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Abstract 

Conversion of new lignocellulose biomass (LCB) waste to energy is an innovative technique 

for waste valorization and management which reduces environmental pollutions and offers 

socioeconomic benefits. This has made the LCB to be significant due to its novel behavior 

towards bioenergy. The aims of this study is to characterize the biomass, evaluate and produce 

the bioethanol fuels from unique LCB which is matooke peels species, and examined the 

emissions and combustion effects of low content rates of bioethanol blends with gasoline in a 

modernized spark-ignition engine. 

The matooke peels species such as Mbwazirume and Nakyinyika biomass peels, which are 

pretreated and untreated were characterized to identify its use in bioenergy production. This 

characterization of biomass was carried out using various analyses such as proximate and 

ultimate analysis, thermo-gravimetric analysis (TGA), Fourier-transform infrared spectroscopy 

(FTIR), atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM), and 

energy dispersive X-ray spectrometer (EDXS). Experimental findings reveal that the pretreated 

Mbwazirume biomass exhibits excellent solid fuel properties when compared to untreated 

Mbwazirume, pretreated and untreated Nakyinyika biomass peels.  

Bioethanol fuels were produced from Mbwazirume and Nakyinyika biomass peels through a 

fermentation process using Saccharomyces cerevisiae and analyzed using ANOVA. The study 

also optimized production variables and determined the models for separate hydrolysis and 

fermentation (SHF). The properties of the bioethanol were measured according to relevant 

ASTM standards and compared with the standard ethanol and gasoline. Mbwazirume biomass 

shows higher bioethanol yields and excellent fuel properties, this serve as a fuel of choice for 

further experiment. 

The bioethanol ratios were blend with gasoline at (E0, E5, E10, and E15) used in the 

development of further experiments on engine and combustion performance, and exhaust 

emissions test in a modernized TD201 four-stroke petrol engine. The results obtained were 

computed, modeled, evaluated and analyzed. Results show that the small differences in 

properties between bioethanol-gasoline blends are enough to create a significant change in the 

combustion system. These effects lead to behavioral mechanisms which are not easy to analyze 

or understand, sometimes make it difficult to identify the fundamentals of how blend ratios 

affect emissions and performance. 
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Chapter 1: Introduction 

1.1   Background 

Biofuels, derived from biomass, include liquid, solid, and gas fuels, such as wood pellets, 

ethanol, biodiesel, and biogas, which are used to deliver renewable energy services in the form 

of heating and cooling, transportation, and electricity. For transportation, liquid biofuels are 

seen as the preferred route to easily replace current liquid petroleum fuels, since this incurs 

relatively little additional infrastructure cost, and offers a direct path to decarbonize the 

transport system [1]. The global dependency on fossil fuels for energy generation has 

significant implications for the environment, of which global climate change due to carbon 

dioxide (CO2) emissions are among the most serious [2]. These challenges have led to new 

approaches focusing on energy consumption management and alternative fuel sources which 

are urgently needed in order to meet energy demands, increase efficiency, and reduce 

greenhouse gas (GHG) emissions [3]. 

There is significant potential for agricultural involvement in the production and consumption 

of biomass energy. For instance, Uganda is ranked the second largest producer of bananas at 

11.1 m tons per year, and the number one consumer of bananas at 240 kg per capita per annum 

[4]. This means that bananas are a key part of many families’ everyday diet, which in return 

generates considerable quantities of banana peels each day all year round [5]. There are 

different types of bananas grown in Uganda for food consumption. These have been classified 

as green bananas (Matooke), plantain, and yellow or sweet bananas [6]. Matooke (Musa-AAA-

EA) is a variety of banana indigenous to Uganda and is the most essential staple food crop for 

human consumption. It comes from the family of bananas known as East African highland 

bananas. It appears to be green in color and thick at the midsection [7] which is different from 

yellow bananas, and cannot be peeled in the same way as yellow bananas. 

Some of these peels are used as animal feed or as local briquettes but nevertheless about 61.8 

kg per capita per annum of Matooke peels produced in Uganda become waste, due to the lack 

of sufficient structure and indiscriminate dumping. This huge amount of waste leads to 

environmental health problems, and releases GHG. However, this waste is a lignocellulosic 

biomass (LCB) which can be utilized as a readily available and renewable low-cost raw 

material for biofuel production due to its high starch content (~70 wt.%) [8,9]. Among the 

various biofuels, bioethanol presents the most suitable renewable, bio-based and eco-friendly 

fuel for spark-ignition (SI) engines mainly because it has similar properties to gasoline in terms 
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of high octane number, high flame speed, low stoichiometric air-fuel ratio and low heating 

value [10–12]. 

Utilizing these new LCBs for alternative fuel can reduce the use of fossil fuels, increase engine 

efficiency and minimize CO2, NOx and SOx emissions released into the atmosphere as a result 

of fossil fuel combustion. Though some researchers have carried out studies on various biomass 

bioethanol in SI engines, there is no published literature available on bioethanol for use in SI 

engines derived from matooke peel biomass, and its characterization (such as TGA, FT-IR, 

AAS, and SEM-EDS). Besides, most researchers concentrate on how to replace gasoline with 

alternatives without considering the effects of those alternatives on the engine. Thus, this 

research aimed to characterize the biomass, evaluate and produce bioethanol fuel from a unique 

LCB which is the peel of the matooke species, and examined the emissions and combustion 

effects on low content rates of bioethanol blends with gasoline in a modernized spark-ignition 

engine. 

1.2   Statement of the problem  

The increase in demand for and identification of the resources for energy are key issues for 

most countries in Africa. For instance, in Uganda, electricity distribution is one of the lowest 

in Africa; estimated at only 22 % of the total Ugandan population and dropping to 8 % to10 % 

in rural areas. Furthermore, the country is highly vulnerable to oil price shocks as it imports 

almost all of its 31 490 barrels per day (5 006.5 m3/d) of oil from Kenya. These makes the 

energy consumption from transportation sector. Such limited and unreliable energy access 

represents the underutilization of the large amount of biomass (Matooke peels) waste available 

which can be a renewable and sustainable source for bioenergy production. Matooke peels, 

which are different from sweet banana peels, is a key part of many families’ everyday diet. 

About 61.8 kg per capita per annum of Matooke waste is produced, posing considerable 

disposal problems and ultimately leading to environmental pollution. These challenges have 

practical and policy implications in Uganda related to energy consumption management and 

alternative sources for biofuel which are now an urgent necessity in order to meet energy 

demands, increase efficiency, and reduce GHG emissions. This waste can be utilized as a 

readily available and renewable low-cost raw material for bioethanol production. Finding an 

alternative use for this biomass waste by converting it to biofuels will go a long way in 

addressing poverty by providing employment. 



 
 

3 

1.3   Main objective of the study  

The main purpose of this research was to produce, evaluate and test the bioethanol from 

matooke peels species waste as blend fuels in an SI engine. 

1.4   Specific objectives of the study  

The specific objectives of the study were: 

1. To characterize the matooke peels species suitable for bioethanol production. 

2. To synthesize bioethanol from selected matooke species under several conditions. 

3. To determine and optimize various effects of process parameters for enhancing the 

quality of bioethanol extracted from matooke peels. 

4. To conduct engine performance and emission characteristics tests of bioethanol blend 

fuels. 

1.5   Significance of the research 

A huge amount of matooke peels produced in Uganda becomes waste due to the lack of 

sufficient structure and indiscriminate dumping. This has led to research and the development 

of bioethanol through using waste that does not compete with the food chain, which is 

sustainable and efficient regarding both costs and energy. As reported in the literature, 

bioethanol has similar properties to gasoline in terms of high-octane number, high flame speed, 

low stoichiometric air-fuel ratio and low heating value. It is suggested that the current research 

on matooke peels can be added to the biomass database for future bioenergy production. In 

addition, this will help in identifying the opportunities for reaching Uganda’s bioenergy targets 

over the medium to long term, since bioenergy can be used for many purposes such as 

generating electricity as well as transportation fuel. Now that liquid fuel extracted from 

matooke peels has been tested and evaluated in a SI engine, government and development 

agencies can support the research for small-scale bioethanol production, which can then help 

to provide clean, accessible energy that is vital for rural development, poverty alleviation, and 

will provide an additional source of income for the government. 

1.6   Layout of the thesis 

Chapter 1 presents an overview of the research work by explaining the background of the study, 

aims and objectives, and the significance of the research. 
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Chapter 2 reviews the potential techniques of bioethanol production from different 

lignocellulosic biomass as alternative fuel. 

Chapter 3 highlights the progress in bioethanol-gasoline blends and their effects on the 

performance, emissions and some combustion characteristics in SI engines under different 

operating conditions. 

Chapter 4 surveys the recent trends in cold-start emission behavior regarding the impact of 

changes in ambient temperature in relation to the advanced technology of gasoline direct 

injection (GDI) and port fuel injection (PFI) vehicles. It also presents the influence of lower 

combustion temperature and rich air/fuel mixture at very low temperature conditions. 

Chapter 5 reports the characterization of the new LCB material such as pretreated Mbwazirume 

peel (MP) and Nakyinyika peel (NP) biomass using various analyses such as proximate and 

ultimate, TGA, FT-IR, AAS, and SEM-EDS. This was in order to assess their suitability for 

bioenergy application in Uganda. 

Chapter 6 characterizes the unique biomass from the variety of Matooke peel which is untreated 

Mbwazirume waste peel (UM-WP) and untreated Nakyinyika waste peel (UN-WP). It is 

suggested that this exploration can be added to the biomass database as an alternative energy 

source. 

Chapter 7 investigates the feasibility of producing bioethanol fuel from a renewable and 

sustainable energy resource which is matooke species peels through a fermentation process 

using Saccharomyces cerevisiae. The properties of the bioethanol were measured according to 

relevant ASTM standards and compared and analyzed by gas chromatography. These 

bioethanol properties are within the acceptable range of standard ethanol and gasoline. 

Chapter 8 examines the effects of low content rates of Mbwazirume bioethanol-gasoline blends 

(E0, E5, E10, and E15) in a modernized TD201 four-stroke petrol engine, equipped with 

efficient electronic fuel injection (EFI) systems. These blend fuels were tested under various 

engine speeds in order to assess engine emissions, performance, and combustion characteristics 

because ignition timing is also an alternative process to predict engine performance. 

Chapter 9 presents conclusions and recommendations for future work. 
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ABSTRACT 

Bioethanol production from lignocellulosic biomass (LCB) has been demonstrated 

as alternative to conventional fuel, as it is considered to be renewable and clean energy. 

The major problem of bioethanol is the availability of biomass materials for its 

production. This review paper aims to provide an overview of the recent developments 

and potential regarding production techniques, ethanol yields, and properties, as well 

as the effects of bioethanol fuel as replacement for fossil fuel. The literature indicates 

that the best results have been obtained with cellulase and β-glucanase cocktail which 

significantly increases bioethanol production compared to fermented acid 

pretreatment. The classification of pretreatment, hydrolysis, and fermentation have 

significant effects on physico-chemical properties of bioethanol fuel, which also 

influence the internal combustion engines. Difference in operating conditions and 

physico-chemical properties of bioethanol fuels, may change the combustion behaviors 

and sometimes makes it difficult to analyze the fundamentals of how it affects emissions. 

Keywords: Bioethanol; lignocellulosic biomass; combustion behaviors; emissions. 

Cite this Article: Abdulfatah Abdu Yusuf and Freddie L. Inambao, Bioethanol 

Production Techniques from Lignocellulosic Biomass as Alternative Fuel: A Review, 

International Journal of Mechanical Engineering and Technology, 10(6), 2019, pp. 34-

71. 

http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=6 

1. INTRODUCTION  

Energy consumption associated with the transportation sector has contributed to a world 

problem. The world’s energy demand is increasing every day and the problem of fossil fuel 

depletion is looming (Iodice & Senatore, 2016). These challenges have led to new approaches 

focusing on energy consumption management and alternative fuel sources so as to increase 

efficiency and reduce greenhouse gas emissions respectively (Yusuf & Inambao, 2018). 

Biomass is the most common form of a renewable primary energy resource that can provide 

alternative transportation fuels (McKendry, 2002; Sun & Cheng, 2002). Biofuels are a variety 

of fuels which can be produced from agro-industrial waste, algae material or various 
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lignocellulosic biomass (LCB) sources in many different ways (Calam, Içingür, Solmaz, & 

Yamk, 2015). Among the various biofuels, bioethanol presents the most suitable renewable, 

bio-based and eco-friendly fuel for SI engines mainly because it has similar properties to 

gasoline in terms of high octane number, high flame speed, low stoichiometric air-fuel ratio and 

low heating value (Calam et al., 2015; Iliev, 2015; Zhen, 2018). 

Thus, production of bioethanol from biomass is a process of decreasing the consumption of 

crude oil and reduce CO2, NOx and SOx emissions released into the atmosphere as a result of 

fossil fuel combustion (Thangavel, Momula, Gosala, & Asvathanarayanan, 2016; Tibaquir & 

Huertas, 2018). Many researches have been conducted on production of bioethanol from a 

simple conversion of various biomass sources such as sugarcane, corn, cassava, banana peels, 

rice straw and other agricultural waste by means of fermentation (P. Kumar, Barrett, Delwiche, 

& Stroeve, 2009; Xu & Huang, 2014), to the multi-stage conversion system of LCB into 

bioethanol (Binod et al., 2010; Sarkar, Ghosh, Bannerjee, & Aikat, 2012). In this context, the 

utilization of various agricultural residues (such as wheat straw, rice straw, banana peel, 

sugarcane bagasse, rape straw, and corn stover) containing carbohydrates for the production of 

bioethanol have been reported. In Uganda, 91.4 kg per capita of Matooke (banana) peels are 

generated per year, a small portion of which is used for animal feeds, and briquettes while a 

large portion is left to waste away contributing to an increase in environmental residues. It is 

important to research the possible ways of adding value to these wastes, but production costs 

can vary widely considering conversion process, the scale of production, lignocellulosic 

material and region. The current research focused on the development of bioethanol through 

agro-industry waste that does not compete with the food chain, which is sustainable and 

efficient regarding both costs and energy. This review paper aims to give an overview of the 

recent studies on production techniques, ethanol yield, properties, and useful characteristics of 

bioethanol from LCB as replacement for fossil fuel. This will provide a benchmark for the 

development of biofuels from Matooke peels in Uganda. 

2. LIGNOCELLULOSIC BIOMASS COMPOSITION AND STRUCTURE 

LCB is an abundant, renewable source of carbohydrates for microbial conversion to chemicals 

and fuels (Geddes, Nieves, & Ingram, 2011). It is derived from agricultural residues, such as 

straw, wood and other agricultural waste (Aditiya et al., 2016; Domínguez-Bocanegra, Torres-

Muñoz, & López, 2015). This type of biomass can be converted into liquid fuel. This in turn 

improves the CO2 balance, and since it is a waste resource, it does not compete with human 

food chain (Soccol et al., 2010). The composition of LCB is categorized into three main parts: 

cellulose (30 % to 50 % dry wt.), hemicellulose (20 % to 40 % dry wt.) and lignin (10 % to 20 

% dry wt.) (Limayem & Ricke, 2012; Putro et al., 2015; Sebayang et al., 2016). The molecular 

structure of cellulose, hemicellulose, and lignin are shown in Fig. 1. 
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Figure 1 Lignocellulosic biomass (a) Cellulose; (b) Hemicellulose; (c) Lignin (Brandt, Gräsvik, 

Hallett, & Welton, 2013; Kobayashi & Fukuoka, 2013). 

2.1. Cellulose 

Cellulose (C6H10O5)n is a hexoses sugar from agricultural biomass and woody (Balat, 2011). 

It is a linear polymer of glucose monomers (D-glucose) linked to β-(1,4)-glycosidic bonds, and 

consists of a long chain of β-glucose monomers gathered into micro-fibril bundles (Ebringerová 

& Thomas, 2005; Haghighi Mood et al., 2013). Cellulose is insoluble in water, and allow the 

hydrolysis process to break down the polysaccharide to free sugar molecules by increasing 

water content known as saccharification (Hamelinck, Van Hooijdonk, & Faaij, 2005). Figures 

2, 3 and 4 describe the schematic concepts of a biorefinery from LCB sources as the starting 

point for the production of a variety of molecules, and their application for fuels and 

biochemical platforms related to the agro-industry. Chemicals that can serve as a starting point 

for other chemicals are often called platform chemicals (Engdahl & Tufvesson, 2012). 

The overall hydrolysis of cellulose produces only glucose, which can be converted into 

different forms of biochemical substances and chemical (Fig. 2). Biological processes can lead 

to a wide range of substances such as bioethanol, organic acids, glycerol, sorbitol, mannitol, 

fructose, enzymes, and biopolymers. This is due to the existence of an exclusive and common 

metabolic pathway for the great majority of living beings (Päivi Mäki-Arvela, Salmi, 

Holmbom, Willför, & Murzin, 2011a; Pereira, Couto, & Anna, 2008). Chemical or enzymatic 

processes can be converted into hydroxymethylfurfural (HMF) which is an important 

intermediate platform for the production of dimethylfuran (DMF) or furan-based polymers 

(Pereira et al., 2008). 
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Figure 2 Schematic concepts of biorefinery from lignocellulosic biomass composition (cellulose 

products) (Pereira et al., 2008). 

2.2. Hemicellulose 

Hemicellulose (C5H8O4)n  is a short, highly branched polymer of pentose sugars (D-xylose and 

L-arabinose) and hexose (D-glucose, D-mannose and D-galactose) (Kuhad, Gupta, Khasa, 

Singh, & Zhang, 2011). Hemicelluloses are associated to cellulose as large source of carbon in 

plants and xyloglucans or xylans depending on the types of plants (Bioprocessing, Fuels, & 

Energy, 1994). The presiding sources of hemicelluloses biomass are woody, softwoods, and 

hardwoods (Limayem & Ricke, 2012). Hemicellulose is more readily hydrolyzed compared to 

cellulose because of its branched, amorphous nature.  

Xylose can be hydrogenated to produce xylitol, which can be used as a non-carcinogenic 

sweetener, with the same sweetening power of sucrose and with metabolization in the humans 

independent of insulin. Xylose can be biologically converted to single cell proteins (SCP) and 

to a variety of fuels and solvents, such as bioethanol by yeasts with the ability to ferment pentose 

(Pichia stipitis, Candida sheratae) (Pereira et al., 2008). Xylitol, by microorganisms with 

exclusively nicotinamide adenine dinucleotide phosphate (NADPH) dependent reductase 

activities on xylose (Vásquez, De Souza, & Pereira, 2006); biopolymers 

(polyhydroxyalkanoates, polylactate etc); a series of organic acids (succinic, propionic, acetic, 

lactic and butyric); solvents (butanol and acetone) and other fuels or fuel additives (DMF, 

butanol, 2,3 butanediol) (Clark & Deswarte, 2015) (Fig. 3). 
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Figure 3 Schematic concepts of biorefinery from lignocellulosic biomass composition (hemicellulose 

products) (Pereira et al., 2008). 

2.3. Lignin 

Lignin [C9H10O3 (OCH3)0.9–1.7]n is an organic compound from three different monomers 

(coniferyl, synapyl alcohols, and p-coumaryl) joined together by a set of linkages to create a 

matrix (Sánchez, 2009). This matrix consist of various functional groups, such as methoxyl, 

hydroxyl, and carbonyl, which shows a high polarity to the lignin macromolecule (Feldman, 

Banu, Natansohn, & Wang, 1991). Lignin is among the obstacles to fermentation of LCB, 

which makes it unaffected by chemical and biological degradation, but affects the quality of 

bioethanol production (Taherzadeh & Karimi, 2008). 

Lignin offers useful opportunities to obtain high-value products, such as carbon fibers, 

emulsifiers, dispersants, sequestrants, surfactants, binders and aromatics (Rosas, Berenguer, 

Valero-Romero, RodrÃguez-Mirasol, & Cordero, 2014). The application of lignin is in the pulp 

and paper industry, which serve as a biofuel to replace fossil fuels for transportation, and the 

lignin-depleted black liquor can be reused in the cooking operation (Pereira et al., 2008) (Fig. 

4). 
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Figure 4 Schematic concepts of biorefinery from lignocellulosic biomass composition (lignin 

products) (Pereira et al., 2008). 

3. PROCESS OF CONVERTING LIGNOCELLULOSIC BIOMASS TO 

BIOETHANOL 

The conversion process of ethanol depends on the types of LCB used. Generally, bioethanol 

production from LCB comprises different stages: (1) pretreatment (2) hydrolysis of cellulose 

and hemicellulose (3) sugar fermentation and (4) distillation and purification of the ethanol to 

meet fuel specifications (Bon & Ferrara, 2010; Demirbaş, 2005). 

3.1. Pretreatment technologies 

This process has an essential effect on the overall process of bioethanol from LCB, which makes 

the cellulose accessible to hydrolysis for conversion to ethanol fuels (Srichuwong et al., 2009). 

Various pretreatment techniques change the properties and structure of the LCB, and improve 

the rate hydrolysis (P. Kumar et al., 2009). Pretreatment technologies are divided into four 

categories: (1) physical (Keikhosro Karimi & Taherzadeh, 2016) (2) physico-chemical (Bonner 

et al., 2016) (3) chemical (Williams, Crowe, Ong, & Hodge, 2017) and (4) biological 

pretreatment (Amin et al., 2017). The advantages and disadvantages of the pretreatment 

processes for LCB materials are summarized in Table 1. 

3.1.1. Physical pretreatment 

Physical pretreatment is a process of reducing the particle size of the feedstock to increase the 

surface or volume ratio, which eases the subsequent processes in the production (Harmsen, 

Huijgen, López, & Bakker, 2010). Saccharification produces fermentable sugars from 

cellulosic materials via enzymatic degradation, acidic, and ionic hydrolysis (C. Zhao et al., 

2018). The types of physical pretreatment appear below.  

3.1.1.1. Mechanical 

Mechanical pretreatment of LCB is an important step for improving the bioconversion potential 

through particle densification and distribution, enzymatic accessibility, and the overall 
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transformation of lignocellulosic material into biofuels without the generation of toxic side 

streams (Barakat et al., 2014). This process involves the breakdown of LCB through a 

combination of chipping, grinding, or milling which reduces cellulose crystallinity (Cheng & 

Timilsina, 2011). It can be considered environmentally friendly because it does not require 

additional chemicals (Inoue, Yano, Endo, Sakaki, & Sawayama, 2008), and thus inhibitors are 

not generated (Da Silva, Inoue, Endo, Yano, & Bon, 2010). The pretreatment process generates 

new surface area, improves flow properties, and increases the bulk density and porosity (Amin 

et al., 2017). The size of the materials is usually 10 mm to 30 mm after chipping and 0.2 mm 

to 2 mm after milling or grinding (Sun & Cheng, 2002). The energy requirements are dependent 

on the final particle size and reduction in crystallinity of the lignocellulosic material (Brodeur 

et al., 2011). Zheng et al. (2009) reported that mechanical processes such as attrition milling, 

ball milling, and compression milling treatment could be used to destruct lignin and give better 

access for enzymes to attack cellulose and hemicellulose in enzymatic hydrolysis. 

3.1.2. Physico-chemical pretreatment 

3.1.2.1. Steam explosion (auto-hydrolysis) 

Steam explosion is the most commonly used method for the pretreatment of lignocellulosic 

materials (Balat, 2011). It is also considered the most cost-effective option for hardwood and 

agriculture residues (Prasad, Singh, & Joshi, 2007) but is less effective for softwood (Saini, 

Saini, & Tewari, 2015) because of the low content of acetyl groups in the hemicellulosic portion 

of softwoods (Sun & Cheng, 2002). In this method, LCB is exposed to high-pressure saturated 

steam at a temperature of 160 °C to 260 °C and a corresponding pressure of 5 atm to 50 atm for 

a few minutes (Heerah, Mudhoo, Mohee, & Sharma, 2008). The gradual release of pressure, 

and the steam swell in a lignocellulosic matrix, causing individual fibers to separate and the cell 

wall structure to be disrupted (Agbor, Cicek, Sparling, Berlin, & Levin, 2011). Acid can be 

added as a catalyst during steam explosion, but addition of acid is not mandatory. Steam 

pretreatment is termed auto-hydrolysis if no exogenous acid catalyst is added to the plant 

biomass (Amin et al., 2017). The increase in SO2 or sulfuric acid (H2SO4) has been proposed 

as one of the most effective pretreatment methods for softwood material, but it has some 

disadvantages (Berlin et al., 2006; L. Kumar, Arantes, Chandra, & Saddler, 2012). 

3.1.2.2. Ammonia fiber explosion (AFEX) 

This process utilizes ammonia to decrease crystallinity of cellulose in lignocellulosic biomass, 

as well as to disrupt carbohydrate lignin bonds (Maurya, Singla, & Negi, 2015). In this process, 

liquid ammonia is added to the biomass under moderate pressure (100 psi to 400 psi) and 

temperature (70 °C to 200 °C) before rapidly releasing the pressure. The main process 

parameters are the temperature of the reaction, residence time, ammonia loading, and water 

loading (Bals, Rogers, Jin, Balan, & Dale, 2010). Ammonia fiber explosion pretreatment 

increases the lignocellulosic digestibility and enhances the yield from the enzymatic hydrolysis 

as the subsequent process (Taherzadeh & Karimi, 2008). Research by (R. Kumar, Mago, Balan, 

& Wyman, 2009) reported that the ammonia fiber explosion method shows no inhibition of the 

subsequent processes in the production line, and cell walls extractives, for instance lignin 

phenolic fragments, remain on the surface of cellulose. Alizadeh et al. (2005) pretreated 

switchgrass (Panicum virgatum) using ammonia fiber explosion at 100 ºC with ammonia to 

biomass ratio of 1:1, yielding 0.2 g ethanol/g dry biomass. It was observed that enzyme 

formulation produced high sugar yields. With switch grass as the biomass, 520 g sugar/kg 

biomass was released after enzymatic hydrolysis, while 410 g sugar/kg biomass is normally 

released (Bals et al., 2010). 
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3.1.3. Chemical pretreatment 

3.1.3.1. Acid pretreatment 

This process is used more often than biological or physical pretreatment methods because it is 

more effective and enhances the biodegradation of complex materials (Zhou, Zhang, & Dong, 

2012). In this method, dilute sulfuric acid (H2SO4) is the most commonly used (Us & Perendeci, 

2012), because it has high efficiency in the separating process of cell wall components resulting 

in hemicellulose hydrolysate and cellulignin (Bardone et al., 2014; Harmsen et al., 2010; 

Pandey, Larroche, Ricke, Dussap, & Gnansounou, 2011). However, other acidic substances 

such as hydrochloric acid (HCl) (Pakarinen, Kaparaju, & Rintala, 2011), oxalic acid (C2H2O4) 

(Anuj K Chandel, Silva, Singh, Silvério, & Singh, 2012), and acetic acid (CH3COOH) (Monlau, 

Latrille, Da Costa, Steyer, & Carrère, 2013) have also shown promising results. The process 

can be performed at temperature ranges of between 120 ºC and 180 ºC and residence times 

ranging between 15 min and 60 min. The low temperature for this process makes it a low cost 

pretreatment, and it can at least loosen the cell wall matrix through hemicellulose degradation 

(Alvira, Tomás-Pejó, Ballesteros, & Negro, 2010). The process does not affect lignin, but 

cellulose microfibrils are sufficient to produce a high yield of monomeric sugars for 

fermentation (Taherzadeh & Karimi, 2008; Vohra, Manwar, Manmode, Padgilwar, & Patil, 

2014). In a similar study, Tang et al. (2013) employed acid pretreatment of Eulaliopsis binate 

using dilute sulfuric acid. It was found that 21.02 % of total sugars were produced with low 

inhibitor levels after being pretreated by 0.5 % dilute sulfuric acid at 160 oC for 30 min and at 

a solid-to-liquor ratio of 1:5. 

Inhibitor formation and the hydrolysis of lignocellulose are a function of pretreatment 

severity, which is influenced by the acid concentration, reaction temperature, and retention 

time. Overend et al. (Overend, Chornet, & Gascoigne, 1987) developed an equation that 

involves the reaction time and temperature, which indicates the severity of the pretreatment by 

combined severity factor (CSF). These relationships are indicated in equation (1). 

CSF = 𝑡𝑒𝑥𝑝 [
(𝑇−𝑇𝑟𝑒𝑓)

14.75
]     (1) 

Where t is the residence time (min); T is the temperature (ºC), and Tref is the reference 

temperature, usually set to 100 ºC. 

3.1.3.2. Alkali pretreatment 

This pretreatment process is applied in a simple operation and gives high conversion yields 

within only a short period (Harmsen et al., 2010). This process utilizes lower temperatures and 

pressures than other pretreatment technologies (Yi Zheng et al., 2009) and causes less sugar 

degradation, but the inhibitors are usually eliminated in order to optimize the pretreatment 

conditions (Canilha et al., 2012). Alkali reagents such as potassium hydroxide (KOH), sodium 

hydroxide (NaOH), hydrazine (N2H2), anhydrous ammonia (NH3) and calcium hydroxide 

Ca(OH)2 are typically featured in alkali pretreatment of biomass (Sebayang et al., 2016). The 

pretreatment process using sodium hydroxide (NaOH) is one of the most effective chemical 

pretreatments for ethanol production (J. S. Kim, Lee, & Kim, 2016) and can enhance the 

swelling characteristics, which is accompanied by a higher accessible area (Keikhosor Karimi, 

Shafiei, & Kumar, 2013), as well as cause a decrease in crystallinity and polymerization degree 

(Mosier et al., 2005). In general, this pretreatment is more effective on the hardwood, 

herbaceous crops, and agricultural residues with low lignin content and high lignin content in 

softwood (Bjerre, Olesen, Fernqvist, Plöger, & Schmidt, 1996). Playne (Playne, 1984) 

pretreated rice straw using alkali chemicals (NaOH, Ca(OH)2 and KOH) in 24 h at 25 ℃, and 

found that NaOH (6% chemical loading, g/g dry rice straw) was the best alkali chemical to 
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achieve 85% increase of glucose yield by enzymatic hydrolysis. Bali et al. (Bali, Meng, Deneff, 

Sun, & Ragauskas, 2015) studied the effect of different pretreatment methods and found that 

the highest increase in cellulose accessibility was with dilute NaOH solution, followed by 

methods using NH4OH soaked in Ca(OH)2 solution. 

3.1.3.3. Ozonolysis pretreatment 

Ozone (O3) is a powerful oxidant, soluble in water and is readily available. It is highly reactive 

toward compounds incorporating conjugated double bonds and functional groups with high 

electron densities. The most likely biomass constituent to be oxidized is lignin due to its high 

content of C=C bonds (García-Cubero, González-Benito, Indacoechea, Coca, & Bolado, 2009). 

Ozone is used to degrade the lignin and hemicellulose fractions from many lignocellulosic 

materials such as bagasse, wheat straw, pine, peanut, cotton straw, and poplar sawdust (P. 

Kumar et al., 2009). Ozonolysis cleaves carbon-carbon bonds which can occur at high 

temperatures or in catalytic beds; hence less pollution is ejected into the environment (P. Kumar 

et al., 2009). Gitifar et al. (2013) employed the ozonization of sugarcane bagasse previously 

treated with diluted sulfuric acid in an autoclave. The results showed that delignification and 

sugar production increased by applying the acid pretreatment; no data about degradation 

compounds was provided. Travaini et al. (Travaini, Otero, Coca, Da-Silva, & Bolado, 2013) 

studied the effect of sugarcane bagasse in a fixed bed reactor. It was found that a 46 % of 

glucose yield was obtained at 80 % (w/w) moisture content, six percentage points more than at 

40 % (w/w) moisture content, and concluded that low water content favored inhibitory 

compound formation. Karunanithy et al. (2014) reported that sequential extrusion-ozone 

pretreatment improved sugar recoveries. When compared with control samples, glucose, 

xylose, and total sugar recovery rates attained increases of 3.42, 5.01, and 3.42 times for 

switchgrass and of 4.5, 2.7, and 3.9 times for big bluestem. 

3.1.3.4. Ionic Liquids (ILs) 

Ionic liquids (ILs) are organic salts composed of organic cations and either organic or inorganic 

anions. Four groups of cations are mainly used for categorizing ionic liquids: quaternary 

ammonium, N-alkylpyridinium, N-alkyl-isoquinolinium, and 1-alkyl-3-methylimidazolium (C. 

Z. Liu, Wang, Stiles, & Guo, 2012). Besides being a powerful solvent for cellulose, ILs have 

unique properties such as low vapor pressure and high thermal and chemical stability. The 

desired property is adjustable by the selection of appropriate cations and anions (Keikhosor 

Karimi et al., 2013). Other factors to be considered when choosing an IL for pretreatment are 

the price, physical properties, availability, toxicity, corrosivity, biodegradability, and water 

tolerance (P. Mäki-Arvela, Anugwom, Virtanen, Sjöholm, & Mikkola, 2010). Among the ILs, 

[EMIM][Ac] and [BMIM][Cl] are mostly used for pretreatment of lignocellulosic materials, 

and efficient solvents for lignocelluloses (P. Mäki-Arvela et al., 2010). Certain ILs can cause 

cellulose dissolution, structural modification, and even its direct hydrolysis (C. Z. Liu et al., 

2012). Residual ILs remaining in the biomass could interfere with hydrolytic enzyme activities 

and downstream fermentation steps (Sathitsuksanoh, Zhu, & Zhang, 2012; Shi et al., 2013). It 

may affect the final sugar and biofuel yields. After regeneration, ILs can be recovered from 

anti-solvents by flash distillation and be reused (Joglekar, Rahman, & Kulkarni, 2007). 

3.1.4. Biological pretreatments 

Biological pretreatment of LCB is considered an efficient, eco-friendly and cheap alternative 

(Wan & Li, 2012). There are several microorganisms which can naturally assimilate inhibitory 

compounds, including yeasts (Saccharomyces cerevisiae), fungi, and bacteria (Parawira & 

Tekere, 2011). Some microorganisms during incubation are able to release cellulase and 

hemicellulase and degrade only lignin, resulting in a lignocellulosic substrate which can be 
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easily hydrolyzed into fermentable sugars with mild conditions and in a short time (A K 

Chandel, Chandrasekhar, Radhika, & Ravinder, 2011). The commonly used microorganisms 

are filamentous fungi which are ubiquitous and can be isolated from the soil, living plants or 

lignocellulosic waste material (Vats, Maurya, Shaimoon, Agarwal, & Negi, 2013). Generally, 

wood degrading microorganisms like bacteria and brown rot, white rot, and soft rot fungi are 

employed in biological pretreatment (Hage et al., 2009). Fungi have distinct degradation 

characteristics on LCB. Brown rot fungi mainly attack cellulose, while white and soft rot fungi 

attack both cellulose and lignin (Sun & Cheng, 2002). The advantages and disadvantages of 

different pretreatment processes for LCB materials are summarized in Table 1. 

Table 1 Advantages and disadvantages of different pretreatment processes for lignocellulosic biomass 

materials. 

PRETREATMENT 

METHOD 
PROCESS ADVANTAGES DISADVANTAGES REFERENCE 

Physical 

Mechanical: Physical 

reduction in substrate 

particle size by 

grinding, milling, etc. 

Reduces cellulose 

crystallinity and 

degree of 

polymerization 

Reduced the 

particle size to 

increase a specific 

surface area 

Power consumption 

usually higher than 

inherent biomass 

energy 

(Balat, 2011) 

Physico-chemical 

Steam explosion: 

Substrate particles 

rapidly heated by 

high-pressure 

saturated steam. 

Explosive 

decompression caused 

by quick release of 

pressure acids 

released to aid in 

hemicellulose 

hydrolysis. 

Cost-effective 

Causes lignin 

transformation and 

hemicellulose 

solubilization 

High yield of 

glucose and 

hemicellulose in 

the two-step 

process 

Partial hemicellulose 

degradation  

Toxic compounds 

generation  

Acidic catalyst 

needed to make the 

process efficient with 

high lignin content 

material 

(Brodeur et al., 

2011) 

Ammonia fiber 

explosion (AFEX): 

Substrate is exposed 

to hot liquid ammonia 

under high pressure. 

Pressure is released 

suddenly breaking 

open biomass 

structure. 

Increases 

accessible surface 

area 

Fewer inhibitors 

formation 

Does not require a 

small particle size 

of biomass 

Very high pressure 

requirements 

Expensive 

Not very effective 

for the biomass with 

high lignin content 

(Gumisiriza, 

Hawumba, 

Okure, & Hensel, 

2017) 

CO2 explosion: 

Injected to the 

biomass reactor in 

very high pressure 

and heated at high 

temperature. 

 

Increases 

accessible surface 

area 

Non-flammability 

Do not form 

inhibitory 

compounds 

Availability at 

relatively low cost 

Very high pressure 

requirements 

A portion of xylan 

fraction lost 

It can emit the CO2 

emission to the 

atmosphere 

 

(Maurya et al., 

2015; Sebayang 

et al., 2016) 
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PRETREATMENT 

METHOD 
PROCESS ADVANTAGES DISADVANTAGES REFERENCE 

Easy recovery 

after extraction 

and environmental 

acceptance 

Chemical  

Acid: Addition of 

dilute or concentrated 

acid solutions result in 

hemicellulose 

hydrolysis (H2SO4, 

HCl, HNO3, H3PO4). 

High glucose yield 

High 

concentration can 

be done at room 

temperature 

Solubilizes 

hemicellulose 

High operational and 

maintenance costs 

Corrosive 

Formation of 

inhibitors 

Concentrated acids 

are toxic and 

hazardous 

(A. K. Kumar & 

Sharma, 2017) 

Alkali: Addition of 

base causes swelling, 

increasing the internal 

surface of cellulose 

which provokes lignin 

structure disruption 

(NaOH, KOH, Lime, 

Mg(OH)2, NH4OH). 

Decreased 

cellulose 

crystallinity and 

degree of 

polymerization 

Can be done at 

room temperature 

Efficient removal 

of lignin 

Relatively expensive 

Not used for large 

scale plant 

Irrecoverable salts 

formed and 

incorporated into 

biomass 

(Bali et al., 2015; 

Rabemanolontsoa 

& Saka, 2016) 

Ozonolysis: Powerful 

oxidant, soluble in 

water and is readily 

available. 

Reduces lignin 

content 

Does not produce 

toxic residues 

No requirement of 

chemical additives 

Operation at 

ambient 

temperature and 

pressure 

Relatively expensive 

due to a large amount 

of ozone generated 

Highly reactive, 

flammable, corrosive 

and toxic 

characteristics of 

ozone 

(Travaini, 

Martín-juárez, 

Lorenzo-

hernando, & 

Bolado-

rodríguez, 2016) 

Ionic Liquids (ILs): 

Organic salts 

composed of organic 

cations and either 

organic or inorganic 

anions ([EMIM][Ac], 

[BMIM][Cl]). 

Highly efficient 

(over 80 % 

saccharification 

yield) 

Environmental 

friendly chemicals 

Minor degradation 

of raw materials  

Negligible 

production of 

inhibitory 

compounds 

Very expensive 

Has negative effects 

on cellulose activity 

and affect the final 

yield of cellulose 

hydrolysis 

Consume much 

water 

(Keikhosor 

Karimi et al., 

2013) 

Biological 

Fungi and 

actinomycetes: 

Microorganisms 

degrade and alter 

biomass structure 

(white-, brown-, soft-

rot fungi). 

Low energy 

consumption 

Simple equipment 

degrades lignin 

and 

hemicelluloses 

A rate of hydrolysis 

is very low 

Low degradation rate 

to attain a high 

degree of lignin 

degradation 

(P. Kumar et al., 

2009) 
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PRETREATMENT 

METHOD 
PROCESS ADVANTAGES DISADVANTAGES REFERENCE 

Relatively 

inexpensive 

Does not cause 

corrosion to the 

equipment  

Low production of 

inhibitors 

3.2. Hydrolysis 

Pretreatment is a crucial step for any lignocelluloses before hydrolysis (saccharification). 

Different pretreatments have been reported in the literature which makes substrates more 

conducive for hydrolysis. Researchers have recently reported many different methods for the 

hydrolysis of LCB materials. The most commonly applied methods are classified into two 

groups: enzymatic hydrolysis and acid hydrolysis (dilute and concentrated). 

3.2.1. Enzymatic hydrolysis 

Enzymatic hydrolysis uses enzymes (cellulases and xylanases) to hydrolyze cellulose and 

hemicellulose to fermentable sugars (Jain, Dey, Kumar, & Kuhad, 2015). The major challenge 

for ethanol production is the cost of producing the enzyme complexes (Laisa dos Reis et al., 

2013; Laísa dos Reis, Schneider, Fontana, Camassola, & Dillon, 2014; G. Liu, Zhang, & Bao, 

2016). However, the advancement of technologies in enzyme manufacturing is likely to bring 

about a reduction in enzyme price. There are many reports of the commercial applications of 

lignocellulolytic enzymes, especially cellulase. The production of enzymes, for instance, 

cellulase, can be extracted from fungi and bacteria. The main fungi involved include: 

Trichoderma reesei (Brethauer & Studer, 2014; Martins, Kolling, Camassola, Dillon, & Ramos, 

2008; Wu et al., 2016), Penicillium echinulatum (Camassola & Dillon, 2014; Scholl et al., 

2015), Thermoascus aurantiacus (Jain et al., 2015), Trichoderma longibrachiatum (Shaibani, 

Yaghmaei, Andalibi, & Ghazvini, 2012), and Trichoderma viride (Nathan, Rani, Rathinasamy, 

Dhiraviam, & Jayavel, 2014). Meanwhile, the typical cellulase-producing bacteria include 

Acetivibrio (Du et al., 2015), Bacteriodes (Elshaghabee et al., 2016), Bacillus (Romero, Merino, 

Bolívar, Gosset, & Martinez, 2007), Cellulomonas (Kojima, Okamoto, & Yanase, 2013), 

Clostridium (Patankar, Dudhane, Paradh, & Patil, 2018), Erwini (Tolan & Finn, 1987), 

Ruminococcus (Yanning Zheng, Kahnt, Kwon, Mackie, & Thauer, 2014), Streptomyces and 

Thermomonospora (Ventorino et al., 2016).  

Various factors affect enzymatic hydrolysis, namely: substrates, cellulase activity, reaction 

conditions (temperature, pH as well as other parameters), and a strong product inhibition (Balat, 

2011). To improve the yield and rate of enzymatic hydrolysis, research has been focused on 

optimizing the hydrolysis process and enhancing cellulase activity (Sun & Cheng, 2002). The 

rate of enzymatic hydrolysis is dependent upon several structural parameters of the substrate 

(Pan, Gilkes, & Saddler, 2006). The parameters known to affect the rate of hydrolysis include: 

(1) molecular structure, (2) crystallinity, (3) surface area of the fiber, (4) degree of swelling of 

the fiber, (5) degree of polymerization, and (6) associated lignin or other materials (Detroy & 

St Julian, 1982). 

Selig et al. (Selig et al., 2012) reported that commercial enzymatic cocktails often come 

with relatively high amounts of preservatives such as glycerol and sorbitol which have a 

negative effect on enzymatic hydrolysis. Arumugam and Manikandan (Arumugam & 

Manikandan, 2011) studied the potential application of pulp and banana peel wastes in 
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bioethanol production using dilute acid pretreatment followed by enzymatic hydrolysis. Cha et 

al. (Cha et al., 2014) pretreated Miscanthus sinensis grass using enzymatic hydrolysis with 20 

FPU/g cellulose at 50 °C for 72 h and obtained 93.6 % with 31.2 g/L glucose by combined 

pretreatment of ammonia and CO2. Agudelo et al. (Agudelo, García-Aparicio, & Görgens, 

2016) found that the highest cellulose saccharification (92 %) of triticale straw was as a result 

of steam explosion pretreatment at 200 °C for 10 min. Recent research by Patankar et al. 

(Patankar et al., 2018) obtained the maximum reducing sugars of 205 mg/g from corncobs and 

100 mg/g from soybean cake as a result of treatment with 100 IU cellulase for 48 h with 28 % 

saccharification efficiency. The most recent comparative results of enzyme hydrolysis with 

individual sugars and total reducing sugars are shown in Table 2. The hydrolysis yield (%) can 

be calculated using Equation 2 (Salehian & Karimi, 2013). 

𝐻𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠 𝑦𝑖𝑒𝑙𝑑 (%) =  
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (𝑔/𝐿)

1.111 ×𝑔𝑙𝑢𝑐𝑎𝑛 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑔/𝐿)
 ×  100   (2) 

Where the conversion factor of 1.111 was applied for hydration of glucan to glucose. 

3.2.2. Acidic hydrolysis 

Acidic hydrolysis can be divided into two types namely dilute and concentrated. Dilute acid 

hydrolysis is performed at a higher temperature using a low acid concentration while 

concentrated acid hydrolysis is carried out at a lower temperature using a high acid 

concentration. Dilute acid hydrolysis is the most commonly used process (Mohd Azhar et al., 

2017) because it generates a large number of inhibitors compared to concentrated acid 

hydrolysis (Mohd Azhar et al., 2017). The goal of dilute acid hydrolysis is to remove 

hemicellulose selectively. The hydrolysis products may contain large oligomers. In this process, 

biomass can be hydrolyzed in a temperature range of 120 °C to 220 °C using dilute sulfuric 

acid (H2SO4) as a catalyst. Under these conditions, nearly selective hydrolysis of hemicelluloses 

can be achieved, since it forms less glucose (Marzialetti et al., 2008). However, the optimum 

reaction conditions are selected from several interrelated parameters such as time, acid 

concentration, type of biomass and its concentration, making the comparison of different 

parameters difficult (Päivi Mäki-Arvela, Salmi, Holmbom, Willför, & Murzin, 2011b).  

Many studies have been carried out to investigate the effect of dilute as well as concentrated 

acid and enzymatic hydrolysis from different biomass sources (as reported in Table 3). 

Velásquez-Arredondo et al. (2010) investigated the acid hydrolysis of banana pulp and fruit and 

the enzymatic hydrolysis of flower stalk and banana skin, and the results obtained demonstrated 

a positive energy balance for the four production routes evaluated. Karimi et al. (2006) 

employed high pressure two-stage dilute acid hydrolysis (1.0 % H2SO4 in the first stage and 0.5 

% H2SO4 in the second) to obtain high conversion of 189 g xylose per kg and 29 g glucose per 

kg and considerable amounts of furfural and HMF of the rice straw used. Chamy et al. (1994) 

identified the best conditions for sugar beet pulp hydrolysis to be 1.1 g H2SO4/g sugar beet pulp 

at 80 °C for 90 min. Under such conditions, 86.3 % and 7.8 % of cellulose and hemicellulose 

hydrolysis, respectively, were obtained. In addition, untreated elephant grass is similar in 

cellulose composition to sugarcane bagasse, at around 36 % cellulose (Menegol, Scholl, 

Fontana, Dillon, & Camassola, 2014), while sugarcane bagasse contains 34 % to 45 % cellulose 

(Szczerbowski, Pitarelo, Zandoná Filho, & Ramos, 2014). 

3.3. Fermentation 

This is a process of converting biomass into bioethanol by microorganisms such as yeast, fungi, 

and bacteria, which digest fermentable sugars and produce ethyl alcohol and other byproducts 

(Vohra et al., 2014). After pretreatment, the next steps are hydrolysis and fermentation, which 

can be carried out separately or simultaneously. The following processes are commonly used 
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in the production of bioethanol: separate hydrolysis and fermentation (SHF), simultaneous 

saccharification and fermentation (SSF), and simultaneous saccharification and co-

fermentation (SSCF) (Mohd Azhar et al., 2017). Saccharomyces and Pichia are the most 

common hexose and pentose-fermenting yeasts used in bioethanol production under different 

conditions of fermentation (Tesfaw & Assefa, 2014), as well as the bacteria Zymomonas and 

Escherichia and Aspergillus (Skotnicki, Warr, Goodman, Lee, & Rogers, 1983). Most studies 

have employed S. cerevisiae as their microorganism. Yu and Zhang (2003) compared the 

ethanol yield by S. cerevisiae, Pichia sp. YZ–1 and Z. mobilis and obtained a maximal ethanol 

yield of 0.45 g/g glucose by S. cerevisiae. Khawla et al. (2014) produced bioethanol from potato 

peel using both acid and enzyme hydrolysis. It was concluded that potato peel hydrolysate 

obtained from enzyme hydrolysis produced a higher ethanol yield compared to acid hydrolysate 

fermented by S. cerevisiae. This shows that the construction of engineered S. cerevisiae 

expressing cellulose is an important approach to degrading LCB materials (Kroukamp, den 

Haan, van Zyl, & van Zyl, 2018). 

The most recent studies on ethanol production from different LCB materials using 

enzymatic hydrolysis and fermentation by S. cerevisiae are reported in Table 3. Ethanol yield 

can be calculated as a percentage of theoretical yield using Equation 3 (Bahmani, Shafiei, & 

Karimi, 2016). 

𝐸𝑡ℎ𝑎𝑛𝑜𝑙 𝑦𝑖𝑒𝑙𝑑 (%) =

 
𝐸𝑡ℎ𝑎𝑛𝑜𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 (𝑔/𝐿)

1.111 × 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑔/𝐿) × 0.51 × 𝑔𝑙𝑢𝑐𝑎𝑛 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑔/𝐿) 
 ×  100     

(3) 

This review paper compares the types of fermentation processes, and each of the processes 

is discussed below. 

3.3.1. Simultaneous saccharification and fermentation (SSF) 

The process in which the cellulose is broken down and fermented at the same time in the 

presence of the microorganism is called simultaneous saccharification and fermentation (SSF) 

(South, Hogsett, & Lynd, 1993; Sun & Cheng, 2002). In SSF, the fungal cellulases are most 

active at 50 oC to 55 oC, while the microbes ferment effectively at temperatures below 35 oC 

(Brodeur et al., 2011). This fermentation process has been the preferred step for the production 

of biofuels and chemicals because the operations of both hydrolysis and fermentation are 

conducted in the same reactor vessel thus reducing costs (Brodeur et al., 2011). This utilizes 

the sugars by fermenting organisms that could reduce the extent of feedback inhibition of 

enzymes and chances of contamination are also minimal due to the presence of ethanol in SSF 

(Stenberg, Bollók, Réczey, Galbe, & Zacchi, 2000). However, the major disadvantage is that 

both saccharification and fermentation are carried out under suboptimal conditions (Galbe & 

Zacchi, 2002). Fig. 5 describes the process of SSF. 

Park et al. (2010) produced an ethanol yield of 74 % of the theoretical value using a mixture 

of S. cerevisae and Pichiastipitis after 79 h of fermentation at 30 °C using the SSF process. 

Oberoi et al. (2011) optimized the bioethanol production from banana peels using enzyme 

hydrolysis and SSF by S. cerevisiae. Boluda-Aguilar et al. (2010) produced bioethanol from 

mandarin peel waste and obtained 6.8 g ethanol per 100 g biomass using SSF and the S. 

cerevisiae CECT1329 strain. The advantages and disadvantages of the SSF process as found 

by researchers are reported in Table 2. 
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Figure 5 The schematic process of the simultaneous saccharification and fermentation (SSF) 

(Sebayang et al., 2016). 

3.3.2. Simultaneous saccharification and co-fermentation (SSCF) 

The SSCF fermentation technique utilizes the integration principle in employing mixed 

microbes to ferment more than one sugar type such as pentoses and hexoses (Buruiana, Garrote, 

& Vizireanu, 2013; Sarkar et al., 2012). For the conversion of both pentoses and hexoses to 

ethanol, separate hydrolysis and co-fermentation (SHCF) or simultaneous saccharification and 

co-fermentation (SSCF) has been suggested (Dien, Cotta, & Jeffries, 2003). The use of mixed 

microbes is limited by the respective ability of the microbes hexose-fermenting microbes 

usually grow faster than pentose-fermenting microbes, and this leads to a higher rate of ethanol 

conversion from hexose (Sebayang et al., 2016).  

Xylose assimilation in the former process suffers from glucose and ethanol inhibition (Jin, 

Gunawan, Balan, Lau, & Dale, 2012). SSCF can be performed by two different or one 

recombinant microorganism (R. Kumar, Tabatabaei, Karimi, & Sárvári Horváth, 2016). In 

SSCF, glucose inhibition is reduced; however, ethanol yield in SSCF from both glucose and 

xylose is considerably lower than that formed from glucose by ordinary yeasts (e.g., S 

cerevisiae) (Koppram et al., 2013). This fermentation technique holds several beneficial 

characteristics (as reported in Table 2). According to the reviewed literature, cellulose 

hydrolysis can also coincide with fermentation in the presence (SScF) or absence (SSF) of 

hemicellulose. Fig. 6 shows the schematic process of simultaneous saccharification and co-

fermentation (SSCF). 
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Figure 6 The schematic process of the simultaneous saccharification and co-fermentation (SSCF) 

(Sebayang et al., 2016). 

3.3.3. Separate hydrolysis and fermentation (SHF) 

In SHF, hydrolysis of LCB is performed separately from the fermentation step. In this process, 

each step can be conducted at optimal conditions of pH and temperature. However, glucose and 

cellobiose accumulation in the hydrolysis step inhibits the activity of the cellulases (Stenberg 

et al., 2000; Xiao, Zhang, Gregg, & Saddler, 2004). SHF and SSF are complementary to one 

another in Table 2. This combination can be used for economic assessment and process 

optimization of the production process of ethanol from lignocellulosic materials. Fig. 7 presents 

a model which illustrates the process of separate hydrolysis and fermentation. 

Choi et al. (2013) used the SHF process and obtained a maximum of 29.4 g ethanol from 

100 g mandarin peel waste using popping pretreatment and enzyme hydrolysis supported by 

the S. cerevisiae KCTC 7906 strain. In summary (as reported in Table 3), the most recent 

bioethanol production studies focus on utilizing agriculture residues, where both SSF and SHF 

techniques are used to produce ethanol. Almost 84 % of the studies cited used S. cerevisiae as 

a biocatalyst for fermentation. Table 3 shows that unripe banana peel (Prakash, Chauhan, 

General, & Sharma, 2018; Waghmare & Arya, 2016), Matooke peels (Yusuf & Inambao, 

2019a), Agave tequilana bagasse (Aguilar et al., 2018; Rios-González et al., 2017), banana peels 

(Tabasco variety) (Palacios et al., 2017), A. salmiana (Flores-Gómez et al., 2018), G. verrucosa 

(Sukwong et al., 2018), empty palm fruit bunch fiber (S. Kim, 2018), rice straw (Bahmani et 

al., 2016), switchgrass (Papa et al., 2015), and corn stover (Uppugundla et al., 2014) all have a 

high ethanol yield, and are suitable for commercial bioethanol production in different locations 

or regions. This classification of bioethanol fuel from different lignocellulosic materials and 

processes are currently being developed to meet sustainability and fuel quality standards, as 

well as the need for roads, aviation, and electricity. 
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Figure 7 The schematic process of the separate hydrolysis and fermentation process (SHF) (Sebayang 

et al., 2016). 

Table 2 Advantages and disadvantages of separate hydrolysis and fermentation (SHF), simultaneous 

saccharification and fermentation (SSF) and simultaneous saccharification and co-fermentation 

(SSCF). 

Fermentation processes Advantages Disadvantages 

Separate hydrolysis and 

fermentation (SHF) 

Ability to carry out each step under 

optimal conditions, i.e., enzymatic 

hydrolysis at 45 °C to 50 °C for better 

performance and fermentation at 30 °C 

for optimizing sugar utilization (Mohd 

Azhar et al., 2017; Tengborg, Galbe, & 

Zacchi, 2001). 

SHF is more efficient than SSF when 

bioethanol production is carried out 

using cellulosic biomass (Cotana et al., 

2015; Wirawan, Cheng, Kao, Lee, & 

Chang, 2012). 

The yeast produced during the SHF 

process can be recycled after 

fermentation of the hydrolysate, which 

is not possible in SSF (Olofsson, 

Bertilsson, & Lidén, 2008). 

Inhibition of cellulase and β-

glucosidase enzymes by glucose 

released during hydrolysis, 

which calls for lower solids 

loadings and higher enzyme 

loadings to achieve reasonable 

yields (Balat, 2011). 

Simultaneous 

saccharification and 

fermentation (SSF) 

Lower enzyme requirements; higher 

product yields; lower requirements for 

sterile conditions since glucose is 

removed immediately and bioethanol is 

produced; shorter process time; and less 

reactor volume (Sun & Cheng, 2002). 

The immediate consumption of sugars 

by the microorganism produces low 

sugar concentrations in the fermentor, 

which significantly reduces enzyme 

The conditions of SSF are more 

difficult to optimize (Krishna, 

Reddy, & Chowdary, 2001). 

During SSF the release of sugar 

is not controlled, as all the 

cellulase enzymes are added at 

once (Erdei, Frankó, Galbe, & 

Zacchi, 2012). 
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Fermentation processes Advantages Disadvantages 

inhibition compared to SHF (Schell 

Mark F.; Tucker, Melvin P., 1999). 

This process is often effective when 

combined with dilute acid or high 

temperature hot-water pretreatment 

(Balat, 2011). 

Accept the mode of improvement 

which combines the cellulase enzymes 

and fermenting microbes in one vessel 

to improve the bioethanol production 

economics (Y. Yu, Lou, & Wu, 2008). 

Simultaneous 

saccharification and co-

fermentation (SSCF) 

Reduced capital costs (Wingren, Galbe, 

& Zacchi, 2003). 

Continuous removal of end-products of 

enzymatic hydrolysis that inhibit 

cellulases or β-glucosidases (Olofsson 

et al., 2008). 

Higher ethanol productivity and yield 

than separate hydrolysis and 

fermentation (Alfani, Gallifuoco, 

Saporosi, Spera, & Cantarella, 2000; 

Tomás-Pejó, Oliva, Ballesteros, & 

Olsson, 2008). 

Maintains glucose at low levels 

allowing efficient co-fermentation of 

glucose and xylose (Öhgren et al., 

2006). 

At high water insoluble solids 

(WIS) content, the ethanol yield 

decreases due to an increase in 

mass transfer resistance and 

inhibitors concentration (Hoyer, 

Galbe, & Zacchi, 2009). 

Table 3 Different methods, conditions and their effects for bioethanol from various biomasses 

(reported between the years 2013 to 2019). 

Biomass 
Pretreatment 

conditions 

Hydrolysi

s 

condition

s 

Sugar yield 
Fermentatio

n conditions 

Results: 

Ethanol 

yield 

Remarks Reference 

Energy 

grass 

Alkali: 100 ml 

of 1 % (w/v) 

NaOH at 121 

°C for 1h 

Enzymatic 

hydrolysis 

by Cellic® 

CTech 

with 0.1 

g/g grass 

at 50 °C, 

150 rpm, 

pH 4.8 for 

72 h 

467.9 mg/g - - 

Ozonolysis is 

an efficient 

pretreatment 

method for 

energy 

grasses, 

resulting in 

up to 51 % 

delignificatio

n. 

(Panneerselva

m, Sharma-

Shivappa, 

Kolar, Clare, 

& Ranney, 

2013) 

Ozonolysis: 

performed for 

2h at a flow 

rate of 0.25 

l/min 

431.9 mg/g - 

 

- 

 

Corn 

stover 

 

DA: H2SO4 of 

5 CL with 

895.5 kg of 

H2O at 160 °C 

for 20 min and 

N-CR 

Biomass: 

29 kg 

glucan, 

CTec2: 

583 g, 

HTec2: 

287 g at 

65 g/L of 

glucosea and 4 

g/L of xylose 

in 72 h 

S. cerevisiae 

strain 424A 

(LNH-ST), 

0.28 g dry-

cell-wt./L 

and operated 

14 kg 

AFEX 

produces 

high 

digestible 

substrates, 

high 

fermentation 

(Uppugundla 

et al., 2014) 
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Biomass 
Pretreatment 

conditions 

Hydrolysi

s 

condition

s 

Sugar yield 
Fermentatio

n conditions 

Results: 

Ethanol 

yield 

Remarks Reference 

50 °C with 

pH 4.8 for 

72 h 

for 120 h 

(SSF) 

metabolic 

yield with 98 

%. 

IL: 

[C2mim][OAc

] of 900 CL at 

140 °C for 180 

min and CR 

Biomass: 

31.7 kg 

glucan, 

CTec 2: 

371 g, 

HTec 2: 

314 g, 

Multifect 

Pectinase: 

266 g at 

50 °C with 

pH 4.8 for 

72 h 

72 g/L of 

glucoseb and 

35 g/L of 

xylose in 72 h 

21.2 kg 

AFEX: 

Anhydrous 

ammonia of 

100 CL with 

60 kg of H2O 

at 140 °C, 300 

psi for 15 min 

and CR 

Biomass: 

33.5 kg 

glucan, 

CTec 2: 

670 g, 

HTec 2: 

167.5 g, 

Multifect 

Pectinase: 

167.5 g at 

50 °C with 

pH 4.8 for 

72 h 

60 g/L of 

glucosec and 

29 g/L of 

xylose in 72 h 

20.5 kg 

Sugarcane 

bagasse 

Acid: H2SO4 

of 1 % (w/v), 

1:10 solid-

liquid ratio at 

121 °C for 20 

min. 

Hydrolyze

d by dilute 

acid (2.0 

% of 

H2SO4) at 

155 ºC for 

10 min 

Glucose 22.74 

g/L, no xylose 

S. cerevisiae 

stain NRRL 

Y-7124 at 30 

°C, 200 rpm 

for 72 h 

16.8 g/L 

conc., 0.38 

g/g and 

0.23 g/L/h 

productivit

y 

 

This process 

generates 

inhibitory 

compounds, 

and the 

detoxificatio

n was 

required for 

removing 

those 

compounds 

found in the 

hydrolysate. 

(Bardone et 

al., 2014) 

Switchgra

ss 

IL: Pretreated 

with 

[C2C1Im][OA

c] at 100 °C 

for 3 h 

Hydrolysi

s by 

cellulase 

of 

novozyme 

HTec2 at 

0.3 % w/w 

(g 

20 g/L glucose 

 

S. cerevisiae 

strain 

BY4741 at 

30 °C, 200 

rpm for 20 h 

85.7 g 

IL 

pretreatment 

demonstrated 

higher 

bioethanol 

yields. 

(Papa et al., 

2015) 
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Biomass 
Pretreatment 

conditions 

Hydrolysi

s 

condition

s 

Sugar yield 
Fermentatio

n conditions 

Results: 

Ethanol 

yield 

Remarks Reference 

enzyme/g 

xylan), 30 

min, 2 h, 6 

h, 24 h 

and 48 h 

Wheat 

straw 

Ozonolysis: 

Pretreated for 

1 and 7 h at 

0.6 l/min flow 

rate with 

ambient 

conditions 

Enzymatic 

hydrolysis 

was 

performed for 

72 h 

Glucose of 49 

% and xylose 

of 9.14 % 

(SSF) was 

performed for 

140 h 

12.9 g/L 

and 67 % 

conc. 

Results 

showed that 

ozone (or 

PAP) not 

only 

degraded 

lignin but 

also had an 

effect on 

epicuticular 

waxes on 

wheat straw. 

(Kádár et al., 

2015) 

Rice straw 

BP: Pretreated 

substrates in 30 

mL of 50 mM 

sodium citrate 

buffer (pH = 4.8) 

Hydrolysis 

was 

conducted 

using 90 % 

v/v Cellic® 

CTec2 and 10 

% v/v Cellic® 

HTec2 and 30 

FPU/g 

cellulase and 

50 IU/g -

glucosidase at 

45 C and 

120 rpm for 

72 h. 

69.5 % of 

hydrolysis yield 

S. cerevisiae 

(CCUG 53310) 

at 37 C and 130 

rpm for 24 h 

through (SHF) 

206 g 

Increasing the 

porosity of the 

substrate by 

hemicellulose 

removal could be 

the main 

effective 

parameter in this 

type of 

pretreatment. 

However, 

enzymatic 

hydrolysis and 

ethanol 

production 

processes need to 

be improved. 

(Bahmani et 

al., 2016) 

Banana peels 

MP and SE: 

pretreated with  

autoclaved at 15 

psi pressure for 30 

min, knife milling 

with 2 cm to 4 cm 

and dried at 60 °C 

0.5 % (v/v) to 

2.5 % (v/v) 

diluted 

sulfuric acid 

70 °C and 

110 °C, pH 7 

for 10 min to 

30 min 

11 g/L glucose and 

5.5 g/L xylose 

S. cerevisiae 

strain at 30 °C, 

200 rpm for 24 h 

45.088 % of 

bioethanol 

The waste 

(banana peels) 

from the FPI may 

bring serious 

environmental 

problems. This 

can be minimized 

by the production 

of ethanol. 

(Gebregergs, 

Gebresemati, 

& Sahu, 2016) 

Unripe 

banana peel 

MP: Dried at 60 °C 

for 24 h, electric 

grinder and sieved 

through mesh 

number 36 (0.45 

mm). 

Hydrolyzed 

by H2SO4 1 

% (v/v) at 

120 °C, 100 

kPa for 10 

min 

49.2 % (w/w) of 

sugar release 

S. cerevisiae 

(NCIM 3095, 

NCIM 3570 and 

NCIM 3059) at 

30 °C, pH 5, 150 

rpm for 36 h 

35.5 g/L, 1.5 

g/L/h 

productivity 

S. cerevisiae 

NCIM 3095 was 

found to be the 

best strain for 

production of 

ethanol 

compared to the 

other two strains. 

(Waghmare & 

Arya, 2016) 

Elephant 

grass 

MP: Dried at 60 °C 

for 3 days, 4 % to 

20 % (w/v) in a 

concomitant ball 

milling treatment / 

triturated with 

forage chopper 

(0.5 cm to 2 cm). 

124.43 U/mL, 

6.16 U/mL 

and 893.55 

U/ml of b-

glucosidases, 

endoglucanas

es and 

xylanases at 

12.47 g/L 

S. cerevisiae 

CAT-1 at 28 °C 

for 48 h 

6.1 g/L 

High ethanol 

yield is not only 

to do with 

biomass but 

depends on 

enzymatic and 

fermentation 

processes. There 

(Menegol, 

Fontana, José, 

Dillon, & 

Camassola, 

2016) 
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Biomass 
Pretreatment 

conditions 

Hydrolysi

s 

condition

s 

Sugar yield 
Fermentatio

n conditions 

Results: 

Ethanol 

yield 

Remarks Reference 

50 °C, pH 

4.8, 150 rpm 

for 1 h to 6 h 

is a need to 

develop 

equipment for 

such purposes. 

Pine wood 

Alkali:  Performed 

with 0-2% w/v 

NaOH at 100-180 

°C for 1 h to 5 h. 

Enzymes 

mixture (90 

% Cellic® 

CTec2 and 10 

% Cellic® 

HTec2) at 1.5 

FPU/g 

substrate of 

cellulase at 

45 °C, pH 

4.8, 120 rpm 

for 72 h 

83.5 % ± 0.3 % 

glucose yield 

S. cerevisiae 

under anaerobic 

conditions for 24 

h 

76.9 % to 

78.0 % and 

0.609 g/L/h ± 

0.015 g/L/h 

productivity 

Production of 

bioethanol 

requires cheap 

raw materials 

which can 

effectively 

enhance the 

manufacturing 

costs. Using 

chemicals for 

neutralization is 

unavoidable. 

(Safari, 

Karimi, & 

Shafiei, 2017) 

Cotton stalks 

Alkali: NaOH (0.5 

% to 4.0 % w/w) 

and the biomass 

loading (10 % to 

25 %) at 120 °C 

for 20 min 

Hydrolysis by 

cellulose of 

P. 

janthinellum 

and 20 FPU/g 

substrate of 

cellulose at 

50 °C, 200 

rpm for 48 h 

25.59 g/L of 

glucose and 

hydrolytic 

efficiency of 80 % 

4 % (wet wt/v) S. 

cerevisiae RRP-

03N at 30 °C  ± 

2 °C for 48 h, 

(SHF) 

9 g 

Alkali 

pretreatment of 

cotton stalks 

effectively de-

lignified the 

biomass and a 

hydrolytic 

efficiency of 80 

% was attained 

with a 

combination of 

commercial and 

in-house 

cellulases. 

(Christopher, 

Mathew, 

Kiran Kumar, 

Pandey, & 

Sukumaran, 

2017) 

Acid: H2SO4 (0.5 

% to 4.0 % w/w) 

and the biomass 

loading (10 % to 

25 %) at 120 °C 

for 20 min 

Agave 

tequilana 

bagasse 

SE (AP): 

Pretreated at 

elevated 

temperatures (160 

°C to 240 °C) no 

chemicals required 

but H2O 

Hydrolyzed 

using Cellic® 

CTec3 of 25 

FPU/g of 

glucan at 50 

°C, pH 4.8, 

200 rpm for 

72 h 

131 g/L ± 1.7 g/L 

glucose and 81.5 

% ± 1.7 % 

hydrolysis yieldd 

S. cerevisiae 

ATCC 4126 at 

30 °C, pH 5.5, 

100 rpm for 24 h 

(SHF) 

65.26 g/L and 

95 % of the 

theoretical 

value 

AP can be an 

efficient and 

relatively simple 

method for 

Agave tequilana 

that can be 

incorporated in a 

2nd GEPP. 

(Rios-

González et 

al., 2017) 

Banana peels 

(Tabasco 

variety) 

Acid and MP: 

H2SO4 (0 % v/v, 

0.5 % v/v, 1% 

v/v), autoclaved at 

121 °C, 103 kPa 

for 15 min, milled 

by mechanical 

grinding (1 mm). 

15 FPU/g 

(Celluclast 

1.5 L) 10 %, 

15 % w/w), 

and 20 % 

(w/w) 

pretreated 

banana peel 

32 g/L glucose 

Kluyveromyces 

marxianus at 42 

°C, 150 rpm for 

24 h 

21 g/L 

The banana peel 

particle size 

control is not of 

great importance 

for the 

saccharification 

of this 

lignocellulosic 

material. 

(Palacios et 

al., 2017) 

A. tequilana 

AFEX: 1000 kg 

solid, milling DM, 

Ammonia (2 kg 

NH3/kg DM) with 

2kg of H2O at 102 

°C to 120 °C for 

30 min to 38 min 

Cellic® 

CTec3 and 

HTec3 50 °C, 

pH 4.8, 250 

rpm, and 72 h 

252 kg glucose and 

109.8 kg xylose 

Saccharomyces 

cerevisiae 424A 

(LNH-ST) at 30 

°C, 150 rpm, pH 

5.5 for 72 h, 

(SHF) 

154 kg 

ethanol 

The amount of 

enzyme loading 

used in this 

experiment is 

higher; 

identifying the 

right 

combination of 

accessory 

enzymes in the 

future will 

further reduce the 

enzyme loading. 

(Flores-

Gómez et al., 

2018) A. salmiana 
301.4 kg glucose 

and 107 kg xylose 

176 kg 

ethanol 

Agave 

bagasse 

SE/HP (AP): 

performed at 180 

°C for 20 min, 40 

min, and 50 min 

Novozymes 

using 20 

FPU/g of a 

substrate as 

12.42 g/L glucose 

at 180 °C, 15.31 

g/L 

Xylooligosacchari

Saccharomyces 

cerevisiae PE-2 

at 30 °C, 150 

rpm for 12 h 

98.5 %f, 99.5 

%e, 55.02 g/L 

of ethanol 

concentration 

The result 

showed a 

decrease in the 

ethanol conc. on 

(Aguilar et al., 

2018) 
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Biomass 
Pretreatment 

conditions 

Hydrolysi

s 

condition

s 

Sugar yield 
Fermentatio

n conditions 

Results: 

Ethanol 

yield 

Remarks Reference 

loading of 

cellulose at 

150 rpm, pH 

4.8, 180 °C 

for 20 min 

under IR and 

NIR 

des and 65.87 % of 

IR 

under (PSSF) 

and (SSSF) 

and 90.84 % 

yield 

a kinetic profile, 

due to ethanol 

evaporation 

during the 

production 

process, and the 

SSSF process 

was completed 

after 72 h. 

G. verrucosa 

Acid: 12% (w/v) 

G. verrucosa with 

0.2 M H2SO4 at 

130 °C for 15 min 

Celluclast 1.5 

L, Viscozyme 

L, and Cellic 

CTec2 at 50 

°C, 150 rpm 

for 48 h 

50.7 g/L 

monosaccharides 

Pichia stipitis 

and 

Kluyveromyces 

marxianus at 150 

rpm at 30 °C 

29.0 g/L 

ethanol, 0.81 

g/L/h 

productivity 

P. stipitis showed 

more efficient 

cell growth and 

bioethanol 

productivity than 

K. marxianus. 

(Sukwong et 

al., 2018) 

Banana peels 
Acid: pretreated 

using HCl, pH 5.0. 

Xylanase 

1.99 IUm/L, 

FPase 2.0 IU 

m/L, 

pectinase 4.0 

IU m/L, 

substrate (2.5 

% to 20 %) at 

(60 °C to 90 

°C), pH 9.0, 

150 rpm for 

(1 h to 4 h). 

37.06 mg m/L 

ORS at 70 °C 

Geobacillus 

stearothermophil

us strain HPA19 

at 37 °C for 30 h 

21.1 g/L, eff. 

of 76.5 % at 

30 h 

It is good to 

know the suitable 

ratio of 

cellulolytic and 

hemicellulolytic 

enzyme for 

different 

substrates to 

produce 

maximum 

reduction sugars. 

(Prakash et al., 

2018) 

 

Orange peel 

MP: milled with a 

grinding machine 

and dried 

Cellulase 

1.06 U/mL, 

337.42 U/mL, 

and 1.36 

U/mL at 37 

°C for 18 h 

20 g/L glucose 

S. cerevisiae 

genome via the 

CRISPR-Cas9 

approach at 30 

°C, 180 rpm for 

60 h (SSF) 

7.53 g/L 

The engineered 

strains may 

provide a 

valuable material 

for the 

development of 

lignocellulosic 

ethanol. 

(Yang et al., 

2018) 

Sunflower 

stalk 

IL: [Bmim]Cl 10 

% to 25 % (w/w) 

pH 5.0, 60 °C for 

24 h 
cellulase 20 

FPU, and 400 

IU of 

xylanase/g 

biomass at 50 

°C for 72 h 

302.4 mg/g 

glucose, 107 mg 

xylose, 114 mg/g 

reducing sugars 

P. oxalicum PN8 

(SSF) 

(0.078 g/g 

biomass) of 

ethanol 

Results showed 

that the 

combined IL and 

alkali 

pretreatment 

causes more 

drastic alterations 

in the biomass 

ultrastructure as 

compared to IL 

alone or alkali 

pretreatment. 

(Nargotra, 

Sharma, 

Gupta, Kour, 

& Bajaj, 2018) 

Alkali: NaOH 0.2 

% to 2.0 %, (w/v), 

pH 5.0, 60 °C for 

24 h 

IL and Alkali: 

NaOH 0.5 % w/v 

and [Bmim]Cl (25 

%, w/w) 90 °C for 

2 h 

Empty palm 

fruit bunch 

fiber 

Alkali-thermal:  

NaOH, dried 

sample (20 % w/v) 

at 105 °C for 24 h, 

autoclave (121 °C, 

15 psi, 60 min) 

(Celluclast 

1.5 L), 20 

FPU to 100 

FPU and -

glucosidase 

(Novozyme 

188; 40 CBU) 

for 72 h 

82.2 % 

fermentable sugar 

conversion 

S. cerevisiae 

W303-1A strain 

at 30 °C, 200 

rpm for 28 h, 

(SHF) 

33.8±0.5 g/L 

ethanol with 

1.57 g/L/h 

productivity 

Separate 

hydrolysis and 

fermentation 

using hydrolysate 

are useful for 

producing 

bioethanol with 

high 

productivity. 

(S. Kim, 2018) 

Matooke 

peels 

MP: Dried at 58 °C 

for 83 h, 0.2 mm to 

2 mm after milling 

and grinding with 

an electric grinder 

0.5 % (v/v) to 

2.5 % (v/v) of 

H2SO4, 50 °C 

to 90 °C ± 1 

°C at 20 min 

to 60 min 

77.03 g/L  

reducing sugars 

S. cerevisiae 

NCIM 3570, at 

29 °C to 39 °C ± 

1 °C, 165 rpm, 

pH 5.0 for about 

10 h to 30 h 

71.54 g/L 

Utilizing this 

waste biomass 

for bioethanol 

production 

through a 

biotechnological 

(Yusuf & 

Inambao, 

2019a) 
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Biomass 
Pretreatment 

conditions 

Hydrolysi

s 

condition

s 

Sugar yield 
Fermentatio

n conditions 

Results: 

Ethanol 

yield 

Remarks Reference 

with gentle 

shaking 

process not only 

helps to reduce 

environmental 

pollution but also 

reduces 

dependence on 

oil-producing 

countries. 

NOTE: a (88 % glucan conversion), b (100 % glucan conversion), c (79 % glucan 

conversion), d (at severity factor of 4.43), e (at high-solids loading), f (Saccharification yields), 

2nd GEPP: Second generation ethanol production process, [Bmim]Cl: 1-butyl-3-methyl 

imidazolium chloride, [C2C1Im][OAc]: 1-ethyl-3-methylimidazolium, [C2mim][OAc]: 1-

ethyl-3-methylimidazolium acetate, AbC: Aerobic condition, AFEX: Ammonia fiber 

expansion, BP: Biological pretreatment, CL: Catalyst loading of kg/100 kg dry biomass, CR: 

Catalyst recycled, DA: Dilute acid, DM: Dry materials, FPI: Food processing industry, FPU: 

Filter paper units, HP (AP): Hydrothermal processing (autohydrolysis process), IL: Ionic liquid, 

IR: isothermal regime, ORS: Optimum reducing sugar, MP: Mechanical pretreatement, NIR: 

non-isothermal regime, N-CR: No catalyst recycled, PAP: Plasma assisted pretreatment, SHF: 

Separate hydrolysis and fermentation, SSF: Simultaneous saccharification and fermentation. 

4. BIOETHANOL AS ALTERNATIVE FUEL 

The most common agricultural residues utilized for bioethanol production have been discussed 

in the previous sections. The classification of bioethanol fuel from different lignocellulosic 

materials and processes are currently being developed to meet sustainability and fuel quality 

standards, as well as the need for roads, aviation, and electricity. The processes of pretreatment, 

hydrolysis, and fermentation have significant effects on physico-chemical properties of 

bioethanol fuel, which also affect the internal combustion engines. The small changes in 

physico-chemical properties on bioethanol fuels are enough to create a significant change in the 

combustion system and sometimes make it difficult to analyze the fundamental of how it affects 

CO, CO2, HC, NOx and PM emissions. That means not all bioethanol fuel bring benefits to the 

environment concerning the emissions and performance. In the literature, the use of bioethanol 

as fuel goes back to the origin of the use of motorized vehicles. For example, Henry Ford’s 

Model T, built in 1908, ran on bioethanol (Walter & Segerstedt, 2012). Interest waned in the 

following decades due to the environmental issue of reducing greenhouse gas, rising vehicle 

fuel demand, and the security of energy supply sustain the development of bioethanol 

production from renewable resources (Berhane, 2016; Purwadi, 2006; Yusuf & Inambao, 

2019b)  

Current research is focusing on how to blend bioethanol with gasoline or other additives 

under different ratios (Yusuf & Inambao, 2018) to take advantage of bioethanol high octane 

number and low cetane number, which increases thermal efficiency and compression ratios of 

the engine compared to gasoline alone (H. Zhao et al., 2011). Bioethanol provides additional 

oxygen in combustion; when blended with gasoline its burns relatively more completely, 

therefore emitting lower CO and HC emissions compared to pure gasoline (E0) (S. Liu, Cuty 

Clemente, Hu, & Wei, 2007; H. Zhao et al., 2011). The lower boiling point of bioethanol also 

helps to obtain better combustion efficiency (Hu, Wei, Liu, & Zhou, 2007). However, it has 

lower energy density than gasoline and lower vapor pressure (Balat, Balat, & Öz, 2008), and 

parts with lightweight design products directly influence the fuel consumption (Abdu, Shafii, 

Dubey, & Gupta, 2016). The properties of any fuel depend on it is a chemical composition 
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which determines the performance and emission characteristics of the engine. The properties 

of ethanol and gasoline are similar (as reported in Table 4).  

Table 4 The physico-chemical properties of ethanol and gasoline 

Properties Units Test Methods Ethanol Gasoline References 

Molecular formula - - C2H5OH C4 - C12  

Composition (C, H, O) (Mass %) 
ASTM D5291-

02 
52,13,35 86,14,0 (Mohebbi et al., 2018) 

Density at 15 ºC (Kg/L) ISO 12185 0.79 0.73 
(S. H. Park, Yoon, & 

Lee, 2014) 

Boiling point (ºC) - 78.3 27 to 225 
(Hedfi, Jedli, Jbara, & 

Slimi, 2014) 

Auto-ignition 

temperature 
(ºC) - 360 228 to 470 

(Balki, Sayin, & 

Canakci, 2014) 

Flash point (ºC) ASTM D93 21.1 -45 to -38 (H. Liu et al., 2014) 

Lower hearting value (MJ/kg) ASTM D240 27.0 43.5 (Elfasakhany, 2016) 

Octane number VM ASTM D2699 108 95 
(Mařík, Pexa, Kotek, & 

Hönig, 2014) 

Cetane number - ASTM D2700 11 0 to 10 
(Rajesh Kumar & 

Saravanan, 2016) 

Latent heat of 

vaporization 
(KJ/kg) - 838 223.2 (Thangavel et al., 2016) 

Stoichiometric air/fuel 

ratio 
w/w - 9.0 14.7 (Gu et al., 2012) 

Viscosity at 20 oC (mm2/s) - 1.19 0.37 to 0.44 

(Mohebbi et al., 2018; 

Yücesu, Topgül, Çinar, 

& Okur, 2006) 

Saturation pressure at 38 
oC 

(KPa) - 13.8 31 (Thangavel et al., 2016) 

Flammability Limit, 20 

°C 
(vol%) - 3.3 to 19 1.0 to 8.0 

(Ulrik, Troels, & 

Jesper, 2009) 

Aromatics (%v/v) - 0 33.3 
(Costagliola et al., 

2016) 

Enthalpy of formation 

Liquid 

Gas 

(kJ/mol) - 

-224.1 -259.28 

(Masum et al., 2013) 
-234.6 -277 

7. CONCLUSION  

Bioethanol is an alternative fuel obtained from biomass and has been used in several countries 

for several years as it is considered to be renewable and clean energy. But not all bioethanol 

fuels bring benefits to the environment concerning the performance and emissions. Assessment 

needs to be made for each type of biomass material, location, and the extraction techniques. 

According to the reviewed literature, both physical and biological processes are not cost 

competitive compared to the other pretreatments, but biological pretreatments are less harmful 

to the environment and can be performed in milder conditions, and thus are energy efficient 

compared to chemical and physico-chemical pretreatments. However, it is not possible to 

choose only one pretreatment as the best, because of the heterogeneity of the lignocellulose. 

The choice will depend on the nature or source of the lignocellulosic which needs to be treated, 

as well as on the use of the hydrolysate material. Fermentation processes have exhibited 

significant effects on bioethanol production. The SSF method has shown its ability to produce 

high ethanol concentrations with high productivity. 
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The processes of pretreatment, hydrolysis, and fermentation have significant effects on 

physico-chemical properties of bioethanol fuel, which also influence the internal combustion 

engines. The small changes in physico-chemical properties on bioethanol fuels are enough to 

create a significant change in the combustion system and sometimes make it difficult to analyze 

the fundamental of how it affects emissions.  
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Chapter 3: Paper 2 

 Progress in alcohol-gasoline blends and their effects on the performance and 

emissions in SI engines under different operating conditions 

 

This chapter highlights the progress in bioethanol-gasoline blends and their effects on the 

performance, emissions and some combustion characteristics in SI engines under different 

operating conditions. The article has been published in the International Journal of Ambient 
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ABSTRACT
Bio-alcohol has thepotential to beused as an alternative to fossil fuels to reduce the total exhaust emissions
from spark-ignition engines. This paper reviewed the most recent experimental studies on fundamental
effects of performance, emissions and some combustion characteristics in SI engines. It also provides a
guideline for suitable ethanol-gasoline andmethanol-gasoline blend rates. Investigations were performed
on different engines, operating conditions and rates of fuel blends with varying engine speeds. Most of
the results showed that ethanol-gasoline has more benefits compared to methanol-gasoline in terms of
exhaust emissions, engine power, and torque output, especially at low engine speed. The small differences
in properties between ethanol-gasoline and methanol-gasoline blends are enough to create a significant
change in the combustion system. These effects lead tobehaviouralmechanismswhich are not easy to ana-
lyze or understand, sometimes make it difficult to identify the fundamentals of how ethanol or methanol
affects emissions.
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1. Introduction

Biofuels are a viable solution to end the global fossil fuel prob-
lems. The main environmental advantages of biofuels are their
contribution towards reducing the level of SOx, NOx, COx, and
CO2 in the atmosphere. The energy consumption from trans-
portation sectors has become a world problem. The world’s
energy demand is increasing every day and the problem of
the fossil fuels depletion is becoming increasingly crucial. This
problem led to new technologies in energy consumption man-
agement and the changing from conventional fuel to biofuels
which are stringent necessity, both tomeet the energy demands
and to limit the production of carbon dioxides (Iodice and Sen-
atore 2015, 2016). There is significant potential for agricultural
involvement in the production and consumption of biomass
energy. Biofuels are a variety of fuels which can be produced
from biomass in many different ways. Alcohols are an impor-
tant category of biofuels. Among the various alcohols, ethanol
and methanol present the highest potential for use in the trans-
portation sector mainly because they are cheap and have prop-
erties similar to gasoline (Agarwal, Karare, and Dhar 2014; Calam
et al. 2015; Eyidogan et al. 2010; Koç et al. 2009). Alcohols
have a high octane rating and high latent heat of vaporisation
and oxygen in their molecular structure compared to gasoline,
which leading to high efficiency of combustion and low emis-
sions (Çelik, Özdalyan, and Alkan 2011). Ethanol and methanol
have been extensively researched as alternatives to gasoline in
internal combustion (IC) engines. Over the past century there
havebeen significant improvements in conventional engine and
fuel technology for improving performance (Maurya 2018). The

CONTACT Abdulfatah Abdu Yusuf abdulfatahabduyusuf@gmail.com

utilisation of alternative fuel results in reducing the use of fos-
sil fuels as well as increasing engine efficiency. Advancement
in IC engine efficiency is still continuing; while much research
has been conducted, not very much of it has been reviewed.
Most researchers concentrate on how to replace gasoline with
alternatives without considering the effects on the engine.

Ethanol (C2H5OH) is an ecological fuel, as it is obtained from
renewable energy sources. It is a colourless, transparent, neu-
tral, volatile, flammable, oxygenated liquid hydrocarbon, which
has a pungent odour and a sharp burning taste (Abikusna et al.
2018; Ganguly, Chatterjee, and Dey 2012; Masum et al. 2013).
The properties of ethanol and methanol are quite different
(see Table 2). Ethanol has high flame speed, low stoichiomet-
ric air–fuel ratio and low heating value as compared to gasoline
(Stone 2012).

Indeed, there are many investigations on ethanol-gasoline
blends in gasoline engines. Ethanol–gasoline blends have sev-
eral reported advantages, including an increase in engine
torque, brake power and thermal efficiency (Bayraktar 2005;
Najafi et al. 2009; Sileghem et al. 2013; Yoon et al. 2009; Yüksel
and Yüksel 2004). Coskun et al. (2018) investigated the perfor-
mance of a DI-HCCI engine at constant engine speed and high
equivalence ratio conditions using different injection ratios (IR)
of E10 and E20 blends. The results showed that the first injection
variation does not have a significant effect on controlling homo-
geneous charge compression ignition (HCCI) combustion while
the variation of the second injection timing and IR change peak
pressure significantly. Costagliola et al. (2016) investigated the
effect of ethanol-gasoline blends on a 4-strokemotorcycle. They
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found that the engine showed power improvement with the
addition of ethanol, the maximum improvement occurring at
the range of ethanol 5% v–30% v gasoline fuel blend. Thangavel
et al. (2016), Topgül et al. (2006) and Yücesu et al. (2006), used
unleaded gasoline (E0) and unleaded gasoline-ethanol blends
E10, E20, E40, E50, E60 and E85 in a single cylinder, four-stroke,
spark-ignition engine under different compression ratio. They
found that blending unleaded gasoline with ethanol slightly
increased the brake torque and decreased carbon monoxide
(CO) and hydrocarbon (HC) emissions. The authors also con-
cluded that blending with ethanol allows increasing the com-
pression ratio without knock occurrence. Turner et al. (2013)
studied the effects of ethanol–methanol–gasoline blends on
sperk-ignition (SI) engine emissions using five different rates
from 30% v to 42% v gasoline and from 58% v to 70% v
ethanol–methanol. The results showed that the dual fuel blends
have reduced carbon dioxide (CO2) and nitric oxides (NOx) emis-
sions, compared to the neat gasoline.

A very important aspect of using blended fuels in spark-
ignition engines is the change in properties. Davis and Heil
(2000) compared the performance of four alcohols and found
that the chargedensity increasedwhenusing alcohol because of
the evaporative cooling in the intakemanifold. Hara and Tanoue
(2006), Beeckmann, Röhl, and Peters (2009) and Farrell, John-
ston, and Androulakis (2004) reported that ethanol has a higher
laminar flame velocity than that of gasoline/iso-octane. How-
ever, Da Silva et al. (2005) concluded that ethanol up to 25%
by volume in gasoline led to an increase in reid vapour pres-
sure and octane ratings. Similar results were found by Kar et al.
(2008), namely, that the addition of ethanol to gasoline causes a
non-linear change in the vapour pressure of the resulting mix-
tures using the methods listed in Table 1. Although ethanol
has a lower vapour pressure than gasoline, as the ethanol con-
tent is increased up to 30% of the vapour pressure increases,
but further ethanol addition then causes a reduction in vapour
pressure. This phenomenon causes themaximum cooling effect
to be seen for approximately 50% ethanol content due to the
competing factors of increasing enthalpy of vaporisation (low
blends) and reducing vaporisation (lower vapour pressure for
high blends). Iodice and Senatore (2013) reported that the Reid
Vapor Pressure (RVP) of ethanol is very lower than that of gaso-
line, the resulting lower volatility of ethanol can cause difficult
cold transient of the engine during the warm-up phase. Never-
theless, with the growth of ethanol content, at first, the RVP of
the blended fuel rises to reach amaximal value at about 15% v/v
of ethanol addition (so facilitating the cold-start). Therefore, at
higher ethanol percentages, the RVP declines.

Richards (1995)describedan improvementof 16%on theper-
formance of a single-cylinder, ethanol-fuelled engine when the
compression ratio was increased from 8 to 18.

Table 1. Emission measurement method using the Horiba MEXA-7100DEGR gas
analyzer.

Emission Measurement method

HC FID (hot)
CO NDIR (dry)
CO2 NDIR (dry)
NOx CLD (dry)

Methanol (CH3OH), which is also called methyl alcohol, is a
colourless, pure substance, and is simplest form of saturated
alcohol. Methanol can be produced from biomass, natural gas,
or coal (Clausen, Houbak, and Elmegaard 2010; Holmgren et al.
2012; Kumabe et al. 2008; Li et al. 2010; Renó et al. 2011), and
can be used in low-cost IC engines with only minor adjustments
to ensure material compatibility. Many studies have been con-
ducted on methanol-gasoline blends under different ratios or
volumes. Abu-Zaid, Badran, and Yamin (2004) investigated the
performance ofM3,M6,M9,M12 andM15 fuel blends and found
the maximum power output with the M15 fuel blend. Hu et al.
(2007) studied the addition of methanol in gasoline. Results
showed that the methanol reduces the phase of rapid burning
and advances the start of combustion. The maximum pressure
of the blends was high compared to gasoline. Iliev (2015) ana-
lyzed theperformance andemissions characteristics for different
blends of ethanol, methanol, and gasoline using a 1-D engine
model. Results showed that the brake power (BP) decreased
and the brake specific fuel consumption (BSFC) increased when
using alcohol-gasoline fuel blends. As the fuel blend propor-
tions increased to E30M30, the NOx emissions increased with
a decrease in the CO and HC concentration. Methanol can be
blended with gasoline fuel, which can improve engine perfor-
mance such as power, fuel economy, and emissions (Canakci
et al. 2013; Çay et al. 2013; Gravalos et al. 2013; Siwale et al. 2014).
For instance, methanol can suppress knocking combustion (Liu,
Wang, and Wang 2014); decrease HC, CO, PM, and NOx emis-
sions; and improve thermal efficiency (Liang et al. 2013; Wu et al.
2016).

Some researchers have studied the effects of methanol-
gasoline blends using a different approach. Liao et al. (2006)
studied the effects of methanol-gasoline blends on combus-
tion characteristics at relatively low temperatures. They found
that the HC emissions during the rich mixture combustion
increased with additional methanol in the methanol-gasoline
blends at relatively low temperatures, due to the increase in
evaporation heat absorbed by the blended fuel compared to
gasoline. Yanju et al. (2008) analyzed the effect of methanol
blends in IC engines, and the results showed that for M85
there was a reduction of emissions of CO and NOx by 23% and
80% respectively. Gong et al. (2011) investigated the effects of
ambient temperature on the firing behaviour and the unregu-
lated emissions of electronically controlled inlet port injection
spark-ignitionmethanol. The test results indicated that the min-
imum amount of methanol injected per cycle to ensure the
methanol engine reliable firing increases 86% with the reduc-
tion of the ambient temperature from 301 K to 289 K. Wang
et al. (2016) evaluated the effects of engine misfire on regu-
lated and unregulated emissions frommethanol fuelled engine,
and the results showed that the unburned methanol emission
increased by least 1.6 and 5.7 times for misfire rates of 6% and
9%, respectively.

This review paper aims to study the experimental effects of
various fuel blends such as ethanol–gasoline and methanol–
gasoline on engine performance and emission characteristics
under different modes of operation. The purpose of select-
ing various blend ratios within a certain interval is to design
based on environmental friendly and obtain the best emission
levels.
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2. Experimental overview

2.1. Engines

In this section, experiments andprocedureswith various engines
are reviewed, namely: 1-cylinder, 2-stroke SI engines; 4-cylinder,
4-stroke SI engines; 4-cylinder, 8-valve SI engines; 1-cylinder,
modernised spark-ignited direct injection (SIDI) SI engines; port
fuel ignition engines; and 4-cylinder, electronic fuel injection,
ECA engines. Isermann (2014) explained the historical mod-
ifications of gasoline or SI engines during the last 50 years
with view on their control and diagnosis. Modifications for the
improvement of gasoline engines include, for example, vari-
able valve trains, downsizing, and modified combustion pro-
cesses. Variable valve trains (VVT: variable valve timing) permit
the improvement of the gas exchange (Grasreiner 2012; Iser-
mann 2017; Köhler and Flierl 2011; Yang 2011). There are various
designs of VVT. Schulz, Kulzer, and Vollmer (2006) found that
fuel consumption can be improved with a continuously vari-
able lift by 8%–10%, phase actuation by 3%–4%, lift switching
by 8%–10%, and with full variable hydraulic or electrical VVT by
14%–16%.

2.2. Test procedure

After preparing the fuel blends such as ethanol–gasoline and
methanol–gasoline at different ratio, the performance of each
blend were tested in IC engines. The quality of any fuel depends
fully on its physical and chemical properties which determine
the performance, emission characteristics and engine combus-
tion. Table 2 shows the comparison of gasoline, ethanol, and
methanol as fuel when related to combustion. To analyze the
combustion process of the IC engine, a pressure transducer can
beused tomeasure pressure cycles at different steady-state con-
ditions. According to the reviewed papers, the engines were
instrumented with various instruments for testing the engine
parameters such as brake thermal efficiency, brake power, brake
specific fuel efficiency, volumetric efficiency and torque out-
put; and pollutant emissions such as CO, CO2, NOX, and HC.
The engine speeds were controlled by an engine dynamometer
both at constant engine speeds and variable engine speed inter-
vals. The experimental results of the various engine combustion
characteristics, performance, and emission parameters are dis-
cussed separately in the next section. This overview focuses on
analysis. Detailed information with thorough descriptions of the

experimental setup and procedure can be found in the rele-
vant publications (Aulich et al. 1994; Costagliola et al. 2013; Dai
et al. 2013; Gong et al. 2017; Huang and Hong 2016; Li et al.
2015; Poran and Tartakovsky 2017; Sakai and Rothamer 2017;
Sileghem et al. 2012; Turner et al. 2011; Wang, Chen, et al. 2015;
Wang, Liu, et al. 2015).

3. Results and discussion

3.1. Engine performance characteristics

3.1.1. Brake specific fuel consumption (BSFC)
3.1.1.1. Effect of ethanol-gasoline blends on BSFC. Eyido-
gan et al. (2010) carried out an experiment which showed the
comparison of BSFC for ethanol blend fuels at different vehi-
cle speeds (80 km/h and 100 km/h). The experimental results
showed that the BSFC at both speeds increased by a certain
percentage. It was observed that BSFC for M5 was lower than
that of E5 and for M10 was lower than that of E10. This is due
to the content of oxygen which causes combustion efficiency
to increase or decrease in BSFC. There is an increase in BSFC
when the mixing ratio of ethanol is higher, therefore E10 pro-
vided the lowest BSFC. These results show a similar trend to the
studies conducted by (Balki and Sayin 2014; Celik 2008; Grava-
los et al. 2011; Phuangwongtrakul et al. 2016). A study by (Najafi
et al. 2009) showed the relationship between BSFC and engine
speed for different fuel blends. The results showed that the
BSFC decreases as the ethanol ratio increases. As engine speed
increases reaching 3500 rpm, the BSFC decreases reaching its
minimum values. This is due to the increase in brake thermal
efficiency. However, the increase in bioethanol ratio will result
in higher specific fuel consumption compared to pure gaso-
line. This trend is due to the lower calorific value of bioethanol
compared to gasoline

(Al-Hasan 2003). investigated the effect of torque, volumet-
ric, brake power and brake thermal efficiencies in an SI engine.
Results showed that the BSFC and equivalence air–fuel ratio
decreased, and fuel consumption showed a marginal increase
with ethanol-gasoline blends. This effect is due to the increase
in brake thermal efficiency and a decrease in equivalent air–fuel
ratio. However, an increase in engine speed results in increas-
ing BSFC, since the brake thermal efficiency decreases and the
equivalent air–fuel ratio increases. The authors concluded that
E20 gave the best results at all engine speeds.

Table 2. The physical and chemical properties of Gasoline, Ethanol, and Methanol.

Property Units Gasoline Ethanol Methanol References

Molecular formula – C4–C12 C2H5OH CH3OH
Composition (C, H, O) Mass % 86, 14, 0 52, 13, 3 37, 12.5, 50 Mohebbi et al. (2018)
Lower hearting value MJ/kg 43.5 27.0 20.1 Elfasakhany (2016)
Density Kg/m3 737 785 792 Agarwal (2007)
Octane number VM 95 108 109 Mařík et al. (2014)
Cetane number – 0–10 11 2 Kumar and Saravanan (2016)
Heat of vaporisation KJ/kg 223.2 838 1100 Thangavel et al. (2016)
Boiling point °C 25–215 78–79 64–65 Brown (2008), Hedfi et al. (2014)
Auto-ignition temperature °C 257 423 463 Kumar et al. (2013)
Flash point °C 45 to−38 21.1 11.1 Liu et al. (2014)
Stoichiometric air/fuel ration w/w 14.7 9.0 6.4 El-faroug et al. (2016), Thangavel et al. (2016)
Viscosity at 20°C mm2/s 0.37–0.44 1.19 0.58 Elfasakhany (2016)
Saturation pressure at 38°C KPa 31 13.8 31.68 El-faroug et al. (2016)
Laminar flame speed cm/s ∼ 33 ∼ 39 – Gu et al. (2012)
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Phuangwongtrakul et al. (2016) experimentally determined
the optimal blend rate of ethanol-gasoline in order to max-
imise the performance characteristics of a commercial SI engine.
This experiment was conducted at various engine speeds and
percentages of the intake-throttle opening using constant com-
pression ratio. A contour plot was drawn for the corresponding
BSFC according to the relevant ethanol composition at the spec-
ified throttle positions and engine speeds. The BSFC is relatively
high for low engine speed. The engine seems to operate at the
lowest BSFC around 65%–85% WOT while supplied with 40%
composition by volume of ethanol in gasoline. The curve fit-
ted relations for the corresponding BSFC according to relevant
ethanol composition at various percent WOT.

3.1.1.2. Effect ofmethanol-gasoline blends onBSFC. Fu et al.
(2014) carried out a study on how to improve fuel efficiency and
achieve thegoal of direct usageofmethanol fuel onan ICengine.
At brake mean effective pressure (BMEP) (3 and 6 bar) using two
different IC engines, it was found that with methanol vapour
fuel, the equivalent BSFC of the IC engine was reduced signif-
icantly compared to a gasoline engine. Moreover, at the brake
mean effective pressure of 3 bar, it decreased but not more than
92.5 g/(kWh). The equivalent BSFC of a dissociated methanol
fuelled engine was slightly lower than that of the methanol
vapour fuelled engine. This shows that exhaust heat dissociating
methanol fuel is a useful way to enhance IC engine thermal effi-
ciency. Therefore, when there is an increase inmethanol dissoci-
ation rate (frommethanol vapour tomethanol dissociation gas),
the energy saving potential of the IC engine becomes higher.
This is due to the net calorific value of a fuel which is further
added.

Abu-Zaid, Badran, and Yamin (2004) investigated the effect
of addition of methanol to gasoline on the performance of
SI engines. Performance tests were carried out at wide open
throttle (WOT) under variable speed conditions, using various
fuel blends of methanol-gasoline. The results showed that the
BSFC was inversely proportional to the thermal efficiency and
calorific value of the blend. The calorific value of the blend
decreased as the percentage of methanol increased. However,
at low engine speed (from 1000 rpm to 2500 rpm), the effect of
a decrease in BSFC seemed to be themost influential factor. This
may explain that the lowest BSFC at these speeds was for pure
gasoline, which agreeswith the experimental studies conducted
by Al-Hasan (2003) and Gravalos et al. (2011). A similar result
was obtained by Agarwal, Karare, and Dhar (2014) who carried
out experimental research on methanol blends which showed
the variations of BSFC with engine load (BMEP) under different
engine speeds. These indicate that theBSFC formethanol blends
was high at some engine operating conditions, due to the rel-
atively lower heating value of methanol compared to gasoline
and it did not contribute to heat generation during in-cylinder
combustion.

3.1.2. Brake thermal efficiency
3.1.2.1. Effect of ethanol-gasoline blends on brake thermal
efficiency. Ananda and Saravanan (2013) carried out an experi-
ment on emission reduction for ethanol-gasoline blends using
fuel additives in an SI engine. The final results showed an
increase in the brake thermal efficiency at different ethanol

blends in a multi-cylinder petrol engine. The engine perfor-
mance improved when additives were used with the ethanol-
gasoline blend in the calculated percentage named as sample
one (E50+ 10% of additives) and sample two (E60+ 10% of
additive). However, sample two generated the best results com-
pared to sample one, and operating at 2800 rpm the brake ther-
mal efficiency was found to be 23.24%. Al-Hasan (2003) showed
the effect of using unleaded gasoline-ethanol blends on brake
thermal efficiency. Brake thermal efficiency increased as the per-
centage of ethanol increased. The maximum brake thermal effi-
ciency was recorded when the percentage of ethanol in the fuel
blend was at 20% for all engine speeds.

Wang et al. (2018) showed the breakdown of thermal effi-
ciency gains for ethanol-gasoline blends in TC DISI engines.
Results showed that the engine thermal efficiency gains were
affectedmainly due to a cooling effect and chemical effect, both
of which increased with the ethanol ratio. These results pointed
out that the chemical effect is the most dominant, especially
for the blend with a low research octane number (RON) base
fuel. Also, the cooling effect shows a significant effect for the
blend with a low RON94.5 (�EOI/�CR = 4) base fuel. However,
the improvement of engine downsizing, flame speed effect, and
octane sensitivity were comparable and were less than those
of chemical and cooling effects. With a little amount of ethanol
addition, the engine thermal efficiency increased faster than the
reduction of lower heating value (LHV). When the ethanol con-
tent was high the thermal efficiency decreased. This trend was
reported by other researchers as well (Jo, Bromberg, and Hey-
wood2016; Leone et al. 2015; Liu et al. 2015;Wang, Janssen, et al.
2017; Wang, Zeraati-Rezaei, et al. 2017), who suggested that for
compression ratios from 8:1 to 14:1, the thermal efficiency gain
with compression ratio is almost linear (�η/�CR = 1.8%). The
contribution of the high flame speed of ethanol to thermal effi-
ciency is 0.20% for every 10% by volume of ethanol content in
fuel blends. They emphasised that engine downsizing is a tech-
nology that increases engine thermal efficiency by allowing an
engine to operate atmore efficient high load regimes, instead of
at low load regimes where pumping losses significantly reduce
engine thermal efficiencies. The researchers suggested that a
thermal efficiency increment multiplier from additional engine
downsizing for TC DISI engines.

3.1.2.2. Effect of methanol-gasoline blends on brake ther-
mal efficiency (BTE). Murali Krishna et al. (2012) showed the
impact of two different engines (copper coated engine CCE and
conventional engine CE) using methanol blended gasoline at
a compression ratio (CR) of 7.5:1 and speed of 3000 rpm. They
found that the BTE increased up to 80%of a full load and beyond
that load; it decreased with an increase of BMEP for two dif-
ferent engines with test blend fuels. Higher BTE was observed
with methanol-gasoline blended fuel compared to gasoline at
all loads due to the lower stoichiometric air requirements of
methanol blended gasoline. The copper coated engine showed
higher thermal efficiency when compared to a conventional
engine with both test fuels at loads, particularly at near full
load operation. Liu et al. (2007) investigated the effect of using
methanol blends (M10, M15, M20, M25 and M30) on SI engines
under full load conditions. They found that both engine power
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and torque decreases, while the BTE improved with higher per-
centages of methanol blend.

Yanju et al. (2008) conducted a study on three different
methanol-gasoline blends (M10, M20, and M85) to investigate
the effect on engine power, thermal efficiency, and emission
characteristics. It was found that the addition of methanol sig-
nificantly improved theBTE. These occurwhen the laminar flame
speed is high,which increases the thermal efficiencyby complet-
ing the combustion earlier which decreases heat losses from the
cylinder. However, methanol exhaust contains lower concentra-
tions of particulate matters and nitrogen oxides than gasoline
exhaust (Heywood 1988; Hinze and Cheng 1993; Zhang et al.
2007). A study by Çelik, Özdalyan, and Alkan (2011) showed the
effect of methanol-gasoline fuels on brake thermal efficiency at
various CRs and engine speeds. Results showed that the values
of BTE obtained with methanol were about 22.1%, 27.3% and
30.3% at CRs of 6:1, 8:1 and 10:1, respectively. Also, for gaso-
line is 19.2% at CR of 6:1. However, the brake thermal efficiency
of methanol is about 16% higher than that with gasoline at the
same CR (6:1).

3.1.3. Brake power
3.1.3.1. Effect of ethanol-gasoline blends on brake power.
Tibaquir et al. (2018) studied analytically and experimentally
the effects of using low ethanol content (< 20% v/v) in the
mechanical and environmental performance of in-use sedan-
type gasoline fuelled vehicles, without any modifications of the
engine. When 20% of ethanol is used instead of gasoline, the
power generated by the engine decreases from 0.19% to 0.48%
depending on λ (relative air/fuel ratio). This decrease can be up
to 2.6% when using E85 at constant speed 5000 rpm. These sig-
nificant changes in power result from the effect generated by
the reduction in the air/fuel ratio (A/F 20%of Ethanol = 13.31 vs.
A/F Gasoline = 14.49) to the negative effect of the lower energy
content of the ethanol (LHV 20% of Ethanol = 39,860 kJ/kg
vs. LHV Gasoline = 43,370 kJ/kg). The engine requires less air
to burn the same mass of fuel, and therefore it can increase
the amount of fuel injected into the combustion chamber per
engine cycle, which increases the power generated during each
cycle. When the engine operates with E20, it uses a fuel with 8%
less energy content than when it operates with gasoline, but it
can use 8.1% more fuel. The net effect is a minor reduction in
power is (< 0.2% for λ = 1).

Doğan et al. (2017)measured the best effective engine power
at E0, E10, E20 andE30 fuels in various test speeds. They analyzed
that when there are lower thermal values of blend fuels com-
pared to gasoline; then there will be a decrease in torque which
affects the performance of the engine power. Results showed
that for all the fuels that in the effective power measured due to
the increase engine speeds, it was determined the engine power
increased according to the amount of work per unit time. They
measured the highest effective powerwas 37.23 kWat 4500 rpm
for the E0 fuel while the lowest effective power was 18.08 kW for
E30 fuel.

Research by Najafi et al. (2015) showed the effect of dif-
ferent fuel blends at different engine speeds on brake power.
Results showed that when the bioethanol content increased,
the engine brake power slightly increased for all engine speeds.
The increment in engine power contributed toward an increase

in indicated mean effective pressure when the ethanol content
blends were high. They observed that the heat of evaporation
in ethanol is higher than that of gasoline, which provides the
fuel–air charge cooling and increases the density of the charge.
They also suggested that when the ethanol content is increased,
the engine volumetric efficiency and the density of the mix-
ture increaseswhile decreasing its heating value, thus increasing
torque and power.

3.1.3.2. Effect of methanol-gasoline blends on brake power.
Divakar Shetty and Antony (2017) investigated experimentally
the effects of methanol-gasoline blends on engine performance
and combustion characteristics using a 4-stroke cylinder digital
twin spark ignition engine. The tests were performed at various
loads at M10, M15, M20, M25, M30 and pure gasoline also at
32° BTDC for one spark plug and 28° BTDC for the other one.
The results showed that the power obtained with gasoline was
1.22 KW at maximum load. However, the power obtained var-
ied from 1.62 KW to 2 KW depending on the blend. The engine
power was increased by 13% at minimum load. One of the rea-
sons for the increase in power by methanol blend fuels is that
methanol has a high laminar flame speed compared to gasoline
and this helps to complete the combustion process before heat
losses from the cylinder (Heywood1988; Hinze andCheng1993).
As the torque increases, the power also increases.

3.1.4. Torque output
3.1.4.1. Effect of ethanol-gasoline blends on torque output.
Najafi et al. (2015) carried out studied the performance param-
eters and exhaust emissions of an SI engine operating with
ethanol-gasoline blends of 5%, 7.5%, 10%, 12.5%and 15%. In the
experiments, the engine ran at various speeds for each test fuel
and 45 different conditions. The results showed that at optimal
input parameters, the values of the performance were found to
be close to gasoline, and emission characteristics of the engine
improved significantly. They also investigated the effect of var-
ious test fuels on torque at different engine speeds. When the
content of bioethanol blend fuel increased, the engine torque
slightly increased for all engine speeds. This is due to fuel–air
charge cooling which increases the density of the charge since
the heat evaporation for gasoline is lower than that of ethanol
and thus higher torque output and power is obtained.

Doğan et al. (2017) investigated the engine performance and
exhaust emissions of ethanol-gasoline blends through exergy
analysis with a 4-cylinder, 4-stroke SI engine. The experimental
results showed that the maximum value of engine torque mea-
surementswas obtained between 2500 rpmand 2750 rpm for all
fuel types and the lowest value was measured in 4500 rpm with
E30 fuel. Additionally, the engine torque decreased by approx-
imately 2% for E10, 3% for E20 and 5% for E30 compared to
gasoline. The observationwasmade that when the ethanol ratio
is added to the gasoline, the difficulty in starting the engine
increases, and when the engine speed is higher than 4000 rpm,
the engine works less regularly.

Serdar Yücesu et al. (2007) carried out an experimental anal-
ysis of SI engine performance using ethanol-gasoline blend fuel
(E0, E10, E20, E40, and E60). The experiments were performed by
varying the ignition timing, relative air–fuel ratio (RAFR), com-
pression ratio at a constant speed of 2000 rpm and wide open
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throttle (WOT), which are all parameter which affect the engine.
The results showed the effects of ignition timingonbrake torque
and BSFC at the compression ratio of 10:1. It was found that the
maximum brake torque was obtained at 22 CA (crank angles)
advanced ignition timing with all fuels. When the ignition tim-
ing was increased to 24 CA, a knock occurrence was observed
with E0 fuel. It was also observed that there was no-knock occur-
rence at 36CAadvanced ignition timingwithunleadedgasoline-
ethanol blends (E40 and E60). However, using ethanol-gasoline
blends increased the compression ratio without knock occur-
rence in SI engines for better thermal efficiency, and increased
the brake torque and BSFC at all ignition timings. They con-
cluded that ethanol blends could serve as agents to raise the
octanenumberof gasoline andbeusedas ananti-knock additive
to unleaded gasoline.

Costa and Sodré (2010) compared theperformance andemis-
sions fromaproduction1.0-l, eight-valve, and four-strokeengine
fuelled by hydrous ethanol at 6.8% of water content and 78%
gasoline-22% ethanol blend. The results showed a significant
increase in torque and BMEP at speeds below 3250 rev/min
when the gasoline-ethanol blend was used as fuel. When the
speedswere above4000 rev/min, thehydrous ethanol produced
higher torque and BMEP. At low engine speeds, the higher heat-
ing value of gasoline was responsible for the higher torque and
BMEP obtained for the gasoline-ethanol blend (see Table 2).
At high engine speeds, the faster flame speed together with
increased ignition timing enabled hydrous ethanol to produce
higher torque and BMEP than the gasoline-ethanol blend. Also,
these generate less time to complete combustion in an engine
cycle, and a faster flame velocity is required. This flame speed is
affected by several parameters, such as pressure, mixture tem-
perature and air/fuel mixture (Sodré 1998).

3.1.4.2. Effect of methanol-gasoline blends on torque out-
put. Balki, Sayin, andCanakci (2014) conductedanexperimental
study on the effect of ethanol and methanol use on the perfor-
mance, emissions and combustion characteristics of a lowpower
single-cylinder engine. The tests were conducted at full-throttle
valve opening and variable engine speeds. Results showed
changes in engine torque and BSFC at various engine speeds
for the three different fuels. Maximum torque was obtained at
2400 rpm. On average, the maximum engine torque for pure
methanol and ethanol increased by 4.7% and 3.7% respectively,
when compared to gasoline. The best value of the engine torque
obtained with methanol was 11.76 Nm. Engine torque reduced
after it reached the maximum point along with the increase in
engine speeds. However, the decrease in torque while using
gasoline was higher than that of alcohol fuels.

Kapusuz, Ozcan, and Yamin (2015) carried out an investiga-
tion on different alcohol-unleaded gasoline mixtures used in
a SI engine without any modifications. The fuel blend ratios
were from 5% to 15% of ethanol and methanol together and
separately, and were optimised using artificial neural network.
The simulated result was obtained from the ANN model then
afterwards taken for further analysis at 1400 rpm. The alcohol
content at maximum torque speed for the different mixtures
was obtained. This showed that the torque decreased when the
ethanol ratio was 6%. The lowest torque value was obtained
with themixture of ethanol 7%andmethanol 8%. Themaximum

torque value was obtained when the ethanol ratio was 1% and
the methanol ratio was 11%.

Qi et al. (2005) studied the effect of ethanol as a co-solvent
in a methanol-gasoline blend in an SI engine. The critical phase
separation temperature (CPST) of the methanol-gasoline blend
increased with an increase in water content in the blend, but
adding the ethanol content caused the CPST to decrease. The
results showed that the higher the volume fraction of methanol
in the blend, the larger the reduction. Also, when the fuel con-
sumption per stroke of gasoline was larger than that of M25, this
caused the air-M25 ratio to increase with a consequent decrease
in the heating value of the mixture. When there was an increase
in excess air coefficient, there was a resulting loss of power. This
means that the torque output of various blends was lower than
that of gasoline at all engine speeds.

3.2. Engine emission characteristics

3.2.1. CO emission
3.2.1.1. Effect of ethanol-gasoline blends on CO emission.
According to reviewed literature, different studies have indi-
cated that the oxygen content in ethanol result in a significant
reduction in CO emission. But the percentages of reduction
reported by different researchers are not the same. Hsieh et al.
(2002) conducted an experimental investigation on engine per-
formance and pollutant emission of a commercial SI engine
using different ethanol-gasoline blend fuels (0%, 5%, 10%, 20%,
and 30%) at engine speed of 3000 rpm. Results showed thatwith
increasing the ethanol content, the Reid vapour pressure of the
blended fuels initially increased to a maximum at 10% ethanol
addition, and then decreased. The researchers also found that
the reduction of CO emission grows as the ethanol content
increases. Kiani et al. (2010) investigated the performance of the
ANN validation by comparing the prediction dataset with the
experimental results and found that the ANN provided the best
accuracy inmodelling the emission indiceswith correlation coef-
ficient. They concluded that the experimental results confirmed
that by adding more ethanol, the CO was decreased.

Jin et al. (2017) investigated the effects of various ethanol-
gasoline blends on the hazardous air pollutants (HAPs) emis-
sions using the federal test procedure (FTP-75) mode. The CO
emissions showed a decreasing trend as the ethanol proportion
in the fuel increased. COemissionswithE0andE85were reduced
from 0.275 g/km to 0.147 g/km under the FTP-75 mode. Incom-
plete combustion of the air–fuel mixture during cold transient
operation and fuel-rich environment stages produced signifi-
cant CO emissions.

Hsieh et al. (2002) studied the performance and exhaust
emissions using an SI engine fuelled with ethanol–methanol-
gasoline blends. The test results obtained at low content rates
from (3–10 vol.%) in gasoline were compared to ethanol-
gasoline blends, methanol-gasoline blends, and pure gasoline
test results. Also, decreases in CO emissions took place with
the increase in vehicle speed for all test fuels. In the case of
EM blends, for example at 2600 r/min, the CO emission was
about 13%, on average, compared to neat gasoline. There-
fore, at 3450 r/min, the CO emission for the same fuel becomes
about 35%. These results showed that the addition of ethanol
or methanol into gasoline is more efficient for getting lower
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emissions at high engine speeds (> 3000 r/min). However,
methanol-gasoline blends presented the lowest emissions of CO
among all test fuels.

A study by Saikrishnan, Karthikeyan, and Jayaprabakar (2018)
which depicted the effect of ethanol-gasoline blends on CO
emission against torque. CO is a product of incomplete com-
bustion due to insufficient air content in the air–fuel mixture.
The researchers showed that when ethanol contains oxygen
and then is mixed with gasoline, the combustion of the engine
becomes better, and the CO emission decreases. Thus, the con-
centration of HC and CO decreased as the volume percentage of
ethanol blend fuel increased. This result is due to the reduction
in carbon atoms concentration in the mixed fuel and the high
molecular diffusivity and high flammability limit which improve
the mixing process and hence combustion efficiency.

3.2.1.2. Effect of methanol-gasoline blends on CO emission.
Alexandru, Ilie, and Dragos (2017) carried out research on the
variation of pollutant emissions versus the load of the engine at
different engine speeds of 3600 rpm and 4600 rpm using an SI
engine. The results showed that the values of COdecreasedonce
the ratio ofmethanol increased. The researchers stated that such
an effect is due to the quantity of oxygen contained by the alco-
hol, and because the carbon content gasoline is greater than in
methanol.

Aulich et al. (1994) found that the CO emissions trend
obviously decreased with the content of methanol fuel and
depended mainly on the excess air ratio. At M25, the CO emis-
sions decreased by certain percentages at all loads compared
with those of gasoline. During combustion, it was observed that
methanol fuel has oxygen that produces some radicals such as
OH and O with strong oxidation.

Xie et al. (2013) studied the performance and emission char-
acteristics using exhaust gas recirculation (EGR) and spark timing
to control a load of SI methanol with WOT. The experimental
results showed that at an engine speedof 1400 rpmand full load,
themethanol ran stably without knocking, specifically when the
ignition timingswere 18CA, 15CAand12CA (crank angle) BTDC.
Their study also indicated that the CO emissions of the control
method using EGR and ignition timingwere decreased at higher
engine loads. At lower engine loads, CO obviously deteriorated
and were 3–4 times higher than those of the conventional con-
trolmethod. Therefore, better performance and lower emissions
can be achieved by a control method using EGR and ignition
timing when the engine load is higher.

3.2.2. CO2 emission
3.2.2.1. Effect of ethanol-gasoline blends on CO2 emission.
Iodice, Langella, and Amoresano (2017) evaluated the influence
of the addition of ethanol in gasoline fuel blends on energy con-
sumption and exhaust emissions during thewarm-up phase and
cold-start transient of current generation SI engines. The CO2

emissions were measured within the cold and hot phases of the
European type-approval driving cycle. The results showed that
the CO2 emissions in the cold phase were decreased with the
addition of ethanol in the blends.

Saikrishnan, Karthikeyan, and Jayaprabakar (2018) conducted
research on a three-cylinder, four-stroke SI engine at constant
speed with different percentages of ethanol as the additive to

gasoline. Results showed that CO2 increased compared to pure
gasoline fuel for various ethanol blends. The opposite behaviour
wasobservedwithCOemissionswhich improvedas thepercent-
age of ethanol increased, because of the improved combustion
process as a result of the oxygen content in the ethanol fuel.

Jin et al. (2017) studied the effects of various ethanol-gasoline
blends (E0, E10, E30, E50, and E85) on the hazardous air pollu-
tants (HAPs) emissions in a SIDI engine. As the content of ethanol
increased in the gasoline fuel, the CO2 emissions decreased
significantly. The CO2 emissions and fuel economy (FE) with
various ethanol ratios were measured to be 190 g/km (E0),
189 g/km (E10), 187 g/km (E30), 188 g/km, and 187 g/km (E85)
and 12.3 km/L (E0), 11.9 km/L (E10), 11.2 km/L (E30), 10.2 km/L
s(E50), and 8.7 km/L (E85). The results indicated that the 1.6%
ethanol ratio reduced the CO2 emissions from E85 fuel com-
pared to gasoline. This is due to the lower heating value of
ethanol fuel. They suggested that more fuel injection from
ethanol fuel is needed to compensate for decreases in engine
performance. Thus, the FE of ethanol content fuels was slightly
reduced by 3.3% (E10), 8.9% (E30), 17.1% (E50), and 29.3% (E85).

3.2.2.2. Effect ofmethanol-gasoline blends onCO2 emission.
CO2 is non-toxic emission but leads to the greenhouse effect.
Research conducted by Çelik, Özdalyan, and Alkan (2011) stud-
ied the effect of methanol-gasoline on CO2 at various CRs and
speeds. The results indicated that CO2 is lower than that of gaso-
line at all CRs with methanol added. At the same CR = 6:1 with
methanol, CO2 is about 37% lower than that of gasoline. CO2

emission obtained with methanol at the CR of 10:1 is about 30%
lower than that with gasoline at the CR of 6:1. These research
results are similar those that of Celik and Colak 2008; Wu et al.
(2004).

A recent experimental investigation by Divakar Shetty and
Antony (2017) investigated the effect of gasoline and methanol
blend fuels using an SI engine at various loads. The results
showed that the CO2 emission increased with an increase in
load but decreased when the methanol content in the blend
increased. At maximum load, the CO2 emissions decreased at
about 17% at maximum load. According to the literature, the
emissionof CO2 mainly depends on theC–H ratio in the fuel. This
result is due to less C–H ratio and C content in methanol which
shows less CO2 emission compared to gasoline (Ozsezen et al.
2009; Pourkhesalian, Shamekhi, and Salimi 2010; Turns 2000).

3.2.3. NOx emission
3.2.3.1. Effect of ethanol-gasoline blends on NOx emission.
Previous literature (Hsieh et al. 2002; Stump, Knapp, and Ray
1996) have found some increment in NOx emission for ethanol.
A different trend was observed by other researchers (Furey
and King 1980; Lapuerta et al. 2005; Rice et al. 2016). Some
researchers (Lapuerta, Armas, and Herreros 2008; Tavares et al.
2011) investigated the irregularity in NOx emissionwith ethanol.
In this section the causes of NOx emission will be discussed for
ethanol-gasoline blends; attention will be given to various fuel
blends, various vehicle conditions, various engine parameters
and as well as engine modifications.

Najafi et al. (2009) found that the oxygen content of ethanol
produces a slight effect in fuel-rich conditions. This slight effect
shifts the air–fuel ratio to stoichiometric conditions and helps
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in completing combustion, although this increases NOx emis-
sions. Another similar study byMasumet al. (2015) examines the
variation in NOx emission at WOT and different engine speeds.
They found that on average, NOx emissions increased more on
ethanol compared to gasoline. Schifter et al. (2013) conducted
a study on both anhydrous and hydrated ethanol, and found
that for hydrated ethanol, the emission decreased as the oxy-
genate contents increased. Regarding anhydrous ethanol, the
NOx increased when the ethanol content was 30% and higher.

Zhuang and Hong (2013) mixed ethanol-gasoline blends
from 0% to 60.1%. Results showed that NOx emission increased
up to 24.3% ethanol to gasoline after which it decreased with
further increases in ethanol percentage. They showed that a
higher percentage of ethanol in gasoline reduces NOx as well
as in-cylinder temperature. Other research on ethanol-gasoline
blends of 30% (Chen et al. 2010) and 50% (Agarwal 2007) com-
pared to gasoline (Li et al. 2003; Niven 2005; Poulopoulos, Sama-
ras, and Philippopoulos 2001) also found that NOx emissions
reduced. Ananda and Saravanan (2013) studied the effect of
unleaded gasoline–ethanol blends on NOx emissions and found
that NOx emissions were significantly reduced for all engine
speeds for sample two compared to the other samples. Fur-
ther, results showed that the blends decreased the combustion
temperature in the cylinder and lowered the combustion heat
energy.

Koç et al. (2009) demonstrated that the NOx emissions of
ethanol-gasoline blends (E50 and E85) were lower than that
of gasoline at different compression ratios (CR = 10:1 and
CR = 11:1). TheNOx emissions at CR = 11:1were slightly higher
than that of CR = 10:1 in all speed ranges. It was concluded that
when the latent heat of vaporisation is high and with low flame
temperature, then the NOx emission will be low. But, the NOx

emissionmay change depending o on the ratio of ethanol in the
blend and operating conditions.

3.2.3.2. Effect ofmethanol-gasolineblendsonNOxemission.
Aulich et al. (1994) conducted an experimental study on a non-
road small gasoline engine using pure gasoline and methanol-
gasoline blend fuels (M15 and M25). The results showed that
theNOx emissions increasedwhen themethanol ratio increased.
With increased engine load, the NOx emission for gasoline
increased, as did the NOx emissions for the blends. When the
engine load was at 75%, M15 and M25 showed peak values
of 550.4 ppm and 964.3 ppm, respectively. This suggests that
there is complete combustion at 75% load and the cylinder gas
temperature is higher, compared with other loads.

Vancoillie et al. (2013) compared the engine-out NOx emis-
sions on methanol and gasoline at various fixed loads. The
estimated uncertainty was below 1g/kWh for all measurement
points. The values were consistently 5 g/kWh to 10 g/kWh lower
on methanol. The combustion temperatures on methanol were
low compared to on gasoline. These occured when comparing
themean temperature of the exhaust gases, whichwere 2%–7%
lower onmethanol relative to gasoline. With a 1.8 l four-cylinder
engine, the results showed that elevated levels of internal EGR
might cause the strong influenceof engine speedon the amount
of NOx emissions at 20 Nm at low rpm. At low load, the vacuum
in the intake due to throttling is quite considerable (Verhelst
et al. 2010). However, at 80 Nm the internal EGR levels are much

lower, which explained the higher NOx emissions for gasoline
and methanol at 80 Nm load level.

Liao et al. (2006) investigated the effects of the addition of
methanol on pollution emissions. The experimental measure-
ment was conducted in terms of HC, CO, and NOx emissions
at 358 K and the reference point was the gasoline-air mixture
(ϕ = 1.0). The results showed that the addition of methanol has
led to a major increment of HC emissions through fuel evap-
oration for rich fuel mixtures. The researchers also noted the
relatively leanmixture which can be supplied to realise the rapid
combustion for mixed fuel, compared to unleaded gasoline.
They suggested comparing the emission characteristics at their
separated optimisation equivalence ratio, to further explore the
effect of methanol addition on the emissions.

Theabove resultswere similar to thoseofCanakci et al. (2013),
Costa and Sodré (2010), Abdel-Rahman and Osman (1997), and
Stein, House, and Leone (2009) who found that the volume of
ethanol in gasoline affects the performance and emissions of the
engine but results dependon the operating conditions. Previous
researches have noted that NOx emission can either decrease or
increase depending on the engine operating condition rather
than the higher ethanol blends (Chala, Aziz, and Hagos 2017;
Karavalakis et al. 2012; Karavalakis, Short, Russell, et al. 2014;
Karavalakis, Short, Vu, et al. 2014; Myung et al. 2012).

3.2.4. HC emission
3.2.4.1. Effect of ethanol-gasoline blends on HC emission.
Saikrishnan, Karthikeyan, and Jayaprabakar (2018) investigated
the effect of ethanol-gasoline blends as fuel onperformance and
exhaust emissionusing a3-cylinder, 4-stroke SI enginewith vary-
ing torque conditions and constant engine speed of 5500 rpm.
The results depict that the HC emissions decrease compared
to pure gasoline fuel at different blends (E0, E5, E10, and E15).
This can be attributed to the decrease in the stoichiometric
air–fuel ratio of the ethanol fuel blends and increased in the
actual air–fuel ratio of the ethanol blends due to the oxygen
content.

Another similar work by Karthikeyan, Venkatesh, and Ramku-
mar (2017) found that HC emissions for bioethanol blends
are lower than those for gasoline fuel at a constant speed of
2500 rpm. TheHCemission for B20 (bioethanol blend)wasnearly
20% lower than gasoline. The existence of oxygen in the fuel
promotes complete combustion that leads to lowering of HC
emissions. Similar results were obtained by many researches
(Hsieh et al. 2002; Topgül et al. 2006; Yücesu et al. 2006, 2007).
Additionally, the higher the compression ratio the higher is the
surface to volume ratio causedby the higher HC emissions (Yang
et al. 1993).

Doğan et al. (2017) studied the effects of ethanol-gasoline
blends used in a four-cylinder, four-stroke SI engine for perfor-
mance and emission analysis under full load. In this experiment,
HC emissions were measured to be higher for tested ethanol
containing fuels. The results indicate that HC emissions decrease
with an increase in engine speed for all blend fuels. This is
due to the more homogenous mixture which is obtained inside
the cylinder with increased engine speed; HC emission shows
a decreasing tendency. Findings were that with the decreased
temperature inside the cylinder when ethanol ratio is added, the
HC emission goes high. Therefore, the lowest HC emission was
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observed at 4000 rpm with E0 and the highest at 2000 rpm with
E30, and in the formation of HC emission, heat is very important
as well as time.

Lin, Chang, and Hsieh (2010) investigated the behaviour of
ethanol-gasoline blends (E0, E3, E6, and E9) used as fuel in a
small four-stroke engine generator under different loadings. In
the engine tests, HC emissions drastically decreased for all the
fuel blend at different loadings compared to E0 (gasoline). The
experimental results showed that the significant increases were
observed in HC emissions when runningwith E9 fuels compared
to E3 and E6. Also, when E6 is used as fuel, the HC concentration
is less than the other fuels for each engine loading. The con-
centration of HC emissions decreases with the increase of the
relative air–fuel ratio; the reason for the decrease of HC concen-
tration in most cases (according to literature) is similar to that of
CO concentration (Feng et al. 2015; Koç et al. 2009; Singh, Dhar,
and Agarwal 2015). This decrease also depends on the com-
bustion process in SI engines which is highly influenced by the
combined effect of various parameters (Çay et al. 2013; Hosoz
et al. 2013; Wong et al. 2015).

3.2.4.2. Effect of methanol-gasoline blends on HC emission.
Wu et al. (2016) compared the idle lean burn characteristics of
an engine fuelled with methanol and gasoline, and explored
an effective way to improve the economy and emission perfor-
mance of engines under idle condition. The experiments were
conducted at an idle speed of 800 rpm and λ = 1.0, λ = 1.2,
and λ = 1.4, respectively. It was observed that HC emissions
for methanol and gasoline were decreased at excess air coeffi-
cients of (λ = 1.0 to λ = 1.2) and then increased from λ = 1.2
to λ = 1.4. This is due to appropriable lean burn condition at
(λ = 1.2) which benefits the complete combustion. Moreover,
with further dilution of the air–fuel mixture (λ = 1.4), the insta-
bility of combustionwould be amplified,which leads tomoreHC
emission.

Alexandru, Ilie, and Dragos (2017) compared the effects of
methanol-gasoline blends (M5, M10, M15, M20, and M25) on
engine performance, combustion and emission characteristics
in a single cylinder SI engine at two different engine speeds
(3600 rpm and 4600 rpm). The results indicate a variation of HC
emissions, which can rise rapidly with respect to a high num-
ber of load due to incomplete combustion or heat losses in the
cylinder. The increase of the HC emissions can also be caused
by the existence of regional lean and rich mixtures in the com-
bustion chamber. Lean burn is considered as an effective means
to improve thermal efficiency and reduce emissions of engines
(Lee and Reitz 2003; Park et al. 2012; Wang et al. 2012). However,
its application in engines fuelled with gasoline is limited due to
the narrow, lean burn limit and slower flame speed of gasoline
(Ji and Wang 2010) (Tables 3 and 4).

4. Conclusions

Ethanol and methanol are both promising and representative
alternative fuels for SI engines. Ethanol and methanol fuels can
be used as substitutes for gasoline fuels in SI engines without
any further modification. The literature review shows that the
emissions for methanol-gasoline and ethanol-gasoline blends

are lower than that of pure gasoline fuel. The engine perfor-
mance and exhaust emissions of ethanol-gasoline blends fuels
are slightly different from methanol-gasoline blends; this is due
to the influence of the combustion-related properties and oper-
ating conditions. However, some of the key findings of this
review are summarised below.

1. For ethanol-gasoline blends, NOx emission can either
decrease or increase as reported by various researchers.
These inconsistencies occur due to many factors. Firstly,
when the combustion process is closer to stoichiometric,
the flame temperature increases, therefore, the NOx emis-
sion increases. Secondly, forced induction increases the frac-
tion of NOx, especially at high engine load with increases
in CR. Therefore, when the injection ratio decreases due to
an increase in the cooling effect of blends, the cylinder gas
pressure and the thermal efficiency are slightly decrease
which leads to a decrease in NOx. However, for methanol
blends, most of the NOx emissions decrease in relation to
CR and engine speed.

2. Inmost of the cases, BTE is higherwhenamethanol-gasoline
blend is used. ThemaximumBTE is observed at 30% forM30
when the engine load is high and 6.8% with an increase in
blend ratio and engine speed. These emission trends dif-
fer from the ethanol-gasoline blend, where BTE increases
with an increase in ethanol blend, and decreases when the
engine speed increases.

3. Methanol blends show a significant reduction in CO com-
pared to ethanol blends. The maximum reduction value of
CO is 55.5% for M10 as fuel at CR 7:1, and for ethanol, the
maximum reduction of CO is 35% for E10 at CR 6:1.

4. The literature reported in this study shows that at low
engine load and different operating conditions, an ethanol-
gasoline blend results in complete combustion and subse-
quently reduces the HC and CO2 compared to a methanol-
gasoline blend.

5. As the CR increases, the engine torque and power increases
with an increase in methanol or ethanol blend ratio, and
brakepower increaseswith an increase inBSFC formethanol
blends. According to the reviewed articles, methanol has a
negative effect on the BSFC and some of the results shows
decreases in BSFC. Ethanol-gasoline has attainedmore ben-
efits compared to methanol-gasoline in terms of exhaust
emissions, engine power, and torque output, especially at
low engine speed.

In conclusion, not all ethanol andmethanol blendsbringben-
efit to the environment concerning emissions and performance.
Assessment needs to be made for each type of raw material,
location and the method of extraction. This study shows that
the significance of adding ethanol or methanol to gasoline are
reduced engine-out emissions and increased efficiency, and that
the impact changes with the blend ratio. The use of ethanol-
gasolineblend fuels increase thebrakepower and torqueoutput
and decreases the BSFC. Methanol-gasoline blend fuels show
slight increment in brake power and torque output, and higher
BSFC than gasoline. Also, a larger content of gasoline fuel with a
small ratio of ethanol injected into the cylinder increases brake
power and torque output due to the higher density of ethanol.
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Table 3. The effect of ethanol blends on engine performance and emissions (A review of the most recent experiments from 2018 to 2013).

Engine performance Emissions

Reference Engine type Blending ratio Operating conditions BFSC BTE BP T CO2 CO HC NOx

1. Wang et al. (2018) TC DISI, 3.5:1 CR E10, E20, E30, E40,
E50+ E 60

Operated at knock-free
load conditions, constant
speed

– ↓ by 7.07% – – ↑ by 21.2%
E10+ E30

– – –

2. Saikrishnan,
Karthikeyan, and
Jayaprabakar (2018)

Single cylinder, 4-stroke
SI engine, 88mm
bore, 64mm stroke,
8:1 CR

E10, E20, E30+ E40 8:1 CR, 1250–3750 rpm, Max.
Power (KW/rpm) 9.6/3500,
Max. Torque (Nm/rpm)
26.48/2500, Air- cooled

E10, BSFC↑
E30, BSFC↓

– E10, BF↓
E40, BF↑

E10+ E40, T↑
E30, T↓

E10, CO2↓ E40, CO2↑ E10, CO↑ E30, CO↓ E10, HC↑ E40, HC↓ –

3. Tekin and Saridemir
(2017)

64mm stroke, 8:1 CR,
4-stroke SI engine,
64mm bore, 45mm
stroke, 163.46 cc
capacity, 196cc
displacement

E10, E20, E30 E40,
E40+ E50

1500–3500 rpm, Max.
horsepower (HP/rpm)
6.5/3600, Max. Torque
(Nm/rpm) 13/2500,
Air-cooled

E10,E20,E60, BSFC↑
E20, E30, BSFC↓

E20, E30, BTE↑a

At Max. N, BTE↓
N↑, BP↑ E20, T↑a E↑, CO2↑ N↓ E↑, CO↓, N↑, CO↑ E↑, HC↓ –

4. Nwufo et al. (2017) 3-cylinder, 4-stroke
SI engine, 68.5mm
bore, 72mm
stroke, 25cc Fuel
consumption

E0, E5, E10+ E15 Varying engine torque,
constant speed 2000 rpm,
speed rate 5500 rpm,
Power rate 29.5 KW,
Water-cooled

T↑, BSFC↓ T↑, BTE↑ BP↑ – CO2↑ at all blends E↑, CO↓ E↑, HC↓ NOx↓

5. Doğan et al. (2017) 4-cylinder, 4-stroke SI
engine, 73.96mm
bore, 75.48mm
Stroke, 1297 cc
cylinder vol

E0, E10, E20+ E30 8.8:1 CR, 2000–4500 rpm,
Max. Power
43KW/5000 rpm, Max.
Torque 98Nm

/2500 rpm, 1-2-4-3 order,
Idle speed 750 rpm,
12°BTDC-48°ABDC,
13–16 bar CP

E0, BSFC↓ 3000 rpm
E30, BSFC↑ (Max. N)

N↑, BTE↓ N↑, BP↑ E0, Max. T↑a

E30, T↓ (Max. N)
E0, CO2↑ 300 rpm E0, CO↑

E30, CO↓
N↑, HC↓ E30, NOx↓

6. Li et al. (2017) Single cylinder, 4-
valves PFI-SI engine,
90.3mm bore,
90.1mm stroke,
575 cm3 displaced
vol., 150.7mm
connecting rod
length

E0+ E30 9.6:1 CR, constant speed
1200 rpm, 3–5 bar (BMEP),
under WOT, constant
ignition timing, under
stoichiometric conditions

E↑, BSFC↑
BMEP↓, BSFC↑

E0, BTE↑ 21.56%
BTE↑ at all blends
BMEP↑, BTE↑

– – – CO↑ at all blends HC↓ NOx↓
BMEP, NOx↑
5bar

7. Karthikeyan,
Venkatesh, and
Ramkumar (2017)

3-cylinder, 4-stroke
SI Engine, 68.5mm
bore, 72mm stroke

E10+ E20 8.1:1 CR, constant speed
2500 rpm,

Power KW/rpm

E↑, BSFC↑ low load E↑, BTE↑ high load – – CO2↓ at all blends CO↓ E20, HC↓ 20% NOx↓

8. Ojapah, Zhao, and
Zhang (2016)

Single cylinder, 4-stroke
DISI engine, 81.6mm
bore, 66.94mm
stroke

E0, E15+ E85 11.78:1 CR, engine speed
0–6500 rpm, 3.2 bar IMEP,
load conditions, 20 °C
intake temp., stoichiometric
conditions

E15, BSFC↓ at PVO
E85, BSFC↑ at TSIO

E0, BTE↓ at EIVC
E85, BTE↑ at PVO

– – – E15, CO↓ at CAI
E85, CO↑ at EIVC

E15, HC↓ at CAI
E85, HC↑ at EIVC

–

9. Thangavel et al.
(2016)

Single cylinder, 4-stroke
SI engine, 200cc
capacity

E30+ E50 9.4:1 CR, constant speed
3000 rpm, Power KW/rpm,
6.5/5000, 5-7-8.9 bar
load IMEP, at 4 different
throttles. Air-cooled,
Stoichiometric condition
� = 1± 0.03

– E30, BTE↑ – E30, T↑ – E50, CO↑ ↑, HC↓ E50, NOx↑

(continued).
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Table 3. Continued.

Engine performance Emissions

Reference Engine type Blending ratio Operating conditions BFSC BTE BP T CO2 CO HC NOx

10. Iodice et al. (2016) Euro-3, 4-stroke SI
engine, 998 cm3

displacement, 189 kg
Weight

E0, E10,
E20+ E30

Max. Power
105.2 KW/10000 rpm,
20 °C constant temp., at
cold start conditions

– – – – – E20, CO↓ +
E30, CO↑

HC↓ at CEE+HC↑
at CEE

–

11. Wang, Chen et al.
(2015)

4 cylinder, PFI-SI
engine, 75mm bore,
84.4mm stroke, 1.5L
displacement

E0,
E10+ E10W

10.5:1, constant speed
2000 rpm, at various loads

– – – – E10, CO2↓ CO↓ at 10Nm HC↓ NOx↑ when load ↑

12. Abdullah et al.
(2015)

Single cylinder, 4-stroke
SI Engine, 68mm
bore, 45mm Stroke,
163 cm3 displaced

E0, E10,
E20+ E30

9.0:1 CR, 2500–3000 rpm,
2 Nm-constant load,
air-cooled, net power
HP/rpm, 4.8/3600,
net torque, Nm/rpm
10.3/2500

E20, BSFC↓ – – – E20, CO2↑ high %
N↑, CO2↑

E↑, CO↓ – N↑, NOx↓

13. Elfasakhany (2014) Single cylinder, 4-stroke
with carburettor SI
engine, 65.4mm
bore, 44.4mm stroke,
0.6 L17 kg weight,
79.55 mm

Connecting rod

E0, E3,
E7+ E10

7:1 CR, varying engine speed
2600–3500 rpm, Power
1.5 KW at WOT condition,
air-cooled

E10, BFSC↓ 2800 rpm – E10, BP↑ 3000 rpm E0, T↑ lowest
E10, T↑ 3000 rpm

CO2↑ CO↓ at all blends E↑, HC↓ –

14. Türköz et al. (2014) 4-cylinder, 4-stroke SI
engine, 1581 cm3

displacement,
max. power
185KW/7000 rpm,
1.61 carburettor

E85 9.2:1 CR, 2000–4000 rpm,
constant throttle position,
under stoichiometric
fuel/air ratio, at WOT
condition, under
various ignition timing,
water-cooled

– – BP↑ at 6°–4° adv. IT T↑ at 4° 4000 rpm CO2↓ CO↑ HC↓ at −2° NOx↑ IT↑

15. Ghazikhani et al.
(2013)

Single cylinder, 2-stroke
SI engine, 35mm
bore, 35mm stroke,
34mL displacement,
1 cc consumption

E5, E10+ E15 6:1 CR, 2500–4500 rpm,
at various engine
velocities+ load, nominal
power output KW/rpm
0.5/4000, water-cooled

BFSC↓ at all blends – – – CO2↓ with 6.3% CO↓ with 35% HC↓ NOx↓

Notes: a = at engine speed 2500 rpm;+ = and;↑ = increase;↓ = decrease;N = engine speed;N↑ = when engine speed increase;N↓ = when engine speeddecrease; CR = compression ratio; CP = compressive pressure; PFI = port fuel ignition; SI = spark ignition; CEE = cold
extra emission; CAI = controlled auto-ignition; EIVC = early intake-valve closing; PVO = positive valve overlap; TSIO = throttled spark ignition operations; Adv. IT = advanced ignition timing; DISI = direct injection spark ignition; WOT = wide open throttle; Max. = Maximum.



12
A
.A

.YU
SU

F
A
N
D
F.L.IN

A
M
BA

O

Table 4. The effect of methanol blends on engine performance and emissions (A review of the most recent experiments from 2018 to 2013).

Engine performance Emissions

Reference Engine type Blending ratio Operating conditions BFSC BTE BP T CO2 CO HC NOx

1. Wani (2018) Single cylinder, 4-stroke SI
engine, 500 cc displaced,
speed rate 6000 rpm

M0, M15,
M30, M45,
M60+M75

9:1 CR, 0–8000 rpm, at
stoichiometric air/fuel
ratio, at high octane rate

BSFC↑ at all blends – M, BP↓ at all
blends

M0, BP↑
T↑ at 2000 rpm – CO↑ at all

blends
HC↑ NOx↓

2. Alexandru, Ilie,
and Dragos (2017)

Single cylinder, 4-stroke
SI engine, 72mm bore,
60mm stroke, 244 cc
displacement

M5, M10, M15,
M20+M25

9.8:1 CR, 2000–7000 rpm,
Max. Power 17HP/7000 rpm,
at various loads, air-cooled

– – M, BP↑ N↑ M5, T↑ at
5000 rpm

M, CO2↓a M, CO↓b M, HC↑a –

3. Divakar Shetty
and Antony
(2017)

Single cylinder, 4-stroke
SI engine, 70mm bore,
66.7mm stroke, 256 cc
displacement

M10, M15, M20,
M25+M30

4.5–10.5:1 CR, varying
load, 28°BTDC-32°BTDC,
Power 2.8KW/3000 rpm,
water-cooled

– M30, BTE↑a 30% M30, BP↑a – CO2↑a CO↓ at all
blends

M↑, HC↓ NOx↓

4. Sharudin et al.
(2017)

4-cylinder, Multipoint port
fuel system SI engine, 1.6
L displacement, 78mm
bore, 84mm stroke, 159
capacity, 138 kg weight

M5 10:1 CR, 1000–2500 rpm, at
constant throttle 100%

BSFC↑ at 1000 rpm BTE↑ at 2500 BP↑ 3.9% – CO2↑c CO↓c HC↓c NOx↓c

5. Yao, Ling, and Wu
(2016)

4-cylinder, 4-stroke PFI SI
engine, 78.7mm bore,
69mm stroke, 1.342 L
displacement, 16 valves

M0, M10,
M20, M30,
M50+M70

9.3:1 CR, 1200–2800 rpm,
in-cylinder mixture
air-fuel ration, Max. Power
63.2KW/, Max. Torque
109.8Nm/ 5200 rpm,
water-cooled

– – – – – CO↓ M50, M70, HC↓ NOx↓

6. Elfasakhany
(2015)

Single cylinder, 4-stroke SI
engine, 65.1mm bore,
44.4mm stroke

M3, M7+M10 7:1 CR, 2600–3450 rpm,
1.3–1.6 KW load, air-
cooled

– – – – CO2↑ at all
blends

M10, CO↓ 55.5% HC↓ at all
blends

–

7. Danaiah, Kumar,
and Kumar (2014)

4-cylinder, 4-stroke
carburettor type gasoline
engine, 73.02mm bore,
88.9mm stroke

M5, M10+M15 10°–30° BTDC, variable load,
water-cooled, rated power
rated speed 1500 rpm

M5, BSFC↓ 10°+ 20°,
M10+M15, BSFC↓
full load

BTE↑ at all blends
M5, BTE↑ higher at
30°

– – – CO↓ – NOx↓

8. Varol et al. (2014) 4-cylinder, 4-stroke, MPI-
89mm bore, 95mm
stroke

M10 11.1:1 CR, 1000–4000 rpm
opening pressure
5bar, rate power
55KW/3600 rpm

BSFC↓ N↑ BTE↑ N↑ 6.8% – – CO2↓ N↑ CO↓ N↑ HC↓ 13.4% –

9. Ni et al. (2014) Single cylinder, 4-stroke
SI engine, 68mm
bore, 45mm 163 cm3

displacement

M15+M25 8.5:1 CR, 1800/3600 rpm,
air-coooled, idling, rate
power 3.5KW/3600 rpm

BSFC↓ at all loads – – – – M25, CO↓ at all
blends

M↑, HC↓ NOx↑

10. Altun et al. (2013) 4 cylinder, 4-stroke SI engine,
89mmbore, 95mm stroke

M5+M10 11.1:1 CR, 1000–4000 rpm at
various throttle opening
positions, water-cooled,
opening pressure 5bar

BSFC↑ BTE↑ – – M5, CO2↑ CO↓ HC↓ at all
blends

–

11. Danaiah, Kumar,
and Kumar (2013)

4 cylinder, 4-stroke SI engine,
73.02mm bore, 88.9mm
stroke

M5, M10+M15 At various engine load, rate
power 17.5HP, rate speed
1500 rpm

BSFC↓
BSFC↓ at all blends

M15, BTE↑ BP↑ when
BSFC↑

– CO2↓ at all
blends

M15, CO↓
highest

HC↓ NOx↓

Notes: a = at high engine load; b = at low engine load; c = at all engine speed; EFI = electronic fuel injection; MPPI = Multi-point port injection;+ = and; ↑ = increase; ↓ = decrease; N = engine speed; N↑ = when engine speed increase;
N↓ = when engine speed decrease; CR = compression ratio; PFI = port fuel ignition; SI = spark ignition.
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Chapter 4: Paper 3 

 Effect of cold start emissions from gasoline-fueled engines of light-duty 
vehicles at low and high ambient temperatures: Recent trends 

 
 

This chapter surveys the recent trends in cold-start emission behavior regarding the impact of 

changes in ambient temperature in relation to the advanced technology of gasoline direct 

injection (GDI) and port fuel injection (PFI) vehicles. It also presents the influence of lower 

combustion temperature and rich air/fuel mixture at very low temperature conditions. The 
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A B S T R A C T

The cold-start condition is an important factor affecting vehicle emissions from gasoline direct
injection (GDI) and port fuel injection (PFI) vehicles. This paper studied the recent trends in cold-
start emissive behavior with the impact of changes in ambient temperature over the advance
technology GDI and PFI vehicles. This research surveys the approaches taken to reduce engine-
out emissions and tailpipe emission challenges during cold-start and transient operation using
technological advancement. It was found that ambient temperature had a significant influence on
cold start emissions especially when the combustion temperature was lower, and when the air/
fuel mixture was very rich at very low temperature conditions. Some vehicular emissions in-
creased by 10 times as the temperature varied from +30 °C to −7 °C and fuel consumption
increased as well. GDI vehicles exhibit lower fuel consumption than PFI vehicles but emit more
PM mass and solid PN. These results indicate that the particulate emissions from PFI vehicles
should not be neglected compared to those from GDI vehicles, especially in a cold environment.

1. Introduction

Transport activities contribute significantly towards air-polluting vehicle emissions in the world. In order to improve air quality
and quantify the environmental impact caused by road transport, analytical and experimental studies are essential for policy makers
and researchers [1]. Several previous studies have suggested that engine-out emissions can be controlled using various modification
techniques, namely, engine modification, fuel modification (ethanol-gasoline blends) and exhaust gas treatment (exhaust gas ignition
and catalytic converters). Engine technology is one of the major factors affecting vehicle emissions. There are two main types of fuel
injection technology for gasoline-fueled vehicles namely, GDI and PFI [2]. Generally, GDI provides effective fuel economy and lower
greenhouse gas emissions, because direct fuel injection technology can more accurately control fuel volume and injection timing
[3,4]. PFI is the prevalent technology in current production light-duty vehicles [5]. Ethanol-gasoline blends have several reported
advantages which include increasing oxygen content and decreasing tailpipe emissions, according to various researchers [6–12].
Gasoline-fueled vehicles are liable to produce excessive emissions when started at low ambient temperatures [13]. For new vehicles,
little data are available to show the influence of gasoline-ethanol blends on exhaust emissions, especially related to the cold and
warm start processes, therefore investigation of the relevant cold emission factors was considered necessary. Both cold and warm
starts are classified as transient processes of an internal combustion (IC) engine [14].

Catalytic converters are not designed to have any specific influence on combustion of particulate matter (PM) from gasoline-
fueled engines; they are designed to clear the incomplete combustion process performed by the engine and to lead the exhaust gas
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mixture to equilibrium composition at relatively low temperatures [15]. This device contains a catalyst for converting carbon
monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NOx) in the exhaust system into less harmful ones such as carbon dioxide
(CO2) and water (H2O) [16,17]. This paper studied the recent trends in modern technology PFI and GDI vehicles cold-start emissive
behavior in relation to changes in the ambient temperature. In this context, the approaches taken to reduce engine-out emissions and
tailpipe emissions thus far during cold-start and transient operation using modern technology PFI and GDI vehicles are discussed.

2. Effect of cold-start and ambient temperature conditions

The cold-start condition is an important factor affecting vehicle emissions from GDI and PFI engines. The release of noxious or
toxic substances into the air from light-duty gasoline vehicles are an important source of urban air pollution [18,19]. To regulate
these substances, vehicles have been required to meet strict emissions standards for PM, NOx, CO, and HC over the last several
decades [20]. This has pushed the industry and researchers to upgrade engine calibration, engine design, and after-treatment
technologies.

2.1. Effect of cold start conditions on PM emissions

There are ongoing researches on PM emissions from GDI vehicles, but very few have evaluated PFI vehicles, because PFI vehicles
generate low volumes of PM emissions into the environment. Particulate studies for GDI vehicles are essential, and particulate
emissions from PFI vehicles should attract manufacturers', researchers' and policy makers’ attention. Previous research shows that
GDI engines have higher PM mass [21–24] higher particle number [25,26] and higher emissions than PFI engines. Various studies
have investigated how to improve GDI engine designs and calibrations to decrease PM emissions using different fuel-injection
strategies to influence PM emissions [27–29].

During cold start, particle number emissions are significantly higher than after the engine has warmed up to its normal operating
temperature [30]. Different researches have been conducted on the effect of cold start [1,31–37] but few quantify the particle number
distributions during cold start gas-phase emissions [14,38–40]. In a recent study [38], quantified the primary particle size dis-
tributions for PFI and GDI vehicles. It was found that 377 and 307 particles were calculated from the TEM images for the GDI and PFI
vehicle emissions, respectively (Fig. 1a and b). It was noticed that acceleration had an influence on the PM emissions under warm
start conditions, while the torque variation had a clear impact on the PFI vehicle PM emissions under cold start conditions. The
particles emitted from the GDI vehicle are of an ordered nanostructure with higher crystalline height, length and longer fringe length
(TEM image of GDI emissions, 10 nm scale), compared to the morphological structure of PFI emissions, which decreases the feasi-
bility of further oxidization [22,41,42]. Robinson et al. [39] measured the different particle sizes emitted during each phase for
different lengths of time. Fig. 2 shows the different phases of engine exhaust particle size (EEPS) and number distributions through
the period of cold start with respect to engine speed and exhaust temperature. At the end of the cold start phase (237 s), the smallest
particles measured by the EEPS (5.6 nm to ∼10 nm) were no longer detectable due to very low concentrations (from 237 s to 330 s).
This indicated that the catalyst was efficiently removing compounds that could potentially nucleate to particles [43,44]. When RPM
increased, which again indicates acceleration, 6 nm to ∼154 nm particle size concentrations increased with the highest concentra-
tions being of size 10 nm and 30 nm. However, the highest particle number concentrations occurred for particles in the nano-particle
(Dp < 50 nm) range, which accounted for over 97% of the particles for the entire cold start (Phases 1 to 3). These trends are similar
to those found by Refs. [45,46].

Price et al. [40] quantified the cold start size distribution and composition of particle number emissions from a direct injection
gasoline engine. As indicated (Fig. 3), the particles were collected at an axial distance of 137mm from the plane where the aerosol
enters the classifier column. The individual particle size was 10 nm–30 nm and the aggregate size was 30 nm–100 nm. The particle

Fig. 1. The aggregate particles in the TEM images for 10 nm scale of (a) GDI vehicle and (b) PFI vehicle [38].
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size and particle number emissions were found to decrease over time during engine warm-up. It was concluded that only 29% of
particles were in the solid phase, with elemental carbon being between 5 nm and 10 nm and carbonaceous particles in the
30 nm–80 nm range.

2.2. Effect of ambient temperature conditions on gasoline-fueled vehicles

Another significant factor that affects vehicle emissions is ambient temperature. Chan et al. [47] found that ambient temperature
had a significant influence on cold start emissions, and some emissions increased by 10 times as the temperature varied from +22 °C
to−18 °C. Mamakos et al. [48] investigated the effect of ambient temperature on particulate emissions using different driving cycles.
It was observed that the PM emissions increased by approximately 150%–200% with the New European Diving Cycle, but with the
Common Artemis Driving Cycle were nearly constant when the temperature varied from +22 °C to −7 °C. R. Zhu et al. [2] studied
the effect of two-fuel injection technology and ambient temperature on fuel consumption, gaseous and particulate emissions. The
results showed that a decrease in ambient temperature from 30 °C to −7 °C significantly increased fuel consumption and vehicle
emissions except for NOX. The GDI vehicle exhibited lower fuel consumption than the PFI vehicle but emitted more PM mass and solid
PN emissions at 30 °C. These results indicate that particulate emissions from a PFI vehicle should not be neglected compared to those
from a GDI vehicle especially in a cold environment [24,49].

Iorio et al. [50] investigated the effect of octane rating of fuel by varying its ethanol blend content. It was found that the higher
octane fuel had higher oxygenated fuel content, which led to lower PM emissions. Chan et al. [51] reported that E10 was found to
reduce black carbon (BC) emissions from a GDI vehicle by 15% at standard temperature and by 75% at 19 °F (−7 °C). The use of

Fig. 2. Particle number distribution (bottom panel) over first 330 s, with time-aligned data on engine speed and exhaust temperature (upper panel)
[39].

Fig. 3. HR-TEM images of combustion generated particles sampled at 10 nm and 50 nm on the modified DMS500 space charge guard [40].
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gasoline particulate filter (GPF) decreased BC emissions from the selected GDI vehicle by 73%–88% at various ambient temperatures
over the U.S. Federal Testing Procedure 75 (FTP-75) phase 1 drive cycle. At ambient temperature, the particle emissions for a
warmed-up engine had low impact. Fig. 4 compares the E0 with E0 ethanol blends results using GDI and PFI vehicles at ambient
temperature over the phase 1 portion of the FTP-75 drive cycle under cold-start. It was observed that the PFI vehicle showed a lower
BC mass of emissions when operated on E10 at 0 °F (−18 °C), but were not statistically different. It was suggested that E10 has some
benefit for GDI engines [51].

Kunze et al. [52] reported that vehicle may produce good performance once fully warm, bad cold start performance may result in
a vehicle failing key emission tests and being assigned a high fuel consumption rate. It is difficult to improve fuel consumption during
the cold start and warm up phase [53], particularly as consumer driving habits often involve trips which are such a short distance that
the engine never reaches its optimum operating temperature [52]. The appropriate increase in temperature of the lubricant during
the warm-up phase results from the frictional dissipation in the engine systems such as the main bearings [53].

2.3. Effect of cold start and catalytic converter on CO, HC and NOx emissions

Among the various exhaust gas treatment processes, catalytic converters are the most commonly used in converting harmful CO,
HC and NOX emissions into CO2, H2O, O2 and N2 in stable engine running conditions [17]. The substrate used in a catalytic converter
can be ceramic or metallic. Both substrate types have less significant effects on CO or NOX conversion [54]. The catalysts must reach
operating (light-off) temperatures above 204 °C–371 °C before significant pollutant conversion is achieved [55]. It has been suggested
that the catalyst warm-up occurs more rapidly when the engine operates under heavier loads and when the catalyst is positioned
closer to the engine [35]. Catalyst light-off is delayed at lower ambient temperatures and CO and HC are not oxidized in this system
during the period immediately following start-up. These results are due to start-up events, which are significant in terms of emissions
and fuel consumption, with a strong dependency on the temperatures of both the engine and ambient air [14]. Furthermore, start-up
events are the most fundamental transient events experienced by automotive engines as the numerical values of engine speed and fuel
consumption change from zero to non-zero values in a very short space of time, even before any power is transferred to the wheels
[33]. The factors that affect emissions and fuel consumption during cold start at low ambient temperatures are summarized in Fig. 5.

Many studies on engine-out CO and HC emissions have been conducted for engines running at cold start conditions using catalytic
converters. Raja & Arasu [54] investigated the effect of glow plug assisted exhaust gas ignition (EGI) and use of a catalytic converter
on cold start emissions in a motorcycle engine fueled with ethanol-gasoline blends. The result shows that the cold start CO and HC
emissions were less than that of pure gasoline (E0). At ambient temperature of 30 °C ± 1 °C, the highest emission reductions were
observed with E10. This means that cold start emissions at normal ambient temperatures are several orders higher than those at warm
start [47]. The HCs emitted in the cold part of the test increase at a high rate at lower ambient temperatures [14]. Iodice & Senatore
[56] investigated the effects of ethanol-gasoline blends (G10, G20 and G30) on cold emissive behavior of a catalyst four-stroke
motorcycle. The results showed that the ethanol added into gasoline decreased CO and HC cold start emissions. Among the blend
fuels, G20 exhibited the greatest reduction (29% and 45% respectively) compared to pure gasoline (G0). High ethanol blend content
results in less emission reduction than those of low ethanol blends (G10 and G20); this is due to the incomplete combustion that
occurs in the combustion chamber during the transient time when the engine operates over a certain lean limit, and to the lower
volatility of G30 blend fuel that decreases at higher ethanol content [1,37,57].

If the converter is heated to 600 K or above, the light-off time reduces to zero and both HC and CO emissions decrease significantly
(Fig. 6). When the initial converter temperature varies from 300 K to 500 K, the tailpipe emissions remain nearly the same. Hence, for
an active method to be effective, it must supply additional energy to raise the catalyst temperature beyond 600 K [58].

NOX engine-out emissions are primarily influenced by three engine variables: the burned gas fraction in the in-cylinder unburned

Fig. 4. BCE mass emissions from GDI and PFI vehicles at ambient temperature over the phase 1 portion of the FTP-75 drive cycle using E0 and E10
[51].
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mixture (residual plus recycled exhaust gas), the air/fuel ratio, and the ignition timing [59]. As illustrated in Fig. 7, vehicle G3
showed a 30-fold increment of NOX at−7 °C over the Urban Driving Cycle (UDC). During the first 50 s, the engine demonstrated high
lambda values more than one (22 °C) because it was operating lean. This lean operation continued close to the end of the warming-up
of the catalyst, indicated by the drop close to zero of the HC concentration [34]. The air/fuel mixture was rich until t≈ 60 s to
become lean immediately after until t≈ 160 s (Fig. B). As reported by Ref. [60], a decrease in engine-out NOX emissions is expected
when the combustion temperature is lower, for example when the air/fuel mixture is very rich at very low temperature conditions
and during cold-start.

As illustrated in Fig. 8, there are two peaks in the cycle for both NOX and HC curve. The first peak of the NO and HC emission
result is due to the exhaust valves opening or leakage in the cycle. For the second peak, the NO emissions decreased sharply, due to
misfire occurrence. The second HC peak is due to some un-evaporated fuels impinging onto the piston top and liner in the first cycle
and due to exhaust in the subsequent cycles. The unburned HC emissions decreased gradually in the subsequent cycles [61]. When
the ignition timing was set to beat 5 ºCA BTDC, the lowest NO emissions were generated in the cylinder and advance in the ignition
timing caused an increase in the NO emissions, and an increase in in-cylinder temperature improved the in-cylinder mixture for-
mation [61]. Table 1 shows some of the cold-start emissions at low and high ambient temperature using gasoline-fueled engines.

Fig. 5. Effect of cold start operation at low ambient temperatures on engine-out emissions [33].

Fig. 6. Effect of different initial catalyst temperature on cold start CO and HC emissions during the first 100 s of the FTP-75 [58].
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3. Different approaches for reducing vehicular emissions

Modification techniques using technological advancements can be used, but it is often uncertain how these affect emissions
performance. To reduce tailpipe emissions and time for the catalytic converter to reach light-off temperature during cold-start, a
combination of the following technologies and approaches may be taken, as outlined in the following studies. Khan, Zeeshan, & Iqbal
[67] designed a non-noble metal-based catalytic converter for thermal management to decrease cold start emissions. They explored
two different approaches: (1) use of phase change material (PCM) to keep the converter hot beyond light-off temperature during
shorter soak times and (2) installation of glow plugs within the stainless steel pipe incorporated in the converter to heat it up before
or after cold start and so avoid direct exposure of the catalyst at the higher temperatures of the glow plugs. Ando et al. [68] suggested
that electrically heating up the converter before or after engine cold start-up can reduce cold start emissions. Relocating the catalytic
converter closer to the engine is the most common approach used to reduce the time to light-off. This has proved an effective strategy
in reducing emissions, but introduces unnecessary heat into the passenger compartment [30]. Another way to achieve similar result is
to use a secondary air injection (SAI) system. This reduces HC emissions by 46%–88% and CO emissions by 37%–93% compared to
operations without any secondary air during the first 25 s of the engine start-up process depending on the conditions [66].

In the previous research, honeycomb reactors have shown that catalytically active coating (washcoat) diffusion resistance has a
significant effect on conversion of both steady state reactor operation and transient light-off [69,70]. Von Rickenbach et al. [71]
modeled the heat transfer, finite rate washcoat diffusion and surface chemistry and boundary conditions in foam based catalytic
reactors. This allowed them to identify the optimal foam parameters that lead to fast light-off for given operating conditions. The
result showed that foam-based catalytic reactors have significant cold start emissions reduction compared to honeycomb reactors.
Dudák et al. [72], explored a wide range of zeolite and alumina dual-layer configurations. They observed a higher CO conversion
when the zeolite was coated as a top layer due to the higher macroporosity and low thickness of the coating. Alumina used as the top
layer showed a significant effect on the catalyst performance, because alumina has a combination of Lewis acidity and basicity, has
good porosity and high surface area [73]. Another way to achieve similar results is to use low aromatic fuels. A number of studies
preformed on gasoline-fueled vehicles have shown decreases in tailpipe NOx emissions with decreases [5,74–76] and increases
[77,78] in the aromatic content. These show that significant reduction in NOX emissions can be achieved when the aromatic

Fig. 7. (A) NOX instantaneous emissions and (B) lambda value of vehicle G3 at both temperatures over the first half of the UDC [34].

Fig. 8. Cold-start transient HC and NO emissions with fuel injection in the first cycle [61].
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component of fuel is low.
One promising idea is the use of advanced vehicle technologies being developed and implemented to meet both engine-out

emissions and tailpipe emissions. One of these changes is from traditional three-way catalysts (TWCs) to catalyzed GPFs. GPFs are
being developed for catalyzed applications in both the close-coupled and under-floor positions, where they combine the functionality
of filtration and TWC [79]. Craig et al. [80], measured GDI vehicle emissions over the FTP-75 test cycle with a catalyzed GPF in the
under-floor position. The result of the coated GPF showed that the tailpipe emissions of CO, THC and NOx were decreased by 86%,
38% and 34% respectively. There was a specific decrease in NOX under the aggressive driving conditions of the US06 test cycle,
leading to 88% decrease in NOX compared to the baseline. These results are similar to those obtained by Refs. [62,81–83].

4. Conclusion

1. Inactivity of a vehicle for a long period and low ambient temperatures may increase the heating required for the catalytic
converter to reach effective operating temperature, and may prolong the period of high exhaust emission rates.

2. It was observed that the change in fuel properties (such as aromatic content) affects particle formation during combustion as well
as the cold and hot condition driveability of the vehicle. Further, the particle emissions form a gasoline-ethanol blend depends on
the type of fuel injection system and the operating conditions of the vehicle.

3. The TWC was found to be active only after 120 s in converting cold-start emissions (CO, HC and NOx). TWC proves to be a better
option than EGI in controlling cold start emissions with CUG or ethanol blends. Recent advances in vehicle technologies aim to
meet both engine-out emissions and tailpipe emissions. One of these advances is to change traditional TWCs for catalyzed GPFs.
GPFs are being developed for catalyzed applications in both close-coupled and under-floor positions, where they combine the
functionality of filtration and TWC.

4. Advanced technologies have the benefit of reducing emissions and improving engine performance: a higher compression ratio
(CR) leads to an increase in fuel consumption and lower CO2 emissions, while a lower CR during cold-start helps with higher
exhaust temperatures for early catalyst light-off and lowers particulates due to reduced fuel impingement on the piston.

5. PFI vehicles generate low PM emissions into the environment compared to GDI vehicles, but GDI vehicles provide effective fuel
economy and low greenhouse gas emissions because direct fuel injection technology can more accurately control the fuel volume
and injection timing.
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A B S T R A C T   

Biomass waste can be characterized to identify its use in bio-energy production. This study aimed to characterize 
Mbwazirume peel (MP) and Nakyinyika peel (NP) biomass using various analyses such as proximate and ultimate, 
TGA, FT-IR, AAS, and SEM-EDS. This was in order to assess their suitability for bio-energy application in Uganda. 
Results indicate that MP biomass shows higher VM 69.988%, FC 13.582%, ash content 5.825%, and HHV 
18.28 MJ-kg� 1, and shows lower moisture content 10.605%, nitrogen (N) 5.78%, oxygen (O) 46.74% and sulfur 
0.30%. The decomposition of hemicellulose mainly takes place at 100–250 �C, cellulose at 300–500 �C, and 
lignin at 500 �C and above. The spectrometer results exhibit various functional groups which are related to C––C, 
OH, C––O, and C–O–C. The heavy metals (HMs) results for both samples indicate that Cu, Cd and Pb were low, 
and Zn was high. These toxics may not affect the environment due to their low amount of eco-toxicity and 
bioavailability. The SEM images show the presence of starch granules and irregular particles with heterogeneous 
morphology. This might justify the occurrence of high cellulose content due to additional restrictions on mo
lecular motion. During the EDS analysis, the elements found in both ash residues were ordered as follows: 
O > K > C > Cl >Mg > P for MP, and K > Cl >Mg > P >Al for NP. All these properties proved that MP biomass is 
more suitable as a potential application for bio-energy.   

1. Introduction 

Banana is among of the most consumed fruits in the world, yet there 
is little industrial use for its peel, which constitutes 30%–40% of the 
weight of the fruit [1]. Uganda is ranked the second largest producer of 
bananas at 11.1 m tons per year, after India with 29.7 m tons of bananas 
produced per year [2]. Uganda is the number one consumer of bananas 
at 240 kg per capita per annum [2]. This means that bananas are key 
part of many families’ everyday diet, which in return generates 
considerable quantities of banana peels each day all year round [3]. 
There are different types of bananas grown in Uganda for food 

consumption. These have been classified as green bananas (Matooke), 
plantain, and yellow or sweet bananas [1]. Matooke (Musa-AAA-EA) is a 
variety of banana indigenous to Uganda, which is the most essential 
staple food crop for human consumption. It comes from the family of 
bananas known as East African highland bananas. It appears to be green 
in color and thick at the midsection [4], and cannot be peeled in the 
same way as yellow bananas. These peels are used as animal feed or as 
local briquettes. 

Despite the usage, about 61.8 kg per capital per annum of Matooke 
peels produced in Uganda become waste, due to the lack of sufficient 
structure and indiscriminate dumping. This huge amount of waste leads 

Abbreviations: AAS, Atomic absorption spectroscopy; ASTM, American society for testing and materials; CO2, Carbon dioxide; Cu, Copper; Cd, Cadmium; CFZ, 
Content of HMs found in the residue; DTG, Derivative thermogravimetry; DIN, Deutsches institute für normung; EDS, Energy dispersive X-ray spectrometer; FC, Fixed 
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to environmental health problems, and releases greenhouse gasses 
(GHG). Utilization of these types of wastes might differ from one country 
to another. For instance, in Cost Rica, it is common practice that the 
peels and rotten bananas are disposed of in the rivers which decreases 
the populations of aquatic animals causing an imbalance in the 
ecosystem [5]. In previous years, Brazil utilized banana peel as a local 
and traditional medicine to protect a wound from swelling [6], and 
Satyanarayana [7] utilized its peel for polymer composites. However, 
these peels are lignocelluloses biomass (LCB) which contain more than 
70 wt% of carbohydrates [1,8], which make these peels suitable for 
bio-energy production using several biotechnological techniques [9]. 
These techniques include physical and chemical, thermo-chemical, and 
bio-chemical conversion [10]. In addition, utilizing Matooke biomass 
waste for bio-energy in Uganda might help to minimize conventional 
fuel dependency and eliminate environmental pollution. 

LCB has a complex matrix rich in high-value compounds [5], mainly 
made up of cellulose, hemicellulose, and lignin [11]. As reported in the 
literature, bio-energy produced from LCB can be used as a replacement 
for gasoline fuel [1]. However, challenges still remain, such as the small 
differences in biofuel properties that are enough to create a significant 
behavior in the combustion system [12]. These variations occur because 
of the variation in lignocelluloses properties and the degree of poly
merization, particle size, extraction process [13], molecular weight and 
structure, and thermal stability behavior [14]. Various techniques have 
been utilized to characterize the properties of LCB. They include crys
tallinity, which is an essential biomass property (analyzed using FT-IR or 
X-ray diffraction) [15], thermal and volatiles (analyzed using ther
mogravimetric analysis TGA) [16], heavy metals (analyzed using atomic 
absorption spectroscopy AAS) [17], and surface morphology and ele
ments (analyzed using scanning electron microscopy SEM and energy 
dispersive X-ray spectrometer EDS) [18,19]. 

This research aimed to characterize LCB from two varieties of 
Matooke peel biomass, namely, Mbwazirume (MP) and Nakyinyika (NP), 
as potential candidates for bio-energy production. This characterization 
will provide insight regarding what is likely to occur in biotechnological 
processes, and in terms of the combustion performance of spark-ignition 
(SI) engines. Though some researchers have carried out on character
ization of banana peel [19–23], no published literature is available on 
characterization (such as TGA, FT-IR, AAS, and SEM-EDS) of Matooke 
peel biomass for its use in production of bio-energy. 

2. Material and methods 

2.1. Sample preparation 

MP and NP were obtained (in bulk) from different locations in 
Uganda. The peels were removed using a sharp knife, and then washed 
thoroughly with distilled water to remove the physical adsorbed 
contamination. The two species were dried at 48 �C for a period of 
83 h–95 h as described in previous article [1]. 

2.2. Characterization of Matooke peel samples 

Various techniques have been used to characterize the effects of 
LCBs. These characterization analyses include: proximate, ultimate, 
thermogravimetric, FT-IR, SEM-EDX, and heavy metal analyses. The 
biomass samples in this study had a particle size of 0.2 mm after grinding 
(using DIN 51704 standards) because high-energy output depends on 
the particle size and reduction in crystallinity of the LCB. The ground 

LCB samples are shown in Fig. 1(a–b), with both samples having the 
same color. Preparing the sample is a key aspect of the methodology, 
and different LCBs require different methods. Solid fuels are analyzed by 
the following standards procedures: ASTM and DIN, which were pre
sented and described by DIN 51718–20 [24]; ASTM E775-78 [25]; 
ASTM E1252-98 [26]; and ASTM D3335-85a [17]; and SEM-EDX by 
Ref. [19]. 

2.2.1. Proximate analysis 
This proximate analysis was to determine the major components of 

the biomass, namely: moisture content (MC), volatile matter (VM), fixed 
carbon (FC), and ash content. In this analytical process, the MC was 
determine using the DIN 51718 standard in which 1 g of each of the 
biomass samples were weighed on two different dried aluminum dishes 
and placed in a furnace at a temperature of 105 �C � 1 �C for 3 h. After 
the heat process, the MP and NP were withdrawn from the furnace and 
allowed cool [27]. The moisture content of biomasses were determined 
based on the initial weight of the MP and NP before heat treatment (Mi), 
and the final weight of the MP and NP after heat treatment (Mf), which 
was recorded. 

The VM content of the biomasses were determined according to the 
DIN 51720 standard. This test was carried out by heating the samples at 
a temperature of 919 �C for 7 min with a heating rate of 10 �C min� 1 

under N2 atmospheric conditions, followed by cooling at ambient tem
perature. The percentage reduction in weight of the samples was 
determined using the TGA integrated program. As the weight loss is 
directly proportional to VM, the VM content was determined when the 
weight loss (minus moisture) at 1 g of sample was heated to 919 �C for 
7 min. 

The DIN 51719 standard was used to determine the weight of the 
ash. At a constant weight, the MP and NP were placed back into the 
furnace and gradually heated to 750 �C for 1 h. The aluminum dishes 
with the samples were withdrawn from the furnace and allowed to cool 
at ambient temperature in a desiccator. 

2.2.2. Ultimate analysis and higher heating value (HHV) 
Ultimate analysis was used to determine the elemental composition 

of the MP and NP samples using PerkinElmer 2400 Series II which has 
the capability of adjusting the temperature to a maximum of 1100 �C. 
The elements such as C, H, O, N and S were determined using ASTM 
E775-78 standards in which (1.00 mg–2.00 mg) of the samples on a dry 
basis were placed inside a muffle furnace. These elements were analyzed 
during the simultaneous combustion of the gases. Besides, the HHV can 
be calculated once the elemental composition is known. In this analysis, 
the HHV was determined using the known elemental composition (as 
determined in ultimate analysis) with equation (1), which is acceptable 
for engineering calculations [28]: 

Fig. 1. The grinded LCB samples: (a) MP, and (b) NP.  

HHV ¼ 0:3491xð%CÞþ 1:1783xð%HÞ � 0:1034xð%OÞþ 0:1005xð%SÞ � 0:0151xð%NÞ � 0:0211xð%AshÞ½MJ = kg� (1)   
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2.2.3. FT-IR analysis and thermal analysis 
The spectrums of the MP and NP biomasses were obtained from 

Nicolet 6000 FT-IR. The biomasses were scanned between the wave
lengths of 400 cm� 1 and 4000 cm� 1 with a resolution of 4 cm� 1. The 
spectra data generated were analyzed using irAnalyze-PAMalyze 4.0 
software and the organic functional groups present in the samples were 
characterized, as presented by Ref. [26]. 

TG-DTG analyses were carried out on two biomass samples with a 
TGA thermostep analyzer by ELTRA, Germany. To avoid heat and mass 
transfer restrictions, small portions of the biomasses (5 mg and 10 mg) 
were used as described by Ref. [29]. The two samples were prepared and 
heated from ambient temperature to 1000 �C at 10 �C min� 1 under ni
trogen atmosphere [26]. Heating rate, weight loss, moisture, volatile, 
ash content, and fixed carbon were recorded for both biomass samples. 

2.2.4. AAS and SEM-EDS analyses 
This analysis was determined using PerkinElmer AAnalyst AAS, to 

determine the HM (Cu, Pd, Zn, and Cd) content of the samples using the 
ASTM procedure. The biomass samples were weighed (5 g) and trans
ferred into tarred crucibles. These samples were placed in a cool furnace 
and ignited for 4 h–6 h at 550 �C. After the required time, the muffle 
furnace was turned off and the samples were left inside until the tem
perature dropped down. The ash samples were dissolved in 1:1 (5 ml 
nitric acid: 5 ml distilled water); and the solution was warmed so that 
any un-dissolved particles and residue could dissolve. The solutions 
were filtered using filter paper into a 50 ml volumetric flask. The AAS 
analysis method and protocol followed the ASTM D3335-85a (2014) 
procedure [19], and the UIRI/QMP/07 method as modified by the 
Uganda National Bureau of Standards (UNBS) for the Uganda Industrial 
Research Institute (UIRI) specific equipment. 

During SEM-EDS analysis, the SEM (VEGA 3 TESCAN- LMH) was 
used to determine the micro-structural behavior of the MP and NP 
samples (coated with a thin layer of carbon) at 50/60 Hz, 230 V and 
1300 VA, coupled with EDAX to determine the elemental composition. 

3. Results and discussion 

3.1. Proximate analysis 

The proximate and ultimate composition of MP and NP are shown in 
Table 1. In terms of proximate composition, the percentage content of 
MC, VM, FC, and ash obtained from MP and NP were in the range within 
the literature as presented by Ref. [20]. An analysis of the data reveals 
that MP has a low moisture content compared to NP. This trend may be 
attributed to the ambient temperature of the procedure used as reported 
in section (2.2.1). On the other hand, the variation of MC in these 
samples could be related to the fact that upon fruit ripening, the MC of 
the plant fiber decreases due to the climate changes and the heat from 
sun drying [30]. It is suggested that high moisture content may lead to 
reduction in burning capacity, and low moisture content will mitigate 
the problem of poor ignition related to the combustion of biomass fuels. 

A large content of VM (69.988 wt%) and (69.980 wt%) was identi
fied in the MP and NP peels, which represents about 75% of the fuel. This 
VM contents is relatively high compared to other biomass fuels (as 
presented in the literature) such as oil palm fiber with 65.75 wt% [31] 

and rice husk with 65.33 wt% [32], but lower than that of flax straw 
with 78.8 wt% [33], and Eragrostis airoides with 86.84 wt% [27]. The 
ignition of such high volatile fuels may lead to high flame length unlike 
low volatile fuels which ignite less readily. Besides, the higher the vol
atile content in a fuel, the higher the HHV and the less heat is required 
for the thermochemical reactions [34]. 

Ash is an undesirable constituent in fuel. In this context, the ash 
content within the samples shows a very interesting phenomena, falling 
between 4.773 wt% and 5.825 wt%. These contents are lower than the 
results obtained by Ref. [35] for corn stover, by Ref. [32] for rice husk, 
by Ref. [36] for wheat straw, similar with [37], but higher than those 
obtained by Ref. [38] for oil from palm shells. As reported in the liter
ature, any biomass with an ash percentage less than 5%–6% does not 
undergo knocking trends [39]. Thus, the biomass wastes MP and NP can 
be classified as cleaner fuels due to their low ash content. 

The FC is the content of ash-free carbon which remains after the 
release of VM. The percentage of fixed carbon in MP and NP were found 
to be 13.582 wt% and 12.879 wt% respectively. This indicates that MP 
shows a slightly higher percentage of FC compared to NP and other 
biomass fuels reported for pinewood and barley strew by Ref. [40], 
spruce by Ref. [41], and peach bagasse by Ref. [42]. Yang et al. [43] 
reported that the FC content in biomass fuels is expected to vary in a 
range of 7%–20%. The relation between cellulose and lignin contents 
with FC was observed in these results, indicating that the higher the 
cellulose the larger the FC. Hence, biomass with a high cellulose and FC 
content is likely to have high fiber content [44]. This is among the 
variables used to obtain the efficiency of solid fuel combustion. 

3.2. Ultimate analysis 

In this study the ultimate analysis of biomass fuels was accomplished 
through being decomposed in a simultaneous combustion, in which (C, 
H, O, N and S) reacts with the exothermic reaction process and generates 
CO2, H2O, NOx, and SO2 respectively [45]. This decomposition of 
biomass fuels occurs in the form of equation (2):  

CHiOjNkSr þ y(O2 þ 3.76N2) → zH2H2 þ zCOCO þ zCO2CO2 þ zH2OH2O þ
zCH4CH4 þ (x/2 þ 3.76 þ y)N2 þ zNONO þ zSO2SO2                            (2) 

As reported in Table 1, the ultimate composition of MP and NP peels 
found in this study are slightly different. The contents of C, H, and O in 
MP are relatively high, and lower in N and S content than other biomass 
fuels. As presented in the literature, a decrease in H and O content in the 
biomass fuels can be associated with the scission of weak bonds within 
the char structure [46]. The percentage of S and ash content is low in 
both biomass samples, which shows they are good candidates for biofuel 
production compared to coal with 0.5%–7.5% [28], and other biomass 
wastes presented by Refs. [16,31,38]. In addition, it is suggested that 
this biomass waste does not need any processing or technology for 
reducing the exhaust emission of sulfur oxides (SOx) and nitrogen oxides 
(NOx), since the S and N contents are relatively low. However, C and O is 
directly proportion to the fuel’s HHV. The HHV or calorific value is a 
parameter that determines if the biomass qualifies to function as a fuel. 
The calorific value of MP and NP obtained were 18.28 MJ-kg� 1 and 
17.76 MJ-kg� 1 respectively; this may be a significant for production of 
bio-energy. 

Table 1 
Proximate and ultimate composition of MP and NP biomass.  

Samples Particle size (mm) Proximate analysis Ultimate analysis HHV* (MJ-kg� 1) 

MC VM Ash FC C H N O S 

(wt. %) (wt. %) 

MP 0.2 10.605 69.988 5.825 13.582 46.94 5.79 0.23 46.74 0.30 18.28 
NP 12.368 69.980 4.773 12.879 46.22 5.60 0.41 47.41 0.36 17.76 

Note: * calculated HHV (MJ-kg� 1). 
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3.3. Analysis of thermal properties 

The TG-DTG curves of biomass samples MP (Fig. 2) and NP (Fig. 3) 
were determined. According to the thermal results obtained, three 
distinct regions are clearly identified at temperature up to 900 �C, which 
is related to elimination of cellulose, hemicellulose and finally lignin. 
These occur as a result of three steps in weight loss during the thermal 
degradation: water removal (drying), organic matter release (devolati
lization), and bonded-carbon oxidation (slow combustion). The pyrol
ysis decomposition peaks of LCB samples in nitrogen atmosphere 
occurred at elevated temperatures as follows: hemicellulose 
(100 �C–250 �C), cellulose (300 �C–500 �C), and lignin (500 �C–650 �C). 
There was very little weight loss in the range 50 �C–70 �C because the 
samples were not fully dried yet due to the presence of humidity. Figs. 2 
and 3 show that from 300 �C upwards did a meaningful weight reduction 
due to the pyrolysis of the biomass. The degradation of the biomasses at 

(>570 �C) were observed as a result of the breaking of bonds of the 
protolignin (lignin present in the samples), as presented by Refs. [37,47]. 

Table 2 reveals the thermal behavior results of MP and NP samples 
from TG-DTG at a heating rate of 10 �C min� 1. It needs to be pointed out 
that the composition of LCBs can vary, even within the identical species 
and varieties, which causes the thermal pyrolysis behavior to be 

Fig. 2. TG-DTG curve of MP.  

Fig. 3. TG-DTG curve of NP.  

Table 2 
The thermal behaviors of MP and NP biomass from TG- DTG scan.  

LCBs Tidt 

(oC) 
Temperature 
during change in 
sample mass (oC) 

Sample 
mass 
(%) 

Residual 
char at 
919 �C (%) 

Maximum 
change in 
sample mass 
with respect to 
time (oC min� 1) 

MP 85.4 627 75.33 0.2406 0.615 
NP 101.6 655 76.59 0.2147 0.620  
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dissimilar, although in this study the DTG of the LCBs has some similar 
behavior in the same ranges mentioned. The maximum change in sam
ple mass was about 0.615% min� 1, which corresponds to a peak tem
perature of about 627 �C. At this point, the sample mass was about 
75.33% (Fig. 2 and Table 2). As shown in Table 2, NP exhibited a 
76.59% sample mass at 655 �C with maximum change in sample mass of 
0.620% min� 1; this trend is due to endothermic effects. In addition, the 
TG-DTG curves showed the presence of change in sample mass with 
corresponding temperatures. MP showed an obvious decrease during the 
exothermic reaction, confirming the presence of a few organic com
pounds which were exothermic. 

As shown in Table 2, the initial decomposition temperature (Tidt) 
obtained from the TG-DTG results indicate that the thermal rationality 
for both biomasses were ordered as follows: MP >NP. At 919 �C, the 
residual char of MP presents the highest content, which is associated 
with a high percentage of lignin compared to NP. The content of residual 
char in the TG-DTG is the remaining composition after all volatile 
products have been wiped away during thermal decomposition; lignin 
was the major ingredient of the residual char and is associated with 
complex and thermally stable structures [30]. 

3.4. FTIR analysis 

The FT-IR shows that the absorption peaks of MP (Fig. 4) spectra 
were significantly lower than the absorption peaks of NP (Fig. 5), but 
similar in range. This reveals that the stretching band appears to a lesser 
degree, which can be attributed to the interaction of metals (Cu, Cd, Cr, 
Zn, and Pb) which substantially reduce absorption. This finding is in 
agreement with the results obtained by other researchers [48–50]. Both 
infrared data indicate miscibility of the bends, which are related to 
hydrogen bonded stretching between the reactive functional groups in 
lignin with the carbonyl groups. Fig. 4 shows that the peak range of 
carbonyl (C––O) is 1740 cm� 1 to 1710 cm� 1, which is decreased at ab
sorption compared to that of Fig. 5, while the broad C––O stretching 
vibration is very strong. The literature indicates that oxygenates are 
characterized by the presence of a carbonyl group in their respective 
molecular structures [51], as evident in the spectra shown in Fig. 4, 
which shows large contents of alcohol, alkenes and alkyl groups 
compared to the other LCB as shown in Fig. 5. Most of these groups are 
classified as potential biofuel candidates [52]. 

The peak frequency of 3450 cm� 1 to 3300 cm� 1 range is associated 
with variable absorption of (OH) stretch in hydroxyl groups; this in
dicates a high-energy region with large content (�70%) of carbohy
drates (lignin and cellulose) in the samples, while the broad peak in the 

range of 2975 cm� 1 to 2840 cm� 1 shows the presence of stretch bonds 
between atoms C–H in the form of CH2 symmetry. This contribution was 
observed for all the samples. Further, the wave of 1135 cm� 1 to 
1080 cm� 1 in both samples shows the presence of ether aliphatic 
through stretching bonds of C–O with strong intensity, as presented by 
Ref. [53]. In Fig. 4, the spectra revealed a higher onset and peaks of 
other monomers in the range of 2950 cm� 1 to 2803 cm� 1, which are 
higher than that of Fig. 5. This trend is due to the presence of electrons 
that are linked with some ether; the increases in ether chain length may 
cause an increase in electron density, which decreases the curing tem
perature [54,55]. 

The results in Fig. 4 show 100% of the contents of molecular struc
tures such as N-methylaniline monomethylaniline, nitrosodiphenyl
amine, and 4-sec-butyl-phenylenediamine. The absorption wave of 
1665 cm� 1 to 1620 cm� 1 range in both samples shows the presence of an 
alkene group with high C––C bonds, indicating a biomass constituent 
being oxidized (lignin) due to its high content of C––C bonds [56]. The 
challenge as a result of oxidation is the formation of free radicals. When 
the oxidation degradation between the double bonds occurs at the 
saturated carbon, the isomerization stabilizes within double bonds to 
form conjugated structures [57]. This then generates a mechanism 
which interacts with oxygen to establish peroxide species, and eventu
ally decreases the fuel qualities and leads to plugged filters and degraded 
combustion rector and fuel-line components [57]. 

3.5. Distribution of HMs in biomass wastes 

3.5.1. The HMs and its effects 
The evaluation of quantitative HMs contents such as Cu, Cd, Zn, and 

Pb in biomass samples is shown in Table 3 using the ASTM D3335-85a 
(2014) standards. The objective of this analysis was to determine the 
HMs content in the samples and relate it with the previous literature on 
how this may affect the environment and bio-energy production in 
future. HMs are associated with the combustion of fuels, and spread 
through air to the soil and to surface water. A lot of transportation ve
hicles and fuel production industries produce and discharge exhaust 
pollution containing different HMs. The heavy metal pollution are 
metals that have a specific density of more than 5 g/cm3 [58], which 
affects the environment and eco-system. Naturally, the body requires 
very small amounts of HMs for maintaining good health but if they are 
too high they become toxic and dangerous to human health [58]. The 
amount of HMs in emissions through biofuel combustion has a strongly 
relation to the HMs content in dried biomass fuels. 

As shown in Table 3, MP shows low values in Cu (0.2660 mg-kg� 1), 

Fig. 4. The FT-IR spectra of MP.  
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Cd (1.0032 mg-kg� 1), and Pb (1.6154 mg-kg� 1) with a slightly high 
value of Zn (7.3537 mg-kg� 1), compared to NP; this may occur due to 
dilution effects. The fraction of HMs in both biomasses indicates that Cu, 
Cd, and Pb were low, and these are the main HMs, but due to the low 
values they may not affect the environment in terms of eco-toxicity and 
humans in terms of bioavailability [59], and will have zero effects on 
bio-energy production. The contents of Cu, Cd, Zn, and Pb in all the 
biomasses shows a very low trend compared to studies on rice straw and 
sawdust by Ref. [60], and white wood by Ref. [61]. It was reported that 
most of the HMs such as Cu, Cd, Zn, and Pb in biomass endure the py
rolysis residue process at temperatures up to 705 �C [62,63]. However, 
this was resolved by Refs. [64,65] they introduced the process of eval
uating and leaching this effect of HMs, which possibly reduces the in
fluence of environmental pollution hazards. 

3.5.2. The percentage rate of HMs 
The percentage rate (P1) of HMs in MP and NP has been suggested as 

a gauge for evaluating the amount of Cu, Cd, Zn and Pb through AAS 
results. P1 is defined as the ratio of the content found of each HM to the 
total contents of HM in the LCB. The percentage rate can be calculated as 
follows: 

P1ð%Þ¼
CFZ

TCZ
x 100 (3)  

where Z represents the type of HM; CFZ the content of HMs found in the 
residue (mg/kg) (Table 3); and TCZ the total content of HMs in the 
residues (mg/kg) [64]. As illustrated in Fig. 6, the percentage rate of Zn 
in MP and NP were all over 70%, which indicated that the two biomass 
fuels had a high percentage rate of Zn compared to the other elements 

found. Although Zn is slightly less effective [66]. 

3.6. SEM-EDS analyses 

SEM-EDS is an essential technique used to examine micro-scale and 
nano-scale behaviors and detect the chemical elemental composition 
which occurs during thermal degradation of the biomass. As presented 
in micrographs Figure 7(a-b), irregular particles with heterogeneous 
morphology and starch granules were present; the surface morphology 
was taken at magnifications of 500�, which gives 100 μm. These images 
confirm the presence of high fiber content, and clearly demonstrate the 
presence of high cellulose content (as explained in section 3.1). These 
trends are due to the additional restrictions on molecular motion [67, 
68]. As shown in Fig. 7(a), the residual cell structure of the samples is 
clearly visible, indicating the fibrous buildup inside the carbon struc
ture. From Fig. 7(b) it can be observed that the structures seem to behave 
independently in some parts. This might cause the NP biomass to burn 
faster than MP during combustion. As previously reported by Ref. [69] 
the combustion reactivity of a biomass directly relates to the char 
morphology formed. 

Small white spots appear in both biomass samples Fig. 7(a–b) which 
are elements from various categories: non-volatile such as magnesium 
(Mg), Aluminum (Al); and volatile such as chlorine (Cl), potassium (K), 
phosphorus (P); and C and O (as shown in Fig. 7(c–d)). These elements 
were in the oxidized state and may experience fusion occurrence. This 

Fig. 5. The FT-IR spectra of NP.  

Table 3 
The composition of HMs in biomass samples.  

Samples Heavy metals 
(elements) 

Values 
found (mg/ 
kg) 

Concentration 
(ppm) 

Absorbance 
from AAS 

MP Cu 0.2660 0.027 0.034 
Zn 7.3537 0.746 0.673 
Cd 1.0032 0.102 0.010 
Pb 1.6154 0.164 0.271 

NP Cu 0.2687 0.027 0.038 
Zn 7.3239 0.745 0.672 
Cd 1.0699 0.109 0.032 
Pb 1.6503 0.168 0.275  

Fig. 6. Residual rate of HMs in MP and NP.  
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was consistent with other results on rice husk and wood by some authors 
at temperatures from 800 �C to 1000 �C [70,71]. However, large con
tents of mineral parts occurred on the surfaces of the particles that were 
pyrolyzed at the highest temperature (~1000 �C). This higher content of 
inorganic components in the residue is associated with a higher con
sumption of organic matter during the reaction [72]. Moreover, some of 
the particles appeared to be heterogeneous at residence time of 
0.5 s–0.7 s, and conserved a fibrous form and molten coating on some 
parts. 

As shown in Table 4 and Fig. 7(c–d), the elements found in both ash 
residues were ordered as follows: O > K > C > Cl >Mg > P for MP, and 
K > Cl >Mg > P >Al for NP. During the EDS analyses, it was observed 
that the samples were typically rich in K, Cl, Mg, and a trace of P. These 
findings regarding the elemental ash composition of the biomasses 
varies compared to the literature reported with other biomass which 
have higher contents of C [19], Cl and N [73], but coincide with the 
contents of K by Ref. [74]. In this study, the K and Cl are often present in 
both samples’ ash composition at low melting temperatures. This sug
gests that during the gasification process, the high temperature com
bustion (>700 �C) eliminates the corrosive ash compositions (K and Cl) 

that might cause troublesome in the future. This may be a useful result 
for bio-energy production. 

3.7. Practical and policy implications 

The increase in demand and identifying the resources for energy are 
key issues for most countries in Africa. For instance, in Uganda, elec
tricity distribution is one of the lowest in Africa; estimated at only 22% 
of the total Ugandan population and dropped 8–10% in rural areas. 
Besides, the country is highly vulnerable to oil price shocks as it imports 
almost all of its 31,490 barrels per day (5006.5 m3/d) of oil from Kenya 
[75]. These makes the energy consumption from transportation sectors 
become problem. Such limited and unreliable energy access translates 
into underutilization of the excessive biomass (Matooke peels) wastes 
which are renewable and sustainable sources for bioenergy production 
[12]. These challenges have led to practical and policy implications in 
Uganda focusing on energy consumption management and alternative 
sources for biofuel which are stringent necessity, both to meet the en
ergy demands, increase in efficiency, and GHG emissions [76]. 

The main objectives of energy-related policies in Uganda are as fol
lows: 1) diversify the modern renewable energy sources and technolo
gies; 2) develop the energy needs in an environmentally sustainable 
way; 3) establish the petroleum potential and promote its exploitation; 
4) promoting local and national policy efforts on environmental issues 
[77–79]. 

With the above background and policies presented in Table 5, it is 
found that the renewable energy policy (REP) 2007 was the appropriate 
policy for this research finding. Although not all biomass bring benefits 
to the environment, assessment needs to be made for each type of LCB, 
location, and the extraction methods. This will help in identifying the 

Fig. 7. (a–b) SEM images of MP and NP; (c–d) EDS spectrum of MP and NP.  

Table 4 
EDS analysis of elemental ash composition for MP and NP biomass.  

Samples Elements 

O C Mg Al P Cl K 

(wt.%) 

MP 37.34 24.47 1.98 – 1.41 4.66 30.14 
NP – – 5.40 0.65 3.14 9.58 81.22  
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opportunities for reaching Ugandan bioenergy’s targets over a medium 
to long term, since bioenergy can be used for many purposes such as 
generating electricity and as well as transportation fuel. 

4. Conclusion 

The data from proximate, ultimate and thermal analyses found that 
MP biomass exhibits excellent properties when compared to NP and 
other biomasses reported in the literature. The spectrum shows different 
behavioral structures of the absorption peaks, revealing that the 
stretching band occurs to a lesser degree due to the interaction or to 
small amounts of HMs in the biomass waste. In MP spectra, it was 
observed that the absorption was associated with a high content of 
aliphatic and aromatic hydrocarbons, alcohol functional groups, and 
molecular structure such as N-methylaniline monomethylaniline, and 4- 
sec-butyl-phenylenediamine than NP. 

The presence of HMs in the biomass samples, such as Cu, Cd, Zn and 
Pb, probably have no effect on the bio-energy produced and environ
ment. However, Zn requires attention due to the presence of a moderate 
threat to the environment under certain conditions. The micrographs 
show the presence of starch granules and irregular particles with het
erogeneous morphology; these results cause the oxygen to easily 
disperse inside the particles during combustion. In EDS analysis, white 
spots were observed which are elements from different categories. 
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Table 5 
Problems and implications of energy-related policies in Uganda.  

Policies Year Policy objectives Problems Implications 

National environment 
management policy 
(NEMP) 

1994 To harmonize local and national policy 
efforts on environmental issues.  

� Uganda imports all its petroleum 
products requirements from Kenya 
since local production has not yet 
been established.  

� Insufficient data available on the 
potential of indigenous renewable 
energy sources.  

� GHG emissions from vehicles also 
constitute a significant portion of 
pollutants in Uganda.  

� Inadequate and inefficient power 
supply system.  

� Budgetary constraints.  
� There is limited awareness of the 

availability, benefits and 
opportunities of renewable energy.  

� Ugandan government must introduce the use of 
alternative fuels, e.g. bioethanol production from 
matooke peels biomass which is significant.  

� Ugandan government must formulate a database on 
all the accessible energy resources (e.g. matooke 
peels biomass) and energy consumption patterns.  

� Ugandan government must introduce a legislation, 
which will obligate petroleum companies to blend 
gasoline fuels with certain percentage of biofuel. 
This biofuel will be used mainly, in the transport 
sector (to reduce the energy-related emissions that 
are harmful to the environment) and for power 
generation.  

� Ugandan government must enact laws to control 
disposal of biomass wastes, without extracting the 
energy content of the biomass. This measure will 
increase the energy available for use and reduce 
further deforestation.  

� Ugandan government must facilitate adequate 
financing schemes for RETs by establishing 
sustainable financing mechanisms to make them 
more accessible.  

� Ugandan government must involve private and 
public partnerships in the formulation of new 
policies in the energy sector.  

� Ugandan government need to encouraged sector 
reform to integrate the act of sub-sectors. This will 
help to define action plans in a more focused 
manner. 

National energy 
policy (NEP) 

2002 Promoting the energy necessity of Uganda’s 
population for social and economic 
development in an environmentally 
sustainable manner. 

Renewable energy 
policy (REP) 

2007 To diversify the modern renewable energy 
sources and technologies in the country. 

National oil and gas 
policy (NOGP) 

2008 To establish the petroleum potential of the 
country and to promote its exploitation.  
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Chapter 6: Paper 5 
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Abstract
Biomass has several benefits due to its novel behavior among energy sources. This study aims to characterize a unique 
form of biomass from two varieties of Matooke peel, namely, untreated Mbwazirume waste peel (UM-WP) and untreated 
Nakyinyika waste peel (UN-WP). The analysis of the characteristics of these biomasses was carried out using TGA, SEM, 
and EDXS. TG and DTG analysis showed an almost identical trend between UM-WP and UN-WP. The UM-WP exhibited 
a high VC 69.988 wt%, MC 13.125 wt%, O 48.02 wt%, and HHV 15.52 MJ-kg−1 with a low ash content 5.957 wt%, sulfur 
0.64 wt%, and N 1.13 wt% compared to UN-WP. As compared to pretreated biomass, it was found that the smaller particle 
sizes had only minor intra-particle gradients and the bigger particle sizes had more of a linear pattern variation. The pyrolysis 
behavior obtained revealed three distinct regions at elevated temperatures related to the elimination of cellulose, hemicel-
lulose, and lignin. During carbonization, high fluidity and bubbles were produced due to the release of a large amount of 
volatile matter and forms porous structure which flowed through the fluid mass and produced a non-homogeneous vacuolated 
structure. These might cause the oxygen to easily disperse inside the particles during combustion. In addition, white spots 
were observed which are elements from different categories. The findings of this study indicate that UM-WP biomass could 
be an ideal material source for the production of biofuel and photovoltaic.

Keywords  Biomass · Energy · Intra-particle · Micrographs · Biofuel

Abbreviations
UM-WP	� Untreated Mbwazirume waste peel
UN-WP	� Untreated Nakyinyika waste peel
TGA​	� Thermogravimetric analysis
SEM	� Scanning electron microscopes
EDXS	� Energy-dispersive X-ray spectroscopy
FTIR	� Fourier transform infrared spectroscopy
XRD	� X-ray diffraction

HHV	� Higher heating value
MP	� Matooke peel
VM	� Volatile matter
FC	� Fixed carbon
MC	� Moisture content
LCB	� Lignocellulosic biomass

Introduction

The increase in demand for energy and identifying appropri-
ate resources for energy production are key issues for most 
countries in the Africa. For instance, Uganda is highly vul-
nerable to oil price shocks in East Africa, because it imports 
almost all of its 31,490 barrels per day (5006.5 m3/day) of 
oil from Kenya [1]. This causes problems for the transpor-
tation sector. In addition, the country has one of the lowest 
per capita electricity consumption rates in the world with 
215 kWh per capita per year [2]. Such limited and unreli-
able energy access represents an underutilization of the large 
amount of biomass waste available in the country. For this 
reason, more attention should be paid to renewable energy, 
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especially biomass energy, which is the case now in many 
countries [3, 4]. A number of different forms of biomass 
and waste can be used as fuels to be burned, digested, or 
co-combusted with coal to produce energy [5]. Examples of 
these energy sources include wood, straw, bagasse, matooke 
peels, agro-residues, municipal solid waste, etc.

Matooke (Musa-AAA​-EA) is a variety of banana indige-
nous to Uganda, and is the most common staple food crop for 
human consumption in that country. It comes from the family 
of bananas known as East African highland bananas [6, 7]. 
The waste residue of Matooke is the peels, and a large amount 
of Matooke peel (MP) is generated every year; so, it is the 
most abundant agricultural biomass in East Africa, especially 
Uganda. This is due to the lack of sufficient structure to pro-
cess this waste; so there is indiscriminate dumping, resulting 
in environmental pollution and loss of economic opportuni-
ties [8]. Although little amount of peel is used as animal feed 
and as local briquettes. Besides, biowastes of various origins 
are utilized despite the number of negative side effects they 
introduce to environment. This type of waste resource can be 
converted into energy recovery by means of thermochemi-
cal conversion processes, since it does not compete with the 
human food chain, and in turn improves the CO2 balance [9].

The calorific values, high volatility, and fixed carbon con-
tents indicate that this biomass waste could be an excellent 
energy source through various technologies such as combus-
tion, gasification and pyrolysis [10]. Pyrolysis is a thermal 
and degradation technique performed under N2 atmosphere 
[11], while combustion takes place under severe oxidative 
conditions with the aid of an ignition system. There are 
many reports on the effect of combustion and pyrolysis con-
ditions on the physical and chemical properties of biomass. 
These properties of biomass char are generally characterized 
by thermogravimetric analysis (TGA), scanning electron 
microscopes (SEM), energy-dispersive X-ray spectroscopy 
(EDXS), Fourier transform infrared spectroscopy (FTIR), 
and X-ray diffraction (XRD).

The objective of this study was to characterize the unique 
biomass from two varieties of Matooke peel, namely, 

UM-WP and UN-WP with TGA, SEM, and EDXS. Accord-
ing to the available literature, there is only one published 
article on characterization of pretreated Mbwazirume and 
Nakyinyika biowaste [7]. Therefore, there is a need for addi-
tional experiments on pyrolysis and the combustion behavior 
of untreated Mbwazirume and Nakyinyika biowaste, and for 
comparison of the samples. The contributions from these 
various technological processes are described to verify 
the mechanism of combustion and thermal degradation of 
biowaste and visualize the feasible recovery of biofuels by 
means of the thermochemical conversion process.

Materials and methods

Characterization of UM‑WP and UN‑WP samples

These characterization analyses include: proximate, ulti-
mate, TGA, SEM and EDXS. The biomass sample in this 
study had a particle size of 0.7 mm after grinding because 
high-energy output depends on the particle size and reduc-
tion in crystallinity of the LCB. The UM-WP and UN-WP 
samples are shown in Fig. 1a, b.

Proximate and ultimate analyses

The proximate and ultimate analyses are essential methods 
of characterization. The proximate analysis determines the 
composition of a biomass in terms of wt% of volatile matter 
(VM), fixed carbon (FC), moisture content (MC), and ash. 
In this study, these compositions were obtained according to 
ASTM standards (DIN 51718, DIN 51719, and DIN 51720). 
The method was that 1 g of each of the biomass samples was 
weighed on two different dried aluminum dishes and placed 
in a furnace at a required temperature under N2 atmospheric 
conditions. For ultimate analysis, the chemical elements 
such as C, H, O, N and S were determined. The method 
was that 1.00–2.00 mg of the UM-WP and UN-WP samples 
was placed separately inside a muffle furnace according to 

Fig. 1   a, b The UM-WP and 
UN-WP samples
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ASTM E775-78 standards using PerkinElmer 2400 Series 
II as described by [7]. The HHV was determined using the 
known elemental composition with Eq. (1), which is accept-
able for engineering calculations:

Thermogravimetric analysis (TGA)

The thermal analysis was to determine the change in the 
sample mass under certain conditions of temperature, time 
and atmosphere. These analyses were carried out on UM-WP 
and UN-WP biomass samples with a TGA thermostep ana-
lyzer manufactured by ELTRA, Germany. 5 mg and 10 mg 
portion of the samples were prepared and heated from 
ambient temperature to 1000 °C at 10 °C min−1 under N2 as 
described by [7]. The weight loss, fixed carbon, ash content, 
moisture, and heating rate were monitored and recorded.

SEM and EDXS analysis

The change in micrographs of the UM-WP and UN-WP sam-
ples was examined under SEM (VEGA 3 TESCAN-LMH). 
In this experiment, the sample was coated with a thin layer 
of carbon as a non-conducting adhesive at 50/60 Hz, 230 V 
and 1300 VA.

(1)

HHV
[

MJ/kg
]

= 0.3491x (%C) + 1.1783x (%H)

− 0.1034x (%O) + 0.1005x (%S)

− 0.0151x (%N) − 0.0211x (%Ash)

Elemental compositions of the UM-WP and UN-WP 
samples were analyzed using energy-dispersive X-ray. In 
this experiment, the energy is dispersed to determine the 
individual elements and to point out the lateral variation of 
its composition from chosen areas.

Results and discussions

Proximate analysis

As observed in Figs. 2 and 3 and Table 1, the compositions 
of UM-WP and UN-WP found are slightly different from the 
pretreated biomass. This happens due to the pretreatment 
technique and the composition of the original biomass. For 
proximate analysis, the thermal degradation of UM-WP and 
UN-WP in an inert atmosphere at different rates of heating 
showed a peak temperature of 35–108 °C which corresponds 
to the moisture loss with percentage content of 13.125 wt% 
and 13.011 wt%. The second peak was observed between 
105 and 915 °C as shown in the TG-DTG curves, which is 
associated with VM content with a mass loss of 69.901 wt% 
and 69.723 wt%. The high VM found in the UM-WP sug-
gests the high potential of this residue for energy production 
by pyrolysis [12].

The significant amount of FC for UM-WP and UN-WP 
was found to be 11.017 wt% and 11.278 wt% which cor-
responds to 715–750 °C, respectively. The ash content was 
found to be low at 5.957 wt% and 5.988 wt%, respectively. 
As previously presented, any biomass with an ash content 

Fig. 2   TG-DTG curve of 
UM-WP
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less than 5–6% does not undergo knocking trends [7, 13, 14]. 
The temperature range of thermal degradation of untreated 
waste peel is wider than that for pretreated waste peel. This 
trend is due to thermal stability and requires a longer reten-
tion time during the pyrolysis process. A residual mass 
of ∼ 18% was observed from the samples that did not ther-
mally degrade even at 1000 °C as similarly observed by [7, 
11].

Ultimate analysis

As shown in Table 1 (ultimate analysis), the C, H, and O 
contents of UM-WP were found to be 45.95 wt%, 4.26 wt%, 
and 48.02 wt%, respectively; while the UN-WP was found 
to be 43.49 wt%, 4.51 wt%, and 47.91 wt%, respectively. 
The UM-WP has higher oxygen content which indicates a 
higher thermal reactivity than char [15]. This is essential 
because the more the oxygen content in a fuel, the easier 
it is to ignite [7, 16]. The decrease in O and H content in 

biomass fuels can be associated with the scission of weak 
bonds within the char structure [7]. These resources (UM-
WP and UN-WP) might be environmentally friendly with a 
certain amount of S (0.64 wt% and 0.93 wt%, respectively) 
and N (1.13 wt% and 3.16 wt%, respectively). The HHVs 
were found to be 15.52 MJ-kg−1 and 15.49 MJ-kg−1, respec-
tively, which might be high enough for consideration as a 
source of energy. However, the ignition of such high volatile 
fuels may lead to high flame length unlike low volatile fuels 
which ignite less readily [7]. The higher the volatile content 
in a fuel, the higher the HHV and the less heat is required 
for the thermochemical reactions [7, 17].

Thermal analysis

The thermal pyrolysis behavior obtained reveals the three 
different regions at elevated temperatures, which is related 
to elimination of hemicellulose (100–250 °C), cellulose 
(350–520 °C), and lignin (500–640 °C). The maximum mass 

Fig. 3   TG-DTG curve of 
UN-WP

Table 1   Fuel composition of UM-WP and UN-WP biomass

a Calculated HHV (MJ/kg)
db dry basis

Samples Particle size (mm) Proximate analysis Ultimate analysis HHV* (MJ/kg)

MC VM Ash FC C H N O S

(wt. %) on db (wt. %)

UM-WP 0.7 13.125 69.901 5.957 11.017 45.95 4.26 1.13 48.02 0.64 15.52
UN-WP 13.011 69.723 5.988 11.278 43.49 4.51 3.16 47.91 0.93 15.49
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loss rate was about 0.201% min−1, which corresponds to a 
peak temperature of about 639.46 °C in UM-WP. The maxi-
mum mass loss rate was about 0.605% min−1, which corre-
sponds to a peak temperature of about 770.8 °C in UN-WP 
(see Figs. 2 and 3).

The TG-DTG curves showed the presence of endother-
mic peaks with corresponding temperatures of 88.74 °C 

and 105  °C. These show that the endothermic peaks 
obtained refer to the onset of combustion, which is asso-
ciated with the presence of hydrated or adsorbed water 
[18]. The UM-WP showed an obvious decrease during 
the exothermic reaction, confirming the presence of a few 
organic compounds which were exothermic.

Fig. 4   a, b SEM images of UM-WP at 100× and 200×, respectively

Fig. 5   a, b SEM images of UN-WP at 100× and 400×, respectively
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SEM analysis of UM‑WP and UN‑WP

Figures 4a, b and 5a, b show the results of the morpho-
logical analysis of the UM-WP and UN-WP samples using 
SEM (sieved fraction of 200 μm, 500 μm and l mm). The 
morphologies of the samples were very similar. The micro-
graphs revealed that the UM-WP and UN-WP have large and 
irregular particles and starch granules with high cellulose 
content, which are due to the increases in restrictions on 
molecular motion [19, 20]. These results might cause the 
oxygen to easily disperse inside the particles during combus-
tion because the combustion reactivity of a biomass directly 
relates to the char morphology formed [7]. During carboni-
zation of UM-WP and UN-WP, high fluidity and bubbles 
were produced due to the release of a large amount of vola-
tile matter and which form a porous structure, which flows 

through the fluid mass and produces a non-homogeneous 
vacuolated structure [21, 22]. 

EDXS analysis of UM‑WP and UN‑WP

In the study, the EDXS was used to determine the elemen-
tal composition and to provide a structural idea of the bio-
mass sample as illustrated in Figs. 6a–c and 7a–c. White 
spots appear in the sample which are elements. White spots 
are observed during SEM which was indicated in the form 
of spectrums as illustrated in Figs. 4a, b and 5a, b. These 
are elements from different categories as analyzed using 
EDXS.

The elements identified were potassium (K), magnesium 
(Mg), phosphorus (P), oxygen (O), carbon (C), nitrogen (N), 
sulfur (S), chlorine (Cl), silicon (Si), and cobalt (Co) (as 

Fig. 6   a, b, and c EDXS spectrums of UM-WP at different points
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shown in Table 2). Among these, the percentage of Mg, K 
and P decreased with an increase in C and O after pretreat-
ment [7]. Besides, the percentage of O was found to be less 
compared to that of C. This trend is due to the fact that 
carbon forms the structural unit of cellulose and hemicel-
luloses. During combustion of biomass, the final solid phase 
is the most essential stage to the problem of alkali metals. 
The elements such as Cl, Si, S, Mg facilitates the mobility 
of several chemical species, particularly K, O and Fe, which 
is confirmed by KCl in deposits adherent [23], SiO2, FeS2, 
MgO, shows in Table 2 elemental compositions of UM-WP 
and UN-WP using EDXS. This biomass might grow an 
interest in the preparation of SiO2, FeS2, and MgO particles 
for a variety of applications, where the purity of materials is 
one of the most essential key parameters. Pure SiO2 particles 
with crystalline phase can be used as the material source 
in photovoltaic [24], humidity sensors, film substrates and 

ceramics [25]. Pyrite (FeS2) is a promising photoelectric 
material for solar energy conversion and storage [26].

Conclusion

This research presents new biomass accessible in Uganda 
for future bioenergy production. The HHV was found to 
be 15.52 MJ-kg−1 and 15.49 MJ-kg−1 for UM-WP and 
UN-WP, respectively. As compared to pretreated bio-
mass, it was found that the smaller particle sizes had only 
minor intra-particle gradients and the bigger particle sizes 
had more of a linear pattern variation. The micrographs 
showed irregular particles and starch granules with high 
cellulose content which might enable the oxygen inside 
the particles to disperse more easily during combustion. 
The amount of O was found to be less compared to C in 

Fig. 7   a, b, and c EDXS spectrums of UN-WP at different points



	 International Journal of Energy and Environmental Engineering

1 3

UM-WP. This trend is due to the fact that carbon forms 
the structural unit of cellulose and hemicelluloses. It is 
suggested that this exploration shows that UM-WP and 
UN-WP can be added to the biomass database as alterna-
tive energy sources, and material source for photovoltaic.
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A B S T R A C T

Conversion of agro-industrial wastes to energy is an innovative technique for waste valorization
and management which reduces exhaust emissions and offers socioeconomic benefits. The goal of
this paper is to investigate the feasibility of producing bioethanol from a renewable and sus-
tainable energy resource which is matooke species peels through a fermentation process using
Saccharomyces cerevisiae. The properties of the bioethanol were measured according to relevant
ASTM standards and compared, and analyzed by gas chromatography. The results shows that the
bioethanol yield for the two samples through fermentation process was found to be 71.54 g/L for
the Mbwazirume variety and 70.57 g/L for the Nakyinyika variety, and the selected parameters
have a strong correlation with the ethanol yield, as analyzed by ANOVA. In conclusion, matooke
bioethanol properties are within the acceptable range of standard ethanol and gasoline. These
matooke bioethanol can be used in the development of further experiments on performance and
exhaust emissions test in spark-ignition (SI) engines.

1. Introduction

Dependency on other countries for fuel and the negative influence that modern-day fuels have on environmental issues such as
global warming and environmental pollution [1] have led to the investigation of environmentally friendly, renewable and sustainable
energy fuels such as biofuels. Among the biofuels, bioethanol has been identified as the most used alternative fuel worldwide due to
its significant contributions to a reduction in crude oil consumption, high oxygen content, high octane number, non-toxicity and
reduced emission characteristics compared to gasoline, thus promoting a cleaner environment for the future [2–5]. Bioethanol can be
produced from various types of agro-industrial residue or renewable sources through a fermentation process using microorganisms
such as yeast. Most of the agro-industrial residues, such as banana peels, represent about 40% of raw processed fruit [6]. Banana peel,
also known as banana skin, is the outer covering of the banana fruit. Banana is one of the most consumed fruits in the world. Uganda
is among the largest producers of bananas, with an annual per capita consumption of 240 kg [7]. There are different types of bananas
grown in Uganda for food consumption. These have been classified as green cooking bananas (matooke), plantain, and sweet bananas
[8,9].

Matooke is a variety of banana indigenous to South West Uganda. It comes from the family of bananas known as the East African
highland bananas. Matooke cannot be peeled in the same way as ordinary (sweet) bananas due to the high starch content. They
appear to be green in color and thick at the midsection [10]. Once the peel is removed, the fruit cannot be eaten raw but can be
cooked, and the peels are generally discarded or used as feedstock for cattle, goats, and pigs. However, there are some concerns about
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their utilization, including poor storage ability and heavy contamination due to indiscriminate dumping. The average storage length
of market crop wastes for matooke peels is 1–3 days [11]. Nevertheless, these wastes can be utilized as a readily available and
renewable low-cost raw material for bioethanol production due to the high starch content.

Research has been conducted on the acid hydrolysis of starch to glucose, but little research has been done till now using banana
peel as a substrate for fuel production [12]. Generally, starch-based biomass depends on the feedstock and the steps involved in the
bioethanol production process [13]. Therefore, bioethanol production consists of various steps, namely, pre-treatment, hydrolysis,
fermentation, distillation, and dehydration [14–16]. Many studies have reported that bioethanol fuel has more oxygen molecules
which contribute to faster flame speed, leading to enhanced combustion initiation and stability, avoids knocking, has a good cold
start, and improves efficiency for spark-ignition (SI) engines [17–22].

This research aimed to use different green cooking bananas (matooke) peels such as Mbwazirume and Nakyinyika for bioethanol
production as an alternative fuel for SI engines since it is lignocellulosic biomass and matooke peels do not compete with food crops.
The purpose of selecting various species is to study which matooke peels produce the highest bioethanol in volume and concentration
by conducting GC – FID/MS tests, also optimized using (ANOVA).

2. Material and methods

2.1. Material

2.1.1. Raw materials
The raw material for this research was limited to two specific species of matooke, namely, sample A (Mbwazirume) and sample B

(Nakyinyika). These matooke species were obtained from different locations in Uganda. The study recorded about 38.57% of the
weight waste peels per fruit.

2.1.2. Experimental apparatus and solvents
The experimental apparatus and solvents used were: grant OLS 200 shaking water bath, Sox-Tec extractor, furnace, rotary

evaporator, digital pH meter (ASTM D7946), electric grander. Sodium hydroxide (NaOH), sulfuric acid (H2SO4), sodium sulphate
anhydrous (NaSO4), baker's yeast (Saccharomyces cerevisiae), automatic bomb calorimeter, GC-FID, GC-MS (Agilent Technologies

Fig. 1. Process steps leading to extraction of bioethanol from matooke peels.
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5975), lovis 2000M/ME micro-viscometer, hydrometer, elemental analyzer (ASTM D5291), 250/500ml beakers, 250/500ml Pyrex
Erlenmeyer flasks and distilled water. A schematic diagram of the experimental process is shown in Fig. 1.

2.2. Methods

2.2.1. Experimental overview
Fig. 2 shows the research design for the production of bioethanol from biomass such as Mbwazirume and Nakyinyika peels using

various variables. Bioethanol production from biomass comprises different stages: pretreatment, hydrolysis of cellulose and hemi-
cellulose, separation of lignin residue, sugar fermentation, and distillation and purification of the bioethanol to meet fuel specifi-
cations [23,24]. After testing the physical and chemical properties of bioethanol, these fuels can be used in the development of
further experiments on performance and exhaust emissions test in an internal combustion engines.

2.2.2. Pretreatment
The purpose of the pretreatment process is to make the cellulose accessible to hydrolysis for conversion to fuels. Various pre-

treatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates [25]. In
this study, the peels were separated from the fruit and washed with distilled water. The two hybrids of Matooke peels were shade
dried for 83 h. The size of the materials is 10-30 mm after chipping and 0.2-2 mm after milling, and grinding with electrical grinder to
make a coarse powder and stored in different containers at room temperature till further analysis. The energy requirements de-
pendent on the final particle size and reduction in crystallinity of the lignocellulosic material.

2.2.3. Proximate analysis
Proximate analysis is the determination of the major components within the raw material (Matooke peels), which include:

moisture content, ash, crude fats, protein, dietary fiber, and carbohydrates. In this analysis, compositions are determined using the
below standard methods in Table 1. The proximate analysis was carried out at the School of Food Technology, Nutrition, and Bio-
Engineering, Makerere University Kampala, Uganda.

Fig. 2. Experimental layout of bioethanol development.

Table 1
List of standard method used in proximate analysis.

Test name Standard method

Moisture content ASTM D2216-98
Volatile content BS3797
Ash content ASTM D2974
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2.2.4. Hydrolysis
50 g of each variety of dried peels powder were transferred into two labeled conical flasks (A & B) and 150ml of 0.5% (v/v) to

2.5% (v/v) diluted sulfuric acid (H2SO4) was added to each. The flasks were covered with a tapered cork to avoid the entrance of
water or loss of liquid due to evaporation. The two flasks were placed in a shaking water bath for about 50–90 °C± 1 °C at 20–60min
with gentle shaking for homogeneity of mixture solution. After hydrolysis, the two samples were allowed to cool to room temperature
before the filtration process was carried out. The insoluble particles were separated from the hydrolysate using filter paper.

2.2.5. Fermentation
Fermentation is the process of converting the pentose and hexose into ethanol using microorganisms, such as bacteria, yeast, or

fungi. Fermentation of lignocellulosic hydrolyzates is challenging but depends on the method and microorganisms used. A micro-
organism such as yeast serves as a key factor in fermentation and has an important role in meeting those challenges. The two samples
were prepared for the fermentation process, and pH adjustment was carried out with 1M NaOH until the pH reached 5.0, because
when the pH was above 5.0, the concentration of ethanol reduced substantially [26]. This process was carried out in 500ml Pyrex
flasks. Each flask containing hydrolyzed sample mixed with 6.5 g to 8.5 g of Saccharomyces cerevisiae (yeast). The solutions were
sealed and manually shaken for proper mixing, and then placed in a shaker water bath at 29–39 °C± 1 °C at 165 rpm for about 10 h
to 30 h for the fermentation process. After shaking, the mixtures were withdrawn and kept for 18 h to allow the particles from the
liquid to settle. The three variables were time, temperature and yeast content; and 17 runs per sample were conducted to produce
ethanol after fermentation and optimized using the response surface method (RSM).

2.2.6. Distillation
Bioethanol extraction was carried out through the process of distillation and dehydration. Distillation was carried out using a

rotary evaporator at temperature, pressure and the rotary speed of 55 °C± 1 °C, 175 mbar, and 70 rpm, respectively. Dehydration
was done by using sodium sulphate anhydrous (NaSO4) for eliminating the water molecules within the bioethanol.

2.2.7. GC analysis
In this method, the GC-MS was used to identify the molecular weights and structures that are within the two different samples of

matooke peels. This analysis was conducted at Chemiphar Uganda limited and Makerere University Kampala, Uganda. The injector
temperature was at 250 °C. The initial oven temperature was programmed for 80 °C (hold for 2min) increased to 120 °C at a rate of
5 °C/min (and hold for 2min) then increased to 240 °C at a rate of 10 °C/min (hold for a few moments), and finally increased to 420 °C
at a rate of 15 °C/min (hold for a few minutes).

The second analysis was conducted using GC-FID with automatic injection along with a blank consisting of demineralized water
and standard solutions to measure the ethanol content within the samples and then compared with the initial analysis. The blank was
injected first followed by the standard solutions. The samples were injected according to presumed alcohol content, with the samples
containing least amount of alcohol injected first. This was to prevent carry-over from high concentrated alcohol samples to those with
low alcohol content. Every standard solution and sample was injected in duplicates. The inlet was set at a temperature of 225 °C with
splitless injection, and the injection volume was 1 μL. The column used was a Phenomenex ZB-FFAP GC-column, which is a high
polarity column that is 30m×320 μm×0.25 μm.

The oven was set at a programme that had an initial temperature of 50 °C (held for 2min) the increased to 245 °C at a rate of 45 °C
per minute and held at 245 °C for 1min. The flame ionization detector temperature was set at 285 °C with a flow of 30ml/min H2,
and the flow rate of O2 was set at 300ml/min. Finally, the total run was 24min long, and the injection syringe was rinsed with
demineralized water between every injection.

2.2.8. Fuel properties of bioethanol
The fuel properties of bioethanol produced from matooke peels were tested according to the ASTM standard methods. The fuel

properties of bioethanol from different matooke species’ peels were determined experimentally to ascertain their suitability as an
alternative fuel and compared with ethanol ASTM D4806 and gasoline. The equipment used to analyze the properties and chemical
properties of the bioethanol are summarized in Table 2.

Table 2
List of equipment used to analyze the properties of the Matooke bioethanol.

Property Equipment Standard method

Kinematic viscosity Lovis 2000M/ME micro viscometer DIN 53,015
Density Micro density meter (Anton Paar) ISO 12,058
Elemental analysis for carbon (C), hydrogen (H) and oxygen (O) CE-440 CHN Elemental Analyzer (EIA) ASTM D5291
Calorific value IKA C2000 basic, automatic bomb calorimeter ASTM D240
Ethanol content Gas chromatograph, Agilent 7890 A ASTM D4806
Flash point Flash point tester ASTM D93
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3. Results and discussion

3.1. Proximate composition of matooke peels

The proximate compositions of the matooke peel samples were found to be high in carbohydrate content, especially Nakyinyika
(sample B) with 72.85%, and a significant amount of moisture, ash, protein, fat, and fiber content. The results of the proximate
composition are shown in Table 3. The presence of more than 70% of carbohydrates in these samples makes it a potential substrate
for bioethanol production.

3.2. Analysis of reducing sugar

The reducing sugar content in the hydrolysate (filtrate) was analyzed using 3,5-dinitrosalicylic acid (DNS) method [27]. In these
results 1:1 of sample to DNS reagent is used: the analyze 5ml of hydrolysate was mixed with 5ml of DNS reagent heating in a
thermocycler (100 °C, for 3min). The reaction mixture was cooled to room temperature and quantifies at 575 nm, then the most
appropriate wavelength was selected based on sample absorbance. The amounts of (0–100 g/L) reducing sugars were measured for
each sample using ultraviolet-visible spectrophotometer. However, various effects were considered such as pH at 5.0, temperature at
50, 70 and 90 °C, time of 20, 40 and 60min, acid concentration of 0.5%, 1.5% and 2.5% (v/v) as shown in Table 4.

3.3. Experimental results of bioethanol and optimization conditions

After determining the optimal conditions for fermentation, the results were evaluated using Design-Expert® version 11. The effects
of the controlled variables, such as yeast, time and temperature, were investigated using ANOVA and Box-Behnken design. All
experiments were run in a random order. The optimal conditions were then calculated by the regression model and consequently
verified experimentally. Table 5 shows the experimental and Box-Behnken design, and 17 runs were conducted to produce ethanol
contents from sample A and B. The experimental and predicted outputs of the ethanol content shows closeness in sample A, which
indicates that the Box-Behnken design was successful and the results are optimal. However, for sample B, both outputs differed
slightly.

The analysis of variance (ANOVA) was carried out to determine the statistical significance of the quadratic response surface model
as tabulated in Tables 6(a) and 6(b) for the two samples (A and B), respectively. Table 6(a) and 6(b) show the analysis of variance for
P-values, where a P-value of less than 0.0500 indicates that the model terms are significant. In this case Z, XY, YZ, X², Y², Z² and Z, XZ,
Y² are quite significant influences on ethanol content. Values greater than 0.1000 indicate the model terms are not significant.

The result shows that the coefficient of determination (R2) in Table 6(a) and 6(b) was found to be 0.9872 and 0.8622, which
indicates that 98.72% and 86.22% of the experimental data were relevant and the model did not explain 1.28% and 13.78% of the
total variations. Therefore, the Lack of Fit F-value of 13.79 and 356.55 implies the models are significant. In Table 6(a), the predicted
coefficient of determination (Rp²) was found to be 0.8110 which is in reasonable agreement with the adjusted coefficient of de-
termination (Ra²) of 0.9707; the difference is less than 0.2. This shows that the (Ra²) was found to be very high, which implies that the
model accounted for 97.07% of the variability in the data. However, Table 6(b) shows different trends with a contrary predicted (Rp²)

Table 3
Proximate Composition of Matooke Peels.

Parameter measured Units Sample result

A B

Moisture content (g/100 g) 8.51 8.71
Ash content (g/100 g) 8.23 7.74
Crude protein (g/100 g) 5.53 4.84
Crude fat (g/100 g) 3.99 3.13
Dietary fiber (g/100 g) 14.10 10.92
Carbohydrates (g/100 g) 72.23 72.85

Table 4
Experiment of reducing sugar content in matooke species peels.

Matooke species peels Acid concentration % (v/v) Temperature (°C) Time (min) Reducing sugar (g/L)

Mbwazirume (A) 0.5 50 20 76.83
1.5 70 40 77.03
2.5 90 60 75.96

Nakyinyika (B) 0.5 50 20 74.55
1.5 70 40 75.32
2.5 90 60 75.07
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of −1.1979, which indicates that the overall mean may be a better predictor for ethanol content than the current model.
The equation in terms of actual factors can be used to make predictions about the response for given levels of each factor. The

quadratic model for ethanol content was regressed by considering the significant variables and is shown in Eq. (1) and Eq. (2) for
sample A and B, respectively.

= + + + + − + − − − −v v X Y Z XY XZ YZ X YEthanol content(% / ) 90.1 0.0675 0.0825 1.01 1.04 0.81 0.6 1.74 ² 1.12 ² 2.78Z² (1)

= + − + + − − − − − −v v X Y Z XY XZ YZ X YEthanol content(% / ) 92.24 1.2 0.0738 2.28 1.02 2.33 0.5975 0.4805 ² 2.36 ² 1.54Z² (2)

The predicted ethanol contents versus experimental values (actual) were analyzed and shown in Fig. 3(a) and (b). In Fig. 3(a) it
can be observed that all the data points are within the proximity of the regression line, which indicates that there is good agreement
between the predicted ethanol content and experimental values. Therefore, the model satisfies the assumptions of the analysis of
variance (ANOVA) and the error distribution is approximately normal. However, in Fig. 3(b) the model was not too good compared to
Fig. 3(a), because the lower the coefficient of determination (R2) means the weaker the goodness of the fit model. It is observed that
the error might occur from the hydrolysis treatment.

3.4. Effects of yeast and temperature

The effect of yeast and temperature on the yield of ethanol is shown in Fig. 4(a) and (b). The response in Fig. 4(a) showed that

Table 5
Experimental and Box-Behnken predicted results of ethanol contents.

Experiment run Yeast (g) Temperature (°C) Time (hr) Experimental Predicted output

Ethanol content (%v/v)

A B A B A B A B A B

1 6.5 6.5 29 29 20 20 86.42 88.66 86.04 85.39
2 7.5 7.5 40 40 10 10 85.9 88.03 85.87 87.26
3 7.5 7.5 34.5 34.5 20 20 90.2 92.36 90.1 92.24
4 8.5 8.5 34.5 34.5 10 10 84.8 86.94 84.45 92.24
5 7.5 7.5 34.5 34.5 20 20 90.3 92.4 90.1 91.68
6 8.5 8.5 34.5 34.5 30 30 87.12 89.26 86.84 91.14
7 7.5 7.5 34.5 34.5 20 20 90 92.14 90.1 90.09
8 6.5 6.5 40 40 20 20 88.54 90.68 88.3 92.24
9 6.5 6.5 34.5 34.5 10 10 84.4 86.51 84.68 88.96
10 8.5 8.5 29 29 20 20 88.02 90.14 88.27 92.24
11 7.5 7.5 34.5 34.5 20 20 90 92.14 90.1 89.08
12 7.5 7.5 34.5 34.5 20 20 90 92.14 90.1 86.73
13 7.5 7.5 29 29 10 10 84.4 86.53 84.5 96.02
14 7.5 7.5 40 40 30 30 86.8 88.95 86.7 92.24
15 8.5 8.5 40 40 20 20 85.96 88.1 86.34 86.81
16 6.5 6.5 34.5 34.5 30 30 86 98.16 86.35 89.14
17 7.5 7.5 29 29 30 30 87.7 89.84 87.73 89.5

Notes: A and B indicates the label of the samples (A-Mbwazirume; B-Nakyinyika).

Table 6a
Analysis of variance (ANOVA) results of the ethanol content for sample A.

Source Sum of squares df Mean square F-value p-value Remarks

Model 69.8 9 7.76 59.83 < 0.0001 significant
X-Yeast 0.0364 1 0.0364 0.2812 0.6123 –
Y-Temperature 0.0544 1 0.0544 0.42 0.5376 –
Z-Time 8.24 1 8.24 63.57 < 0.0001 –
XY 4.37 1 4.37 33.69 0.0007 –
XZ 0.1296 1 0.1296 0.9997 0.3507 –
YZ 1.44 1 1.44 11.11 0.0125 –
X² 12.78 1 12.78 98.61 < 0.0001 –
Y² 5.31 1 5.31 40.92 0.0004 –
Z² 32.48 1 32.48 250.55 < 0.0001 –
Residual 0.9075 7 0.1296 – – –
Lack of Fit 0.8275 3 0.2758 13.79 0.0141 significant
Pure Error 0.08 4 0.02 – – –
Cor Total 70.71 16 – – – –
R² 0.9872 – Adjusted Ra² 0.9707 – –
C.V.% 0.4118 – – – – –
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when the level of yeast and temperature increased, the fermentation resulted in a high yield of ethanol and started decreasing when
the temperature reached 35 °C with an increase in yeast, which implies that yeast and temperature are significant influences on
ethanol content. This is due to the growth rate of the microorganisms (yeast), which is directly affected by the temperature [28]. The
yield of ethanol increased with an increase in temperature but decreased in yeast content as shown in Fig. 4(b). This increase in
ethanol yield is due to chemical reactions and other enzyme activity in the cells which are favored by temperature increases but to a
certain level, and enzyme activity tends to be low at lower temperatures.

3.5. Effects of yeast and time

The effect of yeast and time on the yield of ethanol is shown in Fig. 5(a) and (b). The shaking speeds (165 rpm) were kept constant
during the fermentation process. It was observed that there were no significant interactions between yeast and other variables
affecting the results of ethanol. The graph shows some increment in yeast at a lower level of time (21.8 h), with an increase in the
yield of ethanol (Fig. 5(a)). It was shown in Fig. 5(b) that with higher levels of yeast and time, the production of ethanol yield level
decreased. This error may occur due to the effect of the hydrolysis treatment. However, the hydrolysis temperature increases at lower
levels of acid concentration (versus versa) and might produce a positive or negative effect on the yield of ethanol. From the

Table 6b
Analysis of variance (ANOVA) results of the ethanol content for sample B.

Source Sum of squares df Mean square F-value p-value Remarks

Model 117.39 9 13.04 4.87 0.0244 significant
X-Yeast 11.45 1 11.45 4.27 0.0776 –
Y-Temperature 0.0435 1 0.0435 0.0162 0.9022 –
Z-Time 41.41 1 41.41 15.44 0.0057 –
XY 4.12 1 4.12 1.54 0.255 –
XZ 21.76 1 21.76 8.12 0.0247 –
YZ 1.43 1 1.43 0.5326 0.4892 –
X² 0.9721 1 0.9721 0.3626 0.5661 –
Y² 23.46 1 23.46 8.75 0.0212 –
Z² 9.96 1 9.96 3.71 0.0953 –
Residual 18.77 7 2.68 – – –
Lack of Fit 18.7 3 6.23 356.55 < 0.0001 significant
Pure Error 0.0699 4 0.0175 – – –
Cor Total 136.16 16 – – – –
R² 0.8622 – Adjusted Ra² 0.6849 – –
C.V.% 1.82 – – – – –

Notes: C.V= coefficient of variance.

Fig. 3. Predicted output versus experimental (actual), (a) Sample A (b) Sample B.
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optimization, the optimum operating parameters for ethanol yield is 90.65%v/v and recorded at 33.39 °C temperature; 8.5 g yeast
and 20.21 h time.

3.6. Effects of temperature and time

This study investigated the effect of reaction time and temperature on bioethanol conversion yield by varying the time range from
10–30 h and the temperature range from 29 °C to 40 °C when other variables were kept constant. Fig. 6(a) shows that conversion yield
increases with increase in temperature. The maximum matooke bioethanol conversion yield is 90.19%v/v and recorded at 34.5 °C
temperature and 21.833 h time. The yield at 33–35 °C is almost the same but decreases at 36 °C due to the evaporation temperature of
the ethanol (Fig. 6(a)).

Fig. 4. Response surface plot of yeast and temperature on ethanol content when the time is fixed (20 h); (a) sample A (b) sample B.

Fig. 5. Response surface plot of yeast and time on ethanol content when the temperature is fixed (34.5 °C); (a) sample A (b) sample B.
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Therefore, an increase in temperature and time had an insignificant effect on the ethanol yield, and it was evident that for fixed
yeast, increasing the time would only increase ethanol production by a slight amount (Fig. 6(b)). A decrease in ethanol yield at a
temperature above 36 °C is due to exceeding the optimal level and might eliminate the available oxygen or increase the toxic effect of
ethanol in the medium due to dissociation of the molecules and also reduce enzyme activity due to denaturation of the enzymes
giving no significant impact on ethanol yield.

3.7. Fuel properties of bioethanol from different matooke peels species

In this study, the fuel properties of the bioethanol from different matooke peels were determined, and each indicates the quality of
fuel used for the spark-ignition engine. The physical and chemical properties of the matooke peel bioethanol are shown in Table 7. The
density, heating values, ethanol content and viscosity of the fuels were measured using the ASTM standard. The study used an
automatic bomb calorimeter (IKA C2000 basic) to measure the heating value of bioethanol using the ASTM D240 standard. The
results show that the heating values of matooke bioethanol are slightly closer with the ethanol ASTM D4806. The measured fuels are
within the acceptable range of standard ethanol and gasoline. However, these fuels can be used in the development of further
experiments on performance and exhaust emissions test in an internal combustion engines.

4. Conclusion

In conclusion, this study evaluated two different agro-industrial wastes as the alternative potential for bioethanol production due
to their low cost and easy availability in Uganda. The proximate result shows that the two different wastes (matooke peel samples)
were found to be high in carbohydrate contents with 72.23% and 72.85% respectively, and only a little amount of other nutrients that
could support microbial growth. Therefore, in sample A, the optimum operating parameters for ethanol yield is 90.19%, which were

Fig. 6. Response surface plot of temperature and time on ethanol content when the yeast is fixed (7.5 g); (a) sample A (b) sample B.

Table 7
Comparison of fuel properties from different matooke peels bioethanol, ethanol, and gasoline.

Property Units Bioethanol Mbwazirume Bioethanol Nakyinyika Ethanol ASTM D4806 [16] Gasoline [29]

Molecular formula – C2H5OH C2H5OH C2H5OH C4 -C12

Composition (C, H, O) Mass % 52, 13, 35 52, 13, 35 52.2, 13.1, 34.7 86, 14, 0
Density at 15 °C Kg/m3 793.2 778.5 785–809.9 737
Lower heating value MJ/kg 26.3 26.1 26.9 43.5
Higher heating value MJ/kg 29.1 28 29.7 47.3
Viscosity at 20 °C mm2/s 1.3 1.2 1.19 0.37 to 0.44
Flash point °C 21.7 21.2 12–20 −45 to −13
Ethanol content %vol. 90.19 90.65 99.9 –

Notes: Sample A – Mbwazirume; Sample B – Nakyinyika.
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recorded at 34.5 °C temperature, 7.53 g yeast and 21.83 h time, which yielded 77.03 g/L reducing sugar. The maximum ethanol yield
obtained in sample B is 90.65% recorded at 33.39 °C temperature, 8.5 g yeast and 20.21 h time, which yielded 75.32 g/L reducing
sugar. These matooke bioethanol can be used in the development of further experiments on performance and exhaust emissions test in
an internal combustion engines. Utilizing this waste biomass for bioethanol production through a biotechnological process not only
helps to reduce environmental pollution but also reduce the dependence on oil-producing countries and supports rural economies by
creating jobs and providing an additional source of income.
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Abstract
This study examined the effects of low content rates ofMbwazirume bioethanol blends (5%, 10%, and 15%) with gasoline in a
modernized electronic fuel injection (EFI) engine. The results showed that the E15 fuel ratio induced an increase in combustion
duration with minimum premixing combustion duration, hence exhibited low emissions, high indicated power, and efficiency
with low fuel consumption (at 12 to 18° CA aTDC). These results are due to the low content of carbon in bioethanol, which
eliminates the occurrence of soot formation and requires less air to burn fuel blends with low luminosity and radiation. In E10 and
E15 fuel, when the engine operated at 2700 rpm, the engine emissions were relatively low with a slight increase in performance,
except for E5. The rate of NOX formation rose higher with E5 and E10; this was due to the combustion advanced which led to
higher temperature and in-cylinder pressure than that of E0 and E15. However, when the exhaust gas temperature (Teg) was at
192 °C for 21.7 s fuel drain time (Fdt), the CO and CO2 emissions decreased with E15 and increased rapidly with E5 and E10. In
addition, the HC emissions decrease at all injection timings for E5, E10, and E15, except that of 10° CA bTDC which did not
follow this trend. When the combustion phases are the same, the model results suggest that a little modification in the heat-
transfer parameter has a great impact on the thermal efficiency.

Keywords Matooke bioethanol . Emissions . Performance . Combustion characteristics . Heat-transfer parameter

1 Introduction

Transportation vehicles are among the biggest sources of
emissions, emitting around 25% of the greenhouse gas pollu-
tion (GHGs) found in the environment [1], because the use of
unleaded gasoline (E0) fuel in vehicles is linked to worse
engine-out emissions and air quality [2]. This has challenged
manufacturers and researchers to develop new modification
techniques to decrease exhaust emissions and enhance engine
performance [1] because even small improvements in engine
efficiency, whether in the engine-out emissions or vehicle fuel

economy, represent a major impact. Besides, an alternative
process of reducing GHGs is to substitute or blend gasoline
fuels with biofuels produced from biomass resources. Among
the biofuels, bioethanol is a renewable fuel obtained from
lignocellulosic biomass (LCB) materials that can be used on
its own or blended with unleaded gasoline in spark-ignition
(SI) engines. The physicochemical properties of bioethanol
fuels are similar to conventional fuels [3]. As previously re-
ported, bioethanol-gasoline blend fuels have more advantages
than unleaded gasoline only in SI engines [4, 5], namely, low-
er emission levels therefore lower environmental impact [6],
higher octane rating [7], higher volumetric efficiencies, and
quicker combustion [8]. However, research study has been
carried out on the effect of reformulated fuel on emission,
performance, and combustion values of various SI engines,
but less research has been conducted on modified engines.

Q et al. [9] investigated the effect of ethanol blends on
engine performance such as brake thermal efficiency (BTE),
brake specific fuel consumption (BSFC), brake power (BP),
and engine torque (TE) using modified and modernized SI
engines. They concluded that the BTE, TE, and BP of the
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blends are almost similar to that of gasoline, but the BSFC of
the blends is slightly higher due to the rich mixture at higher
brake mean effective pressure (BMEP). Research conducted
by Yussoff et al. [10] reported that carbon monoxide (CO) and
carbon dioxide (CO2) emissions in the cold phase were de-
creased. This occurred due to the increase in ethanol blend
ratio, which also increases the latent heat of vaporization.
This has the effect of reducing the lower heating value
(LHV) and combustion temperature which leads to the rise
of unburned hydrocarbons (HC) cold emission factors and,
at the same time, to the decrease in nitrogen oxides (NOX)
cold emission levels [8]. These findings also suggest that more
fuel injections from ethanol fuel are needed to compensate for
decreases in engine performance [6, 11].

These findings of advanced ignition timing is a surrogate
way for predicting the effect of combustion performance and
has been studied by various researchers, but their findings
depended on the operating parameters and engine specifica-
tions. De Melo et al. [12] examined the effect of gasoline-
anhydrous ethanol (E25) on emissions and combustion using
a Flex-Fuel engine. The results showed intricate trends with
NOX emission when the percentage of ethanol was added
under different operating conditions and spark advance
timing. Zareei et al. [13] studied the effects of variable ignition
timing from 41° before top dead center (bTDC) to 10° after
top dead center (aTDC) on SI performance and engine-out
emission. At 10° crank angle (CA) bTDC, the result showed
a significant decrease in NOX with an increase in HC while
CO2 was the same. Thus, at 31° CA bTDC, the optimal power
and torque was obtained.

In this study, bioethanol produced from Mbwazirume bio-
mass peels was used as a blend fuel at different ratios (E5,
E10, and E15) with unleaded gasoline. These blend fuels were
tested under various engine speeds in a modernized TD201
four-stroke petrol engine, equipped with efficient electronic
fuel injection (EFI) systems in order to assess engine emis-
sions, performance, and combustion characteristics because
ignition timing is an alternative process to predict engine per-
formance. The experimental results showed significant reduc-
tions in emissions, especially regarding NOX emissions.

2 Experimental apparatus and procedure

2.1 Engine test setup

The experiments were carried out using a TD201 four-stroke
petrol engine (modern small engine), which was modified at
the cylinder head and crank output shaft in order to be able to
accept the optional cylinder head pressure transducer
(ECA101) and crank angle encoder (ECA102). The test bed
setup is illustrated in Fig. 1. The engine is powered by 8.5:1
CR, air cooled, 1-cylinder, 4-stroke with overhead valves

(inlet and exhaust), governor, a carburetor fuel system, electric
spark ignition, recoil starter, dummy transducer, and splash
lubricator. The engine has a bore of 67 mm, stroke of
49 mm, and a crank radius of 24.5 mm. Some of these engine
specifications are shown in Table 1. The engine was coupled
to a dynamometer with a speed sensor for defining the proper
engine speed. However, the engine power and maximum
speed were regulated when the governor pressurized the car-
buretor to lessen the fuel-air mixture that goes into the cylin-
der. The amounts of CO, CO2, NOX, and HC emissions were
metered using the Testo Flue Gas (TFG) analyzer with
calibration.

2.2 Test procedure

In this study, the test fuels were prepared according to volu-
metric percentages. These fuels were pure gasoline (E0), and
bioethanol blend ratios which contained 5%, 10%, and 15%
ethanol v/v known as E5, E10, and E15, respectively. The
engine was authorized to run a few moments until it reached
steady-state conditions, after which the data (such as engine
performance and engine-out emissions) were collected. These
experiments were conducted at the selected operation condi-
tions: engine speeds ranged from 1800 to 3000 rpm at 8.5:1
CR with wide open throttle (WOT) and 6.7 bar ± 0.9 bar for
BMEP at low ambient temperature. An extension cable from
the transducer was connected to the engine cycle analyzer in
order to measure the cylinder pressure at consecutive cycles.
The pressure, relative humidity, and ambient air temperature
were monitored. The maximum noise levels of the engine
were measured using a sound recorder at a distance of
100 cm and height of 160 cm for 2 min (see Table 2). No
starting difficulties were observed with the engine when
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Fig. 1 The test bed setup. (1) DC dynamometer. (2) SI engine, TD201
model. (3) Transducer. (4) Fuel tank. (5) Automatic volumetric fuel gauge
with DVF1. (6) Control panel. (7) Computer system with VDAS soft-
ware. (8) Air inlet adapter. (9) Base plate. (10) Crank encoder. (11)Water-
cooled inlet. (12) Engine cycle analyzer. (13) Exhaust gas outlet
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fueled with E5, E10, and E15. The fuel properties of the test
fuels used in this work are presented in Table 3 as previously
presented in our article [3]. The details about the experimental
process can be obtained in previous research [14–16].

3 Results and discussion

3.1 Performance behaviors

3.1.1 Effect of specific fuel consumption (SFC) and BTE

These experiments were conducted at various engine speeds
for a certain percent of the WOT using constant 8.5:1 CR.
Figure 2 reveals the relations between engine speed and SFC
for various fuel blends.When the engine speed increased from
2400 to 2700 rpm, the SFC for E5 and E15 decreased by
11.3% and 15.7% respectively, which was lower than that of
unleaded gasoline and E10. It was observed that the engine
appeared to operate at the highest SFCwithin 58 to 74%WOT
while fueled with E10. In this case, there was an uncertain
trend. However, this result shows that the SFC was relatively

low at 2400 rpm with E15, which disagrees with recent work
by Phuangwongtrakul et al. [17], who stated that at low engine
speed, the SFC is relatively high. However, several re-
searchers reported that the SFC can either decrease or increase
with bioethanol fuel. These conflicts occur for several reasons:
when the SFC decreases, the combustion efficiency increases
with the effect of oxygen content [15]; the SFC decreases,
reaching its minimum values when the BTE increases [18];
and higher due to the rich mixture at higher BMEP [9] and
lower heating value [4]. These results are viable for lower
mixtures of bioethanol, but there is no evidence from the lit-
erature that fully describes a decrease in SFC for high
bioethanol blends. In addition, this research provides a de-
tailed summary and comparison of the recent trends for both
increased and decreased SFC.

Figure 3 presents the effect of BTE for bioethanol fuel blend
under steady-state conditions at full load. The engine attained a
maximum efficiency of 25.7% at E15 with 2700 rpm; this is
higher by 6.7% compared to pure gasoline, which seems to be
the optimum. At all the engine speeds, E5 and E10 showed a
slight decrease in engine efficiency, but the engine ran smoothly
without any additional noise. This may be attributed to fuel en-
richment or spark retard. It was suggested that increase in CRs
enhances thermodynamic expansion efficiency, despite the fact
that a few theoretical gains are lost due to the increment of ring-

Table 2 The maximum noise levels measured

Record positions Altitude recording dB(A)#

At machinist ear 90

In front of the engine* 90

Back of machine* 90

Left-hand side of machine* 91

Right-hand side of machine* 94

Localized areas of excess noise 102

#At Leq period (2 min); * at a distance of 100 cm and height of 160 cm

Noise pressure levels: At 80 dB(A), the ear defenders are worn and <
85 dB(A), the ear defenders should be neglected

Table 3 The fuel properties of bioethanol and gasoline

Property Units Bioethanol Gasoline

Composition (C, H, O)
Density at 15 °C
LHV
Colorific value
Viscosity at 20 °C
Flash point
Ethanol content

Mass %
Kg/m
MJ/kg
MJ/kg
mm2-s−1

°C
%vol

52, 13, 35
793.2
26.3
29.1
1.3
21.7
90.19

86, 14, 0
737
43.5
47.3
0.37 to 0.44
− 45 to − 13
-

Table 1 Engine specification
Items Specification

Engine type Single-cylinder, four-stroke TD201 SI engine, equipped with EFI systems

Dimensions (W ×H ×D) (400 × 400 × 300 m)

Absolute maximum power 6 hp at 4000 r/min

Continues rated power 2.6 kWat 3000 r/min

2.9 kWat 3600 r/min

Bore × stroke 67 mm× 49 mm

Crank radius 24.5 mm

Connecting rod length 85 mm

Displacement 172 cm3

CR 8.5:1

Ambient air pressure 1018 mbar

Valves Intake and exhaust

Biomass Conv. Bioref.



to-bore wall friction from higher cylinder pressures. The trend
towards lowering of parasitic losses in driving the high pressure
fuel pump may provide an effective path for reducing friction
[19]. Minimizing friction in the engine is an essential way for
decreasing fuel consumption.

3.1.2 Effect of power and torque

Figure 4 indicates the engine power which operates at 5%,
10%, and 15% v/v bioethanol under different engine speeds.
As observed, the engine power using bioethanol-gasoline
blends was slightly higher by 1.3%, 1.9%, and 2.4% with
E5, E10, and E15, respectively, compared to E0. This oc-
curred as a result of an increase in engine speeds and the
low caloric value of the bioethanol blends compared to gaso-
line. These results indicated that the high octane number in
bioethanol blends improved the combustion properties under
all engine speeds at steady-state conditions. Other properties
that favored the decrease in fuel consumption and increase in
engine power were as follows: high density, high LHV,

extended limits of flammability, the number of molecules be-
ing more than the reactants, and constant boiling temperature.

Figure 5 shows the effect of various bioethanol blend ratios
on TE at various engine speeds. The result shows that the
optimal TE performance was obtained between 2400 and
2700 rpm for all fuel types and the lowest value was found
between 1800 and 3000 rpm. When the bioethanol ratio in-
creased, the TE increased at certain engine speeds, and then the
engine-out emission also increased. The TE and BMEP for all
blend fuels were higher than E0 at an engine speed of 2400 to
2700 rpm. This happens because there is less time to complete
combustion in an engine cycle, which requires faster flame
speed with an increase in ignition timing [6].

3.2 Combustion characteristics

3.2.1 Heat-transfer and combustion model

The loss of heat by the combustion chamber wall (Qh) is one
of the key heat losses in an ICE, and is calculated using

Fig. 5 The effect of bioethanol blend fuels at various engine speeds for
CR = 8.5:1 on torque (TE)

Fig. 2 The effect of bioethanol blend ratio at CR = 8.5:1 on specific fuel
consumption

Fig. 4 The effect of bioethanol blend fuels at various engine speeds for
CR = 8.5:1 on power

Fig. 3 The effect of bioethanol blend ratio at CR = 8.5:1 on BTE
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internal heat balance in an engine process simulation [20], as
shown in Eq. 1. The unaccountable heat loss Qu for the
mixture-controlled combustion is the heat supplied by fuel
minus cumulative heat taken by fluid properties (cooling wa-
ter, exhaust gases, and lubricant oil) and piston power, as
given in Eqs. 2 and 3. This model is used to predict the heat
loss and combustion characteristics in SI engines. Duc [21]
developed a simulated model based on a test engine using the
first law of thermodynamics to predict the high-pressure cycle
and combustion characteristics in the internal energy in an
ICE. However, the model neglected the effect of heat taken
by lubricant oil on the internal heat balance of the engine. The
thermal properties of lubricant oil are a significant factor,
allowing the oil to transfer heat from the engine. The larger
the specific heat and thermal conductivity, the more efficient is
the transfer of heat by the oil [22]. In this study, we developed
a model that considers the effect of heat taken by engine oil,
piston power (Pω), heat input by fuel, heat taken by cooling
water, and exhaust gases.

Qh ¼
1

ω
∫
1

c
h� A∙ Tw−T sð Þ � dφ ð1Þ

where A is the instantaneous combustion chamber surface
area, c is the over the combustion cycle, (Tw−Ts) is the tem-
perature difference of the wall-gas, φ is the crank angle, ω is
the angular frequency, h is the heat transfer co-efficiency.

Qu ¼ m˙ f Cvf− ∑
k

n¼1
Qn ð2Þ

ð3Þ

The periodicity of a one-dimensional transient temperature
and the temperature oscillation on the combustion chamber
wall expands infinitely in one direction as the starting point.
The wall heat flux densities that cause the temperature behav-
iors which can be calculated using Laplace’s differential equa-
tion formulated by Eichelberg (Eq. 4), as reported by
Pinkernell et al. [23]. The authors [23] also suggested a po-
tential way to correct the effect of deposits (soot, carbon, etc.)
using soot free model fuels.

q˙ ¼ q˙ m

þ λ∙ ∑
∞

i¼1

ffiffiffiffiffi

iω
2a

r

∙ X i þ Y ið Þ∙cos iωtð Þ þ Y i þ X ið Þ∙sin iωtð Þ½ �

ð4Þ

However, h can be calculated using Eq. 5, which was for-
mulated by Woschni for high-pressure cycles in combustion
engines. Equation 5 depends on velocity, combustion pres-
sure, and gas temperature with respect to time for which the
burned gas on thermal. Also, it reveals the amount of NOX

formation rate produced during combustion.

ð5Þ
where Pwo is the motored engine cylinder pressure; Cm is the
mean piston velocity; C1 is swirl quantity for the flow veloc-
ity: when the intake closes from exhaust opens, the
C1 ¼ 6:18þ 0:417 cu=cmð Þ, and when the exhaust opens from
intake closes, the C1 ¼ 2:28þ 0:308 cu=cmð Þ; C2 = 0.00324
(m/sK) for direct-ignition engines, C2 = 0.0062 (m/sK) for en-
gines with different combustion chambers, and C2 = 0 for
compression and gas exhaust; P1 is the cylinder pressure at
the beginning of compression;D is the cylinder diameter; Vh is
the swept volume; Ts is the gas temperature in the cylinder.

3.2.2 Combustion analysis

Figure 6 shows the heat release rate, combustion duration, and
ignition delay with respect to crank angle (φ/°CA) under var-
ious blended fuels. When the engine operated with E15, no
deterioration was observed, and hence exhibited high indicat-
ed power and efficiency with low fuel consumption between
12 and 18° CA aTDC. These are due to the low content of
carbon in bioethanol which eliminates the occurrence of soot
formation and requires less air to burn a fuel blend with low
luminosity and radiation. The results also showed a reduction

Fig. 6 Variation of rate heat transfer for different bioethanol blends at
1500 rpm with 10 Nm
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in air pollution (NOX emission) produced by lead (pb) and
heat loss when fueled with E10 and E15 at low flame temper-
ature. Figure 5 shows that E5, E10, and E15 fuels had a higher
premixed combustion duration with a decrease in controlled
diffusion combustion compared to unleaded gasoline due to
their longer ignition delay time [24]. These phases have faster
combustion because the blend fuels burn at the same timewith
various φ (°CA) increases of ignition delay [25]. Thus, it was
observed that increases in cycle efficiency shortened the com-
bustion duration.

As illustrated in Fig. 7, the in-cylinder pressure was slightly
higher for E0 at 15° CA aTDC, which had a beneficial influ-
ence on the auto-ignition timing. This occurred due to there
being less heat loss through combustion chamber wall con-
duction and flame radiation. The predicted models of the com-
bustion characteristics under different operational conditions
showed similar trends to the actual results, as illustrated in
Figs. 5 and 6. At 20° CA bTDC, in early injection conditions,
the fuel ignition started to burn simultaneously at 0° CA
aTDC. This is because the blend fuels evaporated rapidly
which led to formation of a homogeneous mixture quickly
during the short ignition delay. When the combustion phases
were the same, the model results suggested that a little mod-
ification in the heat transfer parameter has a great impact on
the thermal efficiency. These combustion characteristics have
a direct effect on engine-out emissions, especially NOX emis-
sions which are associated with combustion temperature [26].

It was observed that high engine speeds increased fuel di-
lution which led to slight reduction in lubricant oil viscosity.
The increase in premixing ratio yielded a slight increase in
cylinder pressure of the E0 premixing fuel, but the difference
was small compared to E5, E10, and E15 premixing due to the
small imbalance among all ignition timing. The ignition delay
uniformly increased when the injection timing proceeded
from 3 to 6° CA aTDC. This increase was because of low
temperature and pressure in the combustion chamber. As

previously reported, the decrease of pressure and temperature
in the combustion chamber is due to the descent of the piston
after injection or during injection [27]. Figure 8 shows the
effect of fuel blend on IMEP for the start of injection (SOI)
SOI° CA aTDC. It was observed that the engine power in-
creased as the injection timing approached top dead center
(TDC). The increase in bioethanol fraction induced an in-
crease in IMEP for all injection timings.

3.3 Emission characteristics

3.3.1 Effect of NOX emissions

As shown in Fig. 9, it was observed that CO was highest with
E5 and NOX emission was lowest with E10 fuel. This can be
explained because the higher the LHV, the lower the combus-
tion temperature. In addition, the percentage of S, N, and ash
content was relatively low in the biomass fuel. These suggest
that the bioethanol fuel extracted from Mbwazirume biomass
does not need any processing or technology for reducing the
exhaust emission of sulfur oxides (SOX) and NOX [28].
Besides, the engine showed an interesting trend for attaining
a maximum efficiency at E15 with a decrease of 15.7% in fuel
consumption compared to that of E0. This shows that
bioethanol blends improved fuel economy, so if the bioethanol
is affordable, the economics will be favorable.

Emission characteristics such as HC, CO, CO2, and NOX

of bioethanol fraction combustion are presented in Fig. 10, 11,
and Fig. 12. In the case of SOI for NOX emissions, the trend
followed the bioethanol fraction and φ (°CA) very closely.
Figure 9 shows the NOx emission behavior of combustion
for the bioethanol fraction with respect to SOI° CA aTDC. It
was observed that the rate of pressure was relatively less due
to the low fueling rate of the bioethanol injection, which was
enough to obtain robust injection and combustion. This small
amount of the injected fuel involved in the combustion phase
caused a lowNOX emission and temperature. The rate of NOX

Fig. 7 Variation of pressure for various blended fuels at CR 8.5:1 with
10 Nm Fig. 8 The effect of blend fuels on IMEP for SOI° CA aTDC
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formation rose higher with E5 and E10 due to the combustion
advanced which led to high temperature and in-cylinder pres-
sure compared to the E0 and E15. The NOX emissions in this
study were low compared to those presented in the literature
using E5 and E10 [29], E20, E50, E75, and E100 [30] and
bioethanol-biodiesel combustion [31].

3.3.2 Effect of CO, CO2, and HC emissions

The purpose of this section is to highlight some significant
aspects of exhaust emissions associated with blended fuels
in EFI engine. The CO, CO2, and HC emissions generated
by road vehicles are increasing significantly worldwide.
According to the foregoing conclusion, the engine-out emis-
sions can either increase or decrease significantly. The effect
of engine speeds of 2700 rpm on CO, CO2, and HC emissions
were studied at all blend fuels, as shown in Fig. 9. The result
from this experiment shows that the proportion of CO2 re-
duced as the blend ratio increased. This happens due to the
oxygen amount in the blend fuels and the high flammability
limit which improved the mixing process and hence combus-
tion efficiency [6]. This result is similar that of Iodice et al. [8].

As shown in the Fig. 9, the E5 fuel produced the highest
emissions of CO and CO2 while the lowest emissions of CO,
CO2, and HC occurred with the E15 fuel. This effect is due to
the increase in the actual air-fuel ratio which decreases the
stoichiometric air-fuel ratio of the blend fuels as a result of
the high oxygen content in the bioethanol [32]. As illustrated
in Figs. 11 and 12, low emissions of CO and HC were ob-
served when the injection timing was retarded towards TDC.
The CO emission decreased from 160 to 93 ppm with an
increase in SOI (between 15° CA bTDC and CA0) with
E15. This trend of variation is similar to that of the model,
but at 2700 rpm, the CO emission was higher (see Fig. 9) due
to the shorter combustion time at high engine speed [33].
Figure 11 reveals that the HC emission for the SOI decreased
as the blend fuels increased. The lowest HC emissions oc-
curred when the SOI retarded, except at 10° CA bTDC/SOI
which did not follow this trend.

CO emissions occur when the engine cylinder undergoes
incomplete oxidation of the fuel, which is also sensitive to
the temperature for homogenous combustion of lean mix-
tures. Figure 11 reveals the increase and decrease in the
combustion chamber with respect to temperature. The CO

Fig. 10 The NOX emission variations for bioethanol fraction with respect
to SOI° CA aTDC

Fig. 12 The CO emissions variations for bioethanol fraction with respect
to SOI° CA aTDC

Fig. 11 Effect of HC emissions variations for bioethanol fraction with
respect to SOI° CA aTDC

Fig. 9 The impact of bioethanol ratios on emissions at constant engine
speed (2700 rpm) with CR= 8.5:1
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emissions decreased with E15 and increased rapidly for E5
and E10 compared to E0, when the Teg was at 192 °C for
21.7-s fuel drain time (Fdt). This occurs due to the combus-
tion temperatures at very dilute conditions being too low to
complete the CO-to-CO2 reactions before quenching due to
expansion cooling [34].

4 Conclusion

Better results can be obtained from SI engines using
bioethanol in terms of performance, combustion behaviors,
and emissions; this depends on operating conditions and prop-
erties of bioethanol-gasoline blends which create significant
changes in the combustion system. The conclusions are as
follows.

1. When the engine operated with E10 and E15, the engine-
out emissions decreased while the engine performance
slightly increased. These results suggest that the fuel
blend ratios induced an increase in combustion duration
with minimum premixing combustion duration, hence ex-
hibited low emissions, high indicated power, and efficien-
cy with low fuel consumption (at 12 to 18° CA aTDC). In
addition, rapid evaporation of the fuel blend was observed
thus leading to formation of a homogeneous mixture
quicker during short ignition delay.

2. The rate of NOX formation rose higher with E5 and E10;
this is due to the combustion advanced which led to
higher temperatures and in-cylinder pressures than that
of E0 and E15 fuel. CO and CO2 emissions decreased
with E15 and rapidly increased with E5 and E10 while
the HC emissions decreased at all injection timings for E5,
E10, and E15, except that of 10° CA bTDC/SOI which
did not follow this trend.

3. High engine speed increased fuel dilution which led to a
slight reduction in lubricant oil viscosity. As critically
analyzed, this might produce wear in the future.

4. The predicted model of the combustion characteristics
showed the same consistent behavior which the experi-
mental results found. Also, when the combustion phases
were the same, the model results suggested that a little
modification in the heat transfer parameter has a great
effect on the thermal efficiency.

5. The literature suggests that a possible way of correcting
the effect of deposits (soot, carbon, etc.) is to use soot free
model fuels (as discussed in Section 3.2).

Funding information This study is financially supported by DAAD
personal grant no 91712001 and Professor Freddie L. Inambao from
Department of Mechanical Engineering, University of KwaZulu-Natal,
Durban, South Africa.
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 Conclusion and Recommendation for Future Work 

 

9.1   Conclusion  

The aims and objectives of this study were to characterize the biomass, evaluate and produce 

bioethanol fuels from a unique LCB which is the matooke peels species, and examined the 

emissions and combustion effects of low content rates of bioethanol blends with gasoline in a 

modernized SI engine. Utilizing this waste biomass for bioethanol production through a 

biotechnological process not only helps to reduce environmental pollution but can also reduce 

the dependence of Uganda on oil-producing countries and provide an additional source of 

income for the government. 

The matooke peels species such as Mbwazirume and Nakyinyika biomass peels were 

characterized to identify its use in bioenergy production. Experimental findings revealed that 

the pretreated Mbwazirume biomass exhibited excellent solid fuel properties when compared 

to untreated Mbwazirume, and pretreated and untreated Nakyinyika biomass peels. The 

physical and chemical properties of the bioethanol produced are within the acceptable range of 

ASTM standards and comparable to gasoline. The Mbwazirume biomass shows high 

bioethanol yields and excellent fuel properties, thus can serve as a fuel of choice for further 

experimentation. With the background of practical and policy implications presented in section 

5.7 of paper 5, it was found that the renewable energy policy (REP) 2007 was the appropriate 

policy for this research finding. 

This study shows that the use of bioethanol in an SI engine has the advantage of reducing most 

regulated engine-out emissions, as well as improving combustion and thermal efficiency. This 

impact changes with the blend ratio. When the engine operated with E10 and E15, the engine-

out emissions decreased while the engine performance slightly increased. These results suggest 

that the fuel blend ratios induced an increase in combustion duration with minimum premixing 

combustion duration, hence exhibited low emissions, and high indicated power and efficiency 

with low fuel consumption at 12º CA aTDC to 18º CA aTDC. The rate of NOX formation 

increased with E5 and E10 which would have been due to the combustion advanced which led 

to higher temperatures and in-cylinder pressures than that of E0 and E15 fuel. CO and CO2 

emissions decreased with E15 and rapidly increased with E5 and E10 while the HC emissions 

decreased at all injection timings for E5, E10, and E15, except that of 10º CA bTDC/SOI which 
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did not follow this trend. However, contrary to assumptions, there is no linear trend between 

increasing bioethanol content and any change in combustion and heat transfer characteristics.  

The predicted model of the combustion characteristics showed the same consistent behavior 

with the experimental results found. The model results suggested a little modification in the 

heat transfer parameter has a great effect on the thermal efficiency, especially with E5 and E10 

blend fuels. E15 demonstrated the most essential fuel for increasing combustion speed and 

decreasing heat losses to coolant and exhaust. 

9.2   Recommendation for Future Work 

Bioethanol is an alternative fuel obtained from biomass and has been used in different countries 

for several years as it is considered to be renewable and clean energy. The major problem of 

bioethanol is the availability of biomass materials for its production, and not all bioethanol 

fuels bring benefits to the environment concerning performance and emissions. Assessment 

needs to be made for each type of biomass material, location, and extraction technique. In 

addition, better results can be obtained from spark-ignition engines using bioethanol in terms 

of performance, combustion behaviors and emissions in relation to operating conditions and 

properties of bioethanol-gasoline blends which create significant changes in the combustion 

system. The engine experiment presented in this thesis concentrates on the effect of low content 

bioethanol blends on the emissions, combustion characteristics and heat transfer behavior at 

low ambient temperature and selected operating conditions. Future research may investigate 

the effect of high percentage bioethanol blends on port-fuel injection or wall-guided DISI 

engines with different compression ratios at high ambient temperature and different operation 

conditions, which is of extreme importance. The sensitivity of bioethanol to all these changes 

should be properly investigated. In addition, the higher heating value (HHV) of the biomasses 

was found to be between 15.52 MJ-kg-1 and 18.28 MJ-kg-1. According to EN ISO 16559 

standard solid biofuel terminology, the total waste generated per capita per year with this HHV 

can produce an electric power of 100 kWh to 186.52 kWh which is more than enough for 

consideration as a source of energy. It is suggested that the prospective research should also 

focus on Nakyinyika biomass and other species for reaching Ugandan bioenergy’s targets over 

the medium to long term, for the purposes of electricity generation, since electricity distribution 

in Uganda is among the lowest in Africa. 
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