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ABSTRACT 

Yam (Dioscorea spp.) is a major source of income and a food security crop for many 

households in Sierra Leone. Despite the economic importance of the yam crop its 

improvement has suffered from the lack of knowledge of existing germplasm and the genetic 

potential within the yam gene-pool. As a consequence, many species of yam are being lost to 

changing tastes, industrialization and urbanization. All these lead to habitat destruction.  

This study assessed the extent of diversity in some yam germplasm from Sierra Leone using 

morphological and cytological descriptors, and ascertained the interrelationship between 

these two data sets. To this end, 52 genotypes comprising of forty three D. alata, two D. 

bulbifera, and seven D. rotundata sampled from the Sierra Leone germplasm were grown in a 

three replicate, in a randomized complete block design (RCBD) during 2010 planting season 

at the University of KwaZulu-Natal, Pietermaritzburg, South Africa. 

Principal component analysis (PCA) of 28 morphological characters indicated that the first 10 

principal components (PCs) with eigen-values greater than 0.6 explained 86.61% of the total 

variation. The PCs that largely contributed to the variability included number of days to shoot 

emergence, leaf position, leaf shape, leaf size, density of leaf, leaf vein colour; colour of leaf, 

petiole, petiole wing and stem, shoot growth rate, tuber shape and flesh colour of central 

cross section of tuber. The two-dimensional plot of the first two PCs grouped the accessions 

according to their species, but did not separate them into the tuber shape groups of irregular, 

oblong, oval-oblong, round and cylindrical. 

Factor analysis (FA) grouped the morphological traits into six factors, which together 

explained 75% of the total phenotypic variation in the dependence structure. Factor 1 was 

strongly associated with absence or presence of wings, distance between lobes, leaf apex 

shape, leaf colour, leaf margin colour, leaf measurement length-2, leaf vein colour of upper 

surface, number of branches, number of stems, stem colour and tip length of mature leaf; 

factor 2 with leaf density, leaf measurement length-1, leaf vein colour of lower surface, 

petiole wing colour, tip colour, wing colour and flesh colour of central cross section of tuber; 

factor 3 with leaf measurement width-1; factor 4 with leaf measurement width-2; factor 5 

with stem colour; and factor 6 with number of days to emergence.  



xiii 
 

The dendrogram of the cluster analysis produced six major groups supporting the PCA and 

FA groupings. Clusters A, B, C, D, E and F were formed at the dissimilarity distance = 0.90; 

and they consisted of two, thirty eight, one, seven, two and two genotypes respectively. 

Genotypes of cluster A belong to D. bulbifera, while genotypes of clusters B, C, E and F 

belong to D. alata, and genotypes of cluster D belong to D. rotundata. 

The ploidy levels of the 52 genotypes were determined by flow cytometry. The various 

ploidy levels obtained included diploid (2x), triploid (3x), tetraploid (4x), pentaploid (5x) and 

hexaploid (6x). The estimated nuclear DNA content ranged from 1.634 pg for G1 nuclei of 

diploid Dioscorea alata to 2.118 pg for G1 nuclei of hexaploid Dioscorea rotundata. 

Genotypes NR 07/045 (4x) and NR 07/040 (5x), which belong to D. bulbifera had nuclear 

DNA content of 1.905 and 2.017 pg respectively. The nuclear DNA content per genome was 

higher in diploids compared to polyploids. The variations within the 4x accessions (p<0.005) 

and among the three species (p<0.037) were significant. Root tips of six genotypes were 

prepared for chromosome counting using the acetocarmine staining technique. Genotype ER 

07/030 had 20 chromosomes, four genotypes including ER 07/036, NR 07/060, NR 07/071 

and SR 07/072 had 40 chromosomes, and TDr 95/18544 had 60 chromosomes.  

The findings agree with the hypothesis that studied germplasm from Sierra Leone were 

morphologically different expressing inter- and intra-group variability. Duplicate accessions 

were observed supporting the hypothesis that some genotypes had different names in diverse 

cultural setting. Flow cytometric measurements and conventional chromosome counting 

showed the existence of inter- and intra-group diversity in ploidy level and nuclear DNA 

content. A correlation was established between agro-morphological and cytological traits 

used in the study. This study contributes to an understanding of yam diversity in Sierra Leone 

which will facilitate yam genetic resource management, conservation and utilization. 
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GENERAL INTRODUCTION 

Yams are important monocotyledonous tuberous plants, which belong to the genus Dioscorea 

of the family Dioscoreaceae, order Dioscoreales (Ake Assi, 1998). The genus Dioscorea 

contains 600 species with more than 10 species cultivated for food and pharmaceutical use 

(Ake Assi, 1998). Six species are important staples including D. rotundata (white yam), D. 

alata (water yam), D. cayenensis (yellow yam), D. bulbifera (aerial yam), D. dumetorum 

(trifoliate yam) and D. esculenta (Chinese yam) (Ng and Ng, 1994). These major food species 

originated in three distinct regions of the world: Southeast Asia, West Africa, and Tropical 

America, which are also considered the main centers of yam domestication and diversity 

(Asiedu et al., 1997). Although yams are monocot, they possess some features similar to 

dicots such as reticulate venation, stalked net-nerving leaves, circular arrangement of 

vascular bundles in the stem, and the lateral position of the pistil. In relation to phylogenetic 

relationships, the yam is a representation of the biological link between grasses and eudicot 

plants (Chase, 2004). A diverse assemblage of flowering plants with an enormous range of 

diversity in morphology, chemistry, habitat, geographic distributions and other attributes is 

known as eudicot. Such a unique model crop enlightens our understanding of plant biology 

and evolution (Chase, 2004). They are herbaceous or woody climbing perennials with starch-

rich storage organs and a distinct annual cycle of growth (Coursey, 1983). The word ‘yam’ 

has its root in languages spoken by tribes of West Africa such as Mande ‘niam’ or the 

Temme ‘en yame’. It was then adapted into Portuguese as ‘ynhame’, Spanish as ‘name’, 

French as ‘igname’ and English as ‘yam’ (Adesuyi, 1997).  

Yam has played a significant role in food and agricultural system diversification, widened the 

food base and brought food security to about 300 million people in low income, food 

deficient countries (Obidiegwu et al., 2009). The nutrient contents of yam per 100 g fresh 

edible tuber include 50-84% moisture, 15-31% carbohydrate, 0.04-0.6% crude fat, 1.1-2.8% 

protein and 71-142 kcal energy (Asiedu et al., 1997; Opara, 1999). The tubers are rich in 

arginine, leucine, isoleucine, and valine, with substantial quantities of thiamine, riboflavin, 

niacin, and ascorbic acid (Eka, 1985). Yams are also a good source of calcium (5-70 mg/ 100 

g edible portion of tuber), phosphorus (5-60 mg/ 100 g), and iron (0.5 mg/ 100 g) (Eka, 

1985). In addition to its economic and nutritional values, the crop also plays a significant role 

in the cultural life of traditionalists in Africa, where more than 95% of the world yam is 
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produced (Zannou et al., 2004, 2007). The first cultivation of D. cayenensis-D. rotundata 

complex (Guinea yams) in Western and Central Africa regions dates back 7000 years, when 

farmers’ selection of genotypes was based on their needs. The production of yam has steadily 

increased from 18 million metric tonnes in 1990 to more than 38 million metric tonnes in 

recent years (FAO, 2006). In fact, the yam belt alone in West Africa accounts for about 95% 

of the global annual production, which is estimated at over 51 million metric tonnes (FAO, 

2007). This is as a result of increasing utilization of traditional landraces and expansion into 

marginal areas. Such expansion demands the provision of improved, high yielding, pest and 

disease resistant cultivars with tuber quality acceptable to farmers (Manyong et al., 2001).  

In Sierra Leone, yam is a highly valued crop, which not only provides food for household 

consumption, but also improves many livelihoods through the sale of harvested tubers. It is 

considered the third most important root and tuber crop after Manihot esculenta (cassava) and 

Ipomoea batatas (sweet potato). However, during festive seasons, some people prefer using 

yams to grace their traditional meals rather than cassava and sweet potato. Also, wild types of 

yam are consumed by some farming communities in the rural areas especially during the mid-

rainy season to overcome hunger (IAR, 2004). This emphasizes the significant role yam plays 

in food insecure homes in major yam producing areas in West Africa. Despite its economic 

importance, food yams have not been accorded the scientific attention required to investigate 

genetic traits that are desirable for their improvement. This has contributed to the 

susceptibility of many genotypes to pests and diseases and their low yields (Orkwor et al., 

1998). The lack of improved genotypes and pest and disease free planting material are mainly 

responsible for the relatively small production areas and low yields worldwide.  

Presently, germplasm has been collected for this study from some parts of Sierra Leone, but 

thorough morphological, cytogenetic and molecular classifications are yet to be conducted. 

Since characterization based only on morphological or agronomic characteristics masks 

important genetic information, complementation with cytogenetic and molecular examination 

of the germplasm using techniques such as isozyme analysis (Mignouna and Dansi, 2003), 

flow cytometry (Egesi et al., 2002) and marker assisted selection (Dumont et al., 2005), will 

fully reveal existing polymorphism in the various populations. Determination of the genetic 

diversity of yam is complicated by the fact that farmers with different ethnicity have different 

vernacular names possibly for the same genotypes. The various names have led to confusion 
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in the number of varieties of yam considered to be cultivated in the country and perhaps 

overestimation of the actual extent of genetic diversity.  

The number and origin of chromosomes in yams may affect such factors as the type of hybrid 

exhibiting maximum heterosis, the amount of genetic variation lost through self-pollination 

and the probability of obtaining useful traits from the species (Hamon et al., 1995). The basic 

chromosome number in yams is x = 10 (Zoundjihekpon et al., 1990). Earlier cytogenetic 

work in D. alata showed the existence of different ploidy levels (2n = 4x, 6x, 8x) in the 

species (Martin and Ortiz, 1963, 1966). Cytological abnormalities associated with polyploid 

formation are often responsible for the erratic flowering and reproductive behaviour in yams 

(Egesi et al., 2002). Thus, the development and application of molecular cytogenetic 

techniques remain central in determining chromosome structure and karyotype variation of 

Dioscorea spp. (Egesi et al., 2002). Furthermore, nuclear genome size within populations of 

inter-mating individuals must be kept constant to avoid a high rate of meiotic aberrations 

(Egesi et al., 2002).  

Determination of ploidy levels is traditionally done by counting the chromosomes after 

staining (Abraham, 1998). This method is, however, unsuitable for large-scale screening of 

breeding populations in yam since the chromosomes are generally small, dot-like and most 

often clumped together making counting difficult and laborious (Zoundjihekpon et al., 1990). 

Although stomatal size, density and pollen size have been used to determine ploidy in some 

species (Vandenhout et al., 1995; Tenkouano et al., 1998), these methods have been found 

not to be reproducible and therefore unreliable. Deoxyribonucleic acid (DNA) flow 

cytometry, which measures the fluorescence of a large number of stained nuclei within 

seconds, provides an estimate of nuclear DNA content within somatic plant tissues 

(Arumuganathan and Earle, 1991). The main merits of flow cytometry include its simplicity, 

speed, accuracy, convenience and ability to screen a large number of samples per day. The 

technique also circumvents a long generation interval for meiotic analysis utilizing a small 

amount of tissue. It is therefore non-destructive, with the possibility of analyzing large 

population of cells where mixoploidy or aneuploidy exists (Dolezel, 1997).  

Knowledge of ploidy status facilitates breeding hybrids with higher yields, in conjunction 

with tuber characteristics (quality, shape, etc.) adapted to commercial production, and 

resistance to anthracnose, an important disease of yams (Arnau et al., 2007). Generally, the 

breeding scheme of yams begins with characterization and evaluation of germplasm received 
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from farmers, the National Agricultural Research Systems (NARS) collection, and other 

collections for field performance, morphology, tuber quality, and ploidy status culminating in 

the selection of parents with desirable traits for hybridization (Mignouna et al., 2007). Access 

to a wide range of genetic diversity is essential in order for the plant breeder to develop 

superior hybrid genotypes. From the diverse gene pool, parents with superior complementary 

genes are selected and crossed to produce genotypes with adaptable ecological, culinary, and 

pest and disease resistance traits. Such genetic diversity is fundamental to the success of the 

breeding programme because farmers’ needs may vary in different regions depending on the 

socio-economic value of the crop, farming system and the desired traits needed by the end 

users (Zannou et al., 2004).  

It is likely that the genotypes sampled from the Sierra Leone germplasm are genetically 

different, but no detailed morphological and/ or genetic study had been conducted prior to 

this research. The aim of this study was to record the level of morphological diversity of the 

samples and to determine the ploidy level using flow cytometric and conventional 

chromosome counting techniques. The specific objectives of this study included: (i) the 

determination of the level of diversity among the accessions through morphological 

classification; (ii) the identification of genotype duplicates having different vernacular names 

but exhibiting similar morphological characters; (iii) the identification of various polyploidy 

levels for further genetic manipulations; and (iv) the determination of the relationships 

between agronomic traits and variation in nuclear DNA content among species.  

This study involved a number of working hypotheses which included the following:  

i. The various genotypes studied were morphologically different.  

ii. The same genotype was called differently by the various ethnic groups.  

iii. The local accessions had wide inter- and intra-group diversity in ploidy level nuclear 

DNA content.  

iv. There is a correlation between agro-morphological and cytological traits used in the 

two methods of characterization. 

This thesis consists of five chapters excluding the general introduction. The review of 

literature is presented in Chapter one. Chapters two and three contain the methodologies, 

results, discussions and conclusions of morphological and cytological (using flow cytometry 

and conventional chromosome counting techniques) characterizations of the yam genotypes 
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respectively. Chapter four consists of study of the relationships between morphological and 

cytological traits using canonical correlation analysis. The overview of the two methods of 

classifications and implications for future research are presented in Chapter five. 
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CHAPTER ONE 

Literature review 

1.1 Taxonomy, morphology and floral biology of yam 

1.1.1 Taxonomy of yam 

The genus Dioscorea is divided into different sections, based on gross morphological traits 

(Burkill, 1960). A section is a group of species that is separated by peculiar characters from 

the others of the same genus. The five most important sections in yams are Enantiophyllum, 

Lasiophyton, Combilium, Opsophyton and Macrogynodium (Bai and Ekanayake, 1998). Five 

of the edible yam species such as D. rotundata, D. alata, D. cayenensis and the minor 

species, D. opposite and D. japonica belong to Enantiophyllum and are distinguished by 

clockwise twining on support (Bai and Ekanayake, 1998). Dioscorea dumetorum and D. 

hispida belong to Lasiophyton; D. bulbifera to Opsophyton; D. esculenta to Combilium; and 

D. trifida to Macrogynodium (Bai and Ekanayake, 1998). Members of these four sections 

twine anticlockwise (Table 1). Alexander and Coursey (1969) detailed the features that 

differentiate between the various sections. The features of members of the Enantiophyllum 

section include the formation of a large single tuber weighing 5 to 10 kg and 2 to 3 m in 

length. It is rare to have two or three tubers and extremely infrequent to have more than three 

tubers per season. The members of the Lasiophyton are distinguished by a cluster of medium 

sized tubers that are fused together. They have peculiar compound leaves, usually with three 

leaflets comparable to most Dioscorea leaves which are simple. Dioscorea esculenta is the 

only member of the Combilium section. It consists of a large number of small tubers, each 

weighing only a few hundred grams. The shoot system is of smaller stature compared to 

Enantiophyllum yams, while the root system resembles that of Solanum tuberosum (potato). 

The members of the Macrogynodium section are distinguished by a group of even smaller 

tubers compared to D. esculenta.  

There is a dearth of information on yam phylogenetic relationships due to the difficulty in  

identifying species and the high level of polymorphism in morphological traits. For instance, 

a controversial relationship between D. rotundata and D. cayenensis was reported by various 

researchers (Burkill, 1960; Terauchi et al., 1992). They considered members of both species 

to be derived from a common ancestor. However, Ayensu (1971) argued that they are 
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different species based on the different anatomical structures he observed in them. Terauchi 

et al. (1992) investigating the origin and phylogeny of guinea yams using restriction fragment 

length polymorphism (RFLP) analysis of chloroplast DNA and nuclear ribosomal DNA 

suggested that D. rotundata was domesticated from either D. abyssinica, D. liebrechtsiana, 

D. praehensilis, or hybrids from any of the two. Dioscorea cayenensis was also proposed as a 

hybrid derived from pollination of a staminate plant of either D. burkilliana, D. minutiflora, 

or D. smilacifolia and a pistillate plant of either D. abyssinica, D. rotundata, D. 

liebrechtsiana or D. praehensilis (Terauchi et al., 1992).  

Table 1. The main sections under the genus Dioscorea and corresponding cultivated species including 

their common names, origin and ploidy levels 

Section*  Characteristics  Species Common Name Origin  Ploidy  

Enantiophyllum  Vines twining  
to the right 

D. alata L. Water yam; 
Greater yam; 
winged yam 

S.E Asia 2n=20,30,40, 
50,60,70,80 

D. rotundata Poir. White Guinea 
yam; White yam 

W. Africa 2n=40;80 

D. cayenensis Lam. Yellow Guinea 
yam; White yam 

W. Africa 2n=36,54,60, 
63,66,80,120, 
140 

D. opposite 
Thumb. 

Cinnamon yam China 2n=40 

D. japonica 
Thumb. 

Chinese yam Japan 2n=40 

D. transversa R.Br.  SE Asia - 
Lasiophyton  Vines twining 

anticlockwise 
D. dumetorum  
(Kunth.) Pax 

Bitter yam 
Trifoliate yam; 
Cluster yam 

Africa 2n=36,40,45, 
54 

D. hispida Dennst. Asiatic bitter 
yam 

SE Asia 
India 

2n=40,60 

Opsophyton  D. bulbifera L. Aerial yam; 
 potato yam 

Africa 
Tropical 
Asia 

2n=30,40,50, 
60,70,80,100 

Combilium  D. esculenta        
(Lour.) Burkill 

Lesser yam 
Asiatic yam 

Indo-China 
Oceania 

2n=30,40,60, 
90,100 

Macrogynodium  D. trifida L.f. Cush-cush yam Tropical 
America 

2n=54,72,81 

Sources: Coursey (1967); Alexander and Coursey, 1969; Purseglove (1972); Rehm and Espig (1991); 

Degras (1993); Onwueme and Charles (1994); Asiedu et al. (1997). *a section is a group of species 

separated by some distinction from others of the same genus. 

Based on recent analysis of morphological and molecular data, the Dioscoreaceae family is 

now considered to have four distinct genera including Dioscorea, Stenomeris, Trichopus and 

Tacca (previously known as Taccaceae) (Chaddick et al., 2002). Various researchers have 
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also observed that some species of Dioscorea originated from a common ancestor known as 

the monophyletic group (Kawanabe et al., 1997; Wilkin et al., 2005). Both D. tunuipes and 

D. tokoro, for example, clustered in one of the monophyletic groups, while other species 

formed separate monophyletic groups. The different clustering patterns indicated that species 

in the same cluster may have evolved from a similar ancestor, whereas those obtained in 

different clusters were possibly from different ancestors. These observations have led to the 

suggestion that yams should be reclassified (Chair et al., 2005). 

1.1.2 Morphology of yam 

Yam leaves are commonly simple, cordate, or acuminate borne on long petioles, but lobed or 

palmate types could exist in some species with pointed tips (Okonkwo, 1985). Different leaf 

arrangements such as alternate, opposite or both may occur on the same stem depending on 

the plant species. For instance, D. rotundata has simple cordate leaves oppositely arranged on 

the nodes. Dioscorea dumetorum has compound leaves which are different from other species 

that have simple leaves with opposite or alternate leaf arrangement on the stem. Leaves 

consist of reticulate veins, unserrated lamina and are non-pubescent (Frageria, 1992). Yam 

leaf anatomy consists of stomata on the lower leaf epidermis (Okonkwo, 1985), except for the 

D. bulbifera with few stomata occurring on the upper leaf epidermis (Onwueme, 1978). 

The top growth of yam consists of twining vines which may be several meters long, 

depending on species and growing conditions (Hahn et al., 1987). Vines of some species 

have spines which support twining and deter animals (Okonkwo, 1985). Spines are more 

common in wild than cultivated yams (Onwueme, 1978). Stems of most species are 

cylindrical, but D. alata comprises of stellate, rectangular or polygonal structures with 

angular extension of membranous wings forming a four sided cross section (Onwueme, 

1978). A small number of the minor species of Dioscorea has dwarf plant architecture 

(IBPGR, 1980). Dwarf genotypes have been noted among D. rotundata with mean vine 

length of 1.4 m compared to 19.8 m non-dwarf cultivars (Abraham et al., 1989).  

Yam plants possess two underground structures, the fibrous roots and the storage tubers in 

which starch accumulates. Roots arising from the tubers are normally thin and short (Okezie 

et al., 1981). The fibrous roots are generally smooth except in spinate vine cultivars. The 

number, shape and size of tubers are genotype and species dependent. Dioscorea rotundata 

tubers are commonly large and cylindrically shaped with white flesh consisting of ovoid, 
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large starch grains as a variant from other species (Okonkwo, 1985). Yam tubers have a 

peculiar longer dormant period of 10 to 16 weeks compared to other root and tuber crops 

(Orkwor et al., 1998).   

1.1.3 Floral biology of yam 

Flowering in many edible yams has been reported to be erratic, sparse or completely absent in 

some genotypes thereby limiting yam hybridization (Egesi et al., 2002). The sticky nature of 

yam pollen and the small openings of the female flowers limit wind pollination in yams 

(Sadik and Rockwood, 1975). In D. rotundata, Sadik and Okereke (1975a) reported the 

occurrence of bisexual flowers on the same spike. In D. cayenensis, however, only male 

flowers have been reported (Hahn, 1988). Observations in D. alata indicate the existence of 

few pistillate flowers and many staminate accessions used in hybridization (IITA, 1993). 

Sadik and Okereke (1975a) outlined the following characteristics of staminate, pistillate and 

complete flowers of yam. The florets of staminate flowers are 1 to 3 mm in diameter, sessile 

and borne on spikes subtended by small bracts. The number of florets on each raceme is 

variable. At least one spike is formed at a leaf axil and usually droops downwards. The 

perianth is slightly connate at the base and consists of three light-green sepals and a corolla of 

three light-yellow petals. Sepals and petals are usually similar in size and colour. The 

androecium consists of two whorls of each stamen. Pistillate flowers measure about 0.5 cm 

long, and are borne on axillary spikes. The perianth consists of three green sepals and three 

yellow-green petals. The sepals and petals are lobed above the ovary or otherwise they 

resemble those in staminate flowers. The ovary is inferior and trilocular with each locule 

containing two ovules. The placentation of the ovary is axial, and continues to develop into a 

capsule, whereas the perianth dries out during maturation (Sadik and Okereke, 1975a). The 

structure and shape of complete flowers are similar to pistillate flowers except for the 

presence of two whorls of stamens as in staminate flowers. It is presumed that complete 

flowers are merely advanced forms of pistillate flowers in which the staminodes develop into 

functional stamens (Sadik and Okereke, 1975a).  

Prevalence of staminate flowers has been observed in imperfect sex separation (Akoroda, 

1981). Dioscorea rotundata plants which originated from true seeds had a high frequency of 

flowering at 80% and a ratio of staminate to pistillate flowers of approximately 1:1, with 4% 

of the plants monoecious and presenting large number of flowers per plant (Sadik, 1975). 
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Yams in West Africa seldom reach more than 50% flowering, and the flowering genotypes 

exhibit a high staminate to pistillate ratio of 40:1 (Waitt, 1964) and monoecious to pistillate 

ratio of 5:1 (Sadik and Okereke, 1975b). Abortion or reduction of sex organ primordia of 

most species results in unisexuality (Dellaporta and Calderon-Urrea, 1993). Sexuality can, 

however, be reversed by hormonal treatment in certain conditions (Dellaporta and Calderon-

Urrea, 1993). This erratic flowering pattern and sex ratios are influenced by ecological 

factors such as ratio of day- to night-length, light intensity, soil mineral balance, length of 

vegetative to reproductive phase and genetic factors (Degras, 1977). Flowering intensity 

varies among yam genotypes ranging between non flowering and profuse flowering. It is 

usually highest in staminate than in pistillate plants of D. rotundata and D. alata (Bai and 

Ekanayake, 1998).  

In general, yam is a short day plant with diverse photoperiod requirements for flowering 

(Arnolin, 1982). Time of planting, quality and sett size of planting materials play crucial roles 

in flowering time. Yam setts are pieces obtained by cutting the mother- or ware-yam. An 

investigation into the effect of planting dates and types of setts on flowering in Ibadan, 

Nigeria, showed that setts of D. rotundata planted in January and April, flowered in early and 

late June, respectively (Edem, 1975). Also, setts planted in January produced more flowers 

and spikes than those planted in April (Edem, 1975). 

1.2 Breeding scheme of yams 

Breeding of elite genotypes of yams with adaptable ecological fitness of prevalent pest and 

disease attacks, desirable food quality traits and stable yields are needed to increase and sustain 

the productivity of yam cultivation in the face of a deteriorating resource base (Orkwor et al., 

1998). In the past, farmers based their selection of suitable genotypes on natural variation but 

changes in the physical and socioeconomic environments have necessitated the development of 

scientific breeding programmes. New yam cultivars are developed according to specific 

objectives with the understanding that the desirable traits vary from one species and region to 

another. Generally, the principal objectives of most yam improvement programmes include high 

and stable yield of marketable tubers; good tuber quality such as high dry mass content; culinary 

traits including texture, taste, dormancy period, rate of enzymatic browning; resistance to biotic 

stresses in the field and during post-harvest storage; tolerance to abiotic stress such as drought 
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and low soil fertility; and suitability of plant architecture, vigour, and maturity period to 

prevailing cropping systems (Orkwor et al., 1998). 

Breeding and selection of yams include the introduction of germplasm, evaluation and 

phenotypic mass selection of clones. Yam improvement programmes often focus on 

hybridization as a short-term approach to broaden the crop’s genetic base. Cytogenetic or 

genetic research is often considered as a medium-term approach to increase efficiency; while 

biotechnological or molecular approaches are considered long-term techniques for yam 

improvement (Orkwor et al., 1998). Breeding and selection use large numbers of progeny to 

ensure that the few traits considered most relevant are incorporated in the local ideotype. A local 

ideotype is a description of idealized appearance of a plant variety. For this purpose, the 

selection of parents for hybridization is done such that mostly complementary, desirable genes 

are combined in the new hybrid cultivar. Selected parents are crossed to generate botanic seeds 

either using hand pollination on pairs of parents, or open pollination among clones planted in 

isolated fields, clonal trials or farmers’ fields (Orkwor et al., 1998). 

The selection of progeny is largely based on visual assessment developed according to the 

breeding objectives. The selection intensity during the first clonal generations is high in order to 

effectively discard undesirable genotypes (Lebot et al., 2005). The number of clones of each 

selected genotype increases in succeeding generations to facilitate precise evaluation of their 

agronomic performance (Figure 1). The base population includes both local and introduced 

germplasm. The base population is established in hybridization blocks where crossing is 

permitted for botanic seed production. The early clonal and preliminary yield trials are 

unreplicated since large numbers of clones and stands per clone are used. Clones at the uniform 

and advanced yield trials are established using replicated complete or incomplete block designs. 

The number of replicates depends on the quantity of seeds available. At the yield trial stages, 

genotypes can be either provided with or without stakes (Orkwor et al., 1998).   



7 
 

 

 

 

Figure 1. Yam improvement scheme showing approximate number of clones in parenthesis 

(Asiedu et al., 1998) 
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1.3 Genetic diversity and its significance in yams 

The amount of genetic variation among individuals of a genotype, species or population, 

which provides adaptability to erratic environmental conditions and the potential to develop 

new genotypes is known as genetic diversity (Brown, 2000). Such variability among 

genotypes is expressed through molecular, (eg. DNA sequence), biochemical, physiological, 

cytogenetic and morphological traits (Ramanatha and Hodgkin, 2002). Thus, an extensive 

germplasm assessment and characterization involves measurement of more than one of these 

traits. 

Increasing research into the genetic diversity of yams has contributed to an understanding of 

the extent and distribution of diversity present in cultivated genotypes and their wild 

relatives. This is due to threat of genetic erosion of valuable local and introduced genetic 

resources at the crop domestication and diversity centers (Lebot et al., 2005). Nevertheless, 

the yam is among cultivated staple crops considered as underutilized, minor or neglected 

where its conservation status and production potential is still to be unraveled in many areas 

(Tamiru et al., 2006).  

The general belief is that yam diversity has been considerably maintained in traditional agro-

ecosystems and through sustainable dynamic evolutionary processes (Kehlenbeck and Maass, 

2004; Tamiru et al., 2006). Additionally, human knowledge that shaped diversity for 

generations is preserved (Bellon, 1991). The key players involved in  crop evolution include 

genetic diversity, farmers’ knowledge and selection, and exchange of crop varieties (Brush, 

2000). Farmers often treasure diversity in crops wrought by factors of heterogeneous 

environment and production, risk, market demand and supply, which affect how different 

products are utilized (Bellon, 1996). This is evident in farmers’ decisions about which 

cultivar to grow belonging to similar or different species. Such preferences in the 

development and utilisation of traditional varieties or landraces has influenced specific and 

intra-specific diversity in yams (Tamiru et al., 2006). 

The concept of a landrace is complex. A landrace is defined as an integrated and adapted 

population that is genetically variable (Harlan, 1975). It is also referred to as a crop 

population in balance with its agro-ecological environment, stable over a long period of time 

with a potential for adaptive changes (Frankel, 1970). Landrace also refers to an early 

cultivated form of a crop species, evolved from a wild population (FAO, 1999). The presence 
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of diversity in genotypes plays a significant role in providing food for millions of people and 

as parent populations for breeding modern cultivars (Orkwor et al., 1998).  

1.4 Yam genetic diversity with respect to morphological and ploidy 

markers  

There is considerable agreement in research results that all cultivated forms of D. cayenensis-

D. rotundata complex are products of ancient domestication of the four major wild species 

namely D. abyssinica Hochst, D. praehensilis Benth, D. burkilliana Miege, and D. 

mangenotiana Miege (Dumont and Vernier, 2000;  Mignouna and Dansi, 2003; Scarcelli et 

al., 2006). But, the challenge still remains of understanding how individuals identified in the 

wild as D. praehensilis or D. abyssinica can directly become D. rotundata or D. cayenensis 

following “domestication” without any genetic change (Mignouna and Dansi, 2003). 

Yam shows considerable diversity both at inter- and intraspecific levels (Okoli, 1991). The 

diversity under cultivation is further  enhanced by the ongoing domestication of wild yam in 

various countries (Scarcelli et al., 2006). Nevertheless, the extent of genetic diversity in many 

Dioscorea species and their relationships is yet to be investigated in detail. Characterization 

of yam germplasm based on morphological characters (Dansi et al., 1999), soluble protein 

profiles (Ikediobi and Igboanusi, 1983) and isozyme patterns (Dansi et al., 2000a) has 

revealed some degree of variability. Morphological characterization is necessary as a first 

step in a plant breeding programme. Many yam genotypes cultivated in the past, can 

nowadays only be found among a few farmers in small quantities. Moreover, the wild species 

are possibly experiencing severe erosion due to the disappearance of forest reserves. As a 

consequence, the genetic resources of yam are at risk (INRAB, 1996). The identification and 

conservation of new elite genotypes with ecological adaptation and resistance to pests and 

diseases will provide plant breeders with a wider range of diversity. This can be facilitated by 

establishing a molecular database of the diversity of existing traditional cultivars held by 

farmers (INRAB, 1996).  

Chromosome counts are variable in yams, ranging from 2n = 20 to 2n = 140 in the common 

food species (Hahn, 1995). In yam the occurrence of extra chromosomes, B chromosomes or 

satellites, is common and sometimes they are as large as the chromosomes themselves 

(Essad, 1984). Various chromosome counts in Dioscorea revealed the existence of one or two 

chromosome base numbers, x = 9 and x = 10, with a high frequency of polyploid species 
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(Zoundjihekpon et al., 1990; Dansi et al., 2000b). Tetraploid genotypes are often the most 

frequent, compared to 2x, 6x and 8x genotypes. Mixoploid formation could be possible in 

yam, though infrequent. Among the 90 cultivars assessed for ploidy diversity in Benin, two 

landraces, ‘Tam-Sam’ and ‘Yoube’, showed 4x and 8x mixoploid (Dansi et al., 2000b).  

Different marker assisted techniques have been explored for ploidy determination in yam. In 

segregating populations of water yam (D. alata) and white yam (D. rotundata) using RAPD 

markers, Mignouna et al. (2002) observed disomic inheritance with 2n = 4x = 40, indicating 

that both species were allotetraploid. However, analysis using isozyme and microsatellites 

markers, revealed D. rotundata as a diploid species with 20 chromosomes (Scarcelli et al., 

2005), whereas D. trifida was classified as octoploid with 80 chromosomes (Essad, 1984). In 

microsatellite segregation analysis, individual patterns showed a maximum of four alleles 

suggesting  D. trifida to be tetraploid with 2n = 4x = 80 chromosomes (Hochu et al., 2006). 

Further cytogenetic investigation indicated that D. trifida is an autotetraploid species with a 

basic chromosome number of x = 20 (Bousalem et al., 2006). Segarra-Moragues et al. (2004) 

studying two species of the Bordera section, D. pyrenaica and D. chonardii (classified in the 

section by Chaddick et al. (2002)) confirmed that they are allotetraploid endemic to the 

Pyrenees (Spain and France). Both D. pyrenaica and D. chonardii have not been well 

documented in the Dioscoreaceae family. The two new basic chromosome numbers x = 6 and 

x = 20 also raised concerns about the validity of ploidy data in the genus Dioscorea (Segarra-

Moragues and Catalan, 2003; Scarcelli et al., 2005).   

1.5 Background and relevance of DNA flow cytometry  

According to Robinson (2006), “a flow cytometer consists of fluidics, optics and electronics, 

as it measures cells in suspension that flow in single-file through an illuminated volume 

where they scatter light and emit a fluorescence that is collected, filtered and converted to 

digital values for storage on a computer.” Deoxyribonucleic acid (DNA) flow cytometry 

estimates the amount of DNA in cell nuclei. This technique involves preparation of aqueous 

suspensions of intact nuclei with DNA stained in DNA fluorochrome and the quantification 

of DNA content is based on the relative florescence intensity of the samples (Dolezel and 

Bartos, 2005). Since sample preparation and analysis are convenient and rapid, DNA flow 

cytometry has gained popularity in ploidy screening, detection of mixoploidy and anueploidy 

and in cell cycle analysis (Dolezel and Bartos, 2005). Flow cytometry is also used in the 

assessment of the degree of polysomaty, the occurrence of nuclei of different ploidy levels in 
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the same organism, found in varying cells or tissues (Inze and De Veylder, 2006). This is also 

known as endopolyploidy, which occurs as a result of replication of DNA without the process 

of mitosis. However, there is still limited understanding regarding the extent, role and control 

of endopolyploidy in plants (Bennett, 2004). Through flow cytometry, the reproductive 

processes can be studied. For instance, the ploidy of pollen nuclei can be determined  by 

identifying and quantifying the unreduced gametes produced (Kron et al., 2007). 

Characterization of other pollen traits such as the proportions of male and female determining 

pollen types in dioecious plants is made possible with flow cytometry (Stehlik et al., 2007). 

Flow cytometry may be used in screening of seeds where the ploidy levels of embryos and 

endosperms are separately determined. Such an exercise provides the possibility of 

associating particular seed traits with DNA content (Smarda and Stanciik, 2006). The 

estimation of absolute DNA amount or genome size is another application of flow cytometry. 

The genome size is the description of the DNA content in picograms per haploid genome and 

is often referred to as the C-value (Dolezel and Bartos, 2005). Flow cytometry can detect 

interspecific hybrids according to intermediate DNA values (Dolezel, 1997). This has been 

applied to detect hybrids in Allium spp (Keller et al., 1996). Karyological stability of somatic 

hybrids produced by protoplasm fusion can be assessed by flow cytometry (Binsfeld and 

Schnabl, 2002). Flow cytometry can be used to detect new cytotypes (Weiss et al., 2002); and 

in cell cycle kinetics (Sandoval et al., 2003). 

Previous efforts aimed at estimating the quantity of DNA in cell nuclei preceded the 

discovery of DNA’s central role in heredity (Caspersson and Schultz, 1938). Afterwards, 

DNA amount per organism was established; and the DNA content of an unreplicated haploid 

chromosome complement (n) was termed the C-value (Swift, 1950). Thus, a nucleus in G1 

phase of the cell cycle with two copies of the unreplicated genome has a 2C DNA amount. 

Later, no correlation was observed between DNA C-values and organism complexity (Mirsky 

and Ris, 1951). The lack of correlation was termed the C-value paradox (Thomas, 1971).  

Two methods developed to facilitate the determination of 2C DNA content in organisms 

include chemical analysis (Schmidt and Thannhauser, 1945) and reassociation kinetics 

(Britten and Kohne, 1968). The second approach (single cellular) had high reproducibility 

and performance, but was more complex to handle compared to the first. Research aimed at 

eliminating errors caused by irregularly shaped nuclei and chromosomes with non-

homogeneously stained chromatin led to the development of scanning 
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microspectrophotometry (Deeley, 1955). The DNA image cytometry was apparently 

considered an electronic alternative to microspectrophotometry, since results obtained from 

different laboratories were accurate and reproducible (Vilhar et al., 2001). 

Beside microspectrophotometry and image cytometry, a new technology with wider and more 

efficient application was developed. Flow cytometry analyses microscopic particles in 

suspension and compels their mobility in a single fluid stream by focusing intense light on 

the particles (Dolezel and Bartos, 2005). Pulses of scattered light and fluorescence are 

collected and converted to electric current pulses by optical sensors and are classified based 

on number of pulses received. The technique allows analysis of single particles at high speed, 

and measurement of large populations and detection of subpopulations within short periods 

(Shapiro, 2003). Since there is no need to use tissues with dividing cells, the ease of sample 

preparation, and the ability to measure DNA quickly in large populations of cells, has made 

flow cytometry an attractive alternative to microspectrophotometry (Bennett et al., 2000). 

The first flow cytometers quantified DNA in human cells by measuring absorbance of UV 

light (Kamentsky et al., 1965). This method was replaced by florescence technology, and 

nowadays DNA is determined indirectly by measuring fluorescence emission (Dolezel and 

Bartos, 2005). The result of the analysis is usually displayed in the form of a histogram of 

relative fluorescence intensity (RFI), from which DNA content is estimated (Dolezel and 

Bartos, 2005). Because large populations of cells may be measured in a short time, DNA flow 

cytometry has been used extensively in the monitoring of cell cycle kinetics and its 

perturbations (Rabinovitch, 1994), biomedical research to detect anueploidy (Kawara et al., 

1999), and apoptosis (Vermes et al., 2000). Apoptosis is a process of cell death, which occurs 

naturally during normal development, maintenance and renewal of tissue in an organism 

(FAO, 1999). 

The application of flow cytometry in plants was hampered by difficulties in the preparation of 

suspensions of intact cells and nuclei suitability for the technique. The first breakthrough 

occurred when Heller (1973) prepared a suspension of field bean nuclei from alcohol acetic 

acid-fixed root tips after enzymatic treatment with pectinase and pepsin. Nuclear DNA was 

stained with ethidium bromide and the analysis of relative fluorescence intensity indicated a 

potential for analysis of cell cycle kinetics. Heller’s (1973) application was not actively 

pursued by other plant scientists for about a decade, either due to its expensiveness or its 

applications largely restricted to biomedical research.  
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The possibility of nuclear DNA content quantification within intact plant cells started gaining 

attention during the early 80s (Puite and Ten Broeke, 1983). However, the presence of a rigid 

cell wall, which is autofluorescent and confers an irregular cell shape that disturbs the fluid 

stream, makes isolated plant cells unsuitable for estimation of DNA content using flow 

cytometry. Removal of the cell wall using cellulases or pectinases (hydrolytic enzymes) in 

the presence of an inert osmoticum converts cells to protoplasts, which are spherical and 

behave regularly within the flow stream. Although nuclear DNA could be stained in plant 

protoplasts (Puite and Ten Broeke, 1983), the histograms of fluorescence intensity could not 

be interpreted in terms of cell cycle distribution. This may be due to the effect of cytoplasmic 

autofluorescence and low permeability of the plasma membrane. Fixation with ethanol-acetic 

acid permeates cell membrane and decreases the autofluorescence. Notwithstanding, the 

quality of resulting histograms is poor, possibly as a result of misalignment of the instrument 

(Galbraith, 1990). A more successful method depends on intact nuclei analysis, which may be 

released from protoplasts by lysis either in the presence of a detergent or a hypotonic 

medium, leading to very good histograms of DNA content (Ulrich et al., 1988). 

1.5.1 In-field application of DNA flow cytometry 

The successful application of flow cytometry and its increasing utilization in plant taxonomy, 

systematics and ecology may present some interesting challenges. Like most analytical 

methods, the materials used by flow cytometry analysis are sampled and then dispatched to 

the laboratory (Dolezel et al., 1998). Cultivating plants within reasonable distance to the 

laboratory may reduce the deterioation of plant samples. However, difficulties set in where 

materials have to be transported over great distances and/or maintained or preserved for any 

length of time (Dolezel and Bartos, 2005). Leaf samples, the most popular tissue for DNA 

flow cytometry, may be transported in humid paper tissue and kept at low temperature. 

However, dispatching is not feasible for leaf samples of some species that deteriorate rapidly 

(Dolezel and Bartos, 2005). 

Application of “wheel-barrow” or “bush” flow cytometry in plant analysis was first proposed 

by Brown (1993). At the time it seemed like an impractical proposition, but today’s  compact 

and portable flow cytometers operating off a single 12 V car battery have made the 

establishment of a field laboratory for on-site sample preparation and flow cytometry analysis 

a reality. Marine biologists analyzing phytoplankton usually have portable flow cytometry 

laboratories aboard research vessels (Sosik and Olson, 2002) or make use of cytometers that 
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free float in the ocean (Dubelaar and Gerritzen, 2000). These developments have not solved 

all the difficulties associated with field DNA flow cytometry. The cost of transporting or 

establishing the laboratory may prohibit the application of flow cytometery in certain areas. 

Costing involves growing or transporting a series of plant standards, running preliminary 

experiments to identify an optimal sample preparation protocol, and testing for interference 

of cytosolic compounds with DNA staining. Despite these challenges, bush flow cytometry is 

a very attractive tool for ploidy screening on-site, where a similar protocol could be applied 

to screening hundreds or thousands of accessions representing a number of species (Dolezel 

and Bartos, 2005). 

1.5.2 Estimation of nuclear genome size  

The genome size of an unknown sample is estimated after comparison with the nuclei of a 

reference standard with known genome size. This can be obtained through flow cytometry, 

which analyses the relative florescence intensity (RFI), and hence relative DNA content 

(Dolezel and Bartos, 2005). The measurements of RFI of stained nuclei are determined on a 

linear scale with analysis of 5000-20000 nuclei per sample. Estimation of absolute DNA 

amount of a sample is based on the values of the G1 peak means (Galbraith et al., 1998). 

These are means obtained at the G1 phase, the initial proliferative phase of the cell cycle 

(FAO, 1999). The absolute DNA content of a sample is conventionally estimated in pg DNA 

based on the values of the G1 peak means as: 

Sample 2C DNA content 

= [(sample G1 peak mean)/ (standard G1 peak mean)] x standard 2C DNA content (pg DNA). 

Since the advent of molecular biology and progress in genome sequencing, DNA amount has 

been reported in number of base pairs (bp) using the term genome size (Greilhuber et al., 

2005). Genome size lacks a precise definition; it has either been used to describe the DNA 

amount in G1 phase nucleus or unreplicated haploid chromosome set (n). This problem is 

exacerbated in polyploids, where genome size is used to describe the haploid (n) and 

monoploid (x) chromosome set(s) (Greilhuber et al., 2005). Some authors were previously 

using 0.965 x 109 bp to 0.980 x 109 bp: 1 pg DNA for the estimation of the mean relative 

mass of a nucleotide pair (Straus, 1971; Cavalier-Smith, 1985). Recently, a 1:1 ratio of AT: 

GC pairs (1 pg DNA = 0.978 x 109 bp) ignoring the presence of modified nucleotides in the 

DNA molecule and maintaining errors <1% has been reported (Dolezel et al., 2003). 
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Estimation of the genome size of a species involves random selection of plants with each 

analysed several times (Suda et al., 2003). Carrying out replicate measurements on a plant 

would enhance detection of diversity in the procedure, while analyzing several plants permits 

monitoring of intraspecific variation. The number of plants and replicated measurements 

differ among various studies. With smaller number of replicates in large-scale screening 

experiments, at least three plants should be analysed, and each thrice when intraspecific 

genome size diversity is studied (Suda et al., 2003). To determine accurate and reliable 

genome size, the nuclei must be isolated in sufficient quantity; the DNA staining must be 

specific and stoichiometric for both the target and standard nuclei; and the genome size of the 

reference standard must be known (Dolezel and Bartos, 2005). 

1.5.3 Preparation of nuclei suspensions and optimisation of DNA 

content histograms 

Preparation of intact nuclei suspensions for the estimation of absolute DNA amounts has 

been almost globally carried out following the approach of Galbraith et al. (1983). This 

technique involves the release of nuclei into a nuclei isolation buffer by mechanical 

homogenization of a small sample of fresh plant tissue (Galbraith et al., 1983). The isolation 

buffer composition is crucial in enhancing the release of sufficient nuclei free of cytoplasm 

and maintaining the integrity of isolated nuclei; protecting the nucleic DNA against 

endonucleases; and facilitating DNA staining (Dolezel and Bartos, 2005).  

The Otto (1990) procedure was applied to plant flow cytometry and adjusted for use with 

non-fixed nuclei by Ulrich and Ulrich (1991) and Doleel and Gohde (1995), respectively. In 

this method, nuclei are released into the Otto I buffer, where they are fixed by citric acid. 

Staining is done in a mixture of Otto I and Otto II buffers (1:4), both comprising a phosphate/ 

citric acid buffer of pH 7.3. Most plant species may yield unsurpassed resolution in DNA 

content histograms probably due to the citric acid reaction, which improves chromatin 

accessibility and homogenizes chromatin structure. This may result in the canceling of 

variations in staining intensity among populations of nuclei with similar DNA content but 

different chromatin states (Dolezel and Bartos, 2005).      

The quality of DNA content histograms depends on sample preparation, instrument alignment 

and the data analysis. In order to minimise the amount of debris and clumps during analysis, 
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samples should be prepared with the intention of obtaining single cells  (Dolezel and Bartos, 

2005). It is also important to check the flow cytometer for linearity using flow check 

fluorospheres. This helps in the proper alignment of the instrument and in setting the 

coefficient of variation (CV) values to as low as possible before analysing the samples. If the 

cells or nuclei concentration in the prepared sample is high, a sufficient dye should be added 

to facilitate stoichiometric or proportionate binding. The CV is estimated as the ratio of the 

standard deviation to the peak mean expressed as a percentage; where the peak mean 

represents the mean channel number of the peak. The smaller the CV of the peaks in the 

DNA histogram, the more reliable is the estimation of ploidy level, and the better is the 

estimate of the percent of cells present in the various stages of the cell cycle. Doleel and 

Gohde (1995) showed that histograms with peak CVs <1% may be obtained under specific 

conditions such as leaving fixed cells overnight at 4°C, and allowing sufficient time for 

RNase to remove all the double stranded RNA from fixed cells stained with propidium 

iodide. In practice, CVs <3% are acceptable for most crops; however, in recalcitrant species 

where such precision is hindered, CVs <5% are acceptable (Galbraith et al., 1998).  

Previous DNA content estimation work using flow cytometry was done by utilization of 

different fluorescent dyes to stain nuclear DNA such as ethidium bromide, mithramycin and 

Hoechst dyes (Puite and Ten Broeke, 1983). Lack of knowledge of AT:GC ratio of the 

standard and sample DNA resulted in inadequate estimates of absolute DNA amounts. 

Mithramycin has not been frequently utilized (Galbraith et al., 1983). However, 4ʹ,6-

Diamidino-2-phenylindole (DAPI), which binds to AT-rich regions, has been widely used 

due to two reasons. Firstly, DAPI is specific for double-stranded DNA and its binding to 

DNA is not influenced by chromatin structure, which results in low peak CVs similar to that 

obtained with Hoechst dye (Cowdon and Curtis, 1981). Secondly, many plant scientists 

preferred using arc-lamp-based flow cytometers because DAPI fluorescence was particularly 

easy to excite and measure (Dolezel and Bartos, 2005). The DNA binding properties of 

propidium iodide (PI) stained samples revealed similar results to Fuelgen 

microspectrophotometry, but were contrary to DAPI stained samples (Dolezel et al., 1998). 

However, optimum dye concentration for specific species, shorter staining period (2 to 20 

min), isolation of nuclei from tissues of similar metabolic and developmental state remains 

crucial to good results (Galbraith et al., 1998). 
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1.6 Polyploid induction and expression in yams 

Polyploidy involves the duplication of single genome (to produce autoploids) or the 

combination of at least two different genomes (to form alloploids) (Grant, 1981). Polyploidy 

normally occurs in cells of organisms when there are more than two sets of homologous 

chromosomes. Most organisms are diploid, having two sets of chromosomes, with each set 

inherited from each parent. A somatic chromosome doubling event in the zygote, developing 

seedlings, or active apical meristematic tissues is one of the mechanisms of ploidization. It is 

well noted that the union of two unreduced gametes as a result of meiotic mishaps would 

immediately produce polyploids whereas somatic chromosome doubling is rare (Ramsey and 

Schemske, 1998; Nasrallah et al., 2000; Grant, 2002). It is also believed that other ploidy 

levels such as triploid and pentaploid are produced by the union between reduced (n) and 

unreduced (2n and 4n) parental gametes respectively (Ramsey and Schemske, 1998). 

Husband (2004) reported that back-crossing of eggs from viable and fertile triploids to a 

normal diploid may result in tetraploid formation.  

Polyploids arise from two main mechanisms: asexual or somatic polyploidization and sexual 

polyploidization (Carputo et al., 2003). In the asexual type, chromosome restitution occurs 

during mitosis such that one daughter nucleus comprises all the chromosomes of a somatic 

cell thereby yielding a cell with doubled number of chromosomes. However, scanty 

information is known about the natural frequency of somatic chromosome doubling in plants 

and their effects on interspecific hybridization (Carputo et al., 2003). As a result, somatic 

doubling was considered nonsignificant in the production of polyploids (Ramsey and 

Schemske, 1998). In sexual polyploidization, two 2n gametes or 1n and 2n gametes unite to 

produce polyploid embryos depending on the genotype and the prevailing environmental 

conditions. There is more evidence on the genetic and environmental factors affecting the 

frequency of 2n gamete production and their contribution to polyploidy evolution than 

asexual polyploidization (Carputo et al., 2003). It is noted that somatic doubling does not 

alter the genotype except for allelic redundancy and diplod plants with doubled chromosomes 

become inbred. Sexual polyploidy results in new allelic variation and gene combinations 

without the occurrence of inbreeding. Knowledge about the rate of fitness of sexual 

polyploids versus diploid progenitors in natural habitats could be intriguing. Such 

information may provide a better understanding of the role of polyploid formation in 

adaptation. Otto and Whitton (2000) assumed that both sexual and asexual polyploids adapt 
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faster than their diploid counterparts in the presence of beneficial mutations in small 

populations with a partial dominant effect on fitness. 

Polyploids are also believed to arise from genomic duplication or hybridization of at least two 

different genomes to produce auto- or allotetraploids, respectively (Grant, 1981). Altogether, 

four types of polyploidy have been identified viz: strict autopolyploidy (from self replicating 

diploids), strict allopolyploidy (from hybridization between different diploids), segmental 

polyploidy (intermediate between auto- and allopolyploid) and autoallopolyploidy (Wendel 

and Doyle, 2005). Allopolyploidy has been observed to be more prevalent in nature than 

autopolyploidy (Wendel and Doyle, 2005). Both allopolyploidy and autopolyploidy are 

frequent in plants, including yam. These forms are also important to human nutrition, as are 

the intermediate types such as segmental allopolyploids (Hilu, 1993). 

Polyploidization has had a tremendous influence on the evolution of plants as depicted by 

replicated genome, genomic sequencing and the extensive expressed sequence tag (EST) 

(Seoighe, 2003). Expressed sequence tags (ESTs) are short (200-500 nucleotides) DNA 

sequences or tiny portion of a gene that can be used in the identification of unknown genes 

and mapping their positions within the genome (NCBI, 2004). The inception of 

polyploidization also influences the transfer of genes or genetic materials between genomes 

and the loss of gene due to migration (Levy and Feldman, 2004). Such processes lead to the 

induction of epigenetic gene silencing with a significant impact on gene expression (Liu and 

Wendel, 2003). Genetic drift accompanying polyploid formation causes deviation in 

collinearity within similar plant species (Paterson et al., 2003).  

De Wet (1980) and Ramsey and Schemske (1998) advanced factors that could influence 

polyploid formation and establishment via unreduced gamete production including adverse 

growing conditions, genotypes of varying populations and hybridization. The evolution of 

higher polyploidy via a triploid bridge is a significant challenge because triploidy results in 

reduced fertility due to meiotic irregularities yielding anueploid gametes. Polyploidy is also 

hampered by the triploid block, which is as a result of partial or complete failure of the 

endosperm tissue following certain interploidal or interspecific crosses (Bretagnolle and 

Thompson, 1995). Despite the potential for triploid block, the triploid bridge remains central 

for polyploidy formation (Ramsey and Schemske, 1998). 
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In polyploid plants, desirable traits such as disease could be found in wild ecotypes, a 

population or strain of an organism that is adapted to specific habitat (FAO, 1999). 

Heteroploid crosses of parents with different ploidy levels are normally done to enhance 

introgression of desirable genes into the cultivated types. However, heteroploid hybridization 

is frequently complicated by the generation of progeny of varying ploidy status (Costich et 

al., 1993). Crop species that require laborious somatic chromosome counting and have a long 

generation interval for meiotic analysis, require a quick and fast method of ploidy level 

establishment at the seedling stage. Determination of the phylogenetic nature of the variation 

in genomic DNA content among these species may serve as a guide to their prospective 

utility in breeding programmes (Costich et al., 1993).   

A hybrid derived from two diploid species can be induced to form a stable allotetraploid via 

spontaneous chromosome doubling or by colchicine treatment. Alternatively, allotetraploid 

formation can be obtained by fusing two unreduced gametes from two diploids or by 

hybridization of two autotetraploids (Chen, 2007). Polyploid induction through colchicine 

applications also led to the emergence of octoploids and 16-ploids of D. floribunda (Martin 

and Ortiz, 1966). Martin and Ortiz (1966) further discovered that hexaploids derived from 

crosses between tetraploids and octoploids, as well as plants with 54 chromosomes including 

D. composita and D. polygonoides exhibited bivalent and trivalent chromosome pairings. 

Martin and Ortiz (1963) hypothesized, based on quadrivalent pairing of 54 chromosome lines 

of D. floribunda, that a backcross of an autotetraploid to one of its diplod progenitors 

accompanied by chromosomal doubling, further suggesting that Central American species are 

allotetraploids. Most of the hybrids of obtained from the cross between D. floribunda and 

diploid parent had normal chromosome pairing indicating genome homology of the species; 

and that speciation involved little karyotype differentiation. On the basis of high trivalent 

(17.269 III + 2.925 II + 2.342 I at M-1) and chiasmata frequencies in a triploid clone of D. 

hispida (2n = 60), Jos et al. (1977) concluded that the species was autotetraploid in nature; 

and considering the autosyndetic pairing nature suggested the basic chromosome number to 

be as low as eight (Jos et al., 1980). Bai and Jos (1978) studying the type of polyploidy in D. 

esculenta var. spinosa (2n = 90) recorded the chromosomal association, which consisted of 

hexavalents, quadrivalents, trivalents, bivalents and univalents with mean chromosomal 

association = 0.3 VI + 0.15 IV + 4.35 III + 32.65 II + 9.25 I at M-1. The occurrence of both 

low multivalent frequency and low chiasmata frequency led to the conclusion that D. 

esculenta is an autoploid, which is in the process of converting into an allopolyploid (Bai and 
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Jos, 1978). It is therefore apparent that in yams polyploidy often occurs due to abnormal 

meiotic division during M-1. 

1.7 Role of polyploidy in yam improvement 

The genus Dioscorea offers an attractive model for polyploid investigation and chromosome 

evolution in both wild and cultivated species, particularly regarding its vegetative 

propagation and the process of domestication (Bousalem et al., 2006). Several factors have 

played key roles in the duplication of genes and genomes. Among these included genome 

buffering, increased allelic diversity, increased or fixed heterozygosity and the possibility of 

novel phenotypic variation in duplicated genes (Udall and Wendel, 2006). 

The emergence of multiple genomes in polyploid species was considered to affect mutation 

and recombination, with a resultant retardation of natural or artificial selection (Stebbins, 

1971). This report assumed equality in mutation rates of diploids and polyploids and 

tetrasomic segregation ratios. Recent trends, however, suggest buffering of some mutational 

characters by genomic redundancy (Yamamori et al., 2000). Genetic or genomic redundancy 

occurs where two or more genes are performing similar function, whereby activiation of one 

gene will result in little or no effect on phenotypic expression. Genome redundancy is more 

common in higher than lower organisms (Nowak et al., 1997). Gene redundancy makes the 

genome vulnerable to accumulation of deleterious mutations (Nowak et al., 1997). On the 

contrary, instantaneous individual gene duplication, which follows polyploid formation 

produce dosage effects which are likely to impact phenotypic expression (Guo et al., 1996). 

Genome doubling is also considered to increase allele variation and/or maintain 

heterozygosity. It is established that blocks of genes from different allelic backgrounds 

(intergenomic heterozygosity) could be hybridized to increase allele variation in polyploids 

(Udall and Wendel, 2006). Allopolyploidy is a major cause of increase allelic diversity (Udall 

and Wendel, 2006).  

A distinctly peculiar phenotypic diversity is also a product of polyploid formation (Soltis et 

al., 2004). Despite the fact that most agro-morphological diversity in root and tuber crops 

including yams, is found within cultivars, most allelic variation is obtained in the wild gene 

pool (Lebot et al., 2005). However, these wild morphotypes have limited phenotypic 

diversity. The genetic relationships among 269 cultivars of D. alata originating from South 
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Pacific, Asia, Africa and the Caribean were studied (Lebot et al., 1998). A limited allelic 

diversity as indicative of the phenotypes was observed among these cultivars. The large 

similarity on one hand could be due partly to the evolution of many genotypes from a narrow 

genetic base, while  the different genotypes were as a result of earlier sexual recombinations 

from different parents. 

1.8 Molecular cytogenetics 

The genus Dioscorea is made up of Old and New World species. The Old World species 

have the basic chromosome number of 10, while the New World species have the basic 

chromosome number of nine (Orkwor et al., 1998). A third basic number of 12 was proposed 

based on the occurrence of two, 24 chromosome species in the Pyrenees regions (Miege, 

1954). 

The problem of sparse, irregular or no flowering of some cultivated species of yam and the 

small chromosomal size has restricted cytogenetic analysis in Dioscorea species. As a 

consequence only little cytogenetic research has been done. In the available literature, Asian 

species are well documented (Raghavan, 1959; Martin and Ortiz, 1963; Ramachandran, 

1968) compared to American species (Martin and Ortiz, 1966) and African species 

(Zoundjikhekpon et al., 1990; Orkwor et al., 1998).  

Although polyploidy has been observed in most Dioscorea species, studies have extensively 

been restricted to determine chromosome numbers from somatic cells due partly to sparse, 

irregular or no flowering in some genotypes. Determination  of the type of ploidy prevalent in 

the genus in relation to its evolution and distribution are yet to be done in many regions 

(Orkwor et al., 1998). Various workers have reported different races in D. bulbifera with: 2n 

= 36 and 54 (Miege, 1954); 2n = 40, 60, 80 or 100 chromosomes (Martin, 1974b); 10 African 

varieties with 2n = 36, 40, 54 and 60 chromosomes. Different races have also been reported 

in D. esculenta with: 2n = 40 (Martin, 1974a); 90 (Bai and Jos, 1978), 90 and 100 (Raghavan, 

1958); in D. alata with 2n = 30, 50 and 70 (Martin, 1976); 52, 55, 66, 81 and 88 (Sharma and 

De, 1956); and D. cayenensis with 2n = 36, 54 and 140 chromosomes (Miege, 1954) (Table 

1). 

The chromosomes of Dioscorea species are too small ranging in size between 0.5 and 2.7 µ 

to conduct karyotype analysis since they are dot-like and the location of centromeric regions 
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is difficult to determine and view chromosomes. The size of the somatic chromosomes of the 

New World species was observed to range from 0.5-2.0 µ (Martin and Ortiz, 1963). 

Comparing the somatic chromosomes of D. esculenta and D. hispida, Ramachandran (1968) 

reported that the largest chromosome of the former measured 2.4 µ with the remaining found 

within the chromosome range of 0.75-1.9 µ, while the chromosome range of the latter was 

0.9-2.7 µ. It was clear from this study that the highest chromosome number and the smallest 

chromosome sizes occurred in the tropical Dioscorea species; whereas the smallest 

chromosome number and largest sizes occurred in the temperate species (Orkwor et al., 

1998).  

Knowledge of the ploidy level of yam genotypes is imperative for yam breeders, especially 

new introductions, before their utilization in breeding programme, to enhance matching of 

ploidy levels and to facilitate ploidy manipulations in intraspecific crosses (Dessauw, 1988). 

The existence of various ploidy levels and the lack of diploid relatives in cultivated polyploid 

yams have contributed to making the genetic studies of the crop complex. Dessauw (1988) 

reported that variations in ploidy levels in yams are not reflected in the morphological traits  

compared to other plant species. Phenotypic variations were also noted to be higher within 

than between ploidy levels similar to other plant species. Thus, cytological aberrations 

causing erratic flowering and reproductive behavior are obvious (Dessauw, 1988).    

Genetic improvement research was formerly, entirely devoted to the development of diploid 

varieties. Triploid (4x x 2x) and tetraploid (4x x 4x) hybrids were found to be more vigorous 

and to have a higher potential yield than diploid varieties (Arnau et al., 2007). The existence 

of octoploidy has been widely noted in both D. alata and D. rotundata (Hamon et al., 1992; 

Gamiette et al., 1999; Dansi et al., 2001), and mixoploidy in the D. cayenensis-D. rotundata 

complex where two cultivars were mixoploid with each exhibiting 4x and 8x ploidy levels 

(Dansi et al., 2000b). Further, Egesi et al. (2002) observed to a greater extent (84.9%) 

hexaploid and a lesser percent (15.1%) tetraploid in D. alata. Diverse research findings 

showed that males were usually tetraploids whilst females were mostly hexaploids (Abraham 

and Nair, 1991; Abraham, 1998). Contrarily, higher ploidy levels in yam were not found to 

be always directly correlated with erratic anthesis or female sex, but rather poor viability 

(Egesi et al., 2002).  

A dearth of information exists on yam genome size determination. Chromosome number has 

been reported to be significantly correlated with nuclear DNA content (Costich et al., 1993). 
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Dansi et al. (2001) also observed that the relative nuclear DNA content in arbitrary units 

(AU), expressed as channel numbers varied from 43.4-52.2 AU for tetraploids; 65.4-76.9 AU 

for hexaploids and 85.5-100.3 AU for octoploids. Channel numbers are measured values of a 

parameter representing the signal intensity of an event after amplification. These values 

obtained at the various channels (0 to 1024) as relative fluorescence intensity, are arbitrary 

since they can be transformed into some other units such as picograms. Estimates of D. alata 

genome size was at 550 Mbp/1C (in million base pairs per haploid genome) and D. rotundata 

at 800 Mbp/1C with basic chromosome number, n = 10 (Mignouna et al., 2007). A recent 

report indicated mean 2C nuclear DNA contents ranged from 0.702 + 0.004 pg for G1 nuclei 

of diploid D. dumetorum to 2.573 + 0.020 pg for G1 nuclei of octoploid D. cayenensis 

(Obidiegwu et al., 2009).  

1.9 Multivariate statistical techniques  

Multivariate data can be obtained in all branches of science. For instance, a marketing 

researcher might be interested in identifying determinants of demand and supply of a specific 

product. A yam breeder might not only breed for high yielding genotypes, but other traits 

such as resistance to local pests and diseases, earliness and desired culinary qualities. A social 

scientist might be interested in studying relationships between the courtship conducts of 

teenage girls and their fathers’ attitudes (Njuho, 2002).   

The objects of applying multivariate techniques in scientific investigations include (i) data 

reduction or structural simplification; (ii) sorting and grouping; (iii) investigation of the 

dependence among variables; (iv) prediction and (v) hypothesis construction and testing 

(Manly, 1994). Multivariate techniques are applied where more than one variable is measured 

in an experimental unit. Since these variables could be correlated, the use of univariate 

analysis is inappropriate to extract relevant information (Njuho, 2002). Multivariate 

techniques are classified into two categories, namely variable-directed and individual or 

experimental unit directed. The variable directed techniques include principal component 

analysis (PCA), factor analysis (FA), canonical correlation analysis (CCA) and multiple 

regression analysis (MRA). The individual directed techniques include discriminant analysis 

(DA), cluster analysis (CA) and multivariate analysis of variance (MANOVA) (Njuho, 2002).  
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1.9.1 Principal component analysis 

Principal Components Analysis (PCA) involves the identification of patterns in data, and 

expression of traits in data that highlight their similarities and variances (Smith, 2002). 

Principal component analysis technique is useful in discovering dimensionality of the data, 

data screening, checking clusters and finding abnormalities (Smith, 2002). In this technique, 

variables that are highly correlated are grouped together. The variables within a group are 

highly correlated whereas those between groups are uncorrelated. New variables are 

expressed as linear combination of the p original variables X1, X2, …., Xp to produce 

uncorrelated indices Z1, Z2, …., Zp known as principal components (Manly, 1994). The first 

principal component contributes most to the variation in the data set and is related to the other 

components as: var (Z1) > var (Z2) > … > (Zp). The general PCA model is given as:   

Zi = ai1X1 + ai2X2 + ….. + aipXp where ai = eigenvectors and Xp are the vaues of the different 

characters measured (Manly, 1994). The correlation between PCs and X-variables is given by 

P(Yi, Xk) =  where aik is the k element of ai and σ2 is the standard deviation of Xk. 

Principal component scores are relevant inputs in other multivariate analysis techniques 

(Njuho, 2002). Multicollinearity is among major problems encountered in multiple regression 

analysis, due to correlation between predictor variables. However, this can be avoided in 

PCA by using selected PC scores as regressors (Njuho, 2002). Plots of the first PC scores 

help to identify outliers and clusters that may be associated with the data (Njuho, 2002).   

1.9.2 Factor analysis 

Factor analysis follows the same principle of PCA. The main difference being that the former 

has distributional properties whereas the later does not. A few factors do explain the original 

variables without loss of information. When the new factors cannot be explained, rotation 

techniques, some which are orthogonal, are applied. The PCs selected using PCA can be used 

as the new factors (Manly, 1994).  

The study of Charles Spearman, which explained the performance of students in relation to 

various school subjects, led to the development of the general factor analysis model as: 

Xi = ai1F1 + ai2F2 + ........ + aimFm + ei (Manly, 1994). Where Xi is the ith test score with mean 

zero and unit variance; ai1, ai2, ....., aim are the factor loadings for the ith test; F1, F2, ....., Fm are 
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m uncorrelated common factors, each with mean zero and unit variance; and ei is a specific 

factor only to the ith test, with mean zero, and is uncorrelated with the common factors. The 

model can be written as:  

var (Xi) = 1= ai1
2 var (F1) + ai2

2 var (F2) + ........ + aim
2 var (Fm) + var (ei) (Manly, 1994). 

Where ai1
2, ai2

2, ….., aim
2 are the common factors whereas var (ei) is called the specific factor 

of Xi. The variance of (Xi) = Communality i + Specificity i.  

The correlation between Xi and Xj is rij = ai1aj1 + ai2aj2 + ....... + aimajm. Thus, two traits can 

only be highly correlated if they have high loadings on the same factors. The range of the 

common factor is -1 < aij < +1 and cannot exceed one (Manly, 1994).   

The use of the factor analysis model requires the satisfaction of various assumptions which 

include: (i) the common factors (Fi, Fj) are assumed to be independent of each other. That is 

cov (Fi, Fj) equals zero for all i≠j; (ii) specific factors (ei,ej) are assumed to be independent of 

each other. That is cov (ei,ej) equals zero for all i≠j. The specific factors are also independent 

of the common factors. That is cov (ei,Fj) equals zero for all i≠j; (iii) the X variables and 

common factors have zero mean and unit variance; (iv) the variance of the specific factors 

(ei’s) may vary; and (v) the X variables, Fi’s and ei’s are assumed to be multivariate X = ɅF + 

e, which gives the matrix form of the factor analysis model (Manly, 1994).   

The main purpose of factor analysis is to find if there are some underlying factors affecting 

our original X-random variables. It is desired that each X-random variable has as much 

loading on one factor as possible so that all the random X-variables have one dominant factor. 

The most common method is the verimax rotation which is an algorithmic method used to 

obtain ‘favourable’ factor loadings. Favourable factor loading implies that a particular 

variable is dominated by such a factor. For instance, variable X1 is possibly predominantly 

affected by factor 2 or variable X2 is dominated by factor 1 and so on (Manly, 1994).   

1.9.3 Cluster Analysis 

Cluster Analysis is a way of grouping cases of data based on the similarity of responses to 

several variables (Manly, 1994). Cluster analysis is different from discriminant analysis 

where the researcher initially knows how many distinct groups are existing (Manly, 1994).  

Cluster analysis is used to determine the similarity of an accession relative to other accessions 
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so that all accessions in the population can be assigned to their specific group of similarity 

(Peeters and Martinelli, 1989).     

Field (2000) reported possible factors that may limit clustering patterns as follows: (i) The 

different methods of clustering usually give very different results. This occurs because of the 

different criterion for merging clusters (including cases). It is important to think carefully 

about which method is best for what you are interested in looking at. (ii) With the exception 

of simple linkage, the results will be affected by the way in which the variables are ordered. 

(iii) The analysis is not stable when cases are dropped. This occurs because selection of a 

case (or merger of clusters) depends on similarity of one case to the cluster. Dropping one 

case can drastically affect the course in which the analysis progresses. (iv) The hierarchical 

nature of the analysis means that early ‘bad judgements’ cannot be rectified.  

Euclidean distance is the geometric distance between two objects (Manly, 1994). With 

Euclidean distances the smaller the distance, the more similar the cases. However, this 

measure is heavily affected by variables with large size or dispersion differences. So, if cases 

are being compared across variables that have very different variances, then the Euclidean 

distances will be inaccurate (Manly, 1994). As such it is important to standardise scores 

before proceeding with the analysis. Standardising scores is especially important if variables 

have been measured on different scales (Manly, 1994). 

The data for cluster analysis consists of values f p variables X1, X2,……..Xp for n objects. For 

hierarchical algorithms these values are then used to produce an array of distances between 

the individuals. The Euclidean distance function               is 

mostly used for quantitative variables, where Xik is the value of the variable Xk for individual i 

and Xjk is the value of the same variable for individual j. In some cluster analysis algorithms 

we begin with principal components analysis to reduce large number of original variables to a 

smaller number of principal components. However, when the first principal components 

account for a higher percentage of variation in the data a plot of individuals against these 

components is useful in cluster analysis (Manly, 1994).  

dij = 
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1.9.4 Canonical correlation analysis 

Canonical correlation analysis (CCA) can be defined as a way of measuring the linear 

relationship between two sets of basis vectors, one for x and the other for y, such that the 

correlations between the projections of the variables to these basis vectors are mutually 

maximized (Akbas and Takma, 2005). It finds two bases, one for each trait, that are optimal 

with respect to correlations and, at the same time, it finds the corresponding correlations 

(Manly, 1994). The dimensionality of these new bases is equal to or less than the smallest 

dimensionality of the two traits (Manly, 1994). Canonical correlation analysis is related to 

other multivariate techniques. It is similar to regression, where it quantifies the strength of the 

relationship between the two sets of traits. It creates composites of variables similar to factor 

analysis; and resembles discriminant analysis in the determination of independent dimensions 

for each variable set (Hair et al., 1998).    

An important feature of canonical correlation analysis is that it is invariant with respect to 

affine transformations of the traits (Borga, 2001). This is the most important difference 

between CCA and ordinary correlation analysis which highly depend on the basis in which 

the traits are described. Ordinary correlation analysis is dependent on the coordinate system 

in which the variables are described. This means that CCA maximizes the estimate of 

correlation between linear combinations of traits in the two sets, but does not maximize the 

amount of variance accounted for in one set of traits by the other set of traits (Akbas and 

Takma, 2005). This technique therefore limits the probability of committing type I error 

(Akbas and Takma, 2005).   

The maximum correlations between two sets of traits in CCA is done using two linear 

combinations as shown below:  

Wi = ai1X1 + ai2X2 + -------- + aipXp ……………………………………………..……..(Eqn 1) 

Vi = bi1Y1 + bi2Y2 + -------- + biqYq ……………………….……………………………(Eqn 2) 

The symbols W and V represents canonical variates; a and b are canonical coefficients of the 

X and Y trait sets; and p and q are the number of traits in the  X and Y trait sets, (Tabachnick 

and Fidell, 2001).  
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The canonical correlation for both sets of traits are generated from the following 

relationships:  

var (W) = aʹCov (X) a.………………………....…………….……………………….....(Eqn 3) 

var (V) = bʹCov (Y) b…………………………...…………………………..…………..(Eqn 4) 

………………...………………………………………...(Eqn 5) 

where var (W) represents variance of the canonical variate W; var (V) is the variance of the 

covariate V; Cwv is the canonical correlation between the X and Y trait sets; Cov (Y) and Cov 

(X) are the covariances of the traits in the X and Y trait sets, respectively (Keskin and Yasar, 

2007).  

The relationship of a set of canonical variate is maximized when the correlation (r-value) of 

the p and q is small. The first set of canonical variate (W1 and V1) gives the highest 

correlation and is considered the most important. The correlation between W2 and V2 is only 

maximized where the traits measured are uncorrelated to W1 and V1. Similarly, the 

correlation between W3 and V3 is maximized if traits are not correlated with W1, V1, W2 and 

V2 (Manly, 1994).  

The squared canonical correlation which represents the amount of variance in one canonical 

variate accounted for by the other canonical variate (Hair et al., 1998). The standardized 

coefficients are similar to the standardized regression coefficients in multiple regression, 

which gives an indication of the relative importance of the independent traits in determining 

the value of dependent traits.  

Sharma (1996) suggested the estimation of the redundancy measure (RM) for each canonical 

correlation for the determination of the amount of variance in one set of traits that is 

accounted for by another set of traits. The redundancy measure (RM) estimate is given as: 

RMvi/wi = AV (Y/Vi) x Ci
2…………………………………………………………..…..(Eqn 6) 

AV (Y/Vi) =  [∑qLYij
2/q] ……………………………………………………………....(Eqn 7)  

where AV (Y/Vi) = the averaged variance in Y traits that is accounted for by the canonical 

variate Vi; LYij
2 = the loading of the jth Y trait on the ith canonical variate Vi; q = the number 

of traits in canonical variates; Ci
2 = the shared variance between Vi and Wi; Wi and Vi are 

canonical variates of Y and X trait sets, respectively. 
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CHAPTER TWO 

Diversity of morphological traits of yam (Dioscorea spp.) genotypes from 

Sierra Leone 

Abstract 

Various vernacular names which may refer to the same genotype have been used by farmers 

and consumers. Morphological characterization of the variation among cultivated yams is 

essential for improved management and efficient utilization of yam genetic resources. A total 

of 52 yam genotypes from Sierra Leone were grown in a randomized complete block design 

with three replications during 2010 at the University of KwaZulu-Natal, Pietermaritzburg, 

South Africa. The aim of the study was to explore the existing morphological variability 

within this germplasm. Twenty-eight morphological traits measured from the genotypes were 

analysed using principal component analysis (PCA), factor analysis (FA) and cluster analysis 

(CA). The first 10 principal components (PCs), which had eigen-values >0.6 explained 

86.61% of the total variability. The PCA results indicated a number of traits that largely 

contributed to the variability within and between the species and they included: number of 

days to shoot emergence, shoot traits (position, shape, size, density, vein colour and 

measurements of leaves; shoot growth rate) and tuber traits (tuber shape and flesh colour of 

cross section of tuber). The two-dimensional plot of the first two PCs grouped the accessions 

according to their species, whereas some of the genotypes within species were grouped 

according to the various tuber shapes: irregular, oblong, oval-oblong, round and cylindrical. 

Genotypes WR 07/024, SR 07/075, 07/073, ER 07/032 and NR 07/042 overlapped in sub-

groups B1 and B2; whereas genotypes WR07/010, NR 07/041, ER 07/038 and NR 07/067 

overlapped in sub-groups B1 and B3. This indicated the possibility of duplicate genotypes in 

the germplasm. Factor analysis had six factors, which explained 75% of the total genetic 

variation in the dependence structure. Factor 1 was strongly associated with absence or 

presence of wings, distance between lobes, leaf apex shape, leaf colour, leaf density, leaf 

margin colour, leaf length-2 leaf vein colour of the upper surface, number of branch, number 

of stem, stem colour and tip length of mature leaf; factor 2 with leaf density, leaf length-1, 

leaf vein colour of lower surface, petiole wing colour, tip colour, wing colour and flesh 

colour of central cross section of tuber; factor 3 with absence or presence of wings and leaf 

width-1; factor 4 with leaf width-2; factor 5 with stem colour; and factor 6 with number of 
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days to emergence. Other factors (>7) explained the rest of the genetic variation and may not 

be important in yam breeding programmes. The dendrogram of the CA, based on the 

morphological characters, showed six major groups, which also supported groupings in the 

PCA and FA. This study demonstrated that local accessions from Sierra Leone have wide 

inter- and intra-group variability.  

2.1 Introduction 

Yams (Dioscorea spp.) are food security crops that sustain many livelihoods in the tropics 

and subtropics especially in countries in West Africa where large commercial scale 

production is practiced (Mwiringi et al., 2009). The crop serves as a source of food, medicine 

and income for many small scale farmers in Africa. Despite it’s importance, efforts of 

breeding and selection of yam genotypes with improved traits are currently inhibited by the 

lack of adequately characterized native genotypes at the morphological and molecular level 

(Asiedu et al., 1998). This is due to the fact that the distribution of genotypes and their 

characteristics are not well documented, which constraints the efficient conservation of these 

genetic resources thereby limiting their use in breeding programmes. This dearth of 

knowledge of existing germplasm in some of the countries where yams are cultivated has 

significantly contributed to genetic erosion of yams (Dansi et al., 1997). In Sierra Leone for 

instance, despite the importance of yams, many farmers and scientists do not know the 

existing level of diversity among the various species or varieties within species under 

cultivation. Also, pests and diseases are among major factors responsible for genetic erosion 

in yams (IAR, 2004). Genetic erosion can be overcome by collecting, characterizing and 

conserving existing germplasm for diversity studies and breeding work (Mignouna et al., 

2002).  

Several morphological diversity studies have been carried out between and within yam 

populations to catalogue existing diversity (Sastrapradja, 1982; Velayudhan et al., 1989; 

Asiedu et al., 1997; Lebot et al., 1998; Dansi et al., 2001; Hasan et al., 2008). However, 

yams are heterogeneous perennials with many overlapping morphological, physiological and 

chemical attributes. The efficient utilization of large genetic variability can be optimized 

when it has been systematically evaluated, quantified and characterized (Amurrio et al., 

1995). The use of one or more of these systematic methods to determine the extent of 

variability present in yam germplasm has provided better understanding in major yam 
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producing countries like Cote d’Ivoire (Hamon, 1987), Benin (Dansi et al., 1999), Cameroon 

(Mignouna et al., 2002) and Malaysia (Hasan et al., 2008), but the method is yet to be fully 

explored in Sierra Leone. Proper characterization of genotypes should include a 

morphological description, as well as determination of biochemical and molecular markers 

for genetic evaluation (Mignouna et al., 2003; Dumont et al., 2005). 

In experiments where large amounts of data are obtained such as diversity studies, data 

mining (knowledge discovery) is relevant to resolve difficulties in interpreting results. 

Principal component analysis is used to reduce dimensionality in data by performing a 

covariance analysis between factors. Factor analysis is used to describe variability among 

observed variables in terms of a lower number of unobserved variables known as factors. 

Factor analysis is related to PCA, but the two are different. Principal component analysis 

performs a variance-maximizing rotation of the variable space, taking into account all 

variability present in the traits. Conversely, FA estimates how much of the variability is due 

to common factors (communality) and specific factors (specificity). The two techniques may 

only be on equal terms if the error in the FA model (the variability not explained by the 

communality) is assumed to have constant variance. Cluster analysis aims at sorting different 

objects into groups based on their degree of associations and may not necessarily have similar 

results as those of PCA and FA (Manly, 1994). In this study, the multivariate techniques of 

principal components, factor and cluster analyses were used to determine the levels of 

phenotypic diversity/ similarity in 52 yam accessions. The objectives of this study were to 

determine the relationships between the accessions, and to identify duplicates and groupings 

of genotypes in the accessions of Dioscorea spp. obtained from Sierra Leone. The results of 

the research would contribute to conservation planning, and genetic improvement of yams in 

Sierra Leone. 

2.2 Materials and methods 

2.2.1 Plant material 

A total of 52 genotypes which included 50 landraces collected in various locations within 

four regions (southern, northern, eastern and western) of Sierra Leone, and two improved 

checks of D. rotundata from the International Institute of Tropical Agriculture (IITA) were 

morphologically characterized (Table 2.1). The collections were made during the 2007 

harvest season (November to December). From two to five tubers of each genotype were 
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collected and assigned an accession number. The accessions were maintained in experimental 

plots at the Njala Agricultural Research Centre (NARC), Sierra Leone. In early January 2010, 

about three minitubers of each genotype collected were imported to South Africa.  

Minisetts each weighing 50 g were established in 25 cm (diameter) x 20 cm (height) pots in a 

green-house at the University of KwaZulu-Natal, Pietermaritzburg, South Africa in mid 

January 2010. The environmental temperature and relative humidity of the green-house 

ranged between 20 and 33°C, and between 60 and 85% respectively, typical of the Sierra 

Leone weather (Table 2.2). The pots were filled with composted seedling mix, and water was 

supplied by drip irrigation. The pots were arranged in a three replicate, randomized complete 

block design. The planting distance between pots was 0.25 m. Each pot was fertigated at the 

rate of 200 kg ha-1 of NPK (40:40:60) daily throughout the growing period. Hand weeding 

was done as necessary. At one month after sprouting, staking of vines was done using the 

trellis method. Harvesting of fresh storge tubers was done at seven months after planting.  

2.2.2 Morphological characterization 

Morphological characterization was conducted by measuring 28 agro-morphological 

characters from at least three healthy plants (Table 2.3). The traits measured and data 

collection procedure used were based on those presented in the International Plant Genetic 

Resources Institute’s descriptor list for Dioscorea spp. (yam) (IPGRI/ IITA, 1997) with slight 

modifications (Appendix 1). Only those descriptors or traits that discriminated between 

genotypes were used in this study. Data were the averages measurements of at least five 

different healthy plants per genotype. Measurements of the quantitative characters of each 

accession were made using a meter rule for petiole, vine, leaf length and width and an 

electronic balance for weight characters. Qualitative traits were visually scored on scales as 

indicated (Table 2.3). Morphological data collected during the experiment were: number of 

days to emergence (number of days between planting and emergence), number of stems per 

plant, number of internode to first branching, stem colour, internode length, absence or 

presence of wings, wing colour, position of leaves, leaf density, leaf lobation, leaf colour, leaf 

margin colour, leaf vein colour of upper and lower surfaces, leaf shape, leaf apex shape, 

distance between lobes, leaf length and width measurements, tip length of mature leaf, tip 

colour, petiole length of mature leaf, petiole colour, petiole wing colour, tuber shape and 

flesh colour of central cross section of tuber. 
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2.2.3 Correlation and principal component analyses 

Multivariate analysis of the 52 x 28 data matrix comprising of correlation and PCA was 

performed in Genstat 12.1 (Payne et al., 2009) for Windows statistical software package. 

Correlation analysis was done in order to determine the interrelationship of the metric traits 

which are essential for designing breeding strategy. In the PCA, eigenvalues and load 

coefficient values were generated from the data set. The PCs that had eigenvalues > 0.7 were 

selected, and those traits that had load coefficient values > 0.25 were considered as relevant 

scores for the PC, which significantly contributed to distinguish between the genotypes 

(Jeffers, 1967). The first two PCs which accounted for the higher proportion of the total 

variation were used to present a two-dimensional scatter plot of the groupings of the 

accessions.  

For the purpose of graphing principal components, the data of the 28 agro-morphological 

traits were standardised using the formula: 

 Std (Xij) = (Xij- ij)/(variance(Xij)2 ………………………………….........................…(Eqn 1) 

Standardization was done in order to ensure that all the variables have equal weighting in the 

analysis. The standardized X-variables were then used to compute the principal component 

scores using the formula: 

 Yi = ∑aiXi .…………………………………………………………….………………(Eqn 2); 

where Yi = the principal components, ai = the eigenvectors, Xi = the values of the various 

traits and i = 1, 2, ........., n (Manly, 1994).  
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Table 2.1. Accession numbers, collection sites and main tuber traits of 52 yam (Dioscorea spp.) accessions 

Species Accession no. Local name Source (village, district/ division, 
province) 

Main tuber traits 

D. alata WR 07/001 Water yam Waterloo, Koya, Western Rural Oval-white 
 WR 07/004 Yamsiguwi  Waterloo, Koya, Western Rural Oval-white 
 WR 07/007 Water yam Waterloo, Koya, Western Rural Round-white 
 WR 07/008 Water yam Waterloo, Koya, Western Rural Irregular-white 
 WR 07/010 White yam Waterloo, Koya, Western Rural Irregular-white 
 WR 07/013 Water yam Waterloo, Koya, Western Rural Oblong-white 
 WR 07/014 Water yam Waterloo, Koya, Western Rural Oval-oblong-white 
 WR 07/015 Water yam Waterloo, Koya, Western Rural Oval-oblong-white 
 WR 07/016 Water yam Waterloo, Koya, Western Rural Oval-oblong-white 
 WR 07/020 Yamsiguwi  Waterloo, Koya, Western Rural Oval-white 
 WR 07/022 Unknown Waterloo, Koya, Western Rural Round-white 
 WR 07/024 Water yam Waterloo, Koya, Western Rural Oblong-white 
 WR 07/025 Water yam Waterloo, Koya, Western Rural Oblong-white 
 WR 07/028 Water yam Waterloo, Koya, Western Rural Oblong-white 
 ER 07/029 Yamsiegbamie Blama, Small Bo, Kenema Round-white 
 ER 07/030 Gbuheyamsie Blama, Small Bo, Kenema Oval-white 
 ER 07/031 Gbogboi Gofor, Dama, Kenema Round-white 
 ER 07/032 Yamsigbamie Gofor, Dama, Kenema Oval-white 
 ER 07/033 Water yam Levuma, Kando Leppeama, Kenema Oval-white 
 ER 07/034 Mende yamsie Levuma, Kando Leppeama, Kenema Oval-white 
 ER 07/036 Yamsieguwi  Nganyagwehun, Nongowa, Kenema Oval-white 
 ER 07/037 Yamsiegbamie  Kenema, Nongowa Kenema Oval-white 
 ER 07/038 Yamsieguwi  Kenema, Nongowa Kenema Round-white 
 ER 07/039 Njayamsi Kenema, Nongowa Kenema Oval-oblong-white 
 NR 07/041 Mowonmiferra Rokupr, Magbema, Kambia Round-white 
 NR 07/042 Mowomiferra Masorie, Magbema, Kambia Round-white 
 NR 07/043 Mabonk Makassa, Magbema, Kambia Round-light purple 
 NR 07/047 Mawonmiyalla Ro-thain, Magbema, Kambia Oblong-white 
 NR 07/054 Eneyi  Makoloh, Pakimasabong, Makeni Oblong-white 
 NR 07/057 Anayeyim  Makoloh, Pakimasabong, Makeni Oval-white 
 NR 07/059 Anayeyim  Mangay Loko, Makari Gbanti, Makeni Round-white 
 NR 07/067 White yam Makeni, Bombali Shebora, Makeni Round-white 
 NR 07/068 Mawonmiyim  Makeni, Bombali Shebora, Makeni Oblong-white 
 NR 07/069 Mawonmiyim  Makeni, Bombali Shebora, Makeni Round-white 
 SR 07/073 Yamsiegboi Nguala, Kaiyamba, Moyamba Oval-white 
 SR 07/075 Jakenakie Nguabu, Kaiyamba, Moyamba Round-white 
 SR 07/076 Agabi Yayema, Kaiyamba, Moyamba Cylindrical-light purple 
 SR 07/079 Njayamsie Lungi, Kaiyamba, Moyamba Round-white 
 SR 07/080 Njamagha Pelewahun, Kamajeh, Moyamba Round-white 
 SR 07/081 Njayamsie  Pelewahun, Kamajeh, Moyamba Oblong-white 
 SR 07/082 Njayamsie Mosongo, Kori, Moyamba Round-white 
 SR 07/084 Njamagha Mokonde, Kori, Moyamba Round-white 
 SR 07/085 Darvie  Mokonde, Kori, Moyamba  Round-light purple 
D. bulbifera NR 07/045 Mowonmiferra Kalangba, Magbema, Kambia Round-yellow 
 NR 07/040 Mowonmiyim Ro-Bolie, Magbema, Kambia Round-yellow 
D. rotundata NR 07/052 Mabonk Simbeck, Magbema, Kambia Cylindrical-white 
 NR 07/060 Mawonmiyella  Mangay Loko, Makari Gbanti, Makeni Cylindrical-white 
 NR 07/071 White yams Makeni, Bombali Shebora, Makeni Cylindrical-white 
 SR 07/072 Agbanie Nguabu, Kaiyamba, Moyamba Cylindrical-white 
 SR 07/074 Yamsieguwi  Nguala, Kaiyamba, Moyamba Cylindrical-white 
 TDr 95/00005  Improved check IITA, Nigeria Cylindrical-white 
 TDr 95/18544 Improved check IITA, Nigeria Cylindrical-white 

Key: WR=Western Region, ER=Eastern Region, NR=Northern Region, SR=Southern Region and TDr=Tropical 

Dioscorea rotundata. 
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Table 2.2. Mean monthly temperature, rainfall and relative humidity of germplasm collection regions of 

Sierra Leone (Sierra Leone Met. Sta., 2010) 

 
Year  

 
Site*/ Region 

Temperature (°C) Rainfall 
(mm) 

Relative humidity (%) 
Min. Max. 0900 am 1500 pm 

2006 Waterloo, West 23.3 31.1 232.3 81.5 70.5 
Kenema, East 20.5 31.4 249.7 83.7 70.7 
Kambia, North 19.7 30.6 237.6 80.2 67.2 
Moyamba, South 21.2 32.4 242.2 82.5 65.3 

2007 Waterloo, West 23.5 31.3 264.6 82.3 69.9 
Kenema, East 20.6 31.0 247.5 85.4 71.0 
Kambia, North 19.0 30.5 233.5 83.2 68.4 
Moyamba, South 21.7 31.3 232.8 85.1 75.2 

2008 Waterloo, West 23.3 31.4 249.2 84.6 69.9 
Kenema, East 20.5 31.5 236.1 83.3 68.9 
Kambia, North 19.8 30.4 245.6 85.9 68.7 
Moyamba, South 21.6 32.9 207.2 82.6 63.4 

2009 Waterloo, West 23.5 31.5 291.5 82.5 69.1 
Kenema, East 20.7 31.6 232.4 82.4 65.7 
Kambia, North 20.4 31.7 222.5 82.2 73.1 
Moyamba, South 21.4 32.3 220.5 83.4 62.8 

2010 Waterloo, West  23.7 31.7 260.3 81.3 68.7 
Kenema, East 21.0 31.9 225.6 82.7 69.8 
Kambia, North 20.9 32.4 209.9 83.7 73.4 
Moyamba, South 21.7 32.8 204.3 83.1 62.6 

*Weather data for five years were only available for four germplasm collection sites   

 
Figure 2.1. Regional map of Sierra Leone showing germplasm collection districts 
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2.2.4 Factor analysis 

For factor analysis (FA), the general model formula was used:  

Var (Xi) = Var (aiF + ei) = Var (aiF) + Var (ei) = ai
2Var (F) + Var (ei) ………………(Eqn 3); 

where F and ei are independent, and the variance of F and Xi are assumed to be unity (Manly, 

1994). Thus, 1 = ai
2 + Var (ei).  

The communality (variance due to common factors) and specificity (variance due to specific 

factors) were estimated from the relationship:  

specificity = 1 – communality …………………………………………………………(Eqn 4); 

and their respective percentages were estimated: 

%F1 = a1
2 x 100% or %F2 = a2

2 x 100% ..........................................................................(Eqn 5); 

and % specificity = (1 – communality) x 100% .………………………………………(Eqn 6); 

(Manly, 1994). 

2.2.5 Cluster analysis  

For cluster analysis (CA), the standardized data matrix was used to generate pair-wise genetic 

similarity values among accessions, i.e. the Euclidean dissimilarity coefficient, and then used 

to generate a hierarchical dendogram through an unweighted pair-group method average 

(UPGMA) (Sokal and Michener, 1958) using Genstat 12.1 (Payne et al., 2009). This analysis 

was used to study patterns of variance and relationships among accessions, where accessions 

with close genetic distances were placed in close proximity in the dendrogram. 
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Table 2.3. Morphological traits measured in 52 yam (Dioscorea spp.) accessions. The traits and measurement methods were based on the International Plant Genetic Resources 

Institute descriptor list (IPGRI/ IITA, 1997)  

IPGRI 
code 

Trait 
acronym* 

Trait/ descriptor Score code – descriptor state 

  Qualitative traits  
7.1.18 SC Stem colour 1 – green; 2 – purplish green; 3 – brownish green; 4 – purple  
7.1.25 APW Absence or presence of wings 0 – absent; 1 – present  
7.1.27 WC Wing colour 1 – green; 2 – green with purple edge; 3 – purple  
7.2.9 PL Position of leaves (mature leaves) 1 – alternate, 2 – opposite, 3 – alternate at base/ opposite above  
7.2.12.2 LL Leaf lobation 1 – shallowly lobed; 2 – deeply lobed  
7.2.15 LC Leaf colour 1 – yellowish; 2 – pale green; 3 – dark green; 4 – purplish green; 5 – purple   
7.2.16 LVCUS Leaf vein colour (upper surface) 1 – yellowish; 2 – green; 3 – pale purple; 4 – purple 
7.2.17 LVCLS Leaf vein colour (lower surface) 1 – yellowish; 2 – green; 3 – pale purple; 4 – purple 
7.2.18 LMC Leaf margin colour 1 – green; 2 – purple 
7.2.22 LS Leaf shape 1–ovate; 2–cordate; 3–cordate long; 4–cordate broad; 5–sagittate long; 6–saggitate broad; 7–hastate 
7.2.23 LAS Leaf apex shape 1 – obtuse; 2 – acute; 3 – emarginated; 4 – acuminate; 5 – aristate; 6 – caudate; 7 – cuspidate  
7.2.33 TC Tip colour 1 – light green; 2 – dark green; 3 – purple/ green; 4 – red; 5 – yellowish green; 6 – greenish yellow; 7 – 

greenish purple 
7.2.37 PC Petiole colour 1 – green with purple base; 2 – green with purple leaf junction; 3 – green with purple with purple at both 

ends; 4 – purplish green with base; 5 – purplish green with purple leaf junction; 6 – purplish green with 
purple at both ends; 7 – green; 8 – purple 

7.2.38 PWC Petiole wing colour 1 – green; 2 – green with purple; 3 – purple 
7.6.14 TS Tuber shape 1–round; 2–oval; 3–oval oblong; 4–cylindrical; 5–flattened; 6 – irregular 
7.6.30 FCCCS Flesh colour at central cross section of 

tuber 
1 – white; 2 – yellow; 3 – light purple  

  Quantitative traits  
7.1.1 DE Number of days to emergence Direct measurement 
7.1.17 NS Number of stems per plant 1 – 1 stem; 3 – 3 stem; 5 – 5 stem; 7 – 7 stem  
7.1.19 NB Number of internodes to first banching Direct measurement 
7.1.23 IL Internode length 1 - <2.9 cm; 2 – 3-6.9 cm; 3 – 7-10.9 cm; 4 – 11-14.9 cm; 5 ->15 cm  
7.2.10 LD Number of leaves (density) per plant 3 – low; 5 – intermediate; 7 – high 
7.2.25 DBL Distance between lobes 1 – no distance; 5 – medium; 9 – very distant 
7.2.30.1 LL1 Leaf length-1 1 - <5 cm; 2 – 5.1-8 cm; 3 – 8.1-11 cm; 4 – 11.1-14 cm; 5 – 14.1-18 cm 
7.2.30.2 LL2 Leaf length-2 1 – <2 cm; 2 – 2.1-4 cm; 3 – 4.1-6 cm; 4 – 6.1-8 cm 
7.2.30.3 LW1 Leaf width-1 1 - <5 cm; 2 – 5.1-8 cm; 3 – 8.1-11 cm; 4 – 11.1-14 cm; 5 – 14.1-18 cm 
7.2.30.4 LW2 Leaf width-2 1 – <2 cm; 2 – 2.1-4 cm; 3 – 4.1-6 cm; 4 – 6.1-8 cm; 5 – 8.1-10 cm 
7.2.32 TLM Tip length of mature leaves 1 – <4 mm; 2 – 5-9 mm; 3 – 10-14 mm; 4 – 15-19 mm; 5 – 20 mm 
7.2.34 PLM Petiole length of mature leaves 1 - <2.9 cm; 2 – 3-6.9 cm; 3 – 7-10.9 cm; 4 – 11-14.9 cm; 5 ->15 cm  
*Dioscorea alata genotypes are identified by presence of wings on stem, while D. bulbifera and D. rotundata are wingless. This trait was visually assessed. Original IPGRI 
descriptor is presented in Appendix 1 
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2.3 Results  

2.3.1 Correlation analysis 

2.3.1.1 Correlation between absence or presence of wings and 

associated morphological traits 

Generally, all the traits whose correlations were greater than or equal to 0.5 significantly 

(p<0.05) influenced the phenotypic expression of the various genotypes (Appendix 3). The 

correlation between absence or presence of wings and leaf colour was negative (r = -0.517) 

(Appendix 2). Similar negative correlations were also observed between absence or presence 

of wings and leaf margin colour (r = -0.562), between absence or presence of wings and 

number of branches (r = -0.684) and between absence or presence of wings and stem colour 

(r = -0.556). On the other hand, absence or presence of wings was positively correlated with 

leaf lobation (r = 0.612), petiole wing colour (r = 0.628) and wing colour of stems (r = 0.714). 

Wingless genotypes had mostly shallow leaf lobation, which contrasts with D. alata 

genotypes with predominantly deep lobation and winged stems and petioles. The correlations 

between the absence or presence of wings and the remaining traits were either weak, negative 

(-0.014 < r < -0.481) or weak, positive (0.114 < r < 0.491). 

2.3.1.2 Correlation between distance between lobes, leaf lobation, 

internode length, petiole length and associated morphological traits 

Distance between lobes (DBL) was negatively correlated (r= -0.549) with leaf apex shape 

(Appendix 2). The distance between lobes in D. bulbifera cultivars was so small that the 

lobes of most leaves overlapped. Genotypes of this species had a peculiar cuspidate leaf apex 

shape. Also, the correlations of distance between lobes and leaf length-2 (r = -0.601) and 

distance between lobes and tip colour of mature leaves (r = -0.503) were negative. This 

contrasts with the positive correlations of distance between lobes and leaf shape (r = 0.613) 

and distance between lobes and stem colour (r = 0.578). The expansive lobation expressed by 

most D. rotundata genotypes gave them a peculiar saggitate broad leaf shape and purplish to 

brownish-green vine colour. The correlations of distance between lobes and the remaining 

traits were either weak, negative (-0.043 < r < -0.433) or weak, positive (0.074 < r < 0.42). 
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The correlation between leaf lobation (LL) and petiole wing colour was positive (r = 0.520). 

Some D. alata cultivars with purple petiole wing colour were mostly deeply lobed. The 

correlations between leaf lobation and the other traits were either weak, negative                   

(-0.036 < r < -0.474) or weak, positive (0.056 < r < 0.434).  

The correlation between internode length (IL) and leaf length-1 (LL1) was positive                

(r = 0.634). The correlations between internode length and the other traits were either weak, 

negative (-0.049 < r < -0.339) or weak, positive (0.046 < r < 0.499). 

Petiole length of mature leaf (PLM) had a positive (r = 0.502) correlation with tip length of 

mature leaves (TLM). The correlations between petiole length of mature leaves and the other 

traits were either weak, negative (-0.040 < r < -0.154) or weak, positive (0.167 < r < 0.446). 

2.3.1.3 Correlation between leaf colour, leaf margin colour, leaf vein 

colour of upper surface, leaf vein colour of lower surface, leaf shape 

and associated morphological traits 

Leaf colour (LC) had a strong, positive (r = 0.872) correlation with leaf margin colour, and a 

positive correlation with: leaf density (r = 0.558); leaf vein colour of upper leaf surface         

(r = 0.630); number of branches per plant (r = 0.510); number of stems per plant (r = 0.593); 

stem colour (r = 0.627); and flesh colour of central cross section of tuber (r = 0.520) 

(Appendix 2). The correlations between leaf colour and the other traits was either weak, 

negative (-0.047 < r < -0.324) or weak, positive (0.035 < r < 0.374). 

The correlations between leaf margin colour (LMC) and leaf vein colour of upper leaf surface          

(r = 0.673), between leaf margin colour and number of stems per plant (r = 0.628), between 

leaf margin colour and stem colour (r = 0.718) and between leaf margin colour and number of 

branches per plant (r = 0.503) were positive. The correlations between leaf margin colour and 

the other traits were either weak, negative (-0.023 < r < -0.435) or weak, positive            

(0.110 < r < 0.423). 

The correlations between leaf vein colour of upper leaf surface (LVCUS) and number of 

branches per plant (r = 0.520) and between leaf vein colour of upper leaf surface and number 

of stems per plant (r = 0.544) were positive. Most of the genotypes that produced stem with 

one or few branches had green upper surface leaf venation, whereas pale purple to purple 
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venation was common among profuse branching genotypes. The correlations between leaf 

vein colour of upper leaf surface and other traits were either weak, negative (-0.064 < r < -

0.333) or weak, positive (0.138 < r < 0.413). 

The correlations between leaf vein colour of lower leaf surface (LVCLS) and flesh 

colour of the central cross section of tuber (r = 0.644) were positive. The 

correlations between leaf vein colour of lower leaf surface and the other traits were 

either weak, negative (-0.010 < r < -0.146) or weak, positive (0.053 < r < 0.411). 

Leaf apex shape (LAS) was negatively correlated (r = -0.551) with leaf margin colour, and 

leaf vein colour of upper surface (r = -0.605). However, the correlations between leaf apex 

shape and the other traits were either weak, negative (-0.117 < r < -0.497) or weak, positive            

(0.137 < r < 0.445). 

2.3.1.4 Correlation between leaf length and width and associated 

morphological traits 

The correlations between: leaf length-1 and leaf length-2 (r = 0.667); leaf length-1 and leaf 

width-1 (r = 0.684); leaf length-1 and tip length of mature leaves (r = 0.620); leaf length-1 

and leaf width-2 (r = 0.562); and leaf length-1 and petiole length of mature leaves (r = 0.535) 

were all positive (Appendix 2). In the main, genotypes with larger leaf length-2, leaf width-1, 

leaf width-2, and tip length of mature leaves, also exhibited larger leaf length-1. However, the 

correlations between leaf length-1 and other traits were either weak, negative                   (-

0.076 < r < -0.211) or weak, positive (0.065 < r < 0.427). 

The correlations between: leaf length-2 (LL2) and leaf width-1 (r = 0.533); between leaf 

length-2 and petiole wing colour (r = 0.504); and between leaf length-2 and tip length of 

mature leaves (r = 0.599) were positive. The correlation between leaf length-2 and stem 

colour (r = -0.502) was negative. It was evident that genotypes which exhibited larger leaf 

width-1 and tip length of mature leaves with characteristic green with purple petiole wing, 

also had larger leaf length-2. The correlations between leaf length-2 and the other traits were 

either weak, negative (-0.163 < r < -0.470) or weak, positive (0.099 < r < 0.463). 

Both leaf width-2 (r = 0.612) and petiole length of mature leaves (r = 0.718) were positively 

correlated with leaf width-1 (LW1). Genotypes which had larger leaf width-2 and petiole 
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length of mature leaves, also exhibited larger leaf width-1. The correlations between leaf 

width-1 and the other traits were either weak, negative (-0.072 < r < -0.213) or weak, positive 

(0.006) < r < 0.471). 

Petiole length of mature leaf had a positive (r = 0.636) correlation with leaf width-2 (LW2). 

Genotypes with larger petiole length of mature leaves also had larger leaf width-2. However, 

the corrleation between leaf width-2 and other traits was either weak, negative                        

(-0.016 < r < -0.274) or weak, positive (0.022 < r < 0.455). 

2.3.1.5 Correlation between number of branches, leaf density and 

associated morphological variables or traits 

Number of branches per plant (NB) was positively correlated (r = 0.572) with number of 

stems per plant (Appendix 2). Apparently, some genotypes with high number of stems (NS) 

also branched profusely. On the contrary, wing colour (WC) was negatively correlated (r = -

0.509) with number of branches per plant. Among genotypes of D. alata, profuse branching 

was most common in genotypes with wing colour ranging from green with purple edge to 

purple. The correlations between number of branches per plant and the other traits was either 

weak, negative (-0.045 < r < -0.389) or weak, positive (0.019 < r < 0.330). 

The correlations between: leaf density (LD) and number of branches per plant (r = 0.685); 

leaf density and number of stems per plant (r = 0.693); leaf density and leaf margin colour            

(r = 0.602); and between leaf density and flesh colour of the central cross section of tuber      

(r = 0.571) were all positive. The correlations between leaf density and the remaining traits 

was either weak, negative (-0.020 < r < -0.366) or weak, positive (0.016 < r < 0.489). 

2.3.1.6 Correlation between petiole wing colour, tip colour, tip length 

of mature leaf and associated morphological variables or traits 

Petiole wing colour (PWC) had a positive correlations with tip length of mature leaves          

(r = 0.565) and wing colour (r = 0.708) (Appendix 2). Among D. alata genotypes, many 

which had tip length of mature leaves > 1.0 cm and green wing with purple edge also 

exhibited green with purple edge petiole wing colour. The correlations between petiole wing 

colour and the remaining traits was either weak, negative (-0.090 < r < -0.280) or weak, 

positive (0.345< r < 0.379). 
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Tip colour (TC) had a positive correlation (r = 0.500) with wing colour, but a weak, negative 

correlation (r = -0.207) with tuber shape. Similarly, the correlation between tip length of 

mature leaf and wing colour of stem was positive (r = 0.532); but the correlation between tip 

length of mature leaf and tuber shape was weak, negative (r = -0.331).  

2.3.2 Phenotypic variation among genotypes  

The variation in leaf, tuber morphology and flesh colour of central cross section of tuber are 

represented in Figures 2.2, 2.3 and 2.4, respectively. Of the 52 genotypes, 43 belonged to D. 

alata, two genotypes to D. bulbifera and seven genotypes to D. rotundata (Table 2.1). The 43 

genotypes of D. alata exhibited different leaf traits ranging from saggitate long green leaf to 

cordate long dark green leaf. Of the 43 gentotypes, 17 had round, 11 oval, seven oblong, five 

oval-oblong, two irregular and one cylindrical tuber shape; while the flesh colour of central 

cross section of tuber of 40 genotypes was white, three exhibited light purple colour.  

Genotypes of D. bulbifera exhibited cordate light green leaf and cuspidate leaf apex shape. 

The tuber shape of both genotypes was roun. The bulbils of NR 07/045 were larger than those 

of NR 07/040. The flesh colour of central cross section of tuber of both genotypes was 

yellow. 

Members of D. rotundata exhibited mainly saggitate light green leaf, cordate green purple 

leaf and saggitate long green leaf. The tuber shape of all genotypes was cylindrical 

possessing white flesh colour of central cross section of tuber. 
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c) ER 07/038: Saggitate long green leaf                    d) WR 07/013: Cordate long green leaf 

      
e) WR 07/025: Saggitate long light green leaf          f) SR 07/085: Cordate long dark green leaf 

      
g) NR 07/041: Cordate long dark green leaf            h) NR 07/040: Cordate broad light green leaf 

Figure 2.2. Variation in leaf colour, type and shape among yam (Dioscorea spp.) germplasm with a-

b, and c-g, and f representing accessions of D rotundata, D. alata, and D. bulfifera respectively 

b) NR 07/052: Cordate green-purple leaf a) SR 07/074: Saggitate light green 
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Figure 2.3. Variation in tuber shape among yam (Dioscorea spp.) germplasm with a-d, and e 

representing accessions of D. alata, and D rotundata, respectively 

            

                                                                                                                                                  

Figure 2.4. Variation in flesh colour of central cross section of tuber among yam (Dioscorea 

spp.) germplasm with a, b and c representing accessions of D. alata, D. bulbifera and D 

rotundata, respectively 

c) SR 07/072: white flesh a) NR 07/043: light purple flesh b) NR 07/045: yellow flesh 

e) SR 07/072: Cylindrical shape d) ER 07/039: Oval-oblong shape 

c) SR 07/079: Round shape b) WR 07/024: Oblong shape a) WR 07/010: Irregular  
shape 
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2.3.3 Principal component analysis 

The principal component scores (PC1 – PC10) are the eigenvectors (latent vectors) for each 

of the 28 morphological traits analysed (Table 2.4; Appendix 6). The multivariate analysis 

based on the 28 morphological traits revealed considerable diversity among the 52 accessions 

of Dioscorea spp. (D. alata, D. bulbifera and D. rotundata) evaluated in this study. Each of 

the first 10 principal components had eigen-value greater than 0.6 and together explained 

86.61%  [(7.672 + 5.025 + 3.419 + 2.161 + 1.636 + 1.067 + 0.992 + 0.869 + 0.711 + 0.701)/ 

28.00 x 100%] of the total variance in the data set (Table 2.4). An eigen-value is a 

quantitative assessment of how much a component represents the data. The higher the eigen-

value of a component, the more representative it is of the data. The percent of variance 

explained is dependent on how well all the components summarize the data. 

Scores on PC1, which accounted for 27.40% [7.672/ 28.00 x 100%] of the total variation, 

were correlated (r > 0.25) with traits related to the shoot (absence or presence of wings, 

distance between lobes, leaf margin colour, leaf length-2 and tip length of mature leaf)    

(Table 2.4). Scores of PC2, which explained 17.95% [5.025/ 28.00 x 100%] of the total 

variation, were correlated (r > 0.25) with shoot traits such as leaf colour, leaf density per 

plant, leaf length-1, leaf leaf vein colour of lower surface and number of stems per plant; and 

flesh colour of central cross section of tuber. The scores of PC3, which explained 12.21% 

[3.419/ 28.00 x 100%] of the total variation, were correlated (r > 0.25) with days to 

emergence; leaf and petiole traits (leaf width-1, leaf width-2, leaf shape, leaf vein colour of 

lower surface and petiole length of mature leaf); and flesh colour of central cross section of 

tuber. The scores of PC4, which explained 7.72% [2.161/ 28.00 x 100%] of the variation, 

were mainly correlated (r > 0.26) with shoot traits (distance between lobes, leaf shape, petiole 

colour, stem colour and wing colour) and the tuber traits of  tuber shape. The scores of PC5, 

which explained 5.84% [1.636/ 28.00 x 100%] of the total variation, were correlated             

(r > 0.29) with days to emergence, internode length, leaf apex shape, petiole length, stem 

colour and tip colour. The scores of PC6, which explained 3.81% [1.067/ 28.00 x 100%] of 

the total variation, were correlated (r > 0.25 ) with the shoot traits: internode length, petiole 

length and below ground trait, tuber shape. The scores of PC7, which explained 3.54%  

[0.992/ 28.00 x 100%] of the total variation, were correlated (r > 0.25) with days to 

emergence, leaf apex shape, leaf shape, petiole and petiole wing colour.                               
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Table 2.4. First 10 principal components (PCs) scores of 28 trait means across 52 yam genotypes  

No. Traits+ PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 PC-8 PC-9 PC-10 
1 APW 0.274 -0.093 -0.205 0.213 0.127 0.099 -0.152 0.057 0.044 -0.071 
2 DBL -0.251 -0.149 0.071 0.301 0.043 -0.039 0.113 -0.125 0.024 -0.086 
3 DE -0.055 0.048 0.252 0.060 0.431 0.089 0.284 -0.435 -0.084 0.357 
4 IL 0.130 0.248 0.142 -0.036 0.326 0.258 0.072 0.055 -0.264 -0.214 
5 LAS 0.239 -0.055 0.067 -0.246 -0.293 0.007 0.401 -0.044 -0.051 -0.028 
6 LC -0.217 0.273 -0.035 0.191 -0.102 0.007 0.204 -0.036 0.043 0.002 
7 LD -0.138 0.333 0.002 -0.182 -0.002 0.135 0.021 0.150 -0.134 0.084 
8 LL 0.214 -0.024 -0.213 0.052 0.109 0.086 0.065 0.121 0.007 0.653 
9 LMC -0.264 0.226 -0.110 0.157 -0.068 -0.086 0.182 -0.064 0.064 0.033 
10 LL1 0.182 0.258 0.226 0.105 0.105 0.074 -0.017 -0.040 -0.034 -0.069 
11 LL2 0.271 0.169 0.061 -0.071 0.119 0.045 -0.154 -0.088 0.193 0.081 
12 LW1 0.129 0.226 0.329 0.007 -0.198 0.022 -0.169 -0.025 0.089 0.214 
13 LW2 0.090 0.091 0.425 0.093 0.025 -0.116 -0.015 0.082 0.280 -0.223 
14 LS -0.139 -0.163 0.259 0.266 -0.045 0.248 0.251 0.148 -0.209 -0.172 
15 LVCLS -0.001 0.282 -0.295 0.078 0.102 -0.076 -0.161 -0.040 0.063 -0.148 
16 LVCUS -0.211 0.225 -0.076 0.019 0.183 -0.192 -0.236 -0.138 0.239 -0.071 
17 NB -0.216 0.211 0.172 -0.205 0.062 0.129 -0.198 0.109 0.013 0.013 
18 NS -0.192 0.265 0.005 0.027 0.023 0.032 -0.116 0.204 -0.265 0.107 
19 PC 0.110 -0.075 0.022 0.446 -0.008 0.010 -0.427 -0.155 -0.487 0.028 
20 PL -0.078 -0.048 0.014 0.170 0.334 -0.474 0.169 0.623 -0.038 0.118 
21 PLM 0.166 0.109 0.313 0.160 -0.229 -0.067 -0.088 0.225 0.244 0.145 
22 PWC 0.214 0.156 -0.178 0.208 0.197 0.004 0.259 -0.132 0.274 0.009 
23 SC -0.238 0.075 0.048 0.264 -0.295 -0.193 0.039 -0.274 0.072 0.158 
24 TC 0.171 0.237 -0.025 0.038 -0.345 -0.236 0.060 0.014 -0.336 0.182 
25 TLM 0.274 0.108 0.105 0.176 0.065 -0.151 0.211 0.001 -0.089 -0.181 
26 TS -0.131 -0.002 -0.082 0.278 -0.128 0.620 0.016 0.272 0.258 0.126 
27 WC 0.232 0.119 -0.225 0.272 -0.155 0.040 0.034 0.029 0.085 -0.190 
28 FCCCS 0.019 0.328 -0.266 -0.086 -0.090 0.080 0.226 0.029 -0.145 -0.160 
+Details of each trait acronym are provided in Table 2. Values in bold indicate the most important traits (>0.25) that had large contributions to the total 

variance of a particular principal component
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The scores of PC8, which explained 3.10% [0.869/ 28.00 x 100%] of the total variation, were 

correlated (r > 0.27) with shoot traits (days to emergence, petiole length, stem colour and 

tuber shape) and the below ground trait, tuber shape. The scores of PC9, which explained 

2.54% [0.711/ 28.00 x 100%] of the total variation, were correlated (r > 0.25) with shoot 

traits (internode length, leaf width-2, number of stems, petiole colour, petiole wing colour, tip 

colour and tuber shape). The scores of PC10, which explained 2.50% [0.701/ 28.00 x 100%] 

of the total variation, were correlated (r > 0.35) with internode length and leaf lobation. The 

PC11 and subsequent PCs were considered less significant since their percentage contribution 

to the total variation were small. Therefore they are not discussed (Table 2.5). 

Table 2.5. Eigen-value, percentage variation and accumulated variation explained by each 

component of, the first 10 principal components (PCs) 

Principal component 
(PC) 

Eigen-values* Variation of each 
component (%) 

Accumulated 
variation (%) 

1 7.672 27.40 27.40 
2 5.025 17.95 45.35 
3 3.419 12.21 57.56 
4 2.161 7.72 65.28 
5 1.636 5.84 71.12 
6 1.067 3.81 74.93 
7 0.992 3.54 78.47 
8 0.869 3.10 81.57 
9 0.711 2.54 84.11 

10 0.701 2.50 86.61 
*[The total of all the variances of the PCs is known as trace. Trace (Ʌ) = 

. Each eigen-value (λi) was divided by the trace to estimate percent 

variability and then accumulated variation   
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2.3.3.1 Principal component scores 

The latent vectors (loadings) (Table 2.4, Appendix 6) are important components used to 

estimate the first 10 principal components for each of the 52 genotypes presented in Table 

2.6. The  PC equations are depicted below (Manly, 1994): 

PC1  =  0.274 APW – 0.251 DBL – 0.055 DE + ------------ + 0.019 FCCCS 

PC2  = -0.093 APW – 0.149 DBL + 0.048 DE + ------------ + 0.328 FCCCS 

PC3  = -0.205 APW + 0.071 DBL + 0.252 DE + ------------ - 0.266 FCCCS 

PC4  =  0.213 APW + 0.301 DBL + 0.060 DE + ------------ - 0.086 FCCCS 

PC5  =  0.127 APW + 0.043 DBL + 0.431 DE + ------------ - 0.090 FCCCS 

PC6  =  0.099 APW – 0.039 DBL + 0.089 DE + ------------ + 0.080 FCCCS 

PC7  = -0.152 APW + 0.113 DBL + 0.284 DE + ------------ + 0.226 FCCCS 

PC8  =  0.057 APW – 0.125 DBL – 0.435 DE + ------------ + 0.029 FCCCS 

PC9  =  0.044 APW + 0.024 DBL – 0.084 DE + ------------ - 0.145 FCCCS 

PC10 = -0.071 APW – 0.086 DBL + 0.357 DE + ------------ - 0.160 FCCCS 

Where APW denotes absence or presence of wings, DBL is the distance between lobes, DE is 

the number of days to emergence (number of days between planting and emergence) and 

FCCCS is the flesh colour of central cross section of tuber. Other traits represented by dash 

lines were internode length (IL), leaf apex shape (LAS), leaf colour (LC), leaf density (LD), 

leaf lobation (LL), leaf margin colour (LMC), leaf length and width measurements, leaf shape 

(LS), leaf vein colour of upper leaf surface (LVCUS) and leaf vein colour of lower surface 

(LVCLS), number of internode to first branching (NB), number of stems per plant (NS), 

petiole colour (PC), position of leaves (PL), petiole length of mature leaf (PLM), petiole wing 

colour (PWC), stem colour (SC), tip colour (TC), tip length of mature leaf (TLM), tuber 

shape and wing colour (WC).  
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Table 2.6. Principal component scores (PCn) of 28 traits of 52 yam (Dioscorea spp.) accessions 

No.  Genotype  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
1 WR 07/001 0.447 3.584 3.419 -5.421 -1.543 -0.236 0.043 0.582 0.063 -1.121 
2 WR 07/004 -0.493 3.368 2.537 -6.001 -0.377 0.703 0.344 -0.894 -0.963 0.197 
3 WR 07/007 3.226 2.085 3.073 1.252 1.018 -0.594 0.344 0.638 0.206 0.479 
4 WR 07/008 2.691 0.884 1.089 1.271 -0.035 0.359 0.411 1.512 0.046 0.228 
5 WR 07/010 0.547 5.121 -5.191 -1.628 -1.157 0.631 1.089 -1.137 1.063 0.884 
6 WR 07/013 2.596 0.596 1.417 -0.801 0.431 -1.216 -0.744 0.687 -0.526 0.222 
7 WR 07/014 1.919 1.147 1.743 -0.119 0.918 0.196 0.008 1.104 -0.985 0.677 
8 WR 07/015 -6.512 -0.044 1.417 0.256 0.410 -0.160 0.869 -0.575 0.541 0.493 
9 WR 07/016 0.604 -1.255 -0.398 0.476 1.638 0.416 0.679 0.299 -0.978 0.114 

10 WR 07/020 0.424 4.281 -1.886 1.270 -0.828 1.801 1.984 -0.370 -0.832 -0.678 
11 WR 07/022 3.607 0.663 2.295 1.358 1.181 -0.054 0.906 -0.551 0.502 1.203 
12 WR 07/024 2.996 -0.024 1.774 0.038 0.262 -0.115 0.274 -1.682 -0.094 0.332 
13 WR 07/025 0.215 1.170 1.745 0.177 1.635 1.215 -1.815 1.988 0.302 0.171 
14 WR 07/028 -1.502 -0.243 -0.795 0.097 1.913 1.539 -1.707 -1.776 0.056 -0.836 
15 ER 07/029 -0.701 6.456 -3.506 1.744 1.041 -0.076 -0.022 0.959 -1.545 -0.637 
16 ER 07/030 -1.041 -0.068 1.256 0.443 0.706 0.608 -1.577 1.670 0.099 -1.432 
17 ER 07/031 2.749 1.148 2.548 1.224 1.146 -1.472 0.666 -1.083 -0.214 -1.377 
18 ER 07/032 -0.507 0.808 0.907 -0.055 1.813 4.024 -1.820 -0.268 0.273 0.938 
19 ER 07/033 -6.532 0.543 1.777 1.799 -0.152 -0.475 0.284 -1.530 -0.967 0.877 
20 ER 07/034 3.040 1.605 2.683 1.869 1.449 -0.268 0.942 -0.614 0.964 0.528 
21 ER 07/036 1.076 6.533 -4.474 0.862 0.395 -1.894 -1.406 0.118 1.471 -0.516 
22 ER 07/037 3.213 0.367 1.929 0.919 0.228 -0.364 0.867 -2.416 -0.085 0.470 
23 ER 07/038 1.200 -0.617 0.896 0.677 -2.464 -0.396 -0.891 -0.670 0.770 -1.573 
24 ER 07/039 1.080 -1.782 -1.133 0.254 -2.469 0.326 -0.449 -0.363 -0.096 0.413 
25 NR 07/040 1.039 -0.586 -0.451 0.485 -1.795 0.077 -0.693 -0.677 -0.259 0.042 
26 NR 07/041 1.427 -0.922 -0.249 0.303 -2.195 0.071 -1.089 -0.671 0.846 0.498 
27 NR 07/042 1.117 -0.165 0.932 1.047 -2.123 1.704 -1.100 -0.186 1.382 -1.142 
28 NR 07/043 1.703 -0.945 -0.083 0.855 -1.760 1.001 -0.044 -0.195 -0.084 -0.134 
29 NR 07/045 1.000 -2.180 -1.453 -0.139 -1.806 0.467 -0.361 -0.894 -0.553 0.370 
30 NR 07/047 1.275 -0.887 0.992 1.010 -1.036 -0.842 0.219 0.704 -0.096 -1.531 
31 NR 07/052 1.503 -1.545 0.388 0.720 -1.707 -1.018 -0.289 0.942 0.294 0.715 
32 NR 07/054 1.380 -1.024 0.420 0.718 -1.455 -0.279 -0.322 0.819 0.352 1.347 
33 NR 07/057 0.902 -0.095 -2.150 0.549 -0.792 0.647 1.669 0.987 -1.326 -0.352 
34 NR 07/059 2.384 -1.106 -0.317 -0.244 -1.053 0.591 -0.173 1.512 -0.512 0.842 
35 NR 07/060 -0.904 -3.000 -1.245 -0.287 1.349 0.025 0.118 -0.305 -0.712 -1.921 
36 NR 07/067 0.022 -2.943 -1.529 -0.763 0.775 0.340 -0.223 -0.529 -0.049 -0.446 
37 NR 07/068 -0.633 -0.763 -1.903 -1.565 0.817 -1.916 -2.436 -0.191 -0.216 1.651 
38 NR 07/069 -0.132 -2.872 -1.820 -0.444 1.599 1.037 -0.574 -0.362 -0.906 -0.283 
39 NR 07/071 0.468 -3.191 -1.215 -1.216 0.917 -0.410 0.135 -0.960 -0.785 -0.440 
40 SR 07/072 0.285 -0.466 -1.590 -1.192 2.021 -2.366 -1.442 -0.476 0.800 0.176 
41 SR 07/073 0.930 -2.206 -0.884 -1.367 0.800 0.126 1.305 0.905 1.797 -0.195 
42 SR 07/074 -0.882 -3.211 -1.848 -1.420 0.207 0.439 1.940 1.292 1.185 0.313 
43 SR 07/075 -6.409 -0.133 0.947 0.145 -0.397 -0.327 0.339 0.239 0.698 -0.174 
44 SR 07/076 -4.972 -0.156 0.021 2.009 0.150 0.045 -0.278 -0.124 0.475 -0.411 
45 SR 07/079 1.414 -1.765 -0.047 -0.387 -0.082 -1.458 0.185 0.142 -1.309 -1.753 
46 SR 07/080 0.809 -2.268 -1.332 0.257 -0.917 -0.546 0.112 0.324 -0.665 0.757 
47 SR 07/081 -6.420 -0.123 0.997 0.157 -0.309 -0.309 0.396 0.151 0.681 -0.102 
48 SR 07/082 -6.409 -0.133 0.947 0.145 -0.397 -0.327 0.339 0.239 0.698 -0.174 
49 SR 07/084 0.512 -1.859 -1.184 -1.197 2.012 0.095 2.053 0.442 2.047 -0.206 
50 SR 07/085 0.320 -1.698 -1.020 -0.586 0.162 -0.323 -0.010 0.347 -0.828 1.103 
51 TDr 95/00005  0.613 -1.673 -1.454 0.063 0.960 -0.197 0.749 0.029 -0.701 0.470 
52 TDr 95/18544 -6.682 1.592 1.010 0.386 -1.105 -0.842 0.196 0.866 -1.327 0.923 
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2.3.3.2 Graphical presentation of principle component analysis 

The standardized data (Eqn 1) were used to compute the principal component scores using 

the PC formulae (Eqn 2; Appendix 6). The first two most important principal components, 

(PC1 and PC2), which contributed 45.35% of the total variance in the data set, were plotted 

in a graph (Figure 2.5).  

The 28 morphological traits classified the 52 genotypes into five main clusters, namely: 

groups A, B, C, D and E. While most of the genotypes clustered around the center of the 

graph (Figure 2.5), others were widely scattered along both PC axes. Despite the small 

amount of overlap between sub-groups B1 and B2, the dispersion pattern generally separated 

the species based on the measured morphological traits (Figure 2.5). Of the 52 genotypes 

studied, five (WR 07/024, SR 07/075, 07/073, ER 07/032 and NR 07/042) overlapped in sub-

groups B1 and B2, whereas four genotypes (WR07/010, NR 07/041, ER 07/038 and NR 

07/067) overlapped in sub-groups B1 and B3  indicating the possibility of duplicate genotypes 

in the germplasm. 
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Figure 2.5. Two-dimensional plot of the first two principal components (PC-1 and PC-2). Accessions that are encircled by the dotted (group A = D. bulbifera), 

dashed (group C = D. rotundata), and solid (groups B, D and E = D. alata) lines 
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2.3.4 Factor analysis 

The six principal component eigen-values that were greater than 1.0 (Table 2.7; Appendix 7) 

suggest the use of six factors in the factor analysis (Biabani and Pakniyat, 2008). Factor 

loadings with coefficients greater than or equal to 0.5 (ignoring the sign) were considered 

important and emboldened. These large and moderate loadings indicated how the traits were 

related to the factors (Manly, 1994). The contributions by the communalities were fairly high 

with 24 traits exhibiting higher communality over the specificity (four traits) (Table 7). 

Factor 1 was heavily loaded with: absence or presence of wings (0.7010); distance between 

lobes (-0.6071); leaf apex shape (0.7589); leaf colour (-0.7714); leaf density (0.5178); leaf 

margin colour (-0.8797); leaf length-2; leaf vein colour of upper surface (0.7061); number of 

branches per plant (-0.6407); number of stems (-0.6472); stem colour (-0.7118); and tip 

length of mature leaves (0.6008). Factor 2 was loaded with: leaf density (0.5270); leaf  

length-1 (0.6210); leaf vein colour of lower surface (0.6135); petiole wing colour (0.5824); 

tip colour (0.6545); wing colour (0.5780); and flesh colour of central cross section of tuber 

(0.7674). Factor 3 was loaded with: absence or presence of wings (0.6355); and leaf width-1 

(-0.5539). Factor 4 was loaded with leaf width-2 (-0.5799). Factor 5 was loded with stem 

colour (0.5070); and factor 6 with number of days to emergence (-0.4793). Most of the 

variation in the traits was accounted for by factor 1, with moderate (-0.5178) to large (-

0.8797) loadings compared to the traits loaded in the other factors. This makes rotating the 

factors to further explore the variables unnecessary. 

The variation in absence or presence of wings (APW) was strongly influenced by 

communality (92.56%) compared with the specificity (7.44%). Factor 1 (50.14%) contributed 

most of the variation in the communality compared to factors 2 (0.92%), 3 (40.39%), 4 

(0.80%), 5 (0.30%) and 6 (0.01%).  

The variation in distance between lobes (DBL) was largely due to communality (80.51%) 

compared to specificity (19.49%). Factor 1 (36.86%) contributed most to the variation in the 

communality compared to 21.15, 1.19, 0.75, 17.25 and 3.31% contributions by factors 2, 3, 4, 

5 and 6, respectively. 
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Table 2.7. Loadings of common and specific factors of 28  traits of 52 yam (Dioscorea spp.) accessions analyzed by factor analysis  

 
Traits  

 Factor loadings    
Communality  

 
Specificity  

% variation 
F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 Specificity 

APW 0.7081 0.0959 0.6355 -0.0895 0.0544 0.0116 0.9256 0.0744 50.14 0.92 40.39 0.80 0.30 0.01 7.44 
DBL -0.6071 -0.4599 0.1090 -0.0871 0.4153 -0.1819 0.8051 0.1949 36.86 21.15 1.19 0.75 17.25 3.31 19.49 
DE -0.1707 -0.0351 -0.2377 -0.3440 0.0036 -0.4793 0.4350 0.5650 2.91 0.12 5.65 11.83 0.00 22.97 56.50 
IL 0.2065 0.4953 -0.1399 -0.3618 -0.3238 -0.3424 0.6605 0.3395 4.26 24.53 1.96 13.09 10.49 11.72 33.95 
LAS 0.7589 0.1253 -0.4187 0.4185 0.1088 -0.0552 0.9570 0.0430 57.59 1.57 17.53 17.51 1.18 0.30 4.30 
LC -0.7714 0.4614 -0.0352 0.0539 0.1519 -0.0603 0.8387 0.1613 59.51 21.29 0.12 0.29 2.31 0.36 16.13 
LD -0.5178 0.5270 -0.2606 0.0425 -0.3422 0.0143 0.7329 0.2671 26.81 27.77 6.79 0.18 11.71 0.02 26.71 
LL 0.4938 0.1671 0.3904 0.0571 -0.0900 -0.0084 0.4355 0.5645 24.38 2.79 15.24 0.32 0.81 0.01 56.45 
LMC -0.8797 0.3536 0.0550 0.1795 0.1409 -0.0545 0.9569 0.0431 77.39 12.50 0.30 3.22 1.98 0.30 4.31 
LL1 0.2932 0.6210 -0.2106 -0.4911 0.0313 -0.1619 0.7844 0.2156 8.60 38.56 4.44 24.12 0.10 2.62 21.56 
LL2 0.5929 0.4898 -0.0479 -0.3006 -0.1985 -0.0060 0.7235 0.2765 35.15 23.99 0.23 9.04 3.94 0.00 27.65 
LW1 0.2297 0.4974 -0.5539 -0.4343 0.1314 0.2173 0.8601 0.1399 5.28 24.74 30.68 18.86 1.73 4.72 13.99 
LW2 0.1835 0.1602 -0.4571 -0.5799 0.2321 -0.1628 0.6849 0.3151 3.37 2.56 20.89 33.63 5.39 2.65 31.51 
LS -0.2516 -0.4091 -0.1940 -0.1737 0.4500 -0.2334 0.5554 0.4446 6.33 16.73 3.76 3.02 20.25 5.45 44.46 
LVCLS -0.2240 0.6135 0.4010 0.0706 -0.2413 0.1101 0.6627 0.3373 5.02 37.64 16.08 0.50 5.82 1.21 33.73 
LVCUS -0.7061 0.2404 0.0803 -0.1019 -0.2164 -0.0011 0.6201 0.3799 49.86 5.78 0.65 1.04 4.68 0.00 37.99 
NB -0.6407 0.1444 -0.4200 -0.2204 -0.3513 0.0745 0.7854 0.2146 41.05 2.09 17.64 4.86 12.34 0.56 21.46 
NS -0.6472 0.3306 -0.0796 -0.1323 -0.1660 0.0726 0.5848 0.4152 41.89 10.93 0.63 1.75 2.75 0.53 41.52 
PC 0.2376 -0.0312 0.3677 -0.3925 0.3608 0.1730 0.5068 0.4932 5.65 0.10 13.52 15.40 13.02 2.99 49.32 
PL -0.2157 -0.1560 0.1515 -0.1395 0.0482 -0.2189 0.1635 0.8365 4.65 2.43 2.30 1.95 0.23 4.79 83.65 
PLM 0.3678 0.3192 -0.3449 -0.4519 0.3484 0.1847 0.7158 0.2842 13.53 10.19 11.89 20.42 12.14 3.41 28.42 
PWC 0.3863 0.5824 0.4338 -0.0107 0.0818 -0.3023 0.7748 0.2252 14.92 33.92 18.82 0.01 0.67 9.14 22.52 
SC -0.7118 0.0528 -0.1052 0.0524 0.5070 0.1731 0.8103 0.1897 50.67 0.28 1.11 0.28 25.70 2.99 18.97 
TC 0.2988 0.6545 -0.1452 0.1123 0.1465 0.2340 0.6276 0.3724 8.93 42.84 2.11 1.26 2.15 5.47 37.24 
TLM 0.6008 0.4542 -0.0002 -0.2410 0.2048 -0.2553 0.7325 0.2675 36.10 20.63 0.00 5.81 4.19 6.52 26.75 
TS -0.3410 -0.0226 0.1976 0.0232 0.1983 0.0809 0.2023 0.7977 11.63 0.05 3.90 0.05 3.93 0.65 79.77 
WC 0.4650 0.5780 0.4900 0.0734 0.2476 0.1236 0.8723 0.1277 21.62 33.41 24.01 0.54 6.13 1.52 12.77 
FCCCS -0.1542 0.7674 0.1247 0.3606 -0.2693 0.0013 0.8308 0.1692 2.38 58.89 1.56 13.00 7.25 0.00 16.92 

+Details of each acronym/ trait are provided in Table 2. Values in bold indicate the most important traits (>0.25) that contributed much to the total variance of the particular component
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The variation in leaf apex shape (LAS) was strongly influenced by the communality 

(95.70%) compared to the specificity (4.30%). Factor 1 (57.59%%) accounted for the largest 

variation in the communality compared to factors 2 (1.57%), 3 (17.53%), 4 (17.51%), 5 

(1.18%) and 6 (0.30%). 

The variation in leaf colour (LC) was largely due to the communality (83.87%) compared 

with the specificity (16.13%). Factor 1 (59.51%) contributed most of the variation in the 

communality compared to factors 2 (21.29%), 3 (0.12%), 4 (0.29%), 5 (2.31%) and 6 

(0.36%).  

The variation in leaf density (LD) was more influenced by the communality (73.29%) 

compared to the specificity (26.71%). Factor 2 (27.77%) contributed most of the variation in 

the communality compared to factors 1 (26.81%), 3 (6.79%), 4 (0.18%) 5 (11.71%) and 6 

(0.02%). 

The variation in leaf margin colour (LMC) was strongly influenced by the communality 

(95.69%) of which factor 1 (77.39%) contributed the most compared with factors 2 (12.50%), 

3 (0.30%), 4 (3.22%), 5 (1.98%) and 6 (0.30%). The specificity contributed 4.31%.  

The variation in leaf length-1 (LL1) was explained by 78.44% contribution from 

communality of which factor 2 (36.97%) contributed most compared to factors 1 (8.60%), 3 

(4.44%), 4 (24.12), 5 (0.10%) and 6 (2.62%). The specificity accounted for 21.56%. 

The variation in leaf length-2 (LL2) was largely due to communality (72.35%) of which 

factor 1 (35.15%) contributed highest compared to 23.99, 0.23, 9.04, 3.94 and 0.00% 

contributions by factors 2, 3, 4, 5 and 6 respectively. The specificity accounted for 27.65%. 

The variation in leaf width-1 (LW1) was strongly influenced by the communality (86.01%) 

compared with the specificity (13.99%). Factor 3 (30.68%) contributed most to the variation 

in the communality compared with factors 1 (5.28%), 2 (24.74%), 4 (18.86%), 5 (1.73%) and 

6 (4.72%). 

The variation in leaf width-2 (LW2) was explained by 68.49% contribution from 

communality of which factor 4 (33.63%) contributed most compared to factors 1 (3.37%), 2 

(2.56%), 3 (20.89%), 5 (5.39%) and 6 (2.65%). The specificity contributed 31.51%. 
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The variation in leaf shape (LS) was explained by 55.54% contribution from communality of 

which factor 5 (20.25%) contributed highest than factors 1 (6.33%), 2 (16.73%), 3 (3.76%), 4 

(3.02%) and 6 (5.45%). The specificity accounted for 44.46%.  

The variation in leaf vein colour lower surface (LVCLS) was largely due to communality 

(66.27%) than the specificity (33.73%). Factor 2 (34.27%) contributed highest compared to 

5.02, 16.08, 0.50, 5.82 and 1.21% inputs by factors 1, 3, 4, 5 and 6 respectively. 

The variation in leaf vein colour upper surface (LVCUS) was explained by 62.01% 

contribution from communality of which factor 1 (49.86%) contributed most compared with 

factors 2 (7.58%), 3 (0.65%), 4 (1.04%), 5 (4.68%) and 6 (0.00%). The specificity accounted 

for 37.99%. 

The variation in number of branches (NB) was more influenced by communality (78.54%) 

compared with the specificity (21.46%). Factor 1 (41.05%) contributed the highest to the 

variation in the communality compared to 2.09, 17.64, 4.86, 12.34 and 0.56% inputs by 

factors 2, 3, 4, 5 and 6 respectively. 

The variation in number of stems (NS) was explained by 58.48% contribution from 

communality of which factor 1 (41.89%) contributed most compared with factors 2 (10.93%), 

3 (0.63%), 4 (1.75%), 5 (2.75%) and 6 (0.53%). The specificity accounted for 41.52%. 

The variation in petiole length of mature leaf (PLM) was explained by 71.58% contribution 

from communality of which factor 4 (20.42%) contributed most compared with factors 1 

(13.53%), 2 (10.19%), 3 (11.89%), 5 (12.14%) and 6 (3.41%). The specificity accounted for 

28.42%. 

The variation in petiole wing colour (PWC) was strongly influenced by 77.48% contribution 

from communality compared to 22.52% input by the specificity. Factor 2 (33.92%) 

contributed most compared with factors 1 (14.92%), 3 (18.82%), 4 (0.01%), 5 (0.67%) and 6 

(9.14%). 

The variation in stem colour (SC) was largely due to communality (81.03%) than the 

specificity (18.97%). Factor 1 (50.67%) contributed most to the variation in the communality 

compared with 0.28, 1.11, 0.28, 25.70, and 2.99% contributions by factors 1, 3, 4, 5 and 6 

respectively. 
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The variation in tip colour (TC) was explained by 62.76% contribution from communality of 

which factor 2 (42.84%) contributed most compared with factors 1 (8.93%), 3 (2.11%), 4 

(1.26%), 5 (2.15%) and 6 (5.47%). The specificity accounted for 37.24%. 

The variation in tip length of mature leaf (TLM) was explained by 73.25% contribution from 

communality of which factor 1 (36.10%) contributed most compared with factors 2 (20.63%), 

3 (0.00%), 4 (5.81%), 5 (4.19%) and 6 (6.52%). The specificity accounted for 26.75%. 

The variation in wing colour (WC) was strongly influenced by the common factors (87.23%) 

compared to the specificity (12.77%). Factor 2 (33.41%) accounted for most of the variation 

in the communality compared to factors 1 (21.62%), 3 (24.01%), 4 (0.54%) 5 (6.13%) and 6 

(1.52%). 

The variation in flesh colour of central cross section of tuber (FCCCS) was explained by 

83.08% contribution from communality of which factor 2 (58.89%) contributed most 

compared with factors 1 (1.38%), 3 (1.56%), 4 (13.00%), 5 (7.25%) with no contribution by 

factor 6. The specificity accounted for 16.92%. 

Generally, all the traits measured were useful in determining variability in the 52 accessions. 

The six factors considered distinguished the traits into groups. The highest weightings by 

factor 1 were given to leaf colour (-0.7719) and leaf margin colour (-0.8797). These traits 

were not only highly positively correlated (r = 0.872) (Appendix 2), but also served as 

important components in distinguishing between the accessions. 

2.3.5 Cluster analysis 

The dendrogram of the hierarchical cluster analysis (HCA) separated the 52 genotypes into 

different clusters with Euclidean distance dissimilarities ranging between 0.8 and 1.0 (Figure 

2.6; Appendix 8). At the dissimilarity distance of 0.90, the dendrogram identified six main 

clusters, A, B, C, D, E and F. Clusters A, E and F had two genotypes each, cluster B 

consisted of 38 genotypes and cluster C consisted of one genotype and cluster D had seven 

genotypes. Genotypes of cluster A belong to D. bulbifera, while genotypes of clusters B, C, E 

and F belong to D. alata, and genotypes of cluster D belong to D. rotundata. At the 0.95 

dissimilarity distance, cluster B was further divided into three sub-clusters: B1, B2 and B3, 

each consisting of 5, 30 and 3 genotypes, respectively. The dendogram of the hierarchical 
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cluster analysis (Figure 2.6) produced a similar grouping of genotypes as did the PCA scatter 

plot (Figure 2.5). The clustering patterns of the various genotypes in the dendrogram revealed 

the proximity of their genetic distance.   
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Figure 2.6. Dendrogram showing genetic diversity among 52 yam accessions (43 each of D. 

alata, two each of D. bulbifera and seven each of D. rotundata) based on morphological traits 
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2.4 Discussion 

The standard yam descriptor list (IPGRI/ IITA, 1997) was a useful tool for assessing the 

available variation among Sierra Leone accessions. The polymorphism showed for 16 

qualitative descriptors and 12 quantitative traits confirm that the selected descriptors are 

appropriate for appraising yam diversity. A better understanding of the existing traditional 

yam cultivars in Sierra Leone is one of the prerequisites for breeding new cultivars with 

novel or improved characteristics. 

A correlation coefficient quantifies the degree to which the variation in one variable (or trait) 

is mirrored by or “affects” variation in another i.e. it provides a measure of the intensity of 

the biological or otherwise association between the two variables. The sign of the correlation 

coefficient provides an indication of either a positive or negative association between two 

variables. Correlation coefficients provide guidance with regard to the execution of direct or 

indirect selection of traits and the consequences thereof for other traits. In this study, it was 

considered that quantification of the biological associations between morphological traits in 

yams would provide invaluable information to current and future breeding programmes. 

Pearson product correlation coefficients revealed significant associations among most of the 

morphological traits studied (Appendix 3). Other associations with winglessness in genotypes 

were profuse branching pattern, purple leaf margin and purple-green stem. 

The interrelationships between internode length, leaf length-1, petiole length and tip length 

were particularly significant in the classification of the genotypes. For instance, the higher 

internode length noted in some accessions was associated with a corresponding increase in 

leaf length-1. It appeared that as the leaves were more well spaced apart on vines, thereby 

improving the harnessing of solar radiation for photosynthesis, there was an associated 

increase in leaf length-1. Similarly, some genotypes which had mature leaves with larger tip 

length also had larger petiole length of the mature leaves. 

The positive association revealed by Pearson’s correlation for the morphological traits: leaf 

colour, leaf margin colour, leaf vein colour of upper surface and leaf shape was the probable 

cause of the unique colour venation in the leaves of some genotypes. Another important 

observation was that some of the genotypes that had profuse branching, purplish-green stem 

and pale purple to purple leaf vein colour of upper leaf surface also had purple leaf margin 

colour. These findings suggest that variability in leaf apex shape was partly due to the 
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influence by leaf margin colour and leaf vein colour of upper surface, with the latter stronger 

than leaf margin colour. Genotypes WR 07/013 and SR 07/085, which exhibited pale purple 

to purple venation, also had purple leaf margin colour and acute leaf apex shape.  

The variation in morphological traits within and between landraces of D. alata, D. bulbifera 

and D. rotundata is likely due to initial sexual recombination and possibly mutation. This is 

often followed by intensive selection by isolated human communities in diverse 

environments (Martin, 1976). Yams are dioceous implying that spontaneous hybridization 

may have contributed to the ancestory of some of the accessions, and improvement may have 

been far more often by selection of somatic mutants. Also, Velayudhan et al. (1989) 

suggested that continuous vegetative propagation and selection within germplasm may 

contribute to phenotypic variation in the species. In the present study, however, only two 

genotypes of D. bulbifera, NR 07/040 and NR 07/045, flowered. Thus, the interspecific 

variation across species level was possibly due to the fact that D. alata and D. rotundata form 

part of the section Enanthiophylum while D. bulbifera belongs to Opsophyton. 

The traits identified in this study should be useful as markers for the classification and 

genetic improvement of the genotypes. Those that discriminated the most between the 

accessions were: the number of days to emergence, shoot traits (absence or presence of 

wings, leaf colour, density, lobation, position, shape and size of leaf, number of stems and 

branches) and below ground traits (tuber shape and flesh colour of central cross section of 

tuber). Martin and Rhodes (1973, 1977), Martin (1976), Onwueme (1978), Sastrapradja 

(1982), and Hasan et al. (2008) also noted that leaf and other shoot growth and tuber traits are 

the most effective morphological traits to classify yams. 

The FA indicated significant contributions in the factor loadings of the 28 traits which 

underpins their relevance in determining the variability among the 52 accessions. Six factors 

which had eigen-values greater than 1.0 were retained (c.f. Manly, 1994; Biabani and 

Pakniyat, 2008). These factors accounted for 75% of the total genetic variability. Factor 3 had 

the highest negative associations (19 traits) whereas factor 4 had the least (10 traits). The sign 

on the loadings indicates the direction of the relationship between the factor and the trait 

measured (Biabani and Pakniyat, 2008). Two traits with high weighting in the same factor are 

expected to be highly correlated. This suggests that these traits could be probably influenced 

by similar gene(s) and may be used to identify variation among accessions (Biabani and 
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Pakniyat, 2008). Other factors (7, 8, 9 and 10) explained 25% of the genetic variation, and 

were considered to be not as important in characterizing the yam accessions. 

Factor 1 had moderate, positive loading for leaf length-2, tip length of mature leaf, absence or 

presence of wing and leaf apex shape on one hand; and moderate (leaf density, distance 

between lobes, number of branches, number of stems, leaf vein colour, stem colour and leaf 

colour) to high (leaf margin colour) negative influence on characterization of the accessions. 

It, therefore, measured the importance of leaf shape and size attributes against shoot growth 

and colour traits in distinguishing the accessions. Factor 2 (leaf density, wing colour, petiole 

wing colour, leaf length-1, tip colour and flesh colour of central cross section of tuber) had a 

moderate, positive influence in the classification of the accessions. Factor 3 had a moderate, 

positive loading for absence or presence of wing, and a moderate, negative loading for leaf 

width-1. It measured the constrast between wing production ability of the various genotypes 

and leaf width-1. Factor 4 had a moderate, negative loading for leaf width-2. It measured the 

contribution of leaf growth parameter to genotype classification. Factor 5 had a moderate, 

positive loading for stem colour, whereas factor 6 exhibited low, negative loading for days to 

emergence. Days to emergence contributed the highest weighting in factor 6 compared to the 

other characters. Among traits that heavily loaded as specificity were days to emergence and 

tuber shape. The significance of these traits in yam breeding programme is crucial. For 

instance, the development of early maturing genotype may require the reduction in the 

number of days to emergence. Early emergence enhances the full utilization of the active 

growth period, which in turn provides tubers with the opportunity to attain their normal size 

and shape. The longer the number of days to emergence, the shorter the active growth period. 

Additionally, infertile and poorly irrigated soils on one hand, coupled with diseased planting 

material on the other, could affect tuber shape. Yam tuber shape is one of the the desirable 

traits in market-oriented breeding.  

Accessions placed in group A (NR 07/045 and NR 07/040), based on PCA, belong to D. 

bulbifera and were characterized by wingless stems and petioles, and sharp angled bulbils 

with depressions containing preformed buds. Accessions placed in groups B, D and E belong 

to D. alata. Accessions of group B belonging to D. alata and were highly variable with 

irregular, oblong, oval-oblong and round tuber shapes, with flesh colour of central cross 

section of tubers ranging from light purple and white. This suggests that tuber shape alone is 

not sufficient to define taxonomic units in D. alata. Also, accessions of three sub-groups 
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within group B, namely: B1, B2 and B3 overlapped in the PC1 versus PC2 graph (Figure 2.5). 

Overlap between species for morphological traits generally make characterization difficult 

(MacLean et al., 1993). The overlapping among genotypes for morphological traits increase 

the taxonomic complexity, which conflicts classification (MacLean et al., 1993). This 

suggests the use of molecular techniques to augment morphological classification to resolve 

issues of overlap and confirm morphological associations. However, the overlap among the 

sub-groups of the B group was within the same species rather than different species. 

Accessions of group D (NR 07/043 and NR 07/059) had purple wings, purplish-green young 

leaves, intermediate lobes and cylindrical and branched tubers. Accessions of group E (WR 

07/013 and SR 07/085) sprouted in a period of a month, had purple leaf margins, purplish-

green petioles with purple at both ends. Whereas WR 07/013 had an oblong shaped tuber 

with white flesh colour, SR 07/085 had round tubers with light purple flesh colour of central 

cross section of tubers.  

Accessions of group C (NR 07/052, NR 07/060, NR 07/071, SR 07/072, SR 07/074, TDr 

95/00005 and TDr 95/18544) belong to D. rotundata. Except for TDr 95/00005, rest were 

characterized by wingless vines. Most exhibited saggitate broad leaf shape, purplish green 

stems, cylindrically shaped tubers, with white flesh colour of central cross section of tubers. 

They had delayed sprouting, but produced fairly intermediate leaf density due to their profuse 

branching habit. The delayed sprouting was probably due in part to inherent genetic variation. 

The classification of germplasm based on regional distribution revealed that 42.8% of the D. 

rotundata genotypes in group D came from the south of Sierra Leone, 28.6% from the north 

and 28.6% (the improved checks) were from IITA. Two genotypes of D. bulbifera in group 

A, NR 07/040 and NR 07/045 were from the north. Genotypes of groups B, C, D, E and F 

belong to D. alata with 27.3% from the north, 18.2% from the south, 22.7% from the east and 

31.8% from the west. Since cluster analysis categorises accessions based on genetic 

similarity, it does not necessarily group accessions with the same geographic origin. 

Mwiringi et al. (2009) also noted the lack of association between morphological traits and 

their geographic origin. The high inter-mix of genotypes and the presence of overlap in the 

principal component graph (Figure 2.5) suggest, the possibility of duplicate genotypes. This 

may have occurred by introduction of similar genotypes into different regions either by 

exchange of germplasm between farmers, release of new genotypes, etc. 
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Based on the 28 morphological traits the multivariate techniques separated the genotypes into 

six major groups with varying tuber shapes (round, irregular, oblong, oval-oblong and 

cylindrical). Also, high intra- and inter-group diversity was discovered among the species 

(Figures 2.5 and 2.6). These results agree with Lebot et al. (1998) and Hasan et al. (2008) 

who obtained four major tuber groups in D. alata morphotypes alone.  

2.5 Conclusions 

A detailed chracterization of the genotypic diversity within the three Dioscorea species (D. 

alata, D. bulbifera and D. rotundata) evaluated should contribute to effective conservation 

and utilization of the yam genetic resources available in Sierra Leone. Knowledge of the 

genetic resources may also facilitate the exploration of other potential uses of these species. 

The overlap in sub-groups B1 and B2 of genotypes WR 07/024, SR 07/075, 07/073, ER 

07/032 and NR 07/042, and between sub-groups B1 and B3 of genotypes NR 07/041, WR 

07/010, ER 07/038 and NR 07/067, indicated the possibility of duplicate genotypes in the 

germplasm collection (Figure 2.4). Four traits loaded heavily as specificity in the factor 

analysis. Of the four, number of days to emergence and tuber shape are crucial in breeding 

for market-oriented traits. Cluster analysis which classified the genotypes based on genetic 

distance identified six distinct groups in the germplasm.  

A major breeding objective is the development of early establishment in yams through a 

reduction in the number of days to emergence. Early establishment will enable a greater 

realization of yield potential of genotypes by maximising the active growing period. The 

characterization of the accessions will facilitate the identification and genetic relationships of 

parental genotypes in order to attain the apex breeding objectives of developing high yielding 

yam genotypes with desirable tuber size, shape, culinary quality, pest and disease resistance, 

good storability and also characters that confer lower labor requirements. 
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CHAPTER THREE 

Diversity in ploidy level and nuclear DNA content (pg) of some yam 

(Dioscorea spp.) genotypes in Sierra Leone as determined by flow 

cytometry and chromosome counting 

Abstract  

The techniques of flow cytometry (FCM) and chromosome counting were used to determine 

the ploidy levels of 52 genotypes from Sierra Leone. For FCM, Lycopersicum esculentum 

(garden tomato) with known ploidy level and genome size was used as a standard. Nuclei 

were isolated from freshly harvested young leaves, squashed in lysis buffer and stained with 

propidium iodide. For chromosome counting, root tips were prepared using the acetocarmine 

staining technique and chromosomes counted using a light microscope at 1000x 

magnification. The various ploidy levels observed among the genotypes included diploid 

(2x), triploid (3x), tetraploid (4x), pentaploid (5x) and hexaploid (6x). The estimated nuclear 

DNA content ranged from 1.668 + 0.017 pg for G1 nuclei of diploid D. alata to 2.118 pg for 

G1 nuclei of hexaploid D. rotundata. A one-way ANOVA of 4x accessions for DNA content, 

relative florescence intensity and ploidy levels indicated significant variation among species 

(p<0.005) and within genotypes of the various species (p<0.037). Genotype ER 07/030 had 

20 chromosomes, four genotypes viz ER 07/036, NR 07/060, NR 07/071 and SR 07/072 had 

40 chromosomes, and TDr 95/18544 had 60 chromosomes. The results from FCM agree with 

the hypothesis that chromosome size decreases with higher ploidy level. The results also 

suggest the possibility of the existence of polymorphism within the chromosomes of 

Dioscorea. Chromosome counts agree with the ploidy results obtained from the FCM, which 

indicated that FCM was a reliable technique for the rapid determination of ploidy level in 

yams.  
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3.1 Introduction 

Tropical root and tuber crops are a subsidiary staple to over 20% of the world’s population 

occupying an important position after cereals and grain legumes (Orkwor et al., 1998). 

Dioscorea cayenesis (yellow yam), D. alata (water yam), D. rotundata (white yam), and D. 

bulbifera (aerial yam) are among the most important tuber crops consumed in West Africa 

(Orkwor et al., 1998).  

Despite its economic importance, yam has not been accorded the keen attention of 

researchers in many areas in Africa, especially in Sierra Leone. In order to develop new elite 

genotypes for ecological adaptation and reasonable tolerance to local pests and diseases, plant 

breeders require wide genetic diversity (Dansi et al., 2000b). Since yams are largely 

polyploid, knowledge of the ploidy state of existing cultivars will be helpful to breed new 

varieties. Phenotypic variation within ploidy level in yams is higher than between ploidy 

levels as also noted in other plants (Dessauw, 1988). 

Among the many constraints limiting conventional breeding of Dioscorea spp., ranging from 

flowering to seedling development, are: flowering expression, pollen viability or egg 

receptivity, gametogenesis, pollination, fecundation, embryogenesis and seed set. These 

constraints encountered in sexual recombination of yams are due to the complex speciation in 

the crop (Obidiegwu et al., 2009). Although scanty information on yam phylogeny exists, 

many taxonomic ambiguities associated with cytological irregularities still remain 

unresolved. In addition, various cellular parameters including cell and nuclear volume and 

chromosome size, and developmental parameters such as minimum generation time or 

duration of meiosis, among others, are influenced by the C-value of an organism (Swift, 

1950). Therefore, genome size normally determines the breeding system (Govindaraju and 

Cullis, 1991). 

Feulgen densitometry, image cytometry, and flow cytometry (FCM) are among the 

cytometric techniques which have played a significant role in plant taxonomy, 

biosystematics, and ecology in determining chromosomal and ploidy level data (Suda et al., 

2006). The merits of FCM lie in its simplicity and speed, the small amount of tissue sample 

required, the use of various types of plant tissues: leaves, stems, roots, sepals, petals and 

seeds in FCM assays. This provides the possibility of extensively exploring rare and 

endangered plant species with no risk of population destruction (Sgorbati et al., 2004). 
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Through FCM, ploidy level at various spatial scales, interactions among cytotypes, and 

evolutionary processes in diploid-polyploid sympatric populations can also be reliably 

assessed (Baack, 2004; Husband and Sabara, 2004). Moreover, FCM holds great potential in 

reshaping former taxonomic concepts and facilitating robust classification based on cytotype 

characteristics (Bures et al., 2003; Rosenbaumova et al., 2004). Thus, the application of 

molecular cytogenetics to the species of Dioscorea under study will greatly improve an 

understanding of chromosome structure and karyotype variation within the species.  

Chromosome observation is necessary to clarify the structure, function, organisation and 

evolution of yam genomes. However, the determination of ploidy level in yam somatic cells 

by chromosome counting is limited by the polyploid nature of the crop, dot-like nature of 

chromosomes and small volume of mitotic cells. These characteristics hinder the preparation 

of a distinct and well-spread chromosomes visible in a single focal plane (Staudt, 1989). A 

simple, rapid and reliable procedure is needed to determine the chromosome number of 

meristematic regions of yam root tips (Dansi et al., 2001). Furthermore, an understanding of 

the ploidy and chromosome status in plants generated from anther, ovary and callus cultures, 

or cell fusion for the identification of haploids, heterokaryons or doubled haploid genotypes 

is imperative in augmenting plant breeding efforts to develop new genotypes. The aim of this 

study was to investigate the ploidy levels and nuclear DNA contents of Dioscorea species 

using flow cytometry. A conventional chromosome counting technique was also employed to 

confirm ploidy results. The hypothesis tested was that local accessions had wide inter- and 

intra-group diversity. 

3.2 Materials and methods 

3.2.1 Flow cytometry technique 

3.2.1.1 Plant materials and growth conditions    

A total of 52 genotypes (50 landraces grown in Sierra Leone and two improved lines from the 

International Institute of Tropical Agriculture, Ibadan, Nigeria) representing three Dioscorea 

spp. (Table 2.1) were established in 25 cm (diameter) x 20 cm (height) pots in a greenhouse 

at the controlled environment research unit (CERU) of the University of KwaZulu-Natal, 

South Africa. Minisetts each weighing 50 g were established in 25 cm (diameter) x 20 cm 

(height) pots in a green-house at the University of KwaZulu-Natal, Pietermaritzburg, South 
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Africa in January 2010. The pots were filled with composted seedling mix, and water was 

supplied by drip irrigation. The pots were arranged in a three replicate, randomized complete 

block design. The planting distance between pots was 0.25 m. Each pot was fertigated at the 

rate of 200 kg ha-1 of NPK (40:40:60) daily throughout the growing period. Hand weeding 

was done as necessary. 

3.2.1.2 Solution and reagents  

The preparation of nuclei from young leaf tissue was based on a modified protocol by 

Galbraith et al. (1983). Two buffer solutions were prepared prior to the extraction of nuclei. 

The first solution, buffer A, also known as LB01 Lysis buffer or nuclei isolation buffer, 

consisted of the following reagents: 5 mM TRIS, 2 mM Na2EDTA, 0.5 mM spermine.4HCl, 

80 mM KCl, 20 mM NaCl, 15 mM β-mercaptoethanol, 0.1% (v/v) Triton X-100, and the pH 

adjusted to 7.5 (Dolezel et al., 1989).  

The second solution, buffer B, also known as nuclei staining buffer, consisted of 10 mg ml-1 

propidium iodide (PI, Fluka, Buchs, Switzerland) and 10 mg ml-1 RNase A (Fluka, DNase-

free) prepared on ice just prior to use. Since staining of nuclei within a crude homogenate is 

influenced by the composition of the nuclei isolation buffer and phenolic compounds present 

in the cytosol, the use of β-mercaptoethanol in the isolation buffer was to alleviate the 

influence of phenolic compounds on staining. 

3.2.1.3 Sample preparation for ploidy analysis 

Healthy young leaves were collected from individual plants in the screen house, bagged, 

transported on ice and kept in the refrigerator at a temperature of 4°C for a period of four 

days until analysis. Young leaves were used in order to avoid the high concentration of 

starch, polysaccharides, calcium oxalate, and other metabolites, which decrease the purity of 

intact nuclei found in old tissues. Nuclei from each accession were carefully isolated and 

suspended by slicing approximately 50 mg of sample material into thin strips less than 0.5 

mm wide with a sharp double-edged razor blade in a glass petri dish containing 1 ml LB01 

lysis buffer. This was done to eliminate the occurrence of contaminants that accelerate the 

degradation of nuclei, increase the viscosity of the sample and/ or block the fluidics system of 

the flow cytometer.  
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The extract of nuclei was filtered into a 15 ml Falcon tube using a 50 μm pore size nylon 

mesh. The nuclear DNA was stained with 10 mg ml-1 of propidium iodide (PI); and also 10 

mg ml-1 of RNase was added to avoid staining of double-stranded RNA by PI. About 600 µl 

of buffer B was added to each sample. After 20 min incubation period on ice, samples were 

ready for flow cytometric analyses. Solanum lycopersicum L. (garden tomato) (1C Genome 

size = 958 Mbp; 2C = 1.96 pg DNA; Dolezel et al., 1992) was used as a reference standard 

because of its close but non-overlapping genome size. 

3.2.1.4 Flow cytometric analysis 

Beckman Coulter EPICS-XL flow cytometer (Beckman Coulter®, Hialeah, FL, USA) 

equipped with an air cooled argon-iron laser regulated at 15 mW and operating at 488 nm 

was used for the analysis of the samples. Propidium iodide (PI) florescence was collected 

through a 645 nm dichroic long pass filter and a 260 nm band pass filter. Before sample 

analysis, the instrument was checked for linearity with Flow Check fluorospheres daily  

(Beckman Coulter®). Counts were obtained using the SYSTEM II software version 3.0 

(Coulter Electronics). The amplifier system was adjusted so that the G0/G1 peak of nuclei 

isolated from diploid individuals appeared at channel 200 in a scale with 1,024 channels and 

the flow was given a stop time of 300 s. These settings were kept constant throughout the 

entire experimentation.  

Initially, ploidy level was determined by comparing the relative fluorescence intensity (RFI) 

of sample nuclei with the RFI of the reference standard. Afterwards, the reference standard 

was included during sample preparation. In the later experiment, when deviation greater than 

10% was observed, the ploidy level was estimated by preparing a new sample with both test 

material and the reference standard. This was done by chopping 20 mg of reference plant 

tissue together with 50 mg of sample tissue. The samples were analyzed in random sequence 

on the flow cytometer in order to statistically account for laser drift and other sources of 

machine error. The total amount of DNA content present was calculated as:  

Sample 2C DNA content = {(sample G1 peak mean)/ (S. lycopersicum G1 peak mean)} x  S. 

lycopersicum 2C DNA content (pg DNA) (Obidiegwu et al., 2009).   



87 
 

3.2.1.5 Statistical analysis 

The statistical relationship between DNA content and ploidy level was determined through 

regression analysis. The amount of the total variation in ploidy level explained by DNA 

content was evaluated through the coefficient of determination (R2) (Steel and Torrie, 1980). 

Variation in DNA content among and within tetraploid species of Dioscorea was evaluated 

using a one-way analysis of variance (ANOVA). The analysis was performed in Genstat 12.1 

(Payne et al., 2009); error mean squares for successively higher levels in the one-way 

ANOVA were determined by evaluation of significance at lower levels in the analysis. 

3.2.2 Chromosome counting technique 

3.2.2.1 Plant materials and growth conditions   

An experiment to investigate and confirm the ploidy status of six yam genotypes using 

chromosome counting technique was conducted at the University of KwaZulu-Natal, 

Pietermaritzburg, South Africa during the early summer months of September to November, 

2010. Yam minisetts of six genotypes, ER 07/030, ER 07/036, NR 07/060, NR 07/071, SR 

07/072 and TDr 95/ 18544 each weighing 20 g were grown in 250 mL pots containing a 

vermiculite medium. Plants were grown for about 4 weeks at 25°C day/night and 70% 

relative humidity. The moisture level of the growing medium was well managed to prevent 

limited oxygen availability and reduced root growth by over-wet or over-dry medium, 

respectively. 

3.2.2.2 Pre-treatment, fixation, staining method and chromosome 

counts 

A protocol slightly modified from Fukui and Nakayama (1996) was used for sample 

preparation and analyis. Root tips each 6 mm long were collected using forceps at 06h00 and 

treated in small vial of Carnoy’s (farmers) fixative (three parts 95% alcohol: 1 part glacial 

acetic acid) for 48 h at room temperature. Samples were rinsed thoroughly in 70% alcohol to 

remove acetic acid, which could hinder the staining of the chromosomes by acetocarmine. 

Samples were then stored in 70% ethanol at 4°C in a refrigerator until examined. For mitotic 

analysis, root tips were hydrolysed in 1N HCl for 90 mins at room temperature and then 
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washed in distilled water before staining. The outer (1 to 2 mm deep) layer of cells of root 

tips were excised using a razor blade and stained in a drop of acetocarmine for 15 mins on 

microscope (glass) slide. The cells were covered with a cover slip, carefully mopping excess 

stain using paper towel. The slide was slighly heated over a spirit bunsen burner without 

boiling to prevent damage to the cells. 

The chromosomes were counted in three to five cells per slide in five to 10 root tips per 

genotype using a light microscope (AX70; Olympus Optical Co. Ltd., Japan) at the 100x 

objective magnification (1000x total magnification). The well spread chromosomes at the 

metaphase stage were digitally photographed and stored using a camera (CC12; Olympus 

Optical Co. Ltd., Japan) connected to a personal computer equipped with image filing 

software (Soft Imaging System (SIS) analysis® 3.0 Co. Ltd., Japan). 

3.3 Results  

3.3.1 Flow cytometry technique 

There was a highly significant (F1,50 = 77.6, p<0.001) linear relationship between nuclear 

DNA content and ploidy level among yam genotypes (Table 3.1; Appendix 9). Nuclear DNA 

content accounted for 60% of the total variation observed in ploidy level. The regression 

equation for DNA content indicated that for every picogram increase in nuclear DNA content 

of yams, ploidy level increases by 5.52 unit. However, nuclear DNA content was strongly 

negatively correlated (r = -0.999) with ploidy level (Appendix 9). This implied that as ploidy 

level increases, the DNA content per genome decreases. 

Overall, five ploidy levels: diploid (2x), triploid (3x), tetraploid (4x), pentaploid (5x) and 

hexaploid (6x) were detected among the 52 genotypes studied (Table 3.1). Three of the D. 

alata genotypes were diploid (Figure 3.1a) and one was triploid (Figure 3.1b). A total of 45 

genotypes including 38 D. alata, six D. rotundata and one D. bulbifera were tetraploid 

(Figure 3.1c); one genotype, NR 07/045 was pentaploid (Figure 3.1d), and two genotypes, SR 

07/084 and TDr 95/18544 were hexaploid (Figure 3.1e). 

The nuclear DNA content varied from 1.588 to 1.718 pg (1.668 + 0.017 pg) for the diploids, 

1.750 pg for the triploid, from 1.772 to 1.937 pg for the tetraploids, 1.998 pg for the 

pentaploid, and from 2.102 to 2.118 pg for the hexaploids (Table 3.1).  
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Figure 3.1. Histograms of fluorescent intensity of nuclei for G1 peaks of: (a) diploid D. alata 

(2n = 2x = 20, 2C = 1.689 pg); (b) triploid D. alata (2n = 3x = 30, 2C = 1.750 pg); (c) 

tetraploid D. alata (2n = 4x = 40, 2C = 1.781 pg);  (d) pentaploid D. bulbifera (2n = 5x = 50, 

2C = 2.017 pg); and (e) hexaploid D. rotundata (2n = 6x = 60, 2C = 2.102 pg)  

a: Diploid WR 07/014 b: Triploid NR 07/068 

c: Tetraploid SR 07/081 d: Pentaploid NR 07/040 

e: Hexaploid SR 07/084 
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Table 3.1. Flow cytometric measurements of relative fluorescence intensity (RFI (log)), 2C nuclear DNA 

content and ploidy level of 52 yams  accessions from Sierra Leone   

Species Accession 
Number+ 

RFI 2C Nucler DNA 
content (pg) 

Mean + SE* Ploidy 
Level 

D. alata WR 07/014 5.197 1.689 1.668 + 0.017 2x 
 WR 07/016 5.193 1.681 CV = 1.78% 2x 
 ER 07/030 5.165 1.634  2x 
 NR 07/068 5.233 1.750  3x 
 WR 07/001 5.291 1.854  4x 
 WR 07/004 5.301 1.873  4x 
 WR 07/007 5.301 1.874  4x 
 WR 07/008 5.315 1.899  4x 
 WR 07/010 5.272 1.820  4x 
 WR 07/013 5.266 1.809  4x 
 WR 07/015 5.330 1.928  4x 
 WR 07/020 5.284 1.842  4x 
 WR 07/022 5.248 1.776  4x 
 WR 07/024 5.250 1.779  4x 
 WR 07/025 5.326 1.921  4x 
 WR 07/028 5.268 1.812  4x 
 ER 07/029 5.278 1.830  4x 
 ER 07/031 5.309 1.888  4x 
 ER 07/032 5.310 1.890 1.846 + 0.007 4x 
 ER 07/033 5.288 1.848 CV = 2.47% 4x 
 ER 07/034 5.282 1.838  4x 
 ER 07/036 5.283 1.840  4x 
 ER 07/037 5.329 1.927  4x 
 ER 07/038 5.261 1.800  4x 
 ER 07/039 5.308 1.886  4x 
 NR 07/041 5.272 1.820  4x 
 NR 07/042 5.325 1.918  4x 
 NR 07/043 5.271 1.818  4x 
 NR 07/047 5.305 1.880  4x 
 NR 07/054 5.245 1.772  4x 
 NR 07/057 5.293 1.859  4x 
 NR 07/059 5.279 1.832  4x 
 NR 07/067 5.276 1.826  4x 
 NR 07/069 5.276 1.827  4x 
 SR 07/073 5.314 1.897  4x 
 SR 07/075 5.260 1.798  4x 
 SR 07/076 5.314 1.897  4x 
 SR 07/079 5.302 1.875  4x 
 SR 07/080 5.254 1.788  4x 
 SR 07/081 5.251 1.781  4x 
 SR 07/082 5.256 1.790  4x 
 SR 07/085 5.278 1.831  4x 
 SR 07/084 5.416 2.102 2.102 6x 
D. bulbifera NR 07/045 5.326 1.905 1.905 4x 
 NR 07/040 5.375 2.017 2.017 5x 
D. rotundata NR 07/052 5.278 1.831  4x 
 NR 07/060 5.335 1.938  4x 
 NR 07/071 5.305 1.880 1.897 + 0.017 4x 
 SR 07/072 5.327 1.923 CV = 2.26% 4x 
 SR 07/074 5.300 1.872  4x 
 TDr 95/00005 5.335 1.937  4x 
 TDr 95/18544 5.423 2.118 2.118 6x 
+WR = western region of Sierra Leone; ER = eastern region; NR = northern region, SR = southern region *SE = 

standard error; and CV = coefficient of variation within each ploidy level 
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Exploration of the nuclear DNA content of the 4x ploidy level of D. alata, D. bulbifera and 

D. rotundata revealed significant diversity both among species (p<0.005) and within 

accessions (p<0.037) (Tables 3.2 and 3.3; Appendices 10 and 11). Although the variations 

within ploidy levels were small compared to differences between ploidy levels, this implied 

the probable existence of polymorphism within yam chromosomes. 

Table 3.2. ANOVA in DNA content among three species of yam (D. alata, D. bulbifera and 

D. rotundata) with 4x genotypes 

Source of 

variation 

Df SS MS F           

ratio 

F         

prob 

Replication 2 0.502386 0.251193 51.60  

Species  2 0.054730 0.027365 5.62 0.005 

Residual 130 0.632886 0.004868   

Total 134 1.190001    

 

Table 3.3. ANOVA in DNA content of 45, 4x genotypes 

Source of 

variation 

Df SS MS F           
ratio 

F         
prob 

Replication 2 0.502386 0.251193 57.41  

Genotype  44 0.302567 0.006877 1.57 0.037 

Residual 88 0.385048 0.004376   

Total 134 1.190001    

 

3.3.2 Chromosome counting  

The six genotypes evaluated had chromosome numbers ranging from 20 t0 60. One genotype, 

ER 07/030, had 20 chromosomes; four, ER 07/036, NR 07/060, NR 07/071 and SR 07/072, 

had 40 chromosomes; and TDr 95/18544 had 60 chromosomes. The genomic number of 

chromosomes of the six genotypes are a multiple of the basic chromosome number, 10 

(Figures 3.2 and 3.3).  
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Figure 3.2. Mitotic chromosomes in root tip cells of the basic number, diploid and tetraploid yams stained with acetocarmine. Metaphase 

chromosomes in root tip cells of: (a1 and a2) examples of countable resolution with the chromosome number x = 10, (b) ER 07/030                   

(2n = 2x = 20), (c) ER 07/036 (2n = 4x = 40). Circled regions indicate metaphase chromosome 

 

b: ER-30 c: ER-36 a2:  a1:  
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Figure 3.3. Mitotic chromosomes in root tip cells of tetraploid and hexaploid yam genotypes stained with acetocarmine. Metaphase 

chromosomes in root tip cells of (a) NR 07/060 (2n = 4x = 40), (b) NR 07/071 (2n = 4x = 40), (c)  SR 07/072 (2n = 4x = 40), (d) TDr 95/18544 

(2n=6x=60). Circled regions indicate metaphase chromosomes 

 

c: SR-72 d: TDr 95/18544 a: NR-60 b: NR-71 
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3.4 Discussion  

3.4.1 Flow cytometry technique 

The results generally indicated that DNA flow cytometry is a useful technique to determine 

ploidy level of healthy young leaves of yams. The technique is also very useful for plants 

derived from heteroploid crosses in which parent (s) produce 2n gametes. This saves time and 

resources through the maintenance of plants generated from sexual polyploidisation.  

Of the 52 genotypes, three (5.8%) were diploid, one (1.9%) was triploid, 45 (86.5%) were 

tetraploid, one (1.9%) was pentaploid and two (3.9%) were hexaploid. These findings are in 

agreement with those obtained by Essad (1984), Zoundjihekpon et al. (1990), Hamon et al. 

(1992) and Dansi et al. (2000a) who noted that tetraploids are the most frequent group in the 

Dioscorea species. The high number of tetraploids and the low number of hexaploids 

suggests that they may have evolved either by somatic doubling or sexual polyploidization. 

However, the presence of triploid (3x) and pentaploid (5x) individuals suggests that 

polyploidization by the fusion of reduced (n) and unreduced (2n) gametes may have occurred. 

The occurrence of triploidy and pentaploidy in Dioscorea was earlier reported by Sharma and 

De (1956) and Martin (1976). 

The 2C nuclear DNA content of D. alata ranged from 1.668 + 0.017 pg (diploid), 1.750 pg 

(one triploid), 1.846 + 0.007 pg (tetraploid), and 2.102 pg (one hexaploid). Since the DNA 

content did not increase in multiples of ploidy level an obvious interpretation was an apparent 

decrease in chromosome size with increasing ploidy level. These data support Sharma and 

Sen’s (2002) hypothesis that the size of chromosomes tends to diminish with 

polyploidization. It is possible that such a “compensation” mechanism serves as a defensive 

strategy against the increased probability of mutations that often accompany polyploidy 

(Sharma and Sen, 2002). Moreover, Chenuil et al. (1997) demonstrated that shortening of 

microsatellites and reducing their number could be one of the molecular mechanisms 

employed to eliminate excessive DNA in organisms of higher ploidy levels. 

In the D. bulbifera, tetraploid and pentaploid accessions, 2C nuclear DNA contents were 

estimated at 1.905 and 2.017 pg, respectively. Six of the D. rotundata accessions were 

tetraploid with a mean of 1.897 pg, while one was hexaploid with 2C = 2.118 pg. The results 

are in concurrence with those obtained by Gamiette et al. (1999), Dansi et al. (2000a, 2001) 
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and Obidiegwu et al. (2009) who noted tetraploids outnumbering other ploidy levels in D. 

rotundata. A similar trend of decrease in chromosome size with higher ploidy in D. alata was 

also observed in both D. bulbifera and D. rotundata. However, the present analysis did not 

show the occurrence of either octoploidy or mixoploidy in genotypes of D. alata and D. 

rotundata as reported by Hamon et al. (1992), Gamiette et al. (1999), and Dansi et al. (2000a, 

2001). Polyploidy has been noted as one of the main sources of an increase in DNA content 

in plants. Leitch and Bennett (2004) noted that an increase in ploidy level caused an average 

increase in the total DNA. However, the DNA content of each genome (i.e. the nuclear DNA 

content divided by the ploidy level) decreased in polyploid nucleus (Leitch and Bennett, 

2004). The variations in nuclear DNA content within diploid plants have been associated with 

differences in transposon copy number (Bennetzen, 2002) and intron size (Petrov, 2001). 

Findings of the present study are consistent with those of Lietch and Bennett (2004) in which 

an increase in ploidy number led to a decrease in DNA content per genome in polyploids. 

Transposoon copy number and intron size influence on the nuclear DNA content of diploids 

was not investigated in this study.  

The variation in nuclear DNA content of 4x genotypes among the Dioscorea species (D. 

alata, D. bulbifera and D. rotundata) reflects interspecific variation in either genomic DNA 

content or composition. The higher variations observed between species compared to within 

species variation were possibly due to increasing ploidy level. This suggests that these 

species may have evolved from different ancestors. The variation  noted among genotypes 

within species also supports the evolution of chromosome composition hypothesis in plants 

(Costich et al., 1993). The hypothesis assumes that adaptive differentiation of a group of 

related species is followed by a gradual decrease in genome size as species become more 

specialized (Price, 1976). Polyploidy in yams may have arisen from multiplication of the 

basic chromosome number with the chromosome size and DNA content per chromosome not 

increasing in direct proportion with ploidy level. The phenotypic variations observed among 

the polyploid (triploid, tetraploid, pentaploid and hexaploid) genotypes was likely due to 

increase in the number of loci present. This is in agreement with earlier findings that 

polyploidy increases the number of loci, potential number of alleles each locus contains and 

the dosage effect of genes is altered (Udall and Wendel, 2006). The variation observed 

among the 2x D. alata genotypes was likely due to allelic differences at homologous loci. 
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Determination of ploidy status of genotypes, especially new introductions, before their 

utilization in breeding programme is crucial. Such data enables matching of ploidy levels as 

well as in the enhancement of ploidy manipulations in inter- and intra-specific crosses. 

Through DNA flow cytometry, chromosome differentiation in yams can be investigated. 

Knowledge of the magnitude of such differentiation facilitates an understanding of the lack of 

chromosome pairing in hybrids. The 52 genotypes comprising five ploidy levels (2x, 3x, 4x, 

5x and 6x), will be evaluated, multiplied and used for either breeding purposes or other 

genetic investigations. Through these initiatives superior genotypes with desirable traits could 

be developed and released as new cultivars. 

3.4.2 Conventional chromosome counting technique 

Based on conventional chromosome the chromosome was determined as x = 10 for the 

various genotypes studied (Figure 3.2). A basic chromosome number, x = 10 was also 

reported by Zoundjihekpon et al. (1990) and Dansi et al. (2000a). Generally, the dot-like and 

clumping nature of the chromosomes made counting difficult. In yams, the occurrence of one 

or two extra chromosomes in cells of individual genotypes is not rare (Zoundjihekpon et al., 

1990; Gamiette et al., 1999; Dansi et al., 2000b). However, the presence of the extra 

chromosomes is often attributed to the B-chromosomes or satellites which are sometimes as 

large as the chromosomes themselves as opposed to aneuploidy (Essad, 1984). The B-

chromosomes, which may be involved in directing non-disjunction of chromatids during cell 

division are dispensable and extra to the basic A-chromosome set (Hasterock et al., 2002). 

Langdon et al. (2000) also noted that B-chromosome-specific region is possibly occupied by 

a block of hetero-chromatin at the distal end of the long arm in Secale cereale (rye). The 

results were also in agreement with the ploidy results obtained from FCM, which indicated 

that FCM was a reliable technique for rapid determination of ploidy level in yams.  

This is the first report of cytogenetic work of yam genotypes from Sierra Leone. It is believed 

that the information generated from this study would provide guidance in a yam improvement 

programme both in terms of selection of initial breeding material and choice of breeding 

methods. 
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3.5 Conclusions 

An adequate knowledge of the chromosome/ploidy constitution of yam genotypes is a 

prerequisite for their effective and efficient utilization in a breeding programme. Relative to 

chromosome counting, FCM is the technique of choice for the determination of ploidy levels 

in large yam populations as it is an easier and quicker technique provided the necessary 

equipment is available. 

Of the 52 genotypes, three (5.8%) were diploids, one (1.9%) was triploid, 45 (86.5%) were 

tetraploids, one (1.9%) was pentaploid and two (3.9%) were hexaploids. The accessions of D. 

alata had diploid, triploid, tetraploid and hexaploid ploidy levels, which were more diverse 

compared to the accessions of D. bulbifera which were tetraploid and pentaploid, and D. 

rotundata which were tetraploid and hexaploid. 

The nuclear DNA content varied from 1.588 to 1.718 pg for the diploids, 1.750 pg for the 

triploid, 1.772 to 1.937 pg for the tetraploids, 1.998 pg for the pentaploid, and from 2.102 to 

2.118 pg for the hexaploids. Both the genome size variation within individuals of the 

tetraploid population and those involving all ploidy populations among the three species was 

significant. The DNA amount per genome decreased with increasing ploidy level.  

The 52 genotypes from which five ploidy levels (2x, 3x, 4x, 5x and 6x) were obtained, will be 

evaluated, multiplied and used for either breeding or other genetic investigations. The yam 

genotypes evaluated in this study will further be used in breeding and genetic investigations 

to develop new genotypes with superior combinations of traits.  
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CHAPTER FOUR 

Determination of associations between three morphological and two 

cytological traits of yams (Dioscorea spp.) using canonical correlation 

analysis 

Abstract  

Agro-morphological traits of plants may directly or indirectly depend on cytological traits. 

Thus, the determination of associations between morphological traits (absence or presence of 

wings, number of stems per plant and wing colour of stem) and cytological traits (DNA 

content and ploidy level) of yams were investigated using canonical correlation analysis. This 

multivariate technique is used in wide fields of study to quantify the mathematical 

relationships between multiple sets of independent and dependent traits or properties. 

Canonical weights and loadings indicated that DNA content (pg) had the highest contribution 

to the variation of the morphological traits (presence of wings, number of stems per plant and 

wing colour) compared with ploidy level. It was found that cytological traits accounted for 

0.09 to 0.17% of the variation in the selected morphological traits. The first and second 

canonical correlations exhibited 60.91 and 39.09% overlapping variance of the canonical 

variate sets respectively. The first and second canonical variates extracted 0.57 and 4.43% of 

the total variance in the cytological trait set. The study demonstrated the successful 

determination of complex inter-relationships between morphological and cytological traits.  

4.1 Introduction 

Canonical correlation analysis (CCA) is one of several multivariate analysis techniques used 

to determine the overall correlation between two sets of traits (X and Y). Canonical 

correlation is a generalization of multiple regression analysis with more than one trait in the 

independent and dependent trait sets. The basic principle of the technique is to determine how 

much variance in one set of traits is accounted for by the other set along one or more axes 

(Tabachnick and Fidell, 2001). In contrast to many other techniques, any of the two sets of 

traits is a potential candidate to be used as dependent or independent traits. Canonical 

correlation makes possible several combinations of two trait sets. The number of 
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combinations depends on the number of traits in the smaller trait set (Tabachnick and Fidell, 

2001; Keskin and Yasar, 2007).  

Canonical correlation analysis has been widely applied in various fields such as the plant 

sciences, biology, chemistry, social and management sciences. However, there is scant 

information available on the interrelationship between morphological and cytological traits of 

yams. The main aim of this study was to determine the level of association between 

morphological and cytological traits of yams using canonical correlation analysis. The 

hypothesis being tested was that correlation exists between the agro-morphological and 

cytological traits used in the two methods of classification. 

4.2 Materials and methods 

A total of five traits including three morphological (absence or presence of wings, number of 

stems per plant and wing colour of stem) and two cytological (DNA content and ploidy level) 

traits were used. The morphological traits were considered as the dependent Y-trait set, 

whereas the cytological traits were taken as the independent X-trait set. To obtain the 

maximum correlations between two sets of traits, two linear combinations were designed as 

shown below:  

Wi = ai1X1 + ai2X2 + -------- + aipXp ……………………………………………..……. (Eqn 9) 

Vi = bi1Y1 + bi2Y2 + -------- + biqYq ……………………….…………………………..(Eqn 10) 

The symbols W and V represents canonical variates; a and b are canonical coefficients of the 

X and Y trait sets; and p (two traits) and q (three traits) are the number of traits in the  X and 

Y trait sets, respectively. The estimation of the vector coefficients, a and b, was done 

according to Tabachnick and Fidell (2001).  

To generate the canonical correlation for both sets of traits, the following formulae were 

used: 

var (W) = aʹCov (X) a.………………………...…………………………….…………(Eqn 11) 

var (V) = bʹCov (Y) b…………………………...…………………………..…………(Eqn 12) 
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………………...………………………………………(Eqn 13) 

where var (W) represents variance of the canonical variate W; var (V) is the variance of the 

covariate V; Cwv is the canonical correlation between the X and Y trait sets; Cov (Y) and Cov 

(X) are the covariances of the traits in the X and Y trait sets, respectively (Keskin and Yasar, 

2007).  

The relationship of a set of canonical variate is maximized when the correlation (r-value) of 

the p and q is small. The first set of canonical variate (W1 and V1) gives the highest 

correlation and is considered the most important. The correlation between W2 and V2 is only 

maximized where the traits measured are uncorrelated to W1 and V1. Similarly, the 

correlation between W3 and V3 is maximized if traits are not correlated with W1, V1, W2 and 

V2 (Manly, 1994).  

The canonical correlation analysis procedure (CANCORRELATION procedure) in Genstat 

Version 12.1 was used to generate the relationships between sets of traits (Payne et al., 2009). 

The squared canonical correlation (also known as canonical roots or eigen-values) represents 

the amount of variance in one canonical variate accounted for by the other canonical variate 

(Hair et al., 1998). The standardized coefficients are similar to the standardized regression 

coefficients in multiple regression, which gives an indication of the relative importance of the 

independent traits in determining the value of dependent traits.  

In order to determine the amount of variance in one set of traits that is accounted for by 

another set of traits, Sharma (1996) suggested the estimation of the redundancy measure 

(RM) for each canonical correlation. The equation for the RM is shown below: 

RMvi/wi = AV (Y/Vi) x Ci
2…………………………………………………………..…(Eqn 14) 

AV (Y/Vi) =  [∑qLYij
2/q] ……………………………………………………………..(Eqn 15)  

where AV (Y/Vi) = the averaged variance in Y traits that is accounted for by the canonical 

variate Vi. 

LYij
2 = the loading of the jth Y trait on the ith canonical variate Vi.  

q = the number of traits in canonical variates. 
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Ci
2 = the shared variance between Vi and Wi.  

Wi and Vi are canonical variates of Y and X trait sets, respectively. 

This estimate is necessary because a large canonical correlation does not always imply 

powerful relationship between two sets of traits. Canonical correlation maximizes the 

estimate of correlation between linear combinations of traits in the two sets, but does not 

maximize the amount of variance accounted for in one set of traits by the other set of traits. 

Thus, the variance in one set of traits accounted for by the other set is obtained through the 

RM (Akbas and Takma, 2005).  

To determine the level of significance between morphological and cytological traits, each 

morphological trait was regressed on the cytological traits in the X set (Appendix 14). 

4.3 Results  

The descriptive statistics and Pearson correlation coefficient (r) for the six traits are presented 

in Tables 4.1 and 4.2, respectively. 

Table 4.1. Descriptive statistics of the cytological and morphological traits 

Traits  Mean + SE Minimum Maximum 

DNA (pg) 1.858 + 0.013 1.588 2.118 

Ploidy 3.962 + 0.091 2.000 6.000 

APW 0.846 + 0.051 0.000 1.000 

NS 1.846 + 0.108 1.000 5.000 

WC 1.404 + 0.117 0.000 3.000 

DNA: Deoxyribonucleic acid content (pg); Ploidy level; APW: Absence or presence of 

wings; NS: Number of stems per plant; and WC: Wing colour  

The Pearson correlation coefficients for the traits ranged between for the traits ranged 

between -0.3928 and 0.7798 and were statistically significant (p<0.05), except for the 

association between APW and Ploidy (r = -0.2715) and between WC and NS (r = 0.1755) 

(Table 4.2; Appendix 12). Although the correlations between morphological and cytological 

traits were generally weak, the statistical significance of the correlations except between 
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APW and ploidy, indicated that the morphological traits were influenced by the cytological 

traits.  

Table 4.2. Pearson correlation coefficients between cytological and morphological traits 

 DNA Ploidy APW NS 

Ploidy 0.7798**    

APW -0.3928** -0.2715ns   

NS 0.2882* 0.3468** -0.4727**  

WC -0.3578** -0.2895* 0.7143** 0.1755ns 

*: p< 0.05, **: p< 0.01, ns: not significant. DNA: Deoxyribonucleic acid content (pg); Ploidy 

level; APW: Absence or presence of wings; NS: Number of stems per plant; and WC: Wing 

colour  

In this study, the X trait set comprised of two traits: p = 2; and the Y trait set comprised of 

three traits: q = 3. Thus, two pairs of canonical variates, W1V1 and W2V2 were formed based 

on the set with the smaller number. The canonical correlations between these variates are 

presented in Table 13. The first canonical correlation (W1V1) was 0.4441, which represents 

69.91% [ ] of overlapping variance of the first canonical variate. The 

second canonical correlation W2V2, which exhibited 0.2850, represents 39.9% 

[ ] overlapping variance of the second canonical variate set (Table 

4.3).  

Table 4.3. Canonical correlations between canonical variates 

  Canonical       

variates 

    Canonical 

correlations 

Squared canonical 

correlation 

       %               

correlation 

Cumulative % 

correlation 

W1V1 0.4441 0.1972 69.91 69.91 

W2V2 0.2850 0.0812 39.09 100.0 

The coefficients of canonical variates from the original data are presented in Table 4.4 These 

coefficients of canonical equations are not unique since the DNA coefficient value is more 

than 1.0. Therefore the coefficients were standardized to give canonical variates with zero 

mean and unit variance. The standardized canonical coefficients for the X and Y trait sets are 
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presented in Table 4.5. The magnitude of each canonical coefficient represents the relative 

contribution of each trait to its respective canonical variate. 

Table 4.4. Non-standardized coefficients of the respective traits of the canonical variates 

Traits  W1 W2 Traits  V1 V2 

DNA 0.9605 -2.2161 APW -0.0436 0.5411 

Ploidy 0.0909 0.3209 NS 0.1046 0.1724 

   WC -0.0999 -0.0931 

DNA: Deoxyribonucleic acid content (pg); Ploidy level; APW: Absence or presence of 

wings; NS: Number of stems per plant; and WC: Wing colour  

From equations 9 and 10, the following canonical variates can be obtained from the 

standardized coefficients (Table 4.5): 

W1 = 0.0890 DNA + 0.0591 Ploidy 

V1 = -0.0159 APW + 0.0815 NS – 0.0845 WC   

W2 = -0.2052 DNA + 0.2157 Ploidy 

V2 = 0.1971 APW + 0.1344 NS – 0.0787 WC  

From the equations above, W1 estimates the additive effect between DNA amount and ploidy 

level; whereas VI estimates the contrast between number of stems per plant on one hand and 

the other traits (wing colour and absence or presence of wing). This indicates that the large 

variation in morphological traits (wing colour and absence or presence of wing) compared to 

number of stems per plant was possibly due to the additive influence between the cytological 

traits, like DNA amount and ploidy level. However, the second canonical variate, W2 

estimates a contrast between DNA amount and ploidy level; whereas V2, measures the 

difference between wing colour and the other traits (number of stem per plant and absence or 

presence of wing). This indicates that the variation in morphological traits (absence or 

presence of wing and number of stem per plant) compared to wing colour was possibly due to 

the influence of the cytological traits (DNA amount and ploidy level). Of the three 

morphological traits used, number of stems produced per plant and wing colour were more 



108 
 

stable (their signs did not change in both canonical variates) compared to absence or presence 

of wing (Table 4.5; Appendix 13). Ploidy level was also more stable compared to DNA 

content. This implies that a group of genotypes with similar ploidy level may not necessarily 

contain the same DNA content and consequently, the number of loci will vary.   

Table 4.5. Standardized coefficients of the respective traits of the canonical variates 

Traits  W1 W2 Traits  V1 V2 

DNA 0.0890 -0.2052 APW -0.0159 0.1971 

Ploidy 0.0591 0.2157 NS 0.0815 0.1344 

   WC -0.0845 -0.0787 

DNA: Deoxyribonucleic acid content (pg); Ploidy level; APW: Absence or presence of 

wings; NS: Number of stems per plant; and WC: Wing colour  

The proportion of the total variance extracted from a set of traits by a canonical variate of that 

set is equal to the quotient of the sum of square of loadings and the number of traits in the set. 

Thus, the first canonical variates, W1 in the X trait set; and V1 in the Y trait set, were 

estimated as 0.0057 [(0.08902 + 0.05912)/ 2] and 0.0047 [(-0.01592 + 0.08152 + (-0.08452)/ 3] 

respectively. Therefore, the first canonical variate (W1) extracted 0.57% in the X trait set  and 

0.47% in the Y trait set. The second canonical variates (W2) in the X trait set and (V2) in the 

Y trait set were estimated as 0.0443 [(-0.20522 + 0.21572)/ 2] and 0.0210 [(0.19712 + 0.13442 

+ (-0.07872)/ 3], respectively.  

The redundancy index in a canonical variate is expressed as the percentage of variance it 

extracts from its own set of traits. Thus, the first canonical variate (V1) extracted 0.09% 

[0.0047 x 0.44412] of the variance in the X trait set; whereas the second variate (V2) extracted 

0.17% [0.0210 x 0.28502] of the variance in the X trait set. The results suggest that traits in 

the Y trait set (APW, NS and WC) are influenced by those in the X trait set (DNA and 

ploidy).  

The regression of each morphological trait on the two cytological traits revealed that 

cytological traits significantly (p<0.05) influenced the phenotypic expression of the 

morphological traits (Appendix 12).  
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4.4 Discussion 

The first pair of canonical variates (W1V1) had the highest (0.4441) estimated canonical 

correlation compared to the second pair of canonical variates (W2V2  (0.2850)). The 

correlation between the first pair of canonical variate indicates that morphological traits: 

absence or presence of wing, number of stems per plant and wing colur are associated with 

cytological traits: DNA and Ploidy level. 

The signs of the standardized coefficients reflect the effects of DNA and ploidy on absence or 

presence of wing, number of stems and wing colour. Wright et al. (2008) suggested that the 

total amount of DNA in the genome (genome size) roughly reflects an estimate of the number 

of genes within a genome. Thus, an understanding of allelic diversity within germplasm is 

relevant in association with observed phenotypic variation.  

The redundancy estimates for the first and second canonical correlation suggested that 0.09 

and 0.17% of the variance in the Y trait set (APW, NS and WC) was accounted by the X trait 

set (DNA and ploidy). Although the percentages were small, the variation in each of the 

morphological traits showed a significant (p<0.05) input by cytological traits. It is possible 

that some morphological traits were more influenced by cytological traits than others. A 

future challenge would be to investigate the specific traits that are influenced by specific 

genes. 

4.5 Conclusion  

The associations between morphological and cytological traits of yams were investigated 

using canonical correlation analysis. The phenotypic expression of morphological traits was 

apparently influenced by cytological traits. The first and second canonical correlations 

exhibited 69.91 and 39.09% overlapping variance of the canonical variate sets, respectively. 

The first canonical variate extracted 0.57% of the total variance in the X trait set and 0.47% 

in the Y trait set. 

This study demonstrated the complex inter-relationships between morphological and 

cytological traits. This could be relevant as a pre-breeding guide to ploidy manipulation; and 

also for future investigation of the effect of specific genes on the phenotypic expression of 

genotypes. 
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CHAPTER FIVE 

 Research overview  

5.1 Introduction 

The focus of this study was to investigate the level of diversity within some germplasm from 

Sierra Leone using agro-morphological and cytological traits. Morphological characterization 

is often considered as a first step in the description and classification of yam germplasm 

before more in-depth biochemical and molecular studies are undertaken, since yam breeding 

heavily relies on the magnitude of genetic variability (Smith et al., 1995). An understanding 

of the genetic architecture and knowledge of existing variation in different traits of yams are 

important for successful yam breeding. Inter- and intra-population diversity of crop species is 

important for the analysis and monitoring of germplasm during the maintenance phase, and 

for predicting potential genetic gain in a breeding programme (Hayward and Breese, 1993). 

Against this background the following hypotheses were formulated and tested:  

i. The various genotypes studied were morphologically different.  

ii. The same genotype was called differently by the various ethnic groups.  

iii. The local accessions had wide inter- and intra-group diversity in ploidy level and 

nuclear DNA content.  

iv. There is a correlation between agro-morphological and cytological traits used in the 

two methods of characterization.  

5.2 Summary of main findings 

5.2.1 Genetic diversity of some morphological traits in yam (Dioscorea spp.) 

 genotypes from Sierra Leone 

The objective of this study was to determine the relationships among accessions and 

characterise them based on these relationships. Synopsis of findings obtained in this study 

were: 

i. Of the 52 genotypes studied, 43 genotypes belong to D. alata, two belong to D. 

bulbifera and seven belong to D. rotundata.  
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ii. Diversity was observed for many morphological traits including the number of days to 

shoot emergence, shoot traits (position, shape, size, density, vein colour and 

measurements of leaves; shoot growth rate) and root traits (tuber shape and flesh 

colour of tuber). The exploitation of these traits would enable the development of elite 

genotypes in a yam breeding programme. 

iii. Both graphical principal component and cluster analyses did not group all the 

genotypes according to their geographical origins. Whereas groups A, C and E were 

from the north, groups B and D had mixed origins. 

iv. Genotypes WR 07/024, SR 07/075, 07/073, ER 07/032 and NR 07/042, overlapped in 

sub-groups B1 and B2 of the graphical principal component analysis which indicated 

the possibility of duplicate genotypes in the germplasm. This suggests the use of 

molecular techniques in future research to confirm the level of diversity obtained and 

explore the possibility of duplicate genotypes. 

v. Genotypes of groups B, C, D and F belong to D. alata with 27.3% from the north, 

18.2% from the south, 22.7% from the east and 31.8% from the west.  

vi. Genotypes WR 07/013 and Sr 07/085, which exhibited pale purple to purple venation, 

also had purple leaf margin and light purple flesh colour of tuber. 

vii. Most of the variation in the morphological traits measured was accounted for by 

factor 1 with moderate (-0.5178) to large (-0.8797) loadings compared to the loadings 

of few traits in the other factors. 

viii. The highest weightings by factor 1 were given to leaf colour (-0.7710) and leaf 

margin colour (-0.8797). These traits were also highly positively correlated                

(r = 0.872**) and served as an important descriptors in distinguishing between the 

accessions.   

5.2.2 Diversity in ploidy level and nuclear DNA content (pg) of some yam 

(Dioscorea  spp.) genotypes in Sierra Leone as determined by flow 

cytometry and chromosome counting 

i. Determination of chromosome numbers and ploidy levels of six genotypes of yams 

using chromosome counts supported the ploidy level(s) obtained by FCM.  

ii. Of the 52 genotypes, three (5.8%) were diploids, one (1.9%) was triploid, 45 (86.5%) 

were tetraploids, one (1.9%) was pentaploid and two (3.9%) were hexaploids. 
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iii. The genotypes of D. alata had diploid, triploid, tetraploid and hexaploid ploidy levels, 

which were more diverse compared to the genotypes of D. bulbifera and D. rotundata 

both of which had tetraploid and pentaploid accessions. 

iv. The nuclear DNA content varied from 1.588 to 1.718 pg for the diploids, 1.750 pg for 

the triploid, 1.772 to 1.937 pg for the tetraploids, 1.998 pg for the pentaploid and from 

2.102 to 2.118 pg for the hexaploids. 

v. Both the DNA content variation within individuals of the tetraploid population and 

those involving all ploidy populations among the three species was significant. 

vi. The DNA amount per genome decreased with increasing ploidy level.  

vii. Polyploidy in yams may have arisen from multiplication of the basic chromosome 

number.  

viii. The conventional chromosome counting technique revealed the basic chromosome 

number as x = 10. 

5.2.3 Determination of associations between three morphological and two 

cytological traits of yams (Dioscorea spp.) using canonical correlation 

analysis 

The associations between morphological and cytological traits of yams were: 

i. The morphological (phenotypic) expression of the various genotypes studied was 

influenced by cytological traits. 

ii. The first and second canonical correlations exhibited 69.91 and 39.09% overlapping 

variance of the canonical variate sets, respectively. 

iii. The first canonical variate extracted 0.57% of the total variance in the X trait set and 

0.47% in the Y trait set. 

iv. The redundancy estimates for the first and second canonical correlation suggested that 

0.09 and 0.17% of the variance in the Y trait set (APW, NS and WC) was accounted 

by the X trait set (DNA and ploidy).  
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5.3 Implications of findings for future research 

Based on results obtained from morphological and cytological characterization of yams, the 

52 genotypes were found to belong to three species (D. alata, D. bulbifera and D. rotundata) 

and five ploidy levels (2x, 3x, 4x, 5x and 6x). However, this is just the first step in 

determining the magnitude of existing morphological diversity within the germplasm from 

Sierra Leone. The presence of overlap between groups in the graphical principal component 

analysis indicates the possibility of duplicate genotypes.  

The factor analysis generally identified tuber shape, petiole length, leaf lobation and days to 

emergence as specific factors. However, days to emergence and tuber shape are more 

relevant for the economic yielding ability of the crop. The wide range and high variance 

among genotypes for number of days to sprouting could be attributed to inter- and intra-

species diversity (Appendix 4). The maximization of effective growth period, estimated as 

the period between shoot emergence and senescence of leaves, depends on the genotype, 

species, type of planting materials and environmental factors such as variability in soil 

fertility, weather, climate and altitude at various locations. Akoroda (1993) suggested that 

inherent yam tuber dormancy and the degree of sett maturity are among the major factors that 

determine pre-emergence duration in yams. Manipulation of tuber dormancy and sprouting 

period depends on the objectives of the breeding programme. For instance, prolonging tuber 

dormancy may increase the post-harvest shelf life of healthy yam tubers. But the duration of 

dormancy required may differ among farmers and sometimes not correspond with the 

breeders’ perspective thereof. One group of farmers may need early maturing tubers with 

rapid, uniform and vigorous sprouting seedlings in order to plan other management 

operations such as staking, weeding and fertilizer application (Godwin-Egein and Igwilo, 

2005). Another group of farmers on the other hand, may prefer increased shelf life for 

marketing flexibility. A yam researcher on the other hand, may manipulate tuber dormancy in 

order to synchronize the time of male and female flowering for hybridization. Delayed 

sprouting does not only affect flowering, but also tuber shape and size, which are determined 

by the amount of assimilates translocated from the source to the sink during the effective 

growth period. Against this complex background, it is clearly essential that the researcher 

conduct a thorough needs assessment towards implementing the correct strategies of a 

market-oriented breeding programme. 
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In an effort to maximize uniform sprouting and mass propagation of yams, various techniques 

such as: pre-sprouting setts or minisetts (cutting the mother or bigger yam tuber into smaller 

sizes) in different growing media; and tissue culture to eliminate disease in addition to rapid 

multiplication using meristem or shoot tip and nodal cultures may be employed (Orkwor et 

al., 1998). The use of tissue culture techniques could have been explored in this study to 

enhance rapid multiplication. However, potentially that could have caused unwanted 

complexity in the diversity study, since the technique is associated with somaclonal variation. 

Somaclonal variation can be both genotypic or phenotypic with the former the consequence 

of alterations in chromosome numbers, chromosome structure and DNA sequence. Although 

the development of such genotypic variability is crucial to the breeder in that it provides the 

opportunity to exploit a wider genetic-base, the primary objective of this study was to obtain 

a measure of the existing diversity within the sampled germplasm before inducing new 

genetic variation. 

Morphological characterization is often considered first step in diversity study before more 

in-depth biochemical or molecular studies are attempted. The statistical techniques of 

principal components, factor and cluster analyses are important in the characterization of 

germplasm as they enable the identification of the specific traits that effectively contributed 

towards the diversity observed. Principal components analysis is useful in the identification 

of meaningful descriptors that effectively account for most of the diversity observed, saving 

time and effort for future characterization. Notwithstanding, a large number of polymorphic 

markers are required to measure genetic relationships and genetic diversity in a reliable 

manner (Tatineni et al., 1996). This limits the use of morphological characters and isozymes, 

which are few or lack adequate levels of polymorphism in yams. 

Cluster analysis of the germplasm based on regional distribution classified 42.8% of the D. 

rotundata genotypes in group D came from the south of Sierra Leone, 28.6% from the north 

and 28.6%, the improved checks, were from IITA. The two genotypes of D. bulbifera in 

group A, NR 07/040 and NR 07/045, were from the north. Genotypes of groups B, C, D, E 

and F belong to D. alata with 27.3% from the north, 18.2% from the south, 22.7% from the 

east and 31.8% from the west. Since cluster analysis categorises accessions based on the 

similarity of the morphological traits or other markers, it obvioiusly does not necessarily 

group accessions that had the same geographical origin.  
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Both the genome size variation within individuals of the tetraploid population and those 

involving populations of all ploidy levels was sigmificant. These results are in agreement 

with the proposition that the plant kingdom is characterized by: (i) large divergence in 

genome size, even among closely related taxa with the same number of chromosomes; (ii) 

high incidence of polyploidy; and (iii) frequently non-proportional changes of nuclear DNA 

amount with respect to ploidy level (Suda et al., 2006).  

Morphological and flow cytometric characterization of yams proved to be efficient 

approaches to distinguishing between the various genotypes. However, this is just the first 

step in determining the magnitude of existing diversity within germplasm. Marker based 

selections are presently regarded as efficient and effective ways to exploiting the existing 

level of variation in a germplasm collection. Thus, complementary markers to morphological 

and cytological markers based on biochemical and molecular analyses are necessary to 

further identify and categorize major yam cultivars grown in Sierra Leone. 

The declining genetic variability in yam populations could possibly be due to anthropogenic 

interferences and the associated massive destruction of habitats. Ecogeographical conditions 

and habitat distribution patterns are also influential factors which affect genetic diversity 

within populations. Therefore, consideration of these factors and their interactions prior to 

sampling accessions for ex situ and in situ conservation programmes is extremely important. 

This investigation on the correlation between morphological and cytological traits is the first 

report on the level of associations between these two sets of variables. The study on both 

methods of characterization of yams from Sierra Leone provided better understanding of 

existing diversity that would help to optimize the efficiency and efficacy of breeding 

programmes in that country and elsewhere.   
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APPENDICES 

Appendix 1. List of morphological traits measured in 52 yam (Dioscorea spp.) genotypes according to the original International Plant Genetic Resources Institute descriptor list (IPGRI/ IITA, 1997)  

IPGRI code Traits acronym Characters/ descriptors Score code – descriptor state 
  Shoot traits  
7.1.1 DE Number of days to emergence Direct measurement 
7.1.17 NS Number of stems per plant  
7.1.18 SC Stem colour 1 – Green; 2 – Purplish green; 3 – Brownish green; 4 – Dark brown; 5 – Purple; Other (specify in descriptor 

7.7 Notes)  
7.1.19 NB Number of internodes to first 

banching 
Direct measurement 

7.1.23 IL Internode length (cm) Recorded at 1 m height. Average of five plants 
7.1.25 APW Absence or presence of wings 0 – absent; 1 – present  
7.1.27 WC Wing colour 1 – Green; 2 – Green with purple edge; 3 – Purple; Other (specify in descriptor 7.7 Notes)  
7.2.9 PL Position of leaves (mature 

leaves) 
1 – Alternate, 2 – Opposite, 3 – Alternate at base/ opposite above; Other (specify in descriptor 7.7 Notes)  

7.2.10 LD Leaf density 3 – Low; 5 – Intermediate; 7 – High 
7.2.12.2 LL Leaf lobation 1 – Shallowly lobed; 2 – Deeply lobed  
7.2.15 LC Leaf colour 1 – Yellowish; 2 – Pale green; 3 – Dark green; 4 – Purplish green; 5 – Purple; Other (specify in descriptor 

7.7 Notes)   
7.2.16 LVCUS Leaf vein colour (upper surface) 1 – Yellowish; 2 – Green; 3 – Pale purple; 4 – Purple; Other (specify in descriptor 7.7 Notes) 
7.2.17 LVCLS Leaf vein colour (lower surface) 1 – Yellowish; 2 – Green; 3 – Pale purple; 4 – Purple; Other (specify in descriptor 7.7 Notes) 
7.2.18 LMC Leaf margin colour 1 – Green; 2 – Purple; Other (specify in descriptor 7.7) 
7.2.22 LS Leaf shape 1–Ovate; 2–Cordate; 3–Cordate long; 4–Cordate broad; 5–Sagittate long; 6–Saggitate broad; 7–Hastate; 

Other (specify in descriptor 7.7 Notes) 
7.2.23 LAS Leaf apex shape 1 – Obtuse; 2 – Acute; 3 – Emarginated; 99 – Other (specify in descriptor 7.7 Notes)  
7.2.25 DBL Distance between lobes 1 – No measureable distance; 5 – Intermediate; 9 – Very distant 
7.2.30.1 LML1 Leaf measurement L1  
7.2.30.2 LML2 Leaf measurement L2 The various parts of leaves measured are shown in the figure below. 
7.2.30.3 LMW1 Leaf measurement W1  
7.2.30.4 LMW2 Leaf measurement W2  
7.2.32 TLM Tip length 1 – >2 mm; 2 – 2-5 mm; 3 – >5 mm 
7.2.33 TC Tip colour 1 – Light green; 2 – Dark green; 3 –Purple/ green; 4 – Red; Other (specify in descriptor 7.7 Notes) 
7.2.34 PLM Petiole length of mature leaves 1 - <5 cm; 2 – 6-9 cm; 3 – >10 cm  
7.2.37 PC Petiole colour 1 – All green with purple base; 2 – All green with purple leaf junction; 3 – All green with purple with purple 

at both ends; 4 – All purplish green with purple base; 5 – All purplish green with purple leaf junction; 6 – All 
purplish green with purple at both ends; 7 – Green; 8 – Purple, 9 = Brownish green; 10 – Brown; 11 – Dark 
brown; 99 – Other (specify in descriptor 7.7 Notes) 

7.2.38 PWC Petiole wing colour 1 – Green; 2 – Green with purple; 3 – Purple; 99 – (specify in descriptor 7.7 Notes) 
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Appendix 1. Continued 

   
Underground tuber traits 

 

7.6.14 TS Tuber shape 1–Round; 2–Oval; 3–Oval oblong; 4–Cylindrical; 5–Flattened; 6 – Irregular; Other (spsecify in 
descriptor 7.7 Notes) 

7.6.30 FCCCS Flesh colour at central transverse 
cross section 

1 – White; 2 – Yellowish white or off-white; 3 – Yellow; 4 – Orange; 5 - Light purple; 6 – Purple; 7 – 
Purple with white; 8 – White with purple; 9 – Outer purple/inner yellowish; 99 – Other (specify in 
descriptor 7.7)  
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Appendix 2. Correlation matrix of 28 trait means across 52 yam genotypes used in the principal component, factor and cluster analyses  

 APW DBL DE IL LAS LC LD LL LMC LML1 LML2 LMW1 LMW2 LS LVCLS LVCUS NB NS PC PL PLM PWC SC TC TLM TS WC Tfleshc 

APW  -                            

DBL -0.382  -                           

DE -0.257 0.217  -                          

IL 0.114 -0.420 0.326  -                         

LAS 0.255 -0.549 -0.147 0.108  -                        

LC -0.517 0.330 0.138 0.046 -0.476  -                       

LD -0.481 -0.081 0.092 0.327 -0.230 0.558  -                      

LL 0.612 -0.433 -0.134 0.058 0.234 -0.324 -0.216  -                     

LMC -0.562 0.420 0.091 -0.131 -0.551 0.872 0.602 -0.342  -                    

LL1 0.174 -0.420 0.230 0.634 0.194 0.035 0.205 0.123 -0.116  -                   

LL2 0.438 -0.601 0.044 0.499 0.383 -0.291 -0.020 0.407 -0.435 0.667  -                  

LW1 -0.092 -0.375 0.176 0.367 0.294 0.053 0.228 -0.036 -0.126 0.684 0.533  -                 

LW2 -0.093 -0.043 0.229 0.361 0.137 -0.054 0.016 -0.186 -0.193 0.562 0.334 0.612  -                

LS -0.288 0.613 0.246 -0.170 -0.162 0.124 -0.180 -0.355 0.110 -0.101 -0.470 -0.085 0.204  -               

LVCLS 0.116 -0.264 -0.119 0.184 -0.268 0.374 0.342 0.093 0.415 0.173 0.218 0.008 -0.274 -0.434  -              

LVCUS -0.426 0.220 0.141 0.071 -0.605 0.630 0.489 -0.362 0.673 -0.076 -0.191 -0.072 -0.073 -0.168 0.464  -             

NB -0.684 0.122 0.200 0.190 -0.426 0.510 0.685 -0.474 0.503 0.065 -0.163 0.243 0.132 0.100 0.086 0.520  -            

NS -0.473 0.208 0.116 0.122 -0.497 0.593 0.693 -0.275 0.628 0.102 -0.196 0.104 -0.016 0.073 0.405 0.544 0.572  -           

PC 0.491 0.074 -0.028 0.051 -0.117 -0.176 -0.366 0.184 -0.238 0.171 0.099 0.126 0.068 0.134 -0.044 -0.205 -0.351 -0.212  -          

PL -0.064 0.264 0.121 -0.049 -0.296 0.080 -0.048 -0.036 0.156 -0.122 -0.227 -0.213 0.022 0.165 -0.010 0.141 0.019 0.087 0.004  -         

PLM 0.146 -0.296 0.031 0.281 0.300 -0.051 -0.045 0.056 -0.277 0.535 0.427 0.718 0.636 0.058 -0.146 -0.237 -0.045 -0.090 0.190 -0.052  -        

PWC 0.628 -0.363 0.040 0.370 0.212 -0.047 -0.036 0.520 -0.065 0.427 0.504 0.105 0.065 -0.405 0.384 -0.064 -0.389 -0.160 0.137 -0.044 0.167  -       

SC -0.556 0.578 0.098 -0.339 -0.422 0.627 0.228 -0.425 0.718 -0.184 -0.502 0.006 -0.027 0.274 0.053 0.413 0.330 0.357 0.032 0.057 -0.040 -0.280  -      

TC 0.155 -0.503 -0.201 0.297 0.419 0.105 0.168 0.238 -0.023 0.416 0.446 0.471 0.126 -0.380 0.264 -0.067 -0.182 0.133 0.159 -0.176 0.446 0.345 -0.011  -     

TLM 0.481 -0.425 0.044 0.480 0.445 -0.182 -0.227 0.367 -0.375 0.620 0.599 0.425 0.455 -0.145 0.097 -0.333 -0.389 -0.256 0.295 -0.027 0.502 0.565 -0.377 0.478  -    

TS -0.068 0.323 -0.060 -0.094 -0.308 0.363 0.083 -0.068 0.324 -0.211 -0.298 -0.123 -0.200 0.328 0.062 0.138 0.097 0.194 0.050 -0.002 -0.074 -0.090 0.287 -0.207 -0.331  -   

WC 0.714 -0.402 -0.352 0.172 0.270 -0.096 -0.121 0.434 -0.137 0.357 0.463 0.143 -0.031 -0.337 0.411 -0.260 -0.509 -0.176 0.325 -0.170 0.274 0.708 -0.198 0.500 0.532 0.015  -  

Tfleshc -0.014 -0.367 -0.207 0.339 0.045 0.520 0.571 0.130 0.423 0.207 0.216 0.082 -0.239 -0.460 0.644 0.264 0.185 0.318 -0.225 -0.154 -0.154 0.379 -0.003 0.459 0.135 0.034 0.421  - 
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      Appendix 3. Spearman’s rank correlation coefficient of the 28 trait means across 52 genotypes used in the principal component, factor and cluster analyses

 APW DBL DE IL LAS LC LD LL LMC LML1 LML2 LMW1 LMW2 LS LVCLS LVCUS NB NS PC PL PLM PWC SC TC TLM TS WC Tfleshc 

APW  *                            

DBL 0.004  *                           

DE 0.044 0.066  *                          

IL 0.353 0.002 0.064  *                         

LAS 0.096 0.000 0.106 0.552  *                        

LC 0.000 0.062 0.190 0.324 0.002  *                       

LD 0.000 0.896 0.136 0.086 0.022 0.000  *                      

LL 0.000 0.001 0.429 0.695 0.123 0.023 0.082  *                     

LMC 0.000 0.002 0.229 0.323 0.000 0.000 0.000 0.013  *                    

LL1 0.199 0.001 0.549 0.000 0.169 0.331 0.216 0.363 0.330  *                   

LL2 0.004 0.000 0.820 0.000 0.009 0.389 0.732 0.006 0.005 0.000  *                  

LW1 0.712 0.005 0.914 0.015 0.028 0.256 0.180 0.927 0.325 0.000 0.000  *                 

LW2 0.577 0.744 0.335 0.018 0.529 0.486 0.713 0.161 0.252 0.000 0.009 0.000  *                

LS 0.003 0.000 0.052 0.019 0.001 0.018 0.648 0.001 0.002 0.108 0.000 0.204 0.466  *               

LVCLS 0.385 0.046 0.744 0.205 0.208 0.020 0.046 0.708 0.005 0.573 0.125 0.921 0.022 0.023  *              

LVCUS 0.001 0.071 0.058 0.550 0.000 0.000 0.000 0.003 0.000 0.490 0.238 0.666 0.744 0.257 0.002  *             

NB 0.000 0.313 0.068 0.252 0.000 0.000 0.000 0.001 0.000 0.603 0.387 0.201 0.637 0.091 0.136 0.000  *            

NS 0.000 0.310 0.124 0.229 0.000 0.000 0.000 0.024 0.000 0.288 0.307 0.183 0.685 0.169 0.007 0.000 0.000  *           

PC 0.000 0.840 0.610 0.679 0.778 0.028 0.003 0.276 0.001 0.453 0.703 0.204 0.430 0.472 0.102 0.009 0.007 0.016  *          

PL 0.610 0.059 0.145 0.823 0.043 0.780 0.662 0.721 0.241 0.379 0.129 0.187 0.923 0.036 0.493 0.352 0.738 0.780 0.787  *         

PLM 0.211 0.023 0.325 0.053 0.015 0.702 0.520 0.683 0.018 0.000 0.001 0.000 0.000 0.749 0.196 0.044 0.429 0.404 0.046 0.790  *        

PWC 0.000 0.008 0.768 0.005 0.120 0.533 0.244 0.000 0.237 0.001 0.000 0.365 0.496 0.003 0.014 0.202 0.004 0.124 0.305 0.832 0.124  *       

SC 0.002 0.000 0.562 0.003 0.014 0.000 0.107 0.010 0.000 0.334 0.006 0.634 1.000 0.002 0.542 0.008 0.028 0.029 0.528 0.935 0.959 0.095  *      

TC 0.528 0.000 0.032 0.032 0.006 0.157 0.234 0.150 0.749 0.003 0.001 0.000 0.368 0.001 0.049 0.708 0.624 0.693 0.741 0.294 0.005 0.025 0.420  *     

TLM 0.000 0.001 0.414 0.000 0.004 0.634 0.049 0.007 0.007 0.000 0.000 0.002 0.002 0.008 0.587 0.011 0.004 0.040 0.061 0.781 0.000 0.000 0.031 0.002  *    

TS 0.199 0.008 0.996 0.480 0.015 0.001 0.156 0.378 0.002 0.112 0.008 0.364 0.157 0.001 0.483 0.143 0.102 0.040 0.673 0.726 0.448 0.142 0.025 0.192 0.015  *   

WC 0.000 0.006 0.001 0.251 0.036 0.558 0.143 0.005 0.293 0.007 0.002 0.143 0.789 0.017 0.016 0.016 0.001 0.112 0.129 0.258 0.019 0.000 0.918 0.001 0.000 0.533  *  

tfleshc 0.421 0.002 0.202 0.006 0.375 0.001 0.000 0.685 0.007 0.109 0.063 0.354 0.212 0.001 0.000 0.108 0.023 0.009 0.001 0.162 0.257 0.143 0.943 0.000 0.305 0.987 0.039  * 
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Appendix 4. Summary statistics for 28 morphological trait means across 52 genotypes 
Trait  Mean + SD Minimum Maximum Range Variance 

APW 0.846 + 0.364 0 1 1 0.133 

DBL 5.077 + 2.168 1 9 8 4.700 

DE 45.58 + 19.78 13 91 78 391.5 

IL 2.827 + 0.760 2 4 2 0.577 

LAS 4.154 + 1.526 2 7 5 2.329 

LC 2.212 + 1.073 1 4 3 1.150 

LD 4.000 + 1.343 3 7 4 1.804 

LL 1.673 + 0.474 1 2 1 0.224 

LMC 1.212 + 0.412 1 2 1 0.170 

LL1 3.750 + 0.926 2 6 4 0.858 

LL2 2.250 + 0.738 1 4 3 0.544 

LW1 3.308 + 0.897 2 5 3 0.805 

LW2 3.058 + 0.895 1 5 4 0.801 

LS 4.904 + 0.891 2 6 4 0.794 

LVCLS 2.115 + 0.427 2 4 2 0.183 

LVCUS 1.923 + 0.837 1 4 3 0.700 

NB 2.385 + 1.962 1 7 6 3.849 

NS 1.519 + 0.779 1 5 4 0.607 

PC 5.981 + 1.955 1 8 7 3.823 

PL 2.365 + 0.908 1 3 2 0.825 

PLM 3.346 + 0.653 2 5 3 0.427 

PWC 1.192 + 0.817 0 3 3 0.668 

SC 1.673 + 0.834 1 5 4 0.695 

TC 4.000 + 2.086 1 7 6 4.353 

TLM 3.327 + 0.964 2 5 3 0.930 

TS 3.058 + 1.227 1 6 5 1.506 

WC 1.404 + 0.846 0 3 3 0.716 

FCCCS 1.231 + 0.614 1 3 2 0.377 
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Appendix 5. Standardized data of 28 morphological traits of 52 yam genotypes 

 
Variety std-DE std-NS std-SC std-IL std-NB std-APW std-WC std-PL std-LD std-LL std-LC 

std-
LVCUS 

std-
LVCLS std-LMC 

NR07/045 -2.323 -1.881 -0.838 1.544 1.865 -0.197 2.234 -1.421 -0.513 0.270 1.017 1.886 2.171 -1.014 
NR07/040 -2.323 -1.881 1.234 1.544 1.865 -0.197 2.234 -1.421 -0.513 1.350 1.017 1.886 -0.064 -1.014 
WR07/025 0.422 -0.035 1.234 1.544 0.554 -0.197 0.745 0.690 -0.513 1.350 1.017 1.886 2.171 0.108 
WR07/024 0.422 -0.035 -0.484 0.228 0.554 -0.197 0.745 0.690 -0.513 1.350 1.017 0.771 1.053 0.108 
NR07/059 0.422 -1.881 -0.181 0.228 1.210 1.667 2.234 0.690 1.912 -0.810 1.017 -0.343 -2.300 -3.258 
SR07/075 0.422 -1.881 -0.484 0.228 0.554 -0.197 -0.745 0.690 -0.513 1.350 1.017 0.771 -0.064 0.108 
NR07/042 0.422 -1.881 0.830 1.544 0.554 -0.197 0.745 0.690 -0.513 1.350 -0.339 0.771 1.053 0.108 
SR07/074 -2.323 1.810 1.841 -1.088 -1.411 1.667 0.745 -1.421 1.912 -0.810 -1.695 -0.343 -0.064 1.230 
NR07/069 0.422 -0.035 0.931 1.544 -0.101 -0.197 -0.745 0.690 -0.513 -0.810 -0.339 -1.457 -0.064 0.108 
NR07/043 0.422 -0.035 -0.484 1.544 -0.101 1.667 2.234 0.690 1.912 1.350 -0.339 -0.343 -0.064 0.108 
ER07/030 0.422 -0.035 2.296 0.228 0.554 -0.197 -0.745 0.690 -0.513 1.350 2.372 1.886 1.053 0.108 
ER07/032 0.422 -0.035 0.982 0.228 0.554 -0.197 -0.745 0.690 -0.513 1.350 1.017 0.771 1.053 0.108 
NR07/041 0.422 -0.035 -0.484 1.544 -1.411 -0.197 0.745 0.690 -0.513 0.270 1.017 0.771 1.053 0.108 
NR07/067 0.422 -0.035 1.841 0.228 -1.411 -0.197 -0.745 -1.421 -0.513 -0.810 -0.339 -0.343 -1.182 0.108 
SR07/085 0.422 -0.035 -0.484 1.544 -1.411 1.667 2.234 0.690 1.912 1.350 1.017 -0.343 -1.182 0.108 
ER07/038 0.422 -0.035 -0.484 0.228 -1.411 -0.197 0.745 -1.421 -0.513 0.270 -0.339 -0.343 1.053 1.230 
ER07/033 0.422 -0.035 1.184 1.544 0.554 -0.197 -0.745 -1.421 -0.513 2.429 1.017 0.771 1.053 0.108 
WR07/010 0.422 -0.035 1.184 1.544 -1.411 -0.197 0.745 0.690 -0.513 1.350 1.017 0.771 -0.064 0.108 
NR07/052 -2.323 1.810 1.993 0.228 -1.411 1.667 0.745 -1.421 1.912 -0.810 -1.695 -0.343 -0.064 1.230 
SR07/079 0.422 -0.035 1.841 1.544 0.554 -0.197 -0.745 0.690 -0.513 1.350 1.017 1.886 2.171 0.108 
WR07/013 0.422 -1.881 -1.647 0.228 -1.411 1.667 0.745 0.690 1.912 1.350 1.017 0.771 -0.064 -3.258 
SR07/073 0.422 -0.035 1.993 0.228 0.554 -0.197 -0.745 0.690 -0.513 1.350 1.017 0.771 1.053 0.108 
WR07/016 0.422 -0.035 -1.394 -1.088 0.554 -0.197 -0.745 -1.421 -0.513 0.270 -0.339 0.771 1.053 0.108 
WR07/020 0.422 -0.035 -1.394 -1.088 0.554 -0.197 -0.745 0.690 -0.513 -0.810 -0.339 -0.343 -1.182 0.108 
ER07/034 0.422 -0.035 -1.192 -1.088 0.554 -0.197 -0.745 0.690 -0.513 0.270 -0.339 0.771 -0.064 0.108 
ER07/029 0.422 -0.035 -1.192 -1.088 0.554 -0.197 -0.745 0.690 -0.513 -0.810 1.017 0.771 -0.064 0.108 
WR07/008 0.422 -0.035 -1.091 0.228 0.554 -0.197 -0.745 -1.421 -0.513 0.270 1.017 0.771 1.053 0.108 
ER07/031 0.422 -0.035 -0.989 0.228 0.554 -0.197 -0.745 0.690 -0.513 0.270 -0.339 -0.343 -0.064 0.108 
WR07/015 0.422 -0.035 -0.888 -1.088 0.554 -1.130 -0.745 0.690 -0.513 -0.810 -0.339 -0.343 -1.182 0.108 
WR07/014 0.422 -0.035 -0.787 0.228 0.554 -0.197 -0.745 -1.421 -0.513 0.270 -0.339 -0.343 1.053 0.108 
SR07/080 0.422 -0.035 -0.787 -1.088 0.554 -1.130 -0.745 0.690 -0.513 -0.810 -0.339 0.771 1.053 0.108 
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WR07/028 0.422 -0.035 -0.737 -1.088 0.554 -0.197 -0.745 0.690 -0.513 0.270 1.017 0.771 -0.064 0.108 
SR07/076 0.422 -0.035 -0.636 0.228 0.554 1.667 -0.745 0.690 -0.513 -0.810 -0.339 -0.343 -1.182 0.108 
NR07/047 0.422 -1.881 -0.737 0.228 1.210 -1.130 -0.745 0.690 -0.513 0.270 -0.339 0.771 -1.182 0.108 
SR07/084 0.422 1.810 -0.535 0.228 0.554 -1.130 -0.745 -1.421 -0.513 -0.810 -0.339 -1.457 -1.182 0.108 
WR07/007 0.422 -0.035 -0.433 -1.088 0.554 -1.130 -0.745 0.690 -0.513 -0.810 -0.339 -1.457 -0.064 0.108 
NR07/068 0.422 -0.035 -0.433 -1.088 -1.411 -1.130 0.745 0.690 -0.513 -0.810 -0.339 -0.343 -1.182 -3.258 
WR07/004 0.422 -0.035 -0.282 0.228 -1.411 -1.130 -0.745 0.690 -0.513 -0.810 -0.339 -1.457 -1.182 0.108 
SR07/081 0.422 -0.035 -0.080 -1.088 0.554 -1.130 -0.745 0.690 -0.513 -0.810 -0.339 -1.457 -0.064 0.108 
ER07/036 0.422 -0.035 -0.282 0.228 -1.411 -0.197 -0.745 0.690 -0.513 -0.810 1.017 -1.457 -0.064 -2.136 
WR07/022 0.422 -0.035 -0.181 -1.088 0.554 -1.130 -0.745 0.690 -0.513 0.270 1.017 -1.457 -0.064 0.108 
NR07/054 0.422 -0.035 -0.181 -1.088 0.554 -0.197 -0.745 0.690 -0.513 -1.889 -1.695 -1.457 -1.182 0.108 
NR07/060 -2.323 1.810 -0.029 -1.088 -1.411 1.667 0.745 -1.421 1.912 -0.810 -1.695 -0.343 -0.064 1.230 
TDr95/00005 0.422 1.810 0.325 -1.088 -1.411 1.667 0.745 -1.421 1.912 -0.810 -1.695 -0.343 -0.064 1.230 
SR07/082 0.422 -0.035 -0.585 0.228 0.554 -1.130 -0.745 -1.421 -0.513 -0.810 -0.339 -0.343 -0.064 0.108 
ER07/037 0.422 -0.035 -0.535 -1.088 0.554 -1.130 -0.745 0.690 -0.513 -0.810 -0.339 -0.343 -1.182 0.108 
NR07/071 -2.323 1.810 0.173 -1.088 -1.411 1.667 0.745 -1.421 1.912 -0.810 -1.695 -0.343 -0.064 1.230 
SR07/072 -2.323 1.810 -0.029 -1.088 -1.411 1.667 0.745 -1.421 1.912 -0.810 -1.695 -0.343 -0.064 1.230 
WR 07/001 0.422 -0.035 0.224 0.228 0.554 -1.130 -0.745 0.690 -0.513 -0.810 -0.339 -1.457 -0.064 0.108 
ER 07/039 0.422 -0.035 0.224 -1.088 0.554 -1.130 0.745 0.690 -0.513 -0.810 -0.339 -0.343 -1.182 0.108 
NR 07/057 0.422 -0.035 0.224 0.228 0.554 -0.197 -0.745 0.690 -0.513 -0.810 -0.339 -1.457 -1.182 0.108 
TDr95/18544 -2.323 1.810 0.426 -1.088 -1.411 1.667 0.745 -1.421 1.912 -0.810 -1.695 -0.343 -0.064 1.230 
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Appendix 5. Continued 

 
Variety std-LS std-LAS std-DBL std-LL1 std-LL2 std-LW1 std-LW2 std-TLM std-TC std-PLM std-PC std-PWC std-TS 

std-
tfleshc 

NR07/045 -0.270 0.092 2.352 0.617 -2.547 -1.504 1.001 -1.459 -0.807 0.959 0.698 -1.677 -1.659 1.253 
NR07/040 -0.270 0.092 2.352 0.617 -2.547 -1.504 -0.530 -1.459 -0.807 0.959 -1.376 -1.677 -1.659 1.253 
WR07/025 -0.270 0.092 -0.706 0.617 0.521 0.699 2.531 0.988 -0.807 0.479 1.735 -0.862 0.705 -0.376 
WR07/024 -0.270 -1.103 -0.706 0.617 0.521 0.699 1.001 0.988 -0.807 0.479 1.735 0.768 0.705 -0.376 
NR07/059 2.071 1.287 0.314 0.617 -1.524 -1.504 -0.530 2.211 0.392 1.438 -0.339 0.768 1.886 2.881 
SR07/075 -0.270 0.092 1.333 -0.666 0.521 0.699 1.001 -0.235 -0.807 0.479 1.735 -1.677 -0.477 -0.376 
NR07/042 -0.270 0.092 -0.706 0.617 0.521 0.699 1.001 -0.235 -0.807 0.479 0.698 -0.047 -0.477 -0.376 
SR07/074 -0.270 1.287 1.333 0.617 -1.013 0.699 -0.530 -1.459 1.592 -1.438 -1.376 0.768 -1.659 -0.376 
NR07/069 -0.270 0.092 -0.706 -0.666 0.521 0.699 -0.530 -0.235 -0.807 0.479 0.698 0.768 -0.477 -0.376 
NR07/043 -0.270 0.092 0.314 0.617 0.010 -1.504 -0.530 2.211 0.392 1.438 0.698 0.768 1.886 2.881 
ER07/030 -0.270 -1.103 -0.706 -0.666 0.521 0.699 1.001 0.988 -0.807 0.479 1.735 -0.047 0.705 -0.376 
ER07/032 -0.270 -1.103 -0.706 -0.666 0.521 -1.504 1.001 0.988 -0.807 0.479 0.698 -1.677 -0.477 -0.376 
NR07/041 -0.270 0.092 2.352 0.617 0.521 0.699 1.001 -0.235 -0.807 -0.959 0.698 0.768 -0.477 -0.376 
NR07/067 2.071 1.287 0.314 0.617 0.521 -1.504 -0.530 -0.235 -0.807 -1.438 -0.339 0.768 -0.477 -0.376 
SR07/085 4.412 1.287 0.314 3.183 0.010 0.699 -0.530 0.988 0.392 1.438 0.698 -0.047 1.886 2.881 
ER07/038 -0.270 0.092 1.333 0.617 0.521 0.699 1.001 -0.235 -0.807 -0.959 -1.376 -0.047 0.705 -0.376 
ER07/033 -0.270 0.092 -0.706 -0.666 0.521 0.699 1.001 0.988 0.392 0.479 1.735 -1.677 0.705 -0.376 
WR07/010 -0.270 0.092 1.333 0.617 0.521 -1.504 -0.530 -0.235 -0.807 -1.438 -1.376 2.397 -0.477 -0.376 
NR07/052 -0.270 1.287 1.333 0.617 1.033 0.699 -0.530 -1.459 3.991 -0.479 -1.376 0.768 -1.659 -0.376 
SR07/079 -0.270 0.092 0.314 -0.666 0.521 0.699 1.001 2.211 0.392 0.479 1.735 -0.047 0.705 -0.376 
WR07/013 4.412 2.483 0.314 0.617 0.010 0.699 -0.530 2.211 0.392 1.438 0.698 -0.047 1.886 2.881 
SR07/073 -0.270 -1.103 -0.706 -0.666 0.521 -1.504 1.001 0.988 0.392 0.479 1.735 -1.677 0.705 -0.376 
WR07/016 -0.270 0.092 -0.706 -0.666 0.521 -1.504 1.001 -0.235 0.392 0.479 0.698 -0.047 0.705 -0.376 
WR07/020 -0.270 -1.103 -0.706 -0.666 0.521 -1.504 1.001 -0.235 0.392 0.479 -0.339 -0.047 0.705 -0.376 
ER07/034 -0.270 0.092 -0.706 0.617 0.521 -1.504 -0.530 -0.235 0.392 0.479 0.698 -0.047 0.705 -0.376 
ER07/029 -0.270 0.092 -0.706 -0.666 0.521 -1.504 1.001 -0.235 0.392 0.479 -0.339 -0.047 0.705 -0.376 
WR07/008 -0.270 0.092 -0.706 -0.666 0.521 -1.504 1.001 -0.235 0.392 0.479 -0.339 2.397 0.705 -0.376 
ER07/031 -0.270 -1.103 -0.706 -0.666 0.521 -1.504 1.001 -0.235 0.392 0.479 0.698 0.768 0.705 -0.376 
WR07/015 -0.270 -1.103 -0.706 -0.666 0.521 -1.504 -0.530 -0.235 0.392 0.479 -0.339 -0.047 0.705 -0.376 
WR07/014 -0.270 -1.103 -0.706 -0.666 0.521 0.699 1.001 -0.235 0.392 0.479 0.698 -0.047 0.705 -0.376 
SR07/080 -0.270 -1.103 -0.706 -0.666 0.521 0.699 1.001 -0.235 0.392 0.959 -0.339 -0.047 0.705 -0.376 
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WR07/028 -0.270 -1.103 -0.706 -0.666 0.521 0.699 1.001 -0.235 0.392 0.959 -0.339 0.768 -0.477 -0.376 
SR07/076 -0.270 -1.103 -0.706 -0.666 0.521 0.699 -0.530 -0.235 -0.807 0.479 0.698 0.768 0.705 2.881 
NR07/047 -0.270 -1.103 -0.706 -0.666 0.521 0.699 1.001 -0.235 -0.807 0.479 -0.339 0.768 0.705 -0.376 
SR07/084 -0.270 0.092 -0.706 -0.666 0.521 0.699 -2.060 -0.235 -0.807 -1.438 -0.339 -0.047 -0.477 -0.376 
WR07/007 -0.270 0.092 -0.706 -0.666 0.521 -0.402 -2.060 -0.235 -0.807 -1.438 -0.339 -0.047 -0.477 -0.376 
NR07/068 -0.270 0.092 0.314 0.617 0.521 0.699 -0.530 -0.235 0.392 -0.479 -1.376 -1.677 -0.477 -0.376 
WR07/004 -0.270 -1.103 -0.706 -0.666 0.521 -0.402 -2.060 -0.235 -0.807 -1.438 -0.339 -0.047 -0.477 -0.376 
SR07/081 -0.270 -1.103 -0.706 -0.666 0.521 -0.402 -2.060 -0.235 -0.807 -1.438 -0.339 -1.677 -0.477 -0.376 
ER07/036 -0.270 2.483 -0.706 -0.666 -0.502 0.699 -0.530 -0.235 -0.807 0.479 -0.339 -1.677 -0.477 -0.376 
WR07/022 -0.270 -1.103 -0.706 -0.666 -2.547 0.699 -0.530 -0.235 -0.807 -1.438 -0.339 -0.047 0.705 -0.376 
NR07/054 -0.270 -1.103 -0.706 -0.666 -2.547 0.699 -0.530 -0.235 -0.807 -1.438 -0.339 0.768 -0.477 -0.376 
NR07/060 -0.270 1.287 1.333 0.617 -1.013 0.699 -0.530 -1.459 1.592 -1.438 -1.376 0.768 -1.659 -0.376 
TDr95/00005 -0.270 1.287 1.333 0.617 0.521 0.699 -0.530 -0.235 1.592 -1.438 -1.376 0.768 -0.477 -0.376 
SR07/082 -0.270 -1.103 -0.706 -0.666 0.521 0.699 -0.530 -0.235 -0.807 0.479 0.698 -1.677 0.705 -0.376 
ER07/037 -0.270 -1.103 -0.706 -0.666 0.521 0.699 -0.530 -0.235 0.392 0.479 -0.339 -0.047 0.705 -0.376 
NR07/071 -0.270 1.287 1.333 0.617 -1.013 0.699 -0.530 -1.459 1.592 -1.438 -1.376 0.768 -1.659 -0.376 
SR07/072 -0.270 1.287 1.333 0.617 -1.013 0.699 -0.530 -1.459 1.592 -1.438 -1.376 0.768 -1.659 -0.376 
WR 07/001 -0.270 0.092 -0.706 -0.666 -2.547 0.699 -0.530 2.211 -0.807 -1.438 -0.339 -0.047 -0.477 -0.376 
ER 07/039 -0.270 0.092 -0.706 -0.666 0.521 0.699 -0.530 -0.235 -0.807 0.479 -0.339 -0.047 -0.477 -0.376 
NR 07/057 -0.270 0.092 -0.706 -0.666 0.521 0.699 -0.530 0.988 -0.807 0.479 -0.339 -0.047 -0.477 -0.376 
TDr95/18544 -0.270 1.287 1.333 4.466 -1.013 0.699 -0.530 -1.459 1.592 1.438 -1.376 0.768 -1.659 -0.376 
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Appendix 6. Genstat 12.1 commands for calculation of standardized first 10 principal 

component scores for 28 morphological traits of 52 yam genotypes 

   8  DELETE [REDEFINE=yes] variety,std1,std2,std3,std4,std5,std6,std7,std8,std9,\ 
   9  std10,std11,std12,std13,std_x14,std15,std16,std17,std18,std19,std20,std21,\ 
  10  std22,std23,std24,std25,std26,std27,std28 
  11  UNITS [NVALUES=*] 
  12  FACTOR [MODIFY=yes; NVALUES=52; LEVELS=52; LABELS=!t('ER 07/039','ER07/029',\ 
  13  'ER07/030','ER07/031','ER07/032','ER07/033','ER07/034','ER07/036',\ 
  14  'ER07/037','ER07/038','NR 07/057','NR07/040','NR07/041','NR07/042',\ 
  15  'NR07/043','NR07/045','NR07/047','NR07/052','NR07/054','NR07/059',\ 
  16  'NR07/060','NR07/067','NR07/068','NR07/069','NR07/071','SR07/072',\ 
  17  'SR07/073','SR07/074','SR07/075','SR07/076','SR07/079','SR07/080',\ 
  18  'SR07/081','SR07/082','SR07/084','SR07/085','TDr 95/18544','TDr95/00005',\ 
  19  'WR 07/001','WR07/004','WR07/007','WR07/008','WR07/010','WR07/013',\ 
  20  'WR07/014','WR07/015','WR07/016','WR07/020','WR07/022','WR07/024',\ 
  21  'WR07/025','WR07/028'); REFERENCE=1] variety 
  22  READ variety; FREPRESENTATION=ordinal 
221  %PostMessage 1129; 0; 39494688 "Sheet Update Completed" 
 222  DELETE [REDEFINE=yes] _lrv 
 223  PCP [PRINT=roots,loadings,scores,tests; NROOTS=10; METHOD=correlation] !p(std_APW,\ 
 224 std_DBL,std_DE,std_IL,std_LAS,std_LC,std_LD,std_LL,std_LMC,std_LL1,std_LL2,std_LW1,\ 
 225 
std_LW2,std_LS,std_LVCLS,std_LVCUS,std_NB,std_NS,std_PC,std_PL,std_PLM,std_PWC,std_SC,\ 
 226  std_TC,std_TLM,std_TS,std_WC,std_tfleshc); SAVE=_pcpsave; LRV=_lrv 
Principal components analysis 
Latent roots 
  
 1 2 3 4 5 6 
 7.672  5.025  3.419  2.161  1.636  1.067 
 7 8 9 10 
 0.992  0.869  0.711  0.701 
  
Percentage variation 
 
 1 2 3 4 5 6 
 27.40  17.95  12.21  7.72  5.84  3.81 
 7 8 9 10 
 3.54  3.10  2.54  2.50 
Trace 
 28.00 
Latent vectors (loadings) 
  
  1 2 3 4 5 
 _pcpsave['data']           
 std1  0.27365  -0.09268  -0.20542  0.21262  0.12731 
 std2  -0.25140  -0.14901  0.07128  0.30075  0.04279 
 std3  -0.05508  0.04778  0.25151  0.05951  0.43107 
 std4  0.13005  0.24820  0.14219  -0.03630  0.32634 
 std5  0.23854  -0.05474  0.06720  -0.24589  -0.29276 
 std6  -0.21699  0.27314  -0.03541  0.19127  -0.10223 
 std7  -0.13785  0.33273  0.00235  -0.18239  -0.00174 
 std8  0.21406  -0.02388  -0.21318  0.05177  0.10906 
 std9  -0.26394  0.22649  -0.11044  0.15722  -0.06829 
 std10  0.18197  0.25842  0.22648  0.10469  0.10530 
 std11  0.27116  0.16879  0.06144  -0.07138  0.11880 
 std12  0.12852  0.22587  0.32894  0.00689  -0.19788 
 std13  0.08975  0.09077  0.42493  0.09272  0.02496 
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 stdx14  -0.13897  -0.16292  0.25929  0.26613  -0.04547 
 std15  -0.00123  0.28183  -0.29461  0.07821  0.10177 
 std16  -0.21143  0.22483  -0.07616  0.01863  0.18258 
 std17  -0.21628  0.21129  0.17199  -0.20465  0.06201 
 std18  -0.19240  0.26539  0.00511  0.02743  0.02288 
 std19  0.10996  -0.07546  0.02169  0.44554  -0.00841 
 std20  -0.07806  -0.04779  0.01426  0.17008  0.33403 
 std21  0.16624  0.10902  0.31335  0.15989  -0.22905 
 std22  0.21448  0.15569  -0.17825  0.20824  0.19665 
 std23  -0.23817  0.07490  0.04754  0.26423  -0.29529 
 std24  0.17129  0.23698  -0.02457  0.03795  -0.34527 
 std25  0.27389  0.10843  0.10542  0.17580  0.06545 
 std26  -0.13107  -0.00235  -0.08220  0.27762  -0.12768 
 std27  0.23246  0.11871  -0.22487  0.27228  -0.15482 
 std28  0.01852  0.32754  -0.26577  -0.08612  -0.08980 
  
  6 7 8 9 10 
 _pcpsave['data']           
 std1  0.09949  -0.15238  0.05709  0.04356  -0.07064 
 std2  -0.03883  0.11307  -0.12532  0.02420  -0.08629 
 std3  0.08945  0.28375  -0.43544  -0.08405  0.35663 
 std4  0.25806  0.07182  0.05548  -0.26377  -0.21417 
 std5  0.00734  0.40121  -0.04379  -0.05135  -0.02849 
 std6  0.00719  0.20403  -0.03637  0.04261  0.00195 
 std7  0.13477  0.02120  0.14994  -0.13388  0.08427 
 std8  0.08605  0.06490  0.12145  0.00718  0.65263 
 std9  -0.08613  0.18159  -0.06369  0.06392  0.03301 
 std10  0.07373  -0.01736  -0.04001  -0.03420  -0.06900 
 std11  0.04482  -0.15392  -0.08797  0.19282  0.08120 
 std12  0.02211  -0.16942  -0.02470  0.08931  0.21377 
 std13  -0.11598  -0.01540  0.08218  0.27984  -0.22331 
 stdx14  0.24770  0.25096  0.14751  -0.20908  -0.17209 
 std15  -0.07613  -0.16061  -0.04011  0.06273  -0.14780 
 std16  -0.19164  -0.23622  -0.13806  0.23901  -0.07142 
 std17  0.12934  -0.19802  0.10873  0.01295  0.01307 
 std18  0.03216  -0.11563  0.20373  -0.26503  0.10679 
 std19  0.00974  -0.42711  -0.15529  -0.48743  0.02846 
 std20  -0.47410  0.16902  0.62308  -0.03757  0.11843 
 std21  -0.06661  -0.08844  0.22521  0.24444  0.14477 
 std22  0.00420  0.25885  -0.13230  0.27378  0.00931 
 std23  -0.19250  0.03876  -0.27403  0.07153  0.15788 
 std24  -0.23622  0.06042  0.01416  -0.33609  0.18213 
 std25  -0.15065  0.21139  0.00121  -0.08885  -0.18100 
 std26  0.62043  0.01553  0.27168  0.25801  0.12593 
 std27  0.04038  0.03367  0.02879  0.08465  -0.19029 
 std28  0.08029  0.22576  0.02941  -0.14536  -0.16035 
Principal component scores 
  
  1 2 3 4 5 
 1  0.447  3.584  3.419  -5.421  -1.543 
 2  -0.493  3.368  2.537  -6.001  -0.377 
 3  3.226  2.085  3.073  1.252  1.018 
 4  2.691  0.884  1.089  1.271  -0.035 
 5  0.547  5.121  -5.191  -1.628  -1.157 
 6  2.596  0.596  1.417  -0.801  0.431 
 7  1.919  1.147  1.743  -0.119  0.918 
 8  -6.512  -0.044  1.417  0.256  0.410 
 9  0.604  -1.255  -0.398  0.476  1.638 
 10  0.424  4.281  -1.886  1.270  -0.828 
 11  3.607  0.663  2.295  1.358  1.181 
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 12  2.996  -0.024  1.774  0.038  0.262 
 13  0.215  1.170  1.745  0.177  1.635 
 14  -1.502  -0.243  -0.795  0.097  1.913 
 15  -0.701  6.456  -3.506  1.744  1.041 
 16  -1.041  -0.068  1.256  0.443  0.706 
 17  2.749  1.148  2.548  1.224  1.146 
 18  -0.507  0.808  0.907  -0.055  1.813 
 19  -6.532  0.543  1.777  1.799  -0.152 
 20  3.040  1.605  2.683  1.869  1.449 
 21  1.076  6.533  -4.474  0.862  0.395 
 22  3.213  0.367  1.929  0.919  0.228 
 23  1.200  -0.617  0.896  0.677  -2.464 
 24  1.080  -1.782  -1.133  0.254  -2.469 
 25  1.039  -0.586  -0.451  0.485  -1.795 
 26  1.427  -0.922  -0.249  0.303  -2.195 
 27  1.117  -0.165  0.932  1.047  -2.123 
 28  1.703  -0.945  -0.083  0.855  -1.760 
 29  1.000  -2.180  -1.453  -0.139  -1.806 
 30  1.275  -0.887  0.992  1.010  -1.036 
 31  1.503  -1.545  0.388  0.720  -1.707 
 32  1.380  -1.024  0.420  0.718  -1.455 
 33  0.902  -0.095  -2.150  0.549  -0.792 
 34  2.384  -1.106  -0.317  -0.244  -1.053 
 35  -0.904  -3.000  -1.245  -0.287  1.349 
 36  0.022  -2.943  -1.529  -0.763  0.775 
 37  -0.633  -0.763  -1.903  -1.565  0.817 
 38  -0.132  -2.872  -1.820  -0.444  1.599 
 39  0.468  -3.191  -1.215  -1.216  0.917 
 40  0.285  -0.466  -1.590  -1.192  2.021 
 41  0.930  -2.206  -0.884  -1.367  0.800 
 42  -0.882  -3.211  -1.848  -1.420  0.207 
 43  -6.409  -0.133  0.947  0.145  -0.397 
 44  -4.972  -0.156  0.021  2.009  0.150 
 45  1.414  -1.765  -0.047  -0.387  -0.082 
 46  0.809  -2.268  -1.332  0.257  -0.917 
 47  -6.420  -0.123  0.997  0.157  -0.309 
 48  -6.409  -0.133  0.947  0.145  -0.397 
 49  0.512  -1.859  -1.184  -1.197  2.012 
 50  0.320  -1.698  -1.020  -0.586  0.162 
 51  0.613  -1.673  -1.454  0.063  0.960 
 52  -6.682  1.592  1.010  0.386  -1.105 
  
  6 7 8 9 10 
 1  -0.236  0.043  0.582  0.063  -1.121 
 2  0.703  0.344  -0.894  -0.963  0.197 
 3  -0.594  0.344  0.638  0.206  0.479 
 4  0.359  0.411  1.512  0.046  0.228 
 5  0.631  1.089  -1.137  1.063  0.884 
 6  -1.216  -0.744  0.687  -0.526  0.222 
 7  0.196  0.008  1.104  -0.985  0.677 
 8  -0.160  0.869  -0.575  0.541  0.493 
 9  0.416  0.679  0.299  -0.978  0.114 
 10  1.801  1.984  -0.370  -0.832  -0.678 
 11  -0.054  0.906  -0.551  0.502  1.203 
 12  -0.115  0.274  -1.682  -0.094  0.332 
 13  1.215  -1.815  1.988  0.302  0.171 
 14  1.539  -1.707  -1.776  0.056  -0.836 
 15  -0.076  -0.022  0.959  -1.545  -0.637 
 16  0.608  -1.577  1.670  0.099  -1.432 
 17  -1.472  0.666  -1.083  -0.214  -1.377 
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 18  4.024  -1.820  -0.268  0.273  0.938 
 19  -0.475  0.284  -1.530  -0.967  0.877 
 20  -0.268  0.942  -0.614  0.964  0.528 
 21  -1.894  -1.406  0.118  1.471  -0.516 
 22  -0.364  0.867  -2.416  -0.085  0.470 
 23  -0.396  -0.891  -0.670  0.770  -1.573 
 24  0.326  -0.449  -0.363  -0.096  0.413 
 25  0.077  -0.693  -0.677  -0.259  0.042 
 26  0.071  -1.089  -0.671  0.846  0.498 
 27  1.704  -1.100  -0.186  1.382  -1.142 
 28  1.001  -0.044  -0.195  -0.084  -0.134 
 29  0.467  -0.360  -0.894  -0.553  0.370 
 30  -0.842  0.219  0.704  -0.096  -1.531 
 31  -1.018  -0.289  0.942  0.294  0.715 
 32  -0.279  -0.322  0.819  0.352  1.347 
 33  0.647  1.669  0.987  -1.326  -0.352 
 34  0.591  -0.173  1.512  -0.512  0.842 
 35  0.025  0.118  -0.305  -0.712  -1.921 
 36  0.340  -0.223  -0.529  -0.049  -0.446 
 37  -1.916  -2.436  -0.191  -0.216  1.651 
 38  1.037  -0.574  -0.362  -0.906  -0.283 
 39  -0.410  0.135  -0.960  -0.785  -0.440 
 40  -2.366  -1.442  -0.476  0.800  0.176 
 41  0.126  1.305  0.905  1.797  -0.195 
 42  0.439  1.940  1.292  1.185  0.313 
 43  -0.327  0.339  0.239  0.698  -0.174 
 44  0.045  -0.278  -0.124  0.475  -0.411 
 45  -1.458  0.185  0.142  -1.309  -1.753 
 46  -0.546  0.112  0.324  -0.665  0.757 
 47  -0.309  0.396  0.151  0.681  -0.102 
 48  -0.327  0.339  0.239  0.698  -0.174 
 49  0.095  2.053  0.442  2.047  -0.206 
 50  -0.323  -0.010  0.347  -0.828  1.103 
 51  -0.197  0.749  0.029  -0.701  0.470 
 52  -0.842  0.196  0.866  -1.327  0.923 
304  LRVSCREE [PRINT=scree; PLOT=*] _lrv 
  No     Root   %%  Cum   %  Scree Diagram (* represents 1%) 
------------------------------------------------------------ 
   1    7.672  274  274  27 *************************** 
   2    5.025  179  453  18 ****************** 
   3    3.419  122  576  12 ************ 
   4    2.161   77  653   8 ******** 
   5    1.636   58  711   6 ****** 
   6    1.067   38  749   4 **** 
   7    0.992   35  785   4 **** 
   8    0.869   31  816   3 *** 
   9    0.711   25  841   3 *** 
  10    0.701   25  866   3 *** 
Scale:  1 asterisk represents 1 unit. 
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Appendix 7. Genstat 12.1 commands for calculation of standardized first six factor loadings 

for 28 morphological traits of 52 yam genotypes 
 
228  FCA [PRINT=loadings,scores,tests,communalities; METHOD=correlation; MAXCYCLE=50; 
TOLERANCE=1e-006;\ 
 229   NDIMENSION=6] 
!p(std_APW,std_DBL,std_DE,std_IL,std_LAS,std_LC,std_LD,std_LL,std_LMC,\ 
 230  std_LL1,std_LL2,std_LW1,std_LW2,std_LS,std_LVCLS,std_LVCUS,std_NB,std_NS,std_PC,\ 
 231  std_PL,std_PLM,std_PWC,std_SC,std_TC,std_TLM,std_TS,std_WC,std_tfleshc) 

Factor analysis 
  
Warning 1, code OP 8, statement 1 on line 231 
 
Command: FCA [PRINT=loadings,scores,tests,communalities; METHOD=correlation; MAX 
The convergence is not certain but a lower point could not be found. 
Factor loadings 
  
 1  0.7081  0.0959  0.6355  -0.0895  0.0544 
 2  -0.6071  -0.4599  0.1090  -0.0871  0.4153 
 3  -0.1707  -0.0351  -0.2377  -0.3440  0.0036 
 4  0.2065  0.4953  -0.1399  -0.3618  -0.3238 
 5  0.7589  0.1253  -0.4187  0.4185  0.1088 
 6  -0.7714  0.4614  -0.0352  0.0539  0.1519 
 7  -0.5178  0.5270  -0.2606  0.0425  -0.3422 
 8  0.4938  0.1671  0.3904  0.0571  -0.0900 
 9  -0.8797  0.3536  0.0550  0.1795  0.1409 
 10  0.2932  0.6210  -0.2106  -0.4911  0.0313 
 11  0.5929  0.4898  -0.0479  -0.3006  -0.1985 
 12  0.2297  0.4974  -0.5539  -0.4343  0.1314 
 13  0.1835  0.1602  -0.4571  -0.5799  0.2321 
 14  -0.2516  -0.4091  -0.1940  -0.1737  0.4500 
 15  -0.2240  0.6135  0.4010  0.0706  -0.2413 
 16  -0.7061  0.2404  0.0803  -0.1019  -0.2164 
 17  -0.6407  0.1444  -0.4200  -0.2204  -0.3513 
 18  -0.6472  0.3306  -0.0796  -0.1323  -0.1660 
 19  0.2376  -0.0312  0.3676  -0.3925  0.3608 
 20  -0.2157  -0.1560  0.1515  -0.1395  0.0482 
 21  0.3677  0.3192  -0.3449  -0.4519  0.3484 
 22  0.3863  0.5824  0.4338  -0.0107  0.0818 
 23  -0.7118  0.0528  -0.1052  0.0524  0.5070 
 24  0.2988  0.6545  -0.1452  0.1123  0.1465 
 25  0.6008  0.4542  -0.0002  -0.2410  0.2048 
 26  -0.3410  -0.0226  0.1976  0.0232  0.1983 
 27  0.4650  0.5780  0.4900  0.0734  0.2476 
 28  -0.1542  0.7674  0.1247  0.3606  -0.2693 
  
 1  0.0116 
 2  -0.1819 
 3  -0.4793 
 4  -0.3424 
 5  -0.0552 
 6  -0.0603 
 7  0.0143 
 8  -0.0084 
 9  -0.0545 
 10  -0.1619 
 11  -0.0060 
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 12  0.2173 
 13  -0.1628 
 14  -0.2334 
 15  0.1101 
 16  -0.0011 
 17  0.0745 
 18  0.0726 
 19  0.1730 
 20  -0.2189 
 21  0.1847 
 22  -0.3023 
 23  0.1731 
 24  0.2340 
 25  -0.2553 
 26  0.0809 
 27  0.1236 
 28  0.0013 
Factor communalities 
  
 1  0.9256 
 2  0.8051 
 3  0.4350 
 4  0.6605 
 5  0.9570 
 6  0.8387 
 7  0.7329 
 8  0.4355 
 9  0.9569 
 10  0.7844 
 11  0.7235 
 12  0.8601 
 13  0.6849 
 14  0.5554 
 15  0.6627 
 16  0.6201 
 17  0.7854 
 18  0.5848 
 19  0.5068 
 20  0.1635 
 21  0.7158 
 22  0.7748 
 23  0.8103 
 24  0.6276 
 25  0.7325 
 26  0.2023 
 27  0.8723 
 28  0.8308 
Factor score coefficients 
  
  1 2 3 4 5 
 1  0.15716  0.05143  0.43775  -0.09278  0.08454 
 2  -0.05148  -0.09422  0.02868  -0.03449  0.24640 
 3  -0.00499  -0.00248  -0.02158  -0.04697  0.00074 
 4  0.01005  0.05824  -0.02113  -0.08220  -0.11025 
 5  0.29163  0.11629  -0.49930  0.75069  0.29243 
 6  -0.07902  0.11418  -0.01118  0.02577  0.10886 
 7  -0.03203  0.07876  -0.05003  0.01229  -0.14809 
 8  0.01446  0.01181  0.03546  0.00780  -0.01843 
 9  -0.33752  0.32771  0.06552  0.32144  0.37813 
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 10  0.02247  0.11498  -0.05010  -0.17573  0.01678 
 11  0.03543  0.07070  -0.00889  -0.08384  -0.08296 
 12  0.02713  0.14196  -0.20309  -0.23955  0.10861 
 13  0.00962  0.02029  -0.07439  -0.14197  0.08516 
 14  -0.00935  -0.03673  -0.02237  -0.03014  0.11699 
 15  -0.01098  0.07260  0.06096  0.01614  -0.08272 
 16  -0.03071  0.02525  0.01084  -0.02069  -0.06585 
 17  -0.04933  0.02686  -0.10035  -0.07922  -0.18924 
 18  -0.02575  0.03178  -0.00983  -0.02458  -0.04622 
 19  0.00796  -0.00252  0.03822  -0.06139  0.08456 
 20  -0.00426  -0.00745  0.00929  -0.01286  0.00666 
 21  0.02138  0.04483  -0.06222  -0.12264  0.14170 
 22  0.02834  0.10323  0.09879  -0.00367  0.04198 
 23  -0.06200  0.01110  -0.02844  0.02130  0.30891 
 24  0.01326  0.07017  -0.02000  0.02326  0.04549 
 25  0.03711  0.06777  -0.00003  -0.06950  0.08847 
 26  -0.00706  -0.00113  0.01270  0.00225  0.02874 
 27  0.06019  0.18070  0.19679  0.04433  0.22416 
 28  -0.01506  0.18104  0.03780  0.16440  -0.18395 
  
  6 
 1  0.03764 
 2  -0.22501 
 3  -0.20453 
 4  -0.24316 
 5  -0.30950 
 6  -0.09010 
 7  0.01292 
 8  -0.00358 
 9  -0.30513 
 10  -0.18107 
 11  -0.00522 
 12  0.37463 
 13  -0.12453 
 14  -0.12657 
 15  0.07867 
 16  -0.00069 
 17  0.08374 
 18  0.04216 
 19  0.08456 
 20  -0.06310 
 21  0.15667 
 22  -0.32363 
 23  0.22003 
 24  0.15151 
 25  -0.23006 
 26  0.02446 
 27  0.23348 
 28  0.00190 
  
Factor analysis test statistics 
Log-likelihood:  -185.4 
Goodness of fit statistic:  267.7 
Degrees of freedom:  225 
Probability:  0.0 
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Appendix 8. Genstat 12.1 commands for calculation of cluster analysis of first two principal 

components for 28 morphological traits of 52 yam genotypes 

316  GETATTRIBUTE [ATTRIBUTE=rows] distance; _ps 
 317  LRV [ROWS=_ps[1]; COLUMNS=2] _lrv 
 318  PCO distance; LRV=_lrv 
 319  DMST [TITLE='Minimum Spanning Tree'] _lrv[1]; SIMILARITY=distance 
 320  DDENDROGRAM [ORDER=given; DSIMILARITY=yes] DATA=_ddmst; PERM=_perm; 
WINDOW=1; LABELS=variety 
 



135 
 

Appendix 9. Genstat 12.1 commands and analysis of variance for 28 morphological traits 

meaned across 52 yam genotypes using regression analysis  

    8  DELETE [REDEFINE=yes] var,RFI_log,DNA,PLOIDY 
   9  UNITS [NVALUES=*] 
  10  FACTOR [MODIFY=yes; NVALUES=52; LEVELS=52; LABELS=!t('ER 07/039','ER07/029',\ 
  11  'ER07/030','ER07/031','ER07/032','ER07/033','ER07/034','ER07/036',\ 
  12  'ER07/037','ER07/038','NR 07/057','NR07/040','NR07/041','NR07/042',\ 
  13  'NR07/043','NR07/045','NR07/047','NR07/052','NR07/054','NR07/059',\ 
  14  'NR07/060','NR07/067','NR07/068','NR07/069','NR07/071','SR07/072',\ 
  15  'SR07/073','SR07/074','SR07/075','SR07/076','SR07/079','SR07/080',\ 
  16  'SR07/081','SR07/082','SR07/084','SR07/085','TDr 95/18544','TDr95/00005',\ 
  17  'WR 07/001','WR07/004','WR07/007','WR07/008','WR07/010','WR07/013',\ 
  18  'WR07/014','WR07/015','WR07/016','WR07/020','WR07/022','WR07/024',\ 
  19  'WR07/025','WR07/028'); REFERENCE=1] var 
  20  READ var; FREPRESENTATION=ordinal 
42  %PostMessage 1129; 0; 42837024 "Sheet Update Completed" 
  43  "Simple Linear Regression" 
  44  MODEL PLOIDY 
  45  TERMS DNA 
  46  FIT [PRINT=model,summary,correlations,estimates,accumulated; CONSTANT=estimate; FPROB=yes;\ 
  47   TPROB=yes] DNA 
 
Regression analysis 
  
 Response variate: PLOIDY 
 Fitted terms: Constant, DNA 
 Summary of analysis 
Source d.f. s.s. m.s. v.r. F pr. 
Regression  1  13.332  13.3324  77.60 <.001 
Residual  50  8.591  0.1718     
Total  51  21.923  0.4299     
  
Percentage variance accounted for 60.0 
Standard error of observations is estimated to be 0.415. 
 Message: the following units have large standardized residuals. 
 Unit Response Residual 
 23  2.000  -2.96 
 30  2.000  -2.71 
  
Estimates of parameters 
Parameter estimate s.e. t(50) t pr. 
Constant  -6.30  1.17  -5.40 <.001 
DNA  5.521  0.627  8.81 <.001 
  
Correlations between parameter estimates 
Parameter  ref correlations    
Constant  1  1.000   
DNA  2  -0.999  1.000 
   1  2 
  
Accumulated analysis of variance 
Change d.f. s.s. m.s. v.r. F pr. 
+ DNA  1  13.3324  13.3324  77.60 <.001 
Residual  50  8.5906  0.1718     
Total  51  21.9231  0.4299     
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Appendix 10. Genstat 12.1 commands and ANOVA in DNA content among three species of 

yam (D. alata, D. bulbifera and D. rotundata) with 4x genotypes 

8  DELETE [REDEFINE=yes] variety,Species,rep,PLOIDY,DNA 
   9  UNITS [NVALUES=*] 
  10  FACTOR [MODIFY=yes; NVALUES=135; LEVELS=45; LABELS=!t('ER-29','ER-31',\ 
  11  'ER-32','ER-33','ER-34','ER-36','ER-37','ER-38','ER-39','NR-41','NR-42',\ 
  12  'NR-43','NR-45','NR-47','NR-52','NR-54','NR-57','NR-59','NR-60','NR-67',\ 
  13  'NR-69','NR-71','NR-72','SR-73','SR-74','SR-75','SR-76','SR-79','SR-80',\ 
  14  'SR-81','SR-82','SR-85','TDr 95/00005','WR-01','WR-04','WR-07','WR-08',\ 
  15  'WR-10','WR-13','WR-15','WR-20','WR-22','WR-24','WR-25','WR-28')\ 
  16  ; REFERENCE=1] variety 
  17  READ variety; FREPRESENTATION=ordinal 
78  "General Analysis of Variance." 
  79  BLOCK rep 
  80  TREATMENTS Species 
  81  COVARIATE "No Covariate" 
  82  ANOVA [PRINT=aovtable,information,means,%cv; FACT=32; CONTRASTS=7; PCONTRASTS=7; 
FPROB=yes;\ 
  83   PSE=diff,lsd; LSDLEVEL=5] DNA 
Analysis of variance 
Variate: DNA 
Source of variation d.f. s.s. m.s. v.r. F pr. 
rep stratum 2  0.502386  0.251193  51.60   
rep.*Units* stratum 
Species 2  0.054730  0.027365  5.62  0.005 
Residual 130  0.632886  0.004868     
Total 134  1.190001       
  
Message: the following units have large residuals. 
rep 3 *units* 12    -0.1936 approx. s.e.   0.0685 
rep 3 *units* 36    -0.2106 approx. s.e.   0.0685 
Tables of means 
Variate: DNA 
Grand mean  1.8546  
 Species  1  2  3 
   1.8460  1.9050  1.9009 
  rep.    114  3  18 
  
Standard errors of differences of means 
Table Species   
rep. unequal   
d.f.  130   
s.e.d.  0.05697X  min.rep 
  0.04081  max-min 
  0.00924X  max.rep 
(No comparisons in categories where s.e.d. marked with an X) 
Least significant differences of means (5% level) 
Table Species   
rep. unequal   
d.f.  130   
l.s.d.  0.11271X  min.rep 
  0.08074  max-min 
  0.01828X  max.rep 
(No comparisons in categories where l.s.d. marked with an X) 
Stratum standard errors and coefficients of variation 
Variate: DNA 
Stratum d.f. s.e. cv% 
rep  2  0.07471  4.0 
rep.*Units*  130  0.06977  3.8 
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Appendix 11. Genstat 12.1 commands and ANOVA in DNA content of 45, 4x genotypes  

  84  "General Analysis of Variance." 
  85  BLOCK rep 
  86  TREATMENTS variety 
  87  COVARIATE "No Covariate" 
  88  ANOVA [PRINT=aovtable,information,means,%cv; FACT=32; CONTRASTS=7; PCONTRASTS=7; FPROB=yes;\ 
  89   PSE=diff,lsd; LSDLEVEL=5] DNA 
 
Analysis of variance 
Variate: DNA 
Source of variation d.f. s.s. m.s. v.r. F pr. 
rep stratum 2  0.502386  0.251193  57.41   
rep.*Units* stratum 
variety 44  0.302567  0.006877  1.57  0.037 
Residual 88  0.385048  0.004376     
Total 134  1.190001       
 
Tables of means 
Variate: DNA 
Grand mean  1.8546  
 variety  ER-29  ER-31  ER-32  ER-33  ER-34 
   1.8300  1.8880  1.8900  1.8480  1.8380 
 
 variety  ER-36  ER-37  ER-38  ER-39  NR-41 
   1.8400  1.9270  1.8000  1.8860  1.8200 
   
 variety  NR-42  NR-43  NR-45  NR-47  NR-52 
   1.9180  1.8340  1.9050  1.8733  1.8557 
   
 variety  NR-54  NR-57  NR-59  NR-60  NR-67 
   1.7720  1.8590  1.8320  1.9380  1.8260 
   
 variety  NR-69  NR-71  NR-72  SR-73  SR-74 
   1.8270  1.8800  1.9230  1.8970  1.8720 
   
 variety  SR-75  SR-76  SR-79  SR-80  SR-81 
   1.7980  1.8970  1.8717  1.7880  1.7810 
   
 variety  SR-82  SR-85  TDr 95/00005  WR-01  WR-04 
   1.7900  1.8310  1.9370  1.8527  1.8730 
   
 variety  WR-07  WR-08  WR-10  WR-13  WR-15 
   1.8740  1.8990  1.8200  1.8090  1.9280 
   
 variety  WR-20  WR-22  WR-24  WR-25  WR-28 
   1.8420  1.7760  1.7790  1.9210  1.8120 
Standard errors of differences of means 
Table variety   
rep.  3   
d.f.  88   
s.e.d.  0.05401   
Least significant differences of means (5% level) 
Table variety   
rep.  3   
d.f.  88   
l.s.d.  0.10733   
Stratum standard errors and coefficients of variation 
Variate: DNA 
Stratum d.f. s.e. cv% 
rep  2  0.07471  4.0 

rep.*Units* 
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Appendix 12. Correlation matrix of the two cytological and three morphological trait means 

across 52 yam genotypes 

   8  DELETE [REDEFINE=yes] variety,DNA,Ploidy,APW,NS,WC 
   9  UNITS [NVALUES=*] 
  10  FACTOR [MODIFY=yes; NVALUES=52; LEVELS=52; LABELS=!t('ER 07/029',\ 
  11  'ER 07/030','ER 07/031','ER 07/032','ER 07/033','ER 07/034','ER 07/036',\ 
  12  'ER 07/037','ER 07/038','ER 07/039','NR 07/040','NR 07/041','NR 07/042',\ 
  13  'NR 07/043','NR 07/045','NR 07/047','NR 07/052','NR 07/054','NR 07/057',\ 
  14  'NR 07/059','NR 07/060','NR 07/067','NR 07/068','NR 07/069','NR 07/071',\ 
  15  'SR 07/072','SR 07/073','SR 07/074','SR 07/075','SR 07/076','SR 07/079',\ 
  16  'SR 07/080','SR 07/081','SR 07/082','SR 07/084','SR 07/085','TDr 95/00005',\ 
  17  'TDr 95/18544','WR 07/001','WR 07/004','WR 07/007','WR 07/008','WR 07/010',\ 
  18  'WR 07/013','WR 07/014','WR 07/015','WR 07/016','WR 07/020','WR 07/022',\ 
  19  'WR 07/024','WR 07/025','WR 07/028'); REFERENCE=1] variety 
  20  READ variety; FREPRESENTATION=ordinal 
   
54  %PostMessage 1129; 0; 52601888 "Sheet Update Completed" 
  55  FCORRELATION [PRINT=correlations,test; METHOD=twosided] DNA,PLOIDY,APW,NS,WC 
 Correlations 
             
 DNA 1  -     
 PLOIDY 2  0.7798  -    
 APW 3  -0.3928  -0.2715  -   
 NS 4  0.2882  0.3468  -0.4727  -  
 WC 5  -0.3578  -0.2895  0.7143  -0.1755  - 
    1 2 3 4 5 
Number of observations: 52 
Two-sided test of correlations different from zero 
              
 DNA 1  -     
 PLOIDY 2  <0.001  -    
 APW 3  0.0040  0.0515  -   
 NS 4  0.0383  0.0118  <0.001  -  
 WC 5  0.0092  0.0374  <0.001  0.2133  - 
    1 2 3 4 5 
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Appendix 13. Summary statistics of the two cytological and three morphological traits using 

canonical correlation analysis 

203  CANCOR [PRINT=pcoeff,pscores,qcoeff,qscores,correlations] 
!p(stdDNA,stdPLODY);!p(stdAPW,\ 
 204  stdNS,stdWC) 
  
Canonical correlation analysis 
Canonical correlations 
  CA_Corrs  %Corrs  Cum%Corrs 
 1  0.4441  60.91  60.91 
 2  0.2850  39.09  100.00 
Loadings for the P-set of variates 
  1 2 
 stdDNA  0.0890  -0.2052 
 stdPLODY  0.0591  0.2157 
  
Loadings for the Q-set of variates 
  1 2 
       
 stdAPW  -0.01590  0.19713 
 stdNS  0.08153  0.13435 
 stdWC  -0.08452  -0.07874 
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Appendix 14. Summary statistics of the three morphological and two cytological traits using 

multiple regression analysis 

187  "Multiple Linear Regression" 
 188  MODEL APW 
 189  TERMS [FACT=9] DNA,PLOIDY 
 190  FIT [PRINT=model,summary,correlations,estimates,accumulated; CONSTANT=estimate; 
FPROB=yes;\ 
 191   TPROB=yes; FACT=9] DNA,PLOIDY 
Regression analysis 
  
 Response variate: APW 
 Fitted terms: Constant, DNA, PLOIDY 
  
Summary of analysis 
Source d.f. s.s. m.s. v.r. F pr. 
Regression  2  1.066  0.5328  4.58  0.015 
Residual  49  5.704  0.1164     
Total  51  6.769  0.1327     
  
Percentage variance accounted for 12.3 
Standard error of observations is estimated to be 0.341. 
Message: the following units have large standardized residuals. 
 Unit Response Residual 
 8  0.000  -2.44 
 19  0.000  -2.66 
 47  0.000  -2.39 
  
Message: the residuals do not appear to be random; for example, fitted values in the range 0.899 to 
0.995 are consistently smaller than observed values and fitted values in the range 1.004 to 1.240 are 
consistently larger than observed values. 
  
Message: the error variance does not appear to be constant; large responses are less variable than 
small responses. 
  
Message: the following units have high leverage. 
 Unit Response Leverage 
 11  1.000  0.212 
 23  1.000  0.229 
 30  1.000  0.213 
 35  1.000  0.211 
 52  0.000  0.216 
Estimates of parameters 
Parameter estimate s.e. t(49) t pr. 
Constant  4.03  1.21  3.34  0.002 
DNA  -1.818  0.824  -2.21  0.032 
PLOIDY  0.049  0.116  0.42  0.673 
  
Correlations between parameter estimates 
Parameter  ref correlations    
  
Constant  1  1.000     
DNA  2  -0.970  1.000   
PLOIDY  3  0.607  -0.780  1.000 
  1  2  3 
  
Accumulated analysis of variance 
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Change d.f. s.s. m.s. v.r. F pr. 
+ DNA  1  1.0446  1.0446  8.97  0.004 
+ PLOIDY  1  0.0210  0.0210  0.18  0.673 
Residual  49  5.7036  0.1164     
Total  51  6.7692  0.1327     
  
 192  "Multiple Linear Regression" 
 193  MODEL NS 
 194  TERMS [FACT=9] DNA,PLOIDY 
 195  FIT [PRINT=model,summary,correlations,estimates,accumulated; CONSTANT=estimate; 
FPROB=yes;\ 
 196   TPROB=yes; FACT=9] DNA,PLOIDY 
Regression analysis 
  
 Response variate: NS 
 Fitted terms: Constant, DNA, PLOIDY 
Summary of analysis 
Source d.f. s.s. m.s. v.r. F pr. 
Regression  2  3.75  1.8756  3.38  0.042 
Residual  49  27.23  0.5557     
Total  51  30.98  0.6075     
  
Percentage variance accounted for 8.5 
Standard error of observations is estimated to be 0.745. 
Message: the following units have large standardized residuals. 
 Unit Response Residual 
 15  4.000  3.36 
 52  5.000  3.98 
Message: the following units have high leverage. 
 Unit Response Leverage 
 11  1.000  0.212 
 23  1.000  0.229 
 30  1.000  0.213 
 35  1.000  0.211 
 52  5.000  0.216 
Estimates of parameters 
Parameter estimate s.e. t(49) t pr. 
Constant  -0.66  2.64  -0.25  0.805 
DNA  0.38  1.80  0.21  0.833 
PLOIDY  0.370  0.254  1.46  0.152 
 
Correlations between parameter estimates 
Parameter  ref correlations    
Constant  1  1.000     
DNA  2  -0.970  1.000   
PLOIDY  3  0.607  -0.780  1.000 
   1  2  3 
Accumulated analysis of variance 
Change d.f. s.s. m.s. v.r. F pr. 
+ DNA  1  2.5734  2.5734  4.63  0.036 
+ PLOIDY  1  1.1779  1.1779  2.12  0.152 
Residual  49  27.2295  0.5557     
Total  51  30.9808  0.6075     
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 197  "Multiple Linear Regression" 
 198  MODEL WC 
 199  TERMS [FACT=9] DNA,PLOIDY 
 200  FIT [PRINT=model,summary,correlations,estimates,accumulated; CONSTANT=estimate; 
FPROB=yes;\ 
 201   TPROB=yes; FACT=9] DNA,PLOIDY 
Regression analysis 
  
 Response variate: WC 
 Fitted terms: Constant, DNA, PLOIDY 
  
Summary of analysis 
Source d.f. s.s. m.s. v.r. F pr. 
Regression  2  4.68  2.3425  3.61  0.035 
Residual  49  31.83  0.6497     
Total  51  36.52  0.7161     
Percentage variance accounted for 9.3 
Standard error of observations is estimated to be 0.806. 
  
Message: the following units have high leverage. 
 Unit Response Leverage 
 11  2.000  0.212 
 23  2.000  0.229 
 30  2.000  0.213 
 35  1.000  0.211 
 52  0.000  0.216 
  
Estimates of parameters 
Parameter estimate s.e. t(49) t pr. 
Constant  7.26  2.85  2.54  0.014 
DNA  -3.08  1.95  -1.58  0.120 
PLOIDY  -0.035  0.275  -0.13  0.900 
Correlations between parameter estimates 
Parameter  ref correlations    
  
Constant  1  1.000     
DNA  2  -0.970  1.000   
PLOIDY  3  0.607  -0.780  1.000 
   1  2  3 
Accumulated analysis of variance 
Change d.f. s.s. m.s. v.r. F pr. 
+ DNA  1  4.6746  4.6746  7.20  0.010 
+ PLOIDY  1  0.0103  0.0103  0.02  0.900 
Residual  49  31.8343  0.6497     
Total  51  36.5192  0.7161     

 


