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Abstract

Understanding the propagation of Very Low Frequency radio waves in the waveguide formed

between the surface of the Earth and the lower edge of the ionosphere is of great interest and

practical use. Very Low Frequency radio waves serve as a useful tool to investigate the ionosphere

and different factors influencing it, most notably solar conditions and events. In this thesis,

two methods of simulating the propagation of narrowband Very Low Frequency radio waves are

presented, namely Waveguide Mode Theory and the Finite-Difference Time-Domain method. The

principles behind these methods are introduced and the advantages and drawbacks of each are

discussed. Wait’s two ionospheric parameters, H ′ and β, are used in both cases to simulate the

electron density and conductivity of the lower ionosphere; probably the most important factors

in this field of study. The two models are first used to investigate some theoretical aspects and

concepts. Applications of the models are then illustrated through the use of data from UltraMSK

and the DEMETER satellite.
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Chapter 1

Introduction

Very Low Frequency (VLF) radio waves fall within the frequency range of 3 to 30 kHz, with

corresponding wavelengths of 100 to 10 km. VLF wave propagation has been a field of interest

since Marconi performed the first Trans-Atlantic radio broadcast in 1901. The concept of the

Earth-Ionosphere Waveguide (EIWG) arose after it was realised that a normal ground wave could

not account for the observed field strength [Green, 1974]. Government, and especially the mili-

tary, became aware of the importance of understanding radio wave propagation for its use as a

communications tool. It was later recognised that this is especially relevant at VLF, since these

frequencies could be used to communicate with submerged submarines. This fact alone was a

blessing for scientists as the maritime super powers built massive VLF transmitters around the

world to communicate with their submarines. Being able to communicate with submarines and

help them navigate was a major driving force behind understanding radio wave propagation in

the EIWG. During the time since the Cold War, several methods have been developed to under-

stand how these radio waves propagate and to predict their behaviour. Since the original, hostile

motivation for the study of VLF propagation, the focus has shifted to more peaceful and scientific

goals. It was realised that these waves could be employed as an incredibly useful tool to study

the ionosphere and the great many factors that influence it. Simulated and experimental results

have been used to investigate many of these factors, ranging from events on the Sun such as solar

flares, coronal mass ejections and solar proton events to terrestrial phenomena like earthquakes.

1.1 Outline

This thesis looks at modelling narrowband VLF radio wave propagation in the EIWG. The focus

will be on two methods, namely Mode Theory [Wait, 1962] and the Finite-Difference Time-Domain

(FDTD) method [Taflove and Hagness, 2005], which are discussed in Chapter 2. Firstly, a Mode

Theory model is used in Chapter 4 to gain an understanding of the different factors that determine

properties of the waveguide and how these affect propagation. It also allows for the theoretical

1



CHAPTER 1. INTRODUCTION 2

investigation of other waveguide properties such as attenuation rates and refractive index profiles.

The effects of a solar flare are examined and explained in terms of temporal changes in the

modal interference pattern due to perturbations in the electron density profile from the enhanced

solar radiation. To validate the Mode Theory simulation, results are compared to data from the

Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER)

satellite. The FDTD method is introduced and examples of propagation in free space are shown

in Chapter 5. The FDTD model is then used to illustrate basic waveguide propagation as well as

propagation in a plasma. Changes in the interference pattern due to waveguide parameters and

observation height are examined. Results from this model are then compared to the DEMETER

data.

1.2 History of Ionospheric Modelling Techniques

Over the last 50 to 60 years, there has been a great amount of effort put into modelling the

ionosphere and radio wave propagation in the EIWG. The initial attempts at explaining wave

propagation used Mode Theory. This approach delivered satisfactory results and has become

more advanced over the years, taking more complex effects into account. Mode Theory was the

favoured choice of modelling and explaining observations until the advance of computers and the

advent of the FDTD method allowed for more intensive numerical simulations. Both the FDTD

method and Mode Theory are still widely used today, with each having its own advantages and

drawbacks.

1.2.1 Waveguide Mode Theory

Without a doubt, James R. Wait was the most prolific researcher in the field of VLF propagation,

publishing numerous papers over more than 50 years [Wait, 1960, 1964; Wait and Spies, 1965].

He understood that certain situations required a numerical approach while he analytically solved

many fundamental propagation problems. Many of today’s methods are based on or derived

from work presented in the classic book of Wait [1962], including the Mode Theory technique

employed in this thesis. Wait, as well as K. G. Budden both pursued the Mode Theory approach

independently but ended up with essentially equivalent formulations [Wait, 1962; Budden, 1962].

Budden’s work formed the basis for a numerical model developed by the U.S. Navy. Mode

Theory has two obvious advantages: firstly, for narrowband propagation it is essentially an exact

description. Secondly, once the full set of modes has been calculated, the field can be easily

calculated at any point in the waveguide. One of the drawbacks of Mode Theory is that it is

difficult to deal with a change in the waveguide boundaries. At such an interface, mode conversions

need to occur. This is the main factor determining the Mode Theory simulation time: it scales

linearly with the number of waveguide slabs and hence mode conversions.
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1.2.2 The FDTD Method

Although Mode Theory is fast, allows field calculation at any point, and can provide very good

results, FDTD is generally considered the future of modelling propagation in the EIWG. This is

due to its ability to generalise and customise the problem without major changes to the code. The

fact that computational power is rapidly increasing is another reason for FDTD becoming the

popular choice. The FDTD method was first proposed by Yee [1966], although the acronym FDTD

was not used then. Yee [1966] introduced the original concept of discretising the fields through

finite differences and placing the electric and magnetic field components at half integer indices

on the grid, although only perfectly conducting surfaces could be implemented. The acronym

FDTD was first coined by Taflove [1980] who validated FDTD models of sinusoidal steady-state

electromagnetic wave penetration into a metal cavity. Mur [1981] released the first numerically

stable absorbing boundary condition for Yee’s grid. This boundary condition was improved when

Liao et al. [1984] released their version which is based on the space-time extrapolation of the

field adjacent to the boundary. Berenger [1984] produced the Perfectly Matched Layer (PML),

considered to be the most advanced and successful method of implementing boundary conditions.

The Nearly Perfectly Matched Layer (NPML) which was proposed by Cummer [2003], is used in

this work and discussed in further detail. One of the advantages of the FDTD method which makes

it very popular is that it is a technique that has an incredibly large range of applications. Some of

the interesting fields of study where the FDTD method has been applied include wireless personal

communication devices, detection of early stage breast cancer using ultrawideband microwaves,

biophotonics and propagation in the EIWG. Due to the FDTD method being a time domain

method, it allows a wide range of frequencies to be modelled. This is of great interest in this

discipline as it allows for the study of the propagation of broadband electromagnetic energy

released during a lightning stroke. At the same time, it is very well suited to investigate the

propagation of narrowband signals emitted from VLF transmitters around the world. One of the

motivations for using a FDTD method to study propagation in the EIWG is that it inherently

calculates any evanescent waves which Mode Theory does not account for.

1.3 The Ionosphere

The ionosphere is the region in the atmosphere extending from around 60 km to more than 1000

km altitude where there are a significant number of free electrons. These free electrons arise from

radiation, mostly solar in origin, ionising atmospheric neutral molecules. Due to the complicated

distribution of species in the atmosphere as well as the broad spectrum of ionising radiation, the

free electron density profile can be categorised into three layers, known as the D, E and F layers.

Figure 1.1 shows the electron density profile in these three regions, with the D-region the lowest

in altitude, starting from around 60 km in altitude. This extends up to an altitude of about 90
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to 100 km where the E-region starts, here there is a dramatic jump in the difference between day

time and night time. From an altitude of around 200 km, the F-region starts, splitting up into

the F1- and F2-layers during the day. Figure 1.1 also shows the variation in electron density due

to the solar cycle, which has a stronger influence at higher altitudes.

D-region:

The D-region of the ionosphere is mainly responsible for the reflection of VLF radio waves [Nicolet

and Aikin, 1960]. These (partial) reflections take place in the D-region since the electron density,

and therefore refractive index, changes dramatically within the space of one wavelength. It is the

lowest layer in the ionosphere, ranging from around 60 to 90km and has the lowest free electron

density of 102 to 104 electrons cm−3. The main source of ionisation is Lyman-α hydrogen radiation

(Vacuum UV/ Far UV, λ = 121.6nm) from the Sun ionising atmospheric neutral NO. Since the

main source is solar in origin, the D-region effectively disappears at night, except at very high

latitudes. This also means that the D-region height has a strong dependence on season and solar

cycle. Galactic cosmic rays and Lyman-α radiation scattered off the geocorona still provide some

ionisation at D-region altitude when there is no sunlight [Thomson et al., 2007]. It is the D-region

that creates the extra attenuation experienced by VLF waves during the day compared to at

night. The fact that VLF waves are reflected from the D-region makes them a very useful tool for

studying what is otherwise a very difficult region to investigate. It is too low for satellites since

the air is too dense leading to drag on the satellite, and is too high for balloons [Cheng et al.,

2006; Han and Cummer, 2010]. Rocket borne measurements are possible and provide accurate

results. The problem with rockets is that they are expensive, and provide once off localised data,

meaning they are inappropriate for observing diurnal and seasonal variations in the ionosphere.

E-region:

The E-region is the middle layer of the ionosphere and extends from around 90 to 140 km. It is

mostly produced from soft X-rays (110nm) and far UV radiation ionising molecular oxygen (O2).

The free electron density here is about 10 to 103 cm−3 . It is responsible for reflection of radio

waves up to a few MHz and also weakens at night due to decreased radiation.

F-region:

This layer is the highest in the ionosphere and can be split into the F1 and F2 layers in the day.

The F1 layer ranges from around 140 km to 200 km. The F2 layer is above F1 and stretches from

200 km upwards. Figure 1.1 shows that the F1 layer disappears during the night, leaving a single

F layer. The highest electron densities are found in this region and is therefore responsible for

the reflection of the highest frequency waves. The highest frequency wave will be reflected from

the region in the layer where the electron density is at a maximum. This frequency is known as

the Maximum Usable Frequency (MUF). Any frequencies above the MUF will propagate through

the ionosphere into space while all below it will be reflected.
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Figure 1.1: Ionospheric layers for day and night. Stanford AWESOME Tutorial

Figure 1.2: Example of a single Chapman layer
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1.4 Modelling: Wait’s Parameters and Chapman Layers

The ionosphere consists of many layers, leading to it being quite difficult to model mathematically.

The general idea behind modelling the ionosphere is to think of it in terms of Chapman layers

[Chapman, 1931]. Chapman considered that the density of a gas in the atmosphere decreases

with increasing height while the total solar radiation increases with altitude as it is more highly

absorbed at lower altitudes. The idea that at high altitudes, there are many photons but few

particles, while on the other hand, there are many particles but few ionising photons at lower

heights is illustrated in Figure 1.2. A single Chapman layer is applicable for a single species of gas

being ionised by a monochromatic source. Since the atmosphere is composed of many species and

solar radiation covers a very wide frequency range, the actual ionosphere can be imagined in terms

of a superposition of Chapman layers, for each gas species and for each wavelength. Summing

various Chapman profiles will lead to a realistic electron density profile as seen in Figure 1.1.

Since the work here focuses on VLF waves in the D-region, a full description based on Chapman

layers will not be needed. For VLF waves, only the lower edge of the ionosphere is of interest.

It is in this region that the electron density, Ne in m−3, increases roughly exponentially with

altitude. This means that when looking at the D-region alone, modelling the electron density

with an exponential function is appropriate. Wait and Spies [1964] proposed doing this with an

exponential profile characterised by two parameters, H ′ and β. H ′ is an ionospheric reference

height, measured in km and gives an indication of the height of the D-region. β is known as the

steepness, or sharpness, and is measured in km−1. The value of β determines the gradient of the

electron density profile. These parameters appear as follows in what is generally known as Wait’s

exponential electron density profile [Wait and Spies, 1964]:

Ne(z) = 1.43× 1013e−0.15H′+(β−0.15)(z−H′)m−3. (1.1)

where z is the altitude in km. The values of H ′ and β can vary a lot, depending on latitude,

time of day and current stage in the solar cycle. H ′ generally varies between 65 and 90 km,

with lower heights in the day time and during periods of high solar activity where the increased

solar radiation lowers the height of the D-region. H ′ will also be slightly lower at the poles due

to the increased ionisation from the solar wind that is guided down the magnetic field lines. β

tends to vary between 0.3 and 0.6 km−1 with higher values occurring when there is less radiation

incident on the ionosphere. Examples of the electron density profile under different conditions are

shown are Figures 1.3 and 1.4. Figure 1.3 shows that for a constant β, changing H ′ shifts the the

profile up or down. Figure 1.4 shows the changes in the electron density profile when H ′ is kept

constant and β changes. We see that lower values of β lead to higher electron densities below H ′

and lower densities above H ′. Another important factor that influences radio wave propagation

in the Earth-Ionosphere Waveguide is the effect of free electrons colliding with neutral molecules

[Cummer et al., 1998]. These electron-neutral collisions act as an energy sink by transferring
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Figure 1.3: Electron density profiles using (1.1) with varying height parameter, β = 0.4km−1

energy to the neutral atmosphere from free electrons originally excited by the radio wave’s electric

field. These collisions are characterised by the electron-neutral collision frequency, νe. The vertical

profile used for this is an exponential one that has become widespread and common in the field

since it was first proposed by Wait and Spies [1964] and takes the form:

νe(z) = 1.816× 1.011e−0.15zs−1 (1.2)

where z is the altitude in km.

1.5 LWPC

The U.S. Navy’s Long Distance Propagation Capability (LWPC) was developed by the Space and

Naval Warfare Systems Center in San Diego [Ferguson and Snyder, 1980; Ferguson, 1992; Morfitt,

1977]. The most current documentation of LWPC can be found in Ferguson [1998]. LWPC works

with the EIWG where the ionosphere is characterised by a user-defined conductivity profile, an

exponential profile being the default. This exponential profile is defined by Wait’s parameters,

H ′ and β. The propagation path is broken up into segments or slabs, determined by changes in

the ionosphere, ground conductivity and geomagnetic field. LWPC then uses a mode conversion

model from Ferguson and Snyder [1980] to connect the horizontal segments along the propagation

path. The most accurate method of implementing the mode conversion model is through the



CHAPTER 1. INTRODUCTION 8

Figure 1.4: Electron density profiles using (1.1) with varying steepness parameter, H ′ = 70 km

vertical integration of the radio fields at the interface between two slabs. Although LWPC has

been successfully used by many over the years, it is complicated to use and is a bit of a ”black

box”. This is one of the motivations for creating one’s own model, the inner workings are known

and can be adjusted if need be.



Chapter 2

Theory

2.1 Waveguide Theory

A waveguide is any structure that controls and directs the propagation of a wave. It has the

defining property that it has walls that reflect the waves, generally resulting in very little loss.

Consider a two dimensional parallel plate waveguide in free space with a wave propagating in the

x̂−direction with perfectly reflecting boundaries at z = 0 and z = a, as seen in Figure 2.1. The

wave vector for such a wave, incident on the boundaries at an angle θ, is given as

k = −(cos θẑ + sin θx̂). (2.1)

This waveguide theory is purely spatial and time independent. For simplicity, no exp(−iωt) shall

be included for now by effectively setting t = 0 since the following derivation is true for all times.

The electric field incident on the lower boundary at z = 0 is then given by

Ei = Eie
ik(−z cos θ+x sin θ)ŷ (2.2)

and the reflected field

Er = Ere
ik(zcosθ+x sin θ)ŷ. (2.3)

The perfectly reflecting boundary condition requires that the total field on the boundary be

zero since no energy is transmitted into the walls, E = Ei − Er = 0. Since the boundaries are

perfectly reflecting, the magnitude of the reflected field has to equal the magnitude of the incident

field, |Er| = |Ei|.
The total field E is thus

E = Eeikx sin θ(e−ikz cos θ − eikz cos θ)ŷ. (2.4)

9
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Figure 2.1: Horizontal parallel plate waveguide with incident at angle θ

or

E = 2iE sin(kz cos θ)eikx sin θŷ (2.5)

where E = Ei = Er since |Er| = |Ei|.
The exponential part at the end of (2.5) refers to the spatial portion of the wave traveling in

the z direction with wave number

kx = k sin θ =
2π

λx
. (2.6)

This gives us the guide wavelength, related to the free space wavelength, λ0 = c/f where c is

the speed of light in vacuum and f is the frequency, by

λx =
λ0

sin θ
(2.7)

so that λx > λ0 .

The sin(kz cos θ) part of (2.5) indicates this is not a traditional plane wave and has varying

amplitude depending on position in the waveguide. Implementing the boundary condition at the

upper boundary, z = a, leads to the following condition:

sin(ka cos θ) = 0 (2.8)

which is satisfied if

k cos θ =
mπ

a
for m = 1, 2, 3, ... (2.9)

From 2.6 and 2.9,

k2
x = k2 − πm

2

a2
(2.10)

For a wave-like motion to occur in the x direction as the wave travels in the waveguide, kx ∈ <,
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k2
x = k2 − πm

2

a2
> 0 so k >

mπ

a
(2.11)

where m is the mode number. For free space propagation, ω = |k|c, which gives the cutoff

frequency for propagation for the mth mode as

ωc =
mπ

c
a (2.12)

which is the minimum frequency for which kx is real. Below the cutoff frequency kx is imag-

inary, and the wave experiences exponential attenuation. Above this cutoff frequency kx is real,

and the waves will propagate. Exactly at the cutoff frequency kx = 0 so that sin θ = 0, so that

θ = 0 and

λ =
2a

m
(2.13)

which represents a standing wave with m half wavelengths between the two plates.

The phase velocity along the x direction in the waveguide is given by

vφ =
ω

kx
=

c

sin θ
> c (2.14)

while the group velocity is given by

vg = c sin θ (2.15)

since the product of the group and phase velocity is equal to the speed of light in the medium,

vgvφ = c2. (2.16)

Different types of modes can propagate within a waveguide. These are known as Transverse

Electric (TE), Transverse Magnetic (TM) and Transverse Electromagnetic (TEM) modes. The

modes that propagate in a waveguide depend on the orientation of the source relative to the

direction of propagation and the boundary conditions. When there is no wave magnetic field in

the direction of propagation, it is a TM mode, while it is TE if there is no wave electric field in

the direction of propagation. An example of the these two field orientations is given in Figure

2.2. It can be seen that if the waves originated from a vertical electric source, a TM mode

would propagate in the waveguide while a horizontal electric source would results in TE mode

propagation. A TEM mode exists when neither the wave electric nor wave magnetic fields have

components in the direction of propagation.
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Figure 2.2: TM and TE modes propagating down a waveguide. Illustration courtesy of A. B.
Collier.

2.2 Mode Theory Formulation

The mode theory approach used for this thesis is based on the description given by Wait [1962]. A

2D cylindrical coordinate system is chosen in the z−ρ plane with the surface of the Earth at z = 0

and the ionosphere at z = h being the reflective boundaries of a free space waveguide. A cylindrical

coordinate system is now used rather than a cartesian one due to the circular symmetry around

the the transmitter in the ρ− φ plane. Another reason is the solution equation is appropriate for

cylindrical coordinates, as shall be seen later. The transmitter is modelled as a vertical electric

dipole placed at the origin as shown in Figure 2.3. This model works on the assumption of a

flat Earth and sharply defined ionospheric reflection layer, with free space in between the two

boundaries. These assumptions are required to define the waveguide boundaries in the model.

Although the problem is truly spherical in nature, the approximation of a flat Earth is valid for

propagation paths shorter than the radius of the Earth [Cummer, 2000]. These are the major

approximations in the model.

For the radio waves to propagate over hundreds and even thousands of kilometres, the reflec-

tions from the waveguide boundaries have to be in phase with each other. This general reflection

condition occurs at angles where the ray crosses the waveguide twice, is reflected at each boundary

and suffers a net phase shift of 2πm [Wait, 1962]:

Rg(Cm)Ri(Cm)e−i2khCm = e−i2πm (2.17)
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where Rg and Ri are the reflection coefficients of the ground and ionosphere respectively.

Cm = cos θm and Sm = sin θm will be used for simplicity while θm represents the angle of

incidence for mode m. If no loss is assumed, the reflection coefficients of the boundaries are real,

and therefore θm will be as well. In reality, the waves propagating in the EIWG do experience loss

in the ionosphere, which has a complex refractive index as is shown in the following paragraph.

This complex refractive index results in a complex reflection coefficient, attenuating the waves

and leading to a complex angle of incidence.

The reflected fields can be imagined as fields originating from images of the original dipole

located at z = ±2h, ±4h, ... [Wait, 1962]. The reflection coefficients are seen to depend on

the angle of incidence θm, which in turn, depends on the reflection coefficients. This means that

without some approximation, it is impossible to analytically solve (2.17) for Cm. We now first

assume that the reflection coefficients for both the land and the ionosphere are independent of

the angle of incidence. Equation 2.17 reduces to one of the two following equations, depending

on the assumed values of Rg and Ri , for

Rg = +1, Ri = +1 :

2hCm = mλ (2.18)

m = 0, 1, 2, ...

and for

Rg = +1, Ri = −1 :

2hCm = (m− 1

2
)λ (2.19)

m = 1, 2, 3, ...

In reality the ionosphere is far from a perfect conductor, but treating it as a perfect magnetic

conductor and assuming it has a reflection coefficient of −1 is not a bad approximation [Wait,

1962]. The Earth on the other hand, is a good conductor, and Rg = +1 is valid initial assumption.

The height used in the reflection condition is found by looking at the complex refractive index,

n, for a wave propagating in a cold, magnetised plasma which satisfies:

n2 = 1− X

1− iZ − Y 2
s

2(1−X−iZ) ±
1

1−X−iZ (1
4Y

4
s + Y 2

c (1−X − iZ)2)1/2
(2.20)

This is known as the Appleton-Hartree equation [Budden, 1985]. The three parameters used

to define the plasma are:
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Figure 2.3: Layout of problem where the ionosphere is located at height h and the wave incident
at angle θ .

X =
ω2
p

ω2
; Y =

|ωc|
ω

; Ys = Y sin θB; Yc = Y cosθB; Z =
νe
ω

(2.21)

where νe is the electron-neutral collision frequency; ω = 2πf is the angular wave frequency;

ωp =
√
Nee2/meε0 is the plasma frequency; ωc = B0|e|/me is the electron gyro frequency; θB is

the angle between ambient magnetic field and wave vector. X and Z represent ω2
p and νe from

(1.1) and (1.2), simply scaled by ω2 and ω respectively. Y is based on the Earth’s magnetic field

which we shall assume to be constant with height, which is valid at the altitudes encountered in

VLF radio propagation in the EIWG. The + sign refers to the ordinary mode wave while the −
sign refers to the extraordinary mode. The ordinary mode wave is the component of the wave

that is polarised with its electric field component parallel to the ambient magnetic field, B0, while

the extraordinary mode wave is the component polarised with electric field perpendicular to B0.

The upper boundary of the waveguide is taken as the level where the VLF waves are (par-

tially) reflected. This happens when the refractive index changes dramatically in the space of a

wavelength. To investigate this, we look at the behaviour of (2.20). For these purposes, we shall

only consider the effect of X and Z. This is appropriate since X is the major defining parameter

of the plasma, and in the lower ionosphere, the electron-neutral collisions (Z) have more of an

effect than the geomagnetic field (Y ). Firstly, let us consider the refractive index when there are

no collisions and the magnetic field is also ignored. The Appleton-Hartree equation then reduces

to

n2 = 1−X. (2.22)

When X exceeds unity, the refractive index becomes imaginary and the wave will no longer

propagate. Physically, this means that at this point, the electron density becomes high enough

that the plasma frequency matches the frequency of the wave. This means that the Debye shielding



CHAPTER 2. THEORY 15

Figure 2.4: Using (1.1), (1.2), (2.20) and (2.21), it is seen that the refractive index changes
dramatically in the region where X = Z.

from the plasma is fast enough to block the applied electric field from the wave, stopping it from

propagating further. If Z is ignored, the altitude at which this would happen is seen in Figure

2.4 to be just above 40km (Log10(X) = 0, X = 1).

If the effect of electron-neutral collisions is to be included, Figure 2.4 shows that Z is far larger

than X at low altitudes (< 50km). This means that the electron-neutral collisions suppress the

Debye shielding, allowing the wave to propagate when X > 1. When Z = X, the electron-neutral

collision effect weakens, and no longer suppresses the Debye shielding, and the wave is reflected.

Looking at (2.20), when Z � X, the second term on the right hand side has a negligible effect,

and the refractive index stays close to one. Near Z = X, the second term grows rapidly, and

therefore so does the deviation of the refractive index from one as can be seen in Figure 2.4. The

height at which X = Z is therefore used as the height of the upper boundary of the waveguide

since this is the height at which the refractive index changes dramatically within the space of a

wavelength. Y does not have an effect since it has been assumed that the magnetic field does not

vary significantly with height at these altitudes.

This height is used in the reflection condition described in (2.19). This is then used to find

the modes, or eigenangles, but doesn’t take the complex refractive index of the ionosphere or the

surface of the Earth into account, although the effect of the surface of the Earth is far smaller.

To do this, a perturbative method is used to recalculate the eigenangles that incorporates the
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complex valued refractive indices of Earth and Ionosphere [Wait, 1962]:

Cm ∼=
π(m− 1

2) + i/(NgC̄m)

kh− in2[n2 − 1 + (C̄m)2]−1/2
(2.23)

Where C̄m is the cosine of the angle determined from the original reflection condition in (2.19)

and Ng is the refractive index of the surface of the Earth given by [Wait, 1962]:

Ng =

√
σg + iεgε0ω

iεω
(2.24)

Where σg and εg is the conductivity and dielectric constant of the surface of the Earth.

These eigenangles essentially contain all the information required for the problem, such as

the electric field at any point along the propagation path. The field for any mode for a vertical

electric dipole is known and can be described in terms of a 0-order Hankel function of the 2nd

kind, H
(2)
0 . The Hankel function is used since it expresses the solution of inward and outward

propagating waves in cylindrical coordinates. The total field at any height and distance is then

calculated by summing all the contributions of the different modes [Wait, 1962]:

Ez(ρ, z) =
µ0ωIds

2h

∞∑
m=1

S2
mH

(2)
0 (kSmρ)fm(z) (2.25)

Where I is the current and ds the length of the radiating antenna. For the sake of this study,

this can be taken as an arbitrary constant and will not be mentioned again. Sm is calculated

from Sm =
√

1− C2
m and ω is the angular frequency of the wave in question. (2.25) says that

the total field at any point in the waveguide is dependent the contributions from different modes,

and that each mode’s contribution is dependent on the frequency, distance from source, height in

waveguide and incidence angle. The number of modes m determines the level of accuracy, with

6-8 normally being more than sufficient for practical uses in this field where the maximum value

of ρ will be on the order of a few thousand km. This was confirmed by comparing the results

using 8 modes and 20 modes under a variety of waveguide parameters, and finding no significant

difference. From this it was concluded that 8 modes will be set as the practical limit used.

Here fm is an additional height gain function that allows for the field to be calculated at any

height in the waveguide and takes the form [Wait, 1962]:

fm(z) =
eikCmz +Rg(Cm)e−ikCmz

2[Rg(Cm)]1/2
(2.26)

This form of fm assumes that the source is at the surface of the Earth and also takes the effect

of the conductivity of the surface of the Earth into account, such as with (2.23).

Sm, H
(2)
0 and fm are all complex values, therefore each having influencing the amplitude and

phase of each mode propagating in the waveguide. The phenomenon of modal interference is due
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to the interaction of the phases of the different modes.

2.3 The FDTD Method

The FDTD method is one of the primary computational electrodynamic modelling techniques and

belongs to the general class of grid-based differential time-domain numerical modelling methods.

Time-dependent versions of Maxwell’s equations in partial differential form are discretised using

a central differencing scheme. After electric and magnetic field equations are discretised, they are

placed on a lattice grid, with one of the fields shifted so that there is a half a grid step in between

an electric and magnetic field component. This is done for both the spatial and temporal index

of the electric and magnetic fields and allows for the use of a Leap-Frog time marching scheme

as illustrated in Figure 2.5. Additionally, to successfully model electromagnetic propagation,

other aspects have to be included or considered. These include the implementation of materials

with non-zero conductivity and the effects of a magnetised plasma. This can either be done by

inherently incorporating the effects onto the grid by taking them into account when discretising

Maxwell’s equations or by implementing regions where the fields are calculated using different

equations. These aspects of the FDTD method as well as the use of an absorbing region at the

edges of the computational domain will now be discussed in further detail.

2.3.1 Finite Differencing and Grid Allocation

Finite differencing is the method applied to transforming the derivatives of the fields in Maxwell’s

equations from the continuous to the discrete. It is based on the definition of the derivative but

is a numerical approximation, which is important to remember for stability and accuracy. The

derivative of a function, f(x), around a point, x0 can be written as

df(x)

dx

∣∣∣∣
x=x0

= lim
δ→0

f(x0 + δ
2)− f(x0 − δ

2)

δ
+O(δ2) (2.27)

Taking this into discrete form where fm = f(m∆x) assuming δ ≡ ∆x is small enough to

ignore higher order terms, this now becomes:(
∆f

∆x

)
m

=
fm+1/2 − fm−1/2

∆x
(2.28)

This is the basis of the finite differencing method and can be applied to any set of differential

equations such as those governing electromagnetic wave propagation as shall now be illustrated

following the initial procedures of Yee [1966] and a more recent, complete description of Taflove

and Hagness [2005].

Consider two of Maxwell’s equations, namely the Maxwell-Faraday and Ampere’s circuital



CHAPTER 2. THEORY 18

equations:

∇×E = −µ0
∂H

∂t
(2.29)

∇×H = ε0
∂E

∂t
(2.30)

or

µ0
∂Hx

∂t
=

(
∂Ey
∂z
− ∂Ez

∂y

)
(2.31)

µ0
∂Hy

∂t
=

(
∂Ez
∂x
− ∂Ex

∂z

)
(2.32)

µ0
∂Hz

∂t
=

(
∂Ex
∂y
− ∂Ey

∂x

)
(2.33)

ε0
∂Ex
∂t

=

(
∂Hz

∂y
− ∂Hy

∂z

)
(2.34)

ε0
∂Ey
∂t

=

(
∂Hx

∂z
− ∂Hz

∂x

)
(2.35)

ε0
∂Ez
∂t

=

(
∂Hy

∂x
− ∂Ex

∂y

)
(2.36)

For simplicity, let us only consider a grid with one spatial dimension. Maxwell’s equations

(2.32, 2.36) simplify to:

µ0
∂Hy

∂t
=
∂Ez
∂x

(2.37)

ε0
∂Ex
∂t

=
∂Hy

∂x
(2.38)

By introducing the following convention

(Hy)
q
m = Hy(q∆t,m∆x) , (Ez)

q
m = Ez(q∆t,m∆x), (2.39)

And applying the finite differencing scheme, the partial derivatives in (2.37) - (2.38) can be

rewritten in discrete form as:

∂Hy

∂x
(q∆t,m∆x) ≡

(
∆Hy

∆x

)q
m

=
(Hy)

q
m+1/2 − (Hy)

q
m−1/2

∆x
(2.40)

∂Hy

∂t
(q∆t,m∆x) ≡

(
∆Hy

∆t

)q
m

=
(Hy)

q+1/2
m − (Hy)

q−1/2
m

∆t
(2.41)

and
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∂Ez
∂x

(q∆t,m∆x) ≡
(

∆Ez
∆x

)q
m

=
(Ez)

q
m+1/2 − (Ez)

q
m−1/2

∆x
(2.42)

∂Ez
∂t

(q∆t,m∆x) ≡
(

∆Ez
∆t

)q
m

=
(Ez)

q+1/2
m − (Ez)

q−1/2
m

∆t
(2.43)

Once discretised, the fields can be applied to the grid in one of two possible ways: the fields

can either be placed on the boundaries of the cells or in the centres. In this case, let the electric

field values be placed on the boundaries (integer values) and the magnetic field in the middles

of the cells (half-integer values). Apply this for both spatial and temporal indices. Let us now

combine the spatial and temporal indices by assigning the spatial index as the main argument

with the temporal index in superscript. Equations (2.37) and (2.38) then become

µ0

(Hy)
q+1/2
m+1/2 − (Hy)

q−1/2
m+1/2

∆t
=

(Ez)
q
m+1 − (Ez)

q
m

∆x
(2.44)

ε0
(Ez)

q+1
m − (Ez)

q
m

∆t
=

(Hy)
q+1/2
m+1/2 − (Hy)

q+1/2
m−1/2

∆x
(2.45)

After re-arranging, these yield

(Hy)
q+1/2
m+1/2 = (Hy)

q−1/2
m+1/2 +

∆t

µ0∆x

(
(Ez)

q
m+1 − (Ez)

q
m

)
(2.46)

(Ez)
q+1
m = (Ez)

q
m +

∆t

ε0∆x

(
(Hy)

q+1/2
m+1/2 − (Hy)

q+1/2
m−1/2

)
(2.47)

As can be seen, the temporal evolution of E (or H) at a certain point depends on the adjacent

H (or E) values from half a time step before as well as the E (or H) value at the same spatial

point, one full time step ago, this is known as the Leap-Frog scheme. The update equations and

the Leap-Frog scheme are illustrated in Figure 2.5. The idea of separating electric and magnetic

field components by half integer values and using a Leap-Frog time stepping scheme was proposed

by Yee [1966] when he first published the FDTD method. Each block is known as a Yee Cell or

Cube, depending on the dimensions. A typical 3D Yee Cube is shown in Figure 2.6. The method

used here is slightly different to the standard method as it incorporates the current density J

as well, with E and J collocated in space [Hu and Cummer, 2006; Simpson, 2010]. Subscripts i

and j will refer to x and y positions on the grid respectively. A 2D xy−grid is used where the

x components of E and J are found at (i + 1/2, j), the y components of E and J are found at

(i, j + 1/2) and Hz is found at (i + 1/2, j + 1/2) as illustrated in Figure 2.7. The time index

will be denoted by n, E and J will be at integer values of n and H at half-integer values. The

update equations are no longer based purely on Maxwell’s equation, but are now also coupled
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Figure 2.5: Ez and Hy grid layout with position on the horizontal axis and time on the vertical.

to the Lorentz equations of motion due to the incorporation of a background plasma [Simpson,

2010].

∇×E = −µ0
∂H

∂t
(2.48)

∇×H = ε0
∂E

∂t
+ J (2.49)

dJ

∂t
+ νeJ = ε0ω

2
pE + ωc × J (2.50)

where νe , ωp and ωc are the electron-neutral collision frequency, plasma frequency and electron

cyclotron frequency, respectively. The current density refers to the contribution from the electron

plasma. The full 3 dimensional vector equations are not needed since the aim is to construct a

2 dimensional model, similar to that of the mode theory model, illustrated in Figure 2.3. After

separating equations (2.48 - 2.50) into their individual spatial components and reducing the system

to 2 dimensions, the following equations emerge:

∂Hz

∂t
=

1

µ0

(
∂Ex
∂y
− ∂Ey

∂x

)
(2.51)



CHAPTER 2. THEORY 21

Figure 2.6: 3D Yee Cube. Stanford AWESOME Tutorial,

∂Ex
∂t

=
1

ε0

(
∂Hz

∂y
− Jx

)
(2.52)

∂Ey
∂t

=
1

ε0

(
−∂Hz

∂x
− Jy

)
(2.53)

dJx
dt

+ νeJx = ε0ω
2
pEx − ωcJy (2.54)

dJy
dt

+ νeJy = ε0ω
2
pEy + ωcJx (2.55)

The system is now 2 dimensional and only concerned with the z-component of the Earth’s

magnetic field because there is no Jz for the x- and y-components of the electron cyclotron

frequency to interact with. This means B0 = B0ez, and therefore ωc can be written as,

ωc =
|e|B0

me
ez and hence ωc = ωcez. (2.56)

The finite differencing scheme is then applied to the derivatives and the grid as seen in Figure 2.7

to yield the following equations
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Figure 2.7: Layout of E-J collocated grid with the Hz with each electric field or current density
component half a grid step away from a magnetic field component and viceversa.



C
H
A
P
T
E
R

2.
T
H
E
O
R
Y

23

(Hz)
n+1/2
i+1/2,j+1/2 = (Hz)

n−1/2
i+1/2,j+1/2 +

∆t

µ0

[
(Ex)ni+1/2,j − (Ex)ni+1/2,j+1

∆y
−

(Ex)ni+1/2,j − (Ex)ni+1/2,j+1

∆x

]

(Ex)n+1
i+1/2,j +

1

2
(Jx)n+1

i+1/2,j = (Ex)ni+1/2,j −
1

2
(Jx)ni+1/2,j +

dt2

ε0µ0∆y2

[
(Hz)

n+1/2
i+1/2,j+1/2 − (Hz)

n+1/2
i+1/2,j−1/2

]

(Ey).
n+1
i,j+1/2 +

1

2
(Jy)

n+1
i,j+1/2 = (Ey)

n
i,j+1/2 −

1

2
(Jy)

n
i,j+1/2 +

dt2

ε0µ0∆x2

[
(Hz)

n+1/2
i+1/2,j+1/2 − (Hz)

n+1/2
i−1/2,j+1/2

]
(ωpdt)

2

2
(Ex)n+1

i+1/2,j +

(
1 +

νedt

2

)
(Jx)n+1

i+1/2,j +
ωcdt

2
(Jy)

n+1
i,j+1/2 =

(ωpdt)
2

2
(Ex)ni+1/2,j +

(
1− νedt

2

)
(Jx)ni+1/2,j −

ωcdt

2
(Jy)

n
i,j+1/2

−(ωpdt)
2

2
(Ey)

n+1
i,j+1/2 −

ωcdt

2
(Jx)n+1

i+1/2,j +

(
1 +

νedt

2

)
(Jy)

n+1
i,j+1/2 =

(ωpdt)
2

2
(Ey)

n
i,j+1/2 +

ωcdt

2
(Jx)ni+1/2,j −

(
1− νedt

2

)
(Jy)

n
i,j+1/2
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The equations for calculating the newest values of the four E and J components can be

re-arranged and written in matrix form. This is useful as it allows for easy calculation of the

coefficients used to update the fields. The update equation for Hz remains the same and is

performed before the E and J matrix equation updates. The equations in matrix form are

A


En+1
x

En+1
y

J̄n+1
x

J̄n+1
y

 = B


Enx

Eny

J̄nx

J̄ny

+ C


∆H̄z
∆y

∆H̄z
∆x

0

0

 (2.57)

or 
En+1
x

En+1
y

J̄n+1
x

J̄n+1
y

 = A−1B


Enx

Eny

J̄nx

J̄ny

+A−1C


∆H̄z
∆y

∆H̄z
∆x

0

0

 (2.58)

where

A =


1 0 1

2 0

0 1 0 1
2

− (ωpdt)2

2 0 (1 + νedt
2 ) ωcdt

2

0 − (ωpdt)2

2 −ωcdt
2 (1 + νedt

2 )

 (2.59)

B =


1 0 −1

2 0

0 1 0 −1
2

(ωpdt)2

2 0 (1− νedt
2 ) −ωcdt

2

0
(ωpdt)2

2
ωcdt

2 (1− νedt
2 )

 (2.60)

C =


dt2

ε0µ0∆y 0 −1 0

0 dt2

ε0µ0∆x 0 −1

0 0 0 0

0 0 0 0

 (2.61)

By multiplying with the inverse of A, the update equations emerge in a way that is easy

to implement in code. If the ionospheric properties remain constant and do not have a time

dependence, these matrices only need to be calculated once. In the final update equations that

are implemented in the code (2.58), J̄ and H̄ are scaled versions of J and H, while E is not scaled.

The scaling scheme is as follows:

H̄z =
µ0∆x

∆t
Hz (2.62)

J̄ =
∆t

ε0
J. (2.63)
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The fields are scaled to avoid extremely large numbers in the coefficient matrices. This avoids

stability and accuracy problems that can arise due to the large numbers. It should be noted that

there is a coupling between the x and y components of the electric field through the interaction

of the x and y current densities with the ambient magnetic field. This means that spatial inter-

polation of the field values needs to be done to account for this since there is no specific value

for a x field at a y position and vice versa. As an example, the Ey field around Ex i+1/2,j is the

average of the four surrounding Ey values.

(Ey)
n
i+1/2,j =

1

4
((Ey)

n
i,j+1/2 + (Ey)

n
i,j−1/2 + (Ey)

n
i+1,j+1/2 + (Ey)

n
i+1,j−1/2 (2.64)

2.3.2 Nearly Perfectly Matched Layer

There are various methods of implementing boundary conditions in FDTD. The boundaries need

to be able to deal with an incoming wave without creating non-physical reflections, or at least

minimising them. There are two different boundary conditions which have been popular in the

past, namely the Absorbing Boundary Condition (ABC) and the Perfectly Matched Layer (PML),

with different variations of each. The ABC generally works by estimating the field at the edge of

the computational domain by looking at the incident fields adjacent to the boundary at previous

time steps. These kind of ABCs can work well but normally only if specifically designed for

a certain situation. The PML was first proposed by Berenger [1984] and has now become the

preferred method for most users. There are many variations of the PML but all versions effectively

act as a lossy layer that absorbs the fields traveling out, away from the simulation space. The

PML is implemented in such a way that there is no loss in the direction tangential to the interface

while there is loss in the direction normal to the interface. In a continuous space, the PML

absorber is perfectly matched to the host medium and would totally absorb the incident waves.

However, the FDTD method works in a discrete space where the electric and magnetic fields are

separated in space. This leads to discretisation errors that will result in the PML not acting

ideally. In this thesis, the version implemented is the Nearly Perfectly Matched Layer (NPML),

introduced by Hu and Cummer [2006]. The NPML is very similar to the regular PML except

that it has the additional goal of maintaining the form of the original update equations. Consider

Maxwell’s equations (2.33, 2.34, 2.35) for a system with 2 spatial dimensions, looking only at field

variations in the x and y directions. If the fields are harmonic with an exp(iωt) variation, they

can be written as:

iωHz =
1

µ0

(
∂Ex
∂y
− ∂Ey

∂x

)
(2.65)

iωEx =
1

ε0

(
∂Hz

∂y

)
(2.66)
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iωEy = − 1

ε0

(
∂Hz

∂x

)
(2.67)

For example, to apply the NPML that absorbs waves going in the x-direction, a complex

coordinate stretching is done [Cummer, 2003], in which

∂x⇒ ∂x̃ = (1 +
σx(x)

iω
)∂x. (2.68)

This coordinate conversion maintains the real part of the fields, while attenuating through the
σx(x)
iω term. Through the implementation of an effective NPML, the waves propagating away

from the computational space of the main problem will be attenuated enough as to not cause

artificial reflections when they reach the boundaries of the global computational space. The other

components of the stretched field are handled in an analogous fashion.

For the NPML region, the update equations remain the same, but the stretched fields are used

instead. The conductivity of the NPML, which is somewhat arbitrary, increases as you go deeper

in the layer. The exact values for σx(x) that will work effectively depend on the frequency of the

wave and thickness of the NPML as well as grid discretisation size. Equations (2.65) to (2.67)

now take the form

iωHz =
1

µ0

(
∂Ex
∂y
− ∂Ẽy

∂x

)
(2.69)

iωEx =
1

ε0

(
∂Hz

∂y

)
(2.70)

iωEy = − 1

ε0

(
∂H̃z

∂x

)
(2.71)

and

F̃ = (1 +
σx
iω

)−1F where F ∈ {Ey, Hz} (2.72)

The update equations used in the NPML have the same form as the original equations (2.58),

making it computationally easy to implement. The only difference being that, in the NPML

region the fields are damped by the introduction of the conductivity associated with the NPML.

2.3.3 Surface Impedance Boundary Condition

Simulating a material of finite conductivity can be challenging in FDTD if the wavelength in the

material is significantly smaller than that in free space. This would require that the grid cells

be made even smaller, which then makes the code more computationally expensive. An effective

method of avoiding this is to employ a Surface Impedence Boundary Condition (SIBC) at the
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interface. The SIBC replaces the lossy material by calculating the impedance at the boundary

and finding the relationship between the fields tangential to the interface. It is based on the

impedance equation that relates the tangential components of the electric and magnetic field at

the interface [Maloney and Smith, 1992].

E‖(ω) = Zs(ω)[n̂×H‖(ω)] (2.73)

where E‖ and H‖ are the tangential electric and magnetic fields and n̂ is the unit normal vector

pointing out at the interface.

The surface impedance of a material with conductivity σ, permeability µ and permittivity ε

adjacent to free space is given by:

Zs(ω) =

√
iωµ

σ + iωε
(2.74)

for an electromagnetic wave of radial frequency ω. Assuming that σ � ωε, which is known as the

Leontovich impedance boundary condition [Maloney and Smith, 1992; Soloviev, 2003], (2.74) can

be approximated as

Zs(ω) ∼=
√
iωµ

σ
= (1 + i)

√
ωµ

2σ
(2.75)

The implications of this are discussed later on.

From now on we will assume that the interface is in the x − z plane, so the tangential fields

are now Ex and Hz. Following Beggs et al. [1992], (2.73) can now be written as

Ex(ω) = (Rs(ω) + iωLs(ω))Hz(ω) (2.76)

where Rs and Ls are the surface resistance and inductance defined by

Rs(ω) =

√
ωµ

2σ

(2.77)

Ls(ω) =

√
µ

2σω

To be able to implement this in FDTD code, the SIBC (2.73) has to be taken to the time domain.

This is simple for the monochromatic case since ω is constant:

Ex(t) = RsHz(t) + Ls
∂

∂t
Hz(t) (2.78)

After discretising, performing finite differencing, averaging of the fields and rearranging, (2.78)
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can be written as

(Hz)
n+1/2
i+1/2,j+1/2 =

[
µ0∆y+Ls−Rs∆y/2
µ0∆y+Ls+Rs∆y/2

]
+ ∆t

µ0∆y+Ls+Rs∆t/2
[(Ey)

n
i,k+1/2

− (Ey)
n
i+1/2,k+1/2 + (Ex)ni+1/2,k+1].

(2.79)

The appearance of an Ey term is the result of the temporal derivative of Hz in (2.78) being written

in terms of spatial derivatives of Ex and Ey, such as in (2.33).
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Data Collection

3.1 VLF Antenna and UltraMSK

Narrowband data from VLF transmitters are collected using a pair of orthogonal induction loop

antennas or a whip antenna. The orthogonal loop setup has the two loops in an E-W and N-

S orientation, as seen in Figure 3.1. This has the capability to perform direction finding on a

signal by looking at the ratio of power flux and phase through the two loops. A single loop is

used when gathering narrowband data, with the choice of the loop depending on which loop is

receiving higher power for the frequency in question. UltraMSK is a software package developed

by James Brundell of the University of Otago, Dunedin, New Zealand. It is used in scientific

research applications that involve measuring the phase and amplitude of a Minimum Key Shifted

(MSK) modulated narrowband VLF radio signal and has the ability to receive both 100 and 200

baud MSK signals. UltraMSK is able to monitor multiple stations simultaneously. It is relatively

simple to set up and has minimal hardware requirements. All that is needed is a VLF antenna,

a computer with a sound card and a GPS receiver to accurately record the time. The GPS

Pulse Per Second (PPS) is also used to calibrate the computer’s clock for accurate sampling of

the signal. The advantage of using the UltraMSK system is that it uses a normal audio sound

card in a computer and not specialised, expensive scientific equipment. This is due to the useful

coincidence that VLF frequency range falls within the human audio range and sound cards are

developed to operate at these frequencies. The only consideration with the sound card is the

number of available inputs. One input is required for each antenna channel and an additional one

for the GPS PPS signal.

Examples of the UltraMSK data are given in Figures 3.3 and 3.4 which show the amplitude and

phase of the transmitters with call signs NWC (North West Cape, Australia, 21.816◦ S, 114.166◦

E, 19.8 kHz) and NAA (Cutler, Maine, USA, 44.646◦ N, 67.281◦ W, 24 kHz) detected at Marion

Island. The NWC path is slightly more than 7200 km long while the NAA path is double that

at 14400 km. Both graphs are similar in that the amplitude and phase signal can be divided into

29
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Figure 3.1: The VLF loop antenna at SANAE IV, Antarctica.

Figure 3.2: Block diagram schematic of hardware layout for operation of UltraMSK.
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three regions; a full day path, a full night path, and a combination day-night path. The full day

profile is visible from around 01 to 12 UTC in Figure 3.3 and 10 to 17 UTC in Figure 3.4. During

this time, the entire path from transmitter to receiver was being exposed to solar radiation. The

constant stream of solar radiation results in waveguide conditions remaining unchanged, leading

to a steady, stable amplitude as well as phase. The sudden changes in amplitude are due to the

passage of the day-night terminator over the transmitter or receiver. Another noticeable feature

here is that at the edges of the all-day region, the phase changes dramatically with the passage

of the terminator, being constant until this point. The amplitude on the other hand shows a

slight decrease before the sudden effect of the terminator passing over. These differences can be

attributed to the fact that the amplitude of a signal has been found to be more sensitive to the

electron density gradient, while the phase is more sensitive to the height [Thomson, 1993]. This is

due to the amplitude of the partial reflections and the absorption in the ionosphere which depends

on the electron densities below the reflective layer. The phase on the other hand is dependent

on the total distance traveled by the wave which is affected by the height of the ionosphere. At

either side of the all day region, the profile for a part day and part night path can be seen. This

region can easily be noticed with a steady increase or decrease in phase. This can be attributed to

the terminator traveling over the propagation path, changing the total propagation distance at a

constant rate as the day/night ratio of the path changes. The part day - part night region in the

morning in the amplitude plot of Figure 3.4 exhibits some interesting behaviour. The amplitude

is seen to periodically rise and drop. It should be noted that the maximum amplitude at the

peak of these periodic structures is equal to the constant amplitude experienced during an all day

path. This can be attributed to a combination of two things, the long propagation distance and

mode conversion taking place at the day/night boundary. For a long path like this, the first mode

will be the most dominating factor to the observed signal, be it for day or night. When mode

conversion takes place, some or even all of the energy in a propagating mode will remain in that

same mode on the other side of the terminator. This depends on the position of the terminator

and the behaviour of reflected waves in that region. If the terminator is in such a position so

that there is little or no energy lost in the first mode when crossing the day-night interface, the

amplitude will remain roughly the same. This is what is happening at the maxima of the periodic

structure. In between these points, the mode conversion takes place in such a way so that the

amplitude of the first mode after conversion is less than before. The night time region is seen to

be more stable in both phase and amplitude for the longer NAA path than the NWC. A night

time ionosphere allows for more modes to propagate due to the lower attenuation but is also more

variable. For the short NWC path, there would be multiple modes contributing to the observed

signal. On a very long path, only the first one or two modes will have any significant contribution.

The fact that a single mode is dominant will result in the phase being relatively constant while

the absorption will still vary at night without the constant solar wind.
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Figure 3.3: Amplitude and Phase of the NWC transmitter detected at Marion Island.

Figure 3.4: Amplitude and Phase of the NAA transmitter detected at Marion Island.
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3.2 DEMETER and GOES

DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions)

is a French satellite that was launched in 2004 with the main objective of studying ionospheric

disturbances due to seismic and volcanic activity [http://smsc.cnes.fr/DEMETER/]. It is in a

quasi Sun-synchronous orbit at 10:30 and 22:30, shortly before local noon and midnight with an

altitude of around 710km. It completes 14 orbits a day. It was launched on 29 June2004 and

stayed in operation until December 2010. In December 2005, the orbit was lowered to 660 km.

There are a few scientific payloads on board the satellite, but of interest to this thesis are the

electric sensors that can measure fields from DC up to 3.5 MHz.

GOES (Geostationary Operational Environmental Satellite) is a system of satellites operated

by the U.S. National Oceanic and Atmospheric Administration (NOAA). Satellites in geostation-

ary orbit are located directly above the equator (0◦) and orbit at the same angular velocity as

the Earth, meaning they remain directly above the same location on the Earth. Several GOES

satellites have been put into orbit, with GOES-14 being the source of some data in this thesis.

The main mission of the GOES satellites is to observe the Earth’s infrared radiant energy as well

as visible reflected solar energy. The GOES payload also includes several pieces of equipment

designed to monitor the near-Earth space environment. These include proton and alpha parti-

cle detectors, a magnetometer, and an X-ray sensor which provides the X-ray flux used in this

thesis.



Chapter 4

Mode Theory

The implementation of the 2D waveguide Mode Theory model will be discussed here with some

illustrative examples. A number of input variables are decided on by the user, these include the

ionospheric parameters, H ′ and β, and ambient magnetic field strength and direction, (dip angle

and azimuth) while the transmitter is assumed to be located at the origin (ρ = 0, z = 0). The

other parameters needed are the signal frequency, the conductivity and dielectric constant of the

surface of the Earth along the propagation path as well as the bearing of the propagation path to

enable calculation of the angle between the wave vector and ambient magnetic field. The user also

specifies the height at which the results will be calculated. This is normally ground level or the

reflection height of the ionosphere. This height dependence arises from the two height dependent

used to quantify the conductivity, and hence refractive index, of the ionosphere. These height

dependent parameters being the electron density Ne, and electron-neutral collision frequency νe,

coming from (1.1) and (1.2) respectively. The program now has all the necessary information

required to calculate the electron density profile, and therefore the three ionospheric parameters

X,Y and Z (2.21). Using the height where X = Z as the upper boundary of the EIWG, the

mode angles are calculated with the original assumption that Ri = −1 and Rg = +1, as in (2.19).

These initial angles allow for the calculation of the angle between each mode of propagation and

the ambient magnetic field. All required information is then available to calculate the complex

refractive index at the height of reflection through the Appleton-Hartree equation in (2.20). The

eigenangles for the different modes are then recalculated using (2.23), but with the complex

refractive index of the ionosphere taken into account. These angles, along with the height gain

function (2.26) are then used to calculate the electric field at any point in the waveguide in terms

of a 0-order Hankel function of the second kind (2.25).

34
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4.1 Program Results

One of the advantages of using one’s own program is that the results from individual components

can be investigated. Examining the different properties for different modes is one of the advantages

of this program which LWPC, for example, does not have.

4.1.1 Height Gain Function

The height gain function, fm(z), allows for the calculation of the field at any height in the

waveguide. This will allow for model results to be compared to DEMETER satellite data. Figures

4.1 and 4.2 show the real and imaginary parts of (2.26) for the first three odd modes for a certain

k. (2.26) has an some inherit dependencies on factors such as H ′, β and ω through the calculation

of Cm, but Figures 4.1 and 4.2 serve to illustrate the variation in height of (2.26) due to mode

number. The imaginary part arises due to the complex refractive index leading to complex modal

angles θm, from (2.23). This then in turn leads to the height gain function having a real and

imaginary part. It should be noted that the real and imaginary parts start at 1 and 0, respectively,

for all modes. This indicates that when the transmitter and receiver are at the same level, all

modes are weighted equally. Figure 4.1 indicates how different modes have different contributions

to the total field at different heights in the waveguide. For m = 1, we see that that the real

part of the height gain function remains between 0.5 and 1 all the way up to 100km, indicating

that the first mode will always account for a large part of the total field. Higher order modes

have more variable contributions across the waveguide as is expected due to the higher number

of nodes associated with higher modes. Figure 4.2 arises due to the complex modal angles that

lead to attenuation in the waveguide. This figure is also therefore an indication of the variation

of attenuation experienced by different modes in the waveguide. Another height gain function

can be included to account for the variation of the height of the transmitter. This was not done

since the work here focuses on the modeling of man made VLF transmitters which are all found

at ground level. The height gain function for the transmitter has the exact same form as (2.26).

4.1.2 Attenuation

With this model, the theoretical attenuation experienced by each mode can also be investigated.

In waveguide theory, once the modes or eigenangles are known, essentially all the information can

be acquired, including the attenuation [Wait, 1962]. The waves are attenuated since the refractive

index has an imaginary component [Wait, 1962]. This complex refractive index means that the

modal angles will also be complex. The attenuation rate is then equal to kIm(Sm), [Wait, 1962],

where the group velocity, vg = Smc (2.15). The effect of different parameters on the attenuation

rate can investigated by changing these parameters that change the modal angles. Changes due

to mode number and ionospheric reflection height are given as an example here, different modes
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Figure 4.1: Real component of fm(z) for m = 1, 3, 5 modes.

each have different modal angles, and changing the reflection height changes the modal angles,

and hence θm as well. This is done for the VLF range of frequencies, since the modal angles are

wavelength dependent as well. Figure 4.3(a) shows the attenuation rate for the first four modes

at different frequencies for an ionospheric height of 70km. This shows that, especially at lower

frequencies, higher modes suffer far greater attenuation than lower modes. It is clear from this

graph why the lower modes are the main contributors and why it is said that at large distances,

only the first and second modes will make any significant contribution. Not only can one say

that the higher modes experience high attenuation, but that the attenuation rate for the primary

mode is very low, explaining why VLF signals can propagate such enormous distances around the

globe. Figure 4.3(b) shows the variation in attenuation rate due to changes in the height of the

waveguide for m = 1. Here we see that the lower the ionosphere, the higher the attenuation rate.

This result agrees with the analysis of the refractive index, that the waves suffer less attenuation

when propagating in a more night time ionosphere.

4.1.3 Dependence on Height H ′ and Sharpness Parameter β

The observed field strength at any point in the waveguide is the sum of the fields of different

modes, equation. Due to the spatial dependence of the modes and modal angles, there will be

regions where the contributions from the modes interfere more constructively with each other

than in other regions. This leads to what is known as a modal interference pattern, which can

have multiple local minima and maxima. The parameters that have the most influence over the
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Figure 4.2: Imaginary component of fm(z) for m = 1, 3, 5 modes.

final modal interference pattern are H ′ , β and frequency. Changes to each of these parameters

and the effect that they have on the interference pattern will be discussed here.

The nature of the D-region ionosphere is defined through H ′ and β. It should therefore be

no surprise that the model is sensitive to these values. These values are dependent on many

things, mostly time of day and year, latitude and solar activity. Summer and daytime, higher

solar activity and being located at a high latitude lead to lower H ′. This is expected as all of

these are associated with a higher flux of solar radiation. This increased forcing on the ionosphere

leads to equivalent levels of ionisation at lower altitudes than during winter or solar minimum.

Figure 4.4 shows the changes in the modal interference pattern when the upper boundary of the

waveguide is lowered. It can be seen that when the reflective layer in the ionosphere is lower, the

modal interference pattern is slightly compressed towards the transmitter with the modal minima

and maxima appearing closer to the transmitter. Figure 4.5 shows the effect of changing β while

keeping the height fixed. The field strength in both Figures 4.4 and 4.5 is plotted as log10(|Ez|2)

where Ez is calculated from (2.25). This was done since we are more interested in relative field

strengths due to different sets of parameters than absolute values. Figures 4.4 and 4.5 aim to

serve as examples that illustrate the effect of different parameters, for this reason, the value of

other parameters such as frequency can be somewhat arbitrary. In this case, 15 kHz was chosen

since it falls in the middle of the VLF range.

We see that increasing β can also lead to the modal interference pattern being compressed

towards the transmitter, similar to Figure 4.4, but with more of a change to the overall form and
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level of the interference pattern. The difference between β = 0.35km−1 and β = 0.45km−1 shows

that a lower value of β results in the overall field strength being slightly less due to a higher

electron density and therefore high absorption below the reflection height. A notable feature on

both Figures 4.4 and 4.5 is the large modal minima around 500 km.. In Figure 4.4, decreasing

the reflection height from 80 km to 75 km to 70 km moves the minima closer to the transmitter

as well as gradually increasing the field strength at the minima. In Figure 4.5 on the other hand,

increasing β from 0.35 km−1 to 0.40 km−1 to 0.45 km−1 also moves the minima closer to the

transmitter, but first decreases the field strength with β going from 0.35 km−1 to 0.40 km−1, then

increases it again from 0.40 km−1 to 0.45 km−1. The difference in this behaviour illustrates the

more complex influence β has on the propagation of VLF radio waves in the EIWG. Whereas

changing the reflection height simply lowers the ionosphere and therefore changes the modal

angles, changing β has a greater influence on the reflective properties of the ionosphere. These

differences can also be seen in other modal minima and maxima, although it is more clear in the

minima around 500 km.

4.2 Temporal Variation

Until now, all ionospheric parameters had been kept constant. By adding a time dependence to

H ′ and β, the response to temporal changes at a fixed location can be investigated. This allows for

the approximate simulation of a fixed VLF receiver monitoring the strength of a VLF signal from

some transmitter where a transient event modifies propagation conditions along the path. The

approximation in the simulation is due to the fact that in reality, the propagation path has varying

waveguide conditions due to changing latitude and longitude and possibly different surfaces. This

model cannot implement changes in the waveguide like this, therefore its results are more useful

in gaining conceptual insight and theoretical understanding, rather than attempting to replicate

experimental results. The height and sharpness are modelled by having a sudden rise or drop in

value with a steady return to quiet time value as shown in Figure 4.6. This is to replicate the

rapid onset and gradual recovery of additional X-ray flux that is typically experienced during a

solar flare. Figure 4.7 (a) shows the narrowband signal strength of the 18.3 kHz HWV transmitter

in France, detected at SANAE-IV, the South African base in Antarctica. On 11 February 2010

there were no events that caused perturbations in the signal and what is observed is a typical

quiet day curve. The following day however, there were a few solar flares of varying magnitude

as seen in Figure 4.7 (b) which shows the 0.10.8 nm X-ray flux on the GOES-14 satellite. Three

flares in particular stand out, one a bit before 08:00 UTC, another around 12:00 UTC and the

final at around 18:00 UTC. The smaller two were registered as C-class flares while the larger,

middle one being M-class. Firstly we notice that the time of these three flares coincides perfectly

with the perturbations of the narrowband signal. Looking at the exact form of these responses,

we see that for the two smaller flares, the VLF perturbation has a fast rise and slow exponential
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decay back to the quiet day curve. The large, midday flare on the other hand, also has a fast rise,

but then decays to below the quiet day level and then has an increasing return to quiet day value.

These observed changes can be pictured in terms of changes in the modal interference pattern,

and how this changes in time, keeping the temporal form of the change in mind. When the X-rays

from a solar flare hit the Earth, the enhanced ionisation reduces the height of the waveguide and

modifies the modal interference pattern. The response in the signal strength at a receiver depends

on the position of the receiver relative to the modal interference pattern. Since solar flares lower

the ionosphere, we expect the modal interference pattern of the disturbed ionosphere to be similar

to the quiet pattern, except compressed towards the transmitter as seen in Figure 4.4. This will

cause the transmitter to ride up or down the slope of the modal interference pattern, depending on

the original position. If the transmitter is after a modal maximum and before a modal minimum,

it is on a downward slope, and the response to the flare will be negative. Once it reaches the value

that corresponds to the maximum perturbation, it will start to move back towards its original

value, but at a slower rate, just like the X-ray flux. On the other hand, if the transmitter is after

a minimum and before a maximum, it is on an upward slope. The perturbation caused by the

flare and the resulting squeezing of the interference pattern will then lead to an increase in the

signal, before slowly returning down to the original level. An example of this is given in Figure

4.8. For a larger flare, such as the midday one, the response in the VLF signal can be a bit more

complicated as is seen in Figure 4.7. In this case, the perturbation is large enough so that it

moves over a modal minimum or maximum, but due to the very fast rise time, the transmitter

does not resolve the modal extremum. Once the perturbation has reached its peak, it starts to

slowly decay. Due to the slow return to quiet day levels, the transmitter now spends more time

in the modal extremum, which it skipped during the onset of the perturbation. Figure 4.9 gives

an example of this happening where the temporal response is of a similar form to the response to

the large flare in the data. Note that the smaller flare is modelled by changing the ionospheric

height by 2 km and β by 0.01 km−1 and the larger flare by 4 km and 0.03 km−1 respectively.

4.3 DEMETER Comparison

The model’s use has been demonstrated in terms of gaining theoretical understanding of the

propagation of VLF waves in the EIWG. However, the results still need to be compared to some

experimental data to check their validity. To accurately do this is not as simple as one might

imagine, keeping model constraints in mind. The best method would be to continuously measure

the field strength from a VLF transmitter, while moving away from the transmitter in a straight

line. Moving in a straight line and measuring the field strength, while avoiding man made noise

is practically impossible. Measuring the field in an aircraft could theoretically serve this purpose,

but is obviously very impractical. Another option is to use satellite data. This seems counter-

intuitive since satellites orbit at hundreds of kilometers above the surface of the Earth, well above
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the EIWG.

The idea for this is that even though the majority of the VLF energy remains trapped in

the waveguide, some of it leaks out of the waveguide at the reflection layer and up into space.

This leaves a fingerprint of the modal interference pattern above the transmitter that satellites

with a radio receiver on board are able to observe. Figure 4.10 shows the observed electric field

strength for day time (10:30 LT) and night time (22:30 LT) passes over the NWC transmitter.

The colouring scale is logarithmic with arbitrary reference not provided with the data. NWC is

located at 21.816◦ S, 114.166◦ E and operates at 19.8 kHz at 200 baud with a power level of 1

MW, making it one of the most powerful VLF transmitters. To examine the data more closely,

horizontal rows (i.e. constant latitude) are extracted from the data. This is done for both day

and night, and for eastward and westward propagation, as indicated by the red blocks in Figure

4.10. The main reason for choosing horizontal rows is for convenience, but another advantage is

the NWC transmitter is on the North-West coast of Australia as seen in Figure 4.11. This means

that westward propagation is directly over sea, while eastward propagation is over land, at least

until the other side of Australia. This provides a useful comparison for the model which cannot

account for discontinuities in the boundaries of the waveguide.

Figures 4.12(a) and 4.12(b) show the two horizontal sections for day and night time, with the

same logarithmic units as in Figure 4.10. It is evident that westward propagation over the ocean

is slightly stronger than eastward propagation over land, for both day and night. Looking at the

day time plot in Figure 4.12(a), modal minima and maxima from the interference of different

modes are clearly visible. Firstly, one must remember that this data is averaged over an entire

year so that the observed pattern is not that from a unique ionospheric configuration, but rather

the average of multiple ionospheres. Looking at the theoretical examples in Figures 4.4 and 4.5,

there is definite similarity. Both Figures 4.4, 4.5 and 4.12(a) first show a sharp decrease in field

strength close to the transmitter. In the theoretical plots, this is in the range of around 0 to

500 km, and 0 to 1000 km for the DEMETER data, with this difference being due to different

transmitter frequencies, as well as different ionospheric parameters. Both the theoretical plots

and the physical data show a strong modal minima after the initial sharp drop, with the field

strength dropping at a lot lower rate at distances further than the first large minimum. There

is another minimum before this, seen in the theoretical plots at around 300 km, although this

minimum is not nearly as pronounced as the one at 1000km. This initial, small minimum, is not

totally clear on the DEMETER data, although is probably the cause for the slight plateau at

around 700 km in Figure 4.12(a). A second clear minimum is seen in the DEMETER data at

around 2600 km, and 1500 to 2000 km in the theoretical plots.

For night time observation in Figure 4.12(b), the modal minima and maxima are not so clearly

defined. During night time, the reflective layer of the ionosphere is far higher than during the

day. The higher the upper boundary of the waveguide, the more spread out the modal minima

and maxima of the interference pattern. This idea is illustrated in Figure 4.4. For the first main
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modal minima around 500 km, the distance between the minima of reflection heights of 70 and

80 km is around 100 km. At the second modal minima between 1500 and 2000 km distance, the

difference between the minima for reflection heights 70 and 80 km is now almost 500 km, showing

that the higher heights lead to increasing distances between modal minima. Another explanation

can be given in terms of the gradient of the electron density, β. As discussed in Chapter 1, β has

higher values when there is less radiation, as is the case at night. Figure 4.5 shows that for a low

β such as 0.35 km−1, the modal minima at 600, 1800 and 3100 km are all well defined. For a

higher beta, such as 0.45 km−1, the modal minima at 500 km is well defined, however the minima

after that, at around 1500 and 2500 km are not as well defined as those for β =0.35 km−1. When

considering these observations that when the height of the ionosphere as well as the gradient of

the electron density are both higher, such as the case during night time, then the modal features

of the interference pattern are less clear. Another factor to consider is the attenuation, since the

attenuation is lower at night there will also be contributions from higher order modes than during

the day. In Figure 4.12(b), it can be seen that these factors combined together with the averaging

effect will lead to the modal structure of the interference pattern being less well defined. For these

reasons, only the day time data will be examined further.

To compare results from the Mode Theory model described in Chapter 2.2 with this data, the

optimisation toolbox in MATLAB was utilised. This was done by minimising the error between

the model and the data with respect to changes in ionospheric height, keeping model constraints

in mind. The two main constraints to consider are that at short distances, the model does not

account for any evanescent modes that would add to the field close to the transmitter. At larger

distances, the model starts to do less well since it assumes a flat Earth. When the propagation

distance becomes comparable to the radius of the Earth, this approximation becomes invalid.

For these two reasons, the minimisation was only performed over intermediate distance between

1000 km and 4000 km. When performing the minimisation, the only parameter in the model

that changed between east- and westward propagation was the conductivity of the surface of the

Earth. Commonly accepted conductivities were chosen for the sea (4 S/m) and land (4.5 × 103

S/m). Coincidentally, the magnetic declination at NWC is roughly 0 , meaning that for east-

and westward propagation, there will be no difference between the bearing angle and the Earth’s

magnetic field due to symmetry. After much trial and error, it was found that when looking at

propagation in just one direction, the model could be quite well matched to the observed field with

the averaging of only 4 or 5 ionospheric configurations with different values of H ′. Minimisation

with respect to β was also investigated, but the results were inconsistent, and it was found that

just modifying H ′ while keeping β constant delivered acceptable results. To successfully compare

the performance of the model over land and sea to the data with one set of values, it was found

that more heights were needed, 8 or 9 to deliver satisfactory results. Figure 4.13 shows the results

of the model comparison with the data after the minimisation was performed. Thomson [2010]

investigated the height of the ionosphere around NWC and reported heights of 70 and 72km
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whereas this model found an appropriate match to the data with heights ranging from 65 to

69km. This is due to very different methods being used, a different interpretation of H ′ and the

fact that the results are taken from different times in the solar cycle meaning that the D-region

would be at a different altitude.

Even though there is some disagreement between these results and those of Thomson [2010],

the results here do agree fairly well with the data. Looking in the white region of interest in

Figure 4.13, the model is successful in calculating the location of the modal minima, as well as

the difference in field strengths due to Earth’s surface for the region of interest. In the near- and

far-field there is less agreement, but this is to be expected due to the model constraints and is

the reason for the minimisation of the error being in the white region of interest in Figure 4.13.



CHAPTER 4. MODE THEORY 43

(a) Attenuation rate for different modes

(b) Attenuation rate at different heights

Figure 4.3: Effect of varying mode number and reflection height for a range of VLF frequencies
on the attenuation rate, −kIm(Sm).
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Figure 4.4: Changes in the modal interference pattern at z = 0 due to changes in the reflection
height for a 15 kHz wave over sea water against distance from transmitter, β = 0.35km−1. The
reflection heights here are those where X = Z from (2.21).

Figure 4.5: Changes in the modal interference pattern at z = 0 due to changes in β for a 15 kHz
wave over sea water against distance from transmitter. H ′ = 49 km with respective reflection
heights of 78, 74 and 71km.
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Figure 4.6: Temporal change in height used in simulation of transient event, β changes in a similar
way.
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Figure 4.7: 18.3 kHz signal from HWV transmitter in France detected at SANAE IV, Antarctica
for a quiet day and a day with solar activity. (b): X-ray flux measured on GOES 14 satellite for
the day with solar activity.
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Figure 4.8: Simulated positive signal response to a small solar flare.

Figure 4.9: Simulated positive followed by negative response to a larger flare.
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Figure 4.10: Power over the NWC transmitter averaged over a year measured on DEMETER.
Red blocks show the areas extracted for further analysis.

Figure 4.11: Position of NWC transmitter in Australia.
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(a) Day time modal interference pattern.

(b) Night time modal interference pattern.

Figure 4.12: Field strength plots extracted from red horizontal sections from Figure 4.10 of
DEMETER data for (a) day time and (b) night time observations over NWC for east- and
westward propagation.
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Figure 4.13: Vertical electric field intensity log10|Ez|2, comparing interference patterns from
model results with the data after minimisation of the error between model and data in the white
region. Model results adjusted with a constant value to be directly comparable to DEMETER
data. Both model results and DEMETER data share location of modal minima as well as relative
difference between East- and Westward propagation.



Chapter 5

The FDTD Method

For basic free space propagation, the user enters the frequency of the signal, the maximum number

of spatial and temporal steps and the value for another variable, Points per Wavelength (PPW),

which determines the grid sampling density. The frequency, f and PPW value, Nλ are used to

determine the length of a spatial step,

∆x =
c

Nλf
(5.1)

for a wave traveling at the speed of light, c.

The appropriate time step is then calculated using the Courant number. The Courant number

is used to impose a necessary condition on numerical time-marching schemes, such as FDTD, to

maintain convergence. It enforces that the time between two consecutive discrete time steps

can be no more than the time taken for the wave to travel between two adjacent grid points.

In d-dimensions, the largest distance between spatial grid points with indices that differ by no

more than one is
√
d∆x, assuming isotropic grid spacing. During one time step, a numerical

electromagnetic wave will fully propagate to its nearest neighbours (eg: in 2D, a numerical wave

at point (xi, yi) can propagate to (xi±1, yi) and (xi, yi±1) in one time step, but not (xi±1, yi±1)),

it takes d∆t to propagate the maximum
√
d∆x mentioned previously. Formally,√√√√ d∑

i=1

(∆xi)2 ≥ dc∆t. (5.2)

where ∆xi is the grid spacing for dimension i.

Assuming isotropic grid spacing, ∆xi = ∆x, the Courant number Cs is defined from (5.2) as

Cs =
c∆t

∆x
≤ 1√

d
, (5.3)

51



CHAPTER 5. THE FDTD METHOD 52

with maximum value

Cs =
1√
d
. (5.4)

The time step ∆t is then

∆t =
Cs∆x

c
. (5.5)

By implementing the relation between spatial and temporal step through the Courant number,

scaling to other frequencies and determination of the required spatial and temporal step size is

done automatically. The larger Nλ is, the more accurate the simulation since the field values

are closer together, temporally and spatially, leading to smaller numerical errors. Increasing Nλ

however also results in an increase in computation time. When Nλ is below 20, notable errors

occur quite quickly. Above 30, the increase in computation time becomes too large to validate

the accuracy gain, meaning this is a suitable value. Table 5.1 gives some indication as to how

increasing Nλ can greatly increase computation time due to an increase in the number of spatial

and temporal steps required.

Table 5.1: Effect of frequency and grid sampling density on discretisation.

(a) ∆x values in m for different frequencies and Nλ

`````````````̀Frequency (Hz)
Nλ 10 20 30 40

10000 2980 1490 993.3 745

15000 1986.6 993.3 662.2 496.6

20000 1490 745 496.6 327.5

25000 1192 596 397.3 298

(b) ∆t values in ms for different frequencies and Nλ

`````````````̀Frequency (Hz)
Nλ 10 20 30 40

10000 7.07 3.54 2.36 1.77

15000 4.71 2.36 1.57 1.18

20000 3.54 1.77 1.18 0.88

25000 2.83 1.41 0.94 0.71

(c) Number of cells required to simulate 500 km
`````````````̀Frequency (Hz)

Nλ 10 20 30 40

10000 168 336 503 671

15000 252 503 755 1007

20000 336 671 1007 1342

25000 419 839 1258 1678
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Basic examples of wave propagation in free space will first be shown. Then in subsequent steps,

further levels of complexity will be added to the model until it is able to simulate VLF propagation

in the EIWG. After the free space example, simple reflecting boundaries will be added, these

will illustrate the formation of modes within a waveguide and the effect of transmitter position,

orientation and waveguide height. The Nearly Perfectly Matched Layer will then be introduced,

serving as a more realistic boundary, able to model different surfaces, such as sea water or land.

The effect of a background plasma and electron-neutral collisions similar to those in the EIWG

will then be added, but without a reflecting surface. Finally, the different aspects will be combined

to form a model of the Earth-Ionosphere waveguide, including surfaces of different conductivities

and different background ionospheres. This model will then be used to produce results that can

also be compared to the DEMETER results, like those from the Mode Theory model in the

previous chapter. After the DEMETER comparison, a small section is added that discusses the

phenomenon of numerical dispersion, and the effect of changing the Courant number.

5.1 Free Space

Two examples are given for a 19.8 kHz signal propagating in free space for both a vertical and

horizontal source and shown in Figure 5.1, with the source located in the centre of the computa-

tional region. The choice of frequency is arbitrary, since these are illustrative examples, but 19.8

kHz was used since this is the frequency corresponding to a physical situation, that of the NWC

transmitter. The highest values (light blue - yellow) of the respective electric field components are

found broadside of the source while the field is a minimum (dark blue) directly in line with the

source (a, e). For a vertical Ey source, there is minimal horizontal electric field both broadside

and in line with the source (b) and vice versa (d). The strongest electric fields orthogonal to the

source (Ex/Ey field from a Ey/Ex source) are found along the diagonal directions from the source

location (b, d). The magnetic field has a similar but wider distribution to the electric field parallel

to the source (c, f). These results agree with the theory of dipole radiation that the strength of

an electric field from a dipole source is proportional to sin θ where θ is the angle between the

orientation of the dipole and direction in question [Griffiths, 1996], so that a source orientated

along the y−axis will have a maximum field along the x direction, where θ = π/2. This indicate

the successful basic operation of the model.

5.2 Basic Waveguide

The most basic waveguide that can be implemented is one where the walls are perfect electric

conductors. Figure 5.2 shows the field patterns that emerge for two different configurations of the

source. Note how the vertical source (a) is better at injecting energy into stable waveguide modes

that allow for improved propagation. The horizontal source (e) is sending most of its energy at
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Figure 5.1: Electric and scaled magnetic fields for a vertical Ey (a - c) and horizontal Ex (d -
f) electric dipole source located in the centre. The colour scale is logarithmic, normalised to the
maximum value at the source of log10Ez = 0. The magnetic field plots are those of the scaled
magnetic field, according to (2.62).
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Figure 5.2: Waveguide field patterns for a vertical (a - c) and horizontal (d - f) electric dipole
source located near the left end of the waveguide, in the middle between the two boundaries.
Colouring consistent with Figure 5.1.

normal incidence to the boundary, leading to poor reflections down the waveguide. Figure 5.3

shows how increasing the size of the waveguide leads to the formation of higher order modes,

with 3 to 4 peaks of maximum amplitude across the height of the waveguide, compared to 1 in

5.2. Figure 5.4 demonstrates how the position of the source can influence the modes that form in

the waveguide. When the source is located in the middle of the waveguide, the energy directed

broadside is the dominant factor in the observed field (d). Conversely, when the source is at a

boundary the observed fields have more influence from reflections along diagonal paths (a).

5.3 Nearly Perfectly Matched Layer

The NPML is implemented around the boundaries in such a way as to absorb incoming waves

with minimal reflection. The NPML operates in a region surrounding the computational domain

of the main problem by introducing an artificial conductivity, σx(x), as described in Chapter 2.

This conductivity is a function of the position in this region between the problem domain and

computational boundary. Taking this into discrete space, x = j∆x, σx(j) ≡ σx(j∆x) = σx(x),

this function can be written as



CHAPTER 5. THE FDTD METHOD 56

Figure 5.3: Waveguide field patterns for a vertical (a - c) and horizontal (d - f) electric dipole
source in a larger waveguide with source located on the lower boundary, on the left side. Colouring
consistent with Figure 5.1.
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Figure 5.4: Waveguide field patterns for a vertical source but located at different heights in the
waveguide, at the lower waveguide boundary (a - c) and in the middle of the waveguide (d - f).
Colouring consistent with Figure 5.1.



CHAPTER 5. THE FDTD METHOD 58

Figure 5.5: Conductivity of the NPML at different points in the layer for different parameters.
Cell number refers to the position in the NPML, where 0 is adjacent to the computational region
of the problem and 30 is adjacent to edge of the entire computational domain.

σx(j) = σM

(
j − 1

N j
pml

)n
(5.6)

where j is the spatial index in the x direction, N j
pml is the thickness of the NPML in the x

direction [Simpson, 2010]. σM is the maximum conductivity in the absorbing region and is given

by

σM =
c(n+ 1) log(R)

2N j
pml∆x

(5.7)

where R is the minimum desired reflection coefficient and n the fractional variation. Figure

5.5 shows how this conductivity varies with different n and R values. This conductivity is then

applied to the NPML grid which stretches the fields as described in (2.60), or

CNPML(j) =

(
1 +

σx(j)

iω

)
(5.8)
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Figure 5.6: Real (left) and imaginary (right) components of CNPML, the field scaling coefficient.
The colour scale represents the value of the CNPML component in question.

where CNPML(j) is the complex valued field scaling coefficient at point j in the NPML. These

real and complex components are illustrated in Figure 5.6. It can be seen that the real component

of CNPML is always one while the imaginary component is zero in the main computational problem

region and decreases steadily towards the edge of the computational space. It is this imaginary

component that attenuates the incoming wave to such a small level that by the time it reaches the

boundary of the computational space it is too small to create artificial reflections. In a realistic

model of the EIWG, the NPML would only be required on the left and right boundaries due to

the reflective waveguide boundaries at the top and the bottom. Due to the model being built

up from a free space system, the NPML is implemented along all the edges of the computational

domain despite this being unnecessary.

5.4 Surface Impedance Boundary Condition

Implementation of different surfaces and boundaries can be challenging when using the FDTD

method under certain circumstances. As discussed in Chapter 2, simple implementation of non-

zero conductivity is not straight forward, especially if the wavelength in the medium is a lot smaller

than for free space. The SIBC implemented here is based on the assumption that σ � ωε, where

σ and ε are the conductivity and dielectric constant of the material in question, ω is the angular

frequency of the wave. The validity of this assumption is examined in Table 5.2, where the ”1”

and ”2” on land and ice represent the maximum and minimum values of the conductivity ranges

for these surfaces. The approximation assumes that the value in the second last two columns

is far greater than one. It is seen that this is not the case with ice, can be valid for land, and

is always valid for sea water. This is not too much of an issue since we are mostly interested

in propagation over sea and land. Attention must be paid when modelling land when using the
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Figure 5.7: Emerging field patterns for sea (left) and land (right) SIBC for a vertical electric dipole
just above the surface, in the lower left of the plot, at the small red area. Colouring consistent
with Figure 5.1.

SIBC that the combination of conductivity and frequency meet the requirements. Conductivity

and dielectric constant values we have used are those that are commonly accepted to fall within

this range [Thomson, 2010; Han et al., 2011; Cummer, 2000].

Figure 5.7 shows the effect of different surface conductivities on the reflection of the radio

waves originating from a Ey source near the lower left corner, near (15, 85). The outer 15 kms

are occupied by the NPML, accounting for different field pattern observed below the source. The

source was placed slightly above the lower boundary, as this is the case for real-life situations,

which will be looked at shortly. Placing it at the left side of the region was purely for convenience

of maximising the horizontal distance that the wave travels from the source. All FDTD plots of

2D electromagnetic fields from this point will have the source located here, as the aim is to build

up to a realistic situation.

Due to the source being located directly above the surface, the surface has a very strong

influence on the waves propagating upwards away from the source. Waves reflecting off the ocean

will have a lot higher amplitude than off land due to the difference in conductivity, seen by the

light blue colour dominating propagation over sea (Figure 5.7 left) compared to the dark blue for

propagation over land (Figure 5.7 right). For waves propagating directly above the surface, the

effect of the different conductivities is even greater. When propagating over ocean, the electric

field is still quite strong, directly above the surface. While over land on the other hand, the field

strength directly above the surface decreases far more rapidly as the wave propagates away from

the source. These results indicate how the implementation of the Surface Impedance Boundary

Condition (SIBC) successfully incorporates surfaces of different conductivity.
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Table 5.2: Testing the SIBC approximation. Frequencies (ωi/2π; i = 1, 2) correspond to 10 and
30 kHz respectively.

Surface Conductivity σ (S/m) Dielectric Constant ε
ε0

σ
ω1ε

σ
ω2ε

Sea 4 81 88787.9 29596.0

Land1 10−2 15 1198.6 399.5

Land2 10−3 15 119.9 40.0

Ice1 10−4 5 36.0 12.0

Ice2 10−5 5 3.6 1.2

5.5 Background Plasma, Magnetic Field, Electron-Neutral Col-

lisions

The final step to successfully modelling the ionosphere is the implementation of the background

magnetised plasma. This is done by using the full set of update equations and matrices in (2.58).

The plasma and electron neutral collision frequencies come from Wait’s exponential electron

density and electron-neutral collision frequency profiles given in (1.1) and (1.2). Figure 5.8 shows

the effect a magnetised plasma has on the propagation of radio waves. The plot on the left ignores

collisions between electrons and atmospheric neutrals. At low altitudes (∼<30km), the electron

density in the ionosphere is low (Figures 1.3 and 1.4), and has little to no effect on the propagation

of the radio waves. As altitude increases, the electron density increases, so does its effect on the

refractive index of the ionosphere. Comparing to the Mode Theory model, this is characterised

by parameter X in (2.20).

With the addition of a background ionosphere, the waves reach a point where they can no

longer propagate, and are reflected back down. On the left we see that when there are no

collisions, the waves reflect sharply off the ionosphere, at a height of around 70 km. Looking at

Mode Theory, this would happen where the refractive index from the simplified Appleton-Hartree

equation (2.22) changes rapidly within the space of a wavelength. In the right hand plot, which

includes collisions, the effect of the reflected waves is barely noticeable. This is due to the collisions

between the excited electrons and neutral molecules absorbing energy at higher altitudes, and not

re-radiating strong reflections. The lack of these strong reflections leads to the electromagnetic

field being dominated by the incident upward propagating waves. This can be seen by looking

at the similarity of right side of Figure 5.8 and the left side of Figure 5.7 which consists only of

upward propagating waves since there is no ionosphere to cause reflections. There is no surface

implemented in these two plots as they aim to examine the effect of reflections off the ionosphere

only and not a waveguide bounded on both sides.

The propagation of radio waves in a magnetised plasma leads to the formation of currents in

the ionosphere. With the full description of the background plasma, these currents can also be

observed. Figure 5.9 looks at the effect of electron-neutral collisions on these currents that are
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formed. On the left, the collisions are ignored and the currents can be seen to form at very low

altitudes. While on the right, we see that if collisions are included, the currents only form at

higher altitudes. If collisions are ignored, the free electron density is the dominating factor at low

altitudes, even if it is low. Since the magnetic field is assumed constant at all altitudes, currents

will form as long as there are some free electrons, as is the case on the left. If electron-neutral

collisions are included, their effect is far stronger than the free electron density at low altitudes,

this blocks the formation of currents. With their inclusion, the formation of currents is only

allowed at higher altitudes, where these effects start to become comparable. Comparing to the

mode theory model, this is seen in Figure 2.4, through the parameters X and Z from (2.20) This

highlights the importance of the inclusion of electron neutral collisions for a realistic ionosphere.

Now that the effects of a background plasma have been incorporated, variations to the iono-

spheric parameters can also be investigated. As discussed earlier, Wait’s ionospheric parameters

characterise the height of the ionosphere and the gradient of the electron density profile (1.1).

Figures 5.10 and 5.11 give an indication as to how H ′ and β influence the propagation of the

radio waves. Figure 5.10 looks at variation in the emerging wavefield from changing the height

of the ionosphere and keeping β constant. As one would expect, but changing the height of the

ionosphere, the waves travel to a higher altitude before being blocked and reflected. Another

observation, although not as clear, is that when the ionosphere is higher, the wavefield appears

to be slightly more distorted. This is due the reflected waves being slightly stronger. Figure 5.8

showed that when there are no collisions, the reflections from the ionosphere are a lot stronger.

By increasing the height of the ionosphere, the reflection of the waves is now occurring where the

electron-neutral collisions are weaker, seen by parameters Z in 2.4.

For β, however, the effect is not as obvious. Figure 5.11 shows that for a higher value of β,

the waves travel to a slightly higher altitude before reflection. Looking back at Figure 1.4, we see

that a lowering β corresponds to a increasing the electron density below H ′ and a decreasing the

electron density above H ′ . This higher electron density at a lower altitude could then lead to

the waves also being reflected at a lower altitude, as is the case in Figure 5.11, although this also

depends on H ′, as well as the frequency of the propagating wave. This means that the influence

of β on the propagation of the radio waves is not as simple as that of H ′; the combined effect of

H ′ and β has to be considered.

5.6 Realistic Example

The FDTD model is now able to effectively treat the fields at the boundaries of the computational

domain, include surfaces of varying conductivity and the effects of a magnetised plasma with

electron-neutral collisions. By incorporating these aspects together, the code is able to model

a realistic situation of a narrowband VLF transmitter radiating radio waves traveling over land

or sea with a user defined background ionosphere. The 2D snapshots that have been included
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Figure 5.8: Field patterns from a vertical electric dipole with a background plasma and no ground.
Left: Magnetised plasma with no collisions, Right: Magnetised plasma with collisions. Colouring
consistent with Figure 5.1.

Figure 5.9: Current density patterns from a vertical electric dipole with a background plasma
and no ground. Left: Magnetised plasma with no collisions, Right: Magnetised plasma with
collisions. Colouring is of log10Jy that is that corresponds to the colouring of the electric fields
in other plots.
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Figure 5.10: Field patterns that emerge with different ionospheric heights, (Left) H ′ = 65km,
(Right) H ′ = 75km with β = 0.4 km −1. A higher value of H ′ results in the wave propagating to
higher altitudes. Colouring consistent with Figure 5.1.

Figure 5.11: Field patterns that emerge with different electron density gradients, (Left) β = 0.3
km −1, (Right) β = 0.5km−1 with H ′ = 70km. In this case, a higher value of β leads to the wave
traveling to a slightly higher altitude before reflection. Colouring consistent with Figure 5.1.
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up until now help understand the general behaviour of the waves in the EIWG. They do not

however give much indication of the horizontal modal interference pattern profile and the overall

steady state strength of the field at different positions in the waveguide. To produce 1D modal

interference pattern plots such as those in Chapter 4, from the 2D FDTD simulations, the field

values at each grid point along the length of the waveguide at the altitude in question are recorded

and added together over a number time steps to observe the steady state field. By performing

multiple simulations with different parameters, the results such as those in Figures 5.10 and 5.11

can be displayed like those from the Mode Theory model in Chapter 4, as in Figures 4.4 and 4.4.

The addition of the field values over multiple time steps has to be done to achieve a smooth curve

that represents the steady state field values. Care must be taken to ensure that the code has been

able to run through enough time steps for the fields to reach steady state values, especially at

larger distances.

Figure 5.12 was generated in this way, by performing two simulations, one characterised by

electron density from (1.1) with typical day-time ionospheric parameters (H ′ = 72km, β =

0.33km−1), and one with typical night-time ionospheric parameters (H ′ = 85km, β = 0.55km−1).

The simulations were then run by inserting the appropriate values into (2.58). For each simulation,

the vertical electric field values just above the surface of the Earth and along length of the

waveguide (200 km) were recorded for a number of time steps after the system had reached

steady state. It can be seen that for the first 60 km, the field is dominated by the ground wave

that falls off with a typical r−1 trend for a two dimensional system. This shows that the properties

of the background ionosphere play no role in the ground wave. It is also seen that for nighttime

propagation, the signal is generally stronger, as expected from previous theory and experimental

observation.

Figure 5.13 was created in the same manner, except now looking at differences due to different

surfaces while keeping the ionosphere constant. The effect of sea water having a far higher

conductivity (4 S/m compared to 5 × 10−3S/m) is clearly visible. This is especially evident for

the ground wave where the high conductivity of the sea water allows the wave to travel with

little attenuation apart from the expected decay due to distance. For land, the lower conductivity

results in high attenuation of the ground wave. This is the reason for the modal interference

effects being noticeable at a lot shorter distance than over ocean where he ground wave is still

powerful enough to mask the initial modal effects. It can be seen that once the interference

pattern dominates over the decay of the ground wave, propagation over both sea and land show

very little attenuation, highlighting the ability of the EIWG to let VLF waves travel enormous

distances.

The results in Figure 5.14 keep the properties of the waveguide constant (sea, day-time), but

look at differences in the steady state field at different altitudes in the waveguide. The clearest

variation with height is closest to the transmitter. For the interference pattern along the ground,

there is a strong field in the vicinity close to the transmitter (< 30 km). This is due to the ground
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wave being emitted directly broadside from the vertical dipole, where the maximum energy is

emitted. For the interference pattern at higher altitudes, it is seen that at this close range,

the higher the altitude, the lower the field strength. This is exactly what is expected due to the

radiation pattern from a vertical electric dipole, as can be seen in the Figure 5.1 (a). At a distance

of around 50 to 60 km away from the source, the field strength is similar at all altitudes. From this

point on, waves that have reflected off the ionosphere start to influence the electromagnetic field

as well. It is seen that the change in the modal interference pattern due to changes in observation

height are not the same at all altitudes. For an observation altitude of 0 km, there are modal

minima just before a propagation distance of 150 km, and a bit after 200km. When increasing the

altitude to 10 km, we clearly see that these modal minima have shifted towards the transmitter.

However, going up another 10 km to an altitude of 20 km, this shift of modal minima is not clear.

At a propagation distance of 150 km, the highest field strength can be found at an altitude of 30

km, while at a distance of 250 km, the field strength is strongest at 10 km. These observations

show that the variation of field strength with position in the waveguide is not simple, but slightly

complex, based on the combined effect of the contribution of different modes at different distances

and heights. In the Mode Theory model, this is incorporated by (2.25) and (2.26), with Figures

4.1 and 4.2 showing how different modes can have varying influence at different heights.

5.6.1 Comparison with DEMETER observation

Results from the FDTD model will now also be compared to the NWC data from the DEMETER

satellite. As with the Mode Theory model, to compare the results to the data, averaging needs

to be done over multiple heights to successfully emulate the averaged year long data from the

satellite. The field here is also taken at the reflection height in the ionosphere. Figure 5.15

shows the comparison of simulated FDTD results to satellite data. The simulation results are

for propagation over sea, and averaged over 10 ionospheric profiles. The initial values chosen

for H ′ and β were for a typical daytime ionosphere and were then experimented with in different

combinations to reach this selection. (H ′ and β) values in (km, km−1) used to generate the model

results in Figure 5.15 are (72, 0.38), (72, 0.40), (72, 0.42), (73, 0.38), (73, 0.40), (73, 0.42), (73,

0.44), (74, 0.40), (74, 0.42) and (74, 0.44).

There is some agreement between the model and data. It can be seen that both reveal a

local minimum at around 1300km, for propagation over land and sea. For propagation over sea,

the results agree better with the data than for land, especially between 2000 and 2500km where

the model creates a local minimum not seen in the data while for sea there is far less of a stark

difference. This is most likely due to the implementation of the Surface Impedance Boundary

Condition. The use of the SIBC is based on the assumption that σ � ωε (2.75), Table 5.2

shows that this assumption is far more valid for sea than for land due to sea water being more

conductive than land. Any small differences or errors that arise from the SIBC approximation
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Figure 5.12: Interference pattern for daytime (H ′ = 72km, β = 0.33km−1) and night time profiles
(H ′ = 85km, β = 0.55km−1) for a 21 kHz wave over sea. The units on the y−axis are the same as
in previous plots like in Figure 5.1 except now added over multiple steps to achieve steady state.
The relative values resulting from different simulations with different sets of parameters are of
more interest than absolute values.
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Figure 5.13: Interference pattern for daytime (H ′ = 72km, β = 0.33km−1) propagation of a 21
kHz signal over sea and land. Units of the y−axis are consistent with Figure 5.12.
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Figure 5.14: Interference pattern for daytime (H ′ = 72km, β = 0.33km−1) propagation of a 21
kHz signal over sea at different altitudes. Units of the y−axis are consistent with Figure 5.12
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will accumulate and become more noticeable at larger propagation distances. The SIBC is seen

to correctly account for the fact that propagation over land yields a lower field strength than over

sea, but creates undesirable differences in the interference of different propagation modes.

The simulation results over land show an irregularity near the far end of the region. For a

smooth curve to be obtained, the fields have to be averaged over a sufficient number of periods

while the system has reached a steady state. By allowing for the simulations to carry on for

longer and by averaging over more periods, this part could have also been smoother. This was

not deemed worthwhile due to time constraints as it takes many hours for a single run to be

performed, and many runs need to be performed and then summed and averaged. Although

these irregularities are undesirable, is it mostly an aesthetic issue with little consequence to the

actual result. Overall, the model performs reasonably well at matching the data, especially when

keeping certain aspects of the data in mind. This dataset was created from averaging the results

from a year’s worth of orbits over the NWC region and stored in 0.5◦ by 0.5◦ cells. At the

latitude of NWC (21◦ 47’ S), 0.5◦ of longitude corresponds to roughly 51.4km, that is equal to 2.5

wavelengths. The combination of the averaging of separate orbits and large spatial resolution of

the data mean that these results should not be expected to be exact, especially considering this

is the image of the modal interference pattern. The FDTD simulation however has an very small

spatial resolution of 504m compared to the satellite data. This is clear to see in the fine structure

of the modal interference pattern.

5.7 Numerical Stability of the FDTD method

Due to the FDTD algorithm projecting the propagation of electromagnetic waves in the continuous

world onto a numerical, discretised grid, nonphysical dispersion takes place. This implies that the

phase velocity of the simulated waves, even in the absence of a plasma medium, can differ from

c, with the variation dependent on the wavelength, direction of propagation and discretisation.

One way to think about this view is that the algorithm embeds the electromagnetic waves onto a

”numerical ether” which has properties very similar to vacuum, but not exactly the same [Taflove

and Hagness, 2005]. This leads to the numerical waves accumulating delays or phase errors which

can lead to nonphysical results.

To illustrate this numerical dispersion, consider a 2D TM polarised free space system, governed

by (2.30a), (2.30b) and (2.31c). The FDTD method is applied to yield the following set of

equations

Hx
n+1/2
i,j+1/2 −Hx

n−1/2
i,j+1/2

∆t
= − 1

µ0

(
Ez

n
i,j+1 − Ez ni,j

∆y

)
(5.9)

Hy
n+1/2
i,j+1/2 −Hy

n−1/2
i,j+1/2

∆t
=

1

µ0

(
Ez

n
i+1,j − Ez ni,j

∆x

)
(5.10)
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Figure 5.15: Simulated FDTD results of the average of multiple ionospheres compared with
DEMETER data.
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Ez
n+1
i,j − Ez ni,j

∆t
=

1

ε0

Hy
n+1/2
i+1/2,j −Hy

n+1/2
i−1/2,j

∆x
−
Hx

n+1/2
i,j+1/2 −Hx

n+1/2
i,j−1/2

∆y

 . (5.11)

To investigate the numerical dispersion, a monochromatic traveling-wave trial solution is sub-

stituted into the equations. This trial wave solution takes the form:

Ez
n
i,j = Ez0e

i(ωn∆t−k̃xi∆x−(̃k)yj∆y) (5.12)

Hx
n
i,j = Hx0e

i(ωn∆t−k̃xi∆x−(̃k)yj∆y) (5.13)

Hy
n
i,j = Hy0e

i(ωn∆t−k̃xi∆x−(̃k)yj∆y) (5.14)

where k̃x and k̃y are the x− and y− components of the numerical wave vector and ω is

the angular frequency. By substituting (5.12) to (5.14) into (5.9) to (5.11) and simplifying, the

following relations emerge:

Hx0 =
∆tEz0
µ0∆y

sin(k̃y∆y/2)

sin(ω∆t/2)
(5.15)

Hy0 = −∆tEz0
µ0∆x

sin(k̃y∆y/2)

sin(ω∆t/2)
(5.16)
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2
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2

)
− Hy0
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(
k̃x∆x

2

)]
. (5.17)

Substitution of (5.15)and (5.16) into (5.17) yields

[
1

c∆t
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(
ω∆t

2

)]2

=

[
1

∆x
sin

(
k̃x∆x

2

)]2

+

[
1

∆y
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(
k̃y∆y

2

)]2

(5.18)

Eq. 5.18 is now rewritten for the square cell grid with ∆x = ∆y = ∆ and with the use of the

Courant number, Cs , and the grid sampling density, or PPW, Nλ = λ0/∆,

1

C2
s

sin2

(
πCs
λ

)
= sin2

(
∆k̃ cosφ

2

)
+ sin2

(
∆k̃ sinφ

2

)
(5.19)

where φ is the angle between the propagation direction and the x−axis. For propagation along

a major vertical or horizontal axis (φ = 0◦, 90◦, 180◦ or 270◦), (5.19) reduces to

1

Cs
sin

(
πCs
λ

)
= sin

(
k̃∆

2

)
(5.20)

or equivalently
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k̃ =
2

∆
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[
1
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(
πCs
Nλ
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(5.21)

with corresponding numerical phase velocity

ṽp =
ω

k̃
=

π

Nλ sin−1
[

1
Cs

sin
(
πCs
Nλ

)]c. (5.22)

By solving the numerical dispersion relation, (5.19) for propagation along a diagonal axis

(φ = 45, 135◦, 225◦ or 315◦), we get

1
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2
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)
(5.23)

or equivalently
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with corresponding numerical phase velocity

ṽp =
ω

k̃
=

π

Nλ

√
2 sin−1

[
1
Cs

√
2 sin

(
πCs
Nλ

)]c. (5.25)

To illustrate a basic example, if we assume the grid to have Cs = 0.5 and Nλ = 30, the

dispersion relations yield numerical phase velocities of 0.998625c and 0.999542c for major axis

and diagonal propagation respectively. Both of these velocities are less than c, indicating a phase

lag relative to a physical wave. If we then compare these two results with each other, we notice they

are not equal. We find that a wave traveling obliquely has a speed 0.999542/0.998625 = 1.00092

times the speed of a wave propagating along a major axis. This represents a velocity anisotropy of

around 0.092% between oblique and axis-long propagation. The wavefront distortion due to this

anisotropy would be about 0.9 cells for every 1000 cells the wave has propagated. For a 20 kHz

wave with Nλ = 30, this means that the diagonal wave would have traveled around 1 km further

than the horizontal wave over a distance of roughly 500 km. This seems like a small amount,

but could have an effect for example on the interference between reflected and direct waves in

a waveguide. The effect becomes more pronounced at large distances as it scales linearly with

propagation path length. A wave traveling over a distance of 10λ0 with a velocity anisotropy of

0.092% could suffer a phase lag of 3.3◦ . If Nλ = 20 instead, then the velocity anisotropy would

be 0.208% which would result in a phase lag of 7.5◦ over the space of 10λ0. This highlights the

importance of setting Nλ high enough as to minimise numerical errors. This effect of numerical

dispersion is an inherent property of grid based numerical simulations and cannot be totally

avoided, only minimised. More comprehensive results are given in Table 5.3 which shows the

effects of different parameters on numerical dispersion. Note here that the diagonal phase speed
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Figure 5.16: Left: Ez field distribution along diagonal and vertical axis. Right: Expanded view
between 105 and 135 ∆.

always exceeds that of propagation along a major axis. We see here that when Cs is set to its

maximum value (5.4), the diagonal phase velocity matches the speed of light perfectly. If the

Courant number is set above its limit, 1/
√
d, where d is the number of dimensions, then the phase

velocity for diagonal propagation would exceed c, resulting in superluminal propagation. Figure

5.16 was generated by simulating the electric and magnetic fields from (5.9) to (5.11) and recording

the normalised Ez values along two paths, one along the x−direction from the source, and the

other along a diagonal, xy-direction. The distance of propagation along each path was calculated

and normalised to the size of ∆x (= ∆y). At short distances, the field strength appears to be the

same for the two directions, as it should be. Further away from the source, the consequences of

the slightly different phase velocities become apparent with the values along the horizontal and

diagonal paths starting to diverge. The effect is small, on the order of 1 cell for every 1000 that

the wave has propagated, but it is clear that the waves are starting to diverge.

Table 5.3: Numerical dispersion analysis results.
ṽp/c, Cs = 0.5 ṽp/c, Cs = 1/

√
2

Nλ φ = 0◦ φ = 45◦ φ = φ=0◦

φ=45◦ φ = 0◦ φ = 45◦ φ = φ=0◦

φ=45◦

10 0.987264 0.995817 1.008663 0.991485 1.0 1.008588

20 0.996892 0.998968 1.002082 0.997926 1.0 1.002078

30 0.998625 0.999542 1.000919 0.999083 1.0 1.000918

40 0.999227 0.999743 1.000516 0.999485 1.0 1.000515
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Discussion and Conclusions

The propagation of VLF waves in the EIWG can be a complicated topic with many factors influ-

encing it. Understanding these factors is of scientific interest, as well as for other reasons such as

communication. This thesis set out to produce two models that simulate the propagation of Very

Low Frequency (VLF) radio waves in the EIWG using Mode Theory and the Finite-Difference

Time-Domain (FDTD) technique. The main aim being to use these models to investigate the-

oretical as well as experimental aspects of VLF wave propagation. The theoretical background

of the two methods is discussed as well as the concepts of the EIWG and the important factors

influencing it such as electron density. Characterisation of the electron density profile is presented

in terms of Wait’s parameters, H ′ and β. The Mode Theory model is first used to illustrate the

formation of a modal interference pattern and how changes to Wait’s parameters modify it. We

see that reducing the height of the ionosphere causes the modal interference pattern to be slightly

compressed and shifted towards the transmitter while the overall field strength remains the same.

Increasing β also changes the shape of the modal interference pattern in a way similar to reducing

the height except changes in β also result in a noticeable change in the field strength, with smaller

values of β leading to lower field strengths. This is due to the fact that the shape of the pattern

is mostly determined from the resulting interference between reflected waves. This interference

depends on the phase of the fields and this is mostly dependent on the height of the ionosphere.

The strength of the field on the other hand is more dependent on how much absorption of the

waves occurs, this absorption is more closely related to the gradient of the electron density profile.

The individual components of the Mode Theory model are then used to examine other theoretical

aspects of waveguide propagation. The refractive index profiles for the X- and O-mode waves are

examined for night and day ionospheres. Results from the model agree with established theory

such as higher attenuation rates during the day and for higher order modes. The effect of mode

number and ionospheric height on the attenuation rate for a range of frequencies is also presented.

A version of the model that includes temporally varying ionospheric parameters was then

introduced and used to investigate the effect of a solar flare on a narrowband VLF signal. The

75
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form of the amplitude response of the 18.3 kHz HWV transmitter in France detected at SANAE-

IV, Antarctica to 2 different sized solar flares was examined. Temporal changes to H ′ and β are

included in the same manner as the X-ray flux from a solar flare, fast onset and slow recovery.

A small and larger flare were examined with respective changes to H ′ and β of ∆H ′ = 2km,

∆β = 0.01km1 and ∆H ′ = 4km, ∆β = 0.03km1. The changes to the amplitude are explained

in terms of changes in the modal interference pattern and the relative position of the receiving

station as well as the magnitude of the flare. The model was able to successfully replicate the

form of the unusual double-peak response to a flare that occurred on 12 February 2010.

Comparison to DEMETER data was performed to validate the model. The model was in

reasonable agreement with the data. The direct comparison with the data was good but there

is some doubt with respect to the parameters used to achieve these results. The model found

agreement using ionospheric reflection heights ranging from 65 to 68 km, lower than results from

a previous study which found the height to be between 70 and 72 km [Thomson, 2010]. This

discrepancy is due to the very different methods used to estimate the height as well as the fact

that the measurements are from different times in the solar cycle. The FDTD model is initially

used to illustrate some basic concepts of electromagnetic propagation such as the distribution of

an electric field around a dipole source. Waveguide boundaries are then introduced to show the

formation of waveguide modes. The effects waveguide height as well as orientation and position of

source are examined. Different aspects of propagation in the EIWG such as a magnetised plasma

and different surfaces are first examined individually. These different aspects are then combined

so that the model can simulate a realistic example of VLF propagation in the EIWG.

First the differences between day and night time propagation as well as propagation of over sea

and land are illustrated. These results from the FDTD model agree with the Mode Theory model

as well established theory; waves travel better at night and over sea. The FDTD model is also

used to look at the interference pattern at different heights in the waveguide. It clearly illustrates

that at short distances, the pattern is determined by the direct rays and their dipole distribution.

Past a certain point, the structure is determined from the modal interference pattern.

The FDTD model is then compared to the same DEMETER data as the Mode Theory model

with the same process of averaging the results from multiple unique ionospheres. The FDTD

results of the observed interference pattern do not agree with the data as well as the Mode Theory

model. The agreement for propagation over sea water is better than for that over land. This could

be due to the implementation of the SIBC. The approximation used to validate the use of the

SIBC is far stronger for sea than land due to the higher conductivity of sea water. The spatial

resolution of the data is just over 100 times lower than that of the model, 51.4km compared to

504m. The FDTD model did however agree more with the previous study of Thomson [2010] with

respect to the height of the ionosphere than the Mode Theory model. Compared to the 7072km

range Thomson [2010] reported, the FDTD method is only 2km higher with heights ranging from

7274km. Although both models proved to be useful, there is definitely room for improvement. The
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waveguide model could be modified as to include a correction for the curvature of the Earth. It

would also be very desirable for the Mode Theory model to be able to perform mode conversions so

that slabs of varying waveguide parameters could be included, although this is quite challenging.

There are two large and clear possible ways to improve the FDTD model. Firstly, the model

can be extended to three dimensions. This in itself would not be more challenging as the two

dimensional case since extending to higher dimensions is trivial, yet tedious. This would however

dramatically increase the computational requirements of the program. Having a 3 dimensional

model would allow for the investigation of many interesting phenomena such as indirect, scattered

signals between transmitter and receiver. Secondly, the addition of temporally varying ionospheric

parameters would lead to the possible simulation of many time dependent phenomena such as

the passage of the day-night terminator and other traveling ionospheric disturbances. This would

however also cause a massive increase in computational time since the coefficients determining

the propagation of the waves will have to be constantly recalculated as opposed to the static

version in this thesis. Both of these models presented in this thesis are shown to be useful in both

theoretical and experimental situations. When looking at the results, it must be kept in mind that

each of the models suffer from some sort of weakness. This generally arises from simplifications

or approximations made. The results from the two models show that the FDTD model is more

suited to investigating propagation over short and medium distances where evanescent modes

can still have significant contributions. For the FDTD model to simulate propagation over large

distances, the computational requirements would dramatically increase, which are already large

for a standard computer. The effect of numerical dispersion will also be far more pronounced

due to phase errors and therefore incorrect interference of the reflected waves. Another positive

for the FDTD model is that the grid can be customised with little trouble. The Mode Theory

model on the other hand is seen to be more useful when investigating long distance propagation

where the modal aspect of waveguide propagation is dominant. It is for this reason that the Mode

Theory model is better at describing the overall, long distance behaviour as opposed to the small,

finer details.
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