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Abstract

Precise measurements of the Cosmic Microwave Background (CMB) anisotropies have been

one of the foremost concerns in modern cosmology as it provides valuable information on the

cosmology of the Universe. However, an accurate estimation of the CMB power spectrum faces

many challenges as the CMB experiments sensitivity increases. Furthermore, for the polarization

experiments, the precision of the measurements is complicated by the fact that the polarization

signal is very faint compared to the measured total intensity and could be impossible to detect

in the presence of high level of systematics. One of the most important source of errors in CMB

polarization experiment is the beam non-circularity (asymmetry). In addition, the non-uniform

and partial sky coverage resulting from the masking of the CMB foreground contaminants as well

as point sources bias the estimation of the power spectrum. Consequently, a reasonable estima-

tion of the power spectrum must account for, at least, the beam asymmetry and incomplete sky

coverage. Accurate estimation of the angular power spectrum can be done using the standard

optimal Maximum Likelihood (ML), although for high resolution CMB experiments with large

data set this method is unfeasible due to the enormous computation time involved in the process.

The focus of this research is to estimate the CMB temperature anisotropy T and E-

polarization cross-power spectrum and EE polarization power spectrum using a semi-analytical

framework, and tackle the computational challenge of the TE power spectrum estimation with

the pseudo-Cl estimator in the presence of the non-circular beam and cut-sky systematics. We

examine, in the first step, the estimation of the CMB TE power spectrum by only consider-

ing the beam non-circularity with a complete sky, and give the error estimates of the power

spectrum. Then, we will consider the more general case that includes the effect of the beam

asymmetry and cut-sky as a result of the foreground removals across the Galactic plane. The

numerical implementation of the bias matrix presents a huge computational challenge. Our

ultimate goal is to speed-up the computation of the TE bias matrix that relates the true and

observed power spectra in the case of a full sky coverage using a non-circular beam. We adopt

a model of beams obtained from a perturbative expansion of the beam around a circular (ax-

isymmetric) one in harmonic space and compute the bias matrix by using an efficient algorithm

for rapid computation.

We show in this work that, in the case of non-circular beams and full sky survey, a fast

computation of the TE bias matrix can be performed in few seconds using a single CPU pro-

cessor by means of precomputations and insertion of symmetry relations in the initial analytical

expression of the TE bias matrix. We present as well in the last part of this research the first

analytical results of the EE bias matrix calculations in the case of a CMB experiment using
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non-circular beams and incomplete sky coverage, and derive the corresponding results for the

non-circular beams and full sky limit.
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Chapter 1

Introduction

Over the past decade, the data from the Wilkinson Microwave Anisotropy Probe (WMAP) 1 [2]

programme has kept scientists busy analysing them, tuning the standard model of cosmology as to

the finer details and testing various models of cosmology - a true decade of precision cosmology.

With the launch of the Planck 2 satellite by the European Space Agency in 2009, and with data

currently starting to pour in, it becomes more challenging to analyse the data, as Planck probes

for a much smaller angular resolution (larger multipoles). Planck is scanning the CMB sky to

multipoles of ∼ 3000, as compared to 1000 by the WMAP. To make full use of the potential of

the data that we receive it is necessary to accurately determine the observed data, eliminating the

systematic effects. One of the primary objectives to probe the CMB sky to such high multipoles is

to determine the polarized CMB signals and, in particular, possibly detect the B-mode generated

by tensor modes in the primordial perturbations of the density field which could indicate the sig-

nature of gravitational waves predicted by the inflationary cosmology [3, 4]. The CMB polarized

signals (E-mode) produced by the quadrupolar anisotropy during the recombination epoch are a

few order of magnitudes smaller than the total intensity of the anisotropy field [5], implying that

even unsignificant systematic effects drastically bias the measurements of the CMB polarization.

The asymmetric beam response of instruments, a consequence of the off-axis placement of the

detectors in telescopes, is one of the major systematic issues in CMB experiments as for small

angular beam size, a highly asymmetric beam can strongly correlate with the sky signal distorting

significantly the underlying true sky signal that we are unable to measure directly from observa-

tions. In CMB experiments the beam shape is measured using planets or bright sources observations

combined with optical models [6–9]. The actual beam pattern of the experiment can be complex

(e.g., Archeops [10]) and special tools and techniques have been depicted to model the beam shapes

[9, 11–13], though in general an elliptical Gaussian fit provides a good description of the main

1http://map.gsfc.nasa.gov/
2http://sci.esa.int/planck
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Introduction

beam in many experiments (e.g., MAXIMA-1 3 [14], Python V [15], WMAP [6, 16, 17]) and in

particular, the ongoing Planck survey [9, 18–21]). Nevertheless, the high precision measurements

of the Planck mission require more elaborated beam models instead of the crude approximation

of an elliptical Gaussian (see, e.g., [9]). The far sidelobes can be modelled separately in spherical

harmonics [22], but we will neglect their contributions (see, e.g., [23]) in this work. We note that

the sidelobe pickup systematic is ∼ 0.5 % to 3.7% of the total sky signal sensitivity for WMAP

[6]. The imperfection of the instruments optics triggers asymmetry in the beam response and even

the main lobe in CMB experiments is not perfectly circular (axisymmetric). Therefore, when the

beam is treated as circular (axisymmetric), the power spectrum is systematically biased, and con-

sequently a beam smoothing correction is needed prior to the estimation.

The use of the optimal ML is desirable as it provides an accurate estimation of the CMB angu-

lar power spectrum Cl. Different ML estimators have been implemented in data analysis, mainly

for small data size [24–27]. These estimators can handle various systematics including correlated

noise, non-uniform/cut-sky and asymmetric beams. The method consists to find the covariance

that maximizes the likelihood function, defined as the integral over all possible values of the true

temperature anisotropy ∆T (q̂) (q̂ denotes the pointing direction across the sky), which is statis-

tically Gaussian distributed on the sky map. Nevertheless, the standard ML estimator requires

intensive computation either in pixel space [27], or Fourier space [24, 25]. In fact, the evaluation

of the inverse of the covariance matrix of the likelihood that scales as ∼ O(N3
d ) for a data size

Nd [28, 29], is computationally expensive, even impossible for large datasets such as WMAP or

Planck. Various techniques have been developed to speed up the ML estimation, such as exploiting

the scanning strategy symmetries [30], using hierarchical decomposition of the CMB map with

varying degrees of resolution [31], iterative multigrid method [32]. Specific methods such as esti-

mate of the spectra on rings in the sky, can reduce the computational cost in special cases [33–35].

Other “exact” power spectrum estimation methods have also been proposed in the literature [36–38].

Alternatively, the suboptimal pseudo-Cl estimator [22] provides a very convenient way for a fast

computation (∼ O(N
3

2

d )) of the angular power spectrum Cl that we strive to measure. The pseudo-

Cl method is exploiting the fast spherical harmonic transform (∼ N
3

2

d ) to estimate the angular power

spectrum Cl =
∑

m a
T
lma

E∗
lm/(2l+1) [39, 40] from the data. This quadratic estimator is biased by the

instrumental systematics that incorporate the beam asymmetry, partial sky/non-uniform sky cov-

erage, noise, etc. Appropriate corrections of the systematic errors must be accounted for, in order

to accomplish the debiasing of the power spectrum estimator. Quadratic estimators can be assorted

in the way the spectra are corrected. We can illustrate the Spatially Inhomogenous Correlation Es-

timator (SpICE, [41]) which computes the two-point correlation function C(q̂.q̂′) = 〈∆T (q)∆T (q′)〉
in pixel space in order to account for the non-uniformity of the sky coverage. Chon et al. [42] have

proposed the extension of SpiCE to polarization. Wandelt & Górski [22] and Hivon et al. [43] have

3http://www.cfpa.berkeley.edu/group/cmb/
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presented the Monte Carlo apodized spherical transform estimator (MASTER), which allows a fast

computation of the angular power spectrum from the data before correcting the galactic cut-sky

in spherical harmonic space, by assuming circular beams. The method has been extended to the

polarization [44–46]. Efstathiou [47, 48] has suggested a hybrid algorithm that computes the power

spectrum using ML for low-resolution maps at low multipoles, and pseudo-Cl estimator for higher

l where it tends to be nearly optimal in the presence of dominant instrumental noise. This hybrid

approach has been applied to the WMAP 3-yr data analysis [49]. Hansen & Górski [44] have em-

ployed the Gabor transforms to recover the power spectrum of the temperature and polarization on

cut-sky, and Wandelt et al. [50] have exploited a global, exact method for power spectra recovery

from CMB observations using Gibbs sampling [51]. The beam non-circularity (asymmetry) effects

can be simulated into the covariance functions in approaches related to ML estimation [26, 27], and

can be included in Harmonic ring [33] and ring-torus estimators [35]. However, these estimators

are computationally intensive and unfeasible for high-resolution maps and, the pseudo-Cl method,

sufficiently fast, is preferred for extracting the power spectrum at large multipoles [47].

The thesis is structured as follows: in Chapter 2, we review the origin of the CMB tempera-

ture and polarization anisotropies and outline the importance of the polarization measurements in

CMB experiments. We consider an example of non-circular beam model derived from an elliptical

Gaussian fit to real experimental beam response and present an expression of the beam harmonic

transform valid in the flat-sky approximation.

We develop in Chapter 3 the derivation of the bias matrix of the temperature T and E-mode

polarization cross-correlation under the non-circular beam and full sky coverage assumptions and

describe the details of the numerical implementation in order to optimize the computation time of

the bias matrix. Then, we examine the effect of the beam non-circularity on the estimation of the

TE angular power spectrum. We check the new expression of the TE bias matrix and show that

it can reproduce the well-known bias matrix of the temperature and E-polarization correlation in

the limiting case of a circular beam and complete sky.

In Chapter 4, we investigate the more complicate case where an asymmetric experimental beam

is introduced in the presence of the cut-sky as a result of the mask applied to the foreground

residuals. We derive the general expression of the TE bias matrix and demonstrate that the new

analytical result of the bias matrix is consistent with the limiting case of the non-circular beam

and full sky obtained in the previous chapter. We investigate as well the limiting case of an ideal

symmetric beam with cut-sky and show that we can recover from this new result the TE bias

matrix of a circular (symmetric) beam and complete sky coverage.

In Chapter 5, we treat the derivation of the EE bias matrix using non-circular beam and cut-

sky by using the standard pseudo-Cl estimator. The derivation of the BB bias matrix will not be

considered as the estimation of the very weak B-mode signal power spectrum requires the use of

3



Introduction

the “pure” pseudo-Cl which does not mix the E and B-mode, and this topic is for now outside the

scope of the thesis.

We draw the conclusion of this work in Chapter 6 and present a line of activity that we plan to

undertake in the future.

We report in Appendix G some useful formulae which will be frequently referred to throughout

the work.

4



Chapter 2

CMB anisotropies

The CMB radiation is a consequence of the Big Bang cosmology which describes the evolution

of the Universe from its initial state of extreme pressure and density. When the Universe was

young, before the formation of the stars and planets, it was filled with denser and high temperature

plasma in thermal equilibrium with the electromagnetic radiation. The motion of the particles

that interacted with the electromagnetic field is described by the Maxwell-Lorentz equations. At

this early epoch, the Universe was radiation dominated and the gravitational interaction can be

neglected in the physics description of the radiation-plasma fluid. As the Universe expanded, the

temperature of both plasma and radiation dropped progressively and at a time when the Universe

was cool enough, the electrons combined with protons to create atoms. The time at which the

first neutral atoms was formed is referred to as the recombination epoch when atoms ceased to

scatter with radiation and thus the Universe became transparent. In literature (e.g., [52]), the

recombination is defined as the time when approximately 90% of the electrons initially present in

the plasma have combined into neutral atoms. This process occurred at a redshift which is given

by the following relation

a−1
rec = 1 + zrec ≃ 1310

(
Ωbh√
Ω0

)0.078

≃ 910− 1340. (2.1)

In this formula, arec = a(t = trec) denotes the scale factor of the Universe at the time of recombi-

nation, zrec the corresponding redshift, Ωb = 0.044 ± 0.004 the baryon density, Ω0 = 1.02 ± 0.02

the total density and h = 0.71+0.04
−0.03 the Hubble parameter. Shortly afterwards, the photons started

to stream freely at a time known as the last scattering which is defined by the relation

a−1
LSS = 1 + zLSS = 1065± 80, (2.2)

where aLSS and zLSS denote the scale factor and redshift at the last scattering surface (LSS) from

which the photons were emitted. At that time, the Universe was about 180000(Ω0h
2)−

1

2 years
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old with a temperature of 0.26 eV. The time of photon decoupling is defined as the time when

the photon scattering falls below the expansion rate of the Universe and the baryons fall out of

equilibrium with photons. This occurred after the time of last scattering defined by

a−1
dec = 1 + zdec ≃ 890. (2.3)

The corresponding age of the Universe at this time was about 380 000 years. As we can see the

three events did not occur at the same time whereas in general, the time of recombination, the last

scattering and decoupling are interchangeably used in the literature [53]. Thus, we can say that

the first CMB photons we see today originated from the LSS at the time of decoupling when the

constituents of the Universe underwent thermal equilibrium with a blackbody distribution.

2.1 CMB predictions and discoveries

The hot Big Bang theory predicts the existence of the CMB radiation that should have a blackbody

spectrum with an intensity given by the formula

Iν =
2hν3

c2
1

ehν/kBT − 1
, (2.4)

where ν denotes the frequency of the radiation, kB = 1.381×10−23 JK−1 = 8.617342×10−5 eVK−1

the Boltzmann constant and h = 4.13566727×10−15 eVsec [54] the Planck’s constant. Gamow and

his collaborators [55–58] were the first who recognized in 1948 that the Universe should be filled

with that uniform blackbody radiation. In 1950, Ralph Alpher and Robert Herman [59] calculated

the temperature of the radiation that started to free stream from the LSS at the time of decoupling.

Based on nucleosynthesis considerations they found that the radiation should exist today and it

would have cooled down to a low temperature T0 ∼ 5 K caused by the expansion of the Universe [53].

The CMB was serendipitously discovered in 1964 by Arno Penzias and Robert Wilson [60]. In

fact, they were testing a communication antenna at Holmden, New Jersey. The Holmden telescope

was intended for the Echo satellite experiment which was designed for communication purpose by

means of satellites. In order to do the calibration of the instrument, they chose a specific frequency

(wavelength λ = 0.0735 m) that is in a quiet window between the shorter wavelength of Galaxy

emission and the longer wavelength of the atmosphere emission. During the studies of the telescope

plus receiver noise, they unexpectedly found an excess of 3.5 K radiation noise that appeared to

be isotropic. However, the excess noise could not have been interpreted as a signal from distant

galaxies or Earth’s atmosphere, thus Penzias and Wilson suspected technical or electronics prob-

lems in the telescope antenna. After a careful consideration of these possibilities, it was found that

the “excess” turned out to be a background radiation that is uniformly filling the Universe. The

isotropic radiation was observed in the microwave wavelength with a black body temperature of
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roughly 3.5 K. They were not yet informed about the polarization of the radiation because the

limited precision of their measurements.

The work of Gamow, Ralph Alpher and Robert Herman [58] was forgotten for decades until,

in 1965 a group of physicists at Princeton University led by Robert Dicke [61] arrived at the same

conclusion. They were preparing to measure the radiation, but before they could complete their

experiment the CMB radiation (excess noise) was discovered by Penzias and Wilson. The results of

Penzias and Wilson measurements were published in 1965 [60] along with a companion article [61]

by Dicke and collaborators explaining its cosmological implications. In 1978, Penzias and Wilson

were awarded the Nobel prize for the discovery.

The first precise measurements of the blackbody spectrum of the Planck distribution by NASA

in 1989 was made with the Far Infrared Absolute Spectrophotometer (FIRAS) on board the Cosmic

Background Explorer (COBE ) [62]. A result of FIRAS analysis gives a black body temperature

T0 = 2.725± 0.001 K [63].

2.2 Temperature anisotropies

Penzias and Wilson’s conclusion about the isotropy of the background radiation was based on mea-

surements only limited to 1.0 K accuracy. After the improvement of measurements carried out over

years, it was found that the CMB radiation coming from different directions on the sky exhibits

some irregularities: in one direction the radiation pattern was observed as a hot spot, and in the

opposite direction as a cold spot. The corresponding pattern is known as the dipolar anisotropy.

It is caused by the motion of the Earth/Solar system relative to the CMB rest frame. The dipole

anisotropy is purely due to Doppler effect and contains no information about the intrinsic property

of the CMB.

The typical variation in temperature ∆T across the sky is roughly a few tens of microKelvin.

As the average temperature of the CMB is T0 = 2.725 K, this corresponds to a tiny fluctuation in

temperature of ∆T/T ∼ 10−5. Since the CMB anisotropies encode the state of the Universe as it

was at the time of decoupling, this means that the Universe was much homogeneous than it is now.

In this section, we provide a statistical characterization of the temperature fluctuations. The

CMB observable is the total intensity of the radiation field as a function of the frequency and

the direction on the sky q̂ = q̂(θ, φ) (in spherical coordinates). The CMB radiation spectrum is

a perfect blackbody with a mean temperature T0, nearly constant across the sky. Generally, the

observable is described by the temperature fluctuations

∆T (q̂)

T0
=
T (q̂)− T0

T0
=
T (θ, φ)− T0

T0
. (2.5)
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The CMB temperature anisotropy field ∆T (q̂) over all directions on the sky q̂ is assumed to be

Gaussian distributed and statistically isotropic. In that case the temperature fluctuations on the

sky can be expanded in spherical harmonics as

∆T (q̂)

T0
=

∞∑

l=0

l∑

m=−l

almYlm(q̂). (2.6)

The l = 0 term is the monopole and is related to the photon energy density. We ignore this term

because it is not measurable. The reason is that a particular observer is only limited to one Universe

and one sky so that we are unable to determine the global mean over an ensemble of all possible

Universes. For instance, if the monopole were larger than its average value in a neighborhood

Universe, we would have no way of measuring the difference: we just cannot measure the photon

energy density from a different Universe as our own (see, e.g., [1]).

The l = 1 term is the dipole which is the manifestation of the Doppler shift caused by the motion

of our Solar System through space with respect to the CMB photons rest frame. The amplitude of

the dipole is about 0.1 % of the CMB mean temperature. The temperature varies across the sky

in such a way that the CMB photons are seen as colder in one direction and hotter in the opposite

direction. To the first order ∆T = TCMB(v/c) cos θ. The dipole temperature was measured by

COBE with a precision better than 1% [64]. To first order, the orientation and amplitude of the

dipole is given by [65]

∆T (θ) = 3.358× 10−3 cos θ K, (2.7)

where θ is the angle of the dipole with respect to the direction of observation. From the observation

and measurements of the diurnal average of the dipole temperature, we can estimate the velocity of

the Sun with respect to the CMB frame which is roughly 370 kms−1. Another dipolar contribution

with an order lower than that of the dipole due to the Solar System motion through space, is

produced by the motion of the Earth around the Sun.

The quadrupole l = 2 and the remaining modes l > 2 are due to intrinsic anisotropy produced

by effects at the recombination epoch or between that time and the present time. For these effects

the summation in Eq. (2.6) begins at l = 2. The spherical harmonics Ylm(q̂) are a complete

orthonormal set of functions defined on the surface of a sphere. For a homogeneous and isotropic

Universe, the coefficients alm generally complex satisfy the condition

〈a∗l′m′alm〉 = Clδll′δmm′ , (2.8)

where δij denotes the Kronecker symbol, and the brackets 〈..〉 refer to the average taken over an

ensemble of realizations. The quantity Cl = 〈|alm|2〉 is the angular power spectrum of the CMB
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anisotropy. The multipole moments Cl main contributions come from fluctuations on angular

scale θ ∼ π/l. The term l(l + 1)Cl is about squared temperature fluctuations on that scale. The

temperature multipole components alm can be derived from the observed temperature ∆T (q̂) by

using the orthonormal properties of the spherical harmonics,

aTlm =
1

T0

∫
dΩq̂∆T (q̂)Y

∗
lm(q̂), (2.9)

where dΩq̂ = sin θdθdφ is the solid angle over the sky. The mean-square 〈|alm|2〉 (power spectrum)

is a measurement of the typical size of the CMB anisotropies. The condition of statistical isotropy

implies that the power spectrum Cl values are independent of the choice of coordinates q̂ = (θ, φ)

(rotational invariance) in a given realization. Consequently, the angular power spectrum Cl cannot

depend on them index, but only depends on l. That is why Cl predictions are typically performed in

harmonic space. As we do not consider the whole sky simultaneously on small angular scales, we can

just focus on a small patch (area of a few deg2 or smaller [66]) of the sky (flat-sky approximation)

where its curvature becomes negligible, and the spherical harmonic analysis coincides with the

Fourier analysis in two dimensions. In the flat-sky limit (l ≫ 1), the multipole l becomes the

Fourier wavenumber and the variance of the field is given by
∫
d2l Cl/(2π)

2. The power spectrum

is then usually plotted in the form [1]

∆2
T =

l(l + 1)

2π
ClT

2, (2.10)

which corresponds to the power per logarithmic interval in wavenumber for l ≫ 1.

The observed temperature anisotropies ∆T (or ∆T ) obtained by different CMB surveys are

illustrated in Fig. 2.1, along with the predicted temperature for a given cosmological model. The

COBE satellite first detection [62] of the temperature anisotropy was on the largest scales (l ≤ 15◦).

The term l(l+1)Cl (i.e., temperature fluctuations) is nearly constant across the COBE range. The

corresponding region is known as the Sachs-Wolfe plateau [67], which is produced by variations of

gravitational field between regions. Afterwards, the observations have been pushed to much smaller

scales (left to right in Fig. 2.1). The MAP [68] satellite launched in June 2001 has probed the

multipoles up to ∼ 1000, and the ongoing Planck survey ∼ 3000. We report in Fig. 2.1 (bottom

panel) the Planck satellite measurements statistical errors for the temperature and polarization

anisotropies (see, next section). The CMB experiments shown in Fig. 2.1 are presented in Table 2.1.

The most updated observations of the CMB anisotropies have been recently undertaken with

the release of the WMAP nine-year (WMAP9, [69]) and Planck [70] surveys data which are

reported in Fig. 2.2. The WMAP9 TT power spectrum was computed by using the full set of

V-band and W-band cross-power spectra. For 2 ≤ l ≤ 32, the prediction of the TT power spectrum

uses the Gibbs sample pixel likelihood estimator [69], which was already previously applied to the
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analysis of the WMAP five-year and seven-year data. For the multipole range 32 < l ≤ 1200, the

expectation value of the power spectrum of the nine-year release was calculated using an unbiased

and optimal quadratic estimator (Fig. 2.2 top panel). The high sensitivity of Planck allows to push

the analysis to higher l up to ∼ 2500. We can see in Fig. 2.2 (bottom panel) that the agreement

between the model and the observations is good over the multipole range. A slight power deficit,

discussed in [70], can be observed only at low l’s.

The sky map of the CMB temperature fluctuations can be analysed in terms of an infinite

series of correlation functions [71]. Inflation models predict the Gaussianity of the spectrum of

the fluctuations, as current CMB data suggest. In such case of Gaussian fluctuations, the only

non-vanishing correlations are of even order and the whole correlations can be expressed with the

two-point correlation (autocorrelation) function C(θ) defined by

C(θ) = 〈∆T (q̂1)
T0

∆T (q̂2)

T0
〉. (2.11)

The temperature autocorrelation function C(θ) measures the product of the temperatures in two

directions q̂1 and q̂2 separated by an angle θ and averaged 〈..〉 over all possible directions. The

angle θ satisfies the condition q̂1.q̂2 = cos θ.

On small angular scales θ, we can estimate the autocorrelation C(θ) from an individual sky

using the ergodic hypothesis (see, e.g., [104, 105]) that states that the ensemble average (two-point

correlation) should be the same as a spatial average within a single realization of the ensemble.

The same holds for higher order correlations. This property only works on small angular scales

where it is possible to average over several pairs of directions with the same angle θ.

On large scales, the estimation of the true autocorrelation C(θ) is difficult since there exist so

few independent directions at large θ. As the Universe is homogeneous and isotropic, the average

over all directions on the sky from a single observer (e.g., the Earth) should be close to the av-

erage obtained by other observers in different regions of the Universe (e.g., other Galaxies). Let

us explain this by considering our position in the Universe: we can just see the CMB microwave

photons emitted from the last scattering surface, which can be viewed as photons with different

temperature and pattern by other observers situated in different Galaxies of the Universe [106].

What we can do is just taking the average over the realizations viewed from Earth (i.e., single sky).

Those observers in other Galaxies measure an average, which corresponds to the cosmic mean that

can be estimated by the correlation functions of inhomogeneities of the random field.

The root-mean-square difference between the local measurement (the Earth in our example)

and the cosmic mean (other Galaxies observers measurement) is called cosmic variance (e.g., [71]).

The difference is due to the poorer statistics of a single observer: we inhabit one region of the
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Figure 2.1: Temperature anisotropies spectra as a function of the multipole. The temperature anisotropy
data measured from several CMB experiments are shown with boxes representing 1-σ errors and l-bandwidth
(top panel). The temperature and polarization spectra TT , TE, EE, BB are also shown in log plot (bottom
panel) where the boxes represent the statistical errors of Planck satellite. The dashed lines show the negative
cross-correlation of T and E since the TE spectrum can be positive or negative (adopted from [1]).
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Table 2.1: List of the CMB experiments illustrated in Fig. 2.1 and references (adapted from [1]).

Name Authors Journal Reference

ARGO Masi S et al. 1996 ApJL 463:L47–L50 [72]
ATCA Subrahmanyan R et al. 2000 MNRAS 315:808–822 [73]
BAM Tucker GS et al. 1997 ApJL 475:L73–L76 [74]
BIMA Dawson KS et al. 2001 ApJL 553:L1–L4 [75]
BOOM97 Mauskopf PD et al. 2000 ApJL 536:L59–L62 [76]
BOOM98 Netterfield CB et al. 2002 ApJ 571:604–614 [77]
CAT99 Baker JC et al. 1999 MNRAS 308:1173–1178 [78]
CAT96 Scott PF et al. 1996 ApJL 461:L1–L4 [79]
CBI Padin S et al. 2001 ApJL 549:L1–L5 [80]
COBE Hinshaw G, et al. 1996 ApJ 464:L17-L20 [81]
DASI Halverson NW et al. 2002 ApJ 568:38–45 [82]
FIRS Ganga K, et al. 1994. ApJL 432:L15–L18 [83]
IAC Dicker SR et al. 1999 ApJL 309:750–760 [84]
IACB Femenia B, et al. 1998 ApJ 498:117–136 [85]
QMAP de Oliveira-Costa A et al. 1998 ApJL 509:L77–L80 [86]
MAT Torbet E et al. 1999 ApJL 521:L79–L82 [87]
MAX Tanaka ST et al. 1996 ApJL 468:L81–L84 [88]
MAXIMA1 Lee AT et al. 2001 ApJ 561:L1–L5 [89]
MSAM Wilson GW et al. 2000 ApJ 532:57–64 [90]
OVRO Readhead ACS et al. 1989 ApJ 346:566–587 [91]
PYTH Platt SR et al. 1997 ApJL 475:L1–L4 [92]
PYTH5 Coble K et al. 1999 ApJL 519:L5–L8 [93]
RING Leitch EM et al. 2000 ApJ 532:37–56 [94]
SASK Netterfield CB et al. 1997 ApJL 474:47–66 [95]
SP94 Gunderson JO, et al. 1995 ApJL 443:L57–L60 [96]
SP91 Schuster J et al. 1993 ApJL 412:L47–L50 [97]
SUZIE Church SE et al. 1997 ApJ 484:523–537 [98]
TEN Gutiérrez CM, et al. 2000 ApJL 529:47–55 [99]
TOCO Miller AD et al. 1999 ApJL 524:L1–L4 [100]
VIPER Peterson JB et al. 2000 ApJL 532:L83–L86 [101]
VLA Partridge RB et al. 1997 ApJ 483:38–50 [102]
WD Tucker GS et al. 1993 ApJL 419:L45–L49 [103]

WMAP http://map.gsfc.nasa.gov

Planck http://sci.esa.int/planck
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Universe, and there is no reason that we obtain exactly the same ensemble average as the average

value of the Universe. In other words, we can only measure the alm for a single Universe (our own

for example), but only the average over an infinity numbers of realizations (theoretically infinity

Universes) coincides exactly with the predicted power spectrum. Averaging on m corresponds to

averaging over directions. For each l, m varies from −l to l so that there are 2l + 1 independent

estimates (modes) of the power spectrum Cl in each multipole l (assuming full sky coverage). The

cosmic variance depends on the number of representatives of the random inhomogeneities within a

horizon. The variance is negligible at small angular scales but starts to dominate at large angular

scales beyond 10◦.

The cosmic variance sets a fundamental limitation to how accurately we can measure Cl. It

leads to an unavoidable statistical error of

∆Cl =

√
2

2l + 1
Cl. (2.12)

If we average over l in bins of width ∆l ∼ l, the corresponding precision of the power spectrum

estimation scales as 1/l. For example Cl can be measured at l = 100, l = 1000 respectively with

1% and 0.1% uncertainties. Experiments introduce additional uncertainties by measuring only a

fraction of the sky, since regions of the Galaxy contaminated by strong foreground emissions must

be removed. The resulting total difference from the cosmic mean is the sample variance [107].

If fsky is the fraction of the sky covered, the sample variance is proportional to f
−1/2
sky and equal

to the cosmic variance when the area covered by the measurements approaches full sky. Noise

of instrumental and astrophysical origin is a source of errors as well. If the noise is Gaussian,

the power spectrum of the variance is replaced by the sum of the signal and noise power spectra.

Finally, the instrument beam shape also affects the values of the cosmic variance (see, e.g., [108]).

For a Gaussian random field, the autocorrelation (or covariance) function C(θ) can be expressed

as a series of Legendre polynomials Pl(θ) of order l,

C(θ) =
1

4π

∞∑

l=2

(2l + 1)ClPl(cos θ), (2.13)

where the summation starts at the quadrupole l = 2, since the monopole l = 0 is just the mean

temperature on the observed patch of the sky, and l = 1 is the dipole.
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Figure 2.2: Power spectrum of the temperature fluctuations as a function of the multipole as measured by
the WMAP nine-year survey (top panel) and Planck (bottom panel). The WMAP data are shown in black dots
with the corresponding error bars. The WMAP best fit model is illustrated by the red curve and the smoothed
binned cosmic variance is depicted with the grey shaded region. The 2013 Planck CMB temperature angular
power spectrum is shown in bottom. The Planck data are shown in red dots with their error bars and the best
fit model is represented by the green curve. The cosmic variance included in the error bars is indicated with the
green shaded area (adopted from [69, 70]).
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2.3 Polarization anisotropies

The temperature fluctuations autocorrelation provides the most valuable tool for distinguishing

cosmological models. The power spectrum of the temperature allows the determination of cosmo-

logical parameters as well. However, we can exploit the polarization of the CMB radiation to gain

additional subtle details about the history of the Universe at the recombination epoch. In particu-

lar, the detection of the CMB polarization (B-component of the polarized radiation field), a huge

experimental challenge, will provide a clear evidence of the presence of the primordial gravitational

waves generated by tensor modes, predicted by inflationary models [3, 4].

In addition, the polarization is much sensitive to the physical process of reionization which took

place during the formation of the first stars. The Universe has been known to be ionized since

a long time [109] at least up to the redshift z ≃ 6 [110]. The reionization is produced by high

energy photons traversing ionised hydrogen clouds heated during the gravitational collapse of the

first generation of stars [111]. Some estimations place the reionization between z = 7 and z = 30

[112]. Shortly after the recombination, the photons free-stream between their last scattering with

electrons and again rescatter later with electrons in reionized hydrogen. Thus, the polarization

fluctuations show up in large scale l < 20 and appear as bumps in the CMB power spectra. These

bumps illustrated in Fig. 2.1 for the TE, EE, BB allow us to trace the reionization history of the

Universe [113–115]. The first detection of the polarization from reionization was carried out with

the WMAP experiment [2, 116] with an optical depth of the reionization τ = 0.17± 0.04. Whereas

this optical depth is larger than expected, it can be well described by an early reionization at the

redshift range 11 < z < 30 at 95% confidence level. Some work on early reionization is reviewed

for instance in [117–121].

The first observations of the CMB polarization power spectra CTEl and CEEl were made by the

Degree Angular Scale Interferometer DASI [122] and the WMAP satellite [2].

2.3.1 Origin of the CMB polarization

The polarization in the CMB anisotropies originates from Thomson scattering by electrons. CMB

photons behave as vector bosons particles. The electric and magnetic field of the CMB light can

oscillate in the plane transverse to the direction of propagation. The light that propagates along the

x-direction corresponds to electric and magnetic field oscillating in the y-z plane. If the intensity

along the transverse directions y-z is equal, then the light is unpolarized; otherwise the light be-

comes polarized. The Thomson scattering by electrons can explain the polarization mechanism. It

allows all radiation transverse to the direction of propagation to pass, but suppresses any radiation

that is parallel to the outgoing direction.

In the following, we consider all possibilities that may lead to the production of a polarized
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Figure 2.3: Scattering of an unpolarized radiation moving along the x-axis by an electron into the ẑ direction.
Only the intensity along the ŷ direction that is not parallel to the outgoing ẑ direction, gets transmitted after
scattering. The net result is a polarized radiation along the ŷ direction (adopted from [54]).

radiation. We closely follow the description of the mechanism by Dodelson [54]. Let us first

consider the simple case of an incoming radiation from the +x̂ direction which is sketched in Fig.

2.3. This incident unpolarized radiation that has equal intensity in the ŷ and ẑ directions scatters

off an electron and generates an outgoing radiation scattered in all direction, in particular along

the +ẑ direction. As the intensity of the incoming radiation parallel to the outgoing +ẑ direction

is stopped, only the intensity which is perpendicular to both the incoming and outgoing radiation,

along the y-axis is transmitted. This produces an outgoing polarized radiation in the ŷ direction.

Now, let us consider the more general case of an incoming radiation from all directions. We

show in Fig. 2.4 an example of an isotropic radiation coming from the +x̂ and +ŷ directions.

The intensity of the outgoing radiation parallel to the x-axis comes from the incoming radiation

along the ŷ direction whereas the outgoing intensity along the ŷ direction comes from the incident

ray along the x-axis. As the incident isotropic radiation has equal intensity along both x̂ and ŷ

directions, the outgoing radiation itself has equal intensity along the x and y-axis and consequently

the outgoing radiation is unpolarized after the scattering by an electron.

Let us see what happens when the incoming radiation is anisotropic. This is the case of a

dipole pattern which provides the simplest form of anisotropy. The incoming radiation from the ŷ

direction has an average intensity and produces, after scattering, the outgoing radiation with an

average temperature along the x̂ direction. The outgoing radiation parallel to the y-axis is neither

cold nor hot since it is produced by the hotter radiation from the +x̂ direction and the colder

radiation from the -x̂ direction leading to an outgoing radiation with an average intensity along

the ŷ direction. Therefore, the dipole generates no polarization since the intensities of the outgoing

radiation along the x̂ and ŷ directions are equal. This is shown in Fig. 2.5.
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Figure 2.4: Incoming isotropic radiation scattered by an electron in the origin. Since the intensities of the
incident rays from the +x̂ and +ŷ directions are equal, the amplitudes of the outgoing radiation along these
directions are equal, resulting in unpolarized radiation (adopted from [54]).

In order to produce a polarized radiation, we need a local quadrupolar anisotropy which is

illustrated in Fig. 2.6 (left panel). The incoming hot spots in the x̂ direction scattered into

the ẑ direction leaving only the component of the radiation that is parallel to the ŷ direction.

During the scattering process, the electron is shaked in the ŷ direction of its electric field or

polarization ǫ̂′ producing an outgoing polarization parallel to the ŷ direction [1]. Similarly, the

outgoing polarization ǫ̂ must be perpendicular to the outgoing direction ẑ and therefore, only the

component of the cold spots parallel to the x̂ direction remains after scattering. The Thomson

differential scattering cross-section is given by dσ/dΩ = 3σT | ǫ̂′.ǫ̂ |2 /8π where Ω is the solid angle

and σT the total Thomson cross-section.

Let us now focus on the orientation of the polarization. The orientation is described by the two

components E and B and this decomposition can be visualized in the small scale limit, where the

spherical harmonic and Fourier analysis are identical. Then the wavevector k̂ which is shown in

Fig. 2.6 (right panel) is oriented along a specific direction toward which the polarization direction

is measured. The linear polarization (Thomson scattering of the CMB cannot generate a circular

polarization) is invariant upon a 180◦ rotation since it is a “headless vector”. The E and B compo-

nents that describe the polarization are parallel or perpendicular to the wavevector (positive and

negative E) and crossed at an angle 45◦ (positive and negative B) [1].

Naturally, there are three sources of quadrupolar anisotropies [65]:

• Vector perturbations: this effect is produced by vortex movements of the primordial fluid.

However, the perturbations are negligible in most inflationary models.

• Tensor perturbations: this consists in the modification of the shape of the gravitational well

produced by a gravitational wave traversing a density fluctuation. In this case, a well with

symmetric shape can become elliptical leading to quadrupolar anisotropies.
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Figure 2.5: Scattering off an electron by an incoming dipole radiation. The heavy lines denote hot spots (+x̂
direction) and the thin ones (-x̂ direction) are the cold spots. The lines with medium thickness along the y-axis
correspond to spots with an average temperature. The outgoing radiation along the ŷ direction has an average
intensity since it is produced by the hot and cold spots moving along the x-axis. The outgoing radiation along
the x̂ direction also has a mean temperature since it is the result of the scattering off the electron by the incident
radiation with an average intensity (temperature) along the y-axis and therefore, the dipolar anisotropy cannot
produce a polarized radiation (adopted from [54]).
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Figure 2.6: CMB polarization from Thomson scattering and classification. Left: Photons with a quadrupolar
anisotropy (x̂-ŷ plane) scattered off a free electron producing a linearly polarized radiation. Note that the outgoing
radiation has greater intensity (heavy lines denote hot spots) along the ŷ direction than that in the x̂-axis as a
result of the much hotter incoming radiation (hot spot) from the x̂-direction. Right: CMB polarization in the x̂-ŷ
plane along the outgoing ẑ axis. The polarization component that is parallel or perpendicular to the wavevector
k̂ is called the E-mode (E-type) and the one at an angle of 45 ◦ is called the B-mode (B-type) (adopted from
[1]).
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Figure 2.7: Quadrupolar anisotropies caused by density fluctuations in an over-dense region. Radially along the
overdensity, the electrons move away from each other, while those belonging to the region of uniform density in
the same contour tend to get closer (adopted from [65]).
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Figure 2.8: Polarization directions from velocity gradients when the fluid accelerates towards the cold spot (left
panel) or decelerates towards a hot spot (right panel). The brown dashed curves represent the fluid stream lines.
The small thin arrows show the direction of the fluid velocities in the photon baryon fluid rest frame near the
scattering point. The large thick arrows depict the directions of the fluid motion near the scattering point relative
to the hot and cold spots (adopted from [123]).

• Scalar perturbations: these scalar modes are linked to density perturbations causing quadrupo-

lar anisotropies (see Fig. 2.7 ).

For the latter case of density fluctuations, the local quadrupolar anisotropies of the CMB

photons on the last scattering surface at the end of recombination arise from velocity gradients

(see, Fig. 2.8). When the fluid is accelerated from a hot spot (density dip, potential maximum)

towards a cold spot (density peak, potential dip), the neighboring fluid velocities with respect to

the photon baryon fluid rest frame, tend to diverge radially from and converge transversely to the

scattering point. When the fluid is decelerated away from a cold spot, the neighboring particles

velocities tend to converge radially to and diverge transversely from the scattering point. As a

result of a Doppler shift, a quadrupolar flux anisotropy is induced around the last scattering point,

causing a radial polarization in the first case (Fig. 2.8 left panel) and a transverse polarization in

the second case (Fig. 2.8 right panel). Note that this geometrical scheme does not apply to tensor

perturbations induced by primordial gravitational waves which do not need velocity gradients to

produce CMB polarization [123].
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2.3.2 Observable Stokes parameters

The Stokes parameters are the physical observable quantities that describe the polarization of the

radiation. They are defined by the four parameters I, Q, U and V . An electromagnetic wave

is characterized by the electric field vector Ê orthogonal to the direction of propagation k̂ (wave

vector). For a polarized wave propagating along the z-axis, the Stokes parameters take the form

[123]

I = 〈|E2
x|+ |E2

y |〉, (2.14)

Q = 〈|E2
x| − |E2

y |〉, (2.15)

U = 〈2Re(ExE∗
y)〉, (2.16)

V = 〈2Im(ExE
∗
y)〉, (2.17)

where I denotes the total intensity of the radiation. The parameters Q and U describe the linear

polarization of the radiation field whereas V characterizes its circular polarization. We neglect

the last parameter V since it cannot be produced by Thomson scattering as it only modifies the

amplitudes of the components while the phases remain unchanged. Thus, for CMB photons V = 0.

The conservation of energy implies that I2 > Q2+U2+V 2, which means that the polarization energy

cannot exceed the total energy. I and V are invariant under rotation whereas Q and U depend

on the reference frame. In a map representation using “rods”, the polarization amplitude is given

by P =
√
Q2 + U2 (rotation invariant), and the orientation makes an angle α = 1

2 arctan(U/Q)

with the vector ê1 which is perpendicular to the direction on the sky q̂ [53, 124]. As the quantity

Q2 +U2 is invariant under rotation, it follows that the polarization P is a second rank tensor that

reads [53]

P =
1

2

(
Q U − iV

U + iV −Q

)
. (2.18)

This means that unlike the electric field vector, the polarization is not a vector quantity with a

given direction. While the temperature (total intensity I) is invariant under a rotation in the plane

perpendicular to the direction of propagation q̂ (i.e., parallel to the direction q̂ on the sky), the

Stokes Q and U transform under rotation. Let us choose two basis vectors ê1 and ê2 orthogonal to

k̂ (or q̂). If ê1 and ê2 are rotated by an angle ψ about the direction q̂, then Q and U rotate and

transform to Q′ and U ′ by an angle 2ψ, and we may write

Q′ = Q cos(2ψ) + U sin(2ψ), (2.19)

U ′ = −Q sin(2ψ) + U cos(2ψ), (2.20)

or equivalently [123]

Q± iU → Q′ ± iU ′ = e∓2iψ(Q± iU). (2.21)
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This is known as a spin-2 transformation and the quantities Q± iU are said to be spin-2 [124].

2.4 Polarization multipole expansion

In this section, we follow a close presentation of the multipole analysis as [124]. While observing

the celestial sphere, it is more convenient to treat the statistical properties of the CMB fluctuations

on spherical harmonic basis, which is basically the Fourier basis as the CMB anisotropies random

properties are rotationally invariant. Instead of the standard spherical harmonics which are spin-0

quantities, we need to use the spin-2 spherical harmonics to describe the polarization since the

quantities Q ± iU are spin-2 variables. Thus, we can expand the Stokes parameters in the spin-2

spherical harmonic basis as [125]

(Q± iU)(q̂) =
∑

lm

a±2,lm ±2Ylm(q̂), (2.22)

=
∑

l>2

l∑

m=−l

a±2,lm ±2Ylm(q̂). (2.23)

Q and U depend on the sky direction q̂ with respect to the spherical coordinates basis (êθ, êφ)

[126, 127]. The multipole coefficients of the polarization expansion satisfy the following relation in

order to ensure that the observables Stokes parameters Q and U are real: a∗−2,lm = a2,l−m. For

the temperature, the reality condition implies aT∗lm = aTl−m. From the spin-2 multipole coefficients

a±2,lm, we can construct in real space, by using linear combinations of the coefficients of the

expansion, two real scalar quantities defined by

E(q̂) =
∑

l,m

aElm Ylm(q̂), (2.24)

B(q̂) =
∑

l,m

aBlm Ylm(q̂), (2.25)

where E(q̂) is with positive parity and B(q̂) with negative parity. The connection between Q/U

and E/B in spherical harmonic space is

aElm = −a2,lm + a−2,lm

2
, (2.26)

aBlm = i
a2,lm + a−2,lm

2
. (2.27)

The scalar E and the pseudo-scalar B can completely describe the linear polarization of the ra-

diation. The temperature is a real scalar rotationally invariant as T ′(q̂′ = R q̂) = T (q̂), where

R denotes the rotation matrix. Unlike the spin-2 quantities Q ± iU , E(q̂) and B(q̂) defined from
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BE E B

Figure 2.9: Parity of E-type and B-type polarization patterns. The E patterns are invariant under reflection
across a line going through the centre whereas the B patterns are interchanged under transformation (adapted
from [124]).

the Stokes parameters are invariant under rotations: they are independent of the reference frame.

However, as we have previously seen they have opposite behaviour under parity transformations.

The different parity properties of E and B are illustrated in Fig. 2.9. The polarization patterns

show positive and negative E and B. We can see in Fig. 2.9 that the E polarization patterns

remain unchanged if reflected across a line going through the centre. Contrarily, the B pattern

changes to the opposite parity from positive to negative. The E patterns are “gradient-like”, and

the B patterns are “curl-like”. Note that E and B are not local quantities, since the E or B

type of the polarization is a property of the polarization pattern around a particular point, and

not at that point. We can establish some analogy between vector field and polarization field geo-

metrical properties. As the polarization field is a spin-2 object, this means that a rotation of the

coordinate system by an angle 180◦ brings back the same components of the polarization radiation

field whereas a rotation of 360◦ is needed for vector fields. A supplementary information about the

similarities and differences between vectors and polarization fields can be found in Bunn et al. [128].

The random properties of the CMB Gaussian fluctuations are fully described by four power

spectra if there is no parity violation: the autocorrelations TT , EE, BB and the cross-correlation

TE. The cross-correlation between B and E, or B and T vanishes since B has the opposite parity

to T or E [124]. Thus, the invariance of the stochastic properties under rotations and the parity

conservation imply the following relations

〈aT∗lmaTl′m′〉 = CTTl δll′δmm′ , (2.28)

〈aT∗lmaEl′m′〉 = CTEl δll′δmm′ , (2.29)

〈aE∗
lma

E
l′m′〉 = CEEl δll′δmm′ , (2.30)

〈aB∗
lma

B
l′m′〉 = CBBl δll′δmm′ , (2.31)

where Cl’s and δll′ denote the angular power spectra of the CMB anisotropies and the Kronecker

symbol. Some examples of models with parity violation are discussed in [129].
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The choice of the estimator for the characterization of the statistical properties of the CMB

fluctuations depends on the goal of the CMB survey. Throughout this work, we will employ an

estimator based on spherical harmonic space. For Gaussian fluctuations, we define the rotationally

invariant power spectra

CTTl =
1

2l + 1

l∑

m=−l

〈aT∗lmaTlm〉, (2.32)

CTEl =
1

2l + 1

l∑

m=−l

〈aT∗lmaElm〉, (2.33)

CEEl =
1

2l + 1

l∑

m=−l

〈aE∗
lma

E
lm〉, (2.34)

CBBl =
1

2l + 1

l∑

m=−l

〈aB∗
lma

B
lm〉, (2.35)

where the brackets 〈..〉 denote the ensemble averages of all statistical realizations. The justification

of the choice will be reported in Chapter 3.

As a prominent part of this thesis mostly deals with the estimation of the TE cross-power

spectrum, as an illustration we present in Fig. 2.10 current observations and theoretical best-fit

of the temperature T and E-mode polarization cross-spectrum. In the WMAP9 data release, the

TE angular cross-power spectrum was calculated using the MASTER [43] likelihood code, while

the lowest multipole bin 2 ≤ l ≤ 7 power was estimated using the more accurate pixel likelihood

code [69] (Fig. 2.10 top panel). The Planck preliminary observations (Fig. 2.10 bottom panel) are

in excellent agreement with the best-fit ΛCDM cosmological model. The TE cross-power spectrum

data are binned with a band width ∆l = 40. A uniform weighted average of all detector sets

combinations at 70×100, 100×143, 100×217, and 143×217 GHz allows the computation of the

observed spectrum using the method described in [70].
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Figure 2.10: The TE spectrum can be positive or negative, and is in opposite phase to the TT spectrum. The
WMAP data with the corresponding error bars are shown in black, and the red curve is the best fit to the full
WMAP data that include the TT data as well (top panel). Note that the vertical axis is (l+1)Cl/2π so that the
scale differs from that of the TT spectrum by a multiplication factor l. For comparison, the Planck computed
TE power spectrum is illustrated in the bottom panel where the red curve represents the best fit only to the
Planck temperature data as predicted from the six-parameter ΛCDM model (adopted from [69, 70]).
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2.5 Systematics

A systematic error is inevitable in CMB data analysis since it is always present even an average

over many data samples is taken. If we consider for example a single measurement on the sky,

it would be difficult to disentangle the sky signal from the systematic effects, and the same holds

between the real signal and random noise. Among the systematics, our particular interest is on the

beam asymmetry and foregrounds which are the only relevant systematics studied in this thesis.

We follow the presentation of the systematics described in [65].

2.5.1 Beam asymmetry

The beam is an optical transfer of the instrument. The telescope beam defined by the point-

spread-function (PSF) is the instrument response to a signal on the sky. The detectors beams are

estimated from the observations of planets or brighter stellar sources from which a model of beam is

constructed. The WMAP mission beam maps in the Q1, V1 and W1 bands have been fitted with

an elliptical Gaussian profile with the radio-astronomy software Astronomical Image Processing

System (AIPS) and ellipse fitting routine software Image Reduction and Analysis Facility (IRAF)

[130]. The actual beam shape is in general complicated, and for this reason different modern tech-

niques have been developed to model and reconstruct the beam of the ongoing high sensitivity and

resolution Planck experiment (e.g., [9]).

For CMB experiments using circularly symmetric beams, a one dimension profile can be used

to simulate the beam. For asymmetric beams, brighter sources such as Jupiter for WMAP [6] or

Archeops [10] are used for the construction of the beam shape. The beam systematics are usually

simulated and corrected on the power spectrum. The simulations include the convolution of the

sky with the beam, which depends on the shape and orientation of the beam on the sky. For non-

circular (asymmetric) beams the convolution in a given direction is time dependent which requires

intensive computation. Different convolution methods have been developed. They are exploiting a

convolution algorithm [35] in harmonic space or decomposition of a pixel based beam model into

harmonic space. Several methods of beam symmetrization have been investigated [6, 14], and a

model using a decomposition of the beam pattern into Gaussian beams has been proposed [131].

A semi-analytical model of beam has been developed to approximate the ellipticity of the beam

[15, 66]. Throughout this thesis, we will adopt the beam model of Fosalba et al. [66] based on

the perturbative expansion of the beam around a circular (axisymmetric) Gaussian one. However,

it is important to note that this approximation is not sufficient to achieve percent level accuracy

with Planck (see, e.g., [9]). We explain this choice by the fact that the main purpose of the work

was to investigate how to reduce the computational cost of the beam convolution with the sky

maps. Thereafter, we can incorporate in our numerical implementation more realistic beams whose

convolution can be computed by following the same algorithm exposed in the thesis.
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Figure 2.11: Bias estimate in the angular power spectrum due to the beam asymmetry for each WMAP channel.
The ratio αl is an estimate of the error introduced in the power spectrum when the actual asymmetric beam is
treated as circular (symmetric). The data from Q band is not included in the final power spectrum (adopted from
[49]).

The polarized beam response is measured in the co- and cross-polar basis defined on the sphere.

For a given polarized beam, the direction of polarization is defined by the image of sensitivity

direction of the optics, and the cross-polarization direction is orthogonal to the co-polarization.

The asymmetry of the main beam can contaminate the polarization and this effect depends on the

scanning strategy. The main intensity beam and cross-polarization are estimated using simulations.

The far sidelobes are measured using bright sources such as the Moon or Sun. The sidelobe

pickup causes spurious signal into the time ordered data inside each detector, but their effects are

quite small relative to the sky signal.

The effects of beam asymmetry on the angular power spectrum Cl is illustrated in Fig. 2.11.

The ratio αl represents the multiplicative error in the angular power spectrum when the actual

beam is assumed as a circular Gaussian in the model of beam. We clearly see that the systematic

error introduced by the beam asymmetry is significant at high multipoles. Therefore, appropriate

corrections must be accounted for the debiasing of the power spectra of CMB high resolution

experiment. This step is crucial as the cosmological parameters derived from the power spectrum

are very sensitive to the slight deviation of the power spectrum from its true value.
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2.5.2 Foregrounds

The CMB anisotropy signals are exposed to various astrophysical foreground emissions which con-

taminate the measured CMB signals. For instance, in all WMAP frequencies the microwave sky

is polarized, and in K band the flux is much larger than the level of CMB polarization. Around

the frequency 60 GHz and multipole l ∼ 5, the temperature of the foreground emission exceeds

about a factor of two the CMB polarization signal [132]. Thus, a subtraction of the foreground

emission based on the WMAP (and later on Planck) polarization measurements is essential, before

the estimation of the CMB polarization signal. The main contaminants of the CMB signal can be

classified as follows.

• Synchrotron emission

This radiation is produced by relativistic electrons accelerated by magnetic field. The syn-

chrotron spectrum depends on the intensity and energy of the electrons. The Galactic mag-

netic field is strong enough (few nG) to contaminate CMB measurements. The energy spec-

trum of the electrons can be modelled as a power law ν−β with β ≃ 3 [133]. The synchrotron

radiation, which can exhibit strong polarization in the direction perpendicular to the Galac-

tic magnetic field [134], is the dominant foreground contaminant at lower CMB frequency

observations.

• Free-free emission (Bremsstrahlung)

This radiation is produced by decelerating electrons traversing hot gas ions. The spectrum

of the emission is a power law with a spectral index β ≃ 2.1 [133]. Free-free emission is

dominant at CMB lower frequencies. Broadly speaking, free-free emission is unpolarized but

a polarized emission may exist at the edges of HII clouds [135].

• Dust emission

This radiation is emitted by cold dust via thermal radiation or by excitation of electrical

dipolar moment. The radiation is a grey body with temperature T ∼ 17 K and the emission

peaks in the far-infrared. The dust emissivity is modelled as ν2 [136]. Vibrational dust emis-

sion is between 10 and 100 GHz with a peak around 20 GHz [137]. The level of polarization

of spinning dust grains is roughly 1-2% [138].

• Point sources

They can emit radio-millimetric waves and contaminate the CMB signals. The radio sources

polarized emission is negligible in the WMAP band. The effects of undetected background

sources on the CMB spectrum are evaluated with Monte-Carlos simulations.

We show in Fig. 2.12 an example of CMB and foreground models based on MCMC technique.

These foreground models are discussed in Bennett et al. [69] and each of the models presents

strengths and weaknesses. For instance, using the MCMCg model [69], it appears that the CMB

foreground covariance dominates in the Galactic plane and as a result the CMB and foregrounds
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Figure 2.12: CMB and foreground models constructed from the MCMCg model fit [69]. The top four maps
are the foreground models on logarithmic scales. The other three maps are the CMB and foreground parameter
maps on linear scales. The β synchrotron map is calculated at 40 GHz (adopted from [69]).
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Figure 2.13: An overview of the microwave sky. The yellow, salmon, and red shaded regions illustrate various
temperature masks Kp0, Kp2 and Kp8 designed to remove the effects of strong diffuse emissions along the Galactic
equatorial plane. The violet shaded regions correspond to the P06 polarization mask described in Page et al.
[132] . The small blue dots indicate point sources identified by WMAP. In the map is labelled some well-known
sources and regions (adopted from [49]).

are not well separated in that region. By contrast, the same model is preferred at high latitudes

because of its strength.

The CMB intensity and polarization maps require masking since the observed maps are the

combination of CMB with foreground residuals. The temperature and polarization masks are

designed to eliminate the effect of regions containing significant residuals along the Galactic plane

as well as foreground polarized sources. We report in Fig. 2.13 an overview of the microwave sky

(see, [49]) showing the temperature and polarization analysis masks used for the WMAP mission.

The construction of the Kp0, Kp2, and Kp8 diffuse emission masks is discussed in Bennett et

al. [139]. The Kp0 and Kp2 masks are convenient for cosmological analysis. The Kp8 mask is

based on the processing mask (see, [16]), which is designed to reduce the bias in the sky maps.

The WMAP polarization mask P06 covers an important fraction of the sky (73%, [132]) since the

polarized foreground emissions reside outside the Galactic plane as well. Planck polarization data

will be released in 2014 but similar polarization mask based on the construction of WMAP can be

applied for foreground subtractions. Following the masking of the residuals, the remaining fraction

of the sky map produces likewise, a systematic error in the angular power spectrum that needs to

be accounted for.

To summarize, the topics that we have introduced in this chapter are limited to the basics and

essential backgrounds in order to understand the physical processes and mathematical treatments in

the following chapters. We will make use of the expansion of the temperature and Stokes parameters
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in spherical harmonics basis throughout this thesis and the estimator that we have defined by

CTEl =
1

2l + 1

l∑

m=−l

〈aT∗lmaElm〉, (2.36)

CEEl =
1

2l + 1

l∑

m=−l

〈aE∗
lma

E
lm〉, (2.37)

will be used to estimate the power spectrum of the temperature and polarization anisotropies.

We will investigate how the estimation of the power spectrum from the observations of the CMB

anisotropies are connected to the systematics. We only focus the study on two of these system-

atics that we have reviewed in the last section of this chapter: the effect of the experiment beam

asymmetry (non-circularity) and partial sky coverage resulting from the masking of foreground

residuals. In particular, we will investigate the effects of CMB experiment beam asymmetry in the

power spectrum estimation in the case of a full sky survey.
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Chapter 3

Non-circular beam and full sky for TE

polarized signals

3.1 Introduction

The main objective of any CMB experiment is to extract the primordial signature of the CMB

anisotropies from the measured power spectrum of the total intensity (temperature) and polar-

ization of the CMB radiation. This CMB anisotropy signal of cosmological origin is an imprint

reflecting the state of the early Universe at the recombination epoch when the Universe became

optically thin to radiation. Precise measurements of the angular power spectrum Cl of the CMB

anisotropies allow to impose constraints on cosmological parameters. However, in realistic CMB

experiments the signal is always disturbed by some systematics, and the power spectrum of the

signal is affected by the variance of the systematic perturbing signals.

The non-circularity (asymmetry) of the instrument beam response is one of the most important

source of errors in the estimation of the power spectrum of the CMB anisotropies. In this chapter,

we address this problem and ignore the effects of the partial sky coverage and instrument noise as

well as other systematics. Our goal is to calculate the bias in the estimation of the observed power

spectrum when the experiment asymmetric beam is treated as circular. The bias is encoded in a

matrix called bias matrix which relates the observed power spectrum to the true one. We focus

on the derivation of this bias matrix for the TE cross-correlation. The idea is to convolve the true

power spectrum, given by a fiducial model, with an asymmetric beam and make the comparison

with the true power spectrum convolved with a circular beam of Gaussian shape. The difference

between the above values will give an estimate of the bias caused by the non-circularity of the beam.

Nevertheless, before we reach this step we need to derive, and then compute the TE bias matrix.

During this process, it turned out that the main issue of the study has been the computational

challenge involved in the numerical evaluation of the bias matrix.
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Throughout this work and along with the remaining chapters we assume a trivial scanning

strategy of non-rotating beam. The generalization of the results to more realistic scans will be part

of our future research. In literature, many variants of estimators have been suggested in order to

alleviate the computational cost of the bias matrix estimation. Among them, we cite the pseudo-Cl

estimator based on semi-analytical methods [15, 19, 49, 66, 130, 140] in spherical harmonic space,

full numerical integration [14, 141]; and the deconvolution of observed maps with asymmetric beams

[142, 143]. For Planck-like experiment with non-trivial scan strategy, the beam systematic effect is

assessed through the convolution of Monte Carlo simulated maps with the instrument beams [19].

However, the corresponding convolution algorithms in spherical harmonics space are relatively slow

[144]. The spherical harmonic based “total convolution” algorithm (see, [22, 145]), for an idealized

scan with a fixed orientation of the beam in each direction, scales as ∼ l3maxmmax, where lmax is the

highest multipole with non-negligible anisotropies contributions, andmmax is the highest azimuthal

beam multipole needed for an adequate description of the beam asymmetry. The real space based

“Fast Effective Beam Convolution in Pixel space” (FEBeCoP) method developed by Mitra et al.

[19] has been implemented in Planck mission, with a computational cost that scales as NpixNbeam,

where Npix is the total number of pixels in the map and Nbeam is the number of pixels required to

accurately describe the beam.

In the present chapter, we show that for a trivial scan of non-rotating beam, the computational

cost of our spherical harmonic based algorithm scales as lmax. We will focus on the optimization

of the computation time of the bias matrix, and investigate the effect of non-circular beams on

the temperature and polarization (E-mode) power spectrum estimation with full sky coverage and

noiseless limit, using the pseudo-Cl estimator. We extend the results of Fosalba et al. [66] by

introducing the analytical tools developed by Mitra et al. [140] for the temperature anisotropies,

and compute the bias matrix that encodes the power coupling at different multipoles as a result of

the beam non-circularity.

3.2 Formalism

For the present formalism, we follow the approach developed in the paper of Mitra et al. [140] for

the treatment of the total intensity of the radiation field and combine their method with the semi-

analytical treatment of the polarized CMB radiation developed in the paper of Fosalba et al. [66].

The basic idea is to expand the total intensity (temperature) of the anisotropy field and polarized

components of the CMB radiation in harmonic space and cross-correlate the multipole coefficients

of the expansion in order to obtain a simple theoretical estimate of the power spectrum. The

ensemble average will be used to construct the pseudo-Cl estimator. We expand the statistically

Gaussian and isotropic temperature fluctuations ∆T (q̂) over all sky directions q̂ = (θ, φ), on the
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spherical harmonics basis as

∆T (q̂) =
∑

lm

aTlmYlm(q̂) =

lmax∑

l=2

m=l∑

m=−l

aTlmYlm(q̂), (3.1)

where aTlm are the coefficients of the temperature expansion in harmonic space. We apply the

complex conjugate Y ∗
l′m′(q̂) of the spherical harmonic function in Eq. (3.1) and integrate over the

solid angle of the sky Ωq̂ to derive

∫
dΩq̂∆T (q̂)Y

∗
l′m′(q̂) =

∑

lm

aTlm

∫
dΩq̂Ylm(q̂)Y

∗
l′m′(q̂), (3.2)

and using the orthogonality and normalization relation (e.g., [146]) of the spherical harmonic func-

tion

∫
dΩq̂Ylm(q̂)Y

∗
l′m′(q̂) = δll′δmm′ , (3.3)

in which δij denotes the Kronecker symbol, we obtain

aTlm =

∫
dΩq̂∆T (q̂)Y

∗
lm(q̂), (3.4)

where dΩq̂ = sinθdθdφ. The above expression defines the multipoles aTlm as a function of the true

temperature of the radiation field in spherical harmonic basis under the ideal systematic errors-free

experiment assumption. In reality CMB experiments can only measure a disturbed temperature

∆̃T (q̂) triggered by instrument systematic effects. In this condition the coefficients of the harmonic

transform of the observed temperature ∆̃T (q̂) take the form

ãTlm =

∫
dΩq̂∆̃T (q̂)Y

∗
lm(q̂). (3.5)

As we focus our study on the effects of the beam non-circularity (asymmetry) in CMB surveys, we

will neglect in this chapter other systematics such as the cut-sky or non-uniformity of the sky due to

the galactic mask applied in the foreground removal processes. In the case of a full sky survey and

noiseless limit the observed temperature ∆̃T (q̂) is the convolution of the true temperature ∆T (q̂)

with the beam as

∆̃T (q̂) =

∫
dΩq̂′B(q̂, q̂′)∆T (q̂′), (3.6)
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where B(q̂, q̂′) denotes the beam function. From Eq. (3.5) and Eq. (3.6) it follows that

ãTlm =

∫
dΩq̂

∫
dΩq̂′B(q̂, q̂′)∆T (q̂′)Y ∗

lm(q̂). (3.7)

We expand ∆T (q̂′) in the spherical harmonic space as

∆T (q̂′) =
∑

l′m′

al′m′Yl′m′(q̂′), (3.8)

and plug in Eq. (3.7) to derive the following form of the mutipole coefficients

ãTlm =
∑

l′m′

aTl′m′

∫
dΩq̂Y

∗
lm(q̂)

∫
dΩq̂′B(q̂, q̂′)Yl′m′(q̂′). (3.9)

We may transform the above Eq. (3.9) by using the results of the integration of the beam function

as referred to Eq. (24) of [140]

∫
dΩq̂′B(q̂, q̂′)Y ∗

l′m′(q̂′) =

√
2l′ + 1

4π

l′∑

m′′=−l′

Bl′βl′m′′Dl′

m′m′′(q̂, ρ(q̂)),

∫
dΩq̂′B(q̂, q̂′)Y ∗

l′m′(q̂′) =

l′∑

m′′=−l′

bTl′m′′Dl′

m′m′′(q̂, ρ(q̂)), (3.10)

where

Bl =

∫ 1

−1
d(q̂.q̂′)Pl(q̂.q̂

′)

[
1

2π

∫ 2π

0
dφ B(ẑ, q̂)

]
. (3.11)

The beam distortion parameter defined as βlm = bTlm/bl0 describes the deviation of the beam from

circularity and

bTlm =

∫
dΩq̂ Y

∗
lm(q̂)B(ẑ, q̂), (3.12)

denotes the beam harmonic transform of the total intensity of the underlying anisotropy field. The

terms Dl′

m′m′′(q̂, ρ(q̂)) in Eq. (3.10) are the Wigner-D functions given in terms of the Euler angles

(θ, φ, ρ). The rotation angle ρ(q̂) describes the rotation of the beam along the pointing direction q̂

whereas Dl′

m′m′′(q̂, ρ(q̂)) accounts for the rotation that carries the pointing direction q̂ to the North

Pole ẑ axis [130]. Eq. (3.11) includes the Legendre polynomials Pl(q̂.q̂
′) and the instrument beam

response B(ẑ, q̂) along the pointing direction ẑ. From Eq. (3.9) and Eq. (3.10) we derive the

general form of the temperature harmonic transform as a function of the intensity beam harmonic
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transform bTlm as

ãT∗lm =
∑

l′m′

aT∗l′m′

l′∑

m′′=−l′

bTl′m′′

∫
dΩq̂Ylm(q̂)D

l′

m′m′′(q̂, ρ(q̂)), (3.13)

which will be used to estimate the cross-power spectrum TE.

For the E-component of the polarization field, we calculate the harmonic transform ãElm using

Fosalba et al. [66] approach by introducing the beam smoothed Stokes parameters Qeff and Ueff

on the spherical polar basis. The convolution of the beam with the sky can be expressed using Eq.

(31) and Eq. (32) of [66] as

Qeff = 2
∑

lmM

[Dl
mM (q̂, ρ(q̂))]∗ bE∗

lM aElm, (3.14)

Ueff = 2
∑

lmM

[Dl
mM (q̂, ρ(q̂))]∗ bE∗

lM aBlm, (3.15)

where |m| ≤ l, |M | ≤ l. We adopt the E and B-mode notations in our formula which are connected

to the gradient (G) and curl (C) components as aElm = −
√
2 aGlm and aBlm = −

√
2 aClm. In the

case of a symmetric (circular Gaussian) beam the Stokes parameters can be expanded in the spin-2

spherical harmonic basis ∓2Ylm(q̂) as

(Q± iU)(q̂) =
∑

lm

(aElm ∓ iaBlm) ∓2Ylm(q̂), (3.16)

from which we derive the multipole coefficients of the polarization E-component given by

aElm =
1

2

∫
dΩq̂[(Q− iU)(q̂) 2Y

∗
lm(q̂) + (Q+ iU)(q̂) −2Y

∗
lm(q̂)]. (3.17)

We may obtain the sky multipoles of the non-circular beam ãElm by plugging in Eq. (3.17) the

effective smoothed Stokes parameters defined in Eq. (3.14) and Eq. (3.15), and after some algebra

the final expression of the multipoles ãElm reduces to

ãElm =

∫
dΩq̂

∑

l′m′

l′∑

M=−l′

[Dl′

m′M (q̂, ρ(q̂))bEl′M ]∗ [aEl′m′( 2Y
∗
lm(q̂) + −2 Y

∗
lm(q̂))

− iaBl′m′( 2Y
∗
lm(q̂)− −2 Y

∗
lm(q̂))]. (3.18)

From Eq. (3.13) and Eq. (3.18) we can cross-correlate the temperature T and the E-mode po-

larization in spherical harmonic space and get an estimate of the cross-power spectrum using the

pseudo-Cl estimator which will be defined afterwards. In order to compute the two-point correlation
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function we need to evaluate the beam spherical harmonic transform of the total intensity of the

field and the polarized beams. We may pick up these beam corrections from the CMB experiment,

though it is more convenient to simulate the instrument beam profile in order to investigate the

effect of the beam systematics in the estimation of the TE power spectrum. In the next Section

3.3, we use the approach of Fosalba et al. [66] which describes the beam asymmetry model in the

flat-sky approximation (θ ≪ 1 rad).

3.3 Beam spherical harmonic transform

In this section we use the results of [66] which give the explicit forms of the beam spherical har-

monic transforms of the intensity and polarized beams. The approach is based on a perturbative

expansion of an elliptical beam function B(θ, φ) around a circular Gaussian beam in the flat-sky

approximation, which provides a good approximation for single-dish experiments. The beam win-

dow function is expanded in real and harmonic space from which a semi-analytic model of the

beam harmonic transform can be obtained. Following [66], the explicit form of the beam window

function can be defined as

B(θ, φ) = B0 exp

[
− θ2

2σ2
b

f (φ)

]
, (3.19)

in polar coordinates. The ellipticity parameter χ = 1−(σb/σa)
2 of the window function is connected

to the function

f(φ) = 1− χ cos2(φ− ω), (3.20)

which describes the deviation of the beam from a circular (axisymmetric) one. σa and σb denote the

beam widths along the major and minor axis. The expansion of the window function in spherical

harmonic space reads

B(θ, φ) =

lmax∑

l=2

l∑

m=−l

blmYlm(θ, φ), (3.21)

from which we obtain the beam harmonic transform blm

blm =

∫
dΩB(θ, φ)Y ∗

lm(θ, φ), (3.22)

where Ω is the total solid angle over the sky. It is shown in [66] that Eq. (3.22) can be solved using

a semi-analytical framework in the flat-sky approximation. Although a full numerical integration

can be performed (see, [15]) to evaluate the integral involved in Eq. (3.22), the rapidly converging

semi-analytical approach is largely sufficient for our purpose. We use the eccentricity e =
√
χ and
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the geometric mean beam width of the elliptic Gaussian window defined by

σ =
√
σaσb =

π

180

θFWHM√
8ln2

, (3.23)

to adequately describe the beam geometry where θFWHM (in degrees) denotes the full width at half

maximum of the beam Gaussian profile. The ellipticity of the beam is defined by ǫ = σa/σb (not

to be confounded with the ellipticity parameter χ = 1− 1/ǫ2).

The harmonic expansion coefficients of the beam defined in Eq. (3.22) have symmetry properties

which greatly simplify the numerical implementation. As mentioned in [66] only the even m modes

have non-vanishing contribution in the beam transform as a consequence of the azimuthal symmetry

of the term cos2(φ) which appears in the function f(φ). As a result of the property of the spherical

harmonic complex conjugate Y ∗
lm(θ, φ), it follows that b∗lm = (−1)mbl−m, and from the reality

condition of the beam harmonic transform b∗lm = blm. This implies that blm = bl−m so that

negative and positive modes have the same contribution. We adopt the beam models of [66] that

will allow us to compute numerically the bias matrix which describes the power coupling between

multipoles. For the temperature, the harmonic transform of the beam with second order in the

parameter ellipticity χ is computed with the formula (A20) of [66] as follows

bTl0 =

√
2l + 1

4π
e−

l
2
σ
2

2

[
1− χ

4
l2σ2 +

χ2

4

(
−l2σ2 + 3

16
l4σ4

)]
,

bTl2 =

√
2l + 1

4π

χ

8
l2σ2e−

l
2
σ
2

2

[
1 + χ

(
1− 1

4
l2σ2

)]
,

bTl4 =

√
2l + 1

4π

χ2

128
l4σ4e−

l
2
σ
2

2 , (3.24)

and the linear polarized beam transforms with the same order expansion is obtained by using the

simple relation bEl2 = bTl0/2, b
E
l4 = bTl2/2 and bEl6 = bTl4/2.

We limit the perturbative expansion for both intensity and polarized beam to three terms

which provide sufficient accuracy for experiments with mildly non-circular (asymmetric) beam.

Under this prescription, the precision that can be achieved is ∼ 1% till the multipole lmax = 5lpeak

(for θFWHM = 10′ and ǫ = 1.3) where lpeak defined as σ2l2peak ≃ (1 − χ/4) is the multipole where

the window function peaks (see, Fosalba et al. [66]). As inferred from Eq. (3.13) and Eq. (3.18),

the correlation between T and E in harmonic space involves the product bTlmb
E
lm which is illustrated

in Fig. 3.1. Clearly, the effect of higher order corrections ( m=2, 4 modes for T and m=4, 6

modes for E) due to the beam non-circularity (asymmetry) is significant for lσ ∼ 1. Providing

the analytical expansion of the beam total intensity and the E- polarized beams, we are able to

compute the correlation between the sky harmonic coefficients defined in Eq. (3.13) and Eq. (3.18)
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and thereafter, the power spectrum of TE. We will use the pseudo-Cl method to estimate the

power spectrum whose advantage will be justified in the following Section 3.4.
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Figure 3.1: Product of the temperature T and the E-polarized beam harmonic transforms. The top left panel
shows the variation as a function of the multipole l for a beam width θFWHM = 30.6′ and eccentricity e = 0.65
corresponding to the WMAP- Q1 beam parameters model limited to lmax = 500, and the bottom left panel
illustrates the same product plotted against lσ. We show on the right panel the product of the beam transforms
corresponding to the WMAP- V beam with a beam width θFWHM = 21.0′ and eccentricity e = 0.46 plotted
against the multipole l (top right panel) and lσ (bottom right panel). The first leading terms of the beam
harmonic products (the blue thick dotted lines) are connected to the circulary symmetric Gaussian window. The
relation bE

lm
= bT

lm−2/2 (m=2, 4, 6) implies that each of the second and third leading terms (non-circularity
corrections) of the beam harmonic products incorporate two terms with the same amplitude which are illustrated
with the overlapping dotted and dot-dashed lines. Note that the peak shifts to higher l for higher order corrections
and becomes important for lσ ∼ 1.
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3.4 The bias matrix

Different methods have been proposed to estimate the power spectrum of the CMB anisotropies.

Among them, the optimal maximum likelihood estimator [24–27] is the most commonly used, but

the huge computational cost makes it just unfeasible for high-resolution CMB experiments which

probe small angular scales on the sky. Therefore, we adopt the alternative suboptimal pseudo-Cl

approach to estimate the power spectrum. Unlike the maximum likelihood, the pseudo-Cl method

is not an exact estimator, though it has the advantage of being relatively fast and can be exploited

to process Planck -like CMB large data sets in a reasonable time.

The pseudo-Cl estimator of the TE power spectrum is defined by

CTEl =
1

2l + 1

l∑

m=−l

aTlma
E∗
lm . (3.25)

This suboptimal estimator is qualified as “pseudo” in the sense that it is biased. In order to obtain

an accurate estimation of CMB experiments power spectrum, we must account for the systematic

effects due to the beam asymmetry, the instrumental noise and the non-uniform/cut-sky [130] be-

sides other systematics such as the telescope scanning and pointing errors, gain and calibration,

power leakage between E and B-modes and the B-mode induced by the gravitational lensing of the

CMB by large scale structure, in the case of the B-mode polarization autocorrelation. For now, we

investigate the effect of the beam asymmetry in the case of a complete sky coverage. The extension

to the cut-sky using non-circular beams will be developed in Chapter 4.

The expectation value of the pseudo-Cl estimator is related to the true power spectrum CTEl′ as

〈C̃TEl 〉 =
∑

l′

ATEll′ C
TE
l′ , (3.26)

where 〈C̃TEl 〉 denotes the ensemble average of the power spectrum over all realizations on the sky.

The term ATEll′ is the multipoles coupling matrix which represents the bias (with respect to a circular

Gaussian profile) that will affect the estimation of the TE power spectrum when the beam pattern

is asymmetric. From Eq. (3.25) we can write the expectation value of the cross-power spectrum

TE as

〈C̃TEl 〉 =
1

2l + 1

l∑

m=−l

〈ãTlmãE∗
lm 〉,

=
1

2l + 1

l∑

m=−l

〈ãT∗lmãElm〉. (3.27)

40



Non-circular beam and full sky for TE polarized signals

We substitute Eq. (3.13) and Eq. (3.18) into Eq. (3.27) to obtain the ensemble average of the

power spectrum which reads

〈C̃TEl 〉 =
1

2l + 1

l∑

m=−l

∑

l′m′l′
1
m′

1

〈aT∗l′m′aEl′
1
m′

1

〉
l′∑

m′′=−l′

bTl′m′′

∫
dΩq̂Ylm(q̂)D

l′

m′m′′(q̂, ρ(q̂))

×
l′
1∑

M=−l′
1

bEl′
1
M

∫
dΩq̂[D

l′
1

m′

1
M
(q̂, ρ(q̂))]∗( 2Y

∗
lm(q̂) + −2Y

∗
lm(q̂)). (3.28)

Then, we use the statistical isotropy of the CMB anisotropy

〈aT∗l′m′ aEl′
1
m′

1

〉 = CTEl′ δl′l′
1
δm′m′

1
, (3.29)

〈aT∗l′m′ aBl′
1
m′

1

〉 = CTBl′ δl′l′
1
δm′m′

1
= 0, (3.30)

to derive the following expression

〈C̃TEl 〉 =
1

2l + 1

l∑

m=−l

∑

l′m′

CTEl′

l′∑

m′′=−l′

bTl′m′′

∫
dΩq̂Ylm(q̂)D

l′

m′m′′(q̂, ρ(q̂))

×
l′∑

M=−l′

bEl′M

[∫
dΩq̂( 2Ylm(q̂)D

l′

m′M (q̂, ρ(q̂)) + −2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂))

]∗

=
1

2l + 1

l∑

m=−l

∑

l′m′

CTEl′

l′∑

m′′=−l′

bTl′m′′I1

l′∑

M=−l′

bEl′M (I2 + I3)
∗, (3.31)

where we define the integrals I1, I2, and I3 as

I1 =

∫
dΩq̂ Ylm(q̂)D

l′

m′m′′(q̂, ρ(q̂)), (3.32)

I2 =

∫
dΩq̂ 2Ylm(q̂)D

l′

m′M (q̂, ρ(q̂)), (3.33)

I3 =

∫
dΩq̂ −2Ylm(q̂)D

l′

m′M (q̂, ρ(q̂)). (3.34)

The above integrals depend on the scanning strategy of the CMB survey through the function ρ(q̂)

which defines the rotation of the beam along the pointing direction of the telescope. We will show

that under some assumptions on this scanning pattern, the integrals I1, I2 and I3 can be solved

analytically. We report in Appendix (B) the derivations of the integrals I1, I2, and I3. By replacing

the integrals I1, I2 and I3 into Eq. (3.31) we get the following expression of the expectation value
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of the power spectrum

〈C̃TEl 〉 =
1

2l + 1

l∑

m=−l

∑

l′m′

CTEl′

l′∑

m′′=−l′

bTl′m′′(−1)m
√

2l + 1

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ CLm

′′

l0l′m′′

×
∫
dΩq̂D

L
(−m+m′)m′′(q̂, ρ(q̂))

l′∑

M=−l′

bEl′M (−1)m
√

2l + 1

4π

l+l′∑

L′=|l−l′|

C
L′(−m+m′)
l−ml′m′

×
[
C
L′(2+M)
l2l′M

∫
dΩq̂D

L′

(−m+m′)(2+M)(q̂, ρ(q̂))

+ C
L′(−2+M)
l−2l′M

∫
dΩq̂D

L′

(−m+m′)(−2+M)(q̂, ρ(q̂))

]∗
, (3.35)

which can be simplified in the form

〈C̃TEl 〉 =
1

4π

l∑

m=−l

∑

l′m′

CTEl′

l′∑

m′′=−l′

bTl′m′′

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ CLm

′′

l0l′m′′

×
∫
dΩq̂D

L
(−m+m′)m′′(q̂, ρ(q̂))

l′∑

M=−l′

bEl′M

l+l′∑

L′=|l−l′|

C
L′(−m+m′)
l−ml′m′

×
[
C
L′(2+M)
l2l′M

∫
dΩq̂D

L′

(−m+m′)(2+M)(q̂, ρ(q̂))

+ C
L′(−2+M)
l−2l′M

∫
dΩq̂D

L′

(−m+m′)(−2+M)(q̂, ρ(q̂))

]∗
. (3.36)

In the following we propose to compute the integral

χlmm′ [ρ(q̂)] =

∫
dΩq̂D

l
mm′(q̂, ρ(q̂)), (3.37)

involved in Eq. (3.36) which depends on the scanning strategy of the CMB experiment. We

can evaluate χlmm′ [ρ(q̂)] using [140] approach. We consider a beam rotation ρ(q̂) which can be

decomposed into declination and right ascension parts ρ(q̂) = Θ(θ) + Φ(φ) as it provides a good

approximation of real scan strategies. Using Eq. (1), Section 4.3 of [146] we write

Dl
mm′(q̂, ρ(q̂)) = e−imφdlmm′(θ)e−im

′ρ, (3.38)

where dlmm′(θ) denotes the Wigner-d function. χlmm′ [ρ(q̂)] takes the form

χlmm′ [ρ(q̂)] =

∫ 2π

0
dφe−im

′Φ(φ)

∫ π

0
dθ sinθ d l

mm ′(θ)e−im ′Θ(θ), (3.39)
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which contributes significantly only for constrained values of m′.

For an equal declination scan ρ(q̂) = ρ(θ), and the integral χlmm′ [ρ(q̂)] reduces to

χlmm′ [ρ(θ)] = 2πδm0

∫ π

0
dθ sinθ d l

mm ′(θ)e−im ′ρ(θ),

= χl0m′ [ρ(θ)], (3.40)

where the Wigner-d function dl0m′(θ) (since the only non-vanishing terms are obtained for m = 0)

can be evaluated using Eq. (E15) of [140] as

dl0m′(θ) = im
′

l∑

N=−l

[
(−1)Ndl0N (

π

2
)eiNθdlNm′(

π

2
)
]
. (3.41)

Thus, we may write

χl0m′ [ρ(θ)] = 2π

l∑

N=−l

dl0N (
π

2
)dlNm′(

π

2
)im

′

(−1)N
∫ π

0
dθ sinθ e iN θe−im ′ρ(θ),

= 2π
l∑

N=−l

dl0N (
π

2
)dlNm′(

π

2
)Γm′N [ρ(θ)], (3.42)

where

Γm′N [ρ(θ)] = im
′

(−1)N
∫ π

0
dθ sinθ e iN θe−im ′ρ(θ). (3.43)

Mitra et al. [140] show that only the real parts of Γm′N [ρ(θ)] contribute in most of the cases where

the general shape of the beam and the scan strategies exhibit trivial symmetries. For non-rotating

beam ρ(q̂) = 0, and the real part of the Γ coefficients reduces to Eq. (38) of [140] expressed as

follows

ℜ [Γm′N [ρ(q̂) = 0]] = fm′N =





(−1)(m
′±1)/2 π/2 if m′=odd and N = ±1

(−1)m
′/2 2/(1−N2) if both m′, N = 0 or even

0 otherwise.

(3.44)

We apply the property obtained in Eq. (E.9) and the relation given in Eq. (3.42) to derive the
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following quantities assuming that the beam is non-rotating.

∫
dΩq̂D

L
(−m+m′)m′′(q̂, ρ(q̂)) = 2π

L∑

M=−L

dL0M (
π

2
)dLMm′′(

π

2
)fm′′M , (3.45)

∫
dΩq̂D

L′

(−m+m′)(2+M)(q̂, ρ(q̂)) = 2π

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M)(
π

2
)f(2+M)N , (3.46)

∫
dΩq̂D

L′

(−m+m′)(−2+M)(q̂, ρ(q̂)) = 2π

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(−2+M)(
π

2
)f(−2+M)N . (3.47)

Eq. (E.9) implies that the only non-vanishing terms from the above integrals are obtained for

m′ = m. After some algebra the general expression of the bias matrix for an equal declination scan

strategy can be derived from Eq. (3.36) in the form

ATEll′ = π
l∑

m=−l

l′∑

m′′=−l′

bTl′m′′

l+l′∑

L=|l−l′|

CL0l−ml′mC
Lm′′

l0l′m′′

L∑

M=−L

dL0M (
π

2
)dLMm′′(

π

2
)Γm′′M [ρ(θ)]

×
l′∑

M ′=−l′

bEl′M ′

l+l′∑

L′=|l−l′|

CL
′0

l−ml′m

[
C
L′(2+M ′)
l2l′M ′

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M ′)(
π

2
)Γ(2+M ′)N [ρ(θ)]

+ C
L′(−2+M ′)
l−2l′M ′

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(−2+M ′)(
π

2
)Γ(−2+M ′)N [ρ(θ)]

]
, (3.48)

and for the particular case of a non-rotating beam (Γm′N [ρ(q̂) = 0] = fm′N ) the bias matrix takes

the form

ATEll′ = π

l∑

m=−l

l′∑

m′′=−l′

bTl′m′′

l+l′∑

L=|l−l′|

CL0l−ml′mC
Lm′′

l0l′m′′

L∑

M=−L

dL0M (
π

2
)dLMm′′(

π

2
)fm′′M

×
l′∑

M ′=−l′

bEl′M ′

l+l′∑

L′=|l−l′|

CL
′0

l−ml′m

[
C
L′(2+M ′)
l2l′M ′

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M ′)(
π

2
)f(2+M ′)N

+ C
L′(−2+M ′)
l−2l′M ′

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(−2+M ′)(
π

2
)f(−2+M ′)N

]
, (3.49)
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which after rearrangement of the beam harmonic transforms product bTl′m′′bEl′M ′ yield

ATEll′ = π
l∑

m=−l

l′∑

m′′=−l′

l′∑

M ′=−l′

bTl′m′′bEl′M ′

×
l+l′∑

L=|l−l′|

CL0l−ml′m CLm
′′

l0l′m′′

L∑

M=−L

dL0M (
π

2
)dLMm′′(

π

2
)fm′′M

l+l′∑

L′=|l−l′|

CL
′0

l−ml′m

×
[
C
L′(2+M ′)
l2l′M ′

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M ′)(
π

2
)f(2+M ′)N

+ C
L′(−2+M ′)
l−2l′M ′

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(−2+M ′)(
π

2
)f(−2+M ′)N

]
, (3.50)

where m′′ = 0,±2,±4 andM ′ = ±2,±4,±6 are the modes corresponding to the total intensity and

polarized beam transforms with second order in ellipticity.

Eq. (3.50) constitutes one of the main results of this chapter. It provides the most general form

of the bias matrix for a non-circular (asymmetric) beam in the case of a full sky coverage with

non-rotating beam. We can see from Eq. (3.48) and Eq. (3.50) that the computational cost of the

bias matrix for an equal declination scan is equivalent to that of the non-rotating beam as we only

need to precompute the coefficients Γm′N [ρ(θ)] and fm′N for the corresponding scan strategies. As

a result of the constraint on m in Eq. (E.9) and as discussed in the paper of Mitra et al. [140], we

can expect that the bias matrix computation for real scan strategies is computationally equivalent

to the bias computation for non-rotating beam.

3.5 Numerical implementation

The bias matrix defined in Eq. (3.50) contains implicit information about the coupling of power

between multipoles as a result of the beam asymmetry. A detailed study of the effect of the

non-circularity of the beam in the power spectrum estimation requires numerous and repeated

computations of the bias matrix with different beam parameters (beam width and eccentricity) at

each step of the computation. However, the numerical evaluation of the algebraic expression in

Eq. (3.50) is a computational challenge. A naive numerical implementation of the formula Eq.

(3.50) that involves six loops, would scale as O(l6max), which quickly becomes prohibitive at large

multipoles (smaller angular resolution). In this section, we will tackle this issue and estimate the

computational cost of the evaluation of the bias matrix.

To begin with, we decompose the summations involved in Eq. (3.50) in order to split the bias

matrix into several ones in which, separately appear the beam harmonic transforms product bTlmb
E
lm
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introduced in Section 3.3. Therefore, Eq. (3.50) can be written as follows

ATEll′ = ATEll′ (term 1) +ATEll′ (term 2) +ATEll′ (term 3) +ATEll′ (term 4) +ATEll′ (term 5), (3.51)

where each term of the bias matrix derived from Eq. (3.50) is given explicitly in Appendix C.

The first term ATEll′ (term 1) is the bias corresponding to the leading term bTl0b
E
l2 of the harmonics

product. We will show in Appendix A that this term reduces to the well known [145, 147] window

function for a circular (axisymmetric) Gaussian beam which reads

ATEll′ (term 1) = e−l
2σ2

δll′ . (3.52)

Hereafter, we will introduce the symmetry properties of the Wigner-d functions that allow us to

considerably reduce the number of operations involved in the computation of the summations of

kind
∑l

N=−l. We define the quantities

d(L′,m′) =

L′∑

N=−L′

d(L′, N,m′), (3.53)

where

d(L′, N,m′) = dL
′

0N (
π

2
)dL

′

Nm′(
π

2
)fm′N , (3.54)

for m′ = ±2, ±4, ±6. We notice that the function fm′N involved in Eq. (3.44) that describes

the non-rotating beam scanning strategy, is of even parity with respect to N , i.e., fm′−N = fm′N .

From the following symmetry relations of the Wigner-d function (Eq. (1), Section 4.4 of [146])

dL
′

0−N (
π

2
) = (−1)NdL

′

0N (
π

2
) = (−1)L

′

dL
′

0N (
π

2
), (3.55)

dL
′

−Nm′(
π

2
) = (−1)L

′−m′

dL
′

Nm′(
π

2
), (3.56)

we may write that

dL
′

0−N (
π

2
)dL

′

−Nm′(
π

2
)fm′−N = (−1)m

′

dL
′

0N (
π

2
)dL

′

Nm′(
π

2
)fm′N , (3.57)

which translates to

d(L′,−N,m′) = (−1)m
′

d(L′, N,m′), (3.58)
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and finally by plugging in Eq. (3.53), the above relations imply

d(L′,m′) = dL
′

00(
π

2
)dL

′

0m′(
π

2
)fm′0 +

L′∑

N=1

((−1)m
′

+ 1)dL
′

0N (
π

2
)dL

′

Nm′(
π

2
)fm′N , (3.59)

which is valid for the different values of m′.

We can see from Eq. (3.59) that instead of 2L′ additions, only L′ operations are necessary

for the computation of each summation of the form defined by Eq. (3.53). In this way, we will

gain a computational improvement by a factor of two. Analogously, the evaluation of the terms

ATEll′ (term 2), ATEll′ (term 3), ATEll′ (term 4) and ATEll′ (term 5) can be carried out by following the

same algebra formalism exposed in Appendix A where we treat a detailed derivation of the term

ATEll′ (term 1). Furthermore, we can reduce the number of addition operations by including the

Clebsch-Gordan coefficients symmetry properties. We notice that each term of the bias matrix

contains the summation
∑l

m=−l C
L0
l−ml′m which can be written using Eq. (11), Section 8.4.3 of [146]

as

c(l, l′, L) =
l∑

m=−l

CL0l−ml′m, (3.60)

=

min(l, l′)∑

m=−min(l, l′)

CL0l−ml′m, (3.61)

= CL0l0l′0 + ((−1)L + 1)

min(l, l′)∑

m=1

(−1)mCL0l−ml′m, (3.62)

which again reduces by a factor of two the operations needed for the summations. Putting all

together and introducing the new notations introduced in Eq. (3.53) and Eq. (3.60), we resume
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the expression of the different terms of the bias matrix as follows

ATEll′ (term 1) = e−l
2σ2

δll′ , (3.63)

ATEll′ (term 2) =
4π

2l + 1
bTl′2b

E
l′2

l+l′∑

L=|l−l′|

CL2l0l′2
(
(−1)Ld(L,−2) + d(L, 2)

)
c(l, l′, L), (3.64)

ATEll′ (term 3) =
2π

2l + 1
bTl′0b

E
l′4

l+l′∑

L=|l−l′|

[
CL2l−2l′4

(
(−1)Ld(L,−2) + d(L, 2)

)

+ CL6l2l′4
(
(−1)Ld(L,−6) + d(L, 6)

)]
c(l, l′, L), (3.65)

ATEll′ (term 4) =
4π

2l + 1
bTl′4b

E
l′2

l+l′∑

L=|l−l′|

CL4l0l′4
(
(−1)Ld(L,−4) + d(L, 4)

)
c(l, l′, L), (3.66)

ATEll′ (term 5) =
2π

2l + 1
bTl′0b

E
l′6

l+l′∑

L=|l−l′|

[
CL4l−2l′6

(
(−1)Ld(L,−4) + d(L, 4)

)

+ CL8l2l′6
(
(−1)Ld(L,−8) + d(L, 8)

)]
c(l, l′, L). (3.67)

In order to compute efficiently the bias matrix, we need to simplify as much as possible the above

formula. We further proceed with the algorithm implementation by introducing the new quantities

dm′(L) = (−1)Ld(L,−m′) + d(L,m′), (3.68)

which will greatly ease the computation as they appear several times in the bias matrix expressions

(m′ = 2, 4, 6, 8). As the above quantities can be precomputed, we can expect a fast computation

of the bias matrix with a reasonable time. At this step, the summation of the bias matrix terms

reduces to the following relation

ATEll′ = e−l
2σ2

δll′

+
4π

2l + 1

l+l′∑

L=|l−l′|

[
bTl′2b

E
l′2 C

L2
l0l′2d2(L) +

1

2
bTl′0b

E
l′4

(
CL2l−2l′4d2(L) + CL6l2l′4d6(L)

)

+ bTl′4b
E
l′2 C

L4
l0l′4d4(L) +

1

2
bTl′0b

E
l′6

(
CL4l−2l′6d4(L) + CL8l2l′6d8(L)

)]
c(l, l′, L). (3.69)

We will employ the simplified form Eq. (3.69) of the bias matrix and estimate the computation

time involved in the process. The Clebsch-Gordan coefficients can be computed from the Wigner

3jm symbols using the code of Schulten & Gordon [148] written in Fortran 77 based on a recursive

evaluation of the 3j coefficients. The Wigner-d functions can be computed using Fourier transforms

on the rotation group SO(3). One approach developed by Risbo [149] is to expand the Wigner-d
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functions into a Fourier sum and handle the transforms using a trivariate FFT. An alternative

approach proposed by Kostelec & Rockmore [150] consists to use a recursive evaluation of the

Wigner-d functions combined with a bivariate FFT technique. We exploit the latter through the

free software C routine SOFT which calculates the Wigner-d on the rotation group SO(3) with

Fourier transforms. Notice that when looping over L in Eq. (3.69), at each step we need to call

eight Clebsch coefficients in addition of the Wigner-d functions computed by the formula Eq. (3.68)

and Eq. (3.59). Obviously, this is computationally expensive; consequently, the computation on

the fly of the Clebsch and Wigner-d functions is not recommended.

Our main motivation is to precompute all Clebsch and Wigner-d coefficients that will allow us

to optimize the computation time. We show in this section that the bias matrix can be numerically

computed in a very short time without the need of parallel computation. Due to the huge memory

requirement (see, [150]) for the Wigner-d precomputation, the highest multipole probed in this

thesis is limited to lmax = 500. In addition, we know that the bias matrix is not far from diagonal.

As a result, we can restrain the computation of the bias matrix to a diagonal band |l − l′| ≤ 20,

which sufficiently provides an accurate estimation of the systematic bias of the TE power spectrum

estimation, induced by the non-circularity of the beam.

All computations have been carried out using a 2.53 GHz Intel Core i5 processor laptop with

4 GB of RAM. First, we precompute the coefficient c(l, l′, L) defined by Eq. (3.62). We have

emphasized the necessity of the precomputation of the Clebsch coefficients, but if we look at the

coefficient CL0l−ml′m where for each l and l′, L varies from |l − l′| to l + l′ and m varies from 1 to

min(l, l′), we realize that this cannot be achieved due to the enormous memory storage requirement

and is prohibitive even using high performance computing. Alternatively, we can reduce the memory

storage by precomputing the sum
∑l

m=−l C
L0
l−ml′m and calculating the coefficients CL0l−ml′m on the

fly. We report in Fig. 3.2 the computation time of the sum
∑l

m=−l C
L0
l−ml′m as a function of the

multipole. The straight line log10(time) = 3.8 log10(l)− 7.13 represents the best fit of the recorded

data points. Clearly, the computation time (in minutes) scales as O(l3.8) and by extrapolating

to higher l’s we find that for the Planck -like high resolution experiment the time needed for the

precomputation of the summation
∑l

m=−l C
L0
l−ml′m corresponding to lmax = 3000 is ∼ 106 minutes.

This can be carried out in a reasonable time with the current high performance computing facilities.

Assuming that we use 1000 dual core processors working at the specified frequency of ∼ 2.5 GHz,

the precomputation of the sum up to l = 3000 will take about 10 hours.

We show in Fig. 3.3 the computation time of each Clebsch coefficient which roughly scales

as O(l2.6). The extrapolation of the best fit to l = 3000 gives an estimate of 12 hours for the

precomputation of each Clebsch-Gordan coefficient (1 CPU). Practically, this can be achieved just

in a few minutes using computer clusters.

Following the same procedure, we precompute all Wigner-d functions of the form dL0M (π2 ) where
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Figure 3.2: The figure illustrates the plot of the logarithm of the computation time t of the sum
∑

l

m=−l
CL0

l−ml′m

in minutes as a function of the logarithm of the multipole l. The red circled data points are the measured
computation time with lmax = 400. The blue dashed line is the best fit to the points. We can see a tight
correlation between log10(computation time) and log10(l). The linear correlation allows us to extrapolate the
computation time for large multipoles. The figure indicates a computational cost of ∼ O(l3.8).

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0.5  1  1.5  2  2.5  3  3.5  4

lo
g

1
0
(t

)

log10(l)

C
L2

l 0l’2

C
L2

l-2l’4

C
L6

l 2l’4

Best fit (l
2.54

 scaling)

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0.5  1  1.5  2  2.5  3  3.5  4

lo
g

1
0
(t

)

log10(l)

C
L4

l 0l’4

C
L4

l-2l’6

C
L8

l 2l’6

Best fit (l
2.57

 scaling)

Figure 3.3: The two panels show the computation time (in minutes) of the Clebsch-Gordan coefficients involved
in the calculation of the bias matrix. The blue dashed lines in both panels are the best fit of the data points for
lmax = 500. Each Clebsch coefficients has approximately the same computation time and scales as O(l2.6).
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Figure 3.4: The figure illustrates the computation time (in minutes) of the Wigner-d functions for data points
recorded up to l = 1000. The blue dashed line with O(l4.2) scaling represents the best fit to the data points.
The slope of the best fit line is relatively much steeper implying that the computation of the Wigner-d function
takes much longer time as the multipole l increases.

1 ≤M ≤ L and |l− l′| ≤ L ≤ l+ l′. The results are shown in Fig. 3.4 where the computational cost

is ∼ O(l4.2). A naive estimate of the computation time deduced from the best fit extrapolated to

l = 3000 gives ∼3 days for each Wigner-d. We conclude that at sufficiently large multipoles (small

scales) the Wigner-d functions dictate the computational complexity of the calculation of the bias

matrix. As the Wigner-d and Clebsch-Gordan coefficients values will never change, we just need

to precompute them, all at once using clusters and store the coefficients in the computer disk.

The next step of the numerical implementation is to precompute the product of the Clebsch

coefficients with the terms dm′(L) (m=2, 4, 6, 8) introduced in the expression of the bias matrix

Eq. (3.69) via Eq. (3.68). We define and precompute the new quantities

cd2(l, l′, L) = CL2l0l′2d2(L), (3.70)

cd4(l, l′, L) = CL4l0l′4d4(L), (3.71)

cd6(l, l′, L) = CL2l−2l′4d2(L) + CL6l2l′4d6(L), (3.72)

cd8(l, l′, L) = CL4l−2l′6d4(L) + CL8l2l′6d8(L), (3.73)

for each 2 ≤ l ≤ lmax = 500, |l− l′| ≤ 20, |l− l′| ≤ L ≤ l+ l′. We store the new coefficients in split

files where each file has 63 MB of size. There are in total 11 output files as we have constrained l

and l′ to a bandwidth of 20 for lmax = 500. The computation time is shown in Table 3.1. We again,

rearrange the expression of the bias matrix of Eq. (3.69) in the following form which is ready for
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Table 3.1: Estimate of the total computation time (in minutes) required for the precomputation of all new
coefficients introduced in the calculation of the bias matrix where lmax = 500.

Coefficients Computation time (min)

cd2 5.05
cd4 6.60
cd6 3.05
cd8 4.58
cd2c 5.04
cd4c 4.56
cd6c 4.55
cd8c 4.60
Σ2 1.33
Σ4 1.33
Σ6 1.33
Σ8 1.33

further precomputation

ATEll′ = e−l
2σ2

δll′

+
4π

2l + 1

l+l′∑

L=|l−l′|

[
bTl′2b

E
l′2 cd2(l, l

′, L)c(l, l′, L) + bTl′4b
E
l′2 cd4(l, l

′, L)c(l, l′, L)

+
1

2
bTl′0b

E
l′4 cd6(l, l

′, L)c(l, l′, L) +
1

2
bTl′0b

E
l′6 cd8(l, l

′, L)c(l, l′, L)

]
. (3.74)

We proceed as previously and precompute the coefficients defined by

cdm′c(l, l′, L) = cdm′(l, l′, L)c(l, l′, L), (3.75)

where m′ = 2, 4, 6, 8. We report the computation time of the coefficients in Table 3.1. We plug

in Eq. (3.74) the new coefficients and write the formula in the following form

ATEll′ = e−l
2σ2

δll′

+
4π

2l + 1


bTl′2bEl′2

l+l′∑

L=|l−l′|

cd2c(l, l′, L) + bTl′4b
E
l′2

l+l′∑

L=|l−l′|

cd4c(l, l′, L)

+
1

2
bTl′0b

E
l′4

l+l′∑

L=|l−l′|

cd6c(l, l′, L) +
1

2
bTl′0b

E
l′6

l+l′∑

L=|l−l′|

cd8c(l, l′, L)


 . (3.76)
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The final step of the algorithm implementation consists to precompute the summations defined by

Σ2(l, l
′) =

l+l′∑

L=|l−l′|

cd2c(l, l′, L), (3.77)

Σ4(l, l
′) =

l+l′∑

L=|l−l′|

cd4c(l, l′, L), (3.78)

Σ6(l, l
′) =

l+l′∑

L=|l−l′|

cd6c(l, l′, L), (3.79)

Σ8(l, l
′) =

l+l′∑

L=|l−l′|

cd8c(l, l′, L), (3.80)

which only depend on l and l′. We resume on Table 3.1 the computation time of the different

coefficients that we have included in the bias matrix. Then the final form of the bias matrix reads

ATEll′ = e−l
2σ2

δll′

+
4π

2l + 1

[
bTl′2b

E
l′2 Σ2(l, l

′) + bTl′4b
E
l′2 Σ4(l, l

′)

+
1

2
bTl′0b

E
l′4 Σ6(l, l

′) +
1

2
bTl′0b

E
l′6 Σ8(l, l

′)

]
. (3.81)

From Eq. (3.81) we can estimate the power spectrum using the relation defined in Eq. (3.26)

and investigate how the beam asymmetry affects the cross-power spectrum TE. As all coefficients

have been precomputed, provided the beam width and eccentricity, only the beam harmonic trans-

forms need to be computed using the specific model of beam.

The final computational cost of the bias matrix evaluation is illustrated in Fig. 3.5. We have

already noticed that log10(computation time) varies linearly with log10(l). Therefore, we can fit

the data points recorded from the runs with a linear function. The equation of the best fit is given

by log10(time) = 1.03 log10(l)− 2.88. After extrapolation to l = 3000, we find that the bias matrix

can be computed in just 5 seconds. We find that the computational gain of the method scales as

O(l6.0max)/O(l4.2max) = O(l1.8max).
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Figure 3.5: Estimate of the computation time (in seconds) of the bias matrix as a function of the logarithm
of the multipole. The blue dashed line represents the best fit to the red circled data points recorded at l =
100, 200, 300, 400, 500. The total amount of computation time is considerably reduced and scales as O(l).
Note that the computation time is in a unit of seconds.

3.6 Non-circular beam investigations

In this section we present a detailed analysis of the beam systematics using realistic beam pa-

rameters from the WMAP and Planck experiments. Nevertheless, we must emphasize that the

beam model considered in this work cannot completely handle the complex beam shape of the

CMB experiment like Planck, when the beam ellipticity and orientation vary across the sky map.

Despite this restriction, the result obtained in Eq. (3.81) is still applicable without discrepancy if

the histogram of the effective beam ellipticity is sufficiently narrow, as it seems to be the case for

Planck 30 GHz simulated effective beams (see, [19]).

We have reviewed that any deviation of the beam from circularity biases the estimation of the

power spectrum which becomes especially significant at small angular scales. As the multipole

l increases we expect more off-diagonal elements in the bias matrix which arise from the non-

circularity of the beam. The following section deals with the systematic bias produced by the beam

asymmetry.

3.6.1 Effects of the beam non-circularity on the bias matrix

The bias matrix encodes the power mixing between multipoles which is illustrated in Fig. 3.6 for

theWMAP experiment in Q1 band at the frequency 40.9 GHz [6]. As inferred from both panels, the

beam asymmetry bias dominates at lσ ∼ 1. The coupling of power between multipoles caused by

the non-circularity of the beam is evident but the effect decreases when we move further away from

the diagonal elements of the bias matrix. The bias is effectively pronounced for highly elliptical
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Figure 3.6: Plots of the modulus of the bias matrix as a function of the multipole l, for different values of
l′−l = 2, 4, 6, 8, 10. The left panel illustrates the coupling between multipoles arising from the non-circularity of
the beam. The mixing of power between multipoles kicks in at lσ ∼1 but decreases when we move away from the
diagonal. We show in the right panel the effect of the beam eccentricities for a given beam size θFWHM = 30.6′

at l′ = l + 2. The bias increases rapidly with the beam ellipticity (eccentricity) whereas the peaks of the bias
are shifted to higher l’s. The elements of the bias matrix are shown for a model of beam corresponding to the
WMAP-Q1 band with the mean beamwidth σ = 3.78× 10−3.

beams.

In new generation CMB high resolution experiments the beam systematics can significantly

affect the estimation of the power spectrum. We particularly consider the Planck instrument beam

response that can be simulated with the beam model defined in Eq. (3.24). As we have previously

claimed, this approximation is only valid to first order if the effective beam ellipticity remains con-

stant across the sky map.

The Planck survey is carried out with the Low Frequency Instrument (LFI) [151], and the

High Frequency Instrument (HFI) [152]. The broad frequency range of Planck allows to cover the

peaks of the CMB power spectrum and characterizes the spectra of foreground emissions [153].

The Planck polarized detectors at 30 GHz exhibit the highest beam asymmetry with an ellipticity

which spans over the range 1.35 − 1.40 [19]. Therefore, we expect an important beam corrections

at this channel. At 30 GHz the beam mean ellipticity is ǫ = 1.36 (e= 0.68) with a mean beam

width θFWHM = 32.7′ [153]. We report in Fig. 3.7 the bias matrix obtained from the simulated

beams. The plot of the bias matrix against the multipoles exhibits similar behaviour as Fig. 3.6

demonstrating the importance of the power mixing between multipoles in polarization experiments

with asymmetric beam.

In order to illustrate the effects of the beam non-circularity in multipole space we consider a

sufficiently high resolution beam θFWHM = 2◦ with a mean beam width σ = 1.48×10−2. We report

in Fig. 3.8 the corresponding plot of the logarithm of the modulus of the bias matrix. We can

see that the off-diagonal elements of the bias matrix arising from the non-circularity of the beam

55



Non-circular beam and full sky for TE polarized signals

 0

 0.005

 0.01

 0.015

 0.02

 0  0.5  1  1.5  2  2.5

|A
l,

l’
 |

 l σ

1/σ=247.5

θFWHM=32.7’

e=0.68

Planck 30 GHz
|A

l, l+ 2|

|A
l, l+ 4|

|A
l, l+ 6|

|A
l, l+ 8|

|A
l, l+10|

Figure 3.7: The modulus of the bias matrix plotted as a function of the multipole l, for different values of
l′− l = 2, 4, 6, 8, 10. The coupling between multipoles arising from the beam asymmetry kicks in at lσ ∼1 but
falls off when we move away from the diagonal. The elements of the bias matrix are shown for a model of beam
corresponding to the Planck 30 GHz with the mean beamwidth σ = 4.04 × 10−3 and mean ellipticity ǫ = 1.36
(e = 0.68).

start to dominate at the multipole where the bias peaks (lσ ∼ 1). The off-diagonal elements which

dominate at lσ & 1 can be clearly distinguished in Fig. 3.9 where we plot the bias matrix for an

ideal experiment with non-rotating beam ( θFWHM = 1◦ and e= 0.6).

We have seen that the Planck 30 GHz beam response pattern is the most asymmetric (e= 0.68)

among the Planck beams. As an illustration we plot the corresponding bias in the multipole space

which is shown in Fig. 3.10. Obviously, the coupling between multipoles (off-diagonal elements of

the bias) is important for lσ & 1 implying the necessity of appropriate corrections of the systematics.
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Figure 3.8: Plot of log | All′ | in regions of the multipole space for an hypothetical experiment under a
non-rotating beam assumption with a beam resolution θFWHM = 2◦ (average beam size σ = 1.48 × 10−2)
and eccentricity e = 0.6. Significant off-diagonal elements can be seen at lσ ∼1 and the effects become more
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Figure 3.9: Plots of log | All′ | in the multipole space for a hypothetical experiment with non-rotating beam
and a beam resolution θFWHM = 1◦ (σ = 7.41 × 10−3) with an eccentricity e = 0.6. The top panel illustrates
the plot between the multipole range [2, 500] and the bottom panel shows the same plot in the range [120, 140].
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Figure 3.10: Plots of log | All′ | in the multipole space for Planck experiment simulated beam parameters at
30 GHz with a beam resolution θFWHM = 32.7′ (σ = 4.04 × 10−3) and eccentricity e = 0.68. The top panel
illustrates the plot of the bias matrix between the multipole range [2, 500] and the bottom panel shows the
same plot in the range [230, 270]. Both panels show significant mixing of power (off-diagonal elements) between
multipoles for lσ ∼ 1 that arises from the beam ellipticity.
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3.6.2 Effects of the beam non-circularity on the TE power spectrum estimation

In the following, we focus our analysis on the effect of the beam asymmetry on the power spectrum

estimation and evaluate the systematic bias. For this purpose, we compare the observed power

spectrum of an elliptical beam with a given resolution θFWHM and eccentricity e to the correspond-

ing power spectrum measured using a circular Gaussian beam with the same size θFWHM. The

observed power spectrum 〈C̃TEl 〉 can be obtained by convolving the true power spectrum CTEl with

an elliptical window through Eq. (3.26). We compute the true power spectrum using the CAMB

[154] software for a set of cosmological parameters derived from the WMAP7 and the Planck best

fit fiducial model. The recovered power spectrum from the WMAP7 best fit is illustrated in Fig.

3.11. For a given beam size, we find that the peak of the power spectrum is increasing with the

beam eccentricity (ellipticity) and is shifted to higher l ’s.

Similar shifts are observed for the Planck+ WP+ highL [155] best fit model which are reported

in Fig. 3.12 for the Planck channels with the highest beam asymmetry (e= 0.68 at LFI 30 GHz)

and the smallest beam asymmetry (e= 0.30 at HFI 143 GHz). From both panels of Fig. 3.11 and

Fig. 3.12, we notice that for a given beam eccentricity the peaks amplitude of the power spectrum

increases as the beam size becomes much smaller.
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Figure 3.11: Recovered power spectrum using the WMAP7 ΛCDM best fit model. The effect of the non-
circularity is shown for the WMAP-Q1 band experimental beam parameter with size θFWHM = 30.6′ and eccen-
tricity e = 0.65 (left panel) and the WMAP V band with size θFWHM = 21.0′ and eccentricity e = 0.46 (right
panel). The red curve is the power spectrum computed from a circular Gaussian window. The WMAP best fit
model is shown in brown dotted curve.
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Figure 3.12: Recovered power spectrum using the Planck ΛCDM best fit model (Planck+ WP+ highL in black
dotted curve). For comparison, the WMAP7 best fit model is also shown in the left panel (brown dotted curve).
The effect of the beam non-circularity is shown for the Planck 30 GHz beam parameter with size θFWHM = 32.7′

and eccentricity e = 0.68 (highest ellipticity ǫ = 1.36) (left panel) and the Planck 143 GHz beam with size
θFWHM = 7.0′ and eccentricity e = 0.30 (smallest ellipticity ǫ = 1.05) (right panel).
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Figure 3.13: Recovered power spectrum using the Planck ΛCDM best fit model and the corresponding bias
∆Cl/Cl as a function of the multipole l. The systematic bias due to the non-circularity of the beam is shown for
the Planck beam θFWHM = 32.7′ and eccentricity e = 0.68 ∼ 0.7 at 30 GHz (left panel) and the Planck beam
θFWHM = 7.0′ and eccentricity e = 0.3 at 143 GHz (right panel). Hypothetical experiments with respectively
the same beam size θFWHM = 32.7′ and θFWHM = 7.0′ but with mildly circular beam (e = 0.2) are shown
for comparison. The bias estimates strongly depend on the beam eccentricity and are more significant at small
angular scales.

The systematic bias in the power spectrum estimation is reported in Fig. 3.13. For clarity, we

only plotted the systematic bias for the eccentricity e = 0.2, e = 0.3 (Planck smallest asymmetric

beam) and e = 0.7 (Planck highest asymmetric beam). The plots show that the bias estimates

are significant at large l’s. For the least asymmetric beam (143 GHz) the bias estimate is ∼ 1%

at lmax = 500. For the Planck 30 GHz, the systematic bias can be quite large. However, the bias

estimates computed here are in reality an upper limit of the systematics since we expect that the

effective eccentricity of the beam in the time stream is reduced, as during observations the beam

revisits each sky pixel with different orientations so that some non-circular modes cancel out.

Notice that in Fig. 3.11 - 3.13 the best fit model spectra WMAP7 and Planck+ WP+ highL

do not have the beam convolution included. We have only shown them in the recovered power

spectra in order to illustrate from which best fit model the beam convolution was obtained. In Fig.

3.12 (left panel), the observed power spectrum is the convolution of the beam with the Planck+

WP+ highL best fit. In that same figure is shown the WMAP7 best fit just for comparison with

the recent Planck+ WP+ highL best fit obtained by Planck Collaboration 2013 [155].

Now, we estimate the power spectrum bias for different eccentricities computed at the multipole

where the bias peaks (lpeakσ ∼ 1) for the Planck angular beam size θFWHM = 32.7′ (30 GHz),

θFWHM = 27.0′ (44 GHz) and WMAP V beam size θFWHM = 21.0′. The results are reported in Fig.

3.14. We find an evidence of strong correlation between the systematic bias and the eccentricity

of the beam computed at lpeak. The recorded data points can be very well fitted with quadratic

polynomials which allow the determination of the bias at lpeak up to the smallest angular resolution

probed by Planck (θFWHM = 4.3′ at HFI 857 GHz). The plots clearly show that for a polarimetry
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Figure 3.14: Systematic bias ∆Cl/Cl computed at lpeak = 1/σ for different beam eccentricities e. The dashed
lines are the best fit to the data points recorded for the Planck beam size θFWHM = 32.7′ at 30 GHz, and
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illustrate the effect of the beam size. The data points can be well fitted with a second order polynomial of the
eccentricity. As inferred from the plots, the beam systematics increase with the ellipticity (eccentricity) of the
asymmetric beam; and given the ellipticity of the beam, the bias of the power spectrum estimation become more
significant for smaller beam width.

experiment, the power spectrum bias estimates at lpeak increase with the beam ellipticity and for

a given beam eccentricity (ellipticity) the bias becomes more significant for smaller beam size.

3.7 Discussion

In CMB experiments the bias matrix relates the observed power spectrum to its true value. Among

the systematic biases affecting the estimation of the power spectrum, the beam non-circularity

(asymmetry) is one of the major potential source of systematics that cannot be neglected in Planck -

like high sensitivity and resolution experiment. More importantly for the polarized signal (at a level

about tenth of the temperature fluctuation), the beam systematics must be correctly addressed and

accounted for. We have presented a semi-analytical framework to compute the bias matrix of the

TE power spectrum including the beam asymmetry in which the non-circular beam shape was

modeled using a perturbative expansion of the beam around a circular Gaussian beam (see, [66]).

We have developed a computationally fast algorithm that can be implemented in simulation

pipeline analysis although the formalism described in this chapter is only valid for a non-rotating

beam, assuming that the ellipticity of the effective beam does not vary across the pixels map.

Nevertheless our approach provides some insights about the computational cost involved in more

realistic scanning strategies. We have reduced the analytical expression of the bias matrix to its
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simplest form by precomputing all Clebsch-Gordan coefficients and Wigner-d functions. The com-

putation ressource requirement is very modest and can be carried out with a laptop processor up to

the multipole lmax = 500 with a computational scaling of O(lmax) (1 CPU at 2.53 GHz and 4 GB

of RAM). We recall that the computational cost of the FEBeCoP implemented in Planck (though,

using real scan path) by Mitra et al. [19] scales as NpixNbeam.

The computation of the Wigner-d functions is a memory intensive task and Kostelec & Rock-

more [150] have claimed that the 3-term recurrence relations have been verified stable up to the

bandwidth B = 1024. As a result of these limitations it was not possible to compute the func-

tions of the form dL0M (π2 ) or d
L
Mm′′(π2 ) when the index L reaches the bandwidth 1024 (L < B i.e.,

Lmax = 1023). In such case, using our laptop 4 GB of RAM, the code of Kostelec & Rockmore

produces NAN and infinity numbers. As L varies from |l − l′| to l + l′ and we compute inside the

diagonal band |l − l′| ≤ 20, it results in the limitation of the probed multipole to lmax = 500, as

in that case l + l′ = Lmax = 500 + 520 = 1020. Obviously a multipole value of lmax = 501 is still

possible but such difference does not have much significance for the WMAP or Planck analyses.

Our approach can be extended to higher multipoles up to lmax = 3000 at the expense of

disc/memory storage and code input/output (I/O) overhead. This can be done in the future

provided that all Wigner-d functions can be precomputed up to lmax = 3000. The bias matrix

computation was restricted in the band | l − l′ |≤ 20 in order to reach the highest multipole

lmax = 500. This band width choice can be well justified as in most CMB experiments the beam

profile is mildly elliptical (ǫ ≤ 1.2, [66]) implying that the bias matrix is not far from diagonal. For

highly asymmetric beams, a much broader band (e.g | l− l′ |≤ 50) is desirable in order to correctly

evaluate the bias estimates of the power spectrum with high precision.

A second order expansion in the ellipticity parameter introduced in the beam harmonic trans-

form is accounted for highly elliptical beam (e.g., Planck 30 GHz where ǫ = 1.36), and two non-

circular corrections with modes m = 2, 4 (for the temperature) and m = 4, 6 (for the E-mode

polarization) are included to adequately describe the beam geometry (see, [66]). From the extrap-

olation of the recorded runs, we find that the bias matrix can be computed up to lmax = 3000

in a few seconds and the corresponding computational gain is ∼ O(l1.8). Theoretically this is a

naive estimate of the computation time at large multipoles as the program I/O overhead marginally

increases the computation time.

Our findings suggest that the systematic biases peak at a multipole comparable to the inverse

of the beam width. The amplitude of the peaks of the bias increases with the ellipticity and is

more significant at higher multipoles. Similar behaviour has been already observed for the tem-

perature correlation (see, [130]). A graphic representation of the bias matrix in multipole space

shows the importance of multipoles coupling at lσ & 1 which arises from the beam asymmetry but

the mixing of power between multipoles falls off when we move away from the bias matrix diagonal.
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We find that the effect of the non-circularity of the beam in the TE power spectrum system-

atic bias at lpeak ∼ 1/σ is important attaining ∼ 20% (ǫmean = 1.36 at 30 GHz) in the Planck

highest asymmetric beams. In WMAP Q band (effective ellipticity ǫ = 1.15 with beam width

θFWHM = 30.6′), the power spectrum bias estimate is ∼ 12% and in WMAP V (effective ellipticity

ǫ = 1.09 and beam width θFWHM = 21′), the corresponding systematic bias is ∼ 16%.

For Planck and WMAP beams with much smaller size the bias peaks outside the range [2, 500]

but we expect much significant bias for such high resolution beams. We note that the biases pre-

viously estimated in the simulated Planck beams represent upper limits. This is explained by the

fact that the ellipticity (eccentricity) of the beam in our time domain representation of the elliptical

window is slightly larger than the effective beam ellipticity (eccentricity) in the pixel domain since

in the latter, during the satellite observations the beams visit each sky pixel multiple times, but

with different orientations of the beams resulting to some extent in the suppression of non-circular

modes. Consequently, the effective beam ellipticity (eccentricity) in the sky map becomes much

smaller than our nominal ellipticity (eccentricity) in the time stream.

General scanning strategies must be incorporated in our analysis in the future in order to im-

prove the accuracy of the bias estimates of the TE power spectrum. Simultaneously, the variations

of the beam ellipticity along the scan path must be correctly accounted for. The systematics of

instrument noise and non-uniform/cut-sky using asymmetric beams are expected to become im-

portant as well in CMB polarization experiments. In Chapter 4, we will extend this work in the

case of non-circular beams with incomplete sky coverage resulting from the Galactic foreground

emissions and point sources masking.

The main purpose of the non-circular beam smoothing was to assess the effect of the beam

asymmetry on the TE power spectrum estimation by convolving the beam with a fiducial model

of a spectrum computed with the CAMB software for a given cosmology. Afterwards, the non-

circular and circularly symmetric beam convolutions are compared to estimate the systematic bias.

This investigation allows us to depict the importance of the beam asymmetry for high resolution

polarization experiments. Nevertheless, our work has been restricted to the ideal case of noiseless

experiments and full sky survey. At the time of the writing of this thesis, the Planck experiment

polarization data analysis has been under process and no polarization data was available. In prac-

tical applications, a careful consideration of all systematic effects must be carried out in order to

obtain an unbiased estimation of the power spectrum. In this study, we have not applied our results

to the existing WMAP polarization data which are polluted by too much noise, as we find it un-

reasonable to derive cosmological parameters from such poor quality polarization data. However,

for the forthcoming Planck data, we plan to complete this optics by deconvolving the Planck data

with the asymmetric beam and including the cut-sky systematic effect as well. In such way we can

retrieve the true power spectrum and derive the corresponding sets of cosmological parameters.
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Then the comparison of the latter results with the current high resolution WMAP and Planck

experiments best fit fiducial model enable us to quantify the change in cosmological parameters

due to the beam asymmetry.

We resume that the fast pipeline implementation that we have developed in this work, provides

a very convenient tool in the understandings of the beam systematics corrections of the TE power

spectrum, in particular at large angular scales where many CMB anomalies have been previously

observed by the high resolution WMAP and Planck experiments (e.g., see, Planck collaboration

[156]).
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Chapter 4

Non-circular beam and cut-sky for TE

polarized signals

4.1 Introduction

We have emphasized in the previous chapter the effect of the non-circularity (asymmetry) of the

detectors beams on the estimation of the TE power spectrum by assuming a full sky coverage.

This preliminary investigation allowed us to give some insights about the level of debiasing needed

in order to correct the beam systematics. Practically, prior to the power spectrum estimation, it

is necessary to remove the foreground contaminated CMB signals. This can be done by applying a

mask along the Galactic plane where strong foreground emissions have been observed [157]. In this

chapter, we consider the additional effect of the partial sky coverage besides the non-circularity of

the beams. The polarization mask wP (q̂) covers larger area across the Galactic plane in compar-

ison to the temperature mask wT (q̂). The smoothing of the sky map with the temperature and

polarization masks in harmonic space adds an extra power to the variance of the temperature and

polarization anisotropies and consequently biases the true power spectrum.

This chapter focuses on the derivation of the TE bias matrix by simultaneously considering

the effect of the beam non-circularity (asymmetry) and the partial sky (cut-sky) coverage. The

approach is similar to the non-circular beam case, though the presence of mask complicates the

TE bias matrix calculation.

4.2 Sky multipole coefficients

We follow the same approach which has been developed in Chapter 3 for the calculation of the

multipole coefficients of the harmonics expansion of the temperature fluctuation anisotropies and

the E-mode polarization, though, we need to include in the process the CMB map masking weighted
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by the mask functions (temperature and polarization) in order to suppress the foreground residuals.

From the expansion of the sky true temperature anisotropy ∆T (q̂) in spherical harmonic basis

∆T (q̂) =
∑

lm

aTlmYlm(q̂), (4.1)

we can derive the sky multipoles as

aTlm =

∫
dΩq̂∆T (q̂)Y

∗
lm(q̂), (4.2)

where Y ∗
lm(q̂) denotes the complex conjugate of the spherical harmonic function. The integration is

carried out over the solid angle dΩq̂ = sinθdθdφ in the given direction q̂ in the spherical coordinates

(θ, φ). We can connect the observed temperature ∆̃T (q̂) to the multipole coefficients according to

the relation

ãTlm =

∫
dΩq̂∆̃T (q̂)Y

∗
lm(q̂). (4.3)

The measured temperature fluctuations ∆̃T (q̂) in CMB experiments is the convolution of the

true temperature ∆T (q̂′) on the sky with the beam profile B(q̂, q̂′). Furthermore, the true tempera-

ture is contaminated by an instrumental noise n(q̂). Now, we must eliminate the sky pixels contam-

inated by foregrounds by choosing an appropriate mask weight function w(q̂) so that w(q̂) = 0 for

the corrupt pixels and w(q̂) = 1 for the clean ones. Generally, the weight function w(q̂) is a smooth

function which can varies between zero and one. Then, the corresponding observed temperature is

expressed as

∆̃T (q̂) = wT (q̂)

[∫
dΩq̂′B(q̂, q̂′)∆T (q̂′) + n(q̂)

]
, (4.4)

where wT (q̂) denotes the total intensity (temperature) mask. As our main purpose is to investigate

the effect of the beam and cut-sky systematics, therefore, in the noiseless limit the sky multipoles

can be written as

ãTlm =

∫
dΩq̂w

T (q̂)

∫
dΩq̂′B(q̂, q̂′)∆T (q̂′)Y ∗

lm(q̂). (4.5)

We expand the true temperature anisotropy in harmonic space as

∆T (q̂′) =
∑

l′m′

aTl′m′Yl′m′(q̂′), (4.6)

68



Non-circular beam and cut-sky for TE polarized signals

and plug in Eq. (4.5) to obtain the following expression

ãTlm =
∑

l′m′

aTl′m′

∫
dΩq̂w

T (q̂)Y ∗
lm(q̂)

∫
dΩq̂′B(q̂, q̂′)Yl′m′(q̂′). (4.7)

Equivalently, we can take the complex conjugate of the sky multipoles, and from the reality condi-

tion of the beam we may write

ãT∗lm =
∑

l′m′

aT∗l′m′

∫
dΩq̂w

T∗(q̂)Ylm(q̂)

∫
dΩq̂′B(q̂, q̂′)Y ∗

l′m′(q̂′). (4.8)

By introducing the Wigner-D rotation matrices, we can write the integral containing the beam

function B(q̂, q̂′) in the form

∫
dΩq̂′B(q̂, q̂′)Y ∗

l′m′(q̂′) =
l′∑

m′′=−l′

bTl′m′′Dl′

m′m′′(q̂, ρ(q̂)), (4.9)

where bTl′m′′ is the temperature beam harmonic transform. Replacing Eq. (4.9) in Eq. (4.8), we get

ãT∗lm =
∑

l′m′

aT∗l′m′

l′∑

n=−l′

bTl′n

∫
dΩq̂w

T∗(q̂)Ylm(q̂)D
l′

m′n(q̂, ρ(q̂)). (4.10)

We expand in the same way the mask function as

wT∗(q̂) =
∑

l′′m′′

wTl′′m′′Yl′′m′′(q̂), (4.11)

and substitute in Eq. (4.10) to obtain

ãT∗lm =
∑

l′m′

l′∑

n=−l′

∑

l′′m′′

aT∗l′m′bTl′nw
T
l′′m′′

∫
dΩq̂Ylm(q̂)Yl′′m′′(q̂)Dl′

m′n(q̂, ρ(q̂)). (4.12)

The integral in Eq. (4.12) contains the product of spherical harmonic functions with the Wigner-D

function. In fact, it is computationally advantageous to express these functions in term of Clebsch-

Gordan coefficients, as the publicly available SLATEC Fortran subroutine DRC3JJ.f [148] allows

the computation of the Clebsch-Gordan coefficients. The calculation of the term

I =

∫
dΩq̂Ylm(q̂)Yl′′m′′(q̂)Dl′

m′n(q̂, ρ(q̂)) (4.13)

involved in Eq. (4.12), is reported in Appendix D. Thus, the general form of the temperature
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expansion multipoles reads

ãT∗lm =
∑

l′m′

l′∑

n=−l′

∑

l′′m′′

aT∗l′m′bTl′nw
T
l′′m′′ × I. (4.14)

The multipole expansion of the temperature defined by Eq. 4.14 combined with the E-polarization

expansion that we derive in the next section, will allow the computation of the TE cross-correlation

and the corresponding power spectrum.

4.3 E-polarization multipole coefficients

In order to estimate the TE power spectrum from the cross-correlation of the temperature and

E-polarization in harmonic space, we need to derive the analytical expression of the E-mode mul-

tipoles. We proceed similarly to the full sky case but, obviously we have to apply a polarization

mask wP (q̂). For CMB experiments with beams treated as non-circular, and in the presence of a

cut-sky, the E-polarization multipoles take the form

ãElm =
1

2

∫
dΩq̂w

P (q̂)[(Q− iU)eff (q̂) 2Y
∗
lm(q̂) + (Q+ iU)eff (q̂) −2Y

∗
lm(q̂)], (4.15)

where the effective Stokes parameters Qeff and Ueff of the smoothed beam are defined by [66]

Qeff = 2
∑

lmM

[Dl
mM (q̂, ρ(q̂))]∗ bE∗

lM aElm, (4.16)

Ueff = 2
∑

lmM

[Dl
mM (q̂, ρ(q̂))]∗ bE∗

lM aBlm. (4.17)

We substitute the effective Stokes parameters in Eq. (4.15), and obtain

ãElm =
∑

l′m′

l′∑

M=−l′

∫
dΩq̂w

P (q̂)[Dl′

m′M (q̂, ρ(q̂))bEl′M ]∗

× [aEl′m′( 2Y
∗
lm(q̂) + −2 Y

∗
lm(q̂))− iaBl′m′( 2Y

∗
lm(q̂)− −2 Y

∗
lm(q̂))]. (4.18)

Then, we expand in harmonic space the mask weight function wP (q̂) of the polarization

wP (q̂) =
∑

l′′m′′

wPl′′m′′Yl′′m′′(q̂), (4.19)
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to derive the following expression of the polarization multipoles

ãElm =
∑

l′m′

l′∑

M=−l′

∑

l′′m′′

wPl′′m′′

∫
dΩq̂Yl′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))bEl′M ]∗

× [aEl′m′( 2Y
∗
lm(q̂) + −2 Y

∗
lm(q̂))− iaBl′m′( 2Y

∗
lm(q̂)− −2 Y

∗
lm(q̂))]. (4.20)

We keep this final form of the E-multipoles harmonic transforms ãElm which is convenient for the

calculation of the multipole coefficients correlation in harmonic space. Due to the statistical isotropy

of the CMB, only the real part of ãElm gives non-vanishing contribution in the estimation of the

power spectrum. In the next section, we derive in details the bias matrix involved in the TE power

spectrum estimation corresponding to the asymmetric beam and cut-sky by using the pseudo-Cl

estimator.

4.4 The bias matrix

For large data size, the pseudo-Cl method provides a rapid estimation of the power spectrum with a

sufficient accuracy for high resolution maps. Prior to the estimation, we need to mask the polluted

CMB signals on the Galactic plane which is a source of strong foreground emissions. From the

definition of the pseudo-Cl

CTEl =
1

2l + 1

l∑

m=−l

aTlma
E∗
lm , (4.21)

we can write the expectation value of the TE power spectrum as

〈C̃TEl 〉 = 1

2l + 1

l∑

m=−l

〈ãT∗lmãElm〉 =
∑

l′

ATEcutll′ CTEl′ , (4.22)

where ATEcutll′ denotes the bias matrix, which contains the coupling of power between multipoles

due to the combined effects of the beam asymmetry and cut-sky. From Eq. (4.14) and Eq. (4.20)

and using the parity conservation property 〈aT∗l′m′aBl′
1
m′

1

〉 = 0, we may write

〈C̃TEl 〉 =
1

2l + 1

l∑

m=−l

∑

l′m′

l′∑

n=−l′

∑

l′′m′′

∑

l′
1
m′

1

l′
1∑

M=−l′
1

∑

l′′
1
m′′

1

〈aT∗l′m′aEl′
1
m′

1

〉bTl′nwTl′′m′′wPl′′
1
m′′

1

× I

×
∫
dΩq̂Yl′′

1
m′′

1
(q̂)[D

l′
1

m′

1
M
(q̂, ρ(q̂))bEl′

1
M ]∗( 2Y

∗
lm(q̂) + −2 Y

∗
lm(q̂)). (4.23)
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Then, using the condition of statistical isotropy of the fluctuations 〈aT∗l′m′aEl′
1
m′

1

〉 = CTEl′ δl′l′
1
δm′m′

1

where CTEl′ is the angular power spectrum, we get

〈C̃TEl 〉 =
1

2l + 1

l∑

m=−l

∑

l′m′

l′∑

n=−l′

∑

l′′m′′

∑

l′
1
m′

1

l′
1∑

M=−l′
1

∑

l′′
1
m′′

1

CTEl′ δl′l′
1
δm′m′

1
bTl′nb

E
l′
1
Mw

T
l′′m′′wPl′′

1
m′′

1

× I

×
∫
dΩq̂

[
Y ∗
l′′
1
m′′

1

(q̂) 2Ylm(q̂)D
l′
1

m′

1
M
(q̂, ρ(q̂))

+ Y ∗
l′′
1
m′′

1

(q̂) −2Ylm(q̂))D
l′
1

m′

1
M
(q̂, ρ(q̂))

]∗
, (4.24)

where we have made use of the reality condition of the beam harmonic transform bE∗
l′
1
M = bEl′

1
M . As

only the terms that satisfy l′1 = l′ and m′
1 = m′ contribute in the summations, we can simplify the

above expression as

〈C̃TEl 〉 =
1

2l + 1

l∑

m=−l

∑

l′m′

l′∑

n=−l′

∑

l′′m′′

l′∑

M=−l′

∑

l′′
1
m′′

1

CTEl′ bTl′nb
E
l′Mw

T
l′′m′′wPl′′

1
m′′

1

× I

×
∫
dΩq̂

[
Y ∗
l′′
1
m′′

1

(q̂) 2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂)) + Y ∗
l′′
1
m′′

1

(q̂) −2Ylm(q̂))D
l′

m′M (q̂, ρ(q̂))
]∗
(4.25)

from which we derive the following bias matrix

ATEcutll′ =
1

2l + 1

l∑

m=−l

l′∑

m′=−l′

l′∑

n=−l′

∑

l′′m′′

l′∑

M=−l′

∑

l′′
1
m′′

1

bTl′nb
E
l′Mw

T
l′′m′′wPl′′

1
m′′

1

× I

×
∫
dΩq̂

[
Y ∗
l′′
1
m′′

1

(q̂) 2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂)) + Y ∗
l′′
1
m′′

1

(q̂) −2Ylm(q̂))D
l′

m′M (q̂, ρ(q̂))
]∗
(4.26)

that contains the non-circular beam and cut-sky smoothing effects. In order to compute the bias

matrix, we need to calculate analytically the following integral

J =

∫
dΩq̂

[
Y ∗
l′′
1
m′′

1

(q̂) 2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂)) + Y ∗
l′′
1
m′′

1

(q̂) −2Ylm(q̂))D
l′

m′M (q̂, ρ(q̂))
]∗
, (4.27)

that is involved in Eq. (4.26). We perform this task by using the relationship between the spherical

harmonic functions, rotation matrices and Clebsch-Gordan coefficients. In the next section, we

present a detailed derivation of the integral J which can be decomposed into the sum of two

integrals J∗ = J1 + J2 where

J1 =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂) 2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂)),

J2 =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂) −2Ylm(q̂))D
l′

m′M (q̂, ρ(q̂)). (4.28)
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We report in Appendix E and F the derivations of the integrals J1 and J2, and obtain their sum J

in the following form

J =
(−1)m

2

√
(2l′′1 + 1)(2l + 1)

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′

l′′
1
+L∑

L′=|l′′
1
−L|

CL
′0

l′′
1
(m−m′)L(−m+m′)

×
[
C
L(2+M)
l2l′M C

L′(2+M)
l′′
1
0L(2+M)

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M)(
π

2
)f(2+M)N

+ C
L(−2+M)
l−2l′M C

L′(−2+M)
l′′
1
0L(−2+M)

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(−2+M)(
π

2
)f(−2+M)N

]
. (4.29)

By plugging Eq. (D.12) and Eq. (4.29) in Eq. (4.26), we may write the coupling matrix as follows

ATEcutll′ =
1

2l + 1

l∑

m=−l

l′∑

m′=−l′

l′∑

n=−l′

∑

l′′m′′

l′∑

M=−l′

∑

l′′
1
m′′

1

bTl′nb
E
l′Mw

T
l′′m′′wPl′′

1
m′′

1

(−1)m+m′′

√
(2l + 1)(2l′′ + 1)

4π

×
l+l′′∑

L=|l−l′′|

CL0l0l′′0 C
L(m+m′′)
lml′′m′′

L+l′∑

L′=|L−l′|

C
L′(m′−m−m′′)
L−(m+m′′)l′m′

CL
′n

L0l′n 2π
L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

Nn(
π

2
)fnN

× (−1)m

2

√
(2l′′1 + 1)(2l + 1)

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′

l′′
1
+L∑

L′=|l′′
1
−L|

CL
′0

l′′
1
(m−m′)L(−m+m′)

×
[
C
L(2+M)
l2l′M C

L′(2+M)
l′′
1
0L(2+M)

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M)(
π

2
)f(2+M)N

+ C
L(−2+M)
l−2l′M C

L′(−2+M)
l′′
1
0L(−2+M)

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(−2+M)(
π

2
)f(−2+M)N

]
. (4.30)

The expression of this bias matrix can be simplified since we have seen that for the calculation of the

integrals I and J, only the terms which satisfy m′−m−m′′ = 0 and m′′
1−m+m′ = 0 contribute in

the summations. This means that the number of summations involved in the calculation is reduced

by a factor of two since m′′ = m′ −m and m′′
1 = m −m′. We account for these conditions in the

bias matrix summations, and after simplification we obtain the final expression of the bias in the
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following form

ATEcutll′ =
1

4

l∑

m=−l

l′∑

m′=−l′

l′∑

n=−l′

l′∑

M=−l′

∞∑

l′′=0

∞∑

l′′
1
=0

(−1)m+m′

√
(2l′′ + 1)(2l′′1 + 1)bTl′nb

E
l′Mw

T
l′′(m′−m)w

P
l′′
1
(m−m′)

×
l+l′′∑

L=|l−l′′|

CL0l0l′′0 C
Lm′

lml′′(m′−m)

L+l′∑

L′=|L−l′|

CL
′0

L−m′l′m′ CL
′n

L0l′n

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

Nn(
π

2
)fnN

×
l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′

l′′
1
+L∑

L′=|l′′
1
−L|

CL
′0

l′′
1
(m−m′)L(−m+m′)

×
[
C
L(2+M)
l2l′M C

L′(2+M)
l′′
1
0L(2+M)

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M)(
π

2
)f(2+M)N

+ C
L(−2+M)
l−2l′M C

L′(−2+M)
l′′
1
0L(−2+M)

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(−2+M)(
π

2
)f(−2+M)N

]
. (4.31)

The upper limits of the summations over l′′ and l′′1 are fixed by the choice of the temperature and

the polarization masks, and the summations over the indices m and m′ are constrained by the

number of modes (m′ −m). Mitra et al. [140] have demonstrated that the computational cost of

the bias matrix calculation can be reduced by constructing azimuthally apodized masks. In such

case, only the first 10-20 (m′−m) modes contribute significantly when the sky temperature map is

smoothed with an apodized mask. Then, we may write the general form of the bias matrix with a

cut-sky smoothed with an apodized temperature mask wTl′′(m′−m) and polarization mask wPl′′
1
(m−m′)

with a non-circular beam as

ATEcutll′ =
1

4

l∑

m=−l

l′∑

m′=−l′

l′∑

n=−l′

l′∑

M=−l′

l′′max∑

l′′=0

l′′
1max∑

l′′
1
=0

(−1)m+m′

√
(2l′′ + 1)(2l′′1 + 1)bTl′nb

E
l′Mw

T
l′′(m′−m)w

P
l′′
1
(m−m′)

×
l+l′′∑

L=|l−l′′|

CL0l0l′′0 C
Lm′

lml′′(m′−m)

L+l′∑

L′=|L−l′|

CL
′0

L−m′l′m′ CL
′n

L0l′n

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

Nn(
π

2
)fnN

×
l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′

l′′
1
+L∑

L′=|l′′
1
−L|

CL
′0

l′′
1
(m−m′)L(−m+m′)

×
[
C
L(2+M)
l2l′M C

L′(2+M)
l′′
1
0L(2+M)

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M)(
π

2
)f(2+M)N

+ C
L(−2+M)
l−2l′M C

L′(−2+M)
l′′
1
0L(−2+M)

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(−2+M)(
π

2
)f(−2+M)N

]
, (4.32)

74



Non-circular beam and cut-sky for TE polarized signals

where the summations over n and M are limited to the dominant modes n = 0,±2,±4 and

M = ±2,±4,±6 of the temperature and polarized beam harmonic transforms bTl′n and bEl′M .

Eq. (4.32) is the main result of this chapter. It allows the estimation of the bias when the non-

circular beams in CMB polarization experiments are treated as circular, in the presence of a non-

uniform/cut-sky coverage. The formula is valid for a non-rotating beam, although the formalism

developed can be, in the future, extended to a broader class of scanning strategies. Given the model

of beam, the bias matrix can be numerically computed. Similarly to the non-circular beam and full

sky case, we may adopt the model of beam developed in Fosalba et al. [66]. In this model the bias

estimate is sufficiently accurate by including a second order corrections to the beam ellipticity and

considering three modes of the perturbative expansion for each beam harmonic transforms (bTl′n
and bEl′M ). In the next section, we check the consistency of the above results by considering the

limiting case of a full sky coverage and non-circular beams.

4.5 The full sky and non-circular beam limit for TE

In the case of a full sky coverage, we can recover the expression of the bias matrix by setting the

weight function to one, i.e. w(q̂) = 1. Then, we may use Eq. (1), Section 5.9.1 of [146] to write the

harmonic transform of the mask in the form

wTlm =

∫
dΩq̂Y

∗
lm(q̂) =

√
4πδl0δm0. (4.33)

Obviously, the only non-vanishing terms are obtained for l = 0 and m = 0. If we apply these

conditions to the weight functions wTl′′(m′−m) and w
P
l′′
1
(m−m′), we see that only the terms that satisfy

the conditions l′′ = 0, m′ = m and l′′1 = 0 contribute in the summations of the bias matrix. From

the lower limit of the summations involved in Eq. (4.32), we find that the conditions on l′′ and l′′1
imply L = l for the temperature, and L′ = l for the polarization part of the summations. Therefore,

we can simplify the analytical expression of the bias matrix and write

ATEfullll′ = π

l∑

m=−l

l′∑

n=−l′

l′∑

M=−l′

bTl′nb
E
l′MC

l0
l000 C

lm
lm00

×
l+l′∑

L′=|l−l′|

CL
′0

l−ml′m CL
′n

l0l′n

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

Nn(
π

2
)fnN

l+l′∑

L=|l−l′|

CL0l−ml′mC
L0
00L0

×
[
C
L(2+M)
l2l′M C

L(2+M)
00L(2+M)

L∑

N=−L

dL0N (
π

2
)dLN(2+M)(

π

2
)f(2+M)N

+ C
L(−2+M)
l−2l′M C

L(−2+M)
00L(−2+M)

L∑

N=−L

dL0N (
π

2
)dLN(−2+M)(

π

2
)f(−2+M)N

]
. (4.34)
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We use Eq. (2) of Section 8.5 of [146] to derive the following relations

C l0l000 = 1,

C lmlm00 = 1. (4.35)

From the symmetry properties of the Clebsch-Gordan coefficients, we may write using Eq. (10),

Section 8.4.3 of [146]

CL000L0 = CL0L000 = 1. (4.36)

Then we apply successively Eq. (10), Section 8.4.3 of [146] and Eq. (2) of Section 8.5 of [146] to

obtain

C
L(2+M)
00L(2+M) = C

L(2+M)
L(2+M)00 = 1,

C
L(−2+M)
00L(−2+M) = C

L(−2+M)
L(−2+M)00 = 1, (4.37)

which yield the following bias matrix

ATEfullll′ = π
l∑

m=−l

l′∑

n=−l′

l′∑

M=−l′

bTl′nb
E
l′M

×
l+l′∑

L′=|l−l′|

CL
′0

l−ml′m CL
′n

l0l′n

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

Nn(
π

2
)fnN

l+l′∑

L=|l−l′|

CL0l−ml′m

×
[
C
L(2+M)
l2l′M

L∑

N=−L

dL0N (
π

2
)dLN(2+M)(

π

2
)f(2+M)N

+ C
L(−2+M)
l−2l′M

L∑

N=−L

dL0N (
π

2
)dLN(−2+M)(

π

2
)f(−2+M)N

]
. (4.38)

It is convenient to rearrange the summation indices of the above equation in order to avoid any

confusion on the modes coupling between the temperature and E-component of the polarization.

We can change the dummy indices of the summations without altering the results as follows:

n→ m′′, M →M ′, and the index N of the summation involved in the first part of the correlation
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(temperature expansion multipoles) is changed to M (N →M). Then, the bias matrix reduces to

ATEfullll′ = π

l∑

m=−l

l′∑

m′′=−l′

l′∑

M ′=−l′

bTl′m′′bEl′M ′

×
l+l′∑

L′=|l−l′|

CL
′0

l−ml′m CL
′m′′

l0l′m′′

L′∑

M=−L′

dL
′

0M (
π

2
)dL

′

Mm′′(
π

2
)fm′′M

l+l′∑

L=|l−l′|

CL0l−ml′m

×
[
C
L(2+M ′)
l2l′M ′

L∑

N=−L

dL0N (
π

2
)dLN(2+M ′)(

π

2
)f(2+M ′)N

+ C
L(−2+M ′)
l−2l′M ′

L∑

N=−L

dL0N (
π

2
)dLN(−2+M ′)(

π

2
)f(−2+M ′)N

]
. (4.39)

We can see that we have recovered Eq. (3.50) which gives the expression of the bias matrix in the

full sky limit when the beam pattern is non-circular (asymmetric).

4.6 The cut-sky and circular beam limit

It is important to verify the consistency of the general formula of the TE bias matrix that we have

obtained in the case of a non-circular beam and incomplete sky coverage. We have seen in the

previous section that we have reproduced the result of the bias matrix expression in the limiting

case of a non-circular beam and full sky coverage. Hereafter, we investigate the limiting case of a

cut-sky and circular beam. This limit is practically very useful in CMB experiment analysis when

the beam is assumed as circular (axisymmetric). A galactic mask is applied to remove the CMB

foreground contaminants (polarized and non-polarized ones) resulting to a non-uniform/partial sky

coverage.

In the following, we calculate the bias matrix that only accounts for the effect of the cut-sky.

When the beam is circulary symmetric, the perturbative expansion of the beam in harmonic space

reduces to the first term which is identical to a circular Gaussian window. This implies that in

Eq. (4.32), n = 0 for the total intensity, and M = ±2 for the polarized beam transforms. Let Σ

be the sum of the terms over M (M = ±2) which appear in Eq. (4.32). As a result of the reality

condition of the beam harmonic transform, we have bl−m = blm so that we may write

Σ = bEl′2

[
CL0l2l′−2C

L′0
l′′
1
0L0

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N0(
π

2
)f0N + CL−4

l−2l′−2C
L′−4
l′′
1
0L−4

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N−4(
π

2
)f−4N

+ CL4l2l′2C
L′4
l′′
1
0L4

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N4(
π

2
)f4N + CL0l−2l′2C

L′0
l′′
1
0L0

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N0(
π

2
)f0N

]
. (4.40)
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We use the following Equation (A.6) derived in Appendix A to calculate the summation Σ:

L′∑

M=−L′

dL
′

0M (
π

2
)dL

′

M0(
π

2
)f0M =

2

2L′ + 1
δL′0. (4.41)

This implies that the only non-vanishing term in the summation
∑L′

M=−L′ dL
′

0M (π2 )d
L′

M0(
π
2 )f0M is

obtained for L′ = 0. This condition itself implies that the second and third terms of Σ do not

contribute since the Clebsch-Gordan coefficients and Wigner-d function in these terms vanish unless

L′ ≥ 4. Hence the summation reduces to

Σ = 2bEl′2

(
CL0l2l′−2C

00
l′′
1
0L0 + CL0l−2l′2C

00
l′′
1
0L0

)

= 2bEl′2
(
CL0l2l′−2 + CL0l−2l′2

)
C00
l′′
1
0L0. (4.42)

Using Eq. (1) of Section 8.5 of [146] we have

C00
l′′
1
0L0 = (−1)l

′′

1

δl′′
1
L√

2l′′1 + 1
, (4.43)

which results in the condition l′′1 = L in the summation over the index l′′1 . The symmetry properties

defined by Eq. (11), Section 8.4.3 of [146] allow us to write

CL0l2l′−2 = (−1)l+l
′+LCL0l−2l′2, (4.44)

and therefore, Σ can be written as

Σ = 2bEl′2((−1)l+l
′+L + 1)CL0l−2l′2(−1)l

′′

1

δl′′
1
L√

2l′′1 + 1
. (4.45)

Putting the conditions L′ = 0 and l′′1 = L all together and using Eq. (1) of Section 8.5 of [146], we

obtain the following relations between the Clebsch coefficients:

CL
′0

L−m′l′m′ = C00
L−m′l′m′ = (−1)L+m

′ δLl′√
2L+ 1

, (4.46)

CL
′n

L0l′n = C00
L0l′0 = (−1)L

δLl′√
2L+ 1

, (4.47)

C
L(−m+m′)
l−ml′m′ = C

l′′
1
(−m+m′)

l−ml′m′ , (4.48)

CL
′0

l′′
1
(m−m′)L(−m+m′) = C00

l′′
1
(m−m′)L(−m+m′) = (−1)l

′′

1
+m+m′

δl′′
1
L√

2l′′1 + 1
, (4.49)
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from which we derive

CL
′0

L−m′l′m′CL
′n

L0l′n =
(−1)m

′

2L+ 1
δLl′ . (4.50)

This means that the summation over L in the term containing the polarized component of the

multipole coefficients is reduced to L = l′, and zero elsewhere. Taking into account the different

conditions on the summation indices, we resume the analytical expression of the bias matrix as

follows

ATEcutll′circ =
1

4

l∑

m=−l

l′∑

m′=−l′

l′′max∑

l′′=0

l′′
1max∑

l′′
1
=0

(−1)m+m′

√
(2l′′ + 1)(2l′′1 + 1)bTl′0b

E
l′2w

T
l′′(m′−m)w

P
l′′
1
(m−m′)

× C l
′0
l0l′′0 C

l′m′

lml′′(m′−m)

(−1)m
′

2l′ + 1
× 2

× C
l′′
1
(−m+m′)

l−ml′m′ (−1)l
′′

1
+m+m′ 1√

2l′′1 + 1

× 2((−1)l+l
′+l′′

1 + 1)C
l′′
1
0

l−2l′2(−1)l
′′

1

1√
2l′′1 + 1

, (4.51)

which translates to

ATEcutll′circ =
1

2l′ + 1

l∑

m=−l

l′∑

m′=−l′

l′′max∑

l′′=0

l′′
1max∑

l′′
1
=0

(−1)m
′

√
2l′′ + 1

2l′′1 + 1
bTl′0b

E
l′2 w

T
l′′(m′−m)w

P
l′′
1
(m−m′)

× ((−1)l+l
′+l′′

1 + 1)C l
′0
l0l′′0 C

l′m′

lml′′(m′−m)C
l′′
1
(−m+m′)

l−ml′m′ C
l′′
1
0

l−2l′2. (4.52)

Replacing the beam harmonic transforms by their values, we obtain the bias matrix ATEcutll′circ in the

limiting case of a circular beam and cut-sky in the following form

ATEcutll′circ =
1

8π
e−l

′2σ2

l∑

m=−l

l′∑

m′=−l′

l′′max∑

l′′=0

l′′
1max∑

l′′
1
=0

(−1)m
′

√
2l′′ + 1

2l′′1 + 1
wTl′′(m′−m)w

P
l′′
1
(m−m′)

× ((−1)l+l
′+l′′

1 + 1)C l
′0
l0l′′0 C

l′m′

lml′′(m′−m)C
l′′
1
(−m+m′)

l−ml′m′ C
l′′
1
0

l−2l′2, (4.53)

where σ is the effective beam width (geometric mean) of the circular Gaussian beam. Prior to

the power spectrum estimation, the sky must be smoothed with the temperature and polarization

masks weighted by wT and wP . In the following section, we establish the validity of our formula

by showing that it can recover the expression of the bias matrix ATEfullll′circ in the case of a complete

sky coverage and symmetric beam.
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4.7 The full sky and circular beam limit

The result of the bias matrix in the trivial case of a survey using a symmetric beam and full sky

coverage has been already mentioned in Appendix A. We assign the value 1 to the mask function

since we consider all sky pixels. Thus, the conditions wT (q̂) = 1 and wP (q̂) = 1 imply

wTl′′(m′−m) =

∫
dΩq̂Y

∗
l′′(m′−m)(q̂) =

√
4πδl′′0δ(m′−m)0,

wPl′′
1
(m−m′) =

∫
dΩq̂Y

∗
l′′
1
(m−m′)(q̂) =

√
4πδl′′

1
0δ(m−m′)0. (4.54)

As a result, the only non-vanishing terms in the summations involved in the bias matrix are obtained

for m′ = m, l′′ = 0 and l′′1 = 0. Replacing this in Eq. (4.53) we get

ATEcutll′circ =
1

8π
e−l

′2σ2

l∑

m=−l

(−1)m × 4π((−1)l+l
′

+ 1)C l
′0
l000 C

l′m
lm00C

00
l−ml′mC

00
l−2l′2. (4.55)

The Clebsch-Gordan coefficients can be derived using Eq. (1) and Eq. (2), Section 8.5 of [146] as

C l
′0
l000 = δll′ ,

C l
′m
lm00 = δll′ ,

C00
l−ml′m = (−1)l+m

δll′√
2l + 1

,

C00
l−2l′2 = (−1)l

δll′√
2l + 1

. (4.56)

Consequently, the only non-vanishing term is obtained for l = l′, and the bias matrix becomes

diagonal. Plugging the above set of expressions in Eq. (4.55), we find

ATEcutll′circ =
1

8π
e−l

2σ2

l∑

m=−l

(−1)m × 8π(−1)m
δll′

2l + 1
, (4.57)

which after reduction, gives the following relation

ATEcutll′circ = e−l
2σ2

δll′ . (4.58)

Then, we have reproduced the well-known expression of the bias matrix of the TE correlation for

a symmetric (circular) beam and complete sky (see, [145, 147]).
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4.8 Discussion

We have considered in this chapter the derivation of the analytical expression of the TE bias ma-

trix by simultaneously taking into account the beam asymmetry and partial sky coverage. Most

CMB experiments deal with incomplete sky coverage since even for full sky missions, the parasitic

foreground signals dominate the Galactic plane noise (see, [65]). The elimination of the corrupted

signals across the Galactic plane along with the polarized astrophysical sources, realized through

the masking of the corresponding regions, results in a cut-sky coverage. We have seen that the TE

bias matrix obtained in Eq. (4.32) can reproduce the result of the TE bias matrix of non-circular

beams in the limiting case of a full sky coverage. The latter has been derived in Chapter 3. We have

also demonstrated the consistency of the TE bias matrix formula in the case of a CMB experiment

using circularly symmetric beams in a partial sky.

The evaluation of the TE bias matrix in Eq. (4.32) requires the computation of nested loops.

The outer loop which does not appear in the expression of the TE bias matrix, corresponds to the

summation over the multipole l′. The summations over the beam harmonic transforms n and M

modes do not contribute to the computational cost since they are limited to n = 0, ±2, ±4 and

M = ±2, ±4,±6. The summations over the masks multipoles l′′ and l′′1 are fixed by the multipoles

cut-off l′′max and l′′1max. A reduction in computation time by a large factor can be obtained by

choosing the azimuthally apodized temperature mask of Mitra et al. [140] whose harmonic trans-

forms rapidly decrease with the mode (m′−m) for a given l′′, and |wTl′′(m′−m)|2 also dies down with

l′′. Under this condition, only the first 10-20 modes (m′ − m) are significant and the multipole

l′′ cut-off is l′′max ∼ 100. The bias matrix calculation involves nine loops which correspond to a

computational cost ∼ O(l9max). However, this can be reduced by introducing some constraints in

the evaluation of the bias. As the modes m and m′ are related through the mask modes cut-off,

the computation time is reduced by a power of l. Further improvement of the computation time by

a factor of ∼ l/∆l can also be obtained by considering a narrow band ∆l = |l− l′| ≤ 20 around the

diagonal of the bias matrix. This operation is allowed without compromising the accuracy of the

bias estimate since the coupling matrix is close to diagonal. The off-diagonal elements of the bias

matrix just describe the significance of the power mixing between multipoles when non-circular

beams and partial sky coverage are used in CMB experiments. The exploitation of the symmetry

properties of the Wigner-d functions introduces a speedup factor of an order of magnitude (see,

[140]).

As we have seen in Chapter 3, the computation time of the Wigner-d functions scales as O(l4.2max),

then the precomputation of these functions will save a large amount of time. The computation time

can be drastically reduced by precomputing all Wigner-d functions involved in the calculation of

the TE bias matrix. The next step of the optimization of the computation time consists to evaluate

the Clebsch-Gordan coefficients. It is more convenient to compute these coefficients directly on the

fly as the corresponding computation time scales as O(l2.6max), and therefore they can be computed
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more rapidly than the Wigner-d function. Finally, a parallel code should be implemented in order

to compute the bias matrix in a reasonable time.

The numerical implementation of the TE bias matrix, which is computationally intensive, fol-

lows the same procedure as the full sky and non-circular beam case, but only differs by the utilization

of a parallel computation on computer clusters. The latter step belongs to a future work.

82



Chapter 5

Non-circular beam and cut-sky for EE

polarized signals

5.1 Introduction

We present in this chapter the derivation of the bias matrices AEEll′ and ABBll′ that relate the ob-

served power spectrum C̃EEl to the true power spectra CEEl′ and CBBl′ of the E and B-polarization

autocorrelations. As the amplitude of the E-polarization signals is relatively weaker than the total

intensity, it is necessary to take into account the foreground systematics (synchrotron and dust

emission polarized sources) and correct the corresponding estimator bias. This naturally requires

the suppression of the undesirable foreground contaminants of CMB polarized signals. A weighted

mask function is applied to the sky polarization map in order to complete this operation. Unfor-

tunately, the consideration of an incomplete sky as a result of the foreground residuals removal

modifies the nature of the initial pseudo-Cl estimator: the B-mode is leaking to the E-mode and

vice-versa [128]. This means that the estimator itself becomes a source of “noise” . For an ensemble

of realizations containing only E-mode, the estimated power of the B-mode in each realization will

not be zero, so that the E-mode power contributes to the variance of the B-mode. If the instru-

ment noise is small, the estimator “noise” alone can dominate the sample variance in the lensing

B-mode [45]. In the latter case, the B-mode originates from CMB gravitational lensing by large

scale structure which generates B-mode from the primary E-mode [158].

This property of the standard pseudo-Cl estimator, which limits the tensor to scalar ratio (ratio

between the primordial gravitational wave and curvature power spectra [159]) that can be detected

to ∼ 0.05, inevitably hinders the detection of primordial gravitational waves imprinted in the B-

mode tensor perturbations since the leaking power CEEl′ ≫ CBBl′ . As our main focus is on the

estimation of the power spectrum C̃EEl through the bias matrices, the main concern here is the

B-mode leaking to the E-mode. In our calculations, we ignore this effect by estimating the power
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spectrum of the E- mode signal using the standard pseudo-Cl since the variance C
EE
l′ is much larger

than CBBl′ .

In realistic CMB polarimetry experiments the decomposition of the electric and magnetic com-

ponents of the polarized signals is not unique in the presence of boundaries as a result of the fraction

of the sky observed. In other words, the E and B-modes are non-local quantities by construction.

The elimination of the estimator “noise”, leading to a clean separation between E and B-modes,

is feasible by constructing the so-called “pure” pseudo-Cl estimator which does not mix the E

and B-modes [128, 160–163]. Two methods have been proposed to alleviate the mixing problem:

correction based on a heuristically-weighted correlation functions [42] and direct construction on

pixels map [161].

Other approaches of the polarization power spectrum estimation which make a clean separation

between the E and B-mode components of the polarized signals exist, though they are either ham-

pered by the numerical complexity [164] or convergence [165] of the implementation. The “pure”

pseudo-Cl estimator turns out to be a good alternative for handling those issues.

Nevertheless, our intention is not to compute the EE power spectrum with the “pure” estima-

tors. In this chapter, we adopt the standard pseudo-Cl estimator and derive the expression of the

bias matrices. This signifies that even in the absence of an instrumental noise, the mean variance

of the EE power spectrum contains a leaking B-mode power.

In fact, the utilization of a mask function for the sky smoothing renders complicated the com-

putation of the bias matrix as a result of the non-uniformity of the sky. We include the effect of

both non-circular (asymmetric) beam and incomplete sky coverage, and evaluate the computational

cost of the bias matrices numerical implementation. Then, we will address the calculation of the

bias matrices in the full sky limit where on small angular scales the problem of mixing is negligible

[128, 160] so that we can reasonably estimate the EE bias matrices with sufficient accuracy. How-

ever, at large angular scales, the power mixing between E and B remains an important issue in the

CMB polarization power spectrum estimation.

5.2 E-polarization multipole coefficients

We follow the approach developed in Section 4.3 of Chapter 4 which provides the expression of

the harmonic transform of the E-mode polarized field. We expand the linearly polarized E-mode

radiation in spherical harmonic basis. The multipole expansions of the CMB polarized signals are

connected to the observable Stokes parameters Q and U as (e.g., [145])

(Q± iU)(q̂) =
∑

lm

(aElm ∓ iaBlm) ∓2Ylm(q̂). (5.1)
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If we attempt to estimate directly the power spectrum from the autocorrelation of the multipole

harmonics aElm, we will achieve nothing in correcting the systematics bias. Instead, we must modify

the above formula to account for the beam smoothing with an elliptical window and the masking

of the sky corrupted pixels. Using a simple algebra, we derive from Eq. (5.1) the sky multipole

harmonic transforms and write

aElm =
1

2

∫
dΩq̂[(Q− iU)(q̂) 2Y

∗
lm(q̂) + (Q+ iU)(q̂) −2Y

∗
lm(q̂)]. (5.2)

Fosalba et al. [66] have considered the beam systematic effects in polarization experiments and

derived a formula which gives the expression of the corresponding smoothed (effective) Stokes

parameters Qeff and Ueff of the beam convolved with the sky as

Qeff = 2
∑

lmM

[Dl
mM (q̂, ρ(q̂))]∗ bE∗

lM aElm, (5.3)

Ueff = 2
∑

lmM

[Dl
mM (q̂, ρ(q̂))]∗ bE∗

lM aBlm. (5.4)

The correction of the non-uniformity of the sky coverage is done by following the approach described

in the appendix of Kogut et al. [116]. If we include both corrections of the systematics, we get the

following new multipole coefficients

ãElm =
1

2

∫
dΩq̂w

P (q̂)[(Q− iU)eff (q̂) 2Y
∗
lm(q̂) + (Q+ iU)eff (q̂) −2Y

∗
lm(q̂)], (5.5)

where wP (q̂) denotes the polarization mask weighting function. We plug in Eq. (5.5) the Stokes

parameters Qeff and Ueff that yield

ãElm =
∑

l′m′

l′∑

M=−l′

∫
dΩq̂w

P (q̂)[Dl′

m′M (q̂, ρ(q̂))bEl′M ]∗

× [aEl′m′( 2Y
∗
lm(q̂) + −2 Y

∗
lm(q̂))− iaBl′m′( 2Y

∗
lm(q̂)− −2 Y

∗
lm(q̂))]. (5.6)

The expansion of the polarization weight function in spherical harmonic space reads

wP (q̂) =
∑

l′′m′′

wPl′′m′′Yl′′m′′(q̂), (5.7)
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which leads to the following expression of the multipole coefficients

ãElm =
∑

l′m′

l′∑

M=−l′

∑

l′′m′′

wPl′′m′′

∫
dΩq̂Yl′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))bEl′M ]∗

× [aEl′m′( 2Y
∗
lm(q̂) + −2 Y

∗
lm(q̂))− iaBl′m′( 2Y

∗
lm(q̂)− −2 Y

∗
lm(q̂))]. (5.8)

The next step is now to evaluate the complex conjugate ãE∗
lm of the multipole coefficients in order

to compute the autocorrelation of the sky multipoles ãElm. Thus, we have

ãE∗
lm =

∑

l′
1
m′

1

l′
1∑

M1=−l′
1

∑

l′′
1
m′′

1

wP∗
l′′
1
m′′

1

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)D
l′
1

m′

1
M1

(q̂, ρ(q̂))bEl′
1
M1

× [aE∗
l′
1
m′

1

( 2Ylm(q̂) + −2 Ylm(q̂)) + iaB∗
l′
1
m′

1

( 2Ylm(q̂)− −2 Ylm(q̂))]. (5.9)

From the above relations, we obtain the autocorrelation 〈ãElmãE∗
lm 〉 of the multipole coefficients from

which we construct the pseudo-Cl estimator for Gaussian fluctuations. The expectation value of the

power spectrum is obtained from the estimator, and the coupling matrices that relate this observed

power spectrum to the true one correspond to the bias matrices that will be the subject of the next

section.

5.3 The bias matrices

In the absence of systematics the power spectrum of the E-component of the polarized radiation

field is defined by

CEEl =
1

2l + 1

l∑

m=−l

aElma
E∗
lm . (5.10)

This is the true power spectrum corresponding to an ideal systematics-free CMB experiment. We

correct the bias of this estimator by introducing the beam smoothing effects and cut-sky described

by the autocorrelation 〈ãElmãE∗
lm 〉. It is essential to account for the partial sky coverage in polarization

experiments since the signals are relatively weak, and even for a full sky survey the foreground

contaminants dominate the noise in the Galactic plane [65]. The suppression of the sky pixels

dominated by the foreground residuals results in a non-uniform/partial sky coverage. The observed

power spectrum is then obtained by taking the statistical average over all realizations, and we can

write the unbiased estimator as

〈C̃EEl 〉 = 1

2l + 1

l∑

m=−l

〈ãElmãE∗
lm 〉. (5.11)
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Using Eq. (5.8) and Eq. (5.9), the expectation value of the power spectrum reads

〈C̃EEl 〉 =
1

2l + 1

l∑

m=−l

∑

l′m′

l′∑

M=−l′

∑

l′′m′′

∑

l′
1
m′

1

l′
1∑

M1=−l′
1

∑

l′′
1
m′′

1

wPl′′m′′wP∗
l′′
1
m′′

1

×
[∫

dΩq̂Yl′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))bEl′M ]∗
∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)D
l′
1

m′

1
M1

(q̂, ρ(q̂))bEl′
1
M1

〈aEl′m′aE∗
l′
1
m′

1

〉

× ( 2Y
∗
lm(q̂) + −2 Y

∗
lm(q̂))( 2Ylm(q̂) + −2 Ylm(q̂)) +

∫
dΩq̂Yl′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))bEl′M ]∗

×
∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)D
l′
1

m′

1
M1

(q̂, ρ(q̂))bEl′
1
M1

〈aBl′m′aB∗
l′
1
m′

1

〉 ( 2Y
∗
lm(q̂)− −2 Y

∗
lm(q̂))( 2Ylm(q̂)− −2 Ylm(q̂))

]
,

where the bilinear correlations between the E and B-mode polarizations are defined by

〈aEl′m′aE∗
l′
1
m′

1

〉 = CEEl′ δl′l′
1
δm′m′

1
,

〈aBl′m′aB∗
l′
1
m′

1

〉 = CBBl′ δl′l′
1
δm′m′

1
. (5.12)

The other terms of the correlations vanish as a consequence of the rotational invariance of the ran-

dom properties of the CMB multipole coefficients alm. The only non-zero terms in the summations

are obtained for l′ = l′1 and m′ = m′
1. These conditions yield

〈C̃EEl 〉 =
1

2l + 1

l∑

m=−l

∑

l′m′

l′∑

M=−l′

∑

l′′m′′

l′
1∑

M1=−l′
1

∑

l′′
1
m′′

1

wPl′′m′′wP∗
l′′
1
m′′

1

×
∫
dΩq̂Yl′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))bEl′M ]∗
∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)D
l′
1

m′

1
M1

(q̂, ρ(q̂))bEl′
1
M1

×
[
CEEl′ ( 2Y

∗
lm(q̂) + −2 Y

∗
lm(q̂))( 2Ylm(q̂) + −2 Ylm(q̂))

+ CBBl′ ( 2Y
∗
lm(q̂)− −2 Y

∗
lm(q̂))( 2Ylm(q̂)− −2 Ylm(q̂)

]
. (5.13)

As we can see from Eq. (5.13), the observed spectrum 〈C̃EEl 〉 depends on the angular power spec-

trum of the B-mode. As we have outlined in this chapter, the standard pseudo-Cl that we have

defined here is mixing the E and B-modes in the sense that in the absence of E-mode the power

spectrum of the E-mode polarization is non-zero (B-mode leaking to E); and in absence of B-mode

polarization CBBl′ 6= 0 (E-mode leaking to B). For the estimation of the EE power spectrum, we

ignore this aspect of the estimator leaving for future prospect the utilization of the “pure” pseudo-

Cl method.

Now, we decompose the expected power spectrum 〈C̃EEl 〉 into two terms containing two matrices

AEEll′ and ABBll′ that we derive next. For brevity, we adopt the following notations of the bias matrices
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throughout this chapter:

AEEll′ = AEll′ , (5.14)

ABBll′ = ABll′ . (5.15)

We may write Eq. (5.13) as

〈C̃EEl 〉 =
∑

l′

AEll′C
EE
l′ +

∑

l′

ABll′C
BB
l′ , (5.16)

where the bias matrices AEll′ and A
B
ll′ are defined by

AEll′ =
1

2l + 1

l∑

m=−l

l′∑

m′=−l′

l′∑

M=−l′

∑

l′′m′′

l′∑

M1=−l′

∑

l′′
1
m′′

1

wPl′′m′′wP∗
l′′
1
m′′

1

bEl′Mb
E
l′M1

×
∫
dΩq̂Yl′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))]∗
∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂))

× ( 2Y
∗
lm(q̂) + −2 Y

∗
lm(q̂))( 2Ylm(q̂) + −2 Ylm(q̂)), (5.17)

and

ABll′ =
1

2l + 1

l∑

m=−l

l′∑

m′=−l′

l′∑

M=−l′

∑

l′′m′′

l′∑

M1=−l′

∑

l′′
1
m′′

1

wPl′′m′′wP∗
l′′
1
m′′

1

bEl′Mb
E
l′M1

×
∫
dΩq̂Yl′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))]∗
∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂))

× ( 2Y
∗
lm(q̂)− −2 Y

∗
lm(q̂))( 2Ylm(q̂)− −2 Ylm(q̂)). (5.18)

The bias matrices AEll′ and A
B
ll′ relate the true power spectra CEEl′ and CBBl′ to the observed power

spectrum 〈C̃EEl 〉. The theoretical values of the power spectra are obtained from the best fit fiducial

model computed by the CAMB software. In the following sections, we derive the analytical forms of

the bias matrices AEll′ and A
B
ll′ , then reduce their expressions by only including the Clebsch-Gordan

coefficients and Wigner-d functions, instead of spherical harmonics, in the expression of the bias

matrices.

5.4 Calculation of the bias matrix AE
ll′

In this section, we treat the derivation of the integrals of the spherical harmonic functions and

rotation matrices involved in the expression of the bias matrix AEll′ . The first step of the calculations
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consists to derive the following integral

I =

∫
dΩq̂Yl′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))]∗. (5.19)

The complex conjugate of the integral I reads

I∗ =

∫
dΩq̂Y

∗
l′′m′′(q̂)[Dl′

m′M (q̂, ρ(q̂))]. (5.20)

We use Eq. (1), Section 4.17 of [146] and write

Y ∗
l′′m′′(q̂) =

√
2l′′ + 1

4π
Dl′′

m′′0(q̂, ρ(q̂)), (5.21)

and the integral I∗ can be expressed as

I∗ =

√
2l′′ + 1

4π

∫
dΩq̂D

l′′

m′′0(q̂, ρ(q̂))D
l′

m′M (q̂, ρ(q̂)). (5.22)

The product of two Wigner-D rotation matrices can be expanded and expressed in terms of Clebsch-

Gordan coefficients using Eq. (1), Section 4.6 of [146], and we get

Dl′′

m′′0(q̂, ρ(q̂))D
l′

m′M (q̂, ρ(q̂)) =
l′′+l′∑

L=|l′′−l′|

C
L(m′′+m′)
l′′m′′l′m′ DL

(m′′+m′)M (q̂, ρ(q̂))CLMl′′0l′M , (5.23)

that yields

I∗ =

√
2l′′ + 1

4π

l′′+l′∑

L=|l′′−l′|

C
L(m′′+m′)
l′′m′′l′m′ CLMl′′0l′M

∫
dΩq̂D

L
(m′′+m′)M (q̂, ρ(q̂)). (5.24)

As we have seen in Eq. (E.9), for an equal declination scan ρ(q̂) = ρ(θ); the last integral in the

above equation vanishes unless m′′ +m′ = 0, and the integral I∗ reduces to

I∗ =

√
2l′′ + 1

4π

l′′+l′∑

L=|l′′−l′|

CL0l′′−m′l′m′CLMl′′0l′M χL0M [ρ(q̂)]. (5.25)

The second step of the calculation of the bias matrix AEll′ consists to derive the following integral

J =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂))

× ( 2Y
∗
lm(q̂) + −2 Y

∗
lm(q̂))( 2Ylm(q̂) + −2 Ylm(q̂)), (5.26)
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which is reported to the following section.

5.5 Calculation of the integral J

In this section, we present the derivation of the integral J involved in the calculation of the bias

matrix AEll′ . We write the integral J in the following form

J =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂))

× ( 2Y
∗
lm(q̂) 2Ylm(q̂) + 2 Y

∗
lm(q̂) −2Ylm(q̂)

+ −2Y
∗
lm(q̂) 2Ylm(q̂) + −2 Y

∗
lm(q̂) −2Ylm(q̂)). (5.27)

We can decompose the integral J into the sum of two integrals and then, calculate each integral

involved in the summation. First, we calculate the following integral

J1 =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂)) 2Y

∗
lm(q̂) 2Ylm(q̂). (5.28)

From Eq. (1), Section 4.17 of [146] we have

Y ∗
l′′
1
m′′

1

(q̂) =

√
2l′′1 + 1

4π
D
l′′
1

m′′

1
0
(q̂, ρ(q̂)), (5.29)

and may write

Y ∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂)) =

√
2l′′1 + 1

4π
D
l′′
1

m′′

1
0
(q̂, ρ(q̂))Dl′

m′M1
(q̂, ρ(q̂)), (5.30)

which after the insertion of the Clebsch-Gordan series yields

Y ∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂)) =

√
2l′′1 + 1

4π

l′′
1
+l′∑

L=|l′′
1
−l′|

C
L(m′′

1
+m′)

l′′
1
m′′

1
l′m′

DL
(m′′

1
+m′)M1

(q̂, ρ(q̂))CLM1

l′′
1
0l′M1

. (5.31)

Then, we calculate the product of the spin-2 spherical harmonics. From Eq. (3.3) of [147] we may

write the following relation

2Ylm(q̂) = (−1)m−2Y
∗
l−m(q̂) (5.32)

90



Non-circular beam and cut-sky for EE polarized signals

that we combine with Eq. (3.11) of [125]

2Ylm(q̂) = (−1)m
√

2l + 1

4π
Dl

−m2(q̂, ρ(q̂)), (5.33)

in order to derive the following relation

2Y
∗
lm(q̂) 2Ylm(q̂) =

√
2l + 1

4π
Dl

−m2(q̂, ρ(q̂))(−1)m
√

2l + 1

4π
Dl

−m2(q̂, ρ(q̂)). (5.34)

We replace the product of the Wigner-D matrices by their Clebsch expansions using Eq. (1) of

Section 4.6 of [146] and get

2Y
∗
lm(q̂) 2Ylm(q̂) =

2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−mD
L′

00(q̂, ρ(q̂))C
L′0
l−2l2. (5.35)

Furthermore, we repeat the expansion of the product of Wigner-D functions using Eq. (1) of Section

4.6 of [146] and write

DL
(m′′

1
+m′)M1

(q̂, ρ(q̂))DL′

00(q̂, ρ(q̂)) =

L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

DL′′

(m′′

1
+m′)M1

(q̂, ρ(q̂))CL
′′M1

LM1L′0, (5.36)

and plugging this in Eq. (5.28) yields the following expression of the integral

J1 =

√
2l′′1 + 1

4π

l′′
1
+l′∑

L=|l′′
1
−l′|

C
L(m′′

1
+m′)

l′′
1
m′′

1
l′m′

CLM1

l′′
1
0l′M1

2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−mC
L′0
l−2l2

×
L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

CL
′′M1

LM1L′0

∫
dΩq̂D

L′′

(m′′

1
+m′)M1

(q̂, ρ(q̂)). (5.37)

Thereafter, we calculate the following integral

J2 =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂)) 2Y

∗
lm(q̂) −2Ylm(q̂), (5.38)

which can be derived by repeating the previous steps. We combine Eq. (3.3) of [147] and Eq. (3.11)

of [125] to derive

2Y
∗
lm(q̂) −2Ylm(q̂) =

√
2l + 1

4π
Dl
m−2(q̂, ρ(q̂))(−1)m

√
2l + 1

4π
Dl

−m−2(q̂, ρ(q̂)), (5.39)
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which after the expansion of the Wigner-D matrices as in Eq. (1), Section 4.6 of [146] reduces to

2Y
∗
lm(q̂) 2Ylm(q̂) =

2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−mD
L′

0−4(q̂, ρ(q̂))C
L′−4
l−2l−2. (5.40)

The Clebsch-Gordan series of Eq. (1), Section 4.6 of [146] imply the following relation

DL
(m′′

1
+m′)M1

(q̂, ρ(q̂))DL′

0−4(q̂, ρ(q̂)) =

L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

DL′′

(m′′

1
+m′)(M1−4)(q̂, ρ(q̂))C

L′′(M1−4)
LM1L′−4 ,

which replaced in the integral of Eq. (5.38) gives the following relation

J2 =

√
2l′′1 + 1

4π

l′′
1
+l′∑

L=|l′′
1
−l′|

C
L(m′′

1
+m′)

l′′
1
m′′

1
l′m′

CLM1

l′′
1
0l′M1

2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−mC
L′−4
l−2l−2

×
L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

C
L′′(M1−4)
LM1L′−4

∫
dΩq̂D

L′′

(m′′

1
+m′)(M1−4)(q̂, ρ(q̂)). (5.41)

Similarly, we derive the next integral

J3 =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂)) −2Y

∗
lm(q̂) 2Ylm(q̂), (5.42)

by using the same steps and relations that link the spin-2 spherical harmonics to the Wigner-D

matrices and Clebsch-Gordan series. Then, we obtain the following expressions

−2Y
∗
lm(q̂) 2Ylm(q̂) =

√
2l + 1

4π
Dl
m2(q̂, ρ(q̂))(−1)m

√
2l + 1

4π
Dl

−m2(q̂, ρ(q̂)),

=
2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−mD
L′

04(q̂, ρ(q̂))C
L′4
l2l2, (5.43)

and

DL
(m′′

1
+m′)M1

(q̂, ρ(q̂))DL′

04(q̂, ρ(q̂)) =
L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

DL′′

(m′′

1
+m′)(M1+4)(q̂, ρ(q̂))C

L′′(M1+4)
LM1L′4 ,
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from which we get

J3 =

√
2l′′1 + 1

4π

l′′
1
+l′∑

L=|l′′
1
−l′|

C
L(m′′

1
+m′)

l′′
1
m′′

1
l′m′

CLM1

l′′
1
0l′M1

2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−mC
L′4
l2l2

×
L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

C
L′′(M1+4)
LM1L′4

∫
dΩq̂D

L′′

(m′′

1
+m′)(M1+4)(q̂, ρ(q̂)). (5.44)

We similarly proceed as above for the derivation of the last integral

J4 =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂)) −2Y

∗
lm(q̂) −2Ylm(q̂), (5.45)

and obtain the following relations

−2Y
∗
lm(q̂) −2Ylm(q̂) =

√
2l + 1

4π
Dl
m2(q̂, ρ(q̂))(−1)m

√
2l + 1

4π
Dl

−m−2(q̂, ρ(q̂)),

=
2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−mD
L′

00(q̂, ρ(q̂))C
L′0
l2l−2, (5.46)

and

DL
(m′′

1
+m′)M1

(q̂, ρ(q̂))DL′

00(q̂, ρ(q̂)) =

L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

DL′′

(m′′

1
+m′)M1

(q̂, ρ(q̂))CL
′′M1

LM1L′0,

which yield the following expression

J4 =

√
2l′′1 + 1

4π

l′′
1
+l′∑

L=|l′′
1
−l′|

C
L(m′′

1
+m′)

l′′
1
m′′

1
l′m′

CLM1

l′′
1
0l′M1

2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−mC
L′0
l2l−2

×
L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

CL
′′M1

LM1L′0

∫
dΩq̂D

L′′

(m′′

1
+m′)M1

(q̂, ρ(q̂)). (5.47)

Then, we obtain the integral J = J1 + J2 + J3 + J4. If we assume an equal declination scan

strategies ρ(q̂) = ρ(θ) of the CMB polarimetry experiment, we can write according to Eq. (E.9) of

the appendix the following relation

χL
′′

(m′′

1
+m′)M1

[ρ(θ)] ≡
∫
dΩq̂D

L′′

(m′′

1
+m′)M1

(q̂, ρ(q̂)) = χL
′′

0M1
[ρ(θ)], (5.48)
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and for the particular case of a non-rotating beam ρ(q̂) = 0, we can evaluate analytically the

function χ, which is defined by χL
′′

0M1
[ρ(θ)] = 2π

∑L′′

N=−L′′ dL
′′

0N (
π
2 )d

L′′

NM1
(π2 )fM1N . Note that the only

non-vanishing term of the integral of the Wigner-D matrix is obtained for m′′
1 +m′ = 0 implying

the condition m′′
1 = −m′. Thus, the integral J reduces to

J =

√
2l′′1 + 1

4π

l′′
1
+l′∑

L=|l′′
1
−l′|

C
L(m′′

1
+m′)

l′′
1
m′′

1
l′m′

CLM1

l′′
1
0l′M1

2l + 1

4π
(−1)m

2l∑

L′=0

CL
′0

lml−m

L+L′∑

L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

×
[
CL

′0
l−2l2C

L′′M1

LM1L′0 χ
L′′

0M1
[ρ(θ)] + CL

′−4
l−2l−2C

L′′(M1−4)
LM1L′−4 χL

′′

0(M1−4)[ρ(θ)]
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]
. (5.49)

Finally, using the relation CL
′0

l−2l2 = (−1)L
′

CL
′0

l2l−2 from Eq. (11), Section 8.4.3 of [146], and replacing

the function χ we get

J =
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′
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]
,

=
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1
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1
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C
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1
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L′′=|L−L′|

C
L′′(m′′

1
+m′)

L(m′′

1
+m′)L′0

×
[
((−1)L

′

+ 1)CL
′0

l2l−2C
L′′M1

LM1L′0 2π
L′′∑
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2
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]
. (5.50)

The non-rotating beam assumption implies that the integral I is real so that I∗ = I. Then, we

may write the form of the bias matrix AEll′ as follows

AEll′ =
1

2l + 1

l∑

m=−l

l′∑

m′=−l′

l′∑

M=−l′

∑

l′′m′′

l′∑

M1=−l′

∑

l′′
1
m′′

1

wPl′′m′′wP∗
l′′
1
m′′

1

bEl′Mb
E
l′M1

I × J. (5.51)
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Replacing the integrals I and J by their expressions, we get

AEll′ =
1
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]
, (5.52)

which after simplification reduces to the following form

AEll′ =
1

4
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√
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2
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2
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]
. (5.53)
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In this formula, l′′max and l′′1max are the cut-off at the multipole l of the polarization mask. The

expansions of the beam harmonic transforms are limited to the multipoles M, M1 = ±2, ±4, ±6,

as we have used the same model of simulated beam as that adopted in Chapter 3.

5.6 Calculation of the bias matrix AB
ll′

We derive in this section the bias ABll′ which results from the B-mode contribution to the EE bias

matrix. We note that the bias matrix ABll′ calculations involve the same integrals as those ones

(J1, J2, J3, J4) derived in the previous section, except some changes in the integrals sign. The

bias matrix ABll′ can be written as follows

ABll′ =
1

2l + 1

l∑

m=−l

l′∑

m′=−l′

l′∑

M=−l′

∑

l′′m′′

l′∑
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∑

l′′
1
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1

wPl′′m′′wP∗
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1
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1

bEl′Mb
E
l′M1

×
∫
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m′M (q̂, ρ(q̂))]∗
∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂))

× ( 2Y
∗
lm(q̂)− −2 Y

∗
lm(q̂))( 2Ylm(q̂)− −2 Ylm(q̂)),

=
1

2l + 1

l∑
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l′∑
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l′∑

M=−l′

∑
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l′∑
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∑

l′′
1
m′′

1

wPl′′m′′wP∗
l′′
1
m′′

1

bEl′Mb
E
l′M1

I ×K, (5.54)

where K is defined by

K =

∫
dΩq̂Y

∗
l′′
1
m′′

1

(q̂)Dl′

m′M1
(q̂, ρ(q̂))

× ( 2Y
∗
lm(q̂)− −2 Y

∗
lm(q̂))( 2Ylm(q̂)− −2 Ylm(q̂)). (5.55)

The integral I has been already previously derived, then we only need to find the integral K which

can be written as K = J1−J2−J3+J4. Obviously, we can see that the integral K can be obtained

directly from the integral J = J1+J2+J3+J4 by putting the negative sign in front of the integrals
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J2 and J3. Therefore, under the non-rotating beam condition, the bias matrix ABll′ reads
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]
, (5.56)

where as previously mentioned, the beam expansions in harmonic space are limited to the multipoles

M, M1 = ±2, ±4, ±6 which provide sufficient accuracy for mildly elliptical beams [66].
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Thus, we resume the expectation value of the EE power spectrum with the following formula
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CBBl′ , (5.57)

which can be reduced to the following form
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〈C̃EEl 〉 =
1

4

∑

l′

l∑

m=−l

l′∑

m′=−l′

l′∑

M=−l′

l′∑

M1=−l′

l′′max∑

l′′=0

l′′
1max∑

l′′
1
=0

(−1)m
√
(2l′′ + 1)(2l′′1 + 1)wPl′′−m′wP∗

l′′
1
−m′b

E
l′Mb

E
l′M1

×
l′′+l′∑

L=|l′′−l′|

CL0l′′−m′l′m′CLMl′′0l′M

L∑

N=−L

dL0N (
π

2
)dLNM (

π

2
)fMN

×
l′′
1
+l′∑

L=|l′′
1
−l′|

CL0l′′
1
−m′l′m′C

LM1

l′′
1
0l′M1

2l∑

L′=0

CL
′0

lml−m

L+L′∑

L′′=|L−L′|

CL
′′0

L0L′0

×
{[

((−1)L
′

+ 1)CL
′0

l2l−2C
L′′M1

LM1L′0

L′′∑

N=−L′′

dL
′′

0N (
π

2
)dL

′′

NM1
(
π

2
)fM1N

+ CL
′−4

l−2l−2C
L′′(M1−4)
LM1L′−4

L′′∑

N=−L′′

dL
′′

0N (
π

2
)dL

′′

N(M1−4)(
π

2
)f(M1−4)N

+ CL
′4

l2l2C
L′′(M1+4)
LM1L′4

L′′∑

N=−L′′

dL
′′

0N (
π

2
)dL

′′

N(M1+4)(
π

2
)f(M1+4)N

]
CEEl′

+

[
((−1)L

′

+ 1)CL
′0

l2l−2C
L′′M1

LM1L′0

L′′∑

N=−L′′

dL
′′

0N (
π

2
)dL

′′

NM1
(
π

2
)fM1N

− CL
′−4

l−2l−2C
L′′(M1−4)
LM1L′−4

L′′∑

N=−L′′

dL
′′

0N (
π

2
)dL

′′

N(M1−4)(
π

2
)f(M1−4)N

− CL
′4

l2l2C
L′′(M1+4)
LM1L′4

L′′∑

N=−L′′

dL
′′

0N (
π

2
)dL

′′

N(M1+4)(
π

2
)f(M1+4)N

]
CBBl′

}
. (5.58)

Eq. (5.58) represents the final expression of the EE power spectrum of a CMB polarimetry ex-

periment with non-circular beams in the presence of a cut-sky weighted by the polarization mask

function. We must not forget that the estimated EE power spectrum obtained in the above calcu-

lations contains a leaking B-mode power since for a finite patch of the sky the standard pseudo-Cl

estimator is mixing the E and B-mode. This can be interpreted as a leaking power of the B-mode

into the E-power spectrum induced by the boundary conditions. Providing the beam harmonic

transforms of the model of beam and polarization mask, the bias matrices AEll′ and A
B
ll′ are readily

computable. Thereafter, we apply these matrices to the true power spectra in accordance with Eq.

(5.16) in order to obtain the observed power spectrum of the EE autocorrelation. The true power

spectra CEEl′ and CBBl′ correspond to the simulated best fiducial model computed from CAMB, for

a given cosmological model. Note that once the numerical implementation of the Clebsch-Gordan

coefficients and Wigner-d functions involved in the bias matrix AEll′ is done, no further calculation
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of those coefficients is needed for the computation of the bias matrix ABll′ . The reason is that the

bias matrix ABll′ can be simply obtained from AEll′ by changing to the opposite sign the last two

terms inside the square brackets (see, Eq. (5.53) and Eq. (5.56)).

5.7 The full sky and non-circular beam limit for EE

The contribution of the variance of the B-mode to the EE power spectrum can be reduced by

observing an important fraction of the sky. A full-sky observation is unrealistic for polarimetry

experiments, though the observation over an extended area of the sky on small angular scales can

reduce to some extent the mean power CBBl′ . In this case, the weight of the polarization mask

wP (q̂) ≃ 1, then we may write the harmonic transforms of the polarization mask as

wPl′′−m′ =

∫
dΩq̂Y

∗
l′′−m′(q̂) =

√
4πδl′′0δm′0, (5.59)

wPl′′
1
−m′ =

∫
dΩq̂Y

∗
l′′
1
−m′(q̂) =

√
4πδl′′

1
0δm′0. (5.60)

The only non-vanishing terms of the summations in Eq. (5.53) are obtained for l′′ = l′′1 = m′ = 0

which yield the following expression of the bias matrix AEll′
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. (5.61)
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From Eq. (10), Section 8.4.3 and Eq. (2), Section 8.5 of [146], we obtain the following relations

C l
′0
00l′0 = C l

′0
l′000 = 1, (5.62)

C l
′M
00l′M = C l

′M
l′M00 = 1, (5.63)

which plugged in the above equation yield
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. (5.64)

The analogue of the bias matrix ABll′ formula reads

ABll′ = π

l∑

m=−l

l′∑
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. (5.65)
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Then, we can summarize the expression of the expectation value of the power spectrum 〈C̃EEl 〉 as
follows

〈C̃EEl 〉 =
1

4

∑

l′
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√
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CBBl′

}
. (5.66)

5.8 Discussion

The implication of the cut-sky observation is the contamination of the E-mode by the B-mode

signal and vice-versa. This is produced by the non-uniqueness of the decomposition of the polar-

ization radiation fields in a finite area of the sky (see, [160]). This is aggravated by the variance of

the CMB lensing induced B-mode from the initial E-mode.

We note that the bias matrices AEll′ and A
B
ll′ have the same computational cost as they contain

exactly the same number of loops. The summations over the polarized beam modes M and M1 are

finite as M, M1 = ±2, ±4, ±6. The summations over the mask multipoles l′′ and l′′1 are fixed by

the highest multipoles of the mask (cut-off), l′′max and l′′1max. The computation time of each bias
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matrix can be reduced by choosing an apodizing polarization mask whose harmonic transforms fall

off rapidly enough with the multipoles l′′ and l′′1 . This can be achieved, for example by constructing

azimuthally apodized masks as indicated in Mitra et al. [140]. In that case, we can restrain the

computation to l′′max, l
′′
1max ∼ 100. In addition, for each mask multipole l′′ or l′′1 , only the first 10

to 20 m′ modes have significant power and consequently the summations over the mask multipoles

l′′ and l′′1 are finite as well. This implies that the computation time can be reduced by a large

factor. We are left with nine summations involved in each Eq. (5.53) and Eq. (5.56). One of the

summations which does not appear in Eq. (5.53) and Eq. (5.56), is related to the loop over the

multipole l′ of the bias matrix. This leads to a computation time that scales as O(l9max), which

becomes rapidly prohibitive for large l.

The smoothing of the sky map with an apodized mask weighted by the mask function wP ,

increases the variance of the predicted power spectrum and couples the power between adjacent

multipoles. The combined effects of the beam non-circularity and cut-sky are localized in the

multipole space around the diagonal of the bias matrix. In fact, the bias matrix is not far from

diagonal. This allows us to reduce the computation time by choosing a narrow band (∆l ≤ 20 for

example) around the diagonal of the bias matrix. This reduces the computation time by a power of

l. Furthermore, we can exploit the symmetry relations of the Wigner-d functions in order to reduce

the computation cost by an order of magnitude. If we account for all above modifications, the bias

matrix calculation can be feasible in a reasonable time by means of a parallel computation.

In the limiting case of a CMB experiment using a full sky survey and non-circular beams, the

mixing of power between E and B-modes (estimator “noise”) becomes less significant on small

angular scales (higher multipoles). Each bias matrix in Eq. (5.64) and Eq. (5.65) contains six

independent summations: one of them is over the multipole l′ of the bias matrix AEll′ or A
B
ll′ . The

corresponding computational cost scales as O(l6max). We again introduce, as previously suggested,

the symmetry properties of the Clebsch-Gordan coefficients and Wigner-d functions and compute

the bias matrices around the diagonal band ∆l ≤ 20. This allows the reduction of the computation

time by a factor of l, and the final computational cost estimate is ∼ O(l6max). This is comparable

to the computation time estimate, obtained by Mitra et al. [140], of the TT (temperature) bias

matrix using non-circular beams and cut-sky.

As mentioned in the previous chapter, an important reduction of the computation time is

obtained by precomputing all Wigner-d functions. However at large l ∼ 1000, the efficiency of the

method is limited by disc/memory storage and programme input/output overhead [140]. The idea

of parallel computation discussed in [140] can be equally applied in order to compute the EE bias

matrix in a reasonable time. The numerical implementation of the EE bias matrix will be carried

out using high performance computing, which belongs to our future prospects.
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Chapter 6

Conclusion

The cosmic microwave background radiation is an imprint of the radiation fluid at the time of

decoupling. The angular power spectra of the CMB temperature and polarization provide a di-

rect test of cosmological models, and lead to the determination of the cosmological parameters.

The CMB contains all information about the dynamical parameters of the Universe, and on the

standard cosmology and other cosmologies, model of inflations and their variants, and dark energy.

The theoretical predictions based on the standard model can be corroborated from the observed

CMB maps by means of fast and accurate estimators. On the observational side, the CMB data

quantity and quality have been remarkably improved to the extent that the estimation of the an-

gular power spectrum from the measurements becomes a stiff challenge. Correspondingly, several

methods have been developed to handle the huge amount of data sets, and estimate the angular

power spectrum with a reasonable time. Broadly speaking, CMB power spectra estimators belong

to one of the two categories: the maximum likelihood and pseudo-Cl methods. We have mentioned

in Chapter 3 that the ML requires extremely heavy computation, and is prohibitive for small an-

gular scales in high resolution CMB experiments. For this reason, alternative methods such as

the pseudo-Cl estimator is desirable. Throughout this thesis the power spectra of the temperature

and polarization anisotropies have been estimated using the fast suboptimal pseudo-Cl estimator.

In CMB surveys, the actual data collected by the telescope detectors contain both the CMB and

non-negligible parasitic signals induced by the systematic effects. These systematic errors must be

taken into account prior the power spectrum estimation using the estimator of choice. The new

estimator that accounts for the systematics, constructed from the initial pseudo-Cl is now unbiased,

and can be exploited to retrieve the true power spectra. In CMB data analysis, this is known as

the deconvolution process. All information about the systematics are encoded in a matrix called

bias matrix or coupling matrix, meaning that the instrument systematics and other effects provoke

a coupling and mixing of power between multipoles.

The evaluation of this bias matrix that relates the observed power spectrum to the true one, has
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been the ultimate goal of this thesis. Among the systematics, our main focus has been the study of

the effects of the non-circular beams and incomplete sky coverage in the TE and EE correlations

which have not been carefully considered till date. Our investigation is based on the compari-

son between the TE power spectra smoothed by a non-circular (elliptical) beam and symmetrized

circular Gaussian beam. The main issue of the bias matrix numerical evaluation in most CMB

high resolution experiments is the huge computational time. In this thesis, great efforts have been

made to compute the bias matrix as fast as possible in the case of CMB polarimetry experiments

using non-circular (asymmetric) beams and full sky coverage (Chapter 3), in the trivial case of a

non-rotating beam scanning strategy.

We have demonstrated in Chapter 3 that an adequate numerical implementation of the pseudo-

Cl estimator allows the computation of the bias matrix with a computational gain that scales as

O(l1.8). The corresponding investigations have been restricted to non-circular beams with a com-

plete sky coverage, and we have assumed a non-rotating beam scan. Two important new results

have been obtained in Chapter 3: the analytical derivation and numerical evaluation of the TE bias

matrix. The new formula obtained which is valid in the limiting case of a simple scanning strategy

of non-rotating beam, has been checked for consistency; and we found that it has reproduced the

well-known result of the bias matrix of the TE cross-correlation of a CMB experiment using cir-

cular (symmetric) Gaussian beams. Although, the most remarkable achievement in this thesis is

the optimization of the computation time of the TE bias matrix which has been realized through

the smart algorithm implementation of the bias exposed in Chapter 3. Previous work (see, [140])

done in this direction, has utilized computer-intensive parallel processing in order to reduce the

computation time (∼ few weeks). Instead, our method can be readily implemented in a computer

working with a single CPU processor and a memory of moderate size (2.55 GHz and 4 GB laptop).

The pipeline implementation has been proved to be relatively extremely fast (∼ few seconds for

lmax = 500), and the computational time (in seconds) scales as O(lmax). This computation cost

estimate is new, as existing algorithm based on spherical harmonic like the “total convolution” of

Wandelt & Górski [22] and Challinor et al. [145] scales as ∼ l3maxmmax, where lmax and mmax are

the highest multipole and azimuthal beam multipole. This indicates a speed-up factor of ∼ l2max of

our algorithm implementation.

The bias matrix of the correlation between T and E using non-circular beams in the presence

of a cut-sky has been explicitly calculated for the first time in Chapter 4. We have successively

verified the consistency of our new formula. In the limiting case of a full sky coverage and non-

circular beam, we have seen that the TE bias matrix reduces to the expression of the bias already

obtained in Chapter 3. In addition, we have checked that the new formula can directly reproduce

the well-known formula of the bias matrix in the limiting case of a full sky and circularly symmetric

beam. Similar investigation has been done in the case of a CMB experiment using a circular beam

and incomplete sky, and starting from the new formula obtained, we have shown that, again it

reproduces the well-known result of the TE bias matrix of a circular (axisymmetric) beam and
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full sky in CMB polarization experiments. The consistency of the bias matrix results in Chapter 4

provides a sufficient proof of the exactness of our formula. The insertion of the mask in the process

of foreground removals drastically complicates the computation of the bias matrix. The sky is

now non-uniform, and the mask multipoles are coupled to the sky multipoles through the Clebsch-

Gordan coefficients and the Wigner-d functions. As a result, the Clebsch-Gordan coefficients and

Wigner rotation matrices symmetry relations introduced in Chapter 3 might not be applicable and

the bias matrix numerical implementation becomes a huge computational challenge. Nevertheless,

one can construct [140] apodized temperature masks whose harmonic transforms die down rapidly

with the multipoles, in order to reduce the computation time. At the time of the writing of this

thesis, no known numerical work has been done in this direction in the view of computing the bias

matrix of the correlation between the temperature T and E-polarization for a CMB experiment

using non-circular beams and partial sky coverage. Although, the new analytical results of the bias

matrix constitute a stepping-stone for future work that includes the numerical implementation of

the TE bias matrix.

New expressions of the EE bias matrices have been obtained in Chapter 5. The analytical

derivation of the bias is rather complicated as the EE auto-correlation involves the B-mode compo-

nent of the polarization power spectrum. The effect of the beam non-circularity and incomplete/non-

uniform sky coverage has been included in the calculations of the bias matrices AEll′ and A
B
ll′ . Apart

from the exploitation of the symmetry properties of the Clebsch-Gordan coefficients and Wigner-d

functions, a parallel computation can be carried out in order to reduce the computational cost of

the bias matrices AEll′ and A
B
ll′ numerical evaluations. The numerical implementation of those bias

matrices is relatively complicated because of the presence of the polarization mask whose harmonic

transforms do not always fall-off rapidly. In such case, the presence of the loops over the mask

multipoles up to the multipole cut-off might be problematic as this considerably increases the com-

putation time of each bias matrix. However, by computing the bias matrix within a diagonal band

|l − l′| ≤ 20, and using the Wigner-d function symmetry relations, a reduction of the computation

time by a power of l is possible. The computation of the EE bias matrices using high performance

parallel processing allows further reduction in the computation time. This is a line of activity we

plan to undertake in the future.

For the BB power spectrum that we have not considered in this work, the mixing is worse since

CEEl′ ≫ CBBl′ . The estimation of the C̃l
BB

power spectrum through the EE and BB bias matrices

for the extremely faint B-mode signals, which have not been detected up to date; in the presence of

a beam asymmetry and cut-sky with the “pure” pseudo-Cl estimator demands deep investigations

and belongs to future prospects.

Throughout this work, a precomputation of the Clebsch-Gordan coefficients and Wigner-d func-

tions has been implemented, whenever possible (disc/memory storage dependent) in order to reduce

the computation time of the bias matrix.
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The Planck polarization data is expected to be released in 2014. The high sensitivity and res-

olution of the Planck experiment will provide a high quality and large polarization data size with

unprecedented accuracy. After the Planck polarization data release, the simulation work described

in this thesis, especially the TE power spectrum estimation in the full sky limit, will become par-

ticularly valuable and contribute mostly to the understanding of the beam corrections needed in

high resolution CMB experiments. Our work provides a very rapid and convenient tool for the TE

power spectrum estimation by means of a modest computational resource.

We summarize this thesis by making three insightful remarks. All results have been obtained

in the non-rotating beam limit, though the same formalism can be developed in the future to

accommodate more general and real CMB polarization experiments scanning strategies. The second

remark concerns the ellipticity (eccentricity) of the beam which is assumed to be constant across

the sky in the model of beam of Fosalba et al. [66]. Finally, we have used the standard “pseudo-Cl”

estimator for the evaluation of the EE bias matrix. In practical applications, the “pure” pseudo-Cl

estimator should be employed for the estimation of the EE and BB power spectra in order to avoid

the E and B-mode mixing in the standard pseudo-Cl method. This topic is presently outside the

scope of this thesis, but in the future the exploitation of this “pure” estimator will be an integral

part of our research activities.
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Appendix A

Consistency checks

We will show in this appendix that for the particular case of a circular beam, the general expression

of the bias matrix Eq. (3.50) reduces to the usual form of the window function of a symmetric

and co-polar beams in polarization experiments. Only the modes m′′ = 0 and M ′ = ±2 contribute

when the beam is circulary symmetric. Replacing this into Eq. (3.50) we get

ATEll′ = πbTl′0b
E
l′2
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m=−l

l+l′∑
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2
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2
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]
. (A.1)

The integral
∑L

M=−L d
L
0M (π2 )d

L
M0(

π
2 )f0M can be evaluated from the following relation involving

spherical harmonics (Eq. (1) of Section 5.9.1 of [146])

∫

4π
Y ∗
Lm(q̂)dΩq̂ =

√
4πδL0δm0.

Then we introduce the relation between the rotation matrices and spherical harmonics using Eq.

(1), Section 4.17 of [146]

Y ∗
Lm(q̂) =

√
2L+ 1

4π
DL
m0(q̂, 0), (A.2)
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and making use of the following formula (Eq. (E14) of [140]) that relates the rotation matrices to

the Wigner-d function

DL
mm′ (φ, θ, ρ) = im+m′

e−imφ
L∑

M=−L

[
(−1)M dLmM

(π
2

)
eiMθ dLMm′

(π
2

)]
e−im

′ρ, (A.3)

we derive

√
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)
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(π
2

)∫
e−imφdφ

∫
eiMθ sin θdθ =

√
4πδL0δm0, (A.4)

where
∫
e−imφdφ = 2πδm0. We identify both sides of Eq. (A.4) and by taking into account the

definition

f0M = (−1)M
∫ π

0
dθ sin θeiMθ (A.5)

derived from Eq. (3.43) in the case of non-rotating beam, it follows that

L∑

M=−L

dL0M (
π

2
)dLM0(

π

2
)f0M =

2

2L+ 1
δL0. (A.6)

This implies that the only non-vanishing terms in Eq. (A.1) are obtained for L = L′ = 0 which

yields

ATEll′ = 4πbTl′0b
E
l′2

l∑

m=−l

C00
l−ml′mC

00
l0l′0C

00
l−ml′m(C

00
l2l′−2 + C00

l−2l′2), (A.7)

since the other terms of the summations containing the Wigner-d function vanish unless L′ ≥ 4. We

can further simplify the above equation by using the properties of the Clebsch-Gordan coefficients.

From Eq. (1) of Section 8.5.1 and Eq. (11) of Section 8.4.2 of [146]

C00
aαbβ = (−1)a−α

δabδα,−β√
2a+ 1

, (A.8)

Ccγaαbβ = (−1)a+b−cCcγa−αb−β , (A.9)
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we can derive using a simple algebra the following expression of the bias matrix

ATEll′ =
8π

2l + 1
bTl′0b

E
l′2 δll′

l∑

m=−l

(C00
l−ml′m)

2,

=
8π

2l + 1
bTl′0b

E
l′2 δll′ , (A.10)

and finally from the analytical definition of the beam harmonic transforms in Eq. (3.24) where we

plug in χ = 0, we recover

ATEll′ = e−l
2σ2

δll′ , (A.11)

which is the well-known result of the bias matrix for a symmetric beam (see, [147]; [145]).
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Appendix B

Evaluation of the integrals I1, I2 and I3

In this appendix we will give the explicit forms of the integrals by using the properties of the spin-s

spherical harmonics and Wigner-D functions and their relations to the Clebsch-Gordan coefficients.

We use the Eq. (11), Section 5.1.5 and Eq. (1), Section 4.17 of [146]

Y ∗
lm(q̂) = (−1)mYl−m(q̂), (B.1)

Y ∗
lm(q̂) =

√
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Dl
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and write the spherical harmonic function in the form
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to derive
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The product of the two Wigner-D functions is expanded in terms of the Clebsch-Gordan coefficients

and can be expressed using Eq. (1), Section 4.6 of [146] as follows

Dl
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and then, the integral I1 can be written as
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112



Evaluation of the integrals I1, I2 and I3

We calculate the integrals I2 and I3 by making use of the following relation (Eq. (3.11) of [125])

sYlm(q̂) = (−1)m
√

2l + 1

4π
Dl

−ms(q̂, ρ(q̂)) (B.7)

for the spin-s spherical harmonics. The integral I2 can be expressed as
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and from Eq. (1), Section 4.6 of [146], the expression reduces to the following form

I2 = (−1)m
√

2l + 1

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ C

L(2+M)
l2l′M

∫
dΩq̂D

L
(−m+m′)(2+M)(q̂, ρ(q̂)). (B.9)

We follow the same procedure to evaluate the integral I3 and find

I3 = (−1)m
√

2l + 1

4π

∫
dΩq̂D

l
−m−2(q̂, ρ(q̂))D

l′

m′M (q̂, ρ(q̂)), (B.10)

which after expansion of the product of Wigner-D functions leads to

I3 = (−1)m
√

2l + 1

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ C

L(−2+M)
l−2l′M

∫
dΩq̂D

L
(−m+m′)(−2+M)(q̂, ρ(q̂)). (B.11)
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Appendix C

Decomposition of the bias matrix

From Eq. (3.50) we may decompose the general form of the bias matrix corresponding to the beam

harmonic transform expansion (m′′ = 0,±2,±4 for the temperature and M ′ = ±2,±4,±6 for the

E-mode) as follows

ATEll′ (term 1) = πbTl′0b
E
l′2

l∑

m=−l

l+l′∑

L=|l−l′|

CL0l−ml′mC
L0
l0l′0

L∑

M=−L

dL0M (
π

2
)dLM0(

π

2
)f0M

l+l′∑

L′=|l−l′|

CL
′0

l−ml′m

×
[
CL

′0
l2l′−2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N0(
π

2
)f0N + CL

′−4
l−2l′−2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N−4(
π

2
)f−4N

+ CL
′4

l2l′2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N4(
π

2
)f4N + CL

′0
l−2l′2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N0(
π

2
)f0N

]
, (C.1)

ATEll′ (term 2) = πbTl′2b
E
l′2

l∑

m=−l

l+l′∑

L=|l−l′|

CL0l−ml′m

(
CL−2
l0l′−2

L∑

M=−L

dL0M (
π

2
)dLM−2(

π

2
)f−2M

+ CL2l0l′2

L∑

M=−L

dL0M (
π

2
)dLM2(

π

2
)f2M

)
l+l′∑

L′=|l−l′|

CL
′0

l−ml′m

×
[
CL

′0
l2l′−2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N0(
π

2
)f0N + CL

′−4
l−2l′−2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N−4(
π

2
)f−4N

+ CL
′4

l2l′2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N4(
π

2
)f4N + CL

′0
l−2l′2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N0(
π

2
)f0N

]
, (C.2)
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Decomposition of the bias matrix

ATEll′ (term 3) = πbTl′0b
E
l′4

l∑

m=−l

l+l′∑

L=|l−l′|

CL0l−ml′mC
L0
l0l′0

L∑

M=−L

dL0M (
π

2
)dLM0(

π

2
)f0M

l+l′∑

L′=|l−l′|

CL
′0

l−ml′m

×
[
CL

′−2
l2l′−4

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N−2(
π

2
)f−2N + CL

′−6
l−2l′−4

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N−6(
π

2
)f−6N

+ CL
′6

l2l′4

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N6(
π

2
)f6N + CL

′2
l−2l′4

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N2(
π

2
)f2N

]
, (C.3)

ATEll′ (term 4) = πbTl′4b
E
l′2

l∑

m=−l

l+l′∑

L=|l−l′|

CL0l−ml′m

(
CL−4
l0l′−4

L∑

M=−L

dL0M (
π

2
)dLM−4(

π

2
)f−4M

+ CL4l0l′4

L∑

M=−L

dL0M (
π

2
)dLM4(

π

2
)f4M

)
l+l′∑

L′=|l−l′|

CL
′0

l−ml′m

×
[
CL

′0
l2l′−2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N0(
π

2
)f0N + CL

′−4
l−2l′−2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N−4(
π

2
)f−4N

+ CL
′4

l2l′2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N4(
π

2
)f4N + CL

′0
l−2l′2

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N0(
π

2
)f0N

]
, (C.4)

ATEll′ (term 5) = πbTl′0b
E
l′6

l∑

m=−l

l+l′∑

L=|l−l′|

CL0l−ml′mC
L0
l0l′0

L∑

M=−L

dL0M (
π

2
)dLM0(

π

2
)f0M

l+l′∑

L′=|l−l′|

CL
′0

l−ml′m

×
[
CL

′−4
l2l′−6

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N−4(
π

2
)f−4N + CL

′−8
l−2l′−6

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N−8(
π

2
)f−8N

+ CL
′8

l2l′6

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N8(
π

2
)f8N + CL

′4
l−2l′6

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N4(
π

2
)f4N

]
. (C.5)

The idea behind the above decomposition is to separately compute the bias contribution of the lead-

ing terms and higher order corrections to the product of the beam harmonic transforms bTl′m′′bEl′M ′

where m′′ = 0,±2,±4 and M ′ = ±2,±4,±6, which are sketched in Fig. 3.1 of Chapter 3.
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Appendix D

Calculation of the integral I

Using Eq. (9) of Section 5.6 of [146] the product of two spherical functions can be expressed as

Ylm(q̂)Yl′′m′′(q̂) =
l+l′′∑

L=|l−l′′|

√
(2l + 1)(2l′′ + 1)

4π(2L+ 1)
CL0l0l′′0 C

L(m+m′′)
lml′′m′′ YL(m+m′′)(q̂). (D.1)

Then, we may write the integral I in Eq. (4.13) as

I =

l+l′′∑

L=|l−l′′|

√
(2l + 1)(2l′′ + 1)

4π(2L+ 1)
CL0l0l′′0 C

L(m+m′′)
lml′′m′′

∫
dΩq̂YL(m+m′′)(q̂)D

l′

m′n(q̂, ρ(q̂)). (D.2)

We make use of Eq. (11) of Section 5.1.5 and Eq. (1) of Sec. 4.17 of [146] to derive

YL(m+m′′)(q̂) = (−1)m+m′′

√
2L+ 1

4π
DL

−(m+m′′)0(q̂, ρ(q̂)), (D.3)

which leads to the following expression of the integral

∫
dΩq̂YL(m+m′′)(q̂)D

l′

m′n(q̂, ρ(q̂)) = (−1)m+m′′

√
2L+ 1

4π

×
∫
dΩq̂D

L
−(m+m′′)0(q̂, ρ(q̂))D

l′

m′n(q̂, ρ(q̂)). (D.4)
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Calculation of the integral I

The product of the Wigner-D functions can be expressed in term of Clebsch-Gordan coefficients by

using Eq. (1) of Section 4.6 of [146]

∫
dΩq̂D

L
−(m+m′′)0(q̂, ρ(q̂))D

l′

m′n(q̂, ρ(q̂)) =

L+l′∑

L′=|L−l′|

C
L′(m′−m−m′′)
L−(m+m′′)l′m′

CL
′n

L0l′n

×
∫
dΩq̂D

L′

(m′−m−m′′)n(q̂, ρ(q̂)), (D.5)

which after simplification yields the following form

I = (−1)m+m′′

√
(2l + 1)(2l′′ + 1)

4π

l+l′′∑

L=|l−l′′|

CL0l0l′′0 C
L(m+m′′)
lml′′m′′

×
L+l′∑

L′=|L−l′|

C
L′(m′−m−m′′)
L−(m+m′′)l′m′

CL
′n

L0l′n χ
L′

(m′−m−m′′)n[ρ(q̂)], (D.6)

where the quantity χ is defined by

χL
′

(m′−m−m′′)n[ρ(q̂)] =

∫
dΩq̂D

L′

(m′−m−m′′)n(q̂, ρ(q̂)). (D.7)

We have seen in Section 3.4, Eq. (3.40) that for the particular case of an equal declination scan

strategy ρ(q̂) = ρ(θ), the above integral can be simplified, and we may write

χL
′

(m′−m−m′′)n[ρ(θ)] = 2πδ(m′−m−m′′)0

∫ π

0
dθ sinθ dL′

(m ′−m−m ′′)n(θ)e
−inρ(θ),

= χL
′

0n[ρ(θ)]. (D.8)

In the above formula the function χ, describing the scanning strategy adopted, is defined by

χL
′

0n[ρ(θ)] = 2π
L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

Nn(
π

2
)ΓnN [ρ(θ)], (D.9)

where

ΓnN [ρ(θ)] = in(−1)N
∫ π

0
dθ sinθ e iN θe−inρ(θ). (D.10)

The only non-vanishing term of the integral χ is obtained for m′ −m −m′′ = 0. Furthermore, if

the beam is non-rotating ρ(θ) = 0, we have seen that it is possible to calculate analytically the

function ΓnN [ρ(θ)]. Under this assumption, only the real part of the function Γ contributes, and is
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Calculation of the integral I

expressed by ℜ [ΓnN [ρ(q̂) = 0]] = fnN where the function f is defined by

fnN =





(−1)(n±1)/2 π/2 if n=odd and N = ±1

(−1)n/2 2/(1−N2) if both n,N = 0 or even

0 otherwise.

(D.11)

Conclusively, Eq. (D.6) plugged in Eq. (4.14), allows us to derive the sky multipoles of the

temperature expansion in spherical harmonics, solely in term of Clebsh-Gordan coefficients. The

quantity χL
′

0n[ρ(q̂)] only depends on the scanning strategy adopted, and can be solved analytically

in the simple case of non-rotating beam (i.e. ρ(q̂) = 0). Then, we resume the expression of the

integral I as

I = (−1)m+m′′

√
(2l + 1)(2l′′ + 1)

4π

l+l′′∑

L=|l−l′′|

CL0l0l′′0 C
L(m+m′′)
lml′′m′′

×
L+l′∑

L′=|L−l′|

C
L′(m′−m−m′′)
L−(m+m′′)l′m′

CL
′n

L0l′n χ
L′

0n[ρ(q̂) = 0],

= (−1)m+m′′

√
(2l + 1)(2l′′ + 1)

4π

l+l′′∑

L=|l−l′′|

CL0l0l′′0 C
L(m+m′′)
lml′′m′′

×
L+l′∑

L′=|L−l′|

C
L′(m′−m−m′′)
L−(m+m′′)l′m′

CL
′n

L0l′n 2π

L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

Nn(
π

2
)fnN . (D.12)
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Appendix E

Calculation of the integral J1

First, we derive the integral J1, then following the same analogy we derive the analytical expression

of the integral J2. We know that the spin-two spherical harmonic function is linked to the Wigner-D

function through Eq. (3.11) of [125] which reads

2Ylm(q̂) = (−1)m
√

2l + 1

4π
Dl

−m2(q̂, ρ(q̂)),

2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂)) = (−1)m
√

2l + 1

4π
Dl

−m2(q̂, ρ(q̂))D
l′

m′M (q̂, ρ(q̂)). (E.1)

We expand the product of the two Wigner-D functions in terms of Clebsch-Gordan series using Eq.

(1), Section 4.6 of [146] as follows

Dl
−m2(q̂, ρ(q̂))D

l′

m′M (q̂, ρ(q̂)) =
l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ DL

(−m+m′)(2+M)(q̂, ρ(q̂))C
L(2+M)
l2l′M , (E.2)

which yields

2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂)) = (−1)m
√

2l + 1

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ DL

(−m+m′)(2+M)(q̂, ρ(q̂))C
L(2+M)
l2l′M . (E.3)

Then, we use Eq. (1), Section 4.17 of [146]

Y ∗
l′′
1
m′′

1

(q̂) =

√
2l′′1 + 1

4π
D
l′′
1

m′′

1
0
(q̂, ρ(q̂)) (E.4)
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Calculation of the integral J1

to get the expression of the integral J1 in the following form

J1 =

√
2l′′1 + 1

4π
(−1)m

√
2l + 1

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ C

L(2+M)
l2l′M

×
∫
dΩq̂D

l′′
1

m′′

1
0
(q̂, ρ(q̂))DL

(−m+m′)(2+M)(q̂, ρ(q̂)). (E.5)

The integral involved in the last term of J1 can be again calculated by expanding the product of

the Wigner-D functions using Eq. (1), Section 4.6 of [146] which reads

∫
dΩq̂D

l′′
1

m′′

1
0
(q̂, ρ(q̂))DL

(−m+m′)(2+M)(q̂, ρ(q̂)) =

l′′
1
+L∑

L′=|l′′
1
−L|

C
L′(m′′

1
−m+m′)

l′′
1
m′′

1
L(−m+m′)

C
L′(2+M)
l′′
1
0L(2+M)

×
∫
dΩq̂D

L′

(m′′

1
−m+m′)(2+M)(q̂, ρ(q̂)), (E.6)

and finally we may write the integral J1 as

J1 = (−1)m
√

(2l′′1 + 1)(2l + 1)

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ C

L(2+M)
l2l′M

×
l′′
1
+L∑

L′=|l′′
1
−L|

C
L′(m′′

1
−m+m′)

l′′
1
m′′

1
L(−m+m′)

C
L′(2+M)
l′′
1
0L(2+M)

χL
′

(m′′

1
−m+m′)(2+M)[ρ(q̂)], (E.7)

where

χL
′

(m′′

1
−m+m′)(2+M)[ρ(q̂)] =

∫
dΩq̂D

L′

(m′′

1
−m+m′)(2+M)(q̂, ρ(q̂)). (E.8)

For the particular case of an equal declination scan strategy ρ(q̂) = ρ(θ), the above integral can be

simplified, and we may write (see Section 3.4)

χL
′

(m′′

1
−m+m′)(2+M)[ρ(θ)] = 2πδ(m′′

1
−m+m′)0

∫ π

0
dθ sinθ dL′

(m ′′

1
−m+m ′)(2+M )(θ)e

−i(2+M )ρ(θ),

= χL
′

0(2+M)[ρ(θ)]. (E.9)

The function χ that describes the scanning strategy adopted is defined by

χL
′

0(2+M)[ρ(θ)] = 2π
L′∑

N=−L′

dL
′

0N (
π

2
)dL

′

N(2+M)(
π

2
)Γ(2+M)N [ρ(θ)], (E.10)
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Calculation of the integral J1

where

Γ(2+M)N [ρ(θ)] = iM (−1)N+1

∫ π

0
dθ sinθ e iN θe−i(2+M )ρ(θ). (E.11)

Assuming that the beam is non-rotating ρ(θ) = 0, we can derive a simple expression of the function

ℜ
[
Γ(2+M)N [ρ(q̂) = 0]

]
= f(2+M)N which reads

f(2+M)N =





(−1)(2+M±1)/2 π/2 if M=odd and N = ±1

(−1)M/2 2/(1−N2) if both (2 +M), N = 0 or even

0 otherwise.

(E.12)

Hence the analytical expression of the integral J1 reduces to

J1 = (−1)m
√

(2l′′1 + 1)(2l + 1)

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ C

L(2+M)
l2l′M

×
l′′
1
+L∑

L′=|l′′
1
−L|

CL
′0

l′′
1
(m−m′)L(−m+m′)C

L′(2+M)
l′′
1
0L(2+M)

f(2+M)N . (E.13)
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Appendix F

Calculation of the integral J2

We can proceed in the same way for the calculation of the second integral J2. We use Eq. (3.11)

of [125] and write

−2Ylm(q̂) = (−1)m
√

2l + 1

4π
Dl

−m−2(q̂, ρ(q̂)),

−2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂)) = (−1)m
√

2l + 1

4π
Dl

−m−2(q̂, ρ(q̂))D
l′

m′M (q̂, ρ(q̂)). (F.1)

We transform the product of the Wigner-D rotation matrices into Clebsch-Gordan series using Eq.

(1), Section 4.6 of [146] and obtain

−2Ylm(q̂)D
l′

m′M (q̂, ρ(q̂)) = (−1)m
√

2l + 1

4π

×
l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ DL

(−m+m′)(−2+M)(q̂, ρ(q̂))C
L(−2+M)
l−2l′M . (F.2)

We replace, using Eq. (1), Section 4.17 of [146], the spherical harmonic function in term of Wigner-

D function and then, obtain the expression of the integral J2 as follows

J2 = (−1)m
√

(2l′′1 + 1)(2l + 1)

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ C

L(−2+M)
l−2l′M

×
∫
dΩq̂D

l′′
1

m′′

1
0
(q̂, ρ(q̂))DL

(−m+m′)(−2+M)(q̂, ρ(q̂)). (F.3)
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Calculation of the integral J2

We can again evaluate the last integral by using Eq. (1), Section 4.6 of [146], and get

∫
dΩq̂D

l′′
1

m′′

1
0
(q̂, ρ(q̂))DL

(−m+m′)(−2+M)(q̂, ρ(q̂)) =

l′′
1
+L∑

L′=|l′′
1
−L|

C
L′(m′′

1
−m+m′)

l′′
1
m′′

1
L(−m+m′)

C
L′(−2+M)
l′′
1
0L(−2+M)

×
∫
dΩq̂D

L′

(m′′

1
−m+m′)(−2+M)(q̂, ρ(q̂)), (F.4)

from which we derive

J2 = (−1)m
√
(2l′′1 + 1)(2l + 1)

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ C

L(−2+M)
l−2l′M

×
l′′
1
+L∑

L′=|l′′
1
−L|

C
L′(m′′

1
−m+m′)

l′′
1
m′′

1
L(−m+m′)

C
L′(−2+M)
l′′
1
0L(−2+M)

χL
′

(m′′

1
−m+m′)(−2+M)[ρ(q̂)]. (F.5)

For an equal declination scan ρ(q̂) = ρ(θ), the integral

χL
′

(m′′

1
−m+m′)(−2+M)[ρ(q̂)] =

∫
dΩq̂D

L′

(m′′

1
−m+m′)(−2+M)(q̂, ρ(q̂)) (F.6)

vanishes unless m′′
1 −m+m′ = 0; then under the non-rotating beam assumption ρ(q̂) = 0, we end

up with the following integral

J2 = (−1)m
√

(2l′′1 + 1)(2l + 1)

4π

l+l′∑

L=|l−l′|

C
L(−m+m′)
l−ml′m′ C

L(−2+M)
l−2l′M

×
l′′
1
+L∑

L′=|l′′
1
−L|

CL
′0

l′′
1
(m−m′)L(−m+m′)C

L′(−2+M)
l′′
1
0L(−2+M)

f(−2+M)N . (F.7)

Now, we may obtain the expression of the integral J from the relation J∗ = J1+J2. The condition

of non-rotating beam allows us to write J = (J1 + J2)
∗ = J1 + J2 since only the real part of the
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Calculation of the integral J2

function Γ contributes. This implies

J = (−1)m
√
(2l′′1 + 1)(2l + 1)

4π

l+l′∑

L=|l−l′|

C
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. (F.8)
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Appendix G

Useful formulae

We provide a set of the most notably used formulae from Varshalovich et. al. [146], and the rela-

tionship between the spin-s spherical harmonics and Wigner-D functions of Goldberg [125].

• The Clebsch-Gordan coefficients:

Let j1 and j2 be two angular momenta with projections m1 and m2. The Clebsch-Gordan

coefficient denoted by Cjmj1m1j2m2
represents the probability amplitude that j1 and j2 are

coupled into a resultant angular momentum j with projection m [146]. The Clebsch-Gordan

coefficient vanishes unless the following conditions are satisfied:

|j1 − j2| ≤ j ≤ j1 + j2, (triangular inequalities) (G.1)

m1 +m2 = m. (G.2)

In addition, the Clebsch-Gordan coefficients satisfy the following conditions:

(a) j1, j2, j are non-negative integers or half-integers,

(b) m1, m2, m are positive or negative integers or half-integers,

(c) |m1| ≤ j1, |m2| ≤ j2, |m| ≤ j,

(d) j1 +m1, j2 +m2, j +m, j1 + j2 + j are non-negative integers.
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Useful formulae

• The spherical harmonics, Wigner-D and Wigner-d functions relations:

Dl
mm′(q̂, ρ) = e−imφdlmm′(θ)e−im

′ρ, Eq. (1), Section 4.3 of [146]

Y ∗
lm(q̂) =

√
2l + 1

4π
Dl
m0(q̂, ρ), Eq. (1), Section 4.17 of [146]

dJMM ′(β) = (−1)M−M ′

dJ−M−M ′(β) = (−1)M−M ′

dJM ′M (β), Eq. (1), Section 4.4 of [146]

dJMM ′(−β) = (−1)M−M ′

dJMM ′(β), Eq. (1), Section 4.4 of [146]

dJMM ′(π − β) = (−1)J−M
′

dJ−MM ′(β) = (−1)J+M dJM−M ′(β), Eq. (1), Section 4.4 of [146]

Dl∗
mm′(q̂, ρ) = (−1)m−m′

Dl
−m−m′(q̂, ρ), Eq. (2), Section 4.4 of [146]

Y ∗
lm(q̂) = (−1)mYl−m(q̂) Eq. (1), Section 5.4 of [146]

• The Clebsch-Gordan series: expansion of the product of two Wigner-D functions, Eq.(1),

Section 4.6 of [146]:

Dl1
m1n1

(q̂, ρ)Dl2
m2n2

(q̂, ρ) =

l1+l2∑

l=|l1−l2|

C
l(m1+m2)
l1m1l2m2

Dl
(m1+m2)(n1+n2)

(q̂, ρ)C
l(n1+n2)
l1n1l2n2

. (G.3)

• The product of two spherical harmonics, Eq. (9), Section 5.6 of [146]:

Yl1m1
(q̂)Yl2m2

(q̂) =

l1+l2∑

l=|l1−l2|

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l0l10l20C

l(m1+m2)
l1m1l2m2

Yl(m1+m2)(q̂). (G.4)

• The integral over a total solid angle, Eq. (1), Section 5.9.1 of [146]:

∫
dΩq̂Ylm(q̂) =

√
4π δl0δm0. (G.5)

• The properties of Clebsch-Gordan coefficients:

Ccγaαbβ = (−1)a+b−c Ccγbβaα, Eq. (10), Section 8.4.3 of [146] (G.6)

Ccγaαbβ = (−1)a+b−c Cc−γa−αb−β , Eq. (11), Section 8.4.3 of [146] (G.7)

C00
aαbβ = (−1)a−α

δab δα,−β√
2a+ 1

, Eq. (1), Section 8.5 of [146] (G.8)

Ccγaα00 = δac δαγ . Eq. (2). Section 8.5 of [146] (G.9)

• The spin-s spherical harmonics and Wigner-D function (rotation matrices) relations, Eq.
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Useful formulae

(3.11) of [125]:

sYlm(q̂) = (−1)m
√

2l + 1

4π
Dl

−ms(q̂, ρ(q̂)). (G.10)
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