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Abstract

In recent years, many alternative models of the substorm process have been pro­

posed to explain different aspects of this magnetospheric phenomenon. Some

features in these competing models are compatible while others, such as the na­

ture and location of substorm onset, remain controversial. The objective of this

thesis is to assess the viability of the ballooning instability as a mechanism for

initiating substorms.

A review of the history and development of magnetospheric substorm research

as well as a review of substorm models is presented. In these models, the cross­

tail current disruption responsible for the onset of the expansion phase is usually

ascribed to the onset of some microinstability. An alternative triggering mecha­

nism is a macroscopic magnetohydrodynamic instability such as the ballooning

instability.

To derive a threshold condition for the ballooning instability, a simplified magne­

totail geometry with cylindrical symmetry near the equatorial plane is assumed.

In such circumstances, the torsion of the magnetic field lines is zero and they can

be characterised by their curvature. The hydromagnetic equations with isotropic

pressure are linearised to find the dispersion relation. This leads to a threshold

condition which depends on the pressure and magnetic field intensity gradients.

In order to obtain realistic numerical results for the threshold condition, a quasi­

static, self-consistent, two-dimensional numerical model of the magnetotail dur­

ing conditions typical of substorm growth phase is used. The model involves

solving the Grad-Shafranov equation with appropriate boundary conditions. It

provides time-dependent magnetospheric magnetic field configurations that are

characterised by the development of a minimum in B z in the equatorial plane.
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Calculations of the detailed configuration of the magnetotail during onset allow

an estimate of the instability criterion. In a model which does not allow an

increase of pressure with radius, it is found that the magnetotail is not unstable

to ballooning.

Part of this work has been presented at a conference, viz.:

Dormer, L.A. and A.D.M. Walker, Investigation of local MHD instabilities in the

magnetotail using a two-dimensional magnetospheric convection model. Poster

presented at the :J9th annual South African Institute of Physics conference, Uni­

versity of Bophuthatswana, 1994.
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Chapter 1

Development of Magnetospheric

Substorm Research

1.1 Historical Review

The aurora is one of the oldest documented geophysical phenomena. It was only

at the turn of the nineteenth century, however, that the magnetic signature of

such displays was examined. From his geomagnetic observations at four subpolar

stations in the northern hemisphere in 1902-3, Kristian Birkeland deduced the

current systems responsible for the geomagnetic disturbance he termed the "ele­

mentary polar magnetic storm". This was the first step towards the concept of

the magnetospheric substorm.

Sydney Chapman was critical of Birkeland's inclusion of polar positive and neg­

ative bays as two distinct classes of elementary magnetic storms. Chapman sug­

gested that, because of their short time scale, they were merely phases of a

geomagnetic storm. Subsequently, such disturbances were generally referred to

as "auroral bays" or just "bays".
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The Chapman-Ferraro theory of geomagnetic storms [Chapman and Ferraro,

1931) 1933) 1940] was inferred by considering the effect of the impact of a neu­

tral ionised 'solar stream) on the earth. Central to the theory are two essential

mechanisms. The first - the deflection of solar particles by the earth's magnetic

field - caused the initial phase of a storm. The second involved the formation of

a toroidal current ring to explain the main phase. The theory was) however) un­

able to explain the motion of the solar gas particles which penetrated the cavity

containing the geomagnetic field to form the ring current.

The diffusion of solar particles into the magnetosphere! remained a problem.

In 1961) two important ideas emerged. Axford and Hines [1961] proposed that

large scale convection of magnetospheric plasma in the magnetosphere occurred

continuously due to a "viscous-like interaction" between the magnetosphere and

the solar wind. The interaction mechanism was not specified. Its importance

lay in the resulting transfer of momentum across the magnetopausef causing

general circulation away from the earth at the boundary of the magnetotail,

and return flow towards the earth in the centre (figure 1.1). At the same time

Dungey [1961] recognised the importance of the interaction of the geomagnetic

field with the interplanetary magnetic field (IMF) carried by the solar plasma.

In the Chapman-Ferraro theory) the magnetosphere is 'closed) in the sense that

the earth's magnetic field is enclosed in a cavity formed by the exclusion of the

solar plasma. Dungey proposed that southward directed interplanetary magnetic

field lines 'reconnect' with the northward directed geomagnetic field lines at the

magnetopause boundary. The reconnected field lines are then drawn into the

magnetotail by the motion of the solar wind to reconnect at a second neutral

point. In this model) the magnetosphere becomes 'open", allowing solar plasma

to enter. Figures 1.2 and 1.3 depict the geomagnetic field for closed and open

magnetospheric configura.tions) respectively. The dynamo process of the solar

lThe term "magnetosphere" was introduced in 1959 by Gold. It refers to the region in which

the motion of charged particles is controlled by the earth's magnetic field.

2The magnetopause is the boundary between the solar wind and the magnetosphere.
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Figure 1.1: Large-scale magnetospheric circulation in the equatorial plane as proposed

by Axford and Hines [1961]. Effects due to the rotation of the earth are not included

in this depiction. From Hargreaves [1979].

Figure 1.2: Noon-midnight meridian cross-section showing a closed magnetosphere.

From Hargreaves [1979] .
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Figure 1.3: The meridian plane showing the reconnection of southward directed

interplanetary magnetic field lines with northward directed geomagnetic field lines.

This results in an open magnetosphere. From Hargreaves [1979].

wind flowing across the reconnected field lines was another important consequence

of Dungey's hypothesis. The significance of this to substorm processes, however,

was only realised later.

Up until 1958, magnetospheric physics grew on ground-based observations and

theoretical research. Some important events in the early development of magne­

tospheric physics are given in table 1.1. The advent of the era of space exploration

was heralded in April of 1958 by the announcement of the discovery of the in­

ner Van Allen radiation belt. The existence of this region of trapped electrically

charged particles in the external magnetic field was deduced from data collected

by the Explorer I and III satellites. Satellite observations of the magnetosphere

made an immense impact on the development of magnetospheric physics by pro­

viding the observational evidence by which to test various theoretical suggestions

and models. The International Geophysical Year (IGY) in 1957-58, coincident

with the first applications of satellite technology, also gave impetus to the field

by building up world-wide interest and fostering international cooperation.

Following his work with Ferraro, Chapman continued his study of magnetic storms

with Syun-Ichi Akasofu. Akasofu and Chapman [1961] resolved the storm's distur­

bance field, D, into three different parts: DCF, the corpuscular flux component;

4



Table 1.1: Important events in the development of magnetospheric physics up to

1958. After Egeland et al., 1973.

1621 Gassendi Aurora borealis described

1716 Halley Aurora connected with magnetic field

1722 Graham Transient geomagnetic field variations observed

1741 Celsius Aurora correlated with magnetic disturbances

1808 Von Humboldt Magnetic storm concept introduced

1832 Gauss Magnetic intensity measured

1834 Gauss First three component magnetograph

1859 Carrington, First solar flare associated with magnetic storm

Hodgson observed

1860 Maxweli Electromagnetic waves predicted

1908 Birkeland Observation of magnetic storm and substorm

current systems

1930 Chapman, Magnetic cavity and ring current proposed

Ferraro

1957 Sputnik I launched

1958 Van Alien Discovery of inner radiation belt
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DR, the ring current component and DP, the polar component. It was in this

paper that the term 'substorm' was first used. Here Birkeland's "polar elemen­

tary storm" was referred to as a "DP substorm", produced by currents flowing

in the ionosphere. It was also recognised that the development of a DP substorm

coincided with the change in the aurora from diffuse to active forms.

Unlike Birkeland, who analysed individual storm and substorm events in detail,

Moos [1910], Chapman and others concentrated their studies on the average be­

haviour of storms. It was only much later [Akasofu and Chapman, 1963a] that

the main phase development of individual storms were examined again. This

made significant features that were averaged out by statistical studies more no­

ticeable. It was observed that horizontal component magnetograms for the same

storm at high (College, Alaska) and low (Honolulu) latitudes showed a marked

difference in the development of magnetic (DP) substorms, now referred to as

polar magnetic substorms. Many substorms were observed at the high latitude

station which were absent on the Honolulu magnetogram (figure 1.4). The devel­

opment of these large and intermittent substorms was linked to the increase in

auroral activity. The period of a storm was identified as the period when intense

substorms occurred frequently [Akasofu. and Chapman, 1963b].

Chapman [1962] recognised that polar substorms could occur outside of the main

phase of a geomagnetic storm. It was Akasofu, however, who correlated these

isolated polar substorms to auroral activity. This observation led to the intro­

duction of the "auroral substorm" 3 [Akasofu, 1964]. An important point in this

paper was the realisation that the auroral displays were of a global nature; that is,

the observed features of the aurora were not fixed with respect to the sun while

the earth rotated beneath them. This concept was not immediately accepted,

however, and had to await the development of auroral imagers in the early 1970's

for the global activity to be confirmed by satellite observations [Akasofu, 1991].

3The term "auroral substonn" was due to Chapman.
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CO-COLLEGE
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v Local noon

Figure 1.4: The horizontal component magnetograms of geomagnetic storms

recorded at Honolulu and College stations. The magnetogram from the high latitude

station demonstrates pronounced substorm activity. From Akasofu and Chapman

[1963].
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Satellites also played a role in recognising the involvement of the geomagnetic tail

in substorms. The tangential stress at the magnetopause boundary, either due to

the friction-like mechanism of A xf ord and Hines [1961] or reconnection [Dungey,

1961], was considered responsible for the 'stretching' of the magnetosphere on

the anti-sunward side into a tail [Axford et al., 1965]. From the data collected

by IMP (Interplanetary Monitor Probe) 1, Axford and eo-workers were able to

deduce characteristics of the magnetotail such as the neutral sheet "across which

the field direction changes from radially outward to radially inward", and the

current system associated with the neutral sheet. IMP 4 (Explorer 34) further

demonstrated the large-scale changes which the tail undergoes during a substorm.

Fairfield and Ness [1970] used IMP 4 observations to show that a greater number

of magnetic field lines or "lines of force" cross the equatorial plane in the inner tail

after a substorm. This supports the picture of the tail relaxing to a more dipolar

configuration and suggests that energy is stored in the tail until its release during

a substorm. The idea of the tail being a reservoir of energy for substorms was first

proposed by Siscoe and Cummings [1969]. A few years previous to this, increased

substorm activity was correlated with the presence of a southward component

in the interplanetary magnetic field. These two concepts led to the question of

whether the substorm is a directly driven or unloading process, or something in

between [Akasofu, 1979a].

The term "magnetospheric substorm" was introduced by Akasofu in 1968 [Stern,

1991]. This encompasses a variety of phenomena which occur in association with

each other, namely: the auroral substorm, being the only visible manifestation

of the magnetospheric substorm; the polar magnetic substorm, which is the mag­

netic signature; micropulsations; x-rays; ionospheric disturbances and VLF emis­

sions . It is, therefore, within the magnetosphere as a whole that the substorm

phenomenon must be examined.

8



1.2 Defining the magnetospheric substorm

It was over a relatively short period of time that the emphasis of magnetic storm

research changed. The geomagnetic storm itself was no longer the focus of at­

tention. Research was now concentrated on the magnetospheric substorm and its

associated features.

The rapid growth of substorm research led to various groups using their own

definitions of substorm occurrence within different time frames . This problem

was compounded by the complex nature of the substorm process. In August

1978, nine magnetospheric physicists met in Victoria, Canada to resolve this

issue. The result was a definition of the substorm and its signatures [Rostoker et

al., 1980].

The broad nature of the substorm necessitated a broad definition:

A magnetospheric substorm is a transient process initiated on the

night side of the earth in which a significant amount of energy derived

from the solar wind-magnetosphere interaction is deposited in the

auroral ionosphere and in the magnetosphere.

The physical mechanisms responsible for this process are still in dispute.

Rostoker et al. [1980] recognised that although the probability of substorm occur­

rence increased with a southward turning of the IMF, substorms could still occur

when the IMF was northward or remained southward for an extended period.

There were thus dynamical internal and external features of the magnetosphere

responsible for the triggering of substorms.

Whereas statistical studies were readily available for magnetic storms, there were

no comprehensive studies to indicate an average substorm time scale at this time

[Rostoker et al., 1980]. The time scale of the substorm was therefore proposed to

9
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be between one and three hours with parameters such as Pi 2 bursts, electrojet

current strength and auroral dynamics used to distinguish between intervals of

expansion and recovery. For a substorm with multiple expansions, it was agreed

that each discrete expansion be called a "substorm intensification", with the

expansion phase of the substorm being onset and all the intensifications up to

the time of maximum poleward motion of the disturbed region. The question

of whether or not substorms have a growth phase, as suggested by McPherron

[1970], was not addressed in this paper.

1.3 Magnetospheric substorm signatures

The signatures which follow are those identified and described by Rostoker et al.

[1980].

The auroral signature as defined by Rostoker et al. [1980] is inherently the same

as the auroral substorm described by Akasofu [1964] with a few qualifications. As

has been mentioned, the time scale of the auroral substorm was removed. Another

distinction made was that the brightening of an arc followed by the formation of

a westward travelling surge could be an onset or an intensification. Data from

other sources would then be necessary to distinguish between these possibilities.

As Akasofu and Chapman [1963a] observed, the magnetic signature of a sub­

storm is different at auroral and low latitude stations. The H, D and Z magne­

togram signatures are dependent on the location of the electrojet currents and

substorm-disturbed regions with respect to a particular station. The AE (Auro ­

ral Electrojet) index introduced by Davis and Sigiura [1966] to gauge substorm

activity was felt to be useful for establishing the level of magnetospheric activity,

but not accurate enough for studying the temporal development of substorms.

Individual magnetograms from as many relevant observatories as possible were

recommended for this purpose.

10



Each substorm intensification has an associated Pi 2 burst [Rostoker et al., 1980] .

A Pi 2 is an irregular fluctuation of the geomagnetic field with a period of be­

tween 40 and 150 seconds (or larger) [Jacobs, 1970]. The initial pulse of a Pi 2

identifies the onset of a substorm or a substorm intensification. A magnetospheric

substorm, then, can have several associated Pi 2 bursts, one of which corresponds

to the onset of the expansion phase [Rostoker, 1968].

In comparison with the other three signatures, observations of the ionospheric

electric field behaviour during substorms was in a state of development at this

time. Auroral radar facilities such as Stare (the Scandanavian Twin Auroral

Radar Experiment), which began operating in 1977, had demonstrated the success

and usefulness of such a system in observing ionospheric electric fields. The

further establishment of such facilities was therefore encouraged.

1.4 Magnetospheric substorm models

Since the realisation of the importance of the magnetospheric substorm as a

fundamental phenomenon in the magnetosphere and ionosphere, many different

models of the substorm process have been proposed. These models tend to focus

on specific substorm features and neglect others. This means that no model is

truly global. Each concentrates on dynamical events in the central plasma sheet

or the ionosphere or various other parts of the magnetosphere such as the plasma

sheet boundary layer (refer to figure 1.6). Another factor which contributed to

the variety of proposals was the problem of how to map satellite observations of

specific magnetospheric regions to regions in the auroral ionosphere. Researchers

have used different 'mappings' in different models.

Attempts have also been made to describe the sequence of substorm events in

a phenomenologica.l way, without close analysis of the physical mechanisms re­

sponsible for the effects described. The first of such models was a result of a

11



coordinated study of two magnetospheric substorms that occurred on 15 August,

1968. Both ground based and satellite observations (from Ogo 4 and 5) were

available for these two substorms. These observations were combined to create a

phenomenological model [McPherron et al., 1973] which incorporated both new

concepts and existing ideas. The following description of the model summarises

the key elements.

The substorm was divided into its three phases of growth, expansion and recovery.

The growth phase was proposed to be initiated by the southward turning of the

interplanetary magnetic field which led to enhanced solar wind erosion of the

dayside magnetopause via magnetic merging. Consequent solar wind transport

of flux to the magnetotail resulted in an intermediate storing of energy in the

tail lobes. Reconnection of the field at a distant neutral point occurred leading

to the inward convection of plasma and the development of the near-earth tail

current or a partial ring current. Field aligned and ionospheric currents were also

established.

The expansion phase of this model included the rapid thinning of a portion of

the near-earth plasma sheet. The cross-tail current was then disrupted by some

mechanism leading to the formation of the "substorm current wedge" , a concept

first introduced in this model. Here the electrojet was connected via field aligned

currents to the tail current. Collapse of the tail-like field followed with the possible

formation of a neutral point in the near-earth tail. Other consequences of the

disruption included the energisation and injection of particles close to the earth

and the rapid outward expansion of the region of the disrupted tail current. The

recovery phase was characterised by the decay of the electrojet currents and the

reestablishment of the quiet time auroral displays.

12



Near-earth neutral line model

The above model is one of the early Near-Earth Neutral Line (NENL) or Near­

Earth X-Line models of the magnetospheric substorm. Central to NENL models

is the formation of a new near-earth neutral line in the central plasma sheet which

is responsible for substorm onset. A similar sequence of plasma sheet activity was

proposed by Hones et al. [1973]. Here gradual thinning of the plasma sheet occurs

during the growth phase. Onset of the expansion phase is a result of merging at

approximately X = -15 RE and is accompanied by further rapid thinning at dis­

tances tailward of X = -15 RE, but rapid thickening earthward of this location.

Recovery in this case was attributed to an overall decrease in cross-tail current in­

tensity between -10 RE and -60 RE. This was modified a few years later [Hones,

1979]. Here the neutral line remained at its initial position until recovery when

it moved down the tail, inflating closed field lines earthward of it to reform the

quiet time plasma sheet. Substorm plasmoid formation, another important com­

ponent in subsequent NENL models, was introduced in this paper. A plasmoid

is a "closed magnetic loop structure" proposed to be a direct consequence of the

neutral line formation at the onset of the expansion phase. This "blob of mag­

netised plasma" is severed from the plasma sheet at onset and carried tailward

by the solar wind. Satellite observations have confirmed the existence of such

a structure. Later observational evidence indicated that the x-line was formed

further from the earth at distances beyond X = - 20 RE [Baumjohann, 1988].

The key elements of the NENL model may be summarised as follows :

1. The substorm growth phase is initiated by the southward turning of the

IMF which enhances dayside merging.

2. The increased anti-sunward transport of flux enlarges the tail and increases

the tail lobe field strength.

3. This results in the 'stretching' of the field in the near-earth tail as well as

13



plasma sheet thinning in this region.

4. Onset of the expansion phase occurs when an x-type neutral line forms.

The location of this neutral line remains controversial. Earlier models place

it at '" -10 to -20 RE' Revised models place it at a radial distance greater

than 20RE.

5. This causes the formation of a plasmoid which travels down the tail.

6. Earthward of the neutral line, the magnetic field becomes more dipolar with

the earthward flow of energised plasma.

7. The neutral line remains at its original location until recovery, when it

propagates tailward.

8. This results in the thickening of the plasma sheet.

The above process is represented pictorially in figure 1.5.

The success of the NENL model lies in its ability to account for all three phases

of the substorm. It is mainly for this reason that it has become the most widely

accepted model of the substorm process. It is, however, not without deficiencies.

Although it is an advanced morphological model, most of the physics behind the

NENL model is not yet well understood. For example, the NENL model does

not explain the time-dependent nature of the plasma sheet thinning process .

Kan [1990] has criticised magnetohydrodynamic (MHD) treatments of the NENL

model for their use of dissipative MHD in the collisionless plasma sheet.

The main point of contention in the NENL model is the location of the neutral

line. The host of evidence [Lui, 1991b] for substorm initiation occurring close

to the earth (IXI ~ 15RE) and the lack of neutral line signatures in this region

make the position of the x-line a critical problem in this model. Another criticism

levelled at the NENL model is how it relates to the directly driven component
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Figure 1.5: Schematic representation of the near-earth neutral line model of magne­

tospheric substorms. The magnetic field lines 1, 2, 3, 4 and 5 are closed; 6 and 7

are lobe field lines. The letter N indicates a neutral line. Broad white arrows indicate

plasma flow. From Hones [1984].
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of substorm activity [Rostoker, 1991]. Evidence of this lies in the examination of

magnetotail plasma and field behaviour while ionospheric signatures are ignored.

Wave-induced precipitation model

An early model which did not require a neutral line was proposed by Parks et

al. [1972]. This may be described as a "wave-induced precipitation model" [Lui,

1991a]. Here the earthward transport of previously isotropic plasma sheet plasma

results in an anisotropic temperature distribution with the perpendicular temper­

ature component being higher than the parallel temperature component. This

results in the excitation of electrostatic waves, which in turn promotes whistler

wave growth and thus enhances particle precipitation. The immediate conse­

quence of this is the restoration of the near-earth field to a more dipolar con­

figuration and the acceleration of particles in this region by the betatron effect.

This enhances temperature and pitch angle anisotropy to provide a self-sustaining

process. This feedback loop is destroyed when the source (the plasma sheet) can

no longer supply the required electron flux.

This model, though, accounts for only a few of the observed auroral, ionospheric

and magnetospheric features of the substorm, a problem common to many alter­

native substorm scenarios.

Boundary layer model

The boundary layer (BL) model suggested by Rostoker and Eastman [1987] has

a growth phase similar to that of the NENL model. In the BL model it is

emphasised that the growth phase is due to an intensification of processes directly

driven by the solar wind-magnetosphere interaction; that is, it represents part of

the directly driven component of substorm activity. Plasma circulation in the
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Low Latitude BoUDdary Layer

Figure 1.6: Simplified representation of the different regions in the magnetotail. In

the boundary layer model, the boundary plasma sheet is assumed to map to the

plasma sheet boundary layer. After Burch; (1989) .

central plasma sheet (CPS) and low latitude boundary layer (LLBL) is increased

during the growth phase.

The enhanced energy flow into the magnetosphere during the growth phase leads

to a burst of reconnection in the far tail around rv -100 RE at onset. This

reconnection results in strong earthward convective flows in the central plasma

sheet and field aligned flow in the plasma sheet boundary layer (PSBL). The

plasma sheet boundary layer is a region approximately 2 RE thick between the

CPS and the tail lobes [Baumjohann, 1988]. The different magnetotail regions

are depicted in figure 1.6. Vital to the BL model is the proposed mapping of the

boundary plasma sheet (BPS) region in the topside ionosphere to the PSBL in the

magnetotail. This mapping correlates the brightening of a pre-existing auroral

arc to the increased earthward ion flow in the PSBL in the expansive phase.

Anti-sunward convective flow in the low latitude boundary layer adjacent to the

central plasma sheet results in a velocity shear zone between these two plasma
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regimes. When the earthward flow in the CPS is enhanced, the velocity shear

is increased. This leads to the growth of the Kelvin-Helmholtz instability at the

CPS/LLBL interface. A direct consequence of this is the generation of spatially

localised field aligned currents. This is seen as the establishment of the substorm

current wedge, the evening edge of which corresponds to the westward travelling

surge in the ionosphere [Dui, 1991b]. Multiple surges are the result of the wave­

like forms generated by the instability at the CPS/LLBL boundary (figure 1.7).

Rostoker and Eastman [1987] suggest that the satellite observations used to sup­

port the concept of neutral line formation may be interpreted in terms of the

motion of the plasma sheet boundary layer over the satellite.

A question that needs to be addressed is whether earthward flows in the CPS

are strong enough to permit the growth of the Kelvin-Helmholtz instability on

time scales of surge evolution [Rostoker, 1991]. The boundary layer model also

neglects middle and distant tail effects after onset. Even so it must be recognised

that the plasma sheet boundary layer is probably not a distinct regime in these

regions [Nishida et al., 1988]. It has also been pointed out [Kan, 1990] that later

mappings are in contrast to that used by Rostoker and Eastman [1987].

Thermal catastrophe model

The thermal catastrophe (TC) model proposed by Smith et al. [1986] and Goertz

and Smith [1989] ascribes onset to a discontinuous increase in temperature in the

plasma sheet boundary layer . The PSBL has been recognised as the principal

region of particle heating and a source, by convective transport, of hot plasma

in the central plasma sheet. In the TC model, ions in the PSBL are heated by

the resonant absorption of Alfven waves. These Alfven waves are generated by

the Kelvin-Helmholtz instability at the magnetopause, which has been well docu­

mented (e. g. Walker [1981] and references therein) . During the growth phase, the

heating of the PSBL evolves through a succession of quasi-static, or equilibrium,
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Figure 1.7: In the boundary layer model, the growth of the Kelvin-Helmholtz in­

stability at the interface between the low latitude boundary layer (LLBL) and the

central plasma sheet (CPS) leads to multiple surges in the auroral ionosphere. From

Rostoker [1991J.
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states. These states are described by an equation of state for the PSBL whose

solution is parameterised by a quantity which depends on the incident power of

Alfven waves, the local density and the convection velocity toward the CPS. In

Goertz and Smith [1989], the treatment was generalised further to include the

effects of finite Bs ' the magnetic field perpendicular to the resonance layer. In

this later version of the model, the control variables are the lobe magnetic field

and the incident power flux.

Onset occurs at some critical point when the PSBL becomes effectively opaque

to the incident Alfven waves. In the early model [Smith et al., 1986] this corre­

sponded to some critical combination of the appropriate parameters. In the later

treatment [Goertz and Smith, 1989] opacity (for a physically reasonable range of

incident power flux) was achieved at some critical value of the lobe field. At this

critical point, the heating in the PSBL becomes too rapid for the excess to be

convected toward the CPS and the temperature increases discontinuously.

The thermal catastrophe model [Goertz and Smith, 1989] is a one dimensional

model and is therefore unable to explain two and three dimensional features such

as the westward travelling surge and the substorm current wedge. The model

explains the heating of plasma sheet ions, but neglects the other main features

of the substorm.

Magnetosphere-ionosphere coupling model

The basic elements of the magnetosphere-ionosphere coupling (MIC) model of

the magnetospheric substorm were first suggested by Coroniti and Kennel [1973] .

The pivotal concept in the MIC model is that the onset of the expansive phase

may be triggered by the ionosphere. In the transient response MIC model [Kan

et al., 1988] southward turning of the IMF results in enhanced magnetospheric

convection. This enhancement is responsible for the generation of Alfven waves
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which bounce back and forth between the ionosphere and magnetosphere until

ionospheric convection has been elevated to match the increase in magnetospheric

convection [Kan, 1990]. The time delay of the ionospheric response (approxi­

mately 30 minutes) corresponds to the growth phase of the substorm. The es­

tablishment of intense upward field aligned currents follows, the most intense of

these being located near the poleward boundary of diffuse aurora at onset. The

criteria for onset include a polar cap potential drop of greater than 70 kV and an

overlap of the convection reversal region with the poleward gradient of the diffuse

auroral conductance in the ionosphere in the midnight sector [Kan et al., 1988].

Recovery begins when either of these two conditions are violated.

K an [1993] has suggested that the localised dipolarisation in the near-earth plasma

sheet may be a direct consequence of the intense upward field aligned current

which propagates by Alfven waves toward the plasma sheet. When the wave

front reaches the plasma sheet, the cross-tail current is disrupted and the sub­

storm current wedge formed.

The magnetosphere-ionosphere coupling model has very little to say about the

magnetotail signatures of the substorm. It specifies the condition and evolution

of the substorm current system while ignoring temporal and spatial changes in

the tail [Lui, 1991b]. Some of these problems may be overcome by combining

salient features of the NENL and MIC models [Kan, 1993].

Current disruption model

The current disruption model [Chao et al., 1977j Lui, 1979] was introduced when

observational evidence was found to be inconsistent with the formation of a large

scale neutral line within a tailward distance of 20 RE. The expected tailward

flows and changes in magnetic field configuration were seldom found. Plasma

sheet thinning, however, was observed to be initiated in the near-earth mag-
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Figure 1.8: The launching of a rarefraction wave down the tail as envisioned by the

current disruption model. After Lui [1991b).

netotail at onset, and then travel rapidly tailward. In the current disruption

model, thinning is achieved when a change in the cross-tail current launches a

fast mode magnetohydrodynamic rarefraction wave in the anti-sunward direction.

The propagation of this wave is associated with the earthward drainage of plasma

(figure 1.8) rather than the tailward loss of plasma suggested by the neutral line

model. The disruption or diversion of the cross-tail current can account for the

reconfiguration of the magnetic field in the near-earth tail at onset as well as

particle injection and energisation by convection surges [Lu~ 1991b].

Ballooning instability model

The ballooning instability model [RotJ.'l: et al., 1991aj Roux et al., 1991b] examines

the boundary between the dipole-like and tail-like field lines in the near-earth

tail at the end of the growth phase. In the equatorial plane, the gradient of the

magnetic field and that of the ion pressure are directed earthward in the dipole­

like region. In the tail-like region, these gradients become tailward, The boundary

between these two regions is unstable and a polarisation electric field develops.

Drifting ions carry the disturbance westward, with charges accumulating at the

edges of the perturbation. These charges generate field aligned currents which
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are mapped down to the ionosphere as the westward travelling surge.

Again, criticism of both the current disruption model and the ballooning in­

stability model is centered on their description of limited aspects of substorm

dynamics.

1.5 Synthesising a global model

It is obvious that the fundamental problem with the above models is that they

concentrate on a few features of the substorm while neglecting others. This is

mainly the result of attempting to explain substorm phenomena in a specific

region. Despite their differences, certain aspects of the various models may be

synthesised to give a model with an improved compatibility with observations.

With this in mind, Lyons and Nishida [1988] combined the near-earth neutral

line and boundary layer models, while Kan [1993] has combined features of the

magnetosphere-ionosphere coupling and NENL models. Both of these give a more

global picture of the substorm process. It would be wrong to discard any of the

mechanisms suggested in the alternative models, however, as each is not without

merit. Lui [1991a, 1991b] has attempted to synthesise a global model that draws

on the strengths of these various proposals.

The most controversial aspect of the models that have been discussed is the

location of the onset of the expansion phase. As has been mentioned, there is

much direct and indirect evidence supporting substorm initiation in the near­

earth region. This position is thus adopted by Lui [1991a, 1991b] in his synthesis

model as the location for onset. Lui [1991a, 199b] divides the magnetotail into

the near-earth (-5 RE ~ X ~ -15 RE), mid-tail (-15 RE ~ X ~ -80 RE), and

far-tail (X ::::; -80 RE) regions .
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Synthesis model

Growth Phase: This follows the sequence of events proposed by the NENL model.

Southward turning of the IMF results in a reconfiguration of the magnetosphere.

The dayside magnetopause moves toward the earth as magnetic flux is trans­

ported to the tail by the solar wind. The inner edge of the cross-tail current

moves earthward. The cross-section of the tail increases. In the ionosphere this

is apparent as the equatorward motion of the polar cap boundary. The cross-tail

current in the near-earth region at '" -6 to -15 RE increases resulting in the

thinning of the plasma sheet and the magnetic field becoming more stressed, or

tail-like. No significant thinning is apparent in the mid-tail.

Expansion Phase: Onset of the expansion phase occurs when the intense cross­

tail current in the near-earth region is disrupted. This may be due to various

mechanisms such as sudden heating of the plasma sheet, ion or electron tearing,

the cross-field current instability or the ballooning (interchange) instability. A

portion of the cross-tail current is diverted to the ionosphere. If conditions in the

ionosphere are not suitable for the imposed current, the current diversion is pre­

vented leading to pseudo-breakup with no subsequent poleward expansion of the

aurora. If conditions are favourable, a substorm current wedge is formed. Dipo­

larisation of the magnetic field in the disturbance region produces an earthward

convection surge. The partial evacuation of plasma at this site results in a rar­

efraction wave which propagates tailward. Current disruption may occur at more

than one location at different times during the expansive phase. Each disturbance

which results in successful current diversion gives rise to a convection surge and

corresponding rarefraction wave. These are evident as substorm intensifications.

The rarefraction waves lead to plasma sheet thinning in the mid-tail and transient

earthward plasma flows. The initial disruption may set up a perturbation at the

boundary of the dipole-like and tail-like field in the near-earth region which prop­

agates as a surface wave as described in the ballooning instability model. This
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mechanism, as well as the cross-field current and Kelvin-Helmholtz instabilities,

can give rise to the local time widening of the disturbance region. On reaching

the far tail, the rarefraction wave could set up a region of strong velocity shear

at the low latitude boundary layer giving rise to the Kelvin-Helmholtz instability

and resulting in multiple surge forms or vortices.

Recovery Phase: After the passage of the rarefraction waves, the plasma sheet is

thin, with a small B, component and may be unstable to the tearing instability.

Reconnection could occur at a downstream distance of 20 to 80 RE resulting in

one or more x-lines. This allows for plasmoid formation and the subsequent

thickening of the plasma sheet earthward of these locations. When the plasma

sheet becomes thick enough to limit this reconnection process, substorm activity

subsides.

The development of the substorm in the synthesis model is represented schemat­

ically in figure 1.9.

This model avoids the questionable formation of a near-earth neutral line by

invoking a two stage process of current disruption 'and subsequent reconnection

at a later stage further downstream. Pseudo-breakups are accounted for as are

multiple intensifications. It does not, however, explain the evolution of substorms

which occur during intervals of northward IMF or as a result of solar wind pressure

pulses. It has also been observed that a substorm does not necessarily have to be

preceded by a growth phase.

1.6 A magnetohydrodynamic model

A recently proposed magnetohydrodynamic model of sub storms [Walker and

Samson, 1994] provides an alternative physical framework for the substorm pro­

cess. The model depends on the natural modes of oscillation of the magneto-
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Figure 1.9: The synthesis model proposed by Lui [1991a, 1991b]. The left panel

shows substorm development in the meridian plane. The right panel depicts the

corresponding equatorial view. The substorm phases depicted are (a) Growth (b)

Onset (c) Expansion (d) Late Expansion/Recovery. From Lui [1991].
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sphere and the excitation of magnetohydrodynamic waves. The attribution of

certain phases of substorm development to magnetohydrodynamic wave activity

has only been demonstrated in a few models, such as the thermal catastrophe and

the boundary layer models. Walker and Samson [1994] emphasise the importance

of magnetohydrodyna.mic waves and oscillations in understanding the dynamics

of processes within the magnetosphere. Central to the model are the physical

mechanisms of cavity oscillations and toroidal resonances.

1.6.1 Cavity modes and field line resonances

Ground based observations have demonstrated that quasi-monochromatic, long­

period ULF pulsations display certain characteristic features [Samson et al.,

1971]. These include a latitudinal dependence of both peak amplitude with fre­

quency and the sense of polarisation. The fact that these pulsations are quasi­

monochromatic suggests that they originate from toroidal, or field line, resonances

of the magnetic field in the earth's magnetosphere [Samson et al., 1971] as de­

scribed below.

In a cold uniform plasma two magnetohydrodynamic waves-the fast and shear

Alfven waves-can exist [Walker et al., 1992]. Associated with each of these waves

is a natural magnetohydrodynamic mode of oscillation. The poloidal or compres­

sional mode corresponds to the fast Alfven wave. The plasma displacement and

magnetic field perturbation in this case lie in the magnetic meridian. The outer

boundary for this mode is the magnetopause, with the ionosphere forming further

boundaries at the ends of the magnetic field lines. The radially inward gradient of

Alfven speed in the nightside magnetosphere results in an inner boundary. This

provides a turning point where the compressional mode may be reflected. This

radial mode of oscillation is known as a cavity mode.

The toroidal mode corresponds to the shear Alfven wave. Here the plasma dis-
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placement and magnetic field perturbation are perpendicular to the meridian

plane. Each magnetic shell may be defined by the radial distance at which it

cuts the equatorial plane. This is termed the CL value'. A magnetic shell of a

particular L value will oscillate toroidally (perpendicular to the meridian plane)

with a specific frequency. It is these transverse (or azimuthal) oscillations which

are referred to as field line resonances.

If the magnetosphere were cylindrically symmetrical with a perfectly conducting

ionosphere, the poloidal and toroidal modes would be separated [Walker et al.,

1992]. In the real magnetosphere, however, these two modes are coupled. Early

theories of field line resonances [Southwood, 1974; Chen and Hasegawa, 1974]

concentrated on weak coupling between these modes. Here it was suggested that

the fast Alfven waves (probably generated by the Kelvin-Helmholtz instability

at the magnetopause) provided the energy source for field line resonance via this

coupling. Although this successfully accounts for the characteristics reported by

Samson et al. [1971], it does not explain why field line resonances are observed to

occur at discrete frequencies. The Kelvin-Helmholtz instability in the LLBL and

pressure pulses at the magnetopause, both proposed as sources of field line reso­

nances, have very broad spectra [Samson et al., 1991]. Kivelson and Southwood

[1985] suggested that the shortcoming in these models lay in the weak coupling

restriction. They predicted that the observed discrete frequencies were the res­

onant fast mode frequencies of the cavity formed by the magnetopause and the

turning point due to the gradient in Alfven velocity. This was confirmed [Allan

et ai., 1986; Kivelson and Souihsuood, 1986] by demonstrating that a compres­

sional perturbation at the magnetopause sets up compressional resonances which

in turn drive field line resonances where the field line eigenfrequencies match the

cavity resonance eigenfrequencies.
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1.6.2 The linear mini-substorm

Walker and Samson [1994] have described the basic set of processes for their pic­

ture of substorm development in terms of a "mini-substorm" . In this scenario,

a disturbance of the cross-tail current results in the radiation of a magnetohy­

drodynamic wave. The instability causing the perturbation may be magnetohy­

drodynamic, such as the ballooning mode, although the nature of the instability

is not crucial to the model. The part of the magnetohydrodynamic wave which

propagates earthward encounters a cavity whose boundary is proposed to take

the form of a density step. This cavity is excited into oscillation at its discrete

natural frequencies. These in turn excite toroidal resonances with the appropriate

frequencies. Energy leaks via evanescent barrier penetration from the poloidal

to the toroidal modes as well as through the cavity boundary, where it takes the

form of a wave travelling up the tail. Strong magnetic shear across the L-shell on

which the toroidal resonance is located leads to the establishment of strong field

aligned currents. These may be intense enough to lead to precipitation so that

auroral arcs develop which oscillate at the resonant frequency.

The cross-tail current disturbance is not necessarily located outside of the natural

magnetospheric cavity. If located within the cavity, the described development

still applies. The cavity excitation mechanism is also not absolute. A disturbance

in the solar wind, such as a pressure pulse, is another possibility. Again, the

excitation and behaviour of the field line resonances remains unchanged.

The above processes are linear and constitute the linear mini-substorm.

1.6.3 Substorm development

In the magnetohydrodynamic model, the growth phase (where it occurs) develops

in the conventional way. Enhanced merging at the dayside magnetopause leads to
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subsequent plasma sheet thinning, with an increased near-earth cross-tail current.

Disturbances in this current result in mini-substorm activity. If the disturbance

is large enough, the process becomes non-linear.

In this case, the perturbation of the cross-tail current leads to the formation of

the substorm current wedge. The field in the isotropic magnetosonic wave which

is radiated causes the background field to become more dipolar. The tailward

propagating portion of the wave increases in amplitude and steepens into a shock

front. This is a non-linear effect. Behind the shock, conditions are such that

reconnection may occur. Neutral line formation leads to the observed particle

acceleration in the plasma sheet.

The earthward propagating wavefront encounters the natural magnetospheric cav­

ity, with cavity and toroidal modes being excited as in the linear mini-substorm.

The toroidal oscillations are, however, now more extreme than before. Strong

shocks form above the ionosphere with the typical inverted-V structure. In the

equatorial plane, the resonance may be driven to non-linearity by the Kelvin­

Helmholtz instability. This results in the formation of a vortex structure which

maps down to the ionosphere as an auroral surge. This surge structure may

move polewards when lower frequency resonances are excited. Alternatively, the

dipolarisation of the field could result in the same resonance mapping to higher

latitudes.

As has been mentioned, the initiation mechanism may vary. For the case of an

external disturbance on the magnetopause, the substorm is proposed to develop

in a similar way.

The model depends crucially on the natural magnetospheric cavity which has

been described. Although direct evidence for the invoked density step in the tail

is not available, pulsation observations [Ruohoniemi et al., 1991j Samson et al.,

1991j Walker et al., 1992] require that such a cavity or "equivalent resonator"
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[Walker and Samson, 1994] exist.

1.6.4 Onset of the expansion phase

One of the areas of greatest controversy in substorm research is the identification

of the nature and location of the mechanisms responsible for the onset of the

expansive phase. Much attention has been given to microinstabilities as possible

triggering mechanisms. Axford [1984] pointed out that it is necessary to establish

why a previously stable configuration should change rapidly into an unstable one .

In order to do this, the overall stress balance needs to be examined. This implies

that macroscopic instabilities in configuration space are also important to the

stability of a system such as the magnetotail.

In this vein, Walker and Samson [1994] have suggested the ballooning instability

as a possible magnetohydrodynamic onset triggering mechanism. The purpose of

the following chapters is to establish whether this is viable.

This study is similar to recent investigations by Lee and Wolf [1992] and Ohtani

and Tamao [1993]. Lee and Wolf [1992] have used the energy principle to test the

stability of flux tubes against ballooning in the limit kJ. = k" - 00. Ohtani and

Tamao [1993] used an eigenmode analysis for the same limit. In both of these

investigations it was concluded that the magnetotail is stable against ballooning.

Chapter 2 details the normal mode analysis and derivation of the ballooning

instability condition in the limit kll ~ O.
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Chapter 2

The Ballooning Instability

2.1 Introduction

Under average conditions in the near-earth plasma sheet, the magnetic field and

plasma pressure gradients transverse to the magnetic field are directed earth-

.wards, so that the gradient of the total pressure is in this direction. Here the

plasma is held in equilibrium by the Maxwell stress acting along the line of force.

This 'tension ' is a result of the curvature of the field. A situation such as this may

be unstable to the interchange, or ballooning instability. If a perturbation causes

the plasma or field to be displaced tailwards, the field will tend to 'balloon' in

this direction.

The purpose of this chapter is to derive an instability threshold condition for

the ballooning mode in the region near the equatorial plane. With the help of

a suitably realistic model of the magnetotail during growth phase conditions to

give numerical results, this condition may then be used to predict whether the

ballooning instability contributes to the triggering of magnetospheric substorms.

The normal mode stability analysis and derivation in this chapter are due to
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Walker [1994].

2.2 The model

2.2.1 Simpliflcations

The geometry of the magnetic field in the geomagnetic tail is complicated, with

both torsion and curvature required to define it. In order to simplify the analysis,

the elements essential to the instability need to be extracted.

The region of interest is the equatorial plane. Here cylindrical symmetry is as­

sumed, which allows any azimuthal dependence to be treated separately. As a

result the magnetic field lines have no torsion and lie in the meridian plane. Sym­

metry is also assumed about the equatorial plane. The quantities of interest are

the magnetic field intensity and plasma pressure. These may be characterised by

their gradients in the meridian plane. Near the equator these are approximately

perpendicular to the magnetic field.

2.2.2 Geometrical considerations

For any curve it is possible to define three orthogonal unit vectors, ji., v and cp
where ji. is tangent to the curve, v points away from the centre of curvature in

the osculating plane and cp = ji. x V. Figure 2.1 shows the three unit vectors in

relation to a magnetic field line.

These vectors obey Frenet's formulae [Rutherford, 1957]

dji. "dv " "dcp
d; = -~v, ds = -TC.p + ~J1., ds = -TV (2.1)

Here s is the arc distance measured along the curve, ~ is the curvature and T is
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the torsion. In order to make the initial analysis as coordinate-free as possible, a

local set of Cartesian coordinates (X,." XII' xrp) at a point on a magnetic field line

is used. These coordinates are shown in figure 2.2.

2.2.3 Basic equations

In the model it is assumed that pressure is isotropic. The magnetohydrodynamic

equations are then:

the momentum equation,

Dv _ T"7 (p n2
) (B.V)Bp- - - v + - + ....:....---:...-

Dt 2J,Lo J,Lo

the continuity equation,
ap
at + V.(pv) = 0

the adiabatic law,

E.- (!...) = 0
Dt p'Y

Faraday's law,
aB

VxE=-­
at

Ampere's law,

v x B = J,LoJ

and Ohm's law (with infinite conductivity),

E + v x B = 0, Ell = 0

In the above, the operator

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

D a-= -+v.V
Dt at

is the convective derivative with respect to time. These equations will be lin­

earised to derive the appropriate dispersion relation.
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A

cp
"~---+'\)

Figure 2.1: The tangent, normal and binormal unit vectors at two points on a mag­

netic field line in the meridian plane.

Figure 2.2: The local set of Cartesian coordinates (xI-U XVI xcp) at two points on a

magnetic field line. At the equator, the Cartesian coordinates are in the direction of

(fJ. I vI ep).
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2.2.4 Geometrical results

8B~ 8Bv 8B",--
8xp. 8x~ 8x~

VB=
8B~ 8Bv 8B",

(2.8)--
8xv 8x v 8xv
8B~ 8Bv 8B",
8x", 8x", 8x",

It is useful to establish certain conditions which are a result of the geometry that

has been adopted. In local Cartesian coordinates, the most general form of the

tensor VB is

The components of this tensor may be expressed in terms of inverse length scales

for magnetic field variation "'~, "'v and "'''' such that

1 8B",'" ----'" - B 8x
'"

(2.9)

(2.10)

Using the geometry of the magnetic field demonstrated in figure 2.3 and noting

that", = 1/R (where R is the radius of curvature) gives the result

8B v--= -",B
8x~

The assumption of azimuthal symmetry implies that

(2.11)

The cross-tail current is assumed to flow completely in the cp direction (which is

approximately the case near the equatorial plane). By Ampere's law, then, V x B

has no components in the meridian plane. Since

" B _ [8B'" 8Bv] A [8Bp. 8B"'] A [

8Bv 8B~] Av x - ---- 11-+ ---- 11+ --- Cl'
8xv 8x", 8x", 8x~ 8x~ 8xv

equation 2.11 implies that

(2.12)

(2.13)
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B

Figure 2.3: The geometry of a magnetic field line in the meridian plane.

Now V,B = O. Explicitly,

8Bp. + 8B", + 8Blp = 0
8xp. 8x", 8xlp

so that, using the expressions in 2.9,

The expression for V'B in equation 2.8 now becomes

(2.14)

(2.15)

VB=B

o
o (2.16)

The unit vectors jJ., v and <p may be written as (1,0,0), (0,1,0) and (0,0,1)

in this coordinate frame. This is useful in deriving the gradient tensors of these

vectors.

Near the equatorial plane, the zero order magnetic field is B = jJ.B. Thus

VB - V'(jJ.B)

- (V' jJ.)B + (VB) jJ.

so that

V jJ. = V'B - (VB)jJ.
B
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From equation 2.16 then,

o -K. 0

V jJ. = 0 -(K.I£ + K.rp) 0

o 0 K.rp

From the above,

and

Using the fact that the torsion is zero, Frenet's formulae in 2.1 become

A t"7 A djJ. A

IJ..VIJ.= - = -VK.
ds

and

Now

'\I.B - V .(jJ.B)

- (V. jJ.)B + jJ.. (VB)

- 0

Since B = jJ.B, B = jJ.'n and the above becomes

Thus
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(2.21)
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Using the appropriate vector identity,

v x B = (V x jJ,)B + VB x jJ,

Equations 2.9 to 2.13 give

Now

so

VxjJ,

and therefore

From the geometry, V.Vv is normal to V.VjJ, so that, from equation 2.19

Also

jJ, .Vrp = v.Vrp = 0

while
,.. M'''' A

<po V <p = -VKs

(2.24)

where K;! = R; is the perpendicular distance to the axis of symmetry. This gives

Collecting all these results, the tensors VV and Vrp can therefore be written

K 0 0 0 0 0

Vv= Kp. + Kip 0 0 J Vrp = 0 0 0 (2.25)

0 0 K s 0 -K 8 0
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In the neighbourhood of the equatorial plane Rp. -+ 00 and RV' -+ 00, where Rp.

and RV' are defined in a similar way to R.. The gradient tensors may then be

simplified further:

0 -K. 0

VB=B K..., 0 0 (2.26)

0 0 0

and

0 -K. 0 K. 0 0 0 0 0

V{J. = 0 0 0 , VCI = 0 0 0 , Vep = 0 0 0 (2.27)

0 0 0 0 0 K.. 0 -K.. 0

2.2.5 Zero order momentum balance

Since the zero order velocity is zero, the zero order momentum equation is

v (p +~) = (B.V)B
2JLo JLo

Using equation 2.26

0 -K. 0
(B.V)B B

- -(B,O,O) K..., 0 0
JLo JLo

0 0 0

- (~) (- Cl K.B)
JLo

B 2

- -VK.-
JLo

Equation 2.28 may then be written as

and

(2.28)

.(2.29)

Vu (p + ~:) = 0 (2.30)

where V.1 and V" denote the gradients perpendicular and parallel to the field, re­

spectively. In the above, V .L = V.." since the assumption of cylindrical symmetry
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allows no variation with xl(> • Since B 2/2JLo is the magnetic pressure transverse

to the field line, equation 2.30 becomes

(2.31)

(2.32)

This implies that the pressure is constant along a field line. From equation 2.29

the sum of the kinetic and magnetic pressure is constant perpendicular to the

field.

By expanding 2.29,

(
B

2
) B

2

V.1 (P) + V.1 - = -in,,-
2JLo JLo

Using the expression for 1\.11 in 2.9, the second term on the left of 2.32 may be

written as

v. (~:)
2B aBII- ---
2JLo aXil
B

- -(B 1\.11)
JLo

B 2

- 1\.11-

JLo

Substitution of the above result into 2.32 gives

An inverse scale length for the pressure gradient may be defined as

1 ap
I\. =--

P P aXil

Now

therefore, combining 2.33 and 2.34,

B2 B2
I\.pP = --I\. - -1\.11

JLo JLo
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Rearranging the above gives

(2.36)

where {3 is the plasma pressure to magnetic pressure ratio.

2.3 Linearisation of the MHD equations

It is assumed that the perturbation imposed has a time behaviour of the form

exp(-iwt). In order to linearise the magnetohydrodynamic equations, it is nec­

essary to express the variables concerned in terms of the sum of zero and first

order perturbation components. First order terms are then retained to examine

the linear response of the perturbed system.

The zero order variables that will be used are the pressure, P, the density, Po,

and the magnetic field, B. Near the equatorial plane the ambient magnetic field

has a B /Jo component only. The zero order electric field and velocity are zero.

The corresponding first order pressure, density and magnetic field are p, P and b

respectively. E and v represent the perturbation electric field and velocity.

As an initial step, then, the momentum equation is expressed as:

(Po + p)aav + (Po + p)v.\7v = -\7 [(P + p) + (B + b)2] + (CB + b).\7)(B + b)
t 2~ ~

Expanding this expression further gives

av av [ 1 ]p0at + Pat + pov.\7v + pv.\7v - -\7(P + p) - \7 2/1-0 (B2 + 2B.b + b2)

1 1
+-[(B.\7)(B + b)] + -[(b.\7)(B + b)]

/1-0 /1-0

or

av av [ 1 ]p0at + Pat + Pov.\7v + pv.\7v - -\7(P + p) - \7 2/1-0 (B 2 + 2B .b + b2) +
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..!.-[(B.V)B + (B.V)b + (b.V)B + (b.V)b]
J.Lo

To first order,

Po 8v = -v» - V [_1(2B.b)] +..!.- [(B.V)b + (b.V)B]at 2J.Lo J.Lo

Time variation of the form exp(-iwt) implies that the partial derivative with

respect to time, a/at = - iw. The above equation may therefore be expressed as

- iwpov = -V (p + B.b) + ..!.-[(B.V)b + (b.V)B] (2.37)
J.Lo J.Lo

This is the linearised momentum equation.

When the adiabatic law is expanded in terms of zero and first order terms, the

following results are obtained:

In the above the first order approximation (1 + x)C¥ ~ 1 + ax has been used.

Excluding zero and second order terms gives

~ [!... (!!.... - ,p)] +v.V (!...) = 0
at P6 P Po P6

Expanding the above yields

1 Bp ,P Bp 1 ,P
--;y at - -rH -a + --;yv, V P - -rH v. V Po = 0
Po Po t Po Po

Multiplication by P6 reduces this expression to

Bp ,P ap ,P
- - -- +v,VP - -v.Vpo = 0at Po at Po

Since the sound speed, Vs = V,P/Po, this takes the form

- iwp + iWV;p + v.V P - V;v,V'po = 0
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The continuity equation, expressed in terms of zero and perturbation terms be-

comes :t (po + p) + V.[(po + p)v] = 0

The first order continuity equation is then

8p
at + V.(pov) = 0

or

- iwp + V.(pov) = 0 (2.39)

By inspection, the linearised forms of Faraday's law, Ampere's law and Ohm's

law are

V x E = iwb, (2.40)

V x b = J,La.i (2.41)

and

E+vxB=O (2.42)

Eliminating p

It is convenient to express the gradients of the ambient magnetic field and pressure

in terms of the curvature, K, and the inverse scale length, Kp. This may be done

using the results 2.26 and 2.33. Using the latter in equation 2.38 gives

. . V2 B
2

( ) A V 2 " 0- twp + tw sp - v .- K+ KIJ V - S v. v Po =
J,Lo

If equation 2.39 is multiplied by V§ and added to the above, the result is

-iwp - B
2

(K + KIJ)V,V + poV;V.v = 0
J,Lo

Using the definition of the Alfven speed,

this may be written as

- iwp = -poV;V.v + poVl(K + KIJ)V,V
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Eliminating E

Substituting for E from equation 2.42 into equation 2.40 gives

v x (v x B) = -iwb

Now

v x (X x Y) = (Y.V)X - Y(V.X) - (X.V)Y + X(V.Y)

so that

-iwb - (B.V)v - B(V.v) - (v.V)B + v(V .B)

- (B.V)v - B(V.v) - (v .V)B (2.44)

From expression 2.26,

Equation 2.44 now becomes

iwb = B(V.v) - (B.V)v + jJ./tIlBv.v - v/tBjJ..v (2.45)

Substituting for (b.V)B in a similar way, the linearised momentum equation,

2.37, may be written as

- iwpov = -V (p + B.b) + ..!..[(B,V)b + jJ,/tIlBv.b - v/tBjJ.,b] (2.46)
J,Lo J,Lo

Any vector in the coordinate system that has been adopted may be expressed as

Using 2.26

Also

(B .V)a - (B ,V)a~jJ. + (B.V)allv + (B,V)a'P~

- jJ,(B ,V)a~ + a~(B.V)jJ. + v(B,V)all + all(RV)v +

~(B.V)a'P +a'P(B.V)~
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The gradients of the unit vectors are given by equation 2.27. Using these and the

fact that B = (B 10,0) the above becomes

(B.V)a = P.(B.V)a~ + v(B .V)all + ep(B .V)a(,O-

Expressions 2.47 and 2.48 allow 2.46 and 2.45 to be expanded:

(2.48)

VII (~~) -

(2.49)

Now

1 A a ( )-1£- Bb~
/-Lo ax~

_ ~B ab~

/-Lo ax~

since R~ -+ 00 near the equatorial plane. Also,

~f£(B.V)b~
/-Lo

Therefore equation 2.49 reduces to

- iwpov = - VliP - V.lT +~ [v(B.V)b ll + ep(B .V)b(,O +B(K: + K:1I)bll - 2vK:Bb~]
/-Lo

(2.50)

where the total pressure
B.b

T=p+­
/-Lo

Using 2.47 and 2.48 in 2.45,

iwb = B(V.v) - P.(B.V)v~ - v(B.V)vll - ep(B.V)v(,O - {LK:Bvll +
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Now

{I.(B .Y')v" A (8V" 8v" 8V,,)- J.lB - --
8x,,'8Xl/'8xlp

AB 8v"- J.I -
8x"

and

so that

(
8V 8v", 8V)B(Y'.v) = {l.B -l:.. + - + .--f..
8x" 8x", 8xlp

B(Y'.v) - P.(B.Y')v" = B(Y'.L.v.d

Equation 2.51 may then be written as

(2.52)

Equations 2.43, 2.50 and 2.52 are the linearised equations which will be used to

derive the dispersion relation.

2.4 Separation of variables

The assumption of azimuthal symmetry implies that conditions in the ep direc­

tion (perpendicular to the meridian plane) are homogeneous. The azimuthal

behaviour of the perturbation may then be expressed as ezp iklpxlp, so that

8/8xlp = iklp. In the meridian plane conditions are inhomogeneous. It is, how­

ever, useful to assume that these conditions vary slowly in the jL direction, so

that homogeneity holds on length scales of the order of a wavelength. In this

case, the eikonal function

J
X

'"exp i k" dx"

may be used to describe variation along the field. This means that 8/8x" = ikw

When these results are used it is possible to eliminate all variables except T and

v'" from the appropriate equations.
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Expanding 2.43 in terms of the above gives

iwp = Povi (ik~U~+ :~: + ik~U~) -Povl(~ + ~vluv

Similarly, 2.52 and 2.50 become

(2.53)

(2.54)

and

(2.56)

Equations 2.54 and 2.55 may be expressed in terms of their component equations.

From equation 2.54 :

iwbJlo = B (dVII + ikv>VV» + (KII - K)BvlI
dXII

(2.57)

and

(2.58)

From equation 2.55:
k iB

vJIo = -..J:...p + (K + KII)b ll
wpo W/Lopo

Substituting for bll from 2.57 and using the definition for VA gives the result

»; ikJlo ( ) 2
VJIo = -p + "'2 K + K II VAVII

wpo W

The v component of 2.55 is

i dr kJlo i
VII = --- - Bb ll - 2KBbJlo

wpo dXII W/LoPo W/LoPo

In terms of VAt

V = _ kJloVl
b

_ 2iKVlb _ _ i__dT_
11 wB 11 wB JIo dwpo XII
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The q, component of 2.55 may be written as

»; klJovl
v =-T---brp wpo wB rp

The variable brp is eliminated using 2.58 and 2.61:

ktp k;vl
v =-T+--V

tp wpo w2 tp

so that

and

Substituting for vlJo from 2.59 and vtp from 2.62, 2.53 becomes

(2.61)

(2.62)

iwp =

Now

thus

With vtp given by 2.62, 2.56 becomes
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(2.64)

Multiplying the above by

gives

Adding 2.63 and 2.64 then gives

ipoYi 2 2 2) ( ) k~ (2 2--(w - k~Ys It + It ll - Itll + It VII + 2 k2y2 W Ys
w w - ~ A

+w2Yl- k2V;Yl), - ipo (W2y; + w2Yl- k2VJY1) dV II

~ w ~ dX
II

Rearranging the above and using the definition for the hybrid characteristic speed,

Y = JYl + vi. results in the expression

dv iwk2

(w2y 2 _ k2y2v:2)_ 1I = _ '" [w 2y2 _ k2v:2y2_
~ A S dX

II
po(w2 _ k~Vl) ~ s A

(w2 k2V:2)(W2 k2Y2)]
- ~ S k; - ~ A T + 2Yllt(w2 - k;y;)v lI(2.65)

The bracketed portion multiplying, in 2.65 may be rewritten as:

where

(2.67)

and

(2.68)
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Therefore 2.65 may be expressed as

1 dv", iw g 2( 2 2u2)
-- = (2 2 2) 'J.J T + 2KoVA W - kJ.4 v S v'"
?-l dx", Po w - kJ.4VA /1.

so that
dv", iwg 2( 2 2 2)- = (2 2V2)T + 2KoVA W - kJ.4VS ?-lv",
dx", Po w - kJ.4 A

This equation is only dependent on T and v"'.

Now, from 2.56,

(2.69)

bJ.4 i dv", krpvrp i ( )
- = - --+-- - - Ko", - Ko V'"
B wdx", w w

Substituting for Ko", from 2.36, vrp from 2.62 and dv",/dx", from 2.69, this becomes

bJ.4
B

Now

w4

- w2(Vl +vj) - k~V1Vj - k;

w4
- w2k;(vl + vj) + k~vlvj

w2(Vl + vj) - k~V1Vj

- ?-l(w2 - k;V;)(w2 - k;vl)

Therefore

From equation 2.60

51

(2.70)



Using the expression for bv from 2.57 and equation 2.70 gives

1 dr---
Po dx v

(2.71)

As Walker [1994] has noted) equations 2.69 and 2.71 are similar to those that

would be derived in a model with straight field lines. Here) however) correction

terms allowing for the finite field line curvature are evident.

2.5 Dispersion relation

A further assumption of slow variation in the inhomogeneous meridian plane is

now made for the v direction. As for x~) Xv dependent variation may be expressed

in terms of an eikonal function :

so that d]dxv = ikv '

The above may used in 2.69 and 2.71 to obtain two homogeneous simultaneous

equations in the variables r and Vv ' These may be expressed in matrix form as:

where

(2.73)
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(2.74)=0
-ikv - 2K.Yi(w2 - k~Yj)1-£

iwQ

In order for these equations to have a solution, the determinant of the coefficient

matrix in 2.72 must be zero:

~(w2 _ k2Vl) _ 2iK.Yi JC
w p. w

-ikv + 2K.Yi(w2 - k~Yj)1-£

(2.75)

When the scale of variation along the magnetic field is large, kp. ~ O. For this

special case, the determinant equation reduces to

iQ [ 2iK.Yl ] 2 2 2 2-;:; iw - w JC - (-ikv - 2K.YAw 1-£)(-ikv + 2K.YAw 1-£) = 0

Here

(2.76)

so that

(2.77)

Expanding equation 2.75:

2K.y2
o - -'I + __A QJC + k2+ 4K.2y4w41-£2

w2 v A

w2 2K. y2 [w2] 4K.2y4
- k; - y2 + w/ y2 - k; JC + k~ + y4 A

k2 k2 _ w
2

4K.
2Yl

2K.yi [~ 2K.Yj]
- I{> + v y2 + y4 + y2 2/3 K.p + y2 -

2K.
yik; [1 2K.Yi]
w2 2"/3 K.p + V2"

k2 k2 _ w2 4K.2Yl fJ K.K.p yi 4K.2yiyj fJ K.K.p yik;
- I{> + v y2 + y4 + y2 + y4 - w2 -

4K.2ylyjk;

w2y2

Multiplying this by w2y2 gives

o =
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From 2.36

Using the above equation, and expanding the hybrid characteristic speed in terms

of the Alfven and sound speeds yields the result

w4 _ w2[4~2vl + 2~(-~ - ~1I)Vl + (k; + k;)V2]

+k;~vl [4~V; + 2(-~ - ~1I)(Vl + V;)] = 0

Rearranging this expression gives,

w4
- w2[2(~ - ~1I)~Vl + (k;+ k;)V2)]

+k;vl~ [2~V; - 2~vl- 2~lIvl- 2~IIV;] = 0

thus

w4
- w2[2(~ - ~1I)~Vl + (k;+ k;)V2]

+2k;vl~ [~(V; - Vl) - ~II(V; + Vl)] = 0 (2.78)

2.6 Threshold for Instability

In a normal mode stability analysis, the development of the perturbation that

has been applied to the system must be examined. If the disturbance grows

with time, the system is considered unstable. It has been assumed that the time

behaviour of the perturbation is of the form exp(-iwt). In general, w is complex:

w = Cl! + is

so that

If the imaginary part of w is positive, the wave grows exponentially and instability

results.

54



If the discriminant of equation 2.78 is negative, w2 has a positive imaginary root

and so does w. This implies instability. If the discriminant is positive,

or, in terms of the ambient pressure and magnetic field,

~ (~P -~) -~" (~P +~) < 0

(2.79)

(2.80)

In this case, the quadratic equation 2.78 will have a negative root so that w has

a positive imaginary root.

In the magnetotail, the curvature of the field lines, It, is positive. During the

growth phase, the curvature in the near-earth tail increases as the field here

adopts a more stressed configuration. The magnetic field in the equatorial plane,

B %, usually increases with decreasing radial distance from the earth. This implies

that Itv is negative. As the tail becomes more tail-like in the near-earth region,

B % may decrease. In this case, Itv may be positive. If Itv is greater than It, this

can lead to instability for suitable values of the plasma pressure and magnetic

field.

2.7 Numerical results

To obtain numerical results for the instability condition, a realistic self-consistent

model of the magnetotail during growth phase conditions is needed. This may

be used to investigate the curvature, pressure and magnetic field in the region of

interest. The various scale lengths may also be deduced from the variations of

these quantities with radial distance from the earth.
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Chapter 3

Quasi-static Convection Model

3.1 Introduction

The earth's magnetospheric magnetic field has been modelled with varying de­

grees of accuracy since 1960. The lowest order approximations are the vacuum

models which hold within 5 to 7 RE from the earth [Voigt, 1986]. In this region

the ambient magnetic field is due to the dipole field (the dominant component)

and the field generated by the Chapman-Ferraro currents at the magnetopause.

The magnetic field which results from magnetospheric currents is considered as

a perturbation component. The next level of magnetic field models is the group

of quasi-static equilibrium models . The model used in this investigation is of

this type. These models are self-consistent - the magnetospheric magnetic field,

plasma flow and currents determine each other through the set of MHD equations

for hydrostatic equilibrium. Alternatively, observationally based models describe

the magnetic field configuration for average measurements and do not enforce

momentum balance and flux conservation [Walker and Southwood, 1982]. FUll

magnetohydrodynamic codes describe the whole magnetosphere and represent

the highest order of modelling.
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3.2 The Model

The model which is used has been developed by Erickson [1984, 1992], and is

similar to models presented by Schindler and Birn [1982] and Birn and Schindler

[1983]. Erickson [1984, 1992] has computed self-consistent, static-equilibrium

solutions for two-dimensional magnetospheric magnetic field configurations by the

adiabatic earthward convection of plasma sheet flux tubes. This requires solving

the Grad-Shafranov equation for specified initial and boundary conditions in two

dimensions.

3.2.1 Model Assumptions

The magnetosphere up to approximately 60 RE from the earth in the tailward di­

rection may be modelled by the equations describing hydromagnetic equilibrium

[Voigt, 1986]. Here quasi-static magnetohydrodynamic processes may be consid­

ered within the "slow-flow" approximation. This implies that the time-scale of

solar wind driven plasma convection is large compared with the typical Alfven

wave travel time and that plasma velocities are small compared with the typical

Alfven speed [Schindler and Birn, 1982; Voigt and Wolf, 1988]. As a result the

inertial term

p~: = p (~ + v .\7) v

in the MHD momentum equation (refer to equation 2.2) may be neglected [Hau

et al., 1989]. In addition, pressure isotropy is assumed, therefore

J x B = VP (3.1)

This approximation thus excludes boundary layer regions in which rapid plasma

streaming velocities are found. In Ampere's law (equation 2.6), the displacement

current is ignored:

v x B = J1.oJ
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The other basic equations necessary for a complete description of ideal, one-fluid

MHD (refer to equations 2.3 to 2.7) are Ohm's law for infinite conductivity,

the continuity equation,

Faraday's law,

and the divergence condition

E+v x B =0,

ap
at +v.(pv) = 0

aB
VxE=-­

at

V.B =0

(3.3)

(3.4)

(3.5)

(3.6)

In quasi-static MHD, this set of equations is completed by the adiabatic law which

places a thermodynamic constraint on the pressure [Voigt and Wolf, 1988]

E. (!-) = 0
Dt p'Y

Convection is also assumed to be lossless.

3.2.2 Results From the Two-Dimensional Approach

(3.7)

The two-dimensional approach allows the essential physical mechanisms of in­

terest to be examined while simplifying the computational analysis. The plane

in consideration is the x-z plane which contains the earth's dipole (figure 3.1) .

This represents the magnetospheric noon-midnight meridian. All y dependence

is ignored and a/ay = 0 is assumed. The magnetic field in this case has no By

component. The remaining components may be expressed in terms of the mag­

netic vector potential, A. In the specified coordinates A becomes A(x, z) y. Since

B = V X A,
aA

B z =--,az
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Figure 3.1: The magnetospheric coordinate system showing the equatorial (x - y)

and meridian (x - z) planes.

Now

therefore

VA 8A A 8A A

- -x+-z
8x 8z

- B z*- B:z:z

This implies that A is constant along a magnetic field line. Also

VxB - VxVxA

_ V(V.A) - V2A

But

V.A=O

thus

From Ampere's law, then,

(3.9)

where the current density, J, is in the y direction and consists of both dipole

current and plasma current components.
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The momentum equation 3.1 implies that

B.V'P - B.(J X B)

- 0

since B is perpendicular to J x B. The plasma pressure, P, is therefore also

constant along magnetic field lines. Using the definition of the vector potential

and the momentum equation again

J x (V' x A) = V'P

Writing components gives

Since V'A and V'P are parallel (perpendicular to B in the z-» plane)

J= dP
dA

P = P(A), J = J (A) and A are then all constant along field lines.

(3.10)

Combining equation 3.9 and 3.10 gives the Grad-Shafranov equation in two di-

mensions
2 dP

V' A = -JLo­
dA

(3.11)

The current density may be decomposed into its plasma current and dipole con­

tributions as
2 dP 8

V' A = -JLO-
A

- JLomd-S(x)S(z)
d 8x

(3.12)

The dipole term is obtained [Voigt and Wolf, 1988] by considering the earth's

dipole moment to be in the negative zdirection
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with magnitude md. The dipole magnetisation current is then

so that

in the y direction.

The assumption of ideal MHD (infinite conductivity) implies that the magnetic

field and plasma move together - the magnetic field is said to be "frozen-into"

the plasma [Cowling, 1976]. As magnetic field lines are surfaces of constant A,

it is possible to follow the motion of the plasma as it convects by observation of

the motion of a field line of a particular A-value.

For lossless convection, the total number of particles in a flux tube is constant in

time. Now
M

p=­
V

where M is the total mass and

V=J~ (3.13)

is the volume of a flux tube of unit magnetic flux. The integral is a line integral

which extends over the arc length of the field line from the southern to the

northern ionosphere. Substituting this definition of p in 3.7

For constant M
D
Dt (PV'Y) = 0

Since A is constant for a particular field line and the field lines move with the

plasma; the adiabatic condition above may also be expressed as

PV'Y(A) = constant in time
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Also, from Faraday's law,
aA

E =--
iI at (3.15)

which is the convection electric field due to motion of the solar wind at the

magnetopause.

3.3 Numerical Method

The vector potential may be written in terms of plasma current and dipole terms

Equation 3.12 may then be expressed as two separate equations

2 dP
'V Ap = -J.Lo­

dA

and
2 a

'V Ad = -J.Lomd ax
o(x)o(z)

The latter has a singularity at (x, z) = (0,0), while everywhere else

A solution to equation 3.17 (for all points except the origin) is then

(3.16)

(3.17)

(3.18)

Equation 3.12 is a non-linear partial differential equation which, for the general

case, needs to be solved numerically. Separation of this equation into 3.16 and

3.17 allows for greater accuracy and a decrease in the computational time required

as the dipole part of the solution may be calculated analytically from 3.18. The

plasma current part of equation 3.12 requires numerical solution for specified

boundary conditions.
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3.3.1 Boundary Conditions

The boundary conditions for the solution of equation 3.16 may take the form

of either Dirichlet or Neumann conditions. Dirichlet conditions are those for

which only values of the function are specified at the boundary, while Neumann

conditions require the specification of the normal gradient. A Cauchy boundary

condition specifies both the value and normal gradient. The solution to equa­

tion 3.16 is required within a closed region. For closed boundaries, however,

Cauchy conditions over specify the solution of an elliptic equation such as this

[Morse and Feshbach, 1953]. Thus for a unique, stable solution, only the values

of A and P, or their gradients, may be set at the boundaries.

For numerical simplicity, a rectangular computational region is used. This is

bounded by the magnetopause, the equatorial plane and a vertical far-tail bound­

ary.

The Magnetopause Boundary

The magnetopause, assumed rectangular, forms the vertical left (x = 10.8 RE)

and horizontal top (z = 18 RE) boundaries. This boundary is treated as a field

line, with the (constant) value of the vector potential denoted Amp and a constant

pressure, Pmp.

Initial conditions: To obtain an initial self-consistent magnetic field configura­

tion typical of the quiet magnetotail, Amp is set to zero. The pressure at the

magnetopause, P m p, is also set to zero in the initial configuration for simplicity.

The choice of pressure on this boundary has no effect on the development of the

near-earth tail, which is the area of interest.
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The Equatorial Boundary

At the equatorial plane (z = 0) the pressure variation with radial distance, P(xe ) ,

is specified", Symmetry in the magnetic field is also imposed. This implies that

the horizontal component of the field, B:c, which is the gradient in A in the normal

direction, is zero. In keeping with the restriction to either Dirichlet or Neumann

conditions, the modelling region is extended one grid point below the equatorial

plane with the value of A here being specified by the value of A one grid point

above the equatorial plane. The field is thus symmetrical about z = O.

Initial conditions: The pressure at the equatorial plane is initially assumed to

decline exponentially down the tail as in the Fuchs-Voigt model [Fucks and Voigt,

1979]. This requires that

dP = ~k2A
dA JLo

where k is the Fuchs-Voigt constant referred to in section 3.3.3. Within the

plasmasphere (0 ~ x ~ -4.5 RE), pressure is assumed constant. Initially A

is positive on the tailward side of the polar cusp and negative on the day-side.

For simplicity, pressure is also assumed constant for negative values of the total

vector potential, as pressure variation on the day-side has a minimal effect on the

evolution of the magnetotail,

The Far-Tail Boundary

At the tail boundary, z = -60.3 RE. This grid point lies closest to the -60 RE

point. Here the asymptotic approximation

IThe subscript lie" denotes the value of a variable at the equatorial plane.
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holds as the dipole field in this region of the tail is weak. One dimensional force

balance then requires that

(3.19)

If P is given as a function of A, the above may be solved analytically for A(z).

Initial conditions: A simple parabolic model for which peA) ex A2 is used at the

tail boundary. Specifically,

dP = ~k2A (3.20)
dA jJ.o

Initially, k = 1.54, and the tail boundary values correspond to Fuchs-Voigt model

values (refer to section 3.3.3).

3.3.2 Gauss-Seidel Method

Solutions to equation 3.16 for the above boundary conditions are calculated for

a rectangular region of extent 10.8 RE ~ x ~ -60.3 RE and 0 RE ~ Z ~ 18 RE.

The grid size, ~, is uniform in both the z and z directions and corresponds to

a distance of 0.9 RE. This gives a modelling grid of 80 x 21 and results in the

far-tail equatorial boundary having a non-integer value (-60.3 RE)' The grid size

may be decreased as desired. In the model, z and x grid points are represented

by the modelling coordinates I and J respectively. Each grid spacing corresponds

to a unit increment in I or J.

The numerical method used to solve this boundary value problem is the Gauss­

Seidel method. This uses the finite difference form of the partial differential

equation 3.16.
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Finite Difference Equation

The left hand side of equation 3.16 involves the operator

82 82

V
2

= 8x2 + 8z2

At any interior point on the modelling grid

- :x (~:)
1 [A'+l' - A " A .. - A'-l']"" - 3 ,I 3,1 _ 3,1 3 ,I

!::J.!::J. !::J.
Aj+l,i - 2Aj,i + Aj-l,i

!::J.2

A similar expression may be obtained for 82AI8z2 so that the finite difference

representation of 3.16 is

Aj+l,i - 2Aj,i + Aj-l,i Aj,Hl - 2Aj,i + Aj,i-l = u
3
', I'

!::J.2 + !::J.2

where o is the "source" term on the right hand side of equation 3.16. This may

be written as

Aj+l,i + Aj-l,i + Aj,i+l + Aj,i-l - 4Aj,i = 6.2Uj ,i

or

A .. = ~ (A '+l' + A '-l' + A "+1 + A"-l- !::J.2u . ,)3,1 4 3 ,I 3 ,I 3,1 3,1 3,1

This equation holds for all interior grid points [Press et al., 1989].

(3.21)

The Gauss-Seidel method is an iterative procedure that uses updated values of A

on the right hand side of 3.21 as soon as they are available. Let n represent the

current value (and current iteration), and n+1 the updated value. Equation 3.21

becomes

An.+l 1 (An. + An.+l + An. + An.+l A 2 ).. = - '+1 ' '- 1 ' , '+1 ' '- 1 - u. U3',3,1 4 3 ,I 3 ,I 3,1 3,1 , (3.22)

For each iteration, the values of the current density (u in the above equation) are

obtained from the values of the total vector potential from the previous iteration.
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This procedure is continued until the maximum change in the function A(x, z)

at each grid point is less than an amount, E, for successive iterations. The speed

of convergence will depend on the extent of the modelling region, the size of the

grid spacing and the magnitude of E.

3.3.3 Equilibrium Solutions

The solution of the Grad-Shafranov equation for given boundary conditions by

the method described in the previous section provides quasi-static equilibrium

configurations for the magnetospheric magnetic field. For the numerical proce­

dure to be efficient, reasonable values of the vector potential and the current

density are needed at each point as an initial approximation. The first solution,

for time t = 0, corresponds to an average "quiet" magnetic field configuration.

Initial estimations of the required variables for this solution are made using the

Fuchs-Voigt model [Pucks and Voigt, 1979]. Subsequent configurations, each valid

at a later time than the one before, use the previous solution as a starting point.

Fuchs-Voigt Model

The Fuchs-Voigt model [Pucks and Voigt, 1979] considers a special case of the

Grad-Shafranov equation for which an analytical solution is possible. The pres­

sure in this model varies parabolically with vector potential. This dependence is

a reasonable approximation to observation.

For a rectangular magnetopause geometry, the Fuchs-Voigt analytical solution for

A(x, z) is

(3.23)

In the above, m is a modified magnetic dipole moment and b is the position of

the sub-solar point. For A = 0 at the magnetopause, a = 7r/2. The variable oX is
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specified by the choice of k through the relation

Here k ranges from zero to 1r /2. For k = 0, the field lines described by contours

of constant A correspond to a dipole field in a vacuum. Increasing k effectively

increases the plasma population of the magnetosphere and the magnetic field

configuration becomes more tail-like.

To initialise the modelling grid, a Fuchs-Voigt model with k = 1.54 is used. This

value is used as it gives magnetic field and plasma pressure variations compara­

ble to those found in an average quiet magnetosphere. The Fuchs-Voigt dipole

solution is then subtracted to give initial values for Ap , the plasma current vector

potential.

Magnetic Dipole Moment

The magnitude of the magnetic dipole moment, md, in equation 3.12 is not the

same as that of the modified magnetic dipole moment in equation 3.23. The

Fuchs-Voigt 'dipole solution' includes effects due to Chapman-Ferraro currents

on the magnetopause, while the analytical dipole solution 3.18 does not. For

consistency, the two values may be linked by specifying the value of the magnetic

field at a point on the equatorial plane for an average quiet magnetosphere.

Alternatively, since the Fuchs-Voigt model is only used as an initial guess for the

values of Ap on the modelling grid, md may be chosen to reflect the desired value

of the dipole magnetic field at any point on the equatorial plane, with m being

fixed at a value which gives realistic variations of the equatorial magnetic field

and plasma pressure.
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Initial Configuration

An initial self-consistent magnetospheric magnetic field configuration is thus ob­

tained by

1. Generating the analytical dipole vector potential from 3.18.

2. Generating an initial approximation for Ap from the Fuchs-Voigt models.

3. Generating boundary conditions. At the tail boundary, this involves calcu­

lating A(z) and thus Ap •

4. Generating values of dP / dA given P (xe) .

5. Using Gauss-Seidel iteration to find a self-consistent solution for A(x, z).

The algorithms used in each step are discussed in Appendix A.

The initial approximation thus converges to a self-consistent solution for the

specified boundary conditions. The magnetic field corresponding to this solution

may be visualised by tracing contours of constant vector potential, A.

3.4 Adiabatic convection

To achieve time-dependent convection, the boundary conditions are altered to

effect the presence of an electric field on the magnetopause. This simulates the

substorm growth phase scenario in which enhanced reconnection at the day-side

magnetopause results in an increase of flux in the tail. Imposition of a thermo­

dynamic constraint in the form of the adiabatic law forces any new equilibrium

solution corresponding to the changed boundary conditions to have the same

PV'Y(A) as the initial (t = 0) configuration, as required by equation 3.14. This
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Figure 3.2: Reconnection and magnetospheric convection In the meridian plane.

From Lyons and Williams [1984].

results in sequences of quasi-static equilibrium solutions in which plasma sheet

flux tubes convect earthward in time.

3.4.1 Magnetospheric Shielding

The motion of the solar wind across open magnetic field lines gives rise to an

electric field at the polar caps from the dawn-side to the dusk-side. Consequently,

a dawn-to-dusk electric field is also present across the region of closed magnetic

field lines. This electric field, called the convection electric field, drives the large

scale plasma flow depicted in figure 3.2, with anti-sunward flow across the poles

and sunward flow in the equatorial plane [Lyons and Williams, 1984].

As plasma convects toward the earth in the equatorial plane, it encounters in­

creasing magnetic field strengths and gains energy. Gradient and curvature drift

forces, which are charge dependent, now become important. The paths of the

electrons and ions thus separate and travel in different directions around the
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inner magnetosphere at the Alfven layer [Schield et al., 1969]. This partially

shields the inner magnetosphere from the convection electric field and earthward

adiabatic drift [Lyons and Williams, 1984].

In the two-dimensional model which has been used, this tendency of plasma to

drift azimuthally around the earth is accounted for by not allowing plasma sheet

flux tubes to convect earthward of the Alfven layer. The position of the Alfven

layer is termed the 'shielding distance'. In two dimensions, this shielding results

in the plasma pressure at this position increasing as more flux tubes reach the

shielding distance [Voigt and Wolf, 1988].

The build-up of pressure is prevented by holding the pressure at the shielding

distance constant. The plasma pressure of a convecting flux tube may not exceed

the maximum set by this value. As a consequence, the position of the Alfven layer

in the model moves tailward as convection proceeds. Even though observation

indicates that the Alfven layer moves earthward as activity increases [Schield et

al., 1969], in contrast to the motion in the model, this simulation of magneto­

spheric shielding is sufficient as a first approximation. An improved mechanism

has been suggested by Erickson [1992] .

3.4.2 Time Parameterisation

Time is parameterised by the value of the total vector potential at the magne­

topause through equation 3.15. For a given electric field at the magnetopause,

E = Emp, and a specified value for Amp, 3.15 may be integrated [Erickson, 1984]:

I t

Emp(t') dt' = -Amp (3.24)

This holds for Amp = 0 at t = 0, as is the case in the initial configuration. More

generally [Voigt and Wolf, 1988],
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A negative increment in Amp thus corresponds to an increment in time for a

constant electric field at the magnetopause. For the numerical calculation of the

elapsed time refer to section 3.5.1.

3.4.3 Adiabatic Constraint

After decreasing Amp) a new solution to 3.16 is sought under the added require­

ment that it have the same PV'Y(A) as the initial solution. All subsequent solu­

tions must thus satisfy the condition

where

PVJ(A) = G(A)

G(A) =PV~(A)

(3.25)

The magnetic field lines may be traced by constructing contours of constant

vector potential. The volume of these lines may then be calculated according to

the relation 3.13 and values for the above functions obtained. This is done for

all field lines crossing the equatorial plane between the shielding distance and

the far-tail boundary. The adiabatic condition is not enforced earthward of the

shielding distance or on the day-side of the earth.

The ratio of specific heats) 'Y, is 5/3 for a monatomic plasma in three dimensions.

Even though the model is two-dimensional, the individual particles are assumed

to gyrate in three dimensions.

As the flux in the tail increases, field lines that previously intersected the far-tail

boundary now cross the equatorial plane. In order to conserve PV'Y for these field

lines) it is necessary to know the required value for this function as defined by the

initial configuration. To do this) the to solution is solved for a magnetotail that

extends to x = -97.2 RE. All subsequent configurations have a far-tail boundary

at x = -60.3 RE.
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By decreasing the value of A at both interior and boundary points, an initial

approximation to the solution is made while the boundary conditions are changed

at the same time. Subtracting I~AI from a solution A(x, z) does not change the

structural appearance of the magnetic field. The volume of the field lines as a

function of radial distance, V(xe ), remains the same, as does PV'Y(xe) , since the

equatorial pressure is not changed. The values of A(xe ) , however, have decreased,

so that the value of P V'Y at that point will be too low. The equatorial pressure

values thus need to be modified .

3.4.4 Updating Boundary Conditions

The equatorial pressure is adjusted according to the algorithm described by Er­

ickson [1992]. This involves evaluating the ratio

R = PV'Y(J)
G(J)

where G(J) is the required value of PV'Y corresponding to the value of A at that

point. Let the previous pressure at an equatorial point, J, be denoted P (J), and

the updated pressure, P'(J). Then

• for R = 1 : P' (J) = P (J)

• for R < 1 : P'(J) = P(J) + w(R - l)[P(J) - P'(J - 1)]

• for R > 1 : P'(J) = P(J) - w(~ - l)[P(J) - P'(J - 1)]

This routine reflects the fact that, since the pressure is only allowed to increase

to the maximum value defined by the pressure inside the shielding distance, P

remains constant or decreases with X e . The variable w is a weighting factor

[Erickson, 1992] that speeds up or slows down the updating procedure.

The first pressure value to be altered is that at the grid point immediately tailward

of the shielding distance. At the far-tail boundary, the value of the pressure at
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the equatorial plane is found by extrapolation of the updated values earthward

of this point.

Since the equatorial pressure at the far-tail boundary has changed, the boundary

values A(z) and dP/dA here need to be adjusted accordingly.

With these new boundary conditions, the iteration procedure is once again per­

formed to find a solution to 3.16. PV'Y for this equilibrium configuration is

calculated, with the updating of boundary conditions as before. This continues

until a solution is found for which condition 3.25 holds.

3.4.5 Quasi-static, time-dependent convection

To summarise, quasi-static, time-dependent magnetospheric magnetic field con­

figurations are obtained by

1. Subtracting I~AI from the ti.-l solution for all A(x, z) (thus changing Amp

and generating an initial approximation).

2. Calculating PV'Y(A) for this configuration.

3. Updating the pressure boundary values at the equatorial plane.

4. Updating the far-tail boundary conditions.

5. Solving 3.16 for the new boundary conditions.

6. Repeating steps 2 to 5 until PV'Yfor each point lies within 1%of the required

value, G.

This generates an equilibrium solution for time ti.. Steps 1 to 5 are repeated to

extend the convection sequence for a longer period of time. Each quasi-static,

equilibrium configuration represents the progressive convection of plasma sheet

flux tubes in the original solution.
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Physical Quantity Symbol Model Units SI Units

distance :I:,Z RE m

magnetic field B nT T

vector potential A nT.RE T.m

P nT. A.REI N -2pressure .m

current density dP/dA A.RE
2 A.m-2

volume of unit magnetic flux tube Jds/B RE.nT-l m3.Wb-l

permeability of free space JLo nT.RE.A-l Wb.A-l.m-l

scale factor k REI m-I

Table 3.1: Model and SI units for the physical quantities used in the computational

analysis.

3.5 Model Units

The modelling units and corresponding MKS units for the various quantities used

in the computation are given in table 3.1. The unit of distance is the earth radius,

1 RE = 6.38 X 106 m

All quantities may be converted to MKS units using the above relation and noting

that 1 nT = 1 x 10-9 T. For example, the permeability of free space is

JLo = 471" X 10-7 Wb.A -l.m-l

in SI units, where Wb =T.m2. This corresponds to

JLo - 471" X 10-7 x 6.38 X 106 x 109 nT.RE.A-l

- 1.97 X 10-4 nT.RE.A-1
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3.5.1 Evaluating ti

As noted in section 3.4.2, time is parameterised through the value of the vector

potential at the magnetopause, Amp. Performing the integration in equation 3.24

gives

Empt=-Amp (3.26)

For Amp in nT.RE and Emp in V.m-1, the time, in seconds, is obtained from

Amp -3
t = -- x 6.38 x 10 s

Emp
(3.27)

The elapsed time is thus dependent on the value of the electric field at the mag­

netopause. Erickson [1992) has taken Emp = 2.2 X 10-4 V.m- I • Substitution into

equation 3.27 shows that, for this value of the electric field and AAmp = -10,

At = 290 s ~ 4.83 min.

For the modelling procedure described, time steps of At = 4.83 min (AAmp =

-10) were used to convect the equilibrium configurations in time.

Changing the value of Emp changes the timescale of the convection through equa­

tion 3.26. The equilibrium configurations remain the same.
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Chapter 4

Results

The programs described in Chapter 3 were used to model the time-development

of an average quiet magnetospheric magnetic field under growth phase conditions.

The resulting configurations are seen to have characteristic equatorial magnetic

field and pressure profiles. These are tested for stability against the ballooning

mode using the condition derived in Chapter 2.

4.1 Initial configuration

The initial self-consistent solution to the Grad-Shafranov equation for the pre­

scribed boundary conditions is shown in figure 4.1. The earth is not depicted, but

lies at the origin of the coordinate system. The magnetic flux, 4>, in an interval

of z or z is proportional to A by the relations

4> ex: Js; dz = A

and

4> ex: Js, dx = A
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Figure 4.1: The initial self-consistent magnetospheric magnetic field configuration.

The distances along each axis are in units of earth radii (RE)'

The field lines in figure 4.1 have been traced at intervals of constant I~AI so that

equal amounts of magnetic flux are contained between each line. The shielding

distance is taken as x = -4.5 RE.

The equatorial pressure corresponding to this configuration is shown in figure 4.2.

This graph reflects the fact that the pressure within the shielding distance is

assumed constant. The pressure tailward of this position declines exponentially

down the tail as expected.

The equatorial magnetic field for this solution is depicted in figure 4.3. The tail­

ward variation is also exponential, with the magnetic field decreasing monotoni­

cally anti-sunwards. This field is due to dipole and plasma current contributions.

The strength of the dipole field may be modified by changing the value of the

dipole moment until the total field is in agreement with the average observed

magnetic field. The tail lobe field is, in general, larger than the equatorial field

in the mid-tail region.

The equatorial current density, J == dP/ dA, is plotted as a function of radial

distance in figure 4.4. The inner edge of the current sheet is very sharp as a result

of the constant pressure requirement within the shielding distance. Tailward of

-4.5 RE the current flows westward (from dawn-to-dusk) in the equatorial plane
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Figure 4.2: The equatorial pressure variation for the initial solution.

12

10

8

~
Cl 6'-'

Q:l"

4

2

0
0 - 10 -20 -30

X(R0
-40 -so -60

Figure 4.3: The equatorial magnetic field variation for the initial configuration.
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Figure 4.4: The initial equatorial current density as a function of radial distance from

the earth.

as indicated by the positive values for dP /dA.

The variation of PV'Y with x is shown in figure 4.5. In order to match PV'Y values

for those field lines which enter the modelling region at the tailward boundary

during convection, the initial model is solved for a tail boundary at x = -97.2 RE'

PV'Y(x) is seen to increase with distance down the tail and then start to decrease

tailward of x = -63 RE as the pressure begins to fall off faster than the flux tube

volume increases. Figure 4.6 shows the variation of the vector potential with x

for the initial solution.

The adiabatic condition requires that PV'Y(A) be constant in time. The values

of PV;: =G are plotted against the total vector potential in figure 4.7. Since

A is constant for a field line, the earthward motion of the magnetic field lines

which is achieved by subtracting I~AI from a previous solution results in the

values for PV'Y on each field line being too low. This applies for A greater than

approximately 130 nT.RE' If A is less than 130 nT.RE' the values for PV'Y are
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Figure 4.5: Values of PV"" plotted as a function of x for the initial solution.
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Figure 4.6: Values of A plotted as a function of x for the initial solution.
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Figure 4.7: Values of PV'Y plotted as a function of the total vector potential. This

curve is the same for all solutions as a consequence of the adiabatic restriction.

too high. This is adjusted by successive approximation to attain the quasi-static

configuration for each time step.

4.2 Convection Sequences

Convecting the initial configuration in time results in the sequence of configura­

tions depicted in figure 4.8. The initial configuration is included for comparison.

In each of the convected solutions, a particular field line is indicated for reference.

It is clear that the tail field becomes more stretched as the flux contained in the

tail increases. The boundary between the dipole-like and tail-like field lines anti­

sunward of the earth becomes more pronounced. This is particularly noticeable

in the latest configuration shown in figure 4.8 (t = 74.9 min).

The development of the equatorial pressure is shown in figure 4.9. The shielding
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Figure 4.8: This shows the sequence of magnetic field configurations obtained when

the initial solution is convected under the adiabatic constraint. The initial configura­

tion is included for reference. The A = 0 field line is dotted. The dashed field line is

A = 180. A is in units of nT.RE throughout. The distances along each axis are in

units of earth radii (RE)'
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Figure 4.9: The development of the equatorial pressure during convection. Each

curve corresponds to a configuration in the convection sequence as indicated by the

value of Amp (in units of nT.RE).

distance is seen to have moved tailward to -=9 RE for Amp = -155 nT.RE' This

is a consequence of the artificial shielding mechanism that has been used. The

thermodynamic constraint enforced through the modification of the equatorial

pressure has resulted in the radial pressure gradient becoming smaller in the

near-earth regions and slightly larger near the tail boundary. The pressure in all

regions has increased with time.

Figure 4.10 demonstrates that the equatorial current density at the inner edge

of the plasma sheet has increased for t > 0 with a peak which moves tailward

with the shielding distance. By excluding any pressure build-up, the current

is prevented from reversing direction and flowing eastward near the inner edge.

The negative values for dP /dA earthward of the shielding distance in figure 4.10

for Amp < 0 are not real, but are the result of the five point fit that has been

used to calculate dP / dA in the equatorial plane. This becomes evident when two
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Figure 4.10: The development of the current density in the equatorial plane. Here a

five point fit for dP / dA has been used.

point numerical differentiation is used. Figure 4.11 shows the development of the

equatorial current density for the two point approximation, ~P/ ~A. Here the

current density is never negative.

The oscillations in dP / dA just tailward of the inner edge and at the far-tail

boundary are also a result of the errors introduced by the numerical differentiation

used in the model. These errors become larger as the pressure increases towards

the end of the convection sequence and are evident for both the five and two point

current density approximations.

The equatorial magnetic field corresponding to each configuration in figure 4.8 is

plotted in figure 4.12. As convection proceeds, a local minimum in Be forms at

L ~ 10. This is related to the stretching of the field lines in this region and is

a direct consequence of the adiabatic restriction. Altering the pressure gradient,

dPe / dx, to conserve PV'Y effectively changes the current density, dP / dA, the

magnetic field, B(x), and the flux tube volume, V. This minimum in Be is first
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Figure 4.11: The development of the current density in the equatorial plane when a

two point fit is used.

apparent at approximately t = 48.33 min and becomes deeper with time.

The development of the magnetic field in the equatorial plane due to magne­

topause and plasma currents, Bp,e, is shown in figure 4.13. This component of

the magnetic field becomes more largely negative (southward) near the inner edge

as convection proceeds. Since the dipole field remains constant, it is the south­

ward development of this component which contributes to the formation of the

minimum in the equatorial magnetic field. The equatorial variation of the dipole

component of the magnetic field is demonstrated in figure 4.14.

As the field lines become more tail-like with the increasing flux in the magnetotail,

a time is reached in the convection sequence for which the code will no longer

converge. Erickson [1992] has reported that this may be due to a "bifurcation of

the static solution" , or may even be related to some real physical effect in which

an instability has caused a reconfiguration of the field. The last solution in the

convection sequence in figure 4.8 represents the latest equilibrium configuration
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Figure 4.12: The development of the equatorial magnetic field.
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Figure 4.13: The development of the plasma current component of the equatorial

magnetic field.
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Figure 4.14: The dipole magnetic field component in the equatorial plane.

for which the code would converge.

4.3 Ballooning Instability

For the tail to be unstable to ballooning, the condition (refer to equation 2.80)

(4.1)

derived in Chapter 2 must be satisfied. Now pressure and magnetic field values

are known at each point on the modelling grid. In the above equation, the

curvature, It, may be expressed in terms of Itp and It ll by using the relation (refer

to equation 2.36)

(4.2)

Here
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Figure 4.15: The inverse scale length for the pressure gradient, Itp • for Amp ­

-155 nT.RE•

The left-hand side of equation 4.1 was evaluated for all x tailward of the shielding

distance in the equatorial plane each time an equilibrium solution was obtained.

The shielding mechanism which has been used forces Itp to be zero inside the

shielding distance and negative tailward of this position, as demonstrated in fig­

ure 4.15. The oscillations in Itp are again a result of error introduced by the use

of numerical differentiation.

For a magnetic field which decreases with increasing radial distance from the

earth, It", is also negative. With the development of a minimum in Be, It", may be

positive for a limited range of z . This does not necessarily result in instability­

the relative sizes of the pressure and magnetic field are also important. For the

model which has been used, It remained at least eight times as large as It", for the

region in which It", was positive (figure 4.16). At the same time, the minimum in
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Figure 4.16: The curvature, K, and the inverse scale length, Kv , for Amp =

-155 nT.RE. The magnetic field increases from -9 RE to -19.8 RE (refer to

figure 4.12).

the equatorial magnetic field means that the difference

is a maximum while
B2

'YP + -
J,Lo

is a minimum for a given P. The result is that the instability condition was

not satisfied for any of the configurations in the convection sequence. Indeed,

the increase in field line curvature in the near-earth region appears to have a

stabilising effect on the plasma sheet. This is in agreement with the results of

Ohtani and Tamao [1993].
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Chapter 5

Discussion

5.1 Synopsis

The magnetospheric substorm is a complex and dynamic phenomenon. Over

the past thirty years, efforts to describe the physical processes responsible for

substorm development have greatly increased. The result is a wealth of substorm

models, with each model having both merit and fault. These contrasting scenarios

have demonstrated that many possible physical mechanisms may be invoked to

account for similar sequences of events. Synthesis models such as those proposed

by Lui [1991a, 1991b] and Kan [1993] have come closer to providing a model

which can describe all of the phases of substorm evolution.

Walker and Samson [1994] have demonstrated yet another approach to the sub­

storm mechanism. Their magnetohydrodynamic model is attractive in its sim­

plicity and flexibility. It can account for substorms both with and without a

growth phase and in conditions of both northward and southward IMF. The bal­

looning instability is but one of the substorm triggering mechanisms suggested in

the MHD model. It is therefore useful to determine how viable a candidate the

ballooning mode is for substorm initiation.
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A threshold condition for the instability, which applies near the equatorial plane,

was derived using the simplified model outlined in Chapter 2. This model assumes

cylindrical symmetry as well as symmetry about the equatorial plane. The tilt

of the dipole axis and the torsion of the magnetic field are thus neglected.

Numerical results for the instability condition were obtained by adopting a two­

dimensional, self-consistent, quasi-static equilibrium model for the magnetospheric

magnetic field. The thermodynamic constraint in the model forces time-dependent

magnetic field configurations which describe the earthward convection of plasma

sheet flux tubes during growth phase conditions. As the magnetic field becomes

more stressed, the curvature of the field in the near-earth regions increases while

the flux tube volume is forced to increase as a result of the imposed adiabatic

condition. This results in a minimum in the equatorial magnetic field which grows

deeper with time.

The radial plasma pressure and magnetic field gradients from the model were

used to compute the numerical values of the appropriate scale lengths and the

curvature of the magnetic field. The Alfven and sound speeds were also calcu­

lated. Using these quantities, it was deduced that the magnetotail was stable

against the ballooning mode.

5.2 Be minimum formation

In the equatorial plane, the contribution to B% from the dipole component of

the magnetic field is positive. The presence of the current sheet results in a

southward contribution to B % earthward of the inner edge. With the mechanism

that has been employed to account for inner magnetospheric shielding, the inner

edge of the current sheet moved tailwards as convection proceeded. This makes

the formation of a minimum in the equatorial magnetic field more probable as

the two-dimensional dipole field drops off as r 2, where r is the radial distance

92



from the earth.

Using a more realistic shielding mechanism, Erickson [1992] has demonstrated

that the Be minimum formation is not a consequence of the tailward motion

of the current sheet inner edge. The improved mechanism allows the shielding

distance to move earthward as the growth phase evolves. The Be minimum which

forms can then be seen to be a consequence of the intensification of the current

at the inner edge and not any unrealistic motion of the current sheet.

5.3 Improved modelling

Erickson [1992] introduced a new approach to including the effects of inner mag­

netospheric shielding. He considered the plasma in the magnetotail to convect

toward the earth within a "channel" which becomes wider as the Alfven layer is

approached. This is achieved by defining a new flux function which depends on

the original flux function (the vector potential) as well as the radial distance from

the earth and the position of the shielding distance (which is allowed to vary).

This channel becomes wide enough to halt the flow of plasma at the shielding

distance. Plasma is effectively "lost" from the flux tubes which reach this point.

Although this mechanism is also artificial, it allows the model magnetotail to

exhibit characteristics which are observed to be common to the real magnetotail.

Most notably, the shielding distance in this model moves earthward as the growth

phase proceeds. The plasma pressure is also free to vary and may build-up as a

consequence of the thermodynamic restriction.

The models presented by Erickson [1992] also include a more realistic magne­

topause shape which is rounded at the dayside and allowed to flare at the tail

boundary. The minimum in the equatorial magnetic field still develops, regardless

of magnetopause geometry.
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Figure 5.1: The ratio VJIvi for Amp = -155 nT.RE'

5.4 Instability condition

The values for the pressure and magnetic field obtained in the previous chapter

indicate that, for this model, the condition

v;» vi

holds at all equatorial points tailward of the shielding distance. For those points

where Itll is positive, V§ is at least (approximately) forty times greater than Vi

(figure 5.1). At equatorial points where Itll is negative, the ratio of VJ to vi
decreases, but always remains greater than twenty. The instability condition

may thus be simplified to

for these regions.

It - Itll < 0
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Within the shielding distance, there are a few points for which vi is not negligible.

Here, though, It" is negative so that the instability condition cannot be satisfied.

The same holds for all equatorial points tailward of the shielding distance where

It" is negative.

5.4.1 Stability considerations

If the plasma and magnetic field pressure gradients in the magnetotail are both di­

rected earthward, the configuration of the tail is potentially unstable. The forces

due to these gradients are directed tailward , and are balanced by the earthward

directed force due to the field line curvature. For a configuration in which one

of the pressure gradients is directed tailward and the other earthward, the situa­

tion may still be potentially unstable if the earthward directed gradient is large

enough. For the case presented in Chapter 4, the pressure gradient was not

sufficient to cause the onset of instability.

The question that must now be addressed is whether the formation of a peak in the

equatorial pressure at the inner edge of the plasma sheet can alter the stability of

a configuration which has a minimum in the equatorial magnetic field. This may

be investigated using the results presented by Erickson and Heinemann [1992].

5.4.2 Deduced results

Figures 2 and 3 from Erickson and Heinemann [1992] (reproduced in figure 5.2

and figure 5.3) show the development of a plasma pressure peak near the inner

edge and a minimum in the equatorial magnetic field, respectively. In this model,

the shielding distance moved from 8 RE (the initial position) to approximately

7 RE. The simplified condition 5.1 will be used to determine the stability of this

configuration. Where the curvature, It, is positive, 5.1 implies that instability may
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Figure 5.2: The evolution of the equatorial plasma pressure for the convection se­

quence in Erickson and Heinemann [1992]. From Erickson and Heinemann [1992].
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Figure 5.3: The evolution of the equatorial magneticfield for the convection sequence

in Erickson and Heinemann [1992]. From Erickson and Heinemann [1992].
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only be expected for those regions where the equatorial magnetic field increases

with increasing radial distance from the earth (Kv > 0). In the equatorial planet

the exclusion of neutral lines means that. the curvature here is always positive.

In the model presented by Erickson and Heinemann [1992], the pressure peak

is formed where K v < O. This may be concluded from figures 5.2 and 5.3. The

region for which K v is positive is also the region for which the pressure is de­

creasing tailward of the pressure peak. This situation is therefore analogous to

the results presented in Chapter 4. Qualitatively, numerical estimates deduced

from figures 5.2 and 5.3 demonstrate that, for Kv > D, the curvature is approxi­

mately two orders of magnitude larger than Kv . Equation 5.1 then implies that

the configuration is stable.

5.5 The pressure balance inconsistency

Erickson and Wolf [1980] have argued that steady state convection is not possible

in the earth's magnetotail where isotropic pressure is assumed. As a flux tube

convects earthwards, its volume decreases. If PV"Y is conserved, the plasma pres­

sure for the flux tube must increase. Erickson and Wolf [1980] have demonstrated

that the required increase in plasma pressure is too large to be balanced by the

tail lobe magnetic pressure. This discrepancy, known as the "pressure-balance

inconsistency" t becomes larger the closer a flux tube comes to the earth.

Erickson and Wolf [1980] speculated that the inconsistency could be resolved if

flux tubes close to the earth were allowed to become more stretched, or tail-like.

This would increase the volume of the flux tube, allowing the magnitude of the

plasma pressure necessary to conserve PV"Y to be smaller. The stretching of flux

tubes outside the Alfven layer is consistent with the formation of a minimum in

the equatorial magnetic field.
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Hau et al. [1989] obtained magnetospheric magnetic field configurations consis­

tent with steady state convection only if an extreme Be minimum was allowed.

These solutions are possible representations of the development of the field late

in the growth phase at times for which no solutions were obtained with the model

used by Erickson [1984, 1992]. The lack of observation of deep minima in the

equatorial magnetic field seems to indicate that such a situation is unstable and

results in a reconfiguration of the field.

Kivelson and Spence [1988] have also investigated steady convection in the mag­

netotail. They have reported that, for intervals of low geomagnetic activity,

the pressure of an earthward convecting flux tube between -30 and -60 RE

would not increase enough to give rise to any inconsistency. This arises from

three-dimensional considerations. For disturbed conditions, however, the plasma

pressure may become very large earthward of -30 RE.

While the existence or non-existence of steady state convection in the earth's

magnetotail poses an interesting problem, it is sufficient to note that, since the

model under investigation represents the development of the growth phase in

disturbed conditions, formation of a Be minimum may be expected.

5.6 Conclusions

Although the results obtained in this investigation indicate that the magnetotail

is stable against ballooning, it must be recognised that the models that have been

used contain simplifications and approximations which, while making the analysis

easier, may have been misleading.

In deriving the dispersion relation in Chapter 2 it was assumed that variation

both tangential and normal to the magnetic field in the meridian plane was slow

enough to be described by eikonal functions. In a more accurate description, these
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variations in the :e~ and :ell directions could be obtained by integrating along a

field line. A more realistic model of the magnetospheric magnetic field would also

be desirable for deducing numerical results for instability, although the intricate

and dynamic nature of the three-dimensional magnetotail makes this a difficult

task. The results obtained in this analysis are nevertheless in agreement with

similar investigations by Ohtani and Tamao [1993] and Lee and Wolf [1992] .

The triggering of the magnetospheric substorm remains the most controversial

aspect of substorm research. The various instabilities - both microscopic and

macroscopic - suggested to be responsible for initiating the substorm expansion

phase need to be quantitatively assessed before this debate is decided.
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Appendix A

Description of Program

Routines

This appendix describes the procedures and algorithms in the programs Mag.f

and Timestep.f. These programs are written in Sun FORTRAN 1.4. The first

section describes Mag.f while the second discusses Timestep.f.

A.I Mag.f

The program Mag is used to generate the initial (t = 0) solution to equation 3.16

for specific boundary conditions, as described in Chapter 3. The source code

listing for the program may be found on the accompanying diskette.

100



Step 1: Generating the vector potential dipole component

The dipole component of the vector potential is generated using the expression

in 3.18:
X

Ad = md 2 2
X +z

The factor /La is incorporated in the constant md.

Step 2: Generating an initial approximation

(A.l)

An initial approximation to the solution is calculated using the Fuchs-Voigt model

(section 3.3.3). The analytical solution for k = 1.54 is computed first using

Subroutine Fvk154. This involves evaluating the expression

mOO
A(x, z) = -- I: [e-I>...:z:lsign(x) + e- I>'..(:Z:+2b)l sign(x + 2b)] .cos(anz)

2 n.=0

The upper limit of the summation in the above equation is reached when the

expression being summed contributes less than 1 x 10- 10 to the total summation.

The va.riable an is calculated from the relation

n
an = -(2n + 1)

2

.and the va.riable An through

The factor b is the radial distance of the magnetopause from the earth. For this

model, b = 10.8 RE. The sign function is defined by Function sig(P). It is a

function which has a value of -1, +1 or 0 depending on whether its a.rgument is

negative, positive or zero, respectively. The unit of distance in the Fuchs-Voigt

model is normalised in terms of the distance from the equatorial plane to the

magnetopause (18 RE)'

For Subroutine FvkO, k = O. This means that an = An. Aside from this, the

routines Fvk154 and FvkO a.re the same.
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To obtain an initial approximation to the plasma current vector potential, Ap , at

each point on the grid, the values generated by FvkO are subtracted from those

generated by Fvk154 by Subroutine Subtract.

Step 3: Generating boundary conditions

At each boundary the values of A and P, and thus dP /dA, must be specified.

Magnetopause boundary

In the initial configuration, the value of the vector potential at the magnetopause

boundary is zero. From the values of Ad generated in Step I, Ap is generated by

the condition

Since the pressure at the magnetopause is zero for t = 0, the current density,

dP / dA, is also zero.

Far-tail boundary

The asymptotic approximation and form of peA) given in section 3.3.1 lead to

d2A

- = -k2A (A.2)
dz2

The general solution to this equation is

A(z) = Cl cos(kz) + C2 cos(kz) (A.3)

In the initial configuration, Bx(z = 0) = 0, and A(O) - Ae where Ae is the

value of the vector potential at the intersection of the far-tail boundary with the

equatorial plane. This implies that

A(z) = Aecos(kz)
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The component AI' is then generated by subtracting the vector potential dipole

component. The pressure at this boundary is given by

P = _1_ k2A2 (A.5)
2j.Lo

Equatorial boundary

The equatorial boundary is initialised by Fuchs-Voigt model values for AI' and

P . The current density A dependence has thus the same form as that at the tail

boundary

dP = ~k2A
dA j.Lo

The equatorial pressure is also described by the dependence A.5.

(A.6)

As the analytical form for the equatorial pressure in the initial approximation is

known, A.6 may be used to generate initial values for the rest of the modelling

grid.

Step 4: Gauss-Seidel iteration

Subroutine Iterate computes the solution to 3.16 using the Gauss-Seidel method.

Values for AI' and thus A, corresponding to an equilibrium solution, are obtained

for each point on the grid.

The boundary values for A and dP/ dA are constantly updated during the itera­

tion procedure to enforce the symmetry condition described in section 3.3.1. This

requires keeping the vector potential at one grid point above the equatorial plane

equal to the vector potential one grid spacing below the plane. Strictly speaking,

then, the "equatorial boundary" lies at z = -0.9 RE although these points are

never depicted or plotted.

To find the new values for dP/dA, the updated values of A are used to evaluate
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P(Xe ) according to A.5. Since magnetic field lines are surfaces of constant A, P

and J = dP / dA, the current density need only be computed in the equatorial

plane. These values are then mapped along the field lines.

For improved accuracy, a five point central difference is used to evaluate dP / d»,

This numerical differentiation has the form

Now B z = 0 at the equatorial plane. B. is evaluated using a two point central

difference for 8Ap/8x and adding the dipole contribution md/x2. The relation

dP dP dA
J1.o dA - J1.o dx / dx

dP
- J1.o dx /Bz

is then used to calculate the current density.

To map A onto the equatorial plane, it is assumed that field lines do not inter­

sect at any point and that the vector potential increases monotonically toward

the earth. Neutral lines are thus excluded. Once the corresponding A at the

equatorial plane has been found, the appropriate dP/dA value is assigned. The

iteration procedure is then repeated until the convergence criterion

is satisfied at each grid point.

Output files are generated after the conversion from model to SI units has been

made. To calculate the values of the function PV'"Y(A), the equatorial pressure

and vector potential values are written as separate arrays,

Step 5: Tracing magnetic field lines

The magnetic field lines are traced with the aid of an Interactive Graphics Lan­

guage (IDL) contouring routine. A system call to IDL is made, with the data
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input read from FORTRAN generated files and not passed directly to IDL. The

IDL source code may be found on the accompanying floppy disk.

Contours of constant A are traced for all values of the equatorial vector potential

from the shielding distance to the tail boundary. IDL uses a "contour following"

method which follows each contour line until it closes or reaches a boundary. The

output is in the form of a file containing the normalised coordinates which define

the contour position. Each contour record is preceded by a "header structure"

describing various properties of the contour.

Step 6: Conversion of coordinates

The IDL output is now converted to model coordinates using Subroutine Goord.

It is also desirable to know the coordinates at constant arc distances along the

field line. This will make the calculation of the field line volume more accurate.

These adjusted coordinates are also generated by Subroutine Coord using the

converted IDL output.

The algorithm takes two points, (XIJ Zl) and (X21 Z2), and calculates the gradient

between them. The arc length between the two points is approximated by a

straight line so that

ds = J(XI - X2)2 + (Zl - Z2)2

Let the specified arc length be ds,.. Then

ds; = J(X,. - X2)2 + (Z,. - Z2)2 (A.7)

where x,. and z; define the required coordinate point. Now the gradient, m, is

given by
Z2 - Zl z,. - Zlm=----
X2 - Xl X,. - Xl

therefore

(A.B)
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Substituting A.S into A.7,

which gives

From A.S,

The last two equations are used to modify the coordinates given by 1DL into

coordinates at constant arc intervals of 0.9 RE along the field line. The signs are

changed according to the curvature of the field.

Step 7: Evaluating plasma current magnetic field

Before the volume of the field lines can be calculated, the magnetic field at each

point must be evaluated. Now Bd, the dipole component, may be computed

directly from the expression

B2= (BAd)2+ ( BAd)2
d Bx Bz

With Ad given by equation A.l,

(A.9)

The plasma current component is evaluated using two point central differences

in x (for Bz ) and z (for B:r;) for interior grid points, and three point forward or

backward differences for boundary points. The numerical differentiation formulae

are given by

for a two point central difference,
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for a three point forward difference, and

1
f'ex;) = 2~ [3f(x;) - 4f(x;-1) + f(X;-2)]

for a three point backward difference.

Step 8: Calculating PV'Y

Subroutine PV calculates the values of PV'Y(A). To do so, the volume of each

field line traced by IDL needs to be computed. The integral

J ds
V = B(s)

is evaluated by summing the contributions of the line segments between the co­

ordinates generated by Co0 rd. For each segment, then, ds = 0.9 RE' The value

of B (s) is taken as the average value of the magnetic field on the arc segment.

The plasma current component of the magnetic field is only known at a grid

point. If a coordinate point lies on a grid line, the value is linearly interpolated

from the two nearest grid points. If the point lies arbitrarily between grid points,

the value is interpolated from the four nearest grid points. This is done by finding

the value of Bz and Bx at the two nearest points on grid lines at the same x value

as the coordinate, and at the two points at the same z value. These are in turn

interpolated and averaged to find the required values at the coordinate point. The

dipole x and z components are found using equation A.9. The total magnetic

field is then evaluated by adding, component-wise, the dipole and plasma current

contributions.

Since the coordinates of the field line are only known for the one hemisphere, the

volume integral extends from the equatorial plane to the northern ionosphere. To

obtain the total volume, this value must be doubled. The values of PV'Y follow

using the appropriate pressure value for each field line.
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An initial magnetic field configuration has now been generated, with the values

of PV'Y(z) calculated by the above routine. By noting the variation of the vector

potential in the equatorial plane, Aeq(z), PV'Y(A) is obtained. This function will

be common to all subsequent solutions.

A.2 Timestep.f

The program Timestep is used to generate convected forms of the initial config­

uration which satisfy the adiabatic constraint 3.25. The source code listing may

also be found on the accompanying diskette.

Step 1: Generate Ad

The dipole component of the vector potential is generated as in Mago

Step 2: Subtracting IAAI

The previous solution is read into an array. Ten units of A are subtracted from

this solution at each grid point. This generates new boundary conditions, as well

as an initial approximation to the equilibrium solution. Values of Ap are found

by subtracting the dipole component from the total vector potential.

Step 3: Tracing magnetic field lines

The magnetic field lines are traced by performing a system call to IDL. This

procedure is as described in Step 5 of program Mag.
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Step 4: Conversion of coordinates

This is identical to Step 6 of program Mag, using Subroutine Coord.

Step 5: Calculating PV"Y

The values of the plasma current magnetic field are calculated before calling

Subroutine PV by the procedure described in Step 7 of program Mago Subroutine

PVis the same as the subroutine of the same name described in Step 8 of program

Mag.

Step 6: Adjust equatorial pressure boundary condition

The equatorial pressure values are now adjusted according to the value of the

ratio of PV'Y to G (the required value of PV'Y). This algorithm was described

in section 3.4.4. The array tcheck(J) keeps track of which field lines satisfy the

adiabatic condition.

Step 7: Calculate new tail boundary condition

The value of the vector potential at the magnetopause is now negative, so that

dP / dA here is zero. Below the field line A = 0 A.2, and therefore A.3 hold. The

first step in Subroutine Tail is thus to locate the position of the A = 0 field line.

This point is defined by Zo and is found by linear interpolation if necessary. For

z greater than Zo

therefore

A(z) = Amp (z - zo)
zmp - Zo
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where zmp = 18 RE. For z less than zo, the pressure varies parabolically with A

as before. Equation AA with the condition A(zo) = 0 implies that

7r
kzo =­

2

Now the pressure at the equatorial point which intersects the tail boundary, Pe,

is given by the equatorial pressure modification algorithm. The vector potential

at this corner is then calculated using equation A.5. The values for A(z) and

dP / dA may now be computed.

Step 8: Find new plasma current magnetic field

These values are calculated as in Step 7 of Mag.

Step 9: Compute new dP/dA

Since the equatorial pressure values have changed, the values of dP / dA must be

recalculated. Subroutine Newdp uses the same updating algorithm that is used

in Subroutine Iterate (see Step 4 of program Mag).

Step 10: Gauss-Seidel iteration

This calls Subroutine Iterate, as in Mago

Step 11: Instability condition

The instability condition derived in Chapter 2 is applied to equatorial grid points

tailward of the original shielding distance. This involves evaluating each of the

terms in equation 2.80. The known values at each grid point are the pressure and
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the magnetic field. Two point central differences are used to find Kp and Kv . The

curvature is then computed using the expression

K = - (Kv + ~PKp)
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Appendix B

Source Code Listing

Please see the accompanying diskette for the source code listing of programs Mag.f

and Timestep.f.

112



REFERENCES

Akasofu, S.-I., The development of the auroral substorm, Planet. Space Sci., 1~,

273-282, 1964.

Akasofu, s.-I., Physics of magnetospheric substorms, D. Reidel, Dordrecht, Hol­

land, 1977.

Akasofu, S.-I., What is a magnetospheric substorm?, in Dynamics of the Magne­

tosphere, ed. S.-I. Akasofu, D. Reidel, Dordrecht, Holland, 1979a.

S.-I. Akasofu (ed. ), Dynamics of the Magnetosphere, D. Reidel, Dordrecht, Hol­

land, 1979b.

Akasofu, Si-L, Development of magnetospheric physics, in Magnetospheric Sub­

storms, Geophysical Monograph 64, American Geophysical Union, Washington

D.C., 1991.

Akasofu, S.-1. and S. Chapman, The ring current, geomagnetic disturbance, and

the Van Allen belts, J. Geophys. tu«, 66, 1321-1350, 1961.

Akasofu, S.-1. and S. Chapman, The development of the main phase of magnetic

storms, J. Geophys. Res., 68, 125-129, 1963a.

Akasofu, SA. and S. Chapman, Magnetic storms: the simultaneous development

of the main phase (DR) and of polar magnetic substorms (DP), J. Geophys. Res.,

68, 3155-3158, 1963b.

Allan, W., S.P. White and E.M. Poulter, Impulse-excited hydromagnetic cavity

and field-line resonances in the magnetosphere, Planet. Space Sci., 34, 371-385,

1986.

Axford, W.1. and C.O. Hines, A unifying theory of high-latitude geophysical

113



phenomena and geomagnetic storms, Can. J. Phys., 99, 1433-1464, 1961.

Axford, W.I., H.E. Petschek and G.L. Siscoe, Tail of the magnetosphere, J. Geo­

phys. Res., 70, 1231-1236, 1965.

Axford, W.I., Magnetic field reconnection, in Magnetic Reconnection in Space

and Laboratory Plasmas, 00. E.W. Hones Jr., pp. 1-8, American Geophysical

Union, Washington D.C., 1984.

Baumjohann, W., The plasma sheet boundary layer and magnetospheric sub­

storms, J. Geomag. Geoelectr., 40, 157-175, 1988.

Birn, J. and K. Schindler, Self-consistent theory of three-dimensional convection

in the geomagnetic tail, J. Geophys. Res., 88, 6969-6980, 1983.

Burch, J .L., Terrestrial and planetary magnetospheres, in Solar System Plasma

Physics, 00. J.H. Waite Jr., J.L. Burch and R.L. Moore, pp.9-15, American

Geophysical Union, Washington D.C., 1989.

Chao, J.K., J.R. Kan, A.T.Y. Lui and S.-1. Akasofu, A model for thinning of the

plasma sheet, Planet. Space Sci., 25, 703-710, 1977.

Chapman, S., Earth storms: retrospect and prospect, J. Phys. Soc. Jpn., 17, 6,

1962.

Chapman, S., Solar Plasma, Geomagnetism and Aurora, Gordon and Breach,

New York, 1964.

Chapman, S. and V.C.A. Ferraro, A new theory of magnetic storms, Terrest.

Magnetism and Atmospheric Elec., 96, 77-97; 171 - 186, 1931.

Chapman, S. and V.C.A. Ferraro, A new theory of magnetic storms, II; The main

phase, Terrest. Magnetism and Atmospheric Elec., 98, 79-96, 1933.

114



Chapman, S. and V.C.A. Ferraro, The theory of the first phase of a geomagnetic

storm, Terrest. Magnetism and Atmospheric Elec., 45, 245-268, 1940.

Chen, L. and A. Hasegawa, A theory of long-period magnetic pulsations 1. Steady

state excitation of field line resonance, J. Geophys. Res., 79, 1024-1037, 1974.

Coroniti, F.V. and C.F. Kennel, Can the ionosphere regulate magnetospheric

convection?, J. Geophys. Res., 78, 2837-2851, 1973.

Cowling, T.a., Magnetohydrodynamics, Adam Hilger, Bristol, England, 1976.

Davis, N.T. and M. Sugiura, Auroral electrojet activity index AE and its universal

time variations, J. Geophys. Res ., 71, 785-801, 1966.

Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev.

Lett., 6, 47-48, 1961.

Egeland, A., 0. Holter and A. Omholt, Cosmica1 geophysics; historical preamble,

in Cosmical Geophysics, ed. A. Egeland, 0. Holter, A. Omholt, pp.11 - 17,

Universiteitsforlaget, Norway, 1973.

Erickson, a.M., On the cause of X-line formation in the near-earth plasma sheet:

results of adiabatic convection of plasma sheet plasma, in Magnetic Reconnection

in Space and Laboratory Plasm as, ed. E.W. Hones Jr., pp.296-302, American

Geophysical Union, Washington D.C., 1984.

Erickson, G.M., A quasi-static magnetospheric convection model in two dimen­

sions, J. Geophys. Res., 97, 6505-6522, 1992.

Erickson, a.M. and RA. Wolf, Is steady convection possible in the earth's mag­

netotail, Geophys. Res . Lett., 7, 897-900, 1980.

Erickson, G.M. and M. Heinemann, A mechanism for magnetospheric substorms,

115



in Substorms 1, Proceedings of the International Conference on Substorms (ICS­

1), Kiruna, Sweden, 29-27 March 1992 , ESA SP-335, pp. 587-592, European

Space Agency, Noordwijk, 1992.

Fairfield, D.H. and N.F. Ness, Configuration of the geomagnetic tail during sub­

storms, J. Geophys. Res., 75, 7032-7046, 1970.

Fuchs, K. and G.-H. Voigt, Self-consistent theory of a magnetospheric B-field

model, in Quantitative Modeling of Magnetospheric Processes, ed. W.P. Olson,

pp.86-95, American Geophysical Union, Washington D.e., 1979.

Goertz, e.K. and R.A. Smith, The thermal catastrophe model of substorms, J.

Geophys. Res., 94, 6581-6596, 1989.

Hargreaves, J.K., The Upper Atmosphere and Solar-Terrestrial Relations, Van

Nostrand Reinhold, New York, 1979.

Hau, L.-N., R.A. Wolf, G.-H. Voigt and e.e. Wu, Steady state magnetic field

configurations for the earth's magnetotail, J. Geophys. Res., 94, 1303-1316,

1989.

Hones, E.W. Jr, Transient phenomena in the magnetotail and their relation to

substorms, Space Sci. Rev., 29, 393-410, 1979.

Hones, E.W. Jr, J.R. Asbridge, S.J. Bame and S. Singer, Substorm variations of

the magnetotail plasma sheet from XSM ~ -6 RE to X SM ~ -60 RE, J. Geophys.

Res., 78, 109-132, 1973.

Hones, E.W. Jr, Plasma sheet behaviour during substorms, in Magnetic Recon­

nection in Space and Laboratory Plasmas, ed. E.W. Hones Jr., pp. 178-184,

American Geophysical Union, Washington D.C., 1984.

J acobs, J .A., Geomagnetic Micropulsations, Springer-Verlag, Germany, 1970.

116



Kan, J.R, Developing a global model of magnetospheric substorms, EOS, Trans

AGU, 71, 1083j 1086-1087, Sept. 18, 1990.

Kan, J .R, A global magnetosphere-ionosphere coupling model of substorms, J.

Geophys. Res., 98, 17263-17275, 1993.

Kan, J .R., L. Zhu and S.-I. Akasofu, A theory of substorms: onset and subsidence,

J. Geophys. Res., 99, 5624-5640, 1988.

King, J.W. and W.S. Newman (ed. L Solar-Terrestrial Physics, Academic Press,

London, 1967

Kivelson, M.G. and D.J. Southwood, Resonant ULF waves: a new interpretation,

Geophys. Res. Lett., 12,49-52, 1985.

Kivelson, M.G. and D.J. Southwood, Coupling of global magnetospheric MHD

eigenmodes to field line resonances, J. Geophys. Res., 91, 4345-4351, 1986. .

Kivelson, M.G. and H.E. Spence, On the possibility of quai-static convection in

the quiet magnetotail, Geophys. Res. Lett., 15, 1541-1544, 1988.

Lee, D.-Y. and RA. Wolf, Is the earth's magnetotail balloon unstable?, J. Geo­

phys. Res., 97, 19251-19257, 1992.

Lui, A.T.Y., Observations of plasma sheet dynamics during magnetospheric sub­

storms, in Dynamics of the Magnetosphere, ed. s.-I. Akasofu, D. Reidel, Dor­

drecht, Holland, 1979.

Lui, A.T.Y. (ed. ), Magnetotail Physics, Johns Hopkins University Press, Balti­

more, Maryland, 1987.

LUi, A.T .Y., Road map to magnetotail domains, in Magnetotail Physics, ed.

A.T.Y. LUi, Johns Hopkins University Press, Baltimore, Maryland, 1987.

117



Lui, A.T.Y., A synthesis of magnetospheric substorm models, J. Geophys. Res.,

96, 1849-1856, 1991a.

Lui, A.T.Y., Extended consideration of a synthesis model for magnetospheric

aubstorms, in Magnetospheric Substorms, Geophysical Monograph 64, American

Geophysical Union, Washington D.C., 1991b.

Lyons, L.R and D.J .Williams, Quantitative Aspects of Magnetospheric Physics,

D.Reidel, Dordrecht, Holland, 1984.

Lyons, L.R and A. Nishida, Description of substorms in the tail incorporating

boundary layer and neutral line effects, Geophys. Res. Lett., 15, 1337-1340,

1988.

Matsushita, S. and W. H. Campbell (ed. ), Physics of geomagnetic phenomenon,

Volumes I and Il, Academic Press, New York, 1967

McPherron, RL., Growth phase of magnetospheric substorms, J. Geophys. Res.,

75, 5592-5599, 1970.

McPherron, RL., C.T. Russell and M.P. Aubry, Satellite studies of magneto­

spheric substorms on August 15, 1968: 9. Phenomenological model for substorms,

J. Geophys. Res., 78, 3131-3149, 1973.

Mitchell, A.R and D.F. Griffiths, The Finite Difference Method in Partial Dif­

ferential Equations, John WHey & Sons, 1980.

Moos, N.A.F., Colaba Magnetic Data; Part 2: The Phenomenon and its Discus­

sion, Bombay, 1910.

Morse, P.M. and H. Feshbach, Methods of Theoretical Physics, Part I, pp.678­

706, McGraw-Hill, New York, 1953.

118



Nishida, A., S.J . Bame, D.N. Baker, G. Gloeckler, M. Scholer, E.J. Smith, T.

Terasawa and B. Tsurutani, Assessment of the boundary layer model of the mag­

netospheric substorm, J. Geophys. Res., 99, 5579-5588, 1988.

Ohtani, 8.-1., and T . Tamao, Does the ballooning instability trigger substorms in

the near-earth magnetota.il?, J. Geophys. Res. ,98, 19369-19379, 1993.

Parks, G.K., G. Laval and R. Pellat, Behaviour of the outer radiation zone and a

new model of magnetospheric substorm, Planet. Space Sci., ~O, 1391-1408, 1972.

Piddington, J.H., Geomagnetic storm theory, J. Geophys. tu«, 65, 93-106, 1960.

Press, W.H., B.P Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical

Recipes (FORTRAN version), Cambridge University Press, New York, 1989.

Rostoker, G., Macrostructure of geomagnetic bays, J. Geophys. Res., 79, 4217­

4229, 1968.

Rostoker, G., Some observational constraints for substorm models, in Magne­

tospheric Substorms, Geophysical Monograph 64, American Geophysical Union,

Washington D.e., 1991.

Rostoker, G., 8.-1. Akasofu, J. Foster, R.A. Greenwald, Y. Kamide, K. Kawasaki,

A.T.Y. Lui, R.L. McPherron and C.T. Russell, Magnetospheric substorms ­

definition and signatures, J. Geophys. Res., 85, 1663-1668, 1980.

Rostoker, G. and T. Eastman, A boundary layer model for magnetospheric sub­

storms, J. Geophys. Res., 9~, 12187-12201, 1987.

Roux, A., S. Perraut, A. Morane, P. Robert, A. Korth, G. Kremser, A. Pederson,

R. Pellinen and Z.Y. Pu, Role of the near-earth plasmasheet at substorms, in

Magnetospheric Substorms, Geophysical Monograph 64, American Geophysical

Union, Washington D.C., 199180.

119



Roux, A., S. Perraut, P. Robert, A. Morane, A. Pederson, A. Korth, G. Kremser,

B. Aparicio, D. Rodgers and R Pellinen, Plasma sheet instability related to the

westward traveling surge, J. Geophys. Res., 96, 17697-17714, 1991b.

Ruohoniemi, J.M., RA. Greenwald, K.B. Baker and J.C. Samson, HF radar

observations of PeS field line resonances in the midnight/early morning MLT

sector, J. Geophys. Res., 96, 15967-15710, 1991.

Rutherford, D.E., Vector Methods, 9th edition, Oliver & Boyd, Edinburgh, 1957.

Samson, J.C., J.A. Jacobs and G. Rostoker, Latitude-dependent characteristics

of long-period geomagnetic micropulsations, J. Geophys. Res., 76, 3675-3683,

1971.

Samson, J.C., RA. Greenwald, J.M. Ruohoniemi, T.J. Hughes and D.D. Wallis,

Magnetometer and radar observations of magnetohydrodynamic cavity modes in

the earth's magnetosphere, Can. J. Phys., 69, 929-937, 1991.

Schield, M.A., J.W. Freeman and A.J. Dessler, A source for field-aligned currents

at auroral latitudes, J. Geophys. Res., 74, 247-256, 1969.

Schindler, K. and J. Birn, Self-consistent theory of time-dependent convection in

the earth's magnetotail, J. Geophys. Res., 87, 2263-2275, 1982.

Siscoe, G.L. and W.D. Cummings, On the cause of geomagnetic bays, Planet.

Space ss; 17, 1795-1802, 1969.

Smith, RA., C.K. Goertz and W. Grossmann, Thermal catastrophe in the plasma

sheet boundary layer, Geophys. Res. Lett., 19, 1380-1383, 1986.

Southwood, D.J., Some features of field line resonances in the magnetosphere,

Planet. Space Sci., 22, 483-491, 1974.

120



Stern, D.P., The beginning of substorm research, in Magnetospheric Substorms,

Geophysical Monograph 64, American Geophysical Union, Washington D.e., 1991.

Van Allen, J.A., Origins of Magnetospheric Physics, Smithsonian Institution

Press, Washington n.c., 1983.

Voigt, G.-H., Magnetospheric equilibrium configurations and slow adiabatic con­

vection, in Solar Wind - Magnetosphere Ooupling, 00. Y. Kamide and J .A.Slavin,

pp.233-273, Terra Scientific, Tokyo, 1986.

Voigt, G.-H. and RA. Wolf, Quasi-static magnetospheric MHD processes and the

"ground state" of the magnetosphere, Rev. Geophys., 26, 823-843, 1988.

Walker, A.D.M., The Kelvin-Helmholtz instability in the low-latitude boundary

layer, Planet. Space Sci., 29, 1119-1133, 1981.

Walker, A.D.M., Space Physics Research Institute, University of Natal, Durban,

Personal communication, 1994.

Walker, A.D.M., J.M. Ruohoniemi, KB. Baker and RA. Greenwald, Spatial and

temporal behaviour of ULF pulsations observed by the Goose Bay HF radar, J.

Geophys. Res., 97, 12187-12202, 1992.

Walker, A.D.M. and J.e. Samson, A magnetohydrodynamic model of substorm

intensifications, in preparation for submission to J. Geophys. Res., 1994.

Walker, RJ. and D.J. Southwood, Momentum balance and flux conservation in

model magnetospheric magnetic fields, J. Geophys. Res., 87, 7460-7466, 1982.

Woods, L.e., Principles of Magnetoplasma Dynamics, Oxford University Press,

Oxford, 1987.

121


	Dormer_Anne_Lee_1995.front.p001
	Dormer_Anne_Lee_1995.front.p002
	Dormer_Anne_Lee_1995.front.p003
	Dormer_Anne_Lee_1995.front.p004
	Dormer_Anne_Lee_1995.front.p005
	Dormer_Anne_Lee_1995.front.p006
	Dormer_Anne_Lee_1995.front.p007
	Dormer_Anne_Lee_1995.front.p008
	Dormer_Anne_Lee_1995.front.p009
	Dormer_Anne_Lee_1995.front.p010
	Dormer_Anne_Lee_1995.front.p011
	Dormer_Anne_Lee_1995.front.p012
	Dormer_Anne_Lee_1995.p001
	Dormer_Anne_Lee_1995.p002
	Dormer_Anne_Lee_1995.p003
	Dormer_Anne_Lee_1995.p004
	Dormer_Anne_Lee_1995.p005
	Dormer_Anne_Lee_1995.p006
	Dormer_Anne_Lee_1995.p007
	Dormer_Anne_Lee_1995.p008
	Dormer_Anne_Lee_1995.p009
	Dormer_Anne_Lee_1995.p010
	Dormer_Anne_Lee_1995.p011
	Dormer_Anne_Lee_1995.p012
	Dormer_Anne_Lee_1995.p013
	Dormer_Anne_Lee_1995.p014
	Dormer_Anne_Lee_1995.p015
	Dormer_Anne_Lee_1995.p016
	Dormer_Anne_Lee_1995.p017
	Dormer_Anne_Lee_1995.p018
	Dormer_Anne_Lee_1995.p019
	Dormer_Anne_Lee_1995.p020
	Dormer_Anne_Lee_1995.p021
	Dormer_Anne_Lee_1995.p022
	Dormer_Anne_Lee_1995.p023
	Dormer_Anne_Lee_1995.p024
	Dormer_Anne_Lee_1995.p025
	Dormer_Anne_Lee_1995.p026
	Dormer_Anne_Lee_1995.p027
	Dormer_Anne_Lee_1995.p028
	Dormer_Anne_Lee_1995.p029
	Dormer_Anne_Lee_1995.p030
	Dormer_Anne_Lee_1995.p031
	Dormer_Anne_Lee_1995.p032
	Dormer_Anne_Lee_1995.p033
	Dormer_Anne_Lee_1995.p034
	Dormer_Anne_Lee_1995.p035
	Dormer_Anne_Lee_1995.p036
	Dormer_Anne_Lee_1995.p037
	Dormer_Anne_Lee_1995.p038
	Dormer_Anne_Lee_1995.p039
	Dormer_Anne_Lee_1995.p040
	Dormer_Anne_Lee_1995.p041
	Dormer_Anne_Lee_1995.p042
	Dormer_Anne_Lee_1995.p043
	Dormer_Anne_Lee_1995.p044
	Dormer_Anne_Lee_1995.p045
	Dormer_Anne_Lee_1995.p046
	Dormer_Anne_Lee_1995.p047
	Dormer_Anne_Lee_1995.p048
	Dormer_Anne_Lee_1995.p049
	Dormer_Anne_Lee_1995.p050
	Dormer_Anne_Lee_1995.p051
	Dormer_Anne_Lee_1995.p052
	Dormer_Anne_Lee_1995.p053
	Dormer_Anne_Lee_1995.p054
	Dormer_Anne_Lee_1995.p055
	Dormer_Anne_Lee_1995.p056
	Dormer_Anne_Lee_1995.p057
	Dormer_Anne_Lee_1995.p058
	Dormer_Anne_Lee_1995.p059
	Dormer_Anne_Lee_1995.p060
	Dormer_Anne_Lee_1995.p061
	Dormer_Anne_Lee_1995.p062
	Dormer_Anne_Lee_1995.p063
	Dormer_Anne_Lee_1995.p064
	Dormer_Anne_Lee_1995.p065
	Dormer_Anne_Lee_1995.p066
	Dormer_Anne_Lee_1995.p067
	Dormer_Anne_Lee_1995.p068
	Dormer_Anne_Lee_1995.p069
	Dormer_Anne_Lee_1995.p070
	Dormer_Anne_Lee_1995.p071
	Dormer_Anne_Lee_1995.p072
	Dormer_Anne_Lee_1995.p073
	Dormer_Anne_Lee_1995.p074
	Dormer_Anne_Lee_1995.p075
	Dormer_Anne_Lee_1995.p076
	Dormer_Anne_Lee_1995.p077
	Dormer_Anne_Lee_1995.p078
	Dormer_Anne_Lee_1995.p079
	Dormer_Anne_Lee_1995.p080
	Dormer_Anne_Lee_1995.p081
	Dormer_Anne_Lee_1995.p082
	Dormer_Anne_Lee_1995.p083
	Dormer_Anne_Lee_1995.p084
	Dormer_Anne_Lee_1995.p085
	Dormer_Anne_Lee_1995.p086
	Dormer_Anne_Lee_1995.p087
	Dormer_Anne_Lee_1995.p088
	Dormer_Anne_Lee_1995.p089
	Dormer_Anne_Lee_1995.p090
	Dormer_Anne_Lee_1995.p091
	Dormer_Anne_Lee_1995.p092
	Dormer_Anne_Lee_1995.p093
	Dormer_Anne_Lee_1995.p094
	Dormer_Anne_Lee_1995.p095
	Dormer_Anne_Lee_1995.p096
	Dormer_Anne_Lee_1995.p097
	Dormer_Anne_Lee_1995.p098
	Dormer_Anne_Lee_1995.p099
	Dormer_Anne_Lee_1995.p100
	Dormer_Anne_Lee_1995.p101
	Dormer_Anne_Lee_1995.p102
	Dormer_Anne_Lee_1995.p103
	Dormer_Anne_Lee_1995.p104
	Dormer_Anne_Lee_1995.p105
	Dormer_Anne_Lee_1995.p106
	Dormer_Anne_Lee_1995.p107
	Dormer_Anne_Lee_1995.p108
	Dormer_Anne_Lee_1995.p109
	Dormer_Anne_Lee_1995.p110
	Dormer_Anne_Lee_1995.p111
	Dormer_Anne_Lee_1995.p112
	Dormer_Anne_Lee_1995.p113
	Dormer_Anne_Lee_1995.p114
	Dormer_Anne_Lee_1995.p115
	Dormer_Anne_Lee_1995.p116
	Dormer_Anne_Lee_1995.p117
	Dormer_Anne_Lee_1995.p118
	Dormer_Anne_Lee_1995.p119
	Dormer_Anne_Lee_1995.p120
	Dormer_Anne_Lee_1995.p121

