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SUMMARY 

This project involved the design, construction and commissioning of a new isothermal 

multipmpose high-pressure vapour-liquid equilibrium (HPVLE) apparatus of the static type. 

The equilibrium cell was approximately 200 cm3 in volume, and by use of a stepper motor and 

piston, was also variable in volume. The equipment had a combined pressure and temperature 

operating limit of 175 bar and 175 °C respectively. The equilibrium cell contents could be 

viewed through two pairs of illuminated sapphire windows. 

The equilibrium cell was mounted in an air-bath, which provided the isothermal environment. 

The air-bath was constructed of mild steel and was copper-lined with a Fibrefrax sandwich that 

provided more than adequate insulation to ensure that there were no temperature gradients 

induced by conduction and heat element radiation. 

The sampling method and procedures utilized in this project caused no disturbance to the 

equilibrium .condition. The liquid and vapour phases were sampled by a novel means of 

circulating representative equilibrium samples through the sample loop of a V ALCO six-port 

two-position sampling valve. The sample loop contained approximately 300 µl of sample, 

which was homogenized in jet-mixers. Analysis of the equilibrium sample was by gas 

chromatography. 

Experimental measurements of isothermal HPVLE were undertaken for the systems, carbon 

dioxide + toluene, carbon dioxide + methanol and propane + 1-propanol. In addition, to show 

the versatility of the apparatus, P-V-T measurements were undertaken for the nitrogen, propane 

and the propane + nitrogen binary system. 

Isothermal measurements were undertaken for carbon dioxide + toluene at 38 °C, 80 °C and 

118.3 °C. There was excellent agreement between literature and the data measured. 

For the carbon dioxide + methanol system, measurements were undertaken at 40 °C, 90 °C and 

100 °C. The 90 °C isotherm had not previously been measured. 

The propane+ 1-propanol system was measured at 105.1 °C and 120 °C. It was compared to the 

experimental data of Muhlbauer [1990]. There was a slight difference in the vapour 

compositions between literature and the data measured in this project. Experimental data of 

Muhlbauer [1990] showed a higher mole fraction of the volatile component (propane). 



Modeling of all the systems for the various isotherms measured were undertaken using both the 

direct and combined methods. The direct method involved the use of the Soave and Peng­

Robinson equations of state with various mixing rules e.g. van der Waals, Wong and Sandler, 

Huron-Vidal and modifications thereof. The combined method, based on a liquid phase model 

and an equation of state model for the corresponding activity and fugacity coefficients was used 

as discussed in Prausnitz et al. [1980]. 

A new combined method model was proposed that incorporated the Peng-Robinson-Stryjek­

Vera equation of state with the Wong-Sandler mixing rule together with the NRTL activity 

coefficient model. The model modeled all systems measured as well or at times better than 

current models in literature. 

P-V-T measurements undertaken for propane, nitrogen and the propane + nitrogen binary 

system illustrated the versatility of the experimental apparatus. From the measured P-V-T data, 

second virial coefficients were computed for propane and nitrogen. Second virial cross 

coefficients for the binary system, propane + nitrogen, were also calculated. 

Critical property computations were undertaken for the three binary systems measured using the 

method citied by Deiters and Schneider [1976]. The critical properties were computed by the 

Soave, Peng-Robinson and Peng-Robinson-Stryjek-Vera equations of state. 

Vapour-liquid equilibrium data measured were tested for thermodynamic consistency using the 

test suggested by Chueh et al. [1965] and residual plots. The consistency tests indicated that the 

data measured were not inconsistent. This was the findings for the carbon dioxide + toluene, 

carbon dioxide + methanol and propane + 1-propanol systems for all the isotherms measured. 
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CHAPTERONE 

INTRODUCTION 

Separation and purification processes are a core component of the chemical industry. They are 

seen as the unit operations that generate the most capital, however, they are also the ones that 

consume the major portion of both the design and operating costs of chemical plants. It is these 

unit operations where the most efficient design and optimal performance can vastly increase the 

profitability of a process. The main separation processes in use today such as distillation, gas 

absorption and extraction to name a few, are based to a large extent, on the knowledge of phase 

equilibrium between coexisting phases. Consequently, the thermodynamic modeling and 

measurement of phase equilibrium is crucial in the chemical process design, e.g. the occurrence 

of an azeotrope or a liquid-liquid phase split may require major modification and this may 

decrease the feasibility of a proposed process scheme. 

Engineers are continually striving to obtain more economical separation methods and 

conditions as products get more complex in nature and begin to push the envelope of proven 

current separation technology. The rapidly developing technology of supercritical technology is 

testament to this. Supercritical extraction is currently being used in the food and petrochemical 

industry and is fast finding many more applications. This has led to considerable interest in high 

pressure vapour-liquid equilibrium data, initially for systems containing carbon dioxide and 

light hydrocarbons, but has now spread to a wide range of hydrocarbons. 

The measurement of high-pressure vapour-liquid equilibrium is an extremely demanding task 

and requires considerable skill and expertise. Design of equipment for the measurement of 

HPVLE must rate as one of the most difficult tasks that can be undertaken by a researcher. It is 

time consuming and expensive and requires tremendous dedication and attention to detail. The 

demanding nature of HPVLE is not only restricted to measurement, but also extends to 

theoretical analysis of the measured experimental data. 

The theoretical reduction of HPVLE data is complex and is extremely tedious and time 

consuming. It prohibited a number of researchers from performing rigorous computation for the 

reduction ofHPVLE data. With the advent of the personal computer however and with the ever­

increasing speed of processors, researcher can venture to correlate and even predict HPVLE 

data by complex theoretical and/or empirically derived equations. Their only limitation on 

accuracy of the results is the validity of the equations employed and reliability of the 
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thermodynamic information. As a result, over the last two decades the number of proposed 

thermodynamic equations, especially in the area ofVLE has snowballed. 

This project serves to further strengthen and enhance research into the area of HPVLE in the 

Thermodynamics Research Group in the School of Chemical Engineering at the University of 

Natal. The Group has some 20 years of expertise in this area. The equipment design detailed in 

this project is as a result of years of modification and improvement over previous equipment 

designs. The predecessors to the current apparatus were HPVLE designs by Bradshaw [1985] 

and Muhlbauer [1990]. The type of apparatus remains the same, i.e. it is of the static type, but 

there have been vast improvements in terms of accuracy of measurements, compactness and 

versatility, as well as being able to visually detect the equilibrium phases and having 

capabilities for measurement of vapour-liquid-liquid equilibrium. 

The theoretical aspects of HPVLE are also tackled in this project. Different methods ( direct and 

combined) for the reduction of HPVLE are discussed and undertaken for the systems measured. 

A host of activity coefficient models, equations of state and mixing rules are discussed and 

applied to the modeling of the systems measured. Consistency testing of the measured HPVLE 

is undertaken so as to infer the quality of the measured data. 

One could say that in addition to the development of a new versatile HPVLE apparatus, this 

project also served to increase the knowledge base in the field of HPVLE in terms of the latest 

experimental and theoretical developments. 



CHAPTER TWO 

LITERATURE SURVEY OF HIGH PRESSURE VLE 

EXPERIMENTAL EQUIPMENT 

2.1. PRESENTATION OF HPVLE DATA 

3 

To fully understand why VLE equipment is designed in various fashions, one has to have 

knowledge of the forms in which measured two-phase binary HPVLE data are nonnally 

presented. In most instances, the way in which the data are presented indicates the method by 

which the data were measured. The forms in which the data are normally presented graphically 

are as follows:-

a) Isobaric, T-x-y 

b) Isothermal, P-x-y 

c) Isopleth, P-T data (phase boundaries at constant composition). 

The x-y graphical representation that is common in low pressure VLE is infrequently seen in 

HPVLE. 

Schneider [1978], Streett [1983], de Swan Arons and de Loos [1994] and Bolz et al. [1998] give 

excellent reviews on the underlying principles involved in the construction and interpretation of 

phase diagrams. A brief introduction of binary phase diagrams is given in Appendix A. I . 

2.2. CLASSIFICATION OF EXPERIMENTAL EQUIPMENT 

An experimental method chosen for the measurement of HPVLE is generally based on the 

requirements of the researcher and the properties of the material or system being investigated. By 

requirements of the researcher one refers to either, the operating conditions; the type of data 

required; experience; or financial means. 
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In dealing with the thermodynamics of mixtures, Deiters and Schneider [1986] refer to density 

and field variables. Field variables are variables that have the same value in coexisting phases 

(e.g. temperature and pressure), whereas derzsities are usually different (e.g. mole fractions and 

molar volumes). Usually the field variables are easier to determine experimentally. The 

determination of density variables experimentally, however, has always posed a major problem. 

Deiters and Schneider [1986] based their classification of different experimental methods 

according to the densities that are primarily observed. They have come up with the so-called 

synthetic and analytic methods. 

In the synthetic method a mixture of known composition is prepared and its behaviour observed 

as a function of temperature and pressure. This replaces the problem of analysing the fluid 

mixture by the problem of synthesising it. The typical results of synthetic experiments are sets of 

isopleths. The traditional P-x and T-x diagrams can then be obtained from the primary data 

through cross plotting. 

The analytic method does not rely on a precise knowledge of the overall composition. Phase 

separation is brought about by adjustment of temperature and pressure, and then samples are 

taken of the phases and analysed by appropriate methods. The major problem with the analytical 

method though is not the determination of the composition of a sample, but the handling of the 

sample. This is as a result of the equilibrium state being very different from the input state (in 

HPVLE) of the analytical device being used and the slightest change in temperature or pressure 

may lead to a partial separation of the components. 

HPVLE equipment has been simply and elegantly classified by Raal and Muhlbauer [1994] as 

shown in Figure 2-1. According to Raal and Muhlbauer [1994] classification is dependent on 

whether one, both, or neither of the phases are circulated through the equilibrium cell. If there is 

circulation, then it is known as a dynamic or flow method, else it is known as a static method. 

The Raal and Muhlbauer [1994] method of classification was adopted in this project. Another 

scheme for classification of experimental methods is described by Richon [1996] . 

To give one greater insight into the experimental methods for HPVLE, each of the methods will 

now be outlined. Since the equipment designed for this research project was an analytical cell, 

emphasis will be placed on the analytical method. Examples from literature will be presented 

under each of the methods. As it would not be feasible to cover all of the various apparatus 

reported in literature, only selected examples will be presented. Examples presented were chosen 
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according to aspects of equipment design incorporated into this project and also according to 

novelty and interest. For more detailed descriptions of experimental apparatus, excellent reviews 

by Tsiklis [1968]. Schneider [1975]. Young [1978], Eubank et al. [1980]. and Malanowski 

[1982(b)] cover the earlier period, while the period up to 1990 is excellently reviewed by Marsh 

[1989] and Raal and Muhlbauer [1994]. It is interesting to note than in the period from 1991 to 

date, relatively few papers have been published on new equipment in this area of research. 

DYNAMIC 

PHASE RECIRCULATION 
SINGLE VAPOUR I i SINGLE VAPOUR 

PASS SINGLE TWO & LIQUID PASS 

l 

I PfltSE "\ASE I 
1 l 

OPTlC NON-OPTIC 

STATIC 

STATIC iOMBINED 

STATIC 
NON-ANALYTICAL 

STATIC 
ANALYTICAL 

l 
I . 

I 1 
OPTIC NON-OPTIC 

Figure 2-1: Classification of experimental equipment for HPVLE (extracted from Raal and 

Miihlbauer (1994)) 

2.3. ANALYTICAL METHODS 

2.3.1. Primary features of the analytical method 

The main features of the analytical method, be it static or dynamic, are as follows (Figure 2-2 

illustrates the primary features of the analytical method):-

(a) An equilibrium cell in which the vapour and liquid phases are in equilibrium. 
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(b) A temperature controlled environment in which the equilibrium cell is housed. Typical 

environments are air-baths [Muhlbauer, 1990], oil [Kim et al., 1986(a)] or water baths, 

copper [Konrad et al., 1983] or aluminium [Ng and Robinson, 1978] jackets, and cryostats 

[Duncan and Hiza, 1970]. 

(c) A mechanism for agitating and mixing the cell contents. In dynamic methoc!5 this is 

normally achieved by circulation of one or more of the phases, whereas in static methods it 

is normally achieved with an internal stirrer. Dynamic methods have been known to have 

internal stirring in addition to phase re-circulation [Suzuki et al., 1990(a)]. More 

unorthodox ways of producing agitation of cell contents include some equilibrium cell 

assemblies being rocked mechanically [Ashcroft et al., 1983, and Huang et al., 1985] and 

piston action has also been used to mix cell contents [Gomez-Nieto and Thodos, 1978]. 

(d) A method to sample the vapour and liquid phases. Static methods require a sampling device 

for both the liquid and vapour phases. In the two-phase recirculation and single-pass vapour 

and liquid methods this may be eliminated since a representative portion of the flow can 

very readily be diverted for sampling. However, for the vapour recirculation method, a 

sampling device is still needed for the liquid phase. 

( e) A means of accurately analysing the withdrawn samples. 

(t) An instrument to measure pressure and temperature. 

PRESSURE AND TEMPERATURE 
MEASURING DEVICE 

AGITATION 
DEVlCE 

VAPOUR SAMPLING 
SYSTEM · :] 

SAMPLING SYSTEM 

UQUJD SAMPLING j 
SYSTEM 

CONTROLLED ENVIRONMENT 

Figure 2-2: Schematic illustrating the features of a typical analytical method (extracted from 

Raal and Muhlbauer (1994)) 
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2.3.2. Experimental difficulties associated with analytical methods 

The following are problems commonly encountered in the accurate measurement of isothermal 

HPVLE:-

a) Obtaining truly isothermal conditions 

Raal and Muhlbauer [1994] state that even very small vertical temperature gradients in the 

equilibrium chamber of a static or dynamic cell can cause considerable error in measurement. 

The problem is particularly acute when measuring volatile/non-volatile systems. They 

recommend that several temperature sensors be installed in the walls of the equilibrium cell to 

test temperature homogeneity. A value of 0.2K in temperature deviation is quoted as being 

acceptable. It is also stated that there should be no conductive paths to or from the cell through 

fittings or attachments, and that there should be no direct radiative energy exchange between the 

cell and the bath heaters. Measurements of bath and cell temperature profiles have also been 

reported by many other researchers, e.g. Rogers and Prausnitz [1970], and Konrad et al. [1983]. 

It is quite interesting to note that most of the researchers who mentioned measurement of 

temperature profiles made use of static cells. 

b) The attainment of equilibrium 

In phase equilibria the term equilibrium implies a state ofno change of material with time on the 

macroscopic level. A state of true equilibrium is probably never achieved as there are always 

small changes in the surroundings and also due to retarding resistances. The rate at which 

equilibrium is reached decreases as equilibrium is attained. Therefore, in phase equilibrium 

studies, high stirring rates are desired so as to speed up the attainment of equilibrium. This 

mechanical stirring produces fluid friction and as a result of dissipation of energy to the 

surroundings, this must result in some temperature gradient being produced in the fluid. 

Property variables that are used to judge whether equilibrium has been reached are temperature, 

pressure, vapour and liquid compositions [Wan and Dodge, 1940], and in some cases stability of 

refractive indices [Besserer and Robinson, 1971]. Fluctuations in the measured temperature and 

pressure within a specified tolerance over a period of time has also been used by various 

researchers as an indication of phase equilibrium having been achieved. Fredenslund et al. [1973] 

used a change in pressure ofless than 0.05% of the total pressure in 30 minutes as their criterion 

in judging whether equilibrium had been reached. By the way of composition as a criterion, 
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repeated vapour and liquid sample composition analysis must give reproducible resuhs within the 

limits of the analytical procedure. 

c) Disturbance of equilibrium due to sampling 

The procedure of sampling the liquid or vapour phase may produce a change in the volume of the 

equilibrium cell. The disturbance of the equilibrium condition is directly proportional to the 

change in the volume associated with sampling. Since volume is linked to pressure, the change in 

the volume due to sampling can be quantified by the change in the cell pressure. Besserer and 

Robinson [1971], and Wagner and Wichterle [1987] reported changes of 0.1 and 0.01 bar 

respectively due to sampling. Muhlbauer [1990] also encountered this problem in his sampling 

technique. 

There are two volume changes that are associated with sampling in the static method which result 

in the disturbance of the equilibrium condition. They are:-

i) the volume change associated with the withdrawn sample, and 

ii) the volume change associated with the sampling method that is employed, e.g. Muhlbauer 

[1990] used a sliding rod sampler. 

Thus to minimise the effects of volume change, the ideal method is to have the smallest possible 

volume change as compared to the method of sampling employed. Practically this has been 

achieved in the following fashion:-

• A large equilibrium cell volume in comparison to the withdrawn sample. This dampens the 

volumetric disturbances as the percentage cell volume change is decreased. The drawbacks 

of a large equilibrium cell however are increased use of chemicals. Sagara et al. [1972), 

Klink et al. [1975], Aschroft et al. [1983], Reiff et al. [1987], and Muhlbauer [1990] all 

report the use of large equilibrium cells to minimise the percentage volume change during 

sampling. 

• A very rapid sampling method to minimise the disturbance in equilibrium. This method was 

employed by Figuiere et al. [1980] using rapid-acting pulse valves. 

• A sampling method that eliminates the volume change due to the sampling method. Rogers 

and Prausnitz [1970], and Nakayama et al. [1987] used a sampling rod which traversed the 

entire equilibrium cell. 

• Making use of a variable-volume equilibrium cell. The pressure change due to sampling can 

then be compensated by pressure adjustment [Nakayama et al., 1987]. 
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• Not disturbing the cell contents, by making use of in-situ phase composition analyses. 

Konrad et al. [1983] made use of optical methods to · determine composition, as did Besserer 

and Robinson [1971]. 

The equipment in this study made use of a novel impeller-induced flow, through a sampling 

valve, which is discussed later in Chapter 4. 

d) Sample homogenisation 

One of the major problems in liquid sampling is a tendency for the more volatile component to 

flash preferentially. This produces a concentration gradient in the resultant vapour. Therefore, if 

no method is employed to homogenise the withdrawn sample and also prevent partial 

condensation, quantitative analysis of the sample will be in error. The following are examples of 

procedures that have been adopted in an attempt to eliminate this problem:-

• Wagner and Wichterle [1987] made use of a stirred homogenisation vessel in the sample line. 

• Kalra et al. [1978], Ng and Robinson [1979] and Nakayama et al. [1987] employed a forced 

circulation system to homogenise the vapourised liquid sample. 

• Muhlbauer [1990] made use of a jet mixer. The liquid sample is expelled into the evacuated 

jet mixer in which swirling recirculation homogenises the vapour. This device has also been 

used in the present study. 

• Kobayashi and Katz [1953], Rogers and Prausnitz [1970], Simnick et al. [1977], and Inomata 

et al. [1986] made use of the method of analysing the more and less volatile components 

separately. This method basically entailed the separation of the more and less volatile 

components in the sample by expanding the sample into an evacuated vessel. The amount of 

supercritical component could then be calculated from the total pressure. The condensed less 

volatile components are then flushed out of the vessel with an organic solvent. A calibration 

standard was then added and the resuhing mixture then analysed by gas chromatography. This 

procedure appears unnecessarily complex and may introduce error. 

• Chou et al. [1990] made use of microcells to homogenise the withdrawn samples. The 

equilibrium samples were trapped in the microcells and the microcells were then put into a 

microcell housing in which the sample analysis was undertaken. 
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e) Accurate analysis of the withdrawn sample 

Toe most commonly used methods to analyse the withdrawn samples are by gas chromatography 

(GC) and spectroscopy. Refractive index measurement in conjunction with GC analysis has also 

been reported by Besserer and Robinson [1971], and Kalra et al. [1978]. 

Thennal conductivity detectors (TCD) and Flame ionisation detectors (FID) are the two most 

commonly used types of detectors in GC analysis. An advantage of the TCD, compared to the 

FID is that the TCD can be used to detect hydrocarbon and non-hydrocarbons, whereas the FID 

can only detect organics. However, the FID is more sensitive than the TCD. The main 

disadvantage of analysis by GC is that the high-pressure equilibrium state is different from the 

state at which the sample enters the GC. It is stated by Deiters and Schneider [1986] that the 

quantitative determination of the composition does not usually present a problem, but it is the 

handling and preparation of the sample that does. 

Spectroscopic or photometric methods make use of in-situ composition analysis to overcome the 

sample preparation difficulties that are associated with GC analysis. Infrared spectroscopy has 

been reported by Price and Kobayashi [1959], Konrad et al. [1983], and Swaid et al. [1986] to 

determine phase compositions. However, there are also difficulties that are associated with 

spectroscopy or Raman scattering methods. They are as follows:-

i) extensive calibration procedures, 

ii) application of visual or ultraviolet spectroscopy is largely restricted to aromatic or coloured 

compounds, and 

iii) there is the possibility that the absorption bands of different compounds may overlap. 

Accurate GC detector calibration still remains a considerable problem for gas mixtures or gas­

liquid mixtures as reliable commercial standards are usually not available and the full mole 

fraction range must be covered. However, this problem has been recently overcome with a 

precision volumetric calibration device (Raal, 1992 and Raal and Miihlbauer, 1998). 

f) Temperature and pressure measurement 

The most commonly used temperature sensors are platinum resistance thermometers (Pt-100 Q), 

thermocouples, thermistors, and quartz thermometers. High stability thermistors and quartz 

thermometers have very high sensitivities to temperature and are generally used as primary 

measuring devices against which one can calibrate the commonly used sensors. 
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In recent years pressure transducers, differential manometers and Bourdon-type pressure gauges 

have primarily been used as the measuring devices for pressure. Some pressure transducers have 

temperature compensation over wide ranges, and are thus favoured. Dead weight piston gauges 

are generally used as a primary measuring device against which the transducers can be 

calibrated. 

g) Degassing of the less volatile component 

At low compositions of the more volatile component in the liquid phase, dissolved gases will 

compete with the more volatile component. Thus degassing is required of the less volatile (liquid) 

component to remove dissolved gases. Degassing is especially important in systems where the 

two components are partially mutually soluble. Figuiere et al. [1980] and Legret et al. [1981] 

stress the importance of degassing in order to obtain accurate VLE data. Liquid degassing is 

usually done in-situ or before sample introduction into the equilibrium cell. Equipment used for 

degassing are described by Van Ness and Abbott [1978], Battino et al. [1971], and Muhlbauer 

[1990]. 

2.4. DYNAMIC METHODS 

Dynamic methods can be divided into one of three categories, depending on the phases that are 

circulated or passed through the equilibrium cell. The three types of flow methods are:-

• the single vapour pass method; 

• the phase recirculation method; and 

• the single vapour and liquid pass method. 

2.4.1. Single Vapour Pass Method 

2.4.1.1. Description of the single vapour pass method 

The typical features of a single vapour pass method are shown in Figure 2-3 . 

The vapour feed (gaseous component) is passed through the stationary liquid phase in the 

equilibrium cell. It is fed at constant pressure. With time the gaseous component progressively 
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dissolves in the liquid phase until equilibrium is reached. This method has very short 

equilibration times (Yowig [1978] claims an equilibration time of 15 minutes), but in general the 

equilibration time will depend on the transport coefficients of mass and momentum transfer 

between both phases. It is also dependent on the equilibrium solubilities of the system. Once 

equilibrium has been achieved, a vapour phase sample is obtained by diverting a portion of the 

effluent stream, whilst a liquid phase sample is withdrawn from the equilibrium cell. 

t-·SAMPI.E 

SAMPLE 

LIQUID 
PHASE 

VAPOUR FEED 

Figure 2-3: Schematic illustrating typical features of a single vapour pass method (extracted 

from Raal and Miihlbauer [1994)) 

The single vapour pass method was the original dynamic method. This method can be used to 

generate isobaric or isothennal VLE data, depending on whether one controls the pressure of the 

gaseous component or the temperature of the liquid phase respectively. It is also the simplest and 

easiest method to operate; however it has several disadvantages. Therefore this method has 

largely been replaced by recirculation methods. 

2.4.1.2. Selected examples from literature for the single vapour pass method 

Wan and Dodge [1940) 

Figure 2-4 below illustrates the flowsheet of the apparatus used by Wan and Dodge. The more 

volatile component ( delivered from its storage vessel) enters at point A, and flows through the 

presaturators (B and C), before entering the equilibrium cell (D). After the equilibrium cell, it is 

expanded into the sample line (I). Liquid samples are withdrawn from the apparatus through line 

E. A Bourdon pressure gauge (G) is used to control the pressure, and equilibrium pressures are 
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measured with a dead-weight piston gauge. Agitation of the equilibrium cell contents is achieved 

via a magnetic stirrer which is operated by a solenoid (line connections indicated by F). 

Figure 2-4: Flowsheet of the experimental apparatus used by Wan and Dodge (1940] 
A - inlet; B,C - presaturators; D - equilibrium cell; E - sampling point; F - solenoid line connections; G 
- Bourdon pressure gauge; H - screw press. 

The apparatus makes use of two oil baths for the control of temperature. The first oil bath is used 

to control the temperature in the first presaturator ( control to within 0 .1 °C}, while the second oil 

bath is used to control the temperature of the second presaturator and the equilibrium cell 

(control to within 0.01°C). Heating is achieved with an electric immersion heater. 

Because the gas phase makes a single pass through a given column of liquid and must become 

saturated with the less volatile component during this relatively short time, use is made of 

presaturators. The first presaturator temperature was maintained 10°C higher than the 

equilibrium temperature, so as to over-saturate the gas relative to the equilibrium temperature. 

The second presaturator and equilibrium cell then reduce the concentration of the less volatile 

component to the proper equilibrium value. 

At least two hours were allowed to elapse before any samples were taken. Samples of both 

phases were taken at one hour intervals. Equilibrium composition was taken as the value when 

consecutive liquid samples agreed within the limit of experimental error. To ensure consistent 
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results, Wan and Dodge [1940] developed a technique for sampling the liquid. The main features 

were very slow sampling and flushing of the contents of the sampler. 

2.4.1.3. Difficulties associated with the single vapour pass method 

The following are the difficulties that are encountered with the single vapour pass method:-

• large quantities of gaseous component are used, which becomes an important factor in the 

choice of method when very rare, high purity, and expensive gases are used; 

• establishing whether the vapour phase is saturated with liquid in the short contact time 

available; 

• liquid component is constantly being removed, which places constraints on the amount of data 

obtained from one experimental run; 

• liquid components that are used are restricted to ones which have low partial pressures (e.g. 

below 0.01 MPa (Young, 1978)) and thus this method is not suitable to critical region studies; 

• ensuring that there is no droplet entrainment in the effluent vapour stream; 

• maintaining accurate control of the gas flow rate. High gas flowrates produce rapid liquid 

saturation, at the expense of vapour saturation, as a result of the shorter contact time. The 

opposite effect occurs for a lower gas flowrate. This flowrate problem is heightened when 

either the gas is highly soluble in the liquid or vice versa; 

• maintaining a constant liquid level ; and 

• some form of liquid agitation is required if the components are slightly soluble in one another. 

Table 2-1 lists the single vapour pass apparatus that were surveyed. Greater detail on apparatus 

design and systems investigated is available in Appendix A.2 . 

2.4.2. Phase re-circulation methods 

2.4.2.1. Description of the phase recirculation method 

Phase recirculation methods may be subdivided into one of two categories, depending on whether 

recirculation of one or both phases occurs (in the case of VLE). As a result they are termed single 
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phase and two-phase recirculation respectively. Figure 2-5 illustrates the features of the phase 

recirculation method. 

The components of interest are charged into the equilibrium cell. Achieving the desired level in 

the equilibrium cell is difficult and considerable experience is required to determine the quantity 

added [Freitag and Robinson, 1986]. One or both phases are withdrawn from the cell and re­

circulated. The temperature and pressure of the equilibrium cell contents are maintained at the 

desired setting. For the case of two-phase recirculation the phases are circulated counter­

currently through the equilibrium cell and either phase may be dispersed. The liquid phase enters 

the equilibrium cell at the top and pours down through the vapour phase, whilst the vapour phase 

enters at the bottom of the cell and bubbles up through the liquid phase. As a result equilibrium 

between the phases in a well-designed equilibrium cell should be rapidly achieved due to good 

contacting between the phases. This arrangement removes some of the problems associated with 

the single vapour pass method, e.g. ensuring that equilibrium is achieved; that the liquid 

component is not continuously removed from the system, and that large quantities of the gaseous 

component are not wasted. Also liquids possessing high partial pressures may be studied. 
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Figure 2-5: Schematic illustrating the features of the phase recirculation method (extracted 

from Raal and Muhlbauer (1994]) 



References Cell volume Operating Range Equilibrium cell Measurement 
(1) Device 

(cm3
) Temp Pressure Temp Pressure 

(K) (ba1·) (2) (3) 
Wan and Dodge [1940] - 273-573 1013 cold-rolled steel - B/DWP 

Duncan and Hiza (1970] - 10-150 203 electrolytic tough pitch PR B 
copper 

Legret et al. [1983] - 423 200 - TC BM/PT 

Lee and Chao (1988] 300 - 345 - TC B 

Di Giacomo et al. [1989] 100 473 1000 stainless steel TC PT 

Table 2-1: Single vapour pass apparatus surveyed 

Key: 
(1) Materials of construction 
(2) PR - platinum resistor; TC - thennocouple 

Equilibration 
time 

(min) 

120 

-

-

-
60-300 

(3) B - Bourdon type pressure gauge; DWP - Dead weight piston gauge; BM - Bourdon manometer; PT - Pressure transducer 

Sample size (µI) 

Vapour Liquid 

- 3000 

- -

- NIA 

- -

- -

..... 
°' 
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2.4.2.2. Selected examples from literature for the single phase recirculation method 

The single-phase recirculation method can be sub-divided into two groups, depending on whether 

one has recirculation of either the liquid or vapour phase. Selected examples of each of these 

groups will now be presented. 

2.4.2.2.1. Liquid phase recirculation 

Kim et al. [1986(a)] 

The apparatus was designed for rapid determination of equilibrium compositions for 

temperatures and pressures up to 423K and 13.7 MPa respectively. The equilibrium cell had an 

internal volume of 100 cm3
, and was constructed from 3 I 6 stainless steel. A schematic of the 

experimental apparatus is shown in Figure 2-6. 

- VAPOR LINE 
-••- LIQUID I.INE 
--- He UNE 

D 

r 

08 
MP 

"· -

Figure 2-6: Schematic of the experimental apparatus of Kim et al. (1986(a)] 
PI - piston injector; PT - pressure transducer, TC - temperature controller; I - insulation; OB - oil bath; 
H · heate~ TS - temperature sensor; EC - equilibrium cell; S - stirrer, LL - liquid line; VL - vapour line; 
HL - earner gas (h~lium) line; LSV _- liquid sampling valve; GSV - gas sampling valve; SV - safety 
valve; EV - evacuauon valve; MP - microprocessor, GC - gas chromatograph; HP - high pressure pump; 
numbers 1 to 8 give the position of thermocouples. 
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The equilibrium cell has two glass windows and is housed in a temperature controlled oil bath. 

The bath is heated by 1000 W and 200 W electrical heaters and the oil bath temperature is 

controlled to within 0 .1 K. A pressure transducer is used to measure the equilibrium cell 

pressure, and temperatures are measured with iron-constantan thermocouples. 

All connections between the equilibrium cell and valves are 1/8" o.d. stainless steel tubing. All 

the valves and tubing for the vapour line were wrapped with heating wire and insulated. 

Insulation of all other lines is achieved with heavy-duty heating tapes. The vapour and liquid 

sampling lines are also maintained at approximately the system temperature. 

Kim et al. [1986{a)] state that circulation of the liquid phase results in rapid equilibration. The 

equilibrium vapour phase reaches the vapour-sampling valve by diffusion. Despite this, 

representative vapour compositions were usually obtained in less than 10 minutes. Rapid 

equilibration was achieved as a result of pulsation in liquid flow, a short vapour line, and 

repeated injections. 

Sampling of the vapour phase was achieved with an external sampling loop of volume 25 µland 

the liquid phase with an internal sampling loop of volume 0.5 µl. The vapour and liquid samples 

were transported from the sampling valves to the GC with helium as the carrier gas. 

Table 2-2 lists the liquid phase recirculation apparatus that were surveyed. Greater detail on 

apparatus design and systems investigated is available in Appendix A.2. 

2.4.2.2.2. Vapour phase recirculation 

Fredenslund et al. [1973) 

The apparatus was designed for an operating temperature range of - l 80°C to 25°C and pressure 

range from 3 to 350 atm. Fredenslund et al. [1973] state that the outstanding features of the 

apparatus are the liquid sampling device and the method of liquid nitrogen feed to the thermostat. 

The equilibrium cell is placed in a cryostat to maintain constant temperature. The equilibrium 

cell is constructed from type 304 stainless steel, and has windows made of fused quartz. 

Equilibrium cell volume is approximately 15 cm3
. 



References 

Kim et al. [1986(a)] 

Mohamed and Holder [1987] 

Key: 
( 1) Material of construction 
(2) TC - thermocouple 
(3) PT - pressure transducer 

Cell volume 

(cm3
) 

100 

100 

Operating Range Equilibrium cell Measurement 
(1) Device 

Temp Pressure Temp Pressure 
(K) (bar) (2) (3) 
423 137 316 stainless steel TC PT 

- - Stainless steel TC PT 

Table 2-2: Liquid phase recirculation apparatus surveyed 

Equilibration 
time 

(min) 

10 

-

Sample size (µI) 

Vapour Liquid 

25 0.5 

- -

..... 
'-0 
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With the method of nitrogen fed to the thermostat the temperature can be controlled to within 

0.01 °C and the nitrogen consumption is very low. 

The liquid sampling device consists of a 5 mm diameter rod that protrudes into the liquid phase in 

the cell. The part of the rod that is immersed in the liquid has a 3 .5 µ1 hole drilled vertically 

through it. By activation of a piston, which is connected to the rod and is mounted outside the 

thermostat, the sample of liquid is drawn into the cell wall. From here the liquid sample is flushed 

with GC carrier gas into the GC. The packing gland that surrounds the rod is constructed of 

Invar, graphite, and graphite- and glass impregnated Teflon. The packing gland is also thermally 

compensated so that the volumetric decrease of the packing gland equals that of the stainless steel 

hole containing the gland in going from room temperature to -100°C. This method of sampling 

has the advantage of small sampling volume and therefore minimal disturbance of the equilibrium 

during sampling. Figure 2-7 shows the liquid sampling unit ofFredenslund et al. [1973]. 

04 •e me 
fa O .. 

r 

\. 
Figure 2-7: Illustration of the liquid sampling unit of Fredenslund et al. [1973] 

A - 304 stainless-steel; B - graphite; C - Teflon; D - Invar 

Weber et al. [1984) 

The equilibrium cell (Figure 2-8) was constructed of chromium-nickel steel, and had a volume of 

230 cm
3

• Visual observation of the equilibrium cell contents was possible as a result of high-
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pressure glass windows being incorporated into the wall of the equilibrium cell. The windows 

also assisted in the control of the height of the liquid-level and of the distribution of the vapour 

injected in the liquid, as well as detection of the appearance of two liquid phases. 

The vapour that is recycled is introduced back into the equilibrium cell at the bottom through a 

distribution nozzle, and leaves at the top through a mist separator made of wire mesh. A 

temperature sensor can be inserted into the mist separator. 

Liquid samples are taken through a capillary, and vapour samples are isolated in a bypass of the 

recycling system after equilibrium has been established (Figure 2-9 and Figure 2-10). Samples 

are collected in sample bottles from which they are injected into a GC. 

The vapour can be recycled either by a reciprocating double acting compressor (Method I, Figure 

2-9) located in the bath, or by a membrane compressor (Method II. Figure 2-10) operated at 

ambient temperature. Method II is the preferred method for the investigation of ternary systems. 

Figure 2-8. The high-pressure equilibrium cell of Weber et al. (1984] 
1 - cell ~ ; 2 - solvent inlet; 3 - gas inlet; 4 - distribution nozzle; 5 - mist separator; 6 - gas outlet; 7 _ 
~nnection for temperature sensor; 8 - connection for capillary; 9 - high pressure glass window: 1 o _ 
mspection and illumination device. · 
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TC 

Figure 2-9: Schematic of the vapour-liquid equilibrium apparatus of Weber et al. (1984] 
with internal recycle 

EC - equilibrium cell; TC - temperature control; RP - reciprocating pump; EH - electric heater; GW -
glass window; LB - liquid bath; VB - valve box; MD - magnetic drive; P - pressure measurement; T -
temperature measurement; Y - vapour sampling device; X - liquid sampling device. 

TC 

HE 

LB 

Figure 2-10: Schematic of the vapour-liquid equilibrium apparatus of Weber et al. [1984) 
with external recycle 

HE - heat exchanger; PC - pressure control; CP - compressor (remaining symbols as in Figure 2-9 

' 
above) 
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Temperature was measured by Pt-100 n electrical resistance sensors and pressure by a precision 

Bourdon-tube pressure gauge. 

Because the liquid sample will flash as soon as the temperature increases or the pressure 

decreases, it is difficult to transfer a representative sample into the GC. To overcome this 

problem, the liquid sample is withdrawn through a capillary tube (the tubing and the sample 

valve are heated electrically to ensure complete vapourization of the sample). The vapour sample 

was collected in a two-litre stainless steel vessel that was evacuated. The maximum pressure in 

the vessel was kept below the dew point at ambient temperature. 

Chou et al. [1990] 

The apparatus consists of two main sections:­

i) one for achieving phase equilibria, and 

ii) another for analysing fluid samples. 

The equilibrium cell which is approximately 100 cm3 in volume is connected to two sampling 

ports; one for the vapour phase and the other for the liquid phase. Each sampling port contains a 

specially designed sampling valve which Chou et al. [1990] refer to as a microcell. 

Each microcell has a sample cavity of approximately 30 µl. During sampling, it collects an 

equilibrium-phase sample at conditions of the equilibrium cell; thereafter it is taken from the 

apparatus to the sample analysis system for composition analysis. Figure 2-11 shows a cross­

sectional view of the microcell. 

The sample analysis system consists primarily of a temperature-controlled microcell oven and a 

GC. The microcell oven contains a microcell housing, a flash vessel, a recirculation system, and 

a GC sampling valve connected to a sample loop. 

The microcell containing a fluid sample is inserted into the microcell housing from which the 

high-pressure sample is vapourized into the flash vessel. The flash vessel is a variable-volume 

bellows assembly that also acts as a pump to recirculate the flashed sample through the sampling 

valve so that the fluid inside the sample loop is homogeneous. The sample is injected into the GC 

by purging carrier gas (Helium) through the loop. In the present project homogenisation of the 

sample is achieved with the use of a jet-mixer. 
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Figure 2-11: Cross-sectional view of microcell of Chou et al. (1990] 
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Figure 2-12: Schematic diagram of the sample-analysis system of Chou et al. (1990] 
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Figure 2-12 illustrates the sample analysis set-up of Chou et al. [1990]. Their set-up is analogous 

to the one in this project, except that this project makes use of a GC valve and a jet mixer to 

sample and homogenise respectively. 

Table 2-3 lists the vapour phase experimental apparatus surveyed in this project. Greater detail 

on apparatus and systems measured is available in Appendix A.2. 

2.4.2.3. Selected examples from literature for the two phase recirculation method 

Muirbrook and Prausnitz [1965] 

The equilibrium apparatus consists of basically a heavy-walled, stainless steel equilibrium cell 

with circulating lines and pumps, all of which are enclosed in a constant temperature bath. Figure 

2-13 shows a simplified flow diagram of the equilibrium cell. Vapour is pumped out of the top of 

the equilibrium cell and bubbles through the liquid. The liquid is pumped out of the equilibrium 

cell by pump P-1 and returned to the top of the cell. 

The bottom of the cell and the top of the pressure head are each fitted with two Aminco tubing 

fittings which serve as entrance and exit points for the pumped fluids . A piece of tubing attached 

to the inlet on the pressure head directs the liquid flow against the inner wall of the cell. A baffle 

was attached to the thermowell to prevent liquid entrainment in the vapour stream. A level 

indicator was also attached to the thermowell. Figure 2-14 below illustrates the equilibrium cell. 

The problems of sampling and agitation of the phases were both overcome with the means of 

circulation of the phases. Each phase was circulated through tubing external to the equilibrium 

cell, providing adequate agitation. Samples were obtained by locking off sections of the 

circulation lines. Sampling was rather complex, and the high-pressure liquid and vapour samples 

from the equilibrium system were moved to glassware which were at pressures less than 

atmospheric where both samples are gases. 

One of the major design problems was that of a pump to circulate the vapour and liquid streams. 

The pumps were required to withstand internal pressures of up to 15000 psi without substantial 

leaks and pump at a rate of IO to 100 cc/min, and produce a head of I ft of fluid. Muirbrook and 

Prausnitz [1965] solved the problem by design a pump that was a variation of a vane pump with 



References Cell volume Operating Range Equilibrium cell Measurement 
(1) Device 

(cm3
) Temp Pressure Temp Pressure 

(K) (bar) (2) (3) 
Price and Kobayashi [1959) v.v. 115-293 138 stainless steel TC B 

Toyama et al. [1962] v.v. 88-298 69 stainless steel TC B 

Fredenslund and Sather [ 1970) - - - stainless steel QT B 

Fredenslund et al. [1973) 15 93-298 350 304 stainless steel PR DWP 

Katayama et al . [1975] - - - stainless steel T B 

Streett and Calado [1978] 4.2 - 10000 stainless steel A- PR PT 
286 

Somait and Kidnay [1978] - - 138 stainless steel PR B 

Stead and Williams (1980] 34 >300 90 copper PR B 

Tsang and Streett [ 1981] 10 313-523 2000 stainless steel PR PT 

Chang et al. [ 1982] 75 - - stainless steel PR PT 

Dorau et al. [1983] 168 70-300 200 austenitic steel PR B 

Pozo and Streett [ 1984] - 523 290 stainless steel PR PT 

Tahle 2-3: Vapour phase recirculation apparatus surveyed 

Equilibration 
time 

(min) 

30-60 

-

-

120-180 

-

5-10 

-

60 

5-10 

5-10 

-

10-15 

Sample size (µI) 

Vapour Liquid 

- -

- -

- -

- 3.5 

- -

5000- 5000-
10000 10000 

- -

- -

- -

- -

- -

- -

N 
0\ 



References Cell volume Operating Range Equilibrium cell Measurement 
(1) Device 

(cm·') Temp Pressure Temp Pressure 
(K) (bar) (2) (3) 

Pozo and Streett [1984] - 233-343 80 pyrex tubing PR PT 

Weber et al. [1984] 230 223-300 3-180 chromium-nickel PR B 
steel 

Freitag and Robinson [1986] 100 256-405 280 Hastealloy C-276 TC B 

Jou et al. [1987] 150 - - 316 stainless steel TC B 

Chou et al. [1990] 100 - - - TC B 

Shah et al. [ 1990] - 325-530 - stainless steel PR PT 

Shah et al. [ 1990] - >325 - sapphire tube PR PT 

Suzuki et al. [1991] 300 373 350 316 stainless steel QT PT 

Table 2-3: (continued) Vapour phase recirculation apparatus surveyed 

Key: 
(1) Materials of construction 
(2) TC - thermocouple: QT - quartz thermometer; PR - platinum resistance thermometer; T - thermometer 
(3) B - Bourdon type pressure gauge; DWP - dead weight piston gauge; PT - pressure transducer 

Equilibration 
time 

(min) 

10-15 

-

30 

-

60 

5-10 

5-10 

-

Sample size (µI) 

Vapour Liquid 

- -

- -

- 50-200 

- -

30 30 

- -

- -

- -

N 
-..l 
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Figure 2-13: Flow diagram of equilibrium system ofMuirbrook and Prausnitz [1965] 
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Figure 2-14: Longitudinal section through the equilibrium cell (extracted from Muirbrook 

and Prausnitz [1965]) 
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cylindrical rollers acting as vanes moving the fluid from inlet to outlet. Figure 2-15 illustrates the 

sections through the high pressure pumps. 

Temperature measurement in the equilibrium cell was via thermocouples, whilst pressure was 

measured with an Aminco pressure balance. 

High-pressure "ane pun1p, section 
tlwrougl, co•ity. 

High-pressur~ 'fane pump, longitudinal 
section. 

Figure 2-15: Sections through the vane pumps designed by Muirbrook and Prausnitz (1965] 

Kubota et al. [1983] 

The apparatus has an operating temperature range of 283 to 353 K and operates under pressures 

of up to 80 MPa. The authors name the following as the main features of the apparatus:-

• Minimal disturbance of the vapour of liquid phase during sampling because the apparatus is a 

circulating type for both phase. 

• No dead volume in the sampling system because the samples are trapped in a 4-port ball 

valve. 

• The change from the vapour-circulating path to the liquid-circulating path is facilitated by a 

6-port ball valve. 
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The cell was constructed from 304 stainless steel and had an internal volume of approximately 

106 cm3
. In the middle of the cell, a pair of Pyrex glass windows, 21 mm in diameter and 20 mm 

thick, were placed to allow observation of mixing and circulation conditions of the cell contents 

and to observe the behaviour of the interface in the critical region. An agitator rotated by an 

external magnet was used to stir the contents of the cell. Figure 2-16 illustrates the equilibrium 

cell. 

Satrl>t• Gas Inlet 

0-Ring 

Magnet mixer 

Figure 2-16: Equilibrium cell of Kubota et al. (1983] 

Sampling of the phases was achieved using a four-port ball valve. The change from the vapour 

circulating path to the liquid circulating path was achieved using a six-port ball valve. Figure 2-

17 shows the configuration of the valves on the experimental apparatus. The sample trapped in 

the four-port ball valve was introduced into the low-pressure analysis system. 

The low-pressure analysis system consisted of a bellows type diaphragm pump. This pump 

circulated the equilibrium sample in the low-pressure analysis system to ensure uniform 

composition throughout the low-pressure line. Once homogenised the sample was injected into 

theGC. 
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Figure 2-17: IDustration of the layout of the experimental apparatus of Kubota et al. [1983] 
1 - equilibrium cell; 2 - magnet mixer, 3 - 2-way (3-port) ball valve; 4 - 6-way (6-port) ball valve; 5 - 2-
way (4-port) ball valve; 6 - high-pressure circulating pump; 7 - constant-temperature bath; 8 - Bourdon 
tube gauge; 9 - propylene cylinder, IO - ethylene cylinder; 11 - low-pressure circulating pump; 12 - gas 
chromatograph; 13 - expansion vessel; 14 - mercury manometer. 

Radosz [1984] 

The experimental apparatus used by Radosz is capable of measuring two- (VLE, LLE) and 

three-phase (VLLE) equilibria. It also has variable-volume capability. Toe equilibrium cell (see 

Figure 2-18) has a window and has an operating temperature range of 280 to 530 K and an 

operating pressure up to 35 MPa. Mixing is achieved with the use of two circulation pumps. The 

variable-volume cylinder that forms part of the top phase recirculating loop is used to help 

maintain constant pressure during sampling. All parts of the apparatus which are in contact with 

any of the phases are housed in an air-bath. 

Radosz [1984] states that the most serious difficulty with batch cells is the problem of avoiding 

pressure drop during sampling. To resolve the problem he added a variable-volume cylinder to 

the top-phase recirculating loop. Pressure was thus maintained constant with this cylinder by 

pressurising the piston with one of the feed components. 

Evaporation and homogenisation of the withdrawn sample was accomplished in a 100 cm3 

chamber. Radosz [1984] states that the key requirement to avoid condensation in the chamber, 

was to maintain a high temperature. This method is analogous to the sampling procedure in this 

project using jet-mixers. 
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Figure 2-18: Mixing and separation section of apparatus of Radosz (1984) 
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I - Windowed Mixing and Separation Vessel; 2 - Magnetic Recirculating Pumps; 3 - Variable-volume 
Cylinder; 4 - Positive Displacement Pump; 5 - Constant Temperature Air Bath: 6 - Motors for 
Magnetic Recirculating Pumps; P - Pressure Transducer; RID - Platinum Resistance Thermometer; V 
- Valves. 

Adams et al. (1988) 

The apparatus was designed to perform P-V-T and X-Y phase equilibria studies in the 

temperature range from 200 to 400 K. Foreseeing the requirement that almost all supercritical 

fluid process design requires phase density information, Adams et al. [1988] incorporated 

volumetric measurement capabilities into their apparatus. For observation of phase behaviour 

over wide temperature and pressure ranges the equilibrium cell was constructed from sapphire. 

The equilibrium cell (pressure vessel) consists ofa 3.175 cm o.d., 1.27 cm i.d., by 10.16 cm long 

sapphire tube sealed against stainless steel end flanges by spring-loaded Teflon washers. 

Recirculation of the phases is achieved via magnetically actuated pumps. Adams et al. [1988] 

claim an equilibration time of 5 to 10 minutes. 
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Sampling of the phases is performed with a Rheodyne six-port sample injection valve. To obtain 

a sample the recirculated phase is pumped through the sample loop of the injection valve. From 

the injection valve the sample is flushed to the GC (See Figure 2-19 below). 
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Figure 2-19: Apparatus of Adams et al. [1988) 

1: 

EC - Expansion chambers; GPG - Gas pressure generators; GRP - Gas recirculation pump; GS - gas 
supply; HS - Helium supply; IVl - Rheodyne 6-port injection valve; IV2 - Valeo 6-port injection valve: 
LPG - Liquid pressure generator; LRP - Liquid recirculation pump; LS - Liquid supply; P( 1-4) -
Pressure gauges; SPV - Sapphire pressure vessel; T - Trap; VG - Vacuum gauge; VP - Vacuum pump; 
VRP - Vapour recirculation pump; 1-18 - Shut-off valves. 

The temperature-controlled region in which the injection valve is housed also serves to dilute, 

vaporise, and homogenise all the sample material for subsequent injection into the GC. The 

carrier gas used was helium. Adams et al. [1988] state that to keep the dilution volume low and 

still vaporise all the mixture components, the temperature of the sampling section is increased to 

a level at which the ratio of the partial pressure to saturation pressure for all components is less 

than 0 .1. They state that at this value the physical adsorption effects should be insignificant. 

Sample homogenisation is promoted by gas recirculation using a pump. The pump continuously 

circulates the gas mixture of helium and sample components around the circulation loop. Two 

loops were used with the Rheodyne valve. A 0.018 crn3 loop was used for liquid phase as well as 



34 

for near critical, highly dense vapour phase samples. For the vapour phase samples, which are 

less dense, a 0.455 cm3 loop was used. 

2.4.2.4. Difficulties associated with the phase recirculation methods 

The following are some of the difficulties encountered in the phase recirculation methods:-

• maintaining an adequate level in the equilibrium cell. This is normally effected by the use of a 

liquid-level measuring device (cathetometer); by visual observation; or by optical observation 

e.g . Hsu et al. [1985]. 

• ensuring that there is no droplet entrainment in the effluent vapour stream. Muirbrook and 

Prausnitz [1965] made use of a demisting device. 

• ensuring that the pumps used do not contaminate the equilibrium mixture or create stagnant 

spaces. The former problem has largely been overcome by the use of magnetically coupled 

pumps. 

• avoiding the possibility of partial condensation and vapourisation of the recirculated vapour 

and liquid streams respectively. 

• avoiding undesirable pressure gradients across the equilibrium cell, that can be brought about 

by circulating pumps. This is a weakness, in principle, of the circulation method since flow 

cannot be produced without a pressure gradient. However, in practice data from circulation 

methods compare well with those from the static type cells. In the present project, the liquid 

stirrer itself provides a small recirculating flow through a sampling valve mounted on the 

outside of the cell wall. 

Table 2-4 lists the two-phase recirculation apparatus surveyed. Greater detail on apparatus 

design and systems investigated is available in Appendix A.2. 



References Cell Operating Range Equilibrium cell Measurement 
volume (1) Device 
(cm3

) Temp Pressure Temp Pressure 
(K) (bar) (2) (3) 

Griswold et al. [1943] 600 273-553 207 steel TC B 

Muirbrook and Prausnitz [1965] 200 233-303 1034 403 stainless steel TC B 

Behrens and Sandler [1983] 1000 283-373 - 316 stainless steel PR PT 

Kubota et al. [1983] 106 283-353 800 304 stainless steel T B 

Radosz [1984] 60 283-533 350 - PR PT 

Morris and Donohue [1985] 100 311 147 316 stainless steel TC PT 
588 109 

Hsu et al. [1985] - 422 690 stainless steel PR PT 

Takishima et. al. [1986] 700 - - - QT B 

Adams et al. [1988] - 513 346 sapphire PR PT 

D'Souza et al. f1988] 100 - - stainless steel PR B 

Kneisl ct al. l I988] - 310-425 60-345 stainless steel PR PT 

lnomala et al. f I9881 750 - - 316 stainless steel TC PT 

Tahle 2-4: Two-phase recirculation apparatus surveyed 

Equilibration 
time 

(min) 

300 

-

240-360 

120 

15 

10-15 

120-360 

-

5-10 

60 

90 

-

Sample size (µI) 

Vapour Liquid 

30000 60000 

- -

2000 2000 

- -

100 100 

20/250 0.5 

- -

- -

455 18 

300/1000 300/1000 

I J 

- -

w 
Vl 



References Cell volume Operating Range Equilibrium cell Measurement Equilibration 
(1) Device 

(cm-') Temp Pressure Temp Pressure 
(K) (bar) (2) (3) 

Shibata and Sandler [1989(a)] 100 422 345 - TC PT 

Kim et al. [1989] 150 293-430 250 316 stainless steel TC PT 

Jennings and Teja [1989] 40 - - stainless steel TS B 

Suzuki et al. [1990] 500 453 250 - PR B 

Wisniewska et al. [1993] 50 - 30 stainless steel PR B 

Table 2-4: (continued) Two-phase recirculation apparatus surveyed 

Key: 
(1) Materials of construction 
(2) TC - thermocouple; PR - platinum resistam;e thermometer; T - thermometer; QT - quartz thermometer; TS - thermistor 
(3) B - Bourdon type pressure gauge; PT- pressure transducer; 

time 
(min) 

60 

10 

-

480 

-

Sample size (µI) 

Vapour Liquid 

- -

100 1 

1 0.2 

1000- 750 
10000 
300 300 

w 

°' 
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2.4.3. The single vapour and liquid pass method 

This is a relatively recent development in the dynamic method. This method was specifically 

developed for HPVLE measurements where thermal degradation of the components of interest 

could occur e.g. specific hydrocarbons. 

2.4.3.1. Description of the single vapour and liquid pass method 

Features of the single vapour and liquid pass method are illustrated in Figure 2-20 . 
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Figure 2-20: Schematic illustrating the single vapour and liquid pass method (extracted 

from Raal and Muhlbauer (1994]) 

The vapour and liquid components are contacted co-currently at a controlled temperature and 

pressure in a mixing unit. The combined streams are then passed into the equilibrium cell where 

the mixture separates into the vapour and liquid phases. The phases exit from the equilibrium cell 

separately and sampling is achieved by diversion of the effluent streams. 



2.4.3.2. Selected examples from literature of the single vapour and liquid pass 

method 

Lin et al. [1985] 
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The apparatus was developed to withstand pressures and temperatures up to 25 MPa and 710 K 

respectively. The main feature of the equilibrium cell is the transparent sapphire window sealed 

with gold "o"-rings for visual observation of the liquid level. 

The equilibrium cell was approximately 10 cm3 in volume and was a horizontal cylindrical 

opening as illustrated in Figure 2-21. The transparent sapphire windows (2.54 cm in diameter 

and 1.27 cm thick) enclosed the open space at both ends to make visual observation of the liquid 

level possible. The sapphire windows were secured to the cell body with stainless steel flanges 

and bolts. Stacks of Belleville spring washers were installed between the boh head and flange to 

compensate for thermal expansion effects. 

I \ 

'. \ 
Feed "-1..,;d!Mlet 
1111,1 

Figure 2-21: Equilibrium cell of Lin et al. [1985] 

The major difficuhy in the apparatus design, was the sealing of the transparent sapphire 

windows. Lin et al. [1985] state that no organic elastomer can be used for sealing at the high 

temperatures, therefore they used a gold "o"-ring backed by a copper shim. The gold "o"-ring 

was made from 20 B&S gauge gold wire, which was flattened and fused with pressure and 

temperature while in service. 
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Chen et al. (1994] 

The apparatus of Chen et al. [1994], constructed of Nirnonic, was designed for pressures up to 

700 bar and temperatures up to 700 K. The cell contents could be viewed through a transparent 

sapphire window. Figure 2-22 illustrates the housing and ring that hold the sapphire windows in 

place. The housing is amazingly similar to the design in this project. 

The sapphire windows (3" in diameter and l" thick) are held in a housing that is clamped in a 

cavity at the end of the bar stock by a massive collar. The windows are pressed into the housing 

by a ring acting through a spring gasket. Sealing of the fluid pressure is achieved with a hollow 

gold plated "o"-ring that seals the contact between the housing and the body of the cell. The 

gasket seals the contact between the sapphire window and the housing. It is made of copper with 

two gold "o"-rings on the outer edge to resist any corrosive action of the cell fluid. 

Figure 2-22: Sapphire window housing of Chen et al. (1994] 
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Sealing pressure at the contact of the sapphire and its housing is derived mainly from the cell 

pressure. Since sapphire is a brittle mineral, it is essential not to have it subjected to excessive 

pressure such as that due to turning bolts of flanges, thus the use of a housing. Figure 2-23 

shows in greater detail the housing and ring to hold the sapphire window. 

45"V-Graove 
.010" Deep-~~ 

Figure 2-23: Machine drawing of the sapphire window housing ( extracted from 

Chen et. al. [1994)) 

Th.ere are regions of stagnant volume in the equilibrium cell. Referring to Figure 2-22, one can 

immediately observe a stagnant region between the cell body and the sapphire window. This will 

certainly translate into the "equilibrium condition" samples analysed by Chen et al. [1994] not 

being a true equilibrium sample of the equilibrium cell contents. 
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2.4.3.3. Difficulties associated with the single vapour and liquid pass method 

The following are some of the problems encountered in the single vapour and liquid pass 

method:-

• ensuring that equilibrium has been reached in one pass. 

• ensuring complete separation in the equilibrium cell. 

• achieving a steady level in the equilibrium cell. 

• ensuring no droplet entrainment in the effluent stream. 

• ensuring that the pumps do not contaminate the equilibrium mixture. 

• minimising the effect of undesirable pressure gradients across the equilibrium cell. 

• material selection problems, due to the high temperature and pressure requirements. 

• large chemical usage. 

Table 2-5 lists the single liquid and vapour pass apparatus surveyed. Greater detail on apparatus 

design and systems investigated is available in Appendix A.2. 



References Cell volume Operating Range Equilibrium cell Measurement 
(1) Device 

(cm3
) Temp Pressure Temp Pressure 

(K) (bar) (2) (3) 
Simnick et al. [1977] 90 703 - 316 stainless steel TC B 

Thies and Paulaitis [ 1984] 60 723 345 316 stainless steel PR B 

Lin et al. [1985] 10 710 250 316 stainless steel TC B 

Niesen et al. [1986] - 625 100 316 stainless steel PR PT/B 

lnomata et al. [1986] 30 710 250 316 stainless steel TC B 

Jennings et al. [1991] - - - stainless steel TS B 

Chen et al. [ 1994] 100 700 700 Nimonic TC B 

Table 2-5: Single liquid and vapour pass apparatus surveyed 

Key: 
( 1) Materials of construction 
(2) TC - thermocouple; PR - platinum resistance thermometer; TS - thermistor 
(3) B - Bourdon type pressure gauge; PT - pressure transducer 

Equilibration 
time 

(min) 

-

-

-

-

-

20-30 

-

Sample size (µI) 

Vapour Liquid 

- -

- -

- -

- -

- -

- -

- -

.j::,. 
N 
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2.5. STATIC METHODS 

Toe apparatus used in the present study is a modified static cell apparatus with dynamic flow 

sampling, and it is appropriate to review here similar equipment used by other researchers. 

The static method can be divided into three sub-divisions, namely:-

• static analytical method, 

• static non-analytical method, and 

• static combined method. 

2.5.1. The Static Analytical Method 

2.5.1.1. Description of the static analytical method 

Figure 2-24 below illustrates the features of a typical static analytical apparatus. 

PRESSURE AND TEMPERATURE 
MEASURING DEVICE 

VAPOUR SAMPLING 
SYSTEM· :-:1 

SAMPLING SYSTEM 

llQU1D SAMPLING J 
SYSTEM 

CONTROLLED ENVIRONMENT 

Figure 2-24: Schematic illustrating the typical feature of the static analytical method 

(extracted from Raal and Muhlbauer [1994)) 

The components that are being studied are charged into the equilibrium cell. The liquid 

component is introduced into the equilibrium cell by flushing with the more volatile component or 

by a pump. The more volatile component is usually supplied directly from its storage cylinder, 
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whilst high boiling more volatile components such as propane and butane may have to be heated 

and pumped into the equilibrium cell by a compressor type device [Muhlbauer, 1990]. Agitation 

of the cell contents is then begun so as to facilitate contact between the phases and hence 

decreases the time take to reach equilibrium. Once equilibrium has been reached the temperature 

and pressure are recorded and liquid or vapour or both samples are withdrawn from the 

equilibrium cell and their compositions analysed. To generate the desired VLE equilibrium phase 

diagram, the temperature or pressure of the mixture is regulated. 

2.5.1.2. Selected examples from literature of the static analytical method 

Rogers and Prausnitz [1970] 

STIRRER 
DRIVE 

MAGliET 

ENO CROSS-SECTION 

VAPOR S,\r.tPLE-.. 
PISTONS 

MOYASlE 
SAM?I.ING 
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LIQUID SAYPI.£ VAPOA SlMPI..£ 
CAPll..1.ARY UN£ !1 CAPILLARY LIN£ 

TO LOW PRESSURE 
ANALYSIS S~T£11 

SIDE CROSS-SECTION 

Figure 2-25: Schematic of the Equilibrium cell and sampling system of Rogers and 

Prausnitz [1970] 

The sampling system of Rogers and Prausnitz [1970] transfers samples from the equilibrium cell 

to the low-pressure analysis system via two sets of moveable pistons. Movement of the sampling 

piston is achieved with a hydraulic drive. Each set of pistons (one for liquid sampling and the 

other for vapour sampling) contains two pistons, between which is a small variable-volume. 
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During sampling, this volume is extruded from the cell into a cylinder and moves down the 

cylinder until the sample ports are reached; the sample then expands through capillary tubing into 

the low-pressure zone. This technique has the primary advantage that the equilibrium cell 

pressure is not disturbed during withdrawal of the samples. A tight pressure seal around the 

moving piston is maintained by use of specially fabricated "o"-rings made of Rulon LD, a heavy­

duty filled Teflon material. Figure 2-25 illustrates the equilibrium cell and the sampling system. 

The contents of the cell are agitated with a magnetic stirrer. This method avoids the problem of 

pressure sealing a rotating shaft. The stirrer paddle was designed to stir both phases, to agitate 

the vapour-liquid interface without splashing liquid up into the region near the vapour-sampling 

pistons, and to dislodge any vapour bubbles near the vapour-sampling pistons. 

Rogers and Prausnitz [1970] used a movable thermistor, whose response depends on whether it is 

in the vapour or the liquid phase to avoid withdrawal of a two-phase sample, and to aid in the 

loading of the equilibrium cell. 

COPPEii! 
PLUES 

COVER 4NO 
$Af(TY 
SlllELO 

Figure 2-26: Thermostat system for the equilibrium cell of Rogers and Prausnitz [1970) 

Temperature of the equilibrium cell is controlled by placing it in a thermostated enclosure , 

through which liquid from a temperature controlled bath is pwnped. The enclosure also serves as 
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a thermal and safety shield. Temperature stability of the enclosure is promoted by having the 

inside constructed of copper plates. Fibreglass insulation was inserted between the steel exterior 

of the enclosure and the copper plates. Copper shielding and a layer of insulation was also used 

in the present project to ensure thermal stability in the air-bath. 

Just as in the apparatus used in this project, nitrogen was continuously fed into the thermostated 

enclosure to avoid formation of an explosive mixture, should a leak develop in the equilibrium 

cell. 

Besserer and Robinson (1971] 

The apparatus is a rather complex double-piston equilibrium cell and was designed to permit the 

simultaneous measurement of the composition and the refractive index of the co-existing 

equilibrium phases. 

Equilibrium between phases is achieved by mechanically spraying the entire liquid contents into 

the vapour phase and then allowing the phases to separate. Besserer and Robinson [1971] state 

that no more than 8 to 10 cycles are required to achieve equilibrium and the normal time was 

about 10 minutes. 

The sampling system was such that samples could be removed from either phase and three or 

more analyses obtained from each sample. The sampling valves are internally mounted micro­

metering valves with provision made for flushing out and evacuation of the low pressure 

sampling lines. 

The equilibrium cell (Figure 2-27) was machined from a 316 stainless steel cylinder. It consists 

of three parts, two cylinder piston end sections and a central windowed section. The three 

sections are bolted together with the high-pressure seals between them, made by flattened Teflon 

"o"-rings. Each piston has a 10 cm travel and is confined to its respective cylinder. The piston 

seal is effected by four "o"-rings, one Teflon and three neoprene. The function of the pistons is to 

isolate the cell from the hydraulic fluid and to provide a means for varying the cell volume. 

Besserer and Robinson [1971] do not explicitly state the purpose of the variable-volume 

capability of the equilibrium cell. The main purpose of the moveable pistons seems to be to 

facilitate the mixing of the equilibrium cell contents. 
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Figure 2-27: Equilibrium cell of Besserer and Robinson (1971} 

Figuiere et al. [1980] 
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Figuiere et al. [1980] found existing sampling methods at their time to be not entirely 

satisfactory, and this led them to devise a new sampling method. The sampling procedure made 

use of micro-expansion which is obtained through rapid opening of small aperture valves. The 

amount of withdrawn sample is small enough (about I µl) so as not to modify equilibrium 

conditions in a 50 cm3 cell. 

The sampling system is located at the bottom of the cell body. Two holes were drilled through the 

cell bottom. The lower one is used to sample the liquid phase, and the higher one samples the gas 

phase. These holes contain the stems of the two valves, the seats of which are machined in the 
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cell body material. The samples flow through slits machined along the valve stems and encounter 

the GC carrier gas. Sampling is achieved by rapid vertical percussions generated by a hammer 

activated by an electromagnet and transmitted to the valves by pushers. 

In order to rapidly reach equilibrium inside the cell, efficient stirring is achieved by means of a 

magnetic stirrer rotating in an orientable magnetic field induced by four coils located outside the 

cell. The arrangement is analogous to the one used by us in this project to effect stirring in the 

second liquid phase (if it exists). 

Ce&rriu Glls 
Inlet - Outlet -

Figure 2-28: Schematic of the carrier gas circulation through the cell to carry off the 

samples [Figuiere et al., 1980] 

The sampling method of Figuiere et al. [1980] is very reliant on the opening time of the valves. 

They state that the valve opening had to be calibrated by supplying different powers to the 

electromagnets that actuate the valve openings and closings. This sampling method seems to be 

cumbersome and not very reliable. The reproducibility of sample volumes, which will be 

dependent on physical properties and pressures, is not mentioned. 
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Figure 2-29: Equilibrium cell assembly of Figuiere et al. [1980} 
A - cell cap; B - pressure transducer; C - equilibrium compartment; D - magnetic stirrer; E - valve; G 
- heating resistance place; H - cooling coil place; I - teflon thermal shield; J - viton 0-ring; K - spring 
washers; L - copper gasket; M - channel; N - thermocouple well; 0 - valve pusher. 

Legret et al. (1981) 

Legret et al. [1981] made use of a sampling microcell for sampling of the equilibrium phases. 

These microcells could be detached from the equilibrium cell after filling and transferred to a 

specially designed chromatographic injection port. The sampling microcells were designed to trap 

a sample of volume 15 µl. Figure 2-30 illustrates the sampling microcell. 

Legret et al. [1981] state that their sampling method is simple and fast, because no displacement 

fluid like mercury or circulation pumps is required. The expansion of the fluid into the valve is 

very small in amplitude; it represents 5x l 04 in relative value of the volume and it resuhs in no 
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observable effect on the sample reproducibility, because the dead volume between the equilibrium 

cell and the sampling microcell is only approximately 4 µI. 

I 

A Ste-
8 MicroceH body 
C Driving scre-
D.G .Join~$ 
E.F Antifric~ion rings 

Figure 2-30: Sampling microcell of Legret et al. (1981) 

Konrad et al. [1983] 

The optical equilibrium cell was constructed from stainless steel Nimonic 90 and was designed 

for pressures up to 200 MPa and temperatures between 300 and 450 K. The equilibrium cell had 

two pairs of synthetic sapphire windows (12 mm diameter and 9 mm long). The windows were 

mounted at the bottom and the half heights of the cell on supporting steel cones with Pouher type 

seals. Sealing between the steel window plugs and the windows was accomplished with Teflon 

foil. 
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Figure 2-31: Schematic of the apparatus of Konrad et al. [1983) 
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TFM 

AID (S) - analogue-digital convertor for sample signal; AID (R.) - analogue-digital convertor for 
reference signal; Cary 17H - spectrophotometer; D - detector; DV - inlet valve; DVM - digital 
voltmeter; Fe - ferrite tip; HP85 - microcomputer; INP - thermostatically controlled solenoid for volume 
measurement; L - lamp; M - pressure gauges; MA - high pressure cell; NMS - micrometer screw; Mo -
monochromator; SG - signal generator; SP - screw press; SPl, SP2 - solenoids; TE - thermocouple; 
TFM - carrier wave amplifier; TFO - transformer; TM - thermostating jacket; V - hydraulic oil 
reservoir; VE - reference junction. 

Konrad et al. [1983] positioned the sapphire windows such that their optical axes were parallel to 

the cylindrical axes. This was done so as to prevent double refraction and accordingly 

interference between ordinary and extraordinary rays (Near infrared spectroscopy was used for 

determination of compositions). Window support plugs . of varying kinds were used to obtain 

different optical path lengths. 

Pressure in the equilibrium cell was created by a silicon oil in a screw press. It was transmitted to 

the fluid mixture by a separator system. A piston was used as a separator system and the position 

of the piston was detected by an inductive device. This allowed determination of cell volume. The 
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method of using a stepper motor and manipulating an EOS is much simpler, and has been used in 

this project to determine cell volume. 

Ashcroft et al. [1983] 

Pressure to the equilibrium cell was applied by mercury in the lower section and by a steel piston 

in the upper section (see Figure 2-32). Sealing was achieved with "lJ"-rings and the piston was 

actuated by hydraulic oil. Using this system the cell contents could be raised and lowered without 

pressure changes, merely by the dual action pumping of the oil and mercury. 

Equilibrium of the cell contents was achieved by a rather cumbersome mechanical rocking 

system. The apparatus had swivel joints, and Ashcroft et al. [1983] state that rocking was 

maintained for three hours to attain thermodynamic equilibrium in the cell. 

The thermostatted air-bath used by Ashcroft et al. (1983] is similar to the one designed in this 

project. The Ashcroft et al. (1983] air-bath was constructed of steel and had dimensions of 1.2m 

x 0.6m x I.Im high. The temperature in the bath was regulated to± 0.1 K by an air circulator 

and heater operated by a thermistor-fed proportional controller. The maximum temperature that 

could be maintained in the bath for long periods of time was 333 K. 

The sampling mechanism of Ashcroft et al. [1983] consisted of a stainless steel sampling rod (1 O 

mm diameter) bored with a hole of diameter 2 mm. Figure 2-34 illustrates the sampling 

mechanism. The mechanism and its operation are very similar to that of Fredenslund et al. 

[1973]. 

The equilibrium cell contents could be observed by means of a mirror and optical system. 

Observation was made through the window assembly and a glass capillary tube (refer to Figure 

2-32). The cylindrical windows were of toughened soda glass and the glass capillary tube was 

pyrex. There was a rather cumbersome method to maintain a small pressure differential across 

the capillary tube. 

A measuring rod that was equipped with a vernier accurately determined the position of the 

piston. This however required an additional sealing point for the equilibrium cell. 
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Figure 2-32: Equilibrium cell of Ashcroft et al. [1983) 
A - cell body, B - end caps; C - piston; D - window assemblies; E - glass capillary; F - toughened glass 
windows; G - piston indicating rod; H - sampling valve. 
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Figure 2-33: Schematic of the overall equipment layout of Ashcroft et al. [1983} 
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Figure 2-34: Sampling apparatus of Ashcroft et al. (1983] 

Occhiogrosso et al. (1986] 
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The equilibrium cell which was variable in volume was designed to operate at up to pressures 

and temperatures of700 bar and 535 K respectively. The cell had a maximum internal volume of 

45 cm3 and was constructed from 316 stainless steel. The cell contents were illuminated by a 

fibre-light pipe and was viewed through a 3.81 cm diameter quartz window which was secured 

by a cell end cap which had a 0. 64 cm by 1. 91 cm view slit. A leak-proof seal of the end cap was 

ensured by using a Viton "o"-ring which was placed in an "o"-ring groove located between the 

quartz window and the cell body. 

The contents of the cell could be compressed to the desired operating pressure by a movable 

piston fitted with two Viton "o"-rings and driven by a low-vapour-pressure silicone oil which 

was pressurised by a syringe-type pressure generator. The equilibrium cell contents were mixed 

by a magnetic stirring bar activated by a magnet situated below the cell. Pressure of the 

equilibrium mixture could be isothermally adjusted at a fixed overall composition by varying the 

interior cell volume. 
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Figure 2-35: Experimental apparatus of Occhiogrosso et al. (1986} 
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The experimental method of Occhiogrosso et al. [1986] was that of the dew- and bubble point 

method. The data that they consequently obtained was an isopleth (constant composition at 

various temperatures and pressures). This meant that the equilibrium cell contents did not need to 

be sampled and analysed for each experimental point. 

Laugier and Richon (1986] 

The originality of the apparatus was the sampling system. Two capillaries of internal diameter, 

0 .1 mm, are fixed in the cylindrical wall of the cell at levels designed to withdraw the vapour and 

liquid samples. These capillaries also connect the equilibrium cell to a metallic chromatographic 

injector. Carrier gas flows through the expansion chambers of each of the injectors where a 

kalrez gasket inserted on the end of a movable axis can obstruct the extremity of the capillary. 

The kalrez gasket is held in place at the end of the capillary by a helicordal spring. Thrust blocks 

are used to limit the linear movement of the axis and the path of the movable axis. This in tum 

controls the period of aperture time for the extraction of very small amounts of phase samples. 

The capillary is maintained short so as to ensure that the amount of mixture contained within it is 
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negligible compared to that of the withdrawn samples. The injectors are also heated to vapourise 

the samples. Figure 2-36 illustrates the flow diagram of the apparatus. 
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Figure 2-36: Flow diagram of the experimental apparatus of Laugier and Richon [1986] 
B - buffer; C - capillary; EC - equilibrium cell; EX - expansion chamber; FV - feeding valve; HR -
heating resistance; I - carrier gas inlet; KG - kalrez gasket; KM - kalrez membrane: KR - kalrez "O" -
ring; LB - liquid bath; LC - leakproof connection; MA - movable axis; MI - metallic injector; MR -
magnetic rod; 0 - carrier gas outlet; OL - operating lever; OC - cell "O" -ring; PT - pressure transducer; 
S - belicoiclal spring; T - thrust; TG - Teflon gasket; VG - Viton gasket. 

Laugier and Richon [1986] claim that the apparatus is very simple and that measurement in the 

critical region does not involve significant experimental difficulty. They made comparisons with 

experimental data of Kay and Albert [1956] and stated that there was a strong similarity over the 

entire pressure range. 

Miihlbauer [1990) 

The apparatus of Muhlbauer [1990], developed in the same laboratory as the equipment in this 

project, was the predecessor of the current HPVLE static apparatus. A number of the features of 

the current equilibrium apparatus were used directly from the Muhlbauer [1990] apparatus. They 

include:-

• the design of the externally mounted heating unit; 

• the design of the bottom stirrer in the equilibrium cell; 

• the design of the jet-mixers for the homogenisation of the withdrawn equilibrium sample; 

and 

• the design of the propane compression device. 
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The apparatus of Muhlbauer [1990] was capable of measurement of pressures and temperatures 

up to 200 bar and 200 °C respectively. The equilibrium cell volume was approximately 350 cm
3 

and the cavity was drilled eccentrically to accommodate the liquid sampling device and the 

sampling port. 

The liquid phase sampling device was similar to that used by Fredenslund et al. [1973] 

(discussed earlier). The sampler was a polished stainless-steel sampling rod with a small hole 

(1.5 mm) drilled near the tip. The sampling rod was moved through the cell wall by an air­

activated piston with Viton "o"-rings and guide rods to prevent rotation and misalignment of the 

sample hole with the carrier-gas channels drilled through the cell wall. 

Sampling of the vapour phase was achieved through a capillary with entrapment of a small 

volume (approximately 0.75 cm3
) of vapour in an evacuated space. The vapour sampling 

assembly was heavy and very cumbersome. The vapour sample, like the liquid sample was 

conveyed with helium gas, which was the carrier gas, to the jet-mixers before being sent to the 

GC for analysis. 
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E --·-··· ··-

·······-·"" ........ ---
F -·- ·-·······--·-

. Figure 2-37: Equilibrium cell and air-bath arrangement of Muhlbauer [1990] 
A - ai~ bath temperature profile measuring thermocouples; B - Eurotherm 818 controller; C - vapour 
sampling valves; D ~ ~rglass ~ation; E - Siflo air circulation fan; F - aluminium finned cartridge 
~eate~; G - copper.lining; H - air inlet; I - air outlet; J - variable speed motor, K - magnetic stirrer; L -
Jet Illlxer, M - rotatmg magnet well; N - graphite bush; O - liquid sampling device. 
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Figure 2-37 illustrates the equilibrium cell and air-bath arrangement of Miihlbauer [1990]. The 

air-bath arrangement used by Miihlbauer [1990] was directly used in this project. A number of 

the recommendations that were proposed by Miihlbauer [1990] were also incorporated into the 

design of the apparatus in this project, e.g. the variable-volume equilibrium cell, viewing 

windows and the use of GC sampling valves to sample the equilibrium phases. 

Results obtained by Miihlbauer [1990] for the system carbon dioxide + toluene were in excellent 

agreement with literature. Other systems measured by Muhlbauer [1990] were propane + 1-

propanol and propane + water. 

2.5.2. The static non-analytical method 

2.5.2.1. Description of the static non-analytical method 

As described under synthetic methods earlier in the chapter, a mixture of known composition is 

made up and introduced into the equilibrium cell. Depending on whether isothermal (method of 

pressure variation) or isobaric (method of temperature variation) measurements are being 

undertaken, the temperature or pressure of the mixture is adjusted until phase separation of the 

homogeneous phase occurs. At the commencement of homogeneous phase separation, the 

pressure and temperature is recorded. Since the initial loading quantities of each of the 

components is exactly known, the composition of the mixture can be easily calculated. The 

temperature and pressure is readjusted after the appearance of the second phase to form the 

homogeneous region. This prevents de-mixing and layering of the phases. Adjustment of the 

temperature or pressure is again undertaken until the formation of a new phase is observed. The 

pressure, temperature and composition (mole fraction) at which these phase separations 

commence map out the phase envelope. Phase compositions are not analysed. 

2.5.2.2. Selected examples from literature of the static non-analytical method 

Meskel-Lesavre et al. [1981] 

The apparatus was designed for the simultaneous determination of VLE and saturated liquid 

molar volumes. Bubble pressure and saturated molar volumes of the liquid phase are directly 

measured for a mixture of given composition. Determination of molar volumes as a function of 

composition makes it possible to obtain the partial molar volumes, which are very useful to test 
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the validity of the mixing rules in EOS of mixtures. This data is useful for determining the effect 

of pressure on the non-ideality in the liquid phase and to obtain the Poyirting correction factor. 

The equilibrium cell was designed to be very light and small, so that it could be weighed with an 

accurate balance and thermostated without any temperature gradient. Compositions of the binary 

or multi-component mixtures were determined by weighing each component in the equilibrium 

cell. A pressurising device was used to vary the equilibrium cell volume. The pressure was 

transmitted by a free moving piston. The equilibrium pressure in the cell was read by a pressure 

transducer and was known as a function of total volume of the cell. A discontinuity in the 

pressure versus total volume plot corresponded to the bubble point of the mixture. Accurate 

values of the bubble pressure and of the saturated liquid phase molar volume were 

simultaneously obtained from the pressure versus total volume plot. At the bubble point the 

liquid mole fraction is exactly the mole fraction obtained by weighing on a very accurate balance. 

Experimental data obtained with the equipment of Meskel-Lesavre et al. [1981] for the system 

ethane + n-dodecane were in good agreement with literature. For greater detail on dew- and 

bubble point methods for VLE determination, refer to Appendix A. 

Fontalba et al. [1984) 

The piston assembly of Fontalba et al. [1984] is very similar to that utilized in this project. The 

total volume of the equilibrium chamber is obtained by precise determination of the position of 

the piston with respect to a reference. The reference position was defined by the stop screw at the 

bottom of the cell. The internal volume of the equilibrium chamber for any position of the piston 

was calculated from the position of the piston, the internal diameter of the equilibrium cell, and 

the maximum volume. A micrometer (see Figure 2-38) enabled the position of the piston to be 

measured to within 10-
3 

cm. Fontalba et al. [1984] state that measurement of the piston level to 

within 10-
3 

cm results in an accuracy of about 7 x 10-3 cm3 in the volume determination. 

Fontalba et al. [1984] made use of a probe to measure the interface level. The bottom of the 

probe body ended in a very small thermistor (see Figure 2-39) powered by continuous current 

through wires passing in the probe body. Using a regulated current, a difference of thermal 

conductivity in the space around the thermistor resuhed in an induced change of potential at the 

bounds of the thermistor. 
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Figure 2-38: Total volume measuring device of Fontalba et al. [19841 
1- Sleeve: 2 - cooled slide; 3 - Teflon insulating jacket; 4 - helicoidal groove to receive a cooling coil; 
5 - micro~eter, 6 - probe connected to the piston; 7 - pressurizing assembly; 8 - cell body; 9 - cooling 
coil; 10 - helicoidal groove to receive a heating electrical coil; 11- spacer. 

Figure 2-39: Interface level measuring device of Fontalba et al. [1984} 
1 - Probe body; 2 - displacement transducer, 3 - comer plate to make a rigid connection between the 
probe body and the cursor ( 4 ); 4 - displacement transducer cursor; 5 - screw-nut device to move the 
probe; 6 - column assembly for axial adjustment of the probe; 7 - rigid connection between (1) and (3); 
8 - helicoidal groove to receive a cooling coil; 9 - helicoidal groove to receive an electrical coil; 10 -
pressurizing jacket; 11 - inlet-outlet of the pressurizing liquid; 12 - metallic rod; 13 - holes for the 
fixation on the cell. 
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2.5.2.3. Advantages of the static non-analytical method 

The following are some of the advantages of the static non-analytical method as outlined by Raal 

and Muhlbauer [1994] :-

• As a result ofno sampling of the equilibrium phases being required, there is no need for 

complicated and expensive analytical devices. 

• Equilibrium data can be generated very rapidly and efficiently, as there is no need to wait for 

equilibration between phases. 

• P-V-T relationships and even orthobaric densities can be measured. 

• Critical property measurements can be undertaken on the apparatus. 

• An entire isopleth can be obtained from a single charging of the equilibrium cell. 

2.5.2.4. Disadvantages of the static non-analytical method 

The following are some of the disadvantages of the static non-analytical method as outlined by 

Raal and Muhlbauer [1994] :-

• For multicomponent (in particular greater than two components) systems, limited information 

is obtained from experimentation. 

• Observation of iso-optic systems, i.e. where the coexisting phases have approximately the 

same refractive index, is extremely difficult. 

• The method is not suitable for measurements in the region away from the critical state. 

• Dew points can easily be undetected if the liquid phase condenses as a thin film on the wall 

of the equilibrium cell instead of as a mist. 

2.5.3. The static combined method 

2.5.3.1. Description of the static combined method 

This method combines the features of the analytical and non-analytical static methods into a 

single equilibrium cell. As a result provisions are made for the viewing of the cell contents, 

sampling of the vapour and liquid equilibrium phases, and determination of the equilibrium cell 
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volume. The analytical method does not lend itself to the study of phase equilibria near the 

critical state, since it entails the sampling of the equilibrium phases. In the critical region the 

gradients of the isobars or isotherms are generally very flat [Deiters and Schneider, 1986]. This 

means that a slight disturbance in the equilibrium conditions (e.g. during sampling), be it of 

temperature or pressure, can lead to large fluctuations in the equilibrium phase compositions. 

Thus if one designs a HPVLE apparatus for accurate measurement up to and including the 

critical point, the combined method will have to be adopted. 

2.5.3.2. Selected examples from literature of the static combined method 

Japas and Franck [1985) 

The equilibrium cell was basically a cylinder constructed from a nickel-base, corrosion-resistant, 

high-strength alloy. On both ends, windows of synthetic sapphire were mounted, which, with a 

light source and mirror, permitted the observation of the interior. 

SP 

Figure 2-40: High pressure equipment of Japas and Franck [1985) 
A - autoc~ave; _c -air driven compressor, G - glass vessel; H - heating jackets; Pf - pressure transducer; 
S - sapphire wmdows; SC - capillaries; SP - screw press; T - thermocouple; V - valves. 
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The apparatus could be operated in both the analytical and synthetic methods of investigation. In 

the analytical method a thin stainless steel capillary was applied to extract samples from the 

liquid phase through a micrometer valve. In the synthetic mode of operation, the precise amounts 

of gas and liquid introduced into the equilibrium cell were determined. After filling, the 

temperature was slowly increased and recorded simultaneously with the pressure. The P-T curves 

at constant volume, "isochors", showed a break point at the transition from a two-phase to a 

homogeneous one-phase system. Each break point of this kind was one point on the three 

dimensional P-T-x phase boundary surface and supplied also a value for the molar volume at this 

condition. Continuation of the heating permitted the determination of the P-V-T data of the 

system. The knick-points were also determined by cooling and in the majority of cases 

simuhaneously by visual observation of the disappearance or appearance of a second phase and 

critical opalescence. This method of VLE determination is analogous to the dew point and 

bubble point method outlined in Appendix A. 

The apparatus designed in the present project is also capable of operation in the synthetic mode, 

and thus could also be classified under a static combined method of operation. 

Table 2-6 lists the static apparatus surveyed. Greater detail is available in Appendix A. 



References Cell volume Operating Range Equilibrium cell Measurement Equilibration Sample size (µl) 
(1) Device time 

(cm3
) Temp Pressure Temp Pressure (min) Vapour Liquid 

(K) (bar) (2) (3) 
Kobayashi and Katz [ 1953] - 367 207 - TC B 120 - -

Akers et al. (1954] 500 - 670 stainless steel T B 30 - -

Din [1960] - - - copper PR DM - 2500000 -

Kohn [1961] 5112 - 69/104 pyrex glass PR B - NIA NIA 

Rogers and Prausnitz [ 1970] 150 223-423 1013 stainless steel TC PT - - -

Besserer and Robinson [1971] v.v. 255-395 207 316 stainless steel TC PT 10 10·3g 10-3 g 

10-175 

Brunner et al. [1974] 1000 623 1000 316 stainless steel TC B - - -

Ohgaki and Katayama (1975] 300 - 152 stainless steel PR DWP/PT - v.v. 150 

Slocum [1975] v.v. 223-523 69 pyrex glass - - - - -

223-598 35 

Antezana and Cheh 1.1975] 800 - - 316 stainless steel TC DWP 300-1500 - -

Nieto and Thodos L 19781 v.v. 325-425 56 stainless steel TC PT 640 50 50 

Table 2-6: Static apparatus surveyed 

i 



References Cell volume Operating Range Equilibrium cell Measurement 
(1) Device 

(cm3
) Temp Pressure Temp Pressure 

(K) (bar) (2) (3) 
Ng and Robinson [1978] 150 310-589 173 316 stainless steel TC B 

Kalra and Robinson [1979] 241.1 77-298 104 stainless steel TC PT 

Figuiere et al. [1980] 50 673 400 stainless steel TC PT 

Legret et al. [ 1981] 100 233-433 50-1000 stainless steel TC PT 

Bae et al. (1981] 300 223-323 100 304 stainless steel PR PT 

Meskel-Lesavre et al. [1981] v.v. 373 50 titanium TC PT 

Konrad et al. [ 1983] 100 293-473 2000 stainless steel TC B 
Nimonic 90 

Konrad et al. [1983] 100 300-450 2000 stainless steel TC B 
Nimonic 90 

Rousseaux et al. [1983] V.V. 573 600 stainless steel TC PT 

Guillevic et al. 11983] v.v. 558 70 316 stainless steel TC PT 

Ashcroft et al. [ 19831 885 333 690 manganese steel TS PT 

Tahle 2-6: (continued) Static a1>1>aratus surveyed 

Equilibration 
time 

(min) 

180 

-

-

10 

120 

60 

-

-

300 

-

180 

Sample size (µI) 

Vapour Liquid 

- -

- -

1 1 

15 15 

- 8 

NIA NIA 

50mg 50mg 

NIA NIA 

NIA NIA 

- -

60 60 

°' Vo 



References Cell volume Operating Range Equilibrium cell Measurement 
(1) Device 

(cm3
) Temp Pressure Temp Pressure 

(K) (bar) (2) (3) 
de Loos et al. [ 1984] - - - stainless steel PR DWP 

Fontalba et al. [1984] V.V. 433 450 titanium alloy TC PT 
(60 max) 

Fall and Luks (1984] 7-8 398 104 pyrex glass PR PT 

Huang et al. [1985] V.V. 523 345 sapphire and TC PT 
(45 max) stainless steel 

Japas and Franck [1985] - 673 2900 nickel-base TC PT 
corrosion-resistant 
high strength alloy 

Laugier and Richon [ 1986] 50 423 100 316 stainless steel TC PT 

Occhiogrosso et al. [ 1986] v.v. 535 700 316 stainless steel PR PT 
(45 max) 

Wagner and Wichterle [1987] 65 - 100 stainless steel QT B 

Nakayama et al. I 1987] 270 450 200 316 stainless steel TC PT 

Katra ct al. [ 19871 v.v . - 200 316 stainless steel TC B 

Table 2-6: (continued) Static apparatus surveyed 

Equilibration 
time 

(min) 

-

-

-

-

-

-

-

-

720 

720-900 

Sam pie size (µI) 

Vapour Liquid 

- -

NIA NIA 

NIA NIA 

- -

- -

- -

NIA NIA 

- -

100 100 
250 250 

- -

°' °' 



References Cell volume Operating Range Equilibrium cell Measurement 
(l) Device 

(cm3
) Temp Pressure Temp Pressure 

(K) (bar) (2) (3) 

Kalra et al. [1987] v.v. - 240 316 stainless steel TC PT 

Reiff et al. [ 1987] 2000 273-473 300 chromium+nickel+ PR B/PT 
molybdenum steel 

Laugier et al. [1990] v.v. 353 200 sapphire TC PT 
(10 max) 

Muhlbauer [ 1990] 350 453 200 stainless steel PR PTIB 

Xu et al. [1991] 500 - 500 stainless steel PR PT 

B mnner et al. [ 1994] 1000 773 350 - TC PT 

Verneau et al. [1994] 500 273-423 1-20 - PR PT 

Sako et al. [1995] 500 480 300 - PR B 

Pli:>hl ct al. f1997] l 100 - 520 stainless steel TC PT 

Table 2-6: (continued) Static apparatus surveyed 

Key: 
(I) rv1a1crials of construction 
(2) TC - thermocouple: T - thermometer: PR - platinum resistance thermometer: QT - quartz thermometer 

Equilibration 
time 

(min) 

1440 

-

-

-

-

-

-

240-300 

720 

(3) B - Bourbon type pressure gauge: DM - differential manometer: PT - pressure transducer: DWP - dead weight piston gauge 

Sample size (µI) 

Vapour Liquid 

- -

- -

NIA NIA 

900 8.8 

600 300 

- -

- -

- 3000 

- -

0\ 
--.J 



CHAPTER THREE 

REVIEW OF THE COMPUTATION AND 

THERMODYNAMIC INTERPRETATION OF HPVLE 
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The interpretation and modelling of HPVLE data thermodynamically is very much more difficult 

than for the low-pressure case. Measurement of this type of data is both expensive and complex 

and considerable experimental skill, experience and patience is required of the researcher. It is 

therefore very important that the data be correctly theoretically interpreted as this allows for 

interpolation and extrapolation of data to new conditions (Wong et al. [1992]) and proper 

correlation of phase behaviour from the minimum amount of experimental data. 

Moser and Kistenmacher [1987] have estimated the :financial and experimental time requirements 

for the measurement of VLE data. It is when one views these figures that one realizes the need 

for better extrapolation and predictive techniques in HPVLE. Moser and Kistenmacher [1987] 

estimate the cost ofVLE measurement for a single set of data points at $2000 (in terms of 1987 

dollar value), and the time required to measure VLE for a single isotherm of a single binary 

system at approximately 30 days. These figures are quoted for low pressure VLE via the dew 

point and bubble point method. The large experimental set-up time is not included in these 

estimates. From our experience in HPVLE, we estimate HPVLE total cost and time values being 

two- or three-fold those quoted by Moser and Kistenmacher [1987] . 

Thermodynamics provides the framework for interpreting phase equilibrium data. At low 

pressure this thermodynamic analysis is common. However, when one progresses to mixtures at 

high pressures, the analysis is much more complicated and less common. Van Ness [1964], Van 

Ness et al. [1973], Van Ness and Abbott [1982] and Van Ness and Abbott [1983] discuss data 

reduction methods in detail. Baker et al. [1982] discuss the Gibbs energy analysis of phase 

equilibria in a publication. 

Prausnitz et al. [1986] refer to high pressure as any pressure sufficiently large so as to have an 

appreciable effect on the thermodynamic properties of all the phases under consideration. At 

these conditions, to enable one to correlate or predict data, the non-idealities introduced by the 

high pressures need to be described. This is one of the aspects that are covered in this chapter. 
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A review of the theoretical aspects of high temperature and pressure VLE has been excellently 

covered by Sandler [1994], Muhlbauer and Raal [1995] and Raal and Muhlbauer [1998]. Some 

of the methods reviewed by them, coupled with the recently developed methods of Wong and 

Sandler [1992] were employed in this project and will be concentrated on. A brief summary of 

other methods is provided in Appendix B. 

There are basically two categories of theoretical methods:­

i) the direct method, and 

ii) the combined method [Wichterle, 1978 (a,b)]. 

In the direct method, computation of both the liquid and vapour phase fugacity coefficients is 

required. These are computed via a single appropriate EOS. The combined method on the other 

hand requires the computation of the liquid phase activity coefficient using an appropriate liquid 

phase model and the vapour phase fugacity coefficients using an EOS. 

The history of the development ofEOS models will be discussed with particular emphasis placed 

on the models used in this project. A similar discussion will be undertaken for liquid phase 

activity coefficient models. Consistency testing and critical property prediction will also be 

briefly discussed so as to ensure a complete review of HPVLE computation and thermodynamic 

interpretation. Chueh and Prausnitz [1967(a,b,c)] cover HPVLE computation well in their series 

of publications. 

3.1. CRITERION FOR PHASE EQUILIBRIA 

The thermodynamic treatment of phase equilibria is excellently covered in most undergraduate 

thermodynamic texts e.g. Walas [1985], Smith and van Ness [1987], Smith et al. [1996] and 

Winnick [1997]. The development of the criterion for phase equilibrium is covered in Appendix 

B.I. 

The criterion for phase equilibria as stated by Smith and Van Ness [1987] is: 

''Multiple phases at the same temperature and pressure are in equilibrium when the fugacity or 

chemical potential of each species is uniform throughout the system." 

µt = µ/ = . . . . . . . . . = µ;" i = 1, .. . ,N (3-1) 
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Jt =}/ 
A 

••••••••• = / /r i = l, ... ,N (3-2) 

A description of the fugacity based on first principles from the total differential of the logarithm 

offugacity is: 

In Equation (3-3) the first, second, and third terms (RHS) may be related to the partial molar 

enthalpy, volume, and excess Gibbs free energy respectively. However, there is some difficulty in 

calculating the terms on the right hand side of Equation (3-3) which makes its use impractical. 

For the case of equilibrium between a liquid and vapour phase at the same temperature and 

pressure, applying the general phase criteria yields: 

(3-4) 

However, knowing the relationship between component fugacities is of little practical value 

unless one can relate them to measurable properties e.g. temperature, pressure, and composition. 

The problem of relating fugacties to measurable properties is overcome through the use of 

auxiliary functions such as activity coefficient, y; , and fugacity coefficient, </>; . 

3.2. THEORETICAL METHODS IN HPVLE 

Wichterle [1978 (a,b)], Muhlbauer and Raal [1995], and Raal and Muhlbauer [1998] give 

excellent reviews on the two theoretical methods that have been developed for HPVLE. They are: 

i) the direct method, and 

ii) the combined method. 

Since this project involved the design and construction of an isothermal HPVLE apparatus and 

the subsequent measurement of data isothermally, only the isothermal forms of these methods 
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will be discussed. Ramjugemath and Raal [1999] have undertaken a comparison of the direct and 

combined methods for isothermal HPVLE computation. 

3.2.1. The Direct method 

In the direct method, the vapour phase fugacity is described by: 

(3-5) 

and the liquid phase fugacity by: 

(3-6) 

This results in the equilibrium condition being described by: 

(3-7) 

The effects of temperature, pressure, and composition on the liquid and vapour phase fugacities 

are determined by the effect of these variables on the fugacity coefficients. This may be 

represented mathematically as: 

i t = rp(T,P,y;, ········ ··•YN ) (3-8) 

¢/ = ¢( T,P,x;, ····· ·· ···, xN) (3-9) 

The fugacity coefficients for both the vapour and liquid phases are calculated using a suitable 

EOS which describes the phase behaviour through exact thermodynamic relationships. 

For the vapour phase, 

(3-10) 
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and for the liquid phase, 

in¢/ (3-11) 

The equilibrium ratio, K, is then defined as: 

(3-12) 

The description of phase equilibria via the direct method applies to both low- and high pressures. 

However at higher pressure the application of Equation (3-7) is not simple since: 

• vapour phase non-idealities become pronounced i.e. Ir -:t:- 1. 

• the total pressure differential term in the isothermal Gibbs-Duhem equation becomes 

significant, especially near the critical region. 

3.2.1.1. Difficulties associated with the application of the direct method 

a) Selecting the most appropriate EOS to describe both the liquid and vapour phase non­

idealities can be a trial and error procedure, since there are literally hundreds of EOS 's 

described in literature. In the selection of an EOS, the main criterion is that the EOS must be 

flexible enough to fully describe the system behaviour (P, V, 1) for both phases in the 

temperature, pressure, and composition ranges under study. 

b) Selection of mixing rules further complicates the method. Mixing rules extend the pure 

component form of an EOS to mixtures. Generally most mixing rules are somewhat empirical 

in nature and tend to be system specific. Muhlbauer and Raal [1995] have elegantly classified 

the mixing rules. 

c) The problem of locating the appropriate liquid and vapour molar densities when higher than 

cubic order EOS's are used. This problem has been reviewed by Raal et al. [1980]. 

d) The computational techniques for the calculation of dew-points and bubble-points are usually 

unreliable and do not converge to a solution at conditions close to the critical point, especially 

for muhicomponent mixtures. Anderson and Prausnitz [1980 (a),(b)] describe a technique that 
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1s robust and generally ensures convergence for dew-point, bubble-point and flash 

calculations. 

For isothermal analysis, a bubble-pressure computation is generally undertaken. Figure 3-1 

illustrates the computational procedure for the bubble-pressure calculation using the direct 

method. 
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Figure 3-1: Computational procedure for the bubble pressure calculation using the direct 

method [Muhlbauer and Raal, 1995] 
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With the development of mixing rules that have built in Gibbs excess model dependency (Huron 

and Vidal [1978], Wong and Sandler [1992]), there has been the development of one may say, 

the "modem" direct method (Raal and Muhlbauer [1998]). The liquid and vapour fugacity 

coefficients are still calculated using an EOS, but the EOS have a buili in Gibbs excess model in 

their mixing rules. More detail follows later in the chapter. 

3.2.2. The Combined method 

The main feature of this method of analysis is the use of separate auxiliary functions to describe 

the non-ideality of each phase. 

For the vapour phase fugacity, 

(3-13) 

and for the liquid phase fugacity, 

(3-14) 

This results in the equilibrium condition becoming, 

(3-15) 

Here again, the effects of temperature, pressure and composition on the fugacity in the liquid and 

vapour phases are determined not only by the effect of these variables on the fugacity coefficient, 

but this time also on the activity coefficients. Therefore, the following relationships are required: 

(3-16) 

~ v = t/J(T,P,Yt, ··· ··· ·· ·· ·,YN) (3-17) 

J;° = J(T,P) (3-18) 
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The equilibrium ratio, K, for the case of the combined method is now, 

(3-19) 

The fugacity coefficient is calculated using a suitable EOS that describes the vapour phase 

behaviour through the exact thermodynamic relationship, 

ln/t (3-10) 

as in the direct method. 

The activity coefficient can be determined from the Gibbs-Duhem equation by relating the 

activity coefficients to the molar Excess Gibbs free energy: 

(3-20) 

The activity coefficient Y; relates the liquid fugacity }; L at conditions T, P, and x to some other 

condition where its value is accurately known. The "other condition" is referred to as the 

standard state and it represents the known and defined thermodynamic condition of a component 

at which its activity coefficient is unity. 

3.2.2.1. Standard states 

The conditions of pressure and composition of the standard state should always be chosen such 

that the numerical values of the activity coefficients are close to unity. This is to ensure that the 

real conditions are not drastically different from the standard ones. The standard state 

temperature, however, is always established at the system temperature. 

At extreme pressures it may occur that the system temperature is greater than the critical 

temperature of one of the components in the system. As a result, this component cannot exist in 
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the liquid phase. This makes it difficult to define the component's standard liquid state, as it has 

to be a hypothetical quantity. Since any uncertainties in the hypothetical extrapolation from the 

sub-critical region affect the evaluated activity coefficients, and hence fugacity, the condensable 

and non-condensable components may require different standard states. Muhlbauer and Raal 

[1995] have listed the most commonly used standard states for condensable and non-condensable 

components as listed in Table 3-1 . 

For greater detail on condensable and non-condensable component standard states, refer to 

Appendix B.2. 

Standard State Temperature Pressure Composition Note 
<n (P) (x;) 

Condensable 
components 

1 Tsys1em Psystem 1 Pure liquid component 
2 Tsys1em Prererence 1 Pure liquid component 
3 Tsys1em Po 1 Pure liquid component 
4 Tsystem pinfinity 1 Pure liquid component 
5 Tsystem p 1 Pure liquid component 

Non-<:<>ndensable 
components 

7 Tsys1em Psys1em 0 component i infinitely diluted in 
componentj 

8 Tsystem Preference 0 component i infinitely diluted in 
componentj 

9 Tsystem Po 0 component i infinitely diluted in 
comtxment i 

Table 3-1: Standards states available as listed by Muhlbauer and Raal [1995] 

3.2.2.2. Activity Coefficients 

The use of a constant pressure activity coefficient is advantageous for isothermal conditions as it 

greatly simplifies equation (3-20) to : 

( const. T and P) (3-21) 

Another reason is that the well-known semi-emperical mixture models e.g. van Laar, Margules, 

NRTL, UNIQUAC, etc. are particular mathematical solutions of Equation (3-21). Equation (3-

21) applies equally well to both symmetric and unsymmetric conventions of normalisation of 

activity coefficients. 
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The pressure dependency of the liquid phase activity coefficient varies from a very weak function 

of pressure at low to moderate pressures, to one which needs to be taken account of at high 

pressures. Thus at low to moderate pressures one could consider the liquid phase activity 

coefficient to be a function of just temperature and composition. 

At constant temperature and composition, the constant pressure activity coefficient can be 

determinea by the following rigorous thennodynamic relation: 

(3-22) 

where Y;(P') is the activity coefficient at the arbitrary reference pressure (P'). 

For the condensable component, applying Equation (3-22), the liquid phase fugacity can be 

determined by: 

-L 
AL OL P' JP v; ./; = x;./; Y; exp P' RTdP (3-23) 

Similarly, for the non-condensable component: 

-L 
AL •( , fp V 

f,. = x .j,.0Ly. P > exp -'-dP 
I I I I p' RT (3-24) 

In systems where the total pressure varies widely with liquid composition, Equations (3-23) and 

(3-24) are very useful. Refer to Appendix B.3. for greater detail on condensable and non­

condensable activity coefficients. 

3.2.2.3. Difficulties associated with the application of the Combined Method 

a) In most cases one of the components is usually supercritical at the equilibrium temperature. 

This results in some difficulty in defining an appropriate standard-state fugacity, ./; oL, for 

this supercritical component since it cannot exist as a pure liquid at the system temperature. 
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Prausnitz et al. [1980] suggest methods to overcome this problem as proposed by Lyckman 

et al. [1965] and Spencer and Danner [1972]. 

b) At high pressures the vapour phase non-idealities have to be accounted for i.e. <Pt * l. An 

appropriate EOS model has to be chosen to calculate the vapour phase non-ideality. 

c) The total pressure differential term in the isothermal Gibbs-Duhem equation becomes 

significant at high pressures. Prausnitz et al. [1980] suggests methods to calculate this. 

d) Finding an appropriate model for the excess Gibbs free energy. Gess et al. [1991] and 

Sandler [1989] comprehensively list the most widely used excess Gibbs free energy models. 

e) Evaluating the liquid molar volume as a function of temperature and pressure. Prausnitz et 

al. [1980] suggests methods to evaluate this property, as proposed by Lyckman et al. [1965] 

and Spencer and Danner [1972]. 

f) Determining the large number of parameters needed in this method. Generally, the 

parameters are obtained by fitting. The two most common methods for fitting are the least 

squares method (described by Gess et al. [199l]and Marquardt [1963]) and the maximum 

likelihood principle (described by Gess et al. [1991], Prausnitz et al. [1980], Anderson et al. 

[1978] and Rubio et al. [1983]). 

Seeing that there are more difficulties associated with the combined method, most researchers 

make use of the direct method. The computational procedure for the isothermal bubble-pressure 

calculation via the combined method of Prausnitz et al. [1967], Prausnitz and Chueh [1968], and 

Prausnitz et al. [1980] is illustrated in Figure 3-2. 

Combined methods reviewed in literature are briefly discussed in Appendix B.4. 

There will always be the debate on which is the better analytical method to use. However, there is 

no objective and general criterion that could be used for testing of a particular method. Wichterle 

[1978(b)] gives some estimation surveys dealing with evaluation of the direct and combined 

methods. They are as listed in Table B-4. 

Wichterle [1978(b)] states that if a good EOS is available which is suitable in its description of 

phase behaviour, then the direct method should be used in preference. He also states that the final 

choice of the method is subject to the type and particularity of the system; the availability and 

quality of data; the accuracy requested etc. Wichterle [1978(b)] recommends that at least two 

independent methods should be used for each computation. 
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A similar table of comparison between the direct and combined methods has been drawn up by 

Raal and Muhlbauer [1998] . They also drew up a table rating the capabilities of various classes 

of equations of state. Refer.to Appendix B.5. for these tables. 
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Figure 3-2: Computational procedure for the bubble pressure calculation using the 

combined method [Muhlbauer and Raal, 1995] 

Table 3-2 below details a comparison drawn between the direct and combined method based on 

experience gained in this project (Ramjugemath and Raal [1999]). 



Criterion Direct method Combined Method 
Accuracy of the 
calculation 

Good Includes calculations in the Excellent, except in the 
critical region. Accuracy depends on critical region. Is also model 
the EOS model chosen and the dependent. 
number of adjustable parameters. 
The mixing rules chosen also have a 
simificant effect on the accuracy. 

Range of conditions Works well up to the critical region. Works well at conditions well 
below the critical region. 
Begins to become unreliable 
as the critical region is 
annroached. 

Type of components The method rates poor to fair in the The method is rated as fair to 
ability to model highly polar and good depending on the liquid 
structurally complex systems. phase model chosen and the 
However, various models have been EOS chosen to describe the 
proposed in literature (e.g. Wong and vapour phase non-ideality. 
Sandler [1992), Sandler et al. [1994), 
Raal and Muhlbauer [1998) and 
Malanowski and Anderko [1992)) 
that model these types of systems 
very well usine: this method. 

Calculation within the Good correlation and prediction is Poor correlation of data in the 
critical region possible in the critical region, critical region. 

especially with the new Wong and 
Sandler mixing rules r1992]. 

Computational times This depends on the complexity of It depends on the complexity 
the EOS chosen. For high order of the liquid phase model 
EOS' s, the computation may be slow chosen and the EOS used to 
depending on the number of roots. describe the vapour-phase 
Also depends on the number of non-ideality. With the new 
interaction parameters in the EOS combined method model 
state model chosen and the mixing described in this paper the 
rules. As an example, performing a parameters took 
calculation with the new Wong and approximately 4 minutes to 
Sandler mixing rules [1992) with the determine on a Pentium 150 
Peng-Robinson-Stryjek-Vera EOS PC. 
takes approximately 2 to 3 minutes 
on a Pentium 150 PC (time taken to 
fit the parameters to experimental 
data). 

Input parameters The number of parameters depends 
on the degree of generalization. If 
one has to take a simple cubic EOS 
of state as an example, the input 
parameter is generally the interaction 
oarameter. 

Sensitivity to initial With the methods for convergence 
guess adopted (as described in Anderson 

and Prausnitz [1980 a,b] and least 
squares techniques as descnbed by 
Marquardt [1963)) the problem of an 
initial euess is not so si!mificant. 

Usually generalized better, but 
more parameters are required. 
The choice of a standard-state 
is crucial ( especially for 
HPVLE) and is discussed in 
Raal and Miihlbauer fl 9981. 
Not as sensitive to the initial 
guess as the direct method 

Table 3-2: Companson of the Direct and Combined Methods 
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Correlation abilities 

Consistency of 
computation 

Extrapolation Ability 

Interpolation Ability 

Prediction Ability 

Depending on the complexity of the 
EOS, mixing rules and the number 
of adjustable parameters, the 
correlating ability varies. For the 
simple EOS 's, one has just the binary 
interaction parameters. With more 
complex EOS's and mixing rules 
such as Huron and Vidal [1979), 
modifications of Huron and Vidal 
(Orbey and Sandler [1997)) and 
Wong and Sandler [1992) the 
correlation ability increases, as now 
we have binary interaction 
parameters along with adjustable 
parameters that are related to excess 
Gibbs free energy models. It is not 
neccessarily the case that the 
correlation ability increases with the 
number of adjustable narameters. 
Good for all conditions. 

The new Wong and Sandler (Wong 
et. al. [1992)) mixing rules permit 
for data to be extrapolated to 
conditions of pressure and 
temperature vastly different from the 
conditions at which measurements 
were undertaken. 
Even with very simple EOS' s data 
can be interpolated in small rane;es. 
With the newer EOS 's with mixing 
rules that incorporate the description 
of an excess Gibbs free energy 
model, the models can be totally 
predictive if the UNIF AC group 
contribution model or modification 
thereof is used to determine the 
excess Gibbs free energy (Orbey et 
al. [1993), Fischer and Gmehling 
(1996), and Kurihara and Kojima 
[1995(a),(b)]). HPVLE can also be 
predicted from infinite dilution 
activity coefficients and other 
methods as described by Feroiu and 
Geana [1996], and Yoo et al. [1996]. 
Huang and Sandler [1993] describe 
how their new mixing rules enable 
one to predict HPVLE data from 
existing low-pressure activity 
coefficient oarameters. 

The number of adjustable 
parameters can be unlimited. 
Correlation ability depends on 
the excess Gibbs free energy 
model chosen for the liquid 
phase and the EOS and 
mixing rules that are used to 
describe the vapour phase. 
Generally the correlation is 
excellent at conditions well 
below critical. 

Reliable results cannot be 
expected at higher pressures, 
especially at pressures close to 
the critical condition. 
No extrapolation ability. 

Not as flexible as the direct 
method 
Has no predictive abilities. 
Can become predictive, 
however, if we use the 
UNIF AC model or any group 
contribution model to describe 
the liquid phase and an EOS 
with mixing rules as described 
by Orbey et al. [1993] to 
describe the vapour phase. 
This is a suggestion by the 
authors, but has not been 
tested. 

Table 3-2 (continued): Comparison of the Direct and Combined Methods 
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3.3. SURVEY OF EQUATIONS OF STATE 

The mechanical state of a substance is known when the pressure, temperature, and volume are 

fixed. These three properties are related by a so-called equation of state represented 

mathematically as: 

f(P,V,1) = 0 (3-25) 

Many important properties of pure substances and mixtures (e.g. vapour pressures, critical 

properties, densities, and VLE relations) can be evaluated from a suitable EOS. It is interesting 

to note that at present no one EOS exists that is equally suitable for all these properties of any 

large variety of substances. 

3.3.1. Brief history of Equations of State 

The history of EOS's began with Boyle's experiments with air in 1662. He deduced that at a 

given temperature the volume of a gas is inversely proportional to its pressure, written 

mathematically as: 

PV = constant (3'-26) 

In 1802, Charles and Gay-Lussac quantified the effect of temperature. Clapeyron combined these 

results in 1834 into the first statement of the ideal gas law as: 

PV = R(T +267) 

The ideal gas relation that eventually followed is: 

or 

PV=RT 

PV 
Z=-=l 

RT 

(3-27) 

(3-28) 

(3-29) 
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where R is the gas constant and Z is the compressibility factor. 

At the very onset it was realised that the ideal gas law often is only a rough approximation of true 

behaviour of real gases. To achieve a closer approximation one has to account for the fact that 

real gases have size, shape and structure and as a result their molecules occupy space and attract 

or repel each other physically and/or electrically. These deviations from the ideal gas structure 

determine the forces between molecules and their PVT behaviour. As a result of their structure, 

molecules exhibit electrical properties. They are either:-

1. Non-polar symmetrical molecules which are usually electrically neutral; 

2. Molecules having residual valences that usually result in association and hydrogen bonding; 

or 

3. Polar unsymmetrical molecules usually possessing dipole moments. 

While forces of repulsion and attraction are present in all molecules they are more pronounced in 

associating and polar molecules. Consequently the PVT correlations proposed to that point in 

time had not been successful in modelling polar substances. 

In 1873 van der Waal took these factors into account quantitatively in an equation that is the 

basis for many currently accepted PVT relations, the van der Waals EOS. Many EOS's which 

are much more accurate have since been proposed. They are conveniently classified (Sandler 

[ 1994]) according to their origins as follows:-

1. van der Waal family of equations; 

2. Family of extended vi.rial equations; 

3. Corresponding states equations; 

4. Equations derived from statistical thermodynamics based on lattice models, perturbation, and 

integral equation theory; and 

5. Fitting computer simulation data. 

Excellent reviews on the various classes ofEOS's are available in Walas [1985], Sandler [1994], 

and Raal and Muhlbauer [1998] . The literature is too extensive to summarise all of the EOS's. In 

this project, use was made of the vi.rial and cubic EOS's and therefore they will be detailed. A 

brief summary of other EOS 's surveyed will be presented in Appendix B. 
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3.3.2. Virial Equation of State 

This is an infinite power series in inverse molar volwne, and is given by: 

PV B C D 
Z=-= 1+-+-+-+ 

RT V V 2 V 3 
(3-30) 

The coefficients B, C, D, etc. are called "virial coefficients"; Bis the second virial coefficient, C 

is the third coefficient, and so on. From statistical mechanics, these coefficients are related to the 

forces between molecules, i.e. the second virial coefficient represents the interaction between two 

molecules, the third virial coefficient reflects the simultaneous interaction among three molecules, 

etc. For pure fluids these virial coefficients are functions of temperature only. 

Despite its theoretical basis, the virial equation has not been widely used, mainly because values 

of the virial coefficients are often not known. The second virial coefficient has been studied 

extensively for simple fluids and some light hydrocarbons, but less is known about the third virial 

coefficient. Moreover, the infinite series converges very slowly at the higher densities, requiring a 

greater nwnber of terms to get a correct value of compressibility factor, Z, while little 

infonnation is available for the higher virial coefficients. It is suggested by Smith and Van Ness 

[1987] that the truncated two- and three-parameter virial EOS be used for pressures up to 15 and 

50 bars respectively. 

Prausnitz et al. [1980] regard the integrated form of the truncated three-parameter virial equation 

as one of the most useful equations developed for phase equilibrium thermodynamics. The 

equation can be applied to any component in a mixture regardless of whether that component can 

exist as a pure vapour at the temperature and pressure of the mixture. This implies that no 

hypothetical standard states are required. Also this equation is equally valid for both polar and 

non-polar substances. 

Experimental data for the second and third virial coefficients are available in a compilation by 

Dymond and Smith [1980]. Correlations for the second virial coefficient have been proposed, and 

the most commonly used correlations are those of Tsonopoulos [1974] and Hayden and 

O'Connell [1975]. For greater detail on these correlations and variations of the virial EOS refer 
' 

to Appendix B.6. 
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Interactions between the molecules making up a mixture affects the behaviour of the mixture. 

The most popular and widely used methods of accounting for these interactions via an EOS is 

provided in the form of interaction parameters. 

n(n-1) . n(n- l)(n-2) . 
For an n-component mixture, there are n single, 

2 
bmary, 

6 
tertiary, etc. 

interaction parameters. The mixture virial coefficient is then a summation of the individual virial 

coefficients appropriately weighted with respect to the composition of the mixture. Interactions 

between dissimilar molecules is usually small (depending on whether the molecules are non-polar 

or not) at low to moderate pressures. The higher-order interactions (greater than two) are usually 

masked by the imperfections of the EOS. They are also difficult to determine and therefore 

usually not available for computational purposes. 

In the virial equation, interactions between gases are incorporated in the two-parameter virial 

EOS as the mixture second virial coefficient, which is related to the pure component and cross 

second virial coefficient: 

m m 

Bmix = LLYiYJBij (3-31) 
i=I J=I 

where Bv = Bfi , Yi is the mole fraction, and m is the number of components. 

For a binary system the exact expression is: 

2 2 

Bmix = L LYiYJBij = y: BIi + 2Y1Y2B12 + y; B22 (3-32) 
i=I J=I 

The fugacity coefficient /i is determined by equation (3-10). For the truncated two-parameter 

virial EOS it yields: 

(3-33) 

As m~tioned before, Hayden and O'Connell [1975] provide expressions for predicting pure 

component and second virial cross coefficients for simple and complex systems requiring only the 
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component's critical temperature and pressure, mean radius of gyration, dipole moment and if 

appropriate a parameter to describe chemical associations. The correlation of Hayden and 

O'Connell [1975] is detailed in Appendix B.6. 

3.3.3. van der Waals Family of Cubic Equations 

The simplest equations capable of representing both the liquid and vapour states are equations 

cubic in volume. They have found considerable applications in VLE calculations. These 

equations represent a compromise between ease of use in computation and sufficient flexibility to 

describe wide-ranging phase behaviour. The formulation of the empirical cubic EOS is based 

essentially in the expression of pressure as the sum of two terms, a repulsion pressure (P,) and an 

attraction pressure (Pa) . The P, term is usually expressed by the van der Waals hard-sphere 

equation: 

RT 
P=--

, V-b (3-34) 

where b is a constant related to the size of the hard sphere. 

The Pa term can be expressed as: 

(3-35) 

where a is a constant and is regarded as a measure of the intermolecular attraction force and 
' 

g(V) is a function of molar volume. The general form of the cubic EOS is therefore: 

P= ~T __ a_ 
(V-b) g(V) 

(3-36) 

The determination of the parameters in the van der Waals and other EOS's is briefly discussed in 

Appendix B. 7. 
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The famous cubic equation of van der Waals, proposed in 1873, was the first EOS to give a 

qualitative description of the vapour and liquid phases and phase transitions. Mathematically 

represented as: 

RT a 
P= (V -b) -V2 

(3-37) 

The van der Waals EOS though is not quantitatively accurate. For example, it predicts that the 

critical compressibility is 0.375 for all fluids. In reality the value varies from 0.24 to 0.29 for 

different hydrocarbons and the range is wider for non-hydrocarbons. Also, the predicted vapour 

pressures are inaccurate. 

One of the first important modifications to the van der Waals equation was made by Redlich and 

Kwong [1949]. They recognised the temperature dependence of the attraction term and tried to 

account for it with the following EOS (Redlich-Kwong EOS): 

RT a 
p = (V -b) T°·5V(V +b) 

(3-38) 

The Redlich-Kwong equation has limited accuracy, and is generally successful only for nearly 

ideal systems. It gives a somewhat better critical compressibility of 0.333, but is still not very 

accurate for the phase boundary (vapour pressure) and the liquid density. To overcome the 

deficiencies of the van der Waals and the Redlich-Kwong EOS's, many modifications have been 

proposed over the years. Two of these many modifications have achieved widespread acceptance. 

They are the Soave [1972] and Peng and Robinson [1976] EOS's. 

In a recent publication (Soave et al. [1995]) the Redlich-Kwong parameters for a and b have 

been determined without the use of critical constants. The proposed method by Soave et al. 

[1995] makes it possible to treat substances whose critical constants are not known (heavy or 

thermally unstable compounds) by using one density value and the vapour pressure curve. 

Soave, in 1972, proposed the following modification of the attractive term in the Redlich-Kwong 

EOS, 



a(T) 
pa= V(V +b) 

✓a = 1 + ,c(l - ft) 

K = 0.48 + 1.574© - 0.176oJ2 
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(3-39) 

(3-40) 

(3-41) 

(3-42) 

The temperature dependence of the attractive term had been incorporated into the value of a, and 

the term was also a function of the accentric factor, OJ. 

The resuhing Soave EOS is as follows: 

RT a(T,w) 
p = (V -b) V(V +b) 

(3-43) 

For the calculation of the fugacity coefficients, it is convenient to write the equation in terms of 

the compressibility factor, Z. In this form the Soave EOS is: 

where 

Z 3 -Z2 +Z(A-B-B2 )-AB= 0 

aP 
A=-­R2T2 

bP 
B=­

RT 

PV 
Z=­

RT 

The fugacity coefficient is then given by: 

(3-44) 

(3-45) 

(3-46) 

(3-47) 



A (Z+B) 
ln ¢ = Z -1- ln(Z - B)- B 1,-z-
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(3-48) 

. This cubic equation results in more accurate vapour pressure predictions ( especially above one 

bar) for light hydrocarbons. It was actually this equation which led to cubic BOS becoming an 

important tool for the prediction of VLB at moderate and high pressures for non-polar fluids . 

However, the Soave BOS failed to generate satisfactory liquid densities. The equation predicts 

specific liquid volumes greater than the literature values and the deviations increase from about 

7% at Tr= 0.65 to 27% at the critical point [Peng and Robinson, 1976]. 

The Soave BOS was modified for handling of polar fluids by Soave [1979]. The modification 

involved the introduction of two empirical parameters into the expression for the a. function given 

in equation (3-41). For more detail on the modification and develop thereon, refer to Valderrama 

et al. [1994]. 

The Peng and Robinson [1976] BOS was proposed to address the weakness of the Soave BOS in 

the area of the critical region instabilities and inaccurate liquid density predictions. As such, it is 

very closely related to the Soave BOS. The proposed equation by Peng and Robinson is: 

p = RT _ a(T,m) 
(V-b) (V +b)+b(V -b) 

(3-49) 

where 

(3-50) 

✓a= 1+ ,c(l-Jf:) (3-51) 

K = 0.37464 + 1.5426m -0.26992m 2 (3-52) 

For the determination of the fugacity coefficient, 

Z
3 

- (1- B)Z2 + Z(A- 3B2 
- 2B)-(AB- B 2 

- B 3
) = O (3-53) 



where 

aP 
A= R2T2 

bP 
B=­

RT 

PV 
Z=­

RT 

A I Z +(1+✓2)B] 
In¢ = Z - 1- ln( Z - B) - 2JiB 11 z + {l - ✓2 )B 
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(3-54) 

(3-55) 

(3-47) 

(3-56) 

The Peng-Robinson EOS gives slightly improved liquid volumes (Zc = 0.307) and gives accurate 

vapour pressure predictions for hydrocarbons in the C6 to C 10 range. 

Modifications for the Peng-Robinson EOS have been numerous e.g. Lin [1984], StfY.iek and Vera 

[1986 (a,b)], Valderrama and Molina [1986], Xu and Sandler [1987 (a,b)], Mohamed and 

Holder [1987], Melhem et al. [1989] and Twu et al. [1995] to name a few. The most widely used 

modification is that of Stryjek and Vera [1986 (a,b)]. The modification is to the temperature 

dependent a function is shown in Table 3-3. 

For a detailed description of the general capabilities and shortcomings of the various cubic 

EOS's, refer to Martin [1979] and Abbott [1979]. Knapp [1986], Tsonopoulos and Heidman 

[1986] and Mathias and Klotz [1994] review the widely used EOS's from an industrial 

perspective. For a general review on EOS 's refer to Wei and Sadus [2000]. 

Various a functions (temperature-dependency models of the attractive term for cubic EOS) have 

been proposed. Sandler [1992] lists a representative sample of them. Table 3-3 below lists a 

functions that have been surveyed in this project. 

As mentioned before, the greatest utility of cubic EOS's is for phase equilibrium calculations 

involving mixtures. At present there are essentially two basic methods of applying a cubic EOS 
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Reference Temperature-dependency model 

Redlich and Kwong [1949] a=(ff:f 

Soave [1972] a = [ 1 + ,c( 1 - ft) r 
K = 0.485+ 1.551@ + 0.1500/ 

Peng and Robinson [1976] a =[l+K(1-ft)J2 

K = 0.374 + 1.542m + 0.269m 2 

Mathias and Copeman [1983] 
a =[1+c1(1-ft)+c2(1-ft)2 +c3(1-F,rr 

Mathias [1983] a= [1 + K(1-ff;)- p(l-Tr Xo.7 -Tr )j 
K = 0.485 + 1.55 lm + 0.156@ 2 

Soave [1984] a ~ l + tj 1- T,.) + n( T,.-1 
- 1) 

Stajek and Vera [1986 (a,b)] a= [ 1 + K( 1-ft)] 

K = K 0 + K1( 1 +Jf:)(0.7-T,.) 

K0 = 0.378+ 1.489m + 0.l 7lm2 + 0.019m3 

Twu et al. [1995] a= TN(M-1)ei(1-T,NM) r 

Table 3-3: List of a. functions surveyed 

to a mixture. Both are discussed briefly in Appendix B.8., as outlined in Walas [1985] and 

Muhlbauer and Raal [1995]. The most commonly used method is that of mixing rules to 

determine mixture parameters derived from those of individual components. Pure component a, 

and b; parameters are calculated using pure component properties. Mixing rules are then 

employed to express the EOS mixture parameters am and bm as some function of composition and 

pure component a; and b; parameters. The simplest mixing rules are just mole-fraction-weighted 

sums of the corresponding parameters for each of the components of the mixture. The most 

commonly used mixing rule is the van der Waals one-fluid mixing rules: 

(3-57) 

(3-58) 
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In addition, combining rules are needed for the parameters aii and bii . The usual combining rules 

are: 

(3-59) 

(3-60) 

where kii and Iii are the binary interaction parameters obtained by fitting EOS predictions to 

experimental VLE data for kii or VLE and density data for kii and Iii· Generally, Iii is set equal to 

zero, in which case, 

(3-61) 

For the fugacity coefficient of component i in a mixture, we now have for the Soave EOS: 

1 m 7 
I 2"""' x .a .. I n( ) ,.. b. A f:t_ ' IJ b. Z + B 

ln(>; =-1 (Z-1)-ln(z-B)--1----1 11 --
bm Bl am bm I z (3-62) 

L J 

For the Peng-Robinson EOS: 

1 m 7 
b A 

2Lxp1J b. I ( Z +(1+✓2)B l 
ln <$, = f(Z- 1)- ln(Z - B) - --r::- i=I - -

1 ltnl ·--,---------,.-J (3-63) 
m 2-v2B am bm I ~z+(1-✓2)B 

L J 

The justification of the van der Waals one-fluid mixing rule comes from the virial EOS. From 

statistical mechanics, the second viria1 coefficient B, for pure components can be shown to be a 

function of temperature only, and the only composition dependence of these virial coefficients in 

mixtures is given by equation (3-31), 

(3-31) 
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Expanding the van der Waals equation in powers of (1/v), one has: 

PV CX) (b)" -=l+L -
RT n=l V 

a 

VRT 
(3-64) 

Therefore, 

(3-65) 

From this one can deduce that for the low-density composition dependence of a cubic EOS to be 

the same as the theoretically correct virial expansion, a sufficient, but not necessary condition is 

that the cubic EOS parameters satisfy the van der Waals one-fluid mixing rule. 

A shortcoming of the van der Waals one-fluid mixing rule is that it is applicable only to mixtures 

of relatively moderate solution non-ideality. Since many mixtures of chemical industrial interest 

exhibit great degrees of non-ideality, a mixing rule had to be determined to model the systems. 

Traditionally systems of a high degree of non-ideality have been described by activity coefficient 

models. Vidal [1978] and Huron and Vidal [1979] developed a mixing rule to produce successful 

description of some highly non-ideal systems. They did this by assuming that the excess Gibbs 

free energy is independent of pressure (which is an incorrect assumption [Sandler, 1992]) and 

then equated the excess free energy and EOS results at infinite pressure. Since, 

(3-66) 

for GE to remain finite at infinite pressure, V must be zero which requires that the van der Waals 

mixing rule for the b parameter be used. The mixing rule for the a parameter, then is: 

(3-67) 

where a is a numerical constant which depends on the particular EOS used. This mixing rule was 

the first to combine an EOS with an excess Gibbs free-energy model to represent strongly non­

ideal solutions. 
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Toe Huron-Vidal mixing rule, however, has a collection of theoretical and computational 

difficulties as listed by Sandler et al. [1994]:-

1. Toe mixing rule may not be successful in describing non-polar hydrocarbon systems. 

2. It does not satisfy the quadratic composition dependence required of the second virial 

coefficient. 

3. Even though the Huron-Vidal approach allows the use of GE models with EOS's, the 

parameters are not the same as those obtained when correlating data directly with the activity 

coefficient model. As a result, one cannot use parameter tables developed for excess Gibbs 

free energy models at low pressure with this EOS model. Tables are available in the 

DECHEMA Data Series. 

Mollerup [1986], Gupte et al. [1986(b)], Michelsen [1990 (a),(b)], and Heidemann and Kokal 

[1990] have tried to correct for the inconsistencies of using excess Gibbs free energy models at 

the infinite pressure limit, as used in the Huron-Vidal model. The most successful of the proposed 

models was the Huron-Vidal second-order model. The advantage this model has over the Huron­

Vidal was that current activity coefficient parameter tables could be used and this model when 

combined with the modified UNIF AC group contribution method, could be totally predictive. 

Sandler [1994] excellently outlines the model and illustrates its use with some results. However, 

the Huron-Vidal second-order model being a variation of the Huron-Vidal formulation, still does 

not satisfy the second virial coefficient boundary condition. 

Another method to correct for the deficiencies of the Huron-Vidal is along the empirical approach 

and that is simply to add an additional composition dependence and parameter to the combining 

rules of the a parameter in the van der Waals one-fluid mixing rules. Generally the b parameter 

rule is left unchanged. Examples of the combining rules are listed in Table 3-4. 

The combining rules indicated in Table 3-4 have provided good correlations of complex binary 

mixtures. However, these combining rules still have theoretical and conceptual difficulties 

associated with them. 

1. These mixing rules when used in the van der Waals one-fluid mixing rules, result in the 

second virial coefficient being non-quadratic in composition, as a result not satisfying a 

theoretical boundary condition. 
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2 . The second problem is the so-called "Michelsen-Kistenmacher Syndrome" as pointed out by 

Michelsen and Kistenmacher [1990]. If one applies the combining rule to a ternary system, 

the value of am obtained if two of the three components are considered to be identical is not 

the same as the am value calculated for the equivalent binary mixture. 

3. Another problem, also pointed out by Michelsen and Kistenmacher [1990], is that for some 

combining rule, as above, the added composition-dependent term depends explicitly on mole 

fractions rather than on mole ratios. As a result, the added terms become less important as 

the number of components in a mixture increases, decreasing the mole fraction of each 

component. Thus, for example, the value of parameter a12 will be different in binary and 

multicomponent mixtures with the same species mole ratio. 

Author Combining Rule 

Panagiotopolos and Reid [1986 (a,b)] 
kif= Kif -(Kif -Kfi)xi 

Adachi and Sugie [1986] kif = Kif + /if ( X; - X f) 

Sandoval et al. [1989] kif = KiJ.xi + Kfixi + o.s( Kif + Kfi )( 1- X; - x f) 

Schwartzentruber and Renon [1989 (a,b)] mifxi -mfixf ( ) 
k=K+L x+x 

!I !I !I m .. x . + m .x . ' 1 
!J l Jl J 

where 

Kfi = Kif , lft = -Zif , mft = 1-mif , and K;; = lii = 0 

Table 3-4: Some of the combining rules surveyed 

The perfect mixing and combining rule would need to satisfy known boundary conditions, i.e. at 

low density, result in a second virial coefficient which is quadratic in composition; and at high 

liquid-like densities produce GE behaviour similar to that of current activity coefficient models. 

Researchers have believed that for a mixing and/or combining rule to satisfy the boundary 

condition, it would have to be density-dependent [Michel et. al., 1989; Copeman and Mathias, 

1986; and Sandler et al., 1986]. However, there is a conceptual problem with density-dependent 

mixing rules and that is that the order of the EOS with respect to volume changes depending on 

the number of components. This unfortunately violates the one-fluid model. 
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Fortunately, there is hope as a mixing rule has been developed which satisfies the boundary 

conditions without being density-dependent. The Wong and Sandler mixing rule [Wong and 

Sandler, 1992] is claimed to be ''the theoretically correct mixing rule for cubic EOS's". In 

addition: 

1. It allows the use of existing GE parameter tables [Wong and Sandler, 1992]; 

2. Allows extrapolation over wide ranges of temperature and pressure [Huang and Sandler, 

1993]; and 

3. Provides the simplest method of extending UNIF AC or other low pressure prediction 

methods to high temperatures and pressures [Orbey et al., 1993]. 

The new mixing rules of Wong and Sandler are based on the following important observation:-

1. Although the van der Waals one-fluid mixing rule is a sufficient condition to ensure the 

proper composition dependence of the second virial coefficient, it is not a necessary 

condition. The van der Waals one-fluid mixing rule places constraints on two functions, a 

and b, to satisfy the single relation:-

(3-68) 

The mixing rule of Wong and Sandler uses the last equality of equation (3-68) as one of the 

restrictions on the EOS a and b parameters together with the following combining rule: 

(3-69) 

where k;J is a second virial coefficient binary interaction parameter. 

2. The excess Helmhotz free energy on mixing is much less pressure dependent than the excess 

Gibbs free energy (refer to Figure 3-3). 
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Figure 3-3: The excess Gibbs energy and Helmholtz energies of mixing for the methanol + 

bem:ene system at 1 bar and 1000 bar calculated from the Stryjek-Vera modification of the 

Peng-Robinson equation of state and the Wong and Sandler mixing rule (extracted from 

Sandler et al. [1994)) 

The second equation for the a and b parameters then comes from the condition that: 

Aios(T,P = oo,x;) = AE( T,P = oo,x;) 

= AE(T,low P,xJ 

= GE(T,low P,x;) 

(3-70) 

where the subscript EOS refers to the Helmholtz free energy derived from an EOS, while AE and 

GE without the subscripts indicate the free energy from activity coefficient models. 

Combining the equations gives the following mixing rules:-

am D --Q­
RT l-D' (3-71) 
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0 
b =-=-

m 1-D 
(3-72) 

where 

(3-73) 

(3-74) 

a is a constant which depends on the EOS used ( e.g. u = [ ln( ✓2 - 1)] ✓2 for the Peng-Robinson 

EOS. Any excess free energy (activity coefficient) model may be used for GE. 

Sandler et al. [1994] summarized the advantages of the mixing rule as follows:-

1. It extends the range and applicability of equations of state to mixtures that previously could 

only be correlated with activity coefficient models. 

2 . Activity coefficient parameters reported in databanks, such as the DECHEMA Data Series 

can be used directly and with good accuracy. 

3. In many mixtures the fr~ergy model parameters in the EOS can be taken to be 

independent of temperature, thereby allowing extrapolation over large ranges of temperature 

and pressure. 

4. The mixing rule can be used to make predictions at high pressure based on low-pressure 

prediction techniques, such as UNIF AC and other group contribution methods. 

The full formulation of the Wong-Sandler mixing rules appears in Appendix B. 

Mixing rule formulations for the Huron-Vidal (HV) (Huron and Vidal [1979]) and modifications 

thereof (Michelsen [1990(b)] (MHVl), Dahl and Michelsen [1990] (MHV2), Boukouvalas et al. 

[1994] (LCVM) and Orbey and Sandler [1995(b)] (HVO)) used in this project appear in 

Appendix B. A comprehensive classification of mixing rules was undertaken by Muhlbauer and 

Raal [1995] and is shown in Figure 3-4. Comprehensive comparisons of the abilities of the 

various mixing rules are available in Knudsen [1993], Wang et al. [1996], Orbey and Sandler 
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[1996], Pan and Guo [1996] and Orbey and Sandler [1997]. Michelsen [1996] even advises on 

the choice of matching mixing rules to excess models and Michelsen and Heideman [1996] list 

properties ofEOS mixing rules derived from excess models. 

There have been modifications and corrections to the Wong and Sandler mixing rule since its 

formulation in 1992. Orbey and Sandler [1995(a)] reformulated the mixing rule, in the process 

eliminating one of its parameters. Satyro and Trebble [1998] showed that at extremely high 

pressures (in the order of 15000 bar) the Wong and Sandler mixing rules produced negative heat 

capacities. They modified the Wong and Sandler mixing rule, however at the expense of 

maintaining the quadratic compositional relationship of the predicted second virial coefficient. 

Twu and Coon [1996] recently developed a mixing rule (evolved from the work of Wong and 

Sandler [1992]) that they claim is more flexible than the Wong-Sandler mixing rules and avoids 

the problems associated with the Wong-Sandler mixing rules. The mixing rules depends only on 

composition and temperature. They have applied the mixing rule successfully to complex 

mixtures. The mixing rules for the am and bm parameters are defined by Twu and Coon [1996] as 

follows: 

b
• • 

b"' = vdw -avdw 

1 _ (a:dw + .!_ A; J 
bvdw CRT 

(3-75) 

(3-76) 

Equations (3-75) and (3-76) reduce to the van der Waals one fluid mixing rules when AE is 
nr 

zero. Twu and Coon state that the major difference between their mixing rule and that of Wong­

Sandler is that Wong-Sandler mixing rules do not reduce to the van der Waals mixing rules when 

A;s is zero. The entire formulation for the Twu and Coon mixing rule is available in Twu and 

Coon [ 1996]. 
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3.4. ACTIVITY COEFFICIENTS 

Excess properties provide global measures of deviations from ideal solution behaviour i.e. 

attention is focused on the mixture. However, it is useful to have in addition a local measure of 

deviation from ideal solution behaviour, which refers to a chemical component. The activity 

coefficient, y;, for component i in solution, provides such a measure. 

Activity coefficients are derived from excess Gibbs energies and are related as follows: 

1 I (onGEJ n y - --
; - RT on; n ,n

1 

where, G; E is the partial molar excess Gibbs energy of component i and 

GE is the excess Gibbs energy. 

(3-77) 

(3-78) 

In practice, however, the process is reversed and excess Gibbs energies are evaluated from 

knowledge of activity coefficient as follows : 

GE 
-= L X lny . 
RT I I 

(3-79) 

For more detail on excess Gibbs energies and partial molar Gibbs free energy refer to Smith et al. 

[1996]. 

Many functional forms of the Gibbs energy have been proposed over the years. They have been 

expressed with respect to mole fraction, volume fraction and molecular surface fractions (volume 

fractions and molecular surface fractions are preferential when the molecules differ widely in size 

or chemical nature) with activity coefficients. Most of these correlations are purely empirical, 

based on intuition. There are eight well-known correlations for activity coefficient in use. They 

are as follows : 
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1. Margules 

2. van Laar 

3. Wilson 

4. NRTL 

5. UNIQUAC 

6. Regular solution theory and its modification of Scatchard-Hildebrand 

7. UNIFAC 

8. ASOG 

The latter three can be classified under Group contribution liquid-phase models. 

A brief description of each of the above Gibbs excess models will now be presented. For more 

detail on these and other related models refer to Walas [1985], Gess et al. [1991], Milanowski 

and Anderko [1992] and Sandler [1994]. 

3.4.1. Margules Equation 

This is the oldest of all correlations for activity coefficient. Margules originally proposed it in 

1895. It is still in common use today and is capable of producing highly accurate results. The 

form of the equation is equivalent to a pure expansion in composition e.g. it can be derived from 

the Redlich-Kister expansion (for more detail on activity coefficient from series expansion refer 

to Gess et al. [1991]). 

The simplest form of the Margules equation is known as the two-suffix equation (because Gibbs 

energy is a second order function of mole fractions (xi): 

The activity coefficient are then given by the following expressions: 

lnr1 =Ax~ 

lnr2 =Ax; 

(3-80) 

(3-81) 

(3-82) 
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The applicability of the two-suffix Margules equation is limited because of its simplicity. The 

function is symmetric in relationship between x1 and GE_ However, most real systems exhibit 

asymmetric behaviour, making the equation inadequate in the representation of non-ideal 

systems. 

To account for more complicated behaviour, the three-suffix Margules equation was proposed. 

The equation is defined as follows: 

(3-83) 

The expressions for activity are now defined as follows: 

(3-84) 

(3-85) 

The three-suffix Margules equation can be successfully applied to a wider range of systems than 

the two-suffix form. Gess et al. [1991] evaluates the performance of each of the variations of the 

Margules equations. 

The four-suffix Margules equation, which is a fourth order function of mole fraction (x;) is given 

by: 

(3-86) 

The Margules equations can also be derived from Wohl's expansion for a binary system (Gess et 

al. [1991]). 

The Margules equation, especially the high order forms, perform reasonably well for certain non­

ideal systems. When these equations perform poorly, however, it can be attributed to the 

assumption of equal sized molecules. 
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3.4.2. van Laar Equation 

The equation was developed to account for the size differences of the molecules. It can be 

developed from Wahl's expansion, with q1 -:t:- q 2 (Gess et al. [1991]). The model was proposed by 

van Laar in 1910 and is based on the van der Waals equation. The excess Gibbs energy model is 

as follows: 

GE A12A21X1X2 

RT x1A 12 +x2 A 21 

(3-87) 

The expressions for activity coefficients are given by: 

[ ]

2 
AX 

ln r = A 21 2 

1 12 A12X1 + A21X2 

(3-88) 

(3-89) 

Although the van Laar equation does take into account the size differences between molecules, it 

still does not model highly non-ideal systems well. This is as a result of the interactions between 

molecules not being properly characterized. Another problem with the activity coefficient 

correlations so far is that the effect of temperature on the excess Gibbs energy is not addressed. 

Since the constants are not dependent on temperature, the equations are limited to the treatment 

of isobaric systems. 

3.4.3. Wilson Equation 

The Wilson equation, developed by Wilson [1964] is an extension of the work done by Flory and 

Huggins. The model addresses the case where molecules of each component differ in size, and 

also incorporated an expression for the energy of interaction between two molecules. The Wilson 

equation is as follows: 



The expressions for the activity coefficients are given by: 

where, 

and 

A .. = 'exp- JI .o V ( k.-kJ 
JI V RT 

J 

v; is the molar volume of pure liquid component i, 

2ft is the interaction energy between components} and i, and 

(li2 - 2 11 ), (221 - },22 ) are the adjustable parameters. 
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(3-90) 

(3-91) 

(3-92) 

(3-93) 

The major disadvantage of the Wilson equation is the inability to predict limited miscibility 

regions for a system. This problem was noted and addressed by adding an additional C parameter 

to the Wilson equation (3-90) as follows : 

(3-94) 

Equation (3-94) is known as the three-parameter Wilson model. The introduction of the C 

parameter, which has no physical significance, creates two serious problems:-

1. Extension of equation (3-94) to multicomponent mixtures becomes very complicated 

because the binary interaction parameter Av cannot be extended for use in the equation. 
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2. The Wilson parameters are inherently correlated and introduction of the C parameter further 

increases the interdependence of the parameters. 

Another commonly used modification of the Wilson equation is that of Tsuboka and Katayama 

[1975]. 

3.4.4. NRTL Equation (Non-Random Two-Liquid Model): 

Renon and Prausnitz [1968] proposed the three-parameter NRTL equation. It also used the 

concepts of local composition (like the Wilson equation), but had an additional tenn to account 

for the non-randomness in the solution. The NRTL equation is as follows: 

where, 

g ji is a parameter for interaction between components j and i, 

a ji = aif is a non-randomness parameter, and 

(g12 - g 221 (g 21 - g11 l a12 are the adjustable parameters. 

The expressions for the activity coefficients are given by: 

(3-95) 

(3-96) 

(3-97) 

(3-98) 

(3-99) 
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The NRTL equation is more complicated in that there are three adjustable parameters. The 

equation can predict limited visibility ranges and has the added advantage that two of the 

parameters are temperature dependent. A disadvantage of the model though is the increased 

computer times in calculation encountered with the addition of the third parameter, and the 

correlation or interdependence of the parameters. Renon and Prausnitz [1968] vaguely related the 

third parameter to the inverse of the co-ordination number. The co-ordination number, a function 

of the number of molecules just touching a reference molecule, a was however found to be a 

strictly empirical factor not related to any mechanism in general. 

Maria and Tassios [1973] found that a.= -1 gave an excellent representation of both miscible and 

partially immiscible binaries. Sandler [1997] suggests a value of ex= 0.3 for VLE and a.= 0.2 

for liquid-liquid equilibria (LLE). 

Raal and Brouckaert [1992] have reviewed the use of the NRTL equation in the prediction of 

LLE from experimental heats-of-mixing. 

3.4.5. UNIQUAC Model (Universal Quasi-Chemical Theory) 

The model was proposed by Abrams and Prausnitz [1975] and was an extension of the quasi­

chemical lattice theory of Guggenheim. The major characteristics of the equation are: 

1. Its applicability to multicomponent mixtures in terms of binary parameters only; 

2 . Applicability to LLE; 

3. Built-in temperature dependence valid over at least a moderate range; 

4. Superior representation for molecules of widely different molecular sizes; and 

5. Its basis for predictive group contribution methods such as UNIF AC. 

The only major disadvantage of the model is its algebraic complexity and the availability of rand 

q parameters. 

In the model the excess Gibbs energy is represented by two parts: 

(3-100) 
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where, GE(c) is the contribution owing to the difference in sizes and shapes of the molecules 

(configurational or combinatorial part); and 

GE(r) is the contribution owing to energetic interactions (residual part). 

The expressions for the excess Gibbs energies for the configurational and residual parts are given 

by equations (3-101) and (3-102) respectively. 

(3-101) 

(3-102) 

The expression for activity coefficient is also comprised of two parts: 

(3-103) 

The configurational and residual components of activity coefficient are defined by equations (3-

104) and (3-105) respectively. 

C (l> . Z 0. ( T J Iny. =In-' +-q.In-' +<l> . /.-~! . 
l 2' <l> jl J xi ; rJ 

where, r ;c is the combinatorial contribution of activity coefficient; 

y~ is the residual contribution of activity coefficient; 

(
-(u .. -u;)J 

'ft= exp ~T ' 

u1; is the parameter of interaction between components} and i; 

q; is the area parameter of component i; 

(3-104) 

(3-105) 

(3-106) 
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r; is the size parameter of component i; 

z is the coordination number (set equal to 10); 

(3-107) 

(3-108) 

(3-109) 

(u12 - u22), (u21 - u11) are the adjustable parameters. 

The modified UNIQUAC equation as proposed by Anderson and Prausnitz [1978] is also widely 

used to model complex systems. The activity coefficient for this modification is given by: 

<I> z 0. (/ r; I J lny. = ln-' +-q. ln-' +<I> . . -- . 
1 x. 2 l <I> . J J r . J 

l I J 

[ ( 
0',.. 0', .. J] +Cq' -ln 0'+0', .. +--1-JI ____ J_IJ_ 

I I I JI 0; + 0;, ji 0; + 0;, ij 

(3-110) 

_ where the parameters are as defined before, but the primed parameters are now modified 

parameters of Anderson and Prausnitz [1978]. The modified structural area parameter ( q') was 

introduced by Anderson and Prausnitz [1978] to obtain better agreement between mixture 

containing polar components such as water or alcohol. In the modified UNIQUAC equation, C is 

an adjustable parameter that is usually set equal to unity. If C is set equal to unity and q' is set 

equal to q for both components, the modified UNIQUAC reduces to the original UNIQUAC of 

Abrams and Prausnitz [1975]. 

To improve the temperature dependence of the UNIQUAC equation Skjold-Jorgensen et al. 

[1980] proposed an equation for the co-ordination number (z) described as a function of 

temperature: 

z = 35.2- 0.1272T + 0.00014T2 
(3-111) 

Raal and Naidoo [1990] proposed an exponential temperature dependence for z as follows: 
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z=A+ (B J T-T 
exp 0 

To 

(3-112) 

where T0 = 273 .15 K and the constants A and B are evaluated from FF data. 

3.4.6. Group contribution liquid-phase models 

Up to this point, all activity coefficient models mentioned required experimental data so that the 

binary interaction parameters could be determined. However, as the variety of organic 

compounds of interest in chemical processes is large, it leads to an uncountable number of 

possible interaction parameters. A situation may arise where an engineer needs to make activity 

coefficient prediction for a system, or at conditions, for which experimental data are not 

available. Thus if one could find a liquid model that is based on well-defined thermodynamics or 

statistical mechanical assumption, so that the parameters that appear can be related to the 

molecular properties of the species in the mixture, the resulting model would have a predictive 

ability. This is where group contribution liquid-phase model come in so handy. The most notable 

of these are as follows : 

1. The regular solution theory which is determined from the theory of van Laar, and its 

modification as developed by Scatchard and Hildebrand (Hildebrand and Scott [1962]). The 

relationship developed for the excess Gibbs energy and activity coefficients are based on 

solubility parameters. The regular solution theory is derived and illustrated in detail in 

Sandler [1989]. 

2. The analytical solution of groups model (ASOG). It was developed by Derr and Deal [1969] 

and is based on the principle of independent action as proposed by Langmuir. The principle 

is that the properties of complex molecules can be evaluated on the basis that smaller groups 

of atoms within the molecule contribute in a fixed way to the molecule's property, 

independent of the group within the molecule. Group interaction parameter tables and 

greater detail is available in Kojima and Tochigi [1979]. 

3. The UNIF AC (UNIQUAC Functional-Group Activity Coefficient) method. It is a functional 

group method and was developed by Fredenslund et al. [1977]. The model is based on the 

UNIQUAC model. In the UNIF AC model, both the combinatorial and residual terms are 

obtained from group contribution methods. The activity coefficient for each species is 
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assumed to be made up of the two contributions Gust as in the UNIQUAC method) by 

equation (3-103). However the combinatorial and residual terms are now expressed by 

equations (3-113) and (3-118) respectively. 

c (ln<I> <1> -J 1 (ln<I> . <l>J lny; = --1 +1--' --zq; --' +1--' 
~ ~ 2 ~ ~ 

where, 

For equations (3-114) and (3-115) summation is over all components. 

For equations (3-116) and (3-117) summation is over all groups. 

where, R1c is the volume parameters for group k, 

Q1.: is the surface area parameter for group k, 

v.o is the number of groups of type kin molecule i; 

X; is the liquid mole fraction of component i; and 

z is the coordination number == 10. 

The residual term is given by: 

In r~ = L vtl(1n r" - In r?l) 
k 

where, 

(3-113) 

(3-114) 

(3-115) 

(3-116) 

(3-117) 

(3-118) 
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' 

(3-119) 

v,_ =exp(-a;) (3-120) 

0 = QmXm 
m LQnXn 

(3-121) 

n 

Lv"!ixi 
X = ---=1'---· ---

m LLV,y'Xj 
(3-122) 

j n 

amn is the group interaction parameter for the interaction between groups m and n. 

r1i) is the residual activity coefficient of group kin a reference solution containing only 

molecules of type i. 

Th.ere have been modific.at.ions and further developments to the UNIF AC equation e.g. 

Fredenslund and Rasmussen [1985], Gmehling and Weidlich [1986] and Larsen et al. [1987]. 

Tables of the groups and values for the group parameters are available in Fredenslund et al. 

[1977]. 

3.5. CRITICAL PROPERTIES 

The accurate knowledge of critical properties of pure fluids and mixtures is important from both 

a theoretical and practical viewpoint. Since the phenomena are closely linked with intermolecular 

interactions, they provide valuable insight into general fluid phase behaviour. In high-pressure 

distillation, supercritical extraction and the recovery of oil and gas from high-pressure reservoirs, 

accurate knowledge of the mixture critical properties and behaviour is necessary for efficient 

process design. The proximity of plant operating conditions to the critical region, for example, 

must be known precisely and inability to generate this information accurately may increase plant 

investment. 

For a pure fluid the critical point is reached when the physical properties of the coexisting phases 

become identical. Considerable information is available on pure fluid critical properties, viz. 
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critical temperature, pressure and volume. For binary and other multicomponent systems the 

vapour-liquid critical point is in addition characterised by an equivalence of composition in both 

phases. 

The prediction of multicomponent critical properties as a function of composition is 

mathematically very complex, and systems exhibit a considerable variety of behaviour in the 

critical region. Scott and van Kon)'Denburg [1970], and Sadus [1994] give excellent reviews on 

critical region prediction, calculation, and classification. Reference should be made to Sadus 

[1994] for the classification of phase behaviour of binary mixtures with respect to different 

critical phenomena. 

Earlier predictive techniques contain much approximation and are no longer satisfactory or 

advisable, since much more rigorous methods have been satisfactorily demonstrated. Modem 

techniques vary in complexity, but in essence, are all based on the fundamental condition required 

for the existence of a critical point, i.e. the critical state of an n-component mixture as given by 

Gibbs [1928], involving two simple mathematical expressions. They are in the form of the 

following determinants: 

8
2 G 8

2 G 8
2 G 

8 x: 0 X 10 X 2 0 X 10 Xn-l 

8
2 G 8

2 G 8
2 G 

u = 0 X 20 X 1 b' x2 0 X 20 Xn-l (3-123) 2 

8
2 G 8

2 G 8
2 G 

8 xn-18 xi 0 Xn-10 X2 0 x;_1 

b'U b'U b'U 
0 X1 0 X2 8 xn-1 

8
2 G 8

2 G 8 2 G 
M = 0 X 20 X 1 

b' x2 
2 0 X 20 Xn-l (3-124) 

8
2 G 8

2 G 8 2 G 
0 Xn_10 X 1 0 Xn_10 X 2 0 x;_1 

where the partial derivatives with respect to X; are obtained at constant values of p T and x . 
, , k,M,n-

Both of these, equations (3-123) and (3-124), must equal zero at the critical point. 
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For the case of a binary system, equations (3-123) and (3-124) are drastically simplified to 

equations (3-125) and (3-126) respectively. 

(3-125) 

(3-126) 

Toe Gibbs free energy is a function of temperature, pressure and composition: 

G = G(T, P, x1> x2 , •••.• • • • •• , x,, _1) (3-127) 

To ensure that equations (3-123) and (3-124) are suitable for use with pressure explicit EOS's, it 

is necessary to express the partial derivatives of the Gibbs free energy in terms of partial 

derivatives of the molar Helmholtz free energy and partial derivatives of pressure through 

transformation of the independent variables. This is done using the following equation, which is a 

fundamental thermodynamic relation. 

G = A+ PV (3-128) 

Thus, by the use of an appropriate equation of state and the conditions imposed by equations (3-

123) and (3-124), one can predict the critical temperature and pressure of a fluid mixture. 

However, in reality the mathematical techniques for solving the problem are not trivial, as in 

instances it leads to the solution of two highly non-linear algebraic equations. Hence the use of 

various prediction techniques which are well documented (Chueh and Prausnitz [1967(b)], Spear 

et al. [1969, 1971], Pak and Kay [1972], Hicks and Young [1975, 1976], Peng and Robinson 

[1977], Heidemann and Khalil [1980], Michelsen [1984], Billingsley and Lam [1986], Sadus and 

Young [1987], and Christou et. al. [1989, 199l(a,b)]). 

The solution of simultaneous non-linear algebraic equations is not needed in all techniques. Some 

techniques are more correlative than predictive. Chueh and Prausnitz [1967(b)] used correlations 

to determine the variation of critical temperature and volume with mole fraction. Having obtained 
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the critical temperature and volume, they then used an altered fonn of the Redlich-Kwong 

equation of state to predict the critical pressure. Other techniques are rigorous and have large 

computational times (Joffe and Zudkevitch [1967]). This is as a resuh of the solution of non­

linear differential equations. Here again techniques vary on how the sets of equations are solved. 

Numerical methods (Spear et al. [1969, 1971]), graphical search procedures (Heidemann and 

Khalil [19801), etc. are used as tools for the various methods. Various review papers are 

available which go into great detail on the predictive techniques and the problems associated with 

these techniques (Sadus [1994], and Hicks and Young [19751). Recently greatly enhanced speed 

and reliability have been achieved in search methods developed by Nagarajan et al. [199l(a,b)]. 

These methods are mathematically very complex and have not been tackled in this project. 

The method adopted in this project is based on the_ publication by Deiters and Schneider [1976]. 

Instead of solving equations (3-125) and (3-126), the critical condition equations were replaced 

by an equivalent equation written in terms of the derivatives of Helmholtz free energy. 

Al (AVVAXX - A~) = 0 
vv 

(3-129) 

(3-130) 

Here each subscript 'V' and "x" denotes a partial differentiation of the molar Helmholtz energy 

(A) with respect to volume (V) and mole fraction (x). Solving this set of equations for an 

appropriate EOS generates a series of solutions for critical pressure and critical temperature for 

varying mole fraction. From these solutions the critical volume and critical compressibility factor 

can also be calculated. From a cross-plot of critical pressure against mole fraction and critical 

temperature against mole fraction, a plot of critical pressure against critical temperature (T-P 

locus) can be obtained. This is the typical diagram for illustrating the phase behaviour of a 

binary mixture. 

A sufficiently accurate computation of the T-P critical locus should permit placement of the 

critical point in a P-x-y HPVLE data set, particularly for systems or conditions where the critical 

region is difficult to determine experimentally. Critical locus information can thus define the 

practical operating range for high-pressure separation equipment more precisely. 
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The method adopted from Deiters and Schneider [1976] is demonstrated in their paper for the 

Redlich-Kwong EOS. In this project the method was modified for the Peng-Robinson EOS. The 

derivation for the Peng-Robinson EOS modification is available in Appendix B.19. The 

predictive abilities of the Redlich-Kwong, Soave, Peng-Robinson and Peng-Robinson-Stryjek­

Vera have been compared by Ramjugemath et al. [1997] . 

3.6. CONSISTENCY TESTS FOR HPVLE 

The measurement of temperature, pressure and both liquid and vapour compositions represents 

an "overdetermination" of VLE for a binary system since any one of these variables can be 

determined from the Gibbs-Duhem equation. his therefore possible to calculate any one of these 

variables and to compare its value over the entire composition range with the measured data. 

This constitutes a test of thermodynamic consistency of the data. 

However, the computation of the vapour phase compositions in HPVLE is much more difficult 

and less certain than for LPVLE since in HPVLE there is a strong pressure dependence of the 

mixture molar volume at saturation. Also, to account for vapour phase non-idealities an equation 

of state is used to model the vapour phase. In addition, the more volatile component is frequently 

supercritical and special attention must be paid to the standard state definitions (as discussed 

earlier). 

Raal and Muhlbauer [1998] and Ramjugemath et al. [1997] have reviewed HPVLE consistency 

tests. They have described the essential elements of four thermodynamic consistency testing 

procedures. The consistency tests are as follows:-

1) Chueh et al. [1965]; 

2) Won and Prausnitz [1973]; 

3) Christiansen and Fredenslund [1975]; and 

4) Muhlbauer and Raal [1991]. 

The first two tests are extensions of the area test for LPVLE (LPVLE consistency testing is 

reviewed by Raal and Muhlbauer [1998]), and as a result suffer, although to a lesser extent, from 

the deficiencies of the area tests. The Muhlbauer and Raal [1991] test is a modification of the 

Chueh et al. [1965] test, but is based only on the vapour phase compositions. Adler et al. [1960], 

Chang and Lu [1969], Kollar-Hunek et al. [1986], and Jackson and Wilsak [1995] have also 

reviewed generalised consistency tests. In a recent publication by Bertucco et al. [1997] a method 

for the testing of binary and isothermal vapour-liquid equilibrium data at moderate and high 
pressures has been proposed that makes use of a direct method approach. 

Of the four consistency test procedures reviewed by Raal and Muhlbauer [1998] and 

Ramjugemath et al. [1997], the Won and Prausnitz [1973] and Christiansen and Fredenslund 
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[1975] tests are the most rigorous. The Won and Prausnitz [1973] also requires a model equation 

for the excess free energy. The latter test contains fewer assumptions, but is also more complex. 

Both tests yield vapour phase compositions from high pressure P-x data and fulfil the role of a 

high-pressure reduction procedure. They also produce Henry,s constant. 

Greater details on the four consistency tests are available in Appendix B.19. 

3. 7. DETERMINATION OF SECOND VIRIAL COEFFICIENTS 

The second virial coefficients are generally obtained from P-V-T measurement using equipment 

described in Appendix A.4. Jones and Kay [1967], Barber et al. [1982] and Wilson et al. [1984] 

detail the computational methods for the determination of the second virial coefficient from P-V 

isotherms, which are summarized here. 

Jones and Kay [1967] and Barber et al. [1982] represented low-pressure data by a truncated 

virial equation as follows: 

(3-131) 

Equation (3-131) was rearranged to give for each data point (along an isotherm): 

Yk =(PkVk -I)vk =B+ Cn 
nRT n vk 

(3-132) 

Values of the virial coefficients (Band C) and the number of moles (n) were obtained from a set 

of isothermal compressibility measurements by minimizing the sum of the squares of the 

deviations of all the experimental points from the regression line given by equation (3-132). 

The computation method of Wilson et al. [1984] made use of the truncated virial equation: 

B 
Z = 1.0+­

v 
(3-133) 

The computational procedure involved adjusting the intercept in equation (3-133) to unity in 

order to determine the number of moles. The second virial coefficient (B) was then determined by 

least squares from equation (3-133) using only those points that are linear (determined by 

standard statistical tests). 

A slightly modified approach for computation of virial coefficients, developed in this project, is 

described in Section 8.8. 
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CHAPTER FOUR 

EXPERIMENTAL APPARATUS: DESIGN, CONSTRUCTION 

AND DEVELOPMENT 

4.1. IDSTORY OF HPVLE STUDIES IN THE DEPARTMENT 

The experimental apparatus developed and its associated equipment used in this project are as a 

resuh of nearly two decades of research and development undertaken in the School of Chemical 

Engineering at the University of Natal under the supervision of Prof. J.D. Raal. 

The study and subsequent development of HPVLE equipment began in the early 1980's when 

SASOL commissioned the School to measure VLE data for certain components of interest to 

them in their coal liquefaction process, at the extreme conditions of 500 °C and 200 bars. Harel 

initiated the study in 1982. Preliminary design and construction of equipment was undertaken 

during this period. Bradshaw furthered the studies between 1983 to 1985 and proceeded to select 

and construct liquid and vapour sampling devices. During Bradshaw's study, the extreme 

conditions of temperature and pressure requested by SASOL were changed to slightly less 

demanding operating conditions of 250 °C and 200 bars. The development and research 

undertaken by Bradshaw are detailed in his MSc thesis (Bradshaw [1985]). The major difficulty 

encountered by Bradshaw, one that seems to be encountered by all researchers, is that of 

sampling the equilibrium liquid phase. 

At the end of Bradshaw's study, the measurement ofHPVLE (in particular the sampling of the 

equilibrium phases) had not been perfected. Bradshaw had problems with uniformity of the air­

bath and equilibrium cell temperatures and the liquid phase compositions measured showed an 

incorrect bias towards the more volatile component in the systems measured. Due to time 

constraints these problems were not rectified and it was left to Muhlbauer to deal with them when 

he began his research into HPVLE in 1987. 

Muhlbauer [1990] extensively modified the equipment of Bradshaw [1985]. He perfected the 

liquid and vapour sampling devices, re-designed the air-bath and constructed certain auxiliary 

equipment. Details of the work undertaken by him are available in his thesis (Muhlbauer [1990]). 
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However, Muhlbauer's research still left some wanswered questions and prompted us to 

determine how far one could push technology to produce a more advanced HPVLE apparatus. 

Some questions asked at the beginning of the project to determine objectives are:-

1. Could the experimental apparatus be made more compact and versatile? 

2. Could a better sampling method be developed for analysis of the equilibrium phases? 

3. Could one detect the formation of a second liquid phase (if it did exist)? 

4. Could muhiple phases be sampled with the sampling method chosen? 

5. Was the experimental data obtained for the propane + 1-propanol system measured by 

Muhlbauer [1990] correct? The data had to be verified and it had to be determined if the 

system could be better modelled. 

All of these questions led to the design and construction of a HPVLE apparatus that will be 

described in this section. The responses to the questions posed produced the following equipment 

design in summary:-

1. The equipment was of the static type. h was extremely compact, with the isothermal 

environment being an air-bath with dimensions of 1 m x 0.75 m x 0.5 m. The equilibrium cell 

was variable in volume, which made it capable of undertaking P-V-T measurements and VLE 

measurements via the dew and bubble point methods. 

2. The sampling method chosen was based on a recommendation of Raal and Muhlbauer 

[1994]. Use was made of six-port two-position GC sampling valves as the sampling device. 

The equilibrium phase samples were circulated through the sample loop of the GC sampling 

valves by centrifugal action of the stirrers on the equilibrium cell contents. 

3. The formation of multiple phases and the phase interfaces could be detected visually. This 

was possible as the equilibrium cell had two pairs of illuminated sapphire viewing windows. 

The windows were 33 mm in diameter and were 14 mm thick. Each set of windows, once 

installed, offered a viewing diameter of 22 mm. 

4. The apparatus was designed to enable the sampling of two liquid phases and a vapour phase. 

Each of the sampling devices was a six-port two-position GC sampling valve. A composite 

stirrer had to be designed to enable stirring of all the phases and to enable flow of each of the 

phases through the sampling loops of the their respective sampling valves. 
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The apparatus designed was of the static type for the following reasons:-

1. The research group had extensive experience in the use of static equipment. 

2. Toe experimental work involved with the static method was capable of being undertaken by a 

single researcher. 

3. Static type equipment is generally much cheaper and less time consuming to construct than 

dynamic types. Long delays for delivery of equipment and spare parts for specialised dynamic 

methods were expected in South Africa where these items are usually not• available. 

Aspects of the experimental apparatus that will be covered in this sections are as follows:-

1. The equilibrium cell and piston assembly. 

2. Method of agitation of the equilibrium cell contents. 

3. Method of sampling the liquid and vapour phases. 

4. Method of homogenising the equilibrium samples (Jet-mixers). 

5. Isothermal environment for the equilibrium cell (Air-bath). 

6. Safety features. 

7. Temperature and pressure measurement. 

Ancillary equipment that was used in this project is described in Appendix C. 

4.2. EXPERIMENTAL APPARATUS: DESCRIPTION AND CONSTRUCTION 

4.2.1. The equilibrium cell and piston assembly 

The main body of the experimental apparatus consisted of an equilibrium cell and a piston 

assembly. The piston, which was driven by a stepper motor, enabled the equilibrium cell volume 

to be varied by displacement of the piston in the equilibrium cell. Figure 4-1 illustrates the body 

of the experimental apparatus. See also Photograph 4-1. 

The equilibrium cell was machined from a solid billet (stainless steel type 316) of diameter 120 

mm and height 200 mm. The billet was bored to a diameter of 40 mm and length of 190mm. (this 

gave a compression ratio of 2: 1 with the piston). The effective resulting internal volume 

(including composite stirrer) of the equilibrium cell was approximately 200 ml. Two pairs of 

synthetic sapphire windows (33 mm in diameter and 14 mm thick, supplied by LABOTEC) were 
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Figure 4-1: Schematic of the equilibrium cell assembly 
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placed in special housings that bolted onto the equilibrium cell body (see Photograph 4-1). Five 8 

mm mild steel bolts positioned and held each housing onto the equilibrium cell body. Figures 4-2 

and 4-3 illustrate the details of the sapphire window housings. 

Sealing between the sapphire window housings and the equilibrium cell body was achieved with 

Viton "o"-rings. The sapphire window housings were constructed of 316 stainless steel (see 

Figure 4-2 and Photograph 4-1) and the sapphire windows were encased in a gasket type material 

(see Figure 4-3) which then fitted snugly into the stainless steel housing. Sealing of the sapphire 

windows against the gasket type material housing was also accomplished with Viton "o"-rings. 

Photograph 4-1: Front view of the main assembly of the apparatus 
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Various problems were encountered in the sealing of the sapphire windows. The first gasket type 

material used was Rulon. However, Rulon suffered from creep at high temperatures and 

pressures and was also attacked by some of the chemicals used in this study. Bronze impregnated 

Teflon was then tried, but it also suffered from creep and extruded under high temperatures and 

pressures. Finally, we resorted to a sapphire window encasing made from a combination of tV'" 

materials, Axiol and bronze impregnated Teflon. This worked very satisfactorily and no sealing 

problems have been experienced on the sapphire window housings since its use, even at the 

operating limits of the equilibrium cell that are 175 °C and 175 bar. The material that many 

researchers claim -to be the uhimate for sealing purposes and for use as housing is Kalrez. 

Unfortunately, Kalrez is not available in South Africa and a supplier for the material could not 

be located. 

Photograph 4-2: Side-view of the main assembly of the apparatus 
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The viewing paths for the sapphire windows were illuminated with small 5 watt light bulbs .. The 

small light bulbs were housed in a pyrex tube. They were therefore not in direct contact with the 

isothermal air-bath environment, which when in operation is at high temperature. 

The piston was housed in a piston assembly (see Figure 4-1 and Photograph 4-1). The piston 

housing was machined from a solid stainless steel billet of 120 mm diameter. The piston was held 

in place by a high strength brass nut and a high-trust ball bearing. Figure 4-4 illustrates the 

piston. Sealing of the piston in the equilibrium cell was via two Viton "o"-rings fitted into 

grooves cut onto the head of the piston (see Figure 4-4). Sealing of the nitrogen compartment was 

also via Viton "o"-rings fitted into a groove on the shaft of the piston. The piston shaft (Ml6) 

was partially threaded. The pitch was 2 mm threads. A slot was cut into the shaft and together 

with a guide pin, which fitted into the slot, acted as a guide mechanism for the piston. The pin 

and slot also acted as a limiter for displacement of the piston. The piston was driven by a stepper 

motor (details of the stepper motor and its circuitry are available in the Appendix C). 

-----------'·o--~c-
~--•~-.---------

---------.---

Figure 4-2: Stainless-steel housing for the sapphire window 
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A liquid manipulation attachment was also designed. It could be screwed into the piston head. 

Figures 4-1 and 4-4 illustrate the attachment. The attachment has two channels drilled into it, as 

indicated in Figure 4-1, to allow for vapour flow, which facilitated the entrainment of vapour into 

the liquid during stirring (this sped up the rate of attainment of equilibrium). The attachment was 

used to manipulate the liquid-level in the cell. This was achieved by moving the piston, which 

results in displacement of fluid in the equilibrium cell, changing the liquid-level. 

Figure 4-3: Housing for the sapphire windows that was made from gasket-type material 

A micrometer dial was incorporated into the design, so that the exact number of revolutions that 

the stepper motor had made could be measured. By counting the number of revolutions made by 

the motor and knowing the pitch of the threads on the threaded portion of the piston, the length 

that the piston had moved in the equilibrium cell could be calculated. 

A problem encountered by a number of researchers is the determination of the liquid-level and 

control thereof. The sapphire windows and the variable-volume piston with liquid-level 

manipulation device solved this problem relatively easily. Refer to Appendix C for other methods 

for liquid-level detection. An added advantage of the variable-volume piston is that in the high­

density region of measurement, movement of the piston could aher the phase compositions of the 

equilibrium cell contents significantly, i.e., without addition or removal of system components. 
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Sealing of the piston assembly onto the equilibrium cell body was attained with the use of a 

flange type fitting between the two assemblies. A raised edge on the piston assembly fitted into a 

groove in the equilibrium cell body and a Viton "o"-ring in the groove attacked as a gasket. The 

two assemblies were bolted together with six stainless steel bolts that were 8 mm in diameter. 

Liquid attachment 

thread 

o - ring cavity 

slot 

M12 thread 

Figure 4-4: Illustration of the piston with the liquid manipulation attachment 

The equilibrium cell has a removable base. The removable base was incorporated into the design 

for basically two reasons:-

! . It made construction and attachment of the composite impeller much simpler. The composite 

impeller attaches to the removable base and is supported by a screw that screws into the 

base. 

2. It makes cleaning of the entire equilibrium cell possible. Mechanical cleaning of the 

equilibrium cell would be required if the components in the cell were to form residues during 

experimentation. 
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The base is basically a flange with a raised edge that bolts into the equilibrium cell body. Sealing 

between the base and the equilibrium cell body is achieved with Viton "o"-rings. Photograph 4-3 

shows the removable base supporting the composite impeller. 

Photograph 4-3: The removable base supporting the composite impeller 

All fittings and valves on the equilibrium cell and piston assembly, besides the fill/evacuate 

valve, were Swagelok. All valves and fittings were purchased from Johannesburg Valve and 

Fitting. 

The reasons why we decided to have the nitrogen compartment were:-

1. Safety. By pulsing nitrogen into the upper compartment, in the piston assembly, we maintain 

the same pressure on both sides of the piston. Thus, the threads on the piston shaft experience 

less force. 
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2. Assisting the stepper motor. The stepper motor can only drive against a pressure of 

approximately 10 bar. By maintaining the pressure differential across the piston to a value 

less than the above mentioned, the stepper motor could move the piston. An electronic circuit 

which was referred to as the pressure equaliz.ation circuit was designed to maintain a pressure 

differential across the piston of approximately one bar. Details of the pressure equaliz.ation 

circuit are available in Appendix C. 

Holes were drilled through equilibrium cell body into the cell for the GC valve sampling lines, 

pressure transducer lines, and fill/evacuate line. The holes were 3 mm in diameter. This was 

undertaken so as to ensure as small a dead-volume as possible in the equilibrium cell. 

The fill/evacuate valve on the equilibrium cell was a Whitey valve. h was bi-directiooal and 

could withstand a combined temperature and pressure effect of 175 °C and 10000 psi 

respectively. 

4.2.2. Method of agitation of the equilibrium cell contents 

Two sets of stirrers were designed for the equilibrium cell. Both were mounted onto one assembly 

(see Figure 4-5 and Photograph 4-4). Each stirrer had a different mode of operation. The lower 

stirrer was to intensively mix the equilibrium cell content to enable the rapid attainment of 

equilibrium. The second stirrer (or top stirrer) was to stir the second liquid phase (if it existed) 

and also to circulate the vapour (although this was not its main purpose) and second liquid 

phases through the sample loop of the upper GC sampling valve. 

Rotation of the bottom stirrer is achieved by magnetic coupling. The impeller design was 

basically the same as that used by Bradshaw [1985] and Muhlbauer [I 990]. h has four vanes, 

two of which were wider. The two wide veins housed two cylindrical rare earth magnets 

(obtained from LABOTEC). The impeller was constructed from 316 stainless steel (Figure 4-6). 

The impeller rotated on a stainless steel pin. A horse-shoe magnet mounted on a Maxon motor 

provided the magnetic coupling for the rotation of the bottom impeller. The impeller served two 

purposes:-
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1. It mixed the equilibrium cell contents and promoted equilibrium. This was achieved by rapid 

rotation, thus creating a vortex into which vapour is entrained. This produced rapid mass 

transfer and equilibration of the phases. 

2. Toe stirrer (impeller) created a centrifugal force that forced liquid through the sampling loop 

on the GC valve. This ensured that a representative sample of the equilibrium liquid phase 

was always flowing through the GC sampling loop. 
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Figure 4-5: Schematic of the composite stirrer 

The Maxon motor that turned the horse-shoe magnet was housed in a well situated below the 

equilibrium cell. Toe well protruded into the air-bath and the cover-plate on the well supported 

the equilibrium cell body. This construction allowed the air in the well to become heated and so 

reduce the temperature gradient across the well support plate. Good thermal insulation between 
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the cell body and the plate was achieved by machining a shallow recess on the bottom of the 

equilibrium cell body, to entrap a stagnant pocket of air. 

The upper stirrer was constructed from 316 stainless steel and Teflon. It operated according to 

the principles of magnetic induction. The impeller had four rare earth magnets imbedded in it and 

it was positioned in an orientable magnetic field that was induced by the four coils. The decision 

was made to insert the upper stirrers some time after the equilibrium cell had been machined. 

This left very limited space in which to insert the impeller and the coils that induced the magnetic 

field. With the limited surface on the equilibrium cell body, the coil configuration in the 

equilibrium cell body was such that the coils were at angles of 120 and 60 degrees to each other 

instead of the symmetric 90 degrees. This left some rather complex electronic circuitry to be 

designed so as to drive the stirrers efficiently. Details of the coils and the circuitry are discussed 

in Appendix C. 
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Figure 4-6: Schematic of the bottom stirrer 

The upper stirrer served the following purpose:-

1. It ensured that if a second liquid phase were present, it would be stirred independently of the 

bottom liquid phase. This would avoid mixing of the two liquid phases. 

2. Its centrifugal action forced liquid through the sample loop on the GC sampling valve, 

ensuring a representative sample of the second liquid equilibrium phase for GC analysis. 



131 

3. It mixed the vapour phase and also created a pressure gradient for the flow of equilibrium 

vapour through the sample loop of the vapour GC sampling valve. 

4.2.3. Method of sampling vapour and liquid phases 

Probably the most difficult aspect of HPVLE equipment design is that of designing a sampling 

device that allows for a small representative sample to be removed from the high-pressure 

equilibrium cell without disturbing the equilibrium conditions. 

A number of sampling devices have been proposed and used by various researchers. A few of 

these have been discussed in Chapter 2. The sampling method opted for in this project was one 

that permitted no change in the cell volume and no disturbance to the system during sampling. 

The sampling device was a commercial six-port two position GC sampling valve. The only 

difference between a standard GC sampling valve and the one used in this project is that the GC 

valve in this project could withstand very high temperatures and pressures (175 bar and 175 °C). 

The six-port two position GC sampling valves were manufactured by V ALCO and supplied by 

Anatech Instruments. 

The two modes of operation of the GC sampling valve are as indicated in Figure 4-7. In the 

sampling position, the stirrers force fluid through the sampling loop and back into the equilibrium 

cell. Thus there is always a flow of a representative sample of the equilibrium phase through the 

sample loop. The volume of the withdrawn sample from the equilibrium cell is determined by the 

size of the sample loop. Very fine bore, thick walled stainless-steel tubing was used for the 

sample loop (1/8" tubing with internal diameter of 1 mm). A problem encountered during 

construction was that the ports for the sample loops were spaced a significant distance apart. 

This meant that a very long sampling loop had to be inserted (approximately 21 cm). This 

resulted in a sample volume of approximately 165 µl (much larger than the volume the jet-mixers 

had been designed for). There was nothing that could be done to reduce the sample loop size and 

therefore the operating parameters for the jet-mixers had to be altered to cope with the large 

sample volume. 

In the flushing mode, the equilibrium cell is shut off from the sampling loop and the sampling 

loop is opened to the carrier-gas (in this project helium was used). The carrier-gas flushes the 

representative sample out of the sample loop and into a jet-mixer. As can be seen, this sampling 
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procedure causes no disturbances to the equilibrium condition and the cell volume is not affected 

for a particular set of conditions. 

There were three GC sampling valves on the apparatus (see Figure 4-1 and Photograph 4-3). 

They were positioned at appropriate heights along the wall of the equilibrium cell body so that 

the appropriate phases could be sampled. The first sampling valve was positioned at the bottom 

of the equilibrium cell body adjacent to the bottom stirrer. It sampled the bottom liquid phase. 

The second sampling valve was positioned adjacent to the upper stirrer, about a third of the way 

up the equilibrium cell body. It sampled the second or upper liquid-phase (if it existed). Finally, 

the third GC sampling valve was for the vapour phase. It was positioned about half way up the 

equilibrium cell body. 
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Figure 4-7: Schematic showing the two modes of operation of the six-port GC valves 

4.2.4. Jet-mixers 

During the flushing of a volatile/non-volatile mixture into an evacuated space, there is a tendency 

for the more volatile component to flash preferentially. This creates a non-homogenous gas-liquid 

mixture. If no method is used to homogenise the withdrawn equilibrium phase sample, the 
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analysis of the withdrawn sample will be in error. Various methods have been proposed and tried 

by various researchers. Some of them have been briefly discussed in Chapter 2 and Appendix A. 

Tue method/device used in this project is the same as was used by Muhlbauer [1990]. The device 

is known as a jet-mixer. It vapourises and homogenises the withdrawn sample in preparation for 

GC analysis. The sample from the sample loop on the GC sampling valve is flushed into an 

initially evacuated jet-mixer. The jet-mixer has a nozzle through which the flushed sample passes 

at a reasonably high velocity to produce a swirling, recirculating flow in the jet-mixer until the 

pressure becomes uniform. By flushing carrier-gas through the sampling loop into the jet-mixer 

at a controlled flow, further mixing of the sample is ensured. Figure 4-8 illustrates a cross­

section through a jet-mixer. Photograph 4-3 shows the jet-mixers attached to the equilibrium cell. 

The jet-mixer has no moving parts and external devices. h was machined from 316 stainless 

steel. The mixing chamber has an internally mounted cylindrically shaped baffle. The baffle has a 

restriction nozzle that accelerates and vapourizes the withdrawn sample (in the case of a liquid 

sample). It creates a swirling circulating flow until the pressure equalizes. The internal space has 

rounded comers, as shown, to eliminate stagnant areas. 

The inlet to the jet-mixer was via a 1/8" stainless steel tube that was welded into the jet-mixer 

body. The inlet line protruded into the jet-mixer mixing chamber and ensured that flow occurred 

through the restricted nozzle in the chamber. The inlet line comes from the GC sampling valve. 

Flow out of the jet-mixer is through a Whitey valve that screwed into the jet-mixer body. It 

regulated the venting of the jet-mixer. 

Three 100 Watt heater cartridges were embedded in the body of the jet-mixer, as can be seen in 

Figure 4-8. They are evenly spaced along the circumference of the jet-mixer body. The large 

body of the jet-mixer ensures good temperature uniformity. The heater cartridges maintained the 

jet-mixers at a temperature higher than the equilibrium mixture and the surrounding air-bath. An 

Eurotherm 808 temperature controller regulated the temperature of the jet-mixer. Tue 

temperature sensor used was a Pt-100 that was also embedded in the jet-mixer body. Tue 

controller maintained the temperature of the jet-mixers to within 0.1 °C of the set-point. The jet­

mixers were insulated with Fibrefrax. This was done as they were at a higher temperature than 

the air-bath and thus radiated heat to the surrounding air-bath. This could lead to thermal 

gradients and thus instabilities and non-uniformity's in the bath and equilibrium cell 
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Two sizes of jet-mixers were designed in this project. The larger jet-mixers had a volume of 

approximately 65 cm3 and the smaller ones a volume of approximately 40 cm3
. The larger jet­

mixers were used to homogenise the liquid phase, while the smaller ones were used to 

homogenise the vapour sample and for further homogenisation of the liquid samples. There was 

one large jet-mixer for each of the liquid phases (if two liquid phases existed). There were two 

smaller jet-mixers, one to homogenise the vapour sample and the other for further 

homogenisation of the liquid sample. 

The pressure in the jet-mixer was measured with a Sensotec TJE pressure transducer. The 

transducer was not directly attached to the jet-mixer, but by appropriate opening of valves, could 

be linked to the jet-mixer (see Figure 5-3). The operating range of the transducer was from Oto 5 

bar absolute and it had temperature compensation. Its accuracy was ± 0.25% of full-scale 

pressure. The pressure transducer gives very useful information on the operation of the jet-mixer 

and the reproducibility of the phase sampling. The determination of the operating pressure and 

temperature ranges for the jet-mixers is discussed in Appendix D. The design and sizing of the 

jet-mixers is discussed in Appendix C. 

w.u.,­
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Figure 4-8: Cross-section through the jet-mixer 
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4.2.5. Air-bath 

True vapour-liquid equilibrium can only be established in an equilibrium cell that is free of 

thermal gradients. This means designing an air-bath that maintains a stable and uniform 

temperature. The air-bath was designed to be very compact and fimctional. Some of the design 

concepts used by Muhlbauer [1990] were used directly in this project (Meacham et al. [1994] 

details isothermal thermostatecl air-baths). The actual bath was constructed from mild steel (4 

mm thick) and it had dimensions of 1 m x 0.75 m x 0.5 m. Photographs 4-4 and 4-5 show the 

outside and inside of the air-bath. 

The bath had a blow-off lid. This was to ensure that if there was a sudden rise in pressure in the 

bath the lid will easy lift off to release the pressure and thus prevent an explosion. The bath also 

had holes cut in it for the valve stems and handles, the viewing ports for the equilibrium cell, the 

holders for the light source, and for cabling to the jet-mixers, Pt-100 sensors and solenoid coils. 

The main design features of the air-bath were as follows:-

1. Insulation 

2. Interior copper lining 

3. Air-agitation 

4. Temperature control 

5. Minimising all possible thermal leaks, conductive paths and thermal disturbances. 

4.2.5.1. Insulation 

A layer of insulation was inserted between the walls of the air-bath and the interior copper lining. 

The thermal insulation material used was Fibrefrax. The specifications of Fibrefrax are available 

in Appendix C. The thickness of the insulation was approximately 50 mm. The lid of the air-bath. 

was also padded on the inside with Fibrefrax (thickness approximately 40 mm). 

4.2.5.2. Interior copper lining 

To promote high thermal stability and avoid any local temperature disturbances, a copper lining 
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Photograph 4-4: The HPVLE apparatus designed in this project together with its ancillary 

equipment 

. ····-- --- -

Photograph 4-5: The interior of the air-bath showing the copper jacket, insulation, 

equilibrium cell and plumbing. 
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(approximately 2 mm thick) was placed against the insulation in the air-bath. The lining also 

served to hold the insulation in place in the bath. Copper has a high thermal conductivity 

(approximately 401 wm-1K 1 at 300 K, Incropera and DeWitt [1996]) and quickly disperses and 

transmits any local temperature disturbances. 

4.2.5.3. Air agitation 

The heating elements had to be shielded from direct view of the equilibrium cell to avoid radiative 

heat transfer and consequently local heating effects between the equilibrium cell and the heating 

elements. As a result, the heating elements were placed in an insulated box external to the air­

bath (Photograph 4-4 shows the box that housed the heating elements and the Siflo Universal 

Fan). A Siflo Universal Fan was used to circulate air through the box (over the heating elements) 

and into the air-bath. In order to avoid burnout of the heating elements an air flowrate of 

approximately 2.51 ms·1 was required. To also prevent burnout of the heating elements, a circuit 

was designed that ensured power to the heaters was applied only once the fan had been switched 

on. The air was drawn in from the top of the bath by the fan, blown over the heaters, and out at 

the bottom of the bath (Photograph 4-5 shows the interior of the air-bath and the inlet and outlet 

to the heater box). The fan was able to displace approximately 72 /Is of air under no load 

conditions. To avoid the air from the heater box being blown directly on the equilibrium cell, a 

deflector plate was fitted on the outlet. The deflector plate also aided circulation in the air-bath, 

as it created an upward spiral motion of air. 

To decrease the likelihood of an explosion in the air-bath should there be any leaks on the 

equilibrium cell, nitrogen from the pressure eqnaliurtion circuit was bled into the air-bath. This 

produced an air-bath environment that was lest conducive to ignition. 

4.2.5.4. Temperature control 

The temperature in the air-bath was controlled with a Eurotherm 818 PID controller which was 

supplied by PREI Instruments. The temperature sensor was a Pt-100 .Q resistor. The output from 

the temperature controller was a 4 to 20 mA signal that drove a fast cycle firing Eurotherm 

thyristor. The thyristor supplied the energy to three aluminium finned stainless steel cartridge 

heaters. The total power output of the heater cartridges was approximately 1700 W. 
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Calibration of the temperature sensors and tuning of the temperature controller is discussed in 

Appendix C. 

4.2.5.5. Minimizing all possible thermal leaks, conductive paths and thermal 

disturbances 

Possible thennal leaks and conductive paths identified were: 

• The cover-plate for the well that housed the horse-shoe magnet and MAXON motor. 

• The valve stems for all the valves in the air-bath, including the GC sampling valves. 

• Sampling lines from the air-bath. 

• Holes in the air-bath for valve stem extensions, sample lines and electrical cabling. 

• Piston assembly external to the air-bath 

Great precautions were taken to ensure effective thermal insulation between the cell bottom and 

the rotating magnet. Rotation of the horse-shoe magnet produced a high convective heat transfer 

coefficient between the cold air (room temperature) in the well and the heated support plate. The 

well was thus sealed and an air gap was left between the equilibrium cell bottom and the cover­

plate for the well. This ensured good thennal insulation between the bottom of the equilibrium 

cell body and the support plate. 

Thermal breaks were inserted in all the valve stem extensions out of the air-bath. The material 

used for the thermal breaks was Teflon. The thermal breaks reduced conduction of heat to a 

nnmmum. 

All sample lines outside of the air-bath were wrapped in heating tape. This prevented or at worst 

reduced thennal gradients. 

All holes in the air-bath walls drilled for valve stem extensions, sampling lines and electrical 

cables were fitted with Teflon plugs. This reduced radiative heat transfer from the air-bath 

tremendously. 
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The jet-mixers situated in the air-bath were the source of two thermal disturbances. They are as 

follows :-

• Due to the higher operating temperatures of the jet-mixer, the equilibriwn cell could be 

thennally disturbed if there were any conductive paths leading from the jet-mixer to it. To 

prevent conductive paths to the equilibriwn cell, the jet-mixers were supported on brackets 

that attached to the air-bath bottom. This ensured that there were no conductive paths back 

to the equilibriwn cell except for a small piece of piping that connected the jet-mixer to the 

GC sampling valve and in turn it to the equilibrium cell. 

• The surface of the jet-mixer was at a higher temperature than the surrounding air-bath. To 

prevent or reduce radiative disturbances to the air-bath and equilibrium cell, the surface was 

insulated with Fibrefrax. 

Part of the piston assembly was situated outside of the air-bath. This was as a result of the 

stepper motor having to be situated external to the air-bath. To prevent thermal gradients due to 

thennal conduction, thermal breaks were inserted in the support arms, of the piston assembly, for 

the stepper motor. The thermal breaks were made from Teflon. 

4.2.5.6. Temperature Profiles 

Pt-I 00 Q resistance temperature sensors were strategically placed in wells in the walls of the 

equilibriwn cell and in the air-bath to monitor the temperature profiles. Four sensors were placed 

in wells in the equilibriwn cell body and four in the air-bath at different positions. Figure 4-9 

indicates the locations of the sensors on the equilibriwn cell and in the air-bath. All the 

temperature sensors were connected to a Eurotherm multichannel selector that enabled the 

temperatures for all the sensors to be scrolled through very rapidly. Temperature profiles for a 

few set-point temperatures are given in Chapter Seven. 

For almost all of the operating temperatures for the air-bath, the maximum deviations in the 

temperature profiles were approximately 2 K for the air-bath and 0.4 K for the equilibrium cell 

body. 
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Figure 4-9: Location of the temperature sensors in the air-bath and on the equilibrium cell 

body (1 - 8 denote the number on the Eurotherm selector and C denotes the air-bath 

temperature controller sensor) 

4.2.6. Temperature and Pressure Measurement 

The measurement of temperature and pressure, along with phase composition are critical to the 

measurement of accurate VLE data. Excellent reviews on temperature and pressure measurement 

are available in literature (Benedict [1977], Kardos [1977], Nicholas and White [1982] and 

Kennedy [1983]). 

4.2.6.1. Temperature measurement 

Temperatures were measured with Pt-100 n resistor (class A) sensors and the values were 

displayed "'On Eurotherm temperature displays. The Pt-l00's were certified as being accurate to 

within 0.05%. The sensors were calibrated against a Hewlett Packard Quartz Thermometer. For 
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a wide range of temperature measurements the quartz thermometer and Pt-100 n resistors were 

within 0.3% of each other. Photograph 4-6 shows the display panel of the apparatus with the 

temperature displays mounted on it. 

Photograph 4-6: The control/display panel for the apparatus with displays units for 

temperature and pressure measurement 

4.2.6.2. Pressure measurement 

Pressure measurements were undertaken with Sensotec TJE pressure transducers. The 

transducers are certified accurate to within 0.25% of their readings. Two Bourdon type Heisse 

gauges were also used to measure pressure and to calibrate the pressure transducers. There were 

three pressure transducer used in this project. One each for measuring the equilibrium cell and 

nitrogen compartment pressures (0 - 175 bar absolute) and another for measuring the pressures 

of the jet-mixers (0-5 bar absolute) (the pressure transducer displays can be seen on the 

control/display panel in Photograph 4-6). One of the Heisse gauges (0 - 5000 psi) was connected 
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in parallel to the pressure transducer that measured the equilibrium cell pressure. The other 

Heisse gauge (0-500 psi) was used to calibrate the other pressure transducers. The Heisse gauges 

had certified calibrations traceable to the National Bureau of Standards. They were claimed to be 

accurate to 0. I% of their full scale reading by the manufacturer. 

The procedure for the calibration of the pressure transducers to the Heisse gauges is discussed in 

Appendix C. 

4.2. 7. Composition measurement 

A few of the various methods used to determine the composition of the equilibrium phases in 

phase equilibrium studies have been discussed in Chapter 2. In this project, use was made of a 

GC with a TCD detector for phase composition analysis. The calibration of the TCD detector is 

discussed in Appendix D and the calibration charts (response factors) for the various components 

studied are presented in Chapter 7. 

Photograph 4-7: Arrangement of the high-pressure apparatus and the GC facilitating online 

analysis of the equilibrium phase compositions. 

The GC used in this project was the Chrompack CP 9000 which was equipped with both a TCD 

and FID detector. However, all analyse undertaken in this project were performed on the TCD 

detector, as it enabled one to detect the presence of water. For all the systems studied, separation 
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of the components was possible on a 3 m length stainless steel column (1/8" diameter). The 

column packing was Poropak N with an 80/100 mesh. The output signal from the GC was 

analysed and converted into peak area signals by a Varian 4270 Integrator. 

The GC operating conditions for the various systems studied are presented in Chapter 7. 

4.2.8. Safety features 

High-pressure and temperature phase equilibrium experimentation can be extremely hazardous 

(as a resuh of the high temperature and pressures involved) and it is thus imperative that the 

utmost safety precautions be undertaken to protect the researcher and the equipment. These are 

some of the safety precautions undertaken to safe-guard the researcher and equipment:-

1. Safety relief valves were installed on all high-pressure line. They were positioned just before 

the pressure transducers. 

2. The pressure transducers used had a 150% over-pressure safety feature. 

3. A shut-off valve was inserted before the 0-5000 psi Heisse gauge to prevent a negative strain 

on the gauge during evacuation. 

4. Nitrogen was bled into the air-bath. This produced an environment that was not conducive to 

ignition. Ignition could occur if there was if leak on the equilibrium cell and some flammable 

material with a very low flash or fire point was released into the air-bath. 

5. The air-bath had a blow-off lid that ensured rapid decompression of the air-bath contents. 

6. Simple circuitry ensured that the heater cartridges for the air-bath were only energized once 

the fun had been turned on. This prevented burnout of the cartridges, which could possibly 

result in a fire. 

7. A number of the chemicals used were fuirly toxic. At all times the exhaust funs in the 

laboratory were switched on and all relief valves and exhaust lines (e.g. from the vacuum 

pump) were connected to the fume cupboard. 

8. The viewing windows in the walls of the air-bath were tempered and were also shatterproof. 

9. Proper insulation and the installation of thermal breaks on all valve stems exiting the air-bath 

also served to prevent burns to the researcher. 

10. All design calculations were undertaken such that there was at least a 100% over-design, as a 

safety precaution. 
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CHAPTER FIVE 

EXPERIMENTAL PROCEDURE 

In this chapter the preparation, start-up, and sampling procedures for the experimental apparatus 

and its associated equipment will be discussed. These experimental procedures are the resuh of 

numerous trial runs so as to obtain a reproducible experimental method that produces the most 

accurate experimental results. 

The method of calibration of the gas chromatograph is also discussed in this chapter. 

Operating procedures for the auxiliary equipment are given in Appendix D. 

Sections 5 .1 to 5 .4 describe the experimental procedure for vapour-liquid equilibria 

measurement. The procedure for the P-V-T measurements is described in section 5 .5 . 

5.1. THE PREPARATION STAGE 

5.1.1. Preparation of the Equilibrium Cell 

Since pressure is one of the primary measurements in our experimentation, one has to ensure that 

there are no leaks in the equilibrium cell or any of the lines that convey the equilibrium sample to 

the gas chromatograph. Thus, before every experimental run the equilibrium cell was pressurised 

to a value in excess of the expected maximum operating pressure and was thoroughly scrutinised 

for leaks. Snoop leak detector was used as the primary tool in detecting leaks. The same 

procedure was undertaken for the lines conveying the equilibrium sample to the gas 

chromatograph. Generally the cell and the lines were left pressurised overnight. The pressure 

drop was noted the next morning. If the pressure drop was within a specified tolerance 

(temperature effects, as well as the leak rates of fittings were taken into account), then the 

equilibrium cell was deemed ready for use in experimentation. 

At the beginning of a study of a new system or isotherm all seals on the equilibrium cell were 

replaced. This was to ensure that there would be little risk of failure during experimental runs. 

Seals that were replaced were as follows :-
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1. Viton "o" -rings on the sapphire window housings; 

2. Viton "o"-ring on the bottom of the equilibrium cell (impellor mounting); 

3. Viton "o"-rings on the piston; and 

4. Viton "o"-ring between upper nitrogen compartment and equilibrium cell. 

The equilibrium cell was "cleaned" by applying a vacuum in the equilibrium cell and raising the 

temperature of the equilibrium cell. Thus any solvents that were present in the equilibrium cell 

were removed by evaporation. Successive flushing of the equilibrium cell, with the gaseous 

component under investigation, removed any trace amounts of impurities. 

The sampling lines, which convey the equilibrium sample to the GC, were also flushed with the 

carrier gas between runs to clean the sample lines. A GC trace of the flush could be undertaken 

at this time to determine if the flushed sample had any significant amount of impurity. 

5.1.2. Preparation of the liquid component for experimentation 

The liquid component was thoroughly degassed before being introduced into the equilibrium cell. 

This was done so as to remove any impurities, such as dissolved gases, from the liquid. 

Degassing was carried out in a specially designed apparatus. The description of the degassing 

apparatus and its operating procedure appear in Appendices C and D respectively. 

5.1.3. Verification of gas chromatograph detector calibration factor 

The calibration factor for the gas chromatograph detector was checked before each experimental 

run by injecting a few standards through the gas chromatograph. This was undertaken, as in 

some instances there was slight drift in the calibration factor for the detector. This phenomenon 

was also noted by Muhlbauer [1990]. 

5.1.4. Calibration of the pressure transducers 

The Sensotec pressure transducer once calibrated still tended to have slight drift. The drift tended 

to be on the atmospheric pressure reading or the zero. The span did not seem to be affected over 
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a short period. Thus, before every experimental run the Sensotec pressure transducers were 

zeroed to atmospheric pressure for the day. The atmospheric pressure was read on a barometer 

(to within 0.1 mbar) and the pressure transducer display was then adjusted to the correct 

barometric pressure. Every month, the pressure transducers were fully calibrated i.e. zero and 

span. Calibration of the pressure transducer is explained in Appendix C. The accuracy of the 

pressure transducers is detailed in Chapter 4 and 7. 

5.2. THE START-UP PROCEDURE. 

The start-up procedure was dependent on the system that was being measured. Figures 5-1 and 

5-2 show the equipment arrangements µsed for the carbon dioxide + toluene or carbon dioxide + 

methanol, and th~ propane + 1-propanol systems respectively. Essentially the difference in the 

two arrangements is the method in which the liquid and gas are fed into the equilibrium cell. In 

the procedure for the propane + 1-propanol system the gas first goes through a compressor 

before it is introduced into the equilibrium cell. The reasons for this arrangement follows in the 

discussion preceding each of the arrangements. 

5.2.1. The Carbon dioxide+ Toluene and Carbon dioxide+ Methanol systems 

Gas Cylinder 

L.P. Carbon dioxide 

VT 

Degassing Apparatus 

Vacuum 

V5 

Gas Cylinder 

H.P. Carbon dioxide 

V3 

t----- -,-----'--~--[X] l 

1 

H.P. Equilibrium 

Cell 
V2 

Vacuum 

Vent 

Figure 5-1: Equipment arrangement for the carbon dioxide + toluene and carbon dioxide + 

methanol systems. 
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Before introduction of any of the components into the equilibrium cell, the cell was evacuated. It 

was then subsequently filled with carbon dioxide and vented to the atmosphere. This filling and 

venting procedure was carried out on average about five times. This ensured that only trace 

amounts of residual air or any other impurities remained in the equilibrium cell. The equilibrium 

cell was once again evacuated (typical vacuum achieved in the equilibrium cell was about 1 

mbar). The toluene/methanol was then sucked into the equilibrium cell from the degassing 

apparatus (after the liquid had been degassed). To assist, some carbon dioxide was used to flush 

the remaining toluene/methanol into the cell. The toluene/methanol was degassed again in situ 

under vigorous stirring and vacuum. This degassing in situ was carried out for about 15 minutes. 

It also served to position the liquid-level in the equilibrium cell by expelling the excess 

toluene/methanol. 

Carbon dioxide was then introduced into the equilibrium cell from its gas cylinder. The cell was 

pressurised to a value close to the desired experimental pressure and the temperature controller 

was set to the desired isothermal temperature. The stirrer was switched on and its speed adjusted 

so that there was vigorous stirring. Once the cell had heated up to the desired temperature (this 

normally took about 6 hours), the contents were ready for sampling. During the initial heat-up 

procedure the cell had to be vented so as to keep the pressure close to the desired experimental 

value. The cell was then left for a further few hours to reach complete thermal and 

thermodynamic equilibrium. 

5.2.2. The Propane+ 1-Propanol System 

The introduction procedure for the components, i.e. propane and 1-propanol, varied from that 

used in the carbon dioxide + toluene and carbon dioxide + methanol systems because propane at 

room temperature is sub-critical. As a result the quantity (moles) of gas that can be introduced 

into the equilibrium cell is extremely small when compared to the amount of 1-propanol 

introduced. The vapour pressure of propane at room temperature is approximately 8 bar. An 

increase in the equilibrium cell temperature does not drastically increase the cell pressure. 

Therefore, a method had to be sought to introduce a greater number of moles of propane into the 

equilibrium cell. Two methods were investigated:-

I) Introducing the propane into the equilibrium cell as a liquid; or 

2) Compressing the propane before introduction into the equilibrium cell. 
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Ahemative two was decided on as :-

1) We could not obtain a cylinder with a port for liquid withdrawal; 

2) Commercial equipment to liquefy propane was both expensive and complex; and 

3) Muhlbauer [1990] had already used a compression device and obtained reasonable pressures 

in the equilibrium cell. 

I
GasCylnde< 

----. Propane 

VB 
V7 Propane Compressor 

V4 

V10 

Gas Cylinder 
H.P. Air 

V12 

f-----•Vent 
Degassing Apparatus -tx]--~--r----. 
'----~---~ V5 

Vacuum 

H.P. Equilibrium 

Cell 

V13 

---[X]i------•1Vacuum 

1-----•Vent 
V2 

Figure 5-2: Equipment arrangement for the propane+ 1-propanol system. 

The equilibrium cell was evacuated and flushed with propane in a similar procedure as explained 

in Section 5.2.1. The degassed 1-propanol was introduced from the degassing apparatus to the 

equilibrium cell by suction due to a vacuum applied in the equilibrium cell. Propane flushed 

through the degassing apparatus was used to assist the flow into the equilibrium cell. In the 

equilibrium cell, the 1-propanol was again degassed, this time in-situ. The procedure was similar 

to that of Section 5 .2.1. from then onwards. 

The difference in the introductory procedure for the propane + 1-propanol system is the method 

of introduction of propane into the equilibrium cell. For investigation at low system pressures, 

propane is introduced into the equilibrium cell straight from the storage cylinder. When one 

requires experimental pressures in excess of the vapour pressure of propane at room temperature, 
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the propane is fed into the equilibrium cell via a compression device. Description of the 

compression device and its operating procedure is available in Appendices C and D respectively. 

5.2.3. Positioning of the liquid-level 

During the pressurising procedure the liquid-level can rise drastically as the more volatile 

component absorbs into the liquid phase. Muhlbauer [1990] states that the liquid-level can under 

some conditions increase approximately three-fold. h is thus crucial that one positions the liquid­

level so that the appropriate phases are situated at the appropriate heights in the equilibrium cell 

for sampling of the equilibrium phases. 

If the liquid-level is too high, the following could occur :-

1) During venting, some of the liquid phase will also be vented; or 

2) if the liquid-level is alongside the vapour sampling port, the liquid phase will be sampled 

instead of the vapour phase; or 

3) if the liquid-level is too close to the vapour sampling port, splashing could result in droplets 

of the liquid phase being entrained into the vapour sampling port. 

During the filling process, one can view the liquid-level through the sapphire viewing windows. 

Generally the equilibrium cell was filled with the liquid component to a height half way up the 

bottom window. This constituted a volume of approximately 45 to 50 cm3
. 

5.4. THE SAMPLING PROCEDURE 

The sampling procedure for the equilibrium liquid and vapour samples was developed by 

performing various runs on the carbon dioxide + toluene system. The sampling procedure was 

essentially the same for all systems measured. Differences in the sampling procedures for systems 

were:-

1. The final pressure to which the jet-mixers were pressurised; and 

2. The temperature of the jet-mixers. 



150 

Reference must be made to Figure 5-3, which illustrates the plumbing in the sampling section, 

when going through the sampling procedure. Assume at the beginning that all valves are closed. 

5.4.1. Sampling of the liquid phase 

Once the cell contents had reached equilibrium (the cell contents were deemed to be at 

equilibrium when the equilibrium pressure remained constant over a period of 30 minutes) the 

following procedure was followed:-

1. The bottom stirrer speed was reduced to a setting of approximately half of its original value. 

This was to ensure that there would be no splashing of liquid in the equilibrium cell, and that 

no vapour bubbles would lodge themselves in the liquid sampling loop . 

2. The internal jet-mixer (inside the air-bath) temperature was set on the Eurotherm 818 

temperature controllers. The temperature of the jet-mixer was set to a value that was 

typically between 240 and 300 °C, depending on the system being investigated. The external 

jet-mixer (outside the air-bath) temperature was also set, typically 5 to 10 °C higher than the 

internal jet-mixers. 

3. The sampling lines external to the air-bath were heated to a temperature comparable to the 

jet-mixer temperature. 

4. The 8-port GC sampling valve was heated to a temperature comparable to the jet-mixer 

temperatures. Steps 1 to 4 were generally undertaken about an hour before the sample was 

actually taken for analysis. 

5. All the lines from the sampling valve to the GC were evacuated, along with all the lines from 

the helium inlet to the sampling valve. This was achieved by opening the three-way valves Tl 

and T2 to vacuum. Valves Vl4, VB, Vl, V9, Vl 1, and V8 were also opened. The lines 

were evacuated to the approximately 0.8 mbar (this was the rating of the vacuum pump 

used). Once the desired vacuum was achieved all the above mentioned valves were closed. 

6. Valve T2 was then opened to helium. Metering valve VB was then slightly opened to allow 

a slow flow of helium into the line. The pressure in the line was buili-up to 0.75 bar and then 

valve VB was closed. The helium was then allowed to heat up in the line to the temperature 

of the air-bath (this took approximately 10 minutes). The helium is heated to the equilibrium 

temperature so as to ensure that no condensation of the equilibrium sample takes place in the 

line during sampling. 
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7. The bottom GC sampling valve was then tu.med from the sampling to the flushing position 

and valve Vl was opened. This flashed the equilibrium sample into the internal jet-mixer. To 

facilitate the homogenisation of the equilibrium sample valve V13 was again opened slightly. 

A slow flowrate of helium was set so as to create a swirling action in the jet-mixer and thus 

facilitate mixing. Flowrate was judged by the rate of increase in the line/jet-mixer pressure. A 

rate of approximately 0.005 bar per second was generally set. The pressure in the jet-mixer 

was built-up to l.8~ar. A slow flowrate of helium ensured that:-

a) As the helium gas flowed slowly through the heating loops it was heated to the air-bath 

temperature. Thus any less-volatile component that may have deposited in the sampling 

line after flashing would be displaced into the jet-mixer; 

b) The constant flow of helium ensured that the equilibrium sample was trapped in the jet­

mixer; and 

c) The additional mixing of the carrier gas with the equilibrium sample, due to circulation 

created by the continuous flow of helium, resulted in a totally vapourised and 

homogenised sample ready for GC analysis. 

8. Valve V13 was then closed. The line/jet-mixer pressure reading was then checked to see if 

there was any decrease in pressure. A decrease in pressure was a sure sign that there was 

condensation in the line or in the jet-mixer. 

9. Valve V9 was opened. The diluted equilibrium sampled was thus flushed from the internal 

jet-mixers to the external jet-mixers. This produced further homogenisation of the 

equilibrium sample. 

10. Valve V13 was opened and a slow flowrate of helium (approximately 0.005 bar/sec) was 

allowed. The pressure was built up to approximately 1.8 bar, at which point valve V13 was 

closed. 

11 . Valve Vl 1 was opened. The micrometer needle valve Vl2 was then opened so as to allow a 

slow flow (approximately 0.01 bar/sec) of diluted homogenised equilibrium sample through 

the 8-port GC valve. The 8-port GC valve was then switched and the sample was conveyed 

to the GC for analysis. Valve V12 was then closed and the analysis results awaited. This step 

was repeated about five times. Generally sample was sent to the GC for analysis at every 0 .1 

bar decrease in pressure. 

It should be noted that with this design the liquid sampling method does not affect the cell interior 

volume or pressure and so there is no disturbance of the equilibrium condition. 
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5.4.2. Sampling of the vapour phase 

Sampling of the vapour phase was simpler than for the liquid as the sample was only 

homogenised once and this occurred in a jet-mixer external to the air-bath. The procedure was 

very similar to that for the liquid sample and we assume for this procedure that the liquid sample 

has been taken first. Thus steps 1 to 4 in the liquid phase sampling procedure have already been 

carried out. The procedure from then on is as follows:-

1. The sampling lines and the jet-mixers had to be evacuated. This was accomplished by 

opening the three-way valves Tl and T2 to vacuum. Valves V2, V7, and Vl0 were also 

opened. The lines/jet-mixer were evacuated to approximately 0.8 mbar. Once the desired 

vacuum was achieved all the above mentioned valves were closed. 

2. Valve T2 was then opened to helium. Metering valve V13 was slightly opened to allow a 

slow flow of helium into the line. The pressure in the line was built-up to 0.75 bar and then 

valve V13 was closed. As in step 6 for the liquid sampling the helium was allowed to heat up 

to the bath temperature. 

3. Valve V7 was opened and the vapour GC sampling valve turned from the sampling to the 

flushing position, followed by the opening of valve V2. This flashed the sample into the jet­

mixer and promoted homogenisation via swirling action. Valve V13 was opened and slow 

flowrate of helium (approximately 0.005 bar/sec) was set. The pressure was built up to 2 

bar. 

4. Valve 13 was then closed and the pressure reading monitored for any decrease. Any decrease 

as mentioned before was a sign of condensation in the line/jet-mixer. 

5. Valve VlO was opened and the step procedure was as discussed in step 11 for liquid 

sampling. 

5.4.3. Some important notes on experimental procedure 

Discussed below are some important points and observations on the experimental procedure. 

They are as follows:-

a) Overpressuriz.ation 

This is to be avoided in the flushing and homogenising procedure. Overpressurizisation may 

result in the less volatile component separating out in the jet-mixer. The jet-mixer then in 
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effect acts as an equilibrium cell. As a result the sample conveyed to the GC for analysis is 

not a representative equilibrium sample. 

b) Purging of sample lines 

The lines conveying the equilibrium samples from the equilibrium cell to the GC have to be 

evacuated and purged between successive liquid and vapour samples. This is to ensure that 

no residual traces of components from previous samples are present in the sampling lines. 

The purging procedure is explained under the liquid and vapour sampling procedure. 

c) Sample line length 

When the equilibrium samples are flushed from the sampling device to the GC, there is a 

tendency for the volatile and non-volatile components to separate due to the volatile 

component travelling faster than the non-volatile component. A concentration profile is 

evident during successive flushings to the GC. The concentration of the non-volatile 

component increases with successive flushings. Muhlbauer [1990] noted this observation, 

and thanks to this observation, we kept the length of sampling lines to the shortest possible 

length. We also inserted the second jet-mixer as recommended by Miihlbauer [1990]. 

Despite these precautions, there was still a very slight non-random spread in the successive 

vapour mole fractions. As observed by Miihlbauer [1990], the first flushing produced a 

slightly rich volatile component sample, and the final flushing a slightly lean volatile 

component sample. 

5.5. PROCEDURE FOR P-V-T MEASUREMENTS 

The experimental procedure for the measurement of P-V-T behaviour of gases and gas mixtures 

is relatively simple. It basically involves varying the volume of the equilibrium cell and noting the 

equilibrium cell pressure under varying isothermal conditions. 

The procedure maybe outlined as follows :-

1. The air-bath temperature is set on the Eurotherm 808 controller to the temperature of 

interest. In this study the temperatures under investigation were 50 °C, 75 °C, and 100 °C. It 

generally took about 6 hours for the air-bath and the equilibrium cell to reach thermal 

equilibrium at the set-point temperature. 

2. The piston is moved to its zero position. This gives the equilibrium cell it maximum possible 

volume. 
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3. The equilibrium cell is filled with the gas to be investigated. When a binary gas mixture is to 

be studied the gases are charged into the equilibrium cell consecutively. The pressure 

increments on filling were also noted and could be used as a means of calculating the 

composition of the binary mixture in the equilibrium cell. In the case of binary gas systems 

the upper stirrers are switched on and the cell contents stirred to ensure homogenisation of 

the cell contents. 

4. At thermal equilibrium and once the pressure had stabilised, the pressure of the equilibrium 

cell was noted. 

5. The piston is then moved downwards in the equilibrium cell. The distance that the piston 

moves is calculated from the micrometer dial on the piston assembly. The stepper motor 

drive can be moved in steps and therefore the distance moved by the piston can be calculated 

in increments or steps of the stepper motor. When the piston was to be moved the pressure 

equalisation circuit was switched on. This maintained a pressure differential across the piston 

of 1 bar. This assisted the stepper motor in driving the piston. 

6. At the new position of the piston which constituted a new equilibrium cell volume (once the 

pressure had stabilised) the equilibrium pressure was noted. 

7. Steps 5 and 6 were then repeated for as many measurements as were required. 

8. Once a particular isotherm had been completed, the air-bath temperature was set to the new 

temperature under investigation and steps 4 to 7 were carried out. 

9. For the binary gas system the composition of the system could be measured by following the 

procedure as outlined for the vapour phase sampling (Chapter 5.4.2). 

5.6. GC CALIBRATION PROCEDURE 

The detector used in this study was the Thermal conductivity detector (fCD) and therefore 

calibration of the GC in fact meant calibration of the TCD. There are basically two methods of 

calibrating a detector to achieve accurate results. The method of internal standardisation is the 

more accurate, while the other is the method of direct injection. Unfortunately the method of 

internal standardisation could not be used in this project, for the following reasons:-

1. The systems being studied consisted of components that were a liquid and a gas at room 

temperature. This meant that internal standardisation could not be used. 

2. The equilibrium samples to be analysed were routed directly from GC sampling valves. This 

precluded the addition of a standard of known quantity to the sample before analysis. 
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As a resuh the method of direct injection had to be adopted. A major concern when using this 

method of calibration though is the reliance on the accuracy of the injected volume and the 

syringe. A new precision volumetric GC calibration apparatus, developed in the Department for 

gas mixtures could not be used since the micro-liquid injection feature had not been completed 

yet. The precautions taken and the methods of calibration are described in Appendix D.2. 

The operating conditions for the GC and the method are summarised in Chapter 7. 
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CHAPTER SIX 

SYSTEMS CHOSEN FOR EXPERIMENTATION 

Before any systems were thoroughly investigated, the experimental apparatus and procedure was 

put to the test with the carbon dioxide + toluene system. Once the apparatus had been shown 

capable of accurately measuring HPVLE data, the carbon dioxide + methanol system was 

tackled. As one of the objectives was to verify the experimental results of Muhlbauer [1990] for 

the propane + 1-propanol system, this system was investigated last. 

P-V-T investigations were also undertaken to demonstrate the versatility of the apparatus. The 

second virial coefficients were determined for pure components and for a binary mixture. Pure 

components investigated were nitrogen and propane. The binary mixture studied was nitrogen + 

propane. 

Published data for the systems of interest to this project are available in table format in Appendix 

E. 

6.1. THE CARBON DIOXIDE+ TOLUENE SYSTEM 

Carbon dioxide + toluene was used as a test system as it is a very severe test of the experimental 

equipment and procedure. In addition the system has been used in the past by various authors 

(Ng and Robinson [1978], Sebastian et al. [1980], Morris and Donohue (1985], Kim et al. 

(1986], Fink and Hershey (1990], and Muhlbauer (1990]) as a test system for their equipment 

and procedures. 

The reasons why the carbon dioxide + toluene system is generally used as a test system are as 

follows :-

1. Carbon dioxide and toluene are easily available in high purity. In addition they are relatively 

cheap and non-toxic, also, carbon dioxide is non-combustable. These are important factors to 

take into consideration during initial experimentation when leaks have to be eliminated and 

experimental procedures finalised. During the test phase large quantities of material are used. 
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2. There is a large difference in the volatility between the two component which makes it 

difficult to obtain a liquid sample which is representative. Thus it serves as a very severe test 

for the sampling method used. 

3. The system is very difficult to handle once a sample has been withdrawn. The liquid sample 

has to be vaporised before analysis by a gas chromatograph and partial condensation of the 

non-volatile in the sample lines is always a major problem, and must be avoided. 

4. True equilibrium conditions are not very easily obtained. 

5. Carbon dioxide is supercritical at room temperature, and thus the desired experimental 

pressure can be achieved by merely heating the cell. 

Table 6-1 below lists the authors who have studied the carbon dioxide + toluene system as 

reviewed in this project. 

Author/s System Temperature Pressure Range Number of 
(K) (Bar) experimental 

data sets 
Ng and Robinson [1978] 311.26 3.34 - 77.43 8 

352.59 3.76 - 123.07 10 
393.71 4.03 - 152.93 8 
477.04 11.79 - 152.24 8 

Sebastian et al. [1980] 393.25 9.76 - 51.98 4 
422.45 19.79 - 51.88 5 
476.95 12.37 - 50.97 5 
502.75 20.62 - 50.36 4 
542.85 31.66 - 51.57 3 

Lin et al. f1985] 477 11 -49 5 
Morris and Donohue [1985] 353.15 2.59 - 119 .30 12 

383.15 5.93 - 128.00 10 
413.15 7.10 - 131.70 9 

Kim et al. [1986] 353.4 6.72 - 61.77 8 
373.2 5.15 - 54.89 7 
393.2 13.13 - 64.50 7 

Fink and Hershey [1990] 308.16 8.04-69.21 15 
323.17 6.40 - 87.73 16 
353.18 5.18 - 123.50 19 

Muhlbauer [1990] 352.15 8.76 - 109.97 9 
Muhlbauer and Raal fl 9911 

Table 6-1: Survey of measured data for the Carbon Dioxide + Toluene System 

Volumetric properties for the system have been undertaken at high pressure and are available in 

Pohler and Kiran [1996]. 



159 

6.2. THE CARBON DIOXIDE+ METHANOL SYSTEM 

The reasons for studying the carbon dioxide + methanol system were as follows :-

1. The system is generally used as a test system and has been well studied. It thus serves as a 

further test for the experimental apparatus and experimental procedure. 

2. SASOL approached us to determine HPVLE data for a multicomponent system of interest to 

them. One of the constituent binaries in the multicomponent system was the carbon dioxide + 

methanol system. They however required HPVLE data at low temperatures (approximately 

200 K). The equipment used in this study is not at this stage capable of measuring HPVLE at 

such low temperatures. We thus decided to perform HPVLE measurements at higher 

temperatures, test the extrapolation ability of the Wong and Sandler mixing rule (Wong et. 

al. [1992]), and then extrapolate the measured data that we obtained to the temperatures 

required by SASOL. 

Table 6-2 lists the authors who have studied the carbon dioxide + methanol system as reviewed in 

this project. 

Reighard et al. [1996] have also determined HPVLE for the carbon dioxide+ methanol system, 

however, their data was measured at constant composition i.e. P-T data. 

6.3. THE PROPANE+ 1-PROPANOL SYSTEM 

Only two researchers had studied the HPVLE behaviour for the system. Nagahama et al. [1971] 

performed HPVLE measurements for the system at low temperature, but did not measure the 

vapour phase compositions. Muhlbauer [1990] measured both the liquid and vapour phases; 

however he could not achieve proper modelling of the system. Muhlbauer [1990] could also not 

attain a relatively high pressure in his equilibrium apparatus. He suspected that there was liquid 

phase splitting occurring at this higher pressure, although he did not have a visual cell and 

therefore could not confirm this. We thus decided to verify the experimental data of Muhlbauer 

[1990] to determine if the measured data were accurate and to determine if there was liquid phase 

splitting at the higher pressures. 
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Table 6-3 lists the authors who have studied the propane + 1-propanol system as reviewed in this 

project. 

Excess molar properties for the propane + 1-propanol system are available in Brown et al. 

[1996]. 

Author/s System Temperature Pressure Range Number of 
(K) (Bar) experimental 

datasets 
Katayama et al. [19751 298.15 2.19 - 61.28 13 
Ohgaki and Katayama [1976] 298.15 7.90- 59.53 8 

313.13 5.77 -80.58 9 
Weber et al. [1984]* 233.15 3.00- 8.90 6 

248.15 3.30 - 16.85 7 
253.15 5.55 - 15.20 6 
273.15 4.48 - 33.00 9 
273.15 6.59 -34.86 20 
298.15 7.80-50.83 11 

Chang and Rousseau [1985]** 243.15 2.05 - 13.46 6 
258.15 2.21 - 21.57 6 
273.15 1.93 - 32.35 6 
298.15 2.60 -54.54 8 

Brunner [1985] 298.15 17.3 - 62.3 17 
Brunner et al. [1987]*** 323.15 9.9-95.5 14 

373.15 20.1 - 154.2 12 
423.15 36.7 -161.3 11 
473.15 75.2 - 129.3 4 

Hong and Kobayashi [1988] 230 6.89- 8.83 6 
250 11.55 - 17.51 3 
250 6.89 - 15.86 4 

273.15 6.89 - 34.47 10 
290 6.89 - 51.64 9 
310 6.89-77.43 19 
330 6.89 - 106.46 13 

Suzuki et al. [1990(b)] 313.4 6.83 - 77.13 8 
Chang et al. [1997] 291.15 5.6 -49.3 12 

298.16 9.2 - 57.1 17 
303.18 8.9 - 63.2 16 
308.15 13.2 - 70.1 16 
313.14 13.2 - 80.3 17 • .. Webc:z- [1984) did not measure vapour phase~ 

** Chang and Rousseau (1985) did not measure vapour phase compositions. 
*** The liquid and vapour compositions are not at the same pressure. 

Table 6-2: Survey of measured data for the Carbon Dioxide + Methanol System 
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Author/s System Temperature Pressure Range Number of 
(K) (Bar) experimental 

data sets 
Namdlarna et. al. [19711* 293.05 1.43-7.99 10 
Muhlbauer [1990]** 354.75 4.53-22.39 14 
Muhlbauer and Raal [1993]** 378.15 4.58-35.49 16 

393.15 4.46 -40.45 18 
.. 

*Nagahama a. al. [1971] did not measure vapour phase~ 
** The liquid and vapour phase oompositioos aren<X at the same pressure 

Table 6-3: Survey of measured data for the Propane + 1-Propanol System 

6.4. P-V-T MEASUREMENTS 

P-V-T measurements were undertaken for nitrogen and propane so as to obtain the second virial 

coefficients for the gases. This was undertaken to examine the variable volume capabilities of the 

apparatus and thus its versatility. Nitrogen and propane were decided on because: -

1. We had worked with them during the VLE studies, and thus these gases were available to us; 

and 

2. These gases had been extensively studied before, and values for the second virial coefficient 

are available in Dymond and Smith [1980]. 

The determination of the second virial coefficient for the nitrogen + propane system was also 

undertaken. Dymond and Smith [1980] contains extensive data on the second virial coefficient 

for pure gases, however, cross-term second virial coefficients for the system nitrogen+ propane 

are sparse. Data for the system are available in Wormald et al. [1996] . 
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CHAPTER SEVEN 

EXPERIMENT AL RESULTS 

The factors that affect the accuracy of the equilibrium measurements will be discussed in this 

chapter. The measured experimental data will also be presented. The properties that are 

measured in VLE experimentation are temperature, pressure and phase compositions. It is thus 

crucial that proper calibration be undertaken for these properties. Therefore GC calibrations for 

composition measurements, as well as pressure and temperature sensor calibrations will also be 

presented in this section. 

7.1. PURITY OF CHEMICALS 

The chemicals used in this project can be grouped into one of two categories, viz. gaseous and 

liquid components at standard conditions. 

7.1.1. Gaseous materials 

The gaseous chemicals used in this project were carbon dioxide, nitrogen, propane and helium. 

Fedgas supplied carbon dioxide, nitrogen and helium, whereas Afrox supplied propane. 

7.1.1.1. Carbon Dioxide 

Carbon dioxide with a certified minimum purity of 99.995 % was supplied in a 75/ cylinder. The 

cylinder was pressurised to between 70 and 75 bar. GC analysis of the carbon dioxide verified a 

purity of greater than 99.99 %. The major impurities in carbon dioxide were oxygen, nitrogen, 

water, sulphur dioxide and some hydrocarbons. All of these were in less than 10 ppm quantities. 

7.1.1.2. Nitrogen 

Nitrogen was used for PVT measurements, as well as for pressurisation of the upper nitrogen 

compartment (equalisation of the pressures across the piston head). The nitrogen, which came 

pressurised at 200 bar in a 75/ cylinder, was certified as having a minimum purity of 99.998 %. 
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GC analysis confirmed purity in excess of 99 .99 %. The major impurities in nitrogen were 

oxygen, water, ethane, propylene, isobutane, and n-butane. 

7.1.1.3. Helium 

Helium was used as a carrier gas and as a reference gas in gas chromatography. It was supplied 

in a 75/ cylinder, pressurised at 200 bar, with a certified minimum purity of 99.998 %. The 

major impurities in helium were oxygen, nitrogen, water, and hydrocarbons. All major impurities 

were in ppm quantities. 

7.1.1.4. Propane 

Instrument grade propane with a certified minimum purity of 99.5 % was supplied in an Al 

cylinder as a liquefied gas under its vapour pressure. GC analysis of the propane indicated a 

purity of approximately 99 %. The major impurities in propane were ethane, propylene, 

isobutane and n-butane. 

7.1.2. Liquid materials 

Liquid materials used in this project were toluene, methanol and 1-propanol. For all of the 

liquids, purity was verified by GC analysis and refractive indices measurement (refer to Table 7-

1). 

7.1.2.1. Toluene 

Toluene was supplied by SAARCHEM. The minimum purity was claimed to be 99.8 %. Major 

impurities were benzoic acid (0.002 %), ammonia (0.0002 %), benzene (0.05 %) and water (0.02 

%). 

7.1.2.2. Methanol 

Riedel-de Haen supplied methanol. The minimum purity was claimed to be 99.8 %. The major 

impurity was water (0.03 %). 
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7.1.2.3. 1-Propanol 

1-Propanol was obtained from MERCK. The minimum purity was claimed to be 99. 7 %. Major 

impurities in 1-propanol were acetone (0.01 %), ethanol (0.05 %), methanol (0.05 %), 2-

propanol (0.05 %) and water (0.05 %). 

Chemical Refractive Index GC Analysis 

Measured Literature [Weast et al., 1986} % purity 

Toluene 1.4962 1.4961 99.7 

Methanol 1.3292 1.3290 99.8 

1-Propanol 1.3848 1.3850 99.5 

Table 7-1: Purity of the liquid materials verified by refractive index measurement 

(20 °C) and GC analysis. 

Refractive indices were measured with a high precision refractometer and GC analysis was 

undertaken with the instrument (detailed in Chapter 4) at the conditions mentioned later in this 

chapter. 

7.2. ACCURACY OF MEASURED PROPERTIES 

The primary properties that were measured were temperature, pressure and composition. 

7.2.1. Temperature 

Temperature was measured with a Pt-100 n resistor (class A). It was certified as being accurate 

to within O. 05 %. This corresponds to a temperature uncertainty of approximately O .2 K at 100 

°C. The Pt-100 n resistor was calibrated against a quartz thermometer. For a wide range of 

temperatures (30 to 250 °C) the quartz thermometer and Pt-I 00 n resistor readings were within 

0 .3 % of each other. 
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7 .2.2. Pressure 

Sensotec pressure transducers were used to measure pressure. The transducers were certified 

accurate to within 0.25 %. This corresponds to a pressure uncertainty of approximately 0.25 bar 

at a pressure of 100 bar. The pressure transducers were calibrated against a Heisse gauge. Two 

Heisse gauges were used to calibrate the pressure transducers. For the O to 5 bar range 

transducer, the O to 500 psi range Heisse gauge was used. For the O to 175 bar range 

transducers, the O to 5000 psi range Heisse gauge was used. For calibration of all the 

transducers, the transducer and Heisse gauge readings corresponded to within a tenth of a bar 

over the entire pressure range. The Heisse gauges were certified as having an uncertainty of 

approximately 0.034 bar. 

7 .2.3. Composition 

Phase compositions were determined by GC analysis. GC calibration is discussed in Chapter 5 

and Appendix D. Performing a literature survey and taking into account all known possible 

factors that affect accuracy of composition measurement via GC (for GC calibration, a plot was 

made of GC area versus number of moles injected), the maximum errors for composition 

measurement were determined. They correspond to approximately 1. 0 % for the non-volatile 

component and 1.5 % for the volatile component. Since mole fraction measurements relate the 

ratio of volatile or non-volatile number of moles to total number of moles, the uncertainty in mole 

fractions is approximately 2.5 %. 

7.3. GC CALIBRATION CURVES 

The method of calibration for the GC and the conditions of operation are discussed in Appendix 

D and later in this chapter. Presented in Figures 7-1 to 7-5 are the GC calibration curves for the 

various chemicals used in this study. For all of the GC calibrations, the calibration factor appears 

to be extremely linear in the range of calibration. The calibration factor obtained by linear 

regression through the data points is also given in Figures 7-1 to 7-5 . 



Figure 7-1: GC calibration for Toluene 
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Figure 7-3: GC calibration for 1-Propanol 
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Figure 7-5: GC calibration for Propane 
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7.4. VAPOUR-LIQUID EQUILIBRIUM MEASUREMENTS 

HPVLE measurements were performed for three systems, viz. carbon dioxide + toluene, carbon 

dioxide + methanol and propane + 1-propanol. For each of the systems a few isotherms were 

measured. 

7.4.1. Carbon Dioxide+ Toluene System 

The carbon dioxide + toluene system was measured at three isotherms, viz. 38 °C, 80 °C and 

118.3 °C. 

7.4.1.1. Carbon Dioxide+ Toluene - 38 °C isotherm 

Table 7-2 lists the experimental data points (liquid and vapour phase mole fractions and 

pressure) for the carbon dioxide + toluene system at the given isotherm. Figure 7-6 gives the 

graphical illustration of the data points. Figure 7-7 compares the data measured in this project to 

literature. Unfortunately a direct comparison at 38 °C could not be made, as literature data was 

only available at 38.11 °C (Ng and Robinson [1978]) and 35.01 °C (Fink and Hershey [1990]). 

Pressure Liquid Composition Vapour Composition 

(bar) (Xco
2

) (Yco
2

) 

4.58 0.0382 0.9921 
11 .23 0.1181 0.9932 
20.39 0.1997 0.9935 
31.33 0.2867 0.9955 
50.14 0.5335 0.9941 
60.64 0.6986 0.9945 
64.29 0.7613 0.9936 

Table 7-2: Experimental data for the Carbon Dioxide+ Toluene System at 38 °C 

7.4.1.2. Carbon Dioxide+ Toluene - 80 °C isotherm 

Table 7-3 lists the experimental data points (liquid and vapour phase mole fractions and 

pressure) for the carbon dioxide + toluene system at the given isotherm. Figure 7-8 gives the 

graphical illustration of the data points. Figures 7-9 and 7-10 compare the data measured in this 
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project to literature. Literature data compared to were, Ng and Robinson [1978] (79.44 °C), 

Morris and Donohue [1985] (80.0 °C), Kim et al. [1986] (80.25 °C), Fink and Hershey [1990] 

(80.03 °C) and Muhlbauer and Raal [1991] (79 °C). 

Pressure Liquid Composition Vapour Composition 

(bar) (Xco
2

) {Yco
2

) 

5.89 0.0357 0.9048 
12.52 0.0715 0.9562 
21.38 0.1215 0.9749 
35 .63 0.2045 0.9755 
51.58 0.2935 0.9841 
65 .69 0.3816 0.9845 
78.15 0.4484 0.9836 
84.35 0.4972 0.9828 

Table 7-3: Experimental data for the Carbon Dioxide+ Toluene System at 80 °C 

7 .4.1.3. Carbon Dioxide + Toluene - 118.3 °C isotherm 

Table 7-4 lists the experimental data points (liquid and vapour phase mole fractions and 

pressure) for the carbon dioxide+ toluene system at the given isotherm. Figure 7-11 gives the 

graphical illustration of the data points. Figure 7-12 compares the data measured in this project 

to literature. Literature data compared to were, Ng and Robinson [1978] (120.56 °C), Sebastian 

et al. [1980] (120.1 °C), and Kim et al. [1986] (120.05 °C). 

Pressure Liquid Composition Vapour Composition 

(bar) {Xco
2

) {Yco
2

) 

20.64 0.0986 0.9285 
33.9 0.1381 0.9462 
52.4 0.2382 0.9541 

74.29 0.3213 0.9536 
94.39 0.3997 0.9485 

100.14 0.4335 0.9484 
121.33 0.5467 0.9325 

Table 7-4: Experimental data for the Carbon Dioxide+ Toluene System at 118.3 

oc 



Figure 7-6: Experimental HPVLE data for the Carbon Dioxide 
+ Toluene System at 38 °C 

70 --,----------------------------------, 

60 -

50 -
'i:" 
cu 
e 40 
! 
= 
0 30 -0 
! 
D. 20 

10 -

• 

• 

• 

• 

• 
• 

• • • 

• 

• 

• 

• 
• 

0 -r-----,.---~----.-------.------,------,---...-----,-----,------, 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Mole fraction CO2 ..... 
-...l w 



90 

80 

70 

-'- 60 
~ -a, 50 ... 
::, 
u, 40 
I ... 
0. 30 

20 
I 

10 1- X 

0 - R 

0 

Figure 7-7: HPVLE data for Carbon Dioxide+ Toluene 
System at 38 °C (Comparison with literature) 
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Figure 7-8: Experimental HPVLE data for the Carbon Dioxide 

+ Toluene System at 80 °C 
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Figure 7-9: HPVLE data for Carbon Dioxide+ Toluene 
System at 80 °C (Comparison with literature) 
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Figure 7-10: HPVLE data for Carbon Dioxide+ Toluene 
System at 80 °C (Comparison with literature) 
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Figure 7-11: Experimental HPVLE data for the Carbon Dioxide 
+ Toluene System at 118.3 °C 
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Figure 7-12: HPVLE data for Carbon Dioxide + Toluene 
System at 118.3 °C (Comparison with literature) 
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7 .4.2. Carbon Dioxide + Methanol System 

The carbon dioxide + methanol system was measured at three isotherms, viz. 40 °C, 90 °C and 

100 °C. 

7.4.2.1. Carbon Dioxide+ Metbanol-40 °C isotherm 

Table 7-5 lists the experimental data points (liquid and vapour phase mole fractions and 

pressure) for the carbon dioxide+ methanol system at the given isotherm. Figure 7-13 gives the 

graphical illustration of the data points. Figure 7-14 compares the data measured in this project 

to literature. Literature data compared to were Ohgaki and Katayama [1976] (40.0 °C), Suzuki et 

al. [1990] (40.25 °C) and Chang et al. [1997] (39.99 °C). 

Pressure Liquid Composition Vapour Composition 

(bar) (Xco2) (Yco2) 
12.91 0.0653 0.9732 
23.13 0.1233 0.9825 
31.45 0.1856 0.9856 
43.39 0.2516 0.9826 
51.92 0.3227 0.9845 
55.46 0.347 0.986 
61.31 0.3968 0.9849 
67.58 0.4736 0.9866 

Table 7-5: Experimental data for the Carbon Dioxide+ Methanol System at 40 °C 

7.4.2.2. Carbon Dioxide + Methanol - 90 °C isotherm 

Table 7-6 lists the experimental data points (liquid and vapour phase mole fractions and 

pressure) for the carbon dioxide+ methanol system at the given isotherm. Figure 7-15 gives the 

graphical illustration of the data points. No literature data were available for the system at 90 °C 

and therefore no comparisons could be made for the measured data. 
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Pressure Liquid Composition Vapour Composition 

(bar) (Xco
2

) (Yco
2

) 

9.67 0.0273 0.7254 
15.69 0.0469 0.7991 
24.6 0.0701 0.8715 
26.54 0.0734 0.8874 
40.21 0.1138 0.9132 
55.45 0.1646 0.9253 
76.89 0.2389 0.9362 
85.64 0.2713 0.9419 

Table 7-6: Experimental data for the Carbon Dioxide+ Methanol System at 90 °C 

7.4.2.3. Carbon Dioxide+ Methanol-100 °C isotherm 

Table 7-7 lists the experimental data points (liquid and vapour phase mole fractions and 

pressure) for the carbon dioxide+ methanol system at the given isotherm. Figure 7-16 gives the 

graphical illustration of the data points. Figure 7-17 compares the data measured in this project 

to literature. Literature data compared against were that of Brunner et al. [1987] (100 °C). 

Pressure Liquid Composition Vapour Composition 

(bar) (XcoJ (Yco
2

) 

21.57 0.0451 0.8042 
30.89 0.0697 0.8629 
38.73 0.0887 0.8837 
50.94 0.1258 0.9053 
68.22 0.1783 0.9138 
75.28 0.2033 0.9127 
90.67 0.2531 0.9118 
105.94 0.3103 0.91 
120.68 0.3611 0.8927 

Table 7-7: Experimental data for the Carbon Dioxide+ Methanol System at 100 °C 
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Figure 7-13: Experimental HPVLE data for the Carbon Dioxide 
+ methanol System at 40 °C 
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Methanol System at 40 °C (Comparison with literature) 
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Figure 7-15: Experimental HPVLE data for the Carbon 
dioxide + Methanol System at 90 °C 
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Figure 7-16: Experimental HPVLE data for Carbon Dioxide 
+ Methanol at 100 °C 
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Figure 7-17: HPVLE data for Carbon Dioxide+ Methanol at 
100 °C (Comparison with literature) 
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7.4.3. Propane+ 1-Propanol 

The propane + 1-propanol system was measured at two isotherms, viz. 105 .1 °C and 120 °C. 

7.4.3.1. Propane+ 1-Propanol-105.1 °C isotherm 

Table 7-8 lists the experimental data points for (liquid and vapour phase mole fractions and 

pressure) for the propane + 1-propanol system at the given isotherm. Figure 7-18 gives the 

graphical illustration of the data points. Figure 7-19 compares the data measured in this project 

to literature. Literature data compared to were that of Miihlbauer and Raal [ 1993] (105 .1 °C). 

Pressure Liquid Composition Vapour Composition 

(bar) (x propane) (rpropane) 

5.89 0.07092 0.7168 

8.91 0.1053 0.8437 
13.54 0.1559 0.8837 
19.67 0.2512 0.8998 
23.31 0.3193 0.9089 
26.47 0.3719 0.9128 
28.54 . 0.4268 0.9179 
29.62 0.4417 0.9187 
31.81 0.4897 0.9258 

Table 7-8: Experimental data for the Propane+ 1-Propanol System at 105.1 °C 

7.4.3.2. Propane+ 1-Propanol-120 °C isotherm 

Table 7-9 lists the experimental data points for (liquid and vapour phase mole fractions and 

pressure) for the propane + 1-propanol system at the given isotherm. Figure 7-20 gives the 

graphical illustration of the data points. Figure 7-21 compares the data measured in this project 

to literature. Literature data compared to were that of Muhlbauer and Raal (1993] (120 °C). 

The only other set of literature data available for the propane + 1-propanol system was that of 

Nagahama et al. [1971]. The experimental data however was at a much lower temperature 

(293 .05 K) and Nagahama et al. [1971] did not make measurements of the vapour phase 

composition. 



Figure 7-18: Experimental HPVLE data for the Propane+ 1-
Propanol System at 105.1 °C 
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Figure 7-19: HPVLE data for the Propane+ 1-Propanol 
System at 105.1 °C (Comparison with literature) 
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Figure 7-20: Experimental HPVLE data for the Propane+ 1-

Propanol System at 120 °C 
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Figure 7-21: HPVLE data for the Propane + 1-Propanol 
System at 120 °C (Comparison with literature) 
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Pressure Liquid Composition Vapour Composition 

(bar) (x propane) (Y propane) 

5.23 0.0521 0.6198 

9.56 0.1023 0.7967 
15.12 0.1659 0.8767 
23 .65 0.2542 0.9028 
29.66 0.3363 0.9229 
34.84 0.4289 0.9284 
37.89 0.4838 0.9329 
40.12 0.5437 0.9357 
40.31 0.5497 0.9368 

Table 7-9: Experimental data for the Propane+ 1-Propanol System at 120 °C 

7.5. P-V-T MEASUREMENTS 

P-V-T measurements were undertaken to demonstrate the equipment's variable-volume capability 

and versatility. Measurements were undertaken for nitrogen, propane and for a nitrogen + 

propane binary. The second virial coefficients were then derived from the P-V-T measurements, 

as discussed in Section 8. 8. 

7.5.1. Nitrogen 

Measurements were undertaken for nitrogen at three isotherms viz. 50 °C, 75 °C and 100 °C. 

Tables 7-10 to 7-12 list the experimental data for the three isotherms respectively. 

Pressure (bar) Volume (m3 /kmol) 
2.67 10.0642 
2 .81 9.5959 
2.95 9.1275 
3.11 8.6591 
3.28 8.1908 
3.48 7.7224 
3.7 7.2540 

3.96 6.7857 
Table 7-10: P-V data for nitrogen at the 50 °C isotherm 
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Pressure (bar) Volume (m3/kmol) 
2.95 9.8164 

3.09 9.3652 

3.25 8.9141 

3.42 8.4629 

3.62 8.0117 

3.83 7.5606 

4.07 7.1094 

4.35 6.6582 . 
Table 7-11: P-V data for nitrogen at the 75 °C isotherm 

Pressure <bar) Volume (m3 /kmol) 
3.33 9.3229 

3.48 8.8959 
3.66 8.4689 

3.85 8.0419 
4.07 7.6149 
4.32 7.1879 

Table 7-12: P-V data for nitrogen at the 100 °C isotherm 

Second virial coefficients calculated from the P-V-T measurements for nitrogen are listed in 

Table 7-13 . 

Temperature C'C) Exnerimental B ( cm3 /2111ol) *Literature B (cm3/21110I) 
50 
75 
100 

7 .5.2. Propane 

1.20 -0.50 to -0.25 
3.88 3.20to 3.38 
6.57 6.14to 6.56 

Table 7-13: Second virial coefficients for nitrogen 
*Dymond and Smith (1980] 

Measurements were undertaken for propane at three isotherms viz. 50 °C, 75 °C and 100 °C. 

Tables 7-14 to 7-16 lists the experimental data for the three isotherms respectively. 

Second virial coefficients calculated from the P-V-T measurements for nitrogen are listed in 

Table 7-17. 
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Pressure (bar) Volume (m3/kmol) 
2.45 11.0960 

2.52 10.5797 

2.64 10.0633 

2.78 9.5469 

2.88 9.0305 

3.04 8.5141 

3.22 7.9977 

3.44 7.4813 
Table 7-14: P-V data for propane at the 50 °C isotherm 

Pressure (bar) Volume (m3 /kmol) 
2.41 11.8052 
2.51 11.2626 
2.63 10.7200 
2.77 10.1775 
2.91 9.6349 
3.07 9.0923 
3.26 8.5498 
3.46 8.0072 

Table 7-15: P-V data for propane at the 75 °C isotherm 

Pressure (bar) Volume (m3 /kmol) 
2.49 12.2866 
2.59 11.7238 
2.71 11.1611 
2.85 10.5984 
2.99 10.0356 
3.15 9.4729 
3.33 8.9101 
3.53 8.3474 

Table 7-16: P-V data for propane at the 100 °C isotherm 

Temperature (°C) Emerimental B ( cm3 /emol) *Literature B (cm3/emol) 
50 
75 
100 

-319.49 -338.2 to -315 
-268.79 -293 
-279.54 -256 to -242.1 

Table 7-17: Second virial coefficients for propane 
*Dymond and Smith [1980) 
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7.5.3. Propane + Nitrogen Binary 

The propane + nitrogen binary system's P-V properties were measured at 75 °C. The 

experimental data are listed in Table 7-18. 

Pressure lbar) Volume (m3 /kmol) 
2.33 12.3492 

2.43 11.7816 

2.55 11.2140 

2.68 10.6465 

2.83 10.0789 

2.99 9.5113 

3.17 8.9437 

3.38 8.3762 
Table 7-18: P-V data for propane (1) + nitrogen (2) binary at the 75 °C isotherm for Y1 = 

0. 78 mole fraction. 

The cross second virial coefficient for the system was calculated to be -57.57 cm
3
/gmol. This 

compares reasonably well with the interpolated literature value of -46.03 cm
3/gmol (Wonnald et 

al. [1996]). 

7.6. GC OPERATING CONDITIONS 

The GC operating conditions are summariz.ed in Table 7-19. 

O.W-ratina Condition Binanr Svstem5 beine separated in GC 
CC>i + Toluene CC>i + Methanol Propane+ 1-Propanol 

Column Tem""'rature <"a 200 140 150 
TCD Detector Temnerature ("C) 240 240 240 
Elution Times (min5) COi : 0.49 COi : 1.15 Propane : 2.11 

Toluene : 9.2 Methanol: 4.07 1-Pronanol: 7.15 
lniector Temnerature ("C) 200 200 200 
Carrier 285 flowrate (cc/min) 30 30 30 
Reference !?85 flowrate (cc/min) 30 30 30 

Table 7-19: Operating conditions for the Chrompack CP 9000 with Poropak N column 
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7. 7. TEMPERATURE PROFILES 

Temperature profiles for three different operating temperatures ( 40 °C, 80 °C and 120 °C) for the 

equilibrium apparatus are listed in Table 7-20. Reference must be made to Figure 4-9 when 

identifying the location of the Pt-100 sensors. 

Set-point Temperature C'C) 
Sensor Number 40 80 120 

1 40.1 79.8 120.1 
2 40.0 80.0 120.0 
3 40.2 79.8 119.8 
4 40.3 79.7 119.8 
5 40.2 79.9 119.9 
6 40.2 79.9 119.9 
7 40.0 79.9 119.8 
8 39.9 80.0 120.1 

Table 7-20: Temperature profiles for three operating temperatures for the experimental 

apparatus 

Temperature profiles for all other operating temperatures were very much the same. For all of the 

operating temperatures, the maximum difference between the highest and lowest temperatures in 

the profile was approximately 0.4 °C. 
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CHAPTER EIGHT 

DISCUSSION OF EXPERIMENTAL RESULTS 

Due to the costly and demanding nature of HPVLE measurement, it is essential that 

experimental data be properly interpreted and modeled. The methods adopted in this project for 

the interpretation and modeling of the systems measured are discussed in Chapter 3. In this 

section the details for the calculation methods will be comprehensively discussed. 

Modeling of the measured HPVLE for the systems carbon dioxide + toluene, carbon dioxide + 

methanol and propane + 1-propanol was based on both the direct and combined methods. In the 

direct method, use was made of the Soave (SRK), Peng-Robinson (PR) and Peng-Robinson­

Stryjek-Vera (PRSV) EOS's with various mixing rules (including Wong-Sandler mixing rules). 

For the combined method, various activity coefficient models (Van Laar, Wilson, NRTL and 

UNIQUAC) were used in conjunction with the Virial, Soave, PR and PRSV EOS's (with 

classical van der Waals mixing rules and Wong-Sandler mixing rules). A newly proposed 

combined method (Ramjugemath and Raal [1999]) was also used. 

The extrapolative ability of the Wong-Sandler mixing rules were investigated for the carbon 

dioxide + methanol and propane + 1-propanol systems. In additions for the propane + 1-

propanol system HPVLE data were predicted using the UNIF AC group contribution method in 

conjunction with Wong-Sandler and Huron-Vidal mixing rules. 

Since measurements were not undertaken in the critical region for the systems investigated, the 

critical region for the systems measured were computed using the computational method of 

Deiters and Schneider (1976]. 

The experimental data for the various systems were tested for thermodynamics consistency 

using the consistency area test of Chueh et al. [ 1965]. Plots of the residuals were also 

undertaken as an indication of the consistency of experimental data. 

The second virial coefficients were calculated from measured P-V-T data for nitrogen, propane 

and the nitrogen + propane binary at temperatures of 50, 75 and 100 °C. A slightly modified 

approach to that used by Wilson et al. [1984] and Barber et al. (1982] was used and is discussed 

later. 



8.1. COMPARISON OF EXPER™ENTAL HPVLE DATA 

8.1.1. Carbon Dioxide+ Toluene 
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For the 38 °C isotherm comparisons were made to the experimental data of Ng and Robinson 

[1978] and Fink and Hershey [1990]. It must be borne in mind that the data of Fink and 

Hershey is at 35.01 °C. Figure 7-7 shows the graphical comparison. There is very good 

agreement between data measured and that reported in literature. There is only a slight 

discrepancy for the liquid phase around the 0.2 mole fraction region. 

A comparison with literature data of Ng and Robinson [1978], Morris and Donohue [1985), 

Kim et al. [1986], Fink and Hershey [1990] and Muhlbauer and Raal [1991) was made for the 

80 °C isotherm. There was excellent agreement with literature. The experimental data of Morris 

and Donohue [1985) showed a slight discrepancy for the liquid composition around the 0.6 

mole fraction region. 

For the 120 °C isotherm comparisons were made to the experimental data of Ng and Robinson 

[1978], Sebastian et al. [1980] and Kim et al. [1986]. Once again there was very good 

agreement with literature data, with only a slight discrepancy for the vapour phase around the 

20 bar measurement. 

8.1.2. Carbon Dioxide + Methanol 

Data measured at the 40 °C isotherm were compared to the literature data of Ohgaki and 

Katayama [1976], Suzuki et al. [1990] and Chang et al. [1997] . There was excellent agreement 

with the measurements of the various researchers, especially for the P-y data. 

No literature data could be found to compare the data measured for the 90 °C isotherm. 

For the 100 °C isotherm the experimental data were compared to that of Brunner et al. [1987). 

There was excellent agreement between the two sets of data. 

8.1.3. Propane+ 1-Propanol 

Only two researchers viz. Nagahama et al. [1971] and Muhlbauer and RaaI [1993] had 

previously measured the system. The experimental data ofNagahama et al. was at 19.9 °C, and 
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so a comparison could not be made to experimental data of this project (measured at 105 .1 and 

120.0 °C). A comparison with the data of Muhlbauer and Raal at the 105.1 and 120.0 °C 

isotherms indicated some differences between the data sets, especially for the vapour phase. For 

the 105 .1 °C isotherm there is an appreciable difference between the vapour phase 

measurements of this project compared to those of Muhlbauer and Raal [1993]. The 

experimental data of this project is however much smoother than th~se of the latter authors. 

8.2. THE DIRECT METHOD 

The direct method of data reduction is the method preferred by a vast majority. The direct 

method uses a single EOS to describe both the liquid and vapour phases. The preferred fugacity 

coefficient model is a cubic EOS. The reason for choosing a cubic EOS is as a result of its 

simplicity, accuracy and ease of use. The roots of a cubic EOS of state can very easily be 

determined, which is not the case with high order EOS 's. 

8.2.1. EOS models and mixing rules used 

In this project use was made of the following EOS's and mixing rules in the direct method:-

1. Soave EOS with van der Waals mixing rules (Soave [1972]) - SRK. 

2. Peng-Robinson EOS with van der Waals mixing rules (Peng and Robinson [1976])- PR. 

3. Peng-Robinson-Stryjek-Vera EOS with van der Waals mixing rules (Stryjek and Vera 

[1986(a,b)])-PRSV-lvdw. 

4. Peng-Robinson-Stryjek-Vera (PRSV) EOS with two-parameter van der Waals mixing rules 

(Panagiotopolos and Reid [1986(a,b)] -PRSV-2vdw. 

5. PRSV EOS with Huron-Vidal mixing rules (Huron and Vidal [1979])-HVO. 

6. PRSV EOS with modified Huron-Vidal first order mixing rules (Michelsen [1990(b)] -

MHVI . 

7. PRSV EOS with modified Huron-Vidal second order mixing rules (Dahl and Michelsen 

[1990])-MHV2. 

8. PRSV EOS with a linear combination of Huron-Vidal and Michelsen model mixing rule 

(Boukouvalas et al. [1994])-LCVM. 

9. PRSV EOS with Orbey-Sandler modification of Huron-Vidal mixing rule (Orbey and 

Sandler [1995(b)] -HVOS. 

10. PRSV EOS with Wong-Sandler mixing rules (Wong and Sandler [1992]}-PRSV-WS. 
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For the Huron-Vidal mixing rules and modifications thereof: use was made of the NRTL liquid 

phase model. For the Wong-Sandler mixing rules computations were undertaken for a range of 

liquid phase models (Van Laar, Wilson, NRTL and UNIQUAC liquid phase models). 

Details of each of the EOS's and mixing rules are given in Chapter 3 and Appendix B. 

8.2.2. Data fitting/correlation 

The reduction of the measured data involved determining the fitting parameters for each of the 

models. The parameters were determined by least squares regression of the experimental data. 

The objective function for the least squares regression was: 

S = ±[(f';ca! ~exp J2 + (Ytz ~:;xi' J2] 
z=l I'; Y; 

(8-1) 

Thus the sum of the errors between the calculated or predicted properties and the experimental 

properties must be minimized. The calculated system pressure and vapour compositions are 

computed via a bubble pressure computation. A flow diagram of the bubble pressure algorithm 

used in this project is shown in Figure 8-1. Algorithms for the computation of high-pressure 

phase equilibrium are discussed in depth in Heidemann [1983]. 

Inputs into the bubble pressure algorithm are the temperature and liquid composition, critical 

properties (temperature and pressure), accentric factors, K1 (fitted vapour pressure parameter for 

the PRSV EOS) and Gibbs excess free energy model parameters (for mixing rules which 

incorporate a Gibbs excess free energy model, e.g. Wong-Sandler and Huron-Vidal). 

The PRSV EOS K1 parameter was determined by least squares regression of experimental 

vapour pressure data. The objective function in the least square regression was: 

(8-2) 

Depending on the method used to calculate a new pressure in the algorithm, one or two initial 

guesses must be made for the pressure. In this project use was made of the secant method 
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(Anderson and Prausnitz [1980(a,b)] for the determination of the new pressure. The new 

pressure is determined by the following expression for the secant method: 

(8-3) 

where 

(8-4) 

There are a number of different methods to determine a new pressure, some of which are 

described in Anderson and Prausnitz [1980(a,b)] . Another commonly used method is that of 

interval halving described in Gerald and Wheatley [1989]. It is interesting to note that the secant 

method fails for cases were the denominator in Equation (8-3) equals zero. 

The fugacity coefficients in solution are calculated from expressions given in Chapter 3 and 

Appendix B, for the appropriate EOS and mixing rule combinations. The equilibrium ratio's 

(Ki) are calculated from Equation (3-12), knowing the liquid and vapour fugacity coefficients in 

solution. 

There are two convergence checks in the algorithm. For both convergence checks the tolerances 

(s1 and s2) were set to lE-5. 

The least square regression routine used was based on the work of Marquardt [1963]. Other 

methods for the determination of the fitting parameters can also be used e.g. the least square 

method described by Gess et al. [1991] and the maximum likelihood principle described by 

Anderson et al. [1978], Prausnitz et al. [1980] and Gess et al. [1991]. 

Calculation of the fugacity coefficient using a cubic EOS involved solving of an equation cubic 

in compressibility factor. There were three roots for this cubic equation, two of which were real, 

and one that was imaginary. It should be noted that the largest real root is the vapour 

compressibility factor and that the smallest real root is the liquid compressibility factor. 

Anderson and Prausnitz [1980(a,b)] explain the determination of roots for cubic EOS's in terms 

of density. 

Depending on the EOS and mixing rules used, one to three parameters were fitted. For the SRK, 

PR and PRSV-lvdw EOS's, one parameter was fitted i.e. k12. For the PRSV-2vdw EOS two 
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parameters were determined i.e. k12 and k 21. When fitting was undertaken with the PRSV EOS 

and Huron-Vidal (or modifications thereof) mixing rules two parameters were fitted viz. the 

Gibbs excess free energy model parameters. In the NRTL Gibbs excess free energy model, the 

third parameter (an) was set equal to 0.3 for all computations. For the PRSV-WS EOS's three 

parameters were fitted viz. k12 and the Gibbs excess free energy model parameters. The NRTL 

third parameter was set equal to O .3 for these computations as well. 

In this project all computations were undertaken using MATLAB software. Depending on the 

EOS and mixing rules chosen, the MATLAB fitting program for the direct method took 

approximately between 30 seconds to 10 minutes. This may seem like a large amount of 

computational time, but bear in mind that the MATLAB processor and programming language 

is approximately a quarter, or less, of the speed of other processor and programming languages 

e.g. FORTRAN or BASIC. The reason that MATLAB was still used is because of its ease of 

use and extensive library especially for matrix manipulation and numerical methods. 

Once the fitted parameters were obtained, a bubble pressure computation could be undertaken 

to determine the entire P-x-y diagram. Figures 8-2 to 8-25 compare the experimental data 

measured in this project to the predicted/correlated data using the direct method with the 

appropriate EOS and mixing rules. 

8.2.3. Fitted parameters 

8.2.3.1. Carbon Dioxide + Toluene System 

Table 8-1 summarizes the interaction parameters, k12, obtained for the SRK, PR and PRSV-

1 vdw EOS's. Table 8-2 summarizes the interaction parameters, k12 and k 21 , for the PRSV-2vdw 

EOS. 

Interaction parameter (kn) 
Temperature(° C) 

EOS 38 80 118.3 
SRK 0.0837 0.1007 0.0954 
PR 0.0831 0.0964 0.0888 
PRSV-lvdw 0.0837 0.1072 0.1128 . . 

Table 8-1: Interaction parameter obtamed for various EOS's, from fitting of experimental 
data measured in this project, using the direct method for the Carbon Dioxide +Toluene 

System 



Figure 8-1: Flowchart for the bubble P computation via the direct method 
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Table 8-3 compares the binary interaction parameter obtained in this project with those 

published in literature. The trend seen in Table 8-1 indicates that the binary interaction 

parameter generally increases with increasing temperature, except for the SRK and PR EOS 's at 

the 118.3 °C isothenn. 

PRSV-2vdw 0.0783 0.1174 0.0943 0.1506 
Table 8-2: Interaction parameters obtained for PRSV EOS with 2-parameter van der 

Waals mixing rules, from fitting of experimental data measured in this project, using the 
direct method for the Carbon Dioxide + Toluene System 

Reference EOS k;j 
Ng and Robinson [1978] PR 0.09 

(no soecific teIIIDerature given) 
Kirn et al. [1986] PR 0.108 

(no specific temperature mven) 
Mohamed and Holder PR 0.1056 (38.11 °C) 
[1987] 0.09424 (79.44 °C) 

0.09331 (120.51 °C) 
Table 8-3: Literature values for the binary interaction parameters for the Carbon Dioxide 

+ Toluene System 

The binary interaction parameters obtained in this project are comparable to those mentioned in 

literature. For the 38 °C isothenn there is substantial difference in the interaction parameters. 

This can be attributed to the experimental data being slightly varied and therefore the 

interaction parameter (which is just a fit of the experimental data) is different. 

Table 8-4 summarizes the interaction parameters obtained by the fitting of the Huron-Vidal and 

modifications thereof mixing rules with the PRSV EOS. In all of the mixing rule/EOS 

combinations summarized in Table 8-4, use was made of the NRTL activity coefficient model . 
to describe the activity coefficient incorporated into the mixing rules. In all cases the a;i tenn in 

parameter in the NRTL model was set equal to 0.3 . 

Table 8-5 summarizes the interaction parameters obtained by the fitting of the Wong-Sandler 

mixing rules with the PRSV EOS. a;i was set equal to 0.3 in the NRTL model. 
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Interaction parameters (a12 and a21 (cal.mor1 !) 
Temperature (" C) 

EOS 38 80 118.3 
HVO 1390.08 -301.26 1408.53 -317.60 1480.97 -388.95 
MHVl 391.21 -248.07 -117.08 169.70 -201.78 192.72 
MHV2 119.80 286.23 97.04 186.15 -46.67 185.39 
LCVM 1023.23 -484.08 132.05 133.34 513.97 -231.49 
HVOS 959.57 -520.01 35.25 134.63 -49.32 155.09 

Table 8-4: Interaction parameters obtained for PRSV EOS with Huron-Vidal (and 
modifications thereof) mixing rules, from fitting of experimental data measured in this 

project, using the direct method for the Carbon Dioxide + Toluene System 

Interaction parameters (k~ P12 and P21 (reduced parameters)) 
Temperature(' C) 

GE model 38 80 118.3 
NRTL 0.5291 1.5736 -0.1344 0.6213 0.4384 0.2578 0.6000 0.8408 0.0000 

Wilson 0.5073 1.0660 0.1179 0.6001 0.9163 0.4471 0.5200 1.1709 0.0865 

Van Laar 0.5029 0.7206 1.9195 0.5076 0.7224 2.1252 0.5046 0.7249 2.1372 

UNIQUAC 0.5218 0.8368 0.5107 0.5588 0.8728 0.5532 0.5444 0.8136 0.5691 

Table 8-5: Interaction parameters obtained for PRSV EOS with Wong-Sandler mixing 
rules, from fitting of experimental data measured in this project, using the direct method 

for the Carbon Dioxide+ Toluene System 
For NRTL: p;j = ai_/RT (3ij in cal.mor1

) 

For Wilson: Pii = (VL/VLJexp(-a;jRT) (aii in cal.mor1
) 

For Van Laar: Pii = aii 
For UNIQUAC: Pij = exp(-a;jRT) (aij in cal.mor1

) 

8.2.3.2. Carbon Dioxide + Methanol System 

Table 8-6 summarizes the interaction parameters, k12, obtained for the SRK, PR and PRSV­

lvdw EOS's. Table 8-7 summarizes the interaction parameters, k12 and k21 , for the PRSV-2vdw 

EOS. 

Interaction parameter (kn) 
Temperature(" C) 

EOS 40 90 100 
SRK 0.0587 0.0808 0.0950 
PR 0.0654 0.0837 0.0953 
PRSV-lvdw 0.0668 0.0953 0.1075 . . . 

Table 8-6: Interaction parameter obtamed for various EOS's, from fitting of experimental 
data measured in this project, using the direct method for the Carbon Dioxide + Methanol 

System 
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Table 8-8 compares the binary interaction parameter obtained in this project to that published in 

literature. The trend seen in Table 8-6 indicates that the binary interaction parameter generally 

increases with increasing temperature. 

EOS 40 100 
PRSV-2vdw 0.0744 0.0579 0.0918 0.1221 

Table 8-7: Interaction parameters obtained for PRSV EOS with 2-parameter van der 
Waals mixing rules, from fitting of experimental data measured in this project, using the 

direct method for the Carbon Dioxide + Methanol System 

Reference EOS ~i 

Weber et al. [1984] PR 0.025 {-40 °C) 
0.027 {-20 °C) 
0.044 {O 0C) 

0.041 {25 °C) 
Table 8-8: Literature values for the binary interaction parameters for the Carbon Dioxide 

+ Methanol System 

The binary interaction parameters obtained in this project can not be directly compared to those 

mentioned in literature, as the isotherms measured in this project are higher than those 

mentioned in literature. 

Table 8-9 summarizes the interaction parameters obtained by the fitting of the Huron-Vidal and 

modifications thereof mixing rules with the PRSV EOS. In all of the mixing rule/EOS 

combinations summarized in Table 8-9, use was made of the NRTL activity coefficient model 

to describe the activity coefficient incorporated into the mixing rules. In all cases the a;_;-term in 

the NRTL model was set equal to 0.3 . 

Table 8-10 summarizes the interaction parameters obtained by the fitting of the Wong-Sandler 

mixing rules with the PRSV EOS. a;_;· was set equal to 0.3 in the NRTL model. 

Figures 8-11 to 8-19 illustrate graphically the fit of the various EOS/mixing rule combinations 

for the carbon dioxide + methanol system for the measured VLE data. 
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Interaction parameters (a12 and a21 (cal.mor1
)) 

Temperature(° C) 
EOS 40 90 100 
HVO 1070.34 -62.38 937.81 74.13 778.16 239.57 
MHVl 979.04 -186.69 874.39 -87.70 617.40 132.21 
MHV2 759.61 185.77 723.43 149.37 486.88 370.77 
LCVM 962.36 -125 .14 994.27 -96.11 645.13 183.51 
HVOS 1073.21 -118.47 985.42 -20.08 727.49 203.17 

Table 8-9: Interaction parameters obtained for PRSV EOS with Huron-Vidal (and 
modifications thereof) mixing rules, from fitting of experimental data measured in this 

project, using the direct method for the Carbon Dioxide + Methanol System 

Interaction parameters (k;;,, p12 and P21 (reduced parameters 1) 
Temperature(° C) 

GE model 40 90 100 
NRTL 0.4001 0.3519 0.4877 0.5000 0.0724 0.4884 0.3932 0.4445 0.6361 

Wilson 0.4085 0.6367 0.6623 0.4997 1.0200 0.5216 0.4725 0.3443 1.0754 

Van Laar 0.3992 0.7923 0.8062 0.4999 0.5546 0.4971 0.4942 1.0025 0.4720 

UNIQUAC 0.4713 1.0442 0.5168 0.5326 1.1161 0.5519 0.4798 0.9547 0.4795 

Table 8-10: Interaction parameters obtained for PRSV EOS with Wong-Sandler mixing 
rules, from fitting of experimental data measured in this project, using the direct method 

for the Carbon Dioxide + Methanol System 
For NRTL: Pii = aijl'RT (<iij in cal.mor1

) 

For Wilson: Pii = (VLjNL;)exp(-a;jRT) (aii in cal.mor1
) 

For Van Laar: Pii = aii 
For UNIQUAC: Pii = exp(-ai/RT) (aij in cal.mor1

) 

8.2.3.3. Propane+ 1-Propanol 

Table 8-11 summarizes the interaction parameters, k12, obtained for the SRK., PR and PRSV-

1 vdw EOS's. Table 8-12 summarizes the interaction parameters, k12 and k21 , for the PRSV-

2vdw EOS. 

Interaction parameter (kn) 
Temperature (' C) 

EOS 105.1 120 
SRK. 0.0483 0.0606 
PR 0.0548 0.0654 
PRSV-lvdw 0.0631 0.0769 . 

!able 8-11: Interaction parameter obtamed for various EOS's, from fitting of 
experimental data measured in this project, using the direct method for the Propane+ 1-

Propanol System 
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Figure 8-14: Comparison between the predicted and 
experimental data for the Carbon Dioxide + Methanol 
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Figure 8-15: Comparison between the predicted and 
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Figure 8-17: Comparison between the predicted and 
experimental data for the Carbon Dioxide + Methanol 

System at 100°C 
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Figure 8-18: Comparison between the predicted and 
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A trend very easily seen in Tables 8-11 is that the value of the interaction parameter increases 

with increasing temperature. This trend is not evident in the fitting of Muhlbauer and Raal 

[1993] shown in Table 8-13. The values for the interaction parameter, k1;, obtained by 

Miihlbauer and Raal [1993] for the propane + 1-propanol system using the Peng-Robinson EOS 

with van der Waals mixing rules are also significantly different from those obtained in this 

work for the appropriate temperatures. This can be attributed to the fact that there was a 

difference in the measured vapour compositions between the two sets of measurements. 

PRSV-2vdw 0.0972 0.0236 
Table 8-12: Interaction parameters obtained for PRSV EOS with 2-parameter van der 

Waals mixing rules, from fitting of experimental data measured in this project, using the 
direct method for the Propane+ 1-Propanol System 

Reference EOS ki; 

Miihlbauer and Raal [1993] PR 0.0587 (81.62 °C} 
0.06859 (105.11 °C} 
0.06831 (120.05 °C) 

Table 8-13: Literature values for the binary interaction parameters for the Propane+ 1-
Propanol System 

Interaction parameters (a12 and a21 (cal.mor1
)) 

Temperature(° C) 
EOS 105.1 120 
HVO 1488.64 -258.09 1539.51 -286.55 
MHVl 1417.81 -364.19 1422.98 -368.60 
MHV2 1262.70 -210.94 1212.55 -199.20 
LCVM 1523.15 -375.03 1451.52 -338.28 
HVOS 1570.67 -312.33 1545.83 -302.13 

Table 8-14: Interaction parameters obtained for PRSV EOS with Huron-Vidal (and 
modifications thereof) mixing rules, from fitting of experimental data measured in this 

project, using the direct method for the Propane+ 1-Propanol System 

Table 8-14 summarizes the interaction parameters obtained by the fitting of the Huron-Vidal 

and modifications thereof mixing rules with the PRSV EOS. In all of the mixing rule/EOS 

combinations, use was made of the NRTL activity coefficient model to describe the activity 

coefficient incorporated into the mixing rule. The a;i parameter was set to 0.3 for all cases. 
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Toe interaction parameters obtained by the fitting of the Wong-Sandler mixing rules with the 

PRSV EOS are summarized in Table 8-15. Once again the <Xij parameter for the NRTL activity 

coefficient was set to 0.3. 

Interaction parameters (k;;, P12 and P21 (reduced parameters)) 
Temperature (° C) 

GE model 105.1 120 
NRTL 0.3534 -0.2618 0.6710 0.3082 0.4985 0.0553 

Wilson 0.3209 1.1046 0.5236 0.3000 1.2651 0.3878 

Van Laar 0.2982 0.4200 0.7200 0.2340 0.3001 7.3113 

UNIQUAC 0.3824 1.3231 0.4972 0.3798 1.7158 0.4014 
. . Table 8-15: Interaction parameters obtained for PRSV EOS with Wong-Sandler maing 

rules, from fitting of experimental data measured in this project, using the direct method 
for the Propane+ 1-Propanol System 

For NRTL: p;j = a;jRT (aij in cal.mor1
) 

For Wilson: p;j = (VL_/Vu)exp(-a;jRT) (a;j in cal.mor1
) 

For VanLaar: Pij = 3ij 
For UNIQUAC: Pij = exp(-a;JR.n (aij in cal.mor1

) 

Figure 8-20 to 8-25 summanze graphically the fitting of the vanous EOS/mixing rule 

combinations for the direct method for the Propane + 1-Propanol system. 

8.3. THE COMBINED MEfflOD 

The combined method, which is otherwise known as the gamma-phi method, is used very 

infrequently in the modeling of HPVLE. The method as, its name suggests, makes use of an 

EOS to describe the vapour phases and an activity coefficient model to describe the liquid 

phase. The combined method is much more difficult to apply, as it requires the definition of 

standard states or reference conditions. It also has many drawbacks, which are discussed in 

Chapter 3, but when applied correctly can give considerably improved modeling over the direct 

method. 

There is no means to determine whether the direct or combined method produces better fits for 

a specific system. Therefore one has to apply both methods to the system. 



45 

40 

35 -... ca 30 
.0 -Cl> 25 ... 
::::, = 20 
Cl) 
"- 15 
Q. 

10 

5 

0 

0 

Figure 8-20: Comparison between the predicted and 
experimental data for the Propane + 1-Propanol System at 

0.2 

105.1 °C 

-=--------- ;-· - -- .. - - - .. - - -

0.4 0.6 

---------·: .... ,, .. -.. .... ,, 

0.8 

Mole fraction Propane 

• 
I 
• 

I 

I 
J 

1 

• Experimental data 

--SRK 

--- PR 

· · · · · · PRSV-1vdw 

- · - · PRSV-2vdw 

N 
N 
00 



45 

40 

35 
'i:" ! 30 -Cl) 25 
a;.. 
:, 
u, 20 
u, 
Cl) 

0:: 15 

10 

5 

0 
0 

Figure 8-21: Comparison between the predicted and 
experimental data for the Propane + 1-Propanol System at 

105.1 °C 

--~-----------------·-· 

0.2 0.4 0.6 0.8 

Mole fraction Propane 

• 
I 
• 

1 

• Experimental data 

--PRSV-WS-NRTL 

- - - PRSV-WS-Wilson 

· · · · · · PRSV-WS-Van Laar 

- · - · PRSV-WS-UNIQUAC 

N 
N 

'° 



45 

40 

35 -I. 
~ 30 -Cl) 25 
a.;;. 
:::, 
u, 20 
m a: 15 

10 

5 

0 
0 

Figure 8-22: Comparison between the predicted and 
experimental data for the Propane + 1-Propanol System at 

105.1 °C 

0.2 0.4 0.6 0.8 

Mole fraction Propane 

• 
i 

1 

• Experimental data 
--HVO 
--- MHV1 
· · · · · · MHV2 
- · - · LCVM 
- · · - HVOS 

1-..J 
\.,J 
0 



50 

45 

40 

-C- 35 
cu 
e 30 

e 25 :::s 

= 20 e 
C.. 15 

10 

5 

0 

0 

Figure 8-23: Comparison between the predicted and 
experimental data for the Propane + 1-Propanol System at 

,, 

0.2 

120 °C . 

-. -_________ .. , .. 

-------· ,, .. ,• -- . -- ... ... -- -·•·"··•·' ... .... . ...... "". -... - ,,•"' ... .. 
I!"'," .. ,, .... _,,,,,..,,, 

_ .. --...---------------.;;;.,, 

0.4 0.6 

Mole fraction Propane 

0.8 

• 

. 
-~ . 
:l • 
:I• 
• 

1 

• Experimental data 
--SRK 
--- PR 
· · · · · · PRSV-1vdw 
- · - · PRSV-2vdw 

N 
l.,J .... 



Figure 8-24: Comparison between the predicted and 
experimental data for the Propane+ 1-Propanol System at 
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Figure 8-25: Comparison between the predicted and 
experimental data for the Propane + 1-Propanol System at 

120 °C 
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8.3.1. Model combinations for the Combined Method 

The following combinations of EOS/mixing rule and activity coefficient models were applied in 

this project:-

1. Peng-Robinson-Stryjek-Vera EOS with van der Waals mixing rules and the UNIQUAC 

activity coefficient model - PRSV + Uniquac. 

2. Peng-Robinson-St.ryjek-Vera EOS with van der Waals mixing rules and the NRTL activity 

coefficient model - PRSV + NRTL. 

3. Peng-Robinson-Stryjek-Vera EOS with van der Waals mixing rules and the Van Laar 

activity coefficient model - PRSV + Van Laar. 

4. Peng-Robinson-St.ryjek-Vera EOS with van der Waals mixing rules and the Wilson activity 

coefficient model - PRSV + Wilson. 

5. Peng-Robinson-Stryjek-Vera EOS with Wong and Sandler mixing rules (NRTL activity 

coefficient model in mixing rule) and the NRTL activity coefficient model - PRSVWS­

NRTL + NRTL (new combined method). 

6. Virial EOS and the UNIQUAC activity coefficient model - Virial + Uniquac. 

7. Virial EOS and the NRTL activity coefficient model - Virial + NRTL. 

8. Virial EOS and the Van Laar activity coefficient model - Virial + Van Laar. 

9. Virial EOS and the Wilson activity coefficient model - Virial + Wilson. 

8.3.2. Data frtting/Correlation 

Determination of the fitting parameters for the combined method was undertaken with the 

method analogous to that used for the direct method (Marquardt non-linear regression) except 

that the bubble pressure algorithm was modified so as to accommodate the use of an activity 

coefficient model to account for liquid phase non-idealities. Figure 8-26 illustrates the flow 

chart for the bubble pressure computation via the combined method. The objective function for 

the least square regression was the same as for the direct method, viz. Equation (8-1). 

Inputs for the bubble pressure algorithm were the temperature and liquid compositions, critical 

properties (temperature and pressure), accentric factors, K1 (fitted vapour pressure parameter for 

the PRSV EOS), Gibbs excess free energy model parameters (for activity coefficient models 

and for mixing rules which incorporate a Gibbs excess free energy model, e.g. Wong-Sandler) 

and correlation parameters for the standard-state fugacity coefficient (Prausnitz et al. [ 1980]). In 
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Figure 8-26: Flowchart for the bubble P computation via the combined method 
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addition, modified Rackett parameters were required for the computation of liquid molar 

volumes. When the Virial EOS was used to compute the vapour phase fugacity coefficient the 

dipole moments, radii of gyration and association and solvation parameters were required as 

well. 

The Secant method was used for the determination of the new computed pressure in the bubble 

pressure algorithm and therefore two initial guesses were made for the pressure. Depending on 

the system and the experimental measurements, initial guesses on P1 = l and P2 = 3 bar would 

ensure the computation procedure started smoothly and converged to a solution. The equations 

for the computation of the new pressure via the Secant method were given by Equations (8-3) 

and (8-4). 

The algorithm shown in Figure 8-26 is a combination of algorithms given by Muhlbauer [1990] 

and Smith and Van Ness [1987] . Each of the algorithms on their own did not perform well for 

HPVLE computation, but the combination of the two produced an algorithm that performed 

very well, except in the region approaching the critical state. 

The standard-state fugacity was computed using the following expression: 

P' L 

-r_oL = ~s A. _s exp f v; dP 
J i z 'Yz RT 

p_S 
I 

(8-5) 

The reference pressure was set equal to zero for all components. Prausnitz et al. [1980] also had 

a correlation for the zero-pressure reference fugacity given by the following expression: 

}n .(OL = C + C2 C , 
Ji 1 T+C

6 

+ 3T+C4 lnT+C1r- (8-6) 

The constants for Equation (8-6) as well as all inputs for both the direct and combined method 

bubble pressure computations are given in Appendix F. 

The liquid molar volumes were computed via the O'Connell modification (Prausnitz et al. 

[1980]) of the modified Rackett equation of Spencer and Danner [1972]. The saturated-liquid 

molar volume was given by the following equation: 
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L RTc.z: V, = , , 
I p 

C; 

(8-7) 

where, t = 1 + (l-T:)°286 for T, ~ 0,75 

t = L6 + 0.00693/(T, - 0.655) for Tr> 0.75 

In all computations in the bubble pressure calculation it was assumed that the liquid partial 

molar volume ( v; L ) for each of the components was equal to the liquid molar volume ( v; L). 

This was undertaken as liquid partial molar volumes are not available and the assumption that 

V L = V L is a reasonable one. 
l l 

The activity coefficient at some reference pressure, P", was computed using Equation (3-22). 

This correction is undertaken because the isothermal activity coefficients are not evaluated at 

the same pressure and therefore must be corrected from the experimental pressure P to the same 

arbitrary reference pressure designated P". The activity coefficient was computed using one of 

the following activity coefficient models, viz. NRTL, Van Laar, Wilson or UNIQUAC. 

The fugacity coefficients in solution for the vapour phase were calculated from expressions 

given in Chapter 3 and Appendix B, for the appropriate EOS and mixing rule combinations. 

The equilibrium ratio (Ki) was calculated from Equation (3-19). For the virial EOS, the Hayden 

and O'Connell [1975] method was used to compute the pure component and cross virial 

coefficients. The Hayden and O'Connell method is detailed in Appendix B. 

There were two convergence checks in the algorithm. For both convergence checks the 

tolerances (61 and 62) were set equal to lE-5 . 

Depending on the EOS used for the description of the vapour phase and the activity coefficient 

model for the liquid phase, two or three parameters were fitted. When the virial EOS was used 

to describe the vapour phase, two parameters were fitted, viz. the liquid phase activity 

coefficient model parameters. For the NRTL model, the third parameter((¼) was set equal to 

0.3 for all computations. For description of the vapour phase via the PRSV EOS, with van der 

Waals one-fluid mixing rules, three parameters were fitted, viz. the interaction parameter for the 

van der Waals one-fluid mixing rule and the two parameters for the liquid phase activity 

coefficient model. Once again the (¼ parameter for the NRTL model was set equal to O .3 . 
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A modified combined method (Ramjugemath and Raal [1999]) was also used to correlate the 

experimental data. The modified method basically adopts the same method as the normal 

combined methods, viz. that the vapour phase is described by an EOS and the liquid phase by 

an activity coefficient model. However, the vapour phase is now described by an EOS, which 

has mixing rules that incorporate an activity coefficient model, e.g. Wong-Sandler, and Huron­

Vidal mixing rules. Correlation or fitting involves the fitting of just three parameters, the k;1 

interaction parameter for the mixing rule and the activity coefficient model parameters, which 

occur in the mixing rule and in the activity coefficient for the description of the liquid phase. 

The same activity coefficient model is used to describe the liquid phase and the Gibbs excess 

energy in the mixing rule for the vapour phase. The activity coefficient parameters were 

simultaneously fitted to the liquid phase model and the activity coefficient model in the mixing 

rule. For the NRTL excess free energy model, the aiJ was set equal to 0.3 . The decision to 

simultaneously fit the activity coefficient model parameters to the liquid phase activity 

coefficient and the mixing rule was intuitive. The method is further discussed in Section 8.4. 

Computational times for the combined method were on average longer than those for the direct 

method. Depending on the combinatorial choice of EOS and activity coefficient model the 

combined method took approximately 1 to 10 minutes to converge to a solution. 

Once the fitted parameters were obtained, a bubble pressure computation could be undertaken 

to determine the entire P-x-y diagram. Figures 8-27 to 8-42 compares the experimental data 

measured in this project to the predicted/correlated data using the combined method with the 

appropriate combinations ofEOS's and activity coefficient models. 

It seems that the fit for the combined method using the Marquardt method is very tight and 

when the bubble pressure computations are undertaken for liquid compositions significantly 

higher than those fitted, the bubble pressure computation had problems converging and may in 

fact give erroneous results. This is true for combined methods in general and is especially 

evident near the critical region. 

Both the direct and combined methods and the modeling/correlating combinations are discussed 

in Section 8.4. The absolute averages errors for both the vapour composition and pressure are 

summarized and the models rated for the three systems modeled, viz. the carbon dioxide + 

toluene, carbon dioxide + methanol and propane + 1-propanol systems. 
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8.3.3. Fitted parameters 

8.3.3.1. Carbon Dioxide +Toluene System 

Table's 8-16 and 8-17 swnmarizes the fitted parameters for the Virial and PRSV EOS's 

respectively with the appropriate liquid phase activity coefficient models. For the PRSV EOS, 

the van der Waals one-fluid mixing rule was used for all computations via the combined 

method. 

Interaction parameters (P12 and P21 (reduced parameters) 
Temperature (° C) 

GE model 38 80 118.3 
NRTL 0.6076 0.4619 1.5955 -0.1841 1.6261 -0.1956 
Wilson 0.5812 0.5506 0.9431 0.2266 0.9308 0.2299 
Van Laar 0.9618 1.0072 0.8131 1.4174 0.8158 1.4310 
UNIQUAC -0.2360 1.2267 0.1056 0.7325 0.1079 0.7340 

Table 8-16: Interaction parameters obtained for various activity coefficient models with 
the Virial EOS, from fitting of experimental data measured in this project, using the 

combined method for the Carbon Dioxide + Toluene System 
For NRTL: J>ij = (a;jRT) (a;j in cal.mor1

) 

For Wilson: J>ij = (VL/VLJexp(-a;jRT) (aij in cal.mor1
) 

For VanLaar: Pii = a;i 
For UNIQUAC: Pii = (a;jRT) (aij in cal.mor1

) 

Interaction parameters (k;;, P12 and lh1 (reduced parameters t) 
Temperature t' C) 

G.i,;model 38 80 118.3 
NRTL -0.1657 2.9855 -0.5291 0.0103 10.2769 0.3900 -0.0689 3.542 

Wilson -0.0381 1.1784 0.0188 -0.1192 1.0952 0.0000 -0.0874 1.0819 

VanLaar -0.1004 0.7522 2.5642 -0.0102 0.7819 3.2257 -0.0639 0.7642 

UNIQUAC -0.1083 0.7910 0.2314 -0.0101 1.0957 0.1314 -0.0643 1.2980 

-0.5318 
0.0000 

3.6086 

0.0522 

Table 8-17: Interaction parameters obtained for various activity coefficient models with 
the PRSV EOS, from fitting of experimental data measured in this project, using the 

combined method for the Carbon Dioxide + Toluene System 
For NRTL: J>ij = (aijRT) (aij in cal.mor1

) 

For Wilson: Pii = (VL/VL;)exp(-a;jRT) (aii in cal.mor1
) 

For Van Laar: Pii = aii 
For UNIQUAC: pij = (aijRT) (aij in cal.mor1

) 

The modified combined method (Ramjugemath and Raal [1999]) yielded fitted parameters 

swnmarized in Table 8-18. 

There are very few references in literature for the comparison of fitted parameters for the 

Carbon Dioxide + Toluene System using the combined method. Only literature source found 

was Miihlbauer and Raal [1991]. They used the Virial, Peng-Robinson and Group Contribution 
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EOS's with the UNIQUAC liquid phase activity coefficient model. Table 8-19 and 8-20 

summarizes their fitted parameters. 

Model 
PRSVWS­
NRTL+NRTL 

0.2551 

Interaction 

38 
2.9972 -0.5252 0.4125 3.4366 -0.5026 0.3353 3.9687 -0.5417 

Table 8-18: Interaction parameters obtained for the NRTL activity coefficient model with 
the PRSV EOS with Wong-Sandler mixing rules (NRTL activity coefficient model), from 

fitting of experimental data measured in this project, using the modified combined 
method for the Carbon Dioxide + Toluene System 

Pii = (a/RT) (aij in cal.mor1
) 

GE model 38.11 120 
UNIQUAC 170.13 112.10 99.09 237.27 122.25 

Table 8-19: Interaction parameters obtained the Virial EOS with the UNIQUAC model 
using the combined method for the Carbon Dioxide + Toluene System by Muhlbauer and 

Raal (1991] 
pij = (~/R) (R = 83.147) 

GE model 38.11 120 
UNI UAC 0.1056 99.34 182.23 0.09424 256.66 84.07 0.09331 384.70 37.16 

Table 8-20: Interaction parameters obtained for PR EOS with the UNIQUAC model using 
the combined method for the Carbon Dioxide+ Toluene System by Muhlbauer and Raal 

(1991] 
P;i = (aijR) (R = 83.147) 

No comparisons could be made between the fitted parameters of Miihlbauer and Raal [1991] 

and those obtained in this project for either the Virial or Peng-Robinson EOS using the 

combined method. The fitted parameters are different. The fit or correlation to the experimental 

data though for both this work and Muhlbauer and Raal [1991] seems to good for both cases. It 

is possible for different values for the parameters to be obtained and can be attributed to the fact 

that a local minimum could have been obtained for the objective function instead of the 

absolute minimum. Muhlbauer and Raal [1991] make no mention at all of the units for the 

UNIFAC fitted parameters. From their definition ofR as having a value of 83.147 (again with 

no units), one presumes that R being the Universal gas constant, the units of the fitted parameter 

will be Kelvin (K). 
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The fitting of parameters by Muhlbauer and Raal [1991] for the combined method combination 

of the PR EOS with the UNIQUAC liquid model, was undertaken whereby a value for kij was 

set (typically a value obtained from literature or by regression via the direct method). The liquid 

model parameters were then fitted. This is an incorrect fitting procedure as it does not fit all 

three parameters simultaneously and therefore the values obtained by Muhlbauer and Raal 

[1991] are significantly different from those obtained in this project. In addition this project 

made use of the PRSV EOS and this would produce a difference in the fitted parameters. 

8.3.3.2. Carbon Dioxide + Methanol System 

Interaction parameters (012 and lh1 (reduced parameters) 
Temoerature <° C) 

GE model 40 90 100 
NRTL 1.6272 0.3495 1.7248 0.2964 1.1254 0.7044 
Wilson 0.5651 0.1602 0.6493 0.0947 0.4454 0.2572 
Van Laar 1.3315 1.9008 1.3214 1.9233 1.4917 1.6427 
UNIQUAC 2.1874 0.2138 2.8180 0.1052 1.6459 0.3991 

Table 8-21: Interaction parameters obtained for various activity coefficient models with 
the Virial EOS, from fitting of experimental data measured in this project, using the 

combined method for the Carbon Dioxide + Methanol System 
For NR1L: Pii = (a;/Rn (aij in cal.mor1

) 

For Wilson: Pij = <VL/VL;)exp(-a;/Rn (aij in cal.mol"1
) 

For Van Laar: Pii = aii 
For UNIQUAC: Pij = (a;jRT) (aij in cal.mol"1

) 

Interaction parameters (k;;. p12 and lh1 (reduced parameters)) 
Temperature (° C) 

GE model 40 90 100 
NRTL 0.0089 3.1007 0.0948 -0.0573 3.9985 0.1004 -0.0288 3.0120 

Wilson -0.2418 0.5675 0.0000 -0.1897 0.6070 0.0000 -0.0681 0.5267 

VanLaar 0.0070 1.3082 3.1326 -0.0552 l.3011 3.8565 -0.0296 1.4500 

UNIQUAC -0.2699 15.0000 0.2384 -0.1999 15.0000 0.1803 -0.0672 15.0000 

-

0.2438 
0.0000 

3.0513 
0.3057 

Table 8-22: Interaction parameters obtained for various activity coefficient models with 
the PRSV EOS, from fitting of experimental data measured in this project, using the 

combined method for the Carbon Dioxide + Methanol System 
For NR1L: Pii = (a;/RT) (a;i in cal.mol"1

) 

For Wilson: Pii = <VL/VLJexp(-a;JRn (a;j in cal.mol"1
) 

For Van Laar: Pii = a;i 
For UNIQUAC: Pii = (a;JR.n (aij in cal.mol"1

) 

Table's 8-21 and 8-22 summarizes the fitted parameters for the Virial and PRSV EOS's 

respectively with the appropriate liquid phase activity coefficient models for the carbon dioxide 

+ toluene system. For the PRSV EOS, the van der Waals one-fluid mixing rule was used for all 
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computations via the combined method. The modified combined method yielded fitted 

parameters summarized in Table 8-23. 

Interaction 

Model 40 100 
PRSVWS- 0.2129 3.3558 0.0813 0.0855 5.0694 0.2165 0.1237 6.3411 0.5205 
NRTL+NRTL 

Table 8-23: Interaction parameters obtained for the NRTL activity coefficient model with 
the PRSV EOS with Wong-Sandler mixing rules (NRTL activity coefficient model), from 

fitting of experimental data measured in this project, using the modified combined 
method for the Carbon Dioxide+ Methanol System 

Pii = (a;jRT) (a;i in cal.mor1) 

Searching the literature, no references could be found for the correlation of experimental data 

for the carbon dioxide + methanol system via the combined method. Thus no comparisons 

could be made for the system for the fitted parameters. 

Figure's 8-33 to 8-38 summarize the modeling for the carbon dioxide+ methanol system via the 

combined method. 

8.3.3.3. Propane+ 1-Propanol System 

Interaction parameters (v11 and p21 (cal.mor1
)) 

GE model 105.1 
Temoerature t' C) 

120 
NRTL 2.3987 -0.3530 2.3164 -0.2450 
Wilson 1.1228 0.0341 0.9920 0.0944 
Van Laar 0.8363 2.1337 0.8944 1.9202 
UNIQUAC 4.5385 -0.6249 3.4901 -0.5712 . . 

Table 8-24: Interaction parameters obtamed for various activity coefficient models with 
the Virial EOS, from fitting of experimental data measured in this project, using the 

combined method for the Propane+ 1-Propanol System 
For NRTL: Pii = (a;jRT) (a;i in cal.mor1) 
For Wilson: pij = <VL/VLJexp(-a;jRT) (aij in cal.mor1) 
For Van Laar: Pii = a;i 
For UNIQUAC: Pii = (a;jRT) (clij in cal.mor1) 
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Fitted parameters obtained by reduction of experimental data for the propane + 1-propanol 

system via the combined method are summarized in Table's 8-24, 8-25 for the virial and PRSV 

EOS with various activity coefficient models and in Table 8-26 for the new modified combined 

method. 

Interaction parameters (k;;, P12 and P21 (reduced parameters)) 
Temperature (' C) 

GE model 105.1 I 120 
NRTL -0.1917 I 2.4978 -0.3736 I 0.2279 2.4507 -0.3210 

Wilson -0.1902 I 1.1425 0.0194 I 0.2244 1.0691 0.0383 

Van Laar -0.1915 I 0.8329 2.2249 I 0.2259 0.8754 2.1947 

UNIQUAC -0.1910 I 5.4400 -0.6349 I 0.2260 4.6987 -0.6044 

Tab e 8-25: Interaction parameters obtained for various activity coefficient models with 
the PRSV EOS, from fitting of experimental data measured in this project, using the 

combined method for the Propane+ 1-Propanol System 
For NR1L: Pij = (a/R.1) (~ in cal.mor1

) 

For Wilson: J)ij = CVL/VLJexp(-a;jR.1) (aij in cal.mor1
) 

For Van Laar: Pij = aij 
For UNIQUAC: Pij = (~/R.1) (a;j in cal.mor1

) 

I Model 

Interaction parameters (k;;, P12 and P21 (reduced parameters)) 
Temperature (° C) 

105.1 I 120 
PRSVWS- -0.1517 2.5611 -0.3802 0.3954 2.5665 -0.3433 
NRTL +NRTL 

Table 8-26: Interaction parameters obtained for the NRTL activity coefficient model with 
the PRSV EOS with Wong-Sandler mixing rules (NRTL activity coefficient model), from 

fitting of experimental data measured in this project, using the modified combined 
method for the Propane+ 1-Propanol System 

Pij = (a;JR.1) (a;i in cal.mor1
) 

The propane + 1-propanol system had been previously modeled via the combined method by 

Muhlbauer and Raal [1993]. They made use of the UNIQUAC activity coefficient model to 

describe the liquid phase and utilized the Peng-Robinson, virial and Group Contribution EOS 's 

to model the vapour phase. Table' s 8-27 and 8-28 summarize the fitted parameters obtained by 

them for the propane + 1-propanol system using the virial and PR EOS 's respectively. 

Once again no comparisons could be made between the fitted parameters of Muhlbauer and 

Raal [1993] and this work. In addition, for this system the experimental data measured for both 

isotherms varied from those obtained by of Muhlbauer and Raal [1993], especially for the 

vapour phase compositions. This as well could contribute to the fitted parameters being 
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considerably different. The correlation of the experimental data for this work is however 

slightly better than that achieved by Muhlbauer and Raal [1993] for the vapour phase. 

GE model 105.11 
UNIQUAC 1153 -184.7 1055 

Table 8-27: Interaction parameters obtained the Virial EOS with the UNIQUAC model 
using the combined method for the Propane + 1-Propanol System by Muhlbauer and Raal 

(1993] 
pij = (a;JR) (R = 83.147) 

GE model 105.11 120.05 
UNI UAC 0.06859 846 -150.3 0.06831 747 -153.l 

Table 8-28: Interaction parameters obtained the PR EOS with the UNIQUAC model 
using the combined method for the Propane+ 1-Propanol System by Muhlbauer and Raal 

[1993] 
Pii = (ai/R) (R = 83.147) 

Figure's 8-39 to 8-42 summarize the modeling for the propane + 1-propanol system via the 

combined method graphically for the experimental data measured in this project. 

8.4. ANALYSIS OF THE MODELLING 

Under this section the modeling/correlation of the experimentally measured systems will be 

discussed. This will be undertaken globally for both the combined and direct methods. 

To quantify the fit of a model to the experimental pressure and equilibrium vapour composition, 

the absolute average error in terms of pressure and vapour composition was computed. 

Equations (8-8) and (8-9) define the percentage absolute average error for pressure and vapour 

composition (mole fraction) respectively: 

NP ( pcalc _ pexpt ) 
" I I *100 .L..J pexpt 

AAE-~lo=-•=-1~--·-· --'---~ 

NP 
(8-8) 
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Figure 8-42: Comparison between the predicted and 
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f[Yt1c -:::;'pt *IOOJ 
AAE _ Y% = _1=_1 -=--Y_1 ___ _ 

NP 
(8--9) 

Table's 8-29, 8-30 and 8-31 summarize the percentage absolute average errors for pressure 

(AAE-P%) and vapour composition (AAE-y<'/o) for the carbon dioxide + toluene, carbon 

dioxide + methanol and propane + 1-propanol systems respectively for the various direct and 

combined method models for the different isotherms. 

8.4.1. Carbon Dioxide + Toluene System 

Model Isotherm (°C) 

38 80 118.3 

AAE-Po/o AAE-y4'/o AAE-Po/o AAE-y4'/o AAE-Po/o AAE-y¾ 

DIRECT 
SRK 7.091 0.276 3.220 0.581 4.127 0.653 
PR 7.009 0.276 3.387 0.600 4.204 0.484 
PRSV-lvdw 6.945 0.284 3.032 0.613 3.980 0.403 
PRSV-2vdw 4.346 0.224 2.169 0.724 4.449 0.190 
HVO 4.419 0.248 1.627 0.735 3.805 0.195 
MHVl 4.825 0.217 3.521 0.784 4.007 0.189 
MHV2 4.262 0.234 1.811 0.722 3.833 0.301 
LCVM 4.357 0.247 7.405 0.874 4.581 0.228 
HVOS 4.325 0.246 5.488 0.834 4.388 0.181 
PRSVWS-NRTL 4.556 0.220 3.194 0.708 4.595 0.701 
PRSVWS-Van Laar 4.210 0.242 1.778 0.790 3.991 0.685 
PRSVWS-Wilson 4.382 0.220 2.606 0.611 4.382 0.438 
PRSVWS-Uniquac 4.423 0.224 2.112 0.659 4.365 0.180 
COMBINED 
PRSV+NRTL 5.183 0.338 3.266 0.692 3.204 0.186 
PRSV+Van Laar 4.906 0.243 1.789 0.661 3.727 0.173 
PRSV+Wtlson 4.566 0.203 6.218 1.089 7.478 0.523 
PRSV+UniQuac 4.931 0.248 1.814 0.655 3.628 0.181 
PRSVWS-NRTL+NRTL 5.145 0.401 1.871 0.624 3.159 0.816 
Virial+NRTL 7.438 0.191 2.049 0.740 4.492 0.312 
Virial+Van Laar 7.319 0.191 2.159 0.748 4.580 0.302 
Virial+Wilson 7.890 0.186 2.645 0.764 4.864 0.282 
Virial+Uniquac 7.779 0.189 2.315 0.755 4.699 0.295 

Table 8-29: Absolute average errors for the Carbon Dioxide + Toluene System 
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One of the very few things evident from Table 8-29 is that one can safely say that there is no 

model that performs the best for all three isotherms. For the 38 °C isotherm, the Huron-Vidal 

mixing rules (and modification thereof) models, along with the Wong-Sandler mixing rules 

perform the best, with the PRSVWS-Van Laar model probably describing the system the best. 

The combined method models produce on average a smaller AAE-y% than the direct method 

models (especially when the virial EOS is used to describe the vapour phase), but this is at the 

expense of the error in pressure. 

For the 80 °C isotherm, the PRSVWS-Van Laar still rates very highly, but the best models are 

the combined method models, PRSV + Van Laar, and the modified combined method model, 

PRSVWS-NRTL + NRTL. 

At the 118.3 °C isotherm, the best modeling was attained once again with the combined method, 

with the following models proving the best, viz. PRSV + NRTL, PRSV + Van Laar and PRSV 

+UNIQUAC. 

It is evident that the Van Laar liquid phase model best describes the carbon dioxide+ toluene 

system, be it as the excess free energy model in the mixing rule (Wong-Sandler mixing rules) or 

the liquid phase activity coefficient model in the combined method. For the NRTL liquid phase 

model the third parameter, <lij, was set equal to 0.3 for all computations. Performing an 

investigation of varying the Clij parameter, it was evident that other values did not produce an 

improvement in the modeling and therefore the recommendation of Sandler [1994] that <lij be 

fixed at 0.3 was a very reasonable assumption. For the UNIQUAC liquid phase model, the co­

ordination number (z) was set to 10. There are a number of correlations for the co-ordination 

number (discussed briefly in Chapter Two), but these correlations for co-ordination number 

produced little or no improvement in the modeling and it was decided to fix the co-ordination 

number at 10 for all computations. 

The number of possible modeling combinations mushrooms as one chooses mixing rules and 

then possible excess free energy models for the mixing rules (in the case of the Huron-Vidal 

and modifications thereof, and the Wong-Sandler mixing rules). Therefore in this project, for 

the Huron-Vidal and modifications thereof mixing rules, the excess free energy model was 

restricted to the NRTL model. 

There may be some concern that the temperatures at which modeling was undertaken for the 

carbon dioxide + toluene system was considerably higher than the critical temperature of carbon 
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dioxide and therefore the combined method might fail in the modeling of the system. This 

would probably be because carbon dioxide will have to be considered as a non-condensable 

component and the choice of a standard-state for the system would then be rather complex. The 

standard-state reference fugacity at zero pressure expression given by Prausnitz et al. [1980] is 

however valid up to reduced temperatures of 1.8 and, as can be seen from the modeling results, 

performs exceptionally well. The description and choice of standard-states for non-condensable 

components is briefly discussed in Appendix B. 

A plot of experimental excess Gibbs free energy for the carbon dioxide + toluene system for the 

three isotherms in the present study is shown in Figure 8-43. Activity coefficient plots for the 

various isotherms are available in Appendix F.2. 

8.4.2. Carbon Dioxide + Methanol System 

For the 40 °C isotherm, all the models performed reasonably well, except for the PRSV + 

Wilson and PRSV + UNIQUAC models. Even the simple SRK and PR EOS produced very 

good modeling of the system. In fact there was not much to choose from between the various 

models. 

For the 90 °C isotherm (Figure 8-35), there were large errors in both the computed pressures 

and vapour compositions for all the models, again with the PRSV + Wtlson and PRSV + 

UNIQUAC models fairing the worst. The only reasonable conclusions that could be drawn from 

this was that, there was either an error in the measurement of the experimental data at this 

particular isotherm or, that there was association in the system (indicative of the large errors in 

the vapour composition) and that the models could not account for this. There are no available 

literature data available for this isotherm and therefore one can not determine whether the 

measured data may have inaccuracies (there is high confidence in the measured data though). 

One does know, however that methanol undergoes association, which increases with 

temperature (Peschel and Wenzel [1984]) and it is therefore possible that the models utilized in 

this project could not account for the association of methanol. Peschel and Wenzel [1984] 

propose an EOS model to account for association of methanol, but this was not investigated in 

this project. 

The Huron-Vidal and modifications thereof mixing rule models perform the best for the carbon 

dioxide + methanol system at the 90 °C isotherm. Reasonable modeling is also achieved with 

the PRSV + Van Laar and PRSVWS-Van Laar models. 
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The theory of the utilized models not being able to describe the carbon dioxide + methanol 

system as a result of methanol associating, seems to be contradicted by the resuhs of the 

modeling for the 100 °C isotherm. Very good modeling is obtained for this isotherm, again with 

the Huron-Vidal and modifications thereof mixing rule models performing very well. The best 

model though was the PRSVWS-NRTL model. 

It seems that for this system, there is little to choose between the NRTL and Van Laar activity 

coefficient models as being the ones that best describe the system. The Wilson and UNIQUAC 

models fare poorly for this particular system, especially in the combined method. 

Model Isotherm ("C) 

40 90 100 

AAE-P% AAE-y"/o AAE-P'/o AAE-y"/o AAE-P'/o AAE-y% 

DIRECT 
SRK 2.246 0.173 5.753 1.579 2.744 l.Oll 
PR 2.169 0.195 5.457 1.575 3.320 1.279 
PRSV-lvdw 2.105 0.214 5.666 1.673 3.069 1.024 
PRSV-2vdw 1.831 0.240 6.008 1.727 0.835 0.892 
HVO 1.531 0.228 6.461 1.791 0.832 0.883 
MHVl 1.622 0.232 5.791 1.708 0.861 0.890 
MHV2 1.644 0.231 5.119 1.558 0.956 0.903 
LCVM 1.541 0.226 5.180 1.585 0.822 0.877 
HVOS 1.571 0.231 5.768 1.700 0.885 0.891 
PRSVWS-NRTL 1.262 0.265 5.028 1.633 0.551 0.712 
PRSVWS-Van Laar 1.223 0.264 4.995 1.620 1.264 1.298 
PRSVWS-Wilson 1.374 0.270 5.321 1.345 0.910 1.139 
PRSVWS-Uniquac 1.983 0.323 5.772 1.944 1.030 1.194 
COMBINED 
PRSV+NRTL 1.875 0.227 4.669 1.779 1.853 0.410 
PRSV+Van Laar 1.997 0.229 4.618 1.762 2.139 0.396 
PRSV+Wilson 6.266 0.716 9.980 3.071 4.707 1.257 
PRSV+Uniquac 6.970 0.688 10.528 3.169 5.884 1.341 
PRSVWS-NRTL+NRTL 1.970 0.218 4.380 2.011 1.561 0.776 
Virial+NRTL 1.658 0.461 4.860 2.183 0.489 2.165 
Virial+Van Laar 1.773 0.461 4.784 2.174 0.565 2.181 
Virial+Wilson 1.616 0.457 5.137 2.215 0.891 2.186 
Virial+Uniquac 1.624 0.457 5.150 2.217 0.814 2.175 

Table 8-30: Absolute average errors for the Carbon Dioxide + Methanol System 

Figure 8-44 illustrate the excess Gibbs free energy plots for the carbon dioxide + methanol 

system for the three isotherms. Plots for the activity coefficient for the system are available in 

Appendix F.2. 
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8.4.3. Propane+ 1-Propanol System 

The propane + 1-propanol system is probably one of the most difficult systems to model, and 

this is evident from the errors summarized in Table 8-31 for the various models. The system has 

been measured only twice before. Nagahama et al. [1971] undertook VLE measurements for the 

system at 19.9 °C. They however, did not measure the vapour phase composition and merely 

computed it using Barker's method. Muhlbauer and Raal [1993] undertook VLE measurement 

at much higher temperatures viz. 81.6, 105.1 and 120.1 °C, and they did measure the vapour 

phase composition. They could however not obtain proper modeling for the propane + 1-

propanol system. There were always considerable discrepancies between the computed and the 

experimental pressure and vapour compositions. These discrepancies were most evident in the 

low-pressure region of the pressure versus vapour composition curve. Their reasoning for not 

being able to model the system accurately was that either, their experimental data were 

incorrect or, the models that they utilized (UNIQUAC with either the Peng-Robinson or virial 

EOS) were incapable of describing the system. 

To determine which of the proposed reasons for inadequate modeling was correct, the decision 

was made in this project to measure the HPVLE for the propane+ 1-propanol system at 105.1 

and 120 °C. As can be seen in the experimental data of Figures 7-19 and 7-21, there is a slight 

difference in the vapour composition measurements between the experimental data of 

Muhlbauer and Raal [1993] and that produced in this project. The differences were the greatest 

in the low-pressure region. The vapour phase data measured in this project were also much 

smoother than those obtained by Muhlbauer and Raal [1993]. It is difficult though to determine 

which set of experimental data is more correct. 

A range of models (more extensive than those used by Muhlbauer and Raal [1993]) were tried 

on the propane + 1-propanol system, but adequate modeling could not be obtained for either of 

the two isotherms. The Wong-Sandler mixing rules did however model the system the best of 

the entire range of models utilized. There were still however, discrepancies between the 

saturated vapour curve computed and the experimental curve for the low-pressure region. It was 

at that stage that an intuitive modified combined method was envisaged whereby the vapour 

phase would be described by an EOS with a mixing rule that incorporated an excess free energy 

model, and the liquid phase described by the same excess free energy model as that used for the 

mixing rule. A simultaneous fit of the excess free energy model parameters to the liquid phase 

excess free energy model and the mixing rule was thus achieved. This procedure was intutively 

more attractive and consistent. 
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To test the new combined method (Ramjugemath and Raal [1999]), the PRSVWS-NRTL EOS 

was used to describe the vapour phase with the liquid phase description via the NRTL excess 

free energy model. As is evident from the graphical modeling results (Figures 8-39 and 8-41) 

and errors in pressure and vapour composition (Table 8-31), the new combined method 

performed extremely well when compared to the other models. There were still discrepancies 

though between the computed saturated vapour curve and the experimental vapour curve, 

especially for the 120 °C isotherm. , 

The following possibilities were initially though to be the cause for the discrepancy in the 

modeling:-

1. The experimentally measured HPVLE data were incorrect. 

2 . There was hydrogen bonding and the models utilized were not adequate to describe the 

VLE behaviour. 

Since the experiments were conducted with exceptional care there is considerable confidence in 

the measured data. The more likely candidate therefore, was that there was strong hydrogen 

bonding of some nature and the models utilized could not describe the behaviour of the system. 

To account for the hydrogen bonding theory, an extensive literature survey was undertaken to 

determine if measurements for the system propane + 1-propanol had been undertaken before for 

other properties beside HPVLE. In a publication by Brown et al. [1996] measurements were 

made for excess molar enthalpy and excess molar volume for the system at a temperature of 

348.14 Kand at pressures of 5, 10 and 15 MPa. They had some very interesting results for the 

system and their explanation was that hydrogen bonds were broken when 1-propanol was 

diluted with propane. The propane then fitted into cavities in the hydrogen-bonded structure of 

the 1-propanol. The number of cavities decreased with increasing pressure. 

This was exactly what was being observed for the system and the problem region was the low­

pressure dilute region. Therefore, it was more probable that the system could not be described 

adequately because the models utilized could not describe the behaviour adequately. 

To describe the complex behaviour of the system, a more complex EOS would be required. 

Because of the appearance of holes in the fluid, which were dependent on the pressure of the 

system, one would need to probably go to a Hole Theory model to obtain more adequate 

modeling of the system. Due to a lack of time, a literature survey was undertaken for the Hole 

Theory approach, but modeling of the system with the Hole Theory approach was not 

undertaken. Publications by Lacombe and Sanchez [1976], Sanchez and Lacombe [1976], 
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Panayiotou and Vera [1981], Nies et al. [1983] and Smimova and Victorov [1987] describe the 

application of Hole Theory. 

Model Isotherm (°C) 

105.1 120 

AAE-P-/e AAE-y8/o AAE-P-/o AAE-y¾ 

DIRECT 
SRK 8.666 2.503 13.398 3.270 
PR 8.578 2.260 14.728 3.456 
PRSV-lvdw 8.521 2.761 14.980 3.716 
PRSV-2vdw 2.539 2.531 4.757 2.474 
HVO 3.354 2.647 6.851 2.742 
MHVl 3.041 2.574 6.548 2.698 
MHV2 2.904 2.572 6.746 2.739 
LCVM 2.960 2.584 6.820 2.741 
HVOS 3.113 2.583 6.815 2.737 
PRSVWS-NRTL 3.472 3.502 7.630 2.025 
PRSVWS-Van Laar 3.071 3.118 5.557 2.064 
PRSVWS-Wilson 3.072 3.238 6.415 1.896 
PRSVWS-Uniquac 5.692 3.955 6.135 1.487 
COMBINED 
PRSV+NRTL 4.152 1.559 5.798 1.397 
PRSV+Van Laar 4.178 1.563 6.226 1.440 
PRSV+Wtlson 4.419 1.577 6.829 1.510 
PRSV+Uniquac 4.331 1.562 6.357 1.441 
PRSVWS-NRTL+NRTL 3.971 1.437 5.651 1.310 
Virial+NRTL 3.834 2.792 6.614 1.851 
Virial+ Van Laar 3.895 2.793 6.807 1.889 
Virial+Wilson 4.135 2.798 7.305 1.938 
Virial+Uniquac 3.985 2.788 6.946 1.875 
Table 8-31: Absolute average errors for the Propane+ 1-Propanol System 

Figure 8-45 illustrates plots of excess Gibbs free energy for the two isotherms for the propane + 

1-propanol system. Plots of activity coefficient for the system are available in Appendix F.2. 

Miihlbauer [1990] suspected that liquid phase splitting occurred for the propane + 1-propanol 

system at the higher pressure, as he was not able to obtain convergence in his correlation 

program for the high-pressure region. Miihlbauer [1990] could also not obtain VLE 

measurements at much higher pressure in his apparatus. When the propane + 1-propanol system 

was measured in this project, it was possible to view the equilibrium cell contents, and at the 

higher pressure, no liquid phase splitting was observed. The problem of obtaining VLE 

measurements at much higher pressures was however encountered. The reason for this was 
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is simply because the single stage propane compressor utilized was not adequate to enable 

pressurization to the higher pressures. 

Analysis of the excess Gibbs free energy versus liquid composition plot shows that there are no 

discontinuities in the curve, confirming the observation that there is no liquid phase splitting in 

the system at the measured isotherms. Criteria for the determination of liquid phase splitting are 

available in Walas [1985], Reid et al. [1988] and Schwartzenruber et al. [1987] . 

8.4.4. Direct versus Combined Methods 

Many researchers opt for the direct method approach for the reduction of HPVLE. There are 

many advantages to the approach as outlined in Chapter 3 and Table 3-1 . However, what is 

evident from the three systems modeled in this project, is that for the various combinations of 

mixing rules and activity coefficient models available, one cannot simply decide that the direct 

method approach would be superior to the combined method approach. This is exactly what 

Wichterle [1978(b)] emphasized; one cannot easily make a decision on which is the better 

approach and both approaches should be undertaken to decide on which one produces the better 

modeling for the system. 

8.5. EXTRAPOLATION AND PREDICTION OF HPVLE DATA 

The cost of measurement of HPVLE data is extremely high as has been indicated by Moser and 

Kistenmacher [1987] . Methods are therefore continually being sought that would enable the 

extrapolation of existing data to some other conditions and preferably the prediction of HPVLE 

data entirely. The extrapolation and prediction of HPVLE data will be dealt with separately, 

with illustrations for the carbon dioxide + methanol and propane + 1-propanol systems. 

8.5.1. Extrapolation methods 

Extrapolation of HPVLE data can be undertaken very simply, if one utilizes the direct method 

with a cubic EOS. By assuming that the binary interaction parameter, kg, is temperature 

independent over a small temperature range (which is a reasonable assumption), VLE data can 

be computed at other temperatures over the small temperature range. Since the interaction 

parameter is temperature dependent, extrapolations over large a temperature range is not 

possible/accurate via this method. 



272 

The Wong and Sandler [1992] mixing rules utilized in this project and discussed in Chapter 

Three allow for the extrapolation of HPVLE over wide temperature and pressure ranges in one 

of two ways. They are as follows:-

1. Once reduced excess free energy parameters have been obtained for an EOS with Wong­

Sandler mixing rules at one temperature, the reduced parameters can be used to compute 

HPVLE at any other temperature as the reduced parameters and the interaction parameter, 

kij, are temperature independent, according to Huang and Sandler [1993] . 

2 . Excess free energy parameters are available for a number of systems at low pressure in the 

compilations of DECHEMA. Using the parameters given in DECHEMA, HPVLE data can 

be computed at other conditions of temperature and pressure (Wong and Sandler [1992]). 

HPVLE data for the carbon dioxide + methanol system were correlated with the PRSVWS­

NRTL model at 40 °C and the reduced parameters and kif values (at 40 °C) were used to 

determine HPVLE data for the system at 200 °C and -30 °C. This was to determine the 

extrapolation ability of the Wong-Sandler mixing rule for extrapolations above and below the 

temperature at which the correlated parameters were known. Figure 8-46 and Figure 8-4 7 shows 

the computed HPVLE curves for the carbon dioxide + methanol system at 200 °C and -30 °C 

respectively against literature data (experimental). 

In Figure 8-46 the extrapolated data are compared to the literature data of Bnmner et al. [1987] 

for the 200 °C isotherm. There is reasonable agreement in the liquid phase, but for the vapour 

phase there is a large difference between the extrapolated data and literature. Brunner et al. 

[1987] determined the critical composition to be 0.27 mole fraction carbon dioxide and the 

critical pressure to be 129.3 bar by graphical extrapolation. Using the Wong-Sandler 

extrapolation method, the critical point is considerably higher in composition and pressure, as 

can be seen in Figure 8-46. 

For the -30 °C isotherm, there is very good agreement between the extrapolated data and the 

literature data of Chang and Rousseau [1985] . Chang and Rousseau did not measure the vapour 

phase as the values were all very close to unity. The vapour phase compositions computed by 

extrapolation were also extremely close to unity (approximately in the order of 0.999 mole 

fraction. 

There is reasonable to very good agreement between the extrapolated and literature data for the 

carbon dioxide+ methanol system for the 200 °C and -30 °C isotherms. The extrapolation for 

the -30 °C isotherm is probably better because the temperature range is smaller. On the other 

hand, one has no idea how accurate the experimental data of Brunner et al. [1987] or Chang and 
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Rousseau [1985] are and cannot dismiss that the extrapolation for either isotherm is better or 

worse. In general one could say that the method allows for very good approximation of HPVLE 

by extrapolation. 

8.5.2. Predictive methods 

The ultimate achievement in HPVLE computation would be the development of a totally 

predictive method. This would eliminate the need for costly and time-consuming HPVLE 

measurement. Therefore it is not smprising that a number of researcher have attempted or are 

attempting this task. There are numerous references in literature, e.g. Orbey et al. [1993], 

Kurihara and Kojima [1995(a),(b)], Fischer and Gmehling [1996], Feroiu and Geana [1996], 

Yoo et al. [1996] and Diinnebeil et al. [I 996], some of which will be briefly discussed in this 

section. 

The simplest predictive method would be to simply assume that the interaction parameter, kij, is 

zero in the mixing rule for the EOS via the direct method. This would enable prediction of 

HPVLE data for any isotherm. However, since k;i for most system is not zero, and significantly 

away from zero, the predictions via this method would be significantly in error. 

The method of Feroiu and Geana [1996] allows for the prediction of HPVLE from infinite 

dilution activity coefficient. The infinite dilution activity coefficients used are those at low­

pressure which are generally readily available. 

The method adopted in this project is that ofOrbey et al. [1993]. The UNIF AC model is used to 

compute the activity coefficients at infinite dilution at 25 °C. These infinite dilution activity 

coefficients are then used to obtain the parameters for the excess Gibbs free energy model. The 

kij value is then obtained by matching the excess Gibbs free energy of the mixture calculated 

from the excess Gibbs free energy model and from the EOS at the single mid-concentration 

point, X; = 0.5. The values for the parameters are then used for all other temperatures. 

The method of Orbey et al. [1993] was used with the Wong-Sandler mixing rules with the 

NRTL excess Gibbs free energy model (WS-UNIFAC). It was also undertaken for the HVOS 

mixing rules (HV-UNIF AC). Predictions were undertaken for the carbon dioxide + methanol 

system at 40 °C and the propane + 1-propanol system at 120 °C. 

Figure 8-48 illustrates the comparison of the predicted versus the experimentally measured data 

for the carbon dioxide + methanol system at 40 °C. 
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As can be seen from Figure 8-48 the WS-UNIF AC model produced a more reasonable 

prediction for the carbon dioxide+ methanol system than the HV-UNIFAC model. For both 

models the prediction of the vapour phase was excellent. The liquid phase was badly under­

predicted by both models with the WS-UNIF AC faring better in the description of the liquid 

phase. 

For the UNIF AC group selections, the following groups were selected:-

1. One CO2 group to describe carbon dioxide; and 

2. One CH3OH group to describe methanol. 

For this system the choice of UNIF AC groups was very simple as carbon dioxide and methanol 

have their own groups. 

UNIF AC group contribution tables are available in Sandler [1989] and the group contributions 

for CO2 were obtained from Apostolou et al. [1995]. 

Predictions were also undertaken for the propane + 1-propanol system at the 120 °C isotherm. 

Once again the WS-UNIFAC and HV-UNIFAC models were used. Figures 8-49 and 8-50 

illustrate the comparison between predicted and experimentally measured data for the system 

for the different choice of UNIF AC groups to describe 1-propanol. 

The UNIF AC group contributions for the propane + 1-propanol system were selected as 

follows:-

1. One CH2 group and two CH3 groups to describe propane; 

2. One CH3 group, two CH2 groups and one OH group to describe 1-propanol (selection I). 

3. The 1-propanol group was also described by the choice of one CH3OH group, one CH 

group and one CH3 group (selection 2). 

The choices of the UNIF AC contribution groups selected via the two methods were to 

determine the effect of the choice of contribution groups to the accuracy of the prediction. 

Figure's 8-49 and 8-50 show the comparisons for representation of 1-propanol via selection 

land 2 respectively. For both group selections for 1-propanol the HV-UNIFAC model was 

superior in predicting the behaviour of the system. Overall the best prediction was obtained 

with the HV-UNIFAC mode with selection 1 for the 1-propanol UNIFAC groups. However, 

even the best predictive model could not represent the vapour phase adequately. This is not a 
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Figure 8-50: Comparison between experimental and predicted 
HPVLE data for the propane + 1-propanol system at 120 °C 
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downfall of the predictive method, but merely that the propane + 1-propanol system is highly 

non-ideal as discussed previously and difficult to model. 

Overall, one can say that the predictive methods illustrated perform fairly, and would be an 

excellent tool for design engineers in the preliminary computations, as they provide a 

reasonably accurate (less than 10 %) representation of the system behaviour. They also indicate 

the correct trend exhibited by the systems. 

8.6. CRITICAL PROPERTIES 

In this project the critical properties (temperature and pressure) for the systems were not 

measured, mainly due to the fact that the conditions were beyond the maximum operating 

conditions for the apparatus designed. The critical properties were thus computed for the system 

studied using the method of Deiters and Schneider [1976]. Computations were undertaken using 

the SRK, PR and PRSV EOS's. The computational method is described in Chapter 3.5. and 

Appendix B. For each of the EOS's, the differential expressions given by Equations (3-129) and 

(3-130) were rigorously determined and solved using the Marquardt-Levenberg implementation 

of the Newton-Raphson technique. The following plots were then undertaken:-

1. Critical temperature versus composition; 

2. Critical pressure versus composition; 

3. Critical volume versus composition; 

4. Critical compressibility factor versus composition; and 

5. Pressure versus temperature plots. 

The critical pressures versus critical temperature plots were obtained by cross plotting of the 

critical pressure versus composition and critical temperature versus composition plots. 

Sadus [1994], in his excellent review of critical properties describes the classification of phase 

behaviour of binary mixture with respect to different critical phenomena. The classification is 

based on six type of critical phenomena illustrated on pressure versus temperature plots. For all 

of the system studied in this project, type one behaviour is predicted as shown in Figures 8-51 

to 8-53. 

Plots of critical temperature, pressure, volume and compressibility factor against composition 

are illustrated in Appendix F.3. 



Figure 8-51: Plot of lnP versus temperature for the carbon 
dioxide + toluene binary system 
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Figure 8-52: Plot of lnP versus temperature for the carbon 
dioxide + methanol binary system 
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Figure 8-53: Plot of lnP versus temperature for the propane + 
1-propanol binary system 
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In Figure's 8-51 to 8-53 curves A-Cl and B-C2 represent the vapour pressure curves for the two 

components, which were computed from either Antoine, s equation or a vapour pressure 

correlation. Curve CI-C2 represents the critical pressure-temperature curve computed via the 

method of Deiters and Schnieder [1976]. 

The critical properties were computed for each of the isotherms for the carbon dioxide + 

toluene, carbon dioxide + methanol and propane + 1-propanol systems using the PRSV EOS. 

Tables 8-32 to 8-34 summarize the critical property data. 

Temperature Composition Critical Volume, Critical Pressure, Critical 

("C) (Xco
2

) 
cm3/gmol (V.) bar (P.) Compressibility 

(Z.) 

38 0.9924 0.0891 82.7115 0.2831 
80 0.9230 0.0663 161.4262 0.3646 

118.3 0.8884 0.0744 205.3844 0.4694 
Table 8-32: Computed Critical properties for the Carbon Dioxide + Toluene binary 

System using the PRSV EOS. 

Temperature Composition Critical Volume, Critical Pressure, Critical 

("C) (Xco
2

) 
cm3/gmol (V.) bar (P.) Compressibility 

(Z.) 

40 0.9833 0.0954 82.4244 0.3018 
90 0.8461 0.0744 135.2754 0.3335 
100 0.8188 0.0755 142.9088 0.3477 

Table 8-33: Computed Critical properties for the Carbon Dioxide + Methanol binary 

System using the PRSV EOS. 

Temperature Composition Critical Volume, Critical Pressure, Critical 
("C) (Xpropan,) cm3/gmol (V.) bar (P.) Compressibility 

(Z.) 

105.1 0.9773 0.2129 45.3468 0.3071 
120 0.9302 0.2003 50.4070 0.3088 .. 

Table 8-34: Computed Critical properties for the Propane+ 1-Propanol binary System 

using the PRSV EOS. 
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8. 7. THERMODYNAMIC CONSISTENCY TESTING 

A number of methods are available to determine the thermodynamic consistency of 

experimental HPVLE data. A few of these have been discussed in Section 3.6. and Appendix 

B.19. The Chueh et al. [1965] consistency test was utilized in this project in conjunction with 

residual plots to determine the thermodynamic consistency of the data measured for the carbon 

dioxide + toluene, carbon dioxide + methanol and propane + 1-propanol at the various 

isotherms. 

The Chueh et al. test is a computational comparison between the value generated by Equations 

(B-140) and (B-141). Equation (B-140) has three integrals and in the tables summarizing the 

consistency test, each of the integrals will be refer to as Area 1, Area 2, and Area 3. Equation 

(B-140) will be referred to as the LHS and Equation (B-141) as the RHS. Equation (B-141) is 

comprised of three terms and in the tables they will be referred to as term I, term 2 and term 3 

respectively as they appear in the equation. 

(B-140) 

(B-141) 

In Tables 8-35 to 8-42, Difference is defined as the absolute value difference between LHS and 

RHS and % inconsistency is defined as follows: 

. . Difference 
%mcons1stency = ILHS + RHSI * I 00 

2 

(8-10) 

Chueh et al. [1965] performed their proposed consistency test for the carbon dioxide + nitrogen 

and carbon dioxide+ oxygen system. For both cases they obtained % inconsistencies ranging 

from 4.5 % down to 0.9 %. According to them values of below 5 % are well within the 

uncertainties in the computations and they judged their data to be in terms of thermodynamic 

consistency, very good. This figure of 5 % inconsistency is being used as a benchmark to judge 

the quality of the measured data in terms of the Chueh at al. [1965] consistency test. 
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8.7.1. Carbon Dioxide+ Toluene System 

The carbon dioxide+ toluene system was measured at three isotherms, viz. 38, 80 and 118.3 °C. 

Tables 8-35 to 8-37 summarize the Chueh et al. [1965] consistency test for the 38, 80 and 118.3 

°C isotherms respectively. For the 38 and 80 °C isotherms the percentage inconsistency is less 

than 3 .2 % across the composition range and in view of the uncertainties in the computations, it 

is probably fair to judge the thermodynamic consistency of this data as very good. 

:It Areal Area2 AreaJ LBS RBS terml term2 tennJ Diff. % inconsistency 
0.11810 0.82433 0.02560 0.03972 0.38963 0.90261 -4.62537 4.67836 0.34913 0.01298 1.44870 
0.53350 3.21263 0.57029 0.14482 3.92920 4.03402 -4.02356 4.43531 3.62727 0.10482 2.63262 
0.76130 4.13245 1.13037 0.15472 5.42&52 S.51323 -3.13041 4.08227 4.63137 0.15471 2.10915 
0.90000 4.52545 1.52132 0.14960 6.21554 6.38808 -2.09720 U0644 4.67883 0.17254 2.73788 

Table 8-35: Summary of Chueh et al. [1965] consistency test for the carbon dioxide + toluene 
system at 38 °C 

:lj Areal Area2 AreaJ LBS RHS terml term2 tennJ Diff. % incomistencv 
0.12150 0.70732 0.02643 0.07070 0.10439 0.77979 -3.50323 3.55327 0.72975 0.02460 3.10523 
0.29350 1.60647 0.15537 0.16597 1.92733 1.90603 -3.64200 3.80592 1.74210 0.02131 1.11165 
0.49720 2.50030 0.45279 0.24906 3.20309 3.19758 -3.24934 3.60875 2.83817 0.00551 0.17216 
0.90000 3.70572 1.27042 0.25373 5.26919 5.32163 -1.53016 3.41524 3.43656 0.05244 0.99029 

Table 8-36: Summary of Chueh et al. [l 965] consistency test for the carbon dioxide + toluene 
system at 80 °C 

x, Areal Area2 AreaJ LBS RHS terml term2 tennJ Diff. o/o inconsistencv 
0.13810 0.65974 0.04315 0.10815 0.81081 0.73259 -2.59027 2.61187 0.70399 0.07828 10.14381 
0.32130 1.41029 0.22808 0.24787 1.83505 1.74722 -2.55877 2.68153 1.62446 0.13783 7.58892 
0.54670 2.12450 0.62458 0.36495 3.11605 2.95992 -2.27303 2.60272 2.63023 0.15613 5.13919 
0.80000 2.74037 1.13237 0.37626 4.28204 4.16898 -1.67078 2.78163 3.05808 0.11306 2.67560 

Table 8-37: Summary ofChueh et al. [1965] consistency test for the carbon dioxide+ toluene 
system at 118.3 °C 

For the 118.3 °C isotherm, the % inconsistency varied from approximately 10.2 % down to 

approximately 2. 7 %. In light of the slightly larger inconsistency, one will have to rate the data 

as satisfactory to good in terms of thermodynamic consistency. 

Another check for the thermodynamic consistency of the measured data is to view the residual 

plots for the system, especially the residual plot of vapour composition. If there is even scatter 

of the data about the zero x-axis, and the scatter is within 1% either side of the zero axis then 
' 

one can presume that the data are thermodynamically consistent (Prausnitz [1980]). 

Making reference to Figures 8-54 to 8-56, there is even scatter for the carbon dioxide + toluene 

system for all isotherms. The scatter for almost all points in within the 1 % region as well. 



Figure 8-54: Residual plot of vapour composition for the 
Carbon Dioxide + Toluene System at 38 °C isotherm 
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Figure 8-55: Residual plot of vapour composition for the 
Carbon Dioxide + Toluene System at 80 °C 

0.04 ---------------------

0.03 -

0.02 

0.01 -

• 
* 
X 

I 
X • 

i 

• PRSV+Van Laar 

• PRSV+NRTL 

_. PRSV+Wilson 

x PRSVWS-NRTL +NRTL 

1 
JC PRSV+Uniquac 

~- - --~----~ ----~----~---~~---~---~ , I 
' " •' I I I 

I 

0.1 0.2 ~.3 xo.4 ~5 016 .. 
-0.01 .. .. 
-0.02 ----------------------

Liquid Mole fraction CO2 N 
00 
00 



N 

0 
0 
C 
0 ·-..., ·-tn 
0 
0. -

Figure 8-56: Residual plot of vapour composition for the 
Carbon Dioxide+ Toluene System at 118.3 °C 
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Residual plots of pressure for the carbon dioxide + toluene system are available in Appendix 

F .4. All of the residual computations undertaken were performed for a number of models as 

indicated in the residual plots. 

Plots for the computation of the areas for the Chueh et al. [1965] test are available in Appendix 

F.4. Simpson's one-third integration rule as outlined in Gerald and Wheatley [1989] was used to 

compute the areas under the curves. 

8. 7.2. Carbon Dioxide + Methanol System 

Tables 8-38 to 8-40 summarize Chueh et al. consistency test computations for the carbon 

dioxide + methanol system for the 40, 90 and 100 °C isotherms respectively. 

The% inconsistency for the 40 °C isotherm varies between approximately 8.5 % to 7%. This 

would rate the data as :rair to good in terms of the Chueh et al. test. Viewing the vapour 

composition residual plot, one finds that there is even scatter and scatter is 1 % either side of the 

zero axis. This confirms the data as being consistent even though it does not rate that well 

according to the Chueh et al. test. 

x, Areal Area2 Areal LHS RHS Terml tenn2 term3 o/o Diff. o/o 
0.12330 0.75201 0.01135 0.02779 0.79115 0.16237 -3.m26 3.87790 0.75673 0.06422 7.73456 

0.32270 1.82142 0.12741 0.06326 2.01940 2.01940 -3.19713 4.21729 l.&7712 0.17151 8.46119 
0.47360 2.54100 0.27471 0.07921 2.89592 3.13124 -3.62309 4.16464 2.51969 0.23532 7.80878 

0.61000 334911 0.52071 0.01336 3.95737 4.24522 -3.11227 4.16591 3.19151 0.21716 7.01866 

Table 8-38: Summary of Chueh et al. [1965] consistency test for the carbon dioxide+ methanol 
system at 40 °C 

Xi Areal Area2 Areal LBS RHS terml tenn2 term3 % Diff. o/o. 
0.07010 0.33075 0.01064 0.03107 0.37245 0.37737 -2.03638 2.07434 0.33942 0.00492 1.31244 
0.16460 0.73766 0.05401 0.07091 0.16266 0.90553 -2.36127 2.41693 0.77911 0.04287 4.84932 
0.27130 1.14711 0.14150 0.11021 1.40676 1.46345 -2.27400 2.41949 1.24795 0.05668 3.94978 
0.60000 2.04704 0.65552 0.18419 2.19021 3.04953 -1.62760 2.36041 2.31672 0.15924 5.36191 

Table 8-39: Summary of Chueh et al. [1965] consistency test for the carbon dioxide+ methanol 
system at 90 °C 

X1 Areal Area2 Areal LHS RHS terml tenn2 term3 % Diff. o/o . 
0.01870 0.39995 0.01131 0.04815 0.46649 0.47121 -2.01216 2.06765 0.41572 0.00472 1.00656 
0.20330 0.16214 0.08976 0.10090 1.05299 1.07121 -2.15503 2.30971 0.91660 0.01130 1.72254 
0.36110 1.37308 0.27033 0.15347 1.79807 1.82026 -1.93033 2.22011 1.53049 0.02219 1.79807 
0.60000 1.92651 0.66732 0.20763 2.80145 2.90080 -1.40936 2.11326 2.19690 0.09935 3.48442 

Table 8-40: Summary ofChueh et al. [1965] consistency test for the carbon dioxide+ methanol 
system at 100 °C 
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Figure 8-57: Residual plot of vapour composition for the 
Carbon Dioxide + Methanol System at 40 °C 
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Figure 8-58: Residual plot of vapour composition for the 
Carbon Dioxide + Methanol System at 90 °C 
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Figure 8-59: Residual plot of vapour composition for the 
Carbon Dioxide + Methanol System at 100 °C 
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Toe 90 and 100 °C isotherms have % inconsistencies below 5 % across the composition range. 

This implies the data are very good according to the Chueh et al. test, which is confirmed by the 

residual plot indicated in Figures 8-58 and 8-59. 

8. 7 .3. Propane + 1-Propanol System 

The Chueh et al. [1965] consistency test undertaken for the propane + 1-propanol system is 

summarized in Tables 8-41 and 8-42 for the 105 .1 and 120 °C isotherms respectively. For both 

isotherms the% inconsistencies are fairly high, between approximately 8.7 % and 4.2 % for the 

105.1 °C and 0.8 % and 8 % for the 120 °C isotherm. 

x, Areal Areal Area3 LHS RHS terml tenn2 tenn3 % Diff. % inconsistency 
0.10530 0.39894 0.00965 0.01865 0.42724 0.44580 -1.60296 1.64588 0.40288 0.01856 4.25087 
0.37190 1.28208 0.11599 0.06505 1.46208 1.58548 -2.02647 2.2'323 1.32872 0.12341 8.09867 
0.48970 1.60257 0.20531 0.08251 1.89028 2.05526 -U7601 2.216n 2.27677 1.65450 8.36301 
0.70000 2.03572 0.42793 0.10599 2.56912 2.10316 -1.28554 2.12240 1.96630 0.23404 8.71293 

Table 8-41: Summary of Chueh et al. [1965] consistency test for the propane + 1-propanol 
system at 105 .1 °C 

It Areal Areal Area3 LHS RBS tennl tenn2 term3 % Diff. % inconsistency 
0.10230 0.35556 0.00718 0.02213 0.38487 0.31803 -1.41059 1.43796 0.36036 0.00316 0.81781 
0.42890 1.40731 0.05465 0.08782 1..54970 1.6n97 -2.15589 2.47764 135623 0.12827 7.94814 
0.54970 1.74759 0.08641 0.10536 1.93912 2.09958 -2.08265 2.57941 1.60282 0.16046 7.94612 
0.90000 2.43995 0.19798 0.13193 2.76849 2.99778 -1.03846 2.76589 1.27035 0.22929 7.95294 

Table 8-42: Summary ofChueh et al. [1965] consistency test for the propane+ 1-propanol 
system at 120 °C 

According to the Chueh et al. test, one would have to rate the thermodynamic consistency of the 

data to be fair to good. Viewing the residual plots for the system, there is even scatter about the 

zero x-axis, but the deviation in the scatter is more than 1 %. For some points the scatter is as 

high as 3 to 5 % above and below the zero x-axis. Taking both tests into account, one would be 

doubtful about the thermodynamic consistency of the data, but would still rate it as satisfactory. 

The models to compute the vapour phase fugacity coefficients and the residual vapour 

compositions were not able to properly correlate the experimental data for the propane + 1-

propanol system, as has been discussed before, and this is the reason for the high % 

inconsistencies and large residuals computed. The true consistency/inconsistency of the data is 

therefore difficult to infer with conviction. 



0.06 

C: 0.05 
0 ·-..., (.) 0.04 -
l! -'ta~ 
.! GI>,. 0.Q3 
0 I 

E ii c., 0.02 
~ >i 
::::, -
0 CD 0.01 -Q. C 
cu cu > Q, 
- 0 0 cu ~ ::::, a. 
"C -0.01 -·-u, 
CD a:: -0.02 

-0.03 

Figure 8-60: Residual plot of vapour composition for the 
Propane + 1-Propanol System at 105.1 °C isotherm 
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Figure 8-61: Residual plot of vapour composition for the 

Propane + 1-Propanol System at 120 °C isotherm 
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8.8. DETERMINATION OF SECOND VIRIAL COEFFICIENTS 

The method of Jones and Kay [1967 (a,b)] and Wilson et al. [1984] was slightly modified to 

compute the second virial coefficients for the propane, nitrogen and propane + nitrogen binary 

system. The virial EOS was written in terms of volume, number of moles and the virial 

coefficient as follows:-

p = nRT + BRT + CRT_n
3 

V v~ (8-11) 

The Marquardt [1963] least squares method was then used to minimize the error between the 

computed pressure via Equation (8-11) and the experimental pressure by varying the virial 

coefficients and the number of moles. The objective :function was defined by Equation (8-12). 

n ( p calc _ pexp )
2 

S=L 1 exp! 

i=l P; 
(8-12) 

The objective :function was defined in terms of pressure because of all the measured variables, 

i.e. pressure, temperature and volume, the variable known with the greatest certainty was 

pressure. The volume (total volume) was computed by calibrating the cell with a gas of known 

virial coefficient. The initial volume was thus known with the least certainty. In fact, sensitivity 

analysis shows that the initial volume has the greatest affect on the computed second virial 

coefficients. A one percent uncertainty in the initial volume can produce as large as a 5 to IO % 

uncertainty in the computed second virial coefficients. 

For all P-V-T measurements undertaken, problems were encountered in zeroing the piston to 

the same initial total volume, and this is probably the reason why there are discrepancies 

between the computed second virial coefficients and literature data. 

The computation method to determine the initial total volume and the change in volume is 

detailed in Appendix F .5. 
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CHAPTER NINE 

CONCLUSIONS 

A static type isothennal equilibrium apparatus for HPVLE measurements was designed that was 

very compact and user friendly. It has a maximum combined pressure- and temperature­

operating limit of 175 bar and 175 °C respectively. The equilibrium cell has two pairs of 

sapphire viewing windows that permits direct viewing of the equilibrium cell contents. A novel 

sampling mechanism, utilizing a two-position six-port V ALCO GC sampling valve was 

developed for sampling of the equilibrium liquid and vapour phases. With the sampling 

mechanism employed., no disturbances to the equilibrium phases occurred during the sampling 

procedure and the continuous flow of liquid through the valve sample loop ensured that the 

sampled liquid was always representative. This novel sampling method was very successful and 

gave highly reproducible results. The apparatus has a moveable piston that allows for the 

equilibrium cell volume to be varied. In the variable volume mode of operation, P-V-T 

measurements, as well as HPVLE measurements via the dew and bubble point method are 

possible. The P-V-T measurement capabilities have been demonstrated for the apparatus and 

HPVLE measurements for the carbon dioxide + toluene, carbon dioxide + methanol and 

propane + 1-propanol systems were undertaken. The apparatus produced experimental HPVLE 

data that compared excellently with published literature data and the P-V-T capability was 

shown to be satisfactory. With slight modification to the equipment and procedure, the accuracy 

of P-V-T data could be further improved. The design also incorporated a feature for analyzing 

two liquid phases in systems where they may occur. This feature awaits further testing and 

development and is discussed further under recommendations. 

The equilibrium cell was positioned in an air-bath, which had an internal jacket of copper 

cladding and Fibefrax insulation. The copper cladding and Fibrefrax insulation together with 

the externally mounted heating loop ensured that the equilibrium cell was shielded from 

radiative interchange and that highly isothermal control was achieved. 

HPVLE measurements for the carbon dioxide + toluene system at 38, 80 and 118.3 °C were 

undertaken as a test of the equipment and experimental procedures. There was excellent 

agreement between literature data and data measured in this project. Further HPVLE 

measurements were undertaken for the carbon dioxide + methanol system at 40, 90 and I 00 °C 

and the propane+ 1-propanol system at 105.1 and 120 °C. There was very good agreement with 
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literature for the 40 and 100 °C isotherms of carbon dioxide + methanol. The 90 °C isotherm 

had not previously been measured. The measurements for the propane + 1-propanol system at 

the 105.1 and 120 °C indicated a slight discrepancy between the experimental data of this 

project and that of Miihlbauer and Raal [1993] for the vapour phase. h is believed though that 

the measured data are superior to the literature data as the equipment and sampling procedure 

utilized in this project were superior to those used in Muhlbauer and Raal [1993]. 

P-V-T measurements were undertaken for propane and nitrogen at 50, 75 and 100 °C. 

Measurements were also undertaken for the propane + nitrogen binary system at 75 °C. Second 

virial coefficients were computed from the measured P-V-T data and there were reasonable 

comparisons with literature data. The second virial coefficients and P-V-T data were found to 

be very sensitive to the initial cell volume, and recommendations have been made to rectify the 

problem by construction changes to the upper portion of the HPVLE cell or by PC control of 

the stepper motor. 

Modeling of the HPVLE data measured was undertaken using both the direct and combined 

methods. Interaction parameters obtained by fitting of the experimental data to various models 

are available, but are too numerous to mention in this section. Modeling for the carbon dioxide 

+ toluene and carbon dioxide + methanol was successfully achieved using a number of direct 

and combined method models. For the propane + 1-propanol system however, satisfactory 

modeling could not be achieved for the vapour curve and suggestions are made for the use of a 

Hole Theory EOS. The combined and direct method model used performed equally well for 

most systems, and for the systems studied there is no clear indication of which is the better 

method of data reduction. 

Data extrapolation and prediction was illustrated using the Wong-Sandler and Huron-Vidal type 

mixing rules for the carbon dioxide + methanol and propane+ 1-propanol systems. For these 

systems the extrapolation and prediction methods performed reasonably well. 

Critical properties were successfully computed for the system investigated using the method of 

Deiters and Schneider [1976]. Predictions of critical temperature, pressure, volume and 

compressibility factor were undertaken using the SRK, PR and PRSV EOS. 

Consistency testing was Wldertaken for all the systems measured with the criterion being 

whether the system passed the Chueh et al. [1965] test and the residual plots test as indicated in 

Prausnitz et al. [1980]. All the system passed the consistency tests and the HPVLE data 

measured were thus deemed to be thermodynamically consistent. 
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CHAPTER TEN 

RECOMMENDATIONS 

The apparatus discussed in this project was designed to be compact and versatile. It is capable 

of measuring P-V-T and HPVLLE data, as well as HPVLE data via the dew- and bubble point 

methods. The following recommendations should enhance its ability in all of the modes of 

operation and increase its versatility:-

1. Larger jet-mixers. 

2. Modification for larger operating temperature range. 

3. Modification of the equipment for logging of data and control via a personal computer. 

4. Greater compression ratio in the equilibrium cell and the "propane" compressor. 

5. Insertion of a catalyst basket. 

10.1. LARGER JET-MIXERS 

The jet-mixers designed in this project were undersized. This was as a resuh of the sample 

loops on the GC sampling valves being larger than originally envisaged. This meant that the jet­

mixer operating temperatures had to be set extremely high in order to ensure that no 

condensation occurred in the unit. The jet-mixers were at a fur higher temperature than the 

surrounding air in the bath and this created hot spots in the air-bath despite appreciable thermal 

insulation. By increasing the size of the jet-mixer to approximately 500 cm3
, the operating 

temperatures for the jet-mixers will be significantly reduced. This would also increase the 

feasibility of operation of the HPVLE apparatus at sub-ambient temperatures. 

10.2. MODIFICATION FOR LARGER OPERATING TEMPERA TlJRE RANGE 

Currently the operating limits for the apparatus in terms of temperature are from room 

temperature to approximately 175 °C. By removal of the variable-volume piston and its 

assembly and replacement with a simple flange, the upper limit for temperature can be extended 

to approximately 230 °C. This is however at the expense of the upper limit of operation for 

pressure, which would decrease drastically (as a result of the limits of operation for the GC 

sampling valves). If all the Viton "o"-rings had to be replaced with some derivative that could 



301 

withstand higher temperature (e.g. Kalrez), then the upper limit for temperature could be 

extended to approximately 350 °C. 

The lower limit of operation for temperature can be lowered by the addition of a refrigeration 

unit. This can simply and elegantly be undertaken by inserting refrigeration coils (cross-flow 

exchanger) into the box that currently houses the blower and the heating elements. Calculations 

indicate that an exchanger designed for this limited space would produce enough duty to reduce 

the temperature in the air-bath to approximately -25 °C. This would however mean that the air­

bath would have to be more effectively insulated and sealed. It would probably require that the 

air-bath be filled with dry nitrogen so that condensation of water vapour does not occur in the 

bath. Condensation of water vapour leads to ice formation on the exchanger surfaces and this 

would effectively reduce the duty. 

10.3. MODIFICATION OF EQUIPMENT FOR DATA-LOGGING AND 

CONTROL 

All temperature and pressure measurements that are currently displayed on the instrumentation 

panel of the apparatus could be channeled to a personal computer and logged or controlled with 

the latter. The stepper motor could also be remotely operated from the personal computer. This 

would make operation in the dew- and bubble point mode of operation much more feasible, as 

there would be continuous logging of pressure and volume measurements. This would make 

identification of the breaks in the P-V curve much easier and consequently the vapour-liquid 

equilibria measurements more accurate. 

P-V-T measurements could also be simplified and made more accurate. With computer 

operation, there would be exact control over the stepper motor, making it possible to exactly 

zero the piston position and change the volume of the equilibrium chamber. One of the 

drawbacks with the current setup for P-V-T measurements is that the zero position is not 

exactly known and this leads to inaccuracies in the P-V-T measurements. 

10.4. GREATER COMPRESSION RATIO 

The equilibrium cell currently has a compression ratio of approximately 2: 1. Redesigning the 

cell such that the length to internal diameter ratio is larger can drastically increase the 
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compression ratio for the variable-volume cell. This would mean more travel for the piston and 

consequently a larger compression ratio. Currently the travel of the piston is limited by the 

placement of the sapphire windows, the upper stirrer and the sampling ports for the GC valves. 

This is as a resuh of the sealing mechanism for the piston head, which seals on a double "o"­

nng. 

The "propane" compressor was designed to compress propane to pressures higher than its bottle 

pressure so as to enable VLE measurements in the higher pressure region for the propane + 1-

propanol system. With the current compressor problems were encountered in obtaining 

pressures higher than 40 bar for propane. A redesign of the compressor such that the propane 

chamber was much larger than the compressed air chamber, would produce larger compression 

pressures for propane. 

10.5. INSERTION OF A CATALYST BASKET 

The design of the upper stirrer lends itself ideally to the insertion of a basket. By inserting a 

basket filled with a catalyst of interest, one could undertake high-pressure VLE measurements 

with chemical reaction. With there being greater interest in phase equilibrium with chemical 

reaction, the equipment could very easily be adapted to permit measurement of VLE with 

chemical reaction at high pressure. According to a paper published by Verevkin and Heintz 

[1999, 2000], experiments of this nature would enable one to obtain heats of reaction for the 

specified reactions. 

10.6. FUTURE WORK 

The P-V-T measurement capabilities of the apparatus and the subsequent computation of 

second virial coefficients have been shown to be reasonable. With a bit more refinement as 

outlined above, publishable P-V-T and second virial coefficient data should be no problem. 

The HPVLLE capabilities of the apparatus have not been demonstrated by measurement of any 

test systems. The equipment is fully set up to undertake the measurements and all that is 

required is a suitable test system that produces sizeable quantities of the two liquid phases. The 

sampling mechanism for the second liquid phase has been tested and it works very well. 
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CHAPTER ELEVEN 
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APPENDIX A 

A.1. Interpretation of Phase Diagrams 

The phase rule: 

In the construction and interpretation of phase diagrams the phase rule serves as an important 

guide. It imposes constraints on the geometry of the features that describe the existence or 

coexistence of a fixed number of phases. 

For non-reacting systems the following simple relation expresses the phase rule: 

f=c+2-p 

where, f- number of independent variables (sometimes called "degrees of freedom''), 

c - number of component, and 

p - number of phases 

(A-1) 

For a binary system, the maximum number of independent variables is three. The phase 

behaviour of the system can be completely described by volumes, surfaces, lines and points in 

three-dimensional space. 

Temperature and pressure are the independent variables most convenient for the measurement 

and study of phase equilibria in fluid systems. In these systems changes in both temperature and 

pressure produce dramatic changes in phase behaviour, and a three-dimensional diagram in 

pressure, temperature and a third variable is required for complete description of a binary 

system. The most convenient choice for the third component is generally composition. 

The simplest type of P-T-x diagram for a fluid system is one that describes the gas-liquid 

equilibria of a system in which the liquids are miscible in all proportions. 

Referring to Figure A-1, lines Ao.Ca. and A13C 13 are the vapour pressure curves of the pure 

components, a. and f3, in the two P-T planes of the diagram ending in critical points Ca. and Cf3. 

The mixture critical line Ca.Cf3 is continuous in P-T-X space. The two surfaces representing 
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saturated gas- and liquid phases extend across the diagram, and are bound in space by the lines 

A.a.Ca, A~C~, and CaC~. With the P-axis vertical, the lower surface represents the gas phase and 

the upper surface the liquid phase. 

t 
p 

1i 
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(bl 
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Ti 
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X 

Figure A-1: Phase diagram for a simple system (extracted from Streett [1983)) 

As one can see sections cut by planes, within the two-phase, of constant pressure, temperature 

and composition produce isobars (Figure A-l(d)), isotherms (Figure A-l(c)), and isopleths 

(Figure A-l(b)) respectively. 

Classification and description of binary fluid phase diagrams for critical properties is covered in 

Chapter 3 and Appendix B. 



A.2. Dynamic Method: Selected examples of apparatus from literature 

A.2.1. Single vapour pass 

Duncan and Diza (1970) 
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The equipment was designed to be multipmpose in nature, and included single vapour pass and 

recirculation options, temperature measurement with either a platinum or germanium resistance 

thermometer, and phase composition determination by chromatograph or continuous analysis. 

The apparatus was designed for operating temperatures of 10 to 150 K and pressure up to 200 

atm. 

The equilibrium cell was constructed from electrolytic tough pitch copper. Sealing of the 

equilibrium cell was achieved using indium-coated, copper-asbestos gaskets. To achieve the very 

low temperature that the apparatus is run at, refrigeration was provided by injection of 

refrigerant liquid through the annular space on the cell. Figure A-2 shows the phase equilibrium 

apparatus of Duncan and Hiza. 

lnltt 
..,. __ 

E.Q• ~•IWi¥ffl 
Voper--i!+t+-+-•14 
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Wtll 

....,....;+- fill UM for 
So1iil-llapc,r Mode 

Figure A-2: Experimental apparatus of Duncan and Diza (1970] 
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With this piece of equipment it is possible to study equilibrium pressure, temperature, and 

composition properties in the liquid-vapour and solid-vapour regions and along the three phase 

loci. 

Table A-1 lists the details of all single vapour pass apparatus surveyed, along with the systems 

measured. 

A.2.2. Liquid phase re-circulation 

Mohamed and Holder (1987) 

Figure A-3 illustrates the apparatus used by Mohamed and Holder (1987]. It consisted of 

primarily the following components:-

i) two feed pumps; 

ii) a pre-heater; 

iii) an equilibrium column; 

iv) separation vessel; and 

v) a sampling system. 

• I • I 

I I 
I I 
L-----------------7 J 

1. Liquid carbon Dioxide Feed Pump 
2. Liquid Solute Feed Pump 
3. Preheater 
4. Equilibrium Ceil 
5. Separation V&ssel 
6. Micrometering valve 
7. Air Bath 

Figure A-3: Experimental apparatus of Mohamed and Holder [1987) 



Rcfcrem:cs Cdl rnlume Operating Runge Equilibrium cell Mensuremenl Ef1uilibrutio11 Sample size (µI) 

- (1) Device time 
(cm3

) Temp Pressure Temp Pressure (min) Vnpour Liquid 
(K) (bur) (2) (3) 

Wan :111<1 Dodge - 273-573 1013 cold-rolkd sted - 8/DWP 120 - 3000 
119401 

Duncan and Hi1.a - 10-150 203 electrolytic tough PR B - - -
119701 pitch copper 

Legret et al. - 423 200 TC BM/PT - - NA 
1191131 

Lee and Chao 300 - 345 - TC B - -
I 198111 

W<'ng and I.,·,· 
119921 

I .<',' and Ch,·n 
I l•N-tl 

Table A-1: Single va1>our J>ass a1>1>aratus surveyed 

Method of s111111>ling Specinl 
fcuturcs 

Vapour Liquid 

direct pressure Magnetic stirrer 
expansion sampler operated by 

solenoid 

sample capillary Multipurpose -
trap can also operate 

as vapour 
recirculation 

sampling NA Partition 
valve coefficients at 

infinite dilution 
are measured. 

sample sample -
Imp trap 

Systems 
mcusured 

carbon dioxide+ 
benzene 

Argon + methane 

Methane+ 
ethane+ n-
dccane; methane 
+ propane + 11-

decane; methane 
+ n-butane + 11-

decane; methane 
+ n-pentane + n-
decane. 
Carbon dioxide + 
1-
methylnapthalene 
; carbon dioxide 
+ m-cresol; 
ethane+ 1-
methylnapthalenc 
; ethane+ m-
crcsol. 

Carhon dioxide+ 
1-octanol ; ethaiw 
+ 1-octanol ; 
~th ylcnc + I -
oclanol 

Carbon dioxid~ + 
2-mrthyl-1-
p~nlanol; carhon 

w 
V, 
w 



lh·frn·nces Cell rnlume Operating Range Equilibrium cell Measurement Equilibration Snmple size (µI) Method of sampling 
(I) De\·ice time 

(cmJ) Tc1111> Pressure Temp Pressure (min) Vnpour Li<111id Vnpour 
(K) (har) (2) (3) 

Di Giacomo el al. 100 473 1000 .stainless steel TC PT 60-300 . . sample 
11989) ~xpan.~ion 

Di Giacomo et al. 
11994) 

Table A-1 (continued): Single vapour pass apparatus surveyed 

Key: 
(1) Materials of construction 
(2) TC·- thermocouple: PR - platinum resistance thermometer 

Lil1uid 

sample 
expansion 

(3) B - Bourdon type pressure gauge; BM - Bourdon manometer; PT - pressure transducer; DWP - dead weight piston gauge 

Spcdal 
features 

Systems measured 

dioxide+ 1-octanol ; 
carbon dioxide + I-
decanol 
Carbon dioxide + 
limonene; carbon 
dioxide + citral. 

Carbon dioxide + 
m-cresol + ohenol. 

w 
V, 

-""-
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The feed pumps were capable of delivering both solvent and solute against pressures of up to 

41. 5 MPa. The pre-heater enabled the entering fluids to reach the temperature of the air-bath. 

The equilibrium coil was packed with glass beads so as to allow for better contact between gas 

and liquid. 

The separation vessel was 100 cm3 in volume and the equilibrated stream that entered the vessel 

was allowed to disengage into the gas and liquid streams. The resultant liquid stream was then 

recycled to the liquid solute pump. 

Temperature monitoring was performed at various locations in the apparatus. It was found that 

the fluid temperature downstream of the equilibrium coil was about 0.3 K lower than the 

temperature of the vapour exiting the separation vessel. 

The sampling system consisted of a series of traps placed in a methanol-cooled bath (-25 °C) so 

as to condense the liquid solute. Both the gas and liquid samples were flashed across a micro­

metering valve. This precipitated the liquid solute. The gas rate was measured using a wet test 

meter, while the liquid was collected in the trap and weighted. 

Table A-2 lists the details of all liquid phase recirculation apparatus surveyed, along with the 

systems measured. 

A.2.3. Vapour phase re-circulation 

Toyama et al. [1962) 

This vapour recycle VLE apparatus has the following features:-

• a mechanical vapour recycling magnetic pump which could be located in or outside the 

temperature bath; 

• a variable-volume cell with floating piston; 

• a visual glass-windowed cell allowing observation of the equilibrium cell contents at elevated 

pressures; and 

• operability at temperatures as low as -300°F. 

The variable-volume cell with the floating piston served as a reservoir for vapour and was also 

used for fine and precise adjustment of pressure during charging, equilibration, and sampling. 



Rcl'l'r<'m:es Cell rnlmne 

(cur') 

Kim et al. 100 
(19861 

Mohamed and 100 
Holder 
(1987) 

Key: 
(1) Materials of construction 
(2) TC - thermocouple 
(3) PT - pressure transducer 

01ll•rnling Range El1uilihrium cell MensurNnent Equilibration Sample size (µI) Method of s111111>ling 
(I) De\'ice time 

Temp Pressure Temp Pressure {min) Vapour Uquid Vnpour Liquid 
{K) (bur) (2) (3) 

423 137 316 stainl.:ss st<!cl TC PT 10 25 0.5 sampling sampling 
valves valves 

- - stainles.s sled TC PT - - - sample sample 
expansion expansion 

Table A-2: Single phase liquid recirculation apparatus surveyed 

Special 
fentures 

Two glass 
windows. 

-

Systems 
measured 

Carhon dioxide 
+ benzene:; 
carbon dioxide + 
toluene; carbon 
dioxide+ p-
xvlene 
Carbon dioxide 
+ p-xylene; 
carbon dioxide + 
a-xylene; carbon 
dioxide+ p-
xylene+ o-
xylene; carbon 
dioxide + butyl 
ether+ o-xvlene. 

w 
Vt 
0\ 
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The equilibrium cell, which was transparent and had a stainless steel body, was submerged in a 

constant temperature bath. Temperature regulation was achieved by combining the control of 

evaporation of liquid nitrogen with an electric heater circuit that was connected to an electronic 

regulator. 

Pressure measurements were made with the use of a calibrated Heise gauge, while temperature 

measurement was via calibrated iron-constantan thermocouples. 

Fine capillary tubing (0.015" i.d.) was used for the sampling lines to minimise the hold-up in 

them. 

Figure A-4 shows the flow diagram of the experimental apparatus of Toyama et al. [1962]. 

19 

CHARGE 

13 

Figure A-4: Flow diagram of the experimental apparatus of Toyama et al. [1962] 
1 - equilibrium cell; 2 - stirrer; 3 - magnetic pump; 4 - variable volume cell; 5 - silica gel drier; 6 -
activated carbon drier: 7 - silica gel drier; 8 - knockout drum; 9 - liquid nitrogen reservoir; 1 O - surge 
tank; 11 - Freon refrigeration unit; 12 - sample containers; 13 - vacuum pump; 14 - recirculating coil; 
15 - electric heater; 16 - constant temperature bath; 17,18,19 - pressure gauges; 20 - thermocouples. 

Fredenslund and Sather [1970] 

The flow diagram of the experimental apparatus as used by Fredenslund and Sather [1970] is 

shown in Figure A-5. The equilibrium cell has built-in windows that permit visual observation of 
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the equilibrium cell contents. The vapour phase that is recycled enters the equilibrium cell via 

cooling coils. Both the equilibrium cell and the coil are immersed in a constant temperature bath. 

The volume of the liquid sample taken is about 0.5 cm3
• The vapour and liquid samples are 

expanded into sample chambers. From the sample chambers the samples are analysed on a GC. 

Temperature measurement is via a quartz thermometer and pressure measurement via Bourdon 

pressure gauges. Fredenslund and Sather [1970] state that entrainment was minimised by using 

low vapour circulation rates and by keeping the liquid level in the cell low. They also state that 

the vapour recirculation rate does not change the vapour composition significantly. 

VENT 

Figure A-5: Flowsheet of the experimental apparatus of Fredenslund and Sather (1970} 
P - pressure gauge; RD - rupture disk; GC - gas chromatograph; MS - main system valve; VP - valve for 
pressure gauge; VS - vapour sampling valve; LS - liquid sampling valve; V AC - vacuum system valve; 
BP - bypass valve; VENT - vent valve; FEED - valve to feed. 

Katayama et al. (1975} 

The vapour-recirculation apparatus used by Katayama at al. [1975] is illustrated in Figure A-6. 

Vapour was continuously pumped (via a magnetic pump (4)) from the top of the equilibrium cell 

(5) and reintroduced at the bottom of the cell where it bubbled up through the liquid to establish 

the vapour-liquid contact needed for phase equilibrium. Sampling of the vapour is achieved by 

passing the recycled vapour through a vapour sampling part (7), while liquid sampling is 
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undertaken by operating sampling valves (6). The liquid and vapour samples were then 

evaporated and introduced to a sampling flask (1 and 2 respectively). From the flasks the samples 

were then sent to a GC for analysis of the equilibrium mixture. 

' I 
I 

9 ' I 
I 
I 
I 
I 

' I 

1 Liquid sampling flask 
2 Vapor sampling flask 
3 Bourdon tube gage 
4 Magnetic pump 
S Equilibrium cell 
6 Liquid sampling vahie 

7 Vapor sampling part 
8 Solvent vessel 
9 Gas cylinder 

10.11 Constant-t=nperature 
air bath 

12 Constant-temperature 
water bath 

Figure A-6: Schematic of the experimental apparatus of Katayama et al. (1975] 

All sampling lines were covered with ribbon heaters to avoid condensation of the sample gas. The 

constant temperature bath in which the sampling flasks were housed was maintained about I 0°C 

higher that the equilibrium cell temperature. 

Streett and Calado [1978] 

To cope with the problem of hydrogen embrittlement, all parts of the experimental apparatus in 

contact with high-pressure hydrogen were made from one of two high-strength alloys: 

• beryllium copper, an alloy of two mass per cent beryllium in copper; or 

• stainless steel A-286, a precipitation-hardenable fully austenitic stainless steel. 
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Streett and Calado [1978] made use of a two-stage diaphragm compressor and an intensifier (see 

Figure A-7) to generate the pressures required in their studies. A compression unit was also used 

in our studies to achieve pressures in excess of supplied cylinder pressures (analogous to the 

compression device used in this project). 

Figure A-7: Diagram of the experimental apparatus of Streett and Calado (1978} 
A,B - cylinders containing the gases to be studied; C - two-stage diaphragm compressor; D - pressure 
intensifier; E - hydraulic pump; F - manganin pressure gauge; G - Wheatstone bridge; H - pressure 
vessel; I - magnetically operated pump; J,K - sampling lines; L - thermal-conductivity gas analyser; M -
cryostat; N - Cartesian manometer; P,Q - sampling valves; R - gas cylinders for storing refrigerant; S -
coil of copper tubing (6.35 mm O.D., 5.0 mm I.D.); T - stainless-steel cylinders; W - counterflow heat 
exchanger, X - check valve; Z - thermocouple junction. 

Shah et al. [1990] 

Shah et al. [1990] made use of two pieces of apparatus in their studies. Choice of apparatus used 

was dependent on the experimental temperature. The high temperature apparatus, which has a 

working temperature range of 325-530 K, is a modification of the apparatus used by Pozo and 

Streett [1984]. A schematic of the apparatus is as shown in Figure A-8 . 

The equilibrium cell was made from a commercial sight gauge fitted with a glass window. 

Pumping of the vapour phase is achieved with the use of a magnetically operated pump. The 

pump withdraws vapour from the top of the equilibrium cell and bubbles it through the liquid. 

This produces contact between the two phases, and as result equilibrium is attained in 10-15 

minutes. Stainless steel rods are placed in the equilibrium cell so as to reduce the effective 

volume of the equilibrium cell. 
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Vapour and liquid samples are withdrawn from the cell for analysis through a sampling system. 

To overcome partial condensation during throttling, the sampling cell is placed in an insulated 

and separately heated chamber (J) inside an oven (H). The chamber (J) is heated to a temperature 

of 373 K or 20 K above the oven temperature, whichever is higher. The liquid sample is 

withdrawn into sampling cell (D), which is evacuated. It is allowed to stand for IO minutes to 

vapourise and become well mixed. After this it is transferred into the sampling loop of the GC. 

The sampling valve and the lines between the sample cell and the GC are heated. 

G 

J 

MUELlERD BROOE • 

• 

TOA1MOSPtERE 

TO VACUUM 
SYSTEM 

T 

PRESSURE GENEAATOR . 

PAESSUREGENERATO~ 

2,2 DIMETHYlPROPNE 
'--t)l6--..., SUPPLY 

Figure A-8: Schematic diagram of the high temperature vapour-liquid equilibrium 
apparatus of Shah et al. [1990) 

A - equilibrium cell; B - check valve; C - magnetically actuated recirculation pump; D - sampling 
chamber; E - beaker of oil; F - platinum resistance thermometer; G - digital pressure gauge; H - oven; J 
- heated chamber. Heavy line from the equilibrium cell through the check valve and the magnetic pump 
indicates the recirculation loop. 

For the study of systems below a temperature of 3 25 K, a modification of the apparatus of 

Chang et al. [1982] was used. It is similar to the high temperature apparatus, but differs in that it 

uses a liquid bath for temperature control instead of an air bath. The equilibrium cell was made 

of a sapphire tube (see Figure A-9). 

The sapphire tube is confined between steel flanges. Sealing is provided by stainless steel 

mushrooms, sleeves, and Teflon gaskets. Apart from the equilibrium cell, the rest of the assembly 

is identical to the high temperature apparatus. 
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Figure A-9: Schematic illustrating details of the sapphire-tube pressure vessel of Shah et al. 
[1990] 

A - flange; B - sleeve; C - Teflon gasket; D - threaded rod; E - spacer; F - sapphire tube; G - mushroom 
plug; H - stainless steel tube. 

Table A-3 lists the details of all vapour phase re-circulation apparatus, along with the systems 

measured. 

A.2.4. Two phase recirculation 

Behrens and Sandler [1983] 

The equilibrium cell basically was a large autoclave with a stirrer. The stirrer was driven by 

magnetic coupling with an external motor. Circulation of the vapour and liquid was achieved by 

using magnetically driven double-acting pumps. 

The magnetic pumps were designed by the above authors. The pumps consisted of a barrel and 

heads constructed of nonmagnetic 316 stainless steel and a piston of magnetic 410 stainless steel. 

The piston was driven by two electromagnet coils wrapped on the barrel of the pump (Figure A-

10 illustrates the pump). A solid-state timer/power supply was used to pulse the coils in partially 



Rl'l'erences Cell ,·olumr Oprrating Rangt• Equilihrimn cell Measurement Equilibration Sample size (µI) 
(I) Device time 

(cnr1
) Temp Prt•ssure Temp Pressure (min) Vupour Liquid 

(K) (har) (2) (3) 

Price and V.V. 115-293 138 stainless stcd TC B 30-60 - -
Kobayashi 

(19591 

Hong and 
Kobayashi 

(19881 

Toyama <!t al. v.v. 88-298 69 stainless steel TC B - - -
[19621 

f-rl!d.:nslurHI and - stainlt'ss sll!l'I QT B - - -
Satlwr 
I 19101 

h,·,knslund ,,1 al. 15 93-298 350 30-t slaink.ss .st,!d PR DWP 120- 180 - 3.5 
[ 1973[ 

Tahle A-3: Va1>our r>hase recirculation apparatus surveyed 

Method ol' sampling Specinl 
l'eutures 

Vapour Liquid 

sample capillary Glass windows. 
trap Variable-

volume cell . 

capillary capillary Glass window. 
Variahl<!-
vollllll<! cdl. 

sampling sampling Visual c--,11, 
valv<! valv\! 

sampling sampling Fus<!d 11uartz 
valw rod windows. 

Method of 
li,111id 
sampling. 

Systrms 
measured 

Methane+ 
ethylene; 
methane+ 
ethane; methane 
+ propane; 
methaue + n-
butane; ethylene 
+ ethane; 
ethylene+ 
propane; ethylene 
+ propylene; 
methane+ 
ethylene + 
ethane; ethylene 
+ethane+ 
acetylene; natural 
gases. 

Carbon dioxide + 
methanol 

Carhon 
monoxide+ 
methane 
Oxygen + carbon 
dioxide 

Carbon dioxide+ 
oxygen; methane 
+ argon; nw.thanc 
+ carhnn 
1nonoxilh.~; argon 
I· earbon 

monoxide 

w 
0\ 
v.> 



Rel'••r••nn·s Cell volmnl' Op••ruting Range E1111ilibri11111 cell i\lcnsurcment Equilibration Sample size (µI) i\frthnd 111' sampling Special Systems 
(I) Devin time l'eatnres measnreil 

(cnf1
) Tem1> Pressure Temp Pressurl' (min) Vapour Liquid Vnpour Liquid 

(K) (har) (2) (3) 

Katayama .:t al. . . stainkss st .. el T B . sampk sampling I-loused in Carbon dioxide + 
I 19751 trap vah·t! water hath . acetone; carbon 

dioxide+ 
methanol. 

Streett and Calado 4.2 10000 stainless steel A- PR PT 5-10 5000- 5000- capillary capillary Special material Hydrogen+ 
(1978( 286 10000 10000 of constmction nitrogen. 

to resist 
hydrogen 
embrittlement. 

Somait and . . 138 stainles.~ steel PR B . . . sample capillary Vapour passed Nitrogen+ 
Kidnay trap through heat carbon dioxide; 
I 19781 exchanger methane+ 

before re- carbon dioxide; 
entering cdl. nitrogen+ 

methane+ 
carbon dioxide. 

St.:ad and 34 >300 <JO copper PR B 60 . . capillary capillary Visual cdl Carbon dioxide + 
Williams ethane; cnrhon 

(J<JKO] dioxide+ 2.2-
dimcthylprnpane. 

Tsang and Su·<'Ctl JO 313-523 2000 stainless steel PR PT 5-JO . . capillary capillary . Carbon dioxide + 
I 1981 I dimethyl ether 

Chrng .. 1 al. Carhon dioxide+ 
I 198')1 n-penlaiw 

( 'hang ,·I al. 75 stainli..·ss .'\led PR PT 5-10 rnpillary rnpillary Dinwlh)'I ctlwr + 
I 1')821 mdhanol 

Tahlc A-3 (continued): Vapour phase recirculation apparatus surveyed 

w 
~ 



Rl'f'('rt'nl'l'S Cdl vohtml' Operating Range E11uilihrium cell Ml'asurement E11uilihration Sample size (µI) Method of sampling 
(I) Dc\'icc time 

(cnr1
) Tm11> l'ressur(' 'J't,mp Pressure (min) Ynpour Liquid Vapour Li11uid 

(K) (har) (2) (3) 

Pozo and Streell . 523 290 stainkss sl<'d PR PT 10-15 . . capillary capillary 
(1911-11 

Pozo and Strccll . 2'.B-343 80 pyrex tuhing PR PT 10-15 . capillary capillary 
(19841 

Cheng ct al. 
(19891 

Wcher et al. 230 223-300 3-180 chromiu111-11ickcl PR 8 . . sample capillary 
(1911-IJ sled trap 

Z,·ck and Knapp 
(19861 

Freitag and 100 256-"05 280 llaskalloy C-276 TC B 30 . 50-200 capillary capillary 
Rohinso11 

I 19X61 

Tahlc A-3 (continued): Vapour phase recirculation apparatus surveyed 

Special 
features 

Multipl,, 
sapphire 
windows. 
Able to 
measure VILE. 
Can view entire 
cell content. 

Glass windows. 

Refractive 
imlii:e.< of 
phases "''-"ri: 
m,•asur<.'d . 

Systems 
measured 

Dimethyl ether+ 
water 

Dimethyl ether+ 
water. 

Carhon dioxide + 
n-pentane. 

Carbon dioxide + 
methanol ; 
nitrogen+ 
methanol; 
nitrogen + carbon 
dioxide; nitrogen 
+ carbon dioxide 
+ methanol 

Ethane+ 
methanol ; 
nitrogen+ 
ethane; nitrog,·n 
+ethane+ 
methanol 
Hydrogen + n· 
pcnlat1<' ; 
hytlrog,·n 
+methane+ 
carho11 dioxi,k: 
hydrog <-' 11 + 
carbon diuxid,· + 
11 - ll1.~nta11i: . 

\.;J 

°' V, 



Rl'l'ert•ncrs Cdl mlumr Operating Range Ettnilibrium cdl Measurement Equilibration Sampl•• size (µI) Method of sampling 
(I) Dl'\'kl' time 

(cnr1
) Temp l'rl'ssure Temp Prcssur<' (min) Vupour Liquid Vapour Li1111id 

(Kl (hur) (2) (3) 

Jou ~l. al. 150 - 316 stainless st,•d TC R - - sample sampl<! 
(19871 valve homh 

Jou et al. 
I 19951 

Chou ct al. JOO - - - TC B 60 30 30 special special 
(19901 sampling sampling 

valve. valve. 

Shah et al. 325-530 - stainless st<!d PR PT 5-10 - - capillary capillary 
I 19901 

Shah ct al. >325 - sapphire tuh,· PR PT 5-10 - capillary capillary 
I 1'J90I 

.Suzuki ~t al. 300 :n:i 350 316 staink,s sh!d ()T PT - - .,ampl.:- -
( I 'J'J I I ~xpa11si<111 

Tahle A-3 (continued): Vapour phase redrrnlation apparatus surveyed 

Special 
l'e:tturcs 

For low 
pressures had 
window.:-d cell. 

Special 
sampling valves 
called 
microcells. 

Made from a 
commercial 
sight gauge 
with a glass 
window. 
Can view ~ntirc 
cdl ctanlents. 

Glass windows . 

Systems 
measured 

Triethylene 
glycol (TEG) + 
carhon dioxide; 
TEG + hydrogen 
sulphide; TEG + 
methane; TEG + 
ethane; TEG + 
propane. 

Carbon dioxide + 
propane+ 3M 
MDEA 
(methyldiethanol 
amine) 
Carbon dioxide + 
n-decane; carbon 
dioxide+ 
tetralin; carbon 
dioxide+ 11-

decane + lclralin. 
Carbon dioxide + 
2,2-
dimcthylpropa1w. 

Carhon dioxide + 
2,2-
dimethvlnropan~. 
Carhon dioxid,· + 
1-propanol: 
carhon diuxid,· + 
2-propanol; 
carbon dioxi,k + 
~t hanol: ,·.1rhon 
dinxid~ + 1-
hutannl. 

w 
0\ 
0\ 



Key: 
(I) Material of construction of equilibrium cell 
(2) TC - thermocouple: PT - platinum resistance thermometer: TS - thermistor: QT - quartz thermometer 
(3) B - Bourdon pressure gauge; PT - pressure transducer; DWP - dead weight piston gauge 

w 
0\ 
-...J 



368 

overlapping cycles so that the piston decelerated near the end of its stroke. This provided a 

pumping action whilst minimising the piston-pump head contact at the end of each stroke. An 

electronic stethoscope was used to detect the piston movement, and hence pumping, during 

operation. 

Whitey Union ~ 
Bonnel Lift C~c:k 
VGlvt SS•!53f'4 

To Power Suppllf 

> 2000 Tums of #26 
Copper wire 

To Potttr Supply 

Figure A-10: Illustration of the electromagnetic pump of Behrens and Sandler [1983) 

Temperature range of the equipment was 283 to 373 K. The temperature of the system was 

maintained by the use of a large oil bath. Propellers were used to agitate the oil bath so as to 

dampen changes in temperature and control it to approximately 0.02 K. Platinum resistance 

thermometers were used to monitor the cell temperature. 

Pressure was monitored with a strain gauge type pressure transducer. It was read on a digital 

readout. 



Sampling of the phases was achieved via the use of fine capillary tubes and analysis of the 

samples was undertaken on a GC. 
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Figure A-11 below illustrates the vapour-liquid equilibrium equipment of Behrens and Sandler 

[1983]. 

,---------4~ Go 
Cyllnlt1S 

ti 

: I ---1------
11 
11 

" 11 
ti .. . , 
'I ., 
8 

Vioer ,u.,p 

Figure A-11: Vapour-liquid equilibrium apparatus of Behrens and Sandler [1983] 

Hsu et al. [1985] 

The apparatus was designed so that a single charge of fluid could be employed for all property 

measurements (phase compositions, phase densities, and interfacial tension). The high pressure 

see-through windowed cell, interfacial tension cell, switching and sampling valves, and a 

magnetic re-circulation pump were housed in a commercial air oven. 

A six-port switching valve was used to facilitate selection of either vapour or liquid circulation, 

or to reverse the direction of circulation in the density cell when changing from liquid to vapour 

circulation. 

An optical/photographic system was used to photograph the pendent drops in the interfacial cell. 

The phase densities were measured by using a Mettler/Parr digital density meter. Measurements 

' 
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were made by circulating saturated vapour and liquid, in sequence, through the vibrating U-tube 

of the density meter. 

The sampling system for the compositional analysis of the vapour and liquid samples consisted of 

a combination of sampling and switching valves and was capable of delivering microliter size 

samples directly from the cell to the GC. 

GAS 
CHROMATOGRAPH 

ANO 
DATA S'l'STEM 

(J) 

DUO-WEIGHT 
GAUGE 

IL 

VACUUM 
SYSTEM 

HUT'i:t) l\NE 

SOLVEH'F{== 
HELIUM{=~ 

DRAIN 

CONSTANT TEMPERATURE OVEN V,l 

SAMPLE 
VAl\lES 

(0) 

VIBRATION­
FREE 

TA!ILE 
(F) 

Figure A-12: Phase Equilibria measurement apparatus of Hsu et al. [1985] 

Kneisl et al. [1988] 

The apparatus of Kneisl et al. [1988] is claimed to be capable of measuring multiple-phase, 

multiple-component equilibria in the operating ranges of 310 to 425 K and 60 to 345 bar. A 

moveable probe permits the withdrawal of samples, from any number of phases, for analysis by 

GC. It also features a mercury piston, allowing easy pressure adjustment coupled with very small 

sample sizes, which allows numerous measurements to be made at a given feed composition over 

a wide pressure range. 

The high-pressure cell consists of a Jerguson liquid-level gauge that is modified. The probe 

traverses the entire length of the cell, which is approximately 1 O" long. Figures A-13 and A-14 

illustrate the equilibrium cell and the probe guide assembly respectively. 
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Figure A-13: Probe guide assembly of Kneisl et al. [1988] 

Figure A-14: Equilibrium cell assembly of Kneisl et al. [1988] 



The probe guide assembly consists of three main sections:-

• the high pressure head, 

• the probe guide, and 

· • the drive mechanism. 
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The high-pressure head connects the entire assembly to the equilibrium cell and houses the high­

pressure seal. The probe guide supports the probe and allows smooth linear movement of the 

probe through the seal. The adjustability required to mount the drive motor outside the oven is 

provided by the drive mechanism. 

Table A-4 lists the details of all two phase re-circulation apparatus, along with the systems 

measured. 

A.2.5. Single liquid and vapour pass 

Simnick et al. (1977] 

The gas and liquid streams are joined at a tee and the two-phase mixture is heated initially in a 

tube of 2.11 mm i.d., and finally in a larger tube of 5.15 mm i.d. The larger tubing was fitted 

within with a notched twisted ribbon in its entire length to promote mixing of the flowing fluids . 

The function of the equilibrium cell was to separate the gas and liquid phases. It was a pressure 

vessel approximately 90 cm3 in internal volume. Two nozzles are welded on opposite sides at mid 

section of the vessel. One provided the opening for the gas-liquid feed and the other for an 

Aminco cone compression type of electrical connection to a liquid level detector. 

To avoid entrainment of gas in the liquid withdrawn from the cell, a pool of liquid is maintained 

in the cell. The liquid level is sensed by a capacitor in the cell. A demistor pad in the equilibrium 

cell prevents entrained liquid droplets from escaping overhead. 

A uniform temperature is insured in the equilibrium cell by enclosing the entire cell in a copper 

jacket 32 mm thick. 

Table A-5 lists the details of all single liquid and vapour apparatus, along with the systems 

measured. 



Rrt'errncrs Cell rnl umt• Operating Runge E1111ilihri11111 cell Mensuremcnt l~<1uilibration Sample size (µI) 
(I) Dc,·ice time 

(cnr1
) Temp Pressure Temp Pressure (min) Vnpour Lic111id 

(K) (hnr) (2) (3) 

Griswold et al. 600 273-553 207 steel TC B 300 30000 60000 
(19431 

Muirhrook and 200 233-303 1034 403 stainless steel TC B - - -
Prausnitz 

(1965) 

Behrens and 1000 283-373 316 stainless steel PR PT 240-360 2000 2000 
Sandler 
(19831 

Eckert and 
Sandler 
(1986] 

Kubota ct al. 106 283-353 800 304 stainless steel T B 120 - -
(19831 

Wu ctal. 
[ 19881 

lladosz 60 283-533 350 - PR PT 15 100 100 
[ 19841 

Tahle A-4: Two-phase recirculation apparatus surveyed 

1\-lcthnd of sampling 

Vnpour Liquid 

sample sample 
bomb bomh 

sample sample 
trap trap 

sample sample 
homb bomb 

4-port ball 4-port 
valve hall valve 

Variable- Variable-
volume. volume 
cylinder cylinder 
with with 
sampling sampling 
valv~ valve 

SJ>ecinl 
fcntures 

Is a modified 
OthmerStill 

High pressure 
vane pumps 

Electronic 
stethoscope to 
detect piston 
movement in 
pump. 

A pair of pyrex 
glass windows. 
Sampling via 
ball valves. 

Ability to 
measurc VLLE. 
Variabl,·-
volume cylinder 
for sampling. 
Windowed cdl. 

Systems 
mensurcd 

benzene+ 
toluene 

nitrogen + carhon 
dioxide; oxygen 
+ carbon dioxide 

Carbon dioxide+ 
n-butane; carbon 
dioxide+ I-
butene. 

Carbon dioxide + 
cyclopentane. 

Ethylene+ 
propylene 

carbon dioxide + 
pentane; carbon 
dioxide+ diethyl 
ether; carhon 
dioxide + methyl 
tert-lmtyl .:ther; 
carhon dioxide+ 
l-1Jcntanc 
carbon dioxick, + 
isopropanol; 
carbon dioxidc + 
isopropanul + 
water 

w 
-...l 
w · 



Rl'forl'lll'l's Cell ,•nlmnl' Opcruting Rungl' E1111ilihri11111 cell Mcasnrcml'III Eqnilibrution Snmpll' size (µI) i\frthnd of sampling 
(I) Dc\'icc lime 

(cm3) Temp Pre.~surc Temp Prcssur1• (min) Vapour Lic1uid Vapour Liquid 
(K) (bar) (2) (3) 

Radnsz 
I 1986(a)J 

Radosz 
I 1986(b)J 

Morris and 100 311 147 316 stainless st~d TC PT 10-15 20/250 0.5 sampling sampling 
Donohue 588 109 valve valw 

11985) 

Hsu ct al. 422 690 stainless steel PR PT 120-360 . . six-port six-port 
11985) GC valve GC valve 

Nagarc,jan ,md 
Robinson 

119861 

N.tgarajan a11tl 
Robinson 
I l'J871 

Takishima ,·t al. 7UU QT B . sampk sampk 
119861 1..' .\:j'l;IIJ .~ it )J1 1..•~pan sio 

11 

Tahlc A-4 (continued): Two-phase recirculation apparatus surveyed 

Special 
foatnrl's 

A pair of 
transparent 
glass windows 

Sampling using 
standard GC 
valves. 
Ability to 
n1caslIre 

densities. 
An 
optical/photogr 
aphic syst~m. 

Wimlowcd 
,·q11ilihrium 
,di. 

S~·stcms 
measured 

2-pwpanol + 
carbon dioxid~ 

2-propanol + 
water + carbon 

dioxide; 2-
butanol + water + 
n-hutanc 
carbon dioxide + 
toluene; carbon 
dioxide+ 1-
mcthylnapthalene 
; carbon dioxide 
+ tolnene + 1-
methylnapthalcnc 
Carbon dioxide + 
n-hutanc. 

Carhnn dioxid,· + 
n-tlc-canl~. 

Carhnn dioxid,• + 
i.:ydoh,·xam•.; 
rnrhon dioxid,· + 
h1.~IIZl!lll' . 

Carhon dioxid,• + 
,· thanol; carhun 
dioxid,· + wat,·r: 
carlmn 1lioxi1k + 
ethanol. 

v.) 

-...J 
.i::,. 



Refen•nn.~ Cell rnh1ml' Opernling Runge E11uilihri11111 cell Measurement Ei111ilihr11tin11 Sample size (µI) Method or sampling 
(I) Device time 

(rnr1
) Temp Pressure Temp Pressure (min) Vapour Li1111id Vapour Li11uid 

(K) (hnr) (2) (3) 

Adams et al. - 513 346 sapphire PR PT 5-10 -t55 18 six-port six-port 
(1988[ GC vah·c GCvalw 

D'Souz.a .-1 al. stainless sted PR B 60 300/100 300/10 10-port 10-port 
(1988[ 100 0 00 GC va lve GC valve 

D' Souza and Teja 
(1988[ 

Kncisl et al. - 310-425 60-345 stainless steel PR PT 90 I I salllple sample 
(19881 probe probe 

lnomata ct al. 750 - 316 stainless .~led TC PT - - - s,11npl.,r .~ampler 
I 19881 

Shibata and 100 -t22 H:I TC PT 60 - sampling sampling 
Sandkr ,·alv~ valve 

f 19X%:)I 

Tahle A-4 (continued): Two-phase rccirrulation ap1rnrat.us surveyed 

Spcdal 
l'catures 

Sampling using 
standard GC 
valv~s. 
Visual cell. 
Salllpling using 
standard GC 
valves. 
Glass windows. 

Salllpling of 
any phase using 
a sample prohe. 
Windows 
viewed by 
lllilTOrS. 
Jerguson liquid-
level l!augc. 
Windowed cdl. 

D,·nsity nwtcrs 
in rcdr<.:ulation 
loops. 
Vi .sual cell. 

Systems 
measured 

carbon dioxide + 
decane; carbon 
dioxide + methyl 
linok,ate 
Carbon dioxide + 
n-hexadecane; 
carbon dioxide + 
water 

glucose+ 
fructose + water 
+ t!lhanol + 
carbon dioxide 

Carhon dioxide + 
n-dccanc 

Amlllonia + 
water; an1111011ia 

+methanol+ 
water. 

Carbon dioxide + 
11-hutani: ; 
nitrogl.'.'11 + n-
huta111 .. ~; nitrngl.!11 

+ 11-butanc + 
rnrbon dioxid,, 

w 
-..J 
Vl 



References Cell volume Operating Range E,p1ilihri11111 cl'II i\·lcasur<'ment E,111ilibratinn Sample size (µI) Method ol' sampling 

(I) De,·ice time 
(cm-') Temp Pressure Temp Pressure (min) Va1}0ur Liquid Vapour Liquid 

(K) (hur) (2) (3) 

Shibata and 
Sandler 

I 1989(a)I 

Marathe and 
Sandler 
119911 

Kim ct al. 150 293-430 250 316 stainless steel TC PT 10 100 I 6-port GC 6-port 

(1989] sampling GC 
valve sampling 

valve 

.l.-n11ings a11<I T,·,ia -lO .~lainlr.\'-S skt·I TS B - I 0.1 sa1npling .sampling 

I 19891 Yah·~~ rnh·,,, 

Tahle A-4 (continued): Two-phase recirculation apparatus surveyed 

Specinl 
features 

Glass window. 
Sampling using 
standard GC 
valves. 

Vi.~ual cell. 
\'ariahl.:-
,·,1lunw 
c·.,11trolkr 
si1nilar lo 

Radosz ( 198-l ). 

Systems 
me:,sured 

Carhon dioxide + 
cyclohexane; 
nitrogen+ 
cyclohexane; 
nitrogen + carbon 
dioxick + 
cyclohexane 

Cyclopcntanc + 
carbon dioxide; 
cyclopentane + 
nitrogen; 
cyclopentane + 
argon; argon + 
neopcntanc; 
argon + 11-butane. 

Carhon dioxide + 
anisole; carbon 
,lioxide+ 
henzaldchydc; 
carbon dioxid~ + 
tctrnlin; carbon 
dioxide+ I-
mcthylnapthalen,: 
; ethane+ 
anisole; ethane + 
h,,11zakld1yd,·; 
.:than,:+ t,:tralin ; 
,:than"+ I-
mdhvlnaDthalene 

Carbon dioxide+ 
1-h,·xen,· : ,·arhnn 
dioxid,• + 1-
h,:xy11<' . 

w 
-...J 
0\ 



Rel'crenccs Cdl mlunw Opl•raling Range E1111ilihri11111 cell Mcusnn•menl Equilibration Sample size (µI) Method ol' sampling 
(I) Dc,·icc lim,• 

(cnr1
) Temp l'rrssure Temp Pressure (min) Vnponr Li<1uid Vapour Liquid 

(K) (har) (2) (3) 
Suzuki ~l al. 500 -t53 250 - PR B -t80 1000- 750 sampler sampler 
I I990(h)] 10000 

Suzuki et al. 
I 1990(c)J 

Wisni<,wska et al. 50 . 30 stainless steel PR B . 300 300 sampling sampling 
I 1993] valv\! valve 

Tahle A-4 (continued): Two-phase recirculation apparatus surveyed 

Ke)': 
(I) rvlaterial or construction or equilibrium cell 
( 2) TC - thermocouple: PT - platinum resistance thermometer: TS - thermistor: QT - quartz thermometer 
( 3) B - Bourdon pressure gauge: PT - pressure transducer: D\VP - dead weight piston gauge 

Special 
fealnrrs 

·n1rce pairs of 
windows. 

Modified 
Rogalski-
Malaowski 
chulliomeler. 

Systems 
measured 

Carbon dioxide + 
methanol ; carbon 
dioxide+ 
ethanol ; carhon 
dioxide+ I-
propanol ; 
methane+ 
ethanol; methane 
+ 1-propanol ; 
ethane+ ethanol ; 
ethane+ I-
propanol. 

Hydrogen+ 
carbon monoxide 
+ carbon dioxide 
+waler+ 
methane + ethane 
+propane+ 
methanol + I-
Dl'Ol)allol. 
Benzene+ 
heptane; benze th! 
+ cyclohexanc. 

w 
-....) 
--.:i 



Q}-1 On-Ott Valve 

{B-1 Metering Valve 

l{c}t Moaifllld 1/olwe 

© Tlffljle,'Ghn lilecsurt 

® Pr1u11r11 Measure 

FEEO 
TANM 

Figure A-15: Experimental apparatus of Simnick et al. [1977] 

A.2.6. Static Methods 

A.2.6.1. Static Analytical Methods 

Ohgaki and Katayama (1975] 

378 

Sampling of the liquid phase was accomplished with a unit that comprised a tube (approximately 

0.15 cm3 in volume), a ball valve, and a needle valve (approximately 2 cm3 in volume). The 

liquid phase sampler is illustrated in Figure A-16 (denoted by K). Ball valves were used with the 

sampling valves to avoid the flashing phenomenon. Once a sample of the gas phase had been 

taken, it was introduced into a container of variable volume (denoted by Bin Figure A-16) and 

expanded to about 0.1 atm. The liquid phase sample on the other hand was vapourized and then 

introduced to a liquid phase container which was also maintained at about O .1 atm. These 

samples were then sent to a GC for analysis. Ohgaki and Katayama [1975] . 



Rel'erl'nces Cell rnhtml' Opuating Runge Et1uilibriu111 Cl'II i\·ll'usurement Equilibrution Smnple size (µI) 
(I) Device time 

(cm-') Temp Pressure Temp Pressure (min) Vapour Liquid 
(K) (bar) (2) (3) 

Simnick el al. 90 703 - 316 stainless steel TC B - -
[19771 

Sebastian ct al. 
(1978) 

Sebastian cl al. 
I 1980(a)f 

Sebastian el al. 
[ I 980(b)f 

'lbies and 60 723 345 316 stai nles.~ steel PR B - - -
Paulaitis 
[1984) 

I.in cl al. 10 710 2:'iO 116 stainles.~ sled TC B - - -
(1985] 

Tahle A-5: Single liquid and vapour pass apparatus surveyed 

Method of sampling Spl'cial 
feuturcs 

Vapour Li11uid 

Manifold Manifold Liquid level 
valve valve detector. 

sample sample High 
expansion expansion temperature 

aluminasilical 
e elass. 

sample sample Sapphire 
expansion expansion windows. 

Liquid level 
indicator. 

Systems 
measured 

Hydrogen+ 
tetralin. 

Hydrogen+ 
quinoline 

Carbon dioxide 
+ n-decanc; 
carbon dioxide 
+ n-hexadecane. 

Carbon dioxide 
+ toluene; 
carbon dioxide 
+ m-xvlene. 
Methanol + I -
methylnaphthal 
ene. 

Carbon dioxide 
+ toluene; 
propane+ n-
butyraldehydc ; 
carbon dioxide 
+ n-octadecane; 
carbon dioxide 
+ phcnyloclane; 
carbon dioxide 
+ 1-hexadcccnc; 
carbon dioxide 
+ II-
propylcydohcxa 
ne ; carbon 
dioxi1k + water 
+ ili,·1hyla111i11,,. 

w 
.....:i 
\0 



Rel'crcnl,es Cl•II rnlumc Operating Rnnge Equilihrimn cell i\knsnremenl E1111ilihrntinn Sample sizt' (µI) Melhnd of sumpling 
(1) Device tinll' 

(cnr1
) Temp Pressure Temp Pressure (min) Vapour Liquid Vapour Lir1uid 

(K) (hnr) (2) (3) 

Nies<.'n et al. - 625 JOO 316 stainless sled PR PTffi - - - sampk· sample 
I 19861 expansion expansion 

Inomata ct al. 30 710 250 316 staink~s steel TC B - - - sample sample 
(1986] expansion <'Xpansion 

Inomala el al. 
I 191171 

J.•nnings et al. - .stainll'.,s sted TS B 20-30 - sample sampk 
11991 I trap trap 

<'h,·n ,·1 al. 100 700 700 Nimonic TC B sampk sample 
I I CJ<).j I \.'Xpansintt ,:xpa11sin11 

Tahle A-5 (continued): Single liquid and vapour pass a1>1>aratus surveyed 

Spcciul 
fcnlnres 

Borosilicate 
glass willllow. 

Employed an 
overflow l ypc 
self-control 
system. 

Visual c\!11. 

Sapphir,· 
windows. 

Systems 
measured 

Watt!r + ethanol; 
methanol+ 
ethanol. 

Carbon dioxide 
+ n-heplane; 
carbon dioxide + 
n-decane; carbon 
dioxide+ trans-
decalin; carbon 
dioxide+ 
letralin; carbon 
dioxide+ 
quinolinc; 
benzene+ 
lclrnlin; benzene 
+ quinoline. 

Carhon dioxide 
+ henz~.n~ + 
letralin ; carhon 
dioxide+ 11-

decane + 
lctralin; carbon 
dioxide+ 
bcnwnc. 
Carhon dioxid,, 
+ ,'lhannl; 
,-arhon dioxide+ 
1-hntanol. 

1-propanol + p-
xyk1w. 

w 
00 
0 



Key: 
( 1) Material of construction of equilibrium cell 
(2) TC - thermocouple: PT - platinum resistance thermometer; TS - thermistor; QT - quartz thermometer 
(3) B - Bourdon pressure gauge; PT - pressure transducer; DWP - dead weight piston gauge 

\.;J 
00 ...... 
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prepared their calibration samples at 0.1 atm as well so that the concentrations were comparable. 

Schematic diagram of experimental apparatus 
A: Equilibrium cefl 
B: Container for vapor sarT.,aing 
C: EVB?Ofator 
O: Container tor liQuid sampling 
E: Pressure transducer 
F: Bourdon tube gage 
G: Oead weight gage 

H: Solvent vessel 
I ; Gas c,1inder 
J: Oil bath 
K: Vapor sampling part 
L: Uquid sampling part 
M: Separated sclenoid 

Figure A-16: Experimental apparatus of Ohgaki and Katayama [1975] 

Slocum (1975] 

Slocum [1975] designed a glass equilibrium cell that permitted observation of single- or 

multiphase systems in the temperature range of -50 to 250 °C and a pressure range of vacuum to 

1000 psig. He claimed that the equipment had a wide range of applicability, and could be used in 

the study of reactions, densities, vapour pressures, vapour-liquid equilibria, liquid-liquid 

equilibria, and critical phenomena. 

The cell volume was varied by mercury injection from an adjacent reservoir. Equilibrium cell 

volume and internal pressure was controlled by adjustment of inert-gas pressure over the mercury 

reservoir. The mercury height in both the equilibrium cell and reservoir was measured with a 

cathetometer. The variable volume capability of the equilibrium apparatus made the equipment 

capable of determining P-V-T data for gases or liquids. 
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Unfortunately Slocum [1975] did not present any experimental results, and one could not judge 

how reliable or accurate the apparatus was. 

Reiff et al. [1987] 

Sampling of the gas and liquid phases was undertaken by the use of high-pressure capillaries that 

had an internal diameter of 1.5 mm. The withdrawn samples were homogenised in a low-pressure 

sampling chamber of volume 700 cm3 with the aid of electromagnetic stirrers. To ensure that the 

sample was in the gaseous state, the sampling chamber was heated. Figure A-17 illustrates the 

sampling chamber. 

A feature of the sampling chamber was a triple-loop sampling valve. At a particular time, the 

first loop was open to the sampling chamber and thus contained the sample; the second was open 

to the carrier gas; and the third was open to the vacuum system. Turning the loop valve to the 

second position, the loop containing the sample is open to the carrier gas and thus the sample is 

sent to the GC; the second evacuated; and the third took in the sample. This provided a means of 

sampling and conveying of sample to the GC. 

The sampling chamber was also used as a mixing chamber, in which gaseous mixtures were 

prepared for GC calibration. Reiff et al. [1987] calculated the compositions of the gas mixtures 

used to calibrate the GC from the partial pressures according to Dalton's Law. 

G.c. sample 
piping-

Loop inlet 
to the 
sampling 
chamber 

Supply 
valves 

-+--i:,J.... Magnetic 
stirrer 

FIGURE 3. The sampling chamber. 

Figure A-17: The sampling chamber of Reiff et al. (1987] 
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A.2.6.2. Static non-analytical Methods 

Laugier et. al. (1990] 

The apparatus was designed for operating pressures and temperatures ofup to 20 MPa and 353 

K respectively. The cylindrical part of the cell was made of transparent sapphire, which allowed 

direct optical measurements of phase volumes. The composition of the equilibrium phases and 

the saturated molar volumes were calculated from material balance equations. This was achieved 

by measuring the phase volumes and the total number of moles for three different loadings of the 

equilibrium cell. Thus accurate measurement of mass and volume was critical to the success of 

the experimental method. A more detailed description of the experimental method is available in 

Laugier et al. [1990]. 

Table A-6 lists all the static apparatus surveyed, along with the systems measured. 

A.3. Dew- and bubble point method for determination of VLE 

By the variation of pressure, temperature, or composition, the dew point or bubble point of a 

mixture can be induced. This is as a resuh of the mixture entirely vapourizing or entirely 

liquefying. The approach of varying the pressure of a mixture of known composition is 

experimentally the simplest, as it can be achieved by the variation of the system volume. The dew 

point or bubble point is detected in such an experimental procedure by continuously monitoring 

the pressure-volume (P-V) profile. Dew points and bubble points are represented by sharp breaks 

in the P-V profile. The break in the P-V profile is particularly pronounced for the bubble point. 

Figure A-18 illustrates a P-V profile and the y-x equilibrium diagram corresponding to it. 

With reference to Figure A-18, if a mixture of overall composition Z is decompressed from 

compressed liquid at A, the first vapour will form at B. This corresponds to the bubble pressure, 

Pn. Further vapourization will continue until the sample is entirely vapourized at the dew point, 

Pn. The procedure could of course have been undertaken in the opposite direction, i.e. 

compression from C to A. Thus Band Dare two equilibrium points on a vertical line on the P-x-y 

diagram. Thus the breaks in the P-V profile determine the placing of the dew point and bubble 

point on the equilibrium curve. 
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To determine vapour-liquid equilibria via the dew and bubble point method as described above, it 

is evident that experimental apparatus must consist of a variable-volume equilibrium cell with 

precise volume measurement, precise pressure measurement, and an isothermal environment. 

An excellent review by Malanowski (1982(a)] describes the various methods used in dew and 

bubble point measurement. Interestingly, earlier apparatus were visual and dew points and 

bubble points were detected by visually observing the appearance of condensation or the first 

bubble in the liquid respectively. 
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Figure A-18: Pressure-composition and pressure-volume diagrams for the method of dew 

and bubble point determination ofVLE [extracted from RaaI and Muhlbauer, 1998} 

A.4. P-V-T Apparatus 

Most of the equipment reviewed, that had variable-volume equilibrium cells, were capable of 

measuring P-V-T data. However, none of the researchers had undertaken P-V-T measurements 

for the determination of second viria1 coefficients for pure gases or gas mixtures (greater detail 

on virial BOS is available in Chapter 3.2.). Equipment designed to undertake P-V-T 

measurements and determination of second virial coefficients (Chun et al. (1981], Barber et al. 

[1982 (a,b,c)], and Wilson et al. [1984]) were all based on the experimental apparatus or 

modifications thereof by Kay (1936] . 
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Experimental apparatus of Kay (1936) 

The apparatus of Kay [1936) (Figure A-19) was used to determine the P-V-T relations of 

petroleum gases and vapours over a wide temperature and pressure range. The equipment was as 

result of modifications to the Bahlke and Kay [1932] apparatus. Equipment was later modified 

by Kay [1938], and Kay and Rambosek [1953] to determine P-V-T-x relations. The 

measurements were performed via the dew point and bubble point methods referred to in 

Appendix A.3 . 

F 

I 
i 

•, ___ I.I 

Figure A-19: P-V-T Apparatus of Kay (1936) 
A,B - legs of U-tube; C - thick-walled capillary tube; D - steel plug; E,F - capillary constrictions; G -
high pressure gas cylinder, H - connecting vessel; I - simple ball check valve; J - pressure gauge; K -
electromagnet; L - vapour jacket; M - thermocouple. 

P-V-T measurements were performed in a Pyrex capillary tube (C ) of 2 mm internal diameter. It 

had a wall thickness of approximately 3 mm. The tube was calibrated by weighing the amount of 

mercury to fill it to various points, and the volume calculated from the sealed end. The volume 

was expressed in terms of the distance from a reference line etched around the tube near the 

sealed end. Pressure was measured with a precision spring gauge (J) and the pressure of the 

system and consequently volume was adjusted by the injection of mercury into the capillary tube. 

Temperature measurement was by means of a copper-ronstantan thermocouple (M), and the 

isothermal state of the tube was maintained by boiling liquid at a regulated pressure in the vapour 

jacket (L). The sample in the tube was stirred by means of a small steel ball which was moved by 

an electomagnet (K) surrounding the tube. 



Rcfrrcncc.~ Cell rnlumc Opcrnling Unnge E11uilihrimn cell Measurement E11ullihrntion Snmple size (µI) 
(I) Dc,·icc time 

(cm.I) Tem1> Prcssnre Temp Pressure (min) Vupour Liquid 
(K) (bar) (2) (3) 

Kohayashi and 367 207 . TC B 120 . . 
Katz 

(19531 

Ak..,rs ct al . 500 . 670 stainle.<.< st.,el T B 30 . . 

[ 1954 (a)I 

Akers et al. 
[ 1954 (b,c,d)I 

Din . . . copper PR OM . 250000 . 
(1960] 

Kohn 5/12 . 69/104 pyrex glass PR B . NA NA 
[19611 

I Jottovy ct al. 
11981 I 

lfottovy ct al. 
1191<21 

I ·11 .- 11 ,· I al. 

11•>,;91 

Table A-6: Static a1>1>aratus surveyed 

l\'lcthod of sampling Special 
features 

Vapour Liquid 

Sample Sample Glass 
expansion expansion windows. 

Sample Sample Equilibrium 
expansion expansion cell agitated by 

rocking. 

capillary sample Use of a 
homh differential 

mercury 
manometer to 
measure high 
tJressurcs. 

NA NA Non-analytical 
method to 
determine 
composition. 
Dew and 
bubble point 
method. 

Systm1s 
mensurcd 

Propane + water. 

Methane+ 
Propane 

Carbon Dioxide 
+ Propane. 

Nitrogen+ 
oxygen. 

Methane+ n-
heptane. 

Methane+ 
ethane+ n-
octane. 

Methane+ 
propant, + n-
octal1'.~; 1netha11c 
+ n-butanc + n-
octan<! ; 111<•1hane 
+ carhon dioxi,k 
+ n~octanc. 

Nitrog~n + 
mi.' thanc + 11 -

hi.'ptanc. 

w 
00 
--..l 



Rcfrn•nccs C1•ll ,·olmm· Operating R,mgc E1111ilihri11111 nil Mcnsuremcnl E11uilibralio11 Sample size {µI) 
(I) D<',·ice time 

(l'llr') Tem1> Pressure Temp Pressure (min) Va1>0ur Lic111id 
(K) (bar) (2) (3) 

Rogers and 150 223-423 1013 stainless sled TC PT - -
Prausnitz 

(19701 

Besscrcr and v.v. 255-395 207 3 I 6 stainless steel TC PT 10 10·3g 10··'g 

Robinson 10-175 
I 1971 I 

Kalra ct al. 
119781 

Brnnner et al. 1000 623 IOOO 316 stainless stcd TC B -
(19741 

Ohgaki and ~00 152 .~lainkss sled PR DWP/PT v.v. 150 
Katayama 
I 19751 

Ohgaki and 
Katayama 

I 197(i( 

Tahle A-6 (continued): Static apparatus surveyed 

Mel hod of snmpling Spcdal 
l'eatur<'s 

Vapour Li11uid 

sampling sampling Sampling using 
piston piston a piston. 

·n1crm.istor to 
determine 
vapour-li,1uicl 
interface. 

sample sample Has optical 
expansion expansion system lo 

measure 
refractive 
index. 
Windowed 
cell. 
Mixing of 
phases hy 
movement of 

four-port pistons. 
ball valve 

capillary capillary 

sampk hall ,·alw Agitation hy 
1.. ... xpansin11 . nmgnctk: 

slilT<'I" operated 
hy soknoid. 

Systems 
measured 

Argon + 
neopentane. 

Carbon dioxide 
+ n-butane. 

Carbon dioxide 
+ 11-hc1>ta11e. 
Nitrogen+ n-
heptane; 
nitrogen+ 
methylcyclohcxa 
ne; nitrngen + 11-
heptane+ 
mcthylcyclohexa 
11~-

Carhon dioxide 
+ ethyl ether; 
t·arbon dioxide + 
111,, thyl a<:,·tak. 

Carhon dioxi,k 
+ nwlhannl; 
carhon diDxid~ + 

11-h\.~Xalh." ; carbon 
dinxi1k+ 
henzcne. 

w 
00 
00 



Rel'cn•nct•s Cell rnlumc Operating Range Ettnilihrium t·cll Measurement E1111ilihrutio11 Sumpk size (µI) 
(I) n .... ic .. time 

(cnr1
) Temp Pressure Temp Pressure (min) Vapour Liquid 

(K) (har) (2) (3) 

Slocum v.v. 223-523 69 pyrcx glass - - - - -
(19751 223-598 35 

Antezana amt 800 - - 316 stainless Sll\CI TC DWP 300-1500 - -
Chd1 
I 19751 

Klink et al. 
(19751 

Gomez-Nieto and v.v. 325-425 56 stainless steel TC PT 640 50 50 
Thmlos 
(19781 

Ng nnd Rohinson 150 310-589 173 316 stainless sled TC B 180 - -
I 19781 

Ng and Robinson 
I l'J791 

l l11ang and 
R11hin.<11n 

119811 

Tahle A-6 (continued): Static apparatus surveyed 

i\-lcthod of sampling Spccinl 
t't•atnr<'s 

Vapour Liquid 

- - Visual cell. 

capillary capillary Thermistor 
operated liquid 
level probe. 

tnagnctic magnetic Agitation by a 
agitator agitator rising and 

falling cylinder 
actuated by 
solenoids. 

spccially sampling Specially 
designed rod. designed 
sampling sampling 
valw techniques. 

Pyrex windows. 

Systems 
mcusnrcd 

Hydrogen+ 
anunonini 
hydrogen+ 
propane; 
hydrogen+ 
ammonia+ 
propane. 

Hydrogen + 11-

butane. 

Propane+ 
ethanol. 

Carhon dioxide + 
toluene. 

Carhon dioxid,· + 
mcthylcyclohcxa 
nc; hydrogen 
sulfi,k + 
mcthylcyclohexa 
nc:. 

111-Xykn~ + 
hydrog;,11 
sulphid,,; 
llll-".'- ilyk~n ... · + 

hydrogc~n 
sulphid,· . 

w 
00 
\C) 



References Cdl \'Ohtm{' Operating Range E11uilihri11111 cdl Mcnsuremcnt E11uilibrntin11 S,unple size (µI) 
(I) Dc\'icc lime 

(cnr'J Temp l'rl'ssure Temp Prl'ssure (min) Vapour Liquid 
(K) (har) (2) (3) 

lluang and 
Rohi11.so11 

(19851 

Kulra and 241.1 77-298 104 .stainl-,ss sled TC PT -
Robinson 
(19791 

Figuierc el al. 50 673 400 stainless s trd TC PT I I 
(19801 

L.augi1..'r d al. 
[1980) 

Rc11011 ,·t al. 
1198')1 

l~gr,·t ,· t al. 100 2~3-4~3 50-1000 stainll·ss sh.'l'I TC PT 10 15 15 
I l')X 11 

Tahlc A-6 (continued): Static al)paratus surveyed 

Method ol' sam1>ling Special 
fenlnrt's 

Vapour Lh1uid 

sampling sampling Cathetomcter 
valve va)v~ used to measure 

liquid volume. 

sampling sampling Stin-ins via 
valve valve magnetic 

induction using 
rnlenoid coils. 
Sampling using 
valves which 
open for a very 
short time (0.01 
s). 

sa mpling .sampling Stirring hy 
111il'rocdl mit:rncdl 1nagnl·lic 

indm:tinn using 
solcnnid n•ik 
Sa1npli11g tl."-ing 
dctad1ahlc· 
micrncdl.,. 

Systems 
mcasnr<'d 

Methane+ 
mesitylc11<,; 
carbon dioxi,k + 
mcsilylenc. 
Six-component 
sour natural gas. 

Nitrogen + n-
heptane. 

Hydrogen+ 
2,2.4-
trimethylpenlanc; 
hydrogen+ 
toluene. 

Carhon dioxid,· + 
n-prnpylh,·nz,·nc; 
nitrll£l'll + II-

11ro11vlhcnzenc. 
Nitrogen + n-
heptane. 

I.;.) 
l,O 
0 



Rel'<-rNt<·cs Cell \'Oh1111<• Operating Rang<• E<1uilihri11111 c<•II i\·lensu remcnl Et1uilihrntion Snmple size (µI) 

(I) De,·icc time 
(rnr1

) Temp Pressure Temp Pressure (min) Vapour Li<1uid 
(K) (bar) (2) (3) 

Renon el al. 
(19891 

Bae et al. 300 223-323 100 304 stainless sled PR PT 120 - 8 

(19811 

Mcskcl-Lesavrc ct v.v. 373 50 titanium TC PT 60 NA NA 
al. 

(19811 

Konrad cl al. 100 293--H3 2000 stainless .~lccl TC B - 50mg 50 mg 

11983) Nimonic90 

Sp,•c and 
Schn,·id,•r 

119911 . 

Tahle A-6 (1.:ontinuecl): Statk apparatus surveyed 

Method of snmpling Spcciul 
fratures 

Vapour Li11uid 

sample sampl ing Large glass 
expansion rod. window. 

Sampling of 
liquid using a 
sanmlin~ rod. 

NA NA Entire cell sits 
on a mass 
balance. 
Movahle 
1>isto11. 

capillary capillary Two pairs of 
sapphire 
windows. 
Agitation hy 
ntagnctic 
induction 
produced by 
solenoid coils. 

Syskms 
me:1s11red 

Carhon dioxide + 
n-propylhenze.ne; 
nitrogen + n-
nro1wlbe11zenc. 
Ethylene+ I-
butene; ethylene 
+ propylene. 

Ethane+ n-
dodccanc. 

Carbon dioxide+ 
tridecanc + 
hexadccane; 
carhon dioxide + 
tridecane + I -
hexadecanol. 

Carhon dioxide + 
hexadecan,·; 
carbon dioxide + 
1-dodccanol; 
carbon dioxi,k· + 
1,8-octanc,liol ; 
carhon dioxide+ 
dotriacn11lan~; 
hl·xad~catll' + 
I .8-oc1a1wdiol. 

w 
'-0 ,__. 



Rl'l 0

l'r('IIC('S Cell \'nh1m1• Operating Range Ei111ilibri11111 cell Measun,nwnl E1111ilihratio11 Smnplc size (µI) 
(I) Dc,·ice lillll' 

(cnr1
) Temp Pressure Tc1111> Pn·ssurc (min) Vapour Li1111i<l 

(K) (hnr) (2) (3) 

Knrcliknwski and 
Schneider 

(19951 

Konrad et al. 100 300-450 2000 stainless steel TC B - NA NA 
(198]1 Nimonic 90 

Rouss.-aux c.t al. v.v. 573 600 stainll!ss steel TC PT 300 NA NA 
( 198]) 

Ciuill,•vic ct al. v.v. 558 70 ] 16 .staink.<s .slc,·I TC PT -
1198]1 

( ialivd-Snla.<I inul,; 
,·1 al. 

I 198<il 

Tahle A-6 (continued): Static: a1>paratus surveyed 

Mdhu<l nf sampling Sp1•cinl 
l'catur,•s 

Va1m11r Li1111i<l 

NA NA Spectroscopic 
methods to 
determine 
composition. 
Sapphire 
windows. 

NA NA Entire cell sits 
on a tnass 
balance. 

capillary capillary Stin-ing hy 
1nag11\!tic 
induction wing 
snl,•noid cnik 

Systems 
measured 

Carhon dioxid,, + 
1-dodecanol + 
dodecanoic acid 
+ (quinoxalinc or 
1,8-octancJiol); 
carbon dioxide + 
1-dodecanol + 
doclccanoic acid ; 
carhon dioxide+ 
1-dodecanol + 
quinoxalinc; 
carhon dioxide + 
dodecanoic acid 
+ quinoxaline. 

Carbon dioxide+ 
ckcanc. 

Mc,thanc + 11 -

I\Ollilll~ 

Propan~ + 11-

oclall1..'. 

Propane+ 
mc1ha1wl : 
propan,' + 
nwthannl + 
carhon di oxid,· 

w 
'0 
tv 



Rcfrrcnces C<•II volume Operating Runge Equilibrium cell Mcusurcmcnl Equilibration Sample siu (µI) 
(I) De,·ice time 

(rnr1
) Temp Pressure Temp Pressure (min) Vapour Liquid 

(Kl (har) (2) (3) 

Ashcroft (.'t al. 885 333 690 nrnngan~sc steel TS PT 180 60 60 
I 19831 

de Loos ct al. - - - stainless st.:el PR DWP - -
I 19841 

Fontalha cl al. v.v. 433 450 titanium alloy TC PT NA NA 
I 19841 60 (max) 

< iali,·d-S,,la .,tiouk 
,·t al. 

f l'J~Cif 

R,·nnn ,·1 al. 
I l ')X'lf 

Tahle A-6 (continued): Static apparatus surveyed 

Method ol' sampling Special 
l'calures 

Vapour Li<1uid 

sampling sampling Sampling of 
rod 'rod phases using a 

retractable ro<l. 
Windows. 
Agitation via 
rockin~ of cdl. 

- Windowed 
autoclave. 

NA NA ·n,emistor 
probe to 
measme 
vapour-liquid 
interface. 
Piston activated 
by magnetic 
field induced 
hy solenoid 
coils. 
Mic,;rom<'tc,r 10 

mcasur.,. piston 
kwl. 

Syskms 
measured 

Methane + n-
hexane. 

Ethylene + 11-

eiosane; ethylene 
+ hcxacosane; 
ethylene + 11-

tetrncontm1e. 

Carbon dioxide + 
isopentanc. 

Propane+ 
mt'lhanol ; 
propa1h! + 

111..ihanol + 
carbon dinxi,k. 

C:arhnn dinxi,k + 
n-pn1pyllwnz,·n,·: 
nilrog~"n + n-
pro11ylhenzc1i.·. 

w 
\0 
w 



Rrfrrl'lll't's Cell ,·nluml' Oprraling Range Equilibrium cell Measurrml'nl EtJUilihralinn Sample size (µI) i\-lelhod nl' sampling Special Systc-ms 
(I) D,•,·ke time l'rnlurrs mrnsured 

(cur') Temp Pressurl' Temp Pressurl' (min) Vapour Lit1uid Vapour Li,1uid 
(K) (hnr) (2) (3) 

Fall ,111d Luks 7-8 398 104 pyrcx glass PR PT . NA NA NA NA Phase. volumcs Carbon dioxide + 
I 19841 measured using n-dotriacontanc.; 

a cath~to1ncl~r. carbon dioxid<! + 
n-docosanc. 

Fall and Luks Carbon dioxide + 
(1985) 1Hridecane; 

carhon dioxidc + 
n•paraffin . 

Huang et al. v.v. 523 345 sapphire and TC PT . . sample sample Agitation hy Methane + carbon 
(19851 (45 max) stainless st,·el expansion cxpansi rocking. dioxide+ 

Oil Entire cell hydrogen 
visual. sulphide + water 

Leu and Robinson Carbon dioxide+ 
( 19881 neopentane. 

Japas and Franck . 673 2900 nickd-hasc TC PT . . . capillary capillary Can be run in Nitrogen + water 
[1985] con·osi on~ r~sista n l synthetic or 

high strength alloy analytical mode. 
Sapphirc 
windows. 

l . .augii.!r and 50 423 100 316 .stai nkss st,•d TC PT . . . special sp~cial Kalrez is uscd a Ethane+ 
Rid1nn capillary capillary gasket cydohexan.:. 
11986) UniCJuC 

sampling 
mdhod using 
<:apillari t'., . 

C.ia)h·d -S, >lastiouk Propane+ 
,•I al. nw1ha11ol: 

I l'JK<il pn.ipane + 
m<'lhannl + 
c-ir+Hm dioxid1.•. 

Tahle A-6 (rontinuecl): Statk apparatus surveyed w 
'f 



Rcfucncl'S Cdl volume Operating Range 

(mi-') Tcm1> Pressure 
(K) (har) 

Reuou et al. 
[1989[ 

Occhiogrosso cl v.v. j35 700 
al. (45 max) 

[19861 

Suppcs and 
Mcllugh 
(19891 

Wagner and 65 - 100 
Wichlerle 

(19871 

Wagu.:r and 
Pavlic.:k 
I 19931 

Wagu,·r and 
Pa,·lic,·k 

[ 19941 

\Vagn\:r 

I 191J:i I 
;\;akayama <'I al. 270 -150 2110 

[ 19!17[ 

E,1uilihri11m cdl i\lcasurcnumt E11uilihratio11 Sample size (µI) 
( I) De,·icc time 

Temp Pressure (min) Vnpour Li<1uid 
(2) (:\) 

316 stninkss stcd PR PT - NA NA 

stainless steel QT B - -

J 16 .<tainkss st-·d TC PT 720 100 100 

250 250 

Tahlc A-6 (continued): Static apparatus surveyed 

Method of sampling Spedal 
features 

Vapour Lic1uid 

NA NA Movnblc piston 
scaled with 
Vitou o-riugs. 
Visual cdl. 
Isopleth 
measurements. 

capillary capillary Pyrex glass 
windows. 

sa1npli11g .sa mpling Sampling via 
wd rod s liding rod anti 

capillary <:apillay capillary 
compar('d. 

S~·slems measured 

Carbon dioxitl<' + 
11-propylheuzcuc; 
nitrogen + 11-
nrol)vlbeuzeue. 
Carbon dioxide + 
Clllll<!lle 

Carhou dioxide + 
styrene. 

Carbon dioxide + 
I-hexane; carhou 
dioxide+ n-hexane; 
carhon dioxide + I-
hexene + 11-hexanc. 

Carhon dioxide + 
p-cymcu.:. 

Carhon dioxitl,· + 
ethyl ace.talc. 

Carhon tlioxid,· + 
,, thyl pn>pannat,•. 

Wat,·r+ I.I-
dill1111wethan,· ; 
wah.·r + 1t.'lhannl + 
1.1-tlilluon,elhan,·; 
\\'ilh'r + carhn11 

dioxid,,. 
w 
\0 
V, 



R1·frrc11n•s Cdl rnhnnc Opuating Rang,· E11uilihrimn cell Meusu r.,mcnl Ei1uilihr11tiu11 Sampfo sizc (µI) 
(I) Device time 

(cm·') Temp Pressurl' Temp Pressure (min) Ynpour Li11uid 
(K) (h11r) (2) (3) 

Kalrn et al. v.v. . 200 3 I 6 stain less sled TC B 720-900 . . 

I 19871 

Kalrn et al. v.v. 240 316 stainkss stc,el TC PT 1440 . . 

I 19!!7I 

Reiff ,·t al. 2000 273-473 300 chromium+ PR B/PT . . . 

ll9K71 nickel+ 
molybdenum steel 

L111gia el al. V.V. 353 200 Sapphire TC PT . NA NA 
119901 (10 max) 

Muhlbauer 350 45:l 200 slaink·s.~ st'-~d PR PT/H . 900 K.K 
(19901 

Muhlhau,·r ;111<1 
Raal 

I I 9'J I I 

\luhlha11,-r anti 
lbal 

ll'N~I 

Tahle A-6 (continued): Static apparatus surveyed 

Method ol' sampling Special 
l'cah1r1•s 

Vapour Li11uid 

sample sample Windowed cdl. 
('Xpansion expansion Agitation by 

rocking. 
Liquid lewl 
using 
cathetomNer. 
Mercury in cdl. 

<:apillary capillary Agitation via 
sample sample turbine 
homh bomb impdler. 

Pressure drop 
across capillary 
used to measure 
viscosity. 

capillary capillary . 

NA NA Entire cell 
visual. 
Cnthetometcr 
to indicate 
liquid level. 
Piston sealed 
with n-ring. 

sampk, sampling Use of jet-
expansion rod mixers to 

homng~ni.~I.! 
.samples. 

Syslcms 
nu,asnred 

Limonenc + citrnl 
+ carbon dio/Jde. 

Palm oil + carbon 
dioxide. 

Methane+ 11-

pentane. 

Carbon dioxide 
+tctradccane; 
carbon dioxide + 
acetic acid; 
carbon dioxicll, + 
,vatcr + acetic 
acid. 
Carbon dioxide + 
toluene; propane 
+ wah .... r; propane 
+ 1-propanol 

Carhnn ,lioxid,· + 
tnlu~ne. 

Propan,, + I -
pn.J11annl. 

w 
\0 

°' 



Rl·frn·ncl's Cdl n1h1ml' Operating Rangl, E1111ilihri11111 c.l'II i\-ll'ns11rl'111,•11t E11uilihration Smnple sizl' (µI) 
(I) Devic" time 

(cnr1
) Tl'mp Pressure Temp Prl'ssurl' (min) Vapour Li11uid 

(Kl (har) (2) (3) 
Xu ,' I al. 500 . 500 Stainless steel PR PT . 600 300 
119911 

Bian cl al. 
(19931 

Brunner d al. 1000 773 350 TC PT . . . 

119941 

V,·rn,,;1u <'I al. 500 273-423 1-20 PR PT . . 

I 19941 

Sako ct al. :iOO -180 _l(l(l PR B 2c!0-300 3000 
I 1')')51 

Tahle A-6 (continued): Static a1>1>aratus surveyed 

Method of sampling Sp,•,·ial 
fcaturl's 

Vupour Liquid 

capillary capillary R~inforcc<l 
glass 
windows. 

capillary capillary Equilibrium 
cell is an 
autoclave. 

sample sample Automated 
\!Xpansion expansion chullionwh'r. 

n1t.!1t.~ring 1nag1k~lic Sampling of 
valve c.=irculating liquid using a 

pump pump. 
Glass 
windows. 

Systl'ms m,•asured 

Carbon dioxide + 
1-pcntanc; R-22 + 
ethanol; R-22 + 2-
propanol; R-22 + 1-
hexane; R-22 + 
cyclohexane; R-22 
+ 
telrachloromcthan,·. 

Carbon dioxide + 
2-methylbutanc; 
carbon dioxide+ 
methane. 
Carbon dioxide + 
n-hexadecane; 
water+ 11-

hexadecane + 
carbon dioxide; 
henunc + 11-

hC'xadl'cane + 
carbon dioxide; 
benzene+ 11-

hexadcrnnc + 
hydrogen. 

Acetone+ 
methanol: 
isopropanol + 
methanol. 
Carbon dioxide+ 
furfural : carbon 
c.lioxid"· + wat~r + 
furfural. 

w 
\0 
--.l 



Rl'l'l'rl'lll"l'S Cl'II rnlmnl' Opl'rating Rangl' E1111ilihrinm cl'II Measut·l'llll'III E1111ilihralinn Samplte size (µI) 
(I) Ol',·icc time 

(cnr1
) Temp Prl·ssurc Temp Pressure (min) Vapour Lic111id 

(K) (har) (2) (3) 
Pfohl el al. 1100 520 staink•ss sted TC PT 720 -

I 19971 

Table A-6 (continued): Static apparatus surveyed 

Key: 
( 1) Material of construction of equilibrium cell 
(2) TC - thermocouple; PT- platinum resislancc thermometer; TS - thermistor; QT - qumtz thermometer 
(3) B - Bourdon pressure gauge; PT - pressure transducer; DWP - dead weight piston gauge 

-

i\frlhod nl' sampling Special 
l'calnrcs 

Vnpour Liquid 

capillary capillary Cansampk 
three phas<'S. 

Systems 
measured 

Carbon dioxide+ 
o-cresol + p-
cresol; wat<·r + 
benzene 
derivative; 
carbon dioxide+ 
benzene 
derivative; 
carbon dioxide + 
water + ben1.ene 
derivative. 

w 
\0 
00 
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APPENDIX B 

B.1. DEVELOPMENT OF THE CRITERION FOR PHASE EQUILIBRIUM 

For a closed system the fundamental property relation relating Gibbs energy, temperature and 

pressure is given by : 

d(nG)= (nV)dP-(nS)dT (B-1) 

If one applies this equation to a single-phase fluid that does not undergo chemical reaction, the 

system is then of constant composition, and one can write that : 

[
d(nG)] =nV 

dP T,n 
(B-2) 

and 

I d(nG) l 
l dT JP,n = 

-nS (B-3) 

In Equations (B-2) and (B-3) the subscript n indicates that the number of moles of all the 

chemical species are held constant. 

For the more general case of a single-phase, open system, the total Gibbs energy is still a 

function of temperature and pressure, but now it is also related to number of moles of each 

chemical species present. The total differential of nG is : 

d(nG) _ I d(nG) l d.P + I d(nG) l + LI d(nG) l 
- l dP J ,n l dT JP,n dT i l dni 1.T,nj dni 

(B-4) 

where summation is over all species present and subscript nj indicates that all mole numbers 

except the i th are held constant. 
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Replacing the first two partial derivatives by (n V) and -(nS) and defining the chemical potential 

of species i in the mixture as: 

_ = lld(nG) ] 
A dn. 

1 P,T,nj 

(B-5) 

one obtains the fundamental property relation for single-phase open systems : 

d(nG) = (nV)dP + (nS)dT + L Adn; (B-6) 

Consider now a closed system consisting of two phases in equilibrium. Within this closed system, 

each of the individual phases is an open system, free to transfer mass to the other. Equation (B-6) 

may therefore be written for each phase: 

(B-7) 

(B-8) 

where superscripts a and p identify the phases. 

If at equilibrium temperature and pressure are uniform throughout the entire system, then the 

total change in the Gibbs energy of the system is the sum of these equations, (B-7) and (B-8). 

d(nG) = (nV)dP - (nS)dT + L µt dnt + L µ/ dnf (B-9) 

Since the two-phase system is closed, Equation (B-1) must be valid. Comparing (B-1) and (B-9) 

one has that: 

(B-10) 

The changes dnt and dnf, however, result from mass transfer between the phases, and mass 

conservation requires that: 
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dna = -dnp 
I 1 

(B-11) 

Therefore, 

(B-12) 

Hence, 

i = (1,2, ... ,N) (B-13) 

where, N is the number of species present in the system. 

By successively considering pairs of phases, one may readily generalise to more than two phases. 

For 7t phases, 

- ,r .... - A i = (1,2, ... ,N) (B-14) 

For a species i in a real solution, we have the defining equation, 

dGi = RT d Inf; (const. T) (B-15) 

A 

where J; is the fugacity of species i in solution. 

Since by Equation (B-5), A = Gi, one may write 

A 

dA = RTdlnJ; (const. T) (B-16) 

Integration at constant temperature gives : 

(B-17) 

where the integration constant depends on temperature only. 
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Since all phases are in equilibrium at the same temperature, substitution for the µ;' s in Equation 

(B-14) leads to : 

Jt=J/= =];" i = (1,2, .. . ,N) 

B.2. STANDARD STATES: SYMMETRIC/UNSYMMETRIC 

NORMALISATION OF ACTIVITY COEFFICIENTS 

(B-18) 

For condensable components (Tsystem < TJ it is customary to normalise the activity coefficient 

such that, 

(B-19) 

This means that as the composition of the solution approaches that of the pure liquid, the 

component's liquid fugacity becomes equal to the mole fraction multiplied by the standard-state 

fugacity, /; 0 • This is referred to as the symmetric convention for normalisation of activity 

coefficients. 

For non-condensable components (T ~tem > T J normalisation is as follows: 

lim yi• = I 
X; • O 

(B-20) 

Equation (B-20) implies that the component's liquid fugacity equals the mole fraction multiplied 

by the standard-state fugacity in the limit as the component mole fraction becomes very small. 

This concentration region where y; is essentially unity is called the ideal dilute solution or 

Henry's-Law region. 

Henry' s constant (HJ, defined by: 

A 

H = lim 
/; = h o 

Xj • O x. 
1 

(B-21) 
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is the standard-state fugacity for any component i whose activity coefficient is normalised by 

Equation (B-20). As a resuh the standard-states for these components depend on solvent 

properties. 

For a binary liquid solution containing a condensable and a non-condensable component, 

normalisation of the solvent and solute are via Equations (B-19) and (B-20) respectively. As a 

result of the components being normalised differently, they are said to follow the unsymmetric 

convention. 

B.3. CONDENSABLE AND NON-CONDENSABLE COMPONENT ACTIVITY 

COEFFICIENTS 

Condensable components 

For a component where T critical > T ~ the constant pressure activity coefficient at constant 

temperature and composition can be determined by: 

(3-21) 

where r} p' ) is the activity coefficient at the arbitrary reference pressure p'. 

The liquid phase fugacity J; L is then described by: 

-L 
A ( ' ) JP V f,_L = x .f,.OLr -p exp -'-dP 

l l l l p' RT (3-22) 

Vl In order that Y; • 1 as X; • l the standard-state reference fugacity must be that of pure 

liquid component i at the system temperature and chosen reference pressure. 

(B-22) 
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At equilibrium conditions, the fugacity of a pure liquid component equals the fugacity of the pure 

gaseous component, and the later is a readily available quantity. Therefore J; L is expressed by 

means of the fugacity at the saturated vapour pressure, P/. 

= ,1, _(P;' ) ps 
'f'z l 

(B-23) 

If the reference pressure is set equal to zero, then the integrated fonn of Equation (3-23) yields 

the following standard-state fugacity: 

(B-24) 

N on-condensable components 

For a non-condensable component the liquid phase fugacity may be described analogously to that 

for a condensable component. 

-L 
A .I ' ) JP V .f_L = X . .r_OLy _' P exp -'-dJ' 

J i ,J, l p' RT (3-24) 

The hypothetical standard-state for the non-condensable component is avoided by using the 

nonnalisation: 

1 P' ) Yi • 1 as xnon-<:ondensable,j • 0 and xcondensable,i • 1 (B-25) 

As a resuh the standard-state fugacity (J; OL) of the non-condensable component (i) in the 

condensable component (j) at the temperature of the mixture and the reference pressure (pr) is 

just Henry's constant. 

The pressure dependence of Henry' s constant is expressed by: 
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(B-26) 

Now, Henry's constant is usually measured at the saturated vapour pressure ( P;s) of the 

condensable component i. Thus, assuming V/, to be independent of pressure, the pressure­

correction (given by the equation below) converts Henry's constant from the experimental 

pressure to the desired reference pressure. 

( ' ) (P:' ) ~p' ( V/' 1 
Hf = Hi exp l-Jd.P 

1J 1J r;) RT 
(B-27) 

Setting the reference pressure to zero, Equation (B-27) reduces to: 

(B-28) 

B.4. COMBINED METHODS IN LITERATURE 

Wichterle [1978(b)] gives an excellent review on the combined methods in literature. Here is a 

summary of his review. 

Chao-Seader Method 

It represented the first easy analytical description of high-pressure vapour-liquid equilibrium. 

Since it does not require adjustable parameters, the method is predictive rather than correlative. 

The method originated during the time that the direct method based on the Benedict-Webb-Rubin 

(BWR) EOS existed. The BWR had a complicated numerical solution and was non-generalised. 

The equilibrium condition in terms of the combined method of Chao-Seader is given by : 

(B-29) 
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where rp/ is the standard-state fugacity in Equation (3-15) being replaced by the fugacity 

coefficient of component i as a pure liquid at the system temperature and pressure. 

ft J/ 
</J/ = = p p 

(B-30) 

The fugacity coefficient <ft/ was obtained from the three parameter corresponding states 

principle proposed by Pitzer, 

(B-31) 

where <ft?l and <ft/1l are analytical functions ofreduced temperature and pressure. 

The liquid phase activity coefficients r; were calculated from the Scatchard-Hildebrand regular 

solution theory, 

V ( -)2 
lny; = R~ Si -S (B-32) 

where Sis the solubility parameter which is a function of pressure. 

The vapour phase fugacity coefficients/; were based on the Redlich-Kwong EOS. 

Fictitious values of </J; , S;, and V; have to be used for supercritical components. These values 

are determined for components by trial so as to produce results in agreement with data. This was 

an unsatisfactory solution and Prausnitz and Chueh [1968] and Prausnitz et al. [1980] dealt with 

supercritical components more rigorously. 

Prausnitz-Chueh Method 

The more complicated Prausnitz-Chueh method was elaborated as a counterpart of the simple 

Chao-Seader model because it was obvious that a more exact approach would yield better 

results. The Prausnitz-Chueh method is distinguished by the selection of a standard-state and by 

the correlation of the activity coefficient. The method is based on the symmetric-unsymmetric 
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convention for normalisation of activity coefficients using standard-states 3 and 8 (Table 3-1) for 

the condensable and non-condensable liquid components respectively. 

The equilibrium condition for component i is expressed by Equation (3-15) 

(3-15) 

The standard-state fugacity J;° for a condensable component using standard-state 3 (Table 3-1) 

is then written as: 

(B-33) 

A similar expression could be written in tenns of Henry's constant for the non-condensable 

component using standard-state 8 (Table 3-1). The standard-state fugacities are evaluated from 

polynomial expansions of temperature. Each component requires 5 or 6 parameters. The activity 

coefficients r; are derived from the following equation: 

(B-34) 

which yields: 

r'
(p) ( o) iP(V/ J = ri exp o RT dP (B-35) 

The unsymmetrically normalised activity coefficient at zero pressure r/ 0 l were expressed by 

means of a modified van Laar equation. 

For a binary mixture the temperature dependence of r/ 0
l required 7 interaction parameters and 

one parameter for the pure component. The partial molar volume ~ was generalised by means of 

an 18 parameter relation. The vapour-phase fugacity coefficient was described by the Redlich­

Kwong EOS. Two pure component parameters and three interaction parameters were required. 
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Toe complexity of the Prausnitz-Chueh method is reflected in the number of parameters required. 

A survey undertaken by Wichterle (1978,b) yielded the data in Table B-1. 

Other Methods 

The origins of the other combined methods were in an attempt to improve the simple Chao­

Seader method or simplify the complicated Prausnitz-Chueh method. For an excellent review on 

these methods refer to Wichterle [l 978(b)]. 

Components Pure Component Data Ad_iustable Parameters Total 
Pure Binary 

2 10 20 34 64 
3 15 30 51 96 
4 20 40 102 162 

Table B-1: Number of parameters required for the Prausnitz-Chueh Method [Wichterle, 

1978(b)J 

B.5. RATING OF THE COMPUTATIONAL MEIBODS FOR HPVLE 

-

Raal and Muhlbauer [1998] have drawn up the following table as a comparison of the 

capabilities of the combined and direct methods. They also rate the capabilities of the various 

classes of equations of state. 

Method System 

Polarity Structunl Pressure 
Bi Complexity Bi 

Bi 
Combined Fair/good' Fair/good' Fair/good' 

Direct Poor/bit' Poor/fair Poor/fair 

Modem Direct Fair/good' Fair/good Fair/good' 

I - Depalds oo the liqwd phase model and the EOS being used. 
2 - Depalds oo the EOS being used. 

Phase 
Density 

Temperature 
Bi 

Fair/good' Fair/good 

Poor/bit' Poor/fair 

Fair/good' Fair/good 

3 - Depalds oo the mixing rule dq>cndmcy and the liquid phase model and EOS being used. 
4 - Possibilities exist at low pressure and medium tfmpefature. 
5- Possible if low pressure and medium~ VIE data are available 

Method Predictive 
Complexity capabilities 

Medium No" 

Low/medium No" 

Medium/high Yes' 

Table B-2: Rating of the computational methods for HPVLE [Raal and Muhlbauer, 1998] 
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In Table B-2 Raal and Miihlbauer [1998] refer to the Modem direct method. This refers to 

predictive methods using a linear programming method in the EOS mixing rule, e.g. the Wong 

and Sandler [1992] mixing rule. Refer to Raal and Miihlbauer [1998] for greater detail. Raal and 

Muhlbauer also summarised the capabilities of the various classes ofEOS's in Table B-3 . 

EOS System Phase Method Predictive 
Density Complexity capability 

Polarity Structural Pressure Temperature 
Hi complexity Hi Hi 

Hi 
Comnlex virial Fair/good Fair/good Poor/fair Fair/good Poor/fair High No 
Pertubation Fair/good Fair/good Fair/good Fair/good Fair/good Mediumlhigp No' 
theorv 
Traditional Poor/fair Poor/fair Fair Fair Fair Low No 
cubic 
Vlrial Fair/good Fair/good Poor/Fair' Fair/irood Fair/good' Low No 
Novel miDng Fair/good Fair/good Fair Fair Fair Low/medium No 
rules3 

Modem direct Fair/good Fair/good Fair/good Fair/good Fair/good Mediumlhigp Yes 
method 
1 - Neglectmg the mteraetloo parameter can sometunes yield accurate data. 
2 - Depends if the two parameter of three parameter form is being used. 
3 - Depends on which novel mixing rule dependency is being used and capabilities can vary. 

Table B-3: Capabilities of the various classes of equations of state [Raal and Miihlbauer, 

1998) 

Criterion Direct Method Combined Method 
Accuracy of the calculation: Good, including the critical region. Excellent, except for the critical 
depends on the particular method, region. 
number of oarameter etc. 
Range of conditions Up to the critical reirion. Limited. 
Type of components Complex hydrocarbon mixtures Less complicated mixtures with 

without large deviations from ideal medium or greater deviations from 
behaviour, but small content of non- ideality. 
hydrocarbons is acceotable. 

Calculation within critical reeion Good Poor 
Execution time Generally slow, depending on Fast 

number of roots in EOS. 
Input parameters It depends on the degree of Usually generalised better, but more 

generalisation. oarameters are required. 
Sensitivitv to initial !!Uess Verv sensitive. Not imoortant. 
Correlation abilities Only binary interaction parameters Number of adjusting parameters 

can be adjusted. unlimited. 
Consistency of computation Good Reliable results cannot be expected 

at higher pressures. . 
Table B-4: Companson of the Direct and Combined Methods [Wichterle, 1978(b)) 
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B.6. CORRELA TIO NS FOR THE VIRIAL COEFFICIENTS 

The virial coefficients are determined as follows: 

B = lim(Z - l)V (B-36) 
V • oo 

Similarly, 

C = lim[(Z - l)V - B]V 
V • oo 

(B-37) 

and 

D = lim[(Z- l)V -BV -C]V 
V • oo 

(B-38) 

Now, as Vapproaches infinity, P approaches zero at constant T, therefore equation (B-36) may 

be transformed into the following expression: 

Jz-1) (oz) B= lim(Z-l)V = RT Ii -p . = RT lim--;--
v • oo P• P• O vP T 

(B-39) 

Then, the second virial coefficient can be obtained from PVT data by plotting Z versus P at 

constant T and talcing the slope at P = 0. Much of this type of data has been obtained for various 

fluids at various isotherms, and has been used to develop correlations for the second virial 

coefficient. The most widely used correlations are those of Tsonopoulos [1974] and Hayden and 

O'Connell [1975]. 

The Tsonopoulos correlation is: 

where: 

BP = B(O) + (1) B(I) 
RT 

B (O) _ _ 0,33 _ 0,1385 0,0121 0,000607 
- 0,1445 T 2 T3 ,,,s 

r T, r 1 r 

(B-40) 

(B-41) 
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(t) 0,331 0,424 0,008 
B = 0,0637 +~-~-r 

r r r 

(B.41) 

The Hayden-O'Connell [1975] correlation is more complex and it includes the dipole moments 

and radii of gyration. It is used by Prausnitz et. al. [1980] and us in computation of VLE. For 

completeness here is the generalised method of Hayden and O'Connell [1975]. 

Hayden-O'Connell 

The pure-component and cross second virial coefficients B;i are given by the sum of two 

contributions: 

(B.42) 

where 

B; = ( B:onfoi,) if + ( B~r) if (B.43) 

and 

(B.44) 

The superscripts F and D denote relatively "free" molecules (weak physical forces), and 

relatively ''bound" or "dimerized" molecules ("chemical" forces) respectively. 

The individual contributions to the second virial coefficient are calculated from temperature­

dependent correlations: 

( ' 
( 

F ) _ I _ 1,4 7 0,85 1,015 i 
Bnonpolar .. - bOiflO,94 , - •2 - ,3 j 

lJ r· . . 
if ¼ ¼ 

(B.45) 

( ' 
(BF ) = -b .,, 7 _ 3,0 2,1 ~ j 

polar .. 0if µif lo, 4 , + ,2 + ,3) 
lJ r· . . 

if ¼ ¼ 
(B.46) 



) ( ) 
(Mi\ 

(Bmetastable ij + Bbaund ij = bOijAij ex\ r/ j 

) 1 ( 150017 .. )7 
(BchemicaJ if = b0vE{ 1- exl\. T v j 

1 1 
-, = -. - l,6mif 
T* T. 

ij lJ 

The temperature-independent parameters used in equations (B-45) to (B-51) are: 

b0if = l,26184crJ 

µ; < 0,04 

0,04 ~ µ: < 0,25 

µ; ~ 0,25 

~ = -0,3 - 0,05 µ; 

I ( 'l I 650 I 
E = exp 77l( J -4 27jl lJ I lJ 6 if ' I l k +300 j 

for 17if < 4,5 
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(B-48) 

(B-49) 

(B-50) 

(B-51) 

(B-52) 

(B-53) 

(B-54) 

(B-55) 

(B-56) 

(B-57a) 



or 

where 

l ( "11 I 42soo I 
EiJ = exp T/iJl(& ·· J -4,27j l ; +22400 J 

T 

(E;jk) -

temperature (K) 

charateristic energy for the i-j interaction (K) 

molecular size (angstroms) 

dipole moment of component i (Debye) 

association parameter (i = j); solvation parameter (i * j) 
nonpolar acentric factor 
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(B-57b) 

For i = j, parameters (E;jk) , a;; , and OJ;; are predicted from the pure component properties. 

(B-58) 

(B-59) 

'( )½ CY;; = CJ;; 1 + ; C2 (B-60) 

(
eii )' , o,4qii l 
-k = Tc.l0,748 + 0,91ro .. - J 

I ll 2+20<u .. 
ll 

(B-61) 

(B-62) 

~=O forµ; < 1,45 (B-63a) 



~=, 'l 
I ( _ l,882m;; ) '6 (&;; \ I 

1,7941 X 107 µt 

L 2,882 0,03 + m ii Tei <Yii k ) J 

16+400m;; 
Cl= 

10+400m;; 

3 

for A~ 1,45 

Pure component parameters that are required in equations (B-58) to (B-65) are: 

Tc critical temperature of component i (K) 
I 

Pc; critical pressure of component i (bar) 

Rv mean radius of gyration of component i (angstroms) 
I 
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(B-63b) 

(B-64) 

(B-65) 

Cross parameters (E;jk),CTiJ, and miJ (i * j) are calculated using suitable mixing rules and pure 

component parameters given by equations (B-58) to (B-65). 

(B-66) 

(&·-) (&·)'( ') ; = ; 1+~ 'c1 (B-67) 

(B-68) 

where 

(B-69) 
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u .. ' = (u. .. u .. )½ 
lJ 11 1) 

(B-70) 

for A ~ 2 andµ i = 0 (B-7la) 

or 

(B-7lb) 

or 

i; '= 0,0 for all other values ofµ; andµ i (B-7lc) 

16+400wii 
(B-72) Cl = 

10+400wii 

3 
Cz = (B-73) 

10+400w!i 

Variations of the virial EOS are either truncated forms of the virial equation or curve fitting 

forms e.g. Beattie-Bridgeman and Benedict-Webb-Rubin EOS's. The variations of the virial 

EOS 's are excellently covered by Sandler [1994]. 
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B.7. DETERMINATION OF PARAMETERS (A AND B) FOR CUBIC EOS 

There are two ways to determine the parameters (a and b) in the EOS' s. The first is to change the 

parameters to fit experimental data, usually the vapor pressure and liquid or vapor density. In the 

van der Waals equation, the parameters are constants and this can only be done at one 

temperature. For EOS's with parameters which are functions of temperature, the fitting is 

performed over a range of temperatures. 

The second way is to fit parameters to the critical point using the EOS concerned and the 

following critical-point conditions. 

Applying the criteria of equation (B-74) to the van der Waals equation we obtain: 

b= RTc 
8Pc 

where subscript c denotes a property at the critical point. 

(B-74) 

(B-75) 

(B-76) 

For cubic EOS in which the parameters are dependent on temperature, the critical point 

condition, equation (B-74) is used to obtain values of the parameters at the critical point i.e. ac 

and be. Then a multiplicate temperature dependent correction term is introduced [equation (B-

77)], which is unity at the critical point and adjusted to produce better predictions over the whole 

temperature range. 

(B-77) 

For more detail on parameter determination refer to Walas [1985]. 
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B.8. METHODS FOR APPLICATION OF CUBIC EOS TO MIXTURES 

There are essentially two basic methods of applying a cubic EOS to a mixture. The first involves 

the formulation of effective combining rules for mixture pseudo-critical properties and the second 

involves the derivation of mixture parameters from those of the individual components. 

In the first method, a mixtures critical properties (T cm, Pcm, etc.) are determined via suitable 

combining rules. These are then used to calculate the EOS am and bm parameters. The simplest of 

these combining rules are mole-fraction-weighted sums of the corresponding property parameter 

for the components of the mixture. Refer to Walas [1985] for various combining rules proposed 

for this method. 

In the second method, pure component ai and bi parameters are calculated using pure component 

properties (Tei, P ci, etc.). Mixing rules are then used to express the EOS am and bm parameters as 

some function of the composition and pure component a; and b; parameters. This method was 

used in this project and is discussed in detail in Chapter 3. 

B.9. FORMULATION OF THE WONG-SANDLER MIXING RULE 

The following is the full formulation of the Wong-Sandler mixing rules for the Peng-Robinson 

EOS with the NRTL Gibbs excess model, as it appears in Wong and Sandler [1992]. 

The Peng-Robinson EOS is: 

P- RT a(T) 
- (v -b) -V 2 +2bV -b 2 (B-78) 

The Helmhotz free energy departure function for the Peng-Robinson EOS at a given temperature, 

pressure and composition is: 

(A-A
1

GM)=-ln[P(V-b)]+ a ln[V+l-✓2] 
RT RT 2✓2RT V + I+✓2 

(B-79) 
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Taking the limit as pressure approaches infinity, one obtains: 

(B-80) 

with the constant C being: 

(B-81) 

The excess Hehnholtz free energy at infinite pressure is then: 

(B-82) 

The expressions for the EOS parameters am and bm: 

b = Q 
m (1-D) (B-83) 

and 

am =0 D 
RT -(1-D) (B-84) 

with Q and D defined as: 

(B-85) 

and 

(B-86) 
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The fugacity coefficient is computed from: 

1n ¢; = i;[-1 ( aP J _ 1 lrlf7 -1n(Pv J 
RT 00; T,V,nj VJ" RT 

(B-87) 

For the Peng-Robinson EOS and an arbitrary set of mixing rules for am and bm, one obtains: 

(B-88) 

The partial derivatives of am and bm are: 

and 

_l_( 1 00
2 
am J- D 8nb m &D - --+b -

RT n an dn . m an 
I I I 

(B-90) 

with the partial derivatives of Q and D given by: 

(B-91) 

and 

&D _ a; lny oo; 
----+--
an; b;RT C (B-92) 



with 

l anAE 
lny ooi = RT ona:, 

l 

Using the NRTL model for Helmholtz energy at infinite pressure: 

with 

Applying equation (B-93) to the NRTL model one obtains: 
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(B-93) 

(B-94) 

(B-95) 

(B-96) 

B.10. TWO PARAMETER VAN DER WAALS ONE-FLUID MODEL (2PVDW) 

Referring to Table 3-4 the binary interaction parameter (kiJ) is now a composition-dependent two­

parameter term. All combining rules in table 3-4 reduce to equation (B-97) for a binary system. 

(B-97) 

For the Peng-Robinson EOS the fugacity expression is then given by: 
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b A (~· L, h; (Z+ 1+✓2 ] 
ln</J =-i (Z-1)-ln(Z-B)--- ----+1-- ln ✓2 (B-98) 

1 bm 2✓2,B am bm Z + 1- 2 

with 

for binary mixtures. 

The other equations remain the same as for the Peng-Robinson EOS with the classical van der 

Waals mixing rules. 

B.11. HURON-VIDAL MIXING RULE (HVO) (Huron and Vidal (1979]) 

The bm parameter is identical to the mixing rule for the classical van der Waal's. The am mixing 

rule is now: 

(B-100) 

where, c· = 1n 2. 

The fugacity coefficient for Peng-Robinson EOS is then given by: 

ln</J; = ~(Z-1)-ln(Z-B)- - 1-[___!:L_+ ln~;J1n{z + l+✓2 } (B-101) 
bm 2✓2 b;RT C Z + 1-✓2 
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B.12. MODIFIED HURON -VIDAL FIRST ORDER MIXING RULE (MHVl) 

(Michelsen [1990(b)]) 

The bm parameter is unchanged from the classical van der Waals mixing rule. The Gm parameter 

is now defined as: 

(B-102) 

where, q 1 is an empirical parameter obtained by fitting pure component information. 

The fugacity coefficient for the Peng-Robinson EOS is given by: 

b. ( ) ( ) 1 [ a ln y . 1 (b ) 1 ( b. )] ln<A =-' Z-1 -ln Z-B -- - '-+-' +-ln ......!!!.... +- - 1 -1 
bm 2✓2 b;RT ql % bi ql bm 

1n{z + 1+✓2 } 
Z + 1-✓2 

(B-103) 

1n y; is determined from an appropriate Gibbs free-excess model. 

B.13. MODIFIED HURON-VIDAL SECOND ORDER MIXING RULE (MHV2) 

(Dahl and Michelsen [1990]) 

The bm parameter is unchanged from the classical van der Waals mixing rule. The Gm parameter 

is now obtained by solving the following quadratic expression for c: 

(B-104) 

where, 



a 
&=--

bRT 
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(B-105) 

When solving fore the larger of the two real roots is chosen to obtain Gm. q1 and q2 are empirical 

constants obtained by fitting pure component properties. 

The fugacity coefficient for the Peng-Robinson EOS is then given by: 

b. 1 (on&) {z + 1+✓2 } lng> =-' (Z-1)-ln(Z-B)-- - 1n ✓2 
1 bm 2✓2, Ofl; Z + 1- 2 

(B-106) 

where, 

(B-107) 

1n y; is determined from an appropriate Gibbs free-excess model. 

B.14. LINEAR COMBINATION OF HURON-VIDAL AND MICHELSEN 

MODELS (LCVM) ( Boukouvalas et al. (1994]) 

The bm parameter is unchanged from the classical van der Waals mixing rule. The Gm parameter 

is now obtained from: 

(B-108) 

where, A is an arbitrary parameter that has been selected to give the best results for the particular 

system under consideration once the excess free energy model is chosen. Note that A = I gives the 

HVO model, while A = 0 gives the MHVI model. The fugacity coefficient is then given by: 
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ln,A = :i (z-1)-ln(Z-B)-

1 [ma. ( 1 1-1) 1-1 { (bm) bi }]1n{---z + 1+ __ ✓2 }(B-l0
9
) -- --'-+ -+-- lny . +-- 1n - +--1 r;:: 

2.Jz biRT c· ql ' qi bi bm Z + 1--v2 

B.15. ORBEY-SANDLER MODIFICATION OF HURON-VIDAL MIXING 

RULE (HVOS) (Orbey and Sandler [1995(b)]) 

The bm parameter is unchanged from the classical van der Waals mixing rule. The am parameter 

is now obtained from: 

(B-110) 

The fugacity coefficient is then given by: 

In¢j = :i (z-1)-1n(z-1)-
m 

_1_[~+ lnyj +-1 ln(bm]+-1 (!i-1J]1n{Z + 1+✓2 } (B-111) 
2.Jz biRT c• c• bi c• bm Z + l -.fi. 

B.16. THE CORRESPONDING STATES PRINCIPLE 

Van der Waal first proposed the law of corresponding states in 1873. He expressed the 

generaliz.ation that equilibrium properties depend on intermolecular forces and can therefore be 

related to critical properties in a universal way. This led to Wichterle [1978(b)] stating that 

principal feature of corresponding states principle (CSP) is the "advantageous combination of 

generality, accuracy, and simplicity". 

Pitzer' s three-parameter corresponding states theory states that all fluids having the same 

accentric factor (w) must have the same reduced configurational properties at identical reduced 
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pressures and temperatures. This enables the fugacity coefficient of a component in a mixture to 

be obtain from: 

(B-112) 

Equation (B-112) can be expressed as differentials of critical pressure (Pc), temperature (Tc) and 

accentric factor with respect to composition (yi) as follows: 

(B-113) 

All the differentials in equation (B-113) are functions of Tc , Pc and w and can be obtained from 

generalised pure-component properties. Some form of combining rule will have to be used 

however to express the critical temperature, pressure and accentric factor as a function of 

composition, as explained in Appendix B.8. Prausnitz et al. [1986] details how the fugacity 

coefficients are calculated and phase equilibrium determined. The main limitation of the CSP lies 

in applying it to mixtures, due to the inaccuracy of the combining rules. 

Examples of the use of the CSP to calculate HPVLE in literature surveyed are Mollerup [1980] 

(used for mixtures of natural gas), Plocker et al. (1978] (used for asymmetric mixtures), Arai et 

al. [1982], Wong and Sandler [1984], Wong et al. [1984 (a,b)] and Gani et al. [1989]. 

B.17. MODIFIED CUBIC EQUATIONS OF STATE 

The Peng-Robinson and Soave EOS's are widely used in industry. The main reasons for this are 

because they require little input infonnation (only the critical properties and acentric factor for 

the generalized parameters) and little computer time. These EOS's predict the phase equilibria 

reasonably well for hydrocarbon systems. They have shortcomings however when it comes to 

prediction of liquid densities and prediction of phase equilibria for polar, associating and long­

chain molecules. 
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The main objective of proposed modifications to the 'lraditional" cubic EOS 's and their mixing 

rules has been mainly to provide for better representation of the liquid phase and for polar, 

associating and long-chain molecules. 

Abbott [1979] points out that the most general form of a cubic EOS contains five parameters and 

is of the form: 

(B-114) 

Modifications to the cubic EOS to improve their predictions have generally involved the 

introduction of additional parameters e.g. Schmidt and Wenzel [1980], Hannens and Knapp 

[1980], Heyen [1980], Patel and Teja [1982] and Trebble and Bishnoi [1987]. Each of the above 

modified EOS's reduces to the Soave or Peng-Robinson EOS forms when special values are 

given to their parameters. Tsonopoulos and Heidman [1985], Georgeton et al. [1986] and 

Anderko [1990] have made comparisons of the abilities of each of these equations. Trebble and 

Bishnoi [1986] state that among these modifications, the Patel-Teja equation is the most popular. 

Table B-5 shows some modifications that have been made to the attractive pressure term 

(equation (3-35)) as reproduced from Muhlbauer and Raal [1995] . 

Reference Volume function, g(V) 

Clausius [1880] J.P + 2cV + c2 

Usdin-McAuliffe [1976] V + cV 

Heyen [1980] V + cV + bV-bc 

Harmens-Knapp [1980] V + cb V - cb2 + b2 

Toghiani and Viswanath [1986] V + cb V + b V - cb2 

Table B-5: Modifications to the attractive term (equation (3-35)) as reproduced from 

Miihlbauer and Raal (1995]. 

Another type of modification has been to leave the volume dependence of the Peng-Robinson and 

Soave EOS 's unchanged and introduce additional parameters into the temperature dependence 
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function of the a term. The most widely used modification of this type has been that of Stryjek 

and Vera (1986 (a,b)]. Table 3-3 lists other modifications of this type. 

Modifications have also been made to the hard core parameter, b, in order to improve the poor 

density predictions of cubic EOS 's. Xu and Sandler [1987(b)] made this modification to the 

original Peng-Robinson EOS. Other researchers have introduced various temperature 

dependencies into three-parameter cubic equations (Heyen (1981] and Fuller (1976], or even 

added a fourth parameter to their cubic EOS e.g. Adachi et al. (1983] and Lin et al. (1983]. 

Trebble and Bishnoi [1986] have shown however, that if the temperature dependencies for the a 

and b parameters are not chosen carefully, the isotherms may cross over in certain regions of the 

PVT and PHT space leading to negative heat capacities. 

B.18. MODIFICATIONS TO THE CUBIC EOS CLASSICAL MIXING RULES 

Modifications to the commonly used van der Waals one-fluid classical mixing rules (discussed in 

Chapter 3) have been developed to enable more accurate modelling of complex, highly non-ideal 

mixtures. Miihlbauer and Raal [1995] have classified the present mixing rules into five main 

categories (see Figure 3-4). They have also included local composition theory into three of the 

categories, in the process expanding the number of categories to eight. Each of the categories will 

be briefly discussed. 

B.18.1. van der Waals one-fluid classical mixing rule 

The van der Waals classical mixing rules have been discussed in Chapter 3. Developments will 

be discussed here. Shibata and Sandler [1989(b)] pointed out two shortcomings of the classical 

(CMR) mixing rules when applied with the direct method. The predicted liquid densities are 

generally in error by 5% or more for pure fluid and/or mixtures, and secondly, for the high­

density phase of mixtures containing molecules dissimilar in size and/or chemical nature 
' 

agreement between experimental and correlated phase behaviour is poor. 

HcHugh and Krukonis [1986] and Tsonopoulos and Heidman [1986] incorporated an interaction 

parameter (T7i;) in the van der Waals covolume (bm): 
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(B-115) 

Toe fugacity coefficient for the Peng-Robinson EOS is then given by: 

_ (bN)( _ )- ( _ )- A [(2Lxia ft ]- (bN)]1n[Z + 2.4B] 
ln</>; - Z I 1n z B B b Z-0.4B bm 2.83 am m 

(B-116) 

where, 

(B-117) 
k j i j 

When the additional interaction parameter ( T/ij) is set to zero, equation B-116 reduces to the 

expression for the Peng-Robinson EOS with CMR. 

Deiters and Schneider [1986(b)] also applied an interact.ion parameter in bm. This was done to 

permit more accurate modelling near the critical point using the Redlich-Kwong EOS. They 

achieved reasonable agreement between correlated and experimental data for binary systems 

differing in structure, molecular size and/or polarity. 

To overcome the shortcomings pointed out by Shibata and Sandler [1989(b)], Xu and Sandler 

[1987 (a,b)] proposed polynomial expressions for both the a; and b; parameters which are fluid 

specific. The a; and b; parameters are fluid specific as they are derived from experimental vapour 

pressure and density data. 

To overcome the second shortcoming, complex mixing rules have to be incorporated into the 

EOS's. The very first complex mixing rules were local composition mixing rules (LCMR). 

B.18.2. Local Composition Mixing Rules (LCMR) 

Huron and Vidal [I 979] were the first to develop the concept of local composition mixing rules. 

Their proposal related the excess Gibbs energy (GE) to the pure component (<A) and mixture {</i) 

fugacity coefficients as follows: 



GE 
- = In A - "X In A _ 
RT "' 7 ' 'I', 
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(B-118) 

Equation (B-118) enables one to relate an EOS through the fugacity coefficient to activity 

coefficient models through the excess Gibbs free energy. The pure and mixture fugacity 

coefficients in equation (B-118) can both be calculated from the same EOS. For more detail on 

the approach oflocal-composition theory, refer to Danner and Gupte [1986]. 

Huron and Vidal then related the a and b parameter to the excess Gibbs energy at infinite 

pressure as follows: 

GE = -[aJT) _" x . a; (T)].1 
co b L..J I b. 

m I 

(B-119) 

where G ! is the excess Gibbs free energy in the limit of infinite pressure and I).. is a numerical 

constant which is dependent on the cubic EOS chosen. 

The Huron-Vidal mixing rules have serious limitation, as have been pointed out by Shibata and 

Sandler (1989(b)] and Wong and Sandler [1992] (discussed in Chapter 3). Tsonopoulos and 

Heidman [1986] also pointed out another disadvantage, which was the computational time. 

Huron and Vidal [I 979] introduced the local composition concept into the EOS in an indirect 

manner. Heyen [1981] empirically introduced local composition directly into the cubic EOS am 

parameter as follows: 

(B-120) 

Heyen [1981] proposed this mixing rule to correlate phase equilibria of complex systems 

including those exhibiting miscibility gaps. 
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B.18.3. Density-dependent mixing rules (DDMR) 

These mixing rules resulted. as a consequence of a major shortcoming of the local composition 

(LC) and composition-dependent (CD) mixing rules. The shortcoming was the non-quadratic 

composition dependence of the second virial coefficient in the low density limit. Mollerup [1981] 

and Whiting and Prausnitz [1982] introduced the concept of density-dependence. The DDMR 

have a form that reduces to that of the CMR at low density and still have higher order 

composition dependence at high densities. Wong and Sandler [1992] have however stated that the 

DDMR is an ad-hoc approach, which does not preserve the cubic nature of EOS' s when applied 

to mixtures. 

Shibata and Sandler [1989(b)] proposed a DDMR that was an adaptation of the DDMR 

suggested by Luedecke and Prausnitz [1985] for the Helmholtz free energy. The Peng-Robinson 

energy mixture parameter was then given by: 

(B-121) 

The mixing rule satisfies the low-density statistical-mechanical requirement that the second virial 

coefficient be a quadratic :function of composition. The cubic nature of the EOS was not 

preserved as is indicated by equation (B-122). The EOS of Shibata and Sandler [1989(b)] was as 

follows: 

P= RT am 
V -bm V(V +bm)+bm(V -bm) 

✓2. I "" X x[x.a2(T . h __ + X .a~(T . \~ .. ]1n(v + ahm )-2 RTV2bm f;;f;; I J , I aFy J y aFfl V +Pbm (B-122) 

LLX;X1 [xp;2 (Tci)cif + x1aJ(TcJ ~ft] 
VRT(V(V +bJ+bJV-bJ) 

Equation (B-122) is clearly non-polynomic. 

Lee and Sandler [1987] developed a simpler mixing rule. They found that their DDMR did not 

yield significant inprovements over the van der Waals one-fluid mixing rule for P, T, x, y data 
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correlation. However the interaction parameter calculated was extremely small and could thus be 

taken as zero. This made the EOS with the DDMR completely predictive. The results obtained 

with the interaction parameter set to zero were more accurate than for similarly setting the 

interaction parameter for CMR to zero. 

Mohamed and Holder [1987] proposed a DDMR that incorporated an adjustable density­

dependent interaction parameter (kif) in the Peng-Robinson EOS cross parameter (aif)- kif was 

allowed to vary linearly with the phase density of the mixture: 

(B-123) 

They also incorporated correction factors into the Peng-Robinson mixture parameter a; and b;. 

Significant improvements were achieved with their DDMR and density-dependent EOS for 

correlations in the critical region. Systems modelled by Mohamed and Holder [1987] were limited 

to carbon dioxide + aromatic binaries however. 

B.18.4. Density-dependent local composition mixing rules 

Traditional EOS's reqwre experimental data input in order to determine an interaction 

parameter/s. These parameters are also system dependent. This makes them incapable of being 

predictive in nature, as the interaction parameter is always needed. Neglecting the interaction 

parameter leads to inaccurate results except for highly ideal system. The contribution of the 

interaction parameter to the accuracy can be made less important through changing the form of 

the EOS e.g. the mixing rules of Lee and Sandler [1987]. 

In order to develop truly predictive methods for VLE modelling, recent approaches have been 

towards the introduction of local-composition theory either directly into the EOS, i.e. the Group 

contribution (GC) EOS (Skjold-Jorgensen [1984] and Skjold-Jorgensen [1988]), or into the EOS 

mixing rules, i.e. the UNIWAALS method (Gupte et al. [1986(a,b)]). 

B.18.4.1. The GC EOS 

The GC EOS was developed by Skjold-Jorgensen to describe polar and non-polar components in 

the temperature range I 00-700 K and at pressures up to 30 MPa. The GC EOS makes predictive 

VLE computation possible for both the direct and combined methods. The only information 

required is the pure-component data such as critical temperature and pressure and molecular 
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structure parameters. The method does not require binary interaction parameters. The error in the 

predicted K values is claimed to be usually less than 5%. 

The GC principle in conjunction with the statistical thermodynamic van der Waals partition 

function is applied in the derivation of the GC EOS. The full derivation of the GC EOS is given 

in Skjold-Jorgensen [1984]. For a brief summary of the underlying equations in the GC EOS 

refer to Muhlbauer and Raal [1995]. 

Application of the GC EOS requires breaking down the components of the binary system into 

relevant groups. Tables of the relevant groups are given in Skjold-Jorgensen [1984] and Skjold­

Jorgensen [1988]. The computational procedure for the GC EOS is discussed in Miihlbauer 

[1990] and Muhlbauer and Raal [1995] . 

B.18.4.2. The UNIW AALS EOS 

The UNIWAALS EOS was developed by Gupte et al. [1986 (a,b)] by combining modified 

expressions for the UNIFAC GC method with the van der Waals EOS using Huron -Vidal 

mixing rule principles. The UNIW AALS EOS was developed from the outset to be completely 

predictive. It requires only UNIF AC group interaction parameters and pure component data for 

the computation of VLE. The formulation of the UNIW AALS EOS is described in detail in 

Gupte et al. [1986 (a,b)]. 

Some of the limitations of the UNIWAALS EOS (as pointed out by Schwartzentruber and Renon 

[1989 (a,b)]) are:-

• The UNIFAC equation was introduced into the van der Waals equation without using the 

infinite pressure limit. This leads to a volume-dependent mixing rule from volume­

independent van der Waals EOS mixing rules. 

• The modified UNIF AC equation was assumed to be accurate over a range of temperatures 

(which is only valid if the temperature dependence of the parameter is known). 

• UNIW AALS uses the UNIF AC expression for both liquid and vapour calculations. 

• Supercritical components cannot be handled by the normal calculation procedure. Gani et al. 

[1989] developed a procedure to handle supercritical components. 
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B.18.5. Composition-dependent mixing rules (CDMR) 

Panagiotopoulos and Reid [1986(b)] proposed a simple modification to the classical mixing rule 

which incorporated composition. This resulted in the first CDMR. The proposed non-quadratic 

mixing rule, which was written as a linear function of mole fraction is: 

a .: =(a.a .\o.s[I - k .. +(k.. -k .. )x.] 
lJ ! J ) lJ lJ JI l 

(B-124) 

Table 3-4 lists some of the CDMR surveyed. They are also discussed briefly in Chapter 3. 

B.18.6. Composition and density-dependent mixing rules 

Michelsen and Kistenmacher [1990] pointed out the limitations of the CDMR (as discussed in 

Chapter 3). This led to Schwartzentruber and Renon [1991] developing a new formulation of 

their original mixing rules (Schwartzentruber and Renon [1989 (a,b)]) to overcome the 

inconsistencies pointed out by Michelsen and Kistenmacher (1990] . Their revised mixing rule 

still kept the efficiency and flexibility of the CDMR originally proposed. They now expressed am 

as the sum of a quadratic and non-quadratic term as follows: 

(B-125) 

The Xijt in the non-quadratic term of equation (B-125) is defined as an expansion of Kronecker 

deltas (ij) which allows for the Michelsen-Kistenmacher Syndrome to be avojded. This did not 

overcome the dilution effect though. To overcome the dilution effect the Kronecker deltas were 

treated as binary parameters which are correlated to the distance between molecules i and J as 

follows: 

(B-126) 

where Dii is the normalized distance between two molecules and is a function of the critical 

values of ai and bi parameters for pure component i and pure-component acentric factor and 

dipole moment. 



434 

In order that the new mixing rule be consistent with the constraint on the second virial coefficient 

and still remain flexible, a five-parameter EOS that remains cubic in volume was proposed: 

l ap / (bX) p 2 

z---- / RT + - 2 
- l-bp l+cp+dp RT (l-bpXI+cp+dp ) 

(B-127) 

where 

xm = LLLxijkxixjxk (B-128) 
i j k 

and 

am= LL(aiaj f5 (l-kij ~ixj (B-129) 
i j 

b = °" b.x. m £.-11 (B-130) 

c =°"c.x. m £.- 1 1 (B-131) 

d = °"d.x. m £.-1 1 (B-132) 

The am parameter introduces density-dependence, which results in a loss of correlation efficiency 

for strongly non-ideal systems. The flexibility loss was avoided by Schwartzentruber and Renon 

by writing the volume-dependent factor as j{_v _ b) which is less dependent on composition. 

This however results in the third virial coefficient now being fourth degree in mole fraction, i.e. 

the virial coefficient requirement is violated at higher order. Application of the new mixing rule 

showed that although it solved the inconsistencies of the their original mixing rule, it did not yield 

significant improvement in modelling capabilities. 

B.18.7. Density-independent mixing rules (DIMR) 

The mixing rules of Wong and Sandler [1992] are discussed in detail in Chapter 3. A 

modification of this mixing rule proposed by Twu and Coon [ 1996] which is claimed to be more 

flexible and avoids the problems associated with the Wong and Sandler mixing rules is also 

discussed in Chapter 3. 



435 

B.19. EQUATIONS OF STATE FROM THEORY AND COMPUTER 

SIMULATION 

Thermodynamics has its basis in statistical mechanics. Much of the EOS's discussed in this 

thesis however have their origins in classical thermodynamics as opposed to statistical 

thermodynamics. The field of statistical mechanics is complex and numerous publications have 

been produced in recent years. Sadus (1999] has an excellent book detailing molecular 

simulations for fluids. Sandler et al. [1994] also gives a very good summary of equations of state 

from statistical mechanics. The field of statistical thermodynamics is extremely voluminous and 

so only a very brief introduction will be presented here. Reference should be made to the above­

mentioned authors for greater detail. Prausnitz (1996] in a recent paper discusses the 

opportunities in molecular thermodynamics. 

Different aspects of statistical mechanical theory have resulted in developments of EOS's e.g. 

renormalisation group theory has shown the universality of critical phenomena (Sandler (1994]) 

and lattice theory of dense fluids has been the basis for many activity coefficient models (Abbott 

and Prausnitz [1994]) and for models of polymer solutions (Sanchez and Panayiotou (1994]). 

B.19.1. Integral Equation Theory 

By making various assumptions, equations are derived for the spatial correlation function 

between molecules in a fluid. These equations can be derived from graph theory, from functional 

analysis, by deriving a hierarchy of equations which is then truncated, and by postulate. The 

equations derived can be solved numerically only for the spatial correlation function at each 

temperature and density and the pressure and other thermodynamic properties can be computed 

from them. Thus one obtains the pressure at chosen values of volume and temperature for a given 

potential function between a pair of molecules, rather than an analytical expression for the EOS. 

B.19.2. Perturbation Theory 

Perturbation theory involves performing a Taylor series expansion of properties (e.g. the 

Helmholtz free energy) of a system about the known properties of a reference system. The 

dimensionless difference between the intermolecular potential functions of the system of interest 

and the reference system is known as the perturbation parameter. The usual choice of a reference 

system is the hard-sphere fluid. The perturbed theory is comprehensively explained in Sandler et 
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al. [1994] and Miihlbauer and Raal [1995]. Miihlbauer and Raal [1995] have a comprehensive 

table that shows the different perturbed hard chain theory EOS 's. 

B.19.3. Computer Simulations 

Computer simulations are computationally intensive and are becoming ever more popular as the 

speed of computer processors increases. They have an advantage in that they do not require any 

information on theory or reference systems. They also have the added advantage that much more 

complicated molecular systems can be studied by simulation, than is possible from theory. The 

behaviour of a collection of molecules can be simulated directly, either by determining average 

values of properties over likely states (Monte Carlo simulation) or by solving the dynamical 

equations of motion and following the time evolution of the system (Molecular dynamics). Sadus 

[1999] comprehensively details both computational methods in his text. 

For greater detail on EOS's and mixing rules refer to Sandler [1994] and Miihlbauer and Raal 

[1995]. 

B.20. APPLICATION OF THE DEITERS AND SCHNEIDER METHOD [1976) 

TO THE PENG-ROBINSON EOS 

Deiters and Schneider state that the total Helmholtz energy for a binary system is given by: 

V 

A(T,V) = A+(r,v+ )+ RT(n1 Inxl +n2 lnx2)- f pdV (B-133) 
v+ 

where the "+" properties refer to perfect gases or a perfect gas state. 

For the Redlich-Kwong EOS they then obtained: 

A(T,V) = A+ (r,v+ )- nRTin V -b - ~ ar,;; 1n[1 + bJ + RT(n In x + n In x ) (B-134) 
v+ hvT v I I 2 2 
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where a= an2 and !J = bn. 

Applying equation (B-133) to the Peng-Robinson EOS, the following expression was obtained 

for the Helmholtz energy: 

-=--ln(l-h)- --ln ---- +n1 lnx1 +n2 lnx2 
A A+ a l ( 1 + 2.414h ) 

RT RT RT 2.828b V -0.414h 
(B-135) 

where h = b/V. 

Equation (B-135) was then used in equations (3-129) and (3-130). Application of equation (B-

135) in equations (3-129) and (3-130) merely involves tedious differentiation. 

B.21. HPVLE CONSISTENCY TESTS 

B.21.1 Chueh et al. [1965] Area Test 

The Chueh et al. [1965] equal area test is developed, like all others, from the Gibbs-Duhem 

" equation. One form of this equation, in terms of the fugacity of component i, /;, is as follows for 

constant temperature: 

(B-136) 

To obtain the form used by Chueh et al. [1965] equation (B-136) is written for a binary mixture 

as follows : 

,_ A 

d 1n Ji + x2d 1n /__2 / X2 
XI Ii/ X1 

yL 
-dP 
RT 

(B-137) 

The second term may be written in terms of the differential d( x2 ln[ (12 I x2) I (11 I x1
)]) and 

becomes: 
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(B-138) 

A 

Introducing the fugacity coefficients l h d th ili"b . . K I . = - an e equ mun ratio ; = y; X; gives: 
Y;P 

(B-139) 

Equation (B-139) is integrated from x2 = 0 (where subscript 2 refers to the more volatile 

component) to some arbitrary upper limit x2 to give: 

(B-140) 

where, 

(B-141) 

The thermodynamic consistency test is therefore: 

Area I + Area II + Area m = RHS 

The areas are found by graphical integration and the RHS is evaluated at several x2 values over 

the relevant composition range. The fugacity coefficients ¢; are evaluated from an appropriate 

equation of state. 
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B.21.2 Won and Prausnitz [1973] Consistency Test 

Toe comparison of the calculated and measured vapour compositions over the full composition 

range constitutes a test for thermodynamic consistency. 

For a binary mixture, the total system pressure is the sum of the two partial pressures. 

(B-142) 

The partial pressures are related to the liquid phase activity coefficients by: 

(B-143) 

The standard state fugacities h O for the condensable(l) and non-condensable(2) components 

were defined as that of the saturated liquid at system pressure, and Henry's constant for solute 2 

in solvent 1 at system temperature and at saturation pressure Pi.sat respectively. With this 

convention, 

r 1 • 1 as x1 • 1 

r; • I asx2 • 0 

Henry's law constant H2.1 (for component 2 in solvent 1) is pressure dependent. The relationship 

between its value at pressure P and saturation pressure Pi.sat for example is given by (Prausnitz et 

al. [1986]): 

(B-144) 

where Vt is the partial molar volume of solute 2 at infinite dilution. 

In the Won and Prausnitz [1973] consistency procedure an arbitrary function F2(xi) is used to 

represent the variation of r; along the saturation line and its coefficients are determined from 

total pressure data: 
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(B-145) 

An arbitrary function of pressure G(P) is used to represent the liquid molar volume of the 

mixture, which is assumed to be known. 

The working equation for P was developed from the Gibbs-Duhem equation: 

vi dP 
= --

RT dx2 

(B-146) 

Rearrangement and integration of equation (B-146) one obtains: 

(B-147) 

and substitution into equation (B-142) gives the following working equation : 

(B-148) 

Equation (B-148) is then used in the method outlined below: 

(1) For the first iteration the ¢1 are set equal to 1 and F2 to zero for all x2• The first 

estimates ofy1 (the desired quantity) were obtained from : 

X1fi° ( ) 
Y 1 = pexp F.. 

Y2 = 1-Y1 

(2) J; was obtained from experimental P-x data where x2 is small e.g. -0.01, 

(3) The constants in F2 are adjusted to give the best fit of the P-x data to equation (B-148). 
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(4) The next set ofy; are calculated from : 

Toe y;' s were summed and if the sum did not equal unity, the Yi' s were normalized by 

Y; (nomzalised) = 

(5) A new f/ was found from : 

( 6) The iteration procedure was continued until the continuously generated constants for 

y2 * in equation (B-145) no longer changed. 

B.21.3. Christiansen and Fredenslund [1975] Consistency Test 

Christiansen and Fredenslund [1975] developed a thermodynamic consistency test applicable to 

either isothermal high pressure (P-x) or isobaric (T-x) data. As in the Won and Prausnitz [1973] 

test, vapour phase compositions are calculated and can then be compared with measured values 

where a full P-T-x-y data set is available. It differs from the Won and Prausnitz [1973] approach 

in that no analytical expression for GE is required, i.e. , it may be classed as a model free method. 

It thus serves as a procedure to predict or extend high pressure P-x or T-X data, producing both 

the vapour phase composition (if not measured) and the Henry's law constant if the unsymmetric 

standard state convention for fugacities is used for a system with a supercritical component. 

The data reduction procedure was based on three equations for In y 1, In y 2 and the total 

pressure, P. The non-isothermal non-isobaric, Gibbs-Duhem equation, as derived by Van Ness 

(1964] was used together with: 
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(B-149) 

to obtain expressions for the activity coefficients : 

Inrz 

(B-150 a,b) 

which could be written for l = l , k = 2 and l = 2, k = l. Also, 

(B-151) 

where /; 0 = standard state liquid fugacity of component i. 

Subscript u denotes values along the saturation line. The three equations (B-150 a,b) and (B-

151) contain three unknowns, viz. r i, r 2 and GE and can in principle be solved for the 

unknowns. Since the system is highly non-linear and difficult to solve, Christiansen and 

Fredenslund used the method of orthogonal collocation to obtain solutions. For isothermal data, 

the term involving W vanishes whereas for isobaric data the bracketed term involving pressure 

derivatives vanishes. 

The essential steps in the data reduction and consistency test procedure are as follows : 

( 1) T, P and x are known. /; 0 , V/, V, JI!, and the slope of the equilibrium curve were 
A 

assumed known or available by calculation. Initially <A = 1 for i = l .2 

(2) Equations (B-150 a,b) and (B-151) were solved for r1, r 2 and d" for the value of x ;. 

(3) Vapour mole fractions were calculated using: 

= 
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(4) New values of ¢i were calculated using yi from step 3 and steps 2 and 4 were repeated 

until the successive calculated values of Y; agreed to within a predetermined tolerance, 

i.e. 104
. 

(5) The value of Yi was calculated at each point by interpolation among the values of Yi last 

obtained under step 3. 

(6) The experimentally obtained values of Y; were compared with the calculated values. If 

where ~; and Ay; are the uncertainties in the liquid and vapour mole fraction 

measurements, the data point was deemed thermodynamically consistent in the limit of the 

methods used to calculate /; , V and Ir. If however 

Two possibilities existed : 

(1) The data were inconsistent, or 

(2) The methods used to calculate /;, V and Ir were erroneous. 

B.21.4. Muhlbauer Consistency Test Based on Vapour Compositions 

Muhlbauer [1990] developed a thermodynamic consistency test based on vapour-phase 

compositions. The equations that constitute the test are as follows : 

(B-152) 

(B-153) 

The fugacity coefficients ¢; refers to the vapour phase. For thermodynamic consistency, LHS = 

RHS. The test can be applied if only P-T-y data are available. As one can see the beauty of this 

test is its simplicity, and the fact that one does not have to calculate the liquid molar volume, 
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which as mentioned before is difficuh to undertake at high pressures. A disadvantage of the test 

though is that measured liquid phase compositions are not utilized. 

B.22. SOME INTERESTING PUBLICATIONS NOT DIRECTLY REFERENCED 

The following are some rather interesting papers that we not referenced directly. For convenience 

they will be listed under appropriate sections: 

Van der Waals Theory 

1. Abbott and Praunitz [1987] - discussion of generalized van der Waals theory 

2. David and Bossoutrot [1996] -properties of ternary fluid mixture. 

Equations of state and mixing rules 

1. Vidal [1984] -simple EOS's for calculations in critical range. 

2 . Kim et al. [1986] - Cubic chain-of-rotators EOS. 

3. Lee and Chao [1986] - cubic chain-of-rotators EOS with DDLCMR. 

4. Leet et al. [1986] - cubic chain-of-rotators EOS. 

5. Cistemas [1987]-techniqueto obtain component parameters for three-parameter EOS. 

6. Donohue and Vimalchand [1988]-Perturbed hard chain theory. 

7. lwai et al. [1988] -new three-parameter cubic EOS. 

8. Adachi et al. [1990] - discussion of available EOS's. 

9. Chen and Chen [1993] - hard convex body expansion. 

10. Cha et al. [1996] - new mixing rule using two fluid corresponding states model. 

11 . Cuadros and Okrasinski [1996] - comparison of EOS for predicting vapour pressure. 

12. Fotouh and Shukla [1996(a)] - Perturbation theory-ternary mixtures. 

13. Fotouh and Shukla [1996(b)] -numerical methods. 

14. Fu et al. [1996] -prediction ofVLE in polymer systems. 

15. Gregorowicz et al. [1996] - pure fluid characteristic that challenge EOS models. 

16. Hanif et al. [1996] - Maxwell areas for pure-component phase equilibria. 

17. Heideman [1996] - excess free energy mixing rules. 

18. Inomata et al. [1996] - local composition model based on Lennard-Jones potential. 

19. Kakhu and Homer [1996] - prediction of VLE. 

20. Kontogeorgis et al. [1996] - EOS for associating fluids. 

21. Kraska and Gubbins [1996 (a,b)] -modified SAFT EOS. 

22. Lin et al. [1996] - generalized quartic EOS. 

23. Muller et al. [1996] - backbone family ofEOS's. 

24. Na and Kim [1996] - new invariant asymmetric mixing rules. 

25. Novenario et al. [1996] -mixing rule. 

26. Orbey and Sandler [1994] - cubic EOS for polymers. 

27. Zabaloy and Vera [1996] - cubic EOS for pure compound vapour pressures. 
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Activity coefficient models 

1. Dunnebeil et al. [1996] - comparison of two predictive models. 

2. Huang and Lee [1996] -modified Wilson model. 

3. Ohta [1996)-application of excess Gibbs energy to HPVLE. 

4 . Wu and Sandler [1989] - UNIFAC predictions-proximity effects. 

Azeotropy 

1. Aucejo et al. [1996) - double azeotropy. 

2. Burguet et al. [1996] - polyazeotropy. 

3. Garcia-Sanchez et al. [1996] - prediction of azeotropic behaviour. 

4. Segura et al. [1996) -polyaz.eotropy. 

5. Serafimov and Babich [1996) -azeotropic relationships. 

6. Wisniak et al. [1996]-polyazeotropy. 

VLEdata 

1. Chun et al. [1971) -triethylamine + water and methyldiethylamine + water. 

2. Elliot et al. [1974] - methane+ n-butane. 

3. Eng and Sandler [1984)-Aldehyde + hydrocarbon. 

4. Bennett et al. [1993] -hydrocarbons and fuel oxygenates. 

5. Laugier and Richon [1996) -ethylene+ 4-methyl-pentene and butene+ I-hexane. 

6. Nagaharna [1996) - discussion ofVLE measurements at high pressure. 

VLLE 

1. Engelezos et al. [1990) - simultaneous regressions of binary VLE and VLLE. 

Supercritical Extraction 

1. Braun and Schmidt [1984) -crude montan wax. 

2. Brignole et al. [1987] - alcohols from water. 

3. Campanella et al. [1987) - equilibrium properties. 

4. Chrisochoou and Schaber [1996] - design of process. 

Molecular Thermodynamics 

1. Chen [1996] - Gibbs energy of mixing. 

2. Wu and Sandler [1991 (a,b)] - ab Initio Quantum mechanical calculations. 

Gas solubility 

1. Chialvo et al. [1996) - at sub and near-critical conditions 

LLE 

1. de Pablo and Prausnitz [1988] - discussion of LLE including the critical region. 

2. de Pablo and Prausnitz [1990] - discussion ofLLE including the critical region. 

HPVLE Apparatus 

1. Kragas et al. [1984] - chromatographic apparatus. 
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2. Nasir et al. [1980/1981] - novel apparatus for measurement of phase and volumetric 

behaviour. 



APPENDIXC 

C.1. DESCRIPTION OF ANCil,LARY EQUIPMENT 

C.1.1. The degassing apparatus 
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Figure C-1: Schematic of the degassing apparatus 
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The degassing equipment consisted of a heavy-duty graduated Erlenmeyer flask and a flat 

heater/stirrer mantle. The Erlenmeyer flask which can withstand high vacuums was modified to 

incorporate a condenser (single walled). All the valves on the apparatus were stainless steel and 
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of the needle type. Sealing between the stainless steel valves and the glassware was achieved via 

Viton "o"-rings. As denoted in Figure C-1 valves VI, V2, and V3 link the degassing apparatus to 

vacuum, gas cylinder (gaseous component of interest}, and the equilibrium cell respectively. 

The operating procedure for the degassing apparatus is outlined in Appendix D. 

C.1.2. The propane compression device 

Figure C-2 illustrates the construction details for the propane compression device. The apparatus 

consists of two chambers viz., the compressed air and propane chambers. Both chambers were 

constructed from stainless steel type 316 billets. The two chambers are attached by 12 high 

tensile 8 mm steel caphead screws and aligned by a spigot. 

Heating of the propane chamber was achieved by the insertion of three 150 W electric cartridge 

heaters into the wall of the chamber. They were positioned longitudinally and equi-spaced around 

the circumference. The heater cartridges outputs were controlled by a Variac voltage regulator. 

A type J thermocouple was placed in a well in the propane chamber body so as to measure the 

temperature of the chamber. 

The compressed air chamber was linked to a compressed air cylinder that delivered air at 

approximately 200 bar. The pressure created in this chamber was transferred to the propane 

chamber by a double-ended, stainless steel type 316, piston. Sealing on both ends of the piston 

was achieved with Viton "o"-rings. 

The compression device was designed for propane, but any gas whose vapour pressure is very 

low at room temperature can be compressed to a suitable pressure with the use of this apparatus. 

The operating procedure for the propane compression device is outlined in Appendix D. 
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Figure C-2: The propane compression device 

C.2. DETAILS FOR THE STEPPER MOTOR 

The stepper motor (ORM 296E) and stepper motor drive (IB106) were supplied by Eagle 

Electronics. CyberResearch manufactured both the stepper motor and stepper motor drive. The 

stepper motor had a maximum torque of 1.75 Nm. This torque gave it the capability to drive 

against a pressure differential of approximately 10 bar. 

A simple circuit was designed by the Electronics workshop in the School to permit stepwise 

movement of the motor and consequently the piston. The circuit enabled the motor to perform 

single or double steps in both a clockwise and anti-clockwise direction. This allowed the piston to 
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be moved either up or down in the equilibrium cell. By stepwise movement of the stepper motor 

and by utiliz.ation of the micrometer attached to the stepper motor, the exact distance that the 

piston had moved could be calculated. This information was used in the P-V-T studies. 

C.3. LIQUID-LEVEL DETERMINATION DEVICES 

The liquid-level can be determined by direct or indirect methods. Direct methods include viewing 

windows and fibre optics whereas indirect methods rely on capacitors, solid-state sensors and 

floats. 

C.3.1. Direct Methods 

C.3.1.1. Viewing windows 

This requires extensive machining of the equilibrium cell and a relatively complex mechanical 

design if the windows are to be fitted into a compact arrangement. Most researchers resort to 

viewing windows for the observation of the cell contents. Some equilibrium cells are constructed 

entirely out of pyrex or sapphire making the entire contents visible. Chapter 3 details a number of 

apparatus with viewing windows. 

C.3.1.2. Fibre Optics 

Fibre optics is a very elegant method by which to determine liquid-level or view the cell contents. 

The problems though with fibre optics is that of sealing (the point at which the cable enters the 

equilibriwn cell contents). Also, extreme conditions of high pressure and high temperature are not 

conducive to fibre optics. 

C.3.2. Indirect Methods 

C.3.2.1. Capacitance Measurement 

A nwnber of researchers have made use of capacitance measurement as a means of determining 

the liquid-level (refer to Chapter 2). White and Brown [1942] describe a typical capacitance 

system. Wilner [1960] gives a good review and also makes some suggestions on the use of 

variable capacitance liquid-level sensors for both conductive and non-conductive liquids. 

Limitations of this method are as follows:-

• Certain materials are unresponsive to capacitance measurement (Lin et al. [1985]). 
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• At conditions close to the critical point where differences between the physical properties of 

the phases diminish, accurate determination of the liquid-level will be a problem. 

• Capacitance measurement can only be undertaken for the time the stirrers are switched off. 

This results in discontinuous information on liquid-level. 

C.3.2.2. Solid-state sensors 

Sensors of this nature are produced by a number of manufactures, e.g. Honeywell. These sensors 

can accurately detect liquid-level and also produce a milliampre or voltage output signal that can 

be linked to a computer. The sensors have no mechanical parts and are available in a range of 

sizes. Sensors that are able to cope with the extremely demanding conditions of 175 °C and 175 

bar were sourced. They were, however, not available in miniature versions and were extremely 

costly. 

C.3.2.3. Float sensors 

Another means of determining the liquid-level is by measurement of the position of a magnetic 

float extension. The method does have inherent problems associated with it:-

• Installation of the float mechanism vastly complicates equilibrium cell design, especially 

when one is constructing a compact and relatively small equilibrium cell. 

• The float extension creates stagnant areas, which is undesirable from an equilibrium point of 

VIew. 

• Vigorous stirring of the equilibrium cell contents and resultant vortex formation would be 

detrimental to the float and its extension. 

C.4. PRESSURE EQUALIZATION CIRCUIT 

A simple electronic circuit and valving arrangement was designed so as to maintain a pressure 

differential across the piston of approximately one bar. Figure C-3 illustrates the valving 

arrangement for the pressure equalization mechanism. 

The valving arrangement consisted of two high pressure solenoid valves, which were connected to 

the nitrogen compartment. By opening the solenoid valves (supplied by General Valve Company) 

the nitrogen compartment could be either pressurized or vented. By controlling the pressurizing 
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and venting of the nitrogen compartment, its pressure could be maintained within a bar of the 

equilibrium cell. 
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Figure C-3: Schematic of the valving arrangement for the pressure equalization mechanism 
1 - Nitrogen compartment; 2 - Equilibrium cell; 3 - Nitrogen storage cylinder (high pressure); 4 -
Pressure transducer with output signal; 5 - Pressure equalization circuit; 6 - Solenoid valve (high 
pressure) 

The electronic circuit basically consisted of a simple comparator. mV signals from the pressure 

transducers reading the pressures in the nitrogen compartment and the equilibrium cell were 

compared. If the difference was greater than a certain tolerance (m V), then either solenoid valve 

would be actuated depending on whether the nitrogen compartment pressure was higher or lower 

than the equilibrium cell pressure_ 

The solenoid valves tended to ovemeat when they were actuated. To prevent ovemeating of the 

valves and probably destroying them, a simple power supply circuit was designed. The circuit 

pulsed the power to the solenoid valves. They were thus actuated for short periods rapidly, 

mimicking full actuation for the specified period. This considerably reduced heating of the 

solenoid valves. 
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C.5. UPPER STIRRER DESIGN 

The circuitry for the stirring mechanism was designed with the assistance of Dr M. Hippner of 

the School of Electrical and Electronic Engineering at the University of Natal. The design was 

based on that of a stepper motor. There were four solenoid coils. The orientation of the solenoid 

coils was such that the angle between two adjacent coils was either 60 or 90 degrees. The reason 

that they were not symmetrically spaced 90 degrees apart was because they were inserted at a 

much later stage and they therefore had to be designed around what had already been 

constructed. Figure C-4 illustrates a cross-section through the equilibrium cell body showing the 

arrangment of the solenoid coils and the rare-earth magnets in the upper stirrer. 

~----._J~•lWl,maCell 
w.r 

Figure C-4: Cross-section through the equilibrium cell body and the upper stirrer 
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The solenoid coils had a soft metal core and the windings were made with thin nickrome wire. 

There were approximately 3000 turns in each coil. Each coil had a resistance of approximately 

200 ohms. Foreseeing that the coils would generate heat when they were energized, heat 

exchanger fins were designed into the coils so as to dissipate the heat that would be generated. 

This would prevent hot spots from being formed on the equilibrium cell body. The solenoid coils 

were held in place in the wells that housed them with the use of"o"-rings. The "o"-rings gave the 

coils a very snug fit in the wells and produced an insulating air layer between the solenoid body 

and the cell wall. Figure C-5 illustrates the solenoid coil designed. 

--­~ ----

Figure C-5: Illustration of the solenoid coil designed 

C.6. JET-MIXER DESIGN 

The design of the jet-mixer was reproduced from the work of Muhlbauer [1990]. Prof. Raal 

originally came up with the design concept. The major difference in the design of jet-mixers is 

design for effective internal free volume. The desired effective internal free volume can be 

achieved with various combinations of length to diameter of the internal and external cylinders 

(see Figure 4-8). The researcher can design according to his limitations. 

The volume (effective) that the jet-mixer needs to be designed to is determined by:-

1. The size of the sample loop on the GC sampling valve (number of moles of component). The 

pressure of the equilibrium sample can be estimated using the ideal gas law. This means that 



455 

the number of moles of component, which is determined from the sample loop volume, 

determines the pressure. 

2. Temperatures that the air-bath is to be operated at, and consequently the jet-mixer. The jet­

mixer temperatures should ideally be maintained at between five to ten degrees Celsius higher 

than the air-bath temperature. If their temperatures are far greater than that of the air-bath, 

then they create temperature gradients as a result of their radiation. These gradients may 

adversely affect the uniformity of the equilibrium cell temperature resulting in not a true 

representative equilibrium sample, even with substantial thennal insulation around the jet­

IIllXer. 

3. Sensitivity of the GC detector. The sensitivity of the GC detector gives a lower limit of 

concentration for the sample that is analysed. The jet-mixer volume and the pressurization 

(dilution of the components) of the jet-mixer with carrier gas determines the concentration to 

theGC. 

Points one to three have to be taken into consideration when sizing the jet-mixers. The process 

can be trial and error, as there can be various combinations for a particular size. 

C.7. PROPERTIES OF INSULATION MATERIAL 

The material was Fibrefrax Duraback. It was chosen as an insulation because it has the following 

properties:-

1. Excellent cold handling strength 

2. Excellent hot strength 

3. Low thermal conductivity 

4. Low heat storage 

5. Light weight 

6. Resiliency 

7. Thermal shock resistance 

8. Excellent thermal stability 

9. High heat reflectance 

10. Good sound absorption 

11 . Excellent corrosion resistance 
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Typical physical properties were as follows:-

I Continuous Use Limit 1927 °C 

I Melting Point I Above 1648 °C 

Specific Heat at 1 I 093 °c 11130 Jkg·1K·1 

I Thermal Conductivity at 200 °C \ 0.072 wm·1
K

1 

Table C-1: Typical physical properties ofFibrefrax Duraback [Carborundum Company 

Catalogue, 1995] 

C.8. CALIBRATION OF TEMPERATURE SENSORS AND TUNING OF 

TEMPERA TORE CONTROLLERS 

C.8.1. Calibration of temperature sensors 

A Hewlett Packard Quartz Thermometer was used to calibrate the Pt-100 Q resistors. The 

temperature controllers and displays had an adjustment for deviation that was set to correct the 

readout on the temperature display to the readout on the Quartz Thermometer. The Pt-100 Q 

resistors were very linear over the temperature range of calibration. Once corrected for a few 

temperatures, the temperature readings between the Pt-100 n resistors and the Quartz 

Thermometer were within 0.3% of each other for a wide range of temperatures (30 to 250 °C). 

C.8.2. Tuning of temperature controllers 

The temperature controllers (Eurotherm 808 and 818) could be tuned both manually and 

automatically (Eurotherm [1995]). Manual tuning entailed setting variables for proportional, 

differential and integral times. These values can be calculated using fundamental process control 

technology (Luyben [1990]). Tuning of the temperature controllers is also possible using the 

autotuning function that is availabe. In this project all the temperature controllers were tuned 

using this autotuning function. 

Autotuning was very simple. The set-point required was set on the temperature controller and the 

autotune function was then pressed. The controller automatically calculated the variables for PID 

control. With the autotune facility the temperature controller was able to maintain the 
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temperature to with 0.1 °C of the set-point (which was in fact the Wtcertainty in the readout from 

the temperature display). 

C.9. CALIBRATION OF PRESSURE TRANSDUCERS 

The pressure transducers were calibrated against the Bourdon type Heisse gauges. The Heisse 

gauges had calibration results traceable to the National Bureau of Standards. The 0-5000 psi 

Heisse gauge was used to calibrate the 0-175 bar absolute pressure transducers and the 0-500 psi 

Heisse gauge to calibrate the 0-5 bar absolute pressure transducer. 

The calibration procedure involved connecting the Heisse gauge and the pressure transducer in 

parallel to a pressure source (nitrogen cylinder). The cylinder regulator was then used to set a 

"rough" pressure. The pressure was read on the Heisse gauge and was then adjusted on the 

pressure display for the pressure transducer. The display for the pressure transducer had the 

facility for coarse and fine adjustment of the zero and span. Using the zero and span screws the 

pressure on the display was set to the readout on the Heisse gauge. This procedure was 

performed for a number of different pressures over the range. For each pressure calibration the 

procedure was iterative. Calibration for each pressure was usually accomplished in three to four 

iterations. 



APPENDIXD 

D.1. EXPERIMENTAL PROCEDURE FOR AUXILIARY EQUIPMENT 

D.1.1. Degassing Apparatus 

Reference must be made to Figure D-1 when following the experimental procedure. 
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1. The apparatus was charged by removing valve Vl from the "o"-ring attachment above the 

condenser and pouring the liquid component through the top of the condenser. The apparatus 

was usually charged with about 130 ml of liquid. Once filled, valve Vl was replaced. 

2. The cooling water tap was opened and an adequate flowrate set so as to condense all of the 

liquid component. Generally tapped water was adequate for use as a coolant. 

3. The stirrer/heater was then switched on. The stirrer was generally set to 600-800 rpm. This 

provided vigorous stirring of the boiling liquid. The heater was set to a temperature greater 

than the boiling point temperature of the liquid component at the vacuum pressure 

(approximately 5 mbar). 

4. Valve Vl was opened, and the vacuum pump switched on. 

5. Valve V2 was opened, and a slow flowrate (approximately 5 1/min) of the gas component 

bubbled through the liquid in the degassing apparatus. This allowed for saturation of the 

liquid component with the gas component and enhanced degassing of the volatile impurities 

from the liquid component. 

6. The degassing procedure was generally undertaken for a period of25 to 30 minutes. 

7. Once degassed, the vacuum and the gas flow were turned off by closing valves VI and V2 

respectively. Great care must be taken that the gas flow is turned off before the vacuum. If 

this is not adhered to there will be a build up of pressure in the degassing apparatus and 

hence an explosion. The glass degassing apparatus can not withstand pressures much in 

excess of atmospheric pressure. 

8. The liquid component is then transferred from the degassing apparatus to the equilibrium cell 

by opening valve V3. The procedure is explained in Chapter 5.2. It basically works on the 

principle of pressure as a driving force. 
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Figure D-1: Schematic of the degassing apparatus 

D.1.2. Propane Compressor 

Reference must be made to Figure D-2 when following the experimental procedure. 
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1. Both chambers were vented. In addition the propane chamber ( chamber 1) was evacuated so 

as to remove any residual air that may have got into the chamber. The propane chamber was 

then flushed with propane about 4 or 5 times. Venting of the air chamber (chamber 2) was 
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achieved by opening valves V3 and V2. Venting and evacuation of the propane chamber was 

achieved by opening valves V6 and V7. 

2. The heater cartridges were switched on, and the temperature was set to a value greater than 

the critical temperature for propane. The heaters were generally switched on a few hours 

before the compressor was to be used. This was to ensure that the chamber was at the proper 

uniform temperature when the propane chamber was being filled. 

3. Filling of the propane chamber was accomplished by having valve V7 closed whilst having 

valves VS and V6 open. At the same time valves V3 and V2 had to remain open, so as to 

allow the piston to move to the end of its travel as the propane filled its chamber. 

4. Valve V6 was then closed and the propane was left in the chamber for about 20 minutes so 

as to achieve the temperature of the propane chamber. Since the temperature is greater than 

the critical temperature, condensation of any propane is avoided. 

5. Valve V2 was then closed and VI opened. The flowrate of air into the air chamber was 

controlled by adjusting the opening of valve V3. The air chamber was pressurised and the 

piston allowed to move to the end of its travel in the propane chamber. A pressure gauge on 

the propane chamber indicated the propane pressure. 

6. To fill the equilibrium cell, valves V6, V7, and V4 were opened. 

7. The procedure was repeated until the desired pressure was attained in the equilibrium cell. 

COMPRESSED AIR 

CHAMBER 2 
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CHAMBER 1 TO 
EQUILIBRIUM 
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Figure D-2: Schematic of the propane compression device arrangement 
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D.2. GC CALIBRATION 

Toe different methods of GC detector calibration and the aspects of calibration are briefly dealt 

with in this section. For greater detail into gas chromatography there are a number of available 

references e.g. Littlewood [1970], Willett [1987], Fowlis [1995], and Grob [1995]. Raal and 

Muhlbauer [1998] also contains details on GC calibration, especially for VLE measurement. 

D.2.1. Calibration Methods 

There are basically two methods of detector calibration i.e. the internal standardisation and direct 

injection methods. 

D.2.1.1. Internal Standardisation 

As the name suggests this method makes use of an internal standard, not present in the samples to 

be analysed, as a reference. Samples of known concentration, with an internal standard not 

present in the sample are injected into the GC. Response factors (fJ are then assigned to each of 

the components present. The response factor for the internal standard (fr) is assigned a value of 

unity. The relationship between the measured peak areas (A;), concentration (C;), and response 

factor (fJ are related by the following direct proportionality: 

(D-1) 

(D-2) 

Toe response factors of the components can therefore be calculated from the following relation: 

(D-3) 
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When the concentration of a sample has to be determined, a known quantity of internal standard 

is added directly to the sample, and the unknown concentration is calculated by the following 

relation: 

(D-4) 

D.2.1.2. Direct Injection 

This method involves the injection of known volumes of standard solution into the GC. A 

calibration curve of component peak area (A;) versus quantity injected is then generated. The 

slope of the calibration curve (fJ can then be determined by linear regression, if the response is 

linear (as is the case normally). An unknown component quantity can then be calculated from the 

peak area and the calibration slope. 

(D-5) 

D.2.2. Quantitative and qualitative aspects 

The qualitative and quantitative aspects of gas chromatography are well explained in a review by 

Debbrecht [1985]. 

Qualitative aspects basically refer to the peak shape and separation. This aspect is mainly 

determined by the type of column used and the operating method or conditions used. Well 

separated sharp peaks ensure the most accurate quantitative analysis. Experimentation with 

different types of columns, oven temperatures, carrier gas flowrates etc. usually ensure good 

separation. 

Quantitative analysis can only be undertaken once the detector has been calibrated, as discussed 

above. This is as a resuh of the peak area being representative of the quantity of component 

present in the sample analysed. 

The details of the GC method used in this project are available in Chapter 7.4 . 
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D.2.3. GC Calibration method utilised in this project 

The GC method applied in this project was the direct injection method. Since the binary systems 

studied consisted of a liquid and gas component at room temperature, separate calibration curves 

had to be generated for the gas and liquid components. 

D.2.3.1. Liquid component calibration 

The liquid component was calibrated by injecting known volumes of the pure liquid component 

into the GC. Conversion of the known volumes into moles then generated a calibration curve of 

peak area versus number of moles. The liquid component was injected with either a I µI or 10 µI 

liquid syringes manufactured by Dynatech and Hamihon. Two different types of syringes were 

used to check the consistency of injected volumes. Each volume was injected at least 10 times 

and only the resuhs that correlated to within I . 0 % were used to generate the calibration curve. 

The conversion from volumes to number of moles is as follows:-

pV 
n=--

MW 
(D-6) 

where: p - density of component; 

V - volume injected; and 

MW - molecular weight of component. 

D.2.3.2. Gas component calibration 

The gas components were also calibrated by injecting known volumes into the GC, and obtaining 

a calibration curve of peak area versus number of moles. As with the liquid component 

calibration two different types of gas syringe were used. The pure gas components were injected 

into the GC with either a I 00 µI or I cm
3 

syringe. Each volume was also injected at least IO 

times and only the results that correlated to within 1.0 % were used to generate the calibration 

curve. 
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The volumes injected were converted into number of moles by using the truncated two-parameter 

virial EOS: 

where: V - volume in cm3
; 

T - temperature in K; 

P - pressure in kPa; 

V 

n= (RT ) 
-+B p 

R - universal gas constant; and 

B - second virial coefficient (Dymond and Smith (1980]) . 

D.2.3.3. Precautions taken during calibration 

(D-7) 

The following precautions were taken during calibration to ensure reproducibility and accuracy 

of injected volumes:-

1. Always use good quality syringes and maintain in good working condition. All syringe 

needles were regularly checked during calibration for needle blockages due to septa coring. 

The tightness of the piston plunger seal for gas and liquid syringes, and the needle seal for 

the liquid syringes were regularly checked. 

2. The GC septa were replaced after every 30 injections during calibration. This was so as to 

avoid potential error due to leakage pass the septum. Leakage pass the septum can be 

detected by a drop in the column head pressure. 

3. The GC carrier gas and reference flowrates were checked at regular intervals. 

4. To negate any errors due to the extra syringe needle volume, for gas injections, only volumes 

greater than 50 % of the total syringe volume were injected during calibration. Only when it 

was unavoidable were volumes less than 50 % of the total syringe volume injected. 
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D.3. DETERMINATION OF JET-MIXER OPERATING TEMPERATURE 

The purpose of the jet-mixer is to homogenise the equilibrium phase sample before conveying it 

to the GC for analysis. Thus the sample in the jet-mixer has to be homogeneous vapour. Any 

partial condensation in the jet-mixer will result in the jet-mixer behaving as an equilibrium cell. 

Thus the sample conveyed to the GC will not be a representation of the true equilibrium phase. 

To ensure that the sample is vapourised, the jet-mixer operating temperature has to be 

sufficiently high so that condensation of the equilibrium sample does not occur. 

One can determine the operating temperature of the jet-mixer by performing a calculation for the 

vapour pressure in the jet-mixer versus the saturation pressure of the mixture in the jet-mixer for 

a range of operating pressures. 

The vapour pressure in the jet-mixer can be simply calculated by making the following 

assumptions:-

1. The jet-mixer contains only the non-volatile component; and 

2. the component obeys the Ideal gas law. 

The vapour pressure is then calculated via the Ideal gas law equation:-

where, P - vapour pressure; 

nRT 
P=­

V 

n -number of moles (calculated from volume of sample loop); 

T - temperature of jet-mixer; 

R - Universal gas constant; 

V - volume of jet-mixer. 

(D-8) 

The saturation pressure of the mixture in the jet-mixer can be calculated by using the Antoine 

equations. For simplification one can assume that the jet-mixer contains only the non-volatile 

component. One thus obtains the extreme operating conditions for the jet-mixer. 
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A plot as illustrated in Figure D-3 was then constructed. The operating temperature was chosen 

so that the jet-mixer pressure was 10% of the saturation pressure. This ensured that there would 

be no partial condensation possible. 
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Figure D-3: Plot of jet-mixer pressure versus saturation pressure to determine the operating 

temperature for the jet-mixer 



APPENDIXE 

E.1. LITERATURE DATA FOR SYSTEMS STUDIED 

Listed in the following tables are literature data for the systems studied in this project for the 

conditions of investigation. 

E.1.1. Carbon dioxide+ Toluene 

E.1.1.1. Data at approximately 311.15 K 

Absolute Pressure Liquid composition 
(bar) (Xco) 

3.34 0.030 
14.89 0.133 
28.54 0.264 
40.68 0.406 
55 .78 0.603 
69.36 0.869 
73 .36 0.931 
77.43 0.971 

Vapour composition 
(Yco2) 

0.978 
0.993 
0.997 
0.996 
0.994 
0.992 
0.993 
0.993 
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Table E-1: Experimental VLE data of Ng and Robinson [1978] for the system Carbon 

Dioxide+ Toluene at 311.26 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xco) (Yco2) 

8.04 0.0627 0.9889 
14.75 0.1229 0.9918 
22.01 0.1886 0.9892 
23.67 0.2110 0.9949 
29.93 0.2745 0.9923 
32.00 0.2990 0.9956 
38.43 0.3732 0.9944 
48.43 0.4923 0.9925 
48.95 0.5118 0.9947 
53.15 0.5724 0.9919 
55 .91 0.6288 0.9950 
59.17 0.6896 0.9936 
63.21 0.7962 0.9945 
66.38 0.8502 0.9951 
69.21 0.9082 0.9948 

Table E-2: Expenmental VLE data of Fink and Hershey [1990] for the system Carbon 

Dioxide+ Toluene at 308.16 K 
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E.1.1.2. Data at approximately 353.15 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xeo) (Yeo

2
) 

3.76 0.0206 0.886 
13.99 0.0765 0.963 
30.75 0.172 0.978 
57.23 0.328 0.981 
83.63 0.491 0.978 
95.56 0.588 0.973 
112.11 0.720 0.961 
116.04 0.749 0.954 
119.21 0.787 0.946 
123.07 0.843 0.931 

Table E-3: Experimental VLE data of Ng and Robinson [1978] for the system Carbon 

Dioxide + Toluene at 352.59 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xeo) (Yeo) 
2.59 0.0102 0.856 
5.79 0.0287 0.926 
9.05 0.0463 0.952 
19.50 0.105 0.968 
31.25 0.170 0.978 
42.90 0.239 0.980 
53 .50 0.300 0.981 
64.75 0.366 0.980 
80.40 0.468 0.975 
94.95 0.546 0.974 
103.35 0.613 0.971 
119.30 0.783 0.939 

Table E-4: Experimental VLE data of Morris and Donohue [1985) for the system Carbon 

Dioxide + Toluene at 353.15 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xeo) (Yeo) 
6.72 0.033 0.887 
13.33 0.073 0.932 
22.22 0.125 0.958 
28.84 0.166 0.969 
36.28 0.210 0.979 
44.24 0.258 0.979 
52.70 0.308 0.969 
61 .77 0.361 0.980 

Table E-5: Experimental VLE data of Kim et al. [1986) for the system Carbon Dioxide + 

Toluene at 353.4 K 
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Absolute Pressure Liquid composition Vapour composition 
(bar) (Xco) (Yco2) 

5.18 0.0232 0.8810 

7.65 0.0375 0.9237 

7.77 0.0376 0.9197 

10.88 0.0567 0.9424 

14.82 0.0784 0.9534 

22.80 0.1235 0.9711 

29.54 0.1631 0.9753 
37.31 0.2093 0.9790 
47.65 0.2683 0.9826 
55.87 0.3137 0.9824 
64.39 0.3645 0.9811 
74.63 0.4191 0.9815 
83 .55 0.4769 0.9804 
92.95 0.5352 0.9768 
98.85 0.5885 0.9744 
110.89 0.6750 0.9626 
115.16 0.7194 0.9592 
116.81 0.7385 0.9546 
123.50 0.8301 0.9324 

Table E-6: Experimental VLE data of Fink and Hershey (1990] for the system Carbon 

Dioxide + Toluene at 353.18 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xco) (Yco2) 

8.76 0.0495 0.9300 
17.58 0.1100 0.9675 
31.37 0.1731 0.9775 
54.81 0.3000 0.9820 
55.50 0.3100 0.9820 
86.53 0.5000 0.9820 
103.08 0.6490 0.9725 
105.83 0.6693 0.9720 
109.97 0.7080 0.9650 

Table E-7: Experimental VLE data of Muhlbauer and Raal [1990) for the system Carbon 

Dioxide + Toluene at 352.15 K 
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E.1.1.3. Data at approximately 391.45 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xeo) (Yeo) 

4.03 0.0172 0.660 
9.89 0.0396 0.847 

24.41 0.106 0.926 
52.26 0.231 0.953 
84.25 0.368 0.953 
112.73 0.495 0.943 
138.17 0.621 0.921 
152.93 0.715 0.879 

Table E-8: Experimental VLE data of Ng and Robinson [1978] for the system Carbon 

Dioxide + Toluene at 393. 71 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xeo) (Yeo) 
9.76 0.0385 0.8558 
24.18 0.1032 0.9258 
40.17 0.1742 0.9392 
51.98 0.2261 0.9485 

Table E-9: Experimental VLE data of Sebastian et al. [1980] for the system Carbon Dioxide 

+ Toluene at 393.25 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xeo) (Yea

2
> 

13.13 0.046 0.839 
18.09 0.069 0.877 
26.77 0.110 0.922 
34.92 0.148 0.936 
43 .41 0.180 0.945 
52.72 0.227 0.949 
64.50 0.276 0.952 . 

Table E-10: E:xpenmental VLE data of Kim et al. [1986] for the system Carbon Dioxide+ 

Toluene at 393.2 K 



E.1.2. Carbon dioxide+ Methanol 

E.1.2.1. Data at approximately 313.15 K 

Absolute Pressure Liquid composition 
(bar) (Xco) 
5.772 0.0285 
17.701 0.1023 
30.047 0.1641 
40.871 0.2339 
57.059 0.3655 
62.723 0.4201 
70.934 0.5429 
77.028 0.6892 
80.584 0.8970 

Vapour composition 
(Yco

2
) 

0.9363 
0.9774 
0.9847 
0.9868 
0.9882 
0.9880 
0.9866 
0.9840 
0.9748 

Table E-11: Experimental VLE data of Ohgaki and Katayama [1976) for the system 

Carbon Dioxide+ Methanol at 313.15 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xco) (Yeo) 
6.83 0.031 0.944 
11.26 0.055 0.965 
21.45 0.111 0.980 
29.86 0.163 0.983 
49.10 0.283 0.986 
69.54 0.482 0.984 
74.00 0.552 0.983 
77.13 0.616 0.981 
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Table E-12: Experimental VLE data of Suzuki et al. [1990) for the system Carbon Dioxide 

+ Methanol at 313.4 K 
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Absolute Pressure Liquid composition Vapour composition 
(bar) (Xco) (Yco2) 

13.2 0.0682 0.9646 
16.7 0.0911 0.9727 
20.3 0.1159 0.9815 
24.7 0.1372 0.9843 
31.3 0.1773 0.9849 
36.1 0.2006 0.9857 
39.6 0.2318 0.9867 
45.6 0.2733 0.9876 
55 .0 0.3464 0.9881 
59.1 0.3838 0.9879 
62.0 0.4128 0.9882 
66.0 0.4658 0.9871 
69.0 0.5138 0.9865 
70.6 0.5467 0.9867 
73 .9 0.5907 0.9864 
76.9 0.6816 0.9842 
80.3 0.8783 0.9677 

Table E-13: Experimental VLE data of Chang et al. (1997] for the system Carbon Dioxide + 

Methanol at 313.14 K 
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E.1.2.2. Data at approximately 373.15 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xco) (Yca

2
) 

20.1 0.0392 
38.1 0.0880 
48.4 0.1185 
58.4 0.1445 
83.7 0.2262 
90.7 0.2456 
117.4 0.3429 
127.1 0.3968 
147.5 0.5185 
154.1 0.6197 
154.2 0.6664 
154.2 0.6735 0.6735 
154.2 0.6805 
154.2 0.6959 
153.2 0.7577 
153.1 0.7695 
140.6 0.8500 
134.4 0.8727 
129.5 0.8870 
110.5 0.9048 
103.1 0.9076 
80.6 0.9109 
66.2 0.9111 
39.7 0.8820 
28.3 0.8523 

Table E-14: Experimental VLE data of Brunner et al. [1987] for the system Carbon Dioxide 

+ Methanol at 373.15 K 
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E.1.3. Propane+ 1-Propanol 

E.1.3.1. Data at approximately 378.25 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xpropane) (Ypropane) 

35.49 0.5886 
35.49 0.5864 
34.45 0.5758 
34.45 0.5746 
30.32 0.4588 
30.14 0.4584 
27.21 0.3874 
23.08 0.3071 
20.25 0.2552 
17.49 0.2139 
15.56 0.1877 
12.80 0.1484 
11.05 0.1220 
10.80 0.1219 
8.46 0.0887 
6.11 0.0610 
5.00 0.0601 

29.97 0.9161 
27.21 0.9296 
27.14 0.9294 
23.08 0.9230 
23 .08 0.9204 
23.08 0.9159 
20.18 0.9067 
17.49 0.8935 
15.49 0.9014 
11.15 0.8864 
11.15 0.8871 
10.80 0.8779 
8.46 0.8513 
8.46 0.8489 
6.05 0.7924 
4.58 0.7209 

Table E-15: Experimental VLE data ofMiihlbauer and Raal (1993] for the system Propane 

+ 1-Propanol at 378.15 K 
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E.1.3.2. Data at approximately 393.15 K 

Absolute Pressure Liquid composition Vapour composition 
(bar) (Xpropane) (Yp,opane) 

40.45 0.5613 
40.31 0.5652 
40.31 0.5627 
36.73 0.4782 
34.97 0.4448 
31 .21 0.3689 
31.21 0.3674 
26.52 0.2999 
22.46 0.2424 
22.46 0.2402 
19.97 0.2045 
15.84 0.1585 
13.29 0.1288 
10.05 0.0904 
9.22 0.0787 
6.39 0.0493 
6.39 0.0485 
4.53 0.0297 

40.31 0.9355 
40.11 0.9327 
36.73 0.9273 
34.80 0.9304 
30.66 0.9199 
30.66 0.9350 
26.52 0.9100 
26.18 0.9149 
22.32 0.9036 
22.32 0.8969 
19.63 0.8900 
16.11 0.8681 
13.22 0.8701 
10.05 0.8356 
9.22 0.8144 
6.32 0.7364 
6.32 0.7122 
4.53 0.5890 
4.46 0.5762 

Table E-16: Experimental VLE data of Muhlbauer and Raal [1993) for the system Propane 

+ 1-Propanol at 393.15 K 
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E.2. REFERENCES TO SYSTEMS REVIEWED WHICH CONTAINED 

COMPONENTS INVESTIGATED IN THIS PROJECT 

Below are references to systems that have been reviewed which contain one of the components 

investigated in this project. These references exclude those given in Table A-1 to A-6. 

E.2.1. Systems containing Carbon Dioxide 

Vapour-liquid equilibrium has been studied for the following components with carbon dioxide:-

1. Cyclohexane - Chen and Lee [1996]; 

2. Ethanol - Day et al. [1996]; 

3. 1-Butanol - Ishihara et al. [1996]; 

4. Limonene - Iwai et al. [1996]; 

5. Nonane and C9 alylbenzenes - Jennings and Schucker [1996]; 

6. Aqueous solutions oftriethanolamine - Jou et al. [1996], and Li and Mather [1996]; 

7. Aqueous solutions ofN-methyldiethanolamine - Kuranov et al. [1996]; 

8. Nitrogen - Yorizane et al. [1985]; and 

9. Anthracene - Hampson [1996] . 

In addition volumetric properties are available for the following components with carbon 

dioxide:-

1. Pentane at high pressure - Kiran et al. [1996]; 

2. Methane and nitrogen - Seitz et al. [1996] . 

E.2.2. Systems containing Toluene 

Landwehr et al. [1958] determined VLE with ethyl alcohol. 
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E.2.3. Systems containing Methanol 

Vapour-liquid equilibrium has been studied for the following components with methanol:-

I. Water - Kato et al. [1970]; 

2. n-Hexane - Raal et al. [1972]; 

3. 2,3-Dimethylbutane-Hiaki et al. [1994(a)]; and 

4. n-Alkane - Vonka et al. [1996]. 

EOS predictions of HPVLE in mixtures containing methanol is available in Peschel and Wenzel 

[1984]. 

E.2.4. Systems containing Propane 

Vapour-liquid equilibrium has been studied for the following components with propane:-

1. 2-Butanol and 2-propanol - Gros et al. [1996]; and 

2 . Nonane and C9 alkylbenzenes - Jennings and Schucker [1996] . 

Cotterman et al. [1984] studied the extraction of high boiling petroleum fractions using propane. 

E.2.5. Systems containing 1-Propanol 

Vapour-liquid equilibrium has been studied for the following components with 1-propanol:-

1. 2,2,4-Trimethylpentane- Hiaki et al. [1994(b)], and 

2. Octane - Hiaki et al. [1995]. 



. E.3. LITERATURE DATA FOR SECOND VIRIAL COEFFICIENTS 

E.3.1. Second Virial coefficients for Nitrogen 
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The following tables are literature values for the second virial coefficient for nitrogen as 

extracted from Dymond and Smith [1980]. 

E.3.1.1. Second virial coefficients at 323.15 K 

Investigator/s B (cm3/gmol) 

Holbum and Otto [1925] -0.26 

Otto et al. [1934] -0.50 

Michels et al. [1934] -0.28 

Michels et al. [1951] -0.25 

Gunn [1958] -0.52 

Table E-17: Second Virial coefficients for Nitrogen at 323.15 K (Dymond and Smith [1980]) 

E.3.1.2. Second virial coefficients at 348.15 K 

Investigator ls B (cm3/gmol) 

Otto et al. [1934] 3.25 

Michels et al. [1934] 3.20 

Michels et al. [1951] 3.38 

Gunn [1958] 3 .31 

Table E-18: Second Virial coefficients for Nitrogen at 348.15 K (Dymond and Smith [1980)) 
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E.3.1.3. Second virial coefficients at 373.15 K 

lnvestigator/s B (cm3/gmol) 

Holbum and Otto [1925] 6.14 

Otto et al. [1934] 6.23 

Michels et al. [1934] 6.56 

Michels et al. [1951] 6.50 

Gunn [1958] 6.19 

Table E-19: Second Virial coefficients for Nitrogen at 373.15 K (Dymond and Smith (1980)) 

E.3.2. Second Virial coefficients for Propane 

The following tables are literature values for the second virial coefficient for Propane as 

extracted from Dymond and Smith [1980]. 

E.3.2.1. Second virial coefficients at 323.15 K 

Investigator/s B ( cm3 /gmol) 

Jessen and Lightfoot [1938] -325 ± 10 

Lichtenthaler and Schafer [1969]* -338.2 

*Measurement at 322.8 K 

Table E-20: Second Virial coefficients for Propane at 323.15 K (Dymond and Smith (1980)) 

E.3.2.2. Second virial coefficients at 348.15 K 

Investigator ls B (cm3/gmol) 

Deschner and Brown [1940] -293 

Table E-21: Second Virial coefficients for Propane at 348.15 K (Dymond and Smith (1980)) 
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E.3.2.3. Second virial coefficients at 373.15 K 

Investigator/s B (cm3/gmol) 

Beattie et al. [1937] -247 

Deschner and Brown [1940] -256 

Strein et al. [1971] -242.1 

Table E-22: Second Virial coefficients for Propane at 373.15 K (Dymond and Smith [1980]) 

E.3.3. Second Virial coefficients for Propane + Nitrogen binary system 

Table E-23 below lists the measured cross-term second virial coefficients for the system propane 

+ nitrogen, as undertaken by Wormald et al. [1996]. 

Temperature (K) B12 ( cm3 /gmol) 

241.1 -126 

253.6 -109 

262.9 -100 

273 .5 -87 

283.2 -81 

293.2 -73 

303.4 -67 

323 .1 -64 

343.2 -49 

363.2 -37 

383.2 -37 

393.4 -33 

Table E-23: Cross-term second virial coefficients for the system propane + nitrogen as 

measured by Wormald et al. [1996] 

Data are also available in Dymond and Smith [1980], but it is rather sparse. 
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APPENDIXF 

F.1. PROPERTIES FOR COMPONENTS INVESTIGATED 

Table's F-1 to F-6 summarize the properties for the components studied. These were the values 

entered into the parameter optimization and bubble pressure computations. All properties were 

referenced from Prausnitz et al. [1980], Reid et al. [1988], Reklaitis [1983] or computed. 

Properties 

Component Tc(K) Pc (bar) (D ZRA DM(D) RD(A) K1 

Carbon Dioxide 304.1 73 .8 0.239 0.2000 0.18 0.992 0.1021 

Propane 369.8 42.5 0.153 0.2763 0.00 2.426 0.0264 

Methanol 512.6 80.9 0.556 0.2318 1.71 1.536 -0.1104 

1-Propanol 536.8 51.7 0.623 0.2485 1.68 2.736 0.2701 

Toluene 591.8 41 0.263 0.2646 0.36 3.443 -0.0125 

Table F-1: Properties for components studied 

The K1 parameter for the Peng-Robinson-Stryjek-Vera EOS was obtained by regressing vapour 

pressure data for the component as explained in Chapter Eight. Vapour pressures were 

computed from the Antoine equation (Reklaitis [1983]) and vapour pressure correlations (Reid 

et al. [1988]. Antoine constants are given in Table F-2 and constants for vapour pressure 

correlation of Reid et al. [1988] in Table F-3. 

Antoine Constants 

Components A B C 

Carbon Dioxide 15.3768 1956.25 -2 .1117 

Propane 13.7097 1872.82 -25.1011 

Methanol 16.4948 3593.39 -35.2249 

1-Propanol 15.2175 3008.31 -86.4909 

Toluene 14.2515 3242.38 -47.1806 
. 

Table F-2: Antome constants for the components studied 



Correlation Constants 

Component A B C D 

Carbon Dioxide -6.95626 1.19695 -3 .12614 2.99448 

Methanol -8 .54796 0.76982 -3.10850 1.54481 

Propane -6.72219 1.33236 -2.13868 -1.38551 

1-Propanol -8 .05594 4.25183E-2 -7.51296 6.89004 

Toluene -7.28607 1.38091 -2.83433 -2.79168 

Table F-3: Correlation constants for vapour pressure 

1n[;, J ~ (1-xJ-'[Ax+ Bx'' +Cx' + Dx'] 
T 

x=l--
Tc 

UNIQUAC parameters for the components investigated are given in Table F-4. 

UNIQUAC parameters 

Component R Q Q' 

Carbon Dioxide 1.32 1.28 1.28 

Propane 2.48 2.24 2.24 

Methanol 1.43 1.43 0.96 

1-Propanol 2.78 2.51 0.89 

Toluene 3.92 2.97 2.97 

Table F-4: UNIQUAC parameters for the components investigated 

Standard-state fugacity correlation constants 

Component C1 C2 C3 C4 
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Cs 

Methanol 3.3387E+2 -l .2679E+4 1.3761E-l -5 .7722E+l -5.9496E-5 

Carbon Dioxide 6.3208 -2.6426E+3 -3.9322E-2 2.7347 2.6718E-5 

Propane 1.0491E+l -2.8237E+3 -l.9487E-2 1.0303 1.1171E-5 

1-Propanol -l.0789E+3 1.8583E+4 -5.3858E-l 2.025E+2 2.2251E-4 

Toluene 2.0899E+l -5 .7902E+3 -2.0741E-2 7.144E-2 1.1510E-5 

Table F-5: Constants for the standard-state zero pressure fugacity as given by Equation 

(8-6) 
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The constants for the standard-state zero pressure fugacity (Prausnitz et al. [ 1980]) as given by 

Equation (8-6) are listed in Table F-5. 

The association and solvation parameters (Prausnitz et al. [1980]) used in the computation of 

the second virial coefficients via the Hayden and O'Connell method are given in Table F-6. 

Association and Solvation parameters 

Component Methanol Carbon Dioxide Propane 1-Propanol Toluene 

Methanol 1.63 0.30 - - -

Carbon Dioxide 0.30 0.16 - - 0.00 

Propane - - 0.00 0.00 -

1-Propanol - - 0.00 1.40 -
Toluene - 0.00 - - 0.00 

Table F-6: Association and solvation parameters for the systems investigated 

F.2. ACTMTY COEFFICIENT PLOTS 

F.2.1. The Carbon Dioxide+ Toluene System 

Activity coefficient plot were undertaken for the carbon dioxide + toluene system for each of 

the isotherms measured. Figures F-1 to F-3 illustrate the activity coefficients plots. The activity 

coefficients were computed using the NRTL activity coefficient model and NRTL activity 

coefficient parameters fitted using the PRSVWS-NRTL + NRTL model. 

F.2.2. The Carbon Dioxide+ Methanol System 

Figures F-4 to F-6 illustrate the activity coefficients plots for the carbon dioxide + methanol 

system. The activity coefficients were computed using the NRTL activity coefficient model and 

NRTL activity coefficient parameters fitted using the PRSVWS-NRTL + NRTL model. 

F.2.3. The Propane+ 1-Propanol System 

Figures F-7 to F-8 illustrate the activity coefficients plots for the propane + 1-propanol system. 

The activity coefficients were computed using the NRTL activity coefficient model and NRTL 

activity coefficient parameters fitted. using the PRSVWS-NRTL + NRTL model. 



Figure F-1: Plot of activity coefficient versus liquid mole 
fraction for the Carbon Dioxide (1) + Toluene (2) System for 

the 38 °C isotherm 10 _,,_ __________________________ _ 
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Figure F-2: Plot of activity coefficient versus liquid mole fraction 
for the Carbon Dioxide (1) + Toluene (2) System for the 80 °C 

isotherm 
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Figure F-3: Plot of activity coefficient versus liquid mole fraction for 
the Carbon Dioxide (1) + Toluene (2) System for the 118.3 °C 

isotherm 
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Figure F-4: Plot of activity coefficient versus liquid mole 
fraction for the Carbon Dioxide (1) + Methanol (2) System for 

the 40 °C isotherm 
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Figure F-5: Plot of activity coefficient versus liquid mole fraction 
for the Carbon Dioxide (1) + Methanol (2) System for the 90 °C 

isotherm 
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Figure F-6: Plot of activity coefficient versus liquid mole fraction for 
the Carbon Dioxide (1) + Methanol (2) System for the 100 °C 

isotherm 
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Figure F-7: Plot of activity coefficient versus liquid mole 
fraction for the Propane (1) + 1-Propanol (2) System for the 

105.1 °C isotherm 
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Figure F-8: Plot of activity coefficient versus liquid mole fraction 

for the Propane (1) + 1-Propanol (2) System for the 120 °C 
isotherm 
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F.3. CRITICAL PROPERTIES 

Critical property computations were undertaken using the SRK, PR and PRSV EOS's. For each 

of the systems investigated, plots were undertaken of critical temperature, critical pressure, 

critical volume and critical compressibility factor against mole fraction for the volatile 

components. 

F.3.1. The Carbon Dioxide+ Toluene System. 

Figures F-9 to F-12 represent graphically the computed critical temperature, critical pressure, 

critical volume and critical compressibility factor for the carbon dioxide + toluene system 

respectively. 

F.3.2. The Carbon Dioxide+ Methanol System. 

Figures F-13 to F-16 represent graphically the computed critical temperature, critical pressure, 

critical volume and critical compressibility factor for the carbon dioxide + methanol system 

respectively. 

F.3.3. The Propane+ 1-Propanol System. 

Figures F-17 to F-20 represent graphically the computed critical temperature, critical pressure, 

critical volume and critical compressibility factor for the propane + 1-propanol system 

respectively. 



Figure F-9: Plot of critical temperature versus composition for 
the carbon dioxide + toluene binary system 
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Figure F-10: Plot of critical pressure versus composition for 
the carbon dioxide + toluene binary system 

300 ---r-------------------------

"C' 
cu 

250 

e 200 
! 
::::, 
,n 
tn 150 ! 
0. 

'B 100 ·-... ·-.. 
0 

SOL---""" 

~~\ 
-~'.\ 

··~ 

0 _,__ __ ,........ ___________ ,........ _ _.., ________ .,...... _ ____., 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Mole fraction CO2 

--SRK 
---PR 

· · · · · · PRSV 

+­v:, 
,4:. 



Figure F-11: Plot of critical volume versus composition for 
the carbon dioxide + toluene binary system 
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Figure F-12: Plot of critical compressibility factor versus 
composition for the carbon dioxide + toluene binary system 
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Figure F-13: Plot of critical temperature versus composition 
for the carbon dioxide + methanol binary system 
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Figure F-14: Plot of critical pressure versus composition for 
the carbon dioxide + methanol binary system 
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Figure F-15: Plot of critical volume versus composition fot 
the carbon dioxide + methanol system 
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Figure F-16: Plot of critical compressibility versus 
composition for the carbon dioxide + methanol binary system 
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Figure F-17: Plot of critical temperature versus composition 
for the propane + 1-propanol binary system 
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Figure F-18: Plot of critical pressure versus composition for 
the propane + 1-propanol binary system 
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Figure F-19: Plot of critical volume versus composition for 
the propane + 1-propanol binary system 
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Figure F-20: Plot of critical compressibility factor versus 
composition for the propane + 1-propanol binary system 
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F.4. THERMODYNAMIC CONSISTENCY 

The Chueh et al. [1965] consistency test along with residual plots were used to judge the 

thermodynamic consistency of the systems measured. The Chueh et al. test entailed the 

computation of areas under appropriate curves as explained in Appendix B and Chapter 8. 

Figures F-21 to F-44 illustrate the plots of In (K:/K1) and 1n(¾) versus liquid mole fraction 

of component 2 (x2) , as well as the plots of liquid molar volume versus pressure for the carbon 

dioxide + toluene, carbon dioxide + methanol and propane + 1-propanol at the various 

isotherms measured. 

All computations were undertaken using the PRSVWS-NRTL + NRTL model. In some cases 

the computations were not stable over the entire composition range up to the critical point, and 

therefore for these computations, the plots are only over the composition range that the 

computation was stable. 

Figures F-45 to F-52 illustrate the plots of residual pressure versus liquid mole faction of the 

volatile components for the carbon dioxide + toluene, carbon dioxide + methanol and propane + 

1-propanol system. 

Computations of the residuals were undertaken using a number of models as are indicated in 

Figures F-45 to F-52. 

In judging the thermodynamic consistency of a system, one of the criteria for thermodynamic 

consistency is that there is even scatter of the residuals about the zero x-axis. Plots of residual 

vapour composition, pressure and the Chueh et al. [1965] test were together used to judge the 

thermodynamic consistency of the system measured. 
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Figure F-21: Plot of ln(K2/K1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + toluene (1) system at 38 °C 
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Figure F-22: Plot of ln(q,2/q,1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + toluene (1) system at 38 °C 
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Figure F-23: Plot of liquid molar volume versus pressure for 
the carbon dioxide + toluene system at 38 °C 
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Figure F-24: Plot of ln(K2/K1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + toluene (1) system at 80 °C 7-----------------------------
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Figure F-25: Plot of ln((J>2/(J>1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + toluene (1) system at 80 °C 
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Figure F-26: Plot of liquid molar volume versus pressure for 
the carbon dioxide + toluene system at 80 °C 
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Figure F-27: Plot of ln(K2/K1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + toluene (1) system at 118.3 °C 6----------------------------
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Figure F-28: Plot of ln(<j>2/<l>1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + toluene (1) system at 118.3 °C 
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Figure F-29: Plot of liquid molar volume versus pressure for 
the carbon dioxide+ toluene system at 118.3 °C 
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Figure F-30: Plot of ln(K2/K1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + methanol (1) system at 40 °C 1-----------------------------. 
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Figure F-31: Plot of ln(<f,2/<f,1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + methanol (1) system at 40 °C 
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Figure F-32: Plot of liquid molar volume versus pressure for 

the carbon dioxide + methanol system at 40 °C 
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Figure F-33: Plot of ln(K2/K1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + methanol (1) system at 90 °C 6-----------------------------, 
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Figure F-34: Plot of ln(<J,2/<1>1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + methanol (1) system at 90 °C 2----------------------------
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Figure F-35: Plot of liquid molar volume versus pressure for 
the carbon dioxide + methanol system at 90 °C 
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Figure F-36: Plot of ln(K2/K1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + methanol (1) system at 100 °C 6---------------------------
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Figure F-37: Plot of ln(<l>2/<l>1) versus liquid mole fraction CO2 

for the carbon dioxide (2) + methanol (1) system at 100 °C 
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Figure F-38: Plot of liquid molar volume versus pressure for 
the carbon dioxide + methanol system at 100 °C 
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Figure F-39: Plot of ln(K2/K1) versus liquid mole fraction 
propane for the propane (2) + 1-propanol (1) system at 105.1 
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Figure F-40: Plot of ln(q,2/q,1) versus liquid mole fraction 
propane for the propane (2) + 1-propanol (1) system at 105.1 
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Figure F-41: Plot of liquid molar volume versus pressure for 
the propane + 1-propanol system at 105.1 °C 
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Figure F-42: Plot of ln(K2/K1) versus liquid mole fraction 

propane for the propane (2) + 1-propanol (1) system at 120 °C 
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Figure F-43: Plot of ln(<l>2/<l>1) versus liquid mole fraction 

propane for the propane (2) + 1-propanol (1) system at 120 °C 
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Figure F-44: Plot of liquid molar volume versus pressure for 
the propane + 1-propanol system at 120 °C 
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Figure F-45: Residual plot of Pressure for the Carbon Dioxide 
+ Toluene System at 38 °C isotherm 
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Figure F-46: Residual plot of Pressure for the Carbon Dioxide 
+ Toluene System at 80 °C 
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Figure F-47: Residual plot of Pressure for the Carbon Dioxide 

+ Toluene System at 118.3 °C 
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Figure F-48: Residual plot of Pressure for the Carbon Dioxide 

+ Methanol System at 40 °C 
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Figure F-49: Residual plot of Pressure for the Carbon Dioxide 

+ Methanol System at 90 °C 
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Figure F-50: Residual plot of pressure for the Carbon Dioxide 
+ Methanol System at 100 °C 
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Figure F-51: Residual plot of Pressure for the Propane + 1-
Propanol System at 105.1 °C isotherm 
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Figure F-52: Residual plot of Pressure for the Propane + 1-
Propanol System at 120 °C isotherm 
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F.5. P-V-T COMPUTATIONS- DETERMINATION OF VOLUME 

The new equilibrium cell can also be used to obtain P-V-T information and to measure dew or 

bubble points. For this purpose the equilibrium cell volume at any piston position has to be 

known exactly. The effective equilibrium cell interior volume at any piston position can be 

found from an equation of state (EOS). If the number of moles of gas contained in the 

equilibrium space, n, is known the volume, V0 , can be calculated using e.g. the truncated Virial 

EOS, Z =I+ (BP/Rn, as follows : 

(F-1) 

where Bo is the second virial coefficient 

Po, To are the measured pressure and temperature at an initial piston position 

The number of moles of gas can be found by moving the piston upwards or downwards to 

expand or compress the gas and re-measuring the pressure. Temperature remains constant 
because the equilibrium cell is isothermal. 

The new volume is given by: 

The difference in volumes, V1-V0 = !:N is given by: 

and also by: 

7r 
LlV=-D2& 

4 

where: Dis the cell interior diameter 

M, is the piston travel 

(F-2) 

(F-3) 

(F-4) 

The number of moles, n, in the equilibrium space is found from Equations (F-3) and (F-4): 

7r 
- D2& 

n= 4 

RT (_!_ __ I) 
0 p p 

1 o 

(F-5) 
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Substitution of Equation (F-5) into Equation (F-1) gives the effective interior equilibrium cell 

volume at the zero displacement position: 

(F-6) 

The volume at any piston position after the movement .6L from the initial zero position, is 

found from Equation (F-4). The micrometer dial on the stepper motor drive is very convenient 

for accurate measurement of .6.L. 

The equations developed above thus enable the equilibrium cell to be used to furnish P-V-T 

data and dew and bubble points if the total mass or moles of a binary system introduced into the 

equilibrium cell is known. The components will have to be thoroughly degassed before 

introduction into the equilibrium cell. 
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