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Thesis Summary 

 

Crop failures due to simultaneous occurrence of drought spells and heat waves have 

become a common phenomenon in tropical and subtropical environments as a consequence 

of climate change. This phenomenon has raised lots of concerns among farmers and 

triggered serious debate among governments and scientists. There are no practical 

agronomic measures to control high temperatures in large open fields for crop production 

and investment in irrigation is unaffordable for the majority of the farmers in developing 

countries. Therefore, breeding for combined heat and drought stress tolerance is crucial in 

order to increase or stabilise maize productivity in tropical and sub-tropical regions. The 

present research was designed to, firstly, assess genetic variability for combined heat and 

drought stress tolerance in  maize germplasm; secondly, investigate the level of relationship 

between maize traits correlated with grain yield in inbred lines per se versus hybrids under 

stressed and non-stressed conditions; thirdly, study gene action controlling maize grain yield 

and other agronomic traits under isolated heat, drought and combined heat and drought 

stress conditions; and finally, determine the heterotic orientation of thirty selected maize 

inbred lines towards three drought-tolerant and one high yield potential inbred tester lines. 

A hundred and eight inbreds per se were evaluated under severe heat and drought stress, 

moderate heat-drought stress, random drought stress and non-stressed conditions to assess 

genetic variability for combined heat and drought stress tolerance. Results revealed 

existence of wide genetic variability for combined heat and drought stress tolerance among 

maize inbred lines available in Mozambique but superior genotypes under severe 

combination of heat-drought stress were not exactly the same under the rest of the growing 

conditions of this study. However, the study identified 15 out of 108 inbred lines (14%) as the 

most promising genotypes under severe heat and drought as well as under moderate heat 

and drought stress environments. The superior lines can be employed in the future breeding 

programmes for combined heat-drought stress tolerance. 

Ten inbred lines, including two of the superior entries identified in the genetic variability 

study, were randomly assembled from the available maize germplasm in Mozambique and 

used to generate forty-five crosses in a half diallel mating design. The purpose was to study 

gene action controlling grain yield and other traits under combined heat and drought stress 

conditions. The diallel cross hybrids were evaluated together with three genetic testers under 

combined heat and drought stress, drought stress alone, heat stress alone and non-stressed 
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conditions. The yield reduction due to heat stress alone was 19% of the non-stressed 

experiment while reductions due to drought alone and the combined stresses were 41 and 

59%, respectively, indicating that the combined stress condition was more detrimental than 

the individual stresses. For grain yield, additive gene action was predominant over non-

additive and the magnitude of its predominance was larger under combined stress compared 

to individual stresses and non-stressed conditions. For the other traits, additive gene action 

was predominant regardless of the environment. The results imply that improvement of 

tropical maize for tolerance to combined heat and drought stress is possible and it can be 

faster when selections is conducted under combined stress conditions than either under heat 

or drought separately. 

Thirty superior inbred lines (28 from the genetic variability study plus two other elite lines) 

were selected and crossed as female parents with four other lines as males in a line × tester 

mating design to assess heterotic orientation of the female parents towards the four male 

testers under stressed and non-stressed conditions. The resulting 120 testcrosses were 

evaluated under combined heat and drought stress and non-stressed conditions. Both 

general combining ability (GCA) due to lines and testers, and specific combining ability 

(SCA) due to line × tester mean squares were significant under the two water regimes of the 

study. The proportion of SCA effects was bigger than the total GCA effects under full-

irrigation and equal under combined stress environment, indicating that SCA effects were 

more important than GCA effects under favourable conditions with the importance of GCA 

effects increasing under combined stress conditions. Combination of the new approach 

“heterotic group's specific and general combining ability” (HSGCA) and the traditional yield-

SCA method successfully associated the thirty female lines to the four testers. It was found 

that heterotic orientation changed significantly with change in environmental conditions. 

Twenty inbred lines (67%) changed from one tester to another when experimental conditions 

changed from fully-irrigated to stressed conditions. Under full irrigation, tester N3 was related 

with 11 lines (37%) while under stressed condition only seven (23%) were found related with 

this tester. On the other hand, only five lines (17%) were assigned to tester CML444 under 

fully-irrigated condition but nine lines (30%) were assigned to it under stressed experimental 

condition. Testers CML312 and CML445 were related with seven lines (23%) under fully-

irrigated condition and they only changed to more and less one line under stressed 

condition. The results suggest that appropriate tester must be identified and used for specific 

stress category. 

Data from the line per se and diallel hybrid trials were used to investigate the level of 

relationship between grain yield (GY) and other traits under stressed and non-stressed 
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conditions. Genetic correlation coefficients were partitioned into direct and indirect effects 

following path coefficient analysis. In general, genetic correlation and path coefficients 

analyses revealed positive and significant relationship between GY and number of ears per 

plant (EPP) and ear aspect (EA) under stressed and non-stressed environments in both the 

inbred line per se and hybrid trials. This implies that EPP and EA can be used as indirect 

selection traits when breeding maize for both stressed (heat and drought) and non-stressed 

environmental conditions. The study also identified direct positive contribution of shorter 

anthesis-silking intervals (ASI) to GY under severe stresses but only indirectly through 

number of grains per ear (NGPE) under moderate stress environments. The NGPE had 

strong positive direct effect on GY while 100-grain weight contributed only indirectly through 

NGPE in hybrids. It can, therefore, be concluded from this study that EPP, EA, ASI and 

NGPE would be useful as secondary traits for maize GY selection under combined heat and 

drought stress conditions. 
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General Introduction 

 

Importance of maize 

Maize (Zea mays L.) is the major staple food crop in many African countries, especially in 

central and southern Africa. Setimela et al. (2007) and Langyintuo et al. (2010) estimate the 

contribution of maize to the diet of human beings in these regions to be about 70% of the total 

calories. Also, Tiba (2001) in the article entitled “Maize is life but rice is money” emphasized the 

importance of maize as a food crop in some African countries. A review by Harashima (2007) 

indicates that 95% of the maize grown in Africa is directly used for human consumption and it is 

predicted that, by 2020, the demand for this crop as food may be higher than that for rice and 

wheat.  

Maize as a staple food is dominant throughout Southern Africa. Cutts and Hassan (2003) 

observed that although rice and wheat are also consumed, most of the supply is usually from 

imports while maize is generally a locally grown crop. These authors pointed out that maize is 

produced mainly for human consumption in the southern region of Africa with only about 5% 

used in animal consumption. According to this source, South Africa is the only exception where 

half of all maize is fed to animals. This scenario will continue for long since changes in eating 

habits are slow. In fact, maize requirements for SADC Region in 2015/16 was estimated at 

34.50 million tonnes (Nyirenda, 2015) for an updated population of 277 million 

(http://www.southafrica.info/africa/sadc.htm#.Vmk51dJ97IU) in this region. Per capita 

consumption in the continental countries of the SADC Region is very high. Ranum et al. (2014) 

reported the highest estimate of 328 g person-1 day-1 in Lesotho and the lowest of 78 g person-1 

day-1 in Botswana. 

As in other African countries, maize is the primary food crop in Mozambique, with an estimated 

per capita consumption of about 57 kg year-1, which is equivalent to an annual consumption of 

315 kg per household (Tschirley and Abdula, 2007). According to this source, the maize share 

as food in the total household expenditure varies from place to place within the country, 

reaching to about 40% in the rural areas. Furthermore, a survey conducted across the country 

indicated that maize was the first choice food crop in seven out of the ten provinces of 

Mozambique, with 52.8% of the families considering it their primary food (MINAG, 2007). The 
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importance of maize grain in Mozambique also extends to animal feeding. Although statistics 

are not consistent and updated, some reports indicate large amounts of maize being imported 

from South Africa for the animal feed industry (MINAG, 2007) since the national production is 

insufficient to satisfy the demand for both human consumption and animal feed (SETSAN, 

2010).  

Maize is widely grown throughout Mozambique under diverse agro-ecological conditions and 

farming systems. It is found in 2,638,061 agricultural holdings (Table 0-1), corresponding to 

about 72% of the total holdings of 3,677,642 and it occupies more than 44% of the total area 

covered by the annual basic food crops (INE, 2011). Statistical data from FAOSTAT (2015) 

indicate that the annual grain production in million metric tonnes in Mozambique varied from 

approximately 2.2 in 2011 to 1.6 in 2013, with yields ranging from 0.7 to 1.2 t ha-1 between 2009 

and 2013. The average yield for the five years is below all neighbouring countries except 

Zimbabwe (Figure 1), suggesting that there is huge potential to increase national maize 

production by improving yield levels. Maize yields vary from region to region and from 

environment to environment within a region in the country. 
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Figure 0-1. Maize production and yields in the continental SADC countries (2009 - 2013). 

Source of data: (FAOSTAT, 2015) 
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The central and northern regions of Mozambique show much higher contributions to the national 

volumes of production compared to the southern region (Cunguara, 2012). Summarized data by 

Dias (2013) indicate that the north and central regions produce around 90% of the country’s 

maize in about 82% of the total country maize area. This is because of better soil types and 

rainfall patterns in most of the agro-ecological regions in the north and centre compared to the 

south. 

Table 0-1. Production of the annual food crops in Mozambique 

Crops  

Number of holdings (x 1000) a) Area cultivated (x 1000) a) Productionb) 

North Centre South Total North Centre South Total 
Average: 

2009 - 2013 

Maize        886      1 293         459   2 638         383         788         260      1 431              1 738  

Cassava     1 082         932         411   2 425         483         368         187      1 039              9 111  

Groundnuts, with shell        702         467         293   1 462         157           96           97         350                 114  

Sorghum        487         476           34      998         130         167           14         311                 322  

Cow peas, dry        588         623         458   1 668         116         109         136         361                   64  

Rice, paddy        169         342           28      539           72         188           22         282                 241  

Groundbeans        247         125           98      470           35           19           20           74  - 

Pegeon peas        424         610           11   1 044           83         179             1         263   -  

Beans, dry          71         202           15      288           38           55             6           99                 175  

Sweet potatoes        100         503         144      747         115         586         160         861                 894  

Millet          46           95           13      155             8           30             7           45                   49  

% of Total maize 33.6 49.0 17.4  100.0  26.8 55.1 18.1     100.0    

Source of data: a) INE (2011). Censo Agro-Pecuário (CAP) 2009/2010. 
b) FAOSTAT (2015). 

Maize production constraints in Mozambique 

Maize production in Mozambique is dominated by small-scale farmers, accounting for 99% of 

the holdings (INE, 2011).  As such, it is characterized by lack of credit to purchase agricultural 

inputs and agricultural equipment. Therefore, several constraints affect maize production and 

productivity in Mozambique. These constraints can be classified in three categories: socio-

economic, biotic and abiotic factors. However the focus of this study is abiotic which includes 

drought, heat and their combined effects.  These abiotic stresses are discussed in this chapter 

and the rest of the constraints are discussed in the literature review chapter. Drought has been 

long rated as the most important abiotic factor affecting crop productivity in Mozambique, 

especially that of maize (Bänziger et al., 2006; Setimela et al., 2007; SETSAN, 2010). As a 

concept, drought stress can be defined as “water deficit at any plant growth stage that results in 



4 

 

yield losses equal or superior to 10% compared to an adequately-watered control” (Reynolds et 

al., 2016). 

Droughts are a historical phenomenon in Mozambique and are much more harmful than low soil 

fertility. An analysis of climatic changes (INGC, 2010) revealed that more than 16 million people 

in Mozambique were affected by droughts between 1965 and 2008; more than one hundred 

thousand died because of this natural disaster. Of all the natural disasters that occurred in the 

country during this period, 57% of the people have been affected by droughts (Table 0-2). 

Table 0-2. Summary of impacts of natural disasters, 1965-2008, in Mozambique 

Crops  
People affected People died 

Number % Number % 

Droughts                   886                   22.6             100 200                   95.2  

Floods                1 082                   27.6                 1 921                     1.8  

Cyclones                   702                   17.9                    697                     0.7  

Epidemics                   487                   12.4                 2 446                     2.3  

Wind tempests                   588                   15.0                      20                     0.0  

Earthquakes                   169                     4.3                        4                     0.0  

Source: Adapted from INGC (2010). 

Even in years with good precipitation, its distribution during the cropping season varies from 

region to region across the country, leading to pockets of rainfall shortage and loss of maize 

production. In the north, rains are generally more reliable and less correlated to the rainfall 

patterns in the Southern Africa region (SA). Tschirley and Abdula (2007) highlighted that, even 

during the severest drought from 1992 to 1995 in the SA, both rainfall and maize production in 

the northern region of Mozambique were relatively unaffected. On the other hand, rainfall in the 

central region of the country is strongly correlated to that in SA and more variable than in north, 

but relatively reliable than in the south. Therefore, maize production fluctuations across the 

years in central Mozambique are comparable to those observed in the neighbouring countries 

(FEWSNET, 2011). In the south, maize productivity is the lowest, because the rainfall 

distribution is very poor, with much higher temperatures. Therefore, this region of the country 

depends on maize production from the central region, complemented by imports from South 

Africa, to meet its consumer demand. 

Although Governmental and Non-Governmental Organizations have been advising farmers in 

the drought prone areas to grow drought-stress tolerant crops, such as cassava, sweet-potatoes 
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and sorghum, the majority of them insist on growing maize, because of their eating habits. 

Currently, it is difficult to recommend a maize planting date that will ensure crop development 

within the rainfall growing season even in the regions classified as high potential, due to 

unpredictable rainfall patterns. Irrigation would be an effective solution for the frequent losses of 

maize production. However, this option is practically unaffordable for the majority of farmers 

who dominate maize production in Mozambique. In fact, less than 2% of holdings interviewed 

during the Agrarian Census used irrigation, and mostly for rice, vegetables and sugar-cane 

(INE, 2003). Therefore, use of maize cultivars genetically improved for drought stress tolerance 

would be a better option for the majority of the farmers. 

Breeding for drought tolerant (DT) maize has been top priority in the Mozambique Agriculture 

Research Institute (IIAM). Chaúque et al. (2004) reported some DT open-pollinated varieties 

that have been released. However, these are still not good enough to satisfy the farmers and 

the emerging national seed companies (Chaúque, 2009). Therefore, research addressing 

drought tolerance in Mozambique continues under the DTMA (Drought Tolerant Maize for 

Africa), WEMA (Water Efficient Maize for Africa) projects and local activities supported by the 

Alliance for Green Revolution in Africa (AGRA). 

Unlike drought and low soil fertility, little has been mentioned about high temperatures as a 

production constraint in Mozambique. From the last five years, high temperature stress has 

been also recognised as having great negative impact on the maize yields (Harrison et al., 

2011). Reynolds et al. (2016) defined heat stress as “supra-optimal temperatures occurring at 

any plant growth stage that can result in yield losses equal or superior to 10%”. In many parts of 

the world this factor has captured special attention from crop scientists due to its significant 

impact in reducing crop productivity in the tropical and subtropical environments (Ko et al., 

2007; Lafitte and Edmeades, 1997; Long and Ort, 2010; Mittler, 2006; Wahid et al., 2007). Mitter 

(2006) emphasized that, in the USA, droughts combined with heat caused losses of about $US 

4.2 billion between 1980 and 2004. In Mozambique as well, maize is not affected by drought 

only, but mostly by a combination of drought and high temperatures. Maize leaf firing as a result 

of high temperatures has been frequently observed during the period between November and 

March; however, this has never been documented. For example, maize leaf firing due to heat 

spells a few days after irrigation were observed in the WEMA-Mozambique yield trials grown 

under fully-irrigated and drought stressed regimes at Chókwè in November 2010 (Mugabe, 

2012). Although the symptoms and effects on yield were more severe on the drought stressed 
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plots, the mean yield under full irrigation at the hotter site (Chókwè) was 2.0 t ha-1 less than the 

same experiment grown at Sussundenga (less hot) during the same season.  

Solutions for heat stress in crops are difficult because there are no cultural practices to reduce 

sun irradiation in the field. Agronomic techniques, such as crop production under green or 

screen houses, are possible but unpractical when considering a crop like maize that is grown 

extensively on large acreages. As a consequence, failures of maize crop due to simultaneous 

occurrence of drought and heat stresses are frequently reported at the end of cropping seasons 

in Mozambique. The WEMA-Mozambique hybrid trials grown in 2010 at Chókwè Research 

Station provided evidence of genetic variation for heat stress tolerance and some genotypes 

exhibited fewer symptoms of leaf firing even under drought stressed conditions. Therefore, 

breeding for heat stress tolerance appears to be a strategy that can be used to minimize the 

impact of high temperatures in maize crop, especially a combination of both heat and drought 

stress tolerance in the same cultivars. However, no breeding activity for combined heat and 

drought tolerance has been initiated at present in Mozambique. Therefore, the aim of this 

research was to investigate the performance of different maize germplasm under combined heat 

and drought stress and identify the best performers. 

Research Problem and Justification 

Frequent failure of maize crops due to poor rainfall distribution and occurrence of heat stress 

during the main growing season in the tropical mid-altitude and lowlands of Mozambique is the 

main problem that drove the present research. The consequences of droughts in Mozambique 

have been clearly highlighted by the Institute for Management of Natural Disasters (INGC). In its 

publication entitled “Analysis of Climate Changes”, it reported that 16 444 000 people have been 

affected and 100 200 died between 1958 and 2008 as a direct consequence of drought (INGC, 

2010). Maize in Mozambique is grown mostly during the warm season, running from mid-

October to March in the south, from November to May in the centre and mid-December to June 

in the north. Therefore, apart from drought, high temperature effects also influence negatively 

maize crop productivity. 

Harrison et al. (2011) analysed the impact of temperature changes on maize production in 

Mozambique and observed that extreme daily maximum temperatures were common from the 

end of September to March in the low and mid-altitude lands, between 1979/80 and 2008/09,  

producing significant changes to maize phenology and heat stress exposure. The study 
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concluded that temperature changes substantially threaten maize production in Mozambique. 

Therefore, breeding for combined heat and drought stress tolerance is crucial to increase or 

even to maintain maize grain yield in the future. For such a breeding programme to be 

successful, knowledge about different traits that are correlated with grain yield under combined 

heat-drought stress, and the kind of gene action governing the phenotypic expression of those 

traits under combined heat-drought stress, is required. 

Objectives 

Overall goal 

To contribute for increased maize productivity in the tropical mid and lowland agro-ecological 

regions through development of suitable maize germplasm tolerant to combined heat-drought 

stress. 

Specific objectives 

1. to assess genetic variability for combined heat-drought stress tolerance in the available 

maize germplasm in Mozambique; 

2. to study gene action controlling maize grain yield and other agronomic traits under 

isolated heat, drought and combined heat-drought stress conditions; 

3. to determine the heterotic orientation of thirty selected maize inbred lines towards three 

drought-tolerant and one high yield potential males; and 

4. to investigate the level of relationship between maize traits correlated with grain yield in 

inbred lines per se versus hybrids under stressed and non-stressed conditions. 

Thesis outline 

 The above specific objectives were used to develop research chapters as follows: 

Chapter 1: Literature review; 

Chapter 2: Genetic variability for combined heat-drought stress tolerance in tropical maize 

germplasm; 
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Chapter 3: Gene action controlling maize grain yield and other agronomic traits under combined 

heat-drought stress conditions; 

Chapter 4: Heterotic orientation of thirty maize inbred lines under fully-irrigated versus combined 

heat-drought stress conditions; 

Chapter 5: Correlation and path coefficient analysis of maize grain yield with other 

characteristics under fully-irrigated versus water-limited conditions; and 

Chapter 6: Overview of the research findings. 
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1. Chapter 1. Literature Review 

 

1.1 Introduction 

This review discusses the main aspects on maize breeding for abiotic stress tolerance are 

discussed, with emphasis on drought and heat as follows: 1) major maize production constraints 

in Mozambique; 2) breeding approaches for maize heat and drought stress tolerance; 3) genetic 

control for heat and drought tolerances in maize; Morpho-physiological, biochemical and 

agronomic traits associated with maize grain yield under heat and drought stress conditions; 4) 

combining ability and gene action controlling quantitative traits of maize under non-stressed and 

combined heat and drought stress conditions; and 5) determination of heterotic orientation in 

maize. 

1.2 Major maize production constraints in tropical lowland agro-ecologies 

1.2.1 Socio-economic factors  

The use of unimproved seeds with very low genetic potential for grain yield is a common socio-

economic constraint in the majority of the farming systems (Langyintuo et al., 2010). This 

constraint cannot be solved directly by the breeding programme because it is caused mainly by 

a lack of education in association with a lack of credit to purchase agricultural inputs (Fato, 

2010; Langyintuo et al., 2010; SETSAN, 2010). Because of the low education levels, many 

farmers fail to differentiate between grain and seed, and even between unimproved and 

improved varieties. Public extension services, seed companies and NGOs do operate in rural 

areas, delivering messages about use of improved technologies, but the  level of adoption by 

farmers is  still very low (Langyintuo et al., 2010). 

1.2.2 Biotic factors 

Field pests and foliar diseases are the main biotic constraints contributing to reduced maize 

yield in the tropic and sub-tropics (Segeren, 1994). The most important field pests are stem 

borers (Chilo partellus, Busseola fusca and Sesamia calamistis) (Cugala et al., 2003; Cugala et 
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al., 2009). Busseola fusca and S. calamistis are indigenous, while C. partellus is an introduced 

pest species in Mozambique. The abundance of each species varies from environment to 

environment. Cugala et al. (2003) reported predominance of C. partellus in the lowland warm 

environments, while in the mid-altitude areas both C. partellus and B. fusca were equally 

abundant. Similar distributions have been described by Segeren (1994), who added that S. 

calamistis was more important in the cool environments. Research focusing on insect (stem 

borers and storage insect pests) resistance is currently on going (Nhamucho, 2014). 

In the case of foliar diseases, downy mildew (Perenosclerospora sorghi), maize streak virus 

(MSV), leaf blights (Helminthosporium turcicum), and grey leaf spot (Cercospora zeae-maydis) 

are of paramount importance in Mozambique (Denic et al., 2008; Fato, 2010). Breeding for 

disease resistance has been done for many years and satisfactory results were achieved. 

Moreover, projects addressing disease resistance are in progress under the Agricultural 

Productivity Programme for Southern Africa (APPSA) Project (Nhamucho, personal 

communication1). 

1.2.3 Abiotic factors 

Low soil fertility, especially low nitrogen, is one of the abiotic factors affecting maize productivity 

under small-scale farmers’ fields in Mozambique. This constraint is mainly a result of declining 

soil nutrients content, the inaccessibility of fertilizers to the majority of the Mozambican maize 

growers (AFTS, 2006) and cultivation in sandy soils. Data from the Agrarian Census indicate 

that only about 3% of holdings used chemical fertilizers, but mostly for vegetables and very few 

for grain crops (INE, 2003). The National Maize Breeding Programme, in collaboration with 

CIMMYT, has been attempting to address the low soil fertility constraint since1995 (INIA, 2001). 

No substantial achievements have been reported as yet but other regional initiatives, such as 

the “Improved Maize for African Soils” - IMAS (www.cimmyt.org./en/improved-maize-for-african-

soils) and “Sustainable Intensification of Maize and Legume System for Food Security in 

Eastern and Southern Africa” – SIMLESA (www.simlesa.cimmyt.org), are there to continue 

solving this constraint. 

Other important abiotic factors are high temperatures and drought stresses. These have been 

recognised as the worst crop productivity stresses in many tropical and subtropical 

environments with huge economic losses in the agricultural sector (Chen et al., 2012). Stress in 

agriculture can be understood as a phenomenon through which the physiology, development 
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and function of plants are impaired resulting in irreversible damage to the plant system. When 

the stress is due to increased temperatures beyond the threshold level of a given plant species 

it is called heat stress. According to Wahid et al. (2007), heat stress is a function of intensity, 

duration and rate of the temperature increase. Similarly, drought stress is a status in which the 

plant system is deviated from its optimum equilibrium due to reduced soil water availability 

(Jaleel et al., 2009; Kotak et al., 2007). In maize, higher temperature stress is more dangerous 

when it occurs simultaneously with limited soil moisture because the typical C4 plant cooling 

system (Sage and Kubien, 2007) becomes deficient. In most of the tropical warm environments, 

a simultaneous occurrence of both high temperatures and soil water deficit is a common 

phenomenon. Therefore, the present chapter reviews the knowledge about different breeding 

approaches for abiotic stress tolerance and it assesses the important information on genetic 

control of heat and drought stresses in a maize crop, more precisely the gene actions governing 

tolerance to the two stresses. It also explores the knowledge about the genetic variability for 

heat and drought stress tolerance in tropical maize germplasm, and the use of heterotic groups 

for germplasm organization and management. 

1.3 Breeding approaches for heat and drought stress tolerance in maize 

Stress tolerance is the equilibrium between the need for yield production and survival (Burucs et 

al., 1994). In line with this concept, heat stress tolerance is the ability of the individual to 

produce more under environmental conditions characterised by temperatures above the 

optimum threshold range of the species and drought tolerance is the capacity to produce more 

economic yield under drought stress (Ribaut et al., 2009). Genetic improvement for abiotic 

stress tolerance in field crops can be achieved through selection for yield potential under 

optimum conditions (classical breeding) or through selection under target stress environment 

(Baum et al., 2007). The last approach is still subdivided in “empirical breeding” and “analytical 

breeding” (Araus et al., 2008; Baum et al., 2007). Various authors (Araus et al., 2008; Bänziger 

et al., 2006; Baum et al., 2007; Lopes et al., 2011) describe empirical breeding as an approach 

of direct selection for grain yield (GY) per se under stressed condition, while in the analytical (or 

Physiological) breeding there is indirect selection for secondary traits related to higher GY 

potential simultaneously in both stressful and optimum environments. Classical, empirical and 

part of physiological breeding approaches fall in a class popularly called conventional breeding. 

That is, selection of the targeted traits is carried out in segregating populations in which genetic 

variability is identified by visual observation. Nowadays, science has developed new tools to 
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allow identification of the genetic variation at the molecular level – molecular plant breeding 

(Araus et al., 2008; Bänziger and Araus, 2007a; Baum et al., 2007; Lopes et al., 2011; XU, 

2010).  

1.3.1 Classical approaches 

It has been reported by various authors (Araus et al., 2008; Lopes et al., 2011; Reynolds and 

Trethowan, 2007) that breeding for grain yield potential under high yielding environment has 

resulted in tremendous advances in field crops. It has been also pointed out in some 

publications (Bänziger et al., 2000; Bolaños, 1995; Gill and Tilak, 2009) that earlier breeders 

believed that genotype exhibiting increased yield potential under optimum conditions will always 

show relatively better performance under stressed conditions. That belief has some legitimacy: 

Araus et al. (2008) and Cattiveli et al. (2008) observed that, when comparing genotypes 

exhibiting higher and lower yield potentials in a range of contrasting environments, crossover 

interactions are rare, suggesting that in general, genotype products of classical breeding 

approach show advantages over the lower yielding genotypes even under unfavourable 

environments; in maize, Tollenaar and Lee (2002) registered stress tolerance in hybrids bred for 

high yield potential. The advantage of classical breeding resides especially in the large genetic 

gains as a result of high heritability of GY under optimum conditions (Bänziger et al., 2000). 

Various authors (Araus et al., 2008; Burucs et al., 1994; Lopes et al., 2011) summarize the 

mechanisms exploited for drought stress tolerance in classical breeding in high root biomass 

and architecture (root depth and expansion), high shoot biomass, rapid overground coverage 

and high harvest index (HI). According to Bänziger et al. (2000), the high HI can be achieved by 

increased number of ears plant-1, number of grains ear-1 and kernel weight.  All this tolerance 

mechanisms imply increased demand in water (Tollenaar and Lee, 2006), making genotypes 

exhibiting these traits even vulnerable to drought stress susceptibility under severe drought 

stress. 

When selecting specifically for abiotic stress tolerance, efficiency of classical conventional 

breeding approach decreases (Araus et al., 2008). It has been observed that higher yielding 

genotypes selected under optimum environmental conditions could significantly decrease their 

performance under moderate to severe stress growing conditions (Bänziger et al., 2006; Lopes 

et al., 2011; Maestri et al., 2002; Takeda and Matsuoka, 2008; Vaezi et al., 2010). This is 

because of the significant genotype-by-environment (GE) interactions and higher plot-to-plot 
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variation within environment leading to reduced heritability of GY and other quantitatively 

inherited traits under stressed conditions (Araus et al., 2008; Bänziger et al., 2006; Bolaños and 

Edmeades, 1996; Chimenti et al., 2006; Lopes et al., 2011). High yield potential may translate to 

increased demand in water and other resources. If high yield potential is not accompanied by an 

improvement in abiotic stress tolerance, genotypes that are products of classical breeding 

approaches will be vulnerable to stresses. Therefore, approaches that combine both empirical 

and physiological approaches, assisted by multi-environmental testing, would be more efficient. 

1.3.2 Physiological approaches 

Physiological breeding approaches have become model strategy for abiotic stress tolerance, 

especially drought and heat, in cereal crops. In wheat, Reynolds et al. (2001) reported important 

achievements of a collaborative work between CIMMYT and national programmes that date 

from 1990 incorporating physiological aspects of heat tolerance. In rice, Lafitte et al. (2004) 

reported application of physiological traits in improvement for low temperature and salt 

tolerance. Bavei et al. (2011) described several achievements of physiological breeding 

strategies for heat stress tolerance in spring barley. In general, selection for secondary traits 

correlated with GY under managed drought stress condition in open field environment is the 

most popular procedure used by many physiologist breeders. 

In maize, many studies (Bänziger et al., 2002; Bolaños and Edmeades, 1996; Chen et al., 2010; 

Holá et al., 2010; Li et al., 2003; Shuja and Swati, 2011; Tollenaar and Lee, 2006) have been 

published highlighting importance of physiological approaches in breeding for drought tolerance. 

Bänziger et al. (2006) provided useful information on breeding for abiotic stress tolerance. The 

mechanisms of tolerance described in this publication include reduced production of absicic acid 

(ABA), increased osmotic adjustment through accumulation of solutes at the cellular level, 

proline accumulation, increased net photosynthetic activity (Pn), especially photosystem II, 

reduced anthesis-silking interval, reduced ear barrenness, and delayed leaf senescence 

(prolonged stay-green). Many other publications also have reported almost the same traits to be 

taken in account when breeding for abiotic stress tolerance in maize (Bänziger and Araus, 

2007b; Betrán et al., 2003b; Betrán et al., 2003c; Bolaños and Edmeades, 1996; Holá et al., 

2010; Shuja and Swati, 2011; Tollenaar and Lee, 2006). 

For heat tolerance, relatively fewer publications on maize heat tolerance were found during this 

review compared to drought tolerance, and were only for understanding the physiological 
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mechanisms of heat stress tolerance (Chen et al., 2010; Cokun et al., 2009; Crafts-Brandner 

and Salvucci, 2002; Duke and Doehlert, 1996; Dupuis and Dumas, 1990; Jorgensen and 

Nguyen, 1995; Karim et al., 1999; Khodarahmpour et al., 2011; Kim et al., 2007; Mahmood et 

al., 2010; Sinsawat et al., 2004). In an in-vitro experiment, maize ovules fertilization was limited 

by temperatures higher than 36oC and pollen was more sensitive to heat than the female tissues 

(Dupuis and Dumas, 1990). Duke and Doehlert (1996) observed reduction in kernel weight 

when grain filling period coincided with temperatures around 35oC compared to grain filling 

period that occurred at temperatures around 25oC. This suggests that growth of kernels at 35oC 

ceased earlier than at 25oC. Karim et al. (1999) tested the effect of heat stress in maize leaves 

of the same plants but with different ages. In that study it was found that developed leaves 

suffered more with heat than developing leaves. A study by Crafts-Brandner and Salvucci 

(2002) detected an inhibition of net photosynthesis (Pn) at leaf temperatures above 38oC. The 

inhibition of Pn in this study was attributed to the decrease in activation of the Rubisco at 

temperatures greater than 32.5oC. Similar scenario was observed by Sinsawat et al. (2004) 

when studying the effect of heat stress on the photosynthetic apparatus in maize. Kim et al. 

(2007) also investigated the temperature dependence of photosynthesis in maize and 

concluded that the optimum temperatures were around 34oC. Another study on physiological 

response of maize to high temperature was conducted by Cokun et al. (2009).  In this study 

there were relative leaf injuries of more than 60% when leaf temperatures exceeded 36.6oC. 

The physiological mechanisms responsible for both drought and heat stress tolerance have 

been subject of extensive studies in the main crop species. Increased water uptake, decreased 

transpiration rate, increased net photosynthesis, improved cell membrane stability, synthesis of 

heat-shock proteins (HSPs) and reduced production of reactive oxygen radicals (ROS) have 

been commonly pointed out as the most important physiological mechanism of abiotic stress 

tolerance, including drought and heat stresses (Araus et al., 2008; Dwyer et al., 2007; Efeoglu 

et al., 2009; Gill and Tilak, 2009; Hayano-Kanashiro et al., 2009; Maestri et al., 2002; Reynolds 

and Trethowan, 2007; Wahid et al., 2007). Selecting for most of these agronomic and 

physiological traits and determination of their relationship with GY under stressed conditions is a 

very complicated task due to the great spatial and temporal variability in the field evaluation of 

the stresses (Lopes et al., 2011). Therefore, molecular tools to assist on detecting the genetic 

variation and incorporation of the candidate target traits have raised high expectations in 

addressing the challenges imposed by the global warming to the major food crop species (XU, 

2010). 
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1.3.3 Molecular approaches 

Molecular breeding is a useful modern approach that allows identification of genetic variation of 

different traits at the molecular level (XU, 2010) and therefore, avoiding the complications due to 

year-to-year variability in the frequency, duration and intensity of abiotic stress within location 

(Lopes et al., 2011), specially heat and drought. Due to its initial cost (cost associated with 

laboratory establishment), the molecular breeding is justified in economically important crops 

and for economically important traits that are difficult to improve via conventional breeding 

(Araus et al., 2008). In concordance with this philosophy, the approach has been applied mostly 

in several major crops such as barley, cotton, common beans, maize, rice, soybeans, tobacco 

and wheat. 

Characterization of molecular markers associated with drought tolerance has been done in 

quantitative trait loci (QTLs) mapping (Xoconostle-Cazares et al., 2011). Baum et al. (2007) 

provided an exhaustive review on the molecular breeding strategies for abiotic stress tolerance 

and actual achievements in terms of cultivars developed using this approach. Reviews on rice 

breeding for drought, heat and salt stress tolerance provide several examples of achievements 

through molecular approaches (Lafitte et al., 2004; Thomas and Howarth, 2000). In wheat, 

molecular breeding activities have been carried out on heat and drought stress tolerances (Al-

Doss et al., 2011; Reynolds and Trethowan, 2007). 

In maize, molecular approach has been used to assist in identifying QTLs that explain the 

genetic variability for most of the morpho-physiological traits highly correlated with GY under 

abiotic stress conditions, such as root architecture, ABA induction, duration stay-green, 

photosynthesis II, ASI, tassel size (Bolaños, 1995), production of HSPs (Feder and Hofmann, 

1999), and cell membrane stability (Dwyer et al., 2007). However, many scientists agree that 

there is a long way from the molecular research findings and their practical applications (Phillips 

foreword in (XU, 2010), page xvii; (Araus et al., 2008; Bänziger and Araus, 2007b; Lopes et al., 

2011) in the real agriculture due to differences in population sizes handled and the 

environmental conditions during the laboratory studies versus field crop production. Gill and 

Tilak (2009) highlighted that identification of markers for QTLs associated with drought tolerance 

has been difficult. Reynolds and Trethowan (2007) also emphasized that the chance to allocate 

all genes associated with a complex trait decreases with the number of loci and their magnitude 

of effect. 
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1.4 Genetic control of heat and drought tolerances in maize 

Abiotic stress tolerance is a result of many biochemical and physiological mechanisms, all 

genetically controlled (Moreno et al., 2005). This makes breeding for abiotic stress tolerance 

even more difficult, therefore the use of indirect measures becomes important (Reynolds and 

Trethowan, 2007). However, because a cultivar with high stress tolerance has no value if it 

cannot produce economic yield (Bänziger et al., 2000), GY must be the primary trait to be 

considered even when the target of the breeding programme is abiotic stress prone 

environments. In conventional breeding, these measures imply careful identification of the 

morphological and physiological traits associated with GY, commonly denominated as 

secondary traits (Araus et al., 2008; Bänziger et al., 2000), and their related biochemical 

pathways (Lopes et al., 2011). 

As mentioned before, everything that happens in a living organism is genetically controlled. 

According to Falconer and Mackay (1996), the genetic control of a trait include the mode of 

inheritance (monogenic or oligogenic versus polygenic inheritance) and the gene action that 

leads to the expression of the trait. Understanding the genetic control of the most important 

traits that contribute significantly to improved heat and drought stress tolerance is important to 

help designing appropriate breeding strategies. As a starting point, the question whether there is 

enough genetic variation for the traits of interest within the crop species must be answered. 

1.4.1 Genetic variability for heat and drought stress tolerance 

Heat and drought stress are usually associated since transpiration which cools the plant is 

reduced when leaves roll (Bita and Gerats, 2013). Warmer temperatures increase development 

rate more than photosynthetic rate, so less assimilates would be available per growth stage, 

resulting in reduced yields (Edmeades, 2013). As a consequence, yields decline, but crops will 

mature more rapidly. The yield reduction under hot conditions is also due to the negative effects 

on the mechanisms that influence crop yields when the plant tissue temperature increases 

above the crop threshold. According to Naveed et al. (2014), maize plant growth is negatively 

affected at temperatures above 32oC and crop yields can be reduced by more than 100 kg ha-1 

every day when temperatures exceed 35oC during anthesis and grain filling periods. Sánchez et 

al. (2014) reviewed many literature resources and concluded that the key threshold temperature 

for maize is between 32 - 37oC. It has been also reported that a combination of heat and 

drought stresses is more detrimental than when each of the stress occurs individually (Cairns et 
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al., 2013a; Cairns et al., 2013b; Kebede et al., 2012; Mittler, 2006; Vile et al., 2011; Wahid et al., 

2007). Analysing a data set of more than 20,000 maize trials in Africa, (Lobell et al., 2011) found 

that maize yields were reduced by 1% per each degrees day above 30oC under optimum 

conditions and by 1.7% under drought stress conditions. This study showed that the upper limit 

of optimum temperature is not that high even for tropical maize germplasm. 

Therefore, identification of maize genotypes that can agronomically withstand the combined 

effects of heat and drought stress would be a better solution to mitigate the impact of the climate 

changes that are expected worldwide. Replacing existing cultivars with later maturing 

introductions would partially offset the duration of vegetative period with yield but it would 

contradict the important option of drought escape. Therefore, other traits must be considered 

when selecting for combined heat and drought stress tolerance. Identification of heritable 

genetic variation is the first requirement for genetic progress in breeding for stress tolerance 

(Blum, 2011). 

Existence of large genetic variability is a pre-requisite for success in a breeding programme for 

any trait in order to optimize response to selection. Although landraces may carry unique alleles, 

their breeding value for grain yield is usually very low (Edmeades, 2013) due to high dose of 

recessive deleterious alleles. The feasible option is to search for genetic variability in adapted 

and elite germplasm (Blum, 2011). Maize improvement for drought tolerance has received 

special attention from many breeding programmes in countries located in tropical and 

subtropical climates (Adebayo et al., 2014; Agrama and Moussa, 1996; Badu-Apraku et al., 

2012; Bänziger et al., 2000; Betrán et al., 2003b; Campos et al., 2004; Chimenti et al., 2006; 

Derera et al., 2008; Edmeades et al., 1997; Edmeades et al., 1998; Edmeades et al., 2001; 

Hayano-Kanashiro et al., 2009; Khalili et al., 2013; Khayatnezhad et al., 2011; Makumbi, 2005; 

Oyekunle et al., 2015; Ribaut and Ragot, 2007; Shiri et al., 2010; Tollenaar and Lee, 2006; 

Zhang et al., 1999) but there is very little on heat tolerance up to date. 

In the case of heat, Bai (2003) observed significant variation for all heat tolerance related traits 

among 179 recombinant maize inbred lines developed from a cross between a heat tolerant and 

heat susceptible inbred lines. In another study by Khodarahmpour et al. (2011), variations 

among inbred lines as well as among hybrids for heat stress tolerance were detected and the 

best lines and hybrid combinations for heat tolerance were identified. On the other hand, Lu et 

al. (2011) screened 550 inbred lines for drought tolerance in Tlaltizapan-Mexico, a tropical 

environment, under well-watered and water-stressed conditions, with average maximum 
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temperature during the growing experiment of 33oC, identified inbred lines that showed strong 

drought tolerance. These results indicated that some drought tolerant inbred lines also carried 

important genes that helped the plants withstand the environmental conditions that were 

characterized by a combination of drought and heat stress. In another study by Cairns et al. 

(2013) it was found that not all drought tolerant lines were heat tolerant. Furthermore, the study 

revealed that many of the elite drought tolerant donors widely used in Africa were susceptible to 

drought stress at elevated temperatures. In conclusion, it was stated that genetic tolerance to 

combined heat and drought stress in maize was distinct from tolerance to individual stresses 

and that tolerance to heat or drought separately did not imply tolerance to combined stress. 

1.4.2 Inheritance of grain yield and other important traits 

Grain yield is a complex polygenic “super-character” that is a product of the plant density and 

“sub-characters”, namely number of ears plant-1, number of grains ear-1 and average grain 

weight as described by (Moreno-Gonzalez et al., 1993). These “sub-characters” or yield 

components must be handled together in a breeding program to achieve a satisfactory level of 

grain yield under certain environmental conditions. Grain yield reduction under both heat and 

drought stresses have been reported in various studies (Bänziger and Araus, 2007b; Derera et 

al., 2008; Hussain, 2009; Jumbo and Carena, 2008; Kaur et al., 2010; Setimela et al., 2007; 

Vivek et al., 2009b) and genotypic differences have been observed. 

In conventional breeding approaches, the common way to assess the inheritance of the traits is 

to investigate the type of gene action involved in the genetic component of the total phenotypic 

expression of each trait (Hallauer, 2007b). According to Falconer and Mackay (1996), there are 

two types of gene action: additive and non-additive gene action. In many crops and for most of 

the traits, the predominance of either additive or non-additive gene actions is usually dependent 

to the population in study and it cannot be generalized (Hallauer, 2007b). One procedure 

popularly used to investigate the gene action is to assess the combining ability for a particular 

trait. Fehr (1939) defined combining ability as the potential of a line to produce a superior 

combination with others for a given character. The author categorized combining ability in 

general (GCA), the average performance of a line in crosses with other parents, and specific 

(SCA), the performance of a line in a cross with a specific parent. 

Since this concept was developed, breeders have adopted it in their breeding programs in order 

to identify the mode of inheritance, and then, suggest appropriate breeding strategies for a 
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particular trait in different crops, or to select desirable parents for future hybrid production in the 

case of cross-pollinated crops. Studies have been done in combining ability for grain yield, yield 

components and yield associated traits under diverse environment conditions. Although most of 

the findings gave evidence of significant effect of both GCA and SCA for grain yield and related 

traits (Derera et al., 2008; González et al., 1997; Hallauer, 2007b; Hallauer et al., 2010; Sprague 

and Tatum, 1942), suggesting importance of both additive and non-additive genetic control, it 

has been also clear that the predominance of each depends on the crop and materials within 

the same crop species. 

Gamble (1962a) hypothesized that when the material used to obtain the genetic variance 

estimates become more restricted or more selected in genetic background, the additive 

variance for grain yield in maize may be reduced, giving more predominance of non-additive 

gene effect. This author reported only minor contribution of additive effects for inheritance of 

grain yield in the studied group of maize inbred lines. It was found that all significant estimates 

of additive effects were positive, however, this changed when the position of the parent changed 

(reciprocal crosses). Another important conclusion that Gamble (1962a) made is that epistatic 

effects were important for grain yield, especially the additive × additive and additive × 

dominance interactions, but only few crosses exhibited dominance × dominance or the three 

types of epistasis simultaneously. 

In their search for epistasis, Moreno-Gonzalez and Dudley (1981) and Sofi et al. (2006) 

concluded that the two types of genetic variation were important, but non-additive variation 

contributed more than the additive one, suggesting more predominance of dominance and 

epistatic interactions in controlling grain yield and related traits. Equally, Sprague and Tantum 

(1942) compared the importance of GCA versus SCA in single crosses of maize and they found 

evidence of large predominance of GCA, although SCA was also statistically significant. 

Working with barley (Hordeum Vulgare), Sharma et al. (2002) also found GCA/SCA ratio 

smaller than a unit, indicating that the genotypic variation was more attributed to specific than to 

general combining ability. 

There are many researchers whose findings are contradictory to the above. Ojo et al. (2007) 

and Egesel et al. (2003) in maize, Nazir et al. (2005) in wheat (Triticum aestevum), Thomas and 

Sreekumar (2001) in black gram (Vigna mungo), Panhwar et al. (2008) in cotton (Gossypium 

hirsutum), Kimani and Derera (2008) in dry beans (Phaseolus vulgaris), and Kenga et al. (2006) 

in sorghum (Sorghum bicolor), are some examples of authors who reported relatively high 
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predominance of additive than non-additive genetic variations for grain yield in different crop 

species. 

Traits that are not yield components have mostly been found to be controlled primarily by 

additive gene action in various crop species, although in many cases non-additive gene effects 

have also been found playing important role. Wegary et al. (2014) reported predominance of 

GCA over SCA effects for most maize agronomic traits tested under drought, low-nitrogen and 

optimum environmental conditions. Kimani and Derera (2008) observed significant effects due 

to both GCA and SCA in dry beans for all traits, and concluded that additive gene action was 

more important than non-additive. Working with common beans, Derera et al. (2008) found 66% 

of the genotypic variance due to GCA, indicating the predominance of additive over the non-

additive gene action in conferring resistance to anthracnose (Colletotrichum lindemuthianum). 

Similar results were reported in maize by Jung et al. (1994). 

As quantitative characters, grain yield and yield component traits, are greatly influenced by the 

environment. Sun light, temperature, water availability and soil fertility are the most important 

environment factors affecting the genetic expression for grain yield (Bänziger et al., 2000). 

Several studies have demonstrated that both GCA and SCA for grain yield in maize are 

influenced by environment (Derera et al., 2008; Egesel et al., 2003; Ojo et al., 2007) indicating 

that the performance of the lines themselves and their behaviour in different combinations may 

differ according to the conditions in which the hybrids are grown. In quality protein maize (QPM), 

Bhatnagar et al. (2004) did not find significant effects of GCA for grain yield, but its interaction 

with environment was significant. On the other hand, the same author found significant effect of 

SCA, yet, its interaction with environment was not significant. In a dialell analysis of nine quality 

protein maize inbred lines evaluated under optimum conditions, Machida et al. (2010) observed 

that SCA effects were dominant over GCA effects for grain yield. Testing 15 quality protein 

maize inbred lines under drought and low-nitrogen stresses and optimal conditions, Wegary et 

al. (2014) reported that GCA and SCA mean squares were significant for all measured traits 

including grain yield, indicating that additive and non-additive genetic effects were important in 

the set of germplasm under all test environments. In the study by Wegary et al. (2014), the GCA 

effects were more important under drought stress, while SCA effects were more important under 

low-nitrogen and optimal conditions for grain yield. 

Root properties 
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Root characteristics, especially root depth, is one of the traits considered correlated with grain 

yield under both heat and drought stress (Ribaut et al., 2009). The correlation between root 

depth and heat tolerance is explained by the ability of the plant with deeper roots to capture 

water for transpiration (leaf cooling system) from depths that cannot be achieved by susceptible 

genotypes. 

Vacaro et al. (2002) investigated combining ability of 12 maize populations in a diallel mating 

design for different traits including root system. This study revealed also a predominance of 

additive gene action for root depth as the GCA variance was larger than the SCA variance. In 

another study, Chun et al. (2005) investigated specifically the genetics of the maize root 

characteristics in response to low nitrogen stress. This study did not find changes in root 

biomass, but in root depth. Both GCA and SCA variances were equally significant indicating the 

importance of both additive and non-additive gene actions in controlling the root depth. 

In a PhD thesis, Hussein (2009) conducted studies related to genetics of drought tolerance in 

maize, where he looked at many traits related with GY, including root aspects, under both 

stressed and non-stressed conditions. Hussein reported significant genotypic variation in root 

properties and he observed that genotypes with high root length and fresh root weight coincided 

with genotypes tolerant to drought. Recently, Oliveira et al. (2011) published results obtained in 

a 6 x 6 half diallel study in which they also found significant variation in root depth but no 

changes in total root biomass were observed. Significant GCA and GCA × production system 

interaction effects were detected in the analysis, but SCA was only significant for GY and plant 

height. Based on these results, the authors concluded that the most important root property is 

the depth and that it is controlled by additive gene action with different magnitude depending on 

the soil characteristics. Analysing data from a 6 × 6 maize diallel experiment grown under 

normal and high temperature conditions, Akbar (2008) found importance of both additive and 

non-additive gene effects under both environments. However, under heat stress the additive 

genetic variation reduced significantly. This increased the relative proportion of non-additive 

variance for root biomass, with greater predominance of maternal effect. 

Plant height and ear position 

Plant height and ear position (ratio between the plant height and ear insertion height) are 

important for heat and drought tolerance because of the very large distance between the ear 

insertion and the tassel of maize (Bänziger et al., 2000). This makes the pollen to be more 
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susceptible to heat and desiccation (Betrán et al., 2003c), therefore, tolerant genotypes tend to 

have shorter plant phenotypes (Ribaut et al., 2009).  Recent study by Aly et al. (2011), revealed 

significant additive gene action compared to non-additive action in controlling plant height of 

testcross hybrids evaluated under normal growing conditions. Surprisingly, Bello and Olaoye 

(2010) did not detect significance of neither GCA nor SCA variances in a two years experiment 

with 10 open-pollinated varieties conducted in a typical southern guinea savannah ecology of 

Nigeria. Although some studies have indicated large proportion of SCA than GCA effects 

(Akbar, 2008), other studies in maize were consistent in attributing importance of additive 

effects in controlling plant height (Malacarne and San Vicente, 2003). 

Sibiya (2009) analysed data from different environments of maize half diallel crosses generated 

from 10 parents and found significant effect of GCA but not SCA, for plant height and ear 

position, suggesting importance of only additive gene action under the conditions of that 

experiment and for the germplasm under consideration. Results from Teklewold and Becker 

(2005) show even more than 8 times larger GCA than SCA sum of squares in Ethiopian 

mustard, but Sharma et al. (2002) in barley and Passos et al. (2010) in Ricinus communis 

reported larger SCA effect than GCA. Under drought stress conditions Hussain (2009) reported 

significant additive and dominance genetic variances, with no maternal effect, for plant height. 

Additive gene effects were predominant over dominance gene effects.   

Under stressed conditions, Jumbo and Carena (2008) concluded that only additive gene action 

was important for ear position (ratio between plant height and ear height), since only GCA 

effects were significant in a half diallel analysis involving seven parents. Specific combining 

ability and genotype-by-environment interaction effects were not significant at all. Very similar 

results were reported by Mhike et al. (2011) in a study of 100 hybrids generated by 10 × 10 

North Carolina design II. The experiment was conducted in both stressed and non-stressed 

conditions and only GCA effects were significant for plant height and ear position, again with no 

interaction effect between genotypes and environments. 

Leaf area and leaf rolling 

Leaf area and leaf rolling are important maize traits to be considered when screening for heat 

and drought tolerance. Large leaf area results in high amount of sun light capture, therefore high 

photosynthetic rate (Reynolds and Trethowan, 2007). However, Banziger et al. (2000) called 

attention to the fact that large leaf area increases transpiration rate, thus, increasing stress 
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vulnerability. Various studies demonstrated genetic variability for maize leaf rolling under 

drought stress conditions (Moulia, 2000), but little was found published on this trait under heat 

stress in maize. Under drought, Zaidi et al. (2008) observed consistent significant and negative 

correlation between maize leaf rolling and grain yield, suggesting that selection must be directed 

to unrolled leaves under drought. Similar findings were reported in Chen (2010)’s studies on 

genetics of characters associated with drought tolerance in maize. 

Additive gene action controlling maize leaf rolling was reported by Durães et al. (2011) as one of 

the traits evaluated under drought stress condition in EMBRAPA-Brazil. The study by Husasain 

(2009) also identified additive gene action as the most important in controlling the rate of leaf 

rolling. Under heat stress and cooler environments, Akbar (2008) reported importance of both 

additive and non-additive gene action, with predominance of additive type. 

1.5 Morpho-physiological, biochemical and agronomic traits correlated 

with maize grain yield under heat and drought stress conditions 

Genetic improvement for abiotic stress tolerance can be achieved through direct selection for 

grain yield (GY) in a target environment (empirically) or analytically (physiological breeding) by 

an indirect selection for secondary traits related to higher GY potential simultaneously in both 

stressful and optimum environments (Araus et al., 2008). In general, selection for secondary 

traits correlated with GY under managed drought stress conditions in open field environments is 

the most popular procedure used or advocated by many plant physiologists and breeders 

(Araus and Sanchez, 2012; Bavei et al., 2011; Kebede et al., 2012; Liu et al., 2011; Lopes et al., 

2011; Mhike et al., 2012; Molina-Bravo et al., 2011; Obeng-Bio et al., 2011; Reynolds and 

Trethowan, 2007; Sinclair, 2011; Takele, 2010; Talebi, 2011; Tollenaar and Lee, 2006; Vaezi et 

al., 2010; Wahid et al., 2007; Weber et al., 2012; Zhuan-Fang et al., 2011). However, it has 

been well demonstrated in most of the above publications that for a secondary trait to be useful 

in selection for stress tolerance it must fulfil certain attributes. More specifically, Bänziger et al. 

(2000) in maize, Fischer et al. (2003) in rice and Reynolds et al. (2001) in wheat gave 

exhaustive recommendations for the use of secondary traits in breeding for drought, low soil 

fertility and heat stress tolerance in those crops. These authors agree that the following 

attributes must be observed for a secondary trait to be useful. First, it must be genetically 

correlated with GY in the stress under consideration. It is also important that the trait be less 

affected by environment (less genotype-by-environment interaction) than GY. Therefore, a 
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useful secondary trait must exhibit greater heritability than GY itself. It must be faster, easier 

and not expensive to measure than assessing GY itself. It must be easily assessed in individual 

plants or in very small plots. 

In Bänziger et al. (2000), the number of ears per plant, anthesis-silking interval, leaf rolling, leaf 

senescence and tassel size were described as the most helpful secondary traits to identify 

drought tolerance in maize, while for low nitrogen stress tolerance the same traits were 

considered important but not leaf rolling and tassel size. Very recently, Mhike et al. (2012) 

validated the use of secondary traits and selection indices for drought tolerance in tropical 

maize. He concluded that anthesis-silking interval and number of ears per plant were the most 

useful secondary traits because they were consistently and strongly correlated with GY. 

Although some common plant traits are observed under both drought and heat stresses, it has 

been emphasized that drought tolerance does not necessarily indicate heat tolerance (Prasad et 

al., 2008). This is because the molecular and biochemical responses of plants to a combination 

of the two stresses are unique and cannot be extrapolated simply from responses to the 

individual stresses (Mittler, 2006). Bai (2003) studied GY under heat stress and its correlation 

with other physiological and agronomic traits in maize. It was found that yield per plant was 

negatively correlated with percentage of leaf firing and days to flowering and positively 

correlated with chlorophyll fluorescence and number of tassel branches. Also, Akbar (2008) 

investigated the significance of the correlation coefficients among the different traits whilst 

studying the genetic control of high temperature tolerance in maize. Cell membrane thermo-

stability, stomata conductance, transpiration rate, leaf water potential, leaf osmotic potential, 

turgor potential, growing degree days to flowering, growing degree days to maturity and growing 

degree days between tasseling and silking were the physiological traits whose correlations with 

grain yield per plant were analysed. In terms of agronomic traits, plant height, ear leaf area, 

number of grains per plant and 100 grain weight were included. All agronomic traits were found 

to be significantly correlated with grain yield per plant under both normal and high temperature 

conditions, except 100 grain weight under optimum conditions. Interestingly, no genetic 

correlation was observed between morphological traits and grain yield per plant under normal 

temperature, with the only exception of the growing degree days between tasseling and silking. 

In contrast, under high temperature stress, most of the physiological traits were genetically 

correlated with grain yield per plant, apart of leaf water potential, stomata conductance and 

growing degree days to flowering and maturity. Thus, the relationship among plant traits 

changes according to the type of stress under consideration. Hence, it will be helpful to 
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investigate whether under combined stresses the traits correlated with grain yield will be the 

same as the sum of the traits under drought and under heat stresses separately. 

1.6 Genetic control of maize quantitative traits under unstressed and 

combined heat and drought stress conditions 

Quantitative genetic studies were more extensively conducted with maize compared to other 

crop species, and most of the estimates for genetic components of variance showed a 

preponderance of additive variance (Hallauer et al., 2010). Additive and dominance gene 

actions account for more than 90% of the total genetic variance for most of the quantitative traits 

in several studies (Hallauer, 2007a), while estimates of epistatic variances were in most cases 

large and negative. However, Hallauer (20017a) advises that epistasis may be as important as 

additivity and pure dominance when studying genetic control of quantitative traits, because of 

the large number of genes that are normally involved in the expression of those traits. Bauman 

(1959) attempted to find evidence of non-allelic gene interaction in determining GY, ear length 

and number of kernel rows in maize. Although epistatic effects were found to be significant in 

that study, some epistasis × year interactions were also significant. Thus, Bauman highlighted 

that the epistatic effects in some cases may be confounded with genotype-environment 

interactions. Also Gamble (1962b; a) studied genetic effects in some maize traits including GY 

and reported interesting results related to epistasis: it was observed that epistatic gene effects 

were relatively more important than additive gene effects but less than dominance gene effects 

for the material studied. However, only additive gene effects were consistent over environments 

followed by additive × dominance epistatic effects.  

Twenty years later, Moreno-Gonzalez and Dudley (1981) compared different methods of 

measuring the importance of epistasis in maize. Epistatic effects were found significant but 

small compared to additive and dominance variation in several crosses for many characters, 

except for GY where only the dominance effects were significant when tested against the 

appropriate interaction mean squares. In another study involving early flint and dent inbred 

lines, all types of gene action were significant but dominance effects were greater than additive 

and epistatic effects for grain yield and plant height (Melchinger et al., 1986). Similar findings 

were reported in many of the recent studies under unstressed environments (Aly et al., 2011; 

Bello and Olaoye, 2009; Iqbal et al., 2010b; Iqbal et al., 2010a; Kumar et al., 2012; Oliveira et 

al., 2011). 
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Under drought stress growing conditions, Fu et al. (2008) revealed that dominance was more 

important than additive effect for  plant height, anthesis-silking interval, root weight and  grain 

yield per plant, whereas both additive and dominance effects were almost equally important for 

the leaf emergence rate. Fu et al. (2008) observed that the variances for specific combining 

abilities were about double the variances of general combining abilities for plant height, 

anthesis-silking interval and grain yield per plant, but they were about equal for leaf emergence 

rate and root weight. This was a clear indication of a preponderance of dominance gene action 

compared to additive.  Contrarily, Betrán et al. (2003b) found additive gene action to increase 

with the intensity of the drought stress in tropical maize inbred lines. Using 27 Southern African 

maize inbred lines in sets of NCDII mating designs, Derera et al. (2008) investigated gene 

action controlling grain yield and secondary traits under drought stress and non-stressed 

conditions. In general, their findings indicate predominance of additive action in governing the 

phenotypic expression of most of the traits, especially GY, under both stressed and non-

stressed conditions, but the importance of non-additive gene action appeared to be bigger 

under non-stressed environments. This suggests that, regardless of the type of germplasm, 

gene action seems to change depending upon the intensity of drought stress. Similar findings 

have repeatedly been reported in recent studies on drought tolerance in maize (Hussain et al., 

2009; Makumbi et al., 2011; Meseka et al., 2011; Mhike et al., 2011). 

Although the negative impact of heat stress on maize productivity in tropical environments has 

been recognized for quite a long time, there are relatively few studies on genetic control of heat 

stress tolerance in maize compared to drought stress tolerance. This is probably due to the 

complexity of heat stress assessment under field conditions. The earliest publication on genetic 

effects of heat tolerance in maize was by Jorgensen and Nguyen (1995). They analysed the 

genetics of heat shock proteins (HSPs) in maize, which were reported to be correlated with heat 

tolerance in many species including maize (Hu et al., 2010; Jorgensen et al., 1992). The study 

revealed a single gene inheritance characterized by three types of intra-allelic interaction 

(complete dominance, over-dominance and co-dominance) determining the synthesis of HSPs 

under heat stress treatment. Later, Tassawara et al. (2007) studied gene action and combining 

abilities for thermo-tolerance in maize. Five heat tolerant and five heat susceptible lines were 

crossed with four heat susceptible testers in a line × tester mating design. The progeny were 

evaluated in a season with maximum temperatures reaching up to 40oC. The dominance type of 

gene action was predominant for all the 13 traits recorded in that study. Another genetic study of 

heat tolerance in maize was conducted by Kaur et al. (2010). Combining ability for heat stress 
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tolerance in spring maize was investigated using a 12 × 12 diallel mating design under heat 

stress (maximum temperatures ranging from 35 to 45oC during the flowering time). Both additive 

and non-additive gene action were found to be involved in the inheritance of all the studied heat 

tolerance and yield contributing traits, but only leaf firing was significantly correlated with GY. 

Leaf firing was also strongly correlated with tassel blast, indicating that the two traits are useful 

when selecting for genotypes adapted to hot environments. 

All the current knowledge about the inheritance of grain yield and other important traits suggests 

that the predominance of a type of gene action is dependent on the type and number of 

genotypes involved, and also on the type and intensity of the stress under which the traits are 

assessed. Now, the question is: what are the gene actions controlling characters related to 

maize GY under combined heat and drought stress condition in tropical germplasm? The 

answer for this question requires research under conditions characterized by a combination of 

the two stresses. For comparison purposes, the same germplasm also need to be tested also 

under non-stressed, isolated heat stress and isolated drought stress conditions. 

1.7 Determination of heterotic orientation in maize 

To facilitate a systematic exploitation of heterosis, it is necessary to use heterotic groups and 

identify heterotic patterns among the available maize germplasm. This is so because of the 

weak correlation between the performance of the inbred lines per se and their hybrid progenies 

for most of the agronomic characters, especially grain yield (Hallauer, 2007a). 

According to Melchinger and Gumber (1998), heterotic group can be defined as a group of 

genotypes, from the same or different populations, which display similar combining ability and 

heterotic response when crossed with genotypes from other genetically distinct germplasm 

group. On the other hand, heterotic patterns are crosses between known genotypes that 

express a high level of heterosis (Carena, 2008). Accordingly, the heterotic effects will be 

unique for each hybrid, because the specific combinations of dominance and epistatic effects 

are different for each hybrid. 

Different breeding programs, in different countries, regions or institutions, have different 

systems to classify their breeding materials in to heterotic groups. However, the International 

Maize and Wheat Improvement Centre (CIMMYT) divide its maize germplasm in to basically two 

heterotic groups, A and B (Vasal et al., 1999). Heterotic group A (HGA) includes N3, Tuxpenõ, 
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Kitale and Rid types, while heterotic group B (HGB) it is comprised of SC, Eto, Blanco Ecuador, 

and Lancaster types. 

Depending on the source materials and ultimate goal, breeders choose different methods to 

classify maize germplasm in to different heterotic groups. One of methods consists of 

separating inbred lines based on their specific combining abilities (SCA) from a diallel analysis 

with the respective line-pedigree information (Malacarne and Vicente, 2003). With this method, 

the best heterotic pattern for grain yield provides the discriminating parents. A line is assigned to 

the same group with a given discriminator if their estimated SCA is negative. Using the diallel 

cross approach, Gonzalez et al. (1997) classified ten maize inbred lines into HGA and HGB by 

comparing the sign of their SCA effects. Lines with positive SCA with a discriminator were 

assigned to one heterotic group, while those with negative signal were assigned to the other 

group. However, Zhang et al. (2002) observed that the reliability of SCA from diallel analysis 

depends upon the quantity and genetic basis of the inbred lines used as parents, therefore, it 

restrict its application for heterotic group classification. This was also supported by Fan et al. 

(2009) who highlighted that different studies might assign the same inbred line to different 

heterotic groups, because SCA effects are greatly influenced by the interaction between two 

inbred lines and by hybrid-by-environment interaction. 

Another method employs heterotically contrasting and known testers, in a factorial line-by-tester 

mating design, to discriminate new inbred lines, also based on the SCA signal. Many maize 

breeding programmes use this method because it accommodates the large numbers of new 

inbred lines that are commonly handled in their programmes. Malacarne and Vicente (2003) 

used two heterotically divergent tester lines, to classify 42 new inbred lines, with different 

endosperm hardness, in two heterotic groups. One important conclusion from their study was 

that the endosperm type does not necessarily allow predicting heterosis or heterotic patterns, 

especially when the lines were extracted from a broad genetic base source population. Their 

results showed that most of the dent-type lines belonged to HGA, while HGB included both dent 

and flint-type lines. To classify CIMMYT elite early maturing maize lines, Mawere (2007) also 

followed the line-by-tester approach, but using single-cross hybrids (A × A and B × B) as 

testers. Five out of the sixteen inbred lines were assigned to HGA and other five to HGB. Three 

lines combined well with both the testers; therefore, they were classified as AB group. The 

remaining three lines showed poor performance, with either tester A or B, so it was impossible 

to classify them with this method. 
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With the discovery of molecular markers, genetic similarity or genetic distances are used to 

heterotically separate maize germplasm. Molecular marker technologies can detect DNA 

polymorphism at any stage of plant development and are not influenced by environment. Menkir 

et al. (2004) classified thirty-eight maize inbred lines using their SCA with two tester lines 

representing two divergent heterotic groups, and using their genetic similarity assessed by 

AFLP and SSR molecular markers. These molecular markers assigned the inbred lines to 

heterotic groups different from those assigned by SCA with the known testers. The authors 

concluded that molecular marker-based grouping might only serve as a basis for designing and 

carrying out combining ability studies in the field to establish clearly defined heterotic groups. 

Barata and Carena (2006) also evaluated the consistence of SSR (49 primers) and testcross 

grouping of thirteen maize inbred lines. Their results showed that heterotic groups of genetically 

similar germplasm could not be identified accurately and reliably with molecular markers even 

when the tested germplasm was from diverse origins. Other evidences confirm that one cannot 

heterotically group germplasm based only on the genetic distances. This observation was also 

made by Aguiar et al. (2008). 

A novel method that combines both SCA and GCA in a testcross mating design was proposed 

by Fan et al. (2009) and named heterotic groups’ specific and general combining ability 

(HSGCA). Basically, the method has four steps after estimating the normal individual GCAs and 

SCAs effects of each line, tester and testcrosses: 1) to calculate individual HSGCA effects (

ijii sgHSGCA  ); 2) to place all lines with negative HSGCA effects into the same heterotic 

groups as their testers. A line can be assigned to more than one heterotic group; 2) to keep the 

line to the assigned heterotic group if its HSGCA effect is the smallest and remove it from other 

heterotic groups; and 3) to NOT assign a line to any heterotic group if its HSGCA effects are 

positive with all testers, because it might belong to a completely different heterotic group that is 

not represented by the testers used. 

Because of the unlimited genetic combinations between any two inbred lines, no heterotic group 

classification method is fully perfect. However, it is still possible to adopt a good heterotic group 

classification method. A good heterotic group classification method is one whose classified 

heterotic groups allow inter-heterotic group crosses to produce more superior hybrids than the 

within group crosses. Fan et al. (2009), compared the breeding efficiency of the three heterotic 

group classification methods, namely molecular marker-based, pure SCA from diallel crosses 

and the newer HSGCA methods. They defined “breeding efficiency” as percentage of superior 
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high-yielding hybrids obtained across the total number of heterotic crosses, and they concluded 

that the HSGCA method was more reliable and efficient than the other two methods. 

1.8 Conclusion  

From the reviewed literature, it is envisaged that the use of unimproved seeds is the most 

important socio-economic constraint in maize production under poor farmers’ field conditions 

and a joint effort of the extension services, seed companies and NGOs can help educate the 

farmers and solve associated problems. Field pests and foliar diseases are the main biotic 

constraints and they are already being addressed by different breeding projects in the region. 

Although breeding for improved grain yield under low soil fertility has not achieved spectacular 

results, research is continuing since 1995. Currently, there are three regional projects, one on 

breeding and two on agronomy, attempting to address the low soil fertility problem. 

In contrast, combined heat and drought stress tolerance in maize is a relatively new research 

area and little has been done in terms of genetic studies and practical breeding. Only two final 

studies on genetic variability for combined heat and drought stress tolerance by CIMMYT have 

been reported (Cairns 2013). Of course, the two studies could not include all lines that are in 

use by different national programmes in the region, in general, and in Mozambique, in particular. 

Large genetic variability was reported among the 300 lines investigated in the latest study and 

only 10 (3 %) inbred lines were identified as candidate donors for combined heat and drought 

stress tolerance. On gene action, only two studies for heat tolerance alone have been published 

and none on combined heat and drought stress tolerance. In one study, both additive and non-

additive gene actions were reported to be important and it did not indicate which one was found 

predominant. In the second one, it was reported predominance of the dominance type of gene 

action for grain yield and all other traits studied. For a practical breeding approach, it is very 

important to have knowledge about the major traits associated with grain yield under combined 

heat and drought stress conditions. Such information was not found during the literature search. 

Also, it has not been reported whether combining ability and heterotic orientation of maize lines 

would change or remain the same when growing conditions change from non-stressed to 

combined heat and drought stress. Therefore, specific research is required in order to fill these 

gaps in information for scientists addressing the challenge caused by climate change worldwide, 

especially in the tropical lowland environments. 
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2. CHAPTER 2. Genetic variability for combined heat and drought 

stress tolerance in tropical lowland maize germplasm 

 

Abstract 

Poor rainfall distribution and temperatures above the optimum threshold limit for maize (Zea 

mays L.) are the most limiting production constraints in tropical and subtropical environments. 

Maize breeding programmes that address tolerance to these abiotic stresses are 

recommended. Therefore, this study was designed to assess genetic variability for combined 

heat and drought stress tolerance in the maize germplasm in Mozambique. One hundred and 

eight maize inbred lines were assembled from the National Programme of Mozambique, 

International Centre for Maize and Wheat Improvement and International Institute for Tropical 

Agriculture for this study. Experiments were conducted during the 2014 hot and off-rain season 

at both Chiredzi and Save Valley, in Zimbabwe, and 2014/15 main season at Chókwè, in 

Mozambique. Experimental design was a 9 × 12 α-lattice with two replications per experiment 

grown under managed drought and fully-irrigated conditions at each site. Significant differences 

among genotypes for days to anthesis, anthesis-silking interval, plant height, leaf senescence, 

number of plants at harvesting, ear aspect, grain yield and grain yield rank under the four 

environments were detected. Number of ears plant-1 was not significant at Chiredzi (p > 0.05) 

and ear position was only significant at Chókwè under unstressed condition. Combined 

environment analysis detected highly significant effects due to environment and genotype 

effects for the majority of traits, except anthesis-silking interval for which was significant at p < 

0.05, implying that experimental growing conditions and genotypic performance were different. 

Genotype × environment interaction mean squares were significant only for leaf senescence, 

grain yield and days to anthesis, suggesting that differential response of genotypes due to 

changes on growing conditions were pronounced only for these three traits.  Maize inbred lines 

tolerant to the combined heat and drought stress were identified. Inbred lines IL-92, IL-107, IL-

53 and IL-101, with good grain yield, lower lodging and ear aspect, were outstanding and were 

considered stronger candidates for future use in breeding for combined heat and drought stress 

tolerance under subtropical lowland environments.  
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2.1 Introduction 

Heat and drought stresses occur simultaneously during the main cropping season (rain and 

warm) in many tropical environments, and this has been a matter of concern among farmers 

and public leadership. In Mozambique, the National Institute for Natural Disasters’ Management 

(INGC) published a comprehensive report on the analysis of climate changes and it concluded 

that there was an increase in the average and frequency of maximum temperatures, while the 

frequency of rainfall was decreasing (INGC, 2010). Using maize crop data, Harrison et al. 

(2011) investigated the impact of temperature changes during the 1979/80 - 2008/09 period on 

maize production in Mozambique. They reported that there was a reduction in the length of 

vegetative stages and the reproductive organs appeared significantly earlier as a direct 

consequence of increased average mean temperatures. This may have a negative impact on 

future maize yields in the majority of the Mozambican agro-ecologies that are characterized as 

hot environments. 

The optimum temperature range for maize is between 32 to 37oC as reviewed by Sánchez et al. 

(2014) and yield losses due to heat stress are result of several negative effects on the plant 

body and system, varying depending on the stage of the crop.  Karim et al. (2000) observed 

that, at seedling stage, supra-optimal temperatures weaken the plantlets and quickly turn leaf 

colour from dark-green to pale-green or even yellow, indicating an accelerated senescence. 

During the vegetative stage, one of the negative effects is leaf injuries (Mahmood et al., 2010), 

easily observed like “leaf firing”, which leads to reduced photosynthetic area (Edreira and 

Otegui, 2012). High temperatures also shorten vegetative stage by accelerating plant 

development (Reynolds et al., 2016) and also shorten grain filling stage (Edreira and Otegui, 

2012). When heat stress occurs during the flowering period, pollination can be seriously 

affected due to reduced pollen viability (Schoper et al., 1987a) and rapid silk desiccation 

(Schoper et al., 1987b) with a decrease in kernel set. Because of reduced photosynthetic leaf 

area, grain filling stage is negatively affected and final kernel weights are reduced with final 

consequence of lowered grain yields. 

Therefore, selection of maize germplasm tolerant to combined heat and drought stress under 

field conditions is of uppermost importance as one of the strategies to help maintain or even 

improve grain yields in environments and seasons characterized by temperatures above the 

optimum range for the crop and unpredictable rainfalls.  
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Existence of a large pool of genetic variability is a pre-requisite for a successful breeding 

programme for any trait in order to optimize response to selection. Maize improvement for 

drought tolerance has received special attention, in general, from many breeding programmes 

in countries located in tropical and subtropical climates (Bänziger et al., 2000; Bänziger et al., 

2004; 2006; Derera et al., 2008; Magorokosho and Tongoona, 2004; Makumbi, 2005; Makumbi 

et al., 2011; Messmer et al., 2009; Mhike et al., 2011; Mhike et al., 2012; Ribaut and Ragot, 

2007; Ribaut et al., 2009; Vivek et al., 2009),  and in Mozambique (INIA, 2001) in particular. 

In the case of heat, Bai (2003) observed significant variation for all heat tolerance related traits 

among 179 recombinant maize inbred lines developed from a cross between a heat tolerant and 

heat susceptible inbred lines. In another study by Khodarahmpour et al. (2011), variations 

among inbred lines as well as among hybrids for heat stress tolerance were detected and the 

best lines and hybrid combinations for heat tolerance were identified. On the other hand, Lu et 

al. (2011) screened of 550 inbred lines for drought tolerance in Tlaltizapan-Mexico, a tropical 

environment, under well-watered and water-stressed conditions. The average maximum 

temperature during the growing experiment was 33oC. The study successfully identified inbred 

lines that showed strong drought tolerance under such a warm and dry environment. This may 

be an indication that the identified drought tolerant lines also carried important genes that 

helped the plants withstand the environmental conditions that were characterized by a 

combination of drought and heat stress. 

The majority of the available maize lines at the Mozambique Institute for Agricultural Research 

(IIAM) were developed using drought tolerant (DT) populations from CIMMYT and others were 

directly introduced from CIMMYT and IITA as drought tolerant fixed lines for immediate creation 

of drought tolerant varieties. However, none of the locally developed lines have been screened 

for tolerance to combined heat and drought stress. In addition, the performance of the 

introduced DT lines from CIMMYT under combined heat-drought stress conditions is still 

unknown. Therefore, the purpose of this study was to assess genetic variability for combined 

heat-drought stress tolerance among the available maize inbred lines in Mozambique. 
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2.2 Materials and Methods 

2.2.1 Maize germplasm 

A total of 108 maize inbred lines (ILs) from IIAM (IL-1 to IL-82 and IL-103 to IL-105), CIMMYT 

(IL-83 to IL-100 and IL-106 to IL-108), and IITA (IL-101 and IL-102) were evaluated (Appendix 

2.1). IIAM lines were developed under the Mozambican environmental conditions using drought 

tolerant populations introduced from CIMMYT-Zimbabwe during the Rockefeller Foundation 

Project period (2004 to 2007). Some of the lines from CIMMYT were introduced as parents of 

hybrid varieties released in Mozambique and others came under the Drought-Tolerant Maize for 

Africa (DTMA) and the Insect-Resistant Maize for Africa (IRMA) collaborative regional projects. 

Seeds were multiplied at Chókwè Research Station in 2012 using “sibbing” pollination method 

and then treated with Actelic insecticide and kept in the cool storage room. 

2.2.2 Experimental sites, design and field management 

 The trial was conducted in Zimbabwe, at Chiredzi (21o 02’ S, 31o 37’ E, 420 m.a.s.l.) and Save 

Valley (20o 15’ S, 32o 22’ E, 455 m.a.s.l.) and in Mozambique at Chókwè (24o 32’ S, 33o 00’ E, 

33 m.a.s.l.) experimental stations. These are subtropical lowland environments which fall under 

800 m altitude according to the CIMMYT classification system. Therefore results from the study 

will be representative of the subtropical lowland conditions and weather information during the 

growing period of the experiments at each site are summarised in Figures 2-1, 2-2 and 2-3. 

The trials were laid out as 9 × 12 alpha-lattice design with two replications at each site. Plot 

sizes were single 4 m rows with spacing of 0.75 m between planting rows and 0.25 m between 

stations within a row. Two seeds per station were sown and thinned to one plant per station 

after emergence was complete, resulting in 17 plants plot-1 which corresponded to a plant 

population density of approximately 53,333 plants ha-1. Two border-rows were planted at each 

side of the range and were treated the same as the experimental plots. 

The treatments were: 

i. Heat alone and combined heat and drought stress conditions at Chiredzi and Save Valley 

sites. At Chiredzi, the experiments were sown on 06 August and at Save valley on 25 

September, 2014 which is the off-rain season and hottest period in that region. Mineral 
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fertilization was applied at each site. A total of 40 kg N ha-1 urea and 60 kg P ha-1 as triple 

calcium superphosphate were applied at sowing. A second application of N (60 kg N ha-1) was 

applied five weeks after emergence. At each location there were two experiments under 

different water-regimes as follows: fully-irrigated and managed-drought. Irrigation was done with 

sprinklers at the two sites and water was applied until physiological maturity for the fully-irrigated 

conditions while for managed-drought, irrigation was stopped five days after application of top-

dressing fertilizer (40 days after emergence). Therefore, two different stress categories were 

experienced: 1) heat stress alone = well-watered and hot (WWH) and 2) managed drought and 

heat (MDH) stress conditions. 

ii. Only a Random-drought condition (not the combined heat and managed drought) was 

observed at Chókwè Research Station because sowing was only possible on 07 November, 

2014, when rains had started. Drought spells occurred during the final period of flowering stage 

and grain filling. Consequently, mild and random-drought stress (RDS) was experienced. In 

Chókwè, basal fertilizer at the rate of 40 kg N ha-1, 40 kg P2O5 ha-1 and 40 kg K2O ha-1 and top 

dressing with 60 kg N ha-1 were applied. 

iii. Optimum condition: Another experiment was established at Chókwè with optimum 

conditions. These conditions differed from the RDS by having supplemental irrigation throughout 

until physiological maturity.  

2.2.3 Data collection  

Recommended procedures by CIMMYT (CIMMYT, 1985; Magorokosho et al., 2008) were 

followed for the assessment of most of the traits and data were collected on per plot basis. The 

two plants from each end of the row were discarded as border plants in all observations. 

Recorded variables varied from site to site. Nine variables, namely days to anthesis (AD), 

anthesis-silking interval (ASI), average plant height (PH), average ear placement (EPO) leaf 

senescence (LS) final number of plants (NP), average number of ears plant-1 (EPP), ear aspect 

(EA) and grain-yield (GY) were recorded. Plant heights were not measured at the stressed 

environment of Chókwè and LS was not recorded at Save Valley.  
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Weather information during the experiment growing periods at the three experimental sites: 

 

Figure 2-1. Daily precipitation, evaporation and maximum temperature during the experiment growing 
period at Chiredzi. 

 

Figure 2-2. Daily precipitation, evaporation and temperature during the experiment growing period at 
Save Valley. 
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Figure 2-3. Daily precipitation, evaporation and temperature during the experiment growing period at 
Chokwe. 

2.2.4 Data analysis  

For data analysis single environment (stress within location) analyses were carried out using 

REML procedure in Fieldbook-IMS statistical software developed by CIMMYT (Bänziger et al., 

2012). A combination of mixed model and spatial analyses were employed as recommended by 

Bänziger et al. (2000) as a measure to reduce experimental error in heterogeneous field trials. 

Inbred lines (genotypes) were taken as fixed and incomplete blocks were considered as random 

factors. Across environment analyses were done in SAS version 9.2 following PROC GLM. 

Locations and genotypes were treated as fixed, while stress and all interactions were 

considered random factors. Adjusted genotypic means from the single environment analyses 

were used (Pimentel-Gomes, 2009). Therefore, the resulting mathematical model for the 

analysis was as follows: 

Yijkm = μ + li + s(l)ij + (s × l)ij + gk + (g ×l)ki + (g × s)kj + (g × l × s)kij, [Equation 2-1] 

Where Yijkm is the individual adjusted mean estimated in environment (location × stress) for 

particular variable; μ is the grand mean; li is the estimate of the ith location effect; (sl)ij is the 

estimate of the jth stress category effect within ith location; (s × l)ij is the estimate of the stress × 

location interaction effect; gijk is the estimate of the kth genotype (inbred line) effect in jth stress at 

ith location; (g × l)ik is the estimate of the genotype × location interaction effect; (g × s)jk is the 
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estimate of the genotype × stress interaction effect; and (g × s × l)ijk is the estimate of the 

genotype × location × stress interaction effect.  

Significance of location and stress mean squares were tested against the mean square of their 

interaction while genotype, g × s and g × l mean squares were tested against the third degree 

interaction (g × s × l) mean square. T-test was used for mean comparisons. 

Secondary traits, GY-rank under stress and geometric mean productivity were used to identify 

genotypes with tolerance to both drought and heat stresses. Geometric mean productivity 

(GMP), as applied by Anwar et al. (2011), Khodarahmpour et al. (2011) and Papathanasiou et 

al. (2015) was calculated as follows: 

Sp YYGMP 
 
, [Equation 2-2] 

Yp and Ys represent the yields of each cultivar under well-watered and stressed conditions, 

respectively. Inbred lines with highest GMP values were considered stress tolerant. 

At individual environment, selection index (SI) was calculated and the following formula was 

applied: 

nn2211 Pb...PbPbSI  , [Equation 2-3] 

 

i

iij

i
s

mX
P


 , [Equation 2-4] 

where Pi was the observed standardized value of the trait i and bi was the weight given to that 

trait. Parameters mi and si were the mean and standard deviation of trait i, and xij was the value 

of the trait i measured on genotype j. 

Different selection weights were given to different traits for which treatment effects were 

significant in the ANOVA. The magnitude of the weights was decided depending on the 

importance of a particular trait for stress tolerance (Bänziger et al., 2000). As the primary trait, 

grain yield (GY) was given the maximum weight of 10. Therefore, the weights for the different 

traits in this study were as follows: grain yield =10; rank = 6; anthesis date = 4; anthesis-silking 

interval = 5; leaf senescence = 5; plant height = 3; lodging = 4; number of plants = 3; ear 

placement = 4; ears plant-1 = 5; ear aspect = 5; and husk cover = 3. The applied selection 

intensity was 10%. 
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Additive main effects and multiplicative interaction (AMMI) and genotype main effects and 

genotype × environment interaction (GGE) biplots, using adjusted means, were generated in 

Genstat 14 (Payne et al., 2011) to examine the genotypic relationships with the environments 

(Yan and Hunt, 2001; Yan and Tinker, 2006). 

2.3 Results 

For the variables measured, a combination of spatial analysis with mixed model using 

incomplete blocks as random and inbred lines as fixed factors resulted in best linear unbiased 

estimates (BLUEs) for each genotype at each experiment (Appendix  2-2 (a), (b), (c), (d), (e), 

(f)). 

The grand means for grain yield (GY) were similar under the two experiments (isolated-heat 

(WWH) and managed heat-drought (MHD) stress conditions within the same location at 

Chiredzi (0.590 and 0.819 t ha-1) and Save Valley (1.015 and 1.536 t ha-1), but they differed in 

the two experiments conducted at Chókwè (1.299 t ha-1 under random-drought and 3.045 t ha-1 

under optimum conditions). Therefore, a combined pre-analysis using BLUEs from the six single 

experiments conducted under two water-regimes at Chiredzi, Save Valley and Chókwè was 

performed and results are shown in Appendix 2-2. 

The analysis using BLUEs revealed that location effects were not statistically significant for the 

GY across experiments (p > 0.05). It was confirmed that water-regime effects at the individual 

experiment level within location were statistically insignificant (p > 0.05), but the genotypic 

effects were still highly significant (p < 0.001). The Zimbabwe locations were then treated as two 

environments with two replications each using BLUEs, while the two different water-regimes at 

Chókwè were kept separate, with two replications each. This resulted in four environments 

namely; severe heat-drought stress (SHDS) at Chiredzi (average grain yield of 0.694 t ha-1), 

moderate heat-drought stress (MHDS) at Save Valley (average grain yield of 1.276 t ha-1), 

random-drought stress (RDS) and non-stressed condition (OPT) at Chókwè.  Analyses were 

carried out with these new defined environments. As explained before, RDS was the non-

irrigated experiment affected by unpredicted showers at Chókwè, while OPT was the fully and 

well-watered experiment. 
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2.3.1 Single environment analysis 

Results from the four single environment analyses are summarized in Table 2 and adjusted 

genotypic means are presented in Appendix  (a), (b), (c) and (d). The results revealed that, 

under the SHDS condition achieved at Chiredzi, the genotypic means were significantly different 

at p < 0.001 for AD, LS, NP, EA and GY. For GY-rank and SL the means were statistically 

significant at p < 0.01, while for ASI the significance was only at p < 0.05. Means for PH, EPO 

and EPP were not statistically different (p > 0.05). Based on the selection index involving the 

variables in which means were found to be significant, seven inbred lines were selected at 

Chiredzi. These included IL-31, IL-92, IL-108, IL-107, IL-11, IL-85 and IL-86 in this order. 

At Save Valley, where stress was moderate (MHDS), only means for EPO were not statistically 

different. For ASI, PH and NP the differences were at p < 0.05, and for EA were highly 

significant (p < 0.01). More pronounced differences were detected among means for AD, EPP, 

GY and GY-rank (p < 0.001) at this environment. Superior inbred lines identified from this were 

IL-92, IL-107, IL-108, IL-16 and IL-103. 

Under the RDS (stressed environment of Chókwè), genotypic means were statistically different 

at p < 0.001 for most of the measured variables apart from LS and NP (p < 0.05). At this 

environment, the set of selected lines included IL-92, IL-102, IL-53, IL-101, IL-33, IL-76, IL-44, 

IL-100, IL-64, IL-69 and IL-75. On the other hand, under non-stressed condition (OPT), at 

Chókwè, differences among the genotypic means were highly significant (p < 0.001) for almost 

all the variables except NP (p < 0.01). In addition, eleven lines were selected and these were IL-

101, IL-102, IL-53, IL-47, IL-10, IL-20, IL-75, IL-31, IL-22, IL-78 and IL-82. 

2.3.2 Combined analysis with four environments 

Combined ANOVA of BLUEs from the four defined environments was highly significant (p < 

0.001) for environmental and genotypic effects for almost all the variables analysed (Table 2.2)), 

except ASI whose genotypic variance was only significant at p < 0.05, and EPO not statistically 

significant (p > 0.05). The GEN × ENV interaction effects were statistically significant only for 

GY and LS (p < 0.001), and AD (p < 0.05). Since GEN × ENV interaction was significant, 

genotypic means for GY, LS and AD were not averaged across environments but the rest of the 

variables were (Appendix 2.4 (a), (b), (c), (d) and (e)). 
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Table 2-1. Results from statistical analyses of 108 maize inbred lines evaluated in four different environments in 2014 – 2015. 

Environment 
Trait 

AD ASI PH EPO LS SL NP EPP EA GY GY-rank 

(days) (days) (cm) (ratio) (1-9) % (#) (ratio) (1-5) (t ha-1) (rank) 

Severe heat-drought 
stress (SHDS) = Chiredzi 
(410 m.a.s.l.) 

Mean 67.761 3.307 162.058 0.505 6.107407 3.615 15.469 0.510 4.301 0.694 57.020 

SE 2.260 2.957 14.854 0.065 0.730 5.134 1.000 0.158 0.294 0.326 20.459 

LSD 4.482 5.862 29.449 0.129 1.447 10.178 1.982 0.313 0.583 0.646 40.563 

Min 59.300 -0.900 138.000 0.400 3.450 -2.800 12.240 0.150 3.310 0.080 14.390 

Max 79.900 11.050 188.000 0.630 7.850 19.950 17.060 0.830 4.940 1.800 102.770 

Signf. *** * ns ns *** ** *** ns *** *** ** 

Moderate heat-drought 
stress (MHDS) = Save 
Valley 
(400 m.a.s.l.) 

Mean 70.058 1.922549 122.111 0.456 - - 12.83294 0.668 3.66649 1.276 54.098 

SE 2.024 1.73739 14.280 0.053 - 
 

1.868496 0.171 0.531557 0.407 18.929 

LSD 4.013 3.445 28.311 0.105 - - 3.704 0.338 1.054 0.806 37.528 

Min 63.15 -  -0.350 89.000 0.400 
  

7.820 0.300 1.990 0.500 2.475 

Max 79.600 5.900 156.000 0.500 - - 15.630 1.100 5.050 3.480 93.270 

Signf. *** * * ns - - * *** ** *** *** 

Random drought stress 
(RDS)  =Chokwe 
(33 m.a.s.l.) 

Mean 66.200 7.003 - - 8.428 30.563 14.744 1.121 3.345 1.299 47.253 

SE 0.934 0.797 - - 0.695 16.150 1.737 0.180 0.458 0.261 19.180 

LSD 1.851 1.581 - - 1.377 32.019 3.443 0.357 0.909 0.517 38.022 

Min 60.560 3.100 
  

5.080 2.750 9.610 0.630 1.890 0.260 -7.370 

Max 73.600 10.640 - - 9.110 87.050 19.380 1.680 4.810 2.310 102.740 

Signf. *** *** - - * *** * *** *** *** *** 

Non-sstressed (OPT) = 
Chokwe 
(33 m.a.s.l.) 

Mean 56.246 2.244 193.364 0.560 8.263 - 15.685 1.166 3.617 3.045 53.390 

SE 1.116 0.944 16.600 0.048 0.456 - 1.998 0.154 0.604 0.603 17.130 

LSD 2.212 1.872 32.908 0.095 0.903 - 3.961 0.305 1.197 1.196 33.958 

Min 48.370 -1.980 140.560 0.430 1.440 
 

12.550 0.370 2.270 0.300 -6.320 

Max 63.940 5.110 238.110 0.710 8.980 - 21.820 1.760 5.050 6.090 107.650 

Signf. *** *** *** *** *** - ** *** *** *** *** 

 
AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear position; LS = leaf senescence; SL = stem lodging; NP 
= number of plants; EPP = ears per plant; EA = ear aspect; GY = grain yield; GY-rank = grain yield rank. 
*** = significant at 0.1% probability; ** = significant at 1% probability; * = significant at 5% probability; ns = not significant.
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Table 2-2 Mean squares from the ANOVA of 108 maize inbred lines tested at Chiredzi, Save Valley and Chókwè in 2014/15 

Source DF GY GY-Rank EPP EA DF AD DF ASI DF PHb) EPO DF LSb) DF NP 

ENV 3 134.334*** 2274.888*** 15.767*** 28.093*** 3 4967.353*** 3 643.306*** 2 199773.220*** 0.408*** 2 271.569*** 3 320.350*** 

REP(ENV) 2 8.964*** 827.531 1.375*** 27.812*** 2 15590.742*** 2 378.251*** 2 25925.873*** 0.774*** 1 1.402 2 468.339*** 

Genotype (GEN) 107 1.150*** 2086.911*** 0.075*** 0.759*** 107 45.338*** 107 5.637* 107 505.461*** 0.004 107 2.553*** 107 4.678*** 

GEN X ENV 321 0.271*** 386.491* 0.031 0.224 321 5.756* 320 3.996 214 176.673 0.003 214 1.340*** 321 2.510 

ERROR 213a) 0.136 388.297 0.027 0.185 208a) 4.613 196a) 5.967 214a) 212.274 0.004 107a) 0.533 214a) 2.245 

Mean   1.381 53.808 0.775 3.816   66.316   3.305   152.341 0.496   7.227   14.505 

R2   0.955 0.810 0.921 0.880   0.982   0.806   0.923 0.821   0.951   0.872 

SE   0.389 20.818 0.174 0.454   2.269   2.581   15.392 0.063   0.771   1.583 

LSD (0.05)   0.768 41.036 0.342 0.896   4.473   5.090   30.340 0.124   1.529   3.120 

a)the difference on the number of DF are due two different missing values; b)traits that were not measured in one of the environments. 

ENV = environments; REP(ENV) = replications within environment; GEN = genotype; GEN × ENV = genotype-by-environment interaction; DF = degrees of 
freedom. 
 
GY = grain yield; GY-Rank = plot-to-plot grain yield rank; EPP = ears per plant; EA = ear aspect; AD = days to anthesis; ASI = anthesis-silking interval; PH = 

plant height; EPO = ear position; LS = leaf senescence; NP = number of plants at harvest date. 
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For GY, AMMI and GGE biplot analyses were used to check the environmental 

differentiation and the genotypic adaptability to different environments. Like it was observed 

in the ordinary combined ANOVA reported earlier on, environments, genotypes and 

genotype × environment interaction effects were highly significant (p < 0.001) on AMMI 

ANOVA (Table 2.3). Total sum of squares due to environment was more than 66% of the 

total variation observed while genotypes and genotype × environment sum of squares were 

about 18% and 14%, respectively. Environment sum of squares were almost five times more 

than the total interaction effects while genotypes contributed only 1.32 times. The first 

principal component (PCA1) was highly significant (p < 0.001) but the second (PCA2) was 

not (p > 0.05), therefore, AMMI biplot was constructed using PCA1 scores of genotypes and 

environments against their main effects. 

Table 2-3. AMMI ANOVA for grain yield using BLUE means of 108 maize inbred lines evaluated under 
SHDS, MHDS, RDS and OPT environments. 

Source DF SS MS F_obs F_prob. 

Genotypes  107  92.42  0.86  3.95  <0.001 

Environments  3  335.08  111.69  511.29  <0.001 

Interactions  321  70.12  0.22 3.67   <0.001  

 IPCA 1   109  55.82  0.51  9.02  <0.001 

 IPCA 2   107  8.35  0.08  1.37  0.0520 

 Residuals   105  5.96  0.06      

 TOTAL 536 503.58 

BLUE = best linear unbiased estimetes 

The top 10 ranked inbred genotypes (less than 10% of selection intensity) from AMMI are 

shown in Table 2.4. It is observed that genotype ranking changed from one environment to 

another. Only IL-92 and IL-107 are selectable in the four environments, while IL-31 

performed better under SHDS, although it was good also at the RDS and OPT environments 

of Chókwè. IL-108 was not selected in the OPT environment only while IL-101 and IL-102 

were not selected in the SHDS only. 

Table 2-4. First 10 (selection intensity < 10%) AMMI selections per environment 

ENV Mean Score                                  Selected inbred lines 

SHDS 0.694 0.962 31 107 99 43 108 92 11 76 16 22 

MHDS 1.276 0.750 92 102 107 16 108 101 33 100 62 17 

RDS 1.299 0.647 92 107 108 101 31 53 102 43 76 16 

OPT 3.045 -2.359 53 92 47 101 102 10 31 38 107 54 

SHDS = severe heat-drought stress; MHDS = moderate heat-drought stress; RDS = random drought 

stress; OPT = unstressed 
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In the biplot (Figure 2-1), AMMI classified the three stressed environments in the same 

quadrant characterized by lower main effects and very small (less than a unit) positive PCA1 

scores, and the OPT environment was allocated to the quadrant characterized by high main 

effects (approximately 2.5) negative PCA1 scores. The majority of the genotypes were 

plotted around the origin and very far from the OPT environment. 

 

Figure 2-1. AMMI main effects vs PCA1 scores biplot visualisation of genotype × environment 
interaction between 108 maize inbred lines and four (SHDS, MHDS, RDS and OPT) environments for 
grain yield. 

However, GGE biplot (Figure 2-2) placed the two Chókwè environments (OPT and RDS) at 

very close positions of [PCA1; PCA2] coordinates and it classified them into the same sector 

with MHDS. The most stressed environment, (SHDS) was separated from the rest. 

Genotype IL-92 was plotted very close to the arrow vector head, exactly on the central circle 

line (Figure 2-2).  Genotypes IL-108 constituted the vertex of the polygon at the mega- 

environment where SHDS was plotted (Figure 2-3). The other genotype very closer to SHDS 

was IL-31. The sector where OPT, RDS and MHDS environments are classified has two 

polygon vertex genotypes: The furthest vertex genotype of the polygon is IL-92 and the 

second one is IL-102. Genotype vertex IL-92 connected IL-108 vertex from the previous 

sector and IL-102 vertex. 
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Figure 2-2. GGE biplot visualisation of genotypic performance and stability from genotype × 
environment interaction between 108 maize inbred lines and four (SHDS, MHDS, RDS and OPT) 
environments for grain yield. 

 

Figure 2-3. GGE biplot visualisation of genotypic winning at specific environment from genotype × 
environment interaction between 108 maize inbred lines and four (severe heat and drought stress, 
moderate heat and drought stress, random drought stress and optimum) environments for grain yield. 
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2.3.3 Final selection 

Final identification of tolerant genotypes for combined heat-drought stress was made using 

combination of results, including geometric mean productivity (GMP). A total of 15 inbred 

lines were selected (Table 2.5). Out of the 15, eight were sourced from IIAM, two from IITA 

and the rest are from CIMMYT. 



67 

 

Table 2-5. Selected inbred lines for combined heat and drought stress based on GY-Rank, and geometric mean productivity (GMP) across environments 

Inbred line Pedigree Origin GY-Rank (Avg) 
GMP 

SHDS vs MHDS SHDS vs OPT MHDS vs OPT GMP-Avg 

92 CZL04007 CIMMYT-Zimbabwe 6.4 1.082 1.111 1.164 1.119 

107 DTPYC9-F46-1-2-1-1-B CIMMYT-Mexico 11.7 1.073 1.104 1.131 1.103 

53 MATUBASG-14-1-4-3-3-1-9-5-B IIAM-Mozambique 15.5 1.035 1.098 1.129 1.087 

101 IITA1 IITA 15.6 1.046 1.092 1.125 1.087 

102 IITA2 IITA 23.3 1.013 1.049 1.128 1.063 

31 ZM521-13-3-2-3-1-1-B*2-B IIAM-Mozambique 24.5 1.059 1.111 1.109 1.093 

47 ZM621-24-3-1-1-1-1-1-1-B IIAM-Mozambique 24.9 1.015 1.070 1.116 1.067 

76 CHINACAFS-75-1-1-3-1-B IIAM-Mozambique 25.5 1.039 1.080 1.105 1.075 

33 ZM521-15F IIAM-Mozambique 27.5 1.014 1.052 1.111 1.059 

108 DTPYC9-F46-1-2-1-2-B CIMMYT-Mexico 28.1 1.071 1.102 1.122 1.098 

10 ZM421-12-1-1-2-2-1-6-1-B IIAM-Mozambique 29.5 0.999 1.080 1.079 1.053 

100 IRMA3 = CML444 CIMMYT-Zimbabwe 30.1 1.025 1.063 1.108 1.065 

22 ZM421-22-2-2-1-2-1-4-B*2-B IIAM-Mozambique 38.9 1.015 1.077 1.076 1.056 

16 ZM421-12-3-3-1-4-1-1-B IIAM-Mozambique 41.3 1.045 1.032 1.067 1.048 

86 CML445 CIMMYT-Zimbabwe 53.1 1.004 1.033 1.066 1.034 

Average   52.9     

Minimum   6.4     

Maximum   89.6     

 
GY-Rank = grain yield rank; GMP = geometric mean productivity index; GMP-Avg = average of GMP from the three contrasted environments; SHDS = 
severe heat and drought stress; MHDS = moderate heat and drought stress; OPT = optimum. 

Lines with lower GY-Rank are stable across different environmental conditions; 

Lines with high GMP indices (average) are stress tolerant and performed well under optimum conditions 
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2.4 Discussion 

It is widely accepted that increased mean temperatures during the growing season and 

simultaneous occurrence of frequent heat waves and drought spells are expected to be a main 

feature of the maize production environments in the near future. Therefore, development and 

use of crops resilient to multiple stresses is becoming a priority among scientists (Adolf et al., 

2012). Findings from this study support results from recent investigations and reviews on heat 

stress tolerance which concluded that drought tolerant germplasm may not perform well under 

combined drought-heat stress conditions (Adebayo et al., 2014; Cairns et al., 2013b; Cairns et 

al., 2013a; Edmeades, 2013). This indicates that heat stress tolerance should be incorporated in 

maize breeding programmes as part of the strategy to mitigate the impact of climate change in 

maize (Barnabas et al., 2008; Bita and Gerats, 2013; Cairns et al., 2012; Cicchino et al., 2010; 

Kebede et al., 2012; Lobell et al., 2011; Nelson et al., 2009).  

Statistically insignificant variances due to stress within location and non-significantly different 

experimental means for grain yield at Chiredzi and Save Valley where temperatures were very 

high (Figures 2-1 and 2-2) indicate that combined heat-drought conditions were achieved but 

separate heat conditions were not. The failure to exclude drought at Chiredzi and Save Valley 

was due to insufficient water availability from the rivers as a result of prolonged absence of rains 

in that region. Without a continuous full irrigation schedule in one of the treatments from each 

location, it was impossible to accurately avoid drought stress and remain with heat stress only. 

As a statistical procedure, if contribution of one experimental factor in the total variation is 

insignificant it can be removed from the model (Pimentel-Gomes, 2009). The decision to 

consider the two sets from Chiredzi as one experiment, and also those from Save Valley as 

another one, resulted in statistically significant effects due to differences in environmental 

conditions for all the variables (Table 2-2). This resulted in categorisation of the four 

environments as severe heat-drought stress (SHDS) at Chiredzi, moderate heat-drought stress 

(MHDS) at Save Valley, random-drought stress (RDS) at Chókwè and optimum (OPT) for the 

unstressed environment at Chókwè. Although RDS was interrupted by some showers that 

occurred when drought was being experienced at Chókwè, its effect was comparable with 

MHDS achieved in Save Valley and enough to cause difference with the OPT environment at 

Chókwè. This was well captured in the AMMI bi-plot (Figure 2-1). AMMI biplot classified the 

three stressed experimental conditions in the same quadrant, although SHDS was distant from 
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MHDS and RDS. It was also observed that SHDS and OPT were the most contrasting 

environments, with OPT having the highest IPCA score. This is an indication that OPT 

environment produced the largest interaction effects when compared with the rest (Farshadfar, 

2008; Reddy et al., 2011; Yan and Hunt, 2001). 

Unlike AMMI, GGE biplot separated RDS from MHDS but placed it together with OPT 

environment (Figures 2-2 and 2-3). This is expected since RDS and OPT environments are from 

the same location and same season, the only difference being in water-regime. Random 

drought stress environment was excluded when calculating GMP of the individual genotypes 

because GGE placed it together with the OPT environment. The OPT environment was useful 

for comparison purposes and calculating the GMP when selection is targeting both stressed and 

non-stressed conditions (Khodarahmpour et al., 2011; Papathanasiou et al., 2015).  In the 

present study, the ranking of the genotypes for grain yield changed from one environment to 

another indicating a cross-over type of genotype × environment interaction (Schulthess et al., 

2013).  

The average GY-rank plus GMP, AMMI selections and GGE biplot graph had similar outcomes 

in terms of which genotypes could be selected for combined heat-drought stress condition. The 

results are in agreement with findings by Khodarahmpour et al. (2011). Genotype IL-92 

(CZL04007) was always ranked among the top performers and was the best when GY-rank was 

averaged across environments. In addition, it produced the best GMP and was the genotype of 

the furthest vertex between the most stressed (SHDS) and the OPT environments (Figure 2-3 

The position of IL-92 very close to the head of the average-environment coordination (AEC) line 

(Figure 2-2) confirms its stability across environments and potential for high yielding (Yan and 

Tinker, 2006). This genotype was introduced from CIMMYT-Zimbabwe and is the male parent of 

the drought tolerant three-way hybrid cultivar (CZH04008) already released in Mozambique. 

Under the most stressful environment (SHDS) the vertex genotype was IL-108 (Figure 2-3) 

indicating that it was the best performer in terms of yield, with IL-31 very close to it. IL-108 

(DTPYC9-F46-1-2-1-2-B) with its sister line IL-107 (DTPYC9-F46-1-2-1-1-B) were introduced 

from CIMMYT as heat-tolerant parents for this research. In fact, IL-108 is the fourth among the 

top 10 CIMMYT donors for combined heat-drought stress tolerance identified by (Cairns et al., 

2013b) from a collection of 300 inbreds. Line IL-31, is an early maturing (drought-scape) line 

developed in Mozambique from ZM421-flint, a popular drought-tolerant OPV developed by 

CIMMYT (Chaúque et al., 2004). 
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Under MHDS, majority of the genotypes were those exhibiting stronger stability across 

environments. These were those ranked immediately after the most stable and upper-yielder, 

IL-92. Those are IL-101, IL-100 and IL-76 in this order. Nothing surprising because IL-101 is an 

introduction from IITA as drought tolerant donor under the Water-Efficient Maize for Africa 

(WEMA) breeding project, IL-100 is CML444, a famous drought tolerant tester line introduced 

from CIMMYT-Zimbabwe and L-76 was developed in Mozambique using another OPV 

developed by CIMMY-Zimbabwe and popularly known in the region as drought tolerant. 

Based on its position on the AMMI biplot (Figure 2-1), OPT environment contributed more in the 

total interaction effect. Although it appears that most genotypes were not in the same quadrant 

as the OPT environment, AMMI selections (Table 2-4) identified IL-53, IL-92, IL-47 and the two 

lines from IITA (IL-101 and IL-102). The AMMI selections are in concordance with what can be 

observed from GGE (Figure 2-3).  It was observed (Table 2-4) that selectable lines were not 

exactly the same under SHDS and the rest of the growing environments of this study indicating 

that breeding programmes and testing environments should be utilised in order to satisfy 

farmers in different cropping environments. However, the observed high performance and 

stability of IL-92 suggests that, if a breeding programme generates large numbers of genotypes 

and screens them under both stressed and unstressed conditions, it is possible to identify 

genotypes that can do fairly well under both conditions.    

The interest in this study was to identify genetic variability, it is, therefore, necessary to highlight 

also the weakest genotypes under stress. In this regard, the weaker inbred lines are those 

ranked above the experimental means for average GY-rank and the average GMP under 

SHDS, MHDS and RDS (Table 2-5). They were more than 55% but the worst were those easily 

noticeable on the bottom third of the range for GMP. Some of them could be identified from the 

GGE bi-plot. These were IL-95, IL-87, IL-26, IL-28, IL-83. It is important to point out that among 

the worst, there were lines known as drought tolerant in the region (IL-87 = CML489 and IL-83 = 

CML395) and others from the Mozambican National program (IL-26 and IL-28). The least 

performer (IL-95 = ZEWAc1F2-300-2-2-B-1-B*5) was also an introduction from CIMMYT-

Zimbabwe, used to make hybrids but failed to be released in Mozambique. 

2.5 Conclusion 

In this study, the main objective was to assess genetic variability for combined heat and drought 

stress tolerance in the maize germplasm available in Mozambique and assembled from different 
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sources, as a pre-requisite for a successful combined heat and drought stress tolerance 

breeding program. The results are conclusive in this aspect: genetic variability for combined 

heat and drought stress tolerance within the studied inbred germplasm exists as was revealed 

by the significant genetic variation and consequent significant genotypic differences observed 

under severe heat-drought stress at Chiredzi and moderate heat-drought stress at Save Valley. 

Under severe heat and drought stress, the sister lines IL-108 and IL-107 introduced from 

CIMMYT as heat tolerant donors, IL-92 from CIMMYT-Zimbabwe as drought tolerant 

hybrid parent and IL-31 developed in Mozambique exhibited better tolerance. 

Under moderate heat and drought stress the most tolerant inbreds were IL-92, IL-101 

and IL-100 introduced from IITA as drought tolerant donors, and IL-76 developed in 

Mozambique. 

In contrast, more than 55% did not show genetic tolerance to combined heat and 

drought stress and the worst were IL-26 and IL-28 developed in Mozambique, IL-83, IL-

87 and IL-95 known as drought tolerant, among others. 

The tolerant lines are good candidates to be incorporated in the breeding programs for 

combined heat and drought stress tolerance in sub-tropical lowland environments. 

There was also an attempt to determine whether the superior lines under combined heat and 

drought stress environment were the same under heat or drought environments separately at 

the locations of this study. Due to insufficient water availability at the irrigation sources at 

Chiredzi and Save Valley that made it difficult to evaluate under heat alone, it was impossible to 

effectively isolate the two stresses. Therefore, the reported findings were achieved under 

combined heat and drought stress environment. Also, due to unexpected light showers and 

temperatures below 38oC at Chókwè only a moderate drought stress condition was achieved at 

this location.  Based on all this unexpected field conditions, the results from the present 

research are not conclusive and more research following similar statistical design and 

procedures is recommended. 
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3. CHAPTER 3. Gene action controlling maize grain yield and other 

agronomic traits under combined heat-drought stress 

 

Abstract 

Knowledge of the type of gene action controlling tolerance to combined heat-drought stress is 

important for maize (Zea mays L.) breeding programmes designed to address high 

temperatures and unreliable rainfall effects. This study was carried out to assess gene action 

controlling maize grain yield and other agronomic traits under isolated heat alone, drought alone 

and combined heat and drought stress conditions. Ten inbred lines were used to generate forty-

five crosses in a half diallel mating design. These were evaluated during the dry and hot season 

of 2014, and during the end of the rain season (relatively cooler) of 2015 at Chókwè Research 

Station, Mozambique. The experiments were conducted under both full irrigation and managed 

drought conditions during each season, resulting in four environments. The yield reduction due 

to heat stress alone was 19% of the non-stressed experiment (5.40 t ha-1), while reductions due 

to drought alone and combined heat and drought stresses were 41% and 59%, respectively, 

indicating that the combined stress condition was more detrimental than the individual stresses. 

Significant environment and genotype × environment interaction effects for grain yield revealed 

that hybrid differentiations changed significantly with the change in experimental growing 

conditions. Genetic analysis following Griffings’ Method 4, model 1 (fixed model) detected 

significant mean squares due to general combining ability (GCA) under combined stress for 

grain yield (p < 0.01) and other agronomic traits but specific combining ability (SCA) was not 

significant for grain yield (p = 0.1697). Under individual stresses and non-stressed conditions, 

both general and specific combining ability mean squares were significant for grain yield (p < 

0.001). The results revealed changes in the types of gene action depending on the 

environmental conditions. For grain yield, additive gene action was predominant over non-

additive and the magnitude of its predominance was stronger under combined stress compared 

to individual stress conditions, as shown by the ratio of SSgca to SS(gca+sca) which was more 

than 0.5. For the other traits, additive gene action was also predominant regardless of the 

environment. The results imply that improvement of tropical maize for combined heat-drought 

stress tolerance is possible and it can be faster when selection are conducted under combined 

heat and drought stress conditions than under heat stress alone and/or drought alone.  
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3.1 Introduction 

Heat and drought usually occur simultaneously during the main cropping seasons and 

sometimes cause complete maize crop failure in many tropical and subtropical environments 

including Mozambique. Two important aspects have been recognized lately: 1) drought tolerant 

germplasm may not perform well under combined drought-heat stress conditions (Barnabas et 

al., 2008; Bita and Gerats, 2013; Cairns et al., 2012; Cicchino et al., 2010; Kebede et al., 2012; 

Lobell et al., 2011; Nelson et al., 2009); and 2) combined stress effect is more devastating than 

either the drought effects alone or heat stress effects alone (Cairns et al., 2012; Cairns et al., 

2013). These two realizations imply that breeding for combined heat and drought stress will be a 

prudent strategy in order to mitigate the impacts of global warming. 

Knowledge of the inheritance of combined heat and drought stress tolerance is an important 

pre-requisite for successful breeding aimed at developing cultivars that can cope with this 

challenging stress. The type and magnitude of gene action governing the phenotypic expression 

of single quantitative traits has been extensively studied in maize (Hallauer, 2007) but rarely for 

combined heat-drought stress conditions. Under drought alone, Fu et al. (2008) revealed that 

dominance was more important than additive effects for plant height, anthesis-silking interval, 

root weight and grain yield per plant, whereas both additive and dominance effects were almost 

equally important for leaf emergence rate. In contrast, Betrán et al. (2003a) reported that 

additive gene action increased with the intensity of the drought stress when tropical maize 

inbred lines were evaluated. Derera et al. (2008), assessing southern Africa maize inbred lines 

for gene action controlling grain yield and secondary traits under drought stress and non-

stressed conditions, found that additive gene action was  predominant in governing the 

phenotypic expression of most of the traits, especially grain yield, under both stressed and non-

stressed conditions. However, the importance of non-additive gene action was more 

pronounced under non-stressed environments. This suggests that, regardless of the type of 

germplasm, gene action seems to change depending upon the intensity of drought stress. 

Similar findings were reported for drought tolerance in maize (Hussain et al., 2009; Makumbi et 

al., 2011; Meseka et al., 2011; Mhike et al., 2011). 

Although the negative impact of heat stress on maize productivity in tropical environments has 

been recognized for quite a long time, relatively few studies have been conducted on the 

genetic control of heat stress tolerance in maize compared to studies on drought stress 

tolerance. This is probably due to the complexity of heat stress assessment under field 
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conditions. One of the earlier studies by Jorgensen and Nguyen (1995) on heat tolerance in 

maize reported results from genetic analysis of heat shock proteins (HSPs) correlated with heat 

tolerance in many species (Hu et al., 2010; Jorgensen et al., 1992). The synthesis of HSPs 

under heat stress treatment was under the control of a single gene and the inheritance was 

characterized by three types of intra-allelic interactions (complete dominance, over-dominance 

and co-dominance). In addition, Tassawara et al. (2007) evaluating hybrids developed by 

crossing five heat tolerant and five heat susceptible lines in a line × tester mating design under 

maximum temperatures of 40°C, reported that dominance type of gene action was predominant 

for all the 13 traits recorded in the study. Additionally, Kaur et al. (2010) investigated hybrids 

from a 12 × 12 diallel mating design under heat stress (maximum temperatures ranging from 35 

to 45o C during the flowering time) and found both additive and non-additive gene action to be 

involved in the inheritance of all the studied heat tolerance and yield contributing characters. 

However, only leaf firing was significantly correlated with GY. Leaf firing was also strongly 

correlated with tassel blast, indicating that the two traits are useful when selecting for genotypes 

adapted to hot environments. 

All the current knowledge about the inheritance of grain yield and other important traits suggests 

that the predominance of a type of gene action is dependent on the genotypes involved, and on 

the type and intensity of the stress under which the traits are assessed. Therefore, this study 

was set up to determine the gene action controlling various traits of maize in hybrids developed 

from a 10 × 10 diallel mating scheme under non-stressed, isolated heat stress, isolated drought 

and combined heat and drought stress conditions. The intended targeted stress was from pre-

flowering to end of grain filling stages for drought and throughout the entire crop development 

period for heat stress. 

3.2 Materials and Methods 

3.2.1 Germplasm 

Ten maize inbred lines (Table 3.1) were crossed in a half-diallel mating design to generate 45 

crosses in the 2014 dry season. The inbred lines were randomly selected from the 108 

materials used in the genetic variability study (Chapter 2) for combined heat-drought stress 

tolerance of the present study. Firstly, 35 lines were selected and planted in a crossing nursery. 

Many crosses were generated but only 10 parents succeeded to make all possible combinations 
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and 45 diallel hybrid progenies were selected. The progenies were evaluated together with 

three genetic checks, namely CML442/CML312, CML395/CML444 and CML444/CML312 which 

are recognised as drought-tolerant single cross hybrids from CIMMYT-Zimbabwe (CIMMYT-

Zimbabwe). 

Table 3-1. Pedigrees of ten maize inbred parents randomly sampled from the available germplasm in 
Mozambique 

Parent # Pedigree Origin Drought 

1 ZM421F2FS-16-1-1-2-1-1-1-1-B-B(18) IIAM-Mozambique Susceptible 

2 ZM521F2FS-15-OLD(33) IIAM-Mozambique Medium-tolerant 

3 ZM621F2FS-19-4-2-1-1-1-1-B-B(45) IIAM-Mozambique Tolerant 

4 Suwan8075DMRFS-79-2-1-2-2-B-B-2-B(62) IIAM-Mozambique Susceptible 

5 (P501SR/P502SR)F2FS-31-1-3-1-2-3-1-1-1(61) IIAM-Mozambique Susceptible 

6 MatubaSGFS-14-1-4-3-3-1-9-5-B-B(53) IIAM-Mozambique Tolerant 

7 SYNF2FS-4-6-1-2-1-B(65) IIAM-Mozambique Tolerant 

8 ZEWAC1F2-300-2-2-B-1-B*5(95) CIMMYT-Zimbabwe Medium-tolerant 

9 CZL04007(92) CIMMYT-Zimbabwe Highly-tolerant 

10 NIP20-1-1-B-1-B-B-B(96) CIMMYT-Zimbabwe Tolerant 

The numbers in brackets at the end of the pedigree correspond to the entry numbers in the Chapter 2 study. 

3.2.2 Testing environments and field management 

Experiments were conducted at Chókwè Research Station in Mozambique during the hot dry 

season (Figure 3-1) and at the end of the rainy season, when it was relatively cooler, (Figure 3-

2). In each season, two experiments were conducted: one under managed drought-stress and 

another under fully-irrigated conditions. The managed drought stress experiment during the hot 

and dry season was classified as combined heat-drought stress (CHDS) and the fully-irrigated 

one was designated as the heat stress (HS). During the relatively cooler season, the managed 

drought stress environment was classified as drought stress (DS) and the fully-irrigated one as 

non-stressed (optimum) environment. Drip irrigation was used and water was supplemented 

until physiological maturity for fully-irrigated environments while for managed drought stress 

treatments irrigation was stopped forty days after emergence. Basal fertilizer was applied in all 

experiments at the rate of 40 kg N, 80 kg P2O5 and 40 kg K2O ha-1 using mineral compound 12-

24-12 at sowing. Nitrogen fertilizer at 80 kg N ha-1 was applied five weeks after emergence. 

Weed control was done using the pre-emergent herbicide bullet (alachlor, MOA 15 + atrazine, 

MOA 5) at a dosage of 4 litres in 300 litres water ha-1. 
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Figure 3-3-1. Daily precipitation, evaporation and maximum temperature during the dry and hot season. 
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Figure 3-3-2. Daily precipitation, evaporation and temperature during the cooler and dry season (end of 
rainy season). 
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3.2.3 Experimental design and planting 

The trial was randomized as a 6 × 8 alpha-lattice design with three replications per experiment. 

Plot sizes were two rows of 5 m long with a spacing of 0.80 m between planting rows and 0.25 

m between stations within a row. Two seeds per station were sown and thinned to one plant per 

station at three weeks after plant emergence resulting in 21 plants row-1 which corresponded to 

a plant population density of approximately 52,500 plants ha-1. Two border-rows were planted at 

each extreme side of the ranges and were treated similarly as the experimental plots. 

3.2.4 Data collection 

Recommended procedures by CIMMYT (CIMMYT, 1985; Magorokosho et al., 2008) were 

followed in the assessment of most of the traits and data were collected on a per plot basis. The 

first two plants from each end of the row were discarded as border plants in all observations. 

Recorded traits were days to anthesis (AD), anthesis-silking interval (ASI) as difference 

between days to silking and AD, plant height (PH), ear position (EPO) by dividing PH by ear 

height, stem lodging (SL), husk cover (HC), grain type (GT) ear aspect (EA), number of plants at 

harvest (NP), average number of ears plant-1 (EPP), weight of 100 grains (W100G), average 

number of grains ear-1 (NGPE), number of grains plant-1 (NGPP), grain weight ear-1 (GWPE), 

grain weight plant-1 (GWPP) and grain yield (GY) in tonnes per hectare (t ha-1). Average number 

of grains ear-1, grains plant-1 and grain yield ha-1 were calculated as follows: 

(g) W100G

grains 100

NE

(g) GW
NGPE  , [Equation 3-1] 

(g) W100G

grains 100

NP

(g) GW
NGPP  , [Equation 3-2] 
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12.5100
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1000

(g) GW
)ha (tGY 1 














, [Equation 3-3] 

Analysis of agronomic performance 

Single environment analyses were carried out as 6 × 8 alpha-lattice design (Bänziger et al., 

2000). Row-by-column analysis of variance (ANOVA) was performed for all the variables 

measured in Fieldbook-IMIS5 (Banziger et al., 2012) statistical software developed by CIMMYT, 

following the REML procedure, mixed model. Hybrid effects were considered as fixed while the 



84 

 

effects of the rest of the sources of variations were random. Spatial analysis was employed as 

recommended by Bänziger et al. (2000) as a measure to reduce experimental error in 

heterogeneous field trials. 

3.2.5 Genetic analysis 

Genetic analyses were carried out following the fixed model, Griffings’ Method 4 model I, 

(Griffing, 1956a; b). Mean squares due to general and specific combining ability parameters 

were estimated and used to make inference about the type of gene action involved in the 

phenotypic expression of traits in which genotypic effects were found significant (Hallauer, 2007; 

Hallauer et al., 2010). The mathematical model for genetic analysis at single environment was 

as follows: 

ijkm
ε)

ij
sca

i
(gca

ij
τ

k
pReμ

ijkm
y  , [Equation 3-4] 

where yijkm is the individual observation recorded on cross τij in replication Repk of environment 

El subject to the peculiar experimental error εijkm,; μ is the trial mean in single environment or 

overall mean across environment; GCAi and SCAi are the general and specific combining ability 

fixed effects such that i = j; 

Diallel cross and specific combining ability mean squares were tested against the pooled error 

mean square (MSE) but general combining ability mean squares (MSgca) were tested against 

specific combining ability mean squares (MSsca). Only when MSsca was not significant that 

MSe was used to test also MSgca (Hallauer et al., 2010). Individual parent GCA (gi) and cross 

SCA (sij) effects were calculated as follows: 

2)n(n

2Y...nY
g i

i



 , [Equation 3-5] and 
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2n

Y..Y
Ys

ji

ijij






 , [Equation 3-6] 

where gi is the general combining ability effect of the ith parent, sij is the specific combining 

ability of the cross between ith and jth parents, n is the number of parents, Yi. is the total of the 

crosses involving parent i as female, Y.j is the total of the crosses involving parent j as male, 

and Y.. is the grand total. 
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Sum of squares due to GCA (SSgca) were divided by the total sum of squares (SStotal) to 

assess the proportion of the general combining ability effects on the total genetic variability. To 

judge the relative importance of general and specific combining ability effects in the observed 

variation among the crosses, the following ratio using sum of squares was calculated as applied 

by Malacarne et al. (2003).  

 scagcaSS

SSgca


, [Equation 3-7]. 

3.3 Results 

Combined Analysis of variance (Table 3-2) showed environmental effects to be statistically 

significant for all traits (p < 0.001) except for grain type (p > 0.05). Genotype × environment 

interaction effects were also significant for GY and all the yield components except number of 

ears plant-1 (EPP). Statistical models significantly explained the total variation observed for GY 

at all individual environments and across them (p < 0.001 for mean squares due to model), and 

the coefficients of determination (R2) for this trait ranged from 0.581 under combined heat-

drought stress (CHDS) to 0.858 under managed drought stress (MDS). Grand means for GY 

were 5.40, 4.35, 3.15 and 2.21 t ha-1 under non-stressed, heat stress alone (HS), drought stress 

alone (DS) and combined heat and drought stress (CHDS) environments, respectively.  

3.3.1 Non-stressed conditions 

Analysis of variance for agronomic performance under non-stressed environmental conditions 

(Table 3-3a) showed the diallel cross mean squares (MSc) for GY, W100G, NGPE, NGPP, 

GWPE, GWPP, PH, BHC, EA and GT to be significant at p < 0.001, and for AD, EPO and PA at 

only p < 0.05, while NP, EPP and ASI were not statistically significant (p > 0.05). The Mean 

squares due to general combining ability (MSgca) were significant at p < 0.001 for all traits and 

for AD at p < 0.01. The mean squares due to specific combining ability (MSsca) were significant 

for GY, W100G, NGPE and GWPP at p < 0.001, for NGPP, GWPE, and HC at p <0.01 but not 

significant for GT, AD, PH, EPO, PA and EA.  The ratios for sum of squares (SSgca / SS(gca + 

sca), ranged from 0.419 for BHC to 0.766 for PH. The lowest proportion of GCA effects to the 

total observed genetic variability (SSgca / SStotal) was 0.170 for AD and the maximum was 

0.525 for NGPE in this environment. 
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Table 3-2. Mean squares for grain yield and other traits of 45 diallel cross hybrids tested under four different growing conditions in 2014/15 in Mozambique. 

Source of 
Variation 

df GY4 EPP W100G NGPE (x1000) NGPP (x1000) GWPE (x1000) GWPP (x1000) GT 

ENV (E) 3 261.635*** 0.427*** 559.920*** 138.270*** 323.592*** 57.188*** 212.131*** 0.224ns 

REP(ENV) 8 1.871 0.025 14.552 5.425 6.492 0.423 0.795 0.503 

Crosses (C) 44 2.165** 0.023* 39.644*** 23.359*** 27.308*** 1.415*** 1.729*** 1.593*** 

C x E 132 1.136*** 0.016ns 7.954*** 6.766*** 7.979*** 0.744*** 0.792*** 0.250** 

Error (e) 132 0.231 0.014 2.730 1.393 3.034 0.211 0.205 0.154 

Trial mean 3.777 0.985 29.276 417.330 417.132 114.900 114.956 1.897 

R2 0.928 0.480 0.836 0.841 0.765 0.819 0.919 0.702 

SE 0.392 0.098 1.349 30.473 44.978 11.866 11.694 0.321 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%). 

Source of 
Variation 

df AD ASI PH EPO PA SLODG HC EA 

ENV (E) 3 256.931*** 125.224*** 69487.284*** 0.032*** 4.148*** 16040.054*** 27459.614*** 44.848*** 

REP(ENV) 8 6.798 2.907 1316.508 0.007 2.067 664.804 230.896 0.726 

Crosses (C) 44 15.036*** 3.311* 1152.574*** 0.007*** 0.716* 232.504* 457.546*** 0.851** 

C x E 132 3.417ns 2.344** 211.762ns 0.001ns 0.445ns 158.273ns 205.200*** 0.431* 

Error (e) 132 3.179 1.605 215.581 0.001 0.355 121.349 53.569 0.309 

Trial mean 50.144 1.888 171.440 0.499 2.375 12.210 13.860 2.766 

R2 0.634 0.604 0.797 0.585 0.540 0.641 0.871 0.678 

SE 1.456 1.034 11.988 0.029 0.487 8.994 5.976 0.454 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 
weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 
position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover.
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Table 3-3a. Fixed model ANOVA for grain yield and other traits of diallel cross hybrids evaluated under non-stressed condition at Chókwè Research Station in 
2015. 

Source of Variation Df GY NP EPP W100G NGPE NGPP GWPE GWPP GT 

REP 2 0.405 2.903 0.030 31.733 10980.438 6685.438 214.903 149.236 0.456 

Crosses (C) 44 2.050*** 29.872ns 0.016 19.153*** 13429.256*** 14985.852*** 1145.022*** 1445.700*** 0.461*** 

GCA 9 5.665*** - - 63.336*** 45251.870*** 45731.940*** 2459.810*** 3991.200*** 1.314*** 

SCA 35 1.121*** - - 7.792*** 5246.300*** 7079.710** 806.940** 791.140** 0.2401ns 

Error (e) 88 0.315 24.368 0.015 3.944 1850.886 3768.115 394.573 217.215 0.172 

Trial mean 5.400 33.836 1.016 30.063 449.611 454.862 135.807 159.522 1.929 

R2 0.767 0.383 0.370 0.723 0.790 0.670 0.594 0.770 0.586 

SE 0.458 4.031 0.100 1.622 35.127 50.121 16.219 12.034 0.338 

LSD 0.910 8.010 0.199 3.223 69.808 99.604 32.231 23.914 0.672 

SSgca / SS(gca+sca) 
 

0.565 - - 0.676 0.690 0.624 0.439 0.565 0.585 

SSgca / SStotal   0.429 - - 0.455 0.525 0.410 0.259 0.433 0.328 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 

weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 

position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover.  
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Table 3-3a. (continued) 

Source of Variation df AD ASI PH EPO PA SLODG HC EA 

REP 2 5.067 1.422 31.359 0.007 1.549 . 4.950 1.453 

Crosses (C) 44 10.699* 0.413ns 488.705*** 0.002* 0.705* . 2.495*** 0.767*** 

GCA 9 19.878** - 1830.680*** 0.005*** 1.790*** . 5.086*** 2.143*** 

SCA 35 6.957ns - 143.620ns 0.001ns 0.392ns . 1.813** 0.424ns 

Error (e) 88 7.059 0.549 158.965 0.001 0.432 . 0.801 0.288 

Trial mean 48.711 1.402 192.276 0.504 2.237 . 3.823 2.112 

R2 0.410 0.311 0.607 0.487 0.536 . 0.634 0.594 

SE 2.169 0.605 10.295 0.027 0.536 . 0.731 0.439 

LSD 4.311 1.203 20.458 0.055 1.070 . 1.452 0.871 

SSgca / SS(gca+sca) 
 

0.424 - 0.766 0.545 0.540 . 0.419 0.565 

SSgca / SStotal   0.170 - 0.463 0.228 0.251 . 0.243 0.312 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 

weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 

position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover. 



89 

 

3.3.2 Managed drought stress conditions 

Under managed drought condition (Table 3-3b), mean squares for the crosses were 

significant for all traits except for EPP and ASI (non-significant). For most of the traits, 

significance was at p < 0.001 but for EPO and PH was at p < 0.05. Genetic analyses at this 

environment resulted in statistically significant MSgca at p < 0.001 for GY, W100G, NGPE, 

NGPE, GWPE and AD, at p < 0.01 for PH, and at p < 0.05 for EPO. The MSsca were 

statistically significant (p < 0.001) for GY and all yield components, except EPP in which 

hybrid mean square was not significant. Calculated combining ability effect ratios ranged 

from a minimum of 0.121 for number of plants harvested to a maximum of 0.654 for AD. Low 

proportions of SSgca to total sum of squares were obtained for most of the traits under 

moderate drought stress and they ranged from a minimum of 0.073 for NP to a maximum of 

0.495 for W100G. 

3.3.3 Heat stress conditions 

Under heat stress conditions (Table 3-3c), highly significant (p < 0.001) mean squares were 

observed for the majority of the traits except for EPP and PH (p < 0.05). For NP, SLODG 

and EA mean squares were not statistically significant (p > 0.05). Analysis of variance for 

genetic components resulted in significant MSgca at 0.001 for most of the traits except for 

EPP and PA (p <0.05). Half of the traits (GY, W100G, NGPE, NGPP, GWPE, GWPP and 

HC) had significant MSsca at p < 0.001.  For GT and PA, MSsca were significant at p < 0.01 

and P < 0.05, respectively. Mean squares due to SCA for EPP, AD, ASI, PH and EPO were 

not significant (p > 0.05).  Combining ability effect ratios ranged from 0.288 for GY to 0.789 

for EPO. Contribution of GCA effects to total sums of squares ranged from 0.138 for EPP to 

0.532 for EPO. 

3.3.4 Combined heat and drought stress conditions 

For the combined heat-drought stress, W100G was not recorded. Therefore, it was not 

possible to calculate NGPE and NGPP. Analysis of variance for the measured traits (Table 

3-3d) resulted in statistically significant hybrid mean squares for GWPE, GWPP and PA (p < 

0.05), for GY, AD, and EA (p < 0.01), and for PH, EPO, BHC and GT (p < 0.001), but not for 

EPP and SL. Genetic analyses showed that MSgca were significant for all measured traits 

except ASI (p > 0.05), while MSsca were significant only for GT and HC (p < 0.001),  and 

plant heights at p < 0.05. Significance of MSgca were very high (p < 0.001) for GY, GWPP,  
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Table 3-3b. Fixed model ANOVA for grain yield and other traits of diallel cross hybrids evaluated under drought conditions alone at Chókwè Research Station 

in 2015. 

Source of Variation df GY NP EPP W100G NGPE NGPP GWPE GWPP GT 

REP 2 0.111 14.541 0.007 7.315 3252.467 8005.089 450.489 1080.467 . 

Crosses (C) 44 1.029*** 45.469*** 0.028* 19.215*** 11045.718*** 12447.885*** 1275.167*** 1305.385*** . 

GCA 9 1.726*** 26.789*** - 57.965*** 32725.750*** 27322.380*** 3820.220*** 2941.510*** . 

SCA 35 0.850*** 50.273*** - 9.250*** 5470.850*** 8623.010*** 620.720*** 884.670*** . 

Error (e) 88 0.086 14.526 0.018 2.200 1514.777 3328.793 161.815 297.876 . 

Trial mean 3.153 30.385 1.049 30.796 417.089 435.0222 128.333 133.644 . 

R2 0.858 0.614 0.660 0.816 0.787 0.658 0.800 0.695 . 

SE 0.239 3.112 0.111 1.211 31.778 47.108 10.386 14.092 . 

LSD 0.475 6.184 0.220 2.407 63.152 93.618 20.641 28.005 . 

SSgca / SS(gca+sca) 
 

0.343 0.121 - 0.617 0.606 0.450 0.613 0.461 . 

SSgca / SStotal   0.310 0.073 - 0.495 0.471 0.287 0.483 0.309 . 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%) 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 

weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 

position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover.  
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Table 3-3b (continued) 

Source of Variation df AD ASI PH EPO PA SLODG HC EA 

REP 2 2.867 1.156 57.655 0.006 . 756.071 . . 

Crosses (C) 44 4.233*** 2.303ns 405.683* 0.001 . 305.804ns . . 

GCA 9 13.530*** - 918.459** 0.003* . - . . 

SCA 35 1.843ns - 273.827ns 0.001ns . - . . 

Error (e) 88 1.397 2.277 297.8805 0.002 . 0.002 . . 

Trial mean 50.644 3.333 139.147 0.477 . 0.477 . . 

R2 0.610 0.341 0.407 0.282 . 0.282 . . 

SE 0.965 1.232 14.092 0.038 . 0.038 . . 

LSD 1.918 2.448 28.005 0.076 . 0.076 . . 

SSgca / SS(gca+sca) 
 

0.654 - 0.463 0.368 . - . . 

SSgca / SStotal   0.387 - 0.187 0.179 . - . . 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 

weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 

position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover.  
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Table 3-3c. Fixed model ANOVA for grain yield and other traits of diallel cross hybrids evaluated under heat conditions alone at Chókwè Research Station in 
2014. 

Source of Variation df GY NP EPP W100G NGPE NGPP GWPE GWPP GT 

REP 2 4.644 83.585 0.004 4.609 2041.732 4784.273 439.252 772.452 0.891 

Crosses (C) 44 2.151*** 9.714ns 0.013* 17.183*** 12396.465*** 15810.898*** 869.867*** 1103.245*** 0.618*** 

GCA 9 3.032*** - 0.019* 44.961*** 29824.830*** 36819.400*** 1486.270*** 1774.640*** 2.030*** 

SCA 35 1.924*** - 0.008ns 9.818*** 7961.580*** 10485.150*** 711.360*** 930.600*** 0.255** 

Error (e) 88 0.362 8.487 0.009 2.039 806.466 1994.745 56.509 155.596 0.126 

Trial mean 4.349 37.748 0.934 26.951 385.052 361.097 103.370 97.081 1.852 

R2 0.765 0.443 0.360 0.812 0.887 0.803 0.887 0.785 0.724 

SE 0.492 2.379 0.077 1.166 23.187 36.467 6.138 10.185 0.289 

LSD 0.977 4.727 0.153 2.317 46.080 72.470 12.198 20.240 0.575 

SSgca / SS(gca+sca) 
 

0.288 - - 0.541 0.491 0.475 0.349 0.329 0.672 

SSgca / SStotal   0.201 - - 0.429 0.433 0.377 0.303 0.250 0.456 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%) 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 

weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 

position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover. 
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Table 3-3c. (continued) 

Source of Variation df AD ASI PH EPO PA SLODG HC EA 

REP 2 11.341 8.674 2959.961 0.005 . 933.946 527.497 0.185 

Crosses (C) 44 5.373*** 6.321*** 483.304* 0.004*** . 366.022ns 717.032*** 0.581ns 

GCA 9 20.511*** 21.980*** 1269.910*** 0.017*** . - 2061.590*** - 

SCA 35 1.480ns 2.294ns 281.040ns 0.001ns . - 371.290*** - 

Error (e) 88 1.432 2.742 313.96983 0.001 . 264.280 112.134 0.448 

Trial mean 51.830 1.415 176.278 0.512 . 24.723 30.190 3.230 

R2 0.673 0.550 0.496 0.713 . 0.436 0.768 0.396 

SE 0.977 1.352 14.468 0.025 . 13.274 8.646 0.547 

LSD 1.941 2.687 28.751 0.050 . 26.378 17.182 1.087 

SSgca / SS(gca+sca) 
 

0.781 0.711 0.537 0.789 . - 0.588 - 

SSgca / SStotal   0.479 0.369 0.209 0.534 . - 0.437 - 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 

weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 

position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover. 
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Table 3-3d. Fixed model ANOVA for grain yield and other traits of diallel cross hybrids evaluated under combined heat and drought condition at Chókwè 
Research Station in 2014. 

Source of Variation df GY NP EPP W100G NGPE NGPP GWPE GWPP GT 

REP 2 2.335 157.163 0.056 . . . 585.867 1179.622 0.163 

Crosses (C) 44 0.447** 41.342* 0.019ns . . . 358.370* 251.688* 1.014*** 

GCA 9 1.376*** 71.935** - . . . 511.085* 528.002*** 3.138*** 

SCA 35 0.208ns 33.475ns - . . . 319.100ns 180.636ns 0.468*** 

Error (e) 88 0.161 23.951 0.015 . . . 231.942 149.766 0.166 

Trial mean 2.207 40.148 0.941 . . . 92.089 69.578 1.909 

R2 0.581 0.503 0.412 . . . 0.454 0.505 0.754 

SE 0.328 3.996 0.101 . . . 12.435 9.992 0.333 

LSD 0.652 7.941 0.200 . . . 24.712 19.857 0.662 

SSgca / SS(gca+sca) 
 

0.614 0.356 - . . . 0.292 0.429 0.633 

SSgca / SStotal   0.228 0.153 - . . . 0.123 0.179 0.474 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 

weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 

position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover. 
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Table 3-3d (continued) 

Source of Variation df AD ASI PH EPO PA SLODG HC EA 

REP 2 7.919 0.474 2217.059 0.008 2.585 37.064 160.241 0.541 

Crosses (C) 44 6.080** 1.307* 410.166*** 0.003*** 0.496* 58.081* 153.283*** 0.358** 

GCA 9 18.344*** 1.557ns 1418.710*** 0.010*** 0.781** 91.752* 292.285*** 0.746*** 

SCA 35 2.927ns 1.243ns 150.830* 0.001* 0.423ns 30.207ns 117.540*** 0.259ns 

Error (e) 88 2.828 0.815 91.506 0.001 0.295 38.209 46.573 0.188 

Trial mean 49.393 1.393 178.058 0.504 2.493 7.127 7.418 2.952 

R2 0.532 0.449 0.736 0.693 0.509 0.368 0.633 0.504 

SE 1.373 0.737 7.811 0.022 0.444 5.047 5.572 0.354 

LSD 2.729 1.465 15.522 0.044 0.882 10.030 11.073 0.704 

SSgca / SS(gca+sca) 
 

0.617 0.244 0.707 0.661 0.322 0.439 0.390 0.426 

SSgca / SStotal   0.310 0.108 0.418 0.406 0.133  0.155 0.236  0.201 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; W100G = weight of 100 grains; NGPE = number of grains ear-1; NGPP = number of grains plant-1; GWPE = grain 

weight ear-1; GWPP = grain weight plant-1; GT = grain type (texture) ; AD = days to anthesis; ASI = anthesis-silking interval; PH = plant height; EPO = ear 

position; PA = plant aspect; EA = ear aspect; SLODG = stem lodging; HC = husk cover 
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GT, AD, PH, EPO, HC and EA. For NP and PA, MSgca were significant at p < 0.01, while for 

GWPE and SLODG were at only p < 0.05. Ratios of sums of squares due to GCA over 

SS(gca+sca) varied from 0.259 for EA to 0.950 for EPO and SSgca / SStotal ratios varied 

from 0.123 for GWPE to 0.950 for PH. 

3.4 Discussion 

Due to smaller number of parents that succeeded to be crossed in this study, only a fixed 

model was followed to carry out genetic analyses (Griffing 1959a,b). Although the most 

important output of this model are the individual parents GCA and crosses SCA effects 

estimates, it is possible to use the combining ability information to make inference about 

gene action governing the targeted traits, since GCA effects are mainly due to additive gene 

action while SCA effects are more influenced by non-additive (intra and inter allelic 

interaction) type of gene action (Hallauer, 2007). Accordingly, the (SSgca / SStotal) ratio can 

be compared to narrow sence heritability. In this study, the results are relevant to tropical 

lowland maize germplasm, since the experiments were conducted in the lowland areas. The 

ten parents were randomly selected and they were developed under tropical environments 

from ten different tropical maize populations. 

The highly significant environmental mean squares observed for all traits indicate that the 

experimental growing conditions were very different (Abdel-Moneam et al., 2014; Allinne et 

al., 2009; Aly et al., 2011; Bello and Olaoye, 2009). Significant environmental effects for all 

traits combined with genotype × environment interactions for the main trait (GY) and its 

components suggest that results should be treated separately for each environment (Clewer 

and Scarisbrick, 2001; Gomez and Gomez, 1984; Montgomery, 2005; Pimentel-Gomes, 

2009). 

3.4.1 Environmental classification 

The grand mean for grain yield for the fully-irrigated experiment that flowered from 11th to 

20th of October 2014 was 4.35 t ha-1, and it was 89% of the reference experiment, (“non-

stressed”  which had a grand mean yield of 5.40 t ha-1), whose flowering was from 27th of 

March to 4th of April 2015. The observed reduction of 19% in yield could be attributed to 

another cause other than drought since soil moisture was adequate throughout the growing 

period until physiological maturity. It was observed from the temperature graphs that there 

were a number of days when the maximum temperatures were above 35oC during and after 

flowering hotter October period of the 2014 season. The optimum threshold temperature for 



97 

 

maize was reported to be around 35oC (Luo, 2011; Sánchez et al., 2014), and this shows 

that the crop experienced unfavourable temperatures for some days during pollen shedding, 

silking and cob formation. Lobell et al. (2011) observed that an increase in one degree 

Celsius above the optimal threshold limit can cause a yield reduction of up to 17% day-1. It 

is, therefore, clear that the experiment experienced heat stress alone (HS) on some of the 

days during the reproductive period resulting in less average yields (4.5 t ha-1) compared to 

the non-stressed yield of April 2015 (5.4 t ha-1). 

The managed drought condition imposed on the experiment grown during the relatively 

cooler period (end of rainy season) was enough to cause yield reduction of about 41% 

compared to non-stressed condition. None of the days during the reproductive period 

registered temperatures above 35oC (Figure 3-2), therefore, it was very unlikely that the crop 

experienced heat stress. Compared with the HS experiment, yield reduction was about 27% 

due to drought alone (3.15 t ha-1). The managed drought stress experiment was established 

exactly on the same date and treated similarly as the non-stressed environment except for 

the water-regime. Therefore, the 41% yield penalty compared to the non-stressed 

environment (5.4 t ha-1) could probably be explained by drought stress (DS) during the 

reproductive period. The DS seemed to have a more negative effect compared to the IHS. 

The reduced yield penalty due to HS (-1.55 t ha-1) as compared to DS (-2.25 t ha-1) can be 

explained by the fact that the maize plant, as a C4 plant species, can acclimatise (self-

cooling) when water is not a limiting factor (Bird et al., 1977; Cicchino et al., 2010; Dwyer et 

al., 2007; Rattalino Edreira and Otegui, 2012; Sage and Kubien, 2007; Sánchez et al., 2014; 

Yamori et al., 2014).  However, it cannot be expected that the acclimatisation results in zero 

yield penalty when compared to “optimum” temperature environments. Bänziger et al. (2000) 

and Betrán et al. (2003b) classified experiments with yield reduction of about 50% as 

moderate drought stress. To be classified as severe drought stress environment, grain yield 

must be reduced to about 15 – 20% of the yield under well-watered environment at the same 

site and same season (Bänziger et al., 2000; Bolaños and Edmeades, 1996). Therefore, the 

drought stress experiment under discussion falls on the moderate drought stress side. 

When the crop experienced drought and high temperatures at the same time (managed 

drought experiment during the hot and dry season) yields averaged 2.21 t ha-1, which 

correspond to a yield reduction of 59% compared to the non-stressed environment 

experiment. This was because, under water limited environments, the acclimatisation 

mechanism mentioned above was impaired. Since HS effect on yield was mild and the DS 

was moderate, the combination of the two was classified as moderate heat-drought stress 

(MHDS) in this study. In fact, the 59% yield reduction falls within the range of moderate 
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stress as mentioned above. Hence, these results must be considered as moderate levels of 

heat, drought and combined heat-drought stresses. 

3.4.2 Combining ability and gene action for grain yield and components of 

yield 

Grain yield (GY) as defined by its components is: GWNGPEEPPha NPGY 1  

(Bänziger et al., 2000), where NP is the plant population at harvesting, EPP is the average 

number of ears plant-1, NGPE is the average numaber of grains ear-1 and GW is the average 

weight of each grain. Therefore, the most important yield components in this case are the 

NP, EPP, NGPE and W100G (weight of 100 grains). However, average grain weight and 

NGPE translate to GWPE, and with number of EPP result in GWPP. Thus, NP, EPP, NGPE, 

NGPP, GWPE and GWPP are important yield components, thus, they must be considered in 

the present study. 

Grain Yield 

The highly significant (p < 0.001) genetic variation detected under non-stressed 

experimental condition (Table 3-3a) for GY was due to the significant contribution of both 

general and specific combining ability effects (MSgca and MSscas, respectively) implying 

that both additive and non-additive gene action played an important role in the phenotypic 

expression of the main trait (Acquaah, 2007; Falconer and Mackay, 1996; Hallauer, 2007; 

Hallauer et al., 2010). The SSgca / SS(gca + sca) ratio of 0.565, closer to half, indicated that 

additive and non-additive gene actions contributed with almost similar weight in the total 

genetic effects sum of squares for GY under fully-irrigated and cooler environment. This 

explains the estimated proportion of GCA effects over the total sums of squares of 0.429 

which is almost midway. The combined involvement of both additive and non-additive gene 

action for GY in maize under non-stressed conditions has been recognised since long back 

(Eberhart and Hallauer, 1968; Gamble, 1962a; b; Machida et al., 2010; Melchinger et al., 

1986; Moreno-Gonzalez and Dudley, 1981; Stuber and Moll, 1971) and it was a common 

finding in several later genetic studies (Abdel-Moneam et al., 2014; Adebayo et al., 2014; 

Badu-Apraku, 2007; Chen et al., 2012; Mhike et al., 2011; Oliveira et al., 2011; Passos et al., 

2010; Souza et al., 2009; Teklewold and Becker, 2005; Troyer and Wellin, 2009; Vivek et al., 

2009; Zare et al., 2011; Zare-kohan and Heidari, 2012; Zeinab and Helal, 2014). 

Under drought alone and heat alone, both GCA and SCA had highly significant effects on 

the hybrid variation for GY but the two GCA ratios (0.343 under DS and 0.288 under HS) 

were comparatively lower than under non-stressed condition, suggesting that importance of 
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non-additive gene action increased more than the additive (Hallauer, 2007) under these 

moderate individual stress conditions. The low ratio of GCA over the two combining ability 

ratios (0.343 under DS and 0.288 under HS) indicate the predominance of non-additive over 

additive gene action. Consequently, GCA effects over total effects on GY were also lower 

(0.310 under IDS and 0.201 under IHS), meaning that breeding progress would be slower 

when selections are done under individual stress environments. 

The significance of the general combining ability effects for GY under drought stress alone 

agrees with several previous studies under similar drought stress category (moderate) that 

include Betrán et al. (2003b), Derera et al. (2008) and Oyekunle and Badu-Apraku (2014). A 

study by Adebayo et al. (2014) found significant (p < 0.05) female GCA effects and not male 

GCA in North Caroline Design II (NCDII) crosses evaluated under drought. Under heat 

stress alone, the results are in full agreement with findings by Akbar et al. (2008) on genetic 

studies for heat stress tolerance where both GCA and SCA effects were significant and only 

the non-additive related component of variance was important for all traits, including GY, in 

that study. 

Contrary to the individual stresses, under combined stress conditions genetic properties 

were different. The MSgca for GY was highly significant (p < 0.001) but MSsca was not 

significant (p = 0.16970). The results suggest that, when heat and drought stresses are 

combined in the same treatment, additive gene effects for GY become more important than 

non-additive effects. In line with the present findings, Derera et al. (2008) and Makumbi et al. 

(2011) also found predominance of additive over non-additive gene action using tropical 

maize germplasm under drought stress environments. Badu-Apraku (2007) reported that the 

inheritance of maize GY was dominated by additive genetic variance when the crop was 

under striga (Striga hermonthica) stress. The present results confirmed that the importance 

of either additive or non-additive gene action for GY is dependent on environmental 

conditions and the genetic background of the materials used (Hallauer, 2007). Relatively 

high GCA over the total combining ability ratio (0.614) under combined heat and drought 

stress conditions compared to individual stresses and non-stressed conditions reinforce that 

additive gene action was more important under the combined stress. 

The GCA over the total sum of squares ratios under the three moderately stressed 

experimental conditions in this study suggest that progress would be relatively slow when 

selections are carried out using only grain yield, for combined heat and drought stress 

tolerance. This solicits for the incorporation of other traits and finding out whether the 

progress can speed up. However, further research that will include severe stresses is 

needed. 
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Grain components of yield 

For the measured components of yield, NGPE, NGPP, W100G, GWPE and GWPP, 

significant MSgca and MSsca were observed indicating  important roles played by both 

additive and non-additive gene action for the genotypic differences observed (Acquaah, 

2007; Hallauer, 2007; Hallauer et al., 2010) under non-stressed, heat and drought stress 

conditions. Based on the obtained general combining ability ratios in different experimental 

conditions, it is observed that additive gene action was predominant under combined stress 

conditions, and non-additive was predominant under separate moderate stresses. 

Grain Type/ texture 

Most genetic studies do not include grain type or texture (GT), most probably because it is 

not a yield component. However, GT is associated with grain size and weight, and is one of 

the most important characteristics used by farmers to choose a variety in Mozambique 

(Denic et al., 2008). Furthermore, Vasal et al. (1993) observed that crosses among dents 

and dent × flints yielded higher than crosses among flints.  In the current study, grain type 

was not evaluated under drought alone but under non-stressed, heat alone and combined 

heat and drought stress conditions. Mean squares for the crosses were highly significant (p 

< 0.001). Both MSgca and MSsca were significant under the two stressed environments 

(heat alone and combined heat and drought) and only the MSgca was significant under non-

stressed conditions. However, the resulting Bakers’ ratios suggest importance of both 

additive and non-additive gene actions in controlling grain hardness under heat alone and 

combined stress conditions, and also under the non-stressed experimental environment. 

Average number of ears plant-1 

Ears per plant (EPP) were significant only under isolated heat stress and the genetic effects 

were explained by additive gene action, with MSgca significant at p < 0.05, while MSsca was 

non-significant (p = 0.7019). The number of EPP has been associated with tolerance to 

drought in many studies (Araus and Sanchez, 2012; Badu-Apraku, 2007; Badu-Apraku et al., 

2012; Betrán et al., 2003c; Meseka et al., 2011; Mhike et al., 2012), since stress leads to 

barrenness when maize plants are stressed in the interval from just before tassel emergence 

to the beginning of grain fill (Edmeades et al., 1997). The observed non significance of 

genetic effects for EPP under the two drought environments and non-stressed conditions in 

this study is in agreement with Bänziger et al. (2000) who stated that EPP was affected 

mainly by severe drought stress, but this was not the case in this study. Therefore, no 
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comparisons of the type of gene action controlling EPP under heat, drought and combined 

heat and drought stress conditions could be made.  

3.4.3 Combining ability and gene action for other traits 

Anthesis and anthesis-silking interval 

Significant MSgca and non-significant MSsca at the four individual environments for number 

of days to anthesis (AD) is an indication that only additive gene action is important on the 

inheritance of AD. Similar findings were obtained by Derera et al. (2008) and Adebayo et al. 

(2014). In the present study, the ratios of GCA effects over total sum of squares for 

combining abilities were high under stressed conditions, ranging from 0.633 under combined 

stress to 0.781 under isolated heat, which reinforces the conclusion that additive gene action 

is more important than non-additive in controlling AD in maize, regardless of the 

environmental conditions under which the maize is grown. Consequently, narrow sense 

heritability estimates were also very high, ranging from 0.739 to 0.980. In contrast, a study 

by Alam et al. (2008) reported statistically significant variation due to both GCA and SCA 

effects for number of days to flowering in maize. However, although SCA effects were 

significant, additive gene action was still predominant over non-additive gene action. For 

ASI, only MSgca was significant under isolated heat. This confirms that flowering traits in 

these maize lines were dominantly controlled by additive gene action. 

Plant height, ear position, plant aspect, ear aspect and stem lodging  

Similar to AD, significant genotypic variation for both plant height (PH) and ear position 

(EPO) were more explained by GCA effects irrespective of the environment as only MSgca 

was significant under all environmental conditions, except in the combined stress 

environment where MSsca was also significant at p < 0.05. Values of GCA ratios for the two 

traits were generally high except under IDS (0.463 for PH and 0.368 for EPO). However, 

there have been no consistent conclusions on the kind of gene action controlling PH in 

maize. Some studies reported a large proportion of SCA than GCA effects (Akbar et al., 

2008; Alam et al., 2008), while others attributed the genetic control to additive gene action 

(Bhatnagar et al., 2004; Gonzalez et al., 1997; Malacarne and San Vicente, 2003; Mhike et 

al., 2011), similar to results of this study. 

Plant aspect (PA) is highly correlated with GY under stressed conditions (Badu-Apraku, 

2007). Studies on gene action controlling this trait are scarce. In the present study PA was 

evaluated under non-stressed and under combined stress conditions. Significance of MSgca 
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alone suggests importance of only additive gene action under unstressed conditions and 

both additive and non-additive gene action under combined stress. Calculated ratios of GCA 

effects over total sum of squares for combining ability (0.540 and 0.322 under non-stressed 

and stressed conditions, respectively) also revealed a tendency of additive gene action to be 

predominant over non-additive under non-stressed environments while non-additive gene 

action could be also exploited under combined stress conditions. A similar trend was 

observed for ear aspect (EA). These results are in agreement with the other genetic studies 

for EA reported by Adebayo et al. (2014), Derera et al. (2008) and Oyekunle and Badu-

Apraku (2014).  

Husk cover of the ears 

Husk cover (HC) is another trait that has received little attention from scientist regarding its 

genetic properties under stressed environment. In this study, results suggest that additive 

and non-additive gene actions are equally important regardless of the environment as both 

MSgca and MSsca were statistically significant (p < 0.01) at a particular environment. Ratios 

of GCA effects over total sum of squares of combining ability effects were almost similar 

under all the environments indicating that the two types of gene action, additive and non-

additive, controlled the quality of the ears under both stressed and non-stressed 

environments. Husk cover characteristic is very easy and quick to assess, therefore, 

combined with other secondary traits, it can contribute to faster progress. 

3.5 Conclusion 

The managed drought and the daily maximum temperatures that occurred during the 

experimental growing periods of this research study were only adverse enough to cause 

moderate heat and moderate drought stresses. The stressed environments were 

significantly different from the unstressed environment and the significant genotype × 

environment interaction revealed that the level of performance of the hybrids depended on 

growing conditions. 

General and specific combining ability effects were significant for grain yield and all yield 

components, except number of ears plant-1 under the four individual environments indicating 

importance of both additive and non-additive gene action in controlling these traits. However, 

additive gene action was generally predominant in most of the cases and its predominance 

increased on moving from the individual stresses to combined heat-drought stress 

conditions. 
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For the other evaluated traits, additive gene action was clearly predominant over non-

additive regardless of the stress category, except for husk cover in which the two types of 

gene action were equally important. 

The practical implication of the results is that improvement of tropical maize for combined 

heat-drought stress tolerance is possible and it can be faster when selections is conducted 

under combined heat-drought stress conditions than under heat and/or drought separately. 
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4. CHAPTER 4. Heterotic orientation of thirty maize inbred lines 

under full-irrigation versus combined heat-drought stress 

conditions 

 

Abstract 

Heterotic group classification is a common procedure in maize (Zea mays L.) to improve 

breeding efficiency by facilitating germplasm management and organization. The objective of 

this study was to determine the heterotic orientation of thirty selected maize inbred lines 

using three drought-tolerant (CML312, CML444 and CML 445) and one high yield potential 

(N3) males as testers. A line × tester mating design was used to generate 120 testcrosses. 

The crosses were evaluated at Chókwè Research Station under full-irrigation and random 

drought stress conditions during the main cropping season 2014/15. Data on grain yield 

were analysed using line × tester procedure. Heterotic specific and general combining ability 

(HSGCA) grouping method was used to assign the thirty female lines to the four tester 

groups. Both general combining ability (GCA) due to lines and testers, and specific 

combining ability (SCA) due to line × tester were significant (p < 0.05) under full-irrigation 

and highly significant (p < 0.01) under stressed conditions. The proportion of SCA effects 

was bigger than the GCA effects under full-irrigation and both were equal under stressed 

environment, indicating that SCA effects were more important than GCA effects under non-

stressed conditions with the importance of GCA increasing under stressed conditions. 

Contribution of lines (female parents) to the total GCA was bigger than that of testers at both 

experimental conditions. The four males (testers) were successfully associated with a group 

of female lines, but 67% of the lines changed their heterotic orientation when experimental 

conditions changed. Female lines 7, 25, 26, 28, 29, 33, 34, 35, 36 and 39 were the best 

general combiners across the two environments, therefore, they have potential to be used 

for hybrid formation. Lines 7, 25, 26, 29 and 35 generated tolerant hybrids to combined heat 

and drought stress, and thus, they were recommended for future use.  
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4.1 Introduction 

Maize is the most important food crop grown in Mozambique, judged by the percentage of 

land-holdings (69%) growing it and the area (44%) occupied by the crop nationwide (INE, 

2011). It is also a strategic crop for food security and social prestige (Fato, 2010).  Apart 

from breeding for multiple-stress tolerance, the Mozambique National Programme dedicated 

special attention to the development of hybrid varieties as one of the strategies in improving 

the low maize yields across the country. 

Heterotic group classification of inbred lines is one of the main activities of breeding 

programmes and it is helpful in raising the breeding efficiency by facilitating germplasm 

management, organization and predicting the performance of maize hybrids (Carena, 2009; 

Fan et al., 2009; Malacarne et al., 2003; Zhang et al., 2002). This is because it is not 

possible to sufficiently correlate the actual performance of the inbred lines with the 

performance of their hybrid progenies for important agronomic characters, especially grain 

yield (Hallauer, 2007; Malacarne and San Vicente, 2003). Besides, the concept of heterotic 

patterns helps breeders to choose parents of crosses for line development, as well as 

testers to evaluate combining ability of newly developed inbreds (Reif et al., 2005). 

A heterotic group was defined by Melchinger and Gumber (1998) as “a group of related or 

unrelated genotypes, from the same or different population, that display similar combining 

ability and heterotic response when crossed with genotypes from other genetically distinct 

germplasm group” (Reif et al., 2005). Carena (2008) simplified the concept by stating that 

heterotic patterns are crosses between known genotypes that express high levels of 

heterosis. Different methods including molecular techniques have been used to separate 

germplasm into heterotic groups, but the evaluation of single diallel or line × tester crosses 

remains the most common method (Hallauer, 2007). According to Hallauer (2007), line × 

tester approach is recommended when the number of new inbred lines to be classified is 

high and when known testers are available.  

In tropical and sub-tropical maize, it is a common practice to separate germplasm into two 

divergent heterotic groups, referred to as heterotic group A (HGA) and heterotic group B 

(HGB) (Vasal et al., 1999). Germplasm from HGA exhibit better heterosis when crossed with 

germplasm from HGB and vice-versa, but within the same heterotic group heterosis is lower. 

Therefore, testers to be used to separate new germplasm in different heterotic groups must 

show high heterosis when crossed together, i.e. they form a good heterotic pattern (Reif et 

al., 2005). According to Vasal et al. (1999), testers can be genetically divergent synthetics, 

inbred lines or F1 single crosses from the same heterotic group (A×A and B×B). The choice 
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depends on the ultimate objective and availability of the desired tester. The use of synthetics 

is common in population improvement while F1 single crosses are used when the breeder 

intends to use superior test crosses as final three-way hybrid varieties. When the objective is 

to classify newly developed inbred lines, use of known inbred testers is recommended 

(Vasal et al., 1999). 

In Mozambique, the newly developed and introduced inbred lines were not characterised 

and no heterotic patterns were clearly identified under local growing conditions. Therefore, 

this study was designed to assess combining ability and heterotic orientation of the 

promising inbred lines available in the country towards known testers in the region. 

4.2 Materials and Methods 

4.2.1 Germplasm 

Thirty inbred lines were used as female parents and crossed to four male testers using the 

line × tester mating design at Chókwè Research Station during the dry-season of 2014. Half 

of the female lines were developed in Mozambique (Table 4-1).  The testers included two 

well-known drought tolerant tropical maize testers (CML312 = tester “A” and CML444 = 

tester “B”) in Southern Africa Region, CML445 a parent to drought tolerant three-way cross 

hybrid released in Mozambique in 2011 classified as “AB” line by CIMMYT and N3 a parent 

of the very well-known high-yielding single-cross hybrid in Africa (SR52) developed by the 

Zimbabwean national programme. The N3 was designated as drought susceptible tester. 

The resulting 120 testcross hybrids were evaluated together with six single crosses resulting 

from all possible combinations of the four testers (CML312/CML444, CML312/CML445, 

CML312/N3, CML444/CML445, CML444/N3 and CML445/N3) and CML442/CML539 = A × 

A and CML395/CML444 = B × B. In total 128 entries, all single-crosses were evaluated for 

yield performance. 

4.2.2 Evaluation 

Two experiments were grown at Chókwè Research Station during the main cropping season 

of 2014/15. One of the experiments was under full irrigation until physiological maturity (non-

stressed treatment) and the second was under stress treatment (irrigation stopped a five 

days after top-dress fertilisation, i.e., 40 days after emergence). The weather information 

collected during the period of the experiments is summarized in the Figure 4-1. The 
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experiments were randomised in an 8 × 16 alpha-lattice with 2 replications per experiment 

using Fieldbook-IMS5 statistical software developed by CIMMYT (Bänziger et al., 2012). 

Field layout was arranged as 8 rows × 16 columns within replication.  

Table 4-1. Female (TCL1 – TCL42) and male (tester) lines crossed to generate testcross hybrids 
evaluated under non-stressed and stressed conditions at Chokwe during the main cropping season 
2014/15. 

Nursery-Entry Pedigree/Code Origin 

TCL1 ZM421-2-1-2-1-2-2-1-B*2-B (1) IIAM-Mozambique 

TCL2 ZM421-18-8-1-3-1-5-1-1-B (20) IIAM-Mozambique 

TCL3 ZM421-40-1-2-2-3-4-1-B (24) IIAM-Mozambique 

TCL4 ZM421-72-1-1-3-3-1-1-B (26) IIAM-Mozambique 

TCL6 ZM521-8-4-2-3-1-2-1-B (44) IIAM-Mozambique 

TCL7 ZM521-13-3-2-3-1-1-B*2-B (31) IIAM-Mozambique 

TCL9 ZM521-29-2-1-1-1-2-5-B (35) IIAM-Mozambique 

TCL10 ZM521-38-2-3-1-1-3-1-1-B (38) IIAM-Mozambique 

TCL11 ZM521-40-1-3-1-1-5-B*2-B (41) IIAM-Mozambique 

TCL12 ZM521-42-2-1-2-1-2-1-B (43) IIAM-Mozambique 

TCL14 ZM621-19-4-2-1-1-1-2-1-B (46) IIAM-Mozambique 

TCL18 INTBC1F2FS-19-2-2-1-1-1-1-1-B (50) IIAM-Mozambique 

TCL21 TSEGRIM-3-1-5-2-1-1-3-1-B (68) IIAM-Mozambique 

TCL23 CHINACAFS-80-2-1-3-1-B IIAM-Mozambique 

TCL24 LaPostaSeqC7-F18-3-2-1-1-B*9 (106) CIMMYT-Mexico 

TCL25 DTPYC9-F46-1-2-1-1-B (107) CIMMYT-Mexico 

TCL26 DTPYC9-F46-1-2-1-2-B (108) CIMMYT-Mexico 

TCL27 DMR15B (69) IIAM-Mozambique 

TCL28 LP23 (105) IITA 

TCL29 IITA1 (101) IITA 

TCL31 IRMA11B (98) CIMMYT-Kenya 

TCL33 IRMA26B CIMMYT-Kenya 

TCL34 NIP25-20-1-1-B-1-B (96) CIMMYT-Zimbabwe 

TCL35 CZL04007 (92) CIMMYT-Zimbabwe 

TCL36 CML548 (93) CIMMYT-Zimbabwe 

TCL37 CML539 (89) CIMMYT-Zimbabwe 

TCL39 CML395 (83) CIMMYT-Zimbabwe 

TCL40 CML489 (87) CIMMYT-Zimbabwe 

TCL41 CML537 (88) CIMMYT-Zimbabwe 

TCL42 CML547 (90) CIMMYT-Zimbabwe 

Tester-A CML312 CIMMYT-Zimbabwe 

Tester-B CML444 CIMMYT-Zimbabwe 

Tester-AB CML445 CIMMYT-Zimbabwe 

Tester-N3 N3 AREX-Zimbabwe 

Note: Numbers in brackets correspond to entry number in the genetic variability study (see Chapter 

2). 
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Figure 4-1. Sumary of rainfall, evapotranspiration and maximum temperature during the experimental 
growing period at Chokwe, 2014/15. 

Sowing was by hand on November 26th, 2014. Plot size was two 5 m rows with spacing of 

0.80 m and 0.25 m between and within rows, respectively, resulting in a plant density of 

52,500 plants hectare-1. Two border rows on each side of the experiment were planted to 

reduce the border effects. Fertilization was at the rate of 40 kg N, 80 kg P2O5 and 40 kg K2O 

ha-1 using mineral compound 12-24-12 at sowing. Top-dress fertilization of 80 kg N ha-1 was 

done five weeks after emergence. Weed control was done using the pre-emergent herbicide 

bullet (alachlor, MOA 15 + atrazine, MOA 5) at a dosage of 4 litres in 300 litres of water ha-1. 

For the purpose of this study, only data on grain yield was collected. 

Data for grain yield were collected per plot basis. Two extreme plants at each end of the row 

were discarded to remove border effects. They were harvested a day before and their cobs 

were removed from the field. All ears from each plot were shelled and the grain was weighed 

using an electronic scale and grain moisture content was recorded. Total grain weight (GW) , 

grain moisture (GM) and final net plot area were used to estimate grain yield (GY) in t ha-1 as 

follow: 
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4.2.3 Data Analysis 

Statistical analyses were performed following PROC GLM in SAS version 9.3. First, 

analyses of variances (ANOVA) for agronomic performance was done to test for significance 

of genotypic mean squares, and then line × tester genetic analyses to partition the genotypic 

mean square into general combining abilities (GCA) due to lines and testers, and specific 

combining ability (SCA) due to testcrosses (Hallauer et al., 2010). Both analyses were done 

for individual and combined water-regimes, ahead designated environments. A spatial 

analysis using row-by-column experimental coordinates was performed. At combined 

environment level, significance of the testcross mean squares as well as their GCA and SCA 

components were tested against their corresponding interaction with environment, while 

pooled error was used to test the environmental and testcrosses × environment interaction 

mean squares (Hallauer et al., 2010). 

Mathematical model for line × tester genetic analysis (Fan et al., 2009) 

ijkijjiijk εt)(ltlμy  , [Equation 4-2] 

where yijk is the performance of the testcross between ith line and jth tester, µ is the 

experimental mean, li is the general combining ability (GCA) effect of the ith line, tj is the 

general combining ability (GCA) effect of the jth tester, (l x t)ij is the specific combining ability 

(SCA) effect of the cross between ith line and jth tester. 

4.2.4 Determination of heterotic orientation 

The new grouping approach, heterotic specific and general combining ability (HSGCA) (Fan 

et al., 2009), was followed to determine heterotic orientation of the thirty inbred lines under 

study. Specific and general combining ability (SCA and GCA, respectively) effects as well as 

the HSGCA parameter of the individual line were calculated as follows: 

X...XX.XSCA jiij  ; X..X.GCA i  , [Equation 4-3] and 

SCAGCAHSGCA  , [Equation 4-4] 

where Xij is the mean of the testcross between ith line and jth tester, Xi. is the mean of the ith 

line, X.j is the mean of the jth tester and X.. is the experimental mean (intercept). 

Basically, the approach consists of assigning a line to the heterotic group of the tester that 

resulted in the lowest HSGCA parameter. Fan et al. (2009) recommends not to classify a line 
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that has positive HSGCA parameter with all testers in the study as it might belong to an 

unknown group not represented by the testers used in a particular study. 

4.3 Results 

4.3.1 Agronomic performance for grain yield 

Observed experimental means were 5.25 and 2.20 t ha-1 under non-stressed and stressed 

growing conditions respectively (Appendices 1a and 1b). Individual testcross (TC) means 

ranged from 2.32 to 8.13 t ha-1 under non-stressed environment, while under stressed 

conditions the range was from 0.75 to 3.13 t ha-1. Analysis of variance for agronomic 

performance at individual environments detected statistically significant differences among 

the testcross (TC) hybrids and checks for GY under non-stressed (p < 0.01) and stressed (p 

< 0.001) experimental conditions (Table 4-2).  

Table 4-2. Individual environment analysis of variance for grain yield of 30 x 4 testcrosses evaluated 
at Chókwè under unstressed and random-drought stress during the main season of 2014/15 

 Source of variation DF Non-stressed Random drought 

Replication 1 0.035 0.122 

Row (Replication) 14 4.471 0.839 

Column (Replication) 28 2.152 0.303 

Testcross 119 1.888** 0.365*** 

GCA(line) (29) 1.822* 0.698*** 

GCA(tester) (3) 4.274* 0.658** 

SCA(line × tester) (87) 1.863* 0.243** 

Error 61 1.072 0.118 

GCA(line) / GCA(tester)  3.879 10.256 

(GCAline+GCAtester) / SCA 
 

0.386 1.050 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%. 

Combined ANOVA across environments revealed that environmental mean squares were 

significant at p < 0.001 while testcross and testcross x environment mean squares were 

significant at p < 0.05 (Table 4-3). Because of the significance of environment and testcross 

x environment interaction effects, hybrid means were not averaged across environments 

(experiments) but comparisons were made at individual environmental level (Montgomery, 

2005; Pimentel-Gomes, 2009). 

The top 12 (10% selection intensity) combinations under non-stressed conditions were 

TCL28/CML312, TCL26/N3, TCL23/CML444, TCL11/CML445, TCL36/CML312,  
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Table 4-3. Combined environment analysis of variance for grain yield of 30 x 4 testcrosses evaluated 
at Chókwè under unstressed and random-drought stressed conditions during the main season of 
2014/15. 

Source DF MS 

Environment (Environment) 1 1209.453*** 

Rep (Environment) 2 0.078 

Incomplete blocks 30 1.273** 

Row (Replication × Environment) 14 1.236* 

Column (Replication × Environment) 58 1.243*** 

Testcross 119 1.368* 

Testcross × Environment 119 0.901* 

GCAline (29) 1.862** 

GCAtester (3) 4.086 

SCA(line × tester) (87) 1.110** 

GCAline × Environment (29) 0.701 

GCAtester × Environment (3) 1.125 

SCA(line × tester) × Environment (87) 0.960* 

Error 136 0.634 

GCA(line) / GCA(tester)  4.405 

[GCA(line) + GCA(tester)] / SCA  0.686 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%. 

TCL34/CML445, TCL26/CML312; TCL4/CML312, TCL37/N3, TCL39/CML312, 

TCL31/CML312, TCL40/CML445 and TCL36/CML444 at descending order. Under stressed 

conditions the highest performers were TCL29/CML444, TCL33/CML312, CML445/CML444, 

TCL39/CML312, CML312/CML445, TCL28/CML312, TCL7/CML445, TCL7/CML312, 

TCL26/CML445, CML442/CML539 (check), TCL35/CML312 and TCL36/CML312 in 

descending order. 

4.3.2 Line × tester combining ability and heterotic orientation 

Results from individual experiments (Table 4-2) indicated that GCAs and SCA mean squares 

were significant at p < 0.05 under non-stressed condition but were highly significant (p < 

0.001 for line-GCA, and p < 0.01 for tester-GCA and line × tester-SCA) under stressed 

environment. Combined analysis detected significant line-GCA and testcross SCA (p < 0.01) 

but not tester-GCA (p > 0.05). The interaction between line GCA × environment was not 

statistically significant but SCA × environment was significant at p < 0.05. Based on the 

ANOVA results, the general combining ability effects that finally characterise individual lines 

can be better estimated using across environment performance but it seems that specific 

combining abilities of the individual combinations vary depending on the growing conditions 

(Table 4-3). 
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Ten lines had positive GCA effects under both non-stressed and stressed conditions, 

resulting in positive, significant GCA effects when data from the two experiments were 

combined. These were TCL26, 36, 28, 7, 35, 34, 29, 39, 33 and 25 and the GCA effects 

varied from 0.666 to 0.225 (Table 4-4). Line × tester (SCA) effects estimates varied. Best 

combinations under unstressed conditions were TCL11/CML445, TCL23/CML444, 

TCL4/CML312, TCL28/CML312, TCL26/N3, TCL34/CML445 and TCL41/CML445 with 

positive SCA effects varying from 2.743 to 1.421. Under stressed experimental conditions, 

values of SCA effects were very low. The best combinations were TCL41/CML444, 

TCL11/CML312, CML27/N3, TCL42/CML445, TCL41/CML445, TCL31/CML312 and 

TCL4/CML312. Their SCA effects varied from 0.904 to 0.667. 

Table 4-5 presents the heterotic orientation resulting from the application of the HSGCA as 

proposed by Fan et al. (2008b) and Fan et al. (2009). It was observed that eleven lines were 

oriented towards N3, seven towards CML312, seven towards CML445 and five towards 

CML444 under unstressed experimental conditions (Appendix 1a). Under stressed 

conditions (Appendices 1b) 20 lines changed their orientation. As a result, nine lines were 

towards CML444, eight towards CML312, seven towards N3 and six were towards CML445. 
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Table 4-4. Estimates of GCA effects for 30 maize inbred lines and their SCA effects with four testers under non-stressed and stressed conditions. 

Lines 
GCA-effects SCA-effects (non-stressed) SCA-effects (stressed) 

Non-stressed Stressed Across CML312 CML444 CML445 N3 CML312 CML444 CML445 N3 

TCL1 -0.254 -0.010 -0.132 0.355* -0.851** 0.436* 0.059 0.107 -0.088 -0.092 0.073 

TCL2 -0.698** 0.104 -0.297 0.495* 0.012 0.104 -0.611** -0.009 -0.291 0.191 0.109 

TCL3 -0.447* -0.049 -0.248 0.409* -1.656*** 0.291 0.956** 0.136 0.091 0.214 -0.441 

TCL4 -0.975** -0.453* -0.714** 2.113*** -0.345* -0.878** -0.890** 0.667** 0.029 -0.351* -0.345* 

TCL6 -0.062 -0.225 -0.143 0.790** -0.155 0.288 -0.922** -0.323* 0.141 -0.083 0.265 

TCL7 0.309* 0.512* 0.410* -1.351*** 1.018*** -0.007 0.339* -0.012 -0.017 0.164 -0.136 

TCL9 0.542* -0.158 0.192 -0.076 -1.005*** 0.284 0.797** -0.349* 0.230 -0.300* 0.418* 

TCL10 -0.060 0.123 0.032 0.493* -0.663** -0.373* 0.544* 0.239 -0.299 0.034 0.025 

TCL11 -0.292 -0.720** -0.506* -0.417* -2.173*** 2.743*** -0.153 0.746** -0.280 -0.620** 0.153 

TCL12 -0.315* -0.123 -0.219 0.579* -0.038 -0.855** 0.313* 0.365* 0.296 -0.376* -0.285 

TCL14 0.390* -0.055 0.168 -0.515* 0.094 0.349* 0.073 0.228 0.204 -0.460* 0.028 

TCL18 -0.078 0.056 -0.011 0.836** -0.189 -0.979** 0.332* -0.167 0.306* 0.331* -0.470* 

TCL21 -0.096 -0.400* -0.248 -0.225 0.165 0.433* -0.374* -0.461* -0.150 0.185 0.426* 

TCL23 -0.151 -0.232 -0.191 -0.215 2.608*** -1.481*** -0.912** 0.349* -0.694** 0.154 0.192 

TCL24 -0.441* 0.149 -0.146 -0.748** 0.716** 0.162 -0.130 -0.446* 0.311* -0.131 0.266 

TCL25 0.023 0.426* 0.225 -0.289 0.304* 0.031 -0.047 -0.010 0.126 -0.334* 0.218 

TCL26 1.027*** 0.305* 0.666** 0.121 -0.061 -1.731*** 1.670*** -0.235 -0.038 0.290 -0.017 

TCL27 -0.488* -0.090 -0.289 0.119 0.151 0.032 -0.302* -0.234 -0.553* 0.249 0.538* 

TCL28 0.644** 0.239 0.441* 1.861*** -0.424* -1.795*** 0.359* 0.340* 0.331* -0.475* -0.196 

TCL29 0.225 0.350* 0.288 -0.140 0.663** -0.101 -0.422* -0.549* 0.611* -0.080 0.018 

TCL31 0.046 -0.324* -0.139 0.966** 0.276 -0.435* -0.807** 0.720** -0.275 -0.218 -0.226 

TCL33 0.218 0.309* 0.264 -0.253 0.028 -0.036 0.260 0.465* 0.070 -0.227 -0.309* 

TCL34 0.320* 0.354* 0.337* -1.162*** -0.525* 1.501*** 0.187 -0.057 -0.257 0.200 0.114 

TCL35 0.322* 0.477* 0.400* 0.220 -0.362* -0.596* 0.738** -0.018 -0.272 0.007 0.283 

TCL36 0.981** 0.266 0.624** 0.404* 0.396* 0.019 -0.819** 0.187 0.103 0.262 -0.552* 

TCL37 0.478* -0.241 0.119 -2.251*** 0.442* 0.589* 1.221*** -0.963** 0.292 0.201 0.470* 
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TCL39 0.430* 0.139 0.284 0.601** 0.820** 0.058 -1.479*** 0.531* -0.319* -0.157 -0.055 

TCL40 0.385* -0.033 0.176 -0.556* 0.578* 1.090*** -1.112*** 0.329* -0.452* 0.355* -0.233 

TCL41 -1.194*** -0.613** -0.904** -2.110*** 0.009 1.427*** 0.674** -0.983** 0.904** 0.533* -0.454* 

TCL42 -0.790** -0.084 -0.437* -0.054 0.166 -0.571** 0.458* -0.592* -0.061 0.534* 0.120 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%. 
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Table 4-5. Heterotic orientation of thirty maize inbred lines towards CML312, CML444, CML445 and 
N3 under non-stressed versus stressed condition at Chokwe, 2014/15 main season. 

 
Non-stressed experiment Stressed experiment 

Lines SCA HSGCA Heterotic orientation SCA HSGCA 
heterotic 

orientaion 

TCL1 -0.85** -1.14 CML444 -0.088 -0.119 CML444 

TCL2 -0.61** -1.53 N3 -0.291 -0.209 CML444 

TCL3 -1.66*** -2.13 CML444 -0.441* -0.664 N3 

TCL4 -0.89** -2.08 N3 -0.345* -0.972 N3 

TCL6 -0.92** -1.20 N3 -0.323* -0.398 CML312 

TCL7 -1.35*** -0.66 CML312 -0.136 0.202 N3 

TCL9 -1.01*** -0.50 CML444 -0.300 -0.412 CML445 

TCL10 -0.66** -0.76 CML444 -0.299 -0.197 CML444 

TCL11 -2.17*** -2.50 CML444 -0.620** -1.294 CML445 

TCL12 -0.85** -1.29 CML445 -0.376* -0.453 CML445 

TCL14 -0.52* 0.25 CML312 -0.460* -0.469 CML445 

TCL18 -0.98** -1.18 CML445 -0.470* -0.588 N3 

TCL21 -0.37* -0.69 N3 -0.461* -0.711 CML312 

TCL23 -1.48*** -1.76 CML445 -0.694** -0.947 CML444 

TCL24 -0.75** -0.81 CML312 -0.446* -0.147 CML312 

TCL25 -0.05 -0.24 N3 -0.334* 0.138 CML445 

TCL26 -1.73** -0.83 CML445 -0.235 0.220 CML312 

TCL27 -0.30 -1.01 N3 -0.553** -0.664 CML444 

TCL28 -1.80*** -1.28 CML445 -0.475* -0.191 CML445 

TCL29 -0.42* -0.42 N3 -0.549** -0.049 CML312 

TCL31 -0.81** -0.98 N3 -0.226 -0.724 N3 

TCL33 -0.25 0.34 CML312 -0.309* -0.174 N3 

TCL34 -1.16** -0.46 CML312 -0.257 0.076 CML444 

TCL35 -0.60* -0.40 CML445 -0.272 0.183 CML444 

TCL36 -0.82** -0.06 N3 -0.552** -0.460 N3 

TCL37 -2.25*** -1.40 CML312 -0.963** -1.054 CML312 

TCL39 -1.48*** -1.27 N3 -0.319* -0.201 CML444 

TCL40 -1.11*** -0.95 N3 -0.452* -0.505 CML444 

TCL41 -2.11** -2.93 CML312 -0.983** -1.446 CML312 

TCL42 -0.57** -1.49 CML445 -0.592** -0.527 CML312 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%. 

In yellow are the cases in which yield-SCA was used rather than HSGCA. 
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4.4 Discussion 

4.4.1 Agronomic performance 

In general, although the growing season was hot and rainy, drought spells occurred during 

the grain filling stage (Figure 4-1). Consequently, a degree of stress resulting from a 

combination of high temperatures and random-drought was experienced for the experiment 

in which irrigation was stopped at 40 days after emergence. Under fully-irrigated conditions, 

anthesis occurred between 48 to 59 days after emergence and number of days to silking 

ranged from 50 to 63 (Appendices 1a and 1b). Under RDS, flowering delayed by about 9 

days on average compared to fully-irrigated experiment. The ranges varied from 53 to 63 

days for number of days to anthesis (AD) and 60 to 69 days for number of days to silking 

(SD). But what is more important is ASI which is the interval between AD and SD. The 

average ASI was larger under RDS (6.3 days), with a range of 1 to 10 days, than in the fully-

irrigated experiment (average ASI of 2.5 days), with a range of -3 to 8 days. 

Although the observed average ASI under RDS was within the range considered for severe 

drought stress category by Bänziger et al. (2000), the number of ears plant-1 (average of 

1.06) was not significantly different from the one under fully-irrigated experiment (1.10). This 

explains why grain yield reduced by a level of 58%, considered to moderate stress by the 

above cited source. Therefore, the comparison made in this study in terms of heterotic 

orientation refers to warm well-watered versus combined moderate heat-drought stress 

conditions. 

The highly significant environmental mean squares for GY (p < 0.001) indicate that the 

water-regimes contributed significantly to the total variation observed in the hybrid 

performance across the two experiments. This is similar to findings of Bello and Olaoye 

(2009). On the other hand, the change on the level of significance of testcross mean squares 

from  p < 0.01 under well-watered to p < 0.001 under RDS and the significance of testcross 

× environment interaction revealed that the different growing conditions, caused by 

difference in water-regime, had significant impact on the magnitude of differences among 

testcrosses at particular environment. This is similar to Fan et al. (2014). As a result, 

testcross ranking changed from well-watered to moderate random drought stress 

experiments of this study as it can be seen from the top yielders listed in the result section. 

The results suggest that genetic properties of the inbred lines should be looked at first under 

individual environmental conditions. 
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4.4.2 Combining ability 

The highly significant testcross effects to the total variability observed under well-watered 

experimental condition was due to significant GCA-lines, GCA-testers and SCA-line × tester 

effects as all the three genetic components were equally significant at p < 0.05 (Table 4-2). 

However, the ratio between the sum of squares due to GCA and sum of squares due to SCA 

(SSgca (line + tester)/SSsca) was very low (0.386) (Table 4-2). This indicates that the 

effects due to SCA were more important than the effects due to GCA of the lines under well-

watered conditions. The proportions of the genetic components changed under stress 

conditions. The ratio between the total GCA and SCA increased to 1.050 (Table 4-2), 

indicating that the importance of the two genetic components was equal. In both 

environments, the lines contributed more than the testers. Under well-watered conditions, 

line effects were almost four times larger compared to the tester effects and under stressed 

condition line effects were ten times larger. 

The results agreed with many genetic studies conducted in factorial and diallel mating 

designs on maize, but it also disagreed with some. Agreement is with results from Fan et al. 

(2008a), Pswarayi and Vivek (2008), Bello and Olaoye (2009), Mhike et al. (2011), Badu-

Apraku et al. (2013), Adebayo et al. (2014), Oyekunle and Badu-Apraku (2014) and Badu-

Apraku et al. (2015) in terms of both GCA and SCA effects being important but with 

predominance of GCA. Results from the study by Derera et al. (2008) are well in line with the 

findings of the present study because larger contribution of SCA than GCA effects was found 

under non-stressed conditions while under drought-stress conditions GCA effects 

contributed more. Akbar et al. (2008) also reported results showing predominance of GCA 

effects under heat stress while both GCA and SCA effects were equally important under 

normal temperature conditions. Under low-nitrogen and drought (separated) stress 

conditions, Makumbi et al. (2011) reported larger proportions of GCA than SCA but under 

optimum conditions SCA over-expressed GCA. In some studies like those of Fan et al. 

(2004), Zare et al. (2011), Estakhr and Heidari (2012) and Abdel-Moneam et al. (2014) only 

SCA was important for grain yield in maize. 

The findings from this study show that the proportions of the genetic components depend 

upon the number and genetic background of the parents used, as well as the environmental 

conditions under which the genotypes are tested and hence confirm findings of Hallauer 

(2007). Thus heterotic relationships are expected to change when environmental conditions 

change. 
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It is important to highlight that among the ten inbred lines that had positive GCA effect under 

both full irrigation and stressed experimental conditions, five were identified as potential new 

elite lines. These are TCL26 (IL-108), TCL7 (IL-31), TCL35 (IL-92), TCL29 (IL-101) and 

TCL25 (IL-107). This suggests that the five lines have potential to be used not only as 

parents for future hybrid cultivars but also as parents for future breeding for drought tress 

tolerance.   

4.4.3 Heterotic orientation 

Combination of the new approach “heterotic group's specific and general combining ability” 

(HSGCA) as applied by Akinwale et al. (2014) and the traditional yield-SCA method 

(Hallauer, 2007) were used in order to relate the thirty maize female lines to four male lines 

considered as testers. Fan et al. (2008b) and Fan et al. (2009) reported higher efficiency of 

HSGCA method compared to the traditional yield-SCA and molecular marker methods on 

assigning maize inbred lines to heterotic groups. However, it is acknowledged that no one 

heterotic group classification method is perfect because of the unlimited genetic 

combinations in any particular cross. Therefore, it was decided to combine the HSGCA and 

yield-SCA methods to effectively relate the female lines to four testers. The traditional yield-

SCA method was used to assign a line to heterotic group in the cases when its HSGCA was 

positive with the four testers but it had negative yield-SCA with at least one tester. This 

occurred once under fully-irrigated and four times under stressed conditions (Table 4-5). 

Majority of the lines (67%) changed their orientations towards a tester on moving from fully-

irrigated to stressed experimental conditions. This can complicate breeding for both stressed 

and non-stressed environments. Breeding for specific environment would reduce the size of 

product market for a variety and seed companies might to be encouraged to commercialise 

that variety. Therefore, the ideal breeding goal would be to identify stable heterotic testers 

across contrasting environments and to select newly developed inbred lines that don not 

change their heterotic orientation when moving from non-stressed to moderate and severe 

stress conditions. In this study, only two out of thirty testcrossed inbred lines maintained their 

orientation towards a tester under both stressed and non-stressed environments. Those 

were TCL28 and TCL36. 

Under full irrigation, tester N3 was related with 11 lines (37%) while under stressed 

conditions only 7 (23%) lines were found related with this tester. On the other hand, only 5 

lines (17%) were assigned to the same group as CML444 under fully-irrigated condition but 

nine lines (30%) were assigned in the same group with it under stressed experimental 
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condition. Both N3 and CML444 are dent-grain type and they discriminated some of the lines 

differently under the two different environmental conditions. The potential of N3 to generate 

high yielding hybrids under favourable environments is accepted in the Southern Africa 

Region while CML444 is very popular drought stress tolerant tester. 

Testers CML312 and CML445 tended to be more stable across the two experimental 

conditions. They are also popular drought tolerant parents of many hybrids developed by 

CIMMYT. Each of the two testers were related with seven lines (23%) under fully-irrigated 

condition and changed to more or less by one line under stressed conditions. The two 

testers are flint-grain type, thus, they just discriminated the remaining lines that were not 

able to be effectively discriminated by N3 and CML444. 

4.5 Conclusion 

The objective of this study was to determine the heterotic orientation of selected inbred lines 

towards three popular drought tolerant testers (CML312, CML444 and CML445) and towards 

the high yielding potential tester N3. Using the HSGCA approach and the yield-SCA, the four 

testers effectively discriminated the thirty inbred lines of this study. 

It was found that heterotic orientation changed significantly with change in environmental 

conditions. Twenty inbred lines (67%), including eight best GCA combiners, changed from 

one tester to another when experimental conditions changed from fully-irrigated to random 

and moderate drought stress. Only TCL28 and TCL36 did not change. These two lines have 

the second and third best GCA effect estimates for grain yield. 
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5. CHAPTER 5. Correlation and path coefficient analysis of maize 

grain yield with other characteristics under fully-irrigated versus 

water-limited conditions 

 

Abstract 

Correlation and path coefficients between maize (Zea mays L.) grain yield (GY) and other 

traits under contrasting environments are important statistical parameters that help 

understanding the strength of relationship and the level of contribution of the secondary traits 

to GY under these different environments. The objective of this study was to assess the level 

of relationship between maize traits correlated with GY in inbred lines per se versus hybrids 

under stressed and non-stressed conditions. Data from two types of experimental trials 

grown under full irrigation and water-limited conditions were used. One trial consisted of 128 

inbred lines and the other of 48 F1 hybrids. Line per se trial was evaluated at two sites in 

Zimbabwe under severe heat-drought stress (SHDS) at Chiredzi, moderate heat-drought 

stress (MHDS) at Save Valley, and one site in Mozambique at Chókwè under random-

drought stress (RDS) and non-stressed conditions. The hybrid trial was conducted at 

Chókwè under moderate combined heat-drought stress (CHDS), isolated heat stress (IHS), 

isolated drought stress (IDS) and non-stressed conditions. Drought environments were 

manipulated by withdrawing irrigation 40 days after emergence while the non-stressed 

environment at Chókwè was achieved by providing water until physiological maturity. In 

general, genetic correlation and path coefficients analyses revealed positive and significant 

relationship between GY and number of ears plant-1 (EPP) and ear aspect (EA) under 

almost all environments in both the inbred and hybrid trials. This implies that EPP and EA 

can be used as indirect selection traits when breeding maize for combined heat and drought 

conditions. The study also identified direct positive contribution of smaller anthesis-silking 

intervals (ASI) to GY under severe stresses but only indirectly through number of grains ear-1 

(NGPE) under less stressed environments. The NGPE had strong positive direct effect on 

GY while 100-grain weight contributed only indirectly through NGPE in hybrids. Therefore, 

EPP, EA, ASI and NGPE would be useful as secondary traits for maize grain yield selection 

for combined heat-drought stress breeding.  
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5.1 Introduction 

Although maize is the primary food crop of Mozambique, yields in farmers’ fields have 

remained below 1 t ha-1 (FAOSTAT, 2015) This is basically due to two main environmental 

constraints: i) maize sensitivity to high temperatures that characterizes the main growing 

season (Harrison et al., 2011) in Mozambique; and ii) unreliable rainfall distribution and 

frequent drought spells (INGC, 2010). Therefore, the development of combined stress 

tolerant maize germplasm is of paramount importance so as to ensure stable yields under 

farmers’ field conditions (Cairns et al., 2012; Cairns et al., 2013a; Cairns et al., 2013b). As a 

primary trait, grain yield in maize is a complex polygenic character, with low heritability and 

hence difficult to select for.  Therefore, progress in selection for GY under combined drought 

and heat could be achieved by indirect selection via highly heritable secondary traits that 

may directly influence yield. 

In addition, use of secondary traits for indirect selection of germplasm tolerance has been 

advocated by many plant breeders and physiologist who targeted improvement of maize 

yield in abiotic stressed environments (Araus and Sanchez, 2012; Bänziger et al., 2000; 

Bavei et al., 2011; Betrán et al., 2003; Bolaños and Edmeades, 1996; Chimenti et al., 2006; 

Fischer et al., 1982; Fokar et al., 1998; Kebede et al., 2012; Liu et al., 2011; Lopes et al., 

2011; Maestri et al., 2002; Messmer et al., 2009; Mhike et al., 2012; Molina-Bravo et al., 

2011; Obeng-Bio et al., 2011; Reynolds and Trethowan, 2007; Ribaut et al., 1996; Ristic et 

al., 1998; Schoper et al., 1987; Sinclair, 2011; Takele, 2010; Talebi, 2011; Tollenaar and 

Lee, 2002; Tollenaar and Lee, 2006; Vaezi et al., 2010; Wahid et al., 2007; Weber et al., 

2012; Zaidi et al., 2004; Zhuan-Fang et al., 2011). Bänziger et al. (2000) working with maize, 

Fischer et al. (2003) in rice and Reynolds et al. (2001) in wheat gave practical 

recommendations for the use of secondary traits in breeding for drought, low soil fertility and 

heat stress tolerance. In general, these researchers highlighted that a useful secondary trait 

must be; 1) genetically correlated with grain yield in the stress under consideration, 2) less 

affected by environment (low genotype-by-environment interaction) when compared with 

grain yield (the trait must exhibit greater heritability than grain yield under stress), 3) faster, 

easier and not expensive to measure compared to assessing grain yield, and 4) easily 

assessed in individual plants or in very small plots. 

Bänziger et al. (2000) demonstrated that the number of ears per plant, anthesis-silking 

interval, leaf rolling, leaf senescence and tassel size were the most useful secondary traits to 

identify drought tolerance in maize. In addition, Mhike et al. (2012) validated the use of 

secondary traits and selection indices for drought tolerance in tropical maize and concluded 

that anthesis-silking interval and number of ears plant-1 were the most valuable secondary 
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traits because they were consistently and strongly correlated with grain yield. New 

developments in research addressing both drought and heat tolerance indicate that drought 

tolerance does not necessarily indicate heat tolerance (Cairns et al., 2013a; Prasad et al., 

2008). This is because the molecular and biochemical responses of plants to a combination 

of the two stresses are unique and cannot be extrapolated simply from responses to the 

individual stresses (Mittler, 2006).  

Although plant stand is the first and most important yield component, it is not recommended 

as a secondary trait for drought stress tolerance (Araus and Sanchez, 2012). This is 

because the trait is more useful at early stages, during crop establishment, and genetic 

variation for number of plants due to drought stress is insignificant (Bänziger et al., 1996). 

Bänziger et al. (1996) authors concluded that natural selection may have already exploited 

most of the genetic variation for this trait. However, a study by Meeks et al. (2013) reported 

the importance of seedling stress response as a secondary screening parameter. In that 

study, it was found that seedling drought response was more important in hybrids than in 

inbred lines but the response mechanisms at seedling stage were independent from those at 

flowering stages in both inbred and hybrid genotypes. Nevertheless, Araus and Sanchez 

(2012) pointed out that the later stages (from flowering to grain filling) are more important 

and may result in a complete loss of season because replanting would no longer possible.  

Reliable secondary traits under drought stress alone were validated by Badu-Apraku et al. 

(2012). Badu-Apraku et al. (2012) suggested that anthesis-silking interval, plant height, ear 

placement, ears plant-1, plant aspect and ear aspect were more important when stress 

occurred at flowering stage, but the importance of leaf senescence was not confirmed. On 

the other hand, Mhike et al. (2012) validated the use of some secondary traits and selection 

indices for drought tolerance in tropical maize. The stress in the study by Mhike et al. (2012) 

was also under drought stress alone. Ears plant-1 and anthesis-silking interval were the only 

traits reported to have a strong relationship with grain yield under stress. Genetic variance 

for leaf senescence was again not statistically significant. 

Since droughts occur simultaneously with heat during the main maize cropping seasons in 

the tropical and subtropical environments, it is important to know whether the traits 

correlated with grain yield under drought alone will remain the same under combined heat 

and drought stress conditions. To answer this question, a study under drought stress alone, 

heat stress alone and combined heat and drought stress conditions is necessary.  

Studies on the relationship among traits in crop species are made through analyses of their 

coefficients, either phenotypic or genotypic correlations, or path coefficients. Correlation 
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coefficient analysis is simply a measurement of mutual association but it disregards complex 

interrelationships among traits (Alhassan et al., 2008). For this reason, use of path 

coefficient analysis has lately become more popular (Adesoji et al., 2015; Ahmad and 

Saleem, 2003; Khalili et al., 2013; Kumar et al., 2015; Mustafa et al., 2014; Wannows et al., 

2010). Conceptually, “path coefficient analysis is a standard partial regression that measures 

the direct and indirect effects for a set of priori cause-and-effect interrelationship” (Alhassan 

et al., 2008). The objective of this study was to determine the relationship among maize 

traits correlated with grain yield in both inbred lines and hybrids under full irrigation and 

water-limited conditions. 

5.2 Materials and Methods 

5.2.1 Data 

Data from two different trials, namely inbred lines per se trial (Chapter 2) and diallel cross 

hybrids trial (Chapter 3) were used for this study. The inbred line trial was conducted under 

managed severe heat and drought stress (SHDS), managed moderate heat and drought 

stress (MHDS), random drought stress alone and non-stressed conditions. The hybrid trial 

was conducted under MHDS, heat stress alone (HS), drought stress alone (DS) and non-

stressed conditions. The inbred lines per se trial consisted of 128 genotypes and the hybrid 

trial was formed by 45 diallel crosses plus three checks resulting in 48 F1 crosses. Details on 

the experiment evaluations and data collection were provided in the two chapters mentioned 

above. The target traits for correlation and path coefficient analyses were number of ears 

plant-1 (EPP), number of grains ear-1 (NGPE), weight of 100 grains (W100G), number of 

days to anthesis (AD), anthesis-silking interval (ASI), plant height (PH), ear position (EPO), 

plant aspect (PA) and ear aspect (EA). 

5.2.2 Correlation and path coefficient analyses 

Before conducting correlation and path coefficient analyses, analyses of variance (ANOVAs) 

at individual environments were performed in each set of data. The ANOVAs were 

conducted in Fieldbook-IMIS5 free statistical software developed by CIMMYT (Bänziger et 

al., 2012).  

Pearsons’ phenotypic correlation [rp(xy)] analysis was performed among the traits using 

PROC CORR in the SAS 9.3 statistical software. Significance of the difference of each 

correlation coefficient from zero was tested using a t-test. Genetic correlations [rG(xy)] were 
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estimated as described by Kearsey and Pooni (1996). In order to know what secondary trait 

has a direct influence on the yield under stressed conditions, phenotypic and genotypic 

correlations were further partitioned into direct and indirect influences through path 

coefficient (cause-effect relationship) analysis as applied by Adesoji et al. (2015) and Kumar 

et al. (2015). 
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5.3 Results 

5.3.1 Analyses of variance 

Results from the inbred lines per se trial are summarised in Tables 5-1. Analysis of variance 

(ANOVA) revealed that genotypic variances for grain yield (GY) were statistically significant 

at p < 0.01 under severe heat-drought stress (SHDS) and at p < 0.001 under the other three 

environments (moderate heat-drought stress, random drought stress and unstressed 

environment). For number of ear plant-1 (EPP) variances were significant at p < 0.001 under 

SHDS and p < 0.01 under the rest of the three environments. Number of grains ear-1 (NGPE) 

and weight of 100 grains (W100G) were assessed only at the two environments in Chókwè, 

namely random drought stress (RDS) and non-stressed, and the ANOVA detected 

significant genotypic variances at p < 0.001 for the two traits under these two environments.  
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Table 5-1. Summary of the analyses of variance for grain yield and associated traits of 108 maize 
inbred lines evaluated under four different environments in 2014. 

Environment 

Trait GY EPP NGPE W100G AD ASI PH EA 

(t ha-1) (ratio) (#) (g) (days) (days) (cm) (1-5) 

Severe heat-
drought 
stress (SHDS) 
= Chiredzi 

Genotype 0.284 0.044 - - 34.232 19.963 298.926 0.426 

Error 0.132 0.022 - - 6.605 7.519 295.253 0.162 

Significance ** ** - - *** * ns *** 

Moderate 
heat-drought 
stress (MHDS) 
= Save Valley 

Genotype 0.498 0.084 - - 11.741 3.487 428.89743 0.651 

Error 0.228 0.048 - - 3.824 1.391 291.085 0.327 

Significance *** ** - - *** * * ** 

Random 
drought 
stress (RDS)  
=Chokwe 

Genotype 0.237 0.063 0.995 17.359 17.707 4.820 - 0.934 

Error 0.059 0.030 0.387 2.127 0.963 0.607 - 0.458 

Significance *** ** *** *** *** *** - *** 

Non-stressed 
= Chokwe 

Genotype 1.562 0.066 1089.721 15.426 16.397 2.470 501.726 0.651 

Error 0.368 0.023 0.401 1.899 1.142 0.900 339.782 0.369 

Significance *** *** *** *** *** *** * * 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically 
significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; NGPE = number of grains ear-1; W100G = weight of 100 grains; AD = days 
to anthesis; ASI = anthesis-silking interval; PH = plant height; EA = ear aspect. 

Significance at p < 0.001 was detected for number of days from emergence to 50% anthesis 

(AD) under the four experimental environments of the inbred trial. For anthesis-silking 

interval (ASI), significance was at p < 0.05 under the two environments in Zimbabwe (SHDS 

and MHDS) and at p < 0.001 under the two environments at Chókwè (RDS and non-

stressed). Statistical significance for plant height (PH) was revealed under MHDS and non-

stressed environments (p < 0.05) but not under SHDS (p > 0.05). Significant genotypic 

variances were also observed for ear aspect (EA) under SHDS and RDS (p < 0.001), MHDS 

(p < 0.01) and unstressed (p < 0.05). 

From the diallel cross hybrid trial, results of ANOVA were summarised in Table 5-2. 

Statistically significant genotypic variances for GY were observed at p < 0.01 under 

combined heat-drought stress (CHDS) and at p < 0.001 under isolated heat stress (IHS), 

isolated drought stress (IDS) and unstressed environments. Significance for EPP was 

detected only under IDS (p < 0.05) and not under the other three environments. In addition, 

significance at p < 0.001 was detected for NGPE and W100G under the environments where 

they were assessed (CHDS, IDS and unstressed). 

For AD, significance was at p < 0.001 under IDS and IHS, at p < 0.01 under CHDS and at p 

< 0.05 under non-stressed conditions. Analysis of variance did not detect statistical 
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significance for ASI under HS and non-stressed experimental conditions of the diallel cross 

hybrid trial but yes under DS (p < 0.001) and CHDS (p < 0.05). 

Table 5-2. Summary of the analyses of variance for grain yield and associated traits of 45 maize 
diallel single crosses evaluated under four different environments in 2014. 

Environment 

Trait GY EPP NGPE W100G AD ASI PH PA EA 

(t ha-1) (ratio) (#) (g) (days) (days) (cm) (1-5) (1-5) 

Combined 
heat-
drought 
stress 
(CHDS) = 
Chókwè 

Genotype 0.341 0.019 - - 6.080 1.307 410.166 0.496 0.358 

Error 0.161 0.015 - - 2.828 0.815 91.506 0.295 0.188 

Significance ** ns - - ** * *** * ** 

Heat stress 
alone (HS) = 
Chókwè 

Genotype 1.029 0.028 11045.718 19.22 4.233 2.303 455.779 - - 

Error 0.086 0.018 1514.777 2.200 1.397 2.277 297.881 - - 

Significance *** ns *** *** *** ns * - - 

drought 
stress alone 
(DS) = 
Chókwè 

Genotype 2.151 0.013 12396.465 17.183 5.373 6.321 483.304 - 0.581 

Error 0.362 0.009 806.466 2.039 1.432 2.742 313.970 - 0.448 

Significance *** * *** *** *** *** * - ns 

Non-
stressed = 
Chókwè 

Genotype 2.050 0.016 13429.256 19.153 10.730 0.413 488.705 0.705 0.767 

Error 0.315 0.015 1850.886 3.944 7.059 0.549 158.965 0.432 0.288 

Significance *** ns *** *** * ns *** * *** 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically 
significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; NGPE = number of grains ear-1; W100G = weight of 100 grains; AD = days 
to anthesis; ASI = anthesis-silking interval; PH = plant height; EA = ear aspect. 

For PH, ANOVA revealed statistical significance at p < 0.001 under CHDS and non-

stressed, and at p < 0.05 under HS and DS conditions. Plant aspect (PA) was scored under 

CHDS and non-stressed conditions, and genotypic variances were significant under both 

conditions for this trait (p < 0.05). Genotypic variances for ear aspect were found significant 

under CHDS (p < 0.01) and non-stressed (p < 0.001) but not under DS (p > 0.05). 

5.3.2 Correlations and path coefficient analyses between grain yield and other 

traits 

Inbred lines per se: Table 5-3a shows the results on correlation coefficient (phenotypic and 

genotypic) analyses from the inbred per se trial data. Highly significant (p < 0.001) positive 

genetic correlations between EPP and GY were observed under SHDS, MHDS and non-

stressed conditions but under RDS genetic correlation was statistically significant at p > 

0.05. Phenotypic correlation was highly significant between EPP and GY under RDS and 

non-stressed (p < 0.001). For NGPE, both phenotypic and genotypic correlation coefficients 
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were significant at p < 0.001 under both the stressed and non-stressed environments of 

Chókwè, while for W100G only genotypic correlation under RDS was significant (p < 0.05). 

Number of days to anthesis was consistently negatively correlated with GY in the inbred trial 

and the coefficients were all highly significant (p < 0.001) except the genotypic coefficients 

under SHDS and MHDS (p > 0.05).  

Table 5-3a. Phenotypic (below diagonals) and genotypic (above diagonals) correlation coefficients 
among maize traits of 108 inbreds evaluated in four different environments. 

Severe heat-drought stress (SHDS) – Chiredzi, 2014 

  GY AD ASI PH EPP EA 
GY 1 -0.181 -0.122 0.156** 0.548*** -0.659*** 
AD -0.566*** 1 -0.444*** 0.085 -0.161 0.358*** 
ASI -0.010 -0.129 1 -0.027 -0.066 -0.034 
PH -0.283*** -0.050 -0.677*** 1 0.054 -0.176 
EPP 0.006 -0.017 0.020 -0.279** 1 -0.290** 
EA 0.014 -0.055 0.833*** -0.547*** -0.030 1 

       Moderate heat-drought stress (MHDS)  – Save Valley, 2014 
          

  GY AD ASI PH EPP EA 
GY 1 -0.111 -0.167 0.324*** 0.590*** -0.686*** 
AD -0.401*** 1 -0.075 0.097 0.137 0.047 
ASI -0.119 0.149* 1 0.071 -0.205* 0.018 
PH 0.401*** -0.574*** -0.540*** 1 0.153 -0.157 
EPP 0.044 0.264** 0.896*** -0.545*** 1 -0.249* 
EA -0.234** 0.600*** -0.068 -0.612*** 0.033 1 
          

Random drought stress (RDS) – Chókwè, 2014/15 
         
  GYG AD ASI EPP EA NGPE W100G 

GYG 1 -0.437*** -0.425*** -0.141* -0.420*** 0.772*** 0.194** 
AD -0.364*** 1 0.053 0.125 0.166** -0.350*** -0.130* 
ASI -0.542*** 0.078 1 -0.375*** 0.352*** -0.336*** 0.308** 
EPP 0.421*** -0.210** -0.182* 1 -0.358*** -0.253** -0.760*** 
EA -0.466*** 0.191* 0.23** -0.128 1 -0.469*** 0.311*** 
NGPE 0.756*** -0.254** -0.428*** -0.079 -0.451*** 1 0.073 
W100G -0.0294 0.030 0.035 0.034 0.027 -0.304** 1 
          

Non-stressed – Chókwè well-watered, 2014/15 
         
  GYG AD ASI PH EPP EA NGPE W100G 

GYG 1 -0.422*** -0.057 0.262** 0.474*** -0.465*** 0.784*** 0.076 
AD -0.409*** 1 -0.147* -0.244** -0.210* 0.269** -0.364*** 0.019 
ASI -0.060 -0.182* 1 -0.006 -0.022 0.019 -0.008 -0.062 
PH 0.227** -0.175* -0.021 1 0.193* -0.164* 0.219** -0.009 
EPP 0.433*** -0.165* -0.033 0.122 1 -0.075 0.021 0.071 
EA -0.339*** 0.208 -0.011 -0.122 -0.023 1 -0.493*** -0.205** 
NGPE 0.735*** -0.304** -0.016 0.215** -0.029 -0.426*** 1 -0.141* 
W100G -0.003 -0.014 -0.060 -0.089 -0.039 0.178* -0.312*** 1 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically 
significant (p > 5%). 
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GY = grain yield; EPP = ears plant-1; NGPE = number of grains ear-1; W100G = weight of 100 grains; AD = days 
to anthesis; ASI = anthesis-silking interval; PH = plant height; EA = ear aspect. 

Correlation coefficients between GY and ASI were also negative but only significant under 

RDS (p < 0.001). Plant heights were positively and significantly correlated with GY under 

MHDS (p < 0.001) and non-stressed (p < 0.01) conditions but phenotypic correlation under 

SHDS was significant (p < 0.001) and negative whilst genotypic correlation was not 

significant (p > 0.05). Highly significant negative correlations were obtained under all 

environments with EA except phenotypic correlation under SHDS (p > 0.05). 

Table 5-3b shows the results from partitioning the correlation coefficients obtained in the 

inbreds per se trial into direct and indirect effects following path coefficient analyses. It was 

observed that, under SHDS, ear aspect (EA) had the highest direct (diagonal) path 

coefficient (-0.559) followed by EPP (0.365) and ASI (-0.119).  Among the secondary traits, 

the coefficients between AD - EA (-0.200) and EPP – EA (0.162) were the two highest. In 

total, EA (-0.659), EPP (0.548) and AD (-0.181) had the three highest effects on GY under 

SHDS. In the MHDS environments the highest direct effect was produced by EA (0.470) 

followed by ASI (0.414), while EPP showed the highest indirect effect through EA (-0.117) 

and AD through EA (0.022). The highest total effects in the MHDS environment were due to 

EA (0.478), ASI (0.401) and EPP (-0.234). 

Highest direct effects under RDS were produced by NGPE (-1.031), EPP (0.192) and ASI (-

0.110). Indirectly, EA contributed more through NGPE (0.465) followed by ASI through 

NGPE (0.441) and NGPE through W100G (0.314). In total, NGPE (0.756), ASI (-0.542), EA 

(-0.466) and EPP (0.421) contributed more for GY. Highest direct path coefficient under non-

stressed condition was observed on NGPE (-0.431). This trait had also the highest indirect 

path coefficients EA (0.212) and AD (0.157), and the highest total effect on GY (0.784). On 

the total effect, EPP, EA and AD also had relatively high coefficients (0.474, -0.465 and -

0.422, respectively). 

Hybrids: In the diallel cross hybrids trial (Table 5-4a), both phenotypic and genotypic 

correlations of GY with EPP were positive and significant apart from the heat stress (HS) 

environment where p > 0.05 for genotypic correlation coefficient. Genotypic correlations for 

GY and plant height (PH) were highly significant (p < 0.001) individual stresses and non-

stressed conditions but not significant under combined heat and drought stress (CHDS). 

Phenotypic correlations were also significant at p < 0.001 under drought alone and non-

stressed conditions but not significant under heat alone and CHDS. With NGPE, both 

phenotypic and genotypic correlations were highly significant (p < 0.001) under individual 

stresses and non-stressed environments while with W100G only the phenotypic coefficients 
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under individual stresses were statistically significant (p < 0.001 under heat and p < 0.01 

under drought). 

Table 5-3b. Direct (path coefficients on diagonals), indirect (below and above diagonals) and total 
(right end column) effects of maize traits on grain yield of 108 inbreds evaluated in four different 
environments. 

         

Severe heat-drought stress (SHDS) – Chiredzi 2014 hot and off-rain, managed drought 

         
 

AD ASI PH EPP EA Total effect on 

      
GY 

AD -0.040 0.053 0.004 -0.059 -0.200 -0.181 
ASI 0.018 -0.119 -0.001 -0.024 0.019 -0.122 
PH -0.003 0.003 0.052 0.020 0.098 0.156 
EPP 0.006 0.008 0.003 0.365 0.162 0.548 
EA -0.014 0.004 -0.009 -0.106 -0.559 -0.659 

         Moderate heat-drought stress (MHDS)  – Save Valley 2014 hot and off-rain, managed drought 

         
 

AD ASI PH EPP EA Total effect on 

      
GY 

AD -0.094 -0.031 -0.006 -0.006 0.022 -0.119 
ASI 0.007 0.414 -0.004 0.010 0.008 0.401 
PH -0.009 0.029 -0.059 -0.007 -0.074 -0.153 
EPP -0.013 -0.085 -0.009 -0.047 -0.117 -0.234 
EA -0.004 0.007 0.023 0.012 0.470 0.478 

         Random drought stress (RDS) – Chókwè 2014/15, rainfed 

           AD ASI PH EPP EA NGPE W100G Total effect on 
    

 
    GY 

AD -0.064 -0.009 - -0.040 -0.003 0.263 -0.003 -0.364 
ASI -0.005 -0.110 - -0.035 -0.004 0.441 -0.003 -0.542 
EPP 0.014 0.020 - 0.192 0.002 0.079 -0.003 0.421 
EA -0.012 -0.026 - -0.025 -0.016 0.465 -0.002 -0.466 
NGPE 0.016 0.047 - -0.015 0.007 -1.031 0.026 0.756 
W100G -0.002 -0.004 - 0.008 -0.0004 0.314 -0.085 -0.029 

         Non-stressed – Chókwè 2014/15, fully-irrigated 

           AD ASI PH EPP EA NGPE W100G Total effect on 
         GY 
AD -0.087 0.004 -0.006 -0.011 -0.002 0.157 0.001 -0.422 
ASI 0.013 -0.030 -0.0001 -0.001 -0.0002 0.004 -0.004 -0.057 
PH 0.021 0.0002 0.025 0.010 0.001 -0.094 -0.0005 0.262 
EPP 0.018 0.0007 0.005 0.0540 0.0007 -0.009 0.004 0.474 
EA -0.024 -0.0006 -0.004 -0.004 -0.009 0.212 -0.012 -0.465 
NGPE 0.032 0.0002 0.005 0.001 0.004 -0.431 -0.008 0.784 
W100G -0.002 0.0018 -0.0002 0.004 0.002 0.061 0.059 0.076 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically 
significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; NGPE = number of grains ear-1; W100G = weight of 100 grains; AD = days 
to anthesis; ASI = anthesis-silking interval; PH = plant height; EA = ear aspect. 
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Table 5-4a. Phenotypic (below diagonals) and genotypic (above diagonals) correlation coefficients 
among maize traits of 45 diallel single crosses evaluated in four different environments. 

 
Moderate heat-drought stress (MHDS) – Chókwè, 2014 hot and off-rain, managed drought 

 
         

    GYG AD ASI PH EPP EA PA 
GYG 1 -0.1155 -0.312*** -0.06455 0.302** -0.545*** -0.394*** 
AD -0.173* 1 -0.028 0.643*** -0.220** 0.041 -0.255** 
ASI -0.054 -0.020 1 -0.11784 0.150 0.390*** 0.265** 
PH 0.075 0.387*** -0.025 1 -0.235** -0.060 -0.328*** 
EPP 0.269** -0.155 0.030 -0.00233 1 -0.063 0.022 
EA -0.524*** 0.049 0.111 -0.06278 -0.117 1 0.270 
PA -0.441*** -0.002 0.198* -0.253** -0.110 0.293** 1 
  

         Isolated heat stress (HIS) – Chókwè, 2014 hot and off-rain, fully-irrigated 

 
         

    GYG AD ASI PH EPP NGPE W100G 
GYG 1 0.180* 0.002 0.498*** 0.032 0.580*** 0.250** 
AD -0.184* 1 -0.034 0.385*** -0.069 0.073 0.257** 
ASI -0.127 0.100 1 -0.077 -0.217** -0.226** -0.022 
PH 0.020 0.415*** 0.046 1 -0.012 0.451*** 0.038 
EPP 0.204* -0.168 0.008 -0.007 1 -0.228** -0.147 
NGPE 0.846*** -0.120 -0.104 0.008 -0.154 1 -0.114 
W100G 0.316*** 0.140 0.165 0.194* 0.022 0.126 1 
           
Isolated drought stress (IDS) – Chókwè 2015 off-rain, managed drought 

 
         

    GYG AD ASI PH EPP EA NGPE W110G 
GYG 1 0.076 0.162 0.313*** 0.468*** -0.375*** 0.842*** 0.089 
AD -0.034 1 0.457*** 0.626*** 0.073 0.018 0.107 -0.054 
ASI -0.153 0.392*** 1 0.444*** 0.277** 0.056 0.267** -0.300** 
PH 0.566*** 0.058 -0.264** 1 0.258** -0.133 0.278** -0.105 
EPP 0.565*** -0.033 -0.101 0.378*** 1 -0.338*** 0.279** -0.229** 
EA -0.558*** 0.151 0.342*** -0.598*** -0.500*** 1 -0.355*** 0.033 
PA - - - - - - - - 
NGPE 0.716*** 0.068 0.066 0.334*** 0.216** -0.347*** 1 -0.303** 
W110G 0.217** -0.073 -0.315*** 0.260** 0.029 -0.207* -0.291** 1 
           
Unstressed – Chókwè 2015, fully-irrigated 

 
         

    GYG AD ASI PH EPP EA PA NGPE W100G 
GYG 1 0.273** 0.018 0.396*** 0.320*** -0.488*** -0.485*** 0.537*** 0.092 
AD 0.179* 1 0.179* 0.574*** 0.283** 0.011 -0.461*** 0.289** -0.426*** 
ASI 0.026 -0.046 1 0.142 -0.099 0.159 -0.007 0.223** -0.229** 
PH 0.341*** 0.343*** -0.0003 1 0.205* -0.180* -0.504*** 0.358*** -0.249** 
EPP 0.217** 0.181* -0.025 0.063 1 -0.046 -0.283** 0.069 -0.218** 
EA -0.362*** 0.044 0.038 -0.193 -0.021 1 0.456*** -0.43721 -0.011 
PA -0.501*** -0.157 -0.056 -0.397 -0.110 0.519*** 1 -0.403*** 0.247** 
NGPE 0.430*** 0.127 0.089 0.221 -0.070 -0.244** -0.286** 1 -0.514*** 
W100G 0.153 -0.159 -0.095 -0.038 -0.089 -0.176* -0.093 -0.474*** 1 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically 
significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; NGPE = number of grains ear-1; W100G = weight of 100 grains; AD = days 
to anthesis; ASI = anthesis-silking interval; PH = plant height; EA = ear aspect. 

Genetic correlations between GY and AD were significant at p < 0.05 under heat stress 

alone and at p < 0.01 under non-stressed environment but not under MHDS and drought 
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stress alone. Phenotypic coefficients were significant at p < 0.05 under MHDS, heat stress 

alone and unstressed environments but not under drought stress alone. Both genotypic and 

phenotypic correlation coefficients between grain yield and ASI were not significant under all 

environments except genotypic correlation under CHDS (p < 0.001). 

Plant heights were not correlated with GY under CHDS (p > 0.05) and only the genotypic 

coefficient was significant under HS (p < 0.001). Same level of significance (p < 0.001) was 

observed for phenotypic correlations with PH under DS and non-stressed environments, 

while the genotypic correlation coefficient was significant at p < 0.05 under DS and at p < 

0.01 under non-stressed conditions. With EA and PA (plant aspect), highly significant (p < 

0.001) and negative (which correspond to positive in the case of EA and PA) correlation 

coefficients (both phenotypic and genotypic) were observed under the environments where 

the traits were assessed. 

Path coefficient analyses of hybrid trial data (Table 5-4b) under CHDS revealed that ASI was 

the only trait with high direct (diagonal) effect on GY (-0.108). Highest indirect coefficient was 

between AD – PH (-0.058), followed by PH – PA (0.027), PH – EPP (0.021), ASI – EA (-

0.027), and ASI – PA (-0.022). For total effect, EA (-0.545) had the highest values under 

CHDS followed by PA (-0.394), ASI (-0.312) and EPP (0.302). Under HS, the highest value 

of direct effects on GY was estimate for NGPE (1.063), followed by W100G (0.431), ASI 

(0.223), PH (0.183) and EPP (0.132). Highest indirect effects were estimated between [PH – 

NGPE (0.138)], followed by [EPP – NGPE (-0.070) - W100G (-0.029)], [ASI – NGPE (-

0.069)], [AD – W100G (0.050)] and [NGPE – W100G (-0.035)]. Total effects under HS were 

highest for NGPE (1.514), followed by PH (0.560), W100G (0.274) and EPP (0.250). 

Under DS only EPP and NGPE had relatively high estimates of direct effects (0.197 and 

0.100, respectively). The indirect effects were highest between [PH – EPP (0.074)], followed 

by [PH – NGPE (0.033) - EPP (0.022) - EA (-0.098)], [EPP – NGPE (0.022)], [EA – NGPE (-

0.035)] and [W100G - NGPE (-0.029)]. The total effects under DS were highest for NGPE, 

followed by EA, PH, and EPP (0.716, -0.558, 0.566 and 0.565, respectively). Finally, under 

the non-stressed environment for the diallel hybrids, W100G AD and EA had the three 

highest direct effects of 0.457, 0.197 and -0.133, respectively. Seven indirect paths were 

identified and among these, six were linked to W100G. These were [NGPE – W100G], [AD – 

W100G], [PH – W100G], [PA – W100G], [ASI – W100G] and [EPP – W100G] with indirect 

coefficients of -0.235, -0.195, -0.114, 0.113, -0.105 and -0.100. The seventh indirect path 

was [AD – PH (0.113)]. Highest estimates for total effect under non-stressed environment 

was for NGPE (0.537) followed by EA (-0.488) and PA (-0.485), PH (0.396), EPP (0.320), 

and AD (0.273). 
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Table 5-4b. Direct (path coefficients on diagonals), indirect (bellow and above diagonals) and total 
(right end column) effects of maize traits on grain yield of 45 diallel single crosses evaluated in four 
different environments. 

          Moderate heat-drought stress (MHDS) – Chókwè, 2014 hot and off-rain, managed drought 

            AD ASI PH EPP EA PA Total effect on 
  

      
GY 

AD 0.003 0.003 -0.058 0.014 -0.003 0.021 -0.116 
ASI -0.00008 -0.108 0.011 -0.010 -0.027 -0.022 -0.312 
PH 0.002 -0.013 -0.091 -0.015 0.004 0.027 0.065 
EPP -0.0006 -0.016 0.021 -0.066 0.004 -0.002 0.302 
EA 0.0001 -0.042 0.005 0.004 -0.068 -0.022 -0.545 
PA -0.001 -0.029 0.030 -0.001 -0.018 -0.083 -0.394 
 

         
Heat stress (HS) – Chókwè, 2014 hot and off-rain, fully-irrigated 

 
         

  AD ASI PH EPP NGPE W100G Total effect on 
  

      
GY 

AD -0.018 -0.008 -0.0003 0.002 0.022 0.050 0.057 
ASI 0.001 0.223 0.00005 0.006 -0.069 -0.004 -0.012 
PH -0.012 0.004 0.183 0.0003 0.138 0.007 0.560 
EPP 0.002 0.011 0.000 0.132 -0.070 -0.029 0.250 
NGPE -0.002 0.012 -0.0003 0.006 1.063 -0.022 1.514 
W100G -0.008 0.001 -0.00003 0.004 -0.035 0.431 0.274 
 

         
Drought stress (DS) – Chókwè 2015 off-rain, managed drought 

 
         

  AD ASI PH EPP EA NGPE W110G Total effect on 
  

       
GY 

AD -0.046 -0.002 0.005 -0.007 0.006 0.007 -0.002 -0.034 
ASI -0.018 -0.004 -0.025 -0.020 0.013 0.007 -0.007 -0.153 
PH -0.003 0.001 0.095 0.074 -0.022 0.033 0.006 0.566 
EPP 0.002 0.0004 0.036 0.197 -0.018 0.022 0.0006 0.565 
EA -0.007 -0.001 -0.057 -0.098 0.037 -0.035 -0.004 -0.558 
NGPE -0.003 -0.0003 0.032 0.042 -0.013 0.100 -0.006 0.716 
W110G 0.003 0.001 0.025 0.006 -0.008 -0.029 0.022 0.217 
   

        
Non-stressed – Chókwè 2015, fully-irrigated 

 
         

  AD ASI PH EPP EA PA NGPE W100G Total effect on 
  

        
GY 

AD 0.197 0.003 0.052 0.018 -0.001 0.035 -0.023 -0.195 0.273 
ASI 0.035 0.018 0.013 -0.006 -0.021 0.0005 -0.018 -0.105 0.018 
PH 0.113 0.003 0.090 0.013 0.024 0.038 -0.028 -0.114 0.396 
EPP 0.056 -0.002 0.018 0.062 0.006 0.021 -0.005 -0.100 0.320 
EA 0.002 0.003 -0.016 -0.003 -0.133 -0.034 0.035 -0.005 -0.488 
PA -0.091 -0.0001 -0.045 -0.018 -0.061 -0.075 0.032 0.113 -0.485 
NGPE 0.057 0.004 0.032 0.004 0.058 0.030 -0.079 -0.235 0.537 
W100G -0.084 -0.004 -0.022 -0.014 0.001 -0.019 0.041 0.457 0.092 

*** = significant at probability of 0.1%; ** = significant at 1%; * = significant at 5%; ns = not statistically 
significant (p > 5%). 

GY = grain yield; EPP = ears plant-1; NGPE = number of grains ear-1; W100G = weight of 100 grains; AD = days 
to anthesis; ASI = anthesis-silking interval; PH = plant height; EA = ear aspect. 
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5.4 Discussion 

The traits considered in this study were chosen based on their relevance in the final 

expression of the main trait, grain yield (GY). Grain yield per area is a product of plant 

density, average number of ears plant-1 (EPP) number of grains ear-1 (NGPE) and average 

grain weight (GW): GY = NP × EPP × NGPE ×GW (Bänziger et al., 2000). However, NP is 

more affected during the early stages and very little genetic variability has been observed for 

this trait (Araus and Sanchez, 2012). Number of ears plant-1 and anthesis-silking interval 

(ASI) were validated by Mhike et al. (2012) as the most important traits under drought stress 

conditions. Ear and plant aspects (EA and PA, respectively) and plant height (PH) were also 

identified by Badu-Apraku et al. (2012)  as the most reliable secondary traits for selection 

under drought stress conditions. 

The significant inbred line per se variations for grain yield (GY) and other traits detected 

under the four experimental conditions, except plant height (PH) under severe heat-drought 

stress,  are important indicators of possible selection progress for the target environments of 

this study (combined heat-drought stressed conditions). Most important, the suggested 

attainable progress can be translated into physical final products (hybrids) because ANOVA 

revealed highly significant diallel cross variations for GY and most of secondary traits under 

all environments where the hybrids were tested, including combined stress (Table 5-2), 

except EPP under CHDS, HS alone and non-stressed environment, and ASI under heat 

alone and non-stressed conditions. 

The observed significant positive genotypic correlations between GY and EPP in inbred lines 

could be attributed to their own direct effects under SHDS and RDS, but indirectly through 

EA under MHDS. In hybrids, EPP contributed directly to GY under HS and DS, but indirectly 

through PH under combined heat-drought stress and through W100G under non-stressed 

condition. The correlation and path coefficients estimated for EA and PA were multiplied by 

“-1” for their proper interpretation because the best aspect was scored as “1” while the worst 

was attributed a value of “5. The significant correlations between EA and GY in inbred lines 

were due to direct effects under SHDS and MHDS but also indirectly under MHDS, through 

EPP, and under RDS and non-stressed environments through NGPE. In hybrids, EA mostly 

contributed indirectly under CHDS and DS conditions. The significant correlation coefficients 

between GY and PA, which was observed in the hybrids’ trial, could only be attributed to 

indirect effects through PH under CHDS and through W100G under non-stressed conditions. 

The result suggests that GY under combined heat-drought stress can be rapidly improved by 

selecting phenotypically attractive genotypes with good ears aspect. The significant 

relationships between GY and EPP, PA and EA observed under different stresses of the 
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present study are similar to those reported by Badu-Apraku et al. (2012) under drought alone 

and low nitrogen stress conditions, and Mhike et al. (2012) for EPP under drought alone. 

Correlation studies involving both NGPE and W100G are very rare. In this study, genotypic 

correlation coefficients between GY and W100G were not statistically significant in both 

inbred and hybrid trial under all environments except under RDS for inbred lines. 

Contribution of W100G to the inbreds’ GY was indirect through NGPE under RDS. In 

hybrids, the significant phenotypic correlation observed between GY and W100G under 

individual stresses could be attributed to direct effect and also to indirect effects through 

NGPE, EPP and AD under HS. Under DS, W100G contributed to GY only indirectly through 

NGPE.  In fact, in most cases, W100G showed significant correlation only with NGPE. It was 

because NGPE always exhibited significant and strong correlation with GY, with high direct 

effects, that W100G found paths to influence GY. Indirect effects of W100G have also been 

reported by Pavan et al. (2011) and Kumar et al. (2015). In the studies of Pavan et al. (2011) 

and Kumar et al. (2015), NGPE was partitioned into number of kernel rows ear-1 and number 

of kernels row-1 had high direct effects on GY. 

Non-significant phenotypic and genotypic correlation coefficients between GY and ASI in 

inbred trial under all testing environments, except RDS, and in hybrid trial under all testing 

environments, except genotypic correlation under CHDS, indicate that the ASI did not 

determine GY in this study, contrary to what was reported by other researchers (Badu-

Apraku, 2007; Bänziger et al., 2000; Betrán et al., 2003; Mhike et al., 2012). This apparent 

disagreement could be explained by the fact that the two trials had genotypes with very large 

flowering differences. Therefore, a genotype with very large ASI could still be successfully 

pollinated by the other surrounding genotypes in the trials of this study and other 

experiments nearby. 

Path coefficient results on ASI were inconsistent across environments in the two trials. In the 

inbred trial, large ASI appeared to have directly reduced GY under SHDS and RDS 

environments as their direct coefficient effects were negative. In contrast, large ASI 

appeared to have contributed positively to GY under MHDS, while under non-stressed 

environment it did not show any effect. In the hybrid trial, the results suggest that GY was 

directly reduced by ASI under CHDS but under DS alone had a positive contribution. 

Although the observed inconsistence of the path coefficient results on effects of large ASI to 

GY in different types of germplasm (inbred lines versus hybrids), the path coefficient analysis 

seem to have removed the apparent disagreement exposed by the non-significant 

phenotypic and genotypic correlation coefficients between the two traits. Based on the path 
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coefficient results it was clear that, under severe stress conditions, large ASI values were 

associated with reduced GY values in both inbred and hybrid trials. The results show that 

when severe stress growing conditions are targeted, selections must favour reduced ASI. 

This is because silks would catch up with the reduced period of pollen shedding that is 

normally observed under severe stress environments. Under less stressed environments 

ASI is not very important because the period of pollen shedding is generally long, especially 

when the tassel is big with many branches. These results are in agreement with the findings 

of (Mhike et al., 2012). 

5.5 Conclusion 

In general, number of ears plant-1 and number of grains ear-1 were the most important yield 

components that had positive direct contribution to grain yield of inbred lines and their 

hybrids under stressed and non-stressed conditions of this study. Therefore, EPP and NGPE 

can be successfully employed in breeding for combined heat and drought stress tolerance 

as well as for high yield potential. 

Ear aspect was found to be important and consistent in both inbred lines and hybrids as a 

secondary trait contributing positively increased grain yield under stressed and non-stressed 

conditions. 

Shorter anthesis-silking intervals would be important for improved grain yield under severe 

combined stress than under individual and moderate stress or non-stressed conditions, 

especially if pollen shedding window is narrow. 
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Overview of the research findings 

 

Introduction 

This research was designed to conduct comparative genetic studies on tropical maize 

germplasm under different levels of heat and drought stress conditions. This chapter aims to 

make an overview of the study by summarising the key objectives and highlighting the most 

important findings. The implications of the major findings are also discussed. 

The specific objectives of the study, which in turn were developed in research chapters, 

were the following: 

1. to assess genetic variability for combined heat-drought stress tolerance in the 

available maize germplasm in Mozambique; 

2. to study gene action controlling maize (Zea mays L.) grain yield and other agronomic 

traits under heat alone, drought alone and combined heat and drought stress 

conditions; 

3. to determine the heterotic orientation of thirty selected maize inbred lines towards 

three drought-tolerant and one high yield potential males; and 

4. to investigate the level of relationship between maize traits correlated with grain yield 

in inbred lines per se versus hybrids under stressed and non-stressed conditions. 

Major findings 

Genetic variability for combined heat-drought stress tolerance in 

tropical maize germplasm 

 Genetic variability for combined heat-drought stress tolerance is wide among maize 

inbred lines available in Mozambique. 

o This was revealed by the genotypic differences observed under severe and 

moderate combinations of heat and drought stresses achieved in two 

environments of this research. 

 Superior lines under severe combination of heat and drought stress versus the rest of 

the growing conditions of this study were not exactly the same. 



152 

 

o AMMI analysis identified four inbred lines that were among the top 10 under 

the three stressed environmental conditions of this study. These were the 

entries 16, 92, 107 and 108. 

o GGE-biplot of genotypic wining was used and it identified two mega-

environments with clear wining genotypes at each mega-environment. 

 However, using average grain yield rank and geometric mean productivity index, 15 

out of 108 inbred lines (14%) were identified as the most promising genotypes under 

stressful as well as under unstressed environments. 

Gene action controlling maize grain yield and other agronomic traits 

under combined heat-drought stress conditions 

 Both general and specific combining ability effects (GCA and SCA, respectively) 

were important in the expression of grain yield and all yield components, except 

number of ears plant-1, indicating important role of additive and non-additive gene 

actions under the four individual environments: 

o General combining ability effects were generally predominant; 

o Degree of predominance of the GCA over SCA effects increased from the 

individual stresses to combined heat and drought stress conditions. 

 For the other traits evaluated, GCA effects were clearly predominant over SCA 

effects regardless the stress category, 

o Only exception from husk cover for which the two categories of genetic 

effects were equally important. 

Heterotic orientation of thirty maize inbred lines under fully-irrigated 

versus combined heat-drought stress conditions 

 The four testers effectively discriminated the thirty inbred lines: 

o N3 was the best discriminator under favourable conditions. 

o CML312 and CML444 were better discriminators under stressed conditions. 

 Heterotic orientation changed significantly with change in environmental conditions: 

o Twenty inbred lines (67%), including eight best GCA combiners, changed 

from one tester to another when experimental conditions changed from fully-

irrigated to random and moderate drought stress. 

o Only seven female lines did not change. These were TCL10, TCL12, TCL24, 

TCL28, TCL36, TC37 and TC41. 
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 Apart from maintaining their heterotic orientation under different environmental 

conditions, Female lines TCL28 and TCL36 have got the second and third best GCA 

effect estimates for grain yield; therefore they are good parents for future breeding 

programmes. 

Correlation and path coefficient analysis of maize grain yield with other 

characteristics under fully-irrigated versus water-limited conditions 

 Number of ears plant-1 and number of grains ear-1 were the most important yield 

components that had positive direct contribution to grain yield of inbred lines and 

their hybrids counterparties under stressed and non-stressed conditions of this study. 

 Ear aspect was found to be very important and consistent in both inbred lines and 

hybrids as a non-yield component secondary trait contributing positively for increased 

grain yield under stressed and non-stressed conditions. 

 Importance of anthesis-silking intervals on influencing grain yield was more under 

severe combined stress than under isolated and moderate stress or non-stressed 

conditions. 

Implication of the findings in the practical breeding programmes 

Heat and drought stresses occur simultaneously during the main cropping seasons in many 

tropical environments, causing frequent crop failures, especially maize. This has raised 

serious concern among farmers and public leadership, and triggered exciting debates 

among scientists during the recent years. Plant breeders are faced with the challenge of 

meeting the crop needs of future generations taking in account both population growth and 

climate change. From the crop improvement perspective, development of varieties with 

increased resilience to tropical/subtropical hot and water-limited environments would be a 

better strategy to address the challenge. 

The existence of genetic variability for combined heat and drought stress in tropical maize 

germplasm revealed by this study is a good result as selection can be successful only if 

there is genetic variation in the available germplasm. The superior genotypes across 

environments can be employed in future breeding programmes. 

The observed importance of both additive and non-additive gene actions, with increased 

predominance of the additive type under stressful environments, is an exciting finding for 

maize breeding that address combined heat and drought stress. Combined with their high 
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heritability estimate relative to grain yield, the confirmed significant correlation of number of 

ear plant-1 as well as plant and ear aspects is very important in speeding up the breeding 

progress for combined stress environments. 

Breeding for stressful environments shall be careful to not result in genetic erosion for high 

yielding potential. The need for using appropriate testers under favourable versus stressed 

environment was indicated in this research by identifying N3 as the best genotypic 

discriminator under non-stressed and CML312 and CML444 as better under stressed 

environments. 

Screening for multiple-stress tolerance is a tedious and expensive activity and there is need 

to narrow down the target secondary traits. The stronger relationship between grain yield 

and average number of ears per pant, ear aspect, anthesis-silking interval and number of 

grains per ear under both stressed and non-stressed environmental conditions, revealed by 

the path coefficient analysis, allows recommending only these four secondary traits to the 

breeders screening maize for combined heat and drought stress tolerance. 
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Appendices 

Appendices from chapter 2 

Appendix 2-1. 108 experimental maize inbred lines from four sources 

Entry Code Inbred line Origin 

1 IL-1 ZM421-2-1-2-1-1-1-2-B*3-B IIAM-Mozambique 

2 IL-2 ZM421-2-1-2-1-1-5-1-1-B IIAM-Mozambique 

3 IL-3 ZM421-2-1-2-1-1-5-2-1-B IIAM-Mozambique 

4 IL-4 ZM421-2-1-2-1-2-2-1-B*2-B IIAM-Mozambique 

5 IL-5 ZM421-6-4-1-2-2-2-2-B IIAM-Mozambique 

6 IL-6 ZM421-7-2-1-1-4-3-1-1-B IIAM-Mozambique 

7 IL-7 ZM421-7-2-1-1-4-3-1-2-B IIAM-Mozambique 

8 IL-8 ZM421-7-old IIAM-Mozambique 

9 IL-9 ZM421-9-3-2-3-1-1-B*2-B IIAM-Mozambique 

10 IL-10 ZM421-12-1-1-2-2-1-6-1-B IIAM-Mozambique 

11 IL-11 ZM421-12-1-1-2-2-1-8-1-B IIAM-Mozambique 

12 IL-12 ZM421-12-1-1-2-2-2-1-1-B IIAM-Mozambique 

13 IL-13 ZM421-12-2-3-4-1-1-2-1-B IIAM-Mozambique 

14 IL-14 ZM421-12-3-3-1-1-1-1-B IIAM-Mozambique 

15 IL-15 ZM421-12-3-3-1-3-2-1-B IIAM-Mozambique 

16 IL-16 ZM421-12-3-3-1-4-1-1-B IIAM-Mozambique 

17 1L-17 ZM421-12-old IIAM-Mozambique 

18 IL-18 ZM421-16-1-1-2-1-1-1-1-B IIAM-Mozambique 

19 IL-19 ZM421-16-1-1-2-1-1-1-3-B IIAM-Mozambique 

20 IL-20 ZM421-18-8-1-3-1-3-1-3-B IIAM-Mozambique 

21 IL-21 ZM421-20-1-1-5-1-2-1-B IIAM-Mozambique 

22 IL-22 ZM421-22-2-2-1-2-1-4-B*2-B IIAM-Mozambique 

23 IL-23 ZM421-29-2-1-1-1-4-1-B IIAM-Mozambique 

24 IL-24 ZM421-40-1-2-2-3-4-1-B IIAM-Mozambique 

25 IL-25 ZM421-72-1-1-3-2-3-1-B IIAM-Mozambique 

26 IL-26 ZM421-72-1-1-3-3-1-1-B IIAM-Mozambique 

27 IL-27 ZM421-77-1-3-2-3-1-1-B IIAM-Mozambique 

28 IL-28 ZM421-77-1-3-2-3-1-2-B IIAM-Mozambique 

29 IL-29 ZM521-10-1-1-2-2-1-2-1-B IIAM-Mozambique 

30 IL-30 ZM521-12-1-1-4-2-2-5-1-B IIAM-Mozambique 

31 IL-31 ZM521-13-3-2-3-1-1-B*2-B IIAM-Mozambique 

32 IL-32 ZM521-13-3-2-3-1-2-2-B IIAM-Mozambique 

33 IL-33 ZM521-15F-old IIAM-Mozambique 

34 IL-34 ZM521-20-1-1-2-2-2-2-B IIAM-Mozambique 

35 IL-35 ZM521-29-2-1-1-1-2-5-B IIAM-Mozambique 

36 IL-36 ZM521-29-2-1-2-1-1-2-1-B IIAM-Mozambique 

37 IL-37 ZM521-29-2-1-5-2-1-2-1-B IIAM-Mozambique 

38 IL-38 ZM521-38-2-3-1-1-3-1-1-B IIAM-Mozambique 

39 IL-39 ZM521-38-3-1-2-1-1-1-B IIAM-Mozambique 

40 IL-40 ZM521-40-1-3-1-1-3-B*3-B IIAM-Mozambique 

41 IL-41 ZM521-40-1-3-1-1-5-B*2-B IIAM-Mozambique 

42 IL-42 ZM521-40-1-3-1-2-2-1-B IIAM-Mozambique 

43 IL-43 ZM521-42-2-1-2-1-2-1-B IIAM-Mozambique 

44 IL-44 ZM521-8-4-2-3-1-2-1-B IIAM-Mozambique 

45 IL-45 ZM621-19-4-2-1-1-1-1-1-B IIAM-Mozambique 

46 IL-46 ZM621-19-4-2-1-1-1-2-1-B IIAM-Mozambique 

47 IL-47 ZM621-24-3-1-1-1-1-1-1-B IIAM-Mozambique 
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Entry Code Inbred line Origin 

48 IL-48 ZM621-24-3-1-1-1-1-3-1-B IIAM-Mozambique 

49 IL-49 INTBC1F2FS-13-2-1-4-1-1-2-2-B IIAM-Mozambique 

50 IL-50 INTBC1F2FS-19-2-2-1-1-1-1-1-B IIAM-Mozambique 

51 IL-51 INTBC1F2FS-27-1-3-2-1-1-1-1-B IIAM-Mozambique 

52 IL-52 INTBC1F2FS-27-1-3-2-1-2-1-1-B IIAM-Mozambique 

53 IL-53 MATUBASG-14-1-4-3-3-1-9-5-B IIAM-Mozambique 

54 IL-54 MATUBASG-26-1-3-3-1-1-4-2-B IIAM-Mozambique 

55 IL-55 MATUBASG-26-1-3-3-1-1-6-1-B IIAM-Mozambique 

56 IL-56 MATUBASG-26-1-3-3-1-2-4-1-B IIAM-Mozambique 

57 IL-57 MATUBASG-26-1-3-3-1-2-5-1-B IIAM-Mozambique 

58 IL-58 MATUBASG-26-1-3-3-1-2-6-1-B IIAM-Mozambique 

59 IL-59 P501SRC0/P502SRC0-26-1-1-1-2-1-1-1-B IIAM-Mozambique 

60 IL-60 P501SRC0/P502SRC0-26-1-1-1-2-3-1-B*2-B IIAM-Mozambique 

61 IL-61 P501SRC0/P502SRC0-31-1-3-1-2-3-1-1-B IIAM-Mozambique 

62 IL-62 SUWAN8075DMR-79-2-1-2-2-B-B-2 IIAM-Mozambique 

63 IL-63 SUWAN8075DMR-64-1-1-1-1-1-1-2-B IIAM-Mozambique 

64 IL-64 SYNSYNF1FS-16-1-2-4-2-1-2-1-B IIAM-Mozambique 

65 IL-65 SYNSYNF1FS-16-1-2-4-2-2-1-1-B IIAM-Mozambique 

66 IL-66 TSEGRIM-3-1-5-1-1-1-1-1-B IIAM-Mozambique 

67 IL-67 TSEGRIM-3-1-5-1-1-1-5-2-B IIAM-Mozambique 

68 IL-68 TSEGRIM-3-1-5-2-1-1-3-1-B IIAM-Mozambique 

69 IL-69 DMR15 IIAM-Mozambique 

70 IL-70 DRA-S4-2-1-1-B IIAM-Mozambique 

71 IL-71 CHINACAFS-7-2-1-2-1-2-B IIAM-Mozambique 

72 IL-72 CHINACAFS-43-3-1-1-2-B IIAM-Mozambique 

73 IL-73 CHINACAFS-68-3-1-3-1-B IIAM-Mozambique 

74 IL-74 CHINACAFS-71-3-1-1-1-1-B IIAM-Mozambique 

75 IL-75 CHINACAFS-75-1-1-2-1-B IIAM-Mozambique 

76 IL-76 CHINACAFS-75-1-1-3-1-B IIAM-Mozambique 

77 IL-77 CHINACAFS-80-1-1-2-1-B IIAM-Mozambique 

78 IL-78 CHINACAFS-80-2-1-2-1-B IIAM-Mozambique 

79 IL-79 CHINACAFS-81-1-1-2-2-1-B-B IIAM-Mozambique 

80 IL-80 CHINACAFS-129-3-2-1-2-B IIAM-Mozambique 

81 IL-81 CHINACAFS-169-2-1-2-1-B*2-B IIAM-Mozambique 

82 IL-82 TSANGANOFS-25-1-2-1-1-1-B IIAM-Mozambique 

83 IL-83 CML395 CIMMYT 

84 IL-84 CML443 CIMMYT 

85 IL-85 CML444 CIMMYT 

86 IL-86 CML445 CIMMYT 

87 IL-87 CML489 CIMMYT 

88 IL-88 CML537 CIMMYT 

89 IL-89 CML539 CIMMYT 

90 IL-90 CML547 CIMMYT 

91 IL-91 CKL05017 CIMMYT 

92 IL-92 CZL04007 CIMMYT 

93 IL-93 CZL054 CIMMYT 

94 IL-94 CZL068 CIMMYT 

95 IL-95 ZEWAc1F2-300-2-2-B-1-B*5 CIMMYT 

96 IL-96 NIP25-20-1-1-B-1-B CIMMYT 

97 IL-97 IRMA17 CIMMYT 

98 IL-98 IRMA11 CIMMYT 

99 IL-99 IRMA23 CIMMYT 

100 IL-100 IRMA3 CIMMYT 
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Entry Code Inbred line Origin 

101 IL-101 IITA1 IITA 

102 IL-102 IITA2 IITA 

103 IL-103 LP19 IIAM-Mozambique 

104 IL-104 LP21 IIAM-Mozambique 

105 IL-105 LP23 IIAM-Mozambique 

106 IL-106 LaPostaSeqC7-F18-3-2-1-1-B*9 CIMMYT 

107 IL-107 DTPYC9-F46-1-2-1-1-B CIMMYT 

108 IL-108 DTPYC9-F46-1-2-1-2-B CIMMYT 
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Appendix 2-2. Best linear unbiased estimated (BLUE) means for grain yield and other traits of 108 maize inbred lines evaluated at Chiredzi and Save Valley 
and Chókwè under two water-regimes. 

(2-2.a) Chiredzi fully-irrigated under heat stress 

Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Sen. Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
1 IL-1 1.13 19.82 74.1 1.4 171.0 0.49 2.2 6.7 0.77 22.5 5.4 3.0 16.8 3.5 

2 IL-2 0.91 40.30 71.5 1.5 160.9 0.57 6.1 -0.6 0.58 9.6 6.4 3.3 15.2 3.4 

3 IL-3 0.71 56.32 69.7 0.6 147.6 0.49 17.2 3.4 0.57 22.0 7.2 3.5 15.6 3.3 

4 IL-4 0.68 60.47 68.8 2.6 129.8 0.56 6.1 6.9 0.66 24.2 6.6 3.1 16.5 3.7 

5 IL-5 0.70 65.22 72.0 1.5 119.9 0.61 2.8 9.0 0.57 51.9 6.3 4.3 16.3 4.4 

6 IL-6 0.57 72.87 70.8 1.4 126.8 0.40 3.6 5.8 0.70 50.1 5.7 4.1 15.1 3.8 

7 IL-7 0.70 54.17 72.3 -1.5 129.5 0.53 0.1 6.6 0.60 51.4 5.8 3.8 12.9 3.6 

8 IL-8 0.81 48.84 71.9 0.6 143.0 0.56 8.0 9.0 0.72 50.6 6.3 4.5 16.6 4.4 

9 IL-9 0.62 69.62 72.6 2.4 168.0 0.56 28.6 0.0 0.47 61.2 5.9 4.8 14.9 3.8 

10 IL-10 1.27 22.83 68.0 2.1 129.5 0.61 20.5 -0.2 0.79 23.1 7.0 2.8 16.0 3.1 

11 IL-11 2.01 -9.70 71.0 0.4 171.7 0.53 22.3 0.5 0.86 15.9 5.9 2.8 16.0 3.0 

12 IL-12 1.07 40.25 76.1 4.4 158.2 0.50 16.7 -0.1 0.57 59.0 6.6 4.2 15.1 4.2 

13 IL-13 0.61 70.31 75.1 2.7 170.2 0.48 13.8 3.2 0.24 16.3 6.2 3.7 16.1 4.1 

14 IL-14 0.33 101.94 78.0 1.1 140.3 0.62 -0.7 2.7 0.19 36.0 6.8 4.2 15.0 4.1 

15 IL-15 0.71 71.29 69.0 5.5 144.9 0.52 18.0 18.1 0.59 25.8 7.6 3.5 15.4 3.6 

16 IL-16 1.21 25.74 73.3 2.6 171.3 0.65 14.6 0.6 0.52 24.5 5.7 3.0 16.0 3.5 

17 IL-17 1.25 12.29 70.8 1.5 167.5 0.58 1.3 -0.3 0.78 18.0 5.8 3.1 17.1 3.2 

18 IL-18 0.37 96.20 68.6 0.6 131.9 0.55 18.6 12.3 0.66 30.9 7.3 4.3 15.0 4.2 

19 IL-19 0.92 41.86 70.0 1.1 136.5 0.44 11.0 30.2 0.56 25.7 7.2 4.4 14.0 4.3 

20 IL-20 0.65 67.38 72.6 3.3 132.8 0.58 25.3 -1.1 0.87 38.5 5.5 3.6 13.6 3.6 

21 IL-21 0.96 34.72 72.6 0.0 161.9 0.52 11.8 8.1 0.79 36.4 6.5 3.3 16.8 3.5 

22 IL-22 1.29 28.61 69.7 0.1 180.2 0.48 5.3 9.0 0.62 50.4 6.4 3.2 15.3 3.0 

23 IL-23 0.63 66.63 70.8 2.5 162.5 0.50 4.0 1.5 0.63 79.2 5.8 5.0 15.9 4.1 

24 IL-24 0.31 88.32 75.7 4.6 140.3 0.51 17.6 0.1 0.52 81.3 6.4 4.8 14.4 4.9 

25 IL-25 0.88 46.17 73.7 0.6 147.0 0.43 1.0 3.5 0.73 33.9 6.3 3.7 16.3 3.9 

26 IL-26 0.41 83.55 75.7 0.5 175.6 0.55 13.1 0.5 0.57 31.4 6.8 4.2 14.0 4.1 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Sen. Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                

27 IL-27 0.85 48.43 71.1 -0.5 147.5 0.59 16.2 -0.5 0.59 31.4 6.2 3.7 15.9 4.0 

28 IL-28 0.59 66.49 74.3 2.0 147.9 0.38 3.1 3.8 0.54 51.7 5.8 4.0 13.3 4.2 

29 IL-29 0.93 35.64 69.1 -0.5 129.6 0.52 1.6 2.9 0.78 11.1 7.9 3.6 15.1 3.7 

30 IL-30 0.93 30.90 71.9 1.0 150.5 0.51 14.2 -0.2 0.69 51.2 5.9 4.0 15.9 3.9 

31 IL-31 2.08 4.94 72.7 0.1 150.1 0.62 13.2 0.2 0.72 27.6 5.3 2.7 16.3 3.0 

32 IL-32 0.55 72.19 69.5 5.5 136.8 0.50 22.5 0.2 0.53 37.4 6.2 3.9 15.4 4.1 

33 IL-33 0.79 47.53 68.1 2.4 134.6 0.56 -2.2 -0.5 0.69 37.1 6.1 3.8 15.6 3.6 

34 IL-34 0.78 53.87 71.4 4.2 151.4 0.47 -3.6 13.0 0.66 27.9 5.9 3.7 17.0 3.6 

35 IL-35 0.70 56.39 72.1 2.5 137.2 0.44 20.8 -0.5 0.66 44.8 6.6 3.8 15.0 3.8 

36 IL-36 0.72 55.52 72.8 3.5 134.3 0.42 -2.7 0.7 0.80 31.4 5.7 4.0 16.2 3.8 

37 IL-37 0.87 55.55 68.1 0.5 121.3 0.55 16.0 0.7 0.52 50.5 7.2 3.4 15.0 4.1 

38 IL-38 0.85 41.86 72.0 1.5 120.5 0.55 -4.3 -0.2 0.71 42.6 5.2 4.0 16.0 3.9 

39 IL-39 0.39 93.04 77.1 3.6 151.2 0.61 2.2 -0.3 0.60 69.7 5.9 4.2 12.3 4.4 

40 IL-40 0.48 85.81 72.2 4.5 133.1 0.52 2.4 6.3 0.75 33.2 5.9 3.9 15.3 3.9 

41 IL-41 0.37 91.84 70.6 4.9 152.7 0.64 2.1 2.9 0.52 72.5 5.6 4.7 16.0 4.9 

42 IL-42 0.98 28.88 73.2 0.3 138.9 0.51 0.4 6.6 0.73 20.8 6.1 3.6 14.5 3.5 

43 IL-43 1.95 -1.03 70.6 0.5 172.1 0.60 -1.6 -0.9 0.53 21.4 6.7 2.9 15.5 3.0 

44 IL-44 0.56 72.46 73.4 0.3 155.2 0.60 -0.3 16.4 0.55 28.9 6.3 3.5 15.5 3.8 

45 IL-45 0.47 80.11 71.7 1.4 139.6 0.64 2.0 4.2 0.67 40.1 7.4 3.8 14.4 3.6 

46 IL-46 1.07 31.49 68.4 -1.0 151.2 0.56 5.8 -0.3 0.71 23.3 6.6 3.6 17.0 3.8 

47 IL-47 1.02 32.31 70.8 0.9 135.5 0.47 16.3 0.2 0.71 43.3 6.4 3.3 16.2 4.0 

48 IL-48 0.65 64.73 75.9 2.5 160.4 0.57 -1.5 0.1 0.48 53.5 6.6 4.4 16.9 3.7 

49 IL-49 0.84 45.23 67.5 3.0 128.2 0.57 4.2 5.1 0.70 14.1 6.7 3.3 17.1 3.6 

50 IL-50 0.80 48.21 74.6 0.5 186.0 0.38 12.8 -0.1 0.72 55.9 6.4 4.0 15.8 3.9 

51 IL-51 1.22 25.64 69.3 1.5 148.0 0.63 14.3 0.3 0.86 15.8 6.1 3.7 16.0 3.6 

52 IL-52 0.47 85.85 74.7 0.1 141.5 0.56 22.0 5.3 0.68 56.8 6.1 4.2 10.5 4.3 

53 IL-53 0.80 51.36 76.2 -0.5 137.6 0.57 13.0 9.1 0.39 31.9 5.9 3.2 16.9 3.5 

54 IL-54 1.06 35.59 68.4 1.1 165.8 0.47 8.4 -0.4 0.71 47.3 6.3 3.7 16.6 4.1 

55 IL-55 0.89 44.04 69.2 1.7 154.2 0.49 23.4 3.8 0.55 16.8 6.8 3.5 15.0 3.8 

56 IL-56 0.47 79.70 75.2 0.6 164.9 0.47 -0.4 10.4 0.56 49.1 6.6 4.2 14.8 4.2 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Sen. Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
57 IL-57 0.42 85.28 75.0 2.2 134.9 0.57 -1.5 5.3 0.53 43.3 5.8 4.3 15.7 4.3 

58 IL-58 0.48 82.39 70.8 0.7 141.1 0.55 13.0 0.4 0.39 31.2 7.0 3.7 14.7 4.0 

59 IL-59 0.70 59.31 74.8 0.5 130.4 0.60 -2.4 10.0 0.58 41.9 6.3 3.6 16.5 3.4 

60 IL-60 0.60 73.19 72.9 3.3 134.4 0.59 3.2 -0.7 0.61 33.2 6.5 4.4 16.5 4.4 

61 IL-61 0.84 43.44 72.2 2.4 147.4 0.49 3.5 0.8 0.65 9.8 7.0 3.6 16.0 3.4 

62 IL-62 0.63 65.91 77.6 3.3 141.2 0.54 -2.5 6.6 0.47 42.0 6.2 4.0 16.1 4.3 

63 IL-63 0.63 72.46 72.1 3.9 138.8 0.49 14.4 -0.1 0.32 38.6 5.3 3.0 15.9 3.5 

64 IL-64 1.14 24.68 66.4 0.6 161.1 0.57 45.7 -0.3 0.82 18.2 7.7 3.3 16.4 3.6 

65 IL-65 0.97 37.21 70.4 3.5 180.7 0.43 13.8 0.1 0.54 41.4 7.3 3.7 16.4 4.0 

66 IL-66 0.92 39.12 70.5 0.0 146.4 0.49 -1.1 -0.3 0.62 39.3 7.3 3.9 13.6 3.8 

67 IL-67 0.61 71.89 74.2 -0.2 151.8 0.43 13.1 0.1 0.65 28.1 6.5 3.7 15.3 3.9 

68 IL-68 0.35 86.40 71.1 5.7 135.4 0.47 20.0 0.3 0.54 43.7 6.5 3.9 12.7 3.9 

69 IL-69 0.88 51.33 75.3 0.9 142.4 0.53 11.4 13.8 0.61 27.2 6.6 4.0 17.2 3.7 

70 IL-70 0.76 50.02 72.0 1.5 132.3 0.58 2.5 0.1 0.93 35.8 5.9 4.2 14.8 4.2 

71 IL-71 1.24 20.66 69.2 0.4 155.9 0.66 -1.7 5.4 0.73 34.9 6.7 3.3 16.4 3.8 

72 IL-72 0.78 56.67 70.8 5.0 151.5 0.46 12.5 9.3 0.58 31.3 6.0 3.8 15.8 4.1 

73 IL-73 0.70 61.36 72.2 3.0 146.1 0.54 2.9 3.2 0.60 46.7 5.5 3.9 15.8 3.8 

74 IL-74 0.62 63.61 76.6 0.0 157.7 0.53 39.9 13.3 0.55 24.5 5.7 4.0 12.9 3.8 

75 IL-75 1.35 17.47 68.1 1.1 144.2 0.42 13.4 0.2 0.83 27.0 6.1 3.5 14.5 3.5 

76 IL-76 1.07 32.21 70.7 0.6 171.1 0.64 24.1 0.2 0.71 31.9 6.4 3.1 16.0 3.5 

77 IL-77 1.15 26.08 70.8 2.4 149.3 0.62 33.6 3.1 0.70 29.0 5.6 3.5 15.4 3.8 

78 IL-78 0.94 33.74 71.4 2.0 144.6 0.56 3.3 5.8 0.62 45.2 7.0 3.9 16.2 3.3 

79 IL-79 0.40 95.75 74.4 2.1 148.3 0.50 4.3 2.6 0.34 31.8 7.0 4.5 17.1 4.6 

80 IL-80 0.63 64.64 75.4 1.1 147.5 0.49 1.8 16.3 0.33 57.7 5.8 4.5 16.1 4.2 

81 IL-81 0.61 67.90 75.7 -0.4 168.0 0.49 3.3 3.0 0.57 45.7 6.7 4.2 16.2 4.1 

82 IL-82 0.51 81.70 71.9 2.9 127.0 0.50 9.5 2.5 0.47 56.6 6.0 3.8 15.9 4.3 

83 IL-83 0.34 96.02 82.1 0.1 143.4 0.57 8.8 4.1 0.29 58.1 4.7 5.0 13.5 3.9 

84 IL-84 0.98 51.23 80.2 1.5 151.4 0.64 2.4 26.7 0.38 56.6 4.0 4.6 11.5 4.6 

85 IL-85 0.82 50.57 81.2 0.5 127.8 0.62 1.8 0.2 0.59 53.2 4.4 4.4 15.8 4.4 

86 IL-86 0.75 55.32 78.9 1.9 177.7 0.54 11.7 0.0 0.58 56.9 4.0 4.1 15.0 4.2 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Sen. Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
87 IL-87 0.13 109.89 82.1 1.1 127.1 0.50 9.2 3.2 0.25 102.3 5.6 5.1 14.0 4.7 

88 IL-88 0.41 80.71 77.2 2.5 166.4 0.47 -6.5 4.3 0.66 59.0 6.1 4.2 14.4 4.2 

89 IL-89 0.67 58.37 76.4 1.0 129.7 0.49 5.8 3.3 0.54 41.9 5.5 4.0 15.5 3.9 

90 IL-90 0.77 50.11 74.7 0.9 130.7 0.53 -2.2 6.8 0.67 54.0 6.8 4.3 15.3 3.8 

91 IL-91 0.51 65.82 80.3 -0.6 133.8 0.54 3.1 -0.1 0.68 71.8 5.5 4.5 14.8 4.5 

92 IL-92 0.97 50.04 80.8 0.6 139.5 0.55 1.0 0.1 0.65 41.6 5.3 3.2 10.5 4.0 

93 IL-93 0.53 77.16 78.8 1.8 128.3 0.56 12.2 9.1 0.48 43.1 5.0 4.0 16.2 4.5 

94 IL-94 0.21 103.85 84.6 -2.1 133.6 0.52 3.6 0.4 0.33 66.2 5.1 4.6 15.6 4.5 

95 IL-95 0.92 39.36 72.5 0.5 114.1 0.54 2.5 0.8 0.63 34.7 7.3 3.9 14.1 4.2 

96 IL-96 1.11 42.14 70.6 2.0 106.1 0.51 3.9 -0.2 0.86 30.7 5.4 4.1 12.5 3.8 

97 IL-97 1.09 41.17 74.8 1.5 168.6 0.58 21.9 0.2 0.49 44.2 5.3 3.9 15.0 4.2 

98 IL-98 0.91 38.20 70.0 1.1 139.7 0.58 21.8 -0.2 0.76 18.2 5.5 3.5 14.0 3.8 

99 IL-99 1.43 25.98 72.3 -0.4 148.6 0.44 15.7 0.6 0.71 20.0 6.3 3.0 16.8 3.6 

100 IL-100 0.39 86.80 81.6 2.6 161.6 0.63 5.4 5.9 0.39 59.3 5.4 3.8 16.2 3.7 

101 IL-101 1.17 25.67 74.3 -0.1 166.0 0.52 -0.5 2.7 0.88 21.9 6.1 3.1 16.4 3.2 

102 IL-102 0.39 91.52 76.4 0.6 151.6 0.62 9.0 6.6 0.37 37.7 7.7 3.8 16.6 3.8 

103 IL-103 0.56 73.26 76.2 -0.3 159.3 0.71 19.4 -0.1 0.59 37.1 5.9 3.7 12.0 4.1 

104 IL-104 0.79 49.46 75.2 -0.3 142.7 0.47 19.7 0.4 0.65 25.6 6.4 3.3 15.7 4.1 

105 IL-105 1.15 23.36 76.1 -0.4 160.9 0.46 2.2 2.4 0.74 31.9 6.2 3.7 15.4 3.8 

106 IL-106 1.21 36.04 69.1 5.0 149.7 0.57 11.1 3.1 0.60 23.5 6.2 2.9 16.3 3.6 

107 IL-107 1.33 22.30 72.5 -1.4 151.0 0.48 2.0 10.5 0.52 23.2 5.9 2.9 13.5 3.2 

108 IL-108 2.05 5.17 69.6 -0.5 167.7 0.60 5.9 0.2 0.87 18.3 6.5 2.7 14.9 2.8 

                
Mean 

 
0.82 54.21 73.1 1.5 147.3 0.53 9.1 3.8 0.61 38.7 6.2 3.8 15.3 3.9 

LSD  0.641 46.11 2.0 1.7 34.6 0.12 1.4 12.9 0.27 - 1.0 0.3 1.03 0.8  

MSe 
 

0.12 661.13 1.1 0.8 303.9 0.00 125.4 42.6 0.02 364.4 0.4 0.3 2.0 0.2 
 

p 
 

0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.026 0.045 
 

0.000 0.000 0.000 0.000 
 

Min 
 

0.13 -9.70 66.4 -2.1 106.1 0.38 -6.5 -1.1 0.19 9.6 4.0 2.7 10.5 2.8 
 

Max 
 

2.08 109.89 84.6 5.7 186.0 0.71 45.7 30.2 0.93 102.3 7.9 5.1 17.2 4.9 
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 (2-2.b) Chiredzi managed drought under heat stress 

Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
1 IL-1 0.32 76.40 60.5 7.9 177.4 0.47 12.5 11.4 0.23 23.3 5.1 2.1 15.5 5.0 

2 IL-2 0.63 49.98 63.7 6.3 169.8 0.54 6.3 29.9 0.38 13.4 6.2 3.2 15.3 4.5 

3 IL-3 0.21 80.04 58.2 8.2 196.4 0.51 3.3 -0.8 0.25 37.7 5.4 2.7 15.7 4.0 

4 IL-4 0.88 40.97 55.9 9.5 167.2 0.44 5.9 0.5 0.34 35.3 5.0 2.8 16.8 4.0 

5 IL-5 0.07 93.00 61.9 5.9 165.9 0.45 -0.9 -0.9 0.12 87.1 5.7 3.5 16.2 5.1 

6 IL-6 0.24 74.69 63.4 8.2 170.6 0.43 1.8 -1.5 0.41 19.6 6.9 2.6 15.7 4.5 

7 IL-7 1.05 43.00 60.1 5.9 180.7 0.45 10.6 0.9 0.48 35.4 6.4 2.2 15.7 5.0 

8 IL-8 0.41 64.11 65.0 5.2 160.4 0.47 7.2 6.5 0.44 41.9 6.3 4.2 13.7 5.0 

9 IL-9 0.85 44.10 59.8 5.8 186.8 0.57 5.5 0.6 0.29 17.0 5.4 4.0 17.0 5.0 

10 IL-10 0.77 43.32 56.4 12.5 163.9 0.61 7.4 1.3 0.48 15.8 6.2 3.0 16.2 4.5 

11 IL-11 0.46 71.79 60.1 2.1 174.3 0.47 2.1 6.9 0.25 54.3 5.6 2.7 16.6 4.0 

12 IL-12 -0.03 95.99 64.9 8.7 166.6 0.51 3.0 -1.2 0.19 40.9 7.9 2.7 17.0 5.0 

13 IL-13 0.89 48.61 62.7 4.5 170.9 0.39 2.5 5.4 0.58 44.7 6.1 2.1 16.1 4.6 

14 IL-14 0.04 90.86 65.6 
 

178.2 0.50 -0.7 4.0 0.09 
 

6.9 3.7 14.6 5.0 

15 IL-15 0.32 77.02 54.7 3.9 208.8 0.37 2.6 -0.3 0.27 42.1 6.6 3.1 16.9 4.5 

16 IL-16 1.03 47.72 65.8 2.2 160.3 0.44 -0.5 0.4 0.48 17.8 5.8 4.2 15.8 5.0 

17 IL-17 0.90 33.41 56.3 
 

159.5 0.55 3.1 4.9 0.38 28.4 5.6 3.7 16.1 4.5 

18 IL-18 0.24 81.92 53.2 1.0 183.3 0.51 3.4 13.7 0.16 50.2 8.4 3.9 13.9 4.4 

19 IL-19 
    

141.2 0.52 3.1 -1.4 
  

6.1 
 

14.4 
 

20 IL-20 0.72 51.72 63.0 7.2 168.4 0.50 5.9 -4.5 0.45 24.4 6.3 2.9 15.4 4.5 

21 IL-21 0.57 53.84 63.3 5.3 199.6 0.39 11.1 10.3 0.38 51.8 7.2 3.1 13.4 4.9 

22 IL-22 1.08 39.32 57.5 11.0 179.1 0.39 6.3 4.5 0.46 24.7 6.8 3.6 14.3 4.0 

23 IL-23 0.97 35.08 59.5 10.1 172.3 0.51 -0.7 4.5 0.41 30.3 7.1 2.6 16.3 4.0 

24 IL-24 0.17 88.09 58.7 17.5 157.5 0.47 0.3 2.0 0.25 24.4 4.8 2.7 16.0 5.0 

25 IL-25 0.26 77.19 57.7 7.5 168.2 0.52 2.5 7.7 0.52 8.3 7.5 3.2 14.9 5.0 

26 IL-26 -0.06 107.15 66.1 8.1 182.5 0.38 -0.3 4.1 0.24 17.7 6.5 2.8 15.2 5.0 

27 IL-27 0.15 78.97 58.6 10.8 181.4 0.47 8.7 8.2 0.46 51.2 6.2 2.9 15.0 5.0 

28 IL-28 0.12 84.73 61.6 4.2 164.7 0.40 6.1 8.7 0.26 81.1 4.8 3.4 16.1 5.0 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
29 IL-29 0.48 65.32 55.3 5.4 199.8 0.43 5.0 0.7 0.21 41.3 6.1 3.2 16.8 5.1 

30 IL-30 1.22 29.27 64.9 6.2 173.3 0.57 3.3 2.1 0.59 30.3 5.5 3.4 15.0 4.0 

31 IL-31 1.56 23.84 58.7 10.9 152.9 0.47 7.9 1.7 0.52 26.8 6.9 3.8 17.0 4.0 

32 IL-32 0.13 89.65 61.9 
 

183.9 0.43 2.3 8.8 0.14 30.5 6.1 2.6 16.5 4.4 

33 IL-33 0.61 56.81 53.7 14.4 188.2 0.44 10.5 5.5 0.49 37.8 5.5 2.9 17.2 5.0 

34 IL-34 0.29 78.06 61.1 -0.6 175.2 0.42 1.6 -1.3 0.22 21.9 6.7 3.2 16.1 4.5 

35 IL-35 0.47 69.98 59.8 0.8 165.1 0.48 -0.6 7.0 0.28 38.8 5.9 2.5 16.5 5.0 

36 IL-36 0.99 36.72 58.0 6.4 178.8 0.41 -1.2 0.9 0.64 29.7 5.6 2.4 17.1 4.1 

37 IL-37 0.20 67.92 54.7 -0.2 160.4 0.41 1.5 -1.3 0.19 30.7 6.0 2.6 15.4 5.1 

38 IL-38 0.83 50.63 65.7 3.0 180.0 0.46 7.1 1.2 0.40 17.2 6.1 4.3 15.0 5.0 

39 IL-39 0.82 42.09 68.2 2.8 194.8 0.57 3.3 8.2 0.79 38.4 7.0 2.4 14.1 5.0 

40 IL-40 0.89 39.97 57.8 2.8 177.0 0.45 5.8 5.3 0.67 41.6 4.3 2.7 15.6 5.0 

41 IL-41 0.38 72.18 57.8 11.2 198.1 0.47 2.1 -1.4 0.60 32.3 4.6 3.2 14.5 5.0 

42 IL-42 0.08 89.16 62.8 3.3 177.9 0.43 -0.9 -0.9 0.23 20.0 7.7 2.7 15.3 5.1 

43 IL-43 0.82 40.41 69.5 0.8 181.5 0.35 -1.4 1.9 0.42 40.3 6.7 3.5 17.2 4.5 

44 IL-44 0.36 72.41 71.9 -0.3 171.2 0.54 3.3 1.9 0.24 48.0 6.4 3.3 15.0 4.9 

45 IL-45 0.43 63.39 57.5 9.9 188.6 0.44 9.4 -1.1 0.47 29.6 6.4 3.5 14.6 4.5 

46 IL-46 0.81 40.36 58.2 0.7 167.7 0.57 -0.2 6.6 0.45 22.7 7.5 3.4 16.3 4.5 

47 IL-47 0.55 53.36 59.1 2.1 167.5 0.50 -0.4 -3.1 0.41 22.6 5.9 3.3 16.7 4.5 

48 IL-48 0.55 61.35 65.9 4.0 174.6 0.51 5.1 1.4 0.39 30.7 5.3 3.3 17.2 4.5 

49 IL-49 0.98 35.73 52.6 13.7 182.3 0.47 -0.3 2.2 0.38 11.5 5.2 2.9 16.1 4.5 

50 IL-50 0.56 57.48 65.7 1.4 170.4 0.52 -0.5 -0.5 0.51 30.4 6.3 3.3 15.5 5.0 

51 IL-51 0.62 49.87 55.8 4.4 183.3 0.39 11.7 6.0 0.35 42.1 6.1 3.8 17.2 5.0 

52 IL-52 0.03 94.42 65.3 5.6 179.6 0.48 -0.4 0.6 0.27 73.4 6.1 3.1 14.7 5.1 

53 IL-53 1.36 26.32 64.2 3.2 169.2 0.55 14.7 11.4 0.54 19.5 5.1 3.1 16.4 4.5 

54 IL-54 0.58 54.75 55.7 1.9 166.2 0.42 7.4 4.1 0.40 57.8 6.6 2.4 13.4 5.0 

55 IL-55 0.36 63.62 54.8 3.8 163.9 0.58 8.2 -0.2 0.40 18.4 6.1 3.7 17.1 4.6 

56 IL-56 0.54 57.74 61.0 11.4 179.2 0.52 12.1 0.9 0.40 18.0 6.9 3.7 16.0 5.0 

57 IL-57 0.38 70.53 66.0 2.1 159.2 0.64 6.0 2.8 0.33 37.8 3.3 2.3 16.3 5.0 

58 IL-58 0.18 71.58 59.1 13.8 171.4 0.50 -1.5 2.2 0.71 39.0 6.9 3.4 15.2 5.1 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
59 IL-59 0.20 86.89 65.1 3.9 183.6 0.48 9.1 8.7 0.29 55.3 4.7 2.6 15.3 5.0 

60 IL-60 0.76 49.55 65.5 4.8 193.6 0.49 -0.9 -3.6 0.60 24.8 4.0 2.4 16.6 4.5 

61 IL-61 0.23 80.76 64.4 
 

174.9 0.38 -0.5 -2.3 0.18 35.5 5.9 2.8 16.2 4.5 

62 IL-62 1.01 32.13 58.6 10.7 180.8 0.42 4.4 5.7 0.47 48.6 6.9 3.2 16.5 4.5 

63 IL-63 0.11 89.06 59.9 12.3 176.9 0.41 2.9 8.0 0.20 85.4 6.2 2.4 17.1 4.8 

64 IL-64 0.45 58.11 52.2 -0.3 202.1 0.45 2.9 -1.6 0.35 25.0 7.8 3.4 16.2 4.6 

65 IL-65 0.01 90.35 57.8 10.9 149.9 0.54 -1.1 -4.2 0.17 72.0 6.5 2.8 15.6 5.1 

66 IL-66 0.02 92.42 57.1 16.6 161.4 0.42 4.5 5.5 0.17 36.7 7.8 2.5 15.9 5.0 

67 IL-67 0.77 48.84 62.6 3.6 174.8 0.53 3.2 -1.8 0.44 22.4 6.9 2.1 15.5 4.5 

68 IL-68 0.73 50.78 59.4 1.6 168.4 0.63 -0.5 -0.6 0.62 23.5 6.9 3.4 12.8 5.0 

69 IL-69 0.49 63.70 65.0 -0.1 181.4 0.48 1.7 6.1 0.46 43.5 7.7 2.8 15.5 4.5 

70 IL-70 0.29 77.98 61.6 5.8 182.1 0.47 1.8 4.6 0.20 60.4 8.5 3.6 15.9 5.0 

71 IL-71 0.24 76.57 59.9 12.5 161.0 0.55 -0.6 10.1 0.21 31.5 7.3 3.9 16.4 4.5 

72 IL-72 0.12 92.79 59.5 15.3 177.6 0.44 2.1 2.3 0.24 54.7 5.3 3.3 17.0 5.0 

73 IL-73 1.23 31.43 58.5 4.2 179.8 0.54 2.4 0.4 0.61 18.4 5.7 3.1 14.8 4.5 

74 IL-74 0.11 83.53 61.4 3.3 177.3 0.42 -0.9 1.0 0.29 29.9 6.2 4.1 13.5 5.0 

75 IL-75 0.61 67.00 70.1 1.2 183.3 0.46 5.3 2.5 0.15 49.8 6.9 3.0 15.4 5.0 

76 IL-76 1.28 26.72 63.4 8.5 150.4 0.55 2.9 23.0 0.60 34.4 6.8 3.6 15.4 5.0 

77 IL-77 0.76 42.98 59.0 6.4 192.3 0.45 -0.9 -0.1 0.43 49.6 6.6 3.1 16.1 4.5 

78 IL-78 -0.07 98.32 60.8 7.6 167.9 0.53 -0.6 4.4 0.20 39.5 6.3 3.1 15.9 5.1 

79 IL-79 0.74 40.03 65.8 1.2 185.3 0.43 -0.5 4.5 0.52 22.9 6.1 4.5 15.2 5.1 

80 IL-80 0.43 64.61 65.6 4.9 175.4 0.56 2.5 13.5 0.40 34.1 6.5 3.3 15.1 4.5 

81 IL-81 1.12 41.22 65.5 5.4 168.5 0.48 9.7 4.6 0.45 33.2 5.5 3.7 15.9 5.0 

82 IL-82 0.88 43.89 59.5 6.2 169.6 0.53 -1.4 9.2 0.76 24.2 6.4 2.8 15.2 4.5 

83 IL-83 0.48 67.67 68.9 0.8 180.9 0.42 2.2 5.6 0.50 41.6 4.2 4.2 13.9 5.0 

84 IL-84 0.53 69.60 67.8 0.8 168.7 0.54 3.3 12.8 0.42 26.2 2.9 3.5 13.0 5.0 

85 IL-85 0.97 40.89 73.0 1.3 220.4 0.40 -0.6 -0.4 0.77 28.9 4.3 4.0 15.4 5.0 

86 IL-86 0.78 45.34 72.7 
 

199.2 0.40 2.3 1.9 0.38 25.7 5.3 4.2 16.6 5.0 

87 IL-87 0.03 95.65 71.0 0.9 175.8 0.52 5.6 5.1 0.17 23.4 2.6 3.6 16.4 5.0 

88 IL-88 0.04 84.21 67.8 1.9 174.8 0.51 3.0 3.8 0.30 48.8 4.6 3.8 14.9 5.1 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
89 IL-89 0.34 75.70 66.3 2.5 175.4 0.51 5.2 4.7 0.36 47.8 5.5 4.2 15.7 5.0 

90 IL-90 0.92 43.30 61.0 6.7 184.3 0.54 -1.3 -4.4 0.67 36.7 5.5 3.9 14.7 5.0 

91 IL-91 0.39 63.58 69.0 0.7 168.7 0.53 -1.0 4.3 0.47 24.0 4.2 4.1 15.3 5.0 

92 IL-92 1.83 5.65 67.2 2.2 179.8 0.55 -1.1 -1.1 0.72 24.4 5.9 3.5 14.8 4.5 

93 IL-93 0.46 58.92 68.6 1.1 162.8 0.45 5.6 15.0 0.41 35.3 3.9 3.1 15.9 4.5 

94 IL-94 0.34 66.68 75.2 0.3 154.6 0.44 -1.6 -3.8 0.44 56.6 4.5 4.5 14.2 5.0 

95 IL-95 0.26 79.69 64.8 -1.5 167.9 0.46 8.2 0.7 0.31 27.3 8.1 2.8 16.1 5.0 

96 IL-96 0.86 37.29 65.4 2.0 189.0 0.45 -0.2 1.5 0.68 22.4 5.8 2.2 15.2 4.5 

97 IL-97 0.20 79.43 65.6 -0.3 207.6 0.38 -0.4 -2.7 0.30 27.4 6.1 3.2 15.3 5.0 

98 IL-98 1.03 35.77 62.0 3.6 184.3 0.44 8.5 4.0 0.73 34.0 6.4 2.4 16.1 4.5 

99 IL-99 1.34 23.90 61.5 4.3 163.2 0.50 2.0 2.6 0.58 17.7 5.9 3.1 15.9 4.5 

100 IL-100 1.30 24.26 68.9 1.5 171.4 0.48 3.1 7.7 0.68 17.7 5.8 2.3 15.9 5.0 

101 IL-101 1.18 25.01 66.3 1.5 177.2 0.41 -1.3 -2.6 0.75 13.6 6.2 3.9 14.8 4.5 

102 IL-102 0.73 51.31 71.4 1.0 192.2 0.43 5.8 -0.3 0.42 45.7 4.2 2.6 15.8 4.9 

103 IL-103 0.83 41.07 66.6 3.8 201.5 0.37 1.6 9.4 0.53 19.8 6.1 3.3 16.1 4.5 

104 IL-104 0.39 72.46 66.6 4.4 197.5 0.42 3.4 1.4 0.28 47.0 6.2 3.2 17.0 5.0 

105 IL-105 0.83 46.28 66.3 5.3 188.0 0.48 2.5 -2.3 0.29 55.8 5.6 2.8 14.9 4.1 

106 IL-106 0.03 93.09 61.1 8.4 204.7 0.31 8.4 2.9 0.27 30.0 7.0 3.3 15.4 5.0 

107 IL-107 1.89 12.64 60.4 3.2 185.4 0.48 2.7 -1.2 0.45 22.1 7.0 3.5 16.6 3.4 

108 IL-108 1.29 37.83 60.6 7.3 170.9 0.46 -1.5 1.2 0.62 45.3 6.1 3.8 15.1 4.5 

                
Mean 

 
0.59 59.86 62.3 5.2 176.9 0.47 3.2 3.4 0.41 34.9 6.0 3.2 15.6 4.7 

LSD 
 

0.87 42.27 6.1 2.0 31.5 0.16 10.6 12.3 0.30 32.7 2.3 1.0 2.4 0.9 
 

MSe 
 

0.21 545.87 8.5 11.2 448.6 0.01 28.4 43.5 0.02 282.2 2.3 0.3 1.6 0.2 
 

CV 
 

77.49 39.03 4.7 63.9 12.0 18.16 164.0 195.2 37.93 48.1 25.3 16.6 8.0 9.4 
 

p 
 

0.000 0.000 0.000 0.010 0.000 0.041 0.420 0.007 0.000 0.000 0.000 0.000 0.052 0.019 
 

Min 
 

-0.07 5.65 52.2 -1.5 141.2 0.31 -1.6 -4.5 0.09 8.3 2.6 2.1 12.8 3.4 
 

Max 
 

1.89 107.15 75.2 17.5 220.4 0.64 14.7 29.9 0.79 87.1 8.5 4.5 17.2 5.1 
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(2-2.c ) Save Valley fully-irrigated under heat stress 

Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
1 IL-1 1.59 55.13 60.4 0.2 127.5 0.53 - - 0.67 20.8 - 0.9 16.4 3.8 

2 IL-2 2.31 26.26 57.5 1.1 140.3 0.49 - - 0.57 39.1 - 1.1 15.5 3.2 

3 IL-3 1.25 67.25 55.8 0.1 125.3 0.64 - - 0.46 39.8 - 1.0 14.4 2.9 

4 IL-4 1.20 62.40 55.7 1.1 108.9 0.61 - - 0.51 38.3 - 1.1 16.4 4.1 

5 IL-5 1.43 54.72 57.4 0.2 119.8 0.51 - - 0.77 25.6 - 0.9 14.5 2.9 

6 IL-6 1.15 64.81 58.5 0.5 124.7 0.47 - - 0.43 38.0 - 1.1 15.0 3.0 

7 IL-7 1.62 43.58 56.0 0.2 104.8 0.57 - - 0.60 31.9 - 1.0 14.8 3.5 

8 IL-8 1.33 58.48 56.6 2.1 114.1 0.50 - - 0.56 38.0 - 2.2 15.9 4.1 

9 IL-9 1.45 54.65 57.8 1.3 123.9 0.60 - - 0.45 54.2 - 1.5 14.8 3.7 

10 IL-10 1.45 55.46 53.2 2.9 117.8 0.45 - - 0.51 23.0 - 0.9 15.4 2.5 

11 IL-11 1.77 38.76 57.6 1.2 143.8 0.50 - - 0.71 19.5 - 0.9 15.3 3.1 

12 IL-12 0.74 88.43 62.0 9.2 116.7 0.58 - - 0.50 27.3 - 1.0 15.0 4.1 

13 IL-13 1.98 28.36 58.8 5.4 116.6 0.53 - - 0.67 22.9 - 1.1 16.3 3.8 

14 IL-14 1.13 77.45 59.3 2.1 135.6 0.54 - - 0.34 40.2 - 1.2 15.0 2.8 

15 IL-15 1.89 32.11 56.8 6.2 132.3 0.47 - - 0.74 27.6 - 1.1 14.9 3.7 

16 IL-16 1.60 47.31 57.2 2.4 141.2 0.53 - - 0.69 25.9 - 1.0 14.9 3.6 

17 IL-17 2.07 22.27 63.6 0.0 119.6 0.60 - - 0.62 32.8 - 1.4 9.9 2.6 

18 IL-18 1.12 69.97 55.2 0.0 110.3 0.54 - - 0.50 31.2 - 1.4 17.0 4.2 

19 IL-19 1.01 87.02 58.7 0.1 125.0 0.53 - - 0.64 45.4 - 1.8 11.8 4.2 

20 IL-20 2.26 32.62 55.4 1.1 135.2 0.44 - - 0.61 22.7 - 0.9 14.3 2.5 

21 IL-21 1.25 59.30 58.7 1.5 122.2 0.49 - - 0.57 32.1 - 1.2 16.5 3.8 

22 IL-22 1.54 49.96 57.8 0.5 118.7 0.54 - - 0.54 21.3 - 1.5 15.4 3.2 

23 IL-23 1.74 36.07 57.1 2.3 124.5 0.52 - - 0.68 28.3 - 1.0 16.9 3.6 

24 IL-24 0.86 89.41 61.2 0.0 136.5 0.57 - - 0.39 33.7 - 0.9 14.9 3.4 

25 IL-25 1.85 32.73 57.1 0.1 126.1 0.59 - - 0.81 24.4 - 1.2 14.9 3.6 

26 IL-26 1.25 62.16 62.4 2.9 127.7 0.51 - - 0.46 47.1 - 0.9 11.4 4.0 

27 IL-27 0.98 69.17 57.0 3.5 133.4 0.54 - - 0.48 38.1 - 1.1 16.5 3.4 

28 IL-28 0.81 94.63 61.4 1.0 104.6 0.56 - - 0.46 41.3 - 1.1 13.9 3.8 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
29 IL-29 1.46 59.31 56.7 0.0 104.4 0.56 - - 0.52 24.7 - 1.4 16.5 3.4 

30 IL-30 0.98 76.84 64.7 0.1 130.2 0.57 - - 0.67 28.2 - 1.2 13.9 3.8 

31 IL-31 2.28 9.83 65.0 2.2 150.1 0.58 - - 0.61 21.5 - 2.5 15.3 2.3 

32 IL-32 1.15 75.92 57.6 0.4 120.7 0.45 - - 0.66 38.9 - 1.6 14.9 4.1 

33 IL-33 2.05 47.25 58.9 0.0 126.5 0.56 - - 0.57 36.0 - 1.4 15.4 2.9 

34 IL-34 1.83 30.16 57.4 1.3 118.6 0.48 - - 0.72 32.2 - 1.6 15.4 2.9 

35 IL-35 1.58 54.71 58.3 1.0 129.7 0.52 - - 0.68 30.6 - 1.0 16.0 3.5 

36 IL-36 1.44 51.83 58.3 0.6 113.6 0.60 - - 0.69 33.8 - 1.1 14.9 3.9 

37 IL-37 0.65 88.26 58.8 0.5 116.5 0.52 - - 0.52 64.9 - 1.0 16.5 5.1 

38 IL-38 1.39 58.09 57.8 2.6 109.5 0.61 - - 0.68 47.2 - 1.0 15.4 3.5 

39 IL-39 1.43 62.37 63.6 6.2 140.6 0.51 - - 0.50 68.6 - 0.9 15.4 3.9 

40 IL-40 1.64 40.76 56.0 3.1 111.9 0.57 - - 0.90 35.0 - 1.2 13.9 2.6 

41 IL-41 1.46 54.08 56.0 1.7 131.6 0.51 - - 0.39 52.0 - 1.1 14.9 3.5 

42 IL-42 1.85 26.83 57.8 0.5 150.5 0.55 - - 0.85 29.7 - 1.0 14.4 3.4 

43 IL-43 1.79 40.84 58.5 2.2 147.7 0.54 - - 0.58 25.8 - 1.4 16.3 2.4 

44 IL-44 1.12 72.95 58.1 3.1 143.9 0.52 - - 0.45 24.4 - 1.0 17.0 3.4 

45 IL-45 0.81 95.99 63.1 7.3 145.5 0.49 - - 0.44 23.3 - 1.3 13.9 3.3 

46 IL-46 1.16 62.21 55.7 -0.1 101.3 0.55 - - 0.50 38.4 - 1.2 17.0 4.1 

47 IL-47 2.03 27.15 56.9 0.8 134.9 0.65 - - 0.71 38.7 - 2.0 14.8 3.8 

48 IL-48 2.42 20.21 63.5 0.1 144.2 0.55 - - 0.93 13.6 - 1.2 14.5 2.4 

49 IL-49 1.15 72.31 50.8 5.0 118.2 0.48 - - 0.51 23.3 - 0.9 16.0 4.0 

50 IL-50 0.80 96.66 60.0 0.7 129.5 0.50 - - 0.39 38.7 - 0.8 14.4 3.9 

51 IL-51 1.64 43.08 57.3 -1.5 143.9 0.45 - - 0.80 28.7 - 1.0 14.5 3.6 

52 IL-52 1.22 62.79 61.1 5.6 123.4 0.51 - - 0.53 38.8 - 1.1 13.5 3.8 

53 IL-53 2.13 29.24 60.3 0.7 135.2 0.61 - - 0.82 28.7 - 1.0 11.9 2.6 

54 IL-54 1.82 45.09 51.9 3.1 131.1 0.63 - - 0.63 43.8 - 1.2 10.8 2.7 

55 IL-55 1.17 74.80 56.9 4.7 124.5 0.56 - - 0.57 57.4 - 1.2 15.4 4.3 

56 IL-56 1.60 47.17 62.7 0.2 154.5 0.48 - - 0.72 27.7 - 1.5 14.9 3.4 

57 IL-57 1.77 40.44 61.0 1.4 121.2 0.49 - - 0.72 16.6 - 1.1 15.4 3.1 

58 IL-58 0.91 85.90 57.4 0.1 120.1 0.51 - - 0.38 32.5 - 1.0 13.4 3.0 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
59 IL-59 1.50 45.63 58.6 1.6 104.0 0.53 - - 0.66 37.9 - 0.9 14.9 4.1 

60 IL-60 2.05 32.89 61.8 1.1 144.6 0.55 - - 0.82 25.8 - 0.8 14.9 3.7 

61 IL-61 0.73 88.82 56.8 2.8 151.5 0.51 - - 0.29 18.5 - 1.0 15.8 3.0 

62 IL-62 2.42 13.57 55.9 0.9 123.0 0.56 - - 0.63 24.5 - 0.9 16.4 3.1 

63 IL-63 1.79 35.15 57.8 1.5 113.6 0.58 - - 0.64 30.2 - 1.1 16.4 3.4 

64 IL-64 1.12 75.52 59.6 1.7 145.7 0.44 - - 0.54 35.0 - 0.9 15.9 4.5 

65 IL-65 0.66 87.91 57.5 0.7 139.4 0.53 - - 0.32 40.4 - 0.9 15.5 3.5 

66 IL-66 0.81 81.85 57.9 1.6 156.2 0.45 - - 0.41 29.8 - 1.1 14.9 3.4 

67 IL-67 0.96 77.84 59.0 0.1 133.1 0.53 - - 0.43 41.7 - 1.1 16.4 4.0 

68 IL-68 1.73 33.57 56.4 0.7 112.1 0.60 - - 0.83 25.6 - 1.0 13.9 3.8 

69 IL-69 1.88 31.25 62.1 4.2 147.9 0.52 - - 0.74 28.8 - 1.2 16.3 3.2 

70 IL-70 0.88 96.27 56.6 1.3 93.4 0.49 - - 0.63 20.3 - 1.3 16.0 3.6 

71 IL-71 1.11 69.28 58.0 0.3 137.8 0.56 - - 0.55 49.4 - 1.3 14.4 2.8 

72 IL-72 1.32 70.44 54.5 2.8 105.0 0.52 - - 0.59 44.1 - 1.0 16.4 3.3 

73 IL-73 1.44 68.60 56.9 1.2 104.3 0.54 - - 0.67 25.8 - 1.5 15.5 3.4 

74 IL-74 1.41 59.08 58.5 0.8 117.3 0.57 - - 0.69 30.5 - 1.2 13.9 3.5 

75 IL-75 1.74 41.18 51.6 0.8 121.6 0.50 - - 0.63 26.4 - 1.0 16.4 3.3 

76 IL-76 2.70 15.44 58.3 0.2 105.8 0.59 - - 0.93 22.9 - 1.1 15.9 2.7 

77 IL-77 2.01 24.71 57.7 0.7 136.0 0.50 - - 0.71 31.5 - 1.0 15.9 3.4 

78 IL-78 1.08 72.60 57.7 2.5 113.6 0.50 - - 0.56 44.5 - 1.0 16.5 4.0 

79 IL-79 1.26 74.01 63.6 0.7 141.4 0.49 - - 0.71 21.9 - 1.7 13.4 3.2 

80 IL-80 1.71 44.07 60.9 4.1 151.4 0.51 - - 0.79 27.7 - 1.2 14.0 3.7 

81 IL-81 2.13 22.31 62.2 0.0 147.6 0.49 - - 0.76 28.1 - 1.5 15.4 3.2 

82 IL-82 1.47 52.91 55.6 0.5 131.5 0.54 - - 0.59 23.2 - 1.0 14.9 4.0 

83 IL-83 0.79 86.10 68.6 1.1 143.6 0.55 - - 0.83 18.4 - 2.3 8.4 3.8 

84 IL-84 0.55 93.80 66.2 4.2 111.1 0.64 - - 0.13 49.6 - 2.9 14.4 2.3 

85 IL-85 1.79 33.00 67.0 0.0 134.8 0.60 - - 0.71 22.5 - 2.2 12.9 2.2 

86 IL-86 1.68 56.01 65.6 5.3 142.0 0.54 - - 0.76 29.7 - 2.5 12.4 3.2 

87 IL-87 0.84 91.01 65.7 0.8 134.0 0.51 - - 0.56 22.5 - 2.2 15.4 4.2 

88 IL-88 1.77 43.75 65.2 5.6 132.2 0.50 - - 0.57 31.4 - 1.9 12.9 2.9 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Rot Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
89 IL-89 1.35 51.64 62.4 0.4 119.9 0.47 - - 0.55 21.0 - 1.9 16.5 3.6 

90 IL-90 1.56 54.42 63.0 0.5 114.1 0.60 - - 0.70 18.8 - 1.6 16.0 3.1 

91 IL-91 1.14 69.79 66.2 0.3 103.5 0.62 - - 0.75 16.8 - 1.5 15.9 4.1 

92 IL-92 3.81 5.19 63.9 0.7 131.7 0.52 - - 0.79 13.7 - 2.0 15.5 1.7 

93 IL-93 1.46 52.99 65.9 0.2 100.9 0.60 - - 0.77 25.2 - 1.0 9.9 4.2 

94 IL-94 1.19 60.84 69.7 6.8 81.3 0.47 - - 0.32 60.5 - 1.2 13.9 4.5 

95 IL-95 0.64 98.75 62.5 0.1 127.0 0.53 - - 0.39 25.8 - 1.3 16.4 4.6 

96 IL-96 2.47 10.16 63.2 1.9 143.1 0.58 - - 0.62 32.7 - 0.9 15.8 2.0 

97 IL-97 1.07 79.00 64.2 2.2 119.9 0.55 - - 0.67 37.8 - 1.2 11.9 2.7 

98 IL-98 1.81 34.26 58.6 1.5 108.8 0.55 - - 0.63 23.7 - 0.9 15.5 3.1 

99 IL-99 2.15 24.86 55.3 0.2 122.4 0.48 - - 0.72 22.2 - 1.0 14.9 3.7 

100 IL-100 2.55 25.09 61.7 2.7 158.2 0.57 - - 0.87 16.4 - 1.3 15.0 2.9 

101 IL-101 2.92 18.13 60.3 0.0 129.7 0.50 - - 0.98 15.8 - 0.7 15.9 2.4 

102 IL-102 2.58 10.57 64.1 0.2 152.0 0.56 - - 0.98 21.4 - 0.9 15.3 3.8 

103 IL-103 1.04 68.62 60.7 1.9 135.2 0.60 - - 0.37 37.6 - 1.7 11.4 2.1 

104 IL-104 1.61 48.63 63.0 0.0 99.7 0.53 - - 0.96 22.4 - 1.5 13.8 3.6 

105 IL-105 0.82 84.73 60.1 0.1 96.4 0.53 - - 0.46 42.1 - 1.1 16.5 4.3 

106 IL-106 1.11 71.93 56.4 3.7 133.5 0.58 - - 0.60 18.3 - 1.0 16.9 3.8 

107 IL-107 3.11 1.01 60.0 0.5 118.7 0.55 - - 0.73 29.5 - 1.4 16.5 3.0 

108 IL-108 2.79 9.96 57.7 0.6 157.7 0.52 - - 1.11 18.5 - 2.2 16.4 2.3 

                
Mean 

 
1.54 53.82 59.5 1.6 126.7 0.54 - - 0.62 31.3 - 1.3 14.9 3.4 

LSD 
 

1.26 52.97 2.9 1.7 35.5 0.13 - - 0.33 27.2 - 0.6 3.4 1.3 

MSe 
 

0.44 818.72 2.3 0.8 329.5 0.00 - - 0.04 195.0 - 0.1 2.9 0.4 

CV 
 

43.20 53.16 2.5 53.0 14.3 12.70 - - 30.18 44.6 - 24.8 11.4 19.4 

p 
 

0.001 0.001 0.000 0.000 0.009 0.495 - - 0.000 0.083 - 0.000 0.002 0.000 

Min 
 

0.55 1.01 50.8 -1.5 81.3 0.44 - - 0.13 13.6 - 0.7 8.4 1.7 

Max 
 

3.81 98.75 69.7 9.2 158.2 0.65 - - 1.11 68.6 - 2.9 17.0 5.1 
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(2-2.d) Save Valley managed drought under heat stress 

Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Rot Senes Text Plants Aspect 

                 

  
t/ha Rank d d cm 0-1 % % # % % 1-10 1-5 # 1-5 

                 
1 IL-1 1.40 28.11 80.4 1.2 128.2 0.40 - - 0.84 7.9 36.7 - 1.3 9.5 3.8 

2 IL-2 0.58 74.53 79.6 2.6 119.4 0.42 - - 0.62 13.6 40.7 - 1.8 8.0 4.0 

3 IL-3 0.71 70.79 82.7 -0.2 105.4 0.42 - - 0.57 9.2 40.6 - 1.0 13.1 4.2 

4 IL-4 1.24 35.12 78.0 2.7 95.8 0.30 - - 0.60 22.5 42.7 - 0.9 14.3 3.5 

5 IL-5 1.58 25.39 77.6 3.2 124.3 0.40 - - 1.15 38.0 47.3 - 0.9 12.0 4.3 

6 IL-6 0.85 62.16 79.5 3.2 124.5 0.36 - - 0.52 9.4 38.3 - 0.9 11.9 3.7 

7 IL-7 1.55 20.54 79.9 1.0 112.0 0.38 - - 1.00 31.8 41.4 - 1.0 11.2 3.5 

8 IL-8 0.63 73.35 80.1 0.3 115.9 0.40 - - 0.57 19.7 34.6 - 2.9 9.8 4.3 

9 IL-9 0.74 62.59 80.8 1.2 109.1 0.40 - - 0.69 27.8 47.8 - 1.5 9.0 3.3 

10 IL-10 0.52 77.31 79.0 4.6 95.5 0.38 - - 0.54 1.5 25.2 - 0.9 9.0 4.5 

11 IL-11 0.62 75.08 80.5 2.5 133.9 0.33 - - 0.67 14.2 56.5 - 1.0 11.7 4.5 

12 IL-12 0.97 57.22 82.7 1.4 108.7 0.34 - - 0.72 23.1 36.8 - 1.3 10.9 3.5 

13 IL-13 1.46 19.58 83.2 3.1 146.0 0.35 - - 1.22 19.2 41.0 - 1.1 8.5 3.3 

14 IL-14 0.37 93.80 78.3 0.0 94.5 0.32 - - 0.36 12.8 59.7 - 0.9 12.5 4.8 

15 IL-15 1.01 55.35 80.0 2.1 102.3 0.32 - - 0.71 13.1 36.4 - 1.0 10.7 3.7 

16 IL-16 2.75 0.51 83.3 1.0 170.0 0.38 - - 0.89 10.1 13.4 - 1.2 11.8 1.5 

17 IL-17 1.81 24.12 79.5 2.9 142.5 0.37 - - 0.72 15.9 52.1 - 1.5 12.7 3.3 

18 IL-18 0.61 74.04 76.4 3.5 98.1 0.49 - - 0.74 16.5 43.3 - 2.0 9.6 4.8 

19 IL-19 0.30 98.55 82.4 4.9 94.4 0.34 - - 0.53 14.7 79.0 - 1.1 4.7 5.0 

20 IL-20 0.83 60.87 80.6 1.5 98.8 0.47 - - 0.85 32.0 37.6 - 1.5 8.3 3.7 

21 IL-21 1.29 36.73 79.8 1.2 118.3 0.42 - - 0.77 8.9 25.8 - 1.5 11.8 4.0 

22 IL-22 0.75 65.46 79.7 1.4 111.3 0.36 - - 0.54 -1.6 23.1 - 1.3 12.0 4.2 

23 IL-23 1.34 32.26 80.3 1.0 115.3 0.35 - - 0.76 13.9 75.7 - 2.0 12.1 4.3 

24 IL-24 0.98 53.57 85.1 1.6 107.7 0.33 - - 0.68 19.0 37.5 - 1.5 13.4 4.0 

25 IL-25 1.12 47.74 83.3 . 129.3 0.36 - - 0.63 11.7 26.7 - 1.0 13.0 4.0 

26 IL-26 0.31 94.09 88.0 . 151.1 0.29 - - 0.52 2.8 19.0 - 1.2 8.3 3.5 

27 IL-27 0.09 103.47 78.6 5.1 96.9 0.33 - - 0.28 21.8 67.7 - 
 

12.7 5.0 

28 IL-28 0.52 83.41 81.6 4.4 111.7 0.36 - - 0.86 43.0 47.7 - 1.5 9.1 4.8 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Rot Senes Text Plants Aspect 

                 

  
t/ha Rank d d cm 0-1 % % # % % 1-10 1-5 # 1-5 

                 
29 IL-29 1.06 44.06 76.9 1.0 112.9 0.37 - - 0.49 17.8 54.0 - 0.9 12.1 3.8 

30 IL-30 0.51 83.96 . . 150.0 0.37 - - 0.64 4.0 52.5 - 1.0 6.1 4.5 

31 IL-31 1.19 39.17 80.0 2.1 99.8 0.36 - - 0.61 19.9 39.1 - 2.0 11.3 4.0 

32 IL-32 0.46 83.31 77.4 4.1 111.0 0.38 - - 0.42 2.3 26.0 - 1.5 11.5 3.8 

33 IL-33 1.91 16.61 76.5 4.0 109.3 0.39 - - 0.85 20.1 29.8 - 1.5 13.7 3.3 

34 IL-34 1.46 20.76 78.6 4.9 121.7 0.34 - - 0.67 5.6 33.9 - 1.3 14.3 3.3 

35 IL-35 0.86 64.25 82.4 3.1 117.6 0.33 - - 1.07 18.3 27.2 - 1.0 5.4 3.8 

36 IL-36 0.81 56.41 80.0 2.9 125.3 0.37 - - 0.73 41.9 32.5 - 1.8 11.6 4.5 

37 IL-37 0.35 88.96 76.1 2.9 98.1 0.37 - - 0.36 18.5 46.5 - 1.1 12.3 5.0 

38 IL-38 1.37 44.91 83.5 4.2 117.6 0.40 - - 1.07 18.2 25.0 - 1.7 11.8 3.7 

39 IL-39 0.31 95.76 84.8 1.9 103.5 0.33 - - 0.22 -5.6 113.5 - 1.0 6.2 3.8 

40 IL-40 1.20 33.47 76.3 3.9 116.1 0.38 - - 0.74 60.7 38.3 - 1.0 12.6 4.5 

41 IL-41 0.91 54.67 80.0 5.9 115.1 0.41 - - 0.34 16.2 36.3 - 1.0 14.3 3.7 

42 IL-42 1.26 31.81 79.4 0.3 135.8 0.39 - - 0.99 13.2 38.5 - 1.0 11.0 4.0 

43 IL-43 1.96 23.29 78.9 4.9 134.9 0.33 - - 1.02 26.5 29.9 - 1.4 10.3 3.0 

44 IL-44 1.66 23.76 78.7 3.2 104.9 0.43 - - 0.56 -4.9 23.5 - 1.5 14.3 3.3 

45 IL-45 0.64 76.79 81.6 1.9 139.3 0.37 - - 0.81 10.1 47.7 - 1.3 6.9 4.5 

46 IL-46 1.06 50.36 82.4 1.5 118.8 0.32 - - 0.85 -0.5 28.0 - 1.0 12.0 3.8 

47 IL-47 1.48 27.59 79.2 1.8 120.5 0.37 - - 0.89 4.3 35.7 - 1.7 11.2 3.8 

48 IL-48 0.92 57.70 83.0 0.1 123.6 0.39 - - 0.56 12.0 58.9 - 1.5 11.4 4.5 

49 IL-49 1.22 39.93 75.5 1.9 107.0 0.38 - - 0.74 16.4 39.8 - 2.3 12.0 4.0 

50 IL-50 0.79 61.49 . . 154.0 0.36 - - 0.76 -5.0 16.6 - 1.0 10.8 4.2 

51 IL-51 1.07 47.82 78.1 0.8 121.3 0.42 - - 0.58 35.9 47.0 - 1.9 13.3 3.8 

52 IL-52 0.44 75.09 81.4 1.8 109.8 0.40 - - 0.76 -0.7 41.7 - 1.0 6.5 5.0 

53 IL-53 1.58 23.41 81.0 0.7 94.9 0.38 - - 0.72 15.3 33.5 - 1.0 11.9 3.3 

54 IL-54 0.25 97.30 82.7 0.9 108.0 0.32 - - 0.24 5.5 73.4 - 1.3 6.5 4.5 

55 IL-55 1.05 47.83 79.9 3.4 117.9 0.37 - - 0.50 1.6 29.5 - 1.7 13.8 3.6 

56 IL-56 0.66 72.52 82.3 2.2 123.7 0.38 - - 0.71 10.8 
 

- 1.4 8.0 3.2 

57 IL-57 0.76 60.02 85.0 0.3 119.7 0.33 - - 0.79 17.6 34.6 - 1.4 13.1 4.5 

58 IL-58 0.70 73.72 78.3 2.2 130.3 0.36 - - 0.49 1.9 50.0 - 1.0 13.4 4.5 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Rot Senes Text Plants Aspect 

                 

  
t/ha Rank d d cm 0-1 % % # % % 1-10 1-5 # 1-5 

                 
59 IL-59 0.94 50.32 84.7 -0.1 111.5 0.40 - - 0.55 7.4 42.4 - 0.9 12.6 4.3 

60 IL-60 1.51 25.29 81.0 5.2 103.8 0.37 - - 0.92 54.2 32.3 - 1.1 11.1 4.0 

61 IL-61 0.74 71.54 78.7 1.1 101.8 0.39 - - 0.79 5.8 21.1 - 1.0 10.2 4.2 

62 IL-62 1.46 26.62 78.1 2.4 122.1 0.36 - - 0.65 47.2 36.9 - 1.5 13.5 4.2 

63 IL-63 1.54 22.00 80.9 2.7 112.1 0.34 - - 0.95 65.8 49.2 - 1.0 14.2 4.0 

64 IL-64 1.25 37.59 78.3 2.7 118.5 0.39 - - 0.85 2.9 24.5 - 1.7 12.0 4.0 

65 IL-65 0.46 90.90 78.3 8.4 110.7 0.35 - - 0.31 23.5 53.7 - 1.0 12.8 5.0 

66 IL-66 1.00 48.61 82.4 2.8 118.7 0.41 - - 0.56 8.4 16.3 - 1.1 13.0 3.3 

67 IL-67 0.89 59.26 82.1 2.6 117.5 0.34 - - 0.95 25.9 33.9 - 1.1 7.3 4.0 

68 IL-68 0.71 72.48 82.2 2.8 96.1 0.41 - - 0.71 15.7 33.4 - 1.1 10.3 4.5 

69 IL-69 1.62 20.57 84.6 1.4 125.1 0.44 - - 0.74 24.0 21.5 - 1.0 12.4 3.2 

70 IL-70 1.26 38.15 79.4 2.2 101.3 0.40 - - 0.79 29.1 22.6 - 1.0 12.2 4.0 

71 IL-71 1.99 12.35 77.6 0.7 137.0 0.39 - - 0.94 18.5 29.4 - 1.8 12.9 3.2 

72 IL-72 0.59 72.19 81.0 5.1 138.1 0.34 - - 0.29 4.1 33.1 - 2.0 12.8 4.0 

73 IL-73 1.20 38.20 80.1 1.0 118.9 0.40 - - 0.93 17.9 29.0 - 1.6 10.4 3.3 

74 IL-74 0.79 65.85 80.1 3.9 109.9 0.43 - - 0.83 27.8 33.8 - 1.3 9.2 3.7 

75 IL-75 1.36 27.60 76.1 1.9 130.7 0.37 - - 0.66 8.6 29.8 - 1.5 12.8 3.5 

76 IL-76 0.98 55.89 83.0 4.1 137.8 0.34 - - 0.56 12.8 72.4 - 1.0 10.0 3.2 

77 IL-77 0.96 56.44 78.5 5.4 100.0 0.38 - - 0.68 25.2 27.5 - 0.9 11.4 4.0 

78 IL-78 0.47 78.97 79.4 2.5 98.7 0.45 - - 0.72 6.1 35.0 - 1.1 6.0 4.0 

79 IL-79 0.41 95.52 80.8 3.0 114.1 0.44 - - 0.44 7.6 47.8 - 2.0 12.3 4.5 

80 IL-80 0.97 53.37 84.0 4.3 142.8 0.38 - - 0.70 4.4 41.8 - 1.0 11.7 4.0 

81 IL-81 0.38 84.10 85.0 0.2 136.4 0.33 - - 0.49 32.5 50.9 - 3.1 11.2 4.8 

82 IL-82 1.40 24.63 77.9 2.9 137.0 0.37 - - 0.86 2.0 23.6 - 1.0 11.1 3.0 

83 IL-83 0.65 69.69 . . 99.7 0.37 - - 0.86 8.9 40.5 - 1.5 7.3 3.8 

84 IL-84 1.07 55.14 82.6 0.3 122.1 0.37 - - 0.98 18.7 
 

- 2.0 4.2 3.5 

85 IL-85 0.24 99.66 . . 122.2 0.39 - - 0.66 69.3 85.1 - 3.0 4.5 5.0 

86 IL-86 1.17 51.28 85.0 . 126.5 0.36 - - 0.59 -4.7 68.8 - 2.2 8.4 4.0 

87 IL-87 0.30 95.53 . . 104.9 0.31 - - 0.85 15.1 46.7 - 2.0 7.0 4.8 

88 IL-88 0.42 87.93 85.2 . 141.4 0.34 - - 0.47 7.4 60.8 - 2.2 7.2 4.0 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Ear Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Rot Senes Text Plants Aspect 

                 

  
t/ha Rank d d cm 0-1 % % # % % 1-10 1-5 # 1-5 

                 
89 IL-89 0.33 92.52 86.5 . 152.6 0.28 - - 0.58 20.4 26.4 - 1.4 7.9 4.5 

90 IL-90 0.47 85.47 85.5 -0.3 91.8 0.42 - - 0.63 -3.2 31.1 - 1.5 6.3 4.0 

91 IL-91 0.59 77.22 87.0 -0.3 84.6 0.34 - - 0.76 5.9 32.2 - 1.3 9.1 4.5 

92 IL-92 3.15 -0.24 83.5 1.0 132.6 0.45 - - 0.71 14.1 27.7 - 3.3 13.8 2.3 

93 IL-93 1.05 47.60 85.6 0.3 102.6 0.31 - - 0.75 37.2 19.3 - 1.3 10.7 3.5 

94 IL-94 0.60 74.56 86.3 0.5 97.5 0.36 - - 0.96 17.6 43.5 - 2.3 7.2 4.5 

95 IL-95 0.64 71.00 86.3 . 104.8 0.43 - - 0.75 3.1 16.2 - 1.0 9.6 5.0 

96 IL-96 0.68 71.52 83.5 1.4 114.9 0.31 - - 0.37 1.0 35.9 - 1.0 9.3 2.7 

97 IL-97 1.34 26.55 79.5 5.1 122.6 0.40 - - 0.84 20.2 27.5 - 1.5 13.2 3.7 

98 IL-98 1.37 28.12 80.3 1.8 130.1 0.37 - - 0.85 52.5 28.3 - 1.1 12.1 3.8 

99 IL-99 1.08 50.42 78.0 0.6 127.1 0.35 - - 0.63 16.6 29.0 - 1.0 14.1 4.7 

100 IL-100 1.33 30.94 87.9 . 124.0 0.38 - - 0.95 8.2 24.6 - 1.0 14.4 3.8 

101 IL-101 1.31 39.17 84.0 0.9 103.9 0.42 - - 0.92 5.2 24.0 - 1.2 13.8 4.0 

102 IL-102 2.17 20.05 84.3 0.2 123.9 0.37 - - 1.02 2.5 30.2 - 1.2 13.7 3.5 

103 IL-103 2.16 9.27 82.9 3.2 136.8 0.39 - - 1.20 7.4 37.3 - 0.9 9.8 3.0 

104 IL-104 0.90 57.14 86.3 0.5 92.5 0.38 - - 0.83 54.2 21.0 - 1.0 12.0 4.5 

105 IL-105 0.52 79.09 88.3 -0.1 115.5 0.36 - - 0.38 3.8 38.4 - 1.1 11.1 3.5 

106 IL-106 0.40 81.00 83.3 3.0 105.6 0.36 - - 0.77 12.8 39.1 - 1.5 9.9 4.5 

107 IL-107 2.04 10.00 78.3 0.1 141.9 0.36 - - 0.92 13.9 22.7 - 1.9 11.1 3.0 

108 IL-108 1.99 10.93 76.2 1.5 110.0 0.44 - - 1.09 68.6 17.7 - 2.2 9.8 3.2 

                 
Mean 

 
1.02 54.38 81.2 2.2 117.6 0.37 - - 0.71 16.9 38.4 - 1.4 10.8 3.9 

LSD 
 

0.92 47.28 4.5 3.3 37.2 0.11 - - 0.46 31.9 31.2 - 0.9 4.8 1.2 

MSe 
 

0.23 587.55 4.5 2.0 356.9 0.00 - - 0.05 275.9 208.8 - 0.2 6.1 0.4 

CV 
 

46.98 44.58 2.6 63.0 16.1 15.17 - - 32.17 98.3 37.6 - 30.9 23.0 15.5 

p 
 

0.000 0.000 0.000 0.001 0.024 0.048 - - 0.019 0.000 0.000 - 0.000 0.000 0.000 

Min 
 

0.09 -0.24 75.5 -0.3 84.6 0.28 - - 0.22 -5.6 13.4 - 0.9 4.2 1.5 

Max 
 

3.15 103.47 88.3 8.4 170.0 0.49 - - 1.22 69.3 113.5 - 3.3 14.4 5.0 

  



174 

 

(2-2.e) Chókwè random drought 

Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
1 IL-1 1.72 11.09 63.4 8.5 - - - 10.2 1.39 21.8 8.5 1.6 12.8 3.2 

2 IL-2 1.17 58.31 64.2 9.1 - - - 28.6 1.15 53.9 9.0 1.4 15.0 3.0 

3 IL-3 0.84 85.32 66.5 7.6 - - - 56.2 1.03 30.3 7.2 0.8 13.7 4.1 

4 IL-4 1.70 19.07 65.6 5.7 - - - 50.8 0.82 48.9 9.0 1.0 15.0 3.0 

5 IL-5 1.36 44.02 65.9 7.0 - - - 45.4 1.17 55.1 7.9 0.9 13.8 3.0 

6 IL-6 0.98 77.34 64.7 8.5 - - - 37.8 1.10 11.6 8.6 1.0 13.2 3.8 

7 IL-7 1.54 29.49 63.6 7.0 - - - 25.3 1.26 78.0 8.3 1.0 14.5 3.3 

8 IL-8 1.56 27.83 64.0 8.5 - - - 37.5 1.23 44.9 8.0 1.1 13.4 3.6 

9 IL-9 1.58 23.80 66.8 5.9 - - - 79.9 1.23 46.3 9.0 2.2 14.8 2.7 

10 IL-10 1.68 13.91 64.6 8.1 - - - 43.2 1.11 21.1 7.8 1.0 17.4 2.8 

11 IL-11 1.37 41.80 62.9 5.9 - - - 38.9 1.00 41.1 8.6 0.9 15.4 3.8 

12 IL-12 0.75 89.16 68.6 6.0 - - - 47.7 1.16 41.2 8.3 1.8 13.9 3.7 

13 IL-13 1.63 19.73 66.1 9.1 - - - 9.1 1.12 30.7 8.9 1.2 15.1 3.2 

14 IL-14 1.04 71.00 72.1 7.4 - - - 33.1 0.97 32.1 9.0 1.0 13.9 3.2 

15 IL-15 1.21 50.48 63.3 8.6 - - - 19.2 1.04 71.1 8.1 1.6 14.4 3.6 

16 IL-16 1.85 8.64 65.2 10.6 - - - 18.0 1.05 34.6 8.5 1.0 15.7 2.1 

17 IL-17 1.67 16.10 65.1 8.9 - - - 25.5 0.96 13.7 8.6 1.7 15.2 2.9 

18 IL-18 1.07 65.21 65.3 8.6 - - - 49.0 1.49 24.4 9.0 2.1 16.6 3.9 

19 IL-19 0.73 90.31 66.6 7.5 - - - 40.9 1.01 20.3 8.9 2.1 13.7 3.0 

20 IL-20 1.59 30.63 66.1 7.5 - - - 43.4 1.03 62.4 8.0 1.2 12.4 2.7 

21 IL-21 0.79 87.80 65.4 8.3 - - - 23.8 0.92 82.4 9.0 1.8 14.0 4.0 

22 IL-22 1.43 35.57 63.2 4.7 - - - 34.0 0.95 20.7 9.1 
 

17.1 3.0 

23 IL-23 1.32 42.35 63.6 9.0 - - - 6.0 1.13 53.0 8.7 1.0 13.4 2.7 

24 IL-24 1.24 53.26 67.7 7.4 - - - 55.1 1.13 27.3 7.7 1.1 13.4 3.4 

25 IL-25 1.07 68.50 64.2 9.9 - - - 15.5 1.26 21.6 8.5 0.9 14.5 3.5 

26 IL-26 0.71 90.88 71.9 8.4 - - - 18.9 0.91 26.6 8.3 1.0 13.1 3.4 

27 IL-27 1.21 57.40 66.2 7.4 - - - 32.2 1.01 23.4 8.2 1.9 13.9 3.6 

28 IL-28 0.94 79.13 70.7 5.0 - - - 11.8 0.88 25.0 8.5 1.2 12.4 3.4 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
29 IL-29 1.13 58.36 65.7 3.5 - - - 66.3 1.02 29.6 9.0 1.5 16.5 3.6 

30 IL-30 1.02 68.63 66.1 7.9 - - - 47.9 1.23 47.9 9.1 1.0 15.5 3.8 

31 IL-31 1.44 35.35 64.3 6.0 - - - 31.2 1.08 24.6 8.5 2.3 15.2 2.9 

32 IL-32 0.50 102.74 64.6 9.4 - - - 2.7 0.72 28.1 8.6 1.0 15.0 3.7 

33 IL-33 1.76 9.72 62.2 4.5 - - - 20.4 1.26 6.1 7.7 1.4 15.4 3.0 

34 IL-34 1.67 14.81 64.3 4.0 - - - 35.4 0.85 10.2 8.6 1.0 14.1 1.9 

35 IL-35 1.61 25.75 64.8 4.4 - - - 38.2 1.13 83.5 8.4 1.0 14.9 3.4 

36 IL-36 1.61 27.36 62.6 5.8 - - - 4.5 1.23 51.4 9.0 1.3 14.5 3.7 

37 IL-37 0.62 96.70 62.1 8.5 - - - 38.0 0.86 34.8 8.9 0.9 13.8 4.2 

38 IL-38 1.19 58.25 64.8 8.5 - - - 6.3 1.08 45.0 8.4 1.8 15.2 3.6 

39 IL-39 1.03 71.09 71.4 8.0 - - - 19.2 0.86 34.1 9.0 2.2 16.9 3.3 

40 IL-40 1.33 44.82 64.4 6.5 - - - 36.8 0.94 78.4 8.1 1.2 17.1 3.4 

41 IL-41 1.07 68.34 60.9 9.0 - - - 40.6 0.89 39.9 8.5 1.4 15.0 3.2 

42 IL-42 1.17 56.32 64.9 8.1 - - - 13.5 1.15 35.2 9.1 1.8 15.3 3.6 

43 IL-43 1.66 16.59 66.2 4.6 - - - 6.7 1.08 34.1 8.2 2.8 14.4 3.1 

44 IL-44 1.73 11.13 64.6 4.3 - - - 45.7 1.12 -0.1 8.9 1.4 16.5 2.7 

45 IL-45 0.81 86.17 65.9 8.3 - - - 74.3 0.85 34.3 8.3 1.1 14.1 3.5 

46 IL-46 1.40 35.63 64.0 9.2 - - - 19.4 1.36 34.2 8.4 1.0 15.8 3.4 

47 IL-47 1.53 25.33 63.6 7.1 - - - 44.6 1.14 22.3 8.1 2.1 15.8 3.2 

48 IL-48 1.30 44.84 64.8 8.5 - - - 17.7 1.27 31.8 8.9 0.8 13.4 3.5 

49 IL-49 1.47 33.37 64.8 6.5 - - - 43.9 1.15 40.9 7.8 1.3 14.6 3.7 

50 IL-50 0.98 76.16 69.7 9.5 - - - 51.2 1.09 37.2 7.5 1.2 14.7 3.7 

51 IL-51 1.08 62.98 61.7 8.0 - - - 72.0 1.43 92.1 8.0 1.5 12.8 3.4 

52 IL-52 0.96 73.92 64.9 8.5 - - - 26.5 1.11 24.4 8.4 0.9 12.4 3.4 

53 IL-53 1.91 3.22 63.9 4.5 - - - 36.5 1.16 17.6 8.6 1.7 14.8 2.6 

54 IL-54 1.29 47.22 63.3 5.6 - - - 22.3 1.27 45.0 8.5 1.0 14.4 2.9 

55 IL-55 1.43 33.50 62.8 4.9 - - - 50.2 0.99 32.8 7.7 2.5 16.7 3.2 

56 IL-56 0.95 77.60 66.5 7.5 - - - 47.2 0.98 3.1 8.4 1.4 13.2 3.0 

57 IL-57 1.31 42.57 64.7 7.4 - - - 11.0 1.64 94.4 8.6 1.3 13.8 4.2 

58 IL-58 1.13 63.03 64.2 8.3 - - - 45.5 1.13 8.7 8.1 1.2 15.3 3.5 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
59 IL-59 1.32 46.75 65.8 6.6 - - - 27.2 1.15 55.4 8.5 1.1 15.0 3.8 

60 IL-60 1.32 43.31 72.7 5.6 - - - 16.2 1.08 86.4 8.6 1.4 14.9 4.0 

61 IL-61 0.62 95.07 65.3 7.6 - - - 29.4 1.12 24.0 9.0 1.0 15.6 3.9 

62 IL-62 1.50 29.04 64.0 5.4 - - - 40.7 1.27 78.1 8.5 1.0 15.1 3.5 

63 IL-63 1.29 47.23 70.6 6.6 - - - 15.0 0.99 63.4 8.5 1.0 14.0 4.2 

64 IL-64 1.71 20.55 65.2 3.1 - - - 4.7 1.45 17.7 9.0 1.6 14.6 3.3 

65 IL-65 0.92 79.29 65.0 8.8 - - - 43.8 0.80 61.9 7.7 1.0 14.9 3.8 

66 IL-66 1.17 55.88 64.6 8.6 - - - 21.8 1.31 37.8 8.2 1.8 15.2 3.3 

67 IL-67 0.74 85.10 71.4 8.9 - - - 19.7 0.95 54.2 9.0 1.0 16.0 3.6 

68 IL-68 1.61 23.91 64.8 3.6 - - - 61.0 0.97 21.9 7.9 1.1 15.5 2.7 

69 IL-69 1.63 20.99 66.1 4.4 - - - 32.3 1.32 15.2 8.5 1.0 16.0 3.4 

70 IL-70 0.99 73.53 66.2 8.0 - - - 31.8 1.13 36.9 7.7 1.5 14.3 3.9 

71 IL-71 1.75 14.30 62.0 7.0 - - - 19.8 0.95 51.1 8.2 1.9 16.8 3.0 

72 IL-72 1.57 23.14 62.5 6.1 - - - 11.5 0.94 38.7 8.4 1.3 15.1 3.2 

73 IL-73 1.35 45.11 64.3 8.8 - - - 31.9 1.15 30.4 9.0 1.5 15.4 3.3 

74 IL-74 1.24 50.89 65.0 8.6 - - - 63.5 1.22 9.4 9.0 2.0 12.0 3.1 

75 IL-75 1.53 28.28 60.6 5.4 - - - 16.2 1.15 8.0 8.6 1.0 12.7 2.8 

76 IL-76 1.75 10.29 63.1 5.6 - - - 10.4 1.45 47.6 8.0 0.9 12.9 3.0 

77 IL-77 1.57 21.64 60.8 5.6 - - - 48.2 1.16 90.8 8.4 1.4 14.1 3.7 

78 IL-78 1.18 55.95 61.6 9.6 - - - 58.5 0.98 15.8 8.5 1.6 14.5 3.9 

79 IL-79 0.93 79.79 72.3 8.5 - - - 14.2 0.97 20.0 9.1 2.1 14.8 3.4 

80 IL-80 1.43 34.55 66.1 5.6 - - - 6.9 1.17 55.9 7.4 1.0 15.6 3.9 

81 IL-81 1.73 11.28 71.6 4.5 - - - 6.4 1.15 31.7 8.5 2.9 14.9 3.7 

82 IL-82 1.11 62.68 65.1 6.5 - - - 21.8 1.28 11.5 8.2 0.9 14.5 3.9 

83 IL-83 0.46 100.32 73.6 9.0 - - - 30.4 0.72 2.7 7.8 2.4 18.1 4.6 

84 IL-84 1.19 53.14 72.8 8.6 - - - 31.5 1.34 41.5 9.1 2.5 14.9 3.0 

85 IL-85 0.80 87.16 72.7 8.4 - - - 4.8 1.10 13.8 9.0 2.7 9.6 3.0 

86 IL-86 1.26 51.06 71.4 5.7 - - - 19.7 0.94 14.5 8.4 3.6 13.7 2.7 

87 IL-87 0.94 79.62 72.6 9.0 - - - 22.9 1.31 31.9 8.4 1.9 15.3 3.9 

88 IL-88 0.79 88.32 72.1 8.6 - - - 11.9 1.07 17.5 5.1 2.2 13.9 4.0 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
89 IL-89 1.24 50.85 70.2 6.9 - - - 49.5 1.32 13.9 8.2 0.8 13.9 3.1 

90 IL-90 1.77 8.85 65.5 4.7 - - - 28.0 1.29 40.0 8.5 2.2 15.0 4.0 

91 IL-91 0.81 85.15 69.9 10.0 - - - 87.1 0.78 29.0 8.5 2.2 19.4 3.9 

92 IL-92 2.31 -7.37 63.3 5.2 - - - 8.3 1.39 50.9 8.4 3.0 12.8 1.9 

93 IL-93 1.46 31.98 72.5 4.5 - - - 32.3 1.29 83.4 8.4 1.4 14.0 4.1 

94 IL-94 0.87 84.70 71.4 9.1 - - - 11.9 0.87 78.3 7.9 2.8 19.1 4.0 

95 IL-95 0.26 102.43 72.7 
 

- - - 4.1 0.63 3.4 8.5 1.6 12.0 4.8 

96 IL-96 1.93 11.30 69.9 6.0 - - - 18.3 1.27 30.7 8.3 1.1 13.1 2.5 

97 IL-97 1.40 40.32 70.9 6.5 - - - 32.9 0.91 35.1 8.5 1.8 14.7 3.0 

98 IL-98 1.59 24.43 65.2 4.3 - - - 30.2 1.30 95.9 8.6 0.8 13.6 3.3 

99 IL-99 1.51 26.57 64.6 4.5 - - - 18.3 1.08 15.4 7.3 0.9 16.0 2.0 

100 IL-100 1.70 13.44 64.9 5.1 - - - 5.5 1.57 25.9 9.0 1.2 15.5 3.1 

101 IL-101 1.83 4.84 65.2 6.1 - - - 10.4 1.66 7.9 8.7 1.2 15.6 2.3 

102 IL-102 2.01 0.86 65.1 4.4 - - - 27.4 1.68 14.3 9.0 1.0 14.6 3.0 

103 IL-103 1.76 15.66 64.6 7.0 - - - 13.0 1.39 35.6 8.5 
 

14.9 3.2 

104 IL-104 1.06 67.31 71.8 7.9 - - - 63.2 1.04 45.6 9.1 1.6 16.9 3.1 

105 IL-105 1.56 24.07 65.0 6.5 - - - 45.6 1.01 4.9 8.5 1.1 18.8 2.5 

106 IL-106 1.08 63.27 65.1 8.2 - - - 19.2 1.20 50.2 9.0 1.4 15.1 3.3 

107 IL-107 1.70 21.73 64.3 5.6 - - - 21.9 1.27 16.2 8.5 1.1 13.6 3.2 

108 IL-108 1.19 55.13 73.3 6.0 - - - 46.5 1.02 101.5 8.5 2.7 15.0 3.8 

                
Mean 

 
1.30 47.25 66.2 7.0 - - - 30.6 1.12 37.3 8.4 1.5 14.7 3.3 

p 
 

0.52 38.02 1.9 1.6 - - - 32.0 0.36 39.6 1.4 1.0 3.4 0.9 

MSe 
 

0.07 360.37 0.9 0.7 - - - 273.4 0.03 410.5 0.5 0.3 3.1 0.2 

CV 
 

19.85 40.17 1.4 11.5 - - - 54.1 16.49 54.3 8.3 36.1 11.9 14.1 

p 
 

0.000 0.000 0.000 0.000 - - - 0.000 0.000 0.000 0.125 0.000 0.022 0.000 

Min 
 

0.26 -7.37 60.6 3.1 - - - 2.7 0.63 -0.1 5.1 0.8 9.6 1.9 

Max 
 

2.31 102.74 73.6 10.6 - - - 87.1 1.68 101.5 9.1 3.6 19.4 4.8 
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(2-2.f) Chókwè unstressed 

Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
1 IL-1 3.97 24.32 52.4 2.5 231.6 0.52 - - 1.28 31.2 9.2 1.0 17.0 3.3 

2 IL-2 3.33 41.31 52.7 5.1 198.4 0.54 - - 1.08 53.0 9.2 1.3 16.3 3.1 

3 IL-3 2.31 78.85 54.9 3.0 214.4 0.62 - - 1.37 23.2 10.1 1.1 14.2 2.8 

4 IL-4 3.90 22.91 56.5 -0.4 190.7 0.63 - - 1.17 32.2 9.5 1.2 14.3 3.3 

5 IL-5 2.86 56.60 53.3 3.1 185.4 0.63 - - 1.16 13.3 9.8 1.0 14.3 3.7 

6 IL-6 2.51 71.58 54.5 2.0 181.8 0.48 - - 0.86 17.7 10.0 1.2 18.8 3.8 

7 IL-7 3.55 32.70 54.1 3.0 180.8 0.52 - - 1.20 44.5 9.7 1.1 14.4 3.7 

8 IL-8 2.56 66.43 54.0 2.5 187.2 0.54 - - 1.12 38.7 9.8 3.8 14.9 4.8 

9 IL-9 3.99 23.23 48.4 2.6 196.5 0.60 - - 1.11 56.0 8.0 2.5 14.7 3.0 

10 IL-10 4.63 4.60 54.7 2.6 187.5 0.61 - - 1.38 26.0 9.2 1.0 16.0 2.8 

11 IL-11 2.78 61.35 55.0 2.0 183.8 0.65 - - 1.19 62.1 10.1 1.0 17.9 3.9 

12 IL-12 1.72 89.45 57.9 3.5 180.9 0.49 - - 1.34 37.9 9.5 1.0 14.2 4.0 

13 IL-13 2.48 64.45 56.7 3.6 203.8 0.51 - - 1.19 103.3 8.3 1.5 16.3 4.0 

14 IL-14 2.63 65.61 60.4 1.5 165.1 0.57 - - 0.94 39.1 9.9 1.1 15.0 3.5 

15 IL-15 2.59 69.01 57.5 2.0 179.0 0.55 - - 0.98 6.0 9.8 1.0 13.9 3.4 

16 IL-16 1.69 95.74 55.4 3.0 225.1 0.59 - - 1.08 14.2 8.8 1.0 15.6 2.8 

17 IL-17 4.14 18.61 55.8 0.4 186.4 0.66 - - 1.16 12.5 8.7 1.2 13.9 2.4 

18 IL-18 2.57 69.13 56.3 0.5 191.7 0.53 - - 1.64 6.0 10.2 2.5 15.3 4.7 

19 IL-19 2.39 77.89 58.8 1.6 190.1 0.51 - - 1.07 50.2 9.4 1.2 14.3 4.6 

20 IL-20 4.29 7.37 55.6 2.6 174.3 0.50 - - 1.30 29.8 4.5 1.0 14.4 2.7 

21 IL-21 2.72 62.65 54.3 2.7 211.7 0.57 - - 1.06 82.8 9.5 1.6 17.7 4.9 

22 IL-22 3.75 28.30 53.9 1.9 193.6 0.43 - - 1.34 11.6 9.4 2.1 15.5 3.6 

23 IL-23 3.85 28.15 54.9 2.6 193.2 0.50 - - 1.36 49.0 9.2 2.2 16.1 5.0 

24 IL-24 3.21 45.00 57.2 3.0 174.1 0.54 - - 1.17 11.8 8.2 1.1 15.6 3.0 

25 IL-25 1.59 89.58 55.0 4.0 209.6 0.49 - - 0.85 17.6 10.0 1.1 15.5 4.1 

26 IL-26 1.53 93.86 61.8 2.4 210.8 0.58 - - 0.75 18.8 8.8 1.0 12.7 3.5 

27 IL-27 4.25 16.16 55.3 3.1 204.6 0.51 - - 1.13 53.5 8.1 1.1 15.1 3.7 

28 IL-28 1.67 90.43 56.8 2.0 198.3 0.49 - - 1.05 28.1 9.5 2.3 12.5 4.2 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
29 IL-29 3.62 32.97 53.6 2.2 207.5 0.58 - - 1.26 14.7 9.8 1.5 20.3 3.5 

30 IL-30 2.44 78.17 56.8 2.6 194.0 0.53 - - 0.96 47.9 9.6 1.3 16.1 3.4 

31 IL-31 4.57 23.58 56.2 2.6 180.8 0.57 - - 1.08 9.1 3.8 2.8 18.2 2.3 

32 IL-32 1.86 95.25 56.3 2.0 179.4 0.57 - - 0.88 37.9 7.5 1.7 15.2 3.8 

33 IL-33 4.17 15.98 53.8 3.1 186.7 0.58 - - 1.17 27.2 9.2 1.2 14.8 2.6 

34 IL-34 2.99 52.98 55.0 3.0 197.9 0.55 - - 1.00 4.8 8.8 1.0 13.3 2.4 

35 IL-35 2.69 65.57 55.0 2.4 180.9 0.60 - - 1.12 69.0 8.2 1.0 13.3 3.7 

36 IL-36 2.94 55.08 54.0 2.6 189.2 0.56 - - 1.11 92.5 8.1 1.0 16.1 3.9 

37 IL-37 2.28 84.53 50.5 2.0 187.2 0.53 - - 1.27 52.6 10.1 1.0 15.0 3.8 

38 IL-38 4.53 8.83 54.4 3.0 200.6 0.56 - - 1.34 46.2 7.3 1.3 17.2 3.4 

39 IL-39 1.83 98.07 59.9 4.1 188.9 0.55 - - 1.24 35.2 10.0 1.0 14.8 3.7 

40 IL-40 3.28 40.36 51.9 2.9 168.6 0.58 - - 1.18 109.7 6.0 0.9 13.2 3.9 

41 IL-41 1.67 93.13 54.4 3.0 184.3 0.54 - - 0.96 26.0 9.6 1.5 15.3 3.7 

42 IL-42 2.43 75.33 53.5 2.5 185.6 0.60 - - 1.18 22.5 9.6 1.1 15.3 3.8 

43 IL-43 3.61 35.58 55.8 2.5 205.1 0.55 - - 1.23 23.0 9.4 2.2 15.5 3.7 

44 IL-44 3.37 39.37 55.9 0.9 191.6 0.68 - - 1.01 9.2 8.1 1.5 18.6 2.4 

45 IL-45 2.69 66.02 55.4 2.4 195.6 0.63 - - 1.00 13.7 9.3 1.2 15.2 3.8 

46 IL-46 4.23 15.40 55.7 1.5 204.9 0.54 - - 1.43 26.0 9.2 1.4 16.2 3.7 

47 IL-47 5.12 4.23 54.4 3.3 214.4 0.57 - - 1.47 15.2 8.3 1.7 15.4 2.6 

48 IL-48 2.73 68.82 56.9 0.3 209.0 0.63 - - 0.91 12.7 9.3 1.5 13.4 3.6 

49 IL-49 2.98 52.74 55.4 1.0 166.8 0.59 - - 1.11 22.0 9.8 2.9 17.1 4.2 

50 IL-50 2.37 74.06 56.9 -0.1 185.9 0.54 - - 1.21 12.4 9.8 1.3 15.7 3.4 

51 IL-51 3.58 33.99 52.9 2.6 175.8 0.62 - - 1.07 74.1 10.1 1.8 19.1 5.0 

52 IL-52 2.94 58.68 55.8 1.8 194.6 0.55 - - 1.24 13.8 9.3 1.1 13.4 3.6 

53 IL-53 6.09 -6.32 48.9 1.9 211.4 0.55 - - 1.19 37.0 7.6 1.8 19.5 2.3 

54 IL-54 4.48 6.47 51.7 3.2 215.0 0.50 - - 1.13 40.5 9.5 1.8 19.2 3.3 

55 IL-55 3.69 25.80 55.1 3.0 192.1 0.57 - - 1.13 65.5 9.6 1.5 17.6 3.8 

56 IL-56 1.56 98.15 58.0 0.5 224.0 0.55 - - 1.05 -2.6 10.1 1.2 13.4 3.4 

57 IL-57 2.56 78.42 57.7 1.9 202.3 0.51 - - 1.51 66.3 6.1 1.5 16.0 4.3 

58 IL-58 2.00 91.58 54.5 2.9 182.8 0.55 - - 0.95 14.7 9.1 1.0 15.5 4.0 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
59 IL-59 3.02 54.71 56.0 1.9 183.7 0.62 - - 1.11 55.1 5.2 0.9 15.0 3.9 

60 IL-60 2.31 76.87 61.0 3.4 174.1 0.71 - - 1.01 85.1 5.8 1.5 16.9 4.5 

61 IL-61 1.29 107.65 55.7 1.9 185.9 0.53 - - 1.27 4.0 8.9 1.0 15.1 3.9 

62 IL-62 3.23 44.73 54.4 2.5 226.3 0.54 - - 1.24 102.4 8.3 1.1 15.2 3.4 

63 IL-63 2.12 82.06 61.5 2.8 149.3 0.54 - - 1.06 74.7 5.0 1.1 14.8 4.9 

64 IL-64 2.93 57.86 53.8 2.0 224.9 0.62 - - 1.15 5.0 9.8 1.9 21.8 4.0 

65 IL-65 2.03 84.37 55.2 2.0 214.1 0.50 - - 0.95 49.7 8.5 1.0 16.6 3.7 

66 IL-66 2.42 72.82 55.6 3.1 190.3 0.57 - - 1.21 38.7 8.6 1.1 15.4 3.1 

67 IL-67 1.24 101.79 61.3 3.1 197.9 0.66 - - 0.84 29.3 3.2 1.0 14.9 4.3 

68 IL-68 2.83 58.04 56.1 1.3 185.6 0.53 - - 0.92 36.3 9.0 1.0 15.8 3.2 

69 IL-69 2.99 53.16 58.8 0.5 212.5 0.55 - - 1.47 37.5 7.6 1.1 15.0 3.1 

70 IL-70 2.19 81.63 55.6 3.4 180.6 0.53 - - 0.93 31.7 8.6 1.5 14.8 3.7 

71 IL-71 4.12 14.50 58.6 -0.9 238.1 0.53 - - 1.27 65.2 9.4 1.7 14.9 3.6 

72 IL-72 3.13 47.64 53.4 4.6 179.6 0.58 - - 1.10 34.8 9.1 1.1 15.5 3.3 

73 IL-73 4.02 21.22 54.7 3.0 194.3 0.58 - - 1.33 15.7 8.8 1.3 15.3 3.4 

74 IL-74 2.52 70.71 54.8 3.7 193.0 0.60 - - 1.04 36.3 9.8 1.5 15.2 3.9 

75 IL-75 3.94 16.44 52.8 1.1 199.3 0.55 - - 1.20 34.0 9.6 1.0 15.0 2.9 

76 IL-76 4.01 26.52 52.6 3.4 206.7 0.53 - - 0.93 50.5 6.7 1.5 18.2 2.9 

77 IL-77 3.72 30.74 48.8 1.7 219.9 0.57 - - 1.48 55.7 8.4 1.3 13.2 4.1 

78 IL-78 3.55 39.72 54.4 2.5 180.6 0.54 - - 1.22 10.7 9.9 0.9 18.6 3.2 

79 IL-79 2.85 58.89 55.0 0.9 188.1 0.54 - - 1.25 20.6 8.3 2.1 16.5 4.0 

80 IL-80 3.16 50.39 56.9 4.6 209.6 0.59 - - 1.38 71.4 6.0 1.6 15.5 4.2 

81 IL-81 2.08 83.88 62.0 2.5 209.5 0.55 - - 1.18 38.9 7.3 1.8 13.8 4.5 

82 IL-82 3.21 41.31 54.6 1.5 190.6 0.56 - - 1.40 -11.5 7.4 0.9 13.4 3.1 

83 IL-83 1.47 93.66 63.6 3.4 181.3 0.62 - - 0.90 -10.0 2.4 2.9 13.7 4.3 

84 IL-84 1.44 91.21 62.9 3.0 157.3 0.60 - - 1.10 26.9 1.4 3.7 15.9 4.5 

85 IL-85 1.89 94.83 62.0 2.4 203.7 0.60 - - 1.00 2.1 3.9 2.6 15.6 4.1 

86 IL-86 2.52 71.51 56.8 -2.0 211.4 0.54 - - 0.99 13.9 5.1 3.7 13.6 4.6 

87 IL-87 3.04 50.53 62.5 2.4 167.1 0.53 - - 1.75 5.3 2.4 2.5 14.8 3.6 

88 IL-88 3.05 52.93 61.7 2.4 224.7 0.46 - - 0.99 3.8 8.6 2.8 13.7 3.4 
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Entry Genotype Grain Yield Anth ASI Plant Ear Lodging Ears/ Husk Leaf Grain Num Ear 

 
Code GW Rank Date 

 
Height Position Root Stem Plant Cover Senes Text Plants Aspect 

                

  
t/ha Rank d d cm 0-1 % % # % 1-10 1-5 # 1-5 

                
89 IL-89 3.35 42.67 58.7 1.0 171.2 0.59 - - 1.22 7.7 7.2 1.5 15.1 3.7 

90 IL-90 3.09 48.21 56.5 2.1 157.9 0.57 - - 1.33 11.3 8.9 1.0 13.7 2.6 

91 IL-91 2.61 64.35 63.9 -0.9 182.1 0.59 - - 0.97 38.6 10.0 1.5 15.5 3.6 

92 IL-92 5.98 2.80 60.2 3.5 216.7 0.59 - - 1.14 27.0 4.6 2.9 19.0 2.8 

93 IL-93 2.54 73.79 61.8 2.1 176.0 0.52 - - 1.27 49.2 5.1 1.8 14.4 4.1 

94 IL-94 2.93 55.47 62.2 1.9 178.7 0.50 - - 1.07 59.9 5.5 2.8 21.1 4.7 

95 IL-95 0.30 106.70 63.0 2.0 140.6 0.60 - - 0.37 5.8 7.5 1.0 15.3 4.5 

96 IL-96 2.12 86.01 57.1 -0.1 170.1 0.57 - - 1.05 1.2 6.6 0.9 15.6 2.5 

97 IL-97 3.63 27.90 56.4 2.4 211.8 0.60 - - 1.16 28.0 7.4 1.4 16.0 3.8 

98 IL-98 3.28 46.50 55.3 1.7 201.4 0.59 - - 1.06 26.6 9.6 1.0 15.7 2.6 

99 IL-99 2.79 56.48 52.4 4.1 189.5 0.57 - - 1.01 44.6 8.8 0.9 14.4 3.5 

100 IL-100 4.01 23.26 55.8 2.7 195.6 0.57 - - 1.76 41.3 8.7 1.3 15.6 4.0 

101 IL-101 4.97 3.57 57.0 -2.0 199.2 0.55 - - 1.43 -0.8 7.8 1.2 18.4 3.1 

102 IL-102 4.70 5.76 54.4 2.3 203.8 0.51 - - 1.53 23.4 8.6 1.0 16.3 3.2 

103 IL-103 3.51 34.75 58.0 4.4 221.7 0.55 - - 1.49 20.3 7.8 1.6 14.0 3.5 

104 IL-104 2.53 71.72 62.0 2.0 189.4 0.50 - - 1.14 82.4 8.3 1.3 18.3 3.7 

105 IL-105 3.79 32.24 58.9 2.5 192.6 0.48 - - 1.01 7.8 8.8 1.1 19.8 2.7 

106 IL-106 2.85 66.32 55.3 3.5 208.5 0.60 - - 1.67 17.8 9.8 1.6 14.8 4.0 

107 IL-107 4.53 1.93 55.3 2.9 182.4 0.52 - - 1.54 72.3 9.6 3.0 16.7 3.1 

108 IL-108 4.20 25.30 56.8 0.1 180.3 0.50 - - 1.33 105.4 10.1 2.2 15.6 4.5 

                
Mean 

 
3.04 53.39 56.2 2.2 193.4 0.56 

  
1.17 34.2 8.3 1.5 15.7 3.6 

LSD 
 

1.12 33.96 2.2 1.9 32.9 0.10 
  

0.31 26.6 0.9 0.6 4.0 1.2 

MSe 
 

0.40 343.73 1.3 0.9 276.0 0.00 
  

0.02 213.6 0.2 0.1 4.0 0.4 

CV 
 

20.78 34.73 2.0 42.1 8.6 8.80 
  

13.52 42.7 5.7 20.4 12.8 17.4 

p 
 

0.000 0.000 0.000 0.000 0.000 0.000 
  

0.000 0.000 0.000 0.000 0.002 0.000 

Min 
 

0.30 -6.32 48.4 -2.0 140.6 0.43 
  

0.37 -11.5 1.4 0.9 12.5 2.3 

Max 
 

6.09 107.65 63.9 5.1 238.1 0.71 
  

1.76 109.7 10.2 3.8 21.8 5.0 
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Appendix 2-3. Results of the combined pre-ANOVA of six experiments conducted under two water-regimes at Chiredzi, Save Valley and Chokwe. 

 

Source DF GY GY-Rank NP EPP EA AD ASI PH EPO LS SL 

Location (L) 2 119.550 1.271 456.655 23.633 40.015 4787.567 370.623 200709.330 0.154 2920.840*** 311.237 

Stress (Location) (S) 1 113.415 5.331 407.035 0.497 22.693 7881.258 1401.819 11348.493 1.304 0.025 4.353 

L × S 2 34.188 4.543 288.692 1.197 18.327 14370.611 233.369 40503.253 0.244 2.297 7.760 

Genotype (G) 107 1.050*** 2975.524*** 5.231*** 0.0667*** 0.736*** 53.271*** 8.036*** 468.967*** 0.004 0.696*** 0.963*** 

L × G 214 0.236 599.344 2.668 0.036* 0.244* 7.285*** 4.840 173.760 0.003 0.516*** 0.172 

S × G 107 0.192 537.965 2.205 0.024 0.185 3.831 4.991 184.277 0.003 0.269 0.180 

 L × S × G 213 0.210 568.085 2.240 0.026 0.184 4.019 4.454 240.271 0.004 0.286 0.178 
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Appendix 2-4. Best linear unbiased linear estimate means of 108 maize inbred lines evaluated at 
Chiredzi, Save Valley and Chókwè in 2014. 

(2-4.a) Chiredzi - severe heat-drought stress environmental condition 

Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

 

      
     

IL-31 1.80 14.39 65.7 5.5 151.5 0.54 1.0 0.61 6.1 16.6 3.5 

IL-107 1.60 17.47 66.5 0.9 168.2 0.49 4.7 0.48 6.5 15.0 3.3 

IL-43 1.36 19.69 70.1 0.7 176.8 0.48 0.5 0.46 6.7 16.4 3.7 

IL-108 1.65 21.50 65.1 3.4 169.3 0.53 0.7 0.76 6.3 15.0 3.7 

IL-17 1.07 22.85 63.6 3.4 163.5 0.58 2.3 0.59 5.7 16.6 3.9 

IL-99 1.38 24.94 66.9 2.0 155.9 0.45 1.6 0.64 6.1 16.3 4.1 

IL-101 1.16 25.34 70.3 0.7 171.6 0.46 0.1 0.83 6.2 15.6 3.8 

IL-92 1.39 27.85 74.0 1.4 159.7 0.58 -0.5 0.66 5.6 12.6 4.2 

IL-76 1.17 29.47 67.1 4.6 160.7 0.58 11.6 0.65 6.6 15.7 4.3 

IL-30 1.07 30.09 68.4 3.6 161.9 0.54 1.0 0.65 5.7 15.4 3.9 

IL-11 1.23 31.05 65.6 1.3 173.0 0.49 3.7 0.58 5.8 16.3 3.5 

IL-10 1.01 33.08 62.2 7.3 146.7 0.61 0.6 0.64 6.6 16.1 3.8 

IL-22 1.17 33.97 63.6 5.6 179.7 0.45 6.8 0.53 6.6 14.8 3.5 

IL-77 0.95 34.53 64.9 4.4 170.8 0.53 1.5 0.57 6.1 15.8 4.1 

IL-105 0.99 34.82 71.2 2.5 174.4 0.49 0.1 0.50 5.9 15.1 3.9 

IL-46 0.93 35.93 63.3 -0.2 159.5 0.59 3.2 0.58 7.1 16.7 4.2 

IL-16 1.11 36.73 69.6 2.4 165.8 0.52 0.5 0.49 5.8 15.9 4.2 

IL-98 0.97 36.99 66.0 2.4 162.0 0.52 1.9 0.77 6.0 15.0 4.2 

IL-51 0.91 37.76 62.6 3.0 165.7 0.50 3.2 0.63 6.1 16.6 4.3 

IL-53 1.07 38.84 70.2 1.4 153.4 0.58 10.3 0.47 5.5 16.7 4.0 

IL-96 0.97 39.72 68.0 2.0 147.5 0.48 0.7 0.79 5.6 13.8 4.1 

IL-49 0.91 40.48 60.1 8.4 155.3 0.54 3.7 0.54 6.0 16.6 4.1 

IL-64 0.78 41.40 59.3 0.2 181.6 0.53 -1.0 0.58 7.8 16.3 4.1 

IL-75 0.97 42.24 69.1 1.2 163.8 0.43 1.4 0.48 6.5 14.9 4.3 

IL-47 0.76 42.84 65.0 1.5 151.5 0.50 -1.5 0.56 6.2 16.4 4.3 

IL-21 0.76 44.28 68.0 2.7 180.8 0.45 9.2 0.59 6.9 15.1 4.2 

IL-19 0.80 44.63 64.6 3.0 138.9 0.46 14.4 0.50 6.7 14.2 4.7 

IL-2 0.76 45.14 67.6 3.9 165.3 0.57 14.7 0.49 6.3 15.2 4.0 

IL-54 0.80 45.17 62.1 1.5 166.0 0.46 1.9 0.55 6.5 15.0 4.5 

IL-85 0.89 45.73 77.1 0.9 174.1 0.50 -0.1 0.69 4.4 15.6 4.7 

IL-36 0.83 46.12 65.4 5.0 156.5 0.41 0.8 0.72 5.7 16.6 4.0 

IL-38 0.85 46.25 68.9 2.3 150.2 0.48 0.5 0.55 5.7 15.5 4.5 

IL-73 1.00 46.40 65.4 3.6 162.9 0.52 1.8 0.61 5.6 15.3 4.1 

IL-90 0.83 46.71 67.9 3.8 157.5 0.52 1.2 0.69 6.2 15.0 4.4 

IL-1 0.73 48.11 67.3 4.7 174.2 0.49 9.1 0.52 5.3 16.1 4.2 

IL-7 0.87 48.59 66.2 2.2 155.1 0.48 3.8 0.54 6.1 14.3 4.3 

IL-71 0.74 48.62 64.6 6.5 158.4 0.63 7.8 0.46 7.0 16.4 4.2 

IL-62 0.81 49.02 68.1 7.0 161.0 0.46 6.2 0.49 6.6 16.3 4.4 
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Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

IL-86 0.76 50.33 75.8 3.8 188.4 0.45 1.0 0.49 4.7 15.8 4.6 

IL-29 0.71 50.48 62.2 2.5 164.7 0.47 1.8 0.51 7.0 15.9 4.4 

IL-4 0.77 50.72 62.4 6.1 148.5 0.52 3.7 0.52 5.8 16.7 3.8 

IL-23 0.79 50.86 65.2 6.3 167.4 0.51 3.0 0.51 6.5 16.1 4.1 

IL-33 0.67 52.17 60.9 8.4 161.4 0.52 2.5 0.60 5.8 16.4 4.3 

IL-50 0.68 52.85 70.2 1.0 178.2 0.46 -0.3 0.61 6.4 15.7 4.4 

IL-55 0.61 53.83 62.0 2.8 159.1 0.54 1.8 0.45 6.5 16.0 4.2 

IL-81 0.85 54.56 70.6 2.5 168.3 0.49 3.8 0.53 6.1 16.1 4.6 

IL-100 0.84 55.53 75.3 2.1 166.5 0.54 6.8 0.54 5.6 16.0 4.4 

IL-8 0.61 56.48 68.5 2.9 151.7 0.54 7.8 0.57 6.3 15.1 4.7 

IL-9 0.93 56.86 66.2 4.1 177.4 0.59 0.3 0.40 5.7 15.9 4.4 

IL-103 0.69 57.17 71.4 1.8 180.4 0.54 4.7 0.57 6.0 14.1 4.3 

IL-69 0.67 57.52 70.2 0.4 161.9 0.49 10.0 0.53 7.2 16.3 4.1 

IL-42 0.53 59.02 68.0 1.8 158.4 0.47 2.9 0.47 6.9 14.9 4.3 

IL-13 0.73 59.46 68.9 3.6 170.6 0.45 4.3 0.39 6.2 16.1 4.4 

IL-95 0.56 59.53 68.7 -0.5 141.0 0.48 0.8 0.46 7.7 15.1 4.6 

IL-20 0.67 59.55 67.8 5.3 150.6 0.55 -2.8 0.68 5.9 14.5 4.1 

IL-97 0.62 60.30 70.2 0.6 188.1 0.49 -1.3 0.40 5.7 15.2 4.6 

IL-67 0.68 60.37 68.4 1.7 163.3 0.47 -0.9 0.57 6.7 15.4 4.2 

IL-84 0.75 60.42 74.0 1.2 160.1 0.57 19.8 0.41 3.5 12.2 4.8 

IL-104 0.58 60.96 70.9 2.1 170.1 0.46 0.9 0.49 6.3 16.4 4.5 

IL-60 0.66 61.37 69.2 4.1 164.0 0.55 -2.2 0.60 5.3 16.6 4.4 

IL-25 0.57 61.68 65.7 4.1 157.6 0.46 5.6 0.61 6.9 15.6 4.5 

IL-37 0.52 61.74 61.4 0.2 140.8 0.51 -0.3 0.35 6.6 15.2 4.6 

IL-61 0.53 62.10 68.3 4.3 161.2 0.44 -0.8 0.44 6.5 16.1 3.9 

IL-82 0.68 62.80 65.7 4.6 148.3 0.52 5.9 0.63 6.2 15.5 4.4 

IL-40 0.68 62.89 65.0 3.7 155.0 0.48 5.8 0.69 5.1 15.4 4.5 

IL-48 0.60 63.04 70.9 3.3 167.5 0.56 0.8 0.45 6.0 17.1 4.1 

IL-35 0.57 63.19 66.0 1.7 151.2 0.44 3.3 0.49 6.3 15.7 4.4 

IL-27 0.49 63.70 64.9 5.2 164.4 0.54 3.9 0.53 6.2 15.4 4.5 

IL-65 0.49 63.78 64.1 7.2 165.3 0.47 -2.1 0.34 6.9 16.0 4.5 

IL-70 0.53 64.00 66.8 3.7 157.2 0.54 2.4 0.55 7.2 15.4 4.6 

IL-106 0.62 64.57 65.1 6.7 177.2 0.46 3.0 0.44 6.6 15.9 4.3 

IL-80 0.52 64.63 70.5 3.0 161.5 0.53 14.9 0.35 6.2 15.6 4.3 

IL-91 0.45 64.70 74.7 0.1 151.2 0.52 2.1 0.59 4.9 15.1 4.7 

IL-66 0.46 65.77 63.8 8.3 153.9 0.46 2.6 0.39 7.6 14.8 4.4 

IL-34 0.52 65.97 66.3 1.8 163.3 0.46 5.9 0.46 6.3 16.5 4.0 

IL-78 0.47 66.03 66.1 4.8 156.2 0.57 5.1 0.40 6.7 16.0 4.2 

IL-89 0.49 67.04 71.4 1.8 152.6 0.51 4.0 0.43 5.5 15.6 4.4 

IL-39 0.27 67.57 72.7 3.2 173.0 0.59 4.0 0.70 6.5 13.2 4.7 

IL-79 0.55 67.89 70.1 1.7 166.8 0.47 3.6 0.41 6.6 16.1 4.8 

IL-93 0.48 68.04 73.7 1.5 145.5 0.53 12.1 0.46 4.5 16.0 4.5 
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Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

IL-12 0.54 68.12 70.5 6.6 162.4 0.51 -0.7 0.40 7.3 16.1 4.6 

IL-3 0.52 68.18 64.0 4.4 172.0 0.51 1.3 0.43 6.3 15.7 3.6 

IL-68 0.55 68.59 65.3 3.7 151.9 0.57 -0.2 0.56 6.7 12.8 4.4 

IL-56 0.50 68.72 68.1 6.0 172.0 0.51 5.7 0.50 6.8 15.4 4.6 

IL-102 0.55 71.42 73.9 0.8 171.9 0.52 3.2 0.41 6.0 16.2 4.3 

IL-45 0.45 71.75 64.6 5.7 164.1 0.52 1.6 0.59 6.9 14.5 4.0 

IL-44 0.46 72.44 72.7 0.0 163.2 0.57 9.2 0.42 6.4 15.2 4.4 

IL-59 0.45 73.10 70.0 2.2 157.0 0.54 9.4 0.45 5.5 15.9 4.2 

IL-74 0.35 73.57 69.0 1.7 167.5 0.46 7.2 0.45 6.0 13.2 4.4 

IL-6 0.38 73.78 67.1 4.8 148.7 0.42 2.2 0.56 6.3 15.4 4.2 

IL-15 0.50 74.16 61.9 4.7 176.9 0.44 8.9 0.44 7.1 16.1 4.1 

IL-72 0.44 74.73 65.2 10.2 164.6 0.47 5.8 0.42 5.7 16.4 4.5 

IL-28 0.31 75.61 68.0 3.1 156.3 0.40 6.3 0.38 5.3 14.7 4.6 

IL-58 0.31 76.99 65.0 7.3 156.3 0.50 1.3 0.56 7.0 15.0 4.6 

IL-57 0.40 77.91 70.5 2.2 147.1 0.62 4.1 0.42 4.6 16.0 4.7 

IL-5 0.38 79.11 67.0 3.7 142.9 0.53 4.1 0.36 6.0 16.3 4.7 

IL-63 0.36 80.76 66.0 8.1 157.9 0.46 4.0 0.25 5.8 16.5 4.1 

IL-32 0.35 80.92 65.7 7.4 160.3 0.47 4.5 0.32 6.2 15.9 4.2 

IL-83 0.40 81.85 75.5 0.5 162.1 0.51 4.9 0.40 4.5 13.7 4.5 

IL-41 0.41 82.01 64.2 8.1 175.4 0.54 0.8 0.55 5.1 15.3 4.9 

IL-88 0.22 82.46 72.5 2.2 170.6 0.51 4.1 0.50 5.4 14.7 4.7 

IL-94 0.20 85.27 79.9 -0.9 144.1 0.47 -1.7 0.37 4.8 14.9 4.7 

IL-24 0.24 88.21 67.2 11.1 148.9 0.49 1.1 0.38 5.6 15.2 4.9 

IL-18 0.31 89.06 60.9 0.8 157.6 0.56 13.0 0.43 7.9 14.4 4.3 

IL-52 0.25 90.14 70.0 2.9 160.6 0.54 3.0 0.49 6.1 12.6 4.7 

IL-26 0.21 95.35 70.9 4.3 179.1 0.49 2.3 0.42 6.7 14.6 4.6 

IL-14 0.17 96.40 71.8 3.0 159.3 0.55 3.4 0.15 6.9 14.8 4.5 

IL-87 0.08 102.77 76.6 1.0 151.5 0.51 4.2 0.24 4.1 15.2 4.9 

            

Mean 0.69 57.02 67.8 3.3 162.1 0.50 3.6 0.51 6.1 15.5 4.3 

LSD (0.05) 0.65 40.56 4.5 5.9 29.4 0.13 10.2 0.31 1.4 2.0 0.6 

SE 0.33 20.46 2.3 3.0 14.9 0.07 5.1 0.16 0.7 1.0 0.3 

P *** ** *** * ns ns ** ns *** *** *** 

Minimum 0.08 14.39 59.30 -0.90 138.86 0.40 -2.80 0.15 3.45 12.25 3.31 

Maximum 1.80 102.77 79.90 11.05 188.43 0.63 19.75 0.83 7.85 17.06 4.94 
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(2-4.b) Save Valley - moderate heat-drought stress environmental condition 

 

Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

 

      
     

IL-92 3.48 2.48 73.7 0.9 132.2 0.45 - 0.75 - 14.6 2.0 

IL-107 2.58 5.51 69.2 0.3 130.3 0.45 - 0.80 - 13.8 3.0 

IL-108 2.39 10.45 67.0 1.1 133.9 0.45 - 1.10 - 13.1 2.8 

IL-102 2.38 15.31 74.2 0.2 137.9 0.50 - 1.00 - 14.5 3.7 

IL-62 1.94 20.10 67.0 1.7 122.5 0.50 - 0.65 - 15.0 3.7 

IL-17 1.94 23.20 71.6 1.5 131.1 0.50 - 0.65 - 11.3 2.9 

IL-16 2.18 23.91 70.3 1.7 155.6 0.45 - 0.80 - 13.3 2.5 

IL-13 1.72 23.97 71.0 4.3 131.3 0.40 - 0.95 - 12.4 3.5 

IL-31 1.74 24.50 72.5 2.2 124.9 0.50 - 0.60 - 13.3 3.1 

IL-34 1.65 25.46 68.0 3.1 120.2 0.40 - 0.70 - 14.8 3.1 

IL-69 1.75 25.91 73.4 2.8 136.5 0.45 - 0.70 - 14.4 3.2 

IL-53 1.86 26.33 70.7 0.7 115.0 0.50 - 0.75 - 11.9 2.9 

IL-47 1.76 27.37 68.1 1.3 127.7 0.50 - 0.80 - 13.0 3.8 

IL-100 1.94 28.02 74.8 3.0 141.1 0.50 - 0.95 - 14.7 3.3 

IL-63 1.67 28.58 69.4 2.1 112.9 0.45 - 0.80 - 15.3 3.7 

IL-101 2.12 28.65 72.2 0.5 116.8 0.45 - 0.95 - 14.8 3.2 

IL-60 1.78 29.09 71.4 3.2 124.2 0.45 - 0.85 - 13.0 3.9 

IL-42 1.56 29.32 68.6 0.4 143.2 0.45 - 0.95 - 12.7 3.7 

IL-98 1.59 31.19 69.5 1.7 119.5 0.50 - 0.70 - 13.8 3.4 

IL-33 1.98 31.93 67.7 2.0 117.9 0.50 - 0.75 - 14.5 3.1 

IL-7 1.59 32.06 68.0 0.6 108.4 0.50 - 0.80 - 13.0 3.5 

IL-43 1.88 32.07 68.7 3.6 141.3 0.40 - 0.80 - 13.3 2.7 

IL-23 1.54 34.17 68.7 1.7 119.9 0.45 - 0.75 - 14.5 4.0 

IL-75 1.55 34.39 63.9 1.4 126.2 0.45 - 0.65 - 14.6 3.4 

IL-76 1.84 35.67 70.7 2.2 121.8 0.45 - 0.75 - 12.9 3.0 

IL-40 1.42 37.12 66.2 3.5 114.0 0.50 - 0.80 - 13.2 3.6 

IL-99 1.62 37.64 66.7 0.4 124.8 0.45 - 0.65 - 14.5 4.2 

IL-82 1.44 38.77 66.8 1.7 134.2 0.45 - 0.75 - 13.0 3.5 

IL-103 1.60 38.95 71.8 2.6 136.0 0.50 - 0.80 - 10.6 2.5 

IL-48 1.67 38.96 73.3 0.1 133.9 0.45 - 0.75 - 12.9 3.5 

IL-5 1.51 40.06 67.5 1.7 122.0 0.45 - 0.95 - 13.2 3.6 

IL-25 1.49 40.24 70.2 0.4 127.7 0.50 - 0.70 - 13.9 3.8 

IL-77 1.49 40.58 68.1 3.1 118.0 0.45 - 0.70 - 13.7 3.7 

IL-71 1.55 40.82 67.8 0.5 137.4 0.50 - 0.70 - 13.7 3.0 

IL-96 1.58 40.84 73.4 1.7 129.0 0.45 - 0.50 - 12.6 2.4 

IL-1 1.50 41.62 70.4 0.7 127.9 0.45 - 0.75 - 12.9 3.8 

IL-15 1.45 43.73 68.4 4.2 117.3 0.40 - 0.70 - 12.8 3.7 

IL-51 1.36 45.45 67.7 -0.4 132.6 0.40 - 0.70 - 13.9 3.7 
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Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

IL-20 1.55 46.75 68.0 1.3 117.0 0.45 - 0.70 - 11.3 3.1 

IL-59 1.22 47.98 71.7 0.8 107.8 0.45 - 0.60 - 13.7 4.2 

IL-21 1.27 48.02 69.3 1.4 120.2 0.45 - 0.70 - 14.1 3.9 

IL-44 1.39 48.36 68.4 3.2 124.4 0.45 - 0.50 - 15.6 3.3 

IL-80 1.34 48.72 72.5 4.2 147.1 0.45 - 0.75 - 12.8 3.8 

IL-4 1.22 48.76 66.9 1.9 102.4 0.45 - 0.55 - 15.3 3.8 

IL-57 1.27 50.23 73.0 0.9 120.5 0.40 - 0.75 - 14.2 3.8 

IL-93 1.26 50.30 75.8 0.3 101.7 0.45 - 0.75 - 10.3 3.9 

IL-2 1.45 50.40 68.6 1.9 129.9 0.45 - 0.60 - 11.7 3.6 

IL-38 1.38 51.50 70.7 3.4 113.6 0.50 - 0.90 - 13.6 3.6 

IL-29 1.26 51.69 66.8 0.5 108.7 0.50 - 0.50 - 14.3 3.6 

IL-97 1.21 52.78 71.9 3.7 121.3 0.50 - 0.75 - 12.6 3.2 

IL-104 1.26 52.89 74.7 0.3 96.1 0.45 - 0.90 - 12.9 4.1 

IL-68 1.22 53.03 69.3 1.8 104.1 0.50 - 0.75 - 12.1 4.1 

IL-81 1.26 53.21 73.6 0.1 142.0 0.40 - 0.65 - 13.3 4.0 

IL-73 1.32 53.40 68.5 1.1 111.6 0.45 - 0.80 - 12.9 3.3 

IL-86 1.43 53.65 75.3 5.6 134.2 0.45 - 0.70 - 10.4 3.6 

IL-36 1.13 54.12 69.2 1.8 119.4 0.50 - 0.70 - 13.2 4.2 

IL-41 1.19 54.38 68.0 3.8 123.3 0.45 - 0.35 - 14.6 3.6 

IL-49 1.19 56.12 63.2 3.5 112.6 0.45 - 0.60 - 14.0 4.0 

IL-46 1.11 56.29 69.1 0.7 110.1 0.45 - 0.70 - 14.5 3.9 

IL-64 1.19 56.56 69.0 2.2 132.1 0.40 - 0.65 - 13.9 4.3 

IL-11 1.20 56.92 69.1 1.9 138.8 0.40 - 0.70 - 13.5 3.8 

IL-22 1.15 57.71 68.8 1.0 115.0 0.45 - 0.50 - 13.7 3.7 

IL-9 1.10 58.62 69.3 1.3 116.5 0.50 - 0.60 - 11.9 3.5 

IL-35 1.22 59.48 70.4 2.1 123.7 0.40 - 0.90 - 10.7 3.6 

IL-56 1.13 59.85 72.5 1.2 139.1 0.45 - 0.70 - 11.4 3.3 

IL-55 1.11 61.32 68.4 4.1 121.2 0.50 - 0.55 - 14.6 3.9 

IL-74 1.10 62.47 69.3 2.4 113.6 0.50 - 0.75 - 11.6 3.6 

IL-6 1.00 63.49 69.0 1.9 124.6 0.45 - 0.45 - 13.5 3.4 

IL-66 0.91 65.23 70.2 2.2 137.5 0.45 - 0.50 - 14.0 3.3 

IL-88 1.10 65.84 75.2 5.9 136.8 0.40 - 0.55 - 10.1 3.5 

IL-8 0.98 65.92 68.4 1.2 115.0 0.45 - 0.60 - 12.8 4.2 

IL-85 1.02 66.33 78.0 0.3 128.5 0.50 - 0.70 - 8.7 3.6 

IL-10 0.99 66.39 66.1 3.8 106.6 0.45 - 0.50 - 12.2 3.5 

IL-70 1.07 67.21 68.0 1.8 97.4 0.45 - 0.70 - 14.1 3.8 

IL-94 0.90 67.70 78.0 3.7 89.4 0.45 - 0.65 - 10.5 4.5 

IL-67 0.93 68.55 70.6 1.4 125.3 0.40 - 0.65 - 11.9 4.0 

IL-52 0.83 68.94 71.3 3.7 116.6 0.45 - 0.65 - 10.0 4.4 

IL-3 0.98 69.02 69.3 -0.1 115.3 0.50 - 0.55 - 13.8 3.5 

IL-90 1.02 69.95 74.3 0.1 103.0 0.50 - 0.65 - 11.1 3.5 

IL-54 1.04 71.20 67.3 2.0 119.6 0.45 - 0.40 - 8.7 3.6 
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Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

IL-72 0.96 71.32 67.8 4.0 121.5 0.40 - 0.45 - 14.6 3.6 

IL-24 0.92 71.49 73.2 0.8 122.1 0.45 - 0.55 - 14.2 3.7 

IL-18 0.87 72.01 65.8 1.8 104.2 0.50 - 0.60 - 13.3 4.5 

IL-89 0.84 72.08 74.5 0.7 136.3 0.40 - 0.60 - 12.2 4.1 

IL-12 0.86 72.83 72.4 5.3 112.7 0.45 - 0.60 - 12.9 3.8 

IL-91 0.87 73.51 76.6 0.0 94.1 0.45 - 0.75 - 12.5 4.3 

IL-84 0.81 74.47 74.4 2.3 116.6 0.50 - 0.55 - 9.3 2.9 

IL-78 0.78 75.79 68.6 2.5 106.1 0.50 - 0.65 - 11.2 4.0 

IL-106 0.76 76.47 69.9 3.4 119.6 0.50 - 0.70 - 13.4 4.2 

IL-83 0.72 77.90 79.6 1.4 121.7 0.50 - 0.85 - 7.8 3.8 

IL-26 0.78 78.13 75.2 3.2 139.4 0.40 - 0.50 - 9.9 3.8 

IL-39 0.87 79.07 74.2 4.1 122.0 0.40 - 0.35 - 10.8 3.9 

IL-50 0.80 79.08 71.0 1.0 141.7 0.45 - 0.60 - 12.6 4.1 

IL-32 0.81 79.62 67.5 2.3 115.9 0.45 - 0.55 - 13.2 3.9 

IL-58 0.81 79.81 67.9 1.2 125.2 0.45 - 0.45 - 13.4 3.7 

IL-61 0.74 80.18 67.8 2.0 126.7 0.45 - 0.55 - 13.0 3.6 

IL-30 0.75 80.40 75.7 0.4 140.1 0.50 - 0.65 - 10.0 4.1 

IL-105 0.67 81.91 74.2 0.0 105.9 0.45 - 0.45 - 13.8 3.9 

IL-79 0.84 84.77 72.2 1.9 127.8 0.45 - 0.55 - 12.8 3.8 

IL-95 0.64 84.88 74.4 0.4 115.9 0.45 - 0.60 - 13.0 4.8 

IL-14 0.75 85.63 68.8 1.1 115.1 0.40 - 0.35 - 13.7 3.8 

IL-27 0.54 86.32 67.8 4.3 115.2 0.40 - 0.40 - 14.6 4.2 

IL-45 0.73 86.39 72.4 4.6 142.4 0.45 - 0.60 - 10.4 3.9 

IL-37 0.50 88.61 67.5 1.7 107.3 0.45 - 0.45 - 14.4 5.0 

IL-28 0.67 89.02 71.5 2.7 108.2 0.50 - 0.70 - 11.5 4.3 

IL-65 0.56 89.41 67.9 4.6 125.1 0.45 - 0.30 - 14.2 4.2 

IL-19 0.66 92.79 70.6 2.5 109.7 0.40 - 0.55 - 8.3 4.6 

IL-87 0.57 93.27 76.7 1.1 119.5 0.40 - 0.70 - 11.2 4.5 

            

Mean 1.28 54.10 70.1 1.9 122.1 0.46 - 0.67 - 12.8 3.7 

LSD (0.05) 0.81 37.53 4.0 3.4 28.3 0.11 - 0.34 - 3.7 1.1 

SE 0.41 18.93 2.0 1.7 14.3 0.05 - 0.17 - 1.9 0.5 

p *** *** *** * * ns - *** - * ** 

Min 0.50 2.48 63.15 -0.35 89.42 0.40 - 0.30 - 7.82 1.99 

Max 3.48 93.27 79.60 5.90 155.62 0.50 - 1.10 - 15.63 5.02 
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(2-4.c) Chókwè - random drought stress environmental condition 

 

Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. Lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

            

IL-92 2.31 -7.37 63.3 5.2 - - 8.3 1.39 1.0 12.8 1.9 

IL-102 2.01 0.86 65.1 4.4 - - 27.4 1.68 1.0 14.6 3.0 

IL-53 1.91 3.22 63.9 4.5 - - 36.5 1.16 1.0 14.8 2.6 

IL-101 1.83 4.84 65.2 6.1 - - 10.4 1.66 1.0 15.6 2.3 

IL-16 1.85 8.64 65.2 10.6 - - 18.0 1.05 1.0 15.7 2.1 

IL-90 1.77 8.85 65.5 4.7 - - 28.0 1.29 1.0 15.0 4.0 

IL-33 1.76 9.72 62.2 4.5 - - 20.4 1.26 0.9 15.4 3.0 

IL-76 1.75 10.29 63.1 5.6 - - 10.4 1.45 0.9 12.9 3.0 

IL-1 1.72 11.09 63.4 8.5 - - 10.2 1.39 1.0 12.8 3.2 

IL-44 1.73 11.13 64.6 4.3 - - 45.7 1.12 1.0 16.5 2.7 

IL-81 1.73 11.28 71.6 4.5 - - 6.4 1.15 1.0 14.9 3.7 

IL-96 1.93 11.30 69.9 6.0 - - 18.3 1.27 0.9 13.1 2.5 

IL-100 1.70 13.44 64.9 5.1 - - 5.5 1.57 1.0 15.5 3.1 

IL-10 1.68 13.91 64.6 8.1 - - 43.2 1.11 0.9 17.4 2.8 

IL-71 1.75 14.30 62.0 7.0 - - 19.8 0.95 0.9 16.8 3.0 

IL-34 1.67 14.81 64.3 4.0 - - 35.4 0.85 1.0 14.1 1.9 

IL-103 1.76 15.66 64.6 7.0 - - 13.0 1.39 1.0 14.9 3.2 

IL-17 1.67 16.10 65.1 8.9 - - 25.5 0.96 1.0 15.2 2.9 

IL-43 1.66 16.59 66.2 4.6 - - 6.7 1.08 0.9 14.4 3.1 

IL-4 1.70 19.07 65.6 5.7 - - 50.8 0.82 1.0 15.0 3.0 

IL-13 1.63 19.73 66.1 9.1 - - 9.1 1.12 1.0 15.1 3.2 

IL-64 1.71 20.55 65.2 3.1 - - 4.7 1.45 1.0 14.6 3.3 

IL-69 1.63 20.99 66.1 4.4 - - 32.3 1.32 1.0 16.0 3.4 

IL-77 1.57 21.64 60.8 5.6 - - 48.2 1.16 1.0 14.1 3.7 

IL-107 1.70 21.73 64.3 5.6 - - 21.9 1.27 1.0 13.6 3.2 

IL-72 1.57 23.14 62.5 6.1 - - 11.5 0.94 1.0 15.1 3.2 

IL-9 1.58 23.80 66.8 5.9 - - 79.9 1.23 1.0 14.8 2.7 

IL-68 1.61 23.91 64.8 3.6 - - 61.0 0.97 1.0 15.5 2.7 

IL-105 1.56 24.07 65.0 6.5 - - 45.6 1.01 1.0 18.8 2.5 

IL-98 1.59 24.43 65.2 4.3 - - 30.2 1.30 1.0 13.6 3.3 

IL-47 1.53 25.33 63.6 7.1 - - 44.6 1.14 1.0 15.8 3.2 

IL-35 1.61 25.75 64.8 4.4 - - 38.2 1.13 1.0 14.9 3.4 

IL-99 1.51 26.57 64.6 4.5 - - 18.3 1.08 0.9 16.0 2.0 

IL-36 1.61 27.36 62.6 5.8 - - 4.5 1.23 1.0 14.5 3.7 

IL-8 1.56 27.83 64.0 8.5 - - 37.5 1.23 0.9 13.4 3.6 

IL-75 1.53 28.28 60.6 5.4 - - 16.2 1.15 1.0 12.7 2.8 

IL-62 1.50 29.04 64.0 5.4 - - 40.7 1.27 1.0 15.1 3.5 

IL-7 1.54 29.49 63.6 7.0 - - 25.3 1.26 0.9 14.5 3.3 

IL-20 1.59 30.63 66.1 7.5 - - 43.4 1.03 1.0 12.4 2.7 
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Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. Lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

IL-93 1.46 31.98 72.5 4.5 - - 32.3 1.29 0.9 14.0 4.1 

IL-49 1.47 33.37 64.8 6.5 - - 43.9 1.15 0.9 14.6 3.7 

IL-55 1.43 33.50 62.8 4.9 - - 50.2 0.99 0.9 16.7 3.2 

IL-80 1.43 34.55 66.1 5.6 - - 6.9 1.17 0.9 15.6 3.9 

IL-31 1.44 35.35 64.3 6.0 - - 31.2 1.08 1.0 15.2 2.9 

IL-22 1.43 35.57 63.2 4.7 - - 34.0 0.95 1.0 17.1 3.0 

IL-46 1.40 35.63 64.0 9.2 - - 19.4 1.36 1.0 15.8 3.4 

IL-97 1.40 40.32 70.9 6.5 - - 32.9 0.91 1.0 14.7 3.0 

IL-11 1.37 41.80 62.9 5.9 - - 38.9 1.00 1.0 15.4 3.8 

IL-23 1.32 42.35 63.6 9.0 - - 6.0 1.13 1.0 13.4 2.7 

IL-57 1.31 42.57 64.7 7.4 - - 11.0 1.64 1.0 13.8 4.2 

IL-60 1.32 43.31 72.7 5.6 - - 16.2 1.08 1.0 14.9 4.0 

IL-5 1.36 44.02 65.9 7.0 - - 45.4 1.17 1.0 13.8 3.0 

IL-40 1.33 44.82 64.4 6.5 - - 36.8 0.94 1.0 17.1 3.4 

IL-48 1.30 44.84 64.8 8.5 - - 17.7 1.27 1.0 13.4 3.5 

IL-73 1.35 45.11 64.3 8.8 - - 31.9 1.15 1.0 15.4 3.3 

IL-59 1.32 46.75 65.8 6.6 - - 27.2 1.15 1.0 15.0 3.8 

IL-54 1.29 47.22 63.3 5.6 - - 22.3 1.27 1.0 14.4 2.9 

IL-63 1.29 47.23 70.6 6.6 - - 15.0 0.99 1.0 14.0 4.2 

IL-15 1.21 50.48 63.3 8.6 - - 19.2 1.04 1.0 14.4 3.6 

IL-89 1.24 50.85 70.2 6.9 - - 49.5 1.32 0.9 13.9 3.1 

IL-74 1.24 50.89 65.0 8.6 - - 63.5 1.22 1.0 12.0 3.1 

IL-86 1.26 51.06 71.4 5.7 - - 19.7 0.94 1.0 13.7 2.7 

IL-84 1.19 53.14 72.8 8.6 - - 31.5 1.34 1.0 14.9 3.0 

IL-24 1.24 53.26 67.7 7.4 - - 55.1 1.13 0.9 13.4 3.4 

IL-108 1.19 55.13 73.3 6.0 - - 46.5 1.02 1.0 15.0 3.8 

IL-66 1.17 55.88 64.6 8.6 - - 21.8 1.31 0.9 15.2 3.3 

IL-78 1.18 55.95 61.6 9.6 - - 58.5 0.98 1.0 14.5 3.9 

IL-42 1.17 56.32 64.9 8.1 - - 13.5 1.15 1.0 15.3 3.6 

IL-27 1.21 57.40 66.2 7.4 - - 32.2 1.01 0.9 13.9 3.6 

IL-38 1.19 58.25 64.8 8.5 - - 6.3 1.08 1.0 15.2 3.6 

IL-2 1.17 58.31 64.2 9.1 - - 28.6 1.15 1.0 15.0 3.0 

IL-29 1.13 58.36 65.7 3.5 - - 66.3 1.02 1.0 16.5 3.6 

IL-82 1.11 62.68 65.1 6.5 - - 21.8 1.28 1.0 14.5 3.9 

IL-51 1.08 62.98 61.7 8.0 - - 72.0 1.43 1.0 12.8 3.4 

IL-58 1.13 63.03 64.2 8.3 - - 45.5 1.13 1.0 15.3 3.5 

IL-106 1.08 63.27 65.1 8.2 - - 19.2 1.20 1.0 15.1 3.3 

IL-18 1.07 65.21 65.3 8.6 - - 49.0 1.49 1.0 16.6 3.9 

IL-104 1.06 67.31 71.8 7.9 - - 63.2 1.04 1.0 16.9 3.1 

IL-41 1.07 68.34 60.9 9.0 - - 40.6 0.89 1.0 15.0 3.2 

IL-25 1.07 68.50 64.2 9.9 - - 15.5 1.26 1.0 14.5 3.5 

IL-30 1.02 68.63 66.1 7.9 - - 47.9 1.23 1.0 15.5 3.8 
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Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. Lodg. Plant Sen. Plants Aspect 

            

 
t/ha Rank d d cm 0-1 % # 1-10 # 1-5 

IL-14 1.04 71.00 72.1 7.4 - - 33.1 0.97 1.0 13.9 3.2 

IL-39 1.03 71.09 71.4 8.0 - - 19.2 0.86 1.0 16.9 3.3 

IL-70 0.99 73.53 66.2 8.0 - - 31.8 1.13 0.9 14.3 3.9 

IL-52 0.96 73.92 64.9 8.5 - - 26.5 1.11 1.0 12.4 3.4 

IL-50 0.98 76.16 69.7 9.5 - - 51.2 1.09 0.9 14.7 3.7 

IL-6 0.98 77.34 64.7 8.5 - - 37.8 1.10 1.0 13.2 3.8 

IL-56 0.95 77.60 66.5 7.5 - - 47.2 0.98 1.0 13.2 3.0 

IL-28 0.94 79.13 70.7 5.0 - - 11.8 0.88 1.0 12.4 3.4 

IL-65 0.92 79.29 65.0 8.8 - - 43.8 0.80 0.9 14.9 3.8 

IL-87 0.94 79.62 72.6 9.0 - - 22.9 1.31 1.0 15.3 3.9 

IL-79 0.93 79.79 72.3 8.5 - - 14.2 0.97 1.0 14.8 3.4 

IL-94 0.87 84.70 71.4 9.1 - - 11.9 0.87 1.0 19.1 4.0 

IL-67 0.74 85.10 71.4 8.9 - - 19.7 0.95 1.0 16.0 3.6 

IL-91 0.81 85.15 69.9 10.0 - - 87.1 0.78 1.0 19.4 3.9 

IL-3 0.84 85.32 66.5 7.6 - - 56.2 1.03 0.9 13.7 4.1 

IL-45 0.81 86.17 65.9 8.3 - - 74.3 0.85 0.9 14.1 3.5 

IL-85 0.80 87.16 72.7 8.4 - - 4.8 1.10 1.0 9.6 3.0 

IL-21 0.79 87.80 65.4 8.3 - - 23.8 0.92 1.0 14.0 4.0 

IL-88 0.79 88.32 72.1 8.6 - - 11.9 1.07 0.5 13.9 4.0 

IL-12 0.75 89.16 68.6 6.0 - - 47.7 1.16 0.9 13.9 3.7 

IL-19 0.73 90.31 66.6 7.5 - - 40.9 1.01 1.0 13.7 3.0 

IL-26 0.71 90.88 71.9 8.4 - - 18.9 0.91 0.9 13.1 3.4 

IL-61 0.62 95.07 65.3 7.6 - - 29.4 1.12 1.0 15.6 3.9 

IL-37 0.62 96.70 62.1 8.5 - - 38.0 0.86 1.0 13.8 4.2 

IL-83 0.46 100.32 73.6 9.0 - - 30.4 0.72 0.9 18.1 4.6 

IL-95 0.26 102.43 72.7 
 

- - 4.1 0.63 1.0 12.0 4.8 

IL-32 0.50 102.74 64.6 9.4 - - 2.7 0.72 1.0 15.0 3.7 

            

Mean 1.30 47.25 66.2 7.0 
  

30.6 1.12 1.0 14.7 3.3 

LSD (0.05) 0.52 38.02 1.9 1.6 
  

32.0 0.36 0.1 3.4 0.9 

MSe 0.07 360.37 0.9 0.7 
  

273.4 0.03 0.0 3.1 0.2 

CV 19.85 40.17 1.4 11.5 
  

54.1 16.49 6.7 11.9 14.1 

p 0.000 0.000 0.000 0.000 
  

0.000 0.000 0.038 0.022 0.000 

Min 0.26 -7.37 60.6 3.1 
  

2.7 0.63 0.5 9.6 1.9 

Max 2.31 102.74 73.6 10.6 
  

87.1 1.68 1.0 19.4 4.8 
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(2-4.d) Chókwè - unstressed environmental condition 

 

Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. Lodg. Plant Sen. Plants Aspect 

            

 
t/ha t/ha d d cm 0-1 % # 1-10 # 1-5 

            

IL-53 6.09 -6.32 48.9 1.9 211.4 0.55 - 1.19 0.8 19.5 2.3 

IL-107 4.53 1.93 55.3 2.9 182.4 0.52 - 1.54 1.0 16.7 3.1 

IL-92 5.98 2.80 60.2 3.5 216.7 0.59 - 1.14 0.5 19.0 2.8 

IL-101 4.97 3.57 57.0 -2.0 199.2 0.55 - 1.43 0.8 18.4 3.1 

IL-47 5.12 4.23 54.4 3.3 214.4 0.57 - 1.47 0.9 15.4 2.6 

IL-10 4.63 4.60 54.7 2.6 187.5 0.61 - 1.38 0.9 16.0 2.8 

IL-102 4.70 5.76 54.4 2.3 203.8 0.51 - 1.53 0.9 16.3 3.2 

IL-54 4.48 6.47 51.7 3.2 215.0 0.50 - 1.13 1.0 19.2 3.3 

IL-20 4.29 7.37 55.6 2.6 174.3 0.50 - 1.30 0.5 14.4 2.7 

IL-38 4.53 8.83 54.4 3.0 200.6 0.56 - 1.34 0.8 17.2 3.4 

IL-71 4.12 14.50 58.6 -0.9 238.1 0.53 - 1.27 1.0 14.9 3.6 

IL-46 4.23 15.40 55.7 1.5 204.9 0.54 - 1.43 0.9 16.2 3.7 

IL-33 4.17 15.98 53.8 3.1 186.7 0.58 - 1.17 0.9 14.8 2.6 

IL-27 4.25 16.16 55.3 3.1 204.6 0.51 - 1.13 0.8 15.1 3.7 

IL-75 3.94 16.44 52.8 1.1 199.3 0.55 - 1.20 1.0 15.0 2.9 

IL-17 4.14 18.61 55.8 0.4 186.4 0.66 - 1.16 0.9 13.9 2.4 

IL-73 4.02 21.22 54.7 3.0 194.3 0.58 - 1.33 0.9 15.3 3.4 

IL-4 3.90 22.91 56.5 -0.4 190.7 0.63 - 1.17 1.0 14.3 3.3 

IL-9 3.99 23.23 48.4 2.6 196.5 0.60 - 1.11 0.8 14.7 3.0 

IL-100 4.01 23.26 55.8 2.7 195.6 0.57 - 1.76 0.9 15.6 4.0 

IL-31 4.57 23.58 56.2 2.6 180.8 0.57 - 1.08 0.4 18.2 2.3 

IL-1 3.97 24.32 52.4 2.5 231.6 0.52 - 1.28 0.9 17.0 3.3 

IL-108 4.20 25.30 56.8 0.1 180.3 0.50 - 1.33 1.0 15.6 4.5 

IL-55 3.69 25.80 55.1 3.0 192.1 0.57 - 1.13 1.0 17.6 3.8 

IL-76 4.01 26.52 52.6 3.4 206.7 0.53 - 0.93 0.7 18.2 2.9 

IL-97 3.63 27.90 56.4 2.4 211.8 0.60 - 1.16 0.8 16.0 3.8 

IL-23 3.85 28.15 54.9 2.6 193.2 0.50 - 1.36 0.9 16.1 5.0 

IL-22 3.75 28.30 53.9 1.9 193.6 0.43 - 1.34 1.0 15.5 3.6 

IL-77 3.72 30.74 48.8 1.7 219.9 0.57 - 1.48 0.9 13.2 4.1 

IL-105 3.79 32.24 58.9 2.5 192.6 0.48 - 1.01 0.9 19.8 2.7 

IL-7 3.55 32.70 54.1 3.0 180.8 0.52 - 1.20 1.0 14.4 3.7 

IL-29 3.62 32.97 53.6 2.2 207.5 0.58 - 1.26 1.0 20.3 3.5 

IL-51 3.58 33.99 52.9 2.6 175.8 0.62 - 1.07 1.0 19.1 5.0 

IL-103 3.51 34.75 58.0 4.4 221.7 0.55 - 1.49 0.8 14.0 3.5 

IL-43 3.61 35.58 55.8 2.5 205.1 0.55 - 1.23 0.9 15.5 3.7 

IL-44 3.37 39.37 55.9 0.9 191.6 0.68 - 1.01 0.8 18.6 2.4 

IL-78 3.55 39.72 54.4 2.5 180.6 0.54 - 1.22 1.0 18.6 3.2 

IL-40 3.28 40.36 51.9 2.9 168.6 0.58 - 1.18 0.6 13.2 3.9 

IL-82 3.21 41.31 54.6 1.5 190.6 0.56 - 1.40 0.8 13.4 3.1 
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Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. Lodg. Plant Sen. Plants Aspect 

            

 
t/ha t/ha d d cm 0-1 % # 1-10 # 1-5 

IL-2 3.33 41.31 52.7 5.1 198.4 0.54 - 1.08 0.9 16.3 3.1 

IL-89 3.35 42.67 58.7 1.0 171.2 0.59 - 1.22 0.7 15.1 3.7 

IL-62 3.23 44.73 54.4 2.5 226.3 0.54 - 1.24 0.8 15.2 3.4 

IL-24 3.21 45.00 57.2 3.0 174.1 0.54 - 1.17 0.8 15.6 3.0 

IL-98 3.28 46.50 55.3 1.7 201.4 0.59 - 1.06 1.0 15.7 2.6 

IL-72 3.13 47.64 53.4 4.6 179.6 0.58 - 1.10 0.9 15.5 3.3 

IL-90 3.09 48.21 56.5 2.1 157.9 0.57 - 1.33 0.9 13.7 2.6 

IL-80 3.16 50.39 56.9 4.6 209.6 0.59 - 1.38 0.6 15.5 4.2 

IL-87 3.04 50.53 62.5 2.4 167.1 0.53 - 1.75 0.2 14.8 3.6 

IL-49 2.98 52.74 55.4 1.0 166.8 0.59 - 1.11 1.0 17.1 4.2 

IL-88 3.05 52.93 61.7 2.4 224.7 0.46 - 0.99 0.9 13.7 3.4 

IL-34 2.99 52.98 55.0 3.0 197.9 0.55 - 1.00 0.9 13.3 2.4 

IL-69 2.99 53.16 58.8 0.5 212.5 0.55 - 1.47 0.8 15.0 3.1 

IL-59 3.02 54.71 56.0 1.9 183.7 0.62 - 1.11 0.5 15.0 3.9 

IL-36 2.94 55.08 54.0 2.6 189.2 0.56 - 1.11 0.8 16.1 3.9 

IL-94 2.93 55.47 62.2 1.9 178.7 0.50 - 1.07 0.5 21.1 4.7 

IL-99 2.79 56.48 52.4 4.1 189.5 0.57 - 1.01 0.9 14.4 3.5 

IL-5 2.86 56.60 53.3 3.1 185.4 0.63 - 1.16 1.0 14.3 3.7 

IL-64 2.93 57.86 53.8 2.0 224.9 0.62 - 1.15 1.0 21.8 4.0 

IL-68 2.83 58.04 56.1 1.3 185.6 0.53 - 0.92 0.9 15.8 3.2 

IL-52 2.94 58.68 55.8 1.8 194.6 0.55 - 1.24 1.0 13.4 3.6 

IL-79 2.85 58.89 55.0 0.9 188.1 0.54 - 1.25 0.8 16.5 4.0 

IL-11 2.78 61.35 55.0 2.0 183.8 0.65 - 1.19 1.0 17.9 3.9 

IL-21 2.72 62.65 54.3 2.7 211.7 0.57 - 1.06 1.0 17.7 4.9 

IL-91 2.61 64.35 63.9 -0.9 182.1 0.59 - 0.97 1.0 15.5 3.6 

IL-13 2.48 64.45 56.7 3.6 203.8 0.51 - 1.19 0.8 16.3 4.0 

IL-35 2.69 65.57 55.0 2.4 180.9 0.60 - 1.12 0.8 13.3 3.7 

IL-14 2.63 65.61 60.4 1.5 165.1 0.57 - 0.94 1.0 15.0 3.5 

IL-45 2.69 66.02 55.4 2.4 195.6 0.63 - 1.00 1.0 15.2 3.8 

IL-106 2.85 66.32 55.3 3.5 208.5 0.60 - 1.67 1.0 14.8 4.0 

IL-8 2.56 66.43 54.0 2.5 187.2 0.54 - 1.12 1.0 14.9 4.8 

IL-48 2.73 68.82 56.9 0.3 209.0 0.63 - 0.91 1.0 13.4 3.6 

IL-15 2.59 69.01 57.5 2.0 179.0 0.55 - 0.98 1.0 13.9 3.4 

IL-18 2.57 69.13 56.3 0.5 191.7 0.53 - 1.64 1.0 15.3 4.7 

IL-74 2.52 70.71 54.8 3.7 193.0 0.60 - 1.04 1.0 15.2 3.9 

IL-86 2.52 71.51 56.8 -2.0 211.4 0.54 - 0.99 0.5 13.6 4.6 

IL-6 2.51 71.58 54.5 2.0 181.8 0.48 - 0.86 1.0 18.8 3.8 

IL-104 2.53 71.72 62.0 2.0 189.4 0.50 - 1.14 0.8 18.3 3.7 

IL-66 2.42 72.82 55.6 3.1 190.3 0.57 - 1.21 0.9 15.4 3.1 

IL-93 2.54 73.79 61.8 2.1 176.0 0.52 - 1.27 0.5 14.4 4.1 

IL-50 2.37 74.06 56.9 -0.1 185.9 0.54 - 1.21 1.0 15.7 3.4 

IL-42 2.43 75.33 53.5 2.5 185.6 0.60 - 1.18 1.0 15.3 3.8 
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Inbred line Grain Yield Anth ASI Plant Ear Stem Ears/ Leaf Num Ear 

code GW Rank Date 
 

Height Pos. Lodg. Plant Sen. Plants Aspect 

            

 
t/ha t/ha d d cm 0-1 % # 1-10 # 1-5 

IL-60 2.31 76.87 61.0 3.4 174.1 0.71 - 1.01 0.6 16.9 4.5 

IL-19 2.39 77.89 58.8 1.6 190.1 0.51 - 1.07 1.0 14.3 4.6 

IL-30 2.44 78.17 56.8 2.6 194.0 0.53 - 0.96 1.0 16.1 3.4 

IL-57 2.56 78.42 57.7 1.9 202.3 0.51 - 1.51 0.6 16.0 4.3 

IL-3 2.31 78.85 54.9 3.0 214.4 0.62 - 1.37 1.0 14.2 2.8 

IL-70 2.19 81.63 55.6 3.4 180.6 0.53 - 0.93 0.9 14.8 3.7 

IL-63 2.12 82.06 61.5 2.8 149.3 0.54 - 1.06 0.5 14.8 4.9 

IL-81 2.08 83.88 62.0 2.5 209.5 0.55 - 1.18 0.8 13.8 4.5 

IL-65 2.03 84.37 55.2 2.0 214.1 0.50 - 0.95 0.8 16.6 3.7 

IL-37 2.28 84.53 50.5 2.0 187.2 0.53 - 1.27 1.0 15.0 3.8 

IL-96 2.12 86.01 57.1 -0.1 170.1 0.57 - 1.05 0.7 15.6 2.5 

IL-12 1.72 89.45 57.9 3.5 180.9 0.49 - 1.34 1.0 14.2 4.0 

IL-25 1.59 89.58 55.0 4.0 209.6 0.49 - 0.85 1.0 15.5 4.1 

IL-28 1.67 90.43 56.8 2.0 198.3 0.49 - 1.05 1.0 12.5 4.2 

IL-84 1.44 91.21 62.9 3.0 157.3 0.60 - 1.10 0.1 15.9 4.5 

IL-58 2.00 91.58 54.5 2.9 182.8 0.55 - 0.95 0.9 15.5 4.0 

IL-41 1.67 93.13 54.4 3.0 184.3 0.54 - 0.96 1.0 15.3 3.7 

IL-83 1.47 93.66 63.6 3.4 181.3 0.62 - 0.90 0.3 13.7 4.3 

IL-26 1.53 93.86 61.8 2.4 210.8 0.58 - 0.75 0.9 12.7 3.5 

IL-85 1.89 94.83 62.0 2.4 203.7 0.60 - 1.00 0.4 15.6 4.1 

IL-32 1.86 95.25 56.3 2.0 179.4 0.57 - 0.88 0.8 15.2 3.8 

IL-16 1.69 95.74 55.4 3.0 225.1 0.59 - 1.08 0.9 15.6 2.8 

IL-39 1.83 98.07 59.9 4.1 188.9 0.55 - 1.24 1.0 14.8 3.7 

IL-56 1.56 98.15 58.0 0.5 224.0 0.55 - 1.05 1.0 13.4 3.4 

IL-67 1.24 101.79 61.3 3.1 197.9 0.66 - 0.84 0.3 14.9 4.3 

IL-95 0.30 106.70 63.0 2.0 140.6 0.60 - 0.37 0.8 15.3 4.5 

IL-61 1.29 107.65 55.7 1.9 185.9 0.53 - 1.27 0.9 15.1 3.9 

            

Mean 3.04 53.39 56.2 2.2 193.4 0.56 
 

1.17 0.8 15.7 3.6 

LSD (0.05) 1.20 33.96 2.2 1.9 32.9 0.10 
 

0.31 0.1 4.0 1.2 

MSe 0.40 343.73 1.3 0.9 276.0 0.00 
 

0.02 0.0 4.0 0.4 

CV 20.78 34.73 2.0 42.1 8.6 8.80 
 

13.52 7.1 12.8 17.4 

p 0.000 0.000 0.000 0.000 0.000 0.000 
 

0.000 0.000 0.002 0.000 

Min 0.30 -6.32 48.4 -2.0 140.6 0.43 
 

0.37 0.1 12.5 2.3 

Max 6.09 107.65 63.9 5.1 238.1 0.71 
 

1.76 1.0 21.8 5.0 
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(2-4.e) Combined environment 

Inbred line Grain yield rank (GY-Rank) per environment 
 

Geometric mean productivity (GMP) 
 

ASI 
Plant 
height 

Ear 
pos. 

Stem 
lodg. 

Ears/ 
plant 

Leaf 
sen. 

Num. 
plants 

Ear 
Asp. code SHDS MHDS RDS OPT Across 

 

SHDS 
vs 

MHDS 

SHDS 
vs OPT 

MHDS 
vs OPT 

Average 
 

 
Rank Rank Rank Rank Rank 

 
# # # # 

 
d cm 0-1 % # 1-10 # 1-5 

IL-92 27.85 2.48 -7.37 2.80 6.44 
 

2.20 2.88 4.56 3.21 
 

2.7 169.5 0.54 -0.5 0.98 6.2 14.8 2.7 

IL-107 17.47 5.51 21.73 1.93 11.66 
 

2.03 2.69 3.41 2.71 
 

2.4 160.3 0.48 4.7 1.02 8.2 14.8 3.2 

IL-53 38.84 26.33 3.22 -6.32 15.52 
 

1.41 2.55 3.36 2.44 
 

2.1 160.0 0.56 10.3 0.91 7.2 15.7 2.9 

IL-101 25.34 28.65 4.84 3.57 15.60 
 

1.57 2.40 3.24 2.40 
 

1.3 162.5 0.50 0.1 1.22 7.6 16.1 3.1 

IL-17 22.85 23.20 16.10 18.61 20.19 
 

1.44 2.11 2.84 2.13 
 

3.5 160.3 0.59 2.3 0.86 7.7 14.2 3.0 

IL-102 71.42 15.31 0.86 5.76 23.34 
 

1.14 1.61 3.34 2.03 
 

1.9 171.2 0.51 3.2 1.15 7.9 15.4 3.6 

IL-31 14.39 24.50 35.35 23.58 24.46 
 

1.77 2.87 2.82 2.48 
 

4.1 152.4 0.55 1.0 0.85 6.1 15.8 3.0 

IL-47 42.84 27.37 25.33 4.23 24.94 
 

1.15 1.97 3.00 2.04 
 

3.3 164.6 0.53 -1.5 0.99 7.5 15.1 3.5 

IL-76 29.47 35.67 10.29 26.52 25.49 
 

1.46 2.16 2.72 2.11 
 

3.9 163.1 0.51 11.6 0.95 7.1 14.9 3.3 

IL-43 19.69 32.07 16.59 35.58 25.98 
 

1.59 2.21 2.60 2.14 
 

2.8 174.4 0.46 0.5 0.89 8.1 14.9 3.3 

IL-33 52.17 31.93 9.72 15.98 27.45 
 

1.15 1.67 2.87 1.90 
 

4.5 155.3 0.54 2.5 0.96 7.6 15.3 3.2 

IL-108 21.50 10.45 55.13 25.30 28.09 
 

1.99 2.63 3.17 2.60 
 

2.6 161.2 0.49 0.7 1.04 8.3 14.7 3.7 

IL-10 33.08 66.39 13.91 4.60 29.49 
 

0.99 2.16 2.14 1.76 
 

5.4 146.9 0.55 0.6 0.91 7.9 15.4 3.2 

IL-71 48.62 40.82 14.30 14.50 29.56 
 

1.07 1.74 2.53 1.78 
 

3.3 178.0 0.54 7.8 0.86 8.2 15.4 3.5 

IL-100 55.53 28.02 13.44 23.26 30.06 
 

1.28 1.84 2.79 1.97 
 

3.2 167.7 0.55 6.8 1.22 7.8 15.5 3.7 

IL-75 42.24 34.39 28.28 16.44 30.34 
 

1.23 1.96 2.47 1.88 
 

2.3 163.1 0.49 1.4 0.86 8.2 14.3 3.3 

IL-1 48.11 41.62 11.09 24.32 31.29 
 

1.04 1.70 2.44 1.73 
 

4.1 177.9 0.48 9.1 0.99 7.7 14.7 3.6 

IL-77 34.53 40.58 21.64 30.74 31.87 
 

1.19 1.88 2.35 1.81 
 

3.7 169.5 0.53 1.5 0.99 7.6 14.2 3.9 

IL-98 36.99 31.19 24.43 46.50 34.78 
 

1.24 1.78 2.28 1.77 
 

2.5 161.0 0.54 1.9 0.97 8.1 14.5 3.4 

IL-4 50.72 48.76 19.07 22.91 35.37 
 

0.97 1.73 2.18 1.63 
 

3.3 147.2 0.52 3.7 0.77 8.1 15.3 3.5 

IL-7 48.59 32.06 29.49 32.70 35.71 
 

1.17 1.76 2.37 1.77 
 

3.2 148.1 0.49 3.8 0.96 8.0 14.1 3.7 

IL-62 49.02 20.10 29.04 44.73 35.72 
 

1.25 1.62 2.50 1.79 
 

4.1 169.9 0.49 6.2 0.91 7.8 15.4 3.7 

IL-46 35.93 56.29 35.63 15.40 35.81 
 

1.01 1.98 2.17 1.72 
 

2.8 158.2 0.51 3.2 1.02 8.2 15.8 3.8 
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Inbred line Grain yield rank (GY-Rank) per environment 
 

Geometric mean productivity (GMP) 
 

ASI 
Plant 
height 

Ear 
pos. 

Stem 
lodg. 

Ears/ 
plant 

Leaf 
sen. 

Num. 
plants 

Ear 
Asp. 

code SHDS MHDS RDS OPT Across 
 

SHDS 
vs 

MHDS 

SHDS 
vs OPT 

MHDS 
vs OPT 

Average 
 

 
Rank Rank Rank Rank Rank 

 
# # # # 

 
d cm 0-1 % # 1-10 # 1-5 

IL-20 59.55 46.75 30.63 7.37 36.07 
 

1.01 1.69 2.57 1.76 
 

4.2 147.3 0.50 -2.8 0.92 6.1 13.2 3.1 

IL-99 24.94 37.64 26.57 56.48 36.41 
 

1.49 1.96 2.12 1.86 
 

2.7 156.7 0.50 1.6 0.85 7.4 15.3 3.4 

IL-103 57.17 38.95 15.66 34.75 36.63 
 

1.05 1.55 2.37 1.66 
 

3.9 179.4 0.55 4.7 1.07 7.4 13.4 3.4 

IL-23 50.86 34.17 42.35 28.15 38.88 
 

1.10 1.75 2.44 1.76 
 

4.9 160.1 0.49 3.0 0.94 8.1 15.0 3.9 

IL-22 33.97 57.71 35.57 28.30 38.89 
 

1.16 2.09 2.07 1.77 
 

3.3 162.8 0.43 6.8 0.81 8.4 15.3 3.5 

IL-69 57.52 25.91 20.99 53.16 39.39 
 

1.08 1.42 2.29 1.60 
 

2.0 170.3 0.48 10.0 1.01 7.8 15.4 3.4 

IL-34 65.97 25.46 14.81 52.98 39.80 
 

0.92 1.25 2.22 1.46 
 

3.0 160.5 0.49 5.9 0.77 7.9 14.7 2.9 

IL-9 56.86 58.62 23.80 23.23 40.63 
 

1.01 1.92 2.09 1.67 
 

3.5 163.5 0.56 0.3 0.82 7.6 14.3 3.4 

IL-38 46.25 51.50 58.25 8.83 41.21 
 

1.08 1.96 2.50 1.85 
 

4.3 154.8 0.53 0.5 0.96 7.1 15.4 3.8 

IL-16 36.73 23.91 8.64 95.74 41.26 
 

1.55 1.36 1.91 1.61 
 

4.4 182.2 0.52 0.5 0.87 7.7 15.1 2.9 

IL-73 46.40 53.40 45.11 21.22 41.53 
 

1.15 2.00 2.30 1.82 
 

4.1 156.3 0.52 1.8 0.98 7.8 14.7 3.5 

IL-13 59.46 23.97 19.73 64.45 41.90 
 

1.12 1.35 2.07 1.51 
 

5.1 168.5 0.45 4.3 0.91 7.8 15.0 3.8 

IL-54 45.17 71.20 47.22 6.47 42.51 
 

0.91 1.89 2.15 1.65 
 

3.1 166.8 0.47 1.9 0.84 8.2 14.3 3.6 

IL-44 72.44 48.36 11.13 39.37 42.82 
 

0.80 1.24 2.16 1.40 
 

2.1 159.7 0.57 9.2 0.76 7.8 16.5 3.2 

IL-105 34.82 81.91 24.07 32.24 43.26 
 

0.81 1.93 1.59 1.45 
 

2.9 157.6 0.48 0.1 0.74 7.7 16.9 3.3 

IL-90 46.71 69.95 8.85 48.21 43.43 
 

0.92 1.60 1.77 1.43 
 

2.7 139.5 0.54 1.2 0.98 7.9 13.7 3.6 

IL-55 53.83 61.32 33.50 25.80 43.61 
 

0.82 1.49 2.02 1.45 
 

3.7 157.5 0.55 1.8 0.78 7.9 16.2 3.8 

IL-64 41.40 56.56 20.55 57.86 44.09 
 

0.96 1.51 1.86 1.45 
 

1.9 179.5 0.51 -1.0 0.93 8.9 16.7 3.9 

IL-96 39.72 40.84 11.30 86.01 44.47 
 

1.23 1.43 1.83 1.50 
 

2.4 148.9 0.51 0.7 0.92 6.8 13.8 2.9 

IL-51 37.76 45.45 62.98 33.99 45.04 
 

1.11 1.80 2.20 1.71 
 

3.3 158.0 0.50 3.2 0.96 8.1 15.6 4.1 

IL-97 60.30 52.78 40.32 27.90 45.32 
 

0.86 1.50 2.09 1.48 
 

3.3 173.7 0.53 -1.3 0.81 7.2 14.6 3.6 

IL-36 46.12 54.12 27.36 55.08 45.67 
 

0.97 1.56 1.82 1.45 
 

3.8 155.0 0.50 0.8 0.93 7.6 15.1 3.9 

IL-49 40.48 56.12 33.37 52.74 45.68 
 

1.04 1.64 1.88 1.52 
 

4.8 144.9 0.53 3.7 0.86 7.9 15.6 4.0 

IL-40 62.89 37.12 44.82 40.36 46.30 
 

0.98 1.49 2.16 1.54 
 

4.1 145.9 0.53 5.8 0.90 6.4 14.7 3.8 

IL-11 31.05 56.92 41.80 61.35 47.78 
 

1.21 1.85 1.82 1.63 
 

2.8 165.2 0.53 3.7 0.87 8.2 15.8 3.7 
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Inbred line Grain yield rank (GY-Rank) per environment 
 

Geometric mean productivity (GMP) 
 

ASI 
Plant 
height 

Ear 
pos. 

Stem 
lodg. 

Ears/ 
plant 

Leaf 
sen. 

Num. 
plants 

Ear 
Asp. 

code SHDS MHDS RDS OPT Across 
 

SHDS 
vs 

MHDS 

SHDS 
vs OPT 

MHDS 
vs OPT 

Average 
 

 
Rank Rank Rank Rank Rank 

 
# # # # 

 
d cm 0-1 % # 1-10 # 1-5 

IL-29 50.48 51.69 58.36 32.97 48.37 
 

0.94 1.60 2.13 1.56 
 

2.2 160.3 0.52 1.8 0.83 8.6 16.7 3.8 

IL-2 45.14 50.40 58.31 41.31 48.79 
 

1.05 1.59 2.19 1.61 
 

5.0 164.5 0.51 14.7 0.82 8.2 14.5 3.4 

IL-80 64.63 48.72 34.55 50.39 49.57 
 

0.83 1.28 2.06 1.39 
 

4.4 172.7 0.53 14.9 0.93 6.5 14.9 4.1 

IL-81 54.56 53.21 11.28 83.88 50.73 
 

1.03 1.33 1.62 1.33 
 

2.4 173.3 0.50 3.8 0.89 7.3 14.5 4.2 

IL-68 68.59 53.03 23.91 58.04 50.89 
 

0.82 1.25 1.86 1.31 
 

2.6 147.2 0.52 -0.2 0.80 7.9 14.0 3.6 

IL-82 62.80 38.77 62.68 41.31 51.39 
 

0.99 1.48 2.15 1.54 
 

3.6 157.7 0.52 5.9 1.02 7.3 14.1 3.7 

IL-60 61.37 29.09 43.31 76.87 52.66 
 

1.08 1.24 2.03 1.45 
 

4.1 154.1 0.57 -2.2 0.89 6.6 15.3 4.2 

IL-35 63.19 59.48 25.75 65.57 53.50 
 

0.83 1.24 1.81 1.30 
 

2.6 151.9 0.48 3.3 0.90 7.6 13.7 3.8 

IL-48 63.04 38.96 44.84 68.82 53.91 
 

1.00 1.27 2.13 1.47 
 

3.0 170.2 0.54 0.8 0.85 8.1 14.2 3.7 

IL-8 56.48 65.92 27.83 66.43 54.16 
 

0.77 1.25 1.58 1.20 
 

3.8 151.3 0.50 7.8 0.87 8.0 14.1 4.3 

IL-72 74.73 71.32 23.14 47.64 54.21 
 

0.65 1.17 1.73 1.18 
 

6.2 155.2 0.49 5.8 0.72 7.7 15.4 3.7 

IL-5 79.11 40.06 44.02 56.60 54.95 
 

0.76 1.04 2.08 1.29 
 

3.9 150.1 0.53 4.1 0.93 7.9 14.4 3.7 

IL-42 59.02 29.32 56.32 75.33 55.00 
 

0.91 1.13 1.94 1.33 
 

3.2 162.4 0.51 2.9 0.93 8.5 14.6 3.9 

IL-59 73.10 47.98 46.75 54.71 55.63 
 

0.74 1.16 1.92 1.27 
 

2.9 149.5 0.53 9.4 0.81 6.4 14.9 4.0 

IL-27 63.70 86.32 57.40 16.16 55.90 
 

0.51 1.44 1.51 1.15 
 

5.0 161.4 0.48 3.9 0.76 7.5 14.8 4.0 

IL-93 68.04 50.30 31.98 73.79 56.03 
 

0.78 1.11 1.79 1.22 
 

2.1 141.1 0.49 12.1 0.95 6.0 13.7 4.1 

IL-86 50.33 53.65 51.06 71.51 56.64 
 

1.04 1.38 1.90 1.44 
 

3.3 178.0 0.47 1.0 0.77 6.1 13.4 3.9 

IL-89 67.04 72.08 50.85 42.67 58.16 
 

0.64 1.27 1.68 1.20 
 

2.6 153.4 0.50 4.0 0.88 7.0 14.2 3.8 

IL-15 74.16 43.73 50.48 69.01 59.34 
 

0.85 1.14 1.94 1.31 
 

4.9 157.8 0.48 8.9 0.78 8.3 14.3 3.7 

IL-78 66.03 75.79 55.95 39.72 59.37 
 

0.60 1.29 1.66 1.19 
 

4.9 147.6 0.52 5.1 0.81 8.4 15.1 3.8 

IL-63 80.76 28.58 47.23 82.06 59.66 
 

0.77 0.87 1.88 1.18 
 

4.9 140.0 0.47 4.0 0.79 6.4 15.2 4.2 

IL-21 44.28 48.02 87.80 62.65 60.69 
 

0.98 1.43 1.86 1.42 
 

3.8 170.9 0.50 9.2 0.82 8.5 15.2 4.3 

IL-57 77.91 50.23 42.57 78.42 62.28 
 

0.71 1.00 1.80 1.17 
 

3.1 156.6 0.51 4.1 1.07 6.4 15.0 4.2 

IL-104 60.96 52.89 67.31 71.72 63.22 
 

0.85 1.21 1.78 1.28 
 

3.1 151.9 0.47 0.9 0.87 7.9 16.1 3.8 

IL-30 30.09 80.40 68.63 78.17 64.32 
 

0.89 1.61 1.35 1.28 
 

3.6 165.3 0.51 1.0 0.87 8.1 14.3 3.8 
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Inbred line Grain yield rank (GY-Rank) per environment 
 

Geometric mean productivity (GMP) 
 

ASI 
Plant 
height 

Ear 
pos. 

Stem 
lodg. 

Ears/ 
plant 

Leaf 
sen. 

Num. 
plants 

Ear 
Asp. 

code SHDS MHDS RDS OPT Across 
 

SHDS 
vs 

MHDS 

SHDS 
vs OPT 

MHDS 
vs OPT 

Average 
 

 
Rank Rank Rank Rank Rank 

 
# # # # 

 
d cm 0-1 % # 1-10 # 1-5 

IL-74 73.57 62.47 50.89 70.71 64.41 
 

0.62 0.93 1.66 1.07 
 

4.1 158.0 0.52 7.2 0.85 8.3 13.0 3.7 

IL-24 88.21 71.49 53.26 45.00 64.49 
 

0.46 0.87 1.72 1.02 
 

5.6 148.4 0.48 1.1 0.81 7.2 14.6 3.8 

IL-66 65.77 65.23 55.88 72.82 64.93 
 

0.65 1.06 1.48 1.06 
 

5.6 160.5 0.50 2.6 0.85 8.1 14.8 3.5 

IL-25 61.68 40.24 68.50 89.58 65.00 
 

0.92 0.95 1.53 1.13 
 

4.6 165.0 0.49 5.6 0.85 8.5 14.9 3.9 

IL-106 64.57 76.47 63.27 66.32 67.66 
 

0.68 1.32 1.47 1.16 
 

5.4 168.4 0.52 3.0 1.01 8.5 14.8 3.9 

IL-84 60.42 74.47 53.14 91.21 69.81 
 

0.78 1.04 1.08 0.96 
 

3.8 144.6 0.56 19.8 0.84 4.7 13.1 3.8 

IL-50 52.85 79.08 76.16 74.06 70.54 
 

0.73 1.27 1.37 1.12 
 

2.8 168.6 0.47 -0.3 0.88 7.9 14.7 3.9 

IL-6 73.78 63.49 77.34 71.58 71.55 
 

0.62 0.98 1.58 1.06 
 

4.3 151.7 0.46 2.2 0.75 8.3 15.2 3.8 

IL-70 64.00 67.21 73.53 81.63 71.59 
 

0.75 1.07 1.53 1.12 
 

4.2 145.1 0.50 2.4 0.81 7.8 14.6 4.0 

IL-91 64.70 73.51 85.15 64.35 71.93 
 

0.62 1.08 1.50 1.07 
 

2.3 142.5 0.52 2.1 0.78 7.8 15.6 4.1 

IL-88 82.46 65.84 88.32 52.93 72.39 
 

0.49 0.82 1.83 1.05 
 

4.8 177.4 0.47 4.1 0.79 6.4 13.1 3.9 

IL-79 67.89 84.77 79.79 58.89 72.83 
 

0.67 1.25 1.54 1.16 
 

3.2 160.9 0.47 3.6 0.82 8.0 15.1 4.0 

IL-52 90.14 68.94 73.92 58.68 72.92 
 

0.46 0.86 1.56 0.96 
 

4.2 157.3 0.50 3.0 0.86 7.9 12.1 4.0 

IL-94 85.27 67.70 84.70 55.47 73.28 
 

0.42 0.76 1.62 0.93 
 

3.4 137.4 0.47 -1.7 0.76 6.1 16.4 4.5 

IL-85 45.73 66.33 87.16 94.83 73.51 
 

0.95 1.29 1.38 1.21 
 

3.0 168.8 0.53 -0.1 0.87 5.8 12.4 3.8 

IL-18 89.06 72.01 65.21 69.13 73.85 
 

0.51 0.89 1.49 0.96 
 

2.9 151.2 0.52 13.0 1.03 9.0 14.9 4.4 

IL-41 82.01 54.38 68.34 93.13 74.46 
 

0.69 0.82 1.41 0.97 
 

6.0 161.0 0.50 0.8 0.70 7.7 15.0 3.8 

IL-3 68.18 69.02 85.32 78.85 75.34 
 

0.71 1.09 1.50 1.10 
 

3.7 167.2 0.54 1.3 0.84 7.9 14.3 3.5 

IL-56 68.72 59.85 77.60 98.15 76.08 
 

0.75 0.88 1.33 0.99 
 

3.8 178.4 0.49 5.7 0.83 8.4 13.4 3.6 

IL-19 44.63 92.79 90.31 77.89 76.40 
 

0.72 1.38 1.25 1.12 
 

3.7 146.2 0.45 14.4 0.79 8.3 12.6 4.2 

IL-45 71.75 86.39 86.17 66.02 77.58 
 

0.57 1.10 1.40 1.02 
 

5.2 167.4 0.52 1.6 0.75 8.2 13.6 3.8 

IL-58 76.99 79.81 63.03 91.58 77.85 
 

0.50 0.79 1.27 0.85 
 

4.9 154.8 0.52 1.3 0.78 8.1 14.8 4.0 

IL-39 67.57 79.07 71.09 98.07 78.95 
 

0.48 0.70 1.26 0.81 
 

4.8 161.3 0.53 4.0 0.79 8.5 13.9 3.9 

IL-67 60.37 68.55 85.10 101.79 78.95 
 

0.79 0.92 1.07 0.93 
 

3.8 162.2 0.52 -0.9 0.73 6.3 14.5 4.0 

IL-65 63.78 89.41 79.29 84.37 79.21 
 

0.52 1.00 1.07 0.86 
 

5.6 168.2 0.47 -2.1 0.58 7.7 15.4 4.1 
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Inbred line Grain yield rank (GY-Rank) per environment 
 

Geometric mean productivity (GMP) 
 

ASI 
Plant 
height 

Ear 
pos. 

Stem 
lodg. 

Ears/ 
plant 

Leaf 
sen. 

Num. 
plants 

Ear 
Asp. 

code SHDS MHDS RDS OPT Across 
 

SHDS 
vs 

MHDS 

SHDS 
vs OPT 

MHDS 
vs OPT 

Average 
 

 
Rank Rank Rank Rank Rank 

 
# # # # 

 
d cm 0-1 % # 1-10 # 1-5 

IL-14 96.40 85.63 71.00 65.61 79.66 
 

0.35 0.66 1.40 0.81 
 

3.2 146.5 0.52 3.4 0.60 8.6 14.4 3.8 

IL-12 68.12 72.83 89.16 89.45 79.89 
 

0.68 0.96 1.21 0.95 
 

5.3 152.0 0.49 -0.7 0.87 8.4 14.3 4.0 

IL-87 102.77 93.27 79.62 50.53 81.55 
 

0.21 0.48 1.32 0.67 
 

3.4 146.0 0.47 4.2 1.01 5.0 14.1 4.2 

IL-37 61.74 88.61 96.70 84.53 82.89 
 

0.51 1.09 1.07 0.89 
 

3.1 145.1 0.49 -0.3 0.75 8.5 14.6 4.4 

IL-28 75.61 89.02 79.13 90.43 83.55 
 

0.45 0.72 1.05 0.74 
 

3.2 154.3 0.47 6.3 0.77 7.8 12.8 4.1 

IL-61 62.10 80.18 95.07 107.65 86.25 
 

0.62 0.83 0.97 0.81 
 

3.9 157.9 0.46 -0.8 0.85 8.1 15.0 3.8 

IL-95 59.53 84.88 102.43 106.70 88.38 
 

0.60 0.41 0.44 0.48 
 

NE 132.5 0.51 0.8 0.51 7.9 13.9 4.7 

IL-83 81.85 77.90 100.32 93.66 88.43 
 

0.54 0.77 1.03 0.78 
 

3.6 155.0 0.54 4.9 0.71 4.9 13.3 4.3 

IL-26 95.35 78.13 90.88 93.86 89.55 
 

0.40 0.56 1.09 0.68 
 

4.6 176.4 0.50 2.3 0.63 7.9 12.6 3.8 

IL-32 80.92 79.62 102.74 95.25 89.63 
 

0.53 0.81 1.22 0.85 
 

5.3 151.9 0.51 4.5 0.62 7.4 14.8 3.9 

Mean 57.02 54.10 47.25 53.39 53.81 
 

- - - - 
 

3.30 152.34 0.50 3.61 0.77 7.23 14.51 3.82 

LSD (0.05) 40.56 37.53 38.02 33.96 16.82 
 

- - - - 
 

2.25 13.54 0.06 7.20 0.14 0.76 1.28 0.37 

SE 20.46 18.93 19.18 17.13 8.53 
 

- - - - 
 

1.14 6.87 0.03 3.63 0.07 0.38 0.65 0.19 

p ** *** *** *** *** 
 

- - - - 
 

ns *** ns ns *** *** *** *** 

Min 14.39 2.48 -7.37 -6.32 6.44 
 

0.21 0.41 0.44 0.48 
 

1.31 132.48 0.43 -2.80 0.51 4.65 12.11 2.74 

Max 102.77 93.27 102.74 107.65 89.63 
 

2.20 2.88 4.56 3.21 
 

6.20 182.16 0.59 19.75 1.22 9.02 16.88 4.68 
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Appendices from chapter 3 

Appendix 0-1. General and specific combining ability effects for grain yield and other traits of ten maize inbreds evaluated under non-stressed conditions in 
Chókwè 2015. 

Parent/cross GY W100G NGPE NGPP GWPE GWPP GT AD PH EPO BHC EA 

             

Parents GCA effects estimates 

P1 -0.302** 0.433 -26.429** -25.716* -6.475 -8.358** -0.233** -1.217* -8.828*** -0.014* 0.253 0.054 

P2 0.242* -2.758*** 74.275*** 74.622*** 9.558* 10.422*** -0.233** -0.258 0.814 0.006 -0.380* -0.488*** 

P3 -0.120 0.221 4.558 -4.333 0.317 2.747 0.100 -0.300 1.685 0.001 0.265 0.158 

P4 0.242* 0.483 18.092* 15.034 7.271 10.493*** -0.150 0.950 5.914* 0.032*** 0.126 -0.175 

P5 -0.724*** 1.421*** -68.296*** -82.970*** -18.863*** -16.178*** -0.025 -0.758 -11.244*** -0.014* 1.090*** 0.367*** 

P6 -0.029 -1.763*** 7.167 25.555* -0.867 -8.691** 0.038 1.658** 13.706*** 0.007 -0.347 0.138 

P7 -0.387*** -0.738 -4.092 -7.683 -5.408 -5.116 0.183* 0.450 5.781* 0.005 -0.118 0.283** 

P8 -0.344** -0.596 -35.488*** -19.308 -8.158* -15.133*** -0.067 -0.008 -10.086*** -0.011 -0.203 0.263* 

P9 0.932*** 0.196 59.592*** 47.030*** 15.046*** 23.955*** 0.538*** 0.533 8.814*** 0.005 -0.260 -0.425*** 

P10 0.489*** 3.100*** -29.379*** -22.233 7.579 5.859* -0.150 -1.050* -6.557** -0.015 -0.426* -0.175 

             

Crosses SCA effects estimates 

P1 × P2 1.013*** 0.029 20.843 8.265 3.343 10.814 0.370 0.431 0.270 0.018 -0.559 0.148 

P1 × P3 -0.571* -0.417 -24.440 -6.214 -3.149 -7.877 0.204 0.472 3.066 0.015 0.195 0.002 

P1 × P4 -0.154 -1.213 35.760 11.619 -0.503 9.110 -0.380 -0.778 -9.763 0.005 1.468** -0.331 

P1 × P5 0.273 2.516* 35.181 21.924 16.363 22.414** -0.005 -0.403 -4.671 -0.040* 0.270 -0.206 

P1 × P6 -0.183 -2.934** 2.785 61.899 4.801 -11.006 -0.234 1.181 5.379 -0.004 0.175 0.023 

P1 × P7 -0.661* 0.241 -36.224 -45.264 -14.024 -14.915* 0.120 -1.944 -0.963 -0.009 -0.655 0.544 

P1 × P8 0.009 0.566 -57.828* -50.106 -12.207 -20.865** 0.204 2.847* 9.837 0.017 -0.669 0.565* 

P1 × P9 -0.037 0.308 18.693 2.524 3.355 11.448 -0.234 -1.694 -0.330 0.022 -0.246 -0.248 

P1 × P10 0.310 0.904 5.231 -4.647 2.022 0.877 -0.046 -0.111 -2.825 -0.025 0.020 -0.500 

P2 × P3 -0.798** -0.359 67.589** -42.851 -13.882 17.677* 0.704** -0.153 -9.909 0.017 0.062 -0.289 

P2 × P4 0.583* 1.612 96.356*** 163.449*** 55.130*** 44.198*** 0.454* -0.403 6.462 0.023 0.202 0.211 

P2 × P5 -0.738* -2.759* -32.490 -37.281 -20.003 -25.498** -0.338 2.639 8.554 -0.018 0.704 0.002 

Parent/cross GY W100G NGPE NGPP GWPE GWPP GT AD PH EPO BHC EA 
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non-stressed (Cont.)             

Crosses SCA effects estimates 

P2 × P6 -1.430*** -0.209 -41.319 -77.606* -24.466* -17.186* -0.234 -3.111* -8.996 0.008 0.341 0.231 

P2 × P7 0.162 3.133** -78.994*** -39.635 3.409 -8.227 -0.213 0.097 7.062 -0.014 -0.188 -0.250 

P2 × P8 -0.011 -1.042 -29.365 18.890 -1.741 -13.144 -0.296 -1.444 -2.871 -0.011 0.264 0.106 

P2 × P9 0.186 -0.367 -4.744 7.853 -2.645 -10.331 -0.234 0.014 -1.971 -0.020 -0.380 0.127 

P2 × P10 1.033*** -0.038 2.126 -1.085 0.855 1.698 -0.213 1.931 1.400 -0.003 -0.446 -0.289 

P3 × P4 0.608* -1.767 3.539 27.703 -0.228 -6.561 0.120 -1.028 -2.275 -0.030 -0.011 0.398 

P3 × P5 0.051 -0.771 -20.107 -33.860 -14.795 -15.056* -0.338 0.681 14.950* 0.008 -0.775 0.190 

P3 × P6 0.459 2.979** -26.369 -15.618 7.543 3.056 -0.067 0.931 0.933 -0.035* -0.805 -0.248 

P3 × P7 -0.786** -0.913 -24.244 -18.947 -9.349 -12.319 -0.213 1.139 -9.809 0.003 0.566 0.273 

P3 × P8 0.568* 2.145* -15.215 0.844 9.734 7.664 -0.463* -3.069* -5.609 -0.011 -0.915 -0.873 

P3 × P9 0.891** 0.254 36.139 47.440 15.997 15.277* 0.100 2.056 8.159 0.013 0.875 0.481 

P3 × P10 -0.422 -1.150 3.110 41.503 8.130 -1.861 -0.046 -1.028 0.495 0.020 0.808 0.065 

P4 × P5 -0.388 -0.400 1.026 -2.260 -2.216 -1.236 -0.088 -0.236 -8.480 0.021 0.064 -0.144 

P4 × P6 0.260 0.516 -5.036 -31.785 -6.478 -0.856 0.350 0.014 -0.230 -0.002 0.535 0.086 

P4 × P7 0.238 0.091 -56.178* -34.681 -10.237 -20.731** -0.130 -0.778 9.162 0.006 -0.661 0.106 

P4 × P8 -0.502 -0.184 -36.982 -48.756 -15.287 -17.781* -0.046 1.347 0.429 -0.002 -0.093 -0.039 

P4 × P9 -0.358 0.291 -21.028 -62.993* -17.057 -4.902 0.016 0.139 5.262 -0.000 -0.986* -0.019 

P4 × P10 -0.288 1.054 -17.457 -22.297 -3.124 -1.240 -0.296 1.722 -0.567 -0.020 -0.519 -0.269 

P5 × P6 1.003*** 0.979 -5.749 -22.714 -1.678 4.748 -0.109 0.389 -6.605 0.040* -1.296** 0.044 

P5 × P7 0.818** 2.054 61.676** 98.824** 39.563*** 36.073*** 0.245 -0.403 -6.346 0.001 2.307*** 0.23 

P5 × P8 -0.142 -0.621 19.972 3.315 -1.387 6.056 0.329 -2.278 -0.080 -0.009 -0.673 -0.081 

P5 × P9 -0.252 0.420 -47.907* 15.211 7.276 -15.631* 0.058 0.181 1.554 0.005 -0.517 -0.227 

P5 × P10 -0.625* -1.417 -11.603 -43.160 -23.124* -11.869 0.245 -0.569 1.125 -0.008 -0.084 0.190 

P6 × P7 0.153 -3.296** 77.381*** 38.465 -5.599 4.719 0.016 1.847 -7.296 0.011 -0.488 0.461 

P6 × P8 -0.027 1.195 7.910 -0.943 5.818 8.802 0.100 -0.361 7.037 -0.007 0.964 -0.019 

P6 × P9 -0.120 -0.863 15.997 20.586 1.080 3.514 -0.171 0.097 3.070 -0.022 0.187 -0.331 

P6 × P10 -0.114 1.633 -25.599 27.715 18.980 4.210 0.350 -0.986 6.708 0.011 0.387 -0.248 

Parent/cross GY W100G NGPE NGPP GWPE GWPP GT AD PH EPO BHC EA 
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non-stressed (cont.)             

Crosses SCA effects estimates 

P7 × P8 -0.149 -0.163 24.068 10.661 3.226 6.794 -0.046 0.514 0.962 0.005 -0.232 -0.664 

P7 × P9 0.425 0.579 4.022 -2.110 3.488 8.406 0.350 -0.028 2.929 -0.007 -0.242 -0.644 

P7 × P10 -0.202 -1.725 28.493 -7.314 -10.478 0.202 -0.130 -0.444 4.300 0.003 -0.409 -0.060 

P8 × P9 -0.395 -1.630 35.285 14.149 -3.195 3.356 0.100 1.097 -8.871 0.002 1.210 0.377 

P8 × P10 0.648* -0.267 52.156* 51.944 15.038 19.119* 0.120 1.347 -0.834 0.016 0.143 0.627 

P9 × P10 -0.341 1.008 -36.457 -42.660 -8.299 -11.136 0.016 -1.861 -9.800 0.007 0.100 0.481 

* = significant at 0.05; ** = Significant at 0.01; *** = significant at 0.001. 

Appendix 0-2. General and specific combining ability effects for grain yield and other traits of ten maize inbreds evaluated under isolated drought stress 
conditions in Chókwè 2015. 

Parent/cross GY NP W100G NGPE NGPP GWPE GWPP AD PH 

Parents GCA effects estimates 

P1 -0.532*** 0.233 -1.237*** -51.933*** -63.733*** -20.625*** -23.850*** -0.642** -8.895** 

P2 0.077 0.067 -1.658*** 29.650*** 38.892*** 1.917 4.525 0.150 4.855 

P3 0.032 -1.392 1.488*** 23.733*** 4.017 13.500*** 7.567 0.608* 7.401* 

P4 0.092 0.192 2.138*** -36.683*** -19.817 -3.250 2.775 0.650** 2.676 

P5 -0.169** -0.600 1.113*** -15.975* -31.817** -0.333 -5.225 -0.433 -10.883** 

P6 0.039 1.483* -1.595*** -18.808* 5.558 -11.833*** -5.392 0.317 1.001 

P7 0.251*** 0.733 -0.341 23.775** 27.475* 5.583* 6.233 -0.350 3.901 

P8 -0.119* 0.692 -1.974*** -3.433 0.683 -8.792*** -7.683* 0.775** -0.737 

P9 0.471*** 0.608 0.422 71.567*** 48.642*** 23.708*** 16.567*** 0.525* 5.051 

P10 -0.143* -2.017** 1.643*** -21.892** -9.900 0.125 4.483 -1.600*** -4.370 

 

Crosses SCA effects estimates 

P1 × P2 0.612*** 3.315 0.565 54.528** 27.819 19.042** 11.014 -0.819 5.393 

P1 × P3 0.350* 2.773 0.619 -12.222 1.361 -1.875 1.972 0.056 0.947 

P1 × P4 0.449** -1.144 3.036*** 37.861 41.861 22.875*** 24.431** 1.014 8.805 

P1 × P5 -0.588*** -4.352* -0.972 -23.847 -25.806 -12.375 -11.903 0.097 -0.303 

P1 × P6 -0.237 1.565 -3.931*** 28.986 6.819 -5.542 -12.403 -0.653 -12.753 

Parent/cross GY NP W100G NGPE NGPP GWPE GWPP AD PH 
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Isolated drought (cont.)             

Crosses SCA effects estimates 

P1 × P7 0.368* -0.685 0.915 5.736 52.903 5.708 19.972* -1.653** -1.187 

P1 × P8 -0.387* -3.977* -0.785 6.611 4.361 -0.250 -1.111 0.889 -3.249 

P1 × P9 -0.372* -2.894 1.886* -57.722** -35.931 -10.417 -3.694 1.139 -1.537 

P1 × P10 -0.196 5.398** -1.335 -39.931* -73.389* -17.167** -28.278** -0.069 3.884 

P2 × P3 -0.087 -2.394 -0.160 70.528*** 28.069 20.583** 7.597 -0.403 1.463 

P2 × P4 0.180 -4.310* 0.024 -6.722 92.236** -1.333 28.722** 0.556 3.888 

P2 × P5 0.504** 4.148* -1.051 -1.097 18.903 -4.583 1.056 0.639 14.547 

P2 × P6 0.052 -0.602 3.457*** -27.931 -43.472 5.583 1.889 0.222 -7.270 

P2 × P7 -0.921*** -1.185 1.103 -61.514** -130.722*** -13.500* -33.736*** 0.556 -19.137* 

P2 × P8 -0.606*** 1.523 -1.864* -51.972* -85.264** -22.792*** -32.819*** 0.431 4.334 

P2 × P9 -0.254 -3.394 -0.826 8.361 41.111 -2.625 7.597 -0.319 -4.253 

P2 × P10 0.521*** 2.898 -1.247 15.819 51.319 -0.375 8.681 -0.861 1.034 

P3 × P4 -1.179*** -7.185*** -1.222 -40.472* -45.889 -17.250** -19.319* 0.764 -6.257 

P3 × P5 0.390* 2.940 1.669* 2.819 -6.556 8.500 4.681 -0.153 1.134 

P3 × P6 0.886*** 3.856* 1.144 49.986* 45.403 20.333** 19.847* 0.431 24.118** 

P3 × P7 0.163 1.606 2.024** -37.264 -35.514 -3.417 -1.778 0.431 2.818 

P3 × P8 -0.009 0.315 -1.043 1.944 21.944 -4.375 2.139 -0.028 -21.545* 

P3 × P9 0.363* 6.398** -0.539 -64.389** -44.014 -21.208** -14.778 -0.778 -4.499 

P3 × P10 -0.877*** -8.310*** -2.493** 29.069 35.194 -1.292 -0.361 -0.319 1.822 

P4 × P5 0.382* 5.023* 0.186 -5.764 -11.056 -2.417 -4.194 -0.528 1.493 

P4 × P6 0.363* 1.606 -0.072 53.736** 19.903 16.750* 6.639 -0.944 -6.757 

P4 × P7 -0.131 -0.644 -0.126 -10.847 -10.347 -3.000 -2.653 -0.944 -3.991 

P4 × P8 -0.164 2.398 -0.926 -3.972 -42.556 -4.292 -16.736 -0.069 2.480 

P4 × P9 -0.312* 2.148 -1.222 -29.972 -58.514* -13.458* -22.986* 0.181 -0.307 

P4 × P10 0.412** 2.106 0.324 6.153 14.361 2.125 6.097 -0.028 0.647 

P5 × P6 -0.458** -1.269 -0.181 -17.306 -47.431 -5.167 -14.028 -0.861 -9.032 

P5 × P7 -0.775*** -9.519*** -0.435 17.111 48.986 3.750 14.681 0.472 -15.466 

Parent/cross GY NP W100G NGPE NGPP GWPE GWPP AD PH 
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Isolated drought (cont.)             

Crosses SCA effects estimates 

P5 × P8 0.812*** 1.190 0.999 67.986** 79.111** 24.792*** 28.264** 0.347 6.138 

P5 × P9 -0.110 -0.060 0.503 -7.014 -21.181 1.292 -3.653 -0.069 2.051 

P5 × P10 -0.156 1.898 -0.718 -32.889 -34.972 -13.792* -14.903 0.056 -0.562 

P6 × P7 -0.195 -1.269 -3.960*** 4.278 70.278* -15.750* -0.486 1.389* 4.918 

P6 × P8 0.093 -0.227 1.740* -45.847* -8.264 -6.042 4.431 -0.736 1.555 

P6 × P9 -0.246 0.856 -0.656 -13.847 -36.222 -8.208 -14.153 -0.153 10.968 

P6 × P10 -0.259 -4.519 2.457** -32.056 -7.014 -1.958 8.264 1.306* -5.745 

P7 × P8 0.152 3.190 1.319 -17.764 -40.181 -0.125 -6.194 0.597 17.488* 

P7 × P9 0.850*** 2.273 -1.143 114.236*** 83.528 29.375*** 20.222* -0.153 5.334 

P7 × P10 0.489** 6.231** 0.303 -13.972 -38.931 -3.042 -10.028 -0.694 9.222 

P8 × P9 0.062 -2.019 -0.076 12.778 44.319 1.417 11.472 -0.944 -2.328 

P8 × P10 0.047 -2.394 0.636 30.236 26.528 11.667 10.556 -0.486 -4.874 

P9 × P10 0.019 -3.310 2.074** 37.569 26.903 23.833*** 19.972* 1.097 -5.428 

* = significant at 0.05; ** = significant at 0.01; *** = significant at 0.001. 

Appendix 0-3. General and specific combining ability effects for grain yield and other traits of ten maize inbreds evaluated under isolated heat stress 
conditions in Chókwè 2015. 

Parent/cross GY EPP W100G NGPE NGPP GWPE GWPP GT AD ASI PH EPO BHC 

Parents GCA effects estimates 

P1 -0.094 0.005 -0.804** 10.025 13.083 -0.958 -0.383 -0.104 -1.142*** -0.425 -9.813** -0.025*** 2.590 

P2 0.181 0.043* -2.321*** 46.900*** 59.083*** 2.500 6.242* -0.416*** 0.650* 0.867** 2.546 0.016** -11.723*** 

P3 0.572*** 0.010 1.783*** 29.608*** 30.875*** 15.250*** 15.408*** 0.229** 0.358 0.033 12.104** 0.014* 2.490 

P4 -0.419** -0.041* 0.983*** -45.017*** -57.708*** -8.458*** -12.050*** -0.375*** 0.900*** -0.342 0.304 0.037*** 3.236 

P5 -0.467*** -0.036 0.458 -32.183*** -44.542*** -7.125*** -10.383*** -0.104 -0.767** -0.008 -4.471 -0.022*** 13.982*** 

P6 -0.035 0.038* -1.508*** 3.900 19.542* -4.458** 0.117 0.000 1.108*** 1.242*** 3.813 0.019** 0.515 

P7 -0.040 -0.005 0.375 -5.183 -6.917 0.167 -0.508 0.333*** -0.350 0.117 2.558 0.026*** -12.377*** 

P8 -0.284* -0.012 0.1208333 -29.642*** -31.208*** -6.958*** -7.550** 0.104 0.400 0.492 -8.525* -0.027*** -0.256 

P9 0.539*** -0.016 -0.929* 54.900*** 44.042*** 11.208*** 8.867*** 0.479*** 0.483 0.325 8.225* 0.002 12.219*** 

P10 0.047 0.013 1.842*** -33.308*** -26.250** -1.167 0.242 -0.146* -1.642*** -2.300*** -6.742 -0.041*** -10.677*** 
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Parent/cross GY EPP W100G NGPE NGPP GWPE GWPP GT AD ASI PH EPO BHC 

Isolated heat (cont.)             

Crosses SCA effects estimates 

P1 × P2 0.285 0.058 -1.623* 34.912* 62.167** 1.088 7.394 0.336 -0.005 -0.523 -4.144 0.010 12.175* 

P1 × P3 0.167 -0.049 2.039** -16.796 -39.625 4.671 -2.440 0.023 -0.380 -0.356 1.131 -0.014 -5.270 

P1 × P4 0.184 0.042 1.373 -8.838 3.625 3.380 6.685 -0.373* 0.412 0.685 2.997 0.029 25.917*** 

P1 × P5 -1.078** -0.110 -2.769*** -29.005 -64.208** -15.620*** -22.981*** 0.023 -0.255 -0.315 -9.294 -0.005 -21.429*** 

P1 × P6 1.143*** 0.079 -1.169 97.579*** 130.708*** 18.713*** 26.519*** -0.081 0.537 1.765 -3.244 -0.019 -0.629 

P1 × P7 -0.355 -0.002 0.614 -26.671 -28.167 -3.912 -4.523 0.086 -0.671 -1.106 -8.524 -0.033 -17.437** 

P1 × P8 -0.018 -0.004 1.835* -38.546* -40.875 -3.454 -4.148 0.148 -0.088 -0.481 9.860 0.033 9.342 

P1 × P9 -0.437 -0.010 -0.148 -25.421 -31.792 -7.620 -8.231 -0.060 -0.171 -0.315 4.876 -0.016 -2.500 

P1 × P10 0.108 -0.003 -0.152 12.787 8.167 2.755 1.727 -0.102 0.620 0.645 6.343 0.014 -0.170 

P2 × P3 -0.541 -0.064 -2.111** 21.329 -5.958 -4.120 -10.065 0.502** 0.829 -1.315 -5.194 0.022 -11.625* 

P2 × P4 0.349 0.044 1.923** -18.713 -3.375 3.588 8.060 -0.060 0.620 -0.273 12.638 -0.008 20.730*** 

P2 × P5 0.131 0.039 -1.686* 10.787 24.792 -3.745 0.394 0.002 0.954 0.727 -1.186 -0.006 -5.983 

P2 × P6 -0.998** -0.058 0.581 -65.296*** -85.958*** -13.745*** -19.773** -0.102 -0.255 0.810 -10.703 0.040 -6.750 

P2 × P7 0.264 0.014 1.598 17.787 24.167 11.630** 13.185* -0.435* 0.204 0.935 8.251 0.006 0.342 

P2 × P8 -0.192 -0.005 0.919 -53.088*** -55.542* -8.912* -10.106 -0.206 -1.546 -0.106 7.435 -0.028 -3.645 

P2 × P9 1.295*** -0.007 0.869 88.370*** 81.208*** 24.255*** 22.477*** 0.086 -0.963 -0.273 4.785 -0.010 -3.954 

P2 × P10 -0.593 -0.020 -0.469 -36.088* -41.500 -10.037* -11.565 -0.123 0.162 0.019 -11.882 -0.027 -1.291 

P3 × P4 -1.116** 0.021 -1.215 -74.088*** -60.833** -25.829*** -22.106*** 0.127 0.245 1.227 -15.519 -0.015 -9.183 

P3 × P5 -0.284 -0.008 0.677 -29.588* -31.333 -5.829 -7.440 -0.310 1.245 1.227 10.922 0.013 17.305** 

P3 × P6 1.227*** 0.081 2.777*** 17.329 51.583* 16.838*** 26.727*** 0.419* 0.370 -0.690 14.506 0.022 5.471 

P3 × P7 -0.568 -0.046 -0.706 -24.588 -41.625 -9.787* -14.648* -0.414* -0.505 -0.898 6.193 -0.001 14.130* 

P3 × P8 1.056** 0.014 -1.119 117.537*** 114.667*** 27.671*** 27.394*** -0.352 -0.588 0.727 -5.257 -0.015 -7.158 

P3 × P9 0.594 0.056 0.798 -3.338 23.083 3.838 10.310 0.440* -0.338 0.227 7.193 0.002 3.700 

P3 × P10 -0.535 -0.004 -1.140 -7.796 -9.958 -7.454 -7.731 -0.435* -0.880 -0.148 -13.974 -0.018 -7.370 

P4 × P5 0.430 -0.004 1.444* 45.370** 43.917 17.213*** 15.352* 0.127 -0.296 -0.731 6.856 -0.014 -5.175 

P4 × P6 -0.422 -0.057 -1.256 -18.713 -39.833 -8.787* -13.482* -0.144 -0.171 -0.315 1.272 -0.008 -9.875 

Parent/cross GY EPP W100G NGPE NGPP GWPE GWPP GT AD ASI PH EPO BHC 
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Isolated heat (cont.)             

Crosses SCA effects estimates 

P4 × P7 -0.107 -0.055 -1.806* 28.037 5.292 0.921 -4.190 0.190 -0.380 -0.856 -4.407 0.002 2.717 

P4 × P8 -0.250 -0.004 0.348 0.829 1.917 0.380 0.519 0.419 0.204 0.435 -6.090 -0.005 -3.204 

P4 × P9 0.014 -0.013 0.431 -0.713 -6.000 2.213 -0.231 -0.289 -0.880 -0.731 1.426 0.002 -13.512* 

P4 × P10 0.919** 0.027 -1.240 46.829** 55.292* 6.921 9.394 0.002 0.245 0.560 0.826 0.015 -8.416 

P5 × P6 -0.564 -0.003 1.035 -80.880*** -78.333*** -17.120*** -16.815** -0.081 -0.838 0.352 -5.419 -0.005 8.446 

P5 × P7 -0.032 0.006 0.452 -3.796 1.792 0.588 1.477 0.086 -0.380 0.144 -7.665 -0.019 12.471* 

P5 × P8 1.388*** 0.060 3.173*** 42.995** 60.750** 23.380*** 27.852*** 0.148 -0.463 -1.565 12.018 0.027 -2.383 

P5 × P9 -0.701* -0.052 -2.644*** 16.454 -7.833 -6.454 -11.898 0.106 0.454 0.269 -14.099 0.018 3.509 

P5 × P10 0.711* 0.072 0.319 27.662 50.458* 7.588 14.060* -0.102 -0.421 -0.106 7.868 -0.009 -6.762 

P6 × P7 0.569 0.066 -0.615 34.787* 56.708* 6.255 11.977 0.315 0.079 -0.440 9.485 0.007 -12.795* 

P6 × P8 0.386 -0.027 -1.094 73.912*** 54.667* 14.046*** 9.019 -0.123 -0.005 -1.148 8.768 -0.004 -2.750 

P6 × P9 -1.440*** -0.056 -2.577*** -78.630*** -95.583*** -30.120*** -33.731*** -0.498** 0.245 -0.315 -13.349 -0.010 4.242 

P6 × P10 0.099 -0.025 2.319** 19.912 6.042 13.921*** 9.560 0.294 0.037 -0.023 -1.315 -0.023 14.638** 

P7 × P8 -0.569 -0.008 -0.477 -54.005*** -52.875* -16.579*** -16.023* -0.123 1.787 1.977 -13.678 0.009 5.075 

P7 × P9 0.249 0.010 0.073 3.787 7.208 1.588 2.227 0.336 0.370 0.810 1.839 0.003 -3.266 

P7 × P10 0.550 0.014 0.869 24.662 27.500 9.296* 10.519 -0.039 -0.505 -0.565 8.506 0.027 -1.237 

P8 × P9 -0.057 0.054 0.060 -1.088 21.500 -0.620 5.269 -0.269 0.620 0.435 -4.678 -0.014 2.946 

P8 × P10 -1.742*** -0.079 -3.644*** -88.546*** -104.208*** -35.912*** -39.773*** 0.356 0.079 -0.273 -8.378 -0.004 1.775 

P9 × P10 0.482 0.019 3.139*** 0.579 8.208 12.921** 13.810* 0.148 0.662 -0.106 12.006 0.024 8.834 

* = significant at 0.05; ** = 0.01; *** = 0.001; 

  



207 

 

Appendix 0-4. General and specific combining ability effects for grain yield and other traits of ten maize inbreds evaluated under combined heat and drought 
stress conditions in Chókwè 2015. 

Parent/cross GY NP GWPE GWPP GT AD ASI PH EPO PA SLODG BHC EA 

             

Parents GCA effects estimates 

P1 -0.089 -0.583 -1.850 -0.650 0.069 -0.483 0.017 -6.573*** -0.001 0.196 -1.138 1.455 0.054 

P2 -0.034 -0.125 -3.308 -0.900 -0.398*** 0.683* -0.025 -1.198 0.007 0.175 1.162 -2.245 0.013 

P3 -0.405*** -1.625 -3.933 -7.192** -0.127 0.017 0.183 3.635 -0.003 0.175 1.383 -0.595 0.075 

P4 0.143 2.625** 3.942 2.100 -0.627*** 0.475 -0.025 0.868 0.043*** -0.075 0.433 3.005* -0.258** 

P5 -0.045 -2.500* -3.683 -0.400 -0.106 -0.108 0.100 -8.957*** -0.024*** 0.008 -2.034 8.072*** 0.304*** 

P6 0.066 -0.292 -0.975 0.225 0.040 1.350*** -0.108 14.293*** -0.010 -0.304** 0.103 -1.849 0.117 

P7 0.316*** 1.792 6.817* 9.142*** 0.269** -0.317 0.058 2.577 0.016** -0.200 -1.930 -1.62 -0.238** 

P8 -0.101 2.083* -6.392* -6.608* 0.382*** 0.475 0.225 -2.632 -0.007 0.196 1.153 -2.495 0.138 

P9 0.083 0.375 4.233 0.725 0.603*** -0.150 0.225 8.302*** 0.005 -0.117 3.603** 0.222 -0.071 

P10 0.065 -1.750 5.150 3.558 -0.106 -1.942 -0.051 -10.315*** -0.026*** -0.054 -2.734* -3.949** -0.133 

             

Crosses SCA effects estimates 

P1 × P2 0.255 3.560 -4.931 4.972 0.419 0.074 0.407 -5.619 -0.007 -0.197 2.017 -2.128 -0.019 

P1 × P3 0.104 -2.273 6.028 7.931 -0.185 -0.593 -0.051 5.614 -0.011 0.137 -0.204 -1.978 -0.248 

P1 × P4 -0.185 0.144 -4.181 -4.694 -0.351 0.282 -0.843 -6.153 0.050** 0.053 1.679 8.789* -0.081 

P1 × P5 0.016 -2.398 12.111 2.139 -0.206 1.532 0.032 3.206 -0.016 -0.030 -3.154 -7.078* -0.144 

P1 × P6 -0.075 -1.273 -14.931 -4.819 0.315 -0.593 -0.468 1.089 -0.047** 0.282 1.108 2.843 -0.123 

P1 × P7 0.324 3.310 21.278** 5.264 -0.914*** 2.407** 0.699 11.272 0.031* -0.822** -3.325 -0.586 0.065 

P1 × P8 -0.120 1.352 -1.847 -1.653 0.874*** -2.384** 0.366 -10.853 0.021 0.116 -2.608 -1.111 0.356 

P1 × P9 0.097 -1.940 2.528 0.014 0.253 -0.426 0.116 1.614 -0.018 0.095 2.508 -0.294 -0.102 

P1 × P10 -0.416 -0.481 -16.056* -9.153 -0.206 -0.301 -0.009 -0.169 -0.004 0.366 1.979 1.543 0.294 

P2 × P3 -0.163 -4.065 -9.847 -7.153 0.615** 0.907 0.532 -3.628 0.012 0.324 1.696 -3.511 0.127 

P2 × P4 -0.062 -3.648 8.944 0.222 0.282 0.449 0.074 4.539 -0.011 0.074 -0.986 18.756*** -0.039 

P2 × P5 -0.112 -0.856 0.236 -2.944 -0.239 -0.301 0.241 0.364 -0.010 0.157 -1.454 -10.011** 0.231 

P2 × P6 -0.051 1.269 2.861 -3.903 -0.218 -0.426 0.074 -5.353 0.026 0.303 -3.725 -0.957 0.252 

P2 × P7 -0.275 -1.815 -7.931 -3.486 -0.281 0.241 -0.259 4.564 0.000 -0.134 1.942 -3.553 -0.060 
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Parent/cross GY NP GWPE GWPP GT AD ASI PH EPO PA SLODG BHC EA 

Combined heat and drought (cont.) 

Crosses SCA effects estimates 

P2 × P8 -0.162 4.227 -4.389 -6.403 -0.560** -0.884 0.449 8.906 -0.013 -0.197 4.258 1.756 0.065 

P2 × P9 0.059 2.269 -3.014 5.931 -0.114 -0.259 0.324 -2.228 0.007 -0.218 -1.658 0.072 0.106 

P2 × P10 0.511* -0.940 18.069* 12.764 0.094 0.199 -0.801 -1.5444 -0.005 -0.113 -2.088 -0.424 -0.664** 

P3 × P4 0.106 -0.148 6.236 3.847 0.344 -0.218 0.032 1.439 -0.001 -0.259 -1.108 -6.194 0.065 

P3 × P5 0.357 3.644 -1.806 3.014 -0.510* -0.968 -0.801 3.331 0.017 -0.509 -1.342 12.406*** 0.002 

P3 × P6 -0.090 2.102 -1.181 -3.944 0.178 0.241 -0.801 14.347** -0.018 0.137 -0.513 -4.174 0.023 

P3 × P7 -0.268 2.019 -18.972* -10.528 -0.052 -0.759 -0.468 3.197 -0.003 -0.134 2.621 2.164 0.211 

P3 × P8 0.251 -0.606 5.903 10.889 0.003 0.116 0.074 -14.728** 0.003 -0.197 3.704 -2.661 -0.331 

P3 × P9 -0.112 2.102 1.944 -6.111 -0.218 1.741* -0.426 -1.994 0.000 0.449 -5.146 5.056 0.211 

P3 × P10 -0.184 -2.773 11.694 2.056 -0.176 -0.466 -0.259 -7.578 0.001 0.053 0.292 -1.107 -0.060 

P4 × P5 -0.392 0.060 -12.347 -7.944 -0.010 -0.093 0.407 -1.969 0.017 -0.093 0.508 4.239 0.002 

P4 × P6 0.010 5.185 -11.056 -6.236 0.011 -0.218 -0.384 -2.019 0.036 0.220 -4.963 -5.707 0.356 

P4 × P7 0.403 -2.898 15.153 9.847 -0.051 0.116 1.116 -8.569 -0.009 0.782* 1.138 -6.669 0.044 

P4 × P8 0.167 -0.190 8.028 7.597 0.169 0.657 -0.051 7.839 -0.046** -0.780* -2.679 -4.261 -0.164 

P4 × P9 0.067 -2.481 -2.264 2.597 -0.218 -1.384 -0.384 2.239 -0.012 0.032 6.504* -6.078 0.044 

P4 × P10 -0.114 3.977 -8.514 -5.236 -0.176 0.407 -0.009 2.656 -0.025 -0.030 -0.092 -2.874 -0.227 

P5 × P6 -0.024 -5.356 3.236 11.931 -0.176 0.366 0.491 6.739 -0.006 -0.197 5.104 -4.340 -0.039 

P5 × P7 0.035 -5.106 -2.556 8.014 0.928*** -1.968* -0.509 -9.411 -0.015 0.866** -2.129 14.031*** 0.315 

P5 × P8 -0.065 4.935 -1.014 -10.236 0.149 1.241 0.324 -2.869 0.011 -0.030 2.688 -2.828 -0.060 

P5 × P9 0.016 1.644 2.361 -1.903 0.261 0.532 0.991 7.531 0.005 -0.051 -0.396 -3.611 -0.352 

P5 × P10 0.169 3.435 -0.222 -2.069 -0.197 -0.343 -0.650 -6.919 -0.004 -0.113 0.175 -2.807 0.044 

P6 × P7 0.456 6.019 16.403* 8.389 -0.218 0.574 -0.093 -6.261 -0.006 -0.488 1.667 0.051 -0.831*** 

P6 × P8 0.135 -1.940 5.278 5.806 -0.164 -0.216 -0.718 -1.986 0.010 -0.051 -2.150 6.226 -0.206 

P6 × P9 -0.044 -3.231 3.986 0.472 -0.051 -0.593 1.074 -9.119 0.011 -0.238 6.033 1.310 0.002 

P6 × P10 -0.318 -2.773 -4.597 -7.694 0.324 0.866 0.282 2.564 -0.005 0.032 -2.563 4.747 0.565* 

P7 × P8 -0.219 -5.690 -9.847 -3.778 -0.226 0.116 0.157 7.597 -0.002 0.345 0.217 -1.436 0.148 

P7 × P9 -0.570* 2.019 -14.139 -15.778 0.219 -0.593 1.032 -7.536 -0.005 -0.176 -2.100 -2.153 0.356 
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Parent/cross GY NP GWPE GWPP GT AD ASI PH EPO PA SLODG BHC EA 

Combined heat and drought (cont.) 

Crosses SCA effects estimates 

P7 × P10 0.115 2.144 0.611 2.056 0.594** -0.134 -1.801 5.147 0.009 -0.238 -0.029 -1.849 -0.248 

P8 × P9 0.131 0.060 3.736 2.639 -0.060 1.282 -0.176 4.872 -0.002 0.428 -5.750 3.622 -0.185 

P8 × P10 -0.119 -2.148 -5.847 -4.861 -0.185 0.074 -0.301 1.222 0.019 0.366 2.321 0.693 0.377 

P9 × P10 0.357 -0.440 4.861 12.139 -0.072 -0.301 0.366 4.622 0.013 -0.322 0.004 2.076 -0.081 

* = significant at 0.05; ** = 0.01; *** = 0.001; 
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Appendices from chapter 5 

Appendix 5-1. Grain yield and other agronomic traits of testcross hybrids evaluated under unstressed 
conditions at Chókwè in 2014/15 main season. 

Entry Testcross Grain Yield Anth ASI Plant Ear Ears/ 

    GW Rank Date   Height Position Plant 

    t/ha Rank d d cm 0-1 # 

         

1 TCL1/TESTER-A 5.72 35 52.5 1.7 257.8 0.58 1.08 

2 TCL2/TESTER-A 5.42 58 48.6 4.8 253.8 0.52 1.09 

3 TCL3/TESTER-A 5.58 41 54.5 2.8 245.8 0.57 1.06 

4 TCL4/TESTER-A 6.76 8 56.2 1.5 275.6 0.56 1.07 

5 TCL6/TESTER-A 6.35 19 52.4 3.0 248.4 0.56 1.05 

6 TCL7/TESTER-A 4.58 96 52.4 5.8 245.4 0.52 1.10 

7 TCL9/TESTER-A 6.09 27 51.2 2.4 233.2 0.56 1.06 

8 TCL10/TESTER-A 6.06 29 52.0 2.5 240.9 0.52 1.07 

9 TCL11/TESTER-A 4.91 81 50.8 3.3 250.6 0.52 1.11 

10 TCL12/TESTER-A 5.89 32 53.0 4.0 267.8 0.56 1.08 

11 TCL14/TESTER-A 5.50 48 53.4 1.5 268.1 0.57 1.07 

12 TCL18/TESTER-A 6.38 17 52.6 2.3 269.1 0.57 1.02 

13 TCL21/TESTER-A 5.30 65 53.2 2.8 250.3 0.61 1.07 

14 TCL23/TESTER-A 5.26 68 55.4 3.6 267.5 0.58 1.07 

15 TCL24/TESTER-A 4.43 106 52.5 3.2 248.6 0.52 1.11 

16 TCL25/TESTER-A 5.36 59 54.6 0.7 244.5 0.54 1.07 

17 TCL26/TESTER-A 6.77 7 54.5 1.5 262.3 0.61 0.99 

18 TCL27/TESTER-A 5.25 69 54.3 1.7 266.4 0.58 1.06 

19 TCL28/TESTER-A 8.13 1 55.4 1.9 258.6 0.54 1.02 

20 TCL29/TESTER-A 5.71 36 54.9 2.3 267.7 0.61 1.05 

21 TCL31/TESTER-A 6.63 11 53.6 3.6 241.2 0.59 1.05 

22 TCL33/TESTER-A 5.59 40 54.8 2.0 272.5 0.61 1.06 

23 TCL34/TESTER-A 4.78 88 54.3 2.1 234.4 0.52 1.12 

24 TCL35/TESTER-A 6.16 23 54.3 2.3 260.6 0.63 1.04 

25 TCL36/TESTER-A 7.01 5 56.1 1.2 256.2 0.56 1.05 

26 TCL37/TESTER-A 3.85 120 57.0 2.4 233.8 0.54 1.15 

27 TCL39/TESTER-A 6.65 10 53.8 1.8 266.9 0.61 1.29 

28 TCL40/TESTER-A 5.45 53 54.8 2.4 249.6 0.56 1.20 

29 TCL41/TESTER-A 2.32 128 59.1 2.1 244.1 0.50 0.94 

30 TCL42/TESTER-A 4.78 89 56.3 2.9 222.6 0.53 1.06 

31 TCL1/TESTER-B 4.11 111 51.0 2.3 240.8 0.58 1.10 

32 TCL2/TESTER-B 4.53 100 48.6 4.0 228.6 0.56 1.09 

33 TCL3/TESTER-B 3.11 126 54.0 1.9 225.1 0.61 1.02 

34 TCL4/TESTER-B 3.89 119 53.8 2.1 266.5 0.58 1.04 

35 TCL6/TESTER-B 5.00 78 52.1 2.9 239.5 0.64 1.11 

36 TCL7/TESTER-B 6.54 14 53.1 2.9 248.2 0.59 1.04 

37 TCL9/TESTER-B 4.75 90 52.7 1.6 230.5 0.60 1.06 

38 TCL10/TESTER-B 4.49 103 51.8 3.2 231.4 0.59 1.10 

39 TCL11/TESTER-B 2.75 127 53.2 2.4 224.8 0.60 1.11 

40 TCL12/TESTER-B 4.86 83 53.3 3.5 246.1 0.59 1.12 

41 TCL14/TESTER-B 5.70 37 51.6 2.5 239.9 0.61 1.13 

42 TCL18/TESTER-B 4.94 80 55.1 0.9 262.0 0.61 1.06 

43 TCL21/TESTER-B 5.28 66 50.0 2.4 224.7 0.53 1.08 

44 TCL23/TESTER-B 7.67 3 53.4 2.7 232.7 0.64 1.08 
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Entry Testcross Grain Yield Anth ASI Plant Ear Ears/ 

    GW Rank Date   Height Position Plant 

    t/ha Rank d d cm 0-1 # 

         

45 TCL24/TESTER-B 5.49 50 50.6 3.4 226.9 0.56 1.06 

46 TCL25/TESTER-B 5.54 42 51.9 1.6 233.1 0.58 1.09 

47 TCL26/TESTER-B 6.18 21 54.8 1.8 246.7 0.62 1.07 

48 TCL27/TESTER-B 4.88 82 56.3 1.4 254.2 0.61 1.06 

49 TCL28/TESTER-B 5.43 54 55.0 0.9 243.5 0.59 1.13 

50 TCL29/TESTER-B 6.10 26 55.1 -0.5 255.4 0.58 1.20 

51 TCL31/TESTER-B 5.53 44 53.1 2.7 220.9 0.65 1.08 

52 TCL33/TESTER-B 5.46 51 55.1 2.0 270.7 0.66 1.06 

53 TCL34/TESTER-B 5.01 76 51.0 1.7 221.9 0.59 1.12 

54 TCL35/TESTER-B 5.17 74 55.2 2.0 229.8 0.62 1.15 

55 TCL36/TESTER-B 6.59 13 56.0 0.7 241.9 0.57 1.08 

56 TCL37/TESTER-B 6.13 24 53.0 2.3 228.3 0.59 1.03 

57 TCL39/TESTER-B 6.46 15 56.1 1.6 268.5 0.62 1.08 

58 TCL40/TESTER-B 6.18 22 54.2 2.5 244.0 0.62 1.13 

59 TCL41/TESTER-B 4.03 114 55.8 -0.1 260.1 0.64 1.15 

60 TCL42/TESTER-B 4.59 95 54.8 1.1 229.0 0.60 1.08 

61 TCL1/TESTER-AB 5.30 63 50.2 1.8 249.8 0.58 1.06 

62 TCL2/TESTER-AB 4.53 101 50.2 3.0 235.3 0.54 1.11 

63 TCL3/TESTER-AB 4.96 79 52.8 1.3 250.3 0.57 1.07 

64 TCL4/TESTER-AB 3.27 124 53.5 2.0 265.4 0.57 1.14 

65 TCL6/TESTER-AB 5.35 61 50.7 2.9 230.8 0.62 1.13 

66 TCL7/TESTER-AB 5.42 57 52.0 2.6 232.5 0.52 1.06 

67 TCL9/TESTER-AB 5.95 31 50.2 2.5 224.2 0.60 1.08 

68 TCL10/TESTER-AB 4.69 93 50.1 2.9 228.8 0.52 1.11 

69 TCL11/TESTER-AB 7.57 4 51.7 6.0 239.5 0.60 1.27 

70 TCL12/TESTER-AB 3.95 118 51.0 5.5 248.6 0.56 1.15 

71 TCL14/TESTER-AB 5.86 33 53.3 1.4 250.5 0.60 1.06 

72 TCL18/TESTER-AB 4.06 112 51.8 3.8 260.1 0.60 1.14 

73 TCL21/TESTER-AB 5.46 52 53.8 0.9 229.0 0.55 1.07 

74 TCL23/TESTER-AB 3.49 123 53.8 2.3 262.5 0.58 1.13 

75 TCL24/TESTER-AB 4.84 85 51.6 1.9 241.3 0.52 1.12 

76 TCL25/TESTER-AB 5.17 73 51.4 -0.5 232.1 0.51 1.12 

77 TCL26/TESTER-AB 4.42 107 54.4 1.4 241.8 0.57 1.12 

78 TCL27/TESTER-AB 4.66 94 53.4 1.1 248.0 0.60 1.05 

79 TCL28/TESTER-AB 3.97 116 54.6 2.4 251.7 0.52 1.15 

80 TCL29/TESTER-AB 5.24 70 52.2 1.1 247.1 0.61 1.07 

81 TCL31/TESTER-AB 4.73 91 54.2 2.0 226.3 0.58 1.06 

82 TCL33/TESTER-AB 5.30 64 57.1 1.8 274.2 0.60 1.07 

83 TCL34/TESTER-AB 6.94 6 51.7 2.6 239.8 0.54 1.29 

84 TCL35/TESTER-AB 4.85 84 54.4 1.3 244.9 0.59 1.09 

85 TCL36/TESTER-AB 6.12 25 53.5 1.9 244.6 0.53 1.23 

86 TCL37/TESTER-AB 6.19 20 52.6 3.3 246.5 0.56 1.21 

87 TCL39/TESTER-AB 5.61 39 51.8 5.0 240.8 0.55 1.24 

88 TCL40/TESTER-AB 6.59 12 54.6 0.2 251.3 0.58 1.02 

89 TCL41/TESTER-AB 5.35 60 53.5 1.4 256.9 0.54 1.07 

90 TCL42/TESTER-AB 3.76 121 53.6 2.3 241.6 0.58 1.19 

91 TCL1/TESTER-X 4.83 86 54.2 2.3 254.1 0.63 1.07 

92 TCL2/TESTER-X 3.72 122 51.5 2.3 232.0 0.54 1.17 

93 TCL3/TESTER-X 5.53 43 52.2 3.8 247.1 0.56 1.07 

94 TCL4/TESTER-X 3.16 125 55.9 1.9 270.9 0.62 1.15 
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Entry Testcross Grain Yield Anth ASI Plant Ear Ears/ 

    GW Rank Date   Height Position Plant 

    t/ha Rank d d cm 0-1 # 

         

95 TCL6/TESTER-X 4.04 113 52.3 3.9 260.1 0.60 1.09 

96 TCL7/TESTER-X 5.67 38 51.8 3.5 256.1 0.60 1.07 

97 TCL9/TESTER-X 6.36 18 52.5 2.0 240.5 0.54 1.03 

98 TCL10/TESTER-X 5.51 46 52.5 2.1 248.2 0.66 1.07 

99 TCL11/TESTER-X 4.58 97 52.9 1.4 245.9 0.60 1.10 

100 TCL12/TESTER-X 5.02 75 52.9 1.8 271.5 0.60 1.11 

101 TCL14/TESTER-X 5.49 49 52.1 1.8 264.5 0.63 1.06 

102 TCL18/TESTER-X 5.28 67 51.6 2.9 270.5 0.60 1.06 

103 TCL21/TESTER-X 4.55 98 52.9 2.3 260.8 0.62 1.11 

104 TCL23/TESTER-X 3.96 117 52.0 5.0 267.7 0.58 1.13 

105 TCL24/TESTER-X 4.45 105 49.7 3.4 262.4 0.55 1.12 

106 TCL25/TESTER-X 5.00 77 52.4 1.6 255.2 0.52 1.06 

107 TCL26/TESTER-X 7.72 2 54.3 1.1 265.0 0.59 1.00 

108 TCL27/TESTER-X 4.23 110 51.9 5.4 269.2 0.63 1.10 

109 TCL28/TESTER-X 6.03 30 54.0 2.8 272.6 0.57 1.04 

110 TCL29/TESTER-X 4.83 87 52.1 2.9 250.9 0.61 1.09 

111 TCL31/TESTER-X 4.26 109 51.2 2.9 259.6 0.65 1.10 

112 TCL33/TESTER-X 5.50 47 57.2 1.1 279.9 0.66 1.09 

113 TCL34/TESTER-X 5.53 45 52.3 1.7 258.7 0.56 1.06 

114 TCL35/TESTER-X 6.09 28 55.1 2.1 264.6 0.60 1.16 

115 TCL36/TESTER-X 5.19 72 52.8 3.2 239.7 0.59 1.11 

116 TCL37/TESTER-X 6.72 9 52.1 3.1 247.5 0.61 1.08 

117 TCL39/TESTER-X 3.98 115 56.0 2.5 287.7 0.65 1.08 

118 TCL40/TESTER-X 4.30 108 53.3 3.5 262.2 0.58 1.12 

119 TCL41/TESTER-X 4.50 102 54.1 1.7 271.1 0.58 1.05 

120 TCL42/TESTER-X 4.69 92 54.0 2.3 257.4 0.61 1.10 

121 TESTER-B/TESTER-AB 4.46 104 56.1 1.8 257.2 0.61 1.42 

122 TESTER-A/TESTER-AB 5.79 34 54.1 1.5 241.3 0.61 1.08 

123 TESTER-A/TESTER-X 4.54 99 54.9 4.5 254.1 0.60 1.12 

124 TESTER-AB/TESTER-B 5.33 62 54.6 1.2 241.5 0.60 1.08 

125 TESTER-B/TESTER-X 5.42 55 54.3 4.4 258.1 0.58 1.08 

126 TESTER-AB/TESTER-X 5.21 71 51.6 4.5 249.7 0.59 1.09 

127 TESTER-A1/TESTER-A2 5.42 56 53.1 3.1 241.1 0.56 1.11 

128 TESTER-B1/TESTER-B2 6.40 16 56.0 2.1 271.1 0.67 1.11 

         
Mean   5.25 65 53.3 2.4 249.7 0.58 1.10 

LSD                                                                      2.15 37 2.5 2.4 17.4 0.05 0.10  

MSe        1.21   1.7 1.5 94.1 0.00 0.00 
 

CV        20.99   2.4 50.9 3.9 4.68 4.65 
 

p        0.000   0.000 0.000 0.000 0.000 0.000 
 

Min         2.32 1 48.6 -0.5 220.9 0.50 0.94 
 

Max         8.13 128 59.1 6.0 287.7 0.67 1.42 
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Appendix 5-2. Grain yield and other agronomic traits of testcross hybrids evaluated under unstressed 
conditions at Chókwè in 2014/15 main season. 

Entry Testcross Grain Yield Anth ASI Plant Ear Ears/ 

    GW Rank Date   Height Position Plant 

    t/ha Rank d d cm 0-1 # 

         
1 TCL1/TESTER-A 2.44 42 56.5 9.4 259.9 0.64 1.09 

2 TCL2/TESTER-A 2.44 44 56.7 9.3 245.1 0.55 1.05 

3 TCL3/TESTER-A 2.43 46 59.6 8.5 244.2 0.59 1.03 

4 TCL4/TESTER-A 2.56 31 59.1 5.0 273.2 0.56 1.04 

5 TCL6/TESTER-A 1.80 101 58.0 7.4 250.1 0.58 1.07 

6 TCL7/TESTER-A 2.84 8 59.6 6.7 245.5 0.53 1.09 

7 TCL9/TESTER-A 1.84 100 56.9 6.5 237.0 0.55 1.03 

8 TCL10/TESTER-A 2.70 21 59.3 7.0 247.1 0.58 1.09 

9 TCL11/TESTER-A 2.37 54 55.5 9.6 253.4 0.51 1.11 

10 TCL12/TESTER-A 2.58 29 57.5 8.9 259.3 0.55 1.05 

11 TCL14/TESTER-A 2.52 36 60.0 9.0 261.8 0.55 1.01 

12 TCL18/TESTER-A 2.23 68 57.0 5.8 261.9 0.55 1.04 

13 TCL21/TESTER-A 1.48 117 59.0 4.1 262.0 0.56 0.99 

14 TCL23/TESTER-A 2.46 41 60.6 7.6 257.5 0.58 1.03 

15 TCL24/TESTER-A 2.05 85 60.4 5.4 250.1 0.48 1.02 

16 TCL25/TESTER-A 2.76 16 61.5 5.5 241.6 0.54 1.01 

17 TCL26/TESTER-A 2.41 47 60.6 4.9 264.1 0.60 1.04 

18 TCL27/TESTER-A 2.02 89 59.5 5.5 239.9 0.60 1.08 

19 TCL28/TESTER-A 2.92 6 58.1 5.9 234.0 0.59 1.10 

20 TCL29/TESTER-A 2.14 76 58.4 5.6 252.9 0.61 1.03 

21 TCL31/TESTER-A 2.74 18 57.1 7.1 252.1 0.62 1.07 

22 TCL33/TESTER-A 3.12 2 59.9 6.6 276.3 0.59 1.11 

23 TCL34/TESTER-A 2.64 25 56.5 6.9 240.5 0.54 1.05 

24 TCL35/TESTER-A 2.80 11 59.4 5.4 245.1 0.66 1.07 

25 TCL36/TESTER-A 2.80 12 54.5 6.0 259.4 0.55 1.02 

26 TCL37/TESTER-A 1.14 125 61.3 4.0 231.9 0.57 0.89 

27 TCL39/TESTER-A 3.01 4 59.4 5.6 265.3 0.62 1.20 

28 TCL40/TESTER-A 2.64 26 61.0 3.1 246.4 0.60 1.08 

29 TCL41/TESTER-A 0.75 128 58.9 5.4 248.1 0.54 0.69 

30 TCL42/TESTER-A 1.67 110 58.6 5.5 234.2 0.56 1.08 

31 TCL1/TESTER-B 2.07 81 57.1 6.4 239.6 0.68 1.06 

32 TCL2/TESTER-B 1.98 95 60.5 6.9 225.3 0.51 1.05 

33 TCL3/TESTER-B 2.21 71 61.9 4.5 229.7 0.59 1.07 

34 TCL4/TESTER-B 1.75 104 56.4 5.5 266.2 0.61 1.08 

35 TCL6/TESTER-B 2.09 79 59.7 6.9 237.8 0.62 1.03 

36 TCL7/TESTER-B 2.67 23 57.4 8.6 245.7 0.63 1.03 

37 TCL9/TESTER-B 2.24 66 57.5 5.7 230.7 0.61 1.04 

38 TCL10/TESTER-B 2.00 92 60.0 6.1 244.5 0.55 1.10 

39 TCL11/TESTER-B 1.17 124 58.0 8.0 228.9 0.58 0.99 

40 TCL12/TESTER-B 2.35 56 59.6 6.4 245.9 0.64 1.05 

41 TCL14/TESTER-B 2.32 58 62.0 5.9 234.3 0.62 1.02 

42 TCL18/TESTER-B 2.53 34 57.0 5.5 262.5 0.61 1.01 

43 TCL21/TESTER-B 1.62 111 57.5 7.0 230.0 0.54 1.13 

44 TCL23/TESTER-B 1.25 122 56.1 7.0 237.3 0.63 0.96 

45 TCL24/TESTER-B 2.63 27 56.4 5.6 247.6 0.57 1.06 

46 TCL25/TESTER-B 2.72 19 60.0 7.6 235.6 0.57 1.07 

47 TCL26/TESTER-B 2.44 43 61.1 7.0 264.7 0.60 1.12 
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Entry Testcross Grain Yield Anth ASI Plant Ear Ears/ 

    GW Rank Date   Height Position Plant 

    t/ha Rank d d cm 0-1 # 

         
48 TCL27/TESTER-B 1.53 116 57.5 7.0 249.5 0.62 1.11 

49 TCL28/TESTER-B 2.74 17 60.3 5.2 243.7 0.59 1.08 

50 TCL29/TESTER-B 3.13 1 58.9 6.5 244.7 0.61 1.16 

51 TCL31/TESTER-B 1.57 114 60.5 6.4 221.7 0.67 1.12 

52 TCL33/TESTER-B 2.55 32 58.9 5.9 265.7 0.62 1.07 

53 TCL34/TESTER-B 2.27 63 59.0 6.1 230.9 0.61 1.03 

54 TCL35/TESTER-B 2.38 53 60.0 6.4 256.3 0.62 1.04 

55 TCL36/TESTER-B 2.54 33 59.0 4.6 235.2 0.59 1.20 

56 TCL37/TESTER-B 2.22 69 60.1 5.4 242.5 0.59 1.19 

57 TCL39/TESTER-B 1.99 94 59.5 5.5 249.7 0.68 1.08 

58 TCL40/TESTER-B 1.69 109 58.4 7.5 240.8 0.59 1.12 

59 TCL41/TESTER-B 2.46 40 60.0 6.1 265.1 0.59 1.02 

60 TCL42/TESTER-B 2.03 87 59.0 5.6 233.7 0.59 1.10 

61 TCL1/TESTER-AB 2.14 77 56.5 8.0 249.9 0.59 1.09 

62 TCL2/TESTER-AB 2.53 35 58.0 6.4 232.6 0.52 1.12 

63 TCL3/TESTER-AB 2.40 48 59.0 7.4 251.7 0.57 1.07 

64 TCL4/TESTER-AB 1.43 120 57.0 7.6 256.5 0.58 0.99 

65 TCL6/TESTER-AB 1.93 97 53.6 7.5 231.9 0.62 1.06 

66 TCL7/TESTER-AB 2.91 7 59.8 6.1 225.4 0.52 1.10 

67 TCL9/TESTER-AB 1.78 102 60.1 6.0 232.0 0.59 1.09 

68 TCL10/TESTER-AB 2.40 50 56.0 7.0 236.6 0.52 1.07 

69 TCL11/TESTER-AB 0.90 127 59.5 6.9 231.0 0.53 0.76 

70 TCL12/TESTER-AB 1.74 105 57.9 5.6 253.8 0.57 1.10 

71 TCL14/TESTER-AB 1.72 107 57.9 6.5 245.2 0.59 1.15 

72 TCL18/TESTER-AB 2.63 28 59.1 5.5 268.3 0.57 1.05 

73 TCL21/TESTER-AB 2.02 88 59.9 6.5 224.2 0.56 0.99 

74 TCL23/TESTER-AB 2.16 74 60.0 7.4 250.1 0.60 1.04 

75 TCL24/TESTER-AB 2.26 64 60.1 7.0 235.6 0.54 1.04 

76 TCL25/TESTER-AB 2.33 57 58.5 4.9 232.1 0.53 1.02 

77 TCL26/TESTER-AB 2.83 9 58.4 6.6 253.8 0.59 1.13 

78 TCL27/TESTER-AB 2.40 49 59.5 7.1 252.4 0.60 1.05 

79 TCL28/TESTER-AB 2.00 91 59.1 5.5 251.1 0.53 1.08 

80 TCL29/TESTER-AB 2.51 37 58.0 7.2 248.8 0.63 1.03 

81 TCL31/TESTER-AB 1.70 108 55.9 6.5 223.2 0.57 1.12 

82 TCL33/TESTER-AB 2.32 59 60.0 5.5 276.2 0.62 1.04 

83 TCL34/TESTER-AB 2.79 13 56.1 6.0 222.5 0.55 1.07 

84 TCL35/TESTER-AB 2.72 20 57.0 5.1 243.8 0.60 1.11 

85 TCL36/TESTER-AB 2.77 15 57.8 4.6 236.4 0.55 1.09 

86 TCL37/TESTER-AB 2.20 72 57.0 6.5 250.7 0.57 1.04 

87 TCL39/TESTER-AB 2.22 70 58.1 4.5 242.1 0.55 1.04 

88 TCL40/TESTER-AB 2.56 30 59.5 4.4 253.2 0.57 1.01 

89 TCL41/TESTER-AB 2.16 75 59.4 7.1 257.6 0.55 0.97 

90 TCL42/TESTER-AB 2.69 22 59.1 6.0 234.1 0.60 1.06 

91 TCL1/TESTER-X 2.08 80 57.1 7.1 261.2 0.58 1.00 

92 TCL2/TESTER-X 2.23 67 58.8 4.9 267.8 0.52 1.00 

93 TCL3/TESTER-X 1.53 115 58.1 6.5 256.6 0.56 1.08 

94 TCL4/TESTER-X 1.22 123 59.6 6.0 265.7 0.60 0.89 

95 TCL6/TESTER-X 2.06 83 60.0 4.8 255.5 0.61 1.08 

96 TCL7/TESTER-X 2.40 51 60.6 3.5 270.5 0.54 1.10 

97 TCL9/TESTER-X 2.28 62 60.1 4.9 253.2 0.55 1.02 
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Entry Testcross Grain Yield Anth ASI Plant Ear Ears/ 

    GW Rank Date   Height Position Plant 

    t/ha Rank d d cm 0-1 # 

         
98 TCL10/TESTER-X 2.17 73 57.0 5.1 253.4 0.64 1.04 

99 TCL11/TESTER-X 1.45 119 58.0 7.0 257.9 0.60 1.19 

100 TCL12/TESTER-X 1.61 112 57.5 5.4 252.4 0.59 1.08 

101 TCL14/TESTER-X 1.99 93 60.8 6.1 259.5 0.65 1.05 

102 TCL18/TESTER-X 1.61 113 56.9 7.6 260.8 0.62 1.15 

103 TCL21/TESTER-X 2.05 86 59.5 6.9 252.6 0.59 1.11 

104 TCL23/TESTER-X 1.98 96 57.4 8.5 266.6 0.61 1.17 

105 TCL24/TESTER-X 2.43 45 58.5 7.0 248.1 0.56 1.10 

106 TCL25/TESTER-X 2.66 24 62.0 4.0 252.6 0.56 1.04 

107 TCL26/TESTER-X 2.31 60 56.5 6.1 258.9 0.62 1.02 

108 TCL27/TESTER-X 2.47 39 59.0 6.4 257.1 0.56 1.04 

109 TCL28/TESTER-X 2.06 82 57.1 7.6 277.6 0.56 1.05 

110 TCL29/TESTER-X 2.39 52 59.0 6.9 251.9 0.60 1.02 

111 TCL31/TESTER-X 1.47 118 57.6 6.0 237.4 0.67 1.13 

112 TCL33/TESTER-X 2.02 90 58.9 3.5 283.3 0.72 0.97 

113 TCL34/TESTER-X 2.49 38 57.0 6.4 264.0 0.57 1.02 

114 TCL35/TESTER-X 2.78 14 58.2 5.0 252.9 0.65 1.06 

115 TCL36/TESTER-X 1.73 106 58.0 7.6 245.5 0.57 1.12 

116 TCL37/TESTER-X 2.25 65 61.5 4.4 253.4 0.60 1.03 

117 TCL39/TESTER-X 2.10 78 58.2 7.6 276.2 0.65 1.08 

118 TCL40/TESTER-X 1.75 103 58.0 6.5 266.7 0.61 1.07 

119 TCL41/TESTER-X 0.95 126 58.0 7.0 265.1 0.53 0.86 

120 TCL42/TESTER-X 2.05 84 59.0 5.0 258.9 0.61 1.02 

121 TESTER-B/TESTER-AB 2.37 55 60.0 7.0 258.9 0.62 1.34 

122 TESTER-A/TESTER-AB 2.95 5 57.7 7.4 262.8 0.55 1.11 

123 TESTER-A/TESTER-X 1.85 98 56.5 7.0 276.9 0.58 1.12 

124 TESTER-AB/TESTER-B 3.09 3 60.1 5.4 255.1 0.65 1.06 

125 TESTER-B/TESTER-X 1.33 121 57.6 7.6 234.6 0.63 0.96 

126 TESTER-AB/TESTER-X 1.84 99 57.0 4.9 263.7 0.57 1.05 

127 TESTER-A1/TESTER-A2 2.81 10 58.5 6.4 248.8 0.62 1.06 

128 TESTER-B1/TESTER-B2 2.29 61 58.6 5.0 269.0 0.70 1.04 

         
Mean   2.20 65 58.6 6.3 249.9 0.59 1.06 

LSD                                                                   0.74 37 1.9 2.2 16.5 0.05 0.11  

MSe   0.15   0.9 1.3 106.9 0.00 0.00 
 

CV   17.34   1.7 18.1 4.1 4.11 5.74 
 

p   0.000   0.000 0.000 0.000 0.000 0.000 
 

p   ***   *** *** *** *** *** 
 

Min   0.75 1 53.6 3.1 221.7 0.48 0.69 
 

Max   3.13 128 62.0 9.6 283.3 0.72 1.34 
 

 


