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ABSTRACT

Artificial neural networks (ANNs) were originally inspired by networks ofbiological neurons

and the interactions present in networks of these neurons. The recent revival of interest in

ANNs has again focused attention on the apparent ability ofANNs to solve difficult problems,

such as machine vision, in novel ways.

There are many types of ANNs which differ in architecture and learning algorithms, and the

list grows annually. This study was restricted to feed-forward architectures and Backpropa­

gation-like (BP-like) learning algorithms. However, it is well known thatthe learning problem

for such networks is NP-complete. Thus generative and incremental learning algorithms,

which have various advantages and to which the NP-completeness analysis used for BP-like

networks may not apply, were also studied.

Various algorithms were investigated and the performance compared. Finally, the better

algorithms were applied to a number of problems including music composition, image

binarization and navigation and goal satisfaction in an artificial environment. These tasks

were chosen to investigate different aspects of ANN behaviour. The results, where appropri­

ate, were compared to those resulting from non-ANN methods, and varied from poor to very

encouraging.
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CHAPTER ONE

1.1. INTRODUCTION

Artificial neural networks (ANNs), or connectionist models, have a fairly long and chequered

history; more so than the recent revival of interest indicates. A brief history of ANNs and the

workings of biological neural networks will be given. The general terms and concepts used

will be defined as well as a discussion ofsome of the reasons that ANNs have become popular

once again. Finally a few examples of applications using ANNs to tackle "real-world"

problems successfully will be given.

There are two approaches for studying and modelling the brain: bottom-up and top-down

[KSe89] (Introduction). The bottom-up approach studies the constituent parts of the brain,

how these parts interact and tries to understand how these relationships achieve the observed

processes. Thus it is a data-driven approach that proceeds from a detailed study of the

biological hardware, and is usually based directly on experimental data. In ANN research,

this approach is inherently parallel since natural neural nets operate in parallel [BP90].

Feldman et al. [FB82] have stressed an important point, usually known as the 100 steps

constraint: the brain is not fast enough to compute the functions required by the big AI models.

A neuron performs simple calculations in a few milliseconds, while a complex task, such as

face recognition, requires a few hundred milliseconds [Ll089]. Thus, assuming a serial

process, only about one hundred discrete program steps can be executed before the goal is

achieved. Therefore AI programs that require thousands of steps seem implausible for this

reason alone.

The top-down approach is a theory-driven one. The question of how the information or how

a particular computation could be carried out is first addressed. Once the problem has been

characterized at a formal level, a particular algorithm is derived to solve the problem. Often

the algorithm is designed to be in agreement with known anatomy and physiology and can

thus be biologically plausible, although this is not a prerequisite. The bottom-up approach is

generally used by neuroscientists, while the Artificial Intelligence community has concen­

trated on the top-down approach [KSe89].

An example might help to clarify the difference between the two methods. Consider the

problem ofseparating an image into objects and background. The bottom-up approach would

try to model the retinal cells, their interactions and the other cells and their interactions in the

visual pathway. The top-down approach might use methods such as grey level thresholding

or multilevel thresholding [Amm86] applied to the image, with less consideration of how
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these processes could be achieved biologically. A synthesis between the two approaches has

naturally been taking place since both have limitations that are difficult to overcome. For

example, understanding how the visual system computes binocular disparity requires a

computational analysis of the inverse problem of recovering depth from two spatially

displaced 3D images, which is a top-down approach, as well as a knowledge of the physiology

of disparity-sensitive cells in the cortex, which is a bottom-up approach [KSe89].

1.2. A BRIEF HISTORY LESSON

What follows is a brief introduction to the history of ANN research. It is in no way complete

and is meant as background, rather than a serious attempt to trace the roots of ANN research.

Some of the earliest roots of ANNs can be found in work done by the neurologists Jackson

(1869) and Luria [RM86]. Jackson, for example, was critical of the localized doctrines of the

19th century and argued for distributed, multilevel processing systems.

James (1890) was one of the first to publish a variety of facts related to the structure and

function of the brain [ED90] (Introduction). For example, he stated some basic principles of

correlation learning (his Elementary Principle amongst others) which are closely related to

the concepts of correlation learning and associative memory. He also put forward the notion

that a neuron's activity was a function of the sum of its inputs with past history contributing

to the weights of the interconnections (Jam89].

McCulloch and Pitts [MP43] published one of the most famous papers in the neural network

(NN) field. They derived models ofneurons based on the physiological knowledge of the time

and concluded with five points:

• The activity of the neuron is an all-or-nothing process.

• A certain fixed number of synapses must be excited within the period of latent addition

in order to excite a neuron at any time, and this number is independent of the previous
activity and position of the neuron.

• The only significant delay within the nervous system is synaptic delay.

• The activity of any inhibitory synapse absolutely prevents excitation of the neuron at
that time.

• The structure of the net does not change with time.

The neuron described by these five conclusions came to be known as the McCulloch-Pitts

neuron. Most of these assumptions are still used in the ANN models, but it has become

increasingly clear that this type ofmodel is too simplified. Biological neurons are in fact more

complex than these assumptions state and act more like voltage-to-frequency converters than

simple on-off logical devices [AR89] (introduction to [MP43] paper), [BKR78]. The import-
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ance of this paper was that using a massively parallel architecture they proved that a network

of these neurons could represent any finite logical expression.

This was followed by Hebb's book [Heb49] which introduced the first method to update

synaptic weights. Roughly, his rule states:

"When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A's efficiency, as one of the cells fir­

ing B, is increased." (p50)

His contributions were primarily [ED90]:

• Information is stored in the weights1 of the synapses.

• The weights are symmetric.

• The putting forward ofa connection weight learning rule where the weights are changed

in proportion to the product of the activation values of the neurons.

• Postulating that if simultaneous activation of a group of weakly connected cells occurs

repeatedly, these cells tend to coalesce into a more strongly connected assembly.

In 1958, Rosenblatt [Ros58] defined an ANN termed thePerceptron. It was the first precisely

specified, computationally orientated neural network, and it made a major impact on a number

of areas simultaneously [AR89] (p89). He also defined the Perceptron Convergence Proce­

dure, a synaptic adaption rule, which was an improvement of that presented by Hebb. The

Perceptron is discussed in the following chapter.

Widrow and Hoff [WH60] published Adaptive Switching Circuits in 1960, that, especially

from an engineering viewpoint, was extremely important. They designed a neural network

that they simulated on a computer and then implemented in hardware. Although similar to

the Perceptron, the learning algorithm yields faster and more accurate learning [ED90]. Their

neurons used a linear threshold activation function and were known as Adalines.

In the 1960s and 1970s, research into ANNs reduced greatly. One reason was the availability

of serial computers which led AI researchers to consider serial-like algorithms and symbolic

processing to be the most promising area of investigation. This shift away from ANNs was

also partly due to the publication ofPerceptrons:Anlntroduction to Computational Geometry

by Minsky and Papert [MP88].This text demonstrated, .in the course of trying to develop a

theory of parallel computation, that the Perceptron is inherently limited due to its architecture.

1 The "weight" of a synapse is the efficiency of the synapse to propagate signals.
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Minsky and Papert concluded their work with an intuitive judgment that the extension to

multilayer perceptrons would be sterile. For the following decade the research and the

associated models moved away from the strictly boolean framework to nets based on analogue

and non-linear interactions [Lev89]. Kohonen [Koh72], for example, developed an associative

memory neural network where the neurons were linear and continuous valued, rather than the

binary McCulloch-Pitts neuron. Grossberg introduced numerous concepts that are still used

in networks. Some of his work in this period include the on-center off-surround gain control

system for a group of neurons and the sigmoid function, a new type of neuron activation

function [E090] (Introduction).

In 1982 Hopfield made two major contributions to the field [Hop82]: he described analogue

neural network theories to mainstream scientists and suggested ways to build such networks

in electronic circuitry. A learning rule that improved on the Perceptron learning rule was

introduced in 1986 by Rumelhart et al. [RHW86]. Termed Backpropagation it allowed

networks consisting of more than an input and output layer of neurons to be trained, and thus

overcame the most serious limitation of the Perceptron. They showed that multilayer nets

could accomplish some of the tasks that the Perceptron was incapable of. Although Rumel­

hart's discovery was preceded by Parker (1982) and Werbos (1974), they are generally

credited with the discovery because they popularized ANNs and their two books [RM86] have

come to be considered the "bible of ANN research" [Lev89]. Many practical systems using

this rule were developed, the best known is arguably NETI'alk developed by Sejnowski and

Rosenberg [SR86] which learnt to pronounce English text. Other researchers, such as

Grossberg and Carpenter [Cau89] and Fukushima et a1. [FMI83], developed more complex

and biologically more plausible ANNs with varying success.

Since 1987, the ANN field has expanded tremendously, and it is not feasible to summerize

"all there is to know" about the current state of research [E090].

1.3. WETWARE

Wetware is the term used to describe the soft tissue components of the brain; its biological

and chemical circuitry. Guyton [Guy81] discusses the functioning of neurons, synapses and

general brain function in detail. The following sections summarize and expand his discussion.

1.3.1. Structure

The basic building block in biological neural networks (BNNs) is the nerve cell or neuron. A
neuron consists of:

• The soma which is the main cell body.
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• A single axon which extends from the soma.

• Dendrites which are thin projections of the soma and axon.

The axon and dendrites usually have many branches, each which ends in a synaptic knob. The

synaptic knob is close to, but not touching, the dendrites and soma of other neurons. The gap

between the synaptic knob and the abutting neuron is known as the synaptic cleft, while the

junction point from one neuron to the next is known as the synapse (fig 1-1).

Synapse

Dendrites -------\1r:1~-~~======:::::~=--_~_

Soma

Axon
Figure 1-1 A diagram of a simplified neuron.

BNNs generally contain many different types of neurons. Neurons can differ in a variety of

ways [Guy81]:

• The size of the soma.

• The length, size and number ofdendrites. The length can be as long as 1m (the peripheral

sensory nerve fibre).

• The length and size of the axon.

• The number of synaptic knobs, from a few to more than 100000 (certain cells in the

cerebral cortex for example) with an average of 1 000 to 10 000 per axon.

The different types of neurons react differently to incoming signals and therefore perform

different functions. To give an indication of the complexity of the human neural network, the

human brain contains about 1011 neurons in the cortex. Since each neuron has between 103

and 10
4

synapses, we have a total ofapproximately 1014 to 1015 synapses in the cortex. Figure

1-2 illustrates the complexity of BNNs compared to what can be achieved technologically
[DAR87].
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10124i--.+------f------t----j
B

A C

109 1---1-----+-----y::;F:-------ir----,

Speed

Storage

Figure 1-2 Comparison of the complexity of various biological neural networks. Indicated are the leech (L),
worm (W), fly (F), Aplysia (A), cockroach (C) and bee (B). Humans do not appear in the diagram but would be

found at coordinates (10
14

, 10
16

). The shaded area indicates the current limits of ANN technology. Storage is

measured in the number of interconnections while Speed is measured in the interconnections processed per

second.

1.3.2. Impulse propagation

The BNNs accomplish their tasks by propagating electrochemical impulses about the network.

1.3.2.1. Impulses in single cells

Electrical potentials exist across the membranes ofessentially all cells in the body. Some cells,

such as nerve and muscle cells, are capable of utilizing these impulses to transmit signals

along the cells membranes.

Fluids on the interior and exterior of the cells are electrolytic solutions. Generally a very

minute excess of negative ions accumulate immediately inside the membrane and an equal

amount of positive ions accumulate on the outside of the membrane. This establishes a

membrane potential between the inside and outside of the cell. There are two basic means by

which membrane potentiaIs can develop and be altered:

• Active transportation of ions through the membrane. The method in which this is

accomplished is beyond the scope of this section..

• Diffusion of ions through the membrane as a result of ion concentration differences.
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Depolarization (or action potential) occurs when the polarity at a spot in the membrane is

reversed: the positive ions move to the inside of the membrane and similarly the negative ions

move out of the cell. An action potential that occurs at one spot on the membrane usually

excites adjacent portions of the membrane increasing the rate of active transportation,

resulting in propagation of the action potential across the entire cell. This transmission of the

depolarization impulse along a nerve fibre is known as a nerve impulse. There are a few

important points to note about such impulses:

• There is no single direction of propagation of the impulse.

• All-or-nothing principle: the depolarization impulse travels over the entire membrane.

This holds for all normal excitable tissue, such as muscle, except in certain very specific

cases.

• The action potential normally only lasts almost the same length of time at each point

along the fibre. Repolarization normally occurs first at the point of the original stimulus

and propagates in a similar manner to the original depolarization. It follows the

depolarization process a few 10 OOOth of a second later.

• The impulse reduces the concentration of the ion concentrations inside and outside the

cell which can affect future impulses due to the ion concentration becoming depleted.

1.3.2.2. Myelinated and unmyelinated nerve fibres

The axon ofa nerve fibre can be either myelinated or unmyelinated. The myelin sheath, which

surrounds certain nerve fibres and is deposited by the Schwann cell, acts as an insulator. The

myelin sheath is approximately as thick as the axon, and is interrupted once every 1mm by a

junction known as the node ofRanvier. Myelin is an excellent insulator and increases the

resistance to ion flow through the membrane approximately 5 OOO-fold. At the junction, small

uninsulated areas remain where ion flow can take place with ease. In fact, these areas are 500

times as permeable as the membranes of some unmyelinated fibres.

The action potential is thus conducted from node to node rather than continuously along the

entire fibre as in unmyelinated fibres. This process is known as saltory conduction and is

valuable for two reasons:

• The depolarization process jumps long intervals along the axon. It greatly increases the

velocity of the nerve transmissions.

• Energy is conserved because only the nodes need to depolarize, with several 100 times

less loss of ions than for unmyelinated fibres.

1.3.2.3. Velocity of conduction
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The velocity of impulses varies from as little as 0.5m/s in small unmyelinated fibres to 130m/s

in very large myelinated fibres. The velocity increases approximately with the fibre diameter

in myelinated fibres and approximately with the square root of the fibre diameter in unmyeli-

nated fibres.

1.3.3. Presynaptic terminal and synaptic knob

The synaptic knobs are separated from the abutting soma and dendrites by the synaptic cleft,

which is usually 200 to 300 Angstroms wide. The synaptic knob has two important internal

structures:

• Synaptic vessicles contain the neurotransmitters which, when released, either excite or

inhibit the abutting neuron.

• Mitochondria supply energy to synthesize the new transmitter substance (neurotrans-

mitters).

Different neurotransmitters have different durations of stimulation. Another difference be­

tween the different transmitters is that some cause an increase in the rate of firing of the

abutting neurons while others change the abutting neurons sensitivity to other transmitters.

1.3.4. Synapse

Synapses determine the direction that signals spread in nervous systems and can perform

various selective actions:

• Blocking weak signals while allowing strong signals to pass.

• Selecting and amplifying certain weak signals.

• Channeling the signal in many different directions out of the cell rather than in one

direction only.

1.3.5. Impulse propagation across the synapse

When an action potential spreads over the presynaptic terminal, the membrane depolarization

causes the emptying of a small number of vesicles into the cleft and the released transmitters

immediately change the permeability characteristics of the subsynaptic neuronal membrane

to all ions. This leads to excitation or inhibition, depending on the type oftransmitter substance

released. A single neuron releases only one type of transmitter and releases it at all its synaptic

knobs. Neurons can and do respond to different transmitters received by its dendrites and

soma.
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Some post-synaptic neurons respond to the release of the transmitters with a large number of

impulses propagated along its soma while others respond with only a few. The stimulation of

the cell must exceed a threshold before an action potential is generated and a nerve impulse

results (the firing of the neuron). Usually ten or more knobs have to release their transmitters

simultaneously, or in rapid succession, before the post-syhaptic neuron will fire. This is known

as summation. Neurons accommodate slowly increasing stimulae: as the action potential

slowly increases, the neuron accommodates the increase by raising the threshold, rather than

firing. The firing frequencies of neurons range from a few to a few hundred impulses per

second [FeI82].

Some special characteristics of synaptic transmission deserve mention:

• Impulses are conducted through the synapses in only one direction.

• When excitatory synapses cause repeated stimulation at a rapid rate, the number of

discharges by the neuron is at first very great, but becomes progressively less in

succeeding milliseconds or seconds. This feature is called fatigue and, together with

inhibitory circuits, is an important safety mechanism. For example, epileptic fits occur

when a collection of neurons fire uncontrollable. The fits eventually subside partly

because the neurons involved undergo fatigue.

1.3.6. Summation

There are two methods of summation which can result in a neuron firing:

• Spatial summation where a collection ofknobs release their transmitters simultaneously.

• Temporal summation. Since most knobs can release transmitters repetitively in rapid

succession only a few milliseconds apart and post-synaptic potential lasts up to ISms,

the rapid repeated release of transmitters by some knob can further increase the

post-synaptic potential.

1.3.7. Learning

The synapses are the ideal site to control the signal transmissions. At a cellular level, it seems

reasonable to try to adjust a neuron's firing by adjusting its threshold, given the appropriate

inputs from abutting neurons. A number of suitable rules have been proposed with OJ;1e of the

first and best known due to Hebb [Heb49] [RM86]. "Hebb proposed that if one neuron

persistently causes another to fire, the connection between these neurons should be streng­

thened (as mentioned briefly in section 1.2). The connection can be strengthened by increasing

the efficiency of the appropriate synapse transmission or by changing the threshold of the

neurons. There is evidence that supports this rule [Guy81] (chapter 46).
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Many learning rules proposed by animal learning theorists have, broadly speaking, been error

correction rules: a change in the variable tracking the learning has been proportional to its

difference from some target value or asymptote [McL89]. This type of rule is also favoured

by human learning theorists [RM86].

The trend in neurobiological modelling of learning seems to be more in favour of a

Hebbian-type rule. Neurobiologists don't deny the importance of error-correction - they

think appropriate nets can be constructed using simpler Hebbian-type neurons. McLaren

[McL89] showed that Hebbian-type neurons are unsuitable for this, but described a neuron

that overcomes some of the difficulties, and which can be used to implement error-correction

rules. His model was shown to be biologically plausible and so it would seem that error

correction methods, as opposed to Hebbian learning, are a valid method for learning in NNs.

1.3.8. Distributed versus localized representation

Different functions are generally accomplished in different areas of the brain [Guy81]. This

includes vertebrates as well as invertebrates such as the octopods [Cou79] (p165). This means

that damage to the brain results in graceful degradation where the brain functions degrade

but do not immediately cease.

The question of how memory is stored in the brain deserves investigation.There are essentially

two ways of representing the data: the individual neurons could store the data or the

interconnections between the neurons could accomplish this. The former method is sometimes

known as the grandmother cell approach and originated with the hypothesis that there is an

individual cell which, via connections to other cells in the visual pathway, is activated

whenever an image of the subject's grandmother is detected.

The most important problem with this hypothesis is that if such a cell were irreparably

damaged, it would be impossible for the subject's grandmother to be recognized. It should

also be remembered that neurons are continually being destroyed and are generally not

replaced [BL90].

The second method is generally used in ANNs. If the interconnections between neurons are

the information store, the loss of a few neurons is less important, especially if a large number

of interconnections are used to store each datum. Thus even after large portions of the net

have been damaged, the creature is often still functional, albeit in a reduced manner [Guy81].

Also, if different collections of the interconnections represent different data, the same

interconnection can represent parts of different data. This is further explained in [And90].

It is difficult to deduce a neural network's function solely from the determination of individual

neurons receptive fields. Lekhy and Sejnowski [LS88], for example, used an ANN to model
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shape-from-shading: a model of how the visual system extracts information about a 3D

object's shape from the shading of an image of the object. The receptive fields, which are the

set of neurons from which other neurons receive inputs [HU91], developed by the artificial

neurons were similar to the actual receptive fields of neurons observed in the visual cortex.

The model reacted in similar ways to the natural neural network when bars of light where

used as input to the network. The corresponding natural neural network was previously

thought to achieve bar or edge detection given visual input and had never been associated

with the detection of shape-from-shading information. This demonstrates the difficulty of

deducing the function of a neural network by considering only the immediate receptive fields

of the neurons and ignoring the effect of more distant or indirectly connected neurons.

1.4. WHAT ARE ANNs?

1.4.1. Definitions

Although there are many different definitions for an ANN, informally it can be considered to

be a collection of simple processors that are connected in some manner. Each connection has

a weight, or cost, associated with it which is applied to signals that are propagated along the

connection. A definition used by the DARPA Neural Network Study [DAR87] (p396) was

that "a neural network is a system composed of many simple processors - fully, locally or

sparsely connected - whose function is defined by the connection topology and connection

strengths. This system is capable of high-level functions, such as adaption or learning with

or without supervision, as well as lower-level functions, such as vision and speech process­

ing". Formally "a neural network is a dynamical system with the topology ofa directed graph

that can carry out information processing by means of its state response to continuous or

episodic input" [Hec87a]. A more complete definition, partly due to Judd [Jud87] is that a

neural network can be considered a directed, not necessarily acyclic, graph, where the arcs of

the graph have some cost associated with them and the vertices perform some function of

their inputs from other vertices in the graph.

The vertices of the graph are commonly referred to as neurons, neurodes, nodes or units. The

arcs are known as connections or interconnections and the cost associated with a connectionJ is known as the weight of that connection.

1.4.2. Features all ANNs possess

There are at least eight features that all neural network models possess [RM86] (p45):
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• A set of processing units which correspond to the vertices of the graph as defined above.

Generally these units perform simple operations, typically addition of the weighted

inputs, as opposed to the transputer route where each unit is a powerful microprocessor.

Typically units receive inputs from their neighbours, compute an output value and send

the value to its neighbours. This process is inherently parallel with no executive/con­

troller organizing the order or timing of each units operation.

• A state of activation for each unit where all the units activations represent the state of

the system at time t. The state is usually represented by a vector of N real numbers

corresponding to the activation values of the N units of the net. Different models restrict

the units to different activation values, such as binary, discrete or continuous values.

• An output function for each unit. The output function is applied to the current activation

state of the unit to determine the output value of that unit.

• Some pattern of connectivity among the units.

• A propagation rule for propagating input vectors through the net to produce output

vectors.

• An activation rule for combining the inputs impinging on a unit, and that unit's current

state, to produce a new level of activation for that unit.

• A learning rule to modify the behaviour ofthe net by modifying the connectivity patterns

through experience.

• A representation of the environment in which the system is to operate.

The unit's processing power is usually limited to summing the inputs impinging on the unit

and applying a function to the sum. Examples of commonly used functions are:

A linear function:

f(neti) = neti

The Heaviside (step) function:

f(neti) = 0 if neti < t

f(neti) = 1 otherwise for a threshold t

The linear-threshold function:

f(neti) = 0 if neti < t

f(neti)= neti otherwise for a threshold t

The sigmoid function:

1
f(neti) = .

1+e-net,

ni

where neti=2wijaj is the net input to unit i,
j=o
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nj is the number of units connected to unit i, Wjj is the weight of the connection

from unit j to unit i and aj is the activation value of unit j.

The five conclusions of McCulloch and Pitts defining the McCulloch-Pitts neuron are still

followed. However, using the McCulloch-Pitts model leads to properties not observed in

BNNs [Ll089]:

• Neurons that excite some neurons and inhibit others.

• Neurons that merely change sign. For example, a neuron that accepts excitation from

one neuron only and whose output produces inhibition in one neuron only.

• Neurons that connect to all other neurons of the same type.

• A neuron that singularly can cause another to fire. Although this does occur in the

cerebellum, it is not certain whether it occurs in the neocortex. Available evidence

suggests that it is uncommon.

Further differences between real and artificial neural networks include [Ge077] (p90-91):

• Actual neurons differ in size and firing rate.

• Actual nervous systems are accompanied by chemical changes when they fire, which

may directly affect the overall properties of the system.

• Neurons in human beings are thought to fire across the cell bodies as well as along the

axon.

• There might be electrical field affects operating in the nervous system.

Rumelhart et al. [RM86] (p73-74) have used units more complex than the McCulloch-Pitts

neuron, termed sigma-pi units. With these units, output values of n units are multiplied

together before the product enters into the summation. Such multiplicative connections allow

units to gate each other. For example, if unit A and B form such a connection and unit A has

a zero activation value, unit B's activation value has no effect in the summation, since the

product of the two units activation is o.

As other researchers have indicated [AR89] (p16) the McCulloch-Pitts neuron is too simple

to accurately model real neurons: the McCulloch-Pitts neuron is a binary device while real

neurons act more like voltage-to-frequency converters. Brodie et al. [BKR78] have proposed

a more realistic model of a neural system. Taylor [Tay90] introduced temporal and prob­

abilistic features found in biological neurons to the McCulloch-Pitts neuron and the resulting

networks were capable of learning temporal sequences.

It has been suggested that complex valued weights be allowed (V.B. Sarma and C.Chen ­

pers comm). Although some consider this to be equivalent to real valued weights with

additional inputs and weights (S.E. Fahlman, C.Chen - pers comm), others (Sarma - pers
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comm) think the analysis ofsuch networks might be easier. This is currently an active research

area.

Because neurons and synapse are now known to be more complex than the McCulloch-Pitts

model, the knowledge partially justifies the Hebb rule, but also significantly extends it

[DAR87] (p148).

The question ofhow accurate the models need to be is difficult and as yet unanswered [Dur89].

Miall [Mia89] notes that the only correspondence between real neurons and the current models

of neurons is that both sum the activity of their inputs, weighted by synaptic efficacies and

produce an output that is a function, non-linear or linear, of the summation. Miall further

contends that, because of varied temporal properties of real neurons that the models lack, the

current ANNs are unsuited to many time dependent tasks.

There seems to be two approaches to this problem:

• More accurate modelling of the neurons, their interconnections with the associated

complexity. This is usually the approach favoured by neuroscientists.

• The applications/engineering approach which considers the distributed approach as

being important, rather than the finer details of the individual units. Armstrong's

Adaptive LogicNetworks (pers comm) follows this route, where each unit can compute

one of four logic functions, AND, OR, LEFT or RIGHT (where RIGHT(A,B) = B) of

its two boolean inputs and the net is a tree-like structure. Adaptive Logic Networks

(ALNs) are superisingly powerful with quick training and response times. Further ALNs

have been applied to various tasks, ego the estimation of fat in beef from ultrasound

images [MT91].

Because of the current lack of knowledge about the functioning of neurons and their

interactions, our models will, at best, be a rough approximation.

1.4.3. Learning algorithms

The learning algorithms can be grouped into three classes [Hec87a]:

• Supervised learning. The network requires a teacher which presents the network with

input vectors and the associated desired output vectors. Through a process of error

correction, the network tries to minimize the error between the desired output vectors

and the actual output vectors computed. Various error functions can be used such as the

sum of the square of the differences between the desired and actual output vectors or

the Euclidian distance between the desired and actual output vectors.
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• Self-supervised or graded learning. The network is presented with the input patterns

and attempts to reduce an internally generated error measure. A method often used to

reduce the error measure is to make small changes to the weights of the network. If the

changes bringabout a reduction ofthe error, then the changes were beneficial and similar

changes should be made. If the changes increased the error measure, then the changes

were bad and this direction of change shouldn't be followed. Another option is to have

a supervisor who merely responds to the network's attempts as either right or wrong
without giving an indication of the magnitude of the error, or how to correct it. Using

the supervisor's response, the network reduces its error by adapting the weights of the

connections.

• Unsupervised or self-organizing learning. For this type of learning no teacher is present.

The input patterns are presented to the network and similar inputs are grouped into the

same or similar classes. Note that similar often means the input patterns are grouped

together in a way that is statistically significant.

One presentation of all the patterns making up the training data set is known as an epoch or

cycle. The patterns used to train a net differ depending on the type of learning algorithm.

Supervised algorithms require both input and target output pattern pairs so as to be able to

calculate the error between the actual and desired outputs. Self-supervised and unsupervised

algorithms only require input patterns since no target output is explicitly required by the

algorithm.

1.4.4. Types of architectures

There are two classes of interconnection schemes:

• Layered networks consist of a series of layers of units (fig 1-3a). All the neurons in one

layer share some common feature such as the same activation function or connections

from the same set of cells.

• In non-layered networks the units are all considered to be in one layer (fig 1-3b), even

though they may have different properties.

Layered networks can be furthered divided into:

• Feed-forward networks in which any unit receives inputs only from units on earlier
layers, or from units on the same level (fig 1-3c). In this way, the input only flows in

one direction through the net, from the input units to the output units.

• Recurrent networks allow later units to connect to earlier units, and thus feed their output

back to act as input to earlier units (fig I-3d). Non-layered networks are usually

recurrent, although, given any recurrent net, a feed·forward net with identical behaviour

over a finite period of time exists [RM86] as demonstrated by fig 1-3e and 1-3f.

~ )~} /'J)
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Figure 1-3 A layered (a), non-layered (b), layered feed-forward (c) and a layered recurrent net (d). Any recurrent

net.(e) can be replaced by a layered net (1) with identical behaviour to (e) at time t.
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1.4.5. The thirteen main ANN models

Hecht-Nielsen [Hec87a] [Hec88] lists the thirteen types of ANNs in common use:

NAME YEAR COMMENTS

Adaptive Resonance Theory 1978-1986 Unsupervised learning, autoassoci-

(ART) ative memory.

Avalanche 1967 Learn, recognise and playback of

spatiotemporal patterns.

Backpropagation (BP) 1974-1985 The most popular supervised learn-

ing algorithm.

Bidirectional Associative Memory 1985 Single stage heteroassociative nets.

(BAM)

Boltzmann Machine 1985-1986 Uses an "energy" function to find

a global minimum of the cost func-

tion.

Brain State in a Box 1977 Single stage autoassociative net.

Cerebellatron 1969-1982 Learns the average of spatiotempo-

ral patterns and replays these

values on cue.
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Counterpropagation 1986 Functions as a statistically optimal

self-organizing look-up table.

Hopfield net 1982 Single stage autoassociative net

with no learning.

Madaline 1960-1962 Trainable linear combiners.

Neocognitron 1978-1984 Multilayer hierarchical character

recognition net.

Perceptron 1957 Trainable linear discriminants

Kohonen's Self-organizing Map 1980 Unsupervised learning. Forms a

continuous topological mapping

from one space to another.

The current learning laws can also be divided into six groups [Hec87a]:

• Grossberg: competitive learning of weighted average inputs (eg. ART).

• Hebb: correlation learning of mutually-coincident inputs.

• Kohonen: develops a set of vectors conforming to a particular probability density

function.

• KoskolKlopf: forms representations of sequences of events in temporal order.

• Rosenblatt: adjustment of perceptron linear discriminant device (eg. Perceptron).

• Widrow: minimization of mean squared error of a cost function (eg. Madaline).

ANNs are capable of a variety of operations. These include [Hec87a]:

• Mathematical mapping approximations where the ANN develops an approximation to

a functionf· A CRn ~ B CR
m

in response to a set of examples {(xi, Yi)}, XiEA, YiEB.

• Probability density function estimation. A set of equiprobable anchor points are

developed by self-organizing in response to a set ofexamples Xl, X2, ... of vectors in Rn

chosen in accordance with a fixed probability density function.

• Extraction of relational knowledge from binary data bases.

• Fonnation of topologically continuous and statistically confonnal mappings.

• Nearest neighbour pattern classification.

• Categorization of data.

1.4.6. Features ofANNs

The connectionist approach is attractive because it exhibits many desirable properties includ­

ing properties found in natural neural networks [BA91] [RM86]:
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• Neural plausibility. Because ANNs were originally inspired by BNNs they seem more

compatible than symbolic and other AI approaches with what is known about the

nervous system. It must be remembered, however, that ANNs rarely include all the

features found in BNNs, partly because of a lack of knowledge about the fine details of

BNNs.

• Graceful degradation. Biological BNNs are extremely reliable. Although it is possible

to exceed their limits, ego by destroying too many neurons or connections or by

supplying too many inputs, the BNN keeps on operating, albeit in a reduced, sub-optimal

manner. This useful property is shared by most ANN models in contrast to traditional

computational models.

• Capacity to learn from experience. A very attractive feature is that ANNs can learn their

behaviour from examples. This contrasts with traditional computation models, such as

expert systems, which are usually explicitly programmed or supplied with the relevant

rules.

• Generalization. Many ANNs generalize from the training data to unseen data. Thus, the

network's performance on unseen data is equivalent (or almost equivalent) to that on

similar training data. This is a useful property since the net could possibly treat unseen

and new situations correctly provided the training of the net was sufficient.

• Immunity to noise / fault tolerance. Noisy input data can be disastrous to traditional AI

methods. ANNs are often less sensitive to noisy inputs and soft constraints (where no

explicit rules are available or when many exceptions to the rules exist).

1.4.7. Criticisms of the ANN paradigm

There are at least two grounds on which ANNs can be criticized:

• Neurobiological. It is readily admitted that most of the models ofneurons used in ANNs

are greatly simplified. The McCulloch-Pitts neuron was a simplification ofneurons and

the processes involved as the process was understood in the 1940s. Although additional

data has since arisen, many ANNs still use the McCulloch-Pitts neuron as a building

block. Durbin [Dur89] raises the important point that, due to a lack of knowledge, it is

not known how simplified the models can be made before important information is lost.

It is important not to see a one-to-one correspondence between neurons and units: a

group of units could possibly serve as a more accurate model of a neuron. Backpropa­

gation, one of the most popular learning algorithms, is biologically implausible due to

a variety of reasons including the fact that the propagation of signals both forward and

backwards through the same synapses occurs, error signals are propagated backwards

through the axon and the model is not a real time model as explained in [BB90].
·AI
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> Explanation facility. An important failing of ANNs is that it is difficult to extract

information from a trained net. Expert systems and other symbolic AI paradigms

have the rules explicitly encoded and thus an explanation of decisions can be given.

Caudill [Cau90b] [Cau90c] and Hillman [Hil90] describe how hybrid systems

consisting ofANNs and expert systems can be constructed. Such systems are capable

ofexplaining the decisions taken. Methods for extracting rules from trained networks

have been devised (S. Sestito - pers comm) thus enabling an explanation facility.

> Hardware realization. Few of the ANN models have been implemented directly in

hardware. Although it is a fairly simple task to implement a trained net in hardware,

creating a net in hardware that can learn is more difficult. Accelerator boards and

special neural network chips have been devised to increase the speed of software

simulations of ANNs. Generative algorithms, which create new units and connec­

tions, also pose obvious problems for hardware implementation.

> Symbolic processing. ANNs have achieved remarkable success in low level pro­

cesses such as visual, auditory and other sensory processing and preprocessing. It is

not clear, however, how higher cognitive processes can be successfully accomplished

using ANNs. Rumelhart and McClelland [RM86] and Hinton [RM86] have applied

ANNs to tasks such as the learning of English past tenses and the learning of

relationships. Various responses have been raised to critics that insist on the need for

symbolic representations and rules as opposed to ANNs [BA91]:

» Approximationistapproach: the symbolic approach approximates a connectionist

model and provides a less detailed amount of performance information than does

a connectionist model.

» Compatibilist approach: investigators seek to implement the explicit rules in a

connectionist network. They claim that crucial benefits accrue as a result of the

connectionist implementation of symbolic models.

» Externa/ist approach [RM86] (chapter 14): ANNs may develop the capacity to

interpret and produce symbols that are external to the network.

» Brooks [Br091] has suggested that the reliance on representation disappears when

approaching intelligence in an incremental manner with reliance on interfacing

with the real world through perception and action, although this hypothesis was

introduced with his subsumption architectecture which differs slightly from the
connectionist approach.

1.5. APPLICATIONS OF ANNs

From an engineering and applications view, one ofthe strongest arguments in favour ofANNs

is the success with which they have been applied to various problems. Many of the problems

have yet to be solved using non-ANN approaches or the performance of non-ANN systems

doesn't yet approach that of the ANN-based systems. This is especially true in those problems
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with a large number of inputs (eg. machine vision), many simultaneous constraints or fuzzy

inputs and rules.

ANNs have been applied to many fields including:

• Vision
> Fukushima et al. [FMI83] developed a complex network of cascaded levels of

different types of units that learns to recognize handwritten characters, even after

considerable deformation, rotation and positional shifting of the characters.

> Backpropagation applied to hand-written zip-code recognition [LMB90]. The

throughput from the camera to classification was more than ten characters per second.

The image data was first preprocessed by binarizing the image, determining the

location of the writing on the envelope and segmentation of the image. There was

no feature extraction in the preprocessing stage. The net learnt to classify handwritten

numerals of various styles accurately.

• Image processing
> Binarization of grey-level images [BYK90] which is discussed in detail in a later

chapter.

> Adaptive boolean filters [YAN] which are similar to median filters and were used to

remove noise from images. The results were comparable to those obtained using the

median filter.

> Image compression [Bur90] [MRS90].

Feed-forward ANNs can map inputs from an input space into a different sized output

space. Also, in multilayer nets, the hidden layer(s) are usually smaller than the input

layer. The net can be trained to map the images to themselves; Le. the input and

output layers have the same number of units and the input and desired output patterns

are identical. With a smaller hidden layer, the images will have to be represented in

a compressed form in the hidden layer.

The image can be compressed by supplying it as input to the net and using the

activation of the hidden nodes to represent the compressed image. The image can be

restored provided the weights from the hidden to output units and the interconnec­

tions between the hidden and output units are known. The compressed values become

the input vector of the decompression net (which is equivalent to the original net

except that the original input layer has been removed and the original hidden layer

is now considered the input layer) and the output vector corresponds to the original

image.

An added bonus is that ifsimilar images are used when training the net (eg. a sequence

of human eyes was used by [Bur90]), the net could learn to generalize from the
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images, so that if a. slightly noisy compressed image were supplied as the image to

be decompressed, a correct image would result from the decompression process.

) Segmentation of images [BWS87].

• Acoustic processing

) NETIalk [SR86].
English spelling is inconsistent. Although there are weak rules, many exceptions and

qualifications exist. NETTalk learnt how to read English text: given a string of

characters it produced the correct phonemes ·which served as input to a speech

synthesizer. NETIalk had a similar aim as DECTalk, a text-to-sPeech system

produced by Digital Equipment Corporation. DECTalk, however, used a complex

rule based system developed over many years to apply phonological rules to the text

and a look-up table to handle any exceptions to the rules.

NETIalk was a three layer net with 203 input units (26 characters, and three

punctuation and space symbols with a window of seven characters used to provide

context to the character in the centre of the window) and 26 output units (23

articulatory and three stress features). The training set consisted of isolated words

and continuous speech dictated by a child (sixth grade) and required 12 CPU hours

ona DECVAX.

The accuracy of the system was 95% on the training set and 80% on the test sets.

The system passed through various stages while learning: babbling, substitution of

one vowel for all vowels and one consonant for all consonants (Le. the net learned

to differentiate between consonants and vowels) and recognition ofword boundaries

and stresses. The speech produced was understandable after ten passes through the

training set.

) Kohonen phonetic typewriter [Koh90].

This unsupervised ANN learnt to generate a topological map ofthe phonemes present

in Finish or Japanese speech. Phonemes that are closely related (Le. those that are

pronounced in a similar manner) were grouped close together in the map. Two

hundred to 300 words were used to train the network. The map created for a standard

(typical) user could be modified by the new speaker using 100 more words to fine

tune the map. The accuracy of the network to spot and recognize arbitrary continuous

speech typically varied between 80% and 90% depending on the text and speaker.

After compensating for coarticulation effects using an expert system, the accuracy

increased to 92% to 97%. The network has been implemented directly in hardware

and the latest versions operate in real time with continuous dictation.

• Signal processing.
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) Sonar signal processing [Sou89] [DAR87] (Appendix F).

A backpropagation-trained network was used to classify sonar returns from an

undersea metal cylinder and a cylindrically shaped rock of similar size into one of

two possible classes: rock or cylinder. Sonar returns were collected from suitable

objects placed on a sandy ocean floor. Two hundred returns (111 from a metal

cylinder) from the 1200 returns made were selected to serve as the training set. The

net consisted of 60 input units (which had the FFT1 of the sonar return normalized

to the range [0.0, 1.0] as input), one hidden layer and two output units.

The training took 30000 passes through the training set with a resultant accuracy of

99.8% on the training set and 90% on the test set. This compared favourably to the

nearest neighbour method (82% on the test set) and trained humans (92% on the

training set, 84% on the test set). The features discovered by the network were similar

to the perceptual cues utilized by trained humans.

) Signal analysis in oil well drilling [MSV90].

Sigma-Iog curves provide information concerning the safety and economical optimi­

zation of oil well drilling. A backpropagation-trained net was used to discover and

classify isolated and multiple discontinuities in sigma-Iog curves and performed

better than the nearest neighbour classifier. The input layer consisted of 20 to 40

units which formed a window that was slid along the sigma-Iog curve, with the units

taking on the value of the curve at that point. The units were fully connected between

adjacent layers. Two output units, to classify the input patterns as: increasing
discontinuity, decreasing discontinuity and no meaningful discontinuity were used.

For isolated discontinuities, only two units in one hidden layer were used while for

multiple discontinuities, two hidden layers of eight and four units respectively were

used.

• Robotics and control theory.

Satellite orbit control system [ADGP90].

An ANN-based control system to keep a geostationary satellite correctly orientated

with respect to an inertial reference system rotating with the earth was designed.

Traditional control systems use a theoretical model which ignores all non-linear

terms in the equations governing the movement of the satellite and inertial frame.

The model also ignores non-linearities caused by flexible appendages (such as solar

panels or aerials). The BP-trained net was used in conjunction with a control system

governed by the theoretical model with information passing between the two

systems. The network was used mainly when a lack of rules was evident and for

1 Fast Fourier Transform.
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refinement of the standard systems control signals. Preliminary results were a steady

accuracy of 0.0001 radians on each attitude angle.

> Robot arm controller [SK91].
A six degree of freedom (OOF) robot arm was used with a camera in place of the

gripper. The task was to place the camera directly above an object placed at an

arbitrary position in the viewing field (Le. 20 hand-eye coordination). The network

adapted quickly, within tens of trials, and formed the correct mapping from the input

to output domain.

Miller et al. [MGK90] attempted a similar problem where the task was to make the

centroid of an object on a conveyer belt follow a specified trajectory on a monitor

by appropriate movements of a six DOF robot arm equipped with a camera in place

of the gripper. The inputs to this network were the length and centroid of the object

as well as an image of the object on the conveyer belt.

> Autonomous navigation.

D. Pommerleau (pers comm) developed an ANN (termed ALVINN) which learnt to

guide mobile robots using visual input. Because of its ability to learn, ALVINN could

adapt to new situations and thus cope with autonomous navigation tasks. ALVINN

learnt to control a van in less than five minutes by watching a human drive. The

trained system could drive in a variety of circumstances (single paved and unpaved

roads, multi-Ianed lined and unlined roads) at speeds of up to 55 m.p.h.

Nguyen and Widrow [NW90] trained an ANN to back a truck-trailer combination

to a loading dock without any forward movements from an arbitrary starting position

and orientation. The network learnt to solve sequential decision problems by moving

into positions that, although not decreasing the displacement error, made the later

task easier.

• Medicine.

> Monitoring a patient's breathing rate [Key91].

It is not possible to codify the rules ofmedicine exactly because of their fuzzy nature.

ANNs cope with fuzzy rules remarkable well and seem suited to applications in

medicine. Anesthesiologists use a capnograph to visually monitor a patient's cardio­

pulmonary system and the anesthesia machine. A capnograph is a plot of concentra­

tion ofcarbon-dioxide versus time, and is usually similar to a square wave with values

graduating between zero and one. Capnographs are routinely used in operating­

rooms and can give details such as when the patient is fighting the ventilator (and

thus the drug may be wearing oft) or whether the machine is malfunctioning. The

output of the capnogram was fed into two neural networks directly which identified

the start and end of the wave. Other neural networks were then used to classify the
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wave and draw a conclusion about the patient's state.

• Recreation.
) Networks that plays Backgammon [TS89].

A neural network was developed to decide whether a move in Backgammon is good.

Presented with an initial board configuration, the board after a legal move and short

term features (such as whether the move made a point1), the net had to judge the

quality of the move. It was only used for situations other than a simple race to the

end since very little strategy is involved in such races. Backgammon was used

because of the large number of choices available at each stage; other games, such as

checkers, can be played well by a deep search through all possibilities up to n moves

ahead. This is harder to do in Backgammon because of the element of randomness

due to the dice roll and the large search space involved. The trained ANN was tested

by giving unseen board positions as input and playing it against a human and

computer program. Against the computer opponent the network won about 65% of

the games while against the human expert it won 35-40% of the games.

) Music composition which is discussed in a later chapter.

1.6. CONCLUSION

A short historical introduction and the workings of biological neurons and nets have been

discussed. It was noted that although the knowledge of neurons, their functioning and

interactions has grown since ANNs were first used as models of neural networks, few of the

current ANNs employ units that are more complex than the simple McCulloch-Pitts neuron.

It is not certain what level of biological accuracy is required for the models to be realistic

models of biological neural networks. The basic terms to be used throughout the remaining

chapters were defined as were the basic assumptions and requirements ofANNs. Finally some

successful applications ofANNs to a variety of tasks were briefly mentioned. Certain of these

applications are examined and expanded in detail in following chapters, as is a more complete

description of certain of the learning algorithms and network architectures.

1 A point is when at least two tokens belonging to a player are on a position.



CHAPTER TWO

2.1. INTRODUCTION

Due to the large number of neural network models the following chapters will only consider

layered, feed-forward network architectures that are trained using Backpropagation and

similar learning algorithms. These are in fact the most popular and studied ANNs. A network

consisting of k+1 layers of units will be referred to as a k-Iayer network. For a k-Iayer net

with connections only between adjacent layers there will be k layers of adjustable weights.

The k+1 layers of units in a k-Iayer network will be labelled layer 0 (the input layer) through

layer k (the output layer). All the algorithms discussed in this and following chapters only use

information that is available locally at the weights that are being adapted and are known as

local techniques [Jur].

2.2. PERCEPTRON ARCHITECTURE

The Perceptron, or single layer Perceptron, [Ros58] was one of the first ANNs designed to

recognize simple patterns and to be trained with a simple supervised learning rule. Fig 2-1

illustrates the general architecture of a Perceptron net. The net consists of two layers of units

(hence single layer): an input and output layer. The input and output vectors of the Perceptron

are usually binary valued vectors with a single layer of adaptable weights.

Input layer

0-

Weights

Output layer

Figure 2-1 General architecture of the Perceptron. The single layer net consis18 ofone layer ofadaptable weights
and an input and output layer of units.
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The net input to an output unit i is defined as:

neti = ~ Wi,j aj - S i

J

where Wi,j is the weight from input unit j to outpu~ unit i,

aj is the activation value of input unit j,

and Si is the threshold of unit i.

The activation value for an output unit j is given by:

OJ = fh (netj )

where fit is the Heaviside function:

fit (x) = +1 if x < some threshold

fit (x) = -1 otherwise

A simple net that classifies an input vector as belonging to one of two classes is shown in fig

2-2 [Lip8?], where

n

y=fh(~ Wj ij - S) and
j=O

y = +1 --+ the input vector belongs to class 0

y = -1 --+ the input vector belongs to class 1.

io wo

Input units
0-

~
-0--:

in Wn

Output unit y

Figure 2-2 A perceptron net which classifies input vectors into one of two classes.

Generally only one output unit is active (+1) for a given input vector. Plotting a map of the

decision regions created by the weights in the multidimensional space spanned by the input

variables is a useful technique for analyzing the behavio'ur of the net [Lip8?]. For figure 2-2,

the two decision regions specify which input values result in class 0 and class 1 responses and

the Perceptron determines a suitable set of weights that form two such decision regions

separated by a hyperplane. For the case of two input units, the hyperplane is a boundary line

(fig 2-3).
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Xl

Boundary line

I = -wO/wlxO+S/WI

Class 1

Class 0

+------~~+--------.. xO

Figure 2-3 The decision regions formed by the net on the left are separated by the line Xl =-WO/WlXO+E>/Wl

The thresholds and connection weights can be adapted using various learning algorithms. The

original Perceptron Convergence Procedure (or delta ru!e) developed by Rosenblatt [Ros58]

for a Perceptron with N input units and M output units is [Lip87]:

STEP 0: Set Weights And Thresholds To Small Random Values

Set Wi,j (0) and Si to small random values.

Wi,j (0) is the weight from input unit j to output unit i at time 0,

Si is the threshold of the output unit i.

STEP 1: Present The New Input And Desired Output Vectors

Present inputs xo, Xl, ..., XN-I and the desired output do, ... , dM-I to the net.

STEP 2: Calculate The Actual Output Vectors
N-I

Yj = fh(~Wj,iXi-ej) for all output units j.
i=O

STEP 3: Adapt The Weights

Wj,i (t+1) =Wj,i (t) + 11(dj(t)-Yj(t))xi(t)

where 11 is a positive proper fraction (the learning rate),
dj(t) is the /h component of the desired output for the current input and

Xi(t) is the activation value of input unit i.

STEP 4: If Learning Is Not Complete, Go To Step 1

Some points to note about the algorithm:

• The input vectors need not be binary valued, although they usually are. Steps 1 and 2

make no assumptions about the input vectors. Step 2 guarantees, however, that the
output vectors are binary valued.
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• The weights are only adapted if the actual output is no~ equal to the desired O!!t ut. If

the desired and actual outputs are equal, then d(t)-y(t)=O and no wei ht chan e occurs.

• The learning rate determines the amount of Influence the differences between the target

and actual output vectors have on the weight change. Large values imply that the

difference has a large influence on the new weight calculated while small values imply

a smaller weight change. Faster convergence is achieved using large values since the

weights then change by larger amounts. However, oscillation of weight values can

occur. Using smaller values leads to more stable weight estimates with less oscillation.

There is thus a conflict between fast convergence and stable weight estimates. Generally

this parameter needs problem specific tuning.

• The thresholds can be considered to be the weights from an additional input unit, which

always has an activation value of +1, to all the output units (fig 2-4). These weights can

be adapted simultaneously with the other weights by step 3 of the algorithm.

Figure 2-4 The thresholds can be replaced by an extra input unit (shaded) which has the value 1 for all input

vectors. The weights from this unit will serve as the thresholds of the output units.

Rosenblatt, among others, proved the Perceptron Convergence Theorem:

"If there exists a set of weights that separate the inputs into the desired classes

then the delta rule will determine a suitable set of weights to accomplish this
task".

If such a set of weights exist, the problem is linearly separable or separable. A proof for the

two-class case (fig 2-3), adapted from Minsky and Papert [MP88] (p168-170) appears in

appendix A. The proofcan easily be adapted to cover various other forms of the convergence

procedure [MP88] (p175) including the case where F need not consist of unit vectors, can be

a finite set or can satisfy an upper and lower bound of length. The theorem can be generalized
to the case of more than two output classes.
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2.3. CRITICISM OF THE PERCEPTRON

The Perceptron Convergence Procedure is guaranteed to find a solution to separable problems.

However many input sets aren't separable. For example, the logic function AND (fig 2-5a)

Xo Xl AND

-1 -1 -1

-1 1 -1

1 -1 -1

1 1 1

a

Xo Xl XOR

-1 -1 -1

-1 1 1

1 -1 1

1 1 -1

c

Xl

Xl

Xo

b

Xo

d

Figure 2-5 The truth tables for the logical AND and XOR appear in figures (a) and (c). Figures (b) and (d) are

the diagrams associated with the truth tables. Shaded circles indicate a +1 while the others indicate a -1. The

bottom-left coordinate of the boxes is (-1, -1) and the top-right is (+1,+1). From the figures it is easy to see that

AND is linearly separable while XOR isn't.

is clearly separable (fig 2-5b) while the XOR function (fig 2-5c) is not, as no line can be found

that separates the two output classes (fig. 2-5d).

Non-separable sets, such as the XOR function, can sometimes be extended, by adding

additional input units, so as to make the set separable by increasing the dimensionality of the

weight space (eg. fig 2-6a & b). Pao [Pa089] extended this principle and his method is

discussed later in this chapter.

Minsky and Papert analyzed the Perceptron architecture (with binary valued input vectors)

thoroughly and their findings can be summarized as [MP88], [PoI88]:
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Xo Xl X2 eXOR

-1 --1 -1 -1

1 -1 1 1

1 1 -1 1

-1 1 1 -1

a

Xl

b

Figure 2-6 By adding an extra input (a), the XOR function is separable. Note that X2 does not determine the

value of eXOR but is merely used to add an extra dimension to the weight space. The extended XOR function

(b) is clearly separable using a plane.

• Their Group Invariance Theorem showed that linear threshold functions that are

invariant under a permutation group can be transformed into a function whose coeffi­

cients depend only on the group.

• As various predicates scale, the size of the coefficients (weights) grows exponentially.

The order of a predicate was defined as the size of the largest conjunction in the minimal

sum-of-products logical form of that predicate. The original Perceptron architecture of

Rosenblatt [Ros58] consisted of an input retina with connections to a set of associator units

(A-units) which had weighted connections to the output units (fig 2-7). The order as defined

is equivalent to the number of inputs of the A-unit with the largest number of inputs [AM90]

(p41).

Retina A-units

Out

Figure 2-' The original Perceptron architecture consisting of an input retina, the associator units (A-units), the

modifiable weights (Wo through Wn) which are multiplied by the signals passing through them, summed and a

Heaviside function applied to derive the output (Out). The connections from the retina to the A-units are

randomly chosen.

One of their central arguments concerning the inadequacies of the Perceptron is that the order

should remain largely constant for any problem type regardless of the retina size [AM90].
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This is analogous to the requirement that a conventional programs size should be largely

invariant to the size of the task. For example, a sorting algorithm should not change in size

when required to sort different quantities of numbers. But for tasks like the parity problem\

the Perceptron is not of finite order. The order of this 'task is dependent on, and increases

directly with, the size of the retina (the input vector) [AM90]. Other problems not solvable

with a Perceptron of finite order include the connectedness problem2 (fig 2-8). It is interesting

to note that determining whether the two spirals of figure 2-10 are connected is difficult for

human observers and requires cognitive processes rather than "pure" perception [JuI75].

Figure 2-8 Connectedness problem with a simple figure. The left figure is not connected while the right is.

As Pollack has noted [PoI88], which is in agreement with Minsky and Papert, successful

learning by the Perceptron (and in general by any ANN) is more dependent on what is to be

learnt than on the details of the learning mechanism. A "law" often put forward by AI

researchers is that a system must be able to potentially represent what it wants to learn. Minsky

and Papert showed that for many tasks the Perceptron architecture could not represent the

knowledge that was required to solve the problem. They argued that by adding layers ofhidden
units (fig 2-9) the representational properties of the net would increase and many of the

problems associated with the Perceptron would be overcome [AM90] (p132). The hidden

units recode the input patterns by forming an internal representation, and this recoding can

support many required mappings from the input to output units [RM86] (p319). However,

Minsky and Papert could not envisage a learning algorithm for a net containing hidden units.

Note, however, that Brooks [Br091] has concluded from his research based on his subsump­
tion architecutre that the reliance on representation disappears when approaching intelligence

1 Given a binary valued vector the task is to determine the parity of the vector.

2 Give a two dimensional pattern the task is to determine whether the pattern is

continuous; Le. whether the pattern consists of one continuous line.
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in an incremental manner with reliance on interfacing with the real world through perception

and action. He has put forward the fairly radical hypothesis that representation is the wrong

unit of abstraction in the building of the bulkiest parts, such as vision, movement or obstacle

avoidance, of intelligent systems.

Figure 2-9 Feed-forward, non-recurrent net with one layer of hidden units.

11 ~

11 11

11

.; I

Figure 2-10 It is difficult to detennine which ofthe two spirals is connected using "pure" perception. The right

figure is connected.

If layers of hidden units are to be used it is clear that linear units (units having linear activation

functions) should not be used:

Consider fig 2-9. Let:

10 denote the input vector,

Wo denote the first layer of weights from the input to hidden layer,

11 denote the activation vector of the hidden layer units,

W 1 denote the second layer of weights from the hidden to output layer and

12 denote the activation vector of the output units.
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Replacing Iiw by W .I (as in appendix A), note that

11 =Wo.l 0

12 =W1.I1
12 = W1.(W 0.10)

*12 =W .10

Clearly this can be extended to any number of layers of linear units and it can be seen that

any number of such layers can be replaced by one layer ofequivalent weights. Therefore, any

hidden units should be non-linear.

Widrow and Hoff [WH60] developed one of the earliest trainable layered ANNs: the Madaline

I [WL90]. The Adaline (Adaptive Linear Elements) units used are equivalent to the Perceptron

with the threshold replaced by an extra unit which has an input permanently set to +1. By

combining Adaline outputs using various logic functions, Madaline I was able to overcome

certain of the Perceptron's problems. Fig 2-11 demonstrates how the XOR function can be

Xo

Figure 2-11 XOR can be computed using the MadaJine I architecture. The two AdaJine units compute partial

solutions. to the problem (the two separating lines) which are then combined (using an AND in this case) to

derive the solution.

computed using one Madaline I net: the two Adaline units compute partial solutions to the

problem which are then combined by ANDing the outputs to form the output of the Madaline.

Any logic functions, such as AND, OR and the majority-vote-taker, may be used to combine

Adaline outputs. The second layer units are obviously fixed logic functions while the first

layer units have adaptive weights. The Madaline I architecture was extended to the Madaline

11 which combined layers ofAdalines while Madaline III used a sigmoid rather than Heaviside

activation function and is equivalent to the Backpropagation algorithm [WL90].



2-10

2.4. BACKPROPAGATION

Rumelhart et al. [RMH86] developed a learning rule, termed Backpropagation (BP) or the

Generalized Delta Rule, for an arbitrary layered feed-forward network (a multi-layer Percep­

tron). In such nets recurrent connections (connections within layers and from later layers) are

not permitted but connections from earlier layers to later, non-adjacent layers are.

The total input to a unit Xi is the familiar summation used by the McCulloch-Pitts neuron

defined as:

Xi = ~Wij Yj
j

where Wij is the weight from unit j to unit i,

Yj is the activation value of unit j

For linear activation functions, the delta rule minimizes the squares of the differences between

the actual and desired output values, summed over all the input-output patterns and output

units. It can be shown (appendix B) that this corresponds to gradient descent on the error

surface in weight space. For example, for a net with two weights the height of the error surface

at a point (wl, w2) is equal to the magnitude of the error of a Perceptron with two weights

. having values Wl and W2 respectively. Without hidden units the error surface is paraboloid

with a unique minimum, so gradient descent methods are guaranteed to find the minimum.

However, it is not clear how to compute derivatives of the error surface, as required in gradient

descent methods, when hidden units are present. Also, the error surface is not necessarily

paraboloid in such cases and hence local minima can exist which implies that a gradient

descent method can become caught in such minima.

Now, by restricting the units to those having differentiable, non-decreasing activation

functions, the delta rule can be generalized to the Backpropagation rule [RM86] (p325):

Define (as in appendix B)

The net input to unit i for pattern pas:

netp,i =~WijOpj
j

the output of unit j for pattern p:
Op,j = fj(netp,j)

(1)

(2)



and the error of all output units for pattern p:

1~ 2
Ep = 2L)!PJ-OPJ)

j

where tp,j is the lb component of the target output vector of pattern p, Op,j is

the lb component of the actual output vector of pattern p and Wi,j is the weight

from unit j to unit i.

Let

E= ~Ep
p

be the error measure over all the patterns in the training set.

To correctly generalize the delta rule, set
Apwj,i a -aEp/awj,i

aEp/awj,i = aEp/anetp,j .anetp,j laWj,i

By (1)

anetp,j/aWj,i = alaWj,i ~ Wj,k Op,k = 0p,i
k

Define
ap,j = -aEp/anetp,j

From (5)
-aEp/awj,i = bp,j Op,i

Therefore to implement gradient descent in E, the weight change should be
Apwj,i =llbp,jOp,i

as in the standard delta rule.

Now, Op,j can be determined using
Op,j = -aEp/anetp,j = -aEp/aop,j .aop,j/anetp,j

2-11

(3)

(4)

(5)

(6)

(7)

aOp,j/anetp,j =fj(netp,j) from (2)
where fj is the activation function of unit j and f' j is the derivative of the activation function.

To compute -aEp/aop,j assume firstly that Uj is an output unit:
by the definition of Ep it follows that

aEplaOp,j = -(tp,j-Op,j)
which is the standard delta rule.

Substituting into (7)
bp,j = (tp,j-op,j)f'j(netp,j) (8)
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For Uj being any non-output unit:

:LaEp/anetp,kanetp,klaop,j = :LaEp/anetp,k. a/a op,i :LWk,iOp,i
k k i

= LaEp/anetp,kWk,j
k

= - :LOp,kWk,j
k

Substituting into (7)

Op,j =rj(netp,j)L Op,kWk,j
k (9)

Therefore, equations (8) and (9) give a recusive algorithm to calculate the o's for all the units

in the net.

Any activation function can be used provided it is non-decreasing and differentiable. Linear­

threshold and Heaviside functions are not suitable and, as has been shown, linear functions

are inadequate.

Rumelhart et al. [RHW86] used the logistic function:

1
0p,j = .

1+e-netp,}

aOp,j/anetp,i = ap,j(1-op,j)

Thus, for the logistic function, the o's are:

Op,j = (tp,j-Op,j)op,j(1-op,j) for output units (from (8» and

Op,j = op,j(1-op,j)LOp,kWk,j for hidden units (from (9».
k

2.5. BACKPROPAGATION ALGORITHM

The Backpropagation algorithm thus becomes [Lip8?] [Wer90]:

STEP 0: Initialize Weights And Thresholds

Set all the weights and thresholds to small random values.

STEP 1: Present Input And Desired Output Vectors

Present the continuous valued input vector (xo, Xl, .. XN-I) and specify the

desired outputs (do, dl, ... dM-I).
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STEP 2: Calculate The Actual Output Vector

Using the logistic function and equations (1) and (2), calculate the activation

values for all the units, including the output units (yo, yl, ... YM-l), starting at

the first non-input layer and moving, layer by lay~r, to the output layer.

STEP 3: Adapt The Weights

Starting at the output units and working back towards the input layer, adjust

the weights using

Wi,j(t+1) = Wi,j(t)+l1biXj

where Wi,j(t) is the weight from unit j to unit i at time t,

Xj is the output value of unit j,

bi =Yi(l-Yi)(di-Yi) if unit i is an output unit or

bi = Yi(l-Yi)~bkWk,i if i is any other unit.
k

STEP 4: If Learning Is Not Complete, Go To Step 1

A high-level algorithm of BP appears in appendix C.

It is important to start with small random values for the weights in step o. If all the weights

are initialized to the same value and unequal weights are required to solve the desired problem,

the net would never learn [RM86] (p330). If the weights were initialized to the same value

then, when the error is propagated back through the weights in proportion to the value of the

weights, all hidden units directly connected to the output units would receive identical error

signals and the weights after adaption would all be identical. This symmetry can be avoided

by using small random starting weights.

As with the Perceptron, the thresholds can be replaced by adding an extra input unit, always

having a value of 1, connected to all other non-input units. The weights from this unit can be

adapted simultaneously with the other weights.

The updating of the weights (step 3) can occur at one of two times:

• Mter each pattern pair has been presented. This is known as on-line updating and

generally gives faster convergence rates [KSV89].

• Mter each epoch and is referred to as batch updating. The errors for each unit are

accumulated during the epoch and the weights are updated after the last pattern in the

epoch has been presented.
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2.6. CAPABILITIES OF MULTI-LAYER

PERCEPTRONS

The capabilities of multi-layer nets are due to the non-linear activation function of the hidden

units. Fig 2-12 [Lip87] illustrates the types ofdecision regions networks with 0, 1and 2 hidden

layers can construct using hard-limiting (Le. Heaviside) activation functions. The single layer

Perceptron forms decision regions separated by hyperplanes. A two layer Perceptron (having

two layers ofadaptable weights) can form any convex l decision region, possibly unbounded,

in the space spanned by the inputs, by combining the hyperplanes formed by the first weight

layer. A three layer net can combine these convex regionS' into regions which have, at most,

as many sides as there are units in the first layer [Lip87]. Similar decision regions to those of

fig 2-12 are formed for nets with multiple output units and sigmoid non-linearities. The

behaviour of such nets is more complex because the decision regions are bounded by smooth

curves and the analysis is thus more difficult.

a b

G
c

Figure 2-12 The most general decision regions formed by nets with 0 (a), 1 (b) and 2 (c) layers of hidden units,

2 input units and 1 output unit. Note that the activation functions for alii units are Heaviside functions.

Pao [Pa089] has criticized the view that hidden layers form combinations of hyperplanes to

partition the input space into different regions. Because hyperplanes don't stop at the

boundaries of the hypervolumes but may extend through the whole space, a hyperplane may

serve in defining the boundary of one hypervolume but could extend into the interior of

another hypervolume. An alternate viewpoint due to Nillson [Pa089] (p198) is that the

successive layers carry out a sequence of mappings from one space to a space of another size

until a representation (Le. a mapping into a suitable space) is achieved where the desi~ed

separation is possible.

1 A convex region is a region where any line joining two points on the border of the

region only passes through points within the region.
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The Kolmogorov Mapping Neural Network Existence Theorem is a nonconstructive theorem

by Kolmogorov [Lip87] [Sou89] (p77-79) which states that any continuous function of N

variables can be computed using only linear summations and nonlinear, continuously increas-

ing functions of only one variable.

Formally, Kolmogorov's Theorem can be stated as [GP89]:

"There exist fixed increasing continuous functions hpq(x) on I = [0, 1] so that

each continuous function f on In can be written in the form

2n+l n

f(xl, ... Xn) = ~ gq (~hpq(xp»
q=l p=l

where gq are properly chosen continuous functions of one variable."

In terms ofnetworks this means that every continuous function ofn variables can be computed

by a network with two hidden layers where the hidden units compute continuous functions.

Hecht-Nielson [Hec87b] formulated the theorem as

Given any continuous function, q.: In -. Rrn, q. can be implemented exactly by

a two layer net with n input units, 2n+1 hidden units in one hidden layer and m

output units.

Thus, a two layer net with N(2N+1) continuously increasing, nonlinear units can compute

any continuous function of N variables.

Girosi and Poggio [GP89] have criticized the statement that the theoremproves that a network

with two hidden layers is a usable or good representation for two reasons:

• A certain degree of smoothness is required by the units activation values. This is a

prerequisite for the use of BP and similar gradient descent algorithms. However, a

number of results [GP89] show that the inner functions hpq of Kolomogorov's theorem

are highly not smooth.

• Useful representations for approximation and learning are parametrized representations

that correspond to networks with fixed units and modifiable parameters. Kolomogo­

rov's theorem is not of this type: gq is at least as complex, for instance in terms of the

number of bits need to represent it, as f.

Thus, an exact representation ofa function in terms of two or more hidden layers in a network

seems doomed to failure. However, finding a good approximation using networks of two or

more hidden layers is possible.
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Cybenko demonstrated the existence of uniform approximations to any continuous function

provided that the activation function is continuous [Jon90]. Jones [Jon90] extended this result

to include any bounded sigmoidal activation function and developed an algorithm to construct

such approximating functions. For the uniform approximation of discontinuous functions,

two or more hidden layers may be needed (DeMers - pers comm).

Baum [Bau88] has shown that to implement an arbitrary dichotomy for any set ofN points

in general position in d dimensions, one hidden layer containing rN/dl units will suffice. In

fact, no smaller network can be used.

2.7. CRITIQUE OF BACKPROPAGATION

BP has several shortcomings. These include [Jur88]:

• Local minima. The Perceptron Convergence Procedure is guaranteed to find the global

minimum, ifone exists, because the error surface d~finedby the Perceptron architecture

is a paraboloid in the space spanned by the weights and thus only one minimum exists.

By introducing nonlinear and hidden units however, the error surface typically can

contain many minima, not necessarily all global minima. Brady et al. [BRS89] have

investigated cases where BP failed tasks that the Perceptron succeeded in separating.

BP can fail to separate linearly separable problems when the unique minimum is

constructed such that it fails to separate the input vectors into the desired classes. BP

determines the minimum of the error surface and thus fails to separate the classes

correctly. Other constructed examples used by Brady were problems where the local

minima had large basins ofattraction: there was thus a higher probability that BP would

fall into such a basin and be trapped in a local minimum. Vogl et al. [VMR88] argue

that in practical situations it may not be important or desirable to reach the global rather

than a local minimum:

) The mathematical model used to model the system may describe the gross structure

of the problem adequately but might be lacking in fine detail. Hence a local minimum

might satisfy the gross structure but it is not possible to determine a global minimum

satisfying the fine structure that isn't described· by the model.

) It might be expensive computationally to determine the global minimum when a

local minimum will suffice.

) The purpose of the search in weight space is to find a set of weights that satisfy the

prescribed error criteria. A local minimum might satisfy the error criteria satisfac­

torily.

• Lack of convergence proof. It is easy to prove that if infinitesimally small weight

adjustments are used, an optimal solution will be reached. However using infinitesi-
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mally small adjustments is impractical. Therefore larger weight adjustments are used

and convergence cannot be proved.

• Sensitivity to initial conditions. BP is a gradient descent method and due to the topology

of the error surfaces (plateaus, local minima, etc.) the choice of initial weights affects

the rate of convergence. Kolen and Pollack [KP90] have demonstrated BPs' extreme

sensitivity to the initial weights and determined that the initial weights are a very

significant parameter in the convergence time.

• Lack of incremental learning ability. Incremental learning occurs when patterns learnt

previously aren't unlearnt or lost when new patterns are learnt. Because of the method

used in BP to update all the weights when learning, nets trained with BP do not have

this ability. This bodes ill for adaptation of a BP trained net to changing situations

without having to relearn patterns learnt previously.

• Speed of convergence. This is possibly the best researched problem and is discussed in

section 2.8.

• Scalability of the algorithm. Empirical and theor~tical studies of BP have shown that

the algorithm's performance scales badly as the problem size is increased [TJ88]. In

chapter three, an algorithm that seems to scale better than BP is presented. An alternative

possible solution is to train a set of small nets on subproblems of the task and combine

them in some way to solve the task. Training the small nets is often faster than training

one large net and the scalability problem doesn't affect the smaller nets as badly as it

does the larger net. Lippmann [Lip89] discusses this approach as has been used in speech

recognition tasks.

• Sensitivity to weight and input errors. When simulating nets by computers or imple­

menting nets in hardware, the weights have to be represented in some manner. Generally

32 bit floating point values are used (Fahlman - pers comm). Hochfield and Fahlman

(pers comm) have investigated the precision required using Fahlman's Cascade-corre­

lation architecture and determined that at least 12 bits per weight were required. The

accuracy of such representations and the number of significant digits could affect the

performance of the net. Stevenson et al. [SWW90] noted that the sensitivity of a net to

weight errors increases with the number of layers in the net and the percentage change

in the weights during weight adaptation.

Various heuristic methods have been suggested to overcome some of these problems. For

networks that don't learn the correct patterns (possibly by being trapped in local minima)

Caudill [Cau91a] suggests:

• Reset the weights and retrain the network. This positions the start of the search at a

different location on the error surface with the hope that the new position will eventually

lead to a better solution. This is a last resort and generally not very feasible for large

tasks with long learning times or real-time learning requirements.
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• Perturbing the weights by adding small random amounts to the weights. This change in

the weights moves the search to a different point on the error surface, thus hopefully

escaping from the local minimum. Choosing very large perturbations can lead to slower

learning since it might move the current point of the search far from a desirable solution.

Similarly, small perturbations might not change the position in weight space sufficiently

to escape from a local minimum especially if the minimum has a large basin ofattraction.

• Don't use deeply layered networks. This leads to a great dilution of the error signal and

is discussed in section 2.8.

• Add small amounts of noise (Le. small random values) to the input patterns. This

encourages generalisation by forcing the network to learn the prototyPes of the patterns

rather than the individual patterns. The problem is in choosing the amount of noise to

add.

• Accept a larger error and be satisfied with the minimum reached.

• Use a larger number of units in the hidden layers by increasing the number of hidden

units by 10% if necessary.

Jurik extended these heuristics [Jur88]:

• Start with more hidden units than there are input a.nd output units. Retrain the network

with progressively less hidden units until further reductions cause a bad degradation in

the performance of the network. This too encourages generalisation. For tasks that

require large learning times this option is rarely feasible.

• Have as many different input-output pattern pairs as possible to force the network to

extract the prototyPes of the patterns rather than learning the patterns themselves.

• Back-propagate only those errors with a magnitude that exceeds some threshold thus

sPeeding up the learning process by only considering "large" errors. This method was

used in the training of NETTalk.

• Average the error over a number of patterns before adapting the weights by BP. This is

a mixture of the batch and on-line weight updating schemes.

• In each epoch present the "difficult" patterns more than once. For example if the network

is not learning pattern 2 correctly, pattern 2 can be presented more than once per epoch.

• When adding noise to the weights during adaptation, the noise can be gradually reduced

as learning progresses. Large amounts ofnoise early in the learning progress allow large

steps through weight space while smaller steps allow finer searching of the area which
hopefully contains a minimum.
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2.8. RATE OF CONVERGENCE

BP was defined so as to be a gradient descent method. Gradient descent is equivalent to

hill-climbing techniques on the negative of the error surface. However hill-climbing, and thus

gradient descent, has obvious problems [Win84] (p94-95):

• The foothill problem occurs when there are secondary peaks in the search space which

draw the hill-climbing procedure away from the global maximum.

• The plateau problem occurs when large "flat" spaces separate the maxima and the

hill-climbing procedure can "wander" about such spaces aimlessly.

• The ridge problem occurs if the directions in which the method searches for a maximum

are limited and thus potentially good search directions are overlooked.

The problems are greatly increased when the number of dimensions in the search space

increases due to extra parameters (weights).

Minsky and Papert [MP88] (epilogue) note that hill-climbing works for "toy" problems but

becomes impractical for larger and more complex problems. BP is merely a recursive way of

calculating the gradients with less computational effort than "normal" gradient descent

methods and doesn't alleviate the basic problems associated with hill-climbing procedures.

Nothing has been proven about the range and types ofproblems for which BP works efficiently

and dependably.

A problem with the gradient descent technique of BP is the rate at which it converges to a

minimum. Numerous improvements to the algorithm have been suggested including:

• Adding a momentum term to the weight update rule [RHW86] [RM86] (p330) where a

fraction of the previous weight update is added to the current weight update. So step 3

of the algorithm is replaced by:

Wi,j (t+1) = Wi,j (t)+ 11bi Xj + a(wi,j (t) - w i,j (t-1»

where a is the momentum constant and is usually chosen such that 0 ~a ~ 1. Increasing

the learning rate, 11, can lead to faster learning but also to oscillation in the error

performance of the net during learning similar to what is found when increasing the

learning rate in the Perceptron rule. Including the momentum term can increase the rate

of convergence without oscillation. The choice of the parameters 11 and a is difficult

and problem dependent with the choice depending on the topology of the local error

surface. Ideally the values of 11 and a should be able to change during the search of the

error surface. Methods to accomplish this are given in a later chapter.

• Stuck units. Units can be turned off (have an activation of 0) early in the learning stage

and stay stuck in this zero state. This problem is due to the points where the derivative

of the sigmoid function approaches o. Fahlman [Fah88] has termed such points flat
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spots. In BP as the error is back-propagated through the net, the error seen by each unit

j is multiplied by the derivative of the sigmoid function. The derivative of the logistic

function is OJ (l-oj) where OJ is the activation value ofunitj. This derivative approaches

oas OJ approaches 0 or 1. So, even if the output represents the maximal possible error

(eg. the output is 1 instead of 0 if j is an output unit), only a small fraction of the error

is passed back through the net. Theoretically such units will eventually recover but this

can take a long time. When simulating a net, round-off error might cause such units

never to recover. Fahlman [Fah88] added a constant, 0.1, to the derivatives of the output

units to overcome the flat spots. This made a dramatic difference with the learning time

reducing by almost half in the 10-5-10 encoder benchmark l
. Chen and Mars suggested

ignoring the derivative at output units and consider the output units to be linear [Tve91].

For such a case it was suggested that a second learning rate, 'YI2 = 'YI/10, be used when

adapting the weights of the units in the hidden layers.

• Non-linear error function. The flat spots at the output units can be eliminated by using

a non-linear error function that approaches infinity as the difference between the desired

and actual output approaches +1 or -1. Fahlman [Fah88] used the hyperbolic arctangent

ofthe difference between the actual and desired output which had a modest effect (±25%

improvement) on the convergence rate when tested on the 10-5-10 encoder benchmark.

• Changing the range of the logistic function. Consider an input unitj having an activation

of o. Now the weight from this unit to the ith hidden unit is changed in proportion to

the activation value of unit j and the error signal back-propagated from unit i (step 3 of

the algorithm). Because the activation value of unit j is 0 no change is made to this

weight. Two ways to remedy this are:

> Use inputs of 0.1 and 0.9 instead of 0 and 1 respectively in the input vectors. In such

cases, all input units will always have an activation value and weight updating,

although possibly small updates, will take place.

Change the range of the logistic function to be symmetrical about 0 with lower and

upper bounds of -0.5 and +0.5 respectively by changing the logistic function to be

f(x) =1/(1+e-x) - 0.5. This approach was used by Stometta et al. [SH87] with a 10%

faster convergence rate and 20% smaller variance (the variance was due to averaging

the results over a number of trials with different starting weights) resulting. They

claim that in general problems this method would decrease the convergence time by
30% to 50%.

• Heuristic adaptation of the learning rate parameter. Vogl et al. [VWR88] proposed two
heuristic methods:

1 Given a binary string of length N which has only one component with the value 1, the

task is to teach the net to map the string to itself using M units in the single hidden

layer. This is known as the N-M-N encoder problem.
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> The learning rate, Y), should be varied according to whether the iteration decreases

the total error for all the patterns. If the weight update does reduce the total error it

is assumed that the search direction is a good direction and Y) is multiplied by a

constant <pI.

> If the step produces an error larger than n% (usually 1-5%) of the previous error then

Y) is multiplied by a constant ~l, the momentum parameter is set to 0 and the step is

repeated with the last weight change ignored. When a successful step is taken, the

momentum parameter is reset to its original value and training continues as normal.

These methods lead to a significant improvement on the 3x3 T-C problem
l

(2119
2epochs down to 826 epochs) and the 7x7 T-C-L-X (30000+ epochs down to 1 000

epochs).

• Gain parameter. Kruschke and Movellan [KM91] introduced a gain term to the BP

equations:

The activation of a unit i is defined as

ai = f(gineti) where g is the real valued gain for unit i and neti is the net input to unit i

as defined previously.

L\wi,j = Ewbiaj is the weight change where Ew is the learning rate for weight updates and

bi = (~bkWi,k)f(giOeti).gi as in standard BP.
k

Gradient descent on the error with respect to the gains can be computed in a manner

similar to gradient descent on the error with respect to the weights, giving a rule (L\gi =

Egbineti/gi )to update the gain values. It is easy to incorporate the gain calculation in the

standard BP algorithm since all quantities are locally available to the weight being

updated. It was shown that the gain was beneficial for speed and generalisation while

simulations confirmed significant speed improvements. When units are learning the

gain term speeds up the learning. However, with very few hidden units there might be

1 The task is to differentiate "T"s and "C"s that appear in one of four orientations on a

3x3 grid. The T's and C's are constructed in such a manner that the T and C of the

same orientation differ in at most two positions.

2 The task is similar to the T-C problem except that "T', "C", "L" and "X" are used on

a 7x7 grid. Again the letters of the same orientation are constructed so as to differ in

at most two positions.
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no successful units and in such cases the gain term won't significantly improve the

performance of the net [KM91l.
• Choice of initial weights. The initial weights are an important factor in the speed and

success of convergence. It seems intuitively obvious that starting with a good set of

weights will enhance the performance of the algorithm. However, determining a set of

good weights is the whole purpose of BP and it is not clear that good sets can be

determined in one step. Kramer (pers comms) suggests using Principle Component

Analysis to choose a set of promising initial weights.

• Shortcut connections. "Fully connected feed-forward net" is usually taken to mean that

each layer is fully connected to the next (later) layer. However, the BP algorithm is

defined for general non-recurrent nets. Therefore BP is suitable for nets with shortcut1

connections. Fahlman uses the term to mean that each unit receives incoming signals

from all units in all earlier layers (pers comm). Adding such connections could increase

the convergence rate since such nets give the hidden units clearer signals to follow

(Fahlman - pers comm). Although shortcut connections increase the dimensionality

of the weight space (by adding extra weights) Kempka (pers comm) has empirical

evidence that dramatic decreases in learning times occur when using shortcut connec­

tions and, in addition, when using activation functions other than the logistic function,

the generalization ability of the net increases.

• Dilution of error signal. Clearly the error is relevant when adapting the weights leading

to the output units but as the error is back-propagated (and attenuated by the derivative

of the activation function) the error bears less and less information to the earlier units

(Fahlman - pers comms). Thus, in a deeply layered net, the error is diluted and bears

little information for updating the weights of the earliest layers.

• Enhancing the input representation. As mentioned previously (e.g. fig 2-6) by extending

the input pattern representation it is possible that a simpler net may solve the problem.

Pao [Pa089] (chapter 8) has extended this to his Functional Link Net. By including

higher-order connections, by enhancing the input representation, generally results in a

dramatic decrease in the learning time. Pao used two models to enhance the input pattern

representation:

) Function expansion model. Each component of the input vector is acted on by some

set of functions to yield the enhanced representation. For example, given the input

(io, it, ... in), the enhanced input would be (fo(io) ... fk(io) ... fo(in) ... fk(in». A set of

suitable functions, for example, include

f o(x) =x

1 Shortcut connections are connections from earlier, not necessarily adjacent, layers to

later layers.
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2
fl(X) = x

fk(x) = sin nx

) Outerproduct model. This is a special case of the functional expansion model. Each

component of the input vector is multiplied by the entire input vector to form an

enhanced representation. This amounts to forming the outerproduct between each

input vector and itself.

Both models can be used recursively, Le. repeated on the enhanced representation,

to further enhance the resulting representation. In practice it is important toprune

the enhanced representation to remove any duplicate units, especially in the

outerproduct model, to reduce the input dimensionality. For example, using the

outerproduct model to enhance the input vector (Xl, x2, x3) the pruned input

pattern used would be (Xl, x2, x3, Xlx2, Xlx3, x2x3, XIX2X3). Once the input

representation has been enhanced, Pao found that the Perceptron often was

adequate to solve the resulting problem. For example, using the outerproduct

model on the XOR problem makes it solvable using the Perceptron (fig 2-13).

Xo Xl XOXl XOR
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Xl

Figure 2-13 The XOR problem can be solved by a perceptron when the input representation is enhanced using

the outerproduct model. The truth table (left) indicates the extra input (XoXl) which has no affect on the XOR

values. It does, however, make the problem linearly separable (right figure).

2.9. CONCLUSION

The Backpropagation algorithm is a gradient descent algorithm designed to find a minimum

of the error surface defined in weight space. BP is a generalisation of the Perceptron

Convergence Procedure which was found to be limited to the solution of separable problems.

Although BP has shown some remarkable success it is plagued by many problems. One of
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the most serious problems is that of the rate of conve~gence. Many improvements to the

algorithm have been suggested with varying success.

The question remains whether the improvements are merely improvements to an inadequate

algorithm or whether BP is less limited than the Perceptron. Minsky and Papert state [MP88]

(prologue) that the theorems on the limitations of the Perceptron can be generalised to BP

with little modification which would seem to suggest that BP, like the Perceptron, is flawed.

However, from an applications point ofview, BP can be remarkably successful although little

theoretical guidance exists as to which tasks BP is suited to solving.



CHAPTER THREE

3.1. INTRODUCTION

Tesauro and Janssens [TJ88] conducted an empirical study of BP learning times to examine

the sealability! of BP, using the parity benchmark. It was found that the learning time was

proportional to 4n where n was the number of input units (2 s n s 8) which is consistent with

recent theoretical analysis of similar algorithms [TJ88]. Hinton has shown [Hin89] that the

training time for BP is 0(n3
) on serial machines (0(n2) on parallel machines with one

processor for each weight) and at least O(n) training patterns should be used, where n is the

number of weights in the net.

From this it can be seen that the learning time increases exponentially as the size of the net,

and thus the number of weights, increases linearly. This is known as the sealabilityproblem.
It is necessary to find solutions to the following problems:

• Learning speed. In the previous chapter various methods were suggested to increase the

learning speed of BP. However, these solutions often add additional processing or

storage requirements to the basic BP algorithm with only a marginal improvement.

• An efficient algorithm, bounded by a polynomial in the input size, is required so as to

reduce the effects of the scalability problem.

• An algorithm that always finds the global minimum or is rarely trapped in local minima.

In this chapter two algorithms will be discussed: Quiekprop (QP) is an algorithm that seems

to scale well and is faster than BP while Baekpereolatio,,: (Perc) seems to avoid local minima

and is faster than BP.

3.2. CONJUGATE GRADIENT TECHNIQUES

In step 3 of the BP algorithm the weight is updated by:

Wij(t+1) = Wij(t)+ llbiXj

1 The scalability of a neural net algorithm is a measure of how the time required to

converge increases with increasing input sizes.
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Consider the more general problem of minimizing a function f(x) where x = (X1...xN) T is a

vector to be determined. In the case of ANNs, x is a weight vector that solves the problem.

Clearly BP is a method for solving such a problem where f(x) is the error function as defined

in the previous chapter. By estimating a minimum x(O), the estimate can be improved

iteratively [Osb85] [WaI75]:

x(t+1) = x(t) + a(t)d(t)

where aCt) is a scalar step length and

d(t) is the search direction.

aCt) can be determined by a line-search as in the Steepest Descent algorithm. Choosing

gives the steepest descent direction and by identifying Wij(t) with x(t), II with aCt) and bjXi

with d(t), BP can be seen to be similar to gradient descent methods.

However gradient descent methods converge slowly [Sha90]. BP differs from (1) in that the

learning rate, ll, is a constant unlike aCt).

Using Newton's direction defined by:

d(t) = _(V2 f(x(t)r1Vf(x(t))

where Vf(x(t) is the gradient of f at x(t) and

V2 f(x(t) is the matrix of second partial derivativ~s of f at x(t).

(2)

can lead to faster convergence. However, this requires second order information which

requires a global procedure (and is thus not available to units as local information) and greater

storage requirements. In addition, it is not easy to parallelize this method, unlike gradient
descent [Sha90].

Quasi-Newton methods approximate (2) by

dt =-H(t)Vf(c(t)) (3)

where H(t) is the positive definite matrix approximation of (V2f(x(t))r1 ob-

tained from first order information.

These methods have the advantage that the second order partial derivatives are not needed

but H(t) is usually a totally dense matrix which increases the storage requirements.

Conjugate gradient methods determine d(t) as a linear combination of the current gradient

vector and the previous search direction. By starting with
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the sequence d(t) chosen as

d(t+1) = _Vf(x(t+10 + ~(t)d(t) (4)

where p(t) is a scalar parameter chosen so as to ensure that the sequence of vec-

tors, d(t), satisfy a mutual conjugacy condition.

One method to calculate p(t) is the Polak-Rebiere rule [KS89]:

~(t) = «g(t+1tg(t)T.g(t+1) )/( (g(t) T.g(t) )

where g(t) = Vf(x(t)

which will calculate the successive search directions. From (4) it is clear that conjugate

gradient techniques require little extra storage and are easily parallelizable [Sha90].

From this information the deficiencies of the BP algorithm can be highlighted [KS89]:

• Because the momentum term is constant, the search direction may not be in the direction

of steepest descent and in such cases any weight change will increases the total error.

• If the search direction is in the descent direction, the learning rate may be large enough

to move from one wall of the "valley" to the opposite wall leading to oscillation and

slower learning.

Finding values for the momentum and learning rates is thus difficult and problem specific.

Conjugate gradient methods, in general, share all the desirable properties of steepest descent

methods: low storage requirements, easy implementation and parallelization but, when

implemented properly, converge more quickly and generally are as quick as quasi-Newton

methods [Sha90]. However, care must be taken in the line-search when determining a(t) and

a restart procedure may be necessary to restart failed line searches by using the negative of

the current gradient as the new search direction after n or n+1 weight updates, where n is the

number of weights in the net [Atk89] [Sha90].

The disadvantage of conjugate gradient methods is the number of function evaluations

required (up to twice that of Newton methods and, depending on the line-search algorithm,

up to twice as many gradient evaluations). Hence there is a trade off between the number of

function evaluations required and speed of convergence. Moller [MoI90] has noted that as a

minimum is approached, the rate of convergence of conjugate gradient methods decreases.

Moller [MoI90] developed a scaled conjugate gradient method (SCG) which uses second

order information but only requires O(N) memory (where N is the number of weights in the
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net), has no user dependent parameters and avoids the time consuming line-search by using

a step size scaling mechanism. Tsioitsias (pers comm) notes that conjugate gradient methods

are more susceptible to rounding errors than other direct methods, may have erratic behaviour

and may cause the weights to grow very large very quickly.

3.3. QUICKPROP

To recap, BP uses the partial first derivatives of the error function with respect to each weight

to perform gradient descent in weight space so finding a minimum of the error function. Using

infinitesimal steps down the gradient guarantees that a minimum will be reached. Clearly

infinitesimal steps are impractical. Empirically it has been determined that for many cases the

minimum reached is a good enough solution for most purposes [Fah88]. However, the set of

partial first derivatives carries little information about the curvature of the error surface. For

this information, higher-order derivatives need to be used.

Two approaches have been used to try and account for the curvature of the error surface:

• By adjusting the learning rate heuristically based on previous weight updates. Momen­

tum achieves this in a limited sense as do algorithms such as the Delta-Bar-Delta

algorithm [Tve91]. All such methods improve the convergence rate of BP to some

extent.

• By using the second partial derivatives of the error with respect to each weight which

supply the required higher-order information. Conjugate gradient and Newton methods

use this approach but generally require global calculations to compute the true second

derivatives. Therefore, some approximation of the second derivative is usually used.

Quickprop (QP), developed by Fahlman [Fah88], is a second order method based loosely on

Newton's method. It is similar to standard BP using batch updating but a copy of the error

derivative, aE/aw(t-l), calculated during the previous training epoch, is kept as are the

differences between the current and previous weights. As in standard BP, oE/ow(t) is

available at the time of weight updating.

Two assumptions about the error surface are then made:

• The error vs. weight curve for each weight can be approximated by a concave parabola.

• The change in the error curve, as seen by each weight, is not affected by all the other

weights that are changing simultaneously.

For each weight, independently, the previous and current derivative of the error slopes and

the weight change between the points at which these slopes were computed is used to construct
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a concave parabola. This construction is trivial and only uses information local to the weight

being updated. A "jump" is then made to the minimum of the constructed parabola:

S(t)

Clearly the new weight value is only an approximation of the optimal value but, by applying

the method iteratively, the method is very effective. The momentum term added to standard

BP is not required although the learning rate parameter is retained. The advantage is that with

QP large steps that jump to the minimum of the parabola are allowed rather than the smaller

steps down the side of the parabola towards the minimum as in BP.

When using the QP update rule three situations can arise:

• The current slope is smaller than the previous slope but in the same direction. The QP

rule causes a step further down the wall of the parabola to be taken.

• The current slope is in the opposite direction of the previous slope. This implies that

the minimum of the parabola has been passed. The QP rule places the new position

somewhere between the current and previous positions, which will be closer to the

minimum.

• The current slope is in the same direction as the previous slope but is of the same or

larger magnitude. Following the QP rule explicitly would cause an infinite step or a step

moving up the current slope and away from the minimum to be taken.

Fahlman introduced an extra parameter, the maximum growth factor (~) which limits the size

ofany weight change that may take place, as a heuristic measure to overcome the last situation.

Therefore, no weight change is allowed to be larger than ~(previous weight change). If the

step computed by the QP rule is infinite, too large or moves up the current slope, the step used

is f.!(previous weight change). If f.! is chosen as too large, chaotic behaviour results in the net

with slow or no convergence. From experiments, a ~ value of about 1.75 works well for a

range of problems.

A high-level algorithm of QP appears in appendix C.

3.3.1. Quickprop features

Because the QP rule uses previous slopes when calculating the weight update, there must be

a method to bootstrap the process when first starting or when the step size previously was 0

but a non-zero slope has been computed for the current epoch. For both these cases the
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previous slope will not be available. Intuitively gradient descent based on the current slope

and some learning rate parameter, 'YJ, seems suitable. Fahlman tried two methods for this

bootstrapping process:

• Whenever the previous weight step fell below some fixed threshold, the gradient descent

method was used in place of the QP rule. This method worked but for larger problems

suspicious behaviour occurred in the vicinity of the threshold.

• A gradient descent term was always added to the value computed by the QP rule. This

worked well except for cases when the minimum of the parabola had been overstepped.

In such cases the QP rule accurately located the minimum but the gradient descent term

forced the new position past this minimum. The solution was always to add 'YJ(current

slope) to the value calculated by the QP rule except when the current slope was of

opposite sign to the previous slope. In such a case only the value computed by the QP

rule was used.

QP can suffer from problems similar to those of BP; specifically the problem of flat spots.

This can be trivially solved using the same methods ·applied to BP. From experimental

evidence, only the learning rate, 'YJ, needs problem-specific tuning and the tuning needn't be

too careful for reasonable results.

The disadvantage of QP is the extra storage space required. To store the slopes and weight

differences of the previous epoch each require O(N) storage whereN is the number ofweights

in the net.

3.3.2. Quickprop performance

Fahlman tested QP on a series of tight encoder problems! with the results as given in [Fah88].

The improvement in learning time was almost an order of magnitude over standard BP and

almost a factor of four over the modified BP (using 0.1 added to the derivatives and a

non-linear error function to overcome flat spots).

For the tight encoder problems 4-2-4, 8-3-8, 16-4-16, ~2-5-32, 64-6-64, 128-7-128, 256-8­

256, the learning time grew slower than 10gN whereN was the number of patterns to be learnt.

On a serial machine the actual clock time grows by a factor between N2 and N210gN. On a

parallel machine, the time grows by a factor of between Nand NlogN. It is not clear whether

these results hold for larger or other problems.

1 An N-M-N encoder task is tight if N = 2M.
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Fahlman experimented on the 8-M-8 encoder problem to see how the number of hidden units

(M) affected the training time. The time decreased monotonically with increasing M, even

when M was much larger than 8. Previously it had been suggested that the learning time would

slow down after some point - probably because more hidden units force the output units

further into the flat spots. The performance of QP for this task isn't necessarily an indication

of its scalability since BP could arguably also perform better given the solutions to the flat

spots problem.

On the XOR benchmarkl Delta-Bar-Delta [Tve91] required 250.4 epochs, standard BP

1538.9 epochs and QP 24.22 epochs to correctly learn the function. QP is faster than the

standard and enhanced versions ofBP as well as conjugate gradient methods [Jur]. Empirical

evidence seems to indicate that QP scales well as the number of patterns to be learnt increases.

However, this needs to be established for a larger variety of tasks. It also needs to be

established how QP scales as a function of the number of weights to be able to compare it

realistically to BP.

3.4. BACKPERCOLATION

Backpercolation
2

(Perc), introduced by Jurik [Jur], is an algorithm for training multi-layer

perceptrons. Due to the proprietary nature ofPerc only the general principles of the algorithm

may be explained while the actual mathematics needs to be kept confidential. Perc assigns

each unit its own activation error thereby assigning each unit its own error surface. Jurik claims

that experimental evidence indicates that weight changes that reduce the local activation error

permit "tunneling through" the global error surface which leads to faster convergence and a

better probability of reaching an optimal minimum. BP, on the other hand, tries to decrease

the global error by descending along gradients of the global error surface.

Perc claims to satisfy the following constraints:

• The training stability doesn't degrade with many hidden layers.

• Only local computations are required.

• The training algorithm doesn't add any units to the network.

• The weights converge quickly to attain arbitrary accurate output.

1 The task is to implement the exclusive-or logic function.

2 The Backpercolation algorithm is proprietary to Jurik Research, PO 2379 Aptos, CA

95001 USA. Non-profit research is encouraged. Al.I commercial use requires a license

from Jurik Research. Proprietary technical report available.
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The third constraint, as will be seen, is in fact somewhat restricting and there are good reasons

for allowing algorithms to change the network architecture by adding or removing weights

. or units.

Iteration, as used by Jurik, means the presentation of one pattern and the updating of the

network parameters, including the weights. Throughout this section, the notation used will

be identical to that used by Jurik.

The basic Perc algorithm:

STEP 0: Assign Random Values To The Initial Weights.

STEP 1: Present The Input And Desired Output Vector.

STEP 2: Determine A Global Error For The Given Signal.

STEP 3: Back-propagate The Error Gradient To All Units But Those Of The

First Hidden Layer.

STEP 4: All Units, Other Than Input Units, Are Assigned Their Own Activa­

tion Error.

STEP 5: The Weights Are Adjusted.

STEP 6: The Error Magnification Parameter, A, Is Adjusted.

STEP 7: If Learning Is Not Complete, Go To Step 1.

Steps 1,2 and 3 are identical to those of BP. Note that Perc uses the hyperbolic tangent as the

non-linear activation function. The bias term, which is equivalent to the thresholds used in

BP, is implemented by adding another input unit which permanently has a value of one.

A high-level algorithm of Perc appears in appendix C.

Each unit is assigned its own activation error, E, which indicates the amount to change the

activation, ~, of the unit by. In general, E = ~*-~ where ~* is the target value of ~. The

calculation of the activation error is accomplished by exploiting the duality of the inner

product of the signal and weight vectors. Units may thus "request" a change to the incoming

signal which is broadcast to the unit providing the signal. The request is interpreted by the

originating unit as an output error. The signal can then be changed, at the originating unit, by

changing one or more weights. This causes each weight to have its own error surface to

descend.
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3.4.1. Backpercolation mathematics

Define (as for BP):

~k = ~WkjCPj
j

where Wkj is the weight from unit j to unit k,

CPj is the activation value of unit j (Le. the signal from unit j) and

~k is the total incoming signal to unit k.

Assume an arbitrary unit has an internal activation error E. For each unit impinging on this

unit, the activation value (or signal), cP, of the impinging unit is multiplied by the weight of

the connection between the two units, w, giving the inner product cp.w. The duality of the

inner product suggests that steepest descent may be used to reduce Ein two ways:

~w = -iJE/iJW and ~cp = -iJE/iJcp

This indicates how much adjustment is needed in the weight or signal to reduce the error E.

To change cp, the request for the change is sent to the unit providing the signal. This occurs

on a layer by layer basis starting with the output layer and proceeding towards the input layer

which is similar to BP's backpropagation of the error.

All the requests to a unit to alter a signal are combined to form an optimal value which then

determines the internal activation error of that unit. Mter all units have been assigned internal

activation errors, the units weights can be adapted to reduce their own activation errors thus

giving each unit the equivalent of its own error surface.

Thus two phases are involved in the backpercolation process; message creation (MCR) and

message optimization (MOP). The output layer performs MOP to determine the internal

activation error for these units. The output units then send requests to change the incoming

signals to the last hidden layer (MCR) which then perform MOP on these request to determine

an optimal internal activation error. This process continues until the input units have

performed MOP.

Due to the proprietary nature of the algorithm, and by the conditions of the agreement

undertaken, the details of MOP and MCR may not be disclosed. However, they are clearly

given in [Jurl.
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3.4.2. Backpercolation features

Perc does not use a learning rate parameter as BP does, but uses instead a self-adjusting error

magnification term, 'A. The AveragedAbsolute Error (AAE) is defined as the absolute value

of the difference between the desired and actual output, averaged across all the training

patterns in one epoch. 'A is assigned an initial value, generally less than 1, and is adjusted

whenever the AAE is below a threshold, typically 0.8. Again the details of this adjustment

may not be disclosed but is performed so as to stop oscillations that may occur if 'A is too large

by reducing 'A.

As was mentioned in chapter 2, the initial weights do influence the convergence rate of the

network. Jurik introduced an auto-kickstart strategy: the weights are initially set to ±<p/N<p

where N<p is the number of connections to the unit (the fan-in of the unit) and <p is a global

parameter. Jurik suggests starting with <p = 2. Whenever overall weight decay is detected, <p

is doubled, the weights are reset and training restarts. Jurik justifies this by noting that if <p is

too small, all units of a Perc net will have values within a small region about O. The whole

net will have linear behaviour and might not be able to achieve a non-linear mapping.

Therefore if a non-linear mapping is required to solve the problem, the weights will decay

towards zero. Clearly <p should be increased in such cases.

By normalizing the input data the performance of Perc and BP seems to yield better

performance [Jur]. This is accomplished by dividing the difference of the mean of each input

component (over all patterns) and each input component by the standard deviation between

each component and the mean.

3.4.3. Backpercolation performance

Jurik compared Perc's performance to the reported results of various algorithms using the

parity, encoder, linear channel!, multiplexer2 and symmetry3 benchmark tasks. For most of

the tests Perc converged faster than the other algorithms and was equalled by Quickprop in

1 The N-N-N Linear Channel task is replicate any vector pattern of N continuous input

values in the N output values. The single hidden layer has N units.

2 The input layer has N+2
N

units and only one output unit. The N input units represent

a binary encoding of any of the remaining 2N input units. The desired output of the

net is the input of the designated input unit.

3 The net has 2N binary-valued input units and 1 output unit. The task is to indicate

whether the first N inputs are identical, in reverse order, to the second N inputs.
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the 8-3-8 encoder task and bettered by Quickprop in the 10-5-10 encoder task. From Jurik's

results it seems that Quickprop and Perc have similar convergence rates.

It is not clear how much of Perc's superior performance is due to the approach of assigning

each unit its own activation error:

• As was shown in chapter two, changing the sigmoid function to the range (-0.5, 0.5)

instead of (0, 1) led to a large decrease in convergence times. Since Perc uses the

hyperbolic tangent, which has a range (-1, 1), it s~ems obvious that an increase in the

rate of convergence will result from this alone.

• Due to the normalization of the input patterns, it seems suspicious to compare Perc's

results directly with other algorithms which don't apply this normalization to the

patterns.

• In the Perc source code distributed by Jurik, the weights and errors are normalized

throughout the feed-forward and updating process. What affect this has on the conver­

gence rate is not discussed by Jurik.

• Perc uses on-line uPdating where the weights are adjusted after each pattern has been

presented. Many of the algorithms Perc was compared to perform batch updating. There

is empirical evidence that on-line updating leads to quicker convergence than batch

updating [KSV89].

• As has been discussed by Fahlman [Fah88], there is no set of benchmarks that test all

aspects ofan algorithm and different researchers use different criteria to measure success

and error. Therefore it is difficult to compare the results of reported tests unless the

identical conditions (e.g. measures ofsuccess, error thresholds, initial weights) are used.

No details are given on how failures are treated. F~hlman [Fah88] has detailed various

alternate strategies when reporting learning times that included failures. It is not clear

whether Perc succeeded in all the benchmarks or if the high convergence rate was

balanced by a higher probability of failure.

• Possibly Perc's choice of initial weights, where each weight has one of two possible

values, including the auto-kickstart feature, affects the rate of convergence.

It is instructive to compare the scalability of Perc to that of QP as determined by Fahlman

[Fah88]. This was accomplished by using the encoder problem in two ways: by using a set

of tight encoders (4-2-4,8-3-8, 16-4-16,32-5-32,64-6-64, 128-7-128) and the encoder 8-M-8

with ME {2, 3, 4, 5, 6, 8, 16} and comparing the learning times required. Where results were

available for Perc it was found that they differed, sometimes significantly, from those reported

here.

This can be possibly explained by two factors: the tests reported here did not include the

auto-kickstart method of reinitializing the weights during training and an initial learning rate

(A) of 0.2 as opposed to 1.0 was used. Using A=2.0 delivered results that were more
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comparable to those reported by Jurik. It is not clear whether these reasons adequately explain

the difference in performance. However, if they do, it would seem to indicate that Perc is

dependent on the initial values of the parameters and is thus a brittle or delicate algorithm

[FeI82]. Two different implementations of Perc were used in the tests, one of which is

distributed by Jurik, and thus it seems unlikely that implementation details caused the

difference in performance.

The task was judged to be complete when all output units over all patterns had activation

values that were within some neighbourhood of the desired value. This neighbourhood was

determined by the error threshold. Jurik suggests that ari error threshold double that used for

algorithms with an activation function in the range (0, 1) should be used when comparing

Perc's performance to such algorithms due to the larger activation range (-1, 1) of the units

in the Perc algorithm. Since Fahlman used an error threshold of 0.4, a threshold of 0.8 was

used in the Perc tests.

Perc(A=O.2) Perc(A=2.0) QP

Size Trial Mean S.D Trial Mean S.D. Trial Mean S.D.

4-2-4 10 33.8 8.08 10 6.2 2.53 100 15.93 6.2

8-3-8 10 78 40.09 10 23.1 5.69 100 21.99 5.6

16-4-16 10 100.8 30.44 10 77.2 24.02 100 28.93 5.4

32-5-32 5 187.4 19.35 5 316.4 106.2 25 30.48 3.1

64-6-64 5 440.8 31.16 5 10 33.90 2.9

128-7-128 FAILED FAILED 5 40.20 2.8

256-8-256 FAILED FAILED 5 42.00 1.6

Table 3-1 Comparison of the scalability of Perc (for /...=0.2 and /...=2.0) and QP for various tight encoder

problems. The mean indicates the mean number of epochs required to satisfy the desired error criterion.

A trial was classified as a failure if the required error criterion was not satisfied within 750

epochs. Due to limited computational resources, less trials were conducted for the Perc

scalability tests. The results of the two tests are detailed and compared to those reported in

[Fah88] in tables 3-1 and 3-2 and graphically in figures 3-1 and 3-2. As can be seen, Perc

scales worse than QP in both cases, especially in the first test.

Perc requires D(N) extra storage to store the internal activation errors of the N units. This

compares favourably to QP's storage requirements. However, Perc requires two backward

passes through the net when updating weights as opposed to QP's one. Since Perc uses on-line

updating this could be a time consuming exercise, especially for large or deeply layered nets.
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Perc(A=O.2) Perc(A=2.0) QP

Size Trial Mean S.D Trial Mean S.D. Trial Mean S.D.

8-2-8 10 365.5 75.04 10 168.3 36.42 25 102.8 37.7

8-3-8 10 79.8 46.32 10 24.7 4.64 100 21.99 5.6

8-4-8 10 40.8 6.44 10 11.4 3.57 100 14.88 2.8

8-5-8 10 38.7 14.24 10 8.4 1.07 100 12.29 2.0

8-6-8 10 33.2 7.36 10 7.9 1.29 100 10.13 1.6

8-8-8 10 30 5.033 10 6.3 1.16 100 08.79 1.3

8-16-8 10 18.6 1.43 10 4.4 0.52 100 06.28 1.0

Table 3-2 Comparison of the scalability of Perc (for A=O.2 and A=2.0) and QP for the 8-M-8 encoder task.The

mean indicates the mean number of epochs required to satisfy the desired error criterion.
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Figure 3-1 Graphical comparison of the scalabilty of Perc and qP detailed in table 3-1. Task indicates the

encoder task (4-2-4, 8-3-8, 16-4-16, etc.) while Epochs indicates the number of epochs required to successfuJly
learn the task.

A simple test using the 10-5-10 encoder was used to test the generalization ability of a Perc

trained net. By reducing the number of different patterns used to train the net, the net's

generalization ability could be tested. As Fahlman [Fah88] has noted, the encoder-decoder

task actually punishes generalization since similar patterns are associated with different output
patterns.
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Figure 3-2 Graphical comparison ofthe scalabilty ofPerc and OP detailed in table 3-.2.M indicates the number

of units in the single hidden layerwhile Epochs indicates the number of epochs required to successfully learn

the task.

Number of training pat- Mean number of bits Mean number of patterns

terns wrong wrong

10 0 0

9 1 1

8 2 2

7 3 3

6 4 4

5 5.1 5

4 7.9 6

3 12.9 7

2 20.4 8

1 22.4 9

Table 3-3 Results oftraining the net with varying number of patterns to the test genernlization ability of the net.

Note that in the worst case (training with only 1 pattern) only 22.4 out of a possible 100 bits were incorrect.

Table 3-3 details the results achieved when the net was trained with a different number of

patterns. In all cases, the patterns to be excluded from the training set for a specific trial were

chosen at random from the ten available patterns. The results were compared using the number

of patterns incorrect (out ofa possible 10) and the total number ofbits wrong (out of a possible
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10.10=100) which were averaged over ten trials. The tests were repeated with nets trained

using BP and QP and comparable results were achieved.

Finally tests were carried out to determine the robustness of the net to arbitrary damage to the

weights in the net. Again the 10-5-10 encoder was used. A fully trained net was subjected to

arbitrary amounts ofdamage and the resulting performance of the net was noted. The number

of weights damaged ranged from 0 to 100% while the amount of damage ranged from 0 to

100% of their final values. Thus in the most severe cas.e, all the weights were damaged by

100% of their final values; thus either becoming 0 or doubling in value. Results were averaged

over ten trials each. Even when the all the weights were changed by 100%, on average only

25 bits were incorrect. Again nets trained using BP and QP were subjected to the same test

with similar results.

3.5. CONCLUSION

This chapter dealt with two algorithms that seem to provide substantial improvement over

BP. QP seems to scale well when dealing with the encoder task although further evidence is

needed before extending this conclusion to other tasks. QP seems to have a similar rate of

convergence to Perc. Although Perc promises a large decrease in the convergence time and

a better probability of a global minimum being found, it is not clear how much of this is due

to the assignment of local error surfaces as opposed to the various heuristics used in the

algorithm. From the initial tests conducted on Perc, it seems that either the algorithm is

"brittle" and its performance can be adversely affected by the choice of parameters or the

auto-kickstart method plays a larger role in its "improved" performance than noted by Jurik.

It would be interesting for the above tests to be repeated by Jurik so that his results could be

compared to those obtained. From these results however, it seems that QP is faster than Perc

(certainly for the encoder benchmark) and scales significantly better. Further investigation of

Perc is necessary which would be accelerated by releasing the algorithm into the public

domain. Given the improvement in learning times of these two algorithms, it seems well worth

the extra storage space required.



CHAPTER FOUR

4.1. INTRODUCTION

The BP algorithm, and algorithms derived from it, are generally easy to understand and

implement. Such algorithms have been used in solving a variety of problems that are often

difficult to solve using more traditional approaches. However, BP-like algorithms do have

certain shortcomings. Many of these were discussed in the previous two chapters with various

possible solutions suggested. In this chapter it will be noted that the learning problem for this

type of algorithm is HP-hard and the implications of this will be discussed. Finally generative

algorithms that alter the net architecture while learning will be discussed.

4.2. NP-COMPLETENESS AND LEARNING

An algorithm is efficient if it is a polynomial in the size of the problem, n, or is bounded by

a polynomial in n. A computational problem is intractable if there is no efficient algorithm

for solving it. HP-complete problems belong to the class of problems for which it is not known

whether they are tractable or intractable. NP-complete problems are essentially all the same:

a efficient solution for solving one guarantees an efficient solution to solve all of them.

Conversely, if one is intractable then all are [GJ79] [Meh84].

A decisionproblem l
, J't, consists ofall the instances of the problem, Drt, and a subset, YrtCDrt,

of all the yes-instances. The class of HP problems consists of all decision problems that can

be solved by nondeterministic algorithms which consist ofa guessing and checking stage. The

guessing stage of the algorithm proposes a structure C(I) for an instance I of the problem and

the checking stage determines efficiently (Le. in polynomial time) whether I and C(I) yield a
yes answer [GJ79].

The class of P, or deterministic, problems are those decision problems for which efficient

algorithms exist. Clearly PCNP: if a determinstic algorithm exists for solving a problem, the

algorithm can be viewed as a nondeterminstic algorithm with the guessing stage removed.

1 A decision problem is one whose answer is either yes or no.
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The class of NP-Complete problems are all those NP problems TI with the property that all

other problems in NP can be transformed polynomiallyl to TI. The SATisfiability problem

[GJ79] was the first problem shown to be NP-Complete [Meh84][GJ79].

One of the aims of the research into ANN learning algorithms is to develop efficient learning

algorithms. All the algorithms considered in the previous chapters are designed to train a net

to associate pairs of inputloutput patterns (supervised learning). While many ofthe algorithms

are successful when applied to small networks, it is important to be able to increase the

problem size (Le. size of the input/output patterns) to tackle more complex problems. BP

scales badly as the input size increases [TJ88]. Some algorithms, like QP, seem to scale better

but, as will be shown, this class of learning problem is NP-hard2.

Judd [Jud87] defines the loading problem to be:

A net architecture and task to be learnt are given. The loading process is the as­

signment of appropriate activation functions to every unit in the net so that the

derived mapping includes the given task. If no such configuration exists the al­

gorithm must report this fact.

As can be seen, this includes any algorithm that requires a fixed, feed-forward net architecture

and the mapping of a set of input patterns to a set of output patterns. This includes all the

algorithms discussed previously.

The loading problem is clearly a search process which Judd [Jud87] transformed to a decision

problem. It was then shown that the resulting decision problem is NP-complete by a

polynomial transformation from SAT [Jud90]. Because the decision problem is no more

difficult than the search problem this implies that the loading problem is NP-complete.

Evidence suggests that P;I! NP (Le. NP problems are intractable) and the best general result at
present is [GJ79]:

"If TIENP, then there exists a polynomial p such that II can be solved by a

deterministic algorithm having time complexity O(2p(n)."

1 A problem TIl can be transformed polynomially to a problem TI2 if there exists an

efficient algorithm, f, that transforms every instance I of III to an instance f{I) of TI2
so that IEYrrl <:> f{I)E Yrr2.

2 A problem TI is NP-hard if it is as hard as the SAT problem, Le. SAT a TI[GJ79].
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Proving a problem to be NP-Complete does not imply that the problem is unsolvable, merely

that it is unlikely that an efficient algorithm exists. Therefore, trying to find efficient

algorithms should be given a low priority and rather the following could be considered:

• Trying to obtain efficient algorithms for special cases of the general problem.

• Relax the conditions to generate a new problem that may be solved efficiently.

• Find efficient algorithms that obtain nearly optimal solutions.

Garey and Johnson [GJ79], for example, note that the time complexity measure is a worst-case

measure. Therefore, a inefficient algorithm merely means that there is at least one instance of

the problem that requires that much time. Most problem instances could require far less time

than the stated limit. This seems to hold for several well-known algorithms such as the simplex

algorithm for linear programming and branch-and-bound algorithms for the knapsack prob­

lem [GJ79].

4.3. IMPLICATIONS OF NP-COMPLETENESS

4.3.1. Negative implications

There are many response to this result that are inappropriate. Such responses include:

• The use of massive parallelism in the simulation and implementation of large nets. This

tries to solve the exponential growth in the learning times by dividing it by a linear

function and is clearly inadequate.

• The use ofshallow nets, Le. nets with only a few layers ofadjustable weights. The proof

of the theorem holds for nets with only two layers of weights. Although empirical

evidence shows that BP works well with nets ofa shallow depth, a possible explanation

for this was given previously.

• The use of different learning rules. Since no assumptions about the learning rule used

appears in the statement of the loading problem (other than the fact that the net

architecture is not altered during learning) it can be seen that all supervised learning

algorithms for feed-forward nets of a fixed architecture are NP-complete.

• The use of different unit activation functions. Judd [Jud87] [Jud90] has shown that the

theorem holds for linearly separable functions and that for quasi-linear functions (such

as the linear threshold or sigmoid functions) the loading problem is NP-hard.

• The architecture does not form part of the learning algorithm. This merely implies that

the learning task is even harder for algorithms that have only local knowledge of the

net architecture, rather than the g10bal knowledge used in the proof of the theorem.
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4.3.2. Positive implications

• The theorem is a statement about supervised learning in nets in general. There might

thus exist a subclass of net architectures or algorithms, restricted by some design

structure, that might always learn tasks or certain classes of tasks in polynomial time.

• The proofof the theorem only holds for non-recurrent nets and nets that don't alter their

architecture during learning. Therefore using recurrent nets and allowing the architec­

ture to be altered during learning could negate this result. Minsky suspects (pers comm)

that all the theorems developed in "Perceptrons" [MP88] can be extended to feed-for­

ward nets but do not hold for recurrent nets.

4.4. GENERATIVEALGORITHMS

Generative algorithms allow the network architecture (the units and their interconnections)

to be altered as a function ofexperience. This differs from the algorithms in previous chapters

that only allow the adaption of the weights of the interconnections in a fixed architecture. The

use of generative algorithms is motivated by [HU91]:

• The NP-Completeness proofdoesn't hold for algorithms that change the net architecture

while learning [Jud87] [Jud90].

• Rapid learning and the ability to adapt to a changing environment.

• Robustness when presented with noisy or incorrect data.

• The ability to create efficient internal representations of the environment in which the

net operates.

• Incremental learning; Le. allowing the net to modify internal representations when faced

with a changing environment without the loss of previous learned information.

• No explicit net architecture needs to be given, with compact nets (nets having few extra

units or weights) being constructed by the learning process.

• The choice of the number of hidden units to use when training a net using BP and similar

rules is often an arbitrary choice. Using too many hidden units can lead to overfitting

of the data and thus poor generalization [HU91] [RM86] while too few hidden units

can lead to slow learning times or a failure to learn the task.

• Learning in biological nets involves the growth of new synapses [Guy81]. It is not

known whether the brain adds new neurons while learning, but it seems plausible that

previously underused and unused neurons are recruited during learning.

Honavar and Uhr [HU91] extended the definition of connectionist models to a Generalized

ConnectionistModel (GCN). A GCN is a graph of linked units with a particular topology, f,

which can be partitioned into three sub-graphs: the behaviour/act (fB), evolvellearn (fA) and
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coordinate/control (fK) sub-graphs. The nodes in the sub-graph compute different types of

functions: B (behave/act), "A (evolve/learn) and K (coordinate/control). Therefore

GCN={f, B, "A, K}.

Non-generative connectionist models are typically specified as [HU91]:

• fB, the sub-net that behaves, is left unspecified. A complete description off is necessary

to completely specify the connectionist model.

• The same activation function is typically used for all units.

• The changes in the weights are computed rather than the changes required in the sub-nets

to bring about these changes.

Non-generative algorithms learn the patterns by modifying only the weights of the fixed net

architecture. However, there are powerful alternatives [HU91]:

• Learning that modifies the activation functions of individual units.

• Learning by modification of the connectivity of the network by the addition or deletion

of interconnections or units.

• Learning that modifies the learning structures, such as the actual learning rules them­

selves.

• Learning that modifies the control structures, such as modifying the controls that

determine the type of learning rule to be used.

Throughout the remainder of this chapter, algorithms that modify the connectivity of the net

will be discussed. An algorithm that adds new units as necessary can learn any function by

constructing a look-up table. Yet such a look-up table would be an inefficient use of memory

since each training example would have to be stored in a unique combination of units [MP88].

Also, the generalization ability of such a net would be minimal and restricted only to patterns

stored in the table. This is discussed in more detail later in this chapter.

Honavar and Uhr [HU91] have noted that there are good reasons to restrict the fan-in (Le. the

number of weights to a unit) of the units. By restricting the fan-in, however, deeply layered

nets are required to learn complex functions and, as noted in chapter two, BP and related

algorithms perform poorly when training deeply layered nets, partly due to the dilution of the

error signal.
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4.5. REQUIREMENTS OF GENERATIVE ALGO­

RITHMS

Generative algorithms require that various sub-tasks are performed. These sub-tasks should

preferably be performed by local subsets of the net and include [HU91]:

• Deciding when to generate a new unit, as opposed to modifying a weight say.

• Deciding where to generate a new unit.

• Choosing the pattern to be encoded by the new unit.

• Choosing the connectivity of the new unit.

• Choosing a method to modify the weights.

• A method to evaluate the units and weights, including pruning or re-organization of the

network.

These requirements are clearly discussed in [HU91] and will be briefly summarized.

4.5.1. Choosing when to generate a new unit

The choice of when to generate a new unit can be decided in a variety of ways, including:

• The generation of new units at predetermined or tunable rates, possibly as a function of

the time required to learn the task.

• Error-driven generation which occurs when the feedback indicates that the net produced

an incorrect output.

• Error-driven generation when the feedback indicates an incorrect output has been

produced over a sufficiently long period.

• The probability of adding a unit decreases with the time taken to train the net.

4.5.2. Choosing where to generate a new unit

The choice of where to generate the new units is non-trivial. In layered nets, there is little

guidance as to which layers should be preferred when generating units.

• The simplest case is to generate units at any layer in a multi-layer net whenever the
criteria for generation is satisfied.

• An alternative is to fill the earlier layers first by

) Starting with the first layer, fill each layer to some pre-determined capacity before
moving to a later layer.
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) The probability of adding a unit to a layer decreases with the distance of the layer

from the first layer.

4.5.3. Choosing the pattern to be encoded by the new unit

A variety of options exist including:

• Choosing a pattern at random. This is achieved by choosing the weight vector for the

new unit at random, and thus encode a random pattern. Clearly the random weights can

be modified using some learning rule such as BP.

• Choosing a pattern by crossover or mutation. The new unit's weights are chosen to be

some mutation or crossover of the weights of other units involved in similar patterns.

This is similar to the crossover and mutation processes used in genetic algorithms

[Aus90] [GoI89].

• Choosing a pattern by extraction. The new unit has its weights chosen such that the new

unit responds optimally to some specific sub-pattern of the input pattern.

4.5.4. Choosing the connectivity of the new unit

The choice of the method of establishing the output connectivity of the new unit determines

the manner in which the new weights are initialized and modified. Some possibilities include:

• The new unit is connected to all the output units with the new connections being assigned

random weights. Some weight modification rule, such as BP, is then used to alter the

weights. This is the strategy used by the Cascade-correlation algorithm.

• The new unit is connected to a selected set of output units. This set can be determined

by the feedback supplied by the training pattern that was used to generate the new unit.

4.5.5. Choosing a method to modify the weights

Any suitable weight modification rule is applicable. Honavar and Uhr [HU91] discuss a

method of generalizing the extraction of sub-patterns which can form a method of weight

modification.

4.5.6. A method to prune and re-organize the net

It is often necessary to prune units or weights that are not contributing to the network's

performance. The estimation of the "usefulness" of a unit may be determined by its informa­

tion-content (determined by the weights on its output connections) or by allowing competitive
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interaction between added units. It is important that pruning ofthe generated net be considered

so as to make the net more compact and thus derive a near-optimally sized net. Smaller nets

can introduce fault-tolerance and encourage generalisation by replacing single units with a

set of units that encode the same information [HU91]. By reducing the number of units and

weights, the time required to propagate signals through the net, during and after training, is

similarly reduced.

Methods that alter the architecture of a net trained with BP have been suggested. Marchesi et

al. [MOP90], for example, describe a method for removing connections during training. The

method starts with a fully connected, recurrent net that is trained with a BP-like rule. A

synapse/connection is removed whenever its Percent Average Synaptic Activity is less than

some threshold. The threshold is adjusted according to some function of the number ofepochs

of training and this threshold function is problem dependent. This method differs from most

generative algorithms in that the net starts as a fully connected net from which weights are

then removed. Since the gross net topology (Le. number of units and layers) must be

predetermined when using this algorithm, this method still requires the user to determine the

initial topology of the net before learning commences.

Brent [Bre91] developed an algorithm to construct a decision tree suitable to solve a given

task from which an equivalent ANN can then be derived. The construction of the decision

tree is a recursive process with no choice of the number of hidden layers or weights having

to be made. This algorithm achieves results at least as good as a multi-layer net trained with

BP while the training times are much faster. Note that on serial machines it is more efficient

to use a decision tree rather than the equivalent ANN since the classification ofan input vector

relies only on tests on the path from the root of the tree to the leaf node corresponding to the

region. This is invariably faster than propagating the signal through a net [Bre91].

4.6. GENERATION AND GENERALIZATION

4.6.1. Vapnik-Chervonenkis dimension and generalization

The work by Vapnik and Chervonenkis (1971) provides tools to determine whether the

examples (training patterns) convey enough information for the net to accurately determine

the desired input-output function. Abu-Mostafa [Abu89] discusses this in detail. A brief

summary of the relevance of the Vapnik-Chervonenkis dimension (V-C dimension) to ANNs
is in order.

Assume that a function/has to be determined from a set of examples. Initially a number of

hypotheses, G, can be guessed. The task of the learning algorithm is to use the training data

(the examples) to select a function gEG which has a "good" performance on the training data.
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Depending on the characteristics of G, it can be predicted how the performance of the net on

a set of test data will generalize. This generalization aspect is captured by the V-C dimension,

d.

If the training set is sufficiently large with respect to d, generalization can be expected. In

general, the more flexible or large G is, the larger the V-C dimension. For example, for

feed-forward nets, d grows in proportion to the net size.

4.6.2. Generalization ability of generative algorithms

Standard circuit complexity arguments show that generative learning algorithms can solve,

in polynomial time, any learning problem that can be solved in polynomial time by any

algorithm [Bau89]. In this sense, these types of algorithm are universal learners that are

capable of learning any learnable class of concepts.

Blummer et al. [Bau89] have given conditions (which involve the V-C dimension) which

suffice to demonstrate that a learning algorithm that can grow representations in a large class

of target functions will converge to yield good generalization.

The danger in the use of generative algorithms is that the algorithms might keep adding units

until the training set is learnt sufficiently well. It is better to encourage the net to extract the

prototype from the training patterns by restricting it in some way to keep the number of added

units to a minimum. One method, which works well for Cascade-correlation, is to add a weight

decay term which weakens the weights in the net thus encouraging the net to strengthen

existing weights rather than add new units. Another method is to increase the severity of the

criteria used to determine when to add new units.

A rule of thumb to encourage generalization, mentioned by Hinton [Hin89], is that the number

of training patterns should exceed the number of weights in the net. Ofcourse for a generative

algorithm, it is difficult to know the number of weights that will eventually be required to

solve the problem, unless the total number of weights is restricted in some manner.

4.7. THE CASCADE-CORRELATION ALGORITHM

The Cascade-Correlation algorithm (CCA) was developed by Fahlman and Lebiere [FL90]

as a generative algorithm that would overcome some of BP's failings; specifically the slow

learning rate and the need for arbitrary choices of interconnection strategy and the number of

hidden units and layers. They identified two major problems with the BP algorithm that leads

to slow learning: the moving target and the step-size problem.
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4.7.1. The moving target problem

Units in the interior of the net, Le. hidden units, try to evolve into feature detectors that will

play a useful role in the net's overall computation. This task is, however, greatly complicated

by the fact that all the hidden units are simultaneously changing via modification of their

weights. Since the hidden units in a specific layer do not interact, but only have access to their

inputs and the error propagated back from later layers, the problem as defined by the error

being backpropagated is constantly changing. Therefore the units do not quickly assume a

useful role in the net as feature detectors but go through many changes before settling down

to a useful feature detector.

BP slows down dramatically as the number of hidden layers is increased. This is partly due

to the dilution of the error signal but also because of the moving target problem. Jurik claims

that Perc overcomes this moving target problem with the weights undergoing little unnecess­

ary change [Jur] but the evidence presented is not conclusive.

Fahlman and Lebiere [FL90] note that the herdeffect is a common manifestation of the moving

target problem. Suppose that there are two separate computational tasks, A and B, that are to

be performed by the hidden units. IfA generates a larger error, all the hidden units will change

their weights so as to reduce A's error. However, as soon as B's error is larger, the hidden

units will then try to reduce B's error. This could cause task A to generate a larger error,

especially if all the hidden units try to solve taskB. This process will oscillate between trying

to reduce A's or B's error as each becomes larger when the error of the other is reduced by

weight modification. Eventually both errors will become sufficiently small, it is hoped, so

that learning will cease. In most cases the herd of hidden units will split up and deal with both

tasks, but this split may take a long time. A similar, but more complex, problem exists when

more than two tasks are to be learnt.

A solution is to allow only a small set of units or weights to be altered for a certain task. CCA

uses an extreme version of this by allowing only one hidden unit to change at any given time.

Although this seems counter intuitive and would seem to slow learning, empirical evidence

suggests that learning speed is actually increased. An additional advantage is that the

algorithm creates new hidden units when required, and thus relieves the experimenter from

having to define the net topology.

4.7.2. The step-size problem

This problem occurs because BP only computes the first order partial derivatives which do

not carry any information about the curvature of the space being searched. Higher order
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derivatives are needed for this. Solutions to this problem have been extensively discussed in

chapter three.

4.7.3. Cascade-Correlation algorithm

Cascade-Correlation combines two ideas: the cascade architecture and the learning algo­

rithm. The cascade architecture begins with a set of input and output units which are

determined by the problem and the representation of the input and output patterns used. All

the input units are connected to every output unit with an addition bias input which implements

the threshold function as discussed in chapter two. The output units may produce a linear sum

of their inputs or some non-linear activation function may be applied to the weighted sum.

When precise analog output values are desired, linear output units may be used, while for

binary output units sigmoid units would be the better choice.

Hidden units are added to the net singularly. Each new unit is connected to all previous

non-output units (the original input units and existing hidden units). The input weights of the

added unit are "frozen" (Le. are unmodifiable) when the unit is added and only its output

weights are trained. Thus, in general, one new hidden layer is added to the net when adding

a new unit. Powerful high-order features are created in this way, but it can lead to deeply

layered nets with units having a high fan-in since each hidden layer generally contains only

one unit.

Starting with a net with no hidden units (equivalent to a Perceptron), the weights are trained

on the patterns of the training set using an appropriate rule such as the Delta rule (since there

is no need to backpropagate through hidden units at this stage). Fahlman and Lebiere [FL90]

use the OP rule for weight updating since it is equivalent to the Delta rule for a net with no

hidden units but converges faster.

At some point the learning may reach an asymptote with no decrease in the error resulting

after a certain number of training cycles. If the net's performance is satisfactory the training

can stop. If not, there must be some further (residual) error that can be reduced by adding a

new hidden unit to the net. The new unit is added to the net, its input weights "frozen" and

its output weights, which are connected to all the output units of the net, are trained using a

suitable weight update rule (OP normally). This is repeated until the error criterion is satisfied.
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To add a new unit, a candidate unit is created having connections from all non-output units

already existing in the net. The output of the candidate unit is not connected to the net. A

number of passes through the training set are used to adjust the candidate unit's input weights,

initially chosen as random values, with the goal being to maximize the sum, S, over all the

output units oofthe magnitude of the correlation1 between V, the candidate unit's value, and

Eo, the residual output error observed at unit o. S is defined as:

S = ~ I~ (Vp-V) (Epo-Eo) I
° p

where 0 is the network output at which the error is measured and p is the train­

ing pattern. V and Eo are the values of V and Eo averaged over all the patterns.

(1)

To maximize S the partial derivative of S with respect to each candidate unit's incoming

weight, as/awi, is calculated. In a manner similar to the derivation of the BP rule, expanding

and differentiating S gives:

as/awi = :L0o(Ep,o-Eo) f'pIi,p
p,O

where 00 is the sign of the correlation between the candidate's value and out­

put 0, f'p is the derivative of the candidate's activation function with respect to

the sum of its inputs for pattern p, and Ii,p is the input to the candidate unit

from unit i for patternp.

Having computed as/awi for each incoming connection, S can be maximized by performing

gradient descent. Again only one layer of weights is being trained. Once S ceases improving,

the new candidate is installed in the net, its input weights are frozen and its outputs are

connected to all the output units of the net and initialized with random weights.

The candidate unit only cares about the magnitude of its correlation with the error at a given

output and not the sign of the correlation due to the absolute value in (1). Generally ifa positive

correlation with the error at a given unit is determined, a negative connection weight to that

unit will be developed, and so will attempt to cancel some of the error. Similarly for a negative

correlation.

1 Because the formula for S leaves out some normalization terms, S is a covariance

rather a true correlation measure.
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An obvious improvement is to use a set, or pool, of candidate units. Each unit is trained as

above with the candidate with the highest correlation being added to the net as the new unit

either after a certain number of cycles or when no further improvement in the correlations of

all the candidates in the pool is noted. Note that there is no interaction between different units

in the pool and all receive the same inputs and residual error feedback. Because of this, all

the candidates must be trained in parallel.

Using a pool of candidates is useful in many ways:

• The risk of installing a candidate unit that got stuck during training is reduced.

• Because many parts ofweight space can be simultaneously searched, due to the random

assignments of initial weights to the candidates in the pool, learning speed may be

increased.
• There is no need to limit the candidate units to the same activation function. A mixture

of non-linear activation functions, such as sigmoidal or Gaussian functions, can be used

by the different units in the candidate pool. This mixture of activation functions in the

net may lead to more compact or efficient solutions being found.

4.8. CRITIQUE OF CCA

4.8.1. Advantages

• Cascade-Correlation learns fast. Numerous benchmarks performed by Fahlman and

Lebiere and other researchers indicate its improved performance. For the problems

investigated by Fahlman and Lebiere, CCA's learning time grew roughly as NlogN,

where N was the number of hidden units in the successful net.

• Only one layer of weights is trained at any time. Therefore a simple rule, like the Delta

rule, will suffice for weight updating. This is one of the factors leading to the faster

learning times.

• Error signals are never propagated backwards through various layers of units. Signals

are only propagated in one direction through connections which is biologically more

plausible than BP.

• The candidate units do not interact with each other except when a winner is selected.

This makes the algorithm attractive for parallel implementation.

• Incremental learning is supported since once a feature detector (hidden unit) is created,

its input weights are never changed and thus the features it detects aren't altered as new

patterns are learnt.

• It is not necessary to guess the size, depth and connectivity of the net in advance.

• A net consisting of a mixture of units with different non-linear activation functions may

be constructed.
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4.8.2. Disadvantages

• Hardware implementation of the algorithm seems complicated since there is no upper

limit to how large the net may grow. Similarly in a changing environment, many units

may be added leading to a slowing down of the net when simulated by software.

• Fahlman (pers comm) has noted that CCA works well for continuous inputlbinary

output problems but that the generalization ability decreases with continuous output

problems, with the training patterns being learnt point by point. This seems to be due

to the correlation measure that CCA tries to maximize: the units are encouraged to

overshoot the residual error rather than match the error precisely. This is not serious

when binary output values are required but is not the correct scheme for continuous

valued output. Crowder (pers comm) has reported that CCA seems to yield poorer

generalization than BP. However, by adding a weight decay as detailed by Krogh and

Hertz [KH92], the generalization ability of CCA can be improved (Fahlman - pers

comm).

• CCA requires a number of parameters to be specified:

) Learning rate.

) Maximum growth factor.

) Weight range of the random initial weights.

) Weight-decay to avoid possible floating-point overflow in computer simulations.

) The size of the candidate pool.

) The amount of training of the input and output weights of candidate units before

adding a new unit from the pool of candidates to the net (the patience parameters)

and the amount of training of the weights in the net before deciding when to generate

a new unit.

The first four parameters determine the performance of the QP weight update rule while the

rest determine the rate at which new units are added to the net. Yang and Honavar [YH91]

have investigated the effects of the various parameters on the performance of CCA for four

tasks1 and have suggested the following heuristics:

• For the QP parameters, the use of larger maximum growth factors generally gave better

results as did the use ofsmaller weight ranges, the use of the hyperbolic arctangent error

function and the addition of a constant to the derivative of the sigmoid function to

overcome the flat spots.

1 Classification of king-rook vs. king-pawn endgames in chess in win/no win,

classification of audiology data, classification of soybean diseases and classification

of iris plants.
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• Large candidate pool sizes generally gave better results (since this allowed a large area

of the weight space to be searched) while the patience parameters had little effect over

the ranges that were examined.

However, they do caution that additional studies are required since the interaction of the

various parameters can be complex.

4.9. ENHANCEMENTS TO THE ALGORITHM

Yang and Honavar [YH91] have investigated several enhancements to CCA using the tasks

mentioned previously. These include the use oftwo different error metrics, different candidate

unit selection strategies and the effect of allowing the input weights of candidate units, once

added to the net, to be modified.

Error metric I used the magnitude of the error between the desired and actual outputs to

determined whether a pattern was correctly classified while error metric 11 classified a pattern

as correct if the output unit with the largest activation value corresponded to the correct

category. The new unit was chosen from the candidate pool in one of two ways: the unit with

the highest correlation with the residual error as in CCA (method I) or at random (method 11).

The results on the chess, audiology and iris data sets had almost the same characteristics

regardless of the choice made. The number of epochs required was larger when using error

metric I on all data sets other than the soybean data. Using method I to select the new unit

from the pool of candidates resulted in a significantly smaller number of epochs to achieve

success: CCA constructed nets with 1.1±0.3, 0.3±O.5, 0 and O.5±O.5 hidden units for the chess,

audiology, soybean and iris data sets respectively. As can be seen, the decision surfaces for

these problems are relatively simple (due to the small number of hidden units required) and

sweeping conclusions should thus not be drawn. It seems obvious, however, that selecting a

unit by random from the candidate pool would not give faster learning times in general.

CCA only modifies the output weights of a new unit once it has been added to the net. Yang

and Honavar [YH91] studied the effects of modifying the input weights in two ways. Method

I trained input and output weights of new units while method 11 unfroze the input weights of

all the hidden units once some proportion of the patterns (95% in their study) were correctly

learnt. The number of training epochs decreased when input weights were allowed to be

modified but the performance of the net (the classification accuracy) was found to be worse

on the audiology and chess data sets. Note that the amount of operations per epoch is greater

since the input weights also need to be modified and that the Delta rule will not suffice for

weight updating. Method 11 would seem to increase the performance of the net while there is

a danger that method I could reintroduce the herd effect~
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4.10. CONCLUSION

Learning an arbitrary task in a feed-forward, non-recurrent net is a NP-complete task. This

result might not hold for recurrent nets or algorithms that modify the net topology as learning

progresses. Generative algorithms alter the architecture of the net as a function of experience

and have many advantageous properties. The Cascade-Correlation algorithm is an example

ofa generative algorithm that relieves the user from making a choice of the number of hidden

units and layers and is faster than most of the algorithms of the previous chapters. Because

only one layer of weights is being modified at any stage, any suitable weight updating scheme

may be used, including the Delta rule, BP, QP or Perc. CCA seems to be robust in that the

choice of the parameters values does not affect the rate of learning too greatly. CCA constructs

a compact, though not necessarily optimal, sized net. However, it is not clear whether the

algorithm can be easily implemented in hardware and deep nets with a large fan-in may be

constructed by the algorithm.



CHAPTER FIVE

5.1. INTRODUCTION

In this chapter the results of applying ANNs to four tasks will be discussed. The four tasks

were the calculation of decompression stops when SCUBA diving, decision making in a

simple environment, composition of music and binarization of images. The four tasks were

selected to demonstrate and test different features of ANNs. All of the ANNs were trained

using the Cascade-Correlation algorithm (CCA) described in chapter four. CCA was con­

sidered the best algorithm to use since it is a generative algorithm, thus relieving the user of

determining the best network structure, and it learns faster than BP, QP and Perc, the other

learning algorithms considered.

5.2. CASCADE-CORRELATION PARAMETERS

CCA has many parameters that are involved in the learning process. It was found, however,

that many of the parameters could be set at certain values, regardless of the task, and that this

did not affect the performance significantly. This is similar to what Yang and Honavar [YH91]

found in their study of CCA. The most important factor in these tasks was to train a net to

successfully accomplish the task, with the speed of learning a secondary consideration. Due

to the limited computational facilities available, most of the tasks were limited to only

thousands of epochs of training before being considered a failure. However, for most of the

tasks, CCA learnt the required tasks in less than 1 000 epochs.

The parameters found to be of importance were:

• The amount of decay the output weights underwent. As Fahlman has noted [Thr91] it

is sometimes useful to increase the amount of decay of the output weights which

encourages the formation of more hidden units than is normally required. This is

especially useful when small training sets are used. It was found that increasing the

output decay from 0 to 0.1 always caused more hidden units to be generated which

sometimes resulted in increased learning times. However, the resulting nets always

performed better for those tasks with small training sets.

• The "patience" parameters which determine how long the candidate units input and

output weights are trained before the unit is added to the net. It was found that the

patience parameters had little affect on the constructed net, with only a few extra hidden

units being added to the net and no significant change in the learning speed.
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• The type of error measure used to determine when training should cease. Two different

error measures were used:

) The sum-of-squares error criterion averaged the sum of the squares of the differences

between the actual and desired outputs over aq the patterns and judged learning to

be complete when this average was smaller than some threshold. This error criterion

can encourage generalization since smaller errors produced from some ofthe training

patterns can be traded off against larger errors from other patterns since the errors

from all the patterns need not all satisfy the error cirterion [Fah88]. Generally this

method achieved nets with better generalization capabilities.

) The number of bits that were incorrect were totalled and training was complete when

no bits were incorrect. This method can only be used for binary output vectors, as

was the case for most of the tasks. A bit was considered correct if the absolute

difference between the desired and actual output vector's component was less than

some threshold.

5.3. CALCULATION OF DECOMPRESSION STOPS

5.3.1. Introduction

When SCUBA diving, nitrogen (N2) is absorbed by the fat and muscle tissue from the blood

stream. On ascent, N2 flows out of the tissues into the blood and then to the lungs where it is

exhaled. Because the blood supply is small compared to the amount of tissue in the body,

only small amounts of N2 will diffuse from the tissues to the bloodstream and be exhaled in

any period. Any excess N2 in the tissues will form bubbles and pain, and often death, can

result [Cou79] [SAU].

This absorption of N2 usually only occurs when diving to deep depths for prolonged periods

or when rePetitive dives are undertaken, increasing the total amount of time spent submerged.

To avoid the formation of bubbles, certain prescribed rates of ascent with strict "decompress­

ion stops" must be followed which allows the N2 to be exhaled normally without any build-up
in the tissues [SAU].

5.3.2. Aim of task

Table 5-1 is the section of the decompression table used for the task. The use of the table is

not important for understanding the task the net was required to learn. The task was to learn

the table, which can be trivially solved by an ANN by constructing a look-up table containing

the relevant details. However, this would be an inefficient use of memory [MP88] with faster

access times resulting from traditional storage methods such as a two dimensional array.
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Depth Duration until commence-

(m) ment of ascent (min)

8 9 10 11 14 15 17 20

27 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 1

36 0 0 0 0 0 1 1 1

39 0 0 0 0 1 1 3 3

42 0 0 1 3 3 3 4 4

45 0 1 1 3 3 3 5 5

Table 5-1 The section of the decompression table used. The digits in the table indicate different decompression

stops.

Therefore, to test the generalization ability of the ANN, only a subset of the available data

was used to train the net. It seems intuitively obvious that the generalization ability of the net

should increase if the training data contained the boundary cases of the classes to be learnt

rather than just arbitrary points in the table. It was hoped that the net would extract certain

simple rules when learning the required mapping. Such rules could include, for example, the

fact that no class number is ever less than the class number to its left.

5.3.3. Training sets and performance

Three data sets were used to test the generalization ability of the net. In each case the net was

constructed starting with the Perceptron architecture, thus not utilizing the incremental

learning capability of CCA. This was done so as to compare learning times given different

sets of starting weights and to prevent a possibly inferior solution due to local minima that

might have been achieved by previously trained nets.

In all cases the sum-of-squares error measure with a threshold of0.35 was used to judge when

training was complete. For all the following tables 1 indicates that the data in table 5-1 at the

corresponding position was part of the data set while 0 indicates that that data point was
excluded from the training set.

A unary encoding system was used to represent the input and output data: each output class

was represented by a unique output unit and similarly each component of the input vector was

represented by a unique unit. The output unit with the largest activation value was assumed
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to be the activated unit (Le. the corresponding component of the output vector had a value of

1) with all other output units assumed to have no activation (Le. the corresponding component

of the output vector had a value of 0).

5.3.3.1. Stage 1

Table 5-2 details the table entries making up the first data set. Only 23 patterns were used

with an entry forming part of the training set only if it indicated the beginning of a new class

when moving to the right in a certain row of the table. It was hoped that the net would learn

the boundaries of the classes and possibly interpolate the classes between the boundaries

correctly.

Depth Duration until commence-

(m) ment of ascent (min)

8 9 10 11 14 15 17 20

27 1 0 0 0 0 0 0 1

30 1 0 0 0 0 0 0 1

33 1 0 0 0 0 0 0 1

36 1 0 0 0 0 1 0 0

39 1 0 0 0 1 0 1 0

42 1 0 1 1 0 0 1 0

45 1 1 0 1 0 0 1 0

Table 5-2 First data set

With the output weight decay (output decay) parameter set to 0.1, two hidden units were added

to the net which required 778 epochs to learn the training data. The net correctly learnt the 23

training patterns but 35 errors resulted when tested on the unseen data. The net usually

responded with "class I" in these error cases. Certain "patterns" were noted in the errors:

Depth (m) Time (min) Response (class)

27-39 9-10 1

27-39 11 3

27-39 14 1
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It has been noted previously that the training set should contain O(n) patterns, where n is the

number of weights in the final net. Since the table contains a total of 64 data points, and the

simplest ANN (the Perceptron) would contain approximately 64 weights, it seems reasonable

to assume better performance would result with a larger training set.

Retraining the net with the same data and parameters but setting the patience parameters to

100 epochs, the constructed net had two hidden units and learnt the task in 170 epochs.

Thirty-five errors resulted with three of these being from the training data and 32 errors from

unseen data. The errors on the unseen data were exactly the same as those given above.

5.3.3.2. Stage 2

By increasing the training data set to 38 patterns (table 5-3) the following occurred:

• When using the sum-of-squares error measure, an output decay parameter of 0.1 and a

patience parameter of 500 epochs, 341 epochs were required to learn the task with three

hidden units being added to the net. Eleven errors resulted when tested with the unseen

data. Again a pattern in the errors was noticed:

Depth (m) Time (min) Response

(class)

33-39 9-10 5

• Using the number of incorrect bits as the error measure (with a threshold value of 0.2)

and the other parameters as above, 409 epochs and 4 hidden units were required. Twelve

errors resulted, all from unseen data, with the following pattern emerging:

Depth (m) Time (min) Response

(class)

27-39 10 5

5.3.3.3. Stage 3

Finally the training set was increased to include all the entries appearing in table 5-4. Specific

entries were included to alleviate the errors that occurred in the other tests. For example, for

depths of 27 to 36 metres and times of 9 to 11 minutes, the previous nets had consistently

misclassified the input. Various choices were made with respect to the value of parameters,
with varying results:
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Patience Output decay Error measure Epochs l Hidden units Errors2

500 0.1 s-s3 283 3 5

250 0.1 bits4 420 5 9

250 0.01 s-s 338 4 8

Results of testing the net trained using training set 3.

1. The number of epochs required to learn the task.

2. The total number of test and training patterns incorrectly classified.

3. The sum of the squares of the differences between the desired and actual output vectors had to be less than

0.2.

4. The number of bits (within 0.2 of their desired value) had to be 0 before training was judged to be complete.

Depth Duration until commencement of as-

(m) cent (min)

8 9 10 11 14 15 17 20

27 1 0 0 0 0 0 0 1

30 1 0 0 0 0 0 0 1

33 1 0 0 0 0 0 1 1

36 1 0 0 0 1 1 0 1

39 1 0 0 1 1 1 1 1

42 1 1 1 1 0 1 1 1

45 1 1 1 1 0 1 1 1

Table 5-3 Second data set
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Depth Duration until commencement of as-

(m) cent (min)

8 9 10 11 14 15 17 20

27 1 1 0 1 1 0 0 1

30 1 0 1 0 1 0 1 1

33 1 0 1 0 1 0 1 1

36 1 1 0 1 1 1 0 1

39 1 0 0 1 1 1 1 1

42 1 1 1 1 0 1 1 1

45 1 1 1 1 0 1 1 1

Table 5-4 Third data set

5.3.4. Conclusion

This task seems to demonstrate quite clearly the importance of a well chosen training set. It

is not sufficient to use an arbitrary collection of data points. Including the boundary cases in

the data set is important since the decision regions to be formed by the hyperplanes are then

better defined. Encouraging the addition of hidden units to the net constructed by CCA, via

the output decay parameter, resulted in a better generalization capability while using the global

sum-squares error measure seemed to increase the generalization as well. The reason for the

improved generalization when using this error measure has been explained previously.

In all the tests, it was found that many of the parameters required by CCA are problem

independent or, at worst, require a little "tuning" for acceptable performance. This agrees with

the findings of Yang and Honavar [YH91l. Although this task can be trivially solved using

traditional methods, it can be seen that ANNs often generalize from trained to unseen data
acceptably.

5.4. BOB

5.4.1. Introduction

Attempts to use ANNs in robotics has, until recently, concentrated on low level tasks such as

vision and appendage movement. It is not clear whether ANNs can perform higher level tasks,
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such as goal satisfaction, adequately or better than traditional methods. Because of the

parallelism involved in ANNs, they would seem suited to tasks requiring a decision to be

taken given many simultaneous inputs. Dayhoff [Day90] described "artificial critters" which

are "creatures" (ANNs) that are designed to perform some simple task, such as surviving in

a simple environment or moving away from threatening situations. BOBl is an artificial

creature which tries to survive in a simplified environment where BOB's decisions are

supplied by an ANN given the current stimuli from the environment as input.

5.4.2. Previous approaches and BOB

Arbib [Arb8?] argues that the solution to complex tasks should be broken into functional

units, such as schemas. Neural nets as structural units intermediate between structures

subserving schemas and small neural circuits can then be used. Myers [Mye91] simulated a

food-finding creature to demonstrate learning with delayed reinforcement while Nicole

[Nic90] modeled the defensive reflex of Aplysia using a hand-crafted net that underwent no

training.

Sutton [Sut90] describes three methods for a robot to decide which action to follow:

• By planning. The best action is deduced by considering the current goals and the robot's

world model. This is limited by the computational complexity and the accuracy of the

world model.

• By reacting. The planning is completed in advance and the results are stored as a set of
situation-action rules.

• By learning a set of good reactions by trial and error.

Sutton combined all three methods in his Dyna model with promising results.

Bechtel and Abrahamsen [BA91] have noted that

"Suppes, for example, offered a proof that for any finite automaton there is a

stimulus-response model that converges to the automaton. Hence, any model

having rules, plans or other higher-order entities can be reduced to a computa­

tionally equivalent stimulus-response model".

Building on Sutton and Bechtel's results, BOB is a neural network that reacts to the current

situation. The reactions are pre-computed by training the net with an appropriately constructed

training set. The important difference between BOB and the other approaches is that identical

1 BOB will be referred to as a male for no particular reason.
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units and layers make up the net that controls BOB, as opposed to Arbib's approach of using

a variety of nets and units for control, and the training set was constructed so as to allow BOB

to extract relevant rules and thus be able to react to unseen situations.

5.4.3. BOB's environment, actions and rules

The simplified environment consisted of three stimuli: light, prey and obstacles. No fixed

geography was imposed on the environment with BOB only able to detect the stimuli at his

current position. The input to BOB was thus supplied by three sensors:

• A light sensor which indicated the strength of the light directly in front of BOB.

• An object sensor which determined the distance ofany obstacle directly in front ofBOB.

• A prey sensor which calculated the distance between BOB and any edible goodies

directly in front of him.

The sensors all returned values in the range [0,1] which indicated the strength of the

appropriate signal, with°being the weakest and 1 being the strongest. How the responses are

generated or the type of preprocessing required is not considered important since the object

was to simulated goal planning rather than the low level processing.

BOB has three possible actions:

• Move forward.

• Turn left.

• Turn right.

These actions can be combined, so that BOB can turn left and then move forward, accom­

plishing a diagonal movement. BOB has no memory of previous actions or states, as well as

having no internal measures such as an indication of hunger. The action to be taken is

represented by a binary valued output vector of three components. As in the previous task,

the output unit with the largest activation value was assumed to be the active unit with the
other units being assigned a value of 0.

BOB's behaviour is governed by a few simple rules:

• Move towards the strongest light source.

• Move away from objects.

• Move towards prey.

When the rules are in conflict, such as moving towards a light source and away from an object,
the following apply:
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• BOB prefers moving towards prey. This is true even in the presence of a strong

conflicting light stimulus.
• If there is no light or prey stimulus or BOB gets too close to an object, he turns. BOB

turns left if there is no light stimulus or he has encountered an object, otherwise he turns

right.
• BOB does not actively back away from objects. Only when he gets too close does he

try to find a better direction to take.

As can be seen, the environment and BOB's possible actions are quite limited. It was felt,

however, that these would be sufficient to simulate various different situations and allow

enough possible reactions without a large computational overhead.

5.4.4. Results

CCA was used to train the net. It was found that the Perceptron architecture was inadequate

and hidden units were always required. The number of hidden units, and thus hidden layers,

required ranged from five to eight. The training data set consisted of 36 patterns of three input

and three output values. A comparison of the effect the the two error criteria, used in the

previous task, on training times and performance was made.

It was found that the net required longer training times using the second error criterion (the

total number of bits wrong had to be zero) and training could often only be suspended by

increasing the threshold. The first error criterion did, in fact, cause the net to generalize better

with better reactions by BOB.

BOB performed as was expected given the above rules. What is significant is that the rules

weren't explicitly encoded into the net's representation. Thus, the net generalized from the

training set to extract the prototypes and thus its own rules. This is normally possible with a

suitably designed training set. This approach can be a significant improvement over hard­

wiring the rules in a formal system such as an expert system or programmed solution since

the rules don't have to be explicitly enumerated and only suitable examples need to be given

as training data. This is useful in tasks in which rules are not available or when the rules are

too numerous or unclear to enumerate. Ofcourse, care must be taken to include representative

examples of many situations in the training data.

5.4.5. Improvements

BOB's overall Performance was adequate. However, because BOB had no memory of

previous states or actions or any internal signals, his behaviour was occasionally stupid. For

example, he would always move towards available prey which is not something normally
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seen in natural creatures. Adding an internal measurement of his hunger state could possibly

alleviate this problem.

Because of the lack of memory, BOB would often overshoot his target by turning away from

the best direction briefly while still moving forward and thus move away from the desired

target (fig 5-1). Adding memory of previous states would alleviate this problem. A simpler

solution would be to increase the viewing field size of the detectors. Thus, instead of only

detecting a light source, say, directly in front, BOB would be able to see the light intensity

across a larger viewing field. Whether this would be sufficient remains to be seen but it is

suspected that some sort of memory of previous actions' or states would still be required.

Target

Actual path

Figure 5-1 Instead of continuing towards the target (thin line), the decision is taken to turn while still moving

forward (thick line). This causes BOB to follow the path away from the target.

5.4.6. Conclusions

ANNs can be used for higher level process such as goal satisfaction. Although the task was

to determine whether BOB would formalize the rules inherent in the training set, it does not

seem that this approach would be appropriate for all circumstances. For a simple environment

such as that faced by BOB, a programmed solution or expert system would undoubtable

perform at least as well with less time required to implement a working system. However, for

environments with many input variables, or when the reactions rules are ill-defined, this

method could have numerous advantages over traditional methods.

The training data must be chosen carefully. It is not sufficient to merely give as much training

data as possible; it is important to include the boundary cases in the training set since this

allows the net to generate the appropriate hyperplanes needed to separate the decision space
correctly.

Alternative methods to considerwhen trying to simulate natural movement or decision making

in robotic applications are those proposed by the ArtificialLife community where biological

creatures' decision making or movement are modeled by simple methods such as cellular

automata with the required behaviour emerging [Lan88] [Lai88].
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Brooks' approach [Br091], using the subsumption architecture, to intelligent behaviour

deserves mention. No explicit world model is constructed, but the creature interacts directly

with the environment by perception and action. This is similar to the approach used by BOB

where the inputs to the net, the perception of the world, are acted upon to produce some action

by BOB in the environment. There are important differences, however, between Brooks'

approach and connectionism [Br091].

5.5. MUSIC COMPOSITION

5.5.1. Introduction

ANNs have been applied to a variety of musical related tasks, including determining the

optimal fingering for stringed instruments and tonal analysis [ED90]. A commercial musical

package has been released by NEC which uses neural networks to create harmonies for a user

supplied musical composition [Gea91].

The automatic composition of music has been explored using traditional approaches such as

rule-based systems [Cha80] [Jea68]. When using a rule-based system, determining the rules

can be time consuming and non-trivial. It is also not clear if there are rules that determine

when music sounds pleasant. Part of the beauty of music is the occasional randomness often

exhibited; the music doesn't always "follow the rules" but follows occasional unexpected

directions.

An alternative approach to the rule-based system would be to present an ANN with examples

of the style ofmusic which is desired and, hopefully, the net will generalize from the examples

and compose similarly styled music. Because rules won't have been explicitly encoded, a

degree of randomness might result in the output of the net and thus of the composed music.

5.5.2. ANNs and temporal sequences

When learning a temporal sequence, it seems that the net should have some memory of

previous states, which would enable it to generate the appropriate response given its current

input and past history. To incorporate such memory requires either a recurrent architecture or

the inclusion of time delays in mutlilayer perceptrons. Eberhart and Dobbin [ED90] discuss

various recurrent net strategies, which include recurrent connections from output to input units

and from input units to themselves, that have been employed when learning temporal

sequences while Lippmann [Lip89] discusses time delay multilayer perceptrons and recurrent

nets as applied to speech processing. Backpropagation has been extended to deal with the

training of recurrent nets by Almeida [Alm8?] amongst others.
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Since non-recurrent feed-forward nets were being studied, it was decided to use a simple

strategy for providing the net with some sort of context in which the musical notes appeared.

The strategy is similar to that employed by Eberhart and Dobbin [ED90] and by Sejnowksi

and Rosenberg in their NETfalk experiment [SR86]. Consider the notes of the desired training

song to be a linear list. A window of fixed size is slid along the note list with the notes appearing

in the window serving as the input to the net. The note to the immediate right of the window

(Le. the note that will appear in the window next) is taken to be the desired output of the net.

Figure 5-2 illustrates the process. NETfalk used a similar system where the window contained

a sequence of letters and the net was trained to pronounce the letter in the center of the window

as the window was passed across the entire training text.

Figure 5-2 The note in the shaded area is played while those in the window provide a context for the central

note.

A decision has to be made on the size of the window used. The term n notes deep will denote

a window that encompasses n notes; Le. the input vector will contain n notes. The larger n,

the more complex the net will be with a resulting decrease in learning speed. However, having

more notes in the input vector will provide more context to the note and should lead to less

variability in the music. It was found that training three to five notes deep generated a net

which composed the more pleasing music which is in agreement with Eberhart and Dobbin's

results [ED90].

5.5.3. Musical representation and training data

Two ways to represent the musical training data input to the net were considered:

• The notes can be presented as transitions. Each unit represents one magnitude of the

transition between one note and the next. The magnitude can, for example, be measured

in musical half-steps. For example, the note sequence A B C would be represented as

A +2 +1: B is two half-steps (A A# B) above A and C is one half-step (B C) above B.

This method has the advantage that a large number of notes can be represented with
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relatively few units. The biggest disadvantage, however, is that any drift will become

magnified; Le. if a wrong note is produced, all the following notes would be transposed.

• Each unit represents a different note. So, for the sequence A B C, units representing

these notes would be activated. This has the disadvantage that more units are required

in the input layer, but alleviates the transposed notes problem.

The second method was used because of its inherent robustness.

The output units can be considered to represent one of two cases:

• Time slices where each iteration of the net represents a time slice. An extra note-begin

unit would be required to indicate whether a note starts in the current time slice or is a

continuation of the note in the previous time-slice. However, a decision then has to be

made of how to handle a note, in the current time-slice, of a different pitch than the note

in the previous time slice when the note-begin unit remains inactivated.

• Individual notes where each output unit represents a different note. Extra output units

are required to represent the duration of the output notes.

Although the second method requires a larger number of output units, it is the more robust of

the two and was thus used. Due to the representation of the notes the input and output vectors

are clearly binary valued vectors.

Three tunes of a similar style were used to train the net: "Oh Susanna", "She'll be comin'

'round the mountain" and "Yellow rose of Texas". These tunes were chosen due to the

simplicity of the music, the availability of the tunes and the fact that Eberhart and Dobbin

[ED90] had used these tunes in their experiments and the composed music could thus be

compared to the music produced by their trained ANN. The three tunes were combined into

one training set (in the order "Oh Susanna", "She'll be comin' 'round the mountain" and

"Yellow rose of Texas") as done by Eberhart and Dobbin. By using tunes of a similar style it

was hoped that the trained net would compose music similar in style to the training tunes.

Using tunes from different styles could result in a mixture of styles (a type of "cross-over"

style) or a very unpleasant noise!

5.5.4. Composing music with a trained net

Once the net has been trained to a satisfactory degree of accuracy, it may then be used to

compose music. This is achieved by seeding the net with the first n notes (where the net has

been trained n notes deep). The output produced by the net can then be copied back to serve

as input for the next note to be generated. Clearly the input vector must be updated in such a

way that the first note in the vector is discarded, all the other notes are shifted and the generated

note is appended to the input vector. Figure 5-3 illustrates this process.
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Figure 5-3 Input - note generated - new input

Two methods of copying the generated note to the input vector were considered:

• The output vector (and thus the generated note) was copied directly to the relevant

position in the input vector. Note that the input vector should be binary valued but there

are no guarantees, and indeed it is unlikely, that the output vector's components would

consist of only two values. In general the output vector would be a real valued vector

and the unit with the largest value would be considered to be "on" while all others would

then be considered "off', thereby giving a binary valued vector. By copying the output

vector to the input vector directly, the input vector would be a real valued vector after

at least n copying processes (if the net was trained n notes deep).

• The output vector was converted to a binary valued vector, by considering the unit with

the largest activation value to be "on" and all other units "off', and this converted vector

was then copied to the relevant position in the input vector.

Eberhart and Dobbin [ED90] discuss other methods which use a probabilistic approach to

convert the output vector to a binary vector, but it was found that the above two methods were
adequate.

5.5.5. Results

With an application of this type, there is little or no quali~ative measure by which to judge the

results. The results are therefore judged subjectively and different people will disagree on the

quality of the composed music and thus on the amount of generalization that has taken place.

Three nets were trained: three notes, four notes and five notes deep. CCA was again used as

the learning algorithm. No hidden units were generated in any of the nets which indicates that

the data is linearly separable and can thus be learnt by the Perceptron. Hidden units are often

credited with the generalization ability of ANNs by forming higher order feature detectors

[FL90]. To test this, CCA was forced to generate hidden units by adjusting the patience and

output decay parameters as in previous tasks. No appreciable difference was noticed in the
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quality of the music composed by the nets with hidden units when compared to the music

composed by the nets without hidden units.

The two error measures were compared and it was found that the net ceased to learn, or learnt

very slowly, when the "number of bits wrong" measure reported that 70 bits were incorrect.

Moreover, the composed music using a net trained with this error measure was awful. Learning

was considered complete when the sum-of-squares error reached a certain threshold, which

was varied from 0.25 to 0.45 in 0.05 size steps. The training time required for the net trained

four notes deep appears in table 5-5. Note that the rate of convergence slows down when the

error threshold is decreased. For example, decreasing the threshold from 0.3 to 0.25 causes

the number of iterations required to solve the problem to more than double. This is a

characteristic of gradient descent techniques [MoI90] such as that employed in Cascade­

Correlation. It would seem that allowing a weaker condition (larger error threshold) to

terminate the learning would add more variability to the composed music, while stricter

conditions (smaller error threshold) would lead the net to memorize the training data better.

By requiring the net to reach a smaller error measure the weights are forced to change in such

a way that the training patterns are better remembered. This could cause the prototypes in the

training examples not to be learnt. This was borne out by the results.

Error threshold Epochs

0.25 72

0.30 29

0.35 21

0.40 17

0.45 15

Table S-S Training times for different error thresholds.

Both methods of copying the generated output note to the input were compared. Converting

the output vector to a binary valued vector before the copying process resulted in better

composed music. Four different seeds were used to start the composition process: the first n

notes of each of the training songs and n randomly chosen notes (where n is the number of

notes in the input vector). Again little difference was noted in the composed music although

the random seed often led to music that was surprisingly different from the training tunes yet

of a similar style.

The net trained five notes deep led to an almost complete memorization of the training tunes.

Even when seeded with a random starting seed, the net quickly started producing one of the

training songs. The net produced the three tunes with similar frequency with no combination

of the tunes resulting and few incorrect notes. This was somewhat unexpected but can be
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explained by examining the training tunes: if a certain sequence of notes only appears in one

of the tunes it seems probable that the net would respond with the next note in the sequence

of that song when presented with that part of the sequence. This process should continue as

long as only one of the tunes has such a sequence of notes. Therefore, provided there aren't

too many note sequences that are identical in the different training songs, the net should be
I

~ 'I, able to deliver the trained response. What was interesting was that this net must have learnt
:t I,

~ ;1< the training songs (almost) perfectly since any slightly ambiguous output note could introduce

enough noise so that the next note output wasn't from that trained sequence. Thus the net had

learnt to recall a temporal sequence even though no temporal information was explicitly

provided by the net architecture. Were the training data to have more sequences of notes in

common the net could confuse them and thus not produce the trained songs perfectly, if at

all.

The net trained four notes deep gave the best results with a mixture of memorized note

sequences (five or six notes) and "new" note sequences. The "three notes deep" net seemed

to produce the most randomized, and unpleasant, music.

5.5.6. Improvements

Eberhart and Dobbin [ED90] discuss various ways in which to inject randomness into the

music. As was seen, nets trained with a smaller sized input vector tended to result in more

random music being composed. Thus combining nets with different sized input vectors and

choosing the generated note from one of the nets in some way, could result in better music

being composed. However this method is computationally expensive since it requires the '

training of more than one net. Alternatively, the unit considered as the note to be played next

could be chosen in some other way rather than always choosing the unit with the largest

activation value to be the next note.

The manner in which the composed music is played is important. The program used to play

back the composed music selected the unit with the largest activation value as the generated

note which was then played through the internal speaker ofan IBM PC. However, when more

than one unit had the same high activation value, the unit corresponding to the higher note

was selected. Therefore, occasionally high notes were heard amongst a sequence of low notes.

There seems no general procedure for handling such cases except by using some probability

measure to choose between units with the same activation value.

The composed songs generally do not come to a natural end. This was expected since, among

all the note sequences, there were only three sequences .that represented the end of a tune as

the training set was composed of three tunes. Thus the net had only three examples ofsuitable

ending sequences compared to the many non-ending sequences. This problem might be

overcome by including more examples of song endings in the training set.
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5.5.7. Conclusion

Composing music based on rules is difficult because of the lack of a qualitative measure to

classify the composed music. An ANN has been successfully applied to the task of music

composition. Although the composed music is adequate, the preferred method would be for

the human composer to use the ANN to compose the music while making changes to the

composition where necessary.

A significant result is the ability of a feed-forward net to seemingly learn temporal sequences

without having to resort to recurrent or time delay connections.

5.6. IMAGE BINARIZATION

5.6.1. Introduction

ANNs have been applied to image processing with some success:

• Yin et al. [YAN] used ANNs to remove noise from images with results which compared

favourably with those obtained using the median filter. However, their net was speci­

fically designed for the task and underwent little training.

• Bilbro et al. [BWS87] designed an ANN, traine~ with the Boltzmann algorithm, to

segment images to extract the object in the image.

The task is to train an ANN to binarize an image by determining an adaptive threshold.

5.6.2. Image binarization

Image binarization is the process ofconverting a grey-level image to a bi-Ievel one by selecting
a threshold t such that

p(x,y) = 1 if p(x,y) <t

p(x,y) =0 otherwise,

where p(x,y) is the value of the pixel at position (x,y) in the image.

Binarization is important for a variety of reasons:

• The differences between objects and the backgrot.Ind in images may be clearer in two
tone images. This eases feature extraction.
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• Image processing requires the processing of large amounts of data. By representing the

images in bi-Ievel, the amount of storage required for each image can be reduced. For

example, an image of 256x256 pixels where each pixel can store 256 shades of grey

requires 524 288 bits, while the equivalent binary image would require 65 536 bits;

87.5% less.

• Image skeletonization can be performed on bi-Ievel images [Amm86].

Determining an appropriate threshold can be a difficult problem. The threshold is usually

determined by performing various operations on the histogram ofgrey-levels ofan image (Le.

a histogram that reflects the distribution of the pixel values in the image). If the image consists

of mostly two grey levels, such as black text on a white background, the histogram will

normally have two peaks (bi-modal). For such images, choosing an appropriate threshold is

less complicated as the threshold is usually chosen to fall somewhere between the two peaks.

Rosenfeld and Kak [RK82], for example, give three different methods to choose a threshold.

A popular method is the p-tile method [RK82]: if it is known what fraction of pixels should

be above the threshold, the threshold t can be chosen appropriately. If 1-p of the pixels should

be above the threshold, the threshold is chosen to be at the p-tile of the image's histogram.

Optimal thresholding [GW87] selects the "best" threshold using statistical information

contained in the histogram. The image is assumed to contain two principle brightness regions

(Le. the histogram is bi-modal), and thus the histogram can be considered as an estimate of

the brightness probability density function [RK82]. The resulting algorithm for determining

the optimal threshold is, however, non-trivial to implement. Both of these methods require

bi-modal histograms. For non-bi-modal histograms or for images for which no a priori

information is available, the problem of determining a threshold is more complicated.

A promising method is Otsu's Discriminant And Least Square Binarization (DLSB)

[BYK90]. DLSB has no need for a priori information but determines the optimal threshold

in the sense that the chosen threshold minimizes the square error between the binarized and

original image.

If a set of images with the best threshold predetermined in some way is available then at least

two methods are available:

• Mean threshold binarization and median threshold binarization. The mean or median

of the sample thresholds may be used as a threshold to binarize other images. For these

methods to work adequately, it is important that the example set of images and

thresholds are chosen with care to be representative of all images that will need to be

binarized using this method. The selection of such an example set of images could be

difficult and time consuming. The biggest disadvantage of this method would be that

the threshold determined for new images is not adaptive.
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• The images and thresholds may be used as training data for an ANN where, given the

histogram of the image as input, the net would determine the desired threshold. This

might allow an adaptive threshold to be determined. This is the method followed and

is an extension of the work done by Babaguchi et al. [BYK90].

5.6.3. Babaguchi's approach

Babaguchi et al. [BYK90] had two guiding principles when designing their network:

• The net was intended not to average the training images thresholds but rather to use the

complete histogram data to determine an appropriate threshold. To encourage this

generalization, they kept the training data set as small as possible. This would hopefully

cause the net to extract the prototypes rather than just memorizing the training data.

• They wanted to produce binary images that were visually satisfying. Therefore their

criteria for judging the binary images were based on visual appearance rather than a

statistical measure which clearly influenced the choice of the thresholds. Although the

selection of the thresholds then becomes a subjective process, the thresholds might

produce visually more satisfying bi-Ievel images.

Their method, termed Connectionist Model Binarization (CMB), consisted of two stages: a

learning and binarizing stage. The first stage used the training data to teach the net to select

appropriate thresholds given the histograms of the images as input and the user determined

thresholds as the target outputs. The second stage was the prediction (or test) stage where

unseen images were presented to the net and it supplied the thresholds.

The CMB network was a three-layer network with N input and output nodes, where N is the

number of points in the histogram. The input to the net w~s the grey-level histogram. Because

the net expected inputs in the range [0,1], the histograms entries had to be normalized. This

was a simple task of determining the largest entry in the histogram, and dividing all the

histogram entries by this value; Le. the normalized histogram h(s) was

h(s) = H(s)
L

(OsssN-l)

:;.: t,

~. ~ .
" ·r

where H(s) was the original histogram's value, and L =max(H(O), H(I), ..., H(N-l)).

The number of units in the hidden layer was varied to determine the effect this would have

on the net's performance. The number of hidden units used were 8, 16, 32 and 64. The output

layer consisted of a binary vector that indicated the threshold to be used given the input

histogram with the component with the largest value indicating the threshold to be used.
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The teacher signal t(s), which corresponded to the desired threshold, was presented in three

ways:

• Impulse type:

t(s)=l for s=s'

t(s)=0 otherwise

• Step type:

t(s)=l for s'-e <s <s'+e

t(s)=0 otherwise

• Gaussian type:

t(s)=e(-0.1562(s-s'l) for s'-e <s <s'+e

t(s)=0 otherwise

where s' is the desired threshold.

Experimental results indicated that the impulse type delivered the best results.

Their aim was to train the net using similar images. Thus, images of newspaper (NP) and

technical papers (TP) were used. The images were 840x840 pixels and the pixel values were

limited to a grey-level of 64; Le. 0 through 63. Therefore the input and output layers had 64

units each. Twenty images ofeach type(NP and TP) were captured, and 10 selected at random

, (! from each group to be used as training data. The thresholds for the training images were

determined interactively. The training images were presented to the net in four different ways:

• (NP1, TP1, ..., NP10, TP10)1

• (NP1, ..., NP10, TP1, ..., TP10)1

• (NP1, TP1, ..., NP10, TP10)k

• (NP1, ..., NP10, TP!, ..., TP10)k

'.. ,.., where NP1, NP2, ...NP10 and TP1, TP2, ...TP10 denote the NP and TP training images

respectively, and Ok indicates that each of the samples parenthesized were repeated k times

in the order specified. It was found that the second presentation method achieved the best

learning speeds.
: .

5.6.4. Extending the problem

..
~ ~ ~:
I. ,~ 1

• i
1 J

Itwas decided to extend the range of problems that Babaguchi tried to solve. The images were

all of printed matter but no assumptions were made about the size or style of the typeface,

lighting conditions, the angle at which the image was captured or whether the image contained

text or diagrams. The images included graphs and simple pictures as well as images with the

foreground and background colours reversed (e.g. white writing on a blue background rather

than the familiar black-on-white).
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The images were restricted to 128x128 pixels due mainly to computational limitations and

because the digitizer used was only capable of 512x512 pixel images and there were defective

pixels located in one section of the digitizer's retina. By choosing the images' position

carefully, these pixels were avoided. Babaguchi et al. used images of Chinese text which

generally consist of finer lines where the choice of threshold must be made carefully to avoid

blurring of the lines. Due to the lack of availability of their original images, it was decided to

use images of English text. The effect of the smaller images and style of writing could cause

the histograms to be less obviously bi-modal. In fact, the histograms of the images used were

generally not bi-modal, certainly less bi-modal than the histograms illustrated in [BYK90].

The twenty training images and seven of the test images appear in appendix D.

The visually most satisfying thresholds were determined interactively for the twenty training

images by trial-and-error and these thresholds are given in table 5-6. When testing the net,

the output unit with the largest activation value was assumed to be the threshold determined

by the net.

Image Threshold Image Threshold Image Threshold Image Threshold

1 35 6 23 11 29 16 39

2 35 7 39 12 28 17 39

3 63 8 56 13 35 18 38

4 60 9 23 14 40 19 32

5 40 10 35 15 42 20 34

Table 5-6 User-specified thresholds ofthe 20 training images. The mean and median ofthese thresholds is 38.25

and 37.0 respectively.

5.6.5. Results

5.6.5.1. CMB results

Babaguchi et al. limited their BP algorithm to 50 000 iterations. They determined experimen­

tally that there was no difference in performance when using 32 or 64 hidden units, while

there were only two threshold samples that differed when testing a net that used eight hidden

units. A learning rate of 0.5 and momentum of 0.9 were used as the training parameters of BP

with the performance of the net being superior to mean threshold binarization (MTB). MTB

showed no stable performance even for images in the same set while DLSB had the tendency

to cause blurring.

5.6.5.2. Extended problem results
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Choosing a threshold too small causes blurring while a threshold too large causes a loss of

detail. Learning ceased when the sum-of-squares error was less than 0.35. This value was a

rough rule of thumb which have given good results in other tasks. Table 5-7 details the effects

of different parameter values on learning times and the number of hidden units added to the

net. As can be seen, the output decay dramatically increases the number of hidden units added

with an increase in the learning time resulting.

Patience Output decay Number of epochs No. of hidden units

8 0.01 60 0

3 0.01 77 1

4 0.01 130 6

8 0.1 1720 33

5 0.1 1637 44

3 0.1 1440 49

Table 5-' Details of the effects of different parameter values on learning time and number of hidden units

The performance of the net was tested with a set of different images and comparisons were

made between the results obtained and those obtained when using the mean and median of

the training set, as well as thresholds determined interactively. It was found that the nets with

a large number of hidden units (those trained with the output decay parameter set to 0.1)

determined thresholds that were better than those determined by the other nets (for which the

output decay parameter was set to 0.01).

Appendix E contains the results obtained when using some of the test set images to test the

net while appendix F details the results obtained using the training data to test the net. The

effect of hidden units on the net's performance was studied by training two sets of nets: one

group with less than twenty hidden units and the other with more than twenty hidden units.

The number of hidden units added can be influenced by the choice of the output decay term
as detailed above.

It was found that the nets with more than 20 hidden units generally performed better in all the

tests. However, there was no appreciable difference in binarization quality between members

from the same group. The third and fourth row of images in appendix E demonstrate the

difference in performance between the two groups of trained nets: the first group of nets, with

less than 20 hidden units, were unable to binarize the image in such a way that the fine detail

was classified as foreground while the second group correctly binarized the image.

When using the training set to test the trained net, it was found that the training set had not

been memorized perfectly, with the nets sometimes failing to binarize certain training images.
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In all such cases, using the mean and median threshold failed too. As can be seen in some of

the binarized images, the thresholds determined by the net were occasionally too large which

caused blurring. This occurred in images that had a large amount of foreground colour in one

region; such as when the image contained only a portion of a letter in a large font. However,

in general the adaptive threshold determined by the net ~as equal or superior to the mean and

median, which obviously failed to take the test image's distribution into affect when deter­

mining a threshold.

5.6.6. Conclusions

The task of determining a threshold to binarize an image is well suited to being solved using

a neural net. The advantage of using a net is that it forms an adaptive method of determining

the threshold. Further, the threshold determined need not be statistically significant but can

be chosen interactively to suite whatever purpose the experimenter has in mind. The method

is not limited to bi-modal histograms and no a priori information about the images are

required. To prevent the net from merely memorizing the data or calculating the average of

the thresholds it is important to encourage generalization by including a number of hidden

units.

Babaguchi's work was extended to include varied lighting conditions and viewing angles,

using images with various combinations of foreground and background colours and the use

of images of differing styles of text. The trained ANN performed adequately in all cases,

including when presented with (pseudo) 3-D text of which no examples were included in the

training set, often outperforming the traditional methods considered and almost matching the

threshold determined interactively for the test images.

An obvious area to further explore would be the application of the process to images of 3-D

objects and n-arization where the grey-level image is converted to an image of n grey levels.

5.7. Conclusion

ANNs trained using CCA were applied to four problems. Although successful in all four

problems, it was seen that traditional methods could give superior results (such as in the

calculation of decompression stops). By increasing the complexity of some of the problems,

such as increasing the input size of BOB's sensors, the advantage of neural networks would

become clearer.

It was also shown that ANNs could be used in fields such as musical composition with a

certain degree of success while very encouraging results were obtained in the image binariz-
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ation problem. Thus ANNs are in fact a useful technique, the theoretical aspects and pitfalls

not withstanding.



CONCLUSION

The resurgence of interest in artificial neural networks has resulted in models that overcome

many of the difficulties experienced by the earlier models, are more powerful and thus can

learn more complex tasks. This thesis has examined the non-recurrent, feedforward architec­

ture first used by the original Perceptron. The Backpropagation rule, a generalization of the

Perceptron rule, and its properties were examined. Itwas noted that although the BP algorithm

has a slow rate of convergence, there are many simple modifications that can be made to the

algorithm to increase the learning speed.

It was noted that BP scaled badly; as the size of the task is increased linearly, BP's learning

time required often scales exponentially. The quickprop algorithm, a semi-Newton method,

derived from BP, was examined. It was found to be significantly faster than BP and seemed

to scale better than BP. The presence of local minima in the error surface searched by BP can

lead to the net reaching an inferior solution. Backpercolation is an algorithm that assigns each

unit in the net its own activation error and thus enables each unit to try to descend a local error

surface. Perc had the additional feature that it is faster than BP while QP compares favourably

to it. Due to the proprietary nature of the Perc algorithm little research by investigators other

than its inventor has taken place. Therefore the claims of its performance must be regarded

skeptically. Various possible reasons for its improved rate of convergence were mentioned

and it remains to be seen whether the improvements are due to the new approach of assigning

local error surfaces to each unit or due to these other factors.

The task of learning an arbitrary task using an arbitrary fixed feedforward architecture is an

NP-hard problem. Therefore, it seems unlikely that an efficient algorithm exists that can

accomplish such tasks. This result has not been extended, however, to generative or recurrent

nets. As noted, many of the theorems relating to the Perceptron seem to be extendible to

multilayer feedforward nets but do not apply to recurrent nets. The basic requirements of

generative algorithms were investigated and their advantages over the other algorithms noted.

Cascade-Correlation, a generative algorithm developed by Fahlman, was discussed.

Finally four tasks were solved using neural nets. Different criteria were used in selecting the

tasks. These included the testing of the generalization ability of a CCA trained net using the

task of calculating decompression stops required by SCUBA divers and the learning of rules

using a suitable designed training data set for training an artificial critter. The quality of the

solutions varied from adequate (such as for the calculation of the decompression stops) to

very promising (such as the binarization of images). Tasks such as the composition of music

and binarization of images indicated the possibility of solutions to problems that are difficult

to solve using traditional methods. An unexpected result was the learning of temporal
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sequences by a non-recurrent net trained by CCA: it was previously assumed that recurrent

or time delay connections would be required for such tasks.

Various conclusions may be drawn:

• All the models studied only required local information; information that is locally

available to the unit that is changing the weights associated with it. Even though there

is no explicit controlling unit as in traditional AI systems (e.g. expert systems) syn­

chronization of the units must still be supplied by an external unit. For example in BP,

the algorithm must broadcast to the units when to propagate a signal forward and when

to update weights.

• ANNs are a useful method that may be applied to a variety of problems. However, they

should not be considered as a catch all method that can solve all problems. Many

problems can be better solved using traditional methods. An avenue to be further

researched is the synthesis of traditional methods and ANNs into hybrid systems.

Caudill [Cau90b] [Cau90c] [Cau90d], for example, has discussed various methods of

combining expert and fuzzy decision systems with ANNs.

• Given the result that learning in non-recurrent feedforward nets is NP-hard it must be

determined what restrictions on the tasks, architectures and algorithms may lead to

efficient solutions as suggested by Judd.

• The investigation of whether the use of recurrent and generative algorithms will

overcome the NP-hard result is required.

• The design and use of generative algorithms should be given more attention due to the

advantages inherent in such algorithms.

• The use of recurrent nets for tasks involving temporal sequences and as a method to

overcome the possible limitations of the results of Minsky and Papert [MP88], if these

are extendible to multilayer nets, should be considered. Recurrent nets have their own

set of unique problems however. One important problem would be that of the introduc­

tion of chaotic behaviour which often appears in non-linear, feedback systems [Gle88].

Pollack [PoI88], for example, discussed methods in which chaotic behaviour could be

utilised to represent certain types of AI-style data structures while Doya [Doy92]

discusses methods to overcome the problem of bifucations during learning in recurrent

nets.

• ANNs can accomplish adaptive tasks, such as image binarization, in image and signal

processing.

• The need to give a net as much help as possible during training was found to be

important. This could include the encoding of spatial or temporal information in nets

required to solve tasks that include such details.

• The importance of local minima should be quantified. From an applications point of

view local minima may be safely ignored provided the trained net performs satisfactor­

ily. From a theoretical view, it is important that methods that allow the reduction of the



Conclusion-3

effect local minima have on the search for an adequate solution and on the quality of

the final solution be determined.

• ANNs perform well in tasks that have few fixed or quantifiable rules, or tasks that

require some type of generalization (musical composition is a task where this is

required).

• The use of ANNs in domains that require a deal of resistance to damage or to fuzzy and

noisy input is highly recommended.

• The use of genetic algorithms to develop new or improved algorithms, search methods

or nets should be investigated. Caudill [Cau91b] and Austin [Aus90] discuss this for

example.

• The use ofa collection ofsmaller nets instead ofone large net to solve a large or complex

problem. This has the advantage of avoiding or reducing the scaling affect inherent in

many of the popular algorithms while still allowing a good solution to be found.

Lippmann [Lip89], for example, discusses this in connection with speech recognition

usingANNs.

• Algorithms that reduce or overcome the scalability problem are required.
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APPENDIX A

PERCEPTRON CONVERGENCE THEOREM

Definition:

Assume the input patterns are from a space which has two classes, F+, F-. The perceptron

must respond with +1 for F+, -1 for F-.

Consider a set of input values!i as vectors in i-dimensional space called X and a set ofweights

ID as another vector in the same space, denoted by W. Assume that all vectors are of unit

length.

n-l

Replace .LwiXi(t) by W.X
i=O

Algorithm:

Start: Choose any value for W (ill! 0 )

Test: Choose X from F+U F-

if X E F+ and W.X > 0 then goto Test

if X E F+ and W.X ~ 0 then goto Add

if X E F- and W.X < 0 then goto Test

if X E F- and W.X ~ 0 then goto Sub

Add:W=W+X

goto Test

Sub: W=W-X

goto Test
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The algorithm can be simplified to:

Start:Choose any value for W

Test: Choose X from F+ U F-

if X E F- then change the sign of X

ifW.X> 0 then goto Test else goto Add

Add:W=W+X

goto Test

However, if we define F = F+ U F, the algorithm can be further simplified:

Start: Choose any value for W

Test: Choose any X from F

if W.X > 0 then goto Test else Add

Add:W=W +X

goto Test

THE PERCEPTRON CONVERGENCE THEOREM

PROOF

*Let F be unit-length vectors. If there exists a unit vector Wand a number b > 0 which

partitions the space then the algorithm will only execute "Add" a finite number of times. I.e.

the algorithm will determine a suitable vector W which will partition the space correctly.

Needless to say, the vector determined need not be W*.

*Assume that there is a unit vector W which partitions the space and a small positive constant

b such that W*.X > b for all X an element of F.

Define

G(W) = (W*.W)/(IWI)

Note that G(W) is the cosine of the angle between Wand W*.

Since IW*I = 1, G(W) s 1.

Consider the behaviour of G(W) through succesive passes through Add.

(1)
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First consider the numerator:

* *W .Wt+l = W (Wt + X)
* *= W .Wt+ W .X
*= W .Wt+ 6

Hence, after the nth application ofAdd:

*W.Wn =n6

*Now, consider the denominator. Since W .Xmust be negative (for Add to be executed)

IWt+11
2

= Wt+I.Wt+1

= (Wt + X).(Wt + X)

= IWt 1
2 + 2Wt.X + X2

However, W.X must be negative and IX 12 = 1, so

IWt+11
2

< IWt 1
2

+ 1

and after the nth application ofAdd

Combining (2) and (3)

* 2 laG(Wn) = (W .Wn)/ IWn 1 > n6/(n )

But G(W) s 1, so n s 1/62

(2)

(3)

So, regardless of 6, n (the number of times Add is executed) will always be finite. Thus the

algorithm will partition the space correctly if such a partioning exists.O
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DELTA RULE AS A GRADIENT DESCENT METHOD

From [RM86] (p322-324)

The delta rule for updating the weights following the presentation of input-output pattern pair

p

ApWjk = t')(tpj-Opj)ipk = t')Opjipk (1)

h . h .th fhe' h .thwere tpj IS t e J component 0 t e target output ·lor pattern p, Opj IS t e J compo-

nent of the actual output for pattern p and ipi is the ith component of the input vector

for pattern p.

minimizes the squares ofthe differences between the actual and desired output values summed

over all the output units and input-output pattern pairs, provided that a linear activation

function is used. One method to show this is to show that the derivative of the error measure

with respect to each weight is proportional to the weight change dictated by the Delta rule

with a negative constant of proportionality.

PROOF

Define

Ep = 1/2'2(lpj_Opj)2

j

to be the error measure on input-output pattern p and

to be the total error measure.

To show that the Delta rule implements gradient descent on E, it must be shown that

With no hidden units and using the chain rule

(2)
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From (2)

iJEIIaopj=-(tpj-opj)=-bpj

But, since linear activation functions are used

Opj=~Wjkipk
k

i.e. aOpYaWjk-=ipk

Substituting (4) and (5) into (3)

as desired.

Noting that

iJE/awjlr~ iJEJlaWjk
p

(3)

(4)

(5)

(6)

the net change in Wji after one epoch is proportional to iJE/aWjk and thus the Delta rule performs

gradient descent in E.O

The above proof is only strictly true if the values of the weights are not changed during the

epoch. By keeping the learning rate sufficiently small, on-line updating can be used and the

departure from true gradient descent will be negligible. Using a small enough learning rate

the Delta rule will determine a set of weights that minimize this error measure.
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The high-level algorithms for Backpropagation (BP), Quickpropagation (QP) and Backper­

colation (Perc) are given in this appendix. Note that only the "bare bones" of the algorithms

are given. For the Perc algorithm, much detail has had to be omitted due to the proprietary

nature of the algorithm. The algorithms have been written so as to increase legibility rather

than for efficiency.

Notation:

Unless otherwise specified the following notation will be used:

• Weighti,j is the weight from unit j to unit i.

• Xi is the ith component of the input vector,

• Yi,j is the ith unit in the jth layer.

• Oi is the ith component of the output vector.

• Di is the ith component of the desired output vector.

• The sigmoid non-linearity is f(x) = 1/(1+e-x)

• The threshold is considered to be the weight from an additional input unit which has a

value of 1 as mentioned in chapter 2 and 3 .

• Assume L layers of weights (including the input layer) numbered 0, 1, ... L-l.

BP ALGORITHM

This algorithm excludes the momentum term and assumes on-line updating is used (Le. the

weights are updated after each pattern pair has been presented). It is a trivial task to

accommodate these in the given algorithm. For example, batch learning can be accomplished

by accumulating the changes required for the weights in an array (each weight having one

unique entry in the array) and then to update the weights after the epoch is complete using
the accumulated values.
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Algorithm

/* Step 1: Initialize all weights and offsets (thresholds) to small random numbers. */

/* Step 2: Present the input vector and the desired output vector. */

/* Step 3: Use the sigmoid non-linearity to calculate the actual output vector. */

for(K= 1; K~ L; K++)

{

/* For each layer, starting at the first hidden layer and moving to the output layer. */

for (I = first unit in layer K; I ~ last unit in layer K; 1++)

{

Sum = 0;

for (J = first unit in layer (K-1); J ~ last unit in layer (K-1); J++)

Sum += WeightI,J;

YI,K = f(Sum);

}

}

/* Copy the appropriate values to the output units. */

for (I = 0; I ~ M; 1++)

01 =YI,L-l;

/* Step 4: Use a recursive method starting at the output layer and working back to the first

hidden layer to adjust all the weights. */

for (K = L-1; K> 0; K--)

for (I = first unit in layer K; I ~ last unit in layer K; 1++)

if (K = L-1) /* Le. the output layer. *1)

01 = 01(1 - 01) (DI - 01);

else

{

Sum = 0;

for (K2 = first unit in layer K+1; K2 ~ last unit in layer K+1; K2++)

Sum += Ok WeightK2,I;

01= YI,K(l - YI,K)S urn;

}

for (J = first unit in layer K-1; J ~ last unit in layer K-1; J++) /*Update the weights. */

WeightI,J = WeightI,J + II 01 Y'J;

/* Step 5: if learning isn't complete go to step 2. */
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QP ALGORITHM

This algorithm uses the weight update rule as specified by Fahlman and given in chapter three.

Note that a gradient descent term is always added to the value calculated by the Ouickprop

rule except when the conditions outlined in chapter three are satisfied.

Because OP is an extension of BP, only the weight update portion of the algorithm has been

given. The only other change to the BP rule is the requirement that the slope values and the

weight changes of the previous epoch be available for all the weights must be available at

weight update time. ,.,.. is the maximum growth factor that determines how large any weight

may become.

When the weight update algorithm below is executed, it is assumed that each weight has the

following information available to it: its current and previous slope (calculated using the error

derivative method in the BP algorithm) and its previous weight change. Therefore it is quite

acceptable to update the weights of units in the earliest layers first.

Algorithm

1* Weight update step. *1

ShrinkFactor = ,.,../(1.0+,.,..);

for (K = 1; K s L-1; K++)

{

for (I = first unit in layer K; I s last unit in layer K; 1++)

for (J =first unit in layer K-1; J s last unit in layer K-1; J++)

{

W = WeightI, J;

DW = LastWeightChangeI, J;

S = CurrentSlopesI, J+Decay*W;

1* Decay is a weight decay term used to prevent the weights from increasing too quickly. */
P = PreviousSlopeSI, J;

NextWeightStep = 0;

if ((S == 0) 11 (P == 0))

NextStep += LearnRate*S;

ellse
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if ( ( (S s 0) && (P > 0) ) 11 ( (S < 0) && (P s 0) ) )

/* The slopes are opposite in sign so use the quickprop rule alone. */

NextStep += S/(P-S)*D;

else /* The slopes are in the same direction. */

if (abs(S) = abs(P)) /* Guard against taking too large a step. */

NextStep += ~*D+LearnRate*S;

else /* All ok so use the quadratic and linear terms. */

NextStep += S/(P-S)*D+LearnRate*S;

LastWeightChangeI, J = NextStep;

WeightsI, J = W+NextStep;

}

}

Perc ALGORITHM

Due to the proprietary nature of the Perc algorithm only the barest details may be revealed

here. As can be seen it is very similar to BP with an extra step added - the back percolation

to assign each weight its own error surface to descend.

Algorithm

Perc can be viewed as an extended BP algorithm.

Framework of Perc

/* Step 1: Initialize the weights to small random values. */

while (Training is not complete)

{

R esetErrorsToO;

/* Reset the error counters to O. */

for (Pattern = 1; Pattern number of patterns; Patterns++)
{

GetNextPattern(Pattern);

/* Get the next I/O pattern in the training set. */

ForwardPass;
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/* Pass the data forward through the net as for BP. */
RecordErrors;

/* Record the error statistics used in the back percolation step. */
BackProp;

/* Back propagate the error gradients as for BP. */
BackPerc;

/* Back percolate the error measures and adjust the weights. */
AmplifyLambda;

/* Increase the learning rate if the required conditions are met. */
}

}

The BackPerc step

The only difference in the Perc and BP algorithm is the extra step, BackPerc. This step

accomplishes the following:

There are four basic steps for all units in a layer:

1. Evaluate the optimal internal activation error of each unt.

2. Normalize each units' internal activation error.

3. Evaluate & post the 0l-t error messages to earlier units.

4. Evaluate & post the oweight weight changes of each unit.

The 0l-t and oweight error messages are used to calculate the new weight values. Unfortunately

due to the proprietary nature of the algorithm, further details may not be revealed.
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f e results of applying the threshold determined by the net (second column), the mean (third column) and

~ t' e median threshold (fourth column) to the original image (first column) of some of the seven test images

~ ~ppearing in appendix D.

· ~ows three and four on the preceding page demonstrate the effect the number of hidden units have on the

·qbt's ability to binarize images. The image on the third row is successfully binarized because the net used
I i
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