
Durban

1991

CONFORMAL SYMMETRIES:

SOLUTIONS IN TWO CLASSES OF

COSMOLOGICAL MODELS

by

Manikam Moodley

Submitted in partial fulfilment of the

requirements for the degree of

Master of Science,

in the

Department of Mathematics and Applied Mathematics,

University of Natal

1991



Abstract

In this thesis we study the conformal symmetries in two locally rotationally sym­

metric spacetimes and the homothetic symmetries of a Bianchi I spacetime. The

conformal Killing equation in a class AIa spacetime (MacCallum 1980), with a G4

of motions, is integrated to obtain the general solution subject to integrability con­

ditions. These conditions are comprehensively analysed to determine the restrictions

on the metric functions. The Killing vectors are contained in the general conformal

solution. The homothetic vector is obtained and the explicit functional dependence

of the metric functions determined. The class AIa spacetime does not admit a non­

trivial special conformal factor. We also integrate the conformal Killing equation

in the anisotropic locally rotationally symmetric spacetime of class A3 (MacCallum

1980), with a G4 of motions, to obtain the general conformal Killing vector and the

conformal factor subject to integrability conditions. The Killing vectors are obtained

as a special case from the general conformal solution. The homothetic vector is found

for a nonzero constant conformal factor. The explicit functional form of the metric

functions is determined for the existence of this homothetic vector. The spatially

homogeneous and anisotropic A3 spacetime also does not admit a nontrivial special

conformal vector. In the Bianchi I spacetime, with a G3 of motions, the conformal

Killing equation is integrated for a constant conformal factor to generate the homoth­

etic symmetries. The integrability conditions are solved to determine the functional

dependence of the three time-dependent metric functions.
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o Introduction

In the theory of special relativity time is linked with 3-dimensional space to gen­

erate a single higher entity, namely 4-dimensional spacetime. When allied with

quantum mechanics, special relativity provides a satisfactory description of matter

with the exception of gravitational phenomena. Events in spacetime are labelled by

Minkowskian coordinates (t, x, y, z) where we have set the speed of light c = 1. The

fundamental postulates of special relativity concern inertial frames: when particle

motion is formulated in terms of this reference system then Newton's first law of

uniform motion is valid. The results of special relativity can be deduced from the

following two fundamental postulates:

(i) The special principle of relativity states the laws of physics are the same in all

inertial frames.

(ii) The speed of light is the same in all inertial frames.

Special relativity describes physics in the absence of gravitational fields. To incorpo­

rate the effects of gravitational phenomena we need to develop the theory of general

relativity. Einstein found that the curvature of spacetime does not permit a global

formulation of a theory of gravity in terms of coordinate systems based on inertial

frames as in special relativity. Einstein postulated that special relativity has to be

supplemented with the principle of general covariance in the general theory. This
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principle states that a physical equation of general relativity is valid in all coordinate

systems provided that:

(i) The equation preserves its form under general coordinate transformations, ie.

the equation is a tensor equation.

(ii) The equation must also be valid in special relativity.

As a consequence gravitation was incorporated into the spacetime structure in the

formulation of the field equations of general relativity valid in all coordinate systems

using the invariant description of tensors. The mathematical structure of general

relativity is a 4-dimensional differentiable manifold. Note that we can always find

a local coordinate neighbourhood in which the spacetime structure of general rela­

tivity is locally similar to the spacetime of special relativity. General relativity not

only reduces to special relativity in the appropriate limit but also yields Newtonian

gravitation as an approximation.

Gravity is no longer regarded as a force. The gravitational field of a body is

contained in the curvature of spacetime that it produces. The behaviour of the grav­

itational field is governed by the Einstein field equations. The field equations couple

the gravitational field to the matter content. The gravitational field in the Einstein

field equations is contained in the Einstein tensor which is related to the curvature

of spacetime via the Riemann tensor and the Ricci scalar. The matter content is

represented by the anisotropic energy-momentum tensor. The matter distribution is

assumed to be relativistic fluid; for a gaseous matter distribution the field equations

are supplemented with the Boltzmann equation (Israel 1972, Maartens and Maharaj

1985, Maharaj and Maartens 1986, Stewart 1971). The Einstein field equations are

a set of highly nonlinear partial differential equations subject to conservation laws,

namely the Bianchi identities.
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Exact solutions to Einstein field equations are important because of their

extensive applicability in cosmology and astrophysics. A large number of solutions

are known today. Many of these solutions are not physical, ie. they do not satisfy

a physical equation of state (Kramer et al1980). We briefly mention a few of the

classical solutions:

(i) The Schwarzschild solution gives the exterior gravitational field to a static, spher­

ically symmetric body. This solution may be smoothly matched to the interior

of static stars.

(ii) The Kerr solution describes the exterior gravitational field of a rotating body.

Note that a satisfactory interior solution has not yet been found (Kramer et al

1980, Straumann 1984).

(iii) The Robertson-Walker model is a cosmological solution which is both isotropic

and homogeneous. This solution is extensively used to model the evolution of

the universe as it is simple and contains most of the features of the observed

unIverse.

Most of the approaches followed in the past to obtain solutions have been ad hoc.

A restriction is placed on the energy-momentum tensor and/or on the behaviour of

the gravitational field on mathematical or physical grounds in an attempt to sim­

plify the field equations. Recently the approach of various authors is to impose a

symmetry requirement on the manifold. In this thesis we seek solutions in a class

of spacetimes by imposing a conformal symmetry on the spacetime manifold, ie.

the differentiable manifold is invariant under the action of a group of the conformal

symmetries. The spacetimes we consider have attracted much attention because of

their physical importance and the field equations have the advantage of being math-
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ematically tractable. They are often used in the study of anisotropic cosmological

models.

In various attempts to solve the highly nonlinear field equations of gen­

eral relativity it is often assumed that the spacetime admits symmetries. Recently

a number of solutions have been found in various models with the assumption that

the spacetime is invariant under a conformal Killing vector. The conformal Killing

vectors in Minkowski spacetime have been known for some time and are listed by

Choquet-Bruhat et al (1977). Maartens and Maharaj (1986) found the G15 of con­

formal Killing vectors in Robertson-Walker models. For a recent paper on static

solutions to field equations with conformal symmetries see Maartens and Maharaj

(1990). For the nonstatic case the reader is referred to Herrera and Ponce de

Leon (1985a, 1985b, 1985c). Conformal symmetries in nonstatic spherically symmet­

ric spacetimes have been considered by Dyer et al (1987) and Maharaj et al (1991).

Also Maartens and Maharaj (1991) have found the conformal symmetries of pp-wave

spacetimes which may be interpreted as plane-fronted gravitational waves with par­

allel rays. Maartens et al (1986) considered conformal Killing vectors in anisotropic

fluid spacetimes and Mason and Tsamparlis (1985) analysed spacelike conformal

symmetries. Spacetimes admitting inheriting conformal Killing vector fields have

been studied by Coley and Tupper (1989, 1990a). Papers which consider a conformal

Killing vector parallel to the fluid four-velocity include Coley and Tupper (1990b),

Oliver and Davis (1977) and Duggal (1987). In addition it is worthwhile mentioning

that conformal Killing vectors may be important in the study of relativistic kinetic

theory (see an application for massless particles in equilibrium by Israel (1972)).

In chapter 1 we briefly consider fundamental concepts of differential geom­

etry in general relativity. In particular we study those aspects which are necessary
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for the development of conformal symmetries of this thesis. We begin by introducing

manifolds coordinate transformations and tensor fields. The Lie derivative is defined,

and it properties are listed. Lie algebras, the Lie bracket and the Jacobi identity are

also defined. The connection, the covariant derivative, the curvature tensor and the

Einstein field equations are briefly introduced. The conformal Killing equation is

defined on a differentiable manifold and the restrictions on the connection and as-

sociated quantities due to a conformal symmetry are given. The special cases of

Killing, homothetic, special and nonspecial conformal Killing vectors are noted.

In chapter 2 we determine the conformal symmetries of a locally rota-

tionally symmetric spacetime which is spatially homogeneous but anisotropic. This

spacetime admits a G4 of motions acting transitively on spacelike hypersurfaces Sa.

The Lie algebra of Killing vectors and the positive structure constants are given.

The conformal Killing equation is written as a coupled system of first order, partial

differential equations. We solve this system in general to obtain the conformal Killing

vector and the conformal factor subject to integrability conditions. An analysis of the

integrability conditions shows that the functions of integration are either constants

or constrained by differential equations. The Killing vectors are obtained as a special

case from the general conformal solution. The homothetic vector is determined from

the general solution as a special case. We note that the homothetic vector places

restrictions on the metric functions. Also we prove that there is no nontrivial special

conformal vector.

In chapter 3 we consider another example of a locally rotationally symmet­

ric spacetime. We solve the conformal Killing equation to obtain the general Killing

vector subject to integrability conditions on the metric functions and the functions

of integration. The system of integrability conditions in this case is more compli-
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cated than that of chapter 2. This is a result of the positional dependence in the

metric functions. We were unable to integrate the system of integrability conditions

completely. The Killing vectors are contained in the general conformal solution. The

homothetic vector is found and the resulting restrictions on the gravitational field

are determined. As for the previous metric in chapter 2 there is no nontrivial special

conformal vector.

In chapter 4 we study a Bianchi I spacetime in which the gravitational

field is determined in terms of three time-dependent metric functions. Here there

are only three Killing vectors so that the gravitational field has less symmetry. We

solve the conformal Killing equation for a constant conformal factor and generate the

homothetic vector. The integrability conditions restrict the metric functions. These

conditions are integrated and the functional dependence of the metric functions is

explicitly determined.

Note that the results obtained in this thesis are original. Apparently this

thesis represents the first attempt at a systematic analysis of conformal symmetries

in locally rotationally symmetric spacetimes. We have not found any published work

in the literature on conformal Killing vectors in these models. In the conclusion

we summarise the results obtained in this thesis and consider avenues for further

research.
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1 Manifolds, Tensor Fields and Lie AIgebras

1.1 Introduction

In this chapter we briefly review only those aspects of differential geometry necessary

for this thesis. We begin by considering the 4-dimensional spacetime structure of a

manifold which admits a Lorentzian metric in the neighbourhood of every point. The

additional structure of an affine connection is introduced on the manifold. Spacetime

is a 4-dimensional pseudo-Riemannian manifold with the metric connection and the

gravitational field is described by the symmetric metric tensor. Also in §1.2 we

consider general coordinate transformations, tensor products and tensor fields as

natural geometric objects on the manifold. For more detailed expositions the reader

is referred to Bishop and Goldberg (1968), Choquet-Bruhat et al (1977), Hawking

and Ellis (1973), Misner et al (1973) and Stephani (1982). The Lie derivative plays a

significant role when considering symmetries in general relativity and other physical

fields (Schutz 1980). We consider Lie derivatives and Lie algebras in §1.3. The

additional structure of the connection is introduced on the manifold in §1.4. This

enables us to define the covariant derivative and thereby introduce the curvature

tensor. In this section we give the geodesic equation in a coordinate basis and briefly

discuss the Einstein field equations. We seek solutions to the conformal Killing

equation in a class of locally rotationally symmetric models (MacCallum 1980) which

have cosmological significance. The existence of a conformal symmetry often leads
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to a simplification of the Einstein field equations. We require that spacetime be

invariant under a conformal Killing vector. In §1.5 we consider an r-dimensional Lie

group. Furthermore we define a general conformal Killing vector and list the special

cases of Killing, homothetic, special and nonspecial conformal Killing vectors. Note

that conformal Killing vectors generate an r-dimensional Lie algebra. The conditions

that the conformal symmetry imposes on the metric connection and related quantities

defined on the manifold are listed in §1.5.

1.2 Manifolds and Tensor Fields

The surface of a sphere in Euclidean space or, more generally, any m-dimensional

hypersurface in an n-dimensional Euclidean space (m :::; n) is a manifold. Another

example of a manifold is the set of all rigid rotations of Cartesian coordinates in

3-dimensional Euclidean space. We may abstractly consider a manifold as any set

that can be continuously parametrised. The number of independent coordinates

gives the dimension of the manifold and the parameters are the coordinates of the

manifold. A manifold is essentially a topological space which locally has the structure

of Euclidean space in that it may be covered by coordinate patches. Even though

the local structure of a manifold and the Euclidean space are similar it is important

to note that their global structures may be very different.

The fundamental features of an n-dimensional differentiable manifold are

that its points may be labelled by n real coordinates Xl, x2 , x3 , ••• , xn and dif­

ferentiation of functions, involving changes of coordinates valid for all points in the
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space, is permissible. Let

denote the set of n-tuples that generates an n-dimensional Euclidean space. Also

let M be any set with a subset U ~ M. Suppose that 'l/J : U -----+ ~n is a bijective

mapping. The purpose of 'l/J is to attach coordinates to points in U and we refer to

the open set U as a coordinate neighbourhood. The pair (U, 'l/J), comprising the set

U and 'l/J, is called a chart. Now consider the collection of charts {(Ua,'l/Ja)}aEI\' with

1\ being some index set, such that the following four properties are true:

(i) {Ua } covers M so that every point of M is contained in at least one Ua •

(ii) 'l/Ja : Ua -----+ ?Rn with the same n for all a.

(iii) Ua n Ub i= 0 for some a and b. For this intersecting region the composite

functions 'l/Ja 0 'l/J;;1 and 'l/Jb 0 'l/J-;1 are differentiable functions from ?Rn to ~n.

(iv) {(Ua, 'l/Ja)} is maximal, ie. any other chart is contained in this set.

A collection of charts {(Ua,'l/Ja)}aEI\ satisfying properties (i) - (iv) is called an atlas.

The set M together with its atlas comprises an n-dimensional differentiable manifold.

The maps 'l/Ja : Ua -----+ ~n and 'l/Jb : Ub -----+ ~n generate two coordinate

systems x a
' and x a

, respectively. These coordinates are related by the composite

functions 'l/Ja 0 'l/J;;1 : ?Rn -----+ ?Rn and 'l/Jb 0 'l/J;;1 : ?Rn -----+ ?Rn because in the overlap

Ua n Ub i= 0. This can be represented by the functional relationships

a' a'( 1 2 3 n)X = X X ,X ,X , ••• ,X

and the inverse relationships

X a a( l' 2' 3' n')X X ,X ,X , ••• ,X
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The functions x a' and x a given above are both differentiable and injective. In the

overlap Ua n Ub -I 0 so that the Jacobians of the matrices

8 a'

X a' - ~
b - 8xb

and

are nonzero. Conversely suppose that we have a chart (Ua, 'l/Ja) and the system of

equations xa' = xa' (Xl, x2, X3, ... , xn
) with the Jacobian of xg' nonzero for some

point P E Ua with coordinates x a
• Then we can show, using the inverse-function

theorem, that there exists a coordinate system (Ub, 'l/Jb) about P whose coordinates

are related to those of (Ua, 'l/Ja) by xa = xa(xl', x2', x3', . .. ,xn '). For our purposes we

require that the differentiability class of the manifold M is at least 0 2 to ensure that

operations which depend on the continuity of partial derivatives are valid.

We define Tp(M) as the set of vectors tangent to a curve at a point P E M.

The set of tangent vectors Tp(M) generates a vector space at the point P. We create

the dual tangent space Tp(M) at the point P by defining the real-valued function

Tp(M) : Tp(M) -----+ ?Rn. The dual space is also a vector space. We can then build

up spaces (T;)p(M) of type (r, s) tensors at P by taking repeated tensor products

of Tp(M) and Tp(M) (Bishop and Goldberg 1968, Hawking and Ellis 1973, Misner

et al1973). The space T; is also a vector space at P. A type (r, s) tensor field on M

is an assignment to each point P E M a member of (T;)p(M). We represent the set

of all type (r, s) tensor fields on M by T;(M). Note that we regain TI(M) = T(M)

as the set of contravariant vector fields, and TI (M) = T* (M) as the set of covariant

vector fields. In this framework we define a scalar field as a real-valued function on

the manifold M.
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(r, s) tensor field T, of rank (r +s), transforms as follows

T a' a; ...a~ - xa~xa; xa~xdlxd2 Xd&TC1C2 ...Cr
1 b' b' b' - . . . b' b'· . . b' dl d2 d1 2"· & cl C2 c r 1 2 & ••• &

(1.1 )

Of particular interest in general relativity are tensor fields of rank two. In order to

discuss metrical properties we need to endow M with an indefinite metric tensor field

g of rank two. In this case the manifold M is called a pseudo-Riemannian manifold

(Misner et al1973, Stephani 1982). As our applications are general relativistic the

dimension of M will henceforth be taken as four. Spacetime M is an oriented, smooth

4-dimensional manifold endowed with a symmetric, non-degenerate tensor field g of

signature (- + + +). The symmetric (0,2) metric tensor field gab satisfies (1.1) and

is used to invariantly define the length of a curve in M. This length is defined as the

integral

where j;a = dxa/ duo The metric tensor field g appears in the line element or funda-

mental metric form

(1.2)

The line element (1.2) gives a measure of the infinitesimal interval between neigh­

bouring points xa and xa +dx a in the manifold. Spacetime M has the property that

at any point there exists a coordinate system in which gab takes the Lorentzian form

[gab]

-1 0 0 0

o 1 0 0

001 0

000 1

Note that this is true only locally in the 4-dimensional manifold of general relativity

in contrast to special relativity where there exists global coordinate systems for which

gab takes the above form.
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1.3 Lie AIgebras and Lie Derivatives

Here we briefly summarise only those elements of Lie theory which are required for

subsequent sections (Choquet-Bruhat et al 1977, Kramer et al1980, Straumann

1984). The Lie bracket or commutator of vector fields X and Y is defined as the

quantity

[X, Y] = XY - YX (1.3)

As [X, Y] inherits the linearity properties of X and Y the Lie bracket [X, Y] E T(M).

Further the Lie bracket defines a composition on T(M) which is bilinear. The space

of all vector fields on M when endowed with the composition (1.3) is a Lie algebra

which is skew-symmetric by definition. This algebra is not associative and, in fact,

satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, V]] o (1.4)

for the vector fields X, Y and Z. Also note that every Lie algebra defines a unique,

simply connected Lie group Gr (see §1.5). In particular for a coordinate basis {ea}

where ea = 8/8xa, equation (1.3) becomes

as partial derivatives commute in the smooth manifold M.

The Lie derivative of a tensor field is of particular significance because

it prqvides a coordinate independent description of a symmetry property in the

manifold M. This derivative corresponds to the change determined by an observer

in going from a point P in the direction of a vector field X to an infinitesimally

neighbouring point Q and transporting the coordinate system from P to Q. Consider
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an infinitesimal coordinate transformation

and compare the components of a type (1, 0) tensor field Ta at a point P and at an

infinitesimally neighbouring point Q. Then to first order in £ we have

(1.5)

where the comma denotes partial differentiation. We define the Lie derivative of Ta

in the direction of the vector field X as the limiting value

(1.6)

On substituting (1.5) into (1.6) we obtain the equivalent expression

which is the Lie derivative of the (1,0) tensor field Ta.

(1.7)

The Lie derivative of

(0,1), (1, 1), (0, 2) and (2,0) types of tensor fields are given, respectively, by

(1.8)

(1.9)

(1.10)

(1.11)
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For an (r, s) tensor field the Lie derivative follows analogously.

The Lie derivative LX satisfies the following properties which we list here

without proof:

(i) LX preserves tensor type, ie. LXT is a tensor field of the same type as T.

(ii) LX is linear and Leibniz.

(iii) LX commutes with contraction.

(iv) LxI XI where I is a real-valued smooth function on M.

(v) LXY == [X, Y] for all vector fields Y.

(vi) L[X,Y] == LXLy - LyLX for all vector fields X, Y.

Properties (i) - (vi) are used extensively in later chapters where we determine the

conformal symmetries in classes of anisotropic cosmological models.

The exterior derivative (which we do not consider here) and the Lie deriva­

tive may be considered as generalisations of the partial derivative. These derivatives

are introduced without defining further structure on the manifold. Note that in or­

der to define covariant derivatives we have to impose the additional structure of a

connection on the manifold M (see §1.4). The Lie derivative plays an important role

in describing symmetries of gravitational fields (see §1.5) and other physical fields

(Schutz 1980).
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1.4 Covariant Derivatives and Field equations

The exterior derivative and the Lie derivative are operations defined on a differen­

tiable manifold without imposing additional structure on M. The exterior derivative

is limited because it acts only on forms. The Lie derivative .cxTlp for any tensor

field T depends on the vector X not only at P E M but also at neighbouring points.

To introduce derivatives which have neither of these defects we need to impose ad­

ditional structure on the manifold. In particular to define covariant derivatives we

need to impose the additional structure of a connection on the manifold M. A con­

nection \7 at a point P E M is a rule which assigns to each vector field X at P a

differential operator \7X which maps an arbitrary vector field Y into a vector \7XY.

The differential operator \7X satisfies the following properties:

(i) The field \7xY is a tensor in the argument X, ie.

\7(jX1 +9X2 )Y == f\7x 1 Y +g\7x2 Y

for functions f, 9 and Xl, X 2 E T(M).

(ii) The vector \7xY is linear in Y.

(iii) The rule

\7x(fY) == (Xf)Y + f\7xY

holds for all real-valued smooth functions f and vector fields Y.

The quantity \7xYlp is the covariant derivative (with respect to \7) of Y in the

direction of X at P. Since \7XY is a tensor in X we can define \7Y, the covariant

derivative of Y, as the (1,1) tensor field which when contracted with X yields the

vector \7XY. A connection \7 on the manifold M is a rule which assigns a connection

\7 to each point (Hawking and Ellis 1973).
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The components of VY, with respect to the coordinate bases {ea} and

{ea}, follow from the expression for Vx(fY):

(1.12)

where the semicolon denotes covariant differentiation and the connection coefficients

r a
be are defined by

Then we must have VxY = yajbXbea' We are only concerned with torsion-free or

symmetric connections for which

for all X, Y E T(M).

ra
bc ra

cb

[X,Y]

The definition of a covariant derivative can be extended to arbitrary tensor

fields by the rules:

(i) If T is a tensor field of type (r, s) then the covariant derivative VT is a tensor

field of type (r,s +1).

(ii) V is linear and Leibniz.

(iii) V commutes with contraction.

(iv) V f = df for all real-valued smooth functions f.

The statement that given a metric tensor field g there exists a unique symmetric

connection V such that Vg = 0 is known as the fundamental theorem of Riemannian
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geometry. This connection is called the metric connection, and r a
be takes the form

which implies

The covariant derivative of a (1, 0) vector field Y is given by (1.12). As further

examples we give the covariant derivatives of the (0,1), (1,1), (0,2) and the (2,0)

tensor fields:

(1.13)

(1.14)

(1.15)

(1.16)

The formulae for arbitrary rank tensors follow the rules suggested by (1.12) - (1.16).

Since the manifold has the metric connection \7 we can replace partial derivatives by

the covariant derivatives in expressions (1.7) - (1.11) for the Lie derivative of tensors.

A tensor field T is said to be parallel transported along the integral curves

xa
( u) of a vector field X if

which may be written as

DT
du

o

- 0

(1.17)
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where D / du is the absolute derivative. Therefore in particular the metric tensor is

parallel transported along all smooth curves. If T is a vector field then (1.17) implies

aTa r a Tb· e = 0au + be X

A geodesic xa(u), with affine parameter u, is a curve along which the tangent vector

field X is parallel transported:

VxX 0

The affine parameter u of a geodesic curve is determined up to an additive and a

multiplicative constant, ie. up to transformations

u ~ u' = au+ b

where a, b E ~ (a i= 0), so that X can be renormalised by a constant factor

X ~ X' = (l/a)X.

The path-dependence of parallel transport provides a measure of the curva-

ture of the manifold. This path-dependence corresponds to the non-commutativity

of covariant derivatives. The Riemann curvature tensor R gives a measure of this

non-commutativity:

(1.18)

for all X E T(M). The above equation is often referred to as the Ricci identity.

Applying (1.18) to the basis vectors {ea} gives
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for the coordinates basis components of the Riemann tensor R. The Rabed satisfy the

symmetry properties

Rabed - Redab 0

Ra [bed) 0

Ra b[ed;e] = 0

where the last equation is referred to as the Bianchi identity. The Ricci tensor Rab

is obtained by a contraction of the Riemann tensor:

The curvature of the manifold defined in terms of the metric tensor is related to

matter-energy by the Einstein field equations

(1.19)

where Tab is the energy-momentum tensor. The Einstein tensor G is defined in

terms of the Ricci tensor Rab and the Ricci scalar Ra a = R. The Einstein field

equations (1.19) constitute a system of ten nonlinear partial differential equations

which determines the behaviour of the gravitational field via the metric functions gab.

Not all of the field equations (1.19) are independent because of the Bianchi identity

Cab
·b = 0
I

19
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which is essentially a conservation law. For further information on various categories

of exact solutions to the Einstein field equations (1.19) with the Bianchi identity

(1.20) the reader is referred to Hawking and Ellis (1973), Kramer et al (1980) and

Misner et al (1973).

1.5 Conformal Motions

When analysing the Einstein field equations we find that it is easier to solve these

equations in many cases when the gravitational field possesses symmetries. Manifolds

with structure may admit groups of transformations Gr preserving this structure.

An r-dimensional Lie group Gr is a group which is also a smooth r-dimensional

differentiable manifold whose structure is such that the group composition GxG ~ G

and the group inverse G ~ G are smooth maps (Kramer et al1980). A Lie group Gr

acts as a transformation group of an n-dimensional smooth manifold on the right if

there exists a map f : M x Gr ~ M which satisfies

f(P, e) == P

for the identity e E Gr and for all P E M, and

f(f(P,g),g') == f(P,gg')

for all g, g' E Gr • We assume that the action of Gr on M is effective, ie.

f (P, g) == P :::::::} 9 == e

for all P EM. Locally these transformations are given by
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where a == 1, 2, ... , nand i == 1, 2, ... , r. The quantities fa are smooth functions and

yi are local coordinates on Gr . The coordinates in Gr are called group parameters

and Gr is said to be of r (essential) parameters. The transformations are generated

by r linearly independent vector fields Xi == X:8/8x a on M where

(1.21 )

The vector fields (1.21) generate a Lie algebra which is also isomorphic to the Lie

algebra of left-invariant vector fields on Gr • The orbit O(P) of any point P E M

is the submanifold of M consisting of all points reachable by the transformations

generated by Gn ie.

O(P) == {PI E Mlf(P,9) == PI}

for some 9 E Gr • The orbit of all points foliate M. The action of Gr is simply

transitive on the orbits if the dimension of each orbit is r, and multiply transitive if

the dimensions of the orbit are less than r.

In this thesis we are concerned with the conformal symmetries or conformal

motions Gr of infinitesimal transformations. A conformal motion preserves the metric

up to a factor. A conformal Killing vector is defined by

£ X9ab == 2<P9ab (1.22)

where 4> == 4>(X C
) is the conformal factor and 9ab is the metric tensor. The conformal

equation (1.22) preserves angles between vectors and the light cone structure on

spacetime, and maps null geodesics to null geodesics. There are four categories of

the conformal equation (1.22):

(i) X is a Killing vector when <p == o.

(ii) X is a homothetic Killing vector when <P,a == 0 # <p.
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(iii) X is a special conformal Killing vector when <Pjab = O.

(iv) X is a nonspecial conformal Killing vector when <Pjab =J O.

The Killing vectors span a group of isometries: an isometry is a transformation which

leaves the metric invariant. Killing vectors generate constants or first integrals of the

motion along geodesics. The group of isometries may be utilised to systematically

and invariantly characterise solutions of the Einstein field equations (Kramer et al

1980). A homothetic Killing vector scales all distances by the same constant factor

and preserves the null geodesic affine parameters. Homothetic Killing vectors lead

to self-similar spacetimes. A recent approach in seeking solutions to the Einstein

field equations is to suppose that spacetime admits a group of conformal motions

Gr of infinitesimal transformations. This leads to further restrictions on the metric

functions and often simplifies the solution of the Einstein field equations (see for

example Dyer et al 1987, Maharaj et al 1991).

The set of all conformal Killing vectors generates a Lie Algebra Gr with

basis {XI}' The elements of the basis are related by

(1.23)

where the CK
IJ are the structure constants of the group. From (1.3), (1.4) and

(1.23) we obtain the Lie identity

C
K

LMC
M

IJ +C
K

IMC
M

JL +C
K

JMC
M

LI = 0

The maximal order r of a group of conformal transformations Gr is given by

r = ~(n+l)(n+2)

for an n-dimensional manifold. The maximal dimensionality of the Lie algebra in

spacetime is r = 15. The generators of the G15 of conformal Killing vectors for flat
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Minkowski space is given by Choquet-Bruhat et al (1977) and for Robertson-Walker

spacetimes by Maartens and Maharaj (1986).

A vector field is said to be recurrent or parallel if its covariant derivative

is parallel to itself. A recurrent vector is geodesic and nonrotating. A conformally

recurrent manifold M has a real recurrent vector K (Kramer et al1980) such that

VeCabcd

If K == 0 then M is a conformally symmetric spacetime:

VeCabcd 0

where C abcd is the conformal Weyl tensor defined by

The manifold M is conformally flat if and only if the conformal tensor C abcd vanishes.

The existence of a conformal Killing vector (1.22) places restrictions on the

connection coefficients, the Riemann tensor, the Ricci tensor, the Ricci scalar, the

Einstein tensor and the Weyl tensor. Yano (1957) lists the following conditions that

the conformal Killing vector X is known to satisfy:

(1.24)

£XRabcd

(1.26)
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£xR

£XGab

(1.27)

(1.28)

£Xcabcd = 0 (1.29)

The above conditions illustrate the fact that the existence of a conformal Killing

vector X imposes severe restrictions on the spacetime manifold M.

A number of general results on the effect of conformal symmetries on the

gravitational field have been obtained with the help of (1.24) - (1.29). Collinson and

French (1967) established that a vacuum spacetime with a proper conformal sym­

metry must be of Petrov type N. Eardley et al (1986) showed that the only vacuum

solutions with a conformal symmetry are everywhere locally flat type 0 spacetimes

or of type N representing a class of plane waves. Also Garfinkle (1987) and Eard­

ley et al (1986) proved that asymptotically flat spacetimes with reasonable energy

conditions are locally flat type 0 spacetimes. Garfinkle and Tian (1987) have shown

that vacuum spacetimes with nonzero cosmological constant and a proper conformal

symmetry are constant curvature spacetimes of type O. These represent the de Sit­

ter and anti-de Sitter models. Recently Sharma (1988) established that conformally

symmetric spacetimes admitting an infinitesimal conformal symmetry are either of

type 0 or N. Conformal motions are special cases of more general symmetry proper­

ties of spacetimes namely curvature collineations. Spacetime symmetries, including

conformal motions and their relationship with curvature collineations, are discussed

by Katzin et al (1969).
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2 Conformal symmetries in models with metric

2.1 Introduction

In this chapter we consider an example of a spacetime which is spatially homogeneous

but anisotropic. This is a special case of a class of locally rotationally symmetric

spacetimes. These symmetric spacetimes admit a G4 of motions acting transitively

on spacelike hypersurfaces 53. In §2.2 we discuss the spacetime geometry of locally

rotationally symmetric spacetimes in general, and the above metric in particular. We

give the generators of the Lie algebra of Killing vectors and the positive structure

constants. In §2.3 we write the conformal equation as a coupled system of ten first

order, linear partial differential equations. We explicitly solve this system of equa­

tions to obtain the conformal Killing vector X and the conformal factor </> subject

to integrability conditions. These conditions place consistency requirements on the

metric functions A(t) and B(t). The effect of the integrability conditions is com­

prehensively investigated in §2.4. In §2.5 we obtain the Killing vectors as a special

case from our general solution. Also we find the homothetic vector from the general

conformal Killing vector. The homothetic vector restricts the metric functions A(t)

and B(t). Finally we investigate the case of a special conformal vector.
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2.2 Spacetime Geometry

In this chapter we consider the spatially homogeneous and anisotropic spacetime

described by the metric

(2.1 )

with coordinates x a = (t, x, y, z). This spacetime is called class AIa in the Mac-

Callum (1980) classification, and is referred to as type V 14 by Petrov (1969). Since

groups Gr of motions transitive on orbits are admitted each point has an isotropy

group. The term locally isotropic has been used by Cahen and Defrise (1968) where

every point has a nontrivial isotropy group. As this group consists of spatial rotations

(2.1) is an example of a locally rotationally symmetric spacetime. The Lie algebras

of the isometry groups are obtained by using tetrads defined up to isotropy by prop-

erties of the curvature tensor, and the invariance under the isotropy is then imposed.

For a detailed analysis of the symmetries of locally rotationally symmetric space-

times see Maartens and Maharaj (1985) and MacCallum (1980). Ellis (1967) and

Stewart and Ellis (1968) give all locally rotationally symmetric metrics with perfect

fluid and electromagnetic field. A G4 of motions is admitted which acts transitively

on 3-dimensional spacelike hypersurfaces S3 (the local isotropy is a spatial rotation

about a spacelike direction). There are simply transitive subgroups G3 acting on

hypersurfaces S3 of Bianchi type I or V 110 . Also there is a multiply transitive G3

subgroup of Bianchi type V110 acting on flat surfaces 82 , The Lie algebra of Killing

vectors {Xl, X 2 , X 3 , X 4 } is spanned by

a
ay
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a
az

a a
y--z­

az ay

For this Lie algebra the following positive structure constants are obtained from

equation (1.23):

1

2.3 Conformal equation

For the metric (2.1) the conformal equation (1.22) reduces to the following system

of ten equations:

(2.2)
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o

o

o

A<p

(2.3)

(2.4)

(2.5)

(2.6)



(2.7)

(2.8)

(2.9)

(2.10)

where the subscripts denote differentiation with respect to t, x, y and z. The equa-

tions (2.2) - (2.11) are a coupled system of ten first order, linear partial differential

equations. We have to integrate this system to obtain X = (XO, Xl, X 2
, X 3

) and <P

in terms of the metric functions A(t) and B(t). This is achieved by taking combina-

tions of derivatives of (2.2) - (2.11) to generate identities that simplify the integration

process.

On subtracting the derivative of (2.5) with respect to y from the derivative

of (2.4) with respect to z we obtain X;t - X;t = O. This result together with the

derivative of (2.10) with respect to t yields the identities

(2.12)

(2.13)

The difference of the derivative of (2.7) with respect to z and the derivative of (2.8)

with respect to y gives X;x - X~x = o. This equation and the derivative of (2.10)
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with respect to x gives

(2.14)

(2.15)

The equations (2.12) and (2.14) imply that X; is a function only of y and z. Similarly

(2.13) and (2.15) imply that X; is also a function only of y and z. Differentiating

(2.4) with respect to z and using (2.12) gives

X~z = O.

Then equation (2.2) differentiated with respect to y and z implies that

<PYZ = 0

(2.16)

(2.17)

Now differentiate equations (2.9) and (2.11) by both y and z to obtain the following

partial differential equations

(X;)zz = 0

where we have used (2.16) and (2.17)

Integrating (2.18) and (2.19) gives

X; = A(z)y + B(z)

X: = C(y)z +V(y)
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where A, B, C and D are functions of integration. On substituting (2.20) and (2.21)

into (2.10) we obtain

A(z)y +B(z) +C(y)z +D(y) == 0

which necessarily implies

A(z) az +(3

B(z) -,z +8

C(y) -ay +,

D(y) == -{3y - 8

where a, (3" and 8 are constants. On substituting these results into (2.20) and (2.21)

and integrating we obtain the components

(2.22)

(2.23)

where £ and :F are functions of integration.

Differentiating (2.9) and (2.11) by y, differentiating (2.10) by z, and form­

ing a sum gives an equation in X 2 :

(2.24)

Similarly, differentiating (2.9) and (2.11) by z, differentiating (2.10) by y, and forming
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a sum gives an equation in X 3
:

(2.25)

To find the function £(t, x, y) substitute (2.22) into (2.24) to obtain

£yy+ay-,=O

which has the solution

£(t, x, y) = _~ay3 + !,y2 + yQ(t, x) +1i(t, x) (2.26)

where Q and 1i result from integration. Similarly to find :F(t, x, z) substitute (2.23)

into (2.25) to obtain

:Fzz - az - f3 = 0

which has the solution

:F(t,x,z) = ~az3 + !f3z2 + zI(t,x) +J(t,x) (2.27)

where I and J are functions of the integration process. Now the difference of (2.9)

and (2.11) yields

(2.28)

We substitute (2.22) and (2.23), taking into account (2.26) and (2.27), into (2.28) to

obtain the result

Q=I

Thus (2.22) and (2.23) assume the following forms respectively

(2.30)
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Thus far we have obtained the components X 2and X 3in terms of the integration

functions Q(t,x), H(t,x) and J(t,x). It remains to find XO,X1 and <p.

Now from (2.29) and (2.4) we find the component

(2.31 )

where K is a function of integration. By substituting (2.30) and (2.31) into (2.5) we

obtain K:

with £ being a function of integration. Therefore (2.31) becomes

Now from the equations (2.29) and (2.7) we have

1 (B)2(12X == - A 2Y Qx +yHx) +M(t,x,z)

(2.32)

(2.33)

where the function M results from integration. Equations (2.30), (2.33) and (2.8)

give a restriction on M:

where N is a function of integration. Then (2.33) can be written as
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Hence (2.32), (2.34), (2.29) and (2.30) give Xo, Xl, X 2 and X 3 respectively. Note

that the y and z dependence of the components of X have been completely deter­

mined at this stage. With these forms of XO,Xl,X2 and X 3 equations (2.4), (2.5),

(2.7), (2.8) and (2.10) are satisfied. The remaining equations (2.2), (2.3), (2.6), (2.9)

and (2.11) will restrict the functions of integration and the metric functions. Also

the conformal factor <p has to be determined.

Taking into account (2.32) and (2.34), equation (2.3) will be satisfied pro-

vided the following integrability conditions hold:

2B
20xt +A

2
[ (~) 2] tOx [~OxL

2B
2
1ixt +A

2 [(~)11ix - [~1ixL

2B
2
.7xt+ A

2 [(~) l.7x [~ .7xL

The conformal factor

o

o

o

o

(2.35)

(2.36)

(2.37)

(2.38)

follows from (2.2) and (2.32). Now taking into account (2.32), (2.34) and (2.39),

equation (2.6) will be satisfied provided the following set of integrability conditions

holds:
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(2.41 )

o (2.42)

(2.43)

Also substituting (2.29), (2.32) and (2.39) into (2.9) we obtain the following set of

integrability conditions:

o

o

(2.44)

(2.45)

(2.46)

o (2.47)

(2.48)

At this point we note that equation (2.11) gives the same integrability conditions as

equation (2.9). It immediately follows from equations (2.44) and (2.45) that

0=0 (2.49)

Thus the coupled system (2.2) - (2.11) has the general solution (2.29),

(2.30), (2.32), (2.34) and (2.39) subject to the integrability conditions (2.35) - (2.38)
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and (2.40) - (2.49). Collecting these results we have the following solution with the

integration functions Q, fi, J, £ and N dependent only on the timelike coordinate t

and the spacelike coordinate x:

1 (B)2 (2 2 (B)2-2 A Qx Y + z ) - A (yfix + ZJx) +N

(2.50)

(2.51 )

(2.52)

subject to the following integrability conditions

o

o

(2.55)

(2.56)

[~JxL - 0 (2.57)

AB2 (Br(B
2
Qt)t - A Qt + A Qxx 0 (2.58)

AB2 (Br(B
2
fit )t - A fit + A fixx 0 (2.59)
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(2.60)

o (2.61 )

(2.62)

B
-L - Lt +()
B

o

o

o

(2.63)

(2.64)

(2.65)

(2.66)

Thus the existence of the conformal Killing vector X with components (2.50) - (2.53)

and the conformal factor (2.54) restricts the metric functions A(i) and B(i) by the

integrability conditions (2.55) - (2.66)

2.4 Integrability conditions

The integrability conditions (2.55) - (2.66) comprise a coupled system of partial

differential equations for the integration functions (), H, .J, Land N. These equations

severely restrict the metric functions A(t) and B(t). In the analysis of a conformally
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symmetric gravitational field we should consider these restrictions together with the

Einstein field equations (1.19). This is the subject of ongoing research.

We first consider the effect of equations (2.55), (2.58) and (2.61) on the

function Q(t, x). Equation (2.55) is immediately integrated to yield

A
Q = BO(x) +P(t) (2.67)

where ° and P are functions of integration. On substituting (2.67) into (2.61) and

simplifying we obtain

(1 [B(~)"]" = -(BP)'

Two cases arise, namely [B(AjBy)" =I- 0 and [B(AjBy)" = O.

(2.68)

Case I: [B(Aj By)" =I- 0

In this case (2.68) is a variable separable equation which implies

° = f (2.69)

(2.70)

where f and c are constants. Then with the help of (2.67), (2.69) and (2.70), equation

(2.58) becomes
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which implies that c = 0 otherwise the spacetime degenerates to Robertson-Walker.

Then equation (2.70) is integrated to give

A
P = --(+(

B

where ( is a constant. Thus from (2.67) the function of integration 9 has the form

Case 11: [B(A/By]' = 0

g=( (2.71)

In this case, equation (2.68) gives the results:

BP = ()

where TJ and () are constants. Then with the help of these two results and (2.67),

equation (2.58) reduces to the ordinary differential equation

(2.72)

We have integrated (2.55), (2.58) and (2.61): either 9 is a constant as in (2.71), or

O(x) of (2.67) has to satisfy the differential equation (2.72).

Now we consider the effect of equations (2.56), (2.59) and (2.62) on the

function.1i(t, x). We integrate (2.56) to obtain

A
1i = B Q(x) +R(t)
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where Q and R are functions of integration. On substituting (2.73) into (2.62) and

simplifying we obtain

[ (A)·]· , ..
Q B B == B - (BR)

Again two cases arise, namely [B(AIBYr f:. 0 and [B(AIBy]" == 0

(2.74)

Case I: [B(AIBy]" f:. 0

We immediately obtain from (2.74) that

Q

[ (A)·]. , ..
{) B B == B - (BR)

(2.75)

(2.76)

where {) is a constant. Then with the help of (2.73), (2.75) and (2.76) the integrability

condition (2.59) becomes

There are two possibilities: Ht == 0 or Ht f:. o. If Ht f:. 0 then we have

(2.77)

where t is a constant of integration. Equations (2.73) and (2.77) give the result

. A (A)·R == t B2 - {) B
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On substituting this equation in (2.76) we find that [B(AI BYr = 0 which is a

contradiction to our assumption. Hence we must conclude that Ht = 0 so that

H=K (2.78)

is a constant (this forces R = -(AIB)" +K). The constant H of (2.78) implies that

, vanishes from (2.62).

Case 11: [B(AIBrr = 0

Here we find that (2.74) yields

(BR)'
,
B

where A is a constant. Now taking into account these results and (2.73), equation

(2.59) becomes

where the variables t and x have separated. Thus in this case we have

(2.79)

(2.80)

where fl is a separation constant. Thus we have integrated equations (2.56), (2.59)

and (2.62): either H is a constant, or Q and R have to satisfy the ordinary differential

equations (2.79) and (2.80).
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Next we consider the effect of equations (2.57), (2.60) and (2.63) on the

function :r(t, x). The results in this case have the same form obtained for the function

1-l(t, x). Equation (2.57) gives

A
:J == BS(x) +T(t) (2.81 )

where Sand T are functions resulting from integration. The analogue of (2.74) is

[ (A)']' (3 "S B B == B - (BT)

Case I: [B(AIB)'r =I 0

The function :r in this case is given by

:J==v (2.82)

where v is a constant. The constant :J of (2.82) implies that (3 vanishes from equa-

tion (2.63).

Case 11:

On setting

[B(AIB)'r == 0

B(AIB)' - e

(BR)' {3IB

I l~ ~ ,
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where eis a constant we find that Sand T satisfy the ordinary differential equations

. A
eBT - f3- - 0 = 0

B

(2.83)

(2.84)

where 0 is a separation constant. Therefore we have integrated (2.57), (2.60) and

(2.63): either :r is a constant, or Sand T satisfy the ordinary differential equations

(2.83) and (2.84).

By the above argument we have integrated nine of the twelve integrability

conditions (2.55) - (2.66). If [B(AIBY], #- 0 then the quantities 9, 1i and :r are

constants, or [B(AIBn' = 0 implies a set of five ordinary differential equations

given by

. A
eBT - f3- - 0 = 0

B

To completely integrate the entire set of integrabliity conditions we also have to solve

the three equations (2.64) - (2.66) to obtain £ and N. Equation (2.65) is a first order
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differential equation in [, with general solution

I:- = BJ~dt+BU(X)

where U is a function of integration. Substituting this form of [, in (2.64) and

integrating gives

. .
( J9 ). . J AB J9 AJN == x B Bdt +B Udx - xA Bdt - A Udx +V(t)

where V results from the integration process. Therefore equations (2.64) and (2.65)

are satisfied with the above functional representations for [, and N. It remains to

consider equation (2.66). Now on substituting the above forms of [, and N into

(2.66) we obtain the equation

which is a consistency requirement on the integrability functions U and V. Thus we

have fully integrated the integrability conditions (2.55) - (2.66).

2.5 Special cases

To obtain the Killing vectors of the spacetime (2.1) from the general conformal Killing

vector (2.50) - (2.53) we need to set <p == 0 in (2.54). This gives the conditions
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which together with the integrability conditions (2.55) - (2.66) imply

9 = 0

?-l constant

:r constant

£ 0

N constant

f3 0

, = 0

Then the components of the general Killing vector X are given by

XO = 0
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so that

a a a
x=N'ax + (8z+1i)ay +(-8Y+J)az

The Killing vectors given in §2.2 are obtained from X above by appropriate choices

of 1i, J, N' and 8.

The homothetic Killing vector of the spacetime (2.1) is obtained as a special

case of (2.50) - (2.53) by taking </> to be a nonzero constant in (2.54). We obtain

from (2.54) the following conditions

which together with the integrability conditions (2.55) - (2.66) imply

Q = constant

1i constant
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.J constant

N wx+p

f3 - 0

, 0

A w-4>
-
A 4>t + 1r

B Q-4>
-
B 4>t + 1r

where 1r, wand p are constants. Therefore the existence of a homothetic vector

places the following restrictions on the gravitational field:

B = 0"( 4>t + 1r ) (Q-r/J)/r/J

where e and 0" are constants. The components of the homothetic Killing vector X

are given by
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so that

a a a a
x = (<Pt +1r) at + (rox + p) ax + (8z +Qy +1i) ay + (-8y +Qz +J) az

is the general homothetic Killing vector.

The special conformal Killing vector is obtained from (2.54) with the re-

strictions

<Pjab 0

<P,ab - reab<p,e = 0

on the conformal factor <p. These equations provide a further constraint on <P in

terms of the ten partial differential equations:

<Pxx = AA4>t
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<Ptt - 0

<Pzx 0

The above system of equations has to be solved together with the integrability condi-

tions (2.55) - (2.66) to obtain the special conformal vector X. However on analysing

this system of ten equations we find that we must have

<P = constant

so that the conformal vector X reduces to a homothetic Killing vector. Hence we

conclude that the spacetime (2.1) does not admit a nontrivial special conformal

vector. This is consistent with the result of Coley and Tupper (1990a): orthogonal

synchronous perfect fluid spacetimes, other than Robertson-Walker, admit no proper

inheriting conformal Killing vector.
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3 Conformal symmetries in models with metric

3.1 Introduction

In this chapter we study another locally rotationally symmetric spacetime which is

spatially homogeneous but anisotropic. As in chapter 2 there is a G4 of motions

acting transitively on spacelike hypersurfaces 53 but here the gravitational field is

dependent on the coordinates t and x. A consequence of the positional dependence

in the metric functions is that the integration process is much more complicated. In

§3.2 we consider the geometry of the spacetime of the above metric. We give the

generators of the Lie algebra of Killing vectors and the positive structure constants.

The conformal Killing equation is given in the form of a coupled system of ten first

order, linear partial differential equations in §3.3. We obtain the general conformal

Killing vector X and the conformal factor </> by solving this system of equations

subject to integrability conditions. These conditions place consistency requirements

on the metric functions A(t) and B(t). It is interesting to observe that even though

the gravitational field depends also on position it is still possible to integrate the

coupled system to obtain the conformal Killing vector X. However the x dependence

of the metric functions complicates the integrability conditions as stated in §3.4. We

are unable to fully integrate these conditions as in chapter 2. In §3.5 we obtain
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the Killing vectors as a special case from our general solution. Also we find the

homothetic vector from the general conformal Killing vector with <p as a nonzero

constant. The existence of a homothetic vector severely restricts the metric functions

A(t) and B(t). We investigate the case of the existence of a special conformal vector.

3.2 Spacetime Geometry

In this chapter we consider another spatially homogeneous and anisotropic spacetime

w~ich is described by the metric

(3.1 )

with coordinates xa == (t,x,y,z). The spacetime (3.1) is called class A3 in the

MacCallum (1980) classification scheme and is referred to as type V by Petrov (1969).

The metric (3.1) is another example of a locally rotationally symmetric spacetime

(see §2.2). The difference from (2.1) is that the gravitational field here depends on

the spacelike coordinate x, via the exponential factor e2x
, in addition to the timelike

coordinate t. As in chapter 2 a G4 of motions is admitted which acts transitively

on spacelike hypersurfaces 83 . There are simply transitive subgroups G3 acting on

hypersurfaces 83 of Bianchi type V and V IIh • Also there is a multiply transitive

G3 subgroup of Bianchi type V I IQ acting on 82 , The Lie algebra of Killing vectors

{XI, X 2 , X 3 , X 4 } is spanned by

a a a
--y--z­
ax ay az

a
ay
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a
az

a a
X4 = y- -z-az ay

For the above Lie algebra we obtain the following positive structure constants from

equation (1.23):

1

1

3.3 Conformal equation

For the metric (3.1) the conformal equation (1.22) reduces to the following system

of ten equations:

(3.2)
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(3.3)

(3.4)

(3.5)



AXO +AX~ A</> (3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

where we follow the notation of chapter 2. The equations (3.2) - (3.11) are a coupled

system of ten first order, linear partial differential equations which we have to inte-

grate to obtain X == (XO,Xt,X2,X3
) and </> in terms of the metric functions A(t)

and B(t). A difference between (3.2) - (3.11) and (2.2) - (2.11) is the presence of

the exponential factor e2x
• It seems as though this factor would greatly complicate

the integration procedure. However it turns out that the integration process closely

parallels that of §2.3. We present all steps in the integration process for completeness

and consistency. As in chapter 2 we take combinations of derivatives of (3.2) - (3.11)

to yield identities that will simplify the integration process.

The derivative of (3.5) with respect to y is subtracted from the derivative

of (3.4) with respect to z to obtain X;t - X;t == O. This result together with the

derivative of (3.10) with respect to t yields the identities

(3.12)
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(3.13)

A combination of the derivative of (3.7) with respect to z and the derivative of (3.8)

with respect to y gives X;x - X;x = o. This result and the derivative of (3.10) with

respect to x yields

(3.14)

(3.15)

The equations (3.12) and (3.14) imply that X; is a function only of y and z. Similarly

(3.13) and (3.15) imply that X; is also a function only of y and z. Differentiating

(3.4) with respect to z and using (3.12) gives

Then equation (3.2) differentiated with respect to y and z implies that

</>yz = 0

(3.16)

(3.17)

Now equation (3.7) gives X;z = 0 where we have utilised (3.14). Differentiate

equations (3.9) and (3.11) by both y and z to obtain the equations

(X:)zz = 0

where we have used (3.16), (3.17) and X;z = o.

Integrating (3.18) and (3.19) gives

X; = A(z)y +B(z)
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x~ == C(y)z +V(y) (3.21 )

where A, B, C and V are functions of integration. By an abuse of notation we use

the same symbols for the functions of integration as in section §2.3 - this should not

lead to any ambiguity. On substituting (3.20) and (3.21) into (3.10) we obtain

A(z)y + B(z) +C(y)z +V(y) == 0

which necessarily implies

A(z) az +(3

B(z) -,z + <5

C(y) -ay +,

V(y) == -(3y - <5

where a, (3" and <5 are constants. We substitute these results into (3.20) and (3.21)

and integrate to obtain the components

(3.22)

(3.23)

where £ and F are functions of integration. Note that (3.22) and (3.23) have the

same form as (2.22) and (2.23).
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Differentiating (3.9) and (3.11) by y, differentiating (3.10) by z, and form-

ing a sum gives an equation with X 2 as the dependent variable:

(3.24)

Similarly, differentiating (3.9) and (3.11) by z, differentiating (3.10) by y, and forming

a sum gives an equation in X3:

(3.25)

The function £(t, x, y) is found by substituting (3.22) into (3.24) to obtain the dif-

ferential equation

£yy +QY -, = 0

which has the solution

£(t,x,y) = _~Qy3 + ~,y2 + yQ(t,x) +1i(t.x) (3.26)

where Q and 1i result from integration. Similarly we find F( t, x, z) by substituting

(3.23) into (3.25) to obtain

Fzz - QZ - f3 = 0

which has the solution

F(t, x, z) = ~QZ3 + ~f3z2 + zI(t, x) + :J(t, x) (3.27)

where I and :J are functions of the integration process. Now the difference of (3.9)

and (3.11) yields

(3.28)

We obtain the result

Q=I
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by substituting (3.22) and (3.23) in (3.28), and using (3.26) and (3.27). Thus equa­

tions (3.22) and (3.23) take the forms

X 2 = ! ayz2+ z((3y +8) +!, (y2 - z2) - ~ay3 + yQ +1i (3.29)

where the components X 2 and X 3 are expressed in terms of the integration functions

Q(t, x), 1i(t, x) and J(t, x). We note that up to this stage the results are similar to

the case of the metric (2.1) in chapter 2. The exponential factor e2x of the metric

(3.1) has an influence in the remainder of the calculation. Also note that the y and

z dependence of the components X 2 and X 3 of X have been completely determined.

We have to find the remaining components XO, Xl of X, and <p.

Substituting (3.29) into (3.4) yields the component

XO = e2X B2(!y2Qt+y1it)+K(t,x,z) (3.31 )

where K is a function of integration. By substituting (3.30) and (3.31) into (3.5) we

obtain the function K:

K(t, x, z) = e2xB2(~z2gt + zJt) + £(t, x)

with £ being a function of integration. Therefore (3.31) can be written as

xO = ~e2xB2gt(y2 +Z2) +e2xB2(y1it + z:lt) +£

We now substitute (3.29) into (3.7) to obtain the component

Xl = _e2x (~) 2 Oy2!1x +y1ix) +M(t, x, z)
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where the function M results from integration. The equations (3.30), (3.33) and

(3.8) give the following restriction of M:

with N being a function of integration. Thus (3.33) becomes

Xl = _~e2" (~) 2 g,,(y2 +Z2) _ e2" (~) 2 (y1i" + z:J,,) +N (3.34)

Hence (3.32), (3.34), (3.29) and (3.30) give Xo, Xl, X 2 and X 3 respectively. With

these forms of XO,XI ,X2 and X 3 equations (3.4), (3.5), (3.7), (3.8) and (3.10) are

satisfied. It remains to consider equations (3.2), (3.3), (3.6), (3.9) and (3.11). These

equations will restrict the functions of integration, the metric functions and the

conformal factor <p.

By substituting (3.32) and (3.34) into (3.3) we obtain the following inte­

grability conditions:

(3.35)

o

o

(3.36)

(3.37)
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We obtain the conformal factor

from (3.2) and (3.32). Equation (3.6) gives the following set of integrability condi-

tions

A-.e - .et +Nx == 0
A

(3.40)

(3.41 )

(3.42)

(3.43)

where we have used the equations (3.32), (3.34) and (3.39). Equation (3.9) together

with (3.29), (3.32), (3.34) and (3.39) gives the integrability conditions

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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Note that (3.11) also gives the integrability conditions (3.44) - (3.48). Equations

(3.44) and (3.45) imply that

Thus (3.44) and (3.45) are equivalent.

0'=0 (3.49)

Thus the system (3.2) - (3.11) of partial differential equations has the

general solution (3.29), (3.30), (3.32), (3.34) and (3.39) subject to the integrability

conditions (3.35) - (3.38) and (3.40) - (3.49). Collecting these results we have the

following solution set with the integration functions g, 1i, £', :J and N being functions

of t and x only:

(3.50)

(3.51 )

(3.52)

(3.53)

subject to the following integrability conditions:
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( 2)· (B) 2~ 2x 0B 1ft t - B B1ft + A It-x - e- , -

2)· (B) 2 ,., 2x a 0(B :It t - BB:lt + A vx - e- fJ -

(3.57)

(3.58)

(3.59)

(3.60)

(3.61 )

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

Hence the conformal Killing vector X given by (3.50) - (3.53) with the conformal fac­

tor (3.54) restricts the metric functions A(t) and B(t) by the integrability conditions

(3.55) - (3.66).
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3.4 Integrability Conditions

The integrability conditions (3.55) - (3.66) comprise a coupled system of partial

differential equations for the functions of integration g, 1t, :J, £ and N which severely

restrict the metric functions A(t) and B(t). We have not been able to analyse the

system of integrability conditions in a comprehensive manner as for the metric (2.1) in

§2.4. The system (3.55) - (3.66) is more complicated than the corresponding system

(2.55) - (2.66) of chapter 2, and we have not succeeded in particular to integrate

(3.55), (3.56) and (3.57) to obtain g, 1t and:J. There are particular solutions to

this system which we do not pursue here. These need to be taken into account

when considering a conformally symmetric gravitational field satisfying Einstein's

field equations (1.19).

3.5 Special cases

We obtain the Killing vectors of the spacetime (3.1) from the general conformal

Killing vector (3.50) - (3.53) by setting <p = 0 in (3.54). This gives the following set

of conditions
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Lt = 0

These together with the integrability conditions (3.55) - (3.66) imply

9 = constant

1-{ - constant

:J constant

N -9

L 0

(3 0

, = 0

Hence the components of the general Killing vector X are given by

XO = 0
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so that we have

Now we can obtain the Killing vectors given in §3.2 from X by appropriate choices

of Q, 1i, J,N and 8.

The homothetic Killing vector of the metric (3.1) is obtained as a special

case of (3.50) - (3.53) by setting </> to be a nonzero constant in (3.54). Thus from

(3.54) we obtain the following conditions

which together with the integrability conditions (3.55) - (3.66) imply

Q == constant

1i - constant

J constant

N constant
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£ <pt + t

f3 0

/ 0

A <p
- --
A <pt + t

B <p-9-N
-
B <pt + t

with t being a constant. Therefore the existence of a homothetic Killing vector

imposes the following restrictions on the gravitational field:

A = c(<pt + t)

B = ((<Pt + t)(</>-9-Af)/</>

where c and ( are constants. The components of the homothetic Killing vector X

are in this case given by
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so that

x

x 3 -8y +Qz +.1

a a a a
(<Pt + f) at +N ax + (8z + Qy + 1-l) ay + (-8y + Qz + .1) az

is the general homothetic Killing vector.

The special conformal Killing vector is obtained from (3.54) with the re-

strictions

<Pjab 0

<p,ab - reab<p,e == 0

on the conformal factor <p. These two equations provide a further constraint on <p in

terms of the following ten partial differential equations:

<Pxt
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o

As in chapter 2 the above system of equations has to be solved together with the

integrability conditions (3.55) - (3.66) to obtain the special conformal vector X. On

analysing this system of ten equations we however find that we must have

</> == constant

so that the conformal vector X again reduces to a homothetic Killing vector (see §2.5).

Hence we conclude that the spacetime (3.1) also does not admit a nontrivial special

conformal vector. This is another example of a spacetime satisfying the theorem of

Coley and Tupper (1990a): orthogonal synchronous perfect fluid spacetimes, other

than Robertson-Walker, admit no proper inheriting conformal Killing vector.

66



4 Homothetic symmetries in models with metric

ds2 = -dt2 +A2 (t)dx2 +B2 (t)dy 2 +C2 (t)dz2

4.1 Introduction

In the previous two chapters we have studied the conformal symmetries of spacetimes

with four Killing vectors. In this chapter we consider a gravitational field with less

symmetry, namely a spacetime with three Killing vectors. We briefly analyse the

homothetic symmetries of the Bianchi I spacetime which is a generalisation of the

locally rotationally symmetric metric studied in chapter 2. The metric and the Lie

algebra of Killing vectors of the Bianchi I spacetime are given in §4.2. The ten

components of the conformal Killing equation (1.22) are listed in §4.3. This system

is integrated for a constant conformal factor 4> subject to integrability conditions on

the three time-dependent metric functions. In §4.4 the general homothetic Killing

vector admitted by a Bianchi I spacetime is obtained and the integrability conditions

are solved to generate the explicit functional dependence of the metric functions.

The existence of a homothetic symmetry severely restricts the functional form of

the metric functions when the conformal factor is a nonzero constant. We have not

succeeded in fully integrating the conformal Killing equation in the general case when

the conformal factor is dependent on the spacetime coordinates t, x, y and z.
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4.2 Spacetime Geometry

The spatially homogeneous and anisotropic spacetime described by the metric

(4.1 )

is a generalisation of the locally rotationally symmetric spacetime (2.1). This space-

time is often used in the study of anisotropic cosmological models. The given metric

is a Bianchi I spacetime (Kramer et a11980) with a G3 of motions. The Lie algebra

of Killing vectors {Xl, X 2 , X 3 } is spanned by

8
8x

As this Lie algebra is Abelian all the structure constants vanish. For a detailed

analysis of the group structure and classification of Bianchi cosmologies see Ellis and

MacCallum (1969) and Ryan and Shepley (1975).

4.3 Conformal equation

For the metric (4.1) the conformal equation (1.22) reduces to the following system

of ten equations:

xO
t
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A2X 1 _ Xo
t x o

o

o

A</>

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

B</>

o

(4.9)

(4.10)

(4.11 )

The equations (4.2) - (4.11) are a coupled system of ten first order, linear partial

differential equations. This system is more complicated than those of chapters 2 and

3 because the gravitational field has less symmetry. We have only managed to fully

integrate the system (4.2) - (4.11) in the case where </> is a nonzero constant and

thereby obtained the general homothetic Killing vector admitted by the metric (4.1).
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In the remainder of this section we provide the explicit argument that leads to the

homothetic vector X.

On subtracting the derivative of (4.7) with respect to z from the derivative

of (4.8) with respect to y the equation B 2X;x - C2X;x = 0 is obtained. This result

together with the derivative of (4.10) with respect to x yields the identities

(4.12)

(4.13)

Differentiating (4.11) by x, y and (4.9) by x, z we obtain

(4.14)

(4.15)

where we have used (4.13) and (4.12). Also (4.2) implies that

(4.16)

Now (4.14), (4.15) and (4.16) imply that X2 is a function of x only. Using this fact

and integrating (4.2) gives

XO = 4>t +A(x) + B(y, z) (4.17)

where A and B are functions of integration. Now differentiating (4.3) by y, (4.4) by

x and using (4.14) we obtain
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Thus X: and X; are independent of t. Hence (4.7) will be satisfied only if the

following is valid

o (4.18)

(4.19)

Similarly by differentiating (4.3) with z, (4.5) with x and using (4.15) we obtain the

equations

Thus X; and X; are independent of the variable t. Hence (4.8) will be satisfied only

if we have

o

Then equations (4.17), (4.6) and (4.11) give the results

(4.20)

(4.21 )

where we have used (4.18) and (4.20). Therefore equation (4.17) is reduced to the

form

XO <pt +A(x) +a

71



where Q' is a constant. The constant Q' is redundant and this equation may be written

in the form

where we have set C(x) = A(x) + Q'.

</>t +C(x) (4.22)

We obtain from equations (4.4), (4.5) and (4.22) the following two restric-

o

x: = 0

(4.23)

(4.24)

We observe from (4.23) and (4.24) that X 2 and X 3 are independent of t which means

that (4.10) is valid only if

o (4.25)

(4.26)

Thus we have from (4.19), (4.23) and (4.25) that X 2 is a function only of y. From

(4.20), (4.24) and (4.25) we note that X 3 is dependent only on z. Of course it is clear

from the above that at this stage XO and Xl are functions both of t and x. Thus

far we have integrated the six equations (4.2), (4.4), (4.5), (4.7), (4.8) and (4.10). It

remains to integrate (4.3), (4.6), (4.9) and (4.11) of the original coupled system (4.2)

- (4.11).

Taking into account (4.22) we rewrite (4.3), (4.6), (4.9) and (4.11) as

(4.27)
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(4.28)

(4.29)

(4.30)

From the system (4.27) - (4.30) we observe that

C = constant

xl 0

Thus equation (4.27) is identically satisfied and the components of the general Killing

vector X are given by

<pt +C
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where f3", 8, f, £ and ( are constants of integration.

(4.33)

(4.34)

We note at this stage that from the above we may obtain the components

of the Killing vector X:

if we set </J == 0 and do not place any restrictions on the metric functions. With these

components we observe that the coupled system (4.2) - (4.11) is identically satisfied.

The general Killing vector X of the spacetime (4.1) is represented by

a a ax == ,-+f-+(-ax ay az

which contains the Lie algebra of Killing vectors given in §4.2.

If </J =I- 0 and on taking into account the components (4.31) - (4.34) we find

that the equations (4.28) - (4.30) may be expressed as

A
A

</J-f3
</Jt +C
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B 4>-h
-
B 4>t + C

C 4>-6
-
C 4>t + C

(4.36)

(4.37)

which are consistency conditions for the integrability of the coupled system of partial

differential equations (4.2) - (4.11).

4.4 Homothetic Vector

In the above we have generated the general solution of (4.2) - (4.11) which is given

by the system of equations (4.31) - (4.34) for the components XO,Xl,X 2 and X 3 of

the vector X, with nonzero constant homothetic factor 4>, subject to the integrability

conditions (4.35) - (4.37). The general homothetic vector admitted by the metric

(4.1) is of the form

The equations (4.35) - (4.37) govern the functions A(t), B(t) and C(t). These equa-

tions are easily integrated to obtain the following restrictions on the metric functions

generating the gravitational field:

A = 7]( 4>t +C)(r/J-f3)/r/J

B B( 4>t +C)(r/J-6)/4>
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where 77, () and {) are constants. Therefore the existence of a homothetic symmetry

severely restricts the functional form of the metric functions A(t), B (t) and C(t). The

Einstein field equations (1.19) will further restrict the behaviour of the gravitational

field.

To obtain the general conformal vector X requires the general solution of

the coupled system (4.2) - (4.11) where <p is no longer a constant but dependent

on the spacetime coordinates t, x, y and z. This is much more complicated than

the corresponding situations in chapters 2 and 3 because of the appearance of a

new metric function C(t). This is related to the fact that the metric (4.1) has less

symmetry than the metrics (2.1) and (3.1), ie. only three Killing vectors in contrast

to the four Killing vectors of chapters 2 and 3.
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5 Conclusion

In this thesis we have analysed the conformal symmetries in a class of anisotropic

spacetimes that are spatially homogeneous and locally rotationally symmetric. We

have also studied the homothetic symmetries of a Bianchi I spacetime. These space­

times are often utilised as anisotropic cosmological models. The results obtained in

this thesis are original and we have not found any reference to conformal symmetries

on locally rotationally symmetric spacetimes in the literature. It should be clear from

the results obtained that the study of conformal symmetries in general relativity is

interesting, a fertile area of research and much work remains to be done in this field.

In chapter 1 we provided those aspects of differential geometry and general

relativity necessary for later chapters. We impose the condition of a conformal sym­

metry on the spacetime manifold. The form of the metric connection and associated

quantities is restricted by a conformal symmetry. These properties are explicitly

given in chapter 1.

The conformal symmetries of a class Ala (MacCallum 1980) locally rota­

tionally symmetric spacetime were comprehensively analysed in chapter 2. The con­

formal Killing equation was fully integrated to obtain the general conformal Killing

vector X in class AIa models subject to integrability conditions on the metric func­

tions. These conditions were analysed in detail and we found that the functions of

integration are constants or restrict the metric functions by differential equations.
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The Killing vectors are contained in the general conformal solution. We obtain the

general homothetic vector as a particular case from the general conformal vector.

The functional dependence of the metric functions was determined explicitly from

the integrability conditions for the homothetic vector. We also showed in a class AIa

spacetime that there is no nontrivial special conformal vector (see also Coley and

Tupper (1990a)).

Another anisotropic conformally symmetric spacetime was analysed in chap­

ter 3. This spatially homogeneous spacetime is of class A3 (MacCallum 1980) with

a G4 of motions acting on spacelike hypersurfaces 33. We were able to successfully

solve the conformal Killing equation to obtain the general conformal Killing vector

X and the conformal factor which were subject to integrability conditions. It is in­

teresting to note that the integration of the coupled system was not hampered by the

fact that the conformally symmetric gravitational field is also dependent on position.

However this positional dependence in the metric functions complicates the form of

the integrability conditions. We could not comprehensively analyse these conditions

as in §2.4. Nevertheless we obtained the Killing vectors as a special case from the

general solution. We found the homothetic vector from the general conformal Killing

vector for a nonzero constant conformal factor. The explicit functional form of the

metric functions is determined for the existence of a homothetic vector. Also we

showed that there is no nontrivial special conformal vector in the class A3 spacetime

(see §2.5 and Coley and Tupper (1990a)).

In chapter 4 we studied a Bianchi I spacetime which possesses less sym­

metry than those spacetimes in chapters 2 and 3. We could not solve the general

conformal Killing equation (1.22) in this spacetime. However we have integrated this

coupled system of equations for a constant conformal factor and have generated the

78



homothetic symmetries of the Bianchi I spacetime. We solved the integrability condi­

tions to explicitly determine the functional dependence of the three time-dependent

metric functions. A homothetic symmetry severely restricts the metric functions in

this spacetime.

We have analysed the conformal symmetries of a class of locally rotation­

ally symmetric spacetimes and the homothetic symmetries of a Bianchi I spacetime.

This work may be extended by analysing the conformal symmetries of other locally

rotationally symmetric spacetimes, other Bianchi spacetimes and more models of

astrophysical and cosmological significance. Also general results on conformal sym­

metries in general relativity need to be established using the properties (1.24) ­

(1.29) on the metric connection and associated quantities (see for example Garfinkle

(1987) and Sharma (1988)). We may also consider more general symmetries than

conformal symmetries on spacetime manifold. Katzin et al (1969) consider curvature

collineations in general relativity. We have not analysed the Einstein field equations

with a conformal symmetry in locally rotationally symmetric spacetimes. This is an

area for further research. For solutions to spherically symmetric gravitational fields

with a conformal motion the reader is referred to Dyer et al (1987) and Maharaj et

al (1991).

We hope that we have demonstrated that the study of conformal symme­

tries is a fertile area of research and warrants further investigation.
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