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Abstract

Tuberculosis (TB) remains a global challenge, with approximately 1,5 million deaths annually.
Addressing deficits in our understanding of disease pathology and treatment is needed for the
development of new treatment modalities. Despite much effort, prevalence of this
disease remains high in resource limited regions, where research capacity is not sufficient to
successfully combat the endemic. Research in developed countries has generally been
constrained to animal models due lack of access to clinical samples from the site of TB
disease, the human lung. Although these animal models have their utility, it is essential that
findings from these systems be tested and validated in human tissue. In this thesis, I leveraged
a relatively new technology called Seq-well, which is highly portable and low-tech single cell
ribonucleic acid sequencing (scRNAseq) platform and access to TB infected lung
tissue obtained from lung resections, to generate a single cell atlas of TB affected lung tissue.
This involved processing the human tissue immediately post-surgery and loading
unprocessed/neat cells or FACS sorted cells (tissue resident t cells) onto a microarray that
allowed capture and subsequent sequencing of the cell transcriptomes. In the first part of the
thesis, I identified and profiled cellular subsets from TB infected tissue, focussing on a subset
of FAP+PDPN + fibroblasts associated with the organisation of tertiary lymphoid organs. I
also demonstrated that this dataset can be useful in evaluating current and future TB
biomarkers, by superimposing signatures from the literature onto the cellular subsets and
localizing them to different parenchymal, stromal and immune cell types. I also profiled tissue
resident CD4 T cells from the same lung tissue, identifying canonical marker genes (ITGAI,
PRF1) in one specific cluster, together with naive (CCR7, SELL), regulatory (RORA) and
activated/myeloid-like T cells (LYZ, S10049) in separate clusters. Finally, I demonstrated the
applicability of this dataset in research involving other pulmonary diseases, by identifying
ACE2+ TMPRSS2+ type 2 pneumocytes, a target of the SARS-CoV-2. Taken together, these
findings provide new insights into the immunopathology of TB in the human lung together
with the impact of HIV on specific immune subsets. It serves as a resource for cross validation
of lung immune signatures generated in experimental infections of both mice and non-human

primates, which is beneficial for scientists lacking access to the technology and/or tissue.



Iqoqa

Isifo sofuba (i-TB) silokhu siyinselelo emhlabeni jikelele, ngokufa okuhlobene naso okucishe
kufike esigidini esi-1.5 njalo ngonyaka. Ukubhekana nokushoda ekuqondeni kwethu
umumosakhiwo wesifo bese kuncishiswa ukufa. Ngaphandle kwemizamo emikhulu,
ukudlanga kwalesi sifo kusalokhu kuphezulu ezifundeni ezintula imithombokusiza, lapho
umthamokwenza wocwaningo unqindekile. Ucwaningo emazweni asethuthukile, ngakolunye
uhlangothi, belwenzeka kuphela kumamodeli asebenzisa izilwane ngenxa yokuntuleka
kokufinyelela amasampuleni okwelapha engxenyeni okuqubuke kuyo isifo sofuba,
okuyiphaphu lomuntu. Nakuba kunamamodeli ezilwane anomsebenzi, kubalulekile ukuba
okutholakele kulezo zinhlelo kuyohlolwa bese kuqinisekiswa ngesigqa somuntu ukugqinisekisa
ubunjalo. Kule thesisi, ngiveze ubuchwepheshe obusha obungenayo obubizwa nge-Seq-well,
iseli eyodwa e-low-tech ephathekayo ene-ribonucleic acid sequencing (scRNASeq)
okuyindawo kanye nokufinyelela esicutshini sephaphu esitheleleke ngesifo sofuba esitholakale
ekuhlukanisweni kabusha kwamaphaphu okukhonjwe ngokokwelapha, ukwakha iseli eyodwa
yesicutshana sephaphu elitheleleke ngesifo sofuba.

Lokhu kwafaka ukusebenzakuhlola isicubu somuntu ngokushesha emva kokuhlinza nokufaka
amaseli ahlanzekile angasetshenziwe noma amaseli ahleliwe angama-FACS (ama-T cells
asesicutshini) ohlelweni lolibofuzo olwavumela wukufaka ohlwini nokulandelanisa
okulandelayo womumofuzo oqondene nezicubu. Engxenyeni yokuqala yethesisi, amaqoqwana
ahlonziwe nafakwe kwiphrofayli esicubini esitheleleke ngesifo sofuba kugxilwe eqoqweni le
FAP+PDPN + amafayibhroplasti ahlobene nokuhlelwa kwezingxenye zomzimba ezinkulu
zamalimfoyidi kanye nemichilwana yamafayibhrodi kanye noma igranyuloma yesifo sofuba.
Ngivezile ukuthi lamadathasethi angaba nomsebenzi omkhulu ekuhlaziyeni amabhayomakha
amanje nawasesikhathini esizayo esifo sofuba, ngokufaka izinkombabunjalo emaqoqweni
amancane nokuwabeka ezinhlotsheni ezehlukene zamaseli angamapharenikhayma
nangamastroma.

Ngiphinde ngachaza esizindeni sezicutshana ze-CD4 T esicutshini sephaphu elifanayo
okuchaza ulibofuzo olukala amakhenoni (i-/ITGA1, PRFI) eqoqweni elilodwa eliqondile,
kanye namaseli angachazi lutho (CCR7, SELL), alawulayo (RORA) nama-T cell aqaliswe
ukusebenza/efana ne-myeloid (LYZ, S10049) emaqoqweni aseceleni. Okokugcina, ngiveze
ukungena kwedathasethi ocwaningweni olufaka izifo zamaphaphu nokuphefumula
ngokuhlonza i- ACE2+ TMPRSS2+ type 2 wama-pneumocytes, okuhlosiwe kwe-SARS-CoV-
2. Uma kuhlanganisiwe, lokhu okutholakele kuletha imibono emisha yomumobugciwane
bokutheleleka ngesifo sofuba ephashini lomuntu, umthelela we-HIV kokutholakele
emumwenikuphila kwephaphu ekuthelelekeni okuyilinga kwakho kokubili amagundane kanye
nalokho okungebona abantu.

Xi



Chapter 1: Single cell sequencing technology and its

application in Tuberculosis (TB) research.

1.1 Introduction

Mycobacterium tuberculosis(Mtb), an ancient pathogen discovered in 1882, is the causative
agent of the deadly human tuberculosis (TB) disease which primarily infects lung tissue !. This
disease is the leading cause of death in the world by a single infectious agent, leading to 1.4
million deaths in 2019, with 251000 amongst people living with HIV/AIDS 2. Untreated
HIV/AIDS infection is a high risk factor for developing/contracting TB 3 . There is a strong
correlation between TB incidence and the quality of the health delivery system as evidenced
by 10 new cases per 100000 population in high income nations compared to 150 to 400 cases
in resource constrained nations such as South Africa. However, the reduction in global
mortality rates by 42% between 2008 to 2018 is encouraging 2. Estimates suggest that 25% of
the global population is infected with TB, with most individuals showing no clinical symptoms
and only a tenth of these developing active disease at some point in their lifetime 4. However,
the human immune correlates of TB control or progression are not known, thus more basic
science research is required to understand what factors of the immune system are uniquely

reflective of active TB disease .

Correlates of protection are critical in the development of TB vaccines and diagnostics markers.
Antibody levels and the activity of cytotoxic T cells have been proposed as effective surrogates
for activity (even though they are not protective) against HIV ©. These correlates have not been
characterized in the TB vaccine M. bovis bacille Calmette—Guérin (BCG) induced response,

due to inconsistent protective efficacies 7. A quantitative review of a BCG trial showed



efficacy levels of 14% in a 10-year period #, whilst another study on native American Indian
and Alaskan populations reported efficacy of 82% in a 20 year period °. The large variance in
the responses suggests that more studies centered around the host immune response are

necessary amongst different population groups.

Our understanding of the immune response to TB is largely derived from animal models (mice,
guinea pigs, rabbits and zebrafish) !°. These different models have their respective strengths
and weaknesses (Tablel), continue to contribute immensely towards our understanding of a
TB disease. Studies have shown that non-human primates (NHP) present with very similar TB
immunopathology with humans, specifically in terms of the variety of granulomas and the
infection spectrum (chronic and active) !'. However, NHP require special units for husbandry
within a biosafety level 3 (BSL3) facility, skilled personnel, large experimental numbers as
they are essentially outbred, significantly increasing operational costs 2. Other studies have
focused on measurement of immune responses in human serum (from the blood) and
bronchoalveolar lavage fluid (BALF) of TB infected individuals. It is assumed that both
samples capture some of the temporal and spatial dynamics occurring within diseased lung
tissue. Both these samples present with limitations as serum captures the overall systemic
response, which is not necessarily reflective TB related pulmonary deterioration '*, whilst
BALF represents the airway response as opposed to the parenchyma were the hallmarks of TB

disease are observed '°.



Table 1: Animal models in TB research

Animal

Zebrafish

Mouse

Guinea Pig

Rabbit

Non-Human
Primates

Strain/Dose

M marimum

M tuberculosis

H37Rv/10%-107
CFU

M tuberculosis
H37Rv/103-105
CFU
M tuberculosis
H37Rv 108 CFU

M tuberculosis

10%-5*10°CFU

Susceptibility
to TB

none

low

high

low, more prone to
M. bovis

high

Necrotic

Pulmonary Lesions

Caseation Cavitation
no no
yes variable
yes yes
yes yes

Pros

1 Require less space and
short experimental duration

2 Transluscent allowing
visualization

1 Well studied model and
abundant immune reagents
2 Small size_ low cost and
relatively easy to maintain

3 Good for studying the
mechanistic consequence of
genes using knockout mice

1 Easily infected with TB

2 Granuloma like those in
humans

3 Good response to TB
vaccines and drugs

1 Granuloma very similar to
those observed in humans

2 Allows for study of other
types of TB disease

1 Mimic clinical
manifestations of human TB
2 TB lesions are formed in
the lung and other organs

3 Both pulmonary and extra-

pulmonary TB
4 Granuloma similar to those

in humans in terms of
structure and cellular

composition

Cons

1 Cannot be infected by

M tuberculosis.

2 Limited immune reagents
constrains mechanistic
studies

1 No clinical manifestations
2 Granulomans lack giant
Langerhans and Epithelioid
cells

3 Lack disseminated disease
4 Variation in infection
outcome amongst individual
mice

1 Limited immune reagents
restrict research

2 No clinical manifestations
3 Does not develop latent
infection

1 No obvious clinical
manifestations

2 Limited immune reagents
3 Limited susceptibility to TB
infection

1 Limited availability of
monkeys and immune
reagents

2 Expensive to house in
BSL3 facilities

Application

1 Latent infection model

2 Useful for drug efficacy
assays and observing lesion
formation

1 Good model for vaccines
and mechanisms of TB
responses

2 Characterization of immune
response to TB infection

1 Vaccine safety and efficacy
studies
2 Drug evaluations

1 Transmission studies
2 Model for cavitary, spinal,
cutaneous and meningeal TB

1 Drug and vaccine
effectiveness

2 Immune response to TB and
the associated pathological
profile

Reference

14

15

16

17

18



Other studies have used healthy human lung explants to set up an ex vivo infection model, in
an attempt to delineate the initial response to infection °. The tissue was obtained from
participants undergoing surgery for non-pulmonary infections and was subsequently infected
with a high concentration of M.tuberculosis (5 million colony forming units). Gene expression
profiles generated using microarray and bulk rna sequencing were used to assess the response
of the whole lung and fluorescent activated cell sorter (FACS) sorted cell types. These included
alveolar macrophages, epithelial cells, endothelial cells, innate lymphoid cells (ILCs), y6 T
cells and mucosal associated invariant T (MAIT) cells. These cell types were selected based
on their ability to display a rapid, untrained (innate) response to infection. The myeloid cells
showed a very strong inflammatory response marked with expression of IL1-f and IL23.
Epithelial and endothelial cells showed the same with a significantly reduced magnitued. These
inflammatory responses have been reported to also modulate ILCs, for example IL1-f and IL23
induce ILC3s 2° ,whereas TSLP and IL33 activate ILC2s 2!'. Even though the model offers a
unique way of studying the host response, limitations such the high infectious dose (likely not
reflective of an infection event) minimize any extrapolation . The lack of blood circulation
meant there was compromised migration of immune cells to the site of infection together with
the disruption of tissue homeostasis. It is plausible that better insights into the immune response
to TB disease will be generated by exploratory studies of lung infected tissue using tools that

provide the most comprehensive gene expression profiles of the cells.

Single cell sequencing has the ability to profile unitary genomes 22, transcriptomes 2* or to a
lesser extent the epigenome 2* or proteomes 2. These technologies generate large amounts of
data which provide analytical power that is unprecedented in the field of biology . Single cell
ribonucleic acid sequencing (scRNAseq), is most widely used and allows profiling of mRNA

transcriptome) from tissue or in-vitro experiments 2. Several scRNAseq platforms have been
p p qp



developed, which differ in the number of cells and number of genes that are recovered per run.
For example, Smartseq2, a full length transcriptome sequencing approach, makes use of a high
fidelity reverse transcriptase (yielding 7000 genes per cell) 2. However, it has limited cell
capacity (96 or 384 well plates in a single run 2°). The protocol is laborious, leading to high
technical variability in the experimental outcomes as a result of pipetting errors in the
sequencing library work up (robots are available but they are expensive). On the other hand,
highly parallel approaches such as 10X (Chromium), that incorporate universal molecular
identifiers for transcript enumeration can profile 100-100000 cells at a depth of 3000 genes
per cell for primary cells *°. Such methods often have less manual steps in the protocol and
shorter turnaround times 2. In practice, Smartseq2 is mostly used to characterize rare cell types
due to the higher gene recovery 3!, whilst massively parallel methods are applied in tissue
phenotyping studies where the large number of cells are required to uncover low frequency,
novel cell types *2. Thus, scRNAseq represents a unique opportunity for accelerated discoveries
in our understanding of the immune response to TB infection, improving our management of

TB disease. In this review, we discuss aspects of the immune response to TB infection that will

benefit from application of scRNAseq as a complement to existing approaches.

1.2 TB infected lung cellular diversity

Tuberculosis is generally believed to present as primary and post primary disease *. Primary
TB is the disease without any TB history shortly after exposure to the Mtb pathogen, leading
to a single lesion typically in the highly aerated areas of the lung such as the lower section of
the upper lobe 3. Post primary TB arises in individuals with previous TB history possibly due
to reactivation (following an immune compromising event) of dormant bacteria. It largely
occurs in the lung apices, but has also been observed in the hilum and hilar lymph nodes 3*. Tt

either leads to necrotic cavitation when the lesion is located close to an airway or a fibrotic



scarring *>. Amongst adults, post primary TB is suspected to be the most common, often with
caseating granuloma , tissue cavitation and fibrosis at varying degrees 3.

Lung fibrosis observed in post primary TB is a consequence of anti-inflammatory responses
that are important for prevention of host induced tissue damage *¢. Growth factors such as
insulin-like growth factor-1 (IGF1), platelet derived growth factor (PDGF) and fibroblast
growth factor-2 (FGF2) are implicated in driving fibrosis ¢, together with migration of
fibroblast like cells to the lung 3738, A highly activated subset of fibroblasts, known as
myofibroblasts, is thought to drive the fibrotic phenotype by increasing extra cellular matrix
deposition and shows aberrant contractile lead to dysfunctional wound healing 3°.
Myofibroblast have been reported to be enriched by the expression of transforming growth
factor beta (TGFB), tenascin-C (TNC), connective tissue growth factor (CTGF) and phosphate
and tensin deleted on chromosome homolog 10 (PTEN) *74%4!. Cytokines associated with type
2 immune response (IL-4,IL-5,IL-9 and IL-13) #* and vascularization (angiogenesis) 4*, have
been associated with a chronic fibroproliferative phenotype. It is important that we explore this
phenotype in TB, considering reports of fibrosis occurring in older resolving TB granuloma

and prominently occuring following anti-TB therapy #+%°.

Single cell RNA sequencing of TB infected lung tissue has the potential to provide unique
insights into the different cell types (immune, stromal, epithelial and endothelial) associated
with fibrosis. It can potentially highlight which cell types are enriched or lost as consequence
of disease in a highly, bias-independent manner. Such ability was elegantly illustrated in a
study with 8 idiopathic pulmonary fibrosis (IPF) patients and 8 lung transplant donors using
scRNAseq uncovered a previously unknown populations of macrophages, airway stem and

senescent cells that were enriched in the IPF lungs 6. These observations were confirmed using



complementary technologies (bulk RNA-sequencing and immunohistochemistry), showing its

unique ability to generate pathology specific insights which can guide mechanistic studies.

It was reported that HIV and TB positive individuals with suppressed CD4 cell counts had
chest x-rays very divergent from TB only individuals, with attenuated tissue destruction 47,
This observation coincided with diminished levels of extracellular matrix (ECM) degradation
enzymes known as matrix metalloproteinases (MMPs), in coinfected participants 8 . However,
inconsistencies in the cytokine profile of individuals within and across studies complicates the
interpretation of the these observations #°. A study by Walker and colleagues compared the
protein levels in plasma and sputum levels of MMPs of TB , TB/HIV and symptomatic
respiratory cases °°. TB infected participants had higher levels of MMP-1 and MMP-3
compared to the TB/HIV infected group, with lower frequency of cavities and inflammation.
This observation suggests that TB/HIV individuals have reduced pulmonary damage, but it
should be noted that the same study also reported high levels of ECM turnover product called
Procollagen III N-terminal propeptide (PIIINP) in TB/HIV group. The authors speculated that
this observation was a consequence of tissue damage in other organs due to the development
of disseminated TB disease. Understanding the cellular diversity of lung tissue from TB in
comparison to TB/HIV can provide insights into the mechanisms that drive tissue degradation.
This has the potential to uncover cells which produce MMPs and their inhibitors; tissue
inhibitors of metalloproteinases (TIMPs), together with genes that modulate tissue degradation
such as growth factors, cytokines and hormones °!. Single cell sequencing data lends itself to
high throughput network interactions of each cell, thus it has the potential to also uncover

cellular interactions that initiate and maintain this pathology 2.



Granulomas are the hallmark of the pulmonary response to TB disease >. It is believed that
upon infection with Mycobacterium tuberculosis (Mtb), alveolar macrophages engulf the
bacteria. This leads to production of chemokines by the macrophage which attracts other
inflammatory cells such as neutrophils, NK cells, monocyte derived macrophages and yd T
cells >3, Dendritic cells then migrate to the lymph nodes where they prime T cells to
differentiate into thl (helper t cells) and th17 (cytotoxic t cells) >7.These primed t cells are
important for further activation of macrophages and their migration to the site of infection
together with B cells. This creates a lymphocyte cuff surrounding the bacteria harboring
macrophages °%.The histological presentation of granulomas varies from poorly structured
containment units that are highly transmissive to protective often calcified units that suppress
bacterial growth and transmission *. Studies in NHPs have shown that TB lesions within the
same animal are heterogeneous, both in terms of histology and bacterial load, for both active
and latently infected animals ®. A study by Subbian and colleagues characterized the gene
expression profile from a wide variety of lesions in individuals undergoing lobectomy due to
TB related complications 3. The authors reported host immune responses associated with
inflammation (CXCR4, CCL3, CXCLS), tissue degradation (MMPI, MMP9) and
downregulation of transcriptional regulators such as (FOXCI, ERG, ATNI) in lesions isolated
from active TB participants. However, the low sample number and limitations inherent to
microarray technology impeded firm conclusions, but that study represents a unique window
into the granuloma gene expression profile 6. Applying scRNAseq in the characterization of
the transcriptional profiles of TB lesions at different stages has the potential to deconstruct host
mechanisms that determine granuloma fate. In combination with histology, bacterial culture
(colony forming units or chromosomal equivalents) and flow cytometry, this will improve our

understanding of lesion biology. The ability to associate immune profiles at a cell level with



bacterial persistence will greatly improve our insight into latent TB, a major reservoir of the

disease “.

1.3 TB biomarker discovery and validation

Biomarkers are a necessary component of the successful development of new TB therapeutics
and vaccines. Best performing biomarkers can detect either the pathogen together with its
products (DNA, genes or proteins) or changes in the human immune system in response to
pathology. The major sight of disease is the lung, thus pathogen directed tests use sputum,
which has variable sensitivity, which is significantly lower in HIV positive individuals. To
improve on this sensitivity, measured of host derived molecules that reflect disease has been
pursued from blood and to a lesser extent urine. These tests often has a large number of
molecules associated with the disease but variable accuracy and heterogenous immune
response to the disease prevents such tests from being incorporated into the TB detection
clinical algorithm.

For most individuals with TB, clinical detection occurs only after they present with significant
symptoms. It has been suggested that the time from initial symptoms to the clinical diagnosis
can be as much as 6 months due to inefficiencies of the currently available tools and health
care delivery systems 2. During this delay, the underlying biosignature that is the consequence
or the driver of pathology is likely present at either the site of disease or the circulatory system
83, Tt has been a focus of many researchers to discover this TB biosignature, particular one that
can capture the full spectrum of disease from the point of infection, subclinical (latent) and

active TB disease .

An elegant approach was reported by Singhania and colleagues, in which they developed a 20
gene signature that distinguished active from latent TB by utilizing bulk RNA sequencing
of peripheral blood mononuclear cells (PBMC) %°. They made use of weighted gene co-
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expression network analysis %, which produces related gene modules that allow insights into
functional aspects of the biosignature. However, the signature was enriched with interferon
inducible genes, which are also observed in viral infections such as influenza 7. A chronic
interferon response was associated with a high bacillary load and advanced pathology in animal
models . The overabundance of the interferon genes across different studies is likely a result
of pathogen specific host responses and shared innate responses to other stimuli. In the same
study, the biosignature was measured longitudinally in TB contacts tested using the interferon
gamma release assay (IGRA). The contacts consisted of 31 (15 IGRA- and 16 IGRA+) healthy
individuals, 9 contacts who developed culture positive disease and 5 individuals who were
outliers at baseline (4 IGRA+ and 1 IGRA-). The signature was enriched in IGRA+ individuals
in the different groups with significant variation within the groups. Two thirds of the 9
individuals with culture confirmed TB had very high baseline risk scores which amplified
further after diagnosis, whereas the remaining 3 participants had a low-risk score from baseline
to the time of TB culture confirmation. These household contacts comprised of individuals that
did not express the signature, individuals with low levels of the signature and participants who

expressed the signature at baseline and beyond the 4 months observation period.

Application of scRNAseq in the discovery of TB biomarkers has the potential to significantly
refine our search for the biosignature as we can capture enrichment or depletion of cell types
in a bias free manner. We speculate that characterizing disease specific tissue at single cell
resolution provides us a good chance of uncovering subtle transcriptomic aberrations that can
form the basis of a TB marker. This is important for probing the molecular mechanisms that
lead to overabundance of the biosignature. Histo-cytometric analysis localizes particular
biomarkers without compromising tissue architecture . This is critical when investigating

markers whose subcellular location provide information about activation, such as the
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transcription factor nuclear factor B (NF-kf). This transcription factor only becomes active

when it is translocated to nucleus after its inhibitor, Ixp is degraded °.

In the clinical setting, where individuals with TB associated complications are undergoing lung
resections, lung tissue as well as PBMC can be used to explore signatures observed from
different studies. Cai and colleagues performed scRNAseq on PBMCs from healthy, latently
infected and active TB cases on a droplet-based platform 10x Genomics "°. The data from the
study showed that active TB corresponds to loss of NK cells, which are restored with treatment.
This observation was verified using flow cytometry and thus serves as a platform on which
studies with mechanistic objectives can be pursued. NK populations across the spectrum of TB
disease should be investigated for disease specific perturbations that can form the basis of a
biosignature. NK cells have memory markers from previous antigen exposure, thus they
mediated both innate and adaptive immune responses ’!. It was interesting to note that in the
same study, all the participant groups showed varying levels of a subset of myeloid cells with
stromal cell markers (COLIAI, COL1A2), associated fibrocytes or fibroblasts in the lung 7.
Fibrocytes are derived from the bone marrow and serve as a progenitor for mesenchymal cells
in lung disorders such as fibrosis 3. They can differentiate into fibroblasts or myofibroblasts
once they reach the tissue. It has been suggested that they drive the formation of the fibrotic
foci, interstitial pneumonia reported in idiopathic pulmonary fibrosis (IPF) 7°. A study
comparing IPF and control lungs using scRNAseq revealed that IPF lungs are enriched for
myofibroblasts 4. Due to the association of TB and fibrotic pulmonary impairment, it can be
postulated that characterization of fibrocytes and myofibroblasts genes has the potential to

provide a TB-associated fibrosis tissue biomarker.
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1.4 Phenotyping tissue resident CD4 T cells

75 with variable

Bacille Calmette-Guérin (BCG), is the only licensed TB vaccine
effectiveness across studies. It is effective in preventing TB meningitis in infants 7®. TB specific
immune responses of blood cells are used as markers of efficacy, even though these immune
responses are not protective 7’. A study compared the efficacy of oral and intravenous BCG
vaccination by measuring the TB specific responses in mice 8. The animals were challenged
with aerosolized tuberculosis and the accumulation of CD8 T cells in infected tissue correlated
with protection. The ability of CD4 T cells to produce interferon gamma was correlated to
bacterial load. Another study tracked the blood intracellular cytokine profile of infants at the
time of birth and 24 months after BCG vaccination 7. Comparison of infants who developed
culture confirmed TB and those with TB household contacts (with no disease) showed no
differences in the frequencies TB specific CD4 t cells, CDS t cells and v3 t cells. Such studies
support the fact that the frequency and cytokine profile of circulatory t cells does not correlate
to protection. These observations have shifted attention to the study of immune responses at
the primary infection site (lung), where t cells have been shown to be critical for prevention of
both primary and secondary TB 898!, Different subsets play a role in maintenance of long term
immunity by recall of protective responses °. The full extent to which these subsets participate
in controlling pathogens is yet to be fully explored. When T cells are exposed to an antigen,
they proliferate and differentiate into central memory (Tcm), effector memory (Tem) and tissue
resident memory (Trm) subsets 82. For the immune system to be effectively primed, a memory
phenotype should persist where the infection occurred and this can be achieved by the Trm
subpopulation 3. Lung tissue resident memory cells are specifically characterized by the
expression of CD69 (which interacts with SIPR1 to prevent cells joining circulation) 3 and
CD103 (which associates with integrin anchoring them on the epithelial barrier) %,

CD49a(adhesion) , CXCR6 (tissue localization), CD101(proliferation and activation), PD-
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1(immune checkpoint) 77. There are exceptions to these categorisations as highly activated

86

CD69+ T cells in the circulatory system °° and CD69- tissue resident T cells have been

demonstrated ¥7. Other researchers have obserbed that Trm populations might not permanent

88

in the lung The phenotype and activity of Trm 1is highly dependent on the

microenvironment,thus more research into lung Trm is necessary in the context of TB vaccines
89

, considering that HIV associated depletion of CD4 T cells is associated with high incidences

of TB disease %°.

Comprehensive studies on the transcriptional and functional capacities of Trm’s have revealed
a distinct phenotype, supporting the hypothesis that there are developmental/maintenance
programs required for the persistence of this population #2. In a study on human lung resections,
Oja and colleagues analysed the transcriptional profile of both CD4 and CD8 Trm’s together
with matched blood. The gene expression of both Trm populations revealed chemokines
(XCL1,CXCL16,CCL4), chemokine receptors (CXCR3,CXCR0), adhesion
(ICAMILITGAE,CD97), effector (GZMA,GZMB,PRF1), immune checkpoint (CTLA4).
Interestingly, the expression profiles of CD4 and CD8 Trm’s were largely indistnguishable,
highlighting the influence of the tissue micro-environment. Tissue resident t cells also
expressed transcripts for NOTCH1 and EGR2, which are associated with long term persistence
of pathogen specific Trm °!. Pathways associated with both genes may provide a therapeutic
modulation route for a clinical intervention. The mechanisms by which this occurs are yet to
be elucidated, but deletion of Notchl and Notch2 in influenza infected mice resulted in fewer

lung tissue resident T cells °'.

Single cell RNA sequencing (10X Chromium) was used to profile 6311 flow cytometry sorted

tumour infiltrating lymphocytes from primary and metastatic breast cancer tumours, revealing
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a cytotoxic CD8 Trm subset that was associated with favourable patient outcomes ?2. The same
Trm signature was highly enriched in melanoma patients positively responding to immune
inhibitor blockers at the initial stages of the treatment °*>. The Trm signature was composed of
cytotoxic (GZMB, PRFI), adhesion (VCAMI, ITGAE), immune checkpoint (HAVCR2,
PDCDI, CTLA4, TIGIT, LAG3), infiltration (LAYN, KLRCI), chemokine (CXCLI3, CCL3,
CCL4) and proliferation (MKI67). Another group profiled human lung memory t cells in HLA-
disparate transplant donor/recipient pairs, sampling broncho alveolar lavage fluid (BALF) over
a 15 month period demonstrated that donors with a persisting Trm signature where associated
with lesser incidents of graft rejection **. Analysis of airway t cells showed that the donor t
cells maintained the Trm phenotype, and the recipient lymphocytes gradually increased the
expression of tissue residency markers. It is of interest to uncover how the Trm signature
changes in the TB/HIV-, TB* and TB*/HIV" lung tissue, particularly by comparison of
CD4+CD69+ lung T cells, CD4+CD69- lung T cells and CD4+CD69- blood T cells using
scRNAseq (derived from matched individuals). Such an approach will allow profiling of these
populations, stratifying them across a developmental trajectory of their cellular states using
methods such as pseudotime or monocle *°. Uncovering potential CD4 t cell subsets which are
depleted with HIV infection will assist in further understanding the mechanisms of immune
deficiency. A recent study suggested that CD4 t cell independent mechanisms play a role in
suppression of latent tuberculosis reactivation in simian immunodeficiency virus (SIV)

infected macaques °°.

1.5 Conclusion

Use of cutting-edge technology has the potential to advance our understanding of how to
manage and ultimately eradicate TB disease. This will be achieved by robust approaches to
uncover mechanisms that lead to failure of the immune response, as well as identifying
molecular markers uniquely linked to this pathology. With the steady reduction in the cost of
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running sequencing platforms, there is hope that high TB burden regions can begin large scale

studies which will accelerate generation of data driven disease insights.

1.6 Research Problem and Significance

1.6.1 Statement of the Problem

Tuberculosis disease afflicts a significant portion of the global population and South Africa
caries one of the highest burdens. Many aspects of the human immune response to TB infection
are yet to be characterized, slowing down the development of new diagnostics, vaccines and
therapeutic agents. Thus, for us to develop new solutions to address this endemic, more
research is required which incorporates TB compromised tissue and cutting-edge technologies.

One such technology is single cell ribonucleic acid sequencing (scRNAseq)

1.6.2 Hypothesis

TB related pulmonary pathology such as cavitation and fibrosis lead to the enrichment of lung
tissue with cells involved in tissue destruction and collagen deposition, resulting in the skewing

of stromal, immune and parenchymal cell types as the lung loses normal function.

1.6.3 Research Objectives

To date, the only TB study that leveraged scRNAseq compared peripheral blood mononuclear
cells (PBMCs) from infected individuals to uninfected control groups. Whilst this study yielded
informative insights such as initial depletion of NK cells, the pulmonary consequences of TB
infection must be explored. The goal of this thesis is to characterize the different populations
of cells enriched in TB and/or HIV infected tissue (1), explore correlations with already
reported TB biomarkers (2), characterize tissue resident CD4 T, critical for a long-term
memory response (3) and demonstrate the applicability of the dataset in other pulmonary

diseases. To this end, several specific objectives were derived:
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1.6.3.1 To define the cellular diversity in human lung tissue from individuals infected with
tuberculosis (TB) and human immunodeficiency virus (HIV).

1.6.3.2 Explore if the tuberculosis blood transcriptional signatures can be localized and
assigned to cell types at the site of TB disease using single cell sequencing.

1.6.3.3 Phenotype tissue resident CD4 T cells from TB/HIV coinfected lungs to assess their
functional potential.

1.6.3.4 Demonstrate the usefulness of scRNAseq data in identifying potential target

populations of SARS-CoV-2.

1.7 Research Methodology

1.7.1 Human Participants

Human lung tissue and blood samples were obtained from patients undergoing corrective
surgery with previous TB episodes and other comorbidities such as (haemoptysis, cavitation,
bronchiectasis, shrunken or collapsed lung). The surgery was done at the Department of
Cardiothoracic Surgery at King Dinuzulu hospital in Durban, KwaZulu Natal and Inkosi Albert
Luthuli Central Hospital in KwaZulu-Natal . We were unable to culture TB from the tissue and
we suspect that low bacterial load and the growth suppressing influence of anti TB therapy led
to this observation. All samples were collected with approval from the Biomedical Research

Ethics Committee and written informed consents obtained from all subjects (BREC no 019/13)

1.7.2 Blood Processing

Blood was collected in BD Vacutainers (sodium heparin, BD), peripheral mononuclear cells
were isolated using the ficoll-histopaque (Millipore Sigma) density gradient centrifugation

method.
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1.7.3 Lung Tissue Processing

The Lung tissue was processed within 5 hours of receipt as described 2. Briefly, a piece of the
lung tissue was cut for histology and placed in 4% Paraformaldehyde (PFA). The remaining
tissue was dissected into small pieces (5x5x5 mm) and infiltrated with a collagenase (Sigma-
Aldrich), DNase 1 (Sigma-Aldrich) in RPMI (Sigma-Aldrich) with 10% FBS (Hyclone) for 30
minutes. Mechanical digestion at room temperature using the Gentle MACS (Miltenyi Biotec)
followed by agitation at 37°C for 30 minutes on a rotor ensued. The mechanical digestion and
agitation were repeated once more, followed by filtration of the resulting cellular suspension
using the 70 um (Corning) and 40 pm (Corning) strainer. This was followed by the lysis of red
blood cells. Cells were then stained with tryphan blue (Thermo Fischer) and enumerated using

an automated cell counter (BioRad) or a manual counter (Kova).

1.7.4 Cell Staining Procedure for Flow Cytometry

The single cell suspensions were centrifuged at 800g for 5 minutes and the supernatant was
discarded. The remaining pellet was stained with a monoclonal antibody cocktail containing
Live/Dead (Life Technologies), CD45 (clone HI30, BD Biosciences), CD3 (clone UCHT1, BD
Biosciences), CD4 (clone OKT4, Biolegend), CD8 (clone RPA-TS, BD Bioscience) , CD19
(clone SJ25C1, BD Bioscience) , CD69 (clone FNSO, Biolegend) , CD103 (clone Ber-ACTS,
Biolegend), CD45RA (clone HI100, BD Bioscience), CCR7 (clone G043H7, Biolegend), PD-
1 (clone EHI12.1, BD Bioscience), CD154 (clone 24-31, Biolegend), CD27 (clone 0323,
Biolegend), CXCR3 (clone 1C6/CXCR3, BD Bioscience), CD25 (clone BC96, Biolegend).
The cells were incubated for 20 minutes in the dark after which they were washed 2 times with
PBS (Sigma-Aldrich) and suspended in 500 pl PBS containing 0.1% BSA (Separations). The
CDA4 T cell tissue resident population was isolated using the 5 laser fluorescence-activated cell
sorting (FACS) Aria Fusion (BD Biosciences), 80um nozzle and 40 psi pressure. FACS allows

for the separation of heterogenous cells based on different light scattering and fluorescence
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characteristics in a fast and quantitative manner. The gating strategy used was as follows :
singlets CD45+CD3+CD19-CD4+CD69- or singlets CD45+CD3+CD19-CD4+CD69+. It
should be noted the cells were sorted directly after the recovery of tissue suspension, as we had
observed cell loses when freezing down for long term storage in pilot experiments. The flow

cytometry data was analysed using FlowJo version 9.7.6 (TreeStar).

1.7.5 Single cell Rna sequencing (scRNAseq)

Seqwell was implemented as described *’. Briefly, the single cell suspension was diluted to
15,000 cells in 200uL. of RPMI (Sigma-Aldrich) + 10% FBS (Hyclone) and loaded onto a
polymethylsiloxane (PDMS) array pretreated with the same solution for 15 minutes. The cells
were allowed to settle into the microwells by gravity (by incubating for 20 minutes on a flat
surface) and the array was washed with PBS (Sigma-Aldrich) and sealed with a plasma
functionalized polycarbonate membrane (Sterlitech). The arrays were incubated at 37°C for 40
minutes followed by a 20-minute incubation in lysis buffer containing guanidium thiocyanate
(Sigma-Aldrich), EDTA (Thermo Fischer), 1% beta-mercaptoethanol (Sigma-Aldrich) and
sarkosyl (Sigma-Aldrich) at room temperature. The arrays were then transferred to a
hybridization buffer containing NaCl (Thermo Fischer), MgCl, (Sigma), 1X PBS (Thermo
Fischer) and polyethylene glycol (Sigma-Aldrich) and were gently shaken at 60rpm for 40
minutes. The capture beads hybridized with the released mrna from the lysed cells were
collected from the array by a series of wash steps with wash buffer containing NaCl (Thermo
Fischer), MgCl (Sigma), Tris-HCI (Thermo Fischer) and Water (Inqgaba Biotech) . This was
followed by centrifugation at 2500g for 5 minutes each iteration. The beads were resuspended
in a master mix for reverse transcriptase containing Maxima H Minus Reverse Transcriptase,
Maxima Buffer, INTPs, RNAse inhibitor, a template switch oligonucleotide and PEG for 30

minutes at room temperature and overnight with end-to-end mixing at 52°C. This was followed
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by the standard exonuclease digestion and denaturation of cDNA hybridized to the beads by a
5-minute incubation in NaOH (Sigma-Alrich) and wash step with a solution containing Tris-
HCI, EDTA and Tween-20 (Thermo Fischer). The beads were resuspended in a master mix
containing Klenow Fragment (NEB), dNTPs, PEG and the dN-SMRT oligonucleotide,
incubating for 45 minutes at 38°C. PCR was performed as described in the protocol and the
product was subjected to 2 rounds of AMPure XP SPRI (Agencourt) bead cleanup at 0.6x and
0.8x volumetric ratios respectively. The library size was analyzed using an Agilent Tapestation
hsD5000 kit, ensuring that the expected product had an average size of ~1000bp and the
absence of primer dimers especially below 200bp. The Qubit High Sensitivity DNA kit was
used to quantify the libraries and they were prepared for Illumina sequencing using the Nextera
XT DNA Sample Preparation kit (the sequencing and alignment was done by the Shalek Lab).
A total of 900pg of the different libraries were added the tagmentation reaction. The amplified
product was purified with the AMPure XP SPRI beads (0.8x ratio) and the libraries were pooled
for loading. The libraries were sequenced on the NovaSeq 6000 using paired end read structure

with custom read 1 primer: read 1:20 bases, read 2 : 50 bases, read 1 index: 8 bases.

1.7.6 Single cell rna sequencing (scRNAseq) data analysis

The sequencing data from the NovaSeq was aligned to the hgl9 genome assembly and
processed in accordance with the Drop-Seq Computational Protocol v2.0
(https://github.com/broadinstitute/Drop-seq). We used STAR alignment with the default
parameters (genomeDir, runThreadN (n = 50), readFilesIn, mem = 100000) according to the

alignment  cookbook  (https:/github.com/broadinstitute/Drop-seq/blob/master/doc/Drop-

seq_Alignment Cookbook.pdf). On average, we observed saturation of sequencing reaction at

6000 detected genes and 50000 mapped reads. The data was then loaded to the Seurat R
package v3.1.0 (https://satijalab.org/seurat/), transformed to loge(UMI + 1) followed by scaling
by a factor of 10000. The overall quality was assessed by the distribution of reads, transcripts
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and genes per cell recovered. Variable genes with an average expression > 0.1 log normalized
UMI were used to compute the principal component analysis (PCA). The JackStraw function
was used to identify 20 significant PCAs that were used for downstream analysis. For
dimensionality reduction, we used a Uniform Manifold Approximation and Projection
(UMAP) at “min_dist” of 0.5 and “neighbours” set to 30. Unsupervised clustering using the
FindClusters was used to identify transcriptionally similar cells with parameters k.param set to
10 and resolution set to 0.5. The clusters were subclustered by using a differential expression
test (FindMarkers implemented in Seurat, setting “test.use” to “bimod”, Bonferroni-adjusted p
value cutoff < 0.001). The cell types were annotated by cross-referencing canonical cluster
defining genes with well curated lists, online databases such SaVant
(http://newpathways.mcdb.ucla.edu/savant-dev/) and GSEA/MsigDB (https://www.gsea-
msigdb. org/gsea/msigdb/index.jsp).

We used Monocle 2 to do trajectory analysis of a population of fibroblasts that we sub-clustered
from our main dataset. Briefly, the program allowed us to compute pseudotime gene
expressions changes. It used an inbuilt package called scEpath to divide the pseudotime into
10 different bins, then the expression of each gene was estimated by the trimean expression of
the gene across all cell types. The genes were smoothened using the cubic regression splines.
To identify pseudotime-dependent genes, we used the standard deviation of these genes and

compared them to a 1000 randomly permuted genes per cell *8.

1.7.7 Lung tissue Histology

Multiplex fluorescent immunohistochemistry staining was performed on lung tissue sections
using the Opal™ 4-Color Manual IHC Kit 50 Slides (PerkinElmer, USA) as directed by the
manufacturers (a total of 3 primary antibodies and DAPI per run). For example, in a later
section in chapter 2, we stained with 3 primary antibodies of interest (MMP1, MMP3 and
COLLAGEN 1) , using the blue channel foDAPI for cellular localisation. The proceeding
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description documents the sequential staining of the 3 primary antibodies and DAPI on a single
slide. Briefly, lung tissue samples fixed in 4% formalin were paraffin-embedded. 4pum sections
were cut on glass slides, allowed to dry for a minimum of 24 hours and the slides were baked
at 60°C overnight. Then, the combined process of deparaffinization, rehydration and antigen
retrieval of the tissue sections was done using 1x Envision Target Retrieval Solution, High PH
(Dako) in the PT-Link Pre-Treatment instrument (Dako). Thereafter, slides were incubated for
I minute in distilled water and equilibrated in EnVision FLEX Wash Buffer (Dako) for 5
minutes at room temperature. Then, the slides were incubated in Peroxidase blocking solution
(PerkinElmer) for 10 minutes and washed in wash buffer (Dako) immediately at room
temperature. The slides were then incubated in Bloxall blocking solution (PerkinElmer) for 10
minutes, and then in primary antibody-1 for 30 minutes at room temperature. The platform
allowed 3 primary antibodies of interest and reserved the blue channel for the nuclei stain DAPI
useful for cellular localisation. For example, in a later section in chapter, we stained with 3
primary antibodies of interest (MMP1, MMP3 and COLLAGEN 1) , using the blue channel
for DAPI. Slides were then washed for 5 minutes in wash buffer and incubated in Secondary
Opal Polymer Horseradish Peroxidase (HRP) Mouse and Rabbit (PerkinElmer) for 30 minutes.
Please note that this Opal Polymer HRP is recommended for human tissue sections with a
mouse or rabbit primary antibody. Then, the slides were washed twice in wash buffer, drained
and the sections were incubated in Opal Fluorophore (PerkinElmer) working solution for signal
amplification at room temperature for 10 minutes. The slides were then washed for 5 minutes
in wash buffer at room temperature. Afterwards, the antibody stripping via microwave
treatment was done by placing the slides in a slide jar with pre-warmed buffer AR6
(PerkinElmer). The jar was loosely covered and placed in a microwave for 2 minutes at 100%
power, 10 minutes at 50% power and 5 minutes at 20% power. Slides were cooled down in the

dark by placing the slide jar on ice for 20 minutes and the slides were rinsed in distilled water,
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followed by incubation in the wash buffer for 5 minutes to equilibrate slides. The microwave
step strips the primary-secondary-HRP complex allows for the introduction of the next primary
antibody. For the detection of the next target (primary antibody 2), the protocol was restarted
at the blocking step using Bloxall blocking solution (PerkinElmer) for 10 minutes. After the
third target was detected (primary antibody 3), a working solution of DAPI (PerkinElmer) was
applied to the sections as the nuclear counterstain for 5 minutes in a humidity chamber. The
slides were washed in wash buffer for 5 minutes, then in distilled water for 5 minutes and
drained. Then, the sections were coverslip with Fluorescence Mounting Medium (Agilent
Technologies, Inc.) and the edges of the coverslip were sealed with nail varnish. Slides were

stored in a humidity chamber at 4°C until images are acquired.

The unconjugated primary antibodies used are Anti-Collagen I (clone: ab34710, Abcam),
Anti- Anti-CTHRCI1 (clone: ab85739, Abcam), Anti-TDO2 (clone: OT14G2, Thermo Fisher
Scientific), Anti-MMP9 (clone: EP1254, Abcam), Anti-PI15 (clone: PA5-52312, Thermo
Fisher Scientific), Anti-TGFBR3 (clone: 1C5HI11, Thermo Fisher Scientific), Anti-GASI1
(clone: 56-087, Thermo Fisher Scientific), Anti-EGFL6 (clone: PA5-51642, Thermo Fisher
Scientific), Anti-CXCL13 (clone: H00010563bo2, Thermo Fisher Scientific), Anti-Carbonic
Anhydrase 12/CA12 (clone: EPR14861, Abcam), Anti-TIMP3 (clone: AA-170-188, Thermo
Fisher Scientific), Anti-MMP1 (clone: 3B6, Thermo Fisher Scientific), Anti- MCP-1/CCL2
(clone: 2D8, Thermo Fisher Scientific), Anti-MMP3 (clone: SB14d, LSBio), Anti-ACTA2
(clone: 1A4, LSBio). The primary antibodies were diluted in antibody diluent (PerkinElmer)
as recommended by the antibody manufacturer, and the Opal fluorophores diluted in
amplification diluent (PerkinElmer). The fluorophores used for signal generation in this study
are FITC, Texas-Red and Cy5. Images were acquired on a Zeiss Axio Observer Z1 inverted

microscope (Olympus) and analyzed with TissueFAXS imaging software (TissueGnostics).

22



Chapter 2: Cellular Heterogeneity of HIV/TB infected
human lung tissue and cell type specific validation of TB

biosignatures.

2.1 Introduction

A third of the global population is infected with Mycobacterium tuberculosis, with an estimated
10% developing active tuberculosis (TB) disease within their lifetime 2. With 9 million new
cases and 1,5 million deaths reported annually, TB remains one of the leading causes of death
from an infectious agent. Availability of anti-TB drugs led to a cure rate of 85% in treatment
of drug susceptible TB from 1995 to 2015 *°. Despite such effectiveness, survivors of the
disease often have pulmonary impairment and respiratory failure despite being culture negative
100-192 'HIV infection, a known risk factor for developing active TB, has been associated with
less severe pulmonary impairment especially in individuals with low CD4 T cell counts,
although 30% of the patients still presented with abnormal spirometry and severe

bronchiectasis 03

. TB patients contribute substantially to global prevalence of chronic
obstructive pulmonary disease (COPD) !%; thus research focussed on the progression of
pulmonary impairment from TB and the associated pathology can improve the treatment and
subsequent quality of life of TB patients '%°. Another major challenge in TB control is the lack
of biomarkers to capture the full spectrum of the disease (latent TB, incipient/subclinical TB
and active TB), impeding the monitoring disease and patient outcomes '%. There is need for
better comprehension of how TB infection impacts the host immune system, particularly host
immune cell composition and gene expression profiles °. The current approaches (bulk RNA
sequencing or microarray) that have been used to generate TB specific biomarkers often have

limited statistical power as the samples used are often orders of magnitude lower than the

variables (gene expression), yielding 30% false positives after multiple corrections 7. Thus,
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there is a need to leverage different approaches to elucidate biologically representative TB
biosignatures. In addition, these approaches have focused primarily on the peripheral blood,
whilst the TB pathogen, for the most part, is restricted to the pulmonary system (except for
extra pulmonary cases). Although consistent transcriptional differences have been observed in
multiple studies '°8, the biosignatures are dominated by leukocyte subsets, such as neutrophils
109 "and are likely to reflect non-specific systemic effects of the innate response. Focusing on
the host pathogen interaction in the lung may identify more subtle, disease specific differences.
The advent of high throughput single cell RNA sequencing is improving our ability to analyse
cell types, sub types and cell states 2. This is critical when studying disease compromised
tissue as it allows unbiased profiling of the cellular and functional consequences *. To illustrate
this in the lung, scRNAseq generated a cellular atlas of pulmonary fibrosis, showing previously
unknown skewing of alveolar macrophages and epithelial cells, linked with maintenance of the
fibrotic phenotype *. ScCRNAseq was also used to study differences in peripheral blood
mononuclear cells (PBMC) from healthy, latent and active tuberculosis patients, showing an
association between active disease and depletion of natural killer cells 7°. Whilst another study
leveraged multimodal scRNAseq to profile memory t cells from a Peruvian cohort (n = 259)
10 Tn human TB, to my best knowledge scRNAseq is yet to be applied to probe disease driven
alterations in the lung. This due to the scarcity of fresh TB infected lung tissue or the ability to

single cell sequence the material biosafety level 3 conditions.

Here, I characterize the cellular composition of the human lung tissue from individuals infected
with M. tuberculosis and/or HIV together with non-TB cancer controls undergoing surgery due
to pulmonary complications. We sequenced the cells using a high throughput scRNAseq
platform known as Seq-well (S?) 7. T adapt this low-tech platform for the BSL3 laboratory and

use it to generate a molecular atlas of the infected lung. This is then used to (1) determine the
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cellular make up of TB diseased lung tissue, (2)identify cell cellular subsets involved in TB
immunopathology, and (3) localize TB biosignatures to cell types. A larger proportion of the
individuals in the study were co-infected with HIV, providing preliminary insight into the

impact of HIV on the TB lung.

2.2 Results

2.2.1 Single Cell RNA sequencing of human lung tissue

The lung tissue was obtained from 13 participants (HIVTB (n=9); TB (n=2)); and 4 non-TB
cancer controls (1 with HIV) undergoing lung resection surgery due to pulmonary
complications ranging from fibrosis, cavitation, bronchiectasis, haemoptysis, adenopathy,
nodules and cancerous nodules (Table 1). Following surgery, the lung tissue was homogenised
into a single cell suspension using an optimised protocol 2. After adjusting the cell
concentration using a manual counter, 15000 cells were loaded onto a Seq-well microarray,
preloaded with mRNA capture microspheres, in a bio safety level 3 laboratory and processed
as described in the method section 7. Data was aligned to the human genome, then subjected
to rigorous quality controls to remove poorly sequenced cells and doublets. Samples were
collected over a 3 year period. For participants, the libraries were generated with fresh tissue
immediately after receiving the tissue to preserve the native transcriptional .

11

All samples were corrected for batch effects using harmony batch correction '!!, prior to

downstream analysis. RNA transcriptomes from 20962 cells were analysed using the seurat

package!!?

. To identify clusters of cells with similar transcriptomes we used uniform manifold
approximation and projection (UMAP) shown in (Figure 1A). Segregation of cells by disease

status or participant ID indicated the existence potential disease and/or participant specific .

25



Disease Status
Noutrophitt
‘ - Fo
— Noutrophitz .o EE‘;’
; . B
- Pa
L‘["’ i ]
- - Pas
Cellx Gene ::
Count Matix =4
Dimensionality Reduction,
Clustering,
Cell Type Caling - - -M‘
[~
Epithelial Endothelial Stromal T Lymphocytes
EPCAM CLDN5 COL1A1 CD3D
£ §: L
. #
Y ‘ ; I g
= { _ N |
D E
Foobists |@@  c@e Y T e [ Disease._Status
Foroblast2{ - - 0 Q0@ LR EE R R R @ ' Cancer Control
Foroblasti{ - - - 0 @@ - - - - R on W HIV
e e @ e e e MHNTB
a2 e o0 e e e e uTs
AT1 Y R e . S i e e e e e el
Profiferating | . L @ e e e . . e
Plasma{ - . - . - Y R I R T T
Cytotdc { - . . .. . B ¥ . . on
T . Lo RN X ) .. .
Mast © 4 s 4 et TR EE o0 - o . c s
Inflammatory { . Ce e s R K Y I . ‘e -
Neutrophit2 { e e e . - . Y I . . -
Neurophitt { - - . . e@@ - o
Participant
DCs{ e L @ e
Macrophage3 ] . o e e 0@ - mR
Macrophage2{ =+« - - - - e o s e 0 00 M P11
Macrophage1 . .. coeoe e @ S eee . =g
Monmwa- e e 00 i His
&, Ng 3L '\rg ov@.g&q L2 N P41
RURT IR 5‘* RREE E:-
N re
urB
Percent Expressed Average Expression L]
-0 2 eme
.2
tE i; VAN A/
& & & ge
4'4_; *‘y \?f ,15 ’5Q¢4¢ &

Figure 1: Overview of the lung tissue cells from TB and/or HIV and cancer patients.

(A) Schematic of the method used for the isolation of cells from human lung tissue, generation of single cell libraries using Seq-well ($°) and
the unbiased 1n silico analysis used to identify different cell types. Shown adjacent to the process flow 1s the UMAP projection of 20,962 cells
from 13 donors (n =7 HIVIB: n =2 TB: n =1 HIV. n = 3 Cancer Control). The cells are represented by points and the colour represents the
different cell types.

(B) UMAP projections of the cells, coloured according to the disease status or the corresponding study participant.

(C) Expression of marker genes for the cells in different tissue compartments (epithelial, endothelial, stromal, myeloid and T lymphocytes).
(D) Dot plot of a minimum of 2 canonical genes for each of the various cell types (FDR-adjusted p < 0.001, the size of the dot represents the
proportion of cells within a cluster that express a particular gene, with the intensity of the dots representing the binned count-based expression
(log scaled UMI + 1).

(E)Bar plots showing the fractional distribution across cell types as a function of the disease status and participants.
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effects in the relative frequency of cells, with minimal evidence of technical artefacts (Figure
1B). Unsupervised clustering of the cells revealed 19 distinct clusters, which were subsequently
defined by making use of a combination of manual curation of canonical markers from previous
studies and reference gene expression from the SaVant database *¢!!*. As expected from
complex tissue samples, we cells from the epithelial (EPCAM), endothelial (CLDNS), stromal
(COL1A1) compartments, together with immune cells such as myeloid (LYZ) and lymphocytes
(CD3D) (Figure 1C) 4. Figure 1D shows the canonical genes expressed in the different
clusters; monocytes (VCAN, FCNI), 3 macrophages subsets (C/0B, FABP4, LGMN,PLTP),
dendritic cells (CD83, CDI1C), neutrophil 1 (5710048, S10012), neutrophil 2 (ARGI, MMP?Y),
inflammatory cells (TAGAP), mast (TPSABI), t cells (CD3D), cytotoxic cells (GNLY), plasma
b cells ({GHG4), proliferating cells (MKI67), type 1 alveolar pneumocytes (AGER), type 2
alveolar pneumocytes (SFTPAI), endothelial cells (VWF) and 3 fibroblast subsets (defined by

expression of DCN, H19, MMP]I). Figure 1F shows the distribution of the top 4 genes per cell
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(F)Heatmap depicting the relative expression (normalized and scaled) of the top 4 canonical
marker genes of the 19 cell clusters.
We identified these clusters by making use of unsupervised clustering via the FindClusters tool within the seurat package with default

parameters, k.pram set to 10 and resolution set to 0.5. The top4 genes shown were the canonical markers per cluster from the FindClusters
output.
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cluster in a heatmap. Expression of these transcripts correlated with protein expression data
from previous human TB studies , such as elevated levels of S10049 and STPAI''*!15. We
observed a high degree of heterogeneity in the frequency of cell types identified per participant,
which we expected due to varying clinical presentation (Table 1). Consistent with literature,
we observed that a greater proportion of the t cells came from the TB only group. We believe
this observation captured the cd4 t cell depletion associated with acute immune deficiency
syndrome (AIDS) !'!S. Interestingly, we observed an even distribution of cytotoxic cells
(mixture of cd8 t and nk cells) in all disease groups, despite cancer patients contributing less
than 11% of the total cells. Cytotoxic cd8 t cells infiltrate tumours in breast cancer patients, but
the prognostic value of this phenotype is dependent on the density and location of these cells
17 This suggests that our clustering captured disease driven skewing of cell populations. In
conclusion, the identified clusters were very similar to cell types observed in studies that have
performed scRNAseq on fibrotic lung tissue, specifically fibrotic tissue 4. This data provides

an overview of the stromal, immune and parenchymal subsets detected in TB lung tissue.
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Table 1 : Patient metadata of selected lung study participants

Patient Sex Age Previous TB HIV Status Pulmonary Complication Surgery Cell Yield
PO Male 37 n/a positive Cavitation and Fibrosis Right Upper Lobectomy 1751
P4 Female 49 2013 positive Cavitation, Bronchiectasis, Nodules Left Pneumonectomy 5486
P6 Female 21 2017 negative Cavitation, Haemoptysis, Dyspnoea, Mycetoma Right Pneumonectomy 5442
P8 Female 58 2007 negative Haemoptysis, Cavitation, destroyed upper lobe Left Pneumonectomy 2214
P9 Female 56 none negative Pulmonary Nodules Rights VATS biopsy 1294

P10 Female 61 none negative Mediastinal Adenopathy Rights VATS biopsy 654
P11 Female 32 2013 positive Minor Haemoptysis Left Pneumonectomy 363
P36 Male 41 2019 positive Massive Haemoptysis Left Pneumonectomy 1153
P37 Male 53 2019 positive Left Chest pain Left Bullectomy 632
P38 Female 58 2019 positive Massive Haemoptysis Left Pneumonectomy 552
P41 Male 45 none negative n/a Left Upper Lobectomy 332
P43 Female 44 2019 positive n/a Right Pneumonectomy 392
P44 Femal e none positive mor Haemopty 7
P53 Female 44 active TB n/a n/a n/a n/a
P54 Male 67 active TB n/a n/a n/a n/a

*VATS-Video assisted thorascopic surgery
The patients are colour coded according to the disease status 111V (lime), HIVTB (blue), TB (purple), red (Cancer). It should be noted that we could not
confirm TB disease with the time of surgery, so we relied on clinical history for the groupings.
P9 has a history of breast carcinoma, presented with invasive tumour
P10 was diagnosed with Stage 2a cervical cancer, with nodules and metastatic disease

P53 and P54 are individuals with well characterised, end stage TB granuloma (their lung tissue was not sequenced) that we used for the Immunohistochemistry.
These individuals were selected based on their distinct TB pathology. We did not definitively ascertain the stage of TB development but assumed they represent

post treatment chronic TB.
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2.2.2 Skewed immune and pro fibrotic profile of compromised lung tissue.

To investigate the skewing of cellular subsets in TB lung, the relative proportion of each cell
was calculated as a percentage of total assigned cells for each participant (Figure 2A). The
frequencies of each cell subset were then compared between TB samples and non-TB controls,
irrespective of HIV status. This analysis suggested a skewing of innate immune cells in TB
disease, highlighted by a significant reduction of the macrophage 2 subset (p=0.01 by
Kolmogorov-Smirnov; uncorrected), neutrophils (p=0.03, combined), and mast cells (p=0.04).
The enrichment of mast cells in TB lungs mirrors a recent study applying the same technology

to individual granuloma from TB infected non-human primates '*

, with this cell type was
enriched in granuloma with the highest Mtb burden. The same study also observed a significant
association between high burden granuloma and plasma cells, which could not be shown in our
data as the differences in cellular proportions were not statistically significant. The enrichment

of neutrophils in the TB group is consistent with other studies that reported neutrophil

infiltration in TB 119,

In addition to these, fibroblast subsets 2 and 3 were only observed in TB diseased individuals
(8/9 vs 0/4; p=0.004). This is consistent with the pulmonary remodelling associated with
tuberculosis disease due to cavitation, fibrosis and bronchiectasis '2°. To examine the lung
architecture of the TB and non-TB samples, we performed haematoxylin and eosin (H &E)
staining of paraformaldehyde fixed tissue. Figure 2B shows the 2 participants with pathology
that captured the gross histological spectrum we observed. P11 presented with evidence of
inflammation and fibrosis induced anatomical distortion. P6 displayed evidence of lung

parenchymal haemorrhage, interstitial and confluent fibrosis.
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Figure 2: Spectrum of fibrotic lung tissue damage.

(A) The distribution of the different cell types when comparing TB infected tissue to cancer controls. For each cluster we performed a paired
t-test between the 2 conditions and the * represent differences that were statistically significant. (B) Hematoxylin and Eosin images of lung
tissue from Participant 11 (HIVTB) and Participant 6 (TB). The image from P11 show the initial stages of the fibrotic response in which
alveoli are still visible whereas the image from P6 shows the terminal stage where the alveoli are infiltrated by fibrous tissue. Scale bars
500pm.

(C) Stacked Violin Plots showing Decorin (DCN), Fibronectin (FBLN) and Collagen (COL) expression across the clusters.

(D) Dot Plot showing expression levels of growth factors and ligands associated with a fibrotic response. The intensity of the dot
corresponds to level of expression and the size of the dot shows the percentage of cells in the cluster expressing the gene.

(E) Dot Plot showing the relative expression of chemokines, cytokines, ligands and receptors in the lung cells. The intensity corresponds to
the level of expression and the size to the proportion of cells expressing the gene in the cluster.

(F) Stacked violin plot showing the expression of Matrix Metalloproteinase (MMPs) and their inhibitors, Tissue Inhibitor of
Metalloproteinases (TIMPs).
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To investigate which cell types are involved in the fibrosis observed by histology, we assessed
each cluster for the expression of genes associated with extra cellular matrix (ECM) synthesis
such as decorin (DCN), fibronectin (FBLNI) and collagens (COL1A1, COL3A1, COL4Al,
COL5A1, COL6A1, COL8A1, COLI2A1, COL14A1, COL16A41, COLI18AI). Consistent with
their role in ECM production, these genes were highly restricted to the 3 fibroblast subtypes.
The only notable exception being expression of COL4A41 in endothelial cells, a form of collagen
previously associated with lung endothelia '?!. Interestingly, the expression of these molecules
varied greatly between these fibroblast populations, suggesting potential differences in fibrotic
activity (Figure 2C). By contrasts COL8A I and COL14A1, are expressed by fibroblast 1 and 2,

but not fibroblast 3, whereas COL12A41 was highly expressed by fibroblast 3 122,

Unregulated deposition of the ECM is associated with loss of lung function in patients with
IPF 2. Growth factors have been associated with fibrosis, utilizing autocrine signalling for
epithelial cell development and paracrine signalling of fibroblast proliferation, migration and
extracellular matrix synthesis '2*. We proceeded to investigate the data for cell types producing
growth factors and their receptors. As shown in Figure 2D, fibroblasts were the major
contributors of the growth factors and their high affinity, chaperone binding proteins involved
in signal transduction insulin growth factor 1/ insulin growth factor binding protein 4
(IGF1,IGFBP4). The observations support robust autocrine capability in all fibroblast subsets
via the fibroblast growth factor 7 / fibroblast growth factor receptor 1 (FGF7/ FGFRI) (false
discovery rate (FDR)-adjusted p-value , p < 1E -300 and p = 2E -96 respectively) '2°. Strikingly,
in line with the above observation, fibroblast 3 population expresses the highest levels of
CTGF, which is known to be essential for fibrotic activity of transforming growth factor beta
(TGF-p) '*° and is associated with IPF in humans ', Fibroblasts expressed the highest levels

of PDGFRA, the receptor of PDGF, another important molecule in pulmonary fibrosis. Lineage
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tracing experiments in the mouse model of IPF show platelet growth factor receptor alpha
(PDGRFA) expressing fibroblasts are the key driver 2. Interestingly, (FGF7), which is also
highly expressed in the fibroblast 3 subset, has been shown to be reduced in areas undergoing
active remodelling, and inversely correlates with disease severity '2°. Overall, these data are

consistent with the skewing of fibroblasts towards a profibrotic phenotype in TB patients.

2.2.3 Fibroblasts important drivers of immune cell recruitment and cavitation in
TB disease

In general, fibrosis is thought to occur due to abberant wound healing associated with
inflammation and angiogenesis '*°. To investigate this, we examined the expression of
chemokines, cytokines, and their receptors. Of the transcripts detected within the dataset,
fibroblasts expressed pro-angiogenesis chemokines (CXCLI, CXCL2, CXCL3, CXCLS,
CXCLI12, CXCL13) *, the pro-fibrotic chemokine, (CCL18) '3!, in addition to low levels of IL-
8 and /L-33 (Figure 2E). CXCLI and CXCLS5 are known to play an essential role in the
recruitment of neutrophils to the lung during TB infection '32; whilst both CXCLI2 and
CXCL]13 are involved in lymphocyte recruitment and formation of lymphoid follicles in the
lung 133 134, We also observed within the fibroblast population 3 high levels of IL7R (CD127)
transcripts, primarily associated with homeostatic signalling and cell survival in lymphocytes
135,136 Fibroblasts and macrophages isolated from human subjects with rheumatoid arthritis

have been shown to express high levels of IL7R %7,

Pulmonary cavitation is a hallmark of tuberculosis disease, as it facilitates parenchymal
damage!8. This process is not fully understood but is thought to be driven by the dysregulation
of the matrix metalloproteinases (MMPs), enzymes that degrade the ECM, and their
antagonists, tissue inhibitor of metalloproteinases (TIMPs). We therefore investigated the

expression of these molecules in this dataset. Consistent with published data, we observed
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several cell specific associations, including MMP9, MMP25 with neutrophils, and MMP19
with monocytes and macrophage '*°. Interestingly, MMPI, MMP2, MMP3 and 14 were
predominantly expressed by fibroblast (Figure 2F). In the case of MMP1, expression was only
detected in fibroblast subset 3, in which subset it is ubiquitously expressed at a high level.
Several studies indicate that MMPI is crucial for cavitation in human TB; bioengineering
human MMP]I into mice, which otherwise lack this key enzyme, leads to caseous necrosis '4°,
a canonical feature of human TB that missing from the mouse model. In humans, MMP-1
transcript abundance was much greater in TB granuloma compared to Sarcoidosis granuloma.
Sarcoidosis is a non-infectious granulomatous disease with none caseating lesions '*!. MMP1

142 In addition,

expression is also driven by hypoxic conditions generated within TB lesions
the fibroblast 3 subset expressed lower levels of the three TIMPs and expressed very little

TIMP3, the inhibitor with the broadest activity against MMPs 43,

2.2.4 Fibroblast subtypes and enrichment by disease status

Having observed the potential role of fibroblasts in TB immunopathology, we sought to
investigate this cell type further. First, we sub-clustered all fibroblast subtypes (1792 cells),
revealing 5 distinct clusters (Figure 3A). Of these, cluster 3 was uniquely expressed in
individuals with TB alone (P6 and P8), and was associated with a distinct gene expression
profiles (Figure 3B and C). Cluster 3 (207 cells) most closely resembled the fibroblast 3
population identified in the preceding sections, characterised by expression of collagen
(COL4A41 and COLI2A1), chemokines (CXCLI, CXCL3, CXCL5 and CXCL12), and IL7R.
Focusing on the top 5 differentially expressed genes , cluster 3 showed elevated levels of
MMPI1, MMP3, CXCL5 and CXLI3, together with a specific repertoire of marker genes

including CA12, PDPN, TDO?2 and FAP (Figure 3B and Figure 3C). TDO2 encodes tryptophan
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Figure 3: Fibroblast phenotypic diversity

(A) UMAP projections of 1792 fibroblasts (Fibroblast 1, Fibroblast 2 and Fibroblast 3 were combined and re-clustered), showing the
distribution of the cells into generic clusters (left) and the distribution of the clusters based on disease status (right).

(B) Heatmap showing the top 7 marker genes for each of the generic fibroblast clusters.

(C) Dot Plot showing the relative expression of transcripts associated with immune-fibroblasts '*, chemokines, cell specific marker genes,
extracellular matrix destruction and collagen accumulation. The intensity corresponds to the level of expression and the size to the
proportion of cells expressing the gene in the cluster.
(D) Trajectory analysis of the 5 fibroblast clusters using monocle 2, showing bifurcation towards cluster 3 and 4. Most cells in cluster 3 and
4 occupy the terminal ends of each respective branch, suggesting that they are distinct cellular states.
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2,3-dioxygenase, a rate limiting enzyme which, together with indoleamine 2,3-dioxygenase
(IDO1), catabolizes the breakdown of tryptophan to kynurenine, which is involved in
neurotransmission and immune regulation %146 IDO1 is upregulated in the TB granuloma,
where it is thought to play a key role in suppressing the T-cell immune response, and it’s
inhibition improves T-cell penetration in granuloma '47. TDO?2 is upregulated in lung cancer
associated fibroblasts and it’s inhibition improves T-cell function '8, Podoplanin (PDPN),
together with fibroblast activating protein (FAP), are expressed by immune-fibroblasts and are
required for organisation of tertiary lymphoid organs at sites of chronic inflammation, critical

for establishment and maintenance of fibrotic foci 144.

The other clusters identified showed distinct gene expression profiles, including complement
7 (C7) and complement factor D (CFD) expression in cluster 0 (946 cells). CFD is associated
with senescent fibroblasts '#°. Cluster 1 (262 cells) fibroblast uniquely express (H19), a long
non-coding RNA which induces proliferation of fibroblasts and is a potential driver of IPF !>

and SERPINE?2, known to promote collagen deposition in scleroderma '°!

. Cluster 2 expressed
cartilage oligo matrix protein (COMP), associated with lung tissue stiffening whereas cluster
4 (165cells) had a myeloid-like expression profile (LYZ, HLA-DRA, S10049). In an attempt to
uncover the developmental association of these fibroblasts, we superimposed the 5 clusters
onto a pseudo time trajectory using monocle 2 *°. As illustrated in Figure 3D, the trajectory
starts off with cells in cluster 0, which separates into two branches (at point labelled 1 in the
Figure 3D), with one branch terminating at cluster 4 whilst the other terminating at cluster 3.

This suggests that these two cell states represent committed paths along the developmental path

of transcriptionally distinct fibroblasts.

36



To validate our observations, we explored the correlation of transcript abundance with protein
expression, using immune fluorescence imaging fixed human tissue. We curated the markers
that were part of the top 100 genes for fibroblast 3, selecting markers that were distinctly
expressed in the fibroblast 3 cluster (MMP1, MMP3, CA12, CTHRCI, GASI, CXCL13, TDO?2,
PI15). COLIAI and COLIA2 were selected to show areas of collagen deposition and 7IMP3
and MMP9 were selected as their expression was observed in fibroblast 1/endothelial cell and
neutrophils, respectively (Figure 4A). We stained the tissue with distinct evidence of fibrosis,
cavitation and granuloma formation. Figure 4B-4E show representative staining of multiple
granuloma-like structures from 2 participants (from the study database, cells were not
sequenced). We observed that fibroblast 3 marker genes were highly expressed by cells that
formed a circular cuff around necrotic/fibrotic zones, with distinct profiles associated with
collagen 1 (Figure 4B-D). The localization of CA/2, TDO, and PI15 suggests that this
fibroblast subset is associated with the organisation of TB granuloma. We further stained
MMP1 and MMP3 on two separate cases, confirming abundant expression of these markers
around the granuloma (Figure 5) and a stronger association with blood vessels surrounded by
fibrotic tissue (Figure 6). The co-staining of these markers in concordance with our
transcriptomic data supports the assertion that fibroblasts are expressing these proteins. Taken
together, these findings suggest that diverse fibroblast populations play an important and
understudied role in recruiting immune cells in the lung tissue, potentially organising the

granuloma.
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Figure 4: Immunohistochemistry of TB infected tissue.

(A) Dot plot showing the distribution of marker genes associated with fibroblast 3 (MMP1, MMP3, CA12, CTHRCI1, GAS1, CXCL13, TDO?2,
PI15) across the data set, together with markers common for all fibroblast subsets (COLIA1, COL1A2), neutrophil 2 (MMP9) and fibroblast
1/endothelial cells (TIMP3).

(B)-(E) Representative fluorescent immunohistochemistry imaging of areas with severe fibrotic lesions in the human lung to visualize the
localization of fibroblast 3 markers with collagen 1; (B) showing for P53-07 DAPI (blue), CA12 (red), CTHRCI (orange) and COLLAGEN
1(polyclonal antibody for both alpha 1 and alpha 2) (green), it shows a fibrotic lesion from lung tissue; (C) showing a fibrotic lesion from
P53-09 lung, DAPI (blue), TDO?2 (red), P115 (orange) and COLLAGEN 1 (green); (D) showing an airway adjacent to fibrotic lesion for P53-
09 DAPI (blue), GASI (red), CXCLI3 (orange) and COLLAGEN 1 (green). (E) showing for P54-09 DAPI (blue), MMP9 (red), TIMP3
(orange) and COLLAGEN 1 (green). The bars indicate 200um for all images. These patients (P53 and P54) represented previously
characterised cases of TB which showed distinct granuloma within the tissue. Due to the nature and timing of the sampling, we could not
definitively determine the stage of granuloma formation.
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Figure 5
H&E DAPI

COLLAGEN 1 MMP1

Figure 5: Immunohistochemistry of TB infected tissue showing colocalization of fibroblast 3

markers with TB granuloma-like fibrotic lesions.

Representative hematoxylin and eosin (H &E) images of lung tissue from participant 53 (culture positive TB) showing fibrotic lesions
surrounded by thickened alveoli due to hyaline deposition. Scale bars Imm. Fluorescent immunohistochemistry imaging of the fibrotic lesions
in the human lung to visualize the localization of fibroblast 3 markers with collagen 1; DAPI (blue), COLLAGEN 1 (green), MMP] (red),

MMP3 (orange) and THE MERGED image for all 4 colours, scale bars 500pm for all images.
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Figure 6.
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Figure 6: Immunohistochemistry of TB infected tissue showing association of fibroblast 3

markers with blood vessels.
Representative hematoxylin and eosin (H &E) images of lung tissue from participant 0 (HIVTB) showing blood vessels surrounded by fibrotic

tissue. Scale bars 250um. The red staining in the center of the vessels show red blood cells. Fluorescent immunohistochemistry imaging of
the blood vessels in the human lung to visualize the localization of fibroblast 3 markers with collagen 1: DAPI (blue), COLLAGEN 1 (green),
MMP] (red), MMP3 (orange) and THE MERGED image for all 4 colours. Scale bars 200pm. Red blood cells, in the centre of the blood

vessels have been reported to have a high degree of autofluorescence, shown here by their positivity for all stains ',
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2.2.5 Endothelial and Proliferating cells enrichment by disease status

Having observed the additional cellular sub-structure revealed by sub clustering fibroblasts, we
repeated the process for endothelial (598) and the proliferating cells (339). Endothelial cells
resolved into 5 generic clusters (Figure 7A). After re-clustering, we attempted to identify
marker genes associated with each of these clusters (Figure 7B), revealing lymphatic (cluster
4, PDPN) and vascular endothelial cells (cluster 3, PXDN). Cluster 0 expressed apolipoprotein
L domain containing, also known as VERGE (4POLD]), which plays a role in endothelial
signalling and vascular function 33, Cluster 1 expressed high levels of thioredoxin interacting
protein (7XNIP), which has been reported to induce inflammation, fibrosis and molecular
damage by oxygen free radicals '°*. We further visualized these clusters by the disease status
(Figure 7C), revealing that cluster 0 was enriched in both HIV and/or TB participants whilst
cluster 1 was highly enriched in the non-TB control group. The lymphatic endothelial cells
(cluster 4) signature was distributed throughout the patient groups whereas the vascular
endothelial cells (cluster 3) was overrepresented in TB participants. This is consistent with in
vitro and clinical evidence of HIV-1 induced vascular endothelial cell dysfunction '3°. Sub-
clustering of the proliferating cells, revealing 3 distinct (Figure 7D) clusters of myeloid cells
(cluster 0, CIQB, MARCO, LYZ), t cells (cluster 1, CD3D, TRBC?2) and plasma cells {GHG,
IGHG?2) shown in (Figure 7E). Visualizing the cell types by disease revealed that macrophages
were present in both TB and HIVTB groups, whereas t and b cells enriched in the TB group
(Figure 7F). This observation was consistent with the understanding that HIV-1 infection leads
to depletion CD4 t cells, leading to immune failure and the rise of opportunistic infections 3¢,
together with reports of increased b cell fractions in individuals with culture confirmed active
TB 7138 Macrophages have been reported to proliferate at the sites of inflammation, primarily

directed by the T helper 2 cytokine interleukin 4 (IL4) .
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Figure 7: Cell types showing enrichment of specific clusters in the diseased tissue.

(A-C) An outline of the visualization of 598 endothelial cells enrichment based on the disease status of the participants.

(A) UMAP plots showing the clustering of the endothelial cells as a functional of the revealed 5 generic clusters and the disease status.
(B) Heatmap of the top 7 marker genes of the 5 generic clusters.

(C) Heatmap showing the enrichment of the generic clusters in different disease states.

(D-F) A Schematic showing the visualization of 339 MKI67 Proliferating cells based on participant disease status.

(D) UMAP plots showing the distribution of the 3 generic subclusters and their distribution as a function of the disease status of the
participants.

(E) Heatmap showing the top 7 markers in each 3 generic clusters.

(F) Heatmap of the generic clusters, showing the enrichment of the different clusters by disease status.

2.2.6 Monocyte, neutrophil and alveolar pneumocyte distribution by disease
status

We further subclustered the abundant myeloid and epithelial cell populations, revealing
additional population structure for monocytes (3198), neutrophils (3132) and alveolar type 1
(AT1) / type 2 pneumocytes (AT2) (1022). Monocytes resolved into 5 clusters, and we set to
identify marker genes (Figure 8A). When manually curating marker genes for each cluster, we
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used genes that appeared in at least 25% of the cells of the same cluster . We then used these
genes to compute the differentially expressed genes for each cluster vs the rest of the cells at
log fold difference > 0.25. This formed the basis by which we defined subclusters; smaller
populations of cells with a similar transcriptomic profile. Cluster 0, expressed CDSJ55,
upregulated with bacterial infections and the long non-coding RNA NEATI, involved in
inflammasome activation. Cluster 1 expressed DDX3Y, a functional homolog of DDX3X that
mediates the innate response to microbial infection, HMOXI, which suppresses the pro-
inflammatory phenotype and heat shock 70 kD protein HSPAIA/HSPA1B, a cellular response
to physiological stress. Cluster 2 expressed cytotoxic genes (GNLY), cluster 3 expressed pro-
inflammatory (E7S7) and cell motility (RHOC) genes and cluster 4 expressed high levels of
the activation marker CD69 and the /L-33 receptor, IL/RLI. Cluster 0 was enriched across all

group whereas cluster 1 was prominent in HIVTB participants (Figure 8B). 0.

Neutrophils resolved into 3 distinct cell types (Figure 8C). Cluster 0 expressed neutrophil
metalloprotease, MMP9, which degrades collagen IV in the basement membrane. Cluster 1
expressed genes associated with polymorphonuclear myeloid derived suppressor cells
(OLRI)'®!, TL-17 suppression (TAOKI), neutrophil recruitment (GBP5) and mesenchymal
stem cell activation (GBPI). Cluster 2 expressed heat shock proteins like the monocyte sub
population highlighted previously. Cluster 0 was enriched in participants with TB only, cluster
1 in HIVTB participants with cluster 3 common to all groups (Figure 8D). Type 1 (AT1) and
type 2 (AT2) alveolar pneumocytes to were sub-clustered together, revealing the 4 distinct cell
subtypes (Figure 8E). We observed AT2 (SFTPC), secretory club cells (SCGBIAI),
macrophages (C/QA4, APOE) and AT1 (AGER). Secretory cells, type 1 pneumocytes and
macrophages were enriched in the HIVTB group, whereas type 2 pneumocytes were

represented in both TB and HIVTB groups (Figure 8F).
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Figure 8: Cell subtype enrichment as a function of disease status.

(A-B) Shows the outline of the heatmap visualization used to show differences in monocyte (3198) subtype composition as determined by
the disease status.

(A) Heatmap showing the separation of the monocyte cluster into 5 generic clusters.

(B) Heatmap showing the distribution of the clusters according to the disease status of the participants.

(C-D) Genes defining different neutrophil (3132) subsets and distribution across participants by disease status.
(C) Heatmap of the 3 generic sub-clusters derived from the neutrophil cluster.
(D) Heatmap showing the enrichment of these clusters in different disease status of the participants.

(E-F) Visualization methods used for (1022) Type 1 (AT1) and Type 2 (AT2) Alveolar Pneumocytes.

(E) Heatmap showing the top 7 highly expressed genes in the 4 generic clusters derived from the pneumocyte population.
(F) Heatmap showing the enrichment of these different pneumocyte clusters in the different disease states.
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2.2.7 Evaluation of peripheral blood-derived TB signatures

We were interested in exploring how genes identified as blood biomarkers of TB were
expressed within our lung data. We selected gene lists from the following publications Zak et
al., 2016 12 Maertzdorf et al., 2016 ' | Cliff et al., 2013 '** | Singhania et al., 2018 '6° and
Maertzdorf et al., 2011 ', In these studies, gene signatures of active pulmonary TB were all
derived from PBMC using either bulking RNA sequencing or microarray hybridization
technology. We computed the average enrichment score of each gene signature for the 19 cell
clusters and visualized the enrichment scores normalized to random control feature genes
(Figure 9A-E). The most striking enrichment of signature genes was that of the Maertzdorf et
al., 2016 signature in neutrophils and inflammatory cells. Interestingly, the other signatures
were not particularly elevated as the neutrophils/inflammatory cells signal. This was consistent
with observations by Berry et al ., 2010 %7, who reported a neutrophil signature induced by
type 1 and type 2 interferons '%°. The remaining signatures appeared to be generally enriched
in myeloid cells, which often have higher transcriptional activity than other cell types such as

lymphocytes '8

. However, the signature reported by Singhania et al., 2018 does appear to be
more lung tissue specific, being enriched in type 1 pneumocytes, type 2 pneumocytes,
endothelial cells and fibroblasts (Figure 9D). Interestingly, this signature was generated using
a modular approach that specifically attempted to reduce dominant effect of highly upregulated
interferon gene signatures by using weighted gene co-expression network analysis. Based on
our observations, this signature may be able to capture the pulmonary remodelling associated

with TB, but more testing is required with other pulmonary diseases that induce cavitation,

fibrosis and granuloma formation.
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Figure 9
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Figure 9: Evaluation of TB Blood signature enrichment in cell clusters from human lung
tissue.

(A) Violin Plots depicting the module scores computed for each lung cell clusters using the 16 gene signature Zak et al., 2016 '* (B) 18
gene signature Maertzdorf et al., 2016 ' (C) the 19 gene signature Cliff et al., 2013 '* (D) the 20 gene signature Singhania et al., 2016
L(E) the 29 gene signature Maertzdorf et al., 2011 ',

2.3 Discussion
Here we present an unbiased analysis of lung cells in resected tissue obtained from participants

with TB and non-TB controls. By describing key molecular differences that are driven by the
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disease, we confirmed several significant observations from previous in vitro/ex vivo studies,
animal models, highlighting key areas for further studies in HIV/TB pathology. By identifying
unique cell types and aberrant pathways, this data is useful in investigating therapeutic
alternatives for management of tuberculosis disease. In the right context, this data can be useful
in the validation of already existing research questions or leverage its unbiased nature to create

unique thought paradigms.

A recent scRNAseq study on 3 participants reported 59 cell types from 75,000 cells using plate
and droplet based RNA sequencing platforms, purifying compartment specific cell types using
magnetic activated sorting (MACS) and fluorescence activated sorting (FACS) of immune
(CD31+CD45+), epithelial (EPCAM+) and stromal (EPCAM-CD31-CD45-) . In our study,
we recovered 19 cell types from 20,962 cells from 13 participants. We observed fewer cell
types due to the lower cell numbers and possible loss of cells from the homogenisation of the
lung tissue. We speculate that the compartment specific enrichment used to reach 59 cell types
allowed for a more targeted enrichment which was not feasible in our experiments !7°. The
analysis identified stromal cell types such as fibroblasts, endothelial cells, immune cells
(monocytes, macrophages, neutrophils, dendritic cells, t cells, plasma cells, mast cells) together
with cell states (cytotoxic, proliferating and inflammatory). Neutrophils resolved into 2
separate clusters. Interestingly, neutrophil 2 expressed ARG more abundantly, which has been
linked with the down regulation of t cell activation and apoptosis of cancer cells '"!. It was
interesting to note that with the exception of dendritic cells, greater than 50% of the myeloid
cells were derived from the HIVTB group. In particular, macrophage 2 (FABP4, CI1QB) and
neutrophil2 (IFITM?2, FCGR3B) showed lower proportions from TB group, suggesting disease
specific depletion. FABP4 is involved in lipid metabolism as it relates to inflammation and

macrophages are reportedly involved in inflammation of adipose tissue in HIV infected
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individuals '7?. Enrichment of dysfunctional neutrophils at mucosal surfaces has been

173

associated with HIV infection '’°.We did not explore this dysfunction in our study as we lacked

robust controls, but it remains interesting in the context of disease .

We observed a significant pro-fibrotic phenotype in the 3 distinct fibroblast cell types, with
significant expression of collagens, growth factors and immune modulatory molecules.
Focussing on the fibroblasts revealed an enrichment of a unique population (Figure 3C & D)
in the TB group. These cells displayed a transcriptomic profile similar to podoplanin (PDPN),
fibroblast activating protein (FAP) immune fibroblasts, which have been shown to coordinate
the organisation of tertiary lymphoid structures (TLS) in response to inflammation %4, Our
exploration of the topographical positioning of these cells within TB granulomatous tissue
suggested that these cells formed part of the fibrotic cuff surrounding fibrotic regions filled
with dead cells or deposits of ECM (Figure 4). Fibrosis has been reported in chronic TB 74,
with increased incidence in patients post anti-tuberculosis treatment #°. In general, fibrosis
occurs either at the periphery or in the centre of the lesion, but the prevailing view is that
fibrotic granuloma are more protective as they can effectively contain the bacteria, although
they inadvertently make it difficult for drugs to reach the pathogen during treatment !”>. The
association of fibroblast 3 markers primarily with the cuff of the lesions suggests that these
cells play a role in granuloma organisation. We suggest further probing, particularly of TB
granuloma with these markers to explore the hypothesis that immune fibroblasts are involved

in the formation and maintanace of the TB hallmark.

We observed an upregulation of MMP1 and MMP3 proteins within the granulomatous lesions
as well as in association with blood vessels in highly fibrotic lung tissue (Figure 5 and Figure

6 respectively). A recent preprint reported an increase in the proportion of endothelial cells in
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176 " with another

TB granuloma in comparison with granuloma from sarcoidosis patients
suggesting that elevated levels of endothelial cell progenitors in TB patients promotes bacterial
dissemination '77. Further investigations with these marker genes is necessary on TB granuloma
from different patients to understand biological and more crucially clinical consequences of
such an association. The fact that fibroblast 3 appeared to be overrepresented in TB patients
who are HIV negative is interesting. HIVTB infected individuals present with fewer cavities
and one can speculate that they lack these driving fibroproliferative and cavity inducing cell
types.The TB profibrotic phenotype requires investigation in the context of idiopathic
pulmonary and cystic fibrosis to better clarify biological elements unique to each disease.
Additionally, better curated TB and HIVTB lung samples will be required to test this
hypothesis. Another approach is to use flow cytometry for enrichment of the immune
fibroblasts using the methodology outlined by Nayar et al., 2019 ** ,with CD45-CD235a

CD11b- EpCAMCD31'PDPN*CD34" as the gating strategy. Unfortunately, due to the closure

of our clinical study, additional samples were not available to conduct these assays.

Many studies have highlighted how HIV infection can lead to the dysfunction of immune '8,
endothelial '7°, epithelial '*° and stromal cells. We observed a similar trend when we examined
different clusters for gene expression strongly across the participant groups. The pro-
inflammatory (S10048/49, ADAMTS9/ADAMTS]) together with lymphatic endothelial subsets
(PDPN) were present in both patient groups. Vascular endothelial cells (PXDN) were enriched
in the TB group, supporting reports that viral proteins lead to a pro-inflammatory,
vasoconstriction and vascular endothelial cell apoptosis !8!.We also observed that the
endothelial cells from the cancer participants had high expression of markers reported in non-
small cell lung cancer and lung carcinoma (SLC644, TXNIP, VIPR, IL7R) 82184 The MKI67

proliferating cluster resolved into immune cells (myeloid, T and plasma cells), with the last 2
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cell types enriched in the TB group. Both neutrophils and monocytes from HIVTB expressed
heat shock proteins associated with cellular stress , consistent with virus induced dysregulation
(neutropenia and monocytopenia) 85, A scRNAseq study on blood monocytes, identified a

160 which we observed

subset of cytotoxic monocytes resembling natural killer dendritic cells
in all disease groups in Figure 8 (cluster 2, GNLY). We also observed that HIVTB patients were
enriched for a highly inflammatory subtype of neutrophils (FKBP5 , MEGF9 , MMP9 , ARGI
, CEBPD) '86-190 whereas the TB group was enriched for a polymorphonuclear myeloid derived
suppressor cell phenotype (OLR1, TAOKT) 6!, Analysis of the alveolar epithelial compartment
showed an enrichment of secretory cells (SCGBI1A41), alveolar macrophages (4POE) and
alveolar type 1 pneumocytes (AGER) in the HIVTB group. Whether the differences we
observed are the consequence of TB or/and HIV disease remains to be elucidated. The
enrichment of the subpopulations could be due to differences in the sequence of HIV and TB
infection events as this might affect the cellular composition of the lung tissue differentially.

Nevertheless, the observed correlation with existing literature suggests that some differences

in cell proportions reflect the underlying biology and warrant further exploration.

Lastly, we explored how previous TB signatures align with our data by computing enrichment
scores for each signature and super impose the scores on each of our 19 cell clusters. Most
signature genes were highly expressed by myeloid cells , consistent with the dominant innate
immune interferon-induced signalling. The notable exception, however, is the signature
developed by Singhania ef al. These authors reasoned that the majority of TB gene signatures
were constructed using gene reduction methodologies that prioritize the most abundant
transcripts 1°!. The authors pointed out that this leads to a highly correlated gene set with a
wider immunological focus due to the dominant, conserved properties of the innate immune

response. Therefore, it is not surprising that these, and other TB signatures largely identify the
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same genes, resulting in similar diagnostic utility '°2. Singhania et al., by contrast, sought to
broaden their signature by taking a modular approach involving selection discriminant genes
across the whole transcriptome. It is striking, therefore, that this signature was enriched in
endothelial cells, pneumocytes and fibroblasts. We speculate that their approach allowed the
signature to capture a component of the tissue remodelling. We suggest defining the role each
cell type plays during the abnormal pulmonary wound healing especially in the late / chronic
stage of TB disease using scRNAseq. This will help refine our diagnostic tools by producing
biologically sensitive ,specific and functionally relevant markers '°2. It is also key that we
include a protein expression panel for the refined biomarkers to see the degree to which it
correlates gene expression. A recent study by Cai et al., 2020 made use of scRNAseq and
compared PBMC from healthy, latent TB and active TB participants 7°. The results revealed a
depletion of NK cells in the active TB participants, consistent with low NK cell frequencies in
newly diagnosed patients '*3. NK cell exhaustion has been reported in cancer and other chronic
diseases, thus further exploration is required to ascertain whether this observation is a general
feature of the immune system or a TB specific phenotype '°*. We speculate the scRNAseq will
prove useful in conjunction to bulk rna-sequencing in localizing transcripts to cell type, which
informs us on the cell types to perturb for mechanism of disease progression. We suggest that
future studies should include blood, bal and lung compartments across the full spectrum of TB
infection. Identification of a TB specific population of cells involved in lung granuloma
formation should be the ultimate goal of such endeavours. The high resolution capacity of
scRNAseq allows us to reduce the false positive rates observed in bulk sequencing biomarker
studies. This is due to the independent nature of transcript detection in sScRNAseq compared to
bulk RNAseq, which detects all transcripts as an averaged signal, missing genes from low

abundance cell types !>
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Taken together, this chapter highlights the power of single cell sequencing in generating
research questions specific to human TB disease in a highly unbiased, data driven approach.
Further research is required to explore the significance of the activated fibroblast 3 population
in the TB only participants together with formulating a biosignature that captures the TB
specific tissue remodelling during and post anti-TB treatment. This will require a stringent
criteria for patient selection to ensure robust TB case definition. We did not have this luxury in
our study, thus we leaned heavily on clinical records and histological examinations in defining
our groups. We speculate that expanding our dataset to 100,000 cells, whilst maintaining our
current sequencing depth of 50000 reads/cell will provide greater statistical power for
observation of disease driven skewing and cells types which are less than 1% of the population
196 This can be followed up by population specific experiments, at a higher depth of 500000
reads/per cell (costs allowing), which likely capture more minute biological differences in the
transcriptome that are important in defining the functionality of new cell types '°7. The dataset
we presented was aligned with the hgl9 human genome. Recently, the hg38 genome has
become available and empirical studies suggests it leads to more annotated genes without
changing the overall structure of the dataset (unpublished data). There is a need for studies to
compare the 2 genomes and determine which performs better in the context of cell

identification in human tissue.

The manuscript for work presented in Chapter 2 of this thesis in the advanced stage of

preparation and will be presumptively submitted in the next § weeks.
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Chapter 3: Single cell sequencing in profiling lung CD69+

CD4 T cells in tuberculosis infected individuals.

3.1 Introduction

Bacillus Calmette-Guerin (BCG) remains the only licensed TB vaccine since its introduction
in 1921. It consists of attenuated Mycobacterium bovis, priming the immune system to respond

198 Unfortunately, BCG has varying efficacy based on age, gender,

to Mtbh antigens
geographical location ! and ethnicity 2. BCG provides effective protection to children 2°!
from TB meningitis, miliary TB and pulmonary TB 2%2, This protection is believed to last for
approximately 20 years , after which young adults disproportionately develop diseases in

203

endemic areas “*-. Thus there is a pressing need for alternative vaccines to prevent disease

development in adults.

T lymphocytes (T cells ) play a critical role in the prevention of TB after primary Mtb infection
as part of the adaptive immune response 2%. Human immunodeficiency virus (HIV) increases
the risk of developing disseminated TB especially at low cd4 t cell levels 2%. In cases where
individuals received antiretroviral therapy (ART) corresponding to increased cd4 t cells, they
remained at greater risk of developing TB compared to the HIV negative group. This suggests
that other cells are responsible for controlling infection or that ART does not fully restore the

cell repertoire required to prevent TB disease.

T cells migrate to infected lung tissue in response to chemo-attractants and remain there as long
lived memory cells, allowing for an optimum secondary reaction 7’. These so called “tissue
resident memory” cd4 t cells (Trm) are derived from central (SELL"/CCR7") and effector

memory (SELL"/CCR7") t cells. Trm are phenotypically heterogenous and express a variety
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of surface markers associated with tissue retention, including CD69 and CD103. T-cell receptor
(TCR) upregulation leads to the triggering of the CD69 2%, which can make the use of the
latter as a marker of residency complicated. However, once upregulated, CD69 competitively
binds to the SIPR on the surface of cells 2°7. This prevents migration of the cells back to the
circulation following the S1P gradient. CD103 is involved in the maintenance of t cells within
tissue, particularly at the epithelial barrier, binding, in conjunction with the Beta 7 integrin
(ITGB7) bind to E-cadherin 2%, Despite their wide use as canonical Trm markers, neither
CD69 or CD103 perfectly corresponds to residency 2%°. Trm are emerging as an important

target for novel TB vaccine studies, with most of the work done in animal models.

As discussed previously, (scRNAseq) is a valuable tool in profiling cells at a cellular resolution,
allowing advancement in our understanding cell specific responses to disease 2!°. It has
provided insight into the functional aspects of T cells, demonstrated when it identified a tumour
infiltrating cd8 Trm population expressing both effector and suppressor transcripts in breast
cancer patients °2. In this chapter, we first applied scRNAseq to peripheral blood mononuclear
cells (PBMC) of TB infected and healthy individuals in an attempt to reproduce the cellular
subtypes obtained using a different scRNAseq platform (10X) by Cai and colleagues 7°. We
then compared from the same individual, CD4 T cells from the PBMC and CD69+ / CD69
CDA4 T cells from the lung. We used CD69 as a marker for CD4 Trm as opposed to CD103 as

the latter shown to be better associated with CD8 Trm cells 2%,

3.2 Results

3.2.1 Single cell RNA sequencing of peripheral blood mononuclear cell (PBMC)
from active TB and healthy individuals

PBMC were obtained from 3 HIV negative active TB patients with abnormal chest x-rays ,a

positive interferon gamma release assay (IGRA+) and 3 healthy donors (IGRA-). The low
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patient size (n = 6) was due to the fact that this was a pilot study and we did not have resources
to follow up on. PBMC were isolated using density centrifugation from a previously reported
protocol 2. A total of 15000 cells per participant were loaded onto seq-well microarray and
processed as discussed in the previous chapter 2. Data from the sequencer was aligned to the
human genome (hg19), followed by exhaustive quality check measures to remove low quality
cells (defined as containing >5% mitochondrial genes, < 200 transcripts and > 2500 transcripts
as set in seurat). This yielded 2998 cells (Figure 1A), distributed across the active TB (subjects
P6033 (n =338), P6077 (n =297) and P6110 (n = 105)) and healthy controls (subjects P8346
(n=1034), P8347 (n =466), P8349 (n = 758)). We observed higher cell yield from the healthy
controls compared to the TB group (Figure 1B). We expected even distribution between the
groups and speculate that the extraction protocol performed sub optimally. Unsupervised
clustering of the cells revealed 9 distinct clusters, which included red blood cells (HBA2, HBB),
neutrophils (S710048, S10049), monocytes (FCNI, VCAN), cd8 t cells (CD8A4, GNLY),
neutrophil2 (FCGR3B, G0S2), cd4 t cells (IL7R, SPOCK?), plasma cells (/GKC, IGHG4), b
cells (MS4A41, BANK]I) and platelets (TUBB1, PPBP) as shown in Figure 1C. The presence of
red blood cells supports the speculation that the extraction protocol under performed as these
cells are supposedly removed by density centrifugation. It is possible that human error in
enumerating the PBMC could have led to reduced cell yield. Figure 1B suggests that
monocytes, t lymphocytes (cd4 and cd8) and platelets were comparatively more abundant
across the disease groups. A study showed a significant increase in monocyte absolute counts
in individuals with active TB compared to health individuals 2!!. The same study found
significant differences in the frequency of lymphocytes between active TB and latently infected
patients. Other groups have associated higher platelet counts and thrombocytosis with

212

advanced pulmonary TB , with Fox et al., 2018 associating platelets with pulmonary

inflammation and tissue destruction 213,
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Figure 1 : Overview of PBMC extracted from healthy individuals and active tuberculosis individuals.

(A) UMAP projection showing 1590 PBMC from healthy and active TB patients coloured according to the different cell lineage clusters and
disease status (red (active TB) and blue (healthy).

(B) Bar plots showing the cell yield per individual in accordance to the clusters and the disease status.

(C) Heatmap of the 3 highest expressed genes in each cluster, showing the distribution of different canonical markers.

(D) Heatmap showing the distribution of the clusters as a function of disease status. We identified these clusters by making use of unsupervised

clustering via the FindClusters tool within the seurat package with default parameters, k.pram set to 10 and resolution set to 0.5.

It should be noted that other studies that have performed single cell sequencing do not report

the presence of neutrophils 2'4

, which are separated from the PBMC fraction during extraction.
However, Figure 1B shows that the majority of both neutrophil 1 and 2 populations derive from
a single individual, P8349. Neutrophils can separate out with the PBMC, particularly low
density neutrophils (LDN). These LDN be elevated in individuals with active pulmonary TB

215 However, it is possible that downstream processes such the library work up and sequencing

might have been compromised, leading to the erroneous detection of neutrophils. The ST00A9
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gene observed in the neutrophils is also expressed in monocytes and dendritic cells, thus there
is a possibility of erroneous cluster identification 2!6. Stratification of the heatmaps according
to the disease status did not reveal conclusive differences in gene expression due to the

discrepant cell yield between the groups (Figure 1D).

3.2.2 Analysis of PBMC derived from HIVTB Participant 36

We enrolled 5 participants (4 HIVTB (participant 31, 36, 37 and 38) and 1 TB (participant 35),
performing PBMC extraction and scRNAseq. We recovered usable data from participant 36
(Figure 2B), PMBC (n =1319), shown in Figure 2A-2C. We observed 7 representative clusters,
neutrophils (FCGR3B, NAMPT), cd4 t cells (CD3D, IL7R), cd8 t cells (CD8A, GNLY),
monocytes (FCNI, VCAN), b cells (CD794, MS4A1), inflammatory cells (CLC, CAT) and
platelets (PPBP, TUBBI). We proceeded to subset the cd4 t cells and re-cluster these cells to
assess the underlying cell types (Figure 3C). We observed 2 distinct clusters, with cluster 0
expressing ribosomal genes (RPL5, RPL34, RPS154), important in normal physiology and
some pathologies 2!7. This cluster also expressed genes associated with activation (CD69) 28
and regulation of T cells (FOXP1, RUNX3 ,RORA, CD6) 2222, Cluster 1 expressed genes that
are associated with naive T cells (FPRI, C5ARI , GLUL, G0S2) ?>>225 and regulatory T cells
(MXD1, PLAU, IFITM?2) ?*228, We simultaneously sorted cd4 t cells from the PBMC fraction
for the same participants according to the gating strategy in Figure 3A. We could not recover

usable sequencing data and we believe there were issues with the FACS.

57



A B
10 Monocytes
% Platelet {®@ ® ® . LR
Neutrophils Inflammatory{® o @ . e o
5
\ © o Platelet B : ¢
§ 422" Inflammatory
A Monocytes L)
30
cD8 T . ° o
& Ccb4T ® o o
5 B
Neutrophils {®@ @ @ .
KX A X = Y 0489 »
3 ; ; 0 $ET S ST TTFISELES
UMAP_1 g“é"g SO O OyeY "§ O¢ ‘?9‘1»@«
C
N N

EF
B

i
é%“?‘

5
e

T
7]

*
z
o opITy

R SLOD
< , O&>0;
it

2

pol v
1

1>
O

2ZnZ%
EJOnZ:
ST,
R

2=

D

0 LT |
1 Ll
| ”JIIH\
ULl |

D,

Reratie?,
SO PBNZRE

za%
2
g et

K
1
AeT
2
2

— (%24
TGO
=8

e

! |
(win 'I:""I ! I‘III {
|

\IllH ‘\1‘ |
/ ||||II[|

II .\Il‘muw AT
II‘

r
e

1
n Illl d II‘
! 1
“I !I
il | [
1 1
13 v i

1
]

1fy 1
i g LT
‘1||I I ‘HH

i
1 ]

0 L )

iy

HJ\ KK‘l‘l[ul‘
L

b sty

| Y
gl

Average Expression
2

1
0

Percent Expressed
[

.25

® 50

® 75

® 0

Figure 2 : PBMC isolated from Participant 36 and the gene expression profile of CD4 T cells.

(A) UMAP projection of 1319 cells from the PBMCs fraction, with colours representing different canonical clusters.

(B) Dot plot of PBMCs from Participant 36, showing expression of marker genes in each generic cluster.

(C) Heatmap showing the gene expression profile of CD4 T cells from the PBMC fraction of Participant 36.
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(A) Isolation of CD4 T cells from PBMCs gating strategy
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Figure 3 : Flow panel gating strategy used for isolating CD4 T cells from PBMC and CD4+CD69-
/CD4+CD69+ T cell populations

(A)The gating strategy for T cells isolation starts with the lymphocytes gate (1), singlets (2), live CD45+ cells (3), CD3+CD19- (4),
CD4+CDB8- (5) and CD4+CD69- (6) population in the box adjacent to the *.

(B) Gating strategy for isolation of CD4 tissue resident T cell subpopulations. Similar to the PBMCs , the following population of cells from
the lymphocytes gate (1-5) singletsCD45+ L/D- CD3+CD19- CD4+CD8- T cells. We then further gated out the cells as (6) CD69- (red box
&*), CD69+ (turquoise box & *) and CD103+ (black box & *).
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3.2.3 Comparison of Lung CD4+CD69- to CD4+CD69+ T cells from HIVTB
Participant 36

To explore lung derived CD4 CD69- to CD4CD69+ cells, we sorted matched tissue single cell
suspension from the same participants, recovering usable data from P36. It should be noted that
the sorting was done on different days for each participant and sample type. We speculate that
instrumental issues led to the poor yield. We also speculate that infection might have depleted
cd4 t cells, impeding our efforts to sufficiently isolate them. For P36, we sorted cells into 2
different populations L/D- CD45+ CD3+CD19- CD4+ CD103- CD69- (~33000 events) and
L/D- CD45+ CD3+CD19- CD4+ CD103- CD69 + (~27000 events) as shown in Figure 3B. We
proceeded to load these populations on to 2 separate arrays per population and performed
scRNAseq. We aligned the subsequent reads to the human genome (hg19) and recovered a total
of 728 cells from the 2 populations (Figure 4), much lower than the expected 500-3000 cells
per run (according to the historical performance of seqwell). This suggests that either enough
cells were recovered or the library generation was suboptimal. Uniform manifold
approximation and projection of the cells revealed 5 clusters (Figure 4), identified as naive cd4
t cells ( CCR7, SELL/CD62L, TCF7 ) ?*-231; ¢d4 t regulatory cells [cluster 1 and 2] (KLRBI,
PRDM1 , CD96/TACTILE) *3*23 ; myeloid-like activated t cells expressing genes associated
with regulation (NR4A2, CD300E) 235237 activation (TIMPI) %3 together with cytotoxic cd4 t
cells (PRFI, GZMK, NKG7) #*°241, Examining the distribution of cells showed a relative
enrichment of naive T-cell in the CD69 negative fraction (Figure 4A). However, due to a failure
of sequencing in the other participants, the analysis could not be extended beyond our first
pilot, preventing statistically significant observations. We explored methanol cryopreservation

of cells according to the protocol 2+

, but we could not recover enough material for the
sequencing step so we used fresh cells for all experiments. Unfortunately, due to COVID-19

restrictions in 2020, the lung study was halted for almost 12 months, meaning that we could

60



not address these technical issues. Thus, the data presented here serves as a guide for future

research in this area within Leslie lab and beyond.
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Figure 4 : Single cell RNA sequencing of lung CD4+CD69+ and CD4+CD69- T cells from Participant

36 lung tissue.

(A) UMAP projection of 728 cells, separating into generic clusters identified by the expression of marker genes. The cells are also coloured
based on whether they are from the CD69+ sort (blue) or CD69- sort (red).

(B) Heatmap showing the expression of the top 8 marker genes of the generic clusters from Participant 36. We identified these clusters by
making use of unsupervised clustering via the FindClusters tool within the seurat package with default parameters, k.pram set to 10 and
resolution set to 0.5.

(C) Heatmap of the 728 cells stratified according to the sorting panels used, red (CD4+CD69-) and blue (CD4+CD69-). We identified these
clusters by making use of unsupervised clustering via the FindClusters tool within the seurat package with default parameters, k.pram set to
10 and resolution set to 0.5. The top 11 genes shown were the topmost genes per cluster from the FindClusters output.

(D) Dot plot showing gene expression from the different cell clusters, from the naive, Treg(T regulatory cells), activated and cytotoxic cells.
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3.3 Discussion

In this chapter, we first explore differences in the PBMC from individuals with active TB and
healthy controls. This was done to compare the phenotypic diversity of our PBMC compared
to a recent study which generated a single cell atlas of PBMC 7°. We also compared, from one
individual, cd4 t cells from the PBMC fraction to lung tissue derived CD4 CD69+ and CD4
CD69- T cells with the aim of identifying phenotypic diversity between the blood and lung
compartments. In describing the phenotypes of both PBMC and tissue resident cd4 t cells, we
demonstrated the applicability of scRNAseq in uncovering the underlying cellular sub-
structure.

Our analysis the PBMC produced 9 clusters (resolution = 0.5 in FindClusters), showing greater
granularity of our dataset compared to the study referenced above that only showed 3 clusters
for 62000 cells. We observed red blood cells and neutrophils, which are typically depleted
during the isolation of PBMC. This suggests that the extraction process was compromised,
particularly for P8346 (RBCs) and P8349 (neutrophil 1 & 2) which produced > 80% of these
cells respectively. The remaining cell types we observed (monocytes, cd4 t cells, cd8 t cells,
plasma, b cells and platelets) have been reported in other studies, showing that seq-well can

characterise similar cell types to those reported in the literature.

Blood cd4 t cells from P36 showed 2 distinct clusters, as illustrated in Figure 2C. We speculate
that cluster O corresponds to an activated effector t cell due to the expression of ribosomal genes
(RPL5), CD69, JUN, RORA and CD6 00243245 (Cluster 1 expressed genes associated with
activation and immune response (FPRI, SOD2, GLUL), which we expect as this individual had
both HIV and active TB 223246247 'We observed different cell subtypes when we combined
CD4CD69- cells with the CD4CD69+ cells from participant 36 (Figure 4A-C). The cells
subtypes separated into naive t cells (CCR7, SELL), regulatory T cells (RORA), activated t cells
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that expressed myeloid like markers (Figure 4D), together with cytotoxic t cells. Tissue
resident, /TGAI expressing t cells have also been observed to exhibit a highly cytotoxic
phenotype (PRF1, IFNY), with ITGAI negative cells expressing IL-17 °'2*, The observation
that both the blood and tissue compartments had regulatory and activated cd4 t cells suggests
that regulatory/effector subsets in both compartments have shared function. The lung
microenvironment has a significant impact on the phenotype of tissue resident cells. We also
observed expression of transcription factors associated with the tissue resident populations,
such as RUNX3, NR4AI-3, but the expression was distributed throughout the clusters
suggesting that they might be shared across different populations 24%2°°, Expression of myeloid
cell markers on t cells is consistent with reports of CD11b and CD11c on antiviral c¢d8 t cells
in a mouse model #!. The aberrant expression of t cell markers has been reported in patients
with acute leukaemia 2°2. We speculate that HIV/TB disease might impart similar lineage
ambiguous phenotypes but we require more robust studies to explore this hypothesis. We also
observed an enrichment of CD11a (ITGAL) in the cytotoxic cluster, a transcript which has been
reported to be elevated in cd4 Trm relative to CD103 233, We observed CD300E expression in
the activated T cell cluster (not shown), which belongs to a family of surface receptors that
negatively regulate the ability of t cells to present antigens via STAT! pathway 7. CD3004
was upregulated in HIV positive ART naive participants when 2%, A subset of
CD300a+PD1+CD38+ of cd4 t cells which might be implicated in immune exhaustion.
Participant 36 was HIV positive thus we speculate that this subset is a consequence of HIV

driven dysregulation.

Taken together, the results shown in this section demonstrated the potential application of
scRNAseq data in improving our understanding of the phenotypic/functional aspects of tissue

resident cd4 t cells. Seq-well (S?) incorporates second strand synthesis in addition to the normal

63



reverse transcriptase step, which increases recovery of low abundance transcripts. Thus we
expected to recover more cells with greater annotation of transcription factors, cytokines and
cytokine receptors 2°°. We did not manage to recover cells from other participants and thus no
conclusions can be made from this data. We suspect that this poor recovery is a function of low
starting cell counts of the Trm’s due to the highly compromised nature of the tissue and low
frequency of this cell type. In some cases, the tissue we received from the surgery was mainly
composed of cartilage (especially from bullectomy) or originated from HIV infected
individuals (associated with CD4 T cell depletion), thus limiting cell recovery. Other failure
points could have been reagents or instruments (PCR machines, sequencers etc) along our
experimental pipeline. As discussed, it was not possible to obtain additional samples, due to
cohort and lab closures during the last 12 months of my PhD study. In future studies, we must
incorporate more phenotypic markers in defining Trm, such CD11la (/TGAL) to assess its
applicability in differentiating cd4 from cd8 t cells. It has been reported that t cell receptor
(TCR) specificity elicits Trm potential in t cells in responding to influenza infection 2°%2%7, The
seq-well (S?) platform used in this experiment is also capable of performing parallel sequencing
of the TCR, thus in theory any population exhibiting the Trm phenotype should have limited

258

clonal diversity =°. Other research groups have suggested using t cells subsets such as CDI

259 as vaccine

restricted T cells, mucosal associated invariant T cells (MAIT) and yd T cells
candidates. They postulated that these cells are ideal for TB host directed t cell therapy due to
low donor diversity coupled with conserved TB specific epitopes. To date, the only clinical

studies that have been performed on the efficacy of unconventional y5 T cells involved t cell

treatment for antitumor therapy 2¢°.
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Chapter 4: Applying TB scRNAseq data in COVID-19

research.

4.1 Introduction

Over the past decade, zoonotic transmissions from animals to humans have led to the
emergence of human coronaviruses (CoVs) such as middle east respiratory syndrome (MERS)-
CoV 2! and severe acute respiratory syndrome (SARS)-CoV %2, A novel SARS-CoV-2, first
reported in Wuhan City, China, December 2019, causes the disease COVID-19. It had led to
3,68 million deaths worldwide at the time of writing (June 2021). Prior work on SARS-CoV
revealed the host angiotensin-converting enzyme 2 (ACE?2) as a critical receptor for binding of

the viral spike (S) protein with a high affinity 26°

. In addition, type 2 transmembrane serine
protease (TMPRSS?2) has been shown to facilitate activation of the spike and initial viral entry
in target cells 24, Many other host proteases such as furin have been thought to also play a role
in promoting uptake of the virus but the exact site and mechanism(s) by which they process the
S protein are yet to be elucidated 29-267, Expression of ACE?2 within tissue has been observed
in human lung and small intestine epithelial cells by histological staining 26®. However, the
specific cell subsets that expressed ACE2 in the human lung were unknown during the early
stages of the outbreak. Identifying cells that are ACE2 positive together with TMPRSS?2 is

important for understanding the potential mechanism of viral entry and the overall

pathogenesis.

The advent of high throughput single cell RNA sequencing (scRNAseq) provides a powerful
tool to characterize cell types that are associated with pathology by comparison of healthy and
diseased tissue 2%. Profiling of cell subsets and states reveals dynamic variations in gene

expression in in vitro and in vivo viral infection assays 2’%?’!, In this chapter, we utilized
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scRNAseq from a selected lung samples described in chapter 2 (3 HIVTB, 3 TB and 2 Cancer
patients) to investigate the expression of ACE2 and TMPRSS2 and identify potential virus
targets within the lung tissue. The TB and HIVTB donors had a history of TB but were TB
culture negative at the time of surgery. We converted the whole tissue to a single cell
suspension as reported by Ardain ef al., 2018 2 and used the seq-well protocol 2’2 . We then
used the single cell libraries created to create a single cell atlas of lung tissue, shown in Figure

4A.

4.2 Results

Figure 4A: Overview of the Workflow.

Isolation of human lung tissue from tissue resections, synthesis of a single cell library by Seq-well V3 (S*) and the computational workflow
used for analysis of different cell types. On the right is a UMAP visualization of 18915 cells derived from 8 donors (n =3 TB/HIV,n=3 TB
and n =2 Cancer controls). The different cell types are visualized using the highlighted colour code.

Unsupervised clustering of the single cell library from these participants revealed multiple cell
types and cell states in the lung tissue, like those discussed in chapter 2 (Figure 4A). It was
interesting to note that in this chapter, we did not observe any b cells from the data which we
attribute to lower patient numbers (n = 8). We would expect to observe b cells in abundance as

they have been shown to be enriched in TB patients, playing a role in prevention of
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disseminated disease 27>. B cells have been associated with TB granuloma, where they are
thought to limit the disease via IL10 and IL21, thus their absence is rather peculiar 274, We
suspect that the absence of b cells is due to the relatively low cells numbers in this experiment.
B cells have been shown in a separate scCRNAseq study on disease human lung tissue to

constitute less than 5% of the total cells thus it is possible to not detect them “°,

The cell types were identified based on the expression of canonical markers as shown (Figure
4B). ACE2 and TMPRSS?2 were expressed (albeit with low abundance) by type 2 pneumocytes
and ciliated cells (Figure 4C). Type 2 pneumocytes were identified by the expression of
surfactant proteins SFTPA2, SFTPB. These proteins, in combination with phospholipids,
constitute the secretions necessary for the reduction of surface tension and maintenance of
alveoli architecture 27>, In this cell type, 1.4% expressed ACE2 (false discovery rate (FDR)-
adjusted p = 1.35E-21), 34.2% expressed TMPRSS2 (FDR p < 1E -300) and 0.8% expressed
both receptors. Both receptor genes were also expressed in ciliated lung cells; 7% of ciliated
cells expressed ACE2 (FDR-adjusted p = 3.8 E-30), 24.2% expressed TMPRSS2 (FDR adjusted
p =3.25 E-7 and 5.3 % expressed both receptors. Ciliated cells play a critical role in removal

of harmful material from the lung airway via coordinated beating 7.
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Figure 4B: Dot plot showing canonical marker genes for each cell type (FDR-Adjusted p< 0.001) as well as
ACE2 and TMPRSS2 expression.

The size of the dots represents the corrected average expression (log (scaled UMI +1)) of a given gene and the color intensity represents the
count-based expression amount and the red arrows highlight the cells expressing the highest proportion of 4CE2.

To establish differences between cells that consistently express the target molecules for SARS-
CoV-2, we computed the differentially expressed genes between ACE2*TMPRSS2" type 2
pneumocytes and type 2 pneumocytes lacking the expression these receptors (Figure 4D). Dual
expression of ACE2 and TMPRSS22 was associated with several genes, such as forkhead box
J2 (FOXJ2) POZ/BTB and AT Hook Containing Zinc Finger 1 (PATZI) and tetraspanin 7
(TSPAN?7), all of which influence epithelial-mesenchymal cell transition (EMT)?’"-278, RNF41
is essential for determining epithelial cell polarity i.e. having apical, lateral and basal domains
allowing these cells to perform their homeostatic function 2”°. FOXJ2 has been implicated in
the inhibition of transforming growth factor beta 1 (TFG-f1) induced (EMT) whereas CASC7
has been reported to suppress cell proliferation, invasion, migration and amplifies cell

apoptosis. Tripartite motif containing-28 (TRIM28) was also upregulated in this population of
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pneumocytes and it has interestingly been associated with regulating the interferon gamma

(IFN) response 2%,

To assess whether the observations from the human lung cells were similar in other animal
models, we analyzed data from non-human primate (Macaca mulatta) lung tissue collected at
necropsy and analyzed using the seq-well protocol 272. Consistent with the human data, ACE2+
TMPRSS2+ were concentrated in the epithelial cell, type 1 and type 2 pneumocytes, club cells
and ciliated cells. Co-expression of these genes was concentrated in 3,8% type 2 pneumocytes.
In the same animal model, we explored the expression of ACE2+ and TMPRSS2+ in tissue
from the gastrointestinal tract as a follow up to reports suggesting digestive system impairment
281 We analyzed cells from the ileum, jejunum, liver and colon using the seq-well platform,
with 62% of absorptive enterocytes expressing ACE2+. Other data sets we analyzed included
another non-human primate model (Macaca fascicularis) infected with TB until granuloma
developed. The animals were subsequently sacrificed, granuloma and adjacent uninvolved
tissue isolated, processed and the seq-well protocol was comparatively run. Once again, type 2
pneumocytes from the TB granuloma were enriched for ACE2+ TMPRSS2+ type 2
pneumocytes largely derived from the granulomas. Type 1 pneumocytes, club, secretory cells
and ciliated cells were also positive for both these markers and were enriched in the
granulomas. There is a need to explore the consequences of SARS-CoV-2 and TB co-infection
primarily on tissue remodeling associated with granuloma formation, focusing on aberrant,

stem cell like epithelial cell precursors 252,

As highlighted prior, the cells displayed were recovered from 3 HIVTB, 3 TB and 2 cancer
controls (negative for both pathogens) donors. Interestingly, all the pneumocytes which were

expressing ACE2 were recovered from the HIVTB donors (Figure 4E), despite an equal
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recovery rate of alveolar pneumocytes (likely-hood ratio test, p = 0.009). This suggests that
concurrent HIV infection might lead to the upregulation of ACE?2 receptor in lung epithelial
cells. Subsequent work by our collaborators on this study (not shown here) confirmed that
ACE?2 is upregulated in SIV infected non-human primates. We also studied virus target cells at
the primary site of viral exposure, the nasal cavities, by making use of scRNAseq datasets from
human upper respiratory tract (inferior turbinate and ethmoid sinus mucosa from healthy
individuals and individuals with chronic rhinosinusitis 2°. We observed enrichment of the
ACE2+ TMPRSS2+ in the secretory epithelial cells, with a dominant IFN-a induced gene
signatures 283, Goblet cells also displayed an upregulation of ADAR, GBP2, OASI, JAKI and
DUOX2, genes associated with interferon signaling 2%%. We further demonstrated that IFN-o.
and IFN-y upregulated the expression of ACE2 in primary human epithelial cells in a dose
dependent manner by using bulk RNA sequencing of the cytokine treated cells. This
upregulation was positively correlated to the increase in the expression of canonical interferon
stimulated genes (ISGs) such as STATI, BST2, XAFI, IFI35, MXI and GBP2. These
observations support the hypothesis that there is an association of canonical IFN response and
the ACE?2 response in human epithelial cells. It is significant to note that exposing mouse basal
cells from trachea to mouse IFN-a, IFN-y and IFN-f did not robustly lead to upregulation of
Ace2, despite upregulation of mouse ISGs such as Stat/ and Gbp5. A publication containing
all the detailed analysis summarized above is attached in the annex section at the end of this

chapter.
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Figure 4C : UMAP projections after dimensional reduction.
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Figure 4E: Expression of ACE2 across the human donors by HIV and TB status (p = 0.009
likelihood-ratio test).

4.3 Discussion

In this chapter, we used our scRNAseq to investigate the potential cellular targets of SARS-
CoV-2 infection. We found expression of ACE2 and TMPRSS? to be significantly enriched in
type 2 alveolar pneumocytes and ciliated cells. SARS-CoV-2 has been shown to have a high
affinity to ACE2, which is thought to lead to its rapid spread in humans 2%, Interestingly, ACE2
downregulates the renin-angiotensin-aldosterone system (RAAS), converting angiotensin II to
angiotensin (I to VII) 2%, which is beneficial for lung tissue repair. At the time of writing this
section, no research group had managed to clinically link increased ACE2 expression with
higher rates of susceptibility and mortality of SARS-CoV-2 patients. We also observed that the
cells producing most of the transcripts were recovered from HIVTB individuals. Subsequent
data on morbidity and mortality of SARS-CoV2 in South Africa has shown that HIV infected
individuals are 3 times more likely to have severe or fatal COVID compared to no HIV controls
287 Recent studies have suggested that COVID-TB patients are more likely to have fatal
outcomes 2%, There are many potential reasons behind this, and the immunosuppression
associated with HIV is likely to impact the immune response to this infection. However, it is
biologically plausible that an increase in SARS-CoV2 receptor expression associated with HIV
may contribute to amplification of viremia and disease severity in some individuals. Additional

work is needed to investigate this further.
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It was interesting to note that ACE2 and TMPRSS2 co-expression was conserved in epithelial
cells with similar cellular identities and frequencies across human and non-human primate
cohorts. This was striking as the different data sets were curated from studies that used different
protocols for tissue processing, collection and sequencing depth (potentially influencing cell
recovery). The study also showed that type 1 and type 2 interferons (IFN) upregulate the
expression of ACE2, as evidenced by increased expression in human nasal epithelial cell
cultures together in both lower and upper respiratory tract tissue from both humans and non-
human primates (NHP). It was interesting to note that ACE2 expression was absent from
peripheral blood mononuclear cells in both human and NHP datasets 2%, ACE2 expression
exerts a tissue protective function as host defense strategy to viral infection 2°°. The discovery
in our study that ACE2 is an ISG in human epithelial cells and its necessity for the virus to
infect these cells, point towards the virus exploiting the IFN response to aid its establishment

and transmission within the host.

In addition, it should be noted that low abundance transcripts such as ACE2 and TMPRSS?2 tend
to be under represented due to inefficiencies and biases that are inherent to scRNAseq methods
that utilize universal molecular identifiers (UMI) 2*. Follow up studies which can confirm the
protein levels of these 2 targets in the human lung tissue and their co-localization with
canonical markers for type 2 pneumocytes (SF7PC) and ciliated cells (tubulin polymerization-
promoting protein family member 3, 7TPPP3) are critical to confirm the differences driven by
comorbidities such as HIV and TB. Preliminary COVID-19 studies have shown increased
mortality rates of HIV infected individuals in the United Kingdom 2%7. Type 2 pneumocytes

have been shown as targets for the avian H5N1 flu 2°!

and ciliated cells have been preferentially
targeted by the human parainfluenza virus type 3 2°2, thus there is a precedent for these cells

being targets of the SARS-CoV-2. It is critical that the immunofluorescence approach be
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utilized to colocalize viral surface markers such as the spike protein and host cellular markers
of these two cell types to verify preferential infection. Binding of SARS-CoV to mouse Ace2
leads to reduced expression of this target gene and acute lung failure 2. Interestingly, the lung
failure could be mitigated by blocking the renin-angiotensin pathway. This study was also key
in highlighting the increased viral load and lung tissue damage when wild type mice were
compared to Ace2 knockout mutants. Experimental treatments using human recombinant
ACE2 to competitively bind the virus or suppressors of ACE2 expression in individuals with
the virus or those who are at high risk requires carefully considered animal models and human

294,295

clinical trials . Camostat mesylate, a protease inhibitor, attenuates the activity of

TMPRSS2 , thus providing another potential treatment strategy 2°¢.

It is critical that the transcriptional response in both animal models and human infection to the
virus be properly characterized to establish a baseline disease phenotype. Such studies would
need to factor in co-variates such as age, sex and the presence of other co-morbidities. In this
chapter, we highlighted the power of scRNAseq datasets, exploring different hypotheses of

relevance in human disease in an unbiased manner that informs mechanistic follow up studies.
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Publication 1: SARS-CoV-2 Receptor ACE2 is an Interferon- Stimulated
Gene in Human Airway Epithelial Cells and is Detected in Specific Cell
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SUMMARY

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome corona-
virus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angio-
tensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine
protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues
and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human pri-
mate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover
putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-ex-
pressing cells within lung type Il pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells.
Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithe-
lial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit
species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to
enhance infection.

INTRODUCTION genic CoVs: severe acute respiratory syndrome (SARS)-CoV
and Middle East respiratory syndrome (MERS)-CoV. SARS-
Human coronaviruses (CoVs) are single-stranded positive-sense  CoV-2, which causes the disease known as COVID-19, was first
RNA viruses that can cause mild to severe respiratory disease reported in late 2019 (Coronaviridae Study Group of the Interna
(Fung and Liu, 2019). Over the past two decades, zoonotictrans-  tional Committee on Taxonomy of, 2020; Lu et al., 2020; Paules
mission events have led to the emergence of two highly patho- et al., 2020). COVID-19 is characterized by pneumonia, fever,
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cough, and occasional diarrhea (Guan stal., 2020; Halshue et al
2020; Huang et al., 2020), and SARS-CoV-2 RNA has been reli-
ably detected in nasopharyngeal swabs, sputum, and stool sam-
ples (Wang et al., 2020, Wdlfel et al., 2020; Zou et al., 2020). As of
April 19,2020, SARS-CoV-2 continues to spread worldwide, and
there are over 2,401,379 confirmed cases, 165,044 deaths, and
623,903 recovered individuals in 185 countries and regions
(Dong et al., 2020a). Early models of COVID-19 transmission dy-
namics estimate one infectious individual infects slightly over
two individuals; travel restrictions reduce that spread to one in-

Cambridge, MA 02139, USA

hildrans. harvard. sdu (J.0.-M.), lung-network@humancalatlas.org

dividual, although these figures might evolve as more accurate
epidemiological data become available (Kucharski et al., 2020).

Work during the first SARS-CoV epidemic identified the hu-
man host factor angiotensin-converting enzyme 2 (ACE2) as
the receptor for SARS-CoV (i et al., 2003). SARS-CoV-2 spike
(S) protein has been experimentally shown to bind ACE2 on
host cells with significantly higher affinity than SARS-CoV-S
(Hoffmann et al,, 2020; Wrapp et al., 2020). The main host prote-
ase that mediates S protein activation on primary target cells and
initial viral entry is the type Il transmembrane serine protease
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TMPRSS2 (Glowacka et al., 2011; Hoffmann et al., 2020; Iwata

Yoshikawa et al., 2019; Matsuyama et al., 2010; Shulla et al,,
2011, Walls et al., 2020). Other host proteases, such as furin,
have also been suggested to promote the pathogenesis of this
pandemic SARS-CoV-2 clade, but when and where they process
S protein remains to be determined (Boticher Friebertshauser
et al.,, 2013; Bugge et al., 2009; Coutard et al., 2020; Walls
et al., 2020). Binding of SARS-CoV-S to ACE2 results in recep-
tor-mediated internalization (Grove and Marsh, 2011; Kuba
etal., 2005). Importantly, ACE2 functions as a key tissue-protec-
tive component during severe acute lung injury (Imai et al., 2005;
Kuba et al., 2005).

A tissue-level basis for understanding SARS-CoV tropism was
proposed based on ACE2 histological staining and expression in
human epithelia of the lung and small intestine (Hamming et al.,
2004; Harmer et al., 2002; Jonsdottir and Dijkman, 2016). How-
ever, unlike the specific expression of CDHRS3 (the rhinovirus-C
receptor), which is resolved to ciliated epithelial cells of the upper
airway (Griggs et al., 2017), the specific cell subsets within each
tissue that express ACE2 remain unknown. Identifying the cell
subsets targeted by SARS-CoV-2 (ACE2+) and those at greatest
risk of direct infection (ACE2*TMPRSS2+) is critical for under-
standing and modulating host defense mechanisms and viral
pathogenesis.

After cellular detection of viral entry into a host cell, interferon
(IFN) induction of interferon-stimulated genes (ISGs) is essential
for host antiviral defense in mice, non-human primates (NHPs),
and humans (Bailey et al., 2014; Deeks et al., 2017; Dupuis
et al., 2003; Everitt et al., 2012; Schneider et al., 2014; Utay
and Douek, 2016). There are three distinct types of IFNs: type |
IFNs (IFN-o and IFN-p), type Il IFNs (IFN-y), and type Ill IFNs
(IFN-3) (Broggi et al., 2020; Miiller et al., 1994; Stetson and
Medzhitov, 2006). Each appears to converge on almost indistin-
guishable responses, mediated through the binding of STAT1
homodimers or STAT1/STAT2 heterodimers to ISGs. However,
mounting evidence suggests that each type of IFN might have
a non-redundant role in host defense or immunopathology,
particularly at epithelial barriers (Brogai et al., 2020; lwasaki
et al., 2017; lwasaki and Pillai, 2014, Jewsll et al., 2010).

Although the host response to SARS-CoV highlighted arole for
IFNs, most studies assessed the effect of IFN restriction in cell
lines that might not fully recapitulate the repertoire of ISGs pre-
sent in primary human target cells (Bailey et al., 2014; de Lang
et al.,, 2006; Sainz et al., 2004; Zheng et al., 2004). One study
of SARS-CoV suggested the timing of the type | IFN response
was critical in vivo (Channappanavar et al., 2016). Clinical ther-
apy using approved IFNs has been attempted for SARS-CoV,
MERS-CoV, and SARS-CoV-2 in the absence of a controlled trial
to mixed effect, resulting in anecdotal evidence suggesting
either rapid improvement or worsening of symptoms (Dong
etal., 2020b; Leiet al., 2020; Li and De Clercq, 2020). Elucidating
tissue- and cell-type-specific ISGs and their activity is essential
for understanding the role of IFNs in host defense during human
SARS-CoV-2 infection.

Massively parallel single-cell RNA-sequencing (scRNA-seq) is
transforming our ability to comprehensively map the cell types,
subsets, and states present during health and disease in barrier
tissues (Ordovas-Montanes et al, 2020; Ordovas-Montanes
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st al., 2018; Smillie et al., 2019). This has been particularly evident
in the elucidation of novel human epithelial and stromal cell sub-
sets and states (Ordovas-Montanes et al.,, 2018; Regev et al,,
2017; Ruiz Garcia et al., 2019; Schiller et al., 2019; Smillie et al.,
2019; Vieira Braga et al., 2019). Recently, scRNA-seq has been
applied to better understand the cellular variation present during
viral infection in vitro and in vivo (Russell et al., 2018; Steuerman
st al., 2018). Global single-cell profiling efforts such as the Human
Cell Atlas (HCA) initiative are ideally poised to rapidly share critical
data and enhance our understanding of disease during emergent
public health challenges (Sungnak et al., 2020).

Here, using published and unpublished datasets (all from non-
SARS-CoV-2-infected samples), we analyze human, NHP, and
mouse tissues that have been clinically identified to harbor virus
in patients exhibiting COVID-19 symptoms. We provide a
cautionary note on the interpretation of the scRNA-seq data pre-
sented below, given that many factors such as dissociation,
profiling method, and sequencing depth can influence results
(STAR Methods). Here, we focus our analysis and discussion
on the specific subsets where ACE2 and TMPRSS2 are enriched
and on relative comparisons within each dataset, rather than be-
tween datasets or equivalence to absolute numbers of total cells.
Across several studies of human and NHP tissues, we found
ISGs upregulated in ACE2-expressing cells.

Strikingly, by treating primary human upper airway basal cells
with distinct types of inflammatory cytokines, we demonstrate
that IFN-¢. drives ACE2 expression. Human influenza infection
also induces broader expression of ACE2 in upper airway epithe-
lial cells and is corroborated by publicly available databases.
Overall, our data provide motivation to better understand the
trade-offs of antiviral and/or IFN therapy in humans infected
with SARS-CoV-2 in order to balance host restriction, tissue
tolerance, and viral enhancement mechanisms (Davidson
et al., 2015; Fung and Liu, 2019; Imai et al., 2005; Iwasaki
et al., 2017; Kuba et al., 2005; Lei et al., 2020; Medzhitov et al.,
2012; Zou st al., 2014). Importantly, although our findings identify
similar cell subsets enriched for Ace2 in mice, neither in vitro nor
in vivo IFN-stimulation nor in vivo viral challenge substantially
alter Ace2 expression levels. The dynamic, species-specific
and multifaceted role of IFN raises implications for pre-clinical
COVID-19 disease modeling.

RESULTS

Lung Epithelial Cell Expression of Host Factors Used by
SARS-CoV-2 in Non-Human Primates and Humans

To investigate which cells within human and NHP tissues repre-
sent likely SARS-CoV-2 targets, we analyzed new and existing
scRNA-seq datasets to assess which cell types express ACE2,
alone or with TMPRSS2. In a previously unpublished dataset
consisting of NHP (Macaca mulatta) lung tissue collected after
necropsy of healthy adult animals and analyzed by using Seq-
Well v1 (Gierahn et al., 2017), we recovered at least 17 distinct
major cell types, including various lymphoid, myeloid, and stro-
mal populations (Figures 1A-1C; Table S1; STAR Methads).
ACEZ2 and TMPRSS2 were primarily expressed in epithelial cells,
with 6.7% of type Il pneumocytes expressing ACE2 and 3.8%
co-expressing ACE2 and TMPRSS2 (Figures 1B and 1C).
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Figure 1. Expression of ACEZ in Type Il Pneumocyties in Healthy Lungs of Non-human Primates

(A) Schematic of protocol for isolation of lung tissue at necropsy from healthy non-human primates (M. mufatta, n = 3), creation of scRNA-seq libraries by using
Seg-Well v1, and computational analysis to identify cell types by using unbiased methods. UMAP projection of 3,793 single cells, points colored by cell identity
(see STAR Methods).

(8) Uniform manifold approximation and prejection (UMAP) as in (A), points colored by detection of ACE2 (coronavirus receptor, top) or TMPRSS2 (coronavirus S
protein priming for entry, bottom). Color coding is as follows: black, RNA positive; blue, RNA negative.

(C) Dot plot of 2 defining genes for each cell type (Table S1) (Bonferroni-adjusted p < 0.001) and ACE2 and TMPRSS2. Dot size represents fraction of cells within
that type expressing a given gene, and color intensity represents binned count-based expression amount (log(scaled UMI+1)) among expressing cells. ACE2 is
enriched intype |l pneumccytes (6.7% expressing, Bonferreni-adjusted p = 8.62E—133), asis TMPRSS2 (29.5% expressing, Benferroni-adjusted p = 8.73E-153).
Of all type || pneumocytes, 3.8% co-express ACE2 and TMPRSS2 (Table S9). Red arrow indicates cell type with largest proportion of ACE2* TMPRSS2* cells.
(D) Genes differentially expressed among ACE2™ and ACE2  type || pneumocytes. (SCDE package, FDR-adjusted p < 0.05 for IFNGR2, NT5DC1, ARL6IP1, and
TRIM27; full results can be found in Table S1).

See also Table S1.

cells, and type | pneumocytes, albeit at diminished abundance
and frequency compared with type Il pneumocytes (Figure 1C;
Table S1).

Notably, the only double-positive cells observed were classified
withinthe type Il pneumocyte population; however, we also iden-
tified TMPRSS2 expression within club cells, ciliated epithelial
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Figure 2. Select Lung Epithelial Cells from Control, HIV-1-Infected. and My

ACE2 and TMPRSS2

is-Infected Human Donors Co-Express

i

(A) Schematic of protocel for isolation of human lung tissue from surgical excess, creation of scRNA-seq libraries by using Seg-Well S°, and computational
analysis to identify cell types by using unbiased methods. Shown on the right is a UMAP projection of 18,915 cells across 8 donors (n=3T8'HIV'; n=3T8";n=2
non-infected patients). Cells represented by points, colored according to cell type (see STAR Methods).

(8) UMAP projection as in (A), points colored by detection of ACE2 (top) or TMPRSS2 (bottom). Color coding is as follows: black, RNA positive; blue, RNA
negative.

(C) Dot plot of 2 defining genes for each cell type (FDR-adjusted p < 0.001), and ACE2 and TMPRSS2; dot size represents fraction of cells within cell type ex-
pressing a given gene, and coler intensity represents binned count-based expression amount (logiscaled UMI+1)) among expressing cells. All cluster-defining
genes are provided in Table S2. Red arrow indicates cell types with largest proportion of ACE2*TMPRSS2" cells.

(D) Volcano plotidentifying significantly upregulated genes in ACE2* TMPRSS2™ pneumocytes compared with all remaining pneumocytes. Red points represent

genes with a FDR-adjusted p < 0.05, and loga(fold change) >1.5. Text highlighting specific genes; the full list is available in Table 52.
(E) Expression of ACE2 across human donors by HIV and TB status (p = 0.009 by likelihood-ratio test).

See also Table S2.

Next, we compared ACE2* with ACE2 type |l pneumocytes
to explore broader gene programs that differentiate putative
SARS-CoV-2 target cells from cells of a similar phenotype and
ontogeny (Figure 1D; Table S1). Among genes significantly upre-
gulated in ACE2* type |l pneumocytes, we observed IFNGR2
(false discovery rate [FDR]-adjusted p = 0.022), a receptor for
type Il IFNs. Notably, previous work has demonstrated limited
anti-viral potency of IFN-y for SARS-associated coronaviruses,
compared with that of type | IFNs, at least in vitro (Sainz et al.,
2004; Zheng et al., 2004). Other co-regulated genes of potential
interest include TRIM27 (FDR-adjusted p = 0.025), as well as
NT5DC1 (FDR-adjusted p = 0.003) and ARL6/P1 (FDR-adjusted
p = 0.047), which were upregulated in the A549 adenocarcinoma
alveolar basal epithelial cell line after exposure to IFN-a and
IFN-y for 6 h (Sanda et al., 2006). We found IFNART consistently
expressed among both ACE2* type Il pneumocytes and
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ACE2-TMPRSS2+ co-expressing type Il pneumocytes, but its
level of upregulation compared with all remaining pneumocytes
did not meet statistical significance (FDR-adjusted p=0.11). This
analysis finds ACE2+ cells enriched within a rare fraction of
secretory cells in NHPs and that ACE2 expression is co-regu-
lated with genes involved in IFN responses.

To assess whether the findings from NHP lung cells were simi-
larly present in humans, we analyzed a previously unpublished
scRNA-seq dataset derived from surgical resections of fibrotic
lung tissue collected with Seq-Well 8% (Hughes et al., 2019). Un-
supervised analysis identified multiple cell types and subtypes of
immune cells (Figures 2A-2C; STAR Methods), as defined by the
genes displayed in Figure 2C (full lists available in Table £2).
Here, we found that ACE2 and TMPRSS2 were primarily ex-
pressed within type Il pneumocytes and ciliated cells, in line
with our analysis of the NHP-derived cells (Figures 1 and 2A,
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Figure 3. NHP and Human lleal Absorptive Enterocytes Co-Express ACE2 and TMPRSS2

(A) Expression ACE2 across diverse tissues in healthy NHPs (n = 3 animals; 52.858 cells).

(B) Schematic of protocol for isolation of NHP ileum {n = 5) at necropsy for scRNA-seq using Seg-Well v1, and computational pipeline to identify cell types by using
unbiased methods. Shown on the right is a UMAP projection of 4,515 cells colored by cell type.

(C) Dot plot of 2 defining genes for each cell type, with ACE2 and TMPRSS2. Dot size represents fraction of cells within cell type expressing a given gene, and color
intensity represents binned count-based expression amounts (log(scaled UMI+1)) among expressing cells. All cluster defining genes are provided in Table S4.
Red arrow indicates cell type with largest proportion of ACE2"TMPRSS2" cells.

(D) Schematic of protocol for isolation of human ileal cells from endoscopic pinch biopsies in non-inflamed regions {n = 13). Shown on the right is a tSNE plot of
13,689 epithelial cells selected from original dataset generated by 10x 3' v2 (see Figure S2), colored by cellular subsets.

(legend continued on next page)
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2B). In type Il pneumocytes (identified by unique expression of
surfactant proteins SFTPC, SFTPB, and SFTPAT), we found
1.4% of cells expressing ACE2 (FDR-adjusted p = 1.35E-21),
34.2% expressing TMPRSS2 (FDR-adjusted p < 1E—300), and
0.8% co-expressing both. In ciliated cells, we found 7% were
ACE2* (FDR-adjusted p = 5E—-64), 24.6% were TMPRSS2*
(FDR-adjusted p = 3.8E—30), and 5.3% co-expressed both.

As above, to assess for cellular pathways significantly co-ex-
pressed within putative target cells for SARS-CoV-2, we com-
puted differentially expressed genes between ACE2*TMPRSS2+
type Il pneumocytes and all other type Il pneumocytes (Figures
2C and 2D; Table 52). We found significant enrichment of
BATF among ACE2*TMPRSS2* cells (FDR-adjusted p
3.25E-7), which has been demonstrated previously to be upre-
gulated by type | and type Il IFNs (Murphy et al., 2013). Of note,
we also observed TRIM28 co-expressed with ACE2 and
TMPRSS2 among type Il pneumocytes in this dataset (FDR-
adjusted p = 2.34E—9), which might play a role in potentiating
an IFN response in lung epithelial cells (Krischuns et al., 2018).
Within this cohort of donors, 3 individuals were human immuno-
deficiency virus (HIV)* and diagnosed with active tuberculosis, 3
donors had active tuberculosis and were HIV , and 2 were nega-
tive for both pathogens. Surprisingly, we found that all of the
ACE2+ cells across all cell types were derived from HIV+ Myco-
bacterium tuberculosis (Mtb)* donors despite approximately
equivalent recovery of epithelial cell types from all donors (likeli-
hood-ratio test, p = 0.009) (Figure 2E). Given limited cell and pa-
tient numbers combined with potential sampling biases, we
caution that this observation requires much broader cohorts to
validate a potential role for co-infections; still, we note our obser-
vation is suggestive of a role for chronic IFNs in the induction of
ACE2, given that HIV infection is associated with persistent up-
regulation of ISGs, and we observed elevated amounts of /F-
NAR2, IFI30, and IKBKB (Utay and Douek, 2016) (FDR-adjusted
p = 1.1E-6, 8.8E-9, 1.57E—7, respectively; HIV* versus HIV
epithelial cells).

Next, using a previously unpublished scRNA-seq dataset con-
sisting of granuloma and adjacent, uninvolved lung samples
from Mtb-infected NHPs (Macaca fascicularis) collected with
Seq-Well S2, we identified subsets of epithelial cells expressing
ACE2 and TMPRSS2 (Figure S1; Table S3; STAR Methods). The
majority of ACE2*TMPRSS2* cells were, once again, type Il
pneumocytes (22%) and type | pneumocytes (9.7%) and were
largely enriched within granulomatous regions compared with
those in adjacent uninvolved lung (Figures S1B and S1C) (p =
0.006, Fisher Exact Test). ACE2*TMPRSS2* type |l pneumo-
cytes expressed significantly higher amounts of antimicrobial ef-
fectors such as LCN2 compared with remaining type Il pneumo-
cytes (Figure S1D). Cells with club cell/secretory, type |
pneumocyte, and ciliated cell types also contained some
ACE2+*TMPRSS2+ cells, but we did not have sufficient power
to detect significantly differentially expressed genes between
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these cells and other cells within those clusters. Altogether, we
identify ACE2+TMPRSS2+ cells in lower airways of humans
and NHPs with consistent cellular phenotypes and evidence
supporting a potential role for IFN-associated inflammation in
upregulation of ACE2,

lleal Absorptive Enteraocytes Express Host Factors Used
by SARS-CoV-2

Next, we examined several other tissues for ACE2-expressing
cells on the basis of the location of hallmark symptoms of
COVID-19, focusing on the gastrointestinal tract due to reports
of clinical symptoms and viral shedding (Xiac =t al,, 2020).
Leveraging a previously unpublished scRNA-seq atlas of NHP
(M. mulatta) tissues collected with Seq-Well v1, we observed
that the majority of ACE2+ cells reside in the small intestine, prin-
cipally within the ileum, jejunum, and, to a lesser extent, the liver
and colon (Figure 3A; STAR Methods). Critically, we note that, in
this experiment, the dissociation method used on each tissue
was optimized to preserve immune cell recovery, and therefore
under-sampled stromal and epithelial populations, as well as
neurons from the brain. Within the ileum, we identified ACE2+
cells as absorptive enterocytes on the basis of specific expres-
sion of ACE2 within cells defined by APOAT, SI, FABP6, and EN-
PEP, among others, by a likelihood-ratio test (FigLres 3B and 3C)
(p < 1E-300, 62% of all absorptive enterocytes; see Table 24).
All other epithelial subtypes expressed ACE2 to a lesser extent,
and variably co-expressed ACE2 with TMPRSS2 (see Tablz 54
for full statistics).

Persistent viral RNA in rectal swabs has been detected in pe-
diatric infection, even after negative nasopharyngeal tests (Xu
et al., 2020). Inan additional dataset consisting of endoscopic bi-
opsies from the terminal ileum of a human pediatric cohort (n =
13 donors, ranging in age from 10 to 18 years old), collected
with 10X 8’ v2, we confirmed a large abundance of ACE2* cells
with selective expression within absorptive enterocytes (29.7%
ACE2+, FDR-adjusted p = 2.46E—100) (Figures 2D and 3E; Table
55; STAR Methods). Furthermore, we identified a subset (888
cells, ~6.5% of all epithelial cells) that co-express both genes
(Figures S2A-S2C). We performed differential expression testing
and GO-term enrichment using these cells relative to matched
non-expressers to highlight putative biological functions en-
riched within them, such as metabolic processes and catalytic
activity, and to identify shared phenotypes of ACE2+*TMPRSS2+
ileal cells across both human and NHP cohorts (Table 55). We
speculate that viral targeting of these cells, taken from patients
without overt clinical viral infection, might help explain intestinal
symptoms. Finally, we compared ileal absorptive enterocytes
from healthy NHPs and NHPs infected with simian-human immu-
nodeficiency virus (SHIV) and then treated for 6 months with anti-
retroviral therapy (animal and infection characteristics published
in Calonna et al., 2018) (STAR Methods). We found significant
upregulation of ACE2, STATT, and IFI6 within the absorptive

(E). Dot plot of 2 defining genes for each cell type, with ACE2 and TMPRSS2. Dot size represents fraction of cells within cell type expressing a given gene, and
color intensity represents binned count-based expression amounts (leg(scaled UMI+1)) among expressing cells. All cluster defining genes are provided in Table
55. Red arrow indicates cell type with largest proportion of ACE2*TMPRSS2" cells.

(F). Expression of ACE2 (left) and TMPRSS2 (right) among all epithelial subsets from human donors.

See also Figure 52 and Tables S4 and S5.
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{legend continued on next page)
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enterocytes of SHIV-infected animals (which maintain chroni-
cally elevated amounts of IFNs and ISGs) compared with those
of uninfected controls (FDR-adjusted p < 2E-7) (Figure S2D)
(Desks et al., 2017; Utay and Douek, 2016).

Upper Airway Expression of Host Factors Used by SARS-
CoV-2

To identify potential viral target cells in nasal and sinus tissue,
two regions that are frequently primary sites of exposure for co-
ronaviruses, we analyzed existing scRNA-seq datasets from the
human upper airway (inferior turbinate and ethmoid sinus mu-
cosa) across a spectrum of healthy donors and individuals with
allergic inflammation due to chronic rhinosinusitis (CRS)
collected with Seq-Well v1 (Figurs 4A; STAR Methods) (Ordo-
vas-Montanes st al., 2018). We had previously noted a signifi-
cantly enriched IFN-dominated gene signature in inferior turbi-
nate secretory epithelial cells from both healthy and CRS
donors compared with CRS samples from the ethmoid sinus,
which were significantly enriched for interleukin-4 (IL-4)/IL-13
gene signatures (Giovannini-Chami et al,, 2012; Ordovas-Mon
tanes el al,, 2018). We speculate that these cells, taken from clin-
ically non-virally infected patients, yet constantly exposed to
environmental viruses, might provide one of the earliest locations
for coronaviruses to infect before spreading to other tissues. We
observed significant enrichment of ACE2 expression in apical
epithelial cells and, to a lesser extent, ciliated cells compared
with all cell types recovered from surgically resected mucosa
(1% of apical epithelial cells, FDR-adjusted p = 4.55E-6, n.s.
in ciliated cells) (Figure 4B; Table S6).

To better map putative SARS-CoV-2 targets among epithelial
subsets, we employed a finer-grained clustering method applied
to both ethmoid sinus surgical specimens and scrapings from
the inferior turbinate and ethmoid sinus (Figurss 4C—4F). Once
again, we observed selective expression of ACE2 within a minor-
ity of cell types, with 1.3% of all secretory cells expressing ACE2
(Flgur= 4C) (FDR-adjusted p = 0.00028), specifically sub-clusters
7and 13, which represent two varieties of secretory epithelial cell
(Figures 4C, 4F, and 4G). Cluster 7 secretory cells are marked by
S100P, LYPD2, PSCA, CEACAMS, and STEAP4; encompass
some MUCS5AC goblet cells; and contain the most significantly
enriched ACE2 and TMPRSS2 expression (4% express ACEZ2,
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FDR-adjusted p = 7.32E-28; 28% express TMPRSS2, FDR-
adjusted p = 2.15E—132; Table 56). We next explicitly gated cells
by their TMPRSS2 and ACE2 expression, identifying a rare sub-
set that co-expresses both, the majority of which fall within the
“Secretory Cluster 7" cell type (Figures 4E and 4F) (30 cells,
~0.3% of all upper airway secretory cells, 1.6% of goblet
“Secretory Cluster 7"). These findings are aligned with concur-
rent work by the HCA Lung Biological Network on human nasal
scRNA-seq data, which identified nasal secretory cells to be en-
riched for ACE2 and TMPRSS2 expression (Sungnak
et al., 2020).

Although we identified co-expression of ACE2 and TMPRSS2
infew airway cells overall, we detected ACE2 and TMPRSSZ2 sin-
gle- and double-positive cells in over 20 donors and thus posit
that these genes are enriched in secretory cells and are not a
product of individual-patient-driven variability (Figure S3A). Infe-
rior turbinate scrapings collected on Seg-Well S%, which in-
creases the resolution of lower-abundance transcripts
compared with Seg-Well v1, revealed consistent and specific
expression restricted to goblet secretory cells, but at a greater
detection frequency in samples from the same donors (Fig
ure S3B) (ACE2+ from 4.7% V1 to 9.8% S3 ACE2+TMPRSS2+
from 1.9% v1 to 4% S%) (Hughes et al, 2019). Using the gated
ACE2-TMPRSS2+ cells, we tested for differentially expressed
genes compared to the remaining secretory epithelial cells (full
results provided in Table S6). Notably, we observed significant
upregulation of ADAR, GBP2, OAS1, JAK1, and DUOX2 (FDR
adjusted, all p < 0.02) within ACE2*TMPRSS2+ cells, potentially
indicative of IFN signaling (Figure 4G). Almost all “Secretory
Cluster 7" cells were from inferior turbinate scrapings of healthy
and allergically inflamed individuals, few cells were from the
ethmoid sinus tissue of patients with chronic rhinosinusitis
without nasal polyps, and no cells were detected in polyp tissue
(Figure 4H). Gene Ontology (GO) analysis of enriched genes in
double-positive cells include processes related to intracellular
cytoskeleton and macromolecular localization and catabolism,
potentially involved in viral particle entry, packaging, and exocy-
tosis (Fung and Liu, 2019).

We next utilized IFN-inducible gene sets of relevance to hu-
man airway epithelial cells, which we derived from a prior study
by performing differential expression on a published dataset

intensity represents binned count-based expression amounts (logi{scaled UMI+1)) among expressing cells (see Table S& for statistics by subset). Red arrow
indicates cell types with largest proportion of ACE2"TMPRSS2™ cells.

(C) Dot plot for 2 defining genes for each cell type identified from granular clustering of epithelial cells (18,325 single cells) derived frem both ethmoid sinus and
inferior turbinate sampling (healthy inferior turbinate [3,681 cells; n = 3 samples], polyp-bearing patient inferior turbinate [1,370 cells; n = 4 samples], non-polyp
ethmoid sinus surgical samples [5,928 cells; n = 6 samples], and polyp surgical and scraping samples directly from polyp in ethmoid sinus [7,346 cells; n=8
samples]). Red arrow indicates cell type with largest propertion of ACE2' TMPRSS2" cells.

(D) tSNE of 18,325 single epithelial cells from inferior turbinate and ethmoid sinus (omitting immune cells). Colored by cell types 3,152 basal, 3,089 differentiating,
8,840 secretory, 1,105 ciliated, and 2,139 glandular cells.

(E) tSNE as in (D), identifying epithelial cells co-expressing ACE2 and TMPRSS2 (30 cells, black points).

(F) tSNE as in (D), colored by detailed cell types with higher granularity, as in (C).

(G) Individual differentially expressed genes between ACE2* TMPRSS2* cells and all other secretory epithelial cells (see Table 56 for full gene list with statistics).
Bonferroni-adjusted likelihood-ratio test p < 0.02 for all genes displayed.

(H) Stacked bar plot of each subset of epithelial cells among all epithelial cells by donor (gach bar) and sampling lecation (noted below graph) (unpaired tHtestp <
0.00035 for Secretory Goblet 7 inferior turbinate versus ethmoid sinus; see Table S6 for raw values).

(/) Violin plot of cell clusters inrespiratory epithelial cells (from Sigures 4C and 4F) ordered by average expression of [FN-a-induced gene signatures, presented as
agene module score; non-nermal distribution by Lilliefors test, Mann-Whitney U-test p = 2.2E—16, 1.21 effect size, IFN-« signature for Secretory Goblet Cluster 7
versus all epithelial cells. Arrow indicates cluster containing majority ACE2' TMPRSS2" cells.

See also Figure S3 and Table S6.
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where air-liquid interface cultures from primary human nasal
epithelial cells were treated with IFN-2A/D, IFN-B1a, IFN-v,
IL-4, or IL-13 (Giovannini-Chami et al., 2012; Ordovas-Mantanes
=t al., 2018). Using these gene lists, we scored the human nasal
epithelial cells analyzed by scRNA-seq described in Figures 4C
and 4F and found significant concomitant upregulation of the
IFN-a-stimulated gene set within ACE2*TMPRSS2+ secretory
goblet cluster 7 (Figure 41).

Type | Interferon IFN-« Drives ACE2 Expression in
Primary Human Nasal Epithelial Cells

The meta-analysis described above consistently identified an
association between ACE2 expression and canonical ISGs or
components of the IFN-signaling pathway. This prompted us
to investigate whether IFNs might play an active role in regulating
ACE2 expression levels in specific target cell subsets, thus
potentially allowing for a tissue-protective host response or
increased viral binding of SARS-CoV-2 through ACE2. Our initial
literature search indicated that IFN-y and IL-4 downregulate the
SARS-CoV receptor ACE2 in Vero E6 cells (African green mon-
key kidney epithelial cells [de Lang et al., 2006]), appearing to
invalidate this hypothesis. Relatedly, in vitro stimulation of
A549 cells, a commonly used cell line model for lung epithelia,
with IFN-a, IFN-y, and IFN-a+IFN-y for 24 h did not identify
ACE2asan ISG (Russallet al,, 207 8). This is potentially explained
by recent work that aimed to understand SARS-CoV-2 receptor
usage by performing screening studies within cell line models
and found that A549 cells did not express ACEZ2 and therefore
represents a poor model to understand regulation of this gene
(Letko et al,, 2020). While conducting experiments to directly
test the hypothesis that ACE2 is an ISG, we noted in our own
gene lists used for scoring from Ordovas-Montanes et al, 2018
and in a supplementary extended table available from Giovan-
nini-Chami et al., 2012 that ACE2 was in upregulated gene lists
after exposure to Type | [FN.

We directly tested whether IFN-¢. induces ACE2 in primary hu-
man upper airway epithelial cells in greater detail. We cultured
human primary basal (stem and progenitors) epithelial cells to
confluence and treated them with increasing doses (0.1-10 ng/
mL) of IFN-«2, IFN-v, IL-4, IL-13, IL-17A, or IL-1p for 12 h and
then performed bulk RNA-seq (Figure S3C). Only IFN-02 and
IFN-vy led to upregulation of ACE2 over the time period tested,
and compared with all other cytokines, IFN-a2 lead to greater
and more significant upregulation over all doses tested (Fig-
ure S3D,Wilcoxon test: IFN-22 FDR-adjusted p = 4.1E-07;
IFN-y p = 9.3E-03,Figures S3E and S3F, all statistical tests
compared with 0 ng/mL dose). We confirmed substantial and
dose-dependent induction of canonical members of the inter-
feron response after IFN-«2 and IFN-y (Figures S3G and S3H).
Conversely, we found that IFN-y, relative to IFN-«2, induced
potent upregulation of GBP5, a GTPase-like protein thought to
act as a viral restriction factor through inhibiting furin-mediated
protease activity, which could limit viral processing from infected
cells, whereas IFN-«2 more robustly induced [FITM1 (Fig
ure S3G-S3K) (Braun and Sautar, 2019).

To further extend and substantiate these findings, as above,
we stimulated primary mouse tracheal basal cells, the commonly
used human bronchial cell line BEAS-2B, and upper airway basal
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cells from two human donors (Figure 5A-D). We confirmed
appropriate induction of an IFN response in each cell type by
performing differential expression testing between untreated
cells and |IFN-treated cells for each condition (Table S7). Within
each cell type, stimulation with IFN-¢2, [FN-y, or IFN-{ resulted
in dose-dependent upregulation of canonical ISGs, including
STAT1/Stat1, BST2/Bst2, XAF1/Xafl, IFI35/fi35, MX1/Mx1,
and GBP2/Gbp2. Notably, Ace2 expression was not robustly
induced in basal cells derived from healthy mouse trachea under
any interferon stimulation condition (Figure 5A). The magnitude
of ACE2 upregulation was diminished in BEAS-2B cells
compared to that in our original findings in primary human upper
airway epithelial cells, but reached statistical significance
compared with that of the untreated condition after IFN-y expo-
sure (Figure 5B). In primary basal cells derived from healthy nasal
mucosa, we confirmed significant induction of ACE2 after IFN-
22 stimulation and, to a lesser extent, after stimulation with
IFN-y (IFN-a2-stimulated: both Bonferroni-adjusted p < 0.001;
IFN-y-stimulated: both Bonferroni-adjusted p < 0.05) (Figures
5C and 5D). Expression of ACE2 was significantly correlated
with expression of STATT in all human cell types, with a larger ef-
fect size and correlation coefficient in primary human basal cells
(Figur= SE-H). These experiments support a relationship be-
tween induction of the canonical IFN response, including key
transcription factors and transcriptional regulation of the ACE2
locus. Finally, among primary human samples, we confirmed
the dose-dependence of ACEZ2 upregulation after IFN-z2 or
IFN-y treatment and significant induction of ACE2 after IFN-«2
stimulation at concentrations as low as 0.1-0.5 ng/mL (Fig-
ure 5l-L).

Next, using a publicly available resource (interferaine.org) that
hosts genomic and transcriptomic data from cells or tissues
treated with IFN, we queried ACE2 expression within human
and mouse cells, searching for datasets with a log,-fold-change
of >1 or < —1 compared with untreated samples, including all IFN
types (Rusinova et al., 2013), We recovered 21 datasets span-
ning 8 distinct primary tissues or cell lines with non-trivial
changes in ACE2 expression after both type | and type Il IFN
treatment (Figure S4A). We observed substantial upregulation
of ACE2 in primary skin and primary bronchial cells treated
with either type | or type Il IFN (> 5-fold upregulation compared
with that in untreated cells), in strong support of our in vitro
data (Figures 5C, 5D, 5G-5L, and S3D-S3F). Immune cell types,
such as CD4 T cells and macrophages, were noticeably absent
from datasets with a significant change in ACE2 expression after
IFN stimulation or were even found to downregulate ACE2 (e.g.,
primary CD4 T cells + type | IFN) (Figure 54A, and in our analysis
of scRNA-seq peripheral blood mononuclear cell data from But
ler et al, (2018); data not shown).

Given that the majority of cells robustly upregulating ACE2
were epithelial, this observation potentially explains why previ-
ous analyses to define canonical ISGs within immune popula-
tions did not identify ACE2 as an induced gene. Furthermore, us-
ing both Transcription Factor database (TRANSFAC) data
hosted by the interferome database, as well as chromatin immu-
noprecipitation sequencing (ChlP-seq) data (provided by the
ENCODE Factorbook repository), we found evidence for
STAT1, STATS, IRF8, and IRF1 binding sites within —1500-
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Figure 5. ACE2 is an Interferon-Stimulated Gene In Primary Human Barrier Tissue Epithelial Cells

(A-D) Basal epithelial cells from distinct sources were cultured to confluence and treated with increasing doses (0.1-10 ng/mL) of IFN-«2, IFN-y, IL-4, IL-17A, ang/
or IFN-B for 12 h and bulk RNA-seq analysis was performed. Expression of ACE2 (human) or Ace? (mouse) by cell type and stimulation condition. (&) Primary
mouse basal cells from tracheal epithelium are shown. (B) BEAS-28 human bronchial cell line is shown. (C) Primary human basal cells from nasal scraping, Donor
1, is shown. (D) Primary human basal cells from nasal scraping, Donor 2. Abbreviation is as follows: TP10K, transcripts per 10,000 reads. **p < 0.001, **p < 0.01,
“p < 0.05, Bonferroni-corrected t test compared with unireated condition.

(E-H) Co-expression of STAT1/Stai1 and ACE2/Ace2 by cell type. (E) Primary mouse basal cells from tracheal epithelium are shown. (F) BEAS-2B human
brenchial cell line is shown. (G) Primary human basal cells from nasal scraping, Dener 1, are shown. (H) Primary human basal cells from nasal scraping, Donor 2
are shown. Abbreviation is as follows: TP10K, transcripts per 10,000 reads. Statistical significance assessed by Spearman’s rank correlation.

(I-L) Expression of ACE2 in primary human basal cells from nasal scrapings across arange of concentrations of |FN-y or IFN-22. (/) IFN-«2 dose response in Donor
1{p < 0.001 by one-way ANOVA) is shown. {J) IFN-y dose response in Doner 1 (p < 0.01 by one-way ANOVA) is shown. (K) IFN-22 dose response in Donor 2 (p <
0.001 by ocne-way ANOVA) is shown. (L) IFN-y dose response in Donor 2 (p < 0.001 by one-way ANOVA). Abbreviation is as follows: TP10K, transcripts per 10,000
reads. ***p < 0.001, p < 0.01, *p < 0.05, Bonferrcni-corrected post hoc testing compared with 0 ng/mL condition.

See also Figures S3 and S4 and Table S7

500 bp of the transcription start site of ACE2 (all in human
studies, Figure S4B) (Gerstein et al., 2012, Matys et al., 2003;
Wang et al,, 2012; Wang &t al., 2013). This finding is supportive
of our current hypothesis that ACE2 represents a previously un-
appreciated ISG in epithelial cells within barrier tissues.

Given minimal upregulation of Ace2 among primary mouse
basal cells in vitro, we were curious as to whether Ace2 repre-
sented a murine ISG in vivo. We treated two mice intranasally
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with saline and two mice intranasally with 10,000 units of IFN-a
(Guerrero-Plata et al., 2005). After 12 h, we isolated the nasal mu-
cosa, consisting of both respiratory and olfactory epithelium, with
underlying lamina propria, and performed scRNA-seq using Seq-
Well S3 (Figura S5A). We collected from both tissue sites because
of early reports of anosmia in COVID-19 (Lechien et al,, 2020). We
recovered 11,358 single cells, including epithelial, stromal,
neuronal, and immune cell types, generating the largest single-
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Figure 6. /n Vivo Administration of Interferons in Mice Does Not Induce Ace2, and ACE2 Is Induced in Goblet Secretory Cells during Human
Influenza Infection

(A) UMAP of 11,358 single cells from mouse nasal epithelium (n = 4.

(B) UMAP projection as in {A), peints colored by detection of Ace2 (SARS-CoV-2 receptor homelog). Color coding is as follows: black, RNA pesitive; blue, RNA
negative.

(C) Percent of Ace2” cells by treatment condition (n = 4 arrays per condition; n = 2 arrays per mouse). Black bars indicate Ace2* cells; white bars indicate Ace?
cells. p = 0.4 by Student’s t test.

(D) Heatmap of cell-type-defining genes (Trp63 and Kri17), interferon-induced genes (irf7, Stat1, irf9, and Oasl2), and Ace2 among basal epithelial cells,
separated by cells derived from saline-treated mice (left) and IFN-«-treated mice (right). Statistical significance by likelihood-ratio test with Bonferroni correction
is shown. A full list of differentially expressed genes can be found in Table 8.

(E) Schematic for sampling cells derived from nasal washes of n= 18 human donors with and without current influenza A or 8 infection for Seq-Well v1 (35,840
single cells). See Cao et al., (2020).

(F and G) ACE2 expressicn among goblet cells (F) and squamous cells (G) by infection status. Shown are Healthy Donor cells from influenza-negative donors
(white); Bystander Cells from influenza A (|AV)- or influenza B (| BV)-infected donors, no intracellular viral RNA detected (black); Flu Viral RNA" Cells with detectable
intracellular influenza A or B viral RNA (red). Statistical significance by Wilcoxon test with Bonferroni correction, n.s. for Bystander versus Flu Viral RNA*.

See also Figure S5 and Tables S6 and S8,

cell atlas of mouse respiratory and olfactory mucosa to date (Fig

ures 6A and S5B). We annotated all 36 clusters, focusing our
attention on epithelial cell clusters, given that we noted enrich-
ment for Ace2 and Tmprss2 within epithelial cell subsets, consis-
tent with our human and NHP results (Table S8). Specifically, we
found Ace2 enriched within olffactory epithelial gland cells,
Mucbb*Scgblc1+ goblet cells, basal epithelial cells, and myofi-
broblasts/pericytes (Bonferroni-corrected p < 0.01) (Figures 6B

and S5B) (Brann et al., 2020; Dear et al., 1991; Montoro et al.,
2018; Tepe et al., 2018). Notably, Furin was enriched within olfac-
tory epithelial gland cells (Table S8). Next, we asked whether a
12 h stimulation with IFN-« would upregulate Ace2 in vivo.
Focusing on basalepithelial cells, which contain the highest abun-
dance of Ace2* cells, we found that despite robust upregulation of
canonical murine ISGs, Ace2 expression was only slightly
elevated after IFN-a treatment (Figures 6C, 6D, S5C, and S5D).
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This observation was supported by analysis of scRNA-seq
data from 5,558 epithelial cells from the Iungs of mice 3-6 days
after intranasal infection with murine gamma herpesvirus-68
(MHVE8) (Figure SSE). Here, we found significant enrichment of
Ace2* cells within type |l pneumocytes, in line with our data
from NHP and human lungs (Figures S5F). We did not observe
changes in Ace2 expression among viral-transcript-positive cells
or “bystander” type |l pneumocytes (those without detectable
cell-associated viral RNA in MHV68-infected animals), nor did
we see significant alterations in Ace2+ cell abundance among
MHV68-infected mice lacking IFN-yR (Figure S5G and S5H).
These observations were in agreement with our in vitro murine
basal cell assay (Figurs 5A and 5E).

Finally, we soughtto validate our hypothesis that ACE2 is upre-
gulated in human epithelial cells during upper airway viral infec-
tions, which are known to induce a robust IFN response (Eailey
at al,, 2014; Everitt et al,, 2012; lwasaki and Pillai, 2014; Jewell
stal, 2010; Russell et al,, 2018; Steuerman et al,, 2018), We re-
analyzed a publicly available dataset of RNA-seq from human
lung explants isolated after surgical resections that were infected
with influenza A virus ex vivo for 24 h. Here, we found that ACE2
expression was significantly correlated with that of SFTPC, sup-
porting our hypothesis that ACE2 is expressed within type I
pneumocytes (Figures 1C, 2C, 551, and S5dJ) (Matos =t al,,
2012). Furthermore, although the abundance of SFTPC was not
significantly altered by influenza A virus infection, ACE2 expres-
sion was significantly upregulated after viral exposure (p =
0.0054, ratio paired t test) (Figures S5K and S5L). This suggests
that influenza A virus infection increases ACE2 expression.
Nevertheless, these population-level analyses are not able to
definitively resolve specific cell subsets of relevance, nor whether
they are directly infected cells or bystanders of infection.

In order to address these questions, we leveraged an ongoing
scRNA-seq study of nasal washes from 18 individuals with
confirmed influenza A virus or influenza B virus infection or
healthy controls collected with Seq-Well vi, which yielded
35,840 cells resolved into 17 distinct cell types (Fiuure 5E;
STAR Methods) (Cao et al,, 2020). We investigated the cell types
with greatest enrichment for ACE2 and TMPRSS2 in non-in-
fected controls and individuals with influenza A and B. Strikingly,
ACE2 was most upregulated in samples from influenza-virus-in-
fected individuals within bystander goblet or squamous cells not
directly infected by virus (Figures 6F and 6G). ACE2*TMPRSS2+
goblet cells during influenza infection exhibited enrichment for
canonical ISGs such as the CXCL9/CXCL10/CXCL11 gene clus-
ter; correspondence with ACE2*TMPRSS2+ goblet cells in
healthy and allergic nasal scrapings; and a shared overlap in
ISGs including GBP2, ZNFX1, ADAR, and ACE2 (significantly
differentially expressed gene lists) (Table S6). Together, our
data suggest that ACE2 is an ISG in vitro and in vivo in human pri-
mary upper airway epithelial basal cells, but that the murine ho-
molog Ace2 is not in airway epithelial basal cells or pulmonary
epithelial cells in vitro or in vivo. Collectively, our findings suggest
that careful considerations of animal and cellular models will be
needed for assessing therapeutic interventions targeting the IFN
system when studying ACE2/Ace2-associated biology.

Finally, because our in vivo and in vitro work indicate that IFN
might promote human cellular targets for SARS-CoV-2 infection
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in the human upper airway by inducing ACE2, we attempted to
extend our transcriptomic data on IFN-driven expression of
ACE2 to protein-level induction of ACE2. As testing of various
commercially available polyclonal antibody preparations found
broad evidence for non-specific or inconclusive staining in histo-
logical immunofluorescent based readouts (data not shown), we
assessed whether IFN-y-stimulated human bronchial air-liquid
interface cultures induced ACE2 within 24 h. Our results show
that cells from one patient robustly induced ACE2 (+2.02x), cells
from another mildly induced ACE2 (+1.21x) and two patient's
cells showed minor changes (+/—1.12x) (Figure S5M). We pro-
vide a note of caution as these cells were derived from asthmatic
patients, and the overall changes did not reach significance.
Furthermore, we could not determine cell surface localization
of ACE2 but do note that these results align with our transcrip-
tomic data.

DISCUSSION

Here, we utilize scRNA-seq across various barrier tissues and
model organisms to identify the potential initial cellular targets
of SARS-CoV-2 infection. To review the data presented: (1) we
found that expression of the cellular entry receptor for SARS-
CoV-2, ACE2, is primarily restricted to type |l pneumocytes in
the lung, absorptive enterocytes within the gut, and goblet
secretory cells of the nasal mucosa; (2) ACE2 and TMPRSS2
co-expression in respiratory tissues is consistently found only
among a rare subset of epithelial cells; (3) we observed similar-
ities in the cellular identities and frequencies of putative SARS-
CoV-2 target cells across human and NHP cohorts; (4) we
observe increased expression of ACE2 during SHIV and TB
infection of NHPs, and HIV/TB co-infection and influenza infec-
tion of humans compared with that in matched controls but
caution that none of the datasets presented here were designed
to answer this specific query. Specific targeting of these cell sub-
sets has only been described for a handful of viruses, including
the following: goblet cells by human adenovirus-5p and entero-
virus 71, type Il pneumocytes by H5N1 avian influenza, and
absorptive enterocytes by rotavirus (Fleming et al., 2014, Good
at al,, 2019; Holly and Smith, 2018; Weinheimer et al,, 2012).
Additionally, we provide an overall note of caution when inter-
preting scRNA-seq data for low abundance transcripts like ACE2
and TMPRSS2 because detection inefficiencies might result in
an underestimation of the actual frequencies of ACE2* or
ACE2*TMPRSS2+ cells in a tissue. Moreover, the protein
amounts of each might differ from their mRNA abundances
(Genshaft st al., 2016; Jovanovic et al., 2015; Rabani et al.,
2011, Shalek et al,, 2013). We also present datasets separately,
given that each study differed in its methods of tissue processing
and collection, which can influence the frequency of recovered
cell subsets (STAR Methods). We provide Table 89 as a sum-
mary of ACE2+ and ACE2*TMPRSS2+ cells across various data-
sets. Moreover, we present Figure 56, which describes statisti-
cal modeling and power calculations underlying detection and
dropout of ACE2, to help guide interpretation of these data.
This includes an examination of the probability to detect a lowly
expressed transcript like ACE2 within a cell, as well as upper
bound estimates on the percentage of positive cells within a
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cluster, considering the effects of transcript counts, sequencing
depth, and cell numbers in these calculations (STAR Methads).

Whether ACE2 and TMPRSS2 are needed on the same cell or
soluble proteases can activate SARS-CoV-2 S protein to invade
ACE2 single-positive cells is an area of active inquiry (Coutard
st al., 2020, Letko et al., 2020). Importantly, rapidly evolving liter-
ature has identified that SARS-CoV-2-S might have a furin cleav-
age site, leading to a broader set of host proteases that could
mediate S protein activation (Bugae et al., 2009; Coutard et al.,
2020; Walls et al., 2020). However, because an active S protein
has a finite lifetime to find a target cell membrane, the timing
and cellular location of S protein activation is key to consider.
Activation events proximal to the plasma membrane have been
shown to be most effective for SARS-CoV entry (Shulla
et al., 2011).

Our study finds that type | IFNs, and to a lesser extent type Il
IFNs, upregulate ACE2. This is based on several lines of evi-
dence: (1) we identified a human goblet secretory cell subset in
upper airway nasal epithelium enriched for ACE2 expression to
have the highest IFN-«-induced gene signature; (2) we found
that IFN-«, and to a lesser extent IFN-B or IFN-y, induced
ACE2 expression in a published dataset of air-liquid interface
cultures derived from human nasal epithelial cells (Giovannini
Chami et al., 2012; Ordovas-Montanes et al., 2018); (3) we
extended our search through the Interferome database (Rusi
nova et al., 2013) and found that, in epithelial barrier tissues,
type | IFNs upregulate ACE2 in multiple studies, especially in pri-
mary bronchial cells and keratinocytes (Rusinova et al., 2013); (4)
we found two STAT1 binding sites in the promoter of ACE2; (5) in
our unpublished atlas of SHIV-infected macaques, known to
have elevated amounts of chronic IFN signaling, we found
ACEZ2 upregulation in absorptive enterocytes; (6) we directly pro-
vided evidence for IFN-«, and to some extent IFN-vy, inducing
ACEZ2 expression in primary human upper airway basal cells;
and (7) influenza infection in humans, a known inducer of the
IFN pathway, leads to increased ACE2 expression in goblet
secretory cells of the nasal epithelium (Cao et al., 2020).

Altogether, our own and publicly available data highlight that
ACE2 might have been missed as a canonical ISG because of
its notable absence in peripheral blood mononuclear cell data-
sets and in lung-derived transformed cell lines such as the
A549 cell line (Butler st al., 2018; Letko et al., 2020; Rusinova
st al, 2013). Importantly, other groups have independently
analyzed publicly available datasets, some referenced in our
work, and observed ACE2's behavior as an ISG (Wang and
Cheng, 2020). Furthermore, we found weak IFN- or virally driven
induction of Ace2 in murine cells and tissues. This highlights the
importance of studying primary human epithelial cells and the
careful consideration of appropriately selected gene lists and
in vitro models of in vivo cellular systems for understanding hu-
man biology (Jonsdottir and Dijkman, 2016; Mead and Karp,
2019; Regev et al., 2017).

As SARS-CoV-S leads to ACE2-receptor-mediated internali-
zation, the host IFN response could thus promote the ability for
SARS-CoV and SARS-CoV-2 to maintain cellular targets in
neighboring human upper airway epithelial cells. Altogether
along with a study of HCoV-OC43, which co-opts IFN-inducible
transmembrane 2 (IFITM2) and IFITM3 to promote viral entry, this
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adds to the growing evidence that coronaviruses, as well as
other viruses, have evolved to leverage features of the human
IFN pathway (Fung and Liu, 2019; Mar et al., 2018; Zhao et al.,
2014). Whether type | IFNs are net protective or detrimental to
the host might depend on the stage of infection; cell subsets in
question; the SARS viral clade (Channappanavar et al., 2016;
Channappanavar et al,, 2019; Channappanavar and Perlman,
2017; Davidson et al., 2015); and other factors such as co-infec-
tion, age, gender, and co-morbidities, among others. Under-
standing the specific host restriction factors targeting SARS-
CoV-2 and identifying specific drivers of these genes in the
absence of ACE2 upregulation might provide strategies to disso-
ciate the dual roles of IFN in certain coronavirus infections.
Whether IFNs upregulate ACE2 in putative target cell subsets
in vivo will be of significant interest to define in future work
once current COVID-19-related restrictions on basic scientific in-
quiry are lifted (Qian et al., 2013).

ACE2 is a central component of the renin-angiotensin system,
which has emerged as a key regulator of sterile- or microbially
induced lung pathology (Iinai et al,, 2005). In brief, ACE cleaves
angiotensin | to generate angiotensin Il (Skeggs et al., 1980).
Angiotensin |l then acts to drive acute lung injury through various
mechanisms, including increased vascular permeability (/mai
et al., 2005). Amounts of angiotensin Il in humans and mice are
elevated during influenza infection, and ACE2 exerts tissue-pro-
tective functions by reducing amounts of angiotensin Il (Zou
et al., 2014). Binding of SARS-CoV-S to mouse ACE2 in vivo
reduced ACE2 expression leading to acute acid-aspiration-
induced lung failure (Kuba et al., 2005). Depending on the ques-
tions asked in future work, there are mouse models available on
the basis of transgenic expression of human ACE2 (required for
overt infectious pathology of SARS-CoV in mice), there are es-
tablished NHP models available of SARS-CoV infection in
M. fascicularis and C. aethiops, and early reports suggest symp-
tomatic infection in M. mulatta and M. fascicularis models for
SARS-CoV-2 (Bao et al., 2020; McCray et al., 2007; Munster
et al., 2020; Rockx et al., 2020; Simits et al., 2011). For example,
examining the efficacy of recombinant human ACE2 to act as a
decoy receptor or the effect of “ACE inhibitors” in patients
with, or at risk for, COVID-19 will require careful experimentation
in appropriate models together with well-controlled clinical trials
{Hofmamn et al., 2004; Monteil et al., 2020; Vaduganathan
etal., 2020).

IFN responses that induce |SGs are essential for host antiviral
defense in mice, NHPs, and humans (Bailey et al., 2014; Dupuis
et al., 2003; Everift et al, 2012). Canenical ISGs function by
directly restricting viruses and reducing burden (Schneider
etal,, 2014). More recently, disease tolerance to equivalent path-
ogen burden by factors that increase the ability of the host to
tolerate tissue damage has been identified as part of a combined
host defense strategy (lwasaki et al., 2017; Iwasaki and Pillai,
2014; Medzhitov et al., 2012; Schneider and Ayres, 2008). Dis-
ease tolerance factors in the lung include IL-22 and amphiregulin
(lwasakietal,, 2017). During acute infectionintherespiratory sys-
tem, ACEZ2 is critical for early tissue tolerance responses to respi-
ratory infection, including H5N1 influenza(Huang etal,, 2014; Zou
et al., 2014). However, our discovery that ACE2 is an ISG in hu-
man epithelial cells, along with SARS-CoV-2 utilizing host ACE2
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to gain entry to cells, suggests that SARS-CoV and SARS-CoV-2
might exploit the ACE2-mediated tissue-protective response to
provide further cellular targets for entry. This potential strategy
employed by SARS-CoV-2 could present a unique challenge
for the human host and is distinct from HCoV-OC43, which tar-
gets the two restriction factors IFITM2 and IFITM3 (Zhzo et al.,
20714). Our study provides motivation to understand the specific
role and balance of type | and type Il IFNs, as well as type Il
IFNs, in tissue protection during, and host restriction of,
SARS-CoV-2 infection. Key experiments to understand ACE2
as an ISG in tissue protection or genuine tolerance will require
the appropriate mouse, NHP, or other model in BSL3 or BSL4
facilities to execute SARS-CoV-2 viral infections and measure
host tissue health along with viral loads. Further work will
also be needed to understand how co-infections, as well as
other host factors, might affect both the susceptibility to, and
dynamics of, host SARS-CoV-2 infection. Moreover, carefully
controlled clinical trials will be essential to determine the overall
effects of different IFNs (Prokunina-Olssan et al., 2020).

Altogether, we anticipate that comprehensive characterization
of the putative cellular targets of SARS-CoV-2 will be critical to
understand basic mechanisms of viraltropism and disease path-
ophysiology, inform differential susceptibility among vulnerable
populations, and potentially suggest unanticipated targets for
drug inhibitors of viral infection. The cellular targets we nominate
will need to be confirmed by specific reagents for SARS-CoV-2,
as done for SARS-CoV (Ding =t al., 2004). Furthermore, the tran-
scriptional response to the virus will need to be rigorously char-
acterized in appropriate in vitro and in vivo model systems
(Blanco-Melo et al,, 2020). We provide gene lists associated
with target cells in specific tissues and diseases to aid the com-
munity in understanding this emergent disease. A concurrent
HCA Lung Biological Network study assessing ACE2 and
TMPRSS2 across more tissues also identified enrichment in
nasal goblet and ciliated cells (Sungnak =t al,, 2020). Other
studies are considering additional tissues; co-variates such as
age, sex, and co-infection state; and represent a large coordi-
nated international effort to the ongoing crisis (Finto et al,,
2020). One study in particular identified upregulation of ACE2
by respiratory viruses and TMPRSS2 by IL-13 in a pediatric
cohort, suggesting further links to how underlying allergic condi-
tions or co-infections might modulate these two SARS-CoV-2-
related host factors (Sajuthi et al., 2020).

During the preparation of this manuscript, several papers have
been posted to bioRxiv assessing patterns of ACE2* and
TMPRSS2+ cells in barrier tissues (Brann =t al., 2020; Lukassen
etal., 2020; Qi etal., 2020; Wu et al., 2020; Zhang st al., 2020). At
a high level, these studies are largely in agreement with
our report. Furthermore, another study appeared on medRxiv
profiling bronchoalveolar lavage fluid from 3 severe and 3 mild
COVID-19 patients, though they were unable to profile sufficient
numbers of epithelial cells (Lizc 2t al., 2020).

Our study highlights the power of scRNA-seq datasets, both
existing and novel, to derive hypotheses relevant to human dis-
ease that might differ from paradigms established by using cell
lines. Further work will be critical to determine how SARS-
CoV-2 influences temporal dynamics of host responses at sin-
gle-cell resolution and which host factors might affect this (Kazer

1030 Cell 787, 1016-1035, May 28, 2020

90

Cel

et al, 2020). Given the unappreciated complexities of host-path-
ogen interactions between humans and SARS-CoV-2, the best
measures to combat this pandemic continue to be surveillance
and avoidance—especially given that a deep understanding of
the full spectrum of resistance and tolerance mechanisms will
require the concerted efforts of scientists around the globe
(Amanat et al,, 2020; Chu et al,, 2020; Hadfield et al., 2018).
Here, we seek to share our initial findings and data so that other
groups might build on this discovery of ACE2 as an ISG and
further consider the careful balance between tissue tolerance
and viral infection needed at the human airway epithelium.
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REAGENT or RESOURGE SOURCE IDENTIFIER
Biological Samples
M. mufatta lung, bone marrow, brain, colon, Washington National Primate Research N/A
ileurmn, jejunum, liver, lung, peripheral blood, Center
spleen, thymus, tonsil, and lymph nodes
from various sites
Human lung tissue from surgical excess University of KwaZulu-Natal IRB Code:!
BE024/08
Hurman non-inflamed ileal pinch biopsies Multi-center clinical study, approved by the IRB Code:
Institutional Review Board at Boston IRB-P00030820
Children’s Hospital
Human nasal lavage University of Massachusetts Medical N/A
School
Human nasal scraping, polyp scrapings, Partners HealthCare Institute N/A
ethmoid sinus surgical tissue samples
M. fascicularis lung and granulomatous University of Pittsburgh School of Medicine N/A
tissue
Antibodies
anti-AGE2 human antibody, goat polyclonal R&D Cat#AF933
Bacterial and Virus Strains
MHV-68 Adler =t 21, 2000 N/A
Mycobactenum Tuberculosis, Modified Martin etal 2007 N/A
Erdman Strain
Chemicals, Peptides, and Recombinant Proteins
2-Mercaptoethanol Sigma Cat#M3148-25ML
RLT Buffer QIAGEN Cat#78216
dNTP New England BioLabs Cat#N0447L
RNase Inhibitor Fisher Scientific Cat#AM2696
Maxima RNaseH-minus RT Enzyme Fisher Scientific Cat#EPO753
MgClz Sigma Cat#63062-100ML
Betaine Sigma Cat#B0300-5VL
AMPure RNAClean XP RNA-SPRI beads Beckman Coulter Cat#A63987
AMPure XP SPRI beads Beckman Coulter Cat#A63881
Guanidinium thiocyanate Sigma Cat#AM9422
Sarkosyl Sigma Cat#l7414
Exonuclease | New England BioLabs Cat#M0223S
Klenow Fragment New England BioLabs Cat#M0212L
DNase | Roche Cat#10104152001
Collagenase IV Life Technologies Cat#17104018
Collagenase D Roche Cat#11088858001
Liberase TM Roche Cat#5401 112001
TrypLE Thermo Fisher Cat#12604013
ACK Buffer Themo Fisher Cat#A1049201
IFN-a, Biolegend Cat# 752802
Dispase || Thermo Fisher Cat#17105041
Elastase Worthington Biochem Cat#L.S002292
Pneumacult-Ex serum-free media StemCell Technologies, Inc. Cat#05040
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REAGENT or RESOURCE SOURCE IDENTIFIER

IL-4, human Biolegend Cat#574002
IL17A, human Biolegend Cat#570502

IFNy, human Biolegend Cat#570202
IFNy, mouse Peprotech Cat#315-05

IFNe, human Biolegend Cat#592702
IFNo, mouse Biolegend Cat#752802
IFNB, mouse R&D Systems Cat#8234-MB-010
Critical Commercial Assays

Nextera XT DNA Library Preparation Kit lllumina Cat#FC-131-1096
High Sensitivity D5000 ScreenTape Agilent Cat#5067-5592
Qubit dsDNA High-Sensitivity kit ThermoFisher Cat#Q32854
NextSeq 500/550 High Output v2 (75 llumina Cat#FC-404-2005
cycles)

NovaSeq 6000 S2 (100 cycles) lllumina Cat#20012862
Kapa HiFi HotStart ReadyMix Kapa Biosystems Cat#KK2602
MACOSKO-2011-10 mRNA Capture Beads ChemGenes Cat#NC0927472
Tumor Dissociation Kit, Human Miltenyi Biotec Cat#130-095-929
Chromium Single Cell 3’ v2 10X Genomics Cat#120237

Deposited Data

scRNA-seq Processed Data

scRNA-seq Processed Data

scRNA-seq Processed Data

scRNA-seq Processed Data

scRNA-seq Processed Data (all species)
and FASTQ files (for NHP and murine
datasets)

scRNA-seq data from human nasal mucosa

Human reference genome NCBI build 38
(GRCh38)

Human reference genome NCBI build 19
Mouse reference genome NCBI build 10

Macaca mulatta reference genome
assembly 8.0.1, annotation 102

Macaca fascicularis reference genome
assembly 5, annotation 101

Interferome Database

RNA-seq from human lung explants =
ex vivo IAV infection

RNA-seq from human nasal epithelial cells

This paper

This paper

This paper

This paper

This paper

Ordovas-Montanes &t al., 2018

Genome Reference Consortium

Genome Reference Consortium

Genome Reference Consortium

NCBI Eukaryotic Genome Annotation

Pipeline

NCBI Eukaryotic Genome Annotation

Pipeline
Rusinova et al., 2013
Matos et al., 2018

Giovannini-Chami etal.. 2012

hitpst//singlecell broadinstitute.arg/
single_cell?scpbr=the-alexandria-project
https:/drivie.goaale.cony/drive/folders/
| bXClgNeZ7wLuVOT 1 6gphwios
ce2kKhV?usp=sharing
hitps://chanzuckerberg.github.io/
cellxgene/posts/

cellxgene_cziscience com
https://singlecell broadinstitute org/
single_cell/covid 19

GEO: GSE148829

https://singlecell broadinstitute org/
single_cell/study/SCP253/allergic-
inflammiatory-memory-in-hunan-
respiratory-epithelial-progenitar-cells
http:/Awww.nebi.nim.nih.gov/projectsy
genome/fassembly/arc/hurnan/
hitp://www.niebi nlrm.nih.gov/projects/
genarne/assembly/gre/human/
hitp://www.nebi nirm.nih.gov/projects/
genome/assembly/gre/mouse/
https://www.ncbl.nlm nih.gov/genome/
annotation euk/Macaca_mulatta/1 02/
https://www.nebi.nlm.nih.gov/genome/
annotation_euk/Macaca fascicularis/107/
hitp://www.interferarne.ora/

GEO: GSE135069

GEO: GSE19190, GSE22147
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Expetimental Models: Cell Lines

Human: Passage 4 BEAS-2B

ATCC

CRL-9609

Experimental Models: Organisms/Strains

Mouse: C57BL/6J

Mouse: C57BL/6, IFNyR—/— B6.12987-
Ifngr1®m™i49t

The Jackson Laboratory
The Jackson Laboratory

Cat#000664
Cat#003288

Oligonucleotides

SMART-seqg2 2 8’ Oligo-dT Primer: /5Biosg/
AAG CAG TGG TAT CAA CGC AGA GTA
CTT TTT TTT TIT TTT TIT 71T TIT TTT
TTT TVN

SMART-seq2 5’ TSO: AAG CAG TGG TAT
CAA CGC AGA GTA CAT rGrGrG
SMART-seq2 and Seg-Well ISPCR:

AAG CAG TGG TAT CAA CGC AGA GT
Custom Read 1 Primer: GCC TGT CCG
CGG AAG CAG TGG TAT CAA CGC AGA
GTAC

Seg-Well 5’ TSO: AAG CAG TGG TAT CAA
CGC AGA GTG AAT rGrGrG

Seg-Well Custom P5-SMART PCR hybrid
oligo: AAT GAT ACG GGG ACC ACC GAG
ATC TAC AGG CCT GTC CGC GGA AGC
AGT GGT ATC AAC GCA GAG TAC
Seq-Well dN-SMRT oligo: AAG CAG TGG
TAT CAA CGC AGA GTG ANN NGG NNN B

Integrated DNA Technologies

Integrated DNA Technologies
Integrated DNA Technologies

Integrated DNA Technologies

Integrated DNA Technologies

Integrated DNA Technologies

Integrated DNA Technologies

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Software and Algorithms

R R Core Team hittps://www.t-project.org

R package - Seurat v2.3.4 and v3.1.0 Github https:/github. com/satijalab/seural

Scanpy Woalf et al., 2018 hitps://aithub. com/theislab/scanpy

R package - SCDE Bioconductor http://bioconductor org/packages/sede/

Prism 6 GraphPad Software https://www.graphpad.com/
scientific-software/prism/

STAR Github https:/github . com/alexdobin/STAR

Uniform Manifold Approximation and Github hitps:/github com/imeinnes/umag

Projection

Rtsne CRAN https://cran.r-project.org/web/

packages/Rtsne/

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by Dr. Jose Ordovas-Montanes
(jose.ordovas-montanes@childrens.harvard.edu).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

In Table S8, we provide a guide to all datasets analyzed in this paper as well as links to each individual dataset for download with the
main landing page here: https://singlecell.broadinstitute.org/single_cell?scpbr=the-alexandria-project. To download the data from
the portal, follow the link to the visualization page, sign in a free account in the portal using a Google apps enabled email address,
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and select the ‘Download’ tab in the study. Downloadable datasets include both raw and normalized cell x gene matrices, as well as
relevant metadata. These datasets are additionally available here to facilitate downloading: https://drive googls.com/drive/folders/
1bxClgNeZ7wLuvVOT168aphwj98 cc9Khri/?usp=sharing. We have also posted these cell x gene matrices to Chan Zuckerberg Initia-
tive cellxgene (https:/chanzuckerberg.github.io/cellxgene/posts/cellxgene cziscience com) and the Broad Institute Single Cell
COVID-19 portal (https.//singlecell.broadinstitute.org/single cell/covid19) as leading community efforts. FASTQ files and cell x
gene matrices for NHP and murine datasets, and cell x gene matrices for human datasets, are available at GEO: GSE148829.

In this same table, we further highlight four access types. 1. published datasets where everything is available (1 study); 2. unpub-
lished datasets where everything is available (2 studies, 19,670 new cells for download), 3. unpublished datasets where ACE2+ cell
subsets, and the necessary subsets to contextualize those cells (i.e., epithelial cells for type Il pneumocytes) are fully available (5
studies, 17,986 new cells for download); and, 4. those unpublished datasets where expression is shared for ACE2/TMPRSS2 (2
studies, 9,112 new cells). For those unpublished datasets where only specific subsets of cells or genes are available, full expression
matrices are available upon request for COVID-19 related questions.

All data included in the present study can be visualized using the following web viewer:

https://singlecell.broadinstitute.org/single_cell?scpbr=tha-alexandria-project.

As we gain further insight and feedback from our own groups, collaborators, and investigators, we will continue to provide updates
on our resource websites, including the utility of in vitro systems, such as organoids (Msad et al., 2018), for the study of SARS-CoV-2:
http://shaleklab.com/resource/covid-19-resourcss/ and www.ordovasmontaneslab.com/covid-19-resources/. We also note that
there are several ongoing efforts unified together through the HCA Lung Biological Network group that we will reference and to which
we will link as they become available.

No custom code was used to analyze these data and all methods and packages used are cited in the Method Details section.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Intestinal Biopsies

For human intestinal biopsies from the terminal ileum, the subjects were enrolled ona multi-center clinical study, which was approved
by the Institutional Review Board at Boston Children’s Hospital (protocol number: IRB-P00030890). Full information related to subject
age/developmental stage and sex found in metadata associated with provided raw datasets.

Human Lungs, Surgical Excess

Samples were obtained through indicated lung lobe resection or diagnostic procedures in collaboration with clinicians at the Depart-
ment of Cardiothoracic Surgery at Inkosi Albert Luthuli Central Hospital in Durban, South Africa. Informed consent was obtained from
each participant. The study protocol was approved by the University of KwaZulu-Natal Institutional Review Board (approval BE024/
09). Full information related to subject age/developmental stage and sex found in metadata associated with provided raw datasets.

Human Nasal Polyps and Scrapings

For inferior turbinate nasal scrapings, polyp scrapings, and ethmoid sinus surgical tissue samples, the Partners HealthCare Institu-
tional Review Board (Boston, Massachusetts), approved the study and all subjects provided written informed consent (Ordovas
Mantanes et al,, 2018). Full information related to subject age/developmental stage and sex found in metadata associated with pro-
vided raw datasets.

Human Nasal Washes, Healthy and Influenza Infected
The Institutional Review Board of the University of Massachusetts Medical School (Worcester, Massachusetts) approved the study
and all subjects provided written informed consent.

Cell Culture of Primary Basal Cells and Cell Lines

Human basal cells from non-polyp surgical resections from ethmoid sinus, BEAS-2B cells (ATCC), or mouse tracheal basal cells were
placed into culture ata number of 10,000 cells seeded at passage 3 and cultured at confluence in 96 well flat-bottom collagen-coated
tissue culture plates (Corning 3596) for 48 h in Pneumacult-Ex serum-free media (StemCell Technologies, Inc.). All cells were incu-
bated at 37°C and 5% CO2.

Non-Human Primates (M. mulatfa)

Healthy and SHIV-infected non-human primate (M. mulatta) work was conducted at the Washington National Primate Research Cen-
ter (WaNPRC), an AAALAC accredited program, in accordance with the regulations detailed in the U.S. Department of Agriculture
Animal Welfare Act and in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. It was approved
by University of Washington Institutional Animal Care and Use Committee. Expanded cohort characteristics described previously
(Colonna et al,, 2018). Full information related to subject age/developmental stage and sex found in metadata associated with pro-
vided raw datasets.
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Non-Human Primates (M. fascicularis)

Tissues from Mycobacterium tuberculosis-infected non-human primates (M. fasciculfaris) were conducted at the University of Pitts-
burgh School of Medicine, an AAALAC accredited program, in accordance with the regulations detailed in the U.S. Department of
Agriculture Animal Welfare Act and in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.
Full information related to subject age/developmental stage and sex found in metadata associated with provided raw datasets.

Mouse Nasal and Dlfactory Epithelium and Tracheal Cells

C57BL/6J mice purchased from Jackson laboratory (Bar Harbor, ME, USA) were maintained within Ragon Institute’'s HPPF barrier
facility and all experiments were conducted with institutional IACUC approval. In this study, mice were 8-10 weeks of age, represent-
ing male and female animals.

Mouse Lungs, MHVES Infection

C57BL/6 mice were purchased from Charles River Laboratories (Sulzfeld, Germany). IFNYR—/— mice on C57BL/6 background
(C57BL/6, IFNYR / B6.129S7-Ifngr1™'A9'/)) were originally obtained from the Jackson Laboratory (Bar Harbor, ME, USA) and sub-
sequently bred and propagated under SPF conditions at the Helmholtz Zentrum Miinchen. Animals with different genotypes were
kept in the same animal room for the time of the experiment including an adaptation period prior to the start of the experiment. All
animal experiments were in compliance with the German Animal Welfare Act (German Federal Law §8 Abs. 1 TierSchG), and the pro-
tocols were approved by the local Animal Care and Use Committee.

METHOD DETAILS

Methods of Sample Collection and Tissue Preparation for Single-Cell RNA-Seq

NHP lleum, Jejunum, Colon, Liver, Tonsil, Thymus, and Lung Tissue

Animals were perfused with 0.5 L of PBS/kg immediately following euthanasia, tissues were isolated and placed in RPMI + 10% FBS
and kept on ice until dissociation. Tissue sections were digested by mincing and incubating with collagenase IV (Life Technologies)
and DNase [ (Roche) at 37°C for 1 h with agitation. Digested tissue was passed through a 100 um metal strainer, cells were pelleted by
centrifugation at 300 g, rinsed with RPMI + 10% FBS, counted, and prepared as a single cell suspension for scRNA-seq using Seq-
Well vi (see below).

NHP Lymphoid Organs, Bone Marrow, PBMCs

All lymph nodes, spleen, and bone marrow were ground through a metal strainer, transferred to a conical in RPMI + 10% FBS, and
pelleted by centrifugation at 400 g x 10 min. LN-derived cells were resuspended in RPMI + 10% FBS, counted and prepared as a
single cell suspension. Spleen, bone marrow, and PBMCs were subjected to ACK lysis for 10 min at room temperature, quenched
with RPMI + 10% FBS. PBMCs and bone marrow derived cells were purified over a ficoll gradient (GE Healthcare) by centrifuging at
400 g for 20 min at room temperature with no brake. Cells were then resuspended in RPMI + 10% FBS, counted, and diluted for
scRNA-seq using Seq-Well v1 (see below).

NHP Tuberculosis Infected Lung and Granuloma

Ten Mycobacterium tuberculosis infected (Martin et al., 2017) adult non-human primates (M. fascicularis) were included in this study.
A piece of lung tissue (without any grossly visible pathology) and 4 individual TB lung granulomas per animal were excised at nec-
ropsy and enzymatically dissociated using the GentleMacs system (Tumor dissociation kit, human; Miltenyi Biotec). Single cell sus-
pensions were resuspended in RPMI + 10% FBS, counted and diluted for scRNA-seq using Seq-Well S° (see below).

Human Lung Tissue

Surgical samples from diseased lung tissue (n = 3 TB*HIV*; n = 3TB"; n = 2 non-infected patients) were processed as described in
(Ardain =t al,, 2019). Briefly, each sample was collected into cold RP-10 (RPMI (Sigma-Aldrich) + 10% FBS), minced, and incubated
for 25-30 min at 37°C with digestion buffer containing collagenase D (Sigma-Aldrich), DNase | (Sigma-Aldrich) in RPMI 1640 (Sigma-
Aldrich) with 10% FBS (Hyclone). Following incubation, samples were homogenized using a GentleMACS, filtered using a 70 ym
metal strainer, and pelleted by centrifugation at 400 g for 5 min. After obtaining the pellet, cells were resuspended in RP-10, passed
through another 70um strainer (Corning), stained with trypan blue, and then counted and diluted for scRNA-seq using Seq-Well S
(see below).

Human Heum

Single-cell suspensions were collected from biopsies as described (Simillis et al., 2019). Briefly, biopsies were rinsed in cold PBS, the
epithelial layer was separated from the underlying lamina propria by end over end rotation for 15 min. The lamina propria and epithelial
fractions were digested separately, using Liberase TM (Roche) and DNase | (Roche) for the lamina propria, and TrypLE (Thermo-
Fisher) for the epithelial fraction. Following digestion, cells were pelleted by centrifugation, subjected to ACK lysis for 3 min, and
filtered through a 40 um strainer. Following centrifugation, the cells were counted and prepared as a single cell suspension for
scRNA-seq using 10X 3’ v2 (10X Genomics).

Nasal Mucosa and Nasal Scrapings

Surgical samples from ethmoid sinus and nasal scraping of the inferior turbinate were processed as described (Ordovas-Montanes
et al,, 2018). Briefly, each sample was collected into cold RPMI (Corning), minced and incubated for 30 min (15 min for nasal
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scrapings) at 37°C with digestion buffer containing collagenase IV (Worthington), DNase | (Roche) in RPMI with 10% FBS. Samples
were triturated and digestion quenched with EDTA. Cells were filtered using a 70 um metal strainer and pelleted by centrifugation at
500 g, rinsed with PBS, and subjected to red blood cell (RBC) lysis using ACK buffer (ThermoFisher) for 3 min on ice, and finally pel-
leted prepared as a single cell suspension for scRNA-seq using Seq-Well vi or S (see below).

Interferon Treatment of Mouse Nasal Mucosa

Mice received either 200ng of IFNa (Biolegend 752802) or saline intranasally (each group n =2 mice), and were sacrificed 12 h later.
Respiratory and olfactory mucosa were isolated as in (Davidson et al,, 2004; Dunston et al,, 201 3). Briefly, using surgical tools under a
dissecting microscope, the skull bones surrounding the nasal tissue of skinned mouse heads were removed. The respiratory and
olfactory mucosa were collected in RPMI media with 10% FBS. Cells were digested in media containing Liberase TM (Roche)
and DNase | (Roche) for 30 min at 37°C with agitation. Cells were filtered using a 70 um strainer, washed with EDTA-containing media
to quench enzymatic digestion, and pelleted by centrifugation. RBCs were lysed using ACK buffer (ThermoFisher) for 2 min, cells
were again pelleted, counted, and prepared as a diluted single cell suspension for scRNA-seq using Seq-Well S°.

MHVE8 Infected Mouse Lung

Mice were housed in individually ventilated cages during the MHVE8 infection period. MHV68 stocks were grown and quantified by
plaque assay as previously described (Adler &t al., 2000). Mice were infected intranasally (i.n.) with 5 X 10*4 plaque forming units of
MHV68 diluted in PBS in a total volume of 30 ul. Prior to i.n. infection, mice were anesthetized with medetomidine-midazolam-fen-
tanyl. At the predetermined time points, mice were sacrificed by cervical dislocation and lung tissue was processed for subsequent
experiments. All lobes were removed, minced and transferred for mild enzymatic digestion for 20-30 min at 37°C in an enzymatic mix
containing Dispase (50 caseinolytic U/mL), Collagenase (2 mg/mL), Elastase (1 mg/mL), and DNase | (30 ug/mL). Single cells were
harvested by straining the digested tissue suspension through a 70um strainer. After centrifugation at 300 x g for 5 min, single cells
were counted, and prepared as a single cell suspension. For Drop-seq, cells were aliquoted in PBS supplemented with 0.04% of
bovine serum albumin at a final concentration of 100 cells/ul.

Nasal Washes during Influenza Infection

Nasal washes were obtained from adult healthy controls and from adults with diagnosis of acute influenza A or B by rapid antigen test
(Flu A or B antigen, direct fluorescence antigen test) and/or by respiratory virus panel (PCR testing for influenza A, influenza A H1,
influenza A H3, influenza B, adenovirus, metapneumovirus, respiratory syncytial virus A, respiratory syncytial virus B, rhino/entero-
virus, parainfluenza 1, parainfluenza 2, parainfluenza 3), who show symptoms up to seven days (Czo =t al., 2020). Samples were ob-
tained by irrigation of each naris with up to 10 mL of saline, and collected in a single container, The sample was then transported to the
research laboratory for processing. Upon receipt, the sample was immediately stored on ice and 10 mL cell growth media (DMEM or
RPMI1640 with 10% fetal bovine serum) was added. The material was strained using a 40 um nylon cell strainer (Corning) intoa 50 mL
centrifuge tube. Cells were pelleted at 1300 rpm for 10 min at 4°C. All but 1 mL of supernatant was discarded, the pellet resuspended
in the remaining 1 mL of supernatant, and material was transferred to an Eppendorf tube and pelleted at 2000 rpm for 5 min. If the
pellet contained visible blood, 200 uL of RBC lysis solution (ACK buffer, Thermo Fisher) was added to resuspend the pellet and incu-
bated at room temperature for 2 min, after which 1 mL of cell media was added, and the cells were pelleted at 2000 rpm for 5 min. The
final pellet was resuspended in up to 1 mL of media and quantified before performing scRNA-seq with Seq-Well v1.

Methods to Generate Single-Cell and Bulk RNA-seq Libraries

Seq-Well v1

Seq-Well was performed as described (Gierahn et 21, 2017). Single cells were diluted to 15,000 cells in 200 uL RPMI + 10% FBS and
deposited onto a pre-functionalized PDMS array. 15,000 cells were deposited onto the top of each PDMS array and let settle by grav-
ity into distinct wells. The array was gently washed with PBS, and sealed using a functionalized polycarbonate membrane. Seq-Well
arrays were sealed in a dry 37°C oven for 40 min, and submerged in a lysis buffer containing guanidium thiocyanate (Sigma), EDTA,
1% beta-mercaptoethanol and sarkosyl (Sigma) for 20 min at room temperature. Arrays were transferred to hybridization buffer con-
taining NaCl (Fisher Scientific) and agitated for 40 min at room temperature, mRNA capture beads with mRNA hybridized were
collected from each Seq-Well array, and beads were resuspended in a master mix for reverse transcription containing Maxima H
Minus Reverse Transcriptase and buffer, dNTPs, RNase inhibitor, a 5 template switch oligonucleotide, and PEG for 30 min at
room temperature, and overnight at 52°C with end-over-end rotation. Exonuclease digestion and PCR were carried out as described.
Post-whole transcriptome amplification workup involved AMPure XP SPRI bead cleanup occurred at a 0.6 x volume ratio, followed by
0.8x. Library size was analyzed using an Agilent Tapestation hsD5000 kit, confirming the expected peak at ~1000 bp, and absence of
smaller peaks comresponding to primer. Libraries were quantified using Qubit High-Sensitivity DNA kit and prepared for lllumina
sequencing using Nextera XT DNA Sample Preparation kit using 900 pg of cDNA library as input to tagmentation reactions. Amplified
final libraries were purified twice with AMPure XP SPRI beads as before, with a volume ratio of 0.6x followed by 0.8x. Libraries from 2-
3 Seq-Well arrays were pooled and sequenced together using a NextSeq 500/550 High Output v2 kit (75 cycles) using a paired end
read structure with custom read 1 primer: read 1: 20 bases, read 2: 50 bases, read 1 index: 8 bases.

Seq-Well §*

Seq-Well S* modified the following protocol steps from v1, above (Hughes et al,. 2019). First, hybridization buffer was supplanted
with 8% (v/v) polyethylene glycol (PEG, Sigma). Second, after exonuclease digestion, bead-associated cDNA was denatured for
5 min in 0.2 mM NaOH with end over end rotation. Next, beads were washed with TE + 0.01% tween-20, and second strand synthesis
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was carried out by resuspending beads in a master mix containing Klenow Fragment (NEB), dNTPs, PEG, and the dN-SMRT oligo-
nucleotide to enable random priming off of the beads.

10X v23

Single cells were loaded onto 3’ library chips as per the manufacturers protocol for Chromium Single Cell 3’ Library (v2) (10X Geno-
mics). Each biopsy was sequenced on two channels of the 10X Chromium Single Cell Platform, one for the epithelial fraction and the
other for the lamina propria fraction in order to recover sufficient numbers of epithelial and lamina propria cells for downstream an-
alyses. An input of 6,000 single cells was added to each channel with a recovery rate of approximately 2,000 cells.

Drop-seqg

Drop-seq experiments were performed according to the original protocol (Macosko st al., 2015). Briefly, single cells (100/ul) were
co-encapsulated in droplets with barcoded beads (120/ul, ChemGenes) at rates of 4000 pl/h. Droplet emulsions were collected
for 10-20 min/each prior to droplet breakage by perfluorooctanol (Sigma-Aldrich). After breakage, beads were harvested and the hy-
bridized mRNA transcripts reverse transcribed (Maxima RT, Thermo Fisher). Exonuclease digestion and PCR were carried out as
described (12 PCR cycles). For each sample, 1 ng of pre-amplified cDNA from an estimated 1000 cells was tagmented by Nextera
XT (Illumina) with a custom P5-primer (Integrated DNA Technologies). Single-cell libraries were sequenced in a 100 bp paired-end run
on the lllumina HiSeq4000.

Smart-Seg2 for Bulk RNA-Seg

Population RNA-seq was performed as described (Ordovas-Montanes et al,, 2018, Trombetta et al,, 2014). Briefly, RNA from pop-
ulation lysates was purified using AMPure RNA Clean Spri beads (Beckman Coulter) at a 2.2x volume ratio, and mixed with oligo-dT
primer, dNTPs (NEB), and RNase inhibitor (Fisher Scientific) at 72°C for 3 min on a thermal cycler to anneal the 3’ primer to polya-
denylated mRNA. Reverse transcription was carried out in a master mix of Maxima RNaseH-minus RT enzyme and buffer (Fisher
Scientific), MgCl, (Sigma), Betaine (Sigma), RNase inhibitor, and a 5’ template switch oligonuclectide, and PCR was carried out using
KAPA HiFi HotStart ReadyMix (Kapa Biosystems) and IS PCR primer and amplified for 18 cycles. Libraries were purified using AM-
Pure XP SPRI beads at a volume ratio of 0.8x followed by 0.9x. Library size was assessed using a High-Sensitivity DNA chip (Agilent
Bioanalyzer), confirming the expected size distribution of ~1,000-2,000 bp. Tagmentation reactions were carried out with the Nextera
XT DNA Sample Preparation Kit (lllumina) using 250 pg of cDNA per single cell as input, with modified manufacturer’s instructions as
described. Libraries were purified twice with AMPure XP SPRI beads at a volume ratio of 0.9x, size distribution assessed using a High
Sensitivity DNA chip (Agilent Bioanalyzer) and Qubit High-Sensitivity DNA kit (Invitrogen). Libraries were pooled and sequenced using
NextSeq500/550 High Output v2 kits (75 cycles, lllumina) using 30-30 paired end sequencing with 8-mer dual indexing.

Human and Mouse Basal Cell Cytokine Stimulation

Data represented in Figures SA-5L: Cytokines were added for 12 h overnight at increasing doses (0, 0.1,0.5, 1, 2, 5, 10 ng/mL) of IL-4
(human: Biolegend 574002), IL-17A (human: Biolegend 570502), IFNy (human: Biolegend 570202; mouse: Peprotech 315-05), IFNa
(human: Biolegend 592702; mouse: Biolegend 752802), or IFN{ (mouse: R&D Systems 8234-MB-010). Each condition was run as a
biological triplicate. Data represented in Figure S3C-K: cytokines were added for 12 h overnight at increasing doses (0,0.1,0.5, 1, 5,
10 ng/mL) of human IL-4 (Biolegend 574004), IL-13 (Biolegend 571104), IFN« (Biolegend 592704), IFNy (Biolegend 570204), IL-17A
(Biolegend 570504), or IL-15 (Biolegend 579404) (each condition run as a biological quadruplicate). All populations were lysed in
50 uL lysis buffer (RLT + 1% BME, QIAGEN and Sigma, respectively) and snap frozen on dry ice. Bulk RNA-seq was performed
as described previously and summarized above (Ordovas-Montanes et al,, 2018). Populations were sequenced to an average +
SEM read depth of 3.95 + 0.11 million reads per sample, with an average + SEM alignment percentage to either hg19 or mm10 refer-
ence transcriptomes of 71 + 0.3%. All samples met quality thresholds regarding genomic and transcriptomic alignment.

Western blot for human ACE2

Established air-liquid interface cultures from bronchial brushings of four asthmatic patients were treated with 10ng/pL of human [FNy
for 24 h. Protein lysates were prepared, and anti-ACE2 human antibody (AF933 R&D goat polyclonal) was used to probe for ACE2 by
western blot. Bands were normalized to GAPDH as loading control, and fold change was computed based on normalized ACE2
values.

QUANTIFICATION AND STATISTICAL ANALYSIS

Non-Human Primate Lung and lleum

Libraries corresponding to 7 animals (variable number of tissues per animal) were sequenced using lllumina NextSeq. Reads were
aligned to the M. mulatta genome assembly 8.0.1 annotation version 102 and processed according to the Drop-Seq Computational
Protocol v2.0 (https://github.com/broadinstitute/Drop-seq). Data was normalized and scaled using the Seurat R package v2.3.4
(https://satijalab.org/seurat’): transforming the data to log,(UMI+1) and applying a scale factor of 10,000. To identify major axes
of variation within our data, we first examined only highly variable genes across all cells, yielding approximately 1,000-3,000 variable
genes with average expression > 0.1 log-normalized UMI across all cells. An approximate principal component analysis was applied
to the cells to generate 100 principal components (PCs). Using the JackStraw function within Seurat, we identified significant PCs to
be used for subsequent clustering and further dimensionality reduction. For 2D visualization and cell type clustering, we used a Uni-
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form Manifold Approximation and Projection (UMAP) dimensionality reduction technique (https:/github.com/imeinnes/umap) with
“min_dist” set to 0.5 and “n_neighbors” set to 30. To identify clusters of transcriptionally similar cells, we employed unsupervised
clustering as described above using the FindClusters tool within the Seurat R package with default parameters and k.param set to 10
and resolution set to 0.5. Each cluster was sub-clustered to identify more granular cell types, requiring each cell type to express > 25
significantly upregulated genes by differential expression test (FindMarkers implemented in Seurat, setting “test.use” to “bimod,”
Bonferroni-adjusted p value cutoff < 0.001). Differential expression tests between cells from ACE2™ versus ACE2™ Type Il Pneumo-
cytes were conducted using the SCDE R package with default parameters (Kharchenko et al., 2014). Expression data for epithelial
cells and enterocytes included in this dataset can be visualized and downloaded here: https:/singlecell.broadinstitute.ora/
single_cell/study/SCP807?scpbr=the-alexandria-projectifstudy-summary.

Human Lung Tissue

Libraries corresponding to 8 donors were sequenced using lllumina NextSeq. Reads were aligned to the hg19 genome assembly and
processed according to the Drop-Seq Computational Protocol v2.0 (https://github.com/broadinstitute/Drop-seq). Data was normal-
ized and scaled using the Seurat R package v3.1.0 (https://satijalab.org/seurat/), transforming the data to log,(UMI+1) and applying a
scale factor of 10,000. For each array, we assessed the quality of constructed libraries by examining the distribution of reads, genes
and transcripts per cell. Variable gene selection, principal components analysis, and selection of significant principal components
was performed as above. We visualized our results in a two-dimensional space using UMAP (hittps:/github.com/Imeinnas/umap),
and annotated each cluster based on the identification of highly expressed genes. To further characterize substructure within cell
types (for example, T cells), we performed dimensionality reduction (PCA) and clustering over those cells alone. Sub-clusters (i.e.,
clusters within broad cell type classifications) were annotated by cross-referencing cluster-defining genes with curated gene lists
and online databases SaVanT (http://newpathways.medb.ucla.eduw/savant-dev/) and GSEA/MsigDB (https://www.gsea msigdb.
org/gsea/msigdb/index.jsp). Proliferating cells from the human lung (Figure 2C) express high levels of mitotic markers, such as
MKI67, and represent primarily T cells (CD3D, CD3E), B cells/antibody-secreting cells ({GJ, MZB1, IGHG1), and myeloid cells
(CD14, APOE) and represent a composite cell cluster. Differential expression analysis between ACE2+ TMPRSS2+ and negative
type Il pneumocytes was performed in Seurat using a likelihood-ratio test (FindMarkers implemented in Seurat, setting “test.use”
to bimod). Expression data for epithelial cells included in this dataset can be visualized and downloaded here: hitps:/singlecell.
broadinstitute.org/single_cell/study/SCP8147scpbr=the-alexandria-projectistudy-summary.

Human lleum

Libraries corresponding to 13 donors were sequenced using lllumina NovaSeq S2 with a Read 1 26bp, Read 2 91bp, Index 1 8bp
configuration before reads were aligned to GRCh38. Each sample was filtered individually for low quality cells and genes by analyzing
distributions of reads, transcripts, percent reads mapped to mitochondrial genes, and complexity per cell, then merged as an outer
join to create a single dataset. Clustering and differential expression tests were processed using Seurat v3.1.0 (https://satijalab org/
seurat/). Normalization and variable gene selection was processed with SCTransform (https./github.com/ChristophH/sctransform).
Clustering for major cell types was performed using Louvain clustering on dimensionally reduced PCA space with resolution set via
grid search optimizing for maximum average silhouette score. Due to the scale of the dataset, a randomized subsampling from
across the dataset was used to calculate the silhouette score. We annotated clusters based on highly expressed genes, then
sub-clusters were characterized by performing PCA dimensionality reduction and clustering over those cells alone, and annotated
based on highly expressed genes found via one-versus-rest differential expression test (Wilcoxon) within the major cell type. Differ-
ential expression analysis between ACE2*TMPRSS2" and negative epithelial cells was performed in Seurat using a Wilcoxon testand
Bonferroni p value correction. Expression data for epithelial cells included in this dataset can be visualized and downloaded here:
https://singlecell.broadinstitute.org/single_cell/study/SCP8127scpbr=the-alexandria-projectistudy-summary.

Human Adult Nasal Mucosa
Sample processing, sequencing, and analysis was performed as in (Ordovas-Montanes et al., 2018). Briefly, scRNA-seq cell suspen-
sions were freshly processed using Seq-Well v1 and Seurat v2.3.4 was utilized for computational analyses presented here (Butler
et al., 2018; Satija et al,, 2015). Cell by gene matrix and R code for initialization of object available to download as Supplemental
Data and Supplementary Tables here https://www.nature.com/articles/s41586-018-0449-8 and here:
http://shaleklab.com/resource/mapping-allergic-inflammation/? and visualized here: https:/singlecell.broadinstitute.org/
single_cell/study/SCP2537scpbr=the-alexandria-projectfistudy-summary. Scores for various cytokines acting on human airway
epithelial cells were calculated based on gene lists derived for (Ordovas-Montanes et al., 2018), calculated using AddModuleScore
function Seurat, and effect size calculated by Cohen’s d, as previously reported.

Granulomatous Tissue from Mycobacterium Tuberculosis Infected NHPs

Libraries corresponding to 10 animals (variable number of tissues/animal) were sequenced using lllumina NovaSeq S2. Data was
aligned using the Dropseq-tools pipeline on Terra (app.terra.bio) to M. fascicularis reference genome assembly 5, annotation version
101. Clustering was performed using Leiden clustering in the Scanpy (scanpy readthedocs.io) package (Wolf et al., 2018). Cell type
labels were assigned using known marker genes. In this analysis, we include all epithelial cell subsets (secretory, multiciliated, type Il
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pneumocytes, and type | pneumocytes) from all samples. Differential expression between ACE2*"TMPRSS2™ cells and other cells of
the matched cell subtype (e.g., Secretory Cells) were performed using the “bimod" likelihood-ratio test within each cell subtype and
filtered on Benjamini-Hochberg-corrected p value < 0.05. Expression data for epithelial cells included in this dataset can be visualized
and downloaded here:
https://singlecell.broadinstitute.org/single_cell/study/SCP8067scpbr=the-alexandria-project#study-summary.

Basal Cell Cytokine Stimulation

Libraries corresponding to 279 populations were sequenced using lllumina NextSeq. Reads were aligned to the hg19 or mm10
genome assembly using the cumulus platform hitps://cumulus-doc.readthedocs.io/en/0.12.0/smart_seq_2.html and output as
TPM using RSEM v1.3.2. Populations were transformed to transcripts per 10K reads and log2(1+TP10K) transformed. ACE2 expres-
sion by stimulation condition and dose were assessed using one-way ANOVA with post hoc testing using a Bonferroni correction.
Plots were generated using ggplot2, and transcriptome-wide differential expression was calculated using the Seurat R package
v3.1.0 (https://satijalab.ora/seurat), function FindMarkers with test.use = "bimod.” Expression data can be visualized and down-
loaded here:

https://singlecell. broadinstitute.org/single_call/study/SCP8227scpbr=the-alexandria-project.

Interferon Treatment of Mouse Nasal Mucosa

Libraries corresponding to 4 mice, with 2 Seq-Well arrays per mouse were sequenced using lllumina NextSeq as described (Gieralin
etal, 2017; Hughes et al., 2019). Reads were aligned tothe mm10 genome and processed according tothe Drop-Seq Computational
Protocol v2.0 (hitps://github.com/broadinstitute/Drop-seq). Data was normalized and scaled using the Seurat R package v2.3.4
(https://satijalab.org/seurat/): transforming the data to log.(UMI+1) and applying a scale factor of 10,000. Cells with fewer than
1000 UMIs and 500 unique genes were removed. To identify major axes of variation within our data, we first examined only highly
variable genes across all cells, yielding approximately 5,000 variable genes. An approximate principal component analysis was
applied to the cells to generate 200 principal components (PCs). Using a combination of the Jackstraw function in Seurat and
observing the “elbow” of the standard deviations of PCs, we chose the top 70 PCs for subsequent clustering and visualization.
For 2D visualization, we used a Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction technique
(https//github.com/imeinnas/umap) with “min_dist” set to 0.3 and “n_neighbors™ set to 50. To identify clusters of transcriptionally
similar cells, we employed unsupervised clustering as described above using the FindClusters tool within the Seurat R package with
default parameters and k.param set to 10. Resolution was chosen based on maximization of the average silhouette width across all
cells. Clusters were merged if a cell type expressed fewer than 25 significantly upregulated genes by differential expression test
(FindAlIMarkers implemented in Seurat, setting “test.use” to “bimod,” Bonferroni-adjusted p value cutoff < 0.001). Differential
expression tests between cells from saline-treated or IFNa-treated mice were assessed using the FindMarkers function with “tes-
t.use” set to “bimod. This dataset can be visualized and downloaded here:

hitps:/singlecell.broadinstitute.org/single_cell/study/SCP8327scpbr=the-alexandria-projectfistudy-summary.

Lung from MHVE8-Infected WT and IFNyR KO Mice

Libraries corresponding to 14 mice were aligned to a custom reference genome encompassing both murine (mm10) and herpes virus
genes: 84 known genes from MHV68 were retrieved from NCBI (NCBI: txid33708) and added to the mm10 mouse genome. Reads
were aligned to the custom joint genome and processed according to the Drop-Seq Computational Protocol v2.0 (https:/github.
com/broadinstitute/Drop-seq). Barcodes with < 200 unique genes, > 20,000 UMI counts, and > 30% of transcript counts derived
from mitochondrially encoded genes were discarded. Data analysis was performed using the Scanpy Package following the common
procedure, the expression matrices were normalized using scran’s size factor based approach and log transformed via scanpy’s
pp.log1p() function (Lun et al,, 2016; Walf et al., 2018). SoupX was utilized to reduce ambient RNA bias, using default parameters
with pCut set to 0.3, and was applied to each sample before merging the count matrices (Young and Behjati, 2020). UMI per cell
and cell cycle were regressed out. Highly variable genes were selected by running pp.highly_variable_genes() for each sample sepa-
rately, returning the top 4,000 variable genes per sample, and genes identified in variable in > 5 samples were retained, yielding
14,305 genes. Next, only Epcam+ cells were considered, principal components (PCs) were calculated using only the selected var-
iable genes, and 6 PCs were used to perform unsupervised Louvain clustering. Type | Pneumocytes were excluded from this analysis
based on uniformly negative expression of Ace2, resulting in a final dataset subset of 5,558 cells. Cells were identified as infected if at
least one viral read was detected.

Nasal Washes during Influenza Infection

Sample processing, sequencing, and analysis was performed as in (Czao et al,, 2020). Reads were aligned to the GRCh37 reference
genome combined with influenza genomes. Mapped reads from each sample were then corrected for Drop-seq barcode synthesis
error using the Drop-seq core computational tools developed by the McCarroll Lab (Macosko ef al., 2015). Genes were quantified
using End Sequence Analysis Toolkit (ESAT, github/garber-lab/ESAT) with parameters -wlen 100 -wOlap 50 -wExt 0 -scPrep
(Derr et al., 2016). Finally, UMIs that likely result from sequencing errors were corrected by merging any UMIs that were observed
only once and have 1 hamming distance from a UMI detected by two or more aligned reads. Only cell barcodes with more than
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1,000 UMIs were analyzed. Cell barcodes with mostly erythrocyte genes (HBA, HBB) were removed. From here on, the remaining cell
barcodes in the matrix would be referred to as cells. The final gene by cell matrix was normalized using the scran package v3.10 (Lun
st al,, 2016). The normalized matrix was used for dimensionality reduction by first selecting variable genes that had a high coefficient
of variance (CV) and were expressed (> = 1 UMI) by more than three cells. Influenza viral genes, interferon stimulated genes, and cell
cycle related genes were removed from the variable gene list in order to minimize the impact of viral responses and mitosis on clus-
tering and cell type identification. This resulted in the selection of 2484 variable genes. t-distributed stochastic neighbor embedding
(tSNE) was applied to the first ten principal components (PCs), which explained 95% of the total data variance. Density clustering
(Rodriguez and Laio. 2014) was performed on the resulting tSNE coordinates and identified four major clusters: epithelial cells, neu-
trophils, macrophages and leukocytes. The epithelial cell cluster and the leukocyte cluster were then re-clustered independently, as
described above, to identify populations within each metacluster. Specifically, the epithelial cell cluster was re-embedded using 2629
variable genes selected by the same criteria mentioned in the previous section and 13 PCs that explained 95% of the variance. Den-
sity clustering over the epithelial cell subset revealed ten clusters. Differential gene expression analysis using edgeR (FHobinzon et al,,
2010) was performed to identify marker genes for each cluster. Influenza-infected and bystander cells were identified after correcting
for sample-specific distribution of ambient influenza mRNA contamination and predicted cells most likely to be infected identified
using a hurdle zero inflated negative binomial (ZINB) model and a support vector machine (SVM) classifier.

Power Calculations for Detection of Rare Transcripts

We conducted the following statistical analysis to estimate the effects of various factors on our ability to make confident claims
regarding the presence/absence of transcripts of interest (e.g., ACE2), both within individual cells and clusters (Fiaure S6). Specif-
ically, we investigated the roles of capture/reverse transcription efficiency, ACE2 expression level, sequencing depth, and cell
numbers. Taken together, the results of this power analysis are in agreement with other efforts to model biological and technical sour-
ces of zero-inflation within scRNA-seq data (e.g., hitps:/satijalab.org/howmanycells and Kharchenko et al,, 2014, Svensson, 2020).

We began by quantifying how likely we are to capture and transcribe at least one ACE2 mRNA molecule, as a function of the num-
ber ACE2 mRNA molecules per cell and a protocol's efficiency (Figure S6A). Drop-Seq has a capture/transcription efficiency of
~10% (as estimated using ERCC spike ins; see (Macosko et al,, 2015), and the experimental platforms used in this study are either
equivalent (e.g., Seq-Well vi1, (Glerahn et al., 2017) or superior (e.g., 10-fold better unique molecule detection, 5-fold better gene
detection using Seq-Well S%(Hughes =t al., 2019)). Most relevant to this context, inferior turbinate scrapings were processed using
both Seq-Well v1 and Seq-Well §% (Figure S3B). Importantly, Seq-Well S® provided > two-fold increase in the detection frequency of
rare ACE2 transcripts (i.e., ACE2+: 4.7% for 1 versus 9.8% for S°), making it reasonable to expect that such improvements in single-
cell experimental technologies have yielded comesponding improvements in capture and transcription efficiency. Based on Drop-
Seq's 10% efficiency, even if ACEZ2 is expressed at the low level of 5 mRNA molecules per cell (a reasonable order-of-magnitude
estimate, given that non-human primate ileum cells had a maximum of 10 ACE2 unique molecules per cell observed via sequencing
and an average of 1.93 molecules per cell in expressing cells, see Figures 3B and 3C), our experimental platforms have a minimum
likelihood of 41% to capture and reverse transcribe at least one ACE2 mRNA molecule in any given individual cell. This likelihood
rapidly increases if we estimate higher efficiencies for improved scRNA-seq technologies (e.g., 67% likelihood within any individual
cell at 20% capture/transcription efficiency, 76% likelihood at 25% efficiency, Figurs S6A). Thus, while transcript drop-out may
reduce the fraction of positive cells, with the capture and transcription efficiencies of improved single-cell technologies, the impact
is likely to be minor (reads are likely underestimated by up to a factor of ~2.5x), given a sufficient depth of sequencing (see below). We
note that this impacts both clusters deemed to contain and not contain ACE2+ cells, and suggests our percentages are likely lower
bounds for true expression (within a factor of ~2.5x).

Next, we examined the probability of sequencing an ACEZ transcript as a function of read depth and ACEZ2’s fractional abundance
in each single cell within our sequencing libraries. First, across two different tissues (non-human primate ileum and lung, representing
a high expresser of ACE2 and low expresser, respectively), we calculated the proportion of unique ACE2 molecules in our ACE2+
cells (defined as any cell with at least 1 UMI aligning to ACE2) as a fraction of total reads within individual cells to provide an or-
der-of-magnitude estimate for average ACE2 abundance in our single-cell sequencing libraries (i.e., the probability that a read within
a cell corresponds to a unique molecule of ACE2, Figurs S6B). We highlight that by calculating probabilities based on ACE2 unique
molecules divided by an individual cell's total reads, we are providing a conservative estimate for the probability of observing ACE2
as a function of sequencing depth (e.g., as compared to basing these probabilities on ACE2 non-UMI-collapsed reads divided by
total reads). Next, we obtained information on the number of reads in these cell populations to provide estimates of average
sequencing depths (Fiaure 86C). Using the mean fractional abundances of ACE2 from each tissue (Figurs S6B) and the mean
read depths for all genes (Figure 55C), we calculated the probability of detecting at least 1 ACE2 molecule (i.e., P(detecting >
0 ACE2 molecules) = 1 - (1 - ACE2 fractional abundance)™®® “P™ This results in 2 93.7% probability in ileum-derived cell libraries
that contain ACE2, and a 76.0% probability for lung-derived cell libraries, indicating that our sequencing depths are sufficient to
detect ACE2+ cells (Figure SGD).

To further evaluate whether our ability to detect ACE2+ cells was an artifact of sequencing depth, we compared the number of
ACE2+ cells in a cluster to the mean number of reads across all cells in that same cluster (Figur= S5E). We did not observe any sig-
nificant correlation: the ileum cell cluster with the highest number of ACE2+ cells had the lowest sequencing depth of all ileum clus-
ters, and the lung cell cluster with the highest number of ACE2+ cells was approximately average in its read depth (on a log-log scale,
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Pearson's r=—0.31, non-significant). Further, when comparing ACE2+ cells to ACE2- cells withina given tissue, we did not observe a
positive correlation between read depth and ACEZ status (i.e., mean + standard error of the mean, SEM, reads among all lung cells =
28,512 + 344; mean + SEM reads among ACE2+ lung cells = 28,553 + 2,988; mean + SEM reads among all ileum cells = 14,864 +
288; mean + SEM reads among ACE2+ ileum cells = 10,591 + 441, full statistics on cell depth among ACE2+ cells compared to
ACEZ- cells of the same cell type can be found in Table £9). Thus, we can be confident that the observed differences in ACE2+ pro-
portions across clusters are not driven by differences in sequencing depth.

Finally, we investigated how observed differences in ACE2+ proportions across clusters might be affected by cell sampling. Using
the proportion of ACE2+ cells in a “typical” cluster annotated as being ACE2 positive (i.e., 6.8% in non-human primate type Il pneu-
mocytes, Figurs 1), we calculated the cluster sizes needed to be confident that the probability of observing zero to afew positive cells
is unlikely to have arisen by random chance (probabilities calculated under a negative binomial distribution with parameter p = 0.068,
Figure S6E). We found that as cluster sizes approach and exceed 100 cells, the probability of observing zero to a few positive cells
rapidly approaches zero, if we assume 6.8% of cells are positive. Further, to examine our confidence in estimating an approximate
upper bound (ignoring the impact of protocol inefficiencies discussed above) for the fraction of cells positive in a cluster as a function
of the number of cells in that cluster, we also calculated the probability of observing zero (and its complement, probability of
observing at least 1) ACE2+ cells as a function of cluster size across true positive proportions ranging from 0.1% to 10% (probabilities
calculated under a negative binomial distribution with parameter p = 0.001 to 0.1, representing hypothetical proportions of ACE2+
cells Figure SEF). Given our typical cluster sizes (on the order of hundreds of cells, exact values provided in Table £9), we find that for
us to observe 0 ACE2+ cells in a cluster due to sampling artifacts, the fraction of true positives must be ~1% or less. Thus, these
complementary approaches demonstrate that our observed variations in ACE2+ cell proportions across clusters likely reflect under-
lying biological differences, rather than random chance.

Statistical Testing

Parameters such as sample size, number of replicates, number of independent experiments, measures of center, dispersion, and
precision (mean + SEM) and statistical significances are reported in Figures and Figure Legends. A p value less than 0.05 was consid-
ered significant. Where appropriate, a Bonferroni or FDR correction was used to account for multiple tests, alternative correction
methods are noted in the figure legends or Methods. All statistical tests corresponding to differential gene expression are described
above and completed using R language for Statistical Computing.
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Figure S1. NHP Tuberculosis Infected Lung and Granuloma, Related to Figures 1 and 2
(A). UMAP projection of epithelial cells (1,099 cells) colored by annotated cell type, tissue source, and gating as ACE2*TMPRSS2" cells. ACE2* TMPRSS2™ cells
comprise 11% of ciliated cells, 16% of club cells, 10% type | pneumocytes, and 22% type || pneumocytes. Data generated using Seq-Well S* (Table 53).

(B). Number of cells (leftyand % (right) ACE2*TMPRSS2* cells by tissue source (granuloma versus uninvolved lung) and cell type. Ciliated cells and club cells were
omitted from this analysis as we detected too few cells (< 7 total cells) belonging to these clusters in the granulomas. Statistical significance assessed by Fisher

Exact Test (Table S3).

ACE2e/
TMPRSSE:
colls.

(C). Dot plot of top cluster defining genes for each epithelial cell type and ACE2 and TMPRSS2. Dot size represents fraction of cells expressing, and color intensity
represents average log{normalized UM + 1) ameng all cells in each group scaled between 0 and 1 by gene. ACE2 expression is enriched in club cells (Bimodal
test, Bonferroni-corrected p < 0.001), ciliated cells (p < 0.005), and type | pneumocytes (p < 0.001). TMPRSS2 expression is enriched in type | pneumocytes (p <

0.001) and ciliated cells {(p < 0.001) (Table S3).

(D). Dot plot of genes differentially expressed between ACE2*TMPRSS2" epithelial cells versus rest (Bimodal test, Bonferroni-corrected p < 0.01, log fold change
> 0.5). (Table S3, ¢ = number of cells, n = number of animals).
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Figure S2. Human and NHP lleum, Related to Figure 3

{A). Top: tSNE projection of all cells from healthy pediatric human ileum within a previously-unpublished 10x 3’ v2 dataset (115,569 cells). Black: higher expression
of ACE2 (left), TMPRSS2 {right). Bottom: Corresponding violin plots of expression values for ACE2 {left) and TMPRSSZ {right). Solid line: epithelial cells.

{B). Co-expression of ACE2 and TMPRSS2 by epithelial cell subset. Number indicates % of ACE2"TMPRSS2™ cells by cell subset.

{C). tSNE projection of 13,689 cells as in Figure 3D, cells colored by co-expression of ACE2 and TMPRSS2 {black).

{D). Expression of ACE2 and canonical interferon-responsive genes among absorptive enterocytes from Healthy (n = 2) and SHIV-infected, anti-retroviral treated
animals (n = 3). Bonferroni-adjusted p-values by Wilcoxon test (healthy: 510 cells, SHIV-infected: 636 cells).
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Figure S3. Nasal and Sinus Mucosa, Related to Figures 4 and 5
(A). Expression of ACE2 and TMPRSS2 across donors.

(B). Enhanced capture of ACE2 mRNA with second strand synthesis protocol employed in Seq-Well S. Dot size represents fraction of cells expressing.
(C). Cultured human primary basal epithelial cells at confluence were treated with increasing doses {0.1 to 10ng/mL) of IFN=2, IFNy, IL-4, IL-13, IL-17A, and IL-1B

for 12 h and bulk RNA-seq analysis was performed (Replicate experiment using Human Donor 1 as in Figure 5)

(D). ACE2 expression by stimulation condition. Wilcoxon test between each cytokine {combined doses) versus rest: IFN« Bonferroni-adjusted p = 4.1E-07; IFNy

Bonferroni-adjusted p = 9.3E-03; all else n.s. ** p < 0.001.

(E). ACE2 expression by IFNz2 dose. Bonferroni-corrected t-test compared to 0 ng/mL condition: *** p < 0.001, * p < 0.05.
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(F). ACE2 expression by |FNy dose. Bonferroni-corrected t-test compared to 0 ng/mL condition: **“ p< 0.001, *p < 0.05.

(G). IFITM1 expression by IFN«2 dose. Bonferroni-corrected t-test compared to 0 ng/mL condition: *** p < 0.001.

(H). IFITM1 expression by [FNy dese. Bonferroni-corrected t-test compared to 0 ng/mL condition: “** p < 0.001.

(). GBPS5 expression among cultured human primary basal epithelial cells. Wilcoxon test: IFN« versus IFNy Bonferroni-adjusted p = 2.94E-07; IFNy Bonferroni-
adjusted p = 9.3£-03, TP10K: transcripts per 10,000 reads. ** p < 0.001.

(J). GBPS5 expression by IFN«2 dose. Bonferroni-corrected t-test compared to 0 ng/mL condition: *** p < 0.001.

(). GBP5 expression by IFNy dose. Bonferroni-corrected t-test compared to 0 ng/mL condition: *** p < 0.001.
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Figure 84. Published Studies of Epithelial Cells Following Interferon Treatment Related to Figure 5

(A). Fold change of ACE2 expression among human or mouse datasets following Type | or Type |linterferon treatment compared to untreated control. Generated

from publicly available micrcarray data curated at interferome.org. Includes all studies with abs(fold-change) > 1.
(B). Location of transcripticn factors binding regions spanning —1500 bp to +500 bp from the transcription start site of ACE2 {(human, top) or Ace2 (mouse,

bottom). Generated from TRANSFAC data using the interferome.org database (Viatys et al, 2003: Rusinova et al., 2013).
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Figure S5. Mouse Nasal Epithelium Following Interferon-« Exposure Related to Figure 6

(A). Schematic: mice were exposed to 10,000 units of [FN-x or saline by intranasal application (n = 2 per group). After 12 h, animals were sacrificed and nasal

epithelium was dissected and dissociated for scRNA-seq using Seq-Well S°.

(B). Dot plot of 2 defining genes for each cell type, with Ace2, Tmprss2, and Cdhr3. Dot size represents fraction of cells within cell type expressing, and color

intensity binned count-based expression level (log(scaled UMI+1)) among expressing cells. All cluster defining genes are provided in Tuble S8. Red arrows: cell

types with largest proporticn of Ace2+ cells. Dendrogram (left) by person correlation over differentially expressed genes with Ward clustering.

(C). UMAP of Basal Epithelial Cells (380 cells) across 4 mice. Black: Saline-treated mouse; red: IFN-a freated.

(D). UMAP of Basal Epithelial Cells as in C, points colored by detection of Ace2. Black: RNA positive, blue: RNA negative (6.6% Ace2*, Bonferroni-adjusted p =

1.1E-10 for Basal Epithelial Cell expression versus all cther cells).

(E). Schematic: wildtype (WT) and IFNy-receptor knockout (IFNyR-/~) mice were infected intranasally with murine gamma-herpesvirus-68 (MHVE8). Cells from

whole lung were digested for scRNA-seq using Drop-seq (yielding 5,558 Epcam+ cells).

(F). Expression of Ace? by epithelial cell type, wild type (WT) mice. Statistical significance by Wilcoxon rank sum test with Bonferroni correction.

(G). Expression of Ace2 among lype || pneumocytes binned by infection status in WT mice. All pairwise comparisons non-significant (p > 0.05) by Wilcoxon rank

sum test.

(H). Percent of Ace2* cells by infection condition (uninfected, bystander cells in MHV68-infected mouse, MHV68 RNA+ cells) and mouse genotype (WT, IFNyR

—/-). Black bars: Ace2" positive cells; white bars: Ace2” cells.

(). Schematic of RNA-Seq data from (Vatos =1 al., 2019) of human lung explants (n = 5 donors) exposed te influenza A virus (IAV, H3N2) at 24 h post infection.

(). Expression of SFTPC (surfactant protein C, a marker of type || pneumocytes) versus ACE2 among mock-infected lung explants. Statistical significance
by Pearson's ion, r = 0.93, p = 0.021. TPM: transcripts per million.

(). SFTPC expression among matched donors following mock or JAV infection for 24 h. istical signi by ratic paired t test, p = 0.86.

(L). ACE2 expression among matched donors following mock or IAV infection for 24 h. Statistical significance assessed by ratio paired 1 test, p = 0.0054.

(M). Westem blot of fully-differentiated air-liquid interface cultures from brenchial cells derived from 4 human dencrs with asthma. Cells from each donor were

treated with 10 ng/mL [FNy for 24 h, and compared to a matched untreated condition. ACE2 protein: AF933 (R&D). Fold changes quantified for IFNy treated

versus untreated for each patient donor following normalization to GAPDH.
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Figure S6. Power Calculations and Statistical Modeling of ACE2 Capture and Dropout Related to STAR Methods

(A). Probability of capturing and transcribing at least 1 ACE2 cDNA molecule, as a function of the capture/reverse transcription efficiency for a single molecule and
the number of ACE2 molecules expressed in anindividual cell. Note that Drop-Seq provides a capture/transcription efficiency of approximately 11-13%, settinga
floor on this parameter, and the experimental platforms used in this study are either equivalent or superior (Macosko et al., 2015).

(B). Distribution of ACE2 fractional abundance within individual cells’ cDNA libraries (i.e., ACE2 UMIs / total number of reads), across non-human primate lung and
ileum cell populations (see Figures 1 and 3). Mean fractional abundance among ACE2~ lung cells = 5.0E-5; mean fractional abundance among ACE2™ ileum cells =
2.7E-4.

(C). Distribution of the number of reads within non-human primate lung and ileum cell populations (see Figures 1 and 3). Mean + SEM reads among all lung cells =
28,512 + 344; ACE2" lung cells = 28,553 = 2,988; all ileum cells = 14,864 = 288; ACE2" ileum cells = 10,591 + 441.

(D). Probability of observing at least one transcript for a gene of interest {e.g., ACE2) within an individual cell, as a function of sequencing depth and the gene’s
fractional abundance {i.e., ACE2 reads / all reads) within the cell’s cDNA library. Fractional abundance provides the probability that a single read corresponds to
the gene of interest, and presented heatmap indicates the probability that at least one read in the total number of reads allocated to the cell (i.., from 10° to 105
originates from the gene of interest. Mean read depths and ACE?2 fractional abundances for each tissue produce a 93.7% probability of detecting at least 1 ACE2
read in ileum cells, and a 76.0% chance for lung cells. Outlined rectangles highlight the regimes where cells from lung {turquoise) and ileum (pink) samples
typically lie.

(E). Number of ACE2™ cells within each cluster, as a function of average read depth for all cells in that cluster. Number of cells detected as ACE2™ is not correlated
with read depth, even across relatively wide ranges of average read depths {Pearson’sr= 0.31, n.s.).

(F). Probability of observing a particular number of cells positive for a gene of interest within a cluster, as a function of number of cells in the cluster. Probabilities
were calculated under a negative binomial distribution with parameter p = 0.063 (the proportion of ACE2™ cells among type Il pneumocytes presented in Figure 1;
STAR Methods). The horizontal gray line indicates the arbitrary cut-off value of p = 0.05.

(G). Given a population of cells with a known proportion that are positive for a gene of interest, probability of observing no positive cells {i.e., false negative
identification of the cluster; salid lines) and probability of observing at least one positive cell as a function of cluster size.
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Chapter S: Final Discussion, Conclusion and Future

research

5.1 Final Discussion and Conclusion

Tuberculosis (TB) continues to be one of the leading causes of death due to an infectious agent
globally, with sub Saharan nations such as South Africa carrying a significant portion of the
burden ?°’. Unfortunately, many aspects of the human immune response to TB are yet to be
elucidated 2°8, due to difficulty in accessing human infected tissue (lung in the case of
pulmonary TB) and limited application of cutting edge technological advancements to this
clinical material, as the regions most affected are often resource constrained 2°°. This invariably
limits the rate at which vaccines, therapeutics and diagnostics are developed, resulting in an
endemic disease **°. To address these challenges, we aimed to couple access to diseased human
tissue with high throughput and locally available single cell sequencing technology to generate
new and unbiased insights into TB disease. To this end, we managed to access human lung
tissue from individuals undergoing corrective lung surgery due to TB associated pulmonary
complications such as and not limited to fibrosis, cavitation, haemoptysis, nodules,
bronchiectasis, mycetoma. Clinical records from many of the participants showed previous TB
episodes with corresponding treatment. Therefore, we postulated that these individuals were
being affected by post TB treatment pulmonary impairment. We then made use of scRNAseq,
to profile this infected tissue as a means of unbiased/unsupervised classification of different
cell types found in the tissue, probing their roles in the establishment of the TB pathology. We
made use of a relatively new single cell sequencing platform known as seq-well (S?), developed
by the Shalek-Love laboratories at the Massachusetts Institute of Technology (MIT). This

technology captured and barcoded transcripts of individual cells, generating a cellular atlas of

115



the TB lung *°!. This platform was comparable to 10X (Chromium Technologies) in terms of
number of UMI and gene output whilst showing increased recovery of transcription factors,
cytokines and cytokine receptors 23°. We explored the following aspects in TB research: (1) the
cellular diversity of the resected lung tissue and the involvement of different cells in the
immunopathology; (2) how transcriptional profiles in diseased lung tissue relate to published
TB blood transcriptional and the association of these signatures with cell subsets; (3) the
phenotypic diversity of lung resident CD4 T cells, as a step in understanding the different
cellular subsets and their functional capacity. The latter aim was curtailed by the emergence of
the SARS-CoV2 pandemic, which disrupted the core activities of the lung study. However, this
prompted me to embark on an additional analysis (4) and use the single cell data generated
prior to the pandemic to investigate the expression of the SARS-CoV-2 entry receptors in
human lung. This opportunistic but highly informative study demonstrated how scRNAseq
libraries are a valuable resource that can be useful in generating insights into other pulmonary

diseases.

To our knowledge this was the first study to use scRNAseq to profile TB diseased lung tissue.
For safety of personnel, this tissue had to be fully processed under strict biosafety level 3
(BSL3) conditions. This presented a considerable challenge, and involved many unsuccessful
experiments not included here (~60% failure rate). In most cases, this appeared to be due to
either the predominance of dead cells (% live cells ranged from 20-40% in the single cell
suspensions) or a failure to obtain sequence products. Multiple wash steps with disinfectant
were required at many stages of the processing of lung tissue, sample loading onto the seq-well
arrays and subsequently processing steps, which might have negatively impacted the yield. Use
of an automated, standardized system such as 10X can mitigate a myriad of experimental

inconsistencies but the operation costs and rigid workflow were prohibitive. Trouble shooting
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of this process continued throughout the thesis. As an illustration, in chapter 3, I was only able
to present data from 1 of the 5 individuals from whom I sorted CD4 T-cells from processed

lung tissue and PBMC.

Nevertheless, with over 3 years of effort I was able to obtain high quality sequences from the
lung tissue of 13 participants. Unbiased analysis of the data identified 19 distinct cellular
clusters, as shown in chapter 2. These cells included immune (myeloid, B and T cells, mast),
stromal (fibroblasts), endothelial (vascular and lymphatic) together with epithelial cells. Franks
and colleagues suggest that there are over 40 unique cell types throughout the respiratory tract
302 a number which we believe will increase with more scRNAseq studies 3%. It should be
noted that our study managed to recover ~21,000 cells primarily from the lower respiratory
tract. Our dataset yielded similar cell types (except basal cells) albeit in different proportions
to a lower respiratory tract, scRNAseq dataset from 8 IPF and 8 healthy donors, in which
macrophages and type pneumocytes were the most abundant cell types *6. The researchers used
droplet based scRNAseq, suggesting that cross platform datasets are comparable. The droplet
vs microwell capture of cells requires further study, considering that cells in tissue come in
different shapes and sizes. It has been shown that droplet based methods recover almost
identical cellular populations in PBMC data, but verification is required in tissue 2°°. Our
dataset will be available to use online both as fastq files and processed data, allowing fellow
scientists to further explore it. In future, distributing the sampling points throughout the entire
length of the pulmonary system as well as increasing the cell yield by 5 or 10-fold can increase
the likelihood of identifying new cell types and better approximately and exceed the reported

40 unique cell types.
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The most striking observation we made was the differential regulation of fibroblast populations
in TB diseased lung. The fibroblast 3 population was enriched for transcripts associated with
immune cell recruitment (chemokines), parenchymal tissue consolidation (collagenases
(COLs)) and cavitation (matrix metalloproteinases (MMPs) and their inhibitors(TIMPs)) 3%,
We also observed that the fibroblast 3 cluster had transcripts which localized with TB
granuloma, blood vessels and airways. The association between fibrosis and dysregulated
vascular remodeling has been observed in idiopathic pulmonary fibrosis, suggesting a possible
mechanism by which fibrotic foci can be established 3%°. Previous studies have not adequately
focused on the involvement of non-hematopoietic TB disease, yet these observations indicate
they may play an important role in orchestrating cellular recruitment to the lung and
pathological pulmonary remodeling. Our findings suggest that we need to consider stromal
cells as a potential target in granuloma-directed TB therapy, which aim make the lesions less
favorable to Mtb growth 3%, Our dataset also allowed us to explore possible enrichment of cell
types driven by either TB or HIVTB. An interesting observation was that myeloid (monocytes
and neutrophils) from HIVTB group expressed transcripts associated with heat shock proteins
(physiological stress or death signature), a potential consequence of neutropenia and
monocytopenia %7, We also observed a depletion of alveolar type 1 (pneumocytes), alveolar
macrophages and secretory cells in TB only participants, consistent with reports that
individuals with TB only experience more severe parenchymal destruction and associated

pulmonary impairment compared to HIVTB individuals '3,

The TB field is currently searching for biomarker signatures that can be used for evaluating the

success of current as well as emerging therapies 3%

. The ability to detect TB disease prior to
the onset of clinical symptoms, and rapid the diagnosis of active TB, can significantly improve

treatment outcomes. Studies evaluating these biosignatures have focused on blood as the
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sampling site, due in part to the ease of access and standardized processing methods for
extraction of PBMC. The literature is replete with studies that performed bulk RNA sequencing
or microarray sequencing of PBMC from healthy, active TB and in some cases latent TB
participants in an attempt to uncover biomarkers associated with TB disease 3%, We selected 5
of these signatures from the literature and super imposed them onto our scRNAseq library in
chapter 2. We observed an enrichment in the neutrophil/inflammatory cell clusters of the
signature proposed by Maertzdorf ef al. in 2016 9. Neutrophils have been implicated in the
inflammatory response to TB disease and consequent pulmonary impairment ''°. They are the
most abundant immune subset in blood, and neutrophil derived signatures may be expected to
overwhelm TB specific signals from low frequency cells. To correct for this effect, Singhania
et al. (2018) used a modular approach that that allowed gene signatures from less dominant
cellular subsets to emerge. This gene signature was the only one elevated in non-myeloid cell
types such as fibroblast, endothelial, alveolar pneumocyte (type 1 and type 2) cells. Recent
work on a 6 gene signature, derived from the original Zak signature used here, has shown that
it is elevated in TB uninfected individuals responding to respiratory viral infections including
influenza and non-pandemic corona viruses (Tom Scriba; unpublished data). This is likely to
be a common feature of TB biomarker signatures that focus on the innate immune response of
myeloid cells. However, the underlying lung destruction occurring in TB, which may be picked
up by the Singhania et al. gene signature, can improve the discriminatory power compared to

its more inflammatory counterparts '°?

. These signatures will have to be compared to other
diseases which cause lung injury to explore their discriminatory efficacy. Again, this highlights

the potential value of unbiased profiling of TB diseased lung tissue in developing more targeted

TB disease gene signatures.
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We should explore fibroblast associated the marker genes and their role in the TB granuloma.
Measurement of serum levels of /DO is already being explored as a potential simple biomarker
of pulmonary TB *!°. Our data suggested, TDO2, a downstream partner of /DO in immune
regulation, may also be associated with TB lung disease. Similarly, peptidase inhibitor 15
(PI15), was highly upregulated in the TB associated cell subsets . This molecule has not been
widely studied, but recently published data suggests it shows promise as a potential blood
diagnostic biomarker of cholangiocarcinoma 3!!. The fact that it is upregulated within these
tumors and in the blood of the same subjects, making it a good option for blood based
signatures.

In chapter 3, we used scRNAseq to explore the phenotypic diversity of tissue resident cd4 t
cells, as t cells that have been shown to localize in tissue to elicit a robust adaptive response to
a secondary TB infection. We purified populations of CD4+CD69+ and CD4+CD69- T cells
using fluorescence activated cell sorting (FACS) from an HIV positive participant. A single
cell library of these populations resolved into 5 distinct clusters including: one naive, two
regulatory, an activated and one cytotoxic. The cytotoxic (PRFI, GNLY) and regulatory
clusters (TACTILE, PRDM]1) have been previously described in tissue resident cells 3!2. The
activated t cells had a similar phenotype to negative immune regulatory, CD300A t cells that
have been reported in PBMC from HIV infected patients 2°*. Taken together, scRNAseq of
these cells uncovered the different cell types comprising the Trm’s, however more cells are
required from more participants to ensure that the full spectrum of these cells is captured. We
did no recover usable cells from most of the participants (4/5) likely due to low starting T cell
numbers that were observed with most lung samples. The FACS machine purifies multiple
cell types simultaneously for heterogenous sample but it should be noted for populations of

interest 1% or less of the total cell count, the sorting efficiency significantly decreases leading
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to elevated cell loses 3!'3. We could not address this as the lung study was suspended due to the

instituted COVID-19 lockdown regulations.

In chapter 4, we demonstrated the importance of generating single cell databases of human
tissue in the context of other pulmonary diseases. Specifically, we managed to show that our
dataset could be extended to the COVID-19 pandemic by using transcript capture technology
to predict which cell type would make a suitable target for the SARS-CoV-2 virus based on
preliminary studies. Angiotensin-converting enzyme 2 (ACE?2) had been reported as a critical
receptor through which the virus can infect cells 3!4, together with the Type 2 transmembrane
serine protease (TMPRSS?2), required to cleave the viral spike protein to facilitate cell entry 3!°.
We managed to show expression of ACE2 and TMPRSS?2 transcripts in type 1 pneumocytes,
type 2 pneumocytes and ciliated cells. Interestingly, the HIVTB group showed an upregulation
of these markers in comparison to the TB only group, suggesting that HIV positive individuals
could be more susceptible to SARS-CoV-2 infection. However, this has not been ascertained
with clinical data and the expression of these viral target receptors is dependent on sex and age
together with other ongoing inflammation inducing events, thus more research is required to

demonstrate its clinical usefulness 316318

. However, this section served as a step towards
understanding the dynamics of SARS-CoV-2 infection and can be extended to the design and

development of potential therapeutic interventions.

5.2 Future Research

5.2.1 Whilst we managed to profile 19 cell subsets from human whole lung tissue, there is a
need to increase the number of cells. The target cell number is estimated to be around 100,000

303 which will allow us to effectively profile more subsets and uncover cellular states are
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affected by TB and HIVTB disease. Identifying the fibroblast 3 subset and localization of

marker genes within the TB granuloma require a follow up study to confirm their applicability.

5.2.2 The section on applicability of the blood derived TB biosignatures showed to a moderate
degree how the biosignatures mapped onto the scRNAseq. It has been well characterized that
biomarker development studies are negatively impacted by the high rate of false positives and
a poor statistical/analytical frameworks, coupled to shared immune responses to other bacterial,
viral infections or inflammation inducing antigens '°’. We propose a bottom-up approach, in
which we benchmark lung tissue cavitation and fibrosis as gross indications of active TB
disease when coupled to chest-xrays, gene xpert, culture and smear microscopy. This will be
proceeded by a cavitation and fibrosis signature in the blood with easily adaptable technologies

such as PCR.

5.2.3 This study managed to demonstrate the phenotypic diversity in the tissue resident CD4 T
cells derived from an HIVTB infected individuals. However, more data is required from
participants with different disease statuses (TB only and healthy controls) to increase the
resolution of the T cell subsets in the tissue resident fraction of the lung tissue. More
consideration is required for the cell types such as MAIT and yd T cells that are potentially

sorted with the cd4 tissue resident t cell fraction 319320,

5.2.4 The penultimate section of this study (Chapter 4) demonstrated the applicability of
scRNAseq data derived from TB research in other diseases such as COVID-19. TB research
needs such data in increasing quantities to improve the generation/validation of pertinent
questions by taking advantage of the unparalleled depth and breadth of the cell/gene readouts.

Due to the cost and complexity involved in this technology, we recommend that a bulk RNA
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sequencing databases of the TB human lung tissue (showing the full spectrum of disease) be
created, similar to those that exist in cancer research %%, These can also be useful in establishing

biomarker signatures for lung damage due to fibrosis and cavitation of the lung tissue.

I would also like to state that 1 embarked on this PhD journey in 2016, under the supervision
of Dr Frederick Balagdde in the bioengineering department. However, due to unforeseen
circumstances, he resigned from his position. I had already started many projects in the lab and
had to join Dr Leslie’s (my current supervisor). I managed to publish one paper from my
previous lab during the course of my PhD, which was a proof of principle study, demonstrating
the work flow of Light Forge, a real-time PCR based microfluidic device for detecting drug
resistance linked mutations in the rpoB locus of Mtbh , with comparable and in some cases
superior performance compared to commercial machines such as the Light Cycler 96 (roche

diagnostics) 32!. T have attached the publication at the end of this chapter in the annex section.
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Annex 2

Publication 2 : Light Forge ; A Microfluidic DNA Melting-based Tuberculosis Test

ARTICLE

Light Forge: A Microfluidic DNA Melting-based
Tuberculosis Test

lan M. Mbano,™ " Tawanda Mandizvo,*"" Jerome Rogich,” Tafara T.R. Kunota,”
Jared S. Mackenzie,” Manormoney Pillay,® and Frederick K. Balagaddé?®

Background: There is a well-documented lack of rapid, low-cost tuberculosis (TB) drug resistance diagnostics in
low-income settings across the globe. It is these areas that are plagued with a disproportionately high disease bur-
den and in greatest need of these diagnostics.

Methods: In this study, we compared the performance of Light Forge, a microfluidic high-resolution melting
analysis (HRMA) prototype for rapid low-cost detection of TB drug resistance with a commercial HRMA device, a
predictive “nearest-neighbor” thermodynamic model, DNA sequencing, and phenotypic drug susceptibility testing
(DST). The initial development and assessment of the Light Forge assay was performed with 7 phenotypically drug
resistant strains of Mycobacterium tuberculosis (M.th) that had their rpoB gene subsequently sequenced to confirm
resistance to Rifampin. These isolates of M.th were then compared against a drug-susceptible standard, H37Rv.
Seven strains of M.th were isolated from dinical specimens and individually analyzed to characterize the unique
melting profile of each strain.

Results: Light Forge was able to detect drug-resistance linked mutations with 100% concordance to the sequenc-
ing, phenotypic DST and the “nearest neighbor” thermodynamic model. Researchers were then blinded to the
resistance profile of the seven M.tb strains. In this experiment, Light Forge correctly classified 7 out of 9 strains as
either drug resistant or drug susceptible.

Conclusions: Light Forge represents a promising prototype for a fast, low-cost diagnostic alternative for detec-
tion of drug resistant strains of TB in resource constrained settings.
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Light Forge: A Low-Cost Tuberculosis Test

IMPACT STATEMENT

The information presented in this study is primarily positioned to benefit TB-infected individuals from re-
source limited regions such as Sub-Saharan Africa and South East Asla where affordable and accessible
diagnostics are required. The evidence presented in this manuscript illustrates that combining DNA-relting
analysis with microfluidics can be a foundational formulation for a diagnostic that will be cheap, parallel,

and accessible in various dinical settings.

INTRODUCTION

Tuberculosis (TB) is a deadly infectious disease
with 1.6 million deaths reported in 2017 (7). The
highest disease burden is seen in Africa and
South East Asia, low income regions, often with
poor healthcare delivery 2). The inability to control
infectious diseases adequately in these areas is
rooted in poor diagnosis and treatment. In TB, this
leads to increased infectivity, transmission, mor-
bidity, and mortality. Further compounding this
problem is the significant rise in the number of
drug-resistant strains of Mycobacterium tuberculo-
sis (M.th), which are associated with higher maor-
bidity and mortality rates (3). It would be possible
to provide mare efficient healthcare delivery by in-
creasing access to more economical diagnostic
devices. If M.tb infection and drug resistance pro-
files can be detected at a significantly lower cost
to public health systems, treatment would be initi-
ated earlier, with a substantial attainable decrease
in disease incidence (4). Unfortunately, despite in-
creased academic and commercial interest in
point-of-care diagnostics, few commercially avail-
able devices have managed to effectively deliver
to this underserved demographic.

Creating diagnostics within this context requires
an adept appreciation of the unique challenges
and limitations in the development, production,
and marketing of a diagnostic test for the develop-
ing world (5). Notably, the most important consid-
erations are device affordahility and turnaround
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time (6). Microfluidic technology can reduce the
cost of diagnosis by precisely manipulating minute
fluid volumes in parallel, thereby reducing the
averall consumption of reagents whilst increasing
diagnostic throughput. Engineering and refining
these fine networks of micro-plumbing allows inte-
gration of many functional components onto a
single device (7). A sample can be partitioned into
several independent fluid circuits in an efficient
manner, allowing multiple assays to be carried out
in parallel with minimal end-user intervention.
Another cost saving strategy for TB diagnostic devi-
ces is the utilization of high-resolution melting
analysis (HRMA), & post palymerase chain reaction
(PCR) method used to detect single nucleotide poly-
morphisms (SNPs) (8). It has the advantage of being
a single step as well as a dlosed tube assay that
allows for a rapid and reliable examination of PCR
product. This method has been used to detect
drug-resistant M.tb, with performance metrics com-
parable to the “gold standard” M.th phenotypic
drug susceptibility testing (9, 70). HRMA has been
reported to cost USD $0.30 per reaction, but per-
forming it at volumes consistent with microfluidics
will reduce reagent costs by approximately 1,000
(17). We leveraged the efficiency and simplicity
afforded by a microfluidics platform with the simple,
linear workflow of HRMA to create Light Forge, a
functional and foundational blueprint for a low-cost
TB diagnostic for resource-limited settings.

In this study, we address the following research
guestions: (1) Are the performance characteristics
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of Light Forge comparable to a commercial HRMA
device, phenotypic drug susceptibility testing,
a predictive nearest-neighbor thermaodynamic
model, and Sanger sequencing? (2) Can Light
Forge provide similar specificity to traditional
Sanger sequencing when blinded samples are an-
alyzed? To answer these guestions, we obtained
seven rifampicin-resistant strains with known
mutations in the rifampicin (RIF) resistance deter-
mining region (RRDR) rpoB. Custom primers were
designed and the amplicons were melted to quan-
tify the melting temperature compared to H37Rv.
RIF resistance was selected as an appropriate tar-
get as sequence aberrations in and around the
81 bhp fragment of the RRDR accounting for 95%
of TB drug resistant cases (72, 73). A similar ap-
proach was adopted for the subsequent blinded
phase of the study.

MATERIALS AND METHODS

Mycobacteria tuberculosis Isolates

Eight DNA samples were used to develop the
assay for subsequent experiments. These were
obtained from 7 rifampicin-resistant laboratory
strains (Kzn605, R35, R271, Tkk-01-0039, Tkk-01-
0043, Tkk-01-0050, Tkk-01-0062), and H37Rv, used
as a drug-susceptible standard throughout the
study. The strains were sourced from Medical
Microbiology, School of Laboratory Medicine and
Medical Sciences at the Nelson R. Mandela School
of Medicine (Durban, South Africa) and Dr. Alex
Pym'’s laboratory at the African Health Research
Institute (AHRI) (Durban, South Africa). The pheno-
typic drug-susceptibility profile of all the test
strains confirmed rifampicin resistance.

To further validate the performance of the as-
say, genomic DNA from 9 clinical M. tuberculosis
isolates (Tkk-01-0011, Tkk-01-0030, Tkk-01-0032,
Tkk-07-0061, Tkk-01-0078, Tkk-03-0082, Tkk-04-
0006, Tkk-04-0030, Tkk-04-0048) were also sourced
from Dr. Alex Pym's laboratory at AHRI. The drug
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susceptibility profile of each of these strains was
revealed after the Light Forge blinded study was
concluded.

DNA Extraction

DNA was extracted from heat-killed cultures us-
ing the hexadecyltrimethylammaonium bromide
(CTAB) method (74).

Sanger Sequencing of the rpoB Gene Region

PCR amplicons of the rpoB gene for each strain
were sequenced by Ingaba Biotech Industries, us-
ing primer sets identical to the primers in the
high-resolution melting (HRMA) assay (Table 1).

Real-Time PCR and High-Resolution Melting
Analysis (HRMA) with Light Cycler®96

Polymerase chain reaction (PCR) was performed
by first preparing a master mix through adding
25ul of 2X Xtreme™ Buffer (Novagen), 10uL of
dNTPs (Novagen, ), 5ul of LC Green (ldaho
Technology Inc), 0.3uM of each Forward and
Reverse primer, 1 pL of KOD Xtreme™ Hot Start
DNA polymerase (Novagen, Toyobo) and 5pL of
template DNA containing 200 ng of the DNAIn a fi-
nal volume of 50 uL. PCR was performed using the
Light Cycler®96 (Roche Diagnostics, Switzerland).
The initial denaturation temperature was 95 °C for
3005, followed by 35 cycles of 95°C for 105, 60°C
for 10s, 72°Cfor 10 s (fluorescence readout step).
A nontemplate control (NTC) was included in all
experiments, in which PCR Grade water (Life
Technologies) was substituted for the DNA
template.

For the HRMA, the following profile was used:
95°Cfor 605, 40°C for 605, 65°C for 1sthen ata
0.07°C/s ramp rate, acquiring 15 readings every
degree until 97°C. Difference plots were gener-
ated using H37Rv as the baseline signal. The test
readings from the samples were then normalized
to this standard. The total reaction time was
70min.

May 2020

)

24 Z9S/0bY/E/G/ 210 B/ R uoa dno ajulep e/ sdyy Woly papeojumec

120z AB\ Lz U0 Jasn [B1_N-NINZEMY 0 ANsiaalun A |



Light Forge: A Low-Cost Tuberculosis Test

Table 1. Primer sequences used for PCR amplification, Sanger sequencing and subsequent HRMA of
the rpoB gene's region known to determine rifampicin resistance (75).

Annealing
Primer Sequence temperature(°C)
rpoB-F CGCGATCAAGGAGTTCTTC 65
rpob-R TGACAGACCGCCGGGCCC

Nucleotide Accession
Product size(bp) position number
118 2339 t0 2357 L27989.1
2456 t0 2439

Light Forge Microfluidic Chip Design and
Fabrication

The Light Forge PCR microfluidic chip was fabri-
cated out of the silicone elastomer polydimethylsi-
loxane (PDMS) (General Electric RTV 615) using
multi-layer soft lithography, as described previ-
ously (76). Up to 20 independent PCR reactions
can runin parallel on each chip (Fig. S1).

Real-Time PCR and High-Resolution Melting
with Light Forge

The real-time PCR and HRMA steps on the chip
were captured using the Light Forge software,
which was developed in house by Dr. Frederick
Balagaddé. This software uses a feedback system
that allows acquisition of fluorescence signals at
easily programmable temperatures, whilst display-
ing the reaction progress.

The PCR master mix was prepared using 30 pL
of 2X Xtreme™ Buffer (Novagen), 15 uL of dNTPs
(Novagen), 9ulL of LC Green (ldaho Technology
Inc.), 0.46uM of each primer (Life Technologies),
3l of KOD Xtreme™ Hot Start DNA polymerase
(Novagen), 0.08%(v/v) 1% Tween 20, and 3pulL of
template DNA(~6ng) to make a total volume of
75uL. For the 20-reactor chip, 8 reactors were
used for H37Rv, 8 for the test strains (R35, Kzn
605). The final 4 reactors contained the nontem-
plate controls.

The thermal cycling was performed using a
G-STORM GS1 (Somerten) thermocycler modi-
fied to house the microfluidic device. The fluo-
rescence signal was acquired in real-time using
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an Olympus MVX10 (New York) Macro zoom mi-
croscope (Fig. S2). The thermal profile was 99°C
for 8 minutes, followed by 35 cycles of 99°C for
65s, 60°C for 115s, 74.5°C for 130s. The
HRMA was performed by increasing the temper-
ature from 75°C to 94°C at a ramp rate of
0.5°C/s with 0.25°C increments for each step.
This resulted in a total reaction time of 180 min
(Fig. S3).

Nearest-Neighbor (NN) Thermodynamic
Model

The data from our experiments were compared
to the theoretical relative melting temperature dif-
ferences predicted by the mathematical nearest-
neighbor (NN) thermodynamic madel (77). This
model predicts the melting temperature (Ty) of a
DNA strand based on the cumulative standard
enthalpies (AH°) and standard entropies (AS?) of
neighboring duplex base pairs as well as the total
oligonucleotide strand concentration (G) as
shown by Equation 1 below.

i=n 1 o
Ty = V_Z"1=1 o ~273.15 (Eq. 1)
SEr A8+ In(%)

Using the sequencing information from Sanger
sequencing, the (ATy) between the reference
strain (H37Rv) ana the test strains used for the ini-
tial evaluation were computed. This mode| was
also used to compute the expected (ATy) of the
blinded samples. The computed prediction error
of the NN model was +1.2 °C (18). The SNPs ob-
served in resistant strains of M.tb result in
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temperature deviations ranging from (<0.1 to
1.4 °C) (19). Thus, the model cannot be used for
predicting exact differences but remains useful in
predicting whether the SNPs lead to a positive or
negative ATjy.

Statistical Analysis

Atwo-way t-test was used to evaluate the signifi-
cance of the differences, where a P value of 0.05
or less was considered statistically significant
(GraphPad Prism 7).

RESULTS

rpoB Gene Mutations in Clinical M.th Strains

Seven strains with rifampicin resistance and a
reference H37Rv wild-type strain (rifampicin sensi-
tive) were selected for the initial evaluation of the
Light Forge. The 118bp rpoB gene target of each
of the isolates was Sanger-sequenced prior to
HRMA. All the 7 sequence variants demonstrated
SNPs associated with resistance to rifampicin. A
total of 5 sequence SNPs presentin 7 strains were
identified, including Kzn 605 (533T — Cand 516 A
— @), R35 (5337 — C), R271 (531C — T), Tkk-07-
0062 (516 A — T), Tkk-01-0050 (526 C — T), Tkk-01-
00432 (531 C—T), and Tkk-07-0039 (526 C — T).

Real-Time PCR and HRMA for Drug
Susceptibility Testing on Test Strains

The rpoB PCRs for 7 clinical strains were run on
the Light Cycler®6 and were compared to the
Light Forge system (using the microfluidic chip
shown in Fig. 1). Fig. 2 illustrates the fluorescence
imaging of the Light Forge reactors at the 1" (A)
and 25™ (B) thermal cycles during realtime PCR.
The A panel in Fig. 2 is a fluorescent image at
60°C at the first PCR cycle, while the B panel is the
fluorescent image at 60°C after 25 PCR cycles.
Each color-coded chamber contains ~1.5 nL vol-
ume of PCR master mix. This is a representative
layout using a clinical mutant isolate (Tkk-07-0050)

444 JALM | 440-453 | 05:03 |
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and the wild type reference control H37Rv used in
the subsequent experiments. The test strain was
amplified in 8 out of 20 reactors (red border), the
reference wild type strain (H37Rv) was amplified in
8 out of 20 reactors (blue border), while the non-
template controls were amplified in 4 of 20 reac-
tors (yellow border). At the end of the
amplification, the Light Forge analysis was immedi-
ately initiated to melt the amplicons and detect
mutations. Mutations were identified as melting
temperature (7y) deviations relative to H37Rv.
Each individual line indicates a melt-curve profile
for an individual reactor.

The real-time PCR and HRMA are graphically il-
lustrated in Fig. 3 a and b respectively. The
HRMA profiles of H37Rv were used as the stan-
dard to which the 7 clinical strains were then
compared. Mutant melting curves could be dis-
tinguished from the wild type melting curve in
the normalized graphs (Fig. 3b) but were best
differentiated in the negative 1" derivative plot
(-dRFU/AT) shown in Fig. 3c. The average melting
temperature was computed for both the test
strain and H37Rv as shown in Fig. 3d. There was
100% concordance of the results from Light
Cycler®96 and Light Forge.

Comparison of Light Forge HRMA with
Sanger Sequencing, Roche Light Cycler®96
and the Nearest-Neighbor (NN) Model

This section refers to Fig. 4. The sequencing
data for Kzn 605 identified 2 positive class two
mutations 5337 — C and 516 A — G within the
rpoB region. The Light Forge system identified
these Kzn 605 SNPs as having a melting tempera-
ture difference (ATy) of 0.95 = 0.06°C. The Light
Cycler®96 detected a (ATy) of (0.61+0.02°C).
The NN model predicted a positive (ATy ) of
+1.88°C.

Sequencing the R35 isolate revealed the posi-
tive class one mutation 533 T — C within the rpoB
region. Consistently, Light Forge detected a (ATy)
of (0.30£0.11°C). For the same strain, Light
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the PCR chambers were full.

Fig. 1. The Light Forge microfluidic chip. Optical micrograph of the Light Forge microfluidic chip/car-
tridge for real-time PCR and high-resolution melting analysis of amplified samples. Scale bar, 1mm.
The chip/cartridge is made up of an elastomeric transparent polymer called polydimethylsiloxane and
has 20 reactors, each linked to an independent input port. These reactors are 500 um long, 200 um
wide, and 150 um high, translating into a volume of 1.5 nL. The PCR master mix was loaded at 5 psi until

Cycler®36 detected a (ATy,) of (0.22 £0.02°C). The
NN model predicted a melting temperature of +
067°C.

Sequencing the R271 isolate revealed the pres-
ence of a negative class one SNP 531 C — T within
the rpoB region. Light Forge detected a (ATy) of
—029+0.09°C. A (ATy) of —0.23 £0.03°C was
detected for the same strain using the Light
Cycler®6. Consistent with the two systems, the
NN model detected a (ATy;) —0.23°C.

The Light Forge system detected a (ATy) of
(022 £ 0.05°C) when the Tikk-07-0062 isolate was
compared to the reference. Sequencing high
lighted the presence of (1 positive) or (a positive)
class four SNP 516A — T The Light Cycler®6
could not detect this SNP, shown by a (ATy) of
0013 £002°C. A (ATy) of + 0.20°C was pre-
dicted by the NN model.
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When the Tkk-07-0050 isolate was run
in the Light Cycler®36 system, a (ATy) of
—0.28 + 0.02°C was detected. This observation
was consistent with sequencing findings, which
denoted the presence of 1 negative energy class
one SNP 526C — T. Light Forge detected a (ATy)
of —052+008°C. The NN model predicted a
(ATy) of —0.84°C, comparable with both the Light
Cycler®36 and the Light Forge systems.

The sequencing data for the Tkk-01-0043 isolate
identified one negative energy class one SNP
531C — T Light Forge system detected a (ATj,) of
—0.48 + 0.09°C, whereas the Light Cycler®36 sys-
tem detected —024+0.02°C as the (ATy). The
NN model predicted a melting temperature differ-
ence of —0.23°C,

Sanger sequencing the Tkk-07-0038 isolate iden-
tified 1 negative energy class one SNP 526 C — T.

| 0503 |

440-453 | JALM 445

Y e pe e U

DILEREIR// S

dr

S0 IHE/ LB IO

~
~

W 10 A1IS

FEM

La JBsn (BIEf=n|n

Zoz fen L7



Light Forge: A Low-Cost Tuberculosis Test

Fig. 2. DNA guantification and high-resolution melt analysis in Light Forge PCR reactors. The Light Forge
chip/cartridge imaging area is shown in greater detail, demonstrating the visual accumulation of fluo-
rescence signal (within each of the 20 reactors, linked to independent input ports} as the Light Forge
system performs real-time PCR and High-Resolution Melting Analysis. An increased fluorescence signal
intensity is demonstrated with an increase in PCR cycde number. Fluorescence images of Light Forge
PCR reactors of the 1°% (a) and 25 (b) thermal cycles during real-time PCR. The reactors in the image
have been demarcated with color-coded boundaries depending on the genomic DNA amplified: drug-re-
sistant mutants [Tik-07-0050 (526 C—T), red]; drug-susceptible strains (H37Rv, blue); and nontemplate
controls {yellow}. The amount of double-stranded DNA in each reactor corresponds to the level of fluo-
rescence of LC Green—a reporter double-stranded DNA intercalating dye in the master mix. LC Green
binds specifically to double-stranded DNA and fluoresces brightly when it binds. Unless specified other-
wise, all images were taken during the 60°C step of each thermal cycle. We were detecting fluores-
cence—in real-time via a custom program that runs on a temperature feedback loop—at 470-520 nm,
the emission wavelength range of the reporter double stranded DNA saturating dye LC Green.

Alstaaiun Aq

Consistently, the Light Forge system detected a
(ATy) of =037 x£0.16°C when this isolate was
compared to the reference, whereas the Light
Cycler®6  system detected a (ATy) of
—0.26 £0.02°C. The NN model predicted a melt-
ing temperature difference of —0.84°C, which
agreed with both the Light Cycler®36 and the
Light Forge systems.

Validation of Light Forge with Blinded
Samples

For further validation of the Light Forge assay, 9
blinded samples were analyzed. The (ATy) melt
temperature of the blinded samples was com-
pared to H37Rv. Four (44.4%) of the 9 blinded

446 JALM | 440-453 | 0503 |

isolates showed melting curve profiles that were
synonymous to that of H37Rv (Fig. 5). However, 5
(55.5%) of the 9 blinded isolates were distinguish-
able from the H37Rv melting curve profile. In com-
parison to the culture-based RIF-susceptibility test
(DST), Light Forge correctly identified 7 out of 9 of
the isolates with 71.43% sensitivity and 100% spe-
cificity. The discrepancy was noted for Tkk-04-
0048, which had a drug-susceptible profile on the
Light Forge system but showed resistance in cul-
ture, confirmed with sequencing by the presence
of a double mutation in the drug-resistance deter-
mining region of the rpoB. The isolate Tkk-07-0030
also showed discrepancy with a drug-susceptible
profile on the Light Forge but resistance in culture,
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Fig. 3. The real-time PCR and HRMA data from the Light Forge system testing the rpoB gene of the [Tkk-
01-0050 (526 C—T)] clinical strain. (a} Real-time PCR amplification curves for the rpoB region. These data
were all acquired simultaneously using the Light Forge microfluidic chip. For each reactor, a single
data point was acquired during the 60 °C step. The relative fluorescence units (RFUs) corresponding to
the concentration of double-stranded DNA was plotted against the PCR cycle number. Eight real-time
amplification curves for drug-resistant [Tkk-01-0050 (526 C—T)] mutant strain are shown in red, 8 curves
for the drug-susceptible controls strains (H37Rv} in blue and four curves of the no template control
reactors in black. Both drug-susceptible control and drug-resistant mutant strain reactors increased
by more than 0.15 RFUs to over 0.45 RFUs, whereas the amplification signal for the nontemplate con-
trols remained relatively suppressed. (b} Normalized high-resolution melt (HRM} curves for the rpoB
PCR amplicons of the drug-resistant mutant strain [Tkk-07-0050 (526C—T), red] and the drug-susceptible
control strain (H#37Rv. blue). (c} Negative first derivatives plots revealing the melt peaks. The melting
temperature (Ty) of each strain was determined by taking the mean of the melt peak of every replicate
for each individual strain. The average melting temperature for the drug-susceptible strain 7y,;s type)
was 83.60 + 0.06°C and that of the drug-resistant mutant 7ymq) Was 83.08 + 0.05 °C. The relative dif-
ference of the melt peaks of these strains (A7)} provides important clues to the nature of the mutation
in the drug-resistant genome. (d} Peak intensity as a function of melting temperature. The average
melting temperatures for the drug-resistant mutant (7kk-07-0050, red circles) and drug-susceptible con-
trol {H37Rv, blue triangles} were 83.60 + 0.06°C and 83.08 + 0.05 °C respectively. The melting tempera-
tures were independent of the maximum fluorescence intensity (double-stranded DNA concentration}
and thus independent of the amplification efficiency in each reactor.
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B Light Farge

W Lioht Cycler

B tearest Nelghtiour Thermodynaimie Model

Mean temperature differences (°C)

K2 605 R35 Tkk-01-0062
ST~ C 5337 - C 516A T
516A - G

SMC~T 56C —~T sNC+T 526C =T

Ra71 Tkk-01-0050 | Tkk-01-0043 | Tkk-01-0039

Clinical strains

* = significantly different (p < 0.05)
ns = not significantly different (o > 0.05)

Fig. 4. Comparison of melting temperature differences from Light Forge and Roche Light Cycler®96
HRMA systems alongside the NN thermodynamic model 7y predictions. Relative melting temperature
differences of the rpoB amplicon among 7 RIF-resistant strains and the reference RIF-susceptible strain
H37Rv were plotted using data generated from Light Forge (red bars) and Light Cycler®96 (blue bars).
The black bars represent the theoretical relative melting temperature differences predicted by the
nearest neighbor (NN} thermodynamic model. The Light Forge data is consistent with Light Cycler®96
data as well as the theoretical model predictions. However, Light Forge successfully detected a low-en-
ergy class 4 mutation that eluded detection by Light Cycler®96 despite the nearest neighbor (NN) ther-
modynamic model having predicted that the mutation is detectable.

confirmed with sequencing by the presence of an
(AtoT)change

DISCUSSION

Detecting drug-resistant strains of TB remains vi-
tal for the timely clinical management of the disease,
with potertial to significantly reduce transmission.
This proof of concept (POC) study details the design,
development and preliminary performance evalua-
tion of Light Forge, a microfluidic device to detect
RIF resistance linked mutations in M.t6.

In the initial phase of the study, 7 RIF-resistant
strains of M.th were used to bench mark the

348 JALM | 440453 |

0503 |

performance of Light Forge to the Roche Light
Cycler®36. As shown in Fig, 4, Light Forge showed
100% concordance with Sanger sequencing com-
pared to the 86% demonstrated by the Light
Cycler®6. The same trend was observed when
Light Forge was compared to the nearest neigh-
bor (NN) thermodynamic model. An interesting
observation from the panel was that the commer-
cial device did not detect the presence of the mu-
tation in the Tkk-07-0062 strain. This strain
harbored a class 4 transversion (516 A — T), which
is difficult to detect as it results in a melting tem-
perature difference of less than 04°C (75}. This
was consistent with a study that showed that
HRMA had diminished ability to detect trans
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Fig. 5. Precision and reproducibility comparisons of Light Forge phenotypic resistance prediction on
blinded TB dinical isolates using HRMA. These results were reproducible by two independent Light
Forge experiment repeats with very small standard deviations.

versions when the reaction volume increased 5-
fold (20). The higher sensitivity is achieved through
rapid heat transfer in microfluidic-based PCR due
to the small reaction mass and the higher surface
to volume ratio of the small reactor, leading to a
more uniform temperature distribution (27).

To circumvent subjectivity of the study (22}, the
second phase of the experiments was performed
with the scientists blinded to the resistance profile
for all nine dlinical isolates. Light Forge detected
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the presence of mutations in 7/9 isolates as
shown in Fig. 5 (5 RIF-R and 3 RIF-S), when com-
pared to sequencing and drug susceptibility pro-
files. Two RIF-resistant strains, Tkk-04-0048 and
Tkk-01-0030, were erroneously detected as wild
type. Tkk-04-0048 contained double mutations at
positions (511 T — € and 516 G — T). These muta-
tions were undetectable as the increase in melting
temperature due to the mutation at position 511
was offset by a decrease in melting temperature
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by the mutation at position 516. This observation
is not unique to this study, as it has been reported
that co-occurrence of class 3 and 4 mutations
within the same amplicon leads to minimal melt-
ing temperature deviation (23). Tkk-07-0030 con-
tained a single mutation (526 A — T). This specific
mutation was located between two cytosine (C)
nucleotides as shown in supplemental Fig. 54. The
mutation appears to lead to minimal deviation in
the melting temperature in comparison to H37Ry,
consistent with the observations that (A/T) trans-
version have miniscule impact on the melting pro-
file of the amplicons (24-26). As stated previously,
we speculate that reducing the volume of the
microfluidic reactors by between 5- to 20-fold
could potentially enhance the resolution power of
the HRMA assay.

Whilst Light Forge has the potential to contrib-
ute significantly to improving health care delivery
systems, particularly those in low income settings,
it has limitations arising from its design based on
molecular testing of TB and its reliance on micro-
fluidic technology. First, HRMA can detect melting
temperature aberrations that can be misinter-
preted as the presence of mutations, but which
do not confer any phenotypic drug resistance (in-
cluding silent mutations). Thus, the assay can erro-
neously predict that a strain with the mutation
(516 G — C) is drug resistant, contrary to its drug-
sensitive profile (27). A similar occurrence was
reported when a silent mutation at codon 514 of
the rpoB gene was misclassified as drug resistant
using a commercial genotyping kit (28). This is the
major reason why sequencing and DST remain
more precise tools for asserting clinical resistance
of strains (29). Nevertheless, with proper execu-
tion, Light Forge could be a useful tool for screen-
ing TB patients.

Light Forge was designed using principles
adopted from microfluidic large-scale integration
(MLSI), which allow for several hundred to
thousands of reactors on a single device (30).

450 JALM | 440-453 | 05:03 |
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Some limitations of this study are that few isolates
were used, and that only DNA from pure clinical
cultures but no primary specimens such as blood
or sputum were used. In addition, the assay would
have benefited from a comparison with the well-
established GeneXpert MTB/RIF Assay. However,
these limitations do not detract from the value
and significance of the POC Light Forge findings.
To our knowledge, the Light Forge chip represents
one of the few iterations that were performed at
nanoliter scale. There are several modifications
that can be incorporated into Light Forge to ad-
dress possible errors that could emanate from
heterogeneity of M.tb populations, which may be
the case if primary specimens are used. We, there-
fore, propose a future Light Forge platform that
interrogates a single copy of DNA in each reactor
by combining limiting dilution and MLSI to acquire
melting point data for each single genome ampli-
con. Further advancements are required for Light
Forge to transition from proof-of-concept to a
commercially viable product. The run time of
180 min requires reduction to make it feasible in
the clinical setting, an improvement which will be
easily implemented with more robust hardware. It
is encouraging that several devices have com-
pleted the transition from the diagnostic develop-
ment pipeline to commercial point-of-care
microfluidic devices for tasks such as blood analy-
sis and nucleic acid quantification, as well as iden-
tification of pathogens such as M.tb (Cepheid's
GeneXpert System) (37).

Light Forge successfully detected 14 out of 16
samples based on their drug-resistance profiles.
Whilst this is a positive step towards creating an
accurate low-cost test for TB drug resistance, the
assay needs to account for difficult-to-detect
mutations such as double mutations and silent
mutations, as well as work toward the final devel-
opment of a version ready for clinical testing
Possible improvements include use of a 21 mega-
pixel camera, a fluorescent lamp, a thermal block,
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and a simple computer interface to create a cost-
sensitive device similar to that developed by
Hatch and colleagues (32). Creating a device that
is easy for an end user to operate will allow rapid
integration within affected countries. A simplistic
design will also reduce the cost of purchase and
maintenance of the device. Prior to implementa-
tion, Light Forge should be validated using a larger
number of isolates as well as biological specimens

from patients with and without HIV from different
geographical regions (33).

SUPPLEMENTAL MATERIAL

Supplemental material is available at The Journal
of Applied Laboratory Medicine online

Nonstandard Abbreviations: TB, tuberculosis; HRMA, high-resolution melting analysis; DST, drug susceptibility testing; M.tb,
Mycobacterium tuberculosis; SNP, single nucleotide polymorphism; PCR, polymerase chain reaction; RIF, rifampicin; RRDR, rifam-
picin resistance determining region; AHRI, Africa Health Research Institute; NTC, non-template control; PDMS, polydimethylsilox-
ane; NN, nearest neighbor thermodynamic model; RFU, relative fluorescence units; Ty, melting temperature; ATy, melting
temperature change; AH®, standard enthalpy change; AS°, standard entropy change; C, total oligonucleotide strand concentra-
tion; RIF-R, rifampicin resistant; RIF-S, rifampicin susceptible; A, adenine; T, tyrosine; G, guanine; C, cytosine; POC, proof of
concept.
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