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Abstract 

 

In South Africa, invasive black wattle trees (Acacia mearnsii D. Wild) are a major threat to 

ecosystem functionality causing widespread social, economic and environmental degradation. 

It is important that environmental managers are provided with rapid, regular and accurate 

information on the location of invasive black wattle trees to coordinate removal efforts. This 

study investigated the potential of an automated image classification algorithm to accurately 

identify black wattle (A. mearnsii De Wild.) trees using imaging spectroscopy. Hyperspectral 

data acquired by the EO-1 Hyperion sensor was used to identify black wattle trees in two 

study areas near Greytown, KwaZulu-Natal, South Africa. Image classifications were 

performed by the classification algorithm to identify black wattle trees using general and age 

specific spectral signatures (three to five years, seven to nine years, eleven to thirteen years). 

Results showed that using the general spectral signature an overall accuracy of 86.25% 

(user’s accuracy: 72.50%) and 84.50% (user’s accuracy: 69%) was achieved for study area 

one and study area two respectively. Using age specific spectral signatures, black wattle trees 

between three to five years of age were mapped with an overall accuracy of 62% (user’s 

accuracy: 24%) and 74.50% (user’s accuracy: 49%) for study area one and study area two 

respectively. The low user’s accuracies for the age specific classifications could be attributed 

to the use of relatively low resolution satellite imagery and not the efficacy of the 

classification algorithm. It was concluded that the classification algorithm could be used to 

identify black wattle trees using imaging spectroscopy with a high degree of accuracy.  
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Chapter One: Introduction 

1.1. Background 

Invasive alien plant (IAP) species are a growing threat in South Africa, causing widespread 

social, economic and environmental degradation (Coetzee et al., 2007; Villamagna and 

Murphy, 2010). Over the past few decades, a multitude of IAP species have been introduced 

into South Africa as wind breakers, ornamentals and potentially new species for commercial 

cultivation (Enright, 2000; van Wilgen et al., 2001). IAP species that have been introduced 

into South Africa include Chromolaena odorata, Eichhornia crassipes, Lantana camara and 

Parthenium hysterophorus. IAP species have the potential to proliferate and propagate 

rapidly, extensively expanding the range of their distribution. Their success as invaders lies in 

the absence of natural enemies and the prevalence of heterogeneous landscape conditions that 

are suitable for their development (van Wilgen et al., 2004). The invasion of natural 

ecosystems by IAP species cause severe environmental degradation such as the disruption of 

ecosystem functionality and ecosystem services (van Wilgen et al., 2004). Of major concern 

are the negative environmental impacts that IAP species have on South Africa’s scarce water 

resources and rich biodiversity. Consequently, it is imperative to remove and control IAP 

species in order to maintain the vital ecosystem services that humans depend on. In South 

Africa, black wattle (Acacia mearnsii De Wild.) is one of many IAP species that need to be 

removed and controlled in order to mitigate further environmental degradation. 

 

Currently, black wattle trees are commercially cultivated extensively in non native areas 

throughout South Africa (Russel, 2009). Black wattle trees produce large quantities of seeds 

that are often transported along river systems, negatively impacting on environments 

downstream (de Neergaard et al., 2005; Holmes et al., 2008). Since its introduction, black 

wattle trees cover an area of approximately 2.4 million ha of land in South Africa spanning a 

range of diverse ecosystems (Enright, 2000). Invasive black wattle trees cause severe 

environmental degradation such as the loss of biodiversity (de Wit et al., 2001; de Neergaard 

et al., 2005), reduction in streamflow (Scott and Lesch, 1997; Prinsloo and Scott, 1999) and 

the reduction in catchment water yields (de Wit et al., 2001). The Working for Water (WfW) 

programme, an initiative of the South African government is at the forefront of removing and 

controlling the spread of IAP species in non native areas (Zimmermann et al., 2004). The 

WfW programme successfully integrates a range of social, economic, political and 
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environmental dimensions to effectively control the spread of IAP species (Richardson and 

van Wilgen, 2004). Since its inception, the WfW programme has spent more than R 3.2 

billion (2005/06 financial year) to combat the spread of IAP species in South Africa (Marais 

and Wannenburgh, 2008). Invasive black wattle trees form part of the WfW programme in an 

effort to mitigate their negative environmental impacts. In order for the WfW programme to 

effectively plan management strategies for combating the spread of invasive black wattle 

trees, detailed maps of the distribution of the trees are critical for its success (Rowlinson et 

al., 1999). Remote sensing techniques offer the potential to identify, map, monitor and 

manage the distribution of IAP species over large spatial scales (Rowlinson et al., 1999; 

Oumar, 2008). 

 

Remote sensing is the process of acquiring information about the Earth’s surface without 

being in contact with it. Remotely sensed imagery provides a synoptic view of the Earth’s 

surface thereby allowing for complete and accurate information to be acquired over large 

sometimes inaccessible areas non-destructively (Buerkert et al., 1996; Verma et al., 2003). 

Hyperspectral imaging spectrometers, for example Earth Observing-1 Hyperion Sensor, 

capture images in narrow contiguous bands allowing for detailed reflectance spectra to be 

collected (Vane and Goetz, 1993; Mutanga et al., 2009). This is advantageous as IAP species 

can be accurately discriminated from the surrounding dense vegetation. The use of remote 

sensing has been successfully applied to identify and map IAP species. A study conducted by 

Kimothi et al. (2010) mapped the distribution of Lantana camara using multispectral 

imaging spectroscopy in the Rajaji National Park forest in Uttarakhand, India. In addition, a 

study by Tsai et al. (2007) accurately detected the IAP species horse tamarind (Leucaena 

leucocephala) utilizing Hyperion hyperspectral imagery in southern Taiwan. These studies 

illustrate the potential of mapping the distribution of invasive black wattle trees using 

hyperspectral imaging spectroscopy. However, the cost and efficiency of proprietary image 

processing software is a major obstacle to the widespread use of remote sensing techniques to 

map IAP species.  

1.2. Motivation  

Traditionally, environmental managers had to visually inspect areas to identify IAP species 

that can be labour intensive, costly and time consuming. Remote sensing offers a quicker and 

more efficient method of identifying the spatial distribution of invasive black wattle trees. 
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Thematic maps produced using remote sensing techniques will provide the spatial location 

and distribution range of invasive black wattle trees to environmental managers. This will 

allow for control efforts to be planned and targeted in areas of severe invasion. Further, 

thematic maps can be incorporated into a geographical information system (GIS) framework 

to model the distribution of invasive black wattle trees over time (Ghebremicael et al., 2004). 

This information is vital for the co-ordination of future management strategies that aim to 

remove and control the spread of invasive black wattle trees in non native areas. However, 

processing the large volumes of hyperspectral remotely sensed data quickly and efficiently is 

a major challenge. There is a need for specialist remote sensing applications that are easy to 

use and cost effective as well as novel algorithms that can achieve greater classification 

accuracies. Further, there is a need to automate the classification process so that processing 

hyperspectral satellite imagery can be conducted quickly and efficiently. Automation of the 

classification process involves carrying out the classification process without user 

intervention. This will allow routine and repeated classifications to be undertaken thereby 

providing regular, accurate, timeous and near real time distribution maps of invasive black 

wattle trees to environmental managers. This study will address these needs through the 

development of the black wattle classification algorithm and its implementation. It is also 

hoped that the algorithm could be used, with slight modification, to map other plant species 

in the future. Finally, as no studies have been conducted on the potential of a classification 

algorithm to automatically identify black wattle trees using imaging spectroscopy, this study 

will add to the knowledge base of detecting black wattle trees using hyperspectral remote 

sensing. 

1.3. Aim and objectives 

This study aims to investigate the potential of a classification algorithm to identify black 

wattle (Acacia mearnsii De Wild.) trees using imaging spectroscopy. The objectives of this 

study are: 

 

• To develop an image classification algorithm that will identify black wattle (Acacia 

mearnsii De Wild.) trees using hyperspectral EO-1 Hyperion data. 

• To assess the image classification algorithm’s ability to automate the classification 

process. 
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• To assess the efficacy of the image classification algorithm in identifying black wattle 

(Acacia mearnsii De Wild.) trees using hyperspectral EO-1 Hyperion data. 

• To assess the accuracy of the image classification algorithm to identify black wattle 

(Acacia mearnsii De Wild.) trees of varying age groups using hyperspectral EO-1 

Hyperion data. 

1.4. Study area 

The study areas (study area one: 29° 0´ 12″ S, 30° 42´ 29″ E; study area two: 29° 10´ 34″ S, 

30° 39´ 9″ E) are located near Greytown, KwaZulu-Natal, South Africa (figure 1.1.). 

Greytown forms part of the Umzinyathi district municipality and is approximately 70 km 

north of Pietermaritzburg (figure 1.1.). Greytown and its surrounding areas have a mean 

annual temperature of 17 °C with an annual rainfall ranging between 400 mm and 836 mm 

(Babugura, 2010). The area is situated at an altitude of 1038 m above sea level. The 

topography of the landscape is characterised by deep river gorges, grasslands, wetlands, hills, 

valleys and bush-velds (Umzinyathi municipality, 2010). The general slope of the land is 

between 1:5 and 1:6 (Umzinyathi municipality, 2010). Generally, Greytown and its 

surrounding areas have great agricultural potential owing to a combination of high rainfalls, 

moderate temperatures, good soils and moderate slopes (Umvoti municipality, 2008). The 

land uses largely practised include livestock farming, sugarcane farming, dry land crop 

production and forestry. Commercial farmlands account for more than 70% of the municipal 

area with forestry plantations dominating the land use (Afrispace consulting, 2009). Species 

that are commercially cultivated within forestry plantations include Eucalyptus grandis, 

Pinus patula and black wattle. Consequently, this study area was selected owing to the 

possibility of the spread of black wattle trees out of commercial forestry plantations into non 

native areas. 
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Figure 1.1.: Location of study area one and study area two in KwaZulu-Natal, South Africa. 
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1.5. Outline of thesis 

Chapter two reviews the relevant literature on the potential of a classification algorithm to 

identify black wattle trees using imaging spectroscopy. Firstly, the characteristics that make 

black wattle trees successful invaders are reviewed. Further, the socio-economic and 

environmental impacts associated with black wattle trees in non native areas are discussed 

and current control methods reviewed. Subsequently, the potential of identifying black wattle 

trees using remote sensing techniques are explored. The final section reviews the potential 

use of automated classification algorithms to identify black wattle trees using imaging 

spectroscopy. 

 

Chapter three provides a detailed account of the methodology employed to carry out this 

study. The pre-processing techniques performed on the EO-1 Hyperion data sets are outlined. 

Subsequently, the collection of spectral signatures and ground reference data is presented. 

This chapter concludes with a detailed description of the classification algorithm and the 

implementation of the classification algorithm.  

 

Chapter four presents the main results of this study which are discussed and related to other 

relevant studies. In this chapter, the automated approach employed by the classification 

algorithm is assessed. The efficacy of the classification algorithm in identifying black wattle 

trees are presented and discussed. This chapter concludes with a discussion of the 

performance of the classification algorithm in identifying black wattle trees of varying age 

groups. 

 

Chapter five concludes this study. The aim and objectives initially outlined are reviewed to 

establish if they were achieved by this study. Finally, the limitations of this study and 

recommendations for future studies are presented. 
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Chapter Two: Literature Review 

2.1. Introduction 

The invasion of natural ecosystems by IAP species is a major threat to South Africa’s water 

resources, rich biodiversity and ecosystem functionality (Lodge, 1993; Rose and Fairweather, 

1997). Transported from Australia, the IAP species black wattle, forms an integral part of 

South Africa’s forestry industry. Black wattle trees have been able to proliferate and spread 

rapidly; successfully establishing themselves as part of South Africa’s landscape (Eldridge et 

al., 1993; Kull and Rangan, 2008). Invasive black wattle trees threaten freshwater ecosystems 

throughout South Africa (Poynton, 1979; Dye and Jarmain, 2004). Black wattle trees tend to 

consume large volumes of water from sensitive river systems as they are evergreen and 

maintain a high leaf area throughout the year (Dye and Jarmain, 2004; du Toit and Dovey, 

2005). Further, black wattle trees have been found to block water ways, reduce catchment 

water yields, and reduce the stability and integrity of riparian ecosystems (de Wit et al., 

2001). This places great strain on South Africa’s limited water resources (Binns et al., 2001; 

van Wilgen et al., 2001). Currently, various methods are employed to remove IAP species. 

These include mechanical (Holmes et al., 2008), chemical (Viljoen and Stoltsz, 2008) and 

biological (Impson et al., 2008) removal methods. However, in an effort to inform removal 

efforts, IAP species are manually mapped and monitored by field workers that survey 

invaded areas to assess the extent of invasion.   

 

The inception of remote sensing technologies has been critical in addressing the challenges 

faced in obtaining information on the spatial distribution of IAP species (Tesfamichael et al., 

2010). Initially, the potential of remote sensing was limited to multispectral sensors that 

collected data in three to six broad spectral bands from the visible region (VR) and near 

infrared region (NIR) of the electromagnetic spectrum (Govender et al., 2007). However, 

with the inception of hyperspectral sensors, more detailed reflectance spectra can now be 

collected capable of discriminating of spectrally similar but unique plant species (Mutanga et 

al., 2009). The use of hyperspectral remote sensing offers the potential for finer temporal, 

spatial and spectral resolutions that can be used to accurately identify, map, monitor and 

manage the spread of IAP species in a cost effective manner (Rowlinson et al., 1999; Oumar, 

2008). Despite its many benefits, the regular use of hyperspectral satellite imagery is limited 

by the large data volumes associated with it. Processing large data sets are often time 
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consuming and limited by the hardware and software capabilities of the computer. The use of 

automated classification algorithms will facilitate the efficient processing of large volumes of 

hyperspectral data for maximum feature extraction.  

 

This chapter first reviews black wattle trees as IAP species and then examines the potential of 

using hyperspectral satellite imagery to identify and map the distribution of black wattle 

trees. Further, the potential of automated classification algorithms are explored. 

2.2. Black wattle (Acacia mearnsii De Wild.) 

2.2.1. Black wattle as successful invaders 

Native to Australia, black wattle trees have since been transported by human agency for 

cultivation in most countries that are suitable for its development (Kull and Rangan, 2008; 

Eldridge et al., 1993). Countries that cultivate black wattle trees include Brazil, China, India, 

South Africa and Zimbabwe (Brown and Ko, 1997; Jones et al., 2008). In South Africa, black 

wattle trees, are cultivated extensively in forestry plantations throughout the country for a 

variety of purposes including timber and firewood (Eldridge et al., 1993; de Neergaard et al., 

2005). It is the widespread distribution and poor management of forestry plantations in South 

Africa that has resulted in the invasion of black wattle trees into non native areas (Enright, 

2000). However, black wattle trees have many other characteristics that enable them to be 

highly successful invaders. These include their reproductive ability, canopy structure and 

their adaptability to a wide range of diverse habitats. 

 

 
Figure 2.1.: A black wattle (A. mearnsii) tree. (Photograph by B. Strong) 
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Black wattle trees are fast growing evergreen shrubs that form dense thicket in areas that are 

invaded (Eldridge, 1978; Eldridge et al., 1993; Searle, 1997). A relatively fast growth rate (2 

m/yr) ensures that black wattle trees reach maturity and bear seeds early in their life cycle (4-

5 years) thereby establishing themselves within an environment (Chaunbi, 1997; Di Stefano, 

2002; Bauhus et al., 2004; Christina et al., 2011). Black wattle trees have been found to 

produce large quantities of seeds. As much as 20 000 seeds/m-2 have been recorded under 

mature trees (De Beer, 1986; de Wit et al., 2001). These seeds can lay dormant in the soil for 

up to 37 years if undisturbed, which ensures the survival of the species in non native areas 

(Maiden, 1891). Disturbances such as fire events provide instanecs for the mass germination 

of seeds allowing for invasive black wattle trees to eliminate all other plant species in the area 

and to colonize it exclusively (Chaunbi, 1997). 

 

Black wattle trees grow to heights of up to 20 m and have large crowns that dominate the 

canopy of forestry plantations and natural habitats (Searle 1997; Eldridge et al., 1993). 

Bauhus et al. (2004) reported an average crown diameter of 3.4 m for black wattle trees after 

9.5 years of growth. Generally, rows of black wattle trees in forestry plantations are spaced 

approximately two to three metres apart (Chaunbi, 1997; Khanna, 1997). The planting of 

trees very close to each other limits the penetration of light and subsequent growth of native 

vegetation that may occupy the understorey. Similarly, invasive black wattle trees that grow 

in dense thicket in natural ecosystems limit the penetration of light and growth of native 

vegetation. However, distribution patterns of invasive black wattle trees may differ when 

black wattle propogules are transported through natural distribution mechanisms such as 

wind and water. Black wattle trees can adapt to a wide range of soil types and have the ability 

to resist extended dry periods allowing them to be highly successful in a wide range of 

diverse ecosystems (Eldridge et al., 1993; Chaunbi, 1997). It is apparent that black wattle 

trees are well suited to the South African climate which encourages them to propagate and 

proliferate as highly successful invaders. In the following section the socio-economic and 

environmental impacts associated with the presence of invasive black wattle trees in non 

native areas of South Africa will be discussed. 

2.2.2. Socio-economic and environmental impacts 

Since its introduction into the forestry industry, black wattle trees now cover an area of 

approximately 2.4 million ha of land in South Africa (Enright, 2000). This widespread 
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distribution of black wattle trees poses a major threat to the integrity and stability of a vast 

array of different ecosystems throughout South Africa (Poynton, 1979; Dye and Jarmain, 

2004). Over the past few decades, many studies have documented the negative environmental 

impacts associated with the presence of invasive black wattle trees in non native areas (Scott 

and Lesch, 1997; Prinsloo and Scott, 1999; Dye and Jarmain, 2004; Richardson and van 

Wilgen, 2004). Some of these negative environmental impacts include a reduction in 

streamflow, water yield, biodiversity and an increase in fire hazards to indigenous vegetation 

(Binns et al., 2001; de Neergaard et al., 2005). However, research has been largely focused 

on the negative impacts that invasive black wattle trees have on South Africa’s limited water 

resources so that management strategies can be formulated to mitigate this effect. 

 

Invasive black wattle trees are a major threat to freshwater ecosystems throughout South 

Africa (Poynton, 1979; Dye and Jarmain, 2004). Black wattle stands maintain a high leaf area 

throughout the year (Eldridge, 1978; Eldridge et al., 1993; Searle, 1997) with leaf area 

indexes of 2-3.5 for black wattle stands been reported (Jarmain and Everson, 2002; 

Landsberg et al., 2003). The high leaf area index of black wattle plantations allow the species 

to maintain a high rate of evaporation throughout the year causing them to consume large 

volumes of water from groundwater and river systems (Dye and Jarmain, 2004; de Neergaard 

et al., 2005; du Toit and Dovey, 2005). Dye and Jarmain (2004) concluded that total 

evaporation rates may exceed 1500 mm per year for invasive black wattle trees along riparian 

systems. This places severe strain on water resources that are used for recreational, domestic 

and commercial uses. A study conducted by Scott and Lesch (1997) measured streamflow 

response after the afforestation of grassland regions with invasive Eucalyptus grandis and 

Pinus patula at the Mokobulaan research catchment. Importantly, a statistically significant 

decrease in streamflow was reported after three years of growth and after nine years of 

growth the stream had completely dried up (Scott and Lesch, 1997). Increased water usage by 

IAP species can cause instances of extreme fluctuations in physico-chemical parameters 

(example salinity) of the river system having detrimental effects on the biota that occupy the 

system (Enright, 2000).  

 

IAP species affect the stability of ecosystem processes such as nutrient cycling, water 

availability and soil fertility. The alteration of ecosystem processes negatively transforms the 

structure and composition of indigenous biodiversity. Biodiversity is important in ensuring 

the resilience of ecosystem services so that human activities are maintained (Diaz et al., 
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2006). However, the introduction of black wattle trees into non native areas tends to invade 

grasslands and river systems posing a threat to indigenous biodiversity in South Africa (de 

Wit et al., 2001; Forsyth et al., 2004). There is a lack of literature on the impact that invasive 

black wattle trees have on indigenous vegetation. However, a study conducted by Allan et al. 

(1997) assessed the impact of commercial afforestation (Acacia spp., Eucalyptus spp. and 

Pinus spp.) on bird populations in the Mpumalanga Province, South Africa. It was found that 

there was a significant negative correlation between the diversity of all grassland birds with 

the extent of forest plantation cover (Allan et al., 1997). In contrast, there was a significant 

positive correlation between the diversity of species that benefit from afforestation and the 

extent of forest plantation cover (Allan et al., 1997). Forestry plantations also offer the 

potential for the establishment of shade tolerant native forest species (Geldenhuys, 1997). 

However, once invasive black wattle trees have successfully established themselves in non 

native areas, they increase the biomass of the area (Enright, 2000). An increase in biomass 

increases the amount of plant material that can burn which poses a fire hazard to the 

indigenous vegetation (Binns et al., 2001). Within forestry plantations, this scenario is limited 

by fire reducing measures that are put in place to reduce the frequency of fires (Geldenhuys, 

1997). However, within natural habitats increased fire frequencies will eliminate indigenous 

vegetation leading to the excessive loss of fertile top soil through surface and rill erosion (de 

Neergaard et al., 2005). Despite this, the presence of invasive black wattle trees in non native 

areas offer a range of socio-economic benefits to the surrounding communities in which they 

occur. 

 

Invasive black wattle trees are felled by local rural communities for firewood, timber and are 

often sold for income (de Neergaard et al., 2005). The presence of invasive black wattle trees 

in the natural environment is integral to the upkeep of local communities. However, there is a 

conflict of interest between maintaining invasive black wattle stands so that communities 

may benefit from them and removing them so that negative environmental impacts are 

mitigated. A balance needs to be struck so that both benefits are reaped. The WfW 

programme can be seen as an effective solution to this conflict. The WfW programme creates 

temporary employment for approximately 30 000 people to assist in the clearing of IAP 

species (Marais and Wannenburgh, 2008). This initiative provides vital employment to 

thousands of disadvantaged people resulting in significant poverty alleviation (de Neergaard 

et al., 2005). Providing employment to rural communities will reduce their dependency on 

invasive black wattle trees. 
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From the available literature, many studies have attempted to quantify the effects that IAP 

species have on a range of parameters at a range of spatial scales (Enright, 2000; Le Maitre et 

al., 2000; van Wilgen et al., 2001; Le Maitre et al., 2002; Görgens and van Wilgen, 2004; 

Samways and Taylor, 2004; Cullis et al., 2007). However, the negative impacts that specific 

species have within ecosystems should be quantified. Research has been focused on invasive 

black wattle trees as it is ranked third (total invaded area) in the top ten invading species in 

South Africa (Le Maitre et al., 2000). However, research has largely been conducted on 

invasive black wattle trees within the Western Cape and Mpumalanga Provinces (Scott and 

Lesch, 1997; Prinsloo and Scott, 1999; Forsyth et al., 2004). Future research should be 

focused on the negative environmental impacts that invasive black wattle trees have within 

the KwaZulu-Natal Province.  

2.2.3. Control methods 

The WfW programme is active in managing, controlling and containing the proliferation of 

IAP species in South Africa (Marais and Wannenburgh, 2008). Since its inception, the WfW 

programme has cleared approximately 1.66 million ha of land of IAP species in South Africa 

(Marais and Wannenburgh, 2008). Currently, invasive black wattle trees are manually cleared 

in an attempt to control its spread (Holmes et al., 2008). Manual removal is preferred as it is 

perceived as being environmentally sound and safer as compared to chemical and biological 

removal methods (Mathur and Singh, 2004; Greenfield et al., 2007). The manual removal of 

IAP species from non native areas have shown marked improvements in streamflow (Prinsloo 

and Scott, 1999).  

 

A study conducted by Prinsloo and Scott (1999) reported a noticeable improvement in the 

streamflow after the removal of invasive A. mearnsii and A. longifolia trees from riparian 

zones at three sites in the Western Cape Province. Results showed that streamflow increased 

by 9, 10 and 12 m3/ha/day in Du Toits Kloof, Oaklands and Somerset West riparian zones 

respectively (Prinsloo and Scott, 1999). Similarly, a study by Scott (1997) reported increased 

streamflow after one third of a Pinus radiata plantation in the Western Cape Province had 

been cleared. In contrast, the clearfelling of Eucalyptus spp. at the Mokobulaan research 

catchment in the Mpumalanga Province did not improve streamflow until five years after 

being clearfelled (Scott and Lesch, 1997). This could be attributed to the depletion of 

groundwater storage that would need to be replenished before streamflow would return (Scott 
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and Lesch, 1997). Further, the deep penetrating root system of E. grandis trees could have 

altered the flow path of water through the catchment resulting in water leaking out of the 

catchment (Scott and Lesch, 1997). Therefore, the integration of manual removal with 

chemical removal/biological removal is imperative to ensure that trees are killed in its 

entirety so that subsequent negative environmental impacts are mitigated. However, the 

subsequent environmental impacts of chemical removal methods should be determined. 

Samways and Taylor (2004) stated that endemic dragonflies (Odonata) are likely to recover 

after the removal of dense stands of invasive black wattle trees. Therefore, the use of 

chemical removal methods should ensure that recovering indigenous species are not 

eliminated. Chemical removal methods offer the advantage that large areas of land can be 

sprayed quickly and inexpensively with relative success. Richardson et al. (2006) reported 

the death of black wattle trees when applied with metsulfuron-methyl and glyphosate 

herbicide. Further, a study conducted by Viljeon and Stolsz (2008) illustrated the control of 

black wattle seedlings using Garlon 4 herbicide. Despite its relative success, the use of 

chemical herbicides poses an ecological risk to the surrounding environment as opposed to 

biological control methods. 

 

The use of biological control agents is seen as an inexpensive, effective and sustainable 

method of controlling IAP species limiting the use of other methods such as chemical 

removal. In the context of South Africa, the use of biological control agents has reduced the 

cost of controlling IAP species by 19.80% (Zimmermann et al., 2004). Importantly, 

biological control agents are host specific to target plant species preventing them from 

becoming invasive themselves (Julien et al., 1999). However, the success of biological 

control agents lies in their ability to establish themselves in an environment thereby providing 

a long term management solution. Currently, there are only a few biological control agents 

that are being tested to control invasive black wattle trees. These include Melanterius 

maculates and Dasineura rubiformis (Diptera: Cecidomyiidae) (de Neergaard et al., 2005; 

Impson et al., 2008). These biological control agents have been shown to target seedlings as 

opposed to targeting the plant by damaging it physiologically and morphologically (de 

Neergaard et al., 2005; Impson et al., 2008). This is vital in maintaining the integrity of 

commercial forestry plantations while limiting the spread of invasive black wattle trees. A 

study by Impson et al. (2008) suggested that Dasineura rubiformis can be employed as a seed 

reducing biological control agent for black wattle trees. Despite the success of various control 

methods there needs to be an effective restoration programme that can capitalize on the 
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cleared land. Black wattle seeds lay dormant in the soil; therefore, effective restoration will 

have to be undertaken quickly to avoid further invasion. Remote sensing techniques offer the 

potential to map and monitor the spread of IAP species before and after removal efforts have 

been undertaken. 

2.3. Remote sensing 

2.3.1. Remote sensing of invasive alien plant species 

Visually assessing the spatial distribution of IAP species on the ground is often subjective, 

time consuming, costly and spatially restrictive (Everitt et al., 2002). Remotely sensed 

imagery provides a synoptic view of the Earth’s surface thereby facilitating complete and 

accurate information to be acquired over large areas, non destructively (Verma et al., 2003). 

Information over complex geographic terrains that were once inaccessible can now be 

acquired in a cost effective and timeous manner (Joshi et al., 2004; Mutanga et al., 2009). 

Further, remote sensing systems can store remotely sensed data over long periods of time 

creating archival databases that can be used to determine land cover changes over time. 

Therefore, the merits of remote sensing techniques warrant its use in identifying and mapping 

IAP species to inform management strategies and removal efforts. Initially, the potential of 

remote sensing was limited to multispectral imaging spectrometers, such as the Landsat 7 

Enhanced Thematic Mapper Plus (ETM+), that collects data in three to six broad spectral 

bands from the VR and NIR of the electromagnetic spectrum (Govender et al., 2007). 

However, multispectral imaging spectrometers average reflectance spectra over broad 

spectral bands lack the detailed reflectance spectra required to accurately identify unique 

plant species from a complex mixture of scene elements (Carson et al., 1995). Therefore, 

different land covers can only be classified into broad classes when generating thematic 

maps. 

 

Many studies have employed the use of multispectral remote sensing to identify IAP species 

(Carson et al., 1995; Mladinich et al., 2006; Cuneo et al., 2009; Kimothi et al., 2010). 

However, research focused towards identifying and mapping the distribution of black wattle 

trees using multispectral satellite imagery has been limited. Despite this, a study conducted 

by Mladinich et al. (2006) mapped leafy spurge (Euphorbia esula L.) in the Theodore 

Roosevelt National Park using Landsat 7 ETM+. Leafy spurge has the potential of being 
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remotely sensed owing to its distinctive yellow-green colour which is likely to be spectrally 

unique from the surrounding vegetation (Parker Williams and Hunt, Jr. 2002). However, an 

unsupervised classification algorithm was used to classify leafy spurge that resulted in an 

overall classification accuracy of approximately 63% (Mladinich et al., 2006). This relatively 

low overall accuracy could be attributed to the classification method used and the coarse 

spectral resolution of multispectral imagery (Mladinich et al., 2006). In contrast, Cuneo et al. 

(2009) detected and mapped the invasive, African Olive (Olea europaea L. ssp. cuspidata 

Wall ex G. Don Ciferri) in Sydney, Australia using Landsat 7 Enhanced Thematic Mapper 

(ETM) data and a supervised classification. It was found that from a total area of 1907 ha of 

dense African Olive infestation there was an omission error of 7.50% and a commission error 

of 5.40% (Cuneo et al., 2009). This accurate classification could be attributed to the 

classification method used as well as the phenology of the plant even though multispectral 

satellite imagery was used. In some instances phenological stage variation in orientation of 

leaves, age of leaves, variation in leaf area index and different slopes of the locations where 

the individuals are found could make the spectral signature of a species difficult to define 

(Cuneo et al., 2009). This creates intraspecies variation that contributes to overlapping 

spectral signatures between co-occurring species (He et al., 2011). In contrast, Hestir et al. 

(2008) reported significant spectral variation based on phenology between perennial 

pepperweed (Lepidium latifolium) and water hyacinth (Eichhornia crassipes) plants. Image 

acquisition at key phonological stages may assist in distinguishing between different IAP 

species (He et al., 2011). Invasive black wattle trees form dense thicket in areas that are 

invaded (Eldridge, 1978; Eldridge et al., 1993; Searle, 1997). Dominating the stands canopy 

ensures that only the reflectance spectra of invasive black wattle trees would be measured. 

Further, black wattle trees are evergreen; therefore, detecting their coverage will not be 

limited by seasonal variation. 

 

Black wattle trees that form part of commercial forestry plantations occur in large stands. 

However, black wattle trees that invade natural ecosystems occur in stands of variable sizes 

that are dependent on the severity of the invasion. The spatial resolution of remotely sensed 

data used is critical to the level of accuracy of the classification (He et al., 2011). Carson et 

al. (1995) found that Landsat Thematic Mapper (TM) and Satellite Pour l'Observation de la 

Terre (SPOT) data with a spatial resolution of 30 and 20 meters respectively is inadequate to 

identify plant species. Unless stands are large enough, the spectral variability within pixels 

will hamper the classification process and its ability to classify pixels accurately (He et al., 
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2011). Further, spectral similarity of a pixel to the spectral signature may not necessarily 

mean that the entire pixel is covered by a plant species and therefore may over estimate the 

land cover of the plant species. Russel (2009) showed that A. mearnsii can be identified and 

mapped using SPOT 5 imagery. Results showed an overall accuracy of 78.77% with a kappa 

statistic of 0.7495 in the Fort Nottingham area (Russel, 2009). SPOT 5 imagery has a 

relatively low spectral resolution but the high spatial resolution (10 m) which could have 

positively influenced the reflectance spectra measured and the classification process. In 

contrast, hyperspectral satellite imagery captured by the EO-1 Hyperion sensor has a high 

spectral resolution but a coarse spatial resolution (30 m) which may limit the accuracy of 

identifying plant species. A study by Carter et al. (2009) compared the effectiveness of 

Landsat 5 Thematic Mapper (TM5, 30 m), QuickBird (QB, 2.5 m) and EO-1 Hyperion 

(Hyperion, 30 m) data at different spatial resolutions in discriminating Tamarisk (Tamarix 

spp., saltcedar) stands in Colorado, USA. Results showed that multispectral data at a high 

spatial resolution (QB, 2.5 m) was more effective than either multispectral (TM5) or 

hyperspectral (Hyperion) data at a moderate spatial resolution (30 m). This illustrates that the 

spatial resolution of an image is as vitally important as the spectral resolution of the image. 

Consequently, a balance needs to be struck between spatial and spectral resolutions to ensure 

maximum detection accuracy when identifying invasive black wattle trees. 

 

With the inception of hyperspectral imaging spectrometers (Airborne Visible/Infrared 

Imaging Spectrometer [AVIRIS], HyMap and Hyperion) more detailed reflectance spectra 

can now be collected. Hyperspectral imaging spectrometers capture images in narrow 

contiguous bands that allow for the discrimination of spectrally similar but unique materials 

(Vane and Goetz, 1993; Mutanga et al., 2009). Spectra collected by hyperspectral imaging 

spectrometers range from 350 - 2500 nm covering the visible, near infrared and shortwave 

infrared regions of the electromagnetic spectrum. Hyperspectral imaging spectrometers 

capture detailed reflectance spectra recording subtle changes in reflectance for different scene 

elements. Differences in reflectance could be attributed to differences in pigments, nutrients 

and structural properties of the elements in a scene giving each element a unique spectral 

signature which can be used to distinguish between IAP species (Asner et al., 2008). This is 

crucial when identifying a single plant species from a mixture of complex scene elements that 

reflect similar reflectance spectra. 
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Launched in November 2000, the EO-1 Hyperion sensor is an example of a hyperspectral 

imaging spectrometer that can used to identify, map and monitor the spread of IAP species 

(Pearlman et al., 2003; Lass et al., 2005). The Hyperion sensor is a pushbroom hyperspectral 

sensor that captures data between 400 – 2500 nm in 242 bands (198 calibrated) at a band 

width of 10 nm (Pearlman et al., 2003; Lass et al., 2005). The Hyperion sensor operates at an 

altitude of 705.0 km and captures an area of 7.7 km at a spatial resolution of 30 m (Pearlman 

et al., 2003; Lass et al., 2005). Hyperspectral remote sensing has been successful in mapping 

numerous IAP species (Tsai et al., 2007; Asner et al., 2008; Hestir et al., 2008). However, no 

studies have been carried out on identifying invasive black wattle trees using hyperspectral 

imaging spectroscopy.  

 

A study by Lass et al. (2005) used hyperspectral images from a charged-coupled device 

(CCD) digital camera (spatial resolution: 2 m, spectral resolution: 400 to 953 nm, band width:  

12 nm) to identify locations of spotted knapweed (Centaurea maculosa) and babysbreath 

(Gypsophila paniculata). It was found that 57% of known spotted knapweed infestations and 

97% of known babysbreath infestations were identified through the use of hyperspectral 

imagery. A study by Ustin et al. (2002) detected IAP species using AVIRIS data. Results 

included the mapping of Arundo donax at accuracies of 90.68% and 97.79% using a spectral 

angle mapper and maximum likelihood classification respectively in the Camp Pendleton 

Marine Base in California. Studies by Lass et al. (2005) and Ustin et al. (2002) illustrate the 

potential of using remote sensing techniques to identify invasive black wattle trees. This 

study aims to fill the knowledge gap in the identification of the distribution of invasive black 

wattle trees using hyperspectral imaging spectroscopy. 

2.3.2. Automated algorithms 

Traditionally, the spread of IAP species was determined by manually counting each plant on 

an aerial photograph which proved time consuming, expensive and inefficient (Niu, 2006). 

Further, IAP species propagate and proliferate rapidly and in this manner dynamically change 

the land cover of infested areas. This proved a challenge to identifying and updating the 

spatial distribution of IAP species in non native areas (Agüera and Liu, 2009). Consequently, 

image classification techniques have been implemented within remote sensing applications to 

expedite this process. Remote sensing applications provide an interface through which the 

classification process as well as complex mathematical and computational algorithms can be 
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performed to identify IAP species such as black wattle trees. Currently, there is a shift in 

research towards specialist remote sensing applications (Grün, 2000; Zhao et al., 2002; 

Leckie et al., 2003) that offer an automated approach to image classification. However, there 

is a lack of literature and research in applying automated approaches to image classification 

in identifying IAP species and vegetation in general. Despite this, the driving force behind an 

automated approach is optimizing the processing of large datasets accurately in short time 

frames with little external expert knowledge in a cost effective manner.  

 

Hyperspectral remotely sensed data is characterised by large volumes of data which is time 

consuming to process when identifying IAP species. An automated approach to image 

classification offers a possible solution to process large volumes of data quickly and 

efficiently (Leckie et al., 2003). Hyperspectral imaging spectrometers such as the EO-1 

Hyperion sensor has a high temporal resolution of 18 days ensuring that regular and reliable 

data over areas of interest is available. Automated image classification can ensure routine and 

repeated image classifications to be performed over areas of interest with consistent results 

(Higgins and Harris, 1997). Consequently, a time series analysis can be undertaken to 

monitor and model the spread of invasive black wattle trees over short and long periods of 

time. The ability to conduct rapid and routine image processing is instrumental in providing 

near real time information to inform management strategies and removal efforts of invasive 

black wattle trees. 

 

There is a growing trend in the development of specialist automated image classification 

applications. These applications are tailored and provide a few key tools that are required for 

particular applications. They are inexpensive as compared to comprehensive software 

packages that offer a range of tools that aren’t required on a day to day basis. This allows for 

remote sensing applications to be accessible and available to a wide range of environmental 

managers and practitioners. Previously, the classification process required well trained 

personnel to conduct the classification and interpret its results. However, through the use of 

automated image classification applications, expert knowledge can be packaged and 

distributed widely. This allows for image classifications to be undertaken by less skilled 

personnel that have a basic understanding of remote sensing concepts. This ensures that 

environmental managers and decision makers can focus primarily on the results without 

having to worry about technical details behind the classification. 
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Research has been focused on automated feature extraction such as roads and buildings 

(Grün, 2008; Zhao et al., 2002; Leckie et al., 2003). This is because these features are larger 

than one pixel in size. However, with plant species, this may not be the case depending on the 

size of the stand. Because the spatial resolution of satellite images are still relatively low an 

object based approach may not be practical. A pixel based approach is still necessary to 

conduct accurate image classification. This involves the comparison of all the bands for a 

single pixel to a spectral signature collected in the field or under laboratory conditions. 

2.3.3. Classification algorithms 

Classification algorithms compare spectral signatures of a feature to each pixel in a 

multispectral or hyperspectral satellite image to identify features. Spectral signatures can be 

collected using field spectrometers in situ or under laboratory conditions. Spectral signatures 

can also be collected from the image itself through the use of training sites which are 

homogenous areas that represent the land cover or pure pixels. An example of a classification 

algorithm is the spectral angle mapper algorithm. The spectral angle mapper compares the 

spectral angles between the reflectance spectrum of a pixel and the spectral signature 

obtained from training sites or captured using a field spectrometer (Kruce et al., 1993). Each 

pixel is assigned to a class according to the lowest spectral angle value (Kruce et al., 1993).  

 

Internationally, many studies have employed the use of the spectral angle mapper algorithm, 

to identify IAP species (Lass et al., 2002; Lawrence et al., 2005). However, there are no 

studies that have applied the use of the spectral angle mapper to identify invasive black wattle 

trees. Despite this, a study conducted by Narumalani et al. (2006) detected saltcedar (Tamarix 

sp.) using the spectral angle mapper algorithm to classify airborne hyperspectral imagery. It 

was found that saltcedar, cottonwood and other woody species can be spectrally 

discriminated. Further, the images were classified with an overall accuracy of 83%. In 

contrast, a study conducted by Lawrence et al. (2005), mapped leafy spurge (Euphorbia esula 

L.) and spotted knapweed (Centaurea maculosa Lam.) using the spectral angle mapper 

algorithm. From this study overall accuracies of 40% and 66% for the spotted knapweed and 

leafy spurge sites, were found respectively. Thus it is clear that there is still some variability 

in accuracy with regard to spectral matching. This study uses a different approach to spectral 

matching by using statistical techniques to match spectral signatures to spectral profiles of 

single pixels.  
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2.4. Conclusion 

The propagation and proliferation of invasive black wattle trees in non native areas is 

detrimental to ecosystem functionality. Therefore, it is imperative that invasive black wattle 

trees are mapped so that removal efforts are targeted in areas of severe invasion. However, 

mapping and monitoring the spatial distribution of invasive black wattle trees is a challenge 

because it is costly, time consuming and labour intensive. Remote sensing offers the 

technology to map and monitor the spread of invasive black wattle trees. Many studies have 

employed the use of hyperspectral remote sensing to map IAP species. However, future 

studies should focus on identifying invasive black wattle trees using hyperspectral imaging 

spectroscopy in KwaZulu-Natal, South Africa. Currently, there is an urgent need to provide 

near real time information on the spatial distribution of invasive black wattle trees to inform 

removal efforts. Various factors such as time constraints, large data sets and the cost of 

remote sensing specialists are hindering this process. A possible solution involves the use of 

automated image classification algorithms that provide quick, efficient, routine and repeated 

image classification. In general, this review has illustrated the potential of an automated 

classification algorithm to identify black wattle (Acacia mearnsii De Wild.) trees using 

imaging spectroscopy. 
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Chapter Three: Materials and Methods 

3.1. Introduction 

This study assesses a novel classification algorithm to automatically identify black wattle 

trees using imaging spectroscopy. This chapter outlines the methodology followed to achieve 

the aim of the study. A detailed explanation of the image acquisition and pre-processing 

techniques employed is provided. Subsequently, the methodology used to collect spectral 

signatures of black wattle trees and ground reference data is outlined. The chapter concludes 

with a detailed description of the classification algorithm and its implementation. 

3.2. Image acquisition and pre-processing  

The EO-1 Hyperion sensor captures images in 242 spectral bands in the 400-2400 nm 

spectral range at a spectral resolution of 10 nm and a spatial resolution of 30 m (Pearlman et 

al., 2003). A single Hyperion image was captured (path 175/82) on the 19th March 2006 

covering the entire study area (study area one: 29° 0´ 12″ S, 30° 42´ 29″ E; study area two: 

29° 10´ 34″ S, 30° 39´ 9″ E). The image was provided as Hyperion level 1R data which was 

calibrated to at-sensor radiance (W m-2 sr-1 µm-1); only 196 out of 242 spectral bands were 

calibrated. The radiance image was spectrally subsetted removing un-calibrated (1-7, 58-78, 

225-242) and bad spectral bands (80-82, 120-132, 165-182, 185-187, 220-225). The subsetted 

radiance image was atmospherically corrected and transformed to canopy reflectance using 

the FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes) atmospheric 

correction algorithm which is built into the ENVI (Environment for Visualising Images: 

ENVI, 2006) software package. The reflectance image was then ortho-rectified and 

georeferenced (Universal Transverse Mercator, zone 36 South) according to a Landsat 7 

ETM+ image (6th March 2006). An overall total root mean square error (RMSE) of less than 

one pixel was used as an indication of a good geometric correction. The resultant image was 

re-sampled to the new grid system using a cubic convolution algorithm. 

3.3. Collection of spectral signatures and ground reference data 

Spectral signatures of healthy black wattle trees (general signature, three to five years, seven 

to nine years, eleven to thirteen years) were collected from the Hyperion images within ENVI 

for each study area. Homogenous areas that represent black wattle trees of varying age 
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groups were identified within each study area. Black wattle trees of varying age groups were 

identified from rasterized polygons of commercial forestry plantations of known ages that are 

maintained by the Mondi group within each study area. The general signature was generated 

through the combination of spectral profiles of pure pixels that represent black wattle trees of 

varying age groups. To generate age dependent spectral signatures, the spectral profiles of 

four samples each of more than thirty pure pixels that represent black wattle trees (three, four, 

five, seven, eight, nine, eleven, twelve, and thirteen years) were averaged. The spectral 

profiles of black wattle trees between three to five, seven to nine and eleven to thirteen years 

of age were averaged to generate three age dependent spectral signatures. For each spectral 

signature ground reference data was collected. For the general spectral signature, ground 

reference data was collected from a land cover map of the study areas. In ENVI, a set of 

random points were generated from the land cover map indicating the presence (400 points) 

and absence (400 points) of black wattle trees. For each age group, reference data was 

collected from rasterized polygons of commercial forestry plantations of known ages that are 

maintained by the Mondi group. In ENVI, a set of random points were generated from the 

polygons indicating the presence (100 points) and absence (100 points) of black wattle trees. 

The four spectral signatures (general signature, three to five years, seven to nine years, eleven 

to thirteen years) together with its associated ground reference data were used as input to the 

classification algorithm.  

3.4. The classification algorithm 

The classification algorithm developed is based on the concept of spectral matching. Spectral 

matching involves comparing the spectral profile of a single pixel to a reference spectrum to 

determine if the reference object is present (Kruse et al., 1993). The classification algorithm 

implements a novel statistically based comparison technique to determine the presence or 

absence of black wattle trees within areas of interest. Figure 3.1. illustrates a flowchart 

representing the black wattle classification algorithm. The subsetted EO-1 Hyperion image 

and the reference spectrum of healthy black wattle trees are input to the classification 

algorithm (figure 3.1.). The classification algorithm compares the reference spectrum to the 

spectral profile of every single pixel in the Hyperion image. At each band a statistical 

measure, the z-score is calculated using the reflectance value, the mean and standard 

deviation values from the reference spectrum at the corresponding band (figure 3.1.). A z-

score is calculated using the following formula: 
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z score = ((A-B)/C) 

 

Where:  

A = reflectance value for a single pixel for a single band (image) 

B = mean reflectance value for a single band (reference spectrum) 

C = standard deviation of B 

 

From the z-score, two probability values within 95% confidence intervals are determined 

from a z-table at each band. The final probability at each band is calculated using the 

following formula: 

 

probability = (A-B) 

 

Where:  

A = probability value from the positive half of the z-table  

B = probability value from the negative half of the z-table  

 

However, if the probability values do not lie within 95% confidence intervals, the final 

probability is assigned a zero for that band (figure 3.1.). The above procedure is repeated 

until probability values are determined for all bands for a single pixel. If the probabilities of 

more than 90% of the total number of bands for a single pixel fall within 95% confidence 

intervals, the probabilities are averaged and the mean stored (figure 3.1.). If this is not the 

case the pixel is assigned a zero. The above procedure is repeated for each pixel for the entire 

Hyperion image resulting in a two dimensional raster of stored probability values. The 

classified image is generated from the stored probability values indicating the probability of 

presence of black wattle trees for each pixel (figure 3.1.). The higher the probability the 

greater the chance that black wattle will be present within that pixel area.  
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* – Comparison between the reference spectrum that represents black wattle trees and the spectral profile of a single pixel 
 

Figure 3.1.: Flowchart representing the classification algorithm. 
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3.5. The implementation of the classification algorithm 

The application was written in the Java programming language and was designed using an 

object orientated approach. The application consists of four independent classes namely the 

BlackWattle class, HyperionImage class, StatisticalTests class and RasterImage class. 

Each class consists of many methods that provide the necessary functionality. In the 

following sections, each class is described and discussed in greater detail outlining its role 

within the application. The complete source code for all classes is provided in Appendix A. 

3.5.1. BlackWattle class 

The BlackWattle class manages the graphical user interfaces (GUI) that an end user 

interacts with. The main methods that constitute the BlackWattle class are the 

blackWattleHome, displayClassifiedImage, exportClassifiedImage and 

blackWattleClassification methods. The blackWattleHome method creates and displays 

the main user interface through which the various functions may be accessed (figure 3.2.). 

The displayClassifiedImage method creates an interface through which classified images 

may be viewed. The exportClassifiedImage method creates an interface through which 

classified images can be exported from .png to the .tiff data format. Further, the 

exportClassifiedImage method reads the classified image in .png data format and writes 

the classified image in .tiff data format to the specified disk location. The 

blackWattleClassification method creates and displays an interface through which the 

relevant files for input into the classification algorithm may be selected.   

 

 

 

 

 

 

 

 

 

 

 



 

 26

 

 
 
 

Figure 3.2.: Implementation of the classification algorithm. 
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3.5.2. HyperionImage class 

The HyperionImage class processes the Hyperion image header file and the Hyperion image 

data file. The two main methods within this class are the readHeaderFile and 

readDataFile methods. The readHeaderFile method reads each line of the Hyperion 

header file and stores essential information required during the processing. This information 

includes samples, lines, bands, header offset, interleave and map info. The readDataFile 

method reads a single pixel from the Hyperion data file given the row and column values. 

This method calculates the position of the pixel within the file and reads, stores and returns 

the reflectance values for each band for that pixel. 

3.5.3. StatisticalTests class 

The StatisticalTests class implements the classification algorithm. The two main 

functions performed by the StatisticalTests class are the image classification and 

assessing the accuracy of the classified image.   

 

The pixel based classification process is undertaken by comparing the spectral signature of 

black wattle trees to the spectral profile of a single pixel. The setImgVal method reads each 

line of the spectral signature file and stores the mean reflectance values and standard 

deviation values in separate one dimensional arrays. Conversely, the readDataFile method 

returns reflectance values for a single pixel for all the bands from the Hyperion image file. 

The zTable method reads and stores z-score values from a standard z-table into a two 

dimensional array. The zTest method implements the classification algorithm (see 3.4., 

Chapter 3) by comparing the spectral profile of a single pixel to the spectral signature of 

black wattle trees to determine if black wattle trees are present or absent.  

 

The accuracy assessment is performed by comparing the land cover (presence or absence) of 

ground reference data with the land cover (presence or absence) at corresponding locations 

within the classified image. The setObservedExpectedVal method sets the observed and 

expected values for the chi-squared test. The setObservedExpectedVal method reads 

through the file and at each record the geographical co-ordinates are read. The corresponding 

row and column values within the image for the geographical co-ordinates are calculated and 

returned by the getRCVal method. If the row and column values fall within the boundary of 

the study area the observed value (presence or absence) is stored; otherwise the record is 
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discarded and the next record is processed. Using the row and column values the expected 

values (presence or absence) are retrieved and stored. The frequency of expected (presence or 

absence) and observed (presence or absence) values are calculated. From the observed and 

expected values an error matrix is created as well as the overall accuracy, kappa statistic and 

chi-squared p values calculated. The getErrorMatrix method creates and returns an error 

matrix for the classification including the user’s and producer’s accuracies. The 

getOverallAccuracy method returns the calculated overall accuracy value whilst the 

getKappaStatistic method returns the calculated kappa statistic. The chiSquaredTest 

method calculates the chi-square probability for the classified image based on the observed 

and expected values.  

3.5.4. RasterImage class 

The RasterImage class creates and displays the classified image indicating the presence or 

absence of black wattle trees. Further, this class creates and displays the accuracy assessment 

of the classification. The rasterVal method returns the probability value given the row and 

column co-ordinates for a single pixel. The createRaster method stores the probability 

values returned from the rasterVal method in a two dimensional array. The 

createClassifiedImage method reads the probability values from the two dimensional 

array and creates the final classified image. The createClassifiedImage method creates a 

buffered image instance. Thereafter, using the graphics API each pixel is colour coded based 

on the probability value (white [0], blue [0.01-0.25], green [0.25-0.50], yellow [0.50-0.75], 

red [0.75-0.99]). The classified image file is then written in .png data format to the hard disk. 

On completing the classification process, the classifiedImageFrame method displays the 

final classified image (figure 3.3.). This method also displays the co-ordinates and associated 

probability value of a pixel selected by the end user. The co-ordinates are calculated by the 

coOrdinates method while the associated probability value is returned by the getRaster 

method. The accuracyAsessmentFrame method creates a frame and displays the error matrix 

and contingency table as well as the overall accuracy, kappa statistic and chi-squared p values 

(figure 3.3.).   
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Figure 3.3.: Results generated from the classification algorithm: a) Classified image; b) Accuracy assessment. 

 

In the following chapter an assessment of the automated approach to image classification is 

presented. Additionally, the results of the classifications using the general signature and age 

dependent signatures are presented and critically discussed.  
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Chapter Four: Results and Discussion 

4.1. Introduction 

This chapter presents the results and a detailed discussion thereof in light of the aim and 

objectives of this study. An assessment of the automated approach to image classification 

employed by the application and the implementation of the classification algorithm is 

presented. Subsequently, the efficacy of the classification algorithm in correctly identifying 

black wattle tress in general are presented and discussed. Finally, this chapter concludes with 

the results of the classification algorithm to identify black wattle trees of varying age groups.  

4.2. Automated approach to image classification 

A cost effective and easy to use specialist remote sensing application that provides an 

automated approach to image classification was developed for this study. The application is a 

stand alone program with specialist functionality i.e. the implementation of the classification 

algorithm (figure 3.2.). The application automatically processes the large volumes of data 

associated with EO-1 Hyperion satellite imagery ensuring the classification process is 

undertaken quickly and efficiently. Importantly, the automated approach to image 

classification provides access to vital information on the spatial distribution of black wattle 

trees quickly that would otherwise not have been available. This enables the application to be 

used as a monitoring tool performing routine and repeated classifications quickly. Routinely 

mapping and monitoring the spatial distribution of black wattle trees is essential in providing 

environmental managers with near real time information on the spatial distribution of black 

wattle trees. This information is critical in informing environmental managers where removal 

efforts should be targeted and how effective previous removal efforts were.  

 

Special care was taken to ensure that the application provides simple and easy to use 

interfaces. Each of the interface elements were designed to be clear ensuring that user 

interaction with the application was kept to the minimum. This enables new end users and 

less skilled personnel to operate the application whilst still producing highly accurate 

classification maps. The application was designed to allow end users to input predefined 

spectral signatures of black wattle trees rather than defining training sites. This design 

decision obviates the need for using well trained personnel to identify training sites for 
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generating spectral signatures during the classification process which is time consuming and 

expensive to conduct.  

4.3. Image classification 

Through visual interpretation of the classifications, it is apparent that the classification 

algorithm is effective in mapping the spatial distribution of black wattle trees using imaging 

spectroscopy (figure 4.1.). The overall spatial distribution of black wattle trees is apparent 

with black wattle trees identified and dispersed throughout both study areas indicating the 

extent of the invasions (figure 4.1.). The classifications illustrate clearly defined homogenous 

areas which are the same as black wattle forestry plantations which are found throughout the 

study areas (figure 4.1.). Outside of the defined boundaries of forestry plantations, black 

wattle trees which exhibit a fragmented spatial distribution were mapped within complex land 

uses (figure 4.1.). A fragmented distribution in some areas was expected owing to the pixel 

based approach to classification employed by the classification algorithm and the 

unpredictable natural dispersal mechanisms that distribute black wattle trees into non native 

areas. Particularly, smaller pockets of black wattle trees were mapped near commercial 

forestry plantations indicating possible invasion into non native areas from commercial 

forestry plantations. Further, black wattle trees were mapped with co-occurring vegetation in 

regions known to be dense bush land cover in both study areas. These regions are particularly 

vulnerable because of the accessibility from forestry plantations and ideal growth conditions 

of the region. These smaller areas of invasion provide the location of invasive black wattle 

trees and the severity of invasion at a local spatial scale so that removal and control efforts 

can be targeted.  

 

The classification algorithm was able to accurately identify and map black wattle trees 

throughout both study areas. An overall accuracy of 86.25% and 84.50% was achieved for 

study area one and study area two respectively (Table 4.1.). The kappa co-efficient was 

0.72% and 0.69% for study area one and study area two respectively, which is a moderate 

agreement between the classification and reference data (Table 4.1.). This level of accuracy 

could be attributed to the stringent conditions placed upon by the classification algorithm. 

The statistical test was carried out within 95% confidence intervals as well as pixels with 

only greater than 95% of the bands per pixel being similar to the spectral signature were 

classified as black wattle being present. Similar results were seen by Russel (2009) in which 
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black wattle trees were identified and mapped using SPOT 5 imagery. An overall accuracy of 

78.77% with a kappa statistic of 0.7495 was achieved in the Fort Nottingham area (Russel, 

2009). Further, a study by Ustin et al. (2002) detected IAP species using AVIRIS data. 

Results included the mapping of Arundo donax at accuracies of 90.68% and 97.79% using a 

spectral angle mapper and maximum likelihood classification respectively in the Camp 

Pendleton Marine Base in California. The high level of accuracy achieved by the 

classification algorithm could be due to large concentrations of black wattle trees ensuring 

their detection. Further, the use of detailed spectral signatures and high spectral resolution 

Hyperion imagery provides more rigorous spectral matching. Smaller spectral variations are 

considered thereby discriminating invasive black wattle trees from complex co-occurring 

land uses. Within image classification, there is a constant motivation to achieve the highest 

level of accuracy possible. The level of accuracy of classifications can be improved by 

identifying invasive black wattle trees using unique morphological or physiological 

properties or at key phenological stages. Hestir et al. (2008) identified invasive vegetation 

(Perennial pepperweed, Water hyacinth, submerged aquatic vegetation) using hyperspectral 

remote sensing in the California Delta ecosystem. Results showed that both Perennial 

pepperweed and Water hyacinth exhibited significant spectral variation related to plant 

phenology. Despite this, the high overall accuracy warrants the use of the black wattle 

classification algorithm to identify invasive black wattle trees using hyperspectral satellite 

imagery. 

 

A user’s accuracy indicates the probability that a pixel classified on the map represents that 

category on the ground (Story and Congalton, 1986). A producer’s accuracy indicates the 

probability of a reference pixel being correctly classified (Congalton, 1991). Both, the user’s 

and producer’s accuracy are critical in ensuring that the extent of invasive black wattle trees 

are not under or over estimated. Results from this study have shown that the user’s accuracy 

for black wattle trees were 72.50% and 69.00% for study area one and study area two 

respectively (Table 4.1.). The classification algorithm has underestimated the presence of 

black wattle trees. The producer’s accuracy for non black wattle trees were 78.43% and 

76.33% for study area one and study area two respectively (Table 4.1.). Results from the chi-

squared test showed that there was a significant difference (p < 0.05) between the observed 

and expected values for study area one and study area two (Table 4.1.). The discrepancy 

between the classification and reference data could be attributed to spectral confusion when 

classifying certain pixels. The EO-1 Hyperion sensor has a low spatial resolution. Black 
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wattle trees may not occupy the full extent of a pixel therefore incorporating spectra from a 

range of land covers into a single spectral profile resulting in spectral confusion. To detect 

smaller patches of invasive black wattle trees the use of higher spatial resolution may be 

advantageous. Using high spatial resolution imagery, land covers can be spatially separated 

limiting the extent of spectral confusion between land covers. Despite this, the black wattle 

classification algorithm provides the probability that black wattle is present within a pixel. 

 

Results from the classification show that generally the probabilities of black wattle trees 

being present are moderate (0.25-0.50) to very high (0.75-0.99) within areas of potential 

invasion. Probabilities are very high at the centre of potential stands of invasion with 

probabilities decreasing from very high to moderate towards the outside of these areas. As 

black wattle trees become sparsely distributed towards the edges of dense clumps the 

probability decreases. This is due to possible spectral confusion as the land cover changes 

from predominantly black wattle to other land covers. The black wattle trees that have 

invaded non native regions occur in sparsely distributed patches of a few pixels. These 

regions particularly in study area two have a moderate probability. Moderate and high 

probability values can be misleading. Probability values could be influenced by spectral 

confusion resulting in lower probability values or that the probability of black wattle trees 

being present is actually low. Environmental managers will need to assess if valuable 

resources can be utilized in these areas to remove and control invasive black wattle trees. 

However, these areas provide insight into areas that may be experiencing the early stages of 

invasions. Therefore environmental managers can combat the propagation of invasive black 

wattle trees at the inception of the invasion.  

 

It is concluded that the classification algorithm is adequate in identifying and mapping the 

spatial distribution of invasive black wattle trees using Hyperion data.  
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Table 4.1.: Results of the accuracy assessment for black wattle trees for study area one and study area two 

Study area one 

Overall 
accuracy(%) 

Kappa 
statistic 

User’s* 
accuracy(%) 

Producer’s* 
accuracy(%) 

User’s# 
accuracy(%) 

Producer’s# 
accuracy(%) 

Chi  
square 

86.25 0.72 72.50 100 100 78.43 <0.05 

Study area two 

Overall 
accuracy(%) 

Kappa 
statistic 

User’s* 
accuracy(%) 

Producer’s* 
accuracy(%) 

User’s# 

accuracy(%) 
Producer’s# 

accuracy(%) 
Chi  

square 

84.50 0.69 69.00 100 100 76.33 <0.05 

*- indicates black wattle (A. mearnsii) presence 
#- indicates black wattle (A. mearnsii) absence 
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Figure 4.1.: Classified images indicating the presence and absence of black wattle (A. mearnsii) trees: a) Study 
area one; b) Study area two. 
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4.4. Age dependent image classification 

Invasive black wattle trees are a major threat to natural ecosystems therefore removing them 

at a young age is critical to mitigating future negative environmental impacts. However, it is 

a challenge to identify young black wattle trees within non native areas using remote sensing 

techniques. Young black wattle trees are small in size and lack the spatial dominance at a 

micro spatial scale to ensure its detection. The appropriate satellite imagery (high spatial 

resolution, high spectral resolution) and classification algorithm must be utilized to ensure 

that classifications are undertaken accurately. Over time, the ageing of a tree changes its 

morphology, physiological status and presence within an environment; positively influencing 

its spectral reflectance and ability to be detected. Essentially, there is a need to assess the 

accuracy of age specific classifications to ensure that the youngest black wattle tree is 

identified with the highest of accuracies.   

 

The classification algorithm was able to identify and map age specific black wattle trees in 

both study areas (figure 4.2. and 4.3.). Results from the accuracy assessment are illustrated in 

Table 4.2. Results show that the overall accuracy of black wattle trees between three to five 

years of age was 62% (kappa statistic: 0.24) for study area one and 74.50% (kappa statistic: 

0.49) for study area two (Table 4.2.). Young invasive black wattle trees have small crowns 

that do not cover a large area which exposes the ground and surrounding vegetation to 

detection. EO-1 Hyperion data has a low spatial resolution (30 m) capturing reflectance from 

a range of scene elements within a complex environment. Therefore, the spectral profiles of 

pixels are not pure which could have resulted in spectral confusion. However, the high 

spectral resolution of collected spectral profiles would assist in discriminating between 

different co-occurring vegetation species. Despite this, the moderately high overall accuracy 

is a positive indication that young black wattle trees between three to five years of age can be 

identified and mapped. The overall accuracy increased for trees of three to five and seven to 

nine years of age which could be attributed to the growth of the plant. Results showed that the 

overall accuracy achieved when identifying black wattle trees between seven to nine years of 

age for study area one was 78.50% (kappa statistic: 0.57) (Table 4.2.). Older invasive black 

wattle trees proliferate and propagate rapidly establishing themselves within an environment. 

Black wattle trees cover a much larger area and occur in dense clumps within natural 

ecosystems. Their large coverage tends to eliminate non native vegetation through shade and 

competition. This allows them to be the dominant scene element within a pixel scene 
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ensuring its detection using low resolution satellite imagery. Invasive black wattle trees 

(seven to nine years) were detected with a moderately high accuracy; however, it is detection 

of emerging invasive black trees that are required.  Conversely, young black wattle trees were 

detected with relatively lower accuracy. A balance would need to be struck between the age 

of the trees and an acceptable level of accuracy. Over time, invasive black wattle trees 

completely dominate an area which should result in detection with the highest of accuracies. 

However, results from this study showed that the overall accuracies and kappa statistics 

decreased from seven to nine years (overall accuracy: 78.50%, kappa statistic: 0.57) to eleven 

to thirteen years (overall accuracy: 69.50%, kappa statistic: 0.39) of age for study area one 

(Table 4.2.). Similarly, overall accuracies and kappa statistics decreased from seven to nine 

years (overall accuracy: 75%, kappa statistic: 0.50) to eleven to thirteen years (overall 

accuracy: 72.50%, kappa statistic: 0.45) of age for study area two (Table 4.2.). Older trees are 

more susceptible to environmental stress such as lack of water availability and nutrients 

supply at a local scale. These physiological stresses would alter the spectral profile of the 

trees even though they may appear healthy, consequently negatively influencing its detection. 

Despite this, the overall accuracy of black wattle trees between eleven to thirteen years age 

was still higher than the overall accuracy achieved by the three to five years age group 

classification. Generally, the relatively high overall accuracies are a positive indication that 

the classification algorithm can identify black wattle trees of varying age groups.  

 

Although the overall accuracy of the classifications were relatively high the user’s accuracy 

were very low (20%) to moderately (60%) high for all age groups for both study areas. A 

user’s accuracy of 24%, 56.99% and 39% was achieved for black wattle presence for the 

three to five, seven to nine and eleven to thirteen age groups respectively for study area one 

(Table 4.2.). Further, a user’s accuracy of 49%, 50% and 49% was achieved for black wattle 

presence for the three to five, seven to nine and eleven to thirteen age groups respectively for 

study area two (Table 4.2.). Results from the chi-squared test showed that there was a 

significant difference (p < 0.05) between the observed and expected values for both study 

areas for all age groups (Table 4.2.). The low user’s accuracy for black wattle trees between 

three to five years of age could be attributed to spectral confusion. Young invasive black 

wattle trees are small in size which exposes the ground and surrounding vegetation to 

detection. EO-1 Hyperion data has a low spatial resolution (30 m) capturing reflectance from 

a range of scene elements within a complex environment. Therefore, the spectral profiles of 

pixels are not pure which could have resulted in spectral confusion. However, the user’s 
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accuracy should have been higher for black wattle trees between seven to nine and eleven to 

thirteen years of age. Variability in the spatial distribution, density and percentage cover that 

black wattle trees occupy within a pixel could have negatively influenced its detection. The 

use of higher spatial resolution satellite imagery would be better suited to limit the variability 

of scene elements within a pixel thus enhancing the detection of black wattle trees. Therefore, 

the moderate results achieved by this study are attributed to inappropriate satellite imagery 

used for age specific classifications and not the efficacy of the classification algorithm. A 

producer’s accuracy of 56.81%, 69.93% and 62.11% was achieved for black wattle absence 

for the three to five, seven to nine and eleven to thirteen age groups respectively for study 

area one (Table 4.2.). Further, a producer’s accuracy of 66.22%, 66.66% and 64.51% was 

achieved for black wattle absence for the three to five, seven to nine and eleven to thirteen 

age groups respectively for study area two (Table 4.2.). Indirectly, this level of accuracy 

could be attributed to the stringent conditions placed upon by the classification algorithm. 

Pixels may not have been classified owing to the rigorous spectral matching employed by the 

classification algorithm leading to a great number of pixels being classified as black wattle 

absence. 

 

In summary, the classification algorithm can identify and map age specific black wattle trees 

with a relatively high overall accuracy. However, the user’s accuracy for age specific black 

wattle classifications was poor. The low spatial resolution of EO-1 Hyperion data could have 

resulted in spectral confusion and increased variability within pixels. Therefore, the low 

user’s accuracies could be attributed to the use of relatively low resolution satellite imagery 

and not the efficacy of the classification algorithm. However, the high producer’s accuracies 

for black wattle absence could be attributed to the stringent conditions of the classification 

algorithm resulting in the misclassification of black wattle trees. It is concluded that the 

classification algorithm is adequate in identifying and mapping the spatial distribution of age 

specific black wattle trees using imaging spectroscopy. 
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Table 4.2.: Results of the accuracy assessment for all age groups for study area one and study area two 

Study area one 

Age 
group 

Overall 
accuracy(%) 

Kappa 
statistic 

User’s* 
accuracy(%) 

Producer’s* 
accuracy(%) 

User’s# 
accuracy(%) 

Producer’s# 
accuracy(%) 

Chi 
square 

3-5 62.00 0.24 24.00 100 100 56.81 <0.05 

7-9 78.50 0.57 56.99 100 100 69.93 <0.05 

11-13 69.50 0.39 39.00 100 100 62.11 <0.05 

Study area two 

Age 
group 

Overall 
accuracy(%) 

Kappa 
statistic 

User’s* 
accuracy(%) 

Producer’s* 
accuracy(%) 

User’s# 

accuracy(%) 
Producer’s# 

accuracy(%) 
Chi 

square 

3-5 74.50 0.49 49.00 100 100 66.20 <0.05 

7-9 75.00 0.50 50.00 100 100 66.66 <0.05 

11-13 72.50 0.45 49.00 100 100 64.51 <0.05 

*- indicates black wattle (A. mearnsii) presence 
#- indicates black wattle (A. mearnsii) absence 
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Figure 4.2.: Classified images indicating the presence and absence of black wattle (A. mearnsii) trees at three to five, seven 

to nine and eleven to thirteen years of age for study area one: a) Three to five; b) Seven to nine; c) Eleven to thirteen. 
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Figure 4.3.: Classified images indicating the presence and absence of black wattle (A. mearnsii) trees at three to five, seven 

to nine and eleven to thirteen years of age for study area two: a) Three to five; b) Seven to nine; c) Eleven to thirteen. 
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Chapter Five: Conclusions and Recommendations 

5.1. Introduction 

This study aimed to determine the potential of a classification algorithm to identify black 

wattle (Acacia mearnsii De Wild.) trees using imaging spectroscopy. This chapter assesses 

the aim and related objectives to determine if they were achieved within the framework of 

this study. Subsequently, the limitations of this study are presented and evaluated. This 

chapter concludes with the recommendations for future studies.   

5.2. Aim and objectives reviewed 

This study aims to investigate the potential of a classification algorithm to identify black 

wattle (Acacia mearnsii De Wild.) trees using imaging spectroscopy. In order to achieve this 

aim the following objectives were identified: 

 

• To develop an image classification algorithm that will identify black wattle (Acacia 

mearnsii De Wild.) trees using hyperspectral EO-1 Hyperion data. 

 

This was achieved by developing a specialist remote sensing application in the Java 

programming language. The application was programmed to process EO-1 Hyperion header 

files, EO-1 Hyperion data files, spectral signature files (.txt) and ground reference data files 

(.txt). A pixel based classification algorithm was developed based on the z test statistical test. 

The classification algorithm was a pixel based classifier for hyperspectral EO-1 Hyperion 

data. The classification algorithm was implemented within the application to produce 

classified images that indicate the presence or absence of black wattle trees over the area of 

interest.     

 

• To assess the image classification algorithm’s ability to automate the classification 

process.  

 

This was achieved by creating a simple, clear and easy-to-use user interface that facilitated 

the input of data into the classifier quickly. Throughout this process, the user interface 

ensured that user interaction was kept to the minimum. Importantly, the application 
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implemented the classification algorithm which automatically conducted the classification 

process quickly and efficiently. Further, the classification algorithm automatically creates a 

map indicating the presence and absence of black wattle trees with associated accuracy 

assessment for users to interpret. It was concluded that the classification algorithm can 

automatically identify and map black wattle trees using EO-1 Hyperion data.   

  

• To assess the efficacy of the image classification algorithm in identifying black wattle 

(Acacia mearnsii De Wild.) trees using hyperspectral EO-1 Hyperion data. 

 

This was achieved by applying the classification algorithm to EO-1 Hyperion data (study area 

one, study area two) using a general spectral signature of black wattle trees. The application 

produced a classified image with an associated accuracy assessment of the classification. 

Results showed an overall accuracy of 86.25% (users accuracy: 72.50%; kappa 0.725) and 

84.50% (users accuracy: 69%; kappa: 0.69) for study area one and study area two 

respectively. It was concluded that the classification algorithm is adequate in identifying and 

mapping the spatial distribution of invasive black wattle trees using imaging spectroscopy in 

KwaZulu-Natal, South Africa.  

 

• To assess the accuracy of the image classification algorithm to identify black wattle 

(Acacia mearnsii De Wild.) trees of varying age groups using hyperspectral EO-1 

Hyperion data.  

 

This was achieved by applying the classification algorithm to EO-1 Hyperion data (study area 

one, study area two) using age specific spectral signatures of black wattle trees. Black wattle 

trees between three to five years of age were classified with the lowest overall accuracy and 

user’s accuracy. The highest overall accuracy and user’s accuracy was achieved when 

identifying black wattle trees between seven to nine years of age. It was concluded that the 

classification algorithm is adequate in identifying and mapping the spatial distribution of age 

specific black wattle trees using imaging spectroscopy. It was also concluded that black 

wattle trees between seven and nine years of age are optimal for remote sensing with a high 

accuracy.  
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5.3. A synthesis 

This study has illustrated the potential of a classification algorithm to identify black wattle 

trees using imaging spectroscopy. The application provides an automated approach to image 

classification, through the implemention of the classification algorithm. This study has shown 

that the classification algorithm can identify black wattle trees with a very high overall 

accuracy (>84%) using a general spectral signature for both study areas. Further, this study 

has shown that the classification algorithm can identify black wattle trees of varying age 

groups using age specific spectral signatures of black wattle trees for both study areas. 

However, black wattle trees between three to five years of age were classified with the lowest 

overall accuracy and user’s accuracy. The low user’s accuracies could be attributed to the use 

of relatively low resolution satellite imagery and not the efficacy of the classification 

algorithm. This is disadvantageous as it prevents young black wattle trees from being 

detected and removed before causing significant negative environmental impacts in non 

native areas. However, the highest overall accuracy and user’s accuracy was achieved when 

identifying black wattle trees between seven to nine years of age. Black wattle trees between 

seven and nine years of age are optimal for remote sensing with a high accuracy. Importantly, 

this study has illustrated that invasive black wattle trees can be identified accurately using 

remote sensing techniques. There is also great potential for using this developed algorithm for 

the identification and mapping of other plant species. This may require the capture of the 

spectral signature of those plants and their incorporation into the algorithm.  

5.4. Limitations of this study 

One of the limitations of this study was that the application and classification algorithm was 

developed to process EO1-Hyperion data only. Further, EO-1 Hyperion data has a relatively 

low spatial resolution and invasive black wattle trees may not occur in large enough clumps 

to be detected thus resulting in spectral confusion. The classification algorithm did not 

incorporate subpixel spectral un-mixing to ensure classifications of the highest of accuracies. 

During the classification process, ground reference data was collected from thematic maps of 

the study areas. Inherent errors that were present within the thematic map could have 

propagated through the classification process negatively affecting the accuracy assessment of 

the classification.     
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5.5. Recommendations for future studies 

This study has illustrated the potential of a classification algorithm to identify black wattle 

tress using EO1-Hyperion data. However, the application should be developed further to 

process a range of satellite images from different platforms. The application should be able to 

process multi-spectral data as it is freely and widely available. The application should also 

incorporate subpixel spectral un-mixing ensuring classifications of the highest of accuracies. 

Future studies should focus on assessing the classification algorithms performance classifying 

different satellite images from different sensors. Studies should focus on detecting invasive 

black wattle trees using hyperspectral imagery of a higher spatial resolution so that spectral 

confusion can be minimized. This study employed the use of general and age specific spectral 

signatures for black wattle trees. Future studies should identify unique spectral signatures to 

identify black wattle trees at key morphological and phenological stages of plant 

development thus enhancing its detection. Further, future studies should focus on developing 

predictive models to model the spread of invasive black wattle trees. This would allow 

environmental managers to target and implement control efforts in areas before they become 

severely invaded.  This study has taken the first steps in achieving this goal as black wattle 

trees can be identified and mapped using imaging spectroscopy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 46

References 

Afrispace consulting, 2009. Umvoti spatial development framework. Umvoti Local 

Municipality, Durban, available online at: 

http://devplan.kzntl.gov.za/idp_reviewed_2010_11/IDPS/KZ245/Adopted/Revised%20

Mvoti%20SDF.pdf (accessed on 15 June 2011). 

 

Agüera, F., Liu, J.G., 2009. Automatic greenhouse delineation from Quickbird and Ikonos 

satellite images. Computers and Electronics in Agriculture 66. 191-200. 

 

Allan, D.G., Harrison, J.A., Navarro, R.A., van Wilgen, B.W., Thompson, M.W., 1997. The 

impact of commercial afforestation on bird populations in Mpumalanga Province, South 

Africa-insights from bird-atlas data. Biological Conservation 79, 173-185. 

 

Asner, G.P., Jones, M.O., Martin, R.E., Knapp, D.E., Hughes, R.F., 2008. Remote sensing of 

native and invasive species in Hawaiian forests. Remote Sensing of Environment 112, 

1912-1926. 

 

Babugura, A., 2010. Gender and climate change: South Africa case study. Helnrich Böll 

Foundation Southern Africa, Cape Town, South Africa.   

 

Bauhus, J., van Winden, A.P., Nicotra, A.B., 2004. Aboveground interactions and 

productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. 

Canadian Journal of Forest Research 34, 686-694. 

 

Binns, J.A., Illgner, P.M., Nel, E.L., 2001. Water shortage, deforestation and development: 

South Africa's working for water programme. Land Degradation and Development 12, 

341-355. 

 

Brown, A.G., Ko, H.C., 1997. Black wattle and its Utilisation – Abridged English Version. 

Rural Industries Research and Development Corporation, Barton Act, Australia.  

 



 

 47

Buerkert, A., Mahler, F., Marschner, H., 1996. Soil productivity management and plant 

growth in the Sahel: potential of an aerial monitoring technique. Plant and Soil 180, 29-

38. 

 

Carson, H.W., Lass, L.W., Callihan, R.H., 1995. Detection of yellow hawkweed (Hieracium 

pratense) with high resolution multispectral digital imagery. Weed technology 9, 477-

483. 

 

Carter, G.A., Lucas, K.L., Blossom, G.A., Lassitter, C.L., Holiday, D.M., Mooneyhan, D.S., 

Fastring, D.R., Holcombe, T.R., Griffith, J.A., 2009. Remote sensing and mapping of 

tamarisk along the Colorado River, USA: a comparative use of summer-acquired 

Hyperion, Thematic Mapper and QuickBird data. Remote Sensing 1, 318-329. 

 

Chaunbi, G., 1997. Black wattle plantations in South Africa: introduction, silviculture and 

management. In: Brown, A.G., Ko, H.C. (Eds.), Black wattle and its Utilisation – 

Abridged English Version. Rural Industries Research and Development Corporation, 

Barton Act, Australia, pp. 33-38.  

 

Christina, M., Laclau, J.P., Gonçalves, J.L.M., Jourdan, C., Nouvellon, Y., Bouillet, J.P., 

2011. Almost symmetrical vertical growth rates above and below ground in one of the 

world's most productive forests. Ecosphere 2, 1-10. 

 

Coetzee, J.A., Byrne, M.J., Hill, M.P., 2007. Impact of nutrients and herbivory by 

Eccritotarsus catarinensis on the biological control of water hyacinth, Eichhornia 

crassipes. Aquatic Botany 86, 179-186. 

 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely 

sensed data. Remote Sensing of Environment 37, 35-46. 

 

Cullis, J.D.S., Görgens, A.H.M., Marais, C., 2007. A strategic study of the impact of invasive 

alien plants in the high rainfall catchments and riparian zones of South Africa on total 

surface water yield. Water SA 33, 35-42. 

 

Cuneo, P., Jacobson, C.R., Leishman, M.R., 2009. Landscape scale detection and mapping of 



 

 48

invasive African Olive (Olea europaea L. ssp. cuspidata Wall ex G. Don Ciferri) in SW 

Sydney, Australia using satellite remote sensing. Applied Vegetation Science 12, 145-

154. 

 

De Beer, H., 1986. Black wattle. Forest molecular genetics South Africa Weeds A.24. In: 

Viljoen, B.D., Stoltsz, C.W., 2008. Control of black wattle (Acacia mearnsii De Wild.) 

seedlings with Garlon herbicide applied by backpack mistblower. South African Journal 

of Plant and Soil 25, 242-244. 

 

de Neergaard, A., Saarnak, C., Hill, T., Khanyile, M., Berzosa, A.M., Birch-Thomsen, T., 

2005. Australian wattle species in the Drakensberg region of South Africa-an invasive 

alien or a natural resource? Agricultural Systems 85, 216-233. 

 

de Wit, M.P., Crookes, D.J., van Wilgen, B.W., 2001. Conflicts of interest in environmental 

management: estimating the costs and benefits of a tree invasion. Biological Invasions 

3, 167-178. 

 

Di Stefano, J., 2002. River red gum (Eucalyptus camaldulensis): a review of ecosystem 

processes, seedling regeneration and silvicultural practice. Australian Forestry 65, 14-

22. 

 

Díaz, S., Fargione, J., Chapin III, F.S., Tilman, D., 2006. Biodiversity loss threatens human 

well-being. PLoS Biology 4, e277. 

 

du Toit, B., Dovey, S.B., 2005. Effect of site management on leaf area, early biomass 

development, and stand growth efficiency of a Eucalyptus grandis plantation in South 

Africa. Canadian Journal of Forest Research 35, 891-900. 

 

Dye, P., Jarmain, C., 2004. Water use by black wattle (Acacia mearnsii): implications for the 

link between removal of invading trees and catchment streamflow response. South 

African Journal of Science 100, 40-44. 

 

Eldridge, K.G., 1978. Genetic improvement of eucalypts. Silvae Genetica 27, 205-209. 

 



 

 49

Eldridge, K., Davidson, J., Harwood, C., van Wyk, G., 1993. Eucalypt domestication and 

breeding. Oxford University Press Inc., New York, United States.  

 

Enright, W.D., 2000. The effect of terrestrial invasive alien plants on water scarcity in South 

Africa. Physics Chemistry Earth (B) 25, 237-242. 

 

ENVI, 2006. Environment for Visualising Images. Release 4.7 (Boulder, USA. ITT 

industries, Inc). 

 

Everitt, J.H., Yang, C., Helton, R.J., Hartmann, L.H., Davis, M.R., 2002. Remote sensing of 

giant salvinia in Texas waterways. Journal of Aquatic Plant Management 40, 11-16. 

 

Forsyth, G.G., Richardson, D.M., Brown, P.J., van Wilgen, B.W., 2004. Rapid assessment of 

the invasive status of Eucalyptus species in two South African provinces. South African 

Journal of Science 100, 75-77. 

 

Geldenhuys, J.C., 1997. Native forest regeneration in pine and eucalypt plantations in 

Northern Province, South Africa. Forest Ecology and Management 99, 101-115. 

 

Ghebremicael, S.T., Smith, C.W., Ahmed, F.B., 2004. Estimating the leaf area index (LAI) of 

black wattle from Landsat ETM+ satellite imagery. Southern African Forestry Journal 

201, 3-12. 

 

Görgens, A.H.M., van Wilgen, B.W., 2004. Invasive alien plants and water resources in 

South Africa: current understanding, predictive ability and research challenges. South 

African Journal of Science 100, 27-33. 

 

Govender, M., Chetty, K., Bulcock, H., 2007. A review of hyperspectral remote sensing and 

its application in vegetation and water resource studies. Water SA 33, 145-151. 

 

Greenfield, B.K., Siemering, G.S., Andrews, J.C., Rajan, M., Andrews, S.P., Spencer, D.F., 

2007. Mechanical shredding of water hyacinth (Eichhornia crassipes): effects on water 

quality in the Sacramento-San Joaquin River Delta, California. Estuaries and Coasts 30, 

627-640. 



 

 50

Grün, A., 2000. Semi-automated approaches to site recording and modeling. International 

Archives of Photogrammetry and Remote Sensing 33, 309-318. 

 

He, K.S., Rocchini, D., Neteler, M., Nagendra, H., 2011. Benefits of hyperspectral remote 

sensing for tracking plant invasions. Diversity and Distributions 17, 381-392. 

 

Hestir, E.L., Khanna, S., Andrew, M.E., Santos, M.J., Viers, J.H., Greenberg, J.A., 

Rajapakse, S.S., Ustin, S.L., 2008. Identification of invasive vegetation using 

hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of 

Environment 112, 4034-4047. 

 

Higgins, J., Harris, A., 1997. VAST: a program to locate and analyse volcanic thermal 

anomalies automatically from remotely sensed data. Computers and Geosciences 23, 

627-645. 

 

Holmes, P.M., Esler, K.J., Richardson, D.M., Witkowski, E.T.F., 2008. Guidelines for 

improved management of riparian zones invaded by alien plants in South Africa. South 

African Journal of Botany 74, 538-552. 

 

Impson, F.A.C., Kleinjan, C.A., Hoffmann, J.H., Post, J.A., 2008. Dasineura rubiformis 

(Diptera: Cecidomyiidae), a new biological control agent for Acacia mearnsii in South 

Africa. South African Journal of Science 104, 247-249. 

 

Jarmain, C., Everson, C.S., 2002. Comparative evaporation measurements above commercial 

forestry and sugarcane canopies in the KwaZulu-Natal midlands. CSIR Report ENV-C-

S 2002 005. CSIR, Pretoria. In: Dye, P., Jarmain, C., 2004. Water use by black wattle 

(Acacia mearnsii): implications for the link between removal of invading trees and 

catchment streamflow response. South African Journal of Science 100, 40-44. 

 

Jones, M.E., Shepherd, M., Henry, R., Delves, A., 2008. Pollen flow in Eucalyptus grandis 

determined by paternity analysis using microsatellite markers. Tree Genetics and 

Genomes 4, 37-47. 



 

 51

Joshi, C., de Leeuw, J., van Duren, I.C., 2004. Remote sensing and GIS applications for 

mapping and spatial modeling of invasive species. Proceedings of the International 

Society for Photogrammetry and Remote Sensing 35, 669-677. 

 

Julien, M.H., Griffiths, M.W., Wright, A.D., 1999. Biological control of water hyacinth. The 

weevils Neochetina bruchi and N. eichhorniae: biologies, host ranges, and rearing, 

releasing and monitoring techniques for biological control of Eichhornia crassipes. 

ACIAR Monograph No. 60, 87 pp. 

 

Khanna, P.K., 1997. Comparison of growth and nutrition of young monocultures and mixed 

stands of Eucalyptus globulus and Acacia mearnsii. Forest Ecology and Management 

94, 105-113. 

 

Kimothi, M.M., Anitha, D., Vasistha, H.B., Soni, P., Chandola, S.K., 2010. Remote sensing 

to map the invasive weed, Lantana camara in forests. Tropical Ecology 51, 67-74. 

 

Kruce, F., Lefkoff, A., Boardman, J., Heidebrecht, K., Shapiro, A., Barloon, P., Goetz, A., 

1993. The spectral image processing system (SIPS) interactive visualization and 

analysis of imaging spectrometer data. Remote Sensing of Environment 44, 145-163. 

In: Govender, M., Chetty, K., Bulcock, H., 2007. A review of hyperspectral remote 

sensing and its application in vegetation and water resource studies. Water SA 33, 145-

151. 

 

Kull, C.A., Rangan, H., 2008. Acacia exchanges: wattles, thorn trees, and the study of plant 

movements. Geoforum 39, 1258-1272. 

 

Landsberg, J.J., Waring, R.H., Coops, N.C., 2003. Performance of the forest productivity 

model 3-PG applied to a wide range of forest types. Forest Ecology and Management 

172, 199-214. 

 

Lass, L.W., Prather, T.S., Glenn, N.F., Weber, K.T., Mundt, J.T., Pettingill, J., 2005. A 

review of remote sensing of invasive weeds and example of the early detection of 

spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with 

a hyperspectral sensor. Weed Science 53, 242-251. 



 

 52

Lawrence, W., Lass, T.S., Prather, N.F., Glenn, K.T., Weber, J.T., Mundt, J.P., 2005. A 

review of remote sensing of invasive weeds and example of the detection of spotted 

knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a 

hyperspectral sensor. Weed Science 53, 242-251. 

 

Le Maitre, D.C., Versfeld, D.B., Chapman, R.A., 2000. Impact of invading alien plants on 

surface water resources in South Africa: a preliminary assessment. Water SA 26, 397-

408 

 

Le Maitre, D.C., van Wilgen, B.W., Gelderblom, C.M., Bailey, C., Chapman, R.A., Nel, J.A., 

2002. Invasive alien trees and water resources in South Africa: case studies of the costs 

and benefits of management. Forest Ecology and Management 160, 143-159. 

 

Leckie, D.G., Gougeon, F.A., Walsworth, N., Paradine, D., 2003. Stand delineation and 

composition estimation using semi-automated individual tree crown analysis. Remote 

Sensing of Environment 85, 355-369. 

 

Lodge, D.M., 1993. Biological invasions: lessons for ecology. Trends in Ecology and 

Evolution 8, 133-137. 

 

Maiden, J.H., 1891. Wattles and wattle-barks being hints on the conservation and cultivation 

of wattles. Department of Public Instruction, Technical Education Branch. Government 

Printer, Sydney. In: Searle, S.D., 1997. Acacia mearnsii De Wild. (black wattle) in 

Australia. In: Brown, A.G., Ko, H.C. (Eds.), Black wattle and its Utilisation – Abridged 

English Version. Rural Industries Research and Development Corporation, Barton Act, 

Australia, pp. 1-13.  

 

Marais, C., Wannenburgh, A.M., 2008. Restoration of water resources (natural capital) 

through the clearing of invasive alien plants from riparian areas in South Africa-costs 

and water benefits. South African Journal of Botany 74, 526-537. 

 

Mathur, S.M., Singh, P., 2004. Development and performance evaluation of a water hyacinth 

chopper cum crusher. Biosystems Engineering 88, 411-418. 

 



 

 53

Mladinich, C.S., Bustos, M.R., Stitt, S., Root, R., Brown, K., Anderson, G.L., Hager, S., 

2006. The use of Landsat 7 Enhanced Thematic Mapper Plus for mapping leafy spurge. 

Rangeland Ecology and Management 59, 500-506. 

 

Mutanga, O., van Aardt, J., Kumar, L., 2009. Imaging spectroscopy (hyperspectral remote 

sensing) in southern Africa: an overview. South African Journal of Science 105, 193-

198. 

 

Niu, X., 2006. A semi-automated framework for highway extraction and vehicle detection 

based on a geometric deformable model. ISPRS Journal of Photogrametry and Remote 

Sensing 61, 170-186. 

 

Oumar, Z., 2008. Field spectroscopy of plant water content in Eucalyptus grandis forest 

stands in KwaZulu-Natal, South Africa. MSc thesis, School of Environmental Sciences, 

University of KwaZulu-Natal, Pietermaritzburg, South Africa. 

 

Parker Williams, A., Hunt, Jr., E.R., 2002. Estimation of leafy spurge cover from 

hyperspectral imagery using mixture tuned matched filtering. Remote Sensing of 

Environment 82, 446-456. 

 

Pearlman, J.S., Barry, P.S., Segal, C.C., Shepanski, J., Beiso, D., Carman, S.L., 2003. 

Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and 

Remote Sensing 41, 1160-1173. 

 

Poynton, R.J., 1979. Tree planting in Southern Africa. Vol. 2. The Eucalyptus. Department of 

Forestry, Pretoria. In: Forsyth, G.G., Richardson, D.M., Brown, P.J., van Wilgen, B.W., 

2004. Rapid assessment of the invasive status of Eucalyptus species in two South 

African provinces. South African Journal of Science 100, 75-77. 

 

Prinsloo, F.W., Scott, D.F., 1999. Streamflow responses to the clearing of alien invasive trees 

from riparian zones at three sites in the Western Cape Province. The Southern African 

Forestry Journal 185, 1-7. 

 

Richardson, D.M., van Wilgen, B.W., 2004. Invasive alien plants in South Africa: how well 



 

 54

do we understand the ecological impacts? South African Journal of Science 100, 45-52. 

 

Richardson, W., McGuire, D., Grey, N., Preston, C., Watts, J., Crossman, N., 2006. Woody 

weed control using metsulfuron-methyl and glyphosate applied by boomless spray 

technology prior to clear fell of radiata pine (Pinus radiata). In: Preston, C., Watts, J.H., 

Crossman, N.D. (Eds.), 15th Australian Weeds Conference Papers and Proceedings: 

Managing Weeds in a Changing Climate, Adelaide, South Australia, 24–28 September 

2006, Weed Management Society of South Australia Proceedings, 890-893. 

 

Rose, S., Fairweather, P.G., 1997. Changes in floristic composition of urban bushland 

invaded by Pittosporum undulatum in northern Sydney, Australia. Australian Journal of 

Botany 45, 123-149. In: Lake, J.C., Leishman, M.R., 2004. Invasion success of exotic 

plants in natural ecosystems: the role of disturbance, plant attributes and freedom from 

herbivores. Biological Conservation 117, 215-226. 

 

Rowlinson, L.C., Summerton, M., Ahmed, F., 1999. Comparison of remote sensing data 

sources and techniques for identifying and classifying alien invasive vegetation in 

riparian zones. Water SA 25, 497-500. 

 

Russel, C., 2009. Investigating the utility of SPOT 5 imagery and artificial neural networks, 

in the identification and mapping of Acacia mearnsii within environments of varying 

complexity. MSc thesis, School of Environmental Sciences, University of KwaZulu-

Natal, Pietermaritzburg, South Africa. 

 

Samways, M.J., Taylor, S., 2004. Impacts of invasive alien plants on red-listed South African 

dragonflies (Odonata). South African Journal of Science 100, 78-80. 

 

Scott, D.F., 1997. The contrasting effects of wildfire and clearfelling on the hydrology of a 

small catchment. Hydrological Processes, In press. In: Scott, D.F., Lesch, W., 1997. 

Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to 

felling in the Mokobulaan experimental catchments, South Africa. Journal of 

Hydrology 199, 360-377. 

 

Scott, D.F., Lesch, W., 1997. Streamflow responses to afforestation with Eucalyptus grandis 



 

 55

and Pinus patula and to felling in the Mokobulaan experimental catchments, South 

Africa. Journal of Hydrology 199, 360-377. 

 

Searle, S.D., 1997. Acacia mearnsii De Wild. (black wattle) in Australia. In: Brown, A.G., 

Ko, H.C. (Eds.), Black wattle and its Utilisation – Abridged English Version. Rural 

Industries Research and Development Corporation, Barton Act, Australia, pp. 1-13.  

 

Story, M., Congalton, R.G., 1986. Accuracy assessment: a user’s perspective. 

Photogrammetric Engineering and Remote Sensing 52, 397−399. 

 

Tesfamichael, S.G., van Aardt, J.A.N., Ahmed, F., 2010. Estimating plot-level tree height and 

volume of Eucalyptus grandis plantations using small-footprint, discrete return lidar 

data. Progress in Physical Geography 34, 515-540. 

 

Tsai, F., Lin, E.K., Yoshino, K., 2007. Spectrally segmented principal component analysis of 

hyperspectral imagery for mapping invasive plant species. International Journal of 

Remote Sensing. 28, 1023-1039. 

 

Umvoti municipality, 2008. Umvoti municipality 2008/2009 integrated development plan. 

Umvoti Local Municipality, Greytown, available online at: 

http://kzntopbusiness.co.za/site/umvoti-municipality (accessed on 15 June 2011). 

 

Umzinyathi municipality, 2010. Umzinyathi district municipality: annual report 2009/2010. 

Umzinyathi District Municipality, Dundee, available online at: 

http://www.umzinyathi.gov.za/umzinyathi/index.php?option=com_docman&Itemid=13

1 (accessed on 15 June 2011). 

 

Ustin, S.L., DiPietro, D., Olmstead, K., Underwood, E., Scheer, G.J., 2002. Hyperspectral 

remote sensing for invasive species detection and mapping. Proceedings of the 2002 

IEEE International Geoscience and Remote Sensing Symposium 3, 1658-1660. 

 

van Wilgen, B.W., Richardson, D.M., Le Maitre, D.C., Marais, C., Magadlela, D., 2001. The 

economic consequences of alien plant invasions: examples of impacts and approaches 

to sustainable management in South Africa. Environment, Development and 



 

 56

Sustainability 3, 145-168. 

 

van Wilgen, B.W., de Wit, M.P., Anderson, H.J., Le Maitre, D.C., Kotze, I.M., Ndala, S., 

Brown, B., Rapholo, M.B., 2004. Costs and benefits of biological control of invasive 

alien plants: case studies from South Africa. South African Journal of Science 100, 113-

122. 

 

Vane, G., Goetz, A.F.H., 1993. Terrestrial imaging spectroscopy. Remote Sensing of 

Environment 24, 1–29. In: He, K.S., Rocchini, D., Neteler, M., Nagendra, H., 2011. 

Benefits of hyperspectral remote sensing for tracking plant invasions. Diversity and 

Distributions 17, 381-392. 

 

Verma, R., Singh, S.P., Ganesha, R.A.J., 2003. Assessment of changes in water hyacinth 

coverage of water bodies in northern part of Bangalore city using temporal remote 

sensing data. Current Science 84, 795-804. 

 

Viljoen, B.D., Stoltsz, C.W., 2008. Control of black wattle (Acacia mearnsii De Wild.) 

seedlings with Garlon herbicide applied by backpack mistblower. South African Journal 

of Plant and Soil 25, 242-244. 

 

Villamagna, A.M., Murphy, B.R., 2010. Ecological and socio-economic impacts of invasive 

water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55, 282–298. 

 

Zhao, H., Kumagai, J., Nakagawa, M., Shibasaki, R., 2002. Semi-automatic road extraction 

from high-resolution satellite image. International Archives Of  Photogrametry Remote 

Sensing and Spatial Information Sciences 34, 406-411. 

 

Zimmermann, H.G., Moran, V.C., Hoffmann, J.H., 2004. Biological control in the 

management of invasive alien plants in South Africa, and the role of the Working for 

Water programme. South African Journal of Science 100, 34-40. 

 

 

 



 

 57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 58 

Appendix A 

Source code implementing the black wattle classification algorithm  

A1.1. BlackWattle.javaBlackWattle.javaBlackWattle.javaBlackWattle.java    

package bw2; 
 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.geom.Rectangle2D; 
import java.awt.image.BufferedImage; 
import java.awt.image.ImageObserver; 
import java.awt.print.*; 
import java.io.*; 
import java.util.Iterator; 
 
import javax.imageio.ImageIO; 
import javax.imageio.ImageWriter; 
import javax.imageio.stream.ImageOutputStream; 
import javax.swing.*; 
import javax.swing.border.*; 
import org.apache.commons.math.MathException; 
 
/** 
 * A class that creates and displays the graphical user interface  
 * for the application. 
 */ 
public class BlackWattle implements Printable { 
  
 private static final ImageObserver observer = null; 
 
 /** 
  * Main method  
  * @throws IOException  
  */ 
 public static void main (String[] args)  
  throws IOException {  
   
  try { 

        
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName()); 

  } catch (Exception e) { 
   e.printStackTrace(); 
  }  
  BlackWattle gui = new BlackWattle();  
  gui.blackWattleHome(); 
 } 
   
 private JMenuItem jmibwclass, jmiopen, jmiexport, jmiclose, jmiprint; 
 private JButton jbtih, jbtid, jbts, jbto, jbtr, jbtc, jbtv, jbtci; 
 private JTextField direct1, direct2, direct3, direct4, direct5; 

private String pathifh = null, pathifd = null, pathis = null, pathiv = null, pathio = null;  
 static String path; 
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/** 
  * Creates a new BlackWattle instance. 
  */ 
 public BlackWattle() { 
 } 
  
 /** 
  * Creates and displays the first graphical user interface 
  * that is seen on startup. This graphical user interface 
  * comprises of a frame with two menu items that is  
  * "File" and "Classification" menu items. It is the  
  * classification menu item that leads to the "Black  
  * wattle classification" graphical user interface.  
  * @throws IOException  
  */ 
 public void blackWattleHome()  
  throws IOException {   
 
  final ImageIcon leaf = new ImageIcon("resources/leaf.png"); 
  Font font = new Font ("ArialNarrow", 0, 12); 
 
  /**Creates a frame**/ 
  JFrame frame = new JFrame("ESDA");   
  frame.setSize(744, 365); 
  frame.setResizable(false); 
  frame.setLocationRelativeTo(null); 
  frame.setIconImage(leaf.getImage()); 
  frame.setVisible(true); 
  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
 
  /**Creates and adds a menu bar to the frame**/ 
  JMenuBar jmb = new JMenuBar(); 
  frame.setJMenuBar(jmb); 
 
  /**Adds a "File" menu to the menu bar**/ 
  JMenu filemenu = new JMenu("File"); 
  filemenu.setFont(font); 
  jmb.add(filemenu); 
 
  /**Adds a "Classification" menu to the menu bar**/ 
  JMenu classificationmenu = new JMenu("Classification"); 
  classificationmenu.setFont(font); 
  jmb.add(classificationmenu); 
 
  /**Adds menu items to the "File" menu**/ 
  filemenu.add(jmiopen = new JMenuItem ("Open file")); 
  jmiopen.setFont(font); 
  filemenu.add(jmiexport = new JMenuItem ("Export")); 
  jmiexport.setFont(font); 
  filemenu.addSeparator(); 
  filemenu.add(jmiclose = new JMenuItem ("Exit")); 
  jmiclose.setFont(font); 
  filemenu.add(new JSeparator(JSeparator.VERTICAL)); 
  classificationmenu.add(jmibwclass = new JMenuItem("Black wattle classification"));  
  jmibwclass.setFont(font); 
 
  /**Adds the startup image to the frame**/ 
  BufferedImage intro = ImageIO.read(new File("resources/intro.png")); 
  JLabel introlabel = new JLabel(new ImageIcon(intro)); 
  frame.add(introlabel); 
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/**Register listeners**/ 
  jmiopen.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    path = chooseFiles(); 
    try { 
     displayClassifiedImage(path); 
    } catch (NullPointerException e1) { 

JOptionPane.showMessageDialog(null, "ERROR select a classified 
image(.png) to display.", "Error", JOptionPane.ERROR_MESSAGE); 

    } catch (FileNotFoundException e1) { 
JOptionPane.showMessageDialog(null, "ERROR classified image not 
found.", "Error", JOptionPane.ERROR_MESSAGE); 

    } catch (IOException e1) { 
JOptionPane.showMessageDialog(null, "ERROR reading classified 
image file.", "Error", JOptionPane.ERROR_MESSAGE); 

    }    
   } 
  }); 
 
  jmiexport.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    try { 
     exportClassifiedImage(); 
    }  catch (IOException e1) { 

JOptionPane.showMessageDialog(null, "ERROR creating exported 
image.", "Error", JOptionPane.ERROR_MESSAGE); 

    } 
   }     
  }); 
 
  jmiclose.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    System.exit(0); 
   } 
  }); 
 
  jmibwclass.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    blackWattleClassification(); 
   } 
  }); 
 } 
 
 /** 
  * Creates and displays the classification algorithm graphical user  
  * interface. The user is prompted to select the relevant files  
  * for each field. 
  * <p> 
  *   > Hyperion Image Header File: Select the Hyperion image header file(.HDR). 
  * <p>  
  *   > Hyperion Image Data File: Select the Hyperion image data file. 
  * <p> 

 *           > Spectral Signature File: Select the spectral signature file(.txt) captured            
from the image. 

  *     Select the "Image" checkbox. 
  * <P> 
  *   > Ground Truth Data File: Select the ground truth data file(.txt). 
  *     Select the "Validation" checkbox.  
  * <p> 

 *   > Save Classified Image As: Select the location where the classified image   
will be save be to.  

  */ 
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 public void blackWattleClassification() {  
 
  ImageIcon leaf = new ImageIcon("resources/leaf.png"); 
  Font font = new Font ("ArialNarrow", 0, 11); 
  Border loweredetched = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED);  
 
  /**Panel to hold the Hyperion image header and data file**/ 
  final JPanel p1a = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
 
  p1a.add(jbtih = new JButton("Hyperion Image Header File")); 
  jbtih.setPreferredSize(new Dimension(166, 20)); 
  jbtih.setFont(font); 
  jbtih.setHorizontalAlignment(SwingConstants.LEFT); 
  p1a.add(direct1 = new JTextField()); 
  direct1.setPreferredSize(new Dimension(518, 21)); 
  direct1.setFont(font);  
 
  final JPanel p1b = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
  p1b.add(jbtid = new JButton("Hyperion Image Data File")); 
  jbtid.setPreferredSize(new Dimension(166, 20)); 
  jbtid.setFont(font); 
  jbtid.setHorizontalAlignment(SwingConstants.LEFT); 
  p1b.add(direct2 = new JTextField()); 
  direct2.setPreferredSize(new Dimension(518, 21)); 
  direct2.setFont(font);  
 
  final JPanel p1 = new JPanel(new GridLayout(2, 2, 0, 0)); 
  p1.add(p1a); 
  p1.add(p1b); 
  p1.setBorder(loweredetched); 
 
  /**Creates the checkboxes**/ 
  final JCheckBox jimg = new JCheckBox("Image File"); 
  jimg.setFont(font); 
  final JCheckBox jval = new JCheckBox("Validation");  
  jval.setFont(font); 
   
  /**Panel to hold the spectral signature and ground truth data files**/ 
  final JPanel p2a = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
 
  p2a.add(jbts = new JButton("Spectral Signature File ")); 
  jbts.setPreferredSize(new Dimension(166, 20)); 
  jbts.setFont(font); 
  jbts.setHorizontalAlignment(SwingConstants.LEFT); 
  p2a.add(direct3 = new JTextField()); 
  direct3.setPreferredSize(new Dimension(518, 21)); 
  direct3.setFont(font); 
   
  JPanel p2b = new JPanel(new FlowLayout(FlowLayout.RIGHT, 130, 5)); 
  p2b.add(jimg); 
 
  final JPanel p2c = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
  p2c.add(jbtv = new JButton("Ground Truth Data File ")); 
  jbtv.setPreferredSize(new Dimension(166, 20)); 
  jbtv.setFont(font); 
  jbtv.setHorizontalAlignment(SwingConstants.LEFT); 
  jbtv.setEnabled(false); 
  p2c.add(direct4 = new JTextField()); 
  direct4.setPreferredSize(new Dimension(518, 21)); 
  direct4.setFont(font); 
  direct4.setEditable(false); 
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  JPanel p2d = new JPanel(new FlowLayout(FlowLayout.RIGHT, 128, 5)); 
  p2d.add(jval); 
 
  final JPanel p2 = new JPanel(new GridLayout(4, 2, 0, 0)); 
  p2.add(p2a); 
  p2.add(p2b); 
  p2.add(p2c); 
  p2.add(p2d); 
  p2.setBorder(loweredetched); 
 
  /**Panel to hold the output classified image file**/ 
  final JPanel p3 = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
 
  p3.add(jbto = new JButton("Save Classified Image As")); 
  jbto.setPreferredSize(new Dimension(166, 20)); 
  jbto.setFont(font); 
  p3.add(direct5 = new JTextField()); 
  direct5.setPreferredSize(new Dimension(518, 21)); 
  direct5.setFont(font); 
  p3.setBorder(loweredetched); 
 
  /**Panel to hold the apply and cancel buttons**/ 
  final JPanel p4 = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
 
  p4.add(jbtr = new JButton("Apply")); 
  jbtr.setPreferredSize(new Dimension(70, 20)); 
  jbtr.setFont(font); 
  p4.add(jbtc = new JButton("Cancel")); 
  jbtc.setPreferredSize(new Dimension(70, 20)); 
  jbtc.setFont(font); 
  p4.setBorder(loweredetched); 
 
  /**Panel to hold all created panels**/ 
  final JPanel p5 = new JPanel(new FlowLayout(FlowLayout.RIGHT, 10, 14)); 
  p5.add(p1); 
  p5.add(p2); 
  p5.add(p3); 
  p5.add(p4); 
 
  /**Creates the Black wattle classification frame**/ 
  final JFrame bwframe = new JFrame("Black wattle classification"); 
  bwframe.setSize(744, 365); 
  bwframe.setResizable(false); 
  bwframe.setLocationRelativeTo(null); 
  bwframe.setIconImage(leaf.getImage()); 
  bwframe.setVisible(true); 
  bwframe.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);  
  bwframe.add(p5); 
 
  /**Register listeners**/ 
  jbtih.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbtih) { 
     pathifh = chooseFiles(); 
     direct1.setText(pathifh); 
     direct1.setCaretPosition(0); 
    } 
   } 
  }); 
 
  jbtid.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
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    if (e.getSource() == jbtid) { 
     pathifd = chooseFiles(); 
     direct2.setText(pathifd); 
     direct2.setCaretPosition(0); 
    } 
   } 
  }); 
 
  jbts.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbts) { 
     pathis = chooseFiles(); 
     direct3.setText(pathis); 
     direct3.setCaretPosition(0); 
    } 
   } 
  });   
 
  jimg.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
   }      
  }); 
 
  jval.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (jval.isSelected() == true) { 
     direct4.setEditable(true); 
     jbtv.setEnabled(true); 
    } else if (jval.isSelected() == false) { 
     direct4.setEditable(false); 
     jbtv.setEnabled(false); 
    } 
   }      
  }); 
 
  jbtv.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbtv) { 
     pathiv = chooseFiles(); 
     direct4.setText(pathiv); 
     direct4.setCaretPosition(0); 
    } 
   } 
  }); 
 
  jbto.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbto) { 
     JFileChooser jc = new JFileChooser(); 
     jc.showSaveDialog(null); 
     try { 
      pathio = jc.getSelectedFile().getCanonicalPath() + ".png"; 
     } catch (NullPointerException e1) { 

JOptionPane.showMessageDialog(null, "Input classified 
image file name.", "Error", JOptionPane.ERROR_MESSAGE); 

     } catch (IOException e1) { 
JOptionPane.showMessageDialog(null, "ERROR creating 
classified image.", "Error", JOptionPane.ERROR_MESSAGE); 

     } 
     direct5.setText(pathio); 
     direct5.setCaretPosition(0); 
    }  
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   } 
  }); 
 
  jbtr.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbtr) { 
     try { 

HyperionImage hyperionimage = new HyperionImage(pathifh, 
pathifd); 
StatisticalTests spectralsignature = new 
StatisticalTests(pathis, hyperionimage); 

      if (jimg.isSelected() == false) {   
       throw new IllegalArgumentException();  
      } else if (jimg.isSelected() == true) { 
       spectralsignature.setImgVal(); 
      } 
      spectralsignature.zTable(); 
      if (jval.isSelected() == true) { 

StatisticalTests validation = new 
StatisticalTests(pathiv, hyperionimage); 

       validation.setObservedExpectedVal(); 
       validation.chiSquaredTest();  
      } 
      if (pathio == null) { 
       throw new NullPointerException(); 
      }   

RasterImage rasterimage2 = new RasterImage(pathio, 
hyperionimage);  

      rasterimage2.createRaster();; 
      rasterimage2.classifiedImageFrame(); 
      if (jval.isSelected() == true) { 
       rasterimage2.accuracyAssessmentFrame(); 
      } 
     } catch (IllegalArgumentException e1) { 

JOptionPane.showMessageDialog(null, "Select spectral 
signature file." +  "\nSelect either ASD file or Image 
file checkbox.", "Error", JOptionPane.ERROR_MESSAGE); 

     } catch (NullPointerException e1) { 
JOptionPane.showMessageDialog(null, "Select spectral 
signature file." + "\nInput classified image file name.", 
"Error", JOptionPane.ERROR_MESSAGE); 

     } catch (FileNotFoundException e1) { 
JOptionPane.showMessageDialog(null, "ERROR spectral 
signature file not found.", "Error", 
JOptionPane.ERROR_MESSAGE); 

     } catch (IOException e1) { 
      e1.printStackTrace(); 

JOptionPane.showMessageDialog(null, "ERROR reading 
spectral signature file.", "Error", 
JOptionPane.ERROR_MESSAGE); 

     } catch (MathException e1) { 
      e1.printStackTrace(); 
     } 
    } 
   } 
  }); 
 
  jbtc.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbtc) { 
     bwframe.setVisible(false);  
    } 



 

 65 

   } 
  }); 
 } 
 
 /** 
  * Creates and displays the graphical user interface to display the 
  * classified image.  
  * @param pathio Pathname of the classified image 
  * @throws FileNotFoundException 
  * @throws IOException 
  */ 
 public void displayClassifiedImage(String pathio) 
  throws FileNotFoundException, IOException { 
   
  try { 
   ImageIcon leaf = new ImageIcon("resources/leaf.png"); 
   Font font = new Font ("ArialNarrow", 0, 11); 
   Font font2 = new Font ("ArialNarrow", Font.BOLD, 13); 
   BufferedImage image = null; 
   String pathci = pathio; 
 
   /**Reads the classified image**/ 
   image = ImageIO.read(new File(pathci)); 
   JLabel classifiedimage = new JLabel(new ImageIcon(image)); 
   int height = image.getWidth(); 
   int width = image.getHeight(); 
 
   /**Panel to hold the title**/ 

final JPanel p1 = new JPanel(new FlowLayout(FlowLayout.CENTER, height / 2 - 
25, 5)); 

   JLabel classifiedimage1  = new JLabel("Classified Image"); 
   classifiedimage1.setFont(font2); 
   p1.add(classifiedimage1); 
 
   /**Panel to hold the classified image**/ 
   final JPanel p2 = new JPanel(new FlowLayout(FlowLayout.CENTER, 0, 0)); 
   p2.add(classifiedimage); 
 
   /**Panel to hold the legend**/ 
   final JPanel p3 = new JPanel(new GridLayout(5, 2, 10, 5)); 
   p3.setBorder(new TitledBorder("Legend")); 
 
   final JTextField red = new JTextField(); 
   red.setBackground(Color.RED); 
   red.setEditable(false); 
   p3.add(red); 
   JLabel legend1 = new JLabel("0.75 - 0.99"); 
   legend1.setFont(font); 
   p3.add(legend1); 
 
   final JTextField yellow = new JTextField(); 
   yellow.setBackground(Color.YELLOW); 
   yellow.setEditable(false); 
   p3.add(yellow); 
   JLabel legend2 = new JLabel("0.50 - 0.75"); 
   legend2.setFont(font); 
   p3.add(legend2); 
 
   final JTextField green = new JTextField(); 
   green.setBackground(Color.GREEN); 
   green.setEditable(false); 
   p3.add(green); 
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   JLabel legend3 = new JLabel("0.25 - 0.50"); 
   legend3.setFont(font); 
   p3.add(legend3); 
 
   final JTextField blue = new JTextField(); 
   blue.setBackground(Color.BLUE); 
   blue.setEditable(false); 
   p3.add(blue); 
   JLabel legend4 = new JLabel("0.00 - 0.25"); 
   legend4.setFont(font); 
   p3.add(legend4); 
 
   final JTextField wht = new JTextField(1); 
   wht.setBackground(Color.WHITE); 
   wht.setEditable(false); 
   p3.add(wht); 
   JLabel legend5 = new JLabel("0.00"); 
   legend5.setFont(font); 
   p3.add(legend5); 
 
   /**Panel to hold the scale bar and north arrow**/ 
   final JPanel p4a = new JPanel(new BorderLayout(10, 10)); 
 
   BufferedImage scale = ImageIO.read(new File("resources/scalebar2.jpg")); 
   JLabel scalelabel = new JLabel(new ImageIcon(scale)); 
   p4a.add(scalelabel, BorderLayout.WEST); 
 
   BufferedImage northarrow = ImageIO.read(new File("resources/northarrow.jpg")); 
   JLabel northarrowlabel  = new JLabel(new ImageIcon(northarrow )); 
   p4a.add(northarrowlabel, BorderLayout.EAST); 
 
   final JPanel p4 = new JPanel(new BorderLayout(10, 10)); 
   p4.add(p4a, BorderLayout.SOUTH); 
 

/**Panel to hold the panels containing the legend, scale bar, north arrow, co-
ordinate and statistical information**/ 

   final JPanel p8 = new JPanel(new BorderLayout(10, 10)); 
   p8.add(p3, BorderLayout.WEST); 
   p8.add(p4, BorderLayout.EAST); 
 
   /**Panel to hold all created panels**/ 
   final JPanel p9 = new JPanel(new FlowLayout(FlowLayout.CENTER, 10, 10)); 
   p9.add(p1); 
   p9.add(p2); 
   p9.add(p8); 
 
   /**Creates a frame for the the classified image**/ 
   final JFrame frame = new JFrame("Classified image"); 
   frame.setSize(height + 60, width + 270); 
   frame.setResizable(true); 
   frame.setLocationRelativeTo(null); 
   frame.setIconImage(leaf.getImage()); 
   frame.setVisible(true); 
   frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE); 
   frame.add(p9); 
 
   /**Creates and adds a menu bar to the frame**/ 
   JMenuBar jmb = new JMenuBar(); 
   frame.setJMenuBar(jmb); 
 
   /**Adds a menu "File" to the menu bar**/ 
   JMenu filemenu = new JMenu("File"); 
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   filemenu.setFont(font); 
   jmb.add(filemenu); 
 
   /**Adds menu items to the "File" menu**/ 
   filemenu.add(jmiprint = new JMenuItem ("Print")); 
   jmiprint.setFont(font); 
   filemenu.addSeparator(); 
   filemenu.add(jmiclose = new JMenuItem ("Close")); 
   jmiclose.setFont(font); 
 
   /**Register listeners**/ 
   jmiprint.addActionListener(new ActionListener() {  
    public void actionPerformed (ActionEvent e) { 
     PrinterJob printJob = PrinterJob.getPrinterJob(); 
     printJob.setPrintable(new BlackWattle()); 
     boolean doPrint = printJob.printDialog(); 
     if (doPrint) { 
      try { 
       printJob.print(); 
      } catch (PrinterException e1) { 
         /* The job did not successfully complete*/ 
      } 
     } 
    } 
   }); 
 
   jmiclose.addActionListener(new ActionListener() {  
    public void actionPerformed (ActionEvent e) { 
     frame.setVisible(false); 
    } 
   }); 
    
  } catch (IllegalArgumentException e1) { 

JOptionPane.showMessageDialog(null, "ERROR displaying the classified image.", 
"Error", JOptionPane.ERROR_MESSAGE); 

  } 
 }  
 
 /** 
  * Converts the classified image from .png to .tiff data format. 
  * @throws IOException 
  */ 
 public void exportClassifiedImage()  
  throws IOException  { 
 
  ImageIcon leaf = new ImageIcon("resources/leaf.png"); 
  Font font = new Font ("ArialNarrow", 0, 11); 
  Border loweredetched = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED);  
 
  /**Panel to hold the Hyperion image header and data file**/ 
  final JPanel p1a = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
 
  p1a.add(jbtci = new JButton("Classified Image")); 
  jbtci.setPreferredSize(new Dimension(166, 20)); 
  jbtci.setFont(font); 
  jbtci.setHorizontalAlignment(SwingConstants.LEFT); 
  p1a.add(direct1 = new JTextField()); 
  direct1.setPreferredSize(new Dimension(500, 21)); 
  direct1.setFont(font);  
 
  final JPanel p1b = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
  p1b.add(jbto = new JButton("Save File As")); 
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  jbto.setPreferredSize(new Dimension(166, 20)); 
  jbto.setFont(font); 
  jbto.setHorizontalAlignment(SwingConstants.LEFT); 
  p1b.add(direct2 = new JTextField()); 
  direct2.setPreferredSize(new Dimension(500, 21)); 
  direct2.setFont(font);  
 
  final JPanel p1 = new JPanel(new GridLayout(2, 2, 0, 0)); 
  p1.add(p1a); 
  p1.add(p1b); 
  p1.setBorder(loweredetched); 
 
  /**Panel to hold the apply and cancel buttons**/ 
  final JPanel p2 = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
 
  p2.add(jbtr = new JButton("Apply")); 
  jbtr.setPreferredSize(new Dimension(70, 20)); 
  jbtr.setFont(font); 
  p2.add(jbtc = new JButton("Cancel")); 
  jbtc.setPreferredSize(new Dimension(70, 20)); 
  jbtc.setFont(font); 
  p2.setBorder(loweredetched); 
 
  final JPanel p5 = new JPanel(new FlowLayout(FlowLayout.RIGHT, 10, 10)); 
  p5.add(p1); 
  p5.add(p2); 
 
  /**Creates a frame for the the classified image**/ 
  final JFrame frame = new JFrame("Export classified image"); 
  frame.setSize(744, 170); 
  frame.setResizable(false); 
  frame.setLocationRelativeTo(null); 
  frame.setIconImage(leaf.getImage()); 
  frame.setVisible(true); 
  frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE); 
  frame.add(p5); 
 
  /**Register listeners**/ 
  jbtci.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbtci) { 
     pathifd = chooseFiles(); 
     direct1.setText(pathifd); 
     direct1.setCaretPosition(0); 
    } 
   } 
  }); 
 
  jbto.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbto) { 
     JFileChooser jc = new JFileChooser(); 
     jc.showSaveDialog(null); 
     try { 

pathio = jc.getSelectedFile().getCanonicalPath() + 
".tiff"; 

     } catch (NullPointerException e1) { 
JOptionPane.showMessageDialog(null, "ERROR input exported 
image file name.", "Error", JOptionPane.ERROR_MESSAGE);  

     } catch (IOException e1) { 
JOptionPane.showMessageDialog(null, "ERROR reading 
classified image.", "Error", JOptionPane.ERROR_MESSAGE); 
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     } 
     direct2.setText(pathio); 
     direct2.setCaretPosition(0); 
    }  
   } 
  }); 
 
  jbtr.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbtr) { 
     try { 
      final BufferedImage png = ImageIO.read(new File(pathifd));  
    

Iterator writers = 
ImageIO.getImageWritersByFormatName("png"); 

      ImageWriter writer = (ImageWriter) writers.next(); 
      if (writer == null) { 
       throw new RuntimeException("PNG not supported?!"); 
      } 
      File file = new File(pathio); 

ImageOutputStream out = 
ImageIO.createImageOutputStream(file); 

      writer.setOutput(out); 
      writer.write(png); 
      out.close(); 
      displayClassifiedImage(pathio); 
     } catch (NullPointerException e1) { 

JOptionPane.showMessageDialog(null, "ERROR select a 
classified image(.png) to export or \ninput a file name 
for the exported image", "Error", 
JOptionPane.ERROR_MESSAGE); 

     } catch (IOException e1) { 
JOptionPane.showMessageDialog(null, "ERROR classified 
image file not found.", "Error", 
JOptionPane.ERROR_MESSAGE); 

     } 
    } 
   } 
  }); 
  
  jbtc.addActionListener(new ActionListener() {  
   public void actionPerformed (ActionEvent e) { 
    if (e.getSource() == jbtc) { 
     frame.setVisible(false);  
    } 
   } 
  }); 
   
 } 
 
 /** 
  * Creates a file chooser dialog and returns the pathname of a selected file. 
  * @return path: The pathname of the selected file.  
  */ 
 public String chooseFiles() { 
 
  String path = null; 
  JFileChooser jfilechooser = new JFileChooser(); 
  jfilechooser.setVisible(true); 
  if (jfilechooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION) { 
   java.io.File file = jfilechooser.getSelectedFile(); 
   path = (file.getPath()); 
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  } 
  return path;   
 } 
 
 /** 
  * Prints a map layout of the classified image. 
  * @param graphics The context into which the page is drawn 
  * @param pageformat The size and orientation of the page being drawn 
  * @param pageindex The zero based index of the page to be drawn 
  * @return PAGE_EXISTS: If the page is rendered successfully 
  * @throws PrinterException  
  */ 
 public int print(Graphics graphics, PageFormat pageformat, int pageindex) 
  throws PrinterException { 
 
  if (pageindex > 0) {  
   return NO_SUCH_PAGE; 
  } 
  Graphics2D g2d = (Graphics2D)graphics; 
  g2d.translate(pageformat.getImageableX(), pageformat.getImageableY()); 
  BufferedImage image; 
  try { 

Rectangle2D.Double border = new Rectangle2D.Double(0, 0, 
pageformat.getImageableWidth(), pageformat.getImageableHeight()); 

   g2d.draw(border);      
   image = ImageIO.read(new File(path));  
   int x = ((int) pageformat.getWidth() / 2) - (image.getWidth() / 2 ); 
   String title = new String("Classified Image"); 
   graphics.drawString(title, 20 + x + image.getWidth() / 4, 50); 
   graphics.drawImage(image, x, (int) pageformat.getHeight() / 8 , observer); 
  } catch (IOException e) { 
   e.printStackTrace(); 
  } 
  return PAGE_EXISTS; 
 } 
  
} 
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A1.2. HyperionImage.javaHyperionImage.javaHyperionImage.javaHyperionImage.java    

package bw2; 
 
import java.io.*; 
import java.util.*; 
import java.util.logging.Level; 
import java.util.logging.Logger; 
import javax.swing.JOptionPane; 
 
/** 
 * A class that reads the Hyperion image header file (.HDR)  
 * and the Hyperion image data file which is in band  
 * interleaved pixel(BIP) interleaving.    
 */ 
public class HyperionImage { 
 
 private int bandsnumber, columnsnumber, rowsnumber; 
 private double latitude, longitude, pixelsize;  
 private String interleave; 
 private RandomAccessFile file; 
 private int headeroffset = 0; 
 private long position = 0; 
 private final Logger logger = Logger.getLogger(HyperionImage.class.getCanonicalName()); 
 private final int TYPESIZE = 2; 
 
 /** 
  * Creates a new HyperionImage instance.  
  */ 
 public HyperionImage() { 
 } 
 
 /** 

* Creates a new HyperionImage instance given the header file(.HDR) pathname and data file   
pathname.  

  * @param headerfile Pathname of the header file  
  * @param datafile Pathname of the data file  
  * @throws FileNotFoundException 
  * @throws IOException 
  */ 
 public HyperionImage(String headerfile, String datafile) 
  throws FileNotFoundException, IOException { 
   
  try { 
   this.readHeaderFile(headerfile); 
   this.file = new RandomAccessFile(datafile, "r"); 
  } catch (NullPointerException e1) { 

JOptionPane.showMessageDialog(null, "Select Hyperion image header/data file.", 
"Error", JOptionPane.ERROR_MESSAGE); 

  } catch (FileNotFoundException e1) { 
JOptionPane.showMessageDialog(null, "ERROR Hyperion image header/data file not 
found.", "Error", JOptionPane.ERROR_MESSAGE); 

  } catch (IOException e1) { 
JOptionPane.showMessageDialog(null, "ERROR reading Hyperion image header/data 
file.", "Error", JOptionPane.ERROR_MESSAGE); 

  } 
 } 
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/**  
  * Gets the number of bands in the Hyperion image. 
  * @return bandsnumber: Number of bands  
  */ 
 public int getBandsNumber() { 
  return bandsnumber; 
 }    
 
 /**  
  * Gets the number of columns in the Hyperion image. 
  * @return columnsnumber: Number of columns  
  */ 
 public int getColumnsNumber() { 
  return columnsnumber; 
 } 
 
  /**  
  * Gets the number of rows in the Hyperion image. 
  * @return rowsnumber: Number of rows 
  */ 
 public int getRowsNumber() { 
  return rowsnumber; 
 }  
 
  /**  
  * Gets the Hyperion image data file. 
  * @return file: Hyperion image data file  
  */ 
 public RandomAccessFile getFile() { 
  return file; 
 }  
 
  /**  
  * Gets the position of the file pointer in the Hyperion image data file. 
  * @return position: Position in the data file 
  */ 
 public long getPosition() { 
  return position; 
 }  
 
  /**  
  * Sets the position of the file pointer after reading  
  * a single digital number value of type short. 
  */ 
 public long setPosition() { 
  return getPosition() + TYPESIZE; 
 } 
 
  /** 
  * Iterator method that checks if there's any pixel left to read. 
  * @return True if there's an unread pixel in the data file, false otherwise. 
  */ 
 public boolean hasNext() { 
  return position < getRowsNumber() * getColumnsNumber(); 
 } 
 
  /**  
  * Gets the latitude of pixel 0,0. 
  * @return latitude     
  */ 
 public double getLatitude() { 
  return latitude; 
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 } 
 
  /**  
  * Gets the longitude of pixel 0,0. 
  * @return longitude  
  */ 
 public double getLongitude() { 
  return longitude; 
 } 
 
  /**  
  * Gets the offset between lines of latitude and longitude. 
  * @return pixelsize  
  */ 
 public double getPixelSize() { 
  return pixelsize; 
 } 
   
  /**  
  * Converts digital number values from small endian to big endian. 
  * @param s: Small endian value 
  * @return big endian value 
  */ 
 public short toBigEndian(short s) { 
  return (short) ((short) ((s >>> 8) & 0xff) | ((s << 8) & 0xff00)); 
 } 
   
  /**  

* Reads the Hyperion image attribute information(dimensions of the image, data format 
etc.) from the Hyperion image header file. 

  * @param headerfile Pathname of the header file  
  * @throws NullpointerException 
  * @throws IOException 
  */ 
 public void readHeaderFile(String headerfile)  
  throws IOException { 
   
  String line; 
  logger.log(Level.INFO, "Processing ENVI header file " + headerfile + "."); 
  try { 
   final BufferedReader header = new BufferedReader(new FileReader(headerfile)); 
   int setValues = 0x0; 
   line = header.readLine().trim(); 
   if (!line.equals("ENVI")) { 
     throw new IllegalArgumentException(); 
   } 
   header.readLine(); 
   header.readLine(); 
   header.readLine(); 
   while ((line = header.readLine()) != null) { 
    final String[] pair = line.split("="); 
    pair[0] = pair[0].trim(); 
    pair[1] = pair[1].trim(); 
    if (pair[0].equals("samples")) { 
     columnsnumber = Integer.parseInt(pair[1]); 
     setValues |= 0x1; 
    } else if (pair[0].equals("lines")) { 
     rowsnumber = Integer.parseInt(pair[1]); 
     setValues |= 0x2; 
    } else if (pair[0].equals("bands")) { 
     bandsnumber = Integer.parseInt(pair[1]); 
     setValues |= 0x4; 
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    } else if (pair[0].equals("header offset")) { 
     headeroffset = Integer.parseInt(pair[1]); 
     setValues |= 0x8; 
     } else if (pair[0].equals("interleave")) { 
      interleave = pair[1]; 
      setValues |= 0x12;  
     } else if (pair[0].equals("map info")) { 
      String[] mapinfo = pair[1].split(","); 
      longitude = Double.parseDouble(mapinfo[3]); 
      latitude = Double.parseDouble(mapinfo[4]); 
      pixelsize = Double.parseDouble(mapinfo[5]); 
      setValues |= 0x14; 
      break; 
     }  
   } 
   if (setValues != 31) { 
    throw new IllegalArgumentException(); 
   } 
   header.close(); 

logger.log(Level.INFO, "ENVI header file " + headerfile + " processed 
successfully."); 

  } catch (IllegalArgumentException e1) { 
JOptionPane.showMessageDialog(null, "ERROR Invalid Hyperion image header 
file.", "Error", JOptionPane.ERROR_MESSAGE); 

  } 
 } 
    
 /** 
  * Returns digital number values from the Hyperion image data file  
  * for a single pixel at a given time given the row and column values. 
  * @param r Row number  
  * @param c Column number 
  * @return value: Array of digital number values 
  * @throws IOException 
  */ 
 public double[] readDataFile(int r, int c)  
  throws IOException { 
    
  double[] value = new double[getBandsNumber()]; 
  if (!hasNext()) { 
    throw new NoSuchElementException(); 
  } 
  RandomAccessFile file = this.getFile(); 
  short value0; 
  int i = (r * getColumnsNumber() + c); 
  file.seek(headeroffset + (long) (TYPESIZE * getBandsNumber()) * i); 
  for (int j = 0; j < getBandsNumber(); j++) { 
   value0 = file.readShort(); 
   setPosition(); 
   value0 = toBigEndian(value0);  
   value[j] = ((double)value0); 
  } 
  return value;  
 } 
 
} 
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A1.3.    StatisticalTestsStatisticalTestsStatisticalTestsStatisticalTests.java.java.java.java    

package bw2; 
 
import java.io.*; 
import javax.swing.JOptionPane; 
import org.apache.commons.math.*; 
import org.apache.commons.math.stat.inference.ChiSquareTestImpl; 
 
/** 
* A class that carries out a novel statistically based comparison technique and Chi-squared test.  
 * A novel statistically based comparison technique is carried out between the  
 * spectral signature inputed by the user and digital number values for a single pixel  
 * from the Hyperion image data file. A Chi-squared test is carried out between the  
 * ground truth data and the outputted classified image. This class also creates an  
 * error matrix and contingency table.  
 */ 
public class StatisticalTests { 
  
 private HyperionImage hyperionimage = null; 
 private double[] value = null, z = null, pval = null; 
 private static double[] expectedvalues = new double[2]; 
 private static double[][] ztable = new double[83][11]; 
 private String path; 
 private double zscore, zscore1; 
 private static double chipval; 
 static long[] observedvalues = new long[2]; 
 private static double[] specmean = new double[250], specstdev = new double[250]; 
 private double errormatrix[] =  new double[12];  
 
 /** 
  * Creates a new StatisticalTests instance.  
  */ 
 public StatisticalTests() { 
 } 
 
 /** 
  * Creates a new StatisticalTests instance given the pathname and the HyperionImage object. 
  * @param path Pathname of file used by statistical test 
  * @param hyperionimage HyperionImage object  
  */ 
 public StatisticalTests(String path, HyperionImage hyperionimage) { 
  this.path = path; 
  this.hyperionimage = hyperionimage; 
 } 
 
 /** 
  * Creates a new StatisticalTests instance given the digital number values  
  * for a single pixel from the Hyperion image data file and the HyperionImage  
  * object. This instance should be used when carrying out a novel statistically  
  * based comparison technique. 
  * @param value Digital number values for a single pixel 
  * @param hyperionimage HyperionImage object 
  */ 
 public StatisticalTests(double[] value, HyperionImage hyperionimage) { 
  this.hyperionimage = hyperionimage; 
  this.value = new double[hyperionimage.getBandsNumber()]; 
  this.value = value; 
  z = new double[hyperionimage.getBandsNumber()]; 
  pval = new double[hyperionimage.getBandsNumber()]; 
 } 
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 /** 
  * Sets the mean and standard deviation values for the spectral signature;  
  * values are read and stored from the spectral signature file inputed by  
  * the user that was obtained from the image.  
  * @throws IOException  
  */ 
 public void setImgVal()  
  throws IOException { 
 
  int j = 0, mean = 0, std = 0; 
  String strread = null; 
  String[] splitarray = new String[2]; 
  BufferedReader rb = new BufferedReader(new FileReader(path)); 
  try {     
   strread = rb.readLine().trim(); 
   if (!strread.startsWith("Spectral")) { 
    throw new IllegalArgumentException(); 
   } 
   strread = rb.readLine(); 
   splitarray = strread.split("\t"); 
                    if (((splitarray[0].startsWith("mean")) ||    

(splitarray[0].startsWith("Mean")))) { 
    mean = 0; 
    std = 1; 
   } 
   else {  
    mean = 1; 
    std = 0; 
   } 
   while ((strread = rb.readLine())!= null) { 
    strread = strread.trim(); 
    splitarray = strread.split("\t"); 
    specmean[j] = Double.parseDouble(splitarray[mean]); 
    specstdev[j] = Double.parseDouble(splitarray[std]); 
    j++; 
   } 
   rb.close(); 
  } catch (IllegalArgumentException e1) { 

JOptionPane.showMessageDialog(null, "ERROR Invalid spectral signature file.", 
"Error", JOptionPane.ERROR_MESSAGE); 

  } 
 } 
 
 /** 
  * Carries out a novel statistically based comparison technique between the  
  * spectral signature inputed by the user and digital number values for a single  
  * pixel from the Hyperion image data file.   
  * @return zprobability: z probability for a single pixel 
  */ 
 public double zTest() { 
 
  int percent = 0, sum = 0; 
  double sumprob = 0, zprobability = 0; 
  for (int i = 0; i < hyperionimage.getBandsNumber(); i++) { 
   sum += value[i]; 
  } 
  if (sum != 0) { 
   for (int i = 0; i < hyperionimage.getBandsNumber(); i++) { 
    z[i] = ((((this.value[i]) / 10000) - specmean[i]) / specstdev[i]); 
    double a = z[i] * 100; 
    int a1 = (int) Math.round(a); 
    double b = a1 / 10; 



 

 77 

    double x1 = b / 10; 
    double x2 = -1 * x1; 
    double b2 = a1 % 10; 
    double y = Math.abs(b2 / 100); 
    if (x1 < 1.9 & x2 > -1.9) { 
     for (int k = 0; k < 83; k++) { 
      if (x1 == ztable[k][0]) { 
       int y1 = (int) (y * 100) + 1; 
       for (int j = 0; j < 11; j++) { 
        if (y1 == j) { 
         zscore = ztable[k][j]; 
        } 
       } 
      } 
      if (x2 == ztable[k][0]) { 
       int y2 = (int) (y * 100) + 1; 
       for (int j = 0; j < 11; j++) { 
        if (y2 == j) { 
         zscore1 = ztable[k][j]; 
        } 
       } 
      } 
     } 
     pval[i] = (zscore - zscore1) * -1; 
    } 
    else {  
     pval[i] = 0.0; 
    } 
   } 
 
   for (int k = 0; k < hyperionimage.getBandsNumber() -1; k++) { 
    if (pval[k] < 0.0) { 
     pval[k] = pval[k] * -1; 
    } 
    if (pval[k] > 0.0) { 
     percent += 1; 
     sumprob = sumprob + pval[k];  
    } 
   } 
 
   double bn = ((double)hyperionimage.getBandsNumber()); 
   double result = (percent / bn) * 100; 
   if (result > 90) { 
    zprobability = sumprob / percent; 
   }  
   else { 
    zprobability = 0; 
   } 
  }  
  else { 
   zprobability = 1; 
  } 
  return zprobability; 
 } 
 
 /** 
  * Reads and stores z-score values from a standard Z Table.  
  * @throws IOException 
  */ 
 public void zTable()  
  throws IOException { 
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  String strRead = null; 
  BufferedReader rb = new BufferedReader(new FileReader("resources/ztable.txt")); 
  rb.readLine(); 
  int i = 0; 
  while ((strRead = rb.readLine())!= null && i < 83) { 
   String splitarray2[] = strRead.split("\t"); 
   i++; 
   for (int j = 0; j < 11; j++) { 
    double val = Double.parseDouble(splitarray2[j]); 
    ztable[i][j] = val; 
   } 
  } 
 } 
 
 /** 
  * Sets the observed and expected values for the Chi-squared test.  
  * Observed presence or non presence values for specific geographical locations  
  * are read and stored from the ground truth data file inputed by the user.  
  * Expected presence or non presence values are extracted from the classified  
  * image based on the specific geographical locations read from the ground  
  * truth file inputed by the user.    
  * @throws MathException  
  * @throws IOException 
  */ 
 public void setObservedExpectedVal()  
  throws  MathException, IOException{ 
 
  String strread = null; 
  String[] splitarray = new String[3]; 
  BufferedReader rb = new BufferedReader(new FileReader(path)); 

int j = 0, x = 0, y = 0, z = 0, ovfreqpres = 0, ovfreqnonpres = 0, evfreqpres = 0, 
evfreqnonpres = 0; 

  int[] XYcoordinates = new int[2]; 
  try { 
   strread = rb.readLine().trim(); 
   if (!strread.startsWith("Validation")) { 
    throw new IllegalArgumentException(); 
   }; 
   strread = rb.readLine(); 
   splitarray = strread.split("\t"); 
                    if ((splitarray[0].startsWith("Latitude") &&   

splitarray[1].startsWith("Longitude"))) { 
    x = 0; 
    y = 1; 
    z = 2; 
                    } else if ((splitarray[0].startsWith("Longitude") && 

splitarray[1].startsWith("Latitude"))){  
    y = 0; 
    x = 1; 
    z = 2; 
                    } else if ((splitarray[0].startsWith("Observed") && 

splitarray[1].startsWith("Latitude"))){  
    z = 0; 
    x = 1; 
    y = 2; 
                    } else if ((splitarray[0].startsWith("Observed") && 

splitarray[1].startsWith("Longitude"))){  
    z = 0; 
    y = 1; 
    x = 2; 
                    } else if ((splitarray[0].startsWith("Latitude") && 

splitarray[1].startsWith("Observed"))){  
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    x = 0; 
    z = 1; 
    y = 2; 
                    } else if ((splitarray[0].startsWith("Longitude") && 

splitarray[1].startsWith("Observed"))){  
    y = 0; 
    z = 1; 
    x = 2; 
   } 
   while ((strread = rb.readLine())!= null) { 
     strread = strread.trim(); 
     splitarray = strread.split("\t"); 
     double lati = Double.parseDouble(splitarray[x]); 
     double longi = Double.parseDouble(splitarray[y]); 
     long ov = Long.parseLong(splitarray[z]); 
     XYcoordinates = getRCVal(lati, longi); 

if ((XYcoordinates[0] < hyperionimage.getRowsNumber()) && 
(XYcoordinates[1] < hyperionimage.getColumnsNumber())) { 
           

      if (ov == 0) { 
       ovfreqnonpres++; 
      } 
      else { 
       ovfreqpres++; 
      } 
      RasterImage rasterimage = new RasterImage(hyperionimage); 

double ev = rasterimage.rasterVal(XYcoordinates[0], 
XYcoordinates[1]); 

      if (ev == 0) { 
       evfreqnonpres++; 
      } 
      else if (ev < 1 && ev > 0){ 
       evfreqpres++; 
      } 
      j++; 
     } 
   } 
   observedvalues[0] = ovfreqpres;  
   observedvalues[1] = ovfreqnonpres;  
   expectedvalues[0] = evfreqpres;  
   expectedvalues[1] = evfreqnonpres; 
   rb.close(); 
  } catch (IllegalArgumentException e1) { 

JOptionPane.showMessageDialog(null, "ERROR Invalid ground truth data file.", 
"Error", JOptionPane.ERROR_MESSAGE); 

  } 
 } 
 
 /** 
  * Returns the row and column values for the expected pixel location  
  * given the latitude and longitude co-ordinates of the observed  
  * geographical location.   
  * @return rc: Row and column values 
  * @param lati Latitude co-ordinate 
  * @param longi Longitude co-ordinate 
  **/ 
 public int[] getRCVal(double lati, double longi) { 
   
  int[] rc = new int[2]; 

rc[0] = (int) ((lati - hyperionimage.getLatitude()) / 
(hyperionimage.getPixelSize())); 

  if (rc[0] < 0) { 
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   rc[0] = rc[0] * -1; 
  } 

rc[1] = (int) ((longi - hyperionimage.getLongitude()) / 
(hyperionimage.getPixelSize())); 

  if (rc[1] < 0) { 
   rc[1] = rc[1] * -1; 
  } 
  return rc; 
 } 
 
 /** 

* Carries out a Chi-square test between the observed (ground truth data) and expected  
(classified image) values.   

  * @return chipval: Chi-square probability for the output classified image. 
  * @throws MathException 
  * @throws IOException 
  */ 
 public double chiSquaredTest()  
  throws IOException, MathException { 
   
  ChiSquareTestImpl chi = new ChiSquareTestImpl(); 
  chipval = chi.chiSquareTest(expectedvalues, observedvalues); 
  if (chipval < 0) { 
   chipval = chipval * -1; 
  } 
  return chipval; 
 } 
    
 /** 
  * Returns the error matrix for the accuracy assessment. 
  * @return errormatrix: 1D array of error matrix values  
  */ 
 public double[] getErrorMatrix() { 
   
  if (expectedvalues[0] < observedvalues[0]) { 
   errormatrix[0] = expectedvalues[0]; 
   errormatrix[1] = observedvalues[0] - expectedvalues[0]; 
  } 
  if (expectedvalues[0] > observedvalues[0]) { 
   double a = expectedvalues[0] - observedvalues[0];  
   a = expectedvalues[0] - a; 
   errormatrix[0] = 0;  
   errormatrix[1] = a; 
  } 
  if (expectedvalues[1] < observedvalues[1]) { 
   errormatrix[2] = expectedvalues[1]; 
   errormatrix[3] = expectedvalues[1] - observedvalues[1]; 
  } 
  if (expectedvalues[1] > observedvalues[1]) { 
   double a = expectedvalues[1] - observedvalues[1];  
   a = expectedvalues[1] - a; 
   errormatrix[2] = 0;  
   errormatrix[3] = a; 
  } 
  errormatrix[6] = ((errormatrix[0]) / (errormatrix[0] + errormatrix[1])) * 100; 
  errormatrix[7] = ((errormatrix[0]) / (errormatrix[0] + errormatrix[2])) * 100;    
  errormatrix[10] = ((errormatrix[3]) / (errormatrix[3] + errormatrix[2])) * 100; 
  errormatrix[11] = ((errormatrix[3]) / (errormatrix[1] + errormatrix[3])) * 100; 
   
  return errormatrix; 
 } 
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 /** 
  * Gets the overall accuracy of the classified image. 
  * @return calculated overall accuracy 
  */ 
 public double getOverallAccuracy() { 

return (((errormatrix[0] + errormatrix[3]))/(errormatrix[0] + errormatrix[1] + 
errormatrix[2] + errormatrix[3])) * 100; 

 } 
 
 /** 
  * Gets the calculated kappa statistic for the classified image.   
  * @return calculated kappa statistic 
  */ 
 public double getKappaStatistic() { 
   
  double a = errormatrix[0] + errormatrix[3]; 

double b = ((errormatrix[0] + errormatrix[1]) * (errormatrix[0] + errormatrix[2])) + 
((errormatrix[2] + errormatrix[3]) * (errormatrix[1] + errormatrix[3])); 

  double n = ((errormatrix[0] + errormatrix[1]) + (errormatrix[2] + errormatrix[3])); 
   
  return ((n * a) - b) / ((n * n) - b); 
   
 } 
 
 /** 
  * Gets the frequency of the observed black wattle trees.   
  * @return observed present and observed absent black wattle trees   
  */ 
 public long[] getObservedValues() { 
  return observedvalues; 
 } 
 
 /** 
  * Gets the frequency of the expected black wattle trees.   
  * @return expected present and expected absent black wattle trees  
  */ 
 public double[] getExpectedValues() { 
  return expectedvalues; 
 } 
 
 /** 
  * Gets the Chi-squared probability for the classified image.   
  * @return chipval  
  */ 
 public double getChiPVal() { 
  return chipval; 
 } 
  
} 
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A1.4. RasterRasterRasterRasterImage.javaImage.javaImage.javaImage.java    

package bw2; 
 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.image.BufferedImage; 
import java.io.*; 
import java.text.DecimalFormat; 
import java.util.Iterator; 
import javax.imageio.*; 
import javax.imageio.stream.ImageOutputStream; 
import javax.swing.*; 
import javax.swing.border.Border; 
import javax.swing.border.EtchedBorder; 
import javax.swing.border.TitledBorder; 
 
/** 
 * A class that creates and displays the output classified image  
 * displaying the presence and absence of Black wattle trees. 
 */ 
public class RasterImage { 
  
 private HyperionImage hyperionimage = null; 
 private double[] value = null;  
 private double[][] raster = null; 
 private int height = 0, width = 0, x = 0, y = 0; 
 private String pathio = null;  
 private double zvalue;  
  
 /** 
  * Creates a new RasterImage instance. 
  */ 
 public RasterImage() { 
 } 
 
 /** 
  * Creates a new RasterImage instance given the hyperionimage object. 
  * @param hyperionimage HyperionImage object 
  */ 
 public RasterImage(HyperionImage hyperionimage) { 
  this.hyperionimage = hyperionimage; 
  this.value = new double[hyperionimage.getBandsNumber()]; 

this.raster = new 
double[hyperionimage.getColumnsNumber()][hyperionimage.getRowsNumber()]; 

  height = hyperionimage.getColumnsNumber(); 
  width = hyperionimage.getRowsNumber(); 
 } 
 
 /** 

* Creates a new RasterImage instance given the pathname of the classified image and 
hyperionimage object. 

  * @param pathio Pathname of the classified image 
  * @param hyperionimage HyperionImage object 
  */ 
 public RasterImage(String pathio, HyperionImage hyperionimage) { 
  this.hyperionimage = hyperionimage; 
  this.value = new double[hyperionimage.getBandsNumber()]; 

this.raster = new 
double[hyperionimage.getColumnsNumber()][hyperionimage.getRowsNumber()]; 

  height = hyperionimage.getColumnsNumber(); 
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  width = hyperionimage.getRowsNumber(); 
  this.pathio = pathio; 
 } 
 
 /** 
  * Returns the z probability for a single pixel for the classified image.  
  * @param r Row number 
  * @param c Column number   
  * @return zprobability: z probability for a single pixel 
  * @throws IOException 
  */ 
 public double rasterVal(int r, int c)  
  throws IOException { 
      
  this.value = this.hyperionimage.readDataFile(r, c); 
  StatisticalTests ztest = new StatisticalTests(this.value, this.hyperionimage); 
  double zprobability = ztest.zTest(); 
  return zprobability; 
 } 
 
 /** 
  * Stores the z probabilities for the classified image in a two dimensional array.  
  * @throws IOException 
  */ 
 public void createRaster()  
  throws IOException { 
   
  for(int r = 0; r < hyperionimage.getRowsNumber(); r++) { 
   for(int c = 0; c < hyperionimage.getColumnsNumber(); c++) { 
    this.raster[c][r] = rasterVal(r,c);   
   } 
  } 
 }  
 
 /**  
  * Gets a 2D array of z probabilities for the classified image. 
  * @return raster: 2D array of z probabilities 
  */ 
 public double[][] getRaster() { 
  return this.raster; 
 } 
 
 /** 
  * Returns the co-ordinates of the pixel that is clicked on.  
  * @param x X co-ordinate 
  * @param y Y co-ordinate 
  * @return xy: Longitude and latitude of the pixel 
  */ 
 public String[] coOrdinates(int x, int y) { 
   
  String[] xy = new String[2]; 
  DecimalFormat formatter = new DecimalFormat("#.######"); 

xy[0] = String.valueOf(formatter.format((hyperionimage.getPixelSize() * x) + 
hyperionimage.getLongitude())); 
xy[1] = String.valueOf(formatter.format(((hyperionimage.getPixelSize() * y) - 
hyperionimage.getLatitude()) * -1)); 

   
  return xy; 
 } 
 
 
 



 

 84 

 /** 
  * Creates a frame and adds the classified image to the frame. 
  * @throws IllegalArgumentException 
  * @throws IOException 
  */ 
 public void classifiedImageFrame()  
  throws FileNotFoundException, IOException { 
 
  try {   
    
   ImageIcon leaf = new ImageIcon("resources/leaf.png"); 
   Font font = new Font ("ArialNarrow", 0, 11); 
   Font font2 = new Font ("ArialNarrow", Font.BOLD, 13); 
 
   /**Panel to hold the title**/ 

final JPanel p1 = new JPanel(new FlowLayout(FlowLayout.CENTER, height / 2 - 
25, 5)); 

   JLabel classifiedimage  = new JLabel("Classified Image"); 
   classifiedimage.setFont(font2); 
   p1.add(classifiedimage); 
 
   /**Panel to hold the classified image**/ 
   final JPanel p2 = new JPanel(new FlowLayout(FlowLayout.CENTER, 0, 0)); 
   createClassifiedImage(getRaster()); 
   p2.add(getClassifiedImage(pathio)); 
 
   /**Panel to hold the legend**/ 
   final JPanel p3 = new JPanel(new GridLayout(5, 2, 10, 5)); 
   p3.setBorder(new TitledBorder("Legend")); 
 
   final JTextField red = new JTextField(); 
   red.setBackground(Color.RED); 
   red.setEditable(false); 
   p3.add(red); 
   JLabel legend1 = new JLabel("0.75 - 0.99"); 
   legend1.setFont(font); 
   p3.add(legend1); 
 
   final JTextField yellow = new JTextField(); 
   yellow.setBackground(Color.YELLOW); 
   yellow.setEditable(false); 
   p3.add(yellow); 
   JLabel legend2 = new JLabel("0.50 - 0.75"); 
   legend2.setFont(font); 
   p3.add(legend2); 
 
   final JTextField green = new JTextField(); 
   green.setBackground(Color.GREEN); 
   green.setEditable(false); 
   p3.add(green); 
   JLabel legend3 = new JLabel("0.25 - 0.50"); 
   legend3.setFont(font); 
   p3.add(legend3); 
 
   final JTextField blue = new JTextField(); 
   blue.setBackground(Color.BLUE); 
   blue.setEditable(false); 
   p3.add(blue); 
   JLabel legend4 = new JLabel("0.00 - 0.25"); 
   legend4.setFont(font); 
   p3.add(legend4); 
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   final JTextField wht = new JTextField(1); 
   wht.setBackground(Color.WHITE); 
   wht.setEditable(false); 
   p3.add(wht); 
   JLabel legend5 = new JLabel("0.00"); 
   legend5.setFont(font); 
   p3.add(legend5); 
 
   /**Panel to hold the scale bar and north arrow**/ 
   final JPanel p4a = new JPanel(new BorderLayout(10, 10)); 
 
   BufferedImage scale = ImageIO.read(new File("resources/scalebar2.jpg")); 
   JLabel scalelabel = new JLabel(new ImageIcon(scale)); 
   p4a.add(scalelabel, BorderLayout.WEST); 
 
   BufferedImage northarrow = ImageIO.read(new File("resources/northarrow.jpg")); 
   JLabel northarrowlabel  = new JLabel(new ImageIcon(northarrow )); 
   p4a.add(northarrowlabel, BorderLayout.EAST); 
 
   final JPanel p4 = new JPanel(new BorderLayout(10, 10)); 
   p4.add(p4a, BorderLayout.SOUTH); 
 
   /**Panel to hold the co-ordinates**/ 
   final JPanel p5 = new JPanel(new FlowLayout(FlowLayout.LEFT, 0, 5)); 
   final JTextField coord = new JTextField(); 
   coord.setPreferredSize(new Dimension(height, 21)); 
   coord.setEditable(false); 
   p5.add(coord); 
 
   /**Panel to hold the Z-test and Chi-square test probabilities**/ 
   final JPanel p6 = new JPanel(new FlowLayout(FlowLayout.LEFT, 0, 5)); 
   final JTextField statistics = new JTextField(); 
   statistics.setPreferredSize(new Dimension(height, 21)); 
   statistics.setEditable(false); 
   p6.add(statistics); 
 
   final JPanel p7 = new JPanel(new BorderLayout(10, 0)); 
   p7.add(p5, BorderLayout.NORTH); 
   p7.add(p6, BorderLayout.SOUTH); 
 

/**Panel to hold the panels containing the legend, scale bar, north arrow, co-
ordinate and statistical information**/ 

   final JPanel p8 = new JPanel(new BorderLayout(10, 10)); 
   p8.add(p3, BorderLayout.WEST); 
   p8.add(p4, BorderLayout.EAST); 
   p8.add(p7, BorderLayout.SOUTH); 
 
   /**Panel to hold all created panels**/ 
   final JPanel p9 = new JPanel(new FlowLayout(FlowLayout.CENTER, 10, 10)); 
   p9.add(p1); 
   p9.add(p2); 
   p9.add(p8); 
 
   /**Creates a frame for the the classified image**/ 
   final JFrame frame = new JFrame("Black wattle classification"); 
   frame.setSize(height + 60, width + 330); 
   frame.setResizable(false); 
   frame.setLocationRelativeTo(null); 
   frame.setIconImage(leaf.getImage()); 
   frame.setVisible(true); 
   frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE); 
   frame.add(p9); 
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   /**Register listeners**/ 
   p2.addMouseMotionListener(new MouseMotionAdapter() { 
    public void mouseDragged(MouseEvent e) { 
      
     String[] xy1 = new String[2]; 
     x = e.getX(); 
     y = e.getY(); 
     if ((x > 0 && x < height) && (y > 0 && y < width)) { 
      xy1 = coOrdinates(x, y); 
      DecimalFormat formatter = new DecimalFormat("#.#####"); 
      coord.setText(xy1[0] + " E" + " , " + xy1[1] + " N"); 
      if (raster[x][y] == 1) { 
       zvalue = 0;  
      } else { 
       zvalue = raster[x][y]; 
      } 

statistics.setText("Z-test probability value = " + 
formatter.format(zvalue)); 

     } 
     else { 

coord.setText("0E" + " , " + "0S" + "     " + "Probaility 
= 0"); 

     } 
    } 
   });   
 
  } catch (IllegalArgumentException e1) { 

JOptionPane.showMessageDialog(null, "ERROR displaying the classified image.", 
"Error", JOptionPane.ERROR_MESSAGE); 

  } catch (FileNotFoundException e1) { 
JOptionPane.showMessageDialog(null, "ERROR classified image not 
found/created.", "Error", JOptionPane.ERROR_MESSAGE); 

  } catch (IOException e1) { 
JOptionPane.showMessageDialog(null, "ERROR writing classified image file to 
disk.", "Error", JOptionPane.ERROR_MESSAGE); 

  }  
 } 
 
 /** 
  * Creates a frame that displays the accuracy assessment.   
  */ 
 public void accuracyAssessmentFrame() { 
   
  ImageIcon leaf = new ImageIcon("resources/leaf.png"); 
  Font font = new Font ("ArialNarrow", Font.BOLD, 12); 
  Border loweredetched = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED); 
  DecimalFormat formatter = new DecimalFormat("#.#####"); 
  StatisticalTests statisticaltests = new StatisticalTests(); 
  long[] observedvalues = statisticaltests.getObservedValues();  
  double[] expectedvalues = statisticaltests.getExpectedValues(); 
  double[] errormatrix = statisticaltests.getErrorMatrix(); 
 
  /**Panel to hold the error matrix**/ 
  final JPanel p1a = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
  JLabel headingem = new JLabel("Error matrix"); 
  headingem.setFont(font); 
  p1a.add(headingem); 
 
  final JPanel p1b = new JPanel(new GridLayout(5, 5, 10, 0)); 
  JLabel blank11  = new JLabel(""); 
  p1b.add(blank11); 
  JLabel bw11 = new JLabel("Black wattle"); 
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  p1b.add(bw11); 
  JLabel nbw11 = new JLabel("No Black wattle"); 
  p1b.add(nbw11); 
  JLabel total11 = new JLabel("Total"); 
  p1b.add(total11); 
  JLabel ua1 = new JLabel("Users accuracy (%)"); 
  p1b.add(ua1); 
 
  JLabel bw12  = new JLabel("   Black wattle"); 
  p1b.add(bw12); 
  JLabel em10 = new JLabel("" + errormatrix[0]); 
  p1b.add(em10); 
  JLabel em11 = new JLabel("" + errormatrix[1]); 
  p1b.add(em11); 
  JLabel totalval11 = new JLabel("" + (errormatrix[0] + errormatrix[1])); 
  p1b.add(totalval11); 
  JLabel em16 = new JLabel("" + (errormatrix[6])); 
  p1b.add(em16); 
 
  JLabel nw12 = new JLabel("   No Black wattle"); 
  p1b.add(nw12); 
  JLabel em12 = new JLabel("" + errormatrix[2]); 
  p1b.add(em12);  
  JLabel em13 = new JLabel("" + errormatrix[3]); 
  p1b.add(em13); 
  JLabel totalva1l2 = new JLabel("" + (errormatrix[2] + errormatrix[3])); 
  p1b.add(totalva1l2); 
  JLabel em110 = new JLabel("" + (errormatrix[10])); 
  p1b.add(em110); 
 
  JLabel total12 = new JLabel("   Total"); 
  p1b.add(total12); 
  JLabel totalval13 = new JLabel("" + (errormatrix[0] + errormatrix[2])); 
  p1b.add(totalval13); 
  JLabel totalval14 = new JLabel("" + (errormatrix[1] + errormatrix[3])); 
  p1b.add(totalval14); 

JLabel totalval15 = new JLabel("" + (errormatrix[0] + errormatrix[1] + 
errormatrix[2] + errormatrix[3])); 

  p1b.add(totalval15); 
  JLabel blank12 = new JLabel(""); 
  p1b.add(blank12); 
 
  JLabel pa = new JLabel("   Producers accuracy"); 
  p1b.add(pa); 
  JLabel em17 = new JLabel("" + formatter.format(errormatrix[7])); 
  p1b.add(em17); 
  JLabel em111 = new JLabel("" + formatter.format(errormatrix[11])); 
  p1b.add(em111); 
 
  /**Panel to hold the overall accuracy value and kappa statistic**/ 
  final JPanel p1d = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 

  JLabel overallaccuracy = new JLabel("Overall accuracy " + 
statisticaltests.getOverallAccuracy()); 

  overallaccuracy.setFont(font); 
  p1d.add(overallaccuracy); 
 
  final JPanel p1e = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 8)); 

JLabel kappastatistic = new JLabel("Kappa statistic      " + 
statisticaltests.getKappaStatistic()); 

  kappastatistic.setFont(font); 
  p1e.add(kappastatistic); 
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  final JPanel p1c = new JPanel(new BorderLayout(0, 0)); 
  p1c.add(p1d, BorderLayout.NORTH); 
  p1c.add(p1e, BorderLayout.SOUTH); 
     
  final JPanel p1 = new JPanel(new BorderLayout(0, 0)); 
  p1.add(p1a, BorderLayout.NORTH); 
  p1.add(p1b, BorderLayout.CENTER); 
  p1.add(p1c, BorderLayout.SOUTH); 
  p1.setBorder(loweredetched);   
   
  /**Panel to hold the contingency table**/ 
  final JPanel p2a = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 
  JLabel headingct = new JLabel("Contingency table"); 
  headingct.setFont(font); 
  p2a.add(headingct); 
 
  final JPanel p2b = new JPanel(new GridLayout(4, 4, 10, 0)); 
  JLabel blank21  = new JLabel(""); 
  p2b.add(blank21); 
  JLabel observed = new JLabel("Observed"); 
  p2b.add(observed); 
  JLabel expected = new JLabel("Expected"); 
  p2b.add(expected); 
  JLabel total21 = new JLabel("Total"); 
  p2b.add(total21); 
 
  JLabel presence  = new JLabel("   Presence"); 
  p2b.add(presence); 
  JLabel obpresence = new JLabel("" + observedvalues[0]); 
  p2b.add(obpresence); 
  JLabel expresence = new JLabel("" + expectedvalues[0]); 
  p2b.add(expresence); 
  JLabel totalval21 = new JLabel("" + (observedvalues[0] + expectedvalues[0])); 
  p2b.add(totalval21); 
 
  JLabel absence = new JLabel("   Absence"); 
  p2b.add(absence); 
  JLabel obabsence= new JLabel("" + observedvalues[1]); 
  p2b.add(obabsence); 
  JLabel exabsence = new JLabel("" + expectedvalues[1]); 
  p2b.add(exabsence); 
  JLabel totalval22 = new JLabel("" + (observedvalues[1] + expectedvalues[1])); 
  p2b.add(totalval22); 
 
  JLabel total22  = new JLabel("   Total"); 
  p2b.add(total22); 
  JLabel totalval23 = new JLabel("" + (observedvalues[0] + observedvalues[1])); 
  p2b.add(totalval23); 
  JLabel totalval24 = new JLabel("" + (expectedvalues[0] + expectedvalues[1])); 
  p2b.add(totalval24); 
 
  /**Panel to hold the chi-square value**/ 
  final JPanel p2d = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5)); 

JLabel chisquare = new JLabel("Chi-square p value  " + 
statisticaltests.getChiPVal()); 

  chisquare.setFont(font); 
  p2d.add(chisquare); 
 
  final JPanel p2c = new JPanel(new BorderLayout(0, 0)); 
  p2c.add(p2d, BorderLayout.NORTH); 
 
  final JPanel p2 = new JPanel(new BorderLayout(0, 0)); 
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  p2.add(p2a, BorderLayout.NORTH); 
  p2.add(p2b, BorderLayout.CENTER); 
  p2.add(p2c, BorderLayout.SOUTH); 
  p2.setBorder(loweredetched); 
 
  final JPanel p3 = new JPanel(new GridLayout(2, 1, 5, 5)); 
  p3.add(p1); 
  p3.add(p2); 
 
  /**Creates a frame for the accuracy assessment**/ 
  final JFrame frame = new JFrame("Accuracy assessment"); 
  frame.setSize(580, 450); 
  frame.setResizable(false); 
  frame.setLocationRelativeTo(frame); 
  frame.setIconImage(leaf.getImage()); 
  frame.setVisible(true); 
  frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE); 
  frame.add(p3); 
  
 } 
 
 /** 
  * Creates and stores the classified image(.png).   
  * @param raster 2D array of z probabilities 
  * @throws IOException 
  */  
 @SuppressWarnings("rawtypes") 
 public void createClassifiedImage(double[][] raster)  
  throws IOException { 
   
  BufferedImage img = new BufferedImage(height, width, BufferedImage.TYPE_INT_RGB);  
  Graphics2D g = img.createGraphics(); 
  g.setColor(Color.BLACK); 
  g.setBackground(Color.WHITE); 
  g.clearRect(0, 0, height, width);  
  for (int r = 0; r < height; r++) { 
   for (int c = 0; c < width; c++) { 
    if (raster[r][c] == 0.0000) { 
     g.setColor(Color.WHITE);  
     g.fillRect(r, c, 1, 1); 
    } else if (raster[r][c] >= 0.01 & raster[r][c] <= 0.25) { 
     g.setColor(Color.BLUE);  
     g.fillRect(r, c, 1, 1); 
    } else if (raster[r][c] >= 0.25 & raster[r][c] <= 0.50) { 
     g.setColor(Color.GREEN);  
     g.fillRect(r, c, 1, 1); 
    } else if (raster[r][c] >= 0.50 & raster[r][c] <= 0.75) { 
     g.setColor(Color.YELLOW);  
     g.fillRect(r, c, 1, 1); 
    } else if (raster[r][c] >= 0.75 & raster[r][c] <= 0.99) { 
     g.setColor(Color.RED);  
     g.fillRect(r, c, 1, 1); 
    } else if (raster[r][c] == 1) { 
     g.setColor(Color.BLACK);  
     g.fillRect(r, c, 1, 1); 
    } 
   } 
  } 
  g.dispose(); 
  Iterator writers = ImageIO.getImageWritersByFormatName("png"); 
  ImageWriter writer = (ImageWriter) writers.next(); 
  if (writer == null) { 
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   throw new RuntimeException("PNG not supported?!"); 
  } 
  File file = new File(pathio); 
  ImageOutputStream out = ImageIO.createImageOutputStream(file); 
  writer.setOutput(out); 
  writer.write(img); 
  out.close(); 
 } 
 
 /** 
  * Gets the classified image. 
  * @param pathio Pathname of classified imae 
  * @return classifiedimage: Classified image  
  * @throws IOException 
  */ 
 public Component getClassifiedImage(String pathio)  
  throws IOException { 
 
  BufferedImage image = ImageIO.read(new File(pathio)); 
  JLabel classifiedimage = new JLabel(new ImageIcon(image)); 
  return classifiedimage; 
 } 
 
} 
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Appendix B 

The black wattle classification algorithm: user manual 

1. Introduction 

1.1. About 

The back wattle classification algorithm is a research initiative that aimed to determine the 

potential of a classification algorithm to identify invasive black wattle tress using imaging 

spectroscopy. The algorithm allows the user to identify invasive black wattle trees that are 

present within an area of interest using hyperspectral satellite imagery. Hyperspectral satellite 

imagery collected by the EO-1 Hyperion sensor offer a high spectral resolution. 

Consequently, invasive black wattle trees can be discriminated from the surrounding 

vegetation accurately. The algorithm allows the user to utilize a spectral signature for the 

classification process. Based on the spectral signature inputted into the algorithm, the 

algorithm can be used to identify invasive black wattle trees of any age group or any invasive 

alien plant species. Classified images produced by the algorithm can be exported into other 

data formats for incorporation into geographical information systems or printed. 

Consequently, the algorithm can be used as an instrumental tool to inform and target removal 

efforts of invasive black wattle trees so that negative environmental impacts can be mitigated.   

1.2. System requirements 

The minimum system requirements: 

• 3.02 gigahertz (GHZ) processor or higher  

• 4  gigabyte (GB) RAM or higher 

• 100 megabytes (MB) hard drive space 

• Windows 7 32bit operating system 

2. Installation 

Intall the Java Runtime Environment found on the provided disk if you have not already done 

so.  Thereafter, copy the file blackwattleclassifier.jar to a location on the local hard disk. To 

begin the application, double click on the blackwattleclassifier.jar file.   
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3. Interfaces 

The home screen is the first interface that appears on the screen after the end user has 

successfully installed and initialized the program. The home screen contains a menu bar with 

two menu items that is “File” and “Classification” menu items.  

3.1. File 

3.1.1. Open file 

Open file prompts the user to select a previously classified image (.png) that is found on the 

hard disk for display on to the screen. After selecting the classified image, a classified image 

frame containing the classified image, legend, scale bar and north arrow will be displayed on 

to the screen. To print the displayed classified image select File > Print from the menu bar in 

the classified image frame.  

3.1.2. Export 

Export allows the user to export the classified image from a .png data format to a .tiff data 

format. On selecting Export, the export classified image frame is displayed on to the screen 

with two fields for input that is Classified Image and Save File As. Classified Image prompts 

the user to select a previously classified image (.png) that is found on the hard disk for 

exporting. Save File As prompts the user to select a location and input a name for the exported 

file. After clicking Apply, the converted classified image in .tiff format will be displayed on to 

the screen.  

3.1.3. Exit 

Exit allows the user to exit the black wattle classification algorithm. 

3.2. Classification 

3.2.1. Black wattle classification 

Black wattle classification allows the user to conduct an image classification to identify 

invasive black wattle trees based on the data inputted by the user. On selecting Black wattle 

classification, the black wattle classification frame is displayed on to the screen with the 

following fields for input: 
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Hyperion Image Header File 

The Hyperion image header file (.HDR) contains the attributes of the associated Hyperion 

image data file. It is essential that the correct header file is used with the appropriate data file. 

Hyperion Image Header File prompts the user to select a Hyperion image header file that is 

found on the hard disk. 

 

Hyperion Image Data File 

Only Hyperion image data files can be processed by the algorithm. The Hyperion image data 

file (.File) contains the spectral information. The Hyperion image must be spatially subsetted, 

spectrally subsetted, atmospherically corrected and orthorectified prior to input into the 

algorithm. The Hyperion image must be in band interleaved pixel data format. Hyperion 

Image Data File prompts the user to select a Hyperion image data file that is found on the 

hard disk. 

 

Spectral Signature File 

The spectral signature file (.txt) should contain the spectral signature of a black wattle tree or 

invasive alien plant species. The spectral signature can be captured from the image itself. The 

spectral signature should be derived by taking an average of more than three reflectance 

curves with an associated standard deviation. The spectral signature file must be formatted 

appropriately to be processed by the algorithm. The first line of the file must contain Spectral 

signature. The second line must contain Mean and Standard deviation in two columns with 

the relevant values in each column. Spectral Signature File prompts the user to select a 

spectral signature file that is found on disk. The user must select the Image File checkbox.   

 

Ground Truth Data File 

The ground truth data file (.txt) should contain three columns: Latitude, Longitude and 

Observed value. The latitude and longitude values should either be in geographical or 

projected co-ordinate system corresponding to the co-ordinate system of the Hyperion image 

data file. The observed value should be a boolean value of either 1 or 0 indicating the 

presence or absence of black wattle trees respectively. The user must select the Validation 

checkbox first in order to select the ground truth data file. Ground Truth Data File prompts 

the user to select a ground truth data file that is found on the hard disk. 
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Save File As 

Save File As prompts the user to select a location and input a name for the classified image.  

 

After clicking Apply, the classification process will begin. Once the classification has ended, a 

classified image frame containing the classified image, legend, scale bar and north arrow will 

be displayed on to the screen. There are two fields at the bottom of the classified image frame 

which are only activated if the user clicks and scrolls over the classified image. The first field 

displays the co-ordinates of the pixel on the ground. The second field displays the probability 

that black wattle trees are present as well as the Chi-square probability if validation was 

conducted. 

Thank you for choosing the black wattle classification algorithm as your choice of remote 

sensing software. For further information and support contact agjee@cybersmart.co.za. 

 

 

 

 

 


