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Preface 
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The study described is an original work performed and reported by the author. The study has 

not been submitted in any form, by any person or submitted to any tertiary institution for award 

of a degree or diploma. Some of the work has been published in accredited journals in line with 

the UKZN thesis guidelines.  Due acknowledgements have been accorded where other people’s 
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Abstract 

 
Tuberculosis (TB) remains a global challenge, with approximately 1,5 million  deaths annually. 

Addressing deficits in our understanding of disease pathology and treatment is needed for the 

development of new treatment modalities. Despite much effort, prevalence of this 

disease remains high in resource limited regions, where research capacity is not sufficient to 

successfully combat the endemic. Research in developed countries has generally been 

constrained to animal models due lack of access to clinical samples from the site of TB 

disease, the human lung. Although these animal models have their utility, it is essential that 

findings from these systems be tested and validated in human tissue. In this thesis, I leveraged 

a relatively new technology called Seq-well, which is highly portable and low-tech single cell 

ribonucleic acid sequencing (scRNAseq) platform and access to TB infected lung 

tissue obtained from lung resections, to generate a single cell atlas of TB affected lung tissue. 

This involved processing the human tissue immediately post-surgery and loading 

unprocessed/neat cells or FACS sorted cells (tissue resident t cells) onto a microarray that 

allowed capture and subsequent sequencing of the cell transcriptomes. In the first part of the 

thesis, I identified and profiled cellular subsets from TB infected tissue, focussing on a subset 

of FAP+PDPN + fibroblasts associated with the organisation of tertiary lymphoid organs. I 

also demonstrated that this dataset can be useful in evaluating current and future TB 

biomarkers, by superimposing signatures from the literature onto the cellular subsets and 

localizing them to different parenchymal, stromal and immune cell types. I also profiled tissue 

resident CD4 T cells from the same lung tissue, identifying canonical marker genes (ITGA1, 

PRF1) in one specific cluster, together with naive (CCR7, SELL), regulatory (RORA) and 

activated/myeloid-like T cells (LYZ, S100A9) in separate clusters. Finally, I demonstrated the 

applicability of this dataset in research involving other pulmonary diseases, by identifying 

ACE2+ TMPRSS2+ type 2 pneumocytes, a target of the SARS-CoV-2. Taken together, these 

findings provide new insights into the immunopathology of TB in the human lung together 

with the impact of HIV on specific immune subsets. It serves as a resource for cross validation 

of lung immune signatures generated in experimental infections of both mice and non-human 

primates, which is beneficial for scientists lacking access to the technology and/or tissue.  
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Iqoqa 

Isifo sofuba (i-TB) silokhu siyinselelo emhlabeni jikelele, ngokufa okuhlobene naso okucishe 
kufike esigidini esi-1.5 njalo ngonyaka. Ukubhekana nokushoda ekuqondeni kwethu 
umumosakhiwo wesifo bese kuncishiswa ukufa. Ngaphandle kwemizamo emikhulu, 
ukudlanga kwalesi sifo kusalokhu kuphezulu ezifundeni ezintula imithombokusiza, lapho 
umthamokwenza wocwaningo unqindekile. Ucwaningo emazweni asethuthukile, ngakolunye 
uhlangothi, belwenzeka kuphela kumamodeli asebenzisa izilwane ngenxa yokuntuleka 
kokufinyelela amasampuleni okwelapha engxenyeni okuqubuke kuyo isifo sofuba, 
okuyiphaphu lomuntu. Nakuba kunamamodeli ezilwane anomsebenzi, kubalulekile ukuba 
okutholakele kulezo zinhlelo kuyohlolwa bese kuqinisekiswa ngesigqa somuntu ukuqinisekisa 
ubunjalo. Kule thesisi, ngiveze ubuchwepheshe obusha obungenayo obubizwa nge-Seq-well, 
iseli eyodwa e-low-tech ephathekayo ene-ribonucleic acid sequencing (scRNASeq) 
okuyindawo kanye nokufinyelela esicutshini sephaphu esitheleleke ngesifo sofuba esitholakale 
ekuhlukanisweni kabusha kwamaphaphu okukhonjwe ngokokwelapha, ukwakha iseli eyodwa 
yesicutshana sephaphu elitheleleke ngesifo sofuba.   
Lokhu kwafaka ukusebenzakuhlola isicubu somuntu ngokushesha emva kokuhlinza nokufaka 
amaseli ahlanzekile angasetshenziwe noma amaseli ahleliwe angama-FACS (ama-T cells 
asesicutshini) ohlelweni lolibofuzo olwavumela ukufaka ohlwini nokulandelanisa 
okulandelayo womumofuzo oqondene nezicubu. Engxenyeni yokuqala yethesisi, amaqoqwana 
ahlonziwe nafakwe kwiphrofayli esicubini esitheleleke ngesifo sofuba kugxilwe eqoqweni le 
FAP+PDPN + amafayibhroplasti ahlobene nokuhlelwa kwezingxenye zomzimba ezinkulu 
zamalimfoyidi kanye nemichilwana yamafayibhrodi kanye noma igranyuloma yesifo sofuba. 
Ngivezile ukuthi lamadathasethi angaba nomsebenzi omkhulu ekuhlaziyeni amabhayomakha 
amanje nawasesikhathini esizayo esifo sofuba, ngokufaka izinkombabunjalo emaqoqweni 
amancane nokuwabeka ezinhlotsheni ezehlukene zamaseli angamapharenikhayma 
nangamastroma.   
Ngiphinde ngachaza esizindeni sezicutshana ze-CD4 T esicutshini sephaphu elifanayo 
okuchaza ulibofuzo olukala amakhenoni (i-ITGA1, PRF1) eqoqweni elilodwa eliqondile, 
kanye namaseli angachazi lutho (CCR7, SELL), alawulayo (RORA) nama-T cell aqaliswe 
ukusebenza/efana ne-myeloid (LYZ, S100A9) emaqoqweni aseceleni. Okokugcina, ngiveze 
ukungena kwedathasethi ocwaningweni olufaka izifo zamaphaphu nokuphefumula 
ngokuhlonza i- ACE2+ TMPRSS2+ type 2 wama-pneumocytes, okuhlosiwe kwe-SARS-CoV-
2. Uma kuhlanganisiwe, lokhu okutholakele kuletha imibono emisha yomumobugciwane 
bokutheleleka ngesifo sofuba ephashini lomuntu, umthelela we-HIV kokutholakele 
emumwenikuphila kwephaphu ekuthelelekeni okuyilinga kwakho kokubili amagundane kanye 
nalokho okungebona abantu. 
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Chapter 1: Single cell sequencing technology and its 
application in Tuberculosis (TB) research. 

1.1 Introduction 

Mycobacterium tuberculosis(Mtb), an ancient pathogen  discovered in 1882, is the causative 

agent of the deadly human tuberculosis (TB) disease which primarily infects lung tissue 1. This 

disease is the leading cause of death in the world by a single infectious agent, leading to  1.4 

million deaths in 2019, with 251000 amongst people living with HIV/AIDS 2. Untreated 

HIV/AIDS infection is a high risk factor for developing/contracting TB 3 .  There is a strong 

correlation between TB incidence and the quality of the health delivery system as evidenced 

by 10 new cases per 100000 population in high income nations compared to 150 to 400 cases 

in resource constrained nations such as South Africa. However, the reduction in global 

mortality rates by 42% between 2008 to 2018 is encouraging 2. Estimates suggest that 25% of 

the global population is infected with TB, with most individuals showing no clinical symptoms 

and only a tenth of these developing active disease at some point in their lifetime 4. However, 

the human immune correlates of TB control or progression are not known, thus more basic 

science research is required to understand what factors of the immune system are uniquely 

reflective of active TB disease 5. 

 

Correlates of protection are critical in the development of TB vaccines and diagnostics markers. 

Antibody levels and the activity of cytotoxic T cells have been proposed as  effective surrogates 

for activity (even though they are not protective) against HIV 6. These correlates  have not been 

characterized in the TB vaccine  M. bovis bacille Calmette–Guérin (BCG) induced response, 

due  to inconsistent protective efficacies 7. A quantitative review of a BCG trial showed 
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efficacy levels of 14% in a 10-year period 8, whilst another study on native American Indian 

and Alaskan populations reported efficacy of 82% in a 20 year period 9. The large variance in 

the responses suggests that more studies centered around the host immune response are 

necessary amongst different population groups. 

 

Our understanding of the immune response to TB is largely derived from animal models (mice, 

guinea pigs, rabbits and zebrafish) 10. These different models have their respective strengths 

and weaknesses (Table1), continue to contribute immensely towards our understanding of a 

TB disease.  Studies have shown that non-human primates (NHP) present with very similar TB 

immunopathology with humans, specifically in terms of the variety of granulomas and the 

infection spectrum (chronic and active) 11. However, NHP require special units for husbandry 

within a biosafety level 3 (BSL3) facility, skilled personnel,  large experimental numbers as 

they are essentially outbred, significantly increasing  operational costs 12. Other studies have 

focused on measurement of immune responses in human serum (from the blood) and 

bronchoalveolar lavage fluid (BALF) of TB infected individuals. It is assumed that both 

samples capture some of the temporal and spatial dynamics occurring within diseased lung 

tissue.  Both these samples present with limitations as serum captures the overall systemic 

response, which is not necessarily reflective TB related pulmonary deterioration 13,  whilst 

BALF represents the airway response as opposed to the parenchyma were the hallmarks of TB 

disease are observed 10.   
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Other studies have used healthy human lung explants to set up an ex vivo infection model,  in 

an attempt to delineate the initial response to infection 19. The tissue was obtained from 

participants undergoing surgery for non-pulmonary infections and was subsequently infected 

with a high concentration of M.tuberculosis (5 million colony forming units). Gene expression 

profiles generated using microarray and bulk rna sequencing were used to assess the response 

of the whole lung and fluorescent activated cell sorter (FACS) sorted cell types. These included 

alveolar macrophages, epithelial cells, endothelial cells, innate lymphoid cells (ILCs), ℽδ T 

cells and mucosal associated invariant T (MAIT) cells. These cell types were selected based 

on their ability to display a rapid, untrained (innate) response to infection. The myeloid cells 

showed a very strong inflammatory response marked with expression of IL1-β and IL23. 

Epithelial and endothelial cells showed the same with a significantly reduced magnitued. These 

inflammatory responses have been reported to also modulate ILCs, for example IL1-β and IL23 

induce ILC3s 20 ,whereas TSLP and IL33 activate ILC2s 21. Even though the model offers a 

unique way of studying the host response, limitations such the high infectious dose (likely not 

reflective of an infection event) minimize any extrapolation . The lack of blood circulation 

meant there was compromised migration of immune cells to the site of infection together with 

the disruption of tissue homeostasis. It is plausible that better insights into the immune response 

to TB disease will be generated by exploratory studies of lung infected tissue using tools that 

provide the most comprehensive gene expression profiles of the cells.  

 

Single cell sequencing has the ability to profile unitary genomes 22, transcriptomes 23 or to a 

lesser extent the epigenome 24 or proteomes 25. These technologies generate large amounts of 

data which provide analytical power that is unprecedented in the field of biology 26. Single cell 

ribonucleic acid sequencing (scRNAseq), is most widely used and allows profiling of mRNA 

(transcriptome)  from tissue or in-vitro experiments 27.  Several scRNAseq platforms have been 
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developed, which differ in the number of cells and number of genes that are recovered per run. 

For example, Smartseq2, a full length transcriptome sequencing approach, makes  use of a high 

fidelity reverse transcriptase (yielding 7000 genes per cell) 28. However, it has limited cell 

capacity (96 or 384 well plates in a single run 29). The protocol is laborious, leading to high 

technical variability in the experimental outcomes as a result of pipetting errors in the 

sequencing library work up (robots are available but they are expensive).  On the other hand, 

highly parallel approaches such as 10X (Chromium), that incorporate universal molecular 

identifiers  for transcript enumeration  can profile 100-100000 cells at a depth of 3000 genes 

per cell for primary cells 30. Such methods often have less manual steps in the protocol and  

shorter turnaround times 28. In practice, Smartseq2 is mostly used  to characterize rare cell types 

due to the higher gene recovery 31, whilst massively parallel methods are applied in tissue 

phenotyping studies where the large number of cells are required to uncover low frequency, 

novel cell types 32. Thus, scRNAseq represents a unique opportunity for accelerated discoveries 

in our understanding of the immune response to TB infection, improving our management of 

TB disease. In this review, we discuss aspects of the immune response to TB infection that will 

benefit from application of scRNAseq as a complement to existing approaches.  

1.2 TB infected lung cellular diversity 
Tuberculosis is generally believed to present as primary and post primary disease 33. Primary 

TB is the disease without any TB history shortly after exposure to the Mtb pathogen, leading 

to a single lesion typically in the highly aerated areas of the lung such as the lower section of 

the upper lobe 33. Post primary TB arises in individuals with previous TB history possibly due 

to reactivation (following an immune compromising event) of dormant bacteria. It largely 

occurs in the lung apices, but has also been observed in the hilum and hilar lymph nodes 34. It 

either leads to necrotic cavitation when the lesion is located close to an airway or a fibrotic 
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scarring 35. Amongst adults, post primary TB is suspected to be the most common, often with 

caseating granuloma , tissue cavitation and fibrosis at varying degrees 33.   

Lung fibrosis observed in post primary TB is a consequence of anti-inflammatory responses 

that are important for prevention of host induced tissue damage 36. Growth factors such as 

insulin-like growth factor-1 (IGF1), platelet derived growth factor (PDGF) and fibroblast 

growth factor-2 (FGF2) are implicated in driving fibrosis 36, together with migration of 

fibroblast like cells to the lung 37,38. A highly activated subset of fibroblasts,  known as 

myofibroblasts, is thought to drive the fibrotic phenotype by increasing extra cellular matrix 

deposition and shows aberrant contractile lead to dysfunctional wound healing 39. 

Myofibroblast have been reported to be enriched by the expression of transforming growth 

factor beta (TGFB), tenascin-C (TNC), connective tissue growth factor (CTGF) and phosphate 

and tensin deleted on chromosome homolog 10 (PTEN) 37,40,41. Cytokines associated with type 

2 immune response (IL-4,IL-5,IL-9 and IL-13) 42 and  vascularization (angiogenesis) 43, have 

been associated with a chronic fibroproliferative phenotype. It is important that we explore this 

phenotype in TB, considering reports of fibrosis occurring in older resolving TB granuloma 

and prominently occuring following anti-TB therapy 44,45.  

 

Single cell RNA sequencing of TB infected lung tissue has the potential to provide unique 

insights into the different cell types (immune, stromal, epithelial and endothelial) associated 

with fibrosis. It can potentially highlight which cell types are enriched or lost as consequence 

of disease in a highly, bias-independent manner. Such ability was elegantly illustrated in a 

study with 8 idiopathic pulmonary fibrosis (IPF) patients and 8 lung transplant donors using 

scRNAseq uncovered a previously unknown populations of macrophages, airway stem and 

senescent cells that were enriched in the IPF lungs 46. These observations were confirmed using 
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complementary technologies (bulk RNA-sequencing and immunohistochemistry), showing its 

unique ability to generate pathology specific insights which can guide mechanistic studies. 

 

It was reported that HIV and TB positive individuals with suppressed CD4 cell counts had 

chest x-rays very divergent from TB only individuals, with attenuated tissue destruction 47. 

This observation coincided with diminished levels of extracellular matrix (ECM) degradation 

enzymes known as  matrix metalloproteinases (MMPs), in coinfected participants 48 . However, 

inconsistencies in the cytokine profile of individuals within and across studies complicates the 

interpretation of the these observations 49. A study by Walker and colleagues compared the 

protein levels in plasma and sputum levels of MMPs of TB , TB/HIV and  symptomatic 

respiratory cases 50. TB infected participants had higher levels of MMP-1 and MMP-3 

compared to the TB/HIV infected group, with lower frequency of cavities and inflammation. 

This observation suggests that TB/HIV individuals have reduced pulmonary damage, but it 

should be noted that the same study also reported high levels of ECM turnover product called 

Procollagen III N-terminal propeptide (PIIINP) in TB/HIV group. The authors speculated that 

this observation was a consequence of tissue damage in other organs due to the development 

of disseminated TB disease. Understanding the cellular diversity of lung tissue from TB in 

comparison to TB/HIV can provide insights into the mechanisms that drive tissue degradation. 

This has the potential to uncover cells which produce MMPs and their inhibitors; tissue 

inhibitors of metalloproteinases (TIMPs), together with genes that modulate tissue degradation 

such as growth factors, cytokines and hormones 51. Single cell sequencing data lends itself to 

high throughput network interactions of each  cell, thus it has the potential to also uncover 

cellular interactions that initiate and maintain this pathology 52. 
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Granulomas are the hallmark of the pulmonary response to TB disease 53. It is believed that 

upon infection with Mycobacterium tuberculosis (Mtb), alveolar macrophages engulf the 

bacteria. This leads to production of chemokines by the macrophage which attracts other 

inflammatory cells such as neutrophils, NK cells, monocyte derived macrophages and ℽδ T 

cells 54-56. Dendritic cells then migrate to the lymph nodes where they prime T cells to 

differentiate into th1 (helper t cells) and th17 (cytotoxic t cells) 57.These primed t cells are 

important for further activation of macrophages and their migration to the site of infection 

together with B cells. This creates a lymphocyte cuff surrounding the bacteria harboring 

macrophages 58.The histological presentation of granulomas varies from poorly structured 

containment units that are highly transmissive to protective often calcified units that suppress 

bacterial growth and transmission 59. Studies in NHPs have shown that TB lesions within the 

same animal are heterogeneous, both in terms of histology and bacterial load, for both active 

and latently infected animals 60. A study by Subbian and colleagues characterized the gene 

expression profile from a wide variety of lesions in individuals undergoing lobectomy due to 

TB related complications 13. The authors reported host immune responses associated with 

inflammation (CXCR4, CCL3, CXCL8), tissue degradation (MMP1, MMP9) and 

downregulation of transcriptional regulators such as (FOXC1, ERG, ATN1) in lesions isolated 

from active TB participants.  However, the low sample number and limitations inherent to 

microarray technology impeded firm conclusions, but that study represents a unique window 

into the granuloma gene expression profile 61. Applying scRNAseq in the characterization of 

the transcriptional profiles of TB lesions at different stages has the potential to deconstruct host 

mechanisms that determine granuloma fate. In combination with histology, bacterial culture 

(colony forming units or chromosomal equivalents) and flow cytometry, this will improve our 

understanding of lesion biology. The ability to associate immune profiles at a cell level with 
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bacterial persistence will greatly improve our insight into latent TB, a major reservoir of the 

disease 4.  

1.3 TB biomarker discovery and validation 
Biomarkers are a necessary component of the successful development of new TB therapeutics 

and vaccines. Best performing biomarkers can detect either the pathogen together with its 

products (DNA, genes or proteins) or changes in the human immune system in response to 

pathology. The major sight of disease is the lung, thus pathogen directed tests use sputum, 

which has variable sensitivity, which is significantly lower in HIV positive individuals. To 

improve on this sensitivity, measured of host derived molecules that reflect disease has been 

pursued from blood and to a lesser extent urine. These tests often has a large number of 

molecules associated with the disease but variable accuracy and heterogenous immune 

response to the disease prevents such tests from being incorporated into the TB detection 

clinical algorithm. 

For most individuals with TB, clinical detection occurs only after they present with significant 

symptoms.  It  has been suggested that the time from initial symptoms to the clinical diagnosis 

can be as much as 6 months due to inefficiencies of the currently available tools and health 

care delivery systems  62. During this delay, the underlying biosignature that is the consequence 

or the driver of pathology is likely present at either the site of disease or the circulatory system 

63. It has been a focus of many researchers to discover this TB biosignature, particular one  that 

can capture the full spectrum of disease from the point of infection, subclinical (latent) and 

active TB disease 64.  

 

An elegant approach was reported by Singhania and colleagues, in which they developed a 20 

gene signature that distinguished active from latent TB by utilizing bulk RNA sequencing 

of  peripheral blood mononuclear cells (PBMC) 65. They made use of weighted gene co-



10 
 

expression network analysis 66, which produces related gene modules that allow insights into 

functional aspects of the biosignature. However, the signature was enriched with interferon 

inducible genes, which are also observed in viral  infections such as influenza 67. A chronic 

interferon response was associated with a high bacillary load and advanced pathology in animal 

models 65. The overabundance of the interferon genes across different studies is likely a result 

of pathogen specific host responses and shared innate responses to other stimuli. In the same 

study, the biosignature was measured longitudinally in TB contacts tested using the interferon 

gamma release assay (IGRA). The contacts consisted of  31 (15 IGRA- and 16 IGRA+) healthy 

individuals, 9 contacts who developed culture positive disease and 5 individuals who were 

outliers at baseline (4 IGRA+ and 1 IGRA-). The signature was enriched in IGRA+ individuals 

in the different groups with significant variation within the groups. Two thirds of the 9 

individuals with culture confirmed TB had very high baseline risk scores which amplified 

further after diagnosis, whereas the remaining 3 participants had a low-risk score from baseline 

to the time of TB culture confirmation. These household contacts comprised of individuals that 

did not express the signature, individuals with low levels of the signature and participants who 

expressed the signature at baseline and beyond the 4 months observation period.  

 

Application of scRNAseq in the discovery of TB biomarkers has the potential to significantly 

refine our search for the biosignature as we can capture enrichment or depletion of cell types 

in a bias free manner. We speculate that characterizing disease specific tissue at single cell 

resolution provides us a good chance of uncovering subtle transcriptomic aberrations that can 

form the basis of a TB marker. This is important for probing the molecular mechanisms that 

lead to overabundance of the biosignature. Histo-cytometric analysis localizes particular 

biomarkers without compromising tissue architecture 68. This is critical when investigating 

markers whose subcellular location provide information about activation, such as the 



11 
 

transcription factor nuclear factor B (NF-κβ). This transcription factor only becomes active 

when it is translocated to nucleus after its inhibitor, Iκβ is degraded 69.  

 

In the clinical setting, where individuals with TB associated complications are undergoing lung 

resections, lung tissue as well as PBMC can be used to explore signatures observed from 

different studies. Cai and colleagues performed scRNAseq on PBMCs from healthy, latently 

infected and active TB cases on a droplet-based platform 10x Genomics 70. The data from the 

study showed that active TB corresponds to loss of NK cells, which are restored with treatment. 

This observation was verified using flow cytometry and thus serves as a platform on which 

studies with mechanistic objectives can be pursued. NK populations across the spectrum of TB 

disease should be investigated for disease specific perturbations that can form the basis of a 

biosignature.  NK cells have memory markers from previous antigen exposure, thus they 

mediated both innate and adaptive immune responses 71. It was interesting to note that in the 

same study, all the participant groups showed varying levels of a subset of myeloid cells with 

stromal cell markers (COL1A1, COL1A2), associated fibrocytes or fibroblasts in the lung 72.  

Fibrocytes are derived from the bone marrow and serve as a progenitor for mesenchymal cells 

in lung disorders such as fibrosis 73. They can differentiate into fibroblasts or myofibroblasts 

once they reach the tissue. It has been suggested that they drive the formation of the fibrotic 

foci, interstitial pneumonia reported in idiopathic pulmonary fibrosis (IPF) 73. A study 

comparing IPF and control lungs using scRNAseq revealed that IPF lungs are enriched for 

myofibroblasts 74. Due to the association of TB and fibrotic pulmonary impairment, it can be 

postulated that characterization of fibrocytes and myofibroblasts genes has the potential to 

provide a TB-associated fibrosis tissue biomarker. 



12 
 

1.4 Phenotyping tissue resident CD4 T cells 

Bacille Calmette-Guérin (BCG),  is the only licensed  TB vaccine 75, with variable  

effectiveness across studies. It is effective in preventing TB meningitis in infants 76. TB specific 

immune responses of blood cells  are used as markers of efficacy, even though these immune 

responses are not protective 77. A study compared the efficacy of oral and intravenous BCG 

vaccination by measuring the TB specific responses in mice 78. The animals were challenged 

with aerosolized tuberculosis and the accumulation of CD8 T cells in infected tissue correlated 

with protection. The ability of CD4 T cells to produce interferon gamma was correlated to 

bacterial load. Another study  tracked the blood intracellular cytokine profile of infants at the 

time of birth and 24 months after BCG vaccination 79. Comparison of infants who developed 

culture confirmed TB and those with TB household contacts (with no disease) showed no 

differences in the frequencies TB specific CD4 t cells, CD8 t cells and ℽδ t cells. Such studies 

support the fact that the frequency and cytokine profile of circulatory t cells does not correlate 

to protection.  These observations have shifted  attention to the study of immune responses at 

the primary infection site (lung), where t cells have been shown to be critical for prevention of 

both primary and secondary TB 80,81. Different subsets play a role in maintenance of long term 

immunity by recall of protective responses 5. The full extent to which these subsets participate 

in controlling pathogens is yet to be fully explored. When T cells are exposed to an antigen, 

they proliferate and differentiate into central memory (Tcm), effector memory (Tem) and tissue 

resident memory (Trm) subsets 82.  For the immune system to be effectively primed, a memory 

phenotype should persist where the infection occurred and this can be achieved by the Trm 

subpopulation 83.  Lung tissue resident memory cells are specifically characterized by the 

expression of CD69 (which interacts with S1PR1 to prevent cells joining circulation) 84 and 

CD103 (which associates with integrin anchoring them on the epithelial barrier) 85, 

CD49a(adhesion) , CXCR6 (tissue localization), CD101(proliferation and activation), PD-
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1(immune checkpoint) 77. There are exceptions to these categorisations as highly activated 

CD69+ T cells in the circulatory system 86 and CD69- tissue resident T cells have been 

demonstrated 87. Other researchers have obserbed that Trm populations might not permanent 

in the lung 88. The phenotype and activity of Trm is highly dependent on the 

microenvironment,thus more research into lung Trm is necessary in the context of TB vaccines 

89,  considering that HIV associated depletion of CD4 T cells is associated with high incidences 

of TB disease 90. 

 

Comprehensive studies on the transcriptional and functional capacities of Trm’s have revealed 

a distinct phenotype, supporting the hypothesis that there are developmental/maintenance 

programs required for the persistence of this population 82. In a study on human lung resections, 

Oja and colleagues analysed the transcriptional profile of both CD4 and CD8 Trm’s together 

with matched blood. The gene expression of both Trm populations revealed chemokines 

(XCL1,CXCL16,CCL4), chemokine receptors (CXCR3,CXCR6), adhesion  

(ICAM1,ITGAE,CD97), effector (GZMA,GZMB,PRF1), immune checkpoint (CTLA4). 

Interestingly, the expression profiles of CD4 and CD8 Trm’s were largely indistnguishable, 

highlighting the influence of the tissue micro-environment. Tissue resident t cells also 

expressed transcripts for NOTCH1 and EGR2, which are associated with long term persistence 

of pathogen specific Trm 91. Pathways associated with both genes may provide a therapeutic 

modulation route for a clinical intervention. The mechanisms by which this occurs are yet to 

be elucidated, but deletion of Notch1 and Notch2 in influenza infected mice resulted in fewer 

lung tissue resident T cells 91. 

 

Single cell RNA sequencing (10X Chromium) was used to profile 6311  flow cytometry sorted 

tumour infiltrating lymphocytes from  primary and metastatic breast cancer tumours,  revealing  



14 
 

a cytotoxic CD8 Trm subset that was associated with favourable patient outcomes 92. The same 

Trm signature was highly enriched in melanoma patients positively responding to immune 

inhibitor blockers at the initial stages of the treatment 93. The Trm signature was composed of 

cytotoxic (GZMB, PRF1), adhesion (VCAM1, ITGAE), immune checkpoint (HAVCR2, 

PDCD1, CTLA4, TIGIT, LAG3), infiltration (LAYN, KLRC1), chemokine (CXCL13, CCL3, 

CCL4) and proliferation (MKI67).  Another group profiled human lung memory t cells in HLA-

disparate transplant donor/recipient pairs, sampling broncho alveolar lavage fluid (BALF) over 

a 15 month period demonstrated that donors with a persisting Trm signature where associated 

with lesser incidents of graft rejection 94. Analysis of airway t cells showed that the donor t 

cells maintained the Trm phenotype, and the recipient lymphocytes gradually increased the 

expression of tissue residency markers.  It is of interest to uncover how the Trm signature 

changes in the TB-/HIV-, TB+ and TB+/HIV+ lung tissue, particularly by comparison of 

CD4+CD69+ lung T cells, CD4+CD69- lung T cells and CD4+CD69- blood T cells using 

scRNAseq (derived from matched individuals). Such an approach will allow profiling of these 

populations, stratifying them across a developmental trajectory of their cellular states using 

methods such as pseudotime or monocle 95. Uncovering potential CD4 t cell subsets which are 

depleted with HIV infection will assist in further understanding the mechanisms of immune 

deficiency. A recent study suggested that CD4 t cell independent mechanisms play a role in 

suppression of latent tuberculosis reactivation in simian immunodeficiency virus (SIV) 

infected macaques 96. 

1.5 Conclusion 
Use of cutting-edge technology has the potential to advance our understanding of how to 

manage and ultimately eradicate TB disease. This will be achieved by robust approaches to 

uncover mechanisms that lead to failure of the immune response, as well as identifying 

molecular markers uniquely linked to this pathology. With the steady reduction in the cost of 
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running sequencing platforms, there is hope that high TB burden regions can begin large scale 

studies which will accelerate generation of data driven disease insights.  

1.6 Research Problem and Significance 

1.6.1 Statement of the Problem 

Tuberculosis disease afflicts a significant portion of the global population and South Africa 

caries one of the highest burdens. Many aspects of the human immune response to TB infection 

are yet to be characterized, slowing down the development of new diagnostics, vaccines and 

therapeutic agents. Thus, for us to develop new solutions to address this endemic, more 

research is required which incorporates TB compromised tissue and cutting-edge technologies. 

One such technology is single cell ribonucleic acid sequencing (scRNAseq) 

1.6.2 Hypothesis 

TB related pulmonary pathology such as cavitation and fibrosis lead to the enrichment of lung 

tissue with cells involved in tissue destruction and collagen deposition,  resulting in the skewing 

of stromal, immune and parenchymal cell types as the lung loses normal function.  

1.6.3 Research Objectives 

To date, the only TB study that leveraged scRNAseq compared peripheral blood mononuclear 

cells (PBMCs) from infected individuals to uninfected control groups. Whilst this study yielded 

informative insights such as initial depletion of NK cells, the pulmonary consequences of TB 

infection must be explored. The goal of this thesis is to characterize the different populations 

of cells enriched in TB and/or HIV infected tissue (1), explore correlations with already 

reported TB biomarkers (2), characterize tissue resident CD4 T, critical for a long-term 

memory response (3) and demonstrate the applicability of the dataset in other pulmonary 

diseases. To this end, several specific objectives were derived: 
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1.6.3.1 To define the cellular diversity in human lung tissue from individuals infected with 

tuberculosis (TB) and human immunodeficiency virus (HIV). 

1.6.3.2 Explore if the tuberculosis  blood transcriptional signatures can be localized and 

assigned to cell types at the site of TB disease using single cell sequencing. 

1.6.3.3 Phenotype tissue resident CD4 T cells from TB/HIV coinfected lungs to assess their 

functional potential. 

1.6.3.4 Demonstrate the usefulness of scRNAseq data in identifying potential target 

populations of SARS-CoV-2. 

1.7 Research Methodology 

1.7.1 Human Participants 

Human lung tissue and blood samples were obtained from patients undergoing corrective 

surgery with previous TB episodes and other comorbidities such as (haemoptysis, cavitation, 

bronchiectasis, shrunken or collapsed lung). The surgery was done at the Department of 

Cardiothoracic Surgery at King Dinuzulu hospital in Durban, KwaZulu Natal and Inkosi Albert 

Luthuli Central Hospital in KwaZulu-Natal . We were unable to culture TB from the tissue and 

we suspect that low bacterial load and the growth suppressing influence of anti TB therapy led 

to this observation.  All samples were collected with approval from the Biomedical Research 

Ethics Committee and written informed consents obtained from all subjects (BREC no 019/13) 

1.7.2 Blood Processing 

Blood was collected in BD Vacutainers (sodium heparin, BD), peripheral mononuclear cells 

were isolated using the ficoll-histopaque (Millipore Sigma) density gradient centrifugation 

method. 
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1.7.3 Lung Tissue Processing 

The Lung tissue was processed within 5 hours of receipt as described 52. Briefly, a piece of the 

lung tissue was cut for histology and placed in 4% Paraformaldehyde (PFA). The remaining 

tissue was dissected into small pieces (5x5x5 mm) and infiltrated with a collagenase (Sigma-

Aldrich), DNase 1 (Sigma-Aldrich) in RPMI (Sigma-Aldrich) with 10% FBS (Hyclone) for 30 

minutes. Mechanical digestion at room temperature using the Gentle MACS (Miltenyi Biotec) 

followed by agitation at 37°C for 30 minutes on a rotor ensued. The mechanical digestion and 

agitation were repeated once more, followed by filtration of the resulting cellular suspension 

using the 70 µm (Corning) and 40 µm (Corning) strainer. This was followed by the lysis of red 

blood cells. Cells were then stained with tryphan blue (Thermo Fischer) and enumerated using 

an automated cell counter (BioRad) or a manual counter (Kova). 

1.7.4 Cell Staining Procedure for Flow Cytometry 

The single cell suspensions were centrifuged at 800g for 5 minutes and the supernatant was 

discarded. The remaining pellet was stained with a monoclonal antibody cocktail containing 

Live/Dead (Life Technologies), CD45 (clone HI30, BD Biosciences), CD3 (clone UCHT1, BD 

Biosciences), CD4 (clone OKT4, Biolegend), CD8 (clone RPA-T8, BD Bioscience) , CD19 

(clone SJ25C1, BD Bioscience) , CD69 (clone FNS0, Biolegend) , CD103 (clone Ber-ACT8, 

Biolegend), CD45RA (clone HI100, BD Bioscience), CCR7 (clone G043H7, Biolegend), PD-

1 (clone EH12.1, BD Bioscience), CD154 (clone 24-31, Biolegend), CD27 (clone O323, 

Biolegend), CXCR3 (clone 1C6/CXCR3, BD Bioscience), CD25 (clone BC96, Biolegend). 

The cells were incubated for 20 minutes in the dark after which they were washed 2 times with 

PBS (Sigma-Aldrich) and suspended in 500 µl PBS containing 0.1% BSA (Separations). The 

CD4 T cell tissue resident population was isolated using the 5 laser fluorescence-activated cell 

sorting (FACS) Aria Fusion (BD Biosciences), 80µm nozzle and 40 psi pressure. FACS allows 

for the separation of heterogenous cells based on different light scattering and fluorescence 
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characteristics in a fast and quantitative manner. The gating strategy used was as follows : 

singlets CD45+CD3+CD19-CD4+CD69- or singlets CD45+CD3+CD19-CD4+CD69+. It 

should be noted the cells were sorted directly after the recovery of tissue suspension, as we had 

observed cell loses when freezing down for long term storage in pilot experiments. The flow 

cytometry data was analysed using FlowJo version 9.7.6 (TreeStar).  

 

1.7.5 Single cell Rna sequencing (scRNAseq) 

Seqwell was implemented as described 97. Briefly, the single cell suspension was diluted to 

15,000 cells in 200µL of RPMI (Sigma-Aldrich) + 10% FBS (Hyclone) and loaded onto a 

polymethylsiloxane (PDMS) array pretreated with the same solution for 15 minutes. The cells 

were allowed to settle into the microwells by gravity (by incubating for 20 minutes on a flat 

surface) and the array was washed with PBS (Sigma-Aldrich) and sealed with a plasma 

functionalized polycarbonate membrane (Sterlitech). The arrays were incubated at 37˚C for 40 

minutes followed by a 20-minute incubation in lysis buffer containing guanidium thiocyanate 

(Sigma-Aldrich), EDTA (Thermo Fischer), 1% beta-mercaptoethanol (Sigma-Aldrich) and 

sarkosyl (Sigma-Aldrich) at room temperature. The arrays were then transferred to a 

hybridization buffer containing NaCl (Thermo Fischer), MgCl2 (Sigma), 1X PBS (Thermo 

Fischer) and polyethylene glycol (Sigma-Aldrich) and were gently shaken at 60rpm for 40 

minutes. The capture beads hybridized with the released mrna from the lysed cells were 

collected from the array by a series of wash steps with wash buffer containing NaCl (Thermo 

Fischer), MgCl2 (Sigma), Tris-HCl (Thermo Fischer) and Water (Inqaba Biotech) . This was 

followed by centrifugation at 2500g for 5 minutes each iteration. The beads were resuspended 

in a master mix for reverse transcriptase containing Maxima H Minus Reverse Transcriptase, 

Maxima Buffer, dNTPs, RNAse inhibitor, a template switch oligonucleotide and PEG for 30 

minutes at room temperature and overnight with end-to-end mixing at 52˚C. This was followed 
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by the standard exonuclease digestion and denaturation of cDNA hybridized to the beads by a 

5-minute incubation in NaOH (Sigma-Alrich) and wash step with a solution containing Tris-

HCl, EDTA and Tween-20 (Thermo Fischer). The beads were resuspended in a master mix 

containing Klenow Fragment (NEB), dNTPs, PEG and the dN-SMRT oligonucleotide, 

incubating for 45 minutes at 38˚C. PCR was performed as described in the protocol and the 

product was subjected to 2 rounds of AMPure XP SPRI (Agencourt) bead cleanup at 0.6x and 

0.8x volumetric ratios respectively. The library size was analyzed using an Agilent Tapestation 

hsD5000 kit, ensuring that the expected product had an average size of ~1000bp and the 

absence of primer dimers especially below 200bp. The Qubit High Sensitivity DNA kit was 

used to quantify the libraries and they were prepared for Illumina sequencing using the Nextera 

XT DNA Sample Preparation kit (the sequencing and alignment was done by the Shalek Lab). 

A total of 900pg of the different libraries were added the tagmentation reaction. The amplified 

product was purified with the AMPure XP SPRI beads (0.8x ratio) and the libraries were pooled 

for loading. The libraries were sequenced on the NovaSeq 6000 using paired end read structure 

with custom read 1 primer: read 1:20 bases, read 2 : 50 bases, read 1 index: 8 bases.  

1.7.6 Single cell rna sequencing (scRNAseq) data analysis 

The sequencing data from the NovaSeq was aligned to the hg19 genome assembly and 

processed in accordance with the Drop-Seq Computational Protocol v2.0 

(https://github.com/broadinstitute/Drop-seq). We used STAR alignment with the default 

parameters (genomeDir, runThreadN (n = 50), readFilesIn, mem = 100000) according to the 

alignment cookbook (https://github.com/broadinstitute/Drop-seq/blob/master/doc/Drop-

seq_Alignment_Cookbook.pdf). On average, we observed saturation of sequencing reaction at 

6000 detected genes and 50000 mapped reads. The data was then loaded to the Seurat R 

package v3.1.0 (https://satijalab.org/seurat/), transformed to loge(UMI + 1) followed by scaling 

by a factor of 10000. The overall quality was assessed by the distribution of reads, transcripts 
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and genes per cell recovered. Variable genes with an average expression > 0.1 log normalized 

UMI were used to compute the principal component analysis (PCA). The JackStraw function 

was used to identify 20 significant PCAs that were used for downstream analysis. For 

dimensionality reduction, we used a Uniform Manifold Approximation and Projection 

(UMAP) at “min_dist” of 0.5 and “neighbours” set to 30. Unsupervised clustering using the 

FindClusters was used to identify transcriptionally similar cells with parameters k.param set to 

10 and resolution set to 0.5. The clusters were subclustered by using a differential expression 

test (FindMarkers implemented in Seurat, setting “test.use” to “bimod”, Bonferroni-adjusted p 

value cutoff < 0.001). The cell types were annotated by cross-referencing canonical cluster 

defining genes with well curated lists, online databases such SaVant 

(http://newpathways.mcdb.ucla.edu/savant-dev/) and GSEA/MsigDB (https://www.gsea-

msigdb. org/gsea/msigdb/index.jsp). 

We used Monocle 2 to do trajectory analysis of a population of fibroblasts that we sub-clustered 

from our main dataset. Briefly, the program allowed us to compute pseudotime gene 

expressions changes. It used an inbuilt package called scEpath to divide the pseudotime into 

10 different bins, then the expression of each gene was estimated by the trimean expression of 

the gene across all cell types. The genes were smoothened using the cubic regression splines. 

To identify pseudotime-dependent genes, we used the standard deviation of these genes and 

compared them to a 1000 randomly permuted genes per cell 98.  

1.7.7 Lung tissue Histology 

Multiplex fluorescent immunohistochemistry staining was performed on lung tissue sections 

using the Opal™ 4-Color Manual IHC Kit 50 Slides (PerkinElmer, USA) as directed by the 

manufacturers (a total of 3 primary antibodies and DAPI per run). For example, in a later 

section in chapter 2, we stained with 3 primary antibodies of interest (MMP1, MMP3 and 

COLLAGEN 1) , using the blue channel foDAPI for cellular localisation. The proceeding 
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description documents the sequential staining of the 3 primary antibodies and DAPI on a single 

slide. Briefly, lung tissue samples fixed in 4% formalin were paraffin-embedded. 4µm sections 

were cut on glass slides, allowed to dry for a minimum of 24 hours and the slides were baked 

at 60oC overnight. Then, the combined process of deparaffinization, rehydration and antigen 

retrieval of the tissue sections was done using 1x Envision Target Retrieval Solution, High PH 

(Dako) in the PT-Link Pre-Treatment instrument (Dako). Thereafter, slides were incubated for 

1 minute in distilled water and equilibrated in EnVision FLEX Wash Buffer (Dako) for 5 

minutes at room temperature. Then, the slides were incubated in Peroxidase blocking solution 

(PerkinElmer) for 10 minutes and washed in wash buffer (Dako) immediately at room 

temperature. The slides were then incubated in Bloxall blocking solution (PerkinElmer) for 10 

minutes, and then in primary antibody-1 for 30 minutes at room temperature. The platform 

allowed 3 primary antibodies of interest and reserved the blue channel for the nuclei stain DAPI 

useful for cellular localisation. For example, in a later section in chapter, we stained with 3 

primary antibodies of interest (MMP1, MMP3 and COLLAGEN 1) , using the blue channel 

for DAPI. Slides were then washed for 5 minutes in wash buffer and incubated in Secondary 

Opal Polymer Horseradish Peroxidase (HRP) Mouse and Rabbit (PerkinElmer) for 30 minutes. 

Please note that this Opal Polymer HRP is recommended for human tissue sections with a 

mouse or rabbit primary antibody. Then, the slides were washed twice in wash buffer, drained 

and the sections were incubated in Opal Fluorophore (PerkinElmer) working solution for signal 

amplification at room temperature for 10 minutes. The slides were then washed for 5 minutes 

in wash buffer at room temperature. Afterwards, the antibody stripping via microwave 

treatment was done by placing the slides in a slide jar with pre-warmed buffer AR6 

(PerkinElmer). The jar was loosely covered and placed in a microwave for 2 minutes at 100% 

power, 10 minutes at 50% power and 5 minutes at 20% power. Slides were cooled down in the 

dark by placing the slide jar on ice for 20 minutes and the slides were rinsed in distilled water, 
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followed by incubation in the wash buffer for 5 minutes to equilibrate slides. The microwave 

step strips the primary-secondary-HRP complex allows for the introduction of the next primary 

antibody. For the detection of the next target (primary antibody 2), the protocol was restarted 

at the blocking step using Bloxall blocking solution (PerkinElmer) for 10 minutes. After the 

third target was detected (primary antibody 3), a working solution of DAPI (PerkinElmer) was 

applied to the sections as the nuclear counterstain for 5 minutes in a humidity chamber. The 

slides were washed in wash buffer for 5 minutes, then in distilled water for 5 minutes and 

drained. Then, the sections were coverslip with Fluorescence Mounting Medium (Agilent 

Technologies, Inc.) and the edges of the coverslip were sealed with nail varnish. Slides were 

stored in a humidity chamber at 4oC until images are acquired.  

 

The unconjugated primary antibodies used are Anti-Collagen I  (clone: ab34710, Abcam), 

Anti- Anti-CTHRC1 (clone: ab85739, Abcam), Anti-TDO2 (clone: OT14G2, Thermo Fisher 

Scientific), Anti-MMP9 (clone: EP1254, Abcam), Anti-PI15 (clone: PA5-52312, Thermo 

Fisher Scientific), Anti-TGFBR3 (clone: 1C5H11, Thermo Fisher Scientific), Anti-GAS1 

(clone: 56-087, Thermo Fisher Scientific), Anti-EGFL6 (clone: PA5-51642, Thermo Fisher 

Scientific), Anti-CXCL13 (clone: H00010563bo2, Thermo Fisher Scientific), Anti-Carbonic 

Anhydrase 12/CA12 (clone: EPR14861, Abcam), Anti-TIMP3 (clone: AA-170-188, Thermo 

Fisher Scientific), Anti-MMP1 (clone: 3B6, Thermo Fisher Scientific), Anti- MCP-1/CCL2 

(clone: 2D8, Thermo Fisher Scientific), Anti-MMP3 (clone: SB14d, LSBio), Anti-ACTA2 

(clone: 1A4, LSBio). The primary antibodies were diluted in antibody diluent (PerkinElmer) 

as recommended by the antibody manufacturer, and the Opal fluorophores diluted in 

amplification diluent (PerkinElmer). The fluorophores used for signal generation in this study 

are FITC, Texas-Red and Cy5. Images were acquired on a Zeiss Axio Observer Z1 inverted 

microscope (Olympus) and analyzed with TissueFAXS imaging software (TissueGnostics).  
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Chapter 2: Cellular Heterogeneity of HIV/TB infected 
human lung tissue and cell type specific validation of TB 

biosignatures. 

2.1 Introduction 

A third of the global population is infected with Mycobacterium tuberculosis, with an estimated 

10%  developing active tuberculosis (TB) disease within their lifetime 2. With 9 million new 

cases and 1,5 million deaths reported annually, TB remains one of the leading causes of death 

from an infectious agent. Availability of anti-TB drugs led to a cure rate of 85% in treatment 

of drug susceptible TB from 1995 to 2015 99. Despite such effectiveness, survivors of the 

disease often have pulmonary impairment and respiratory failure despite being culture negative 

100-102. HIV infection, a known risk factor for developing active TB, has been associated with 

less severe pulmonary impairment especially in individuals with low CD4 T cell counts, 

although 30% of the patients still presented with abnormal spirometry and severe 

bronchiectasis 103. TB patients contribute substantially to global prevalence of chronic 

obstructive pulmonary disease (COPD) 104; thus research focussed on the progression of 

pulmonary impairment  from TB and  the associated pathology can improve the treatment and 

subsequent quality of life of TB patients 105. Another major challenge in TB control is the lack 

of biomarkers to capture the full spectrum of the disease (latent TB, incipient/subclinical TB 

and active TB), impeding the monitoring disease and patient outcomes 106. There is need for 

better comprehension of how TB infection impacts the host immune system, particularly host 

immune cell composition and gene expression profiles 70. The current approaches (bulk RNA 

sequencing or microarray) that have been used to generate TB specific biomarkers often have 

limited statistical power as the samples used are often orders of magnitude lower than the 

variables (gene expression), yielding 30% false positives after multiple corrections 107. Thus, 
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there is a need to leverage different approaches to elucidate biologically representative TB 

biosignatures. In addition, these approaches have focused primarily on the peripheral blood, 

whilst the TB pathogen, for the most part, is restricted to the pulmonary system (except for 

extra pulmonary cases). Although consistent transcriptional differences have been observed in 

multiple  studies  108, the biosignatures are dominated by leukocyte subsets, such as neutrophils 

109, and are likely to reflect non-specific systemic effects of the innate response. Focusing on 

the host pathogen interaction in the lung may identify more subtle, disease specific differences.  

The advent of high throughput single cell RNA sequencing is improving our ability to analyse 

cell types, sub types and cell states 23. This is critical when studying disease compromised 

tissue as it allows unbiased profiling of the cellular and functional consequences 46. To illustrate 

this in the lung, scRNAseq generated a cellular atlas of pulmonary fibrosis, showing previously 

unknown skewing of alveolar macrophages and epithelial cells, linked with maintenance of the 

fibrotic phenotype 46. ScRNAseq was also used to study differences in peripheral blood 

mononuclear cells (PBMC) from healthy, latent and active tuberculosis patients, showing an 

association between active disease and depletion of  natural killer cells 70. Whilst another study 

leveraged multimodal scRNAseq to  profile memory t cells from a Peruvian cohort (n =  259) 

110. In human TB,  to my best knowledge scRNAseq is yet to be applied to probe disease driven 

alterations in the lung. This due to the scarcity of fresh TB infected lung tissue or the ability to 

single cell sequence the material biosafety level 3 conditions. 

 

Here, I characterize the cellular composition of the human lung tissue from individuals infected 

with M. tuberculosis and/or HIV together with non-TB cancer controls undergoing surgery due 

to pulmonary complications. We sequenced the cells using a high throughput scRNAseq 

platform known as Seq-well (S3) 97. I adapt this low-tech platform for the BSL3 laboratory and 

use it to generate a molecular atlas of the infected lung. This is then used to (1) determine the 
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cellular make up of TB diseased lung tissue, (2)identify cell cellular subsets involved in TB 

immunopathology, and (3) localize TB biosignatures to cell types. A larger proportion of the 

individuals in the study were co-infected with HIV, providing preliminary insight into the 

impact of HIV on the TB lung.  

2.2 Results 

  

2.2.1 Single Cell RNA sequencing of human lung tissue 

The lung tissue was obtained from 13 participants (HIVTB (n=9); TB (n=2)); and 4 non-TB 

cancer controls (1 with HIV) undergoing lung resection surgery due to pulmonary 

complications ranging from fibrosis, cavitation, bronchiectasis, haemoptysis, adenopathy, 

nodules and cancerous nodules (Table 1). Following surgery, the lung tissue was homogenised 

into a single cell suspension using an optimised protocol 52. After adjusting the cell 

concentration using a manual counter, 15000 cells were loaded onto a Seq-well microarray, 

preloaded with mRNA capture microspheres, in a bio safety level 3 laboratory and processed 

as described in the method section 97. Data was aligned to the human genome, then subjected 

to rigorous quality controls to remove poorly sequenced cells and doublets. Samples were 

collected over a 3 year period. For participants, the libraries were generated with fresh tissue 

immediately after receiving the tissue to preserve the native transcriptional . 

 

All samples were corrected for batch effects using harmony batch correction 111, prior to 

downstream analysis. RNA transcriptomes from 20962 cells were analysed using the seurat 

package112. To identify clusters of cells with similar transcriptomes we used uniform manifold 

approximation and projection  (UMAP) shown in (Figure 1A). Segregation of cells by disease 

status or participant ID indicated the existence potential disease and/or participant specific . 
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effects in the relative frequency of cells, with minimal evidence of technical artefacts (Figure 

1B). Unsupervised clustering of the cells revealed 19 distinct clusters, which were subsequently 

defined by making use of a combination of manual curation of canonical markers from previous 

studies and reference gene expression from the SaVant database 46,113. As expected from 

complex tissue samples, we cells from the epithelial (EPCAM), endothelial (CLDN5), stromal 

(COL1A1) compartments, together with immune cells such as myeloid (LYZ) and lymphocytes 

(CD3D) (Figure 1C) 46. Figure 1D shows the canonical genes expressed in the different 

clusters; monocytes (VCAN, FCN1), 3 macrophages subsets (C1QB, FABP4, LGMN,PLTP), 

dendritic cells (CD83, CD1C),  neutrophil 1 (S100A8, S10012), neutrophil 2 (ARG1, MMP9), 

inflammatory cells (TAGAP), mast (TPSAB1), t cells (CD3D), cytotoxic cells (GNLY), plasma 

b cells (IGHG4), proliferating cells (MKI67), type 1 alveolar pneumocytes (AGER), type 2 

alveolar pneumocytes (SFTPA1), endothelial cells (VWF) and 3 fibroblast subsets (defined by 

expression of DCN, H19, MMP1). Figure 1F shows the distribution of the top 4 genes per cell  

 
 

(F)Heatmap depicting the relative expression (normalized and scaled) of the top 4 canonical 
marker genes of the 19 cell clusters. 
 

We identified these clusters by making use of unsupervised clustering via the FindClusters tool within the seurat package with default 

parameters, k.pram set to 10 and resolution set to 0.5. The top4 genes shown were the canonical markers per cluster from the FindClusters 

output.  
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cluster in a heatmap. Expression of these transcripts correlated with protein expression data 

from previous human TB studies , such as elevated levels of S100A9 and STPA1114,115. We 

observed a high degree of heterogeneity in the frequency of cell types identified per participant, 

which we expected due to varying clinical presentation (Table 1). Consistent with literature, 

we observed that a greater proportion of the t cells came from the TB only group. We believe 

this observation captured the cd4 t cell depletion associated with acute immune deficiency 

syndrome (AIDS) 116. Interestingly, we observed an even distribution of cytotoxic cells 

(mixture of cd8 t and nk cells) in all disease groups, despite cancer patients contributing less 

than 11% of the total cells. Cytotoxic cd8 t cells infiltrate tumours in breast cancer patients, but 

the prognostic value of this phenotype is dependent on the density and location of these cells 

117. This suggests that our clustering captured disease driven skewing of cell populations. In 

conclusion, the identified clusters were very similar to cell types observed in studies that have 

performed scRNAseq on fibrotic lung tissue, specifically fibrotic tissue 46. This data provides 

an overview of the stromal, immune and parenchymal subsets detected in TB lung tissue. 
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2.2.2 Skewed immune and pro fibrotic profile of compromised lung tissue. 

To investigate the skewing of cellular subsets in TB lung, the relative proportion of each cell 

was calculated as a percentage of total assigned cells for each participant (Figure 2A). The 

frequencies of each cell subset were then compared between TB samples and non-TB controls, 

irrespective of HIV status. This analysis suggested a skewing of innate immune cells in TB 

disease, highlighted by a significant reduction of the macrophage 2 subset (p=0.01 by 

Kolmogorov-Smirnov; uncorrected), neutrophils (p=0.03, combined), and mast cells (p=0.04). 

The enrichment of mast cells in TB lungs mirrors a recent study applying the same  technology 

to individual granuloma from TB infected non-human primates 118, with this cell type was 

enriched in granuloma with the highest Mtb burden.  The same study also observed a significant 

association between high burden granuloma and plasma cells, which could not be shown in our 

data as the differences in cellular proportions were not statistically significant. The enrichment 

of neutrophils in the TB group is consistent with other studies that reported neutrophil 

infiltration in TB 119.  

 

In addition to these, fibroblast subsets 2 and 3 were only observed in TB diseased individuals 

(8/9 vs 0/4; p=0.004). This is  consistent with the pulmonary remodelling associated with 

tuberculosis disease due to cavitation, fibrosis and bronchiectasis 120. To examine the lung 

architecture of the TB and non-TB samples, we performed haematoxylin and eosin (H &E) 

staining of paraformaldehyde fixed tissue. Figure 2B shows the 2 participants with pathology 

that captured the gross histological spectrum we observed. P11 presented with evidence of 

inflammation and fibrosis induced anatomical distortion. P6 displayed evidence of lung 

parenchymal haemorrhage, interstitial and confluent fibrosis.  
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Figure 2: Spectrum of fibrotic lung tissue damage. 
(A) The distribution of the different cell types when comparing TB infected tissue to cancer controls. For each cluster we performed a paired 
t-test between the 2 conditions and the * represent differences that were statistically significant. (B) Hematoxylin and Eosin images of lung 
tissue from Participant 11 (HIVTB) and Participant 6 (TB). The image from P11 show the initial stages of the fibrotic response in which 
alveoli are still visible whereas the image from P6 shows the terminal stage where the alveoli are infiltrated by fibrous tissue. Scale bars 
500µm. 
(C) Stacked Violin Plots showing Decorin (DCN), Fibronectin (FBLN) and Collagen (COL) expression across the clusters. 
(D) Dot Plot showing expression levels of growth factors and ligands associated with a fibrotic response. The intensity of the dot 
corresponds to level of expression and the size of the dot shows the percentage of cells in the cluster expressing the gene. 
(E) Dot Plot showing the relative expression of chemokines, cytokines, ligands and receptors in the lung cells. The intensity corresponds to 
the level of expression and the size to the proportion of cells expressing the gene in the cluster.  
(F) Stacked violin plot showing the expression of Matrix Metalloproteinase (MMPs) and their inhibitors, Tissue Inhibitor of 
Metalloproteinases (TIMPs). 
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To investigate which cell types are involved in the fibrosis observed by histology, we assessed 

each cluster for the expression of genes associated with extra cellular matrix (ECM) synthesis 

such as decorin (DCN), fibronectin (FBLN1) and collagens (COL1A1, COL3A1, COL4A1, 

COL5A1, COL6A1, COL8A1, COL12A1, COL14A1, COL16A1, COL18A1). Consistent with 

their role in ECM production, these genes were highly restricted to the 3 fibroblast subtypes. 

The only notable exception being expression of COL4A1 in endothelial cells, a form of collagen 

previously associated with lung endothelia 121.  Interestingly, the expression of these molecules 

varied greatly between these fibroblast populations, suggesting potential differences in fibrotic 

activity (Figure 2C). By contrasts COL8A1 and COL14A1, are expressed by fibroblast 1 and 2, 

but not fibroblast 3, whereas COL12A1 was highly expressed by fibroblast 3 122.  

 

Unregulated deposition of the ECM is associated with loss of lung function in patients with 

IPF 123. Growth factors have been associated with  fibrosis, utilizing autocrine signalling for 

epithelial cell development and paracrine signalling of fibroblast proliferation, migration and 

extracellular matrix synthesis 124. We proceeded to investigate the data for cell types producing 

growth factors and their receptors. As shown in Figure 2D, fibroblasts were the major 

contributors of the growth factors and their high affinity, chaperone binding proteins involved 

in signal transduction insulin growth factor 1/ insulin growth factor binding protein 4 

(IGF1,IGFBP4). The observations support robust autocrine capability in all fibroblast subsets 

via the fibroblast growth factor 7 / fibroblast growth factor receptor 1 (FGF7/ FGFR1) (false 

discovery rate (FDR)-adjusted p-value , p < 1E -300 and p = 2E -96 respectively) 125. Strikingly, 

in line with the above observation, fibroblast 3 population expresses the highest levels of 

CTGF, which is known to be essential for fibrotic activity of transforming growth factor beta 

(TGF-b) 126 and is associated with IPF in humans 127. Fibroblasts expressed the highest levels 

of PDGFRA, the receptor of PDGF, another important molecule in pulmonary fibrosis. Lineage 



33 
 

tracing experiments in the mouse model of IPF show platelet growth factor receptor alpha 

(PDGRFA) expressing fibroblasts are the key driver 128. Interestingly, (FGF7), which is also 

highly expressed in the fibroblast 3 subset, has been shown to be reduced in areas undergoing 

active remodelling, and inversely correlates with disease severity 129. Overall, these data are 

consistent with the skewing of fibroblasts towards a profibrotic phenotype in TB patients. 

2.2.3 Fibroblasts important drivers of immune cell recruitment and cavitation in 
TB disease 

In general, fibrosis is thought to occur due to abberant wound healing associated with 

inflammation and angiogenesis 130. To investigate this, we examined the expression of 

chemokines, cytokines, and their receptors. Of the transcripts detected within the dataset, 

fibroblasts expressed pro-angiogenesis chemokines (CXCL1, CXCL2, CXCL3, CXCL5, 

CXCL12, CXCL13) 43, the pro-fibrotic chemokine, (CCL18) 131, in addition to low levels of IL-

8 and IL-33 (Figure 2E). CXCL1 and CXCL5 are known to play an essential role in the 

recruitment of neutrophils to the lung during TB infection 132; whilst both CXCL12 and 

CXCL13 are involved in lymphocyte recruitment and formation of lymphoid follicles in the 

lung 133 134. We also observed within the fibroblast population 3 high levels  of IL7R (CD127) 

transcripts, primarily associated with homeostatic signalling and cell survival in lymphocytes 

135,136. Fibroblasts and macrophages isolated from human subjects with rheumatoid arthritis 

have been shown to express high levels of IL7R 137. 

 

Pulmonary cavitation is a hallmark of tuberculosis disease, as it facilitates parenchymal 

damage138. This process is not fully understood but is thought to be driven  by the dysregulation 

of the matrix metalloproteinases (MMPs), enzymes that degrade the ECM, and their 

antagonists, tissue inhibitor of metalloproteinases (TIMPs). We therefore investigated the 

expression of these molecules in this dataset. Consistent with published data, we observed 
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several cell specific associations, including  MMP9, MMP25 with neutrophils, and MMP19 

with monocytes and macrophage 139. Interestingly, MMP1, MMP2, MMP3 and 14 were 

predominantly expressed by fibroblast (Figure 2F). In the case of MMP1, expression was only 

detected in fibroblast subset 3, in which subset it is ubiquitously expressed at a high level. 

Several studies indicate that MMP1 is  crucial for cavitation in human TB; bioengineering 

human MMP1 into mice, which otherwise lack this key enzyme, leads to caseous necrosis 140, 

a canonical feature of human TB that missing from the mouse model. In humans, MMP-1 

transcript abundance was much greater in TB granuloma compared to Sarcoidosis granuloma. 

Sarcoidosis is a non-infectious granulomatous disease with none caseating lesions 141. MMP1 

expression is also driven by hypoxic conditions generated within TB lesions 142. In addition, 

the fibroblast 3 subset expressed lower levels of the three TIMPs and expressed very little 

TIMP3, the inhibitor with the broadest activity against MMPs 143.  

2.2.4 Fibroblast subtypes and enrichment by disease status 

Having observed the potential role of fibroblasts in TB immunopathology, we sought to 

investigate this cell type further. First, we sub-clustered all fibroblast subtypes (1792 cells), 

revealing 5 distinct clusters (Figure 3A). Of these, cluster 3 was uniquely expressed in 

individuals with TB alone (P6 and P8), and was associated with a distinct gene expression 

profiles (Figure 3B and C). Cluster 3 (207 cells) most closely resembled the fibroblast 3 

population identified in the preceding sections, characterised by expression of collagen 

(COL4A1 and COL12A1), chemokines (CXCL1, CXCL3, CXCL5 and CXCL12), and IL7R. 

Focusing on the top 5 differentially expressed genes , cluster 3 showed elevated levels of 

MMP1, MMP3, CXCL5 and CXL13, together with a specific repertoire of marker genes 

including CA12, PDPN, TDO2 and FAP (Figure 3B and Figure 3C). TDO2 encodes tryptophan  
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Figure 3: Fibroblast phenotypic diversity 
(A) UMAP projections of 1792 fibroblasts (Fibroblast 1, Fibroblast 2 and Fibroblast 3 were combined and re-clustered), showing the 
distribution of the cells into generic clusters (left) and the distribution of the clusters based on disease status (right). 
(B) Heatmap showing the top 7 marker genes for each of the generic fibroblast clusters.  
(C) Dot Plot showing the relative expression of transcripts associated with immune-fibroblasts 144, chemokines, cell specific marker genes, 
extracellular matrix destruction and collagen accumulation. The intensity corresponds to the level of expression and the size to the 
proportion of cells expressing the gene in the cluster. 
(D) Trajectory analysis of the 5 fibroblast clusters using monocle 2, showing bifurcation towards cluster 3 and 4. Most cells in cluster 3 and 
4 occupy the terminal ends of each respective branch, suggesting that they are distinct cellular states.  
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2,3-dioxygenase, a rate limiting enzyme which, together with indoleamine 2,3-dioxygenase 

(IDO1), catabolizes the breakdown of tryptophan to kynurenine, which is involved in 

neurotransmission and immune regulation  145,146. IDO1 is upregulated in the TB granuloma, 

where it is thought to play a key role in suppressing the T-cell immune response, and it’s 

inhibition improves T-cell penetration in granuloma 147. TDO2 is upregulated in lung cancer 

associated fibroblasts and it’s inhibition improves T-cell function 148. Podoplanin (PDPN), 

together with fibroblast activating protein (FAP), are expressed by immune-fibroblasts and are 

required for organisation of tertiary lymphoid organs at sites of chronic inflammation, critical 

for establishment and maintenance of fibrotic foci 144.  

 

The other clusters identified showed distinct gene expression profiles, including complement 

7 (C7) and complement factor D (CFD) expression in cluster 0 (946 cells). CFD is associated 

with senescent fibroblasts 149. Cluster 1 (262 cells) fibroblast uniquely express (H19), a long 

non-coding RNA which induces proliferation of fibroblasts and is a potential driver of IPF 150 

and SERPINE2, known to promote collagen deposition in scleroderma 151. Cluster 2 expressed 

cartilage oligo matrix protein (COMP), associated with lung tissue stiffening whereas cluster 

4 (165cells) had a myeloid-like expression profile (LYZ, HLA-DRA, S100A9). In an attempt to 

uncover the developmental association of these fibroblasts, we superimposed the 5 clusters 

onto a pseudo time trajectory using monocle 2 95. As illustrated in Figure 3D, the trajectory 

starts off with cells in cluster 0, which separates into two branches (at point labelled 1 in the 

Figure 3D), with one branch terminating at cluster 4 whilst the other terminating at cluster 3. 

This suggests that these two cell states represent committed paths along the developmental path 

of transcriptionally distinct fibroblasts. 
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To validate our observations, we explored the correlation of transcript abundance with protein 

expression, using immune fluorescence imaging  fixed human tissue. We curated the markers 

that were part of the top 100 genes for fibroblast 3, selecting markers that were distinctly 

expressed in the fibroblast 3 cluster (MMP1, MMP3, CA12, CTHRC1, GAS1, CXCL13, TDO2, 

PI15). COL1A1 and COL1A2 were selected to show areas of collagen deposition and TIMP3 

and MMP9 were selected as their expression was observed in fibroblast 1/endothelial cell and 

neutrophils, respectively (Figure 4A). We stained the tissue with distinct evidence of fibrosis, 

cavitation and granuloma formation. Figure 4B-4E show representative staining of multiple 

granuloma-like structures from 2  participants (from the study database, cells were not 

sequenced). We observed that fibroblast 3 marker genes were highly expressed by cells that  

formed a circular cuff around necrotic/fibrotic zones, with  distinct profiles associated with 

collagen 1 (Figure 4B-D). The localization of CA12, TDO, and PI15 suggests that this 

fibroblast subset is associated with the organisation of TB granuloma. We further stained 

MMP1 and MMP3 on two separate cases, confirming abundant expression of these markers 

around the granuloma (Figure 5) and a stronger association with blood vessels surrounded by 

fibrotic tissue (Figure 6). The co-staining of these markers in concordance with our 

transcriptomic data supports the assertion that fibroblasts are expressing these proteins.  Taken 

together, these findings suggest that diverse fibroblast populations  play an important and 

understudied role in recruiting immune cells in the lung tissue, potentially organising the 

granuloma. 

 



38 
 

 
Figure 4:  Immunohistochemistry of TB infected tissue. 
(A) Dot plot showing the distribution of marker genes associated with fibroblast 3 (MMP1, MMP3, CA12, CTHRC1, GAS1, CXCL13, TDO2, 
PI15) across the data set, together with markers common for all fibroblast subsets (COL1A1, COL1A2), neutrophil 2 (MMP9) and fibroblast 
1/endothelial cells (TIMP3).  
(B)-(E) Representative fluorescent immunohistochemistry imaging of areas with severe fibrotic lesions in the human lung to visualize the 
localization of fibroblast 3 markers with collagen 1; (B) showing for P53-07 DAPI (blue), CA12 (red), CTHRC1 (orange) and COLLAGEN 
1(polyclonal antibody for both alpha 1 and alpha 2) (green), it shows a fibrotic lesion from lung tissue; (C) showing a fibrotic lesion from  
P53-09 lung, DAPI (blue), TDO2 (red), PI15 (orange) and COLLAGEN 1 (green); (D) showing an airway adjacent to fibrotic lesion for P53-
09 DAPI (blue), GAS1 (red), CXCL13 (orange) and COLLAGEN 1 (green). (E) showing for P54-09 DAPI (blue), MMP9 (red), TIMP3 
(orange) and COLLAGEN 1 (green). The bars indicate 200µm for all images. These patients (P53 and P54) represented previously 
characterised cases of TB which showed distinct granuloma within the tissue. Due to the nature and timing of the sampling, we could not 
definitively determine the stage of granuloma formation.  
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Figure 5:  Immunohistochemistry of TB infected tissue showing colocalization of fibroblast 3 
markers with TB granuloma-like fibrotic lesions. 
Representative hematoxylin and eosin (H &E) images of lung tissue from participant 53 (culture positive TB) showing fibrotic lesions 
surrounded by thickened alveoli due to hyaline deposition. Scale bars 1mm. Fluorescent immunohistochemistry imaging of the fibrotic lesions 
in the human lung to visualize the localization of fibroblast 3 markers with collagen 1; DAPI (blue), COLLAGEN 1 (green), MMP1 (red), 
MMP3 (orange) and THE MERGED image for all 4 colours, scale bars 500µm for all images.  
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Figure 6:  Immunohistochemistry of TB infected tissue showing association of fibroblast 3 
markers with blood vessels. 
Representative hematoxylin and eosin (H &E) images of lung tissue from participant 0 (HIVTB) showing blood vessels surrounded by fibrotic 

tissue. Scale bars 250µm. The red staining in the center of the vessels show red blood cells.  Fluorescent immunohistochemistry imaging of 

the blood vessels in the human lung to visualize the localization of fibroblast 3 markers with collagen 1: DAPI (blue), COLLAGEN 1 (green), 

MMP1 (red), MMP3 (orange) and THE MERGED image for all 4 colours. Scale bars 200µm. Red blood cells, in the centre of the blood 

vessels have been reported to have a high degree of autofluorescence, shown here by their positivity for all stains 152.  
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2.2.5 Endothelial and Proliferating cells enrichment by disease status 

Having observed the additional cellular sub-structure revealed by sub clustering fibroblasts, we 

repeated the process for endothelial (598) and the proliferating cells (339). Endothelial cells 

resolved into 5 generic clusters (Figure 7A). After re-clustering, we attempted to identify 

marker genes associated with each of these clusters (Figure 7B), revealing lymphatic (cluster 

4, PDPN) and vascular endothelial cells (cluster 3, PXDN). Cluster 0 expressed apolipoprotein 

L domain containing, also known as VERGE (APOLD1), which plays a role in endothelial 

signalling and vascular function 153. Cluster 1 expressed high levels of thioredoxin interacting 

protein (TXNIP), which has been reported to induce inflammation, fibrosis and molecular 

damage by oxygen free radicals 154. We further visualized these clusters by the disease status 

(Figure 7C), revealing that cluster 0 was enriched in both HIV and/or TB participants whilst 

cluster 1 was highly enriched in the non-TB control group. The lymphatic endothelial cells 

(cluster 4) signature was distributed throughout the patient groups whereas the vascular 

endothelial cells (cluster 3) was overrepresented in TB participants. This is consistent with in 

vitro and clinical evidence of HIV-1 induced vascular endothelial cell dysfunction 155. Sub-

clustering of the proliferating cells, revealing 3 distinct (Figure 7D) clusters of myeloid cells 

(cluster 0, C1QB, MARCO, LYZ), t cells (cluster 1, CD3D, TRBC2) and plasma cells (IGHG1, 

IGHG2) shown in (Figure 7E). Visualizing the cell types by disease revealed that macrophages 

were present in both TB and HIVTB groups, whereas t and b cells enriched in the TB group 

(Figure 7F). This observation was consistent with the understanding that HIV-1 infection leads 

to depletion CD4 t cells, leading to immune failure and the rise of opportunistic infections 156 , 

together with reports of increased  b cell fractions in individuals with culture confirmed active 

TB 157,158. Macrophages have been reported to proliferate at the sites of inflammation, primarily 

directed by the T helper 2 cytokine interleukin 4 (IL4) 159. 
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Figure 7: Cell types showing enrichment of specific clusters in the diseased tissue.  
(A-C) An outline of the visualization of 598 endothelial cells enrichment based on the disease status of the participants. 
(A) UMAP plots showing the clustering of the endothelial cells as a functional of the revealed 5 generic clusters and the disease status.  
(B) Heatmap of the top 7 marker genes of the 5 generic clusters.  
(C) Heatmap showing the enrichment of the generic clusters in different disease states. 
 
(D-F) A Schematic showing the visualization of 339 MKI67 Proliferating cells based on participant disease status. 
(D) UMAP plots showing the distribution of the 3 generic subclusters and their distribution as a function of the disease status of the 
participants.  
(E) Heatmap showing the top 7 markers in each 3 generic clusters. 
(F) Heatmap of the generic clusters, showing the enrichment of the different clusters by disease status. 
 

2.2.6 Monocyte, neutrophil and alveolar pneumocyte distribution by disease 
status 

We further subclustered the abundant myeloid and epithelial cell populations, revealing 

additional population structure for monocytes (3198), neutrophils (3132) and alveolar type 1 

(AT1) / type 2 pneumocytes (AT2) (1022). Monocytes resolved into 5 clusters, and we set to 

identify marker genes (Figure 8A). When manually curating marker genes for each cluster, we 
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used genes that appeared in at least 25% of the cells of the same cluster . We then used these 

genes to compute the differentially expressed genes for each cluster vs the rest of the cells at 

log fold difference > 0.25. This formed the basis by which we defined subclusters; smaller 

populations of cells with a similar transcriptomic profile. Cluster 0, expressed CD55, 

upregulated with bacterial infections and the long non-coding RNA NEAT1, involved in 

inflammasome activation. Cluster 1 expressed DDX3Y, a functional homolog of DDX3X that 

mediates the innate response to microbial infection; HMOX1, which suppresses the pro-

inflammatory phenotype and heat shock 70 kD protein HSPA1A/HSPA1B, a cellular response 

to physiological stress. Cluster 2 expressed cytotoxic genes (GNLY), cluster 3 expressed pro-

inflammatory (ETS1) and cell motility (RHOC) genes and cluster 4 expressed high levels of 

the activation marker CD69 and the IL-33 receptor, IL1RL1. Cluster 0 was enriched across all 

group whereas cluster 1 was prominent in HIVTB participants (Figure 8B). 160. 

 

Neutrophils resolved into 3 distinct cell types (Figure 8C). Cluster 0 expressed neutrophil 

metalloprotease, MMP9, which degrades collagen IV in the basement membrane. Cluster 1 

expressed genes associated with polymorphonuclear myeloid derived suppressor cells 

(OLR1)161, IL-17 suppression (TAOK1), neutrophil recruitment (GBP5) and mesenchymal 

stem cell activation (GBP1). Cluster 2 expressed heat shock proteins like the monocyte sub 

population highlighted previously. Cluster 0 was enriched in participants with TB only, cluster 

1 in HIVTB participants with cluster 3 common to all groups (Figure 8D). Type 1 (AT1) and 

type 2 (AT2) alveolar pneumocytes to were sub-clustered together, revealing the 4 distinct cell 

subtypes (Figure 8E). We observed AT2 (SFTPC), secretory club cells (SCGB1A1), 

macrophages (C1QA, APOE) and AT1 (AGER). Secretory cells, type 1 pneumocytes and 

macrophages were enriched in the HIVTB group, whereas type 2 pneumocytes were 

represented in both TB and HIVTB groups (Figure 8F). 
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Figure 8: Cell subtype enrichment as a function of disease status. 
(A-B) Shows the outline of the heatmap visualization used to show differences in monocyte (3198) subtype composition as determined by 
the disease status.  
(A) Heatmap showing the separation of the monocyte cluster into 5 generic clusters. 
(B) Heatmap showing the distribution of the clusters according to the disease status of the participants. 
 
(C-D) Genes defining different neutrophil (3132) subsets and distribution across participants by disease status. 
(C) Heatmap of the 3 generic sub-clusters derived from the neutrophil cluster. 
(D) Heatmap showing the enrichment of these clusters in different disease status of the participants. 
 
(E-F) Visualization methods used for (1022) Type 1 (AT1) and Type 2 (AT2) Alveolar Pneumocytes.  
(E) Heatmap showing the top 7 highly expressed genes in the 4 generic clusters derived from the pneumocyte population. 
(F) Heatmap showing the enrichment of these different pneumocyte clusters in the different disease states. 
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2.2.7 Evaluation of peripheral blood-derived TB signatures 

We were interested in exploring how genes identified as blood biomarkers of TB were 

expressed within our lung data. We selected gene lists from the following publications Zak et 

al., 2016 162 , Maertzdorf et al., 2016 163 , Cliff et al., 2013 164  , Singhania et al., 2018 165 and 

Maertzdorf et al., 2011 166. In these studies, gene signatures of active pulmonary TB were all 

derived from PBMC using either bulking RNA sequencing or microarray hybridization 

technology. We computed the average enrichment score of each gene signature for the 19 cell 

clusters and visualized the enrichment scores normalized to random control feature genes 

(Figure 9A-E). The most striking enrichment of signature genes was that of the Maertzdorf et 

al., 2016 signature in neutrophils and inflammatory cells. Interestingly, the other signatures 

were not particularly elevated as the neutrophils/inflammatory cells signal. This was consistent 

with observations by Berry et al ., 2010 167, who reported a neutrophil signature induced by 

type 1 and type 2 interferons 109. The remaining signatures appeared to be generally enriched 

in myeloid cells, which often have higher transcriptional activity than other cell types such as 

lymphocytes 168. However, the signature reported by Singhania et al., 2018 does appear to be 

more lung tissue specific, being enriched in type 1 pneumocytes, type 2 pneumocytes, 

endothelial cells and fibroblasts (Figure 9D). Interestingly, this signature was generated using 

a modular approach that specifically attempted to reduce dominant effect of highly upregulated 

interferon gene signatures by using weighted gene co-expression network analysis. Based on 

our observations, this signature may be able to capture the pulmonary remodelling associated 

with TB, but more testing is required with other pulmonary diseases that induce cavitation, 

fibrosis and granuloma formation. 
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Figure 9:  Evaluation of TB Blood signature enrichment in cell clusters from human lung 
tissue. 
(A) Violin Plots depicting the module scores computed for each  lung cell clusters using the 16 gene signature Zak et al., 2016 162 ,(B)  18 
gene signature Maertzdorf et al., 2016 163 ,(C) the 19 gene signature Cliff et al., 2013 164 ,(D) the 20 gene signature Singhania et al., 2016 65 
,(E) the 29 gene signature Maertzdorf et al., 2011 166.  

 

2.3 Discussion 

Here we present an unbiased analysis of lung cells in resected tissue obtained from participants 

with TB and non-TB controls. By describing key molecular differences that are driven by the 
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disease, we confirmed several significant observations from previous in vitro/ex vivo studies, 

animal models, highlighting key areas for further studies in HIV/TB pathology. By identifying 

unique cell types and aberrant pathways, this data is useful in investigating therapeutic 

alternatives for management of tuberculosis disease. In the right context, this data can be useful 

in the validation of already existing research questions or leverage its unbiased nature to create 

unique thought paradigms.  

 

A recent scRNAseq study on 3 participants reported 59 cell types from 75,000 cells using plate 

and droplet based RNA sequencing platforms, purifying compartment specific cell types using 

magnetic activated sorting (MACS) and fluorescence activated sorting (FACS) of immune 

(CD31+CD45+), epithelial (EPCAM+) and stromal (EPCAM-CD31-CD45-) 169. In our study, 

we recovered 19 cell types from 20,962 cells from 13 participants. We observed fewer cell 

types due to the lower cell numbers and possible loss of cells from the homogenisation of the 

lung tissue. We speculate that the compartment specific enrichment used to reach 59 cell types 

allowed for a more targeted enrichment which was not feasible in our experiments 170. The 

analysis identified stromal cell types such as fibroblasts, endothelial cells, immune cells 

(monocytes, macrophages, neutrophils, dendritic cells, t cells, plasma cells, mast cells) together 

with cell states (cytotoxic, proliferating and inflammatory). Neutrophils resolved into  2 

separate clusters. Interestingly, neutrophil 2 expressed ARG1 more abundantly, which has been 

linked with the down regulation of t cell activation and apoptosis of cancer cells 171. It was 

interesting to note that with the exception of dendritic cells, greater than 50% of the myeloid 

cells were derived from the HIVTB group. In particular, macrophage 2 (FABP4, C1QB) and 

neutrophil2 (IFITM2, FCGR3B) showed lower proportions from TB group, suggesting disease 

specific depletion. FABP4 is involved in lipid metabolism as it relates to inflammation and 

macrophages are reportedly involved in inflammation of adipose tissue in HIV infected 
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individuals 172. Enrichment of dysfunctional neutrophils at mucosal surfaces has been 

associated with HIV infection 173.We did not explore this dysfunction in our study as we lacked 

robust controls, but it remains interesting in the context of disease .  

 

We observed a significant pro-fibrotic phenotype in the 3 distinct fibroblast cell types, with 

significant expression of collagens, growth factors and immune modulatory molecules. 

Focussing on the fibroblasts revealed an enrichment of a unique population (Figure 3C & D) 

in the TB group. These cells displayed a transcriptomic profile similar to podoplanin (PDPN), 

fibroblast activating protein (FAP) immune fibroblasts, which have been shown to coordinate 

the organisation of tertiary lymphoid structures (TLS) in response to inflammation 144. Our 

exploration of the topographical positioning of these cells within TB granulomatous tissue 

suggested that these cells formed part of the fibrotic cuff surrounding fibrotic regions filled 

with dead cells or deposits of ECM (Figure 4). Fibrosis has been reported in chronic TB 174, 

with increased incidence in patients post anti-tuberculosis treatment 45. In general, fibrosis 

occurs either at the periphery or in the centre of the lesion, but the prevailing view is that 

fibrotic granuloma are more protective as they can effectively contain the bacteria, although 

they inadvertently make it difficult for drugs to reach the pathogen during treatment 175. The 

association of fibroblast 3 markers primarily with the cuff of the lesions suggests that these 

cells play a role in granuloma organisation. We suggest further probing, particularly of TB 

granuloma with these markers to explore the hypothesis that immune fibroblasts are involved 

in the formation and maintanace of the TB hallmark.  

 

We observed an upregulation of MMP1 and MMP3 proteins within the granulomatous lesions 

as well as in association with blood vessels in highly fibrotic lung tissue (Figure 5 and Figure 

6 respectively). A recent preprint reported an increase in the proportion of endothelial cells in 
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TB granuloma in comparison with granuloma from sarcoidosis patients 176, with another 

suggesting that elevated levels of endothelial cell progenitors in TB patients promotes bacterial 

dissemination 177. Further investigations with these marker genes is necessary on TB granuloma 

from different patients  to understand biological and more crucially clinical consequences of 

such an association.  The fact that fibroblast 3 appeared to be overrepresented in TB patients 

who are HIV negative is interesting. HIVTB infected individuals present with fewer cavities 

and one can speculate that they lack these driving fibroproliferative and cavity inducing cell 

types.The TB profibrotic phenotype requires investigation in the context of idiopathic 

pulmonary and cystic fibrosis to better clarify biological elements unique to each disease. 

Additionally, better curated TB and HIVTB lung samples will be required to test this 

hypothesis. Another approach  is to use flow cytometry for enrichment of the immune 

fibroblasts using the methodology outlined by Nayar et al., 2019 144 ,with CD45-CD235a-

CD11b- EpCAM-CD31-PDPN+CD34-  as the gating strategy. Unfortunately, due to the closure 

of our clinical study, additional samples were not available to conduct these assays.  

 

Many studies have highlighted how HIV infection can lead to the dysfunction of immune 178, 

endothelial 179, epithelial 180 and stromal cells. We observed a similar trend when we examined 

different clusters for gene expression strongly across the participant groups. The pro-

inflammatory (S100A8/A9, ADAMTS9/ADAMTS1) together with lymphatic endothelial subsets 

(PDPN) were present in both patient groups.  Vascular endothelial cells (PXDN) were enriched 

in the TB group, supporting reports that viral proteins lead to a pro-inflammatory, 

vasoconstriction and vascular endothelial cell apoptosis 181.We also observed that the 

endothelial cells from the cancer participants had high expression of markers reported in non-

small cell lung cancer and lung carcinoma (SLC6A4, TXNIP, VIPR, IL7R) 182-184. The MKI67 

proliferating cluster resolved into immune cells (myeloid, T and plasma cells), with the last 2 
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cell types enriched in the TB group. Both neutrophils and monocytes from HIVTB expressed 

heat shock proteins associated with cellular stress , consistent with virus induced dysregulation 

(neutropenia and monocytopenia) 185. A scRNAseq study on blood monocytes,  identified a 

subset of cytotoxic monocytes resembling natural killer dendritic cells 160, which we observed 

in all disease groups in Figure 8 (cluster 2, GNLY). We also observed that HIVTB patients were 

enriched for a highly inflammatory subtype of neutrophils (FKBP5 , MEGF9 , MMP9 , ARG1 

, CEBPD) 186-190 whereas the TB group was enriched for a polymorphonuclear myeloid derived 

suppressor cell phenotype (OLR1 , TAOK1) 161. Analysis of the alveolar epithelial compartment 

showed an enrichment of secretory cells (SCGB1A1), alveolar macrophages (APOE) and 

alveolar type 1 pneumocytes (AGER) in the HIVTB group. Whether the differences we 

observed are the consequence of TB or/and HIV disease remains to be elucidated. The 

enrichment of the subpopulations could be due to differences in the sequence of HIV and TB 

infection events as this might affect the cellular composition of the lung tissue differentially. 

Nevertheless, the observed correlation with existing literature suggests that some differences 

in cell proportions reflect the underlying biology and warrant further exploration. 

 

Lastly, we explored how previous TB signatures align with our data by computing enrichment 

scores for each signature and super impose the scores on each of our 19 cell clusters. Most 

signature genes were highly expressed by myeloid cells , consistent with the dominant innate 

immune interferon-induced signalling. The notable exception, however, is the signature 

developed by Singhania et al. These authors reasoned that the majority of TB gene signatures 

were constructed using gene reduction methodologies that prioritize the most abundant 

transcripts 191. The authors pointed out that this leads to a highly correlated gene set with a 

wider immunological focus due to the dominant, conserved properties of the innate immune 

response. Therefore, it is not surprising that these, and other TB signatures largely identify the 
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same genes, resulting in similar diagnostic utility 192. Singhania et al., by contrast, sought to 

broaden their signature by taking a modular approach involving selection discriminant genes 

across the whole transcriptome. It is striking, therefore, that this signature was enriched in 

endothelial cells, pneumocytes and fibroblasts.  We speculate that their approach allowed the 

signature to capture a component of the tissue remodelling. We suggest defining the role each 

cell type plays during the abnormal pulmonary wound healing especially in the late / chronic 

stage of TB disease using scRNAseq. This will help refine our diagnostic tools by producing 

biologically sensitive ,specific and functionally relevant markers 102. It is also key that we 

include a protein expression panel for the refined biomarkers to see the degree to which it 

correlates gene expression. A recent study by Cai et al., 2020 made use of scRNAseq and 

compared PBMC from healthy, latent TB and active TB participants 70. The results revealed a 

depletion of NK cells in the active TB participants, consistent with low NK cell frequencies in 

newly diagnosed patients 193. NK cell exhaustion has been reported in cancer and other chronic 

diseases, thus further exploration is required to ascertain whether this observation is a general 

feature of the immune system or a TB specific phenotype 194. We speculate the scRNAseq will 

prove useful in conjunction to bulk rna-sequencing in localizing transcripts to cell type, which 

informs us on the cell types to perturb for mechanism of disease progression. We suggest that 

future studies should include blood, bal and lung compartments across the full spectrum of TB 

infection. Identification of a TB specific population of cells involved in lung granuloma 

formation should be the ultimate goal of such endeavours. The high resolution capacity of 

scRNAseq allows us to reduce the false positive rates observed in bulk sequencing biomarker 

studies. This is due to the independent nature of transcript detection in scRNAseq compared to 

bulk RNAseq, which detects all transcripts as an averaged signal, missing genes from low 

abundance cell types 195.    
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Taken together, this chapter highlights the power of single cell sequencing in generating 

research questions specific to human TB disease in a highly unbiased, data driven approach. 

Further research is required to explore the significance of the activated fibroblast 3 population 

in the TB only participants together with formulating a biosignature that captures the TB 

specific tissue remodelling during and post anti-TB treatment. This will require a stringent 

criteria for patient selection to ensure robust TB case definition. We did not have this luxury in 

our study, thus we leaned heavily on clinical records and histological examinations in defining 

our groups. We speculate that expanding our dataset to 100,000 cells, whilst maintaining our 

current sequencing depth of 50000 reads/cell will provide greater statistical power for 

observation of disease driven skewing and cells types which are less than 1% of the population 

196. This can be followed up by population specific experiments, at a higher depth of 500000 

reads/per cell (costs allowing), which likely capture more minute biological differences in the 

transcriptome that are important in defining the functionality of new cell types 197. The dataset 

we presented was aligned with the hg19 human genome. Recently, the hg38 genome has 

become available and empirical studies suggests it leads to more annotated genes without 

changing the overall structure of the dataset (unpublished data). There is a need for  studies to 

compare the 2 genomes and determine which performs better in the context of cell 

identification in human tissue. 

 
 

The manuscript for work presented in Chapter 2 of this thesis in the advanced stage of 

preparation and will be presumptively submitted in the next 8 weeks. 
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Chapter 3: Single cell sequencing in profiling lung CD69+ 

CD4 T cells in tuberculosis infected individuals. 

3.1 Introduction 

 
Bacillus Calmette-Guerin (BCG) remains the only licensed TB vaccine since its introduction 

in 1921. It consists of attenuated Mycobacterium bovis, priming the immune system to respond 

to Mtb antigens 198. Unfortunately, BCG has varying efficacy based on  age, gender, 

geographical location 199 and ethnicity 200. BCG provides effective protection to children 201 

from TB meningitis, miliary TB and pulmonary TB 202. This protection is believed  to last for 

approximately 20 years , after which young adults disproportionately develop diseases in 

endemic areas 203. Thus there is a pressing need for alternative vaccines to prevent disease 

development in adults.  

 

T lymphocytes (T cells )  play a critical role in the prevention of TB after primary Mtb infection 

as part of the adaptive immune response  204. Human immunodeficiency virus (HIV)  increases 

the risk of developing disseminated TB especially at low cd4 t cell levels 205. In cases where 

individuals received antiretroviral therapy (ART) corresponding to increased cd4 t cells, they 

remained at greater risk of developing TB compared to the HIV negative group. This suggests 

that other cells are responsible for controlling infection or that ART does not fully restore the  

cell repertoire required to prevent TB disease.  

 

T cells migrate to infected lung tissue in response to chemo-attractants and remain there as long 

lived memory cells, allowing for an optimum secondary reaction 77. These so called “tissue 

resident memory” cd4 t cells (Trm) are derived from central (SELLhi/CCR7hi)  and effector 

memory (SELLlo/CCR7lo) t cells. Trm are phenotypically heterogenous and express a variety 
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of surface markers associated with tissue retention, including CD69 and CD103. T-cell receptor 

(TCR)  upregulation leads to the  triggering of the CD69 206, which can make the use of the 

latter as a marker of residency complicated. However, once upregulated, CD69 competitively 

binds to the S1PR on the surface of cells 207. This prevents migration of the cells back to the 

circulation following the S1P gradient. CD103 is involved in the maintenance of t cells within 

tissue, particularly at the epithelial barrier, binding, in conjunction with the Beta 7 integrin 

(ITGB7)  bind to E-cadherin 208. Despite their wide use as canonical Trm markers,  neither 

CD69 or CD103 perfectly corresponds to  residency 209. Trm are emerging as an important 

target for novel TB vaccine studies, with most of the work done in animal models.  

 

As discussed previously, (scRNAseq) is a valuable tool in profiling cells at a cellular resolution, 

allowing advancement in our understanding cell specific responses to disease 210. It has 

provided insight into the functional aspects of T cells, demonstrated when it identified a tumour 

infiltrating cd8 Trm population expressing both effector and suppressor transcripts in breast 

cancer patients 92. In this chapter, we first applied scRNAseq to peripheral blood mononuclear 

cells (PBMC) of TB infected and healthy individuals in an attempt to reproduce the cellular 

subtypes obtained using a different scRNAseq platform (10X) by Cai and colleagues 70. We 

then compared from the same individual, CD4 T cells from the PBMC and CD69+ / CD69- 

CD4 T cells from the lung. We used CD69 as a marker for CD4 Trm as opposed to CD103 as 

the latter shown to be better associated with CD8 Trm cells 209.  

3.2 Results 

3.2.1 Single cell RNA sequencing of peripheral blood mononuclear cell (PBMC) 
from active TB and healthy individuals 

PBMC  were obtained from 3 HIV negative active TB patients with abnormal chest x-rays ,a 

positive interferon gamma release assay (IGRA+) and  3 healthy donors (IGRA-). The low 



55 
 

patient size (n = 6) was due to the fact that this was a pilot study and we did not have resources 

to follow up on.    PBMC were isolated using density centrifugation from a previously reported 

protocol 52. A total of 15000 cells per participant were loaded onto seq-well microarray and 

processed as discussed in the previous chapter 52. Data from the sequencer was aligned to the 

human genome (hg19), followed by exhaustive quality check measures to remove low quality 

cells (defined as containing >5% mitochondrial genes, < 200 transcripts and > 2500 transcripts 

as set in seurat). This yielded 2998 cells (Figure 1A), distributed across the active TB (subjects 

P6033 (n = 338), P6077 (n = 297) and P6110 (n = 105)) and healthy controls (subjects P8346 

(n = 1034), P8347 (n = 466), P8349 (n = 758)). We observed higher cell yield from the healthy 

controls compared to the TB group (Figure 1B). We expected even distribution between the 

groups and speculate that the extraction protocol performed sub optimally. Unsupervised 

clustering of the cells revealed 9 distinct clusters, which included  red blood cells (HBA2, HBB), 

neutrophils (S100A8, S100A9), monocytes (FCN1, VCAN), cd8 t cells (CD8A, GNLY), 

neutrophil2 (FCGR3B, G0S2), cd4 t cells (IL7R, SPOCK2), plasma cells (IGKC, IGHG4), b 

cells (MS4A1, BANK1) and platelets (TUBB1, PPBP) as shown in Figure 1C. The presence of 

red blood  cells supports the speculation that the extraction protocol under performed as these 

cells are supposedly removed by density centrifugation. It is possible that human error in 

enumerating the PBMC could have led to reduced cell yield.  Figure 1B suggests that 

monocytes, t lymphocytes (cd4 and cd8) and platelets were comparatively more abundant 

across the disease groups. A study showed a significant increase in monocyte absolute counts 

in individuals with active TB compared to health individuals 211. The same study found 

significant differences in the frequency of lymphocytes between active TB and latently infected 

patients. Other groups have associated higher platelet counts and thrombocytosis with 

advanced pulmonary TB 212 , with Fox et al., 2018 associating platelets with pulmonary 

inflammation and tissue destruction 213.  
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Figure 1 : Overview of PBMC  extracted from healthy individuals and active tuberculosis individuals. 

(A) UMAP projection showing 1590 PBMC from healthy and active TB patients coloured according to the different cell lineage clusters and 

disease status (red (active TB) and blue (healthy). 

(B) Bar plots showing the cell yield per individual in accordance to the clusters and the disease status. 

(C) Heatmap of the  3 highest expressed genes in each cluster, showing the distribution of different canonical markers. 

(D) Heatmap showing the distribution of the clusters as a function of disease status. We identified these clusters by making use of unsupervised   

clustering via the FindClusters tool within the seurat package with default parameters, k.pram set to 10 and resolution set to 0.5.  

 

It should be noted that other studies that have performed single cell sequencing do not report 

the presence of neutrophils 214, which are separated from the PBMC fraction during extraction. 

However, Figure 1B shows that the majority of both neutrophil 1 and 2 populations derive from 

a single individual, P8349.  Neutrophils can separate out with the PBMC, particularly low 

density neutrophils (LDN). These LDN be elevated in individuals with active pulmonary TB 

215. However, it is possible that downstream processes such the library work up and sequencing 

might have been compromised, leading to the erroneous detection of neutrophils. The S100A9 
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gene observed in the neutrophils is also expressed in monocytes and dendritic cells, thus there 

is a possibility of erroneous cluster identification 216.  Stratification of the heatmaps according 

to the disease status did not reveal conclusive differences in gene expression due to the 

discrepant cell yield between the groups (Figure 1D).  

3.2.2 Analysis of PBMC derived from HIVTB Participant 36 

We enrolled 5 participants (4 HIVTB (participant 31, 36, 37 and 38) and 1 TB (participant 35), 

performing PBMC extraction and scRNAseq. We recovered usable data from participant 36 

(Figure 2B), PMBC (n =1319), shown in Figure 2A-2C. We observed 7 representative clusters, 

neutrophils (FCGR3B, NAMPT), cd4 t cells (CD3D, IL7R), cd8 t cells (CD8A, GNLY), 

monocytes (FCN1, VCAN), b cells (CD79A, MS4A1), inflammatory cells (CLC, CAT) and 

platelets (PPBP, TUBB1). We proceeded to subset the cd4 t cells and re-cluster these cells to 

assess the underlying cell types (Figure 3C). We observed 2 distinct clusters, with cluster 0 

expressing ribosomal genes (RPL5, RPL34, RPS15A), important in normal physiology and 

some pathologies 217. This cluster also expressed genes associated with activation (CD69) 218 

and regulation of T cells (FOXP1, RUNX3 ,RORA, CD6) 219-222. Cluster 1 expressed genes that 

are associated with naïve T cells (FPR1, C5AR1 , GLUL, G0S2) 223-225 and regulatory T cells 

(MXD1 , PLAU , IFITM2) 226-228. We simultaneously sorted cd4 t cells from the PBMC fraction 

for the same participants according to the gating strategy in Figure 3A. We could not recover 

usable sequencing data and we believe there were issues with the FACS.  
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Figure 2 : PBMC isolated from Participant 36 and the gene expression profile of CD4 T cells.  

(A) UMAP projection of 1319 cells from the PBMCs fraction, with colours representing different canonical clusters.  

(B) Dot plot of PBMCs from Participant 36, showing expression of marker genes in each generic cluster. 

(C) Heatmap showing the gene expression profile of  CD4 T cells from the PBMC fraction of Participant 36. 
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Figure 3 : Flow panel gating strategy used for isolating CD4 T cells from PBMC and CD4+CD69- 

/CD4+CD69+ T cell populations 

(A)The gating strategy for T cells isolation starts with  the lymphocytes gate (1), singlets (2), live CD45+ cells (3), CD3+CD19- (4), 

CD4+CD8- (5) and CD4+CD69- (6) population in the box adjacent to the *.  

(B) Gating strategy for isolation of CD4 tissue resident T cell subpopulations. Similar to the PBMCs , the following population of cells from 

the lymphocytes gate (1-5) singletsCD45+ L/D- CD3+CD19- CD4+CD8- T cells. We then further gated out the cells as (6) CD69- (red box 

&*), CD69+ (turquoise box & *) and CD103+ (black box & *). 
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3.2.3 Comparison of Lung CD4+CD69- to CD4+CD69+ T cells from HIVTB 
Participant 36 

To explore lung derived CD4 CD69- to CD4CD69+ cells, we sorted matched tissue single cell 

suspension from the same participants, recovering usable data from P36. It should be noted that 

the sorting was done on different days for each participant and sample type. We speculate that 

instrumental issues led to the poor yield. We also speculate that infection might have depleted 

cd4 t cells, impeding our efforts to sufficiently isolate them. For P36, we sorted cells into 2 

different populations L/D- CD45+ CD3+CD19- CD4+ CD103- CD69- (~33000 events) and 

L/D- CD45+ CD3+CD19- CD4+ CD103- CD69 + (~27000 events) as shown in Figure 3B. We 

proceeded to load these populations on to 2 separate arrays per population and performed 

scRNAseq. We aligned the subsequent reads to the human genome (hg19) and recovered a total 

of 728 cells from the 2 populations (Figure 4), much lower than the expected 500-3000 cells 

per run (according to the historical performance of seqwell). This suggests that either enough 

cells were recovered or the library generation was suboptimal. Uniform manifold 

approximation and projection of the cells revealed 5 clusters (Figure 4), identified as naïve cd4 

t cells ( CCR7, SELL/CD62L, TCF7 ) 229-231; cd4 t regulatory cells [cluster 1 and 2] (KLRB1, 

PRDM1 , CD96/TACTILE) 232-234 ; myeloid-like activated t cells expressing genes associated 

with regulation (NR4A2, CD300E) 235-237, activation (TIMP1) 238 together with cytotoxic cd4 t 

cells (PRF1, GZMK, NKG7) 239-241.  Examining the distribution of cells showed a relative 

enrichment of naïve T-cell in the CD69 negative fraction (Figure 4A). However, due to a failure 

of sequencing in the other participants, the analysis could not be extended beyond our first 

pilot, preventing statistically significant observations. We explored methanol cryopreservation 

of cells according to the protocol 242, but we could not recover enough material for the 

sequencing step so we used fresh cells for all experiments. Unfortunately, due to COVID-19 

restrictions in 2020, the lung study was halted for almost 12 months, meaning that we could 
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not address these technical issues. Thus, the data presented here serves as a guide for future 

research in this area within Leslie lab and beyond. 

 

 

 
Figure 4 : Single cell RNA sequencing of lung CD4+CD69+ and CD4+CD69- T cells from Participant 

36 lung tissue.  

(A) UMAP projection of 728 cells, separating into generic clusters identified by the expression of marker genes. The cells are also coloured 

based on whether they are from the CD69+ sort (blue) or CD69- sort (red). 

(B) Heatmap showing the expression of the top 8 marker genes of the generic clusters from Participant 36. We identified these clusters by 

making use of unsupervised   clustering via the FindClusters tool within the seurat package with default parameters, k.pram set to 10 and 

resolution set to 0.5.  

(C) Heatmap of the 728 cells stratified according to the sorting panels used, red (CD4+CD69-) and blue (CD4+CD69-). We identified these 

clusters by making use of unsupervised clustering via the FindClusters tool within the seurat package with default parameters, k.pram set to 

10 and resolution set to 0.5. The top 11 genes shown were the topmost genes per cluster from the FindClusters output. 

(D) Dot plot showing gene expression from the different cell clusters, from the naïve, Treg(T regulatory cells), activated and cytotoxic cells. 
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3.3 Discussion 

 
In this chapter, we first explore differences in the PBMC from individuals with active TB and 

healthy controls. This was done to compare the phenotypic diversity of our PBMC compared 

to a recent study which generated a single cell atlas of PBMC  70. We also compared, from one 

individual, cd4 t cells from the PBMC fraction to lung tissue derived CD4 CD69+ and CD4 

CD69- T cells with the aim of identifying phenotypic diversity between the blood and lung 

compartments. In describing the phenotypes of both PBMC and tissue resident cd4 t cells, we 

demonstrated the applicability of scRNAseq in uncovering the underlying cellular sub-

structure.  

Our analysis the PBMC produced 9 clusters (resolution = 0.5 in FindClusters), showing greater 

granularity of our dataset compared to the study referenced above that only showed 3 clusters 

for 62000 cells. We observed red blood cells and neutrophils, which are typically depleted 

during the isolation of PBMC. This suggests that the extraction process was compromised, 

particularly for P8346 (RBCs) and P8349 (neutrophil 1 & 2) which produced > 80% of these 

cells respectively. The remaining cell types we observed (monocytes, cd4 t cells, cd8 t cells, 

plasma, b cells and platelets) have been reported in other studies, showing that seq-well can 

characterise similar cell types to those reported in the literature.  

 

Blood cd4 t cells from P36 showed 2 distinct clusters, as illustrated in Figure 2C. We speculate 

that cluster 0 corresponds to an activated effector t cell due to the expression of ribosomal genes 

(RPL5), CD69, JUN, RORA and CD6 206,243-245. Cluster 1 expressed genes associated with 

activation and immune response (FPR1, SOD2, GLUL), which we expect as this individual had 

both HIV and  active TB 223,246,247.  We observed different cell subtypes when we combined 

CD4CD69- cells with the CD4CD69+ cells from participant 36 (Figure 4A-C). The cells 

subtypes separated into naïve t cells (CCR7, SELL), regulatory T cells (RORA), activated t cells 



63 
 

that expressed myeloid like markers (Figure 4D), together with cytotoxic t cells. Tissue 

resident, ITGA1 expressing t cells have also been observed to exhibit a highly cytotoxic 

phenotype (PRF1, IFNY), with ITGA1 negative cells expressing IL-17 91,248. The observation 

that both the blood and tissue compartments had regulatory and activated cd4 t cells suggests 

that regulatory/effector subsets in both compartments have shared function. The lung 

microenvironment has a significant impact on the phenotype of tissue resident cells. We also 

observed expression of transcription factors associated with the tissue resident populations, 

such as RUNX3, NR4A1-3, but the expression was distributed throughout the clusters 

suggesting that they might be shared across different populations 249,250. Expression of myeloid 

cell markers on t cells is consistent with reports of CD11b and CD11c on antiviral cd8 t cells 

in a mouse model 251. The aberrant expression of t cell markers has been reported in patients 

with acute leukaemia 252. We speculate that HIV/TB disease might impart similar lineage 

ambiguous phenotypes but we require more robust studies to explore this hypothesis.  We also 

observed an enrichment of CD11a (ITGAL) in the cytotoxic cluster, a transcript which has been 

reported to be elevated in cd4 Trm relative to CD103 253. We observed CD300E expression in 

the activated T cell cluster (not shown), which belongs to a family of surface receptors that 

negatively regulate the ability of t cells to present antigens via STAT1 pathway 237. CD300A 

was  upregulated in HIV positive ART naïve participants when 254. A subset of 

CD300a+PD1+CD38+ of cd4 t cells which might be implicated in immune exhaustion. 

Participant 36 was HIV positive thus we speculate that this subset is a consequence of HIV 

driven dysregulation. 

 

Taken together, the results shown in this section demonstrated the potential application of 

scRNAseq data in improving our understanding of the phenotypic/functional aspects of tissue 

resident cd4 t cells. Seq-well (S3) incorporates second strand synthesis in addition to the normal 
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reverse transcriptase step, which increases recovery of low abundance transcripts. Thus we 

expected to recover more cells with greater annotation of transcription factors, cytokines and 

cytokine receptors 255. We did not manage to recover cells from other participants and thus no 

conclusions can be made from this data. We suspect that this poor recovery is a function of low 

starting cell counts of the Trm’s due to the highly compromised nature of the tissue and low 

frequency of this cell type. In some cases, the tissue we received from the surgery was mainly 

composed of cartilage (especially from bullectomy) or originated from HIV infected 

individuals (associated with CD4 T cell depletion), thus limiting cell recovery. Other failure 

points could have been reagents or instruments (PCR machines, sequencers etc) along our 

experimental pipeline. As discussed, it was not possible to obtain additional samples, due to 

cohort and lab closures during the last 12 months of my PhD study. In future studies, we must 

incorporate more phenotypic markers in defining Trm, such CD11a (ITGAL) to assess its 

applicability in differentiating cd4 from cd8 t cells. It has been reported that t cell receptor 

(TCR) specificity elicits Trm potential in t cells in responding to influenza infection 256,257. The 

seq-well (S3) platform used in this experiment is also capable of performing parallel sequencing 

of the TCR, thus in theory any population exhibiting the Trm phenotype should have limited 

clonal diversity 258. Other research groups have suggested using t cells subsets such as CD1 

restricted T cells, mucosal associated invariant T cells (MAIT) and gd T cells 259 as vaccine 

candidates. They postulated that these cells are ideal for TB host directed t cell therapy due to 

low donor diversity coupled with conserved TB specific epitopes. To date, the only clinical 

studies that have been performed on the efficacy of unconventional  gd  T cells involved t cell 

treatment for antitumor therapy 260.  
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Chapter 4: Applying TB scRNAseq data in COVID-19 

research. 

4.1 Introduction 

Over the past decade, zoonotic transmissions from animals to humans have led to the 

emergence of human coronaviruses (CoVs) such as middle east respiratory syndrome (MERS)-

CoV 261 and severe acute respiratory syndrome (SARS)-CoV 262. A novel SARS-CoV-2, first 

reported in Wuhan City, China, December 2019, causes the disease COVID-19. It had led to 

3,68 million deaths worldwide at the time of writing (June 2021). Prior work on SARS-CoV 

revealed the host angiotensin-converting enzyme 2 (ACE2) as a critical receptor for binding of 

the viral spike (S) protein with a high affinity 263. In addition, type 2 transmembrane serine 

protease (TMPRSS2) has been shown to facilitate activation of the spike and initial viral entry 

in target cells 264. Many other host proteases such as furin have been thought to also play a role 

in promoting uptake of the virus but the exact site and mechanism(s) by which they process the 

S protein are yet to be elucidated 265-267. Expression of ACE2 within tissue has been observed 

in human lung and small intestine epithelial cells by histological staining 268. However, the 

specific cell subsets that expressed ACE2 in the human lung were unknown during the early 

stages of the outbreak. Identifying cells that are ACE2 positive together with TMPRSS2 is 

important for understanding the potential mechanism of viral entry and the overall 

pathogenesis.  

 

The advent of high throughput single cell RNA sequencing (scRNAseq) provides a powerful 

tool to characterize cell types that are associated with pathology by comparison of healthy and 

diseased tissue 269. Profiling of cell subsets and states reveals dynamic variations in gene 

expression in in vitro and in vivo viral infection assays 270,271. In this chapter, we utilized 



66 
 

scRNAseq from a selected lung samples described in chapter 2 (3 HIVTB, 3 TB and 2 Cancer 

patients) to investigate the expression of ACE2 and TMPRSS2 and identify potential virus 

targets within the lung tissue. The TB and HIVTB donors had a history of TB but were TB 

culture negative at the time of surgery. We converted the whole tissue to a single cell 

suspension as reported by  Ardain et al., 2018  52 and used the seq-well protocol 272  . We then 

used the single cell libraries created to create a single cell atlas of lung tissue, shown in Figure 

4A. 

4.2 Results 

 

 
Figure 4A: Overview of the Workflow.  
Isolation of human lung tissue from tissue resections, synthesis of a single cell library by Seq-well V3 (S3) and the computational workflow 
used for analysis of different cell types. On the right is a UMAP visualization of 18915 cells derived from 8 donors (n = 3 TB/HIV, n = 3 TB 
and n =2 Cancer controls). The different cell types are visualized using the highlighted colour code. 

 

Unsupervised clustering of the single cell library from these participants revealed multiple cell 

types and cell states in the lung tissue, like those discussed in chapter 2 (Figure 4A). It was 

interesting to note that in this chapter, we did not observe any b cells from the data which we 

attribute to lower patient numbers (n = 8). We would expect to observe b cells in abundance as 

they have been shown to be enriched in TB patients, playing a role in prevention of 
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disseminated disease 273. B cells have been associated with TB granuloma, where they are 

thought to limit the disease via IL10 and IL21, thus their absence is rather peculiar 274. We 

suspect that the absence of b cells is due to the relatively low cells numbers in this experiment. 

B cells have been shown in a separate scRNAseq study on disease human lung tissue to 

constitute less than 5% of the total cells thus it is possible to not detect them 46. 

 

The cell types were identified based on the expression of canonical markers as shown (Figure 

4B). ACE2 and TMPRSS2 were expressed (albeit with low abundance) by type 2 pneumocytes 

and ciliated cells (Figure 4C). Type 2 pneumocytes were identified by the expression of 

surfactant proteins SFTPA2, SFTPB. These proteins, in combination with phospholipids, 

constitute the secretions necessary for the reduction of surface tension and maintenance of 

alveoli architecture 275. In this cell type, 1.4% expressed ACE2 (false discovery rate (FDR)-

adjusted p = 1.35E-21), 34.2% expressed TMPRSS2 (FDR p < 1E -300) and 0.8% expressed 

both receptors. Both receptor genes were also expressed in ciliated lung cells; 7% of ciliated 

cells expressed ACE2 (FDR-adjusted p = 3.8 E-30), 24.2% expressed TMPRSS2 (FDR adjusted 

p = 3.25 E-7 and 5.3 % expressed both receptors. Ciliated cells play a critical role in removal 

of harmful material from the lung airway via coordinated beating 276.  
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Figure 4B: Dot plot showing canonical marker genes for each cell type (FDR-Adjusted p< 0.001) as well as 
ACE2 and TMPRSS2 expression.  
The size of the dots represents the corrected average expression (log (scaled UMI +1)) of a given gene and the color intensity represents the 
count-based expression amount and the red arrows highlight the cells expressing the highest proportion of ACE2. 

 

 

To establish differences between cells that consistently express the target molecules for SARS-

CoV-2, we computed the differentially expressed genes between ACE2+TMPRSS2+ type 2 

pneumocytes and type 2 pneumocytes lacking the expression these receptors (Figure 4D). Dual 

expression of ACE2 and TMPRSS22 was associated with several genes, such as forkhead box 

J2 (FOXJ2) POZ/BTB and AT Hook Containing Zinc Finger 1 (PATZ1) and tetraspanin 7 

(TSPAN7), all of which influence epithelial-mesenchymal cell transition (EMT)277,278. RNF41 

is essential for determining epithelial cell polarity i.e. having apical, lateral and basal domains 

allowing these cells to perform their homeostatic function  279. FOXJ2 has been implicated in 

the inhibition of transforming growth factor beta 1 (TFG-β1) induced (EMT) whereas CASC7 

has been reported to suppress cell proliferation, invasion, migration and amplifies cell 

apoptosis. Tripartite motif containing-28 (TRIM28) was also upregulated in this population of 
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pneumocytes and it has interestingly been associated with regulating the interferon gamma 

(IFN) response 280.  

 

To assess whether the observations from the human lung cells were similar in other animal 

models, we analyzed data from non-human primate (Macaca mulatta) lung tissue collected at 

necropsy and analyzed using the seq-well protocol 272. Consistent with the human data, ACE2+ 

TMPRSS2+ were concentrated in the epithelial cell, type 1 and type 2 pneumocytes, club cells 

and ciliated cells. Co-expression of these genes was concentrated in 3,8% type 2 pneumocytes. 

In the same animal model, we explored the expression of ACE2+ and TMPRSS2+ in  tissue 

from the gastrointestinal tract as a follow up to reports suggesting digestive system impairment 

281. We analyzed cells from the ileum, jejunum, liver and colon using the seq-well platform, 

with 62% of absorptive enterocytes expressing ACE2+. Other data sets we analyzed included 

another non-human primate model (Macaca fascicularis) infected with TB until granuloma 

developed. The animals were subsequently sacrificed, granuloma and adjacent uninvolved 

tissue isolated, processed and the seq-well protocol was comparatively run. Once again, type 2 

pneumocytes from the TB granuloma were enriched for ACE2+ TMPRSS2+ type 2 

pneumocytes largely derived from the granulomas. Type 1 pneumocytes, club, secretory cells 

and ciliated cells were also positive for both these markers and were enriched in the 

granulomas. There is a need to explore the consequences of SARS-CoV-2 and TB co-infection 

primarily on tissue remodeling associated with granuloma formation, focusing on aberrant, 

stem cell like epithelial cell precursors 282.  

 

As highlighted prior, the cells displayed were recovered from 3 HIVTB, 3 TB and 2 cancer 

controls (negative for both pathogens) donors. Interestingly, all the pneumocytes which were 

expressing ACE2 were recovered from the HIVTB donors (Figure 4E), despite an equal 
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recovery rate of alveolar pneumocytes (likely-hood ratio test, p = 0.009). This suggests that 

concurrent HIV infection might lead to the upregulation of ACE2 receptor in lung epithelial 

cells. Subsequent work by our collaborators on this study (not shown here) confirmed that 

ACE2 is upregulated in SIV infected non-human primates. We also studied virus target cells at 

the primary site of viral exposure, the nasal cavities, by making use of scRNAseq datasets from 

human upper respiratory tract (inferior turbinate and ethmoid sinus mucosa from healthy 

individuals and individuals with chronic rhinosinusitis 269. We observed enrichment of the 

ACE2+ TMPRSS2+ in the secretory epithelial cells, with a dominant IFN-a induced gene 

signatures 283. Goblet cells also displayed an upregulation of ADAR, GBP2, OAS1, JAK1 and 

DUOX2, genes associated with interferon signaling 284. We further demonstrated that IFN-a 

and IFN-g upregulated the expression of ACE2 in primary human epithelial cells in a dose 

dependent manner by using bulk RNA sequencing of the cytokine treated cells. This 

upregulation was positively correlated to the increase in the expression of canonical interferon 

stimulated genes (ISGs) such as STAT1, BST2, XAF1, IFI35, MX1 and GBP2. These 

observations support the hypothesis that there is an association of canonical IFN response and 

the ACE2 response in human epithelial cells. It is significant to note that exposing mouse basal 

cells from trachea to mouse IFN-a ,  IFN-g and IFN-b did not robustly lead to upregulation of 

Ace2, despite upregulation of mouse ISGs such as Stat1 and Gbp5. A publication containing 

all the detailed analysis summarized above is attached in the annex section at the end of this 

chapter.  
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Figure 4C : UMAP projections after dimensional reduction.  
The points are coloured based on detection of ACE2 and TMPRSS2. Black being positive and blue negative for 
gene specific rna.  
 

 

 

 

                                                          
Figure 4D: Plot showing genes upregulated in ACE2+TMPRSS2+ pneumocytes in comparison to the rest of 
the pneumocytes.  
The genes marked in red represents genes with FDR-adjusted p < 0.05 and log2(fold change) > 1.5. 
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Figure 4E: Expression of ACE2 across the human donors by HIV and TB status (p = 0.009 
likelihood-ratio test).  

4.3 Discussion 

In this chapter, we used our scRNAseq to investigate the potential cellular targets of SARS-

CoV-2 infection. We found expression of ACE2 and TMPRSS2 to be significantly enriched in 

type 2 alveolar pneumocytes and ciliated cells. SARS-CoV-2 has been shown to have a high 

affinity to ACE2, which is thought to lead to  its rapid spread in humans 285. Interestingly, ACE2 

downregulates the renin-angiotensin-aldosterone system (RAAS), converting angiotensin Ⅱ to 

angiotensin (Ⅰ to Ⅶ) 286, which is beneficial for lung tissue repair. At the time of writing this 

section, no research group had managed to clinically link increased ACE2 expression with 

higher rates of susceptibility and mortality of SARS-CoV-2 patients. We also observed that the 

cells producing most of the transcripts were recovered from HIVTB individuals. Subsequent 

data on morbidity and mortality of SARS-CoV2 in South Africa has shown that HIV infected 

individuals are 3 times more likely to have severe or fatal COVID compared to no HIV controls 

287. Recent studies have suggested that COVID-TB patients are more likely to have fatal 

outcomes 288. There are many potential reasons behind this, and the immunosuppression 

associated with HIV is likely to impact the immune response to this infection. However, it is 

biologically plausible that an increase in SARS-CoV2 receptor expression associated with HIV 

may contribute to amplification of viremia and disease severity in some individuals. Additional 

work is needed to investigate this further. 
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It was interesting to note that ACE2 and TMPRSS2 co-expression was conserved in epithelial 

cells with similar cellular identities and frequencies across human and non-human primate 

cohorts. This was striking as the different data sets were curated from studies that used different 

protocols for tissue processing, collection and sequencing depth (potentially influencing cell 

recovery). The study also showed that type 1 and type 2 interferons (IFN) upregulate the 

expression of ACE2, as evidenced by increased expression in human nasal epithelial cell 

cultures together in both lower and upper respiratory tract tissue from both humans and non-

human primates (NHP).  It was interesting to note that ACE2 expression was absent from 

peripheral blood mononuclear cells in both human and NHP datasets 289. ACE2 expression 

exerts a tissue protective function as host defense strategy to viral infection 290. The discovery 

in our study that ACE2 is an ISG in human epithelial cells and its necessity for the virus to 

infect these cells, point towards the virus exploiting the IFN response to aid its establishment 

and transmission within the host.  

 

In addition, it should be noted that low abundance transcripts such as ACE2 and TMPRSS2 tend 

to be under represented due to inefficiencies and biases that are inherent to scRNAseq methods 

that utilize universal molecular identifiers (UMI) 24. Follow up studies which can confirm the 

protein levels of these 2 targets in the human lung tissue and their co-localization with 

canonical markers for type 2 pneumocytes (SFTPC) and ciliated cells (tubulin polymerization-

promoting protein family member 3, TPPP3) are critical to confirm the differences driven by 

comorbidities such as HIV and TB. Preliminary COVID-19 studies  have  shown increased 

mortality rates of HIV infected individuals in the United Kingdom 287.  Type 2 pneumocytes 

have been shown as targets for the avian H5N1 flu 291 and ciliated cells have been preferentially 

targeted by the human parainfluenza virus type 3 292, thus there is a precedent for these cells 

being targets of the SARS-CoV-2.  It is critical that the immunofluorescence approach be 
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utilized to colocalize viral surface markers such as the spike protein and host cellular markers 

of these two cell types to verify preferential infection. Binding of SARS-CoV to mouse Ace2 

leads to reduced expression of this target gene and acute lung failure 293. Interestingly, the lung 

failure could be mitigated by blocking the renin-angiotensin pathway. This study was also key 

in highlighting the increased viral load and lung tissue damage when wild type mice were 

compared to Ace2 knockout mutants. Experimental treatments using human recombinant 

ACE2 to competitively bind the virus or suppressors of ACE2 expression in individuals with 

the virus or those who are at high risk requires carefully considered animal models and human 

clinical trials 294,295. Camostat mesylate, a protease inhibitor, attenuates the activity of 

TMPRSS2 , thus providing another potential treatment strategy 296. 

 

It is critical that the transcriptional response in both animal models and human infection to the 

virus be properly characterized to establish a baseline disease phenotype. Such studies would 

need to factor in co-variates such as age, sex and the presence of other co-morbidities. In this 

chapter, we highlighted the power of scRNAseq datasets, exploring different hypotheses of 

relevance in human disease in an unbiased manner that informs mechanistic follow up studies. 
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Annex 1  

Publication 1: SARS-CoV-2 Receptor ACE2 is an Interferon- Stimulated 
Gene in Human Airway Epithelial Cells and is Detected in Specific Cell 

Subsets across Tissues 
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Chapter 5: Final Discussion, Conclusion and Future 

research 

5.1 Final Discussion and Conclusion  

 
 
Tuberculosis (TB) continues to be one of the leading causes of death due to an infectious agent 

globally, with sub Saharan nations such as South Africa carrying a significant portion of the 

burden 297. Unfortunately, many aspects of the human immune response to TB  are yet to be 

elucidated 298, due to difficulty in accessing human infected tissue (lung in the case of 

pulmonary TB) and limited application of cutting edge technological advancements to this 

clinical material, as the regions most affected are often resource constrained 299. This invariably 

limits the rate at which vaccines, therapeutics and diagnostics are developed, resulting in an 

endemic disease 300. To address these challenges, we aimed to couple access to diseased human 

tissue with high throughput and locally available single cell sequencing technology to generate 

new and unbiased insights into TB disease. To this end, we managed to access human lung 

tissue from individuals undergoing corrective lung surgery due to TB associated pulmonary 

complications such as and not limited to fibrosis, cavitation, haemoptysis, nodules, 

bronchiectasis, mycetoma. Clinical records from many of the participants showed previous TB 

episodes with corresponding treatment. Therefore, we postulated that these individuals were 

being affected by post TB treatment pulmonary impairment. We then made use of scRNAseq, 

to profile this infected tissue as a means of unbiased/unsupervised classification of different 

cell types found in the tissue, probing their roles in the establishment of the TB pathology. We 

made use of a relatively new single cell sequencing platform known as seq-well (S3), developed 

by the Shalek-Love laboratories at the Massachusetts Institute of Technology (MIT). This 

technology captured and barcoded transcripts of individual cells, generating a cellular atlas of 
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the TB lung 301. This platform was comparable to 10X (Chromium Technologies) in terms of 

number of UMI and gene output whilst showing increased recovery of transcription factors, 

cytokines and cytokine receptors 255. We explored the following aspects in TB research: (1) the 

cellular diversity of the resected lung tissue and the involvement of different cells in the 

immunopathology; (2) how transcriptional profiles in diseased lung tissue relate to published 

TB blood transcriptional and the association of these signatures with cell subsets; (3) the 

phenotypic diversity of lung resident CD4 T cells, as a step in understanding the different 

cellular subsets and their functional capacity. The latter aim was curtailed by the emergence of 

the SARS-CoV2 pandemic, which disrupted the core activities of the lung study. However, this 

prompted me to embark on an additional analysis (4) and use the single cell data generated 

prior to the pandemic to investigate the expression of the SARS-CoV-2 entry receptors in 

human lung. This opportunistic but highly informative study demonstrated how scRNAseq 

libraries are a valuable resource that can be useful in generating insights into other pulmonary 

diseases.  

 

To our knowledge this was the first study to use scRNAseq to profile TB diseased lung tissue. 

For safety of personnel, this tissue had to be fully processed under strict biosafety level 3 

(BSL3) conditions. This presented a considerable challenge, and involved many unsuccessful 

experiments not included here (~60% failure rate). In most cases, this appeared to be due to 

either the predominance of dead cells (% live cells ranged from 20-40% in the single cell 

suspensions) or a failure to obtain sequence products. Multiple wash steps with disinfectant 

were required at many stages of the processing of lung tissue, sample loading onto the seq-well 

arrays and subsequently processing steps, which might have negatively impacted the yield. Use 

of an automated, standardized system such as 10X can mitigate a myriad of experimental 

inconsistencies but the operation costs and rigid workflow were prohibitive. Trouble shooting 
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of this process continued throughout the thesis. As an illustration, in chapter 3, I was only able 

to present data from 1 of the 5 individuals from whom I sorted CD4 T-cells from processed 

lung tissue and PBMC.  

 

Nevertheless, with over 3 years of effort I was able to obtain high quality sequences from the 

lung tissue of 13 participants. Unbiased analysis of the data identified 19 distinct cellular 

clusters, as shown in chapter 2. These cells included immune (myeloid, B and T cells, mast), 

stromal (fibroblasts), endothelial (vascular and lymphatic) together with epithelial cells. Franks 

and colleagues suggest that there are over 40 unique cell types throughout the respiratory tract 

302, a number which we believe will increase with more scRNAseq studies  303. It should be 

noted that our study managed to recover ~21,000 cells primarily from the lower respiratory 

tract. Our dataset yielded similar cell types (except basal cells) albeit in different proportions 

to a lower respiratory tract, scRNAseq dataset from 8 IPF and 8 healthy donors, in which 

macrophages and type pneumocytes were the most abundant cell types 46. The researchers used 

droplet based scRNAseq, suggesting that cross platform datasets are comparable. The droplet 

vs microwell capture of cells requires further study, considering that cells in tissue come in 

different shapes and sizes. It has been shown that droplet based methods recover almost 

identical cellular populations in PBMC data, but verification is required in tissue 255. Our 

dataset will be available to use online both as fastq files and processed data, allowing fellow 

scientists to further explore it.  In future, distributing the sampling points throughout the entire 

length of the pulmonary system as well as increasing the cell yield by 5 or 10-fold can increase 

the likelihood of identifying new cell types and better approximately and exceed the reported 

40 unique cell types.  
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The most striking observation we made was the differential regulation of fibroblast populations 

in TB diseased lung.  The fibroblast 3 population was enriched for transcripts associated with 

immune cell recruitment (chemokines), parenchymal tissue consolidation (collagenases 

(COLs)) and cavitation (matrix metalloproteinases (MMPs) and their inhibitors(TIMPs)) 304. 

We also observed that the fibroblast 3 cluster had transcripts which localized with TB 

granuloma, blood vessels and airways. The association between fibrosis and dysregulated 

vascular remodeling has been observed in idiopathic pulmonary fibrosis, suggesting a possible 

mechanism by which fibrotic foci can be established 305. Previous studies have not adequately 

focused on the involvement of non-hematopoietic TB disease, yet these observations indicate 

they may play an important role in orchestrating cellular recruitment to the lung and 

pathological pulmonary remodeling. Our findings suggest that we need to consider stromal 

cells as a potential target in granuloma-directed TB therapy, which aim make the lesions less 

favorable to Mtb growth 306. Our dataset also allowed us to explore possible enrichment of cell 

types driven by either TB or HIVTB. An interesting observation was that myeloid (monocytes 

and neutrophils) from HIVTB group expressed transcripts associated with heat shock proteins 

(physiological stress or death signature), a potential consequence of neutropenia and 

monocytopenia 307.  We also observed a depletion of alveolar type 1 (pneumocytes), alveolar 

macrophages and secretory cells in TB only participants, consistent with reports that 

individuals with TB only experience more severe parenchymal destruction and associated 

pulmonary impairment compared to HIVTB individuals 103. 

 

The TB field is currently searching for biomarker signatures that can be used for evaluating the 

success of current as well as emerging therapies 308. The ability to detect TB disease prior to 

the onset of clinical symptoms, and rapid the diagnosis of active TB, can significantly improve 

treatment outcomes. Studies evaluating these biosignatures have focused on blood as the 
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sampling site, due in part to the ease of access and standardized processing methods for 

extraction of PBMC. The literature is replete with studies that performed bulk RNA sequencing 

or microarray sequencing of PBMC from healthy, active TB and in some cases latent TB 

participants in an attempt to uncover biomarkers associated with TB disease 309. We selected 5 

of these signatures from the literature and super imposed them onto our scRNAseq library in 

chapter 2. We observed an enrichment in the neutrophil/inflammatory cell clusters of the 

signature proposed by Maertzdorf et al. in 2016 163. Neutrophils have been implicated in the 

inflammatory response to TB disease and consequent pulmonary impairment 119. They are the 

most abundant immune subset in blood, and neutrophil derived signatures may be expected to 

overwhelm TB specific signals from low frequency cells. To correct for this effect, Singhania 

et al. (2018) used a modular approach that that allowed gene signatures from less dominant 

cellular subsets to emerge. This gene signature was the only one elevated in non-myeloid cell 

types such as fibroblast, endothelial, alveolar pneumocyte (type 1 and type 2) cells. Recent 

work on a 6 gene signature, derived from the original Zak signature used here, has shown that 

it is elevated in TB uninfected individuals responding to respiratory viral infections including 

influenza and non-pandemic corona viruses (Tom Scriba; unpublished data). This is likely to 

be a common feature of TB biomarker signatures that focus on the innate immune response of 

myeloid cells. However, the underlying lung destruction occurring in TB, which may be picked 

up by the Singhania et al. gene signature, can improve the discriminatory power compared to 

its more inflammatory counterparts 102. These signatures will have to be compared to other 

diseases which cause lung injury to explore their discriminatory efficacy.  Again, this highlights 

the potential value of unbiased profiling of TB diseased lung tissue in developing more targeted 

TB disease gene signatures.  
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We should explore fibroblast associated the marker genes and their role in the TB granuloma. 

Measurement of serum levels of IDO is already being explored as a potential simple biomarker 

of pulmonary TB 310. Our data suggested, TDO2, a downstream partner of IDO in immune 

regulation, may also be associated with TB lung disease. Similarly, peptidase inhibitor 15 

(PI15), was highly upregulated in the TB associated cell subsets . This molecule has not been 

widely studied, but recently published data suggests it shows promise as a potential blood 

diagnostic biomarker of cholangiocarcinoma 311. The fact that it is upregulated within these 

tumors and in the blood of the same subjects, making it a good option for blood based 

signatures.  

In chapter 3, we used scRNAseq to explore the phenotypic diversity of tissue resident cd4 t 

cells, as t cells that have been shown to localize in tissue to elicit a robust adaptive response to 

a secondary TB infection. We purified populations of CD4+CD69+ and CD4+CD69- T cells 

using fluorescence activated cell sorting (FACS) from an HIV positive participant.  A single 

cell library of these populations resolved into 5 distinct clusters including: one naïve, two 

regulatory, an activated and one cytotoxic. The cytotoxic (PRF1, GNLY) and regulatory 

clusters (TACTILE, PRDM1) have been previously described in tissue resident cells 312. The 

activated t cells had a similar phenotype to negative immune regulatory, CD300A t cells that 

have been reported in PBMC from HIV infected patients 254. Taken together, scRNAseq of 

these cells uncovered the different cell types comprising the Trm’s, however more cells are 

required from more participants to ensure that the full spectrum of these cells is captured. We 

did no recover usable cells from most of the participants (4/5) likely due to low starting T cell 

numbers that were observed with most lung samples. The  FACS machine purifies multiple 

cell types simultaneously for heterogenous sample but it should be noted for populations of 

interest 1% or less of the total cell count, the sorting efficiency significantly decreases leading 
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to elevated cell loses 313.  We could not address this as the lung study was suspended due to the 

instituted COVID-19 lockdown regulations.  

 

In chapter 4, we demonstrated the importance of generating single cell databases of human 

tissue in the context of other pulmonary diseases. Specifically, we managed to show that our 

dataset could be extended to the COVID-19 pandemic by using transcript capture technology 

to predict which cell type would make a suitable target for the SARS-CoV-2 virus based on 

preliminary studies. Angiotensin-converting enzyme 2 (ACE2) had been reported as a critical 

receptor through which the virus can infect cells 314, together with the Type 2 transmembrane 

serine protease (TMPRSS2), required to cleave the viral spike protein to facilitate cell entry 315. 

We managed to show expression of ACE2 and TMPRSS2 transcripts in type 1 pneumocytes, 

type 2 pneumocytes and ciliated cells. Interestingly, the HIVTB group showed an upregulation 

of these markers in comparison to the TB only group, suggesting that HIV positive individuals 

could be more susceptible to SARS-CoV-2 infection. However, this has not been ascertained 

with clinical data and the expression of these viral target receptors is dependent on sex and age 

together with other ongoing inflammation inducing events, thus more research is required to 

demonstrate its clinical usefulness 316-318. However, this section served as a step towards 

understanding the dynamics of SARS-CoV-2 infection and can be extended to the design and 

development of potential therapeutic interventions.  

5.2 Future Research 

 
5.2.1 Whilst we managed to profile 19 cell subsets from human whole lung tissue, there is a 

need to increase the number of cells. The target cell number is estimated to be around 100,000 

303, which will allow us to effectively profile more subsets and uncover cellular states are 
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affected by TB and HIVTB disease. Identifying the fibroblast 3 subset and localization of 

marker genes within the TB granuloma require a follow up study to confirm their applicability.  

 

5.2.2 The section on applicability of the blood derived TB biosignatures showed to a moderate 

degree how the biosignatures mapped onto the scRNAseq. It has been well characterized that 

biomarker development studies are negatively impacted by the high rate of false positives and 

a poor statistical/analytical frameworks, coupled to shared immune responses to other bacterial, 

viral infections or inflammation inducing antigens 107. We propose a bottom-up approach, in 

which we benchmark lung tissue cavitation and fibrosis as gross indications of active TB 

disease when coupled to chest-xrays, gene xpert, culture and smear microscopy. This will be 

proceeded by a cavitation and fibrosis signature in the blood with easily adaptable technologies 

such as PCR. 

 

5.2.3 This study managed to demonstrate the phenotypic diversity in the tissue resident CD4 T 

cells derived from an HIVTB infected individuals. However, more data is required from 

participants with different disease statuses (TB only and healthy controls) to increase the 

resolution of the T cell subsets in the tissue resident fraction of the lung tissue. More 

consideration is required for the  cell types such as MAIT and gd T cells that are potentially  

sorted with the cd4 tissue resident t cell fraction 319,320.  

 

5.2.4 The penultimate section of this study (Chapter 4) demonstrated the applicability of 

scRNAseq data derived from TB research in other diseases such as COVID-19. TB research 

needs such data in increasing quantities to improve the generation/validation of pertinent 

questions by taking advantage of the unparalleled depth and breadth of the cell/gene readouts. 

Due to the cost and complexity involved in this technology, we recommend that a bulk RNA 
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sequencing databases of the TB human lung tissue (showing the full spectrum of disease) be 

created, similar to those that exist in cancer research 168. These can also be useful in establishing 

biomarker signatures for lung damage due to fibrosis and cavitation of the lung tissue.  

 

I would also like to state that l embarked on this PhD journey in 2016, under the supervision 

of Dr Frederick Balagdde in the bioengineering department. However, due to unforeseen 

circumstances, he resigned from his position. I had already started many projects in the lab and 

had to join Dr Leslie’s (my current supervisor). I managed to publish one paper from my 

previous lab during the course of my PhD, which was a proof of principle study, demonstrating 

the work flow of Light Forge, a real-time PCR based microfluidic device for detecting drug 

resistance linked mutations in the rpoB locus of Mtb , with comparable and in some cases 

superior performance compared to commercial machines such as the Light Cycler 96 (roche 

diagnostics) 321. I have attached the publication at the end of this chapter in the annex section.  
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Annex 2 

Publication 2 : Light Forge ; A Microfluidic DNA Melting-based Tuberculosis Test
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