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Abstract

Tertiary institutions experienced a steady growth of students from other races after the

repeal of the apartheid laws. This growth picked up pace after the promulgation of the

Education White Paper of 1997 whose main thrust was to make the previously exclusive

institutions accessible to the wider populace. Disturbingly, however, and contrary to

the goals and the spirit of the White Paper, these institutions also experienced higher

failure and lower retention rates amongst the previously disadvantaged students.

This study seeks to model time to graduation using survival analysis methods. We

begin the analysis by assessing the relevance of the available variables to the exercise of

modelling time to graduation using descriptive statistics and non-parametric techniques.

We compared the Cox regression to its extensions in discrete time, the Discrete Time

to Event Approach, with the view to find the best model to explain time to graduation

given the available variables.

In light of limited availability of relevant data, we evaluated unobserved heterogeneity

in both models. We closed the analysis by considering the cure models and mixture

competing risks in discrete time.

Notwithstanding arguments against suitability of the Cox regression in continuous time

for modelling inherently discrete data such as found in our study, we found that Cox’s

regression over all, provided a reasonably good fit given the available data.

We also found that in relation to the Cox proportional hazard model, there was a lesser

degree of flexibility as certain variable effects were sacrificed to satisfy the proportionality



assumption by stratifying on those variables. The advantage of the Discrete Time to

Event Approach is that we could assess the effects of all variables in the model and also

obtain the estimates of risks to graduation which are true probabilities of graduation

with fewer assumptions or conditions to satisfy.

We found that the data limitations did not compromise either the box Cox regression

model or the Discrete Time to Event Approach.

The data also suggested existence of a sizable proportion of subjects that will eventually

not graduate based on cure models. We also fractionated subjects censored due to closure

of the observation period into those that will eventually graduate and those that will

eventually dropout, using discrete mixture competing risks. We found that the mixture

competing risks model explained graduation better than the cure model.
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1

Introduction

Prior to the repeal of apartheid laws in 1991, Education in South Africa was segregated

along racial lines. Under the former Population Registration Act of 1950, the people of

South African were classified as Black, Indian, White and Coloured. The introduction

of the Bantu Education Act of 1953, Coloured Persons Education Act of 1963, Indian

Education Act and the Extension of Universities Act of 1959 formalised and legalized

the concept of ”separate but not equal” education for each ethnic group from primary

school to higher education. Different ”population” groups could only be accepted for

study at their ”own” tertiary institutions.

With the gradual repeal of apartheid laws commencing in 1991, the historically White

universities and historically White technikons began to experience a steady growth of

students from other races. The combined population of White students was 96% of the

entire student population in these institutions in 1990 and 86% in 1993 ,the other races

accounted for the difference. The growth rate of Black (African, Indian and Coloured)

students in historically White institutions increased after the promulgation of the Ed-

ucation White Paper of 1997. The main thrust of the Education White Paper was the

transformation of Higher Education through, inter alia, increased access of Black and

women as well as disabled and mature students to higher education (Cloete et al., 2004).

The enrolment of Black students at the University of Witwatersrand alone, a historically

White university, was 8% in 1986, 13% in 1990, 23% in 1994 and 35% in 1997. In 1997,



48% and 55% of the student population in predominantly Afrikaans and English univer-

sities, respectively were Black, and these numbers grew to 58% and 62% respectively in

2000. Also, 60% of the student population in historically White Technikons were Black

in 1997 and this figure grew significantly to 77% in 2000 (Cloete et al., 2004).

Whilst these figures were commendable, a disturbing trend however began to emerge

which was in conflict with the goals of the White Paper, there was a drop in retention

rates of Black students compared to White students in higher education. The large

number of financial exclusions explained only half the story, high failure rates particularly

amongst Black students in the historically White institutions was the main contributing

factor towards low retention rates (Cloete et al., 2004).

High dropout rates and low completion rates in Higher Education are a matter of national

concern because they cost the country about R1.3 billion per year, (DoE, 2003). In a

cohort study of students between year 2000 and 2005, it was found that respectively,

34% and 25% of the technikon and university students dropped out in the first year,

13% and 9% dropped out in second year, and finally, 11% and 7% dropped out in the

third year.

Generally, 50% of students in Higher Education drop out by year three. A dropout rate

of 50% is very high compared to UK and Germany where the rates are 22% and 27%

respectively (Letseka, 2009)

Furthermore, only 30% of first-time entering students in higher education graduate

within five years in a three year undergraduate programme, and this figure is 23% in

former technikons. Universities fare marginally better as 38% of the students graduate

within five years in undergraduate programmes that otherwise take a minimum period

of three years to complete (Scott and Fisher, 2011).
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Against this background, this study intends to investigate graduation and dropout rates

at The Durban University of Technology. This institution came into being as a merger

between a historically White Technikon Natal and a historically Black ML Sultan.

The institution has had its fair share of below par pass rates over the years. More

recently, the yearly pass rates for the years 2007, 2008 and 2009 have been 21%, 20%

and 24% respectively. (DoE, 2007, 2008, 2009). A more detailed discussion of the

institution will be presented in the next chapter under Data Description section.

Put more formally, the objectives of this study are to:

1) Model time to graduation from 2004 to 2008

2) Investigate if there is a relationship between graduation and various explanatory

variables such as race, gender, faculty etc.

3) Model a risk-to-graduate profile for students as a function of time to identify the

periods when students are most at risk.

4) Investigate the possibility that there might exist a proportion of students that might

eventually not graduate even if the study period was extended

5) Fractionate the censored students due to closure of observation period into those that

will eventually graduate and those that will eventually dropout.

The institution tracks a student for a period of five years, commencing on the year

of registration as a matter of procedure consistent with institutional rules (academic

exclusion rule G19).
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This rule stipulates that the maximum allowable period within which a student must

complete his or her qualification is 5 years calculated from the year of first registration.

A student, however, might still pursue his or her studies beyond the maximum allowable

period of five years as the institution does not strictly enforce the exclusion rule but the

institution does not keep records for such students. This condition imposes an automatic

observation period of 5 years commencing from the year of first registration.

The main objective of the study is to model time to graduation of students at the Durban

University of Technology. The observation period or the data collection period is fixed

at 5 years, consequently some of the students will not have graduated or dropped out

during this period of observation. Furthermore, some of the students will dropout during

the course of observation. With regards to time to graduation, the last recorded times of

these students or subjects are not complete observations and we refer to this condition

as censoring.

Traditional and established statistical techniques such as linear regression fail to deal

adequately with censored data, instead, Survival Analysis techniques will be considered

as the main tool of analysis.

Survival analysis is an umbrella term which refers to statistical techniques used to model

time to occurrence of an event in the presence of censoring. Although the roots of

survival analysis are in natural sciences, the techniques have in recent years found wider

applications in areas as far afield as sociology and economics. These methods are referred

to as event history analysis in sociological fields such as education, whereas the same

techniques are referred to as duration analysis in economics.

Irrespective of the field of application, the variable of interest is time to occurrence

of a particular event or events of interest. One of the reasons that survival analysis

techniques have found wider appeal in fields outside the customary realm of traditional

4



sciences is that the requirements, namely: 1) a clearly defined time of origin 2) a scale

for measuring time and 3) a well-defined event, are not particularly stringent to meet.

The three requirements mentioned above are met in this study because we have a clear

time of origin which is the incoming students, registered for the first time in the year

2004, we also use years as the measurement of time and our event of interest is graduation

of this cohort group.

This study is organised as follows; in Chapter 2, we discuss the covariates and present

descriptive statistics, Chapter 3 is devoted to the introduction of survival analysis with

special attention to non-parametric techniques. In Chapter 4, we introduce Cox’s regres-

sion model, followed by the logistic regression model in Chapter 5. We then complete

the analysis with Frailty Models in Chapter 6 and Cure Models and Mixture Competing

Risks in Chapter 7. We finally close the study with conclusions and recommendations

in Chapter 8.
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2

The Data

The Durban University of Technology was formed as a merger between Natal Technikon

and ML Sultan Technikon in April 2002. It was initially known as the Durban Institute

of Technology and the name was changed to Durban University of Technology in March

2006 when the status of all former technikons was upgraded to that of universities of

technology.

The institution has six campuses in total, four in Durban - Brickfield, City, ML Sultan

and Ritson Road, the other two campuses; Indumiso and Riverside are in Pietermar-

itzburg, about 80 kilometres from Durban. The institution has six faculties; Accounting

& Informatics, Applied Sciences, Arts & Design, Engineering & The Built Enviroment,

Health Science and Management Sciences.

The institution offers three year diploma qualifications in its various faculties which may

then be followed upon by a one year Bachelor of Technolgy qualification. The institution

also offers the Master and Doctor of Technology qualifications by dissertation.

The sample of this study consists of diploma students registered for the first time in 2004.

The institution tracks a student for a period of five years only, but students can still



pursue their studies beyond the maximum allowable period of five years. The institution

however does keep records which indicate if a student did register or not at the beginning

of the sixth year.

Some qualifications are offered on annual bases running from January to December,

others are offered on semester bases and as a result students can also graduate halfway

through the year instead of year-end only.

Likewise, a student can drop out at any point in time during the course of the year and

the only way that the institution can tell if a student has withdrawn during the year is if

the student formally applies for de-registration or fails to register in the following year.

A dropout is defined as a withdrawal from the programme for whatever reason other

than graduation. A student, for example, can withdraw for health, financial, death or

voluntarily, and since most of the students do not formally tender their withdrawal, the

real reasons for withdrawal cannot be known.

Censoring arises in two way in this study. Firstly, the group of students who have left the

study for reasons other than graduation are regarded as censored subjects. Secondly, the

group of students who are still in pursuit of their studies at the close of the observation

period are also regarded as censored.

Although students can graduate halfway through the year and ideally the metric of time

should therefore be semesters, but droppouts can occur at any point through out the

year, but the instant of their occurance cannot be known exactly so as to apportion

them to the corresponding semester. To align droppouts with graduates, we therefore

assume a yearly metric of time. Thus, students who graduated halfway through the year

are regarded as having graduated at the end of that year. Likewise, droppouts during

the year are also assumed to have dropped out at the end of that year.
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This study is focused upon students that were continuously registered at The Durban

Institute of Technology from the year 2004 until they either graduated, dropped out or

were still in pursuit of their studies at the close of data collection at the end of year

2008. The instances where a student de-registers in one year, skips a year or two then

re-registers are excluded as their case belongs to the class of repeated events which falls

outside the scope of this study.

Out of 4866 students who were registered in 2004, 325 or 6.7% are excluded from the

study on the grounds of discontinuous registration. The time to graduation is calculated

as the continuous time from 2004 until graduation. Thus, time to graduation can only

assume the values 3, 4 or 5.

A myriad of factors in the literature are hypothesised to affect student success or failure in

higher education. Race, age, gender, socio-economic background, matriculation grades,

academic ability, financial support, family structure, school quality etc. are some of the

variables that have been found to have sizable impact on the performance of students

in higher education and eventually inform graduation in the literature (Bradley and

Lenton, 2007; Desjardins and McCall, 2010).

This study is limited by the availability of variables that have been identified to explain

graduation in the literature, consequently, we will also limit our discussion to the avail-

able variables namely - race, age, gender and faculty. We will also motivate the use of

race as proxy for other variables.

It has been found in many studies that students from disadvantaged backgrounds, par-

ticularly Africans in South African context, are less likely to graduate and more likely

to dropout than other racial groups (van Heerden, 1995; Strauss et al., 2003). Apart

from inferior schooling system for African students which, on its own, has a significant

impact on student peformance later in higher education, there are other factors that

8



contribute to African students difficulties in higher education. Second language medium

of instruction, financial strain, accommodation, transition and adaptation from African

culture to a predominantly Western culture etc. are some of the factors that have been

found to contribute substantially towards poor performance of African students in higher

education. In general, African students tend to have the worst graduation rates and the

highest dropout rates whereas the opposite is true for their White counterparts (Wilson,

1984; van Heerden, 1995; Scott and Fisher, 2011).

In the same cohort study of year 2000 DoE (2005), it was found that the graduation

rates vary by faculties. The percentage of students that have completed a three year

diploma at what was formerly known as technikons, within a five year period are 33%,

34%, 17% and 29% in Business/Management, Computer Science, Engineering and So-

cial Sciences/ Public Administration respectively. Clearly, the Engineering stream has

the lowest output rate with Computer Science enjoying the highest rate (Scott et al.,

2007),(Scott and Fisher, 2011).

Regarding age, older students are more likely to have lower completion rates than

younger students. Older students are more likely to have other commitments such as

work, dependents or spouses etc. and these have a tendency to distract them away

from full attention towards their academic studies. Younger students tend to have fewer

commitments outside their academic studies and in many intances they are full-time

students (Desjardins et al., 2002).

There are conflicting findings in the literature regarding the effect of gender on success

or failure of students in higher education but women students typically tend to have

higher completion rates than males (Desjardins et al., 2002).

The most commonly used measures of Socio-Economic Status (SES), are family income

and the level of parental education. Access to more household income implies ability

9



to afford better resourced schools, investment in child health, transport costs, uniforms,

private tuition etc. Furthermore, better educated parents are more likely to rank chil-

dren education as one of the household priorities and therefore invest accordingly in it

including choosing to settle in neighbourhoods with better schools. Better educated par-

ents are also more likely to involve themselves directly in children education by assisting

with homework and participating in school management (van den Berg and Louw, 1984).

It is commonly accepted in the literature that a student from a lower SES background

tends to have lower educational aspirations and attainment. Furthermore, they are

more likely to drop out than their counterparts from higher SES backgrounds. Parents

from higher SES backgrounds tend to send their children to better schools which in

turn improves their chances of success later at tertiary level. Parental expectations and

the definition of ”success” in wider society which are also inextricably linked to SES

background, have also been found to have substantial impact on student persistence and

attainment (van den Berg and Louw, 1984). The last two factors are referred to as the

cultural capital factors according to Bourdieu’s capital cultural model (Bourdieu and

Passeron, 1977).

Driesden (2001) argues that the combination of the economic capital and the less obvious

cultural capital tend to perpetuate and reproduce existing social stratification. Conse-

quently, students from higher SES backgrounds tend to generally outperform their coun-

terparts from poorer SES backgrounds in terms of persistence and attainment. These

cultural factors are ”specialized insider knowledge” which are not taught in schools but

are passed down from one generation to the next.

Previously disadvantaged communities have steadily migrated to previously White sur-

burbs and began sending their children to better schools in these suburbs since 1994.

The majority of African families, however, are still trapped in townships or rural poverty

where their children attend poor quality schools in these communities and about 70%

10



of African families are classified as lower SES where parents or guardian are poorly

educated or not educated at all (Letseka and Maile, 2008).

On grounds of the above, it is not unreasonable to regard race as proxy for SES and

school quality.

Table 2.1 Average Graduation Times

Category n % x̄ S.D

Race

African 2075 71 3.64 0.70

Indian 585 19 3.60 0.74

White 222 7.6 3.27 0.56

Coloured 45 1.5 3.64 0.73

Other 7 0.2 3.60 0.55

Faculty

Engineering & Built Env. 678 23 4.06 0.78

Management Sciences 973 33 3.54 0.65

Health Sciences 223 8 3.53 0.67

Applied Sciences 276 9 3.60 0.71

Arts & Design 317 11 3.22 0.52

Accounting & Informatics 467 16 3.55 0.64

Gender
Males 1414 48 3.71 0.74

Female 1520 52 3.51 0.67

Age
19 or Younger 1583 54 3.61 0.72

Older than 19 1351 46 3.58 0.70

In Table 2.1 above, we have computed the average graduation time after excluding

dropouts and the censored subjects. The Age variable has been discretized into two

categories separted by the median age of 19.

African students take the longest to graduate with Whites taking the shortest time to
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graduate on average. The Engineering & The Built Enviroment has the longest average

graduation time with Arts & Design having the shortest average graduation time.

On average, males take longer to graduate than females and students younger than 19

take a little longer than students older than 19 to graduate on average.

In this chapter we discussed the data and the variables that we intend to investigate if

they explain graduation, we also conducted a descriptive analysis of these variables.

Descriptive analysis indicate that all the variables may explain graduation. We did not

conduct any statistical tests, we will perform that exercise in the next chapter where

we will use non-parametric techniques to assess if indeed these variables do explain

graduation.
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3

Non-parametric Analysis

In the previous Chapter we established that there is a possibility that the hypothesised

variables namely - race, age, faculty and gender may explain graduation. We did not

conduct any statistical tests to confirm these results. In this Chapter we shall use

graphical methods and conduct statistical tests to verify the results we obtained in

Chapter 2. These graphical methods and the tests belong to what we refer to as non-

parametric methods that are part of broader Survival Analyis methods. Before we use

these techniques we shall introduce survival analysis in more concrete terms than our

introductory discussion in Chapter 1.

In survival analysis, the variable of interest is the time until occurance of an event of

interest. Sometimes this variable might be referred to as lifetime, survival time or failure

time (even though the event of interest might be a positive outcome such as graduation)

and so forth, depending on the field of application.

In engineering, for example, interest might centre upon endurance or failure time of a

component and a sample of items might be tested and observed until they fail so as

to obtain their failure times. A group of patients who are diagnosed with a particular

disease might have been subjected to a certain treatment, and in this instance, the



variable of interest might be the time until recovery.

Despite the differences in the units of analysis and the events of interest between the two

situations described above, the variable of interest is time until occurance of an event in

both intances. Survival analysis techniques can be applied in both examples as long as

the time of origin, time metric and the event are clearly defined, the actual nature of

the event of interest is immaterial.

Ideally, to observe exact failure times, all subjects or units of analysis that are entering

a study should be observed until they all fail, however due to constraints such as time,

budget, impracticabilty etc. the data collection period is often fixed before hand. This

period between the commencement and the close of observation is often referred to as

the observation period or follow-up period. The latter term is inherited from medical

research.

It is often the case that some of the subjects under study do not experience the event of

interest during this observation period and we refer to the observations associated with

these subjects as censored observations.

Thus, in the examples described above, some of the components may have not failed,

likewise, some of the patients may have not recovered at the end of the observation

period. In such instances, the true survival times i.e. the time between entry into

observation and the event time, can not be known. The censored subjects only provide

partial information about their true survival times. This type of censoring is referred

to as right censoring where the missing information is to the right after entry into

observation. There are other forms of censoring in survival analysis such as left and

interval censoring, but we will restrict our attention to right censoring because this is

the form of censoring that arises in this study.
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Putting these concepts firmly within the context of our study, some of the students

will not have graduated at the close of observation. These subjects would still be in

pursuit of their studies at the end of the fifth year. Furthermore, some will withdraw or

leave observation for various reasons that are not related to the event of interest such as

financial affordability, death, voluntary withdrawal etc. All the observations associated

with all the cases described above will not be complete observations, instead they will

be referred to as right censored observations.

The time until occurance of some specified event can be characterised by many functions

in survival analysis. The most frequently used functions are the survival function, S(t),

which represents the probability that a subject survives until time t. The other function

is the hazard function h(t), which represents the rate of occurrence of the event of

inetrest.

The estimation of the survival and the hazard functions using non-parametric techniques

is the usual starting point in survival analysis. The appeal of these techniques lies in the

fact that it is not necessary to assume any distributional form underlying the functions

to be estimated, hence the name distribution free techniques.

We will also use non-parametric methods to build on the results obtained using de-

scriptive statistics we presented in the previous chapter as well to provide a bridge to

semi-parametric methods that we will consider in the next chapter. Before we apply non-

parametric methods we need to introduce a few basic concepts that underpin survival

analysis methods.

Suppose that T , a non-negative random variable, represents survival times of subjects in

a hypothetical population with respect to some specified event. Let f(t) and F (t) rep-

resent both the corresponding probability density function and the distribution function

respectively. The familiar relationship between f(t) and F (t) is given by
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F (t) = P (T ≤ t) =

∫ t

0
f(u)du.

On the other hand, the survivalfunction is given by

S(t) = P (T > t) =

∫ ∞
t
f(u) du = 1− F (t).

The other function that we need an expression for is the hazard rate. Intuitively, consider

a time interval [t,t+dt) of lenght dt. The conditional probability that a subject fails in

this interval given that the subject has survived up to the beginning of the interval is

given by

P (t < T < t+ dt|T > t) =
F (t+ dt)− F (t)

S(t)
.

Dividing the above equation by dt we obtain the rate of failure over this infinitely small

interval [t,t+dt) and in the limit we obtain the hazard rate, which is an instanteous rate,

given by

h(t) = lim
dt→0

F (t+ dt)− F (t)

dtS(t)
=
f(t)

S(t)
.

The estimate of the probability that an event occurs in the infinitesmal interval [t,t+dt)

described above, conditional on not having occured prior to time t is approximately

h(t)dt. Whereas the unconditional probability that an event occurs in the same interval

is approximately f(t)dt.

In the context of this study, f(t)dt, is the estimate of the proportion of the total sample

that graduate by time t, whereas h(t)dt is the estimate of the proportion of the total

number in the sample that sat for the examination that graduate.
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The term ”risk” is more widely used than the term ”hazard rate”. Thus, a specialist

surgeon would say, for example, the risk of dying from surgical complications after

undergoing an operation is high immediately after surgery but drops a few weeks later.

More formerly, the surgeon is saying that the hazard rate of experiencing event ”death”

is high initially but it improves with time. That is; after surviving the first few critical

days immediately or few days after surgery, the intantaneous rate of dying drops.

The hazard rate is not a true probabilty in continuous time because it can exceed one as

opposed to discrete time setting where 0 ≤ h(t) ≤ 1 and therefore a true probability.

In the previous chapter we introduced four covariates; race, gender, faculty and age,

and based on preliminary results, there is a case for regarding these variables as possible

covariates that explain graduation. To strengthen our argument concerning the four

variables even further, we will move beyond descriptive methods and use The Kaplan-

Meier techniques.

Our intention is to establish whether the four variables; gender, race, faculty and age do

explain the graduation rate. We will compare the survivor functions of the categories

within each variable and also conduct tests to confirm graphical findings.

Let 0 < t1 < t2, . . . < tj , be distinct ordered times at which events occur. Let dk be

the number of subjects that fail at time, tk, out of a total of nk subjects that are at

risk at time tk. Define [tk−1, tk) as the kth interval and also define the probability of

surviving through the kth interval conditional on not having experienced the event at

the beginning of the interval as pk. Also define, qk, as the probability of experiencing

the event during the kth interval conditional on not having experienced the event at the

beginning of the interval where qk = 1 − pk. Then the probability of surviving beyond
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time t is given by

Ŝ(t) =
∏
tk≤t

pk.

Since q̂k = dk
nk

then p̂k =
(
nk−dk
nk

)
, the Kaplan-Meier survivor function estimate of S(t)

is given by

Ŝ(t) =
∏
tk≤t

(
nk − dk
nk

)
.
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We have plotted the survivor function in Figure 3.1 to Figure 3.4. We observe that the

Engineering & The Built Environment faculty has the worst graduation survival rate and

Arts & Design faculty has the best one. This implies that students in the Engineering

& The Built Environment faculty take the longest to graduate compared to student in

the Arts faculty who take shortest time. Females have a better survival rate than males,

subjects older than the median age, 19, have a slightly better graduation survival rate

than younger ones. Coloured and the Other race seem to have the worst graduation

survival rate and Whites have the best one.

Suppose we have variable Z = [z1, z2.. . . . .zJ ]′ with J categories. To test the equality of

survivor functions, H0 : Sz1 = Sz2 = .. . . . = SzJ ⇔ hz1 = hz2 .. . . . = hzJ .

Denote the distinct times of observed failures as 0 < t1 < t2, . . . < tK

Let:

• dkj be the number of observed events from group j at time k

• Ykj be the number of subjects in group k that are at risk at time k

• dk =
∑J

j=1 dkj

• Yk =
∑J

j=1 Ykj , and

• W (tk) be the weight at time k

To test the hypothesis above, a vector Z is computed with the following components

zj =

K∑
k=1

W (tk)[dkj − Ykj
dk
Yk

]
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where K is the number of event times and W (tk) are the weights which depend on the

test used. Define the variance of zj , Vjj as

V̂jj =
K∑
k=1

W (tk)
2Ykj
Yk

(
1−

Ykj
Yk

)(
Yk − dk
Yk − 1

)
dk

for j = 1, ....J , and the covariance of zj and zg, Vjg as

V̂jg =
K∑
k=1

W (tk)
2Ykj
Yk

Ykg
Yk

(
Yk − dk
Yk − 1

)
dk.

For g 6= j.

V̂jj and V̂jg form the components of V , the variance-covariance matrix of Z = (z1, z2, ...zJ−1).

ZV −1Zt, the test statistic follows a χ2 follows a chi-squared distribution when the null

hypothesis is true with J − 1 degrees of freedom (Klein and Moeschbeger, 2003). When

W (tk) = 1, we have what is referred to as the Log-rank test.

The proportion that experiences the event at time k from group j is
dkj
Ykj

, whereas it

is dk
Yk

from the study population and these should not be very different when the null

hypothesis is true. i.e.
dkj
Ykj

=
dk
Yk
,

or

dkj = Ykj
dk
Yk
.

Thus, the test statistic should not be significantly different from zero if the null hypoth-

esis is true. We have presented the results of our tests in Table 3.1 below:

In all cases, the survivor functions are not equal except for age, therefore, all the hy-

pothesised variables explain graduation except for age. We must, however, bear in mind
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Table 3.1 Log-Rank Test for Equality of Survivor Functions

Variable Graduation

χ2 DF P-value

Gender 60.2 1 8.33 ×10−15

Faculty 307 5 0.00

Race 93.3 4 0.000

Age 1.6 3 0.671

that we have discretized a continuous variable and the choice of cut points will definitely

have effect on the test with regard to ”age” variable.

We have noted that different race, faculty and gender groups have different graduation

survival rate and that the there is no difference in survival rate between the two age

groups.

Although non-parametric methods can indicate whether the survival potential of two

or more groups are equal or not by visual inspection, as well as by conducting tests,

it must be noted their usefulness is limited by their inability to deal adequately with

certain types of covariates. In our study, for example, the method worked very well

with gender, race and faculty because they each had fewer categories, which in turn

gave rise to fewer survivor functions to compare. The factors partition the sample into

fewer subpopulations, but this does not hold true for a continuous variable such as age,

where we resorted to discretizing age into two groups (younger than 19; 19 and older)

and thereby discarding information by collapsing the continuous scale to a dichotomous

variable.

The other obvious disadvantage of non-parametric methods is that even when all co-

variates are factors and with even fewer categories, we still have to consider each factor
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separately. Another shortcoming is that the tests associated with the methods can in-

dicate whether survival functions are the same or different but if the conclusion is that

they are different the methods do not quantify the difference.

Ideally, we would want a model that regresses the time to event with all the covariates

simultaneously as well as be able to quantify the differences between survival experiences

if they are found to exist. The models that will be introduced in the folowing chapters

will attempt to overcome all these shortcomings of non-parametric techniques. The first

model to be considered is the Cox’s regression model.
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4

The Cox Regression Model

The advantage of non-parametric methods is that in modelling time to event it is not

necessary to assume any distribution and thereby the costly risk of misspecification is

easily avoided. However, and as it is often the case in practice, there might be risk

factors or covariates that have influence on time to event and it might be of interest to

quantify their effect. Ideally, that objective would be achieved by regressing the time to

event on these covariates as in classical regression methods. The piecemeal fashion of

estimation in non-parametric methods can easily become cumbersome and even more so

when some of the variables are continuous.

Cox (1972) proposed one such model that regresses the hazard function on all covariates

simultaneously, and it is given by

h(t,x) = h0(t)exp(β′x).

The above equation has since become famously known as Cox’s regression or semipara-

metric regression. The covariates enter the model through the vector x′ = (x1, x2, . . . , xp)

with a corresponding vector of coefficients β′ = (β1, β2, . . . , βp). In essence, the hazard is



broken down into two parts - (a) the baseline hazard h0(t), a function of time that is left

unspecified (non-parametric) (b) the covariate effect exp(β′x) (parametric), which in its

simplest term does not include term t. The equation therefore consists of a parametric

and a non-parametric part, and hence the name semi-parametric.

Let us suppose that there are two individuals at some time t with the following fixed

covariates x and x∗ respectively, then the ratio of their hazards is given by

h(t,x)

h(t,x∗)
=

h0(t)exp(β′x)

h0(t)exp(β′x∗)
= exp[β′(x− x∗)].

Since the covariates are fixed, exp[β′(x− x∗)] is also fixed, implying that the ratio of

the two hazards is constant regardless of time t. The hazard functions are proportional

with exp[β′(x− x∗)] as the proportionality constant, hence the nomenclature ”Cox’s

proportional hazard model” or Cox’s PH model.

The hazard rate of an individual with x = 0 is h0(t), which is a hazard rate of an

individual for whom all the covariates that make up the vector x are set at zero. The

individuals with x = 0 are often referred to as the ”reference group”. In general, the

hazard rate of the ith individual is given by

hi(t) = h0(t)exp(β′xi).

Thus, the relative risk of the ith individual compared to the individual with x = 0 is

given by
hi(t)

h0(t)
=
h0(t)exp(β′xi)

h0(t)
= exp(β′xi).
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Taking logarithms of both sides in the above equation we obtain

log
hi(t)

h0(t)
= β1x1 + β2x2 + · · ·+ βpxp

and thus the logarithm of the relative risk is linear in β’s.

4.1 Model

Cox (1972) showed that the likelihood function to be maximised in order to obtain the

estimates of β is given by

L(β) =

r∏
j=1

exp(β′xj)∑
`∈R(tj)

exp(β′x`)
. (4.1.1)

R(tj), is the risk set at time tj , i.e. the number of subjects that are ”alive” immediately

before ”death” time tj , and r is the total number of events. Censored times do not

contribute to Equation 4.1.1. Even event times themselves do not contribute to Equation

4.1.1, directly as in a conventional likelihood function because the baseline hazards, the

function of time, cancel out. In a sample of size n, with survival times t1, t2, . . . , tn, and

an indicator variable δi which is one when ti is an event time or zero otherwise, Equation

4.1.1 can be written as (Collet, 2003)

L(β) =
n∏
i=1

{
exp(β′xj)∑

`∈R(tj)
exp(β′x`)

}δi
.
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The above equation is maximised using iterative methods to obtain the estimate of β.

The partial likelihood described in Equation 4.1.1 is based on the assumption that there

are no ties, a situation that rarely obtains in practice. There are quite a few approx-

imations to the partial likelihood when there are ties and the most widely used is the

Breslow estimation given by

L(β) =
r∏
j=1

exp(β′sj)

{
∑

`∈R(tj)
exp(β′x`)}dj

where sj is the sum of the p covariates for the subjects that experience the event at time

tj , and dj is the number of those subjects.

To conduct hypotheis tests using the maximum likelihood estimates of the effect of

race, gender, faculty and age, we require reference categories. We observed from the

previous chapter that Africans, males and Engineering & the Built Environment are

the worst performing categories within race, gender and faculty variables respectively.

It is common practice to treat the worst performing group i.e. the ”African males in

Engineering & The Built Environment” as the reference group (Klein and Moeschbeger,

2003).

In order to build the best reduced model, we shall use the backward elimation as ex-

plained in (Collet, 2003), which entails fitting all the variables and then excluding one

variable at a time where the variable excluded is the one that increases −2 logL(β̂) y the

least amount, this process ends when the next variable excluded increases −2 logL(β̂)

by more than say 5% or some other specified value.

We have fitted all variables, including 2-way interaction terms, in Model A. Using the

backward elimination, we moved from Model A to a reduced model, Model B. The results
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are listed in Table 4.1.

Table 4.1 Full & Reduced Model

Model A Model B

Variable β̂ Sig. β̂ Sig. exp β̂

Female -0.378 0.268 0.088 0.097 1.092

Management Sciences 0.680 0.000 0.573 0.000 1.773

Health Sciences 0.872 0.000 0.691 0.000 1.996

Apllied Sciences 0.849 0.015 0.591 0.000 1.806

Accounting & Informatics 0.941 0.100 0.539 0.000 1.714

Arts & Design 1.342 0.004 1.001 0.000 2.720

Coloured -0.152 0.561 0.056 0.771 1.057

Indian 0.111 0.214 0.022 0.791 1.022

Other 0.389 0.409 0.588 0.190 1.801

White 0.287 0.096 0.390 0.000 1.477

Age -0.009 0.620 - - -

Female × Faculty 0.005 0.871 - - -

Female × Race 0.182 0.564 - - -

Female × Age 0.012 0.433 - - -

Faculty × Race -0.011 0.592 - - -

Faculty × Age -0.003 0.529 - - -

We have included exp β̂ for Model B which are essentially ratios of hazards.

Since the ratio of hazards are given as follows

h(t,x)

h(t,x∗)
=

h0(t)exp(β′x)

h0(t)exp(β′x∗)
= exp[β′(x− x∗)],

and x∗ = 0 for African males in Engineering & the Built Environment, the reference
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category, then the ratio of their hazards is expβ′(x) = 1.09.

The risk of graduation for African females in Engineering & the Built Environment

is therefore about 9% higher than for African males in the same faculty provided the

proportionality assumption holds true.

4.2 Model Adequacy

Assessment of the survival model adequacy can be divided into five steps. The first step

is the verification of the statistical significance of covariates, wich is already conducted

in the previous section. The Cox proportional hazard model specific assumptions are

then examined, namely; the linear effect of covariates on the logarithm of hazards and

the proportionality assumption. The other two steps are the identification of poor fit

and influential observations, which is then followed by the assessment of the overall

goodness-of-fit.

4.2.1 The Proportionality Assumption

There are number of ways in which the proportionality assumption can be verified, the

techniques roughly fall into either graphical or formal hypothesis testing. The graphical

methods are for example plots based on Schoenfeld residuals and Stratified Cox regres-

sion. The test attributed to Grambsch and Therneau (1994) is one of the most widely

used ”objective” technique to assess the proportionality of hazards assumption.

In the previous chapter we established the following:
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h(t) =
f(t)

S(t)

which can also be written as

h(t) =
f(t)

S(t)
= − d

dt
logS(t).

Therefore

S(t) = exp{−H(t)}

where

H(t) =

∫ t

0
h(s)ds.

H(t) is referred to as the cumulative hazard.

Briefly, stratification entails modelling hij(t) instead of hi(t), which is the hazard rate

of the ith subject in the jth stratum and the base line hazard rate of the jth stratum is

now h0j(t). The relationship is given by

hij(t) = h0j(t) exp(β′xij).

All the other variables are assumed to satisfy the proportional hazard assumption and

the regression coefficients are the same for all strata with only the baseline hazards

varying from one stratum to the next.

If the proportionality assumption is valid then the baseline cumulative hazards, H0(t),

within the strata should be constant multiple of each other at each time point. If the

variable under consideration has say K, strata, the plots of log[Ĥi0(t)], for i = 1, . . .K,

against time should be approximately parallel when the proportionality assumption
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holds. If the variable under consideration is a continuous variables, it must be dis-

cretized into some suitable K categories (Klein and Moeschbeger, 2003).

An objective test by Grambsch and Therneau (1994) is based on residuals proposed by

Schoenfeld (1982). Schoenfeld residuals are the differences between the covariates of

those subjects that experienced the event and their expected values given by

ri = xji − âji

where

âji =

∑
k∈R(ti)

xjk exp(β̂
′
xk)∑

`∈R(ti)
exp(β̂

′
x`)

is the expected value of the jth covariate over all the subjects in the risk set R(ti), at

time ti. These residuals are calculated for all covariates. The vector ri of Schoenfeld

residuals is then scaled to obtain

r∗i = r var(β̂)ri

which is referred to as the scaled Schoenfeld residuals, where var(β̂) is a variance-

covariance matrix and r is the number of uncensored subjects . If the jth covariate

has time-varying effect, then the coefficient of the jth covariate can be expressed as

βj(ti) = βj + ρg(ti)

where g(ti) is some function of time. Grambsch and Therneau (1994) showed that

E(r∗ji) ≈ βj(ti)− β̂j , and therefore a plot of the values of the residuals against time or a

function thereof will reveal if the jth covariate has time-varying effect or not. A horizontal
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line will suggest that the coefficient of the jth covariate is constant and therefore not

time-varying. Furthermore, fitting a least squares regression will provide an estimate of ρ

which is used to evaluate the hypothesis: H0 : ρ = 0, (implying that the proportionality

assumption holds when the null hypothesis is not rejected) (Grambsch and Therneau,

1994).

We have listed the results of Grambsch and Therneau (1994) test for Model B in Table

4.2.

Table 4.2 Proportionality Test

Variable ρ̂ Sig.

Female -0.0092 < .001

Management Sciences -0.1020 < .001

Health Sciences -0.0810 < .001

Apllied Sciences -0.0764 < .001

Accounting & Informatics -0.0959 < .001

Arts & Design -0.0964 < .001

Indian -0.0226 < .001

White -0.0521 < .001

Coloured -0.0076 < .001

Other 0.0115 < .001

Clearly, none of the variables satisfy the proportionality assumption and on the bases of

the above results we proceed to fit a stratified Cox proportional hazards model where we

stratify on the faculty variable.

In Figure 4.1 we have plotted log cumulative baseline hazards where we have stratified

by faculty.
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Figure 4.1 Log Cumulative Hazards by Faculty

There is a suggestion that the log cumulative baseline hazards are parallel. We confirm

these graphical findings by performing the Grambsch and Therneau (1994) test on this

model where we have stratified on the faculty variable, with results as listed in Table

4.3. All variables in the stratified model satisfy the proportionality assumption except

for the ”White” race category.

Table 4.3 Proportionality Test for the Stratified Model

Variable ρ̂ Sig.

Female -0.03064 0.1679

Indian -0.03068 0.1726

White -0.0572 0.0116

Coloured 0.00621 0.7832

Other 0.0148 0.5089

Based on the above results, our final model will therefore be Model B stratified on the
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Table 4.4 Stratified Cox Model

Variable β̂ S.E Sig.

Female 0.1471 0.0478 0.0021

Indian 0.1718 0.0575 0.0028

White 0.3473 0.0869 < 0.001

Coloured 0.0439 0.1918 0.8189

Other 0.6541 0.4489 0.1451

faculty variable. The results of our stratified and final model are presented in Table

4.4. Only the ”Female” variable and ”Indian” factor level satisfy the proportionality

assumption. The ”Coloured” and ”Other” factor levels are insignificant, whereas the

”White” factor level, though significant, but it fails the proportionality test.
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Figure 4.2 Female Schoenfeld Residuals
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Figure 4.3 White Schoenfeld Residuals
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As proposed by Grambsch and Therneau (1994), to confirm our findings in Table 4.3

and to save space, we have plotted the Schoenfeld (1982) residuals against time only

for the ”White” factor level in Figure 4.3 and ”Female” factor level in Figure 4.2 .

We note that the residuals have a pattern with regards to the ”White” factor level,

whereas, there seems to be no pronounced pattern in relation to the ”Females” factor

level. The ”Females” factor level satisfies the proportionality assumption whereas the

”White” factor level does not.

We will now proceed to assess the other aspects of model adequacy in relation to this

final model. We will only consider the question of outliers and influential observations

because all the variables in the model are dichotomous and therefore linearity is not a

concern.

4.2.2 Outliers

We will use the deviance residuals to detect the outliers. Deviance residuals are the

modification of martingale residuals which in turn depend on Cox-Snell residuals . Cox-

Snell residuals are given by

rCi = exp(β̂
′
xi)Ĥ0(ti) = Ĥi(ti) = − log Ŝi(ti).

The martingale residuals are given by

rMi = δi − rCi = δi − Ĥi(ti).

Martingale residuals can be viewed as the difference between the observed number of
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deaths δi, for the ith subject in the interval (0, ti) and the expected number of deaths

Ĥi(ti) according to the model. These residuals are analogous to the residuals we en-

counter in other areas such as classical regression.

Martingale residuals are not symmetrical, Therneau et al. (1990) introduced deviance

residuals, based on martingale residuals, which are more symmetrically distributed

around zero and given by

rDi = sign(rMi)[−2{rMi + δi log(δi − rMi)}]
1
2

The deviance residuals are related to the more familiar maximum likelihood based de-

viance: D = −2
{

log L̂c − log L̂N
}

, the relationship is given by D =
∑
r2Di.

Since these residuals are approximately Gaussian, N(0, 1), we can think of outliers as

values outside say (−3.5, 3.5) or even (−2.5, 2.5), if we are more stringent. An index

plot will reveal poorly fitting subjects, whereas plotting the residuals against time or

covariates highlights poorly fitting times or covariates respectively. We will not consider

the plot of deviance vs risk scores because, as Singer and Willet (2003) argue, these

plots are more suited to continuous data. The authors also caution about symmetry of

the residuals when there exist heavy censoring (more than 40%), our data has a rate of

about 30%. Figure 4.4 depicts an index plot.
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Figure 4.4 Deviance Residuals

The plot reveals that all residuals are within ±2.5 standard deviations limits which

implies that there are no outliers.

4.2.3 Influential Observations

This exercise is to identify the observation(s) that have extraordinary effect on the

coefficients. This can occur either because the observation of the jth covariate is an

outlier, or because the observation is unusual, in the sense that it does not seem to fit in

with other observations of that covariate. The observation of the jth covariate is said to

be influential if ommision or inclusion thereof has a significant impact on β̂j . One way

of identifying the observation is to fit all the n observations to obtain β̂j and then fit

the same model without the observation to obtain β̂j(i) and then assess β̂j − β̂j(i). This

exercise has to be repeated for i = 1, 2, . . . , n and for all β̂j , j = 1, 2, . . . , p, which then

becomes computationally prohibitive.

The estimate of β̂j − β̂j(i) is based on score residuals. The score residuals are related to
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Schoenfeld residuals, for the ith subject and the jth covariate, they are given by

rSji = δi(xji − âji) + exp(β̂
′
xi)

∑
tr≤ti

(âjr − xji)δr∑
`∈R(tr)

exp(β̂
′
xi)`)

. (4.2.1)

The first term of Equation 4.2.1 is the Schoenfeld residual. letting r′Si =
(
rS1i, rS1i, . . . , rSpi)

where rSji is given by Equation 4.2.1, then the approximation of β̂j − β̂j(i), also refered

to as delta-beta, is given by

β̂j − β̂j(i) ≈ r′Sivar(β̂).
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Figure 4.5 Female Delta-Beta
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Figure 4.6 Indian Delta-Beta
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Figure 4.7 White Delta-Beta
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Figure 4.8 Coloured Delta-Beta
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Figure 4.9 Other Delta-Beta
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In Figure 4.5 to Figure 4.9, we have plotted delta-beta’s for ”Female”, ”Indian” and

”White” factor levels, as well as delta-beta’s for ”Coloured” and ”Other” factor levels.

There are no noticable ouliers for all these factor levels, with the exception of the ”White”

and the ”Other” plots. There are four delta-beta’s that do not seem to belong with the

rest of the residuals in relation to the ”White” factor level and 3 for the ”Other” factor

level, these delta-beta’s are smaller than −0.01. These subjects are listed in Table

4.5. For the ”White” factor level, subjects ID=10 and ID=43 share a similar dela-beta

which is also the largest in absolute terms. The actual difference between the coefficents

including and omitting these two subjects is about 15% of var(β̂) corresponding to the

factor level ”White”. For the ”Other” factor level, the largest difference corresponds to

ID=2294, which is about 31% of var(β̂). ID=2294 delta-beta is quite far from the rest

of the other subjects, and since there are only 7 subjects it is not surprising that it has

such inordinate influence on the coefficient estimate. Both variables are insignificant in

the final stratified model.

Table 4.5 Influential Subjects

ID Faculty Gender Race Time delta-beta β̂j β̂j(i) β̂j − β̂j(i)
10 Health Female White Year 5 -0.013114 0.347259 0.360719 -0.013460

15 Arts Male White Year 5 -0.011794 0.347259 0.359593 -0.012334

43 Health Female White Year 5 -0.013114 0.347259 0.360719 -0.013460

70 Health Male White Year 5 -0.010624 0.347259 0.358124 -0.010865

1604 Engineering Male Other Year 3 -0.049700 0.654091 0.705172 -0.051081

1611 Engineering Male Other Year 3 -0.051204 0.654091 0.705172 -0.051081

2294 Engineering Male Other Year 4 -0.103091 0.654091 0.792570 -0.138479
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4.2.4 Overall Fit

The Cox-Snell residuals are used to assess the overall goodness-of-fit for the Cox re-

gression model. These residuals were discussed when the martingale resuduals were

introduced i.e. rCi = Ĥi(ti) = − log Ŝi(ti). It is shown in Collet (2003) that − log Ŝi(ti)

follows an exponetial distribution irrespective of the form of S(t). Futhermore, if the

model fits the data well, then the plot of the estimated cumulative hazard against the

residuals should be a straight line through the origin with a slope of 1. A plot of esti-

mated cumulative hazard against the Cox-Snell residuals is given in Figure 4.10.
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Figure 4.10 Cox-Snell Residuals

There is very little departure of residuals from a straight line through the origin with

a slope of 1. Even if there was readily obvious departure, as Collet (2003) argues, this

fact alone should not be the bases for discarding a model on grounds of poor lack-of-fit.
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4.3 Prediction

Table 4.6 Stratified Cox Model

Variable β̂ S.E Sig.

Female 0.1471 0.0478 0.0021

Indian 0.1718 0.0575 0.0028

White 0.3473 0.0869 < 0.001

Coloured 0.0439 0.1918 0.8189

Other 0.6541 0.4489 0.1451

We have re-printed the results of the stratified Cox model in Table 4.6. Race was found

to be significant, however, the ”White” factor level did not satisfy the proportionality

test and it also insignificant in the final stratified model. The ”Other” factor level will

also be left out from intepretation of the results due to unstable estimates as suggested

by delta-beta’s. Gender was found to be significant and the variable also satisfied the

proportionality test.

On the bases of the above model, the ”risk” of graduation is about 16% (exp(0.147) =

1.158) higher for females compared to males for all faculties and identical racial group.

Olso, the ”risk” is 19% (exp(0.1718) = 1.187) higher for Indians compared to ”Africans”

for identical gender category and all faculties .

We now proceed to plot faculty survivor functions on the bases of the stratified Cox

regression model at average values of the variables. The relationship between the survivor

function and the coefficients in Equation 4.3.1
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ĥi = ĥ0 exp{0.1471Femalei+0.1718Indiani+0.3473Whitei+0.0439Colouredi+0.6541Otheri}

(4.3.1)

,

is given by

Ŝi(t) =
{
Ŝ0(t)}exp{ĥi},

The approximation of Ŝ0(t) when there are ties is given by

Ŝ0(t) =
k∏
j=1

{
1− dj∑

`∈R(tj)
exp(β̂′x`)

}
where dj is number of events at the jth ordered event time t(j).
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Figure 4.11 Fitted Survivor Functions

Figure 4.11 confirms that the subjects in the Enginnering & The Built Environment take

longest to graduate with the subjects in the Arts & Design taking the shortest time to

graduate.

4.4 Summary

In this chapter we assessed the effect of race, gender, faculty and age on graduation at

the given time. We fitted a Cox regression model in an attempt to model the relationship

between graduation and these covariates. We found that age was insignificant.

We then performed a proportionality test and found that none of the variables passed

the test, which then led us to fit a stratified regression model where we stratified on the

faculty variable. We found that, upon stratifying on the faculty variable, the ”Race”
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and ”Gender” variables satisfied the proportionality assumption.

We performed the other diagnostic tests namely; influential variable and outlier test and

our model passed these tests. In the end we also assesed the overall fit of the model

where we found that our fitted model fits the data reasonably well.

On the bases of our regression model, and with regard gender, we have found that this

variable explains graduation and that females are more likely to graduate than males.

Regarding race, we have found that Indians are more likely to graduate than African.

In summary, there are reservations in the literature about the suitability of the Cox re-

gression model to model data that is inherently discrete because the coefficient estimates

are biased ”downwards” (Singer and Willet, 1993, 2003). Notwithstanding its limita-

tions, we have nevertheless fitted a Cox regression model to serve as bridge between

non-parametric survival analysis of the previous chapter and the logistic regression that

we will present in the next chapter which is also premised on the Cox regression model

albeit in discrete context.
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5

Discrete Time to Event Approach

5.1 Introduction

In the previous chapter we used Cox’s regression model to estimate the hazard functions

and the results that we obtained were not only consistent with our findings in Chapter

3, but there was improvement on non-parametric techniques. Firstly, we were able

to regress the hazard function on all hypothesised variables simultaneously, secondly,

we could also compare hazards and quantify the differences between them. The latter

benefit accrues provided a somewhat onerous condition of proportionality is met, failing

which, a time varying alternative should be considered.

Whereas the Cox model considered in the previous chapter was in continuous time

context, we will now present an extention of the same model in discrete time setting.

In the same seminal publication in which Cox (1972) presented the proportional hazards

model, he proposed that the hazard function in discrete time, a true probability, can be

modelled to have a logistic dependence on time and explanatory variables. However, he

did not elaborate any further on the model, but authors such as Brown (1975) and Efron

(1988) formalized logistic regression hazard as the standard alternative to continuous



hazard formulation.

Traditionally, survival analysis has its roots in the ”hard” sciences, particularly in med-

ical research, and its application has been restricted to that area until, Allison (1982)

extended the methods to the sociological fields. He showed that the ”survival” likelihood

function, in discrete setting, is equivalent to the familiar Bernoulli likelihood function.

Much later, the work of Singer and Willet (1993) firmly grounded the application of

survival analysis in sociological fields and since then, survival analysis in discrete time

has become popularly known as Event History Analysis.

In discrete time, the random variable T indicates the time of occurrance of an event such

that if T = tl then an event occured at time tl. Implicit in the above statement is that

tl−1 indicates the duration of non-occurance of the event which leads to the definition

of the discrete hazard given by

h(tl) = P (T = tl|T ≥ tl).

Thus, the definition of the discrete hazard is that it expresses the probability that an

event occurs at time tl, given that it has not occurred up to time tl−1. Equivalently to

continuous time hazard, the discrete hazard can then be expressed as

h(tl) = P [T = tl|T ≥ tl] =
P (T = tl)

P (T ≥ tl)
=

f(tl)

S(tl−1)
.

Now, f(tl) = S(tl−1)− S(tl), therefore
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h(tl) =
S(tl−1)− S(tl)

S(tl−1)
= 1− S(tl)

S(tl−1)
.

After some algebra, the above expression becomes

S(tl) = S(tl−1)[1− h(tl)].

Since S(0)=1 i.e. at or before time zero no event occurs, recursively using the above we

obtain

S(tl) =
l∏

k=1

[1− h(tk)] (5.1.1)

and

f(tl) = h(tl)S(tt−l) = h(tl)
l−1∏
k=1

[1− h(tk)]. (5.1.2)

We now introduce a different notation for the hazard of a specific subject. If the time

interval is split into contigous subintervals (0, t1], (t1, t2]. . . . , then T = tl can also be

written as T = l, where (0, t1), refers to T = 1 and likewise, T = l refers to the interval

(tl−1, tl] i.e. the event occurred during the l(th) interval. The hazard of the ith subject

with xil vector of explanatory variables at time l becomes

hil = P [Ti = l|Ti ≥ l,xil].
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5.2 Model

Suppose that we observe n subjects (i = 1, 2, . . . , n) from time t = 1 until ti, where for

the ith subject an event occurs or the subject is censored at time ti. Again, we introduce

an indicator variable δi which is one when the ith subject experiences the event, or zero

otherwise.

The probability that the ith subject experiences the event at time til is P (Ti = li),

whereas the probability that the subject is censored is, P (Ti > li). When censoring is

non-informative then the likelihood of the sample is given by

L =
n∏
i

[P (Ti = li)]
δi [P (Ti > li)].

1−δi

Substituting Equation 5.1.1 and Equation 5.1.2 above we obtain

L =
n∏
i=1

([
hili

li−1∏
j=1

(1− hij)
]δi[ li∏

j=1

(1− hij)
]1−δi)

.

Taking logarithms of the above, we obtain

logL =

n∑
i=1

δi log

[
hili

(1− hili)

]
+

n∑
i=1

li∑
j=1

(1− δi) log(1− hij).

Define yit, an indicator variable to be 1 when the ith subject experiences the event and

zero otherwise. The above equation leads to
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logL =

n∑
i=1

l1∑
j=1

yij log

[
hij

(1− hij)

]
+

n∑
i=1

i1∑
j=1

log(1− hij).

Upon taking anti-logarithm of the above we obtatin

n∏
i=1

li∏
j=1

h
yij
ij (1− hij)1−yij . (5.2.1)

Allison (1982) and Singer and Willet (1993) argue that the above equation reduces to a

familiar bernoulli likelihood function where yij is the observations with probabilty hij .

A logistic parameterization of hij is given by

hij =
1

1 + exp[−ηij ]
(5.2.2)

where ηij = α1D1ij + α2D2ij + · · ·αJDJij + β1x1ij + β2x2ij + · · ·βpxpij .

J is the length of the observation period i.e. the maximum time period, [D1ij , D2ij . . . DJij ]

are dummy variables indexing the time periods, with [d1ij , d2ij . . . dJij ] as observations.

The focus now shifts away from the subjects to time periods which become the new unit

of analysis. For a given subject, a record is created for each time period that the subject

remains in the follow up. If the subject experiences the event or is censored at time

l, then l records will be created for that subject together with yij , where yij = 0 for

the time periods 1 to l − 1 and yil = 1 if the subject experiences the event, or 0 if the

subject is censored. A new record is therefore, a time period together with the original

covariates of the subject which may be time varying or fixed and then the yij . In total

there will be N = l1 + l2 · · ·+ ln records.

53



Equation 5.2.2 can also be expressed as{
hij

1− hij

}
= exp{α1D1ij + · · ·αJDJij} × exp{β1x1ij + · · ·βpxpij}. (5.2.3)

In much the same way as the hazard is the product of unspecified h0(t), the base line

hazard which is a function of time and exp(βxi) in the Cox regression model, we can also

think of exp{α1D1ij + · · ·αJDJij}, the function of time, as the base line hazard which is

also left unspecified. This expression, as Singer and Willet (2003) argue, invokes Cox’s

proportional hazards of the previous chapter albeit in discrete survival time. By taking

logarithms of 5.2.3 we obtain the familiar logit(hij) given by

log

{
hij

1− hij

}
= α1D1ij + · · ·αJDJij + β1x1ij + · · ·βpxpij . (5.2.4)

We already have a likelihood function in Equation 5.2 which leads to

logL(θ) =
n∑
i=1

l1∑
j=1

{
yij log

[
hij

(1− hij)

]
+ log(1− hij)

}
(5.2.5)

where θ′ = [α1, α2, . . . αJ , β1, β2 . . . βp] and hij = 1
1+exp−ηij .

The partial derivatives of Equation 5.2.5 are taken and then equated to zero to solve for

θ which maximizes the likelihood function. The estimates of θ are obtained by using

iterative methods.

Since the minimum time to graduation is three years for all subjects, we have only

considered the subjects that have survived up to the beginning of year 3 as our initial

”risk set”. We have fitted a full model (Model A) with interaction terms in Table 5.1,
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and then moved to a reduced (Model B) in Table 5.2, by using backward elimination

method.
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Table 5.1 Full Model

Model A

Variable β̂ S.E Sig.

Time 3 -1.460 0.452 0.001

Time 4 0.2330 0.435 0.593

Time 5 1.4710 0.627 0.019

Female -0.229 0.495 0.644

Management Sciences 0.3770 0.196 0.000

Health Sciences 1.9610 0.375 0.000

Applied Sciences 2.0960 0.537 0.000

Accounting & Informatics 2.3450 0.705 0.001

Arts & Design 3.6110 0.896 0.000

Coloured -0.967 1.094 0.377

Indian -0.049 0.358 0.890

Other -0.371 1.635 0.820

White 0.1540 0.717 0.830

Age 0.0010 0.041 0.972

Females × Time -0.233 0.094 0.013

Female × Race 0.3990 0.099 0.000

Female × Faculty -0.003 0.041 0.940

Female × Age 0.0150 0.020 0.472

Race × Time -0.126 0.074 0.088

Faculty × Time -0.130 0.029 0.000

Age × Time -0.021 0.014 0.144

Race × Faculty 0.0040 0.029 0.885

Race × Age 0.0170 0.015 0.245

Faculty × Age -0.008 0.008 0.299
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Table 5.2 Reduced Model

Model B

Variable β̂ S.E Sig.

Time 3 -1.905 0.117 < 0.0001

Time 4 -1.058 0.109 < 0.0001

Time 5 -0.268 0.097 < 0.0001

Female 0.103 0.073 0.560000

Management Sciences × Time 3 1.178 0.131 < 0.0001

Management Sciences × Time 4 1.073 0.142 < 0.0001

Health Sciences × Time 3 1.477 0.178 < 0.0001

Health Sciences × Time 4 1.230 0.227 < 0.0001

Applied Sciences × Time 3 1.231 0.168 < 0.0001

Applied Sciences × Time 4 1.001 0.203 < 0.0001

Accounting & Informatics × Time 3 1.160 0.149 < 0.0001

Accounting & Informatics × Time 4 0.925 0.166 < 0.0001

Arts & Design × Time 3 2.378 0.169 < 0.0001

Arts & Design × Time 4 0.806 0.266 < 0.0001

Arts & Design × Time 5 1.972 0.767 < 0.0001

Indian 0.009 0.107 0.935000

White 0.530 0.169 0.002000

Coloured 0.066 0.169 0.795200

Other 1.151 0.253 0.002000

Female × Indian 0.679 0.158 < 0.0001

Female × White 0.687 0.286 < 0.0001
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Before we proceed with the intepretation of the model, we assessed the overall goodness-

of-fit by using Hosmer and Lemeshow (2000) test. Briefly, the data is split into 10 groups

according to their estimated probabilities i.e. 0.0− < 0.1, 0.1− < 0.2, . . . , 0.9− < 1. Let

yij denote the binary outcome for observation j in group i where i = 1, 2, . . . , 10. Let

πij denote the corresponding fitted probability for the model fitted for ungrouped data.

The statistic is given by

C =
10∑
i=1

(∑
j yij −

∑
j π̂ij

)2∑
j π̂ij

(
1− (

∑
j π̂ij)/ni

) .
This statistic does not however have a limiting chi-square with df=(10-2) as noted by

Agresti (2002), but the authors of the test, Hosmer and Lemeshow (2000) maintain that

if the number of covariate patterns (subjects with identical covariate values) is equal or

approximately equal to the sample size, the statistic follows a chi-square distribution.

The test statistic is in the same spirit as the usual,
∑ (O−E)2

E , such that the numerator

of the statistic should be very small when the model fits the data very well. C = 11.563,

df.= 8, for the reduced model compared to 15.507 at 5% significance level, suggesting a

good fit.

5.3 Model Adequacy

Having already assessed overall goodness-of-fit, we will now consider outliers and influ-

ential variables.
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5.3.1 Outliers

In general, graphical methods are used to detect outliers and a plot of either Pearson’s

or the deviance residuals, will reveal outliers. The pearson residuals are given by

r =
yi − π̂i√
π̂i(1− π̂i)

(5.3.1)

where π̂i are the estimated probabilities and yi are the observations which are either

0 or 1. Dividing Equation 5.3.1 by
√

(1− hi), we obtain what is referred to as the

standardized Pearson residuals. It must be stressed that the unit of analysis is the time

period and no longer the subject, therefore the ith subject hereafter refers to the ith time

period. Note that there are will be N subjects, where N = li + l2 + . . . ln instead of n

which corresponds to the original number of subjects or the sample size.

rpi =
r√

1− hi

where hi is the ith diagonal element of H = W 1/2X(X ′WX)−1X ′W 1/2, the hat matrix

of Pregibon (1981). The matrix X is a n× p matrix of covariates. W contains weights,

with the diagonal elements equal to π̂i(1− π̂i).

The term hi is referred to as the leverage, it measures the extent to which the ith

subject is distant from the others in term of explanatory variables, such that the larger

the value of the leverage, the more distant the subject is from others. On the other

hand, the deviance residuals are given by
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di = sign(yi − πi)
√
{−2[yi log πi + (1− πi) log(1− πi)]})

and dividing by
√

(1− hi) again, we obtain standardized deviance residuals

rDi =
di√

1− hi
.
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Figure 5.1 Deviance

The general idea is to identify those observations that do not belong with the majority

of the other observations, by examining the plot of Pearson or deviance residuals. From

Figure 5.1 and Figure 5.2, there is one observation which seems to be an outlier and its

details are given in Table 5.3. Outliers occur when the observed y value is 0 and the

estimated probability is near 1 or when observed y value is 1 and estimated probability is

near 0. In this instance we have y = 0 and a high estimated probability value of 0.91067.

We will take up this point about the outlier when we assess the impact of influential

values.
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Figure 5.2 Pearson’s Residuals

Table 5.3 The Outliers

ID Gender Race Faculty Age Status y π̂

15 Male White Art & Design 19 censored 0 0.91052

5.3.2 Influence on all Parameter Estimates

As in the previous chapter, here we assess the effect of deleting the ith subject on the

parameter estimate β̂ for the full model compared a to β̂(i) based on the same model,

but without the ith subject. To avoid the tedious exercise of repeating this for all n

subjects, the extent to which the set of parameter estimates is affected by the exclusion

of the ith subject is given by
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Di = 1/π

n∑
j=1

{
logit(π̂j)− logit(π̂j(i))

}2

wi.

Intuitively, it is the squared distance between β̂ and β̂(i) approximated (Collet, 1991)

by

Di ≈
hir

2
pi

π(1− hi)
.

The plot of the D against subjects is in Figure 5.3 and the estimated probability is in

Figure 5.4 .
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Figure 5.3 D Statistic

There are two subjects that do not belong with others, they are listed in Table 5.4.

The plot of the D statistic against the estimated probabilty in 5.4 indicates that the

two subjects have relatively large estimated probability values, possibly compared to

observed outcome of 0. Noteworthy is that subject ID=15, the outlier in terms of
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Figure 5.4 D Statistic vs Fitted Probability

residuals, reappears again as having an effect on the parameter estimates. Despite the

appearance of these two subjects as extreme, as noted by Hosmer and Lemeshow (2000),

the value of the D statistic should exceed 1 for a subject to deserve special attention.

We will, however, assess their exact effect later in this section. The other subjects

which do not belong with the rest, but not as extremely as the first two, belong to the

”Other” factor level. We will however not pay special attention to them as the variable

is insignificant in the final model anyway.

Table 5.4 Influential Observations

ID Gender Race Faculty Age Status y π̂

15 Male White Art & Design 19 censored 0 0.91052

277 Male African Art & Design 21 censored 0 0.82395

The D statistic is a summary statistic, which assesses the change over all parameter
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estimates, we will assess the effect on individual parameter estimates in the next section.

5.3.3 Influence on Individual Parameter Estimates

The effect of excluding the ith subject on the value of βj is given by

(X ′WX)−1j+1xi(yi − ŷi)
(1− hi)s.e(β̂j)

.

where (X ′WX)−1j+1, is the (j + 1)th row of the variance-covariance matrix of β̂. The

above statistic is referred to as the delta-beta.
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Figure 5.5 Other Delta-Beta

Whilst the D statistic of the previous section raises a flag if there are subjects that have

influence on overall parameters estimates without indicating the actual parameters that
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Figure 5.6 Health Sc. Time 4 Delta-Beta
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Figure 5.7 Art & Design Time 4 Delta-Beta
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Figure 5.8 Art & Design Time 5 Delta-Beta

are affected, the delta-betas goes a step further by pinpointing the actual parameter

estimates affected.

We have plotted the delta-betas only for the factor levels where there was a suggestion

that outliers might exist in Figure 5.5 to Figure 5.8 to save space. Even though there

seems to be outliers in the plots of Health Sciences Time 4 and Art & Design Time 4,

they are in the order of 0.03 and 0.04 in absolute terms, respectively. On the other hand,

the Art & Design Time 3 plot reveals subject ID=15 and ID=277 again as producing the

largest changes in on the coefficient of Art & Design Time 3 when they are included and

excluded. Also, The same applies to the ”Other” factor level. Incidentally, the first two

subjects have large leverage values (hi), with subject ID=276 having the largest leverage

value. It is therefore not surprising that they should be influential subjects, and was

a question of finding which amongst the three Art & Design interaction terms do they

have effect on.
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We have established the two subjects, or, rather the two time periods with subject

ID=15 and 277 explanatory variables that have undue influence on the Arts & Design

Time 3 coefficient estimate. The estimate of the coefficient of Arts & Design Time 5

with both subjects included in the model is 1.972 with S.E = 0.767 and when we exclude

subject ID=15, the coefficient estimate is 2.688, a coefficient estimate difference of 93%

relative to S.E. Excluding subject ID=277, the coeffient estimate is 2.656, resulting in a

coefficient estimate difference of 89%. In both cases, the difference is very high.

The two subjects in question are censored in period 3 out 15 that are at risk. The other

13 graduate, which may explain the reason the two have excessively high probabilities,

otherwise there is no other reason such as transcription error etc. which could explain

the disproportionately high estimated probabilities.

The other coefficient estimates do not differ substantially whether we include or exclude

the subjects except for the Arts & Design time 5 coefficient, therefore the hazards es-

timates will not differ markedly, whichever model we use, unless the estimation is in

relation to Arts & Design time 5. We will leave both subjects in the model but bear this

fact in mind when we intepret the concerned coefficient.

5.4 Prediction

In Figure 5.9, we have plotted the hazard estimates for the Faculty variable. The largest

hazard estimates occur in the fourth year for all faculties except for the Arts & Design

and the Engineering & The Built Environment faculties. The largest hazard estimate

occurs in year five for the two faculties, bearing in mind that the estimate for the Arts

& Design faculty is unstable in that time period. These results suggest that students are

more likely to graduate in the fourth year, than any other period for all other faculties
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Figure 5.9 Faculty Hazard Estimates

except the Arts & Design and the Engineering & The Built Environment faculties where

the highest ”risk” of graduation is in the fifth year. Over all, the Arts & Design faculty

has the best graduation profile with the Engineering & The Built Environment faculty

having the poorest profile.

We have plotted the race hazard estimates in Figure 5.10. All racial groupings are

most likely to graduate in year 5 than in any other period. White subjects have the

best graduation experience and African subjects have the weakest experience. There

is very little difference between the African and the Indian subjects and the marginal

edge that the Indian subjects have over the African subjects, is due to Indian female

subjects. Coloureds and the Other subjects share the same graduation experience as

African subjects.

The gender hazard estimates are plotted in Figure 5.11. Female subjects have a better

graduation profile compared to male subjects. Females are most likely to graduate in
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Figure 5.10 Race Hazard Estimates

year 4 than any other period, whereas the male subjects are most likely to graduate in

year 5.

5.5 Summary

In the previous chapter we fitted a Cox regression model by stratifying on the faculty

variable to obtain proportional hazards between Africans and Indians as well as between

males and females. In this chapter we fitted a logistic regression, a model that is not

restricted by the stringent condition of the proportionality assumption.

We could not determine the effect of the ”White” factor level with Cox’s regression

model because the factor level failed the proportionality test. This model provides with

the estimates for the ”White” factor level. Secondly, we lost the effect of ”faculty” in
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Figure 5.11 Gender Hazard Estimates

the Cox’s regression because we used it as the stratifying variable. In this chapter we

have the effect of the faculty variable. Thirdly, logistic regression provides the estimates

of true probabilities of graduation in contrast to Cox regression where hazards are not

true probabilities.

The Cox regression however quantifies the difference between the risk of graduation for

male and female subjects as well as between Indian and African subjects.

We raised a concern in Chapter 2 that we have limited data at our disposal, that we

did not have access to variables that have been found to explain graduation in the

literature. The immediate consequence of leaving out relevent data is overdispersion.

We will address this question in the next chapter.
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6

Frailty Models

The Cox (1972) regression model of Chapter 4 is premised on the following two assump-

tions, namely - (a) The survival times of the subjects in the sample are independent and

(b) The survival times of the subjects in the sample are identically distributed.

There are situations, however, where these two assumptions may be found to be un-

tenable. Regarding the first assumption, it is inconceivable, for example, to regard the

survival times of siblings or rats from the same litter to be independent of each other

because the subjects come from the same genetic ’stock’ or background. Two rats from

the same litter are more prone to exhibit similar behaviour than rats from different lit-

ters and their survival times should not be an exception. The siblings or the rats are

said to belong to the same cluster.

The second assumption that the survival times are identically distibuted underpins the

notion that the population under study is homogenous. In principle, this implies that all

the subjects under study face the same risk of experiencing the event of interest. This

assumption may be suspect at times because certain subjects in a sample may be more

prone to experience the event of interest than others.



Vaupel et al. (1979) refer to this ”susceptibilty” as frailty. In life expectancy studies, they

argued that individuals differ in certain unobservable attributes or ”endowment”, which

renders some subjects to be more susceptible, or more frail, heightened to experience the

event of interest than others. Thus, over and above the heterogeniety that is explained

by observed explanatory variables, there are other attributes or ”unobserved frailties”

unique to the subjects in a given sample.

There are two distinguishable broad classes of frailty models namely; models describ-

ing the univariate survival times and multivariate models. The example of modelling

survival times of siblings or ”clustered” subjects falls under the multivariate methods.

These methods were introduced by Clayton (1978) in his seminal paper where he ques-

tioned the validity of the independence assumption in respect of survival times amongst

relatives in relation to chronic diseases. On the other hand, Vaupel et al. (1979) are cred-

ited with the introduction of frailty in biostatistics from demography and specifically to

account for unobserved heterogeneity in univariate models.

More closer to our study, when we discussed the variables in Chapter 2, we highlighted

the limitation imposed by unavailability of data such as matriculation results, IQ etc.

Over and above these measurable variables, albeit not available, there are other personal

characteristics or attributes that may have bearing on time to graduation. Invariably,

these attributes are near impossible to quantify, and as such they cannot be directly

included with other explanatory variables in a model, because they are unobservable

and yet they may have sizable influence on graduation. They are what constitutes the

different ”endowment” or what is loosely referred to as unobserved heterogeniety in the

literature.

One example is that of the ”Big Five” traits (Openess to Experience, Extraversion, Con-

scientiousness, Neurotism, Agreeableness), which have been found to have substantial

impact on academic performance (Chamorro-Premuzic and Furnham, 2003; Furnham
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et al., 2009). The ”Big Five” traits are therefore some of the unobserved ”frailties” that

are unique to the subjects in this study, such that some subjects are more susceptible

to graduate than other subjects, as a consequence of these personal attributes.

The often cited example in the literature to illustrate the pitfalls of ignoring frailty is

that of two sub-populations, with different, but constant hazards.

Let θi(t) and S(t|θi) be the proportion of subjects in the ith subpopulation and the

corresponding conditional survival probability at time at time t, for i = 1, 2, respectively

The unconditional survival probabilty of the population at time t is given by

S(t) = θ1(0)S(t|θ1) + θ2(0)S(t|θ2) (6.0.1)

whereas, the corresponding unconditional hazard is given by

h(t) = θ1(t)h(t|θ1) + θ2(t)h(t|θ2). (6.0.2)

If say, h(t|θ1) = λ1 > h(t|θ2) = λ2, then h(t) will decline as θ2(t) increasingly outweighs

θ1(t), because more of subjects in subpopulation 1 experience the event earlier. The

population hazard will decline in later periods as it increasingly reflects the lesser frailty

of the second group, which eventually predominates the remaining risk set. Thus, at

population level, the hazard will reflect a declining risk, which is at variance with subject

level hazard experience of two constant hazards.

Against the background of data limitations as discussed, we will limit our analysis to

univariate methods in this chapter, where we will focus on accounting for possibble

unobserved frailty which can also be viewed as adjustment for overdispersion due to
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omission of material variables (Klein and Moeschbeger, 2003).

In medicine, where the term frailty originates, more specifically in gentology, more frail

individuals have a higher risk for ”death” as opposed to less frail subjects. Likewise, in

our study, a combination of unobservable intrinsic factors and measurable but unmea-

sured variables for a given subject, reduce or magnify the risk of graduation.

6.1 Continuous Time

In general, frailty models are the equivalent of random effects or mixed models in survival

analysis. They are essentially an extention of Cox’s regression model in that a frailty

term is introduced which acts multiplicatively to reduce or magnify the ”risk” or the

hazard as follows

hi(t|w) = h0(t) exp(β′xi + wi) (6.1.1)

.

This model can be re-written as

hi(t|u) = h0(t)ui exp(β′xi) (6.1.2)

where ui = exp(wi) is the frailty term that accounts for the unobserved heterogeneity.

Vaupel et al. (1979) proposed a gamma distribution for the {ui}, which has since become

the standard choice for the distribution of the frailty term. The p.d.f is given by
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g(u) =
u1/θ−1 exp(−u/θ)

θ
1
θΓ(1/θ)

(6.1.3)

with E(U) = 1 and V ar(U) = θ. This has the interpretation that if ui > 1, then the ith

subject is more frail and more susceptible to experience the event than the kth subject

with uk < 1.

The choice of the distribution for the frailty term, ui is not limited to the gamma

distribution. The Lognormal, Inverse Gaussian and positive stable are some of the other

choices (Duchateau and Janssen, 2008; Munda et al., 2012).

There are two approaches of estimation in frailty models namely; parametric and semi

parametric. In the former case, the distribution of the baseline hazard is specified i.e.

a distributional form of the baseline hazard is assumed such as the Weibull or the ex-

ponential distributions and the estimates of the relevent parameters are obtained by

maximizing the marginal log-likelihood function. Naturally, the baseline distribution is

not assumed in the case of semi parametric approach. The derivation of the param-

eter estimates when semi-parametric formulation is assumed is far more involved and

complex.

6.1.1 Parametric Methods

Equation 6.0.1 illustrates the idea that the population survival function is the average

of survival functions of two groups where subjects in each group have identical survival

functions. We can extend the idea to a situation more closer to reality where each

subjects will have a unique conditional survival function, S(t|ui) which, however, is

unobservable. Instead of the weights used in Equation 6.0.1, we introduce G(u), the

distribution function of the frailty term u to obtain the population survival function,
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S(t), by integrating out the frailty term if u is continuous.

The population survival function is obtained as follows.

S(t) =

∫ ∞
0

S(t|u)g(u)du. (6.1.4)

Since

S(t|ui) = exp−
∫ t

0
ui(h(s))ds = exp−[H(t)ui].

Substituting the above result in Equation 6.1.4 and assuming that u has a c.d.f, G(u)

and a p.d.f g(u), then

S(t) =

∫ ∞
0

exp−[H(t)u]g(u)du = Mg[−H(t)],

where Mg() is the moment generating function of the frailty distribution evaluated at

−H(t), and H(t) = H0(t) exp(β′x), is the cumulative hazard function.

In writing out the likelihood function for n subjects, we typically consider the observed

(event or censoring) times t1, t2 . . . tn, together with δ1, δ2 . . . δn indicator variables, such

that δi = 1 when the ith subject experiences the event, or zero when it is censored, as

well as unobserved u1, u2 . . . un. The conditional likelihood is given by
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L(ξ,β|u) =

n∏
i=1

[hi(ti)]
δiSi(ti)

=

n∏
i=1

(
h0(ti)ui exp(β′xi

)δi exp(−H0(ti)ui exp(β′xi)

where ξ is the vector of baseline hazard parameters (Duchateau and Janssen, 2008). To

obtain the unconditional likelihood function we intergrate out the frailty term as follows

Lmarg(ζ) =

∫ ∞
0

L(ξ,β|u)g(u)du

where ζ = (ξ,θ,β). This expression is then maximised to obtain the estimates for ξ,θ

and β.

Larger/smaller values of θ̂ suggests a greater/lesser variability in the ui’s and therefore

a larger/smaller degree of heterogeneity amongst the subjects. We can verify the above

by conducting a test based on the Wald statistic:- θ̂/SE(θ̂), to test if θ̂ is significantly

different from zero.

The disadvantage of parametric models is that if the assumed baseline distribution does

not provide a reasonable fit, overdispersion is captured in the frailty term. The larger

the difference between the fitted baseline hazard and the observed hazard, the larger

the frailty effect (Gutierrez, 2002). Thus a large value of θ̂, which is only due to a

misspecified baseline distribution, may lead us erroneously to conclude that there exists

heterogeniety when in fact it does not exist.

In Table 6.1, we have fitted a frailty model contrasted with an ordinary Cox regression
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Table 6.1 Parametric Frailty Model & Cox Regression Model

Frailty Model Cox regression Model

β̂ S.E P-value β̂ S.E P-value

Intercept 0.7961 0.0284 < 0.001

female 0.2199 0.034 < 0.001 0.1471 0.0478 < 0.001

Indian -0.0835 0.0419 < 0.001 0.1718 0.0575 < 0.001

White -0.3003 0.0602 < 0.001 0.3473 0.0869 < 0.001

Coloured -0.0293 0.1441 < 0.001 0.0439 0.1918 < 0.001

Other -0.1161 0.3353 < 0.001 0.6541 0.4490 < 0.001

θ̂=0.55

of Chapter 4. The assumed baseline distribution for the frailty model is the lorgnomal

distribution, with a gamma frailty distribution. We note that the the estimate of the

variance for the frailty term is 0.55, which is relatively large and therefore suggesting

existence of heterogeniety. Further evidence is the differences of the coefficient estimates

between the frailty and the ordinary Cox regression models.

To isolated the possible confounding effect of misspecified baseline distribution, a semi-

parametric model is fitted such that the variance of the frailty term only captures the

extent of heterogeniety. In the next section we introduce the Cox regression with random

effects to account for heterogeneity.

6.1.2 Semi-Parametric Methods

To recall from Chapter 4, The partial likelihood to be maximized to obtain the β when

h0(.), the baseline hazard is left unspecified is
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L(β) =

n∏
j=1

{
exp(β′xj)∑

`∈R(tj)
exp(β′x`)

}δi
. (6.1.5)

When

hi(t) = h0(t) exp(β′xi) (6.1.6)

.

In the presence of frailty where wi = log ui and V (w) = γ we have the following equatuion

hi(t|w) = h0(t) exp(β′xi + wi). (6.1.7)

if wi’s were fixed in Equation 6.1.7, they would be treated as extra parameters to be

estimated together with β. Therneau et al. (2000) suggested maximizing the partial

likelihood given in Equation 6.1.5 augumented with frailty, lpart, subject to penalty

term lpen as follows

lppl(γ,β,w) = lpart(β,w)− lpen(γ,w).

lpart(β,w) =
n∑
i=1

δi

{
ηi − log

( ∑
`∈R(ti)

exp η`

)}

where ηi = β′xi + wi, and

lpen = −
n∑
i=1

log g(wi). (6.1.8)
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Equation 6.1.8 is refered to as a penalty term because if the actual value of the frailty

term wi = log ui deviates from its mean(zero) substantially, then lpen has a large negative

contribution towards lppl.

Maximization consists of an inner loop and an outer loop. First an initial value γ is

suggested and then lppl(γ,β,w) is maximized to obtain estimates (BLUPs) of β and

γ, using Newton-Raphson procedure, then in the outer loop, RELM estimator for w is

obtained. This process is repeated until convergence (Duchateau and Janssen, 2008).

We have fitted a stratified Cox regression model with faculty as the stratifying variable,

and using the gamma and the Gaussian distributions for the frailty. We have used

R-package: Survival (Therneau, 2012) and the results are listed in Table 6.2.

Table 6.2 Semiparametric Frailty Model

Cox Regression Gamma Frailty Gaussian failty

Variable β̂ Sig. β̂ Sig. β̂ Sig.

Female 0.1471 0.00211 0.1471 < 0.001 0.1471 < 0.001

Indian 0.1718 0.00281 0.1718 < 0.001 0.1718 < 0.001

White 0.3472 < 0.001 0.3473 < 0.001 0.3474 < 0.001

Coloured 0.0439 0.81887 0.0439 < 0.001 0.0434 < 0.001

Other 0.6541 0.1451 0.6541 < 0.001 0.6541 < 0.001

γ = 5× 10−7 γ = 0.0013

We note that in both frailty models the variance (γ) of the random term is very close to

zero, and the coefficients have not changed substantially.

The suggestion that there exist random effects when the baseline hazard is specified in

parametric formulation, is due to the misspecification of the baseline hazard. In actual
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fact, there is no random effect as suggested by fitting a semiparametric model above.

6.2 Discrete Time

In the continuous case, we fitted a frailty term, ui, which corresponds to the ith subject.

This has a meaningful interpretation in terms of unobserved heterogeniety of a subject,

in that it accounts for omitted covariates of a subject. This is not the case in discrete

time, since the sampling unit is no longer a subject, but a time period. Instead, we fit

a random effects term uij , which corresponds to the jth time period, with covariates of

the ith subject to account for overdispersion.

We recall from Chapter 5 that the hazard hij in discrete time is modelled to have logistic

dependence on covariates and time, as follows;

hij =
1

1 + exp[−ηij ]
(6.2.1)

where ηij = α1D1ij + α2D2ij + · · ·αJDJij + β1x1ij + β2x2ij + · · ·βpxpij

To account for overdispersion occasioned by possible ommission of relevent covariates,

we introduce a random effects term uij , for the jth time period which enters as follows;

ηij = α1D1ij + α2D2ij + · · ·αJDJij + β1x1ij + β2x2ij + · · ·βpxpij + uij , where

{uij} are independent and are assumed to follow a normal distribution with mean zero

and variance θ.
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The likelihood function of Chapter 5 becomes the conditional likelihood on the uij as

follows;

L(ξ|uij) =
n∏
i=1

l1∏
j=1

h
yij
ij (1− hij)1−yij

where ξ′ = [α1, α2, . . . αJ , β1, β2 . . . βp] and

logit hij = [D,X]ξ + uij .

Let N = t1 + t2 . . . + tn, then D is a (N × J) matrix, X a (N × p) matrix and ξ a

((J + p)× 1) vector of parameters. The marginal likelihood is given by

L(ξ,θ) =

∫ ∞
−∞

n∏
i=1

li∏
j=1

h
yij
ij (1− hij)1−yijg(u)du.

This likelihood is integrated using Gauss-Hermite or quadrature (Collet, 1991) and then

maximized to obtain both ξ̂ and θ̂. If θ̂ is very large, then there is a strong suggestion

of ommitted explanatory variables. The results of fitting the above model are displayed

in Table 6.3. We note that θ̂=0.0048 is very small and that there is very little difference

between the coefficients of the models including and excluding random effects.
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Table 6.3 Logistic Random Effects Model and Ordinary Logistic Model

Model C Model D

Variable ξ̂ Sig. ξ̂ Sig.

Time 3 -1.905 < 0.001 -1.906 < 0.001

Time 4 -1.058 < 0.001 -1.059 < 0.001

Time 5 -0.268 0.0058 -0.268 0.00058

Female 0.103 0.1565 0.268 0.1563

Management Sciences × Time 3 1.178 < 0.001 1.178 < 0.001

Management Sciences × Time 4 1.074 < 0.001 1.070 < 0.001

Health Sciences × Time 3 1.477 < 0.001 1.478 < 0.001

Health Sciences × Time 4 1.230 < 0.001 1.231 < 0.001

Applied Sciences × Time 3 1.231 < 0.001 1.231 < 0.001

Applied Sciences × Time 4 1.001 < 0.001 1.002 < 0.001

Accounting & Informatics × Time 3 1.160 < 0.001 1.161 < 0.001

Accounting & Informatics × Time 4 0.925 < 0.001 0.925 < 0.001

Arts & Design × Time 3 2.378 < 0.001 2.380 < 0.001

Arts & Design × Time 4 0.806 0.00250 0.807 0.00250

Arts & Design × Time 5 1.972 0.01000 1.974 < 0.001

Indian 0.009 0.93500 0.009 0.93463

White 0.530 0.00180 0.530 0.00180

Coloured 0.066 0.79520 0.066 0.79522

Other 1.151 0.08453 1.152 0.08450

Indian × Female 0.669 < 0.001 0.670 < 0.001

White × Female 0.687 0.01632 0.687 0.01630

θ̂= 0.0048

SE(θ̂)= 0.06951
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6.3 Summary

When we discussed the variables at our disposal in Chapter 2, we noted that we did

not have access to some variables that have been found to inform both graduation

and dropouts in the literature. The objective of this chapter was to assess the effect of

omitting measurable and unmeasurable variables in our modelling exercise with reference

to the Cox’s regression model of Chapter 4 and the discrete model of Chapter 5.

We began by fitting a parametric stratified model with random effects. This was an

extention of the stratified Cox regression model of Chapter 4 with the faculty variable as

the stratifying variable. The results of the exercise suggested that there exist significant

unobserved heterogeniety.

We then fitted a semiparametric stratified Cox regression model with random effects.

The general idea was to isolate the impact of the random component without the con-

founding interference that may arise due to a misspecified baseline hazard. The results

indicated that there was no significant unobserved heterogeniety, the unobserved het-

erogeniety suggested by the parametric model was merely due to a misspecified baseline

hazard. We also fitted a discrete model of the previous chapter with random effects and

also found that there was no overdispersion.

Our models passed the heterogeniety test that they are both not compromised by limited

access to relevent variables. We could not investigate the possibility of clustering for

lack appropriate markers in our data to distinguish possible cluters.

Both models, the Cox regression model and its equivalent in discrete time, are also

premised on the assumption that all subjects will eventually graduate, had it not been

for the 5 year maximum allowable completion period. In the next chapter we evaluate
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this assumption.
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7

Mixture Models

7.1 Cure Models

We have adressed the two assumptions upon which Cox’s regression model is premised

in the previous chapter namely:- the independence and identical distribution of survival

times. Yet another assumption that is often unstated is that all subjects under study

will eventually experience the event of interest provided the observation period is long

enough.

There are instances, however, where some subjects do not eventually experience the

event of interest, and we refer to such subjects as ”cured”, a term inherited from clinical

trials. This is usually evidenced by a Kaplan-Meier curve which ultimately levels off

into a plateau instead of approaching zero. Standard survival models are based on the

assumption that limt→∞ S(t) = 0, a possibility that does not obtain in the presence of

cured subjects. (Boag, 1949; J. Berkson and Gage, 1952) are credited with the earliest

discussion of this subject. The topic only received renewed attention towards the close

of the last century after the seminal work of Kuk and Chen (1992), and the associated

modelling techniques have since been referred to as mixture or cure models in the survival



analysis literature.

In this study, the event of interest is graduation and there might be a possibility that

some of the subjects might never graduate (cured), even if the observation period is long

enough. Thus, the application of Cox’s regression or any other estimation procedures

that does not take into account the possibility of cure, might not be entirely appropriate.

We therefore investigate the possibility that there might exist a non-ignorable proportion

of cured subjects with the ultimate objective to estimate this proportion should there

be evidence that it exists and also adjust the survivor function of the subjects that will

eventually graduate (uncured) accordingly.

Typically in clinical trials, subjects would undergo a treatment, say, against cancer and

cured subjects are those that would not experience relapse if the observation period

was long enough (Peng and Dear, 2000; Sy and Taylor, 2000). In our study, we can

also think of the three year period as the treatment period towards experiencing the

event (graduation), as opposed to not experiencing the event (relapse) in clinical trials.

Whilst a cured subject in clinical trials is a subject who does not experience relapse,

with regards to our study, a cured subject here, refers to one who eventually does not

graduate.

Subjects can either experience the event of interest, or are censored during the obser-

vation period. The focus centres on the censored subjects with the view to splitting

them into those who would experience the event, and those who would not . Typically

in clinical trials, subjects who are lost to follow up, may still experience the event of

interest even though their eventual status may not be known i.e. subjects who have

received treatment for some ailment may recover or relapse even though they are no

longer under observation.

In this study, censored subjects, that is subjects who have left the institution will cer-
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tainly not graduate from the institution. Perhaps we should then view our data as a

sample coming from a population of all universities of technology so that a dropout can

be regarded as censored in the sense that the subject may eventually graduate albeit

from another institution. Having made this assumption, we should therefore bear in

mind however that censored subject are more likely not to graduate at all, even from

another institution and this will tend to overstate the proportion that will eventually

graduate. We will re-visit this point later.

Armed with above assumptions and more formally, letting T be the event time and U

the indicator variable of uncured subjects, such that U = 1 if a subject is uncured and

zero otherwise, then the mixture model is defined as:

Spop(t|x, z) = π(z)Su(t|x) + 1− π(z) (7.1.1)

Spop(t|x, z)) is the marginal survival function and Su(t|x) = P (T > t|U = 1,x) is

conditional survival function of uncured subjects with a covariate vector x. It then

follows that π(z) = P (U = 1|z) is the proportion of uncured subjects given a covariate

vector z. We thus have two survival functions:-one for the uncured subjects with survival

function Su(t|x), and 1− π(z), for cured subjects that does not depend on time.

Classically, π(z) is often referred to as the ”incidence” and Su(t|x) the ”latency”. The

incidence is commonly modelled to have a logistic dependence on z, i.e

logit(π(z)) = γ′z

Another variation of mixture models is non-mixture models or promotion time mod-

els.(Chen et al., 1999; Tsodikov et al., 2003; Y.GU et al., 2011). We however consider
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the mixture model in this study, and specifically, the discrete model of Chapter 5 and

the grouped survival methods.

We begin by developing the necessary theoretical background which is then followed by

estimation.

7.1.1 Model & Estimation

We start by re-writing Equation 7.1.1 as follows;

Spop(t|x, z) = π(z)Su0(t)
exp(β′x) + 1− π(z).

In continuous time, and when the distribution of the baseline, Su0(t), is specified, we have

the parametric formulation and the parameters to be estimated are γ and β (Farewell,

1982). If the baseline is unspecified (semi-parametric), the parameters to be estimated,

using the EM algorithm, are γ and β, as well as Su0(t) (Kuk and Chen, 1992; Peng and

Dear, 2000; Sy and Taylor, 2000).

Most of the advances in cure models are restricted to continuous time framework, the

literature on cure models in discrete time is less developed. We will extend the discrete

methods of Chapter 5 to account for cured subjects (Steele, 2003). We will also intro-

duce grouped survival methods (Prentice and L.A.Gloecker, 1978; Allison, 1982) as an

alternative to Chapter 5 methods.

To the best of our knowledge, there is one program in R to fit mixture models; the

smcure package (C.Cai et al., 2012) and the semicure package in S-plus (Peng, 2003)

which were both designed for continuous data with fewer ties. There is also a macro in
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SAS which we have not investigated (F. Corbie’re and P. Joy, 2007). We have had to

write our own macros to specifically fit the two the discrete models.

As in Chapter 5, we again consider contigous intervals (0, t1], (t2, t3], . . . . . . of time.

Equation 7.1.1 still obtains:

Spop(t|x, z) = π(z)Su(t|x) + 1− π(z),

however, the latency part is now: Su(t|x) =
t∏

k=1

(1− h((k)|x)), see (Steele, 2003)

The contributions to the likelihood function:

Contribution =


π(zi)hu((ti)|xi)Su((ti − 1)|xi) if (δi, ui) = (1, 1)

π(zi)Su((ti)|xi) if (δi, ui) = (0, 1)

1− π(zi) if (δi, ui) = (0, 0)

Suppressing the covariates, and assuming the ui’s the observation of the random variable

U are known, the likelihood is given by:

L(β,γ) =

n∏
i=1

πuii (1− πi)1−uihu(ti)
δi(1− hu(ti))

ui−δiSu(ti − 1)ui

where logit(π(z)) = γ′z.

In Chapter 5 we parametrized the hazard as logit(h(t|x)) = β′x. We will also consider

the following parametrization of the hazard, given by
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h(t|x) = 1−
[
S0(t|x)

S0(t-1|x)

]exp(β′x)

,

which leads to log[− log(1 − h(t|x))] = α + βx, the cloglog link function (Prentice and

L.A.Gloecker, 1978).

Since ui’s are not known, the estimates of γ and β are obtained by using the Expectation-

Maximization(EM) algorithm. In the E-step, ui’s in L(β,γ) are replaced by their ex-

pectation wi at the rth step given by

w
(r)
i = E(ui|γ(r), β(r)) =


1 if δi = 1

π
(r)
i S

(r)
u (ti)

π(r)S
(r)
u (ti)+1−π(r)

i

if δi = 0
. (7.1.2)

Thereafter, L(β,γ) is maximized with respect to γ and β in the M-step to obtain γ(r)

and β(r), the estimates at the rth iteration. These estimates in turn are used in E-step

of the (r + 1)th iteration, this process is repeated until convergence.

The likelihood can be split into L1(γ) and L2(β):

L1(γ) =
n∏
i=1

πuii (1− πi)1−ui

and

L2(β) =

n∏
i=1

hu(ti)
δi(1− hu(ti))

ui−δiSu(ti − 1)ui .
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L1(γ), is a straightfoward logistic regression, L2(β) can be re-written as

L2(β) =
n∏
i=1

hu(ti)
δi(1− hu(ti))

ui−δi
( ti−1∏
k=1

(1− hu(k))

)ui
=

n∏
i=1

(
hu(ti)

1− hu(ti)

)δi ti∏
k=1

(1− hu(k))uik

=
n∏
i=1

ti∏
k=1

hu(ti)
yik(1− hu(k))uik−yik .

where yik = 0 for k = 1, . . . , ti − 1, yik = δi for k = ti and uik = ui for k. Thus L2(β)

is a likelihood of binomial data with yik successes out of uik trials. This likelihood is

similar to the likelihood in Chapter 5, the only difference is that uik = 1 in Chapter 5,

hence a binary data.

The estimates of β and γ can be obtained by using standard programms that accomodate

fractional success/failures and the number of trials. wi is fractional number of trials in

L2(β), and the outcome variable in L1(γ).

Estimation could be initialized by setting ∆ with elements wi = δi as the response

variable in L1(γ) to obtain w(0) with elemts wi = π̂i. w
(0) is passed on to L2(β) as

the number of trials for δi = 0 and 1 otherwise. Therefater, using L2(β) we determine

S
(0)
u (ti) which together with Equation 7.1.2 and, π

(0)
i , are used to update to w(1). This

is repeated until covergence.

We have fitted both logistic and cloglog as link functions in the latency and the results

as displayed in 7.1 are very close in exponential scale. The logistic incidence suggests

that about 86% of students in the study will eventually graduate, compared to about

85% according to the cloglog incidence.
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Table 7.1 Incidence & Latency Coefficients

Latency Coefficients

Logistic Cloglog

Variable γ̂ Sig. γ̂ Sig.

Time 3 -0.3432 < .001 -0.8143 < .001

Time 4 0.2671 < .001 -0.5300 < .001

Time 5 1.1988 < .001 -0.4500 < .001

Incidence Coefficients

Variable γ̂ Sig. γ̂ Sig.

Intercept 1.8340 < .001 1.7661 < .001

Before we proceed to interpret the result, we need to attend to the concern we raised in

the introduction concerning the censored subjects. Out of 2934 subjects, 1968 graduated

during the observation period, 797 dropped out(censored) and 169 were censored due

to the closure of the observation period. About 67% graduated during the observation

period, thus this model implies that a further 18% or about 528 will eventually graduate

from the censored subjects, resulting in 85% ”eventual graduation rate”.

All in all, the cure model is premised on the assumption that censored subjects may still

experience the event of interest. In clinical trials, censored subjects may still experience

the event of interest, but experience in higher education suggests that dropouts are less

likely to ever graduate. The remaining 169 subjects at the close of observation, fall far

short of the required 528, even if they all eventually graduate, to justify the figures of

85% and 86%, as suggested by the model.

To adress the shortcomings of the above cure model, we introduce an alternative model

within the competing risks framework in the next section.
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7.2 Mixture Competing Risks

The most widely used competing risks model in discrete time survival analysis is the

multinomial distribution (Scott and kennedy, 2005; Ambrogi et al., 2009). In this study

we have three events namely; graduation, dropouts, and censored subjects due to closure

of the study. The shortcoming of the multinomial model is that it regards the censored

subjects as an event, whereas we would, ideally, want to split these censored subjects

into graduation and dropouts.

Larson and Dinse (1985) introduced mixture models which essentially entails splitting the

censored subjects amongst the competing risks by using EM algorithm. In introducing

the model, Larson and Dinse (1985) specified a distribution for the baseline hazard func-

tion, Ng and Mclachan (2003); Escarala and Bowater (2008) extendend it by assuming

a non-parametric baseline hazard function.

The literature on mixture competing risks models in discrete time is very limited, con-

sequently, we have extented the cure model of the previous section to the mixture com-

peting risks (Steele, 2003).

Since we have only two events (graduation and dropouts), the survival function under

the mixture models is given by:

S(t) = πS1(t) + (1− π)S2(t)

Let us assume that we have J = 2 competing risks, as is the case in this study. Let cij = 1

when the ith a subject exits due to the jth cause and zero otherwise. Define another

indicator variable zij , such that zij = 1 when the ith censored subject eventually exits
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due to the jth cause and zero otherwise. Define hj(ti) as the hazard of the ith subject

due to the jth cause which is parametrized as follows

logit(hj(t,x)) = β′jx

Also define πj as the probability that a subject is in the jth sub-population which is

parametrized as follows:

logit(πj(γ, z)) = γ′zi.

Define Φ = {γj ,β1,β2} and ci. =
2∑
j=1

cij

7.2.1 Model & Estimation

Adapting the cure model likelihood of the previous section and suppressing parameters

and covariates, the mixture competing risks likelihood when there are only two outcomes,

is given by

L(Φ) =

n∏
i=1

2∏
j=1

[πijfj(ti)]
cij [πijSj(ti))]

(1−ci.)zij

=
n∏
i=1

2∏
j=1

[πijhj(ti)Sj(ti-1)]cij [πijSj(ti))]
(1−ci.)zij

=

n∏
i=1

2∏
j=1

[πij ]
cij+(1−ci.)zij [hj(ti)]

cij [1-hj(ti)]
(1−ci.)zij [Sj(ti-1)]cij+(1−ci.)zij

95



Let gij = cij + (1− ci.)zij . Replacing (1− ci.)zij with gij − cij and a little algebra yields

L(Φ) =

n∏
i=1

2∏
j=1

[πij ]
gij

(
hj(ti)

1− hj(ti)

)cij
[Sj(ti)]

gij

=

n∏
i=1

2∏
j=1

[πij ]
gij

(
hj(ti)

1− hj(ti)

)cij ti∏
s=1

(1− hj(s))gij

=
n∏
i=1

2∏
j=1

[πij ]
gij

n∏
i=1

J∏
j=1

ti∏
s=1

(
hj(ti)

1− hj(ti)

)cijk
(1− hj(s))gijk

= LM × LB

cijk = 0 for k = 1, 2 . . . ti − 1, and cijk = cij for k = ti, gijk = gij for all k.

LM is recogniable as the likelihood of a multinomial distribution. LB is a product of 2

binomial likelihoods L(β1) and L(β2) where there are cijk successes in gij trials for the

jth binomial likelihood.

LM turns out to be a Bernoulli likelihood i.e. πi2 = 1 − πi1 and zi2 = 1 − zi1. If the

graduations are viewed as successes, we then have the number of 1’s equal to the number

graduations, the number of 0’s equal to the number dropouts and zi1’s to indicate the

number of censored subjects due to the closure of the observation period.

Clearly, this is where the mixture model has advantage over the cure model, because only

the subjects that are censored due to closure of the study are split between graduation

and dropouts. On the other hand, the cure model splits all censored (including dropouts)

subjects into graduations and subjects that will not graduate.

Since zij ’s are not known and therefore gij ’s are also unknown , the estimates of Φ are

obtained by using the Expectation-Maximization(EM) algorithm. In the E-step, gij ’s in

L(Φ) are replaced by their expectation ḡij at the nth step, where ḡij = cij + (1− ci.)wij

and wij is given by
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w
(n)
ij = E(wij |γ(n), β(n)) =

π
(n)
i1 S

(n)
1 (ti)

π
(n)
i1 S

(n)
1 (ti) + (1− π(n)i1 )S

(n)
2 (ti)

.

Maximization can also be carried out with standard statistical packages that can acco-

modate fractional binomial outcomes as in the cure model and the only difference is that

we now have an extra binomial likelihood to consider.

We have fitted a model with cloglog link function in the latency without explanatory

variables and the results are listed in Table 7.2. We are not aware of a standard statistical

package to fit mixture models in discrete time and specialized pragramming is required

to fit the model, even more so if explanatory variables are included in the model. At

any rate, we were interested in comparing the cure model and mixture competing risks

at global level.

Table 7.2 latency & Incidence Coefficients

Cloglog

Latency

Graduation Dropouts

Variable β̂ S.E Sig. β̂ S.E Sig.

Time 3 -0.33081 0.03040 < 0.001 -0.52215 0.04751 < 0.001

Time 4 0.08308 0.03932 0.03470 -0.14555 0.05713 0.01090

Time 5 0.35448 0.06545 < 0.001 -0.16172 0.08838 0.0674

Incidence

Intercept 0.83955 0.03883 < 0.001

We plotted both fitted survivor function and the sample survor function in Figure 7.1.

The intention was to assess the fit of our model because we did not conduct any simu-

lations to validate the discrete mixture competing risks, as we have not found a similar

model in the literature.
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Figure 7.1 Mixture & Sample Survivor Functions

We observe that our model fits the sample results, which then increases our confidence

in the model, in the absence of a simulation exercise. On the basis of these results, the

estimate of the proportion of subjects that will eventually graduate is about 70% and

the other 30% will eventually dropout.

7.3 Summary

Our initial objective in this chapter was to determine if there was evidence that there

existed a substantial proportion of subjects that would not experience graduation, even

if the observation period was long enough. If there was evidence that some subjects were

cured (would graduate), our next objective was to estimate this proportion.

We extended the discrete methods of Chapter 5 into the context of cure models by

considering the logistic as well as the cloglog link fuctions in the latency and the logistic

link fuction in the incidence.
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Assuming that dropouts may still possibly eventually graduate, we found that there

existed a substantial proportion that will eventually graduate. The reason is that the

cure model regards censored subjects as if they would still graduate, a possibilty that

is very unlikely in higher education literature. A more likely possibilty is that censored

subjects dropout eventually.

This limitation of the cure model led us to consider posing our modelling exercise within

the competing risks realm where dropouts are regarded as competing risks to graduation.

We considered the mixture competing risks model in continuous time and adapted it

by extending the univariate approach of Steele (2003), as presented in cure models, to

mixture competing risks in discrete time. We noted that we have not found a discrete

mixture competing risks model in the literature.

We fitted a cloglog link function in the latency as well as the logistic link fuction in the

incidence. We gauged our modelling exercise against sample results and the survivor

function plots suggested that the model provided a very good fit to sample results.

We observed that about 70% of the subjects will eventually graduate. Thus, extending

the allowable study period any further from the 5 year maximum allowable period for

completion, will only improve the graduation rate marginally from 67% to 70%.
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8

Conclusion and Discussion

In light of the bleak picture around the pass rates and retention rates in the South African

higher education landscape, the objective of this study was to investigate the factors that

explained graduation pattern at The Durban University of Technology. More specifically,

our objective was to find a statistical model that will best explain time to graduation.

Furthermore, to derive a likelihood profile from the model that will indicate the periods

in which the students are most likely to graduate. We also wanted to investigate if

there existed a significant proportion of students who would eventually graduate if the

allowable period to complete their studies was extended reasonably longer. Finally, we

wished to estimate the proportion that will eventually graduate or dropout, amongst

the subjects that are censored due to closure of study.

The most onerous limitation of the study was unavailability of variables that have been

found to inform graduation in the literature. We could only acces four variables namely

- gender, race, faculty and age. Despite this limitation, we nevertheless proceeded with

our attempt to find a statistical model that would best explain graduation, albeit with

reservations that this limitation might have negative bearing on our modelling exercise.

Discriptive analysis and later non-parametric techniques indicated that these variables



do explain graduation with the exception of age. Non-parametric techniques went a step

further by providing us with means to validate these findings that all variables, with the

exception of age, explained graduation.

We then explored possible regression models to overcome the limitations of non-parametric

techniques, in that they do not provide us with the means to directly regress time to

graduation, or a function thereof, on these variables simultaneously.

The first regression technique that we considered was the Cox regression model. Cox’s

regression indirectly regresses the time to event, by expressing the hazard of the event of

interest, as a function of the hypothesised variables. Because Cox’s regression methods

is premised on the proportionality of hazards assumption, we found ourselves having

to resort to fitting a stratified model with faculty as the stratifying variable. Thus,

in satisfying the proportionality assumption, we were compelled to sacrifice the faculty

effect in our final model.

This approach left us with race and gender as the only significant variables. Cox’s

regression model suggested that Indians are 19% more likely to graduate than Africans,

moreover, females are about 16% more likely to graduate than males.

We then considered a discrete time approach with all the four variables and found that

age does not affect the graduation rate. Likewise, our results confirmed that Africans

tend to graduate later than other racial groups and females also tend graduate sooner

than males. The other advantage of the discrete time regression model is that it provided

us with actual probabilities from which we could construct the graduation profile as set

out in the objectives. Thus, the second objective of compiling a likelihood profile could

be achieved using the discrete model.

We found that the Engineering & The Built Environment faculty had the worst gradu-
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ation record compared to any other faculty, with best graduation record attributable to

the Arts & Design faculty . Furthermore, we found that females have a better gradua-

tion record than males and we also found that Africans have the worst graduation record

compared to all other race groups, with Whites having the best gradiation record.

We then introduced the frailty model to the Cox regression model in such a way that

the latent variable is a proxy for missing data.

We began by fitting a parametric model in continuous time, where we specified a distri-

bution for the baseline hazard. The results suggested existence of unobserved individual

effects although this could be the consequence of a miss-specified baseline distribution.

To isolate the possible confounding effect of a miss-specified baseline distribution we

fitted a semi-parametric model. We found that there was no significant unobserved het-

erogeniety. We obtained similar results when we considered the discrete model. These

results gave us the assurance that both models were not compromised by limited access

to relevent variables.

Lastly, we fitted cure models to determine if there existed a substantial proportion of

cured subjects i.e. subjects that would not eventually graduate, had the observation

period been long enough. We observed that cure models are not suited to our data as it

is premised on that all censored subjects will eventually graduate, a possibilty which is

very unlikely as censored subjects are more likely to dropout permanently.

To overcome the limitation of the cure models, we considered mixture competing risks

models in discrete time. We noted that even though the multinomial distribution is

the standard competing risk model in discrete time, but its limitation is that it treats

censored subjects as an event.

The results of fitting a mixture model in discrete time suggested that about 70% of
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the subjects eventually graduate. The advantage of mixture competing risks over cure

models is that it regards dropouts as competing risks and only fractionates the subjects

that are censored due to closure of the observation period as either eventual graduates

or dropouts.

On the other hand, the cure model fractionates all censored subjects into eventual gradu-

ates and those who will eventually not graduate. ”Not to graduate” has a less meaningful

intepretation in higher education literature than dropping out because subjects cannot

pursue their studies indefinately. We noted that extending the allowable study period

from the existing 5 year period will only improve the graduation insignificantly from

67% to 70%.

The literature on cure models is in continuous time in most instances. Modeling both

frailty and cure models simultenously in continous time is the new frontier in the litera-

ture (Lai and Yau, 2010; Lopes and Bolfarine, 2012; Calsavara et al., 2013). Therefore,

as a possible direction of future research, this study can be extended by applying the

already established techniques in the literature on continuous mixture models incopo-

rating frailty by translating them to discrete time methods (Steele, 2003; Chi and Chen,

2011).

The advances in competing risks have been in continuous time as well. Some of the new

modelling techniques are; vertical modelling (Nicolaie et al., 2010), multistate models

(Putter et al., 2007), pseudo observation models, (Anderson and Perne, 2010). These

new methods could also be investigated with a view to extend them to discrete time

We also did not include explanatory variables in our mixture competing risks model

because it required specialized programming and this could also be considered.
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