
A Comparative Study of Various
Speech Recognition Techniques

Richard Charles Pitchers

B.Sc. Eng.

submitted in partial fulfillment of the require­

ments for the degree of Master of Science in

Engineering, in the Department of Electronic

Engineering, University of Natal, South Africa.

•

Durban January 1990

The author hereby declares that this thesis represents

his own original and unaided work except where specific

acknowledgement is made by name or in the form of a

reference. The thesis has not been submitted to any other

university for degree purposes.

(ii)

Speech recognition systems fall into four categories,

depending on whether they are speaker-dependent or

independent of speaker population and on whether they are

capable of recognizing continuous speech or only isolated

words.

A study was made of most methods used in speech recog­

nition to date. Four speech recognition techniques for

speaker-dependent isolated word applications were then

implemented in software on an IBM PC with a minimum of

interfacing hardware. These techniques made use of short­

time energy and zero-crossing rates, autocorrelation

coefficients, linear predictor coefficients and cepstral

coefficients. A comparison of their relative performances

was made using four test vocabularies that were 10, 30,

60 and 120 words in size. These consisted of 10 digits,

30 and 60 comput~r terms and lastly 120 airline reser­

vation terms.

The performance of any speech recognition system is

affected by a number of parameters. The effects of frame

length, pre-emphasis, window functions, dynamic time

warping and the filter order were also studied experimen­

tally.

(iii)

I would like to thank all members of staff of the

Department of Electronic Engineering, University of Natal

who assisted me at various stages during my work on this

project. I would especially like to thank Professor

Anthony D Broadhurst, under whose supervision this work

was performed, for his patience and guidance.

I am grateful for the continual support that I received

from my family and a special word of thanks goes to my

father for his assistance with the grammatical presen­

tation of this thesis.

I also wish to thank the Council for Scientific and

Industrial Research for their financial support.

/

(iv)

PREFACE

ABSTRACT

ACKNOWLEDGEMENTS

CONTENTS

(Li)

(ill)

(iv)
(V)

Chapter 1 INTRODUCTION 1

1.1 Early Speech Recognition systems

1.2 Advantages of Speech Input systems

1.3 Applications of Speech Recognition

1.4 Thesis Outline

3

5

5

7

Chapter 2 AN OVERVIEW OF SPEECH RECOGNITION 9

Classes of Speech Recognition Systems

2.1.1 Isolated Word Recognition

2.1.2 continuous Speech Recognition

The Speech Recognition Process

Speech Recognition Techniques

The complexity of Speech Recognition

2.4.1 Practical Considerations

2.1

2.2

2.3

2.4

2.4.2

2.4.3

Speech-Related Difficulties

The Need for Artificial Intelligence

(V)

9

9

10

11

12

13

13

14

15

Chapter 3 THE SPEECH PRODUCTION MECHANISM

3.1 Introduction

3.2 Phonemes and Allophones

3.3 The Basics of Speech production

3.4 Classes of Speech Sounds

3.4.1 Voiced Sounds

3.4.1.1 Vowels

3.4.1.2 Semi-Vowels

3.4.1.3 Diphthongs

3.4.1.4 Nasal Consonants

3.4.2 Fricatives

3.4.3 Plosive Sounds

3.5 A Model of the Speech production Mechanism

16

16

17

19

19

20

21

21

22

22

23

24

Chapter 4 SPEECH RECOGNITION TECHNIQUES

/' 4.1

../4 . 2

4.4

-14 . 5

4.6

4.7

4.8

4.9

Introduction

The Concept of Short-time Processing
/,/ 4 . 3 Window Functions & Short-time Energy

Short-time Average zero-crossing Rate

Short-time Autocorrelation Function

pitch Period Estimation

Pre-emphasis

statistical Models for Speech Recognition

Fourier Analysis of speech

4.9.1 The Discrete Fourier Transform

4.9.2 Short-time Fourier Transforms

v 4 . 9 . 3 Window Functions and their Properties

/ 4 . 1 0 Filter-bank Analysis

4.10.1 Description

4.10.2 Implementation

(vi)

26

27

28

29

30

32

34

36

38

38

39

40

41

41

41

J 4 . 1 1 Linear Predictive coding (LPC)

4.11.1 Introduction

4.11.2 All-pole Linear Prediction Model

4.11.2.1 Model Definition

43

43

45

45

4 .11.2.2 Determining Predictor Coefficients 47

4.11.2.2.1 Autocorrelation Method 49

4.11.2.2.2 Covariance Method 50

4.11.2.2.3 Lattice Methods 51

4.11.3 Frequency-Domain Interpretation of LPC 52

4.11.4 Choosing the Order and Frame Length 53

4.11.5 LPC Distance Measure 56

J 4 . 12 Cepstral Analysis of Speech 59

4.13 Endpoint Detection 60

4.13.1 Requirements 60

4.13.2 Problems Associated with Endpoint Detection 61

4.14 Pattern comparison 64
4.14.1 Linear Time Alignment 65
4.14.2 Dynamic Time Warping (DTW) 66
4.14.3 Ordered Graph Search (OGS) Approach to DTW 70

(vii)

Chapter 5 IMPLEMENTATION OF THE SPEECH RECOGNITION

TECHNIQUES

5.1 Introduction

5.2 Hardware

5.2.1 Processing Hardware

5.2.2 Analogue-to-Digital Converter

5.2.3 Input Filtering and Amplification

5.2.4 Microphone

74

76

76

77

78

79

5.3 Software 80

5.3.1 Introduction 80

5.3.2 Main Program 82

5.3.3 Procedure for Sampling a Word 86

5.3.3.1 Body of Procedure 86

5.3.3.2 Design of an Algorithm to

Locate the Endpoints 88

5.3.3.3 Determining the Thresholds 90

5.3.3.4 Flowchart for Endpoint Detection 91

5.3.4 · System Training Procedure 94

5.3.5 Word Recognition Procedure 95

5.3.5.1 Body of Procedure 95

5.3.5.2 The OGS Algorithm for DTW 97

5.3.6 Comparison of Word Templates 99

5.3.6.1 Zero-Crossing/Energy Measurement 99

5.3.6.2 Autocorrelation/LPC Measurement 100

5.3.6.3 A Squared Euclidean Distance for

Cepstral Coefficients 101

5.3.6.4 Ikatura's LPC Distance Measure 101

5.4 Test Vocabularies 102

(viii)

Chapter 6 COMPARISON OF RELATIVE PERFORMANCES

6.1 Introduction

6.2 zero-crossing/Energy Technique

6.2.1 Band-Pass Filter Specifications

6.2.2 Effect of Frame Length

6.2.3 Energy Weighting of Distance Measure

6.2.4 Effect of Dynamic Time Warping

6.3 Parameters to optimize Performance

6.3.1 Frame Length

6.3.2 Adjacent-frame overlap Interval

6.3.3 Pre-emphasis and Hamming Windows

6.3.4 Filter Order

6.3.5 Dynamic Time Warping

6.4 Performance comparisons of Speech Recognition

Techniques

6.4.1 Performance using a 30~word Vocabulary

6.4.2 Performance using a 60-word Vocabulary

6.4.3 Performance using a 120-word Vocabulary

6.5 Comparison of Recognition Times

6.6 Further Discussion of Results

104

106

106

107

107

108

109

111

112

113

114

115

116

116

118

119

121

122

Chapter 7 CONCLUSION

(ix)

123

Appendix A Table of Phonetic Symbols 126

Appendix B ST4303 AID Converter & IBM interface Card 128

Appendix C Input Filter and Amplifier 131

Appendix D Software Listing 133

References

(x)

171

Chapter 1
INTRODUCTION

As computers and computer-based machinery become more and

more a part of our daily lives, so the ability to com­

municate with them in more natural ways becomes increasing­

ly desirable. Up to now such communication has been almost

entirely by means of keyboards and screens. Since speech

is the natural means of communication between people, it

is perfectly logical that we desire to speak to computers

and for them to talk to us.

The communication between man and machine is a two-way

process. The process whereby a machine produces a spoken

message is known as speech synthesis. In the other

direction where a man speaks to the machine, the process

whereby the machine interprets the received message is

known as speech recognition. Closely related to speech

recognition is the topic of speaker recognition. Although

neither speech synthesis nor speaker recognition are within

the scope of this study, they are described briefly below.

Speaker recognition involves either deciding which member

of a limited population is speaking (speaker identi­

fication), or confirming, with some measure of confidence,

that the claimed identity of the speaker is in fact correct

(speaker verification) . Speaker identification becomes less

certain as the population size increases whereas speaker

Page 1

verification is relatively independent of population size.

This is due to the fact that for identification, the

speaker's voice has to be compared with reference patterns

for the entire population. Verification, on the other hand,

entails only one comparison, and a decision whether to

accept or rej ect the speaker, based on a statistical

confidence level. If speaker verification could be

developed to the point where a speaker's voice was as good

a proof of his identity as his signature, then it would

open up endless possibilities for banking and the 'cashless

society' .

Speech synthesis is a reasonably well established art and

although early synthesizers sounded very artificial, the

speech quality that can now be obtained is of a high

standard. In one method of speech synthesis, words are

generated by stringing together a number of 'phonemes', the

basic unit of speech. Although this can lead to an infinite

vocabulary, it generally produces a rather- monotonous

speech output. Another approach attempts to build a machine

with powers of speech comparable to a human. Such systems

are based upon a speech production model, and message

formation rules are used to generate the required speech

output.

Progress in speech recognition seems disappointingly slow

by comparison to speech synthesis. Speech recognition is

inherently a much more difficult problem. The human speech

recognition mechanism is very dependent on intelligence and

it is perhaps unfair to expect a machine to match the

capabilities of someone who has had a lifetime of training

in spelling, grammar, literature and logic - all of which

play an important role in word recognition.

Page 2

1.1 Early Speech Recognition Systems

In 1930, the German patent authorities rejected an

application for a patent from T. Nemes for a phonetic

typewriter, because in their scientific opinion "a phonetic

typewriter was impossible in principle" [1]. Although he

later proved that his proposal, which used optical rather

than electronic techniques, was feasible, he was prevented

from developing the idea further by the outbreak of war.

The first real interest in automatic speech recognition

started some 35 years ago, mainly with the availability of

electronic hardware to perform spectrum analysis of

signals. The principle behind almost all earlier speech

recognition systems was a comparison of a standard set of

stored spectrum patterns, one for each phoneme, with the

incoming signal. These 'phoneme recognizers' did not meet

with the success that was hoped for.

The results obtained by the first word recognizer (by Davis

et al in 1952) [2], based on a procedure of matching whole

spoken words against templates of the expected words, were

rather impressive: by limiting the vocabulary to ten words,

it was able to recognize digits spoken by a single

individual with an accuracy of better than 95 percent. The

speech signal was split up into two frequency bands, above

and below 900Hz, and the principle frequency in each band

(F1 and F2) was then calculated by simple zero-crossing

counters. A plot (on an oscilloscope display) of F
1

and F
2

was made and compared with reference plots, and the

recognition decision based on the best match.

In 1956, Olson and Belar [1] developed a phonetic type­

writer capable of recognizing ten syllables (are, see, a,

I, can, you, read, it, so and sir). The speech signal was

passed through a bank of eight bandpass filters. The

Page 3

filtered outputs were then rectified to obtain envelopes

which were then routed to a bank of relays via a time

sequence switch. This switch would route the signals to a

fresh bank of relays every 40 mS. The relays would only

close if the current through them exceeded a certain level

and so a display showing which relays had closed effective­

ly provided a simple frequency-time plot.

The growth in the use of digital computers in the early

sixties led to a renewed interest in the speech field.

Computers offered a convenient means of applying digital

signal processing techniques and testing elaborate

recognition algorithms. The first isolated word speech

recognizer using a digital computer was one by Denes and

Mathews [3] developed on an IBM 704 computer in 1960. The

program normalized all utterances to a standard time

duration before converting them to time-frequency patterns,

which were cross-correlated with test patterns for each

word in the ten-digit vocabulary. In tests with five male

speakers, the computer achieved an accuracy of 88% without

time normalization and 94% with normalization.

Page 4

1.2 Advantages of speech Input systems [4]

1. Speed of communication - speech input is much faster

than standard manual input for continuous text.

2. Increased r e I iabil i ty - direct data entry from a

remote source can increase reliability.

3. Parallel channel it provides an independent

communication channel in hands-busy situations.

4. Freedom of movement - the user may move about freely

while doing a task.

5. untrained users - there is no traini~g in basic skill

required since speech is natural for all users.

6. possible cost saving - where the number of people

required to do a task is reduced.

1.3 Applications of Speech Recognition

Speech input is potentially of benefit in any task that is

slowed down by the need for manual data entry. In many

applications, the vocabulary required is limited, single­

word commands are generally acceptable, and there are only

a few speakers, so good accuracy is possible at reasonable

cost.

Historically, operation of a machine required learning to

manipulate special dials or keys in some specified

sequence. Any deviation from this procedure produced errors

which were not easily detectable because of the com­

p~exities of the rules. A speech recognition system makes

it possible for the first time for humans to control

mechanical systems with voice commands.

Page 5

Voice entry can also be applied to many inspection

processes. For example, in the case of an automobile

inspection, the inspector can walk around the vehicle (with

a wireless microphone) and record each defect by saying an

item number and a word describing the defect. The defect

information can then be collected and printed on an

inspection ticket automatically.

Another speech recognition application is in the placing

of reservations over the telephone. This is possible by

asking specific questions that force the caller's reply to

come from a finite vocabulary which can then be recognized.

Examples of such applications include cinema and airline

ticket bookings.

A ' speech-input typewriter' could be thought of as the

ultimate goal of speech recognition. Such a machine is,

however, of little use unless it has a very high degree of

accuracy. The difficulties associated with speech recog­

nition (discussed in the following chapter) give some

insight into why such a typewriter will undoubtedly not

become a reality this century and possibly not in my

lifetime.

Page 6

1.4 Thesis outline

The primary goal of this thesis was to study various speech

recognition techniques that have been used to date, and

then implement three or four of these techniques. A total

of four techniques were implemented and a comparison of

their performances is given.

Chapter 2 gives an overview of speech recognition. It

defines the different categories of speech recognition

systems, briefly describes the processes involved in a

typical word recognition system and mentions some of the

different techniques that can be used.

Chapter 3 focuses on the speech production process and

discusses the natures of the different types of speech

sound. The important characteristics of the different

classes of speech sound are described. Finally a simplified

mathematical model of the speech production process is

defined.

Speech recognition techniques differ primarily in the

features that they extract from the speech signal. Chapter

4 describes in some detail the different features that can

be extracted and how they are used in the speech recog­

nition process. Some of the major problems associated with

detecting the end points of a word are discussed and

methods for detecting these end points are given - the

accuracy of this detection being of utmost importance for

reliable word recognition. Finally, various methods of

matching · the unknown spoken word to one of the stored

reference patterns are discussed. Dynamic time warping is

described in some detail and a computationally efficient

algorithm, known as the Ordered Graph Search Approach [5],

is also described.

Page 7

Chapter 5 describes the hardware that was used to implement

the speech recognition system. This hardware consisted of

an IBM compatible PC, an AID converter, a microphone and

an input filter and amplifier. The algorithms used to

implement the various methods of speech recognition are

then described with the aid of flowcharts. The four

different vocabularies used are discussed briefly.

A comparison of the results obtained using the different

techniques is given in chapter 6. Furthermore, the effect

of various parameters that influence the performance of a

speech recognition system were studied experimentally.

Chapter 7 concludes the report by discussing the results

achieved and considering the future prospects of speech

recognition.

Page 8

Chapter 2
AN OVERVIEW OF SPEECH RECOGNITION

2.1 Classes of speech Recognition systems

Speech recognition systems can be divided into four cate-
r

gories, depending on whether they can handle continuous

speech or just isolated words and on whether they are

speaker-independent or must be 'trained' by the individual

who is going to use them.

2.1.1 Isolated-Word Recognition

Isolated speech recognition systems can be defined as those

systems that require a short pause before and after

utterances that are to be recognized as entities. The

minimum duration of a pause that separates independent

utterances is of the order of 100 ms. Anything shorter than

100 ms can be confused with stop-gaps (periods of silence

in the middle of a word).

In an isolated-word speaker-dependent system, every word

that is to be recognized by the system has to be first

pronounced by the user, in order to create word templates.

Once this has been done, an incoming signal is identified

as the word whose template matches best with the entire

input signal.

Page 9

In speaker-independent systems, clustering techniques are

applied to large collections of isolated word samples, in

order to fabricate speaker-independent templates. A large

number of persons are selected as representative of the

different ways of speaking and are required to utter each

word of the vocabulary 3 to 5 times. Acoustically similar

samples are grouped together to form a reference template.

It has been found that 8 - 14 templates per word give a

fairly adequate representation of the different ways of

pronouncing a word.

2.1.2 continuous speech Recognition

continuous speech recognition systems are much more dif­

ficul t to realize than isolated speech recognition systems.

When words are spoken in a normal connected fashion, it is

generally not possible to determine where one word ends and

the next one starts independently of identifying what the

words are. For example, in the sequence 'six teenagers' it

would be difficult to be sure that the first word was 'six'

and not 'sixteen' until the last syllable of the phrase has

been spoken, and 'sixty' might also have been a possible

choice before the 1nl occurred. It is obvious that the

simple matching of word patterns between already-specified

end points is no longer possible for continuous speech.

Page 10

2.2 The speech Recognition Process

Even though speech recognition systems vary greatly in

detail, they all use the same basic recognition process.

A spoken word is converted into an electrical signal by a

microphone and the signal is processed to extract a set of

identifying features. The features are then compared to a

library of templates representing the machines vocabulary.

A word is recognized if it ,ma t c h e s one of the templates

stored in the machine's memory.

Figure 1.1 shows the four main subsections making up a

speech recognition system - namely feature extraction, a

pattern similarity measurement, a decision based on this

measurement, and the creation of a set of reference

templates.

REFERENCE
TEMPLATES

~J
TEST DISTANCE

SPEECH~ FEATURE PATTERN PATIERN SCORES DECISION RECOGNIZED
INPUT EXTRACTION

SIMILARITY r----.. WORD
MEASUREMENT LOGIC

Fig. 2.1 Block Diagram of Word Recognition System [6].

The analysis stage of speech recognition consists of ex­

tracting identifying characteristics from the speech

signal. After analysis, speech signals must be compared to

reference templates before they can be recognized. One

Page 11

difficulty with template matching is that speech elements

are rarely the same length as the templates they are

supposed to match. Pattern comparison is dealt with in more

detail at a later stage.

The stored templates are usually created by using the

recognition machine itself in a training mode. To train a

speech recognition system, a speaker repeats each word

several times (typically 3 to 5 times) to enable the

machine to compute an average template for that word and

that speaker.

2.3 Speech Recognition Techniques

The various approaches to recognition differ principally

in what features they extract from the input and in the

algorithms that do the matching.

These different techniques, discussed in detail in

chapter 4, include: time domain measurements such as

energy, zero-crossings, bandpass filter outputs; frequency

domain measurements such as spectral coefficients, cepstral

coefficients, spectral derivative; Stochastic models; and

LPC parameters.

Page 12

2.4 The Complexity of speech Recognition

2.4.1 Practical Considerations

It is informative to look at some of the practical aspects

of a speech recognition system intended for operational

use. A high-quality wide-range microphone will naturally

pick up any background noise in the immediate vicinity of

the individual attempting to use the speech recognition

system. One solution to this problem is to remove the

interfering noise by placing the individual in an acous­

tically shielded environment. This restriction is more

often than not too severe. An alternative method of

removing interfering sounds is to eliminate the noise at

the microphone itself. A close-talking noise-cancelling

microphone mounted on a lightweight headset will achieve

an acceptable degree of noise cancellation with minimal

degradation of the speech signal.

Another critical factor to be considered is the detection

of extraneous signals caused by breath noise. A strong

tendency exists to exhale at the end of isolated words and

to inhale at the beginning. Inhaling produces no sig­

nificant direct air blast on the microphone, whereas

exhaling can produce signal levels comparable to speech

levels.

Background noise and breath noise can make the task of

accurately determining the beginning and ending of the word

even more formidable. Accurate word boundary detection is

the single most critical factor in an isolated word recog­

nition system. Endpoint detection is discussed in further

detail in section 4.13.

Page 13

2.4.2 speech-related Difficulties

When humans listen to speech they do not hear an un­

ambiguous sequence of sounds, which can be decoded one by

one into phonemes and grouped into words. In normal

conversation we are able to ignore false starts to words,

hesitations and mild stuttering, all of which are extremely

common.

All sorts of information is taken into account by a person

listening to somebody speaking. The listener very often

knows what a speaker is likely to speak about, either from

what he knows about the speaker or, if the conversation has

been in progress for some time, from the previous context.

Very often an entire word can go completely unheard and yet

it is obvious what was said.

Another difficult task for any speech recognition system,

a task that the human handles with ease, concerns the

ambiguity associated with homonyms (words with the same

p'ronunciation as another but a different spelling and

meaning). For example the words 'to', 'two', and 'too' or

the words 'bare' and 'bear'.

We are all familiar with the fact that in a crowded room,

such as at a cocktail party, people can converse with the

group of people in their immediate vicinity, even though

there is a lot of competing speech from all the other

people in the room. Firstly, having two ears enables some

directional discrimination to be used. The other important

factor is that by being able to see the speaker, it is

possible to correlate the acoustic signal with observed lip

movements, and with other gestures which may be used to

supplement the speech.

Page 14

2.4.3 The Need for Artificial Intelligence

From the above it is clear that the human hearing process

consists of far more than just 'hearing'. The human per­

ceptual and cognitive systems must be enormously complex

to be able to perform the task of linguistic processing.

Because verbal communication is inextricably intertwined

with human intellect, matching the human speech recognition

capabilities would require duplicating the capabilities of

the human brain [7]. It is obvious that it is not possible

for a machine to emulate human performance without the

machine having a very high degree of artificial intel­

ligence.

Page 15

Chapter 3
THE SPEECH PRODUCTION MECHANISM

3.1 Introduction

Before being able to apply digital signal processing tech­

niques to speech signals, it is necessary to understand the

fundamentals of the speech production process. A speech

signal is composed of a sequence of sounds, the order of

which is governed by the rules of language. The study of

these rules and their implications falls within the subj ect;

of linguistics, and the classification and generation of

the individual sounds is known as phonetics.

3.2 Phonemes and Allophones

The phoneme can be thought of as the basic unit of a spoken

language in that it represents the smallest segment of

sound such that it cannot be further broken up. More

precisely, a phoneme is the smallest unit of speech such

that if one phoneme in a word were substituted for another,

there might be a change in meaning. The need for phonemes

arises from the many different ways of representing one

particular sound. For example the ' f ' sound in ' fun' ,

'off', 'phone' and 'rough'.

Page 16

Phonemes are written down using a set of internationally

recognized symbols and it is usual to write them between

oblique lines. The phonetic symbols of many English

consonants are the same as the letters of the conventional

alphabet; they are Ibl, Idl, IfI, Igl, Ihl, Ikl, Ill, Iml,
1nl, IpI, Irl, Isl, Itl, lvi, Iwl, Iz/. A table of all

other phonetic symbols and their interpretations is given

in appendix A.

A phoneme is not itself a sound since it can often be

produced or pronounced in different ways. For example the

phoneme Ipl in 'pit' and 'pull'. Different sounds that are

represented by the same phoneme are known as allophones of

that phoneme. Allophones are written between square

brackets to distinguish them from phonemes.

3.3 The Basics of Speech Production

The main organs responsible for producing speech are the

lungs, larynx (consisting of the glottis and vocal folds),

pharynx (throat), nose and mouth. These are illustrated by

the cross-section shown in Fig. 3.1 [8].

The glottis is an air valve formed by the vocal folds (also

known as the vocal cords) and is covered by the epiglottis,

a flap of soft tissue. In order to speak, pressure must

build up below the glottis and when this pressure is great

enough, a pUlse of air is released. The modulation of the

air stream through the vocal cords is known as phonation.

The larynx performs the intricate task of holding the vocal

folds in the correct position and state of tension for

phonation.

Page 17

NASAL CAVITY

HARD PALA.TE

VELUM UPPER LIP
(Soft Palate)

TOUNGUEPHARYNX
(Throat) LOWER LIP

EPIGLOTTIS MANDIBLE

GLOTTIS
LARYNX

TRACHEA

BRONCHI

LUNGS

Fiq. 3.1 Cross-section of the human head, showinq

the vocal orqans [8].

The frequency of vibration (pitch) of the sound depends on

the tension in the vocal folds - tense vocal cords vibrate

at a higher frequency than relaxed ones. The loudness of

the speech is obviously related to lung pressure. As the

pressure increases, the vocal folds have to be squeezed

together more tightly to retain it.

Page 18

3.4 Classes of speech Sounds

Speech sounds can be categorized into three distinct

classes according to their mode of excitation. These are

voiced sounds, fricatives and plosive sounds.

3.4.1 voiced Sounds

Voiced sounds include all vowels, semi-vowels, diphthongs

and the nasal consonants. They are generated by adjusting

the tension of the vocal cords so that they vibrate as air

is forced through the glottis.

The mouth, nose and throat are the resonating cavities of

the vocal tract. The nasal cavity has a relatively fixed

shape, but the oral cavity can adopt a wide variety of

shapes, by movement of the jaw, tongue, lips and soft

palate.

As sound propagates through the vocal tract, the frequency

spectrum is shaped by the frequency selectivity of the

vocal tract. This effect is very similar to the resonance

effects with organ pipes. In the context of speech

production, the resonance frequencies of the vocal tract

are called formant frequencies.

Page 19

3.4.1.1 Vowels

During a vowel sound, the air in the vocal tract vibrates

at three or four frequencies simultaneously, the fundamen­

tal frequency being determined by the rate of vibration of

the vocal cords. The values of the formant frequencies are

determined by the cross-sectional area and position of the

constriction in the vocal tract as well as by the size of

the lip opening.

From a speech recognition point of view, information about

formants is useful for the analysis of vowel sounds. Table

1 gives average values of the first three formant frequen­

cies of vowels for male speakers as measured by Peterson

and Barney [9].

Phonetic Typical f, f 2 f 3

Symbol . Word (Hz) (Hz) (Hz)

li:1 beet 270 2290 3010

III bit 390 1990 2550

IEI bet 530 1840 2480

lael bat 660 1720 2410

IAI but 520 1190 2390

101 hot 730 1090 2440

10:1 bought 570 840 2410

/UI foot 440 1020 2240

lu:1 boot 300 870 2240

IE:I bird 490 1350 1690

Table 1 Formant Frequencies for the Vowels

Page 20

3.4.1.2 Semi-Vowels

The group of semi-vowels, so-named because of their vowel­

like nature, consists of Iwl, Ill, Irl and IY/. A semi­

vowel is usually followed by a vowel and is characterized

by a gliding change in position as required by the

following phoneme.

3.4.3.3 Diphthongs

A diphthong may be defined as a monosyllabic vowel-like

sound that starts at or near the articulatory position for

one vowel and moves toward the ·position for another.

Examples of the five diphthongs in English are given in

Table 2 together with the variation of their first two

formant frequencies as measured by Holbrook and Fairbanks

[10] .

Phonetic Typical

Symbol Word f 1 (Hz) f 2 (Hz)

leII pray 355 - 560 2050 - 2350

loUI loan 580 - 425 1000 - 740

laII bUy 730 - 525 1250 - 2100

laUI how 800 - 620 1400 - 840

loII toy 530 - 490 820 - 1900

Table 2 Formant Frequencies for Diphthongs

Page 21

3.4.3.4 Nasal Consonants

The nasal consonants Iml, 1nl and Iryl are characterized by

a total constriction at some point in the oral cavity,

causing the airflow to be through the nose rather than the

mouth. The three nasal consonants are distinguished by the

point at which the constriction is made. For Iml it is at

the lips, for 1nl the constriction is just behind the

teeth, and for Iryl it is just forward of the. velum.

3.4.2 Fricatives

Fricative sounds are made by forcing a steady flow of air

through a constriction made at some point in the vocal

tract. The location of the constriction serves to determine

which fricative sound is produced. Fricatives may be either

voiced or unvoiced sounds depending on whether or not the

vocal cords are excited (vibrating). The unvoiced frica­

tives are IfI, Ithl, Isl and Ishl, while lvi, Izl and Izhl
are voiced fricatives. For the voiced fricatives there are

two sources of excitation. One at the point of constriction

in the vocal tract (as for unvoiced fricatives) and another

at the glottis caused by the vibration of the vocal cords.

Fricative sounds generate a broad continuous spectrum.

Page 22

3.4.3 Plosive sounds

Plosive sounds, also known as stop consonants, are produced

by making a complete closure in the vocal tract (usually

near the top), building up pressure behind the closure and

abruptly releasing it. Plosives are also either voiced or

unvoiced sounds. The difference between the unvoiced

plosives, /p/, /t/ and /k/, and their voiced counterpa~ts

/b/, /d/ and /g/ is that during the period of closure af

the tract, the vocal cords vibrate for the voiced sounds.

Page 23

3.5 A Model of the speech Production Mechanism

This chapter has attempted to show something of the nature

of the speech production mechanism. To sum up, speech is

a time-varying sound wave whose form at any given time is

dependent on the current shape of the vocal tract and also

on the mode of excitation of the vocal tract. From this it

is possible to define a simplified model of this speech

production mechanism.

To produce a speech-like signal the mode of excitation and

the resonance properties of the linear system must change

with time. For most speech sounds the general properties

of the excitation and vocal tract remain fixed for periods

of 10-20ms. Thus, the model involves a slowly time-varying

linear system excited by a signal that changes from a

periodic nature for voiced speech to white noise for

unvoiced speech.

An all-pole model has been shown to be a very good

representation of the vocal tract effects for the majority

of speech sounds [11]. Although the generation of nasals

and fricatives requires both resonances and anti-resonances

(poles and zeros), Atal [12] has shown that the effect of

a zero of the transfer function can be achieved by

including more poles.

Page 24

EXCITATION SPEECH

/VV Vocal Tract
~Voiced Parameters

Unvoiced u-\iI4i••lliiM .~I~.

Linear System

u{n)
H{z) x{n)

G

Fiq. 3.2 Basic model of the Speech Production

Mechanism [11,13].

The model illustrated in Fig. 3.2 is an all-pole model and

the poles of the transfer function H(z) correspond to the

resonances (formants) of speech. The input and output in

the above model can be represented by a transfer function,

H(z), of the form

G

H(z) =

1 -

••• (3.1)

where G and {ak} depend upon the shape of the vocal tract •

. This model forms the basis for the discussion on the

technique of Linear Predictive Coding in section 4.11.

Page 25

Chapter 4
SPEECH RECOGNITION TECHNIQUES

4.1 Introduction

As already stated, speech recognition systems differ prin­

cipally in the features that they extract and in the

pattern comparison algorithms that they use. This chapter

describes most speech recognition techniques that have been

implemented for isolated word systems. A discussion of

pattern comparison and the associated topic of word

boundary detection concludes the chapter.

Techniques used in speech recognition systems generally

include the following: time-domain methods, frequency­

domain methods, stochastic models, linear predictive coding

techniques, or some combination of these methods. Time­

domain speech processing methods involve the waveform of

the speech signal directly. Frequency-domain techniques,

on the other hand, involve (either explicitly or implicit­

ly) some form of spectrum representation. The third method

uses models to generate sets of features representing the

reference words. Linear predictive coding is a technique

that generates an all-pole model of the short-time speech

spectrum and leads to a simple analysis procedure in the

time domain. These techniques are all explained in more

detail later in this chapter.

Page 26

4.2- The concept of Short-time processing

The underlying assumption in most speech processing schemes

is that the properties of the speech signal change rela­

tively slowly with time. This allows short segments of the
speech signal (typically 10-20 ms) to be processed as if

they were short segments from a sustained sound with

periodic properties. Such analysis of a finite segment of

a speech signal is known as short-time analysis and the

segments are usually referred to as analysis frames.

In order to isolate a short segment of the signal, the

signal is multiplied by a window function wen).

w(n-m)

/r------------,
I I
I
I I
I I
I -,

x(m)

/
m

n-N+1 n

Fig. 4.1 Rectangular Window of N Samples

Page 27

4.3 Short-time Energy

since the amplitude of a speech signal varies appreciably

with time, the short-time energy of the signal provides a

convenient representation that reflects these amplitude

variations. The short-time energy of a frame of N samples

is defined as

N-'
En = ~ [X (n) • w(n)] 2

n=O

This expression can be written as

N-'
En = ~ X

2 (n) . h (n)
n=O

where h (n) = w2 (n)

••• (4.1)

••• (4.2)

That is, the signal x2(n) is filtered by a linear filter

with impulse response h(n) .

The length of the window function determines the nature of

the short-time energy representation. If the window is very

long then En will change very little with time. If the

window is too short, however, it will not provide suffi­

cient averaging to produce a smooth energy function. What

is needed is a window of short duration that will reflect

rapid changes in amplitude. Window functions are dealt with

in more detail in section 4.9.3.

Page 28

4.4 Short-time Average zero-crossing Rate

The number of zero-crossings in a frame simply refers to

the number of times that the signal changes polarity

(crosses the zero axis). The rate at which zero-crossings

occur is a simple measure of the frequency content of a

signal. If the sampling frequency is f s ' the number of

samples per frame is N, and the zero-crossing count is Z,

then the signal frequency, f, is

f = f s • Z

2.N

••. (4.3)

since speech signals are broadband signals, the

interpretation of an average zero-crossing rate is

obviously much more meaningful if the signal has first been

passed through a number of bandpass filters in order to get

a series of outputs of narrower bandwidth.

Even without the use of bandpass filters, a short-time

zero-crossing rate contains valuable information. Since the

energy of voiced speech is generally concentrated below

3kHz, whereas for unvoiced speech most of the energy is

found at higher frequencies, zero-crossing rates can be

used to distinguish between these two broad categories of

speech sound.

A certain degree of care must be taken in the sampling

process when measuring zero-crossing rate. This is due to

the fact that the zero-crossing rate is strongly affected

by DC offset in the analog-to-digital converter, 50Hz mains

hum in the signal, and any noise that may be present in the

digitizing system.

Page 29

4.5 Short-time Autocorrelation Function

The short-time autocorrelation function for a frame of N

samples is defined mathematically as

N-1-k

Rn(k) = ~ [x(n)w(n)] [x(n+k)w(n+k)]
n=O

where wen) is the window function.

.•. (4.4)

x(n)
X hk (n)

Rn(k

Delay k

Fig. 4.2 Block Diagram Representation of the Short-Time

Autocorrelation Function

since for a periodic signal of periOd P, x(n) = x(n+P), the

autocorrelation function as defined above attains a maximum

at samples 0, P, 2P, .. . Therefore the period of a signal

can be estimated by finding t.he . location of the first

maximum in the autocorrelation function. That is, finding

the first non-zero value of k that maximizes Rn (k) in

equation 4.4.

Page 30

-1.0

o 50 100
LAG k

150 200 250

Fiq. 4.3 Autocorre1ation function for voiced speech usinq

a rectanqu1ar window with N = 400. [11]

Figure 4.3 above shows 'an example of the autocorrelation
function computed (using equation 4.5) for a 400 sample

frame of speech sampled at 10kHz. The autocorrelation was
evaluated for lags 0 < k < 250. Note that the peaks occur

at mUltiples of about 58 indicating a period of 5.8 ms or
a fundamental frequency of approximately 170 Hz.

Because of the nature of the autocorrelation function as

defined in equation 4.4, it should be obvious that the
tapering effects of a Hamming window will not improve the

results of the autocorrelation function. Best results are
obtained using a rectangular window which does not taper
the signal's magnitude at the two ends of the analysis
frame.

Looking at equation 4.4, it is apparent that the calcu­
lation of the kt h autocorrelation lag requires 2 (N-k) multi­
plications and (N-k) additions. Although · this can be

reduced by taking advantage of some special properties of

the equation, it is still computationally very severe.

Page 31

4.6 pitch Period Estimation

A pitch detector provides an insight into the nature of the

excitation source for speech production. It is therefore

more useful for recognizing speakers than recognizing words

spoken by a particular speaker. It does, however, find

application in speaker-independent speech recognition

systems, and for this reason is discussed briefly.

One of the major problems in pitch detection is that al­

though there is generally a fairly prominent peak (in the

frequency domain) at the pitch period, there are also peaks

due to the formant frequencies of the signal. Thus for

reliable pitch detection, it is highly desirable to greatly

reduce, or entirely eliminate, the effects of the formants.

The technique of removing the spectral shaping in the

waveform due to the formants is known as spectral flatten­

ing.

To 'partly eliminate the effects of the higher formants on

the signal spectrum, most methods of pitch detection use

a low-pass filter with a sharp cut-off around 900 Hz. This

will, in general, preserve a sufficient number of pitch

harmonics for accurate pitch detection, but will eliminate

the second and higher formants [14].

A wide variety of methods have been proposed for spectrally

flattening the effects of the first formant, the most

commonly used being the process of centre clipping. Here,

signal values below the clipping level are set to zero,

whereas those above the clipping level are offset by the

clipping level. It can be seen from figure 4.4 that if the

clipping level is appropriately set, most of the waveform

structure due to the formants can be totally eliminated.

Page 32

INPUT SPEECH

CENTER CLIPPED SPEECH

OUTPUT

INPUT

TIME

Fiq. 4.4 Input-output characteristic and typical

operation of a centre clipper [15].

Although several techniques have been developed for deter­

mining the pitch period from the spectrally flattened

signal, the autocorrelation methods have generally met with

the most success [16].

Page 33

4.7 pre-emphasis

There is an overall -6dB/octave trend in speech as

frequency increases [17]. In other words the signal power

is reduced by a factor of 4 for each doubling of frequency.

A +6dB/octave lift prior to processing the speech signal

is known as pre-emphasis. Extensive experimental evidence

has shown that pre-emphasis also serves to reduce the

variance of the distance caculations [18].

This effect can be achieved by a filter with a " transfer

function
-,

H(z) = 1 - az ... (4.5)

where the constant parameter 'a' typically has a value of

between 0.9 and 1. This may be represented in the time

domain as

yen) = x(n) - ax(n-1) ... (4.6)

Figure 4.5 shows the frequency response for the above

operation with a = 0 .95 and a sampling frequency of 10kHz.

30

25

iD 20
;g
c
~ 15

10

5

o

-5
10 20 50 100 200 500 1000 2000 5000

Frequency (Hz)

Fig. 4.5 Frequency Response due to Pre-emphasis

Page 34

Pre-emphasis is really only of use when applied to voiced

sounds and there is no need for it in unvoiced speech. The

parameter la l can be forced to be close to 1 for voiced

speech and close to 0 for unvoiced speech by expressing it

in terms of the autocorrelation of the incoming signal, as

a = R(l) / R(O) ••• (4.7)

where R(l) and R(O) are correlations of the signal with

itself delayed by one sample and with no delay respec­

tively. It should be obvious that the high sample-to­

sample correlation in voiced speech results in R(l) not

being much smaller than R(O) and hence la' is close to 1.

On the other hand, little or no sample-to-sample corre­

lation in unvoiced speech results in the ratio being close

to zero.

Page 35

4.8 statistical Models for speech Recognition

Practically all speech recognition methods exploit the fact

that repeated utterances of the same word usually exhibit

similar acoustic patterns. It is normal for some parts of

a pattern to vary more from occurrence to occurrence than

other parts. It may so happen, however, that the value of

a particular feature may be quite critical at a particular

frame of one word, and yet it may be of little significance

in some part of a different word.

It is possible, therefore, that the performance of a speech

recognition system can be improved by taking into account

the variability of the pattern. The matching of a par­

ticular word should not be penalized if the parts that

match badly are parts which are known to vary extensively

from utterance to utterance.

All speech recognition systems that are based on a process

of feature matching choose the best matching word on the

basis of finding the template which gives the lowest

cumulative distance between the frames of the test and

reference patterns. The approach taken here, however, is

to define some model which can generate patterns of

features to represent the word. Every time the model for

a particular word is activated, it will produce a set of

feature vectors that will represent an example of the word

it defines. The best matching word is then chosen to be

that word whose model is most likely to produce the set of

feature vectors observed for some unknown utterance. It is

therefore not a 'distance' that is calculated, but a

probability that the model of a reference word could have

produced the observed sequence of feature vectors.

Page 36

Such a model that is governed only by a set of proba­

bilities is known as a stochastic process. A further

property of the model is that at any time, it's possible

actions depend only on it's current state and not on any

previous sequence of events. This classifies the model as

a first-order Markov process and, because the sequence of

feature vectors are modeled as a probabilistic function of

an underlying process whose transitions are not directly

observable, the model is usually referred to as a hidden

Markov model (HMM).

HMM methods are computationally more efficient than

techniques such as dynamic time warping (discussed in

section 4.14.2). Although their performance is slightly

inferior [32], they have been widely used in commercial

systems where the time taken to recognize a word is of

utmost importance.

Page 37

4.9 Fourier Analysis of Speech

Fourier analysis is widely used in signal processing and

the theory is assumed known. Only it's relevance to speech

recognition is discussed here.

4.9.1 The Discrete Fourier Transform

In speech analysis it is the discrete Fourier transform

(DFT) - the Fourier transform of a finite-length sequence ­

that is of importance. A sequence x(n) of length N that is

zero outside the interval 0 ~ n ~ N-l can be expressed

exactly by a discrete Fourier transform of the form

N-1

X(k) = 2: x(n) e-
j wkn

n=O

N-1

x(n) = l/N 2: X(k) ej~n

n=O

k = 0,1, .. , N-l

n = O,l, .. ,N-l

••• (4.8)

••• (4.9)

where w = 21T/N

A fast Fourier transform (FFT) is invariably used in the

computation of the DFT of a sequence. An FFT is nothing

more than an algorithm for evaluating the DFT in a faster,

more efficient manner than by evaluating it directly.

Page 38

4.9.2 Short-time Fourier Transform

Short-time Fourier analysis deals with finite-length, time­

varying sequences and it is especially applicable to speech

since the speech waveform varies relatively slowly with

time. A window function can be used to isolate a short

segment of the speech signal. It is useful to define the

DFT in terms of a window function w(n-m) .

If x (m) is a long time-varying speech sequence and the

short section (or frame) to be analyzed is located at a

particular time index n, then the time-varying Fourier

transform may be defined as

... (4.10)
m=-Cll

This is the Fourier transform of the windowed sequence

x(n)w(n-m).

Page 39

4.9.3 window Functions and their properties

Window functions are not usually rectangular in shape.

Remember that the set of samples in a frame is regarded as

one period of a periodic signal. Usually, however, the

first and last samples of the window do not 'join up' as

they would in a real periodic signal. This can lead to

inaccuracies in the computed spectrum.

The problem may be reduced by tapering the set of samples

so that the ends are effectively forced to join up. A

widely used windowing function with this tapertng charac­

teristic is the Hamming window [13] which is defined as

wen) = 0.54 - 0.46 cos(2~n/(N-1))

= 0

o ~ n ~ N-1

otherwise ... (4.11)

Taking the Fourier transforms of the rectangular and

Hamming window functions, it can be shown [11] that the

bandwidth of a Hamming window is about twice the bandwidth

of a rectangular window of the same length. Further, the

Hamming window gives much greater attenuation outside the

passband than the comparable rectangular window.

It is fairly obvious that the frequency resolution of any

analysis will be adversely affected if the window duration

is less than one pitch period. At a sampling rate of 10kHz,

the pitch period of a high pitched female voice can be as

low as 25 samples and that of a very low pitched male voice

can be as high as 250 samples [11]. Accepting that these

are the extremes, a practical choice of frame length is

100-200 samples (ie. 10-20 ms duration).

Page 40

4.10 Filter-bank Analysis

4.10.1 Description

Another method used in speech recognition splits the speech

signal into its frequency components by means of a bank of

filters. The analysis can be provided by a set of band-pass

filters whose range of centre frequencies covers the

frequencies most important for speech perception (300 to

5000 Hz).

A suitable distance measure used to compare two words is

the sum of the squared differences between the logarithms

of the power levels in the corresponding channels. (This

is the square of the Euclidean distance).

4.10.2 Implementation

One method is to use a bank of analogue filters to acquire

the required frequency components. Since the outputs of

each filter must be individually sampled to allow further

digital processing of the signals, this method is not

particularly attractive. Another method is to use digital

filters to do the necessary frequency separation. The most

convenient method, however, is to use the outputs from

short-time Fourier transforms. This analogy may be

justified as follows:

Equation 4.10 can be rewritten as

<Xl

••• (4 • 12)
m=-<Xl

where w(m) is again the window function used.

Page 41

If we define hen) = wen) ej~

then equation 4.12 can be expressed as

Q)

xn(e j W
) = e- jwn L x(n-m) hem)

m=-Q)

... (4.13)

..• (4. 14)

If we now define .•. (4.15)

then from equation 4.14 we see that

Q)

yen) L x(n-m) hem)
m=-Q)

... (4.16)

Thus yen) is simply the output of a bandpass filter with

impulse response hen) as given by equation 4.13.

A set of bandpass filters can be implemented by choosing

the centre frequencies wk so that they are uniformly spaced

over the entire frequency band to be analyzed. Thus for N

channels

Page 42

k = O,1, ... N-1 ... (4.17)

4.11 Linear Predictive coding

4.11.1 Introduction

Linear predictive analysis, or linear predictive coding

(LPC) , is one of the most powerful speech analysis

techniques. It provides extremely accurate estimates of

speech parameters such as pitch, formants and spectra [11].

Linear predictive coding of speech is a technique that uses

the fact that any speech sample x(n) can be represented as

a linear combination of its past outputs and its past and

present inputs. If u(n) is some unknown input, then this

can be represented mathematically as

p q

x(n) = ~ a k x(n-k) + G ~ b[u(n-l)
k=1 [=0

... (4.18)

where a k , b t , k, I and the gain G are the parameters of this

speech production model.

Equation 4.18 can also be specified in the frequency domain

by taking the z-transform of it. If H(z) is the transfer

function of the system then

q

x(z) 1 - ~ b -t
tZ

H(z) G t=1 ... (4.19)
u(z)

p

1 - ~ a z-kk
k=1

Page 43

u(n)
H(z}

x(n)

Fig. 4.6 simplified Speech Model in Frequency Domain

Two special cases of this model, where H(z) is as defined

in equation 4.19, are of interest:

(i) all-pole model (b l = 0)

(ii) all-zero model (ak = 0)

- autoregressive model

- moving average model

A short-time spectral representation does, in general,

include contributions from both poles and zeros. Because

an all-pole model can approximate the important effects of

zeros on the spectrum [19], practically all linear

predictive coding techniques use the all-pole model.

Page 44

4.11.2 All-pole Linear Prediction Model

4.11.2.1 Model Definition

In the all-pole model, it is assumed that the signal x(n)

may be given as a linear combination of past outputs and

the present input u(n).

p

x(n) = L akx(n-k) + G u(n)
k=1

.•. (4.20)

where a k and the gain G are the parameters of this model

which is shown in the time domain in figure 4.7.

G

u(n) x(n)

X 2::

Linear

p
Predictor

2:: akx(n- k) order p
k=l

Fig. 4.7 Discrete all-pole model in the time domain

Page 45

The transfer function H(z) for the all-pole model is

therefore

G

H(z) = p

1 - L: a z·k
k

k=1

•.. (4.21)

Thus the linear filter is completely specified by a gain

factor G and a set of p coefficients {a1 , a z, ..• , a p } known

as the linear predictive coefficients (p is also the order

of the filter).

The major advantage of this model is that the filter coef­

ficients {ak} can be estimated in a very straightforward

and computationally efficient manner. For nasal and

fricative sounds, where both poles and zeros are necessary

in the vocal tract transfer function, by making the order

p high enough, the all-pole model provides a good represen­

tation of the speech spectrum [11].

Given a particUlar signal x(n), the problem is to determine

the predictor coefficients a k and the gain G in some

manner. since only the predictor coefficients are used in

speech recognition algorithms based on linear predictive

coding, the computation of the gain constant G is not

described here.

Page 46

4.11.2.2 Determining the Predictor Coefficients

In the case of speech recognition, the input signal u(n)

is totally unknown and therefore the output signal x(n) can

be predicted only approximately from a linear combination

of past · samples (outputs). This approximation x (n) is

defined as

p

x (n) = ~ akx (n-k)
k=1

.•. (4.22)

The error between the actual signal value x(n) and the

predicted value x(n) is then defined as

e (n) = x (n) - x (n)

p

= x(n) - ~ akx(n-k)
k=1

... (4.23)

or e(n) = x(n) + a(1)x(n-l) + ... + a(p)x(n-p) ... (4.24)

where a(k) = -ak

The constants {ak} are the linear prediction coefficients

and e(n) is sometimes called the prediction residual. it

is obvious when comparing equations 4.20 and 4.23 that
e(n) = Gu(n).

The total squared error is denoted by E, where

", ",
E = ~ e(n)2 = ~ [x(n)

Page 47

p

~ a kx(n-k)]2
k=1

... (4.25)

The basic approach is to find a set of predictor coeffi­

cients {a'f a 2f ••• a
p

} that will minimize the above error.

E is minimized by setting

oE = 0

oa~

thereby obtaining the equations

••• (4.26)

p n,

L a k L x (n-k) x (n-i) =
k=' n=no

n,

L x(n)x(n-i)
n=n()

••• (4.27)

Two distinct methods for the estimation of the parameters

are obtained by specifying the range of the summation over

n.

Page 48

4.11.2.2.1 Autocorrelation Method

This method requires the signal to be set to zero outside

the analysis interval and that a suitable window, such as

a Hamming window, be used to reduce the abrupt change in

signal values occurring at the beginning and end of the

analysis interval. Such a window is necessary since other­

wise the prediction error is likely to be large at the

beginning of the interval because we are trying to predict

the signal from samples that have arbitrarily been set to

zero. Likewise at the end we are trying to predict zero

from samples that are non-zero.

In the autocorrelation method we have x(n)=O everywhere

outside of the interval 0 ~ n ~ N-1 and the limits no and

n 1 may thus be defined as -00 and 00 respectively. Now the

autocorrelation function of a signal x(n) is

R(i) = ~ x(n)x(n+i)
n=-~

Equation 4.27 can now be rewritten as

..• (4.28)

p

~ akR(i-k) = R(i)
k=1

1 ~ i ~ p ... (4.29)

The coefficients R(i-k) form what is often known as an

autocorrelation matrix. This is a symmetric Toeplitz matrix

(one where all the elements along each diagonal are equal) .

This special property is exploited in algorithms used to

determine the LPC coefficients a k in equation 4.29.

Page 49

Because the signal x(n) is mUltiplied by a window function

wen) to obtain a signal that is zero outside some interval

° ~ n ~ N-l, the autocorrelation function (equation 4.28)

may in fact be written as

N-1-i

R(i) = ~ x(n)x(n+i)
n=O

1 ~ i ~ N ••• (4.30)

Only the values of R(i) for i = 1, 2, ... , P are needed for

the solution.

4.11.2.2.2 Covariance Method

In contrast with the autocorrelation method, here we assume

that the error E in equation 4.25 is minimized over a

finite interval. The limits no and n1 are defined so that

no data points {x(n)} outside of the range ° ~ n ~ N-l are

needed for calculation purposes. Equation 4.27 then reduces

to

p

~ al<(j)(i,k) = (j)(i,O)
1<=1

••• (4.31)

where N-1

(j)(i,k) = ~ x(n-i)x(n-k)
n=p

.•• (4.32)

is the covariance of the signal x(n) in the given interval.

The coefficients (j)(i,k) in equation 4.32 form a covariance

matrix. It will be a symmetric, positive semi-definite

matrix and will be singular if the input data sequence

{x(n)} satisfies a linear homogeneous difference equation
of order p or less.

Page 50

4.11.2.2.3 Lattice Methods

Both the covariance and autocorrelation methods require the

computation of a correlation matrix and the solution of a

set of linear equations. A third class of methods, called
,

lattice methods, has, in a sense, combined these two

processes into a recursive algorithm for determining the

linear predictor parameters. The lattice method is,

however, the least computationally efficient method for

solving the LPC equation. It was mentioned here for

completeness and is not discussed in any detail.

Page 51

4.11.3 Frequency Domain Interpretation of LPC

The discussion of linear predictive analysis has thus far

been mainly in terms of time domain representations (dif­

ference equations and correlation functions). The coef­

ficients of the linear predictor are also the coefficients

of the system function that models the combined effects of

vocal tract response, glottal wave shape, and radiation.

Thus, from the set of predictor coefficients it is possible

to determine the frequency response of the model for speech

production simply by evaluating H(Z) for Z = e j w
• That is

G G

H(e j w
) •.. (4.33)= =p

1 - ~
a e- jwk A(e j w

)k
k=1

If H(e j w
) is plotted as a function of frequency, then peaks

will occur at the formant frequencies. Thus linear predic­

tive analysis can be viewed as a method of short-time

spectrum estimation.

To illustrate the nature of the spectral modelling capa­

bility of linear predictive spectra, figure 4.8 shows a

comparison of a spectrum obtained by Fourier analysis with

one obtained by linear predictive analysis - the smooth

curve being the LPC spectrum. It can be seen that the LPC

spectrum matches the signal spectrum much more closely near

the spectrum peaks (ie. in the regions of large signal

energy) than near the spectral valleys.

Page 52

60

so
CD
::g
>. 40
Cl
Q;
C

W se
Q)

.2:
~ 20
Qi
a:

10

10

Frequency (kHz)

Fig. 4.8 Illustration of 28-pole LPC spectrum fit to

an FFT-computed signal spectrum. [11]

4.11.4 Choosing the Order p and Frame Length H

The order p of the linear predictive analysis can effec­
tively control the degree of smoothness of the resulting

spectrum. This is illustrated in figure 4.9 which shows the

Fourier transform of a speech segment and linear predictive
spectra for various orders.

The choice of p depends primarily on the sampling rate and

is e~sentially independent of the LPC method being used.

The speech spectrum being analyzed can generally be repre­

sented as having as average density of 2 poles Cie. one
complex pole) per kiloHertz of vocal tract contribution.
Therefore for a sampling frequency of 10 kHz, a total of

10 poles are required to represent this contribution to the

speech spectrum. In addition a total of 3-4 poles are

required to adequately represent the source excitation

spectrum and the radiation load. This is verified by Atal

and Hanauer [12] in figure 4.10 which shows a plot of the

normalized rms prediction error.versus the predictor order

p for sections of voiced and unvoiced speech sampled at

Page 53

10 kHz. Although the prediction error steadily decreases

as p increases, the error essentially flattens off for p

of the order of 13 onwards.

119

"'49[A INPUT SIGNAL

AMPLITUDE 0_ <"'v "V V 1\ f\ 0 ""_,,"'_ ' :: :"'sf\Z ~ v :r:j
o .

TIME IN SAMPLES

3000

aB

106

~ '"O"-"M' SPEC,""M I
66 /\/\~

o

3000

FREQUENCY IN HZ

10 6 -----=~-------------......,

"~ :PEC,""M <,'4'
66~

o
FREQUENCY IN HZ

"OO6~
66~'

o
FREQUENCY IN HZ

,,'06~ <,-121 I
66~ ~.

o 3000
FREQUENCY IN HZ

106

"66~
o ~oo

FREQUENCY IN HZ

106~

"66~~
o 3000

FREQUENCY IN HZ

Fig. 4.9 LPC spectra for various values of predictor

order p [11].

Page 54

1.0 ~,

r;\
i \

\ '\
i \

0.8 ~ \
\ \

L i \

e \ \
UJ i \.

~ 0.6 \ ",,_ L unVOiced Spee ch

~ \ ---------~ 0.4 .'\, ___ - _

oc "
.,., ., Voiced Speech

0.2 ·--·--·----..·-i
. .-._----

o
o 4 8 12 16 20

Fiq. 4.10 variation of RNS prediction error with the

number of predictor coefficients, p. [12]

The choice of frame length N is a very important con­

sideration in the implementation of an LPC analysis system.

Since the computational load (for all three methods) is

proportional to the N, it is advantageous to keep N as

small as possible. For the autocorrelation method it has

been shown that N must be of the order of several pitch

periods to ensure reliable results. Because a window is
used to weight the speech in the autocorrelation method,

the frame duration must be sUfficiently long so that the

tapering of the window does not seriously effect the

results. Analysis durations from N = 150 to N = 500 samples
(at a 10 kHz rate) have been used in LPC implementations
of the autocorrelation methods.

For the covariance and lattice methods, where there is no
windowing required, there are no real limitations on how

small the frame size must be. Generally values of N used

for these two methods are comparable to those for the auto­
correlation method.

Page 55

4.11.5 LPC Distance Measure

A set of reference linear predictive coefficients needs to

be compared to the set calculated from an unknown utterance

and a similarity score given. Each reference word in the

library of words to be recognized can be expressed as a

time pattern of LPC coefficients, which is called a

reference pattern. For each reference word an average

distance between its LPC coefficients and those of the

unknown utterance is computed, and the reference word whose

average distance is the lowest is chosen as the spoken

word. The measure of distance between LPC parameter sets

is an important factor in the success of a recognition

system.

Ikatura [22] defined a fairly sophisticated measure in

which the total log prediction residual of an input signal

is minimized by optimally registering the reference LPC

coefficients onto those of the input using a dynamic

programming algorithm.

The set of LPC coefficients for one frame of the reference

word is defined as

••• (4.34)

where p is the order of the LPC filter and A
r

is a row

vector. Similarly the LPC coefficients of one frame of the
test word are

••• (4.35)

Page 56

Ikatura proposed the following distance measure

Ar Rt ATr
d = Loq; ... (4.36)

At Rt ATt

where

Rt = r (0) r (1) r(2) r(3) rep)

r (1) r (0) r (1) r(2) r(p-l)

r(2) r (1) reO) r (1) r(p-2)

r (3) r(2) r (1) reO) r(p-3)

rep) reO)

is an autocorrelation matrix of one frame of the test word

whose elements are defined by

r (i) =
1 n-i

L: x(n)x(n+i)
N n=l

... (4.37)

with some mathematical manipulation, equation 4.36 can be

rewritten in the form

... (4.38)

where Rt is a vector of autocorrelation coefficients of the

test frame, (XY) represents an inner product of two

vectors, and Br is a vector {I, br(I), •.. , br(p)} where

p-i

brei) = 2 L: a r(j)ar(j+i) / (ArAr)
j=O

Page 57

... (4.39)

since the distance d in equation 4.38 represents a distance

between one frame of a reference word and another frame of

the test word, it should be written more precisely as

dk(n,m) = Loq, (Ark(m)Ark(m))

+ loge [(Brk(m) Rt (n)) / (At (n) Rt (n))] ••. (4.40)

This corresponds to the distance between the mth frame of

the k th reference word and the nth ' frame of the test word.

The total distance between the k th reference word and the

test word is then given by

N

D(k) = L dk(n, w(n))
n=1

... (4.41)

where w(n) is the warping function that matches the re­

ference word onto the test word.

If during the distance computation D(k) becomes suf­

ficiently large, then the reference pattern can be im­

mediately rejected at an early stage without examining all

the frames. The threshold for rejection should be as low

as possible under the constraint that the probability of

false rejection is sUfficiently small.

Page 58

4.12 cepstra1 Analysis of Speech

A cepstrum is a spectrum of the logarithm of a frequency

spectrum and it produces a smoothed version of the original

frequency spectrum. The cepstrum c (n) of a segment of

speech is defined as the Fourier transform of the logarithm

of the Fourier transform of the input sequence .

... (4.42)

The cepstral coefficients c(i) can be computed recursively

from the set of linear predictor coefficients a(i) by the

following relations [23].

c(l) = -a(l)

i -1

c(i) = -a(i) - ~ (1 - k/i) a(k) c(i-k)
k=1

1 < i :::; p

where p is the order of the LPC coefficients.

... (4.43)

A squared Euclidean distance measure may be used to compare
two words and is defined as

p

deEP = ~ (c, (i) - c, (i)) 2
i=1

... (4.44)

. where ct(i) and cr(i) are the cepstral coefficients of the

unknown test word and the reference word respectively.

Page 59

4.13 Endpoint Detection

4.13.1 Requirements

Accurate location of the endpoints of an isolated word is

of utmost importance for reliable recognition. A further

advantage of good endpoint detection is the fact that the

proper location of regions of speech can substantially

reduce the amount of processing required [25].

This task of separating speech from background noise is not

a trivial one except in the case of an extremely quiet

environment, such as an anechoic chamber, where the energy

of even the lowest level speech sound exceeds the back­

ground noise energy, making a simple energy measurement

sufficient. Such ideal recordings conditions are, however,

not generally found where speech recognition systems are

likely to be implemented.

A system is required which is able to detect the endpoints

of the spoken words in almost any environment. It is

obvious then that a simple energy measurement will not

suffice and that some additional information about the

speech signal is needed. One possible solution is to use,

in addition to the energy content, the zero-crossing rate

of the signal.

Page 60

4.13.2 Problems Associated with Endpoint Detection

In order to understand the difficulties associated with the
detection of the endpoints of words, it is helpful to study

the waveforms of various categories of sounds. The start
of any utterance may generally be detected by the eye by

a change in the pattern of the waveform. Figure 4.11 shows

a waveform of the word ' eight' in which the speech is

easily distinguished from the silence by a radical change

in the waveform energy at the start of the utterance.

I-

BEGIN

-I

Fig 4.11 Waveform of the beginning of the word I eight. [26]

Figure 4.12 shows an example of the word 'six' in which the
start of the word is again easily located by the eye. In
this case, however, it is the frequency and not the energy
that is radically different at the start of the utterance.

It is thus necessary to use the zero-crossing rate to
detect the beginning of the word in this case.

Page 61

BEGIN

"'\7""V"'V c;;.....oP~ CV "\JY"7 'V" 'wL'ypJo\{/oq-vow',,?

~~~~~
I, 32 msec ·1

Fig 4.12 Waveform of the beginning of the word 'six' [26 ]

The above two examples are very nice in that the endpoints

are every easily determined by marked changes in either
energy or frequency. This is not always the case and figure

4.13 illustrates a word in which it is extremely difficult
to locate the beginning of the speech signal. The eye would

naturally select point B as the beginning of the utterance.
This is incorrect, however, in that it completely misses

the weak fricative If/ at the beginning of the word 'four'.
In fact, point A is the beginning of the word.

A

~

I·

8

!

45 msec '1

Fig 4.13 Waveform of the beginning of the word 'four' [26]

Page 62



There are numerous other sound categories in which problems

are encountered when locating the endpoints. These include

[llJ:

1. Weak fricatives (f, th, h)

2. Weak plosive bursts (p, t, k)

3. Nasals at the end of a word.

4. Voiced fricatives which become devoiced at

the end of words.
5. Trailing off of vowel sounds · at the end of

an utterance.

How are these 'problem' sounds dealt with? The problem is,

in fact, not as severe as it seems since it is necessary

to isolate only enough of the word so that reasonable

acoustic analysis of this isolated word is sufficient for

accurate recognition. It is therefore not essential to know

exactly where the word begins or ends, but instead it is

important to include all significant acoustic events within

the utterance.

The algorithm used to locate the endpoints is described in

section 5.3 .3.2.

Page 63



4.14 Pattern comparison

In all speech recognition systems using the feature-based

approach, the feature vectors of the unknown word must be

compared to a library of reference patterns. A distance (or

similarity) score, telling how good the match was, is then

calculated and the word having the lowest score is the

winner.

There are various methods of pattern comparison, the

simplest being one which time-aligns the reference template

with the unknown test pattern in a linear fashion. The most

successful pattern comparison method for speech recognition

has been the so called dynamic programming or dynamic time

warping algorithm [22] in which reference and test patterns

are dynamically time-aligned to get the best possible

match. A third and relatively new method is based on hidden

Markov models.

A speaker does not, in general, speak at precisely the same

rate for different repetitions of the same word. This makes

the task of matching input words to reference words

somewhat complicated. This difficulty may be overcome by

stretching or compressing (warping) the time scale of the

unknown spoken word so that it equals that of the template.

This warping may be done in either a linear or non-linear

fashion, with the c?nstraint that the endpoints of the two

words must match. Figure 4.14 illustrates the endpoints of

two words, a reference word of M frames and a test word of

N frames.

Page 64



END
M •.•. .• . .. . •. ••••••••. ••••.•••. . .•••.. .•.••• .•• --- . •••••••. •••••••••.• --••••••••••••••••• •,!

m

3
2 BEGIN
1 ------ - oQ

1 2 3 n
N

Fig. 4.14 Endpoints of Two Words to be Compared

An input word and a reference word are represented in

figure 4.14 by the axes of a grid where n and m are the

frames of the input and reference templates respectively.

The two points on the grid corresponding to the end points

of both templates can be seen.

4.14.1 Linear Time-Alignment

The simplest method of comparing two patterns is to take

a linear path between the two endpoints. Such a path is

defined by

m = (n-l) (M-l)j(N-l) + 1 ... (4.45)

Each frame n of the input word is then compared to frame

m of the reference word. A distance score may then be

obtained by summing the distances between each frame.

Although this method does have the advantage of requiring

very little computation, it does not account for any

variation in the speed of the speech.

Page 65



4.14.2 Dynamic Time warping

In this method of pattern comparison, the unknown word is

warped in a non-linear fashion so as to obtain the best

possible match with the reference pattern. Dynamic time

warping is also often referred to as dynamic programming.

Conceptually the process of time warping is as illustrated

in figure 4.15. The time scale t of a reference utterance

is warped in such a way as to line up it's significant

characteristics with the same characteristics in the

measured utterance. The warping function is thus of the

form

Y = at + get) ... (4.46)

where get) is the nonlinear time warping function, and a

the average slope of the time warping function.

1:.'2 0 0 _

Measured 1;

Utterance

c = cct + q(tl

t,
Reference Utterance

Fig. 4.15 Illustration of Time Warping

Page 66



Time alignment is performed on speech data which is repre­

sented as a time sequence of feature vectors (eg. linear

prediction coefficients) corresponding to the frames of the

speech signal. This procedure requires the calculation of

the local distance between each possible reference and test

frame in order to determine the optimal time alignment path

relating reference and test frames.

The problem, then, is to choose a path between these
i

endpoints which will match the pairs of frames together in

such a way as to optimize the distance score. In other

words, we wish to choose a time warping function w such

that

m = wen)

The boundary conditions on w(n) are:

... (4.47)

w(l) = I

weN) = M

(beginning points)

(ending points) •.. (4.48)

To limit the degree of non-linearity it is reasonable to

place a constraint on the amount of allowed distortion. In

order to guarantee that the average slope ' the warping

function lies between ~ and 2, and guarantee path mono­

tonicity it is necessary to impose the Ikatura local path
constraints [22]:

w(n+l) - wen) = 0, I or 2

= I or 2

Page 67

if wen) * w(n-I)
if wen) = w(n-I) ... (4.49)



These local constraints together with the endpoint

conditions lead to the following set of global constraints

that force the warping function to lie within the paral­

lelogram in figure 4.16 with sides of slope 1:2

m ~ max { (n-1)/2 + 1, M - (N-n)*2, 1 }

m .~ min { (n-1)*2 + 1, M - (N-n)/2, M } ... (4.50)

Thus the slope of the warping function can be either 0, 1

or 2 if at the previous grid index the warped index chang­

ed, or 1 or 2 if at the previous grid index the warped

index remained constant. A similarity or distance measure

is used to determine the path of the warping function which

locally minimizes the maximum total distance, sUbject to

the continuity constraints of equation 4.50.

M=15

10

m

5

END A
~~

o 5 10
n 15 N=20

Fig. 4.16 An Example of the Time warping Function.

The parallelogram shows the possible

domain of (n/m) coordinates. [22]

Page 68



The example of figure 4.16 shows the domain of possible

grid coordinates (n,m) and a typical warping function wen)

for warping a 20 point (N = 20) reference to a 15 point (M

= 15) input utterance.

Let us define d(n,mik) to be the distance between the nth

frame of the input and the mth frame of the kth reference

pattern. Denote the minimum value of the sum of d(n,mik)

for all possible choices of the time warping function by

N

D(k) = min b d(n,mik)
(wen)} n=1

... (4.51)

D(k) is a distance between the input utterance and the kth

word in the vocabulary. A decision can be made on the basis

of the minimum distance among D(k), k = 1,2, ... ,K.

Although dynamic time warping (DTW) provides a reliable

time alignment between reference and input patterns, the

computation of the optimal alignment path is a very lengthy

process. Several alternative procedures have been proposed

for reducing the computation of DTW algorithms. However,

these alternative methods generally suffer from a loss in

the optimality of the alignment path found.

Page 69



4.14.3 Ordered Graph Search (OGS) Approach to DTW

Brown and Rabiner [5] proposed an approach to dynamic time

warping which shows essentially no loss in recognition

accuracy with a 3:1 reduction in distance computation. The

algorithm takes advantage of ordered tree and graph

searching techniques to find the best path with substan­

tially reduced computation of local distances. (A local

distance being a distance between one frame of a reference

word and one frame of the unknown word).

The nodes of figure 4.17 represent local distances, and

allowable node transitions are represented by branches of

the directed graph (digraph). The efficiency of the digraph

search is achieved by omitting local distance calculations

associated with nodes which are not searched. Conventional

dynamic programming , on the other hand , involves the

calculation of all local distances within the global con­

straints. Under certain readily obtainable conditions, the

warping path determined by a digraph search can be shown

to be optimal [5], and at a cost of about '/3 of the

computation.

The i th node is designated by it's coordinates, i = (n,m),

and the starting and ending nodes are s = (1,1) and

t = (N,M) respectively. For any path passing through node

i, the path cost (accumulated distance along the path) is

denoted as

f(i) = g(i) + h(i) ••• (4.52)

where g(i) is the minimal cost of the path from node s to

node i, and h(i) is the minimal cost of the path from node

i to node t.

Page 70



t=IN.MI

h(i)

m

i=(n.ml

s=(1.1l n

Fig. 4.17 Illustration of the nodal structure and a

typical path for ordered graph searching.

For a directed search through the grid, the cost g(i) along

the path to node i is known exactly. The cost h(i) from

node i to node t, however, is not known and must be

estimated. Thus an estimate of a minimal cost path passing

through node i is

...
f(i) = g(i) + h(i) ••• (4.53)

where h(i) is the estimate of h(i). The process of finding

a minimal cost path though the grid involves the building

up of a series of nodes for which the exact cost from the

start node is known, and a cost to the terminal node is

estimated. The node which currently provides the smallest

cost estimate is expanded until the terminal node t is

reached.

Page 71



The cost h(i) from node i to the end node t in figure 4.17

is not known exactly and must be estimated by h(i). For the

warping path to be optimal we require f (i) < f (L) , and

hence h (i) must under-estimate the true path cost h (L) • If,

however, the test and reference words are of different word

classes, then we would prefer a gross over-estimator. We

can, therefore, improve the efficiency by forcing h(i) to

become large when preliminary results indicate that the

test and reference words come from different classes. A

potential mismatch can be detected early in the search by

observing the average value of g(i) per test frame. A large

value of g(i) will point to such a mismatch and indicates

that we should make the estimate h(i) large.

Brown and Rabiner [5] have shown that this estimator
function may be given by

h(i) = 0.7 g(i) (N-n)/n

= 2.0 g(i) (N-n)/n
if g(i)/n < f3

if g(i)/n > f3 ••• (4.55)

The values of 0.7 and 2.0 were determined experimentally,

and f3 is between 0.6 and 0.7. The chosen value of f3 is

essentially the largest reasonable average distance one

would expect to encounter when comparing test and reference
words of the same class.

Page 72



Figure 4.18 gives an example of the digraph search.

Initially node s is expanded into three possible successor

nodes. Node 1 is found to have the smallest distance f and

so this node is expanded to it's two possible successor

nodes. Finally node 20 is found and state t is reached with

a minimal cost path.

m=M

m

s n n=N

t

Fig. 4.18 Illustration of the computation to determine

a path from node s to node t,using OGS method.

Page 73



IMPLEMENTATION OF THE

SPEECH RECOGNITION SYSTEM

5.1 Introduction

Chapter 5

A speech recognition system was implemented on an IBM PC

using suitable interface hardware. The speech recognition

techniques implemented used the following parameters when

comparing an unknown word to one of the reference words:

1. Zero-crossing and energy differences

2. Autocorrelation coefficients

3. LPC coefficients

4. Cepstral coefficients

All measurements were performed by the author in an

anechoic chamber with an area of 40m2 and a height of 4.Om.

Informal comparisons were made of these results with the

recognition rates achieved by other users in order to

ensure that the results were not biased in any way. The

effects of frame length, pre-emphasis, Hamming windows and

dynamic time warping were also analyzed.

A description of the overall system, as well as of the

different methods used follows, and a comparison of the

results obtained is given in chapter 6. A block diagram of

the speech recognition system, which was named Big Ears,

is illustrated in figure 5.1 and a photograph of the

working system is shown in figure 5.2.

Page 74



Fig. 5.1 Block Diagram of the 'Big Ears'

Speech Recognition System

Fig 5.2 · Photograph of 'Big Ears' Speech Recognition System

Page 75



5.2 Hardware

5.2.1 Processing Hardware

In view of the intense signal processing involved in speech

recognition, an obvious choice might have been a system

using dedicated signal processing chips, such as the

TMS 320 series. However, no such hardware was available for

use in this project and furthermore, processing speed was

not of prime importance since the word recognition was not

expected to take place in real time.

Instead, a standard microprocessor was used. An IBM

compatible PC was found to provide a good environment for

the development and debugging of software . In addition, it

has a well documented I/O interface allowing the use of

custom hardware.

Most of the development and testing was performed on an

8MHz PC-XT (Intel 8088 and 8087 processors) although for

the final implementation and measurements, a 12MHz PC-AT

(Intel 80286 and 80287 processors) with 1Mb of expanded

memory was used.

Page 76



5.2.2 Analogue-to-Digital Converter

Before the speech signal could be processed by the computer

it had to be converted into digital form by a suitable

analogue-to-digital (A/D) converter. An important parameter

in this conversion is the resolution of the A/D converter

and the associated quantization noise. For example, an

8-bit A/D converter converts an input signal into only 256

levels, introducing noise into the measurement. witten [17]

shows that at least 11 bits are needed for adequate

representation of speech signals. Most speech recognition

systems use 12-bit A/D converters, giving 4096 quantization

levels.

An ST4303 12-bit A/D converter was used to digitize the

speech signal . The ST4303 is a board designed for data

acquisition applications in the STD BUS environment and

thus has an STD BUS interface. In order to communicate with

the ST4303 from an IBM PC it was necessary to design an

interface card that would convert the STD BUS control

signals to the IBM PC standard. This interface card fitted

inside the PC and connected to the ST4303 board via a

ribbon cable. (The specifications for the ST4303 A/D

converter are given in Appendix B, together with the

circuit diagram for the interface card that was designed).

Another important parameter in the sampling of speech is

the sampling rate. It is well known that if the highest

frequency component of a signal has a frequency fc' then

the sampling frequency must be at least 2fc (known as the

Nyquist frequency). Although speech signals can contain

components at frequencies of up to 10kHz, the analysis

bandwidth can safely be reduced to between 3.5kHz and 5kHz

and most recognition systems use sampling rates of between

7kHz and 10kHz [29,31]. It is interesting to note that the

bandwidth of a telephone system is only 3.4kHz.

Page 77



5.2.3 Input Filtering and Amplification

since the output of the microphone was only of the order

of millivolts, the signal had to be amplified to lie within

the +-lOV i~put range of the AID converter. Two inverting

amplifiers (one fixed and one variable) were cascaded to

give a variable gain of 100x to 10000x. The circuit diagram

for this amplifier is given in appendix c.

It was necessary to filter the speech signal before

sampling for two reasons. Firstly, a low-pass filter with

a cut-off frequency of at least half the sampling frequency

was required to avoid aliasing problems and secondly, a

notch or high-pass filter was needed to filter out the

mains interference (hum) at 50Hz.

A sampling rate of 10kHz was used and a 6t h order Chebyshev

low-pass filter was designed with a 3dB cut-off frequency

of 3.2kHz. This provided 40.1dB attenuation at 5kHz.

At the lower end of the frequency scale, a high-pass filter

was chosen in preference to a notch filter. Although a

notch filter would have taken care of mains hum, a high­

pass filter was found to be a better alternative since most

of the ambient noise in a fairly quiet environment lies

below 100Hz [30]. In view of this, and the fact that very

little speech energy lies below 200Hz, a high-pass filter

with a 3dB cut-off at 175Hz was used. A fourth-order

Butterworth filter was designed and gave 20. 3dB attenuation

at 100Hz and 44.5dB at 50Hz.

Figure 5.3 shows the combined frequency response of the

above two filters and their circuit diagrams may be found

in Appendix c.

Page 78



0

-10

-20

-30

10 - 40
;g
c

~ -50

-60

-70

-80
10 20 50 100 200 500 1000 2000 5000 10000

Frequency (Hz)

Fig. 5.3 Overall Frequency Response of Input Filters

5.2.4 Microphone

The microphone used for all measurements was a Bruel &Kj~r

precision condenser microphone (type 4165). I t is designed

to have a linear frequency response and fits onto a Bruel

& Kj~r sound level meter (type 2218). The output was of the

order of tens of millivolts for a speech input.

Page 79 .



5.3 Software

5.3.1 Introduction

Implementing the speech recognition system on an IBM PC

meant that there was a wide range of programming languages

available. Firstly it was necessary to decide whether to

program in 8086 assembler or to use a high level language

such as Pascal, C or Fortran.

In view of the complexity of some of the algorithms used,

it would have taken a braver (and perhaps more foolish!)

person than myself to have written all the software in

assembly language. Most of the software for the speech

recognition system was written in the 'c' programming

language. When implementing the speech recognition system

on a PC-XT, however, it was not possible to attain the

10kHz sampling frequency required without writing an

assembly language procedure to control the AID converter.

This was later replaced with a procedure written in 'Cl

when using the faster PC-AT.

The software for the Big Ears speech recognition system

consists of a main program called BIG_EARS.C and a header

file, called BIG_MESS.H, that contains all the menus and

messages to be displayed. It needs to be pointed out that

the name of ' this header file is derived from the word

'message' and that nothing else is implied! Although the

display software contained in BIG_MESS.H was written for

an EGA colour monitor, it will also run on a monochrome

monitor.

The two photographs in figures 5.4 and 5.5 show two of the

many display screens.

Page 80



Fig. 5.4 Menu option Requesting Recognition Technique

BIG EARS Speech lIecognitlon SysteN by Rep itehers

~RECOGlnZED UORD~

for

Start =6
End = 47

1- for 57.98
Z. goto 89.69
3. ccapue 89.96 §]4. delete 116.22 Input Word _
S. insert 4588 .83.

Fig. 5.5 Display of previously Recognized Word While
Processing current Word

Page 81



5.3.2 Main Program

The two main functions of the BIG_EARS.C program are to

train the speech recognition system and to recognize words

using one of four algorithms. The main program consists of

an initialization section followed by various prompts (to

be discussed later in this section). In addition there are

six main procedures:

1. Train_System()

2. Recognize Word()

3. Save_Vocabulary()

4. Load_Vocabulary()

5. Sample Word()

6. Frame_Distance()

The first four procedures are called directly by the main

program while Sample_Word() is called by both Train_Sys­

tem() and Recognize_Word(). In addition, Recognize_Word()

makes calls to the Frame_Distance() procedure.

Brief descriptions are given for most of these procedures

together with top-level flowcharts and, should the reader

desire a more detailed description, the source code

listings may be found in Appendix D. The procedures used

to save and load vocabularies and allocate and map expanded
,

memory (EMS) are not described here although the source

listing for these procedures may also be found in Appen­

dix D. Similarly, the header file containing the menu

displays , is not described.

Page 82



A flow-chart of the main program is given in figure 5.6.

After initializing the ST4303 A/D board, a lookup table

that is used in the Hamming window calculation is built.

This lookup table serves to sUbstantially reduce the number

of mUltiplications required when placing a Hamming window

over a frame of samples.

The digital value obtained by the A/D converter for an

input of zero volts was found to vary slightly off the

theoretical value of 2048, depending on the input filtering

and amplification used. Since this value is used as an

offset to be subtracted from all sampled data when

converting the data to signed integer values, it is

important that it be as accurate as possible. In order to

calculate the exact magnitude of this digital zero, the

user is required to place a short-circuit across the input

to the filter/amplifier circuit while a number of samples

are taken. The average of these samples is then used as a

zero-offset.

May I at this point apologize to any female readers who may

be offended by the exclusive use of masculine terminology

when referring to 'the user'. It is for the sake of

grammatical convenience and no offense is intended.

After an introductory message, the user is asked whether

he would like to train the system or load an existing

vocabulary in order to go directly into recognition mode.

If the user chooses to train the speech recognition system,

then the Train () procedure is called, after which the

vocabulary is saved by making a call to Save_Vocabulary().

If, on the other hand, the user chooses to go into

recognition mode, he is prompted to enter the name of the

vocabulary he wishes to use. This vocabulary is then loaded

by means of a call to the Load_Vocabulary() procedure.

Page 83



At this point the user has either trained the system or

loaded an existing vocabulary. After choosing whether or

not to use dynamic time warping in the recognition process,

the user must select one of the four recognition techniques

available. Having done this, any word spoken into the

microphone is recognized and displayed on the screen. The

speech recognition system will continue to recognize words

until any key is hit, at which point the program ter­

minates.

Page 84



( START )

TRAIN

OR

RECOG?

Train

Recognize

call TRAIN_SYSTEMO

call SAVE_VOCABULARYO
call LOAD_VOCABULARYO

no USE

DTW?

ANY

KEY HIT
no

Fig. 5.6 Flowchart of Main Program

Page 85



5.3.3 Procedure for sampling a Word

5.3.3.1 Body of Procedure

The Sample_Word() procedure is responsible for detecting

the start of an utterance, sampling for a period of

approximately one second and then locating the end of the

word. Having done so it then calculates the parameters

needed for the recognition process. A flowchart of this

procedure is given in figure 5.8. The two blocks marked

'Look for Beginning of Word' and 'Locate end of Word' are

described in section 5.3.3.2.

Having sampled the whole word and stored all the samples

in consecutive locations of a buffer, the word is divided

up into overlapping frames as illustrated by the example

in Figure 5 .7. The frame size used was determined by the

maximum rate at which the speech waveform changes. This

rate is in fact the rate at which the articulators change

their position and is seldom greater than 100Hz [13]. Frame

sizes ranging from 100 to 450 samples (10 to 45 ms) were

used and for analysis purposes the waveform can be

considered constant over such an interval.

FRAME 2

~

FRAME n-1

64 Samples 64 Samples 64 Samples 64 Samples ...... 1 64 Samples 1 64 S.~s 164 Sampea I

FRAME 1 FRAME 3 FRAME n

Fig. 5.7 Overlapping Frame structure used for word of

n frames with 128 samples per frame

Page 86



Each frame in the wor d is pre-emphasized using the function

yen) = x(n) - 0.95 x(n-l) and a Hamming window is then

placed over the frame. All or some of the following

parameters are then calculated - energy content, zero­

crossing counts, autocorrelation coefficients, normalized

autocorrelation coefficients, LPC coefficients and cepstral

coefficients. If the system i s in training mode then all

of these parameters are calculated. When in recognition

mode, however, only the parameters required by the

recognition technique selected are calculated.

HAS
BEGINNINGOF no
WORD BEEN >-- ---'

FOUND?

CALCULATE THE REOUIRED

PARAMETERS DEPENDING

ON TECHNIOUESELECTED ISOLATENEXT

OVERLAPPING

FRAME

no
IS

THIS LAST >- ____
FRAME?

Fig. 5.8 Flowchart of sarnple_Word() Procedure

Page 87



5.3.3.2 Design of an Algorithm to Locate the Endpoints

The algorithm designed to detect the beginning and ending

points of l a word was based on one proposed by Rabiner and

Sambur [26] and incorporates some ideas of Lamel et al

[25]. The algorithm uses the average energy (magnitude) and

the number of zero-crossings in a frame to detect the two

endpoints.

A set of three energy thresholds Eu' EL' and EE are defined

as illustrated in figure 5.9. The beginning of the word is

provisionally chosen as that point, N" at which the energy

exceeds a lower threshold EL' provided that the energy does

not again fall below EL before it exceeds an upper thresh­

old Eu' It is reasonable to assume that the beginning point

does not lie after N" It may, however, be located before

N, if the word starts, for example, with a weak fricative.

The next step is therefore to move backwards from N,

comparing the zero-crossing rate to a threshold, ZC t h ,

determined from the statistics of the zero-crossing rate

for the background noise. Only the 25 frames preceding N,

are considered and if the zero-crossing rate exceeds the

threshold in three or more consecutive frames, the

beginning point N, is moved back to the first point at

which the zero-crossing threshold was exceeded. Otherwise

N, is defined as the beginning of the utterance.

Page 88



ENERGY

ZERO
CROSSINGS

o n

Fig. 5.9 Typical example of energy and zero-crossing

measurements for a word with a fricative

beginning [26]

To find the ending point Nz, a similar search is carried

out backwards working from frame N,+N
max

(where N
max

is the

maximum duration that any word is likely to have

typically 0.7-1.0 seconds or 70-100 frames of 10 msec

each). The reason for working backwards to find the

endpoint, and not simply forward from N" is to avoid

omitting part of a word. This is shown in figure 5.10 where

it is obvious that Nz' would have been chosen as the end of

the utterance if a forward search from N, had been used to

find the first point at which the energy fell below EE. On

the other hand, by searching backwards from frame N,+N ,
max

the correct endpoint Nz is located.

, Page 89



o N 1

Fig. 5.10 Typical example of energy plot of a word

with a stop gap in the middle

5.3.3.3 Determining the Thresholds

The energy thresholds EL' Eu and EE' and the zero-crossing

threshold ZCt h were determined by trial and error,

experimenting to see what thresholds gave the best results.

The actual thresholds used were very dependent on the

actual level of the background noise. The energy thresholds

were set to the following values, where EbackgrOUnd was the

average energy level measured due to background noise:

EL = 25 * Ebackground

E u = 100 * Ebackground

EE = 40 * Ebackground

The zero-crossing threshold was set to detect signals from

about 1.3 kHz upwards.

Page 90



5.3.3.4 Flowchart of Endpoint Detection Algorithm

Figure 5.11 shows the algorithm used for estimating the

beginning point of an utterance. The algorithm continually

samples sections (frames) of the input, calculating the

number of zero-crossings and the total energy in each

frame.

The algorithm waits for the energy of the input signal to

exceed the lower threshold EL at which time the frame

number is stored as the preliminary starting point. It then

waits for the upper threshold Eu to be exceeded without the

energy having dropped below EL. Once the energy has risen

above Eu' the zero-crossing rates in the 25 frames pre­

ceding the prel iminary starting point (which, incidentally,

corresponds to N1 in figure 5.9) are checked to see whether

the zero-crossing threshold was exceeded three or more

times. If so then the start of the word is moved to that

frame at which the threshold was first e~ceeded.

Although from the opposite end of the word, the algorithm

used for detecting the end of an utterance is essentially

very similar to the process of determining the beginning

point as described above. Figure 5.12 shows a flowchart of

this algorithm.

Page 91



BEGIN

s
L---""':'--<~ ENERGY IBOVE

E, I

IS
ENERGY AB<NE

E. 7

LS
ZER<>-CROSSlNG RATE

:> THRESHOLD
7

wt<;
PREVIOUSFRAME

:> THRESHOlD
7

6
TESl COU'HER>--=...;_ - --,

> 3 1

IS
L--------<lf---<!FRAME COLN TER

= 0 1

IS
r ----''-<jTESl CQl..R\j TEA".>~"""--j

> 37

Fig. 5.11 Flowchart

Beginning

of

of

Algorithm Used

an Utterance.

for Detecting the

Page 92



Is
test counter

,, 3 ?

NO

Is
zero- crossingrate

> threshold

?

YES

Was
previous frame also

> threshold

?

YES

Record flame no. as
possible new end point.
Increment test counter.

Is
'- N_O_ < frame pointer at

last frame
?

YES

IS

test counter
~ 3?

NO

YES

End point remains
as determined from

energy measurements

Move end point to
the frame where the
zero-crossingrate
was last exceeded.

Fig. 5.12 Flowchart of Algorithm Used for Detecting the

End of an Utterance.

Page 93



5.3.4 system Training Procedure

Figure 5.13 shows a flowchart of the Train System()

procedure that is used to train the Big Ears speech

recognition system. A short message explaining how to train

the system is displayed, after which the user is requested

to enter the number of words he wishes to include in the

current vocabulary. Memory is then allocated to hold the

parameters used to describe each of these words.

The user is repeatedly requested to type in and say a word

until all the words have been entered. After each word has

been spoken, the user is given the option of repeating that

word should he not be satisfied with the way in which it

was said. The spoken word is captured by making a call to

the Sample_Word() procedure and the parameters calculated

by this procedure are stored in memory for later use.

REDL£ST "-JMBEROF

wCf!DS AND A.l.LOC.A,TE
MEMORY FOR THEFI

PARAMETERS

15USER
HAPPY WITH

INPUT?

MOOE <, y•• •~ .. I
WOOOS?

END

Fig. 5.13 Flowchart of Train_system() Procedure

Page 94



5.3.5 Word Recognition Procedure

5.3.5.1 Body of Procedure

The Recognize Word() procedure is illustrated in Figure

5.1~ by a flowchart. The word to be recognized is captured

by means of a call to the sample_Word() procedure. This

word is then compared to each . word contained in the

vocabulary. If the dynamic time warping option has not been

selected then a linear frame-for-frame comparison is done,

the frame distance calculations being determined by the

Frame_Distance() procedure. This procedure is passed the

recognition technique currently in use and does the

appropriate distance calculation.

If, however, dynamic time warping is to be used then the

frame comparison is not a linear process (ie. frame n of

the unknown word is not necessarily compared with frame n

of the reference word) and the DTW algorithm - discussed

in the following section - is responsible for calling the

Frame_Distance() procedure.

Page 95



GET WORD TO BE
RECOGNIZED:

call SAMPlE_WORDQ

MOVE A REFERENCE

WORD FROM LIBRARY
INTOLOCAL MEMORY

no

LINEAR FRAME-F aR-FRAME
COMPARISON:

canFRAME_DISTANCEO

USE
DTW?

yes

USE DTWALGORITHM:

call FRAMEJ)ISTANCEO

no IS WORD
BETTERTHAN BEST

SO FAR?

MORE
WORDS IN
LIBRARY ?

yes

Fig. 5.14 Flowchart of Recognize_Word() Procedure

Page 96



5.3.5.2 The OGS Algorithm for DTW

The theory of the ordered graph searching (OGS) approach

to DTW was explained in section 4.14.3 and a flow diagram

of the algorithm used is given in figure 5.15. Referring

to figure 4.17, any path from start node s to intermediate

node i is completely characterized by a nodal state, which

includes:

1) the node coordinates (n, m)

2) the cost g (i) from the start node to node i

3) the estimated cost 11 (i) from node i to end

4) a pointer to the previous node on the path

By using the above nodal state information, an 'open' list

of potential paths is made where each entry in the list is

the nodal state of the last node on the path. The last node
.....

of the path having the lowest estimated total cost f(i) is

placed at the top of the list. The algorithm tries to find

the minimum path by removing the top node from the open

list and, after saving it's nodal state on a 'closed' list,

finding all permissible successor nodes. New path cost

estimates are computed for each of these successor nodes

and they are sorted into the open list. The process

continues until node t is found.

Initially, start node is the only node on the open list and

the closed list is empty. The open list is always sorted

so that the node having the least estimated warp path heads

the list . This node at the top of the list is then expanded

into successor nodes. Provided that the generated node lies
'" Awithin the global constraints, f(i) = g(i) + h(i) is then

computed and using this value the node is inserted in the

open list at the appropriate locations. When the terminal

node is found, the g(i) already calculated for this node

is then equal to the path cost get) = f(t).

Page 97



LOCAL
CONSTRAINTS

yes

no

no

WAS
A SUCCESSOR NODE

GENERATED

yes

DOES NEW
NODE ALREADY EXlST
ON OPEN OR CLOSED

UST ?

ISNODE
WITHIN BOUNDARIES

1

no

Fig. 5.15 Flowchart of the OGS Method

of Dynamic Programming

Page 98



5.3.6 comparison of Word Templates

In order to compare two words, each with their own sets of

feature vectors (eg. LPC coefficients, cepstral coeffi­

cients, energy, etc.), it is necessary to be able to

compare two frames and obtain some quantitative measure of

similarity. The Frame_Distance () procedure is called by the

Recognize_Word () procedure and is passed two frame numbers,

one of the reference word and one of the unknown word. It

returns the distance between these two frames, using one

of four distance measures to do the calculation. The

distance measure used is obviously determined by the

recognition technique that has been selected. The distance

measures associated with the four techniques are discussed

below.

5.3.6.1 zero-crossing/Energy Measurement

The number of zero-crossings in a frame gives an indication

of the frequency content of the speech signal over that

time interval. Possibly the simplest method of comparing

two words is to sum the differences in zero-crossings in

each of their frames. This method was taken one step

further and an energy measurement was incorporated into the

frame distance calculation. Since the total energy of a

frame is numerically far greater than the number of zero­

crossings, the energy difference cannot simply be added to

the zero-crossing difference. Furthermore, the frequency

information is of more interest than the energy content.

Instead of inclUding an energy difference, the following

distance measure was devised in which a weighted energy

ratio is used . .

Page 99

,,



d(n,m) = Zct(n)-Zcr(m) + o:[Et(n)/Er(m)] •.. (S.la)
if Et (n) >Er (m)

d (n , m) = ZCt (n ) - ZCr (m) + 0: [ Er (m) / Et (n) ] . . . (S. 1b)

if Et (n) ~Er (m)

ZCt (n) and Et (n) are the zero-crossing and energy values for

the nth frame of the test input word, while ZCr (m) and Er (m)

correspond to the mth frame of a reference word. 0: is a

constant used to set the weighting of the energy contri­

bution to the distance measure.

S.3.6.2 Autocorre1ation/LPC Measurement

The method used to compare a reference word with the test

utterance for the second speech recognition technique

involved mapping the autocorrelation coefficients of the

test word onto the LPC coefficients of the reference word.

The distance measure, consisting of a sum of products, is

defined as

p

d(n,m) = 2: [rtn(i) * arm(i)]
i=O

..• (S.2)

where rtn(i) are the autocorrelation coefficients of the nth

frame of the test word and arm(i) are the LPC coefficients
of the mth frame of the reference word.

Page 100



5.3.6.3 A squared Euc1idean Distance for

cepstra1 Coefficients

The distance measure used to compare two sets of cepstral

coefficients was a squared Euclidean distance. In other

words the distance between the nth frame of the test word

and the mth frame of a reference word is given by

p

d(n,m) = L; [ctn(i) - c rm(i)]2
i=1

... (5.3)

where p is the order and ctn(i) and crm(i) are the cepstral

coefficients of the nth and mth frames of the test and

reference words respectively.

5.3.6.4 Ikatura's LPC Distance Measure

The final speech recognition technique that was implemented

made use of the widely used distance measure proposed by

Ikatura (often known as the log likelihood ratio). This

distance measure, defined earlier by equation 4.36 and

discussed in section 4.11.5, is repeated here

d ... (5.4)

where Ar and At are the vectors of LPC coefficients

describing the reference and unknown test words respec­

tively and Rt is the autocorrelation matrix of the test

word. The distance defined by equation 5.4 was calculated

using the computationally efficient form defined in

equation 4.40.

Page 101



5.4 Test Vocabularies

Use was made of four test vocabularies in the comparisons

of the relative performances of the speech recognition

techniques. The first was a ten word vocabulary consisting

of the digits zero to nine. The second and third vocabu­

laries consisted of 30 and 60 computer terms respectively

and the fourth vocabulary comprised of 120 airline booking

terms taken from a vocabulary used by Wilpon et al [28].

INSERT IF BEGIN NUMBER

DELETE ELSE END ADD

REPLACE DO ADDRESS SUBTRACT

WORD WHILE OVERFLOW MULTIPLY

READ GOTO REGISTER DIVIDE

WRITE CALL MEMORY ABSOLUTE

SAVE RETURN POINTER REMAINDER

LOAD BREAK

Table 1 30-word Computer Vocabulary

NAME BINARY BIT

PROGRAM DECIMAL BYTE

PROCEDURE OCTAL INPUT
FUNCTION HEX OUTPUT
SUBROUTINE INTEGER COMPARE
STRUCTURE REAL LIST
STRING CHARACTER STORE
ARRAY CONSTANT

DEFINE

DECLARE

INCLUDE

EXIT

CONTINUE

COMPILE

ASSEMBLE

Table 2 Additional 30 words to give

60-word Computer Vocabulary

Page 102



Monday one cash a

Tuesday two credit at

Wednesday three master are

Thursday four diners do

Friday five card does

Saturday six club I

Sunday seven pay my

January eight code by

February nine American is

March ten express in

April eleven fare on

May twelve first of

June O'clock class oh

July Boeing seat go

August B.A.C. reservation the

September D.C. information there

October Boston arrive time

November Chicago arrival want

December Denver depart make

a.m. Detroit departure take

p.m. Douglas flight will

morning Lockheed leave what

afternoon Los Angeles return when

evening Miami stops would

night New York nonstop like

plane Philadelphia prefer many

coach Seattle please some

phone Wa9hington repeat from

number area meal how

office home served much

Table 3 120-word Airline vocabulary [28]

Page 103



Chapter 6
COMPARISON OF RELATIVE PERFORMANCES

6.1 Introduction

The four speech recognition techniques implemented were

based on the following:

1. Zero-crossing/Energy comparison

2. Autocorrelation/LPC Measurement

3. Cepstral Distance Measure

4. LPC Analysis (Ikatura's distance measure)

The results achieved using the first technique are

discussed in section 6.2 and since it was not possible to

use a large vocabulary (60 or 120 words), these results are

not compared directly with the other methods.

The second technique, which used the autocorrelation

coefficients of the test utterance and the LPC coefficients

of the reference utterance (as defined in equation 5.2),

was not found to give acceptable results. The best

recognition rate that could be achieved using this

technique was little more than 50% for a 30-word vocabu­

lary. Although many attempts were made to improve on this

performance, no success was forthcoming. Consequently, this

technique was not pursued any further.

Page 104



The last two techniques listed above both produced

excellent results. Before the performances of these two

techniques are discussed in section 6.4, the effects of a

number of parameters are analyzed. These parameters include

the frame length, the overlapping interval of adj acent

frames, pre-emphasis, Hamming windows, filter order and

dynamic time warping. Since the effect of these six

parameters on the performance the last two speech recog­

nition techniques was essentially the same, only one set

of results (using LPC coefficients and Ikatura's distance

measure) is given to illustrate their effect. These results

may be found in section 6.3.

Page 105



6.2 zero-crossing/Energy Technique

As pointed out in the previous section, this method of

speech recognition cannot be expected to give a high level

of accuracy for large vocabularies. It can, however, yield

a recognition rate of close to 100% for a carefully chosen

small vocabulary. The resul1:s that were achieved using this

technique on a 10-digit vocabulary are given and some of

the factors influencing it's performance are discussed.

6.2.1 Band-Pass Filter specifications

without any filtering other than that described in section

5.2.3, the recognition rate achieved by this technique was

87.7%. By isolating a narrower band (±800Hz) of the speech

signal and using only this for the recognition process, the

recognition rate was improved somewhat. This follows from

the fact that the number of zero-crossings in a specific

frequency band gives a good indication of the predominant

frequency within that band. On the other hand, a zero­

crossing count for a speech signal with a bandwidth of

3.2kHz gives a rather crude indication since a speech

signal is comprised of a number of frequency components.

If the bandpass filter was positioned so that it's low-end

cut-off frequency was above 1.7kHz, the performance was

found to begin to deteriorate. This was due mainly to end­

point detection problems since the If' and's' fricatives

at the start of words could not be detected as a result of

the filtering. The best performance (92.6%) was achieved

when analyzing the frequency content of the speech signal

lying between 1.2kHz and 2.0kHz.

Page 106



6.2.2 Effect of the Frame Length

The analysis frames used for this technique were non­

overlapping and the effect of the length of this analysis

interval is illustrated in figure 6.1. Frame lengths of

between lams and 25ms all yielded good results whereas for

lengths outside of this range, the recognition rate

suffered.

1.0

Qlg
'"E
.2
~
Ql
>

.~

Qi
er:

0.82

0.96
1.00 1.00 0.98

0.94

O L-_ --'-_ _ -'--_ ---L__---'--_-----'~_ _'___

5 10 15 20 25 30

Frame Length Irns)

Fig. 6.1 Effect of Frame Length

6.2.3 Energy Weighting of Distance Measure

The effect due to the inclusion of an energy component into

the distance measure used for this technique (equation 5.1)

was somewhat disappointing. It did not significantly

improve the accuracy of the zero-crossing technique and no

value of a, the energy weighting factor, could be found

such that the performance showed a consistent improvement

for all words. It may be concluded from this that the

energy information in the speech signal is of little value

when implementing a zero-crossing analysis.

Page 107



6.2.4 Effect of Dynamic Time warping

By matching the frames of the unknown word to those of a

reference word in a non-linear fashion (in order to take

into account the variation in speed with which a word is

spoken), the performance of any speech recognition system

can be improved. This simple technique was no exception

although the improvement was marginal. This limited

improvement can be attributed to the fact that practically

all the digits from zero to nine are very short and, wi.th

the exception of 'seven', monosyllabic. The possibility of

saying these words with much time variation is therefore

significantly reduced. The best recognition rate of 91.4%

obtained using a linear comparison of frames was increased

to 92.6% as a result of the dynamic time warping algorithm.

It should be noted that the results given for the zero­

crossing technique are those achieved from a set of fifty

reference templates - one for each of the ten digits in the
test vocabulary.

Page 108



6.3 Parameters to optimize Performance

The performance of a speech recognition system using one

of the last two techniques implemented may be optimized by

the following six parameters:

1. Frame length

2. Adjacent-frame overlap interval

3. Pre-emphasis of the speech signal

4. Hamming window

5. Filter order

6. Dynamic Time Warping

As mentioned earlier in this chapter, the effect of the

above parameters was essentially the same for the last two

speech recognition techniques (ie. the cepstral analysis

method and LPC analysis method). A discussion of the

effects of each of these parameters on the performance of

the speech recognition techniques follows.

One method of evaluating the effects of these parameters

would have been to observe the recognition rate. In many

cases, however, due to the high recognition rate, the

change in this rate was very small. A better method was to

compare the distance between the unknown word and the best

matching reference word wi t h the distance between the

unknown word and the second best reference word. For

example, if with a frame length of 45ms the distance

between the unknown word and the best matching word is 5.8

(using Ikatura' s distance measure) and the distance for the

second best match is 43.2, then there is little possibility

of this wDrd being incorrectly recognized in future utter­

ances. If now for a frame length of 15ms these distances

are 24.3 and 26.1 respectively, then there is a much higher

possibility of an error in future utterances of this word.

Page 109



In this case one could conclude that a frame length of 45ms

will give a higher degree of accuracy than a frame length

of 15ms.

The above method of comparison was quantified by taking the

ratio of the best distance to the second best distance. In

the above example this then gives values of 5.55 and 1.07

for frame lengths of 45ms and 15ms respectively. Not only

was this method of comparison found to be consistent with

the increase or decrease in incorrectly recognized words,

it also gave a numerical quantity that changed more

noticeably than did the recognition rate.

The results given below correspond to tests using the 60­

word vocabulary. The library of reference words for each

set of measurements consisted of two templates for each of

the 60 words. Each word was then spoken a total of five

times and the best and second best distances noted. The

ratios were summed to give an average and the normalized
results are illustrated graphically.

Page 110



6.3.1 Frame Length

The size of the frames was varied from 75 to 900 samples

(7.5ms to 90ms for a 10kHz sampling rate). The results are

illustrated in Fi.gure 6.2 where it can be seen that a frame

length of 45ms was found to yield the best results. For

frame lengths of less than 30ms in duration, the distance

scores became rather inconsistent and the recognition rate

deteriorated.

1.0
0.89

0.97 1.00
-"l-

0.98
0.93

ID
o
c:

'"E
2
~
ID
>

+0

"'a;
a:

0.71

90604530157.5
OL.----'-----'--_ --'--__-'---_---'__---'--__

Frame Length frns)

Fig. 6.2 . Effect of Frame Length

It is interesting to note that the optimum frame length for

these two methods is considerably longer than for the zero­

crossing method. One reason for this is the fact that for

best performance, the duration of the Hamming window used

is required to be very long compared to the impulse

response of the windowed signal [17].

Page 111



6.3.2 Adjacent-frame overlap Interval

For a frame length of 45ms, the effect of spacing consecu­

tive frames 15ms, 30ms and 45ms apart was observed. Clearly

when the spacing is less than 45ms there is an overlap

between adjacent frames. Such an overlap provides smoothing

between sets of feature coefficients (be they LPC, cepstral

or autocorrelation coefficients) and the effects can be

seen in Figure 6.3.

1.00
1.0 0.94

0.73

0 '--_---'- --'----- -----'-_

15 30

Frame Spacing (rns)

45

Fig. 6.3 Effect of Overlapping Frames

Page 112



6.3.3 pre-emphasis and Hamming Windows

The effects of pre-emphasis and a Hamming window are

discussed jointly since the main reason for pre-emphasizing

the speech signal is to reduce the dynamic range of the

windowed signal. It should be noted that where tests were

done without a Hamming window, use was made of a rectan­

gular window function and that where the speech signal was

pre-emphasized, use was made of a first-order system with

a transfer function H(z ) = 1 - o. 95z· 1
•

The use of a Hamming window significantly improved the

performance of the LPC and Cepstral methods and pre­

emphasizing the speech s ignal made a slight further

improvement to the recognition rate. The relative perfor­

mance with and without pre-emphasis and a Hamming window

is illustrated in figure 6.4.

10

ID
U
c

'"E
§
ID

Q.

U>
>
~

'"ID
er:

o

0.89

A

0.97

B

1.00
C\

A = No Hamming, No Pre-emphasis

B = Hamming window only

C =Hamming and Pre-emphasis

C

Fig. 6.4 Effects of a Hamming Window and Pre-emphasis

Page 113



6.3.4 Filter Order

As expected, the recognition rate improved with increasing

filter order (p). Bearing in mind that as the order

increases, so does the computational load as well as the

memory required to store the coefficients, it is necessary

to draw the line at some point. The tests to evaluate the

effect of p were performed on the 120-word vocabulary and

the results are given in figure 6.5 as percentages.

100%

ID
.",
Cl:
c
o

:;:;
'c
0>
o
()
ID
Cl:

90.8

95.6

97.6 97.9 98.0 98.0

80% '--_ _ .1...-._ _ .1--_ _ .1--_ _ '--__.1--__'--__

6 8 10 12 14 16

Order (p)

Fig. 6.5 Effect of Filter Order (p)

From the above results it is evident that the marginal

improvement in performance for p>10 does not warrant the

extra time for computation nor the additional memory

required (unless, of course, these constraints do not

exist). For all measurements during this study, an order

of 10 was used for the coefficient calculations.

Page 114



6.3.5 Dynamic Time warping

The recognition rate achieved when using a dynamic time

warping algorithm to match the unknown word to the

reference word was notably better than that when performing

a linear time-alignment of words. The improvement in the

word recognition rate for the 120-word vocabulary was

approximately 3.8%. In addition, the distance score for the

best word was reduced, on average, to about 0.8 of it's

original value (ie. the distance without DTW).

Page 115



6.4 Performance comparisons of Speech Recognition

Techniques

The performances of the LPC analysis method and the

cepstral analysis method (hereafter referred to as the LPC

method and Cepstral method) were examined using the 30, 60

and 120-word vocabularies described in section 5.4.

unfortunately, it was not possible to use a larger

vocabulary due to the limitations imposed by the computer

used. The tests were carried out by repeating each word in

the vocabulary a total of 10-15 times and noting the number

of incorrectly recognized utterances.

6.4.1 Performance using a 30-word Vocabulary

Figure 6.6 gives the results that were achieved for the

LPC and Cepstral methods using the 3D-word vocabulary.

Initially there was only one template for each word

contained in the library. In other words, each word to be

included in the library was spoken only once during the

training procedure and this utterance was used to build the

reference template.

The recognition rate achieved by the LPC method of speech

recognition for the 30-word vocabulary when using one

template per word was 93.6%. It was observed, however, that

almost 5% of the 6.4% error rate was made up of the same

three words, namely 'if', 'break' and 'subtract'.

By including an additional three templates for each of

these three words, the recognition rate was increased to

98.2%. In this case, the 1.8% error rate consisted of

random words and could therefore be attributed to varia­

tions in word pronunciations.

Page 116



In order to allow slightly more variation in the manner in

which a word was spoken, the number of templates was

increased further by including an additional two templates

for every word in the vocabulary. The library of reference

words now consisted of three templates for each word except

the three initial problem words, for which there were now

six templates. The desired effect was obtained and the

recognition rate increased to an impressive 99.1% (4 errors

out of a total of 450 utterances - 15 repetitions of each

word) .

The results for the Cepstral method on the above vocabulary

were only fractionally lower than those obtained by the LPC

method. At the three stages in the development of the above

vocabulary, the recognition rates yielded by the Cepstral

method were 91.8% with one template per word, 98.0% with

additional templates for problem wo r d s , and 98.7% for the

final vocabulary (6 errors in 450 utterances).

A =one template per word

B =additional templates
for prob lem words

99. 1

2
98 .7

o = LPC method

9 1.8

98.2

9~====::::::==::::1i
2
'"0::
c
.9
C
0'
o
o
<1l

0::

100%

80%
!; = Cepst ral method C = three templates per wo rd

A B c
Number of Templates

Fig. 6.6 Performance comparison using a 30-word

Computer Vocabulary

Page 117



6.4.2 Performance using a 60-word Vocabulary

The tests that were performed on the 60-word computer

vocabulary were similar to those carried out on the 30-word

vocabulary.

After building an initial library consisting of one

reference template per word, .the performance of each

technique (ie. LPC method and cepstral method) was studied.

In view of there being a limitation on the maximum number

of reference templates allowed (128 per vocabulary), it was

not possible to include additional templates for every word

in the vocabulary and then still more for the problem

words. The performance when using this size vocabulary was

optimized by adding extra templates for only those words

that were incorrectly recognized or words that showed a

considerable probability of being incorrectly recognized

(based on their distance scores) . Additional templates were

obviously not included for words that were always correctly

recognized.

The final library of reference templates was made up as

follows: six words were each described by five templates,

seven words used three templates each, thirty words each

had two templates and the remaining seventeen words were

described by only one template. Using this data base, the

recognition rate achieved for the Cepstral method was 97.8%

and for the LPC method it was 98.7%. These figures

represent 13 errors and 8 errors respectively out of a

total of 600 utterances - 10 repetitions of each word.

The performance improvement as a result of optimizing the

set of reference templates as described above was very

substantial - the recognition rates for both methods when

using only one reference template per word were slightly

above 90%.

Page 118



6.4.2 Performance using a 120-word Vocabulary

The full potential of the LPC and Cepstral methods was not

reached when using the vocabulary of 120 airline terms.

This was again due to the 128-template limitation which in

this case allowed only eight words to be described by two

reference templates.

This problem was lessened, however, by the fact that, as

was the case with the first two vocabularies, it was only

a few words that contributed towards the majority of the

errors. Having constructed a library consisting of one

reference template per word, an examination was made of the

results achieved and the eight words generating the most

errors were isolated. The recognition rate for the initial

set of reference templates was 89.3% for the LPC method and

87.0% for the Cepstral method. Furthermore, it was found

that these eight words collectively contributed towards

approximately 78% of all the errors.

By including an additional template for each of the eight

words selected, the recognition rates improved to 94.6% and

91.7% for the LPC and Cepstral methods respectively. Based

on these improvements and on the results achieved when

using the smaller vocabularies, it is the firm belief of

the author that if a library consisting of 3-5 reference '

templates per word had been used, recognition rates very

much closer to 100% would have been achieved.

Page 119



100%

2
'"a:
c
o..
'c
Olo
U
ID
a:

80%

99.0

.... ....-0. •
. , - : " LJ,

8~: /_ / 98 0

87.0
o =LPC method

t; = Cepstral method

A =one template per word

B - addition al template
- for 8 problem words

C - predict ed results with
- 3-5 templates per word

A B

Number of Templates

C

Fig. 6.7 Performance comparison using a 120-word

Airline vocabulary

Page 120



6.5 comparison of Recognition Times

It has already been mentioned that the zero-crossing

technique provided real time performance. For the remaining

three techniques, the time taken to recognize a word was

made up of two components. The first being the time taken

to determine the set of parameters (coefficients) for the

unknown spoken word, and the second being the time required

to compare these parameters to those belonging to all the

words in the current vo~abulary. It should be clear that

the former time period is approximately equal to the time

per word required to train the system.

Table 6.1 details these recognition times (average values

for a vocabulary of 120 wor d s on a 12MHz PC-AT computer).

-- --

Recognition Time to Compute Time to Compare Total

Technique Parameters Word to Templates Time

Zero-Cross - - -
Auto-Corr 14s 9s 23s

Cepstral 17s 10s 27s

LPC 16s 16s 32s

Table 6.1 comparison of Word Recognition Times

From the above results it can be seen that Ikatura' s

distance measure (for LPC coefficients) is the most

computationally severe method of word comparison . It should

be noted that the time of 17s to determine the cepstral

coefficients could possibly be reduced since they were, for

the purposes of this study, determined indirectly from the

LPC coefficients.

Page 121



6.6 Further Discussion of Results

It has been shown that of the four speech recognition

techniques implemented, the one that yielded the best

performance was based on an LPC analysis and made use of

a distance measure (log likelihood ratio) proposed by

Ikatura. This was not too surprising since it is one of the

most popular methods currently being used in speech

recognition systems.

A point worthy of mentioning is that the increase in error

rate was not proportional to the vocabulary size. It is

especially encouraging to compare the recognition rate,

when using only one template per word, of 89.3% for the

120-word vocabulary with the 93.6% obtained when using the

30-word vocabulary.

Page 122



Chapter 7
CONCLUSION

The sUbject of speech recognition was studied and most 'o f

the speech recognition techniques used to date were

investigated. Four speech recognition techniques for

isolated-word speaker-dependent applications were imple­

mented and the effects of various parameters influencing

their performance were studied experimentally. The

performances of the four techniques were also compared.

One of the major problems encountered during the course of

this work was the lack of practical literature on the

implementation of a speech recognition system. Although

there are numerous books that deal with the broad concepts

of speech recognition and it's associated problems as well

as a large number of papers dealing with specific topics,

techniques and the results attained, it was found that very

seldom was there much information pertaining to how exactly

these results had been achieved.

It is therefore hoped that this thesis provides, in one

book, a fairly comprehensive description (without too much

emphasis on the theory which may be found in the

references given) of the various techniques that may be

used in implementing a speech recognition system. In

Page 123



addition, it was the goal of the author to provide anyone

interested in further research on this topic with enough

information to readily continue where this work ends. It

is for this reason that the software that was developed to

implement the speech recognition system capable of

achieving the high recognition accuracies described has

been included in an appendix.

The simplest technique, one that used zero-crossings and

energy in it's recognition process, yielded a recognition

rate of only 92.6% on a la-digit vocabulary. A better

performance was not expected and the reason for implement­

ing this technique was to demonstrate that a speech

recognition system with a very limited vocabulary can be

implemented in real time on an IBM pc. The performance of

such a system can be improved considerably by choosing a

vocabulary of 10 acoustically very different words as

opposed to 10 digits. Such a vocabulary could find use in

the control of machinery where only a few commands are

required.

The technique that yielded the highest recognition accuracy

was one that used LPC coefficients, with Ikatura's distance

measure and a filter order of 10. The frames were of 45ms

duration and spaced 15ms apart, the speech signal was pre­

emphasized and a Hamming window was placed over each frame.

The test utterance was matched onto each reference word

using a dynamic time warping algorithm. The recognition

rate achieved was 98.7% for a 60-word vocabulary. This

performance could have been improved even further by the

use of additional templates for each word in the vocabu­

lary.

Page 124



Although, after many years of effort, the goal of a high

performance speech recognition system for general use still

eludes us, substantial progress has been made. As tech­

nology continues to move forward at its formidable pace,

so will progress in area of speech recognition. However,

performance equal to that of a human will, if ever

achieved, remain out of reach for some years to come.

Page 125



Appendix A
TABLE OF PHONETIC SYMBOLS

The phonetic symbols for the following consonants are the same

as their letters in the conventional alphabet: b, d, f, g, h,

k, 1, m, n, p, r, s, t, v, w, and z. The following table lists

the phonemes according to the International Phonetic Alphabet

as well as an orthographic representation [24].

Page 126



PHONETIC ORTHOGRAPHIC

SYMBOLS REPRESENTATION PRONOUNCIATION

III III kit

lel IEI dress

I~I lael trap

101 101 cloth

11\1 IAI strut

lul IUI foot

1;1 lel attain

Ijl Ijl yes

1'71 Ingl banq

li:1 li:1 fleece
la:1 la:1 bath

10:1 10:1 north
lu:1 lu:1 goose
I~ :1 IE:I fern
leII leII pray
laII laII buy
loll loll choice
lavl laUI mouth
l"Ual leUI loan
11<;1 IIel near
lE;' I IEel bear
IlIa I IUel cure
ISI Ishl dish
lel Ithl path
131 Izhl rouqe
Itrl Itshl catch
Id'51 Idzhl bridqe

Table of Phonetic Symbols

Page 127



Appendix B
ST4303 AID CONVERTER & INTERFACE CARD

ST4303 specifications

The ST4303 is a 32-channel, 12-bit differential input analogue
to digital converter made by Applied Micro Technology Inc. for
the STD BUS environment.

INPUT CONNECTOR TYPE

AID CONVERTER TYPE

CMRR

SETTLING TIME

CONVERSION TIME

INPUT IMPEDENCE

17 pin .10" x .10"
(mates with Ansley 609 3400)

Burr Brown ADC84KG-12

90dB

< 50 J.l.s

< 20 J.l.s
/

10 GO

VOLTAGE REQUIREMENTS +15V
-15V
+5V

80 mA

80 mA

100 mA

I/O ADDRESSING

CARD DIMENSIONS

CARD FORMAT

Any four consecutive addresses
between - OOh and FFh

4.5" x 6.5"

STD bus

Page 128



...- ..c.>
'"+

'rfM-'
.,

~
~i" .

~ I~ , to s
~{ ~I11'

~~ 14"
:7..

'I· • Oft .. ..
~ :: .. .. ~ :s I • t
~
rt~~:l~ll~q ...

~

• I; , :: : ;:

:c ~ ~ ;. ~ ~

•

circuit Diagram of ST4303 AID Board

Page 129



ST4303 to IBM PC Interface Card

The figure below shows the interface circuit that was designed
to connect the ST4303 AID board to an IBM PC. It should be
noted that this inteface card is not a general STD bus to PC
bus interface s ince only those signals used by the ST4303 were

decoded.

PC bus STD bus

DO
DO

D1
01

02 02

03 03

D4 D4

os os
lJ6 os
07 07

AEN

A1S

A14

A13

A12

An A1

AlO lVl

1Y2

A9 lV3 ,."

N3 ::l 1Y4 AS

A7 ~ 2Yl

,." ;! 2Y2

10:> 2Y3
A4

M 2Y4

+5'1

A3

A2
Al
AO

VD CH ROY
RESETORV

IOW
IOR

GNO

1Al lY1

1A2 1Y2
lA) 1Y3

lA4

~
1Y4

2Al 2Yl .....
2A2 ;! 2Y2 - ....
2A3 2Y3

2A4 2Y4

i
GND

1
+Vcc f----

~
2G

1

+

A)

A2

Al

'"WAIT
RESET •

WR
AD

GNO

Circuit for ST4303 to IBM PC Interface

Page 130



Appendix C
INPUT FILTER AND AMPLIFIER

The diagram overleaf illustrates the circuit for the amplifier

and two filters described in section 5.2.3.

Page 131



I Amplif ier .. 1....<-------------- High Pass Filter 075HzJ -I

.. I

5kO

47650pF

I

LM741

121<0

~+

I 1+

14kO

LM141

17440 pF

Low Pass Filter (3.2kHzJ

10k

12770 pF

I

'"OP227CY

8880 pF

100k

10k

1M

101<

---.IV\/'---'-- +

o....
11
0
~....
rT

HI
0
11

H

tU t:I
Ol

ttj

IQ ~

ID rT

I-' ~

w ....
l\.) ....

rT
(1)
11
(I)

PI
t:I
PI

!........
HI....
(1)
11

I
f-



Appendix D
SOFTWARE LISTINGS

The listings given in this appendix provide the reader with

the minimum software required to implement the speech

recognition system that was developed for this study. The

parameters such as frame length, filter order, endpoint

detection thresholds, etc. are set to values that were

found to provide the best performance when using Ikatura's

distance measure for LPC coefficients. It should be noted

that the given program represents only a single system and

the user is not given the capability of dynamically

changing any of these parameters.

Use is made of 1Mb of expanded memory (EMS), giving a

maximum vocabulary size of 128 words. For implementation

on a PC without EMS, the program may be modified to use

only the memory below 640k, although the maximum vocabulary

size (without using disk storage) will be limited to about

60 words.

The first listing is of the header file (BIG_MESS. H)

containing all the screen messages. The listing for the

main program (BIG_EARS. C) begins on page 139.

Page 133



**************************************************************************/
* */
* BIG MESS.H */
* ------------ */
* */
* Header file to be included in the BIG_EARS program. */
* contains all the windowed messages and prompts. */
* */
* */
* by R C PITCHERS */
* */
**************************************************************************/

/* Foreground & Background Colours */define black 0
define blue 1
define green 2
define cyan 3
define red 4
define magenta 5
define brown 6
define light_grey 7

define dark_grey 8
define light_blue 9
define light_green 10
define light_cyan 11
define light_red 12
define light_magenta 13
define yellow 14
define white 15
define blink 128

include " c onio.h"

'o i d Welcome_Message (void)

clrscr() ;
window (8,4, 72,21);
textbackground (light_grey);
clrscr() ;
window (10,5, 70,20);
textcolor (yellow);
textbackground (red);
clrscr() ;

/* Foreground Colours Only */

gotoxy(7,5); cprintf(II
gotoxy(7,6); cprintf(II
gotoxy(7,8); cprintf("
textcolor (white);
gotoXY(7,11) ;cprintf(II
gotoxy(7,12) ;cprintf(II

Welcome to the ")
BIG EARS Speech Recognition System. 11)

Please speak clearly and one word at a time. ")

Do you want to Train the system or ")
Load an existing vocabulary (T/L)? ")

Page 134



( 11 11 ") ;
(" ");

BIG EARS Speech Recognition System");

Did Training Message (void)

window (8,4, 72,21);
textbackground (red);
clrscr();
window (10,5, 70,20);
textcolor (white);
textbackground (cyan);
clrscr() ;
gotoxy(7,6); cprintf("In order to train this speech recognition system,")
gotoxy(7,7); cprintf("each word that is to be included in the chosen 11)
gotoxy(7,8); cprintf("vocabulary, must be entered through the keyboard ")
gotoxy(7,9); cprintf("and then said when prompted. 11)
textcolor (yellow);
gotoxy(7,12);cprintf(" Press any key to continue ... ")
getch() ;

oid Setup_Main_Screen (void)

int n;

window (1,1, 80,5);
textcolor (yellow);
textbackground (red);
clrscr() ;
gotoxy (2, 1); cprintf (II rrh=====================II);

gotoxy (40,1); cprintf (" u");
gotoxy (2, 5); cprintf (1111 11);
gotoxy (40,5); cprintf (" 1111);
for (n=2 ; n <= 4 ; n++) {

gotoxy (2, n); cprintf
gotoxy (79,n); cprintf

}
textcolor (white);
gotoxy (10, 3); cprintf ("
textcolor (yellow);
cprintf (" by R C Pitchers ll ) ;

window (1,6, 80,24);
textbackground (cyan);
textcolor ' (yellow) ;
clrscr() ;
gotoxy (2, 1); cprintf (II rrh=====================II);

gotoxy (40, 1); cprintf (" I")·
gotoxy (2, 19); cprintf (1111 Ill);
gotoxy (40,19); cprintf (" 1111);
for (n=2 ; n <= 18 ; n++) {

gotoxy (2, n); cpr~ntf C" 11") ;
gotoxy (79,n); cprlntf (" ");

}
window (3,7, 78,23);
textbackground (cyan);
textcolor (white);
clrscr() ;

Page 135

/* Main working window */
/* 17 lines x 76 columns */



aid Clear_Main_Screen (void)

window (3,7, 78,23);
textbackground (cyan);
textcalor (white);
clrscr () ;

/* Main working window */
/* 17 lines x 76 columns */

oid Save_Vocab_Message (void)

Do you want to save this vocabulary (Y/N) ?

window (14,13, 67,17);
textcolor (white);
textbackground (red);
clrscr() ;
gotoxy(2,1);cprintf("~~~~~~~~~~~~~~~~~~~~~~~~~~9

gotoxy(2,2) ;cprintf("
gotoxy(2,3);cprintf("
gotoxy(2,4) ;cprintf("
gotoxy(2,5);cprintf(ll~~~~~~~~~~~~~~~~~~~~~~~~~~~

"aid Which_Algorithm_Message (void)

1 = LPC Coeffs (Ikatura's Measure)
2 = Cepstral Coefficents
3 = Autocorrelation + LPC Coeffs
4 = Zero-Crossing + Energy Difference

Which algorithm would you like to use?

window (15,10, 65,19);
textcolar (white);
textbackgraund (red);
clrscr() ;
gatoxy(2,1); cprintf(' rr==~~~~~~~~~~~~~~~~~~~~~~~===i1')
gotoxy(2,2); cprintf( )
gotoxy(2,3); cprintf( )
gotoxy(2,4); cprintf( )
gotoxy(2,5); cprintf( )
gotoxy(2,6); cprintf( )
gotoxy(2,7); cprintf( )
gotoxy(2,8); cprintf( )
gataxy(2,9); cprintf( )
gatoxy(2,10) ;cprintf( )

Press any key to continue ...

Computer now ready to recognize these words

'aid Ready_To_Recognize_Message (void)

window (14,12, 67,18);
textcolor (white);
textbackground (red);
clrscr() ;
gatoxy(2,1);cprintf("~~~~~~~~~~~~~~~~~~~~~~~~~~~

gataxy(2,2) ;cprintf("
gotoxy(2,3) ;cprintf("
gatoxy(2,4) ;cprintf("
gotoxy(2,5);cprintf("
gotoxy(2,6);cprintf("
gotoxy(2,7);cprintf("~~~~~~~~~~~~~~~~~~~~~~~~~~d

Page 136



getch() ;
window (3,7, 78,23);
textbackground (cyan) i
textcolor (white);
clrscr() ;

/* Main working window */
/* 17 lines x 76 columns */

window (49, 8, 76, 14);
textcolor (black);
textbackground (light_grey);
clrscr() ;
gotoxy (2, 1); cprintf (" ");
gotoxy (2, 2); cprintf (" Are you happy with 11) ;
gotoxy (2, 3); cprintf (" that input, or would ")i
gotoxy (2, 4); cprintf (" like to repeat it? ");
gotoxy (2, 5); cprintf (" ");
gotoxy (2, 6); cprintf (" Enter R to repeat ");
gotoxy (2, 7); cprintf (" ");
textcolor (blue);
gotoxy (7, 6); cprintf ("Enter R to repeat");

'oid Clear_Was_Input_OK_Message (void)

textcolor (white);
textbackground (cyan);
clrscr();
window (3, 7, 78, 23) ;

window (57, 19, 77, 23) ;
textcolor (white) ;
textbackground (magenta) ;
clrscr() ;
gotoxy (2, 1) ; cprintf (" ") ;
gotoxy (2, 2) ; cprintf (" Speak when ") ;
gotoxy (2, 3) ; cprintf (" you are ") ;
gotoxy (2, 4) ; cprintf (" Ready ") ;
gotoxy (2, 5) ; cprintf (" ") ;

roid Processing_Input_Message (void)

window
textcolor
textbackground
clrscr () ;

(56, 18, 77, 23);
(white) ;
(blue) ;

Page 137



gotoxy (2, 1) ; cprintf (11 11) ;

gotoxy (2, 2) ; cprintf (11 11) ;

gotoxy (2, 3) ; cprintf (11 Processing 11) ;

gotoxy (2, 4) ; cprintf (11 Input Word 11) ;

gotoxy (2, - 5); cprintf (11 11) ;

gotoxy (2, 6) ; cprintf (11 11) ;

oid Comparing_Input_Message (void)

(51, 17, 77, 23);
(yellow) ;
(blue) ;

Comparing Input
Word to Library of

Reference Words

window
textcolor
textbackground
clrscr() ;
gotoxy (2, 1);
gotoxy (2, 2);
gotoxy (2, 3);
gotoxy (2, 4);
gotoxy (2, 5);
gotoxy (2, 6);
gotoxy (2, 7);

cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (

rr================;'III) ;
11) ;
11) ;
11) ;
11) ;
11) ;

I.!:==============::!J 11) ;

'o i d Working Message (int Background Color)- -

Working ...

cprintf (11 11 Ill) .
~~~~~~~ ~:: 1 :""~) "~..
cprintf (11 .
cprintf (11 l!:=========:=! 11) ;

(57, 19, 77, 23);
(white) ;
(Background_Color) ;

window
textcolor
textbackground
clrscr() ;
gotoxy (2, 1);
gotoxy (2, 2);
gotoxy (2, 3);
gotoxy (2, 4);
gotoxy (2, 5);

'o i d Clear_Little_Message (void)

textbackground (cyan);
textcolor (white);
clrscr() ;
window (3, 7, 78,23);

'o i d Reset_Screen (void)

textcolor (white);
textbackground (black);
window (1,1, 80,25);
clrscr() ;

Page 138

**/
* */
* BIG EARS.C */
* ------------ */
* */
* Speech recognition system implementing four different */
* recognition techniques. */
* */
* Use is made of LPC coefficients, Cepstral coefficients, */
* Autocorrelation coefficients, energy and zerocrossings. */
* */
* */
* by R C PITCHERS */
* */
**/

:de f i ne
:de f i ne
:de f i ne
:de f i ne
:define
:define
'd e t i.ne
'd e t i ne
'd e r i.ne
'd e t i.ne
'd e r i.ne
'd e f'Lne
=de f i ne
=de f i ne
'de f i ne
lde t i.ne
ld e f i.ne
ldefine

FRAMESIZE
OVERLAP
SFRAMESIZE
ORDER
E LOWER
E UPPER
ZCTHRESH
ZCNUMTHR
CONSECTHR
BEGFRAMES
ENDFRAMES
MAXWORDS
MAXFRAMES
BEGSAMPLES
ENDSAMPLES
MAXSAMPLES
BUFFERSIZE
PI

450 /* No. samples in one full frame */
3 /* Adjacent frame overlap */
FRAMESIZE/OVERLAP /* Small frame size to find end pts*/
10 /* Filter order for LPC coeficients*/
SFRAMESIZE*lOOOL /* Lower energy threshold level */
SFRAMESIZE*20000L /* Upper energy threshold level */
SFRAMESIZE/5 /* Zero crossing threshold level */
3 /* No. times ZCTHRESH must be exceeded */
4 /* No. times to consecutively exceed ZCTHRESH */
10 /* No. frames to check prior to initial beg prtt */
70 /* No. frames to sample after initial begin pnt */
128 /* Max no. of words in library */
BEGFRAMES+ENDFRAMES /* Max no. of small frames per wd*/
BEGFRAMES*SFRAMESIZE
ENDFRAMES*SFRAMESIZE
MAXFRAMES*SFRAMESIZE
(MAXFRAMES-OVERLAP+1) * (ORDER+1)
3.1415926536

Ide f i ne
Ide f i ne
Ide f i ne
Ide f i ne

REGO
REG1
REG2
REG3

Ox200
Ox201
Ox202
Ox203

/* Register contains least sig. byte */
/* Selects channel + MSB starts conv. */
/* Holds 4 MSBs of data + EOC bit */
/* Initialize by sending 99h to REG3 */

Ide f i ne
ld e t i ne
ld e r i ne

INIT
START
RES:7.T

Ox99
Ox88
OX08

/* Initialize A/D board
/* Select channel + start command
/* Reset start conversion bit

Page 139

*/
*/
*/

,---*/
, Define prototypes for function calls. */
,---*/
Lnclude
Lnclude
Lnclude
i.nclude
include
include
include
include
include

include

"dos.h"
"math.h"
"float.h"
"stdlib.h"
"stdio.h"
"conio.h"
"fcntl.h"
"io.h"
"alloc.h"

<BIG MESS.H>

oid
oid
oid
oid
oid
oid
oid
ouble
oid

Delay (int Del);
Sample Word (int Mode) ;
Train System (void);
Recognize_Word (void) ;
Modify_Vocabulary (void);
Save_Vocabulary (void);
Load_Vocabulary (void) ;
Frame Distance (int UnknownFrame, int RefFrame);
Allocate_LibrarY_Memory (void);

nt
oid
ouble far

Alloc EMS
Free EMS
*Map_EMS

(int NumPages) ;
(int Handle);
(int Handle, int WordNum) ;

-----------------------------/
* Declare global variables. */
'*-----------------------------*/
loub l e
.nt
:har
.nt
.nt
.nt
.nt
.nt

.nt

.nt

.nt

Hamming_Lookup[FRAMESIZE];
NumFrames[MAXWORDS];
WordNames[MAXWORDS] [20];
WordTotal;
Length;
Num_Frames;
Zero;
ZC_Zero;

EMS Handle;
Distance_Type;
Start_Frame, End_Frame;

DTW_Flag;
Hamming_Flag;
Preemphasis_Flag;

/*
/*
/*
/*
/*
/*
/*
/*

Lookup table used for Hamming Window */
No. of frames in each word in libary */
Arrays each holding the word name */
Total number of words in library */
Number of short frames in input word */
No. overlapping frames in input word */
True A/D offset for zero volts. */
Adjusted offset used to find ZCs */

/* Handle used for EMS allocation */
/* Current distance type selected */
/* 2 frames marking word end pnts */

/* Flags used to indicate whether */
/* or not to use DTW, a Hamming */
/* window and pre-emphasis. */

Page 140

.n t

.n t

.nt

.n t

.n t

.nt

zcrossi
ZC_Buffer[MAXFRAMES]i
Ref ZC Buffer[MAXFRAMES]i
Temp_ZC_Buffer[BEGFRAMES]i
far *ZC Library Addr[MAXWORDS]i
far *ZC=Library_ptri

/* Zero crossings of one frame */
/* Zero-crossings of input word */
/* Temp buffer for one ref word */
/* Temp buffer to find begin pnt. */
/* Ptrs to library of z-crossings */

msigned long
msigned long
msigned long
msigned long
msigned long
msigned long

energYi /* Total energy content of 1 frame*/
E_Buffer[MAXFRAMES]i /* Energy of input word */
Ref_E_Buffer[MAXFRAMES]i /* Temp buffer for one ref word */
Temp E BUffer[BEGFRAMES]i/* Temp buffer to find begin pnt. */
far *E-Library Addr[MAXWORDS]i /* Ptrs to energy library. */
far *E=Library=ptri

louble Ref Coeff[MAXFRAMES-OVERLAP+1] [ORDER+1]i /* Temp buffer for 1 ref word
louble LPC Coeff[MAXFRAMES-OVERLAP+1][ORDER+1]i /* LPC coefficients of inp wd
louble Cepstral [MAXFRAMES-OVERLAP+1][ORDER+1]i /* Cepstral coeffs of inp wd
louble Auto Corr[MAXFRAMES-OVERLAP+1][ORDER+1]i /* Auto-corr coeffs of inp wd

louble far *Log_Power_Addr[MAXWORDS]i
louble far *Log_Power_Ptri
louble Log_Power[MAXFRAMES-OVERLAP+1]i

/* Ptrs to library of Log powers */
/* used for Ikatura's measure only*/
/* Log powers for one word. */

loub l e
.n t
nt
nt
nt

far *Coeff_Ptri
far *Sample_ptri
far *Sample Buffer start Addr1i
far *Sample=Buffer=start=Addr2i
far *True_Start_Addressi

nt far *Temp_Sample_Ptri
nt far *Temp_Sample_Buffer_Start_Addri

nt Global_Int_DummYi
nt Global_Int_Dummy_Buffer[MAXFRAMES]i

nsigned long
nsigned long

Global_Long_DummYi
Global_Long_Dummy_Buffer[MAXFRAMES]i

Page 141

'**/'* Main program starts here. */
'**/

'oid main (void)

int
int
long

c, n, p, k, i, j, w;
data;
Zero_Sum;

/*--*/
/* Allocate memory space in the far heap for the buffer to hold the */
/* samples of one word. Also for the temporary buffer holding samples */
/* until the preliminary starting point is found. */
/*--*/

Sample_Buffer_Start_Addr1 = farcalloc (MAXSAMPLES, sizeof(int»;
if (Sample_Buffer_Start_Addr1 == NULL) {

printf("\n\nNot enough memory in far heap for sample buffer");
getch(); return;

}
Sample_Buffer_Start_Addr2 = Sample_Buffer_Start_Addr1 + BEGSAMPLES;

Temp_Sample_Buffer_Start_Addr=farcalloc (BEGSAMPLES, sizeof(int»;
if (Temp_Sample_Buffer_Stait_Addr == NULL) {

printf("\n\nNot enough memory in far heap for temporary sample buffer"
getch(); return;

}

/*----------------------------*/
/* Initialize the AID Board */
/*----------------------------*/

outportb (REG3, INIT);
outportb (REG1, START);
outportb (REG1, RESET);

1*-- *1
1* Setup a lookup table used for doing the Hamming window calculation */
1* The contents are */
1* */
1* 0.54 0.46 * cos (n * 2 * pi I (FRAMESIZE-1» */
1* *1
1* Remember that a window is placed over n frames of SFRAMESIZE samples */
1* where n = ·QVERLAP */
I*----------------~----------------------------------- */

for (n=O ; n < FRAMESIZE ; n++)
Hamming_Lookup[n] = 0.54 - 0.46 * cos (n * 2 * PI / (FRAMESIZE-l»;

Page 142

/*---*//* Determine the digital value of zero by averaging 10000 samples. */
/* store this value, to be used as A/D offset, in a variable Zero. */
/* Set ZC Zero to be 10 units higher. */
/*--------=--*/

Zero Sum = 0;
for (n=O ; n < 10000 ; n++) {

outportb (REG1, START);
outportb (REG1, RESET);
inportb (REG2);
while ((_AL = _AL & OXSO) 1= 0)

inportb (REG2);
inportb (REG2);

AH = AL;
Inportb (REGO);
data = _AX & OXOFFF;
Zero Sum = Zero Sum + data;
Delay (25);

/* Select channel + start comand */
/* Reset start conversion bit */
/* Get EOC bit (bit 7 of REG2) */
/* wait until conv. complete */

/* Get most significant 4 bits */
/* Move them into AH */
/* Get lower 8 bits into AL */
/* Set top 4 bits of word to zero*/

/* Delay to set sample frequency */

Zero_Sum / 10000;
= Zero_Sum;
= Zero + 9;

}
Zero Sum =
Zero
ZC Zero

/*---*/
/* Display an introductory message and ask whether the user wants */
/* to train the system or load an existing vocabulary. */
/*---*/

Welcome_Message() ;

/* Do you want to save this vocab */
/* If so, call saving procedure */

GetInput1:
if ((c=getch(»=='T' : I c=='t') (

Train_system() ;
Clear_Main_Screen() ;
Save_Vocab_Message();
if ((c=getch(»=='Y' :: c=='y')

Save_Vocabulary() ;

/* Call training procedure */

}
else if (c=~'L' l I c=='l') (

Setup_Maln_Screen();
Load_Vocabulary();
Clear_Main_Screen();
gotoxy (10, 5); cprintf (liDo you want to modify this vocabulary? ");
if ((c=getch())=='Y' :: c=='y') (

Modify_Vocabulary() ;
Clear_Main_Screen();
Save_Vocab_Message() ;
if ((c=getch ()) == , Y, : I c== , y ,)

Save_Vocabulary() ;
}

}
else

goto GetInput1i
/* If input not T or L then */
/* get another input char */

Page 143

Clear_Main_Screen();
GetInput2:
gotoxy (5, 3); .
cprintf (" Do you want to use Dynamlc Time warping (Y/N) ?");
if «c=getch(»=='Y' I I c=='y')

DTW Flag = 1;
else if (c=='N' : I c=='n')

DTW_Flag = 0;
else

goto GetInput2;
GetInput3:
Clear Main Screen();
Which=AIgorithm_Message();
if «c=getch(»=='l')

Distance Type = 1;
else if (c=;;'2')

Distance~Type = 2;
else if (c=='3')

Distance Type = 3;
else if (c=;;'4')

Distance_Type = 4;
else

goto GetInput3;
Clear_Main_Screen();

/*--*/
/* If using Cepstral coefficients then convert all the LPC */
/* coefficients in the library to Cepstral coefficients. */
/*--*/

if (Distance Type == 2) {
Working_Message (light_grey);
for (w=O ; w < WordTotal ; w++) {

Coeff_Ptr = Map_EMS (EMS_Handle, w);
for (n=O ; n < NumFrames[w] ; n++) {

for (p=O ; P <= ORDER ; p++)
LPC_Coeff[n][p] = *Coeff_Ptr++;

/* Transfer one word of */
/* LPC coeffs from lib */
/* to current data seg. */

}
for (n=O ; n < NumFrames[w] ; n++) { /* Convert LPC coeffs */

Cepstral[n][l] = LPC_Coeff[n] [1]; /* to Cepstral coeffs. */
for (p=2 ; P <= ORDER ; p++) {

Cepstral[n][p] = LPC_Coeff[n][p] * Pi
for (k=l ; k < P ; k++)

Cepstral[n][p] -= LPC_Coeff[n][k] * Cepstral[n] [p-k];
}
for (p=2 ; P <= ORDER ; p++)

Cepstral[n][p] = Cepstral[n][p] / p;

}

}
Coeff_Ptr = Map_EMS (EMS_Handle, w);
for (n=O i n < NumFrames[w] ; n++) {

for (p=O ; P <= ORDER ; p++)
*Coeff Ptr++= Cepstral[n] [p];

}
}
Clear_Main_Screen() i

Page 144

/* Store Cepstral coefs */
/* in library. */

/*---*/
/* If using Ikatura's measure then convert all the LPC coefficients */
/* to the modified coefficients and calculate the log power constant. */
/*---*/

if (Distance_Type == 1) {

Working_Message (light_grey);
for (w=O ; w < WordTotal ; w++) {

/* Convert LPC coeffs */
/* to modified coeffs. */

/* Transfer one word of */
/* LPC coeffs from lib */
/* to current data seg. */

Log Power[n] = 0;
for-(i=O ; i <= ORDER; i++)

Log_Power[n] += LPC_Coeff[n][i] * LPC_Coeff[n] [i];

Ref_Coeff[n][O] = 1;
for (i=l ; i <= ORDER; i++) {

Ref_Coeff[n][i] = 0;
for (j=O ; j <= ORDER-i ; j++)

Ref_coeff~n][i] += LPC_Coeff[n][j] * LPC_Coeff[n] [j+i];
Ref_Coeff[n][l] = 2 * Ref_Coeff[n][i] / Log_Power[n];

}
Log_Power[n] = log (Log_Power[n]);

Coeff Ptr = Map EMS (EMS Handle, w);
for (n=o ; n < NumFrameS[w] ; n++) {

for (p=o ; p <= ORDER ; p++)
LPC_Coeff[n][p] = *Coeff_Ptr++;

}
for (n=O ; n < NumFrames[w] ; n++) {

}

}

Coeff_Ptr = Map_EMS (EMS_Handle, w);
Log_Power_ptr = Log_Power_Addr[w];
for (n=o ; n < NumFrames[w] ; n++) {

*Log_Power_ptr++ = Log_Power[n];
for (p=O ; P <= ORDER ; p++)

*Coeff Ptr++ = Ref_Coeff[n] [p];

/* Store modified coefs */
/* and log power in lib */

}
Clear_Main_Screen();

}

Page 145 .

/*---*//* Go into an infinite loop, recognizing spoken words. */
/* Hit any key to quit. */
/*---*/

Ready_To_Recognize_Message();
while (1) {

if (!kbhit(»
Recognize_Word();

else {
getch();
Clear Main Screen() ;
gotoxy (10~6); cprintf (liDo you want to quit? ");
if ((c=getch(»=='Y' I I c=='y') {

for (w=WordTotal-1 ; w >= 0 ; w--)
farfree (Log_Power_Addr[w);

for (w=WordTotal-1 ; w >= 0 ; w--)
far free (E_Library_Addr[w);

for (w=WordTotal-1 ; w >= 0 ; w--)
far free (ZC_Library_Addr[w);

farfree (Temp_Sample_Buffer_Start_Addr);
farfree (Sample_Buffer_Start_Addrl);
Free_EMS (EMS_Handle);
Reset_Screen () ;
return;

}
}

}

Page 146

'**/
'* Procedure to sample one word (after determining the endpoints). */
'* Calculate Autocorrelation coefficients, LPC coeffs and Cepstral */
'* coeffs - depending on the value of MODE passed to the procedure. */
'* If called by training procedure, then Mode = o. */
'* If called by recognition procedure, then Mode = Distance_Type. */
'****************************~***/

roid Sample_Word (int Mode)

int
int
int
int
double
double
double

int
int
int
long

c, n, m, f, k, p, M;
err = 0;
P_Start;
ZC_Count;
WSamps[FRAMESIZE];
Refl_Coeff[ORDER+1];
Sum, Residual, Temp;

Local_Dummy;
data, value;
Sign, PSign;
long_value;

/* Temporary counter variables */
/* Flag to check for singualar matrices */

/* Count no. times ZCTHRESH is exceeded */
/* Full-size frame of windowed samples */
/* Reflection coefficients of one frame */

Repeat:
zcross = 0;
energy = 0;

for (n=O ; n < MAXFRAMES
ZC_Buffer[n] = 0;
E_Buffer En] = 0;

}
for (n=O ; n < BEGFRAMES ;

Temp_ZC_Buffer[n] = 0;
Temp_E_Buffer En] = 0;

}

/* Initialize z-crossing counter */
/* Initialize energy to zero */

n++) {

n++) {

Speak_When_Ready_Message();
ZC_Count = 0;

. Temp_Sample_Ptr = Temp_Sample Buffer Start Addr;
for (f=O, m=O, n=O; ; m++)-{ - -

if (m == SFRAMESIZE) { /* If at the end of a frame, */
/* then save the zero-crossing */Temp_ZC_Buffer[f] = zcross; /* count and energy content of */Temp_E_Buffer[f] = energy; /* the frame. */

if (zcross >= ZCTHRESH) { /* If no. of zero crossings is > */ZC_Count++; /* ZCTHRESH then increment count */if (ZC_Count >= CONSECTHR) { /* If ZC_Count> consecutive */P Start = f; /* threshold, then stop. */break;
}

}

Page 147

else
ZC Count = 0;

/* Else if zcross not > threshold*/
/* then reset ZC_Count */

if (energy >= E_UPPER) {
P start = f;
break;

}

/* If energy > upper threshold
/* then stop.

*/
*/

zcross = 0;
energy = 0;
m=O;
f++;
if (f == BEGFRAMES) {

Temp_Sample_Ptr = Temp_Sample_Buffer_Start_Addr;
f = 0;

}
}

else {
Global_Int_Dummy_Buffer[f] = zcross;/*
Global_Long_Dummy_Buffer[f] = energy;/*
Global_Int_Dummy = 0; /*
Global_Long_Dummy = 0; /*
Local_Dummy = 0; /*
Local_Dummy++; /*

}

This dreadful piece of */
code attempts to keep the */
sample frequency constant */
at the frame boundaries. */
ie. So that there is no */
period without sampling */

outportb (REG1, START);
outportb (REG1, RESET);
inportb (REG2);
while « AL = AL & OX80) != 0)

inportb (REG2);

inportb (REG2);
AH = AL;

Inportb (REGO);
data = _AX & OXOFFF;
value = data - Zero;
*Temp_Sample_Ptr++ = value;
if (data < ZC_Zero)

Sign = 0;
else

Sign = 1;
if (n == 0)

n++; /*
else if (Sign 1= PSign) /*

zcross++; /*
PSign = Sign; /*
long_value = value; /*
energy += long_value * long_value; /*

/* Select channel+start comand*/
/* Reset start conversion bit */
/* Get EOC bit (bit 7 of REG2 */
/* Wait until conv. complete */

/* Get most significant 4 bits*/
/* Move them into AH */
/* Get lower 8 bits into AL */
/* Set top 4 bits of word to 0*/
/* Subtract the A/D zero */
/* Save the sampled value */

/* Sign = 0 if value negative */

/* Sign = 1 if value positive */

If first sample, dont compare */
If sign not equal to previous */
sign, then increment zcross */
Previous sign = present sign */
Convert value to long integer */
energy = energy + value*value */

}

Delay (25); /* Short delay to set sample freq*/

Page 148

/*--*/
/* Preliminary start of word has been found. Now sample for +- 0.8 secs */
/*--*/

Sample_Ptr = Sample_Buffer_Start_Addr2;

for (f=BEGFRAMES, m=O, n=O ; n < ENDSAMPLES ; n++, m++) {

if (m == SFRAMESIZE) {
ZC_Buffer[f] = zcross;
E_Buffer[f] = energy;
zcross = 0;
energy = 0;
m=O;
f++;

}

/* If at the end of a frame, */
/* then save the zero-crossing */
/* count and energy content of */
/* the frame. */

else {
Global Int Dummy Buffer[f] = zcross;
Glopal=Long_Dummy_Buffer[f] = energy;
Global_Int_Dummy = 0;
Global_Long_Dummy = 0;
Local_Dummy = 0;
Local_Dummy++;

}

}

outportb (REG1, START);
outportb (REG1, RESET);
inportb (REG2);
while «_AL = _AL & OX80) 1- 0)

inportb (REG2);

inportb (REG2);
AH = AL;

Inportb (REGO);
data = _AX & OXOFFF;
value = data - Zero;
*Sample. Ptr++ = value;
if (data < ZC_Zero)

Sign = 0;
else

Sign = 1;
if (Sign != PSign)

zcross++;
PSign = Sign;
long_value = value;
energy += long_value * long_value;

Delay (25) ;

/* Select channel + start comand */
/* Reset start conversion bit */
/* Get EOC bit (bit 7 of REG2 */
/* Wait until conv. complete */

/* Get most significant 4 bits */
/* Move them into AH */
/* Get lower 8 bits into AL */
/* Set top 4 bits of word to zero*/
/* Subtract the A/D zero */
/* Save the sampled value */

/* Sign = 0 if value negative */

/* Sign = 1 if value positive */
/* If sign not equal to previous */
/* sign, then increment zcross */
/* Previous sign = present sign */
/* Convert value to long integer */
/* energy = energy + value*value */

Page 149

/*--*/
/* Find end of word by searching backwards until energy < threshold. */
/* Then search forward from this point to see if zero-crossing rate */
/* is above the threshold value. Save the end frame number. */
/*--*/

f = MAXFRAMES-1i
while (E Buffer[f] < E LOWER && f > BEGFRAMES)

f--i
while (ZC_Buffer[f] > ZCTHRESH && f < MAXFRAMES)

f++;
End_Frame = f-1i

if (End_Frame < BEGFRAMES + ENDFRAMES/20)
goto Repeati

/* Anything this short must */
/* be a mouth noise. */

/*--*/
/* The preliminary beginning of the word was where the energy exceeded */
/* the upper threshold value or the zero-crossing count consecutively */
/* exceeded the threshold the required number of times. 0.2 seconds of */
/* samples prior to this point are stored in a circular buffer. Trans- */
/* fer these samples to the main buffer and then find where the energy */
/* first exceeded the lower threshold and where the zero-crossing rate */
/* was first greater than its threshold. Update the starting point */
/* accordingly. */
/*--*/

Sample Ptr = Sample Buffer Start Addr2i
Temp_sample_Ptr = Temp_sample_Buffer_start_Addr + (P_Start+1)*SFRAMESIZEi

for (n=O ; n < BEGSAMPLES ; n++) {
Sample_Ptr--;
Temp_Sample_Ptr--i
*Sample_Ptr = *Temp_Sample_Ptr;
if (Temp_Sample_Ptr -- Temp_Sample_Buffer_Start_Addr)

Temp_Sample_Ptr += BEGSAMPLESi
}

for (n=BEGFRAMES-1, f=P start . i n >= 0
ZC_Buffer[n] = Temp=ZC_Buffer[f];
~_Buffer [n] = Temp_E_Buffer [f];
If (f==O)

f = BEGFRAMES;
}

start_Frame = BEGFRAMES;

n--, f--) {

f = start Frame-1i
while «E=Buffer[f] >= E_LOWER) & (f >= 0»

Start_Frame = f--i
while «ZC_Buffer[f] >= ZCTHRESH) & (f >= 0»

start Frame = f--;

Page 150

Length = End_Frame - Start_Frame + 1;
Num Frames = Length - OVERLAP + 1;
True_start_Address = Sample_Buffer_Start_Addr1 + Start_Frame*SFRAMESIZE;

textcolor (light_grey);
gotoxy (58, 9); cprintf ("
gotoxy (58,10); cprintf ("
textcolor (white);

start = %d 11, start Frame);
End = %d 11, End_Frame);

}

/*---*/
/* If in training mode, ask the user if he is happy with the */
/* May he said the word. If not then grab it again. */
/*---*/

if (Mode == 0) {
Was_Input_OK_Message() ;
c = getch() ;
Clear_Was_Input_OK_Message() ;
if (c == IRIII c == Ir I)

goto Repeat;
}

Processing_Input_Message ();
for (n=O ; n < Length ; n++) {

ZC_Buffer[n] = ZC_Buffer[n+P_Start];
E Buffer En] = E Buffer [n+P_Start];

}

if (Mode <= 3)
for (p=O ; P < Num_Frames ; p++) {

/*---*/
/* Create the next frame of FRAMESIZE samples. */
/* These are also converted to float variables. */
/*--T------*/

Sample ptr = True Start Address + p*SFRAMESIZE;
for (n~o ; n < FRAMESIZE ; n++)

WSamps[n] = *Sample_Ptr++;

/*----------~---*/
/* Preemphasize this frame using y(n) = x(n) - 0 .95 * x(n-l) */
/*--*/

if (Preemphasis_Flag == 1) {
for (n = FRAMESIZE-1 ; n > 0 ; ri--)

WSamps[n] = WSamps[n] - 0.95 * WSamps[n-1];
WSamps[O] = 0.1 * WSamps[O];

Page 151

/*--*/
/* Place a Hamming window over this frame of samples. */
/* This is done using a look-up table. */
/*--*/

if (Hamming_Flag == 1) {
for (n=O ; n < FRAMESIZE ; n++)

WSamps[n] *= Hamming_Lookup[n];
}

/*---*/
/* Calculate the Autocorrelation coefficients. */
/*---*/

for (k=O ; k <= ORDER ; k++) {
Auto Corr[p][k] = 0;
for (n=o ; n < (FRAMESIZE-k) ; n++)

Auto Corr[p][k] += WSamps[n] * WSamps[n+k];
}

/*-----------------------------------*/
/* Calculate the LPC coefficients. */
/*-----------------------------------*/
if (Mode == 0 i I Mode == 1 I i Mode == 2) {

Refl_Coeff[O] = -Auto_Corr[p] [1] / Auto_Corr[p] [0];
LPC_Coeff[p][O] = 1;
LPC_Coeff[p] [1] = Refl_Coeff[O];
Residual = Auto_Corr[p] [0] + Auto_Corr[p] [1] * Refl_Coeff[O];

for (n=l ; n < ORDER ; n++) {
Sum = 0;
for (k=O ; k <= n ; k++)

Sum += Auto_Corr[p] [n-k+1] * LPC_Coeff[p] [k];
Refl_Coeff[n] = -Sum/Residual;
M = (n+1)/2;
for (k=l ; k <= M ; k++) {

Temp = LPC_Coeff[p][k] + LPC_Coeff[p] [n-k+1] * Refl_Coeff[n];
LPC_Coeff[p] [n-k+1] += LPC_Coeff[p][k] * Refl_Coeff[n];
LPC_Coeff[p][k] = Temp;

}
LPC_Coeff[p][n+1] = Refl_Coeff[n];
Residual += Refl_Coeff[n] * Sum;
if (Residual <= 0)

err++;
}

if (err > 0) {
textcolor (red);
gotoxy (10,16);
cprintf("WARNING: %d singular matrices in LPC calculation.",err)
textcolor (white);
getch();

}
}

Page 152

}

/*--*//* Calculate the Cepstral coefficients. */
/*--*/
if (Mode == 2) {

Cepstral[p][l] = LPC_Coeff[p][l]i
for (n=2 i n <= ORDER i n++) {

Cepstral[p][n] = LPC Coeff[p][n] * ni
for (k=l i k < n ; k++)

Cepstral[p][n] -= LPC_Coeff[p][k] * Cepstral[p] [n-k];
}
for (n=2 ; n <= ORDER ; n++)

Cepstral[p][n] = Cepstral[p][n] / n;
}

Page 153

' **/'* Procedure to train the recognition system. */
'**/

roid Train_System (void)

int c, n, p, W;
int line;

Training Message();
Setup Main Screen() ;
Get Number-Words:
gotoxy (10~ 5); cprintf ("How many words to be entered? 11);
textcolor (yellow);
cscanf ("%d", &WordTotal); getch();
textcolor (white);

if (WordTotal > MAXWORDS) {
WordTotal = MAXWORDS;
Clear_Main_Screen() ;
gotoxy (10, 3);
cprintf ("Easy now!! The maximum number of words is %d", WordTotal);
goto Get_Number_Words;

}

Allocate_Library_Memory() ;

/*---~-------------------*/
/* Ask whether or not the speech must be pre-emphasized and if a */
/* Hamming window must be placed over each frame. */
/*---*/

Clear_Main_Screen() ;
Getlnput1:
gotoxy (5, 3);
cprintf(" Do you want to place a Hamming Window over each frame (Y/N) ?")
if «c=getch(»=='Y' I I c=='y')

Hamming_Flag = 1;
else if (c=='N' I I c=='n')

Hamming_Flag = 0;
else

goto Getlnput1;

Clear_Main_Screen();
Getlnput2:
gotoxy (5, 3);
cprintf (11 Do you want to pre-emphasize each frame (Y/N) ?II);
if «c=getch(»=='Y' I I c=='y')

Preemphasis Flag = 1;
else if (c=='N' I I c=='n')

Preemphasis_Flag = 0;
else

goto Getlnput2;

Page 154

/*--*/
/* Sample the requested number of words and store their parameters. */
/*--*/

for (w=O ; w < WordTotal ; w++) {

/* Delay to stop keyboard */
/* click being picked up */
/* by the microphone. */
/* Approx 250 millisecs */

/* Get the word. */
/* Save the no. of frames */

/* Store the LPC coeffs */
/* in library. */

}

line = w+2-(w/15) *15;
if (line == 2)

Clear Main Screen() ;
gotoxy (S, line);
cprintf (IlPrint word to be entered: ");
textcolor (yellow);
cscanf (Il%Sll, &WordNames[w] [0]); getch();
textcolor (white);
Delay (32000);
Delay (32000);
Delay (32000);
Delay (32000);

sample_Word (0);
NumFrames[w] = Num_Frames;

Coeff_Ptr = Map_EMS (EMS_Handle, w);
for (n=O ; n < Num_Frames ; n++) {

for (p=O ; P <= ORDER ; p++)
*Coeff_Ptr++ = LPC_Coeff[n] [p];

}
ZC_Library_Ptr = ZC_Library_Addr[w];
for (n=O ; n < Length ; n++)

*ZC_Library_Ptr++ = ZC_Buffer[n];
E_Library_Ptr = E_Library_Addr[w];
for (n=O ; n < Length ; n++)

*E_Library_Ptr++ = E_Buffer[n];

Page 155

/* Store zero-crossing
/* counts in library.

/* Store frame energy
/* contents in library.

*/
*/

*/
*/

'**/
'* Procedure to add words to or modify words in the vocabulary. */
'**/

roid Modify_Vocabulary (void)

int c, n, p, W;
int WordNum;

Modify Another:
Clear_Main_Screen();
gotoxy (10,5); cprintf("Modify a word, Add a word or Nothing? (M/A/N) ");

if «c=getch(»=='M' I I c=='m') {
Get Word Number:
gotoxy (10,7); cprintf("What is the number of the word to modify? ");
textcolor (yellow);
cscanf ("%d", &WordNum); getch();
textcolor (white);
if (WordNum > WordTotal)

goto Get Word Number;
gotoxy (10,-9); -
cprintf ("ls this the word \"%S\" ? ", WordNames[WordNum-1]);
if « c=getch ()) ! = , y , && c! = , Y') {

Clear_Main_Screen() ;
goto Get_Word_Number;

}
w = WordNum-1;

}

else if (c=='A' I I c=='a') {
if (WordTotal >= MAXWORDS) {

gotoxy (10, 7); cprintf(IILibrary FULL");
getch();
return;

}
else {

w = WordTotal;
WordTotal++;

}
}

else if (c=='N' I I
J I

return;
c==' n')

else
goto Modify_Another;

gotoxy (10, 12);
cprintf (IIPrint word to be entered: ");
textcolor (yellow);
cscanf ("%S", &WordNames[w] [0]); getch();
textcolor (white);

Page 156

Delay (32000);
Delay (32000);
Delay (32000);
Delay (32000);

Sample_Word (0);
NumFrames[w] = Num Frames;

Coeff_Ptr = Map_EMS (EMS_Handle, w);
for (n=O ; n < Num_Frames ; n++) {

for (p=O ; P <= ORDER ; p++)
*Coeff_Ptr++ = LPC_Coeff[n] [p);

}

/* Delay to stop keyboard */
/* click being picked up */
/* by the microphone. */
/* Approx 250 millisecs */

/* Get the word. */
/* Save the no. of frames */

/* store the LPC coeffs */
/* in library. */

ZC_Library_Ptr = ZC_Library_Addr[w];
for (n=O ; n < Length ; n++)

*ZC_Library_Ptr++ = ZC_Buffer[n];

E_Library_ptr = E_Library_Addr[w];
for (n=O ; n < Length ; n++)

*E_Library_ptr++ = E_Buffer[n];

goto Modify_Another;

Page 157

/* Store zero-crossing
/* counts in library.

/* Store frame energy
/* contents in library.

*/
*/

*/
*/

,**/
'* Procedure to recognize one spoken word. */
'**/

roid .Recognize_Word (void)

int
int
int
double
double
double
int
int

n, m, p, w, Temp;
Nmax, Mmax;
S[MAXWORDS] ;
Distance [MAXWORDS];
LocalDist[3];
TotalDist;
Closed[MAXFRAMES-1];
Open[3];

/*----------------------------------*/
/* Get the word to be recognized. */
/*----------------------------------*/

Sample_Word (Distance_Type);
Comparing_Input_Message ();

Nmax = Num Frames;
for (n=O ;-n < 10 ; n++)

Distance[n] = 30000;

/*--*/
/* Compare input word to every word in library. */
/*--*/

for (w=O ; w < WordTotal ; w++) {

Mmax = NumFrames[w];

/*---*/
/* Dont compare input word to reference words of very different size */
/*---*/

if (Mmax < (Nmax*3)/5 I I Mmax > (Nmax*7)/5) {
Distance[w] = 1000;
continue;

}

/*---*/
/* Move the coefficients of one word from library (far heap and EMS) */
/* into local memory. */
/*---*/

if (Distance_Type <= 3) {
Coeff_Ptr = Map_EMS (EMS_Handle, W)i
for (n=O ; n < NumFrames[w] ; n++) {

for (p=O ; P <= ORDER ; p++)
Ref_Coeff[n][p] = *Coeff_Ptr++;

}
}

Page 158

else if (Distance_Type == 4) {
ZC Library Ptr = ZC_Library_Addr[w];
for (n=O ;-n < MAXFRAMES ; n++)

Ref ZC Buffer[n] = *ZC_Library_ptr++;
E_Library=ptr = E_Library_Addr[w];
for (n=O ; n < MAXFRAMES ; n++)

Ref_E_Buffer[n] = *E_Library_ptr++;
}

if (Distance_Type == 1) {
Log_Power_ptr = Log_Power_Addr[w];
for (n=O ; n < NumFrames[w] ; n++)

Log_Power[n] = *Log_Power_ptr++;
}

/*--*/
/* If DTW_Flag = 0 then do linear time alignment. */
/*--*/

if (DTW Flag == 0) {
TotalDist = 0;
for (n=O ; n < Nmax ; n++) {

m = (n-1) * (Mmax-1)/(Nmax-l) + 1;
TotalDist += Frame_Distance (n, m);

}
}

/*----------------------------------~-----------------------------*/

/* If DTW_Flag = 1 then use OGS Dynamic Time Warping algorithm. */
/*--*/

else {

Closed[O] = 0;
TotalDist = Frame_Distance (0, 0);

LocalDist[O] = Frame_Distance (1, 0);
LocalDist[l] = Frame_Distance (1, 1);

if (LocalDist[O] < LocalDist[l]) {
Closed[l] = 0;
TotalDist += LocalDist[o];

}
else {

Closed[l] = 1;
TotalDist += LocalDist[l];

}

Page 159

for (n=2 ; n < Nmax ; n++) {

Open[O]
Open[l]
Open[2]

= Closed[n-1];
Closed[n-1]+1;

= Closed[n-1]+2;

if (Closed[n-1] 1= Closed[n-2]
&& Open[O] <= 2*n
&& Open[O] <= Mmax - (Nmax-n+1)/2
&& Open[O] < Mmax
&& Open[O] >= n/2
&& Open[O] > Mmax - 2*(Nmax-n)
&& Open[O] >= 0)
LocalDist[O] = Frame Distance (n, Open[O]);

else
LocalDist[O] = 100;

if (Open[l] <= 2*n
&& Open [1] <= Mmax - (Nmax-n+1)/2
&& Open[l] < Mmax
&& Open[l] >= n/2
&& Open[l] > Mmax - 2*(Nmax-n)
&& Open[l] >= 0)
LocalDist[l] = Frame Distance (n, Open[l]);

else
LocalDist[l] = 100;

if (Open[2] <= 2*n
&& Open[2] <= Mmax - (Nmax-n+1)/2
&& Open[2] < Mmax
&& Open[2] >= n/2
&& Open[2] > Mmax - 2*(Nmax-n)
&& Open[2] >= 0)
LocalDist[2] = Frame Distance (n, Open[2]);

else
LocalDist[2] = 100;

if (LocalDist[l] <= LocalDist[O]) {
if (LocalDist[2] < LocalDist[l]) {

TotalDist += LocalDist[2];
Closed[n] = Open[2];

}
else {

TotalDist += LocalDist[l];
Closed[n] = Open[l];

}
}
else if (LocalDist[2] < LocalDist[O]) {

Closed[n] = Open[2];
TotalDist += LocalDist[2];

}
else {

Closed[n] = Open[O];
TotalDist += LocalDist[O];

}
}

Page 160

}
Distance[w] = TotalDist;

}

/*---*//* Sort the words and print the best five. */
/*---*/

for (n=O ; n < WordTotal ; n++)
Srn] = n;

for (n=O; n < WordTotal ; n++) {
for (m=n+1 ; m < WordTotal ; m++) {

if (Distance[S[n]] > Distance[S[m]]) {
Temp = S[m];
S[m] = Srn];
Srn] = Temp;

}
}

}

Clear_Main_Screen() ;
for (w=O ; w < WordTotal && w < 5 ; w++) {

textcolor (light_grey);
gotoxy (27, W+12);
cprintf (" %8.2 f", Distance [S [wJ]) ;
textcolor (yellow);
gotoxy (9, w+12);
cprintf ("%2d.", w+1);
textcolor (white);
gotoxy (14, W+12);
cprintf ("%s", WordNames[S[w]]);

}

RECOGNIZED WORD ====

window (10, 9, 38, 13);
textbackground (black);
clrscr() ;

gotoxy (2, 1); cprintf (Ill I")·
-~~~~~~ g: ~ ~ ~ ~~~i~~~(«(:::: I I :,,:)~,';.

gotoxy (2, 4); cprintf .
gotoxy (2, 5); cprintf .!::::::===::::==========d ") ;
textcolor (yellow);
gotoxy (8, 3); cprintf ("%S", WordNames[S[OJ]);
return;

Page 161

***/
Procedure to calculate the distance between one frame of the unknown */
spoken word and one frame of a reference word from the library. */
The distance measure used is user-selected. */

***/

luble Frame Distance (int UnknownFrame, int RefFrame)

int
double
double
double
double

n, m, p;
ZC Dist;
Energy Dist;
Residual1, Residua12;
Dist, FrameDistance;

}

/* These two conditions can only */
/* occur if garbage is detected */
/* as a word. */

n = UnknownFrame;
m = RefFrame;

/*---*/
~ ~~~ ~
/* Ikatura's distance measure: d = ---------. */
/* At Rt At */
/*---*/
if (Distance Type == 1) {

Residual1 = 0;
Residua12 = 0;
for (p=o ; p <= ORDER ; P++) {

Residual1 += Ref_Coeff[m][p] * Auto_Corr[n] [p];
Residua12 += LPC_Coeff[n][p] * Auto_Corr[n] [p];

if (Residua12 == 0)
Residua12 = 0.000001;

Dist = Residual1/Residua12;
if (Dist <= 0)

Dist = 0.000001 - Dist;

return (Log_Power [m] + log (Dist));

}

Page 162

/*---*//* 2 */
/* Cepstral Coefficients: d = sum [ct(i) - cr(i)] */
/* *//*---*/
else if (Distance Type == 2) {

" -
FrameDistance = 0;
for (p=l ; P <= ORDER ; p++) {

Dist = Cepstral[n][p] - Ref_Coeff[m] [p];
FrameDistance += Dist * Dist;

}
return (FrameDistance);

}

/*---*/
/* */
/* Distance measure: d = log (AC(test) , LPC(ref» */
/* */
/*---*/
else if (Distance Type == 3) {

FrameDistance = 0;
for (p=O ; P <= ORDER ; p++)

FrameDistance += Ref Coeff[m][p] * Auto_Corr[n] [p];
if (FrameDistance < 0) -

FrameDistance = -FrameDistance;
return (log(FrameDistance»;

}

/*--*/
/* */
/* Zero-Crossing / Energy difference */
/* */
/*--*/

else if (Distance_Type == 4) {

if (E_Buffer[n] > Ref_E_Buffer[m])
Energy_Dist = E_Buffer[n] / Ref_E_Buffer[m];

else
E~ergy_Dist = Ref_E_BUffer[m] / E_Buffer[n];

ZC_Dlst = abs (Ref_ZC_Buffer[m] - ZC_Buffer[n]);
return (ZC_Dist + 0.5*Energy_Dist);

}

return (NULL);

Page 163

***/
Procedure to allocate memory space in the far heap for the library of */
zero-crossing counts and log power constants. Expanded memory (EMS) */
is allocated for the LPC coefficients. There are 64 logical pages of */
EMS, each 16k in size and the coefficients of two words are stored in */
each page. The EMS pages are allocated here and may be accessed after */
mapping them to a physical page (by calling the Map_EMS() procedure). */
If Cepstral coeffs are used then the LPC coeffs are still stored here */
(and later on disk) but they are converted to Cepstral coeffs just */
before recognition begins. Similarly, if Ikatura's measure is being */
used, the LPC coefficients in the library are modified. */

:***/

>id Allocate_Library_Memory (void)

int w;

EMS_Handle = Alloc_EMS (64);
if (EMS_Handle == NULL) {

Clear_Main_Screen();
gotoxy (10, 8);
cprintf("Error allocating EMS.");
getch(); return;

}

for (w=o ; w < MAXWORDS ; w++) {
ZC_LibrarY_Addr[w] = farcalloc (MAXFRAMES, sizeof(int»;
if (ZC_Library_Addr[w] -- NULL) {

Clear_Main_Screen();
gotoxy (10, 8);
cprintf("Not enough memory in .f a r heap,%ul bytes free",farcoreleft()
getch(); return;

}
}

for (w=o ; w < MAXWORDS ; w++) {
~_Libra:y_Addr[w] = farcalloc (MAXFRAMES, sizeof(int»;
1f (E_L1brary_Addr[w] == NULL) {

gotoxy (10, 8);
cprintf("Not enough memory in far heap,%ul bytes free",farcoreleft()
getch(); return;

}
}

for (w=o ; w < MAXWORDS ; w++) {
~og_Power_Addr[w] = farcalloc (MAXFRAMES, sizeof(double»;
1f (Log_Power_Addr[w] ==NULL) {

gotoxy (10, 8);
cprintf("Not enough memory in far heap,%Ul bytes free",farcoreleft()
getch(); return;

}
}

Page 164

**/
Procedure to save a library of coefficients of the reference words */

**/

id Save_Vocabulary (void)

FILE
int
int
char
double
int
unsigned

*File;
c, n, w, Handle;
Itemswritten;
FileName[12);

*LPC Buffer Ptr;
*ZC Buffer 'Ptr;
long *E_Buffer_ptr;

Clear Main Screen();
GetFileName:
gotoxy (6,4); cprintf ("Enter file name to store vocabulary: ");
cscanf ("%s", &FileName); getch () ;

if (access (FileName, 0»
_creat (FileName, 0);

else (
textcolor(yellow) ;
gotoxy (6,6); cprintf ("File already exists.");
gotoxy (6,7); cprintf ("Do you want to overwrite it? (Y/N) ");
textcolor(white) ;
if « c=getch (» ! = I Y I && c ! = I YI) (

Clear Main Screen() ;
goto GetFileName;

}
}

Handle = _open (FileName, O_RDWR);
File = fdopen (Handle, "w");
if (File == NULL) {

textcolor(yellow) ;
gotoxy (6,4); cprintf ("Please try again.");
textcolor(white);
goto GetFileName;

}

Working_Message (light_grey);

Itemswritten
Itemswritten
Itemswritten
Itemswritten

= fwrite(&WordTotal, sizeof(WordTotal), 1,File)
+= fwrite(&DTW Flag, sizeof(DTW_Flag), 1,File)
+= fwrite(&Hamming Flag, sizeof(Hamming Flag), 1,File)
+= fwrite(&preemphasis_Flag,sizeof(preemphasis_Flag),1,File)

Itemswritten += fwrite (&WordNames, sizeof(WordNames[O), WordTotal,File)
Itemswritten += fwrite (&NumFrames, sizeof(NumFrames[O), WordTotal,File)

if (ItemsWritten < WordTotal*2 + 4) {
gotoxy (6,8);
cprintf ("Error writing %s", FileName);

}

Page 165

for (w=O ; w < WordTotal ; w++) {

Coeff_Ptr = Map_EMS (EMS_Handle, w);
LPC Buffer ptr = &LPC Coeff[O][O];
for-(n=O ;-n < BUFFERSIZE ; n++)

*LPC Buffer_Ptr++ = *Coeff_Ptr++;

/* Transfer data to the */
/* current data segment */
/* before writing to */
/* the file. */

Itemswritten = fwrite (&LPC_Coeff[O] [0], sizeof(LPC_Coeff[O][O]),
BUFFERSIZE, File);

if (ItemsWritten < BUFFERSIZE) {
gotoxy (6,9);
cprintf ("Error writing %s", FileName)i

}

}

for (w=O ; w < WordTotal ; w++) {

ZC_Library_ptr = ZC_Library_Addr[w];
ZC Buffer Ptr = &ZC_Buffer[O];
for (n=O ; n < MAXFRAMES ; n++)

*ZC_Buffer_Ptr++ = *ZC_Library_Ptr++;

/* Transfer data to the */
/* current data segment */
/* before writing to */
/* the file. */

ItemsWritten=fwrite(&ZC_Buffer[O],sizeof(ZC_Buffer[O]),MAXFRAMES,File)
if (ItemsWritten < MAXFRAMES) {

gotoxy (6,10);
cprintf ("Error writing %s", FileName);

}

}

for (w=O ; w < WordTotal ; w++) {

E_Library_Ptr = E_Library_Addr[w];
E_Buffer_Ptr = &E_Buffer[O];
for (n=O ; n < MAXFRAMES i n++)

*E_Buffer_Ptr++ = *E_Library_ptr++;

/* Transfer data to the */
/* current data segment */
/* before writing to */
/* the file. */

~temswritte~=fwrite(&E_BUffer[O],sizeof(E_Buffer[O]),MAXFRAMES,File)i
If (ItemsWrltten < MAXFRAMES) {

gotoxy (6,10);
cprintf ("Error writing %5", Fi1eName);

}

}

fclose (File);

Page 166

***/
Procedure to load a previously saved library of coefficients */

***/
\

,i d Load_Vocabulary (void)

FILE
int
int
char
double
int
unsigned

*File;
n, w, Handle;
ItemsRead;
FileName[12];

*LPC Buffer Ptr;
*ZC Buffer ptr;
long *E Buffer_ptr;

Clear Main Screen() ;
GetFileName:
gotoxy (44,4);
cprintf (" 11) ;
gotoxy (6,4);
cprintf ("Enter file name of vocabulary to load: ");
cscanf ("%S", &FileName); getch();

if (access (FileName, 0» {
gotoxy (6,2);
textcolor (yellow+blink);
cprintf ("File not found");
textcolor (white);
goto GetFileName;

}

Working_Message (light_grey);
Handle = open (FileName, O_RDWR);
File = fdopen (Handle, "W");

ItemsRead = fread (&WordTotal, sizeof(WordTotal), 1, File)
ItemsRead += fread (&DTW Flag, sizeof(DTW_Flag), 1, File)
ItemsRead += fread (&Hamming_Flag, sizeof(Hamming Flag), 1, File)
ItemsRead += fread (&Preemphasis Flag, sizeof(preemphasis_Flag), 1, File)

ItemsRead += fread (&WordNames, sizeof(WordNames[O]), WordTotal, File) ;
ItemsRead += fread (&NumFrames, sizeof(NumFrames[O]), WordTotal, File);

if (ItemsRead < WordTotal*2 + 4) {
gotoxy (6,7);
cprintf ("Error reading %S", FileName);

}

Allocate_Library_Memory() ;

Page 167

for (w=O ; w < WordTotal ; w++) {

ItemsRead = fread (&LPC_Coeff[O][O], sizeof(LPC_Coeff[O][O]),
BUFFERSIZE, File);

if (ItemsRead < BUFFERSIZE) {
gotoxy (6,10);
cprintf ("Error reading %s", FileName);

}

Coeff_Ptr = Map_EMS (EMS_Handle, w);
LPC Buffer Ptr = &LPC Coeff[O][O];
for-(n=O ;-n < BUFFERSIZE ; n++)

*Coeff Ptr++ = *LPC_Buffer_Ptr++;

}

for (w=O ; w < WordTotal ; w++) {

/* Transfer data from */
/* local data segment */
/* to expanded memory */

ItemsRead = fread(&ZC Buffer[O], sizeof(ZC Buffer[O]), MAXFRAMES, File
if (ItemsRead < MAXFRAMES) {

gotoxy (6,10);
cprintf ("Error reading %s", FileName);

}

ZC_Library_Ptr = ZC_Library_Addr[w];
ZC Buffer ptr = &ZC Buffer[O];
for (n=O ; n < MAXFRAMES ; n++)

*ZC_Library_Ptr++ = *ZC Buffer_Ptr++;

}

for (w=O ; w < WordTotal ; w++) {

/* Transfer data from */
/* local data segment */
/* to far heap. */

ItemsRead = fread(&E_Buffer[O], sizeof(E_Buffer[O]), MAXFRAMES, File);
if (ItemsRead < MAXFRAMES) {

gotoxy (6,10);
cprintf ("Error reading %s", FileName);

}

E_Library_Ptr = E_Library_Addr[w];
E_Buffer_Ptr = &E_Buffer[O];
for (n=O ; n < MAXFRAMES ; n++)

*E_Library_Ptr++ = *E_Buffer_Ptr++;

}

fclose (File);

Page 168

/* Transfer data from */
/* local data segment */
/* to far heap. */

**/
Procedure to give a delay of approximately 2 microseconds */

**/

id Delay (int Del)

int n, d;

for (n=O . n < Del ; n++) {,
d = 10;
d = d*2;

}

~***/
~ Procedure to allocate a specified number of pages (NumPages) of */
~ expanded memory and return an EMM handle for the pages allocated. */
~ Each page is 16k in size. If the allocation is unsuccessful, then */
~ NULL is returned. */
~***/

~t Alloc_EMS (int NumPages)

union REGS reg;

reg.h.ah = 67;
reg.x.bx = NumPages;
int86 (Ox67, ®, ®);
if (reg.h.ah == 0)

return (reg.x.dx);
else

return (NULL);

**/
* Procedure to release all logical pages of expanded memory */
* associated with an active EMM. handle. */
**/

oid Free_EMS (int Handle)

union REGS reg;

reg.h.ah = 69;
reg.x.dx = Handle;
int86 (Ox67, ®, ®);

Page 169

I
:************* **/

Procedure to map a logical EMS page (0-63) to page-O of the EMM page */
frame. There are two words per 16k page; an even word starts at the */
beginning of a page and an odd word starts half-way. The start add- */
ress within page-O is returned unless the mapping was unsuccessful in */
which case NULL is returned. */

r***/

)uble far *Map_EMS (int Handle, int WordNum)

union REGS reg;

reg.x.ax = 0;
reg.x.bx = WordNum/2;
reg.x.dx = Handle;
reg.h.ah = 68;
int86 (Ox67, ®, ®);
if (reg.h.ah 1= 0)

return (NULL);

else if (WordNum%2 == 0)
return (OxC8000000L);

else
return (OxCAOOOOOOL);

Page 170

/* Page-O of EMM page frame */
/* Logical EMS page number */

/* Start address of Page-O */
/* ie. C800:0000 (C8000h) */
/* Page-O start address + 8k */

References

[1] A S Poulton, "Microcomputer Speech Synthesis and Recog­

nition", Sigma Technical Press, 1983

[2] K H Davis,

nition of

society of

R Biddulph and S Balashek, "Automatic Recog- »<
\ -'1.

Spoken Digits", Journal of the Acoustic "J "

S "i b ~ 1 S "l e;J..America, Vol. 24, pp 637, 1952 J l ('\) \ -

I' ~ ,) .\. ~,- \..\ l · · i{
\J .1. I • ~ " ,-

O\..G_~C\ -Is
[3] P Denes and M V Mathews, "Spoken Digit Recognition using

Time-frequency Pattern-matching" , Journal of the

Acoustic Society of America, Vol. 32, pp 1450-1455, 1960

[4] Product Focus, "Voice Input/Output Systems and Devices" ,

Electronic Engineering, pp 76-93, May 1982

[5] M K Brown and L R Rabiner, "An Adaptive, Ordered, Graph

Search Technique for Dynamic Time Warping for Isolated

Word Recognition", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol. ASSP-30, No. 4, pp

535-544, August 1982

[6] K C Pan, F K Soong and L R Rabiner, "A Vector-Quantiza­

tion-Based Preprocessor for Speaker Independent Isolated

Word Recognition.", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol. ASSP-33, No. 3, pp

546-560, June 1985

Page 171

[7] M Elphick, "Speech Recognition", 'Speech Synthesis'

edited by G Bristow, Granada Publishing Ltd., 1984

[8] J N Holmes, "Speech Synthesis and Recognition", Von

Nostrand Reinold (UK) , 1985

, [9] G E Peterson ~nd H L Barney, "Control methods used in

a study of the vowels", Journal of the Acoustic society

of America, Vol. 24, No. 2, pp 175-184, March 1952

[la] H K Dunn, "Methods of Measuring Vowel Formant Band­

widths", Journal of the Acoustic Society of America,

Vol. 33, pp 1737-1746, 1961

[11] L R Rabiner and R W Schafer, "Digital Processing of

Speech Signals", Prentice/Hall, 1978

../ [12] B S Atal and S L Hanauer, "speech Analysis and Synthesis

by Linear Prediction of the Speech Wave", Journal of the

Acoustic society of America, Vol. 50, No. 2 (Part 2),

pp 637-655, August 1971

[13] F Fallside, "Frequency-domain Analysis of Speech",

'Computer Speech Processing' edited by F Fallside and

W A Woods, Prentice/Hall, 1983

[14] L R Rabiner, "On the Use of Autocorrelation Analysis for

pitch Detection", IEEE Transactions on Acoustics, Speech

and signal Processing, Vol. ASSP-25, No. 1, pp 24-33,

February 1977

[15] J J Dubnowski, R W Schafer and L R Rabiner, "Real-Time

Digital Hardware Pitch Detector", IEEE Transactions on

Acoustics, Speech and signal Processing, Vol. ASSP-24,

No. 1, pp 2-8, February 1976

Page 172

[16] L R Rabiner, M J Cheng, A R Rosenberg and C A McGonegal,

"A Comparative Performance study of Several pitch

Detection Algorithms", IEEE Transactions on Acoustics,

Speech and signal Processing, Vol. ASSP-24, No. 5, pp

399-418, October 1976

[17] I H witten, "Principles of Computer Speech", Academic

Press Inc., 1982

~ [18] L R Rabiner, S E Levinson, A E Rosenberg & J G Wilpon,

"Speaker-Independent Recognition of Isolated Words using

clustering Techniques", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol. ASSP-27, No. 4, pp

336-349, August 1979

[19] B S Atal, "Linear Predictive Coding

'Computer Speech Processing' edited by F

W A Woods, Prentice/Hall, 1983

of Speech" ,

Fallside and

J 2 0]

[21]
-.../

[22]

[23]

J Makhoul, "Spectral Linear Prediction: Properties and

Applications", IEEE Transactions on Acoustics, Speech

and Signal Processing, Vol. ASSP-23, No. 3, pp 283-296,

June 1975

J Makhoul, "Linear Prediction: A Tutorial View",

Proceedings of the IEEE, Vol. 63, pp 561-580, April 1975

F I Itakura, "Minimum Prediction Residual principle

Appl ied to Speech Recognition", IEEE Transactions on

Acoustics, Speech and Signal Processing, Vol. ASSP-23,

No. 1, pp 67-72, Feb 1975

Y Tohkura, "A weighted Cepstral Distance Measure for

Speech Recognition", IEEE Transactions on Acoustics ,
Speech and Signal Processing, Vol. ASSP-35, No. 10,

October 1987

Page 173

[25]

[26]

[27]

J

L F Lamel, L R Rabiner, A E Rosenberg and J G Wilpon,

"An Improved Endpoint Detector for Isolated Word

Recognition", IEEE Transactions on Acoustics, Speech and

Signal Processing, Vol. ASSP-29, No. 4, pp 777-785,

August 1981

L R Rabiner and M R Sambur, "An Algorithm for Deter­

mining the Endpoints of Isolated utterances", Bell

System Technical Journal, Vol. 54, No. 2, pp 297-315,

February 1975

J M Tribolet and L R Rabiner, "statistical properties~~

of an LPC Distance Measure", IEEE Transaction~ on

Acoustics, Speech and Signal Processing, Vol. ASSP-27,

No. 5, pp 550-558, October 1979

[28] J G Wilpon, L R Rabiner and A Bergh, "Speaker-Indepen­

dent Isolated Word Recognition using 129-word Airline

vocabulary", Journal of the Acoustic Society of America,
,;'

Vol. 72, pp 390-396, August 1982

J [2 9] L R Rabiner and J G Wilpon, "Speaker-Independent Iso­

lated Word Recognition for a Moderate Size Vocabulary",

IEEE Transactions on Acoustics, Speech and Signal

Processing, Vol. ASSP-27, No. 6, pp 583-587, December

1979

[30] E R Teja and G W Gonella, "Voice Technology", Reston

PUblishing Co., 1983

[31] L R Rabiner, M M Sondhi and S E Levinson, "Note on the

Properties of a Vector Quantizer for LPC Coefficients" ,
Bell System Technical Journal, Vol. 62, No. 8, pp 2603­

2616, October 1983

Page 174

[32] L R Rabiner, S E Levinson and M M Sondhi, "on the

Application of Vector Quantization and Hidden Markov

Models to Speaker Independent, Isolated Word Recog­

nition", Bell System Technical Jou~nal, Vol. 62, No. 4,

pp 1075-1105, April 1983

Page 175

	Pitchers_Richard_Charles_1990.front.p001
	Pitchers_Richard_Charles_1990.front.p002
	Pitchers_Richard_Charles_1990.front.p003
	Pitchers_Richard_Charles_1990.front.p004
	Pitchers_Richard_Charles_1990.front.p005
	Pitchers_Richard_Charles_1990.front.p006
	Pitchers_Richard_Charles_1990.front.p007
	Pitchers_Richard_Charles_1990.front.p008
	Pitchers_Richard_Charles_1990.front.p009
	Pitchers_Richard_Charles_1990.front.p010
	Pitchers_Richard_Charles_1990.p001
	Pitchers_Richard_Charles_1990.p002
	Pitchers_Richard_Charles_1990.p003
	Pitchers_Richard_Charles_1990.p004
	Pitchers_Richard_Charles_1990.p005
	Pitchers_Richard_Charles_1990.p006
	Pitchers_Richard_Charles_1990.p007
	Pitchers_Richard_Charles_1990.p008
	Pitchers_Richard_Charles_1990.p009
	Pitchers_Richard_Charles_1990.p010
	Pitchers_Richard_Charles_1990.p011
	Pitchers_Richard_Charles_1990.p012
	Pitchers_Richard_Charles_1990.p013
	Pitchers_Richard_Charles_1990.p014
	Pitchers_Richard_Charles_1990.p015
	Pitchers_Richard_Charles_1990.p016
	Pitchers_Richard_Charles_1990.p017
	Pitchers_Richard_Charles_1990.p018
	Pitchers_Richard_Charles_1990.p019
	Pitchers_Richard_Charles_1990.p020
	Pitchers_Richard_Charles_1990.p021
	Pitchers_Richard_Charles_1990.p022
	Pitchers_Richard_Charles_1990.p023
	Pitchers_Richard_Charles_1990.p024
	Pitchers_Richard_Charles_1990.p025
	Pitchers_Richard_Charles_1990.p026
	Pitchers_Richard_Charles_1990.p027
	Pitchers_Richard_Charles_1990.p028
	Pitchers_Richard_Charles_1990.p029
	Pitchers_Richard_Charles_1990.p030
	Pitchers_Richard_Charles_1990.p031
	Pitchers_Richard_Charles_1990.p032
	Pitchers_Richard_Charles_1990.p033
	Pitchers_Richard_Charles_1990.p034
	Pitchers_Richard_Charles_1990.p035
	Pitchers_Richard_Charles_1990.p036
	Pitchers_Richard_Charles_1990.p037
	Pitchers_Richard_Charles_1990.p038
	Pitchers_Richard_Charles_1990.p039
	Pitchers_Richard_Charles_1990.p040
	Pitchers_Richard_Charles_1990.p041
	Pitchers_Richard_Charles_1990.p042
	Pitchers_Richard_Charles_1990.p043
	Pitchers_Richard_Charles_1990.p044
	Pitchers_Richard_Charles_1990.p045
	Pitchers_Richard_Charles_1990.p046
	Pitchers_Richard_Charles_1990.p047
	Pitchers_Richard_Charles_1990.p048
	Pitchers_Richard_Charles_1990.p049
	Pitchers_Richard_Charles_1990.p050
	Pitchers_Richard_Charles_1990.p051
	Pitchers_Richard_Charles_1990.p052
	Pitchers_Richard_Charles_1990.p053
	Pitchers_Richard_Charles_1990.p054
	Pitchers_Richard_Charles_1990.p055
	Pitchers_Richard_Charles_1990.p056
	Pitchers_Richard_Charles_1990.p057
	Pitchers_Richard_Charles_1990.p058
	Pitchers_Richard_Charles_1990.p059
	Pitchers_Richard_Charles_1990.p060
	Pitchers_Richard_Charles_1990.p061
	Pitchers_Richard_Charles_1990.p062
	Pitchers_Richard_Charles_1990.p063
	Pitchers_Richard_Charles_1990.p064
	Pitchers_Richard_Charles_1990.p065
	Pitchers_Richard_Charles_1990.p066
	Pitchers_Richard_Charles_1990.p067
	Pitchers_Richard_Charles_1990.p068
	Pitchers_Richard_Charles_1990.p069
	Pitchers_Richard_Charles_1990.p070
	Pitchers_Richard_Charles_1990.p071
	Pitchers_Richard_Charles_1990.p072
	Pitchers_Richard_Charles_1990.p073
	Pitchers_Richard_Charles_1990.p074
	Pitchers_Richard_Charles_1990.p075
	Pitchers_Richard_Charles_1990.p076
	Pitchers_Richard_Charles_1990.p077
	Pitchers_Richard_Charles_1990.p078
	Pitchers_Richard_Charles_1990.p079
	Pitchers_Richard_Charles_1990.p080
	Pitchers_Richard_Charles_1990.p081
	Pitchers_Richard_Charles_1990.p082
	Pitchers_Richard_Charles_1990.p083
	Pitchers_Richard_Charles_1990.p084
	Pitchers_Richard_Charles_1990.p085
	Pitchers_Richard_Charles_1990.p086
	Pitchers_Richard_Charles_1990.p087
	Pitchers_Richard_Charles_1990.p088
	Pitchers_Richard_Charles_1990.p089
	Pitchers_Richard_Charles_1990.p090
	Pitchers_Richard_Charles_1990.p091
	Pitchers_Richard_Charles_1990.p092
	Pitchers_Richard_Charles_1990.p093
	Pitchers_Richard_Charles_1990.p094
	Pitchers_Richard_Charles_1990.p095
	Pitchers_Richard_Charles_1990.p096
	Pitchers_Richard_Charles_1990.p097
	Pitchers_Richard_Charles_1990.p098
	Pitchers_Richard_Charles_1990.p099
	Pitchers_Richard_Charles_1990.p100
	Pitchers_Richard_Charles_1990.p101
	Pitchers_Richard_Charles_1990.p102
	Pitchers_Richard_Charles_1990.p103
	Pitchers_Richard_Charles_1990.p104
	Pitchers_Richard_Charles_1990.p105
	Pitchers_Richard_Charles_1990.p106
	Pitchers_Richard_Charles_1990.p107
	Pitchers_Richard_Charles_1990.p108
	Pitchers_Richard_Charles_1990.p109
	Pitchers_Richard_Charles_1990.p110
	Pitchers_Richard_Charles_1990.p111
	Pitchers_Richard_Charles_1990.p112
	Pitchers_Richard_Charles_1990.p113
	Pitchers_Richard_Charles_1990.p114
	Pitchers_Richard_Charles_1990.p115
	Pitchers_Richard_Charles_1990.p116
	Pitchers_Richard_Charles_1990.p117
	Pitchers_Richard_Charles_1990.p118
	Pitchers_Richard_Charles_1990.p119
	Pitchers_Richard_Charles_1990.p120
	Pitchers_Richard_Charles_1990.p121
	Pitchers_Richard_Charles_1990.p122
	Pitchers_Richard_Charles_1990.p123
	Pitchers_Richard_Charles_1990.p124
	Pitchers_Richard_Charles_1990.p125
	Pitchers_Richard_Charles_1990.p126
	Pitchers_Richard_Charles_1990.p127
	Pitchers_Richard_Charles_1990.p128
	Pitchers_Richard_Charles_1990.p129
	Pitchers_Richard_Charles_1990.p130
	Pitchers_Richard_Charles_1990.p131
	Pitchers_Richard_Charles_1990.p132
	Pitchers_Richard_Charles_1990.p133
	Pitchers_Richard_Charles_1990.p134
	Pitchers_Richard_Charles_1990.p135
	Pitchers_Richard_Charles_1990.p136
	Pitchers_Richard_Charles_1990.p137
	Pitchers_Richard_Charles_1990.p138
	Pitchers_Richard_Charles_1990.p139
	Pitchers_Richard_Charles_1990.p140
	Pitchers_Richard_Charles_1990.p141
	Pitchers_Richard_Charles_1990.p142
	Pitchers_Richard_Charles_1990.p143
	Pitchers_Richard_Charles_1990.p144
	Pitchers_Richard_Charles_1990.p145
	Pitchers_Richard_Charles_1990.p146
	Pitchers_Richard_Charles_1990.p147
	Pitchers_Richard_Charles_1990.p148
	Pitchers_Richard_Charles_1990.p149
	Pitchers_Richard_Charles_1990.p150
	Pitchers_Richard_Charles_1990.p151
	Pitchers_Richard_Charles_1990.p152
	Pitchers_Richard_Charles_1990.p153
	Pitchers_Richard_Charles_1990.p154
	Pitchers_Richard_Charles_1990.p155
	Pitchers_Richard_Charles_1990.p156
	Pitchers_Richard_Charles_1990.p157
	Pitchers_Richard_Charles_1990.p158
	Pitchers_Richard_Charles_1990.p159
	Pitchers_Richard_Charles_1990.p160
	Pitchers_Richard_Charles_1990.p161
	Pitchers_Richard_Charles_1990.p162
	Pitchers_Richard_Charles_1990.p163
	Pitchers_Richard_Charles_1990.p164
	Pitchers_Richard_Charles_1990.p165
	Pitchers_Richard_Charles_1990.p166
	Pitchers_Richard_Charles_1990.p167
	Pitchers_Richard_Charles_1990.p168
	Pitchers_Richard_Charles_1990.p169
	Pitchers_Richard_Charles_1990.p170
	Pitchers_Richard_Charles_1990.p171
	Pitchers_Richard_Charles_1990.p172
	Pitchers_Richard_Charles_1990.p173
	Pitchers_Richard_Charles_1990.p174
	Pitchers_Richard_Charles_1990.p175

