

In what follows we �rst note that 2r > r+ 1 > 2, hence after multiplying throughout in

(4.31) by r + 1, and using in the right hand side Young's inequality [12, 77] i.e.

ab ≤ ηas + Cηb
s′ , a, b ≥ 0, η ∈ (0, 1)

since

NΘ1

N − 2
=

N

N + ϑ
,
NΘ1

N − 2
+ Θ3 = 1

we obtain if we let

β0 = inf{µ1, 2d2 − η, 2λ2 − η} > 0, µ1 ∈ σ(−∆ + 1), Ca2 = a2C
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that

d

dt

∫
Ω
|v|r+1 + β0

(∫
Ω
|∇|v|

r+1
2 |2 +

∫
Ω
|v|r+1

)

≤ (2rCa2)
1

Θ3

(
sup
(0,T )

∫
Ω
|u|r
) 4

ϑ(N−2) ∫
Ω
|v|r+1 ≤ (2rCa2)

1
Θ3

∫
Ω
|v|r+1,

(4.32)

since the term in brackets from the last inequality right to left is �nitely bounded from above,

and 1
Θ3

> 4
ϑ(N−2) we have incorporated the bounding from above constant with and/or the

given Ca2 ≥ 0.

Therefore, if ri = 2i, i ∈ N, and

Θi =
2(ri + 1)

N(ri + 1)− (N − 2)(ri−1 + 1)
,Θ′i = 1−Θi,

then by the Hölder's inequality as well as from the Sobolev type inclusions [2, 12, 25] and

Young's inequality [12, 77], one obtains that∫
Ω
|v|ri+1 ≤

(∫
Ω
|v|

N(ri+1)

N−2

)Θ′i
(∫

Ω
|v|ri+1

)Θi

≤ C

(∫
Ω

(|v|
ri+1

2 )2 +

∫
Ω
|∇|v|

ri+1

2 |2
)NΘ′i
N−2

(∫
Ω
|v|ri+1

)Θi

.

Thus, from (4.32) while still setting Ca2 = Ca2C, it follows that

d

dt

∫
Ω
|v|ri+1 + β0(η)

(∫
Ω
|∇|v|

ri+1

2 |2 +

∫
Ω
|v|ri+1

)

≤ (2rCa2)
1

Θ3

(∫
Ω

(|v|
ri+1

2 )2 +

∫
Ω
|∇|v|

ri+1

2 |2
)NΘ′i
N−2

(∫
Ω
|v|ri+1

)Θi

≤ η
(∫

Ω
(|v|

ri+1

2 )2 +

∫
Ω
|∇|v|

ri+1

2 |2
)

+ (2riCa2)
N+2
2Θ3

(∫
Ω
|v|ri−1+1

)si
,

and because
NΘ′i
N−2 < 1, we have used Young's inequality [12, 77].

Now set si = ri+1
ri−1+1 and since N+2

2 ≥ Nri−1+ri+2
ri+2 , we get

d

dt

∫
Ω
|v|ri+1 + β

(∫
Ω
|∇|v|

ri+1

2 |2 +

∫
Ω
|v|ri+1

)
≤ (2riCa2)σ

(∫
Ω
|v|ri−1+1

)si
,



93

where σ = N+2
2Θ3

, β = β(µ1, d2, λ2, 2η) > 0. Applying Poincaré inequality and de�ning yi(t) =∫
Ω |v|

ri+1, we obtain

dyi
dt

+ βyi ≤ (riC)σ (yi−1)si . (4.33)

If M = M(‖v0‖∞) > 0 is such that yi(0) ≤M (ri−1+1)si). Then, solving (4.33), we get

yi(t) ≤ (riC)σ

(
yi(0) +

(
sup

t∈(0,T )
yi−1(t)

)si)
.

We obtain from (a+ b)p ≤ 2p(ap + bp), a, b, p ≥ 0 with i = k ≥ 1 that

yk(t) ≤ (2C)1+2sk+2sk−1sk+...+2s2s3...sk(2C)kσ+(k−1)σsk+...+σs2s3...skM2s1s2...sk+

+ (2C)1+2sk+2sk−1sk+...+2s2s3...sk(2C)kσ+(k−1)σsk+...+σs2s3...sk

(
sup

t∈(0,T )

∫
Ω
|v|2
)s1s2...sk

≤ (2C)2Ak(2C)σBkM2χk + (2C)2Ak(2C)σBk

(
sup

t∈(0,T )

∫
Ω
|v|2
)χk

,

where χk = s1 . . . sk ≤ rk+1
2 ,

Ak = 1 + sk + sksk−1 + . . .+ sksk−1 . . . s1 ≤ (rk + 1)

∞∑
i=1

1

ri + 1
,

Bk = k + (k − 1)sk + (k − 2)sksk−1 + . . .+ sksk−1 . . . s1 ≤ (rk + 1)

∞∑
i=1

i

ri + 1
,

and the series in the right hand sides converge since ri = 2i. We then let

ω1 =
∞∑
i=1

1

ri + 1
, ω2 =

∞∑
i=1

i

ri + 1
,

to conclude that

yk(t) ≤

(2C)2ω1(2C)σω2M + (2C)2ω1(2C)σω2

(
sup

t∈(0,T )

∫
Ω
|v|2
) 1

2

rk+1

≤

(
(2C)2ω1(2C)σω2M

(
sup

t∈(0,T )

(∫
Ω
|v|2
) 1

2

+ 1

))rk+1

.

This implies

sup
Ω
|v(t, v0)| ≤ lim

k→0

(∫
Ω
|v|rk+1

) 1
rk+1

≤ (2C)2ω1(2C)σω2M

(
sup

t∈(0,T )

(∫
Ω
|v|2
) 1

2

+ 1

)
,
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and the proof of the lemma is complete. Note that this proof in general scales of spaces

Eα, α ∈ R implies the results since γ ≥ β ≥ 1/2, but this will be more complicated.

Next we observe that due to the linearity of the system of equations in v, w and Lemma

4.5 we have, as a corollary, the following:

Corollary 4.6. Consider the evolution problem (4.1)-(4.4) in the context of Theorem 4.3

and Lemma 4.5. Assume the initial data u0 ∈ L∞(Ω), ∇v0,∇w0 ∈ [L∞(Ω)]N , and that

∇u ∈ L∞(0, T, Lr(Ω)), r > N
2 are �nitely bounded in norms of the given spaces. Then, the

gradient solutions ∇v,∇w ∈ L∞(Ω×(0, T )), and u ∈ L∞(Ω×(0, T ) are also �nitely bounded

in norms.

Proof. It su�ces to note that from one of v, w system equations of (4.1)-(4.4), if one dif-

ferentiate these equations with respect to the x variable, and takes as test function say

|∇v|r−1∇v ∈ H1(Ω), r > 1. Then, Lemma 4.5 holds due to the linearity of these system

equations and weak coupledness.

So we only need to prove that u ∈ L∞(Ω× (0, T )) is �nitely bounded in norm. To this

end, consider the u equation of the system (4.1)-(4.4) and take the inner product of L2(Ω)

with test function |u|r−1u ∈ H1(Ω), r > 1 to �nd that

1

(r + 1)

d

dt

∫
Ω
|u|r+1 +

(
2
√
d1r

r + 1

)2 ∫
Ω
|∇|u|

r+1
2 |2

= χ2r

∫
Ω
|u|r−1u∇u∇v − χ3r

∫
Ω
|u|r−1u∇u∇w

≤ (C1χ2 + C2χ3)r

∫
Ω
||u|r∇u| = 2(C1χ2 + C2χ3)r

r + 1

∫
Ω
||u|

r+1
2 ∇|u|

r+1
2 |.

This yields that

d

dt

∫
Ω
|u|r+1 + 2d1

∫
Ω
|∇|u|

r+1
2 |2 ≤ 2(C1χ2 + C2χ3)r

∫
Ω
||u|

r+1
2 ∇|u|

r+1
2 |

≤ η

∫
Ω
|∇|u|

r+1
2 |2 +

(C1χ2 + C2χ3)r

2η

∫
Ω
|u|r+1, (4.34)
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by Young's inequality

ab ≤ ηas + (ηs)−
s′
s s′−1bs

′
, a, b ≥ 0,

1

s
+

1

s′
= 1,

and if β0 := 2d1−η > 0 or 0 < η � 1 is adequately chosen, then Poincaré inequality implies

that

d

dt

∫
Ω
|u|r+1 + β

∫
Ω
|u|r+1 ≤ (C1χ2 + C2χ3)r

2η

∫
Ω
|u|r+1, (4.35)

where for µ1 ∈ σ(−∆), we de�ned β := µ1β0 > 0.

From this point, one can proceed as in the proof of Lemma 4.5 to conclude that u ∈

L∞(Ω) is �nitely bounded in norm.

Alternatively, we notice that by interpolation, for ϕ ∈ H1(Ω), it holds that

‖ϕ− ϕ‖2L2(Ω) ≤ C‖∇ϕ‖
2θ
L2(Ω)‖ϕ‖

2(1−θ)
L1(Ω)

, (4.36)

where θ = N
N+2 , and Young's inequality yields

‖ϕ‖2L2(Ω) ≤ η0‖∇ϕ‖2L2(Ω) + C(1 + η
−N

2
0 )‖ϕ‖2L1(Ω).

Consequently, setting ϕ = |u|
r+1

2 , η0 = r
(r+1)2Cη

with Cη = (C1χ2+C2χ3)
2η , we obtain that

rCη

∫
Ω
|u|r+1 ≤ r

(r + 1)2

∫
Ω
|∇|u|

r+1
2 |2 + (22Cη)

N
2 C(1 + rN )

(∫
Ω
|u|

r+1
2

)2

,

since r > 1, 2r > r + 1, and 0 < η � 1 su�ciently small implies Cη � 1.

Therefore, Cη ≥ C and, because 1 + rN ≤ (1 + r)N , we obtain from (4.34) the following

iterative inequality type of (4.35), with β0 − 1
4 > 0,

d

dt

∫
Ω
|u|r+1 + β

∫
Ω
|u|r+1 ≤ (2Cη)

N (1 + r)N
(∫

Ω
|u|

r+1
2

)2

implying
=⇒

∫
Ω
|u|r+1 ≤

∫
Ω
ur+1

0 + (2Cη)
N (1 + r)N sup

(0,T )

(∫
Ω
|u|

r+1
2

)2

.

Next, de�ning

K(p) := max

{
‖u0‖L∞(Ω), sup

(0,T )

(∫
Ω
|u|p
) 1
p

}
(4.37)
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leads to that

K(r + 1) ≤ [(2Cη)
N (1 + r)N ]

1
r+1K(

r + 1

2
), ∀r ≥ 1,

so that, if we let ri + 1 = 2i, i ∈ N∗, then we conclude that

K(2i) ≤ (2Cη)
N2−i(2i)

N

2iK(2i−1) ≤ . . . ≤ (2Cη)
N
∑i
k=1 2−k(2i)2−iN . . . (1 + 2)2−1NK(1)

≤ (2Cη)
N
[
2i2
−iN (2−i)2−iN

]
. . . . . .

[
22−1N (2−1)2−1N

]
K(1)

≤ (2Cη)
N2N

∑i
k=1 k2−k × 2N

∑i
k=1 2−kK(1) ≤ C23NK(1).

Consequently, taking the limit as i→∞ yields

‖u‖L∞(Ω) ≤ C23NK(1) ≤ C23N max
{
‖u0‖L∞(Ω), ‖u0‖L1(Ω)

}
<∞,

and the proof of the corollary is complete.

The following is a particular converse lemma to Corollary 4.6, since its conclusion holds

for all r ∈ [2,∞].

Lemma 4.7. Consider the evolution problem (4.1)-(4.4). Assume that the hypotheses of

Corollary 4.6 hold, and that ∇u0 ∈ L∞(Ω) is �nitely bounded in norm. If ∇v,∇w ∈

L∞(Ω × (0, T )) are �nitely bounded in norm, then ∇u ∈ L∞(0, T, Lr(Ω)),∀r > N
2 is also

�nitely bounded in norm.

Proof. Di�erentiate the system equation in u with respect to x. Then, take the inner product
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of L2(Ω) with the test function |∇u|r∇u ∈ H1(Ω), r ≥ 0 to �nd that

1

r + 2

d

dt

∫
Ω
|∇u|r+2 +

4d1(r + 1)

(r + 2)2

∫
Ω
|∇(|∇u|

r+2
2 |2

=
r + 2

2
χ2

∫
Ω

(
|∇u|

r+2
2 ∇v∆u+ u|∇u|

r+2
2
−2∇u∆u∆v

)
−

− r + 2

2
χ3

∫
Ω

(
|∇u|

r+2
2 ∇w∆u+ u|∇u|

r+2
2
−2∇u∆u∆w

)
≤ r + 2

2
χ2

(∫
Ω
||∇u|

r+2
2 ∇v∆u|+

∫
Ω
|u|∇u|

r+2
2
−2∇u∆u∆v|

)
+

+
r + 2

2
χ3

(∫
Ω
||∇u|

r+2
2 ∇w∆u|+

∫
Ω
|u|∇u|

r+2
2
−2∇u∆u∆w|

)
≤ r + 2

2

(
Cχ

∫
Ω
|∇(|∇u|

r+2
2 )∇u|+ Cu

∫
Ω
||∇u|

r
2 ∆u(∆v|+ ∆w|)

)
,

(4.38)

where Cχ = (χ2C∇v + χ3C∇w) ≥ 0, with C∇v, C∇w, Cu constants for the upper bounds of

the variables in L∞(Ω). Multiplying throughout by r + 2, and since 1
2 + 1

r+2 ≤ 1, for any

r ≥ 0, we get, by Holder's inequality, that

d

dt

∫
Ω
|∇u|r+2 + 2d1

∫
Ω
|∇(|∇u|

r+2
2 |2

≤ (r + 2)2

2

(
Cχ

∫
Ω
|∇(|∇u|

r+2
2 )∇u|+ Cu

∫
Ω
||∇u|

r
2 ∆u(∆v|+ ∆w|)

)
≤ (r + 2)2

2

(
Cχ

(∫
Ω
|∇(|∇u|

r+2
2 )|2

) 1
2
(∫

Ω
|∇u|r+2

) 1
r+2

+

+
2Cu
r + 2

(∫
Ω
|∇(|∇u|

r+2
2 )|2

) 1
2

[(∫
Ω
|∆v|2

) 1
2

+

(∫
Ω
|∆w|2

) 1
2

])
.

(4.39)

We recall at this point the Young's inequality

ab ≤ ηas + η−
s′
s s′−1bs

′
, a, b ≥ 0, η ∈ (0, 1),

1

s
+

1

s′
= 1

with which, if we let η1 := 2η2

(r+2)2Cχ
, where by Nirenberg-Gagliardo's inequality [30, 25]

0 < η2 ≤ 1 and ∫
Ω
|∇u|r+2 ≤ η2

∫
Ω
|∇(|∇u|

r+2
2 )|2 + CΩη

−m
2

(∫
Ω
|∇u|

r+2
2

)2

,
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for m > N
2 , CΩ = C(Ω,m), η3 :=

16η2
2

(r+2)4C2
χ|Ω|

1− 2
r+2

, then we get that

(r + 2)2

2
Cχ

∫
Ω
|∇(|∇u|

r+2
2 )∇u| ≤ (r + 2)2

2
Cχ

(∫
Ω
|∇(|∇u|

r+2
2 )|2

) 1
2
(∫

Ω
|∇u|2

) 1
2

≤ (r + 2)2

2
Cχ

(
η1

∫
Ω
|∇(|∇u|

r+2
2 )|2 + (4η1)−1

∫
Ω
|∇u|2

)
≤ η2

∫
Ω
|∇(|∇u|

r+2
2 )|2 +

(r + 2)2

2
Cχ|Ω|1−

2
r+2

(
8η2

(r + 2)2Cχ

)−1 ∫
Ω
|∇u|r+2

≤ 2η2

∫
Ω
|∇(|∇u|

r+2
2 )|2 +

(r + 2)2

2
Cχ|Ω|1−

2
r+2

(
8η2

(r + 2)2Cχ

)−1

CΩ(η3)−m×

×
(∫

Ω
|∇u|

r+2
2

)2

= 2η2

∫
Ω
|∇(|∇u|

r+2
2 )|2 + (r + 2)4mΓ1CΩ

(∫
Ω
|∇u|

r+2
2

)2

,

where Γ1 =

(
C2
χ|Ω|

1− 2
r+2

16η2
2

)m+1

.

As for the last expression in (4.39), we need a control from above of the integrals involving

−∆ of v, w. To this end, multiplying either stationary equations in v or w by −∆ of the

variable, to obtain that

d2

∫
Ω
|∆v|2 + λ2

∫
Ω
|∇v|2 = a2

∫
Ω
∇u∇v ≤ a2

(∫
Ω
|∇u|2

) 1
2
(∫

Ω
|∇v|2

) 1
2

≤ η4

∫
Ω
|∇u|2 + a2(4η4)−1

∫
Ω
|∇v|2 ≤ η4|Ω|1−

2
r+2

∫
Ω
|∇u|r+2 + a2(4η4)C2

∇v|Ω|

≤ η4
|Ω|1−

2
r+2

µ1

∫
Ω
|∇(|∇u|

r+2
2 )|2 + a2(4η4)−1C2

∇v|Ω|.

Note that this remains true even if one had considered the entire equation involving the time

derivative, since by Theorem 4.3, the solutions are continuous in time. Let η4 ≤ η5 and set

η6 :=
1

(r + 2)Cu

(
2η5 +

η4

2µ1η5

(
1

d2
+

1

d3

)
|Ω|1−

2
r+2

)
.
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Then we �nd that

(r + 2)Cu

(∫
Ω
|∇(|∇u|

r+2
2 )|2

) 1
2

[(∫
Ω
|∆v|2

) 1
2

+

(∫
Ω
|∆w|2

) 1
2

]

≤ (r + 2)Cu

(
2η5

∫
Ω
|∇(|∇u|

r+2
2 )|2 +

1

4η5

(∫
Ω
|∆v|2 +

∫
Ω
|∆w|2

))
≤ (r + 2)Cu

((
2η5 +

η4

2µ1η5

(
1

d2
+

1

d3

)
|Ω|1−

2
r+2

)∫
Ω
|∇(|∇u|

r+2
2 )|2 +

+

(
a2(C∇v + C∇w)|Ω|

16η5η4

))
≤ η6

∫
Ω
|∇(|∇u|

r+2
2 )|2 +

(
a2(r + 2)(C∇v + C∇w)|Ω|Cu

16η2
4

)
.

Thus, from (4.39), if we let η7 = 2η2 + η6, Γ2 = a2(C∇v+C∇w)|Ω|Cu
16η2

4
and Γ = max {Γ1,Γ2},

then we are led to conclude that

d

dt

∫
Ω
|∇u|r+2 + 2d1

∫
Ω
|∇(|∇u|

r+2
2 |2

≤ η7

∫
Ω
|∇(|∇u|

r+2
2 )|2 + (r + 2)4mΓ

((∫
Ω
|∇u|

r+2
2

)2

+ 1

)

implying
=⇒ d

dt

∫
Ω
|∇u|r+2 + β

∫
Ω
|∇u|r+2 ≤ (r + 2)4mΓ

((∫
Ω
|∇u|

r+2
2

)2

+ 1

)
(4.40)

implying
=⇒

∫
Ω
|∇u|r+2 ≤

∫
Ω
|∇u0|r+2 + (r + 2)4mΓ

( sup
(0,T )

∫
Ω
|∇u|

r+2
2

)2

+ 1

 ,

following a use of Poincaré inequality and that β := 2d1 − η7 > 0.

Next, proceeding as either in the proof of Lemma 4.5 or as in the proof of Corollary 4.6,

yields that ∇u ∈ L∞(Ω× (0, T )) is �nitely bounded in norm.

To complete the ideas, consider (4.37) in gradient functions and take p = r + 2, to get

that

K(r + 2) ≤ [Γ(r + 2)4m]
1
r+2K(

r + 2

2
),∀r ≥ 0.
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Now, if we let ri + 2 = 2i, i ∈ N, then we obtain that

K(2i) ≤ Γ2−i(2i)4m2−iK(2i−1) ≤ . . . ≤ Γ
∑i
k=1 2−k(2i)2−i4m . . . (2)2−14mK(1)

≤ Γ
[
2i2
−i4m(2−i)2−i4m

]
. . . . . .

[
22−14m(2−1)2−14m

]
K(1)

≤ Γ24m
∑i
k=1 k2−k × 24m

∑i
k=1 2−kK(1) ≤ C212mK(1).

Thus taking the limit as i→∞ yields

‖∇u‖L∞(Ω) ≤ C212mK(1) ≤ C212m max
{
‖∇u0‖L∞(Ω), ‖∇u0‖L1(Ω)

}
<∞,

and the proof of the lemma is complete.

Now we prove (ii) of Corollary 4.4.

Proof. We use a bootstrap argument. By Theorem 4.3 taking into account that the space

inclusions (4.11) imply Eβ, Eγ ⊂ C(Ω), we get that u ∈ C(Ω × (0, T )). Thus, viewing

either equations in v or w variables, we get for example that vt ∈ L∞(Ω), consequently

g(t) := a2u− vt ∈ Lp(Ω) for all p ≥ 1. Thus, v ∈ W 2,p(Ω) for all p ≥ 1 and ∇v ∈ W 1,p(Ω)

for all p ≥ 1 In particular, ∇v ∈ W 1,p(Ω) for some p > N , yielding ∇v ∈ Cθ(Ω), for some

θ > 0.

In fact, if p < N , as ∇v ∈ W 1,p(Ω) ⊂ Lq1(Ω), q1 = pN
N−p if p > N

2 , then q1 > N

and the above statements hold. If not we repeat the process, with W 1,p(Ω) ⊂ Lq2(Ω),

q2 = q1N
N−q1 = pN

N−2p and if p > N
3 we are done as q2 > N . In the otherwise case we repeat the

iterative process to �nd qm = qm−1N
N−qm−1

= pN
N−mp and if p > N

m+1 then we are done. Thus in a

�nite number of steps it is always possible to get qm > N and the above Hölder smoothness

of gradient solutions are obtained.

The next immediate result from Corollary 4.6 is also that u ∈ L∞(Ω). Now, if ∇u0 ∈

L∞(Ω), then Lamma 4.7 implies that ∇u ∈ L∞(Ω). Furthermore,

f(t) = −div(u~d(∇v,∇w)) ∈W 2,p(Ω), ∀ p > 1.
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Thus viewing the equation in u as an elliptic problem, we get ∇u ∈ W 1,p(Ω) ⊂ Cθ(Ω) for

some θ > 0, since, in particular, using a bootstrap iteration argument as in above lines

W 1,p(Ω) ⊂ Lqm(Ω), it is possible to get qm > N , provided that p > N
m+1 . Consequently,

u ∈ C2+θ(Ω). Getting back to the v equation, we obtain g(t) ∈ Cθ(Ω) and so v ∈ C2+θ(Ω)

for some θ > 0. By similarity, of the equations we also have w ∈ C2+θ(Ω) for some θ > 0.

Combining all of the above, we conclude that the solution to the problem (4.1)-(4.4)

veri�es regularity properties given in Corollary 4.4, and that it is a classical solution.

4.5 Equations in system coupled elliptic di�erential operator

In this section, we view the problem (4.1)-(4.4) in the form
Ut +A(t)U = ~0

U(0) = U0 ∈ Eβ × Eγ × Eγ ,
1/2 ≤ β ≤ γ < β + 1

(4.41)

where A(t) = A(u) is the coupled elliptic partial di�erential operator associated with the

problem by passing all terms in the right hand side to the left hand side of the system of

equations i.e.

A(u) =


−d1∆ Div(uχ2∇·) −Div(uχ3∇·))
−a1 −d2∆ + λ2 0

−a2 0 −d3∆ + λ3



=


−d1∆ 0 0

0 −d2∆ + λ2 0

0 0 −d3∆ + λ3

+


0 Div(uχ2∇·) −Div(uχ3∇·))
−a2 0 0

−a3 0 0


= A− P (u).

(4.42)
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Now, if in (4.42) we let the left hand side of the operator be a function of Θ ∈ Eβ , and set

U = (u, v, w)> then

A(Θ)U =


−d1∆u+ Div(Θχ2∇v)−Div(Θχ3∇w)

−d2∆v + λ2v − a2u

−d3∆w + λ3w − a3u

 .

Consequently, if we de�ne

B : Zγ(β) × Zγ(β) → R, Zγ(β) := Eβ × Eγ × Eγ , 2β + γ ≥ 1 +
N

4
(4.43)

by

B(Θ;U, V ) := 〈A(Θ)U, V 〉 = 〈AU, V 〉+ 〈P (Θ)U, V 〉

= d1

∫
Ω
∇u∇φ+ d2

∫
Ω
∇v∇ϕ+ d3

∫
Ω
∇w∇ψ − χ2

∫
Ω

Θ∇v∇φ+

+ χ3

∫
Ω

Θ∇w∇φ+ λ2

∫
Ω
vϕ+ λ3

∫
Ω
wψ − a2

∫
Ω
uϕ− a3

∫
Ω
uψ

(4.44)

where V = (φ, ϕ, ψ)> ∈ Zγ(β), then w have the following theorem:

Theorem 4.8. Let Θ ∈ Eβ be �xed. Then, there exist constants
M(‖Θ‖β) = max

{
d1

(
2

Neπ

)2β−1
, d2

(
2

Neπ

)2γ−1
+ λ2

(
2

Neπ

)2γ
, d3

(
2

Neπ

)2γ−1
+

λ3

(
2

Neπ

)2γ
, {χ2, χ3} ‖Θ‖β

(
2

Neπ

)2β+γ−1
, {a2, a3} ‖Θ‖β

(
2

Neπ

)β+γ
}
> 0,

ω(‖Θ‖β) = min
{{
d1, di + λi

2
Neπ : i = 2, 3

}
− 2Λ1‖Θ‖β

}
> 0,

(4.45)

where Λ1 = max
{
{χ2, χ3}

(
2

Neπ

)2β+γ−1
, {a2, a3}

(
2

Neπ

)β+γ
}
> 0, such that

(i) |B(Θ;U, V )| ≤M(‖Θ‖β)‖U‖γ(β)‖V ‖γ(β),

(ii) B(Θ;U,U) ≥ ω(‖Θ)‖β)‖U‖2γ(β),

(iii) 〈A(Θ)U −A(Θ)V,U − V 〉 > 0, ∀U, V ∈ Zγ(β).

Moreover, for �xed (U,F ) ∈ Zγ(β) × [Zγ(β)]
∗ arbitrary, and if we consider (4.44) for any

V ∈ Zγ(β), then
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(iv) A(Θ)U = F ∈ [Zγ(β)]
∗ has one and only one solution U = TF (Θ) ∈ Zγ(β),

(v) A(Θ)U depends continuously on Θ for each U ∈ Zγ(β) �xed.

(vi) TF (·) ∈ L(Zγ(β)) is well-posed and U = TF (u) is a unique solution of A(u)U = F ∈

[Zγ(β)]
∗.

(vii) TF (·) ∈ K([Zγ(β)]
∗, Zγ(β)) is a compact operator.

Proof. First we notice that for any β, γ ≥ 1/2, by Sobolev type space embeddings [5, 30,

60, 66], i.e. (4.10), the mapping

(U, V ) 3 Zγ(β) × Zγ(β) → 〈AU, V 〉 ∈ L1(Ω) (4.46)

is well de�ned and continuous. In fact, it holds that

|〈AU, V 〉| ≤ d1‖∇u‖Lr1 (Ω)‖∇φ‖Lr1 (Ω) + d2‖∇v‖Lr2 (Ω)‖∇ϕ‖Lr2 (Ω) +

+d3‖∇w‖Lr2 (Ω)‖ψ‖Lr2 (Ω) + λ2‖v‖Lr3 (Ω)‖ϕ‖Lr3 (Ω) +

+λ3‖w‖Lr3 (Ω)‖ψ‖Lr3 (Ω)

≤ d1

(
2

Neπ

)2β−1

‖u‖β− 1
2
‖φ‖β− 1

2
+ d2

(
2

Neπ

)2γ−1

‖v‖γ− 1
2
‖ϕ‖γ− 1

2

+d3

(
2

Neπ

)2γ−1

‖w‖γ− 1
2
‖ψ‖γ− 1

2
+ λ2

(
2

Neπ

)2γ

‖v‖γ‖ϕ‖γ +

+λ3

(
2

Neπ

)2γ

‖w‖γ‖ψ‖γ

≤ d1

(
2

Neπ

)2β−1

‖u‖β‖φ‖β + d2

(
2

Neπ

)2γ−1

‖v‖γ‖ϕ‖γ + (4.47)

+d3

(
2

Neπ

)2γ−1

‖w‖γ‖ψ‖γ + λ2

(
2

Neπ

)2γ

‖v‖γ‖ϕ‖γ +

+λ3

(
2

Neπ

)2γ

‖w‖γ‖ψ‖γ
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≤ max

{
d1

(
2

Neπ

)2β−1

, d2

(
2

Neπ

)2γ−1

+ λ2

(
2

Neπ

)2γ

,

d3

(
2

Neπ

)2γ−1

+ λ3

(
2

Neπ

)2γ
}
× (4.48)

× (‖u‖β‖φ‖β + ‖v‖γ‖ϕ‖γ + ‖w‖γ‖ψ‖γ) ≤ Λ0‖U‖γ(β)‖V ‖γ(β),

where Λ0 ∈ R+ \ {0} is the value expressed in the max argument, and since the norm of

‖W‖γ(β) is greater than or equal to the partial summed norms of elements constituting the

product space sum of norms.

Also we have, for any Θ ∈ Eβ , that the mapping

(U, V ) ∈ Zγ(β) × Zγ(β) → 〈P (Θ)U, V 〉 ∈ L1(Ω) (4.49)

is well de�ned and continuous, provided that 2β + γ ≥ 1 + N
4 again by Sobolev type space

embeddings (4.10). Note that this implies, from (4.46), that if β = γ = 1/2, then (4.49)

holds only for N ≤ 2. Now proceeding as above, we have that

|〈P (Θ)U, V 〉| ≤ χ2|〈Θ∇v,∇φ〉|+ |χ3|〈Θ∇w,∇φ〉+ a2|〈u, ϕ〉|+ a3|〈u, ψ〉|

≤ χ2‖Θ‖Lr4 (Ω)‖∇v‖Lr2 (Ω)‖∇φ‖Lr1 (Ω) + |χ3|‖Θ‖Lr4 (Ω)‖∇w‖Lr2 (Ω) ×

×‖∇φ‖Lr1 (Ω) + a2‖u‖Lr5 (Ω)‖ϕ‖Lr3 (Ω) + a3‖u‖Lr5 (Ω)‖ψ‖Lr3 (Ω)

≤ χ2

(
2

Neπ

)2β+γ−1

‖Θ‖β‖v‖γ− 1
2
‖φ‖β− 1

2
+ χ3

(
2

Neπ

)2β+γ−1

× (4.50)

×‖Θ‖β‖w‖γ− 1
2
‖φ‖β− 1

2
+ a2

(
2

Neπ

)β+γ

‖u‖β‖‖ϕ‖γ +

+a3

(
2

Neπ

)β+γ

‖u‖β‖‖ϕ‖γ .

Consequently,

|〈P (Θ)U, V 〉| ≤ χ2

(
2

Neπ

)2β+γ−1

‖Θ‖β‖v‖γ‖φ‖β + |χ3|
(

2

Neπ

)2β+γ−1

‖Θ‖β‖w‖γ‖φ‖β +

+ a2

(
2

Neπ

)β+γ

‖u‖β‖‖ϕ‖γ + a3

(
2

Neπ

)β+γ

‖u‖β‖‖ψ‖γ .
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Next if we set

Λ1 = max

{
{χ2, χ3}

(
2

Neπ

)2β+γ−1

, {a2, a3}
(

2

Neπ

)β+γ
}

then

|〈P (Θ)U, V 〉| ≤ Λ1‖Θ‖β (‖v‖γ + ‖w‖γ) ‖φ‖β + (‖ϕ‖γ + ‖ψ‖γ) ‖u‖β

≤ Λ1‖Θ‖β (‖u‖β + ‖v‖γ + ‖w‖γ) ‖V ‖γ(β) + ‖V ‖γ(β)‖u‖β

≤ Λ1‖Θ‖β
(

(‖u‖β + ‖v‖γ + ‖w‖γ) ‖V ‖γ(β) + ‖V ‖Zγ(β)
‖U‖γ(β)

)
(4.51)

≤ 2Λ1‖Θ‖β‖U‖γ(β)‖V ‖γ(β).

Combining this with the estimate from above in (4.48), taking M := max {Λ0, 2Λ1} ∈

R+ \ {0} we conclude that (i) holds.

Next, observing that Zγ(β) is endowed with the norm 〈(u, v, w)>, (u, v, w)>〉γ(β) = ‖u‖2β+

‖v‖2γ + ‖w‖2γ , if we take in (4.43) the scalar product V = U ∈ Zγ(β), then we get from (4.51)

that

B(Θ;U,U) ≥ d1‖u‖2β− 1
2

+ d2d3

(
d−1

3 ‖v‖
2
γ− 1

2

+ d−1
2 ‖w‖

2
γ− 1

2

)
+ λ2

2

Neπ
‖v‖2

γ− 1
2

+ λ3
2

Neπ
‖w‖2

γ− 1
2

− 2Λ1‖Θ‖β‖U‖2γ(β)− 1
2

≥ min

{{
d1, di + λi

2

Neπ
: i = 2, 3

}
− 2Λ1‖Θ‖β

}
‖U‖2

γ(β)− 1
2

= ω(‖Θ‖β)‖U‖2
γ(β)− 1

2

,

since u ∈ Eβ ⊂ Eβ−
1
2 , v, w ∈ Eγ ⊂ Eγ−

1
2 , using the inclusions (4.10), and hence (ii) is

veri�ed, taking V = U ∈ Zγ(β)+1/2. From, (ii) if U 6= V we also get the conclusion (iii) of

the theorem. To obtain (iv), it su�ces to notice from (i)-(ii) that for each Θ ∈ Eβ �xed,

(4.43) de�nes an isomorphism

A(Θ)U := B(Θ;U, ·) ∈ Z∗γ(β) for any U ∈ Zγ(β) by 〈A(Θ)U, V 〉 = 〈F, V 〉, ∀V ∈ Zγ(β),

and F ∈ Z∗γ(β). This proves (iv) with uniqueness of the solutions being given by (ii).
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Also we get, using (4.51), that (v) is proved for any two Θ1, 6= Θ2 ∈ Zγ(β) and U ∈ Zγ(β)

�xed. To prove (vi) we observe that the mapping F ∈ Z∗γ(β) → U ∈ Zγ(β), by (ii) is

continuous. It is also compact, since the space inclusions Zγ(β) ⊂ Z∗γ(β) are compact, and

this proves (vii). Thus, the mapping F ∈ Zγ(β) → TF (·) = A−1(·)F ∈ L(Zγ(β)) and the

problem U = TF (u) = A−1(u)U , by Schauder -Tychono� theorem ( see [12, 10, pp.179,

pp.120] respectively) has a unique �xed point U ∈ Zγ(β). The remainder of the proof is

trivial, and the theorem is proven.

If in what follows, we let D(A(t)) = Zγ(β)+1/2 := Eβ+ 1
2 × Eγ+ 1

2 × Eγ+ 1
2 , then, the

operator A(t) : Zγ(β)+1/2 ⊂ Zγ(β) → Z∗γ(β) ⊂ E−1/2 × E−1/2 × E−1/2 is closed and densely

de�ned. Also by Theorem 4.8 for each t ∈ R+, the resolvent operator

R(A(t), κ) = (A(t)− κI)−1 : Z∗γ(β) → Zγ(β)

exists for any κ ∈ C, with Re(κ) ≤ 0 such that

‖R(A(t), κ)‖L(Z∗
γ(β)

,Zγ(β)) ≤
C

|κ|+ 1
.

Furthermore, by Theorem 4.3, Hölder continuity of the solution for any 0 ≤ s ≤ τ ≤ t <∞,

we have that

‖[A(t)−A(s)]A−1(τ)‖L(Zγ(β),Z
∗
γ(β)

) ≤ C(t− s)θ (4.52)

for θ ∈ (0, 1). Consequently, by [5, 18, 21, 25, 30, 60], we obtain that (4.42) is an in�nitesi-

mal generator of an analytic semigroup or fundamental solution operator {G(t, s) : t > s} :

Zα0 → Zα1 satisfying the following:

Lemma 4.9. Let Js := (s, T ), s ≥ 0. Then, G(t, s) ∈ L(Zα0 , Zα1) uniformly for any t ∈ Js

veri�es that

‖G(t, s)‖α0,α1 ≤ c(α0, α1)e−ω(t−s)(t− s)α0−α1 and G(·, s) ∈ Cβ−α(Js,L(Zα1 , Zα0))
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whenever −1 ≤ α0 ≤ α1 ≤ 1, where ω ∈ R+ \ {0}, and if

Ut +A(t)U = ~0, in Js, U(s) = Us ∈ Zα0 , (4.53)

then

U(t, s, Us) = G(t, s)Us ∈ C1(Js, Zα0) ∩ Cα1−α0(Js, Zα1)

is a unique solution of (4.53).

Moreover, if Us ∈ Y , where either Y = Z∗α0
, or [Lr(Ω)]3, then it holds that

‖G(t, s)Us‖Y


≤ C e−ω(t−s)

(t−s) ‖Us‖Z∗α0
, t > s

≤ C e−ω(t−s)

(t−s)
N
2 ( 1

q−
1
r )
‖Us‖Lq(Ω), t > s,

(4.54)

within last estimates, Y = Lr(Ω) following a bootstrap argument for any 1 ≤ q ≤ r ≤ ∞

and the evolution operator is in Lq(Ω) for any 1 < q <∞.

4.6 Numerical simulation

To visualize the aggregation of microglia as in the model equations, we numerically simulate

the equations using a Gradient Weighted Moving Finite Element method.

Gradient Weighted Moving Finite Element methods (GWMFE) are numerical moving

mesh methods which are designed for tracking moving shocks and complex structures with

a �xed number of mesh nodes. These methods are well suited to modelling aggregation of

microglial cells, where the cells aggregate into sharp peaks which need to be resolved. Also

see [80] for a comparison of SGWMFE and a Parabolic Moving Mesh Partial Di�erential

Equation method, for solutions of Partial Di�erential Equations.

In [81] the authors extend the String Gradient Weighted Moving Finite Element (SG-

WMFE) method in order to include the non-linear di�usion of di�erent variables, necessary
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for the chemo-attraction-repulsion model equations. For the simulations shown in this chap-

ter we use the code developed in [81] using a set of model parameters found in [50].

4.6.1 Parameter values

The parameter values used in the numerical simulations are calculated in [50], where the

parameters used there are calculated from dimensional values found in Biology, Immunology

and Neuroscience publications referenced therein. From the set of data found in [50], the

corresponding parameter values chosen for the simulations in this chapter are summarized

in Tables 4.6.1 and 4.6.1.

The equations are de�ned on a real and bounded domain Ω, where the boundary is

denoted by Γ. Our numerical domain is a two dimensional square of length and width 10.

The boundary conditions which hold are zero �ux through the boundary Γ. No proliferation

or death of microglial cells is considered in this model.

The contour plots for the three unknown variables are shown in Fig 4.1. The correspond-

ing evolving meshes are shown in Fig 4.2 where we also show a slice of the solutions, where

the slice is taken along y = 7 of the computational domain.
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Table 4.1: Biological parameters from [50], found in literature or calculated therein.

Parameter Description Value

µ Microglia random motility 33
µ m2

min

χ̃1 Chemoattraction 6− 780
µ m2

nM ·min
χ̃2 Chemorepulsion Not available

D1 IL-1β di�usion 900
µ m2

min

D2 TNF-α di�usion 900
µ m2

min

ã1 IL-1β production rate per microglia cell 6.25× 10−6 pg

min

ã2 TNF-α production rate per microglia cell 8.33× 10−6 pg

min
b1 IL-1β decay rate 0.003− 0.03min−1

b2 TNF-α decay rate 0.002− 0.03min−1

L1 Spatial range for chemoattraction
√
D1/b1

L2 Spatial range for chemorepulsion
√
D2/b2

m̄ Average microglial cell density 10−6 − 10−4 cells

µ m3
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Table 4.2: Model parameter values in relation to biological parameters from Table 4.1.

Dimensionless
variable

Expression in terms of
variables in Table 4.6.1

Variable values
from data Set 3,
Table 10 in [50]

χ2
χ̃1ã1m̄

µb1
37.14

χ3
χ̃2ã2m̄

µb2
27

ε1
µ

D1
0.0367

ε2
µ

D2
0.0367

a
L2

L1
1.1

a2
a2

ε1
32.970027248

a3
1

ε2
27.2479564033

d2
1

ε1
27.2479564033

d3
1

ε2
27.2479564033

λ2
a2

ε1
32.970027248

λ3
1

ε2
27.2479564033

Summarizing the relation between the non-dimensional variables used in the model equa-

tions in this chapter and the dimensional variables (as derived from [50]): the characteristic

cell density used is the average cell density m̄. One can calculate the dimensional variable for

density, from the non-dimensional density u as udim = m̄u. The average chemical concen-

trations at which production and decay balance, form the characteristic scales for chemical

concentrations v̂ = a1m̄/b1 and ŵ = a2m̄/b2. In order to obtain the dimensional chemical

concentrations one can then calculate vdim = v̂v and wdim = ŵw.
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L2 is close in value to L1, and so L2 is taken as the characteristic length scale of the prob-

lem, with L2 =
√

900/0.01 = 300µ m. This value corresponds to the distance over which

chemicals spread during the characteristic time of decay. The 10 by 10 non-dimensional

domain used for the simulations corresponds to a physical domain of length and width equal

to 3, 000µ m.

The characteristic time scale for the problem is t̂ = L2
2/µ, which is the time needed for

a cell to move over one unit of the characteristic length scale L2 [50]. Then in order to

calculate the dimensional time tdim, from the non-dimensional time t found in the equations

of the model, we calculate tdim = t̂t. In the simulations shown in this chapter, we compute

up to a non-dimensional time t = 0.8, which corresponds to a dimensional time of

tdim = ((300µ m)2min/33µ m2)× 0.8 = (2.727× 103min)× 0.8 ≈ 1.5days,

i.e. one and a half days.

4.7 Discussion of results

Fig 4.1 shows the contour plots of the microglia, attractant and repellent solutions to the

equations in system (4.1), at �ve di�erent times, t = 0, t = 0.2, t = 0.4, t = 0.6 and t = 0.8.

As in the one dimensional results found in [50], we see similar behaviour in that, small initial

perturbations increase in amplitude and decrease in spatial frequency, so that a few peaks

evolve in each of the solutions. We observe that the microglial cells merge locally due to

the attractant and form sharp peaks. This feature can also be observed in the slice plot in

Figure 4.2.
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The numerical solutions, resulting from the application of SGWMFE, shown in Fig 4.1,

mimic the behavior of microglia observed in both in vitro and in vivo experiments, speci�cally

the migration in response to chemoattraction.

We show numerical simulations up to a time t=0.8, corresponding to a dimensional time

computation of 36hrs. This time frame is of interest because studying the early changes

in the Alzheimer's disease a�ected brain is critical, especially given the prospect of new

disease-modifying drugs. It should be noted that this time frame is believed to be su�cient

to induce early Alzheimer's disease pathology in experimental models, as is recently shown

in the development of AD-like pathology at 24hrs in a novel model for sporadic Alzheimer's

disease [40].

The equations were solved with SGWMFE using a mesh of 21 by 21 nodes. At time t

= 0 the cells and concentrations of attractant and repellent are initialized randomly in the

interval (0.998, 1.002).
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Mesh plots (a) to (e) and slice plots (f) to (j) corresponding to the numerical solutions

in Figure 4.2. The slice is taken along the line y = 7 of the computational domain. The

microglia, attractant and repellent are represented by the starred line, the solid line and the

dash and dot line respectively.

Remark 4.2. To conclude this chapter, we point out that the chemical attraction and the

chemical repulsion equations of system (4.1) are identical, and they are both similar to the

second equation of the minimal model studied in Chapter 3. Moreover, the cell density

equations for the two systems are also similar, with the only di�erence being the extra

coupled term. It therefore follows that the well-posedness result (Theorem 4.3) for system

(4.1) implies the well-posedness result for the minimal system (3.1) in the Hilbert space

setting.



114

Figure 4.1: Contour plots of the numerical solutions of the aggregation of microglia model
equations.
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Figure 4.2: Mesh and slice plots
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Chapter 5

Minimal KS Equations Blow-up

Analysis in Hilbert Spaces

5.1 Introduction

Parabolic equations may experience solutions that may not exist globally. In such cases,

solutions are said to blow up either in �nite or in in�nite time. There has been some work

done on the Blow-up analysis for the Keller-Segel system, among which we cite [33, 37, 39,

69, 83]. In this Chapter, we will be carrying out the blow-up analysis in the Hilbert space

setting.

5.2 Rescaling Solutions

Let's consider the Keller-Segel system again, where the motility coe�cient of the amoebae,

d1, and the di�usion coe�cient of the chemical attractant, d2, are not necessarily equal to

116
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1. 

ut = d1∆u−∇ · (uχ∇v) in Ω× (0, T ),

vt = d2∆v − λv + au in Ω× (0, T ),
∂u

∂~n
=
∂v

∂~n
= 0 on ∂Ω = Γ

u(x, 0) = u0(x), v(x, 0) = v0(x),

(5.1)

In this section, we rescale the blow-up solutions for the system (5.1). To this end, let's

denote the spatial mean for a function ω = ω(x, t) by

ω̄(t) =
1

|Ω|

∫
Ω
ω(x, t) dx,

where |Ω|, as usual, denotes the measure (volume) of the set Ω.

The following transformation of the system can be found in [26, 39]. Also see [83]. We

integrate in (5.1) to obtain that

ū(t) = ū0,
dv̄

dt
+ λv̄ = aū0, v̄(0) = v̄0.

Through rescaling, we introduce new unknown functions u∗ and v∗ de�ned as

u∗(x, t) =
u(x, t)

ū0
, v∗(x, t) = v(x, t)− v̄(t),

and let γ be a new constant given by

γ = aū0. (5.2)

We thus get the transformed system as



u∗t = d1∆u∗ −∇ · (u∗χ∇v∗) in Ω× (0, T ),

v∗t = d2∆v∗ − λv∗ + γ(u∗ − 1) in Ω× (0, T ),
∂u∗

∂~n
=
∂v∗

∂~n
= 0 on ∂Ω = Γ

u∗(x, 0) = u∗0(x) = u0(x)
ū0

, v∗(x, 0) = v∗0(x) = v0(x)− v̄0,

(5.3)
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with

ū∗0 =
1

|Ω|

∫
Ω
u∗0(x) dx = 1, v̄∗0 =

1

|Ω|

∫
Ω
v∗0(x) dx = 0.

It's trivial to see that ū∗(t) = 1, v̄∗(t) = 0 ∀t ≥ 0. Also, by the maximum principle, we

see that for any solution (u∗, v∗), u∗ ≥ 0, while v∗ may change signs. For simplicity, we will

drop the ∗ on u and v in what follows.

For the sake of clarity, we will state here the de�nition of a blow-up solution for the

problem (5.3) [37].

De�nition 5.1. We say that a solution for (5.3) blows up or is a blow-up solution for (5.3)

if there exists a time Tmax ≤ ∞ such that

lim sup
t→Tmax

‖u(x, t)‖L∞(Ω) =∞ or lim sup
t→Tmax

‖v+(x, t)‖L∞(Ω) =∞,

in which v+(x, t) denotes the positive part of the function v(x, t). If Tmax < ∞, then we

say that the solution for (5.3) blows up in �nite time. Otherwise, if Tmax =∞, then we say

that the solution blows up in in�nite time.

Next, let's consider the stationary system of (5.3). From the �rst equation, we have that

d1∆u−∇ · (uχ∇v) = 0 ⇒ d1
∇u
u
− χ∇v = 0

⇒ lnu =
χv

d1
+ C

⇒ u = Ke
χv
d1 .

for some constant K. If we let κ = χ
d1
, α = λ

d2
, β = |Ω|aū0

d2
= |Ω|γ

d2
and u = eκv∫

Ω e
κvdx

, then we

reduce the second equation of the stationary system of (5.3) to

 ∆v − αv + β
(

eκv∫
Ω e

κvdx
− 1
|Ω|

)
= 0 in Ω,

∂v

∂~n
= 0 on ∂Ω = Γ,

(5.4)
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If we then multiply through (5.4) by v ∈ A := {v ∈ H1(Ω)|
∫

Ω v dx = 0} and integrate, then

we obtain the following energy functional,

Eβ(v) =
1

2

∫
Ω
|∇v|2 dx+

α

2

∫
Ω
v2 dx− β

(
1

|Ω|

∫
Ω
eκvdx

)
. (5.5)

In the next section, we will try to determine whether there exist non-trivial solutions of

the nonlinear elliptic equation in (5.4) for large values of β.

5.3 Global Existence of Blow-up solutions

In [26], Gajewski and Zacharias have shown, using Cherrier's extension of Moser-Trudinger's

inequality, that the minimizer of Eβ over {v ∈ H1(Ω)|
∫

Ω v dx = 0} exists for β ∈ (0, 4π).

In this Section, we will try to determine the existence of nontrivial solutions for (5.4) for

large β. To do this, we will follow [37, 83]. To this end, we set

β0 := inf
v∈H1

0∫
Ω v dx=0

{∫
Ω
|∇v|2 dx :

∫
Ω
v2 dx = 1

}
. (5.6)

If we consider Eβ(v) as de�ned in (5.5), then it is trivial to see that Eβ(0) = 0, and v = 0

is always a solution of (5.4). Furthermore, the mapping β → Eβ(v) is monotone decreasing

for any v ∈ A, and
∫

Ω e
κvdx ≥ |Ω| ∀v ∈ A by Jensen's inequality. So, we prove �rst the

following Lemma.

Lemma 5.1. Let β
|Ω| − β0 < α. Then v = 0 is a strict local minimum for Eβ.

Proof. It su�ces to show that E′′β(0)(v, v) > 0 in any nonzero direction v ∈ A. Indeed, using
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(5.6), we have

E′′β(0)(v, v) =

∫
Ω

(|∇v|2 + αv2) dx− β

|Ω|

∫
Ω
v2 dx

≥ (α+ β0 −
β

|Ω|
)

∫
Ω
v2 dx

> 0, since α+ β0 −
β

|Ω|
> 0,

and the Lemma is established.

Next, we �x P = 0 ∈ ∂Ω, and for x ∈ Ω, set

vε = log
32ε2

(ε2 + |x|2)2
,

and

uε(x) = vε −
1

|Ω|

∫
Ω

log
32ε2

(ε2 + |x|2)2
dx. (5.7)

We see that {uε(x)}ε>0 is a sequence in the set {u ∈ H1(Ω)|
∫

Ω u dx = 0}. We thus have

the following Lemma.

Lemma 5.2.

Eβ(uε) = 2(4π − β) log
1

ε
+O(1),

where |O(1)| ≤ K as ε→ 0.

Proof. Firstly, it is routine to calculate that∫
Ω
vε dx = 2 log ε|Ω|+O(1),

∫
Ω
|∇uε|2 dx =

∫
Ω

16|x|2

(ε2 + |x|2)2
dx.

If we carry out the transformation y =
x

ε
, then we get∫

Ω
|∇uε|2 dx = 16

∫
Ωε

|y|2

(1 + |y|2)2
dy = 16π log

1

ε
+O(1),

and ∫
Ω
|uε|2 dx =

∫
Ω

∣∣∣log
(
ε2 + |x|2

)2∣∣∣2 dx = O(1).
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Furthermore, we have

log

∫
Ω
eκuεdx = log

∫
Ω
eκvεdx−

∫
Ω
κvε dx = O(1)− 2|Ω| log

1

ε
.

If we put all these together, then we get our result that

Eβ(uε) = 2(4π − β) log
1

ε
+O(1),

In what follows, let's assume that β > 4π. Using Lemma 5.2, we see that ∃ε0 = ε0(β) > 0

su�ciently small, such that for v0 = vε0 ,

Eβ(v0) < 0 and ‖v0‖ ≥ 1.

Thus, ∀ψ ≥ β, we have that Eψ(v0) ≤ Eβ(v0) < 0.

Also in what follows, we will be using a set Θβ , de�ned as follows.

Θβ := {ω : [0, 1]→ A| ω is continuous, ω(0) = 0, ω(1) = vβ0 }. (5.8)

If we let

σβ = inf
ω∈Θβ

max
t∈[0,1]

Eβ(ω(t)),

then, by Lemma 5.1, there exists a constant c0 > 0, not dependent on β, such that

0 <

(
α+ β0 −

β

|Ω|

)
c0 ≤ σβ.

The number σβ de�nes a Mountain-Pass value (see [74] among others). We want to show

that σβ is achieved by a solution of (5.3). We will use a technique introduced by Struwe

[72, 73], also used in [83], to show that there exists a dense subset I of (4π,+∞) such that for
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any β ∈ I, σβ is achieved by a solution uβ of (5.3). We start by looking at the Palais-Smale

(P. S.) sequence for σβ . To this end, we have the following two Lemmas1.

Lemma 5.3. Let ui be a Palais-Smale sequence for Eβ. That is, ui satis�es

|Eβ(ui)| ≤ c <∞, (5.9)

and

dEβ(ui)→ 0 strongly in H−1,2(Ω). (5.10)

Also, suppose that ∫
Ω

(|∇ui|2 + |ui|2) dx ≤ c0, for i = 1, 2, . . . (5.11)

for c0 a constant not dependent of i. Then there exists a subsequence of {ui}, still denoted

by {ui} for simplicity, which converges strongly to a critical point of Eβ, u0, in H
1(Ω).

Lemma 5.4. The mapping β 7→ σβ
β is non-increasing in I.

For this reason, we have that the mapping β 7→ σβ
β is di�erentiable almost everywhere.

So, let

T = {β ∈ I|
σβ
β

is di�erentiable at β}.

Then it's known, [73], that T is a dense subset of (0,+∞). So, let β ∈ T and choose βk ↗ β

such that

0 ≤ lim
k→∞

− 1

(β − βk)

(
σβ
β
−
σβk
βk

)
≤ c1, (5.12)

for some constant c1 not dependent of k. Then we have the following Lemma, which was

proven in [75] (Lemma 3.3).

Lemma 5.5. The Mountain-Pass value σβ is achieved by uβ, for any β ∈ T .
1See [72, 73, 74] for the proofs
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Proof. The proof is by contradiction. Thus, suppose that the Lemma is false. That is,

suppose that there exists β ∈ I such that σβ is not achieved by uβ . Then by Lemma 5.3,

there exist δ > 0 such that

‖dEβ(u)‖H−1,2(Ω) ≥ 2δ (5.13)

in the set

Nδ := {u ∈ A|
∫

Ω
|∇u|2 dx ≤ c2, |Eβ(u)− σβ| < δ},

where c2 is any �xed constant such that Nδ 6= ∅. Now, let Xβ : Nδ → A be a pseudo-

gradient vector �eld for Eβ in Nδ [74]. That is, a locally Lipschitz vector �eld of norm

‖Xβ‖H1,2
0 (Ω)

≤ 1, with

〈dEβ(u), Xβ(u)〉 < −δ. (5.14)

Since

‖dEβ(u)− dEβk(u)‖ =

∥∥∥∥dEβ(u)− β

βk
dEβk(u)

∥∥∥∥+

∥∥∥∥(1− β

βk
)dEβk(u)

∥∥∥∥
≤ 1

2

(
1− β

βk

)∫
Ω
|∇u|2 dx+ c

(
1− β

βk

)∫
Ω
|∇u|2 dx

→ 0

(5.15)

uniformly in {u ∈ A|
∫

Ω |∇u|
2 dx ≤ c2}, Xβ is also a pseudo-gradient vector �eld for Eβk

in Nδ, with

〈dEβk(u), Xβ(u)〉 < −δ
2
, (5.16)

for u ∈ Nδ, provided that k is su�ciently large.

For any sequence {ωk}, ωk ∈ Θβk ⊂ Θβ such that

sup
u∈ωk(Θβ)

Eβk(u) ≤ σβk + β − βk (5.17)

and all u ∈ ωk(Θβk) such that

Eβ(u) ≥ σβ − (β − βk), (5.18)
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by (5.11), (5.17) and (5.18), we have the following estimate

1

2

∫
Ω
|∇u|2 dx = β · βk

Eβk (u)

βk
− Eβ(u)

β

β − βk

≤ β · βk
σβk
βk
− σβ

β

β − βk
+ (β + βk)

≤ C,

(5.19)

where C = (16π)2c1 + 32π.

Now we consider the following pseudo-gradient �ow for Eβ in Nδ. Choose a Lipschitz

continuous cut-o� function η, such that 0 ≤ η ≤ 1, η = 0 outside Nδ, η = 1 in Nδ/2. Then

consider the following �ow in A generated by η = Xβ

∂φ

∂t
(u, t) = η(φ(u, t))Xβ(φ(u, t))

φ(u, 0) = u.

By (5.13) and (5.15), we have

d

dt
Eβ(φ(u, t))|t=0

≤ −δ, (5.20)

for u ∈ Nδ/2, and

d

dt
Eβk(φ(u, t))|t=0

≤ −δ
2
, (5.21)

for large k.

It is now clear that for any ω ∈ Θβk , ω(r, θ) /∈ Nδ for r close to 1. Thus, φ(ω, t) ∈ Θβk

for any t > 0. In particular, φ(·, t) preserves the class of ωk ∈ Θβk with condition (5.16).

On the other hand, for any ω ∈ Θβ ,

sup
u∈ω(Θβ)

Eβ(u) ≥ σβ

by de�nition. Thus, for any ωk ∈ Θβk , (5.16) guarantees that sup
u∈φ(ω(Θβ),t)

Eβ(u) is achieved

in Nδ/2, provided that k is large enough. As a result, we have by (5.19) that

d

dt
sup{Eβ(u)| u ∈ φ(ω(D), t)} ≤ −δ,
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for all t ≥ 0, and this is a contradiction. Thus, our initial assumption is false, and we have

established the Lemma.

Given the above-stated Lemmas, we can therefore prove the following Lemma.

Lemma 5.6. For almost all β > 4π, σβ is a critical value for Eβ. Moreover, problem (5.4)

admits a nontrivial solution for almost all β > 4π.

Proof. This Lemma is established directly by Lemma 5.3.

5.4 Blow-up

Let β00 > 4π be a point where σβ is not di�erentiable, and suppose that β00 /∈ {4mπ| m =

1, 2, . . .}. Then by Lemma 5.6, there exists a sequence βn → β00 and solutions vn to (5.4)

associated with βn. Furthermore,

h1 ≥ Eβn(vn) ≥ (α+ β0 − βn)c0 ≥ h0 > 0,

where h0 and h1 do not depend on n.

Now, if max
x∈Ω̄

vn(x) ≤ C, then vn(x) → v0 by the standard elliptic regularity arguments,

and v0 is a solution of (5.4) associated with β00. Since Eβn(vn) → Eβ00(v0) ≥ h0, we have

that v0 6= 0. Hence, v0 is a non-trivial solution of (5.4).

It remains to exclude the case when max
x∈Ω̄

vn(x) → +∞. To this end, we note that vn

satis�es  ∆vn − αvn + β
(

eκvn∫
Ω e

κvndx
− 1
|Ω|

)
= 0 in Ω,∫

Ω vn dx = 0,
∂vn
∂~n

= 0 on ∂Ω = Γ.
(5.22)

Thus we have
∫

Ω e
vn dx → +∞ (otherwise, since Eβn(vn) ≤ h1, we would deduce that

‖vn‖H1(Ω) and vn would converge by Lemma 5.3). Now, let v∗n = vn+ βn
α|Ω| and µn = βn∫

Ω e
κv∗ndx

.
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Then, using (5.22), we have ∆v∗n − αv∗n + µne
κv∗n = 0 in Ω,∫

Ω v
∗
n dx =

βn
α
,

∂v∗n
∂~n

= 0 on ∂Ω = Γ,
(5.23)

where µn → 0. As in the previous section, for simplicity, we will drop the ∗ on vn. By the

Maximum Principle for elliptic operator, vn > 0 in Ω. We want to show, following [37, 83],

that as n→∞,

µn

∫
Ω
eκvn dx→ 4mπ, (5.24)

for some integer m. This means that βn → 4mπ and β00 = 4mπ, which is a contradiction

since we assumed earlier that β00 6= 4mπ. It remains to verify (5.24). We will be following

an approach in [37, 83, 84]. We start by stating the following Lemma which was proven by

Chanillo and Yangan Li in [14].

Lemma 5.7. Let L =
2∑

i,j=1
aij

∂2

∂xi∂xj
be a uniformly elliptic operator, namely

ν0I ≤ (aij)1≤i,j≤2 ≤ ν1I.

Then there exists a constant φ = φ(ν0, ν1) such that for any solution v of the problem

Lv = f(x) in Ω, v = 0 on ∂Ω,

we have ∫
Ω

exp

(
φ|v(x)|
‖f‖L1(Ω)

)
dx ≤ C.

Next, we recall that by elliptic estimates, we have

∫
Ω
|∇vn|q dx+

∫
Ω
|vn|q dx ≤ C, (5.25)

for any 1 < q < 2.
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To analyse vn, we �rst introduce the following set. Let

S :=

x ∈ Ω̄

∣∣∣∣∣∣ there exists µn → 0, solutions vn of (5.23),

xn ∈ Ω̄ such that vn(xn)→∞, xn → x

 . (5.26)

Let Λn =
∫

Ω µne
κvn dx.2 Now, since vn satis�es

∫
Ω

µne
κvn

Λn
dx = 1,

we can extract a subsequence of vn, still denoted by vn (for simplicity) such that there exists

a positive �nite measure µ in the set of all real bounded Borel measures on Ω̄,M(Ω̄), such

that as n→∞, ∫
Ω

µne
κvn

Λn
ϕ dx→

∫
Ω
ϕ dµ, (5.27)

for all ϕ ∈ C∞0 (R2). Let

v∗n =
vn
Λn

, gn =
µne

κvn

Λn
.

For each x0 ∈ ∂Ω, we can �nd a smooth function Φx0 and a small positive constant

rx0 > 0 such that

Φx0(x) : Brx0
(x0) ∩ Ω̄→ Brx0

(0) ∩ R2
+, (5.28)

in which R2
+ = {(x1, x2)|x2 > 0}. Then the Laplace operator ∆ becomes Lx0 +

2∑
l=1

bl
∂
∂xl

,

where Lx0 =
2∑

i,j=1
aij

∂2

∂xi∂xj
is a uniformly elliptic operator and |bl| ≤ C = const. By

the compactness of the boundary, we can choose a uniform φ = φ0 in Lemma 5.7 for all

Lx0 , x0 ∈ ∂Ω.

For the sake of clarity, we now state the de�nition of δ−regular points of Ω̄ [37].

2Note that Λn = βn.
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De�nition 5.2. For any δ > 0, we say that x0 is a δ−regular point if there is a function

ϕ ∈ C∞0 (R2), 0 ≤ ϕ ≤ 1, with ϕ = 1 in a neighbourhood of x0, such that∫
Ω
ϕ dµ <

φ0

1 + 3δ
. (5.29)

Let's denote the set of all points in Ω̄ which are not δ−regular by

Λ(δ) = {x0| x0 is not a δ−regular point}. (5.30)

If no confusion is foreseen in the following, we will use the reference `regular', `irregular' and

`Λ' without mentioning δ.

Also, in the following, we notice that, by assumption, the set S de�ned in (5.26), is not

empty. We therefore have the following Lemma which we will be using later in the proof for

Lemma 5.11. See [37] among others.

Lemma 5.8. Let 1 < q < 2. Then there exists a constant Cq, not dependent of n, such that

‖∇vn‖Lq(Ω) ≤ Cq.

Proof. Let q′ = q
q−1 > 2. Then we know that

‖∇vn‖Lq(Ω) ≤ sup

{
|
∫

Ω
∇vn · ∇ϕ dx| : ϕ ∈ Lq

′

1 (Ω),

∫
Ω
ϕ dx = 0, ‖ϕ‖

Lq
′

1 (Ω)
= 1

}
.

By using the Sobolev embedding theorem, we get that

‖ϕ‖L∞(Ω) ≤ C1.

Using the fact that vn > 0, we see that

|
∫

Ω
∇vn · ∇ϕ dx| = |

∫
Ω

∆vnϕ dx|

= |
∫

Ω
(αvn − µneκvn)ϕ dx|

≤ C1

∫
Ω

(vn + µne
κvn) dx

≤ C2.
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We thus have the following Lemmas from [83].

Lemma 5.9. If x0 is a δ−regular point, then {vn} is bounded in L∞(BR0(x0)) for some

R0 > 0.

Proof. Let x0 be a regular point. We will give the proof for the case when x0 ∈ ∂Ω. The

case for when x0 is an interior point is simpler and can be proven in a similar way.

It follows from the de�nition of a regular point that there exists R1 > 0 such that∫
BR1

(x0)∩Ω̄
gn dx <

φ0

1 + 3δ
.

Let's pick r < R1, a small number. At x0, since
∂vn
∂~n = 0, we can strengthen the boundary

near BR1(x0) ∩ Ω̄ by Φx0 de�ned in (5.28), and then extend vn by even extension (still

denoted by vn) to

Lx0v
∗
n +

2∑
l=1

bl
∂v∗n
∂xl
− αv∗n +

µne
κvn

Λn
= 0 in Bρ(0),

where Lx0 =
2∑

i,j=1
aij

∂2

∂xi∂xj
is a uniformly elliptic operator, |bl| ≤ C and ρ = ρ(r) → 0 as

r → 0. We can pick r so small that∫
Bρ(0)

gn dx <
φ0

1 + 3δ

and, by (5.25) ∫
Bρ(0)

|
2∑
l=1

bl
∂v∗n
∂xl
|+ αv∗n ≤ Cα‖v∗n‖W 1,q(Ω)ρ

q−1
q

< Cρ
q−1
q

<
φ0δ

(1 + 2δ)(1 + δ)
.

Thus ∫
Bρ(0)

(
|

2∑
l=1

bl
∂v∗n
∂xl
|+ αv∗n + gn

)
dx <

φ0

1 + δ
. (5.31)
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Next, we split v∗n into two parts such that

v∗n = v∗1n + v∗2n,

in which v∗1n is the solution for
Lx0v

∗
1n = −

2∑
l=1

bl
∂v∗1n
∂xl

+ αv∗1n − gn in Bρ(0)

v∗1n = 0 on ∂Bρ(0),

(5.32)

while v∗2n is the solution for

 Lx0v
∗
2n = 0 in Bρ(0)

v∗2n = v∗n on ∂Bρ(0),
(5.33)

Note that by the Maximum principle, v∗2n > 0, and by (5.30) and (5.31), ‖v∗1n‖L1(Bρ(0)) ≤

C. Thus, we get that
∫
Bρ(0) v

∗
2n dx <

∫
Bρ(0)(v

∗
n + |v∗1n|) dx ≤ C. Using Harnack inequality

[19], we obtain that

‖v∗2n‖L∞(Bρ/2(0)) ≤ C‖v∗2n‖L1(Bρ(0)) ≤ C‖v∗n‖L1(Ω) ≤ C.

Therefore, we only need to consider v∗1n.

Now, using (5.31) and Lemma 5.7, we get that∫
Bρ(0)

exp

[(
1 +

δ

2

)
|v∗1n|

]
dx ≤ C. (5.34)

Since v∗2n is uniformly bounded, we thus have

∫
Bρ/2(0)

(
|

2∑
l=1

bl
∂v∗n
∂xl
|+ αv∗n + gn

)1+δ

dx ≤ C (5.35)

on Bρ/2(0). From the elliptic estimates, we get ‖v∗1n‖L∞(Bρ/4(0)) ≤ C, and the proof is

complete.

From above, the following result is immediate.
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Lemma 5.10. S = Λ(δ) ∀δ > 0.

Proof. Let δ > 0 and suppose that x0 /∈ Λ(δ). Then x0 is a regular point, so that, by

Lemma 5.9, {v∗n} is bounded in L∞(BR(x0)) ∩ Ω̄ for some R > 0. That is, x0 /∈ S and thus

S ⊂ Λ(δ).

Conversely, suppose that x0 ∈ Λ(δ). Then for every R > 0, we have that

lim
x→∞

‖vn‖L∞(BR(x0)) =∞. (5.36)

Otherwise, there would be some R0 > 0 and a subsequence, still denoted by vn, such that

‖vn‖L∞(BR(x0)) < C,

for some constant C, not dependent on n. This would imply that

µne
vn ≤ Cµn

uniformly as n→∞ on BR0(x0)) ∩ Ω̄, so that∫
BR(x0)∩Ω̄

µne
vn dx ≤ Cµn ≤ ε0 <

φ0

1 + 3δ
.

This implies that x0 is a regular point, and so x0 /∈ Λ(δ), which is a contradiction. Equation

(5.36), by de�nition of S, (5.26), implies then that x0 ∈ S.

Hence, S = Λ(δ), and the proof is complete.

The statements in Lemmas 5.9 and 5.10 give that 1 ≤ n(S) < ∞, where n(S) denotes

the cardinality of set S. Let's now decompose S into S1 = S ∩ ∂Ω and S2 = S ∩Ω. Let S =

{p1, . . . , pN}, r be a small constant and θnj (r) =
∫
Br(pj)

µne
vn dx. Then lim

n→+∞

∫
Ω µne

vn dx =

N∑
j=1

lim
n→+∞

θnj (r), for all small r, which implies that

lim
n→+∞

∫
Ω
µne

vn dx =

N∑
j=1

lim
r→0

lim
n→+∞

θnj (r).

By Lemma 5.9, θnj (r) ≥ φ0

1 + 3δ
. In fact, it can be proven that
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Lemma 5.11. If pj ∈ S1, then lim
r→0

lim
n→+∞

θnj (r) = 4π, and if pj ∈ S2, then lim
r→0

lim
n→+∞

θnj (r) =

8π. In particular, β0 = 4mπ for some integer m > 0.

Proof. We �rst consider the case for when p ∈ S1. We will make use of the following

Pohozaev's identity. Recall that for v satisfying

∆v − αv + f(v) = 0, in U ⊂ R2,

we have the Pohozaev's identity [74]∫
U

(−αv2 + 2F (v)) dx

=

∫
∂U

[
(x · ∇v)

∂v

∂~n
− (x · ~n)

|∇v|2

2
+ (x · ~n)(−αv

2

2
+ F (v))

]
dS,

(5.37)

where F (v) =
∫ v

0 f(s) ds.

Let f(v) = µeκv, where µ = β∫
Ω e

κvdx
. Without loss of generality, we can assume that

p = 0. Let Ur = Br(0)∩ Ω̄ and consider the function wn which is a solution for the problem ∆w − αw = 0 in Ur

∂w
∂~n = ∂vn

∂~n on ∂Ur,
(5.38)

Then it is trivial to see that wn = O(1) in C2(Ur), since |∂vn∂~n | ≤ C on ∂Ur. Now, �x ωn =

(vn−wn)
θnj (r) . Then by regularity theory [20], we have that ωn → G(·, 0) in C2

loc(Br(0)∩ Ω̄ \ {0}),

where G(·, 0) satis�es  −∆G+ αG = δ0 in Ur

∂G
∂~n = 0 on ∂Ur.

By potential theory [65], we see that for |x| small

G(·, 0) =
1

π
log |x|+O(1).

Thus, we have

vn =
θnj (r)

π
log |x|+O(1)
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in C1(∂Ur). Note that here O(1) may depend on r, but is uniform in n.

Now, by Pohozaev's identity, we have∫
Ur

(−αv2
n + 2µn(eκvn − 1)) dx

=

∫
∂Ur

[
(x · ∇vn)

∂vn
∂~n
− (x · ~n)

|∇vn|2

2
+ (x · ~n)(−αv

2
n

2
+ µn(eκvn − 1))

]
dS.

(5.39)

We now use Lemma 5.8 to estimate each term on both sides of (5.39) as follows; For the

�rst term on the left-hand side, we have∫
Ur

v2
n dx = O(r1/2‖vn‖L4(Ur)) = O(r1/2‖vn‖W 1,3/2(Ω)) = O(r1/2).

For the second term on the left-hand side,∫
Ur

2µn(eκvn − 1) dx = 2µn

∫
Ur

eκvn dx+O(µn)

= 2θnj (r) +O(µn).

Looking at the �rst term on the right-hand side, we have∫
∂Ur

(x · ∇vn)
∂vn
∂~n

dS =

(
θnj (r)

π

)2 ∫
∂Ur

(
(x · ~n)

|x|2
+O(1)

)
=

(
θnj (r)

π

)2

(π +O(r)).

For the second term on the right-hand side,∫
∂Ur

(x · ~n)
|∇vn|2

2
dS =

(
θnj (r)

π

)2 (π
2

+O(r)
)
.

From the third term on the right-hand side,∫
∂Ur

v2
n dS = O(r).

Lastly, for the last term on the right-hand side, we have∫
∂Ur

(x · ~n)µn(eκvn − 1) dS = O

(
µn max

x∈∂Ur
eκvn

)
= O(µn).
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Now, if we �rst let n→ +∞, and then we let r → 0, we get that

2 lim
r→0

lim
n→+∞

θnj (r) =
1

π2

π

2

(
lim
r→0

lim
n→+∞

θnj (r)

)2

,

which implies that

lim
r→0

lim
n→+∞

θnj (r) = 4π.

The interior blow up case (p ∈ S2) is proven in a similar way, with the following modi�-

cations. Instead of (5.38), we will consider wn satisfying the problem ∆w − αw = 0 in Ur

w = vn on ∂Ur.
(5.40)

We �x ωn = (vn−wn)
θnj (r) and assume that p = 0 ∈ Ω. Then, similarly, ωn → G(·, 0) in

C2
loc(Br(0))/{0}, where G is now a Green function with Dirichlet boundary data −∆G+ αG = δ0 in Br

G = 0 on ∂Ur.

In this case, the Green function has the following expansion near 0;

G(·, 0) = − 1

2π
log |x|+O(1).

We then obtain the same estimates as in the case when p ∈ S2, except with the following

two. Looking at the �rst term on the right-hand side, we have∫
∂Ur

(x · ∇vn)
∂vn
∂~n

dS =

(
θnj (r)

2π

)2 ∫
∂Ur

(
(x · ~n)

|x|2
+O(1)

)
=

(
θnj (r)

2π

)2

(2π +O(r)),

and for the second term on the right-hand side,∫
∂Ur

(x · ~n)
|∇vn|2

2
dS =

(
θnj (r)

2π

)2

(π +O(r)).
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Now, applying Pohozaev's identity again, we obtain in this case that

2 lim
r→0

lim
n→+∞

θnj (r) =
1

4π2
π

(
lim
r→0

lim
n→+∞

θnj (r)

)2

,

which implies that

lim
r→0

lim
n→+∞

θnj (r) = 8π.

The proof of the Lemma is complete.

We now note that, by Lemma 5.11, the statement in (5.24) holds true. We have therefore

proven the following Theorem.

Theorem 5.12. Suppose that β
|Ω| − β0 < α, β > 4π, and β ∈ R \ {4mπ| m = 1, 2, . . .}.

Then (5.4) has a non-constant solution.

In the following discussions, we will use a Lyapunov functional. Let (u, v) be a solution

for (5.3), with u ≥ 0. We introduce the following Lyapunov functional [26, 37].

F (u, v) =

∫
Ω

[
1

2γ

(
d2|∇v|2 + λv2

)
+ u(log u− 1) + 1− (u− 1)v

]
dx. (5.41)

By Lemma 4.7 in [26], we know that if we let

f(v) =
1

2γ

∫
Ω

(
d2|∇v|2 + λv2

)
dx− |Ω| log

∫
Ω e

κvdx

|Ω|
, (5.42)

then for t ≥ 0,

f(v(t)) ≤ F (u(t), v(t)). (5.43)

From Lemma 5.11 and Theorem 5.12, we obtain the following Lemma.

Lemma 5.13. Assume that β > 4π and β ∈ R \ {4mπ| m = 1, 2, . . .}. Then there exists a

constant K̂ ≤ 0 such that

f(v) ≥ K̂ > −∞

holds for all solutions v of (5.23).
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We therefore have the following Theorem, which summarizes some known facts about

blow-up solutions.

Theorem 5.14. Let Ω ⊂ R2 be a smooth domain, and K̂ be the constant from Lemma 5.13.

Suppose further that β > 4π and β ∈ R \ {4mπ| m = 1, 2, . . .}. Then there exist initial data

(u0, v0) such that

F (u0, v0) < K̂,

and the corresponding solution of (5.3) blows up in �nite or in�nite time. For these blow-up

solutions, the following statements hold;

1. lim
t→Tmax

‖u(x, t)‖L2(Ω) =∞

2. lim
t→Tmax

∫
Ω u(x, t)v(x, t) dx =∞

3. lim
t→Tmax

‖∇v(x, t)‖L2(Ω) =∞

4. lim
t→Tmax

∫
Ω e

v(x,t)dx =∞

5. lim
t→Tmax

‖u(x, t)‖L∞(Ω) = lim
t→Tmax

‖v(x, t)‖L∞(Ω) =∞

6. If 4π < β < 8π and Ω is a simply connected domain, then

lim
t→Tmax

∫
∂Ω
e
v(x,t)

2 dS =∞

Proof. We �rst note that for vε as de�ned in (5.7), it is clear that as ε→ 0,

f(vε)→ −∞ (5.44)

and

‖vε‖L2(Ω) →∞. (5.45)

Thus, by Lemma 5.13, (5.44) and (5.45), the existence of a blow-up solution is established.
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Next, suppose that K̂ is a constant as in Lemma 5.13, and choose ε0 arbitrary but �xed
3,

and a �xed x0 ∈ ∂Ω such that if we let

vε0(x) = log
32ε2

0

(ε2
0 + |x− x0|2)2

− 1

|Ω|

∫
Ω

log
32ε2

0

(ε2
0 + |x− x0|2)2

dx,

then

f(vε0(x)) < K̂.

We note that

vε0(x) ∈W 1,∞(Ω).

Now, set

uε(x) =
|Ω|evε0 (x)∫
Ω e

vε0 (x)dx
.

Then uε(x) belongs to L∞+ (Ω), and

F (uε(x), vε0(x)) = f(vε0(x)) < K̂.

If we then choose our initial data such that u0(x) = uε0(x) and v0(x) = vε0(x), then we see

that the corresponding solution for the Keller-Segel model has to blow up in �nite or in�nite

time.

For the remaining statements of the Theorem, we recall the Lyapunov function (5.41).

Let Su and Sv+ denote the blow-up sets for u(x, t) and the positive part of v respectively.

Then it is known, [33], that if there are initial data (u0, v0) such that the solution of (5.3)

blows up, then

Su ∩ Sv+ 6= ∅,

and

lim
t→Tmax

∫
Ω
|∇v|2 dx =∞ and lim

t→Tmax

∫
Ω
evdx =∞.

This establishes 3. and 4. above for a blow-up solution of (5.3).

3The existence of this ε0 is guaranteed by (5.44)
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Moreover, by the properties of (5.41),

F (u(x, t), v(x, t)) ≤ F (u0(x), v0(x)) ≤ K̂,

so that ∫
Ω

1

2γ

(
d2|∇v|2 + λv2

)
dx ≤

∫
Ω

(u− 1)v dx+ K̂ (5.46)

is true. From this inequality, statement 2. is established, while statement 1. follows by

employing Cauchy's inequality. Combining statements 1. and 4. establishes statement 5.

It remains to prove statement 6. To this end, we remark that, Horstmann [33] showed

in Lemma 3 that if β < 8π, v ∈ H1(Ω), and p ∈ (1, 8π
β ) is arbitrary but �xed, then

log

(
1

|Ω|

∫
Ω
evdx

)
≤ p

16π

∫
Ω
|∇v|2 dx+

2

p
log

(∫
∂Ω
e
p′v
2 dS

)
+K(p, p′, β),

(5.47)

where p′ is the conjugate exponent of p, and K(p, p′, β) is a constant dependent of p, p′ and

β. If we then use this inequality, we can estimate (5.41) from below, for p ∈ (1, 8π
β ) arbitrary

but �xed, by

F (u, v) ≥
∫

Ω

1

2γ

(
d2|∇v|2 + λv2

)
dx− |Ω| log

(
1

|Ω|

∫
Ω
evdx

)
≥
∫

Ω

[(
d2

2γ
− p|Ω|

16π

)
|∇v|2 +

λ

2γ
v2

]
dx

− 2|Ω|
p′

log

(∫
∂Ω
e
p′v
2 dS

)
+K0(p, p′, β),

where K0(p, p′, β) is a constant dependent of p, p′ and β. With statement 3. in mind, we

see that

lim
t→Tmax

∫
∂Ω
e
p′v
2 dS =∞,

for every p′ ∈ ( 8πd2
8πd2−γ|Ω| , ∞).

Furthermore, it has been proven in [69] that if Ω ⊂ R2 is a simply connected, smooth
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domain, and v ∈ H1(Ω), then

log

(
1

|Ω|

∫
Ω
evdx

)
≤ 1

16π

∫
Ω
|∇v|2 dx+

1

2|∂Ω|

∫
∂Ω
v dS

+ log

(
1

|∂Ω|

∫
∂Ω
e
v
2 dS

)
+K1,

(5.48)

where K1 is an absolute constant. If we use this inequality instead of (5.47), we get that

F (u, v) ≥
∫

Ω

1

2γ

(
d2|∇v|2 + λv2

)
dx− |Ω| log

(
1

|Ω|

∫
Ω
evdx

)
≥
∫

Ω

[(
d2

2γ
− |Ω|

16π

)
|∇v|2 +

λ

2γ
v2

]
dx

− |Ω|
2|∂Ω|

∫
∂Ω
v dS − |Ω| log

(∫
∂Ω
e
v
2 dS

)
−K1|Ω|,

and this gives us statement 6., and the Theorem is established.

The following Lemma gives us another result for a blow-up solution.

Lemma 5.15. If the solution (u(t), v(t)) of system (5.3) blows up, then we have that

lim
t→Tmax

‖u(t) log u(t)‖L1(Ω) =∞. (5.49)

Proof. Let (u(t), v(t)) be the blow-up solution for (5.3). Since∫
Ω
u(t) log u(t) dx ≥ −|Ω|

e

we see that

F (u(t), v(t)) ≥ −|Ω|
e
−
∫

Ω
(u(t)− 1)v(t) dx+

d2

2γ
‖∇v(t)‖2L2(Ω).

Moreover, it is known, [17], that

‖v(t)‖2LΦ(Ω) ≤ K̃‖∇v(t)‖2L2(Ω),
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where Φ(s) = es−s−1, keeping in mind that
∫

Ω v(t) dx = 0. Here and in what follows, LΦ(Ω)

denotes the Orlicz space which corresponds to the Young function Φ(s), and ‖ · ‖LΦ(Ω) as its

norm. Let's denote the Young function complementary to Φ by Ψ, so that LΨ(Ω) denotes

the Orlicz space, with ‖·‖LΨ(Ω) is its norm. It is also known that Ψ(s) = (s+1) log(s+1)−s.

Using Hölder's inequality for Orlicz spaces [2, 78], we see that

F (u(t), v(t)) ≥ −|Ω|
e
−
∫

Ω
(u(t)− 1)v(t) dx+

d2

2γ
‖∇v(t)‖2L2(Ω)

≥ −|Ω|
e
− ‖v(t)‖LΦ(Ω)‖u(t)− 1‖LΨ(Ω) +

d2

2γ
‖∇v(t)‖2L2(Ω)

≥ −|Ω|
e
− K̃

4ε
‖u(t)− 1‖LΨ(Ω) +

(
d2

2γ
− ε
)
‖∇v(t)‖2L2(Ω),

where ε < d2
2γ . Combining this with Lemma 6.3 of [26] and the fact that∫

Ω
u(t) dx = |Ω| ∀t ≥ 0,

we get the result.

Remark 5.1. We remark that, except statement 6., all the statements of Theorem 5.14 and

Lemma 5.15 are also true for blow-up solutions of (5.3) when Ω ⊂ R2 has a piecewise C2

boundary.

5.5 Blow-up by the Concavity Method

With regard to the blow up time for the solutions to our problem, we will follow the concavity

method in [16]. To this end, we have the following Lemma.

Lemma 5.16. Suppose that ν > 0, and consider a positive-valued function F = F (t) such

that

(F−ν)′′ ≤ 0, and (F−ν)′(0) > 0. (5.50)
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Then there exists a time t∗ after which F blows up, and the inequality

FF ′′ − (ν + 1)(F ′)2 ≥ 0

holds.

Proof. Firstly, we observe that (5.50) means that F−ν is concave with an initial positive

derivative, and thus, the inequality

F−ν(t) ≤ F−ν(0) + (F−ν)′(0)t ⇔ F−ν(t) ≤ F−ν(0)− νF−ν−1(0)F ′(0)t,

is true. From this, we get that

t ≤ t∗ =
F−ν(0)

νF−ν−1(0)F ′(0)
=

F (0)

νF ′(0)
. (5.51)

So, t∗ is an upper bound for the blow-up time of the function F .

Secondly, we note that

(F−ν)′ = −νF−ν−1F ′

(F−ν)′′ = −ν(−ν − 1)F−ν−2(F ′)2 − νF−ν−1F ′′

= −νF−ν−2[FF ′′ − (ν + 1)(F ′)2].

From the conditions in (5.50), we obtain the inequality

FF ′′ − (ν + 1)(F ′)2 ≥ 0,

and the proof of the Lemma is complete.

We therefore have the following theorem regarding the system (3.1).

Theorem 5.17. Consider the problem (3.1). Assume that v ∈ L∞(Ω), v0 ∈W 1,∞(Ω), u0 ∈

L2(Ω), and set

F (t) = F =

∫ t

0

∫
Ω
u2(x, s)dx ds+ ω, (5.52)

for some constant ω > 0. Then Lemma 5.16 holds true.
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Proof. We start by di�erentiating F with respect to t to get

F ′ =

∫
Ω
u2 dx =

∫ t

0

d

dt

(∫
Ω
u2 dx

)
ds+

∫
Ω
u2

0 dx

= 2

∫ t

0

∫
Ω
uut dx ds+

∫
Ω
u2

0 dx

= 2

∫ t

0

∫
Ω
uut dx ds+ C0,

(5.53)

where C0 =
∫

Ω u
2
0 dx. Di�erentiating in (5.53) with respect to t gives

F ′′ = 2

∫
Ω
uut dx

= 2

∫ t

0

d

dt

(∫
Ω
uut dx

)
ds+ 2

∫
Ω
uut dx

∣∣∣∣
0

= 2

∫ t

0

d

dt

(∫
Ω
uut dx

)
ds+ C1,

(5.54)

where

C1 = 2

∫
Ω
uut dx

∣∣∣∣
0

= 2

∫
Ω
u(d1∆u−∇ · (uχ∇v)) dx

∣∣∣∣
0

= 2

[
χ

∫
Ω
u0∇u0∇v0 dx− d1

∫
Ω
|∇u0|2 dx

]
= 2

[
χ

∫
Ω
u0∇u0∇v0 dx− d1

∫
Ω
|∇u0|2 dx

]
.

(5.55)

Note that (5.54) can be rewritten as

F ′′ = C

∫ t

0

∫
Ω
u2
t dx ds+

[
2

∫ t

0

d

dt

(∫
Ω
uut dx

)
ds− C

∫ t

0

∫
Ω
u2
t dx ds

]
+ C1.

Squaring both sides of (5.53) and using Young's inequality, we write that

(F ′)2 =

(
2

∫ t

0

∫
Ω
uut dx ds+ C0

)2

= 4

(∫ t

0

∫
Ω
uut dx ds

)2

+ 4C0

∫ t

0

∫
Ω
uut dx ds+ C2

0

≤ (4 + ε)

(∫ t

0

∫
Ω
uut dx ds

)2

+ CεC
2
0 ,

for some constant Cε. It then follows, by applying the Cauchy-Schwarz inequality, that

(F ′)2 ≤ (4 + ε)

∫ t

0

∫
Ω
u2
t dx ds ·

∫ t

0

∫
Ω
u2 dx ds+ CεC

2
0

≤ (4 + ε)F

∫ t

0

∫
Ω
u2
t dx ds+ CεC

2
0 .
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Thence,

FF ′′ − C

4 + ε
(F ′)2 ≥ F

[
2

∫ t

0

d

dt

(∫
Ω
uut dx

)
ds− C

∫ t

0

∫
Ω
u2
t dx ds+ C1

]
− C

4 + ε
CεC

2
0 .

The expression between the square brackets above can be rewritten as follows;

2

∫ t

0

d

dt

(∫
Ω
uut dx

)
ds− C

∫ t

0

∫
Ω
utut dx ds

= 2

∫ t

0

d

dt

(∫
Ω
u(d1∆u−∇ · (uχ∇v)) dx

)
ds− C

∫ t

0

∫
Ω
ut(d1∆u−∇ · (uχ∇v)) dx ds

= 2d1

∫ t

0
(−‖∇u‖22)′ds+ 2

∫ t

0

d

dt

(
χ

∫
Ω
u∇u∇v dx

)
ds

− Cχ
∫ t

0

∫
Ω
u∇ut∇v dx ds+

Cd1

2

∫ t

0
(‖∇u‖22)′ds

= 2d1

∫ t

0
(−‖∇u‖22)′ds+ 2χ

∫ t

0

∫
Ω

(ut∇u∇v + u∇ut∇v + u∇u∇vt) dx ds

− Cχ
∫ t

0

∫
Ω
u∇ut∇v dx ds+

Cd1

2

∫ t

0
(‖∇u‖22)′ds.

If we choose C = 2, then we get

2

∫ t

0

d

dt

(∫
Ω
uut dx

)
ds− C

∫ t

0

∫
Ω
u2
t dx ds

= d1

[
‖∇u0‖2L2(Ω) − ‖∇u‖

2
L2(Ω)

]
+ 2χ

∫ t

0

∫
Ω

(ut∇u∇v + u∇u∇vt) dx ds.

Since F ≥ ω, we get

FF ′′ − 2

4 + ε
(F ′)2 ≥ F

{
d1

[
‖∇u0‖2L2(Ω) − ‖∇u‖

2
L2(Ω)

]
+ 2χ

∫ t

0

∫
Ω

(ut∇u∇v + u∇u∇vt) dx ds

+2‖∇v0‖L∞(Ω)‖u0‖L2(Ω)‖∇u0‖L2(Ω) − 2d1‖∇u0‖2L2(Ω) −
2Cε‖u0‖4L2(Ω)

(4 + ε)ω

}

≥ Fd1

{
‖∇u0‖2L2(Ω) − ‖∇u‖

2
L2(Ω)

}
+ 2‖∇v0‖L∞(Ω)‖u0‖L2(Ω)‖∇u0‖L2(Ω)

− 2d1‖∇u0‖2L2(Ω) −
2Cε‖u0‖4L2(Ω)

(4 + ε)ω

≥ 0,

and the proof of the Theorem is complete.



Chapter 6

Attraction-Repulsion KS Equations

in Scale of Banach Spaces

6.1 Introduction

In this chapter, we study the well-posedness and asymptotic global dynamics of the attraction-

repulsion Keller-Segel system of equations admitting the following abstract formulation:
Ut +ApU = P (u)U,

U(0) = U0 ∈ Eαq × E
β
r × Eβr , 0 ≤ α− β < 1, q, r ≥ 1,

(6.1)

modelling aggregation of microglia in Alzheimer's disease, where U = (u, v, w)> have entries

holding meanings as in (4.2). For notational convenience, we will set v = ψ2, w = ψ3. In

(6.1), we have that

M3×3(Lp(Ω,R3)) 3 Ap = diag[−∆,−∆ + λ2,−∆ + λ3]

: D(Ap) ⊂ Lp(Ω,R3)→ Lp(Ω,R3) (6.2)

with domain

D(Ap) :=
{
ϕ ∈ H2,p(Ω,R3) : ∂~nϕ = 0 on Γ

}
, (6.3)

144
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considered for real valued vector functions de�ned on an open bounded subset Ω ⊂ RN

possessing a smooth boundary Γ = ∂Ω, ~n denotes the unit outward pointing normal vector

to Γ,

P (u)U =

− 3∑
j=2

Div(u(−1)jχj∇ψj), a2u, a3u

> , (6.4)

and the biophysical constants are as de�ned in (4.5), with di = 1, i = 1, 2, 3.

More precisely, the evolutionary equation (6.1) reads the following chemotaxis system of

equations 

ut = ∆u−
∑3

j=2 Div(u(−1)jχj∇ψj),
vt = ∆v − λ2v2 + a2u,

wt = ∆w − λ3w + a3u, in Ω× İ ,
0 = ∂~nu = ∂~nψj on Γ× İ,

u(0) = u0, ψj(0) = ψ0 in Ω,

(6.5)

where İ = (0, T ), I = [0, T ), and in simpli�cation we have written

−
3∑
j=2

Div(u(−1)jχj∇ψj) = −∇ · (u (χ2∇v − χ3∇w)) =: P (u)ψ. (6.6)

Recall that (6.6) can be viewed in the sense of distributions as the weak form

PΩ(u)ψ := 〈P (u)ψ,ϕ〉p′,p =
3∑
j=2

∫
Ω
u(−1)jχj∇ψj∇ϕ (6.7)

in adequate function spaces.

It is clear to see that the system of equations (6.5) has L1− spatial integrable solutions

in taking the Lp− dual product with as test function ϕ = (1, 1, 1)> in distributions sense.

More concretely,

d

dt

∫
Ω
u = 0⇒ uΩ(t) =

∫
Ω
u0(x), ∀t ∈ İ ,

d

dt

∫
Ω
ψ = −λ

∫
Ω
ψ + a

∫
Ω
u⇒ ψΩ(t) = e−λtψ0 +

a|Ω|ū0

λ
(1− e−λt), ∀t ∈ İ ,
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where uΩ =
∫

Ω u = |Ω|u. Thus, if T =∞ we obtain

M =

{
A ∈ R3 : A =

(
|Ω|ū0,

a2|Ω|ū0

λ2
,
a3|Ω|ū0

λ3

)>}
, (6.8)

as the time limit set of L1− spatially integrable solutions.

On the other hand, the stationary equations to (6.5), using La-Salle- Hale-Henry [30]

invariance principle, can be deduced associated to the system of equations (6.5) in following

the works of [36] by means of the Lyapunov function

J(u, ψ) =

∫
Ω
u lnu− κ

∫
Ω
uψ +

κ

ar

∫
Ω

(|∇ψ|r + λ|ψ|r) , (6.9)

where ψ = (ψ2, ψ3), λ = (λ2, λ3), a = (a2, a3), κ = sgn
∑3

j=2(−1)jχj > 0 to which

holding onto, if the system of equations is globally well-posedness in time, then it implies

studying of the non-local elliptic problem ∆ψ − λψ + µeκψ = 0 in Ω,
∂ψ
∂~n = 0 on Γ = ∂Ω,

(6.10)

where

µ = a

∫
Ω u∫

Ω e
∑3
j=2(−1)jχjψ

= a

∫
Ω u0∫

Ω e
∑3
j=2(−1)jχjψ

,

using the implied conclusion in (6.8). Henceforth, in alternatives we can distinguish the

following possible situations:

e
∑3
j=2(−1)jχj


� 1 if χ2 � χ3,

≥ 1 if χ2 ≥ χ3,

� 1 if χ2 � χ3

(6.11)
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corresponding respectively to that:

Repulsion coe�cient dominating strongly the attraction coe�cient.

Attraction coe�cient dominating mildly the repulsion coe�cient. (6.12)

Attraction coe�cient dominating signi�cantly the repulsion coe�cient.

We point-out here that, as technical basis for our analysis, we use abstract dynamical

systems theory for evolutionary equations [30, 68, 66], where the approach dictates that, to

solve the equations (6.5) and to understand their qualitative properties one has to seeks for

solutions satisfying the integral equations

F(u, u0)(t) := e∆tu0 +

∫ t

0
e∆(t−s)P (u)ψ(s)ds,

ψ(t, ψ0) := e(∆−λ)tψ0 + a

∫ t

0
e(∆−λ)(t−s)u(s)ds, ψ = ψj , j = 2, 3,

(6.13)

and vice-versa. Note that if (6.13) is to be properly de�ned, then the non homogeneous

terms of the equations (6.5) need to be such that they are mapped into the spaces of the

initial data.

This chapter is organized as follows. In Section 6.2, we give some preliminaries on the

function spaces, and Eαq − Eβp heat kernel estimates of the semigroup associated to the

operator (6.2), which might not have been covered in Chapter 1.

Section 6.3, is devoted to the well-posedness of the system of equations (6.5) in Lσ(İ;Lp(Ω))

taking α, β = 0, i.e. u0 ∈ Lq(Ω), v0, w0 ∈ Lr(Ω). In order, to gain control over the coupled
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term in (6.6) of the cell density equation in (6.5) we introduce the Banach space

Zq′ :=
{
∇z ∈ Lp(Ω);−Div(a(x)∇z) ∈ Lq′(Ω), a(x) ∈ LΘ(Ω) ⊃ H1,q(Ω) �xed,

1

q
=

1

Θ
+

1

p

}
⊂ H−1,q′(Ω),

(6.14)

endowed with the norm

‖a(x)∇z‖Zq′ = ‖a(x)∇z‖q + ‖Div(a(x)∇z)‖q′ ∼= ‖Div(a(x)∇z)‖q′ <∞.

Then we prove the following lemma.

Lemma 6.1. Assume in (6.6) that uχ∇ψ ∈ Zq′ , q′ ≥ 2N
N−2 . Then, PΩ(u)ψ ∈ H−1,q′(Ω)

is well de�ned, and

‖PΩ‖L(H1,q(Ω),H−1,q′ (Ω)) = sup
‖∇ϕ‖q′≤1

|〈P (u)ψ,ϕ〉q,q′ |
‖uχ∇ψ‖q

≤ 2(Neπ)−1 < 1. (6.15)

Moreover,

p ≥ q ≥ p

2
⇐⇒ N ≥ q ≥ N

2
, (6.16)

is a valid Sobolev spaces embedding relation, with q′ ≥ p if N < 4 and p > q′ ≥ q if N ≥ 4.

Important to take note of is that, (6.16) imply studying the cells density equation up to

the critical space H1,N (Ω), and the reduction of the system of equations in the large time

asymptotic dynamics to the non-local elliptic problem (6.10), to which the Moser-Trudinger

inequality imply well-posedness only if

κ ≤ Nω
1

N−1

N−1, where ωN−1 =
2π

N
2

Γ(N/2)
, (6.17)

denote the measure of the unit sphere in RN , N ≥ 2. In the context of Lemma 6.1, we



149

obtain that the system of equations (6.5) admits a unique solution of at least class

Xp
q,r(I) := C(I;Lq(Ω)) ∩ L∞

N
2

(
1
q
− 1
p

)(I;Lp(Ω)) ∩ Lσ(I;Lp(Ω))×

×[C(I;Lr(Ω)) ∩ C(I;H1,p(Ω)) ∩ C1(I;Lp(Ω))]2

= V × Z × Z. (6.18)

More precisely, we have the following theorem.

Theorem 6.2. Consider the system of equations (6.5) with u0 ∈ Lq(Ω),ψ0 ∈ Lr(Ω), and

assume that Lemma 6.1 holds. Let u ∈ Lσ(İ;LΘ(Ω)), for r, p ≥ Θ, be such that

1

σ
+
N

2Θ
≤ min

{
1 +

N

2r
,
1

2
+
N

2p

}
. (6.19)

Then,

(i) ψ ∈ C(I;Lr(Ω)) ∩ C(İ;H1,p(Ω)).

(ii) If (i) holds, then F(u, u0) ∈ L∞N
2Θ

(İ;Lp(Ω)) satis�es that the mapping

Lq(Ω)× Lσ(İ;LΘ(Ω)) 3 (u0, u)→ F(u, u0) ∈ L∞N
2Θ

(İ;Lp(Ω)) (6.20)

is linear and continuous. Furthermore, F(u, u0) is locally Hölder continuous with

values in Lp(Ω).

(iii) The system of equations (6.5) admits a unique solution in the class (6.18). That is

U ∈ Xp
q,r(I).

A priori uniform boundedness in Ω×İ of the cells density solution is proven in Subsection

6.3.1, yielding, as a result, that the complete system solution is a global classical solution.

Independent to this conclusion, we obtain the following proposition.
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Proposition 6.3. Consider the system of equations (6.5) in the context of Theorem 6.2.

Then,

lim sup
t↗+∞

‖u(t)‖p = 0, lim sup
t↗+∞

‖∇ψ(t)‖p = 0, (6.21)

and the system of equations de�ne an extended or perturbed analytic semigroup in Lp−

spaces. Moreover, in the global asymptotic dynamics ,it holds that

lim sup
t↗∞

‖(u(t), v(t), w(t))>‖p = A∗ ∈M∪ {0}, (6.22)

where the limit setM, as de�ned in (6.8), corresponds to the L1− spatial integrable solutions

of the system equations in distributions sense.

In Section 6.4, we prove similar results to those of Section 6.3, but in a much more

general function space setting, which includes one used in Chapter 4 of the scale of Hilbert

spaces. More precisely, we give a treatment of the equations in Bessel potential spaces Eαq ,

α ∈ R, 1 < q <∞. To this end, we �rst establish the following nesting relation between the

spaces;

Eαp 7−→ Eαq 7−→ Eβp 7−→ Eβq 7−→ Eβr , (6.23)

and

Eαq′
−→←− Eαp 7−→ Eαq 7−→ Eβp′ 7−→ Eβq′

−→←− Eβp . (6.24)

Then, prove the following counterpart to Lemma 6.1.

Lemma 6.4. Assume (6.23)-(6.24) hold, and let u ∈ Eαq , ψ ∈ Eβp , β ≥ 1
2 , 0 ≤ α − β <

1, p ≥ q. Then, if
1

2
+
N

2p
≤ α+ β, and 1 +

N

2p
≤ 2α+ β, (6.25)
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hold, then the product uχ∇ψ ∈ Eαq , and the weak form PΩ(u) ∈ E0
q′ ⊆ E−βp′ , for q

′ ≥
2N

N−4α , p ≥
N
2α , are well de�ned, and

‖PΩ‖L(Eαq ,E
−β
q′ )

:= sup
‖ϕ‖α,q′≤1

|〈P (u)ψ,ϕ〉
Eαq ,E

−β
q′
|

χ‖u∇ψ‖α,q
≤
(

2

Neπ

)α+β
2
− 1

2

. (6.26)

In particular, PΩ ∈ Llip(Eαq , E
β
q′) is satis�ed.

To conclude, we give similar results to those in Theorem 6.2-Proposition 6.3 in the

following theorem.

Theorem 6.5. Assume in the system of equations (6.1)-(6.4) that Lemma 6.4 holds. Then,

(i) The system of equations admits a unique C1− strong solution. Furthermore, there exists

a constant

ω = min

1−
(

2

Neπ

)α+β− 1
2

3∑
j=2

(
χj +

aj
q

)
,

1−
(

2

Neπ

)α+β
2
− 1

2
3∑
j=2

(
χj +

aj
r

) > 0 (6.27)

such that the coupled system di�erential operator in (6.5) de�nes a perturbed analytic

semigroup in Zα+β = Eαq × E
β
r × Eβr spaces, and

lim sup
t↗∞

‖(u(t), v(t), w(t))>‖α+β = A∗ ∈M∪ {0} (6.28)

where the limit set M is de�ned as in (6.8) corresponds to L1− spatial integrable

solutions of the system (6.5) of equations in distributions sense.

(ii) Assume that the �rst condition in (6.25) is veri�ed strictly. Then, the solution semi-

group is a classical solution.

To make the proof of the results in above theorems accessible to the reader we give, in

the next section, some preliminaries.
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6.2 Preliminaries

In the sequel, we use, as function spaces setting, the inhomogeneous Sobolev spaces [5, 30,

66, 78] in terms of Bessel potential spaces Hs,p(Ω) = (I −∆)−
s
2Lp(Ω), s ∈ R, 1 < p < ∞,

see Section 2.4. In this regard, the scale spaces Eαp := H2α,p(Ω), α ∈ [−1, 1] associated with

the operator (6.2) are well de�ned, using the complex interpolation-extrapolation method,

with dual spaces [Eαp ]∗ := E−αp′ ,
1
p + 1

p′ = 1 and norm notation either ‖ · ‖α,p, or simply ‖ · ‖α

if there is no confusion caused, while ‖ · ‖p if α = 0 for Lp spaces equipped with dual spaces

product

〈·, ·〉p,p′ :=

∫
Ω
·, of functions ϕ ∈ Lp and |ϕ|p−2ϕ ∈ Lp′ . (6.29)

Similarly, we will adopt, for the spaces Lσ(İ;Eαp ), the norm notation ‖ · ‖σ,α,p, and ‖ · ‖σ,p

if α = 0.

Next we observe that for any f(·) ∈ Hs,p(Ω), it holds that

f(λ·) ∈ Hs,p(Ω)⇒ ‖f(λ·)‖s,p = λ
s−N

p ‖f(·)‖s,p, (6.30)

and by comparing the behaviour of the norms at λ = ∞ for f(λ·) ∈ Hsj ,pj , with together

that at λ = 0 for f(λ·) ∈ Lpj , j = 1, 2, we establish that the spaces embedding conditions;

s1 ≥ s2 ≥ 0, 1 < p1 ≤ p2 <∞, s1 −
N

p1
≥ s2 −

N

p2
, −N

p1
≤ −N

p2
, (6.31)

are veri�ed, whenever

Hs1,p1(Ω) ⊂ Hs2,p2(Ω) with sj = 0, Lp1(Ω) ⊂ Lp2(Ω) ⇐⇒ p1 = p2, (6.32)

continuously, and if s1 > s2, p1 ≤ p2 the inclusions are compact. Important, to take
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consideration of is that (6.31) implying (6.32) does not obey the standard Sobolev spaces

embedding pattern, except if p1 = p2 in Hs,p.

As usual the conditions (6.31) are related with the degrees

deg(Hs,p) = s− N

p
, and deg(Lp) = −N

p
,

of smoothness of the spaces in ascertaining the embeddings (6.32) validity. In addition, the

interpolation inequality

‖ϕ‖s,p ≤ C‖ϕ‖θs1,p1
‖ϕ‖1−θs2,p2

, (6.33)

where θ ∈ [0, 1], 1
p ≤

θ
p1

+ 1−θ
p2
, 1 < p, p1, p2 <∞ and

s− N

p
≤ θ

(
s1 −

N

p1

)
+ (1− θ)

(
s2 −

N

p2

)
,

is attained for the Bessel potential spaces. In particular, we have the Sobolev type embed-

dings (3.5) hold, with best constants (3.6).

In view to solving the homogeneous equations of (6.5), it is well known, [5, 30, 68], that

the operator Ap in (6.2)-(6.3) is an in�nitesimal generator of an analytic semigroup

{S(t) := exp (−Apt) ; t > 0}

on the spaces Hs,p(Ω), satisfying, if p2 > p1 > 1, s2 > s1, that the mapping

S(t) : Hs1,p1(Ω) 7−→ Hs2,p2(Ω)

verify, for any ϕ0 ∈ Hs1,p1(Ω), the estimate

‖S(t)ϕ0‖s2,p2 ≤
Me−ωt

t
s2−s1

2
+N

2

(
1
p1
− 1
p2

) ‖ϕ0‖s1,p1 , ∀t > 0, (6.34)
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where 0 < ω < inf{µ ∈ Re σ(Ap)}, with immediate special cases when s1, s2 = 0, s2 =

2α, s1 = 2β, p1 = p2 = p. Moreover, if 1
σ = N

2

(
1
r −

1
p

)
≥ 0 , 1 ≤ r ≤ p ≤ ∞, ϕ ∈ Lr(Ω),

then the mapping

Lr(Ω) 3 ϕ→ S(t)ϕ ∈ Lσ([0,∞);Lp(Ω)) ∩ Cb([0,∞);Lr(Ω))

is well- de�ned and

‖S(t)ϕ‖σ,p ≤M‖ϕ‖r, I ⊆ [0,∞) (6.35)

holds, with M ∈ R+ \ {0} independent of ϕ. Essential in proving the Hölder continuity of

solutions is the following lemma.

Lemma 6.6 ( [30, 68]). If p ≥ q > 1, 0 < α− β < 1, 0 < γ = α− β + N
2 (1

q −
1
p) < 1, then

the mapping

Eβp 3 ϕ→ (S(t)− I)ϕ ∈ Eαq

satisfy that

‖ (S(t)− I)ϕ‖α,q ≤ Cγtγ‖ϕ‖β,p ∀t > 0, (6.36)

where Cγ =
C1−γ
γ > 0 is a constant.

Let E be a Banach space, as in Chapter 1 (also see [66]), then we de�ne by

L∞ϑ (0, T ;E) :=

{
Φ ∈ E, ϑ ∈ [0, 1); sup

t∈(0,T )
tϑ‖Φ‖E <∞

}
(6.37)

the Lebesgue-Bochner space tϑL∞(0, T ;E), endowed with the norm

|‖Φ‖|E,ϑ := sup
t∈(0,T )

tϑ‖Φ‖E <∞.

Throughout, this chapter, generic constants will be denoted by C ≥ 0. An extension of

D.R. Adams [1] 1998, results on Trudinger-Moser inequality to be useful in connection with

the blow-up dynamics at the borderline Bessel spaces is the following lemma.
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Lemma 6.7 ([46, 91]). Let γ ∈ (0, N) be positive real number, 1 < q = N
γ <∞ and τ > 0.

Then,

sup
f∈Eγq ,‖(I−∆)

γ
2 f‖q≤1

∫
Ω
eκ|f |dx


≤ Cq,N |Ω| if κ < κN,γ ,

= +∞ if κ ≥ κN,γ ,

(6.38)

where, with ωN−1 = 2π
N
2

Γ(N
2

)
representing the measure of a unit sphere in RN ,

κN,γ =

(
N

ωN−1

) 1
q′
[
π
N
2 2γΓ(γ2 )

Γ(N−γ2 )

]
. (6.39)

Lastly, we recall some notions of Orlicz spaces.

De�nition 6.1 ([2, 23]; R. A. Adams, D. Edmunds).

(i) A function Φ : R+ 7−→ R+ satisfying that it is increasing, convex, Φ(0) = 0 and

limt↗∞
Φ(t)
t =∞ is called a Young function.

(ii) The space LΦ denotes the Orlicz space due to Φ, with norm

‖f‖LΦ(Ω) = inf

{
µ > 0 :

∫
Ω

Φ

(
|f(x)|
µ

)
dx ≤ Φ(1)

}
.

(iii) LΨ(Ω) is the dual space of LΦ(Ω) if Φ(1) + Ψ(1) = 1, and∫
Ω
|f(y)g(y)|dy ≤ ‖f‖LΦ(Ω)‖g‖LΨ(Ω)

holds.

(iv) The space embeddings Eαq ⊂ LΦ(Ω) ⊂ Lq(Ω) ⊂ Lq∗(Ω) ⊂ L1(Ω) are satis�ed.

6.3 Well-posedness in Lσ(İ;Lp(Ω)) spaces

In this section, we assume α, β = 0 in the system of equations (6.1)-(6.4) and have, as our

�rst task, to prove of the well-posedness of the weak form (6.7) in Lemma 6.1.
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Proof. of Lemma 6.1. Clearly, by Hölder's inequality, the mapping

(u, ψ, ϕ) ∈ LΘ(Ω)× Lp(Ω)× Lq′(Ω)

:= Lq(Ω)× Lq′(Ω) 3 (uχ∇ψ,ϕ) 7−→ b(u;ψ,ϕ) := χ

∫
Ω
u∇ψ∇ϕ ∈ R,

for any ϕ ∈ H1,q′(Ω), is well de�ned and continuous, with (6.15) holding due to (3.5).

Next, if we consider the space condition given in (6.14), using the space embeddings

(3.5), since 1
Θ ≥ 0, then we have p ≥ q, and thus,

H1,p(Ω)
(2)
⊂ H1,q(Ω)

(1)
⊂ LΘ(Ω). (6.40)

Taking the embedding (1) in the space condition given in (6.14) yields p ≥ N , while simul-

taneously the embedding condition 1
p −

1
N ≥ 0 implies p ≤ N . Consequently, p = N . But

(6.40) gives Θ ≥ p ≥ q, so that holding on the space condition in (6.14), one gets q ≥ N
2 .

Thus we have established (6.16) must hold. The rest follows by interpolation, see (6.32),

and distinguishing cases. The proof of the lemma is complete.

Proof. of Theorem 6.2. To prove (i), we consider the second integral formula in (6.13). Thus,

by the semigroup estimates (6.34) the mapping Lr(Ω) 3 ψ0 7−→ S(t)ψ0 = e(∆−λ)tψ0 ∈ Lr(Ω)

is well de�ned, linear and continuous. Similarly, setting

G(u)(t) = a

∫ t

0
e(∆−λ)(t−s)u(s)ds,

we get that the mapping Lσ(İ;LΘ(Ω)) 3 u 7−→ G(u)(t) ∈ C(İ;Lr(Ω)) is linear and contin-

uous. In fact,

‖G(u)(t)‖r ≤ aM
∫ t

0
(t− s)−

N
2 ( 1

Θ
− 1
r )‖u(s)‖Θ ≤ aM1−σ′t

1
σ′−

N
2 ( 1

Θ
− 1
r )‖u‖σ,Θ,

whereM1−σ′ = aM
(

1− σ′N
2 ( 1

Θ −
1
r )
)− 1

σ′
, together with, by hypothesis, that 1

σ′−
N
2

(
1
Θ −

1
r

)
≥

0. Consequently,

‖ψ(t)‖r ≤M‖ψ0‖r +M1−σ′t
1
σ′−

N
2

( 1
Θ
− 1
r

)‖u‖σ,Θ. (6.41)
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But

∇S(t) = ∇e(∆−λ)t ∈ L(Lr(Ω), Lp(Ω)), G(∇u) ∈ L(Lσ(I;LΘ(Ω))), Lp(Ω))

by semigroup estimates (6.34), from which we get

‖∇ψ(t)‖p ≤Mt
− 1

2
−N

2

(
1
r
− 1
p

)
‖ψ0‖r +M1−σ′t

1
σ′−

1
2
−N

2

(
1
Θ
− 1
p

)
‖u‖σ,Θ, (6.42)

of which, by hypothesis, it holds that

1

σ′
− 1

2
− N

2

(
1

Θ
− 1

p

)
≥ 0, and M1−σ′ = aM

(
1− σ′N

2

(
1

N
+

1

Θ
− 1

p

))− 1
σ′

.

In either of the cases, the continuity follows easily. Since, for example, with t, h > 0 �xed

one concludes, using (6.41), that

‖ψ(t+ h)− ψ(t)‖r ≤ ‖
(
e(∆−λ)h − I

)
ψ(t)‖r +M1−σ′‖u‖σ,Θh

1
σ′−

N
2

( 1
Θ
− 1
r

) ↘ 0

as h↘ 0, and the continuity of the solution is proven. This further implies, in taking t = 0,

and h = t, that ψ(t)→ ψ0 in Lr(Ω) as t↘ 0+.

Now to prove (ii), since (i) holds, we have from the �rst integral formula in (6.13) and

by Lemma 6.1 that

‖F(u, u0)(t)‖p ≤ Mt−
N
2Θ ‖u0‖q +

3∑
j=2

∫ t

0
‖e∆(t−s)∇

(
u(−1)jχj∇ψj

)
‖pds

≤ Mt−
N
2Θ ‖u0‖q +M

3∑
j=2

χj

∫ t

0
(t− s)−( 1

2
+ N

2Θ) ‖u∇ψj‖qds

≤ Mt−
N
2Θ ‖u0‖q +Kχj

∫ t

0
(t− s)−( 1

2
+ N

2Θ) ‖u(s)‖Θds

≤ Mt−
N
2Θ ‖u0‖q +Kχj

(∫ t

0
(t− s)−σ

′( 1
2

+ N
2Θ) ds

) 1
σ′

‖u‖σ,Θ

≤ Mt−
N
2Θ ‖u0‖q +Kχj t

1
σ′−( 1

2
+ N

2Θ)‖u‖σ,Θ, (6.43)

where

Kχj =

(
1− σ′

(
1

2
+
N

2Θ

))− 1
σ′

M
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖p,
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while the hypothesis imply 1
σ′ −

(
1
2 + N

2Θ

)
> 0. Consequently, from (6.43) we get that

t
N
2Θ ‖F(u, u0)‖p ≤M‖u0‖q +Kχj t

1
σ′−

1
2 ‖u‖σ,Θ, (6.44)

which proves the �rst part of (ii) in the theorem.

It only remains to prove the Hölder continuity of the mapping (6.13). To this end, �x

h > 0 small such that 0 < t < t+ h ≤ T . Thanks to (6.15) of Lemma 6.1 we have from

F(u)(t+ h)−F(u)(t) =
(
e∆h − I

)
e∆tu0 +

∫ t

0
(e∆h − I)e∆(t−s)P (u)ψ(s)ds

+

∫ t+h

t
e∆(t+h−s)P (u)ψ(s)ds

using (6.36), if we let δ = N
2

(
1
q −

1
p

)
, Mδ = M

δ , that

‖F(u)(t+ h)−F(u)(t)‖p ≤ ‖
(
e∆h − I

)
e∆tu0‖p +

+

∫ t

0
‖(e∆h − I)e∆(t−s)P (u)ψ(s)‖pds+

∫ t+h

t
‖e∆(t+h−s)P (u)ψ(s)‖pds

≤ C1−δ(Mδ)h
δ

(
‖e∆tu0‖q +

∫ t

0
‖e∆(t−s)P (u)ψ(s)‖pds

)
+

+

∫ t+h

t
(t+ h− s)−δ‖P (u)ψ(s)‖qds

≤ C1−δ(Mδ)h
δ

‖u0‖q +Mπ

∫ t

0
(t− s)−δ

 3∑
j=2

χj‖∇ψj‖p

 ‖u(s‖Θds

 +

+ Mπ

3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖p
∫ t+h

t
(t+ h− s)−δ‖u(s)‖Θds

≤ C1−δ(Mδ)h
δ

‖u0‖q +Mπ

3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖pt
1
σ′−δ‖u‖σ,Θ

+

+ Mπ

3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖ph1−δ‖u‖σ,Θ

≤ KχC1−δ(Mδ)
(
‖u0‖q + (t

1
σ′−δ + 1)‖u‖σ,Θ

)
hℵ, (6.45)

where ℵ = min{δ, 1 − δ}, Mπ = 2M
Neπ , Kχ = max{1,Mπ

3∑
j=2

χj supt∈(0,T ) ‖∇ψj‖p}, and we

have used the fact that h > 0 is small. The proof of (iii) will be in continuation.
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Remark 6.1. Note that, if we take ∇u ∈ Lσ(İ;Lq(Ω)) then

‖G(∇u)(t)‖p ≤ aM1−σ′t
1
σ′−

N
2Θ ‖∇u‖σ,q

and 1
σ + N

2Θ ≤ 1 must hold. In addition, if this condition is strict, then ∇ψ ∈ L∞(Ω×(0, T )),

using [45, 67]. Furthermore, in (6.43) using (6.15), the yielding condition is less restrictive,

i.e. 1 ≥ 1
σ + N

2Θ .

Now to complete the proof of the above theorem, we have the following.

Proof. of Theorem 6.2-(iii). First we note that from (ii), we only need to prove that

F(u, u0) ∈ Lσ(İ;Lp(Ω)) since , that it is in C(I;Lq(Ω)) can be deduced from (6.20). To

this end, we notice that (6.35) and (6.43) imply that

‖F(u, u0)‖σ,p ≤M‖u0‖q +M1−σ

3∑
j=2

χj sup
t∈İ
‖∇ψj‖pt

1
2
− N

2Θ ‖u‖σ,Θ (6.46)

holds.

Next, we de�ne the complete metric space

W := {Ψ ∈ V ; ‖Ψ‖V ≤ C = 6M‖u0‖q} ,

and prove that (6.13) is a contraction mapping on W . In view to this task, we initially

observe from

‖F(u, u0)‖q ≤M‖u0‖q +M
3∑
j=2

χj sup
t∈I
‖∇ψj‖pT

1
2
− 1
σ ‖u‖σ,Θ

that we have sup
t∈I
‖F(u, u0)‖q ≤ 6−1C

(
1 +KχjT

1
2
− 1
σ

)
, while given (6.44), we �nd that

sup
t∈I

t
N
2Θ ‖F(u, u0)‖p ≤ 6−1C

(
1 +KχjT

1
2
− 1
σ

)
,

with, as lastly from (6.46), that

‖F(u, u0)‖σ,p ≤ 6−1C
(

1 +KχjT
1
2
− N

2Θ

)
.
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Consequently,

‖F(u;u0)‖V ≤ 2−1C + 3−1CKχjT
1
2
− 1
σ + 6−1CKχjT

1
2
− N

2Θ ,

with which, if Tmax{ 1
2
− 1
σ
, 1
2
− N

2Θ
} ≤ 1

Kχj
, then we have that (6.13) maps W to itself. Further-

more,

‖F(u1;u0)−F(u2;u0)‖V ≤ 2−1CKχjT
max{ 1

2
− 1
σ
, 1
2
− N

2Θ
}‖u1 − u2‖V ,

with, if Tmax{ 1
2
− 1
σ
, 1
2
− N

2Θ
} < 2

CKχj
, then (6.13) is a contraction mapping. Therefore, Banach

Contraction Principle (Theorem 1.1, also see [8]), yields that there exists a unique �xed point

u = F(u, u0) ∈W which solves the activated cells density equation, within a maximum time

T ∗ = T (‖u0‖q) implied by Picard's method.

Moreover, as proved in Theorem 6.2-(ii)., this solution is Hölder continuous, yielding as a

result [30, 68] the Z− regularity of the solution components in chemical attraction-repulsion

concentration equations of the system. The proof of the Theorem is complete.

6.3.1 Boundedness in Ω× İ and asymptotic global dynamics

On global existence we have the following lemma:

Lemma 6.8. Consider the activated cells equation of the system (6.5), with u0 ∈ Lq(Ω), q ∈

(N2 , N ]. Let the best constant in (3.6) be Cs=1, and

0 < Kχ =
3∑
j=2

(−1)jχj sup
t∈(0,T )

‖∇ψj‖N , τ± = 1± τ,

τ = N

(
1

2
− N

Θ

)
, 0 < η ≤ 4

pCs=1Kχτ−
− 1,

be such that (
τ+ + τ−η

2

)
Cs=1Kχ ≤

2

p
. (6.47)

Then, u ∈ L∞(Ω× (0,∞)) veri�es the estimate

sup
t>0
‖u‖∞ ≤Mt

−N
2q ‖u0‖q + C. (6.48)
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Moreover, the system of equations (6.5) admits a globally de�ned classical solution.

Proof. Consider, initial data u0 = 0 for the cells equation in (6.5). Then, take |u|p−2u ∈

H1(Ω) as a test function, to �nd that

d

dt

∫
Ω
|u|p +

4

p′

∫
Ω
|∇|u|

p
2 |2 = 2(p− 1)

 3∑
j=2

∫
Ω
|u|

p
2∇|u|

p
2 (−1)jχj∇ψj


≤ 2(p− 1)Kχ‖∇|u|

p
2 ‖2‖|u|

p
2 ‖Θ ≤ 2(p− 1)Cs=1Kχ‖∇|u|

p
2 ‖τ+

2 ‖|u|
p
2 ‖τ−2

≤ 2(p− 1)Cs=1Kχ

(
τ+ + τ−η

2
‖∇|u|

p
2 ‖22 + |Ω|(1 + η−

N
2 )‖|u|

p
2 ‖21
)
,

following from a use of Hölder, Young, and Nirenberg-Gagliardo inequalities [2, 30, 68].

Also note that the �rst second line inequality follows by adding a zero term of 2χ3(p −

1)‖∇|u|
p
2 |22‖∇ψ3‖N , taking the negative to the right hand side, then estimating from above

only the �rst expression of the identity and next removing the zero term to establish the

estimate.

Since p ≥ 2, taking the upper limit of η = 4
p2KχCs=1τ−

− 1 and letting

CΩ =

√ (|Ω|)
2
NCs=1Kχτ−

4(1− Cs=1Kχτ−)

 ,

thanks to the condition (6.47), there exists an ω := c(p) > 0 such that

d

dt

∫
Ω
|u|p + ω

∫
Ω
|u|p ≤ CNΩ (1 + pN )

(∫
Ω
|u|

p
2

)2

implying
=⇒

∫
Ω
|u|p ≤ CNΩ (1 + p)N sup

(0,T )

(∫
Ω
|u|

p
2

)2

.

Next de�ne Λ(r) := sup(0,T )

(∫
Ω |u|

r
) 1
r , to �nd that

Λ(p) ≤ [CΩ)N (1 + p)N ]
1
pΛ
(p

2

)
, ∀p ≥ 2,
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from which, if we let pi = 2i, i ∈ N∗, we obtain

Λ(2i) ≤ CN2−i
Ω (1 + 2i)

N

2i Λ(2i−1) ≤ . . . ≤ CN
∑i
k=1 2−k

Ω (1 + 2i)2−iN . . .

. . . . . . . . . . . . . . . . . . . . . . . . (1 + 2)2−1NΛ(1)

≤ CNΩ

[
2i2
−iN (2−i)2−iN

]
. . . . . .

[
22−1N (2−1)2−1N

]
Λ(1)

≤ CNΩ 2N
∑i
k=1 k2−k × 2N

∑i
k=1 2−kΛ(1) ≤ CNΩ 23NΛ(1).

Consequently, taking the limit as i→∞ yields

‖u‖∞ ≤ CNΩ 23NΛ(1) ≤ CNΩ 23N‖u0‖1 <∞. (6.49)

Now holding on this, if we decompose the solution into u = ϕ1 + ϕ2, where ϕ1 veri�es

the equation in u with P (u)ψ = 0, u(0) = u0 and ϕ2 the same equation but with P (u)ψ 6=

0, u0 = 0, then it follows, using the semi-group estimates (6.34) in an iteration, that ‖ϕ1‖∞ ≤

Mt
−N

2q ‖u0‖q for all t > 0 while (6.49) implies ‖ϕ2‖∞ ≤ C.

Thus, combining these yields that (6.48) holds. The moreover conclusion of the lemma

follows as in Chapter 4, using a bootstrap argument, or alternatively [24] Proposition 1.

The proof of the lemma is complete.

Independent of Lemma 6.8, the large time behaviour of the system of equations in (6.5)

suggest that the system solution de�nes a perturbed analytic semigroup.

Proof. of Proposition 6.3. Consider the estimates (6.42), and let h(t) = t
1
2

+N
2

(
1
r
− 1
p

)
‖∇ψ(t)‖p,

Then we obtain that

3∑
j=2

∫ t

0
‖e∆(t−s)∇

(
u(−1)jχj∇ψj

)
‖pds

≤ M

3∑
j=2

χj

∫ t

0
(t− s)−( 1

2
+ N

2Θ) ‖u(s)‖Θ‖∇ψj‖pds
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≤ M
3∑
j=2

χj

∫ t

0
(t− s)−( 1

2
+ N

2Θ) h(s)s
−
(

1
2

+N
2

(
1
r
− 1
p

))
‖u(s)‖Θds (6.50)

≤ t
−N

2

(
1
Θ

+ 1
r
− 1
p

)
M

3∑
j=2

χj sup
s∈(0,t]

h(s)

(∫ 1

0

1

(1− ρ)
1
2(1+N

Θ )ρ
1
r
− 1
p

ρ

)
‖u‖σ,Θ,

after a change of variable s = ρt. As this imply

‖u(t)‖p ≤ Mt−
N
2Θ ‖u0‖q +

+ t
−N

2

(
1
Θ

+ 1
r
− 1
p

)
M

3∑
j=2

χj sup
s∈(0,t]

h(s)

(∫ 1

0

1

(1− ρ)
1
2(1+N

Θ )ρ
1
r
− 1
p

dρ

)
‖u‖σ,Θ,

we get lim sup
t↗+∞

‖u(t)‖p = 0, yielding, as well from (6.42), the second conclusion. Next, from

(6.43), since

t
N
Θ ‖u‖p ≤M‖u0‖q +Kχj t

1
σ′−

1
2 t

N
Θ ‖u‖p,

we get that, if 0 < t ≤ K
− 1
σ′+

1
2

χj = τ0, then the semigroup estimates (6.34) hold, while for

t ≥ τ0 we decompose t = nτ0 + s for some 0 ≤ s < τ0 iterating n times (6.34) with q = p,

we get

‖u(t)‖p ≤ M0e
ωs‖u(nτ0)‖p

≤ M0e
ωs(M0e

ωτ0)n−1‖u(τ0)‖p ≤ (M0e
ωτ0)n‖u(τ0)‖p,

for some M0 = M + 1, ω ∈ R. Therefore,

‖u(t)‖p ≤ (Meωτ0)n+1 τ
−N

2

(
1
q
− 1
p

)
0 ‖u0‖q ≤M1e

ω̄tt
−N

2

(
1
q
− 1
p

)
‖u0‖q, 0 < t ≤ T ∗.

Consequently, the result holds for all t ∈ (0,∞) and the system of equations solution

generates a perturbed analytic semigroup, see [7, 66] for the transfer of analyticity. Lastly,

since u, ψ ⊥ 1 in Lp(Ω) dual spaces product, (6.21) implies that (6.28) holds. The proof of

the proposition is complete.

We now proceed to the next section of the chapter.
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6.4 Well -posedness in Eα
p spaces.

In this section, we study the existence and uniqueness of solutions to the system of equations

(6.1)-(6.4) as given with initial data in scales of Bessel potential spaces. Thanks, to Lemma

6.1 and Theorem 6.2, we establish using (6.32) that the space nesting relation (6.23) holds.

In particular, (6.16) �rst condition must hold by interpolation, with together that

Eαp 7−→ Eβq′ −→ (6.32)

(p ≥ q)← ↓
(6.32)

↗ ↓ → (p ≤ q′)
Eαq 7−→ Eβp −→ (6.32)

, and

Eαq 7−→ Eβq′ −→ (6.32)

(q′ ≥ q)← ↑
(6.32)

↘ ↑ → (q′ ≤ p)
Eαq′ 7−→ Eβp −→ (6.32)

,

Eαq′
−→←− Eαp 7−→ Eαq 7−→ Eβp′ 7−→ Eβq′

−→←− Eβp

are valid space nesting relations between the scale spaces.

Proof. of Lemma 6.4. The proof follows by space embeddings (3.5) and Hölder's inequality.

In fact, the mapping

(u, ψ, ϕ) ∈ Eαq × Eβp × Eαq′

; = Eαq × Eαq′ 3 (uχ∇ψ,ϕ) 7−→ b(u, ψ, ϕ) := χ

∫
Ω
u∇ψ∇ϕ ∈ R (6.51)

is well de�ned and continuous, since ∇ψ ∈ Eβ−
1
2

p ⊂ E0
p if β ≥ 1

2 . Thus, u∇ψ ∈ E0
q , using

(3.5) of Eαq provided that p ≥ N
2α , as one needs that

1
q −

2α
N + 1

p ≤
1
q .

Furthermore, relaxing the embedding into space for E
β− 1

2
p , yields 1

q−
2α
N + 1

p−
2β
N + 1

N ≤
1
q ,

concluding as long as the �rst condition in (6.25) is veri�ed. Thanks again to (3.5) and
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Hölder's inequality we have that

1 ≥ N − 2αq

qN
+
N − 2(β − 1

2)p

pN
+
N − 2(α− 1

2)q′

q′N
,

resulting in the second hypothesis of (6.25), satis�ed. Consequently, Hölder's inequality

imply that

|
∫

Ω
χu∇ψ∇ϕ| ≤ ‖uχ∇ψ‖Θ‖∇ϕ‖Θ′

≤ χ

(
2

Neπ

)α− 1
4

‖u∇ψ‖α,q‖∇ϕ‖α− 1
2
,q′

≤ χ

(
2

Neπ

)α
2

+β
2
− 1

2

‖u‖Θ0‖∇ψ‖β− 1
2
,p‖∇ϕ‖α− 1

2
,q′

≤ χ

(
2

Neπ

)α+β
2
− 1

2

‖u‖α,q‖ψ‖β,p‖ϕ‖α,q′ , (6.52)

using (3.5) and (3.6), taking 1
Θ = 1

Θ0
+ 1

Θ1
, giving together by linearity that the mapping is

Lipschitz continuous. The proof of the lemma is complete.

Remark 6.2. A worthwhile comment is to note in the yielding condition in (6.25) that:

• The spaces embedding E
β− 1

2
p ⊂ L∞(Ω) holds. This is because α > 0 imply β− 1

2 >
N
2p

and (3.5) yields the conclusion. But as α ≥ β similarly β > 0 imply Eα−
1
2 ⊂ L∞(Ω).

• The yielding condition in (6.25) is a particular case of the following

1

2
+
N

2

(
1

q
+

1

p
− 1

ρ

)
≤ α+ β and 1 +

N

2

(
1

q
+

1

p
− 1

ρ

)
≤ 2α+ β, (6.53)

implying PΩ : Eαρ 7−→ E−βρ′ , PΩ ∈ Llip(Eαρ , E
β
ρ′), and (6.25) is obtained when ρ = q.

• Since 1
2 ≤ α, β ≤ 1, the condition (6.53) yields Young's equality for convolutions, and

ρ ≥ q, p. Moreover, the inclusions (3.5) are veri�ed with ρ = Θ.

The objective of this section is to prove Theorem 6.5.
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Proof. of Theorem 6.5. We will prove the theorem in stages. The �rst part will consist in

proving that the solution to the system of equations (6.1)-(6.4) is of class

U ∈ C(I;Eαq ) ∩ C(İ;Eα+1
q ) ∩ C1(İ;E−βp′ )×

× C(I;Eβr ) ∩ C(İ;Eβp ) ∩ C(İ;Eβ+1
r ) ∩ C1(İ;Eβr )×

× C(I;Eβr ) ∩ C(İ;Eβp ) ∩ C(İ;Eβ+1
r ) ∩ C1(İ;Eβr ). (6.54)

In this direction, we have that the next proposition is valid.

Proposition 6.9. Assume in (6.1)-(6.4),that Lemma 6.4 holds, and let u ∈ Lσ(·I;Eαq ) for

σ, α, q such that

α+
N

2q
≤ β +

N

2r
+

1

σ′
, (6.55)

is true. Then,

(i) ψ ∈ C(I;Eβr ) ∩ L∞
N
2

(
1
p
− 1
r

)(İ;Eβp ) ∩ Lσ(0,∞;Eγr ) for any γ ∈ [β, β + 1).

(ii) The mapping

Lσ(İ;Eαq )× Eαq 3 (u, u0) 7−→ F(u, u0) ∈ L∞
N
2

(
1
q
− 1
p

)(İ;Eαp )) (6.56)

is linear Lipschitz and Hölder continuous. Moreover, F(u, u0)(t)↘ u0 in E
α
p as t↘ 0.

Proof. of Proposition 6.9-(i). Consider the second integral formula given in (6.13) and let

S(t)ψ0 = e(∆−λ)tψ0, G(u)(t) = a

∫ t

0
e(∆−λ)(t−s)u(s)ds.

Thanks to the semigroup estimates (6.34), S(t) ∈ L(İ;L(Eβr , E
β
r )) is well de�ned, while

concurrently

G(u)(t) ∈ L(İ;L(Lσ(İ;Eαq );Eβr ))

is of continuity boundedness from above M1−σ′t
ϑ where

M1−σ′ = aM

(
1− σ′

(
α− β +

N

2
(
1

q
− 1

r
)

))− 1
σ′

ϑ =
1

σ′
−
(
α− β +

N

2

(
1

q
− 1

r

))
≥ 0 by hypothesis (6.55).
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On the other hand, we have that

‖ψ(t+ h)− ψ(t)‖β,r ≤ ‖
(
e(∆−λ)h − I

)
ψ(t)‖β,r + aM‖u‖σ,α,q ×

×
(∫ t+h

t
(t+ h− s)−σ

′
(
α−β+N

2
( 1
q
− 1
r

)
)
ds

) 1
σ′

≤ ‖
(
e(∆−λ)h − I

)
ψ(t)‖β,r + aM‖u‖σ,α,qhϑ → 0,

as h→ 0. In other words, the mapping

Eβr × Lσ(İ;Eαq ) 3 (ψ0, u)→ ψ ∈ C(İ;Eβr )

is proper linearly de�ned and continuous.

Similarly, S(t) ∈ L(İ;L(Eβr , E
β
p )) is of continuity boundedness from aboveMt

−N
2

(
1
p
− 1
r

)
,

whereas G(u)(t) ∈ L(I;L(Lσ(İ;Eαq ), Eβp )) is of a bound from aboveM1−σ′t
1
σ′−

(
α−β+N

2
( 1
q
− 1
p

)
)
,

where

M1−σ′ = aM

(
1− σ′

(
α− β +

N

2
(
1

q
− 1

p
)

))− 1
σ′

,

1

σ′
−
(
α− β +

N

2

(
1

q
− 1

p

))
> 0 by hypothesis (6.55).

Thus,

t
N
2

(
1
p
− 1
r

)
‖ψ(t)‖β,p ≤M‖ψ0‖β,r +M1−σ′t

1
σ′−

(
α−β−N

2
( 1
r
− 1
q

)
)
‖u‖σ,α,q

holds, i.e. the mapping Eβr × Lσ(İ;Eαq ) 3 (ψ0, u) → ψ(t) ∈ L∞
N
2

(
1
p
− 1
r

)(İ;Eβp ) is linear and

continuous.

Since (6.34) holds for any γ, β ∈ R satisfying β ≤ γ < β + 1, from (6.34) we have,

cβ,γ(t) := ‖S(t)‖L(Eβq ,E
γ
r )
≤ M

t
γ−β+N

2

(
1
r
− 1
q

) ∈ L1(0,∞),

but unbounded at zero, unless γ = β, q = r. Thus we need to prove that if u ∈ L1(0,∞;Eβq ),
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then Gu(t) ∈ L1(0,∞;Eγr ). To this end, set s = tρ, ρ ∈ [0, 1], to get that

‖Gu(t)‖1,γ,r ≤ a

∫ 1

0
‖e(∆−λ)(1−ρ)tu(tρ)t‖1,γ,rdρ.

≤ a

∫ 1

0

∫ ∞
0

τ

ρ2
cβ,γ

(
τ

(
1− ρ
ρ

))
‖u(τ)‖β,qdτdρ (on setting τ = tρ)

≤ a

(∫ ∞
0

cβ,γ(s)ds

)(∫ ∞
0
‖u(τ)‖β,qdτ

)
(on seting s = τ (1−ρ)

ρ ).

As a result we obtain that

‖ψ(t)‖1,γ,r ≤ ‖cγ,γ(t)‖1‖ψ0‖γ + ‖cβ,γ(s)‖1‖u‖1,β,q,

where ‖cβ,γ(s)‖1 = ‖cβ,γ(s)‖L1(0,∞). The case σ =∞, follows exactly as in the �rst lines of

this proof. Thus, it holds that

‖ψ(t)‖∞,γ,r ≤ ‖cγ,γ(t)‖∞‖ψ0‖γ,r + ‖cβ,γ(s)‖1‖u‖∞,β,q,

and by interpolation, we conclude the result for any 1 < σ < ∞. This completes the proof

of (i) in the proposition.

Proof. of Proposition 6.9-(ii). Taking the second integral formula of the solution in (6.13)

we �nd, using (6.34) and (6.26), that

‖F(u, u0)(t)‖α,p ≤ Mt
−N

2

(
1
q
− 1
p

)
‖u0‖α,q +M‖PΩ‖L(Eαq ,E

−β
p′ )

×

×
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖β− 1
2
,p

∫ t

0
(t− s)−

(
α+β+N

2

(
1− 2

p

))
‖u(s)‖α,qds

≤ Mt
−N

2

(
1
q
− 1
p

)
‖u0‖α,q +M

(
2

Neπ

)α+β
2
− 1

2
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖β− 1
2
,p

× t
1
σ′−

(
α+β+N

2

(
1− 2

p

))
‖u‖σ,α,q, (6.57)

where (6.25) imply 1
σ′ −

(
α+ β + N

2

(
1− 2

p

))
> 0. Note that the result remains true using

the semigroup estimates (6.34) directly to control the contribution of ∇ in P (u)ψ ∈ Eβp′
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with obvious modi�cations. Consequently, the desired conclusion follows from the fact that

t
N
2

(
1
q
− 1
p

)
‖F(u, u0)‖α,p ≤ M‖u0‖α,q +M

(
2

Neπ

)α+β
2
− 1

2

×

×
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖β− 1
2
,pt
γ(p.q)‖u‖σ,α,q, (6.58)

where γ(p, q) = 1
σ′ + N

2

(
1
p + 1

q

)
≥ α+ β + N

2 .

To prove the Hölder continuity, let us �x h > 0 small such that 0 < t < t+ h ≤ T , then

compute

F(u)(t+ h)−F(u)(t) =
(
e∆h − I

)
e∆tu0 +

∫ t

0
(e∆h − I)e∆(t−s)P (u)ψ(s)ds

+

∫ t+h

t
e∆(t+h−s)P (u)ψ(s)ds. (6.59)

Thus, using (6.36), if we let

δ =
N

2

(
1

q
− 1

p

)
, γ(p) =

(
α+ β +

N

2

(
1− 2

p

))
,

then we obtain that

‖F(u)(t+ h)−F(u)(t)‖α,p ≤ ‖
(
e∆h − I

)
e∆tu0‖α,p +

+

∫ t

0
‖(e∆h − I)e∆(t−s)P (u)ψ(s)‖α,pds+

∫ t+h

t
‖e∆(t+h−s)P (u)ψ(s)‖α,pds

≤ C1−δ(Mδ)h
δ

(
‖e∆tu0‖α,q +

∫ t

0
‖e∆(t−s)P (u)ψ(s)‖α,pds

)
+

+ M

∫ t+h

t
(t+ h− s)−γ(p)‖P (u)ψ(s)|−β,p′ds

≤ C1−δ(Mδ)h
δ

‖u0‖α,q +M

(
2

Neπ

)α+β
2
− 1

2
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖β− 1
2
,p ×

×
∫ t

0
(t− s)−γ(p)‖u(s)‖α,qds

)
+M

(
2

Neπ

)α+β
2
− 1

2
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖β− 1
2
,p ×

×
∫ t+h

t
(t+ h− s)−γ(p)‖u(s)‖α,qds
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≤ C1−δ(Mδ)h
δ

‖u0‖α,q +M1−σ′

(
2

Neπ

)α+β
2
− 1

2
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖β− 1
2
,p×

× t
1
σ′−γ(p)‖u‖σ,α,q

)
+

+ M1−σ′

(
2

Neπ

)α+β
2
− 1

2
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖β− 1
2
,ph

1
σ′−γ(p)‖u‖σ,α,q

≤ CC1−δ(Mδ)
(
‖u0‖α,q + (t

1
σ′−γ(p) + 1)‖u‖σ,α,q

)
hℵ, (6.60)

where

ℵ = min

{
N

2

(
1

q
− 1

p

)
,

1

σ′
−
(
α+ β +

N

2

(
1− 2

p

))}
,

C = max

1,M1−σ′

(
2

Neπ

)α+β
2
− 1

2
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖β− 1
2
,p


and we have used, as assumed in the �rst lines, that h > 0 is small.

Lastly, in (6.59) taking t = 0 then h = t and proceeding as in arguments above leading

to (6.60), we obtain the convergence at t↘ 0+ in (ii) of the proposition.

To complete the proof of the Theorem 6.5-(ii), we need the following lemma.

Lemma 6.10. Consider the subset

W :=

{
ξ ∈ C(I;Eαq ); sup

t∈(0,T )
‖ξ(t)‖α,q ≤ C‖ξ0‖γ,q

}
,

for any γ ∈ [β, α) and the u− integral equation in (6.13). Then,

(i) FW ⊂W , i.e. it maps W to itself.

(ii) The mapping F : Eγq → Eαq is a contraction mapping.

(iii) There exists a unique u ∈W such that u = F(u) is a solution to (6.5) up to a maximal

time T ∗(‖u0‖γ) of existence of solutions of (6.1)-(6.4).
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Proof. Thanks to (6.23) - (6.24), we can read the right hand side sum of (6.13) in taking the

norm of Eαq = Eγq × Eα−γq as in the scale spaces product, whereas by virtue of the Lemma

6.4, we get that uχ∇ψ is well de�ned in E0
q
∼= Lq(Ω). Therefore, if u ∈ W one obtains the

following

‖F(u)(t)‖α ≤M‖u0‖γ +M

3∑
j=2

∫ t

0
(t− s)−

1
2
−(α−γ)‖uχj∇ψj‖qds

≤M‖u0‖γ +M

(
2

Neπ

)α+ γ
2
− 1

2
3∑
j=2

χj

∫ t

0
(t− s)−

1
2
−(α−γ)‖u‖α‖∇ψj‖γ− 1

2
ds

≤M‖u0‖γ +MC

(
2

Neπ

)α+ γ
2
− 1

2
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖γ− 1
2
‖u0‖γ ×

×
∫ t

0
(t− s)−

1
2
−(α−γ)ds

≤M‖u0‖γ +MC

(
2

Neπ

)α+ γ
2
− 1

2
3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖γ− 1
2
‖u0‖γT

1
2
−(α−γ).

Thus, for

T =

( 1

M
− 1

C

)
1∑3

j=2 χj supt∈(0,T ) ‖∇ψj‖γ− 1
2

(
2

Neπ

) 1−2α−γ
2

 2
1−2(α−γ)

,

we get (i) of the lemma is satis�ed.

To prove (ii) of the lemma, we evaluate F at u1, u2 ∈ W using the same initial data to

conclude that

‖F(u1)(t)−F(u2)(t)‖α ≤
3∑
j=2

∫ t

0
‖∇e∆(t−s)((u1 − u2)χj∇ψj)(s)‖αds

≤ M
3∑
j=2

∫ t

0
(t− s)−

1
2
−(α−γ)‖(u1 − u2)χj∇ψj‖γds

≤ M

(
2

Neπ

)α+ γ
2
− 1

2
3∑
j=2

χj

∫ t

0
(t− s)−

1
2
−(α−γ)‖u1 − u2‖α‖∇ψj‖γ− 1

2

≤ M

(
2

Neπ

)α+ γ
2
− 1

2

T
1
2
−(α−γ)

3∑
j=2

χj sup
t∈(0,T )

‖∇ψj‖γ− 1
2

sup
t∈(0,T )

‖u1 − u2‖α.
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This proves that (ii) of the lemma is valid on taking

T <

 1

M
∑3

j=2 χj supt∈(0,T ) ‖∇ψj‖γ− 1
2

(
2

Neπ

) 1−2α−γ
2

 2
1−2(α−γ)

.

Hence viewed concurrently with (i) of the same lemma, we obtain (iii) using Banach

contraction mapping theorem and Picard's method, or classical continuation method to

allow for the extension of the existence time to maximal time T ∗ = T (‖u0‖γ) of existence

of the equations.

To complete the proof of the �rst part of (i) of the theorem, we note that the Hölder

continuity of u in view of the complete system of equations, since the restriction f(t) =

P (u)ψ(t) ∈ Eβp′ is locally Hölder continuous, we get using Lemma 3.2.1 in [30] that solutions

to the system of equations are C1 strong solutions and the regularity properties in (6.54)

are veri�ed.

As for the second part (i) of the Theorem 6.5 we proceed to prove that the coupled

system elliptic equations

Ap(φ)η =


−∆u+∇ · (φχ2∇v)−∇ · (φχ3∇w)

−∆v + λ2v − a2u

−∆w + λ3w − a3u

 , (6.61)

where ∇· = Div, with φ ∈ Eαq possibly �xed, de�ne a perturbed analytic semigroup. To this

end, let η = (u, v, w)>, z = (ϕ1, ϕ2, ϕ3)>, then de�ne

b : Zα+β × Zα+β → R, Zα+β := Eαq × Eβr × Eβr , α+ β ≥ 1

2
+
N

2r
(6.62)
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by

b(φ; η, z) := 〈A(φ)η, z〉

=

∫
Ω
∇u∇ϕ1 +

∫
Ω
∇v∇ϕ2 +

∫
Ω
∇w∇ϕ3

− χ2

∫
Ω
φ∇v∇ϕ1 + χ3

∫
Ω
φ∇w∇ϕ1 +

+ λ2

∫
Ω
vϕ2 − a2

∫
Ω
uϕ2 + λ3

∫
Ω
wϕ3 − a3

∫
Ω
uϕ3. (6.63)

Note that continuity of the bilinear form (6.63) follows easily using Hölder's inequality, space

embeddings (3.5) with (3.6) as the best constant, and the fact that ‖z‖α+β > ‖ϕj‖α, ‖ϕj‖β ,

α ≥ β. Thus, to apply Browder-Minty Theorem, it only remains to prove that (6.63) is

coercive, since from this the strictly monotonicity of the operator

Ap(φ) = Ap − P (φ)

=


−∆ ∇ · (φχ2∇ ) −∇ · (φχ3∇ )

−a2 −∆ + λ2 0

−a3 0 −∆ + λ3


: Z

α+β− 1
2

q,r = Eαq × E
β− 1

2
r × Eβ−

1
2

r → Z
−α−β+ 1

2
q′,r; (6.64)

follows easily, and thus is invertible. To the cited task, we note that thanks to (6.24)-(6.26)

and Young's inequality, we have that the integrals in (6.63) involving chemo-attraction-

repulsion coe�cients are well-controlled from below. In addition,∫
Ω
uv ≤ ‖u‖Θ1‖v‖Θ2 ≤

(
2

Neπ

)α+β− 1
2

‖∇u‖α− 1
2
‖∇w‖β− 1

2

≤
(

2

Neπ

)α+β− 1
2
(

1

q
‖∇u‖q

α− 1
2

+
1

r
‖∇v‖r

β− 1
2

)
,

using Hölder and Young's inequalities, together with the �rst hypothesis in (6.27) yields
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that

b(φ; η, η) ≥ ‖∇u‖q
α− 1

2

+ ‖∇v‖r
β− 1

2

+ ‖∇w‖r
β− 1

2

−
(

2

Neπ

)α+β− 1
2

3∑
j=2

(
χj +

aj
q

)
‖∇u‖q

α− 1
2

−
(

2

Neπ

)α+β− 1
2

3∑
j=2

(
χj +

aj
r

)
‖∇ψj‖rβ− 1

2

(6.65)

≥ ω‖∇η‖2ρ
γ− 1

2

,

where γ = α, β and ρ = q, r depending on the variable. Consequently, Browder -Minty

theorem [8, 10] asserts that the operator (6.64) is invertible. Moreover, it is a sectorial

operator in E0
q × E0

r × E0
r
∼= Lq(Ω)× Lr(Ω)× Lr(Ω), since it holds that

‖(Ap + µ)−αP (φ)‖q×r×r

= ‖(−∆ + µ)−αP (φ)‖q +

3∑
j=2

‖(−∆ + λj + µ)−βaj‖r

≤ C max

{
1

µα
,

1

µβ

} 3∑
j=2

(
χj

(
2

Neπ

)α+β
2
− 1

2

+ aj

)
,

for any 0 ≤ α < 1 satisfying the Lemma 6.4-(6.25), for some C ∈ R+ \ {0}, |π − argµ| ≥ ϑ,

ϑ < π
2 , using Corollary 1.4.5 in [30] or Theorem 7.1.3. This imply that (6.28) is valid, since

(6.64) is an in�nitesimal generator of analytic semigroup.

Alternatively, thanks to Proposition 6.9, ψ ∈ L∞
N
2

(
1
p
− 1
r

)(İ;Eβp ), u ∈ L∞
N
2

(
1
q
− 1
p

)(İ;Eαp ),

and using (6.8), we obtain that (6.28) is veri�ed, in the large time asymptotic dynamics of

the system equations (6.5).

To round o�, we observe that the proof of (ii) of the theorem is straight-forward from

the �rst assertion in Remark 6.2. In fact, since α − 1
2 > N

2q we have E
α− 1

2
q ⊂ L∞(Ω)

holds by virtue of (3.5), and (6.28) imply that ∇ψj ∈ L∞(Ω) is bounded for all t > 0.

As u ∈ E0
q
∼= Lq(Ω), q > N

2 and 1 ≥ α − 1
2 > N

2q , viewing the weak form (6.51) in Lq as

well as the equation in elliptic form by passing ut to the right hand side, using [67], we get
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u ∈ L∞(Ω) is bounded for all t > 0. The rest is trivial or immediate.

6.5 Blow-up dynamics

In this section, we give an overview analysis of the blow-up of solutions to the system

equations (6.1) at the borderline spaces Eαp , α = N
2p .

Theorem 6.11. The system of equations (6.5) admits (6.9) as a Lyapunov function. More-

over, if in (6.11) we assume that (6.12) is satis�ed such that

κ =
3∑
j=2

(−1)jχj ≥ κN,β ⇐⇒ (6.39), then ‖(u, v, w)>‖α+β =∞ (6.66)

for any t ∈ (0,∞), i.e. the system solution blows-up independent of time,

Proof. To show that (6.9) is a Lyapunov function, we write the v, w− equations as a single

equation in ψ. Then, taking the dual spaces product (6.29) with, as test function, η =

lnu− κψ ∈ Eαq′ in the u− equation and setting ψt ∈ Eβr′ , we obtain that,

dJ(t)

dt
=

∫
Ω
ut lnu+

∫
Ω
ut − κ

∫
Ω
utψ − κ

∫
Ω
ψtu +

+
κ

a

(∫
Ω
|∇ψ|r−2∇ψ∇ψt + λ

∫
Ω
|ψ|r−2ψψt

)
=

∫
Ω
ut(lnu− κψ)− κ

a

∫
Ω
|ψt|r

=

∫
Ω
∇ (∇u− κu∇ψ) (lnu− κψ)− κ

a

∫
Ω
|ψt|r (6.67)

= −
∫

Ω
(∇u− κu∇ψ)∇ (lnu− κψ)− κ

a

∫
Ω
|ψt|r

= −
∫

Ω
u|∇(lnu− κψ)|r − κ

a

∫
Ω
|ψt|r ≤ 0,

having used the dual space function representation in (6.29), and the fact that∫
Ω
ut = 0, ∇(lnu− κψ) = u

(
∇u
u
− κ∇ψ

)
,
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to yield the �rst assertion of the theorem. The results conclude that the Lyapunov function

(6.9) is decreasing along the trajectories of the orthogonal to constant solutions of the

equations in (6.5) as time increases to in�nity.

Now, to prove (6.66) of theorem, we note that (6.65) holds using the best constant of

the inclusion Eαp , α = N
2p in (3.6), while associated to (6.10), is the energy functional

E(ψ) =
1

r
‖∇ψ‖r

β− 1
2

+
λ

r
‖ψ‖rβ − µ ln

(∫
Ω
eκψ
)
≥ 0. (6.68)

Consequently, (6.65) yields

b(φ; η, η) ≥ ω‖∇u‖q
α− 1

2

+ µ ln

(∫
Ω
eκψ
)
,

using the second embedding condition in (3.6), and (6.38) implies the conclusion, on taking

η ∈ Zα+β as a test function in the complete system equations (6.5), then integrating in time

t ∈ (0, T ) using a reduction to absurd argument.

In fact supposing that the conclusion was false, it follows from

0 =
d

dt
‖U‖ρα+β,ρ + b(u; η, η)

≥ d

dt
‖U‖ρα+β,ρ + ω‖∇u‖q

α− 1
2

+ µ ln

(∫
Ω
eκψ
)

⇐⇒ ‖U0‖ρα+β,ρ ≥ ‖U‖
ρ
α+β,ρ + µ

∫ t

0
ln

(∫
Ω
eκψ(s)

)
ds

≥ µ

∫ t

0
ln

(∫
Ω
eκψ(s)

)
ds =∞,

that the contrary to the premises is true, since the norm ‖U0‖ρα+β,ρ = ‖u0‖qα,q + ‖v0‖rβ,r +

‖w0‖rβ,r is �nite. This therefore, imply that the last assertion of the theorem is valid. For an

alternative, much �ner approach, see [26, 36], which can easily be adapted to our situation

from their results in the case of Zα+β, α = β = 1
2 , q = r = 2, the Lyapunov function (6.9)

and using the De�nition 6.1.



Conclusion

In conclusion of this thesis, we remark that the importance of the results of this thesis is

in the role played by the best constant of the scale spaces into the LΘ−spaces. This has

yielded in the the studies of the well-posedness of the system of equation neither the need of

the initial data to the system of equation, nor time for a contraction mapping in application

of Banach �xed point theorem to be small respectively. We, however, point out that, much

more still need to be done in relation to the complete analysis of the semilinear eigenvalue

problem (6.10) at the borderline space Eβr i.e. 2β = N
r , in context of establishing the

Palais-Smale condition in view of the Trudinger-Moser inequality, and Pohozaev's identity

for nonexistence of solutions. It is the hope of the author that this task should complete

elegantly the treatment of the blow-up analysis concerned with the system equations (6.5)

in the general function spaces setting insofar provided for studying of the ARKS equations

in (6.1).
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