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ABSTRACT

Due to the increasing prevalence and severity of Al phytoxicity in certain regions of the South

Mrican sugar industry, a research programme has been initiated at SASEX to elucidate the

molecular mechanisms by which sugarcane detects and responds to the metal. As part of this

larger investigation, the current study aimed to assess the response of a reportedly Al tolerant

cultivar, Saccharum spp. hybrid cv. N12, to phytotoxic levels of Al. Hydroponically-grown

plants of this commercial genotype were used in Al inhibition studies, the results of which

indicated that exposure of plants to 250!lM Al for 24 hours resulted in maximum reduction of

root elongation. Under these conditions, root growth was inhibited by approximately 36%,

compared with only 4% for the 50!lM Al treatment. Subsequently, this exposure regime was

used to gather the terminal 5 to 10mm of root tips, the site of the primary Allesion, of

challenged and control, unchallenged plants for molecular analysis.

~Total RNA was extracted from the Al challenged and control root tips, from which mRNA was

subsequently isolated, reverse transcribed and converted to double-stranded cDNA. The two

populations of cDNA were reciprocally subtracted from each other and used to construct

subtractive cDNA libraries in Lambda ZAP®II phages. Randomly selected clones, 576

representatives from each of the libraries, were screened using membrane-based array

technology. Results indicated that only 33% (190) of the Al-treatment specific library cDNAs

were found to be more highly expressed under conditions of Al stress than under control

conditions. Of these potentially Al response-related cDNAs, 25 were sequenced and submitted

to sequence databases for the assignment of putative identities. No genic sequences known to be

directly associated with the Al stress response were identified, however, several were found to

be related to pathogenesis or general stress pathways. Although further Northern hybridisation

work is required to validate these results, they suggest that the induction of general stress

response pathways may be involved in the aluminium stress response of this sugarcane cultivar.

Such Al stress-related sequences could have applications in marker-assisted breeding

programmes and as candidate genes for the genetic engineering of tolerant genotypes.
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The experimental work described in this dissertation was carried out in the Biotechnology

Department of the South African Sugar Association Experiment Station (SASEX), Mount

Edgecombe, from January 2000 to January 2002, under the supervision of Dr Derek Watt.

These studies represent original work by the author and have not otherwise been submitted in

any form for any other degree or diploma to any other tertiary institution. Where use has been

made of the work of others it is duly acknowledged in the text.



IV

ACKNOvVLEDGEMENTS

The author would like to thank the staff and students of the Biotechnology Department at the

South African Sugar Association Experiment Station for their expert guidance and friendship,

especially Dr Barbara Huckett, Dr Derek Watt and Dr Deborah Carson.

The author would also like to gratefully acknowledge financial support from the South African

Sugar Association Experiment Station as well,as the Sugar Industry Trust Fund for Education

(SITFE).

The author also gratefully thanks her parents for their support, both financial and emotional.

And lastly, but far from least, the author thanks her husband for his enormous patience.



TABLE OF CONTENTS

Page
1. INTRODUCTION 1

2. LITERATURE REVIEW 5

2.1 Chemistry of aluminium in soils 5

2.2 Aluminium as a phytotoxin 6

2.2.1 Phytotoxic species of aluminium

2.2.2 Effects of aluminium on plant gr9wth and physiology

2.2.3 The impact of aluminium on global food security

2.3 Plant tolerance of aluminium 15

2.3.1 Physiology of detoxification

a. Exclusion ofaluminium

b. Internal mechanisms ofaluminium detoxification

2.3.2 Genetics of aluminium tolerance

2.4 Approaches to minimise aluminium toxicity 24

2.4.1 Agronomic and plant breeding strategies

2.4.2 Molecular strategies

2.5 Aluminium phytotoxicity in the South Mrican sugar industry 29

2.6 Current study 33

3. MATERIALS AND METHODS 35

3.1 Plant materials 35

3.1.1 Cultivar

3.1.2 Propagation and growth

3.2 Aluminium challenge 37

3.2.1 Root elongation assay

a. Preparation and acclimation ofplantlets and challenge with Al

b. Root growth measurements

c. Calculations and statistics

3.2.2 Challenge conditions for library construction

a. Preparation and acclimation ofplantlets and challenge with Al

b. Harvesting and storage of root tips

3.3 Construction of subtractive cDNA library 38

3.3.1 RNA isolation

a. Precautions

v



b. Tissue disruption

c. Total RNA extraction and purification

d. Quantification and quality assessment

e. Poly A + isolation

3.3.2 cDNA synthesis

a. First strand synthesis

b. Second strand synthesis

3.3.3 cDNA processing

a. Digestion with restriction enzymes

b. Adaptor ligation

3.3.4 cDNA subtraction

a. peR amplification

b. Synthesis of tracer cDNA and biotinylation ofdriver cDNA

c. Hybridisation of tracer and driver cDNA

d. Isolation ofsubtracted tracer cDNA

3.3.5 cDNA cloning

a. Adaptor ligation

b. cDNA phosphorylation

c. cDNA digestion with restriction enzyme

d. Ligation into cloning vector

e. Packaging

3.4 Characterisation of the subtractive libraries 48

3.4.1 Preparation of bacterial cell line

3.4.2 Plating of phage libraries

3.4.3 Assessment of insert sizes

3.4.4 Amplification of phage libraries

3.5 Analysis of library cDNA inserts 50

3.5.1 Reverse Northern hybridisation analysis

a. Probe synthesis

b. Array printing

c. Preparation of labelled total cDNA populations

d. Array querying

e. Array analysis

3.5.2 Northern hybridisation analysis

a. Total RNA size fractionation

VI



b. RNA blotting

c. cDNA probe labelling

d. Hybridisation

e. Visualisation

3.5.3 Sequencing

a. Phagemid rescue and quantification

b. Capillary electrophoresis

c. sequence editing and homology searches

4. RESULTS 57

4.1 Hydroponic culture of sugarcane 57

4.2 Effect of aluminium on root growth 57

4.3 Isolation of aluminium-challenge-associated cDNA 59

4.3.1 Quantity and quality of RNA

4.3.2 Conversion of mR..L~A into complementary DNA (cDNA)

4.3.3 Isolation of cDNAs associated with the aluminium phytotoxic response

4.3.4 Cloning of subtracted cDNAs

-4.4 General analysis of aluminium-challenge-associated cDNA library 64

4.5 Expression analysis of aluminium-challenge-associated cDNA libraries 65

4.5.1 Reverse Northern hybridisation analysis

a. Array querying

b. Array analysis

4.5.2 Confirmation of differential expression patterns: Northern hybridisation

analysis

4.6 Clone identification 69

5. DISCUSSION 75

5.1 Performance of hydroponically-grown sugarcane under conditions of

aluminium stress 75

5.2 Evaluation of molecular strategies 77

5.2.1 Isolation and manipulation of genetic material

5.2.2 Applicability of array technology to this study

5.2.3 Inconclusiveness of Northern hybridisation analyses

5.3 Effect of aluminium on gene expression in sugarcane roots 80

5.4 Future work 83

5.5 Conclusions 86

REFERENCES 87

vu



viii

LIST OF TABLES

Table 1: Selected studies reporting secretion of organic acids as Al3
+ chelating,agents. 20

Table 2: Some selected examples of aluminium-induced genes, isolated from a variety 25

of plant species.

Table 3: Molecular techniques that have been employed in various gene search 27

programmes.

Table 4: Hydroponic nutrient medium composition (after Hewitt, 1966). 36

Table 5: MINTEQ analysis of Al3
+ activity in ImM CaCh. 37

Table 6: Characteristics of Lambda ZAP®U subtractive libraries prepared from mRNA 64

isolated from N12 root tips. Sub A - Al exposure treatment (250!!M AlCh

[in ImM CaCh] for 24 hours); Sub B - control treatment (ImM CaCh for

24 hours).

Table 7: Putative identities and characteristics of selected sequences expressed in 73

N12 root tips in response to challenge with 250!!M Al for 24 hours in

hydroponics.

Table 8: Possible roles of clones putatively identified through sequence homology with 85

the NCBI non-redundant protein database entries (BLASTx), expressed in

sugarcane roots in response to Al-induced stress.



LIST OF FIGURES

Fig. 1: Schematic representation of a single hydroponic' vessel (a), and position of 36

Neoprene®collar (foam tubing) on plantlets (b).

Fig. 2: Generalised subtraction scheme. Tracer cDNA from the AI-exposed root tips 43

(+) was hybridised to >lO-fold excess of driver cDNA from the control

treatment root tips (-). The resulting hybrids and excess driver were removed to

enrich for sequences specific to the tracer cDNA population. (after Patel and

Sive, 1996).

Fig. 3: Sequence of subtractions used for the isolation of A-specific and B-specific 44

genes (after Patel and Sive, 1996).

Fig. 4: Array design for subtractive libraries A and B, showing addr~sses of PCR 5.2

products on array membrane.

Fig 5: Cultivation of Saccharum spp. hybrid N12 (N12). (a) View of hydroponically 58

grown plants in glasshouse. (b) Root system of hydroponically grown plants.

Fig 6: Average percentage root growth inhibition (%RGI) of hydroponically- 60

cultivated N12 plants as a result of exposure to aluminium (AICh in 1mM

CaCh at pH 4.15) (a) supplied at various concentrations for 24 hours, and

(b) supplied at 250llM over a 72 hour period.

Fig. 7: Fractionation ofrepresentative RNA samples via denaturing agarose gel (1.2% 62

[w/v]) electrophoresis, as described by Ingelbrecht et al., 1998, and visualised

via ethidium bromide staining and short-wavelength DV radiation. Lane 1:

RNA size ladder 1 (Roche); Lane 2 & 3: lOllg RNA samples isolated from root

tips exposed to 250llM AI (AICh in 1mM CaClz) for 24 hours using a hydroponics

system.

ix



Fig. 8: Progressive removal of common abundant sequences from two populations 63

of cDNA over the first four cycles of hybridisation (a: 1st cycle; b: 2nd cycle;

c: 3rd cycle; and d: 4th cycle) via PCR based subtraction. (Lanes 1: Marker 3

[ADNA digested with EcoRl and RindIII]; Lanes 2: Tracer cDNAA [AI-

exposed treatment]; Lanes 3: Tracer cDNA B [control treatment]; Lanes 4:

Marker 5 [pBR322 digested with RadII].

Fig. 9: A subset of PCR amplified: plaques from subtractive library A, fractionated 65

via agarose 1.2% {w/v} gel electrophoresis. cDNA library was prepared from

mRNA isolated from N12 root tips exposed to 250""M AI for 24 hours in

hydroponics. Note multiple banding in lanes 12, 13 and 14. Such samples were

discarded.

Fig. 10: Probing of total mRNA, isolated from (a) AI-exposed (250""M AI in 1mM 66

CaCh for 24 hours) N12 root tips and (b) from control treatment (lmM CaCh

for 24 hours) root tips, with subtractive library A (control treatment cDNA

subtracted from AI challenge cDNA) array.

Fig. 11: Superimposition of array image results from the hybridisation of the Sub A 67

(AI-specific) library array to control treatment and to AI-exposure cDNA, using

QuantArray® Microarray Analysis Software (version 3,0, Packard Bioscience).

Regions of green signal indicate signal from control treatment cDNA

hybridisation, regions of red signal.indicate signal from AI-exposure cDNA

hybridisation, and yellow indicates regions of overlap between the red and

green signals.

Fig. 12: Pie representation of the relative expression of array clones under conditions 68

of AI-stress (red) and control treatments (green) using QuantArray® Microarray

Analysis Software (version 3,0, Packard Bioscience). Smaller pie charts indicate

data points below the brightness threshold of 25; larger pie charts indicate data

points above the brightness threshold of 25,

x



Fig. 13: Proportion of clones preferentially expressed under conditions of Al 70

challenge (250!J.M Al in ImM CaCh for 24 hours) and under control conditions

(lmM CaCh for 24 hours). Values allocated to inner pie-segments indicate the

proportion each segment represents of combined expression in both challenge

and control treatments. Segments represent groupings of clones falling within

10% intervals of percentage expression under Al challenge conditions.

Fig. 14: Representative phosphor-image from Northern hybridisation analyses, us!ng 71

putative AI-induced genic fragment to probe membrane bearing 10!J.g total

RNA isolated from Al-challenged (+Al) (250!J.M Al in ImM CaCh for 24 hours

in hydroponics) N12 root tips and 10!J.g total RNA from control (-Al) (lmM CaCh

for 24 hours in hydroponics) root tips.

Fig. 15: Differential expression of an N12-derived root specific cDNA fragment in 72

cultivars N19 and N17. (a) Fractionated RNA samples, stained with ethidium

bromide (b) Northern hybridisation analysis ofroot, leaf and callus RJ'\l"A using

root specific cDNA fragment as probe. (+Al: Al stress treatment; +D: Diamide

stress treatment; - : Control treatment).

Xl



LIST OF ABBREVIATIONS

Xll

A

AFLP

AI

ATA

dNTP

ATP

BLAST

bp

BSA

cDNA

CEC

cm

cv.

dATP

dbEST

dCTP

ddCfP

DEPC

dGTP

DMSO

DNA

DNP

cDNA

dNTP

dT

DIT

dITP

EDTA

lambda

microgram

microlitre

micromolar

degrees Celsius

adenine

,amplified fragment length polymorphism

aluminium

aurintricarboxylic acid

deoxynucleotide triphosphate

adenosine triphosphate

Basic Local Alignment Search Tool

base pair

bovine serum albumin

complementary DNA

cation exchange capacity

centimetre

cultivar

2'-deoxyadenosine 5'~triphosphate

EST database

2'-deoxythymidine 5'-triphosphate

dideoxycytidine 5' -triphosphate

diethyl pyrocarbonate

2'-deoxyguanosine 5I-triphosphate

dimethyl sulphoxide

deoxyribonucleic acid

2,4-dinitrophenol

complementary DNA

2' -deoxynucleotide 5' -triphosphate

deoxythymidine

dithiothreitol

2'-deoxythymidine 5'-triphosphate

ethylene diamine tetraaccetic acid



EST

E value

g

g

GTP
H+

HEPES

IPTG

LB

M

MAS

mM

MOPS

mRNA

NCBI

ng

NIL

ill

NZY

PAS

PCR

PEG

PM

PVP

RFLP

RGI

RNA

RNase

rpm

rRNA

RT

SDS

SSC

SSH

SubA

expressed sequence tag

expect value

gram

relative centrifugal force

guanosine triphosphate

proton

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

isopropy1-~-D-thiogalactopyranoside

Luria Bertani

molar

marker assisted selection

millimolar

3-(N-morpholino) propanesulfonic acid

messenger RNA

National Centre for Biotechnology Information

nanogram

near isogenic line

non redundant protein database

NZ amine (casein hydrolysate) and yeast

p-amino salicylic acid

polymerase chain reaction

polyethylene glycol

plasma membrane

polyvinylpyrolidine

restriction fragment length polymorphism

root growth inhibition

ribonucleic acid

ribonuclease

revolutions per minute

ribosomal RNA

reverse transcriptase

sodium dodecyl sulphate

saline sodium citrate

suppression subtractive hybridisation

subtractive library A (AI treatment)

Xlll



SubB

TBE

TE

Tris

Tris-HCl

DV

V

X-Gal

subtractive library B (control treatment)

Tris borate EDTA

TrisEDTA

Tris[hydroxymethyl]aminomethane

Tris hydrocWoric acid

ultraviolet

volt

5-bromo-4-cWoro-3-indolyl-13-D-galactoside

xiv



1

CHAPTERl

INTRODUCTION

Soil degradation and acidification are of major global concern, primarily due to the marked

influence these processes have on agricultural productivity. Poor agronomic practices such as

the excessive use of ammoniacal fertilizers, coupled with intensive continuous monocropping,

are the main contributors to the increasing prevalence of acidic soils in the agricultural sector.

The negative consequences of soil acidification on plant growth are primarily effected by the

increased solubility of aluminium, a major phytotoxin at low soil pH values. While soil

acidification is reportedly a common occurrence during the cultivation of annual cycle crops,

such as wheat and maize, it is particularly acute for sugarcane, which is a vegetatively

propagated crop that is grown continuously over several cycles. In the South Mrican sugar

industry, this tendency towards soil acidification is exacerbated by the widespread use of urea,

the most cost-effective source of inorganic nitrogen readily available to sugarcane growers. A

recent survey conducted by the SA Sugar Association·Experiment Station (SASEX), noted that

the rate of acidification in the industry appears to be accelerating, with the percentage of fields

considered to be strongly acidic (below pH 5.0) increasing from 18% to 43% over the last

twenty years (Schumann, 1998).

In several sugarcane industries around the world, an apparent sugar yield plateau has been

experienced over the past two to three decades. It is not surprising, therefore, that much

attention has been devoted to the elucidation of the factors that may be contributing to this yield

phenomenon, with particular focus on the effects of soil degradation. The exact quantification of

this latter process on yield has, however, proved to be an elusive goal. Nevertheless, the

evidence gathered to date strongly suggests that the degradation of soil has placed a significant

constraint on production.

Currently, approaches in the South Mrican sugar industry to counteract the negative effects of

soil acidity and thus aluminium phytotoxicity on cane production have focused primarily on the

alleviation of acidity through the application of lime. Concomitant to this have been attempts to

enhance organic matter content of the soil through the practice of trash blanketing, whereby

non-millable portions of the cane are retained in the field. However, these approaches may not

be sustainable in the long-term due to several drawbacks associated therewith, particularly the

restriction of the beneficial effects of the treatments to the upper soil horizons, as well as high



2

costs in the case of liming. The latter is an important consideration in light of the increasing

number of small-scale growers who struggle to maintain economic viability under difficult

circumstances. Consequently, as part of SASEX's research efforts, alternative, more sustainable

approaches are being sought to counteract the negative effects of aluminium phytotoxicity on

sugarcane production.

There are many instances in which conventional crop breeding strategies' have successfully

produced cultivars with increased tolerance to specific environmental stresses, but only when

genotypic diversity for the tolerance trait exists within the species. Such diversity has been

demonstrated for aluminium tolerance in sugarcane, in that the two primary ancestral species to

modern hybrid cultivars, viz. S. officinarum L. and S. spontaneum L., are reported to have

different degrees of tolerance to the metal, with the latter being the more susceptible (Landell,

1989). It is not surprising, therefore, that liming'field trials have demonstrated different

responses to soil acidity alleviation amongst local sugarcane cultivars (Schroeder et al., 1994), ,

thus indirectly confirming the presence of genotypic diversity in the trait for aluminium

tolerance. Given such diversity, selection for the aluminium tolerance phenotype during the

breeding programme would, therefore, appear to be a feasible and attractive goal.

Accurate quantification of the phytotoxic effects of aluminium is technically demanding, as the

first obvious effect of the metal is an inhibition of root elongation, a symptom not easily

measurable under field conditions. Consequently, primarily for reasons of practicality, no

attempts have been made to introduce aluminium tolerance as a selection criterion within the

industry's breeding programme. It is possible that this barrier to breeding for aluminium

tolerance may be overcome through the discovery of molecular markers linked to either the

tolerant or susceptible phenotype. The availability of such markers would allow for the selection

of suitable parental germplasm to be used in specific crosses aimed at producing cultivars

tolerant to the metal. Ultimately, such markers could be used to screen for the presence of the

desired trait amongst the progeny of specific crosses.

Work conducted at SASEX has demonstrated that the potential for the identification of

molecular markers depicting a particular trait in sugarcane is enhanced when the markers are

functionally involved in the expression of the trait (Thokoane and Rutherford, 2001). In the

study by Thokoane and Rutherford (2001), the use of such 'perfect' markers in combination

with a number of phenotypically well-characterised non-sibling genotypes allowed for the

identification of several DNA sequences significantly linked to resistance or susceptibility to
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infection by sugarcane smut (Ustilago scitaminea Sydow) and/or infestation by the sugarcane

stalk borer (Eldana saccharina Walker). However, there are two important resources essential

for the implementation of such an associative genetic approach to marker discovery, viz.DNA

sequences encoding the desired phenotype and a panel of genotypes well-characterised for the

trait.

Recent progress in molecular technology has provided plant physiologists with a number of

tools to isolate DNA sequences expressed in response to particular stresses, both biotic and

abiotic. Of these technologies, cDNA subtractive hybridisation has proven to be particularly

effective at providing insight into gene expression in response to defined environmental

conditions. In addition, advances in the analytical power of DNA array technology has allowed

for the verification of the efficiency of the subtractive hybridisation, thereby enabling the

quantification of this complex and somewhat unpredictable subtractive process. Thus, the

combination of cDNA subtractive and array technologies allows for the.isolation of genic

fragments expressed in response to specific environmental stresses, thereby fulfilling an

essentIal requirement for marker discovery. In addition to their role as resources in marker

identification; genes associated with the aluminium phytotoxic response may also have a

potential role as transgenes in the engineering of tolerance phenotypes. This approach is not

without precedent, with Ezaki and co-workers (2000) successfully enhancing the aluminium

tolerance ofArabidopsis thaliana through the individual expression of several aluminium

tolerance-related cDNAs.

To date, methods to determine the aluminium tolerance status of local cultivars have been based

ongrowth and yield performances subsequent to application of lime. However, due to the

complex influence of pH on soil nutrient availabilities, only indirect deductions have been

possible regarding the aluminium tolerance of cultivars. Ideally, to accurately assess the

phytotoxic effect of aluminium on sugarcane growth, the complex interactions between the

metal and the host of ions and organic molecules present in the rhizosphere should be

minimised. This has been most often achieved for other species through the culture of plants on

a liquid media of defined chemical composition. A further advantage of such hydroponic

systems is that they provide unrestricted access to the roots of the plant, which is important if

the effects of aluminium on root elongation are to be measured. Thus, to provide the set of

phenotypically characterised sugarcane genotypes necessary for the isolation of molecular

markers linked to aluminium tolerance, the development of a system for the hydroponic culture

of local cultivars would be essential.
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This study aimed to address two of the primary challenges associated with the discovery of an

aluminium tolerance related genic sequence in sugarcane. In the first instance, a major

consideration was the requirement for a rapid and reliable method for the quantification of the

phytotoxic effects of aluminium on sugarcane. Hence, the initial phase of this investigation

focused on the development of a hydroponics culture system that not only permitted the analysis

of sugarcane growth and performance under defined conditions of aluminium stress, but which

also provided rapid access to the root system for subsequent molecular analyses. It is of note

that such a system-has potential applications beyond the scope of the current study, in that it

may be used for the future screening and phenotypic characterisation of a panel of genotypes for .

aluminium tolerance, thus providing one of the primary resources required for the

implementation of the associative genetic approach to marker discovery. The second challenge

addressed in this study was the appropriate application of complex DNA technologies to

complex molecular analyses with the view toidentify aluminium-induced alterations to genetic

expression patterns of a reportedly aluminium tolerant cultivar. In using such an approach,

sequences displaying apparently enhanced expression under conditions of aluminium stress

could reflect aluminium tolerance related responses and possibly be responsible for the tolerant

phenotype. Thus, in fulfilling the second requirement for this approach to marker discovery, i.e.

genic sequences associated with the tolerant phenotype, the future identification and

manipulation of aluminium tolerance characteristics in sugarcane has become a more attainable

goal.
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CHAPTER TWO

LITERATURE REVIE"V

2.1 CHEMISTRY OF ALUMINIUM IN SOILS

Aluminium: the most abundant metal and third most abundant ~lement in the earth's crust and

yet required by neither plant nor animal. Comprising almost 8% by weight of the outer crust

(Driscoll and Schecher, 1990) alu:rp.inium (Al) exists primarily in the form of insoluble alumino­

silicates and oxides (Gallego and Benito, 1997) and is therefore largely unavailable for uptake

by plants. In the aqueous phase, Al may be associated with a number of organic and inorganic

ligands, such as humic acid, citrate, malate, OH-, F, sol, P043-, ~Si04 and HC03- (Driscoll

and Schecher, 1990; Ezaki et aI., 1995). The extent of complexation of Al by these ligands is

regarded as a function of a number of variables, such as Al availability, ligand concentration,

soil pH, ionic strength and temperature of the soil solution. Cycling of Al in the lithosphere is

very complicated and the aqueous chemistry of this element is rather poorly understood.

Aluminium is a strong hydrolysing metal and relatively insoluble in the near neutral pH range of

most soils (Driscoll and Schecher, 1990). However, the availability of Al is dramatically

increased under conditions of acidity (pH < 6.0) and alkalinity (pH > 8.0). At a pH less than 4.0

the hexa-aquo Al(III) ion Al(HzO)3+ (commonly referred to as Al3+) tends to predominate, while

above pH 7.5 the aluminate ion complex Al(OHk becomes the major ion in solution (Smith,

1972). Aqueous Al can exist in a plethora of chemical forms and, at pH values between the two

above-mentioned extremes, one can never be sure of the exact concentration of the various

species (Shann and Birch, 1993).

Soil pH not only affects the solubility of Al, a potential soil phytotoxin, but it also has a notable

impact on soil chemistry and the availability of plant nutrients. A vast proportion of the world's

arable lands (>70%) are considered acidic, making soil acidification an issue of global

agricultural importance (Hamel et aI., 1998). The phenomenon of soil acidification is

considered one of the major symptoms of the degradation of our soil resources, and is regarded

along with declining genetic diversity and pest and disease problems as one of the most serious

threats to sustainable agriculture (Meyer et al., 1996).

Low pH soils «5.0) are found in many volcanic and tropical regions as a result of natural soil

weathering (Gallego and Benito, 1997). However, anthropogenic effects have had a rather
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severe impact on this otherwise slow and natural process through poor agricultural practices and

acid rain. Accelerated acidification of soils under cultivation can largely be attributed to the

oxidation of ammoniacal fertilisers to nitric acid, the removal of basic cations from the soil by

crops and through leaching, and to the mineralisation of organic matter (Van Antwerpen and

Meyer, 1996), aggravated through continuous and intensive cropping (Schroeder et aI., 1994).

These factors outstrip the buffering capacities of soils, leading to the release of toxic levels of

Al and manganese, and to deficiencies in important nutrients, such as Ca, P, Fe and Mo

(Snowden and Gardner, 1993; Schumann, 1998).

There is increasing evidence that there is a global increase in soil acidification, which is

exhibiting a marked effect on agricultural productivity. Not only is it necessary to amend

current soil management strategies to slow the deterioration of soil quality, but also to find other

ways of coping with already acidic conditions.

2.2 ALUMINIUM AS A PHYTOTOXIN

2.2.1 Phytotoxic species of aluminium

Not considered as either an animal or plant nutrient, Al generally does not accumulate in living

tissues and is known to be toxic to a wide variety of organisms when it does (Driscoll and

Schecher, 1990). While there is little dispute regarding the potent toxicity of Al, there has been

some debate as to which species is responsible for the observed damaging effects.

Unlike biologically important elements, such as Ca, Mg and K, Al is distinguished by the low

solubility of its hydroxide and myriad hydrolysis products (Bennet and Breen, 1991). The

solubility of Al is normally too low to be available for uptake by plants, yet as the pH decreases

below 5.0 the amount of Al available in the soil solution can increase exponentially and become

extremely toxic (Andersson, 1988; Miller et aI., 1997). The exact chemical speciation in

solution is very difficult to determine as soluble Al can exist in many different ionic forms

(Kochian, 1995). Activities of the various ions are usually calculated using computer speciation

programmes, such as GEOCHEM-PC (Parker et aI., 1995) and MINTEQA2/PRODEFA2

(Allison et aI., 1990) and based on assumed equilibrium conditions. However, the more

complex the Al-containing aqueous solutions, the more unreliable these computational

predictions become, as Al speciation is strongly influenced by even the smallest of pH changes,
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ionic strength and by the activity of other ions present (De la Fuente-Martinez and Herrera­

Estrella, 1999).

The strong association between soil acidity and Al toxicity lends support to the notion that it is

the low-pH soluble Al3+ion that is responsible for this phenomenon (Ezaki et al., 1995). It has

also been shown that the symptoms of Al toxicity are more closely linked to the activity of

monomeric Al3+than to the total level of Al in the soil (Hue et al., 1986) and it is known to be

toxic at even micromolar concentrations (Delhaize and Ryan, 1995; De la Fuente-Martinez and

Herrera-Estrella, 1999).

As the pH increases, Al3+(which exists as the octahedral hexahydrate Al(H20)63+) undergoes

successive deprotonations to form Al(OH)2+ and Al(OH)2+(Kochian; 1995; De la Fuente­

Martinez and Herrera-Estrella, 1999). At near-neutral pH, the relatively insoluble gibbsite

[Al(OH)3l tends to predominate, limiting the solubility of other Al monomers. Further

alkalinisation of the soil solution to pH values commonly found in the cytoplasm (c. 7.4) results

in aluminate (Al(OH)4) becoming the most abundant form (Kochian, 1995; De la Fuente­

Martinez and Herrera-Estrella, 1999).

Recent work, however, has also shown that the polynuclear Al cations, the most important of

which is AlO~u(OH)24(H20)127+,commonly referred to as AlB , are also extremely toxic,

possibly even more so than the monomeric Al3+CKochian, 1995; Masion and Bertsch, 1997).

These cations seem to form under conditions of increased total Al activity and partial solution

neutrality. While AlB has been detected in the laboratory, it is not clear whether this cation

occurs naturally and its contribution to phytoxicity in soils is thus unresolved (Delhaize and

Ryan, 1995; Kochian, 1995).

However, since trivalent ions are generally known to be more toxic to plants than divalent and

monovalent ions, and because Al toxicity is strongly associated with low soil pH conditions, it

is commonly assumed that Al3+is the major species involved in the phytotoxic responses of

plants to this metal (Delhaize and Ryan, 1995; De la Fuente-Martinez and Herrera-Estrella,

1999).
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2.2.2 Effects of aluminium on plant growth and physiology

Treatment of plants with increased levels of Al has been found to cause a variety of adverse

effects. Aluminium appears to act at a number of levels, the severity and permanence of the

effects being proportional to the Al concentration and duration of the exposure (Hairiah et al.,

1993; Jones et al., 1995). Symptoms of Al toxicity are not always readily identified as being Al­

related. For instance, some plants display foliar symptoms resembling P deficiencies, with

general stunting and delayed maturation, small, dark green leaves, purpling of stems, leaves and

leaf veins, and yellowing and death of leaf tips (Foy, 1983; Taylor and Foy, 1985a; Andersson,

1988). Aluminium toxicity may also manifest foliarly as an induced Ca deficiency, with

younger leaves exhibiting a tendency to curl or roll and the collapse of growing points and

petioles (Foy, 1983; Andersson, 1988; Aniol and Gustafson, 1990). Some of the younger leaves

may also suffer from interveinal chlorosis, symptomatic of an Fe deficiency (Cambraia et aI.,

1983; Taylor and Foy, 1985a). The effects of Al are generally far more pronounced in the roots

than in the shoots of affected plants, with far higher concentrations and lengthier exposures

required before symptoms become visible in aerial parts of the plant (Taylor and Foy, 1985a;

Andersson, 1988). Many of the effects observed in the foliage can in fact be indirectly attributed

to the damage caused by Al on the rooting system of the plant.

Inhibition of root growth is considered the initial and most dramatic symptom of Al

phytotoxicity, and is usually detectable within minutes of exposure (Delhaize and Ryan, 1995;

De la Fuente-Martinez and Herrera-Estrella, 1999). Aluminium challenged roots generally

develop much less vigorously, with diminished elongation of the main root axis, and lateral

roots often failing to develop (Aucjersson, 1988). Roots appear stubby, swollen, gnarled and

brittle, with bent, necrotic tips, closely resembling the symptoms of nematode predation

(Cambraia et al., 1983; Taylor and Foy, 1985a; Andersson, 1988; Verkleij and Schat, 1990;

Gascho et al., 1993). The vascularisation of the roots may also be disturbed, with root systems

thus frequently restricted to the upper soil horizons (Andersson, 1988, Aniol and Gustafson,

1990). Therefore, plants suffering from Al toxicity also tend to display increased susceptibility

to pathogens, drought and nutrient stresses (Andersson, 1988; Aniol and Gustafson, 1990;

Zhang and Jessop, 1998).

Despite the vast body of research conducted in the field of Al toxicity, there remains much

confusion and controversy regarding the fundamental mechanisms involved. Several hypotheses

have been proposed to explain the observed symptoms in Al-exposed plants (Kochian, 1995; De
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la Fuente-Martinez and Herrera-Estrella, 1999) yet for each of these there exists evidence both

supportive and contradictory.

Since the principal effect of Al is recognised as the inhibition of root growth, it is generally

acceptedthat the primary site of Al toxicity is the apical meristem of the root apex (Verkleij and

Schat, 1990; Marienfeld and Stelzer, 1993; Budikova, 1999). Studies have shown that only

exposure of this region to Al resulted in inhibition, whereas selective exposure of other regions

on the root had no impact on growth (Delhaize and Ryan, 1995; De la Fuente-Martinez and

Herrera-Estrella, 1999).

There is no consensus as to whether Al has to enter the cell to be toxic or whether it can act via

external elements on the plasma membrane or cell wall (De la Fuente-Martinez and Herrera­

Estrella, 1999). Aluminium is known to interact with a number of both extra- and intracellular

structures in the root apex, which suggests that there may in fact be several different

mechanisms of toxicity (Kochian, 1995). Once Al has entered the symplasm, the presence of

suitable ligands, combined with a marked increase in pH, would serve to drastically reduce the

activity of Al to the nanomolar range (Delhaize and Ryan, 1995; De la Fuente-Martinez and

Herrera-Estrella, 1999). However, the destructive potential of Al, even at these low

concentrations, remains high enough to cause damage due to the extremely high binding affinity

of the metal for cytoskeletal elements and several metabolically important molecules, such as

DNA and RNA, purine residues (ATP and GTP), enzymes and calmodulin (Delhaize and Ryan,

1995; Blancaflor et al., 1998; De la Fuente-Martinez and Herrera-Estrella, 1999).

One of the means by which Al is thought to reduce root growth rates is through interference

with cell division in root tips and lateral roots (Foy, 1983; Kochian, 1995; Crawford et al.,

1998). Aluminium has also been shown to be closely associated with the nuclei of root tip cells,

binding directly to DNA and/or RNA (Crawford et al., 1998; Richards et aI., 1998; Silva et al.,

2000) which could have a severe impact on critical physico-chemical and biological functions in

the cell, such as cell division and elongation, and synthesis of DNA and RNA (Foy, 1983;

Andersson, 1988; Kochian, 1995; Espino et al., 1998). It has been postulated that inhibition of

nucleic acid synthesis could occur directly as a result of AI binding to phosphate groups in the

DNA backbone. It has, however, since been demonstrated that Al is more likely to be bound to

protein structures strongly associated with DNA, such as histones, than to be bound to these

phosphate moieties within the actual DNA structure (Kochian, 1995). But because the onset of

root growth inhibition is so rapid, it becomes more plausible to suspect reduced cell elongation
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than affected cell division and DNA synthesis as the primary cause (Bennet and Breen, 1991;

Larsen et al., 1998). In the long term, however, blockage of both mitotic activity and cell

elongation processes are likely to be important contributing factors to root growth inhibition.

Growth studies have revealed that the site of Al toxicity in the root apex is associated with the

elongation zone (Blancaflor et aI., 1998). There have been suggestions that the growth

inhibition and morphological changes observed in this region may be attributable to Al-induced

effects on the cytoskeleton (Grabski and Schindler, 1995; Kochian, 1995; Blancaflor et aI.,

1998). Links have been found in animals between several Al-induced neurological disorders and

cytoskeletal abnormalities (Grabski and Schindler, 1995; Blancaflor et aI., 1998). Aluminium is

reported to bind 107 times more effectively than magnesium to ATP- and GTP-binding sites

present on actin and tubulin, and the rates of hydrolysis of these Al complexes are in the region

of 105 times slower than for the physiological Mg2
+ complexes (Grabski and Schindler, 1995;

Blancaflor et aI., 1998). These sites are essential for microfilament and microtubule assembly,

and the interference of Al can therefore disrupt the intricate dynamics of these processes.

In mammalian and some plant systems Al has been known to negatively affect the expression of

certain cytoskeletal regulatory genes, such as fimbrin (Cruz-Ortega et al., 1997) as well as affect

the phosphorylation of cytoskeletal proteins and the production of secondary messengers

responsible for the regulation of cytoskeletal processes (Grabski and Schindler, 1995;

Blancaflor et aI., 1998). In soybean (Glycine max L.) root cells, Al was shown to induce a rapid

and dramatic increase in the rigidity of the actin network (Grabski and Schindler, 1995). Studies

in maize (Zea mays L.) have revealed that changes in the organisation and stability of

cytoskeletal elements were correlated with the symptoms of Al toxicity (Blancaflor et al., 1998).

Results suggested that the stabilisation of the microtubular network in the outer cortical cells

could play an important role in the retardation of root elongation. It has yet to be established

whether these changes in the cytoskeleton are direct or indirect symptoms of Al toxicity,

however, the rapidity and close correlation of the response with the onset of growth inhibition

make the disruption of cytoskeletal dynamics a strong candidate for the primary phytotoxic

response (Blancaflor et aI., 1998).

A more recently proposed mechanism for Al toxicity in plants is through the inhibition of

intercellular transport of various molecules, including small ions, peptides, nucleic acids and

hormones (Sivaguru et aI., 2000). Symplasmic transport of these molecules between adjacent
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cells is achieved via the plasmodesmata, and any disruption of these cytoplasmic channels can

have severe consequences for intercellular communication.

Aluminium is known to induce the synthesis of callose (1-3-~-glucan) possibly through Al~

induced elevations of intracellular Ca levels in intact roots, which activates the plasma

membrane-bound enzyme 1-3-~-glucan synthase, located in the plasmodesmata (Sta~ and

Horst, 1995; Wagatsuma et aI., 1995; Budlkova, 1999; Sivaguru et aI., 2000). Aluminium is

capable of eliciting rapid closure of plasmodesmata in root cells, primarily through the induction

of callose synthesis (Sivaguru et aI., 2000). This Al-induced callose production impedes

molecular transport and communication via the plasmodesmata, a response also associated with

physical stress, pathogen attack and wounding (Sivaguru et al., 2000). The trafficking of

important signalling molecules, such as hormones, are also effectively blocked, with pivotal

implications for basipetal auxin transport, and thus root growth regulation (Bennet and Breen,

1991; Sivaguru et aI., 2000).

There has also been much support for the notion of the plasma membrane as the primary target

in the Al phytotoxic response (Kochian, 1995; Sasaki et al., 1995; Sta~ and Horst, 1995;

Wagatsuma et al., 1995). Aluminium is known to negatively affect the influx of nutrients, such

as P, K, Ca, Mg, Zn and Fe, into the root (Verkleij and Schat, 1990; Baligaret aI., 1993; Jones

et aI., 1995; Calba and Jaillard, 1997) presumably as a result of the disruption of the plasma

membrane and associated transport processes (Cumming and Taylor, 1990; Marschner, 1991;

Crawford et aI., 1998). Combined with a poorly developed rooting system, this can have rather

detrimental effects on a plant, through the manifestation of severe mineral nutrient deficiencies

(Andersson, 1988; Bennet and Breen, 1991; Kidd and Proctor, 2000).

The maintenance of membrane integrity is vital to the functioning of the cell, with the regulation

of cytoplasmic ion levels of essential importance for normal physiological function, repair and

maintenance processes, and growth. Studies have shown that Al reduces membrane fluidity

(Vierstra and Haug, 1978; Suhayda and Haug, 1986) and membrane permeability (Cumming

and Taylor, 1990; Sasaki et al.; 1995; Sta~ and Horst, 1995) possibly through binding of the

metal to the hydrophilic regions of phospholipids, thus altering protein-lipid interactions

(Cumming and Taylor, 1990; Delhaize and Ryan, 1995). Other suggested potential mechanisms

include the binding of Al to cell wall proteins or pectic residues, or displacement of other ions

from critical sites on the cell wall or membranes, as well as via direct interactions with

membrane-bound proteins, such as ion channels, thus disrupting nutrient transport and possibly
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disturbing the electrical potential of the plasma membrane (Sasaki et al., 1994; Delhaize and

Ryan, 1995; Sasaki et al., 1995; Richards et al., 1998). This may also have deleterious

implications for intracellular communications via second messenger pathways (Delhaize and

Ryan, 1995; Kochian, 1995).

Many research groups have reported a reduction in net K efflux from root tip cells of soybean

and wheat in response to exposure to toxic levels of Al (Sasaki et al., 1994; Sta~ and Horst,

1995). This has been suggested to be linked to reduced H+-ATPase activity, which would result

in decreased fluxes of several ions, including H+ influx/K+efflux, thus upsetting H+ homeostasis

and the electrical membrane potential (Cumming and Taylor, 1990; Sasaki et al., 1995). There

are, however, other reports which claim Al had either no detectable effect on K transport across

the plasma membrane (Calba and Jaillard, 1997) or even induced KJeakage and reduced

potassium concentrations in root cap and apical meristem cells (Kochian, 1995; Wagatsuma et

.al., 1995). These discrepancies in the literature may have arisen from the choice of either

cultured cells or intact roots in the respective studies, or possibly due to simple interspecies and

intervarietal differences in response to Al.

Despite the apparent lack of characterisation and understanding of the exact mechanisms

involved, there is, however, little dispute that Al does indeed disturb cellular metabolism (Aniol

and Gustafson, 1990). This is perhaps most clearly demonstrated by the effects of AI on Ca

homeostasis in the cell, processes which can be linked to nearly all vital aspects of normal

cellular functioning and maintenance, from cell division, to cytoskeletal organisation and inter­

and intracellular communication networks (Delhaize and Ryan, 1995; Rengel et al., 1995).

Many polyvalent cations (e.g. La 3+; Gl+ and Gd3+) are known to inhibit the transport of Ca,

and there is also extensive evidence demonstrating the reduced uptake and translocation of Ca

by Al3+(Verkleij and Schat, 1990; Delhaize and Ryan, 1995; Jones et al., 1995; Sasaki et al.,

1995; Kidd and Proctor, 2000).

In view of the close correlation between the Al phytotoxic response and the inhibition of Ca

uptake with regards to site (root apex) and time-scale (measurable within minutes) it was

strongly suggested that Al toxicity was directly related to the disruption of Ca transport and

homeostasis (Verkleij and Schat, 1990; Delhaize and Ryan, 1995; Rengel et al., 1995). It has,

however, since been shown that at low concentrations, Al remains capable of inhibiting root
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growth without affecting Ca fluxes (Jones et a!., 1995), which suggests an alternative

mechanism for the primary phytotoxic response.

It was first proposed by Siegel and Haug (1983) that one of the initial targets for Al might be the

Ca-binding protein, calmodulin. Calmodulin is a key regulatory protein that undergoes a

conformational change when bound to Ca, allowing it to form complexes with, and thus

activate, certain enzymes, such as the kinases responsible for phosphorylation. Aluminium,

though, has been shown to bind to the Ca-binding sites in calmodulin with an affinity ten times

higher than Ca2+, and elicits rather drastic conformational changes in this protein, thus affecting

its ability to activate other enzymes (Suhayda and Haug, 1986; Kochian, 1995). However,

subsequent research has found that Al had very little impact on calmodulin in the range of pH

values found in the cell (pH·5.5 - 6.5) and suggested that Al may directly affect the enzymes,

and not via any interactions with calmodulin (Kochian, 1995). Aluminium is known to affect

phosphodiesterase, hexokinase and ATPase activity (Viola et a!., 1980; Siegel and Haug, 1983;

Sasaki et a!.; 1995), so it is quite possible that Al may have inhibitory affects on the vital

functions of a number of physiologically important enzymes (Delhaize and Ryan, 1995).

Aluminium has also been shown to affect cellular respiration and electron transport pathways,

possibly due to the high affinity of Al3
+ for oxygen donor (electron rich) ligands (Kochian,

1995). Aluminium has been shown to reduce respiration in root cells, as well as affect the rate

of protein synthesis (Cambraia et a!., 1983; Barnabas et a!., 2000). It has also been observed

that Al has an adverse effect on photosynthesis as a result of it lowering the chlorophyll content,

and thus reducing electron flow (Barnabas et al., 2000). Loper and co-workers (1993) proposed

that the interference of Al with reduction processes of the plasma membrane was probably

attributable to a direct interaction of the ion with some component of the electron transport

system. A reduction in the respiratory activity of the mitochondria, another membrane

associated process, has been reported by de Lima and Copeland (1994). It was suggested that Al

affects electron transport through cytochrome Complexes I and II, and may also interact with

other mitochondrial sites following more prolonged exposure, with severe implications for

cellular growth and maintenance.

While most of the research in the field of Al phytotoxicity has tended to focus on symplasmic

targets, there remains support for the apoplasm as the primary site of toxicity. As mentioned

previously, concentrations oiAl are reduced to nanomolar values upon entering the cell, due to

cytoplasmic pH and the abundance of potentialligands that bind Al (Delhaize and Ryan, 1995;
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De la Fuente-Martinez and Herrera-Estrella, 1999). Aluminium has been known to interact with

the cell wall (Crawford et a!., 1998) and access to the apoplasm is both easy and rapid (Kochian,

1995). A number of hypotheses suggest that Al-induced alterations in the cell wall may be

responsible for the phytotoxic response, such as the displacement of Ca and Mg by Al from

critical binding sites in the apoplasm (Delhaize and Ryan, 1995; Godbold and Jentschke, 1998).

Aluminium has also been thought to accumulate in the apoplast as Al phosphate precipitates,

which may result in reduced PO/- transport and thus account for the phosphate deficiencies

often associated with Al stress (Foy, 1983; Godbold and Jentschke, 1998). The addition of

phosphates in solution can help ameliorate toxicity in Al stressed roots (Hairiah et a!., 1993;

Pellet et a!., 1997) but whether this occurs as a result of Al precipitation in the growth medium,

thus reducing Al activity and minimising uptake by the roots, or by overcoming phosphate

deficiencies, has not been resolved.

Another hypothesis suggests the binding of Al to negatively charged sites on cell wall pectins

(Foy, 1983; Godbold and Jentschke, 1998; Watanabe et a!., 1998) with consequences for cell

wall extensibility and conductivity. These pectins are also thought to play a major role in

establishing the cation exchange capacity (CEC) of the cell wall. As roots mature, the cell walls

undergo lignification and decrease the relative proportion of pectin, which may account for the

reduced sensitivity of older roots to Al stress (Godbold and Jentschke, 1998). A disturbance of

the cell wall CEC, however, could drastically affect the ability of the root to take up valuable

nutrients.

While consensus on the cellular site of Al toxicity has yet to be reached, it is generally agreed

that the effects of Al interactions with the apoplasm are much less significant than the effects of

Al in the symplasm, particularly on the plasma membrane structure and function (Marschner,

1991). Despite intensive research;the biochemical and molecular basis for Al toxicity is not yet

fully understood. It is, however, becoming increasingly accepted that numerous processes

associated with both symplasmic and apoplasmic elements are likely to be targeted by Al, each

forming an integral part of a multiple response system (Bennet and Granger, 2000).

2.2.3 The impact of aluminium on global food security

Among all the high profile pests and diseases that plague the world's agriculture, there is

another devastating candidate that receives much less attention: Al. One of the major factors
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limiting crop productivity, AI-induced inhibition of root growth results in the inability of crop

roots to penetrate the subsoil (Sumner, 1970). The consequences of this are poor water and

nutrient acquisition, resulting in nutrient deficiencies and possibly AI-induced drought, all

combining to reduce crop yields (Kochian, 1995). Since most plant species are sensitive to

extremely low concentrations of AI, the potential for this metal to be a problem for agriculture is

enormous.

In many of the crop-producing areas in the world there have been reports of yield declines and

losses in soil productivity (Van Antwerpen and Meyer, 1996). More than 70% of the world's

arable lands are considered acidic, a condition which increases the availability of phytotoxic AI

species (Hamel et aI., 1998). Indeed, for some economically important crops, such as maize, AI

is second only to drought in its restriction of crop yields, in some cases reducing productivity by

as much as 80% (Barinaga, 1997). Maximising yields from these areas is thus of prime

importance if increasing global demands on food supplies are to be met (Sivaguru et ai., 2000).

Overturning the trends of yield declines, as well as expanding food production into those areas

where soils are less favourable, are becoming the major challenges currently facing modem

agriculture (Aniol and Gustafson, 1990). With the problem of escalating soil acidification, it is

becoming increasingly urgent that the matter of AI phytotoxicity be addressed, not only through

the amendment of soil management practices, but also through the breeding and selection of

resistant genotypes.

2.3 PLANT TOLERANCE OF ALUlVIINIUlVI

2.3.1 Physiology of detoxification

Despite the presence of toxic levels of AI in many of the world's soils, numerous species still

inhabit and even thrive in these environments. It therefore seems clear that there must exist

some means by which these species can mitigate the damaging effects of AI. While the

physiology and chemistry behind the phytotoxic effects of this metal have yet to be resolved, a

number of mechanisms have been proposed to account for the apparent tolerance of these

species.

Strategies for coping with phytotoxic concentrations of AI can be broadly classified into two

categories, based primarily on the site at which detoxification is effected. Exclusion or
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apoplastic mechanisms prevent AI from crossing the plasma membrane and entering the cell,

thus prohibiting the metal from accessing sensitive intracellular sites. Conversely, internal or

symplastic mechanisms do not prevent entry into the cell, but rather serve to immobilise or

detoxify AI only once it has penetrated the symplasm.

a. Exclusion of aluminium

Plants have developed a number of AI tolerance features that can be termed exclusory

mechanisms. Evidence seems to indicate that tolerant plants tend to restrict the transport of AI

from the roots to other parts of the plant (Baker and Walker, 1990), preferably excluding the

metal from the symplasm, and thus accumulating significantly lower levels of AI in the roots

than more sensitive genotypes (Andersson, 1988; Verkleij and Schatt, 1990; Taylor, 1991;

Lazof et aI., 1994; Sasaki et aI., 1994; Jorge and Arruda, 1997; Kochian, 1995; Pellet et aI.,

1997). It has long been suggested that some of these plants are capable of metabolically

excluding AI as was evidenced by the enhanced uptake of A1 following the application of a

metabolic inhibitor, 2,4-dinitrophenol (DNP) (Taylor, 1991).

Since the availability of AI in the soil solution is largely a function of the prevailing pH, it has

been hypothesised that tolerant plants may be able to modify their rhizospheric pH to reduce AI

solubility. In some instances, the pH of the rhizosphere has been shown to vary by as much as 2

units from that of the bulk soil (Marschner, 1991). This suggests that the plant may very well be

capable of setting up a pH barrier within which the activity of AI is drastically reduced (Taylor,

1991; Kochian, 1995). An increase of only 0.1 pH unit from 4.5 to 4.6 has been shown to result

in a 26% decrease in AI availability, which suggests that variations in rhizospheric pH must be

of some biological significance (Blarney et aI., 1983). In rice (Oryza sativa L.) seedlings, it has

been demonstrated that the degree of tolerance displayed by a cultivar was related to the ability

of that cultivar to modify its rhizospheric pH from an acidic to a neutral range (Sivaguru and

Paliwal, 1993). Similarly in wheat (Triticum aestivum L.), tolerant cultivars were shown to

consistently maintain a higher solution pH than sensitive cultivars (Taylor, 1988a).

The nitrogen usage of a plant (cation vs. anion uptake) is considered to have a significant impact

on the ability of the plant to resist acidification of the root medium (Taylor and Foy, 1985b;

Taylor and Foy, 1985c; Taylor, 1988a). Species that favour the basic ammonium ions (NH4+)

over nitrate ions (N03-) tend to display lower rhizospheric pH values and thus greater AI

sensitivity than species with preferential nitrate uptake (Foy, 1983; Taylor, 1988b). However,
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the relative tolerance of some cultivars of wheat were largely unaffected by pH or N"!-4+/N03­

ratios in the supplied medium, which suggests that the superior Al tolerance of certain cultivars

could not be exclusively attributed to the inherent ability to maintain a high solution pH (Taylor,

1988b; Lazof et aI., 1994). Aluminium has also been shown to inhibit the uptake of nitrates in

both sensitive !illd tolerant plant species (Keltjens, 1988; Durieux et aI., 1993; Lazof et aI.,

1994). It thus seems that while the pattern of nitrogen usage may affect rhizospheric pH, it is not

likely to be solely responsible for Al tolerance, but may serve to augment other tolerance

mechanisms.

An extremely large proportion of the Al bound to root cells is associated with the apoplast and

is therefore probably unrelated to the observed symptoms of Al stress (Lazof et aI., 1994).

However, differences in the permeability and chemistry of the cell wall have been suggested to

account for enhanced tolerance in some species (Masion and Bertsch, 1997), possibly by means

of increased binding of Al in the cell wall, thus preventing it from entering the symplasm

(Taylor, 1991). A reduced cation exchange capacity (CEC) and metal-binding properties of the

cell wall have been proposed to affect the relative tolerance of some plants by reducing the

amount of Al in the cell wall (Verkleij and Schat, 1990; Kochian, 1995). This model assumes

that binding to the cell wall is the initial step leading to Al uptake in the cell, and thus resulting

in the phytotoxic response of the plant to the metal (Taylor, 1991; Kochian, 1995; Mugai et aI.,

2000). However, there are many discrepancies associated with the evidence relating Al with cell

wall chemistry and several tolerant genotypes seem to have a substantially higher CEC than

many sensitive cultivars. While further research and evaluation of the techniques employed are

necessary if conclusive results are to be achieved, current work seems to indicate a refatively

minor role for the root CEC in any Al resistance mechanisms.

The high profile of the plasma membrane (PM) as a potential primary site for Al toxicity has

resulted in much research being focused on its possible involvement in Al tolerance. It has been

suggested that tolerance in some species is conferred via the alteration of the PM and

permeability, thus reducing the uptake of Al into the cell (Verkleij and Schat, 1990). The ability

to maintain PM function and integrity under conditions of Al stress has been widely accepted as

having a role in a tolerance response system (Miyasaka et al., 1989; Cumming and Taylor,

1990; Sasaki et aI., 1994; Sasaki et aI., 1995; Wagatsuma et aI., 1995). Aluminium is known to

bind to the PM, thus affecting the structure and function thereof, including the electronegativity,

which may account for the effect of Al on cation-uptake pathways in the roots (Taylor, 1991).

Tolerant sorghum (Sorghum bicolor L. Moench.) plants have demonstrated superior influx of
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nutrients into the roots, such as P, K, Ca, Mg, Zn and Fe, when compared with sensitive

cultivars (Baligar et aI., 1993). Differential blockage of root plasma membrane Ca channels has

also been suggested to account for observed differential tolerances to Al (Rengel et al., 1995).

Other research has shown that tolerant wheat cultivars were capable of maintaining normal ion

fluxes and membrane potentials in the presence of Al, whereas sensitive cultivars could not

(Miyasaka et aI., 1989). The extent to which K+ and H+ pumping activity was affected has also

been related to the relative tolerance of the cultivar concerned (Sasaki et aI., 1994; Sasaki et aI.,

1995; Wagatsuma et aI., 1995). Increased nutrient uptake and transport efficiency have also

been proposed to account for an increased tolerance to Al in species such as rice (Sivaguru and

Paliwal, 1993) and sorghum (Baligar et aI., 1993). It thus appears that the role of the plasma

membrane in any tolerance systems is potentially great, as it is at this site that many of the

toxicity effects are thought to be exerted.

It is widely believed that enhanced tolerance to Al is achieved via the secretion of substances

from the root apex. It has been suggested that Al tolerance may be derived from factors relating

to root cap mucilages, with elevated secretory activity of the cap resulting in a more tolerant

phenotype (Blarney et aI., 1990; Bennet and Breen, 1991; Lazof et al., 1994). Mucilage is

continuously produced by growing roots and generally displays a high binding capacity for

polyvalent cations, such as Al3+(Marschner, 1991). While tolerance was associated with a

higher mucilage production rate in soybean cultivars, the concentration of Al in the mucilage

was lower than for sensitive genotypes (Lazof et al., 1994). Root border cells, which form a

sheath of detached somatic cells around tne root tip, are known to influence the chemical and

physical properties of the rhizosphere through the production of specific metabolites, including

mucilage (Hawes et aI., 2000). Within 2 hours of exposure to Al, the layer of mucilage

surrounding each border cell can increase in diameter from virtually undetectable to wider than

the cell itself. After the establishment of this mucilaginous layer, the rate of border cell deaths

returns rapidly to pre-exposure levels, suggesting that these cells possess the capacity to restrict

the damaging effects of Al via the synthesis of an inducible extracellular layer (Hawes et aI.,

2000). Although evidence suggests a possible connection between root cap mucilage activity,

mucilage production and AI tolerance, nothing conclusive has as yet been determined.

The concept that exudations originating from the root apex may enhance tolerance to Al has

received much support from the scientific community. Aluminium has been shown to induce or

enhance exudation of certain polypeptides in roots of tolerant wheat cultivars exposed to Al

(Basu et al., 1994b). In contrast, no significant changes were observed in the polypeptide profile
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derived from sensitive cultivars. High levels of Al were also found to be associated with these

polypeptides, suggesting a preferential binding of Al and a possible chelatory role for the

polypeptides.

Phosphates in the soil solution are known to not only form compounds with Al but also to bind

to protons in the rhizosphere, thus increasing pH and effectively decreasing Al3
+ activity (Pellet

et aI., 1997). It has been proposed that Al-stimulated efflux of pot may serve to immobilise Al

in the rhizosphere, thus preventing its entrance into the root symplasm (Ownby, 1993).

However, most acidic soils are considered phosphate deficient, and an Altolerance mechanism

based on the exudation of a limiting essential nutrient is thus questionable (Pellet et aI., 1997).

Organic acids, on the other hand, are well recognised for their role in the amelioration of Al

toxicity and have long been the focus of much intensive research (Cambraia et al., 1983; Hue et

al., 1986; Marschner, 1991; Harper et aI., 1995; Ostatek-Boczynski et aI., 1995; lorge and

Arruda, 1997; Zheng et aI., 1998; Koyama et aI., 1999). Several different organic acids are

capable of binding Al, and have been classified as weak: (e.g. succinic, formic, acetic and pthalic

acids) intermediate (e.g. malic, malonic and salicylic acids) or strong (e.g. oxalic, tartaric and

citric acids) complexers of Al (Hue et aI., 1986). The detoxification properties of these short~

chain carboxylic acids have been correlated with the positions of the hydroxyl and carboxyl

groups on the main carbon chain that favoured the formation of stable 5- or 6-bond ring

structures with Al (Hue et aI., 1986; Pintro et aI., 1997).

Higher molecular weight organic acids, such as humic and fulvic acid, are known to form

complexes with Al of even greater stability than the shorter chain molecules, such as citric and

oxalic acids (Harper et al., 1995). These longer chain molecules are also significantly less

susceptible to microbial degradation than the shorter chain acids, providing a more permanent

means for the amelioration of Al toxicity (Marschner, 1991; Harper et al., 1995). Despite this,

most species and cultivars that employ the organic acid strategy for overcoming Al stress appear

to favour the lower molecular weight compounds, such as citrate and malate (Miyasaka et al.,

1991; Delhaize et al., 1993b; Jorge and Arruda, 1997; Cocker et aI., 1998; Larsen et aI., 1998;

Yang and Zhang, 1998; Mugai et al., 2000; Yang et aI., 2000).

While the type and amount of organic acid released may differ from species to species (see

Table 1) the increased exudation of these compounds has been clearly demonstrated by several

research groups to confer AI tolerance (Cambraia et aI., 1983; lorge and Arruda, 1997; Pellet et
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aI., 1997; Pintro et aI., 1997; Zheng et aI., 1998; Koyama et aI., 1999). Work conducted by

Miyasaka et al. (1991) showed that the root system of an AI tolerant cultivar of snapbean

(Phaseolus vulgaris L.) grown in AI-containing solutions released 70 times as much citrate as

when grown in the absence of the ion, and 10 times more citrate than a sensitive cultivar grown

under similar conditions. Furthermore, the insertion and over-expression of a bacterial citrate

synthase gene in tobacco (Nicotiana tabacum L.) and papaya (Carica papaya L.) plants

significantly improved the performance of these transgenics under conditions of AI stress (De la

Fuente et aI., 1997).

There is the concern that the metabolic cost of continual production and release of these organic

acids, effectively resulting in the loss of fixed carbon, could drastically impact on the

productivity of the plant (Taylor, 1991; Barinaga, 1997). However, since only the root apex is

vulnerable to Al, and therefore only this small region from which organic acids need be exuded,

it becomes much less energetically demanding and a more worthwhile investment for the plant,

especially when weighed up against the potentially damaging effects of AI (Delhaize et aI.,

1993b). Seyeral groups have shown that organic acid exudations are restricted to the root tip,

with undetectable or negligible releases from other portions of the root (Delhaize et aI., 1993b;

Pellet et aI., 1997). It has also been suggested that the mucilaginous coatings of the root tip

region may help prevent dilution of these exudates, increasing their effectiveness by

concentrating them around the sensitive portions of the roots and thus decreasing the metabolic

demand on the plant (lorge and Arruda, 1997).

Table 1: Selected studies reporting secretion of organic acids as A13
+ chelating agents.

Organic acid Species Reference

Citrate Phaseo/us vulgaris Miyasaka et ai, 1991

(snapbean) Jorge and Arruda, 1997

Zea mays(maize)

Succinate

Malate

Triticum aestivum (Wheat)

Triticum aestivum (wheat)

Zea mays (maize)

Sorghum bic%r(sorghum)

Christiansen-Weniger et a/., 1992

Delhaize et ai, 1993b

Cocker et ai, 1998

Jorge and Arruda, 1997

Cambraia et ai, 1983
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What is interesting to note is that nitrogen usage has been shown to affect the nature and

composition of root exudations in a plant (Taylor, 1988b). Individuals that primarily received

nitrates tended to increase the organic acid content, while polyamines seemed to predominate in

plants fed ammonium ions. This suggests a link between N03-/NH/ assimilation, plant-induced

pH changes, and cultivar tolerance due to exudations of Al-chelating compounds. While current

evidence most strongly supports the organic acid strategy, one cannot dismiss the involvement

of other mechanisms, both exclusory and internal, that combine to produce an Al tolerant

phenotype.

b. Internal mechanisms of aluminium detoxification

If the mechanisms for excluding Al are ineffective or incomplete, the potential for cytoplasmic

lesions remains a risk for the plant, despite the extremely low solubility of the ion at

intracellular pH levels (Taylor, 1991). Although a large proportion of the Al associated with a

plant root cell is apoplastic, the extreme sensitivity of symplastic sites warrants the

consideration of internal detoxification systems. Some species are also known to accumulate

high concentrations of Al and must surely possess some effective mechanisms for its

amelioration within the cell symplasm (Verkleij and Schat, 1990; Bennet and Breen, 1991;

Delhaize and Ryan, 1995). Several internal mechanisms have thus been proposed, although

most are speculative and conclusive substantiating evidence has yet to be published.

Aluminium is known to adversely affect photosynthetic and respiratory rates, as well as protein

synthesis (Cambraia et aI., 1983; Aniol and Gustafson, 1990; Barnabas et aI., 2000). It has

therefore been proposed that tolerant species and cultivars have increased levels of sensitive

enzymes to overcome Al-induced inhibition, or developed Al tolerant enzymes, or even evolved

alternate metabolic pathways to overcome the effects of Al (Taylor and Foy, 1985b; Taylor,

1991; Pintro et aI., 1997). There is, however, very little evidence to support such hypotheses.

Another mechanism, by which some plants have been proposed to deal with Al internally, is

vacuolar sequestration or compartmentation, restricting toxic Al3+ ions from sensitive

cytoplasmic sites (Verkleij and Schat, 1990; Marschner, 1991; Taylor, 1991). Species that

accumulate large amounts of Al in the aerial parts of the plant are known to apportion most of

this into the apoplast or vacuoles of the leaf cells, thus restricting the toxicity of the metal to the.

plant (De la Fuente-Martfnez and Herrera-Estrella, 1999).
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Perhaps the most promising hypothesis for an internal tolerance mechanism remains the

production of Al-induced proteins. It has been suggested that tolerant plants may be capable of

synthesising metal-binding proteins in response to Al stress, similar to metallothionein-like

proteins, which have the ability to bind a number of metals and may be a common factor in

metal tolerance (Aniol and Gustafson, 1990; Bennet and Breen, 1991; Delhaize and Ryan,

1995). Protein bands enhanced under conditions of Al stress have been isolated from the roots

of a tolerant wheat cultivar, which may be involved in the mediation of some resistance

mechanism (Basu et al., 1994a). These proteins were found to be concentrated in the root apical

region, and their expression was not inducible by temperature stress (heating and freezing) or

exposure to other metals, such as Cu, Mn and Zn. Aluminium stress has also been shown to

induce the synthesis of certain proteins in mungbean (Phaseolus aureus Roxb.) seedlings, and

these are believed to be linked to Al tolerance in these cultivars (Yang and Zhang, 1998).

Although Al has been clearly demonstrated to induce the synthesis of a range of proteins in both

tolerant and sensitive cultivars in a number of species, conclusive evidence linking these to a

tolerance mechanism is still lacking.

Each of these proposed strategies have strengths and weaknesses, with evidence both consistent

and inconsistent with each hypotheses. As a result, no single hypothesis has been accepted by

the scientific community as conferring Al tolerance. However, the probability remains open that

they may form part of a complex multigenic system, involving both apoplastic and symplastic

components.

2.3.2 Genetics of aluminium tolerance

Considerable progress has been achieved in the breeding of cultivars that display superior

tolerance to several soil mineral stresses, suggesting the existence of some genetic basis for

these traits (Foy, 1983). There is an abundance of information on the genetic variability

associated with plant responses to Al, yet the understanding of the physiology behind the

mechanisms and systems involved remains limited and fragmentary.

It is strongly believed that Al tolerance must be a complex dominant trait under the control of a

few major genes and several minor genes (Foy, 1983; Kochian, 1995; Aniol, 1996; Pellet et al.,

1997). There have, however, been some reports where Al tolerance has been correlated with

single genes. For example, a phosphatidylserine synthase gene isolated from an Al tolerant

wheat cultivar was shown to confer increased resistance to Al toxicity when expressed in yeast
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(Saccharomyces cerevisiae) cells (Delhaize et al., 1999). Similarly, a DNA fragment isolated

from an Al tolerant strain of the soil bacterium Arthrobacter viscosus, was shown to

significantly enhance the tolerance of transformed Escherichia coli cells to Al (Jo et al., 1997).

Moon and co-workers (1997) demonstrated that tolerance in an inbred maize line was also under

the control of a single nuclear, semi-dominant gene, which was designateaAlm 1 (aluminium

maize tolerance). More recently, it has been shown that there are in fact two distinct loci

responsible for Al tolerance in this particular line: theAlm 1 locus, and a second locusAlm 2,

although the phenotypic contribution of this second gene was considerably less than for Alm 1

(Sibov et al., 1999).

From Al-treated wheat, Snowden and Gardner (1993) isolated five different cDNA fragments

(termed wali 1 to wali 5, wheat aluminium induced) the expression of which was induced by Al

stress in the root tips of the plants. Although the level of expression of these transcripts was

dose-dependent, the genes were expressed in both tolerant and sensitive cultivars. This

suggested that these genes were involved in more general stress responses to Al, and probably

did not confer any particular advantages for overcoming Al stress (Hamel et al., 1998).

However, the exclusion of Al from wheat root apices has been consistently linked with another

locus, termedAlt 1 (aluminium tolerance). Isolated from a near-isogenic wheat line, differing in

tolerance to Al, this locus has been proposed to encode an Al tolerance mechanism based on Al­

stimulated exudation of malic acid into the rhizosphere (Delhaize et al., 1993a; Delhaize et al.,

1993b).

Much work has been focused on attempts to elucidate the genetic systems responsible for Al

tolerance in li. number of agronomically important crop species, including wheat (Hamel et al.,

1998; Delhaize et al., 1993a), maize (Sibov et al., 1999), tobacco (Ezaki et al., 1995), triticale

(Triticum spp. x Secale cereale L. hybrid) (Zhang et al., 1999) and rye (Secale cereale L.)

(Gallego and Benito, 1997). Currently over 20 genes induced by AI stress have been isolated

from a range of plant species (see Table 2). The assignment of putative identities has indicated

that these are mostly general stress genes, inducible by a wide range of stress conditions, such as

oxidative stress (Richards et al., 1998), pathogen attack (Cruz-Ortega et al., 1997) and

phosphate starvation (Ezaki et al., 1995). A selection of these Al-induced genes have been

expressed in transgenic Arabidopsis thaliana L. plants and have demonstrated their ability to

alleviate Al stress, regardless of the species of origin (Ezaki et al., 2000).
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Although the biological role of Al-induced genes in plants has not yet been fully resolved, and

the activation of these genes has not been proven to be a prerequisite for tolerance, positive

links between these genetic systems and some degree of tolerance to Al stress have been

established in several species. However, further research is still needed. Once obtained,

information regarding more precise patterns and sites of expression may contribute substantially

to the understanding of the physiology behind Al toxicity mechanisms, as well as to the

development of genetic markers and increased success in the breeding of Al tolerant

phenotypes.

2.4 APPROACHES TO MINIMISE ALUMINIUM TOXICITY

2.4.1 Agronomic and plant breeding strategies

The occurrence of Al toxicity is largely unpredictable, with the nature of the soil concerned

inherited to some extent from the parent rock (Sumner and Meyer, 1971). The distribution of

soluble Al is also affected by factors such as the internal drainage of a soil, its position in the

landscape, the effective rainfall, and the movement of base-rich waters through the soil (Sumner

and Meyer, 1971).

Low soil pH (below 5) is frequently associated with sandy soils, as well as many volcanic and

tropical soils (Snowden and Gardner, 1993). However, naturally acidic soils can be further

acidified through the oxidation of applied ammoniacal fertilisers to nitric acid (Schroeder eta!.,

1994). Poor farming practices, such as the removal of basic cations from the soil during

harvesting or as a result of acid rain, further exacerbate the problem of soil acidification and

thus Al toxicity (Meyer et aI., 1996).

Considered the most important phytotoxic metal in agriculture, Al is most commonly

ameliorated by soil management strategies, with remedial measures primarily involving the

direct modification of the soil. The practice of liming, whereby lime (calcium carbonate) or less

frequently gypsum (calcium sulphate) are ploughed into the soil, serves to elevate the pH of the

soil to levels where Al solubility and activity are significantly reduced (Bennet, 1995). Although

successes in the alleviation of Al toxicity have been reported, regular application is required at

approximately 1.5 tonnes per hectare at least once every five years (Schumann, 1999). Careful

monitoring of the soil is also required, as the application of lime where it is not needed is not

only an unnecessary expense, but may also result in deficiencies of certain trace elements, such



25

as potassium and zinc (Schumann, 1998). Liming has also been shown to not address the

problem of subsoil acidity, only effecting a favourable pH change in the upper soil horizons

(Zhang and Jessop, 1998). Another drawback associated with the application of lime or gypsum

is the potential for the polluting of run-off waters (De la Fuente et aI., 1997) as well as the

leaching of already scarce nutrients from sandy soils (Aniol and Gustafson, 1990). Furthermore,

liming materials are not readily available in many areas, and costs can often be prohibitive.

Tolerance to AI may thus be economically justified as a major breeding objective forplant

breeding programmes. It has been well documented that many plant species exhibit a

remarkable degree of genetic variability in their responses to AI stress, suggesting that one may

specifically select for the dominant trait of AI tolerance. Using traditional breeding methods,

crop researchers have had much success in boosting the tolerance of some food crops, most

notably wheat (Carver et aI., 1993; Barinaga, 1997; Scott et aI., 2001).

Table 2: Some selected examples of aluminium-induced genes, isolated from a variety of plant

species.

Gene Identity Species of origin Reference

wali5 Bowman-Birk protease Triticum aestivum (wheat) Snowden and Gardner,

inhibitor 1993

war 4.2 Peroxidase Tnticum aestivum (wheat) Hamel et al., 1998

war 5.2 Cysteine proteinase

war 72 Phenylalanine-ammonia

lyase

war 13.2 Oxalate oxidase

Glc 1 B-1,3-glucanase Triticum aestivum (wheat) Cruz-Ortega et aI., 1997

AtBPI Bowman-Birk protease Arabldopsis thaliana Richards et al., 1998

inhibitor

AtBCB Blue copper binding protein

AtPOX Peroxidase

parA No homologue Nicotiana tabacum Ezaki et al., 1995

(tobacco)

parB Glutathione-s-transferase
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The success of any breeding programme hinges on the availability of appropriate genetic

variation and tolerance to Al in a particular crop, with a well-established mode of inheritance in

the species. An inexpensive and rapid screening procedure for the identification of tolerant

genotypes from a large pool of potential candidates is also essential. However, tolerant crops

with which to perform crosses are few and traditional plant breeding is a very slow process due

to the size and complexity of most crop genomes (Moffat, 1999). Aluminium tolerance is also

hard to quantify and screening for this trait is generally very imprecise (Taylor and Foy, 1985a;

Bennet, 1995).

2.4.2 Molecular strategies

In the past, very few breeding programmes have specifically selected for resistance to Al, and

existing tolerant cultivars may have arisen indirectly as a result of selection for other agronomic

characteristics, but performed on acidic soils (Wenzl et al., 2001). Furthermore, a definitive

understanding of the mechanism and genetics behind a tolerance response are still lacking, yet

could significantly improve the success of plant breeding and allow for substantially more

accurate and efficient screening of putatively tolerant lines. There are also many instances

where plants have already undergone intensive selection for high yield and pest resistance but

are Al sensitive, and in such cases it would be extremely useful to insert a tolerance gene into

these otherwise superior genotypes using biotechnological techniques.

As a result, much research effort has been focused on the elucidation and isolation of a specific

gene or set of genes with the ability to confer Al tolerance. There are a number of molecular

strategies available for the isolation of genes associated with agronomically relevant

characteristics (see Table 3), each with varying success rates.

The isolation of tolerance-related genes is significantly easier when encoded by a single major

gene, or a small number of genes, than when the trait is polygenic. This, however, is a problem

with many crops, as it is widely believed that Al tolerance is under the intricate control of a

whole suite of genes (Taylor, 1995; Aniol, 1996; Pellet et al., 1997).

The availability of closely related, or near-isogenic lines (NILs) differing only in tolerance to a

specific metal, can also significantly improve the success rate of any gene search programme

(Aniol, 1996). However, most crop species, including sugarcane, are genetically complex with
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NILs frequently unavailable, necessitating the development of alternative strategies (Taylor,

1991).

The approaches taken for the isolation of many metal tolerance genes are generally divided into

those dealing with the screening of cDNA libraries, and those with the analysis of differentially

expressed proteins (Robinson, 1990). The libraries are prepared from messenger RNA isolated

from metal-exposed tolerant cells, thus representing the genes expressed under such stress

conditions, and screened for clones containing sequences preferentially expressed in exposed

tolerant cells as opposed to unexposed sensitive cells. The advantage of this approach is that no

prior information on specific sequences is required to isolate target fragments. However, the

success of this approach is limited when the sequence conferring tolerance is expressed at very

low levels, or the difference in expression between tolerant and sensitive plants is very small

and thus difficult to detect. With approximately 99% of the different 20 000 to 30 000 mRNA

transcripts present in a cell classified as rare, many are present at levels as low as only one to

. two copies per cell (Sargent, 1987; Sabelli, 1996; Appel et aI., 1999). The implementation of

subtracted cDNA libraries, whereby common sequences are removed and rarer stress-specific

sequences enriched for, has improved the limits of detection of less common gene fragments

(Sargent, 1987; Wilson et aI., 1994).

Table 3: Molecular techniques that have been employed in various gene search programmes.

Technique Aim Reference

Chromosomal DNA library Isolation of a gene from soil bacterium Jo et al, 1997

expressed in AI sensitive E.co/i Arthrobacter viscosus encoding a

cultured on AI-containing protein conferring AI tolerance

medium

Molecular mapping (RFLP) and

bulked segregant analysis for

AI tolerance

Expression of cDNA library in

yeast cultured on AI-containing

medium

PCR amplification of

homologous sequences using

primers designed from known

genes

Isolationof genes linked to AI tolerance

in Zea mays (maize)

Cloning of Triticum aestivum (wheat)

cDNAs conferring resistance to AI

Isolation of cDNA clones from Ricinus

communis with close homology to

hexose carriers isolated from

Arabldopsis tha/iana

Sibovetal,

1999

Delhaize et al,

1999

Weig etal,

1994



Differential display in cDNA

libraries

AFLP mRNA fingerprinting

cDNA-AFLP display

Suppression subtractive

hybridisation (SSH)

Subtractive cDNA libraries,

bacterial arrays

Differential screening of cDNA

library

Isolation of heavy metal responsive

genes in Zea mays (maize)

Isolation of genes differentially

expressed in white and red Ipomoea

purpurea (morning glory) flowers

Isolation of genes expressed during

oomycete infection of Arabidopsis

thaliana

Isolation of molecular markers for ozone

stress in Pisum sativum (pea)

Isolation of phase-specific cDNAs from

sporophytic and gametophytic

generations of Porphyra purpurea.

Isolation of cDNAs preferentially

expressed in sugarcane leaf roll

(meristematic region) tissue

Cloning cDNAs induced by AI treatment

and Pj starvation in cultured Nicotiana

tabacum cells

Isolation of genes expressed in

response to osmotic, salt and heavy

metal stresses in Cicer arietinum

Identification of transcripts expressed in

Lycopersicon esculentum (tomato) roots

after nematode infection

Isolation of AI-induced cDNA clones in

Tnticum aestivum (wheat)

Isolation of AI-regulated genes in

Tnticum aestivum (wheat)

Isolation of AI-induced genes in

Arabidopsis tha/iana linked to oxidative

stress responses

28

Didierjean et al.,

1996

Habu et aI.,

1997

Van der Biezen

et aI., 2000

Savenstrad et

al.,2000

Liu et al, 1994

Carson a"nd

Botha, 2000

Ezaki et aI.,

1995

Mufioz et al.,

1998

Lambert et aI.,

1999

Cruz-Ortega et

al.,1997;

Snowden and

Gardner, 1993

Hamel etal.,

1998

Richards et aI.,

1998



29

The direct approach to isolating metal tolerance genes is based more on biochemical evidence,

whereby differentially expressed proteins are isolated as potential candidates for conferring

tolerance (Robinson, 1990; Basu et aI., 1999). These proteins are subsequently sequenced and

appropriate probes designed, or antibodies raised, and used for the screening of expression

libraries. Positive results are confirmed using the corresponding cDNA sequences as probe

material in Northern hybridisation analyses. This approach was successfully employed by Cruz­

Ortega and co-workers (1997), whereby an AI-induced protein Tal-18 was partially sequenced

and a degenerate oligonucleotide probe designed. This probe was then used to probe a cDNA

library constructed from mRNA isolated from the AI-exposed roots of an AI sensitive wheat

cultivar. The probe hybridised to several clones, one of which was sequenced and identified as a

novell,3-~-glucanase. While protein expression data is generally more informative, it is often

technically more difficult to obtain and applications of this technique thus remain limited

(Bouchez and Hofte, 1998).

In the event that an AI tolerance related gene or molecular marker should be isolated and shown

to consistently map with tolerant populations, such sequences could be used as candidate genes

for genetic engineering, or have applications in marker-assisted selection (MAS) in crop

improvement (Young, 1999). Sequences tightly linked to resistance to soybean cyst nematode

have been isolated (Mudge et aI., 1997), and have subsequently formed the basis of several

commercial breeding efforts in this crop.

AIthough the field of MAS is still relatively young, the advantages of this technology are

multiple. Not only does it provide the opportunity to select desirable lines at the seedling stage,

but it also offers the potential to screen for multiple characteristics that would normally be

difficult to analyse separately. This would enable the streamlining of breeding programmes to a

substantial degree, especially with regards to traits that are traditionally phenotypically difficult

to score, such as AI tolerance (Butterfield, 1995; Young; 1999).

2.5 ALUMINIUM PHYTOTOXICITY IN THE SOUTH AFRICAN SUGAR INDUSTRY

Over 425 000 hectares of South Mrican agricultural lands are under sugarcane cultivation,

producing an average of 2.5 million tonnes of sugar per season (Anon., 2001a; Anon., 2001b).

According to figures for 2000/2001, the sugar industry generated approximately R5 billion last

season, contributing R1.9 billion to the country's foreign exchange earnings through exports to
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27 destinations around the world (Anon., 1999). In South Africa, approximately one million

people are dependent on the sugar industry, through both the direct and indirect employment of

an estimated 550 000 people (Anon., 2001b). The sugar industry is thus a very important part of

the South African economy and, as such, needs to remain" internationally competitive to retain

its reputation as one of the leading cost-competitive producers of high quality sugar in the world

(Anon., 2001b. Of the economic concerns facing the industry, many can be linked t6 changes in

the structure and chemical properties of the soil, including acidification, as sugarcane

production is widely believed to have a deleterious effect on soil quality. The South Mrican

sugar industry appears to have reached a yield plateau in the last three decades, despite the

introduction of higher yielding cultivars (Meyer, 1996; Van Antwerpen and Meyer, 2001), and

is most likely due to soil acidification and increased availability of AI (Schroeder et al., 1994).

Fallowing is not a common practice in sugar farming, and continuous monocropping has "

aggravated the problem of soil degradation. However, with an average of eight ratoon crops

before field replanting is required, it is not usually feasible to break the cycle of sugarcane

production (Van Antwerpen and Meyer, 1996).

Results from a ten-year trial, monitoring pH and available AI in the soil of a sugarcane field on

the northern KwaZulu Natal coast, have indicated an average acidification rate of -0.2 units per

annum (Schumann, 1999). The rate of acidification has been accelerating, with the percentage

of sugarcane fields considered strongly acidic (below pH 5.0) increasing from 18% to 43% in

the last twenty years (Schumann, 1998). Acidification is most prevalent in the KwaZulu Natal

Midlands and South Coast regions, where an estimated 50% of the soil samples taken from

sugarcane plantations have a pH below 5.0 (Schumann, 1998).

The concern over soil acidification and associated AI toxicity in the South African sugar

industry is thus warranted. Current short-term approaches to alleviate the problem focus largely

on the application of lime (Turner et aI., 1992; Schroeder et al., 1994). Long-term measures

include the careful monitoring of nitrogenous fertiliser usage, as nitrification of ammoniacal

fertilisers generates nitric acid and thus strong acidity (Meyer et aI., 1996). It is also

recommended practice to actively increase the nutrient and organic matter content of the soil via

the recycling of mill residues into the soil, such as filtercakes and molasses, as well as other

agricultural by-products, such as poultry litter (Schumann, 1998; Meyer, 1999). However,

success based solely on amelioration of problematic soils is limited and is in many cases

uneconomical. It thus becomes necessary to incorporate crop breeding techniques into solving

the problem of AI phytotoxicity, as a more long term and cost-effective approach.
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Sugarcane is one of the oldest cultivated plants in the world, and breeding programmes have

been producing new sugarcane varieties for over 100 years, with some remarkable achievements

along the way. For example, a 300% increase in sugar produced per hectare of cane was

achieved in Java over the period 1885 to 1925, and this was largely attributable to breeding

(Stevenson, 1965). However, it is doubtful that such dramatic results will be achieved as easily

as in the past, and long term improvements in cane quality and yield will need to be achieved

through the incorporation of modern technology, especially biotechnology, to supplement and

facilitate conventional breeding (Heinz, 1987).

Most of the economically important traits in sugarcane are controlled by multiple genes, such as

yield, juice quality and drought resistance, and the molecular and genetic basis for most of

these, including AI tolerance, are not well understood (Berding and Skinner, 1987; Legendre

and Burner, 1997). It thus becomes exceedingly difficult to obtain a suitable combination of all

the favourable genes in one cultivar, with the simultaneous elimination of all unfavourable ones,

especially when one considersthe size and complexity of the sugarcane genome. Sugarcane is a

very difficult crop to breed, with its low fertility and unpredictable inheritance of certain traits

(Gallo-Meagher and Irvine, 1996). Until recently, relatively little was known about the

sugarcane genome, due to its high ploidy and frequent aneuploidy and the substantial

complexity of its chromosomal composition (Roach and Daniels, 1987; Legendre and Burner,

1997). This resulted in sugarcane genomic research being both slow and costly, and thus lagging

behind other genetically well-characterised crops such as maize, wheat and tobacco (MarHinder,

2000). Recent work has,however, shown considerable improvements in the understanding of

sugarcane at the molecular level. For example, chromosomal walking within the sugarcane

genome has now been successfully undertaken by D'Hont and co-workers (2001), with the view

towards isolating a gene encoding resistance to a major sugarcane pathogen.

Standard selection programmes for sugarcane generally run for 12 to 14 years, from the

production of seed to the commercial release of a new variety (Barnes et aI., 1997; Legendre

and Burner, 1997). This prolonged selection period is due to the difficulty in accurately

evaluating varieties without extensive field trials, as a result of the strong influence of the

environmental conditions under which sugarcane is grown on the phenotypic characteristics of

the plants (Barnes et aI., 1997; Gallo-Meagher and Irvine, 1997). Marker-assisted selection

would, however, allow for the selection for traits at a genetic level, independent of

environmental interactions, and for the early elimination of seedlings not possessing the trait of

interest (Huckett, 1995; Barnes et aI., 1997). Markers linked to an undesirable phenotype are
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also valuable, in that seedlings containing such sequences in their genomes could also be

identified and removed from breeding programmes at an early stage. This would result in a

substantial reduction in the number of undesirable varieties that progressed to field trials, and

enhance the precision of selection in the remaining plants (Butterfield, 1995; Moore, 1999).

An additional application for genetic information regarding agronomically important features

would be in the area of genetic engineering. Should a gene for a particular attribute be isolated,

it can be engineered into an existing variety that lacks that attribute, with the result that breeding

for such a trait becomes unnecessary (Butterfield, 1995). This would then further increase the

efficiency of selection programmes as the number of characteristics being selected for at any

one time would be reduced. This also eliminates the need to perform numerous crossings to

separate desirable genes from undesirable genes, which can be very costly and time-consuming,

and without the guarantee of success (Mirkov, 2001).

Molecular markers that appear to be linked to fibre traits, an important characteristic in

sugarcane, have been identified, although linkage has not been confirmed (Msomi and Botha,

1994). Several putative markers for the prediction of disease and pest resistance have been

identified in sugarcane, with the potential for incorporation into breeding programmes (Bames

et ai., 1997; Bames and Botha, 1998; D'Hont et ai., 2001). Molecular maps are also currently

under construction with the view to identifying markers linked to priority traits in sugarcane,

including sugar-related characteristics, fibre, suckering and disease resistance (McIntyre et ai.,

2001). Markers putatively associated with fibre and sucrose content, among others, are also

under analysis for linkage with these important traits (Da Silva et al., 2001).

Protocols for genetically engineering sugarcane have been developed, with transgenic plants

resistant to various pests and pathogens successfully produced through genetic modification

(Braga et ai., 2001; McQualter et al., 2001). Genetically modified sugarcane plants resistant to a

number of different herbicides have also been reported (Gallo-Meagher and Irvine, 1997;

Snyman et ai., 1998; Mirkov, 2001). Although the field of genetics and transgenics in sugarcane

has advanced rapidly in recent years, a.genetic basis for AI tolerance in sugarcane has not yet

been determined, and a gene or marker sequence for utilisation in MAS or for genetic

engineering purposes is thus not available. The employment of genetic engineering and MAS

with the view to improving AI tolerance in sugarcane therefore remain long-term goals.



33

2.6 CURRENT STUDY

The problem of AI phytotoxicity has until recently not received a significant amount of attention

in the South African sugar industry. However, with notable yield increases observed in other

crops specifically bred or engineered for tolerance (Miller et a!., 1997) and the increasing extent

and severity of the problem in the industry, further research into the phenomenon of AI toxicity

and tolerance in sugarcane is warranted. AIthough sugarcane (Saccharum spp. hybrid) is

generally considered one of the more AI tolerant crops (Sumner and Meyer, 1971; Hetherington

et a!., 1986; Nuss, 1987), some cultivars that possess several other desirable traits still display

considerable sensitivity to the metal (Turner et al., 1992).

The isolation of a gene fragment linked to the tolerant phenotype could have potential

applications in the genetic engineering of such AI-sensitive germplasm, as well as in the design

of molecular markers for use in MAS-assisted breeding programmes. However, it should be

noted that these are long-term objectives, both requiring an extensive repertoire of resources and

further research prior to the successful implementation of such strategies. A basic requirement

for the development of MAS in any crop species is a population segregating for the trait of

interest, whereas AI tolerance in sugarcane has neither been well characterized nor has a

. population segregating for the trait been identified for the purposes of establishing linkage.

Should a putative AI-tolerance transgene be inserted into sugarcane cultivar, a suitable method

for analysing the resultant genotypes after transgene insertion needs to be in place. The

difficulty associated with the rating and thus quantifying of tolerance thus poses an obstacle, in

that both techniques require a reliable and efficient rating system to confirm that Ai tolerance is

indeed linked with a candidate gene or marker. Due to the complex interactions of AI in the soil,

the effect of the metal on sugarcane performance is currently measured indirectly, usually by

means of general growth characteristics that can easily be influenced by other factors. Most

studies on other crops utilise direct measurements, usually in the form of root elongation assays

(De la Fuente et a!., 1997; Hamel et al., 1998), however, no practical system presently exists for

the measurement of root growth inhibition by AI in sugarcane.

It has become increasingly popular to use genic fragments, or expressed sequence tags (ESTs),

as probes over anonymous DNA sequences when searching for markers linked to specific traits.

Thokoane and Rutherford (2001) showed that genetic markers could successfully be obtained

via the use of differentially expressed ESTs as probes in sugarcane. There is the advantage that

the EST may directly affect the trait of interest, if shown to be genetically associated with the
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trait (Cato et aI., 2000). Furthermore, because ESTs are derived from the coding regions of the

genome, a higher degree of sequence conservation is expected, with potential applications

across several sugarcane cultivars and possibly even other closely related species. These

markers are thus more valuable than those derived from potentially non-coding regions, such as

amplified fragment length polymorphisms (AFLPs), random amplified polymorphic DNA

(RAPDs) and simple sequence repeats (SSRs), which frequently display a greater degree of

polymorphisms across cultivars and species (Cato et aI., 2000). The use of EST sequences

associated with known traits can also be used as probes in the construction of genome maps

(Carson and Botha, 2000), which is of great importance for crops such as sugarcane in which

mapping programmes are frequently hindered by the genetic complexity of the species.

This study therefore aimed to investigate the genetic response of sugarcane to Al, with the view

to isolating a genic fragment putatively associated with tolerance to the metal. The first step

towards the isolation of these EST markers was the development of a suitable method for the

exposure of sugarcane roots to Al under controlled conditions, as well as a means for the

quantification of the effect of the metal on the plants. Thereafter, a· genotype, identified as

tolerant based on available field data, was used for the isolation of genic fragments potentially

associated with the trait of Al tolerance in this genotype. This involved the construction of

subtractive cDNA libraries, which were then analysed via membrane-based arrays, Northern

hybridisation analyses, and the sequencing and identification of selected clones.
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CHAPTER 3

MATERIALS A1~D METHODS

3.1 PLANT MATERIALS

3.1.1 Cultivar

Single-budded setts (short segments of the stem with a bud at the node) of Saccharum spp.

hybrid cv. N12 (N12) were germinated in washed graded silica medium (B&E Silica, [PTY]

Ltd, Delmas) in polymer-coated (Styro-Seal; Hygrotech Seeds [PTY] Ltd, Silverton) 72-place

seedling trays under glasshouse conditions. During this time, the germinating setts were

watered twice daily and supplemented weekly with a nutrient medium (Hydroponic Nutrient

Mix, Hygrotech Seeds [PTY] Ltd, Silverton). After the first flush of shoot roots were

established, at approximately 5 weeks after bud-break, the plantlets were transferred to a

hydroponics system. Prior to introduction into the hydroponics vessels, the remaining portions

of the original setts were removed.

3.1.2 Propagation and growth

Commercially available 10 litre plastic buckets served as vessels for the hydroponics system;

with aeration and agitation of the nutrient medium provided by a Hailipai Aquarium air-pump

ACO-9630 (approximately 0.5 litres air per vessel per minute). To accommodate the plants,

four holes (2.Scm radius) were cut in the lid of each vessel, through each of which a single 5

week old plant was inserted and supported by a Neoprene® collar. A 32cm length of

polycarbonate tubing (internal diameter 1.1cm, external diameter 1.2cm) was inserted through

the centre of each lid, which served to introduce air from the diaphragm pump to the bottom of

each vessel (Fig. 1).

The four plants within each vessel were supplied with ten litres of half strength Long Ashton

. solution (Hewitt, 1966), modified to contain 2mM ~CI, O.09mM Fe EDTA and O.0033mM

CUS04 (Table 4). The pH of the nutrient medium was adjusted to a value of 5.5 with

concentrated H3P04. Fresh nutrient solutions were supplied on a weekly basis.
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Fig. 1: Schematic representation of a single hydroponic vessel (a), and position of
Neoprene®collar (foam tubing) on plantlets (b).

Table 4: Hydroponic nutrient medium composition (after Hewitt, 1966).

Compound Final concentration (mM)

Macro-nutrients
MgS04.7H20 1.5

K2S04 2.0
CaCI2.2H20 4.0

Phosphate source

NaH2P04.2 H20

Na2HP04

Micro-nutrients

H3B03

MnS04.4H20

ZnS04.7H20

CUS04
(anhydrous)
Na2Mo04.2H20

Iron source

Fe EDTA

Nitrogen source

NH4N03

1.87

0.13

0.1388

0.0208
0.0023
0.0033

0.0002

0.09

2.0
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3.2 ALUMINIUM CHALLENGE

3.2.1 Root elongation assay

a. Preparation and acclimation ofplantlets and challenge with Al

Twenty-four hours prior to exposure to AI, plants were supplied with fresh nutrient media

(Table 4). In preparation of the medium for AI challenge, a 0.1M AICh stock was prepared by

adding an approp~ate amount of the chemical to polished water that had been acidified to a pH

value of 3.0 with concentrated HCI (Hamel et ai., 1998). The appropriate amount of this AICh

stock was added to 1mM CaCh (pH (4.50) to give AI of concentrations Of-tM, 50f-tM, lOOf-tM,

250f-tM, 500f-tM and 1000f-tM. The final pH of these solutions was adjusted to 4.15 with

concentrated HCI. The activity of the AI3
+ ion at each concentration was calculated with the aid

of the ion speciation programme MINTEQA2/PRODEFA2 (AIlison et aI., 1990) (Table 5).

Table 5: MINTEQ analysis of A13
+ activity in 1mM CaCI2.

AICI3 concentration (IlM) A13
+ activity (IlM) %of total AI concentration

50 45.21 90.42

100 87.99 87.99

250 220.9 88.36

500 443.6 88.7

1000 896.9 89.6

b. Root growth measurements

Before exposure to the AI media, roots were rinsed in distilled water to remove traces of

nutrient media. The distallOmm region of each root (ranging from 4 to 32 roots per plant) was

demarcated with indelible ink. Increase in length of the demarcated tip of each root was

measured after 24, 48, and 72 hours.

c. Calculations and statistics

The average increase in root length for each treatment was expressed as a relative root growth

inhibition index (%RGI), calculated according to the following equation (Hamel et aI., 1998):

% RGI =100 x ( 1 - average root length in treatment)
average root length in control
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The- significance of the effects of the AI treatments on retardation of root elongation was

assessed by means of an unpaired student Hest (SigmaPlot@ version 4.0, Jandel Scientific).

3.2.2 Challenge conditions for library construction

a. Preparation and acclimation ofpIantIets and challenge with Al

Plants were treated as for the aluminium trial, with fresh nutrient medium supplied 24 hours

before commencement of the challenge, and roots rinsed thrice in distilled water before

exposure to the AI-containing medium. AIuminiumwas supplied at a concentration and for a

duration shown to have maximum inhibitory effect during root elongation assays (section

3.2.1).

b. Harvesting and storage ofroot tips

After AI challenge, root tips (tenninal10 to 15mm portions) were excised and immediately

flash frozen in liquid nitrogen and stored at -80°C until required for the extraction of RNA.

3.3 CONSTRUCTION OF SUBTRACTIVE cDNA LmRARY

3.3.1 RNA isolation

a. Precautions

Several precautions were taken to prevent RNase contamination and resultant RNA degradation

(Sambrook and Russel, 2001). Disposable gloves were worn at all times during preparative

procedures and RNA extraction. In addition, gloves and bench surfaces were wiped at regular

intervals with RNase Away (Molecular BioProducts) to prevent RNase cross-contamination.

Where possible, sterile disposable plastic-ware was used, including sterile aerosol-resistant

disposable pipette tips. Non-disposable items, such as glassware, mortars and pestles, scalpels

and spatulas, were autoclaved prior to use. Solutions were prepared with water treated with

0.1% (v/v) diethyl pyrocarbonate (DEPC). Chemicals used for the preparation of solutions were

dedicated to RNA work to avoid the risk of possible RNase contamination. AIl solutions and

samples were kept chilled on ice during the extraction procedure. Electrophoresis apparatus,

including combs, gel-casting trays and tanks, were cleaned with detergent, dried with ethanol,

wiped with RNase Away and rinsed with DEPC-treated water prior to use.
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b. Tissue disruption

Frozen root tips (1-2 g) were placed in a pre-chilled, sterile mortar containing liquid nitrogen

and ground to a fine powder using a sterile pestle. The powder was placed in sterile 50ml

polypropylene centrifuge tubes (Corning~ and retained on ice.

c. Total RNA extraction and purification

Aliquots (4 ml each) of RNA extraction buffer (1% (w/v) SDS; lmM ATA; 4% PAS; 10mM

Tris (pH7.5); lmM EDTA; 2% (v/v) 2-mercaptoethanol) and phenol:chloroform:isoamyl

alcohol (25:24:1; v/v/v) were added to the ground root tips. Samples were immediately

homogenised for 4 minutes with an Ultra-Turrax T25 homogeniser (Janke & Kunkel Ika®­

Labortechnik). The phases of the mixture were separated by centrifugation (4361g, 20 min,

4°C). The upper aqueous phase (approximately 4ml) was recovered and transferred to a sterile

15ml volume polypropylene tube (Corning®) containing 20 I--ll of 100mM ATA and 660 I--ll of

12M LiCl (final concentrations of 2M LiCl and lmM ATA). The RNA was allowed to

precipitate overnight at 4°C.

The precipitated RNA, which was collected by centrifugation (4361g) 20 min, 4°C), was

resuspended in lml of 50 I--lM ATA and transferred to sterile 1.5 ml microfuge tubes. To

eliminate contaminating particulate matter, samples were then centrifuged for 2 min at 5200g)

and the supernatants transferred to clean microfuge tubes. To these tubes, 170l--ll of12M LiCl

was added and RNA allowed to precipitate overnight at 4°C.

After RNA sedimentation by centrifugation (9700g) 10 min, 4°C), the supernatant was

discarded and the RNA pellets rinsed by immersion in 70% (v/v) ethanol and subsequent

centrifugation (9700g) 10 min, 4°C). The washed RNA was resuspended in 250 I--ll of 50l--lM

ATA. Where particulate matter contamination was persistent, a further centrifugation step

(5200g, 2 min, 4°C) was required. In a final precipitation step, 125 ~tl of 7.5M ammonium

acetate (final concentration 2.5M) and 750l--ll of 95% (v/v) ethanol were added to the samples,

which were then incubated for at least one hour at -20°C. Samples were then centrifuged at

9700g for 30 min at 4°C, after which the RNA pellets were dried for 5 minutes in a Savant

SpeedVac SC-llO, followed by resuspension in 150 I--ll of 50l--lM ATA.
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d. Quantification and quality assessment

The extracted RNA was quantified by means of ultra-violet spectrophotometry, at a wavelength

of 260nm (Beckman DU-7500 spectrophotometer). Quality of the samples was determined by

calculation of the ratio between absorbance values at 260nm and 280nm (Sambrook and

Russel, 2001) and via denaturing agarose gel electrophoresis (Ingelbrecht et ai., 1998). In the

latter method, 10~lg RNA was denatured at 65°C for 5 minutes in the presence of 20mM MOPS

(pH 7.0), 5mM sodium acetate, 1mM EDTA, 50%(v/v) formamide, and 2.2M formaldehyde

(final volume of 30~1). Samples were immediately quenched on ice and 3 ~l of gel loading

buffer (50% [v/v] glycerol; 1mM EDTA [pH 8.0]; 0.25% [v/v] bromophenol blue) added. RNA

was then fractionated on a 1.2%(w/v) agarose gel, containing 20mM MOPS (pH 7.0), 5mM

sodium acetate, 1mM EDTA and 2.2M formaldehyde, using a tank buffer containing 20mM

MOPS (pH 7.0), 5mM sodium acetate, 1mM EDTA and 0.45M formaldehyde, at a voltage of

5V.cm'l. The fractionated RNA was stained with l~g.mrl ethidium bromide, destained in

DEPC-treated water, and visualized with a short-wavelength ultraviolet trans-illuminator

(Hoefer).

e. Poly A + isolation

The poly A+ RNA (mRNA) was isolated from total RNA (75~lg) by means of a Dynabeads

mRNA Purification kit (Dynal®) according to the manufacturer's instructions. At the

recommendation of the manufacturer, an additional step in the procedure was included to

eliminate rRNA contamination. Final elution from the magnetic beads was in a 1O~1 volume.

3.3.2 cDNA synthesis

a. First strand synthesis

Messenger RNA was used to generate double stranded cDNA, according to the protocol

supplied with the Expand™ Reverse Transcriptase kit (Roche). For first strand synthesis, each

mRNA sample (-500ng) was heated at 65°C for 10 minutes with oligo-(dT)15 primer (2.5~M

final concentration, Promega) and distilled water to a final volume of 8~1. After immediate

quenching on ice, the following components were added to a final volume of 20.~1: 4~1

Expand™ reverse transcriptase buffer (5X); 2~1 DTT (100mM); 2~1 dNTP mix (10mM); 0.5

units RNase inhibitor (Roche); and 2.5~1 Expand™ Reverse Transcriptase. Tubes were

incubated for 45 minutes at 42°C and then placed on ice.
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b. Second strand synthesis

Second strand synthesis followed immediately after first strand synthesis, with the addition of

the following components to the tube containing the first strand reaction (final volume of

100fll): 10fll second strand synthesis buffer (10X: 500mM Tris-HCI pH 7.6; 1M KCI; 50mM

MgC}z); 5fll DIT (100mM); 1fll ATP (100mM); 1fll ammonium sulphate (1M); 0.8 units

RNase H (Roche); 23 units DNA polymerase 1 (Roche); 0.5 units DNA ligase (Roche); 5fll

BSA (lmg.mr1). Tubes were incubated for 2 hours at 14°C, followed by 10 minutes at 70°e.

After brief centrifugation to collect tube contents, samples were placed on ice, 2 units T4 DNA

polymerase (Roche) added, and the tubes incubated at 37°C for 10 minutes. A 2 fll aliquot of

OSM EDTA was then added to terminate the reaction, and the cDNA purified via a

phenol:chloroform:isoamyl alcohol (25:24:1) extraction, followed by a chloroform:isoamyl

alcohol (24:1) extraction. Residual traces of the oligo-(dT)15 primer were removed using a

QIAquick® PCR Purification kit (QIAGEN) according to manufacturer's instructions, and

eluted in 40 fll TE buffer (pH 7.6) (10mM Tris.Cl [pH 7.6], 1mM EDTA [pH 8.0]).

The concentration of the double-stranded cDNA was assessed fluorometrically (Hoefer®

DyNAQuant 200) with calf thymus DNA. (Sigma) as a standard.

3.3.3 cDNA processing

a. Digestion with restriction enzymes

Each of the double stranded cDNA populations (A: Aluminium-exposed; B: Control) were

digested with restriction endonucleases: one population with 10 unitsAlu 1 (Roche) alone and

the other with 10 units each ofAlu 1 and Rsa 1 (blunt-end cutters) (Roche). Approximately 30,

ng of cDNA served as starting material for each restriction reaction. To ensure complete

digestion, samples were incubated at 37°C overnight, followed by a heat inactivation of the

enzymes (:2:10 minutes at 65°C).

b. Adaptor ligation

Oligonucleotide adaptors were prepared for each set of cDNA populations: alla2 adaptors for

the A cDNA population, and b1!b2 adaptors for the B cDNA population. The oligonucleotides

were synthesized by Roche, according to sequences given by Patel and Sive (1996). To prepare

these adaptors for subsequent ligation reactions, 1.5fll of a 3 flg.flr1 stock of oligonucleotides
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al (5'-TAG TCC GAA TIC AAG CAA GAG CAC-3') and bl (5'-ATG CTG GAT ATC TIG

GTA CTC TIC-3') were phosphorylated by the addition of the following components (final

volume of 25!J.I): 2.5 !J.I ATP (IOmM); 2.5 !J.I T4 polynucleotide kinase buffer (IOX, Roche);

O.5!J.I T4 polynucleotide kinase (IOU. !J.rt, Roche). Incubation proceeded for 60 minutes at

37°C, followed by heat inactivation of the enzyme (20 minutes at 65°C). To the appropriate

tube, 1.5!J.I of a 2.5!J.I stock of oligonucleotide a2 (5'-CTC TIG err GAA TIC GGA CTA-3')

or b2 (5'-GAG TAC CAA GAT ATC CAG CAT-3') were added to create alla2 or bllb2

adaptors respectively. After incubation at 45°C for 10 minutes, adaptors were stored at -20°C

until required.

The adaptors were ligated onto the digested cDNA fragments under the following reaction

conditions (final volume of l30!J.1): 13!J.I T4 DNA ligase buffer (10X, Roche); 30!J.140%(w/v)

PEG 8000; l!J.l ATP (15mM); 10!J.l Alu i-digested cDNA; lO!J.I Alu i and Rsa i-digested

cDNA; 2!J.I a1/a2 or b11b2 adaptor (as appropriate). After 2 hours of incubation at 16°C,

reactions were chilled on ice for a minimum of ten minutes. To each tube, l!J.I aliquots of

75mM ATP and T4 polynucleotide kinase (10U.!J.ft, Roche) were added and incubated for 30

minutes at 37°C, followed by phenol:chloroform:isoamyl alcohol (25:24:1; v/v/v) and

chloroform:isoamyl alcohol (24:1; v/v) extractions. The reaction mixtures were then size

fractionated (Quick Spin ™ Columns [TB] Iinkers 6 [Roche]) to remove unligated adaptors.

3.3.4 cDNA subtraction

a. peR amplification

To obtain large amounts of cDNA for the subtraction process, the ligated cDNA was PCR

amplified. The PCR reaction mix was as follows (50!J.I final volume): 5!J.I Taq DNA

polymerase buffer (10X, Promega); 3!J.l MgClz (25mM); l!J.l dNTP mix (lOmM); 0.5!J.I

oligonucleotide a2 or b2 (2.5!J.g.!J.l-l); 5!J.lligated A cDNA or B cDNA; O.5!J.I Taq DNA

polymerase (5U.!J.r\Promega). The cDNA was amplified using the following thermal cycling

parameters (GenepJIlp® PCR System 9700, Applied Biosystems): 30 cycles of I minute at

94°C (denaturation); 1 minute at 50°C (annealing); 2 minutes at noc (extension) with 25

seconds auto-extension at n°e. The cDNA populations yielded by this amplification step were

termed Ao and Bo. Small aliquots (lO!J.I) of each population were fractionated by means of

agarose gel (1.5% [w/v]) electrophoresis to determine the size ranges of the amplified ~DNAs.
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b. Synthesis of tracer cDNA and biotinylation of driver cDNA

The subtraction scheme (Fig. 2) allowed for the removal of sequences common to both tracer

and driver cDNA populations, resulting in the enrichment for tracer-specific sequences. As a

reciprocal subtraction was performed (A - B and B - A), two populations of subtracted cDNA

sequences were obtained, one set enriched for sequences specific to the control treatment (B)

and the other set for sequences specific to the AI challenge (A) (Fig. 3).

+ 0

(tracer) (driver)

~ ~
mRNA mRNA

~ ~-- OCl- o OCl

~Dy 0:0cDNA

hybridise
_Cl P _
-0

00 • 0 ­
il'il Cl t'M 0-~ remove hybrids and driver

subtracted cDNA enriched with sequences
: _ differentially expressed in tracer (+)

Fig. 2: Generalised subtraction scheme. Tracer cDNA from the AI-exposed root tips (+) is
hybridised to >1O-fold excess of driver cDNA from the control treatment root tips (-). The
resulting hybrids and excess driver are removed to enrich for sequences specific to the tracer
cDNA population (after Patel and Sive, 1996).

To enable the removal of driver/driver and driver/tracer hybrids via streptavidin binding and

phenol extraction, driver cDNA was biotinylated. For the PCR synthesis of driver cDNA, four

sets of the following reaction were set up per cDNA population (100",,1 final volume): 10",,1 Taq

DNAp01ymerase buffer (10X, Promega); 6",,1 MgCh (25mM); 6.7",,1 driver dNTP mix (0.5mM

bio-ll-dUTP (Bnzo Diagnostics), 1.5mM each dATP, dCTP and dGTP, 1.0mM dTTP); 1",,1
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oligonucleotide a2 or b2 (2.5I-1g.l-1r1
); 11-11 Ao or Bo cDNA; 11-11 Taq DNA polymerase (5U.l-1r\

Promega). For both sets of amplified cDNAs, the following tracer synthesis peR reaction was

set up (1001-11 final volume): 1O!!1 Taq DNA polymerase buffer (10X, Promega); 6!!1 Mg02

(25mM); 21-11 dNTP mix (lOmM); 11-11 oligonucleotide a2 or b2 (2.5~lg.l-1rl); 21-11 Ao or Bo

Subtraction series A

f>.:o-l" -Bo

A1t -B1

A2

i -Bo'

A3t -B3

~

I -Bo
V

As

A-specific genes

Subtraction series B

BoJ -Ao Short hybridisation to remove abundant common sequences

B1

I -A1 Long hybridisation to remove rare and abundant common sequences
v
B2

i -Ao Short hybridisation to remove abundant common sequences

~
B3
I -A3 Long hybridisation to remove rare and abundant common sequences

v
B4

I -Ao Short hybridisation to remove abundant common sequences

v
Bs

B-specific genes

Fig. 3: Sequence of subtractions used for the isolation of A-specific and B-specific genes
(after Patel and Sive, 1996).

cDNA; 11-11 Taq DNA polymerase (5U.l-1r\ Promega). Thermal cycling parameters were the

same as for the initial amplification of ligated cDNA for the synthesis of Ao cDNA and Bo

cDNA (section 3.3.4 a). However,due to the larger reaction volume, reaction mixtures were

overlaid with sterile PCR-grade mineral oil and amplified in a Hybaid OmniGene thermal

eyeler.

Amplified cDNA products were purified away from unincorporated nucleotides, primer, and

salts, using a QIAquick® PCR Purification kit (QIAGEN), as directed by the manufacturer.

Yields were determined spectrophotometrically using a Beckman DU-7500 spectrophotometer,

and a 51-11 aliquot of each product was fractionated on a 1.2% (w/v) agarose gel at 5V.cm'l to

monitor the size range of the amplified cDNA fragments.
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c. Hybridisation of tracer and driver cDNA

Two hybridisation reactions were set up: bio-Ao(driver) + Bo(tracer) and bio- Bo(driver) + Ao

(tracer). For each reaction, 11lg of tracer and 20llg biotinylated driver were ethanol precipitated

together (5mM MgCh in 70% ethanol) in a 1.5ml silanised microfuge tube (No-Stick@,

Eppendorl), without freezing. The pellets were air dried and resuspended by gentle pipetting in

5111 HEPES buffer (l00mM HEPES pH 7.3; 1mM EDTA). Resuspended DNA was transferred

to a 0.6ml PCR tube, to which 5III of 68°C 2X hybridisation buffer (50mM HEPES pH 7.3;

lOmM EDTA; 0.2% (w/v) SDS; 1.5M NaCI)"was added. After gentle mixing, a few drops of

sterile PCR-grade mineral oil were added, and the tubes briefly centrifuged. Tubes were then

incubated for 10 minutes at 95°C and allowed to cool slowly over one hour to 68°C, whereafter

the temperature was maintained at 68°C for a further two hours. This constituted a short

hybridisation cycle. (For long hybridisation cycles, the temperature was maintained at 68°C for

a further 30 to 40 hours).

d. Isolation ofsubtracted tracer cDNA

Tracer/driver and driver/driver hybrids, as well as single stranded biotinylated driver cDNA,

were removed through the addition of streptavidin, followed by extraction with

phenol:chloroform:isoamyl alcohol and chloroforni:isoamyl alcohol. To each hybridisation

mixture, hll of 1M NaCI and 140111 HEPES buffer (premixed and warmed to 68°C) were

added. After cooling to room temperature, 15.S1l1 aliquots of streptavidin solution (2Ilg.llrl

streptavidin and 0.15M NaCI in HEPES buffer) were added to each tube, which were then

vortexed and incubated for 5 minutes at room temperature. Equal volumes of

phenol:chloroform:isoamyl alcohol were then used to extract the streptavidin:biotinylated

cDNA hybrid complexes. The aqueous phases containing the non-biotinylated, and thus rarer

sequences, were retained and transferred to fresh tubes. A second round of streptavidin binding

(10.61l1) followed, with two rounds of phenol:chloroform:isoamyl alcohol extraction and two

additional chloroform:isoamyl alcohol extractions. The resulting subtracted cDNAs were

referred to as Al and B I cDNA, or An and Bn cDNA, as per the number of rounds of subtraction

performed.

Further subtractions were then performed using subtracted cDNA from the previous round as

template for the driver and tracer synthesis reactions. Hybridisation steps alternated between

long and short cycles, continually enriching for differentially expressed genic sequences. For
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short hybridisations, Ao and Bo cDNA drivers were used, whereas An and Bn drivers were used

for the long hybridisation cycles (Fig. 3), with the amount of cDNA template used for tracer

synthesis reduced to approximately 5 to lOng for subsequent rounds. After each cycle of short

or long hybridisation, small aliquots (5f-tl) of each of the PCR amplified products were

fractionated on a 1.2% (w/v) agarose gel to confirm subtraction, as indicated by changes in the

size range of the cDNA fragments.

3.3.5 cDNA cloning

After six rounds of subtraction (three short and three long hybridisation cycles) the cDNA was

amplified as per normal tracer synthesis conditions (section 3.3.4 b), using 5f-tl At, or B6 cDNA.

Amplifications products were purified using a QIAquick-spin PCR Purification kit (QIAGEN).

a. Adaptor ligation

The al/a2 adaptors contain an internal EcoRI restriction site, whereas the b11b2 adaptors

contain an internal EcoRV and not EcoRI restriction site. The cloning vector into which the

cDNA was to be cloned was pre-digested with EcoRI (Lambda ZAP® II Pre-digested

EcoRl/CIAP-Treated Vector Kit, Stratagene). It was thus necessary to ligateEcoR1 adaptors

onto the amplified B cDNA in order to allow for cloning of this population.

Firstly, it was necessary to ensure that the B cDNA was blunt-ended prior to the ligation of

vector-compatible adaptors. A Klenow reaction was thus set up according to the Promega

Protocols and Applications Guide (1990) (10f-tl final volume): B6 cDNA(-300ng); 10X nick

translation buffer (0.5M Tris-HCl pH 7.5; O.lM MgS04; ImM DTI; 500~Lg.mrlBSA); 4 units

Klenow enzyme (Promega). After incubation for one hour at 37°C, the enzyme was heat

inactivated at 70°C for 10 minutes, followed by the ligation of pre-digested EcoR1 adaptors

(30f-tl final volume): Klenow reaction (10f-tl); 3f-tlligation buffer (10X, Roche); 3111 BSA

(lmg.mr1
); 5f-tl EcoR1 adaptors (WpM); 30 units T4 DNA ligase (Roche). The adaptors were

supplied at a 50-fold molar excess, based on the assumption that the average cDNA fragment

was approximately 400 base pairs in size. The ligation reaction mixture was incubated at 15°C

overnight, followed by 10 minutes at 70°C.
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b. cDNA phosphorylation

Since the Lambda ZAP® II cloning vector was dephosphorylated, it was necessary to

phosphorylate the cDNA via a kinase reaction (40fll final volume): 4fll polynucleotide kinase

buffer (lOX, Roche); 2fll ATP (O.lmM); 30 units T4 polynucleotide kinase (Roche). Reactions

were incubated for 30 minutes at 37°C, followed by phenol:chloroform:isoamyl alcohol and

chloroform:isoamyl alcohol extractions, and size fractionation through a Sephacryl® S-400 spin

column (Promega). The samples were then precipitated (5mM MgClz in 70% ethanol) and

resuspended in 2.5fll water.

c. cDNA digestion with restriction enzyme

The EcoRl adaptors ligated onto the B cDNA was pre-digested with EcoRl, however the

restriction site for this enzyme in the al/a2 adaptors ligated onto the A cDNA was an internal

site. It was thus necessary to first restrict the A cDNA before proceeding with the cloning

procedure (20f!1 final volume): 200ng Au cDNA; 10 units EcoRl (Roche); 2fll Buffer H (lOX,

Roche). After 60 minutes incubation at 37°C, a further 10 units of EcoRl were added, followed

by a further 2 hours incubation at 37°C. The restriction enzyme was then heat inactivated (70°C

for 10 minutes) and the cDNA ethanol precipitated (5mM MgClz in 70% ethanol) and

resuspended in 2.5f!1 water.

d. Ligation into cloning vector

Ligation reactions were set up for each of the cDNA populations as per manufacturer's

instructions (Stratagene) and incubated overnight at 14°C (5fll final volume): 2.5fll cDNA

(-200ng); lfll Lambda ZAP® II vector arms (lflg.flr1); O.5fllligation buffer (lOX, Roche); 5

units T4 DNA ligase (Roche).

e. Packaging

Aliquots of each ligation reaction were packaged using Gigapack® III Gold Packaging Extract

(Stratagene) as per manufacturer's recommendations. Briefly, 4 fll of each ligation reaction

were added to tubes of packaging extract that had just begun to thaw, and mixed gently using a

pipette tip. The tubes were spun for a few seconds and then incubated at 22°C for 2 hours,
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followed by the addition of 500[.11 of SM buffer (0.58% (w/v) NaCl; 0.2% (w/v) MgS04,7H20;

5% (v/v) Tris-HCl pH 7.5; 0.01% (w/v) gelatin) and 20[.11 chloroform. Mer gentle mixing and

the sedimentation of cell debris, the supematant containing the primary phage libraries

(hereafter termed SubA and SubB) were stored at 4°C.

3.4 CHARACTERISATION OF THE SUBTRACTIVE LffiRARIES

3.4.1 Preparation of bacterial cell line

Streak plates were prepared from bacterial cell line XL1-Blue MRF', supplied with the Lambda

ZAP® II cloning kit (Stratagene), using Luria Bertani (LB) plates (1% (w/v) tryptone; 1% (w/v)

NaCl; 0.5% (w/v) yeast extract; 2% (w/v) agar; pH 7.0) containing 12.5mg.r1 tetracycline.

Cultures (50ml) were initiated from these streak plates (stored for a maximum of two weeks at

4°C) using LB broth supplemented with 0.2% (w/v) maltose and 10mM MgS04• These cultures

were grown to an optical density (600nm) of between 0.5 and 1.0 to ensure that cells were in

the logarithmic phase of growth, thus providing the maximum number of viable cells for phage

infection. Bacterial cells were then pelleted (500g for 10 minutes at 4°C) and gently

resuspended in approximately 10ml of sterile 10mM MgS04, and stored for a maximum of one

week at 4°C. Prior to use, cells were diluted with sterile 10mM MgS04 to an optical density

(600nm) of 0.5 and used immediately.

3.4.2 Plating of phage libraries

Serial dilutions were prepared of the primary libraries (assumed to fall within the range of 107

to 108 plaque-forming units (pfu) per ml) using SM buffer, and 1[.11 aliquots of each dilution

were combined with 200[.11 of diluted XL1-Blue MRF' cells and incubated for 15 minutes at

37°C. The cells were immediately plated onto 90 mm diameter NZY plates (0.5% [w/v] NaCl;

0.2% [w/v] MgS04.7H20; 0.5% [w/v] yeast extract; 1% [w/v] casein hydrolysate; 1.5% [w/v]

agar; pH 7.5) using approximately 3ml NZY top agar (agar replaced with 0.7% [w/v] agarose) .

containing 15[.11 of O.5M isopropyl-I3-D-thiogalactopyranoside (IPTG) and 50[.11 of 250mg.I}lr1

5-bromo-4-chloro-3-indolyl-I3-D- thiogalactopyranoside (X-Gal) (in dimethyl formamide). The

addition of these two chemicals to the NZY agar allowed for blue-white colour selection and

thus the determination of the ratio of recombinants to non-recombinants, the latter appearing
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blue. Plates were incubated at 37°C overnight and then analysed for percentage non­

recombinants, as well as for titre determination (pfu.mr1).

3.4.3 Assessment of insert sizes

Random plaques, including a blue non-recombinant plaque, were punched out using sterile

glass Pasteur pipettes, and allowed to diffuse overnight into 500fll SM buffer. Using the

universal M13 primer pair, cDNA inserts contained in the phages from each plaque were PCR

amplified using the following reaction mixture (15fll final volume): 1fll plaque suspension;

1.5fll Taq DNA polymerase buffer (lOX, Promega); 0.6fll MgCh (25mM); 0.t5fll dNTP mix

(lOmM); 0.5fll M13 Forward Primer (6flM); 0.5fll Ml3 Reverse Primer (6flM); 0.2fll Taq

DNA polymerase (5U.flr1, Promega). Reaction mixtures were cycled according to the

following thermal cycling parameters (GeneAmp® PCR System 9700, Applied Biosystems): 1

cycle of 1 minute at 94°C; 10 cycles of 30 seconds at 94°C, 1 minute at 50°C, and 2 minutes at

noc; 30 cycles of 30 seconds at 94°C, 30 seconds at 45°C, and 2 minutes at noc; 1 cycle of 2

minutes at n°c. PCR amplification products were fractionated on a 1.2% (w/v) agarose gel

containing 0.5flg.mr1 ethidium bromide at 5V.cm-1, and viewed under ultraviolet light.

3.4.4 Amplification of the phage libraries

As primary libraries are unstable, they were amplified, as recommended by the manufacturers

of the Lambda ZAP® II cloning kit (Stratagene), to prepare large stable quantities of high titre

recombinant phage library stocks for long-term storage. To this end, aliquots of the library

suspensions containing approximately 5 x 104 pfu of bacteriophage were combined with 600fll

of host cells (XL1-Blue MRF', diluted to an optical density of 0.5 absorbance units at 600nm)

and incubated for 15 minutes at 37°C. Cells were then plated onto 10mm square NZY plates,

using NZY top agar (c. 6ml, no IPTG or X-Gal) and incubated at 37°C for 6 to 8 hours until

plaques were 1-2inm in diameter. Plates were then overlaid with 8mlof SM buffer and placed

at 4°C overnight, allowing the phage to diffuse into the buffer. The bacteriophage suspensions

were then recovered and pooled into sterile 15ml tubes, and the plates rinsed with an additional

2ml of buffer. To each tube, chloroform was added to a final concentration of 5% (v/v) and

incubated with the suspension for 15 minutes at room temperature, followed by centrifugation

for 10 minutes at 2000g to remove cell debris. The supernatants were dispensed into aliquots

and stored in 7% (v/v) dimethyl sulfoxide at -80°C. The titre of the amplified libraries was
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determined in the same manner as previously outlined for the primary libraries (section 3.4.2),

with the omission of IPTG and X-Gal from the growth medium.

3.5 ANALYSIS OF LIBRARY cDNA INSERTS

3.5.1 Reverse Northern hybridisation analysis

a. Probe synthesis

Plaques were punched out randomly from plates of each library, allowed to diffuse overnight

into 500",,1 SM buffer, and PCR amplified as previously described (section 3.4.3). To confirm

amplification, 3",,1 of each sample was fractionated on a 1.2% (w/v) agarose gel at 5V.cm-1,

stained with ethidium bromide (10""g.ml-1
) and viewed under ultraviolet light. Samples that

contained clones that did not amplify well or contained multiple clones were discarded.

b. Array printing

Samples were denatured prior to arraying via the addition of NaOH to a final concentration of

O.2N. A manual gridding device (V&P Scientific, Inc.) was then used to transfer 0.6",,1 aliquots

of the denatured PCR products onto a 150 x 100mm positively charged nylon membrane

(Hybond™-N+, Amersham). For replication, aliquots of each PCR product were delivered to

two separate addresses on the array. Six 96-well PCR plates of amplified products were

incorporated into the arrays for each of the libraries, resulting in the representation of 576

clones per library, arrayed in a 4x3 format (Fig. 4). The double-stranded DNA PCRproducts

were cross-linked to the membranes by means of short-wavelength UV-radiation (120 000

J.cm-1 for 2 minutes, Roefer UV-Crosslinker), air-dried and stored at 4°C until required.

c. Preparation of labelled total cDNA populations

Unsubtracted total cDNA from each of the target populations, namely AI-challenged and

control treatment, were used to query arrays bearing PCR amplified inserts from both

subtraction libraries. This was done to determine the efficiency of the subtractive process.

Labelling of the total cDNA was based on a combination of the protocols outlined by

Sambrook and Russel (2001) and by the technical bulletin accompanying the Expand™

Reverse Transcriptase kit (Roche). Approximately l""g of poly-A+ RNA (mRNA) was heated
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for five minutes at 70°C, and then chilled on ice. In a separate tube, 2.5!J.I random hexamer

primers (5 !J.g.!J.r1
), l!J.I dNTP mix (20mM dCTP, dGTP and dTTP), l!J.I dATP (120!J.M) and

2!J.I ddCfP (100 !J.M) were mixed and dried in a centrifugal sample evaporator (Savant

SpeedVac SC-110). To this tube, 1.5!J.I DEPC-treated water, 4!J.I Expand™ buffer (5X) and 2111

DTI (10OmM) were added. The contents were allowed to resuspend for a few minutes,

whereafter 20 units RNase inhibitor (Roche), the mRNA sample (Sill), 5 units Expand™

Reverse transcriptase (Roche) and Sill [a_33p] dATP (10 ~tCi.llrl) (AEC Amersham) were

added. The contents were then incubated for 10 minutes at 30°C, followed by 45 minutes at

42°C. A 1111 aliquot of 0.5M EDTA (pH 8.0) was then added, as well as 1111 of 10% SDS. After

mixing the contents of the tube, 3111 of 3N NaOH was added, followed by a 30 minute

incubation at 68°C to hydrolyse the RNA. After cooling to room temperature, lOll1 of IM Tris­

HC! (pH 7.4) was added, mixed well, and 3111 of 2N HC! added. The labelled cDNA was then

purified by means of a standard phenol:chloroform:isoamyl alcohol extraction, followed by a

chloroform:isoamyl alcohol extraction.

The efficiency of target cDNA labelling was tested via paper chromatography. A small aliquot

of the labelled mixture (2!J.I) was spotted onto a piece of filter paper, the end of which was

placed in 0.75M Na2P04. The mobile phase front was allowed to migrate for a distance of 5 to

10cm, after which the chromatogram was exposed to a phosphor screen (Cyc1one™) for 1 to 2

hours. The autoradiographic image was captured and viewed by means of a Cyc1one™ Storage

Phosphor Screen imaging system (Packard).

Unincorporated dNTPs were removed from the labelled total cDNA populations via ethanol

precipitation and washing. After the addition of 3 volumes of 95% (v/v) ethanol, and a

minimum of 2 hours incubation at -20°C, the target cDNA was centrifuged for 30 minutes (15

800g, 4°C). The supematant was decanted and the pellet allowed to air dry prior to

resuspension in 50111 TE buffer. The labelled targets were heat denatured (1000C, 5 min) and

quenched on ice before addition to the hybridisation buffer (section 3.5.1 d).

d. Array querying

The array membranes were incubated for 8 -18 hours in 30ml of a modified Church and Gilbert

buffer (O.5M sodium phosphate pH 7.2; 7% (w/v) SDS; 0.94mM EDTA) (Church and Gilbert,

1984) containing 1O!-tg.mr1 denatured fragmented salmon sperm DNA. Incubation was
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conducted at 65°C in 300ml volume hybridisation bottles within a rotary hybridisation oven

(Hybaid Micro-4). After prehybridisation, an aliquot (30ml) of fresh hybridisation buffer

containing the denatured cDNA target was added. Membranes were incubated overnight at

65°C.

Plate 1 •
Plate 2 0

Plate 3 •
Plate 4 •
Plate 5 •
Plate 6 •

A

B

C

H
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Fig. 4: Array design for subtractive libraries A and B, showing addresses of PCR products
on array membrane.

Following overnight hybridisation, the membranes were washed with increasingly stringent

washes to remove traces of unbound target: two washes with IX SSC (15mM trisodium citrate;

150mMNaCI) for 20 minutes each; two washes with 0.5X SSC for 20 minutes each; one wash

with 0.1X SSC for 10 minutes. Membranes were then sealed in polyethylene fIlm and exposed

to high-resolution phosphor screens (Cyclone TM). After between 24 and 56 hours ofexposure,

the images on the phosphor screens were captured and viewed by means ofa Cyclone™

Storage Phosphor Screen imaging system (packard).

e. Array analysis

Array images were analysed using QuantArray® Microarray Analysis Software (Version 3.0,

Packard Bioscience). This software facilitated the quantifIcation ofhybridisation intensity to

each of the probes contained on the array membranes in response to each querying event, in

terms ofspot diameters and intensities, background, and signal to noise ratios. Furthermore, it
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allowed for the calculation of the proportional hybridisation intensities to each probe between

different target cDNA populations.

3.5.2 Northern hybridisation analysis

a. Total RNA size fractionation

Total RNA from both AI-challenged and control root tips (section 3.3.1) were purified using an

RNeasy® Plant Mini Kit (QIAGEN), as per manufacturer's instructions. After

spectrophotometric requantification (section 3.3.1 d), 10~tg RNA from both AI-challenged and

control root tips were fractionated under denaturing conditions according to the method of

Ingelbrecht et al. (1998). RNA samples were incubated at 65°C for five minutes in the presence

of 25 III RNA incubation buffer (20mM MOPS pH 7.0; 5mM sodium acetate; 1mM EDTA;

50%(v/v) de-ionised formamide; 2.2M formaldehyde). Samples were immediately chilled on

ice and 2.51l1 of gel loading buffer (50% glycerol; ImM EDTA pH 8.0; 0.25% bromophenol

blue) added. Fractionation was performed on a 1.2% agarose gel containing IX MOPS and

17% (v/v) formaldehyde (37%), at 5V.cm-1with IX MOPS as the running buffer. Duplicate

sample sets were fractionated simultaneously, and one set stained immediately with ethidium

bromide (1Ilg.mr1), destained with DEPC-treated water, and viewed under ultraviolet light to

confirm the integrity and loading consistency of the RNA samples.

b. RNA blotting

The remaining portion of the gel was subjected to downward capillary blotting, using 50mM

NaOH as the transfer medium. Ail wicks and paper supports were prepared from Whatman

3MM filter paper and were pre-wet in transfer medium. Transfer to a positively charged nylon

membrane (Hybond™-N+, Amersham) was allowed to proceed overnight, whereafter the gel

was stained with ethidium bromide (as in section 3.6.1) to confirm that transfer of RNA was

complete. After transfer, the membrane was allowed to air-dry, and then neutralised via a brief

rinse in DEPC-treated 2X SSC (30mM trisodium citrate; 0.3M NaCI). Once the membrane was

dry, it was stored at 4°C until required.

c. cDNA probe labelling

Probe labelling was performed via random priming using the Megaprime ™ DNA labelling

system (AEC Amersham). A 5111 aliquot of random nonomer primer solution (5Ilg.llr1) and
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20ng of purified (QIAquick® PCR Purification kit (QIAGEN) cDNA fragment, amplified as

described in section 3.4.3, were mixed t,o a final volume of 26fAI and then heated to 100°C for 5

minutes. After a brief centrifugation step to collect the contents of the tube, 10fAI of labelling

buffer (10mM each of dGTP, dTTP and dATP), 5fAI [a_32P]_dCfP (3000 Ci.mmor1) and 2 fAI

Exo(-) Klenow enzyme (5U.fAr1) were added. The components were thoroughly mixedand

incubated for one hour at 37°C. The labelling reaction was terminated by the addition of 25fAI

of 50mM EDTA.

Unincorporated radiolabelled dNTPs were removed from the probe using a NucTrap®

Purification Column (Stratagene), as per manufacturers instructions. The degree of radiolabel

incorporation into probe DNA was tested using paper chromatography, using filter paper and

0.75M Na2P04 buffer as the mobile phase. After the mobile phase front had migrated 5 to 10em

the chromatogram was exposed to X-ray film (Amersham Hyperfilm™-MP) for 15 minutes,

and then developed. The probe was denatured at 100°C for 5 minutes, quenched on ice, and

then added to hybridisation buffer.

d. Hybridisation

Membranes were prehybridised at 65°C for a minimum of 2 hours in 30ml of hybridisation

buffer (5X filtered SSPE (900mM NaCI; 50mM NaH2P04; 5mM EDTA pH 7.7); 5X .

Denhardt's reagent (0.1% (w/v) each of BSA, FicollTM400 and PVP); 0.5% (w/v) filtered SDS;

20fAg.mrl denatured fragmented salmon sperm DNA). Hybridisation solution was then replaced

with afresh 15ml aliquot of hybridisation buffer without salmon sperm DNA, to which the

denatured labelled probe was added. The labelled cDNA probe was allowed to hybridise

overnight to the membrane-bound fractionated RNA at 65°C in a rotary hybridisation oven

(Hybaid Micro-4).

e. Visualisation

After hybridisation, the membranes were washed according to the following protocol of

increasing stringency: 2 washes of 25 minutes each with 3X SSC and 0.1% SDS (68°C); two

washes of 20 minutes each with 1X SSC and 0.1% SDS (68°C); one final wash for 30 minutes

with O.lX SSC and 0.1 % SDS (55°C). The washed membranes were then sealed in

polyethylene film and exposed to high-resolution phosphor screens (Cyclone™ Storage
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Phosphor Screen [Packard]). After between 24 and 56 hours of exposure, the images on the

phosphor screens were captured and viewed by means of a Cyclone™ Storage Phosphor Screen

imaging system (Packard).

3.5.3 Sequencing

a. Phagemid rescue and quantification

Phagemids were excised from the Uni-ZAP® XR vector using the ExAssist helper phage, as

per manufacturer's instructions (Stratagene). Phagemids (plasmids) were then introduced into

bacterial host cells (E. coli strain SOLRTM), from which overnight cultures were prepared and

plasmids extracted using QIAprep® Spin Miniprep kit (QIAGEN), as per manufacturer's

instructions.

b. Capillary electrophoresis

Samples were quantified fluorometrically (Hoefer® DyNAQuant 200) and prepared for single­

run partial sequencing reactions as described in the protocol supplied with the ABI Prism ®

BigDye™ Terminator Cycle Sequencing Ready Reaction Kit (PE Applied Biosystems).

Reactions contained 3.2pmol of the M13 reverse primer (5') only and 500ng recombinant

plasmid DNA. After amplification, unincorporated dye terminators were removed via an

ethanol precipitation step, as recommended by the manufacturer (PE Applied Biosystems), and

resuspended in 181-"1 of Template Suppression Reagent (supplied with the kit). Sampleswere

then heat denatured (95°C for 2 minutes), chilled on ice for 1 minute, and analysed via capillary

electrophoresis on an ABI Prism® 310 Genetic Analyzer.

c. Sequence editing and homology searches

Sequences were edited (Sequence Navigator 1.0.1) to remove vector and ambiguous sequences.

The edited sequences were submitted to the BLAST (Basic Local Alignment Search Tool)

program (Altschul et al, 1990) for comparative sequence analysis against the National Centre

for Biotechnological Information (NCBI) non-redundant protein and dbEST databases, using

the BLASTx and BLASTn algorithms respectively.

The Expect (E) value decreases exponentially with the bit score obtained for each sequence hit,

with higher bit scores resulting in lower E-values, indicative of a more statistically significant
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hit. The bit scores are, however, not considered as reliable an indication of sequence homology

as the E-values, which also take into account the lengths of the sequence being compared. The

E-value can be related to the p-value (indicating statistical significance) by the following

equation:

I 1 -E-valuep-va ue = -e

Thus as the E-value tends towards zero, the E-value and p-value may converge. Thus in cases

where E-values were less than 0.01 were obtained for a particular sequence, these were

considered homologous proteins for the sequence submitted (Altschul et aI, 1990). Where

several protein homologies were assigned to a sequence, the EST was assigned the identity of

the protein s.howing the lowest p-value. Where all the alignment scores were greater than 0.01,

it was assumed that there was no significant homology with an EST or protein in the NCBI

database and the sequence remained unidentified.
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CHAPTER 4

RESULTS

4.1 HYDROPONIC CULTURE OF SUGARCANE

As conclusive evidence exists indicating the root tip to be the primary site at which the

phytotoxic effects of AI are exerted, the development of a method for the controlled exposure of

root tips to AI was a major requirement for this study. Conducting root growth and response

studies in the soil is technically very difficult. The heterogeneous nature of most soils means

that the feasibility of isolating and studying one factor at a time is limited. As a result, it was not

possible to use field-grown material, due to the difficulties associated with the controlled

application of aluminium stress in a heterogeneous soil and the retrieval of intact root tips from

deep beneath the soil surface. An alternative approach was thus adopted in which a hydroponics

system was used for AI stress application. This method not only allowed for the rapid and

accurate manipulation of AI concentration in the root environment, but also allowed for easy

access to the roots for both physiological analysis and harvesting.

As sugarcane is a vegetatively propagated crop, plant production from seed is not routine, a

characteristic that necessitated the development of a novel hydroponics system. For example,

most classical hydroponics systems consist of a raft or mesh to support the plants that is

positioned in such a way that facilitates the contact of roots with a reservoir of nutrient medium.

However, as single bud sett-derived sugarcane plantlets remain attached to a nodal segment of

the parental stalk, the traditional hydroponics design required modification. To this end, five­

week old plants, with well-developed plant root systems, served as starting material for

initiation of the hydroponics system used in this study (Figs 1 and 5).

4.2 EFFECT OF ALUMINIUM ON ROOT GROWTH

As little is known about the response of South Mrican sugarcane varieties to direct AI

challenge, the initial objective of this study was to determine the effects on root growth of

exposure to AI at various concentrations for different periods of time. Sugarcane cultivar N12

was selected for this study as it is one of the cultivars most widely grown on acid soils within

the industry (Turner et aI., 1992). Since the primary symptom of AI toxicity is the retardation of

root growth, the effect of AI on root elongation was used as an indicator of the phytotoxic effect
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Fig. 5: Cultivation of Saccharum spp. hybrid N12 (N12). (a) View of hydroponically gown
plants in glasshouse. (b) Root system of hydroponically grown plants.

of the metal on the plant. Root growth measurements were taken from plants exposed to AI at

various concentrations (0, 50, 100,250, 500 and 1000~ after various periods ofexposure (24,

48, and 72 hours). Exposure to AI did not exceed 72 hours to circumvent the effects ofpossible

root branching on root elongation measurements.

Exposure of roots to AI resulted in visible symptoms ofphytotoxicity, including the appearance

of brown necrotic lesions and mucilage exudation (results not shown). In general, root growth

over a 24 hour period was inhibited in a manner approximately proportional to AI concentration

(Fig. 6a), with 50 and 1000JlM AI resulting in relative root growth inhibition of4 and 48%

respectively. Similar trials conducted with AI tolerant wheat cultivars showed that inhibition at

50JlM AI resulted in approximately 45% inhibition, and reached a plateau ofapproximately

70% inhibition at 2501lM AI (Harnel et al., 1998). Sugarcane is, however, considered fairly AI

tolerant, and thus this study included a treatment with AI supplied at 1000JlM. The minimum

exposure period over which the inhibitory effect ofAI on root elongation could be quantified

was identified as 24 hours and was thus used for the initial dose-response experiments. As the

negative effects of the metal on root growth reached a plateau at approximately 250JlM, this

concentration ofAI was selected for further experimentation. For technical reasons, data

generated by root growth inhibition trials were variable and experiments were, therefore,

repeated thrice. The mean inhibition of root growth over the three independent experiments was

then averaged to determine the %RGI for each set oftreatment conditions, as shown in Figure

6b. This problem ofvariability has also been reported in maize root growth studies, where
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precise evaluations are difficult to obtain due to the enormous variability observed (Sibov et a!.,

1999). This problem was similarly overcome in the maize studies through increasing the number

of repetitions or treatments. However, for the purposes of this study, the results were

sufficiently reliable to allow for the selection of a concentration and exposure duration for the

AI challenge for the generation of root material for molecular analysis. Maximum inhibition in

response to the metal was apparent at a concentration of 250!lM or more, and did not increase

significantly after the initial 24-hour period. It was therefore deemed unnecessary to use an AI

concentration greater than this value, or to deprive the plants of nutrients for more than 24 hours

and risk the complication of nutrient deficiencies.

4.3 ISOLATION OF ALUMINIUM·CHALLENGE·ASSOCIATED cDNA

4.3.1 Quantity and quality of RNA

Plant tissue is generally considered one of the more difficult tissues from which to isolate RNA.

This is largely due to the problems associated with the co-purification of plant polysaccharides

and phenolics, as well as the ubiquitous presence of ribonucleases (RNases), which are highly

prolific in meristematic regions such as the root tip (Sambrook and Russel, 2001). Most

protocols thus include measures to minimise these factors, such as the inclusion of RNase

inhibitors (e.g. ATA) and protein denaturants, such as SDS and ~-mercaptoethanol.

RNA was successfully extracted from frozen root tips, using a method optimised for sugarcane

(Carson and Botha, 2000), with yields varying from 120!lg to 750!lg RNA per gram of frozen

root material. Quality analysis was performed via spectrophotometric means as well as agarose

gel electrophoresis with ethidium bromide staining (Fig. 7) The integrity of the samples was

confirmed by the visible presence of two ribosomal bands, 28S ands 18S (Wilkinson, 1991).
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Fig. 6: Average % root growth inhibition (RGI) of hydroponically-cultivated N12 plants as a result of
exposure to aluminium (AICI3 in 1mM CaCI2 at pH 4.15) (a) supplied at various concentrations for 24
hours, and (b) supplied at 250IJM over a 72 hour period.

The bulk of RNA within a cell consists of ribosomal RNAs, mostly in the form of the 18S and

28S rRNA, with poly-A+ RNA (mRNA) comprising only up to 5% (Wilkinson, 1991). Hence,

to increase the sensitivity of detection of less abundant transcripts, such as those differentially

expressed under AI stress, rRNA sequences were removed from the pool of total RNA.

As most messenger RNA sequences contain long portions of adenylic acid residues, located on

the 3'-end of intact transcripts (Davis et al., 1986), the presence of this poly A+-tail, typically 50

-100 bases long, allows for the purification of mRNA from the total RNA pool by means of
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affinity chromatography (Wilkinson, 1991). Isolation of mRNA from total RNA preparations

were based on a method in which oligo(dT) chains, coated on to magnetic beads (Dynal®

Dynabeads mRNA Purification kit), bound the poly A+ RNA in the presence of a high

concentration of salt, and non-poly A+ species were removed along with the supematant.

Subsequent washes with low salt buffers then allowed for the elution of the poly A+ mRNA.

This magnetic procedure for the isolation of mRNA was much faster and more efficient than

other methods that require precipitation steps or the use of organic solvents. Typically, yields of

mRNA were expected to be in the region of 1% of the total RNA used, which corresponds to the

concentration of mRNA in the total RNA pool. Concentrations of approximately 1f.tg.f.tr1

mRNA are not readily detectable via agarose gel electrophoresis unless multiple samples (10f.t1

each) are pooled, and fluorometric and spectrophotometric methods of quantification were also

not suitable. The concentration of 1t-tg.t-tr1 was thus assumed for each mRNAsample.

Precautions for the prevention of RNA degradation were also strictly followed to ensure that

mRNA degradation was eliminated, a crucial requirement for the synthesis of full~lengthcDNA

and for the construction of representative cDNA libraries.

4.3.2 Conversion ofmRNA into complementary DNA (cDNA)

The validity of any result obtained downstream from a cDNA library is dependent on the

original quality of the library itself. Consequently, utmost care was taken to ensure that a

representative library for each treatment (AI-exposure and control) was obtained. Fluorometric

quantification of initial cDNA synthesis products revealed that yields were 1- 3ng.t-tr1. As such

yields are considered low, the maximum volume of cDNA permitted was used in subsequent

reactions. Digestion of the cDNA using restriction enzymesAlu I and Rsa I resulted in the

reduction of the average size of the cDNA within each of the populations. This eliminated the

preferential PCR amplification of naturally small cDNAs during the subtraction process. Once

the digestion of the cDNA and ligation of the a1/a2 and b1!b2 adaptors on to the cDNA was

complete (3.3.3), it was possible to amplify the samples via PCR to obtain sufficient product for

the subtraction process. This is a major advantage of this PCR-based protocol (Patel and Sive,

1996), in that only very small amounts of starting material are required.
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Fig. 7: Fractionation of representative RNA samples via denaturing agarose gel (1.2% [w/v]) .
electrophoresis, as described by Ingelbrecht et aI., 1998, and visualised via ethidium
bromide staining and short-wavelength UV radiation. Lane 1: RNA size ladder 1 (Roche);
Lane 2 & 3: 1O~g RNA samples isolated from root tips exposed to 250~M AI (AICI3 in 1mM
CaCI2) for 24 hours using a hydroponics system.

4.3.3 Isolation of cDNAs associated with the aluminium phytotoxic response

On average, eukaryotic cells contain approximately Ipg of mRNA (equivalent to one million

molecules) wlrich has resulted from the transcription of about 15 000 different genes (Sargent,

1987). Of these one million mRNAs, the majority are considered to be of low abundance and

present at less than 20 copies per cell. The detection of a rare transcript thus becomes very

difficult, unless the effective concentration is further increased via subtractive hybridisation to

remove common and abundant sequences. Although some redundancy is still expected in a

subtracted library, the process of subtraction significantly reduces the number of clones that

need to be analysed for the detection of sequences of interest. Tlris approach has been estimated

to improve the sensitivity of screening at least ten-fold (Sargent, 1987). The number of rounds

of subtraction that are required to adequately remove common sequences varies from tissue to

tissue and cell-type to cell-type, depending largely on the complexity of the initial cDNA

populations, that is, the total number of different cDNA sequences present in each population.

Tlris can vary anywhere between five and 20 rounds of subtraction, however, the number of

handling steps should be restricted as much as possible to minimise handling and the accidental
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loss of trace amounts of cDNA. After each round of subtraction, 5!-l1 aliquots of PCR amplified

cDNA were fractionated by means of agarose gel electrophoresis, stained with ethidium

bromide and viewed under short wavelength DV radiation (Fig. 8). A visible difference in the

cDNA smear size and banding profile was observed between the two populations (A and B), as

common sequences were removed through streptavidin binding and removal of the biotinylated

tracer-driver and driver-driver hybrids. As no change was observed in the cDNA profile

between the fourth, fifth and sixth subtractions, six rounds of subtraction were thus deemed

sufficient to remove the majority of common and abundant sequences in this study.

b c -~<..r fI _

".'11&1:
"'"

d

587 bp
267 bp
184 bp

Fig. 8: Progressive removal of common abundant sequences from two populations of cDNA
over the first four cycles of hybridisation (a: 1st cycle; b: 2nd cycle; c: 3rd cycle; and d: 4th

cycle) via peR based subtraction. (Lanes 1: Marker 3 [ADNA digested with EccRI and
.Hinoill]; Lanes 2: Tracer cDNA A [AI-exposed treatment]; Lanes 3: Tracer cDNA B [control
treatment]; Lanes 4: Marker 5 [pBR322 digested with Haelll].

4.3.4 Cloning of subtracted cDNAs

The Lambda ZAP® II vector system is a useful combination of the convenience of a plasmid

system, with blue-white colour selection, with the high construction and packaging efficiency of

a lambda library. The system also allows for the in vivo excision of the pBluescript ® phagemid,

allowing for characterisation of the insert in a plasmid system.

Once subtraction was completed, and a final round of PCR amplification performed, the two

cDNA populations were prepared for cloning into the Lambda ZAP® II Pre-digested

EcoRIlCIAP-Treated vector (Stratagene). This involved the additional step of ligating EcoRl

. adaptors onto the amplified B cDNA, as no internal EcoRI site was present in the bl/b2 adaptor

set, only an EcoRV site, which was not suitable for cloning into this particular vector. While

these new adaptors were pre-digested, the corresponding restriction site in the al/a2 adaptors on

the A cDNA needed to be cleaved with EcoRl before ligation into the vector. Once both sets of

cDNA had been ligated into the cloning vector, they were termed SubA and SubB (subtractive

libraries A and B).
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4.4 GENERAL ANALYSIS OF ALUMlNlUM-CHALLENGE-ASSOCIATED cDNA

LIBRARY

The titre of the libraries was determined via the preparation of serial dilutions, followed by the

plating out thereof with appropriate host cell lines, and counting the number of plaques (Table

6). The Sub A primary library titre (8.8 x 105 pfu.mr!) was approximately 6 fold below the

range deemed acceptable by the manufacturers (5 x 106 to 1 X 107 pfu.mr!, Stratagene). Despite

a repetition of the packaging process, the titre still did not improve to within this acceptable

range. The titre of the Sub B library (6.5x l04)was almost 100 fold below this acceptable range,

and similarly did not improve after a further attempt at packaging. These libraries were

nevertheless used, as increasing the amount of phage stock used during the plating out of the

library allowed for sufficient clones to be obtained for further analysis. Furthermore, differential

expression results associated with AI stress would be obtained from the Sub A library, the titre

of which was within acceptable limits. The primary libraries were unstable and not suitable for

long-term storage at 4QC, with a rather dramatic decrease in titre observed after six months, thus

necessitating the amplification of the primary libraries to obtain stable high titre stocks for long­

term storage.

Table 6: Characteristics of Lambda ZAp® 11 subtractive libraries prepared from mRNA isolated
from N12 root tips. Sub A - AI-exposure treatment (250IlM AICI3 [in 1mM CaCI2] for 24 hours);
Sub B - control treatment (1 mM CaCI2for 24 hours).
Library Primary titre %Non -recombinants Amplified titre

(pfu.mr1
) (pfu.mr1

)

Sub A 8.8x105 4% 1.6x101U

Sub B 6.5 x 104 28% (very high) 2.2 x 109

Average insert size

(bp)*

485

305

* Excluding the length contribution made by vector arms (approximately 125 bp)

The average insert size of each library was determined via the sampling of a number of random

plaques, followed by PCR amplification of the insert and fractionation by means of agarose gel

electrophoresis (Fig. 9, Table 6). The average sizes of the inserts was found to be approximately

485 and 305 bp for the Sub A and Sub Blibraries respectively, which compares favourably with

the expected size range of between 250 and 500bp (Patel and Sive, 1996). The inclusion of X­

Gal and IPTG into the plating medium enabled the identification of non-recombinant clones

(containing no insert) and thus the percentage of these clones present in the library. The

manufacturers of the cloning kit indicate that between 1 and 10% non-recombinants are to be

expected, with the Sub A library falling within these limits with 4% of clones containing no

insert. The Sub B library, however, contained approximately 28% non-recombinant clones,
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which is considered rather high, almost three times that which is considered acceptable. As with

the lower titre, the packaging process was not optimised to attempt to rectify the characteristics

of this library to within the recommended limits. Instead, when selecting clones for downstream

applications, appropriate care was taken to ensure that non-recombinant clones were not

sampled.

Fig. 9: A subset of peR amplified plaques from subtractive library A, fractionated via agarose
1.2% (w/v) gel electrophoresis. cDNA library was prepared from mRNA isolated from N12 root
tips exposed to 250llM AI for 24 hours in hydroponics. Note multiple banding in lanes 12, 13 and
14. Such samples were discarded.

4.5 EXPRESSION ANALYSIS OF ALUMINIUM-CHALLENGE ASSOCIATED cDNA

LffiRARIES

4.5.1 Reverse Northern hybridisation analysis

DNA array technology is currently at the forefront of gene expression research, surpassing

differential display as the technique of choice for the isolation of differentially expressed genes.

Labelled mRNA transcripts are bound to arrays of cDNA molecules fixed to a solid support,

constructed from glass, silicon, nitrocellulose or nylon membranes. Membrane-based arrays

have been shown to be extremely useful in the detection of low-abundance messenger RNA

sequences, with detection limits estimated to be approximately one mRNA transcript out of a

population of ten thousand (Bouchez and Hofte, 1998). With the inclusion of subtractive

hybridisation, the detection sensitivity for rarer differentially expressed sequences can be

increased even further. One of the main advantages of array technology is that information on

hundreds or even thousands of specific genic fragments can be obtained simultaneously, giving

a broader view of gene expression changes between samples (Baldwin et aI., 1999). This

technology was thus employed to identify mRNA sequences that were preferentially expressed

under conditions of Al stress.
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a. Array querying

The array containing cDNA sequences from the Sub A library was hybridised to radio-labelled

target cDNA from the AI-challenge and control treatment. Generally, the signal strengths of

individual spots on the array were not very strong, possibly due to a low concentration of probe

on the membranes. Membranes were thus left to expose to the phosphor screens for longer

periods, sometimes up to one week, to. obtain images with sufficient resolution to allow for

further analysis (Fig. 10).

b. Array analysis

From the raw data (Fig. 10) it was clearthat some clones appeared to be differentially expressed

under conditions of AI stress, with very faint or no signal at certain addresses

on the array queried with the control total cDNA, and a clear signal obtained with AI-exposed

total cDNA. However, the subtractive process is not totally effective at removing all common

sequences, and there were many clones that hybridised with equal intensity to both target cDNA

populations.

a b

Fig. 10: Probing of total mRNA, isolated from (a) AI-exposed (250~M AI in 1mM CaCI2 for 24
hours) N12 root tips and (b) from control treatment (1 mM CaCI2 for 24 hours) root'tips, with
subtractive library A (control treatment cDNA subtracted from AI challenge cDNA) array.



67

Array images were further analysed using QuantArray® Microarray Analysis Software (Version

3.0, Packard Bioscience). This software allowed for the superimposition of raw data images (a)

and (b) (Fig. 11) and calculated quantitative comparisons of signal intensities for each address

on corresponding array images queried with the two different target cDNA populations.

Fig. 11: Superimposition of array image results from the hybridisation of the Sub A (AI­
specific) library array to control treatment and to AI-exposure cDNA, using QuantArray®
Microarray Analysis Software (version 3.0, Packard Bioscience). Regions of green signal
indicate signal from control treatment cDNA hybridisation, regions of red signal indicate
signal from AI-exposure cDNA hybridisation, and yellow indicates regions of overlap
between the red and green signals.

Relative expression at each address on the array under the two different treatment conditions

was also represented in the form ofpie-charts (Fig. 12). Due to the faintness of the signal at

many locations on the array, the brightness filter for spot intensity brightness was set at 25.

Spots with intensities lower than this threshold value were not distinguishable from background

signal and thus not considered reliable data points. Expression ofa clone under control

conditions and AI stress conditions were represented by green and red fractions of the pie

respectively. Spots indicating a red fraction of greater than half were regarded as being

preferentially expressed under conditions ofAI stress and thus of interest to this study.
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Fig. 12: Pie representation of the relative expression of array clones under conditions of AI­
stress (red) and control treatments (green) using QuantArray@ Microarray Analysis Software
(version 3.0. Packard Bioscience). Smaller pie charts indicate data points below the brightness
threshold of 25; larger pie charts indicate data points above the brightness threshold of 25.

The data from figure 12 was also presented in the form ofa spreadsheet, using the QuantArray®

Microarray Analysis Software, whereby specific values for the relative expression ofdifferent

clones under the Ai challenge and control conditions could be obtained. Clones were grouped

into ten categories of 10% intervals according to their expression levels under conditions of Al

stress as a percentage of the total expression under both sets of conditions. For example, clones

grouped into the 10.1 - 20% category for expression under conditions ofAI stress would be

expected to have a corresponding expression level under control conditions of between 80.1 ­

90%. These categories were represented in the form ofa pie-chart (Fig. 13), which gave an

indication of how many specifically AI-induced genes were present in the subtracted AI­

exposed cDNA library. From this figure, 33% of the clones that were arrayed could be classified

as inducible under conditions ofAi stress while the remaining 67% were preferentially

expressed under control conditions.
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4.5.2 Confirmation of differential expression patterns: Northern hybridisation analysis

Clones that displayed preferential hybridisation with labelled cDNA generated from Al-stressed

root mRNA were selected for Northern hybridisation analysis. This served as a confirmation of

the differential expression of certain mRNA transcripts under Al treatment, as indicated by array

data. Eleven different clones were selected for Northern hybridisation analysis and used to

probe size-fractionated total RNA from control and Al stress treatments. However; no

conclusive results were obtained from these analyses, with no distinct hybridisation signal for

the RNA of either treatment (Fig. 14). It is likely that these clones represented very rare

transcripts in the mRNA population used to synthesise the labelled total cDNA populations,

thus accounting for the inability to obtain a detectable signal.

4.6 CLONE IDENTIFICATION

Twenty-five clones that displayed Al-induced expression patterns, as indicated by array data

(Figs 10 to 12), were selected for sequence analysis. The cDNA inserts of these clones were

excised from phage particles, converted into plasmid form and subjected to single run partial

sequencing. All of the fragments were sufficiently short due to the restriction digestion of

cDNA during library construction, allowing for complete sequencing of the clones. Sequences

were edited using Sequence Navigator 1.0.1 to remove primer and vector arm sequences and

these edited sequences submitted to the NCBI EST and non-redundant protein databases for

homology searches using the BLASTn and BLASTx algorithms respectively (Table 7).

A certain degree of redundancy existed in the SubA library, with only 16 different sequences

out of a possible total of 25 (36% redundancy). There were also seven ribosomal sequences

identified (60S rRNAs, L2, L12 and L34). The EST identities were assigned with greater

confidence than the non-redundant protein identities, with the expect (E) values for the former

all extremely low, even zero in several cases, and bit scores above 130. The non-redundant

protein identities were not as easily assigned, withmany sequences displaying relatively low bit

scores of less than 80, as well as relatively high E-values. In most instances, the protein

identities assigned were based on homologies with proteins of plant origin, including genetically

well-characterised species such as Arabidopsis thaliana, Solanum tuberosum, Oryza sativa, and

Zea mays. Two of the proteins were not of plant origin, namely the probable flagellar protein

(Trypanosoma cruzi), and the DV radiation resistance associated gene (Homo sapiens).

However, the homologies to these proteins were low, with bit scores of 37 and 32 re~pectively,
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and E-values of 0.034 and 1.0. These identities, therefore, could not be assigned to these clones

with any degree ofconfidence and were thus rejected as putative protein identities. It is likely

that these seq\lences encode very different proteins, the functions of which have yet to be

elucidated in plants.

Increasing
preferential

expression under
AI challenge
conditions

Equal expression under
conditions of AI

challenge and control
treatment

Increasing preferential
expression under
control treatment

conditions

Fig. 13: Proportion of clones preferentially expressed under conditions of AI challenge (250~M AI
in 1mM CaCI2 for 24 hours) and under control conditions (1mM CaCI2 for 24 hours). Values
allocated to inner pie-segments indicate the proportion each segment represents of combined
expression in both challenge and control treatments. Segments represent groupings of clones
falling within 10% intervals of percentage expression under AI challenge conditions.
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Fig. 14: Representative phosphor-image from Northern hybridisation analyses, using putative AI­
induced genic fragment to probe membrane bearing 10\1g total RNA isolated from AI-challenged
(+AI) (250\1M AI in 1mM CaCI2 for 24 hours in hydroponics) N12 root tips and 10\1g total RNA from
control (-AI) (1mM CaCI2 for 24 hours in hydroponics) root tips.

Another of the protein identities assigned was that of a root specific protein, isolated in rice

(Oryza sativa). Although this gene may not be relevant to the Al stress response of the plant, it

offers the potential for the isolation of root specific promoters for applications in root-targeted

gene expression in sugarcane. Consequently, this cDNA fragment was used to probe a

membrane bearing RNA isolated from different parts of the sugarcane plant, including the root

and the leaf, as well as from an undifferentiated cultured cell mass (callus). The root, leaf and

callus material were exposed to Al stress (250!!M for 24 hours) prior to RNA isolation to

determine the possible effect of Al stress on differential expression of this root specific

sequence. Also included in the assay were diamide stressed roots to determine the possible

effects of oxidative stress on differential expression. The RNA samples were prepared and

fractionated as previously described (section 3.5.2) and transferred to positively charged nylon

membrane (Hybond™ N+, Amersham) (RNA membrane courtesy of Dr Derek Watt). The

cDNA probe was radio-labelled and hybridised to the membrane as previously described

(section 3.5.2) and exposed to high resolution phosphor screens (Cyclone™ Storage Phosphor
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Screen [Packard]). After between 24 and 56 hours of exposure, the images on the phosphor

screens were captured and viewed (Fig. 15).

The radio-labelled cDNA probe bound to the RNA from all the root samples, with the exception

of the diamide-treated root sample. It is possible that this was the result of a degraded RNA

sample, as the ribosomal bands in the corresponding gel image were not as distinct, with some

smearing visible. The band corresponded to a size of approximately 600 bp, compared with the

260 bp size of the cDNA fragment, which was cleaved using restriction enzymes during the

process of library construction and thus not full length. This band was not visible at all in the

leaf and callus samples, indicating that this protein is indeed root specific. The band does not,

however, appear to be limited to the samples exposed to Al, which indicates that it is not

differentially expressed in response to the metal, as originally indicated by the array data.

a

+AI
Roots + AI ,-A--,
,-A--, + 0 Leaf CallJJs
N19 N17 N19 N19 N19
.~.c'.

Fig. 15: Differential expression of an N12-derived root specific cDNA fragment in sugarcane
cultivars N19 and N17. (a) Fractionated RNA samples, stained withethidium bromide (b)
Northern hybridisation analysis of root, leaf and callus RNA using root specific cDNA fragment
as probe. (+AI: AI stress treatment; +D: Diamide stress treatment; -: Control treatment).



Table 7: Putative identities and characteristics of selected sequences expressed in N12 root tips in response to challenge with 250llM AI for 24 hours in hydroponics.

Clone cDNA Algorithm used to assign putative identities and characteristics against NCBI databases (dbEST and non-redundant protein)

No. size BLASTn (dbEST) BLASTx (nr)
(bp) Putative EST identity Accession Bit E-value Putative protein identity Accession Bit E-value

No. score No. score

1A.A1 431 Pathogen-induced (Sorghum BE599149 666 0.0 Ublquitin conjugating enzyme (Zea mays) AF034946 246 2x10-b~

bic%r)
~.

3x10-645A.H1 442 Pathogen-induced (Sorghum BE599149 642 0.0 Ubiquitin conjugating enzyme (Zea mays) AF034946 243

bic%r)

1A.A2 274 Pathogen-infected compatible 1 BM330257 345 1x1Q-92 60S Ribosomal protein L2 (Lycopersicon P29766 56 4x10-11

(Sorghum bic%r) escu/enlum)

1AE6 283 Pathogen-infected compatible 1 BE597703 371 1x10-1OO 60S Ribosomal protein L2 (Lycopersicon P29766 97 3x1Q-20

(Sorghum bic%r) escu/enlum)

1A.A3 262 Rhizome 1 (Sorghum ha/epense) AI723943 442 1x10-122 60S Ribosomal protein L34 (Arabidopsis AC021046 66 7x10-11

Iha/iana)

1A.A4 260 Dark grown (Sorghum bic%r) BE362328 321 2x10-85 Root specific protein (extensin-Iike)* (Oryza S53012 121 2x10-27

saliva)

1A.A11 437 Ovary (Sorghum bic%r) BE917673 678 0.0 Peptidyl prolyl cis-Irans isomerase (Zea mays) P21569 253 2x1Q-b7

1A.A12 459 Ovary (Sorghum bicOJor) 8G412395 361 4x10-97 Ubiquinol cytochrome c reductase (So/anum P48502 75 2x10-13

/uberosum)

1A.D1 170 Ovary (Sorghum bic%r) 8G412682 134 3x1Q-29 Ubiquinol cytochrome c reductase (So/anum ... P48502 38 0.028

luberosum)

6A.E6 410 Ovary (Sorghum bic%r) 8G412395 357 6x1Q-96 Ubiquinolcytochrome c reductase (So/anum P48502 75 1x10-13

luberosum)

BA.D7 446 Ovary (Sorghum bic%r) 8<3412395 446 6x10-96 Ubiquinol cytochrome c reductase (So/anum P48502 75 2x10-13

tuberosum)

-.:J
UJ



1A.B11 340 Dark grown (Sorghum bic%r) BE360666 618 1x1O-175 Plasma membrane integral protein AF326487 224 1x10-58

(aquaporin)* (Zea mays)

1A.C1 386 Embryo (Sorghum bic%r) BG355725 664 0.0 Probable flagellar protein ( Trypanosoma cruzi) A61144 37 0.034

1A.C11 429 Rhizome 2 (Sorghum BG605767 341 3x10-91 Putative nitrilase-associated protein AC006836 70 3x10-12

propinquum) (Arabidopsis tha/iana)

1A.F9 306 Pathogen-infected compatible 1 BM327776 335 1x10-89 Putative nitrilase-associated protein Z6936 70 3x10-12

(Sorghum bic%r) (Arabidopsis thaliana)

1A.H10 306 Pathogen-infected compatible 1 BM327776 335- 1x10-89 Putative nitrilase-associated protein Z6936 70 3x10-12

(Sorghum bic%r) (Arabidopsis tha/iana)

1A.C12 282 Endosperm (Zea mays) AI833933 349 9x10-94 Elongation factor 1 alpha (Cicer arietinum) AJ004960 124 2x10-28

1A.D11 383 Juvenile leaf and shoot (Zea BI245224 531 1x10-148 -60S ribosomal protein L12 (Arabidopsis NP181256 531 1x10-148

mays) tha/iana)

1A.D12 353 Juvenile leaf and shoot (Zea B1273486 531 1x10-148 60S ribosomal protein L12 (Arabidopsis NP181256 182 4x10-46

mays) tha/iana)

4A.G1 383 Juvenile leaf and shoot (Zea BI245224 523 . 1x10-146 60S ribosomal protein L12 (Arabidopsis NP181256 178 7x10-45

mays) tha/iana)

1A.E9 262 Rhizome 1 (Sorghum ha/epense) AI723943 418 1x10-114 60S ribosomal protein L34 (Arabidopsis NP177120 69 1x10-11

tha/iana)

1A.G11 337 Floral-induced meristem 1 BF656109 613 1x10-173 Glyceraldehyde-3-phosphate dehydrogenase DEZMGC 194 1x10-49

(Sorghum propinquum) (Zeamays)

4A.G9 270 Immature panicle 1 (Sorghum 81099615 287 2x10-75 UV radiation resistance-associated gene A012958 32 1.0

bic%r) (Homo sapiens)

7A.H10 360 Mature stalk (Saccharum sp.) AI105619 613 1x10-173 . Tubulin beta chain (Hordeum vu/gare) P93176 224 2x10-58

3A.F10 110 Early embryo (Zea mays) AW331644 167 3x1O-39 Putative UDP-glucose dehydrogenase (Oryza AC079887 57 6x1O-8

sativa)

, Protein identities in parenthesis indicate identities assigned of slightly lower homology than, but closely related to, the main identity

--1
-l'-
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CHAPTERS

DISCUSSION

Considerable progress has been reported in the pursuit of understanding Al tolerance in other

crop species. Aluminium tolerance has been successfully enhanced in several crops, most

notably wheat (Carver et aI., 1993; Barinaga, 1997; Scott et aI., 2001), with such advances

encouraging similar research towards improving genetically less-characterised crop species such

as sugarcane (MarHinder, 2000). This study therefore aimed to analyse the expression of Al

stress-induced genes in a specific sugarcane cultivar, N12, indicated from field data as being of

a higher tolerance level than several of the other common commercial varieties currently

cultivated in South Africa.

5.1 PERFORMANCE OF HYDROPONICALLY-GROWN SUGARCANE UNDER

CONDITIONS OF ALUMINIUM STRESS

The primary requirement for such a study was the creation of a suitable system that enabled the

controlled exposure of plants to Al. Hydroponics was the system of choice, affording the

additional advantage of allowing easy access to the roots for growth and morphological

observations and for subsequent harvesting of root material for molecular analysis. There has

been little literature published outlining the use of hydroponics systems in sugarcane,

particularly in the study of Al exposure related phenomena. Hetherington and coworkers (1986)

described a rudimentary hydroponics set-up that was used to analyse Al tolerance ratings in

Australian sugarcane cultivars. However, the plants used were newly germinated and thus still

very dependent on their setts and sett roots for nutrient requirements, factors that may have

impacted the results obtained by that group. Those workers (Hetherington et aI., 1986) also

reported the absence of visible Al toxicity effects on the roots in their study, whereas brown

necrotic regions and mucilage exudation were clearly observed in the Al exposed plant roots in

this study. This discrepancy may also be attributed to the presumed use of sett roots by

Hetherington's research team, and the inclusion of the nutrient rich setts with the plants during

the exposure. These setts supply nutrients to the growing plant, thus lessening the reliance of the

plant on nutrients obtained via the Al challenged root system. There is also the potential of

interferance with the chemistry of Al ions in the rhizosphere and thus further off-setting the

negative effects of Al.
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The hydroponics system used in this study ensured that the plants were sufficiently mature to

possess well-developed plant roots and thus be independent of the sett. As this entailed the use

of approximately five-week old plants, a slightly modified method for supporting the plants

within the system was employed, with Neoprene® collars securing the plants in their positions in

the lid holes of each vessel. A similar hydroponics system was employed by Cramer and Titus

(2001) during their investigation of the effect of dissolved inorganic carbon on Al toxicity in

tomato plants. Seedlings were germinated and grown for 3 weeks in solid media prior to

transferral to hydroponics, with the hypocotyls of the tomato plants similarly wrapped in foam

rubber and inserted through the plastic lids of the nutrient vessels. Although there are some

limitations associated with this set-up, such a hydroponics system for sugarcane has the

potential for applications in other studies relating to root growth phenomena, such as the study

of the effects of flooding, nematode predation, or even ion deprivation.

Traditional hydroponics systems have been successfully used in other crops to study the effects

of Al on growth characteristics. Hamel and coworkers (1998) demonstrated that root growth

inhibition in hydroponically-grown wheat seedlings was proportional to the dosage of Al

supplied. The results obtained in that study showed that the inhibition of root growth in an Al

tolerant wheat cultivar reached a plateau at a maximum value of approximately 70% when

exposed to concentrations of 250l-tM Al. Sugarcane cultivar N12, however, displayed a notably

more tolerant response to the metal, with only approximately 36% inhibition at 250l-tM Al. This

was consistent with the literature, in which sugarcane is regarded as being more tolerant of Al

than crop species such as wheat and maize (Sumner and Meyer, 1971; Hetherington et al., 1986;

Nuss, 1987). However, since no Al tolerance-specific breeding programmes have been

undertaken in sugarcane as in these other crops, it is possible that this phenomenon has arisen

serendipitously as screening for other quality traits has, in some instances, been conducted on

acidic soils. Cultivar N12, in particular, is known to perform well on acidic soils, even reacting

negatively to efforts to decrease the pH through the application of lime (Turner et al., 1992). It

thus follows that the probability of such a cultivar also performing well under conditions of Al

stress is rather high, being adapted to cope with and indeed thrive in such a situation.

However, there does remain the possibility that this tolerance may be further enhanced, should a

specific mechanism or genetic sequence associated with this trait be isolated, thus increasing the

feasibility of Al tolerance-specific breeding and molecular engineering of cultivars.
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5.2. EVALUATION OF MOLECULAR STRATEGIES

The fact that this particular sugarcane cultivar appeared to perform well in response to Al at

dosage levels normally considered toxic to many other crop species, indicated the strong

potential for the existence of a genetic basis responsible for this phenomenon. This study

therefore further attempted to isolate any such genic fragments, with the view to the potential

isolation of Al tolerance-related gene sequences.

5.2.1. Isolation and manipulation of genetic material

A critical step towards the isolation of putatively Al tolerance-related genes involved the

isolation of intact genetic material from Al-exposed root apex cells. The isolation and

comparison of RNA populations obtained from challenged and unchallenged root cells allowed

for the identification of sequences differentially expressed under conditions of Al stress and thus

possibly involved in the tolerance response. Thus, without the successful isolation of

undegraded total RNA, this process would have become considerably less informative.

A paper by Espino andcoworkers (1998) reported that Al-exposed calli cells yielded lower

amounts of RNA than unexposed cells. This was attributed to the probable retardatory effect of

Al on DNA synthesis, thus resulting in diminished synthesis of RNA This could consequently

impede the isolation and discovery of a sequence supposedly expressed in response to the very

metal which is inhibiting its transcription. However, if such a sequence does confer the tolerant

phenotype,then it could p~ssiblybe expressed on a constitutive basis, thus allowing the DNA _

and RNA synthesis systems of the plant to be constantly prepared for and thus unaffected upon

exposure to Al. Furthermore, such a non~differentially expressed Sequence would not be readily

detectable by the comparison of Al-exposed and -unexposed root RNA isolates. However, there

have been published reports of Al inducing the expression of certain transcripts (Ezaki et a!.,

1995; Hamel et a!., 1998; Richards et a!., 1998), thus one cannot rule that the possibility of Al­

induced inhibition of DNA and RNA production excludes the potential for the isolation of Al­

induced transcripts. While the total RNA yields obtained in this study did not appear to decrease

noticeably following the exposure of roots to Al, the feasibility does remain that Al may have

affected the synthesis of DNA and thus certain RNA transcripts.

The conversion of this easily degradable RNA to more robust cDNA allowed for more rigorous

analysis of this genetic material via the preparation and screening of subtractive cDNA libraries.
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The populations of cDNA inserts within these libraries were enriched for genic fragments

whose expression was putatively induced or enhanced by the exposure of the root tips to AI in

the hydroponic challenge. The degree of this enrichment was tested via the implementation of

the reverse Northern hybridisation technology, whereby aliquots of each library insert were

individually spotted onto nylon membranes and hybridised to unsubtracted radio-labelled

cDNA. Enrichment, or subtraction efficiency, was not as high as was expected, as evidenced by

the high number of ubiquitously expressed ribosomal protein sequences present in the

subtracted libraries..It should be noted that these sequences were for ribosomal proteins, the

transcription and subsequent translation of such sequences being utterly necessary for the

production of ribosomal units and thus equally essential for the continued expression of mRNA

in the cell. This did not, therefore, indicate rRNA contamination, which would have suggested a

problem with the poly(At RNA isolation protocol. This would have lead to gross under­

representation of mRNA sequences and rendered the cDNA libraries largely uninformative.

However, the process of cDNA subtraction should have removed the majority of abundant

sequences as well as those common to both sets of treatments. This would presumably have

included ubiquitous transcripts such as those encoding the ribosomal proteins. From these

results, where ribosomal protein sequences constituted a considerable 28% (7 of the 25

sequenced clones), one must assume that either subtraction efficiency was not very high, or that

conditions of AI stress did, in fact, significantly enhance the expression of these ribosomal

sequences.

Patel and Sive (1996) recommended between five and 20 rounds of subtractive hybridisation for

a 20-fold enrichment of cDNA in each population. Sagerstr6m et al. (1997) conservatively

estimated that a 50- to lOO-fold enrichment is to be expected after only the first one or two

rounds of subtraction, with more complex and diverse cell populations requiring more rounds to

achieve this same level of enrichment. The fractionation profiles of the two cDNA populations

in this study appeared to indicate sufficient subtraction had occurred after six rounds of

hybridisation, with little observable changes in the profiles after four rounds. However,

unsuccessful subtractions are usually attributable to insufficient rounds of subtraction, thus it

strongly appears that six rounds of subtraction were not sufficient. Future studies should,

therefore, seek to employ further hybridisation steps to ensure more efficient removal of

abundant and common sequences to enhance sensitivity in the detection of rarer and

differentially expressed genes.
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5.2.2 Applicability of array technology to this study

Insufficient subtraction was further evidenced during the hybridisation of arrays representing

each library with unsubtracted radio-labelled cDNA populations. For example, Al treatment

total cDNA should have displayed considerably less hybridisation with the control treatment

array than with the Al treatment array, due to the removal of common sequences. However, this

clear distinction between the two membranes was not observed in this study, reinforcing that the

perception that the level of subtraction was perhaps not sufficient to remove the majority of

common and abundant sequences. A suggestion by SagerstrOni et al. (1997) was the substitution

of unsubtracted with subtracted radio-labelled cDNA populations for the analysis of arrays. Not

only has this been shown to increase sensitivity ten-fold in the detection of rare clones, but it

simultaneously allows for the distinguishing of differentially expressed from those that are

merely rare.

Perhaps a further adjustment to improve the likelihood for the detection of differentially

expressed sequences would be the inclusion of more clones on the array membrane to increase

the representativeness of the cDNA libraries. Increasing the number of clones randomly

sampled and screened from each library would, therefore, serve to increase the potential for the

isolation of putative Al-induced transcripts.

Although this study was not successful in obtaining conclusive results regarding the differential

expression of Al induced transcripts in sugarcane roots, array technology remains a very useful

and powerful technology in the search for genes associated with particular responses. With the

incorporation of the adjustments mentioned, such an Al stress related sequence may yet be

isolated in sugarcane using this approach.

5.2.3 Inconclusive Northern hybridisation analyses

Despite the apparent enhanced expression of some clones under conditions of Al stress, as

indicated by array data, such results were not confirmed when subjected to Northern

hybridisation analyses. This is of concern, as this confirmatory step is essential if a clone is to

be identified as truly differentially expressed. Several of these analyses were performed, with

several different clones used as probes, yet no_conclusive results were obtained. No specific

hybridisation signal was obtained with either the control or experimental RNA The quantity of

total RNA fractionated and transferred to each membrane was then increased from 10 to 15/-tg to
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allow for the possibility that probe sequences were low-level expressors in both treatments.

However, even under these conditions, conclusive hybridisation signal was still not obtained.

The Northern hybridisation performed using the root specific sequence as probe did yield a

result, confirming the root specificity of the sequence, but not the AI stress-induction of

expression. This particular membrane was prepared independently by another researcher (Dr

Derek Watt), using independently isolated RNA. Membranes prepared for this study using RNA

isolated from this study again did not show any hybridisation with this root-specific probe. It

thus appears that the problem lay with the quality of the membranes, and not with the probe or

hybridisation protocol. AIthough the fractionated RNA appeared undegraded, there remains the

possibility that some sequences may have undergone some degradation to the extent that

hybridisation was affected. Furthermore, the possibility that RNA was not permanently fixing to

the membranes was also considered, with the consequent removal of most RNA from the

membrane during prehybridisation. This would account for the lack of signal observed.

However, the phenomenon of RNA not adhering to the membranes, despite the use of alkaline

transfer medium during blotting, could not be readily explained, although preliminary analyses

by a colleague indicate that this may indeed be occurring.

One suggestion to combat the problems associated with the Northern hybridisation analyses has

been the implementation of virtual Northerns, one of the applications mentioned in the literature

accompanying the SMARTTM cDNAkit (CLONTECH). This technique involves the conversion

of easilydegradable total RNA to more stable cDNA, using the SMARTTM cDNA synthesis kit,

prior to fractionation, thus minimising the loss of transcripts during the preparation of the

membrane. This modification shall thus be strongly considered for future studies in this field.

5.3 EFFECT OF ALUMINIUM ON GENE EXPRESSION IN SUGARCANE ROOTS

There have been several successes reported with regards to the isolations of AI-induced gene

transcripts in other plant species, some of which have been putatively linked to the tolerant

phenotype. In wheat, sequences encoding genes for cysteine-rich proteins and metallothionein­

like metal-regulated proteins were isolated by differential screening of cDNA libraries

(Snowden and Gardner, 1993). Oxidative stress-related genes have been isolated in response to

AI exposure in Arabidopsis thaliana (Richards et aI., 1998). Some examples include peroxidase,

glutathione-s-transferase, superoxide dismutase, Bowman-Birk protease inhibitor and blue



81

copper-binding protein. An oxidoreductase enzyme, normally induced by pathogen treatment,

was also found to be induced under conditions of Al stress.

No gene sequence previously related to proposed mechanisms of AI tolerance in other crop

species were immediately apparent from the 25 clones sequenced and identified in this study.

These clones all appeared to be involved in general housekeeping functions, such as

mitochondrial respiration and the production cytoskeletal elements (see Table 8), with no stress­

related themes seeming to emerge. Many of the clone inserts were fairly small in size, ranging

from a mere llObp to 459bp, but this is largely attributable to the restriction digestion step in

the subtraction protocoL While this step ensured that preferential amplification of naturally

smaller transcripts did not occur, it did result in libraries containing shorter inserts, to which

identities are, unfortunately, more difficult to assign. While shorter sequences may have been

sufficient to assign a clone to a particular family of proteins, the specific function may yet

remain elusive. One suggestion to overcome this obstacle would be the probing of full-length

cDNA libraries with these shorter fragments. However, this is a rather time-consuming and

labour-intensive route, and was not considered due to the time constraints on this study.

Aluminium has been shown to have deleterious effects on the expression of certain cytoskeletal

regulatory genes (Cruz-Ortega et al., 1997). Blancaflor et a!. (1998) have also shown the

positive association of Al toxicity symptoms with changes in the organisation and stability of

cytoskeletal elements in maize. Tubulin is regarded as the major constituent of microtubules and

thus an integral part of the cell cytoskeletal structure. Another structurally-related protein

sequence identified was that of the extensin-like clone. Reported expression in response to

wounding in tomato stems has been shown by Showalter et a!. (1991). More recently, however,

the expression of extensin has been demonstrated to be up-regulated in Pisum sativum in

response to ozone stress, and indeed under conditions of NaCl stress and Al stress. Although the

expression of these sequences in sugarcane has not conclusively been shown to be Al-induced,

there remains the possibility that the gene expression products of these sequences may somehow

be involved in the response of this cultivar to Al exposure.

Also of interest is the reported dark-induction of several oxidative stress-related genes inA.

thaliana (Richards et al., 1998). Two of the clones isolated from sugarcane in this study

displayed EST homology to dark-grown Sorghum bicolor sequences, which may be linked to an

oxidative stress response. The protein idttntities assigned to these clones were the root specific
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or extensin-like protein and the PM integral protein, the former having been linked to oxidative

stress (Savenstrand et aI., 2000).

It has also been shown that expression of elongation factor 1 alpha in plants is influenced by

environmental factors, such as wounding (Morelli et aI., 1994) and low temperature (Berberich

et aI., 1995). Strains of yeast that contain mutant alleles of this sequence have displayed several

important phenotypes, including altered growth patterns~ resistance to antibiotics, and reduced

accuracy in translational events. Any changes in the activity of this gene product thus have the

potential to have a marked impact on the cell. There is thus the possibility that the enhanced

expression of this sequence under conditions of AI exposure may somehow be involved in the

response of the plant to the metal, whether it be the toxicity response or the activation of a

tolerance mechanism. However, conclusive evidence linking the enhanced expression of this

gene with AI has yet to be shown.

AIso worth noting is the reported perturbation of ubiquinol cytochrome c reductase activity in

rat livers- in response to AI-binding (Toninello et al., 2000). This has been proposed to favour

the production of reactive oxygen species, resulting in oxidative stress. While nothing

conclusive can be drawn regarding the interaction of AI with this enzyme in plant cells, it may

provide some clues as to apotential mechanism of or response to AI toxicity in sugarcane.

Several of the other protein identities putatively assigned have also been shown to have some

role in certain stress-response pathways in addition to primarily house-keeping functions. Some

ubiquitin conjugating enzymes have been shown to be more highly expressed in response to

heat-shock and certain heavy metal ions (Shyi-Kae et aI., 1999). It is possible that these

enzymes function within their known cellular role of targeting malformed proteins for

degradation, proteins possibly formed as a result of the applied stress (Clark et aI., 1997). The

induction of peptidyl prolyl cis-trans isomerases under conditions of environmental stress have

also been reported. In maize, regulation of a cyclophilin, a particular class of peptidyl prolyl cis­

trans isomerase, by salicylic acid has also been shown (Marivet et aI., 1995), a substance known

to be involved in one of the stress response pathways of plants (Durner et aI., 1997; Varet et aI.,

2002) Plasma membrane proteins and, more specifically, aquaporins, are known tobe very

much under the developmental and hormonal control of the plant, as well as strongly influenced

by environmental factors (Maurel, 1997). Due to their role in water transport across the PM,

these proteins are thus believed to play a possible role in the regulation of overall water balance

in plant cells under conditions of stress (Maurel, 1997). Glyceraldehyde-3-phosphate
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dehydrogenase and nitrilase protein families have also been shown to have enhanced expression

in response to anaerobiosis (Sivalinganna and Sachs, 1997) and bacterial infection (Pace and

Brenner, 2001) respectively. While there has been no evidence directly linking these genes to

AI-related phenomena, there does remain the possibility that these sequences may in some way

be involved in the general stress responses of sugarcane.

The root specific protein was also potentially interesting in that the response to AI exposure by a

plant is primarily a root specific phenomenon, and thus the isolation of such a protein may have

relevance to this response. The root specific protein with which significant homology to this

clone was obtained was isolated from rice, with a putative function yet to be assigned. The root

specificity of this sequence in sugarcane was confirmed through Northern hybridisation

analysis, and although this sequence does not appear to be AI-induced, it does indeed appear to

be root specific. Such a sequence could have practical applications in the area of genetic

modification, where the availability of potentially strong promoters to express useful traits in a

root specific manner would be very useful, particularly in the area of resistance to nematodes

and other root pathogens (De Pater and Schilperoort, 1992; Bower et al., 2001).

5.4 FUTURE WORK

The production of transgenic crop varieties has been regarded as an important contributor in the

pursuiHor increased agricultural production (De la Fuente-Martfnez and Herrera-Estrella, 1999)

and the manipulation of abiotic stress responses in plants has thus been the focus of many

research efforts. Tolerances to abiotic stresses are generally complex traits, due to the wide

range of morphological and physiological variables involved. These include plant structure,

osmotic adjustment, membrane and protein stability, antioxidant capacity, hormonal regulation

and root morphology and depth (Ribaut et ai., 2002). Tolerances to heat, cold and salinity have

been modified in a variety of species, such as A. thaliana and millet (Setaria italica L.) (AIia et

al., 1998; Sreenivasulu et al., 1999). Kasuga and co-workers (1999) succeeded in producing a

line of A. thaliana modified to contain the gene encoding transcription factor DREB1A,

responsible for the regulation of several stress tolerance genes. The resulting transgenics were

able to tolerate drought, salt and cold significantly better than wild-type individuals. This

suggests that many of the stress responses in plants are inducible by a wide range of stresses,

and are not specific to one particular set of conditions. The manipulation of one such pathway

could thus result in tolerance to many abiotic factors. Some of the genic fragments isolated in
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this study may also be related to a general stress response in sugarcane, but should first be

further investigated to confirm their involvement in the response of the plant to Al stress.

Nine different genes, previously reported to be expressed under conditions of Al stress in A.

thaliana, tobacco, yeast and wheat, were expressed in A. thaliana by Ezaki and co-workers

(2000). The resultant transgenic individuals displayed no apparent deleterious effects on

phenotypic expression due to the transgene, with four of the nine genes actually enhancing the

Al tolerance of the plant containing the corresponding transformation. Similarly, the expression

of a bacterial citrate synthase gene in tobacco and papaya (De la Fuente et al., 1997) has been

demonstrated to enhance tolerance to Al, due to the chelatory role of organic acids such as citric

acid in the immobilisation of Al in the rhizosphere.

The potential exists for the transformation of crop species with Al tolerance related genes with

the view towards improving crop performance on acidic soils. Although the production of

transgenic sugarcane plants is based on a seemingly simple concept, in practice there are many

biochemical and biological steps involved (Moore, 1999). Fortunately, several characteristics of

sugarcane have already been altered genetically, such as the inclusion of the bar gene for

herbicide resistance (Gallo-Meagher and Irvine, 1996). The technology for the transformation of

this crop is thus already in place, should an Al tolerance transformation programme be initiated.

There does remain the possibility that the trait of Al tolerance in sugarcane may be multigenic,

which would result in the trait being significantly more difficult to manipulate genetically.

While in certain wheat cultivars, for example, tolerance has been reported to be under the

control of a single gene (Delhaize et al., 1993a), in other cultivars it has been shown to be

multigenic (Aniol and Gustafson, 1990). Should such a finding reveal the trait to be multigenic

in sugarcane, the genic sequences could still be useful with regards to MAS programmes and

early selection of new tolerant cultivars. Thus the successful isolation of an Al stress induced

gene sequence is but the first small step towards the production of Al tolerant sugarcane.
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Table 8: Possible roles of clones putatively identified through sequence homology with the NCBI non-redundant
protein database entries (BLASTx), expressed in N12 roots in response to AI-induced stress.
Protein identity Acc. no. Possible role in the ceil Reference

Toninello et aI., 2000; De

LonlaY,et aI., 2001

Marivet et aI., 1995;

Kurek et aI., 1999isomerase

Ubiquinol cytochrome c P48502

reductase

Peptidyl prolyl cis-trans P12569

Ubiquitin conjugating AF034946 Provides cellular mechanism for the targeting of Clark et aI., 1997; Shyi-

enzyme short-lived and malformed proteins for Kae et al., 1999

degradation

Potential molecular chaperone under conditions

of environmental stress, mediating and

maintaining correct 3-D structures of proteins

Forms part of Complex III in the mitochondrial

respiratory chain, which catalyses electron

transfer from succinate and nicotinamide

Bartel and Fink, 1994;

Pace and Brenner, 2001

Maurel, 1997; Maeshima,

2001

Durso and Cyr, 1994;

Morelli et aI., 1994;

Dinman and Kinzy, 1997;

Hashimoto et aI., 1999

Sivalinganna et al., 1997

Showalter et aI., 1991;

Arsenijevic-Maksimovic

et aI., 1995; Baumberger

etal.,2001

Fuchs et a( 1993

Tenhaken and Thulke,

adenine dinucleotide-linked dehydrogenases to

cytochrome c

Structural protein of the cell wall, involved in cell

expansion and required for correct development

of root hairs

Major constituent of microtubules, involved in

cellular structure

Facilitates water transport across the PM,

ppossibly involved in the regulation of overall

plant water balance

Family of thiol enzymes, responsible for the

conversion of nitriles to carboxylic acid e.g.

indole-3-acetonitrile(IAN) to indole-3-acetic acid

(IAA, also known as auxin)

Catalyses polypeptide chain elongation, also

known to have associations with microtubules

and the cytoskeleton

AF326487

P93176

S53012

ACC0068

36

AJ004960

DEZMGC Key enzyme catalysing the oxidation and

subsequent phosphorylation of aldehydes to

acyl phosphates

AC079887 Catalyses the irreversible oxidation of UDP-

glucose to glucoronic acid (precursor to several 1996

hemicellulose cell wall components)

Plasma membrane

integral protein

(aquaporin)*

Putative nitrilase­

associated protein

Root specific protein

(extensin-like)*

Tubulin ~ chain

Glyceraldehyde-3­

phosphate

dehydrogenase

Putative UDP-glucose

dehydrogenase

,Elongation factor 10

* identities in parenthesis indicate identities assigned during BLASTx searches of slightly lower homology
than, but closely related to, the main identity
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5.5 CONCLUSIONS

Of the more than 20 different genes that have previously been identified as inducible by Al

stress, most seem to be general stress-related genes, inducible by a wide range of different

conditions. These include wounding, pathogen infection and oxidative stress, categories into

which many of the clones identified in this study could easily be classified. However, due to the

inability to obtain conclusive expression analyses regarding these clones, no definite

conclusions can be drawn in linking them to the Al tolerant phenotype.

Although nothing conclusive can be determined from the results obtained in terms of Al-related

gene expression, this study has successfully initiated the use of hydroponics systems in the

analysis of root-related phenomenon in sugarcane. Many of the problems facing production in

the South Mrican.:sugar industry are effected at root-level, such as nematode predation, mineral

deficiencies, drought and, of course, Al toxicity. The heterogenous nature of most soils, coupled

with the difficulty in isolating the effects of single factors is a major obstacle in the study of

many of these issues, obstacles that can now be overcome via the use of these hydroponics

systems.
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