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Abstract

The analysis of longitudinal binary data can be undertaken using any of the

three families of models namely, marginal, random effects and conditional

models. Each family of models has its own respective merits and demerits.

The models are applied in the analysis of binary longitudinal data for child-

hood disease data namely the Respiratory Syncytial Virus (RSV) data col-

lected from a study in Kilifi, coastal Kenya. The marginal model was fitted

using generalized estimating equations (GEE). The random effects models

were fitted using ‘Proc GLIMMIX’ and ‘NLMIXED’ in SAS and then again

in Genstat. Because the data is a state transition type of data with the

Markovian property the conditional model was used to capture the depen-

dence of the current response to the previous response which is known as

the history. The data set has two main complicating issues. Firstly, there is

the question of developing a stochastically based probability model for the

disease process. In the current work we use direct likelihood and generalized

linear modelling (GLM) approaches to estimate important disease parame-

ters. The force of infection and the recovery rate are the key parameters of

interest. The findings of the current work are consistent and in agreement

with those in White et al. (2003). The aspect of time dependence on the

RSV disease is also highlighted in the thesis by fitting monthly piecewise

models for both parameters. Secondly, there is the issue of incomplete data

in the analysis of longitudinal data. Commonly used methods to analyze

incomplete longitudinal data include the well known available case analysis

(AC) and last observation carried forward (LOCF). However, these methods

rely on strong assumptions such as missing completely at random (MCAR)

for AC analysis and unchanging profile after dropout for LOCF analysis.

Such assumptions are too strong to generally hold. In recent years, methods
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of analyzing incomplete longitudinal data have become available with weaker

assumptions, such as missing at random (MAR). Thus we make use of mul-

tiple imputation via chained equations that require the MAR assumption

and maximum likelihood methods that result in the missing data mecha-

nism becoming ignorable as soon as it is MAR. Thus we are faced with the

problem of incomplete repeated non–normal data suggesting the use of at

least the Generalized Linear Mixed Model (GLMM) to account for natural

individual heterogeneity. The comparison of the parameter estimates using

the different methods to handle the dropout is strongly emphasized in order

to evaluate the advantages of the different methods and approaches. The

survival analysis approach was also utilized to model the data due to the

presence of multiple events per subject and the time between these events.
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Chapter 1

Introduction

Crowder and Hand (1990) state that repeated measures arise in many diverse

fields and are possibly even more common than single measurements. The

term ‘repeated’ is used to describe measurements which are made of the same

characteristic on the same observational unit but on more than one occasion.

In longitudinal studies individuals may be monitored over a period of time

to record the developing pattern of their observed values. The conditions of

the period may be deliberately changed, such as in crossover trials to study

the effect of treatment on the individual. Lindsey (1999) state what distin-

guishes repeated observations from those in the more traditional statistical

data modelling as being that:

• the same variable is measured on the same observational unit more

than once and as a result the responses are not independent as in the

usual regression analysis and where

• more than one observational unit is involved; the responses do not form

a simple time series.
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Lindsey (1999) gives two factors that are imperative to repeated measures

data, namely

1. the two types of stochastic dependence among measurements on the

same observational unit,

• homogeneity of responses on a unit versus heterogeneity across

units

• distance, in time or space, among responses on a unit.

2. the three basic types of responses which may be measured,

• general continuous data

• categorical or count data (as in the current study)

• duration and survival data

Repeated measures may be spatial rather than temporal. Crowder gives the

following two examples to validate the above statement i.e. the first concerns

individual load bearing cables where the breaking strength may be measured

at several points along the length, so ‘time’ becomes ‘distance’. The second

is an example in two dimensions, where the intensity of corrosion may be

recorded at points over the floor area of a metal tank. Lindsey (1999) give

various examples of repeated measures data that range from Agriculture,

Biology, Business, Commerce, Engineering, Medicine (successive periods of

illness and recovery under different treatment regimes) and Geography, just

to mention a few. There are various examples of repeated measures from

different fields, but it can be best summarized that in most contexts where a

single measurement can be made, repeated measurements can also be made.

Lindsey (1999) calls longitudinal studies prospective studies, that is, a sample
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of units may be chosen according to the criteria of certain explanatory vari-

ables and then followed up in time to see what response is obtained. Diggle

et al. (2002) also highlight this point stating that longitudinal data can be

collected prospectively, following subjects forward in time or retrospectively,

by extracting multiple observations on each person from historical records.

They then go on to point out that longitudinal data are more commonly

collected prospectively since the quality of repeated measurements collected

from past records or from a person’s recollection my be inferior due to recall

bias (Goldfarb, 1960). Under this broad class, of prospective studies, we

find panel, clinical trial and cohort studies. Examples of such prospective

(longitudinal) studies include growth studies and longitudinal health stud-

ies. Lindsey (1999) further states that time is an explanatory variable within

units and the aim is to compare the differences in the way in which the mea-

surements change over time for different units or groups of units.

Diggle and Donnelly (1989) give the following characteristics of longitudinal

repeated measurement studies:

(i) The data consist of a relatively large number of time series, structured

by some type of more or less complex experimental or sample design

(ii) Usually the time series are relatively short

(iii) The times of measurement may be unequally spaced, may include miss-

ing values, and may be different among units. This may be the result

of design or of accidental missingness.

(iv) The series will often be nonstationary in mean and/ or in higher order

structure

(v) The researcher is usually most interested in the mean response profile,

often some sort of location model linking the experimental conditions
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to the observed series of responses. However a reasonable model for the

higher order structure, at least the second order covariance structure,

is important, if only to provide valid and efficient inferences about the

mean response profile. In some cases, it may also be of interest in its

own right.

Molenberghs and Verbeke (2005) state that longitudinal data exhibit replica-

tion ‘in two directions’, subjects on the one hand and repeated measurements

within subject collected over time on the other hand, with in addition the

specific structure imposed by the uni-directional time dimension, makes them

rich in structure.

As far as predictions go, the longitudinal data on available units will be

used to predict future values of a unit which has a shorter time series, with

prediction only up to the end of the time period of the first set of units. Dig-

gle et al. (2002) state that the differences between longitudinal studies and

cross-sectional studies is essentially that in a cross-sectional study, a single

outcome is measured for each individual as opposed to the several measure-

ments per individual in longitudinal studies. They further state that while

it is often possible to address the same scientific questions in a longitudinal

or cross-sectional study, the major advantage of longitudinal studies is its

capacity to separate what in the context of population studies are called co-

hort (changes over time within subjects from differences within subjects at

the baseline level) and age (changes over time within subjects) effects.

The data set that we will be analyzing falls under categorical and count

data. Lindsey (1999) state that categorical and count data are increas-

ingly becoming more common in statistical inference, and, in a number of
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fields, now have far more importance than normal type responses. He then

distinguishes the differences between count and categorical data by giving

two examples to exemplify this point, one with respect to a study of over-

weight/obese people and the other example with respect to the number of

industrial accidents per week in several factories over time.

Molenberghs and Verbeke (2005) state that there are three families of

models that are suitable for modelling longitudinal data. They are marginal

models, random effects models and conditional models. They formalize the

idea of the longitudinal data setting as follows: Each individual has a vector

Y of responses with a natural (time) ordering among the components. This

leads to several generally nonequivalent, extensions of univariate models. In

a marginal model, marginal distributions are used to describe the outcome

vector Y , given a set X of predictor variables. The correlations among the

components of Y can then be captured either by adopting a fully paramet-

ric approach or by modelling a limited number of lower order moments only.

Alternatively in the random effects models, the predictor variables X are sup-

plemented with a vector b (or β) of subject specific effects, conditional upon

which the components of Y are often assumed to be independent. This does

not preclude the fact that more elaborate models are possible if residual de-

pendence is detected. Finally a conditional model describes the distribution

of the components of Y conditional onX but also conditional on (a subset of)

the other components of Y . In a longitudinal context, a particular relevant

class of conditional models that describes a component of Y given the ones

recorded earlier in time are the so-called autoregressive or transition models.

These models will be looked at in more detail in subsequent chapters with

application to the Respiratory Syncytial Virus (RSV) data set that consti-
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tutes the object of analysis in the current study. The current work is based

on a repeated measurements or longitudinal data monitoring the infection

status from a respiratory disease (RSV) for children within one year of age.

The focus in the thesis is a problem with complex data structures particu-

larly involving the dependence and incompleteness. Modelling is crucial for

simplifying and clarifying the structure. Compromise with the likelihood,

for example using marginal, conditional or approximate likelihoods, become

necessary.

The aims and objectives of the research is to:

• Model the RSV data set using different techniques by taking into ac-

count the longitudinal structure that is present in the data.

• Estimate the force of infection and per capita loss of infection or recov-

ery rate using likelihood based methods.

• Model the missingness and the dropout process in the data set.

• Review the computational tools that software packages such as SAS

and Genstat incorporate to model longitudinal data.

23



Chapter 2

Exploratory and preliminary

data analysis

The Kilifi data set from coastal Kenya is a longitudinal study measuring

the prevalence of the Respiratory Syncytial Virus (RSV, a causal agent of

pneumonia) in children. By definition, a longitudinal study is one where data

are obtained when a response is measured repeatedly on a set of units. The

Kilifi data set is part of a study carried out by the Kenyan Medical Research

Institute and the Wellcome Trust in Kilifi, Kenya. The data set presents a

form of missingness or incompleteness which has to be properly accounted

for in order to carry out an appropriate analysis of the data which will lead

to correct conclusions. The model that will be built to represent this data

will aid in understanding the disease process and in the design of intervention

strategies for this disease affecting children mostly under the age of one year

because proper inference will be drawn from it. The Kilifi data set had 368

children that were recruited in the study, however only 334 children’s data

were measured and recorded. For each child the following information was

collected with the variable names in brackets and underlined. These are:
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• the number of visits (visit);

• the time between visits (dt);

• the type of sampling, active sampling if the field worker went to visit

the child and passive if the child was brought to the clinic to be sampled

(actipass);

• the age in months of the child at the visit (age);

• whether the child is infected or uninfected (rsv), this is the response

variable;

• the time in months since the beginning of the study (timemonth);

• the prevalence of the virus in the blood (prev), a continuous variable;

In all there were 9374 responses that were measured and the number of times

each child is measured varied from one child to another, for example, child no.

344 is measured at 12 different occasions with unequal time intervals between

measurements and child # 368 was measured at 20 different occasions with

equally spaced time intervals. In designed experiments data can be described

as balanced when each cell in the data set contains the same number of

observations and as unbalanced when this is not the case. Unbalanced data

can also occur when the design of the experiment forces the data to be

unbalanced i.e ‘planned unbalancedness’. Unbalanced data can also result

from unfortunate circumstances or experimental carelessness, for example, if

the experimenter loses some of the data points. In this regard the Kilifi data

set can be described as a highly unbalanced one. The coding and levels of

data variables is shown in Table 1.1 below:
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Variable Levels and coding

id 1,. . . ,368

rsv 1=uninfected, 2=infected

dt 0,. . . ,181

visit 1,. . . ,44 (not all the children had 44 visits)

actpass 1=active sampling, 2=passive sampling

age 0,. . . ,12 months

timemonth 1,. . . ,12 months

prev a continuous variable ranging from min=0 to max=0.047516

Table 2.1: Table of variables

It is clear that the response variable (rsv) in the above data set is a binary

non-Gaussian variable. The generalized linear model in a longitudinal setting

seems the best option to deal with such a data set. First, in general the linear

mixed model makes the following four assumptions:

• First the mean structure or a function of the mean structure in the case

of Non-Gaussian data is modelled as a linear function of the measured

covariates and other explanatory variables such as time in the above

example data set.

• Secondly the model also makes assumptions about the variance function

which can be constant, linear, quadratic or take on other forms.

• Thirdly there is an assumption about the correlation structure i.e. a

model can assume a constant or serial correlation structure across the

individual set of observations or a more complicated correlation struc-

ture.

• Finally the model also makes an assumption about the individual-
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specific profiles which can be linear, quadratic or general polynomial

structure.

In practice the linear mixed model can be built using a two stage formulation

as outlined in Verbeke and Molenberghs (2000). This type of formulation

will be discussed in detail in Chapter 2. Data exploration is therefore an

extremely helpful tool in the selection, identification and inference of an

appropriate model. Although the Kilifi data set cannot be appropriately

analyzed as Gaussian longitudinal data the similarities and dis-similarities

with non-Gaussian data is important in order to develop an appropriate

model for it. For this reason Chapter 2 will be devoted to a review of the

linear mixed model under the Gaussian assumption.

2.1 Profile plots

Figures 2.1 and 2.2 show plots for disease status against sample visits for

individual subjects and a group of individuals respectively. From the profile

plots in Figure 2.1 and Figure 2.2, it is clear that many of the children

remained uninfected for most of the study time in which they were followed.

The zero level in the plots indicate that the child was in an uninfected state.

The x-axis is the visitation number of the child whilst the y-axis denotes the

disease status of the child.
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Figure 2.1: A sample of profile plots.
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Figure 2.2: Overall profile and a sample of 10 profile plots.
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2.2 Overall transitions

A program was written in SAS Proc IML to get the following 2×2 transition

matrix:

Yij

uninfected infected

Yij−1

uninfected 8598 132

infected 131 13

Table 2.2: Matrix of transitions between infected and uninfected states

The 2 × 2 matrix gives the number of visits to the uninfected and infected

states conditional on the state (row) at previous visit. From the above ma-

trix, it is clear that this disease is a rare one because most of the transitions

were from uninfected to uninfected states. There are a total of 131 transi-

tions among the children from the uninfected to the infected state and almost

a similar number, of 132, transiting from infected to uninfected. It is how-

ever important to note that the time interval between transitions was not

constant. The time intervals were different within and between the children,

which as previously stated, makes the data set highly unbalanced. Therefore

standard methods of analysis may not be directly applicable. Appropriate

models to deal with the data is one of the aims of this thesis.
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2.3 Visits by week

A program was written in SAS using the Proc IML to group the data into

weeks and also to count the number of transitions between the two states of

uninfected and infected during a given week. The probability of being in the

infected and uninfected states was calculated for each week. This information

is displayed in Table 2.3.The reason for exploring the data in this way was to

possibly isolate temporal trends in the infection process as well as identifying

the weeks when the probability of infection had been at its peak. Figure 2.3

which is a plot of the observed weekly probability to be infected against time

clearly shows that the respiratory disease is highly seasonal. There are times

when the incidence is high and times when it is very low. This is evidence of

time dependence in the dynamics of the respiratory disease which is possibly

due to the effect of climatic variables which in turn are time dependent.
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Week Uninfected(1’s) Infected(2’s) Probability of being in

an infected state

Probability of being in

uninfected state

1 248 9 0.03502 0.96498

2 263 7 0.02592 0.97407

3 293 10 0.03300 0.96700

4 304 10 0.031847 0.96815

5 297 7 0.02300 0.97697

6 296 7 0.0231 0.97698

7 307 4 0.0129 0.98713

8 288 5 0.017 0.98294

9 294 9 0.0297 0.9703

10 271 4 0.0145 0.98545

11 266 6 0.0220 0.9779

12 276 2 0.0071 0.9928

13 264 3 0.0112 0.9887

14 258 1 0.0039 0.99613

15 240 1 0.00414 0.99585

16 230 1 0.0043 0.99567

17 199 0 0 1

18 147 0 0 1

19 129 0 0 1

20 131 1 0.0076 0.9924

21 133 0 0 1

22 70 0 0 1

23 79 1 0.0125 0.9875

24 108 0 0 1

25 126 0 0 1

26 86 1 0.01149 0.9885

27 74 0 0 1

28 107 0 0 1

29 115 0 0 1

30 86 0 0 1
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Week Uninfected(1’s) Infected(2’s) Probability of being in

an infected state

Probability of being in

an uninfected state

31 76 0 0 1

32 107 1 0.0093 0.9907

33 145 0 0 1

34 100 4 0.0385 0.9615

35 115 2 0.0171 0.9829

36 101 2 0.0194 0.9806

37 134 3 0.0219 0.9781

38 117 4 0.0331 0.9669

39 147 2 0.0134 0.9865

40 167 6 0.0457 0.9543

41 184 6 0.032 0.9684

42 192 5 0.0253 0.9746

43 213 7 0.032 0.0.968

44 227 6 0.026 0.974

45 221 3 0.013 0.986

46 215 3 0.0137 0.9863

47 164 3 0.0179 0.9821

48 100 0 0 1

49 51 0 0 1

50 28 0 0 1

51 11 0 0 1

52 1 0 0 1

Table 2.3: Visits by week for being in the infected and uninfected states
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Figure 2.3: The probability of infection over time in weeks .
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The graphs indicate that the probability of being in an infected state

is highest in weeks 40-43 but noticeably high in weeks 1-4 as well. The

probability of infection during the period between week 17-33 is dominated

by a sequence of zero probabilities. The bar chart further confirms these

facts. In relation to modelling the data, this would imply that choosing

and fitting an appropriate model to the data requires a very careful and

systematic process in order to deal with certain specific complexities about

the data set such as the seasonal effects and missingness.

The exploratory data analysis for the weeks yields the following information:

• The probability of being in an infected state is highest in weeks 1-4

and 40-43 which possibly indicates that the disease, RSV, is affected

by some kind of seasonal factors such as temperature, humidity etc. as

stated by White et al. (unpublished paper 2003).

• The probability of being in an uninfected state seems to be considerably

high throughout all the periods of about 0.98.

• The data for weeks 53-64 have been excluded from the above table

because all the entries are zero, implying that none of the children

continued to have their data recorded for the full length of 64 weeks.

This aspect of missingness will be discussed in Section 2.4 and a full

analysis will be done in Chapter 9.
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2.3.1 Visits by month

A program was written in SAS ’Proc IML’ to group the data into months and

also to count the number of times the children were infected or uninfected

during those months. The probability of being in the infected state and unin-

fected state was calculated during each month. The reason for exploring the

data in this way was to possibly detect any temporal trends in the infection

process as well as identifying the months when the probability of being in the

infection state was at its peak. A further reason was to compare the disease

infection process when time is discretized weekly and monthly.

The results are tabulated as follows:

Months Uninfected(1’s) Infected(2’s) Probability of being in

the infected state

Probability of being in

the uninfected state

1 1136 38 0.0323 0.967

2 1254 24 0.0187 0.9812

3 1252 21 0.0165 0.9835

4 961 3 0.0031 0.9969

5 548 1 0.0018 0.9982

6 417 2 0.0047 0.9953

7 417 0 0 1

8 447 5 0.011 0.989

9 491 11 0.0219 0.978

10 836 27 0.031 0.969

11 855 16 0.0183 0.9817

12 187 0 0 1

Table 2.4: The probability of being in the infected and uninfected states over

time in months
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Figure 2.4: The probability of infection in months.
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The 13th, 14th and 15th months have been left out of the table deliber-

ately because they have no entries as in the case of the weeks 52-64. From the

graphs it is evident that the probability of being in the infected state peaks

in months 1-3 and 9-11. The conclusions about the probability of being in

an infected state from the months data is similar to that of the exploratory

data analysis by weeks. The trends seen in the above graphs are similar

to those in the weekly graphs. From the visits by week and the visits by

months, it is clear that the chance of a child being in the infected state is

related to or affected by some climatic factors in the area, possibly rainfall

or temperature, typical of airborne diseases. These trends were also stated

in the unpublished paper by White et al. (2003). The probability of infec-

tion is highest in months 1-3 and 9-11. The average probability of recurrent

infection in the monthly time scales is 0.011427 and the average probability

of infection in weekly time steps is 0.010757. The reason for the difference is

obvious; the discretization steps are different. Nonetheless the values are of

the same order of magnitude as is expected.

2.3.2 Individual transition matrices

In order to fully understand the data, individual transition matrices were

constructed using a program written in SAS ‘Proc IML’. All the matrices

can not be displayed because there are 334 of them. Most of the observed

transition matrices indicate that most transitions were from the uninfected

to the uninfected states and not from the uninfected to the infected states. In

other words most participants remained sero-negative most of the observation

time. There were only 5 children in the entire data set whose initial state was

the infected state and 229 of them that began the study with the uninfected

state. Below are the transition matrices for child 1 and child 2:

38



Child 1:

Yij

uninfected infected

Yij−1

uninfected 23 1

infected 1 0

Table 2.5: Matrix of transitions between infected and uninfected states for

child 1

Child 2:

Yij

uninfected infected

Yij−1

uninfected 21 1

infected 1 0

Table 2.6: Matrix of transitions between infected and uninfected states for

child 2

2.3.3 Visits

The visits per child are classified as either an actively sampled visit or a

passively sampled visit. An actively sampled visit occurred when the field

worker visited the child for sampling and a passively sampled visit occurred if

the child was brought to the health clinic to be sampled. There were 7506 ac-

tively sampled visits and 1868 passively sampled visits. The following graphs

depict the total number of visits per child, the number of passively sampled

visits per child and the number of actively sampled visits per child. The

vertical axis indicates the number of visits and the horizontal axis represents

the child identification number (child 1, child 2 etc.) in all three graphs.
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Figure 2.5: The graphs of visits.
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2.3.4 Age at the first visit

The following descriptive statistics of the ages of the children (in months)

were obtained using SPSS at the first visit:

Descriptive Statistic Value(months)

Mean 0.6805

Median 1

Mode 1

Sample standard deviation 0.5379

Sample variance 0.2893

Kurtosis 0.002254

Skewness 0.0476

Range 3

Minimum 0

Maximum 3

Table 2.7: Descriptive statistics of the age at first visit

The following frequency distribution table of the children’s ages at the first

visit was also constructed:

Age(months) Frequency

0-0.9 months 119

1-1.9 months 209

2-2.9 months 9

3 months 1

Table 2.8: Frequency distribution table of the age at first visit

2.4 Missingness

There is clearly a form of missingness in the data set, that could be one

of the following three cases. These are missing at random (MAR), missing
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completely at random (MCAR) or missing not at random (MNAR) as defined

by Little and Rubin (2002). Little and Rubin (2002) define the complete data

Y = yij and the missing data indicator M = mij such that mij = 1 if yij

is missing and mij = 0 if yij is present. The missing data mechanism is

characterized by the conditional distribution of M given Y say, f(M |Y, φ)

where φ denotes some unknown parameters. If the missingness does not

depend on the values of the data Y , missing or observed, that is, if

f(M |Y, φ) = f(M |φ)

for all Y and φ, the data is said to be missing completely at random (MCAR).

The missingness does not depend on the data values. Heitjan (1997) provides

the following example of MCAR missing data: Imagine a research associate

shuffling raw data sheets and arbitrarily discarding some of the sheets. Then

this would constitute data which is MCAR. Another example of data which

is MCAR arises when investigators randomly assign research participants to

complete two-thirds of a survey instrument. Graham, Hoffer and Mackinnon

(1996) illustrate the use of planned missing data patterns of the MCAR

type using a survey example where responses are gathered more from survey

items from fewer research participants than one would ordinarily obtain from

a standard survey completion paradigm in which every research participant

receives and answers each survey question. Let Yobs denote the observed

components or entries of Y and Ymiss the missing components. When the

missingness depends only on the Yobs, the observed components or entries,

then the missing data mechanism is called missing at random (MAR) and

f(M |Y, φ) = f(M |Yobs, φ)

for all Ymiss and φ. This is also called ignorability. Ignorability depends of the

analysis method used. Strictly this only applies under likelihood analyses.
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MAR does not imply ignorability under unweighted GEE, for example. Cases

with incomplete data differ from cases with complete data, but the pattern

of data missingness is traceable or predictable from other variables in the

database rather than being due to the specific variable on which the data are

missing. For example, if research participants with low self-esteem are less

likely to return for follow-up sessions in a study that examines anxiety level

over time as a function of self-esteem, and the researcher measures self-esteem

at the initial session, self-esteem can then be used to predict the missingness

pattern of the incomplete data. Another example is reading comprehension.

Investigators can administer a reading comprehension test at the beginning

of a survey administration session; research participants with lower reading

comprehension scores may be less likely to complete the entire survey. In

both of these examples, the actual variables where data are missing are not

the cause of the incomplete data. Instead, the cause of the missing data is due

to some other external influence. When the missing data mechanism depends

conditionally on the missing response variables, given the observed variables,

we have missing not at random (MNAR). This type of missingness is also

called non-ignorability. This pattern of data missingness is non-random and

it is not predictable from other variables in the database. If a participant

in a weight-loss study does not attend a weigh-in due to concerns about his

weight loss, his data are missing due to non-ignorable factors. In contrast

to the MAR situation outlined above where data missingness is explainable

by other measured variables in a study, non-ignorable missing data arise due

to the data missingness pattern being explainable by the very variable(s) on

which the data are missing. This poses an interesting challenge on how to

firstly determine the type of missingness and secondly, on how to model the

data under the prevailing missingness. The analysis of missing data will be
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carried out in detail in Chapter 9. In Chapter 4 the problem is addressed

partly via the use of Weighted Generalized Estimating Equations (WGEE).

2.5 Conclusion

The exploratory data analysis suggests that RSV is a rare disease based

on the preceding descriptive statistics and measures. There were not many

transitions from the uninfected to the infected states nor from the infected

to infected states. The transition pattern could possibly hint at a low force

of infection for the disease. The possible low force of infection was also

evident when the data was broken down by weeks, then by months and the

transition probability plotted over time. The missingness present in the data

set presents a challenge in how to estimate the intermittent missing values

(85 missing values in the response variable) and more importantly how to

model or estimate the missing values in the dropout process where each

child is supposed to have had 44 visits but this was not the case. The data

presents challenging features to be modelled in a longitudinal data set up in

the subsequent chapters of the thesis.
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Chapter 3

Modelling Continuous

Longitudinal Data

The Linear Mixed Model for Longitudinal

Continuous Data

3.1 Introduction

The Kilifi data consists of repeated measurements over time giving the status

of infection (infected or uninfected) with the Respiratory Syncytial Virus

(RSV) virus among children within the age of one year in Kilifi, Kenya.

Thus we have a form of longitudinal data with a binary response as opposed

to a continuous type of response. The number of observations per child was

not constant, say n. But rather there are ni observations corresponding to

child i in general. The time points at which these observations were made

were not equally spaced in days rather in general the jth observation Yij for

child i was in general made at time tij. Furthermore the tij were different

for different children. Thus we have a highly unbalanced data set which
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requires proper modelling procedures in order to come up with meaningful

conclusions. The relevant model required for the data falls in the general class

of models for repeated discrete (non-Gaussian) data. Nevertheless because of

the similarities and dis-similarities between models for those data types and

those for repeated continuous data, this chapter will present an overview

of methods applicable to linear mixed models for longitudinal continuous

(assumed to be Gaussian) data. Methods specific to the analysis of non-

Gaussian data will be developed in subsequent chapters taking into account

the necessary departure from Gaussian data.

3.2 A 2-stage model formulation of the linear

mixed model

Let the vector Yi of the ni observations for individual or cluster i be from

a continuous variable with a Gaussian distribution. Because of the scenario

just described above, that of unequal number of measurements per subject

and that the measurements are not taken at fixed time points, multivariate

regression techniques are often not applicable (Fahrmeir and Tutz, 1994).

However the subject specific longitudinal profiles can be well approximated

by linear regression functions. This leads to what is popularly known as a

2-stage model formulation where in stage 1 a linear regression model for each

subject is defined and in stage 2, an attempt is made to explain the vari-

ability in the subject specific regression coefficients using known covariates

(Verbeke and Molenberghs, 2000). In this chapter the approach by Verbeke

and Molenberghs (2000) is adopted in formulating the linear mixed model

for continuous data. Thus in general let the vector Yi corresponding to ob-

servations from subject i be
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Yi = (Yi1, Yi2, . . . , Yini
)′

then the stage 1 models are given by

Yi = Ziβi + εi (3.1)

for i = 1. . . . , N . Here Zi is an ni× q matrix of known covariates and βi is a

q-dimensional vector of subject specific regression coefficients. It is assumed

that

εi ∼ N(0,Σi)

and often Σi = σ2Ini
implying that the observations Yij are uncorrelated.

It should be noted that the above model describes the observed variability

within subjects. In stage 2 the between subject variability can now be incor-

porated by relating βi to known covariates. That is

βi = Kiβ + bi (3.2)

where Ki is a q × p matrix of known covariates and β is a p-dimensional

vector of unknown regression parameters and bi is a vector that is q × 1. It

is assumed that

bi ∼ N(0, G)

Substituting Eq. (3.2) into Eq. (3.1) leads to the following final expression

for Yi. Namely

Yi = ZiKiβ + Zibi + εi

= Xiβ + Zibi + εi
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Thus the general linear mixed effects model can generally be represented in

the form

Yi = Xiβ + Zibi + εi (3.3)

where bi ∼ N(0, G) denotes the individual random effects assumed to be

normally distributed with a mean vector of zero and a variance matrix G.

The vector εi ∼ N(0,Σi) of dimension ni× 1 denotes the measurement error

and b1, . . . , bN , ε1, . . . , εN are assumed to be independent. The elements in

G and Σi are known as variance components. Within this formulation it is

therefore crucially important to distinguish between the hierarchical and the

marginal model.

3.3 Hierarchical versus Marginal Model

Note that under the above formulation of the general linear mixed model the

conditional distribution of Yi given bi is given by

Yi|bi ∼ N(Xiβ + Zibi,Σi) (3.4)

where

bi ∼ N(0, G). (3.5)

This model formulation given jointly by Eq. (3.5) and Eq. (3.4) is therefore

called a hierarchical model giving a probability model of Yi given bi. It is

clear that marginally Yi is distributed as

Yi ∼ N(Xiβ, ZiGZ
′

i + Σi).

Under the above marginal model, very specific assumptions are made about

the dependence of the mean and covariance on the covariates Xi and Zi.
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The implied mean is Xiβ while the implied covariance is Vi = ZiGZ
′
i + Σi.

It is also crucially important to note that the hierarchical model implies

the marginal one, but not vice versa. As an example, consider the case

where individuals are randomized into three possible doses, low, high and

control dose respectively denoted by L, H and C. Suppose the interest is to

understand the evolution of a continuous response Yij measured on subject

i at time occasions tij, j = 1, . . . , ni, i = 1, . . . , N . Then the stage 1 model

can be written as

Yij = β1i + β2itij + εij

for j = 1, . . . , ni. Let the stage 2 model be given by

{
β1i = β0 + b1i

β2i = β1Li + β2Hi + β3Ci + b2i

where the parameters β1i and β2i are subject specific while β0, β1, β2 and β3

are common to all subjects. Then the combined model is

Yij = (β0 + b1i) + (β1Li + β2Hi + β3iCi + b2i)tij + εij

such that

Yij =


β0 + b1i + (β1 + b1i)tij + εij, if low dose

β0 + b1i + (β2 + b2i)tij + εij, if high dose

β0 + b1i + (β3 + b3i)tij + εij, if control

The implied marginal mean structure is a linear average evolution in

each group with equal average intercepts but different average slopes. The

unknown fixed effects parameters are β0, β1, β2 and β3. The random effects

parameters are the b1i’s denoting the the random deviations from the common
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intercept β0 and the b2i denoting the random deviations from the common

group specific slopes. Note that as stated earlier, the assumption under the

continuous response is that the vector (b1i, b2i)
′ is distributed as a bivariate

normal distribution that is N(0, G) where G is a 2 × 2 variance-covariance

matrix given generally by

G =

(
g11 g12

g12 g22

)

Under this model the implied covariance structure assuming Σi = σ2Ini

is given by

cov(Yi(t1),Yi(t2)) = (1 t1)G

(
1

t2

)
+ σ2δ{t1,t2}

= g22t1t2 + g12(t1 + t2) + g11 + σ2δ{t1,t2}

Note that the model structure implicitly assumes that the variance func-

tion is quadratic over time, with positive curvature g22. Suppose instead the

following stage 1 model was proposed

Yij = β1i + β2itij + β3t
2
ij + εij

and the stage 2 model is given by


β1i = β1agei + β2Li + β3Hi + β4Ci + b1i

β2i = β5agei + β6Li + β6Hi + β7Ci + b2i

β3i = β8agei + β9Li + β10Hi + β11Ci + b3i

The implied marginal mean structure would be a quadratic evolution in

each group. The average intercept, linear and quadratic slopes are now cor-

rected for age differences. The implied marginal covariance is now:
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cov(Yi(t1),Yi(t2)) = (1 t1 t22)G

 1

t2

t22

+ σ2δ{t1,t2}

= g33t
2
1t

2
2 + g23(t

2
1t2 + t1t

2
2) + g22t1t2

+ g13(t
2
1 + t22) + g12(t1 + t2) + g11 + σ2δ{t1,t2}

Note that now the variance-covariance matrix for (b1i, b2i, b3i) is a 3×3 matrix

with elements gkl where l, k = 1, 2, 3 and the implied variance function is now

a fourth order polynomial over time.

3.4 A model for the residual covariance struc-

ture

Most often Σi is taken as σ2Ini
. This implies the conditional independence

assumption, that is conditional on the random effects bi, the elements in

the vector of observations Yi are independent. However in the presence of

no, or little, random effects the assumption of conditional independence is

often unrealistic. For example, the random intercepts model not only implies

constant variance, it also implicitly assumes constant correlation between any

two measurements within subjects since in this case Var(Yij) = g + σ2 and

Cov(Yij, Yij′ ) = g for i 6= j
′
. Hence when there is no evidence for (additional)

random effects, or if they would have no substantive meaning, the correlation

structure can be almost wholly accounted for in an appropriate model for Σi.

An example of a frequently used model is:

Yi = Xiβ + Zibi + ε(1)i + ε(2)i (3.6)
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where bi is a term accounting for between subject variability, ε(1)i account

for measurement error and ε(2)i is the serial correlation component. This last

term represents the belief that part of an individual’s observed profile is a

response to a time varying stochastic process operating within an individual.

This results in a correlation between serial measurements, which is usually

a decreasing function of the time separation between these measurements.

The correlation matrix Di of ε(2)i is assumed to have a general (j, k) element

of the form

dijk = h(|tij − tik|) (3.7)

for some decreasing function of h(.) with h(0) = 1. Some frequently used

functional forms of h(.) are the exponential decay serial correlation, h(w) =

exp(−φw) and the Gaussian serial correlation h(w) = exp(−φw2). Extreme

cases for both types is when φ = +∞ implying the components in ε(2)i are

independent and the case when φ = 0 meaning that the components in ε(2)i

are perfectly correlated. In general the smaller φ is, the stronger the serial

correlation is. The resulting linear mixed model is then given by:

Yi = Xiβ + Zibi + ε(1)i + ε(2)i (3.8)

where

bi ∼ N(0, G),

ε(1)i ∼ N(0, σ2Ini
),

ε(2)i ∼ N(0, τ 2Hni
).

3.4.1 The mean structure

For balanced data, an average can be calculated for each occasion separately,

and standard errors for the means calculated. Plots of such summary quan-

tities can help to tell whether there is a linear or non-linear average trend.
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Increasing standard errors in this case can be due to dropouts which is a com-

mon feature in longitudinal or repeated measurements data. For unbalanced

data, the time scale can be discretized and simple averaging within intervals

calculated. For example in the case of the Respiratory Syncytial Virus (RSV)

the time scale was discretized into monthly and weekly intervals and the aver-

age prevalence was calculated for each month. Since the data is non-normal,

the mean corresponds to the weekly and monthly average prevalence (See

Figure 2.3 and 2.4, pages 35 and 38 in Chapter 1). Smoothing techniques

such as the Loess smoothing in SAS or S-Plus and other standard statistical

software can be used to estimate the average evolution non-parametrically. If

important covariates or factors are known, similar plots can be constructed

for subgroups with different values for these covariates or factors. For exam-

ple, given gender status for the children affected by RSV, weekly and monthly

prevalences can be constructed for each sex.

3.5 The variance structure

In general the variance function dependent on time equals

σ2(t) = E[Y (t)− µ(t)]2 (3.9)

Hence an estimate for σ2(t) can be obtained by applying any of the tech-

niques used for exploring the mean structure to squared residuals, r2
ij. For

balanced longitudinal data, the correlation structure can be studied through

the correlation matrix, or scatter plot matrix. Graphically, pairwise scatter

plots can be used for exploring the correlation between any two repeated

measurements.
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3.5.1 The semi-variogram

For unbalanced data, the same approach can be used, after discretizing the

time scale. An alternative method, is the case when the variance function

suggest constant variance. We reconsider the general linear mixed model,

Yi = Xiβ + Zibi + ε(1)i + ε(2)i

where

bi ∼ N(0, G),

ε(1)i ∼ N(0, σ2Ini
),

ε(2)i ∼ N(0, τ 2Hni
).

are all independent. Based on the knowledge of the mean function, residuals

rij = yij − µ(tij)

can be obtained. Thus based on the model above the residuals including all

terms are assumed to follow the model

ri = Zibi + ε(1)i + ε(2)i

where ri = (ri1, ri2, . . . , rini
)
′
. The semi-variogram assumes constant vari-

ance, which implies that the only random effects in the model will at most

be intercepts that is, Z = (1 . . . 1)
′
. If we denote the variance of the ran-

dom intercepts by ν2 then the covariance matrix for the ni observations from

subject i takes the form

Vi = Var(Yi) = Var(ri) = ν2ZiZ
′

i + σ2Ini
+ τ 2Hi.

It therefore follows that the residuals rij have constant variance ν2 +σ2 + τ 2.

The correlation between any two residuals ril and rik from the same subject
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indexed i is given by

ρ(|til − tik|) =
ν2 + τ 2h(|til − tik|)

ν2 + σ2 + τ 2
(3.10)

since the covariance between any two observations is ν2 + τ 2h(|til − tik|). It

can easily be shown that for l 6= k

1

2
E(ril − rik)

2 = σ2 + τ 2(1− h(|til − tik|)) = γ(wikl). (3.11)

The function γ(w) is called the semi-variogram, and it only depends on the

time points tij through the time lags wilk = |til− tik|. Note that a decreasing

serial correlation function h(.) yields an increasing semi-variogram γ(w) such

that γ(0) = σ2 and converges to σ2 + τ 2 as w tends to infinity.

Obviously an estimate of γ(w) can be used to explore the relative im-

portance of the stochastic components bi, ε(1)i and ε(2)i as well as the na-

ture of the serial correlation function h(.). An estimate of γ(w) is obtained

from smoothing the scatter plot of the
∑N

i=1
ni(ni−1)

2
half squared differences

uikl = (ril−rik)2

2
between pairs of residuals within subjects versus the corre-

sponding time lags wijk = |til − tik|. It can also be shown that for i 6= j that

is for two different individuals and l 6= k, that

1

2
E(ril − rjk)

2 = σ2 + τ 2 + ν2

because E(rilrjk) = 0. This means that the total variability in the data

(assumed to be constant) can be estimated by

σ̂2 + τ̂ 2 + ν̂2 =
1

2N∗

∑
i6=j

nj∑
l=1

ni∑
k=1

(ril − rjk)
2 (3.12)

where N∗ is the number of terms in the sum. Recall as discussed before, the

linear mixed model is often derived using a 2 stage model formulation. This

is based on a good approximation of the subject specific profiles by linear
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regression models. This therefore emphasizes the need to use exploratory

methods for longitudinal data to confirm this assumption. A natural way

to explore longitudinal profiles is by plotting them (See randomly selected

profiles in Fig 2.1 in Chapter 2 for the RSV data). For large data sets the

subjects can be ordered according to subject profile characteristics (mean,

variability etc.) then plot the profiles from some subjects.

Some ad hoc statistical procedures for checking the assumption of linear

regression models used in the first stage formulation can be used. These

include extensions of the classical linear regression techniques such as the co-

efficient R2 of multiple determination and a formal test for model extension.

In linear regression

R2 =
SSTOT − SSE

SSTO

where SSTO and SSE denote respectively the total sum of squares and

residual sum of squares. It follows that subject-specific coefficients can be

obtained as

R2
i =

SSTOTi− SSEi

SSTOTi
.

Histograms of R2
i or scatter plots of R2

i can be used to investigate the visual

adherence of the linear model across the subject specific regression models.

The overall or pooled estimate of the coefficient of multiple determination is

given by

R2
meta =

∑n
i=1(SSTOTi− SSEi)∑n

i=1 SSTOTi
.

A SAS macro is available to work out R2
meta in the case of the linear mixed

model.
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3.5.2 Test for model extension

The aim is to test for the need of extending the linear regression model

Y = Xβ + ε with additional covariates in X∗. Let the model containing

the full set of covariates (p + p∗) be denoted by MF and the reduced model

with the reduced set of covariates p in number be MR. Then the general test

statistic for comparing the models is denoted by:

F =
(SSE(MR)− SSE(MF ))/p∗

SSE(MF )/(n− p− p∗)
.

Thus the overall test for the need to extend the stage 1 model is

Fmeta =
{
∑

{i:ni≥p+p∗}(SSEi(MR)− SSEi(MF ))}/{
∑

{i:ni≥p+p∗} p
∗}

{
∑

{i:ni≥p+p∗} SSEi(MF )}/{
∑

{i:ni≥p+p∗}(ni − p− p∗)}

Under the null distribution the test statistic is distributed as F with∑
{i:ni≥p+p∗} p

∗ and
∑

{i:ni≥p+p∗}(ni − p − p∗) degrees of freedom. Note that

this statistic requires ni ≥ p+p∗. Otherwise subjects with ni < p+p∗ cannot

contribute to this statistic. Again it is noted that a SAS macro is available

for carrying out this test.

3.6 Estimation of the marginal model

3.6.1 Maximum likelihood estimation (ML) of the vari-

ance components

Recall that the general linear mixed model is of the form

Yi = Xiβ + Zibi + ε(1)i + ε(2)i

with the usual assumptions on bi, ε(1)i and ε(2)i. As stated earlier the

implied marginal model is given by

Yi ∼ N(Xiβ, ZiGZ
′

i + Σi).
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It is therefore important to note that inferences based on the marginal model

do not explicitly assume the presence of random effects representing the

natural heterogeneity between subjects. Let β denote the vector of fixed

effects and let α be a vector of all variance components in G and Σi. Then

the variance covariance matrix Vi of Y i is α dependent. Thus we can let

θ = (β
′
,α

′
) denote the vector of all parameters in the marginal model.

It then follows that the marginal likelihood function assuming the above

assumptions hold is

LML(θ) =
n∏
i=1

{(2π)−ni/2|Vi(α)|−
1
2}× exp(−1

2
(Yi−Xiβ)

′
V −1
i (α)(Yi−Xiβ))

where Vi(α) is the matrix of variance components. If α were known then

according to Harville (1974) the MLE of β equals

β̂(α) = (
n∑
i=1

XiWiX
′

i)
−1

n∑
i=1

X
′

iWiyi.

where Wi = V −1
i . Within this framework ˆαML are obtained by maximising

LML(α, β̂(α))

with respect to α. The resulting estimates β̂(αML) for β are denoted

by ˆβML. Alternatively αML and βML can be obtained from maximizing

LML(θ) with respect to θ that is with respect to both α and β simultane-

ously.

3.6.2 Restricted maximum likelihood estimation (REML)

The maximum likelihood estimation of the variance components does not

account for the loss of degrees of freedom used in estimating the fixed pa-

rameters, hence the need for an alternative approach such as REML. First

for purposes of clarity consider the univariate cross-sectional simple case of a
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normal population of n observations Y1, . . . , Yn from N(µ, σ2). If µ is known,

the MLE of σ2 equals

σ̂2 =
∑
i

(Yi − µ)2/n

and σ̂2 is unbiased for σ2. However when µ is unknown, the MLE of σ2

becomes

σ̂2 =
∑
i

(Yi − Ȳ )2/n

and σ̂2 is biased for σ2 since

E(σ̂2) =
n− 1

n
σ2.

Nonetheless when µ is unknown an unbiased estimate can still be found and

is given by

S2 =
∑
i

(Yi − Ȳ )2/(n− 1)

Apparently the simple example above shows that having to estimate µ intro-

duces bias in the estimation of σ2. Now what follows, is a procedure of how

to estimate σ2 without estimating µ first. Note that the model for the data

can be written as

Y =

 Y1

...

Yn

 ∼ N


 µ

...

µ

 , σ2In


Now transform the data vector Y such that µ vanishes from the likelihood.

Let

U =


Y1 − Y2

Y2 − Y3

...

Yn−2 − Yn−1

Yn−1 − Yn

 = A
′
Y ∼ N(0, σ2A

′
A)
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where A
′
is an (n− 1)x n matrix of the form

A
′
=


1 −1 0 . . . 0 0

0 1 −1 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . 1 −1


The MLE of σ2 based on the data transformation U , is equal to

S2 =
1

n− 1

∑
i

(Yi − Ȳ )2.

The matrix A
′
defines a set of n− 1 linearly independent error contrasts. S2

is called the restricted maximum likelihood estimate (REML) of σ2 and S2 is

independent of A. Now consider the estimation of residual variance in linear

regression. Let Y1, . . . , Yn denote a random sample of observations from a

linear regression model namely from a population which is N(Xβ, σ2I). It

is well known that the MLE of σ2 is

σ̂2
ML = (Y −Xβ̂)

′
(Y −Xβ̂)/n.

It can be further shown that σ̂2 is biased for σ2 since

E(σ̂2) =
n− p

n
σ2 6= σ2

An unbiased estimator for σ2 is the mean sum of squares due to error (MSE)

given by

MSE = (Y −Xβ̂)
′
(Y −Xβ̂)/(n− p) = σ̂2

REML.

The MSE can also be obtained from transforming the data orthogonal to X

such that

U = A
′
Y ∼ N(0, σ2A

′
A).

The MLE of σ2, based on U , now equals the mean squared error, MSE. The

MSE is again called the REML estimator of σ2. Note that σ̂2
REML > σ̂2

ML

since σ̂2
REML = n

n−p σ̂
2
ML and n

n−p > 1.

60



3.6.3 REML estimation for the linear mixed model

For easy manipulation combine all models of the form

Yi ∼ N(Xiβ, Vi)

where Vi = ZiGZ
′
i + Σi into one model given by

Y ∼ N(Xβ, V )

where

Y =

 Y1

...

Yn

 , X =

 X1

...

Xn

 , V (α) =

 V1 . . . 0
...

. . .
...

0 . . . Vn


Using a similar approach as in the simple case the data can be transformed

to be orthogonal to X so that

U = A
′
Y ∼ N(0, A

′
V (α)A)

The MLE of α, based on U is called the REML estimate and is denoted by

α̂REML. The resulting estimate β̂(αREML) for β will be denoted by β̂REML.

Note that the estimates α̂REML and β̂REML can be obtained by maximizing

LREML(θ) =

∣∣∣∣∣
n∑
i=1

XiWi(α)X
′

i

∣∣∣∣∣
− 1

2

LML(θ)

with respect to θ = (β
′
,α

′
). Although strictly speaking not a likelihood

LREML(θ) is therefore still called the REML likelihood function.

3.6.4 Fitting Linear Mixed Models

Mixed models are fitted using the PROC MIXED in SAS. One can specify the

required estimation method as maximum likelihood (ML) or restricted max-

imum likelihood (REML) which is the default method in SAS. The CLASS

statment is for defining factors in the model.
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The MODEL statement helps to specify the response variables and fixed

effects only. Options are similar to SAS regression procedures. The RAN-

DOM statement is for defining random effects including intercepts. The

RANDOM statement also helps to identify ‘subjects’ under the assumption

of independence across subjects. The statement is also used to specify the

type of random-effects covariance matrix G and the option “g” and “gcorr”

are used to print out G and the corresponding correlation matrix. Further

the options “v” and “vcorr” are used to print out Vi and the corresponding

correlation matrix.

The purpose of the REPEATED statement is to order the measurements

within subjects or clusters. The effects specified must be of the factor-type.

The options under this statement also identifies the ‘subjects’ under the

assumption of independence across subjects. The type of residual covariance

matrix Σi is also specified, for example type=simple. The options “r” and

“rcorr” help to print out Σi and the corresponding correlation matrix.

Some frequently used covariance structures available in the RANDOM

and REPEATED statements include: Unstructured (type=UN),

Simple (type=SIMPLE), Compound Symmetry (type=CS) such as the ran-

dom intercepts covariance structure and the split plot design covariance struc-

ture, Banded (type=UN(2)), First order Autoregressive type (type=AR(1)),

Toeplitz (type=TOEP), Toeplitz(1)(type=TOEP(1)), Heterogenous Com-

pound Symmetry(type=CSH), Heterogenous first order Autoregressive

(type=ARH(1)), Heterogenous Toeplitz(type=TOEPH).

When serial correlation is to be fitted, it should be specified in the RE-

PEATED statement and the option “LOCAL” can be added to also in-

clude measurement error, if required. Some frequently used serial corre-

lation structures available in RANDOM and REPEATED statements in-
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clude Power (type=SP(POW)(list)), Exponential (type=SP(EXP)(list)) and

Gaussian (type=SP(GAU)(list)).

Sometimes rescaling the time point tij may become necessary for efficient

convergence in the estimation process. Negative variance components can be

allowed in SAS using the option “nobound” to the PROC MIXED statement.

A negative variance component may suggest a negative curvature in the

variance function (a concave function). Again, this emphasizes the non-

equivalence of hierarchical and marginal models. The marginal model allows

the negative variance component, as long as the marginal covariance matrices

Vi are positive definite. The hierarchical interpretation of the model does not

allow negative variance components because bi ∼ N(0, G).

3.7 Inference for the marginal model

Inference for the fixed effects β can be based on the Wald test, t-test, F -test,

robust inference or the likelihood ratio (LR) test. Inference for the variance

components is based on the Wald test and the LR test. The information cri-

teria can generally be useful for making inference about the marginal model.

The estimate of β is

β̂(α) = (
n∑
i=1

X
′

iWiXi)
−1

n∑
i=1

X
′

iWiyi (3.13)

with α being replaced by its ML or REML estimate according Harville (1974)

and Laird and Ware (1982). Conditional on α, β̂(α) is multivariate normal
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with mean β and covariance

Var(β̂) = (
n∑
i=1

X
′

iWiXi)
−1(

n∑
i=1

X
′

iWi(VarYi)WiXi)(
n∑
i=1

X
′

iWiXi)
−1

=

(
n∑
i=1

X
′

iWiXi

)−1

(3.14)

provided that Wi = V −1
i where Vi = Var(Yi) = ZiGZi + Σi.

3.7.1 Approximate Wald test

Let L be a known contrast or transformation matrix and consider testing the

hypothesis

H0 : Lβ = 0

versus

HA : Lβ 6= 0 (3.15)

Then the Wald test statistic is given by

WT = β̂
′
L

′
[L

(
n∑
i=1

X
′

iV
−1
i (α̂)Xi

)
L

′
]−1Lβ̂

The asymptotic sum distribution ofWT is chi-square distributed with rank(L)

degrees of freedom. Thus using the statistic WT inference on fixed effects can

be made via the transformation Lβ.

3.7.2 Approximate t-test and F-test

It should be noted that the Wald test is based on

var(β̂) =

(
n∑
i=1

X
′

iWi(α)Xi

)−1

The deficiency with the Wald test statistic is that the variability introduced

by replacing α by some estimate (ML or REML) is not taken into account in
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the subsequent test. Therefore Wald tests will only provide valid inferences in

sufficiently large samples. In practice, this is often resolved by replacing the

χ2 distribution by an appropriate F distribution. Thus to test the hypothesis

H0 versus HA in Eq. (3.14), the above statistic becomes

FT =
β̂

′
L

′
[L
(∑n

i=1X
′
iV

−1
i (α̂)Xi

)
L

′
]−1Lβ̂

rank(L)

The approximate null distribution of FT is F with numerator degrees of

freedom equal to rank(L). The denominator degrees of freedom have to be

estimated from the data using common methods such as the containment

method, the Sattherwaite approximation and the Kenward and Roger ap-

proximation. In the context of longitudinal data, all methods typically lead

to large degrees of freedom, and therefore also very similar p-values. For

univariate hypotheses, rank(L)=1 and in this case the F-test is equivalent

reduces to a t-test. Linear hypotheses of the form given by Eq. (3.14) can

be tested in SAS using a CONTRAST statement. The option “chisq” in

the CONTRAST statement is needed in order to obtain a Wald test. SAS

Proc Mixed also allows the estimation and testing of linear combinations of

the elements in β using an ESTIMATE statement. Using similar arguments

as for approximate Wald tests, t-tests, and F-tests, approximate confidence

intervals can be obtained for such linear combinations, also implemented in

the ESTIMATE statement. Specification of L remains the same as for the

CONTRAST statement.
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3.7.3 Robust Inference

Given the estimate for β in Eq. (3.13) with α replaced by its ML or REML

estimates then conditional on α, β̂ has the expected value given by,

E[β̂(α)] =

(
n∑
i=1

X
′

iWiXi

)−1 n∑
i=1

XiWiE(Yi)

=

(
n∑
i=1

X
′

iWiXi

)−1 n∑
i=1

XiWiXiβ

= β

provided that the E(Yi) = Xiβ. Hence in order for β̂ to be unbiased, it is only

sufficient that the mean of the response is correctly specified. Conditional

on α, β̂ has covariance, var(β̂) =
∑n

i=1(X
′
iWiXi)

−1 as derived in Eq. (3.14)

Var(β̂) = (
n∑
i=1

X
′

iWiXi)
−1

n∑
i=1

(X
′

iWiVar(Yi)WiXi)(
n∑
i=1

X
′

iWiXi)
−1

= (
n∑
i=1

X
′

iWiXi)
−1

Note that this assumes that the covariance matrix is correctly modelled

as Var(Yi) = Vi = ZiGZ
′
i + Σi and Wi = V −1

i . This form of the covari-

ance estimate is therefore often called the ‘naive’ estimate. The so-called

robust estimate for Var(β̂) which does not assume the covariance matrix to

be correctly specified is obtained by replacing Var(Yi) by

Ṽar(Yi) = [Yi −Xiβ][Yi −Xiβ]
′

rather than Vi . The only condition for Ṽar(Yi) to be unbiased for Var(Yi)

is that the mean is correctly specified. The ‘robust’ variance estimate also

called the sandwich estimate is now given by

Var(β̂) = (
n∑
i=1

X
′

iWiXi)
−1(

n∑
i=1

X
′

iWiṼar(Yi)WiXi)(
n∑
i=1

X
′

iWiXi)
−1
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Based on this sandwich estimate, robust versions of the Wald test as well as

of the t-test and the F-test can be obtained. This signifies the point that as

long as interest is only in the inferences in the mean structure, little effort

should be spent in modelling the exact covariance structure, provided that

the data set is sufficiently large. An extreme point of view involves the use

of OLS with robust standard errors. Nevertheless appropriate covariance

modelling may still be of interest, firstly for the purpose of interpretation

of random variation in the data, secondly for gaining efficiency and thirdly

because in the presence of missing data, robust inference is only valid under

very severe assumptions about the underlying missingness process. Issues of

missingness were discussed briefly in Chapter 2 and will be revisited in more

detail in Chapter 9. Robust inference for the fixed effects can be obtained

by adding the option ‘empirical’ in the PROC MIXED statement in SAS

namely

proc mixed data=data1 method=reml empirical;

assuming the data set is ‘data 1’. It is quite possible that for some parameters,

the robust standard error is smaller than the naive, model based one. For

others the opposite can be true. Thus interpretation of both standard errors

should be done with caution.

3.7.4 Likelihood ratio test

The likelihood ratio tests are used to compare nested models with different

mean structures, but equal covariance structures. The null hypothesis of

interest can therefore be stated as

H0 : β ∈ Θβ,0
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for some subspace Θβ,0 of the parameter space Θβ of the fixed effects β.

Let the notations LML, θ̂ML,0 and θ̂ML respectively denote the maximum

likelihood (ML) function, the maximum likelihood estimator(MLE) under H0

and under the general model. Then the test statistic under the LR method

is

−2lnλn = −2ln

[
LML(θ̂ML,0)

LML(θ̂ML)

]
.

The asymptotic distribution of the statistic under the null distribution is

χ2 with degrees of freedom (df) equal to the difference in dimension of Θβ

and Θβ,0 that is

dimΘβ − dimΘβ,0.

It should be noted that LR tests for the mean structure are not valid under

REML. A negative LR test statistic is a very possible outcome under REML.

The reason is as follows: under REML the response Y is transformed into

error contrasts U = A
′
Y , for some matrix A with A

′
X = 0. Afterwards ML

estimation is performed based on error contrasts. Models with different mean

structures lead to different sets of error contrasts. Hence the corresponding

REML likelihoods are based on different observations, which makes them no

longer comparable.

3.8 Inference for variance components

Inference for the mean structure is usually the primary goal in most research

problems. However, inference for the covariance structure is of interests as

well. This is necessary for the interpretation of the random variation in the

data. It is important to note that an overparameterised covariance structure

leads to inefficient inference of the mean structure. On the other hand too
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restrictive models invalidate inferences for the mean structure. The challenge

is to strike a balance between these two extremes.

3.8.1 Approximate Wald test

Asymptotically, ML and REML estimates of α are normally distributed with

correct mean and inverse Fisher information matrix as covariance. Hence ap-

proximate standard errors and Wald tests can easily be obtained. Standard

errors and approximate Wald tests for variance components can be obtained

in PROC MIXED by adding the option ‘covtest’ to the PROC MIXED state-

ment in SAS namely

proc mixed data=data1 method=reml covtest

assuming ‘data1’ is already loaded in SAS. Caution for Wald tests for variance

components arises due to the difference between marginal and hierarchical

models. When no underlying random effects structure is believed to represent

the observed variation between subjects, then the Wald tests can only be fully

interpreted under the marginal model.

3.8.2 The likelihood ratio test for tests on variance

components

The quality of the normal approximation for the ML and REML estimates

strongly depends on the true value of α. The normal approximation fails

and performs poorly if α is relatively close to the boundary of the parameter

space. If α is a boundary value, the normal approximation fails completely.

In this current problem the LR tests are ideal for the comparison of nested

models with equal mean structures, but different covariance structure. Let
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the hypothesis of interest be

H0 : α ∈ Θα,0

for some subspace Θα,0 of the parameter space Θα of the variance components

α. Let the notations LML, θ̂ML,0 and θ̂ML have similar meanings as was the

case for the tests for fixed effects. Then the test statistic is given by

−2lnλn = −2ln

[
LML(θ̂ML,0)

LML(θ̂ML)

]
.

The asymptotic distribution of the statistic under the null distribution is

χ2 with degrees of freedom equal to the difference in dimension of Θα and

Θα,0 given by

dimΘα − dimΘα,0.

Note that as long as models being compared are with the same mean struc-

ture, a valid LR test can be obtained under REML as well. Both models can

be fitted using the same error contrasts, making the likelihood comparable.

Note that if, H0 is a boundary value, the classical χ2 approximation may not

be valid. For some very specific null hypotheses on the boundary, the correct

asymptotic null distribution has been derived.

3.8.3 Marginal testing for the need of random effects

Self and Liang (1987) and Stram and Lee (1994, 1995) state that tests for hy-

potheses such as in Eq.(3.16) below require the use of mixture distributions.

They have been able to show that the the asymptotic null distribution for the

likelihood ratio test statistic is often a mixture of chi-squared distributions

rather than a single chi-squared distribution. This principle applies under a

hierarchical model interpretation where the asymptotic null distribution for
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the LR test statistic for testing significance of all variance components re-

lated to one or more multiple random effects, can be derived. Consider testing

H0 : G = 0

versus

HA : G11 = g11 (3.16)

for some non negative scalar g11. The asymptotic null distribution would be

−2lnλn → χ2
0,1

which is a mixture of χ2
0 and χ2

1 with equal weights 0.5. The intuitive idea

follows when one considers the extended parameter space R of g11. UnderH0,

g11 will be negative in the 50% of the cases leading to ĝ11 = 0. Hence overall

LML(θ̂ML,0) = LML(θ̂ML). This idea can be extended generally to the case

for the need of q versus q + k random effects requiring a mixture of χ2
q and

χ2
q+k with equal weights of 0.5. However simulations may become necessary

to derive the asymptotic null distribution. This means that ignoring the

boundary problem too often leads to over-simplified covariance structures.

Failing to correct for the boundary problem inflates the p-value. Implying

that ignoring the boundary problem may invalidate inferences, even for the

mean structure.

3.9 Information Criteria

Definition of IC: LR tests can only be used to compare nested models.

However at times there arises a need to compare non nested models. The

general idea behind the LR test for comparing model A to a more extensive

model B is to select model A if the increase in likelihood under model B
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is small compared to increase in complexity. A similar argument is quite

possible to compare non-nested models A to B. Here one selects the model

with the largest (log-) likelihood provided it is not (too) complex. If ` is

the log-likelihood under the given model, then the penalized log-likelihood

is ` − F(#θ) for some functionF(.) of the number (#θ) of parameters in

the model. The criteria for model selection is to select the model with the

highest penalized log-likelihood. Different functions F(.) lead to different

criteria. These are summarised below

Criteria Definition of F(.)?

Akaike(AIC) F(#θ) = #θ

Schwarz(SBC) F(#θ) = (#θ lnn∗)/2

Hannan and Quinn(HQIC) F(#θ) = #θ ln(lnn∗)

Bozdogan(CAIC) F(#θ) = #θ(lnn∗ + 2)/2

where ? : n∗ =
∑N

i=1 ni under ML and ? : n∗ = n − p under REML. It

should however be noted that information criteria are not formal testing

procedures. For the comparison of models with different mean structures,

information criteria should be based on ML rather than on REML, as other-

wise the likelihood values would be based on different sets of error contrasts,

and therefore would be no longer comparable. Information criteria can be

obtained in SAS by adding the option ’ic’ to the PROC MIXED statement,

viz

proc mixed data=test method=ml ic;

It should be noted that different ‘ic’ may select or lead to different non nested

models. Thus care should be taken and other tests such as Wald tests may

be used to confirm the results.
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3.10 Inference for random effects

Brief discussion on Empirical Bayes (EB) inference and how to carry out best

linear unbiased prediction will be outlined.

3.10.1 Empirical Bayes Inference

The purpose of random effects bi in the model is to reflect how the evolution

for the ith subject deviates from the expected evolution Xiβ. The estimation

of bi is helpful for the detection of outlying profiles. This strategy is however,

only meaningful under the hierarchical model interpretation. Recall that the

hierarchical specification of the model is given as

Yi|bi ∼ N(Xiβ + Zibi,Σi),

bi ∼ N(0, G).

Since the bi are random, it is natural to use Bayesian methods. Under this

setting or approach the prior distribution for bi will be taken as N(0, G). Its

posterior density f(bi|yi) is then given by

f(bi|yi) ≡ f(bi|Yi = yi)

=
f(yi|bi)f(bi)∫
f(yi|bi)f(bi)dbi

∝ f(yi|bi)f(bi)

∝ . . .

∝ exp{−1

2
(bi −GZ

′

iWi(yi −Xiβ))
′
Λ−1(bi −GZ

′

iWi(yi −Xiβ))}

for some some positive definite matrix Λi. It follows that the posterior dis-

tribution of bi is given by

bi|yi ∼ N(GZ
′

iWi(yi −Xiβ),Λi)
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Thus a logical estimate of bi can be obtained from its posterior mean given

by

b̂i(θ) = E[bi|Yi = yi]

=

∫
bif(bi|yi)dbi

= GZ
′

iWi(α)(yi −Xiβ) (3.17)

assume to depend on a parameter θ. It is clear from the above that b̂i(θ) is

normally distributed with covariance

Var(b̂i(θ)) = GZ
′

i{Wi −WiXi(
N∑
i=1

X
′

iWiXi)
−1X

′

iWi}ZiG

It follows that the inference about bi should account for the variability in bi.

Because of the this reason, inference for bi should be based on

var(b̂i(θ)− bi) = G− var(b̂i(θ)).

It follows that just as for the fixed effects inference discussed in Section 3.7,

Wald tests can be derived to test hypotheses about bi. Parameters in θ are

replaced by their ML or REML estimates, obtained from fitting the marginal

model. The estimate b̂i = b̂i(θ) is called the ‘Empirical Bayes’ estimate of

bi. Approximate t-test and F-tests to account for the variability introduced

by replacing θ by θ̂ similar to testing for fixed effects can be derived.

3.10.2 Best Linear Unbiased Prediction

Often parameters of interest are linear combinations of fixed effects in β and

random effects in bi. For example, a subject specific slope is the sum of the

average slope for subjects with same covariate values and the subject specific

random slope for that subject. Thus in general, suppose

u = λ
′

ββ + λ
′

bbi
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is of interest. Conditionally on α,

û = λ
′

ββ̂ + λ
′

bb̂i

is a best linear unbiased predictor ( BLUP) of u. In fact from the theory

of linear models û is linear in the observations Yi, unbiased for u and it has

minimum variance among all unbiased linear estimators and abbreviated as

(UMVUE).

3.10.3 Shrinkage estimators

Consider the the prediction of the evolution of the ith subject. That is

Ŷi ≡ Xiβ̂ + Zib̂i

= Xiβ̂ + ZiGZ
′

iV
−1
i (yi −Xiβ̂)

because

b̂i = GZ
′

iV
−1
i (yi −Xiβ).

Now since

Vi = ZiGZ
′

i + Σi

it follows that

Vi − Σi = ZiGZ
′

i

so that if we make this substitution, we have

Ŷi = Xiβ̂ + (Vi − Σi)V
−1
i (yi −Xiβ̂)

= Xiβ̂ − (Vi − Σi)V
−1
i Xiβ̂ + (Vi − Σi)V

−1
i yi

= Xiβ̂ −Xiβ̂ + ΣiV
−1
i Xiβ̂ + (Ini

− ΣiV
−1
i )yi

= ΣiV
−1
i Xiβ̂ + (Ini

− ΣiV
−1
i )yi (3.18)
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Hence, Ŷi is a weighted mean of the population averaged profile Xiβ̂ and

the observed data yi, with weights Σ̂iV̂
−1
i and Ini

− Σ̂iV̂
−1
i respectively.

Note that Xiβ̂ gets much higher weight if the residual variability is large

in comparison to the total variability contained in Vi. This phenomenon

is called ‘shrinkage’. The observed data are shrunk towards prior average

Xiβ. This is also reflected in the fact that for any linear combination λ
′
bi

of random effects

Var(λ
′
b̂i) ≤ Var(λ

′
bi)

3.10.4 The random-intercepts model revisited

Consider the random intercepts model with

Zi = 1ni

a vector of ones and

D = σ2
bIni

,

a diagonal ni×ni matrix with only one variance component σ2
b . Also assume

absence of serial correlation such that

Σi = σ2Ini

so that from Eq. (3.17) Empirical Bayes estimate for the random estimate

bi, equals

b̂i = σ21
′

ni
(σ2

b1ni
1

′

ni
+ σ2Ini

)−1(yi −Xiβ)

=
σ2
b

σ2
1

′

ni

(
Ini
− σ2

b

σ2 + niσ2
b

1ni
1

′

ni

)
(yi −Xiβ)

=
niσ

2
b

σ2 + niσ2
b

1

ni

ni∑
j=1

(yij −X
[j]
i β)
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It is important to take note that b̂i is a weighted average of 0 (prior mean)

and the average residual for subject i. The less shrinkage the larger ni and

the smaller σ2 relative to σ2
b . The equation above shows that the larger ni is

the smaller σ2 is relative to σ2
b and the less the shrinkage and vice versa.

3.10.5 The normality assumption for Random Effects

In practice, histograms of Empirical Bayes (EB) estimates are often used to

check the normality assumption for the random effects. However, since

b̂i = GZ
′

iWi(yi −Xiβ)

Var(b̂i) = GZi

{
Wi −WiXi(

N∑
i=1

X
′

iWiXi)
−1X

′

iWi

}
ZiG

One should at least first standardize the EB estimates. Further due to the

shrinkage property, the EB estimates do not fully reflect the heterogeneity

in the data. Therefore EB estimates obtained under normality cannot be

used to check normality. This suggests that the only possibility to check the

normality assumption is to fit a more general model, with a classical linear

mixed model as a special case and to compare both models using Likelihood

ratio methods.

3.10.6 The heterogeneity model

One possible extension of the linear mixed model is to assume a finite mixture

as random effects distribution namely :

bi ∼
g∑
j=1

pjN(µj , G)

with
∑g

j=1 pj = 1 and
∑g

i=1 pjµj = 0.

The interpretation of the above assumption is as follows: The population
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consists of g sub-populations. Each sub-population contains a fraction pj

of the total population and in each sub-population, a linear mixed model

holds. A very flexible class of parametric models holds for the random effects

distribution whilst the classical model is the case where g = 1. The fitting

of the above model is based on an EM algorithm for which a SAS macro is

available and the EB estimates can be calculated under the heterogeneity

model.

3.10.7 Power analyses under the linear mixed model

In any statistical test no matter how simple or complex the test is, the statis-

tician is always interested in the power of the test. In this section the F -test

for fixed effects is considered. Thus consider the general linear hypothesis:

H0 : Lβ = 0

versus

HA : Lβ 6= 0

Recall that the F test statistic is given by:

FT =
β̂

′
L

′
[
L(
∑N

i=1X
′
iV

−1
i (α̂)Xi)L

′
]
Lβ̂

rank(L)

The approximate null distribution of FT is F with the numerator degrees of

freedom equal to the rank(L). The denominator degrees of freedom need

to be estimated from the data. This can be done so using three possible

methods namely, the:

1. Containment method
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2. Sattherwaite approximation

3. Kenward and Roger approximation

In general, not necessarily under H0, FT is approximately F distributed

with the same number of the degrees of freedom but with a non-centrality

parameter:

φ = β
′
L

′

[
L(

N∑
i=1

X
′

iV
−1
i (α̂)Xi)

−1L
′

]
Lβ

which equals 0 under H0. This can be used to calculate powers under a

variety of models and under a variety of alternative hypotheses. Note that

φ is equal to rank(L) × FT and with β replaced by β̂. The SAS proce-

dure ‘MIXED’ can therefore be used for the calculation of φ and the related

numbers of degrees of freedom.

Calculation in SAS

The following is an outline of the steps involved in the calculation of the

power of the test.

1. Construct a data set of the same dimension and with the same co-

variates and factor values as the design for which the power is to be

calculated.

2. Use as responses yi the average valuesXiβ under the alternative model.

3. The fixed effects estimate will then be equal to

β̂(α) =

(
N∑
i=1

X
′

iWi(α)Xi

)−1 N∑
i=1

X
′

iWi(α)yi

=

(
N∑
i=1

X
′

iWi(α)Xi

)−1 N∑
i=1

X
′

iWi(α)Xiβ

= β

79



4. Hence the F statistic reported by SAS will be equal to φ
rank(L)

5. This calculated F value and the associated numbers of degrees of free-

dom can be saved and used afterwards for the calculation of the power

6. Note that this requires keeping the variance components in α fixed,

equal to the assumed population values

7. The steps in the calculations are as follows:

• Use PROC MIXED to calculate φ and the degrees of freedom ν1

and ν2

• Calculate the critical value Fc:

P (Fν1,ν2,0 > Fc) = level of significance

• Calculate the power

power = P (Fν1,ν2,φ > Fc)

8. The SAS functions ‘finv’ and ‘probf’ are used to calculate Fc and the

power

Using the above procedure it is clear that the within subject correlation will

increase the power for inferences on within subject effects but decrease the

power for inferences on between subject effects.

3.11 Conclusion

There are several advantages to the application of the mixed model to medical

and survey data. Duchateau et al. (1998, p.18) highlight the specific features

of the mixed model as advantages which include:
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• Complex data structures can be described in a natural way by the

mixed model;

• The analysis of unbalanced data is a natural extension of the analysis

of balanced data in the mixed model framework;

• The mixed model framework allows a flexible choice of the appropriate

inference space;

• A mixed model also allows the prediction of random effects of interest

by best linear unbiased prediction (BLUP).

As a conclusion to this chapter, much of the theory that is covered here will

help us to understand the extension of the linear mixed model for longitudi-

nal continuous data to longitudinal discrete data, as is the case with the Kilifi

data set. The normality assumption covered in this chapter is a special case of

the generalized linear modelling approach for longitudinal data.(McCullagh

and Nelder, 1989; Lee, Nelder and Pawitan, 2006; Verbeke and Molenberghs,

2005 and Molenberghs and Verbeke, 2006). The theoretical results covered

in this chapter are helpful in subsequent chapters where the focus will solely

be on the analysis of binary longitudinal data for an infectious disease pro-

cess. More importantly departures from the current classical linear mixed

model will be of paramount importance in the current work. Modelling the

disease process as a non-Gaussian process is a novel idea in the research

work. In particular given the disease process is a reversible type of process

it is believed the subsequent analysis will add knowledge on the analysis of

infectious disease processes in general.
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Chapter 4

The Generalized Linear Model

4.1 Introduction

This chapter will focus on models that are suitable to fit repeated measures

data but with discrete responses or outcomes. The generalized linear models,

according to McCullagh and Nelder (1989) are one such family of models and

are generally suitable for discrete repeated measurements in the context of

correlated data. Diggle et al. (2002) state that extensions of the generalized

linear models in the context of correlated observations include the following

classes of models:

• Marginal models

• Random effects models

• Conditional models

Diggle et al. (2002) and Aerts et al. (2002) distinguish between these three

families. In order to be able to study each type of model thoroughly, the

exponential family of distributions will briefly be described.
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4.1.1 The Exponential Family

A random variable Y is said to have a distribution from the exponential

family if its probability density function can generally be written in the form:

f(y|θ, ψ) = exp

[
yθ − ψ(θ)

φ
+ c(y, φ)

]
(4.1)

for a specific set of unknown parameters θ and φ, and for known functions

ψ(.) and c(., .) . The parameter θ is called the natural or canonical parameter

and φ is called the scale or dispersion parameter. The mean and variance of

Y can be derived by making use of the property
∫
f(y|θ, φ)dy = 1 and taking

the first and second order derivatives with respect to θ from both sides of

the equation so that we have:

∫
(y − ψ

′
(θ))f(y|θ, φ)dy = 0

and ∫
[φ−1(y − ψ

′
(θ))2 − ψ

′′
(θ)]f(y|θ, φ)dy = 0

Thus we have that E[Y ] = µ = ψ
′
(θ) and Var(Y ) = ψ

′′
(θ)φ where ψ

′
and ψ

′′

denote the first and second derivatives of ψ(θ) with respect to θ. The mean

and the variance are thus related through the relation

σ2 = φψ
′′
[ψ

′−1(µ)] = φυ(µ)

where υ(µ) = ψ
′′
[ψ

′−1(µ)] is known as the variance function.
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4.1.2 Some illustrations

Binomial random variable

For a binomial variable Y denoting the number of successes in n independent

trials with a probability of success p in each trial, the probability distribution

is:

f(y) =

(
n

y

)
py(1− p)n−y = exp

[
y log p

1−p + n log(1− p) + log

(
n

y

)]
.

From Eq (4.1) it follows that the corresponding canonical (natural) param-

eter is θ = log( p
1−p) also known as the logit(p). Alternatively θ = log

(
µ

n−µ

)
where µ = np.

Note that in terms of θ

p =
exp(θ)

1 + exp(θ)

and

1− p =
1

1 + exp(θ)

In terms of the structure of an exponential family probability density func-

tion (p.d.f) ψ(θ) = −n log(1− p) = n log(1 + exp(θ)), φ = 1. and

c(y, φ) = log

(
n

y

)

Furthermore,

E[Y ] = ψ
′
(θ) = n exp(θ)

1+exp(θ)
= np

and

Var(Y ) = ψ
′′
(θ)φ = n exp(θ)(1+exp(θ))−n exp(θ) exp(θ)

(1+exp(θ))2
= np(1 − p). Thus in this

case υ(µ) = µ(1− µ
n
) since µ = np

The Bernoulli (random variable) model for the binary response is a special
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case of the Binomial random variable with n = 1 and therefore both share the

same canonical or natural parameter (McCullagh and Nelder, 1989; Molen-

berghs and Verbeke , 2005).

Logistic and Probit link function

Let Y be Bernoulli distributed with the probability of success P (Y = 1) = π.

Since the Bernoulli density is part of the exponential family its p.d.f can be

written as

f(y) = exp{y ln

(
π

1− π

)
+ ln(1− π)}

where the natural parameter θ is equal to ln[ π
1−π ] or the logit of π, the scale

parameter φ = 1, with mean µ = π and variance function υ(π) = π(1 − π).

Thus the distribution is just a special case of a Binomial distribution with

n = 1. The function ln[ π
1−π ] is called the link function in the context of

generalized linear models. If the function Φ−1(π) is used where Φ is the

standard normal distribution function, then we have the probit link function

Poisson model for counts

Let Y be Poisson distributed with mean µ. The density is part of the expo-

nential family and can be written as

f(y) = exp{y lnµ− µ− ln y!}

Thus the natural parameter is θ = ln (µ), the scale parameter is φ=1, and the

variance function is υ(µ) = µ. Thus a Poisson response variable is naturally

modelled using a log link fucntion

4.2 The Generalized Linear Model

The Generalized Linear Model can be formalized as follows:
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1. Assume we have independent response variables Y1, Y2, ..., YN which are

assumed to share the same density f(y|θ, ψ) from an exponential family

with E[Yi] = µi but different natural parameters θi are allowed for all

observations

2. We let xi= [x1, ..., xp], be a p-dimensional vector of covariate values,

i = 1, . . . , N

3. In generalized linear models, it is believed that the differences between

the θi can be explained through a linear function of known covariates:

θi =x
′

iβ

4. The means µi need to be modelled in terms of the covariate values and

it is assumed that η(µi) = x
′
iβ for a known link function η(.) and a p-

dimensional vector β a vector of fixed unknown regression coefficients.

Stacking all the N row vectors xi into one matrix X gives the well

known design matrix for the data of dimension N × (p+ 1)

4.3 Extending the examples to Generalized

linear models

Logistic and Probit regression for Binary data

As already mentioned, the natural link is the logit link so that if Yi ∼

Bernoulli(πi) then the linear model is

ln

[
πi

1− πi

]
= x

′

iβ

where in terms of covariates

πi =
exp(x

′
iβ)

[1 + exp(x
′
iβ)]

.
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Note that the natural parameter is a function of the covariate xi. Alter-

natively for the probit link, one uses the model Φ−1(πi) = x
′
iβ so that

πi = Φ(xiβ), where Φ denotes the distribution function of a standard nor-

mal random variable. For a Binomial variable the Yi ∼ B(ni, pi) and the

regression model is of the form logit(pi) = x
′
iβ.

Poisson Regression for counts

The logarithm is the natural link function, leading to the classical Poisson

regression model Yi ∼Poisson(µi) with ln (µi) = x
′
iβ. where µi is the mean

occurrence rate. This also implies µi = exp(x
′
iβ) is a quantity which is always

non-negative.

4.4 Maximum Likelihood Estimation and In-

ference

The following derivation follows that in Molenberghs and Verbeke (2005, p.

30). Estimation of the regression parameters in β is usually done using max-

imum likelihood estimation (ML). We assume independence of observations

and therefore the log-likelihood is given by

`(β, φ) =
1

φ

N∑
i=1

[yiθi − ψ(θi)] +
∑
i

c(yi, φ). (4.2)

The score equations S(β) are obtained by calculating the first order deriva-

tives with respect to β of the log-likelihood and equating them to give

S(β) =
∑
i

∂θi
∂β

[yi − ψ
′
(θi)] = 0. (4.3)

Since µi = ψ
′
(θi) and υi = υ(µi) = ψ

′′
(θi) and under φ = 1, it implies that

∂µi
∂β

= ψ
′′
(θi)

∂θi
∂β

= υi
∂θi
∂β
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therefore the score equations S(β) becomes

S(β) =
∑
i

∂µi
∂β

υ−1
i (yi − µi) = 0. (4.4)

These score equations can then be solved iteratively using algorithms such

as re-weighted least squares, Newton Raphson, or Fisher scoring. Once the

ML estimates have been obtained, classical inference based on three asymp-

totically equivalent methods based on asymptotic likelihood theory, namely

the Wald-type tests, likelihood ratio tests and score tests can be used. For

example, in the linear normal model, estimation of φ may be required to

estimate the standard errors of the elements in β. Since Var(Yi) = φυi, an

obvious estimate for φ is given by

φ̂ =
1

N − p

∑
i

(yi − µ̂i)
2/υi(µ̂i).

Under the normal model, this would yield

σ̂2 = 1
N−p

∑
i(yi−xiβ̂)2,

which is the mean squared error used in linear regression models to esti-

mate the residual variance. More details on estimation and inference in the

generalized linear models can be found in McCullagh and Nelder (1989)and

more recent references such as Molenberghs and Verbeke (2005) and Lee,

Nelder and Pawitan (2006). McCullagh and Nelder (1989) state that the

Generalized linear models is a unifying theory to a wide range of settings:

• For normal outcomes, we could use linear models, multiple regression

and Analysis of variance (ANOVA)

• Binary outcomes would involve the use of probit and logit (logistic)

regression
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• Categorical data makes use of the log-linear modelling

• Outcomes that are counts can be modelled using Poisson regression

• Non-negative continuous time to event data can be modelled using

survival analysis

For continuous outcomes, the classes of models that can be used to model

the data include:

• Marginal models

E(Yij|xij) = x
′

ijβ

where x
′

ij denotes the vector of covariates for individual i measured at

occassion j and β is a vector of fixed parameters.

• Random-Effects models

E(Yij|bi,xij) = x
′

ijβ + z
′

ijbi

where x
′

ij and β carry the same meaning as explained above. The

vector bi denotes a vector of subject specific random effects and z
′

ij is

the corresponding vector of covariates.

• Transition models

E(Yij|Yi,j1, . . . , Yi1,xij) = x
′

ijβ + αYi,j−1

where now in addition to the dependence on x
′

ij the current response

depends on the previous response.

These models can then be extended to include the case of repeated discrete

outcomes. We will now consider these extensions below. These extensions

and their applications will be discussed in the current and subsequent chap-

ters.
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4.5 Longitudinal Generalized Linear Models

If we have normal outcomes, then the switch between the cross sectional data

to longitudinal data is straightforward. The case of repeated or longitudinal

non-normal data is not that straightforward. The lack of key distributions

such as the normal distribution results to several modelling options and the

introduction of non-linearity. This implies no easy transfer between model

families. The following summary best explains the departure from the case

of normal to non-normal data:

Cross-sectional Longitudinal

Normal outcome Linear model Linear mixed model(LMM)

Non-normal outcome Generalized linear model (GLM) Several options

4.5.1 Marginal Models

Let the observations for individual i be Yij, for j = 1, 2, . . . , n and i =

1, 2, . . . , N and let Yi denote the n dimensional vector of observations for

individual i assuming each individual contributes n outcomes. But more

generally an individual i contributes ni outcome. Marginal models are some-

times also called the population averaged models. The probability of each

outcome (or set of outcomes) is directly modelled (integrating or summing

the other outcomes away) so that we have to correctly specify E(Yij|xij).

Minimally we have to specify

ηi(µi) = {ηi1(µi1), . . . , ηin(µin)}

E(Y i) = µi

and

ηi(µi) = X iβ
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var(Y i) = φυ(µi)

where υ(.) is a known variance function and

corr(Y i) = R(α),

that is the correlation matrix R(α) depends on a set of parameters α. Fitting

marginal models is quite involving because the marginal association parame-

ters are highly constrained. It is also important to note that marginal models

are reproducible or upward compatible. For example, Fitzmaurice and Laird

(1993) make use of a mixed marginal conditional model, Carey, Zeger and

Diggle (1993) use alternating logistic regressions and Molenberghs and Ritter

(1996) and Molenberghs and Danielson (1999) suggest the use of 2nd order

mixed parameterization and Generalized Estimating Equations type 2 (GEE

2). There are various methods applicable in fitting marginal models for both,

non-likelihood and likelihood ones.

In the class of non-likelihood methods Koch et al. (1975) introduced

the Empirical generalized least squares (EGLS) method. This method can

be fitted in SAS using the “ Proc CATMOD” procedure. Generalized Es-

timating Equations (GEE) have been applied by among others Liang and

Zeger (1986), Lipsitz, Laird and Harrington (1991), Liang, Zeger and Qaquish

(1992), Zhao and Prentice (1990) and Robins, Rotnitzky and Zhao (1995).

The GEE method can be implemented using “Proc GENMOD” procedure

in SAS.

In the class of likelihood methods Ashford and Sowden (1970) proposed

the use of the Multivariate probit model. Bahadur (1961) used the Bahadur

model as a marginal model. Dale (1986) used the odds ratio model for

bivariate data based on the Plackett distribution (Plackett, 1965). The odds

ratio models for multivariate data have been used in different settings as
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marginal models. For example, Lang and Agresti (1994) use the constraint

equations approach, Molenberghs and Lesaffre (1994, 1999) extend the Dale

model to multivariate ordinal outcomes and Glonek and McCullagh (1995)

use the multivariate logit type models. In the next section the GEE non

likelihood model is discussed and applied to the RSV data set.

4.6 Generalized Estimating Equations (GEE)

4.6.1 Introduction

The key paper that introduced the Generalized Estimating Equations (GEE)

was that by Liang and Zeger (1986). Thereafter reviews have been published

by Desmond (1997), Pendergast et al. (1996) and Hall (2001). Recall that

the score equations for GLM’s were derived in Eq (4.3) as

S(β) =
∑
i

∂µi
∂β

υ−1
i (yi − µi) = 0.

In case the outcome Yi is multivariate, that is, Yi= (Yi1, . . . , Yini
)
′
with in-

dependent components Yij, this would become

S(β) =
∑
i

∑
j

∂µij
∂β

υ−1
ij (yi − µi)

=
∑
i

∂µ
′

i

∂β
V −1
i (yi − µi)

=
∑
i

F
′

iV
−1
i (yi − µi)

= 0
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where Fi =
∂µ

′
i

∂β
and µi = E(Yi) and

Vi =

 υi1 . . . 0
...

. . .
...

0 . . . υini

 .

In case of the normal model with µi = Xiβ, this equation becomes

S(β) =
∑
i

X
′

iV
−1
i (yi −Xiβ) = 0. (4.5)

It is important to note that when fitting linear mixed models, the same

score equation as Eq (4.5) had to be solved. However, Vi was not diagonal but

was equal to the modelled covariance matrix of Yi. GEE’s can be obtained

by using a non-diagonal Vi in the score equations for GLM’s:∑
i

∂µ
′

i

∂β
V −1
i (yi − µi) = 0

where Vi is now a ni x ni covariance matrix with diagonal elements given by

υij. In practice then Vi will be of the form

Vi(β,α) = φA
1/2
i (β)Ri(α)A

1/2
i (β) (4.6)

in which

A
1/2
i (β) =


√
υi1(µi1(β)) . . . 0

...
. . .

...

0 . . .
√
υi1(µini

(β))



Ri(α) is the correlation matrix of Yi which depends on a vector α of un-

known parameters. It is important to note that unlike in the normal case,

solving S(β) = 0 will not yield MLE’s. The equations are strictly speaking,

not score equations since they are not first-order derivatives of some log-

likelihood function for the data under some statistical model. We refer to

the above approach as the standard modelling GEE approach.
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4.6.2 Large Sample Properties

Let β̂ be the solution to Eq (4.5) that is β̂ is the solution to

∑
i

∂µ
′

i

∂β
V −1
i (yi − µi) = 0.

Then large sample properties guarantee that conditionally upon α, β̂ is

asymptotically (N →∞) normally distributed with mean β and covariance

matrix:

Var(β̂) =

(∑
i

∂µ
′

i

∂β
Vi
∂µi

∂β

)−1

x

(∑
i

∂µ
′

i

∂β
V −1
i Var(Y i)V

−1
i

∂µi

∂β

)
x

(∑
i

∂µ
′

i

∂β
Vi
∂µi

∂β

)−1

.

(4.7)

Notationally we can write Eq (4.7) as:

Var(β̂) = I−1
0 I1I

−1
0 .

The above estimator of Var(β̂) called the sandwich estimator is also some-

times called the robust estimator. This result holds provided that the mean

was correctly specified i.e. provided that E(Yi) = µi(β). In practice α is re-

placed by an estimate. The robust (sandwich) estimator in the linear models

case derived earlier on is a special case of the above covariance matrix. In

case Ri is indeed the correct correlation model, the covariance matrix Var(β̂)

reduces to

Var(β̂) = φ

(∑
i

∂µ
′

i

∂β
V −1
i

∂µi

∂β

)−1

= I−1
0 .

provided

(∑
i
∂µ

′
i

∂β
V −1
i

∂µi

∂β

)
is non-singular.

However, I−1
0 is the so called naive estimator or model based estimator. The

known variance result is recovered when the guess of the correct correlation

model is actually equal to the true model. The estimators β̂ are consistent

even if the working correlation matrix is correct.
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In practice, Var(Yi) in Var(β̂) is replaced by:

[Yi − µi(β̂)][Yi − µi(β̂)]
′

which is unbiased for Var(Yi), provided that the mean has been correctly

specified. This means that there are several implications based on the asymp-

totic theory, viz.

• Mean structure needs to be correctly specified

• Little effort needs to be spent on specifying the correlation structure

because mis-specification does not affect consistency and asymptotic

normality

• Considerably large samples may be required

• Efficiency can be affected and this follows from the Cramér-Rao in-

equality

• Taken to the extreme, one could make the working assumptions of

independence between two repeated measures

• It also implies that the correlation structure should not be interpreted

• GEE’s validity is limited when there are incomplete data

4.6.3 The Working Correlation Matrix

When fitting marginal models it is possible to specify what is known as the

working correlation matrix Ri(α) for the n observations from subject i We

can therefore write

Vi(β,α) = φA
1/2
i (β)Ri(α)A

1/2
i (β).
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The variance function Ai is the ni×ni diagonal matrix with elements υ(µij),

the known GLM variance function. The working correlation Ri(α), is pos-

sibly dependent on a different set of parameters α. The over dispersion

parameter φ, is assumed to be 1 or estimated from the data.

The unknown quantities are expressed in terms of the Pearson residuals

eij =
yij − µij√
υ(µij)

. (4.8)

Note that the eij implicitly depends on β which is unknown and has to be

estimated.

4.6.4 Estimation of the Working Correlation Matrix

Liang and Zeger (1986) proposed the moment based estimates for the work-

ing correlation matrix. Some of the more popular estimation assumptions

include:

Assumption Corr(Yij, Yik) Estimate

Independence 0

Exchangeable α α̂ = 1
N

∑N
i=1

1
ni(ni−1)

∑
j 6=k eijeik

AR(1) αt α̂ = 1
N

∑N
i=1

1
ni−1)

∑
j≤ni−1 eijei,j+1

Unstructured αjk α̂jk = 1
N

∑N
i=1 eijeik

The dispersion parameter is then estimated by

φ̂ =
1

N

N∑
i=1

1

ni

ni∑
j=1

e2ij (4.9)

Albert and McShane (1995), Fitzmaurice (1995) and Hall and Severini (1998)

all point out that accurate modelling of the correlation structure generally

improves statistical inference on means. However the moment based esti-

mates of the working correlation structure has led to doubts about efficiency
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of correlation modelling and convergence of GEE solution algorithms in cer-

tain situations. Crowder (1995) indicated that the solution to the first order

GEE for β does not exist under certain types of severe misspecification of

the working correlation structure. Further work along these lines was done

by Sutradhar and Das (1999) who using unbalanced data, showed that these

estimates of β obtained under a working independence assumption are some-

times more efficient than those with a misspecified nondiagonal working cor-

relation structure. Chaganty (1997), Segal, Neuhaus and James (1997) and

O’Hara-Hines (1998) all point out criticisms with the parameter estimation

of GEE. Chaganty (1997) proposes the quasi-least squares (QLS) method for

estimating the correlation parameters. This method was further extended

and investigated by Shults and Chaganty (1998). Recently, Wang and Carey

(2004) propose two ways of constructing unbiased estimating equations from

general correlation models for irregularly timed repeated measures to sup-

plement and enhance GEE. The equations are obtained by differentiation

of the Cholesky decomposition of the working correlation or as the score

equations for decoupled Gaussian pseudolikelihood. These equations can be

solved with computational effort equivalent to that required for a first or-

der GEE. Wang and Carey (2004) also state that methods are well defined

for highly unbalanced and irregularly timed data sets and are applicable

for working correlation patterns outside the first order Markovian time se-

ries model. They also state that if convergence in the unbiased estimating

equations are not achieved then choosing a different correlation structure or

switching to a working independence model may be a solution.
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4.6.5 Fitting GEE

The standard fitting procedure for GEE’s in SAS is ‘PROC GENMOD’. The

steps involved in the computational procedure are as follows:

Step 1

Compute initial estimates for β using a univariate GLM (i.e. assuming in-

dependence among the ni responses for subject i)

Step 2

Compute Pearson residuals eij using Eq (4.8)

Step 3

Compute estimates for α.

Step 4

Compute Ri(α) under a given assumption of a correlation structure

Step 5

Compute an estimate for φ using Eq (4.9)

Step 6

Compute Vi(β,α) = φA
1/2
i (β)Ri(α)A

1/2
i (β).

Step 7

Update estimate for β:

β(t+1) = β(t) −

[
N∑
i=1

F
′

iV
−1
i Fi

]−1 [ N∑
i=1

F
′

iV
−1
i (yi − µi)

]

Step 8

Iterate 2-7 until convergence is reached

Estimates of precision can be achieved by comparing I−1
0 and I−1

0 I1I
−1
0 .
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4.7 Some developmental notes on GEE over

time

We note the following important notes about GEE’s

1. Burton et al. (1998) give a detailed comparison of the several parallels

between GEE algorithm and the IGLS algorithm used in multilevel

modelling. They note that in the case of normal data and the identity

link, the two procedures are in fact equivalent.

2. GEE’s have been derived using the marginal distribution of yij
′
s. Liang

and Zeger (1986) note that it may not be the appropriate technique

when interest centres on “growth” or more general change over time in

the repeated measures.

3. There is a related method known as GEE2 which is described by Zhao

and Prentice (1990) and Kenward (1994). This method attempts to

gain efficiency of β by substituting a parametric model for α and then

relies on assuming that both models for the mean and dependency pa-

rameters are correct i.e. there is a tradeoff on robustness for efficiency.

This method is further discussed by Liang, Zeger and Qaquish (1992).

They found that there is a non-negligible loss in efficiency with GEE1

(the standard GEE described above) compared to GEE2 in the estima-

tion of dependency parameters α. However, there was very little loss

in efficiency in the estimation of β and thus they recommended that

GEE1 be used when the α can be regarded as nuisance parameters, and

the number of clusters k is large relative to ni, the size of each cluster.

This is the situation usually encountered in survey analysis. Note that

a cluster corresponds to an individual in the context of repeated or
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longitudinal data.

4. An alternative to GEE is the alternating logistic regressions (ALR)

proposed by Carey, Zeger and Diggle (1993), but not of interest in the

current work.

5. Le Cessie and Van Houwelingen (1994) suggested an approximation to

the true likelihood by means of a pseudo-likelihood (PL) function that

is easier to evaluate and to maximize. Both GEE and PL give con-

sistent and asymptotically normal estimators provided an empirically

corrected variance estimator which we have called the sandwich esti-

mator is used. GEE is well suited only to marginal models while PL

can be used for marginal models (Geys, Molenberghs and Lipsitz, 1998)

and conditional models (Geys, Molenberghs and Ryan, 1997, 1999).

6. Wang and Lin (2005) investigate the impacts of misspecifing the vari-

ance function which is known to be a function of the mean. They state

that in the framework of GEE, the correct specification of the variance

function can improve the estimation efficiency even if the correlation

structure is misspecified. However misspecification of the variance func-

tion impacts much more on the estimators for within cluster covariates

than for cluster level covariates and also if the variance function is

misspecified, the correct choice of the correlation structure may not

necessarily improve estimation efficiency.

7. Mainstream statistical software packages such as SAS (PROC GEN-

MOD), STATA(XTGEE command) and GENSTAT has the methodol-

ogy of the GEE described above in-built .
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4.7.1 Application of fitting GEE models to the RSV

data set

A series of various models were fitted using the ‘Proc Genmod’ procedure in

SAS by changing the correlation structure within individual responses and

then assessing the main effects. The model that was first fitted included all

the main effects terms. Only those terms that were found to be significant

were retained with the suitable correlation structure. The main effects terms

that we consider are: age, dt, prev, actipass and timemonth. These variables

were described in detail in Chapter 1. All the interaction terms were assessed

by sequentially adding them to the full model of main effects one at a time

and then assessing the p-values of the Wald test of the model but none of the

interaction terms were found to be significant. Hence they are not reported

here. The results are summarized below.
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Exchangeable Independent AR(1)

Parameter Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z|

Intercept -5.0329 1.4454 0.001 -5.0363 1.4479 0.001 -5.0337 1.458 0.001

age 0 -0.9253 1.2175 0.447 -0.9197 1.2194 0.451 -0.9261 1.2343 0.453

age 1 -0.6499 1.0714 0.544 -0.647 1.0736 0.547 -0.6011 1.0824 0.579

age 2 -0.2792 1.0337 0.787 -0.276 1.0356 0.790 -0.241 1.0437 0.817

age 3 -0.0714 0.9744 0.942 -0.0689 0.9759 0.944 -0.0305 0.9835 0.975

age 4 -0.6709 0.9491 0.480 -0.669 0.9502 0.481 -0.6499 0.9579 0.498

age 5 -2.6057 1.298 0.045 -2.6025 1.2979 0.045 -2.5411 1.2919 0.049

age 6 -1.5989 1.0086 0.113 -1.596 1.0087 0.114 -1.566 1.0105 0.121

age 7 -2.2518 1.1538 0.051 -2.25 1.1538 0.051 -2.2603 1.1692 0.053

age 8 -1 0.5944 0.093 -0.9989 0.5946 0.093 -0.96 0.5969 0.108

age 9 -0.7399 0.5124 0.149 -0.7389 0.5126 0.149 -0.7361 0.5189 0.156

age 10 -0.3234 0.4528 0.475 -0.3221 0.4528 0.477 -0.2992 0.4574 0.513

age 11 -0.5684 0.4612 0.218 -0.5685 0.4612 0.218 -0.5365 0.4637 0.247

age 12 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

dt 0.0008 0.0084 0.919 0.0009 0.0084 0.919 0.0014 0.0082 0.866

prev 44.6065 8.1063 < .0001 44.5942 8.1055 < .0001 43.8948 8.1214 < .0001

timemonth -0.0457 0.1044 0.662 -0.0454 0.1046 0.664 -0.0437 0.1053 0.678

actipass 0 2.2345 0.1768 < .0001 2.2341 0.1769 < .0001 2.2049 0.1759 < .0001

actipass 1 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

Table 4.1: Model based standard errors and estimates GEE

Exchangeable Independent AR(1)

Parameter Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z|

Intercept -5.033 1.165 < .0001 -5.036 1.165 < .0001 -5.034 1.161 < .0001

age 0 -0.925 1.230 0.452 -0.920 1.229 0.454 -0.926 1.226 0.450

age 1 -0.650 0.906 0.473 -0.647 0.906 0.475 -0.601 0.902 0.505

age 2 -0.279 0.858 0.745 -0.276 0.858 0.748 -0.241 0.857 0.779

age 3 -0.071 0.801 0.929 -0.069 0.801 0.932 -0.031 0.800 0.970

age 4 -0.671 0.746 0.368 -0.669 0.746 0.370 -0.650 0.749 0.385

age 5 -2.606 1.194 0.029 -2.603 1.194 0.029 -2.541 1.172 0.030

age 6 -1.599 0.869 0.066 -1.596 0.869 0.066 -1.566 0.860 0.069

age 7 -2.252 1.040 0.030 -2.250 1.039 0.030 -2.260 1.033 0.029

age 8 -1.000 0.606 0.099 -0.999 0.607 0.100 -0.960 0.606 0.113

age 9 -0.740 0.561 0.187 -0.739 0.561 0.188 -0.736 0.554 0.184

age 10 -0.323 0.473 0.494 -0.322 0.473 0.496 -0.299 0.473 0.527

age 11 -0.568 0.443 0.199 -0.569 0.443 0.199 -0.537 0.447 0.231

age 12 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

dt 0.001 0.011 0.937 0.001 0.011 0.937 0.001 0.010 0.893

prev 44.607 6.554 < .0001 44.594 6.552 < .0001 43.895 6.527 < .0001

timemonth -0.046 0.085 0.589 -0.045 0.085 0.592 -0.044 0.084 0.603

actipass 0 2.235 0.181 < .0001 2.234 0.181 < .0001 2.205 0.178 < .0001

actipass 1 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

Table 4.2: Empirical based standard errors and estimates GEE

The algorithm for the unstructured correlation matrix option did not con-

verge and the results are omitted. The results of the model based estimates

and standard errors are not very different between the three correlation struc-

tures. The magnitude of the estimates are somewhat similar. Moreover, we

see that the model based and the empirical parameter estimates are not very
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different in magnitude. This is a feature of GEE because the choice between

naive and empirical only affects the estimation of the covariance matrix of

the regression parameter β. The output for the correlation between two re-

peated measurement for the exchangeable correlation matrix was found to

be −0.00035. A possible reason why the unstructured correlation matrix

did not produce convergence is because the observations can not be aligned

that is the observations were not equally spaced. Table 4.1 and 4.2 shows

that for the model and empirical based estimates that at the 5% significance

level there were significant differences between age group 5 relative to age

group 12 and mildly between age group 7 relative to age group 12 in deter-

mining whether a child is infected or not. The variables prevalence (prev)

and type of sampling (actipass), whether a child was actively or passively

sampled (actipass 0 versus actipass 1) were both significant at the 5% level

in influencing whether a child is infected or not. The full results are tab-

ulated in Tables 4.1 and 4.2 for the types of standard errors and the three

correlation structures. It is also worthwhile noting that the exchangeable

and independent correlation structures have their empirical standard errors

slightly closer to the model based standard errors than the AR(1) correlation

structure. The estimated GEE correlation matrices are all essentially inde-

pendent, so we expect to see no appreciable differences among the columns

of Table 4.1 and 4.2. It is however interesting that the sandwich estimator

appears to be picking up dependence not captured by the working correla-

tion matrices given the estimated correlation parameters. It is necessary to

reiterate that the unstructured correlation matrix is found to be unsuitable

in this scientific setting and is dropped.
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Correlation Type Source DF Chi-Square Pr > Chi-Sq

Exchangeable age 12 30.39 0.0024

dt 1 0.01 0.9379

prev 1 23.32 < .0001

timemonth 1 0.3 0.5860

actipass 1 61.86 <.0001

Independent age 12 30.39 0.0024

dt 1 0.01 0.9378

prev 1 23.32 < .0001

timemonth 1 0.29 0.5882

actipass 1 61.81 <.0001

AR(1) age 12 30.54 0.0023

dt 1 0.02 0.8974

prev 1 22.94 < .0001

timemonth 1 0.27 0.6008

actipass 1 62.00 <.0001

Table 4.3: Score statistics for Type III GEE

The type III score statistics show that the age, prev and actipass variables

to be significant at the 5% level in all three correlation structures. The

magnitude of the estimates do not differ by vast amounts from each other in

the three correlation structures.

4.8 Weighted Generalized Estimating Equa-

tions (WGEE)

Missing data is a problem that is frequently encountered in the analysis of

clustered and repeated measurement data. Liang and Zeger (1986) pointed

out that, GEE inferences are only valid under MCAR. Robins, Rotnitzky
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and Zhao (1995) proposed a class of weighted estimating equations to allow

for MAR, as an extension to the GEE.

The idea is to weight each subject’s contribution in the GEE’s by the inverse

probability that a subject drops out at the time he dropped out. This can

be calculated, for example, as

νidi
≡ P [Di = di] =

di−1∏
k=2

(1− P [Rik = 0|Ri2 = . . . = Ri,k−1 = 1])

× P [Ridi
= 0|Ri2 = . . . = Ri,di−1 = 1]I{di≤T}

(4.10)

where Rij is a dropout indicator taking a value of 1 if the individual did

not drop out and a value of 0 if dropout occurred. Recall that Y i can be

partitioned into unobserved components Y m
i and the observed components

Y o
i . Similarly, we can allow the same partitioning of µi into µmi and µoi . In

the weighted GEE approach, which is intended to reduce possible bias of β̂,

the score equations to be solved, taking into account the correlation structure

are:

S(β) =
N∑
i=1

1

νidi

∂µi

∂β
′

(
A

1/2
i RiA

1/2
i

)−1

(yi − µi) = 0

=
N∑
i=1

n+1∑
d=2

I(Di = d)

νidi

∂µi

∂β
′ (d)

(
A

1/2
i RiA

1/2
i

)−1

(d)(yi(d)− µi(d)) = 0

where yi(d) and µi(d) are the first d−1 elements of yi and µi respectively. We

define ∂µi

∂β
′ (d) and

(
A

1/2
i RiA

1/2
i

)−1

(d) analogously. Each child should have

had a maximum of 44 visits and this was not the case in the data set due

to dropout. The pattern of the missingness was monotone and WGEE was

applied to the data by firstly running the dropout macro and then deriving

the weights to run WGEE in SAS. The results for fitting WGEE to the RSV

data are summarized below:
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Correlation Type Source DF Chi-Square Pr > Chi-Sq

Exchangeable age 12 29.30 0.0036

dt 1 0.54 0.4625

prev 1 14.91 0.0001

timemonth 1 1.26 0.2608

actipass 1 58.93 <.0001

Independent age 12 27.82 0.0059

dt 1 0.54 0.4606

prev 1 14.48 0.0001

timemonth 1 1.30 0.2551

actipass 1 58.07 <.0001

AR(1) age 12 27.83 0.0059

dt 1 0.56 0.4528

prev 1 14.31 0.0002

timemonth 1 1.32 0.2508

actipass 1 58.45 <.0001

Table 4.4: Score statistics for Type III WGEE
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Exchangeable Independent AR(1)

Parameter Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z|

Intercept -8.526 1.733 < .0001 -8.306 1.632 < .0001 -8.311 1.635 < .0001

age 0 1.373 1.459 0.347 1.339 1.382 0.333 1.303 1.391 0.349

age 1 -2.456 1.354 0.070 -2.517 1.279 0.049 -2.493 1.282 0.052

age 2 0.132 1.279 0.918 -0.005 1.209 0.997 0.005 1.212 0.997

age 3 0.169 1.177 0.886 0.035 1.113 0.975 0.046 1.116 0.967

age 4 0.760 1.090 0.486 0.781 1.028 0.448 0.788 1.030 0.445

age 5 -1.671 1.489 0.262 -1.495 1.338 0.264 -1.478 1.338 0.269

age 6 -0.941 1.105 0.394 -0.888 1.034 0.390 -0.877 1.035 0.397

age 7 -1.899 1.294 0.142 -1.743 1.171 0.137 -1.739 1.174 0.139

age 8 -0.754 0.642 0.240 -0.722 0.617 0.242 -0.709 0.618 0.251

age 9 -0.492 0.554 0.375 -0.455 0.533 0.393 -0.455 0.535 0.395

age 10 -0.095 0.487 0.846 -0.072 0.469 0.878 -0.064 0.470 0.891

age 11 -0.494 0.489 0.313 -0.441 0.469 0.347 -0.434 0.470 0.356

age 12 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

dt 0.008 0.008 0.304 0.008 0.008 0.311 0.008 0.008 0.303

prev 40.413 8.876 < .0001 38.698 8.461 < .0001 38.465 8.473 < .0001

timemonth 0.154 0.126 0.224 0.151 0.119 0.203 0.152 0.119 0.201

actipass 0 3.415 0.260 < .0001 3.325 0.250 < .0001 3.313 0.250 < .0001

actipass 1 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

Table 4.5: Model based standard errors and estimates for WGEE

Exchangeable Independent AR(1)

Parameter Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z|

Intercept -8.526 1.966 < .0001 -8.306 1.841 < .0001 -8.311 1.840 < .0001

age 0 1.373 1.799 0.445 1.339 1.700 0.431 1.303 1.712 0.447

age 1 -2.456 1.681 0.144 -2.517 1.617 0.120 -2.493 1.613 0.122

age 2 0.132 1.420 0.926 -0.005 1.350 0.997 0.005 1.350 0.997

age 3 0.169 1.289 0.896 0.035 1.231 0.977 0.046 1.230 0.970

age 4 0.760 1.049 0.469 0.781 0.987 0.429 0.788 0.987 0.425

age 5 -1.671 1.639 0.308 -1.495 1.336 0.263 -1.478 1.333 0.267

age 6 -0.941 1.051 0.370 -0.888 0.944 0.347 -0.877 0.943 0.352

age 7 -1.899 1.324 0.151 -1.743 1.083 0.108 -1.739 1.082 0.108

age 8 -0.754 0.728 0.300 -0.722 0.675 0.285 -0.709 0.675 0.293

age 9 -0.492 0.672 0.464 -0.455 0.625 0.467 -0.455 0.623 0.466

age 10 -0.095 0.565 0.867 -0.072 0.525 0.891 -0.064 0.526 0.903

age 11 -0.494 0.510 0.333 -0.441 0.468 0.346 -0.434 0.470 0.356

age 12 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

dt 0.008 0.010 0.396 0.008 0.009 0.385 0.008 0.009 0.374

prev 40.413 8.355 < .0001 38.698 7.784 < .0001 38.465 7.782 < .0001

timemonth 0.154 0.135 0.255 0.151 0.128 0.236 0.152 0.127 0.231

actipass 0 3.415 0.628 < .0001 3.325 0.578 < .0001 3.313 0.575 < .0001

actipass 1 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

Table 4.6: Empirical based standard errors and estimates for WGEE

The model based results show that at the 5% significance level, the param-

eter estimates for ‘prev’ and ‘actipass’ are significant under three correlation

structure assumptions while the parameter estimate for ‘age 1’ versus ‘age

12’ is significant only under the independent assumption. Empirical based

estimates in Table 4.6 show only ‘prev’ and ‘actipass’ to be significant at the
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5% level. There seem not to be huge differences between the model based and

empirical standard errors for the exchangeable correlation structure, however

for the Independent and the AR(1) correlation structures the differences be-

tween the standard errors are slightly bigger. This difference is happening

due to the presence of the weights in the estimating procedure. Table 4.7 is

a table comparing the three correlation structures under GEE and WGEE

marginal models.
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GEE WGEE GEE WGEE GEE WGEE

Exchangeable Exchangeable Independent Independent AR(1) AR(1)

Parameter Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

Intercept -5.03 1.45 -8.53 1.73 -5.04 1.45 -8.31 1.63 -5.03 1.46 -8.31 1.64

age 0 -0.93 1.22 1.37 1.46 -0.92 1.22 1.34 1.38 -0.93 1.23 1.30 1.39

age 1 -0.65 1.07 -2.46 1.35 -0.65 1.07 -2.52 1.28 -0.60 1.08 -2.49 1.28

age 2 -0.28 1.03 0.13 1.28 -0.28 1.04 -0.01 1.21 -0.24 1.04 0.00 1.21

age 3 -0.07 0.97 0.17 1.18 -0.07 0.98 0.03 1.11 -0.03 0.98 0.05 1.12

age 4 -0.67 0.95 0.76 1.09 -0.67 0.95 0.78 1.03 -0.65 0.96 0.79 1.03

age 5 -2.61 1.30 -1.67 1.49 -2.60 1.30 -1.50 1.34 -2.54 1.29 -1.48 1.34

age 6 -1.60 1.01 -0.94 1.11 -1.60 1.01 -0.89 1.03 -1.57 1.01 -0.88 1.03

age 7 -2.25 1.15 -1.90 1.29 -2.25 1.15 -1.74 1.17 -2.26 1.17 -1.74 1.17

age 8 -1.00 0.59 -0.75 0.64 -1.00 0.59 -0.72 0.62 -0.96 0.60 -0.71 0.62

age 9 -0.74 0.51 -0.49 0.55 -0.74 0.51 -0.46 0.53 -0.74 0.52 -0.45 0.53

age 10 -0.32 0.45 -0.09 0.49 -0.32 0.45 -0.07 0.47 -0.30 0.46 -0.06 0.47

age 11 -0.57 0.46 -0.49 0.49 -0.57 0.46 -0.44 0.47 -0.54 0.46 -0.43 0.47

age 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dt 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01

prev 44.61 8.11 40.41 8.88 44.59 8.11 38.70 8.46 43.89 8.12 38.46 8.47

timemonth -0.05 0.10 0.15 0.13 -0.05 0.10 0.15 0.12 -0.04 0.11 0.15 0.12

actipass 0 2.23 0.18 3.41 0.26 2.23 0.18 3.33 0.25 2.20 0.18 3.31 0.25

actipass 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.7: Model based standard errors and estimates for GEE and WGEE

Table 4.4 shows that the type III score statistics under WGEE for age,

prev and actipass are all significant at the 5% same as in the case of GEE ex-

cept that the magnitude of the estimates are slightly smaller. Tables 4.5 and

4.6 show that the model based parameter estimates as well as the standard

errors for the WGEE are not very different from each other under all three

correlation structures. Table 4.7 gives the results for both the GEE and

WGEE analysis for the three working correlation structures. The WGEE

parameter estimates are generally larger than those of GEE parameter es-
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timates in all three correlation structures. The results also show that the

standard errors of the parameter estimates for WGEE are larger than those

for GEE. It should be emphasized that although this has happened it may

not always hold in every scientific setting.

4.9 Conclusion

The generalized linear model provided a flexible method for modelling the

data. The WGEE provided a means to model the dropout process and the

results will be discussed in detail comparatively with the last observation car-

ried forward (LOCF), avaliable data and likelihood based analyses in Chapter

9. It should also be noted that the WGEE analysis carried out in SAS took

longer to converge when compared to an ordinary GEE analysis. The obvious

extension of the generalized linear model is to include the child effect as the

random effect in the model so that we now work in the class of generalized

linear mixed models. This leads us to the next family of models namely,

random effects models.
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Chapter 5

Random Effects Models

5.1 Introduction

Searle (1988) stated that the concept of the mixed model was first described

by Jackson (1939) even though the term “mixed model” was not used. In

describing a 2-factor-no-interaction situation Jackson states that one factor

is a “measure of the trial effect” and the other as a “measure of the individual

effect”. This seemed to be the first occurrence of the word “effect” in what

is now its customary usage of linear models. Jackson further described his

model as having one factor random and one non-random which seems as

a clear specification of a mixed model, although not called so such, at the

time. Associated with the term mixed model is whether or not it has fixed or

random effects and whether it can be applied to balanced data or unbalanced

data. So we first need to describe and define these concepts.

Balanced and unbalanced data

This concept was highlighted in Chapter 1 but will be defined here again for

completeness.
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• Data can be described as balanced when each cell in the data set con-

tains the same number of observations and as unbalanced when this is

not the case.

• For designed experiments, unbalanced data occur when the design of

the experiment force the data to be so, in other words, when there

is “planned” unbalancedness. Unbalanced data can also result from

unfortunate circumstances or experimental carelessness, for example if

the experimenter loses some of the data points. As a result the cell

containing these missing observations vary in number with respect to

other cells. Note that the current application involves longitudinal or

repeated measurement data which is most often unbalanced because

of unequal observations per individual. Hence the focus of the current

study is on the analysis of unbalanced longitudinal binary response

data with random individual effects.

Fixed and random effects models

• Definition: A factor in a model is random if its levels consist of a

random sample from a population of all possible levels. A model is then

a random effects model if all the factors in the treatment structure are

random effects.

• Definition: A factor in a model is fixed if its levels are selected by a

non-random process or consists of the entire population of all possible

levels. A model is then a fixed effects model if all the factors in the

treatment structure are fixed effects.

A model containing both fixed and random effects is therefore called a mixed

effects model.
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5.2 The Generalized Linear Mixed Model

One of the classical random effects models is known as the Beta-binomial

model. This model was proposed by Skellam (1948) and then Kleinman

(1973). As the name suggests this model is made up of a binomial part and

a beta part. The Beta-binomial model is outside of the scope of this thesis

and will not be considered. However the most frequently used random effects

model for discrete outcomes is the generalized linear mixed model (GLMM).

Generalized linear mixed models are also a straightforward extension of the

generalized linear models for univariate data to the context of clustered mea-

surements. With the advent of computational power, there has been a wide

range of software tools available for fitting generalized linear mixed models.

Examples of areas where GLMMs can be used include:

• estimating trends in disease rates

• modelling CD4 counts in a clinical trial over time for HIV infected

individuals

• modelling the proportion of infected plants on experimental units in a

design with randomly selected treatments or randomly selected blocks

• predicting the probability of high ozone levels for randomly selected

countries

• modelling skewed data over time

• analyzing customer preference with respect to certain brands of clothing

groceries etc.

• joint modelling of multivariate outcomes

Much of the work in this chapter is taken directly from Levin (1999).
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5.2.1 Model Formulation

As in the case of the linear mixed model, discussed in Chapter 2, Yij is the

jth outcome measured for subject i, i = 1, . . . , N , j = 1, . . . , ni and Yi is

the ni-dimensional vector of all measurements available for subject i. The

random effects bi is assumed be drawn independently from the N(0, D) and

the outcomes Yij are conditionally independent given bi with densities of the

form

fi(yij|bi,β, φ) = exp{φ−1[yijθij − ψ(θij)] + c(yij, θ)}

for a known link function η such that η(µij) = η(E(Yij|bi)) =x
′

ijβ +

z
′

ijbiwhere xij and zij are respectively, p-dimensional and q-dimensional

vectors of known covariate values corresponding to the fixed and random

effects β and bi. The vector β is a p-dimensional vector of unknown fixed

regression coefficient and bi is a q-dimensional vector of random regression

effects. The quantity φ is a scalar parameter. Finally let f(bi|D) be the

density of the N(0, D) distribution for the random effects bi.

5.2.2 Maximum Likelihood Estimation

The random effects models can be fitted by maximization of the marginal

likelihood, obtained by integration of the random effects. The likelihood

contribution of the ith subject becomes

fi(yi|β, D, φ) =

∫ ni∏
j=1

fij(yij|bi,β, φ)f(bi|D)dbi (5.1)

from which the likelihood for β, D, and φ is derived

L(β, D, φ) =
N∏
i=1

fi(yi|β, D, φ)

=
N∏
i=1

∫ ni∏
j=1

fij(yij|bi,β, φ)f(bi|D)dbi (5.2)
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The problem here is maximizing Eq. (5.2) the product of N integrals over

the q-dimensional random effects bi. However in some special cases these

integrals can be worked out analytically such as in the case of the linear

mixed model with continuous outcomes as well as the case of the Probit-

normal model. In general there are no analytic expressions available for for

the integrals of equation Eq. (5.2) and as a result numerical approximation

methods are needed. Numerical approximations can be divided into the

following classes:

1. Those that are based on the approximation of the integrand

2. Those based on an approximation of the data

3. Finally those that are based on the approximation of the integral itself.

Tuerlinckx et al (2004), Pinheiro and Bates (2000) and Skrondàl and Rabe-

Hesketh (2004) give an overview of the currently available numerical approx-

imations. We will now consider these methods of approximation briefly.

5.2.3 Estimation based on the approximation of the

integrand

Whenever integrands are approximated, closed form expressions must be

obtained so that numerical maximization of the approximated likelihood is

feasible. All the proposed methods lead to Laplace-type methods. Tierny

and Kadane(1986) use the Laplace method which is designed to approximate

integrals of the form

I =

∫
eQ(b)db (5.3)

where Q(b) is a known, unimodal and bounded function of a q-dimensional

variable b. Let b̂ be the value of b for which Q is maximized. The second-
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order Taylor series expansion of Q(b) is of the form

Q(b) ≈ Q(b̂) +
1

2
(b− b̂)′Q′′

(b̂)(b− b̂) (5.4)

for Q
′′
(b̂) equal to the Hessian of Q i.e. the matrix of the second-order deriva-

tive of Q evaluated at b̂. If we replace Q(b) in Eq. (5.3) by its approximation

from equation Eq. (5.4), we have

I ≈ (2π)
q
2 | −Q′′

(b̂) |−
1
2 eQ(b̂)

Clearly the integral in Eq. (5.2) is proportional to an integral of the form

given by equation Eq. (5.3), for functions Q(b) given by

Q(b) = φ−1

ni∑
j=1

[yij(x
′

ijβ + z
′

ijb)− ψ(x
′

ijβ + z
′

ijb)]−
1

2
b

′
D−1b

such that Laplace’s method can be applied. It is imperative to note that

the mode b̂ of Q depends on the unknown parameters β, φ and D such

that in each iteration of the numerical maximization of the likelihood, b̂

will be recalculated conditionally on the current values for the estimates of

these parameters. The Laplace approximation will be exact when Q(b) is

a quadratic function of b i.e. the integrands in Eq. (5.2) are exactly equal

to normal kernels. Raudenbaush, Yang and Yosef (2000) extend the above

Laplace method to include higher order terms in the Taylor series expansion

in Eq. (5.4) up to the order 6. They note that this improves the overall

approximation.

5.2.4 Estimation based on the approximation of the

data

We now consider the second approach which is based on the decomposition

of the data into the mean and an appropriate error term with a Taylor series

116



expansion of the mean which is a non-linear function of the linear predictor.

Different methods in this approach exist because they use different orders in

the Taylor series expansion and the point around which the approximation

is expanded. Consider the decomposition

Yij = µij + εij = h(x
′

ijβ + zijbi) + εij (5.5)

in which h(.) equals the inverse link function η(.) and where the error terms

have the distribution with variance equal to Var(Yij|bi) = φυ(µij) where υ(.)

is as the usual variance function in the exponential family of distributions.

We consider the decomposition where we have binary outcomes with the logit

natural link function. This is directly applicable to our data set. We then

have:

µij = P (Yij = 1) = πij =
exp(x

′

ijβ + z
′

ijbi)

1 + exp(x
′

ijβ + z
′

ijbi)

with εij = 1−πij with probability πij and equals −πij with probability 1−πij.

We will now consider two methods of approximation of the mean and hence

the parameters. These methods are called Penalized Quasi-Likelihood(PQL)

and Marginal Quasi-Likelihood(MQL)

Penalized Quasi-Likelihood (PQL)

We will firstly look at the Taylor series expansion of Eq. (5.5) around the

current estimates β̂ and b̂i of the fixed effects and random effects. This gives

us:

Yij ≈ h(x
′

ijβ̂ + z
′

ij b̂i)

+ h
′
(x

′

ijβ̂ + z
′

ij b̂i)x
′

ij(β − β̂)

+ h
′
(x

′

ijβ̂ + z
′

ij b̂i)z
′

ij(bi − b̂i) + εij

= µ̂ij + υ(µ̂ij)x
′

ij(β − β̂) + υ(µ̂ij)z
′

ij(bi − b̂i) + εij
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where µ̂ij equals the current predictor h(x
′

ijβ̂ + z
′

ij b̂i) for the conditional

mean E(Yij|bi) and h
′
the derivative of h w.r.t β and bi in the second and

third terms respectively . In vector notation, this reduces to

Yi ≈ µ̂i + V̂iXi(β − β̂) + V̂iZi(bi − b̂i) + εi

for appropriate design matrices Xi and Zi with V̂i equal to the diagonal

matrix with diagonal entries equal to υ(µ̂ij). Now if we reorder the above

expression, it becomes

Y ∗
i ≡ V̂ −1

i (Yi − µ̂i) +Xiβ̂ + Zib̂i ≈ Xiβ + Zibi + ε∗
i (5.6)

for ε∗
i equal to V̂ −1

i ε which has a zero mean. Eq. (5.6) can be viewed as a

linear mixed model for the pseudo data Y ∗
i with fixed and random effects

as β and bi and error terms ε∗i . The theory of the linear mixed model was

covered in detail in Chapter 3.

This then gives a useful and familiar algorithm for fitting the generalized

linear mixed model. Given the starting values for the parameters β, D and

φ in the marginal likelihood, empirical Bayes estimates are calculated for bi

and the pseudo data Y ∗
i . The approximate linear mixed model in Eq. (5.6) is

fitted yielding estimates for β, D and φ. These estimates are then used in the

pseudo data and and the procedure iterated until convergence is reached. The

resulting estimates are called the penalized quasi-likelihood (PQL) estimates.

The PQL procedure was studied in detail independently by Breslow and

Clayton (1993) and Wolfinger and O’ Connell (1993).

Marginal Quasi-Likelihood(MQL)

This method is very similar to PQL except that we consider the Taylor series

expansion of Eq. (5.5) of the mean around the current estimates β̂ and b̂i = 0
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of the fixed effects and random effects. This yields similar results as above

except that the current predictor of the mean µ̂ij is of the form h(xijβ̂) rather

than h(x
′

ijβ̂ + z
′

ij b̂i). The pseudo data is now Y ∗
i ≡ V̂ −1

i (Yi − µ̂i) + Xiβ̂

and thus satisfies the linear mixed model:

Y ∗
i ≈ Xiβ + Zibi + ε∗

i (5.7)

Again the model is fitted by iterating between the calculation of the pseudo-

data and the approximate linear mixed model for this pseudo-data. The

estimates are called marginal quasi-likelihood(MQL) estimates. More of the

details of the above method can be found in Breslow and Clayton (1993) and

Goldstein (1991)

5.2.5 Some notes about the PQL and MQL methods

1. The essential difference between PQL and MQL is that MQL does

not incorprate the random effects bi in the linear predictor but both

methods have the same key idea and will ideally have similar properties

2. The pseudo data Y ∗
i determines the accuracy of both approximations.

3. Rodriguez and Goldman (1995) show that both PQL and MQL may be

seriously biased when applied to binary response data, as is our case.

Their simulations reveal that the fixed effects and variance components

suffer from substantial, if not severe, attenuation bias in certain situa-

tions

4. Wolfinger (1998) showed that the Laplace, PQL and MQL methods

perform badly in cases of binary repeated observations, with a relatively

small number of observations available for all persons
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5. Goldstein and Rasbash (1996) and Rodriguez and Goldman (1995)

show that one of the ways to improve the accuracy of the approxi-

mations is to include a second order term in the Taylor series expan-

sion. They call these methods PQL 2 and MQL 2. They state that

and MQL2 performs only slightly better than MQL but PQL 2 is

substantially better than PQL

6. Breslow and Lin (1995) and Lin and Breslow (1996) suggest the in-

clusion of bias correction terms while Kuk (1995) suggested the use of

iterative bootstrap

7. Within the PQL and MQL methods, the linear mixed model can be

based on Maximum likelihood estimation(ML) or Restricted Maximum

likelihood estimation(REML) both yielding slightly different results.

8. Quasi-likelihood methods are very similar linearization methods for

fitting GEE’s covered in Chapter 3.

5.2.6 The methods of Schall and Breslow and Clayton

In this derivation u denotes the vector of random effects. If we assume the

random effects are u∼ N(0,G), the normal “errors” linear mixed model is

given by

y = Xβ + Zu+ e.

the conditional mean of the observations given the random model effects is

E[y|u] = Xβ + Zu

and the conditional variance

var[y|u] = R = var(e).
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The observations can then be described as

y = µ+ e

where µ denotes the conditional mean E[y|µ]. The Generalized Linear Mixed

Model (GLMM) can also be described in terms of the conditional means. It

takes the form:

η = Xβ + Zu

where η is the linear predictor through the link function g(µ). Thus we could

write the GLMM as

g{E[y|u]} = Xβ + Zu

As in the conventional mixed model, the random model effects u are assumed

to have a multivariate normal distribution with mean 0 and variance covari-

ance matrix G while as in the conventional generalized linear model, the

underlying distribution of y is assumed to be a member of the exponential

family (for any given u)

To see the difficulty that arises with GLMM’s, suppose that we have a cluster

sampled survey data with a random sample of clusters indexed i = 1, . . . , N

with elementary units j = 1, . . . , ni within each cluster. The observations sat-

isfy generalized linear models with common distributions and a link function.

We now introduce a random term ui corresponding to the random cluster ef-

fect, and assume that the random effects ui are normally distributed with a

mean 0 and a variance σ2
u. We put ui = γzi where zi ∼ NID(0, 1)

As an example we consider a logistic regression model for binary outcomes.

Let

pij = Prob(yij = 1)
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so that

(pij|zi) = Prob(yij = 1|zi)

gives the probability of “success” for the jth unit in cluster i, given the value

of the random cluster effect Zi in cluster i. Then the model can be written

as

logit(pij|zi) = xijβ + γzi. (5.8)

Overall therefore regardless of the cluster effect, pij is found by integrating

over the random cluster effects to get

pij =

∫ ∞

zi=−∞
(pij|zi)φ(zi)dzi (5.9)

where φ is the density function the standard normal random variable

(N(0, 1)). For model Eq. (5.8), the joint likelihood for yij, j = 1, . . . , ni and

i = 1, . . . , N involves the integral in Eq. (5.9) since

l(β, γ) =
∑
ij

{yijlogpij + (nij − yij)log(1− pij)}+ contsant. (5.10)

The difficulty is that the integral has to be evaluated numerically. This

can be done for example using the Gaussian Hermite formula for numerical

quadrature, (discussed in detail in Section 5.7.10 of this chapter) but briefly

under this method, an integral such as above is approximated by means of

sums as follows: ∫ ∞

−∞
f(u)e−u

2

du ≈
m∑
j=1

cjf(sj) (5.11)

where the values of cj and sj are given in standard tables. When we integrate

out (numerically) the random effects, we obtain the marginal likelihood

l(β, γ) and this marginal likelihood can be maximized to find the maximum

likelihood estimates (MLEs) of β and γ. This approach was used by Hedeker
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and Gibbons (1994) who proposed a random effects ordinal regression model

for the analysis of clustered response data. Now a binary response can be

considered a special case of an ordinal response with only two(ordered) out-

come categories. They developed the model for both the probit and the

logistic response functions using the “threshold” concept in which it is as-

sumed that the observed ordered category is determined by the value of a

latent unobservable continuous response that follows a linear model incorpo-

rating random effects. Hedeker and Gibbons (1996) in addition developed a

program called MIXOR (and an extended version MIXORE) to implement

this method of marginal maximum likelihood estimation (MMLE). MIXORE

is a public domain computer program that can be downloaded from the inter-

net, together with a manual that describes how the data should be prepared

for analysis, together with a specification file MIXORE.DEF which describes

the setup of the the data in terms of which columns contain the random ef-

fects, which columns contain the fixed effects and which column contains the

(ordinal) response. In this program, any given set of factors (i.e. categorical

explanatory variables) should be first converted into the required number of

indicator variables which are then stored as separate columns in the input

data set. This could be seen as a drawback for analyses with a large number

of factors each having a large number of levels (In the Kilifi data set, factors

such as “visit”-44 levels). In addition, a constant term is required in the

linear predictor of the model, thus the data file should have a column of 1’s

as one of the explanatory variables. For these reasons We will not use the

MIXORE program in the analysis of the current data set.

There are a number of issues associated with this approach, among them:

• It is in fact relatively easy to extend NLMIXED analyses for correlated

random effects such as those found in random coefficient regression
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models. Such models are quite easy to fit in WinBUGS.

• It may be computationally demanding

• It is not widely implemented in existing commercial software packages

(it is only freely available in MIXORE and also available in Stata ver-

sions 6 and 9)

One might wonder why we opt to use the likelihood conditional on the ran-

dom effects u in the case of the non-normal response. The answer is that

in the case of a normal response and the identity link, the random effects

do not appear explicitly in the likelihood, but only appear through the vari-

ance covariance parameters σ2
1, σ

2
2, . . . , σ

2
k in the case of k random effects

or equivalently through the “ratios or gammas” γi =
σ2

i

σ2 where σ2 is the resid-

ual variance. In the above example E(zj) = 0, thus E[xijβ + γzj] = xijβ.

However E[g(µ)] 6= g[E(µ)] in the case of the non-identity link function g, so

taking the expectations will not cause the random terms to vanish. Hence

we will consider a number of alternative approaches based on modifications

to the mixed model equations.

5.2.7 Estimation approaches by Schall and by Breslow

and Clayton

First consider the methods for obtaining parameter estimates for GLMMs.

The fitting algorithm for the GLMM models is analogous to that for general-

ized linear models. The description below follows Waddington et al. (1994).

For data y with mean µ, the mean is related to the linear predictor η

by the link function: g(µ) = η = Xβ + Zu where β represents the

fixed effects and u is a vector of random effects with var(u) = G, a func-

tion of unknown variance components σ2
1, σ

2
2, . . . , σ

2
p. A working dependent

124



variate y∗ is created by linearizing the link function applied to the data

about the mean values, as follows y∗ = Xβ + Zu + D(µ)(y − µ) where

D(µ)= dg
dµ

= diag{g′
(µ1), g

′
(µ2), . . .}. Thus the working variate has three

components:

(i) fixed effects represented by Xβ

(ii) random effects represented by Zu and

(iii) an error term represented by D(µ)(y − µ)which depends on the dis-

tribution of y and the link function g through D(µ)

The first and third terms numbered above are the same as those of a standard

working variate for the standard generalized linear model discussed under the

PQL and MQL methods. The second and third terms give:

var(y∗) = ZGZ
′
+DVD where V is the variance of y conditional on the

random effects u, and DVD is a diagonal matrix.

Thus the working variate y∗ is described by a linear mixed model with fixed

effects β and random effects u and weights W = (DVD)−1. Given an

estimate of µ, the standard mixed model equations can be used to estimate

β and u [
X

′
WX X

′
WZ

Z
′
WX Z

′
WZ +G−1

][
β̂

µ̂

]
=

[
X

′
Wy∗

Z
′
Wy∗

]
(5.12)

These equations can be solved using the REML algorithm discussed in Chap-

ter 3, which will also give estimates of the variance components G. It has

been found that restricting the REML algorithm to two iterations to provide

an approximate solution rather than allowing it to converge, does not affect

the speed of convergence of the GLMM algorithm, and saves computing time

(Welham, 1993). Given estimates of β and µ, further estimates of µ are
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formed and used to update the working variate y∗ and weights W (which

is also true in the case of generalized linear models) and the estimation is

repeated until convergence.

The method of Schall (1991) uses an estimate of the conditional mean of y

given u i.e. µ̂ = g−1(Xβ̂ + Zû)= h(Xβ̂ + Zû).

This method takes slightly different forms suggested by a number of authors.

Breslow and Clayton (1993) refer to this method as penalized quasi-likelihood

or PQL and derive the methods using a quasi-likelihood argument, which fol-

lowing Littell et al. (1996, Chapter 11) can be summarized as follows. In the

the case of generalized linear models the estimating equations are determined

by

Q(µi, yi) =
yiθi − b(θi)

a(φi)

where µi is involved in the right hand side of the equation through the mean

function θi.

In the normal “errors” mixed model of the form

y = Xβ + Zu+ e

the conditional mean of the observations given the random model effects is

E[y|u] = Xβ + Zu

and the conditional variance

var[y|u] = R = var(e)

The observations can be then described as

y = µ+ e

where µ denotes the conditional mean E[y|u]. In the generalized linear

mixed model the conditional distribution of y given u plays the same role
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as the distribution of y in the fixed effects generalized linear model i.e. the

conditional quasilikelihood of an observation yi given µi is

Q(µi, yi|ui) =
yiθi − b(θi)

a(φi)
.

The joint quasilikelihood of the observations y is the sum of the quasilike-

lihood of y given u and the quasilikelihood of u. In matrix terms the joint

quasilikelihood is

Q(µ, u; y) = y
′
A−1θ − (b0.5

θ A−1b0.5
θ ) +

1

2
u

′
G−1u (5.13)

where A is the matrix of a(φi)’s, θ is the vector of θ(µi)’s, bθ is the vector

of b(θi)’s and G is as defined as var(u).

Breslow and Clayton (1993) and Wolfinger and O’ Connell (1993) show that

solutions for β and u can be obtained from Q(µ, u; y) by iteratively solving

the modified mixed model equations as described above. Engel and Keen

(1994, 1996) discuss the relationship between Schall’s method which is an

extension of the iteratively reweighted least squares algorithm used in the

estimation of generalized linear models, and PQL which is an approximation

of ML estimation using Laplace integration and showed that they are equiv-

alent. Schall’s method (1991) or the PQL procedure assume that the scale

parameter a(φ) = 1. The Wolfinger-O´ Connell procedures which are imple-

mented in the SAS macro GLIMMIX and which they call pseudolikelihood

(PL) or restricted pseudolikelihood (REPL), assume that a(φ) is unknown.

PL obtains a maximum likelihood type estimate of a(φ), while REPL obtains

a REML like estimate. PQL is a special case of PL when a(φ) = 1 (Wolfin-

ger and O´ Connell (1993)). Note that an additional dispersion factor is also

incorporated as a residual variance in the IRREML approach of Engel and

Keen(1994). In the terminology of Zeger et al.(1988), Schall’s method is a

‘subject specific’ (SS) model.
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Goldstein (1995) derived the PQL method as an extension of IGLS to non-

linear models, using a Taylor’s series expansion for the non-linear function.

We should note that in his notation, a(φ) is not assumed to be unity i.e. his

model corresponds to the PL and REPL models of Wolfinger and O’Connell.

The PQL model of Goldstein can be fitted using the software MLn.

An alternative to Schall’s model is what the developers of the statisti-

cal software, Genstat refers to as the marginal model of Breslow and Clay-

ton, variantly referred to by other authors (for example Goldstein, 1995) as

”marginal quasilikelihood” or MQL. The algorithim for MQL is identical to

that for Schall’s model, except for the estimation of the mean µ = g−1(Xβ)

(where the random term Zu is not used). This model is implemented in

Genstat’s GLMM procedure and in MLn. It can be considered as an approx-

imation to that of Schall when the σ2
i ’s are small, and in the terminology of

Zeger et al. (1998) as a population averaged or PA model.

Breslow and Clayton (1993) point out that the detailed derivation of the

PQL (Schall) model using quasilikelihood involves several ad hoc adjust-

ments and approximations of which no formal justification is given; thus the

derivation should be considered as providing heuristic motivation for the es-

timating algorithm that is used, and that this algorithm should be studied

on its own right. They further note that some of the approximations made

in the derivation are likely to improve as the normal approximation becomes

more possible, for example as the denominators of binomial proportions in-

crease or as the means of Poisson observations increase. This will not be

the case for a binary outcome, which is what we observe in many surveys.

Breslow and Clayton (1993) feel that even with binary data the PQL esti-

mates of the fixed effects and their standard errors are sufficiently accurate

for many practical purposes; however, inference on variance parameters are
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less satisfactory and in simulation studies the procedure often converged to a

non-positive definite matrix when the binomial denominator is 1 or 2. They

point out that this is due to the fact that when the response probabilities are

small and the data are highly discrete, only limited information is present

for estimating random effects and their associated variances and covariances.

While this applies to ML estimates as well, these may be consistent where

PQL are not, for example for paired binary data with random pair effects.

Breslow and Clayton (1993) derive the model leading to MQL estimation

(the marginal model of Breslow and Clayton as implemented in Genstat)

by specifying the generalized linear model in terms of the marginal mean as

E[yi] = µi = h(x
′

iβ) where h is the inverse link function. If the link function

is not the identity, the marginal mean so defined does not in general coincide

with the marginal mean calculated from the conditional formulation

E[y|u] = h(Xβ + Zu).

Zeger et al. (1988) investigated marginal models of the above form for longi-

tudinal designs. They showed that the true marginal mean of the hierarchi-

cal model with normally distributed random effects could (at least approx-

imately) be expressed in the form of the equation above, but with altered

values for the regression variables or regression coefficients. With the log

link for example they showed that E[yi] = µi = exp(x
′

iβ + 0.5z
′

iDzi) so

the random effects add an offset to the equations for the marginal mean.

With the logit link the β coefficients are attenuated by a factor ci such that

E(yi) =
exp(cix

′
iβ)

1 + exp(cix
′
iβ)

(5.14)

where ci = det(c2Dziz
′
i + I)−0.5 = (1 + c2z

′
iDzi)

−0.5 where c = 16√
3
/[15π]

(Breslow and Clayton (1993), equation (18)).

This result could be used to alleviate the bias in the estimation of both mean

and variance parameters by treating the ci as a multiplicative offset whose
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values depend on the current model parameters θ. A number of suggested

improvements to the estimation algorithms for both PQL and MQL will be

considered below.

Breslow and Clayton (1993) compare the PQL and MQL methods; they

point out that the regression coefficients of PQL depend strongly on the

estimated variance components when we do not have an identity link, even

in large samples, whereas this is not the case for MQL. They regard marginal

models as being more appropriate when interest is focussed on the marginal

relationship between covariates and the response, in which case the random

effects model serves mainly to suggest a plausible covariance structure that

enables us to get reasonably efficient estimating equations for the mean value

parameters, while PQL is the method of choice for estimating parameters in

the hierarchical model.

To consider this in more detail, we will now return to the concepts of

population average (PA) and cluster specific (CS) models in survey analysis.

The term subject specific (SS) and population average (PA) were introduced

by Zeger et al. (1988) in an article discussing extensions of GLMs for the

analysis of longitudinal data. As an example they considered data for 537

children from Steubenville Ohio, each of whom was examined from age 7 to

10 annually. Whether the child had respiratory infection in the year prior to

each examination was reported by the mother. The mother’s smoking status

[regular smoker (1) or not (0)] was determined at the first interview, and

was regarded as a time independent variable. They considered the following

models:

(1) In the population average (PA) models the marginal probability of res-

piratory infection µit was assumed to satisfy the model

logit(µit) = β∗0 + β∗1x1 + β∗2x2 + β∗3x3
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where

x1 = 1 if the mother smokes and 0 otherwise

x2 = age in years since the 9th birthday and

x3 = x1x2 = age if the mother smokes and 0 otherwise

Zeger et al. (1988) argue that the β∗ describe how the population averaged

response depends on covariates, so in particular β∗
1 compares the rate of

respiratory disease for children whose mothers smoke to the rate for children

whose mothers do not smoke.

(2) In the subject specific (SS) model, the probability of respiratory infection

for an individual is described as

logit(wit) = β∗0 + β∗1x1 + β∗2x2 + β∗3x3 + ui

where in the logit(wit), wit = E[yit|ui] and assumed ui ∼ N(0, σ2
u). Zeger et

al. (1988) argue that in this case β1 indicates how one child’s risk would

change if his/her mother changed his/her smoking status. They present a

number of findings:

1. As has been noted above, with the logit link, the PA parameters are

attenuated i.e. the random effects variability shrinks the fixed effects

parameters towards 0, with the degree of shrinkage depending on the

variance of the random effects

2. Estimates of the SS parameters are correlated with the variance param-

eters of the random effects, even asymptotically. Thus the precision of

estimating β depends on that of the variance parameters, and these

parameters are more difficult to estimate from the longitudinal data

with a nonlinear link and a few observations per subject.
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3. In PA models, only the link function needs to be correctly specified to

make consistent inferences about PA coefficients. On the other hand

the SS model uses not only the information contained in the popu-

lation averaged response, but also a distributional assumption about

the heterogeneity among subjects, thus for the SS models both the link

function and the random effects distribution must be correctly specified

for consistent inferences.

4. SS models are desirable when the response for an individual rather than

the population is the focus, they give growth curves as an example. PA

models are most efficiently used in population studies, such as in epi-

demiology. The difference in the population averaged response between

two groups with different risk factors is more the focus than the change

in an individual’s response

Pendergast et al.(1996) comment in detail on the example given in Zeger

et al.(1988) which has been discussed above. They point out that the differ-

ence in the interpretation of the maternal smoking effect in the two models

is difficult to conceptualize, and insight may be gained from considering a

slightly different scenario. Suppose that the covariate measured was whether

or not the mother currently smoked, and that this was measured at the same

time points as the child’s respiratory disease status i.e. “mothers’s smoking

status” could now be considered as a within cluster covariate, since it could

change from timepoint to timepoint (i.e. from subunit to subunit). The

SS model would then allow direct observation and estimation of the aver-

age effect (in terms of the log odds ratio) of the change in smoking status

upon respiratory disease status, assuming that there were subjects in which a

change in smoking status was observed. The coefficient for “maternal smok-

ing” represents the common log odds ratio for respiratory disease of mother’s
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smoking status across children. The PA model on the other hand ignores the

fact that the effect of change in smoking status of the mother given a child

had actually been measured, and succeeds in estimating only the odds ra-

tio between smoking and nonsmoking mothers. Mothers who had changed

smoking status would appear in both groups.

However in fact if no mother changes smoking status during the study, the

covariate would again be a between subject covariate and no effect of chang-

ing smoking status can be directly observed. The PA model measures the

log odds ratio between groups of mothers, whereas the SS model purports to

measure the effect of change in the mother’s smoking status and the interpre-

tation of that coefficient is entirely model based; in fact it can be considered

as a form of extrapolation with no data available to check it’s validity. Thus

Pendergast et al.(1996) conclude that SS interpretation of covariates which

do not change within a subject is difficult. On the other hand with covari-

ates that do change within a subject, marginal models ignore the observable

information obtained when subjects serve as their own controls and a change

is observed.

Neuhaus, Kalbfleish and Hauck (1991) compare SS and PA model approaches

by analyzing clustered binary data, looking in particular at parameter inter-

pretation. The data that is used is from a study of breast disease conducted

in San Francisco. One component in the study consisted of obtaining a sam-

ple of fluid from both breasts of all study women. The binary outcome was

whether a sample of breast fluid could (Y = 1) or could not (Y = 0) be

obtained from each breast and the covariates considered were X2 = age in

years, X3 = age in years at menarche, a binary indicator X4 = 1 if the woman

was parous and X4 = 0 if not and a binary indicator of whether (X1 = 1)

or not (X1 = 0) physical examination of each breast found evidence of dys-
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plasia. The sample comprised 490 white premenopausal women who had no

breast disease. Their comparison is between a model fitted using numerical

quadrature and a model fitted using GEE, rather than PQL and MQL. They

examine one representative of each approach; for SS models they look at the

mixed effects logistic model, while PA models they use the GEE approach

of Liang et al.(1986). They compare the two approaches for the case of a

single covariate x, pointing out that the results generalize easily to the case

of several covariates.

5.2.8 Inference for Generalized Linear Mixed Models

We know that from the section above that inference in the GLMM was carried

out as follows:

• From section 5.2.7 the observed information matrix is I(β) = X
′
WX

could be used to construct confidence intervals and carry out hypothesis

tests for individual elements of β.

• We could test hypotheses about subsets of the regression variables by

looking at the change in deviance when these terms are dropped from

the model.

Littell et al. (1996, section 11.4) state that little research is done on small

sample properties for GLMMs. By extension from the mixed model (with

normal response) it should be noted that the ratio of the parameter estimates

to their standard errors will not in general follow a Student’s t distribution.

Thus reference is carried out mainly using the Wald statistics. Littell et

al. (1996, section 11.4) point out that these test statistics are basically rea-

sonable as extensions of standard tests for mixed models and generalized

linear models, and that more work is needed on these procedures, either to
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validate them or develop corrections. Simulations carried out by Engel and

Buist (1996) suggests that the procedures for confidence intervals and signif-

icance tests as developed for ordinary mixed models appear to perform well

enough for practical use when applied to the adjusted dependent variate.

The GLIMMIX procedure (macro) in SAS, which can fit both MQL (Bres-

low and Clayton, 1993) and PQL (Schall, 1991) models using repeated calls

to PROC MIXED, provides for type III Wald statistics i.e. these enable us

to test the significance of any terms in the model, conditional on the remain-

ing model terms. When the scale parameter a(φ) is known, these statistics

are approximately distributed as Chi-squared. If we have overdispersion (or

underdispersion) in the case of the Poisson or Binomial models and a(φ) is

unknown, then the Wald statistic is divided by the rank of L (the matrix

used to formulate the hypothesis test) and this is approximately distributed

as F with ν1 and ν2 degrees of freedom, where ν1 =rank(L) and ν2 in simple

cases correspnds to the degrees of freedom required to estimate a(φ), but in

more complex cases must be approximated using a Sattherwaite-type proce-

dure. The GLMM procedure in Genstat can produce Type I Wald statistics,

but it should be noted that these depend on the order in which terms are

included in the model. So if we are using these statistics for model selection,

we should refit the model with terms in a number of different orderings. An

alternative likelihood based test statistic analogous to change in deviance in

generalized linear models and will be considered later on.

As a comparison to SAS GLMM implementation in Genstat, the param-

eter estimates are calculated either using the the method of Schall (PQL) or

the marginal method of Breslow and Clayton (MQL). Ignoring the random

effects u, this gives a linear predictor Xβ on the scale of the link function
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g(.). Predicted means are calculated on this transformed scale in the way

that REML calculates them by ignoring the random effects. Consider the

case of how REML calculates the predicted means when the response is nor-

mally distributed. The predicted means are based on the estimates of the

parameters in the model y = Xβ + Zu + e. If the design is balanced

and orthogonal then the table of means produced in REML for fixed model

terms are the same as the ordinary means. There is no such correspondence

with unbalanced data, as with the Kilifi data. With REML the means are

calculated from a linear transformation of the estimated parameter values,

taking no account of the frequency counts for the different factor combina-

tions. Therefore these predicted means will correspond to averages over the

factor combinations only with orthogonal data. In the other cases, tables of

means can be thought of as mean effects of factor levels adjusted for the mean

values of any covariates and for any lack of balance in other factors; that is,

as the means we would have expected if the data had been orthogonal. We

should note that these means are not of the same type as those produced by

default PREDICT directive in Genstat. In this case the marginal frequencies

are used as weights for the averages of the factor combinations. Predicted

means are calculated using all the parameter estimates and taking means

over the model terms not present in the table. If we require the predicted

means for the fixed model terms, these means need only to be taken over

the estimates for the fixed model terms, since means over the the random

terms will always be zero. These predicted means on the transformed scale

are referred to as, for example, “predicted means for age”. GLMM will also

print a table headed “Back transformed means (on the original scale)”, which

in the case of binary data with a logit link are simply found by applying the
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antilogit function

µ = g−1(η) = exp(η)/{1 + exp(η)}.

Genstat also issues a statement to emphasize that the “means are proba-

bilities not expected values”. Thus inference should be carried out on the

transformed scale, and the back-transformed means are only to give an in-

tuitive guide in interpreting the results. Note in Genstat there is a choice

to use either the Schall (PQL) method or the marginal method of Breslow

and Clayton (MQL) method. As stated earlier the only difference in the two

methods is in the way the parameter estimates are formed.

5.2.9 Remarks on the problem of Bias in Generalized

Linear Models

A number of simulation studies have been carried out to investigate the

performance of MQL (Breslow and Clayton’s method) and PQL (Schall’s

method). Breslow and Clayton (1993) investigated the performance of both

MQL and PQL, both with respect to the estimation of the fixed effects and

the estimation of the variance components/random effects. Their results for

MQL confirmed the attenuation in the estimation regression coefficients that

would be expected on theoretical grounds; they report that much of the bias

in the estimation of both regression coefficients and the variance parameters

could be alleviated by treating the terms ci in Eq. (5.14) as a multiplicative

offset whose value depended on the current θ (estimate of the random pa-

rameters)

The simulation studies revealed that for the PQL method, they found out

that inference on the regression coefficients was approximately correct, even

for binary data, with improved accuracy as the binomial denominators in-
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creased. Inference on variance parameters was less satisfactory under the

PQL method, with a tendency for the procedure to converge to a non-positive

definite variance matrix when the binomial denominator was 1 or 2. They

point out that this is due, at least partially, to the fact that when the re-

sponse probabilities are small and the data are highly discrete, only limited

information is present for estimating random effects and their associated

variances and covariances. They also note that a further limitation of the

PQL method is the failure to account for the contribution of the estimated

variance components when the link function is not the identity, but this is

not the case with the MQL method.

Rodriguez and Goldman (1995) carried out a large simulation study to in-

vestigate the performance of the MQL approach.The study was implemented

using the statistical program ML3, which was the forerunner of MLn. The

simulation study was based on a Guatemalan data set which consisted of

a sub-sample of respondents in the 1987 National Survey of Maternal and

Child Health. The survey was based on a national multistage clustered sam-

ple of 5610 women aged 15-44 years living in 240 communities. The logistic

model selected as the basis of their simulations examined the determinants

of use of modern (versus traditional) prenatal care during pregnancy among

women who reported having obtained some kind of prenatal care, for births

during the 5 years before the survey. The sample size of interest here consists

of the 2449 births that occurred to mothers who received any prenatal care,

with 45% of this sample having received modern prenatal care. The data are

clustered on two higher order levels; the 2449 births were to 1558 mothers

who live in 161 communities. Among the 1558 families, 52.4% had one child

(born during the 5 years before the survey), 38.2% had two children, 9.1%

had three children and 0.3% had four children. The sample sizes per com-
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munity ranged from 1 to 50 with a mean of 15 children.

In the simulation Rodriguez and Goldman considered three covariates, one at

each level. In the first four simulation sets they included random family and

cluster effects in addition to the fixed components, with two magnitudes for

the random effects, namely small (standard deviation 0.4) and large (stan-

dard deviation 1). These random effects were generated from independent

normal distributions with mean 0 and designated variance (0.16 or 1) while

the individual random component was generated from a standard logistic

distribution.

They found that the fixed effects exhibited a clear downward bias, as Bres-

low and Clayton (1993) suggested would happen on theoretical grounds. Ro-

driguez and Goldman (1995) found that the bias was moderate when the

random effects were small (σ = 0.4) but was fairly substantial when at least

one of the random effects was large (σ = 1). For both random effects large

they obtained fixed effects estimates of the order of 0.75 of the true values.

They point out that the bias of 0.25 translates to an odds ratio of 0.78, indi-

cating that the effects of the covariates on the odds of using modern prenatal

care services would be underestimated by 22%. The estimates of the vari-

ance components had an even more pronounced downward bias, with a large

number of simulations leading to estimates of the family effect equal to zero.

Rodriguez and Goldman (1995) then carried out further simulations

1. To see whether the problems of bias were related to the use of a three

level model. To achieve this, they used a two level model including

only the family random effect (set to large or small) or the community

random effect(set to large or small).

2. To see whether the problems of bias were related to the fact that in

the the Guatemalan data structure (with an average of 1.5 children per
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mother) they had very limited information on within family variation.

To do this they carried out two additional data sets of simulations

using rectangular structure of 20 communities, each of which having 20

families with 20 children each, for a total sample size of 800.

For the fixed effects the downward bias remained, and was of a similar magni-

tude with the corresponding previous simulation ( i.e. large or small variance)

for the three level Guatemalan structure. For the two level model including

only a family random effect, the estimates of the variance components still

had a downward bias, and in the case of the small variance 19% of the sim-

ulations led to estimates of the family effect equal to zero. The two level

model including only a community random effect and the three level rect-

angular structure model showed a slight downward bias, but none of the

family effect equal to zero. This suggests that the cluster size is important

in estimating the variance components. It is noted that in their estimation,

Rodriguez and Goldman used Iterative Generalized Least Squares (IGLS)

which is equivalent to using maximum likelihood (ML) and this would lead

to a downward bias in the variance components anyway; for improved results

the Restricted Iterated Generalized Least Squares (RIGLS) or REML should

be used in each iteration. Goldstein (1995, Chapter 5) and Goldstein and

Rasbash (1996) suggest an improved approximation which largely eliminates

the downward biases in the estimates from GLMMs. Goldstein (1995, Chap-

ter 5 and Chapter 7) proposed an alternative approach of the estimation

for nonlinear models, including GLMMs. Rodriguez and Goldman (1995)

point out that Goldstein’s procedure in general will produce the same results

as those produce by the GLMM algorithm based on quasilikelihood. This

follows since the two methods use exactly the same approximating linear

model, based on a result due to Browne (1974) who proves that Generalized
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Least Squares (GLS) and maximum likelihood are equivalent in the normal

case, and that the Fisher’s scoring method and GLS coincide when the vari-

ance matrix is linear in the unknown parameters, as in the case in variance

component models if the parameterization is in terms of σ2
u (the variance

component corresponding to the random effect u.

Rodriguez and Goldman (1995) considered second order MQL estimation,

and found that this improved the estimates, but only slightly. Goldstein and

Rasbash (1996) carried out simulations based on those of Rodriguez and

Goldman, and found that the PQL procedure considerably improved the

model estimates with the only bias being in about 20% underestimation in

their level-2 model. The greatest improvement occurred from a move from

first to second order PQL. They also report the results of Ayis (1995) who

showed that the second order PQL produced almost unbiased estimates for

the fixed parameters and estimates that are no greater than 4% for the ran-

dom parameters. Goldstein and Rasbash (1996) also reported on an iterated

form of bootstrapping due to Kuk (1995) for producing asymptotically un-

biased estimates.

Breslow and Lin (1995) and Lin and Breslow (1996) consider the bias in

estimates of both fixed and random parameters, and give suggestions for bias

correction procedures. Breslow and Lin (1995) studied the asymptotic bias

of the variance component i.e. a single random component and the regres-

sion parameter (fixed parameter) estimates in GLMMs with a canonical link

function and a single source of extraneous variation. In addition to PQL,

they also considered approximations based on Laplace approximations of the

integrated likelihood (to be revisited in later sections); the Laplace approxi-
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mation approach has been used by Liu and Pierce (1993), Solomon and Cox

(1992) and Wolfinger (1993) among others. Breslow and Lin (1995) provided

a correction factor for the variance component estimate derived from Laplace

approximation and from PQL, and also a first order correction term for the

regression coefficients estimated by PQL. They found that the proposed bias

corrected PQL estimates significantly improve the asymptotic performance

of the uncorrected quantities.

Lin and Breslow (1996) generalize these results of Breslow and Lin (1995)

to GLMMs with multiple sets of random effects. They focus on correcting

the bias in PQL estimates, since Breslow and Lin (1995) found that in some

circumstances the Laplace approximation methods may be numerically un-

stable. However they use a generalization of the asymptotic expressions de-

rived by Solomon and Cox (1992) for the Laplace approximations to multiple

components of dispersion to derive their bias correction procedure and de-

rive a quadratic expansion of the integrated log-quasilikelihood. These issues

then led Lin and Breslow to propose a 4-step algorithm to achieve the bias

corrected PQL estimates of the regression coefficients and variance compo-

nents. Lin and Breslow (1996) evaluated the performance of these correction

procedures by reanalyzing the well known example of the salamander mating

experiment reported by McCullagh and Nelder (1989, section 14.5) and car-

rying out simulation studies. For the salamander data they found that the

performance of the bias correction procedure was unsatisfactory and they

attributed this to the large variability of the random effects in the actual

salamander data. Their simulation studies showed more positive results; in

particular the simple correction procedure for the variance components effec-

tively reducing the bias in the PQL estimates of θ and the associated mean

142



square error when the sample size was reasonably large. Note that θ is the

vector of variance component parameters.

They note that attempts to reduce bias are not always desirable, and that

the effectiveness of the correction procedure for a particular problem will de-

pend on both the sample size and the conditional form of responses. The

corrections often inflate the variances of the parameter estimates, especially

in problems involving very small variance components and small sample sizes.

The biases in first order and second order corrected regression coefficients are

negligible for small amounts of dispersion. When the variance components

are between 0.5 and 1 in problems involving binary outcomes, the second

order correction perform better. However they point out that both correc-

tions break down for larger variance components. They also note that, from

the results of other simulations studies, caution is required when applying

corrected PQL (CPQL) to the regression coefficients when the binomial de-

nominators are small. Further as the binomial denominator increases, the

PQL method itself yields satisfactory estimates and the corrections may not

be necessary. They suggest that the best procedure for general use may be

the correction of the variance components and recalculation of the PQL re-

gression components β using the corrected PQL variance components.

Engel and a number of his co-workers have also investigated the problem

of bias in the estimates from GLMM, and in particular the estimates of the

variance components. Engel and Keen (1994) point out that the obvious

estimates of the iterative weights, used in GLMMs are:

ŵ−1 = V (µ̂)[g
′
(µ̂)]2
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where the estimate of µ is obtained in the first step of the estimation pro-

cedure. They note that V (µ̂)[g
′
(µ̂)]2 may often be an accurate prediction

for V (µ)[g
′
(µ)]2, particularly in the case of a single random effect, where the

variance component σ2
u is small and is not necessarily a consistent estimator.

They recommend the use of alternative weights which depend on both the

link and the assumed variance function. In the case of the logit link with a

binomial variance function, the alternative weights suggested by Engel and

Keen (1994) are given by

w0 = {2 + 2exp
σ2
u

2
cosh(x

′
β)}−1.

Engel, Buist and Visscher (1995) carried out a number of simulation studies

in animal breeding and found out that both the magnitude and direction of

the bias in the estimate of the variance component depend on the number

of fixed effects and also on the underlying response probability with over

estimation of the variance component σ2
u when there are a large number of

fixed effects and the overall incidence is above 0.9. They consider models in

animal breeding which potentially can have over 100 fixed effects.

Engel and Buist(1998) further investigated bias in GLMMs, also looking

at the correction method of Lin and Breslow (1996). They found out that

while the correction of Lin and Breslow is useful for small or moderate num-

bers of fixed effects, it is of little benefit in animal breeding studies which

commonly have a large number of fixed effects. They also report that the

alternative weights of Engel and Keen may alleviate the bias and reduce the

MSE, but not for a large number of observations per random effect (in survey

data analysis, say more than 40 observations per cluster). Engel (1998) con-

siders a single example to illustrate the asymptotic bias in GLMM estimates

of the variance component σ2
u and finds that this can be underestimated by
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almost half. He suggests that the best procedure for overcoming bias could

be the use of a Markov chain Monte Carlo method such as the Gibbs sampler.

However such methods will not be the focus in the current work.

5.2.10 Estimation based on the approximation of the

integral

When approximation methods fail, approximations to the integral or numer-

ical integration proves to be very useful. Pinheiro and Bates (1995, 2000)

suggest the use of adaptive quadrature rules for random effects models where

the numerical integration is centred around the EB estimates of the random

effects and the number of quadrature points is then selected in terms of the

desired accuracy. We will consider Gaussian and adaptive Gaussian quadra-

ture designed for integrals of the form:∫
f(z)φ(z)dz, (5.15)

for a known function f(z) and for φ(z) the density of the univariate or multi-

variate standard normal distribution. We will standardize the random effects

so that they get the identity covariance matrix. That is, let δi be equal to

δi = D−1/2bi, where bi is the original vector of random effects of the model.

Note that δi is normally distributed with a mean of 0 and covariance I. The

linear predictor then becomes θij = x
′

ijβ + z
′

ijD
1/2δi. Hence the variance

components in D is now in the linear predictor. The likelihood contribution

for subject i is now

fi(yi|β, D, φ) =

∫ ni∏
j=1

fij(yij|bi,β, φ)f(bi|D)dbi (5.16)

=

∫ ni∏
j=1

fij(yij|δi,β, D, φ)f(δi)dδi (5.17)
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Notice that Eq (5.17) is of the form as Eq (5.15) which means that it can be

applied to Gaussian or adaptive Gaussian quadrature approximations can be

applied to it.

Gaussian Quadrature

The integral
∫
f(z)φ(z)dz in Gaussian quadrature is approximated by the

weighted sum ∫
f(z)φ(z)dz ≈

Q∑
q=1

wqf(zq).

Here Q is the order of the approximation. The higher Q is the more accurate

the approximation will be. The so-called nodes or quadrature points zq are

solutions to the Qth order Hermite polynomial whilst the wq are called the

weights. The weights wq and the nodes zq can be found in tables. However

Press et al. (1992) give an algorithm to calculate these weights. One of

the main disadvantages of Gaussian quadrature is highlighted in the case

of univariate integration i.e. the quadrature points zq are chosen based on

φ(z), independent of the function f(z) in the integrand. Hence, depending

on the support of f(z), the zq will or will not lie in the region of interest.

(Molenberghs and Verbeke, 2005, p.273-274)

Adaptive Gaussian Quadrature

In this modification the quadrature points are scaled as if the f(z)φ(z) were

a normal distribution with the mean of this distribution being the mode ẑ of

ln[f(z)φ(z)], while the variance is equal to[
− ∂2

∂z2
ln[f(z)φ(z)]|z=ẑ

]−1

.
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The new adaptive quadrature points are given by

z+
q = ẑ +

[
− ∂2

∂z2
ln[f(z)φ(z)]|z=ẑ

]−1/2

zq

and the corresponding weights are given by

w+
q =

[
− ∂2

∂z2
ln[f(z)φ(z)]|z=ẑ

]−1/2 φ(z+
q )

φ(zq)
wq.

The integral is then approximated by∫
f(z)φ(z) ≈

Q∑
q=1

w+
q f(z+

q ).

When fitting generalized linear mixed models, an approximation is applied

to the likelihood contribution of each of the N subjects in the data set. The

higher the order of Q, the better the the approximation will be of the N

integrals in the likelihood. Adaptive Gaussian quadrature needs (much) less

quadrature points than classical Gaussian quadrature but is certainly more

time consuming in its iteration process. This is so because the functions in

Eq. (5.15) as well as the quadrature points and the weights depend on the

unknown parameters, β, D and φ, and hence need to be updated in every

step of the iterative estimation procedure. (Molenberghs and Verbeke, 2005,

p.275-276)

5.2.11 A note on the inference on the fixed and ran-

dom effects in GLMMs

The fitting of generalized linear mixed models is based on maximum likeli-

hood principles and the inferences for the parameters are readily obtained

from classical maximum likelihood theory. Therefore, if we assume that

the fitted model is a suitable one, then the estimators that are obtained are
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asymptotically normally distributed with the correct values as the means and

the inverse of the Fisher information matrix as the covariance matrix. As a

result tests such as the Wald type tests, can be used for comparing standard-

ized estimates to the standard normal distribution. Composite hypothesis

tests where the Wald statistic which is a standardized quadratic form can

be compared to the Chi-squared distribution or likelihood ratio and score

tests can be used as well. The Z, t and F tests can be used to test for the

fixed effects since the precision estimates for the fixed and random effects are

obtained using the linear mixed model methodology discussed in Chapter 3.

It is imperative to realize here that the inference of the estimates depends on

the assumed sampling distribution. In linear mixed model methodology, the

t or F require the normality assumption of the response vector Yi. Asymp-

totic normality for the fixed effects will follow as a result of the Central Limit

Theorem. However for the EB estimates of the underlying normal distribu-

tion approximation may be questionable because the posterior distribution of

the estimates may be skewed. Molenberghs and Verbeke (2005, p.277) state

that one should not throw caution to the wind in trying to interpret output

from the linear mixed model that was fitted to the pseudo data (discussed

above), for example likelihood ratio tests must be based on the likelihood in

Eq. (5.2) of the observed data and not on the likelihood associated with the

linear mixed model for the pseudo data.

The validity of inference for the variance components, D will hold for clas-

sical Wald, likelihood ratio and score tests as long as the hypotheses that

are being tested are not on the boundary of the parameter space. Stram

and Lee (1994,1995), Verbeke and Molenberghs (2000, chapter 6) and Ver-

beke and Molenberghs (2003) all note this point which can be illustrated by

considering the example where one wants to test whether the variance τ 2
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of a single random effect in generalized linear mixed modelis equal to zero,

meaning that one has got to test the following hypothesis:

H0 : τ 2 = 0

against

H1 : τ 2 > 0

Clearly the null hypothesis is on the boundary of the parameter space that

is, τ 2 ≥ 0 meaning that none of the classical Wald, likelihood ratio and score

tests are still valid. This is notable because the classical Wald test is based on

the standard normal approximation to the standardized maximum likelihood

estimate τ̂ 2. This means that this Z statistic can not be normally distributed

with a mean of zero since τ 2 > 0. Thus under H0, this Z statistic follows

the positive normal distribution on 50% of the cases and will equal to zero

in the other 50% of the cases. This leads to the well known mixture of the

Chi-square distributions as the null distributions. These facts will also hold

for the one-sided likelihood ratio and score tests.

5.3 Software for Generalized Linear Mixed

Models

Due to the vast computational power that has been developed in modern

times, there are many commercially available computing software packages

that are available for fitting generalized linear mixed models. SAS is one the

more flexible packages that allow do the fitting of generalized linear mixed

models. The GLMM procedure in Genstat and the SAS procedure GLIMMIX

and NLMIXED in SAS version 9.1 are suitable for fitting the GLMM’s. Other

packages include HLM by Raudenbaush et al.(2001), EGRET (Cytel Software
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Corporation 2000), gllamm in Stata (Rabe-Hesketh, Pickles and Skrondal,

2001) and MIXOR and MIXREG (Hedeker and Gibbons, 1994). Details of

the GLIMMIX procedure in SAS are briefly outlined below because this will

be used to model analyse the RSV data in the current research problem.

5.3.1 SAS GLIMMIX for Quasi-likelohood

As already mentioned, the GLIMMIX procedure is still under experimen-

tation in SAS version 9.1. Some of the aspects of the GLMM procedure

in Genstat have been discussed in previous sections and hence those details

will not be repeated here. The code for the GLIMMIX procedure is very

similar to that of PROC MIXED, and the reason for this is that the GLIM-

MIX procedure calls the PROC MIXED procedure each time a linear mixed

model needs to be fitted to newly updated pseudo data. It is imperative to

realize that the most important option is the ‘method=’ in the GLIMMIX

statement. In this statement the type of quasi-likelihood is specified namely

PQL or MQL. If we chose the PQL option based on REML for the linear

mixed models then we will set ‘method=RSPL’ (RSPL refers to Residual

PL). Other available options include:

GLIMMIX option Quasi-likelihood type Inference pseudo-data

PQL/MQL ML/REML

‘method=RSPL’ PQL REML

‘method=MSPL’ PQL ML

‘method=RMPL’ MQL REML

‘method=MMPL’ MQL ML

The ‘CLASS’ statement specifies which variables should be considered as fac-

tors and such classification variables can be either set as character or numeric.

The ‘MODEL’ statement names the response variable and all covariate vec-
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tors corresponding to the fixed effects. By default the intercept is added,

however if one does not require a model to be fitted with an intercept then

the option ‘noint’is used. The ‘solution’ option is used to request the printing

of all the estimates of the fixed effects included in the model together with

standard errors, t-statistics, p-values and confidence intervals. The ‘dist=’

is used to specify the conditional distribution of the data given the random

effects. Various distributions are available and include the normal, Bernoulli,

Binomial and Poisson distribution. The link function function is set as the

natural link by default but other link functions such as the probit, log-log,

or identity link can be requested by adding in the appropriate ‘lin=’ option

The ‘RANDOM’ statement defines the vectors corresponding to the random

effects in the models and when random intercepts are required then they

should be explicitly specified as opposed to the ‘MODEL’ statement where

an intercept is included by default. The ‘subject=’ option is used to iden-

tify the subjects in the data set. If one requires random slopes for the time

trend to be included, then this can be obtained by replacing the ‘RANDOM’

statement by

“ random intercept time/ subject=... type=un;”

In this statement “type=un” specifies that the random effects covariance

matrix D is an unstructured 2x2 matrix. Other special structures are avail-

able such as for models which assume equal variance for the intercepts and

slopes or models which assume independent intercepts and slopes and oth-

ers. In earlier versions of the SAS software, the PROC GLIMMIX was only

available through the GLIMMIX macro which gave rise to the GLIMMIX

procedure in SAS version 9.1.
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5.3.2 The NLMIXED Procedure for Numercial Quadra-

ture

Gaussian and adaptive Gaussian quadrature as approximations to the inte-

grals in marginal likelihood have been implemented in the SAS procedure

NLMIXED. This procedure is a versatile one with many statements and

options. In the current study, focus is on the statements needed to fit a gen-

eralized linear mixed model. The NLMIXED procedure requires completely

different model specifications than most SAS procedures but allows the user

a very high degree of flexibility in the way the model is specified and param-

eterized. One of the consequences of this flexibility is that the user needs not

only to specify the model but also has to specify names for all the parameters

in the model. SAS then considers the symbols in the model specification that

are not referring to variables in the input data set as unknown parameters

to be estimated from the data.

The option‘noad’ in the NLMIXED statement is to request non-adaptive

quadrature since the default that is used is adaptive quadrature. The option

‘qpoints=’ specifies the number of quadrature points. If this option is omit-

ted then the number of quadrature point is selected adaptively by evaluating

the log-likelihood function at the starting values of the parameters until two

successive evaluations show sufficiently small relative change. It is also im-

portant to note that the model fitting based on Laplace approximation for

the marginal integrals can be specified using adaptive Gaussian quadrature

with only one quadrature point. The PARMS statement is used to specify

the starting values for all parameters in the model. Parameters not listed

in the PARMS statement are given an initial value of 1. This is one of the

major drawbacks of the current version of the NLMIXED procedure, the fact

that the procedure does not generate starting values except for the default
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value of 1 which is given to all parameters that do not appear in the PARMS

statement. In complex models however, convergence of the numerical opti-

mization algorithms may highly depend on the specified initial values.

The MODEL statement is used to specify the conditional distribution of

the data given the random effects. Various distributions such as the Nor-

mal, Bernoulli, Binomial and Poisson distributions can be specified. In case

models are needed which do not fit within any of the classical distributions,

user-defined likelihoods can be specified through the option ‘model y ∼ gen-

eral(ll)’ in which ll is the user defined log-likelihood.

The RANDOM statement defines the random effects in the model. One has

the flexibility of specifying the random effects in the sense that one can es-

timate the random-intercepts variance rather than the standard deviation.

Further to this a mean model can also be specified for the random effects.

There are also ways in which one can specify the model to incorporate inde-

pendence of random intercepts and slopes as well as if one wanted to estimate

directly the correlation between random intercepts and slopes rather than

their covariance.

The ’subject=’ option determines when new realizations of the random ef-

fects occur. The procedure assumes the occurrence of a new realization

whenever the value of the variable specified in the ‘subject=’ option changes

from the previous observation. The RANDOM statement also allows the

inclusion of an output option of the form ‘out=data set’ which request and

output data set containing empirical Bayes estimates for the random effects

together with their approximate standard errors. The SAS version 9.1 only

allows one RANDOM statement meaning that multilevel models can not be

fitted to incorporate random effects at different levels. SAS does have other

procedures to fit these multilevel models.
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5.3.3 The Random Intercept Model

The random intercept model is given a special attention because of its rele-

vance to the current childhood respiratory disease data, the subject of study

in the current research. First we briefly revisit the case of a normal response

Y.

Fitzmaurice, Laird and Ware (2004, pp. 188-199) define a random inter-

cept model as a linear model with a randomly varying subject effect. In this

model, each subject is assumed to have an underlying level of response that

persists over time. This is incorporated into the linear mixed effects model

by regarding this subject effect as random, yielding the following model

Yij = X
′

ijβ + bi + eij (5.18)

where bi is the random subject effect and the eij are regarded as measurement

or sampling errors. From the model above, the response for the ith subject

at the jth occasion is assumed to differ from the population mean, X
′
ijβ, by

a subject effect bi, and a within subject measurement error, eij. Both the

subject effect and the measurement error are assumed to be random, with

a mean 0 and variances Var(bi) = σ2
b and Var(ei) = σ2, respectively. Fur-

thermore it is assumed that bi and ei are independent. The model describes

the mean response trajectory over time for any individual as the conditional

mean of Yij given the subject specific effect,

E(Yi|bi) = X
′

ijβ + bi

and the marginal mean of Yij, the mean response profile in the population

as,

E(Yij) = X
′

ijβ.

The interpretation of the model,

Yij = X
′

ijβ + bi + eij
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is that the regression parameters β describe the patterns of change in the

mean response over time (and their relation to covariates) in the population

of interest, while bi describes how the trend over time for the ith individual

deviates from the population average where bi represents an individuals devi-

ation from the population mean intercept, after the effects of covariates have

been accounted for and when bi is combined with the fixed effects it describes

the trajectory over time for any individual. This is seen if we expand the

above model as:

Yij = X
′

ijβ + bi + eij

= β1Xij1 + β2Xij2 + . . .+ βpXijp + bi + eij

= β1 + β2Xij2 + . . .+ βpXijp + bi + eij

= (β1 + bi) + β2Xij2 + . . .+ βpXijp + eij

whereXij1 = 1 for all i and j and β1 is therefore the fixed effect intercept term

in the model. When expressed this way, it can be seen that the intercept

for the ith individual is β1 + bi and varies randomly from one individual

to another. Because the mean of the random effect bi is assumed to be

zero, bi represents deviation of the ith individual’s intercept β1 + bi from the

population intercept β1. Next, the marginal mean of Yij is given as

E(Yij) = µij = X
′

ijβ
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and the marginal variance of each response is given by,

Var(Yij) = Var(X
′

ijβ + bi + eij)

= Var(bi + eij)

= Var(bi) + Var(eij)

= σ2
b + σ2.

Similarly the marginal covariance between any pair of responses, Yij and

Yik, j 6= k is given by

Cov(Yij, Yik) = Cov(X
′

ijβ + bi + eij, X
′

ikβ + bi + eik)

= Cov(bi + eij, bi + eik)

= Cov(bi, bi)

= Var(bi)

= σ2
b

The marginal covariance pattern of the repeated measurements is exhibited

in the following compound symmetry pattern

Cov(Yi) =


σ2
b + σ2 σ2

b σ2
b . . . σ2

b

σ2
b σ2

b + σ2 σ2
b . . . σ2

b
...

...
...

. . .
...

σ2
b σ2

b σ2
b . . . σ2

b + σ2


The random intercept model can be extended into the Generalized Linear

Mixed model and this is illustrated in Section 5.3.4 and 5.3.5 below.
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5.3.4 Generalized Linear Mixed Model for Counts

Suppose that the response Yij is a count. Then using a three part specification

(described in section 5.3.3 above):

1. Conditional on a vector of random effects bi, the Yij are independent

and have a Poisson distribution with Var(Yij|bi) = E(Yij|bi) with φ = 1.

2. The conditional mean of Yij depends upon the fixed and random effects

via the following linear predictor:

ηij = X
′

ijβ + Z
′

ijbi

where X
′
ij = Z

′
ij = (1, tij), with

log{E(Yij|bi)} = ηij = X
′

ijβ + Z
′

ijbi

That is, the conditional mean of Yij is related to the linear predictor

by a log link function, this is an example of a log linear mixed effects

model.

3. The random effects are assumed to have a bivariate normal distribution,

with a zero mean and 2× 2 covariance matrix G

This example is one of a log linear regression model with randomly varying

intercepts and slopes. The models implies that there is natural heterogeneity

among individuals in both their baseline level and changes in their expected

counts over time.

5.3.5 Generalized Linear Mixed Model for a Binary

Response

Suppose that Yij is a binary response, taking values 0 or 1. A logistic mixed

effects model for Yij is given below:
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1. Conditional on a single random effect bi, the Yij are independent and

have a Bernoulli distribution with Var(Yij|bi) = E(Yij|bi){1−E(Yij|bi)}

with φ = 1.

2. The conditional mean of Yij depends upon the fixed and subject specific

random effects via the following linear predictor:

ηij = X
′

ijβ + Z
′

ijbi = X
′

ijβ + bi

where Zij = 1 for all i = 1, . . . , ni with

log

{
Pr(Yij = 1|bi)
Pr(Yij = 0|bi)

}
= ηij = X

′

ijβ + bi,

That is, the conditional mean of Yij is related to the linear predictor

by a logit link function. This is the random intercept model discussed

earlier.

3. The single random effect are assumed to have a univariate normal dis-

tribution, with a zero mean and variance, say g11 because G is now of

dimension 1× 1

This example is one of a simple logistic regression model with randomly

varying intercepts. The model implies that there is natural heterogeneity

in individuals propensity to respond positively that persists throughout all

binary responses obtained on any individual.

5.4 Analysis and Application to the RSV

data

A marginal model was first fitted in Genstat with the RSV infection sta-

tus (infected and not infected), being the response variable, age, dt, preva-

lence, actipass and time-month being the fixed effects. Note that dt=time
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between events variable, actipass=sampling method, active or passive and

time-month=time in months. The child effect was taken as a random effect

in the model. The codes for the other variables used in this model have

already been discussed in Chapter 1. The Binomial distribution with a logit

link was used. More specifically, it is assumed that, conditionally on subject

specific, random effects, ui, the RSV status response variable, Yij for child i at

time j is Bernoulli distributed with mean πij that is, Yij|ui ∼ Bernoulli(πij)

and can be modelled as

logit(πij) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ui

where x1 represents the ‘age’ effect with levels from 0, . . . , 12, x2 is the ‘dt’

effect, x3 represents the ‘prev’ effect, x4 represents the ‘actipass’ effect with

levels 0 and 1, x5 represents the ‘timemonth’ effect and ui is the random effect

of the child that is normally distributed with a mean of 0 and a variance of

τ 2. The results from Genstat after the algorithm had converged using both

the PQL and MQL methods are shown in Tables 5.1 to 5.4. The Wald tests

for fixed effects under the PQL method of Schall (1991) are summarized in

Tables 5.1 and 5.2 while the methods of Breslow and Clayton (1993) are

summarized in Tables 5.3 and 5.4.

Fixed term Wald statistic d.f Wald/d.f. chi pr

age 29.31 12 2.44 0.004

dt 0.02 1 0.02 0.876

prev 55.67 1 55.67 < 0.001

actipass 153.86 1 153.86 < 0.001

timemonth 0.15 1 0.15 0.703

Table 5.1: Wald tests by adding terms sequentially to the model
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Fixed term Wald statistic d.f Wald/d.f. chi pr

timemonth 0.15 1 0.15 0.703

actipass 153.62 1 153.62 < 0.001

prev 28.98 1 28.98 < 0.001

dt 0.07 1 0.02 0.784

age 19.09 12 1.59 0.086

Table 5.2: Wald tests by dropping terms sequentially to the model

Fixed term Wald statistic d.f Wald/d.f. chi pr

age 29.32 12 2.44 0.004

dt 0.02 1 0.02 0.876

prev 55.68 1 55.68 < 0.001

actipass 153.88 1 153.88 < 0.001

timemonth 0.15 1 0.15 0.703

Table 5.3: Wald tests by adding terms sequentially to the model

Fixed term Wald statistic d.f Wald/d.f. chi pr

timemonth 0.15 1 0.15 0.703

actipass 153.64 1 153.64 < 0.001

prev 28.99 1 28.99 < 0.001

dt 0.08 1 0.08 0.784

age 19.10 12 1.59 0.086

Table 5.4: Wald tests by dropping terms sequentially to the model

One can see that for both models the actipass and prev terms are signifi-

cant. The order in which one fits the terms in Genstat is very important since

different orders of the terms may cause the algorithm not to converge. The

above model was found to be the most viable one amongst others. Different

interaction effects were assessed for their significance in the model by adding

160



interaction terms one at a time into the model, however none of the inter-

action terms were found to be significant at the 5% level. It is appropriate

now to fit a model only with the actipass and prev as the only terms in the

model. Only the results reported by the Schall (1991) method are reported

in Table 5.5 and 5.6 below since the Breslow and Clayton (1993) model gave

similar results.

Fixed term Wald statistic d.f Wald/d.f. chi pr

prev 89.23 1 89.23 < 0.001

actipass 140.89 1 140.89 < 0.001

Table 5.5: Wald tests by adding terms sequentially to the model

Fixed term Wald statistic d.f Wald/d.f. chi pr

actipass 140.89 1 153.62 < 0.001

prev 88.42 1 88.42 < 0.001

Table 5.6: Wald tests by dropping terms sequentially to the model

5.4.1 Analysis and Application to the RSV data using

Proc GLIMMIX in SAS

Random Effects Models

The optimal model that was fitted included the explanatory variables age,

dt, prev, actipass and timemonth. The variable visit was excluded from this

model because the model did not converge when this term was included in

the optimal model. Different covariance structure models were investigated

in Table 5.7: The results for the analysis of fixed effects for all the different

covariance structure models are shown in Table 5.8:
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Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.000 0.000

Residual(VC) 1.0378 0.01524

Compound symmetry Var(child) 0.000 0.000

CS(child) -2.11E-6 3.393E-6

Residual(VC) 1.401 0.01524

Power Var(child) 0.000 0.000

SP(POW)(child) 0.000 0.000

Residual(VC) 1.0378 0.01524

Spherical Var(child) 0.000 0.000

SP(SPH)(child) 0.000 0.000

Residual(VC) 1.0378 0.01524

Gaussian Var(child) 0.000 0.000

SP(GAU)(child) 0.000 0.000

Residual(VC) 1.0378 0.01524

Table 5.7: Covariance Parameter Estimates-random effects model

Once again we find the prev and actipass variables are significant at the 5%

level and the age variable is tending towards significance. Furthermore there

is a difference in the age 5 and age 12 groups with respect to whether a child

is infected or not.
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Effect Estimate Standard Error Pr> |t|
Intercept -5.0363 1.4750 < 0.0001

Age 0 -0.9197 1.2422 0.4591

Age 1 -0.6470 1.0937 0.5541

Age 2 -0.2760 1.0550 0.7936

Age 3 -0.06886 0.9942 0.9448

Age 4 -0.6690 0.9681 0.4895

Age 5 -2.6025 1.3222 0.0491

Age 6 -1.5960 1.0276 0.1204

Age 7 -2.2500 1.1754 0.0556

Age 8 -0.9989 0.6057 0.0992

Age 9 -0.7389 0.5222 0.1571

Age 10 -0.3221 0.4613 0.4851

Age 11 -0.5685 0.4699 0.2264

Age 12 0.0000 0.0000 0.0000

Dt 0.000851 0.008526 0.9205

Prev 44.5942 8.2574 < 0.0001

Actipass 0 2.2341 0.1803 < 0.0001

Actipass 1 0.000 0.000 0.000

Timemonth -0.04538 0.1065 0.6701

Table 5.8: Parameter estimates and standard errors of the fixed effects-

random effects model

Effect F-Value P-value

Age 1.62 0.0777

Dt 0.01 0.9205

Prev 29.17 < 0.0001

Actipass 153.61 < 0.0001

Timemonth 0.18 0.6701

Table 5.9: Type III Effects for random effects model
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The estimates of the fixed effects for the random effects model with the

compound symmetry covariance structure is slightly different from the above

estimates:

Effect Estimate Standard Error Pr> |t|
Intercept -2.8180 1.4540 0.0526

age 0 -0.9175 1.2309 0.4561

age 1 -0.6314 1.0810 0.5591

age 2 -0.2620 1.0434 0.8017

age 3 -0.0596 0.9844 0.9517

age 4 -0.6572 0.9600 0.4936

age 5 -2.5925 1.3183 0.0493

age 6 -1.5922 1.0248 0.1203

age 7 -2.2360 1.1703 0.0561

age 8 -0.9913 0.6018 0.0995

age 9 -0.7301 0.5203 0.1606

age 10 -0.3231 0.4614 0.4838

age 11 -0.5656 0.4705 0.2293

age 12 0 . .

dt 0.000855 0.008519 0.9201

prev 44.5376 8.2548 < .0001

actipass 0 -2.2344 0.1802 < .0001

actipass 1 0.000 0.000 0.000

timemonth -0.04429 0.1053 0.6739

Table 5.10: Parameter estimates and standard errors of the fixed effects-

random effects model using compound symmetry

Effect F-Value P-value

Age 1.62 0.0799

Dt 0.01 0.9201

Prev 29.11 < 0.0001

Actipass 153.81 < 0.0001

Timemonth 0.18 0.6739

Table 5.11: Type III Effects for random effects model-compound symmetry
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Random Intercept Model

The above optimal model was also fitted as a random intercept model. Dif-

ferent covariance structure models were again investigated (see Table 5.12: It

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.000 0.000

Residual(VC) 1.0378 0.01524

Compound symmetry Var(child) No convergence No convergence

CS(child) No convergence No convergence

Residual(VC) No convergence No convergence

Power Var(child) 0.000 0.000

SP(POW)(child) 0.000 0.000

Residual(VC) 1.0378 0.01524

Spherical Var(child) 0.000 0.000

SP(SPH)(child) 0.000 0.000

Residual(VC) 1.0378 0.01524

Gaussian Var(child) 0.000 0.000

SP(GAU)(child) 0.000 0.000

Residual(VC) 1.0378 0.01524

Table 5.12: Covariance Parameter Estimates random intercept model

must be said the the CS model led to non-convergence as well as a different

residual variance component, evident in Table 5.12 and Table 5.7. This is a

purely computational artifact. The solution for the fixed effects for all the

different covariance structure models are summarized in Tables 5.13 and 5.14

:
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Effect Estimate Standard Error Pr> |t|
Intercept -5.0363 1.4750 < 0.0001

Age 0 -0.9197 1.2422 0.4591

Age 1 -0.6470 1.0937 0.5541

Age 2 -0.2760 1.0550 0.7936

Age 3 -0.06886 0.9942 0.9448

Age 4 -0.6690 0.9681 0.4895

Age 5 -2.6025 1.3222 0.0491

Age 6 -1.5960 1.0276 0.1204

Age 7 -2.2500 1.1754 0.0556

Age 8 -0.9989 0.6057 0.0992

Age 9 -0.7389 0.5222 0.1571

Age 10 -0.3221 0.4613 0.4851

Age 11 -0.5685 0.4699 0.2264

Age 12 0.0000 0.0000 0.0000

Dt 0.000851 0.008526 0.9205

Prev 44.5942 8.2574 < 0.0001

Actipass 0 2.2341 0.1803 < 0.0001

Actipass 1 0.000 0.000 0.000

Timemonth -0.04538 0.1065 0.6701

Table 5.13: Parameter estimates and standard errors of the fixed effects-

random intercept model

Effect F-Value P-value

Age 1.62 0.0777

Dt 0.01 0.9205

Prev 29.17 < 0.0001

Actipass 153.61 < 0.0001

Timemonth 0.18 0.6701

Table 5.14: Type III Effects for random intercept model

The results for the random intercept model are exactly the same as for

the random effects model. Both models show that the ‘prev’ and ‘actipass’
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variables are significant at the 5% significance level as well as ‘age’ tending

towards significance and the difference between the age 5 and age 12 groups

are significant here as well with respect to the disease process.

5.4.2 Adaptive and Non-adaptive Gaussian Quadra-

ture

The GLMM was also fitted using PROC NLMIXED. The sample program is

used to achieve this is given below The fitted model was:

rsvpos = β00 +β0age0+β1age1+beta2age2+β3age3+β4age4+β5age5+

β6age6+β7age7+β8age8+β9age9+β10age10+β11age11+β13dt+β14prev+

β15actipass+ β16timemonth+ childeffect(τ).

The sample program used to specify the model in SAS is given below:

proc nlmixed data =lisa qpoints=20 tech=nmsimp; parms

beta00=-5.06 beta0=-0.9 beta1=-0.65 beta2=-0.27 beta3=-0.067

beta4=-0.66 beta5=-2.5 beta6=-1.6 beta7=-2.2 beta8=-0.99

beta9=-0.74 beta10=-0.32 beta11=-0.55 beta13=-0.0009 beta14=45

tau2=1.02; teta=beta00+beta0*age0+beta1*age1+beta2*age2+beta3*age3

+beta4*age4+beta5*age5+beta6*age6

+beta7*age7+beta8*age8+beta9*age9+

beta10*age10+beta11*age11+beta13*dt+beta14*prev+beta15*actipass

+beta16*timemonth; expteta=exp(teta); p=expteta/(1+expteta); model

rsvpos~binary(p); random b~normal(0,tau2) subject=rsv; run;

The results for adaptive Gaussian quadrature and non-adaptive Gaussian

quadrature are given in Tables 5.15 and 5.16:
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Gaussian Quadrature

Effect Q = 3 Q = 5 Q = 20

Intercept -5.04(1.488) -5.72(1.584) -5.466(1.384)

beta0 -0.92(1.244) -0.94(1.862) -0.91(1.35)

beta1 -0.65(1.082) -0.68(1.985) -0.69(1.857)

beta2 -0.28(1.081) -0.27(1.056) -0.28(1.045)

beta3 -0.07(1.001) -0.08(0.991) -0.07(0.984)

beta4 -0.67(0.981) -0.69(0.967) -0.67(0.991)

beta5 -2.71(1.381) -2.12(1.354) -2.74(1.311)

beta6 -1.61(1.021) -1.59(1.044) -1.60(1.058)

beta7 -2.23(1.184) -2.13(1.192) 2.20(1.188)

beta8 0.99(0.624) -1.05(0.652) -1.01(0.652)

beta9 -0.76(0.521) -0.74(0.601) -0.75(0.504)

beta10 -0.33(0.456) -0.42(0.498) -0.32(0.416)

beta11 -.57(0.481) -0.54(0.453) -0.57(0.485)

beta13 -0.0008(0.009) 0.0009(0.007) -0.0008(0.006)

beta14 47.2(7.995) 49.3(8.994) 46.1(8.774)

beta15 2.31(0.168) 2.33(0.183) 2.38(0.199)

beta16 -0.05(0.109) -0.04(0.137) -0.05(0.108)

τ 1.03(0.0114) 1.01(0.018) 1.03(0.013)

−2` 2243.7 2242.2 2243.9

Table 5.15: Solution for the fixed effects-Gaussian quadrature
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Adaptive Gaussian Quadrature

Effect Q = 3 Q = 5 Q = 20

Intercept -5.02(1.433) -5.71(1.498) -5.786(1.354)

beta0 -0.92(1.244) -0.94(1.862) -0.91(1.145)

beta1 -0.65(1.012) -0.68(1.385) -0.68(1.017)

beta2 -0.28(1.051) -0.23(1.034) -0.26(1.026)

beta3 -0.07(0.991) -0.08(0.988) -0.07(0.999)

beta4 -0.66(0.989) -0.69(0.997) -0.67(0.982)

beta5 -2.61(1.341) -2.12(1.369) -2.72(1.311)

beta6 -1.61(1.071) -1.59(1.022) -1.63(1.758)

beta7 -2.24(1.191) -2.13(1.189) 2.20(1.198)

beta8 0.99(0.674) -1.02(0.652) -1.01(0.699)

beta9 -0.74(0.501) -0.74(0.561) -0.75(0.540)

beta10 -0.33(0.459) -0.42(0.498) -0.32(0.446)

beta11 -0.57(0.498) -0.54(0.422) -0.57(0.494)

beta13 -0.0008(0.007) 0.0009(0.009) -0.0008(0.006)

beta14 43.8(8.395) 49.3(8.994) 46.1(8.214)

beta15 2.22(0.178) 2.23(0.183) 2.41(0.189)

beta16 -0.05(0.109) -0.03(0.158) -0.05(0.104)

τ 1.03(0.0115) 1.01(0.018) 1.03(0.013)

−2` 2243.8 2242.8 2243.8

Table 5.16: Solution for the fixed effects-adaptive Gaussian quadrature

In this particular case there seems not to be much differences between the

adaptive and non-adaptive Gaussian quadrature estimates. The standard

errors are also consistent with those from the GLIMMIX procedure. It must

also be stated that there is a correct maximum to the likelihood for these

models. If different quadrature methods lead to different answers, then at

most one can be lading to the correct MLE. Different choices of quadrature

starting values, and convergence criteria should be used until one is able to

consistently obtain the same correct MLE’s. Differences among the estimates

merely indicate lack of, or inappropriate, convergence. Next a generalized

linear mixed model with only the two variables, ‘prev’ and ’actipass’ was
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fitted since they were the only significant variables. The results are given

below for different covariance structure models as shown in Tables 5.17, 5.18

and 5.19. The solution for the fixed effects for all the different covariance

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) No convergence No convergence

Residual(VC) No convergence No convergence

Compound symmetry Var(child) 7.187E-6 2.885E-6

CS(child) -6.71E-6 .

Residual(VC) 0.8814 0.01306

Power Var(child) 4.745E-7 2.885E-6

SP(POW)(child) 0.000 0.000

Residual(VC) 0.8814 0.01306

Spherical Var(child) 4.745E-7 2.885E-6

SP(SPH)(child) 0.000 0.000

Residual(VC) 0.8814 0.01306

Gaussian Var(child) 4.745E-7 2.885E-6

SP(GAU)(child) 0.000 0.000

Residual(VC) 0.8814 0.01306

Table 5.17: Covariance parameter estimates in a random effects model-prev

and actipass

structure models are:

Effect Estimate Standard Error Pr> |t|
Intercept -5.9583 0.1796 < 0.0001

Prev 50.7801 4.8589 < 0.0001

Actipass 0 2.0576 0.1608 < 0.0001

Actipass 1 0.000 0.000 0.000

Table 5.18: Parameter estimates and standard errors of the fixed effects-using

prev and actipass in a random effects model
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Effect F-Value P-value

Prev 109.22 < 0.0001

Actipass 163.74 < 0.0001

Timemonth 0.18 0.6701

Table 5.19: Type III Effects for random effects model-prev and actipass

Fitting the above model as a random intercept model yielded the following

results summarized in Tables 5.20, 5.21 and 5.22:: The solution for the fixed

effects for all the different covariance structure models are:

Once again the random intercept model estimates are very similar to those of

the random effects estimates. The above model was also fitted as a GLMM

but using PROC NLMIXED. The fitted model was:

rsvpos = β00 + β0prev + β1actipass+ childeffect(τ)

The sample program is:

proc nlmixed data =lisa qpoints=20 tech=nmsimp; parms

beta00=-5.9 beta0=50.7 beta1=2.03 tau2=0.85;

teta=beta00+b+beta0*prev+beta1*actipass; expteta=exp(teta);

p=expteta/(1+expteta); model rsvpos~binary(p); random

b~normal(0,tau2) subject=rsv; run;

The results for adaptive Gaussian quadrature and non-adaptive Gaussian

quadrature are given below in Tables 5.23 and 5.24 :

The results here, not surprisingly are similar to those achieved by using

Proc GLIMMIX. It is important to stress that each log-likelihood equals the
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Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.2086 0.1638

Residual(VC) 0.8782 0.01308

Compound symmetry Var(child) 0.1053 0.1638

CS(child) 0.1034 .

Residual(VC) 0.8782 0.01308

Power Var(child) 0.2086 0.1638

SP(POW)(child) 0.000 0.000

Residual(VC) 0.8782 0.01308

Spherical Var(child) 0.2086 0.1638

SP(SPH)(child) 1.000 0.000

Residual(VC) 0.8782 0.01308

Gaussian Var(child) 0.2086 0.1638

SP(GAU)(child) 1.000 0.000

Residual(VC) 0.8782 0.01308

Table 5.20: Covariance parameter estimates in a random intercept model-

prev and actipass

Effect Estimate Standard Error Pr> |t|
Intercept -5.9564 0.1802 < 0.0001

Prev 50.6917 4.8703 < 0.0001

Actipass 0 2.0601 0.1615 < 0.0001

Actipass 1 0.000 0.000 0.000

Table 5.21: Parameter estimates and standard errors of the fixed effects-using

prev and actipass in a random intercept model

Effect F-Value P-value

Prev 108.33 < 0.0001

Actipass 163.77 < 0.0001

Timemonth 0.18 0.6701

Table 5.22: Type III Effects for random intercept model-prev and actipass

maximum of the approximation to the model likelihood implying that log-

likelihoods corresponding to different estimation procedures and/or different
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Gaussian Quadrature

Effect Q = 3 Q = 5 Q = 20

Intercept -3.9555(0.1805) -3.6407(0.1764) -3.9257(0.1790)

beta0 50.2189(5.7557) 52.7442(6.1598) 50.1865(5.703)

beta1 -1.9171(0.1686) -2.1389(0.1853) -1.9715(0.1685)

τ 0.8700(0.0114) 0.7300(0.018) 0.7800(0.0190)

−2` 1494.7 1458.2 1494.6

Table 5.23: Solution for the fixed effects-gaussian quadrature using prev and

actipass

Adaptive Gaussian Quadrature

Effect Q = 3 Q = 5 Q = 20

Intercept -3.9515(0.1807) -2.8854(0.1482) -3.9243(0.1789)

beta0 50.5363(5.7469) 49.8533(6.1178) 50.1887(5.700)

beta1 -1.9558(0.1696) -1.9917(0.1673) -1.9717(0.1684)

τ 0.8700(0.012) 0.8590(0.0114) 0.8700(0.0119)

−2` 1494.7 1420 1494.6

Table 5.24: Solution for the fixed effects-adaptive gaussian quadrature using

prev and actipass

number of quadrature points are not necessarily comparable. This means

that difference in log-likelihood values reflect the differences in the quality of

the numerical approximations and thus higher log-likelihood values do not

necessarily correspond to better approximations.

The random intercept and random effects models differed slightly in their

covariance structure estimated but not in their parameter estimates, this can

be expected. The adaptive and non-adaptive Gaussian results were similar

to each other and in the current scientific setting the PROC GLIMMIX and

PROC NLMIXED results are similar to each other. In the context of the

RSV data, the ‘prev’ and ‘actipass’ variables are significant at the 5% level

and are influential in contributing to a child’s RSV status. The ‘age’ variable
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was tending to significance at the 5% level. There are significant differences

in the ‘age 5 versus age 12’and ‘age 7 versus age 12’ groups at the 5% level.

5.5 Conclusion

The analysis in SAS and Genstat gave similar results with the only differ-

ence being in that SAS uses the last level of a factor as a baseline whilst

Genstat uses the first level of a factor as a baseline and then performs com-

parisons within those levels in the output of the parameter estimates. The

Proc GLIMMIX and Proc NLMIXED gave similar results although the Proc

NLMIXED took much longer to converge in SAS. The random effects and

random intercept models gave similar results as can be expected. The child

effect accounted for very little variation in the random effects models. The

random effects models were relevant to modelling the data set as it took

into account the child effect albeit that this effect was not substantially ac-

counting for much variation. In many ways, the random effects models are

thorough in its approach to modelling any data set.
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Chapter 6

The Conditional Model

6.1 Introduction

Conditional models or conditionally specified models are those in which any

response within the sequence of repeated measures is modelled conditional

upon (subsets of) the other outcomes. This could be the set of all past

measurements or a subset thereof, in so-called transition models. Cox (1972)

describes a conditional model as one where the parameters describe a feature

(expectation, probability, odds, logit,...) of (a set of) responses, given values

for the other responses. The best known example of this is undoubtedly the

log-linear model. Rosner (1984) give a conditional logistic model. In this

thesis the focus is mainly on transition type of conditional models dictated

by the type of data studied.

6.2 The Cox Model

The log-linear model proposed by Cox (1972) is given as follows: Let Yi

denote a vector responses of dimension n from an individual or cluster i
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whose components are yij, j = 1, . . . , n. Then according to Cox (1972)

f(yi,θi) = exp

(
n∑
j=1

θijyij +
∑
j1<j2

θij1j2yij1yij2 + . . .+ θi1...nyi1 . . . yin − A(θi)

)

= c(θi) exp

(
n∑
j=1

θijyij +
∑
j1<j2

θij1j2yij1yij2 + . . .+ θi1...nyi1 . . . yin

)
(6.1)

where A(θi) and c(θi) represent the same normalizing constant, written in

additive and multiplicative way respectively. θi is the canonical parameter,

consisting of first, and second, up to nth order components.

The interpretation of the parameters are a conditional one

θij = ln

(
Pr(Yij = 1|Yik = 0; k 6= j)

Pr(Yij = 0|Yik = 0; k 6= j)

)
Here the first order parameters (main effects) are interpreted as the condi-

tional logits.

Similarly the second order parameter θij is defined as

θij = ln

(
Pr(Yij = 1, Yik = 1|Yil = 0; k, j 6= l)(Pr(Yij = 0, Yik = 0|Yil = 0; k, j 6= l)

Pr(Yij = 1, Yik = 0|Yil = 0; k, j 6= l)(Pr(Yij = 0, Yik = 1|Yil = 0; k, j 6= l)

)
These are the conditional log odds ratios. Due to this conditional in-

terpretation, these models are less useful for regression. The dependence of

E(Yij) on covariates involves all parameters not only the main effects. The

interpretation of the parameters depends on the length ni of a sequence.

Shorter sequences simply imply that one conditions on less outcomes, chang-

ing interpretations with the length of a sequence. The advantages of this

model is that the parameter vector is not constrained since all the values of

θ ∈ R yield positive probabilities and secondly calculation of joint probabili-

ties is fairly straightforward because by evaluating and summing the density

over all possible sequences of y will yield c(θ)−1.
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Due to the popularity of marginal and random-effects models, conditional

models have not received widespread attention. Diggle et al (2002, pp. 142-

144) criticized the conditional models because the interpretation of a fixed

effect parameter, for example, the evolution or treatment effect, of one re-

sponse is conditional on the responses of other responses for the same subject,

outcomes of other subjects and the number of repeated measures. Not only

may such parameters make answering the substantive question difficult, they

are ill founded when the number of measurements per subject is not constant.

On the other hand, conditional models have received a portion of popularity

due to their mathematical convenience such as the log-linear model consid-

ered above. The advantages of such a conditional model have already been

highlighted. Agresti (2002) also highlights these advantages in a classical

log-linear model. Molenberghs and Ryan (1999) and Aerts et al.(2002) dis-

cuss the problem at great length and detail, in the context of exchangeable

binary data, the advantages of conditional models and show with great care

how the disadvantages can be overcome for their setting. They constructed

the joint distribution for clustered multivariate binary outcomes, based on

the multivariate exponential family model. Fitzmaurice, Laird and Toste-

son (1996) take a slightly different approach, but based on the exponential

model. This approach is a likelihood based one and has great efficiency over

other procedures such as GEE’s.

6.3 Transition Models

A very specific class of conditional models are the so-called transition models.

In a transition model, a measurement Y ij in a longitudinal sequence is de-

scribed as a function of previous outcomes, or history hij = (Yi1, . . . , Yij−1).
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One can then write a regression equation for the outcome Y ij in terms of

hij = (Yi1, . . . , Yij−1) or alternatively the error term εij can be written in

terms of previous error terms. Feller (1968) also states that specific classes

of transition models fall in the class of Markov models. The order of the tran-

sition model is the number of previous measurements that is still considered

to influence the current one. A model is called stationary if the functional

form of the dependence is independent of the actual time at which it occurs.

An example of a stationary first-order autoregressive model for continuous

data is described by the following equation

Yi1 = x
′

i1β + εi1 (6.2)

Yij = x
′

ijβ + αYij−1 + εij, j = 2, . . . , ni (6.3)

Assuming εi1 ∼ N(0, σ2) and εij ∼ N(0, σ2(1 − α2)) for j > i recursively

yields var(Yij) = σ2 and cov(Yij, Yij′ ) = α|j−j
′ |σ2. This model produces a

marginal multivariate normal model with AR(1) variance covariance matrix

and is useful for equally spaced outcomes. If we include random effects in

Eqns.(6.2) and (6.3) and if we vary the assumptions regarding the autore-

gressive structures, then we see that the general linear mixed effects model

formulation with serial correlation encompasses wide classes of transition

models. Diggle et al. (2002, pp.190-207) give a detailed intensive formula-

tion of Markov models for binary, categorical and Poisson data.
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6.4 Transition Models for outcomes of a gen-

eral type

The generalized linear model ideas can be used to formulate transition models

for outcomes of a more general type. If we decompose an outcome as Yij =

µcij+εij, then the first and second moment of a GLM can be written in terms

of the history, hij as:

µcij = E(Yij|hij) (6.4)

φυc(µcij) = var(Yij|hij). (6.5)

We note that υc(µcij) is a function of the variance by writing it in terms of

the mean and φ is the overdispersion parameter. The only difference from

the conventional GLM is that by including the history, hij , an outcome is

described in terms of its predecessors. A function of the mean components

is now equated to a linear function of the predictors to get:

ηij(µ
c
ij) = x

′

ijβ + κ(hij ,β,α) (6.6)

where κ is a function, often a linear one, of the history. Now the contribution

for Yij given the history hij , lead to independent GLM contributions due to

the law of total probability:

f(yi1, . . . , yini
) = f(yi1).f(yi2|yi1).f(yi3|yi1, yi2).f(yini

|yi1, . . . , yini−1)

which can be written as:

f(yi1, . . . , yini
) = f(yi1).

ni∏
j=2

f(yij|hij) (6.7)

= f(yi1, . . . , yiq).

ni∏
j=q+1

f(yij|hij) (6.8)

The latter decomposition in Eq. (6.8) is relevant when the hij contains the

q immediately preceding measurements. Eq. (6.8) yields ni − q independent
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univariate GLM contributions. This may now mean that a separate model

may be needed for the first q measurements, since these are left undescribed

by the conditional GLM. Molenberghs and Verbeke (2005, p.237) give the

following example of a logistic type of regression model,

logit[P (Yij = 1|xij, Yi,j−1 = yi,j−1,β, α)] = x
′

ijβ + αyi,j−1. (6.9)

By evaluating Eq.(6.9) at yi,j−1 = 0 and yi,j−1 = 1, respectively produces

the transition probabilities between occasions j − 1 and j. If there are no

covariates in this model then, these transition probabilities would be constant

across the population. When there are time independent covariates only,

these transition probabilities change in a straightforward way with the level

of covariate.

6.5 A Transition Model for the RSV data

Diggle et al (2002) state that transition models are considered as extensions of

generalized linear models (GLMs) for describing the conditional distribution

of each response yij as an explicit function of past responses yij−1, . . . , yi1 and

covariates xij. Hence the past outcomes are treated as predictor variables.

If we consider the generalized linear transition model with respect to the Kil-

ifi data set, we can model the conditional distribution of Yij given the past

as an explicit function of the q preceding responses. We can assume that the

probability of RSV for child i at visit j has a direct dependence on whether

or not the child had RSV at visit j − 1 as well as on explanantory variables,

xij. This is the first case of a first order transition model. If we take the

logit link then a first order transition model is given by

logit[P (Yij = 1|Yij−1, . . . , Yi1)]=x
′

ijβ+αYij−1.
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Therefore the probability of RSV at time tij depends on the measured co-

variates or explanatory variables but also on whether or not the child had

RSV at the previous visit. The parameter exp(α) is the ratio of the odds

of infection among the children who did and did not have RSV at the prior

visit. The β coefficient is the change per unit change in x in the log odds

of infection among children who were free of RSV at the previous visit. The

transition model stated above is a first order Markov chain according to Feller

(1968, vol 1, p. 132). At equally spaced time intervals the 2 × 2 transition

matrix whose elements are P (Yij = yij|Yij−1 = yij−1) where each of Yij and

Yij−1 may take values of 0 and 1 is given by inverting the logistic regression

equation for every pair (yij, yij−1) as

Yij
0 1

Yij−1
0 1

1+exp(x
′
ijβ

exp(x
′
ijβ)

1+exp(x
′
ijβ)

1 1

1+exp(x
′
ijβ+α)

exp(x
′
ijβ+α)

1+exp(x
′
ijβ+α)

However in the general transition model we let Hij = {Yi1, . . . , Yij−1} rep-

resent the past responses for the i-th subject, µcij = E(Yij|Hij) and let

vcij = var(Yij|Hij) be the conditional mean and variance of Yij given past

responses and the explanatory variables. We can specify the model analo-

gous to the GLM for independent data, where we assume:

g(µcij) = x
′

ijβ +
s∑

r=1

fr(Hij;α) = x
′

ijβ + h
′

ijα (6.10)

and

vcij = v(µ
′

ij)φ

We model the transition from the prior state by the functions fr to the

present response. The past outcomes after transformation by the known
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functions fr are treated as explanatory variables. Interactions among the

prior responses may be considered. We can then fit the transition model

using GLM techniques and treat the repeated transitions for a child/subject

as independent events.

General

Diggle et al (2002) focus on the case where the observation times tij are

equally spaced. The history for subject i at visit j is denoted as Hij =

{yik, k = 1, . . . , j − 1}. The most useful transition models are Markov chain

for which the conditional distribution of Yij given Hij depends only on the

q prior responses Yij−1, . . . , Yij−q. The integer q represents the order of the

model. Writing the conditional p.d.f of Yij as an exponential family type of

distribution gives

f(yij|Hij) = exp{[yijθij − ψ(θij)]/φ+ c(yij, φ)} (6.11)

for known functions ψ(θij) and c(yij, φ). The conditional mean and variance:

µcij = E(Yij|Hij) = ψ
′
(θij) and

v
′
ij = var(Yij|Hij) = ψ

′′
(θij)φ

Diggle et al. (2002) consider models where the conditional mean and vari-

ance satisfy the equations

g(µcij) = x
′

ijβ +
s∑
r=1

fr(Hij;α)

for suitable functions fr and

vcij = v(µ
′

ij)φ

where h and v are known link and variance functions determined from the
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density function. Hence the transition model expresses the conditional mean

as a function of both covariates xij and of the past responses Yij−1, . . . , Yij−q

in a much more general setting. We assume that the past affects the present

through the sum of s terms each of which may depend on the q prior values.

As an example: A logistic regression model for binary responses assuming a

first order Markov chain (Cox, 1970, Korn and Whittemore, 1979, Zeger et

al., 1985) specified as:

g(µcij) = x
′

ijβ + αyij−1 (6.12)

where g(µcij) = logit(µcij), v(µ
c
ij) = µcij(1− µcij), fr(Hij, α) = αryij−r,

s = q = 1 and µcij = Prob(Yij = 1|Hij).

A first order Markov model can be fitted by making use of the likelihood

function. The contribution to the likelihood for the ith subject can be written

as:

Li(yi1, . . . , yini
= f(yi1)

∏ni

j=2 f(yij|Hij) where Hij is the history measure-

ment at occasion j given by Hij = {yij−1}

In a Markov model of order q, the conditional distribution of Yij is

f(yij|Hij) = f(yij|yij−1, . . . , yij−q)

so that the likelihood is:

f(yi1, . . . , yiq)
∏ni

j=q+1 f(yij|yij−1, . . . , yij−q)

The GLM in Eq.(6.8) specifies only the conditional distribution f(yij|Hij)

whilst the likelihood of the first q observations f(yi1, . . . , yiq) is not specified

directly. In the logistic and log-linear models f(yi1, . . . , yiq) is not determined

from the GLM assumption about the conditional model and the full likeli-

hood is unavailable. An alternative is to estimate β and α by maximizing
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the conditional likelihood given by:

∏N
i=1 f(yiq+1, . . . , yini

|yi1, . . . , yiq) =
∏N

i=1

∏ni

j=q+1 f(yij|Hij) where N is

the number of subjects or clusters in the study.

There are 2 distinct cases to consider in the maximization process of the

likelihood

CASE 1

fr(Hij,α, β)=αrfr(Hij)

so that

g(µcij)=x
′

ijβ+
∑s

r=1 αrfr(Hij)

Clearly g(µcij) is a linear function of both β and α=(α1, . . . , αs)
′

so that

estimation is the same as for GLMs for independent data. We regress Yij

on the (p + s) dimensional vector of extended explanatory variables (x
′

ij ,

f1(Hij), . . . , fs(Hij))
′
.

CASE 2

Case 2 occurs when functions of past responses include both β and α. Ex-

amples are linear and log-linear models. The Iterative weighted least squares

method is used to estimate β and α. This exposition is given in Diggle et

al (2002, pg. 193-194). As a summary; the derivative of the log conditional

likelihood or conditional score function has the form

S
′
(δ) =

m∑
i=1

ni∑
j=q+1

∂µcij
∂δ

vc
−1

ij (yij − µcij) = 0 (6.13)

where δ = (β,α). The above equation is analogous to the GLM score

equation. The derivative
∂µc

ij

∂δ
is analogous to xij but it can depend on both

α and β. The iterative weighted least squares procedure is formulated as
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follows. Let Yi be the (ni − q) vector of responses for j = q + 1, . . . , ni and

µcij its expectation given by Hij.

Let X∗
i be an (ni − q)x (p+ s) matrix with the kth row given by

∂µiq+k

∂δ
and Wi = diag

(
1

v
′
ik+q

)
, k = 1, . . . , ni−q be an (ni − q)x (ni − q)

diagonal weighting matrix.

Finally let Zi=X
∗
i δ̂+ (Yi − µ̂c

i ) then an updated δ̂ can be obtained by

iteratively regressing Z on X∗using weights in W . When the correct model

is assumed for the conditional mean and variance, the solution δ̂ of Eq.(6.13)

asymptotically follows a Gaussian distribution, as N goes to infinity, with

mean equal to the true value δ and (p+ s)× (p+ s) variance matrix:

Vδ =

(
N∑
i=1

X
′∗
i WiX

∗
i

)−1

The variance Vδ depends on both α and β and a consistent estimate V̂δ is

obtained by replacing α and β by their estimates α̂ and β̂. However when

the conditional mean is correctly specified and variance is not, consistent

inferences about δ can be still obtained using the robust variance:

VR =

(
m∑
i=1

X
′∗
i WiX

∗
i

)−1( m∑
i=1

X
′∗
i WiViWiX

∗
i

)(
m∑
i=1

X
′∗
i WiX

∗
i

)−1

.

A consistent estimate of VR can be obtained by replacing Vi = var(Yij|Hi)

by its estimate (Yi − µ̂i
c)(Yi − µ̂i

c)
′
. Interestingly, even when the Markov

assumtption is violated, the robust variance will give more consistent confi-

dence intervals for δ̂. This concludes the estimation process for the transition

model.
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6.6 Software for fitting Conditional Models

in SAS

The standard GLM software in SAS can be used to fit the transition models

because subsequent measurements and their past history are independent

of each other. The SAS procedures such as PROC GENMOD and PROC

LOGISTIC can be used to fit these models. However, one must ensure that

the previous measurement(s) can be used as a covariate. The longitudinal

data set then needs to be rearranged one record per measurement rather than

per subject using the DROPOUT macro. Depending on how many history

variables needed to be included, the DROPOUT macro needs to be called as

many times. If we use the two most recent measurements, then the macro

needs to be called twice. The LAG statement can also be used to prepare a

data set in SAS.

6.7 Fitting Conditional Models in SAS to the

RSV data

In this section results from fitting a series of transition models (first, sec-

ond and third order history models) to the RSV data are presented. The

models were fitted in SAS using ‘Proc Genmod’ and ‘Proc Logistic’ with a

log link and a binomial distribution. The results of the analyses are pre-

sented in Table 6.1. First the previous responses Yij−1, Yij−2 and Yij−3 were

included independently into the model. Then the models with (Yij−1, Yij−2)

and (Yij−1, Yij−2, Yij−3) were fitted.
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Effect DF Wald Chi-Square P-value
age 12 14.529 0.268
dt 1 0.409 0.523

prev 1 32.996 < .0001
actipass 1 125.754 < .0001

time 1 0.592 0.442
Yij−1 1 9.809 0.0017
age 12 15.381 0.221
dt 1 0.701 0.403

prev 1 34.672 < .0001
actipass 1 128.873 < .0001

time 1 0.658 0.417
Yij−2 1 1.342 0.247
age 12 15.197 0.231
dt 1 0.743 0.389

prev 1 34.644 < .0001
actipass 1 128.430 < .0001

time 1 0.671 0.413
Yij−3 1 0.477 0.490
age 12 14.571 0.266
dt 1 0.400 0.527

prev 1 33.104 < .0001
actipass 1 126.219 < .0001

time 1 0.579 0.447
Yij−1 1 9.383 0.0022
Yij−2 1 0.959 0.327
age 12 14.407 0.276
dt 1 0.407 0.523

prev 1 33.134 < .0001
actipass 1 126.382 < .0001

time 1 0.571 0.450
Yij−1 1 9.486 0.0021
Yij−2 1 0.895 0.344
Yij−3 1 0.490 0.484

Table 6.1: Type III Effects for first, second, third order, first and second and

full model

The type III statistics show that ‘prev’ and ‘actipass’ variables are sig-

nificant all three models and the full model that includes all three history

terms at the 5% level. However from the history terms, the first order model

shows that Yij−1 is significant at the 5% level, while the model with Yij−2 and
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Yij−3 included independently show that they are not significant at the 5%

level. Thus we conclude that only the immediate past history is important

in explaining the current disease status. The Wald Chi-square values do not

differ numerically by vast amounts in all three models for all the variables.

The model fit statistics show that the first order model has the lowest fit

Criterion First order Second order Third order 1st, 2nd 1st, 2nd & 3rd

AIC 1063.176 1069.903 1070.591 1064.355 1065.918
SC 1189.102 1195.829 1196.517 1197.277 1205.836

−2log-likelihood 1027.176 1033.903 1034.591 1026.355 1025.918

Table 6.2: Model fit statistics for first, second and third, first and second

and the full order models

statistics for the AIC and SC criterion whilst the full model has the lowest

fit statistics for the −2log-likelihood. The significant parameter estimates

are confirmed by the type III score statistics in Table 6.1. The standard

error for ‘age 0’ are extremely inflated in comparison to the other age group

standard errors (Table 6.7). The model including the first order term has

the smallest standard error estimates in comparison to the other models.

However the results show that ‘age’ was not significant in the model.

From Table 6.5, with respect to the first order model, the rsvhistory 1 vs 2

(Yij−1) is the
P2|1/(1−P2|1)

P2|2/(1−P2|2)
= 0.289 implying that the odds of a child becoming

infected if his/her prior state was uninfected is about 0.3 times more than a

child whose prior state is infected and remains infected. This odds ratio is

small implying that the denominator is larger than the numerator. The re-

verse of this is
P2|2/(1−P2|2)

P2|1/(1−P2|1)
= 3.46 implying that the odds of a child becoming

infected if his/her prior state was infected is about 3.5 times more than a child

whose prior state is uninfected and becoming infected. This confirms the fact

that RSV is indeed a rare occurrence disease. Considering the model with
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only Yij−2 included as an explanatory variable, the odds ratio of the disease

for those with Yij−2 = 1 against Yij−2 = 2 is
P2|1/(1−P2|1)

P2|2/(1−P2|2)
= 0.493 implying that

the probability of a child becoming infected if his/her prior two step state was

uninfected is about 0.5 times more than a child whose prior state is infected

and remains infected. The reverse of this is
P2|2/(1−P2|2)

P2|1/(1−P2|1)
= 2.03 implying that

the probability of a child becoming infected if his/her prior two step state

was infected is about 2 times more than a child whose prior two step state is

uninfected and becoming infected. For a model with only Yij−3 included as

a predictor the odds ratio is the
P2|1/(1−P2|1)

P2|2/(1−P2|2)
= 0.655 implying that the odds

of a child becoming infected if his/her prior three step state was uninfected

is about 0.66 times more than a child whose prior three step state is infected

and remains infected. The reverse of this is
P2|2/(1−P2|2)

P2|1/(1−P2|1)
= 1.53 implying that

the odds of a child becoming infected if his/her prior three step state was

infected is about 1.5 times more than a child whose prior three step state

is uninfected and becoming infected. The odds ratios are also decreasing as

the order of history dependence increases. The patterns of the odds ratios

decreasing is seen across all the variables: ‘age’, ‘dt’, ‘prev’, ‘actipass’ and

‘timemonth’ in all three models.

In the first order model the odds ratio for comparing ‘age group 1 and age

group 12’ is 0.408 implying that implying that the odds of a child becoming

infected if his/her prior state was uninfected is about 0.4 times more than a

child whose prior state is infected and remains infected but when we compare

‘age group 10 and age group 12’, we find the odds ratio is 0.725 implying

that the probability of a child becoming infected if his/her prior state was

uninfected is about 0.73 times more than a child whose prior state is infected

and remains infected. In other words, this comparative probability of trans-

mitting between the infected and uninfected states increases with age. It is
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also important to state that the Yij−2 and Yij−3 terms were not significant at

the 5% level implying that Yij−1 is more informative about the current states

than the states before time visits tij−1.

6.8 Conclusion

This chapter has investigated the problem of including the history of out-

comes as predictor variables in a model for the analysis of repeated mea-

surement non-Gaussian data in addition to other covariates. In particular

transition models within a broader class of conditional models were applied

to RSV disease data for children within the age of one year. The outcomes

were binary responses denoting the infection status of a child (0 =uninfected,

1 =infected) at any measurement and sampling occasion. Three types of

transition models namely first, second and third order history models were

investigated in addition to assessing the significance of other covariates. The

analysis reveal that the first order history model gave a better fit compared to

the other two as well the inclusion of models with first and second and first,

second and third order history terms. The results imply that the immediate

past history is important in explaining the current status of a child’s infection

state. The further back the status history of a child the less relevant it is

in explaining the current disease status of a child. Other predictor variables

that were found to be significant were the prevalence (antibody level) in the

blood, the type of sampling method (actively or passively sampled) and age

of a child in months.
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Parameter DF Estimate Standard Error Wald Chi-square P-value

Intercept 1 -4.500 28.754 0.025 0.876

age 0 1 -7.271 344.800 0.000 0.983

age 1 1 0.692 28.744 0.001 0.981

age 2 1 1.060 28.742 0.001 0.971

age 3 1 1.197 28.741 0.002 0.967

age 4 1 0.611 28.741 0.001 0.983

age 5 1 -1.075 28.753 0.001 0.970

age 6 1 0.054 28.745 0.000 0.999

age 7 1 -0.581 28.752 0.000 0.984

age 8 1 0.642 28.742 0.001 0.982

age 9 1 0.803 28.743 0.001 0.978

age 10 1 1.267 28.743 0.002 0.965

age 11 1 1.013 28.743 0.001 0.972

dt 1 -0.006 0.010 0.409 0.523

prev 1 50.377 8.770 32.996 < .0001

actpass 0 1 1.134 0.101 125.754 < .0001

timemonth 1 -0.090 0.117 0.592 0.442

Yij−1 1 -0.620 0.198 9.809 0.002

Intercept 1 -4.763 40.200 0.014 0.906

age 0 1 -7.938 482.200 0.000 0.987

age 1 1 0.667 40.192 0.000 0.987

age 2 1 1.098 40.191 0.001 0.978

age 3 1 1.255 40.190 0.001 0.975

age 4 1 0.671 40.190 0.000 0.987

age 5 1 -1.046 40.199 0.001 0.979

age 6 1 0.097 40.193 0.000 0.998

age 7 1 -0.532 40.198 0.000 0.989

age 8 1 0.684 40.191 0.000 0.986

age 9 1 0.911 40.191 0.001 0.982

age 10 1 1.323 40.191 0.001 0.974

age 11 1 1.086 40.192 0.001 0.978

dt 1 -0.009 0.010 0.701 0.403

prev 1 51.480 8.743 34.672 < .0001

actpass 0 1 1.149 0.101 128.873 < .0001

timemonth 1 -0.094 0.116 0.658 0.417

Yij−2 1 -0.354 0.305 1.342 0.247

Intercept 1 -4.887 39.829 0.015 0.902

age 0 1 -7.937 477.800 0.000 0.987

age 1 1 0.696 39.820 0.000 0.986

age 2 1 1.091 39.819 0.001 0.978

age 3 1 1.246 39.818 0.001 0.975

age 4 1 0.659 39.818 0.000 0.987

age 5 1 -1.055 39.827 0.001 0.979

age 6 1 0.089 39.822 0.000 0.998

age 7 1 -0.529 39.827 0.000 0.989

age 8 1 0.683 39.819 0.000 0.986

age 9 1 0.924 39.820 0.001 0.982

age 10 1 1.325 39.820 0.001 0.974

age 11 1 1.089 39.820 0.001 0.978

dt 1 -0.009 0.010 0.743 0.389

prev 1 51.349 8.724 34.644 < .0001

actpass 0 1 1.143 0.101 128.430 < .0001

timemonth 1 -0.095 0.116 0.671 0.413

Yij−3 1 -0.211 0.306 0.477 0.490

Table 6.3: Parameter estimates for first, second and third order models
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Parameter DF Estimate Standard Error Wald Chi-square P-value
Intercept 1 -4.235 28.399 0.022 0.882

age 0 1 -7.228 340.600 0.001 0.983
age 1 1 0.666 28.387 0.001 0.981
age 2 1 1.058 28.385 0.001 0.970
age 3 1 1.199 28.384 0.002 0.966
age 4 1 0.614 28.384 0.001 0.983
age 5 1 -1.067 28.397 0.001 0.970
age 6 1 0.061 28.389 0.000 0.998
age 7 1 -0.581 28.396 0.000 0.984
age 8 1 0.641 28.386 0.001 0.982
age 9 1 0.790 28.386 0.001 0.978
age 10 1 1.264 28.386 0.002 0.965
age 11 1 1.001 28.387 0.001 0.972

dt 1 -0.006 0.010 0.400 0.527
prev 1 50.609 8.796 33.104 < .0001

actpass 0 1 1.141 0.102 126.219 < .0001
time 1 -0.089 0.117 0.579 0.447
Yij−1 1 -0.607 0.198 9.383 0.002
Yij−2 1 -0.300 0.306 0.959 0.327

Intercept 1 -4.037 28.070 0.021 0.886
age 0 1 -7.196 336.600 0.001 0.983
age 1 1 0.669 28.056 0.001 0.981
age 2 1 1.053 28.055 0.001 0.970
age 3 1 1.194 28.054 0.002 0.966
age 4 1 0.605 28.054 0.001 0.983
age 5 1 -1.066 28.066 0.001 0.970
age 6 1 0.064 28.058 0.000 0.998
age 7 1 -0.576 28.065 0.000 0.984
age 8 1 0.640 28.055 0.001 0.982
age 9 1 0.791 28.055 0.001 0.978
age 10 1 1.264 28.055 0.002 0.964
age 11 1 0.991 28.056 0.001 0.972

dt 1 -0.006 0.010 0.407 0.523
prev 1 50.679 8.804 33.134 < .0001

actpass 0 1 1.142 0.102 126.382 < .0001
time 1 -0.088 0.117 0.570 0.450
Yij−1 1 -0.610 0.198 9.486 0.002
Yij−2 1 -0.290 0.306 0.895 0.344
Yij−3 1 -0.214 0.306 0.490 0.484

Table 6.4: Parameter estimates for the model including first and second order

terms and the full model including first, second and third order terms
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First Order Second Order Third Order 1st, 2nd 1st, 2nd, 3rd

Effect Comparison Estimate Estimate Estimate Estimate Estimate

age 0 vs 12 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
age 1 vs 12 0.408 0.348 0.359 0.450 0.408
age 2 vs 12 0.589 0.535 0.533 0.592 0.599
age 3 vs 12 0.675 0.625 0.622 0.682 0.690
age 4 vs 12 0.376 0.349 0.346 0.380 0.383
age 5 vs 12 0.07 0.063 0.062 0.071 0.072
age 6 vs 12 0.215 0.197 0.196 0.219 0.223
age 7 vs 12 0.114 0.105 0.105 0.115 0.117
age 8 vs 12 0.388 0.354 0.354 0.391 0.396
age 9 vs 12 0.456 0.444 0.451 0.453 0.461
age 10 vs 12 0.725 0.67 0.674 0.728 0.740
age 11 vs 12 0.562 0.529 0.532 0.560 0.563
dt 0.994 0.991 0.991 0.994 0.994

prev > 999.999 > 999.999 > 999.999 > 999.999 > 999.999
actipass 0 vs 1 9.664 9.944 9.831 9.794 9.821

timemonth 0.914 0.910 0.910 0.915 0.915
Yij−1 1 vs 2 0.289 0.297 0.295
Yij−2 1 vs 2 0.493 0.549 0.560
Yij−3 1 vs 2 0.655 0.652

Table 6.5: Odds ratio estimates for first, second and third order models
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Chapter 7

Estimating the force of

infection and the rate of

recovery for the RSV disease

process

7.1 Introduction

In this chapter a disease model is developed and applied to the Kilifi data

set for Respiratory Syncytial Virus (RSV) and compared to an independent

analysis by White et al. (2003) and Nokes et al. (2004). This chapter

also aims to develop statistical methods for the estimation of disease model

parameters given observed data from the process. These methods involve the

use of direct likelihood and generalized linear modelling (GLM) to estimate

important disease parameters. The force of infection and the recovery rate

are here the key parameters of interest. The findings of the current chapter

are consistent and in agreement to results from a mechanistic model in White
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et al. (2003). The aspect of time varying disease parameters for the RSV

disease is also briefly discussed and addressed in the chapter. Some of the

theory of this chapter is an extension to that introduced in Chapter 3 because

we need to show and emphasize the application of the statistical techniques

to the exact theory.

7.2 Introduction of Disease Dynamics

In the field of infectious disease modelling, one area that is now attracting

a lot of attention, is that of the statistical estimation of the key parameters

associated with the disease processes. These key parameter estimates are

based on observed data that is generated by the underlying disease process.

In this chapter we in particular consider the problem of the force of infection

and the recovery rate for estimating a disease process. The disease of interest

is a respiratory infection on children mainly under the age of one year. It

is a viral disease caused by the Respiratory Syncytial Virus (RSV). Math-

ematical models to study the disease are not new. Greehalgh et al.(2000)

used both theoretical and deterministic models to study the RSV dynam-

ics. In the chapter we address the problem of combining the estimation of

model parameters and disease dynamics. Recall that the data used in our

case is repeated measurements data representing the status of a child as ei-

ther infected (1) or not (0) at a particular time point tij where the index

i denotes a child and j denotes the order of observation for j = 1, . . . , ni;

implying that child i contributed ni observation. A fixed number of children

were observed in this study. Thus, the data constitute repeated non–normal

data suggesting the use of statistical methods of analysis (Generalized Linear

Modelling approach suggested by McCullagh and Nelder (1989) and an ex-
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tension to generalized linear mixed models (Molenberghs and Verbeke, 2005;

Lee, Nelder and Pawitan, (2006)) to be able to account for the correlation

of responses within the same subject or cluster. In the current study we

employ direct likelihood estimation and discuss the implementation of the

generalized linear modelling approach (McCullagh and Nelder, 1989) for the

estimation of the recovery rate and time-dependent force of infection. First

the basic dynamics of the infection process will be reviewed after which we

shall present how we carried out the estimation of the model parameters.

One complicating factor in the process is that of time dependence of the

some of the parameters in the underlying process, hence the need to allow

time dependence in the estimation of the parameters. The time varying pa-

rameters may be due to seasonal dynamics inherent in a disease process or

due to other factors such as genetic or other unobserved effects.

7.3 Brief History and Discussion of RSV

Respiratory syncytial virus (RSV) infection, which manifests primarily as

bronchiolitis and/or viral pneumonia, is the leading cause of lower respiratory

tract (LRT) infection in infants and young children. The clinical entity of

bronchiolitis was described at least 100 years ago. In 1956, RSV, as the

causative agent of most epidemic bronchiolitis cases, initially was isolated

by Morris (1956) and colleagues from chimpanzees with upper respiratory

tract (URT) infections. Subsequently, Channock et al.(1996) associated this

agent with bronchiolitis and LRT infection in infants. Since then, multiple

epidemiologic studies have confirmed the role of this virus as the leading

cause of LRT infection in infants and young children. Cane (2001) state

that human RSV causes LRT disease in about 40% of primary cases and
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is responsible for the hospitalization of 0.1% − 2% of infants under the age

group of 1 year annually. Peak incidence of occurrence is observed at age

2-8 months. Overall, about 4 million children younger than 4 years acquire

an RSV infection, and in a country such as the United States more than

100,000 children are hospitalized annually because of this infection. This

translates to 9-14 per 1000 children younger than 1 year who are hospitalized

annually for this condition. Virtually all children have had at least one RSV

infection by their third birthday. Given the prevalence and potential severity

of this condition, it is not surprising that the World Health Organization

has targeted RSV for vaccine development. The frequency of RSV can be

categorized as follows:

• Internationally: RSV infection is prevalent worldwide, with similar clin-

ical manifestations and young age of RSV LRT infection.

• Race: All races appear susceptible to RSV, with similar disease pat-

terns.

• Sex: Although boys and girls are affected equally by milder RSV dis-

ease, the frequency of hospitalization for RSV disease is higher in males,

with a male-female-ratio of approximately 2:1.

• Age: Severe RSV disease is primarily a disease of young infants and

children, with a peak occurrence at age 2-8 months. Reinfection with

RSV occurs throughout life, with disease becoming more limited to the

URT
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7.4 Brief RSV Data Description

In Chapter 1, we noted that the Kilifi RSV data study is a repeated mea-

surement (longitudinal) data set measuring the prevalence of the Respiratory

Syncytial Virus (RSV, a causal agent of pneumonia) in children in coastal

Kenya. By definition, a longitudinal study is one where data are obtained

when a response is measured repeatedly on a set of units. The Kilifi data

set is part of a study carried out by the Wellcome Trust of the UK Centre,

Kilifi, in collaboration with the Kenyan Medical Research Institute. The

model that will be built to here will aid in further understanding the dynam-

ics of the disease and possibly aid in the design of intervention strategies for

this disease affecting mostly children. Statistical inference about the disease

process can also be drawn from such a model. In the current analysis we

adopt the available case (AC) kind of analysis using likelihood and general-

ized linear modelling approaches. The data set description has already been

covered in Chapter 1 and will not be repeated here. It is clear that the re-

sponse variable (rsv) in the data set is a binary non-Gaussian variable. The

generalized linear model for longitudinal data seems possibly the best option

to deal with such a data set. This idea will be investigated in this chapter.

Although the Kilifi data set cannot be appropriately analyzed as Gaussian

longitudinal data the similarities and dis-similarities with non-Gaussian data

is important in order to develop an appropriate model for it. The data set

exhibits a form of incompleteness which has to be properly accounted for in

order to carry out an appropriate analysis of the data which will lead to cor-

rect conclusions. This incompleteness refers to the real underlying process of

the disease which is not observed directly except only through the outcomes

of such a process. Incompleteness is addressed in Chapter 9. The model

that will be built to represent this data will aid in understanding and in the
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design of intervention strategies for this disease affecting mostly children.

Proper inference about the disease process can also be drawn from such a

model. Let Yij denote the outcome at observation time tij for individual i.

Then assuming a first order Markov model (Diggle et al., 2002), the observed

transition matrix can be represented as in Table 7.1 below. As part of the

exploratory data analysis in Chapter 1, a program was written in SAS Proc

IML to get the following 2× 2 overall transition matrix:

Yij
uninfected infected

Yij−1
uninfected 8598 132

infected 131 13

Table 7.1: Matrix of transitions between infected and uninfected states

Table 7.1 gives the overall number of visits to the uninfected and infected

states conditional on the previous state indicated by the row label. From the

above matrix, it is clear that this disease is a rare one because most of the

transitions were from uninfected to uninfected states. There are a total of

131 transitions among the children from the uninfected to the infected state

and almost a similar number, of 132, transiting from infected to uninfected.

This outcome is in agreement with the fact that RSV is a rare disease process.

It is important to note that the time interval between transitions was not

constant. The time intervals were different within and between the children,

which as previously stated, makes the data set highly unbalanced. Therefore

standard methods of analysis may not be directly applicable. Since the data

consists of individuals who got infected and also changed state back to the

uninfected state it is possible to use the data to estimate both the force of
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infection and the per capita loss of infection or the recovery rate.

7.5 The Susceptible–Infected–Susceptible (SIS)

Model

In the SIS disease model, each individual in the population is either infected

(I) or susceptible to infection (S). When a susceptible individual becomes in-

fected, it is immediately infectious and when an infected individual is cured,

it is immediately susceptible again. In other words the disease does not con-

fer permanent immunity. This is a homogenous mixing type of model, in

which every infected individual has the same probability to infect each sus-

ceptible, each infected individual has the same probability of being cured.

Ross (1915) introduced the deterministic SIS model while Weiss and Dis-

hon (1971) introduced the stochastic SIS model which is a continuous time

Markov birth-and-death process that is used to model a variety of processes

that range from epidemics, transmission of rumors and chemical reactions.

It is also important to note that the short and long term behaviour of the

deterministic and stochastic versions of the SIS model are quite different and

we will not go into the details of this difference. However a deterministic

model is like an average process while a stochastic model accounts for the

random variability in the model parameters and variables. In the current

problem it should be noted that according to the biology of RSV the disease

process may not necessarily be an SIS disease process but rather a more ap-

propriate model would be the susceptible-infected-recovered (SIR) process.

A SIR disease process is defined as a process where a subject is susceptible,

becomes infected and then recovered with an immunity not to be infected

again, for example Rubella or Mumps are diseases which can be modelled
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as a SIR process. However since the data present currently was collected on

children within the age of one year followed over a period of approximately

one year, we model the the transition rates from the disease free to the dis-

eased state (λ) and back (ν) using an SIS model because most children were

infected soon after recovery implying a negligible duration in the recovered

state for this particular cohort of individuals. The problem is to model the

observed data which is a repeated (longitudinal) type of data where each

child presents a sequence responses of 1’s (diseased) and 0’s (disease-free).

The model we construct assumes that the disease dynamics have attained

equilibrium hence a constant population. In effect deaths are balanced by

new births, therefore natural mortality and births are not included in the

model.

7.5.1 SIS governing differential equation

The SIS basic governing differential equation is given as follows

∂q(a, t)

∂t
+
∂q(a, t)

∂a
= −λ(a, t)q(a, t) + ν(a, t)p(a, t) (7.1)

where q(a, t) and p(a, t) are respectively the proportion of susceptible and

infected individuals in the population at time t aged a such that

p(a, t) + q(a, t) = 1

Thus for a purely SIS model it is enough to study the solution for equa-

tion (7.1).The quantities λ(a, t) and ν(a, t) are respectively the force of in-

fection and recovery rate here, both expressed as a function of age and time.

However as already mentioned above RSV is a viral disease therefore the

most appropriate model is the SIR model where R is the class of recovered

individuals with a possible loss of immunity to revert back to the S class.

Thus in this case the equation for p(a, t) would become
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∂p(a, t)

∂t
+
∂p(a, t)

∂a
= λ(a, t)q(a, t)− {ν(a, t) + r(a, t)}p(a, t)

where r(a, t) is the rate at which individuals move from the infected class to

the recovered class of the preocess. But because the data currently in use was

based on children within the age of one year the immunity against the disease

for such individuals is still not yet developed therefore we assume r(a, t) = 0.

It therefore suffices to deal with equation (7.1). In addition note that natural

mortality is here assumed to be balanced by new births therefore in effect we

assuming a constant population model. If the individuals in the study are

within the same age bracket, such as in the Kilifi data set where the children

were all within one year of age then we can drop age, in the above equation

and therefore write

dq(t)

dt
= −λ(t)q(t) + ν(t)p(t). (7.2)

If we assume λ(t) and ν(t) are time-independent then

dq(t)

dt
= −λq + ν(1− q) = −(λ+ ν)q + ν (7.3)

because p(t)+q(t) = 1. This equation can now be solved using the ‘variation

of coefficients’ technique. The steps to the solution of the SIS governing

differential equation (7.3) are outlined below. Put the linear equation in the

standard form as
dy

dt
+ P (t)y = f(t).

The integrating factor of the standard form is given by e
R
P (t)dt. Next multiply

the standard form of the equation by the integrating factor and note that

the left hand side of the resulting equation is automatically the derivative of

the product of the integrating factor and y that is,

d

dt
[e

R
P (t)dxy] = e

R
P (t)dtf(t).
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Lastly integrate both sides of this last equation and solve for y subject to

the initial conditions of the system.

Thus, the solution to the equation

dq(t)

dt
= −λq + ν(1− q),

can be constructed by first noting that,

dq(t)

dt
= −λq + ν − νq,

⇒ dq(t)

dt
= −(λ+ ν)q + ν,

implying that
dq(t)

dt
+ (λ+ ν)q = ν.

Multiplying both sides by the integrating factor yields

e(λ+ν)tdq(t)

dt
+ e(λ+ν)t(λ+ ν)q = e(λ+ν)tν

d

dt
[e(λ+ν)tq(t)] = νe(λ+ν)t∫

d

dt
[e(λ+ν)tq(t)] =

∫
νe(λ+ν)tdt

e(λ+ν)tq(t) =
ν

λ+ ν
e(λ+ν)t + c

q(t) =
ν

λ+ ν
+ ce−(λ+ν)t

Imposing the initial condition that at t = 0 that the proportion in-

fected is 0 implies that q(0) = 1 and p(0) = 0, we can solve for c and

get c = 1− ν
λ+ν

= λ
λ+ν

. Hence we can solve for q(t) and the solution obtained

as:

q(t) =
ν

λ+ ν
+

λ

λ+ ν
e−(λ+ν)t, (7.4)

assuming q(0) = 1 and p(0) = 0 as the initial conditions and since p(t)+q(t) =

1 we get

p(t) =
λ

λ+ ν
− λ

λ+ ν
e−(λ+ν)t (7.5)
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as the general solutions for p(t).

Note that equations (7.4) and (7.5) imply that q(∞) = ν
λ+ν

and hence

p(∞) = λ
ν+λ

which give the equilibrium proportions of susceptible and in-

fected individuals respectively. This means that for a rare disease ν >> λ.

Now let the indicators 1 and 0 denote respectively the infected and uninfected

states of an individual so that we can define the four conditional transition

probabilities as follows

π00(t) = P (Yit = 0|Yi,0 = 0)

π01(t) = P (Yit = 1|Yi,0 = 0)

π10(t) = P (Yit = 0|Yi,0 = 1)

π11(t) = P (Yit = 1|Yi,0 = 1)

As before assume initially at t = 0 the proportion infected is 0 that is q(0) = 1

and p(0) = 0. Note that since the disease process is a reversible process,

individuals cannot remain infected forever. The solution q(t) implies that

given an individual was infected at the beginning of a time duration t then,

π00(t) =
ν

(λ+ ν)
+

λ

(λ+ ν)
e−(λ+ν)t (7.6)

and since π00 + π01 = 1, then

π01(t) =
λ

(λ+ ν)
− λ

(λ+ ν)
e−(λ+ν)t (7.7)

Following similar arguments we can write expressions for π11(t) and π10(t)

as:

π11(t) =
λ

(λ+ ν)
+

ν

(λ+ ν)
e−(λ+ν)t (7.8)

and

π10(t) =
ν

(λ+ ν)
− ν

(λ+ ν)
e−(λ+ν)t (7.9)
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We can also use these transition probabilities, π00(t), π01(t), π10(t) and π11(t)

to form the following transition matrix,

P =

(
π00(t) π01(t)
π10(t) π11(t)

)
=

(
1− π01(t) π01(t)
π10(t) 1− π10(t)

)
(7.10)

Note that the process satisfies the ergodic property namely, π00(∞) = π10(∞) =

ν
ν+λ

and π01(∞) = π11(∞) = λ
ν+λ

the ultimate equilibrium proportion of sus-

ceptible and infected respectively. Estimates of λ and ν can be obtained from

these equations via the maximum likelihood estimation since the transitions

represent conditionally i.i.d Bernoulli observations with probabilities π10 and

π01. The general form of the likelihood can be written as:

{
N∏
i=1

P (Yi,0)}
N∏
i=1

ni∏
j=1

P (Yi,j|Yi,j−1)

using the notation that Yi,j denotes the binary observation for child i at

time occasion j out of ni time occasions in total. The second part of the

likelihood, which is the partial likelihood obtained by conditioning on the

first measurement Yi,0 is proportional to a set of two Binomial distributions

that is,

N∏
i=1

ni∏
i=1

P (Yi,j|Yi,j−1) ∝ (π01)
n01(1− π01)

n00(π10)
n10(1− π10)

n11

where nk,l are the total number of transitions from state k ∈ (0, 1) to state

l ∈ (0, 1) and therefore explicit maximization is possible. Thus conditional

on the initial state {Yi,0}, the disease parameters π01 and π10 are orthogo-

nal. The two Binomial distributions correspond to the recovery and infection

process of the disease. There is an inherent assumption here that the time

intervals are of equal length and that the transition probabilities are time

independent. It is possible to estimate the transition probabilities by max-

imizing this partial likelihood instead of the full likelihood, since the first

206



measurement Yi,0 contributes a limited amount of information only if some

steady state assumptions are made. Alternatively one can assume the initial

state of the child is known with probability one. The maximum likelihood

estimates of the transition probabilities obtained this way are:

π̃01 =
n01

n01 + n00

and

π̃10 =
n10

n10 + n11

By equating these estimates of the transition probabilities in Eq.(7.6) and

Eq.(7.8) one can obtain estimators of the transition rate λ and ν. Further-

more if we consider the table of transitions calculated earlier, that is

Yij
uninfected infected

Yij−1
uninfected 8598 132

infected 131 13

Table 7.2: Matrix of transitions between infected and uninfected states

Then we can work out the probability transition matrix P as :

P =

(
0.985 0.015
0.91 0.09

)
The problem with this approach is that the estimating equations so ob-

tained are highly non-linear but the method works well for equally spaced

observation times, as in Nagelkerke et al. (1990). The added problem with

this approach of estimating λ and ν is that it is not straightforward to find

standard errors of estimates. It should be noted that under such assump-

tions the two disease processes namely the infection and recovery processes

are completely disentangled.
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7.6 Estimation of the model parameters

An alternative estimation procedure is developed by assuming that the resi-

dence times in each disease state is exponentially distributed. In the current

case we assume that the duration in the disease free state is exponentially

distributed with parameter λ while the duration in the disease state is ex-

ponentially distributed with parameter ν. Thus we can interpret λ and ν

as the force of infection and the recovery rate respectively. Both λ and ν

have units of measurement as days−1. The aim is to use available data to

obtain estimates for the disease parameters. From a time to event approach

the two parameters can also be seen as the hazard of infection and recovery

respectively. We therefore define the four transition probabilities as follows:

π00 = P (Yij = 0|Yi,j−1 = 0, dij) = e−λdij

π01 = P (Yij = 1|Yi,j−1 = 0, dij) = 1− e−λdij

π10 = P (Yij = 0|Yi,j−1 = 1, dij) = 1− e−νdij

π11 = P (Yij = 1|Yi,j−1 = 1, dij) = e−νdij

where dij = tij − tij−1, is the time interval between the visit at time tij and

tij−1. So far the approach is similar to that developed by White et al. (2003).

The point of departure is that we now propose to use the direct likelihood

approach instead of the Bayesian approach. The full likelihood can therefore

be written as:

L(ν, λ, dt) = (θ1)
P
δi(1−θ1)

N−
P
δi
∏
0→0

e−λdij

∏
0→1

(1−e−λdij)
∏
1→0

(1−e−νdij)
∏
1→1

e−νdij

Now δi is an indicator variable denoting the initial state of a child where δi = 1

when the child is initially infected and 0 otherwise. Hence θ1 is the probability

that the child is initially in the infected state such that θ0 = 1− θ1, N is the

total number of individuals in the study and
∑
δi are individuals who are
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initially in the infected state and N−
∑
δi are initially not infected. It is thus

simpler to consider the conditional likelihood given the initial states {Yi,0} in

order to find the maximum likelihood estimates (MLEs) of the parameters λ

and ν If we take the log-likelihood then we have:

` = logL = log(constant)−λ
∑
0→0

dij+
∑
0→1

log(1−e−λdij)+
∑
1→0

log(1−e−νdij)−ν
∑
1→1

dij

Taking the first and second partial derivative with respect to λ and ν gives

us the following set of equations

∂`

∂λ
= −

∑
0→0

dij +
∑
0→1

[1/(1− e−λdij)](e−λdij)(dij)

∂`

∂ν
= −

∑
1→1

dij +
∑
1→0

[1/(1− e−νdij)](e−νdij)(dij)

∂2`

∂λ2
= −

∑
0→1

[1/(1− e−λdij)]2[(e−λdij)dij]
2 +

∑
0→1

[1/(1− e−λdij)](e−λdij)d2
ij

∂2`

∂ν2
= −

∑
1→0

[1/(1− e−νdij)]2[(e−νdij)dij]
2 +

∑
1→0

[1/(1− e−νdij)](e−νdij)d2
ij

∂2`

∂ν∂λ
=

∂2`

∂λ∂ν
= 0

Below the Fisher’s scoring method to iteratively solve for λ and ν is briefly

described. Searle (1992) and Longford (1993) state that the Fisher’s scoring

method is preferred to Newton-Raphson method since it avoids the heavy

computational burden of finding the Hessian matrix (the matrix of second

derivatives of the loglikelihood) by using the inverse of the information matrix

I−1 (i.e. we replace the Hessian by the negative of its expected value, which

is often easier to compute than the Hessian). The inverse of the information

matrix will be required to get the estimated variance-covariance matrix of

our parameters. For generality purposes let the parameters λ and ν to be

contained in a vector θ. The iterative scheme is then given by:

θ(m+1) = θ(m) + [I (θ)(m)]−1

[
∂`

∂θ

]
θ=θ(m)
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where the superscript (m) denotes the mth iteration and I (θ)(m) is the es-

timate of the information matrix given θ = θ(m). The parameters λ and ν

were then estimated using the Fisher’s scoring method to yield the following

estimates along with their standard errors:

Estimator Estimate Standard Error

λ̂ 0.001169 0.0001114
ν̂ 0.45495 0.067

Table 7.3: Parameter Estimates

Hence a 95% confidence interval for λ is (0.000951, 0.001388) and likewise

for ν is (0.32362, 0.58626). It is clear indeed based on these parameter esti-

mates that RSV is a very rare disease since λ << ν. Alternatively note that

π11 = π01 = 0.0026 and π00 = π10 = 0.9974. This means that in the long

run a child is disease free 99.7% of the times and infected 0.3% of the times.

Also the (maximum likelihood, ML) limiting transition probability matrix P̃

is given by:

P̃ =

(
0.9974 0.026
0.9974 0.026

)

Estimator Estimate Standard Error

λ̂ 0.00135 0.0001
ν̂ 0.4979 0.067

Table 7.4: White et al. (2003) Parameter Estimates

Table 7.4 gives estimates by White et al. (2003). Although the authors

used a Bayesian MCMC approach our estimates give similar results.
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7.7 Application of the GLM to RSV data

As earlier defined, let λ and ν denote the force of infection and the recovery

rate for the disease transition process. If we apply the generalized linear

model to derive the force of infection for RSV, it will be necessary to consider

data on the transitions from the uninfected to infected states namely, from

state 0 to state 1 or 0 → 1 and the transitions from uninfected to uninfected

that is 0 → 0. These transitions would make up 2 binary events for the

response variable and once these transitions are coded as 1 for 0 → 0 and

a 0 for 0 → 1, the response variable can be seen to conditionally follow

a binomial distribution. Likewise, another pair of binary responses can be

similarly defined by considering the transitions 1 → 1 and 1 → 0. The

residence times in the infected and uninfected states are assumed to follow the

exponential distribution with parameters λ and ν, respectively. In survival

analysis terminology, λ can also be interpreted as the hazard of infection or

per capita risk of infection. The simpler model is where the only explanatory

variable is the inter-state time duration that is, the quantity dij. Using

generalized linear model (GLM) with log link function we obtain

log(π00) = −λdij

and

log(π11) = −νdij

Since the data consist of 4 possible transition probabilities in equation (7.11),

in order to formulate an appropriate GLM we define an indicator variable

Zij =


1 Yij = 0, Yi,j−1 = 0,
0 Yij = 0, Yi,j−1 = 1,
0 Yij = 1, Yi,j−1 = 0,
1 Yij = 1, Yi,j−1 = 1.

(7.11)
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Let θij = P (Zij = 1) and consider the following linear predictor

log(θij) = −λdij × (1− Yi,j−1)− νdij × (Yi,j−1), (7.12)

it follows that

log(θij) =

{
−λdij if Yij = 0, Yi,j−1 = 0,
−νdij if Yij = 1, Yi,j−1 = 1.

(7.13)

Thus, using this approach we obtained λ̂ = 0.0021 (95% C.I: 0.0018-0.0024)

and ν̂ = 0.503 (95% C.I: 0.386-0.657) for the force of infection and the

recovery rate, respectively. Note that the parameter estimates obtained in

our analysis are slightly an overestimate compared to those by White et al.

(2003), 0.00135 (0.00114 − 0.00157) and 0.498 (0.387, 0.648) for the force of

infection and the recovery rate, respectively. These estimates are slightly

higher than those obtained by the direct likelihood method in Section 5 but

are very similar. The cause of the difference albeit a very small one could be

attributed to the computational process.

7.8 Time dependent force of infection

The above estimation procedures only helped us to estimate a constant force

of infection and recovery rate over the time period of the study. However,

there is enough evidence that a disease such as RSV does exhibit clear tem-

poral variation in its incidences, which is a function of the force of infection.

Thus, we extended the above approach to obtain monthly piecewise esti-

mates of the force of infection. However, the recovery rate is assumed to be

constant or time homogeneous. For months 14 and 15, there are no data

because none of the children completed the study up to months 14 and 15.

A piecewise constant force of infection with log link function was assumed.
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Hence, the linear predictor is given by

log(θij) = −λkdij × (1− Yi,j−1)− νkdij × (Yi,j−1). (7.14)

Here, λk is the monthly force of infection. Note that the model in (7.14) can

be expressed also as a model with complementary-log-log link, in which the

linear predictor is given by

g(θij) = log(−λk)dij × (1− Yi,j−1)− log(νk)dij × (Yi,j−1), (7.15)

where g is the complementary-log-log link function. In such a model, the

monthly parameter estimates for the force of infection and the constant re-

covery rate are equal to log(λk) and log(νk), respectively. As a result, the

parameter estimates for the monthly force of infection and the constant force

of infection are constrained to be non- negative, as required. In this chapter,

the complementary-log-log link function was used to estimate the model’s

parameters. 95% confidence intervals were obtained either by exponentiat-

ing the model parameters and their confidence intervals or by applying the

delta method for the log of the parameters. Tables 7.5 and 7.6 present the

parameter estimates for the monthly force of infection and recovery rate re-

spectively. The force of infection peaks with different heights in months 3

(λ̂3 = 0.007), then it decreases to zero at month 9 and increase to secondary

peaks at months 11 and 12 (λ̂11 = 0.0022 and λ̂12 = 0.0022, respectively).

Month 1 had too few transitions recorded in it while months 14 and 15 did

not have any data in them since the children did not complete the study

for these months. Hence, these months have been omitted in the analysis.

Figures 7.1 and Table 7.5 shows a plot of the force infection against time

together with 95% confidence intervals from both direct exponentiation and

the delta method. Table 7.6 and Figure 7.2 show that the recovery rate

remains virtually constant in the entire year of follow up of study cohorts.
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Thus while the force of infection portrays a time varying characteristic, the

rate of recovery is not much affected by time. It is possible that there would

be a biological reason for this observation.

Exponentiation Delta Method

Month Lambda 95% Confidence Interval 95% Confidence Interval

λ̂2 0.0053 0.0032 0.0086 0.0027 0.0079

λ̂3 0.0070 0.0053 0.0092 0.0051 0.0089

λ̂4 0.0051 0.0038 0.0070 0.0036 0.0067

λ̂5 0.0024 0.0016 0.0037 0.0014 0.0034

λ̂6 0.0019 0.0011 0.0033 0.0009 0.0029

λ̂7 0.0010 0.0005 0.0020 0.0003 0.0017

λ̂8 0.0001 0.0000 0.0008 -0.0001 0.0003

λ̂9 0.0000 0.0000 0.0000 0.0000 0.0000

λ̂10 0.0001 0.0000 0.0009 -0.0001 0.0004

λ̂11 0.0022 0.0014 0.0033 0.0013 0.0031

λ̂12 0.0022 0.0015 0.0032 0.0013 0.0030

λ̂13 0.0014 0.0007 0.0029 0.0004 0.0024

Table 7.5: Monthly estimates of the force of infection and confidence Intervals
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Figure 7.1: The force of infection in months together with 95% confidence

intervals using the exponentiated and delta methods.
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Monthly estimates of the recovery rate were also similarly obtained and

the values are tabulated below for comparison purposes.

Month Nu Estimate Standard Error
2 ν̂2 0.4990 0.067
3 ν̂3 0.5000 0.06
4 ν̂4 0.5036 0.064
5 ν̂5 0.5021 0.062
6 ν̂6 0.4990 0.066
7 ν̂7 0.500 0.076
8 ν̂8 0.5002 0.072
9 ν̂9 0.5022 0.065
10 ν̂10 0.5009 0.06
11 ν̂11 0.5006 0.071
12 ν̂12 0.4996 0.061
13 ν̂13 0.5004 0.069

Table 7.6: Monthly estimates of the recovery rate

Months 14 and 15 did not have any data in them because none of the chil-

dren completed the study up to months 14 and 15. The rate of recovery is

fairly constant over all the months with no unusual peaks in the estimates.

Graphically the estimates of the recovery rate plotted monthly over the study

period is shown in Figure 7.2
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Figure 7.2: The probability of rate of recovery in months.
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Table 7.7 gives a comparison of the 15-month piecewise force of infection

estimated via the GLM method used in the current analysis and those by

White et al. (2003).

White et al(2003). GLM-Exponentiation

Month Lambda 95% Confidence Int. Lambda 95% Confidence Int.
λ2 0.0045 0.0031 0.0061 0.0053 0.0032 0.0086
λ3 0.0032 0.0021 0.0044 0.0070 0.0053 0.0092
λ4 0.0017 0.001 0.0044 0.0051 0.0038 0.0070
λ5 0.0022 0.0001 0.0027 0.0024 0.0016 0.0037
λ6 0.0027 0.0001 0.0005 0.0019 0.0011 0.0033
λ7 0.0022 0.0000 0.0006 0.0010 0.0005 0.0020
λ8 0.0003 0.0000 0.0008 0.0001 0.0000 0.0008
λ9 0.0006 0.0001 0.0012 0.0000 0.0000 0.0000
λ10 0.0028 0.0017 0.0042 0.0001 0.0000 0.0009
λ11 0.0028 0.0016 0.0044 0.0022 0.0014 0.0033
λ12 0.0026 0.0014 0.0041 0.0022 0.0015 0.0032
λ13 0.0006 0.0001 0.0019 0.0014 0.0007 0.0029

Table 7.7: Comparison of the monthly estimates of the force of infection

From table 7.7 we can see that the GLM approach gives very similar estimates

to those obtained by White et al. (2003). Months 2 (April),3 (May),11

(January) and 13 (March) have the highest forces of infection respectively.

A comparison of the overall force of infection and the recovery rate using

both the direct likelihood and the GLM approach to that obtained by White

et al. (2003) is shown in Table 9 below
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White et al.(2003) Direct Likelihood(ML) GLM
EstimatorEstimate Standard

Error

Estimate Standard

Error

Estimate Standard

Error
λ̂ 0.00135 0.0001 0.001169 0.000114 0.0021 0.00015
ν̂ 0.4979 0.067 0.45495 0.067 0.5030 0.079

Table 7.8: Comparative Parameter Estimates

7.9 Conclusion

In conclusion, we note that generalised linear modelling combined with likeli-

hood estimation was used to estimate the force of infection and the recovery

rate of a childhood respiratory viral disease (RSV). Construction of the full

likelihood was not possible therefore a form of conditional likelihood was

used to model the data. The generalised modelling approach was modified

to estimate monthly specific force of infection for the disease thus allowing

the model to capture the temporal trends of disease incidence. One can see

from the comparative table above that the ML and GLM estimates are sim-

ilar to those of White et al. (2003). The force of infection is estimated as

λ̂ = 0.001169 and the rate of recovery is estimated as ν̂ = 0.45495 using the

direct maximum likelihood estimation method. Corresponding estimates us-

ing the generalized linear modelling approach are 0.0021 and 0.5030. These

two approaches gave quite similar sets of parameter estimates. Thus the

ML estimates are closer to the Bayesian MCMC estimates of White et al.

(2003) than the GLM estimates. However we prefer the latter because of

its flexibility in allowing us to come up with monthly piecewise parameter

estimates. It is also seen from the estimation of the monthly parameters that

RSV peaks in the 3rd, 11th and 12th months that is around January, Septem-

ber and October . This is consistent with the discussions by Cane (2001),
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Chew et al. (1998) and Simoes (1999) who all state that RSV has a seasonal

signal attributed to meteorological or sociological factors. Furthermore the

force of infection is not constant and varies with time. This is characteristic

of childhood infections such as the RSV. The parameter estimates also imply

that the equilibrium proportion of susceptible and infected children stabi-

lizes at 99.74% and 0.26% which implies that RSV clearly falls in the class of

very rare diseases. Nonetheless the disease can be very harmful to children

particularly under the age of one year. Thus statistical and mathematical

models are a useful tool in understanding it’s dynamics and hence assist in

designing control and intervention strategies for it.
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Chapter 8

Joint Modelling Approach

8.1 Introduction

In various applications, it is common to observe statistical problems with

outcomes of a mixed nature. These type of problems, as stated by Molen-

berghs and Verbeke (2005, pp. 1-2), have been around for almost half a

century and are common occurrences in these present times. They state fur-

ther that the most common situation arises by observing the joint occurrence

of a continuous and a binary or ordinal outcome. Areas of application include

the fields of psychometry or biometry. Hence the determination of the joint

distribution of both outcomes or on specific aspects, such as the association

or correlation between the outcomes are usually imperative to the modelling

and estimation of parameters. Molenberghs and Verbeke (2005) further state

that there are three approaches (briefly discussed below) to modelling a con-

tinuous and binary or ordinal outcome.

Approach 1: Postulate a marginal model for the binary outcome and then

formulate a conditional model for the continuous outcome, given the cate-
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gorical one.

Approach 2: This approach starts with reverse factorization, combining a

marginal model for the continuous outcome with a conditional one for the

categorical outcome. These conditional models have also been discussed in

Cox and Wermuth (1992, 1994), Krzanowski (1988) and Little and Schluchter

(1985).

Approach 3: This third model family directly formulates a joint model for

the two outcomes. One starts from a bivariate continuous variable, one

component of which is explicitly observed and the other one observed in

dichotomized, or generally discretized version only. Molenberghs and Ver-

beke (2005, pp. 441-444) state that a Plackett-Dale approach can be used in

this case and that general multivariate exponential family based models have

been proposed by Prentice and Zhao (1991), Zhao, Prentice and Self (1992)

and Sammel, Ryan and Legler (1997).

Joint modelling is closely related to multivariate modelling and hierar-

chical modelling and it is inevitable to state that literature in this area for

modelling outcomes of various natures is diverse and growing. One can ex-

tend the ideas of the three above approaches encompassing the bivariate

case above to cases of multivariate continuous outcome and/or a multivari-

ate categorical outcome. In the multivariate outcome setting, it means that

for approaches 1 and 2, one starts from conditional and marginal multivariate

normal and appropriately choose multinomial models, such as one presented

in Olkin and Tate (1961). As far as Approach 3 is concerned, such models

were formulated by Hannan and Tate (1965) and Cox (1974) for multivariate
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normal with a univariate bivariate or discrete variable. We now look at two

examples of joint modelling. One example concerns a bivariate linear mixed

model given in Thiébaut et al. (2002) and the other a joint model made up

of a binary and continuous outcome described in Molenberghs and Verbeke

(2005).

8.2 Examples of joint modelling

8.2.1 Bivariate linear mixed model with normally dis-

tributed outcome

Thiébaut et al. (2002, pp 249-251) define a general bivariate linear mixed

model including a random component, a first order auto-regressive process

and an independent error. They state that in HIV infection, several markers

are available to measure the quantity of virus (plasma viral load noted as HIV

RNA), the status of the immune system (CD4+ T lymphocytes which are a

specific target of the virus, CD8+ T lymphocytes or the inflammation process

(β2 microglobuline). These markers are expected to be associated because as

the infection measured by HIV RNA increases it induces inflammation and

the destruction of immune cells. Several models have been developed to fit

the evolution of CD4 and CD8 cells or CD4 and β2 microglobuline. Thiébaut

et al. (2002) propose the use of multivariate linear mixed models to be fitted

to multivariate longitudinal Gaussian data using the SAS MIXED procedure.

The model is formulated as follows: Let Yi =

[
Y 1
i

Y 2
i

]
be the response vector

for subject i with Y k
i denoting an nki -dimensional vector of measurements of

marker k (k = 1, 2) with n1
i = n2

i = ni. If the two markers are independent,
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then the two models can be used{
Y 1
i = X1

i β
1 + Z1

i γ
1
i +W 1

i + ε1
i

Y 2
i = X2

i β
2 + Z2

i γ
1
2 +W 2

i + ε2
i

(8.1)

where ε1
i ∼ N(0, σ2

ε1Ini
), γ1

i ∼ N(0, G1),W 1
i ∼ N(0, R1

i ) and ε2
i ∼ N(0, σ2

ε2Ini
),

γ2
i ∼ N(0, G2), W 2

i ∼ N(0, R2
i ) where Xk

i is a ni × pk design matrix, βk is a

pk vector of fixed effects, Zk
i is a ni × qk design matrix of individual random

effects which is usually a subset of Xk
i , γ

k
i is a qk vector of individual random

effects with qk ≤ pk. W k
i is a vector of realization of a first order autoregres-

sive process, wki (t) with a covariance structure given by Rk
i (s, t) = σ2

wke
λk|t−s|

and Ini
is a ni × ni identity matrix.

To take into account correlation between both markers, one could then use

the following bivariate linear mixed model:

Yi = Xiβ + Ziγi +Wi + εi (8.2)

with

 εi ∼ N(0,Σi)
Wi ∼ N(0, Ri)
γi ∼ N(0, Gi)

where

Xi =

[
X1
i 0

0 X2
i

]
, β =

[
β1

β2

]
, Zi =

[
Z1
i 0

0 Z2
i

]
, γi =

[
γ1
i

γ2
i

]
and Wi =

[
W 1
i

W 2
i

]
is a 2ni vector of realization of a bivariate first order auto-regressive process

wi(t) =

[
w1
i (t)

w2
i (t)

]
and εi =

[
ε1
i

ε2
i

]
represents independent measurement er-

rors.

The covariance matrix of measurement errors is defined by Σi = Σ⊗ Ini
and

Σ =

[
σ2
ε1 0
0 σ2

ε2

]
.

The covariance function of the bivariate auto-regressive process wi(t) =[
w1
i (t)

w2
i (t)

]
is given by Ri(s, t) = C × eB|t−s| where C =

[
σ2
w1 σw1w2

σw1w2 σ2
w2

]
is the process covariance matrix at t = s and B is a 2× 2 matrix such that:

1. the eigenvalues of B have negative real parts and
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2. C and D = −(CB +B′C) are positive definite symmetric.

The covariance matrix of random effects is the matrix G =

[
G1 G12

G12 G2

]
.

With the assumption that γi,Wi and εi are mutually independent, it is ob-

vious that var(Yi) = Vi = ZiGiZ
′
i +Ri + Σi.

8.2.2 Generalized linear mixed model with continuous

and binary endpoint

Molenberghs and Verbeke (2005, p. 442) give an example of modelling a

continuous and a binary endpoint. We will consider this example since we

have a similar situation to model in the RSV data. They state that there

are two modelling strategies available for the modelling of a continuous and

a binary endpoint. Since the joint distribution of a mixed continuous and

discrete outcome vector can be expressed as the product of the marginal

distribution of one of the responses and the conditional distribution of the

remaining response given the former response, one can choose either the

continuous or the discrete outcome for the marginal model. The problem

with such an approach is that no easy expressions for the association between

both endpoints are obtained. Molenberghs and Verbeke (2005) opt for a

more symmetric treatment of the two outcome variables. They modelled

the case where the surrogate is binary and the true endpoint is continuous.

The model that is used is specific for a random-effects logistic regression

for repeated measures with residual correlation. They assume the following

model formulation. Let S̃i be a latent variable of which Si is the dichotomized

version. Ti is the true end point which is continuous. The following model
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without random effects can then be assumed.

Ti = µT + βXi + εTi

S̃i = µS + αXi + εSi

In general we write,

Yi = µi + εi (8.3)

where

µi = µi(ηi) = h(Xiβ + Zibi) (8.4)

µi is specified by means of a GLMM, εi is the residual error structure and as-

sume that bi∼ N(0, D). The key relaxing assumption is that the components

of the inverse link functions h are allowed to differ with the nature of the var-

ious outcomes in Yi. The variance of ε depends on the mean-variance links

of the various outcomes, and can contain, in addition a correlation matrix

Ri(α) and overdispersion parameters φi. Now using straightforward deriva-

tions, a general first order approximate expression for the variance-covariance

matrix of Yi is:

Vi = Var(Yi) = ∆iZiDZ
′
i∆

′
i + Σi

Here,

∆i =

(
∂µi
∂ηi

)∣∣∣∣
bi=0

and

Σi = Φ
1/2
i A

1/2
i Ri(α)A

1/2
i Φ

1/2
i

where Ai is a diagonal matrix containing the variances derived from the

generalized linear model specification of Yij given the random effects bi = 0,

therefore the diagonal elements are given by υ(µij|bi= 0). Likewise Φi is

a diagonal matrix with the overdispersion parameters along the diagonal.
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When an outcome is normally distributed the, the overdispersion parameter

is σ2
i and the variance function is 1. For a binary outcome with logit link,

we have

υ(µij|bi = 0) = µij(bi = 0)[1− µij(bi = 0)]. (8.5)

The evaluation under bi = 0 derives from the Taylor series expansion of the

mean components around bi = 0. When an exponential family specification

is used for all components, with canonical link, ∆i = Ai, we can then write:

Vi = Var(Yi) = ∆iZiDZ
′
i∆

′
i + Φ

1/2
i ∆

1/2
i Ri(α)∆

1/2
i Φ

1/2
i

Under the conditional independence Ri = 0 therefore

Vi = Var(Yi) = ∆iZiDZ
′
i∆

′
i + Φ

1/2
i ∆iΦ

1/2
i .

The model

Yi = µi + εi

can now be written as(
Si
Ti

)
=

(
µs + λbi + αXi
exp(µT +bi+βXi)

1+exp(µT +bi+βXi)

)
+

(
εSi

εTi

)
.

Note that the inclusion of the scale parameter λ in the continuous component

of an otherwise random intercept model. Note also that the continuous and

binary outcomes are measured on different scales. Therefore,

Zi =

(
λ
1

)
,∆i =

(
1 0
0 υi2

)
,Φ =

(
σ2 0
0 1

)
,

with υi2 = µi2(bi= 0)[1− µi2(bi = 0)] So,

Vi =

(
λ2 υi2λ
υi2λ υ2

i2

)
τ 2 +

(
σ2 ρσ

√
υi2

ρσ
√
υi2 υi2

)
Hence,

Vi =

(
λ2τ 2 + σ2 υi2λτ

2 + ρσ
√
υi2

υi2λτ
2 + ρσ

√
υi2 υ2

i2τ
2 + υi2

)
The correlation derived from the above model specification equals
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ρ(β) =
υi2λτ

2+ρσ
√
υi2√

λ2τ2+σ2
√
υ2

i2τ
2+υi2

If the model does not have random effects then it can simply be written as:(
Si
Ti

)
=

(
µs+ αXi

exp(µT +βXi)

1+exp(µT +βXi)

)
+

(
εSi

εTi

)
.

The correlation ρ(β) can be simplified if for example there are no random

effects or if both endpoints are binary for example in Molenberghs and Ver-

beke (2005). The example finally concludes with the fact, that the above

calculations can be performed with ease for general random effects model or

design matrices Zi and for more than two components, of arbitrary nature

and not just continuous and binary.

In the general model, no full joint distribution need to be specified, even

when we assume the first one to be normally distributed and the second one

to be Bernoulli distributed. We can still leave the specification of the joint

moments to be of the second order, by way of the marginal correlation. A full

joint specification would need full bivariate model specification, conditional

upon the random effects.

Under the conditional independence, the specification of the outcome dis-

tribution conditional upon the random effects, together with the normality

assumptions made about the random effects, fully specifies the joint distri-

bution.

8.3 Application of joint modelling to the RSV

data set

Much of the theory of the generalized linear mixed model (GLMM) has al-

ready been covered extensively in Chapter 5 and will not be repeated again
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in this chapter. We will consider two approaches to the joint modelling of the

RSV status (a binary response) of each child together, with the time interval

in days between events, dij. Let the outcomes dij be observations from a

variable D (continuous or discrete). D is discrete if the interval between ob-

servations is measured in terms of the whole number of days and continuous

otherwise. The RSV status is a binary outcome variable whilst the dij can

be thought to follow:

1) a Poisson distribution, if the we count the number of days, to the next

event, defined as the RSV status of the child or,

2) an Exponential distribution, if the we model the dij as the time in days

between two successive RSV events of the child

Hence we will jointly model the RSV status of each child together with the

time interval in days between events, dij as a generalized linear mixed model.

In matrix formulation the model is:[
RSV status

D

]
=

[
age+ prev + actipass+ timemonth
age+ prev + actipass+ timemonth

]
+

[
child
child

]
+

[
ε1

ε2

]
that is, any type of response can be modelled as,

Response = fixed effects + random effect + error term

According to Littell et al. (2006, p.199), it is recommended that for un-

equally spaced repeated measures data, to consider some kind of time series

covariance structure, where the correlations of the repeated measurements

are assumed to be smaller for observations that are further apart in time.

The covariance structures that are suitable are the Unstructured (UN), but

this structure can be too general, Compound Symmetry (CS) which assumes

that the correlations remain constant, Spatial Power Law SP(POW), Gaus-

sian SP(GAU) and Spherical SP(SPH). The latter three covariance structures
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Fit Statistics
-2 Log Pseudo-Likelihood 96903.11
Generalized Chi-Square 16568.08
Gener. Chi-Square / DF 0.89

Table 8.1: Fit statistics-Exponential distribution

are time series type in which the correlations decline as a function of time.

Joint modelling of RSV status and D is considered taking each of the five

covariance structures into account.

8.3.1 Fitting D the time between events using an Ex-

ponential distribution

The fit statistics are as follows: Different covariance structure models were

fitted: Only the compound symmetry (CS) and SP(GAU) covariance struc-

Covariance Structure Estimate Standard Error

Compound symmetry Var(child) 0.002029 0.002487
CS(child) -0.00670 .

Residual(VC) 0.8919 0.009374
Gaussian Var(child) 0.00000 .

SP(GAU)(child) 1.000 .
Residual(VC) 0.8833 0.009164

Table 8.2: Covariance Parameter Estimates-Exponential distribution

tures led to convergence. The models using the UN, SP(POW) and SP(SPH)

did not converge and hence are not considered further.
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The solution for the fixed effects for all the different covariance structure

models are tabulated in Tables 8.3 and 8.4. The results for fitting the different

covariance structures are shown in Table 8.2. Only the residual variance

seems to be the significant source of variation.
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Effect dist age Estimate Standard

Error

DF t Value Pr > |t|

dist Binary -5.0114 1.3729 18209 -3.65 0.0003
dist Exponential 0.9965 0.1369 18209 7.28 <.0001

age*dist Binary 0 -0.9373 1.1535 18209 -0.81 0.4165
age*dist Exponential 0 -0.8113 0.1218 18209 -6.66 <.0001
age*dist Binary 1 -0.6738 1.0176 18209 -0.66 0.5079
age*dist Exponential 1 0.2372 0.1038 18209 2.28 0.0224
age*dist Binary 2 -0.2942 0.9817 18209 -0.30 0.7644
age*dist Exponential 2 0.5975 0.09937 18209 6.01 <.0001
age*dist Binary 3 -0.08718 0.9253 18209 -0.09 0.9249
age*dist Exponential 3 0.5316 0.09604 18209 5.54 <.0001
age*dist Binary 4 -0.6824 0.9007 18209 -0.76 0.4487
age*dist Exponential 4 0.5957 0.09270 18209 6.43 <.0001
age*dist Binary 5 -2.6078 1.2284 18209 -2.12 0.0338
age*dist Exponential 5 0.7646 0.08975 18209 8.52 <.0001
age*dist Binary 6 -1.5948 0.9513 18209 -1.68 0.0937
age*dist Exponential 6 1.1759 0.08480 18209 13.87 <.0001
age*dist Binary 7 -2.2402 1.0860 18209 -2.06 0.0391
age*dist Exponential 7 1.2589 0.07978 18209 15.78 <.0001
age*dist Binary 8 -0.9934 0.5560 18209 -1.79 0.0740
age*dist Exponential 8 1.1170 0.06899 18209 16.19 <.0001
age*dist Binary 9 -0.7400 0.4817 18209 -1.54 0.1245
age*dist Exponential 9 0.7605 0.06222 18209 12.22 <.0001
age*dist Binary 10 -0.3260 0.4271 18209 -0.76 0.4452
age*dist Exponential 10 0.4104 0.05887 18209 6.97 <.0001
age*dist Binary 11 -0.5660 0.4362 18209 -1.30 0.1944
age*dist Exponential 11 0.1078 0.05672 18209 1.90 0.0574
age*dist Binary 12 0 . . . .
age*dist Exponential 12 0 . . . .
prev*dist Binary 44.8029 7.5487 18209 5.94 <.0001
prev*dist Exponential 4.9599 0.9961 18209 4.98 <.0001

actipass*dist Binary 0 2.2277 0.1666 18209 13.37 <.0001
actipass*dist Exponential 0 -0.2488 0.02515 18209 -9.89 <.0001
actipass*dist Binary 1 0 . . . .
actipass*dist Exponential 1 0 . . . .

timemonth*dist Binary -0.04742 0.09909 18209 -0.48 0.6323
timemonth*dist Exponential 0.09877 0.009526 18209 10.37 <.0001

Table 8.3: Solution for the fixed effects-Exponential distribution
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The prev, timemonth and actipass variables are significant as well as the

majority of the age variable levels i.e.1-4 and 6-10 at the Exponential distri-

bution.

The type III tests for the fixed effects are given as: One can infer from the

Effect Num. DF Den. DF F-value Pr>F

dist 2 18209 159.49 <.0001
age*dist 24 18209 53.22 <.0001
prev*dist 2 18209 30.02 <.0001

actipass*dist 2 18209 138.05 <.0001
timemonth*dist 2 18209 53.83 <.0001

Table 8.4: Type III tests for the fixed effects-Exponential distribution

type III tests in Table 8.4, that all the fixed effects of age, prev, actipass and

timemonth are significant in the joint model.

8.3.2 Fitting D the time between events using a Pois-

son distribution

In the joint model the variable dt was regarded as counts in days, hence a

Poisson distribution is used as the distribution of choice. The fit statistics

are shown in Table 8.5:

Fit Statistics
-2 Log Pseudo-Likelihood 103676.0
Generalized Chi-Square 75419.98
Gener. Chi-Square / DF 4.06

Table 8.5: Fit statistics-Poisson distribution
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Different covariance structure models were fitted:

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.06807 0.009169
Residual(VC) 4.0596 0.04290

Compound symmetry Var(child) 0.000062 0.009169
CS(child) 0.06801 .

Residual(VC) 4.0596 0.04290
Power Var(child) 0.06807 0.009169

SP(POW)(child) 0.9999 .
Residual(VC) 4.0596 0.04290

Table 8.6: Covariance Parameter Estimates-Poisson distribution

Now the estimated variance component for the child random effect is 0.06807.

The models using the SP(GAU) and SP(SPH) did not converge and are hence

not suitable covariance structures. The solution for the fixed effects for all

the different covariance structure models are tabulated in Table 8.7
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Effect dist age Estimate Standard Error DF t Value Pr > |t|
dist Binary -5.3831 2.8540 18209 -1.89 0.0585

dist Poisson 1.3822 0.1488 18209 9.29 <.0001

age*dist Binary 0 -0.6522 2.4089 18209 -0.27 0.7866

age*dist Poisson 0 -1.0309 0.1673 18209 -6.16 <.0001

age*dist Binary 1 -0.3465 2.1082 18209 -0.16 0.8694

age*dist Poisson 1 0.03291 0.1209 18209 0.27 0.7855

age*dist Binary 2 -0.01106 2.0328 18209 -0.01 0.9975

age*dist Poisson 2 0.3709 0.1103 18209 3.36 <.0001

age*dist Binary 3 0.1883 1.9154 18209 0.10 0.9217

age*dist Poisson 3 0.3313 0.1010 18209 3.28 <.0001

age*dist Binary 4 -0.4500 1.8554 18209 -0.24 0.8094

age*dist Poisson 4 0.4072 0.09160 18209 4.45 <.0001

age*dist Binary 5 -2.4181 2.5610 18209 -0.94 0.3451

age*dist Poisson 5 0.5885 0.08242 18209 7.14 <.0001

age*dist Binary 6 -1.4204 1.9628 18209 -0.72 0.4693

age*dist Poisson 6 1.0352 0.07180 18209 14.42 <.0001

age*dist Binary 7 -2.1365 2.2638 18209 -0.94 0.3453

age*dist Poisson 7 1.1440 0.06185 18209 18.50 <.0001

age*dist Binary 8 -0.8704 1.1438 18209 -0.76 0.4467

age*dist Poisson 8 1.0077 0.05176 18209 19.47 <.0001

age*dist Binary 9 -0.6550 0.9993 18209 -0.66 0.5122

age*dist Poisson 9 0.6929 0.04498 18209 15.40 <.0001

age*dist Binary 10 -0.2460 0.8869 18209 -0.28 0.7815

age*dist Poisson 10 0.4000 0.04038 18209 9.90 <.0001

age*dist Binary 11 -0.5428 0.9093 18209 -0.60 0.5506

age*dist Poisson 11 0.09986 0.03791 18209 2.63 0.0084

age*dist Binary 12 0 . . . .

age*dist Poisson 12 0 . . . .

prev*dist Binary 44.3812 15.6472 18209 2.84 <.0001

actipass*dist Poisson 0 2.2521 0.3486 18209 6.46 <.0001

actipass*dist Poisson 1 . . . . .

actipass*dist Poisson 0 -0.2113 0.01658 18209 -12.75 <.0001

actipass*dist Poisson 1 . . . . .

timemonth*dist Poisson -0.01431 0.2049 18209 -0.07 0.9443

timemonth*dist Poisson 0.07461 0.01091 18209 6.84 <.0001

Table 8.7: Solution for the fixed effects-Poisson distribution
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The actipass and prev variables are significant as well as the majority of

the age variable levels i.e.1-10 at the Poisson distribution. The type III tests

for the fixed effects are given as:

Effect Num. DF Den. DF F-value Pr>F

dist 2 18209 191.92 <.0001

age*dist 24 18209 124.61 <.0001

prev*dist 2 18209 20.23 <.0001

actipass*dist 2 18209 102.32 <.0001

timemonth*dist 2 18209 23.46 <.0001

Table 8.8: Type III tests for the fixed effects-Poisson distribution

One can infer from the above type III tests in Table 8.8, that all the

fixed effects of age, prev, actipass and timemonth are significant in the joint

model.

8.4 Conclusion

The estimates of the fixed effects for modelling Binary-Poisson and Binary-

Exponential models gave very similar results. The variables of age, prev,

actipass and timemonth are all significant at the 5% level and are both suit-

able explanatory variables for the response variable which is the RSV status

of a child and the time in days between events, dt, between the visits as a

joint model. The joint model has the distinct advantage of modelling two

response variables and this allows the experimenter or researcher a degree of

flexibility.
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Chapter 9

Missing Data

9.1 Introduction

In studies where data is acquired from individuals over time or other study

designs, the problem of estimating and handling missing data is bound to

surface. Some examples of situations where missing data may arise include

survey non-response due for example people moving out of a city, death,

missing data in longitudinal studies due to censoring, dropout and missing

data by design. There are various methods of dealing with missing data, that

range from simple classical methods to model based methods. These methods

must be fully understood theoretically before they can be used practically.

Furthermore each method is based upon a specific missing data mechanism

but one needs to realize that at the heart of the missing value problem it is

impossible in practice to identify the missingness mechanisms. Little (1992)

gives a detailed account on the methods of handling missing data that had

been used thus far. These methods of estimating missing data have progres-

sively advanced over the past years. Up to mid 1970’s the methods that were

popularly used included complete case analysis, imputation and maximum
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likelihood estimation. During the Mid 1970’s-1980’s, the methods included

maximum likelihood estimation to a broad range of problems, the expecta-

tion maximization (EM) algorithm and multiple imputation. In the 1990’s,

maximum likelihood estimation was applied to harder problems. This period

also saw extensions of the EM algorithm to the various forms such as the

stochastic EM algorithm (SEM), the expectation conditional maximization

algorithm (ECM) and the stochastic expectation conditional maximization

algorithm (SECM). In the same period Bayes simulation methods (Markov

Chain Monte Carlo methods (MCMC) and data augmentation) were also

developed. The future for missing data analysis in general, would require

the development and refinement of computational tools, diagnostics and the

need for non ignorable non-response analysis methods where the missing data

mechanism depends on the missing values. As already stated approaches to

deal with estimating missing data range from simple classical to complex

modern methods that are still under development. For example, Molen-

berghs and Kenward have recently authored a book dedicated to missing

data in clinical studies (Molenberghs and Kenward, 2007).

9.2 The Longitudinal Data Setting

The following is a summary of the concepts of missing data or non-response

from Molenberghs and Verbeke (2005, Chapters 26 and 27). They state that

in a longitudinal setting, each unit is measured on several occasions and hence

it is not unusual in practice for some sequences of measurements to terminate

early for reasons outside of the control of the experimenter or investigator,

and any unit so affected is called a dropout. Early work on missing val-

ues was largely concerned with algorithmic and computational solutions to
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the induced lack of balance or deviations from the intended designs. More

recently, general algorithms such as the expectation-maximization (EM) by

Dempster, Laird and Rubin (1977) and data imputation and augmentation

procedures, given in Rubin (1987) combined with powerful computing re-

sources have largely provided a solution to the aspect of this problem. There

still remains the very difficult and important question of assessing the impact

of missing data on subsequent statistical inference.

Associated with missing data is the missing data patterns, such as, general

patterns, monotone patterns and univariate non-response patterns just to

name a few and more importantly the missing data mechanisms given in

Little and Rubin (2002, p.12 and 1987, Chapter 6). These are:

• missing at random (MAR) if conditional on the observed data the miss-

ingness is independent of the unobserved measurements,

• missing completely at random (MCAR) if the missingness is indepen-

dent of both unobserved and observed data and

• not missing at random or non-random (NMAR) if the process is nei-

ther MCAR or MAR. These mechanisms have been classified by Rubin

(1976) as well.

In the context of likelihood inference, and when the parameters describing

the measurement process are functionally independent of the parameters de-

scribing the missingness process, then MAR and MCAR are ignorable while

a NMAR process is non-ignorable.

The mathematical description of the missing data mechanisms is dis-

cussed in Section 9.4. The problem of missing data is really about estimating

the observations that have gone missing for various reasons. Historically Afifi

and Elashoff (1966) and Hartley and Hocking (1971) have given a taxonomy
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of methods of estimating missing data. Orchard and Woodbury (1972) and

Demptser et al. (1977) have all led to the following categories for analyzing

missing data viz. procedures based on completely recorded units, imputation

based procedures, weighting procedures and model based procedures.

Many missing data methods are formulated as selection models as those

in Little and Rubin (1987) as opposed to the pattern mixture-modelling in

Little (1993, 1994). A selection model factors the joint distribution of the

the measurement and the response mechanisms into the marginal measure-

ment distribution and the response distribution, conditional on these mea-

surements. This is intuitively appealing since the marginal measurement

distribution would be of interest also with the complete data. Within this

framework, Little and Rubin (1987) develop their taxonomy in the selection

model setting. Hence parameterizing and making inference about the effect

of treatment and its evolution over time is straightforward in the selection

model context.

In the clinical trial setting, the standard methodology used to analyze

longitudinal data subject to missing data or non-response is based on meth-

ods such as last observation carried forward (LOCF), complete case analy-

sis (CC) or simple forms of imputation. These methods are used without

questioning the possible influence of these assumptions on the final results.

Many authors that have written about these methods and historically, Heyt-

ing, Tolboom and Essers (1992) give the earliest account. Mallinckrodt et al.

(2003) and Lavori, Dawson and Shera (1995) propose the direct likelihood

and multiple imputation methods to deal with incomplete longitudinal data

while Siddiqui and Ali (1998) compare direct likelihood and LOCF methods.

LOCF and CC methods are based on strong assumptions and in particu-

lar even the strong MCAR assumtpion does not suffice to guarantee that a
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LOCF analysis is valid. However under MAR the likelihood based analysis

can produce a valid analysis without the need for modelling the dropout pro-

cess and Verbeke and Molenberghs (2000) state that as a result of this linear

and generalized linear mixed models can be used. Such an analysis enjoys

wider validity than the simpler methods and they are simple to conduct.

Thus, longitudinal data modelling in the presence of missing data should

shift away from the ad hoc methods and focus on likelihood based ignorable

analyses instead. Molenberghs and Verbeke (2005, Chapters 26 and 27)

promote the use of direct likelihood methods and demote the use of LOCF

and CC approaches while reflecting on the status of MNAR approaches.

9.3 A Taxonomy

The following taxonomy by Rubin (1976) and Little and Rubin (1987) and

recently by Molenberghs and Verbeke (2005) is adopted. We assume that

for subject i in a study, a sequence of measurements Yij is designed to be

measured at occasions j = 1, . . . , ni. As before, the outcomes are grouped

into a vector Yi= (Yi1, . . . , Yini
)
′
. We now define, for each occasion j, an

indicator

Rij =

{
1 if Yij is observed

0 otherwise

Thus the missing data indicator Rij are grouped into a vectorRi which is the

same length as Yi. We then partition Yi into two sub-vectors such that Y o
i

is the sub-vector containing those Yij for which Rij = 1 and Y m
i contains the

remaining components. The sub-vectors are referred to as the observed and

missing components. This partition is allowed to differ with subject and Y o
i

can contain components which are measured later than occasions at which

components of Y m
i ought to have been measured. Complete data refers to
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the vector Yi of scheduled measurements. This is the outcome vector that

would have been recorded if there were no missing data. The missing data

indicators are assembled into the vector Ri and the process generating Ri

is referred to as the missing data process. The full data (Yi, Ri) consists of

the complete data together with the missing data indicators. It is obvious

that unless all the components of Ri are equal to 1, the full data components

are never all observed. Then, the observed data refer to Y o
i and the missing

data to Y m
i . One would then observe the measurements Y o

i together with

the dropout indicators Ri. When missingness is restricted to dropout or

attrition, we can replace the vector Ri by a scalar variable Di, the dropout

indicator. Then in this case each vector Ri is of the form (1, . . . , 1, 0, . . . , 0)

and we define the scalar dropout indicator as

Di = 1 +

ni∑
j=1

Rij (9.1)

For an incomplete sequence, Di denotes the occasion at which dropout oc-

curs. For a complete sequence, Di = ni + 1. In both cases Di indicates one

plus the length of the measurement sequence, whether complete or incom-

plete. Dropout or attrition is a particular monotone pattern of missingness.

In order to have monotone missingness there has to exist a permutation of

the measurement occasions where a measurement earlier in the permuted

sequence is observed for at least those subjects that are observed at later

measurements. For this definition to be meaningful, we need to have a bal-

anced design in the sense of a common set of measurement occasions. Other

patterns are called non-monotone (Molenberghs and Kenward, 2007).
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9.4 Missing data frameworks

As stated earlier, we will take the following derivation and notation of the se-

lection, pattern mixture and shared parameter frameworks from Molenberghs

and Verbeke (2005, pp 484-488) and Molenberghs and Kenward (2007).

When data are incomplete due to a stochastic mechanism one starts from

the full density given as

f(yi, ri|Xi, Zi,Wi,θ,ψ) (9.2)

where Xi, Zi and Wi are design matrices for the fixed effects, random effects

and missing data process and where θ and ψ are vectors that parameterize

the joint distribution. We use θ=(β
′
,α

′
)

′
and ψ to describe the measurement

and missingness processes, relatively where β is the fixed effects parameter

vector and α assembles variance components and/or association parameters.

The term “selection model” originates from Heckman (1976) in an econo-

metric literature setting. The selection model factorization then equals

f(yi, ri|Xi, Zi,Wi,θ,ψ) = f(yi|Xi, Zi,θ)f(ri|yi,Wi,ψ) (9.3)

where the first factor is the marginal density of the measurement process and

the second factor is the density of the missingness process, conditional on the

outcomes. Factor f(ri|yi,Wi,ψ) describes one’s self-selection mechanism to

either continue or leave the study.

Little (1993, 1995), Molenberghs, Kenward and Lesaffre (1997) give an al-

ternative family to the selection models called the “pattern mixture models”

which are based on the following factorization

f(yi, ri|Xi, Zi,Wi,θ,ψ) = f(yi|ri, Xi, Zi,θ)f(ri|,Wi,ψ) (9.4)

The pattern mixture model allows for a different response model for each

pattern of missing values, the observed data being a mixture of these weighted
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by the probability of each missing value or dropout pattern and this model

has got particular distinct advantages.

The third family of models studied earlier by Wu and Carroll (1988) and

Wu and Bailey (1988, 1989) is referred to as the “shared parameter models”

given as

f(yi, ri|Xi, Zi,Wi,θ,ψ,bi) = f(yi|ri, Xi, Zi,θ,bi)f(ri|Zi,Wi,ψ,bi) (9.5)

where bi is a vector of random effects of which one or more components are

shared between both factors. sensible assumption of this model is that Yi

and Ri are independent, given the random effects bi. The random effects

can be used to define a linear, generalized linear or non-linear mixed effects

model. The same vector can be used to define the missing data process. The

natural parameters of selection models, pattern mixture models and shared

parameter models have a different meaning, and transforming one probability

model into one of the other framework is in general not straight-forward, not

for normal measurement models but even less so in the general case.

9.5 Missing data mechanisms

Rubin’s (1976) taxonomy is based within the selection modelling framework

given above, as

f(ri|yi,Wi,ψ)=f(ri|yo
i ,ym

i ,Wi,ψ)

This classification also in Little and Rubin (1987) essentially distinguishes

settings in which important simplifications of this process are possible. Thus

using this specification on the different types of missingness can then be

distinguished.
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9.5.1 Missing Completely at Random (MCAR)

Under MCAR the probability of an observation being missing is independent

of the responses, thus

f(ri|yi,Wi,ψ)=f(ri|,Wi,ψ)

The selection model then reduces to

f(yi, ri|Xi, Zi,Wi,θ,ψ)=f(yi|Xi, Zi,θ)f(ri|Wi,ψ)

implying that both the components are independent. The implication is that

the joint distribution of yo
i and ri becomes

f(yo
i , ri|Xi, Zi,Wi,θ,ψ) = f(yo

i |Xi, Zi,θ)f(ri|Wi,ψ) (9.6)

Under MCAR the observed data can be analyzed as though the pattern of

missing values were predetermined. In whatever way the data is analyzed,

the process(es) generating the missing values can be ignored

9.5.2 Missing at Random (MAR)

Under the MAR mechanism, the probability of an observation being missing

is conditionally independent of the unobserved data, given the values of the

observed data,

f(ri|yi,Wi,ψ)=f(ri|yo
i ,Wi,ψ)

and the joint distribution of the observed data can now be partioned as

f(yi, ri|Xi, Zi,Wi,θ,ψ)=f(yi|Xi, Zi,θ)f(ri|yo
i ,Wi,ψ)

and hence at the observed data level

f(yo
i , ri|Xi, Zi,Wi,θ,ψ) = f(yo

i |Xi, Zi,θ)f(ri|yo
i ,Wi,ψ) (9.7)
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The MAR assumption leads to considerable simplification in the issues sur-

rounding the analysis of incomplete longitudinal data. It is however rare in

practice for an investigator to be able to justify its adoption.

9.5.3 Missing not at Random (MNAR)

Under MNAR, neither the MAR and MCAR hold. The probability here, of

a measurement being missing depends on the unobserved data. No simpli-

fication of the joint distribution is possible and the joint distribution of the

observed measurements and the missingness process is written as

f(yo
i , ri|Xi, Zi,Wi,θ,ψ) =

∫
f(yi|Xi, Zi,θ)f(ri|yi,Wi,ψ)dym

i (9.8)

Inferences can only be made by making further assumptions about which the

observed data alone carry no information. Ideally the choice of such assump-

tions should be guided by external information but the degree to which this is

possible in practice varies greatly. Such models can be formualted within the

selection models, pattern-mixture models and the shared-parameter models.

Molenberghs and Verbeke (2005) state that the differences between these

families under the MNAR case is especially important and to different but

complimentary views of the missing value problem. Little (1995), Hogan and

Laird (1997) and Kenward and Molenberghs (1999) give detailed reviews of

these differences. Recently, Molenberghs and Kenward (2007) have added

this literature addressing specifically the problem of missing data in clinical

studies although their methods are still applicable to other data settings.

9.5.4 Ignorability

The MAR assumption states that once appropriate account is taken of what

we have observed, there remains no dependence on unobserved data, at least
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in terms of the probability model. We should as a consequence expect much

of the missing value problem to disappear under the MAR mechanism and

this is in fact the case. This can be shown through the consideration of the

likelihood but we will not consider this, here.

9.6 Simple Methods

We will now consider briefly the more simple methods such as LOCF, CC and

Buck’s method. The LOCF and CC methods for handling missing data are

very popular but make strong and unrealistic assumptions that can impact

negatively on statistical inference. For the validity of many of these simple

methods, MCAR is required. For specific methods such as LOCF, MCAR is

necessary but not sufficient. Molenberghs and Verbeke (2005, pp. 490-491)

state that serious attention needs to be given to the views for the measure-

ment model on one hand and the philosophy adopted for the missingness

model on the other hand. They then state the following:

Model for Measurements.

A choice has to be made regarding the modelling approach and several

views are possible:

i) View 1 : One can choose to analyze the entire longitudinal profile ir-

respective of whether interest, is to focus on the entire profile or on a

specific time point. In the latter case one would make inferences about

such an occasion using the posited model.

ii) View 2 : One states the scientific question in terms of the outcome at

a well defined point in time. Several choices are possible.
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iii) View 2a: The scientific question is defined in terms of the the last

planned occasion. In this case, one can either accept the dropout as

it is or use one or other strategy (eg. imputation) to incorporate the

missing outcomes.

iv) View 2b: One can choose to define the question and the corresponding

analysis in terms of the last observed measurement.

Method for handling missingness.

A choice has to be made regarding the modelling approach for the missing-

ness process. Under certain assumptions this process can be ignored (eg. a

likelihood-based ignorable analysis). Some simple methods such as CC and

LOCF, do not explicitly address the missingness process either.

The measurement model will depend on whether or not a full longitudinal

analysis is done and when the longitudinal analysis is deemed necessary. As

is the case of the RSV data (current study), then the choice depends on the

nature of the outcome where options include the linear, generalized linear

mixed models and generalized estimating equations.

9.6.1 Complete Case Analysis (CC)

Molenberghs and Verbeke (2005, pp 492-493) state that the complete case

analysis includes only those cases for which all measurements were recorded.

This method has the obvious advantage that it is simple to describe and

almost any software can be used because there are no missing data. This

method however suffers from several drawbacks. Firstly, there is nearly al-

ways a substantial loss of information and the impact on power and preci-

sion may be dramatic. Secondly, severe bias can result when the missingness

mechanism is MAR and not MCAR. Furthermore, should an estimator be
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consistent in the complete data problem, then the derived complete case anal-

ysis is consistent only if the missingness process is MCAR. A CC analysis

can be used when views 1 and 2, stated previously, are adopted.

An alternative way to obtain a data set on which complete data methods

can be used is to fill in rather than to delete. However concern has been raised

regarding imputation strategies and the user of imputation strategies faces

several dangers. Molenberghs and Verbeke (2005) refer to Little and Rubin

(1987) who show that the application of imputation could be considered

acceptable in a linear model with one fixed effect and one error term but

that it is generally unacceptable for hierarchical models, split plot designs,

repeated measures with a complicated error structure, random effects and

mixed effects models.

9.6.2 Last Observation Carried Forward (LOCF)

As the name suggests, this method makes use of the last recorded value un-

der a variable and this value is substituted wherever there are missing values

under that variable i.e. whenever a value is missing, the last one is sub-

stituted. This method is used extensively in clinical trials and longitudinal

studies as stated by Molenberghs and Verbeke (2005, p. 493), Molenberghs

et al. (2002) and Heyting et al. (1992) give insight as to why the LOCF

method is not suitable to use in estimating missing data in a clinical trial or

a longitudinal study (see also Molenberghs and Kenward, 2007, for a more

recent analysis). Firstly, since LOCF can be regarded as a form of imputa-

tion one has to assume that it is plausible that a subject’s measurements do

not change from the moment of dropout onwards. In a clinical trial setting,

one might believe that the response profile changes as soon as a patient goes

off treatment and even it would flatten. The constant profile assumption is
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even stronger. Hence the LOCF method fails. Secondly, LOCF artificially

increases the amount of information on the data, by treating imputed and

actually observed values on an equal footing. This is especially true if the

longitudinal view is taken. Molenberghs and Verbeke (2005) show that all the

features of a linear mixed model can be disproportionately affected. LOCF

will suffice to validate view 2b stated earlier.

9.6.3 Unconditional Mean Imputation

Little and Rubin (1987) state that this technique involves substituting a

variable’s mean value computed from available cases to fill in missing data

values on the remaining cases. This option appears in several SPSS proce-

dures. This method is not well suited for discrete outcome responses, such as

binary outcomes but is suitable for continuous data. In addition statistical

models such as the linear mixed model are distorted by employing uncondi-

tional mean imputation methods. Thus much care need to be exercised when

using such a method.

9.6.4 Bucks Method or Conditional Mean Imputation

for multivariate data

An alternative quick method is to impute the missing data in one of various

ways and then to proceed with standard statistical analysis on the “filled in”

data set. The simplest of these is the (unconditinal) mean imputation, where

the missing xij values are replaced by the xj, the mean of the observed values

for the jth variable. Although this form of imputation preserves the variables

means, Little and Rubin (1987) state that the variances and covariances are

biased towards zero, as would be expected when imputing values from the
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centre of a distribution, but it does lead to a positive semidefinite matrix.

The factor of underestimation of the sample variance of the jth variable can

be calculated as
n(j) − 1

n− 1

where n(j) is the number of complete cases for the jth variable.

An improved imputation scheme is to impute the means that are con-

ditional on the observed values in each case. If x is multivariate normally

distributed with mean, µ and variance-covariance matrix, Σ, then the miss-

ing values in each case can be linearly regressed on the observed variables

with regression coefficients which can be expressed easily in terms of µ and

Σ. Buck (1960) proposed that one first estimates µ and Σ from the complete

cases, then uses these to calculate the regression coefficients for each case.

Finally, substitution of the observed values into the regression line yields

predictions for the missing values. This method performs well if the data is

MCAR and if the normality assumption of regression is reasonable, but must

be used with care if prediction from the prediction line involves extrapolation.

If x is not multivariate normally distributed then Buck’s method can still

be used but with the added assumption that all the regressions between the

variables are linear. Although the means are reasonably well estimated the

variance-covariance structure is underestimated, although this is less sever

than when imputing unconditional means (Little, 1992). One of the limita-

tions of Buck’s method arises when at least one of the variables is categorical

and not fully observed, as the linear regression may yield predictions which

are beyond the scope of the categorical variable. An alternative imputation

technique which is often used in survey environments is where imputations

are randomly selected from a distribution of plausible values, rather than

only from the centre of the distribution. One way to achieve this, as Little
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and Rubin (1987) states is to add a suitable random perturbation to the

conditional mean. Various other imputation methods also exist including

several forms of hot and cold deck imputation. Hot deck imputation lends

itself most readily to purely categorical data, since it usually involves im-

puting values drawn from similar responding cases (Tanner, 1993). Finding

these “similar” cases when the data is purely categorical can be complex,

but when dealing with continuous variables achieving this is nearly impossi-

ble and highly subjective. Cold deck imputation is specific to sample surveys

as it involves imputing values obtained from another source of information,

most often from a similar previously performed survey.

Little (1992) points out that it is also possible to impute missing values

via principle components analysis (PCA), but like the rest of these simple

methods, its effectiveness is affected by many aspects. Huisman (2000) com-

pared several simple methods for discrete data and points out that together

with the proportion of missing data and the missing data mechanism, when

the data set involves categorical variables the scale (length and number of

response options) also affects the performance of these simple methods.

9.6.5 Healy-Westmacott procedure

An alternative simple procedure for dealing with missing data, in a single

dependent variable, is a simple iterative scheme, proposed by Healy and

Westmacott (1956) and consists of the following steps:

S tep 1: Impute trial values for missing data

S tep 2: Perform standard complete-data analysis to obtain model parameters

S tep 3: Use the model parameters to predict missing values

S tep 4: Substitute the predicted values for missing values

S tep 5: Repeat Steps 2-4 until the missing values do not change considerably
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The complete case means of the variables are often used as the initial

trial values and if multiple regression is required, the model parameters of

interest would be the regression coefficients. An alternative way to monitor

convergence would be through the residual sum of squares.

It can be shown that both Buck’s method and the Healy-Westmacott

procedure are closely related to the EM algorithm which will be explored

in the next section. In particular the same idea underlies both the Healy-

Westmacott procedure and the EM algorithm, that is, that by exploiting the

simplicity of the computations if all the cases were completely observed, the

more complex computations involving the incomplete cases can be avoided

(McLachlan and Krishnan, 1997).

In general all of the above simple techniques are not necessarily recom-

mended as once the missing values have been imputed, the variability due to

those imputations is ignored. This is evident after standard statistical tests

are performed, sometimes yielding misleading results, as stated by Schafer

(1997) where p-values and standard errors are sometimes misleading. They

also tend to be very sensitive to any violation of the MCAR assumption, as

assumption which in practice is rarely completely valid.

9.7 The Expectation-Maximization (EM) Al-

gorithm

The Expectation-Maximization algorithm has appeared in scientific literature

dating as far back as the 1920’s. McKendrick (1926) considers a medical ap-

plication of a method that has aspects in common with the EM algorithm and

other specific applications of it appeared in Hartley (1958) as well as in Beale

and Little (1975). However it was in 1976 when a paper by Dempster, Laird
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and Rubin was read before the Royal Statistical Society and published in the

following year that the EM algorithm was named, formulated in a general

context, applied to various applications and its basic statistical properties

established. The Dempster, Laird and Rubin (1977) paper is now amongst

the six most cited statistical papers in the world (Stigler, 1994). By 1992

over one thousand journal articles had been citing the paper (Meng and Ped-

low, 1992). Ryan and Woodall (2005) state that out of the 25 most cited

papers, the Dempster, Laird and Rubin (1977) paper is ranked as the 11th

with approximately 492 citations per year.

The work by Dempster, Laird and Rubin (1977) also suggested that miss-

ing data should be seen as a source of variation that is to be averaged over

instead of something that was best removed as quickly as possible from the

analysis (Schafer and Olsen 1998). Meng (1997) looks at the link between

the EM algorithm and medical studies by linking McKendrick’s (1926) work

to the EM algorithm. Little and Rubin (2002) make reference to Meng and

Pedlow (1992) where they give a wide range of problems that can be solved

by the EM algorithm and includes ML for problems not usually considered

to involve missing data, such as variance component estimation and factor

analysis. McLachlan and Krishnan (1997) state that nowadays the EM al-

gorithm has increasingly found applications in AIDS epidemiology, neural

networks, medical imaging, dairy science and genetics. At the same time

Meng and Van Dyk (1997) extended the EM algorithm by means of simula-

tion and Monte Carlo methods showing the connection of the extensions of

it with stochastic algorithms for missing data that is now at the forefront of

research.
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Its widespread popularity and use is due mainly to its computational sim-

plicity and stability as well as its conceptual appeal as it solves a complex

incomplete-data problem by repeatedly solving easier complete data prob-

lems. Let X, Xobs and Xmis denote the complete data, observed data and

the missing data of a measurement process. The EM algorithm capitalizes on

the interdependence between Xmis and θ, since Xmis contains information

relevant to estimating θ and θ in turn helps to find likely values of Xmis.

Thus in a nutshell the EM algorithm “fills in ” Xmis based on an estimate

of θ, re-estimates θ based on Xmis and repeatedly performs these two steps

until θ has met some pre-specified convergence criteria. Note that θ is a

vector that parameterizes the measurement process.

9.7.1 The Theory of the Expectation-Maximization

(EM) Algorithm

In this section, we define X to be a n × p matrix of data which is not

fully observed. Thus, X = (Xobs,Xmis) where Xobs denotes the observed

values and Xmis the missing values, with the n rows corresponding to the

observational units or cases and the p columns corresponding to the variables.

The probability density function of the complete data, under the assumption

that the rows are independently and identically distributed, is

P (X|θ) =
n∏
i=1

f(xi|θ)

where θ is a vector of unknown parameters of the distribution and f(xi|θ)

is the probability density function of the ith row, where xi denotes the ith

row written as a column vector. In keeping with section 9.3 and 9.4, more

formally both MAR and MCAR can be defined by introducing R, a n × p

matrix of indicator variables whose elements are either 0 or 1 depending on
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whether the corresponding elements of X are missing or observed. Following

Rubin (1976), it is reasonable to assume that the missing data mechanism,

and therefore R, depends on X as well as some unknown parameters ζ,

and thus has probability density function P (R|X, ζ). MAR means that this

distribution depends on the data X only through observed values, or math-

ematically

P (R|X, ζ) = P (R|Xobs, ζ) ∀ Xmis. (9.9)

Similarly MCAR means that the distribution of R does not depend on either

the observed or missing values of X, that is

P (R|X, ζ) = P (R|ζ) ∀ X. (9.10)

In order to utilize maximum likelihood estimation (ML) the log- likelihood

of the observed data is required, `(θ|Xobs), since under the ignorability as-

sumption one does not need to consider the model of R nor the nuisance

parameter, ζ when making likelihood inferences about θ (Rubin, 1976). Fol-

lowing the arguments given by Rubin (1976), Schafer (1997) and Little and

Rubin (1987, 2002), since the data consists of both Xobs and R, the proba-

bility distribution of the entire data is actually given by

P (Xobs, R|θ, ζ) =

∫
P (Xobs, Xmis, R|θ, ζ)dXmis

=

∫
P (R|θ, ζ)P (X|θ)dXmis. (9.11)

Under the MAR assumption of equation (9.9), equation (9.11) becomes

P (Xobs, R|θ, ζ) =

∫
P (R|Xobs, ζ)P (X|θ)dXmis

= P (R|Xobs, ζ)

∫
P (X|θ)dXmis

= P (R|Xobs, ζ)P (Xobs|θ). (9.12)

256



This factorization means that the likelihood can be split into two sections,

one pertaining to the parameter of interest, θ and the other to the nuisance

parameter, ζ. For any incomplete data problem the distribution of the com-

plete data can be factored from equation (9.12) as

P (X|θ) = P (Xobs,Xmis|θ)

= P (Xobs|θ)P (Xmis|Xobs,θ)

Thus treating

L(θ|Xobs) ∝ P (Xobs|θ),

then the corresponding loglikelihood equation is

`(θ|X) = `(θ|Xobs) + lnP (Xmis|Xobs,θ) + c (9.13)

where c is any arbitrary constant which is due to the proportional relation-

ship between the likelihood function and the distribution of the the data.

Equation (9.13) implies that the complete-data likelihood is equal to the

observed-data likelihood plus another term, referred to as the predictive dis-

tribution of missing data by Schafer (1997), which takes into account the

interdependence between Xmis and θ and as such plays a pivotal role in the

algorithm.

However because ML estimation requires `(θ|Xobs), therefore rewriting

equation (9.13) in terms of `(θ|Xobs) yields

`(θ|Xobs) = `(θ|X)− lnP (Xmis|Xobs,θ) (9.14)

SinceXmis is not known, equation (9.14) needs to be averaged over P (Xmis|Xobs, θ
(t))

where θ(t) is the current estimate of θ, thus dropping the constant c as it does
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not affect the maximization that follows. Equation (9.14) therefore becomes

`(θ|Xobs) = Q(θ|θ(t))−H(θ|θ(t)) (9.15)

where

Q(θ|θ(t)) =

∫
`(θ|X)P (Xmis|Xobs,θ

(t))dXmis (9.16)

H(θ|θ(t)) =

∫
lnP (Xmis|Xobs,θ)P (Xmis|Xobs,θ

(t))dXmis (9.17)

If θ(t+1) denotes the value of θ that maximizes Q(θ|θ(t)), then θ(t+1) is

a better estimate than θ(t) in the sense that its observed-data likelihood

`(θ(t+1)|X) is at least as high as that for θ(t). Therefore after each iteration

of the EM algorithm the observed-data likelihood is either increased or re-

mains constant. This is one of the central results in Dempster, Laird and

Rubin (1977) and mathematically it can be formalized as

`(θ(t+1)|Xobs) ≥ `(θ(t)|Xobs)

This follows from equation (9.15) since

`(θ(t+1)|Xobs)−`(θ(t)|Xobs) = Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t))−[H(θ(t+1)|θ(t))−H(θ(t)|θ(t))].

HenceQ(θ(t+1)|θ(t))−Q(θ(t)|θ(t)) is always positive due to the fact that θ(t+1)

has been chosen to maximize Q(θ|θ(t)). Using equation (9.17) the remaining

terms can be written as∫
− ln

[
P (Xmis|Xobs,θ

(t+1))

P (Xmis|Xobs,θ
(t))

]
P (Xmis|Xobs,θ

(t))dXmis

Since the function x lnx is convex, Jensen’s inequality may be used, which

mathematically states ∫
ϕ(f(t))dt ≥ ϕ

[∫
f(t)dt

]
,
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or in statistical terms E[ϕ(f(t))] ≥ ϕ(E[f(t)]), if f(t) is a convex function.

Thus −H(θ(t+1)|θ(t)) +H(θ(t)|θ(t))

≥
∫
− ln

[
P (Xmis|Xobs,θ

(t+1))

P (Xmis|Xobs,θ
(t))

]
P (Xmis|Xobs,θ

(t))dXmis

= − ln

∫
P (Xmis|Xobs,θ

(t+1))dXmis

= − ln 1

= 0

Thus the sum of the remaining terms, −H(θ(t+1)|θ(t)) +H(θ(t)|θ(t)) is non-

negative which means that at each iteration the observed-data likelihood is

either increased or remains constant. It is convenient to split each iteration

of the EM algorithm into two distinct stages, namely the expectation and

maximization steps.

The Expectation (E) step: In this step the function Q(θ|θ(t)) is calculated

by averaging the complete data likelihood `(θ|X) over P (Xmis|Xobs,θ).

The Maximization (M) step: In this step θ(t+1) is found by maximizing

Q(θ|θ(t)).

Thus overall the EM algorithm starts with an initial estimate of θ, θ(0),

and produces a sequence {θ(t) : t = 1, 2, . . . }. This sequence converges to a

stationary point of the observed-data likelihood subject to certain conditions

which are given in Dempster, Laird and Rubin (1977) and explored further

in Wu (1983). In well behaved problems, where the loglikelihood function

is unimodal and concave, this stationary point is also the global maximum

and hence the EM algorithm yields the unique MLE of θ, the maximizer

of both L(θ|Xobs) and `(θ|Xobs) (Dempster, Laird and Rubin ,1977). This

convergence to the MLE of θ will also occur regardless of the initial value of

θ, in well behaved problems (Schafer, 1997).
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There are several possible ways of choosing the starting values of the param-

eters θ(0).Those advocated by Little and Rubin (1987,2002) include

• starting values based on complete case (CC) analysis.

• One of the possible available case analysis.

• One of the single imputation methods.

• The means and variances from all the observed values and set all cor-

relations to zero

However the solutions from available case analysis may result in a non-

positive definite variance-covariance matrix which will cause problems at the

first iteration, and using solutions from the CC analysis may yield unsatis-

factory starting values when the proportion of missing data is large (Little

and Rubin, 1987, 2002). But one advantage is that both of these options

are most easily implemented and since CC analysis is often run before the

EM algorithm it has the advantage that using its solution as starting values

involves no additional computation.

As with all iterative procedures convergence criteria must be defined and the

convergence carefully monitored. The convergence of the EM algorithm can

be defined in various ways. First one can consider the overall convergence,

which was shown originally by Dempster, Laird and Rubin (1977) to be lin-

ear and also by following the arguments of Schafer (1997).

Since the EM algorithm is an iterative algorithm at each stage a vector func-

tion M can be defined that maps the parameter space onto itself, since

θ(t+1) = M(θ(t))

= (M1(θ
(t)),M2(θ

(t)), . . . ,Mp(θ
(t)))T
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The vector valued mapping ofM incorporates both the E and M steps. Using

Taylor’s expansion about θ̂ yields a first order approximation of M(θ(t))

hence

M(θ(t))−M(θ̂) ≈M ′
(θ̂)(θ(t) − θ̂) (9.18)

where M(θ̂) is a p × p matrix with typical element ∂Mi(θ)
∂θj

∣∣∣
θj=θ̂j

. If θ̂ is a

stationary point of the algorithm then M(θ̂)=θ̂ and thus equation (9.18)

can be rewritten as

θ(t+1) − θ̂(t) ≈M ′
(θ̂)(θ(t) − θ̂) (9.19)

or in terms of an error term at step t with ε(t) = θ(t) − θ̂ as,

ε(t+1) ≈Dε(t)

where D is defined as the asymptotic rate matrix , M
′
(θ̂).

Thus the EM algorithm’s convergence is said to be linear as ε(t+1) is approx-

imately a linear transformation of ε(t) near θ̂.

For a scalar θ, D is a single number between zero and one, with the small

values of D leading to faster convergence. For multivariate data the conver-

gence is governed by the eigenstructure ofD, and in particular by the largest

fraction of missing information which corresponds to the largest eigenvalues

of D, denoted by λmax.

Convergence can also be defined in terms of the individual parameters, such

that element wise convergence rates are given by

λ
(t)
j =

θ
(t+1)
j − θ

(t)
j

θ
(t)
j − θ

(t−1)
j

, j = 1, 2, . . . , p

where the largest eigenvalue of D and hence the largest fraction of missing

information can be approximated by λ
(t)
j , ∀j, (Schafer, 1997).

Fraley (1999) showed that a better approximation to the largest fraction of
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missing information can be obtained, with simple computation of the ex-

act eigenvalues of D by using the iterative power method, which needs only

an initial eigenvector estimate, and then computes only the largest eigen-

value and corresponding eigenvector, iterating until the desired accuracy is

obtained. Since the entire matrix is not computed, this method is computa-

tionally efficient (Fraley, 1999).

Currently when the EM algorithm is implemented via computers convergence

is monitored and defined in one of two steps namely:

• Successive parameter values, θ(t).

• Successive observed-data likelihoods `(θ(t)|Xobs).

The latter will immediately point out programming problems as it should

never decrease, while the former is generally used in computer programmes

to state that convergence has occurred for a particular accuracy of ε if

|θ(t)
j −θ

(t−1)
j | ≤ ε|θ(t)

j |

for a suitably small ε, for example 0.0001, and for j = 1, 2, . . . , p.

9.7.2 Comparison of the Expectation-Maximization

(EM) Algorithm with other iterative procedures

The EM algorithm has several advantages over other iterative procedures,

such as the Newton-Raphson and method of scoring, namely:

• It is numerically stable, in that at each iteration the observed-data

likelihood increases, except at a fixed point where it remains constant.

• Under fairly general conditions, it exhibits global convergence.
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• Both steps are generally easy to compute as they are complete-data

computations.

• No evaluation of the loglikelihood or its derivatives are needed.

• Its convergence is easily monitored.

However its disadvantages include:

• It has not built-in procedure for calculating an estimate of the variance-

covariance matrix of the parameters.

• It may exhibit slow convergence, especially when the amount of missing

data is considerable.

• It does not guarantee convergence to a global maximum when there are

multiple maxima.

Although these disadvantages might seem considerable, the first two have

been minimized by several recent methods and the latter is a problem inher-

ent in almost all optimization techniques. It cannot, in general be avoided,

but Little and Rubin (1987) and Schafer (1997) both recommended that,

when dealing especially with multivariate data, the EM algorithm should be

started from several different initial values for the parameters in order to be

certain that it is converging to a global maximum and not to a local mini-

mum.

One of the original criticisms of the EM algorithm was that it provided no

built-in mechanism for estimating the variance-covariance matrix of the pa-

rameters. Potentially one can calculate

I(θ̂) =
∂2`(θ|Xobs)

∂θ2

∣∣∣∣
θ=θ̂
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directly where θ̂ is the MLE of θ and I(θ) can be used to estimate the

variance-covariance matrix, since

θ − θ̂ ' N(0, C)

where C can be estimated by I−1(θ̂) = I−1(θ)|θ=θ̂ . However the computation

involved may be complex. Various alternative methods have therefore been

developed to simplify the computation.

Louis (1982) gave a generally applicable method for finding the observed-

data loglikelihood in terms of the gradient and second derivatives of the

complete-data loglikelihood function which is generally easier to calculate.

However this method still requires the calculation of the first and second

derivatives of the complete-data loglikelihood. Meilijson (1989) avoids such

calculations by using numerical approximations and information obtained

from both the E and M steps, but is only applicable when the data are inde-

pendent and identically distributed samples. Meng and Rubin (1991)gener-

alized the approach by formulating the Supplemented EM (SEM) algorithm

which does not require the calculation of the loglikelihoods nor their deriva-

tives to obtain an asymptotic estimate of the variance-covariance matrix.

While Oakes (1999) give a direct calculation of the information matrix using

the function Q(θ|θ(t)), namely

I(θ̂) =

[
∂2Q(θ|θ(t))

∂θ2
+
∂2Q(θ|θ(t))

∂θ(t)∂θ

]
θ=θ(t)=θ̂

(9.20)

An alternative method for calculating the variance-covariance matrix, with-

out calculating the information matrix, is to use the bootstrap method as

formulated by Efron (1979) and described by Efron (1994). This method

requires that B new samples are independently drawn from the original data

set with replacement where each case has got the same probability of being
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selected as n−1. The new samples therefore consist of n cases, where the

cases from the original data set may occur more than once or not at all.

The EM algorithm is then run on each of these data sets, obtaining θ̂(b), for

b = 1, 2, . . . , B. The bootstrap estimate of θ is

θ̂boot =
1

B

B∑
b=1

θ̂(B)

and the bootstrap estimate of the variance-covariance matrix of θ̂ is

V̂ =
1

B − 1

B∑
b=1

(θ̂(b) − θ̂boot)(θ̂
(b) − θ̂boot)

T

It can be shown that under quite general conditions V̂ is a consistent es-

timate of the variance of θ̂, as n and B tend to infinity (Little and Rubin

2002). Efron and Tibsharani (1993) showed that 50 to 100 bootstrap repli-

cations are generally sufficient for variance estimation. However although

confidence intervals can be computed, for the bootstrap distribution that is

approximately normal, these require in the order of 200 bootstrap replica-

tions (Efron, 1994).

Another criticism of the EM algorithm is of its slow convergence under cer-

tain conditions, one of these is that, if the number of variables is nearly equal

to the number of cases, even a small amount of missing data may lead to slow

convergence. Many solutions to convergence problems have been proposed,

each with their own advantages and disadvantages. Due to the increase in

computer power, they are not discussed in detail as they only exhibit worth-

while increases in speed when the data sets are large or when the amount of

missing data is considerable. The former is a problem in only specific cases

while the latter may bring validity of the analysis into question, as a large

proportion of missing data may result in invalid inferences even if conver-

gence can be obtained (Little and Rubin 1987).
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However for completeness some of these modifications to the EM algo-

rithm which enhance convergence and also require less computing power or

enable the solving of complex E and M steps, are:

i). The Generalized EM (GEM) algorithm: it is the most useful when

a solution to the M-step does not exist in closed form which, means

that it may not be possible to maximize Q(θ|θ(t)) globally. Thus GEM

increases Q(θ|θ(t)) over its value at θ(t) rather than maximizing it over

the entire parameter space of θ.

ii). Use of a multivariate generalization of Aitken’s acceleration (Louis

1982) or of generalized conjugate gradient approach (Jamshidian and

Jennrich, 1993) called the Accelerated EM (AEM) algorithm, however

in both of these methods there is no longer any guarantee that the

observed-data likelihood increases at each iteration.

iii). Expectation/Conditional Maximization (ECM) algorithm, where each

M-step is split into several Conditional Maximization (CM) problems

which are subject to the various constraints of θ such that the collec-

tion of all such constraints ensures that the maximization is over the

full parameter space of θ (Meng and Rubin, 1993). Although this al-

gorithm typically requires more iterations than the EM, it requires less

computing time (Liu and Rubin, 1994).

iv). Expectation/Conditional Maximization Either (ECME) algorithm, which

is an extension of the ECM algorithm where the M-step is again split

into several CM-steps but some or all of the CM-steps are replaced

by steps that conditionally maximize the incomplete-data loglikelihood

function, `(θ|Xobs) rater than Q(θ|θ(t)), making it faster than the ECM
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algorithm in computing time and more comparable with the EM al-

gorithm in terms of the number of iterations needed (Liu and Rubin,

1994)

v). Alternating Expectation/Conditional Maximization (AECM) algorithm

which is obtained by combining aspects of the ECM and Space-Alternating

Generalized Expectation-Maximization (SAGE) algorithm (Fessler and

Hero, 1994), where the augmentation of the observed data is allowed

to vary over the CM-Steps (Meng and Van Dyk, 1997).

vi). Recently a large area of augmenting data into monotone pattern and

then applying some variant of the EM algorithm has been widely in-

vestigated as it will often converge faster than the EM algorithm, thus

the EM algorithm has been extended into the MEM (Monotone Ex-

pectation Maximization) algorithm and the ECME has been extended

to the MECME (Monotone Expectation/Conditional Maximization Ei-

ther) algorithm (Liu, 1999). As expected these techniques are most suc-

cessful when only a small amount of data is needed to be augmented

in order to make the missing data pattern monotone.

vii). The parameter-extended EM (PXEM) algorithm (Liu, Rubin and Wu,

1998) is one of the several incredibly fast EM type algorithms and is

based on the idea that the inefficiency of the M-step is generally due

to the fact that it acts as if the values of the sufficient statistics are

correct, whereas they are actually interim values. These discrepancies

are revealed by considering the difference between the imputed values

and their expectations and the new differences are introduced into the

algorithm by associating new parameters with them (Rubin, 1997).

viii). Iterative simualtion based techniques have aso been used to extend or
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improve the EM algorithm resulting in Monte Carlo EM algorithm (Wei

and Tanner, 1990) and the Stochastic EM (SEM) algoithm (Tanner,

1993).

9.7.3 The Missing Information Principle

The fundamental relationship that the complete information is equal to the

observed information plus the missing information, was first shown by Or-

chard and Woodbury (1972) and was termed the “missing information princi-

ple”. It can be shown by rewriting equation (9.13), but omitting the constant

term that

`(θ|X) = `(θ|Xobs) + lnP (Xmis|Xobs, θ)

Differentiating both sides twice with respect to θ and multiplying throughout

by a negative one yields,

− ∂2

∂θ2
`(θ|X) = − ∂2

∂θ2
`(θ|Xobs)−

∂2

∂θ2
lnP (Xmis|Xobs, θ)

Taking the expectation over P (Xmis|Xobs, θ) gives

Jc(θ) = Jo(θ) + Jm(θ) (9.21)

where

Jc(θ) = − ∂

∂θ2
Q(θ|θ) from equation (9.16)

Jo(θ) = − ∂

∂θ2
`(θ|Xobs) from θ − θ̂ ' N(0, C)

Jm(θ) = − ∂

∂θ2
H(θ|θ) from equation (9.17)

Equation (9.19) is termed the missing information principle and assumes

only sufficient regularity to interchange the orders of differentiation and in-

tegration (taking expectations).

268



Dempster, Laird and Rubin (1977) showed that the above information

matrices are connected to the asymptotic rate matrix D of the convergence

of the EM algorithm by,

D = J −1
c (θ)Jm(θ)

which implies that D is simply the ratio of the missing information to com-

plete information. Thus the rate of convergence is also given by the largest

eigenvalue of the matrix, J −1
c (θ)Jm(θ), and therefore the greater the propor-

tion of missing data the slower the convergence, as stated earlier. (Molen-

berghs and Verbeke, 2005, pp 518-519)

9.7.4 Test for MCAR

Testing whether the data is MAR is impossible, as this would require infor-

mation about the missing data. However it is possible to test whether data

is MCAR or not. If missingness is confined to a single variable, then the

simplest method to test MCAR is to compare distributions of the completely

observed cases to the incomplete cases, either informally or formally by t-

tests for the differences between means. Dixon (1983) using the program

BMDP8D extends this test for data where missing values may occur on any

of the p variables. Each variable which has missing values is divided into

cases where that variable is observed and missing, the means of the other

variables are then tested for differences. This is repeated for all variables

in which missingness is present, therefore resulting in p(p − 1) t-tests if all

the variables have some missing values. This may not only yield a large

number of statistics, but simultaneous inference may be complicated due to

possible correlations between the variables and the test has limited power

when the number of incomplete cases is small (Little and Rubin, 1987). It is

also possible that this method may produce results that could be regarded
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as evidence against MCAR, even when a MCAR mechanism was permissible

in the observed missingness pattern (Little, 1988).

Little (1988) thus proposed a single test statistic whose null distribution

is asymptotically chi-squared. For data with J distinct missingness patterns

then for each missingness pattern an indicator matrix Dj is defined. These

matrices have the same number of rows as columns asX and with the number

of columns equal to the number of observed variables for that missingness

pattern. Each column consists of p−1 zeroes and a single one corresponding

to the variable identified. Thus for p = 4 a misingness pattern with X2

missing and the other variables observed would have indicator matrix
1 0 0

0 0 0

0 1 0

0 0 1


Also if the MLEs of µ and

∑
are given by µ̂ and

∑̂
, with

∑̃
= n

n−1

∑̂
being

the corrected unbiased variance-covariance matrix of µ̂ then the test statistic,

derived under the assumption that x is multivariate normally distributed is

d2 =
J∑
j=1

(xobs,j − µ̂)
∑̃−1

obs,j
(xobs,j − µ̂)T

where µ̂obs,j = µ̂Dj and σ̃obs,j = DT
j

∑̃
Dj, xobs,j is the mj × pj matrix of

observed values for missingness pattern j, with corresponding mean vector

xobs,j and mj the number of cases in missingness pattern j with pj the num-

ber of variables observed in that missingness pattern.

The test statistic d2 is asymptotically chi-squared with degrees of free-

dom given by
∑J

j=1 pj − p. This test was formulated assuming that if the

270



data is not MCAR, then the means of the variables may vary between dis-

tinct missingness patterns, but the variances and covariances are assumed

to be the same for each pattern. This assumption can be relaxed, although

the resulting test is more likely to be sensitive to departures from the nor-

mality assumption and less reliable for small samples (Little, 1988). The

more restrictive test, as given above remains valid even under non-normality,

although it tends to be conservative when the sample sizes are small (Little,

1988). Testing for MCAR will not only reveal whether simple methods will

yield valid results but also provides guidance on whether to use the expected

or observed information matrix. This is crucial because standard errors for

parameters based on expected information matrix are only valid if the data is

MCAR (Little, 1988). While the use of the observed information matrix only

requires the assumption of MAR, but generally involves more computations.

9.7.5 Results for LOCF, CC and EM algorithm for the

intermittent missingness-the 85 missing values in

the response variable

There were 85 intermittent missing values in the response variable, the RSV

status of a child. This constitutes 85
9374

= 0.0091 i.e. about 1% of missingness.

Thus when the EM algorithm will be used to estimate these values using SPSS

version 15, the estimated values will be rounded off, due to the fact that the

intermittent missingness is extremely small and will not affect the precision of

estimators significantly. The following results were obtained after using the

above methods to estimate and “fill in” the missing values. The generalized

linear mixed model and the random intercepts slopes model was fitted with

the following results. Co-incidentally the EM estimated values were exactly
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the same as those for the LOCF method. So the the results for those two

methods will be the same. The CC method yielded exactly the same results

as those in Chapter 4 and will not be reproduced here. We will only look at

the optimal model.

LOCF-Random Effects Models

Different covariance structure models were fitted but in most of them only the

residual term was estimable. The child random component was negligible.

LOCF and EM Algorithm

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.002 0.001

Residual(VC) 1.0428 0.01694

Compound symmetry Var(child) 0.000 0.000

CS(child) -2.32E-6 3.513E-6

Residual(VC) 1.0428 0.01694

Power Var(child) 0.000 0.000

SP(POW)(child) 0.000 0.000

Residual(VC) 1.0428 0.01694

Spherical Var(child) 0.000 0.000

SP(SPH)(child) 0.000 0.000

Residual(VC) 1.0428 0.01694

Gaussian Var(child) 0.000 0.000

SP(GAU)(child) 0.000 0.000

Residual(VC) 1.0428 0.01694

Table 9.1: Covariance Parameter Estimates in a random effects model- LOCF

and EM Algorithm methods

The solution for the fixed effects for all the different covariance structure

models are:
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LOCF and EM Algorithm

Effect Estimate Standard Error Pr> |t|
Intercept -5.0492 1.6250 < 0.0001

Age 0 -0.9213 1.295 0.4822

Age 1 -0.6594 1.0999 0.5991

Age 2 -0.2420 1.0645 0.8231

Age 3 -0.06896 0.9995 0.9898

Age 4 -0.6712 0.9786 0.4895

Age 5 -2.705 1.4210 0.0521

Age 6 -1.413 1.0416 0.1314

Age 7 -2.2900 1.1816 0.0646

Age 8 -1.002 0.6109 0.10012

Age 9 -0.7569 0.5948 0.1691

Age 10 -0.3861 0.4895 0.4879

Age 11 -0.5899 0.4812 0.2289

Age 12 0.0000 0.0000 0.0000

Dt 0.000892 0.009003 0.9205

Prev 46.652 8.9724 < 0.0001

Actipass 0 2.7231 0.1993 < 0.0001

Actipass 1 0.000 0.000 0.000

Timemonth -0.09712 0.1097 0.7205

Table 9.2: Solution for the fixed effects using a random effects model -LOCF

and EM algorithm

Effect F-Value P-value

Age 1.68 0.0812

Dt 0.02 0.9434

Prev 30.07 < 0.0001

Actipass 154.42 < 0.0001

Timemonth 0.18 0.6704

Table 9.3: Type III Effects in a random effects model-LOCF and EM algo-

rithm

LOCF- Random Intercept Models

Different covariance structure models were fitted under this model. Again

as earlier noted only the residual term was estimable under all covariance
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structures. The non-convergence under the CS model is because the random

intercept model is ideally the same as the CS model.

LOCF and EM Algorithm

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.000 0.000

Residual(VC) 1.0392 0.01588

Compound symmetry Var(child) No convergence No convergence

CS(child) No convergence No convergence

Residual(VC) No convergence No convergence

Power Var(child) 0.000 0.000

SP(POW)(child) 0.000 0.000

Residual(VC) 1.0392 0.01588

Spherical Var(child) 0.000 0.000

SP(SPH)(child) 0.000 0.000

Residual(VC) 1.0392 0.01588

Gaussian Var(child) 0.000 0.000

SP(GAU)(child) 0.000 0.000

Residual(VC) 1.0392 0.01588

Table 9.4: Covariance Parameter Estimates in a random intercept model-

LOCF and EM Algorithm methods

The solution for the fixed effects for all the different covariance structure

models shown in Table 9.5.
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LOCF and EM Algorithm

Effect Estimate Standard Error Pr> |t|
Intercept -5.0379 1.4785 < 0.0001

Age 0 -0.9952 1.2492 0.4654

Age 1 -0.6789 1.1005 0.5649

Age 2 -0.2760 1.0550 0.8041

Age 3 -0.069526 0.9989 0.9521

Age 4 -0.6782 0.9791 0.4999

Age 5 -2.6025 1.3222 0.0501

Age 6 -1.5941 1.0105 0.1301

Age 7 -2.2502 1.1789 0.0579

Age 8 -0.9999 0.6060 0.0999

Age 9 -0.7394 0.5286 0.1681

Age 10 -0.3299 0.4689 0.4901

Age 11 -0.5791 0.4804 0.2299

Age 12 0.0000 0.0000 0.0000

Dt 0.000894 0.008662 0.9304

Prev 45.1033 8.3484 < 0.0001

Actipass 0 2.3541 0.1901 < 0.0001

Actipass 1 0.000 0.000 0.000

Timemonth -0.04599 0.1094 0.6794

Table 9.5: Solution for the fixed effects in a random intercept model-LOCF

and EM Algorithm methods

Effect F-Value P-value

Age 1.68 0.0832

Dt 0.02 0.9494

Prev 30.08 < 0.0001

Actipass 154.42 < 0.0001

Timemonth 0.18 0.6704

Table 9.6: Type III Effects in a random intercept model-LOCF and EM

Algorithm methods

LOCF-Estimating the force of infection and the rate of recovery

The force of infection and the recovery rate of the process were again esti-

mated after the EM algorithm was used to estimate the intermittent miss-
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ingness in the response variable. The estimation was carried out via direct

likelihood estimation and via a GLM. Both cases gave similar results.

LOCF and EM Algorithm Estimates

Direct Likelihood(ML) GLM
Estimate Standard

Error

Estimate Standard

Error
λ̂ 0.001099 0.000117 0.0011 0.0001
ν̂ 0.47695 0.068 0.5072 0.068

Table 9.7: Comparative Parameter Estimates

The CC estimates are the same as those given in Chapter 6. The estimates

of the LOCF and the EM Algorithm are roughly the same as those of the

CC analysis with no unusual observations.

LOCF- Piecewise force of infection estimates

The force of infection and recovery rate were then estimated at different time

intervals, namely the 15 months, spanning the study. In a given month the

force of infection was assumed to be constant leading to a piecewise constant

step function. The results of the process are tabulated in Table 9.8 The

force of infection peaks with different heights in months 2, 3, 11 and 13. The

highest peak occurs in month 13 as was the case earlier.
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LOCF and EM Algorithm Estimates

Month Lambda Estimate Standard Error

2 λ̂2 0.0055 0.0008

3 λ̂3 0.0033 0.0007

4 λ̂4 0.0010 0.0004

5 λ̂5 0.00024 0.00011

6 λ̂6 0.00023 0.00013

7 λ̂7 0.00027 0.00016

8 λ̂8 0.0004 0.0003

9 λ̂9 0.00059 0.0003

10 λ̂10 0.0024 0.0005

11 λ̂11 0.0033 0.00072

12 λ̂12 0.0018 0.00064

13 λ̂13 0.0255 0.00044

14 λ̂14 0.0000 0.0000

15 λ̂15 0.0000 0.0000

Table 9.8: Monthly estimates of the force of infection using LOCF and EM

Algorithm

LOCF- Piecewise rate of reovery estimates

As observed with earlier analyses, the rate of recovery results was fairly

constant throughout the 15 month period except months 14 and 15 which

did not have any data.
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LOCF and EM Algorithm Estimates

Month Nu Estimate Standard Error

1 ν̂1 0.4878 0.061

2 ν̂2 0.4990 0.066

3 ν̂3 0.5000 0.05

4 ν̂4 0.5016 0.062

5 ν̂5 0.5011 0.062

6 ν̂6 0.4980 0.066

7 ν̂7 0.499 0.076

8 ν̂8 0.5002 0.070

9 ν̂9 0.5033 0.065

10 ν̂10 0.5019 0.05

11 ν̂11 0.5026 0.070

12 ν̂12 0.4999 0.060

13 ν̂13 0.5012 0.067

14 ν̂14 0.0000 0.0000

15 ν̂15 0.0000 0.0000

Table 9.9: Monthly estimates of the recovery rate

9.8 Modelling the dropout

We first revisit the vastly quoted taxonomy of the classification of missing

data mechanisms by Little and Rubin (1987) on the context of dropout. This

taxonomy is relevant in longitudinal data where partially observed sequences,

especially due to dropout (eg. a patient leaves the study at some time af-

ter which no more measurements are taken), are very common. (Kenward

and Molenberghs, 1998). Little and Rubin (1987) define missing completely

at random(MCAR) to be a process in which the probability of dropout is

completely independent of the measurement process. A process is termed

missing at random (MAR) if the probability of dropout is conditionally inde-

pendent of the unobserved measurements given the observed measurements.

Ignorability depends on the analysis methods used and applies strictly un-
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der likelihood analyses. MAR does not imply ignorability under unweighted

GEE, for example. Processes that are neither MCAR or MAR are called non-

ignorable, in which case the probability of dropout depends on unobserved

measurements. Dropout is a special case of incompleteness. Since incom-

pleteness usually occurs for reasons outside the control of investigators, and

may be related to the outcome measurement of interest, it is generally nec-

essary to address the process that governs incompleteness. Only in special

but important cases is it possible to ignore the measurement process (Jansen

et al. 2006). This is not the case with the dropout in the current Kilifi data

used in this thesis. Possible reasons for patients dropping out of the study

(withdrawals) include death, adverse reactions, unpleasant study procedures,

lack of improvement, early recovery, and other factors related or unrelated

to the study procedure and intervention. In the context of the Kilifi data

set every child was initially supposed to have 44 visits, but this was not the

case. Tables (9.10) and (9.11) summarize the dropout process in the Kilifi

RSV data. Table (9.10) is a summary of the full data set while Table (9.11)

is an extract of the first three children in the study.

Kenward (2006) states that any analysis of incomplete longitudinal data

must have an assumption with respect to the missing data mechanism (Ken-

ward M, 2006), whether MAR, MCAR or MNAR. If it is MAR then a stan-

dard likelihood analysis such as the Generalized Linear Mixed Model can

follow. For modelling longitudinal binary data with dropout, there are 2

alternatives (Kenward M, 2006, p. 51)

• Alternative 1: use multiple imputation with an uncongenial imputa-

tion distribution. However since the Kilifi data set has a mixture of

discrete and continouous variables we can appropriately use multiple

imputation using chained equations (MICE) or as it is sometimes called,
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Visit Percent missing Percent observed
1 0.0 100.0
2 3.0 97.0
3 5.6 94.4
4 6.5 93.5
5 5.9 94.1
6 6.8 93.2
7 5.6 94.4
8 7.1 92.9
9 8.0 92.0
10 8.3 91.7
11 9.8 90.2
12 9.8 90.2
13 9.8 90.2
14 10.1 89.9
15 9.8 90.2
16 10.4 89.6
17 10.7 89.3
18 12.7 87.3
19 11.8 88.2
20 13.6 86.4
21 14.5 85.5
22 16.9 83.1
23 17.5 82.5
24 21.0 79.0
25 22.8 77.2
26 26.0 74.0
27 27.8 72.2
28 33.1 66.9
29 41.4 58.6
30 47.3 52.7
31 53.6 46.4
32 60.4 39.6
33 68.6 31.4
34 76.3 23.7
35 79.3 20.7
36 85.5 14.5
37 89.6 10.4
38 91.7 8.3
39 94.7 5.3
40 97.0 3.0
41 98.2 1.8
42 99.1 0.9
43 99.4 0.6
44 99.7 0.3

Total 37 63.0

Table 9.10: Dropout percentage table
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Visit Child
1 2 3

1 O O O
2 O O O
3 O O O
...

...
...

...
25 O M O
26 O M O
27 O M O
28 M M M
29 M M M
30 M M M
...

...
...

...
44 M M M

Table 9.11: Dropout table for first three children

multiple imputation by fully conditional specification.

• Alternative 2: use a subject-specific model with likelihood such as the

Generalized Linear Mixed Models(GLMM’s)

The view that likelihood methods that ignore the missing value mechanism

are valid under an MAR process has evolved out of the work of Rubin and

Little and the likelihood in that case must be interpreted in a frequentist

sense. Kenward and Molenberghs (1998) give an excellent expository of the

qualification of this statement. They first state that Rubin (1976) has showed

that MAR is necessary and sufficient to ensure validity of direct likelihood

inference when ignoring the process that causes missing data. They further

state the essence of this approach is that of identifying and using the ap-

propriate sampling distribution. This is obviously relevant for determining

the distributions of test statistics, expected values of the information matrix

and measures of precision. Little and Rubin (1987) look into the associated

aspects of the above mentioned issues and suggest the use of the observed in-
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formation matrix to circumvent problems associated with the determination

of the correct, expected information matrix. Several authors such as Meng

and Rubin (1991), Baker (1992), just to mention two of them, have also

explored this area of research. Louis (1982), Meilijson (1989) and Kenward,

Molenberghs and Lesaffre (1994) have all looked at the use of the observed in-

formation matrix, without making reference to the problems associated with

the expected information matrix. Kenward and Molenberghs (1998) then

further explore these aspect using three different illustration and conclude

that as long as the observed information matric is used, conventional like-

lihood based frequentist inference is applicable in the MAR setting. Using

the Alternative 2 (Kenward , 2006, p. 51), we will assume that the dropout

mechanism for our missingness is MAR and a standard likelihood analysis,

such as the Generalized Linear Mixed Model follows. The model was fitted

using PROC NLMIXED and the results are given below in Tables refmondo

and 9.13 using Gaussian and Adaptive Gaussian Quadrature methods. The

results are discussed in relation to those obtained in Chapter 4 using the

GLMM approach The fitted model was:

rsvpos = β00 +β0age0+β1age1+beta2age2+β3age3+β4age4+β5age5+

β6age6+β7age7+β8age8+β9age9+β10age10+β11age11+β13dt+β14prev+

β15actipass+ β16timemonth+ childeffect(τ).

The sample program used to fit the above model is:

proc nlmixed data =lisa qpoints=20 tech=nmsimp; parms beta00=-5.06

beta0=-0.9 beta1=-0.65 beta2=-0.27 beta3=-0.067 beta4=-0.66

beta5=-2.5 beta6=-1.6 beta7=-2.2 beta8=-0.99 beta9=-0.74

beta10=-0.32 beta11=-0.55 beta13=-0.0009 beta14=45 tau2=1.02;

teta=beta00+b+beta0*age0+beta1*age1+beta2*age2+beta3*age3

+beta4*age4+beta5*age5+beta6*age6 +beta7*age7+beta8*age8+beta9*age9+
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beta10*age10+beta11*age11+beta13*dt+beta14*prev+beta15actipass

+beta16timemonth; expteta=exp(teta); p=expteta/(1+expteta); model

rsvpos~binary(p); random b~normal(0,tau2) subject=rsv; run;

The results for adaptive Gaussian quadrature and non-adaptive Gaussian

quadrature are given below:

Gaussian Quadrature

Effect Q = 3 Q = 5 Q = 20

Intercept -5.04(1.488) -5.72(1.584) -5.466(1.384)

beta0 -0.92(1.244) -0.94(1.862) -0.91(1.35)

beta1 -0.65(1.082) -0.68(1.985) -0.69(1.857)

beta2 -0.28(1.081) -0.27(1.056) -0.28(1.045)

beta3 -0.07(1.001) -0.08(0.991) -0.07(0.984)

beta4 -0.67(0.981) -0.69(0.967) -0.67(0.991)

beta5 -2.71(1.381) -2.12(1.354) -2.74(1.311)

beta6 -1.61(1.021) -1.59(1.044) -1.60(1.058)

beta7 -2.23(1.184) -2.13(1.192) 2.20(1.188)

beta8 0.99(0.624) -1.05(0.652) -1.01(0.652)

beta9 -0.76(0.521) -0.74(0.601) -0.75(0.504)

beta10 -0.33(0.456) -0.42(0.498) -0.32(0.416)

beta11 -.57(0.481) -0.54(0.453) -0.57(0.485)

beta13 -0.0008(0.009) 0.0009(0.007) -0.0008(0.006)

beta14 47.2(7.995) 49.3(8.994) 46.1(8.774)

beta15 2.31(0.168) 2.33(0.183) 2.38(0.199)

beta16 -0.05(0.109) -0.04(0.137) -0.05(0.108)

τ 1.03(0.0114) 1.01(0.018) 1.03(0.013)

−2` 2243.6.7 2242.2 2243.9

Table 9.12: Solution for the fixed effects to model the dropout-gaussian

quadrature
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Adaptive Gaussian Quadrature

Effect Q = 3 Q = 5 Q = 20

Intercept -5.02(1.433) -5.71(1.498) -5.786(1.354)

beta0 -0.92(1.244) -0.94(1.862) -0.91(1.145)

beta1 -0.65(1.012) -0.68(1.385) -0.68(1.017)

beta2 -0.28(1.051) -0.23(1.034) -0.26(1.026)

beta3 -0.07(0.991) -0.08(0.988) -0.07(0.999)

beta4 -0.66(0.989) -0.69(0.997) -0.67(0.982)

beta5 -2.61(1.341) -2.12(1.369) -2.72(1.311)

beta6 -1.61(1.071) -1.59(1.022) -1.63(1.758)

beta7 -2.24(1.191) -2.13(1.189) 2.20(1.198)

beta8 0.99(0.674) -1.02(0.652) -1.01(0.699)

beta9 -0.74(0.501) -0.74(0.561) -0.75(0.540)

beta10 -0.33(0.459) -0.42(0.498) -0.32(0.446)

beta11 -.57(0.498) -0.54(0.422) -0.57(0.494)

beta13 -0.0008(0.007) 0.0009(0.009) -0.0008(0.006)

beta14 43.8(8.395) 49.3(8.994) 46.1(8.214)

beta15 2.22(0.178) 2.23(0.183) 2.41(0.189)

beta16 -0.05(0.109) -0.03(0.158) -0.05(0.104)

τ 1.03(0.0115) 1.01(0.018) 1.03(0.013)

−2` 2243.8 2242.8 2243.8

Table 9.13: Solution for the fixed effects to model the dropout-adaptive gaus-

sian quadrature

Both the gaussian quadrature and adpative gaussian quadrature show the

type of visit (actipass) and prevalence variable (prev) to be significant. Thus

a generalized linear mixed model with only the prev and actipass covariates

was fitted. The results are given below. Different covariance structure models

were again used for comparison. The solution for the fixed effects for all the

different covariance structure models are tabulated in tables that follow.

Fitting the above model as a random intercept model yielded the following

results: The solution for the fixed effects for all the different covariance

284



Covariance Structure Estimate Standard Error

Unstructured UN(1,1) No convergence No convergence

Residual(VC) No convergence No convergence

Compound symmetry Var(child) 7.187E-6 2.885E-6

CS(child) -6.71E-6 .

Residual(VC) 0.8814 0.01306

Power Var(child) 4.745E-7 2.885E-6

SP(POW)(child) 0.000 0.000

Residual(VC) 0.8814 0.01306

Spherical Var(child) 4.745E-7 2.885E-6

SP(SPH)(child) 0.000 0.000

Residual(VC) 0.8814 0.01306

Gaussian Var(child) 4.745E-7 2.885E-6

SP(GAU)(child) 0.000 0.000

Residual(VC) 0.8814 0.01306

Table 9.14: Covariance Parameter Estimates in a random effects model to

handle the dropout-using prev and actipass

Effect Estimate Standard Error Pr> |t|
Intercept -5.9583 0.1796 < 0.0001

Prev 50.7801 4.8589 < 0.0001

Actipass 0 2.0576 0.1608 < 0.0001

Actipass 1 0.000 0.000 0.000

Table 9.15: Solution for the fixed effects in a random effects model to handle

the dropout-using prev and actipass

structure models are:
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Effect F-Value P-value

Prev 109.22 < 0.0001

Actipass 163.74 < 0.0001

Table 9.16: Type III Effects in a random effects model to handle the dropout-

using prev and actipass

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.2086 0.1638

Residual(VC) 0.8782 0.01308

Compound symmetry Var(child) 0.1053 0.1638

CS(child) 0.1034 .

Residual(VC) 0.8782 0.01308

Power Var(child) 0.2086 0.1638

SP(POW)(child) 0.000 0.000

Residual(VC) 0.8782 0.01308

Spherical Var(child) 0.2086 0.1638

SP(SPH)(child) 1.000 0.000

Residual(VC) 0.8782 0.01308

Gaussian Var(child) 0.2086 0.1638

SP(GAU)(child) 1.000 0.000

Residual(VC) 0.8782 0.01308

Table 9.17: Covariance Parameter Estimates in a random intercept model to

handle the dropout

Effect Estimate Standard Error Pr> |t|
Intercept -5.9564 0.1802 < 0.0001

Prev 50.6917 4.8703 < 0.0001

Actipass 0 2.0601 0.1615 < 0.0001

Actipass 1 0.000 0.000 0.000

Table 9.18: Solution for the fixed effects in a random effects model to handle

the dropout-using prev and actipass

Once again the random intercept model estimates are very similar to those of

286



Effect F-Value P-value

Prev 108.33 < 0.0001

Actipass 163.77 < 0.0001

Table 9.19: Type III Effects in a random effects model to handle the dropout-

using prev and actipass

the random effects estimates. The above model was also fitted as a GLMM

but using PROC NLMIXED. The fitted model was:

rsvpos = β00 + β0prev + β1actipass+ childeffect(τ)

The sample program is:

proc nlmixed data =lisa qpoints=20 tech=nmsimp; parms beta00=-5.9

beta0=50.7 beta1=2.03 tau2=0.85;

teta=beta00+b+beta0*prev+beta1*actipass; expteta=exp(teta);

p=expteta/(1+expteta); model rsvpos~binary(p); random

b~normal(0,tau2) subject=rsv; run;

The results for adaptive Gaussian quadrature and non-adaptive Gaussian

quadrature are given in Tables (9.20) and (9.21):

Gaussian Quadrature

Effect Q = 3 Q = 5 Q = 20

Intercept -3.9555(0.1805) -3.6407(0.1764) -3.9257(0.1790)

beta0 50.2189(5.7557) 52.7442(6.1598) 50.1865(5.703)

beta1 -1.9171(0.1686) -2.1389(0.1853) -1.9715(0.1685)

τ 0.8700(0.0114) 0.7300(0.018) 0.7800(0.0190)

−2` 1494.7 1458.2 1494.6

Table 9.20: Solution for the fixed effects fitting a GLMM using a NLMIXED

gaussian quadrature to handle the dropout-using prev and actipass
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Adaptive Gaussian Quadrature

Effect Q = 3 Q = 5 Q = 20

Intercept -3.9515(0.1807) -2.8854(0.1482) -3.9243(0.1789)

beta0 50.5363(5.7469) 49.8533(6.1178) 50.1887(5.700)

beta1 -1.9558(0.1696) -1.9917(0.1673) -1.9717(0.1684)

τ 0.8700(0.012) 0.8590(0.0114) 0.8700(0.0119)

−2` 1494.7 1420 1494.6

Table 9.21: Solution for the fixed effects fitting a GLMM using a NLMIXED

non gaussian quadrature to handle the dropout-using prev and actipass

The results from the non-adaptive and adaptive gaussian quadrature es-

timation are very similar. Here not much is achieved by adopting the more

complex adaptive quadrature method. The smaller model fits much better

than the full model judging from the −2 log-likelihood values.

9.8.1 Multiple Imputation

Multiple Imputation (MI) was first comprehensively described in Rubin (1987)

in the context of analyzing large sample surveys with non-responses, where

these surveys were used to create public-use data sets to be shared by many

ultimate users (Rubin, 1996). Although the idea first appears in Rubin (1977)

it was not originally widely used due to a lack of computational tools, but the

large amount of recent research into Markov Chain Monte Carlo (MCMC)

methods as well as current advanced technology has ensured that it is now

more easily used. It can be simply described as a technique in which the

missing data values Xmis are replaced by X1
mis, X

2
mis, . . . , X

m
mis thus forming

m complete data sets, which are then analyzed by standard statistical meth-

ods. The results of the m analyses are then combined into a single inferential

statement, ensuring that the uncertainty due to the missing data is incorpo-

rated, by rules provided by Rubin (1987). The most critical objection to MI

288



was that it is a simulation technique. However simulation has now become

far more accepted and widely used in statistics. Further still simulations in

MI is only used to handle the missing information, the rest of the information

is handled by complete case (CC) methods and thus it can only distort part

of the inference (Rubin, 1996) and not the entire inference. A summary of

Rubin’s (1987) terminology on MI entails three distinct stages or phases in

the process:

1. The missing values are filled in m times to create m complete data sets.

2. The m complete data sets are analyzed using standard statistical pro-

cedures.

3. The results from the m analyses are combined into a single inference.

The first and third tasks can be done using the SAS procedures PROC MI

and PROC MIANALYZE. The second task can be done using using any

standard statistical procedures.

The theory underlying MI is based on a Markov chain consisting of inde-

pendent draws from

Xmis ∼ P (Xmis|Xobs).

This distribution is often difficult to draw from in practice and an ap-

proximation is used whereby,

X
(t)
mis ∼ P (Xmis|Xobs, θ

(t)).

In order that the imputations be independent draws, the Markov chain must

be sampled at every kth iterate, where k is large enough so that the depen-

dence between values is negligible (Schafer, 1997). There are no strict rules
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for determining k but the graphical representation of Autocorrelation func-

tions (ACFs) can be useful.

Alternatively, multiple sequences can be formed from different starting

values and each subsampled once at the kth iteration, where k must be

large enough so that stationarity has occurred. Gelman and Rubin (1992)

and Schafer (1997) advocate this method of multiple sequences as the sim-

plest and most reliable way to assess the Monte Carlo error of an estimate.

Schafer (1997) also states that single chains are recommended when one is

certain that reliable convergence to a stationary distribution will occur, other-

wise multiple sequences with overdispersed starting values are recommended.

Multiple sequences can also be used as a diagnostic tool, since if results from

multiple sequences disagree, then the value of k is possibly too small and

valid inferences cannot be obtained (Geyer, 1992). Using multiple sequences

also means that it is possible to use a statistic, called the potential scale

reduction, as defined by Gelman and Rubin (1992), to monitor convergence.

This statistic is based on the idea that convergence can be studied by com-

paring variation between and within the simulated chains, until the within

variation is approximately equal to the between variation. That is, only

when the distribution of each sequence is close to the distribution of the

sequences mixed together can each be approximating the same target distri-

bution (Little and Rubin, 2002). For each scalar parameter estimate θ, from

D parallel chains, the draws, at each iteration t are denoted as θd,t where

d = 1, 2, . . . , D; t = 1, 2, . . . , T .
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The within and between variances are given respectively as

υ =
1

D

D∑
d=1

[
1

T − 1

T∑
t=1

(θd,t − θd.)
2

]

b =
T

D − 1

D∑
d=1

(θd. − θ..)
2

where

θd. =
1

T

T∑
t=1

θd,t and θ.. =
1

D

D∑
d=1

θd.

The test statistic is given by

√
R̂ =

√
T−1
T
υ + 1

T
b

υ
.

This potential scale reduction statistic decreases to one as T → ∞. Thus

when
√
R̂ is high then there is evidence that running the chains for fur-

ther iterations will be worthwhile. Once
√
R̂ is near one for all the scale

parameters, then subsequent draws can be treated as draws from the target

distribution (Gelman and Rubin, 1992). Little and Rubin (2002) recommend

an upper level 1.2 as “near” enough in general, and also that the scalar pa-

rameters are transformed to be approximately normal.

One of the major advantages of MI is that a small m value of typically

between three and five will generally yield efficient estimates and therefore

unless the fraction of missing data is high, producing and analysing a large

number of data sets is simply not advantageous (Schafer, 2002). There are

two reasons why only such a small m is necessary, firstly MI only relies on

simulation to solve the missing data aspect of the problem and although in-

creasing m would decrease the Monte Carlo error, this error is a relatively

small percentage of the overall uncertainty and therefore the gain in efficiency
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is small (Rubin, 1987). The second reason is that the rule for combining the

m complete data analyses explicitly take into account the Monte Carlo error

(Schafer, 1999).

Although only a small m is needed, Meng (1994) points out that in large

public-use databases, it is not uncommon for many different analyses to be

performed on the same imputed data sets, since the imputer and analyst are

generally different people. In order to avoid this Meng (1994) suggests that

some 30 imputed data sets are computed by the imputer, then each analyst,

in turn randomly chooses the number they require from this pool of imputed

data sets. Although this number may seem to be prohibitive, in the current

computing environment, storage and computing time are no longer problems.

The fact, that the two stages are computationally separate and thus dif-

ferent people may perform the imputation and analysis independently, is one

of MI’s advantages especially in the field of large sample surveys. However

this advantage may mean that the statistical assumptions or model used

for the imputation may somehow be incompatible with the later analysis

(Schafer, 1997). If the imputation model is more general, with fewer as-

sumptions, then MI will still yield valid inferences, but with a possible loss

of power because the additional generality may add variation among the

imputes, X
(1)
mis, X

(2)
mis, . . . , X

(m)
mis . Superefficiency, as termed by Rubin (1996)

occurs when the imputer makes more valid assumptions than the analyst,

then the MI estimate θ may be more precise than any estimate derived only

from the observed data and analyst’s model. Thus the resulting confidence

intervals are narrower and any hypothesis testing tends to be conservative.
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If the extra assumptions made by the imputer are not valid then like-

wise MI inferences may not be valid, for example, in the case if the imputer

assumes no-interaction, then if the analyst later tests for interaction, the

conclusion found may not be valid. In the case where, for convenience, non-

normal data is modelled as normal for the imputation, inference based on the

means for variance-covariance matrix, such as regression or principle compo-

nents analysis (PCA) will perform reasonably well, but analysis sensitive to

tail behaviour should not be performed. Schafer and Olsen (1998) propose

that the imputation model should be rich enough to preserve any associations

or relationships that might be the focus of later investigations.

Combining the m data sets

The basic rules for pooling the m imputed data sets first appeared in Rubin

(1987) and have been extended by several authors. The following summary

is taken from Molenberghs and Verbeke (2005, p. 513). After the data is

complete, suppose that inference about the parameter β is made by assuming

(β−β̂) ∼ N(0, U ).

The m within-imputation estimates for β are pooled to give the multiple

imputation estimate

β̂∗ =

∑M
m=1 β̂

m

M

Further it follows that one can make normal based inferences for β based

upon:

(β−β̂∗) ∼ N(0, V ).

where

V = W +

(
M + 1

M

)
B

293



and

W =

∑M
m=1 U

m

M

is the average within imputation variance, and

B =

∑M
m=1(β̂

m − β̂∗)(β̂m − β̂∗)
′

M − 1

is the between imputation variance.

Hypothesis testing

The asymptotic results as well as the the reference χ2 distribution depend

not only on the the sample size N but also on the number of imputations

m. Molenberghs and Verbeke (2005, p. 514) use the proposition of Li,

Raghunathan and Rubin (1991), who propose the use of the F distribution.

They use the following method to test the hypothesis:

H0 : θ = θ0

H1 : θ 6= θ0

They use the following method to calculate the p-values:

p = P (Fk,w > F )

where k is the length of the parameter vector θ, Fk,w is an F random variable

with k numerator and w denominator degrees of freedom, and

F =
(θ∗ − θ0)

′
W−1(θ∗ − θ0)

k(1 + r)

where w = 4 + (τ − 4)

[
1 +

(1 + 2τ−1)

r

]2

r =
1

k

(
1 +

1

M

)
tr(BW−1)

τ = k(M − 1)
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Here r is the average relative increase in variance due to nonresponse across

the components of θ. The limiting behaviour of this F variable is that if

M → ∞, then the reference distribution of F approaches an Fk,∞ = χ2/k

distribution. This procedure is applicable when one component, a subvector,

or a set of linear contrasts in θ is the subject of hypothesis testing. In the

case of a subvector or one component, the corresponding sub-matrices of B

and W are used in the formulae. For a set of linear contrasts, Lβ, one should

use the appropriately transformed covariance matrices: W̃ = LWL
′
, B̃ =

LBL
′
, and Ṽ = LV L

′
.

9.8.2 Methods for creating multiple imputations

The task of creating multiple imputations may be difficult to achieve as they

should properly reflect the uncertainty about the missing values given all

available information and as such the imputing model should be as objective

and general as possible, however the more general the model, the more com-

plex the computation and the more computing power and storage required.

One of the most widely used methods, which allows, in theory, the inclusion

of complex models is, the Data Augmentation (DA) algorithm which obtains

multiple imputations from the Markov chain with draws from

X
(t+1)
mis ∼ P (Xmis|Xobs, θ

(t))

where

θ(t+1) ∼ P (θ|Xobs, X
(t+1)
mis ).

However in multivariate data sets where there are non-linear relationships

between the variables, constructing a suitable model, programming the ran-

dom draws and assessing the convergence of a Markov chain may be time

consuming and complex (Little and Rubin, 2002). Simpler methods can thus
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be used, which approximate draws from

X
(t)
mis ∼ P (Xmis|Xobs).

Although such methods are usually less formally rigorous, they are generally

easier to implement and will yield approximately valid inferences when used

in conjunction with the MI rules. Little and Rubin (2002) note that infer-

ences obtained from the simpler methods may be more valid than inferences

obtained under the DA algorithm with an incorrect imputation model.

Improper multiple imputation

Improper MI as termed by Rubin (1987) does not propagate the uncertainty

in estimating θ, since the Markov chain is formed from draws of,

X
(t)
mis ∼ P (Xmis|Xobs, θ̃),

where θ̃ is some estimate of θ, often its MLE obtained from the final iteration

of the EM algorithm or from the CC analysis. Improper MI works well if

the amount of missing data is not too large but can lead to anti-conservative

confidence intervals.

Methods that propagate uncertainty

In order that the uncertainty about θ is propagated, Xmis can be drawn from

X
(t)
mis ∼ P (Xmis|Xobs, θ̃

(t)),

where

θ̃(t) ∼ P (θ|Xnew).

The matrix Xnew can be defined in one of several ways, including
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• A subset of the data, if such a subset can be found, having a monotone

data pattern.

• The completely observed cases.

• The entire data set with sufficient data values imputed, by one of the

simple methods, in order to make a monotone pattern.

The last method is intuitively best suited to situations where only a few data

values need to be imputed in order to obtain a monotone pattern.

In large data sets an alternative method can be used which is often prefer-

able to the above methods (Little and Rubin, 2002). If the MLE, θ̂ is available

together with some consistent estimate of its large sample variance-covariance

matrix, C(θ̂), then θ(t) can be drawn from

θ(t) ∼ N(θ̂, C(θ̂)).

Thus draw t has the form

θ(t) = θ̂ + z(t)

with z(t) ∼ N(0, C(θ̂)).

Regression methods

Rubin (1987) states that a regression model is fitted for each variable with

the missing values, with the previous variables as covariates. Based on the

resulting model, a new regression model is then fitted and used to impute

the missing values for each variable. Because the data set has a monotone

missing data pattern, the process is repeated sequentially for variables with

missing values (Molenberghs and Verbeke 2005, p. 515).
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Propensity score method

The propensity score, as defined by Rosenbaum and Rubin (1983), is the con-

ditional probability of an assignment to a particular treatment given a vector

of observed covariates. In this method the propensity score is generated for

each variable with missing values to indicate the probability of observations

being missing. The observations are then grouped based on these propen-

sity scores, and an approximate Bayesian bootstrap imputation is applied to

each group. This method does not take into account the correlations among

variables but only utilizes the covariate information that is associated with

whether the imputed variable values are missing. It is advantageous for in-

ferences about distributions about imputed variables but not appropriate for

analyses involving relationships between variables (Molenberghs and Verbeke

2005, p.515-516).

Methods that use pragmatic models

In practice it is not unusual that a set of conditional distributions can be

formulated relating each variable in turn, in a multiparameter data set, to

all other variables. These models are generally only reasonable when taken

individually and are rarely able to be described by a single joint distribution

(Little and Rubin, 2002). An iterative algorithm can however be developed

whereby for each variable’s model, suitable parameters are drawn, used to

estimate that variables missing values and then imputed. Such algorithms

cycle both through all variables in the data set as well as through iterations

until convergence has occurred.

There are other methods such as importance sampling, which is a refine-

ment to the above methods that propagate uncertainty, using MLE’s from
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bootstrapped sampling that involves the EM algorithm and MCMC methods

(Molenberghs and Verbeke, 2005). We can not consider all of these methods

but it is worthwhile mentioning their existence.

9.8.3 Software used for MI

Due to the explosions and extensions of the methods that have been devel-

oped for handling missing data, in the not so distant past, this trend has been

mirrored by an increase in the availability of statistical software that is either

specifically designed for the analysis of missing data or includes procedures

for handling missing data. Together with many freestanding, smaller, freely

downloadable programmes, the more mainstream statistical packages have

developed procedures for handling missing data. Some of the more popular

software include (out of a rather long list):

• NORM (version 2.03, Schafer 2001)

• Norm library versions, CAT, MIX, PAN (Schafer 2001)

• SPSS (version 13)

• SAS (version 9.1.3)

We will focus our attention on SAS (SPSS version 13 was used in earlier

sections regarding the EM Algorithm). SAS has got two procedures ‘PROC

MI’ and ‘PROC MIANALYZE’. There are three key sequences of tasks for

handling multiple imputation in SAS. These are the Imputation task fol-

lowed by the Analysis task and finally the Inference task. These are effected

using ‘PROC MI’ followed by any of the standard statistical procedures for

example, PROC GENMOD, and then finally using ‘PROC MIANALYZE’.
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PROC MI

PROC MI is used to generate the imputations. It will create m imputed

data sets from an input data set and store the imputed data sets physically

in a single data set with indicator variable IMPUTATION to separate the

imputed copies. Some of the options available within PROC MI statement

include ‘simple’ which gives the simple descriptive statistics and pairwise cor-

relations based on the complete cases from the input data set. The number

of imputations can be specified using the ‘nimpute=’. The default number is

5. The option ‘round=’ controls the number of decimal places in the imputed

values, with no rounding by default. If more than one number is specified,

one should use the ‘VAR’ statement and the specified number must corre-

spond to the number of variables in the ‘VAR’ statement. The option ‘seed=’

is used to specify a positive integer which is used by PROC MI to start the

pseudo-random number generator. The default number is generated from

the time and date of the computer’s clock.

The imputation task is carried out separately for each level of the variables

specified in the ‘BY’ statement. One can also choose between three different

methods using the option ‘method=’. When the missingness is confined to

dropout the ‘MONOTONE’ statement can be used, but does not have to

be used since the parametric regression ‘method=reg’ or the nonparametric

propensity method, ‘method=propensity’ can be used. For general missing-

ness patterns the ‘MCMC’ statement can be used, which is the default as well.

There are numerous options within the MCMC method such as ‘ngroups=’,

‘initial=’, ‘pmm=’ etc. The ‘propensity’ and ‘regression’ methods are used

for incomplete continuous outcomes, incomplete categorical outcomes can be

imputed by including them into the ‘CLASS’ statement, in addition to the

inclusion of the ‘VAR’ statement. In such a case the ‘MONOTONE’ option
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should be used and one can make use of the logistic regression and discrim-

inant analysis imputation by means of the options ‘logistic’ and ‘discrim’

respectively.

With the default ‘initial=EM’ option the procedure uses the means and stan-

dard deviations from available cases as the initial estimates for the EM Al-

gorithm. The final estimates after applying the EM algorithm are then used

to start the MCMC process. One can also use a SAS input data set as the

initial estimates of the mean and covariance matrix after each imputation

using ‘initial=input name’ option. The option ‘niter=’ controls the number

of iterations between imputations in a single chain with the default being

100.

PROC MIANALYZE

PROC MIANALYZE combines the m inferences into a single one. Param-

eter and standard error are passed on using the options ‘data=’, ‘parms=’,

‘covb=’, ‘xpxi=’ to the PROC MIANALYZE statement. The option ‘data=’

data sets of the types COV, CORR or EST can also be passed on. If one

wants to pass on parameter estimates and variance-covariance matrices, it

is better to use ‘parms=’ and ‘covb=’ or ‘parms=’ and ‘xpxi=’. Within

the PROC MIANALZE statement one can also get the within-imputation,

between-imputation and total covariance matrices using the ‘wcov’, ‘bcov’

and ‘tcov’. The parameter or effects for which multiple imputation infer-

ence is needed can be passed on using the MODELEFFECTS statement

(previously the VAR statement). Categorical effects can be handled using

the CLASS statment by creating appropriate dummy variables. The ‘TEST’

statement is used to test hypotheses about linear combinations of the pa-

rameters.
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9.8.4 Multiple Imputation by fully conditional speci-

fication or by chained equations

The goal of multiple imputation, as discussed earlier on in Section 8.12, is to

provide valid inference for the statistical analysis of missing data. There are,

according to van Buuren (2007) two approaches to imputation of multivariate

data namely joint modelling (JM) and fully conditional specification (FCS).

The FCS approach is also termed multiple imputation via chained equations

(MICE). Both the FCS and JM approaches have attractive features but also

certain disadvantages. JM is theoretically sound and is based on parametric

statistical theory. However the JM approach may incur bias in the sense

that the joint model may lack the flexibility needed to represent typical

data features. van Buuren (2007) states that FCS or multiple imputation

using chained equations is a semi parametric and flexible alternative that

specifies the multivariate model by a series of conditional models, one for

each incomplete variable. FCS has tremendous flexibility and is easy to

apply but its statistical properties are difficult to establish. We firstly look

at some of the univariate imputation methods before describing the theory

of FCS and the sofware, MICE, that was used for our imputation to handle

the dropout in the Kilifi data set. The following table, taken directly from

van Buuren (2007, p. 226), is a summary of the imputation methods in

univariate missing data problems.

Rubin and Schafer (1990) first elaborate on the JM approach. The JM

approach partitions the observations into groups of identical missing data

patterns and imputes the missing entries within each pattern according to

a joint model for X, Y and R (X, Y and R will be defined below). We

will not describe the JM approach as it was not used to handle the dropout

values in the Kilifi data set, the FCS approach was used and we now describe
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Type of variable Method References

Ignorable methods

Continuous Linear regression Rubin (1987)
Schenker and Taylor (1986)

Linear regression + empirical residual Rubin (1987)
Schenker and Taylor (1986)

Predictive mean matching Rubin (1986)
Little(1988)
Schenker and Taylor (1986)

Nonlinear regression Harrell (2001)
Truncated normal model Schafer (1997, p. 204)

Binary Logistic regression Rubin (1987, p.169)
Probit regression Albert and Chib (1993)
Measurement error and reporting model Yucel and Zaslavsky (2005)

Categorical Polytomous logistic regression Brand et al. (2003)
Discriminant analysis Brand (1999)

Semi-continuous Two step: logistic + linear Rubin (1987, p. 180)
General location model

Counts Poisson regression Raghunathan et al.(2001)
General Approximate Bayesian bootstrap Rubin (1987)

Parzen et al. (2005)
Hot deck Reily and Pepe (1997)
Machine learning methods Junninen (2004)
Polya tree Paddock (2002)

Nonignorable methods

Continuous Normal selection model Heckman (1976)
Logit selection model Greenlees et al. (2002)

Censored data Data augmentation Wei and Tanner (1991)
Clustered censored data GEE Pan and Connett (2001)
Interval censored Proportional hazard model Goetghebeur and Ryan (2000)

Pan (2000)
Limited dependent variables DeFries-Fulker model Bechger et al. (2002)
Below detection limit Custom model Hopke et al. (2001)

Lubin et al. (2004)
Pedigree relations Custom model Fridley (2003)
Bracketed responses Custom model Heeringa et al. (2002)

Table 9.22: Overview of imputation methods in univariate missing data prob-

lems

the method, following van Buuren (2007, p. 227). First Table 9.22 gives an

overview of imputation methods in univariate data problems.

The basic idea of FCS is quite old and is known by a variety of names that

include: stochastic relaxation, variable-by-variable imputation, regression

switching, sequential regressions, ordered pseudo-Gibbs sampler, partially

incompatible MCMC, iterated univariate imputation and chained equa-

tions.
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We define our notation, as follows: Let Yj be one of k incomplete random

variables where j = 1, . . . , k and let Y = (Y1, . . . , Yk). The observed and

missing parts of Yj are denoted, as previously, as Y obs
j and Y mis

j respectively,

so that Y obs
j = (Y obs

1 , . . . , Y obs
k ) and Y mis

j = (Y mis
1 , . . . , Y mis

k ) stand for the

observed and missing data in Y . Let Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yk) de-

note the collection of the k − 1 variables in Y except Yj. Let Rj be the

response indicator of Yj, with Rj = 1 if Yj is observed and Rj = 0 if Yj

is missing. Let R = (R1, . . . , Rk) and R−j = (R1, . . . , Rj−1, Rj+1, . . . , Rk).

Let X = (X1, . . . , Xl be a set of l complete covariates on the same subjects.

We also assume that the observations in Y,X and R correspond to a simple

random sample from the population of interest.

According to van Buuren (2007, p. 227) the FCS approach is to impute the

data on a variable-by-variable basis by specifying an imputation model per

variable. FCS is an attempt to define P (Y,X,R|θ) by specifying a condi-

tional density P (Yj|X, Y−j, R, θj) for each Yj. This density is used to impute

Y mis
j given X, Y−j and R. Starting from simple guessed values, imputation

under FCS is done by iterating over all conditionally specified imputation

models. The building blocks of the methods are listed in Table 9.22. One

iteration consists of one cycle through all Yj. If the joint distribution defined

by the specified conditional distribution exists, then this process is a Gibbs

sampler.

FCS allows great flexibility in creating multivariate models. One can eas-

ily specify models that are outside any known standard multivariate density

P (Y,X,R|θ). FCS can use specialized imputation methods that are difficult

to formulate as a part of a multivariate density P (Y,X,R|θ). Imputation

methods that preserve unique features in the data, such as bounds and skip

patterns can be incorporated. It also must be said that it is easy to maintain
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constraints between different variables in order to avoid logical inconsisten-

cies in the imputed data. Such constraints would be difficult to formulate in

terms of the multivariate density P (Y,X,R|θ). Each conditional density has

to be specified separately, hence some modelling effort may be required on

the part of the user.

The software that is available for creating multiple imputations by FCS in-

clude FRITZ, IVEWARE in SAS, HERMES missing data engine, MICE in

S-PLUS and R and ICE, an implementation of MICE in Stata.

9.9 Application to the Kilifi RSV data

The dropout values in the Kilifi data set were imputed using MICE in S-Plus.

The following table summarizes the type of imputation that was done per

variable.

Variable Type Method MICE command
Age categorical polytomous regression polyreg

rsv status binary logistic regression logreg
actipass binary logistic regression logreg

dt continuous predictive mean matching or linear regression pmm
prev continuous predictive mean matching or linear regression pmm

timemonth continuous predictive mean matching or linear regression pmm

Table 9.23: Overview of imputation methods used for the Kilifi data in MICE

After the MICE software was run the imputed data sets were pooled

into a final one and this data set was re-analysed using GEEs, GLMM’s and

the force of infection was re-estimated for the months and overall using the

likelihood method and the generalized linear model methods. The results are

summarized and presented in tables that follow.
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MICE Generalized Estimating Equations-GEEs

Correlation Type Source DF Chi-Square Pr > Chi-Sq

Exchangeable age 12 33.93 0.0007

dt 1 1.65 0.1986

prev 1 22.42 < .0001

timemonth 1 4.63 0.0314

actipass 1 51.27 <.0001

Independent age 12 33.98 0.0007

dt 1 1.69 0.1938

prev 1 22.59 < .0001

timemonth 1 4.48 0.0343

actipass 1 51.08 <.0001

AR(1) age 12 33.85 0.0007

dt 1 1.70 0.1925

prev 1 22.79 < .0001

timemonth 1 4.49 0.0341

actipass 1 50.50 <.0001

Table 9.24: MICE-Score statistics for Type III GEE

Table 9.24 shows the type III score statistics indicate that the age, prev

and actipass variables to be significant at the 5% level. The magnitude of

the estimates are quite similar in the the three correlation structures.
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Exchangeable Independent AR(1)

Parameter Estimate Standard Error Pr> |Z| Estimate Standard Error Pr> |Z| Estimate Standard Error Pr> |Z|

Intercept -3.6386 0.7990 < .0001 -3.6708 0.8084 < .0001 -3.6743 0.8116 < .0001

age 0 -1.2457 0.8495 0.1425 -1.2135 0.8556 0.1561 -1.2173 0.8599 0.1569

age 1 -1.0113 0.6442 0.1164 -0.9919 0.6525 0.1285 -0.987 0.6553 0.132

age 2 -0.8063 0.6107 0.1867 -0.7876 0.6177 0.2023 -0.7855 0.6204 0.2055

age 3 -0.6351 0.5705 0.2656 -0.6195 0.5763 0.2824 -0.6157 0.5787 0.2874

age 4 -0.9 0.5605 0.1083 -0.8851 0.5648 0.1171 -0.8816 0.5672 0.1201

age 5 -2.3722 0.827 0.0041 -2.3732 0.8342 0.0044 -2.3574 0.8342 0.0047

age 6 -0.9628 0.5798 0.0968 -0.9473 0.5812 0.1031 -0.9417 0.5829 0.1062

age 7 -1.7064 0.7636 0.0254 -1.7027 0.7665 0.0263 -1.7197 0.7753 0.0266

age 8 -0.6609 0.4432 0.136 -0.6534 0.444 0.1411 -0.6454 0.4446 0.1466

age 9 -0.3512 0.3627 0.3329 -0.3467 0.3635 0.3401 -0.3511 0.3655 0.3367

age 10 0.4163 0.2562 0.1042 0.4208 0.2567 0.1012 0.4245 0.2576 0.0994

age 11 -0.095 0.2449 0.6979 -0.0955 0.2451 0.6969 -0.0971 0.246 0.6931

age 12 0 0 . 0 0 . 0 0 .

dt 0.0092 0.0053 0.0807 0.0093 0.0052 0.0765 0.0093 0.0052 0.0751

prev 30.9359 5.2662 < .0001 31.0184 5.2754 < .0001 31.07 5.2918 < .0001

timemonth -0.149 0.0583 0.0106 -0.1467 0.0591 0.013 -0.1466 0.0593 0.0135

actipass 0 1.4236 0.1388 < .0001 1.4233 0.1394 < .0001 1.4188 0.1395 < .0001

actipass 1 0 0 . 0 0 . 0 0 .

Table 9.25: MICE-Model based standard errors and estimates

The algorithm for the unstructured correlation matrix option did not

converge and the results are omitted. The results of the model based esti-

mates and standard errors are not very different between the three correlation

structures. The magnitude of the estimates are somewhat similar. Moreover,

we see that the model based and the empirical parameter estimates in Ta-

bles refvelo and 9.26 are not very different in magnitude. This is a feature

of GEE because the choice between naive and empirical only affects the esti-

mation of the covariance matrix of the regression parameter β. The output

for the correlation between two repeated measurement for the exchangeable
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Exchangeable Independent AR(1)

Parameter Estimate Standard Error Pr> |Z| Estimate Standard Error Pr> |Z| Estimate Standard Error Pr> |Z|

Intercept -3.6386 0.8943 < .0001 -3.6708 0.9079 < .0001 -3.6743 0.9127 < .0001

age 0 -1.2457 1.0429 0.2323 -1.2135 1.0468 0.2463 -1.2173 1.0494 0.2461

age 1 -1.0113 0.7019 0.1496 -0.9919 0.7122 0.1637 -0.987 0.7155 0.1678

age 2 -0.8063 0.6766 0.2333 -0.7876 0.6864 0.2512 -0.7855 0.6901 0.2551

age 3 -0.6351 0.6287 0.3124 -0.6195 0.6377 0.3314 -0.6157 0.6413 0.337

age 4 -0.9 0.6227 0.1484 -0.8851 0.6312 0.1609 -0.8816 0.635 0.1651

age 5 -2.3722 0.8217 0.0039 -2.3732 0.8342 0.0044 -2.3574 0.8332 0.0047

age 6 -0.9628 0.6493 0.1382 -0.9473 0.6532 0.147 -0.9417 0.6546 0.1503

age 7 -1.7064 0.7875 0.0302 -1.7027 0.7915 0.0315 -1.7197 0.7965 0.0308

age 8 -0.6609 0.452 0.1437 -0.6534 0.4524 0.1486 -0.6454 0.4526 0.1538

age 9 -0.3512 0.4236 0.407 -0.3467 0.4232 0.4126 -0.3511 0.424 0.4076

age 10 0.4163 0.2784 0.1348 0.4208 0.2789 0.1313 0.4245 0.2793 0.1286

age 11 -0.095 0.2456 0.6987 -0.0955 0.2468 0.6989 -0.0971 0.2479 0.6953

age 12 0 0 . 0 0 . 0 0 .

dt 0.0092 0.0062 0.1362 0.0093 0.0061 0.1301 0.0093 0.0061 0.1284

prev 30.9359 5.3218 < .0001 31.0184 5.3155 < .0001 31.07 5.3278 < .0001

timemonth -0.149 0.0642 0.0203 -0.1467 0.0652 0.0243 -0.1466 0.0655 0.0252

actipass 0 1.4236 0.1479 < .0001 1.4233 0.1484 < .0001 1.4188 0.1487 < .0001

actipass 1 0 0 . 0 0 . 0 0 .

Table 9.26: MICE-Empirical based standard errors and estimates

correlation matrix was found to be −0.00035. A possible reason why the

unstructured correlation matrix did not attain convergence is because the

observations can not be aligned. At the 5% significance level there were dif-

ferences between age group 5 and 12 and age group 7 and 12 with respect

to influencing whether a child is infected or not. The prev variable and a

difference between whether a child was actively or passively sampled (acti-

pass 0 versus actipass 1) was also significant at the 5% level in influencing

whether a child is infected or not. These significant differences was present

for all 3 correlation structures and are denoted by p-values less than 0.05. It
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is also worthwhile noting that the exchangeable and independent correlation

structures have their empirical standard errors slightly closer to the model

based standard errors than the AR(1) correlation structure.

MICE-Estimate the force of infection and the prevalence rate

The parameters λ and ν were then estimated using the Fisher’s scoring

method to yield the following estimates along with their standard errors:

Estimator Estimate Standard Error

λ̂ 0.00092 0.000007334

ν̂ 0.49634 0.005585

Table 9.27: MICE-Parameter Estimates

Hence a 95% confidence interval for λ is (0.000905, 0.000933) and likewise for

ν is (0.4854, 0.5073). Table9.27 gives the estimates of the force of infection

and rate of recovery using the maximum likelihood approach and the esti-

mates are consistent to those from the available data.

Using the GLM approach we found the following estimates:

Estimator Estimate Standard Error

λ̂ 0.001202 0.0000829

ν̂ 0.62983 0.088366

Table 9.28: MICE-GLM Parameter Estimates

Hence a 95% confidence interval for λ is (0.0010398, 0.001365) and likewise

for ν is (0.4566, 0.8030). Table 9.28 gives the estimates of λ and ν, but is

worthwhile noting that the estimate of ν is slightly higher than the maxi-

mum likelihood approach.
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The monthly force of infection together with the plots are given in Table 9.29

and Figure 9.1.

Exponentiation Delta Method

Month Lambda 95% Confidence Interval 95% Confidence Interval

λ̂2 0.0045 0.0027 0.0075 0.0022 0.0068

λ̂3 0.0033 0.0023 0.0048 0.0021 0.0045

λ̂4 0.0033 0.0023 0.0047 0.0021 0.0045

λ̂5 0.0011 0.0006 0.0019 0.0004 0.0017

λ̂6 0.0005 0.0002 0.0013 0.0000 0.0010

λ̂7 0.0007 0.0003 0.0015 0.0001 0.0012

λ̂8 0.0002 0.0001 0.0008 0.0001 0.0005

λ̂9 0.0000 0.0000 0.0000 0.0000 0.0000

λ̂10 0.0002 0.0001 0.0008 0.0001 0.0005

λ̂11 0.0016 0.0011 0.0024 0.0010 0.0022

λ̂12 0.0019 0.0014 0.0025 0.0014 0.0024

λ̂13 0.0008 0.0006 0.0011 0.0005 0.0011

Table 9.29: MICE-Monthly estimates of the force of infection and confidence

Intervals

Once again, we see the time effect of the Respiratory Syncytial Virus, with

peaks and troughs in the monthly estimates as depicted in Figure 9.1.
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Figure 9.1: MICE-The force of infection in months together with 95% confi-

dence intervals using the exponentiated and delta methods.
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MICE-Generalized Linear Mixed Model

In this section MICE was combined with GLMM approach. The generalized

linear mixed model was fitted yielding results in the tables below. Different

covariance structure models were fitted: The solution for the fixed effects

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.000 0.000

Residual(VC) 1.1233 0.01303

Compound symmetry Var(child) 0.000 0.000

CS(child) -6.36E-6 2.042E-6

Residual(VC) 1.1388 0.01330

Power Var(child) 0.000 0.000

SP(POW)(child) 0.000 0.000

Residual(VC) 1.1233 0.01303

Spherical Var(child) 0.000 0.000

SP(SPH)(child) 0.000 0.000

Residual(VC) 1.1233 0.01303

Gaussian Var(child) 0.000 0.000

SP(GAU)(child) 0.000 0.000

Residual(VC) 1.1233 0.01303

Table 9.30: MICE-Covariance Parameter Estimates random effects model

for all the different covariance structure models are given in Tables 9.31 and

9.32.

Here again we find the prev and actipass variables are significant at the 5%

level and the age variable is tending towards significance. Furthermore there
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Effect Estimate Standard Error Pr> |t|
Intercept -3.6708 0.8568 < .0001

age 0 -1.2135 0.9068 0.1808

age 1 -0.9919 0.6916 0.1515

age 2 -0.7876 0.6546 0.2289

age 3 -0.6195 0.6108 0.3105

age 4 -0.8851 0.5986 0.1393

age 5 -2.3732 0.8841 0.0073

age 6 -0.9473 0.616 0.1241

age 7 -1.7027 0.8124 0.0361

age 8 -0.6534 0.4706 0.165

age 9 -0.3467 0.3852 0.3681

age 10 0.4208 0.2721 0.122

age 11 -0.09548 0.2598 0.7133

age 12 0 . .

dt 0.009293 0.005559 0.0946

prev 31.0184 5.5911 < .0001

actipass 0 1.4233 0.1478 < .0001

actipass 1 0 . .

timemonth -0.1467 0.06259 0.0191

Table 9.31: MICE-Solution for the fixed effects random effects model

Effect F-Value P-value

Age 1.77 0.0464

Dt 2.79 0.0946

Prev 30.78 < 0.0001

Actipass 92.77 < 0.0001

Timemonth 5.50 0.0191

Table 9.32: MICE-Type III Effects

is a significant difference in the age 5, 7 and age 12 groups with respect to

whether a child is infected or not.
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The estimates of the fixed effects for the random effects model with the

compound symmetry covariance structure is slightly different from the above

estimates:

Effect Estimate Standard Error Pr> |t|
Intercept -3.611 0.8455 < .0001

age 0 -1.2565 0.894 0.1599

age 1 -1.0152 0.6773 0.1339

age 2 -0.8191 0.6435 0.2031

age 3 -0.6506 0.6025 0.2802

age 4 -0.9092 0.5932 0.1254

age 5 -2.3972 0.8858 0.0068

age 6 -0.9794 0.6184 0.1133

age 7 -1.7025 0.8133 0.0363

age 8 -0.6576 0.4702 0.1619

age 9 -0.336 0.3847 0.3825

age 10 0.4209 0.2736 0.1239

age 11 -0.0973 0.2628 0.7112

age 12 0 . .

dt 0.009008 0.005622 0.1091

prev 30.5458 5.6195 < .0001

actipass 0 1.4295 0.1486 < .0001

actipass 1 0 . .

timemonth -0.1521 0.06122 0.013

Table 9.33: MICE-Compound symmetry solution for the fixed effects

Effect F-Value P-value

Age 1.77 0.0464

Dt 2.57 0.1091

Prev 29.55 < 0.0001

Actipass 92.53 < 0.0001

Timemonth 6.17 0.013

Table 9.34: MICE-Compound symmetry Type III Effects
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The random intercept model was also fitted with the following results: The

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.000 0.000

Residual(VC) 1.1233 0.01303

Compound symmetry Var(child) 6.746E-07 0.1077

CS(child) -0.2760 .

Residual(VC) 1.1303 0.01325

Power Var(child) 0.000 0.000

SP(POW)(child) 0.000 0.000

Residual(VC) 1.1233 0.01303

Spherical Var(child) 0.000 0.000

SP(SPH)(child) 0.000 0.000

Residual(VC) 1.1233 0.01303

Gaussian Var(child) 0.000 0.000

SP(GAU)(child) 0.000 0.000

Residual(VC) 1.1233 0.01303

Table 9.35: MICE-Random Intercept Covariance Parameter Estimates

solution for the fixed effects for all the different covariance structure models

are:
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Effect Estimate Standard Error Pr> |t|
Intercept -3.6708 0.8568 < .0001

age 0 -1.2135 0.9068 0.1808

age 1 -0.9919 0.6916 0.1515

age 2 -0.7876 0.6546 0.2289

age 3 -0.6195 0.6108 0.3105

age 4 -0.8851 0.5986 0.1393

age 5 -2.3732 0.8841 0.0073

age 6 -0.9473 0.616 0.1241

age 7 -1.7027 0.8124 0.0361

age 8 -0.6534 0.4706 0.165

age 9 -0.3467 0.3852 0.3681

age 10 0.4208 0.2721 0.122

age 11 -0.09548 0.2598 0.7133

age 12 0 . .

dt 0.009293 0.005559 0.0946

prev 31.0184 5.5911 < .0001

actipass 0 1.4233 0.1478 < .0001

actipass 1 0 . .

timemonth -0.1467 0.06259 0.0191

Table 9.36: MICE-Random Intercept solution for the fixed effects

Effect F-Value P-value

Age 1.77 0.0464

Dt 2.79 0.0946

Prev 30.78 < 0.0001

Actipass 92.77 < 0.0001

Timemonth 5.50 0.0191

Table 9.37: MICE-Type III Effects for random intercept model

Here again we find the prev and actipass variables are significant at the 5%

level and the age variable is tending towards significance. Furthermore there

is a difference in the age 5, 7 and age 12 groups with respect to whether a
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child is infected or not. The estimates of the fixed effects for the random

effects model with the compound symmetry covariance structure is slightly

different from the above estimates. The results under the CS structure are

given in Tables 9.38 and 9.39.

Effect Estimate Standard Error Pr> |t|
Intercept -3.611 0.8455 < .0001

age 0 -1.2565 0.894 0.1599

age 1 -1.0152 0.6773 0.1339

age 2 -0.8191 0.6435 0.2031

age 3 -0.6506 0.6025 0.2802

age 4 -0.9092 0.5932 0.1254

age 5 -2.3972 0.8858 0.0068

age 6 -0.9794 0.6184 0.1133

age 7 -1.7025 0.8133 0.0363

age 8 -0.6576 0.4702 0.1619

age 9 -0.336 0.3847 0.3825

age 10 0.4209 0.2736 0.1239

age 11 -0.0973 0.2628 0.7112

age 12 0 . .

dt 0.009008 0.005622 0.1091

prev 30.5458 5.6195 < .0001

actipass 0 1.4295 0.1486 < .0001

actipass 1 0 . .

timemonth -0.1521 0.06122 0.013

Table 9.38: MICE-Random intercept model Compound symmetry solution

for the fixed effects of the Optimal Model
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Effect F-Value P-value

Age 1.77 0.0464

Dt 2.57 0.1091

Prev 29.55 < 0.0001

Actipass 92.53 < 0.0001

Timemonth 6.17 0.013

Table 9.39: MICE-Random intercept model Compound symmetry Type III

Effects for Optimal Model

9.9.1 Results for using LOCF to handle the dropout

Using LOCF, we fitted GEE models with the different correlation structure

and the results are summarized in Tables 9.40 and 9.41 below:
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Exchangeable Independent AR(1)

Parameter Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z|

Intercept -5.024 1.239 < .0001 -4.917 1.083 < .0001 -5.285 1.252 < .0001

age 0 -0.739 1.013 0.466 -0.887 0.897 0.323 -0.942 1.123 0.401

age 1 -0.679 0.897 0.449 -0.706 0.772 0.360 -0.313 0.926 0.736

age 2 -0.344 0.859 0.689 -0.617 0.748 0.410 -0.127 0.888 0.887

age 3 -0.247 0.802 0.758 -0.407 0.702 0.562 0.145 0.830 0.861

age 4 -0.623 0.766 0.416 -0.643 0.685 0.348 -0.540 0.810 0.505

age 5 -2.533 0.994 0.011 -2.448 0.920 0.008 -1.965 0.986 0.046

age 6 -2.338 0.882 0.008 -2.639 0.863 0.002 -1.447 0.780 0.064

age 7 -2.999 1.164 0.010 -2.857 1.063 0.007 -2.425 1.009 0.016

age 8 -1.514 0.411 0.000 -1.574 0.383 < .0001 -0.878 0.413 0.034

age 9 -1.287 0.314 < .0001 -1.574 0.299 < .0001 -1.200 0.388 0.002

age 10 -0.272 0.235 0.247 -0.213 0.212 0.317 -0.234 0.292 0.424

age 11 -1.268 0.263 < .0001 -1.285 0.241 < .0001 -0.786 0.299 0.009

age 12 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

dt 0.006 0.004 0.138 0.004 0.004 0.252 0.008 0.004 0.045

prev 48.958 6.275 < .0001 48.263 6.011 < .0001 42.704 6.346 < .0001

timemonth -0.046 0.091 0.615 -0.041 0.079 0.605 -0.006 0.092 0.951

actipass 0 2.707 0.147 < .0001 2.628 0.125 < .0001 2.188 0.142 < .0001

actipass 1 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

Table 9.40: LOCF-Model based standard errors and estimates

Exchangeable Independent AR(1)

Parameter Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z| Est. Std. Error Pr> |Z|

Intercept -5.024 1.466 0.001 -4.917 1.358 0.000 -5.285 1.416 0.000

age 0 -0.739 1.428 0.605 -0.887 1.396 0.525 -0.942 1.484 0.526

age 1 -0.679 1.224 0.579 -0.706 1.121 0.529 -0.313 1.197 0.794

age 2 -0.344 1.160 0.767 -0.617 1.070 0.564 -0.127 1.161 0.913

age 3 -0.247 1.109 0.824 -0.407 1.041 0.696 0.145 1.069 0.892

age 4 -0.623 1.010 0.537 -0.643 0.951 0.499 -0.540 1.036 0.602

age 5 -2.533 1.451 0.081 -2.448 1.318 0.063 -1.965 1.106 0.076

age 6 -2.338 1.016 0.021 -2.639 1.035 0.011 -1.447 0.929 0.119

age 7 -2.999 1.333 0.024 -2.857 1.135 0.012 -2.425 0.955 0.011

age 8 -1.514 0.832 0.069 -1.574 0.749 0.036 -0.878 0.733 0.231

age 9 -1.287 0.718 0.073 -1.574 0.748 0.035 -1.200 0.706 0.089

age 10 -0.272 0.575 0.636 -0.213 0.531 0.689 -0.234 0.599 0.696

age 11 -1.268 0.599 0.034 -1.285 0.547 0.019 -0.786 0.593 0.185

age 12 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

dt 0.006 0.009 0.523 0.004 0.010 0.664 0.008 0.007 0.242

prev 48.958 8.202 < .0001 48.263 8.623 < .0001 42.704 7.194 < .0001

timemonth -0.046 0.100 0.648 -0.041 0.091 0.652 -0.006 0.096 0.953

actipass 0 2.707 0.244 < .0001 2.628 0.250 < .0001 2.188 0.184 < .0001

actipass 1 0.000 0.000 . 0.000 0.000 . 0.000 0.000 .

Table 9.41: LOCF-Empirical based standard errors and estimates

The results show that at the 5% significance level, ‘age 5’ versus ‘age 12’,

‘age 6’ versus ‘age 12’, ‘age 7’ versus ‘age 12’,‘age 8’ versus ‘age 12’,‘age 9’

versus ‘age 12’,‘age 11’ versus ‘age 12’,‘prev’ and ‘actipass 0 versus actipass
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1’ are all significant with respect to the disease state of the child for both

the exchangeable and independent correlation structures. However for the

AR(1) structure, all the same variables stated above (‘age 5’ versus ‘age 12’,

‘age 7’ versus ‘age 12’,‘age 8’ versus ‘age 12’,‘age 9’ versus ‘age 12’,‘age 11’

versus ‘age 12’,‘prev’ and ‘actipass 0 versus actipass 1’) are significant except

for‘age 6’ versus ‘age 12’. There are not huge differences between the model

based and empirical standard errors for the exchangeable and independent

correlation structures, however for the AR(1) the differences between the

standard errors are slightly bigger. The LOCF-GEE give more significant

individual effects than the MICE-GEE due to the fact that LOCF artificially

inflates the correlation between successive time point.
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Correlation Type Source DF Chi-Square Pr > Chi-Sq

Exchangeable age 12 25.66 0.0120

dt 1 0.26 0.6128

prev 1 18.28 < .0001

timemonth 1 0.23 0.6284

actipass 1 36.90 < .0001

Independent age 12 22.76 0.029

dt 1 0.15 0.7012

prev 1 16.01 < .0001

timemonth 1 0.20 0.6514

actipass 1 29.67 < .0001

AR(1) age 12 26.46 0.0092

dt 1 0.69 0.4055

prev 1 16.45 < .0001

timemonth 1 0.00 0.9552

actipass 1 54.02 < .0001

Table 9.42: LOCF-Score statistics for Type III GEE

The type III score statistics show that the age, prev and actipass variables

to be significant at the 5% level. The magnitude of the estimates are similar

in the the exchangeable and independent correlation structures but different

when compared to the AR(1) correlation structure. A random intercept and

random effects model was also fitted using LOCF and yielded the following

results shown in Table 9.43.
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LOCF-Random intercept model

Different covariance structure models were again fitted: The solution for the

Covariance Structure Estimate Standard Error

Unstructured UN(1,1) No convergence No convergence

Residual(VC) No convergence No convergence

Compound symmetry Var(child) 0.005947 0.2598

CS(child) 2.2205 .

Residual(VC) 0.9475 0.0111

Power Var(child) 2.2263 0.2598

SP(POW)(child) 1.000 .

Residual(VC) 0.9475 0.0111

Spherical Var(child) 2.2263 0.2598

SP(SPH)(child) 94.6551 .

Residual(VC) 0.9475 0.0111

Gaussian Var(child) 2.2263 0.2598

SP(GAU)(child) 7.6551 .

Residual(VC) 0.9475 0.0111

Table 9.43: Covariance Parameter Estimates in a random intercept -LOCF

fixed effects for all the different covariance structure models are: The results

show that at the 5% significance level, ‘age 5’ versus ‘age 12’, ‘age 6’ versus

‘age 12’, ‘age 7’ versus ‘age 12’,‘age 8’ versus ‘age 12’,‘age 9’ versus ‘age

12’(tending towards significance),‘age 11’ versus ‘age 12’,‘prev’ and ‘actipass

0 versus actipass 1’ are all significant with respect to the disease state of

the child for all correlation structures. The results for the random intercept

model show that the , ‘age’,‘prev’ and ’actipass’ variables are significant at

the 5% level.

322



Effect Estimate Standard Error Pr> |t|
Intercept -5.150 1.375 0.000

age 0 -0.448 1.138 0.694

age 1 -0.546 1.033 0.597

age 2 -0.009 0.969 0.993

age 3 0.133 0.902 0.883

age 4 -0.287 0.849 0.735

age 5 -2.173 1.025 0.034

age 6 -1.938 0.892 0.030

age 7 -2.640 1.173 0.024

age 8 -1.076 0.470 0.022

age 9 -0.714 0.372 0.055

age 10 -0.163 0.284 0.567

age 11 -0.886 0.286 0.002

age 12 0.000 . .

dt -0.003 0.005 0.616

prev 51.558 6.479 < .0001

actipass 0 2.612 0.138 < .0001

actipass 1 0.000 . .

timemonth -0.048 0.101 0.632

Table 9.44: Solution for the fixed effects of the random intercept model -

LOCF

Effect F-Value P-value

Age 3.76 < .0001

Dt 0.25 0.6163

Prev 63.33 < 0.0001

Actipass 360.65 < 0.0001

Timemonth 0.23 0.6321

Table 9.45: Type III Effects for random intercept model-LOCF

LOCF-Random effects model

Different covariance structure models were again fitted: The solution for the

fixed effects for all the different covariance structure models are: The results
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Covariance Structure Estimate Standard Error

Unstructured UN(1,1) 0.000078 0.000012

Residual(VC) 1.0147 0.01196

Compound symmetry Var(child) 2.878E-7 0.000012

CS(child) 0.000077 .

Residual(VC) 1.0147 0.01196

Power Var(child) 0.000078 0.000012

SP(POW)(child) 1.000 .

Residual(VC) 1.0147 0.01196

Spherical Var(child) 0.000078 0.000012

SP(SPH)(child) 84.7272 .

Residual(VC) 1.0147 0.01196

Gaussian Var(child) 0.000078 0.000012

SP(GAU)(child) 5.9208 .

Residual(VC) 1.0147 0.01196

Table 9.46: Covariance Parameter Estimates for random effects model-LOCF

show that at the 5% significance level, ‘age 5’ versus ‘age 12’, ‘age 6’ ver-

sus ‘age 12’, ‘age 7’ versus ‘age 12’,‘age 8’ versus ‘age 12’,‘age 9’ versus ‘age

12’(tending towards significance),‘age 11’ versus ‘age 12’,‘prev’ and ‘actipass

0 versus actipass 1’ are all significant with respect to the disease state of

the child for all correlation structures. The results, not surprisingly for the

random effects model are the same as the random intercept model and show

that, ‘age’,‘prev’ and ’actipass’ variables are significant at the 5% level.
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Effect Estimate Standard Error Pr> |t|
Intercept -5.622 1.451 0.000

age 0 -0.179 1.217 0.883

age 1 -0.241 1.102 0.827

age 2 0.013 1.043 0.990

age 3 0.219 0.963 0.820

age 4 -0.189 0.911 0.836

age 5 -2.071 1.087 0.057

age 6 -1.990 0.952 0.037

age 7 -2.726 1.250 0.029

age 8 -1.215 0.489 0.013

age 9 -0.872 0.370 0.018

age 10 -0.345 0.269 0.200

age 11 -1.200 0.271 < .0001

age 12 0.000 . .

dt -0.005 0.005 0.397

prev 52.101 6.744 < .0001

actipass 0 2.608 0.137 < .0001

actipass 1 0.000 . .

timemonth 0.011 0.110 0.921

Table 9.47: Solution for the fixed effects for the random effects model -LOCF

Effect F-Value P-value

Age 4.12 < .0001

Dt 0.72 0.3973

Prev 59.69 < 0.0001

Actipass 360.34 < 0.0001

Timemonth 0.01 0.9209

Table 9.48: Type III Effects for random effects model-LOCF

The random effects models were also fitted using the PROC NLMIXED

procedure in SAS. The models were fitted using adaptive and non-adaptive

Gaussian quadrature with 3, 5 and 20 quadrature points. The model fitted

was:
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rsvpos = β00 + β0age0 + β1age1 + beta2age2 + β3age3 + β4age4 + β5age5 +

β6age6+β7age7+β8age8+β9age9+β10age10+β11age11+β13dt+β14prev+

β15actipass + β16timemonth + childeffect(τ). The results are summarized

below:
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Q = 3 Q = 5 Q = 20

Parameter Est. Std Err. Pr> |t| Est. Std Err. Pr> |t| Est. Std Err. Pr> |t|

Intercept -2.02 1.38 0.14 -4.45 1.43 0.00 -3.53 2.43 0.15

beta 0 -1.34 1.17 0.25 0.59 1.15 0.61 -0.24 2.09 0.91

beta 1 -1.43 1.06 0.18 0.26 1.04 0.81 -0.52 1.99 0.79

beta 2 -0.93 0.99 0.35 0.69 0.99 0.48 -0.01 1.81 1.00

beta 3 -0.68 0.92 0.46 0.77 0.92 0.41 0.14 1.65 0.93

beta 4 -1.10 0.86 0.20 0.30 0.87 0.73 -0.31 1.51 0.84

beta 5 -3.06 1.04 0.00 -1.91 1.05 0.07 -2.42 1.48 0.10

beta 6 -2.77 0.95 0.00 -1.55 0.98 0.12 -2.08 1.35 0.12

beta 7 -3.40 1.11 0.00 -2.55 1.14 0.03 -3.00 1.42 0.04

beta 8 -1.69 0.47 0.00 -0.91 0.50 0.07 -1.28 0.80 0.11

beta 9 -1.23 0.39 0.00 -0.66 0.43 0.12 -0.95 0.63 0.13

beta 10 -0.44 0.30 0.14 -0.06 0.32 0.84 -0.18 0.49 0.72

beta 11 -1.25 0.29 < .0001 -0.89 0.30 0.00 -1.00 0.41 0.02

beta 13 0.00 0.01 0.789 0.00 0.02 0.83 0.00 0.01 0.83

beta 14 58.32 7.02 < .0001 60.01 7.14 < .0001 60.28 7.17 < .0001

beta 15 -3.07 0.15 < .0001 -2.84 0.17 < .0001 -2.97 0.17 < .0001

beta 16 -0.12 0.10 0.24 0.02 0.11 0.82 -0.05 0.18 0.778

τ 0.00 0.00 < .0001 0.00 0.00 < .0001 0.00 0.00 < .0001

Table 9.49: Parameter estimate for 3,5 and 20 quadrature points, non adap-

tive Gaussian quadrature -LOCF

Q = 3 Q = 5 Q = 20

Parameter Est. Std Err. Pr> |t| Est. Std Err. Pr> |t| Est. Std Err. Pr> |t|

Intercept -3.45 1.58 0.03 -3.47 1.61 0.03 -3.53 2.43 0.15

beta 0 -0.27 1.32 0.84 -0.30 1.34 0.83 -0.25 2.09 0.91

beta 1 -0.53 1.20 0.66 -0.57 1.23 0.64 -0.52 1.99 0.79

beta 2 -0.03 1.12 0.98 -0.07 1.15 0.95 -0.01 1.81 1.00

beta 3 0.12 1.04 0.91 0.09 1.06 0.93 0.14 1.65 0.93

beta 4 -0.33 0.97 0.73 -0.36 0.99 0.71 -0.31 1.51 0.84

beta 5 -2.42 1.11 0.03 -2.45 1.12 0.03 -2.42 1.48 0.10

beta 6 -2.11 1.02 0.04 -2.11 1.03 0.04 -2.18 1.35 0.12

beta 7 -2.99 1.17 0.01 -3.01 1.18 0.01 -3.00 1.42 0.04

beta 8 -1.28 0.53 0.02 -1.30 0.54 0.02 -1.28 0.80 0.11

beta 9 -0.95 0.42 0.03 -0.95 0.43 0.03 -0.95 0.63 0.13

beta 10 -0.17 0.31 0.59 -0.18 0.32 0.57 -0.18 0.49 0.72

beta 11 -1.00 0.31 0.00 -1.01 0.31 0.00 -1.00 0.41 0.02

beta 13 0.00 0.01 0.83 0.00 0.01 0.85 0.00 0.01 0.83

beta 14 59.77 7.05 < .0001 59.89 7.07 < .0001 60.31 7.27 < .0001

beta 15 -2.97 0.15 < .0001 -2.97 0.15 < .0001 -2.97 0.17 < .0001

beta 16 -0.05 0.12 0.66 -0.06 0.12 0.64 -0.05 0.18 0.778

tau 0.00 0.00 < .0001 0.00 0.00 < .0001 0.00 0.00 < .0001

Table 9.50: Parameter estimate for 3,5 and 20 quadrature points, adaptive

Gaussian quadrature -LOCF

The results of the adaptive and nonadaptive Gaussian quadrature from

fitting a GLMM using PROC NLMIXED are not too different from each

other but are a bit different from the LOCF random effects and random
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intercept model using PROC GLIMMIX.

9.9.2 Comparative Results: LOCF,Original data and

MICE

We will firstly compare the force of infection and the rate of recovery for the

LOCF, MICE and the Available data, overall and the for individual months.

LOCF MICE Available case

Parameter Estimate S.E Estimate S.E Estimate S.E

λ 0.00012 0.0001 0.000919 7.334E-9 0.001169 0.00011

ν 0.0313 0.0029 0.49634 0.00559 0.45495 0.067

Table 9.51: Comparative estimates of the force of infection and rate of re-

covery using maximum likelihood estimation

LOCF MICE Available case

Parameter Estimate S.E Estimate S.E Estimate S.E

λ 0.00072 0.00006 0.0012 0.000083 0.0021 0.000153

ν 0.0356 0.0031 0.6298 0.0884 0.5030 0.0587

Table 9.52: Comparative estimates of the force of infection and rate of re-

covery using GLM estimation

Table 9.51 shows that the maximum likelihood estimates of the force of in-

fection are similar with the MICE and available case approach. The MICE
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estimate also exhibits the smallest standard error. The LOCF estimates are

different and are smaller when compared to the MICE and available case

approach. This highlights the potential bias that LOCF introduces when

used to handle the dropout in the longitudinal setting. Table 9.52 highlights

the potential bias that the LOCF method can introduce as the GLM esti-

mates are again much smaller when compared to the consistent estimates

of the MICE and available data. Thus in such a case the LOCF is not a

recommended method to estimate such important parameters as the force of

infection and the recovery rate for a disease process. Much efficient meth-

ods to handle the missingness present in the data are thus more important

in the estimation process. This will ensure more valid inference about the

process than just to use LOCF because of its simplicity. In Tables 9.53 and

9.54 monthly process parameters are estimated under LOCF, Available data

(original data) and MICE with the GLM approach. Confidence intervals

were calculated using exponentiation and the delta method respectively.
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Comparative Monthly Force of Infection Estimates
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Figure 9.2: MICE-The force of infection in months together with 95% confi-

dence intervals using the exponentiated and delta methods.
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Tables 9.53 and 9.54 both reveal differences in the monthly estimates of

the force of infection when comparing the LOCF estimates to the MICE

and available data estimates. The MICE monthly estimates are somewhat

smaller when compared to the available data estimates and also exhibits

smaller confidence limits for both the exponentiation and delta methods.

The delta method confidence limits for all three approaches are much smaller

when compared to the exponentiation confidence limits. Once again the time

effects of the disease process are revealed by monthly estimates of the force

of infection. Figure 9.2 shows the MICE estimates to be closer to those of

the available data estimates. As can be expected, LOCF is a poor performer.

9.10 Comparative GEEs
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Table 9.55 reveals that the ‘age’, ‘prev’ and ‘actipass’ variables are all

significant at the 5% level for all three correlation structures in all cases of

LOCF, GEE(available data), MICE and WGEE. However, the ‘timemonth’

variable is found to be significant at the 5% level in all three correlation

structures but only under the MICE approach. The actual values of the scores

statistics are the lowest in the LOCF case and highest in the MICE case. The

WGEE and GEE(available data) are consistent in their values. Table 9.56and

9.57 summarize the parameter estimates for all three correlation structure in

all the approaches. The MICE parameter estimates are the smallest with

the smallest standard errors while the WGEE parameter and standard error

estimates are the largest. The LOCF and and available data estimates are

consistent with each other for both the model and empirical based estimates.

The correlation under the exchangeable structure was −0.00035(available

case), 0.0303(LOCF), −0.0018(MICE) and 0.0024(WGEE). We see how the

potential danger of LOCF is revealed here as well with the artificial inflating

of correlation between successive time points. The −2log likelihoods were

calculated as −645.19(available case), −1288.22(LOCF), −1078.00(MICE)

and −850.13(WGEE). The lowest log likelihood was in the available case

followed by WGEE and MICE whilst the highest log likelihood was in the

LOCF approach, once again highlighting the danger of this approach.
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9.11 Comparative Random Effects Model

Available Data LOCF MICE

Effect Estimate Std.Err Pr> |t| Estimate Std.Err Pr> |t| Estimate Std.Err Pr> |t|

Intercept -5.04 1.48 0.00 -5.62 1.45 0.00 -3.67 0.86 < .0001

age 0 -0.92 1.24 0.46 -0.18 1.22 0.88 -1.21 0.91 0.18

age 1 -0.65 1.09 0.55 -0.24 1.10 0.83 -0.99 0.69 0.15

age 2 -0.28 1.06 0.79 0.01 1.04 0.99 -0.79 0.65 0.23

age 3 -0.07 0.99 0.94 0.22 0.96 0.82 -0.62 0.61 0.31

age 4 -0.67 0.97 0.49 -0.19 0.91 0.84 -0.89 0.60 0.14

age 5 -2.60 1.32 0.05 -2.07 1.09 0.06 -2.37 0.88 0.01

age 6 -1.60 1.03 0.12 -1.99 0.95 0.04 -0.95 0.62 0.12

age 7 -2.25 1.18 0.06 -2.73 1.25 0.03 -1.70 0.81 0.04

age 8 -1.00 0.61 0.10 -1.22 0.49 0.01 -0.65 0.47 0.17

age 9 -0.74 0.52 0.16 -0.87 0.37 0.02 -0.35 0.39 0.37

age 10 -0.32 0.46 0.49 -0.35 0.27 0.20 0.42 0.27 0.12

age 11 -0.57 0.47 0.23 -1.20 0.27 < .0001 -0.10 0.26 0.71

age 12 0.00 . . 0.00 . . 0.00 . .

dt 0.00 0.01 0.92 0.00 0.01 0.40 0.01 0.01 0.09

prev 44.59 8.26 < .0001 52.10 6.74 < .0001 31.02 5.59 < .0001

actipass 0 2.23 0.18 < .0001 2.61 0.14 < .0001 1.42 0.15 < .0001

actipass 1 0.00 . . 0.00 . . 0.00 . .

timemonth -0.05 0.11 0.67 0.01 0.11 0.92 -0.15 0.06 0.02

Table 9.58: Solution for the fixed effects of the random effects model -LOCF

,Original Data and MICE

Table 9.58 show that the smallest parameter estimates and standard er-

rors are given by the MICE approach however similar comparisons of vari-
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Available data LOCF MICE

Effect F-Value P-value F-Value P-value F-Value P-value

Age 1.62 0.0777 4.12 < .0001 1.77 0.0464

Dt 0.01 0.9205 0.72 0.3973 2.79 0.0946

Prev 29.17 < .0001 59.69 < 0.0001 30.78 < 0.0001

Actipass 153.61 < .0001 360.34 < 0.0001 92.77 < 0.0001

Timemonth 0.18 0.6701 0.01 0.9209 5.50 0.0191

Table 9.59: Type III Effects for random effects model-LOCF,Original data

and MICE

ables such as ‘age 5 vs age 12’, ‘age 7 vs age 12’, ‘dt’, ‘prev’, ‘timemonth’ and

‘actipass 0 vs actipass 1’ are all significant at the 5% level. Table 9.59 also

reveal the type III statistics for the same variables to be similar. The MICE

and available type III statistics are dissimilar in magnitude when compared

to the LOCF statistics. The −2 log likelihood values were 73005.67 (avail-

able data), 114632.7 (LOCF) and 112877.1 (MICE). As can be expected the

LOCF log likelihood value is the highest.
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9.12 Comparative Random Intercept Model

Available Data LOCF MICE

Effect Estimate Std.Err Pr> |t| Estimate Std.Err Pr> |t| Estimate Std.Err Pr> |t|

Intercept -5.04 1.48 0.00 -5.62 1.45 0.00 -3.67 0.86 < .0001

age 0 -0.92 1.24 0.46 -0.18 1.22 0.88 -1.21 0.91 0.18

age 1 -0.65 1.09 0.55 -0.24 1.10 0.83 -0.99 0.69 0.15

age 2 -0.28 1.06 0.79 0.01 1.04 0.99 -0.79 0.65 0.23

age 3 -0.07 0.99 0.94 0.22 0.96 0.82 -0.62 0.61 0.31

age 4 -0.67 0.97 0.49 -0.19 0.91 0.84 -0.89 0.60 0.14

age 5 -2.60 1.32 0.05 -2.07 1.09 0.06 -2.37 0.88 0.01

age 6 -1.60 1.03 0.12 -1.99 0.95 0.04 -0.95 0.62 0.12

age 7 -2.25 1.18 0.06 -2.73 1.25 0.03 -1.70 0.81 0.04

age 8 -1.00 0.61 0.10 -1.22 0.49 0.01 -0.65 0.47 0.17

age 9 -0.74 0.52 0.16 -0.87 0.37 0.02 -0.35 0.39 0.37

age 10 -0.32 0.46 0.49 -0.35 0.27 0.20 0.42 0.27 0.12

age 11 -0.57 0.47 0.23 -1.20 0.27 < .0001 -0.10 0.26 0.71

age 12 0.00 . . 0.00 . . 0.00 . .

dt 0.00 0.01 0.92 0.00 0.01 0.40 0.01 0.01 0.09

prev 44.59 8.26 < .0001 52.10 6.74 < .0001 31.02 5.59 < .0001

actipass 0 2.23 0.18 < .0001 2.61 0.14 < .0001 1.42 0.15 < .0001

actipass 1 0.00 . . 0.00 . . 0.00 . .

timemonth -0.05 0.11 0.67 0.01 0.11 0.92 -0.15 0.06 0.02

Table 9.60: Random Intercept Model-Solution for the fixed effects -LOCF

,Original Data and MICE

The results for and conclusions for the random intercept model are the

same as those for the random effects model. The −2 log likelihood values
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Available data LOCF MICE

Effect F-Value P-value F-Value P-value F-Value P-value

Age 1.62 0.0777 4.12 < .0001 1.77 0.0464

Dt 0.01 0.9205 0.72 0.3973 2.79 0.0946

Prev 29.17 < .0001 59.69 < 0.0001 30.78 < 0.0001

Actipass 153.61 < .0001 360.34 < 0.0001 92.77 < 0.0001

Timemonth 0.18 0.6701 0.01 0.9209 5.50 0.0191

Table 9.61: Random Intercept Model-Type III Effects for Optimal Model-

LOCF,Original data and MICE

were 73005.67 (available data), 113657.8 (LOCF) and 112597.2 (MICE). As

can be expected the LOCF log likelihood value is the highest. The results

of this chapter show that with respect to handling the dropout, LOCF has

the advantage of simplicity but clearly can lead to over or under estimation

of parameters and must be used with extreme caution or not be used at all.

9.13 Conclusion

This chapter focused on estimating the intermittent missingness, the 85 miss-

ing values in the response variable and the dropout in the data set. The

methods used to handle the estimation of the intermittent missingness were

LOCF and the EM algorithm. The estimated data sets were then analyzed

using GEE, GLMM and the direct likelihood and GLM estimation of the

force of infection and rate of recovery. Comparatively the results did not

differ by much, the reason being that this missingness is only about 1% of

the available data. If the proportion of missingness were higher, there would

have been distinct comparative differences in the analyses that would have
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originated from the EM algorithm and the LOCF estimation techniques.

The dropout was handled using LOCF, direct likelihood, WGEE and multiple

imputation (MICE). The estimated data sets were then analyzed using GEE,

GLMM and the direct likelihood and GLM estimation of the force of infec-

tion and rate of recovery. Comparative studies were then done along with the

available data. LOCF showed serious weaknesses as a technique to handle

the dropout due to the artificial inflation of correlation between successive

time points. Thus LOCF should in general not be used to handle the dropout

in any longitudinal data set. MICE and WGEE proved extremely useful in

handling the dropout. WGEE took a longer to converge in SAS and was

computationally more involved. Kenward and Carpenter (2007) state that

multiple imputation has at least three distinct advantages. Firstly, it can be

applied very generally, to very large data sets with complex patterns of miss-

ingness among covariates, and only uses complete data quantities with very

simple rules of combination. This is attractive for observational studies. Sec-

ondly, multiple imputation provides a relatively flexible and convenient route

for investigating sensitivity to postulated NMAR mechanisms. Thirdly, the

imputation model may include variables not in the substantive model, which

can lead to additional efficiency, or most importantly in the clinical trial set-

ting, allow post randomization covariates in the imputation model if they are

predictive of dropout. Kenward and Carpenter (2007) also state that a more

rigorous theoretical basis is needed for the chained equation approach and

this is an avenue for further research. GEE requires the MCAR assumption

but the direct likelihood methods, multiple imputation and WGEE require

the fairly general assumption of the MAR mechanism. It must be empha-

sized that LOCF should no longer be the preferred mode of analysis in order

to handle the dropout in any longitudinal setting.
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Chapter 10

Survival Analysis Approach:

Multiple Events per Subject

10.1 Introduction

The origin of survival analysis can be traced back to early work on mortal-

ity tables, which was followed up and expanded by statistical research for

engineering applications. Survival analysis is the term that is used to study

time-to-event data that correspond to the time from a well-defined time ori-

gin until the occurrence of some particular event or end point (Collett, 1994).

Therefore we are often interested in the waiting time until an event can oc-

curs, or more succinctly put, we are interested in the end point of a process.

The end point could include events such as death, infection by a disease

pathogen, first marriage and many more. The time origin on the other hand

could be for example, the diagnosis of a disease or the recruitment of an in-

dividual into a study (such as the children that were recruited into the RSV

study or the recruitment of an HIV/AIDS patient to start receiving ARVs).

The time that an individual spends in a study is the subject time or as in
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the case of a patient entering a study, his or her time spent in the study is

also called the patient time. The methodology of survival analysis has got a

vast number of applications that range from the survival time of animals in

a experimental study, the time taken by an individual to complete a task in

a psychological experiment, the storage times of seeds being kept in a seed

bank and the identification of risk factors for a particular disease. Le (1997,

pp 14-16) gives several examples in medical research that can be analyzed as

survival or time-to-event data.

Survival data has got special characteristics that are associated with it, for

example, most survival data are rarely normally distributed. A histogram of

the survival times data will reveal positive skewness. Thus methods to deal

with the problem of non-normality are necessary. One approach is that of

data transformation typically by taking the logarithm of the data. Another

defining characteristic of survival data is that, it is frequently censored or in-

complete. Collett (1994, p. 2) states that the survival time of an individual

is said to be censored when the end point of interest has not been observed

for that individual. This could happen due to various reasons:

i) The study could have reached an end, and an individual may not yet

have experienced the event of interest (for example, a child in the Kilifi

RSV study could just remain uninfected throughout the study, or in

another context, the patient may still be alive at the end of the study

when the event is death)

ii) The subject or patient could have been lost due to follow up meaning

that the only information that the investigator may have about such

an individual is only the last time the individual remained to the study

and visited the clinic/hospital or the last time the individual was known

to be alive.
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The type of censoring described above is known as right censored data, and

these patient/subject times are less than the actual survival time that could

have been observed. Likewise left censoring occurs when an individual expe-

rienced the event before the study commenced. For example, say the interest

in a particular study is time to remission from a disease, and the first visit is

3 months after the individual is known to be disease free. If there is evidence

of a tumour at this first visit as in the case of cancer, then the event occurred

before the study started and this individual is left censored.

Another type of censoring is interval censoring, when an event occurs within

an interval of time. Here individuals are known to have experienced a failure

within an interval of time. A good example of interval censoring is when the

event is defined as the first Tuberculosis (TB) positive test. If an individual

is Tuberculosis negative (TB-)on the fifth visit, say, and is Tuberculosis pos-

itive(TB+) on the sixth visit; then the exact date of seroconversion is only

known to be between the two visits, and the individual is interval censored.

More often than not, investigators are usually interested in right censor-

ing, which is formalized as follows. If an individual enters the study at time

t0 and dies at time t0 + t, then t is the uncensored survival time. However

if the individual is last known to be alive at time t0 + c, then c is known as

the right censored survival time. (The individual may have been lost due to

follow up, or may not have experienced the event by the end of the study).

Alternatively, if we define t to be the time to event, and c the time at which

censoring occurs, then an individual is right censored if t > c and uncensored

if t ≤ c.
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10.2 The Survivor Function and the Hazard

Function

Suppose we have a group of patients/subjects with survival times t1, t2, . . . , tN

some of which may be censored. These values can be regarded as realizations

of the continuous variable T , which has a probability density function, f(t),

and cumulative distribution function F (t), where F (t) is given by,

F (t) = P (T ≤ t)

=

∫ t

0

f(u)du

This represents the probability that the survival time is less than some value

t (Collett, 1994). The survival function, which represents the probability

that an individual will survive beyond time t, is given by

S(t) = P (T > t) = 1− F (t). (10.1)

Because survival distributions are usually skewed and there are many cen-

sored observations, the mean and the variance are not used to summarize

the distribution of T , but rather medians and quantiles are used instead.

These can be estimated from the survival function. For example, the me-

dian survival time is that value tm of T satisfying S(tm) = 0.5. In general

the pth percentile survival time is tp such that S(tp) = 1 − p. The hazard

function is defined as the probability that an individual experiences an event

(eg. death) at time t, given that he or she has survived up until that point.

It thus measures the instantaneous death rate for an individual surviving

to time t (Collett, 1994). Thus h(t) is essentially a positive quantity and

mathematically h(t) is defined by

h(t) = lim
δt→0

P (t ≤ T ≤ t+ δt|T ≥ t)

δt
(10.2)
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The above equation can be rewritten as

h(t) = lim
δ→0

P (t ≤ T ≤ t+ δ)

δP (T ≥ t)

= lim
δ→0

[
F (t+ δ)− F (t)

δ

]
1

P (T ≥ t)

=
f(t)

S(t)
(10.3)

The following relationships can easily be derived from:

h(t) = − d

dt
{logS(t)}

S(t) = exp

{
−
∫ t

0

h(u)du

}
(10.4)

H(t) =

∫ t

0

h(u)du.

The function H(t) is known as the integrated or cumulative hazard function

and is sometimes denoted as Λ(t). The mathematical relationship between

H(t) and S(t) is given as

H(t) = −logS(t). (10.5)

Both the survivor function and the hazard function can be estimated from

the given survival data. The methods of estimation can be broadly grouped

into parametric and nonparametric methods (Le, 1997). The Cox propor-

tional hazards model, an example of a semi-parametric method, has also been

fundamental in survival analysis and will be discussed before we come to the

multi-state models. The purpose of this chapter is to apply multi-state sur-

vival models to model disease outcome data such as the RSV data currently

being studied. In the context of infectious diseases the hazard function corre-

sponds to the force of infection (FOI). The force of infection is the probability

that an individual is infected by a disease at time t given the individual was
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disease free up to time t. The force of infection can be modelled as time or

age dependent. Other simpler models assume that the parameter is time

independent.

10.3 Types of Survival Distribution

There are several distributions that are useful and are widely used in the

survival context. These include the, Exponential, Weibull and Log-Logistic

distributions. We describe the Weibull and Exponential distributions because

they are the most relevant to our current study.

10.3.1 Exponential Distribution

The exponential distribution is characterized by the following probability

density function (p.d.f)

f(t;λ) = λe−λt, t > 0

The cumulative distribution function (c.d.f) is given by

F (t) = 1− λe−λt

and the survivor function is

S(t) = 1− F (t)

= e−λt
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The hazard function is

h(t) =
f(t)

S(t)

=
λe−λt

e−λt

= λ

H(t) = λt.

Thus the force of infection resembles the hazard function in its definition.

This therefore makes methods in survival analysis very relevant in modelling

the force of infection. The exponential distribution for survival time implies

that the hazard function is a constant which means that the risk of death or

rate of occurrence of events is independent of time. This is practically a very

unrealistic assumption, because intuitively the risk of death or an event may

increase or decrease as an individual ages or survives, for example. Another

unique property associated with the exponential distribution is the lack of

memory property. Suppose that the random variable T is the survival time

of interest, and is exponentially distributed with parameter λ. Consider the

probability that an individual survives for a time greater than t1, given that

he survived up until t0(t > t0). Then

P (T > t1|T ≥ t0) =
P (T > t1 and T ≥ t0)

P (T ≥ t0)

=
P (T > t1)

P (T ≥ t0)

=
S(t1)

S(t0)

=
e−λt1

e−λt0

= e−λ(t1−t0)

This can be interpreted as, given survival to time t0, the excess life beyond

t0 still has the exponential distribution with parameter λ. This property is
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popularly known as the memoryless property of the exponential distribution.

Furthermore, this result also explains why the exponential distribution is

not a realistic distribution for time-to-event data. The advantages of this

distributions are its simplicity in the analyses associated with it.

10.3.2 Weibull Distribution

The two parameter p.d.f. for the Weibull function is given by

f(t; γ, δ) = δγtγ−1e−δt
γ

, t > 0

The parameter γ is the shape parameter, while δ is the scale parameter.

Note that when γ = 1 the Weibull distribution reduces to the Exponential

distribution with parameter δ. The c.d.f. of the Weibull distribution is given

by

F (t) = 1− e−δt
γ

, t > 0.

The survivor function is therefore given by

S(t) = 1− F (t) = e−δt
γ

(10.6)

and the hazard function is thus

h(t) =
f(t)

S(t)

= δγtγ−1

H(t) = δtγ.

The key property here is that the hazard is a function of survival time. Note

that for γ = 1, the hazard function is constant reducing to the case of the

exponentially distributed survival time. The hazard function takes a different

shape depending on the shape parameter γ as depicted in the following table:
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Value of γ Shape of h(t)

0 < γ < 1 Exponential decay

γ = 1 Constant, h(t) = δ

γ = 2 Straight line

γ > 2 Exponential Growth

Table 10.1: Hazard function for different values of γ

10.4 The Proportional Hazards Model or the

Cox Regression Model

The Cox regression model is very popular in the analysis of multi-state models

and time-to-event data. Collett (1994, p.54) state that there are essentially

two main reasons for modelling survival data. One reason is to find the right

combination of the potential explanatory variables that affect the form of the

hazard function and the other reason is to actually obtain an estimate for the

hazard function through modelling it. Hosmer and Lemeshow (1999) state

that, the distribution of the survival time variable T can be incorporated by

modelling the density function of a parametric distribution for T , or to model

the hazard function as a function of risk factors. It is advantageous to model

the hazard function directly because of the relationship between the survivor

function and the hazard function. The advantage is that, an estimate of the

survivor function can be found as well as estimates of other quantities such

as the median survival time. The disadvantage of this approach is the use of

scatter plots is not viable to motivate regression models.

In 1972, Cox proposed a model that famously came to be known as the

Cox Regression Model and later on as the Proportional Hazards Model. This

model is in the class of a semi-parametric models since no particular form
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of probability distribution is assumed for the survival times. This model is

based soley on the assumption of proportional hazards.

10.4.1 The Theory of the Cox Regression Model

Suppose, for simplicity, that x is the single known covariate and β the cor-

responding unknown coefficient. Recall that the hazard function defined

earlier, is the probability that an individual dies or experiences an event at

time t, given that they have survived up until that point. In general, the

hazard function can be specified as a function of time and the covariates in

the form

h(t, x, β) = h0(t)φ(x, β) (10.7)

where φ(x, β) is a function of the covariates only. The above equation has to

be strictly positive. Here h0(t) characterizes how the hazard function changes

as a function of survival time and is also known as the baseline hazard since

h(t, x, β) = h0(t) when x = 0. The term φ(x, β) explains how the hazard

function changes as function of specific covariates. The proportional hazard

concept arises because the r.h.s of Eq (10.7) is expressed as a product of a

function of time only and φ(x, β), a function of the covariates.

Consider then the simplest case where patients are randomly allocated to two

groups for comparison, such as a treatment and control group in clinical trials.

Let the hazard for the control group be h(t, x0, β) and for the treatment

group be h(t, x1, β). Suppose that the ratio of the two hazard functions for

the treatment and control groups is

ψ =
h(t, x1, β)

h(t, x0, β)
. (10.8)
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Using Eq(10.8), it follows that ψ simplifies to

ψ =
h0(t)φ(x1, β)

h0(t)phi(x0, β)

=
φ(x1, β)

φ(x0, β)
.

Hosmer and Lemeshow (1999) state that if the hazard ratio, ψ is easily inter-

preted then the actual form of the baseline hazard is of little importance. The

ratio ψ measures the risk of death at time t for an individual on treatment

relative to a person on the control. If ψ < 1 the hazard for an individual on

treatment is said to be smaller than for an individual on the control, and the

treatment is thus an improvement. If ψ > 1 then the hazard is smaller for

the person in the control group than for a person in the treatment group and

it cannot be concluded that the treatment is effective in increasing survival

time, (Collett, 1994, p. 55).

From the proportional hazards assumption the following important relation-

ship between the survivor function of the treatment group and that of the

control group emerges,

S1(t) = e−H(t,x1,β)

= exp

{
−
∫ t

0

h(u, x1, β)du

}
= exp

{
−
∫ t

0

ψh0(u)r(x0, β)du

}
= exp

{
−ψ

∫ t

0

h0(u)r(x0, β)du

}
= [S0(t)]

ψ.

Cox (1972) proposed a model that uses φ(x, β) = exβ in order to ensure

the hazard function h(t) is non-negative. The proportional hazards model

assumption then becomes

h(t, x, β) = h0(t)e
xβ
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and the hazard ratio for comparing the two groups is

ψ = eβ(x1−x0).

In the case where the single covariate x is dichotomous i.e. assuming either

a 0 or 1, the hazard ration can be seen as a type of “relative risk” (Hosmer

and Lemeshow, 1999). Hence if β = ln(2), then those with x = 1 are dying

at twice the rate of those with x = 0. Under Cox’s regression model the

survivor function can be rewritten as,

S1(t) = [S0(t)]
exp(xβ).

10.4.2 The General Proportional Hazards Model

As a generalization of the above concept (Collett, 1994, pp 55-56), suppose

now that the hazard of death at a particular time depends on the values

x1, x2, . . . , xp of p explanatory variables X1, X2, . . . , Xp where x1, x2, . . . , xp

are assumed to be recorded at the outset of the study for a given individual.

This constitutes what is known as baseline data. Let xi1, xi2, . . . , xip denote

the measured values of the p covariates for individual i. Thus the set of

variable values can be denoted by the vector xi. Let h0(t) be the hazard

function for an individual whose set of covariates, xi = (xi1, . . . , xip), are

equal to zero, that is h0(t) gives the baseline hazard function. The hazard

function for the ith individual can then be written as

hi(t|xi) = lim
δt→0

P (t ≤ T ≤ t+ δt)

δP (T ≥ t;xi)

= ψ(xi)h0(t)

where ψ(xi) is a function of the explanatory variables for the ith person. Now

ψ(xi) can be interpreted as the hazard at time t for an individual whose
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vector of explanatory variables is xi, relative to the baseline hazard, that is,

ψ(xi) =
h(t|xi)

h0(t)
.

Extending Cox’s definition for the proportional hazards model, the following

expression holds:

ψ(xi) = exp(ηi)

= exp(xi1β1 + xi2β2 + . . .+ xipβp)

= exp(

p∑
j=1

xijβj)

= exp(xi
Tβ).

where βT = (β1, . . . , βp) is a vector of regression coefficients and ηi is the linear

component of the model, where ηi is also known as the risk score or prognostic

index for the ith individual (Collett , 1994). The general proportional hazards

model then becomes

hi(t|xi) = exp(xi1β1 + xi2β2 + . . .+ xipβp)h0(t). (10.9)

The equation can be linearized by dividing through by the baseline hazard

and taking logs on both sides of the above equation to give

log

[
hi(t)

h0(t)

]
= xi1β1 + xi2β2 + . . .+ xipβp. (10.10)

The structure of the model can be seen as a logistic regression model without

the constant term β0.

10.4.3 Fitting the Proportional Hazards Model

Collett (1994, p.61) gives the following summary as to how to fit the pro-

portional hazards model. Firstly the unknown coefficients β1, . . . , βp need to
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be estimated. Let βT = (β1, . . . , βp) denote a vector of unknown coefficients

corresponding to the p known variates. In some cases it might be necessary

that the baseline hazard h0(t) be estimated. The most common method of

estimating the regression coefficients is the Maximum Likelihood (ML) ap-

proach. Thus the first step is to construct the likelihood of the observed

survival data.

Suppose that there are n individuals each with the triplet (ti,xi, ci) where ti

is the observed survival time, xi is the covariate vector and ci is the censoring

indicator variable for individual i where ci = 1 if a survival time is uncen-

sored and ci = 0 if the time is censored. Suppose that there are r ordered

distinct death time such that t(1) < t(2) < . . . < t(r). This implies that there

are n−r right censored survival times. We will not consider the treatment of

ties for now. Suppose that the set of individuals that are at risk at time t(j)

are denoted by R(t(j)) which is also known as the risk set. The risk set con-

sists of all the subjects with survival or censored times greater than or equal

to the specified time. Now, consider the result relating the three functions,

the hazard, survivor and probability density functions (Equation (10.3)). It

follows we can write

f(t,x, β) = h(t,x, β)× S(t,x, β). (10.11)

It follows also that the likelihood function for the regression models is

L(β) =
n∏
i=1

[f(ti,xi, β)]ci × [S(ti,xi, β)]1−ci . (10.12)

Substituting Eq.(10.11) into Eq.(10.12) above, yields

L(β) =
n∏
i=1

[h(ti,xi, β)× S(ti,xi, β)]ci × [S(ti,xi, β)]1−ci

=
n∏
i=1

[h(ti,xi, β)]ci × S(ti,xi, β).
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Note the components of the likelihood expression above can be interpreted

as follows. An individual has to survive up to time ti with probability

S(ti,xi, β). At this time either the individual experiences an event (ci = 1)

or does not (ci = 0). Thus the product of these two terms gives the required

joint probability and the product of n terms gives the full likelihood. Sub-

stituting h(ti,xi, β) = h0(ti)e
xT

i β and S(ti,xi, β) = [S0(ti)]
exp(xT

i β) into the

above equation gives

L(β) =
n∏
i=1

[ho(ti)e
xT

i β]ci × [S0(ti)]
exp(xT

i β) (10.13)

Hence

ln[L(β)] = `(β) =
n∑
i=1

ci ln[h0(ti)] + cix
T
i β + ex

T
i β ln[S0(ti)]. (10.14)

The ML estimation method requires that the above Eq.(10.13) be maximized

with respect to the unknown parameters, β and a parametric model for the

baseline hazard be specified. However, the proportional hazards model is

adopted in order to avoid explicitly defining the baseline hazard function.

Cox (1972) constructed a partial likelihood (depending only on the param-

eters of interest) that can be maximized in order to obtain estimates for

the unknown parameters. He showed that the resulting parameter estimates

from the partial likelihood function would have the same distributional prop-

erties as the ML estimators. Suppose that x(j) is the vector of covariates for

a subject with observed ordered survival time t(j). Then the partial likeli-

hood which can be derived using the counting process approach as given in

Fleming and Harrington (1991) and Collett (1994, p.62) is

L(β) =
r∏
j=1

exp(xT(j)β)∑
l∈R(t(j)) exp(xT(l)β)

. (10.15)

The above derivation is based on a conditional probability argument and the

partial likelihood is given for participants who experience an event. However,
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if ci is the censoring variable that takes on the value 0 when an observation

is censored and 1 when the observation is not censored, then the above like-

lihood can be written as

L(β) =
n∏
j=1

 exp(xT(j)β)∑
l∈R(t(j)) exp(xT(l)β)

cj . (10.16)

Note that in Eq. (10.15) the baseline hazard tern h0(t(j)) will automatically

cancel out and therefore will not feature in the partial likelihood. When we

take the log of the partial likelihood, we have

lnL(β) = `(β) =
n∑
i=1

ci

xTi β − ln
∑

l∈R(t(j))

exp(xTl β)

 .
Differentiating this log likelihood with respect to, the unknown coefficients

β, we have p equations given by

∂`(β)

∂βk
=

r∑
j=1

[
x(jk) −

∑
l∈R(t(j))

xlk exp(xTl β)∑
l∈R(t(j))

exp(xTl β)

]
(10.17)

=
r∑
j=1

{x(jk) − xwjk}

where

xwjk =
∑

l∈R(t(j))

wjlxlk (10.18)

and

wjl =
exp(xTl β)∑

l∈R(t(j))
exp(xTl β)

. (10.19)

Expression 10.19 can be viewed as a weight for an individual contributing to

the covariate vector xTl . Here x(jk) is the value of the covariate xk for a subject

with observed ordered survival time t(j). The estimator is obtained by setting

the derivatives equal to 0 and solving for βk, k = 1, . . . , p. In general, an

iterative technique needs to be employed in order to solve for the unknown
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parameters because of the intractability of the estimating equation (10.17).

The variance of the estimator β is obtained by taking the inverse of the

negative of the second derivative of the, partial likelihood at the value of the

estimator. Namely,

Var(β̂) = I(β̂)−1

where

I(β) = − ∂
2`(β)

∂β∂βT

The diagonal elements of the information matrix are given by

∂2`(β)

∂β2
k

= −
r∑
j=1

∑
l∈R(t(j))

wjl(xll − xwjk)
2

and the off diagonal elements are

∂2`(β)

∂βk∂βh
= −

r∑
j=1

∑
l∈R(t(j))

wjl(xll − xwjk)(xlh − xwjh)

where xwjk and wjl are defined in previous equations (10.18) and (10.19).

10.4.4 Tests of Significance

In almost all statistical procedures the significance of the estimated coeffi-

cients needs to be assessed, and it is usual practice to form the confidence

intervals for these estimates. The three tests that are commonly used to do

so in the context of fitting the proportional hazards model are the partial

likelihood ratio test, the Wald test and the score test. These three tests are

briefly reviewed below.

Partial Likelihood Ratio Test

Hosmer and Lemeshow (1999) propose that the partial likelihood ratio test

is the easiest to compute, and the best of the three above mentioned tests
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for assessing the significance of the fitted model. The test statistic is given

by

G = 2`p(β̂)− `p(0)

where `p(β̂) is the log partial likelihood evaluated at β̂ and `p(0) = −
∑m

i=1 ni

where ni is the number of subjects in the risk set at the observed survival time

t(j) and m is the number of distinct times. This statistic tests whether all

coefficients are equal to zero versus that at least one of the coefficients is non-

zero. Under the null hypothesis, H0 : β = 0, G follows the χ2 distribution

with degrees of freedom equal to the number of parameters estimated in the

model.

Score Test

Hosmer and Lemeshow (1999) further state that as opposed to the partial

likelihood ratio test, the Wald and Score tests require matrix calculations

and formulations. Let the vector of the first order partial derivatives of the

partial log-likelihood be denoted by u(β). Under the null hypothesis that

all the coefficients are equal to zero, the vector of scores u(0)=u(β)cβ=0.

The score statistic then becomes

uT (0)[I(0)]−1u(0)

which is, under H0 approximately χ2 distributed with degrees of freedom

equal to the number of parameters in the model. In the case of one covariate,

the score test is given by

z∗ =
d`p/dβ√
I(β)

⌋
β=0

and under H0, z
∗ ∼ N(0, 1) or (z∗)2 ∼ χ2(1).
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Wald Test

Hosmer and Lemeshow (1999) state that the Wald test statistic is obtained

from the theory which states that under the null hypothesis the estimator of

the vector of coefficients, β̂, will be asymptotically normally distributed with

mean vector µ = 0 and covariance matrix estimated by v̂ar(β̂) = I(β̂)−1.

Thus the multiple variable Wald statistic is given by

β̂T I(β̂)β̂

which under the null hypothesis is χ2 distributed with degrees of freedom

equal to the number of parameters fitted in the model. In the case of a single

covariate the square root of the test statistic reduces to

z =
β̂

se(β̂)

where se(β̂) =

√
var(β̂). Thus z is standard normally distributed under H0

or z2 ∼ χ2(1). The confidence interval of β̂ is based on the Wald statistic

and can be found from the usual expression

β̂ ± Zα/2 × se(β̂)

In practice the three statistics,
√

(G), z, z∗ should all be quite similar, result-

ing in the same conclusion. However, the partial likelihood ratio test is the

preferred choice. Hosmer and Lemeshow (1999) comment that an advantage

of using the score statistic is that the statistic can be computed without

evaluating the maximum partial likelihood estimates of the parameters. It is

useful as a test to use in model building applications in which evaluation of

the estimator is computationally intensive.
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10.5 Fitting the Proportional Hazards Model

with Tied Survival Times

In practice, tied survival times do occur, while the partial likelihood function

is based on the assumption that there are no tied survival times. However

the partial likelihood function can be adapted to accommodate tied survival

times. The exact expression for the modified partial likelihood function is

derived by Kalbfleish and Prentice (1980) and approximations are due to

Breslow (1974) and Efron (1977).

For simplicity we will assume only one covariate. The basis for construction

of the exact partial likelihood is to assume that the d ties at a particular

survival time are due to the lack of precision in measuring the survival time,

such as recording the time in days ignoring the fractional days. Hosmer

and Lemeshow (1999) state that tied survival times could have actually been

observed in any one of the d! possible arrangements of their values. The

exact partial likelihood is obtained by modifying the denominator of

Lp(β) =
m∏
i=1

ex(i)β∑
j∈R(t(i))

exjβ
(10.20)

to include each of these arrangements. Approximations derived by Breslow

(1974) and Efron (1977) are designed to provide expressions that are easier

to compute than the exact partial likelihood, and yet still account for the

fact that ties are present among the observed values of survival time. The

Breslow (1974) approximation uses the partial likelihood given by

Lp1(β) =
m∏
i=1

ex(i)+β

[
∑

j∈R(t(i))
exjβ]di

(10.21)

where di denotes the number of subjects with survival time t(i) and x(i)+ is

the sum of the covariate over the di subjects namely, x(i)+ =
∑

j∈D(t(i))
xj,

362



where D(t(j)) represents subjects with survival times equal to t(i). The upper

limit m is the number of distinct survival times.

The Efron (1977) approximation yields a slightly better approximation to

the exact partial likelihood than the Breslow (1974) approximation, with the

partial likelihood given as

Lp2(β) =
m∏
i=1

ex(i)+β∏di

k=1[
∑

j∈R(t(i))
exjβ − k−1

di

∑
j∈D(t(i))

exjβ]
(10.22)

The modified partial likelihood function for β in the presence of ties is ob-

tained in the same manner as in the non-tied case data, with the exception

that the derivative are taken with respect to the unknown parameters in the

natural logarithm of the above equations (10.21) and (10.22) relating to the

Breslow and Efron approximations. The variance of the estimated coefficient

is obtained from the second partial derivative evaluated at the estimated

value of the parameter. In reality, there will be little practical difference

between the Breslow and Efron estimators. The Breslow estimator is how-

ever the most frequently used approximation due to its simplicity and less

complexity. Much of the above derivation can be found in Collett (1994, pp

65-66), not repeated here.

10.6 Multiple Events per Subject

A major and still growing interest in the statistics community is the applica-

tion of survival analysis to data sets with multiple events per subject. These

multiple events can be classified as either cases where the multiple events are

of the same type or when these multiple events are of a different type. A

good example of multiple events of the same type are multiple respiratory

infections such as the RSV disease infection experienced by children during
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their early childhood and an example of multiple events of a different type

is the recurrent opportunistic infections in AIDS patients. Therneau and

Grambsch (2000) give examples of the multiple events that are of a differ-

ent type that admit the use of survival and recurrence information in cancer

trials or multiple sequelae in the management of chronic disease. The whole

idea of multiple events also lend itself to the concept of multi-state models

(Therneau and Grambsch, 2000).

There are however certain issues that are a point of concern with respect

to how we model these multiple events per subject. A major issue arises as

to how to extend the proportional hazards regression models to where there

is now intra-subject correlation. Other complicating factors include multi-

ple time scales, stratum by covariate interaction, discontinuous intervals of

risk and the structure of risk sets. As a results of these concerns, several

approaches have been looked at:

(i). Time to first event, ignoring the multiplicity. This makes the analysis

easy for interpretation but the risk is that information will be wasted.

(ii). Including a random per subject effect which is the Random effect or

frailty models. Multiple outcomes are assumed to be independent con-

ditional on the per subject effect. Oakes (1992) and Keiding et al.

(1997) examine the frailty models at great length. Frailty is often de-

fined to be the deviations from the proportional hazards model that

can be explained by unaccounted random heterogeneity.

(iii). A marginal models approach similar to that of Generalized Estimating

Equations (GEE).

(iv). A more ambitious plan is to model the per subject’s correlation struc-

ture directly within the Cox framework. This method is due to Pren-
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tice and Cai (1992). They use a sample of industrial failure data. This

method is very computer intensive (Therneau and Grambsch, 2000, pp.

169-170).

The marginal models in option (ii.) above will be looked at as a means to

model the RSV data set in the current work by focusing on the time duration

between events dij = tij − tij−1. Therneau and Grambsch (2000) point out

the variants of this approach are due to Anderson and Gill (AG)(1982),

Wei, Lin and Weissfield (WLW) (1989) and Prentice, Williams and Peterson

(PWP) (1981). This method also affords great flexibility in the formation of

strata and risk sets, manipulation of the time scale and has a well developed

estimator of variance. The analysis of these models is based on three steps,

namely,

1. Decide on a model which include issues such as strata, time dependent

covariates etc. and structure the data set accordingly

2. Fit the data using an ordinary Cox model, ignoring the possible corre-

lation

3. Replace the standard variance estimate with one which is corrected for

possible correlations (Therneau and Grambsch, 2000, p. 170)

We will now look at these three steps as outlined in Therneau and Gramb-

sch (2000).

10.6.1 Selecting a model

The computation for the marginal model is not a difficult issue, but the cre-

ation and preparation of an appropriate data set is the difficult part, as well

as the choice between alternative models. In SAS, the ‘phlev’ macro can be
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used to set up the data. Setting up the model includes the choice of strata

and membership within strata, time scales within strata, constructed time

dependent covariates, stratum by covariate interactions and data organiza-

tion. Some details of these issues will now be expounded:

• Stratification, if used, is based on external variables that may include,

enrolling institution or disease subtype. These generally correspond to

predictors for which we desire flexible adjustment, but not an estimate

of the covariate effect. Each subject is in exactly one stratum.

• The time scale is almost invariably time since entry to the study al-

though alternative time scales based on a counting process is possible.

• Time dependent covariates usually reflect directly measured data such

as repeated lab tests. Strata by covariate interactions are infrequent.

• The counting process form may be used for a time dependent covariate,

but normally the data set will consist of one observation per subject.

These four areas can be extended. The first aspect is to distinguish whether

or not the data set for multiple events have a distinct ordering or not. The

unordered events have simpler issues attached to them and they are discussed

below.

Unordered events

Therneau and Grambsch (2000) consider 5 examples of correlated but un-

ordered outcomes of multiple events. One of the examples involved a frailty

model. The setup of unordered events is straightforward where each obser-

vation is entered into the data just as it would be, if correlation were not an

issue. An appropriate software package such as SAS or S-Plus can be used to
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fit the model to the data using a sandwich estimator to account for the corre-

lation structure. The analysis is often stratified by the type of endpoint, for

example if we to assume that the baseline hazard functions for time-to-death

and time-to-progression may differ.

Ordered events

The three most common approaches are the independent increment (AG),

marginal (WLW) or conditional (PWP) models. All three models are marginal

regression models in the sense that β̂ is determined from the fit that ignores

correlation followed by a corrected variance D̃
′
D̃ (a sandwich estimate) but

differ considerably in the creation of the risk sets. The implementation of

the three approaches are now considered in detail before applying them to

the RSV data being analyzed in the current thesis.

The AG method by Andersen-Gill (AG)(1982)

This approach is very close to a Poisson type regression. The method is

easiest to perceive and set up but makes the strongest assumptions. Laird

and Oliver (1981) used Poisson regression as an approximation to this method

by using an ordinary single event Cox model. The AG method uses a counting

process style of data input, where each subject is represented as a series of

observations in rows of data, with time intervals (entry time, first event],

(first event, second event], ..., (mth event, last follow up]. A subject with

zero events would have a single observation, one with one event would have

one or two observations (depending on whether there was additional followup

experience after the first event), and so on. Depending on the time scale the

first observation may or may not begin at zero.

When the time scale is “time since entry” the intensity process or hazard
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function is identical to the Cox model for survival data,

h(t, xi(t)) = Yi(t)λ0 exp(Xi(t)β) (10.23)

However the difference arises in the definition of Yi(t). In the case of survival

data, when an event occurs the individual ceases to be at risk and Yi goes to

zero, but for the AG model for recurrent events Yi(t) remains as one as events

occur. If strata are used then they are based on the same considerations as

for an ordinary single event model. No extra strata or strata by covariate

interaction terms are induced by multiple events. The model is ideally suited

to the situation of mutual independence of the observations within a subject.

This assumption is equivalent to each individual counting process possessing

independent increments where non-overlapping time intervals are indepen-

dent, given the covariates. Alternative time scales include the sojourn- or

gap-time scales with intervals of (0, t1], (0, t2− t1], . . . corresponding to “time

since last entry or last event”. The gap times form a renewal process and

the lack-of-memory property from the Exponential distribution mean the

gap times themselves are a counting process with independent increments.

However in general , it should be noted that a counting process cannot pos-

sess both independent increments and independent gap times. If the above

assumptions are met then the three variance estimators I−1, D
′
D and D̃

′
D̃

estimate the same quantity.

The WLW method by Wei, Lin and Weissfield (1989)

Wei, Lin and Weissfeld (1989) used this method to analyze bladder cancer

data set with multiple events. What happens here, is that one treats the

ordered outcome data set as though it were an unordered competing risks

problem. If there are a maximum of four events in the data set, then there
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will be four strata in the analysis. Every subject will have four observations,

one in each stratum (unless there are missing covariates). The time scale

is “time from study entry”, and since all the time intervals start at zero,

the model can be fit without recourse to the counting style of input. The

intensity or hazard function for the jth event for the ith subject is

Yij(t)λ0j(t) exp(Xi(t)βj)

This model allows a separate underlying hazard for each event and for strata

by covariate interactions denoted by βj. The at-risk indicator for the jth

event, Yij(t) is one until the occurrence of the jth event, unless there is

censoring. When either of those occur, it becomes zero.

The PWP method or conditional model by Prentice, Williams and

Peterson (1981)

This model assumes that a subject cannot be at risk for the 2nd event until

event 1 occurs so if we generalize, a subject cannot be at risk for event k

until the individual has already experience event k−1. The counting style of

input is used for this model as in the AG model, but each event is assigned

to a separate stratum. The time scale may be time since entry or gap time.

The underlying hazard function may vary from event to event due to the

use of time dependent strata. The intensity (hazard) in the time since entry

scale is identical to the WLW intensity, except for the definition of the at

risk indicator, Yij(t), which is zero until the (j − 1)st event and only then

does it become one. The conditional approach is favoured by certain authors

over the marginal method. Allison (1995, pp. 242-243) looked at the WLW

method in computation detail. The three models discussed above have been

described in detail in Therneau and Grambsch (2000, pp. 185-187).
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10.6.2 Robust variance and computation

In the case of multiple events, the assumption in the usual Cox model, where

to estimate the variance of β̂ treats each of the observations as independent

will not hold. Hence a robust variance estimate is required and the jackknife

provides the most valid estimate of variance in the case of correlated data

whenever the the observations left out at any step are independent of the

observations left in. In the case of multiple observations per subject, the

correlation is restricted to disjoint groups, so a grouped jackknife estimate

that leaves out one subject at a time rather than one observation at a time,

is appropriate. In SAS the ‘proc phreg’ procedure can be used to obtain this

robust estimate of variance.

Due to the fact that the sandwich estimate D̃
′
D̃ will be much larger in

magnitude than the model based variance I−1, in the presence of correlated

data, the usual tests that were discussed earlier, namely, the Wald, score and

likelihood ratio tests will be anti-conservative. Hence an important extension,

in the robust Wald test, is to replace the usual variance with a sandwich

estimate, β̂
′
[D̃

′
D̃]−1β̂.

The extension of the score test which accounts for correlated data is to define

the per subject leverage matrix as D̃m×p = Bm×nDn×p where B is a matrix

of 0’s and 1’s that sums the appropriate rows such that

D̃
′
D̃ = I−1U

′
B

′
BUI−1.

Then write the usual score test statistic

T = [1
′
U ]I−1[U

′
1]

as

[1
′
UI−1]I[I−1U

′
1]
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The insertion of the inverse of the sandwich estimate of variance for the

central term, based on the starting estimate of β, gives the following robust

score test statistic:

Tr = [1
′
U ][U

′
B

′
BU ]−1[U

′
1].

It can be shown that D̃
′
D̃ is equal to the working independence estimate of

variance for generalized estimating equation (GEE) models (Liang and Zeger,

1986). The paper by Liang and Zeger (1986) is with respect to longitudinal

data, so summation of each individual’s contributions when going from D to

D̃ is over observations at multiple time points.

10.7 SAS Software PROCEDURES

First we state the usual survival routines in SAS. These are:

• lifetest: This procedure computes the Kaplan-Meier curves, and the

log-rank (Mantel-Haenszel), Gehan-Wilcoxon and other tests

• lifereg: Accelerated time failure models

• phreg: Cox proportional hazard model

The above procedures or routines are briefly described below (Allison, 1995

and the SAS/STAT version 9 User Guide):

PROC LIFETEST

This procedure is primarily designed for univariate analysis of the timing of

events. It produces life tables and graphs of survival curves (survivor func-

tions). Using several methods, this procedure tests whether survival curves
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are the same in two or more groups. This procedure also tests for associations

between event times and time constant covariates, but it does not produce

estimates of parameters. Although the Kaplan-Meier estimate is the default,

the option ‘method=KM’ ensures that we get this estimator. The ‘outsurv’

and ‘outtest’ statements names an output data set to contain survival es-

timates, confidence limits and association of survival time with covariance

limits. PROC LIFETEST also has a ‘missing’ statement which allows miss-

ing values to be at stratum level noting that the default is that missing values

are not used in the analysis. The ‘plot’ statement produces a high resolution

graph whilst the ‘time’ option requires the failure time variable to be input

here and the ‘strata’ statement indicates which variables determine strata

levels for the computations. The ‘id’ statement labels the observations of

the product-limit survival function estimates. The ‘test’ statement tests for

the effects of covariates. The ‘survival’ statement creates an output data

set containing the results of the estimation of the survivor function. In this

procedure, we can also test hypotheses about the shape of the hazard func-

tion. A comprehensive account of PROC LIFETEST can be found in the

SAS/STAT User Guide , Volume 3 chapter 40, pp. 2148-2215.

PROC LIFEREG

PROC LIFEREG estimates regression models with censored, continuous-

time data under several alternative distributional assumptions. The proce-

dure allows for several types of censoring, but it does not allow for time-

dependent covariates. PROC LIFEREG accommodates left censoring and

interval censoring. If the shape of the survival distribution is known, then

more efficient estimates with smaller standard errors are produced. PROC

LIFEREG automatically creates sets of dummy (indicator) variables to repre-
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sent categorical variables with multiple values. The ‘model’ statement allows

the mathematical or equivalently statistical model to be specified. The ‘dist’

statement allows for different distributions that range from Weibull, Expo-

nential, Gamma, Log-logistic and Log-normal distributions to be fitted. The

‘class’ statement allows for categorical variables. Covariance matrices can

be requested using the ‘covb’ option in the model statement. The ‘output’

statement creates a new SAS data set containing the statistics calculated

after fitting the model. PROC LIFEREG also has a ‘weight’ statement that

can be used for weights in the analysis. Hypothesis tests using Wald (Chi-

square) statistics can also be calculated within this procedure. Graphical

options are also available using the ‘probplot’ or ‘pplot’ statements within

the PROC LIFEREG procedure. Left censoring and interval censoring can

be specified in the ‘model’ statement as model (lower, upper). The following

options are present.

Uncensored : lower and upper are present and equal

Interval censored : lower and upper are present and are different

Right censored : lower is present and upper is missing

Left censored : lower is missing but upper is present

A comprehensive account of PROC LIFEREG can be found in the SAS/STAT

User Guide, Volume 3, chapter 39, pp. 2090-2148.

PROC PHREG

This procedure uses Cox’s partial likelihood method to estimate regression

models with censored data. The model is somewhat less restrictive than the

other models in PROC LIFEREG, and the estimation method allows for time

dependent covariates. Furthermore, the semi-parametric regression analysis

is done using the partial likelihood method. PROC PHREG handles both
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continuous-time and discrete-time data. PROC PHREG only allows for right

censoring and only gives nonparametric estimates of the survivor function

which can be difficult to interpret. PROC PHREG also enables one to:

• include an offset variable in the model

• weight the observations in the data set

• test linear hypotheses about the regression parameters

• perform conditional logistic regression analysis for macthed case control

studies

• create a SAS data set with residuals, survivor function estimates and

regression diagnostics

• create a SAS data set containing survival distribution estimates and

confidence interval for the survivor function at each time for a given

realization of the explanatory variables

It has however the very powerful built-in ‘stratification’ option and also has

by far the most powerful capability for incorporating the already mentioned

time-dependent covariates. The ‘model’ statement allows for the specification

of the model. The three alternative chi-square tests, namely, the likelihood

ratio test, a score test and a Wald test are given. The ‘assess’ statement per-

forms the graphical methods of Lin, Wei and Ying (1993) for checking the

adequacy of the Cox regression model. The PHREG procedure also is able

to handle ties using the ‘ties’ option within the ‘model’ statement. The ‘ties’

option allows for ‘ties=Breslow (default), discrete, Efron or exact methods’.

The exact option assumes that time is continuous and will assume that there

is a true but unknown ordering for the tied event times whilst the discrete
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option assumes that the events really occurred at exactly the same time. The

Efron and Breslow methods use the approximate likelihoods of Efron (1977)

and Breslow (1974). The ‘strata’ statement names the variables that deter-

mine stratification. The ‘weight’ and ‘test’ statements are also present on

PROC PHREG. Time dependent covariates that change at irregular intervals

can also be incorporated into PROC PHREG. The ‘freq’ statement identi-

fies the variable containing the frequency of occurrence of each observation.

The ‘output’ option can produce a data set containing statistics calculated

for each observation, influence statistics, the linear predictor, standard er-

ror, survival distribution estimates and different diagnostic statistics for each

individual with a wide range of residuals. The ‘baseline’ statement creates

a SAS data set that contains the survivor function estimates at the event

time for each stratum for every pattern of explanatory variables given in the

covariates. The ‘test’ statement tests for linear hypotheses in conjunction

with the ‘class’ statement. These tests of linear hypotheses tests that all the

coefficients corresponding to a categorical covariate are equal to 0. The ODS

Graphics part is still in the experimental stage but can be used for graphs.

A comprehensive account of PROC PHREG can be found in the SAS/STAT

User Guide , Volume 5 chapter 54, pp. 3215-3332.

10.8 Fitting the AG, WLW and PWP models

to the RSV data

The fitting of the AG, WLW and PWP models can be done by using the

‘PROC PHREG’ statement in SAS. Details of these models and how they

are specifically fitted, with illustrative examples can be found in SAS/STAT

User Guide , Volume 5 chapter 54, pp. 3247-3257. The models are explained
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very clearly as to how they can be fitted using the ‘PROC PHREG’ procedure

in SAS and the manipulation of the data into intervals are also explained.

For the WLW model the data was set out according to the following format.

Here shown for a random individual with id= 4.

id rsvpos dij age prev

4 1 0 1 0.0135

4 0 10 1 0.0524

4 1 7 1 0.0111

4 0 20 1 0.0524
...

...
...

...
...

Table 10.2: Data description of the WLW model

However for the AG and PWP models the data was reorganized as follows:

id rsvpos start end age prev

4 1 0 10 1 0.0135

4 0 10 17 1 0.0524

4 1 17 37 1 0.0111
...

...
...

...
...

...

Table 10.3: Data description of the AG and PWP models
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The Cox model that was fitted was

hij(t) = h0(t) exp(β1age+ β2prev + β3actipass+ β4timemonth)

A summary of the results are given below: The Likelihood ratio, score and

Model Variable Parameter Estimate Standard Error Chi-Sq Pr>Chi-Sq

WLW Age 0.0576 0.081 0.0051 0.9430

Prev 47.1980 4.997 89.2308 < .0001

Actipass -2.4346 0.175 193.238 < .0001

Timemonth -0.1615 0.076 4.468 0.0345

PWP Age 0.0343 0.104 0.120 0.741

Prev 37.050 6.568 31.825 < .0001

Actipass -2.219 0.180 151.605 < .0001

Timemonth -0.020 0.085 0.0522 0.8192

AG Age 0.0343 0.113 0.093 0.760

Prev 37.050 7.689 23.213 < .0001

Actipass -2.219 0.176 159.621 < .0001

Timemonth -0.020 0.099 0.039 0.8424

Table 10.4: Estmate of the WLW, PWP and AG models

Wald statistics were significant at the 5% level with small p-values. The PWP

gap time model with common regression coefficients gave exactly the same

results as the WLW model and will not be repeated. From the above table we

see that in the WLW model the ‘Prev’, ‘Actipass’ and ‘Timemonth’ variables

are significant in contributing towards the model, at the 5% level whilst the

‘Age’ variable is not. The PWP and AG models reveal only ‘Prev’ and

‘Actipass’ to be significant at the 5% level. Furthermore the AG and PWP

gave similar results, except their standard errors of the estimates differing

slightly. The objective of these marginal models is to assess the significance
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of explanatory variables and they have done simply that. We will now look at

extensions of these models by incorporating the ‘child’ as the random effect.

10.9 Frailty Models

Most real life situations are those where an individual experiences more than

one event, that is, most events are repeatable, for example, births, marriages,

job changes, promotions, tumor recurrences, seizures, urinary infections and

hospitalizations, just to name a few. Allison (1995, p. 237) gives the follow-

ing example to illustrate problems encountered with conventional methods

when handling repeated events. There are basically two approaches to an-

alyzing repeated events. Firstly you can do a separate analysis for each

successive event. Suppose that you have reproductive histories for a sample

of ever married women, and you want to construct and analyze a model for

the birth intervals. You can start with an analysis for the interval between

marriage and the first birth. First, all those woman that had a first birth,

you then do a second analysis for the interval between the first birth and the

second birth. You could continue in this fashion until the number of women

gets too small to reliably estimate a model.

The second general approach to repeated events is by treating each interval

as a distinct observation, pooling all the intervals together, and estimat-

ing a single model. This second method poses a problem in that, it does not

account for dependence among multiple observations. Not taking this depen-

dence into account, can lead to standard errors that are biased downward and

test statistics that are biased upward leading to unnecessary significance of

test statistics. Dependence among observations can be thought of as arising

from unobserved heterogeneity. Hence models that deal with the problem of
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dependence, must not only correct for the standard errors and test statistics

but also for some or all of the bias in the coefficients caused by unobserved

heterogeneity.

The basic idea in frailty modelling is to formulate a model that explic-

itly introduces a disturbance (random) term representing unobserved hetero-

geneity. These models are called Frailty Models ( sometimes conditional or

subject-specific) (Keiding et al., 1997). The random term is incorporated in

the hazard function, under the assumption that frailty is independent of any

censoring that might take place and this random term acts multiplicatively

on the hazard function.

We will now use the introductory work on frailty by Vaupel, Manton and

Stallard (1979): Let h(t,x, z) be the hazard function for an individual in

population i with a vector of covariates x, at some time t, and with a frailty

of z > 0. The definition of frailty as defined by Vaupel et al. (1979) states

that the ratio of the hazards for two different individuals in a population

group i is equal to the ratio of their frailties. This is expressed as

h(t,x, z)

h(t,x, z′)
=
z

z′

or

hi(t,x, z) = zhi(t,x, 1) (10.24)

where an individual with a frailty of 1 might be viewed as a ‘standard’ indi-

vidual. If an individual has a frailty of 2, then that person is twice as likely to

die at any particular age, at any particular time, than a standard individual.

On the other hand, a person with a frailty of 0.5 is only half as likely to die.

In other words, if z > 1, then an individual is more ‘frail’ than a standard

individual, if z < 1 the subject is less ‘frail’ than an average individual. Thus
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frailty can be interpreted as relative risk.

The above definition of frailty assumes that each individual maintains a con-

stant level of frailty, from birth to death. However, it does not imply that an

individuals with the same frailty are identical. Also, it is more convenient to

define frailty in terms of the hazard, rather than the age-specific probability

of death qx for the following reasons.

1. qx is bounded above and thus the range of frailty would also be bounded

above.

2. qx is a nonlinear function of the size of the age interval used.

For the purposes of simplicity, let h(t,x, z) and hi(t,x, z
′
) be denoted as h(z)

and h so that

h(z) = zh

The required relationships now follow

H(z) = zH (10.25)

S = e−H (10.26)

⇒ S(z) = Sz (10.27)

where S = S(t,x, 1) for some vector x and time t.

10.9.1 The Distribution of Frailty

Let hi(t, x) be the hazard for a cohort of individuals from a population group i

at age x at time t. For simplicity assume that only one covariate is measured,

in this case, age, measured by x. Note that hi(t, x) is analogous to the average

hazard in a group of individuals. Then

hi(t, x) =

∫ ∞

0

hi(t, x, z)fx(z)dz
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where fx(z) is the p.d.f. of the frailty at age x among the surviving individuals

in the cohort. Average frailty in the cohort z, is defined by

zi(t, x) =

∫ ∞

0

zfx(z)dz

Hence we have

hi(t, x) =

∫ ∞

0

hi(t, x, z)fx(z)dz

=

∫ ∞

0

zhi(t, x, 1)fx(z)dz

= hi(t, x, 1)

∫ ∞

0

zfx(z)dz

= hi(t, x, 1)z(t, x)

or alternatively h = hz.

The interpretation is that frail individuals with high values of z will tend

to die first. This implies that z (which is the average frailty of the surviving

cohort) will decline with age. The equation h = hz also indicate that the

hazard for individuals increases more swiftly than for the cohort in which the

individuals belong (in other words “age” faster than cohorts). The relation-

ship between the individual and cohort aging depends on the distribution of

frailty among individuals.

Many literature papers and texts (Nguti, 2003; Zuma and Lurie, 2005;

Bolstad and Manda, 2001) assume that the frailty is Gamma distributed with

p.d.f.

f(z) =
λkzk−1e−λz

Γ(k)

where λ and k are the scale and shape parameters respectively therefore the

mean and variance are given by

z =
k

λ
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and

σ2
z =

k

λ2
.

It is common to set the mean equal 1 so that λ = k and σ2 = 1/k.

There are a few reasons why the Gamma distribution is chosen for frailty.

It is analytically tractable, readily computable, and is one of the few distri-

butions that is able to model variables that are positive, and since frailty

cannot be negative, it is thus suitable. It is also a flexible distribution that

can take on a variety of shapes as k varies. When k = 1 then the p.d.f sim-

plifies to the Exponential distribution. When k becomes large, it assumes a

bell-shaped distribution similar to the Normal distribution. As k increases,

and thus as variability in frailty decreases, mortality rates for standard in-

dividuals become more like the observed cohort rates. Thus there are two

useful mathematical results noted that arise from the assumption that frailty

at birth is Gamma distributed:

1. Frailty among those who have not yet died is Gamma distributed with

the same value of shape parameter as at birth but now,

λ(x) = λ+H(x)

and the mean frailty is

z(x) = z
k

k + zH(x)

where z is the average frailty of the cohort at birth. When k = 1 and

z = 1, the mean frailty reduces to

z(x) =
1

1 +H(x)
.

It is obvious from the above equation that as the cumulative hazard

H(x), increases then the average frailty of the remaining cohort de-

creases.
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2. Frailty among those who die at any age x is also Gamma distributed,

with the same scale parameter λ(x) as among those surviving to age

x, but with shape parameter k + 1. This implies that the mean frailty

of those who die at age x, denoted by z
′
(x), is greater than the mean

frailty of the survivors

z
′
(x) = z

k + 1

k

Thus Vaupel et al. (1979) concluded that ignoring the frailty in a survival

model may lead to biased estimates. Individual ageing rates, past and fu-

ture progress in reducing mortality, and mortality differentials between pop-

ulations may be underestimated, and current life expectancy and potential

gains in life expectancy from averting specific causes of death may be over-

estimated.

10.9.2 Multivariate Semi-Parametric Frailty Models

In the case of univariate data , the hazard function is completely specified

by the baseline hazard function and other covariates. There could be other

factors that significantly affect the distribution of survival time, other than

the covariates. We have already defined these factors to be the source of

heterogeneity between subjects. Keiding et al. (1997) and Struthers and

Kalbfleish (1986) demonstrate the effect of leaving out important covariates

and the consequences of this on the results. The proportional hazards frailty

model assumes that for a given frailty variable zi and covariates x, individual

i has a hazard function given by

hi(t|zi,x) = h0(t)e
xT
i β+wi = zih0(t)e

xT
i β (10.28)

where zi = ewi and wi is the random effect for the ith individual where −∞ <

wi < ∞. The participants who experience an event contribute the product

383



of their conditional hazards function and conditional survival function to the

likelihood whereas those who do not experience an event, implying that they

are right censored, contribute only their conditional survival function to the

likelihood. The conditional survival function is given as

S(t|zi,xi) = exp[−H(t|zi,xi)]

= exp[−ziΛ0(t) exp(xTi β)] (10.29)

where Λ0(t) is the integrated or cumulative baseline hazard. It may not

always be the case that the event times among individuals are independent,

as the failure times of certain individual may be correlated, for example

individuals from the same family or community may be correlated violating

the independence assumption, and these data are referred to as multivariate

or repeated survival data. Time-to-event data that are not correlated are

known as univariate survival data. Parallel or longitudinal data are the

two main types or survival data. Parallel data consist of different clusters

which have a number of items or individuals contained in them. Longitudinal

data are a result of a stochastic process of events, namely an individual

experiences a number of the same event over time which results in recurrent

or short time series data. The cluster is now the individual, and within that

individual events are observed. In both types of data, the events within a

cluster are correlated. There is a school of thought that stipulates that there

are unobserved risk factors that explain the dependence and these factors are

generally assumed to be constant over time, and using the standard approach

of modelling the survival data, say for example Cox regression would lead to

biased estimates.
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The Shared Frailty Model

A common approach applied to explain such unexplained risk factors is the

shared frailty model. The shared frailty model assumes that all individuals

within a cluster or group have the same frailty. To account for the hetero-

geneity among groups, a random term is included in the hazard function

to account for the correlation of failure times within a cluster. The frailty

model can be seen as linear mixed effects model with the frailty terms acting

multiplicatively on the hazard function. The frailties are assumed to be inde-

pendent between or across clusters, whilst the failure times within a cluster

are dependent. However, conditional on frailties, the failure times are inde-

pendent. In the univariate case, if we add frailty effects for each individual,

we induce the heterogeneity among individuals after taking into account any

measured covariates.

10.9.3 Frailty Model Formulation

Suppose that there are n individuals assigned to I groups where the ith group

has ni individuals such that
∑I

i=1 ni = 1. It should be said that in the current

RSV data set, an individual is taking on the role of a cluster. Suppose that

the number of events experienced by the ith group is given by Di =
∑ni

j=1 δij,

where δij is the censoring indicator which takes on the value 1 when an event

occurs and 0 when it does not. Then the hazard for the jth individual from

the ith group is given by

hij(t) = h0(t) exp(xij
Tβ + wi) (10.30)

where xij is a vector of p covariates for individual j in group i, h0(t) is the

baseline hazard and wi is the random effect for the ith group. The wi’s are i.i.d

random sample from a density fW (.). We can then rewrite the model (10.30)
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as:

hij(t) = h0(t) exp(wi) exp(xTijβ)

= zih0(t) exp(xTijβ) (10.31)

where zi = exp(wi) is the frailty term. The zi’s are independent with a

common density fZ(.). The two commonly used densities for the frailties

typically chosen are:

1. The zero-mean normal density for W which transforms to the log-

normal density for Z, that is,

fZ(z) =
1

z
√

2πσ2
exp

(
−(log z)2

2σ2

)
with mean eσ

2/2 and variance eσ
2
(eσ

2 − 1)

2. The one parameter gamma density for Z with density given by

fZ(z) =
ααzα−1e−αz

Γ(α)

which corresponds to a log-gamma density for W . The mean and vari-

ance for Z are given by

E[Z] = 1

Var[Z] =
1

α

Since zi in the equation (10.31) can be thought of as a mixing term, its cor-

responding density fZ(.) is also referred to as a mixing distribution. When

using the log-normal density for fZ(.), Var[Z] = σ2
z is used to describe the

heterogeneity among the groups. For a gamma density describing frailties,

Var[Z] = 1
α
. In general heterogeneity is commonly described by a parameter

386



θ. This is σ2
z in the case of the log-normal distribution and 1

α
for the gamma

density. If 1
α

is small then the gamma and log-normal distributions are sim-

ilar (Kalbfleish and Prentice, 1980).

For creating correlated frailties, the log-normal distribution is preferred to

the gamma distribution and is therefore extremely useful in modelling multi-

variate frailty models. Hougaard (2000) states that other distributions that

are used for the frailties are the stable distribution and the power variance

functions. The power variance function is a large family of distributions that

comprise of the gamma and other positive stable distributions, making it a

less restrictive function to use. However, the calculations for these functions

are more difficult rendering it being less frequently used.

10.9.4 Estimation in the Frailty Model

The baseline hazard h0(t) can be specified explicitly or left unspecified. If it

is specified explicitly, a parametric assumption for h0(t) means that param-

eters in the resulting model can be estimated using the maximum likelihood

estimation (MLE). However if h0(t) is left unspecified then the unknown pa-

rameters in the shared frailty model have to estimated by other approaches

and methods such as:

1. Expectation Maximization (EM) Algorithm (Klein, 1992)

2. Penalized Partial Likelihood (PPL) Approach (Therneau and Gramb-

sch, 2000)

3. Markov Chain Monte Carlo (MCMC) methods (Vaida and Xu, 2000)

4. Monte Carlo EM (MCEM) approach (Ripatti et al. 2002)
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5. Different methods using Laplace approximation (Ripatti and Palmgren,

2000; Cortinas Abrahantes and Burzykowski, 2004)

The choice of estimation methods depends on the choice of frailty dis-

tribution. When a gamma frailty is used, the EM algorithm is commonly

used. However, when a log-normal frailty is used, the estimation procedures

are based on numerical integration methods such as the Laplace approxima-

tion methods. We will look at the EM Algorithm and the Penalized Partial

Likelihood approaches.

The Expectation Maximization (EM) Algorithm

The theory of the EM algorithm has already been covered in detail in Chap-

ter 8 and will only be applied here. We will however look at how the EM

Algorithm is applied to Gamma frailty models. For simplicity consider a

univariate analysis with the following hazard function for individual i

hi(t|zi,xi) = zih0(t)e
xT

i β.

Suppose that the baseline hazard is constant, that is h0(t) = h0. Also

assume that the frailty is Gamma(α, α) distributed. The individuals who

experienced an event contributes the product of their hazard and survival

function, whereas censored individuals contribute only the survival function

to the likelihood. The relationship between the hazard and survival function

implies that the survival function is

S(t) = e−
R t
0 h(u)du

= e−
R t
0 zih0e

xT
i β

du

= e−zih0te
xT

i β
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The complete data likelihood contribution from individual i is given by

Li(zi, ti;α) = f(z)× [Si(ti)hi(ti)]
δi [Si(ti)]

1−δi

=
αα

Γ(α)
zα−1
i e−αzi

× [e−zih0tie
xT

i β

zih0e
xT

i β]δi [e−zih0tie
xT

i β

]1−δi (10.32)

The associated complete-data log likelihood is then

`(zi, ti;α) = α lnα− ln Γ(α) + (α− 1) ln zi − αzi

+ δi[−zih0tie
xT

i β + ln zi + lnh0 + xTi β]

− (1− δi)zih0tie
xT

i β.

Zuma and Lurie (2005) show that the observed data likelihood is attained

by integrating out unobserved data from the likelihood in Eq. (10.32) as

Lobs,i(ti;α) =

∫ ∞

0

αα

Γ(α)
zα−1
i e−αzi (10.33)

× [e−zih0tie
xT

i β

zih0e
xT

i β]δi [e−zih0tie
xT

i β

]1−δidzi

=
αα

Γ(α)

∫ ∞

0

zα−1
i e−αzie−δizih0tie

xT
i β

× zδii h
δi
0 e

δix
T
i βe−(1−δi)zih0tie

xT
i β

dzi

=
αα

Γ(α)
hδi0 e

δix
T
i β

∫ ∞

0

zα+δi−1
i e−zi(α+h0tie

xT
i β)dzi (10.34)

The integral here appears to be the kernel of a Gamma(α + δi,
1

α+h0tie
xT

i
β
)

function. The resulting integrand of Eq. (10.34) is then

Lobs,i(ti;α) =
αα(h0e

xT
i β)δiΓ(α+ δi)

Γ(α)(α+ h0tiexT
i β)α+δi

.

To estimate the parameters, the log-likelihood of the observed data likelihood

needs to be maximized

`obs,i(α; ti) = α lnα+ δi lnh0 + δix
T
i β + ln Γ(α+ δi)

− ln Γ(α)− (α+ δi) ln(α+ h0tie
xT

i β) (10.35)
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This log-likelihood is difficult to maximize as it contains an unspecified base-

line hazard; thus the EM Algorithm needs to be implemented to solve for the

unknown parameters. In order to run the EM Algorithm the complete data

likelihood and the marginal distribution of the unobserved data is needed.

The marginal distribution of the unobserved data is found to be

g(zi|xi;α) =
Li(zi, ti;α)

Lobs,i(ti, α)

=
(α+ h0tie

xT
i β)α+δi

Γ(α+ δi)
Zα+δi−1
i e−zi(α+h0tie

xT
i β) (10.36)

Clearly this is a two parameter gamma distribution with parameters (α +

δi, α + h0tie
xT
i β). The EM Algorithm can now be used to solve for the un-

known parameters. It should be noted that if the baseline hazard is not

constant, then ∫ t

0

h0(t)du = Λ(t).

Penalized Partial Likelihood Approach

We shall use most of the work by Therneau and Grambsch (2000, pp 232-

233) and Nguti (2003) in this section. The whole concept of penalized partial

likelihood estimation originates from the cubic splines regression in the Cox

proportional hazards model. When using the penalized partial likelihood ap-

proach for this estimation, the random effects wi are used rather than the

frailties zi. We will assume the univariate frailty model with the correspond-

ing equations

hi(t) = h0(t) exp(xTi β + wi) (10.37)

Si(t) = exp[Λ0(t) exp(xTi β + wi)] (10.38)

Li(wi, ti;α) = fw(wi)× hi(t)
δiSi(t) (10.39)

`i(α;wi, ti) = ln fw(wi) + δi lnhi(t) + lnSi(t) (10.40)
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Substituting Eq. (10.37) into the full data log-likelihood Eq. (10.40) gives

the contribution for individual i as

`i(α;wi, ti) = ln fw(wi) + δi(ln[h0(t) exp(xTi β + wi)])− Λ0(t) exp(xTi β + wi)

= ln fw(wi) + δi(lnh0(t) + xTi β + wi)− Λ0(t) exp(xTi β + wi).

Thus the full data log-likelihood can be written as

˜̀
full(β, α, h0) = ˜̀

full,1(β, h0) + ˜̀
full,2(α)

where

˜̀
full(β, α, h0) =

I∑
i=1

[δi(lnh0(t) + xTi β + wi)− Λ0(t) exp(xTi β + wi)]

˜̀
full,2(α) =

I∑
i=1

ln fw(wi)

where ˜̀
full,2(α) can be seen as the penalty term, where the mean for the wi’s

is 0. For wi << 0 or wi >> 0, fw(wi) is small and thus log fw(wi) takes on

a large negative value which in turn decreases the likelihood, in other words

it acts like a penalty. We therefore take

˜̀
full,2(α) = −`pen(α)

with

`pen(α) = −
I∑
i1=

ln fw(wi)

In order to apply semi-parametric ideas, consider the wi’s in ˜̀
full,1(β, h0) as

‘parameters’ with corresponding covariates similar to that of a design matrix

Z in the equation

Y = Xβ + Zw
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where Z is the design matrix (Janssen, 2005). Using the partial likelihood

ideas, ˜̀
full,1(β, h0) is replaced by

`part(β, w) =
I∑
i=1

δi

ηi − ln

 ∑
qw∈R(ti)

exp(ηqw)


where ηi = xTi β + wi. Thus in order to make inference on the parameters β

and α, the following penalized partial likelihood is used

`ppl(β, α, w) = `part(β, w)− `pen(α,w)

Application to the log gamma density

If the frailties are assumed to be gamma distributed, then the random terms,

the wi’s are log gamma distributed, with probability density function

fw(w) =
αα(exp(w)α) exp[−α exp(w)]

Γ(α)
.

Taking the natural log of this p.d.f results in

ln fw(w) = α(w − exp(w))− (α lnα+ Γ(α)).

Hence `pen(α) is given by

`pen(α) = −
I∑
i=1

(α(wi − exp(wi))) + I(α lnα+ Γ(α)).

Nguti (2003) and Therneau and Grambsch (2000) state that the maximiza-

tion of the penalized partial likelihood consists of an inner loop and an outer

loop. In the inner loop the rule is given a provisional value of α, the Newton-

Raphson procedure is employed to maximize `ppl(β, α,w) for β and w to

obtain the best linear unbiased predictors (BLUP). In the outer loop, a log

likelihood similar to `obs(.) is maximized for α as in the case of the EM algo-

rithm. Let ` denote the outer loop index, and k the inner loop index. Let α(`)
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be the estimate of the `th iteration of the outer loop. Then β(`,k) and w(`,k)

are the estimates and predictions for β and w at the kth iterative step, given

α(`). The starting value of β is obtained from the estimates from fitting a

normal Cox model, and for starting values of w(1,0) and α(1) the kth iterative

step given by[
β(`,k)

w(`,k)

]
=

[
β(`,k−1)

w(`,k−1)

]
V −1

[
0

(α(`))−1w(`,k−1)

]
+V −1

[
X Z

] d`part(β,w)

dη

where

V =

[
V11 V12

V21 V22

]

=

[
XT

ZT

](
−∂2`part(β,w)

∂η∂ηT

)[
X Z

]
+

[
0 0

0 (α(`))−1II

]
Note that X = (x11, . . . ,xInI

)T is a n × p covariate matrix with n =∑I
i=1 ni, Z = diag(1n1, . . . ,1nI) with 1ni as a column vector of size ni with

all entries one, and η = Xβ + Zw such that ηT = (η11, . . . , ηInI
) as in

Nguti (2003). Once the Newton Raphson procedure has converged for the

current value of α(`), the procedure moves to the outer loop of the algorithm.

In the outer loop of the algorithm, a golden section search method (Press et

al., 1992), described in the appendix, is applied to a modified version of the

log-likelihood in order to update the estimate of α. The likelihood is

`part,obs(β,w) = `part(β,w)

=
I∑
i=1

[
ln

(
Γ(Di + α)

Γ

)
+ α ln

(
α

Λ + α

)
−Di ln(Di + α) +Di

]
and the details of how this is derived are found in Therneau and Grambsch

(2000) and Nguti (2003). The algorithm continues until the stopping criterion

given by

|`part,obs(β̂(`), α(`), ŵ(`))− `part,obs(β̂
(`−1), α(`−1), ŵ(`−1))| < ε∗
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is reached. We do not consider the Bayesian and the MCMC approaches

although details of it can be found in Zuma and Lurie (2005) and Bolstad

and Manda (2000).

10.10 Fitting the frailty model to the RSV

data using the PPL approach

We apply the penalized partial likelihood approach (PPL) to the RSV data

even though consideration was given to the EM Algorithm. The reason for

this approach is that the EM Algorithm and the PPL approach produce the

same estimates and there was no readily available software to run the frailty

model using the EM Algorithm. Further to this point, the EM algorithm can

take up to ten times longer to converge than the PPL approach, rendering

it inefficient. The Cox model was fitted to include the explanatory variables

of age, prev, visit and timemonth but STATA could not compute the results

of this model since the likelihood was found to go to infinity. Hence the Cox

model that was fitted was

hij(t) = h0(t) exp(β1age+ β2prev + wi)

where i = 1, . . . , 338 and wi is the random effect for child i. The model was

fitted in STATA. The commands that were given in STATA to fit the Cox

proportional hazards frailty model are:

stset dt, failure(rsvpos) set matsize 336 stcox age

prev,shared(id) nohr effects(logfr)

The option ‘nohr’ requests that parameter estimates instead of hazard

ratios to be given in the output. If one exponentiates the parameter esti-
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mates then the hazard ratios are recovered. The matsize of 336 owes itself

to a large data set and is calculated as 334 children plus 2 covariates. The

default size in STATA for matsize is 200 but can be expanded to a maximum

of 800. It is apparent that matsize depends on the model and its parameters

being fitted. The ‘effects()’ component of the ‘stcox’ statement requests that

the log-frailties be printed for each child/indivivdual/cluster and this vari-

able that STATA will print in the original data set should be called ‘logfr’.

Obvioulsy one can specify any name that one wishes to name the log frailties

variable. It took 4 iterations to estimate the frailty variance and 3 itera-

tions to fit the final Cox model. The final log-likelihood was worked out

as −1201.4732. As a default, STATA uses the Breslow (1974) method for

handling ties. For the random effect of the children denoted as ‘id’, a shared

gamma frailty model was used. A summary of the results are given below:

The likelihood ratio test for θ = 0 has a χ2 statistic of 0.14 with a probability

Variable Parameter Estimate Standard Error z Pr> z Hazard Ratio

Age -0.0769973 0.0242813 -3.17 0.002 0.9259

Prev 51.22724 5.429363 9.44 0.000 1.76e22

θ 0.06121 0.17165

Table 10.5: Parameter Estimates for gamma shared frailty model

of 0.355. Thus the child specific random effect is not significant and models

without the random effect seem to be better to use. However the analysis

has shown how such frailty models can be fitted. The ‘age’ and ‘prev vari-

ables are significant in this model, with 95% confidence intervals given as

(-0.12459, -0.0294) for ‘age’ and (40.58589, 61.8686) for ‘prev’. The frailty

variance is 0.06121 implying that there is not much variability from child to

child in this data set. This makes sense since most children were within one

year of age thus the sample was more homogenous than heterogenous. The
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log frailties for every child is also printed upon request. There is a log frailty

for every child and this list will not be printed, however for the purposes

of interpretation, 2 children will be looked at: The log frailty for individ-

id rsvpos dij age prev log-frailty

1 0 0 1 0.018182 0.027906

1 1 40 2 0.041276 0.027906

1 0 7 3 0.025424 0.027906
...

...
...

...
...

...

5 1 0 1 0.018182 -0.03287

5 1 33 2 0.041276 -0.03287

5 1 5 2 0.041276 -0.03287
...

...
...

...
...

...

Table 10.6: Data description showing log frailty

ual/child 1 is 0.027906. The frailty is worked out as e0.027906 = 1.028. Since

this value is greater than 1, individual/child 1 is more frail than a standard

individual/child. For individual/child 5, the log frailty is −0.03287, so the

frailty is worked out again as e−0.03287 = 0.9677. Thus individual 5 is less frail

than a standard individual/child. However these values are not significantly

different from 1.

Two other models were fitted, one by adding in the ‘actipass’ variable,

whether a child was actively or passively sampled, and the other by adding

in the time in months since the beginning of the study, ‘timemonth’. The

results for the models are summarized below:

The final log-likelihood was worked out as −1107.79. A summary of the re-

sults are given below: The likelihood ratio test for θ = 0 has a χ2 statistic of

1.9e − 05 with a probability of 0.498. Thus the child specific random effect

is not significant and models without the random effect seem to be better

to use. The ‘age’,‘prev’ and ‘actipass’ variables are significant in this model,
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Variable Parameter Estimate Standard Error z Pr> z Hazard Ratio

Age -0.1430 0.0254 -5.61 0.000 0.8668

Prev 48.1380 4.961 9.70 0.000 7.99e22

Actipass -2.434 0.1784 -13.64 0.000 0.0877

θ 1.13e-07 0.000018

Table 10.7: Parameter Estimates for gamma shared frailty model

with 95% confidence intervals given as (-0.193, -0.093) for ‘age’, (38.41, 57.86)

for ‘prev’ and (-2.78,-2.08) for ‘actipass’. The frailty variance is 1.13e − 07

implying that there is not much variability from child to child in this data

set as discussed in the first model above. The frailty variance tends to zero,

hence there is no apparent frailty. This explains the results now to follow.

Here again we look at the log frailty for, 2 children: The log frailty for individ-

id rsvpos dij age prev log-frailty

1 0 0 1 0.018182 -1.84e-08

1 1 40 2 0.041276 -1.84e-08

1 0 7 3 0.025424 -1.84e-08
...

...
...

...
...

...

5 1 0 1 0.018182 -4.12e-08

5 1 33 2 0.041276 -4.12e-08

5 1 5 2 0.041276 -4.12e-08
...

...
...

...
...

...

Table 10.8: Data description showing log frailty

ual/child 1 is −1.84e08. The frailty is worked out as e−1.84e08 = 0.9999 ≈ 1.

Since this value is equal to 1, individual/child 1 is equally as frail as a stan-

dard individual/child. For individual/child 5, the frailty is worked out again

as e−4.12e08 = 0.99999 ≈ 1. Thus individual 5 is equally as frail as a standard

individual/child. Finally the final model is summarized below. The final log-
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likelihood was worked out as −1105.64. A summary of the results are given

below: The likelihood ratio test for θ = 0 has a χ2 statistic of 2.4e− 05 with

Variable Parameter Estimate Standard Error z Pr> z Hazard Ratio

Age 0.016 0.0817 2.00 0.845 1.016

Prev 46.268 5.0447 9.17 0.000 1.241e22

Actipass -2.422 0.17838 -13.58 0.000 0.0877

Timemonth -0.158 0.0775 -2.04 0.041 0.8538

θ 1.14e-07 9.68e-06

Table 10.9: Parameter Estimates for gamma shared frailty model

a probability of 0.498. Thus the child specific random effect is not significant

and models without the random effect seem to be better to use. We find that

‘prev’, ‘actipass’ and ‘timemonth’ are all significant at the 5% level. Here

again we look at the log frailty for, 2 children:
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id rsvpos dij age prev log-frailty

1 0 0 1 0.018182 -5.02e-08

1 1 40 2 0.041276 -5.02e-08

1 0 7 3 0.025424 -5.02e-08
...

...
...

...
...

...

5 1 0 1 0.018182 -5.14e-08

5 1 33 2 0.041276 -5.14e-08

5 1 5 2 0.041276 -5.14e-08
...

...
...

...
...

...

Table 10.10: Data description showing log frailty

The log frailty for individual/child 1 is −5.02e08. The frailty is worked

out as e−5.02e08 = 0.9999 ≈ 1. Since this value is equal to 1, individual/child

1 is equally as frail as a standard individual/child. For individual/child 5,

the frailty is worked out again as e−5.14e08 = 0.99999 ≈ 1. Thus individual 5

is also equally as frail as a standard individual/child. It seems that perhaps

the marginal models are better suited to model the RSV disease from the

survival analysis approach.

10.11 Conclusion

The marginal models of AG, PLP and WLW models all gave similar results.

The frailty models showed the inclusion of the child effect to be negligible.

The frailty model took longer to converge in STATA. The infected and unin-

fected child seem to be equally frail. It could be due to the large number of

uninfections as compared to the small number of infections in this scientific

setting. It seems in the survival analysis setting that the marginal models

are better suited to model the RSV data set.
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Chapter 11

Concluding Remarks

The aim of this research study was to develop methods of modelling disease

outcome data with reference to the RSV as the particular disease process.

In addition to the work, the force of infection and the recovery rate were

estimated using frequency based approaches. Both of these aims were suc-

cessfully met. The longitudinal structure of the data presented one with

three families of modelling approaches namely the marginal, random effects

and transition models. All three models were investigated as well as Survival

analysis type of models. All models have merits and demerits, depending on

the nature of the problem and assumptions imposed.

In this scientific setting, there were not many infected state transitions as

compared to the overwhelmingly large number of uninfected to infected state

transitions. The use of generalised linear modelling combined with likelihood

estimation was used to estimate the force of infection and the recovery rate of

the childhood respiratory viral disease (RSV). Construction of the full likeli-

hood was not possible therefore a form of conditional likelihood was used to

model the data. The generalised modelling approach was modified to esti-
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mate stepwise monthly specific force of infection for the disease thus allowing

the model to capture the temporal trends of disease incidence. Assuming

time dependence the force of infection is estimated as λ̂ = 0.0012 and the

rate of recovery is estimated as ν̂ = 0.4550 using the direct maximum like-

lihood estimation method. Corresponding estimates using the generalized

linear modelling approach were 0.0021 and 0.5032. These two approaches

gave quite similar sets of parameter estimates. However the latter approach

is preferred because of its flexibility in allowing the estimation of monthly

piecewise parameter estimates. It is also seen from the estimation of the

monthly parameters that RSV peaks at particular months in the year namely

May, January and February. This result demonstrates that RSV like many

child infections is seasonal in nature.

The marginal models allowed us to use GEE with different correlation struc-

tures where the exchangeable as well as the independent structures were

deemed most suitable to model the disease at successive time intervals. Age,

prevalence of RSV in the blood as well as whether or not a child was actively

or passively sampled was related to the current RSV status of the child.

When the random effect of the child was added into the model, it was found

that the data did not exhibit much variability from child to child. It must

also be said that SAS allows a good flexibility in using Proc GLIMMIX and

Proc NLMIXED to fit these models. The transition models, which are also

heavily criticized for using a the history term Yij−1, the previous response for

child i at time occasion j, gave odds ratios. The plausibility of the second

and third order Markov models must be interpreted with caution because the

second and third order history terms when compared to the present response

term were not found to be significant. The odds ratios also increased as the
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history variables are increased to higher orders. The decreasing pattern of

the odds ratios was evident seen across all the variables: ‘age’, ‘dt’, ‘prev’,

‘actipass’ and ‘timemonth’ in all three conditional models involving the first,

second and third order history terms. It is also important to emphasize that

a difference exists with respect to the interpretation of the fixed effects β,

for example the E(Yi) has different estimates in terms of the classical linear

mixed model and the non-linear mixed model. In the general case the fixed ef-

fects under the marginal model, say, βmarginal and the random effects models,

βrandomeffects are different to each other in the sense that when the random

effects model is considered, the marginal mean profile can be derived but

will not produce a simple parametric form. One needs to be careful of this in

the interpretation of these fixed effects under the different families of models.

The RSV data set also had two issues of missingness associated with it namely

the 85 missing values in the response variable, Y and the dropout process.

The intermittent missingness is not estimated. The model was estimated

using different methods such as the EM algorithm and LOCF. Thereafter

different models were refitted showing not much difference when compared

to the original data estimates. The dropout process was best handled using

WGEE and GLMM which both carry the relaxed assumption of MAR. The

LOCF method was also implemented and compared to the other methods.

LOCF produced inflated and deflated estimates in its estimation of the key

disease parameters and the model parameters. LOCF is clearly an unrea-

sonable analysis to make in the RSV data set, especially if we assume that

a child’s disease state will continue to be the same as the last state prior to

dropout. LOCF has attracted a lot of criticism from several authors such as

Kenward and Molenberghs (1998), Jansen et al. (2006) and Siddiqui and Ali

402



(1998), just to name a few. It continues to be a flawed technique of handling

the dropout in many scientific settings. The survival modelling approach al-

lowed us the flexibility of taking into account the interarrival times between

the child’s disease states and build the relevant models.

The survival analysis approach involved fitting marginal models and frailty

models to the RSV data, which in the survival analysis setting could be

treated as multiple events per subject. The marginal and frailty models can

be thought of as an extension of the Cox proportional hazards model. The

marginal type models involved the fitting of the AG, PLP and WLW mod-

els. The three models gave similar results and are useful in modelling the

RSV data set. The frailty model includes the frailty term in the model and

is thought to account for subject or individual random heterogeneity and

any possible clustering that may have occurred in the data set. The frailty

term in the RSV data set is the child effect. There are different types of

frailty modelling, namely, univariate, multivariate and shared frailty mod-

elling. Univariate frailty modelling occurs when the frailty term may be at

an individual level, where every individual is assumed to have a different

frailty due to unmeasured covariates. Multivariate frailty modelling is such

that each cluster is assigned a frailty term and all individuals within a cluster

are assumed to have the same frailty. The frailty term is thought to account

for the correlated nature of the data. Thus, it is extremely important to

consider including frailty in a survival model, and is particularly useful in

scientific settings where clustering needs to be accounted for. The child ef-

fect in our frailty model was not significant, perhaps due to the fact that

RSV is a rare disease and the data set does not exhibit much variation from

one child to another in terms of the disease status. There are still avenues of
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research especially in multi-level frailty modelling.

The modelling of the RSV disease is a varied and complex one. However

one has got to take into account of the nature of the data as well as the

scientific settings. This project highlighted and addressed these questions in

a meaningful and satisfying way. There is definitely more avenues of research

for modelling diseases and estimating their parameters. More sophisticated

models that carry the MNAR assumption for handling the dropout are also

pathways of research. Kenward and Carpenter (2007) point out that a more

rigorous theoretical framework needs to be developed for multiple imputa-

tion via chained equations There is still much to be accomplished as far as

disease modelling is concerned but this area is relevant and imperative to

biostatistics.
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Appendix A

Some SAS Proc IML Programs

/* this is a programme to get individual transition matrices*/

proc iml;

use lisa;

read all into xx; x=xx[,7]; id=xx[,1]; y=j(2,736,0); do j=1 to

368; do i=1 to nrow(x)-1; if ((id[i]=j) & (id[i+1]=j)) then do; if

((x[i]=1) & (x[i+1]=1)) then y[1,(2*j)-1]=y[1,(2*j)-1]+1; else if

((x[i]=1) & (x[i+1]=2)) then y[1,2*j]=y[1,2*j]+1; else if

((x[i]=2) & (x[i+1]=1)) then y[2,(2*j)-1]=y[2,(2*j)-1]+1; else if

((x[i]=2) & (x[i+1]=2)) then y[2,2*j]=y[2,2*j]+1; end; end; end;

yy=y‘; print yy;

/* this was the programme to calculate the visits by months*/ proc

iml; use lisa; read all into xx; tt={1 3 7}; xx=xx[,tt];

mid=max(xx[,1]); m=j(mid,450,0); do id=1 to mid;

help=j(1,ncol(xx),0); do i=1 to nrow(xx); if xx[i,1]=id then

help=help//xx[i,]; end; nid=nrow(help); if nid>1 then tt1=2:nid;

else tt1=1; tt1=tt1‘; help0=help[tt1,]; help1=cusum(help0[,2]); do
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i=1 to nid-1;

if i=1 then do;

mm=1;

jj=1;

end;

else do; jj=help1[i]; mm=help0[i,3]; end; m[id,jj]=mm; end; end;

v=j(2,14,0); do i=1 to 14; do c=(30*i)-28 to (30*i)+1; do j=1 to

368; if m[j,c]=1 then v[1,i]=v[1,i]+1; if m[j,c]=2 then

v[2,i]=v[2,i]+1; end; end; end; print v;

/* this is a programme to estimate the force of infection and the

rate of recovery using a GLM */

proc sort data=lisa out= rsv1; by

id visit; run; data rsv2; set rsv1; x1=lag(id); x2=lag(rsvpos); if

x1 ne id then x2=.; run; proc sort data=rsv2 out=rsv3; by id

visit; run; proc print data=rsv3; var id visit dt actipass

symptoms age rsvpos x2 timemonth prev; run; /* The x2 variable is

the Y_t-1 and the rsvpos is the Y_t variable*/ data rsv4;

set rsv3;

if x2 ^=.;

run;

data rsv4;

set rsv4;

yt=rsvpos-1;

yt1=x2-1;

ni=1;
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timeit=timemonth;

run;

proc print data=rsv4;

var id visit ni dt rsvpos yt x2 yt1; run;

proc freq data=rsv4;

table yt*yt1; run; data rsv5; set rsv4; z=0; if yt=0 and yt1=0

then z=1; if yt=1 and yt1=1 then z=1; index1=yt1; index2=(1-yt1);

ldt=log(dt); run;

proc freq data=rsv5; table z; table z*yt*yt1;

run; proc freq data=rsv5; table index1*index2; run;

proc print data=rsv5; run;

***********************************************************************;

* the model with constant lambda and nu *;

* the model was fitted with cloglog link for P(Z=0) *

* *

* lambda=exp(coeff index2) *;

* nu=exp(coeff index2) *;

* ldt=log(dt) *;

* C.I exp(C.I) *

***********************************************************************;

proc genmod data=rsv5 ; model z= index1 index2/dist=bin

link=cloglog offset=ldt noint; run;

data rsv51; set rsv5; if

yt1=0; run;
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***********************************************************************;

* time dependent force of infection with constant recovery rate *

* the model was fitted with cloglog link for P(Z=0) *

* *

* lambda=exp(coff index1) *;

* nu=exp(coff index2) *;

* ldt=log(dt) *;

* C.I exp(C.I) *

***********************************************************************;

proc freq data=rsv5; table timemonth; run;

data rsv51; set rsv5;

if 1< timemonth <= 13; run;

proc genmod data=rsv51; class

timemonth; model z= index2*timemonth index1/dist=bin link=cloglog

offset=ldt noint; run;
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