4

A
AR

y
7.6

%
NIy

UNIVERSITY OF
KWAZULU-NATAL

ASYMPTOTIC AND BLOW-UP DYNAMICS OF
KELLER-SEGEL CHEMOTAXIS EQUATIONS IN SCALE
OF BANACH SPACES

By
David Shituula Ila-kutse Iiyambo

Submitted in fulfilment of the academic
requirements for the degree of

Doctor of Philosophy

in the School of

Mathematics, Statistics and Computer Science
University of KwaZulu-Natal

Durban

December 2015

As the candidate’s supervisor, I have/have not approved this thesis for submission.

Signed: ......... Name: Robert Willie (D. Sc. Maths. UCM-Spain) Date: .........



Abstract

In this Thesis, we study the asymptotic and blow-up dynamics of Keller-Segel (KS) chemo-
taxis equations in Lebesgue-Bochner spaces of underlying Banach spaces of either type LP(£2)
or Bessel potential spaces (I — A)"2LP(Q) = H*P(2). The model equations involve the
attraction or minimal, and the attraction-repulsion Keller-Segel (ARKS) chemotaxis equa-
tions. The treatment yielded begins with a review of the semigroup action in Bessel potential
spaces, and interpolation theory for their construction. In studying the well-posedness of
the equations we establish a natural condition between the initial data spaces and spaces
for the inhomogeneous terms of the equations, with which we prove the well-posedness of
the dynamical system for an extended analytic semigroup in Banach spaces. The best con-
stants of the function spaces embedding into L”-spaces yield, for either Banach fixed point
theorem, or global existence of solutions, no need for neither the time for a contraction
mapping, nor initial data of the equations to be relatively small respectively. The global
asymptotic dynamics of the system equations in time is captured in the limit set M x {0},
where M = |[Q|L(Q) is of the spatial average solutions, and the approach to null states of
the orthogonal to constant solutions is due to an a priori decay to zero of the drift chemical
cues from that of the cells density. At several points in the work we have proved the existence
of a priori uniform boundedness of the solutions to the equations in time and space, yielding
via bootstrap arguments that the solutions are classical solutions. In blow-up dynamics, we
obtain non-existence of solutions at the borderline space, independent of time, when the
chemical coefficient or difference is above the Moser-Trudinger threshold value.

The contributions of the work, besides being at the interface of mathematical analysis
and medical biology, lies in the fact that its mathematical analysis takes the most often used

function spaces platform for the treatment of the equations a step further in frontier to the
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customary. In this regard, some known results are obtained without strong restrictions on
the initial data spaces. The generation of an extended analytic semigroup by the system
equations imply other non-linear terms of bio-physical relevance can be taken into account in
modelling diversified complex phenomena that might be possibly more precise to describing
the pathological situations arising in nature to the system of model equations. In blow-up
dynamics of the equations our analysis does not limit the scientist concerned to the case of
two dimensions corresponding to the particular case of the Hilbert space setting H'. The
non-local elliptic equation reduction of the system equations still call for important other
analysis to the topic in the general function space setting that insofar has been introduced,
for instance the establishment of Palais-Smale condition, and Pohozaev inequality for non-
existence of solutions at the borderline of the function spaces H2*P(). This last point we

have resolved in the case of Hilbert spaces.
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Introduction

0.1 Origin and Importance of the model in Biological Sciences
and Mathematics

Chemotaxis is a process characterised by the directed movement or orientation of organisms

or cells, in response to the concentration gradient of an external chemical signal. The

chemical signals can come from external sources, or they can be secreted by the organisms

themselves. The situation where the chemical is produced by the organisms themselves leads

to aggregation of organisms and to the formation of patterns.

In 1970, E.F. Keller and L.A. Segel |[41| proposed a mathematical model describing this
chemotactic aggregation of cellular slime molds Dictyostelium discoideum which move (in
a domain Q) preferentially towards relatively high concentrations of a chemical substance
cAMP (cyclic adenosine monophosphate), produced by the amoebae themselves. Their
derivation of the system of equation was, briefly, as follows. Let u(z,t) denote the density
of amoebae, v(x,t) := 1)y denote the concentration of the chemical attractant. Then the

four basic assumptions which underlie the derivations are (see |35, 41]):
1. The chemical attractant is produced per amoeba at a rate of f(v).

2. There exists an extracellular enzyme that degrades the chemical attractant. The



concentration of the enzyme at time ¢ in point z is denoted by w(x,t) := 3. This

enzyme is produced by the amoebae at a rate g(v,w) per amoebae.

3. The chemical attractant and the enzyme react to form a complex of concentration

z(x,t) := 1y, which dissociates into a free enzyme plus the degraded product.
4. v, w and z obey Fick’s Law when diffusing.

It then follows from the balance of the cell density in open bounded domain Q C RY,

with smooth boundary 00, during aggregation that

4 u(x, t) dx:/Q(”)(x,t) de — [ JW(x,t) - fido, (0.1)
dt Jo Q 09

where Q™) (x,t) represents the mass of amoeba created/dying per unit volume per unit
time, while J®) (z,t) = uxsVw — ux2 Vo — Vu is the flux of amoeba mass. Note that the
composition of J®(z, ) follows from using Fick’s Law and Fourier’s Law for the heat flow,
and we have also taken a linear sensitivity function x(s,t) = x. If we neglect reproduction
and death of the amoebae, then Q) (z,t) = 0. Since the chemical attractant v, the enzyme

w, and the complex z diffuse, we get that

d
dt/g@/}(t,x) dr = /QQ(zp)(x,t) dx — /{m J(w)(x,t) nido, (0.2)

where J(¥) = —V4) is the flux of either v, w or z, and Q) (x,t) is the chemical attractant

or the enzyme or the complex produced per unit volume per unit time. One then uses the



divergence theorem on (0.1) and (0.2) to obtain the following system of equations

up = Au— 33, Div (u(—=1)"xiV1p;) in Q% (0,T),
vy = Av — Agvw + baz + uf(v) in Q x (0,7),
wy = Aw — Agvw + bz + ug(v,w)  in Q x (0,7),
0.3
2zt = Az + dvw — (bg + b3)z in Q x (0,7), (0:3)
%—awi—o on 90 x (0,T)
on  on ’
U(.’L‘,O) = U()(l’), 1/’1(3%0) - ¢i0($), in Q7

where Ao, bo, b3 are constants representing the reaction rates mentioned in assumption 3
above.

For the minimal Keller-Segel model [32], one may assume that the concentration of
the enzyme is constant, that the complex is in a steady state with regard to the chemical
reaction, and that the rate of production of the chemical attractant is constant. The model

(0.3) then reduces to

up = Au — Div (uxVv) in Q x (0,7),

vy =Av — v+ au in 2 x (0,7), (0.9
ou Ov 0.4
%_%_0 on 99 x (0,7)

u(x70) = u0($)> ’U(J},O) = Uo(l'), in §,

in which

X := chemotactic coefficient towards attractant,
A = rate of decay of the chemical attractant,
a := rate of production of the chemical attractant.

For notational simplicity, we will often write

P(u)v := —Div(uxVv)

0.5
= =V (uxVv). (05)



Note that (0.5) can be viewed in the sense of distributions as the weak form

Po(u)v = (P(u)v, ¢)qg q = AuxVquo dx (0.6)

in adequate function spaces. Similar assumptions can be made to obtain the attraction-
repulsion Keller-Segel model from (0.3). For more information regarding the derivation and
various variations of the Keller-Segel model, please consult [32, 35, 41, 42] among others,
where particularly in [32], Hillen, T. and Painter, K., have given an encyclopaedic user’s
guide to infinite dimensional models of these equations.

In addition to the aggregation of cellular slime molds, chemotaxis is believed to underlie
many social activities of micro-organisms. When there is an infection in the human body,
white blood cells are known to move to the source of inflammation, the region where the
concentration of bacteria is high [62].

The equations can assume very general formulations. For instance, multiple species
competing for resources. Among these are attraction-repulsion equations, which for example,
model the aggregation of cells called microglia, involved in the inflammation associated with
pathology in Alzheimer’s disease [50, 87].

In the system of equations (0.4), the u—flux moves in the direction of the concentration
gradient of the chemical concentration v. Thus, as another example, chemotaxis can be
regarded as a sort of negative drift, an example of which is appearing in reaction-diffusion

equations of electrically charged species in semiconductors [62]. The simplified form of this



process is
ar =v1Aa—V-(aVp)+ f
by = 1AL —V - (V) + g
—V(eVy) =b—a,

where a and b are the densities of electrons and holes respectively, and ¢ is the electrostatic
potential. The v; are positive diffusion coefficients, and f and g are reaction terms depending
of the carrier densities.

As mentioned earlier, the model (0.4) is made up of a set of coupled parabolic partial
differential equations, where the first equation features a divergence-0 operator acting on a
vector field uxVwv of concentration of chemicals. The mathematical difficulty in handling
the system (0.4) stems from the fact that the chemotactic term and the production term in
the second equation carry opposite signs, and this brings in the possibility of the solution
blowing-up in finite time.

The system of equations (0.4) has been studied before by many authors in this direc-
tion.! In their pioneering work of 1998, Gajewski, H. and Zacharias, K. [26] studied the
global behaviour of the solutions of a reaction-diffusion system (0.4) (where the chemotactic
coefficient was not necessarily equal to one) for two-dimensional bounded piecewise smooth
domains in the plane, using Lyapunov functionals.? They found, for the first time, a Lya-
punov functional for the system (0.4), and they proved local existence and uniqueness of

solutions. They proved that the solutions of a transformed version of (0.4) asymptotically

See [22, 26, 33, 37, 38, 50, 53, 54, 58, 62, 76, 83, 87, 88, 89, 90, 92] among others.
?Lyapunov functionals are functionals that decrease along solutions as time increases.



approximate non-trivial solutions of the problem

—doAv+ A =v(u—1) inQ

g = on 0
|€2]e”
fQ evdQ)’

U=
where dy = 1, 7 = aug with 4o the spatial mean of the initial value wuy.

Then a year later, Post [62] built on the work in [26] by studying the system (0.4), where
the chemotactic coefficient and a in the production term for v were functions of v. That is,

she considered the system

ur = Au— xV - (uVS(v)) in Q x (0,7),

vy = daAv — v + auS’ (v) in Q x (0,7), 07)
ou  Ov 0.7
Prin i 0 on 0N =T

u(2,0) = up(x),  v(x,0) = vo(x),

The function S is referred to as the sensitivity function. The introduction of the sensitivity
function is important because it gives a more realistic model of chemotaxis. It incorporates
into the model the ability of the amoebae u to sense the v—chemical concentration. In
this setting, she proved existence of global solutions of system (0.7) on a two-dimensional
Lipschitz domain for different natural classes of sensitivity functions. This result was most
significant because it enabled her to prove convergence of the trajectories of solutions to
trivial and non-trivial steady state, under differing conditions on the data of the system.
Uniqueness and further regularity of the solutions was shown under the assumption that
S € C*(R,R) and |S”(v)| < C for all v > 0, where C > 0 is a constant. She also gave
results, for the first time, for the fully non-stationary chemotaxis system (with or without
sensitivity functions) on higher dimensional domains.

Liu, J. and Wang, Z. A., [49] have established the existence of global classical solutions



and non-trivial steady states of the one-dimensional attraction-repulsion system of equa-
tions. Extending the work of Zhang, Q., and Li, Y., in [93], one can easily obtain the
two-dimensional case. Kozono, H., et al proved in [43]| the existence and uniqueness of so-
lutions to the system (0.4) in RY, N > 3, in the scaling invariant space. More recently, in
[87], Willie, R., and Wacher, A., have proven in scales of Hilbert spaces the well-posedness
of the system of equations for a perturbed analytic semigroup, which decays exponentially
in the large time asymptotic dynamics of the problem to a subset in R? of the spatial aver-
age solutions. They also provided uniform bounds in © x (0,7) of the solution, and via a
bootstrap argument, they argued that the solutions are in fact classical solutions.

On blow-up solutions of these equations, the ground-breaking work was done in 1973 by

Nanjundiah [56], as cited in |37, 33| among others, where he suggested that

“the end-point (in time) of aggregation is such that the cells are distributed in

form of d—function concentration."

After that, in their 1981 work [15], Childress and Percus came up with the following state-

ments for space dimension N = 2:

e The density u(x,t) cannot form a §—function singularity, if the total density on Q C R?

is less than some critical number dg.

e The density u(z,t) can form a J—function singularity, if the total density on 2 is

greater than some critical number Dg.

It was then believed that for the above statements, dg = Dgq. It was also observed that



the density u(x,t) (and hence the chemical concentration v(x,t)) might blow-up if the total
density on §2 exceeds the critical number Dq.

While studying the following modified Keller-Segel model, where the second equation
was replaced by a stationary equation,

u = Au—xV(uVo)
0 = doAv— \v+ au,

(0.8)
with homogeneous Neumann conditions and u(z,0) = ug, Jiger and Luckhaus [39] proved
in 1992 the existence of global radial solutions when the initial values have small mass, and
they showed that the radial solutions of (0.8) blow-up at the origin in a finite time3 T
Following [39], in 1995, Nagai [55] studied the system (0.8), and showed that in one
dimension (N = 1), the solution does not blow-up, but it blows-up when the dimension is
greater than or equal to three (N > 3). This suggests that N = 2 is the borderline case. It

was also shown there that if N = 2, the domain 2 is a ball, ug(z) is radially symmetric and

1 / 8
— | wp(z) de < ——,
9] Jo 0= o

then there is no blow-up for (0.8). But under some conditions, if ug(x) is radially symmetric

and

1 8
— | wug(z) doe > ——,
ap ) > e

then blow-up does occur.
In 1996, Herrero and Velazquez [31], for the first time, studied the system (0.4) with
an instationary v—equation. They proved existence of d—distribution blow-up in the disc

center by inverting the A—operator. In particular, they showed the existence of radially

3This associates blow-up with mass.



symmetric initial data such that the solution of a transformed version of (0.4) blows-up at
the center of a disc in finite time when %2&' > 8.

A few years later, Gajewski and Zacharias [26] showed that if © is a general smooth

domain, then there is no blow-up and solutions exist globally in time when

1 / A7
— | wo(z) de < ——,
o] Jo "o < Ll

while blow-up occurs when

1 / 47
— | wo(zx) dz > .
9] Jo "0 4= o

In an earlier mentioned literature, Post [62]| did not do a blow-up analysis of the system

(0.7). She however put forward her belief that a realistic mathematical model for chemotaxis
should be able to exclude blow-up of solutions in finite time. Hence, she does not agree with
the interpretations of Nanjundiah |56], and Herrero and Velazquez |31] that a —distribution
blow-up at a point can be viewed as an approximation of the erection of fruiting body.

For the system (0.4) where no symmetry is assumed on the solution, Horstmann and
Wang [37] (also see Horstmann’s survey in [33]) proved the existence of blow-up solutions for
a smooth domain Q C R?, provided that %ﬁm > 47 and audoilﬂ\ # 4kw, k € N. Horstmann
later proved in [34], where he assumed radial symmetry,* that there are initial data for
(0.4) that lead to blow-up in finite or infinite time®, provided that %2‘9‘ > 8, while if
%2\9\ < 8, then the solution can only converge to a steady state as ¢ — co.

The system (0.4) is not an easy one to treat in the Bessel potential space setting. In

the context of the semilinear evolution equations, one would prefer that the order of the

“He also assumed that the chemical consumption is paltry.
®Note that, the chemical diffusion coefficient, do2, was not assumed to necessarily be equal to 1.
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semi-linear term be strictly less than the order of the elliptic partial differential operator.
However, we note that in the cell density equation (first equation) of (0.4), the semi-linear
term features a divergence operator, which is of the same order as the principle elliptic
partial differential operator. Furthermore, the equation variable appears in it as a diffusion
coefficient (Vv), of which a priori boundedness in L*°()) is not necessarily immediate.
Thus, for this term to be defined, H'(Q) = E2% is only possible in R2.

We also note that the chemical concentrations equation (the second equation) is linear,
but the reaction term (data) features the cell density variable u. The difficulty here is that
the semigroup smoothness space has to be the same as the space in which the initial data to
the chemical concentration equation is considered. Moreover, to control the semi-linear term
in the cell density equation, we need to map it into the space in which its initial data are
considered to be, while at the same time the chemical drift term is controlled appropriately
so that it is well defined in adequate function spaces.

In this thesis, we work mainly in the Bessel potential space setting, in which the a
priori compactness is lost compared to the usual Hilbert space setting. To take care of this,
we employ the Concentration-Compactness Principle [48] in the Bessel potential spaces to
compensate for this failure of pre-compactness. Note that if we take the reaction data to be

equal to zero, then we obtain the following Liouville semi-linear elliptic equation
—Av + v — ake’ =0, (0.9)

which has the non-linearity of so-called critical growth. The difficulty lies in controlling this

non-linearity. We note that when ¢ = 2, for a limiting case 2a = %, we have ES ¢ L>°(Q).
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So, to prove the existence of non-trivial solutions to the above Dirichlet problem one uses

the famous Trudinger-Moser inequality

<cQ if k<dr
sup /6““ dx (0.10)
”VUHLQ(Q)SI Q = o0 if K > 4.

One can then use Lions’ [48] (see Theorem 1.6 and Remark 1.18) Concentration-Compactness
Alternative for the Moser-Trudinger inequality, and deduce compactness of the embedding
of the space into an Orlicz space (see [2] for more information on Orlicz spaces).

In the same vein, when investigating the maximal time of existence for the system (0.4),
we recall a well-known nonexistence result of Pohozaev, as given in [74] among others, which
asserts that if € is star shaped and A < 0, then there is no nontrivial solution of the problem

~Au=Xu+u?¥? 2€Q
u>0 x €

u=20 x € 01,
where 2* = % This is due to the fact that the standard variational arguments do not

apply since the embedding H} C L% (Q) is not compact, and so, the corresponding functional

1

In(u) = 2/Q (IVul® = Mul?) dz

does not satisfy the Palais-Smale conditions. For this reason, when considering the system
(0.4), the chemical concentration equation has to be elliptic. This allows us to decouple the
system.

We mention here some alternative ideas for investigating the maximal time of existence
that has been used in literature. In [34], Hortsmann investigated the existence of radially

symmetric blow-up solutions for (0.4). He excluded the possibility of global boundedness of
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the solution for the certain class of initial data, and hence, concluded blow-up by showing
that for aug|Q| > 8dam, the Lyapunov functional corresponding to (0.4) is not bounded from
below. He used results from Gajewski and Zacharias [26] and Brézis and Merle [13].

Based on the same ideas as in [34] and Wang and Wei’s (|83]) generalization of Brezis
and Merle’s results [13], Horstmann and Wang [37] investigated the blow-up in (0.4) without
symmetry assumptions. Pohozaev identity was used in that work.

In [16], Chipot illustrated the usage of the concavity method. This method is useful
in proving that blow-up occurs, but it does not specify exactly what the maximal time of
existence of the solutions is. There is also a treatment by K. Post in [62], in which she
used the results of her existence theorem of global solutions of a chemotaxis model, where
different natural classes of sensitivity functions were considered, to study the asymptotic
solution behaviour. All these are alternatives to the treatment given in this work.

With regard to the limit case of large time for the system (0.4), we exploit the invariance
principle, credited to J.P. LaSalle [47]. If (u,v) is a solution of the system of equations
(5.3), obtained through rescaling of solutions of the system (0.4), then we can write down
a Lyapunov functional, F' (see (5.41)). From Theorem 3 of [47|, we get that if the solutions
are unique, and the Lyapunov functional is constant on the boundary of the union of all
solutions in their maximal interval of definition, then these solutions are asymptotically

stable. For more information on the invariance principle, also see [28].
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0.2 Outline of the Thesis

In what follows, we want to give a brief outline of this thesis. The preliminary results
and definitions are given in Chapter 1. Moreover, we will also describe some mathematical
notations in this chapter, which we will be frequently using in the sequel. More specifically
in this chapter, we write down some basics of semigroups.

In Chapter 2, we give a brief review of interpolation theory. We will be limiting ourselves
to the (LP,W?P) example for the real interpolation. On the complex interpolation, we
give the definition, characterize some background material, and then we state some of its
application to the construction of Bessel potential spaces. The significance of this chapter
is in that no exact reference (that we are aware of) yields completely this construction, but
in most cases they are derived as particular cases of more general spaces.

In Chapter 3, we prove the existence and uniqueness of solutions to the minimal system
model (0.4) in the Bessel potential space setting, and that the system (0.4) defines a per-
turbed analytic semigroup to the semigroup generated by the operator A (see (3.3)), using
abstract semigroup theory results for semi-linear evolution equations from [30, 51, 60, 68, 66].
In Section 3.3, we prove the existence of a priori uniform bounds in Q x (0,7) of solutions
and gradient solutions to the problem. We conclude Chapter 3 by highlighting, in few de-
tails, the blow-up analysis of solutions to the system of equations at the borderline spaces
EY a= %

In Chapter 4, we work in a Hilbert space setting. The treatment which we will give in

this chapter is that of a Keller-Segel system of equation with Attraction-Repulsion effects.
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We prove, in Section 4.3, that the system model equations (4.1)-(4.4) defines a perturbed
analytic semigroup to the semigroup generated by the operator —A. We then prove the
existence of a priori uniform bounds in Q x (0,7) of solutions and gradient solutions to
the problem in Section 4.4. We conclude this section by using a bootstrap argument to
prove that the solutions to the problem are classical solutions. In Section 4.5, we revisit
the complete system of equations coupled partial differential operator, to prove that it is
an infinitesimal generator of a fundamental solution operator in scales of spaces Zs,d € RT
as given by quasilinear partial differential operators. We then conclude this chapter by
numerically simulating the equations using a Gradient Weighted Moving Finite Element
method in Section 4.6.

In Chapter 5, we, in a Hilbert space setting, investigate the maximal time of existence for
the system (0.4), by using Pohozaev’s Non-existence principle, guided by [37, 83]. Conditions
will be given under which blow-up occurs in finite or infinite time. We conclude this chapter
by briefly doing the blow-up analysis for the system (0.4) following the Concavity method
in [16].

In Chapter 6, we revisit the attraction-repulsion Keller-Segel system of equations which
we studied in Chapter 4. In this case however, we study the asymptotic dynamics in
Lebesgue-Bochner spaces of underlying Banach spaces either LP(£2), or Bessel potential
spaces H2“P(Q). In Section 6.3, we prove the well-posedness of the system of equations
in L7(I; LP(Q)), then we prove a priori uniform boundedness in Q x I of the cells density
solution in Subsection 6.3.1. In Section 6.4, we prove similar results to those of Section 6.3,

but in Bessel potential spaces Ef, a € R,1 < ¢ < oco. Lastly, in Section 6.5, we give an
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overview analysis of the blow-up of solutions to the system of equations at the borderline

a o= N
spaces B, a0 = TR



Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we are going to state some preliminary results and definitions which will be
of great use in this work. We will define some notations which will be used in this regard.
We will then state the definition of semigroups and write down some fundamental results

about them.

1.2 Functional Setting

We are going to let Q@ C RY be an open bounded domain with smooth boundary OS.
Throughout this thesis, we assume that the reader is familiar with the basic notions of
Sobolev spaces (see [2, 12, 30] among others). For 1 < ¢ < oo, the Sobolev space of functions
on Q will be denoted by W*4(Q), and the standard notation of its norm is || - [[yys.e(q). In
particular, we will write H*(Q) := W52(Q).

If we choose L1(Q), for 1 < g < o0, as the base space, then the unbounded linear operator

~A: D(A) C LY(Q) — L), with domain D(A) = H?%(Q), as defined in (3.3), generates

16
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an analytic semigroup in L4(2), see [5, 30, 60, 66, 68].
The Bessel potential spaces' of functions on Q will be denoted by H*4(12), where s € R
and 1 < ¢ < oo [30, 71, 82]. Note that H*(2) coincide with W#4(Q2) for integer s if

1 < g < oo, or for all s if ¢ = 2. The notation
EY == H**9(Q), a€[-1,1], (1.1)

denote well defined scale spaces associated with the non-coupled system partial differential
operator A in (3.3), with their norm being written as
|- Nz2ea@y = I - lEg =1 - la-

With this in mind, we will therefore make use of the following conventions:

1
Ej =Wh(Q), E)=1L1%Q), E,

Furthermore, if there is no danger of confusion, we will adopt the equivalent Bessel potential

spaces norm notation. That is,

e =1l IHllo =1l g =111 g -

Sometimes, we will assume that the spaces are “nested". That is, for any «, 8 € R, if

«a > (B, we have
EX C EY, (1.2)
with a continuous embedding, and the norm of the embedding will be denoted by ||i|q 3,

where the relation ¢ is equivalent to the identity operator i : Ef' — Eqﬂ [66]. In such a case,

1See Definition 2.8.
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we will say that the spaces are nested, for short. This situation will be explicitly stated if
needed. Note that if we consider (1.1) above, we will have ||i]|o,5 < oo for all a > §.

Occasionally, we will use the notation
Zog) = ES x BY, 1< q< co.

Lastly for this section, we recall the Banach Contraction principle [30, 68].

Definition 1.1. Let (X, - ||x), (Y,|| - |ly) be Banach spaces. A mapping T': X — Y is

said to be a contraction if there exists a positive number # < 1 such that

IT(x) =T(y)lly <Ollz—yllx forallz, y € X.

We therefore have the following Theorem.

Theorem 1.1 (The Banach Contraction Mapping Theorem). Let (X, | - ||) be a Banach
space, and T : X — X be a contraction. Then there exists a unique fized point of T in X:
x € X such that T(x) = x.

Also, for anyy € X, if T"(y) = T(T" '(y)) is the n—fold composition, then T"(y) — x

as n — oo. In fact, |T"(y) — z|| < 0"|ly — z||.

1.3 Semigroups

In this section, we will write down the definition of analytic semigroups, and state some
of their abstract properties [30, 68]. To this end, let W be a Banach space and L(W)
be a space of bounded linear operators on W. Let § € (0,7) and define an open sector
As :={z€C:|arg z| <9, z # 0}. If S(t) is a Cp-semigroup [51, 68| on W generated by
the operator A, then S(¢) is called an analytic semigroup generated by A if there exists an

extension of S(t) to a mapping S(t) defined for ¢ in A5 U {0} such that
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(i) t — S(t) is a mapping of As U {0} to L(WV),

(i) S(t1 +t2) = S(t1)S(t2) for all t1, to € Ay U {0},

(iii) For each w € W, S(t)w — w as t — 0 in As U {0},

(iv) For each w € W, t — S(t)w is an analytic mapping from Ay into W.

If, in addition, there exist a € R, o € (0,%), and M > 1, such that ¥,(a) := {z € C :

larg(z —a)] > 0, z # a} C p(A), and |[R(A, A)|| <

M
for every A € ¥,(a), then the
A —al
operator A is called a sectorial operator? on W.

We then say that, the operator —A, as defined in (3.3) (or more precisely, a suitable

realization of it) is the infinitesimal generator of an analytic semigroup,
{S(t) =e A t e RT\ {0}} (1.3)

in each space of the scales H2%4(Q2), a € R [5, 30, 60, 66, 68]. This semigroup is order
preserving and satisfies the smoothing estimates

M eiu'Ot
|S(t)uol| g2eaa) < %HUOHHQ[J,(;(Q), t>0, wuge H*Q) (1.4)

for —1 < B < a <1 and some pg € R. In addition, we have

M, petot

”S(t)UOHLT(Q) < tﬁ(li_l)uuonl/p(ﬂ)? t>0, wuge LP(Q) (1.5)
2\p T

for 1 < p < 7 < co. For any ug in H*29(Q) or LP (), the function wu(t; ug) := S(t)ug, t > 0,
is a classical solution of the problem

u—Au = f(u)
w(0) = o,

2p(A) denotes the resolvent set of A, while R(), A) = (A — XI)™* is the resolvent of A.
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provided that f(u) is locally Holder continuous in ¢, and locally Lipschitzian in u. For
further properties of semigroups, please see [5, 30, 60, 66, 68].
Next, we review some abstract analytic semigroup theory results proven in [5, 30, 51,

60, 68]. To this end, we note that (1.4) can be rewritten in an abstract language as

Ma,ge“t

HS(t)HL(Engg) < Tjap

We also assume that the semigroup acting on the scales satisfies, for «, 8 € I such that

a> B,

M0(5704)

promca forall 0 <t <1, (1.6)

1S@s.0 = 15Ol £ (g8 pey <

for some constant My(3,«) > 0.

From these assumptions, the following Lemma follows.
Lemma 1.2. Assume that (1.6) is satisfied. Then

(1) For every a, B € I such that o> (3, and for all T > 0,

My(B,a,T)

IS0z < =205,

Jorall0 <t <T (1.7)

for some constant My(8,c«,T) > 0.

(ii) For each B € I, there exists w(B) > 0 such that
1S(t)llg,8 < Mo(B, B)e",  for all t > 0,

and for every a, 5 € I such that o > B there exists w = w(B) and M (S, «) such that

M (B, a)et

1S()]lg,a < prom for all 0 < t < co.
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(iii) Assume that the scales are nested, that is (1.2) holds. Then, if for some fized By € I,
we have

1S#)||go.50 < Me“t,  for all t >0 (1.8)

for some M = M(By) and wy € R, then for any o € I, there exists a constant

M(a) > 1 such that
1S(t)|ae < M(a)et,  for all t > 0. (1.9)

Moreover, given ty > 0, define 6 = ||S(to)lgy,8,- Then we have (1.8) with

L o
O_to

and some constant M depending on to, 0 and My(Bo, Po,to) as in (1.7). In particular,

if 6 <1, then wy < 0.

(iv) Under the settings of (iii), for every o, 8 € I such that a > 8 we have

Mi(B,a)t= (=B o<t <1,
15|

B,a <

M; (B, a)ewot ift > 1.
for some positive constant M1(B, a).

In particular, for all € > 0 there exists Mc(S, ) > 0 such that

(wo+e)t

1S)]|g.a < Me(B, ) for all t > 0.

te=8 7
Lemma 1.2 and its proof appeared in [66]. For completeness, we give the proof here.

Proof. (1) Let T'> 0 and define n to be the smallest integer such that 7" < n + 1. Further,
t
for 0 <t < T, define h = o <1land s; =jh, j=0,...,n+ 1. This means that
n

Sp+1 = t and since

S(t) = S(sn41 — sn) -+ S(s1— s0),
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and 0 < s;31— 8 =h<1V0<t<Tandi=0,...,n, we get from (1.6) that

1SOlge = IS(sn+1—8n) - S(51 = 50)ll,a
< [[SM)gallS(R)||5.a
< Mo(a, )" Mo(B, a)h~@P)

= My(o, @)"Moy(8, a)(n+ 1)*F—(@=h)

M, T
- “Sﬁ_‘;) for all 0 <t < T,

where My(B, o, T) = My(a, )" Mo(8, o) (n + 1)*=5.

(ii) In a particular case of (i) when o = [, we let ¢ > 0 and define n € N such that

n<t<n+1and we get as in (i), that
1S lg.6 < Mo(8,8)" " < Mo(B, B)+" < Mo(8, 8)e" Mo B for all ¢ > 0.

Note that since My(53,8) > 1, w(B) := In(My(5,5)) > 0.

Now, if «, 8 € I such that o > 8 and ¢t > 1, then we have

1S@)llg.a < 15t = DllaallS(L)lls.a < Mo(a, a)e D Mo(8, ),

while for 0 < t < 1, we have estimate (1.6). Then for any w > w(a), we get the result.

(iii) First we notice that from (1.6), for any o > o, we have ||S(1)||5,,a < Mo(5o, ). Now,

if t > 1, then

[S@uolla < 1SWlg0.allSE = 1uollg
< Mo(Bo, ) Me™ e |lug| g,

< Mo(Bo, @)||illa,go Me 0 |ug||as

where [|i[|o,5, denotes the norm of the inclusion EZ — Ego. Thus,

1S(t)laya < Kef,  forall t > 1,
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with K = M@(ﬂo, OJ)HZ'HQﬁOMe_wO.
On the other hand, if By > «, then we also have from (1.6) that [S(1)[a,5, <
My (e, o), and for t > 1,

[1S@uolla < Nlillgo,allS(E)uoll g

< lillgo.all S = Dllgo.p0l1S (D) uollgy
< lillgo,aMe™ 0| S(1) o, lu0]la

< lillgo,adM e Mo(er, Bo)e"[[uo]la-

Thus, we get that

1S(t)||ae < Ke<ot,  forall t > 1,
with K = Mo(c, Bo)l/i]| gy,a Me™0.
Therefore, for any o € I, we have the estimate
1S()]|aa < K(a)et,  for all t > 1.
Hence, from (1.6), if 8 = «, then we get (1.9), with

max{K(a), My(a, )} if wy >0,
M(a) =
max{K («), Mp(a,x)e 0} if wy < 0.
Moreover, if for a given ty > 0 we define § = ||S(t0)|g,,8,, then for ¢ > 0 we write

t=ntyp+ s, withn € Nand 0 < s < ty. Then

n In(6 t;—s
1S g0, < 5 15(5) 150,50 < €™V Mo(Bo, Bo, to),

with Mo (Bo, Bo,to) as in (1.7), and the result follows. In particular, if § < 1, then

wo < 0.
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(iv) We note that, if 0 < ¢ < 1, the estimate reduces to (1.6). On the other hand, if t > 1,

then using (1.6) and part (iii), we get

15@)ll5.0

IN

15(t = DllavallS (Vg0

< My(B,a)M(a)e et = My (B, o),

where M1 (8, a) = My(B, )M («)e*°, and the result follows easily.

O

Remark 1.1. We observe that if the original constants My(8,«) in (1.6) do not depend on
(or can be taken independent of) o, 8 € I, then the same is true for My(3,a,T), and M («)

in (1.9) depends on the scales only through the norm of the embeddings ||i|/g,.a O ||7|a,s,-
The following spaces will be used immensely henceforth.

Definition 1.2. For T > 0, v € I and ¢ > 0, we denote the space of all locally essentially
bounded functions, u € L2 ((0,T], Eq ), for which sup t||u(t)|l, < oo by £2((0,T], Eq ),

loc
te(0,77]
and define the quantity

llullly.e = sup t*[lu()]l,,
te(0,T]

as its norm.

We then have the following Lemma;

Lemma 1.3. Let T > 0, v € [ and € > 0. Then the space LZ((0,T], EJ), equipped with

the norm ||| - |||y.e, is a Banach space.

Proof. Note that {u¥}; is a Cauchy sequence in £2°((0,T], E) if and only if v*(t) = t=u¥(t)
is a Cauchy sequence in L°°([0, 7], EJ), and also u*(t) converges in E] to some u(t) for
almost all ¢ > 0 and, hence, in L>([o, T}, Ey) topology. This implies that u* converges to u

in £2°((0,T], E7), and hence the space £2°((0,T], Fy) is complete. O]
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Note that part (i) in Lemma 1.2 can be restated as

—At

Lemma 1.4. Assume the semigroup S(t) = e ", t > 0 and the scales of spaces satisfy

(1.6). Then, for any o, B € I such that o> B and T > 0, the mapping
S(-): B — L2 5((0,T), ES), uo — S(-)uo,

18 linear and continuous.



Chapter 2

Interpolation theory and Scales of
Banach spaces

The aim of this chapter is to give a basis of the theory of scales of Banach spaces. This theory
is naturally based in the methods of interpolation theory. It has, to some extent, similarities
with the theory of real number system, but in this case relating to intermediate Banach
spaces. Interpolation theory in functional analysis and applications has been developed by

many authors, of which we cite [4, 9, 29, 52, 79].

2.1 Interpolation theory background

In what follows, for notation simplicity, for T' € L(E, F'), we will write ||T|| = ||T||zg,r);
on understanding that it is the operator norm that is being considered. Within the case of
L(LP,L?), when emphasizing is necessary, we will use ||T||, 4.

It is worthwhile to mention that the classical results making up the basis of interpolation
theory are theorems of M. Riesz with Thorin’s proof, and Marcinkiewicz [9]. Thorin’s proof

of the Riesz-Thorin theorem contains the idea behind the complex interpolation method.

26
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Similarly, the proof of Marcinkiewicz’s theorem resembles the construction of the real inter-
polation method. Following these distinctions of cited pioneer works, we state them with
their proofs in this initial section of the chapter.

Before we state Riesz-Thorin interpolation theorem, we first note the following;:

Lemma 2.1 (Lyapunov Inequality). Let 1 < p; < oo, j =0,1, 0 € [0,1] and pie = 11)%9 + p%,

Then, (\LPi C LP and

1Fllpe < IFIEOUANS,,  Vf € (L7

Proof. The proof uses Holder’s inequality., i.e. if f € LP, g € L? such that 1 = % + % then
fg € L'. Now let

1 1-6 1 ¢
vi= (= 0p y:=0p, —-i=—=p, — = P

Then
1 1
T +y=np, ;+—:1, x29 = po, and yz3 =p;.
0

21

Now using Holder’s inequality we obtain

A5 = 17l = 12 < L o 12

(Jise=) ([ = (Ji) ™ (i)™ = (i)

and the conclusion is demonstrated to hold. O

In the proof of Riesz-Thorin theorem, we will need the following result from complex

analysis (see, for instance [85]).

Proposition 2.2 (Three Lines Lemma). Let F: S={z=2+iyecC:0<x <1} - C be

a bounded, continuous function, analytic on S = {z=2x+iyeC:0<z<1}. Let

My :=sup |F(0 +iy)| for 6 € [0,1].
yER
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Then,

My < M()l_eMlev
where My and My are such that |F(2)| < My when © =0 and |F(z)| < My when x = 1.

Proof. Case 1. My, M; < 1= My <1.

Define F.(z) := ﬂ(—?z forz=a+4+1y € ,50*7 € > 0, and note that this function is bounded,

continuous and analytic on S. Moreover,

lim F.(z) =0, uniformly for z € [0,1],

ly|—o0

since |Fz(2)| < Fs(zz) and F' is bounded.

Now let 7 > |yo| be such that |F(2)| < 1 for x € [0,1] and |y| > r. Also let R =
[0, 1] xi[—r,r]. This implies that |F.(z)| < 1 on OR. Thanks to Phragmén-Lindel6f maximum
principle [63] we have |F.(z)| <1 for all z € R. In particular, if zg = xo + iy in S we have

|F:(20)| <1 and thus |F(z)| = liH(l) |F-(20)] < 1.
E—

Case 2. My, My arbitrary. Let G(z) = &) where a > My, 8 > M;. Then, G is

al—zﬁz

continuous, bounded and analytic on S and |G(z)| < 1 on 8S. Thanks to Case 1, we have
|G(2)] <1 on S so My <a'=?8% and My < M3—0MY. O

In what follows, we let LPi, L% 5 = 0,1, denote Lebesgue spaces of functions, defined
on different o— finite measure spaces (., i), 7 = p, q.

We are now ready to state the Riesz-Thorin interpolation theorem.

Theorem 2.3 (Riesz-Thorin). Let 1 < pj,q; < o0, j =0,1, 0 € [0,1] be such that

1 1-6 6 1 1-6 4
+—, +

Do Do p1 qe q0 q1

If T 1s a linear map satisfying that

T:LP — L% with [Ty =N
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for each j = 0,1, then,
T fllgy < CNg " NY I fllpys  Vf €[ L7 (2.1)

where C =1 4fK=C and C =2 if K =R. In particular, the mapping T : LP? — L% can be

extended to a continuous linear mapping satisfying in operator norm ||T||p,.q0 < CNOPONIQ.

Proof. Thanks to Lemma 2.1, by hypotheses, we have ((LPs C LP? and (L% C L%,
7 =20,1. Thus,

Fe(\» 5 Tf e (L%
Case 1. pg < oo and gy > 1. First we note that since integrable step functions are dense

in all LP— spaces, they are dense in (| LPi. Thus we show that (2.1) holds for all such

functions, by showing that

[@n| < niowy 22)
holds for all integrable step functions f, g satisfying || f|lp, = [lglly, = 1, where qi, =1- é is
6

the dual conjugate exponent of gy > 1. Indeed (2.2) asserts that the functional [ : LY — C
mapping g — [(Tf)g obeys |[l|| < N7/NY. Furthermore, by [11], Riesz representation
I € (L%)" = L% is the isometrically isomorphic image of T'f and || T f||4, < Ng ONY.

To prove the above, we define step functions

J T
F=Y aixa, 9=> bxs,.
=1 k=1
J o
IFIBe = laglP 1A =1, llgllfr =D bkl%|Bi| = 1, (2.3)
j=1 k=1

where |A| denotes the measure of a set A C RV, and AjNAy=ByNBy =0foralj ke J

and j/, k' € J'. Next for z € C, define

1 _1—z+z 1 _1—z+z
p(2) po p1 ¢ (2) a0 ¢’
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so that p(0) = po, p(f) = p and p(1) = p; as well as ¢'(0) = ¢}, ¢'(1) = ¢}. Using the

convention 8 =0 we set

rf
= p(z)

and g, = |g| 9
gl

which are integrable step functions, in particular f, € LP! implies that T f, is well-defined.

Lastly, define F': C — C by
F:) = [(@fs.

to obtain, using (2.3), that

J/

— Z |a]|p<z>

7j=1 k=1

by,
by, (Z> T, .
| |‘1 ‘bk‘ /Bk XA;

This shows that F' is a linear combination of terms of the form ~?, v > 0. So F' is analytic
and satisfies the assumption of Proposition 2.2 since every function 4* is bounded in S (see
Proposition 2.2) by

YY) = 4" <max{l,7}, Va+iyeS.

Now for estimating |F'(6 + iy)| for § = 0,1, we have by Hdélder’s inequality, that if § = 0,

then

[E ()| < T fiyllao |9yl < Noll fiyllpo llgiyll g1 »

and furthermore,

I il = Z [lag 777 | 4, = Zr%\pm =171 =1,

using (2.3) and the fact that Haﬂﬁpw = |a;[P. Similarly, we obtain Hgiy”gz = 1. Summing

up, we have sup |F'(iy)| < Np, and carrying out the calculation with 6 = 1, we get sup |F/(1+
yEeR yeR

iy)| < Nj. Finally, Proposition 2.2 yields that

‘/ng] )] < sup | F (8 + iy)| < N NY.
yeR
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from which the desired estimate (2.2) follows.

Case 2. py = oo. This assumption immediately implies that pg = p1 = oo, and if
g9 = qo = q1 = 1, then there is nothing to prove. So suppose that g9 > 1. Now f need not
be integrable and we may choose f = f, for all z € C. Analogously, we can handle the case
qg=1, p<oo (now g, = g).

Next we prove for K = R. Luckily, this follows from the above and the following argu-
ment. Let U : Ly — L be a continuous linear operator between real LP spaces. Further-

more, define the canonical extension by Uc = U f + iUg. This map is C-linear, and it holds

that
|Ucll = sup |[[Uc(f+ig)ll < sup ([[UNI+U@I)
[l f+igll=1 I f+igll=1
< sup [[U(f)|[+ sup [[U(g)| <2[[U]]. (2.4)
I flI=1 llgll=1

Applying this to the assumption of the theorem we obtain the results for T" by using the

extension T¢ and (2.1)

—0 0
ITfll = ITefllas < 1Tl oI Telp, g0 1 Fllpo
—0 0 —0 nT0O
S QHTH;Q,QQHT”pl,ql - 2N01 N]. Hf”pe’
and the proof of the theorem is complete. O

To give Marcinkiewicz interpolation theorem, we need to introduce some concepts so as
to make its results accessible to the reader.

Definition 2.1. (i) The distribution function A(-, f) : Rt — R™ of a measurable function

f on RY is defined by
Mo, f) =z : [f(z)] > o} |

where | - | taken on sets represent the measure of RY.
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(ii) The equivalent norms of LP are defined by

(Jo° P~ \(o, f)da)% if 1<p<oo,

inf{o: Ao, f) =0} if p=oc.

£l =

(iii) The weak LP-spaces, denoted by L%, 1 < p < oo, consist of all f such that
1
[fllpx = supaA(a, )7 < oco.
In the case p = oo, we put LY = L. The triangle inequality of LP in L% is

1
1S+ gllp < 27 ([|/]

pox + 19llp)-
Thus LY is a quasi normed vector space.
(iv) For any f € LP, 1 < p < oo, we have || f|lp« < | fll,- That is, LP C L%,

(v) The decreasing rearrangement of f is the function f* :[0,00) — [0, 00) defined by
f(t) = inf{o : Mo, f) <t}

with convention that inf () = co. f* is a non-negative, and non-increasing function on

(0,00), continuous on the right and has property A(p, f*) = A(p, f) for p > 0. Thus

f* is equi-measurable with f.

(vi) The Lorentz space LP9(RY), 1 < p,q < 0o is the set of all measurable functions f on

RY such that

((Bro)s) & g<x,

1
sup tr f*(t) if g=o0
>0

1fllzea =

is finite. Two functions in LP? are said to be equal if they are equal almost everywhere.

LPoe = [P and LPP = [P [ = [ = [,
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1

1
(vii) For 1 <p < oo, 1< ¢ <r < oo there exists a constant Cp 4, = (%)q_'? such that

||f||p,1“ < Cp,q,r”f’ pq- That is, L9 c LT,

(viii) The spaces L9, 1 < p,q < oo are complete with respect to their quasi-norms and are

therefore quasi-Banach spaces.

An operator T' mapping functions from a measurable space (£, 0) to another measur-

able space (21, 141) is said to be quasi-linear if
(i) T(f + g) is defined whenever T'f and T'g are defined,
(ii) |T(\f)(@)] < &[A||Tf(2)], and

(iii) |T(f +9)(2)| < K(|Tf(2)| + [Tg(x)|)

for almost everywhere on x, with x, K € R being independent of f and g.

We are now ready to state the Marcinkiewicz Interpolation Theorem.

Theorem 2.4 (Marcinkiewicz Interpolation Theorem). Assume 1 < p; < ¢; < 00, po < p1,

qo # q1 and T a quasi-linear mapping defined on LPO + LPY which is simultaneously of weak

types (po,qo) and (p1,q1)., i-e.
T:LPi LY forj=0,1, and 1T fllg;x < Njllfllp,-

If0< 0 <1, and
1 1-6 0 1 1-6 0
+

pe P01 @ q @

Then, T is of strong type (pg,qp), i-e€.
1T fllge < NIfllpo, V. € L,

where N = C(Nj,pj,q;,0) and depends neither on T nor f.
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Proof. Since this proof is quite involving and delicate we skip it and make reference to the

interested reader to consult with [29]. Alternative elegant proofs are provided in [9, 52]. [

2.2 Real Interpolation

Definition 2.2. (i) Let X; = (X, X1) be a pair of Banach spaces. A pair X of Banach
spaces is said to be admissible if there exists a topological vector space Z such that

entries satisfy X; C Z,j = 0,1 continuously.

(ii) The spaces

() Xjsmax{||- [;} |, (Xo+ X5 inf |lzollo + [lz1lh)
=01 z;€X;

are Banach spaces.
(iii) X is an intermediate space with respect to the pair Xj if
()X, C X CXo+ X (2.5)
continuously.

iv , Y are interpolation spaces with respect to the pairs X;, Y, respectively, if they are
iv) X,Y interpolati p ith respect to the pairs X;, Y] respectively, if they
intermediate spaces, and if for some linear mapping 7' : Xg + X7 — Yy + Y7 it holds,

per corresponding entries, that

T e £(X;,Y;) = T|x € L(X,Y). (2.6)

v) Interpolation spaces X,Y with respect to the pairs X, Y, respectively are said to be of
P % % P VIS % y

exponent 0 € [0, 1] if there exists C' > 0 such that
ITIx-y < IRy, 1T, yis VT € £(X;,Y)) (2.7)

If C =1 then X,Y are exact interpolation spaces of exponent 6.



Firstly, we treat the K — method for the real interpolation of Banach spaces.

Definition 2.3. For every x € Xo + X1, ¢t > 0 let

K(t,z, X9, X1) = inf t|oll)-
(t X0, X0) = int(laflo+ tb])

We define the real interpolation spaces for 0 <8 < 1,1 <p < 00, by

(Xo, X1)op = {x € Xo+ X1 :t =t K (t, 1, Xo, X1) € L£(0,+oo)} ,

0p — HtieK(t? z, Xo, Xl)”p

g2

dt
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where LY is LP with respect to the measure ¢ in (0,00), and in abbreviation, we write

t

K(t,z) instead of K (t,z, X, X1), and

(X0, X1)g = {x € Xo+X;: lim t 'K (t,z, X0, X1) = lim t °K(t,z, Xo, X;) = 0} ,
t—0+ t—o0

as t = K(t,x) € C(0,00) for every x € Xo + X1, we have (X, X1)g C (X0, X1)p,00. S0 the

spaces (X, X1)g are interpolation spaces.

Important to note is that K(t,z, Xo, X1) = tK(t~!,x, X1, Xo) for all ¢ > 0 and by

transformation 7 = ¢~! which preserves L% (0, c0), we get

(X07X1)67p = (XlaXO)l—G,py 0<b< 1, 1< p < 00,

(X0, X1)p = (X1,X0)1-0-

So the order of the spaces is crucial. Immediate particular cases are the following;

Observation 2.1. (i) If Xo = X1, then Xo+X; = Xo and K (¢, z) < min{¢, 1}||z||. Therefore,

X[):(Xo,Xﬁg’p 0<f<1,1<p< .

(ii) If N X; = {0}, then for each = € X+ X1, there exist unique a € Xy, b € X such that

= a+b. Hence K(t,z) = ||allo + t||b]| and t — t K (t,2) & LX(0, 00) unless = = 0.

Therefore, (Xo, X1)s,p = (X0, X1)g = {0} for any 6 € (0,1), 1 <p < oo.
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(iii) In the important case X; C Xy, we have K(t,z) < ||z|o for every x € Xy, so t —
t 9K (t,x) € LE(a,00) for a > 0. Thus, only the behaviour near ¢ = 0 is important in

the definition of the interpolation spaces.
The results in the following proposition are proven in [52].
Proposition 2.5. (i) If0 <6 <1, 1 <p; <ps < oo, then
(X5 € (X0, X1)op, C (X0, X1)o, C (X0, X1)o C (X0, X1)p00 C Xo + X
Moreover, (Xo, X1),00 C ﬂXj, where the closure is in Xo + X1.
(ii) If X1 C Xo, 0< 0y < 0y < 1, then
(X0, X1)6y,00 C (X0, X1)6,.1-
Therefore, (Xo, X1)p,p C (Xo, X1)g, 4 for any 1 < p,q < 0.

(iii) The interpolation spaces in Definition 2.3 are Banach spaces, and condition (2.7) holds.

2.3 Complex interpolation method

Let X = X¢ be a complex Banach space,
S={z€C:0<Rez<1}, and S’z{zG(C:O<Rez<1}.

A mapping f : S — X is called holomorphic if the mapping z — (f(2),2'), z € S, is
holomorphic in the usual sense for all 2/ € X’.

Theorem 2.6 (Maximum Principle). Let f : S — X be continuous, bounded, and holomor-

phic in S, Then,

sup [ f(2)[x < max {Sup 1f(it)llx, sup [[f(1 + it)llx} :
zeS teR teR
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As a corollary, we obtain the following three lines theorem, which is the basis for the
proof of the Riesz-Thorin interpolation theorem and the complex interpolation method.
Theorem 2.7 (Three Lines Theorem). Let f : S — X be continuous, bounded, and holo-

morphic in S, Then,

0

1-6
sup |76+ it)x < (Supllf(it)\lx> <Supr(1 +it)HX>
teR teR teR
for 6 € [0,1].

Definition 2.4. Let X; be an admissible Banach space, and F (X)) be the set of all mappings

f S — JX; that are continuous, bounded, and holomorphic in 5’, such that
t— f(it) € C(R, Xo), t— f(1+if) € C(R, X)),
and equipped with norm

1fll7(x;) = max {Sup LF @)l xos sup [ £ (1 + it)Hxl} :
teR teR

it is a Banach space. Furthermore, let Fy(X;) be the set of all f € F(X;) such that
Il\gﬂ I f(j +it)l|x; = 0, so that it is a closed subspace of F(Xj;). The linear hull of the
t| /oo

functions

V(X;) = {e‘SZQHZQ rac()X;,0>0 ¢ R}
is a dense subspace of Fo(Xj).
We then define the complex interpolation space

X{ = [Xo. X1l = {(6) : € F(X,)},

endowed with the norm

zllg = inf .
lelo =, nf o Wflrey
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2.4 Banach scales of Bessel potential spaces

For the construction of the Bessel potential spaces, we will use the Harmonic Analysis
approach [30, 71, 82]. To this end, we start by defining the Schwartz space, S and its dual
S*.

Definition 2.5. The Schwartz space of functions defined on © € RY, denoted by S(Q), is

defined as

S(Q) := ¢eC°O(Q);sup + |z[?) Zyp% ) <oo, keNy. (2.9)

z€Q la| <k

The dual space® of S(€) is denoted by S*(Q2).

k
The quantities sup (14 |z]?)2 > |D%¢(z)|, k € N, define a countable family of semi-
e ‘a|§k‘
norms on §. Also, §* is a locally convex linear topological space, and it is said to be a
tempered distribution space.
Next, we define the Fourier transform and its inverse on the Schwartz space and its dual

space.

Definition 2.6. Let ¢, ¢ € S. Then the Fourier transform, F, and its inverse, F~!, are

/ e Y (x) dr
Q

/Q = (y) dy,

defined, respectively, as

o(y) = (Fo)(y) =

0[3

(27)
1
(2m)2

] (2.10)
P(x) = (F 1) () =

|3

where x -y = z1y1 + ... + TpyYn.

Recall that the convolution ¢ * 1 on S is defined as follows (see, for instance, [2]).

b ( /w—

15*(Q) is the set of sequentially continuous linear functionals on S(Q).
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With the definitions above in mind, we define the Bessel potential operator as follows;

Definition 2.7. Let s € R. Then the Bessel potential of order s is a sequentially continuous

bijective linear operator Jg : S(2) — S(€2) defined by
Jow=(I— Ay 3u=F1 (1+[22) 2 Fu, (2.11)

n
where I is the identity operator, A = > 8%22 is the Laplace operator, and = € RY.
7=1 J

It’s is trivial to see from (2.11) that, for s, ¢t € R, the following hold;
Jope = Jody, (Jo) t=J_, and Jy=1.
For v € §(f2), we also have a natural extension of J; : S*(2) — S*(Q2) defined by

<JS’LL, ¢> = <u’ Js¢>a Vo € S(Q)

We therefore have the following definition of the Bessel potential space.

Definition 2.8. Let s € R and 1 < p < oo. The Bessel potential space on €2, denoted by
H*®P(Q), is defined by

HP(Q) = {ueS*(Q): Jue LP(Q)}
= {ueS(Q): [|Jsullpr) < oo}
= (I-A)"2LP(Q).

The norm on H*P(2) is given by

ull rse @) = | Jsull Lo (q)-

We should mention at this point that the Bessel potential spaces can also be constructed
using the complex interpolation-extrapolation procedure?, where they are defined by com-

plex interpolation between LP spaces and Sobolev spaces W™ P. That is, if s > 0 and m is

2See |2, 5, 78] for more details.
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the smallest integer greater than s, and € is a domain in R, then we have
H>P(Q) = [LP(Q), WP (Q)] «,
and if sg, s; € N such that sy # s1, and 0 < 6 < 1 such that s = so(1 — 0) + s10, then
HSP(Q) = [WP(Q), WP(Q)]o.

These Bessel potential spaces will provide the basic topology in this work, especially in
the well-posedness work. For this reason, we collect some of their properties below.
Proposition 2.8. Let sc R and 1 <p < oo. Then

1. H®P is a Banach space;

2. S C HP C S8*, and S(Q) is dense in H>P(Q).

3. HSt&P C HSP, Ve > 0;

4. HSP C L™, Vs> %.

For the proof of Proposition 2.8, see [82, 71| and the references therein.

In addition to the properties in Proposition 2.8, we have the following Theorem |2, 5].

N N

Theorem 2.9. Let —00 < 59 < 51 < o0 and 1 < p1 < po < 00 be such that S1—r = 82—

Then

H'Sl»pl C H327p2' (212)

2.5 Banach scale spaces of positive operators

In this section, we work in the context of complex analysis mainly because of the definition

of the resolvent and spectrum of linear operators.
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Definition 2.9. A linear operator A : D(A) C E — F is said to be positive if the resolvent

set of A contains (—o0, 0] and there exists M > 0 such that

M
A < <0. 2.1
IR Dlleem) < 7 v A<0 (2.13)

The power operator A% of a bounded positive operator A : E — F is defined by

1
A% = _/)\ZR(/\,A)d)\,
211 ~

where « is any piecewise smooth curve surrounding o(A) avoiding (—oc, 0] with index 1 with

respect to every u € o(A).
Note that for a bounded positive operator the following properties are easily verified:
(i) The mapping z — A* € L(F) is holomorphic.
(ii) If z = k € N, then A% = AF,
(iii) For each 21,29 € C we have A1 A% = A2 A% = A51722 etc.

If A is unbounded, then the theory is much more complicated. To define A* we need
to have some control over its spectral properties. In this direction, we have the following

lemma |71, 78]

Lemma 2.10. Let A be a positive operator. Then, for

A+ 1
A_{)\—/\1+i)\2€C:/\16R_,]/\2]< 1];

}U{Ae@:\/\y<z\14}

where M is as in (2.13), and for every 6y € (0, arctan ﬁ), ro € (0, ﬁ) there exists My > 0

such that

M,
O —

,A<0 2.14
“ 14N T ( )

forall X\ € C, |\ <19, A\ <0, % < arctan 6.
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Proof. Tt suffices to recall that for every \g € p(A), there exists an open ball B,.(A\g) C p(A),

where r = ||R(/\t7A)||7 and such that for |A — Ag| < r it holds that
R(X,A) =) (=1)"(A = X0)"R(Xo, 4)""".
n=0
The union |J B-(Ag) D A and the estimate follows easily. O

Definition 2.10. Let 6 € (Z,7), » > 0, and consider the curve v,y = —y! — 42 + 4> where
2 :

~1,+? are half lines parametrized respectively by
p=ge 2=¢e 2
and ~2 is the circle arc parametrized by z = re™, —f < n < 6. Then, for any
1 1 . .
€ (0, M)’ 0 € (m — arctan Mﬂr), a=ag+ia; € C  with «ap <0,

define

P / MR\, A)dA C £(E), (2.15)
211 ~

satisfying that A — A*R(\, A) € L(E) is holomorphic in A \ (—o0,0], and the integral is

independent of r, 6.

Writing down the integral in (2.15), we get that

av = [T e (MR, ) e U R(E, 4)) de
" T‘a+1 0 .
. / em(a+1)R(r€“7? A)d?’] (216)
2 J_g

for every r € (O,ﬁ), 6 € (m — arctan ﬁ,ﬁ), which can be worked out to get a simple
expression. For instance, if —1 < ag < 0, then letting » \ 0, 8 7 7 leads to

_ sin(ma)

A% = /OO (T 4+ A)Lade. (2.17)
0

™

The following proposition yields some basic properties of the power operators A% |2, 71, 78].
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Proposition 2.11. (i) If a = —n for n € N, then A® = (A~} = A=,
(ii) If Rez < —k for k € N, then the range

R(A*) ¢ D(AY)  and A*A%z = AM*z, s e E.

(iii) If Rez < 0 and x € D(AF) for k € N, then A*x € D(AF) and A*AFz = AF A%x.
(iv) If Rez1, Rezy <0, then At A2 = A=1t22,

Proof. (i) Let @« = —n. Then

koo 271

1
/ AT"R(A, A)dX = lim / AT"R(A, A)dA, (2.18)
2mi -
where v, = {2 1 v|z| = £}.

For every k € N the mapping A — R(\, A) is holomorphic in the bounded region

surrounded by v, and

1 1 dar—1
— [ AR\, A)d) =

- RMNA)pg=AT"
211 - (n—l)!d)\"_l (A, )\)\_0

Back substitution of this in (2.18) yields

L / ATR(N, A)dh = A
Yr,0

21

(ii) Let £ =1, Rez < —1. Then, since
INAR(, A)|| = |3 (AR, A) = D) < AR (Mg + 1),

the integral in (2.16) is an element of L(E, D(A)), and

1

Vie 2mi Vie

1
A— N RN A)dX =
211

NTIR(N, A)d) — 21/ Nd.

Tk

But the last integral vanishes, so we obtain that A - A* = A'** and the statement

holds for k = 1, the rest follows by induction or recursively.
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(iii) is obvious because A* commutes with R(\, A) on D(A*), and this implies A¥ commutes

with A% on D(AF).

(iv) Let 61 < 6 <m, 0 <7y <11 < 77 so that v, o, is on the right hand side of 7, g, to

find that
z z 1 z Z
'YT‘I,Gl ’7'7‘2,92
_ 1 / )\ZIMZQ R()‘a ) B R(N? A) dAd/,L
-\ 9 _
(2mi) 71,01 %XVry 09 p=A
1 Z2
- _ / AZIR(A,A)dA/ i
(27T’L) 7r1,01 ’77‘2,92 - )\
! / RN, A)d / A
- B ) H
(2777/)2 Vro,09 Trq,601 B = )\
1
- )\ZlJrZZR()\,A)d/\ — A21+22‘
27 )y,
1,01
The proof of the proposition is complete. O

Statement (iv) of Proposition 2.11 implies that A® is injective. Indeed, if A*z = 0 and
n € N is such that —n < Re z, then A™"x = A7 ?A%x = 0 so that £ = 0. Therefore,
it is possible to define A% if Re a > 0 as the inverse of A%, But in this way the powers

A" t € R remain undefined. So we give a unified definition for Re a > 0.
Definition 2.11. For a = ag+ia; € C, 0 < ag < n, n € N, we define

DA*)={z € E: A" e D(A™)}, A%z =A"A""z,
where the operator A% is independent of n € N.

In fact, the independence of A% is a consequence of Proposition 2.11. Since, if n,m >

Re a, then Az = A"""™A* "x for n < m by part (iv), and for n > m by part (ii),
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taking z = a —n and k =n —m gives
A Mr e D(A™) «—= A"AY "z € D(A™) de. A"z € D(A").
Now, if @ = 0 then A° = I. Moreover, if ag > 0, then we get
D(AY) = A™“E; A® = (A~%)~L,

Indeed,

A"z € D(A") <= 3Jy € E such that A% "z = A™"y.

The uniqueness of y € E is by definition. Furthermore,
ATPAT Yy = ATAT Yy = ATCAY " = A",

so that + = A=% € R(A~%) and A® = (A~%)~L. Since A% has a bounded inverse, it is
closed and D(A®) is a Banach space endowed with the graph norm equivalent to x — ||[A%z||,
the canonical norm of D(A®%).

If ap =0, then o = ia7 and
Al = (A7) Vr € D(A™); Ap e D(AT) and AT APIg =g
by definition. Therefore,
ATl glag = ATl gty = A1y,
Thus

AT g i1y — AAT2r € D(A) = Az € D(AT™) and ATM1A g = g,
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Note that in general the operators A™! are not bounded. Nevertheless, they are closed
operators, since A~!17%1 is bounded and closed. Therefore, D(A') is a Banach space under
the graph norm.

Clearly, from Proposition 2.11, we have D(A™) C D(A®°) continuously, since = €

D(A™), A* "z € D(A™) using (iii) and
A% = A"A " = AT A = ||A%|| < || AYT||| Az

More generally in this regard, is the following theorem |71, 7§].

Theorem 2.12. Let o = ag + ia1,8 = By + i1 € C be such that By < «ag. Then,
D(A®) C D(AP) and
APx = AP A% Yo € D(A?).

Moreover,

A PAPy = A%, Yz € D(AY), APz € D(A*P),
and the converse is true.

Proof. The spaces embedding is obvious if Sy < 0. Thus, we prove the case fy > 0. If

n > oy and z € D(A%) then A="*%z € D(A") and
ATy = APapTrtag ¢ D(AM)
thanks to Proposition 2.11-(iii). This implies that € D(A%) and
APy = An AP~ Ambog = AP A0y,
Since AP~ is bounded, we have that

1A% < A7 A%



47

holds, so that the first implication of the theorem is valid.

Next we notice that if z € D(A?), and n > max{ag, a9 — fo}, then
AP APy = AT P AP A%y = AT A% € D(A™)

implying
APr e D(A*P) and A PAPr = A%

But as well, if z € D(A?) such that APz € D(A*F), then we have
Aoy — pon B Al — Ao B AT ARy = AT AT B APy € D(AP)
yielding that 2 € D(A%) and A% = A?" A2y = A* P APy, O

A worthwhile remark is that the condition By < «q is essential in the above theorem

when o > 0. In fact, for every ag > 0, a1 € R we have
D(A%) = D(A%TM) — A ¢ £(E).

Now we give some representation formulas for Ax when z € D(A®). First we consider, the

case 0 < g < 1, taking n = 1 in the definition, and we have
x € D(AY) «<— Ay e D(A),

and in (2.17) we get

Av1, — _Sin(ﬂa) /oo ga—l(gl + A>_1$df (2.19)

Q0 0

Therefore,

r € D(A%) — /OO €T + A tede € D(A)
0
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and

avp = - [T e er g a) g
T 0
— 1 > a—1 —1
S e L A AR (2.20)

which is the well-known Balakrishnan formula. Another formula holds for —1 < ag < 1

starting from (2.16) for A~ ! letting # ' 7, then integrating by parts to obtain

1sin(ma ol sm(ﬂ'a)

Aol = / EX(ET + A)2wde —r® (rI+A) 'z
- ;— e (re"I 4+ A)"Ladn (2.21)
™ —T

(with “L(m) = 1if @« = 0) and letting 7 \, 0 we get (for —1 < ag < 1) that

a—1_, 1 > e -2
A = F(l—a)F(1+a)/T E¥(EL + A) "xdE. (2.22)

Therefore, # € D(AY) <= [, €(&1 4+ A)2zd¢ € D(A). In this case

1

AT = ST T o) / £ (ET + A)2ade. (2.23)

More generally, using [79] for n € N*, m € N, —n < ap < m —n we have

I'(m)

At = FNa+n)I'(m—n—a)

-n / - o=l + Ay madg, (2.24)
0

for every x € D(A®). By virtue of the above formulas, we state the following proposition

from [52] Chapter 3.

Proposition 2.13. Let A: D(A) C E — E be such that

p(A) D (=00,0), IM > 0 such that [|[R(X, A)||z(g) < A <0. (2.25)



49

Then,
(B, D(A))g, = {x cE:\— p(\) = N AR\, A)z|| € LP(0, oo)}

and the norms
zllop = llzllg,
are equivalent, where ||z|[ , = [[z| + o[-
More precisely, we prove the following embeddings.

Proposition 2.14. If a =ap+ia; € C, 0 < ag < 1, then

(E,D(A))ag,1 C D(A%) C (B, D(A))ag,00-
Proof. The inclusion (E, D(A))a,1 C D(A®) is easy, because £ > 0

|AETHET + A) Ha|| = €20 A(ET + A) e
and for every x € (E, D(A))q,,1 the function
€ — | A(ET + A)"'a|| € Li(0, 00),

using Proposition 2.13. By (2.20), we get A% 'z € D(A). That is, z € D(A%) and, by
(2.21),

1

> ao L dE
1_a)|/0 E||A(A + <) 1g\|?§0||m||(ED(A))W,

A= T

Next let 2 € D(A®). Then, x = A~% with y = A%, and using (2.22) for A=y = z, we

obtain

_ A o — —92
x_F(l—a)F(l+a)/0 E7 (A &D)Tyde,
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while Proposition 2.13 imply

2]l 2,D(A)0g e < Cla)sup [XCA(A + M)~ |

A>0
)\O‘OAZ(A—F )\I)_l /oo a 9 H
< C YA+t dt
S Cla)sup I = ) + o) ( )
<

A 2
oo M / M+ 1) |yl|ldt +
1+XJo

o 1
ANOMM+1)? [ ————|ly|ldt
=AM 1P [ sl

Cllyl = Cl[A%]|. (2.26)

IN

It then follows that (E, D(A))ag,c0 O D(A®). O

The theory of positive operators can be easily extended to non-negative operators in
the sense of Definition 2.9 in which (—00,0) C p(A) and (2.13) holds with &L, X > 0 as
the estimate from above. See [52] for a treatment of this situation. More delicate for our
immediate consideration is the question of the comment before the Definition 2.11.
Lemma 2.15. Let A be a positive operator such that A € L(E) for every a; € R, and

a1 — ||A*| ds locally bounded. Then, for every x € D(A) the function C 3> z = 29 +iz1 —

A*x is continuous in the closed half-plane zg < 0.

Proof. If x € D(A), then z — A%z is holomorphic for zp < 1, so that it is trivially continuous

for zp < 0. But in the strict sense, it holds that

00 20
|AZ|| < —\sm (7z) / 3
&+ 1
M| sin(mz)|
| sin(mzq)| ’

which implies that ||A*|| < M for zp € (—31,0), and thus, ||A?| < M||A™|. In particular,

for any a; € R and r > 0 sufficiently small

|A" A < ©
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in the half circle {z : |z —ia;| < r,zp < 0}, where the constant is independent of z.

Consequently, for every z € D(A), lim A%x = A1y,

z—ia

Lastly, for this section we give the construction of the Banach scale spaces.

Theorem 2.16. Assume A is a positive operator with dense domain such that for every

a1 €R, A € L(E), and there exists C,~y > 0 such that
i) < Cetlr) oy e R
Then, if o = ag + i1, B = Bo + i1 € C satisfy 0 < ag < Bo, then it holds that
[D(A%), D(AP)]g = D(AU=0+05),

Proof. Without loss of generality, we assume a = 0. Moreover, since A1 € L(E) for any
B1 € R we have D(AP) = D(AP) for By > 0, so that we may assume 3 € (0,00).

Let x € D(A%) and,
f(z) = 0?40y 0 <z <1

To prove that f € F(E, D(A?)), we observe that f is holomorphic in the strip 2o € (0,1)
and continuous up to zp = 1 taking values in E. Since D(A) is dense in E, f is a continuous
function up to zp = 0 with values in E. Indeed, A~(*=98z = A=26A%y and the mapping

v — Ay € FE is continuous for v < 0 for any y € D(A) = E. Similarly, t — f(1 +it) €

D(AP) is continuous. On the other hand,
[ A=C08] = AP A% A% < AP O A%

implying that f is bounded. Therefore, f € F(E,D(A?)), while f(§) = x imply = €

[E, D(AP)]p and

lzlls < max{supret2+92A<“>ﬁxu,supuet2+<1"VA“*“Wocuﬁ} (2.27)
teR teR

C'||A%z|| = D(A%) c [E, D(AP)]y. (2.28)

IN
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Conversely, let 2 € D(A%), f € F(E, D(A”)) be such that f(f) = x. Then the function,
F(z) = e(Z_Q)QAZBf(z) €cE
is continuous for zg = 0,1, and we have

. _42. 92 .
supl|F(it)]| < supe "+ CerMsup || £(it)]| < C'|| fll pm,p(as), and
teR teR teR

sup || (1 +it)]| supe "0 sup || (1 +it)|| < O fll 7(,p(a%))-
teR teR teR

IN

Thus F' is bounded with values in E, for zg = 0,1. If F' was holomorphic in the interior
of S and continuous in S we could apply the maximum principle so as to get ||A%z| <
C'l| fll 7(x,p(asy)- But in general, F is not even defined in S interior, as it takes values in F
and not in the domain of the power operator of A. So we have to modify the approach.

By definition

lzllo = f{|| fll 7(2,p(a0)) : | € V(E, D(A?)), f(8) = }.

Next, define

F(z) = =040 f(2), 0<z <1,

which is properly defined, holomorphic if zp € (0,1) and continuous taking values in E, up

to z =0,1. As it is further bounded, the maximum principle implies that

1A% = || £(9)I] < max{jlelﬂg HF(it)H,flelg IF(1L+it)} < Cllfll 7, p(a9),

where the last estimates follow from ones in above paragraph. The conclusion of the theorem

thus, is obtained through the fact that D(A®) is dense in [E, D(A?)]s. O



Chapter 3

Minimal KS Equation in Bessel
Potential Spaces

3.1 Introduction

Let Q € RY be an open bounded domain with smooth boundary 992 = I'. In this chapter, we
are going to prove the local existence and uniqueness of solutions for the following minimal

prototype of the Keller-Segel models, describing the aggregation of amoebae by chemotaxis;

u = Au— V- (uxVo) in Q x (0,7),

vy = Av — \v + au in Q x (0,7), (3.1)
ou Ov 3.1
% = % =0 on 0f) = F,

u(z,0) = up(z), v(x,0)=1vo(x).

where

u := cell dengity of the amoebae,

v := chemical attractant concentration,
A = rate of decay of chemical,

a = rate of production of chemical,

53
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X := chemotactic sensitivity coefficient,
V. = div,
71 := unit normal vector pointing outwards of T'.

For notational simplicity, we let I =[0,T), I=(0,T).

We will be working in the Bessel potential spaces in L?(Q2) (1 < ¢ < o0), hereafter
denoted by EZ (see Definition 2.8 and (1.1)). The system of equations (3.1) can therefore
be written in matrix form as follows:

U+ AU = Pu)U

5 (3.2)
UW) = UyeE; xE)], B<y<p+1,
where U = (u,v)", Uy = (ug,v0) ", and
(
—-A 0
A = ,
0 —-A+A
(3.3)
-V - (uxV
au
The domain of the operator A in (3.3), denoted by D(.A), is taken to be
D(A) = {U € HX(Q,R?):9;U =0 on D, 1<q< oo} . (3.4)

Furthermore, recall from Chapter 1 that the operator A : D(A) C L9(2) — L9(£2) in (3.3) is
sectorial (CF operator for short). Thus, by the complex interpolation-extrapolation theory

[2, 5, 30, 67, 79|, the scale spaces
a 2a, _ —«
EC = H*9(Q) = (I — A)LI(Q)

are well defined, subject to the boundary conditions, for —1 < a <1, 1 < g < oo.
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Next, we recall the embedding relations for the Bessel potential spaces as in [2, 5, 30,

67, 71]. Suppose that the boundary of Q, 99, is C'—smooth. Then we have that

LP(Q),S—%Z—%, 1<p< oo, ifs—%<0,
H>1(Q) C § LP(Q), 1 <p < oo, it s — & =0, (3.5)

co(Q) ﬁs—%>9>m

with continuous inclusions. These embeddings are known to be optimal. The best space

embeddings constant which we will use relatively often is [27, 91|

2

a N—2a N
(2\/@727 EEN@@; (F(]J\V])> ~ (2(Ne7r)_1)a fl<g<oo, 0<2a< %,
2 2

(3.6)
obtained by using Stirling’s formula for large N, with 1 < p < 0o, and 0 < 2a < %.

With regards to the dual spaces for these Bessel potential spaces, we first recall from
Proposition 2.8 that if s € R and 1 < p < oo, then S(2) is dense in H*P(2). Thus, a
continuous linear functional on H*P({2) can be interpreted in the usual way as an element
of §*(2). Moreover, it is known that the scales of Bessel potential spaces with negative
exponents satisfy H 5P (Q)) = (Hs’p/(Q))*. See [5, 6] for more details.

We can then easily obtain that for s > 0 we have that

Lr(Q), —s— T <-I 1<p<oo, if —s—T>-N,
H™1(Q) D ¢ LP(Q), 1 < p < oo, if —s—==-—N,
< —N.

M(Q) if —s—

Rz alz =

In (3.3), P(u)U is a linearly coupled vector function, with the first entry featuring a
divergence-0 operator acting on a vector field uxVv of concentration of chemicals, while

in the second component we have the productive effects of the amoebae. Note that, from
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the system of equations (3.1)-(3.3), neither proliferation nor death of the amoebae has been
considered!.
It is known that (see [30, 68, 66]), corresponding to the equations in (3.1) are the variation
of coefficient formulae (also known as Integral formulae) given as
t
u(t) = ePlug+ / A= (u(s)xVu(s)) ds,
0

(3.7)

t
o(t) = @ Nty 4 / (A== (5) ds,
0

assuming that they are well defined for given functions u and v, respectively, defined on
(0,T].

The well-posedness conditions for the system (3.1)-(3.3) depend on the three embedding
cases in (3.5). We are going to find conditions for the system (3.1) to be well-posed in the
super-critical case (0 < 2a < %)

Furthermore, we are going to prove the existence of a priori uniform bounds in Q x (0,7")
of solutions and their gradients (3.1). We will then use a bootstrap argument to prove that
the solutions to the system (3.1) are in fact classical.

Lastly for this chapter, we are going to give some highlights on the blow-up dynamics of

N

the system of equations (3.1) at the borderline spaces Ey, a = TR

3.2 Well-posedness of the System

In this section, we will prove the well-posedness for the system (3.1)-(3.3) with the bounded

N
domain Q C R¥ in the Bessel potential spaces EY, where 0 < 2a < —. To this end, we
q

'Refer to the paragraph after (0.1).
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have the following lemma.

Lemma 3.1. Consider the system (3.1) and assume that (1.2) holds. Let o, v € R, o >
%, v < a<vy+1 such that
1 N N
> =4+ — d 2 >14+ —. 3.8
atyZgtgn, and 204y 214 o (3.8)
Ifue EY, veE, then P(U) € Eq_ﬁ as a weak form in the sense given by

(P(U), @)gy = (4XV0, V)gy = X /Q uVoVp €R, Ve ES, (3.9)

is well defined. Moreover,

‘<P(U)a¢>Eg,E;,

9 a+ *%
[, S( > . (3.10)
WPllewy e = |0 u el Ner

In particular, P € Ly;,(Ey, E;,) 18 true.

Proof. Let ¢ € E7 be a test function to the operator —Div(uVwv) in the duality passing of

L1(Q). Using the Sobolev type embeddings (3.5) and Hoélder’s inequality, we have that the

mapping

E] x Ef x Eg 3 (u,v,9) = (=Div(uxVv), p)g ¢ = X/QUVUVSO eR (3.11)

1 _1
is well defined and continuous, since, if v — 3 > 0, then Vv € E; 2 C Eg. Given that
N
q> 20 e have from (3.5) that uVv € EJ. We further see from (3.5), regarding embeddings
a
1
into E; 2, that

1 N—-2vq¢ N —-2aq+q
-2 + & N > 2N —29(a+7v) +gq, 3.12
_x =~ (a+7) (3.12)

1 N
from which we obtain that 2¢(a+7) > N+q < a+v > 3 + 20" which is the first hypothesis
q

in (3.8).
Furthermore, applying again (3.5) and Hélder’s inequality, we obtain that

N*2vq+N—2Q(a—%) +N—2<J’(Oé—%)
qN qN qgN

<1,
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which yields the second hypothesis in (3.8). As a result, we get, by using Holder’s inequality,
(3.5) and (3.6), that

| /Q XuVoV dz| < [ux Vol Velly

2 \* 1
(5)  1Vollaal Vel

, (3.13)

1
a—3
<X (M) el 1703 g1V el

X
2

2\t
X <Ne7r> [ully,qllvllaqllellaq

N[

IN

_ 1

in which we supposed that % = 7

+ p%' Moreover, we get by linearity of the mapping that

it is Lipschitz continuous, and the Lemma is established. O

A worthwhile observation is that the bounding estimate in (3.10) changes with the space

N
embedding E;? C LP(Q) in the critical case 2a = % (see (3.6)). Furthermore, the yielding

condition in (3.8) is a special case of the condition

1 N/1 1 1 N/1 1 1
+<+—><6+7 and 1—|—<—|——><25—|—’y, (3.14)
2 2\¢ p p 2\q¢ p »p

pertinent to initial data spaces in all different exponents, implying Po = P : E] —

E.’, Po € Lip(E}, Ey), and (3.8) is obtained when p = ¢. Since v > 3, 8 < 1, the
condition (3.14) yields Young’s inequality for convolutions, and p > ¢, p. Furthermore, the
sharp optimal Bessel potential space inclusions (3.5) are verified, with p = p.

Following from Lemma 3.1, we have the main result of this section as the following
Theorem.

Theorem 3.2. Suppose that for the second equation in (3.1), u € L"(f, E(‘;‘) forl1 <o <o

andOg'y—a<%. Then
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(i) we have that

ve O EN)NCO(L E))n O ESTY n e EY ), (3.15)

for any ' < a+ %, a <y < a+ 1. Furthermore, since the operator in (3.3) is a C
operator, we have that u € L7(0,00; EY), v € Lo(0,00; E]), a < v < a+1, for any
a €R, and

limsup [lully =0 and limsup|[Vv|,_1 =0 (3.16)
t—00 2

t—o00

hold.
(ii) If Lemma 3.1 holds, then
we C(LEH)NCI E))nC(L EFYnCN (I EY), (3.17)
for any v < B+ 1.

(iii) The evolution equation (3.2) admits a unique global strong solution given by (3.7), and

the converse is true. Furthermore, if

2x+a 2 at5—3
1 al
. ( Nm) <1, (3.18)
then the complete system differential operator
. —A V(oxV-
A—P(¢) = ( ) 2ot Z e (3.19)
—a —-A+4+)

with 8 < a < v < a+ 1, defines a perturbed analytic semigroup in Z§+a, and the

global asymptotic dynamics satisfy

lim sup || (w(t), v(t)) " laty = A* € M U{0}, (3.20)

t—o00

where M s the limit set

- T
M={AcR*: A= (a%’uo, \Q!m) 1 (3.21)
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which corresponds to |2 L'—spatial average solutions to the system of equations (3.1)

in the distributions sense.

(iv) The global solution in (i) is a classical solution.

We remark here that (3.18) has been shown to hold even using numerical experimental
data (see [50, 87]). Before we give a proof for Theorem 3.2, we state that with the integral

formulae (3.7) in mind, we have the following definition:
Definition 3.1.

(i) If u € Lo°(1, Eg) for 1 < o < oo, then a function v is a strong solution if it satisfies

(3.15), (3.7) and (3.1) in distribution sense as an identity in Ef'.

(i) A function u € EJ is a strong solution if (3.11) is verified and well defined in E{, with
0 <a—7<1,and (3.17) holds so as the equation in distribution sense as an identity

in E
in By.

(iii) If (i) and (ii) above are satisfied, then U = (u,v)" is a strong solution to (3.2), and

the equation is verified in distribution sense as an identity in Zg™" = E$ x Ej.

We are now ready to give the proof for our main result.

3.2.1 Proof of Theorem 3.2

The proof of Theorem 3.2 will be given in steps. Firstly, we observe that in (3.15)-(3.17),
the initial smoothness of solutions are due to the fact that the analytic semigroup (1.3) is
also a C”—semigroup, and hence [67, 68] yield the assertions using (3.7).

We also have, using the second integral formula in (3.7), and the estimate in (1.6) for
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’y:aifazl,orforOS’y—a<%if1<a§oo,that

t
@l < e Vgl +a /0 [ ANy (s)]] g

t
< Mt(Va)Hvo\a—l—Ma/ (t = 8)~ 0~ |[u(s) o ds
’ ¢ L ¢ L
< M[t_”_a)HUoHaJra( [e=srom ds> ( / ||u<s>r\3ds) ]
0 0
L’
<

)

(r—a 1 7 L (y—a
M[t G )IlvoHa+a<10/(7a)> t7 =N u(t)l| e 0,1 )

where the second inequality above is obtained from (1.6) and the third one from Holder’s
inequality. This means that v(¢) is bounded on finite intervals away from ¢ = 0, and
v(t) € Ey for t > 0.

In particular,

[[v[lyy—a = sup t77*|lo(t)[],
te(0,T]

IN

a1
sup t7TM {t_(v_a)HUoHa‘Ft"’ 3 Oé)Hu(75)||L<7(0,T,E3)
te(0,77]

1
= suwp M [Joolla + 7 [u(t) 2o 07,55
te(0,T]

< O (Ivolla+ lullzoomy.5))

for some C' > 0, which proves that v € Eg‘ia(f, EJ).
To prove continuity, fix t > 0 (or even t = 0 if vg € EJ), h > 0. Then, from the second
formula in (3.7) we compute

t+h
o(t+h) —v(t) = eB V) —u(t) + a / eBA=NEFh=8)y,(5) dis,
t
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so that, when we take the norm, (1.6) gives

lo(t + k) = v(®)]ly < [[eBVPo(t) — v(t)]
t+h (3.22)
+aM/t (t+h— 5" u(s) o ds.

Now, as h — 0, el Nhy(t) — v(t), and thus the first term goes to zero. By the Hélder’s

inequality, the second term is bounded by

t4h / 7 ptrh g .
M(/ <t+h—s>—“<v—a>ds) (/ ||u<s>||gds) < My or(oao [ulloahi =0,
t t

which also goes to zero as h — 0. Hence, continuity of the v—solution component follows.

Next, for any «, v € R such that o <~v < a+ %, if we let
Can(t) = BV € LH0, 00),
then it is not bounded at ¢ = 0, unless a = . Also, if 0 = 1, we let

t
o) = [ 4 as

then, since

(A=A (E=5)y, 0 ¢ L0, oo; E]),

provided that vg € EJ, we only need to prove that ¢(t) € L'(0,00; Ej). Thus, if s = tp for

p € [0,1] fixed, then we get

o0, < [ o, do= [ [ @00ty a
< [ [ Beantet =0 o), drds
e

([T cantras) ([ et ar).
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following other changes to the time variables r = tp, s = r (1_7’7), then integrating with

respect to p. It then follows that

[o@l1, < ey @l lTvolly, + lleaq ()1l lu()l1q -

Note that for o = oo the second term in (3.22) is bounded by

t+h 1
aM (HU(t)||L°<>([0,T],Eg)> /t (t+h— s)’”’a) ds < Mi_gr(y—a) |t cc,ah —(y—a)

If 0 <~ —a <1, then we have continuity. The rest follows by using interpolation, thus, the
second from last result in (3.16) is valid.
Furthermore, we note that if we apply V to the second equation in (3.7) and take the

norm in vy — %, we get

t
IVoll,_s < IV (B Moo ) ll,_ +a [ IV (BN Du(s)) |1 ds
2 2 0 2

t
< Mt~ gl + M“/ (t =)0 u(s)lla ds
0

=M [tha)HUoHa +a </0t(t — )~ ds) 7 (/Ot ()| ds> rlf] (323)

ol 1 —a
<M [t‘”‘a)llvoHa +a< > tor 0 )Hu(t)HL”(O,T,Eg)] :

1—0o'(y—a)

N
2q°

then v — % > «. This implies that Vv €

since (3.8) is assumed so that if @ >
y—1
L2 (0,005 g 2).

If we then consider the first formula in (3.7) and set h(t) = t7~¢ HVUH,Y_%, then we have

[l

IN

t
Mt=07 gl | + / Vet (wevv)(s)lly ds
0

IN

t
ME O uolla 43 [ (¢ = 5)7 4@V ds
0
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(v=8) 2 )
< MO M
< Mt [uollg + x <N€7r> 8
t
I OV
« /0 (t = 5)72 =0 u(s)|4l| Vo(s)]l, 1 ds
B 1

2 \7tz2732
< M0 M\~ —
< Hu0||/3+X <N€7T) x

t
« /0 (t — )3~ 0~n(5)5~ 0 lu(s)] , ds

N

(-5) 2\
— MO M 3
fuolls+ M (=),

where & = fg(t - s)_%_(v_a)h(s)s_w_a) |u(s)||g ds. If we then make the change s = pt in

the time variable, then we see that

1
1, , 1 o
® < sup h(t =o' (GHr—a)—a’ (=) d w
< sup <>< / e ) %) e
1 1
< t=(3120-2) gup h(t / do | ||u
= up (|, (1= p)7 G- o' ma) |

1 1
< t~(3T0—a) gy Vv / d U )
>~ t>IO) || H’y—% 0 (1 _ p)al(%+7_a)p0’(7*a) p H Ho’,a

It then follows by a backward substitution into (3.24) that limsup ||ul|., = 0. If we then
t—00

(3.24)

o,x

allow the exponential decay effect of the semigroup (1.4) in the norm estimates of (3.23)
and let o = 0o, we conclude that the last statement in (3.16) is valid. In fact:

e—wt

[e.e]
lim sup ||Vv <aM / dt | imsup ||ul| , = 0,
msup Vol < anr (([7 5 ZCat) tmsup

from which the result follows.

To complete the proof of (i), we need some extra results on (ii).

Lemma 3.3. Let u € Eg be as given in (3.7). Then u € C*

loc

(0,T; Ey) is of erponent

E=v—a€(0,1). That is, it is Holder continuous in time.
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Proof. Let 0 <t <t+ h <T. Then we have that

u@+hy—mn:@%h—n&%m+/ﬂéw—1mNt@vm@mvmﬁ)@+
0

t+h
+/ eAHh=9)7 (u(s)xVu(s)) ds,
t
Now, by virtue of Lemma 3.1, taking 8 = «, and taking the norm of E on both sides,

and estimating, we get that
t
Jult + k) — u(®)]l < (A — De uglla + / (2" = DAt (u(s)xVv(s))llads-+
0
t+h
*/ A=V (u(s) XV (s)) | ads
t
t
< Myl |t |+ My + /0 19 (u(s)XVu(s)) s+
t+h
[ 1AV e Tu(e)ds
t
t
< Mo MIT2 40 |[ug|. + M, o M / (t— 5)~3—0ma)y
0

t+h
xHM@VWQMﬂs+MM/‘ @+h—sré+wwnmgvugmds
t

~(3-a) 2\ -

< My gl () Mt
t

< [ s sl Vo) dt
0

2 ’Y+§*% t+h 1 :
_= i -(y-a
et () [ 0 ), 1),y ds

9 \7+532 .
< | Myt 07 Huoua+x<zvm> My—oMy(—at' 0"+

2 \7ti 2
B
+ X (New) My (y-a) t:(%%) {Hu(s)Ha HVU(S)H,Y_%} 7

which thus furnishes the desired Holder continuity of the u—integral solution form in (3.7),

and thus the proof of the lemma is complete. O

Lemma 3.4. Consider the set

te(0,T)

Wﬁz{wGCXLEﬁr wp!¢@WWSCW¢ﬂ5}a (3.25)



and set the left-hand side of the first equation in (3.7) to F(u)(t). Then
(i) F(W) c W. That is, F maps W onto itself.

(ii) The mapping F : B — E, is a contraction.

(iii) There exists a unique v € W such that F(u)(t) = u(t) is a solution to (3.1) up to

mazimal time T (|luol|5) of existence of solutions of (3.2).

Proof. We first note that we can read the right-hand side of (3.7) in taking the norm of

E, = Eq/B x B ~# asin the scale spaces product, whereas, by virtue of Lemma3.1, we have

that uxVuv is well defined in Eg = [9(Q). Therefore, if u € W, then we find that

t
[F @) @), <M lluoll5 + M/O (t =)= Jux Vo, ds

Thus, for

[

_1
2

2 v+ t 1
<Ml tx (50 ) M [ €= 0l Vel _y as

2 v+
< M fuolly + M€ (o) s 19,y ol %

te(0,T)
t 1
X / (t—s)"2" 0 Fgs
0

[Slje
N

2 " Ll (N
< M luollg +xMC (New) tes(%%)”Vva_% ol 3 73~ CF),

2
_ ( 1 1) 1 < 2 >”JB R
M C) xsupeqor) [[Voll,_1 \Nex ’

we obtain that (i) is satisfied.

To prove (ii), we let uy, ug € W. Then, for 0 < ¢ < T and using the same initial data,

we have that

[ F (un)(t) = F(u2) ()]l

t
12~V (ug x Vo — uax V)|, ds

IN

¢
0 . 1
< M/ (t — 5)757(7*’8) | (ur — u2>XVUHﬁ ds
0
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2\ 3—(r=h)
s M t— 5750 |luy — ua | | Voll,_1 d
= X <Ne7r> /0( s) lur — sl [Vl _1 ds
B_1
2 \""z7r
< xM (N ) Tz~ sup IVoll,_1 sup [lur —usf 4,
r t€(0,7) 2 te(0,1)

so that for

2

< 1 ( 2 )12§ﬁ 1=20=)
X supeo,r) [IVoll,—1 \ Ner ’

we have that F is a contraction on W.

Thus, viewed together with (i) of this lemma, by the Banach Contraction Mapping
Theorem (Theorem 1.1) and Picard’s method, or classical continuation allows the extension
of the finite existence time to maximal time 7" = T'([[uo| ), yielding the last assertion of

the lemma. O

It now remains to prove (iii) of the theorem. For this, we observe on the smoothness
of solutions as given in the theorem, that (3.15) follows by [30, 67, 68]. Since (3.3) is a
C* operator, and Lemma 3.3 holds, u(t) € L"(f; Eg) is Holder continuous. Consequently,
linear non-homogeneous evolution equation results imply the time regularity of the solution

component with even 7" at co. In a similar manner, writing the weak form (3.11) as
ft) = ((uxVo)(t), Vp)g,y for any € EJ, (3.26)

we conclude that (3.17) also holds, because Vv € EZ_% is bounded, and by Lemma 3.3,
u e C&(I; Eg) for 0 < € =~ —a <1, as a result, imply that (3.26) is Hélder continuous
in time. We therefore get by Lemma 3.2.1 and Theorem 3.2.2 in [30] the existence and
uniqueness of the solution to (3.1)-(3.2). The converse to the fact that the solution is given
by (3.7) is given by Definition 3.1.

To prove the generation of a perturbed analytic semigroup, we have the following lemma.
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Lemma 3.5. The operator in (3.19) is an infinitesimal generator of a perturbed analytic
semigroup in scale spaces Z(?Jra, and the strong solution of the theorem coincides with that

generated by (3.19).

Proof. We firstly observe from what has been proven up to now that v € L32 (0, T; E))
and liiri}suptvfo‘ lo(®)[l, < M [lvoll, using (3.24) with o = oo, while still with (3.24), we
oo
obtain liﬁsup B, <M |uoll5, and the assertion should follow. More precisely, to
o0
complete ideas, we prove that (3.19) is well defined, continuously, coercive, strictly monotone

and is a sectorial operator in EJ = L1(Q).

To this end, define b : Zf“" X Z§+a — R by

b(U,T):/VUV<,0+>\/v<p+/VuV1/J—X/quV1/J—a/u<p, (3.27)
Q Q Q Q Q

where Y = (¢,%)", and note that since Lemma 3.1-(3.8) is assumed, continuity of the
mapping (3.27) is clear. We therefore need to prove only the coercivity, (since to apply
Browder-Minty theorem strictly monotonicity can be easily deduced).

Thus, taking T = U, we find that

o+
0.0 2 Vel y + 190y = x (5 ) Bl Vol 19l +

a a
AMol2 — E 1l — 212
M = 5 ol = 5 ol

B_1 B_1
% 2 \%tz72 5 X 2 \¢T272 4
>(1-= \Y 1-= - —
- ( 2q (Nm’) ) | UHO‘_% + q \ Ner 2q .

a
IVully + (A= 5 ) 1ol 325

X
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implying the coercivity of (3.27), using (3.18). Thus, (3.19) is uniquely invertible using

Browder-Minty’s theorem, and is a sectorial operator in Eg >~ [9(9), since

|a+m—pw)|,

(A+,u)_7f~’H = sup
H 0 U|<1 U1l

%0)

C 2\
< =
- ot <Nee7r> ’

for any 0 < y < 1 satisfying Lemma 3.1-(3.8), for some C € R*\{0}, |[r—argu| > 9, ¥ < §,

C
< —(a+|P|
u"/

and the conclusion of the lemma is obtained using Corollary 1.4.5 in [30]. Clearly, (3.21)

and (3.16) imply (3.20). So, the proof of the lemma is complete. O
To complete the proof of part (iv) of the theorem, if suffices to note that since 'y—% > 2—]\1/;,

_1
we have E, 2 € L>®(Q) by virtue of (3.5), and Theorem 3.2-(3.16) imply that Vo € L°(Q)
is bounded for all ¢ > 0. Asu € Eg = L9(9), ¢ > % and 1>~y — % > 2%, viewing the weak
form (3.26) in L7 as well as the equation in elliptic form by passing u; to the right hand
side, using [67], we get u € L*°(Q2) is bounded for all ¢ > 0. The rest is trivial or immediate.

Thus, Theorem 3.2 has been established.

3.3 Uniform Bounds of Solutions

In this section, we study the existence of a priori uniform bounds in Q x (0, T") for solutions
to the system of equations (3.1)-(3.3), and hence, proving an alternative to part (iv) of
Theorem 3.2 without using the space embeddings. We will be using the Moser-Nash-De

Giorgi technique [3, 77, 44, 67|, as illustrated in [87]. Thus, we have the following theorem.
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Theorem 3.6. Suppose that the minimal condition (3.8) is attained strictly. If 8 =0, then
U = (u,v)" € L™((0,00; L®(Q) x Wh(Q)),

SUD U113 o < M (707 ugll, 4+ Jfuolly) + . (3.29)
t>0 T
and the solution semigroup to (3.1) is a classical solution semigroup.

1
Proof. Let’s assume that ug = 0 and let % <q<N, |[ul""?u € E} = H(Q). Then we get

from the second line from above of (3.13) and [30] Gagliardo-Nirenberg’s inequality that,

s [ 2 Lo = [ wvewupu)

—1
(q—1)x / Volu]t v = 24D / 3V |ul3| Vol
Q q Q

1
2x(g—=1) [ 2 \1 ‘ g ‘ a )
q Nem va”“’?“( : 2 ’ 2

IN

1
2x(g—=1) (2 \* iz
<
- q Ner Vol Ne7r X
__N_ .
<ot ¢ f)
Q
1
2x(q — 1) 2 2 N+2 Lz
<
it -

1
2x(q—1) (2 \* H
+ . Nom IVl o0 ||V

After multiplying throughout by ¢ and using Young’s inequality, we get that

1
d 1 g 2 \2
— q _ 512 < 2
dt/QM +q,/Q|V|u\2| < (New) ( N+2>/|V!u| 12+
2
+ ((2qx IVl 00) V2 + (20x ||W||OO,OO)2) </Q |u%>
1
2 \2 N .y ,
< -
- <Ne7r> <1+N+2>/Q’V|u|2] +(2XN||VUHOO,OO) X

< (14 ") (/Q|u\%>2,
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where we have used the fact that for T >> 1 sufficiently large, ||Vl so.00 K 1 s absolutely
small.

Thus, on setting

q Nem N+2
we get
d N 0\?
[+ [ i< Cot+a ([
dt Jo Q Q
2
= [1ulr < Cott+ s ([ 1ult)
Q >0 \JQ
Consequently,

1
Alp) < [Ca(1+g)"]7 A (g) , Vg=2.
If we let ¢; = 2, i € N*, we conclude the following;

A@) < CRFIA+2)@ AR <. <O (14202 (1422 VAQ)

< Cq 21'2—1'1\{(2—@')2—1'1\[} [22—1N(2—1)2—1N] A1)
N Z K2~k N Z 2k

< Cq2 =1 x2 k=1 A(1)

< Co22NA(1).

Thus, taking the limit as ¢ — oo gives
|w(t)]|oo < Ca2VA(1) < Ca23V|jug||1, < oo. (3.30)

In what’s remaining of the proof, we write u(t) = 11(t) + 12(t), where 1 (t) verifies the
homogeneous equation in (3.1) with u(0) = ug and 2(¢) verifies the non-homogeneous
equation with ug = 0. It then follows, by (3.5) and (1.4), that ||¢1(t)],, < Mt |luol|, for

all ¢t > 0, while (3.30) implies that [[1)2(t)||,, < C. Thus, we obtain [Ju(t)||,, < Mt~ |juol|,+

loo oo

C, with o = 2—]\(;, and combining with the v—solution gives (3.29). O
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3.4 Blow-up Dynamics

In this section, we give some highlights on the blow-up dynamics of the system of equations

(3.1) at the borderline spaces Ey, a = 2—]\2. To this end, we first notice the stationary

equations to the system can be derived as the limit process at time co, to the Lyapunov

function
J(u,v):/ulnu—x/uv+X/(|Vvq—|—)\|vq), (3.31)
Q Q aq Ja

using [30] La-Salle-Hale-Henry invariance principle. For the following Theorem, let wy_1 =

N
2m 2

x denote the measure of a unit sphere in RV.

—
»

Theorem 3.7. The dynamical system defined by the equations (3.1) accepts the Lyapunov
function (3.31), and (5.22) is verified at T = oo, with, if the initial data is in spaces

1 N
7 722ﬁp
Ey, a= % such that x > XN, = (UJ]{]V_l) ’ [ﬂr(zvzza(’)g)] , then

1(u,0) T lg+a =00 for any t € (0,00).
That is, the system solution semigroup blow-up independent of time.

Proof. To show that (3.31) is a Lyapunov function, we take the dual spaces product in (3.1)

with Inu — xv € Eqﬁ, as a test function, in the u—equation, and let v, € Ey, to find

= Jmes [ fwe x|
= wulnu+ [ ur—x | wv—rk [ vput
dt 0 Q Q Q
+X (/ V|7 2VuVu; + )\/ |v\q_2vvt>
a Q Q
:/ut(lnu—xv)—x/ lug |2
Q a jo

:/V(Vu—xqu)(lnu—Xv)—X/ |vg|?
Q aJjqo

=— / (Vu — xuVo)V(lnu — xv) — X/ lvg |
Q a Jo

=~ [ulvnu— o) =2 [ julr <o,
Q a Jo
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having used the dual space function characterization for functions in L7, and the fact that

/ut:O, V(lnu—xv):u<vu—xvv>,
0 u

to yield that (3.31) is a Lyapunov function for the system of equation (3.1). The proof
asserts that it decreases along trajectories of the orthogonal to constant solutions of the
equations as time increases to infinity.

To prove the blow-up of solutions, we note that (3.28) holds using the best constant of

the inclusion Ef, o= % in (3.6), while, associated to (5.22) is the energy functional

1 A
B() = LIVl + 2ol i ([ ) >0, (3.32)
q “72 q 0

Consequently, (3.28) yields

WU,U) 2wl Vullf_y + o (/Q eX”>

using the second embedding condition in (3.6), implying the conclusion on taking U €
Eg x Eg as a test function in the complete system of equations (3.2) then integrating in
time ¢ € (0,7") using a reduction to absurd argument.

In fact, supposing that the conclusion was false, it would follow from

d d Y
_ p o ! °
0 = ZIUIG0+b(0U) > UG o +wl[Vullf_; + =n </ﬂ e >

t
< Uslle, > 1|U||” ,u/l / xv ) g4
:OO’

t
s (o)
w Jo Q

using [46, 91], that we have the contrary to the premises holds since the norm HUngJra =
lvoll& + Hu0||% is finite. This imply that the assertion in the theorem is valid.

For an alternative, much fine approach, see |26, 36], which can be adapted to our situation
from their results in the case of Z,43, o = f = %, q = 2, using the Lyapunov function
(3.31), embedding into Orlicz spaces [23, 61] and properties.

The proof of the theorem is complete. O



Chapter 4

Attraction-Repulsion KS Equations
in Scale of Hilbert Spaces

4.1 Introduction

In this chapter, we study the well-posedness and asymptotic global dynamics in scales of
Hilbert spaces E4 a € R defined by the non-coupled system partial differential operator
of the following chemotaxis system of equations modelling the aggregation of microglia
in Alzheimer’s disease. The treatment which we will give in this chapter is that of the

Attraction-Repulsion equations of the following form.

U+ AU = P)U,

UO) = UyeEPxEYxEV,B<y<fB+1, (1)
where U = (u,v,w)' with components holding the following meaning
u := cell density of activated microglia,
v = chemical concentrations of attractant, (4.2)
w := chemical concentrations of repellent,
(4.3)

74
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—d1 A 0 0
A = 0 —doA+ X 0 )
0 0 —d3A + A3
(4.4)
—Div(ud(Vv, Vw))
PuwU = asu . d(Vv, V) = x2Vo — x3Vw
asu

\

Here, d;, \j,a;,x; € RT\ {0},4 =1,2,3 = j # 1 are all different constants of biophysical
importance, with the following meanings,

dy := motility coefficient,

d; := diffusion coefficients,

X2 := chemotactic coefficient towards attractant,

X3 := chemotactic coefficient away from repellent, (4.5)

Aj := rates of decay of chemicals, and

a; := rates of production of chemicals.

Let © be a smooth open and bounded subset of RV with boundary 9Q = I'. We consider

as domain for the operator A in (4.4) the following:

Z1 dlaﬁzl
D(A) = 29 € H*(Q): o529 =0 on T}, (4.6)
23 d30523

where 7 is a unit normal vector pointing outwards of I'. Still in (4.4), P(u)U is a linearly cou-
pled vector function, with, in the first component, featuring a divergence-0 operator acting
on a vector field d of concentrations of chemicals, and in the second and third components,

the productive effects on activated microglia cells.
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In this chapter, we prove, in twofold, that the model system of equations (4.1)-(4.4)
partial differential operator is an infinitesimal generator of an analytic semigroup acting on
Uo € Zs—pioy = EP x E7 x EY, where E“, o € R are scales of Banach spaces in L?(1)
defined by the operator in (4.4). In this context Section 4.2 gives some preliminaries, in
addition to the ones given in Chapter 1. In Section 4.3, we prove that the system model
equations (4.1)-(4.4) defines a perturbed analytic semigroup to the semigroup generated
by the operator —A, using abstract semigroup theory results for evolution equations from
[30, 60, 66]. Section 4.4, is devoted to proving the existence of a priori uniform bounds in
2% (0,T) of solutions and gradient solutions to the problem. It concludes using a bootstrap
argument in proving that the solutions to the problem are classical solutions. In Section 4.5,
we revisit the complete system of equations coupled partial differential operator (i.e. in (4.1)
we consider the contribution of the term P(u)U of (4.4) appearing in the left hand side of the
equations), to prove that it is an infinitesimal generator of a fundamental solution operator
in scales of spaces Z5,d € R™, in as given by quasilinear partial differential operators. Since
we are considering positive time, the results agree with and are much finer to those of
Section 4.3. An immediate consequence of our results is that the large time asymptotic
dynamics of the system of equations (4.1)-(4.4) are well-defined and captured by a subset
K in R3 of spatial average solutions. This conclusion coincide with other well known results
[53, 88, 59, 64, 76] related to the minimal chemotaxis model or Keller-Segel chemotactic
problem.

In appreciation, the results of this chapter imply nonlinear diffusion, proliferation and

death of cells can be incorporated into the system of equations. A proposition which agrees
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with the study given in [57], we suppose also that this citation is among others. In Section
4.6, to visualize the aggregation of microglia as in the model equations, we numerically
simulate the equations using a Gradient Weighted Moving Finite Element method. For the
simulations shown in this chapter we use the code developed in [81] using a set of model
parameters found in [50], where the parameters used there are calculated from dimensional
values found in Biology, Immunology and Neuroscience publications referenced therein. In
Section 4.6 we discuss the results of the numerical simulation.

Lastly, we point out that throughout the chapter we work in a slightly general set-up.,
i.e. without loss of particularity, we do not immediately assume positivity of the initial data
to the system of equations, which naturally imply positivity of the solutions. If positivity
of solutions is assumed note that most of the calculations in Section 4.4 are very much

simplified and are relatively easier.

4.2 Preliminaries

Now for a brief review of the functional setting. To this end, clearly by Lax-Milgram’s
Theorem [12, 70|, A in (4.4) is a maximal monotone, self adjoint, sectorial operator in
L?(2) with spectrum
3
o(A) = Jo(=diA + Xi) = {m;n € N} CRT, Ay =0, (4.7)
i=1

such that

O<m <pe<...<pu, oo as n oo, and 0 € o(A). (4.8)
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As p € o(A), if for some i = 1,2,3 = j # 1, p € o(—d; A + )A;), we can choose associated
eigenfunctions

On = n €, where {é;i=1,2,3}C R3 (4.9)

is a canonic basis of R?, orthonormal in L?(2) and a Hilbert basis of this function space.
Thus, by [5, 30, 60, 68| the scales of Banach spaces E*, a € R are well defined. Note that
the spaces E% a € R~ define the dual spaces of the scales of spaces E% a € RT, and in

equivalent of norms, we can identify the spaces
E'=D(A), EY?=HYQ) and E°=L*Q), E'Y?=HYQ).

In general, E% =2 H2%(Q) and Sobolev type space embeddings [2, 10, 12, 25, 30, 68, 60],

< ™ ifN=1
E*CL'(Q) < r < o0 it N =2 (4.10)
2N
are satisfied. Also,
a 0 N

E*CC’(Q), 0€(0,1) <— 2a—§>6. (4.11)

In addition, it holds that for any «, 5 € R,
if > 3, then E* C EP (4.12)

continuously, densely, compactly if & > 3, and constant of the inclusions is as given by (3.6).

Furthermore, if a, 8 € R and 6 € [0, 1], then for every u € E7, v = max{«, 5} we have

lullata-oys < llulllull™: (4.13)

Next, for every a,e € R, A° : B¢ — E% is a surjective isometry with (A%)~! = A~¢.

Moreover, for every o, 3,7 € R, A*AP = A**8 as operators between the spaces E*TA+7
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and E7. In particular, for every § € R we can define the §— product
oo
<< U,V 5= Z 11 Uy (4.14)
n=1

for every e € R, u € B¢, v € E¢. Clearly, if oo 4+ 8+ 2y = 4, then for every u € E**7 and
= Eﬂ"’"V}

<< u,v ==5= (A%, APv),

and the 0— product describes all the dualities between the E* spaces, while the §— describes

among others the scalar product in F 3 Occasionally, we will use the notation
Zs = EOTPT = poty « BT = B x BP x B

If there is no confusion caused we will simply write ¢ € E* with understanding that Vo €
E“ whenever its derivatives are involved.

Now, recall from Chapter 1 that the operator —A generates an analytic semigroup
{S(t) = et e RT\ {0}} (4.15)
in spaces % a € R. We refer the reader to Section 1.3 for more on analytic semigoups.
Getting, back to (4.7)-(4.8) since 0 € o (A), if we take V = (1,1,1)" in (4.1)-(4.4) as a
test function, then integrating over Q followed by over (0,t), we get as t ,* oo that

U= (u,v,wex;:{<¢,¢,¢>ew<m13; [ dz = [ o0 19260

a2

as —
I ooy < (52 +52) 19030} (4.10)

which turns out [67, 86] to be a closely approximate limit set for the long time asymptotic
dynamics of the system of equations in large diffusion. Throughout this chapter, all generic

constants will be denoted by C' > 0, unless a distinction is necessary.



80

4.3 Well-posedness of the system of equations

In this section, we first recall some abstract analytic semigroup theory results proved in
[30, 51, 68, 60|, in addition to the ones stated in Section 1.3. We will then prove the well-
posedness of the problem (4.1)-(4.4) in the product scales of Banach spaces Zs,d € RT. To

this end, consider the Cauchy problem

(4.17)
p(to) = o€ EP,

where f : [to,t1) — EB B e R, and A is a maximal monotone, self adjoint and sectorial

operator with compact resolvent in L?(€2). Then we have the following definition.
Definition 4.1. If ¢y € EP, o(-) is a strong solution of (4.17) on [tg,t;) if and only if
@ : [to,t1) — EP is a continuous function satisfying that ¢; € E?, o(t) € EFT! on (tg,ty),

©(to) = @o and the differential equation in (4.17) is verified on the open interval (t,t1) as

an equality in E®, 8 € R.

The well posedness of the evolution problem (4.17) is given in the following theorem.

Theorem 4.1. Consider the Cauchy problem (4.17), and assume that f € LP(tg,t1, E®),1 <

p < 0o. Then, the solution to the problem (4.17) given by

t
p(t) = e A1) g + / e~ A=) f(s)ds (4.18)

to

satisfies that

(i) ¢ € C(to,t1, EY) with v < 5—1—1% where %—i—l% =1. If po € E7, then ¢ € C([to,t1), E7),

and the mapping
EY x LP(to, t1, E®) 3 (o, f) = ¢ € C([to, ta]; E7)

1s Lipschitz continuous.
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(ii) For any B € R and v € [8,8+ 1), the mapping
E7 x LP(tg,00, E?) 3 (o, f) — ¢ € LP(to, 00; E7)
1s Lipschitz continuous. In particular, if p =2, and v =5+ %, then, the mapping,

B3 x L2(to, t1, EP) > (g0, f)

— (¢r01) € (Cllto, ta), B73) N L2(t0, 11, B7) ) x L(t0, 11, EP),
is continuous and the problem (4.17) is verified almost everywhere on (to,t1).

(iii) If f : (to,t1) — EP is locally Holder continuous of exponent 0 < @ < 1 and if

to+p
[ 1) sds < e, for some p >0
to

then ¢ in (4.18) is a unique solution of (4.17) such that

v € C([to, t1), B°) N Cto, t1, BT N Cl(to, t1, EY)  for any v < B +9.

Proof. The proof of the theorem is classical [30, 51, 60, 68|, with of most recently in [51]
where Bessel potential function spaces have been used.
Thus in the case of (i) if we consider the formula (4.18) and let v > 3, then in estimating

from above we get that

t
IOl < e gall + [ eI, 1l
0
where ||e=4(=)||5., denotes the norm of £L(E®, E7). Since

M
—A(t—s) -
”6 HBv’Y S (t _ S)fy—ﬁ

on finite time intervals, it follows, with vy =g ifp=1or with § <y < 5+ 1% if 1 <p< oo,
that
: v
—A(t—
lo @)l < lle™ |, + b(t) (/t ||f”1/;’>
0
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where

|~

t 7
b(t) = M ( / (t— 3)—p’(7—5)d5>p ot —0B)

to

So (4.18) is bounded on finite intervals. Consequently, ¢(t) € E7 for any t > 0. To prove

the continuity, fix t > ty (or even t = tg if 9 € E7). Then

it + ) - o(0)],
Ah bt A(t+h
< (M=) el + [ e

B llf ()l pds.

Since the linear semigroup is continuous, we have that
I (e_Ah - 1) M)l =0 as h—0,

while also

t+h Altih
/t e~ ACH=5) | £(s)| s

1 1
t+h o t+h >
< M </ (t+h— 8)—p’(w—ﬁ)d5> : (/ ”f,g> " o(hﬁ—(v—ﬁ))7
t t

and we obtain the continuity of (4.18). Furthermore, if @9 € E7, then we have

le @l e < 0t1) (I90lly + 1l oo, )

which proves the Lipschitz continuity of the mapping (¢, f) — ¢. The proof if p = c©
follows the same lines with obvious modifications and therefore we shall skip it.
To prove (ii) of the theorem, note that for every § € R and v such that 5 <~y < 5+ 1,

we have that,
Me !
By = t'yfﬁ

cgA(t) == He_At
and cg,(t) € L'(0,00) but unbounded at zero, unless v = B. Let p = 1, ¢y € E? and
f € L(ty, 00, EP). Since

e~ A0 oy e LY (tg, 00, EY),
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we just need to prove that

Y(t) == / t e~ A=) f(s)ds e L' (tg, 00, EY) = Z.

to

To this end, we set s = (t — tg)o + to, to get that

1
w(t) = / e~ AU—10)1=0) £((¢ — t0)or + to)(t — to)do.
0
Therefore,
1
|¥lz < / le= A=) £(( — to)a + to)(t — to)|| zdo.
0

But for any fixed o € [0, 1],

e AE=0)0=9) £((t — tg)o + to)(t — o) 2

— / e~ AC—0)0=0) £((  to)o + t0)(t — to) | dt.

to

Therefore, setting r = (t — tg)o + to, we find that

e \z<// e (-0 (50) ) 150 lsare

o)

Again, letting s = (r — to)( , and integrating over o we get that

ool < ([ eantoras) ( I 10)lsar).

lellz < llesqllillvolly + llesa Ll o 00,29,

yielding that

where (0,00)» and the result is proven.

The case of p = oo, follows exactly as in (i), thus we have that

+ HC;BWHlHfHLN(to,oo,EB)-

HSOHLOO(t(),OO,E"/ =

Note that, in fact it holds that ¢ € Cy([tg,0), E7). Now from what is proven above, we get
by interpolation that the results are valid for any 1 < p < oo. We skip the proof of (iii) as

it is exactly as in [30, pp. 50-52|, with which the proof of the theorem is complete. O]
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Next, we consider the case of perturbations of analytic semigroups. For this, assume

that P € Ly;,(E, EP),0 < a— B < 1 and consider the evolution problem

ut + Au = Pu,

(4.19)
u(ty) = wuo € Eﬂ,to > 0.

Then, following |30, 51, 60, 66] abstract semigroup theory results for semilinear equations,
let Y € E* and P:Y — EP be locally Lipschitz continuous. We define a solution to (4.19)

as follows:

Definition 4.2. A continuous function w : [tg,t1) — E“ satisfying that u(t) € E%, u(ty) =
ug, u(t) € EPL wuy € BEP on (ty,t1) and the evolution problem (4.19) holds on (g, t;) as an

identity in E?, is called a strong solution to the problem (4.19).

On existence of solutions to (4.19) we have the following proposition.

Proposition 4.2. Consider the problem (4.19) with P € Ly;,(E*, E®),0 <a — 3 <1, and

let uw € C([to,t1), EY) verify

u(t, ug) = e A0y 4 /tt e~ A% Py(s)ds. (4.20)
0

Then,

(i) ue Cf (to,t1, E*) for some 6 € (0,1).

(ii) uw € C([to,t1), EY) is a solution of the problem (4.19) if and only if (4.20) is verified.

(iii) wu(t,uo) given by (4.20) is a C' strong solution of (4.19) in EP, and

(iv) —A + P is an infinitesimal generator of an analytic semigroup {Sy(t);t > 0} in the

spaces EP, with f € (a —1,a].

Proof. See [66] Proposition 3.12 and Theorem 3.20. O
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A priori yielding the main theorem of this section, note that following Theorem 4.1 -

Proposition 4.2 we look for a solution to the problem (4.1)-(4.4) of the form

U(t; Up) = e~ At + / t e A=) P(u(s))U(s)ds, (4.21)
to
where
0 —Div(ux2V:) Div(uxsV-))
P(u) = as 0 0 : (4.22)
as 0 0
so that
I(u) (v, w)
P(u)U = a2u )
asu

—

in which we have set II(u)(v,w) := —Div(ud(Vv, Vw)) as in (4.4) and U = (u,v,w) . It is
also interesting to note that the system of equations (4.1)-(4.4) have nice regularity features
debited to their nature of coupledness, see Remark 4.1. As for the system well-posedness

we have the following theorem.

Theorem 4.3. Consider the system of equations (4.1)-(4.4) for any B,y € R such that
B << B+1. Assume that vo,wo € E7 and u € C(tg,t1, E®). Then, v,w € C(to,t1, E).
Conversely, for any o € R such that o/ > a,0 <o/ —B <1 and2a+~v >1+4 | let

u € C(to,t1, EY), v,w € C([to,t1), EY). Then,
Il := Div: E* — E? s well defined, TI(u) := Div(ud(V-,V-)) € Lip(E*, EF)  (4.23)
and the solution of (4.1)-(4.4), u € C(to,t1, E®). If ugp € E*, then
U € C([to.t1), Zar()) N Clto, t1, Zgi1(441)) N CHto, t1, Zs), (4.24)

where Zs(,) = ES X EY x E¥, and Zs := E% x E% x E% for any 6y < B+1,01 < B+6,0 €



86

(0,1). Moreover, (4.1)-(4.4) defines a globally well-posed strong solution, which, if

2 2B+y—1 2 B+
A = max< {x2, x3} <Ne7r> ,{az, a3} (New) <1 (4.25)

holds, is a perturbed analytic semigroup in the spaces Zs,,6(v) € R satisfying o/ (v) > o/ (B).

It is worthwhile pointing out that unlike in Proposition 4.2 the converse statements of
this theorem require an additional condition to be verified i.e. 2a+~v > 1 + % for the
proper-posedness of the Div operator, which if the test function space, say EY, is chosen
different from E%, then this condition reads as v+a+vy > 1+ %. Based on this condition
o’ in the theorem can always be associated adequately in such a way that 0 < o — 8 < 1.
Most important is that in view of the experimental data given in the numerical section of
the chapter the assumption (4.25) is not restrictive but consistent with that data.

Proof. The first part of the theorem follows by Theorem 4.1-(i). To prove the converse, let
¢ € E® be a test function to, for example, the operator —Div(uyx2Vv) in the scalar product of

L?(£2). Then we conclude, using the Sobolev type embeddings (4.10) and Hélder’s inequality,

that the mapping

E% x E7" x E* 5 (u,v,p) — (=Div(ux2Vv), p) = Xg/ uVoVep € R (4.26)
Q

is well defined and continuous, provided a + v > % + %, uVov € L™(Q) with r =2 if a > %,

and r > 2 if 1 > a. Also that —Div(ux2Vv) € LP(Q), with p > N2+]\4[1a > 2 if o < 0. More

concretely, as u € E* C L™ (), Vv € L™(Q) then uVv € L?() if and only if

1 1 1 _N-da N—dy+2
L L =~ N>2N -4 2 4.27
5w mT 2N T 2N = (et + (4.27)

of which we obtain 4(a+v) > 2+ N, ie. a+v> % + %. But also Vg € B3 C L™ (),
ro > 2, which implies that

1 N —da+2
Lot NS N—da+2

>
T Tre 2N

N
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Consequently o > 1/2 and from o + v > % + % it is implied that v > %. In the strict

case, as by Hélder inequality we need % + % = 1, we get, using (4.10) embeddings, that

r > Nfi\;—z and r > 2 yields 2N > 2N + 8« — 4 of which as a result implies 1/2 > a.

On the other hand, replacing 1/2 by 1/r in (4.27) gives 2 < r < m with yielding

condition a + v > % + %. Thus taking into account either of the conditions on « leads

2N

to ﬁ]\;d <r< IN"I(a ) T2’ the yielding condition in the theorem 2o + v > 1 + % is

obtained. The also part follows using (4.10) and Hélder’s inequality directly from the inner
product expression in (4.27) without passing the partial derivative to the test function.
Now considering (4.22) we get that P(u)U € LP(Q) x E* x E* € E=% x E* x E* =
Z o), forp>2,a>0,and U = (u,v,w)" € Zoy) C Zg(y) since 0 < a — B < 1. Next if
we let V = (¢, p,1%) € Zy(4) in the scalar product of L?(€2), thanks to the space embeddings

(4.12), we get by Holder’s inequality that the mapping
V= (6,0.9) € Zagy) — (P()U, V) € [L(Q° (4.28)

is well defined and continuous. Therefore, linearity implies, for any Ui, Uz € Z, () of finite

(6]
norm, that P(u)U € Z_,(,) is Lipschitz continuous. Thus Proposition 4.2 or abstract
semilinear evolution equations results |30, 51, 60, 68] yield the conclusion of the theorem

including (4.24). Moreover, see Theorem 4.8-(4.50)- (4.51) in the next sections.

1Pletz,i ) = AP@U OV [Ullay < 1} < A (4.29)

and the solution to the problem (4.1)-(4.4) using (4.25) defines an analytic perturbed semi-
group in the scales of spaces Z(,y,0(v)) € R satisfying o/(v) > o/(5).

As the proofs are non-trivial due to the coupled nature of system of equations (4.1)-(4.4)
we produce them for completeness in what follows. Assume U € C([to,t1), Zqo(y)) verifies

(4.21). We show that U : (to,t1) — Zy(y) is locally Holder continuous. To this end, let



88

to<t<t+h<t;. Then
Ut+h) = U(t) = (e = 1) em A0y, 4
t t+h
+ / (e*Ah - 1) e A=) P(u(s))U (s)ds + / e~ Alh=3) p(y(s))U (s)ds.
to t
Since (4.29) holds using the semigroup estimates (1.4) we get that,
le™ A= Pu(s))U () lay) =
= |le™ I ) (0, w) () [la + (a2 + az) e u(s)|,
< M=) ol (v, W)l + (az + az)M(E = )" u(s) o,

and, in addition, we also have

| (e = 1) AUl
< Cel® (Jlem A0 ugllae + e A 0, wo) e )
< MCghE(t — t())ngUo”a,

for some € < 1.

Similarly, we get that
| (4 = 1) e A Pu()U(5) () =

= (e = 1) eI 0, w)(s) o + (02 + as) (e~ = 1) A Du(s)],

IN

MO ((t = )@= a0, + (a2 + a3) (¢ = 5)~0+ u(s)]

IN

MC:h* max{(t — )" V| 1,0, (a2 + a3)(t = 5)" O~} (| (0, w) | + [[u(s)]|a)
= MO mase{(t — )" g a2 + )t — )"} Uy

As ||U]|g(4) is bounded on proper subintervals of [to, 1] we get that |[U(t +h) —U(t)||s) =

O(h?), for some 6 € (0,1), on proper subintervals of [tg,#1], and U given by (4.21) is locally

Hoélder continuous. In continuation, if U is a solution to the problem (4.1)-(4.4), as noted

from Theorem 4.1 and Proposition 4.2, it verifies (4.21) and is a continuous function in Z,.
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Conversely from what was just proved in the above statements U : (tg,t1) — Z, is locally

Holder continuous, thus f(t) = P(u(t))U(t) : (to,t1) = Zg(y) is locally Holder continuous

)
and integrable on the time interval. Consequently, Proposition 4.2 concludes and Theorem
4.1 yields the regularity results. As for the globally well-posedness of the semigroup, we

note that from (4.21) it follows that

t
1U)]15) < ueAﬁvbngmg+—]€ e A=) Plu(s))U(s)] o) ds

—wt
< M o 000y ] + M + s, T 22700 1
t efw(tfs)
< [ i (1wl + )
Me !
< e Vol + M macfas + as, 1Tl o oz 201X

b pw(i—s)

o = O]
as long as (t — 5)7(‘”%77) < (t — 5)~(@=A) (with results valid in the inverse case), and the
singular Gronwall-Henry inequality [30] concludes that e**||U (t)| g,y < M E1_a4a(7t)||Uol|a
for t > 0, where m1 = M max{as + as, HH(U)HLOO(R&L(ZQ,Z[;(W)))}F“ —a+f).

The proof of the theorem is complete. O

Now, for some remarks on the main condition yielding Theorem 4.3 we have the following.

Remark 4.1. First we note that if § = 0, we require that Vv, Vw € L*(Q) i.e. v > % + %
and since v < 1 this implies solvability of the problem (4.1)-(4.4) in space dimensions of
Q Cc RV, N = 1. Next, if in (4.23) we take o = 3, the necessary condition reads 23+ > 1—1—%
but 8 < < B+1. If we assume v = 3 > 0 we get that 38 > 1+ % and if 3 = 1 then N < 2.
Ify=3>p=1then N<3. Ify=8=3then N<5 Ify=2>p3=23then N<7.
Thus the higher the regularity assumed on that data, the higher the space dimensions in
which it is possible to solve the problem (4.1)-(4.4). Lastly, we note that if 28 + v > %

then Zs_gi = B x E7 C O(Q) x C(Q) using (4.11) and also if 28 + v > 1 + 3N then
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Zspyy1 = B x B3 C C(92) x C(Q). In both of these cases we can solve the problem
2

in any space dimension.
We conclude this section with the following corollary.

Corollary 4.4. Consider the system of equations (4.1)-(4.4). Assume the hypotheses of

Theorem 4.3 holds within (4.23)
1
a=08+(1-6)(y-3), 00,1 (4.30)
Then,
(i) (4.24) holds in Zg = EP x EPts x EP+s,
(ii) If 28+~ > 23X, then the solution to the problem (4.1)-(4.4), satisfies
U € C(0,00,C?(9)) N C(0, 00, C*()) N C(0, 00, C?(2)),
for some 0 € (0,1) and is a classical solution.

Proof. To prove (i), it suffices to note that if « is as given in (4.30), then 8 > « if and
only if 8 > ~ — %, and also a > f if and only if v — % > (. Combining the two we find
that v = 8 + % We prove (ii) of this corollary in the next section of the paper. As an
alternative, using a classical approach, since by (4.11), Uy € L>(£2), the conclusion follows

by [5, 38, 51, 76, 88, 92| and Theorem 4.3. The proof of the corollary is complete. O]

4.4  Uniform bounds of solutions

In this section, we study the existence of a priori uniform bounds in € x (0,7") of solutions to
the system of equations (4.1)-(4.4). As an approach to this end, we use the Moser-Nash-De

Giorgi [3, 77, 44, 67] technique, and our first lemma is the following:
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Lemma 4.5. Consider the evolution problem (4.1)-(4.4) in context of the Theorem 4.5.
Assume that the initial data of the system of equations Uy = (ug,vg, wg) ' € ZB(V)Q[LOO(Q)]?’,
and that uw € L*>(0,T,L"(QY)), for some r > % are finitely bounded in norms. Then v,w €

L>(Q x (0,T)) are also finitely bounded in norm of the given function space.

Proof. 1t suffices only to consider one of either of the last two equations of (4.1)-(4.4) in v
or w. We adopt here for simplification to use the function space H'(£). Thus, considering

|r71

the equation in v and taking the inner product of L?(2) with |v|""lv,r > 1 we get that

e s (2Ol [ bl <l [ bl
L ) ()
< asC ([ (91 P+ ol F >2) ( / |u|*) ( / |v|7“+1)@3,

where in the second inequality above we have used the Nakao-Hdélder -Sobolev inequality

[3, 77], since there exists 9 > 0 such that r = & + ¢ and

N -2 2 Y

@1:m7 92:m7 93:m7

the third inequality is due to Sobolev space embeddings [2, 12, 25|, i.e. (4.10), in o = 1/2.

In what follows we first note that 2r > r 4+ 1 > 2, hence after multiplying throughout in

(4.31) by r 4+ 1, and using in the right hand side Young’s inequality [12, 77] i.e.
ab < na® + Cyb®,a,b > 0,1 € (0,1)

since

NO, N  NO,
frd :].
N 5 Nio'N_o 9

we obtain if we let

By = inf{,ul, 2dg — 1, 2X9 — 77} >0, pi€ O'(*A + 1), Ca2 = asC
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that

d ”
& [+ s ( [werses [ Wl)
it /g
) 79(N )
< (2% ( sup / fuf" / WL < (2rC,)? / o+,

since the term in brackets from the last inequality right to left is finitely bounded from above,

(4.32)

and 9%3 > m we have incorporated the bounding from above constant with and/or the

given Cp, > 0.

Therefore, if r; = 2¢,5 € N, and

2(r; + 1)

O N TN - D )

0 —1-6;,

then by the Holder’s inequality as well as from the Sobolev type inclusions |2, 12, 25] and

Young’s inequality [12, 77|, one obtains that

N(r;+1) i
Lt < ([ ) (/ v““)
Q Q
Ne/
i1 r;+1
< c</( ; )2+/|V\v -
Q Q

) (o)

Thus, from (4.32) while still setting Cq, = C,,C, it follows that

r;+1 r
/|U|m+1 +B0 )(/ |V‘U| ) ’2+/ |U| H—l)
Q Q

< 2C0) (/( EREN / )5 (/ |vr”+1>®i
<o [0+ [ 90 )+ e B ([ - 1+1)

and because 1]\\/[?/5 < 1, we have used Young’s inequality [12, 77].

ri+1 . N+42 Nri_1+ri+2
r—— and since 5 > e

d T4 ¢
dt/ W+l+5</ Vo2 +/ !w“) (2riCay) (/ o] 1+1) ,
Q Q

Now set s; = , we get
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where o = %‘f, B = B(u1,da, A2,2n) > 0. Applying Poincaré inequality and defining y;(t) =

Jo [v"Tt, we obtain

dyi o S;
it By < () (i)™ (4.33)

TIf M = M(||vgleo) > 0 is such that y;(0) < MT=1+1s) Then, solving (4.33), we get
si
yi(t) < (riC)7 <yi(0) + < sup yil(t)> ) :

te(0,T)
We obtain from (a + b)? < 2P(aP 4+ b”),a,b,p > 0 with ¢ = k£ > 1 that

yk(t) < (20)1+23k+23k,1sk+“.—|—23233...sk (20)ko—&—(k—l)crsk—&—.“—{-cr@s‘o,...skMZslsQ...sk_|_

5182...5k
1428428k _ 18k +...+25283...5k ko+(k—1)osg+...40s283...5) 2
+ (20) (20) sup |
te(0,1) JQ

Xk
< (2()’)2Ak(QC’)“B’“MQX’C + (20)2’4’“(20)”3’c ( sup / \v[2> ,
Q

te(0,7)
Whereszsl...skgr’“;rl,
=1
Ar = 1+sp+spSpe1+-.-+8pSp—1.--51 < (rg+1 _
k k kSk—1 kSk—1 1_(k+);n+l

1
ri+ 1

B, = k—l—(k}—1)Sk+(k—2)8k8k_1-i-...-l-SkSk_l...Sl < (Tk—i-l)z
=1

and the series in the right hand sides converge since r; = 2/. We then let

wl:;rm%’ wQ:;rle’
to conclude that
% re+1
w®) < [@o o)+ 2o 2oy | sup / ]2
te(0,7) JQ

IN

((20)2w1(20)mM <t€s(%% | ( /Q |v|2>é + 1))7%1.

1
o
suplv(t,vp)| < lim ( / rvrk“)’“
Q k—0 Q

1
(2C)%1(20)7“2 M < sup (/ |v|2> g 1) ,
te(0,T) Q

This implies

IN
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and the proof of the lemma is complete. Note that this proof in general scales of spaces

E% o« € R implies the results since v > § > 1/2, but this will be more complicated. O

Next we observe that due to the linearity of the system of equations in v, w and Lemma

4.5 we have, as a corollary, the following:

Corollary 4.6. Consider the evolution problem (4.1)-(4.4) in the context of Theorem 4.3
and Lemma 4.5. Assume the initial data ug € L®(Q), Vvg, Vwg € [L>®(Q)]Y, and that
Vu € L*(0,T,L"(2)),r > % are finitely bounded in norms of the given spaces. Then, the
gradient solutions Vv, Vw € L®(2x(0,T)), and u € L>®(Q2x (0,T) are also finitely bounded

m norms.

Proof. Tt suffices to note that from one of v, w system equations of (4.1)-(4.4), if one dif-
ferentiate these equations with respect to the x variable, and takes as test function say
|Vo["~1Vv € H'(Q),7 > 1. Then, Lemma 4.5 holds due to the linearity of these system
equations and weak coupledness.

So we only need to prove that u € L>(2 x (0,7)) is finitely bounded in norm. To this
end, consider the u equation of the system (4.1)-(4.4) and take the inner product of L?(f)

with test function |u|"~tu € H(2),r > 1 to find that

1 d r 2v/dqir T+1
Gt e (20 [ o

= X27”/ ‘U|T_1UVUVU — Xgr/ |u\r_1uVqu
0 0
(ClXQ + 02)(3 r+1
HU\

< (Cixa + Caxa)r /Q u" V| =

This yields that

d +1
L+t 424
: /Q [ 4 24,

Q
<
Q

r+1 r+1
< 2Cixs + Coxs)r / PEadE:
Q

C C:
+1 2+( 1X2 "21'17 2X3)7a/ ‘U|T+1, (434)
Q
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by Young’s inequality

s / 1 1
ab <na® + (ns)” v 10, 0,0 >0, - + 5 =1,
S S

and if By :=2d; —n > 0 or 0 < n < 1 is adequately chosen, then Poincaré inequality implies

that

d r r (01X2 + 02X3)T r
G [t s [t < S [, (4.35)
tJa Q U] Q

where for p; € o(—A), we defined 8 := p1 6y > 0.
From this point, one can proceed as in the proof of Lemma 4.5 to conclude that u €
L*>°(Q) is finitely bounded in norm.

Alternatively, we notice that by interpolation, for ¢ € H'(Q), it holds that

le = Bl < ClIVOl @0 llel Zigy (4.36)

where 6 = and Young’s inequality yields

N+2’

_N
2

lellZ2) < Ml Velia ) + C+mg )¢l

Consequently, setting ¢ = with C,, = (Cix2+C2x3) o ohtain that
n

2,00 = Grhge, 2

rCy / lu[" ™! < +1 / IV |u| = 3 |2 (22C )% 1+ ( )
Therefore, C;, > C and, because 1+ r"¥ < (1+ 7)Y, we obtain from (4.34) the following

iterative inequality type of (4.35), with By — i > 0,

since r > 1,2r > r + 1, and 0 < n < 1 sufficiently small implies C,, > 1.
/ 1 5/ < (20,)N (14 7) ( )

implying /Q|u]r+1 < /QUS'H +@C)N A +r)N sup <

1
P
K(p) = max{nuouw(m,sup ( / W) } (4.37)
0,1) \Ja

Next, defining
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leads to that

KGr+1) < [0+ V(T

so that, if we let 7; + 1 = 2¢,4 € N*, then we conclude that
K(2) < QC)N (@) K@) <. < (20,) N T2 (227N (1422 VR (1)
< o)V [2@'2”'N(2*i)2”’N} ...... [QQ’IN(rl)?’lN] K(1)

< (20, VN Thar B2 oN TR 2T (1) < 02PNV K (1),
Consequently, taking the limit as ¢ — oo yields
[ull ooy < C2PV K (1) < C2°N max {|ug| oo e, lluol| 1) } < o0,
and the proof of the corollary is complete. O
The following is a particular converse lemma to Corollary 4.6, since its conclusion holds
for all r € [2, 00].

Lemma 4.7. Consider the evolution problem (4.1)-(4.4). Assume that the hypotheses of
Corollary 4.6 hold, and that Vuy € L*(R) is finitely bounded in norm. If Vu,Vw €
L=(Q x (0,T)) are finitely bounded in norm, then Vu € L>(0,T,L"()),Vr > & is also

finitely bounded in norm.

Proof. Differentiate the system equation in v with respect to x. Then, take the inner product



97

of L?(2) with the test function |Vu|"Vu € H'(2),7 > 0 to find that

d ’I”+2 4d1 7’+1
r—|—2dt/9’vu‘

2
_rt / <|Vu| VoAu + u|Vu| z i QVuAuAv)

2
r—+2
2

2
X2 (/ ||VU|TVUAU| +/ |U|Vu|2_2VuAuAv|) +

r—|—2

/ (]Vu\ 2 VwAu+u|Vu\ 2VuAqu>
(4.38)

+

X3 (/ ||Vu| 2 VwAu|+/ |U\Vu| 2VuAqu|>

2 r r
< <C’X/ |V(|vuyz)vuy+cu/ HVu|2Au(Av|+Aw])>,
Q Q

where C, = (x2Cvy + x3Cvw) > 0, with Cv,, Cvy, C, constants for the upper bounds of
the variables in L*°(Q2). Multiplying throughout by r + 2, and since % + +2 < 1, for any

r > 0, we get, by Holder’s inequality, that

d
dt/]Vu\’””+2d1
Q

< (22 ( /|v V|2Vl + O, /|yvu| Au(Av|+Aw|)>

S(HQ ( (/ V(| V|2 ) (/ |W|T+z> N | (4.39)
o s (fmem) (o) (fianr) )

We recall at this point the Young’s inequality

o : 1 1
ab<na®+n 55, a,b>0,n¢€ 0,1), -+ 5 =1

with which, if we let 7, = (7“—}—22%’ where by Nirenberg-Gagliardo’s inequality [30, 25]

2
[ 1vars < [ 19096 F)R + Cong™ ( / |vﬁ) ,
Q Q Q

0<n <1and
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2
for m > %7 Cqo=C(Q,m), n3 := 1675 ——, then we get that
(r+2)1c2|Q| " 72

(Tzz)ch/yv<|vu\"¥2)w< (r+2)7 </ ) </Q|Vu\2>é
< (T+2 < /N V| 5|2 + (dp) ™ /|Vu\2>

r+2 T+2 N 8"7 T
s g o () /\w”

§772

ﬁ T+ __2_ 8 m
< 2, / v+ O oo (3 ) ot
X

ey
Q
2
+2>
2 )

— 2 / VIV + (- + 2/ C ( / |
Q Q

m+1

_ (cal
where Fl = <X16’I7%
As for the last expression in (4.39), we need a control from above of the integrals involving

—A of v,w. To this end, multiplying either stationary equations in v or w by —A of the

variable, to obtain that
1 1
2 2 2\°? 2 2
d2/|AU| +)\2/|Vv] :ag/VuVUSaz /‘VU| /‘VU’
Q Q Q Q Q
2
<o [ [VuP 4 anftn) ™ [ [VeP <m0 [ (902 4 aaan) G0
Q Q

1_L
42 r4+2
ST / IV (V] "2) [ + as(4ns) "1 C2, |0,
(9]

Note that this remains true even if one had considered the entire equation involving the time

derivative, since by Theorem 4.3, the solutions are continuous in time. Let n4 < 15 and set

L 1 T4 1 1—ﬁ
"= 2)0, (2 <d2 ) o ) '
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Then we find that

o+ 20 ([ 190val? P) (f \w)ﬂ (/Qmwp);]
< (r+2)C, <2n5/ |v<|vu’“¥2>12+717 (/ |Av|2+/ ‘Aw’2>>

11 2
<r+2)0, (2 — )0
<o (< n5+2m775 (dz ds )' | )/ IV |Vu| *

<a2(CVv + Cyw) |9 >>
_l’_
167m5m4

r+2 + 2)(Cvy + Cyvw) Q| Cy
< [ 1V(veFp 4 (2202 SR,
Q i

Thus, from (4.39), if we let n; = 212 + ng, 'y = GQ(CV”J;((;;]VQ”)‘Q‘C“ and I' = max {I';, 2},
4

then we are led to conclude that
d 42 r+219
= | Va2 +2dy | |V(|Vul] T
dt Jo Q

< 777/Q |V(|Vu|#)\2 + (r+2)'mr <</Q ]Vu|r2+2>2 + 1)

2
zmplymg d / VU|T+2+,8/ |vu|r+2 < (T+2)4m1-\ ((/ |VU|T§2> —|—1) (4.40)
s [ [9upt < [ Tul s 2y (Sup/ 'V"‘“) A
[¢) Q

following a use of Poincaré inequality and that g := 2dy — n7 > 0.

Next, proceeding as either in the proof of Lemma 4.5 or as in the proof of Corollary 4.6,
yields that Vu € L>(2 x (0,7T)) is finitely bounded in norm.

To complete the ideas, consider (4.37) in gradient functions and take p = r + 2, to get
that

K(r+2) < [P+ 2y (12

),Vr > 0.
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Now, if we let 7; + 2 = 2¢,i € N, then we obtain that

K(2) < T2@)"27 K2 <. < TXi=a 270 (20)2 7 m | (9)2 7 m (1)

IN

T[22 tm(em)2am] 227712 M ()

< T2 k2 9dm 27N (1) < 0212m K (1),
Thus taking the limit as ¢ — oo yields
V]| o) < C2PPMK (1) < C2"™ max { || Vug | 0o (0, [ Vol 1) } < o0,

and the proof of the lemma is complete. O

Now we prove (ii) of Corollary 4.4.

Proof. We use a bootstrap argument. By Theorem 4.3 taking into account that the space
inclusions (4.11) imply E?, EY C C(f), we get that v € C(Q x (0,T)). Thus, viewing
either equations in v or w variables, we get for example that v; € L%°(Q2), consequently
g(t) := agu — vy € LP(Q) for all p > 1. Thus, v € W2P(Q) for all p > 1 and Vv € WHP(Q)
for all p > 1 In particular, Vv € WP(Q) for some p > N, yielding Vv € C?(Q), for some
6 > 0.

In fact, if p < N, as Vo € WP(Q) ¢ L1(Q), ¢1 = % if p > %, then ¢1 > N

and the above statements hold. If not we repeat the process, with W1P(Q) C L%(Q),

q2 = 131_]\; - = Npi\;p and if p > % we are done as go > N. In the otherwise case we repeat the
iterative process to find ¢, = J\?T;;]i = N’i 1\7; - and if p > miﬂ then we are done. Thus in a

finite number of steps it is always possible to get ¢, > N and the above Hoélder smoothness
of gradient solutions are obtained.
The next immediate result from Corollary 4.6 is also that u € L>®(£2). Now, if Vuy €

L*>(Q), then Lamma 4.7 implies that Vu € L*°(Q). Furthermore,

f(t) = —div(ud(Vo, Vw)) € W2P(Q), Vp> 1.



101

Thus viewing the equation in u as an elliptic problem, we get Vu € WHP(Q) c C?(Q) for
some 6 > 0, since, in particular, using a bootstrap iteration argument as in above lines
WP(Q) c LI (Q), it is possible to get ¢, > N, provided that p > mL_H Consequently,
u € C?*9(Q). Getting back to the v equation, we obtain g(t) € C?(Q) and so v € C**9(Q)
for some # > 0. By similarity, of the equations we also have w € C**?(Q) for some 6 > 0.

Combining all of the above, we conclude that the solution to the problem (4.1)-(4.4)

verifies regularity properties given in Corollary 4.4, and that it is a classical solution. O

4.5 Equations in system coupled elliptic differential operator

In this section, we view the problem (4.1)-(4.4) in the form

—

U+ AU = 0
UO) = Uy€ EP xEY x E, (4.41)
1/2<8 < v<B+1

where A(t) = A(u) is the coupled elliptic partial differential operator associated with the
problem by passing all terms in the right hand side to the left hand side of the system of
equations i.e.

—d1A Div(ux2V-) —Div(uxsV-))

A(u) = —a —dQA + )\2 0
—asg 0 —d3A + A3
—diA 0 0 0 Div(ux2V-) —Div(uxsV:))
= 0 —do A + o 0 + —a9 0 0
0 0 —dgA + )\3 —as 0 0
=A— P(u).

(4.42)
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Now, if in (4.42) we let the left hand side of the operator be a function of © € E? and set
U = (u,v,w)" then

—d1Au + Div(©x2Vv) — Div(Ox3Vw)
A(@)U = —dQA'U + )\21) — aU
—d3Aw + A\3w — asu

Consequently, if we define
B:Z Z R, Z, g = E? x EY x E7, 2 14 Y 4.43
H2y() X Zy(p) 7 Ry Zy(g) i= BV X ETXET, 284y 2 14 4 (4.43)

by

B(O;U,V) := (AO)U,V) = (AU, V) + (P(©)U, V)

= d / VuVe + dy / VoV + d3 / VwVi — X / OVuV e+ (4.44)
Q Q Q Q

+X3/@va¢+)\2/vgo—i—)\g/ww—ag/ugp—ag/uzp
Q Q Q Q Q

where V = (¢, 0, 9)" € Z+(p), then w have the following theorem:

Theorem 4.8. Let © € E® be fized. Then, there exist constants

Ml = max{d ()% da (5) 7 4 e ()7 (5)7
X (52)”7 D xsd [0l ()77 oz as} 1O1ls (322)77} > 0,

w(H@Hg) = min{{dl,di + /\iﬁ = 2,3} — 2A1H@Hg} > 0,

(4.45)

where A; = max {{XQ,Xg} (NQW)QBJW_1 ,{ag, as} (Nzew)ﬁ-W} > 0, such that
(i) [B(©; U, V)| < M([|Ol) Ul VI8,

(i) B(©:;U,U) = w([9)lIp) U134,

(ifl) (AO)U — A@)W,U —V) > 0,YU,V € Zya).

Moreover, for fived (U, F) € Zyg) x [Zy)]" arbitrary, and if we consider (4.44) for any

Ve Z,y(ﬁ), then
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(iv) A(O)U = F € [Zyp)]* has one and only one solution U = Tr(©) € Z,3),
(v) A(O®)U depends continuously on © for each U € Z ) fized.

vi) Tr() € L(Z is well-posed and U = Tr(u) is a unique solution of A(u)U = F €
v(8)

[Z58)]"
(vii) Tr(") € K([Zy3)]", Zy(3)) is a compact operator.

Proof. First we notice that for any 8,7 > 1/2, by Sobolev type space embeddings [5, 30,

60, 66], i.e. (4.10), the mapping
(U, V) 3 Zyp) X Zyg) — (AU, V) € L'(Q) (4.46)
is well defined and continuous. In fact, it holds that

(AU, V)| < di||Vul @I Véll ) + d2l| Vol Lra () IVl 2 () +
+d3||Vwl|pra @) 1l ra)  + Aellvllrs @ lell s ) +

+23l|w|| £rs (o) 1Y s ()

9 26-1 92 2v—1
i (sms) Mllgholoog v (22) Mol

9 \2-1 2 \%
ay <M> Joll, 316l y + s (M) ol el +

2\
() Tl lol,

2 26-1 9 2v—1
N 4.4
() Mulaelat e (5) Wollliel+ ()

IN

IN

2 2v—1 2 2y
v () bl + (s ) lelhllel +

2 \*
= I
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9 28—-1 9 2y—1 9 2y
< - - -
< maxyd (New) 42 (Neﬂ) + A2 (New) ’
2 2y—1 2 2y
— — 4.4
s (New) s <Ne7r> 8 (4.48)

< (lullsliolls + llollyllelly + [wlly9ly) < AollU Ty IV Iye)s

where Ag € Rt \ {0} is the value expressed in the max argument, and since the norm of
[W{l4(s) is greater than or equal to the partial summed norms of elements constituting the
product space sum of norms.

Also we have, for any © € E?, that the mapping

is well defined and continuous, provided that 26 +~v > 1+ % again by Sobolev type space
embeddings (4.10). Note that this implies, from (4.46), that if 8 = v = 1/2, then (4.49)

holds only for N < 2. Now proceeding as above, we have that

(POU V)| < x2(OVv, V)| + [x3[(OVw, Vo) + azl(u, p)| + as|(u, )|

IN

x2l©ll Lra@) IVl Lr2 () IV Ol L1 ) + [x3lI©l ra () [ Vwl| Lra 9y X

X[Vl Lri () + azllullLrs (@ 1ol Lrs () + asllullLrs (@ 191 L7 (o)

9 N\ 28+7-1 9\ 268+7-1
< vel(ym)  10lslolglol g+ (5or) % (50

2

2 B+
<l@lsllwl,ylolsy + o () ullllel+

2 B+
+az | — [ullgllllelly-
Nem K

Consequently,

2

23+y—1 o \26+7-1
< _ -
POUVI < x(5r)  ellellols+hal (5or ) I€lallwlylol+

9 \ B 2\t
) 2<N7r) ||uyﬁ||yy¢||y+a3(m) lells 511
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Next if we set

9 28+v—1 ) B+
Ay = max < {x2, x3} (New) {ag, a3} <N€7T>

then

[(P(O)U, V)]

IN

A1[|®llg (lolly + lwlly) 1ells + Ulelly + 141ly) lulls
Ail|®lls (lulls + l[olly + [[wlly) 1V Iy + 1V s lulls

81118115 ((lls + ol + leoll) 1V sy + 1Vl 001U lgs) ) (4:51)

IN

IN

< 2M[01a1U s 1V Ilyes)

Combining this with the estimate from above in (4.48), taking M := max{Ag,2A1} €
T\ {0} we conclude that (i) holds.
Next, observing that Z,g) is endowed with the norm ((u,v,w) ", (u, v,w) )5 = HuH%—i—

[0]|2 + [Jw]]2, if we take in (4.43) the scalar product V = U € Z,g), then we get from (4.51)

that
BOU,U) > dillully_y +dods (d ol + d wl_, ) + do e 0l2_,
b el — 2810610125
>

: 2
mm{{dl,d F Ay i =2 3} —2A1H@Hﬁ} HUH2 )

2
= w(lel)IUIZ 5 1

1
since u € E° C Eﬁfé, v,w e E7 C E’Y*%, using the inclusions (4.10), and hence (ii) is
verified, taking V = U € Z,(g)41/2. From, (ii) if U # V we also get the conclusion (iii) of
the theorem. To obtain (iv), it suffices to notice from (i)-(ii) that for each © € E? fixed,

(4.43) defines an isomorphism
AO)U := B(©;U,-) € Z3 ) for any U € Z, ) by (AO)U, V) =(F, V), VYV € Z,p),

and F' € Z7 5. This proves (iv) with uniqueness of the solutions being given by (ii).
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Also we get, using (4.51), that (v) is proved for any two ©1,# O € Z,(5) and U € Z, )
fixed. To prove (vi) we observe that the mapping F € Zyg = U € Zyg), by (ii) is
continuous. It is also compact, since the space inclusions Z, gy C Zj;(ﬁ) are compact, and
this proves (vii). Thus, the mapping F € Z, 5 — Tr(-) = A1 ()F € L(Z,(g)) and the
problem U = Tg(u) = A~'(u)U, by Schauder -Tychonoff theorem ( see [12, 10, pp.179,
pp-120] respectively) has a unique fixed point U € Z, ). The remainder of the proof is

trivial, and the theorem is proven. O

If in what follows, we let D(A(t)) = Zypg)41/2 = EPT: x E7tz x E7V2] then, the
operator A(t) : Zygy4+1/2 C Zy(p) — Z3 C E~12 x E~1/2 x E~1/2 is closed and densely

defined. Also by Theorem 4.8 for each t € R, the resolvent operator
R(A(t),k) = (A(t) — kI)™*: Zj;(ﬁ) = Zy8)

exists for any x € C, with Re(x) < 0 such that

c
k| +1°

HR(A(t)7H)Hﬁ(z;(m,zm)) <
Furthermore, by Theorem 4.3, Holder continuity of the solution for any 0 < s <7 <t < o0,
we have that
1) — ASA )l oiz, oy, ) < Ol — )’ (4.52)
for 6 € (0,1). Consequently, by [5, 18, 21, 25, 30, 60], we obtain that (4.42) is an infinitesi-
mal generator of an analytic semigroup or fundamental solution operator {G(¢t,s) : t > s} :
Zoy — Lo, satisfying the following:

Lemma 4.9. Let Js := (s,T), s > 0. Then, G(t,s) € L(Zuy, Za,) uniformly for any t € Js

verifies that

HG(tv S)HCYO,OQ < C(QO’ al)e_w(t_S)(t - S)QO_al and G(’ S) € CB_Q(J& ‘C(Zoéu Zao))
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whenever —1 < ap < a1 < 1, where w € RT \ {0}, and if
U+ AU =0, inJs,, U(s)=Us€ Za,, (4.53)
then
Ul(t,s,Us) = G(t, 8)Us € CN(Jg, Zay) N C(J,, Zoy)
is a unique solution of (4.53).

Moreover, if Us € Y, where either Y = Z

Q)

or [L"(Q)]3, then it holds that

IN

e—w(t—s)
iy U]

Z:;o’ t>s
1G (&, s)Uslly (4.54)

—w(t—s)
< C—"xalUslin), t>s,
(t—s)z a7

within last estimates, Y = L"(Q) following a bootstrap argument for any 1 < ¢ <r < o0

and the evolution operator is in L1(Q) for any 1 < q < oc.

4.6 Numerical simulation

To visualize the aggregation of microglia as in the model equations, we numerically simulate
the equations using a Gradient Weighted Moving Finite Element method.

Gradient Weighted Moving Finite Element methods (GWMFE) are numerical moving
mesh methods which are designed for tracking moving shocks and complex structures with
a fixed number of mesh nodes. These methods are well suited to modelling aggregation of
microglial cells, where the cells aggregate into sharp peaks which need to be resolved. Also
see [80] for a comparison of SGWMFE and a Parabolic Moving Mesh Partial Differential
Equation method, for solutions of Partial Differential Equations.

In [81] the authors extend the String Gradient Weighted Moving Finite Element (SG-

WMFE) method in order to include the non-linear diffusion of different variables, necessary
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for the chemo-attraction-repulsion model equations. For the simulations shown in this chap-

ter we use the code developed in [81] using a set of model parameters found in [50].

4.6.1 Parameter values

The parameter values used in the numerical simulations are calculated in [50], where the
parameters used there are calculated from dimensional values found in Biology, Immunology
and Neuroscience publications referenced therein. From the set of data found in |50], the
corresponding parameter values chosen for the simulations in this chapter are summarized
in Tables 4.6.1 and 4.6.1.

The equations are defined on a real and bounded domain 2, where the boundary is
denoted by I'. Our numerical domain is a two dimensional square of length and width 10.
The boundary conditions which hold are zero flux through the boundary I'. No proliferation
or death of microglial cells is considered in this model.

The contour plots for the three unknown variables are shown in Fig 4.1. The correspond-
ing evolving meshes are shown in Fig 4.2 where we also show a slice of the solutions, where

the slice is taken along y = 7 of the computational domain.



Table 4.1: Biological parameters from [50], found in literature or calculated therein.

109

Parameter ‘ Description Value
p)
I Microglia random motility 33,u m
min
)
X1 Chemoattraction 6 — 780&,
nM - min
X2 Chemorepulsion Not available
p)
D, I1-18 diffusion 900 12
min
p)
Dy TNF-a diffusion 900 22
min
as IL-1p3 production rate per microglia cell 6.25 x 10_6p—_g
min
ao TNF-« production rate per microglia cell | 8.33 x 10_6p—_g
min
by IL-173 decay rate 0.003 — 0.03min !
b TNF-a decay rate 0.002 — 0.03min !
Ly Spatial range for chemoattraction \/Dl/bl
Lo Spatial range for chemorepulsion \/ Dy /by
II
m Average microglial cell density 1076 — 1074 83
4 m
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Table 4.2: Model parameter values in relation to biological parameters from Table 4.1.

Dimensionless Expression in terms of | Variable  values
variable variables in Table 4.6.1 | from data Set 3,
Table 10 in [50]
o xaam 37.14
Mbk
X3 X2a2MM o7
ftbo
— 0.0367
€1 lZLl
-— 0.0367
€2 ?2
2
—= 1.1
a I
o2
as — 32.970027248
€1
1
as — 27.2479564033
€2
1
ds — 27.2479564033
€1
1
ds — 27.2479564033
%
A2 — 32.970027248
€1
1
A3 — 27.2479564033
€2

Summarizing the relation between the non-dimensional variables used in the model equa-

tions in this chapter and the dimensional variables (as derived from [50]): the characteristic

cell density used is the average cell density m. One can calculate the dimensional variable for

density, from the non-dimensional density u as ug;, = mu. The average chemical concen-

trations at which production and decay balance, form the characteristic scales for chemical

concentrations © = a;m/b; and W = agm/be. In order to obtain the dimensional chemical

concentrations one can then calculate vy, = v and wg;,, = Ww.
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Lo is close in value to L1, and so Lo is taken as the characteristic length scale of the prob-
lem, with Lo = \/m = 300 m. This value corresponds to the distance over which
chemicals spread during the characteristic time of decay. The 10 by 10 non-dimensional
domain used for the simulations corresponds to a physical domain of length and width equal
to 3,000p m.

The characteristic time scale for the problem is ¢ = L% /i, which is the time needed for
a cell to move over one unit of the characteristic length scale Lo [50]. Then in order to
calculate the dimensional time %4, from the non-dimensional time ¢ found in the equations
of the model, we calculate tg;m, = tt. In the simulations shown in this chapter, we compute

up to a non-dimensional time ¢ = 0.8, which corresponds to a dimensional time of
taim = ((300p m)*min/33p m?) x 0.8 = (2.727 x 103min) x 0.8 ~ 1.5days,

i.e. one and a half days.

4.7 Discussion of results

Fig 4.1 shows the contour plots of the microglia, attractant and repellent solutions to the
equations in system (4.1), at five different times, t =0,¢t=10.2, t = 0.4, ¢t = 0.6 and ¢t = 0.8.
As in the one dimensional results found in [50], we see similar behaviour in that, small initial
perturbations increase in amplitude and decrease in spatial frequency, so that a few peaks
evolve in each of the solutions. We observe that the microglial cells merge locally due to
the attractant and form sharp peaks. This feature can also be observed in the slice plot in

Figure 4.2.
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The numerical solutions, resulting from the application of SGWMFE, shown in Fig 4.1,
mimic the behavior of microglia observed in both in vitro and in vivo experiments, specifically
the migration in response to chemoattraction.

We show numerical simulations up to a time t=0.8, corresponding to a dimensional time
computation of 36hrs. This time frame is of interest because studying the early changes
in the Alzheimer’s disease affected brain is critical, especially given the prospect of new
disease-modifying drugs. It should be noted that this time frame is believed to be sufficient
to induce early Alzheimer’s disease pathology in experimental models, as is recently shown
in the development of AD-like pathology at 24hrs in a novel model for sporadic Alzheimer’s
disease [40].

The equations were solved with SGWMFE using a mesh of 21 by 21 nodes. At time t
= 0 the cells and concentrations of attractant and repellent are initialized randomly in the

interval (0.998, 1.002).
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Mesh plots (a) to (e) and slice plots (f) to (j) corresponding to the numerical solutions
in Figure 4.2. The slice is taken along the line y = 7 of the computational domain. The
microglia, attractant and repellent are represented by the starred line, the solid line and the
dash and dot line respectively.

Remark 4.2. To conclude this chapter, we point out that the chemical attraction and the
chemical repulsion equations of system (4.1) are identical, and they are both similar to the
second equation of the minimal model studied in Chapter 3. Moreover, the cell density
equations for the two systems are also similar, with the only difference being the extra
coupled term. It therefore follows that the well-posedness result (Theorem 4.3) for system
(4.1) implies the well-posedness result for the minimal system (3.1) in the Hilbert space

setting.
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Figure 4.1: Contour plots of the numerical solutions of the aggregation of microglia model

equations.
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Figure 4.2: Mesh and slice plots
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Chapter 5

Minimal KS Equations Blow-up
Analysis in Hilbert Spaces

5.1 Introduction

Parabolic equations may experience solutions that may not exist globally. In such cases,
solutions are said to blow up either in finite or in infinite time. There has been some work
done on the Blow-up analysis for the Keller-Segel system, among which we cite [33, 37, 39,
69, 83]. In this Chapter, we will be carrying out the blow-up analysis in the Hilbert space

setting.

5.2 Rescaling Solutions

Let’s consider the Keller-Segel system again, where the motility coefficient of the amoebae,

d1, and the diffusion coefficient of the chemical attractant, do, are not necessarily equal to

116
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1.
up = diAu — V- (uxVo) in Q x (0,7),
vy = daAv — A\v + au in Q x (0,7), 61)
ou  Ov .
—_— = —— = =T
i oi on 0%
u(z,0) = up(z), v(z,0)=1vo(z),

In this section, we rescale the blow-up solutions for the system (5.1). To this end, let’s

denote the spatial mean for a function w = w(z,t) by

W —L wl(x €T
a(t) = o7 [ w0 da,

where ||, as usual, denotes the measure (volume) of the set €.
The following transformation of the system can be found in [26, 39]. Also see [83]. We
integrate in (5.1) to obtain that

di
& + A\v = aug,

7 v(0) = vp.

u(t) = o,

Through rescaling, we introduce new unknown functions v* and v* defined as

u(x,t)
Uo

u*(x,t) = , v (x,t) = v(x,t) — 0(t),

and let v be a new constant given by

7 = aup. (5.2)
We thus get the transformed system as
(
uf = diAu* — V- (u*xVo*) in Q x (0,7),
v = doAv* — Av* + y(u* — 1) in Q x (0,7), (53
ou*  Ov* 5.3
= = oN=r
o~ om " on
| v (@,0) = up(a) = "0, v (2,0) = vj(2) = volx) — B0,
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with
1

1
iy = — | up(x) de =1, v*:/v*x dz = 0.
0 |Q‘/Q 0( ) 0 |Q‘ 0 0( )

It’s trivial to see that u*(t)

1, v*(t) = 0 ¥t > 0. Also, by the maximum principle, we
see that for any solution (u*,v*), u* > 0, while v* may change signs. For simplicity, we will
drop the * on v and v in what follows.

For the sake of clarity, we will state here the definition of a blow-up solution for the
problem (5.3) [37].

Definition 5.1. We say that a solution for (5.3) blows up or is a blow-up solution for (5.3)

if there exists a time Tp,4, < 0o such that

lim sup ||u(1:,t)HLoo(Q) =00 or limsup H’U+($,t)HLoo(Q) = 00,
t*)Tmaz tﬁTmaz

in which v™(z,t) denotes the positive part of the function v(x,t). If T}, < 0o, then we
say that the solution for (5.3) blows up in finite time. Otherwise, if T},,4, = 00, then we say

that the solution blows up in infinite time.
Next, let’s consider the stationary system of (5.3). From the first equation, we have that

diAu—V - (uxVv) =0 = dl%—xvvzo

= lnu:ﬁ—i—C

1

Xv
= u=Ked,

_ X —_ X pg_ Qau _ [Qy _ _e™
for some constant K. If we let k = o=z, 8= o = D and u = T ez then we

reduce the second equation of the stationary system of (5.3) to

Av—av—}-B(fQi;zdx—l—l'):O in Q,

(5.4)
P _y on 90 =T,
on
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If we then multiply through (5.4) by v € A :={v € H'(Q)| [, v dz = 0} and integrate, then

we obtain the following energy functional,

_1 2 Q 2 _ i KU
EB(U)—2/QVUI d$+2/Qv dx ,6’<|Q|/Qe dx). (5.5)

In the next section, we will try to determine whether there exist non-trivial solutions of

the nonlinear elliptic equation in (5.4) for large values of 3.

5.3 Global Existence of Blow-up solutions

In [26], Gajewski and Zacharias have shown, using Cherrier’s extension of Moser-Trudinger’s
inequality, that the minimizer of Eg over {v € H'(Q)| [, v dz = 0} exists for 8 € (0,4).

In this Section, we will try to determine the existence of nontrivial solutions for (5.4) for
large 3. To do this, we will follow |37, 83]. To this end, we set

Bo:= inf {/ \Vo|? dz - /qﬂ dle}. (5.6)
vEH} Q Q

Jq v dz=0

If we consider Eg(v) as defined in (5.5), then it is trivial to see that Eg(0) =0, and v =0
is always a solution of (5.4). Furthermore, the mapping 8 — E3(v) is monotone decreasing
for any v € A, and fQ edr > | Vv € A by Jensen’s inequality. So, we prove first the

following Lemma.
Lemma 5.1. Let % — Bo < . Then v =0 is a strict local minimum for Eg.

Proof. 1t suffices to show that E5(0)(v,v) > 0 in any nonzero direction v € A. Indeed, using
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(5.6), we have

EZ(0)(v,v) = /Q(|Vv|2 + aw?) dx — ‘é’ v? dx
B / 2
> (a+ Py — — v dx
( @ Jo
. B
> 0, since a + By — — > 0,
€2
and the Lemma is established. O
Next, we fix P =0 € 09, and for x € , set
| 32¢2
v = log ————,
® 2+ 2P
and
= 5 dz. .
ue(x) = v — 9] / 82 n |x| x (5.7)

We see that {u(z)}es0 is a sequence in the set {u € H'(Q)| [ u du = 0}. We thus have

the following Lemma.

Lemma 5.2.
1
Es(u;) = 2(4m — ) log B +0(1),

where |O(1)] < K as e — 0.

Proof. Firstly, it is routine to calculate that

16]x|?
dr =21 Q+01,/v 2d—/d.
/QUE €T OgE‘ ’ () Q’ ué" €z Q(€2+‘1‘|2)2 €z

T
If we carry out the transformation y = —, then we get
€

2 ’y‘Q 1
dr =16 ————— dy = 16wlog — + O(1
/Q|vu€| x /Qg( y2 2 y ™ Og€+ ( )7

and
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Furthermore, we have
RU R, 1
log [ e™=dx =log | e"*dx — | kv. dz = O(1) — 2|Q|log —.
Q Q Q €
If we put all these together, then we get our result that
1
Ba(us) = 2(dm — B)log - +O(1),

O

In what follows, let’s assume that § > 47. Using Lemma 5.2, we see that Jeg = £9(3) > 0

sufficiently small, such that for vy = v,
Eﬁ(vo) <0 and Hv()H > 1.

Thus, Vi) > 3, we have that Ey(vo) < Eg(vg) < 0.

Also in what follows, we will be using a set ©3, defined as follows.
O :={w:[0,1] = A| wis continuous, w(0) =0, w(l) = vg}. (5.8)

If we let

= inf Bs(w(t)),
op = jnf max Ep(w(t)

then, by Lemma 5.1, there exists a constant ¢y > 0, not dependent on 3, such that

0< <a+ﬁo—|g‘>co§05.

The number og defines a Mountain-Pass value (see [74] among others). We want to show
that og is achieved by a solution of (5.3). We will use a technique introduced by Struwe

[72, 73], also used in [83], to show that there exists a dense subset I of (47, +00) such that for
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any 8 € I, o is achieved by a solution ug of (5.3). We start by looking at the Palais-Smale

(P. S.) sequence for 5. To this end, we have the following two Lemmas!.

Lemma 5.3. Let u; be a Palais-Smale sequence for Eg. That is, u; satisfies

|Eg(u;)| < ¢ < oo, (5.9)
and
dEg(u;) — 0 strongly in H™ (). (5.10)
Also, suppose that
/(|vw|2 Fluif?) dz < co, fori=1,2,... (5.11)
Q

for co a constant not dependent of i. Then there exists a subsequence of {u;}, still denoted

by {w;} for simplicity, which converges strongly to a critical point of Eg, ug, in H' ().
Lemma 5.4. The mapping 5 — %‘3 1§ non-increasing in 1.

For this reason, we have that the mapping 5 +— %ﬁ is differentiable almost everywhere.
So, let

T ={p el % is differentiable at 3}.

Then it’s known, 73], that 7" is a dense subset of (0, 4+00). So, let § € T and choose g,
such that

o+ (98 _ %
0= (B — Br) <B 5k> = (512

for some constant ¢; not dependent of k. Then we have the following Lemma, which was

proven in [75| (Lemma 3.3).

Lemma 5.5. The Mountain-Pass value og is achieved by ug, for any B € T.

'See [72, 73, 74] for the proofs
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Proof. The proof is by contradiction. Thus, suppose that the Lemma is false. That is,
suppose that there exists 8 € I such that og is not achieved by ug. Then by Lemma 5.3,
there exist § > 0 such that

|dEs(u)||g-1.2(q) > 20 (5.13)
in the set
Nj = {u e A / Vul2 de < e, |Bg(u) — o] < 5},
Q

where ¢y is any fixed constant such that N5 # (. Now, let Xg : Ns — A be a pseudo-
gradient vector field for Eg in N [74]. That is, a locally Lipschitz vector field of norm

||X5||Hé2(§2) <1, with

(A5 (u), X () < —5. (5.14)
Since
|dEs(u) — dEs, (u)] = HdEg(u) - édEgk ()| + H(l - Bﬁk)dEgk(u)
< % <1 _ é) /Q Vul? do + ¢ <1 - i) /Q Vu?dr  (5.15)

—0

uniformly in {u € 4| [, |Vul* dz < 3}, X3 is also a pseudo-gradient vector field for Eg,

in Ng, with
)
(dEg, (u), X(u)) < Ty (5.16)
for u € Ng, provided that k is sufficiently large.
For any sequence {wy}, wi € ©g, C Og such that
sup Eg, (u) <og, + B8 — B (5.17)

UCWE (@5)

and all u € wy(Og,) such that

Eg(u) = 05 — (B — Br), (5.18)
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by (5.11), (5.17) and (5.18), we have the following estimate

Eﬁk (w) _ Eg(u)

1 2y —p§.8, P B
2/QVU| de = (- B A
98 98
a2 B B (5.19)
< B B+ (B4 )
<C,

where C' = (167)2¢1 + 327.
Now we consider the following pseudo-gradient flow for Eg in Ns. Choose a Lipschitz
continuous cut-off function 7, such that 0 <n <1, n =0 outside N5, n =1 in N;/5. Then

consider the following flow in A generated by n = Xz

00 wt) = ol )Xs(6(u1)

¢(u,0) = u.
By (5.13) and (5.15), we have

4 By(o(.1)_ <~ (5.20)

for u € N9, and

d )
— B, (¢ (u, t))\t:() <-—c

5.21
g 5 (5.21)

for large k.

It is now clear that for any w € ©3,, w(r,8) ¢ N; for r close to 1. Thus, ¢(w,t) € Op,
for any ¢ > 0. In particular, ¢(-,t) preserves the class of wy € ©g, with condition (5.16).
On the other hand, for any w € O3,

sup Eg(u) > op
ucw(©p)
by definition. Thus, for any wi, € Op,, (5.16) guarantees that sup  FEg(u) is achieved

u€p(w(Og),t)
in Nj/o, provided that k is large enough. As a result, we have by (5.19) that

d

%sup{Eg(u)! u€ ¢p(w(D), 1)} < =6,
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for all ¢ > 0, and this is a contradiction. Thus, our initial assumption is false, and we have

established the Lemma. O

Given the above-stated Lemmas, we can therefore prove the following Lemma.

Lemma 5.6. For almost all § > 4w, og is a critical value for Eg. Moreover, problem (5.4)

admits a nontrivial solution for almost all B > 4m.

Proof. This Lemma is established directly by Lemma 5.3. O

5.4 Blow-up

Let Boo > 4w be a point where og is not differentiable, and suppose that Soo ¢ {4mm| m =
1, 2,...}. Then by Lemma 5.6, there exists a sequence 3, — [po and solutions vy, to (5.4)

associated with 3,,. Furthermore,
hi = Eg,(vn) = (0 + o — Bn)co = ho > 0,

where hg and hy do not depend on n.
Now, if max v, (x) < C, then v,(z) — vy by the standard elliptic regularity arguments,
€
and vg is a solution of (5.4) associated with Bgo. Since Eg, (v,) — Eg,(vo) > ho, we have

that vo # 0. Hence, vg is a non-trivial solution of (5.4).

It remains to exclude the case when maxwv,(x) — 4o00. To this end, we note that v,

e
satisfies
a8 (5 )0 o
v )
fﬂvndx:O, a—ﬁ?}:O on 02 =T.

Thus we have [, e’ dx — +oo (otherwise, since Eg, (v,) < hy, we would deduce that

Bn

|vnl 1 () and v, would converge by Lemma 5.3). Now, let v;, = vn—l—% and p, = oot
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Then, using (5.22), we have

AV — ol + ppe™n =0 in Q,
Bn OV (5.23)

fQU;dm:E’ 875,’20 on 00 =T,

where p, — 0. As in the previous section, for simplicity, we will drop the % on v,. By the
Maximum Principle for elliptic operator, v, > 0 in 2. We want to show, following |37, 83|,

that as n — oo,

,u,n/ e’ dr — dmm, (5.24)
Q

for some integer m. This means that 8, — 4mm and Bgg = 4mm, which is a contradiction
since we assumed earlier that oo # 4mm. It remains to verify (5.24). We will be following
an approach in [37, 83, 84]. We start by stating the following Lemma which was proven by

Chanillo and Yangan Li in [14].
2 2
Lemma 5.7. Let L= ) aij%&% be a uniformly elliptic operator, namely
i,j=1 ‘
vl < (aij)i<ij<2 < vl

Then there exists a constant ¢ = ¢(vp, 1) such that for any solution v of the problem

Lv=f(x) inQ, v=0 ondQ,

( bhta)
/Qe P <|rfum)> o< C

we have

Next, we recall that by elliptic estimates, we have

/|an|qu—|—/ lon|? d < C, (5.25)
Q Q

for any 1 < ¢ < 2.
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To analyse v,, we first introduce the following set. Let

_ | there exists — 0, solutions v, of (5.23),
S:={zech _ fin n of (5.23) : (5.26)
xn € ) such that v, (x,) = o0, x, > =

Let Ay = [ pne™ dz.? Now, since v, satisfies

KUn
/ Hnc dxr =1,
Q An

we can extract a subsequence of vy, still denoted by v,, (for simplicity) such that there exists

a positive finite measure y in the set of all real bounded Borel measures on Q, M (), such

that as n — oo,

/Qﬂn; "cpdx—>/gcpdu, (5.27)

for all ¢ € C5°(R?). Let

For each zp € 0f), we can find a smooth function ®,, and a small positive constant

rzo > 0 such that

@, (2) : By, (20) N — By, (0) R, (5.28)

T’CL-O ’I“IO

2
in which R% = {(z1,22)|z2 > 0}. Then the Laplace operator A becomes Ly, + 121 bla%l,
2
where L, = > ai]’%;zj is a uniformly elliptic operator and |b;] < C = const. By
i.j=1 '

the compactness of the boundary, we can choose a uniform ¢ = ¢g in Lemma 5.7 for all
LJ;O, o € onN.

For the sake of clarity, we now state the definition of d—regular points of Q [37].

2Note that An = .
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Definition 5.2. For any J > 0, we say that xg is a d—regular point if there is a function

v € Cg°(R?), 0< ¢ <1, with ¢ =1 in a neighbourhood of x¢, such that

Y
/Qgp dp < 1 +035. (5.29)

Let’s denote the set of all points in 2 which are not d—regular by

A(9) = {xo| o is not a d—regular point}. (5.30)

If no confusion is foreseen in the following, we will use the reference ‘regular’, ‘irregular’ and
‘A’ without mentioning §.

Also, in the following, we notice that, by assumption, the set S defined in (5.26), is not
empty. We therefore have the following Lemma which we will be using later in the proof for
Lemma 5.11. See |37] among others.

Lemma 5.8. Let 1 < g < 2. Then there exists a constant Cy, not dependent of n, such that

[VonllLa) < Cy.
Proof. Let ¢’ = L5 > 2. Then we know that
IVvn|l o) < sup {|/Qvfun Ve dz| : pe L (Q), /ng dz =0, el o) = 1} ,
By using the Sobolev embedding theorem, we get that
[l Lo (@) < Ch-
Using the fact that v, > 0, we see that

]/V’Un-ch dzx| = /Avncp dx|
Q Q

— / (v, — ppe™™) ¢ dr|
Q

IN

o / (v, + ppe™m) dz
Q

Cs.

IN
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We thus have the following Lemmas from [83].

Lemma 5.9. If ¢ is a 0—reqular point, then {v,} is bounded in L*°(Bg,(zo)) for some

Ry > 0.

Proof. Let xg be a regular point. We will give the proof for the case when zg € 9. The
case for when x( is an interior point is simpler and can be proven in a similar way.

It follows from the definition of a regular point that there exists Ry > 0 such that

%0
gn dx < .
/;Rl (xo)ﬂ@ 1 + 35

Let’s pick r < Ry, a small number. At xg, since %Lg = 0, we can strengthen the boundary

near Bg, (7o) N Q by ®,, defined in (5.28), and then extend v, by even extension (still

denoted by v,) to

KUn,

0

*
Un * Hne
—av,, +
8901 "

A?L

2
Loy + ) by =0 in B,(0),
=1

2 s
where Ly, = > aij#;xj is a uniformly elliptic operator, |bj] < C and p = p(r) — 0 as
ij=1 '
r — 0. We can pick r so small that

®o
gn dx <

and, by (5.25)

IA

ov;, . N a-1
0| favy < Calhllwrap’

J

2
| > b
o 2"
g—1
< Cpa
o)

(1+20)(1+0)

Thus

2
ovy, Po
E b=+ av, + g, | dz < . 5.31
/BP(O) (‘ = laxl ‘ > 1406 ( )
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Next, we split v}, into two parts such that
Up = Vln + Vg,
in which v}, is the solution for

aavfn + avf, —gn  in B,(0)

Zy

2
Lﬂ?O’Uikn - = lz by
=1

v}, =0 on 0B,(0),

(5.32)

while v3,, is the solution for

Ly,vs, =0 in B,(0
o Y2n ﬂ( ) (533)
vy, = vy on 0B,(0),
Note that by the Maximum principle, v3,, > 0, and by (5.30) and (5.31), [|[v,,[[21(B,(0)) <
C. Thus, we get that pr(o) v3, dr < pr(O) (v + |vi,|) de < C. Using Harnack inequality

[19], we obtain that

[vanllLe (B, 500 < Cllvanllis, o) < Cllonllzie) < C.

Therefore, we only need to consider v7,,.

Now, using (5.31) and Lemma 5.7, we get that

/ exp [(1 + 5) vfn@ dx < C. (5.34)
B, (0) 2

Since v, is uniformly bounded, we thus have

2

1446
/ <| S b O 4 ot + gn> dz < C (5.35)
B,/5(0) Oy

=1

on B,/5(0). From the elliptic estimates, we get vanHLoo(BpM(o)) < C, and the proof is

complete. O

From above, the following result is immediate.
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Lemma 5.10. S = A(d) Vé > 0.
Proof. Let 6 > 0 and suppose that zy ¢ A(J). Then z( is a regular point, so that, by
Lemma 5.9, {v}} is bounded in L>(Bg(z0)) N for some R > 0. That is, 79 ¢ S and thus
S C A(9).
Conversely, suppose that xg € A(d). Then for every R > 0, we have that

I {vp [ Loe (B (o)) = 00 (5.36)

Otherwise, there would be some Ry > 0 and a subsequence, still denoted by v, such that
vnll Lo (Br(zo)) < C,
for some constant C, not dependent on n. This would imply that
pne’™ < Cup

uniformly as n — co on Bp, (7)) N Q, so that

Po
1+306°

/ pne’" dx < Cu, < g <
BR(wo)ﬂQ

This implies that zg is a regular point, and so xg ¢ A(J), which is a contradiction. Equation
(5.36), by definition of S, (5.26), implies then that xg € S.

Hence, S = A(0), and the proof is complete. O

The statements in Lemmas 5.9 and 5.10 give that 1 < n(S) < oo, where n(S) denotes
the cardinality of set S. Let’s now decompose S into S; = SNIQ and So = SNQ. Let S =

{p1,...,pn}, 7 be asmall constant and 67 (r) = fBT(pj) pne?™ dz. Then lim [ ppe™ do =

n——+o00
N

lim 67(r), for all small r, which implies that
j=1 n—-+o0o

N
lim e’ dx = lim lim 6% (r).
n—+00 Qﬂn - lrﬁ\On—H—oo J( )
J:
%o

By Lemma 5.9, 07(r) > . In fact, it can be proven that

1436
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Lemma 5.11. Ifp; € Sy, then lim lim 607(r) = 4w, and if p; € Sz, then lim lim 07 (r) =

r—0n—+oo J r—0n—-+oo 7

8. In particular, By = dmn for some integer m > 0.

Proof. We first consider the case for when p € S;. We will make use of the following

Pohozaev’s identity. Recall that for v satisfying
Av—oav+ f(v) =0, inU CR?

we have the Pohozaev’s identity |74]

/ (—aw? + 2F (v)) da
U

ov |Vo|? v?

(5.37)
:/8U [(”W)aﬁ‘(”ﬁ) 5 T (@M (—a + F(v))| ds,

where F(v) = [ f(s) ds.

Let f(v) = pe™, where pu = T B Without loss of generality, we can assume that
Q

ervdr”

p=0. Let U, = B"(0) N and consider the function w,, which is a solution for the problem

Aw—oaw =0 1in U,

(5.38)
ow _ v on OU,,

on — on

Then it is trivial to see that w, = O(1) in C?(U,), since |%“1"

I ’ < C on 9U,. Now, fix w, =

(Ug;f(rw)"). Then by regularity theory [20], we have that w, — G(-,0) in C2 (B,(0)NQ\{0}),
where G(+,0) satisfies

—-AG+aG =9 inU,

g—g = on OU,.

By potential theory [65], we see that for |z| small
1
G(-,0) = ;logm + O(1).

Thus, we have
n

9"
Un, = J:)log ||+ O(1)
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in C1(9U,.). Note that here O(1) may depend on 7, but is uniform in n.

Now, by Pohozaev’s identity, we have

/ (—aw? + 2, (e — 1)) da

T v ’v'[) ’2 2 (539)
- /8Ur [(az . an)% (=) 5 T (- n)(—a? + pn (e —1))| dS.

We now use Lemma 5.8 to estimate each term on both sides of (5.39) as follows; For the

first term on the left-hand side, we have

| ot dz = 06 P uullawy) = O 2 enlgry) = 062

Ur

For the second term on the left-hand side,

/ 2np (e — 1) de = 2un/ e dx + O(uy)

= 207(r) + Oljun).

Looking at the first term on the right-hand side, we have

[z = (52) [ (G vow)
_ (9?(T>>2(7r+0(r)).

™

For the second term on the right-hand side,

/6U7-(x 1) ’V;”’2 ds = (95':57"))2 (5+00).

From the third term on the right-hand side,

/ v2 dS = O(r).
U,

Lastly, for the last term on the right-hand side, we have

/ (x - pp (e —1)dS =0 <,un max e’w”) = O(n)-
oU;

zedU,
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Now, if we first let n — +00, and then we let r — 0, we get that

2
2lim lim 60%(r) = L <lim lim 9”(7’)) ,

r—=0n——+oo 7 122 \r50n—oto00 J

which implies that

B 0 (1) = 4

The interior blow up case (p € S3) is proven in a similar way, with the following modifi-

cations. Instead of (5.38), we will consider w;, satisfying the problem

Aw—aw =0 in U,

(5.40)

w = vy, on 0U,.

We fix w, = (”g;(:f’)”) and assume that p = 0 € Q. Then, similarly, w, — G(-,0) in
J

CQ

loc

(Br(0))/{0}, where G is now a Green function with Dirichlet boundary data
—AG+aG =4y in B,
G=0 on OU,.

In this case, the Green function has the following expansion near 0;

1
G(-,0) = 5 log |z| + O(1).

We then obtain the same estimates as in the case when p € Sy, except with the following

two. Looking at the first term on the right-hand side, we have

femGzas = (57) [, (5 ow)

- (92;)) (27 + O(1)),

and for the second term on the right-hand side,

/{)Ur(x ) IV;’H|2 ds = <95;S:)>2 (7 + O(r)).




Now, applying Pohozaev’s identity again, we obtain in this case that

r—0n—+oo r—0 n——+00

2
2lim lim 07(r ):é (hm lim 07 (r )) ,
T

which implies that

lim lim 6%(r) = 8.

r—0n—+oo J

The proof of the Lemma is complete.
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O

We now note that, by Lemma 5.11, the statement in (5.24) holds true. We have therefore

proven the following Theorem.

Theorem 5.12. Suppose that 1 — fo < a, § > 4w, and B € R\ {4mn| m =1, 2,.

Then (5.4) has a non-constant solution.

-}

In the following discussions, we will use a Lyapunov functional. Let (u,v) be a solution

for (5.3), with u > 0. We introduce the following Lyapunov functional [26, 37].

1
F(u,v) = /Q [27 (do| Vv[* + Xv?) +u(logu — 1) + 1 — (u — 1)v| dz.

By Lemma 4.7 in [26], we know that if we let

K’L)dl.
Q-

1

flv) = 27/9 (d2|Vv|2 + )\vg) — Q| log =*——— Jo

then for t > 0,

fu(t)) < F(u(t), v(t)).

From Lemma 5.11 and Theorem 5.12, we obtain the following Lemma.

(5.41)

(5.42)

(5.43)

Lemma 5.13. Assume that 8 > 47 and § € R\ {dmn| m =1, 2,...}. Then there ezists a

constant K < 0 such that
flo) > K> —

holds for all solutions v of (5.23).
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We therefore have the following Theorem, which summarizes some known facts about

blow-up solutions.

Theorem 5.14. Let Q C R? be a smooth domain, and K be the constant from Lemma 5.13.
Suppose further that 8 > 47 and § € R\ {4mn| m =1, 2,...}. Then there exist initial data
(ug, vo) such that

F(UO,U()) < K,

and the corresponding solution of (5.3) blows up in finite or infinite time. For these blow-up

solutions, the following statements hold;

1. lim (Ju(x,t)||p2) = o0

t—=Tmax

2. lim [,u(z, t)v(zr,t) de = oo

t—=Tmax

3. liTmaz [Vo(z,t)|| 2y = o0

1=Tm

i o) 4y =
b, Jaeidr=c0

5. lim Nlu(@, t)l|pe(@) = lim vz, 8)]| @) = o0

t max max

6. If dm < B < 8 and Q is a simply connected domain, then

. v(x,t)
lim e 2 dS =00
t—=Tmaz JoO

Proof. We first note that for v, as defined in (5.7), it is clear that as ¢ — 0,
f(ve) = —o0 (5.44)

and

l|vellp2(q) — oo (5.45)

Thus, by Lemma 5.13, (5.44) and (5.45), the existence of a blow-up solution is established.
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Next, suppose that K is a constant as in Lemma 5.13, and choose & arbitrary but fixed?,

and a fixed xg € 02 such that if we let

32¢2 1 32¢2
Ve, (x) = lo 0 —/lo 0 dx,
o) =108 T e T Al o @ e - moPR

then

fvg,(z)) < K.

We note that
Ve, () € WH™(Q).
Now, set

[@leo®
uel) = Ty

Then u.(x) belongs to LY (£2), and

Flue (@), vy (@) = (v, (@) < K.

If we then choose our initial data such that ug(z) = us,(x) and vo(z) = v, (z), then we see
that the corresponding solution for the Keller-Segel model has to blow up in finite or infinite
time.

For the remaining statements of the Theorem, we recall the Lyapunov function (5.41).
Let S, and S,+ denote the blow-up sets for u(z,t) and the positive part of v respectively.
Then it is known, |33], that if there are initial data (ug, vo) such that the solution of (5.3)
blows up, then

Sy NS+ # 0,

and

lim / Vol dez =00 and  lim e’dx = 0.
Q

tA)Tmaz tHTmaz (9]

This establishes 3. and 4. above for a blow-up solution of (5.3).

3The existence of this go is guaranteed by (5.44)
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Moreover, by the properties of (5.41),

A~

F(u(z,t),v(x,t)) < F(up(x),vo(x)) < K,

so that

1 .
/ — (d2|VU\2 + /\v2) drx < /(u —lvde+ K (5.46)
a2y 0

is true. From this inequality, statement 2. is established, while statement 1. follows by
employing Cauchy’s inequality. Combining statements 1. and 4. establishes statement 5.
It remains to prove statement 6. To this end, we remark that, Horstmann [33] showed

in Lemma 3 that if 8 < 87, v € H'(), and p € (1, %’r) is arbitrary but fixed, then

1 2 p'v
log (/ e”dm) < p/ |Vo|? dz + = log (/ ez dS>
|Q| Q 167 Jq b )9) (5.47)
+ K(p,p', B),

where p’ is the conjugate exponent of p, and K(p,p’, 8) is a constant dependent of p, p’ and
B. If we then use this inequality, we can estimate (5.41) from below, for p € (1, %’r) arbitrary

but fixed, by
F(u,v) > / L (do|VV|* + Av?) dz — |Q]log 1/ e’dx
U Jay €2 Jo

d  plQ 2, A o
> G2 _ PR 2 02| d
B /Q {(27 167 [Vol™+ 277) o
2|0 'y
o |/ ‘ IOg (/ 6% dS) +K0(p7p/76)7
p o0

where Ky(p,p',8) is a constant dependent of p, p’ and 8. With statement 3. in mind, we

see that

/ 8md
for every p’ € (W—EHQ\’ 00).

Furthermore, it has been proven in [69] that if @ C R? is a simply connected, smooth
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domain, and v € H(f), then

1 v
log<m|/ d:c)_lﬁ /|Vv|2dx—i—2|aQ| andS

1 K
+Og<]89[ me dS)+ 1

where K7 is an absolute constant. If we use this inequality instead of (5.47), we get that

(5.48)

1 1
Fu,vZ/d2Vv2+/\v2 da:—Qlog( / ”da:)
(u,v) 927(I | ) €2 Q)

dy |9 2, A o
> ——— |V —v7|d
() 2
C (Lo 25)
- = v dS — | log e2 dS | — K1|9],
2[09 Joq & o9 119

and this gives us statement 6., and the Theorem is established.

O
The following Lemma gives us another result for a blow-up solution.
Lemma 5.15. If the solution (u(t),v(t)) of system (5.3) blows up, then we have that
Jim u(®) logu(t) 110) = . (5.49)

Proof. Let (u(t),v(t)) be the blow-up solution for (5.3). Since

/ u(t) logu(t) de > _
Q

e

we see that

Flu(t) o(t) > — 2 /Q (ult) — 1)o(t) dx + j,juwwu%m.

Moreover, it is known, [17], that

()70 ) < KIVO@)II2(q):
@) (@)
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where ®(s) = e—s—1, keeping in mind that [, v(t) dz = 0. Here and in what follows, L ()
denotes the Orlicz space which corresponds to the Young function ®(s), and [ - [| Lo (q) as its
norm. Let’s denote the Young function complementary to ® by ¥, so that LY () denotes
the Orlicz space, with ||-[| L) is its norm. It is also known that ¥(s) = (s+1)log(s+1)—s.

Using Holder’s inequality for Orlicz spaces [2, 78], we see that

0 d
Flu(t), o(t)) > _‘e’ _ / (u(t) ~ )o(t) do + 52 Vo) 220
Q Y
0 d
> B ooy ) = sy + VOO R0
o _ K &2 i
> _? — Enu(t) — 1||L\II(Q) + % — €& ”VU(t)”LQ(Q)’

where € < %. Combining this with Lemma 6.3 of [26] and the fact that
/ u(t) de =19 VYVt >0,
Q
we get the result. O

Remark 5.1. We remark that, except statement 6., all the statements of Theorem 5.14 and
Lemma 5.15 are also true for blow-up solutions of (5.3) when © C R? has a piecewise C?

boundary.

5.5 Blow-up by the Concavity Method

With regard to the blow up time for the solutions to our problem, we will follow the concavity
method in [16]. To this end, we have the following Lemma.
Lemma 5.16. Suppose that v > 0, and consider a positive-valued function F = F(t) such

that

(F7)" <0, and (F~"Y(0) > 0. (5.50)
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Then there exists a time t* after which F blows up, and the inequality
FF'—(v+1)(F')?>0
holds.

Proof. Firstly, we observe that (5.50) means that F'~" is concave with an initial positive

derivative, and thus, the inequality
F77(t) < F77(0)+ (F7)(0)t & F7"(t) < F77(0) — vF""Y0)F'(0)t,

is true. From this, we get that

Fro) KO

t<t*= = . 5.51
- vE-v=10)F'(0) vF'(0) (5:51)
So, t* is an upper bound for the blow-up time of the function F.
Secondly, we note that
(Ffz/)/ — _VFfz/le/
(F—y)// _ fV(*I/ _ 1)F—V—2(Fl)2 _ VF—V—IF//
= —wvF 2 [FF" — (v+1)(F)?.
From the conditions in (5.50), we obtain the inequality
FF" — (v+1)(F')?* >0,
and the proof of the Lemma is complete.
O

We therefore have the following theorem regarding the system (3.1).
Theorem 5.17. Consider the problem (3.1). Assume thatv € L(£2), vg € WH(Q), ug €
L3(R2), and set
t
F(t)y=F = / / u?(z, s)dx ds + w, (5.52)
0 Jo

for some constant w > 0. Then Lemma 5.16 holds true.
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Proof. We start by differentiating F' with respect to ¢ to get

t
F’:/qu;v—/ d(/u dw) ds+/u0dx
Q dt
—2//uutdxds+/u0d:c (5.53)
:2//uutdzds+00,
0 Ja

where Cy = [, u} dz. Differentiating in (5.53) with respect to ¢ gives

F" = 2/ uuy dz
Q

t

:2/ 4 (/ uuy d:v) ds+2/uut dx (5.54)
0 dt \Jo Q 0
td

:2/ (/uu d:v) ds + C1,
oo \ o 1

where
Ci=2 / uuy de| =2 / u(diAu — V- (uxVv)) dx
Q 0 Q 0
=9 [X/ ugVugVug dr — dl/ |V |? dx] (5.55)
Q Q

=9 [X/ ugVugVug dx — dl/ |Vug|? dac] )
Q Q

Note that (5.54) can be rewritten as

C’//utdxds—i—[/i(/uutd:c) ds—C//utdxds]—l—Cl

Squaring both sides of (5.53) and using Young’s inequality, we write that

(F')? = <//uutd1‘ds+00>
</ /uutdacds> +4Co/ /uutdxderCO
(4+¢) (/ /uutda:ds> + C.C3,

for some constant C.. It then follows, by applying the Cauchy-Schwarz inequality, that

t t
(4+€)/ /ufdmds‘/ /uzdacds—i—CgCg
0 Jo 0 Jo
¢
(4+€)F/ /ut2 dx ds—&-CgCg.
0 Jo

IN

(F")?

IN

IN
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Thence,

FF"—*C (F'?>F 2/td /uutdm dsC/t/Uded8+C1 *LCSCZ'
44+ ¢ - 0 dt Q 0 JOQ ! d+e ’

The expression between the square brackets above can be rewritten as follows;

t t
2/d</uutdx> ds—C//ututdmds
o dt \Ja 0 Jo

- 2/075;1 (/Q w(diAu— V - (ux Vo)) dm) ds — C’/Ot/gut(dlAu ~ V- (ux Vo)) dz ds

t t
:2d1/ (—||Vu”%)/ds+2/ 4 X/uVqu dm) ds
0 o dt 0

t Cdy [* 2
- C’X/ / uVu Vo de ds + —— [ (|[Vull3)'ds
0 JQ 2 Jo

t t
= 2d; / (—[|Vul3) ds + 2x/ / (utVuVvo + uVu, Vv + uVuVuy) dr ds
0 0 Jo

¢ Cdy [* 2
- CX/ / uVu Vo de ds + — [ ([|[Vull3)ds.
0 JQ 2 Jo

If we choose C' = 2, then we get

td t
2/(/uutdfc> ds—C'//ufdmds
0 dt \Ja 0 Jo

t
=d; |:||VUOH%2(Q) - ||VUH%2(Q)} + 2x/ /(utVuVU + uVuVuy) dx ds.
0 JQ

Since F' > w, we get

9 t
FF'— = _(F>F {dl [HVUOH%Q(Q) — HVUH%Q(Q)] + 2x/ /(utVqu + uVuVuy) dz ds
0 Jo

4+
2OEHUO||%2(Q)}

+2[ Vo | oo (@) l[uoll L2 | Vol L2y — 241 [ Vuoll 22y — A+ ow

> Fdy {HVUOH%Q(Q) - ||VUH%2(Q)} + 2|[Vvol| oo (o) [uol L2 (0 [ Vol 22 ()
2C€HUOH%2(Q)

_ 2d1HVU0H%2(Q) D

>0

I

and the proof of the Theorem is complete. O



Chapter 6

Attraction-Repulsion KS Equations
in Scale of Banach Spaces

6.1 Introduction

In this chapter, we study the well-posedness and asymptotic global dynamics of the attraction-
repulsion Keller-Segel system of equations admitting the following abstract formulation:

U, + AU = P(w)U,
(6.1)
U(O):UOGEfj‘XEfxErﬂ,Oga—B<1,q,r21,

modelling aggregation of microglia in Alzheimer’s disease, where U = (u, v, w) ' have entries
holding meanings as in (4.2). For notational convenience, we will set v = 1, w = 3. In

(6.1), we have that

M3 (LP(QR?)) 3 Ay = diag[—A, —A + Xy, —A + X3

: D(A,) C LP(Q,R?) — LP(Q,R?) (6.2)

with domain

D(Ap) = {p € H*?(QR*) : 070 =0 on T}, (6.3)

144
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considered for real valued vector functions defined on an open bounded subset Q ¢ RN
possessing a smooth boundary I" = 9€0, © denotes the unit outward pointing normal vector

to I,
T

ZDIV 1% V;), agu,azu | (6.4)

and the biophysical constants are as defined in (4.5), with d; =1, i =1, 2, 3.
More precisely, the evolutionary equation (6.1) reads the following chemotaxis system of

equations
w = Au— Y7, Div(u(=1)x; V),
v = Av— vy + asu,
wy = Aw — A3w + azu, in Qx1, (6.5)
0 = Ozu=0xv; onT x I,
[ w(0) = wuo, ¥;(0)=1o  inf,

where I = (0,T7), I =1[0,T), and in simplification we have written

— Z Div(u(—1)x;Vep;) = =V - (u (x2Vv — x3Vw)) =: P(u)i. (6.6)

Recall that (6.6) can be viewed in the sense of distributions as the weak form

Po(u)) = (P(u)i, @)y p = Z / 1 ViV (6.7)

in adequate function spaces.

It is clear to see that the system of equations (6.5) has L'— spatial integrable solutions
in taking the LP— dual product with as test function ¢ = (1,1,1)T in distributions sense.
More concretely,

d

G [u=0=ualt) - /u0<), Vel

/w——k/wa/“w() Ny + B ) e
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where ug = [, u = |Qu. Thus, if T = oo we obtain

Qlao as|Quo
M = {A ER3: A= <|Q|a0, ‘”AQ'“O, “3&3’“‘)) } , (6.8)

as the time limit set of L' — spatially integrable solutions.

On the other hand, the stationary equations to (6.5), using La-Salle- Hale-Henry |[30]

invariance principle, can be deduced associated to the system of equations (6.5) in following

the works of [36] by means of the Lyapunov function

J(u,¢):/Qulnu—ﬁ/gm/)%—ZR/Q(|V1/)|T—|—)\¢\T), (6.9)

where ¥ = (¥2,%3), A = (A2, A3), a = (a2,a3), Kk = sgn 2222(—1)jxj > 0 to which

holding onto, if the system of equations is globally well-posedness in time, then it implies

studying of the non-local elliptic problem

A — \p + pe™ =0 in Q, (6.10)
W —0 onT =00, '

where

p=a Jou —u Jo o
fQ 62?:2(_1)jXﬂ/’ fQ 62?:2(—1)ijw ’

using the implied conclusion in (6.8). Henceforth, in alternatives we can distinguish the

following possible situations:

< 1 if xo < x3,
e ?‘:2(—1)ij

> 1 if x2 > xs, (6.11)
> 1 if xo > x3
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corresponding respectively to that:

Repulsion coefficient dominating strongly the attraction coefficient.
Attraction coefficient dominating mildly the repulsion coefficient. (6.12)

Attraction coefficient dominating significantly the repulsion coefficient.

We point-out here that, as technical basis for our analysis, we use abstract dynamical
systems theory for evolutionary equations [30, 68, 66|, where the approach dictates that, to
solve the equations (6.5) and to understand their qualitative properties one has to seeks for

solutions satisfying the integral equations
¢
fmeMw“wﬁ/&WWMW®M
0
(6.13)

t
Uit b0) = e+ a [ SV u(s)ds, =5 =23,
0

and vice-versa. Note that if (6.13) is to be properly defined, then the non homogeneous
terms of the equations (6.5) need to be such that they are mapped into the spaces of the
initial data.

This chapter is organized as follows. In Section 6.2, we give some preliminaries on the
function spaces, and Eg’ — Eg heat kernel estimates of the semigroup associated to the
operator (6.2), which might not have been covered in Chapter 1.

Section 6.3, is devoted to the well-posedness of the system of equations (6.5) in L7 (I; LP(Q))

taking a, B8 = 0, i.e. ug € LY(Q), v, wy € L"(2). In order, to gain control over the coupled
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term in (6.6) of the cell density equation in (6.5) we introduce the Banach space

Zy = {VZ € LP(Q); —Div(a(z)Vz) € LI (Q), a(z) € LO(Q) D HY(Q) fixed,

L1 (6.14)

ity

endowed with the norm
la(z)Vz|z, = lla(z)Vz|q + [Div(a(z)Vz)[ly = [IDiv(a(z)Vz)|ly < co.

Then we prove the following lemma.

Lemma 6.1. Assume in (6.6) that uxVv € Zy, ¢ > 225, Then, Po(u)y € H19(Q)

is well defined, and

[(P(w)¢, @)

/| 1
1 Pall 2o, CLony = sup 9 < (Ner)Th < 1. (6.15)
CEHBAEOHETREO) ™ Gl Vel
Moreover,
p N
pzqz5 = N2q=, (6.16)

2
is a valid Sobolev spaces embedding relation, with ¢ >p if N <4 andp>q > qif N > 4.

Important to take note of is that, (6.16) imply studying the cells density equation up to
the critical space HVN(Q), and the reduction of the system of equations in the large time
asymptotic dynamics to the non-local elliptic problem (6.10), to which the Moser-Trudinger
inequality imply well-posedness only if

) N

1 oy
k< Nwy—_j, where wy_q= F(;;Q)’

(6.17)

denote the measure of the unit sphere in RY, N > 2. In the context of Lemma 6.1, we
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obtain that the system of equations (6.5) admits a unique solution of at least class

1_1
qg P

Xp1) = CIN@)n ey

2

>(I; LP(Q)) N L7 (I; LP () x
x[C(I; L7(Q)) N C(I; HYP(Q)) N CHI; LP(Q)))?

= VxZxZ. (6.18)

More precisely, we have the following theorem.
Theorem 6.2. Consider the system of equations (6.5) with uy € LY(Q),g € L" (), and

assume that Lemma 6.1 holds. Let u € L°(I; L2(Q)), for r,p > ©, be such that

LN i 21N 69
Then,

(i) ¥ € C(L; L"(Q) NC(I; H'#(Q)).

(ii) If (i) holds, then F(u,up) € Ez%(f; LP(Q)) satisfies that the mapping

LI(Q) x Lo(I; L9 (Q)) 3 (uo,u) = F(u,ug) € EZ%(j;Lp(Q)) (6.20)

is linear and continuous. Furthermore, F(u,ug) is locally Hélder continuous with

values in LP(Q2).

(iii) The system of equations (6.5) admits a unique solution in the class (6.18). That is
Ue XV (I).
A prioriuniform boundedness in Qx I of the cells density solution is proven in Subsection

6.3.1, yielding, as a result, that the complete system solution is a global classical solution.

Independent to this conclusion, we obtain the following proposition.
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Proposition 6.3. Consider the system of equations (6.5) in the context of Theorem 6.2.
Then,

limsup [u(t) [, = 0, limsup [Vw(t)], = 0, (6.21)
t /oo t '+oo

and the system of equations define an extended or perturbed analytic semigroup in LP—

spaces. Moreover, in the global asymptotic dynamics ,it holds that

limsup | (u(), (8, (1) Tl = A" € MU {0), (6.22)

where the limit set M, as defined in (6.8), corresponds to the L' — spatial integrable solutions

of the system equations in distributions sense.

In Section 6.4, we prove similar results to those of Section 6.3, but in a much more
general function space setting, which includes one used in Chapter 4 of the scale of Hilbert
spaces. More precisely, we give a treatment of the equations in Bessel potential spaces E¢',
a € R,1 < g < oo. To this end, we first establish the following nesting relation between the

spaces;

5 8 5

By — B — B — B/ — B, (6.23)
and

o B — B +— B, — Eb, & Ef. (6.24)

Then, prove the following counterpart to Lemma 6.1.

Lemma 6.4. Assume (6.23)-(6.24) hold, and let u € E,¢ € Eg, B>30<a-8<
1,p > q. Then, if

1 N N
< d 14+ —<2 6.25
2+2p_a+ﬁ, an —|—2p_ a+ 3, (6.25)
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hold, then the product uxVy € Eg, and the weak form Po(u) € Eg, C E;B, for ¢ >

N p> 4

N i’ 55 are well defined, and

N S
— §< > (6.26)

1Polleqeg iy i= s
FERED T gt XluVeillag Ner

In particular, Po € Lyp(EY, Eqﬁ,) 18 satisfied.

To conclude, we give similar results to those in Theorem 6.2-Proposition 6.3 in the
following theorem.
Theorem 6.5. Assume in the system of equations (6.1)-(6.4) that Lemma 6.4 holds. Then,

(i) The system of equations admits a unique C'— strong solution. Furthermore, there erists

a constant

) a+b-1 3 .
1 (Nm) > (Xj + f) >0 (6.27)

such that the coupled system differential operator in (6.5) defines a perturbed analytic

semigroup in ZoTP = E7 x Ef X EE spaces, and

h?}i‘jp (ut), (1) w(t) " latrs = A* € MU {0} (6.28)

where the limit set M is defined as in (6.8) corresponds to L'— spatial integrable

solutions of the system (6.5) of equations in distributions sense.

(ii) Assume that the first condition in (6.25) is verified strictly. Then, the solution semi-

group s a classical solution.

To make the proof of the results in above theorems accessible to the reader we give, in

the next section, some preliminaries.
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6.2 Preliminaries

In the sequel, we use, as function spaces setting, the inhomogeneous Sobolev spaces [5, 30,
66, 78| in terms of Bessel potential spaces H*P(Q) = (I — A)_ELP(Q), seR, 1< p< oo,
see Section 2.4. In this regard, the scale spaces E := H?2?(Q), a € [~1,1] associated with

the operator (6.2) are well defined, using the complex interpolation-extrapolation method,

with dual spaces [EF]" := E“, % + ]% = 1 and norm notation either || - ||4,p, or simply || - ||
if there is no confusion caused, while || - ||, if & = 0 for LP spaces equipped with dual spaces
product
(s Vppr = / ., of functions o € L and |p[P~2p € L¥. (6.29)
Q
Similarly, we will adopt, for the spaces L7(I; Ey), the norm notation | - [|¢,ap, and || - [|op
ifa=0.
Next we observe that for any f(-) € H*P(Q), it holds that
_N
) € HP(Q) = [f(M)llsp = A 2 1f O lls s (6.30)

and by comparing the behaviour of the norms at A = oo for f(\-) € H%Pi with together

that at A =0 for f(\-) € LPi, j = 1,2, we establish that the spaces embedding conditions;

N N N N
512820, 1<pi<py<oo, s——2=>8—— ——<——, (6.31)
b1 b2 p1 P2
are verified, whenever
H*PH(Q) C H?P2(Q) with s; =0, LP1(Q) C LP? () <= p1 = po, (6.32)

continuously, and if s; > s, p1 < po the inclusions are compact. Important, to take
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consideration of is that (6.31) implying (6.32) does not obey the standard Sobolev spaces
embedding pattern, except if p; = ps in HP.

As usual the conditions (6.31) are related with the degrees

N N
deg(H®*P) =s— —, and deg(L?)=——,
p p

of smoothness of the spaces in ascertaining the embeddings (6.32) validity. In addition, the
interpolation inequality

0 —0
lellsp < CllZ, gy 1011552 (6.33)

Si—i_d) 1<p7p17p2<ooand

N N N
s—§9(51—>+(1—9)<82—),
p b1 D2

is attained for the Bessel potential spaces. In particular, we have the Sobolev type embed-

where 6 € [0, 1],

dings (3.5) hold, with best constants (3.6).
In view to solving the homogeneous equations of (6.5), it is well known, [5, 30, 68], that

the operator A, in (6.2)-(6.3) is an infinitesimal generator of an analytic semigroup
{S(t) == exp (—Apt);t > 0}
on the spaces H*P(Q), satisfying, if po > p1 > 1, s > s1, that the mapping
S(t) : HVPLH(Q) — H2P2(Q)

verify, for any pg € H*P1(Q), the estimate

Mefwt
H‘S’(t)(pOHSQ,pz < N/ 1 1 HQDUHSLPNVt >0, (634)
3 (i)

s9—381
2

2

p1 P2
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where 0 < w < inf{y € Re 0(A,)}, with immediate special cases when s1,s9 = 0, 59 =

2a, 81 = 20, p1 = p2 = p. Moreover,if%:%G—%)Zo,lgrgpgoo,goeLr(Q),

then the mapping
L'(Q) 5 ¢ = S(t)p € L7([0,00); LP(2)) N Cy([0, 00); L"(82))

is well- defined and

1S@ellop < Mllgllr, T < [0,00) (6.35)

holds, with M € R™ \ {0} independent of . Essential in proving the Hélder continuity of
solutions is the following lemma.
Lemma 6.6 ( [30,68)). Ifp>q¢>1,0<a-B<1,0<y=a—B+5(3E 1) <1, then
the mapping

Eg Sp— (S(t)-1)p e Ey
satisfy that

I1(S() = D) ¢llag < Ct7l¢llsp  VE>0, (6.36)

C1y > 0 15 a constant.

where C, =

Let E be a Banach space, as in Chapter 1 (also see [66]), then we define by

LEO0,T;E):={®c E9c0,1); sup t'|®|g < oo (6.37)
t€(0,T)

the Lebesgue-Bochner space tVL>(0,T; E), endowed with the norm

@]

Eg = sup tﬂ||<I>HE < 00.
te(0,T)

Throughout, this chapter, generic constants will be denoted by C' > 0. An extension of
D.R. Adams [1]| 1998, results on Trudinger-Moser inequality to be useful in connection with

the blow-up dynamics at the borderline Bessel spaces is the following lemma.



155

Lemma 6.7 ([46, 91]). Let v € (0, N) be positive real number, 1 < q = % < oo and T > 0.
Then,
< Cq,N|Q| if k < KNy

sup / eMldz (6.38)
FEEI(1-2)7 fllg<1 7€

= 400 if K> KN,
N
where, with wy_1 = 1%7(&2) representing the measure of a unit sphere in RY,
2
1 N
N \¢ |722T(
ANy = ( ) GELERC (6.:39)
WN-1 (=)

Lastly, we recall some notions of Orlicz spaces.
Definition 6.1 (|2, 23]; R. A. Adams, D. Edmunds).

(i) A function ® : RT —— RT satisfying that it is increasing, convex, ®(0) = 0 and
o(t)

limy o =~ = o0 is called a Young function.

(ii) The space L?® denotes the Orlicz space due to ®, with norm

1fllze@) = inf{u >0: /ch ('ff”) dr < @(1)}.

(iii) LY(Q) is the dual space of L®(Q) if ®(1) + ¥(1) =1, and

/Q Py < 1 fllzs gl o
holds.

(iv) The space embeddings EY € L*(Q) C L9(Q) C LI(2) € L'(2) are satisfied.

6.3 Well-posedness in L?(I; L?(2)) spaces

In this section, we assume «a, f = 0 in the system of equations (6.1)-(6.4) and have, as our

first task, to prove of the well-posedness of the weak form (6.7) in Lemma 6.1.
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Proof. of Lemma 6.1. Clearly, by Holder’s inequality, the mapping

(u, 1, ) € LO(Q) x LP(Q) x LT ()

= L9(9) x L7 () 5 (ux Ve, ) — b(us 1, 9) = X /Q WYy € R,

for any ¢ € H“9 (Q), is well defined and continuous, with (6.15) holding due to (3.5).
Next, if we consider the space condition given in (6.14), using the space embeddings

(3.5), since % > 0, then we have p > ¢, and thus,

(2)

1
HY“(Q) C HY(Q) @

C LO(Q). (6.40)

Taking the embedding (1) in the space condition given in (6.14) yields p > N, while simul-
taneously the embedding condition % — % > 0 implies p < N. Consequently, p = N. But
(6.40) gives © > p > ¢, so that holding on the space condition in (6.14), one gets ¢ > %
Thus we have established (6.16) must hold. The rest follows by interpolation, see (6.32),

and distinguishing cases. The proof of the lemma is complete. O

Proof. of Theorem 6.2. To prove (i), we consider the second integral formula in (6.13). Thus,
by the semigroup estimates (6.34) the mapping L”(Q) 3 1y — S(t)o = e> Nty € L7(Q)

is well defined, linear and continuous. Similarly, setting

Gt =a [ " ANy (ds,

0
we get that the mapping L7 (1; L(Q)) 3 u — G(u)(t) € C(I; L"(Q)) is linear and contin-

uous. In fact,

1Gw) ()], < aM [ (t—s)"2 & uls)lo < ady_pt7 =2 (67D ul 0,
0

1
7

where My_, = aM (1 — Ul—N(é — %)>_” , together with, by hypothesis, that %—% (% — 71)
0. Consequently,
A _N1_1
(@)l < Mghollr + My—ort 7 =2 &7 Jlul|e. (6.41)
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But
VS(t) = VeA NVt e £L(L7(Q), LP(Q)), G(Vu) € L(L7(I; LO())), LP())
by semigroup estimates (6.34), from which we get
,,,ﬂ(,,,) ,l,f(ifl>
Vo)l < Mt 2 2 [Yollr + My_grite 2 230 P/ jullse, (6.42)
of which, by hypothesis, it holds that

1 1 N/1 1 JdN (1 1 1\\ -
— -2 (==-Z2)>0,and My_, =aM(1- — == .
22 (5p) 20 mit M —at (1= 57 (o5 )

In either of the cases, the continuity follows easily. Since, for example, with ¢, A > 0 fixed

one concludes, using (6.41), that

ot + k) = (@)l < 1| (A7 = 1) ()l + Mo [ullooh™ = 577 N0

as h \, 0, and the continuity of the solution is proven. This further implies, in taking ¢t = 0,
and h =t, that ¥(t) — 1o in L"(2) as t \ 0T,
Now to prove (ii), since (i) holds, we have from the first integral formula in (6.13) and

by Lemma 6.1 that

3 t
_N s ;
[F(u,uo) ()l < Mt 2@\|Uollq+2/0 €209V (u(=1)x; V) ||pds

IN

t
Mt 20\|U0||q+MZXJ / (t — 5)"(G85) uap; | ds
0

1

Mt ol + K, /t—s b

VAN
0‘2

36) |[u(s)|lods

Mt~ 2®Hu0|]q+KX (/ (t—s)( +2%)ds> ul|s.0

M3 ug|lq + Ky 17~ (3738) [ul| o, (6.43)

N

IN
=)

IN

where
1

1 N o’
K= (1-0(3+5)) sz] sup 141,

te(0,T
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while the hypothesis imply & — (3 + %) > 0. Consequently, from (6.43) we get that

1
7

N _1
£26 || F(u, uo)lp < Mluollg + Ky;te 2 |[ulls.e, (6.44)

which proves the first part of (ii) in the theorem.
It only remains to prove the Holder continuity of the mapping (6.13). To this end, fix

h > 0 small such that 0 <t <t+ h <T. Thanks to (6.15) of Lemma 6.1 we have from
t
F)e+h) - F@@) = (= 1) g+ [ (= DedIPuyi(s)ds
0

t+h
+ / A=) p(y)ep(s)ds
t

using (6.36), if we let 6 = & (% — %) , My =2 that

|F ()t +h) = Fa)@llp < || (2" = 1) eXuoll,  +
N A(t—s) e A(t+h—s)
T /0 (2% — 1)t P(u)p(s) s + / le P(u)ib(5)pds
O [ |leAta A9 Ply)ep(s s
< Cys(My)h (r ola+ [ 160 PGuyu >de) ¥

t+h
+ /t (t+h—s)_5||P(U)w(3)qu5

t 3
< Co_s (M) | fluolly + M, /O (t— )0 | S x IVl | luslods |+
j=2

3 t+h
bMY G s [Vl [ (4 s us) ads
j=2 te(0,T) t

3
1
< Cis(Ms)h [ Nluolly  +Mx Y x5 sup [IVe5lpt7 ~llulloe | +

=2 te(0,T)
3
+ MY xG sup [Velh 7 ullee
j—2  t€(0,T)
L5 R
< Ky Cios(M) (Jluollg + (67" + Dljullne ) A, (6.45)

3
where X = min{6,1 — 0}, M, = 2L K, = max{1,M; 3 x; supye(o,) |VY;llp}s and we
j=2

have used the fact that A > 0 is small. The proof of (iii) will be in continuation. O



159

Remark 6.1. Note that, if we take Vu € L7(I; L9(Q)) then
1N
IG(Vu)D)llp < abi—ort 7 =28 [[Vullgq

and %—F % < 1 must hold. In addition, if this condition is strict, then Vi € L>®(Q2x (0,T)),
using [45, 67]. Furthermore, in (6.43) using (6.15), the yielding condition is less restrictive,

: 1, N
Now to complete the proof of the above theorem, we have the following.

Proof. of Theorem 6.2-(iii). First we note that from (ii), we only need to prove that
F(u,up) € L°(I; LP()) since , that it is in C(I; LY(f)) can be deduced from (6.20). To
this end, we notice that (6.35) and (6.43) imply that

3

1_N
ow < Mlluollg + Mi—g Y x;sup [Vt~ 25 ||ullo0 (6.46)
j=2 tel

[[F (u, uo)|

holds.

Next, we define the complete metric space
W={¥ e V;|[¥|y < C=6Mluollq},

and prove that (6.13) is a contraction mapping on W. In view to this task, we initially

observe from

3
11
IF (u uo)llg < Muollg + MY x; sup IVl T2 |u
j=2

|U,@

1

that we have sup || F(u, up)|, < 671C (1 + KX],T%_E) , while given (6.44), we find that
tel

N 1 1_1

supt26 || F(u,up)||, <6 °C (1 + K\, T2 a) ,

tel

with, as lastly from (6.46), that

| F (u, up) || op < 671C (1 + KXJT%—%> _
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Consequently,
-1 -1 1_1 -1 1_N
| F(u;uo)llvy <27°C+3CK,,T> "+ 46 CK, T2 2,
with which, if Tma{3-3.5-56} < Ki- , then we have that (6.13) maps W to itself. Further-
J
more,

1_11

N
| F (u1;up) — F(ug;uo)|ly < 2_1CKXijaX{§—;7§—%}Hu1 —usly,

with, if Tmax{3-53-56) < C%va then (6.13) is a contraction mapping. Therefore, Banach

Contraction Principle (Theorem 1.1, also see [8]), yields that there exists a unique fixed point
u = F(u,ug) € W which solves the activated cells density equation, within a maximum time
T* = T(||uol|q) implied by Picard’s method.

Moreover, as proved in Theorem 6.2-(ii)., this solution is Holder continuous, yielding as a
result [30, 68] the Z— regularity of the solution components in chemical attraction-repulsion

concentration equations of the system. The proof of the Theorem is complete. O

6.3.1 Boundedness in Q x I and asymptotic global dynamics

On global existence we have the following lemma:

Lemma 6.8. Consider the activated cells equation of the system (6.5), with uy € L4(Q), q €
(%, N]. Let the best constant in (3.6) be Cs—1, and
3

0< Ky = Z(—l)ij sup || Vabjlln, 75 =147,
j=2 tG(O,T)

N LN 0<n< S 1
T = _—— -
2 0)’ = pCs—1 K, 7~ ’

be such that

+ —
(T *‘27 ") Cor Ky, < (6.47)
Then, v € L*=(2 x (0,00)) verifies the estimate

N
sup ||ul|oo < Mt~ 24 ||ugl|q + C. (6.48)
>0
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Moreover, the system of equations (6.5) admits a globally defined classical solution.

Proof. Consider, initial data ug = 0 for the cells equation in (6.5). Then, take |u[P~2u €

H1(Q) as a test function, to find that

3
d 4 P p p 1
dt /Q\u|p+p, /ﬂ [V]ul2? =2(p — 1) ;2: /Q ul 3 V]2 (~1); V)5

P D P + b -
< 2p— DK |[V]ulz]2][lul2|le < 2(p — 1)Comt1 Ky || V|2 |5 [[|u] 2|3
4+ 77n

S 2(p— 1)CS:1KX ( 9

P _N p
191l 313 + 1921(1 + 7 2>|r|urz|r%),

following from a use of Holder, Young, and Nirenberg-Gagliardo inequalities [2, 30, 68].
Also note that the first second line inequality follows by adding a zero term of 2x3(p —
1|V |u|2|2[|Vabs|| v, taking the negative to the right hand side, then estimating from above
only the first expression of the identity and next removing the zero term to establish the
estimate.

Since p > 2, taking the upper limit of n = — 1 and letting

4
pQKXCS:1T7

2
Co— ¢ (9)F Coms K7

4(1—Cs:1KXT_) ’

thanks to the condition (6.47), there exists an w := ¢(p) > 0 such that

d 2
i [ree [r<ciars ([ ut)
Q Q Q

. . 2
s e s ([ t)
Q 0,1) \Ja

1
T

Next define A(r) := sup(o 1) (fq |ul") ", to find that

Ap) < [0V +p)V A (), w2,
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from which, if we let p; = 2%,4 € N*, we obtain

N
217

A2) < CYPI L2 A@RY <. < VBT (g ol

A
Q
Oz
—
&2

%)
L
=
—~
"
N
[\
|_2|
—
[\
"
=
—~
\)
L
e
2
—
=
—
~—

Consequently, taking the limit as ¢ — oo yields
[ulloo < CH2PVA(L) < CH 2%V ||ugl|1 < . (6.49)

Now holding on this, if we decompose the solution into v = ¢! + ¢?, where ¢! verifies
the equation in u with P(u)y = 0, u(0) = ug and ¢? the same equation but with P(u)y #
0,up = 0, then it follows, using the semi-group estimates (6.34) in an iteration, that ||¢! s <
Mt %4 |[ug|l, for all t > 0 while (6.49) implies ||¢?]|oc < C.

Thus, combining these yields that (6.48) holds. The moreover conclusion of the lemma
follows as in Chapter 4, using a bootstrap argument, or alternatively [24] Proposition 1.

The proof of the lemma is complete. O

Independent of Lemma 6.8, the large time behaviour of the system of equations in (6.5)

suggest that the system solution defines a perturbed analytic semigroup.

w2

1yN(1_1
Proof. of Proposition 6.3. Consider the estimates (6.42), and let h(t) = ¢2 (T P) V()| ps

Then we obtain that
3 t ‘
S [ 1AV (1) V) s
=2

3 t 1 N
< MYy /0 (t = 5)"(5738) Ju(s) o | V4t pds
j=2
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3 t N
< MYy [ -9 B s EE) ju)oas (6.50)
=2 70
ON(1,1_1 3 1 1
< t 2(@+r p) ZXj sup h(s) (/ e 1_1[)) HUHJ,@),
i se(0 0 (17p)§(+@)pr P

after a change of variable s = pt. As this imply

_N
lu@)ll, < Mt726|Juollq +

N({1,1 1 3 ! 1
n t*?(@*?f%)M E X;j sup h(s) / dp | lulloo:
J 0 (1—p)3(+8) s 7

j=2  s€(0.]

we get limsup |lu(t)|, = 0, yielding, as well from (6.42), the second conclusion. Next, from
t, oo

(6.43), since

1
7

N
toflull, < Mluollq + Kyte

[SIE

N
to f|ullp,

1
L+

=

we get that, if 0 < t < K;J = 70, then the semigroup estimates (6.34) hold, while for
t > 719 we decompose t = n1y + s for some 0 < s < 79 iterating n times (6.34) with ¢ = p,

we get

lu@llp < Moe”|u(no)ll,

< Moe®* (Moe™)" ™ lu(mo)llp < (Moe®™)"[|u(70) |,

for some My = M + 1, w € R. Therefore,
_N(1_1 o N({1_1
lu(®)llp < (Me27)™ g 2 (=3) luollg < Mie®'t™? (i) luollg, 0 <t <T"
Consequently, the result holds for all t € (0,00) and the system of equations solution
generates a perturbed analytic semigroup, see |7, 66| for the transfer of analyticity. Lastly,
since u,? L 1 in LP(Q) dual spaces product, (6.21) implies that (6.28) holds. The proof of

the proposition is complete. O

We now proceed to the next section of the chapter.
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6.4 Well -posedness in £ spaces.

In this section, we study the existence and uniqueness of solutions to the system of equations
(6.1)-(6.4) as given with initial data in scales of Bessel potential spaces. Thanks, to Lemma
6.1 and Theorem 6.2, we establish using (6.32) that the space nesting relation (6.23) holds.

In particular, (6.16) first condition must hold by interpolation, with together that

EY — E, —(6.32)
(6.32) d
Pzg< L 7 L —=bp<d)

ES v E; —(6.32)

EX — E) —(6.32)
(6.32)
@@=« 1t N T —=(@<p>

E® — EJ — (6.32)
?<—E3»—>E§“%>Ep,%>Eq,<—Ep

are valid space nesting relations between the scale spaces.

Proof. of Lemma 6.4. The proof follows by space embeddings (3.5) and Holder’s inequality.

In fact, the mapping
B8
(u,9,9) € Ef xE;xEg
;= By x By 3 (uxVi, @) — b(u, 9, ¢) := X/ uViypVep e R (6.51)
Q

1
is well defined and continuous, since Vi € Eg 2 C Eg if 5> % Thus, uVy € Eg, using

<1

(3.5) of E provided that p > %, as one needs that % — QWO‘ +

Q=

1
P
Furthermore, relaxing the embedding into space for Eﬁ_% jelds L —2¢ 4 1_ %4— L <l

) g g p p Y q N P N N = ¢’

concluding as long as the first condition in (6.25) is verified. Thanks again to (3.5) and
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Hélder’s inequality we have that

— N —-2(-13 N —2(a— 1)
> N 2aq+ (/3 2)p+ (a 2)(]

1
gN pN ¢N ’

resulting in the second hypothesis of (6.25), satisfied. Consequently, Holder’s inequality

imply that
| [avuvil < fuxvulalvele

2 \*i

< X(m) [uVelaglVeolla-1,4
9 \5t+3-3

= X<N67r> lulleo Vel g1 I Vellat o
9 \*t5-3

s X (New) ||u||a,q||¢ B,p SOHtx,q’a (6.52)

using (3.5) and (3.6), taking % = 9% + @%, giving together by linearity that the mapping is

Lipschitz continuous. The proof of the lemma is complete. O
Remark 6.2. A worthwhile comment is to note in the yielding condition in (6.25) that:

_1
e The spaces embedding Eg 2 C L*™(Q) holds. This is because o > 0 imply S —% > %

and (3.5) yields the conclusion. But as a > § similarly § > 0 imply B3 ¢ L>(Q).

e The yielding condition in (6.25) is a particular case of the following

N | =

N/1 1 1 N/1 1 1
+<+—)§a—|—6 and 1+(+—>§2a+ﬁ, (6.53)
2\q p p 2\qg p p

implying Py : ES +— E,°, P € L1,(ES, EL)), and (6.25) is obtained when p = q.

e Since % < «a, 8 <1, the condition (6.53) yields Young’s equality for convolutions, and

p > q,p. Moreover, the inclusions (3.5) are verified with p = ©.

The objective of this section is to prove Theorem 6.5.
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Proof. of Theorem 6.5. We will prove the theorem in stages. The first part will consist in

proving that the solution to the system of equations (6.1)-(6.4) is of class
U € CLE)NCLESNCY (B, ) %
x C(L;E’ynC(I; ES)ynC(I; EPY) N CY(I; EP) x
x C(LE)nC(I; ES)nC(I; BTy n CY(T; EP). (6.54)
In this direction, we have that the next proposition is valid.

Proposition 6.9. Assume in (6.1)-(6.4),that Lemma 6.4 holds, and let u € L?(-I; E) for

o, o, q such that

FIELAP WIEL (6.55)
@ 2¢ 2r o’ '

1s true. Then,

(i) v € C(LE) N LY

1_1
2\p r

>(j; Ey) N L7(0,00; BY) for any v € [8,8+1).
(ii) The mapping

L7(I;E) x E 3 (u,up) — F(u,up) € £°§<1 l)(I; EY)) (6.56)

2\q p

is linear Lipschitz and Hélder continuous. Moreover, F(u,uo)(t) \ uo in Eff ast \, 0.

Proof. of Proposition 6.9-(i). Consider the second integral formula given in (6.13) and let

Sty = e B Viapy,  G(u)(t) = a/t A=)y (5)ds.
0

Thanks to the semigroup estimates (6.34), S(t) € £(I; L(EP, EL)) is well defined, while
concurrently

G(u)(t) € L(I; L(L°(I; ES); EY))

is of continuity boundedness from above M;_,.t” where

Ml—a’ = aM (1—0'/ (Ol—,B‘I‘N(;_l)))_g/

2
1 N /1 1 .
v o= — - <a — B+ — < - )) >0 by hypothesis (6.55).

o 2\q r

<
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On the other hand, we have that

lott+ ) = e@lsr < (€A =) w(®)llgr + aM|uloaq ¥

t+h ) =
X </ (t+h—s)" (e-0+5G-D) ds)
t

< (@ = 1) @)l + aM fullnaqh? >0,
as h — 0. In other words, the mapping
BP x L7(I;B2) 5 (Yo, u) — 1 € C(I; EF)

is proper linearly defined and continuous.
. _N(1_1
Similarly, S(¢) € £(I; L(E?, Eg)) is of continuity boundedness from above Mt 2 <P T>,

' 5 L—(a—p+¥(1-1))
whereas G(u)(t) € L(I; L(L°(I; EY), Ep)) is of a bound from above Mt 2ha v

where
N1 1)\\
Mi_, = aM<1—0'<a—ﬁ+(—)>> ,
2¢ »p
1 N /1 1
— = (a -8+ — ( - )) >0 by hypothesis (6.55).
o 2\q p
Thus,

N(1_1 1 _Ap_N1_ 1
02 G o0llsp < Mlgolls, + Mioot P E 07D )y

holds, i.e. the mapping EP x L"(f; Eg) 3 (Yo,u) = (t) € E‘??( (f; Eg) is linear and

1_1
2\p r

continuous.
Since (6.34) holds for any v, 8 € R satisfying § <y < 5+ 1, from (6.34) we have,
3 (0) = 15O .57, < — € 11(0,c0).
t

but unbounded at zero, unless v = 3, ¢ = . Thus we need to prove that if u € L'(0, oo; Eq’g),
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then Gu(t) € L'(0,00; ). To this end, set s = tp, p € [0, 1], to get that

1Gu(t)

1
Lyr < a/ HG(A_/\)(I_p)tU(tP)t’1,W‘d/)-
0

1 [e'e) T 1— p
a/ / 2By <T <>) lu(T)||g,qdTdp (on setting 7 = tp)
o Jo P P

a < /0 %(s)ds) ( /0 Y MdT) (on seting s = (=2

As a result we obtain that

IN

IN

[Pl < lley @Ol l[volly + lleaq(s)lllulls.q,

where ¢ (s)ll1 = llcg(8)[|L1(0,00). The case o = oo, follows exactly as in the first lines of

this proof. Thus, it holds that

[9O)looyr < lleyy (BlloollPolly.r + lleaq ($)l1llullco,.q5

and by interpolation, we conclude the result for any 1 < ¢ < co. This completes the proof

of (i) in the proposition. O

Proof. of Proposition 6.9-(ii). Taking the second integral formula of the solution in (6.13)

we find, using (6.34) and (6.26), that

1

_N(1_1
1P u0)Ollop < M3 G fugllag + MNPl sy ¥
D

te(0

3 t
—(a+p+Y(1-2
Do s (9l [ €-9) (5 00D ()l
j=2 :

IA
=
~

59 o) M( 2 )+i 19331
) |ugllag + M (o X5 sup [Vt
ol Ner = J te(0,T) JUB 2P

" tﬁ—(oﬁﬁ-&%(l—%»nu

o005 (6.57)

O_l

where (6.25) imply < — (a + 5+ % (1 — %)) > 0. Note that the result remains true using

the semigroup estimates (6.34) directly to control the contribution of V in P(u)y € Eg,
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with obvious modifications. Consequently, the desired conclusion follows from the fact that

=

ﬂ(l_l) 2 e
2\ o) | Flu,uo)llap < Muollag +M<Ne7r> g

3
< Y oxG sup [IVella1 P uflag,  (6.58)

=2 te(0,T)

where v(p,q) = 2 + & (%—F%) >a+ B+ 5.
To prove the Holder continuity, let us fix h > 0 small such that 0 <t <t+ h < T, then

compute
t
F)(t+h) — Fu)t) = (&h - 1) eAlyg + / (€2h — 1)eAt=9) P(w)y(s)ds
0
t+h
+ / A=) P(y)y)(s)ds. (6.59)
t
Thus, using (6.36), if we let

5:];@—;), v(p)=<a+5+];r<1—129)>’

then we obtain that

|F ()t + ) = F@)Ollap < | (2 = 1) X uollap -+

t t+h
+ / 1A — DA Plu)i(s) o pds + / 1209 P(ar)ap(s) [ pdls
0 t

< Cus( (e anlog + | t e P ayds) o+
o
oM / (t+ B — )77 | Pu)ip(s)|_p prds
< Ci_s(Ms)h | [luo q+M<2>a+g_é§3:X‘ sup [|[Vl[5_1 , x
= “ Nerm = 7 te(0.1) JIB=3p
x /t<t—s>”<p>uu<s>u ds>+M<2>a+“ix- sup [V, 1, %
0 a4 Nem = ]te(O,T) JNB=3.p

t+h
x / (t+ h— 8) P [u(s) agds
t
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+8_1 3
< s ol + 1o Niw) 2 Z_; 6 s [V
x4 ulg,)
9 \ot5-3 3
Mo () 3, 1m0 190l il
< COs(My) (uollag + (677 4 1) ull g ) B, (6.60)

where

. N /1 1 1 N 2
8= 5 (G-0) (e T (1-))

C = max 1,M10/<

Y X sup ) IVYillg-1,

= te(,
and we have used, as assumed in the first lines, that h > 0 is small.

Lastly, in (6.59) taking ¢ = 0 then h = ¢ and proceeding as in arguments above leading

o0 (6.60), we obtain the convergence at ¢t \, 0" in (ii) of the proposition. O

To complete the proof of the Theorem 6.5-(ii), we need the following lemma.

Lemma 6.10. Consider the subset

W= {f € C(LE?)vts(llP) 1€ llaq < CH€on}7
€

for any v € [B,a) and the u— integral equation in (6.13). Then,

(i) FW C W, i.e. it maps W to itself.

(ii) The mapping F : E] — Eg is a contraction mapping.

(iii) There exists a unique u € W such that w = F(u) is a solution to (6.5) up to a mazimal

time T™(|luo||) of existence of solutions of (6.1)-(6.4).
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Proof. Thanks to (6.23) - (6.24), we can read the right hand side sum of (6.13) in taking the
norm of By = EJ x Eg77 as in the scale spaces product, whereas by virtue of the Lemma
6.4, we get that uxVy is well defined in Eg > L9(Q). Therefore, if u € W one obtains the

following
3 t .
IF () @)lla < Mluolly + MZ/O (t = )72 lux; Vi | gds
j=2

2

a+
< Mjuolly + M <>

3 t
1 (e
vr) [ =9 v, s

9 \ot3—3 3
<M MC | — ; Vi, X
< Ml M€ ()T w194l ol

t
X / (t— s)_%_(o‘_wds
0

N

2 \*fz 2z 2 )
<M MC | —— : Vi, T2,
< Mluol, + MC (52— ) > s 1991yl

Thus, for

2
1—2a—~ 1—-2(a—")
2

T = (1_1> 1 ( 2 >
M C 2222 Xj SUP¢e(0,1) ||V1/JjH77% Nem )

we get (i) of the lemma is satisfied.
To prove (ii) of the lemma, we evaluate F at uj,us € W using the same initial data to

conclude that

3 t
|F () @) — F)lle < S / 17209 (g — uz)x; V465) (3) adls
=2
3 ! L
< MZ/ (t—5)"27 || (uy — ug)x; Vel ds

9 \ot3-3 3 t )
. _ oy 5 (a—y _ '
M <Ne7r) ZXJ/O (t—s)72 lua “2HaHV¢JH7_%

IN

3
1_(a—
T30 T xg sup [Vl _s sup)||U1—U2||a-
T 0, T

= te(, 2 te(
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This proves that (ii) of the lemma is valid on taking

2
—2a—vy 1-2(a—7)

1 2 2
T< MS3 4 \1 Nerm
Zj:2 Xj SUPte(0,T) 1V4; H'yfé

Hence viewed concurrently with (i) of the same lemma, we obtain (iii) using Banach
contraction mapping theorem and Picard’s method, or classical continuation method to
allow for the extension of the existence time to maximal time 7™ = T'(|Jug||) of existence

of the equations. O

To complete the proof of the first part of (i) of the theorem, we note that the Holder
continuity of w in view of the complete system of equations, since the restriction f(t) =
P(u)y(t) € Ef, is locally Holder continuous, we get using Lemma 3.2.1 in [30] that solutions
to the system of equations are C'! strong solutions and the regularity properties in (6.54)
are verified.

As for the second part (i) of the Theorem 6.5 we proceed to prove that the coupled

system elliptic equations

—Au+ V- (¢px2Vv) = V- (px3Vw)
Ap(d)n = —Av + Av — agu ) (6.61)
—Aw + A3w — azu
where V- = Div, with ¢ € EJ possibly fixed, define a perturbed analytic semigroup. To this

end, let n = (u,v,w) ",z = (@1, 92, 3)", then define

1 N
b: Zosg X Zors = R, Zorg=EXx EP xEP a+ 8> 5t5 (6.62)
T
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b(din,z) = (A(d)n,2)

= /VUVQD1+/VUV<,02+/VZUV<,03
Q Q Q

~ x / SVOVior + x5 / oV +
Q Q

+ /\g/vapg—ag/wg—i—)\g/w@g—ag/u<p3. (6.63)
Q Q Q Q

Note that continuity of the bilinear form (6.63) follows easily using Holder’s inequality, space
embeddings (3.5) with (3.6) as the best constant, and the fact that ||za+s > [|¢jlla, l©ill5,
a > (. Thus, to apply Browder-Minty Theorem, it only remains to prove that (6.63) is

coercive, since from this the strictly monotonicity of the operator

Ap(9) = A, —P(9)
A V- (¢x2V ) =V-(éx3V )

= —a9 —A+ Ao 0
—as 0 —A+ A3
_1 _1 _1 o+l
WIS Y Y S (6.64)

follows easily, and thus is invertible. To the cited task, we note that thanks to (6.24)-(6.26)
and Young’s inequality, we have that the integrals in (6.63) involving chemo-attraction-

repulsion coefficients are well-controlled from below. In addition,

(/QUU
Q

IN

1
2 at+f—3
lullyoller < (52 ) IVl gVl

2 \*z2 /1 1
(v)  (GIvae_y+ 3090l ).

using Holder and Young’s inequalities, together with the first hypothesis in (6.27) yields

IN
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that
b(d;n,m) > HVuIIZ_%+|]W||;_%+va||;_%
- <Niw>a+ﬁ_%i (o 2) Ivale_,
- <N2€7r>a+6§j32 (Xﬁ%) Vsl (6.65)
> w| Va2,

where v = «, 8 and p = ¢,r depending on the variable. Consequently, Browder -Minty
theorem [8, 10] asserts that the operator (6.64) is invertible. Moreover, it is a sectorial
operator in By x E} x E? = L9(Q) x L"(Q) x L"(£2), since it holds that

1(Ap + 1)~ P(&)llgxrsr
3

= A+ ) P@)lg+ D I(=A+ X+ 1) ayll,
j=2
3 a+ﬁ,l
1 1 2 272
< Cmax{w,ﬂﬁ};()@ (N@ﬂ') —i—aj),

for any 0 < o < 1 satisfying the Lemma 6.4-(6.25), for some C' € R* \ {0}, |7 — argu| > 9,
¥ < T, using Corollary 1.4.5 in [30] or Theorem 7.1.3. This imply that (6.28) is valid, since
(6.64) is an infinitesimal generator of analytic semigroup.

Alternatively, thanks to Proposition 6.9, 1 € 'Coﬂ()(l,l>(j; Eg), ue Ly (I; Ey),

1_1
2\p r 2\q »p

and using (6.8), we obtain that (6.28) is verified, in the large time asymptotic dynamics of
the system equations (6.5).

To round off, we observe that the proof of (ii) of the theorem is straight-forward from
the first assertion in Remark 6.2. In fact, since a — 3 > 2—]\; we have Eg_% C L>(Q)
holds by virtue of (3.5), and (6.28) imply that Vi; € L>(Q) is bounded for all ¢ > 0.
Asu € Eg >~ [9Q), ¢ > % and 1 > o — % > %, viewing the weak form (6.51) in L? as

well as the equation in elliptic form by passing u; to the right hand side, using [67], we get
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u € 18 bounded for all ¢ > 0. e rest 1s trivial or immediate.
LOO(Q) is b ded { 11 0. Th i ivial i di O

6.5 Blow-up dynamics

In this section, we give an overview analysis of the blow-up of solutions to the system

equations (6.1) at the borderline spaces Ef, a = %.

Theorem 6.11. The system of equations (6.5) admits (6.9) as a Lyapunov function. More-

over, if in (6.11) we assume that (6.12) is satisfied such that

3
K= 1)y, > knNg < (6.39 then w,v,w) atfg = 00 6.66
Z( ) X B s y Uy +8

Jj=2

for any t € (0,00), i.e. the system solution blows-up independent of time,

Proof. To show that (6.9) is a Lyapunov function, we write the v, w— equations as a single
equation in . Then, taking the dual spaces product (6.29) with, as test function, n =

Inu — kY € E(‘;‘, in the u— equation and setting ¢, € E°

r

dJ(t
& = /utlnu—l—/ut—n/utw—n/wtu +
dt Q Q Q Q

ﬁ r—2 r—2

w2 ( [ wervuicen [ o)
K T

= [utmu—r) =% [

= / V (Vu — kuVY) (Inu — k) — K/ [e]" (6.67)
Q aJa

we obtain that,

= — — ]~ - _E "
/Q(w kuVY) V (Inu — kap) a/ﬁ\wt\
T K T
— —/QuV(lnu—mbﬂ —a/g|¢t| <0,

having used the dual space function representation in (6.29), and the fact that

/ut =0, V(lnu-— k) —u<v“—ww),
o u
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to yield the first assertion of the theorem. The results conclude that the Lyapunov function
(6.9) is decreasing along the trajectories of the orthogonal to constant solutions of the
equations in (6.5) as time increases to infinity.

Now, to prove (6.66) of theorem, we note that (6.65) holds using the best constant of

the inclusion EJ, a = % in (3.6), while associated to (6.10), is the energy functional

1 A
B = 1190l + 21l uin ([ ) 2o (6.68)

Consequently, (6.65) yields

o) > WVl -+t [ ),

using the second embedding condition in (3.6), and (6.38) implies the conclusion, on taking
N € Zatp as a test function in the complete system equations (6.5), then integrating in time
t € (0,T) using a reduction to absurd argument.

In fact supposing that the conclusion was false, it follows from

d p
0 = %HUH(H-B,,)‘FZ)(UJL’?)

d
P q KY
> dt||U|a+ﬁ7p—|—wHVu||a_é—I—,uln(/ge )

t
— ol = uUHng/O In </Q emus)) ds

t
> ,u/ 1n</e’w(s))ds:oo,
0 Q

that the contrary to the premises is true, since the norm ||Upl|?

a+B,p

= [luollé.q + llvoll, +
[|woll . is finite. This therefore, imply that the last assertion of the theorem is valid. For an
alternative, much finer approach, see 26, 36|, which can easily be adapted to our situation

from their results in the case of Z,45,a0 = B = %, q = r = 2, the Lyapunov function (6.9)

and using the Definition 6.1. O



Conclusion

In conclusion of this thesis, we remark that the importance of the results of this thesis is
in the role played by the best constant of the scale spaces into the L®—spaces. This has
yielded in the the studies of the well-posedness of the system of equation neither the need of
the initial data to the system of equation, nor time for a contraction mapping in application
of Banach fixed point theorem to be small respectively. We, however, point out that, much
more still need to be done in relation to the complete analysis of the semilinear eigenvalue
problem (6.10) at the borderline space E? ie. 28 = %, in context of establishing the
Palais-Smale condition in view of the Trudinger-Moser inequality, and Pohozaev’s identity
for nonexistence of solutions. It is the hope of the author that this task should complete
elegantly the treatment of the blow-up analysis concerned with the system equations (6.5)
in the general function spaces setting insofar provided for studying of the ARKS equations

in (6.1).
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