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Abstract

In this thesis, first-principles computations of the electronic ground state are used

to investigate the underlying nature of the quantum phase transitions in selected

Dirac materials and their associated hybrid materials. Various methods are used

to break the symmetry of the ground state electronic structure and to tune the

emergent phases. These involve the application of an external electric, magnetic or

electromagnetic fields, and the manipulation of the internal intrinsic fields of ma-

terials, such as the introduction of strong spin orbit coupling, electron (or hole)

doping, including a strong short-ranged disorder potential. The findings show that

applying a perpendicular electric or magnetic field with a staggered potential in the

underlying lattice allows for a tunable electronic transition between trivial and non-

trivial quantum states. Signatures of the near-field electrodynamics of carriers in

nanoclusters reveal the appearance of a quantum fluid phase at the distinct energies

where topological quantum phase transitions occur. Emergence of the field-induced

carrier density wave phase shows that the collective excitation mode is a distinct

potential for carrier transmission in spintronic, optoelectronic, and photonic tech-

nologies. Furthermore, two types of insulating Dirac material are used as the tunnel

barrier region of the perpendicular tunnel junction architecture. The resulting het-

erostructure is an artificially assembled metal-insulator-metal multilayer, and this

serves as a generic platform for characterizing spin transport properties in spin-

tronic devices. The dependence of the emergent phenomenon of proximity-induced

magneto-electronic coupling on the tunnel barrier material is unraveled. By ana-

lyzing the effect of the changes in the electronic structure on the spin transmission

properties, it is found that the metal-insulator-metal platform exhibits a quantum
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phase transition by responding sensitively to both the tunnel barrier material and

the applied perpendicular electric field during in-service operation of a spintronic

device. The results show that when the electric field approaches its critical ampli-

tude, the spin density of states exhibits a discontinuous change from half-metallic

to metallic transport character in the presence of monolayer hexagonal boron ni-

tride as a tunnel barrier material, contrary to when the monolayer molybdenum

disulphide is inserted in the tunnel barrier region. The role of the applied electric

field in the phase transition is characterized in terms of a spin-flip transition and an

induced interfacial charge transfer. It is also found that the abrupt discontinuity in

the changes in the spin-flip energy with increase in applied electric field provides the

necessary and sufficient evidence of a first-order quantum phase transition in the

spin transport phase. These findings show that the material of the tunnel barrier

layer creates a non-trivial function in defining the magnetoelectric couplings that

occur dynamically during spin tunneling.
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Chapter 1

Introduction

Dirac materials are condensed matter systems whose low-energy excitation spec-

trum favors the propagation of massless Dirac particles over conventional fermions.

Weyl semimetals and two-dimensional materials such as graphene, transition metal

dichalcogenides, and their heterostructures are examples of such systems. Low en-

ergy excitations in 2D-electron gas (2DEGs) materials like graphene, monolayer

boron nitride, germanene, stanene, and their heterostructure multilayers, transition

metal dichalcogenides (TMDCs), topological insulators, and d-wave superconduc-

tors, superfluids do not obey the Schrödinger-type Hamiltonian. Material with sim-

ilar electronic properties share an overarching fundamental similarity because the

Dirac-type Hamiltonian characterizes their fermionic excitations. This emergent be-

haviour in a condensed matter systems typifies the class of solid-state systems known

as Dirac materials (DMs). The consequence is that their energy band extrema are

located at corners of the first Brillouin zone (BZ) at points K and K ′.

Thus, it is possible to control the intrinsic carrier transport by breaking the

symmetry of the electronic structure using strategies like electrostatic gating, ap-

plication of external disorder potentials, doping, among other possibilities. Specific

symmetries of the material control collective excitations in DMs. Breaking the

time-reversal, space-inversion, or spin-orbit coupling, symmetry can generate a fi-

nite Dirac mass in the dispersion spectrum. This creates a plethora of intriguing new

symmetries in the electronic structure that manifest as emergent quantum phases
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[8]. For example, a recent study shows a co-existence of type-I and type-II of topo-

logical surface states and 3D bulk Dirac fermions in a single d-orbital manifold of

the TMDCs [9]. These quantum phases of matter are believed to exist at absolute

zero only, and it is not yet well understood how their collective degrees of freedom

can be stabilized at finite temperature.

Quantum phase transitions, which manifest as non-analyticities in the spatial

or temporal evolution of the time-independent Hamiltonian of closed systems, is

currently at frontiers of contemporary research in the non-equilibrium quantum dy-

namics of condensed matter systems. For instance, a novel topological quantum

phase has been reported recently to have zero Berry curvature [10]. Research in

topological physics traditionally focuses on characterising the effects that are gener-

ated on the pseudospin, valley quantum numbers, Berry phase curvature and Chern

number of topological phases. This is done by quenching or ramping up a parameter

of the Hamiltonian [11]. Unlike graphene, some other DMs possess a direct band gap

making it trivial to control and tune any such emergent phases, and the underlying

phase transitions. In TMDCs for instance, the Dirac-type dispersion gives rise to

the ±π-Berry phase at each valley [12]. Since the valley Berry phase originates from

the electronic band structure, it is equally crucial to determine to what extent the

Berry phase for the electrons wave functions is connected with emergent quantum

phases in DMs.

In strongly-correlated electron systems such as d-wave superconductors, the

electron-electron pairs (i.e. the Cooper pairs) that form through electron-electron

correlations, and the electron-hole pairs (i.e. the excitonic pair) give rise to topologi-

cally nontrivial superconductivity [13–15]. Determining how Coulombic interactions

like electron-ion attraction, electron-electron correlation, relativistic spin-orbit cou-

pling, and electron-phonon coupling affects topological quantum phase transitions

in DMs is central to understanding the physics. Insights from such underpinning

understanding could also inspire a new range of exotic technologies. For instance,

see [16–18].

In proximitized semiconductor-superconductor hybrid nanowires, localized zero-
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energy modes of the Bardeen-Cooper-Schrieffer Hamiltonian manifest in condensed

matter systems as a unique quantum phase known as Majorana zero modes (MZMs).

Their propagation as chiral edge modes in topological superconductors yield exotic

half-integer spin quasiparticles, which are uniquely their own antiparticles. Unlike

bosons and fermions, MZMs are non-Abelian anyons and support braiding statis-

tics in the fractional quantum Hall regime. This forms the technological basis for

topological quantum computation using fault-tolerant quantum computers. Which

of the braiding operation arises from the non-local encoding of quasiparticle states,

making them insensitive to errors that happened due to the local perturbations.

The operations of braiding are protected-topologically insofar as the MZMs

are exponentially pinned in the vicinity of zero energy when spatially separated.

Since the symmetry of Majorana fermions protects conductance quantization against

disorder, local perturbations and tunnel coupling variations [19], it is a subject of

considerable scientific concern to realize the nature of the transition barriers among

condensed phases that host MZMs in coexistence with any other localized zero-

energy modes at absolute zero, such as the Andreev (and Shiba) bound states.

The artificially-stacked ferromagnetic metal-insulator-metal heterostructure is

the most relevant multilayer material in this thesis. Its insulator layer, which also

constitutes the tunnel barrier layer of the perpendicular magnetic tunnel junction

(pMTJ) is a Dirac material. From a theoretical viewpoint, this hybrid material

is crucial for designing spintronic and optoelectroinic devices based on the pMTJ

architecture. Recent studies have shown that it gives a high fidelity performance in

spin inversion and filtering.

Therefore, this thesis will focus on investigations of the underlying quantum

phase transition in selected Dirac materials. It is shown that applying two exter-

nal fields, such as an exchange field or Rashba SOC with a staggered potential in

the underlying lattice, allows electronic transitions between trivial and topological

quantum states. Also, it is shown that when a Dirac material is integrated into the

perpendicular magnetic tunnel junction (pMTJ), the application of a perpendicular

electric field is characterized by a spin-flip transition, which leads to a discontinu-

3



ous change from the half-metallic to full-metallic transport phase. The implications

of these findings are discussed to show the relevance of the electronic transition in

emergent technological applications in spintronics, optoelectronics, nanophotonics

and plasmonics.

1.1 Aims and objectives of the thesis

In this thesis, the laws of quantum mechanics are applied using the computational

methods implemented within density functional theory (DFT) to study the elec-

tronic ground-state and the emergent quantum phases and their topological prop-

erties in selected Dirac materials. The objectives of this thesis are:

• To understand the fundamental nature of the topological electron state in

Dirac materials.

• To unravel the mechanisms of topological phase transitions and ways to tune

them in Dirac materials.

• To propose models for understanding the emergent phenomena of collective

phases and the effect of perturbative disorder potentials on Dirac materials.

• To characterize the effectiveness of an external field on the quantum phases

observed in Dirac materials.

• To develop a reasonable interpretation of topological electronic states and

their associated transport phases for emerging applications in spintronics and

optoelectronics applications.

• To investigate the effects of incorporating a Dirac material as the tunnel barrier

layer in symmetric perpendicular magnetic tunnel junctions under a symmetry-

breaking field.

1.2 Thesis structure

This thesis is organized as follows: Chapter 2 presents a general introduction to

the low-energy physics of Dirac matter and describes the origin of Dirac Materials.
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Chapter 3 discusses the theoretical framework used in this thesis to solve the many-

body problem. This computational framework includes the ab initio approach of

solving the many-body Schrödinger equation within the Kohn-Sham ansatz of den-

sity functional theory and the tight binding model of the electronic structure on the

the honeycomb lattice. These two approaches to the electronic structure calculation

are combined to study the spin transport phenomenon in Dirac materials within the

ballistic regime. Chapter 4 presents the computational techniques used to calculate

the electronic ground-state of the many-body system, the method of renormalizing

the low-energy electronic structure of bulk TaAs on the band structure of a graphene

sheet, and the computational setup of artificial multilayer heterostructures. The re-

sults are presented and discussed in chapter 5. Finally, the conclusions are presented

in chapter 6.
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Chapter 2

Dirac Materials

This chapter introduces the concept of Dirac materials. It also presents the quan-

tum mechanical origin of Dirac materials as the theoretical basis for understanding

the low-energy physics of Dirac matter. Selected examples of Dirac materials are

discussed to lay the theoretical framework for computational exploration of their

underlying low-energy dispersion characteristics and the associated quantum phase

transitions.

2.1 The origin of Dirac materials

The insightful contributions of Paul Adrien Maurice Dirac [20], Ettore Majorana [21],

and Herman Klaus Hugo Weyl [22] to particle physics provided the first theoretical

basis for describing electrons and some subatomic particles. Over the years, these

foundational theories have also been used in condensed matter physics (CMP) to

understand the low-energy excitation state of carriers in solids. This is valid when

carrier transport is modelled as if the valence electrons are traveling in the regular

periodically-repeated potential experienced by valence electrons due to the presence

of the immobile ionic cores in a crystal, subject to Bloch’s theorem.

Recently, quantum field theory (QFT) has emerged as the most accurate math-

ematical and conceptual framework in theoretical physics. It combines classical field

theory, special relativity, and quantum mechanics [23]. QFT also provides the the-
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oretical framework for describing the phenomenon of phase transition. It provides

the tools required for developing a fundamental understanding of phase transition in

a broad range of disparate systems. This includes spontaneous symmetry breaking

transition, the evolution of magnetism in materials, the order-disorder transition

in condensed matter systems, as well as in the early universe, and the behaviour

of quarks. Quantum chromodynamics (QCD) [24], and quantum electrodynamics

(QED) [25] are the first two completely developed quantum field theories. QCD de-

scribes the strong interactions between elementary particles while QED accurately

describes the interactions between charged particles. In the first part of the research

results reported in Chapter 5 of this thesis, tunable topological and trivial quantum

phase transitions in Dirac materials have been considered. In the second part of the

results, the trivial quantum phase transition from half-metallic to metallic transport

of carriers in the ferromagnetic metal-insulator metal heterostructure is considered.

Nevertheless, Dirac developed his equation to elucidate an electron, which sat-

isfies the relativistic dispersion relation:

E2 = p2c2 +m2c4 (2.1)

or it can be written as:

E = ±
√
p2c2 +m2c4, (2.2)

where E denotes the electron energy, p denotes the momentum, m and c represent

the mass and light velocity, respectively, [20]. Equation (2.2) demonstrates the

combination between the quantum state of a single particle and the relativistic

effect. The solution of equation (2.2) suggests the existence of negative energy. It

was later realized that this kind of energy is related to the new class of particles,

known as anti-particles [20, 26]. This anti-particle shared the same mass as an

electron, but had a dissimilar charge. The anti-particle of an electron discovered

shortly after Dirac’s prediction, is the positron. The Dirac wave function contains

a four-component spinor for the electron, while the massless fermion has two Weyl

spinors [22].
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Figure 2.1 shows the difference between Schrödinger and Dirac Hamiltonian

in terms of their low energy spectrum for quasi-particles. The finite band gap in

an insulator could be tuned to disappear by breaking the symmetry of the ground

state. This can be achieved through thermal or electrical excitation, creation of

electron-hole pairs, and the application of an electric or magnetic field.

Figure 2.1: The low-energy excitation spectrum for the massive electrons obeying
Schrödinger’s Hamiltonian (HS) on the left. The massless electrons possess a linear
dispersion and follow Dirac Hamiltonian (HD) on the right [3].

The quasi-particles in doped semiconductors or metals obey the following Schrödinger

Hamiltonian:

HS = p2/2m∗, (2.3)

where m∗ denotes the effective mass of fermions. Fermionic quasi-particle dispersion

follows the Dirac-type Hamiltonian of the form:

HD = cσ.p+mc2σz, (2.4)

where σ ≡ (σx, σy, σz) denotes the Pauli spin matrices. However, when m −→ 0

the gap will disappear [27], and the quasi-particle spectrum is characterized by a

linear dispersion as shown in the right hand side of Fig. 2.1. This is quite unlike

the parabolic dispersion observed in metals and semiconductors.
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2.1.1 Two dimensional materials (2DMs)

Symmetry and dimensionality play significant roles in condensed matter phases.

When a layered 3D material is exfoliated by thinning down to their mono-atomic

layer boundaries, the material is scaled to its 2D form and the effect of quantum

confinement on the electron state becomes important due to its reduced dimensions.

This class of materials is called two-dimensional materials (2DMs). They have var-

ious new features that differ from their bulk analogues because electrons can only

move freely along their 2D or a plane up to a few nanometers [28]. Since discovering

graphene [29, 30], several studies have been dedicated to exploring a large number

of 2D materials as shown in Fig. 2.2.

Figure 2.2: The facinating quantum world of two dimensional materials [4].

Insulating 2D materials like hexagonal boron nitride (h-BN) and transition

metal dichalcogenide (TMDC) [31, 32] can be assembled into free-standing van der

Waals multilayer heterostructures [see Fig. 2.2 (bottom right)]. They can also

be incorporated into the tunnel barrier region to build a perpendicular magnetic

tunnel junction by sandwiching them between two similar or dissimilar ferromagnetic

leads. This offers unique possibilities for exploring new phenomena and interesting

applications. For instance, spin magnetotransport with spintronic devices forms a

domain for which a high tunability of the transport signatures is desirable to control
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emergent carrier transport. This is because of their high-fidelity operation due

to efficient spin inversion and filtering, especially when a suitable Dirac material is

incorporated to improve the device robustness against thermal and oxidative stresses

and heat dissipation effects.

The discovery of intrinsic 2D magnetic materials with high spin-polarization is

important for the next generation of nanoscale MTJs. Thus, the fabrication and

characterization of MTJs based on 2D materials has led to many unique character-

istic properties. This is because pure spin current generated from pMTJs is highly

sensitive to QPT-induced anisotropies. However, because neither the underlying

anisotropies nor their coupling mechanisms are well-understood. Gaining insights

into such phenomena is a vital step toward achieving a lower energy delay product

[33].

Due to their wide band gap, the monolayers of hexagonal boron nitride and

molybdenum disuphide MoS2 [34] can suppress resonant tunneling from wave cou-

pling via evanescent quantum states. Since their electronic band structure is de-

pendent on thickness, it is possible to tune their carrier transport behavior from

the semi-conducting state to metallic state. Furthermore, MoS2 has a direct gap in

the monolayer phase [35, 36]. This makes it attractive material for optoelectronic

applications that require direct inter-band transitions. Combining 2D materials to

build multilayers show new properties, and unique advantages in device technology

due to the interplay of robust covalent intralayer bonding and the weak interaction

of interlayers [37–40].

2.1.2 Graphene

In the far past, the scientific community believed that two-dimensional (2D) mate-

rials might not exist [41]. Theoreticians had predicted that the lower dimensional

crystals are likely to disintegrate at low temperatures above 0 K. This is because

of considerable atomic lattices displacements resulting from several sources of ther-

mal fluctuations [42]. This prediction was strongly supported by some experimental

results that suggest that the melting point of a thin-layered material reduces with
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decreasing thickness [43, 44]. However, following the exfoliation and experimental

characterization of the graphene sheet by Novoselov, et al in 2004, its mechanical

robustness and thermodynamics stability demonstrate that the graphene sheet is

an authentic 2DM. Figure 2.3 shows the schematic diagram of the exfoliation of

graphene sheets from graphite. [29, 30].

Figure 2.3: The exfoliation of graphene from Graphite [5].

Graphene is the thinnest and strongest material known. It is made of carbon

atoms joined with three nearest neighbours in the form of a honeycomb lattice crys-

tal structure of [45, 46], nanostructure [47]. It has prodigious properties that make

it a fascinating material. Graphene has remarkable physical and chemical proper-

ties. This includes ballistic conductance, mechanical flexibility, non-ionic covalent

bonding and excellent light absorption capabilities. Its high carrier mobility makes

it a good conductor of heat and electricity. These impressive properties make it an

attractive material for use in a wide range of applications. The potential applica-

tions of graphene are highly diverse. It can also be combined with other materials to

create new devices with superior properties. The possible technological applications

of graphene and its derivatives include: field effect transistors (FET) [48–50], inte-

grated circuits [51, 52], sensors [53, 54], supercapacitors [55, 56], DNA sequencing

[57], water treatment [58], antennas, flat-panel and touchscreen displays (for LCD

or OLED electronics) [59], dye-sensitized solar cells [60] spin valves [61], amongst

others.

The propagation of electrons in the graphene lattice follows ballistic dynamics.

This makes the electrons to behave as if they have lost their mass and behave as
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massless particles. Equivalently, this leads to a system of electrons that behave

like quasi-particles. These massless particles are described by the Dirac equation

for spin-1/2 particles [7, 62]. In 2005 Geim’s group and others discovered anoma-

lous quantum Hall effect (AQHE) samples of graphene that were obtained through

cleavage method [63, 64]. The observation supports earlier theoretical predictions

of the existence of the Berry phase in a system of massless particles [65]. These

observations have spurred the search for signatures of similar exotic effects in other

types of Dirac materials.

2.1.3 Tantalum Arsenide (TaAs)

In the new class of materials known as Weyl semimetals (e.g., TaAs, NbAs and

Na3Bi), the valence and conduction bands cross at specific points of the Brillouin

zone known as Weyl nodes. These materials are considered to be the 3D analogs of

graphene whenever time-reversal or structural inversion symmetry is broken. When

the position of the Fermi level lies at such nodes (or close to them), the electrons

can behave as relativistic Weyl fermions and exhibit a linear dispersion in reciprocal

space. Such nodes exist in pairs that possess opposite chirality. These are character-

ized by integer topological charges of opposite sign associated with singular points

of Berry curvature in momentum space.

Nevertheless, separated Weyl nodes are also carrier transport states with guar-

anteed topological protection. This is because any perturbation that does not violate

the translational symmetry can only shift the position of the nodes without anni-

hilating them. The consequence is the valence electrons in such materials exhibit

peculiar properties such as magnetic monopole and anomalous non-conservation of

a chiral current [66]. The surfaces of topological insulators host chiral surface states

that are protected by the energy band gap in the bulk state [22, 67–71]. Theoretical

and experimental studies supported by photoemission spectroscopy reveal the non-

conserving inversion symmetry of the Weyl semimetal state in TaAs [66, 71–73]. The

resulting transport signature shows a significant increase in mobility [74]. Transport

through the underlying nontrivial electron states of Weyl semimetals is different
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from transport through topological insulator. This is because the properties of the

chiral state of Weyl semimetals are not sensitive to dimensionality.

In this thesis, the dimensional insensitivity is serves as the theoretical basis for

the study of the carrier transport behaviors that emerge from the renormalization

of the electronic structrure of bulk TaAs on the graphene lattice. The emergent

massless fermions in TaAs will have lifted degeneracies at the nodal points and

share the same transport signature as graphene from their energy spectrum. In

addition, the symmetry breaking operation modulates the quasi-particles dispersion

between Dirac to Weyl equation [22, 75–79]. This is because their low-energy quasi-

particle excitation spectrum is similar to those of Dirac materials, and the strong

spin orbit coupling that characterizes their electronic structure makes it promising

for applications in spintronics [80, 81].

2.2 Carrier transport in Dirac Materials

Dirac matter is attracting research interest because it defines the unifying struc-

ture of the new category of materials called Dirac materials (DMs) [27]. The

CMP has witnessed a sudden increase in materials with Dirac fermion-like low en-

ergy excitations [20], such as the superfluid phases of 3He and 4He [82, 83], high-

temperature superconductors (d-wave), graphene [84], monolayers of some transition

metal dichalcogenides and topological insulators [85–87]. The main similarity is that

they all obey the Dirac-type Hamiltonian HD instead of the Schrödinger Hamilto-

nian HS. Also, their low-energy excitations act like massless Dirac particles. Also,

DMs responsed to the effect of applied external fields. They control their low energy

excitations via dimensionality, in addition to the intrinsic symmetries in each DMs

[88].

An additional significant feature of Dirac electrons is that they allow ballistic

conductance through the surface states of DMs, and this electronic property is con-

trollable using an external magnetic field. These drive the possibilities of observing

exotic phenomena and unique new properties in CMP through tunability of the

electron states and breaking of the global symmetry of the transport state of DMs.
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2.3 Quantum phase transitions (QPTs)

There are several occurrences of the phenomenon of phase transition in physical pro-

cesses. Examples include the temperature-dependent changes in the phase of water,

paramagnetic-ferromagnetic phase transition, the transition of metals to the super-

conducting phase, and the metal-insulator transition materials undergo an electronic

phase change from a metallic to an insulating state as a function of applied external

conditions, i.e., temperature, pressure, or doping [89]. The universe’s birth passed

via transition from a singularity point with a high density, pressure and tempera-

ture to today’s world. However, the question that comes to our mind is whether

the temperature is the primary and only parameter that drives phase transitions?.

At zero temperature, the quantum fluctuations substitute thermal fluctuations, and

the quantum phase transitions occur.

A classical phase transition (CPT) is characterized by a sudden, qualitative,

change in the properties of a physical system when parameter, such as temperature,

is tuned through a critical value. In the vicinity of such transitions, remarkable

emergent behaviors can be observed. Such behaviors include universality, scale in-

variance and criticality. Such critical phenomena can be understood using theoretical

concepts such as the renormalization group and associated effective field methods.

The renormalization group relates a set of effective descriptions on a range of length

scales, and also provides a framework for the calculation of physical observables

using mean field approximations. Over the last thirty or so years, the field of quan-

tum phase transitions (QPTs) has evolved to become a new research area [90]. The

QPT occurs at 0 K as a distinct change from one ordered quantum state to another

[91, 92]. In the mesoscopic transport of spin current, which is relevant to this thesis,

the QPT denotes the change in the spin transport phase of carriers from one quan-

tum state to another at zero-temperature. Since this change occurs at 0 K, the QPT

is driven by quantum (rather than thermal) fluctuations. Hence, an equivalence to

the transition state expected in a classical phase transition does not exist.

The phenomenon of quantum fluctuation can be attributed to the probabilistic

nature of the ground state in a many-body solid determined quantum-mechanically
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within the self-consistent field approximation. Since the phenomenon cannot be

traced to the localized action of a change in the Hamiltonian, it cannot cause a

change in the total energy the system. Thus, the causes of QPTs are distinctly

different from the causes of quantum fluctuation. By contrast, the QPT is driven

purely by quantum fluctuations [93]. Parameter changes that break the symmetry

of the Hamiltonian will spontaneously drive the QPT.

For instance, consider that during the transport of spin angular momentum un-

der an applied voltage, spin carriers will respond sensitively to the applied symmetry

breaking fields in the presence of intrinsic quantum fluctuations. This response leads

to non-local discontinuities, such as spin carrier de-population around the Fermi level

and chiral anomalies, in the spin-dependent topology of the Fermi-surface. These

lead to nontrivial effects that influence the spin-dependent tunneling with perpendic-

ular magnetic tunnel junctions. These effects become important when the pMTJ is

subjected to the effects of external bias potential, voltage drop, an external electric,

or magnetic field during its in-service operation in a spintronic device.

2.3.1 Signatures of classical and quantum phase transitions

Consider that, the QPT only takes place at T = 0 K under quantum fluctuations.

QPTs differ from CPTs because they only occur at a specific finite temperature T

[89, 91, 94]. Adjusting a non-thermal control parameter (λ) of the Hamiltonian can

drive the system towards the quantum critical point (QCP) at zero temperature.

Otherwise, if the Hamiltonian drive has an explicit dependence on temperature,

then any ensuing phase transition is purely classical. Examples of such parameters

include external electric field, magnetic field, material type, and associated defect

states, and sub-lattice disorder potentials. When the Hamiltonian is tuned through

the parameter space λ, the electronic ground state of the many-body system is

characterized by spontaneous non-conserving symmetry or a changing of topological

invariant [89, 95].

Figure 2.4 describes the signatures of the phase transitions in condensed matter

from the classical and quantum point of view in terms of temperature T and the

15



Hamiltonian parameter λ. The phase diagram shows two significant probabilities for

the temperature T > 0 in the neighborhood of a QCP. Figure 2.4(a) shows the first

type of probability. In this case the thermodynamic singularity is present only at

zero-temperature at the critical point. This is the point where quantum fluctuations

govern the dynamics of the system. Instead of varying the temperature at the critical

point, a controlling Hamiltonian H(λ) can be tuned, and all T > 0 features are

analytic as a function of λ near λ = λc. However, the second probability is shown

in Fig. 2.4(b). It shows a line of T > 0 K. This finite-temperature phase boundary

denotes a second-order phase transition. The two phase boundaries terminate at

the QCP where λ = λc [91].

Figure 2.4: Phase diagrams of temperature (T) as the function of order parameter
λ near quantum phase transitions. The quantum critical point is identified with a
vertical dashed line at λ = λc and T = 0, as the point where the order parameter
reaches the critical value λc, at zero temperature. (a) The ordered phase exists at
T = 0. (b) An ordered phase exists at finite temperature or T > 0. The shaded
area denotes the critical region where thermal fluctuation takes place.

Whenever T ̸= 0, there is a competition between the energy scales kBT (ℏω) of

thermal and quantum fluctuations, respectively. In this case ω defines the charac-

teristic frequency of oscillation of the internal degrees of freedom of the system. It

is inversely proportional to the correlation time. By contrast, quantum fluctuations

control dynamical behavior of the system whenever the condition, ℏω = kBT , is

satisfied. In this case, the critical quantum point corresponds to the value of the

order parameter at T = 0. This is the point where separate quantum phases coexist.

From the above conditions, a classical illustration of these principles are applied to

critical degrees of freedom in the quantum dynamical system denoted by the spin
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current. This concept works well in the shaded area in Fig. 2.4(b) [91]. Generally,

the arguments of quantum mechanics do not work well in describing the criticality

of the dynamical system at finite temperatures. However, quantum mechanics plays

a significant role at zero temperature.

2.4 Topological quantum phase transitions (TQPTs)

Topological phases have attracted the scientific community’s attention in the past

decades. In condensed matter systems, the notion of topology characterizes the

geometrical property wherein the dimensionality of space cannot be changed under

continuous deformations. Topological phases are characterized by the topological

invariant or any other non-local metric of the topological order. Thus, topological

quantum phase transitions (TQPTs) occur only between two or more topologically-

protected or nontrivial electronic phases. Topological order metrics remain un-

changed by the inclusion of perturbation terms in the Hamiltonian, or by the in-

troduction of a localized short-ranged disorder in the system. As such, metrics of

topological order have become useful as topological quantum numbers in the char-

acterization of emergent quantum phases in CMP. For instance, its beneficial use in

distinguishing between the topological order of an electronic phase has been demon-

strated recently [96–100]. Some of the materials that host various topological phases

include topological insulators (TI), superconductors, TMDs and Dirac semimetals.

Figure 2.5 shows the electronic band structure of a system as a dispersion

relationship between energy band states and the wave-vector k in the first Brillouin

zone. The two gapped bands, in the left and right of Fig. 2.5, are characterized

by non-inverted and inverted bands, respectively. The presence of the bandgap

protects their topological edges. However, introducing spin-orbit coupling can tune

the electronic state and change the system into the metallic state (see Fig. 2.5(b))

from the band insulator (see Fig. 2.5(a)). It is also possible to reopen another type

of band gap, as seen in Fig. 2.5(c), due to the topological quantum phase transition.

The top of the valence band and the bottom of the conduction band are inverted

in Figure 2.5(c) because of spin orbit interaction. The effect of the SOC in driving
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the emergence of band inversion is intricately related to TQPTs. For instance, when

the spin-orbit coupling strength is reduced, the topology of the inverted band can

recover a trivial configuration through the gap closing mechanism. Thus, modifying

the strength of the spin orbit interaction is a veritable method for controlling the

topology of electronic bands and induce a QPT between two topological phases.

Figure 2.5: Topological quantum phase transition in the electronic band structure.
(a) Ordinary band insulators, (b) closed band at a critical point, and (c) band-
inverted insulators [6].

The distinction between topological phases with a bandgap cannot be adiabat-

ically linked if the system changes between phases. Therefore achieving the TQPT

without closing the energy band gap must be done through inversion of band topol-

ogy. An experimentally-feasible way to explore such TQPTs is to find physical

mechanisms and microscopic processes that can cause a discontinuous change in the

underlying signature of a particular physical reaction. The signatures of TQPTs

have also be investigated experimentally, using microscopic probes as electromag-

netic field [101–103] and piezoelectric response [104].

Topological protection of the carrier transport state is essential for realizing

energy-efficiency, and low-power consumption, in device applications. This is usu-

ally achieved through the minimization of Joule heating for heat dissipation during

carrier transport. This is particularly essential for spintronic devices, data storage

devices that operate on all-spin-logic, nanophotonic and nanopalsmonic devices ,

among others. Dirac materials [27] is a unique class of materials with candidates

that can provide such quantum states. For this reason, their monolayers can be inte-

grated into metamaterials and multilayers to ensure the presence of chiral quantum
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states. The characteristic of the nontrivial quantum phase of carriers is that their

topological edge states remain unchanged when they are subjected to perturbations

like thermally-induced fluctuations, impurity states, localized disorder and long-

raged interactions. Also, it is protected on graphene by bulk-edge correspondence

[105–110].

It is argued in [1] that, when a Dirac material is integrated into the multilayer

heterostructure [2], the intrinsic presence of the heterobilayer interface with a Dirac

material, or a free surface, will lead to formation of chiral edge states due to bulk-

edge correspondence of electron states. The emergence of topologically protected

electron states is guaranteed through the bulk-edge correspondence principles. This

principle enforces the one-to-one relation between the bulk and edge properties gen-

erated from bulk electron states and those from chiral edge states that are found

mostly in topologically nontrivial systems, such as Dirac materials. The application

of symmetry breaking fields to the electronic ground state of the equivalent elec-

tronic structure projected on the lattice of pristine graphene at 0 K is found to lead

to distinct topological quantum phase. Topological phase diagrams are obtained to

show discontinuities in the metrics of topological order quantized as the Z2 topo-

logical invariant and the Chern number, C. The phase diagrams form the basis for

understanding the TQPTs in Dirac materials.
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Chapter 3

Theoretical Framework

This chapter presents the basic theoretical formulations necessary to find computa-

tional solutions to the electronic structure problem in a many-body system. The

basic concept of density functional theory (DFT) is introduced as the primary theory

employed in this thesis to calculate the physical properties from the ground state

electron density. The tight-binding model for describing the properties of graphene

and the transport phenomena in ballistic conductors is also described.

3.1 The many-body problem

CMP probes the fundamental properties of matter and their origins from the many-

body interactions. However, the perspective is constantly changing with discoveries.

Developing models that describe observed phenomena accurately while maintain-

ing the capability to predict new properties is a fundamental challenge. One reli-

able way forward is to gain underpinning insights through efficient computations of

the quantum many-body problem in model material systems. Thus, it is desirable

for any such model to efficiently determine the optimized structure and physical

properties from the ground-state electronic structure of many-body systems. Such

materials range from single atoms to mesoscopic systems [111]. In 1926, Erwin

Schrödinger derived his equation to define the quantum state of matter [112]. The

Schrödinger equation became useful for enabling discussions of the relationship be-

tween the wavefunction and the total energy of a quantum system. The solutions of
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the many electrons wavefunction required for the analysis of the electronic structure

and properties of condensed matter phases via Schrödinger equation can be written

as:

Ĥψ(R, r, t) = Eψ(R, r, t), (3.1)

where Ĥ denotes the Hamiltonian, E and ψ(R, r, t) denote the total energy and the

wave function of all electrons and nuclei, respectively. In this case, R, and r denote

the position vectors of nucleus and electrons, respectvely [113, 114].

Figure 3.1: Schematic of the many-body interactions that must be solved in the
electronic structure problem. This shows the interactions between nuclei-nuclei
(Vn−n), electron-electron (Ve−e) and electron-nuclei (Ve−n).

Therefore, the Hamiltonian ofN electrons that are interacting with one another,

and with M nuclei [see Fig. 3.1] can be written as:

Ĥ = −
N∑
I=1

ℏ2

2MI

∇2
I −

ℏ2

2me

N∑
i=1

∇2
i +

1

2

M∑
I=1

N∑
J ̸=I

ZIZJe
2

|RI −RJ |
+

1

2

N∑
j ̸=i

N∑
i=1

e2

|ri − rj|

−
M∑
I=1

N∑
i=1

ZIe
2

|RI − ri|
,

(3.2)

where I, i denote the set of nuclei and elctrons coordinates, respectively. However

Z,M denote the charges and masses of nuclei, respectivly. Since ℏ, m and e are

the basic constants [114–116]. Nevertheless, the Hamiltonian operator shown in
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Equation (3.2) can be decomposed into five terms that correspond to contributions

to the total energy:

Ĥ = T̂n + V̂n−n + T̂e + V̂e−n + V̂e−e. (3.3)

The Hamiltonian in Equation (3.3) is made up of contributions from the kinetic

energy of nuclei T̂n and electrons T̂e, the inter-nuclear repulsive potential nuclei V̂n−n

as well as the exchange potential between nuclei and electrons V̂e−n as displayed in

Fig. 3.1. The following expressions give the value of each of the contributions to

the Hamiltonian:

T̂n = −
N∑
I=1

ℏ2

2MI

∇2
I , (3.4)

T̂e = − ℏ2

2me

N∑
i=1

∇2
i , (3.5)

V̂n−n =
1

2

M∑
I=1

M∑
J ̸=I

ZIZJe
2

|RI −RJ |
,

V̂e−n = −
M∑
I=1

N∑
i=1

Zie
2

|RI − ri|
,

V̂e−e =
1

2

N∑
j ̸=i

N∑
i=1

e2

|ri − rj|
.

(3.6)

3.2 Born-Oppenheimer (BO) approximation

The solution of equation (3.1) for an interacting many-body system of particles

would be a hassle and complex and needs an approximation [115, 116]. Thus, several

approximations have been proposed to simplify the Schrödinger equation. Born and

Oppenheimer proposed the first approximation to facilitate a solution through the

implementation of a perturbative approach. It emerges from the large difference

between mass of nuclei and electrons [117]. The main idea of this approximation is

to decouple the wavefunction ψ(RI , ri) into electrons ψe(RI , ri) and nuclei ψn(RI)

such as:

ψ(RI , ri) = ψe(RI , ri)ψn(RI). (3.7)
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The Born-Oppenheimer (BO) approximation neglects the motion of the nuclei by

considering them to be static. Using equation (3.1) and equation (3.7), the Hamil-

tonian for electrons and nuclei can be separated [111], and obtained independently

as shown in the following equations:

Ĥeψe(RI , ri) =
[
T̂e + V̂e−e + V̂e−n

]
ψe(RI , ri)

= Eeψe(RI , ri),
(3.8)

and
Ĥnψn(RI) =

[
T̂n + V̂n−n + Ee

]
ψn(RI)

= Enψn(RI).
(3.9)

The terms contained within the square bracket in the RHS of equations (3.8) and

(3.9) denote the Hamiltonian of the electron and nuclei, respectively.

The nuclei wave function is obtained by solving the time-dependent Schrödinger

equation of the form:

iℏ
∂

∂t
ψq(R, t) =

[
−
∑
I=1

ℏ2

2MI

∇2
I + Vn−n(R) + Ṽq(R)

]
ψq(R, t) (3.10)

with

Ṽq(R) = Eq(R) +
∑
I

ℏ2

2MI

⟨ψq|∇2
I |ψq⟩ . (3.11)

The second term in the above equation describes the diagonal correction of the

energy levels. Due to the coupling between electrons and nuclei degrees of freedom,

the BO correction involves ignoring the diagonal term. Thus, for the nuclei system,

the time-dependent Schrödinger equation can be written as:

iℏ
∂

∂t
ψq(R, t) =

[
−
∑
I

ℏ2

2MI

∇2
I + Vn−n(R) + Eq(R)

]
ψq(R, t). (3.12)

The solution of the Schrodinger equation for the wave function of the many-body

system is connected to Ehrenfest theorem [118]. This connection provides the mech-

anism for determining the average value of different operators. For instance, the

expectation value of the rate of change of the position and momentum operators
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are given in terms of their commutation relationships with the Hamiltonian in the

following equations:

d

dt
⟨R⟩ = 1

iℏ
⟨[R, Ĥ]⟩+ ⟨∂R

∂t
⟩ = 1

M
⟨P̂ ⟩, (3.13)

and
d

dt
⟨p̂⟩ = 1

iℏ
⟨[p̂, Ĥ]⟩+ ⟨∂p̂

∂t
⟩ = 1

M
⟨−∇V̂ ⟩. (3.14)

Incorporating equations (3.13) and (3.14) into Newtons equation of motion for the

expectation value of the position ⟨R⟩ leads to the force F on the electronic system,

given by:

M
d2

dt2
⟨R⟩ = ⟨−∇V̂ ⟩. (3.15)

By introduces the classical nuclei approximation to BO described in equation (3.12),

one can find:

M
d2

dt2
R = −∇V̂ = −∇

[
Vn−n(R) + Eq(R)

]
, (3.16)

where Eq(R) denotes potential energy surface (PES).

The change in electronic energy is connected to the Hellman-Feynman force

theorem [119–121] for an external parameter of the Hamiltonian, generically denoted

by λ. The expectation value of the total energy with respect to parameter λ is given

as:
∂Eq(λ)

∂λ
= ⟨ψq(R)|∂Ĥ

∂λ
|ψq(R)⟩ . (3.17)

The force on the I th nuclei can be written as:

M
d2

dt2
⟨R⟩ = −⟨ψq(R)| ∂Ĥ

∂RI

|ψq(R)⟩ − ⟨∂Vn−n
∂R

⟩. (3.18)

The numerical combination of the above equations to describe the dynamical evo-

lution of the electronic structure of a many-body system is known as first-principles

or ab-initio molecular dynamics [113, 115]. The solution to the stationary state

problem can be used to determine the lowest energy (or ground state) of a system

of atoms, and the optimum structure of a condensed matter system, by imposing

the stationary condition, M d2

dt2
R = 0. At equilibrium, this condition corresponds to
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a vanishing force, where,

⟨ψq(R)| ∂Ĥ
∂RI

|ψq(R)⟩+ ⟨∂Vn−n
∂R

⟩ = 0. (3.19)

This procedure is known as geometry optimization [113].

3.3 The electron density function

Electron density represents the measure of the probability of finding an electron in

a particular position around an atom. Broadly, an electron is more likely to exist

in regions with high density. So the N-atom many electron wave function takes the

form:

ψ(rσ) = ψ(r1σ1, r2σ2, ..., rNσN), (3.20)

where σi denotes the spin of the ith electron. The wave function of complex system

should be normalized [115, 122, 123]. In other words, normalizing the wave function.

This means finding the proper form of ψ as:

⟨ψ|ψ⟩ =
∑
σ1...σN

∫
dr1

∫
dr2...

∫
drN |ψ(r1σ1, r2σ2, ..., rNσN)|2 = 1. (3.21)

That ensures that the probability that the particle is found somewhere in space

equals 1. This is generally known as the normalization condition for the wavefunc-

tion [124, 125]. Also, one essential parameter for classifying particles is their spin

or intrinsic angular momentum. For electrons, the wave function must be antisym-

metric of interaction between two-electron labels i and j. Alternatively, is to build

it for a system of similar particles to reflect the demand that particles are almost

identical.

ψ(r1σ1, ..., riσi, ..., rjσj, ..., rNσN) = −ψ(r1σ1, ..., rjσj, ..., riσi, ..., rNσN). (3.22)

The electron density nσ(r) of a specific state can be described as the number of
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electrons N per unit volume in the position r for that status, therefore:

∑
σ

∫
nσ(r)dr = N. (3.23)

According to the theory of quantum mechanics for a normalized wave function |ψ⟩,

the probability of finding electrons can be written as:

n(r, σ) = N

σN∑
σj=σ2

∫
dr2

∫
dr3...

∫
drN |ψ(rσ, r2σ2, r3σ3, ..., rNσN)|2. (3.24)

The corresponding operator n̂(r), which yields the electron density of spin state σ

at point r can be written as:

n̂(r, σ) =
N∑
i=1

δ(ri − r)δ(σi − σ). (3.25)

3.4 Density functional theory (DFT)

The birth of density functional theory (DFT) from quantum mechanics is consid-

ered a pioneer work for solving many-body problems. DFT is utilized in physics,

chemistry and materials science to calculate the electronic structure of many-body

interacting systems like atoms, molecules and solids at the ground state (GS) level.

It is dependent on two theorems devolped by Hohenberg and Kohn (HK) as well

as Kohn and Sham (KS) [126, 127]. This section provides the DFT framework for

calculating the total energy of the system. In addition to introducing the basic idea

of some approximations used to find unknown functional.

3.4.1 The Hohenberg-Kohn theorems

Hohenberg and Kohn made a significant step toward modern density functional

theory in 1964. They proved that the total energy construction for a system could

be illustrated in electron density. This concept is connected to the previous proposals

of the Thomas-Fermi model. Atoms were located in homogenous electron gas and

simulated as a system under a positive potential [128, 129]. Here with HK theorem
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includes two central parts as the following:

Theorem 1. "The external potential Vext(r) is a unique functional for n(r),

since, in turn Vext(r) reforms Ĥ, in othor words the full many particle ground state

GS is a unique functional of density n(r)" [122].

Although Vext(r) and V ′
ext(r) are disimilar potentials, however, they yield the

same ground state GS density n0(r). Therefore from the principle of variation (cf.

Ref. [114]), which obeys the following:

E0 < ⟨ψ′|Ĥ|ψ′⟩

< ⟨ψ′|Ĥ ′|ψ′⟩+ < ⟨ψ′|Ĥ − Ĥ ′|ψ′⟩

= E ′
0 +

∫
n0(r)[Vext − V ′

ext]dr,

(3.26)

then
E ′

0 < ⟨ψ|Ĥ ′|ψ⟩

< ⟨ψ|Ĥ|ψ⟩+ < ⟨ψ|Ĥ ′ − Ĥ|ψ⟩

= E0 −
∫
n0(r)[Vext − V ′

ext]dr.

(3.27)

Nevertheless, incorporating above equations (3.26) and (3.27) shows obvious dis-

crepancy as follow:

E0 + E ′
0 < E0 + E ′

0. (3.28)

Theorem 2. "A global function FHK [n] for the energy E[n], the functional

that conveys the exact ground state energy of the system, conveys the lowest energy

if the input density is the real ground density E[n]"[122]. Applying the Hamiltonian

of electrons in equation (3.8), therefore the functional energy of Hohenberg-Kohn

can be defined as:
E[n] = ⟨ψ[n]|Ĥ|ψ[n]⟩

= ⟨ψ[n]|T̂ + ˆVe−e|ψ[n]⟩+ Vext[n],
(3.29)
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and applying variational principle gives:

E[n] < (F [n] + Vext[n])

= F [n] +

∫
n(r)Vext(r)dr

= E0[n0(r)].

(3.30)

Since the (e − e) interaction and the operator of kinetic energy T̂ are included as

functional terms of density only. Consequently, F [n] should be a global functional

of the density and based only on the electron density,

F [n] = ⟨ψ[n]|T̂ + V̂e−e|ψ[n]⟩ . (3.31)

According to variational principle the driving of this functional obtains its minimum

for the exact density n(r) coinciding to Vext(r). Since of any density n′(r) for

particuler Vext(r) can get:

E[n′(r)] < ⟨ψ′|Ĥ|ψ′⟩

= F [n′(r)] +

∫
Vext(r)n

′(r)dr

> ⟨ψ|Ĥ|ψ⟩

= E[n(r)].

(3.32)

Then the mathematical foundation of the DFT from a principle of Hohenberg and

Kohn (HK) theorems is finding the F[n]. This is guarantee obtaining the solution

for the whole Schrödinger wave equation of many-body [113, 122, 126, 130]. The

external potential usually refers to the electron-nuclei interaction. Therefore, the

ground-state can be determined via the electron density of a system instead of its

complete many-body wavefunction.

3.4.2 The Kohn-Sham Method

A year later, from the reported HK theorems, KS proved a method that makes

density functional theory workable. According to quantum physics and particu-
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larly DFT, the difference between the two methods is Kohn-Sham technique treated

many-electron as one-electron. Nevertheless, Schrödinger wave equation considered

whole electrons. The formulation of DFT lends itself to finding good approximations

to the actual ground state GS. Kohn and Sham suggested that the true ground state

can be characterized by the density of the ground state of the reference system for

non-interact particles. Also, the contribution of Hamiltonian is selected to contain

an effective local potential υs(r) and the kinetic energy operator affecting on the

electron [113, 115].

Ĥ =
∑
i

(
− ℏ2

2me

∇2
i + υs(ri)

)
. (3.33)

The GS electron density in a many-body system is obtainable by solving the

time independent Schrodinger equation for a single-particle. This is given by:

Ĥψi = Eiψi. (3.34)

This is equivalent to the expression:

[
− ℏ2

2me

∇2
(r) + υs(r)

]
ψi = EKS

i ψi. (3.35)

The total energy EKS of the interacting system is defined as:

EKS = Ts[n] +

∫
υext(r)n(r)dr + EH [n] + Exc[n]. (3.36)

The exchange-correlation energy (Exc) is given by:

Exc[n] = ⟨T̂ ⟩ − Ts[n] + ⟨Vint⟩ − EH [n]), (3.37)

where Ts[n] denotes the kinetic energy term for non-interacting particles. The con-

tribution from Exc[n] to the total energy is not known in exact form. Hence, so it

must be approximated. EH [n] denotes the Hartree energy [113, 115, 130]. Thus,

all terms in the KS equation are written explicitly except Exc[n] [122]. By intro-

ducing the variational principle and considering the orbital ψi to be orthonormal
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⟨ψ|i |ψ⟩j = δij, the above KS equation can be expressed as:

[
− ℏ2

2me

∇2
(r) +

∫
n(r′)

|r − r′|
dr′ + υxc[n] + υext(r)

]
ψi(r) = EKS

i ψi(r). (3.38)

Alternatively, it can be expressed as:

[
− ℏ2

2me

∇2
(r) + VKS(r)

]
ψi(r) = EKS

i ψi(r), (3.39)

where

VKS(r) =

∫
n(r′)

|r − r′|
dr′ + υxc[n] + υext(r), (3.40)

inculde XC potential υxc which is the functional derivative of the exchange energy

Exc[n] with respect to the electron density n(r) [115, 122, 130].

υxc(r) =
∂Exc[n]

∂n(r)
. (3.41)

The total energy at GS density of the many-body interacting particles is cal-

culated exactly by solving the KS equation (3.39) through the self-consistent cycle.

The calculation begins with a guess of an initial set of orbitals to use for calculating

the electron density n(r). This is followed by constructing the effective potential

VKS(r) until a self-consistent cycle is achieved. In the last few decades, the KS for-

malism of DFT is the most prominent method used to calculate the exact electronic

GS of a many-body solid [130]. The practical implementation of DFT calculations

requires a transformation of the problem of the electronic structure theory formu-

lated above into an equivalent computational problem.

The aim of the computational task is to determine the XC functional that accu-

rately approximates the exchange-correlation energy contribution Exc[n] to the total

energy. This is based on the variational principles for obtaining the XC functional

dependence of the unknown part of the system’s total energy. Since the exact an-

alytical form of the XC energy Exc(r) is unknown, it must be approximated [115].

The approximations for Exc are made in the form of XC functional. The simplest

approximations are the semi-local exchange-correlation functionals because they are
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only dependent locally on the electronic charge density ρ(r) and its gradient ∇ρ(r).

The most basic functional is the local density approximation (LDA), where Exc(r)

is approximated point by point in real space by the exchange-correlation energy of

the homogeneous electron gas of density ρ(r). The first careful step in DFT calcu-

lations is functionalizing the XC energy with an accurate approximation. There are

several XC functionals available for use in DFT calculations. This ranges from lo-

cal functionals such as local density approximation (LDA), the generalized gradient

approximation (GGA) to hybrid functionals such as the Heyd-Scuseria-Ernzerhof

functional (HSE06), etc. [131–136].

3.5 Ab initio modeling of materials

3.5.1 Bloch’s theorem and plane wave basis

The infinite number of electrons in a condensed matter system makes the Schrödinger

equation for many particles quite complex to solve. However, in 1928 Felix Bloch

invented the theory that allows the electrons in the unit cell to be described using

the Schrödinger equation [137, 138]. The theory states that the electronic wave

function ψ in the periodic potential can be defined as a product of the plane wave

(PW) and the function of lattice periodicity as written below [139]:

ψk(r) = eik.ruk(r) (3.42)

where k denotes the wave vector in the first BZ, r denotes the position vector of

periodicity. The function uk(r) is the periodic lattice function, which is constant

under translation.

uk(r+R) = uk(r), (3.43)

where R denotes the transilation vector.

Using Fourier series, the periodic function uk(r) can be written as:

uk(r) =
∑
G

cG,Ke
iG.r, (3.44)
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where G denotes the reciprocal vector defined by:

G.b = 2πm. (3.45)

Here, b denotes the translation vector in the crystal lattice, and m is an arbitrary

constant. So, the Kohn-Sham orbitals expressed as:

ψk(r) =
∑
K,G

cK,Ge
i(K+G).r. (3.46)

Substituting the plane waves shown in (3.46) into K-S equation (3.39) yields the

secular equation below:

∑
G

[ ℏ
2m

|K +G|δGG′ + V σ
KS(G−G′)

]
ci,K+G′ = Eici,K+G′ , (3.47)

where V σ
KS(G−G′) describes the Fourier transform of the Kohn-Sham barrier. A

criterion for a finite number of G-vectors can be defined by an energy cut-off Ecut.

This determines the vectors G that are accounted for in the Fourier expansion and

the accuracy of the computation is determined by fixing the PW cut-off energy:

1

2

∣∣∣K +G
∣∣∣2 < Ecut. (3.48)

The choice of number of PWs to be used in a DFT calculation is determined by

the Bloch wave vector K. If K is known, the solution of the many-body quantum

state of the electron is numerically set within the proper plane wave basis. In

equation (3.48), the cut-off energy sets a limit for the maximum length of the G

vectors leading to a finite matrix representation for the Hamiltonian. This truncation

of the expansion in a plane waves basis makes the kinetic energy term to be less than

the cut-off energy. This difference in energy representation can introduce errors in

the total energy of some systems. In practical calculations, this error is reduced by

increasing the cut-off energy.
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3.5.2 Reciprocal space and Brillouin zone (BZ)

The significance of the BZ stems from the representation of waves in the periodic

medium. Felix Bloch showed that solutions of the electron state on a periodic

lattice can be characterized by the behavior plane waves in the BZ [137]. Once

the eigenvalues of the Kohn-Sham equation are calculated, it is straightforward to

determine the total energy of the many-body system. Such eigenvalues are obtained

self-consistently from the k-dependence of the Hamiltonian. The first Brillouin zone

can be sampled by mapping out a continuous set of points in reciprocal (k) space.

These Brillouin zone points are represented by k-points. Integration over the Brillion

Zone are necessary to compute that total energy within the DFT framework. An

integration over the first Brillouin zone must be converted into a summation over

discrete points in k-space. For instance, the calculation of the density for points of

the BZ takes the following form:

n(r) =
∑∫

BZ

F (k)d3k, (3.49)

where F (k) denotes the periodic function. Hence, in the case of a periodic system,

the integral must be approximated, by a sum over a discrete number of k-points.

Such k-points denote the points in the first Brillouin zone at which the DFT cal-

culations are performed to determine the electronic state in a solid system. This

implies that the set of K-points to use in a DFT calculation must be chosen care-

fully to improve numerical accuracy of the calculation and in a way that reduces

computational workload.

In practice, making use of a dense k-point grid reduces errors in the self-

consistency calculations. The tetrahedra method [140, 141] is considered the most

effective method for integrating over the BZ. It splits the volume of the BZ into

non-overlapping small tetrahedra. The easy integration technique is to sample the

BZ with a limited k grid, such as a Monkhort-Pack mesh [142]. This gives a uniform

grid of points in the BZ for DFT calculations and is considered an unbiased way of

selecting a set of k-points for sampling the BZ. In addition, providing a sets of irre-

33



ducible points in the BZ provides an effective tool for integrating periodic functions.

Therefore, with a better (or dense) k-point grid, the accuracy of the discrete sum in

equation (3.49) approaches the integral. Nevertheless, for some properties, the size

of the k-point grid needed to gain good convergence can become quite large.

3.6 Pseudopotentials

The success of the nearly free electron (NFE) approximation in describing simple

metals confirmed that the combined presence of strong and localized quantum ob-

jects such as core shells and nuclear potentials creates an effectively weak periodic

perturbation in a many-body solid. This is equivalent to a lattice of smooth ionic

potentials which slightly repel the valence electrons from the immediate vicinity of

the nuclei. Phillips and Kleinman [143] first showed that the requirement of orthog-

onality of the valence states to the inner core states pushes the outermost maximum

of the valence wave functions away from the core region.

Inside the core region, the orthogonality requirement acts like a repulsive po-

tential which tends to cancel the attractive nuclear potential felt by the valence elec-

trons. As such, their combined effect can be well approximated by a relatively weak

repulsive potential, or pseudopotential (PP). The valence electron wavefunctions are

smoothened and need fewer plane waves in their expansion. In the DFT technique,

a pseudopotential or effective potential is used to provide an approximate. In solid

systems, the external valence electrons dominate most system properties. Such as

electric and magnetic rather than core shell electrons [144, 145]. So PP replaces the

core electrons and the strong potential between ions with a slight pseudopotential.

This approximation simplifies the calculations because it treats the ions as frozen in

their atomic arrangement [145].

The primary application in electronic structure problem is to replace the strong

Coulomb potential of the nucleus and the effects of the tightly bound core electrons

by a PP. This denotes an effective ionic potential that acts on the valence electrons.

This concept is crucial for the plane-wave method of calculating the total energy

since the alternative full Coulomb potential of the electron-ion interaction decays
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too slowly to be accurately represented by a small number of Fourier components.

The PP method has been developed as an extension of the orthogonalized plane

waves (OPW) method. The OPW method was introduced by Convers Herring

in 1940 [146] to construct valence electron states that are orthogonal to the core

electron states using plane waves as the basis. An OPW function is constructed

by orthogonalizing the wave-function with respect to the core states. In this case,

the orthogonality of the OPW state is guaranteed by hermiticity of the electron

state projection operator, P. This makes the projected electron states to satisfy the

conditions satisfied by proper eigenstates of the Hamiltonian.

The PP approximation is based on an ansatz which separates the total wave

function into an oscillatory (or all-electron) part denoted by ΨAll−electron and a

smooth part, denoted by the so-called pseudo wave function, ΨPseudo. In prac-

tice, this method treats the core electron states as known functions. Generally, the

functions are taken from tight-binding calculations that are performed using atomic

orbitals. This has the advantage of reducing the time required for the total energy

to converge. Figure 3.2 shows a schematic representation of the PP method. The

electrons are partitioned into the core and valence regions by the cut-off radius. The

pseudo wavefunction (ΨPseudo) does not oscillate as much as the all-electron wave-

function (ΨAll−electron) in the core region. This means that far fewer plane waves

to describe compared to the all-electron wavefunction. ΨPseudo applies to a large

number of systems because it is a smooth function. In the valence region, ΨPseudo

matches with ΨAll−electron while the potential VPseudo also matches the all-electron

potential VAll−electron.
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Figure 3.2: Schematic description of the pseudopotential method. The dashed blue
line above (or below) the horizontal r-axis denotes the all-electron wavefunction (or
the all-electron potential), and the solid red lines above (or below) the horizontal
r-axis represents the pseudo wavefunction (or the pseudo potential). The strong all-
electron potential, and the weak pseudopotential are also shown in corresponding
lines and colors.

There are several approaches to the generation of PPs. However, the starting

point for generating norm-conserving potentials is given by Hamann, Schluter, and

Chiang [147] in the following requirements:

1. All-electron and pseudo valence eigenvalues must agree for the chosen atomic

reference configuration.

2. All-electron and pseudo valence wavefunctions (ΨAll−electron and ΨPseudo) must

be matched beyond a chosen core radius rcut−off .

3. The logarithmic derivatives of the all-electron and pseudo wavefunctions agree

at rcut−off .

4. The integrated charge density inside the core region rcut−off for each wave-

function must agree. This is known as the norm-conservation condition.

5. The first energy derivative of the logarithmic derivatives of the all-electron and

pseudo wavefunctions must agree at rcut−off , and therefore for all r ≥ rcut−off .
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As indicated in Figure 3.2, one of the key constraints is that the requirement

that a PP should coincide with the actual potential of the system outside the core

region. This constraint is guaranteed by Requirements 1 and 2. The smoothness

requirement on the pseudo wavefunction is guaranteed in Requirements 3. The norm

conservation condition in Requirements 4 ensures that the core electron region has

the correct charge density. Requirements 5 ensures that the PP will provide adequate

description of the given ion in a quantum system. However, suppose that the wave-

function obtained with the PP differs from the actual one in the core region. This

means that their respective charges will be distributed differently among the core

and valence regions, resulting in their norms being different. This charge difference

is called orthogonality hole [148], and should be corrected. Apart from the fact

that the PP model is a separate area of research in electronic structure theory,

addressing the orthogonality hole problem is complicated and will not be considered

in this thesis.

3.6.1 The projector augmented-wave (PAW) method

There are different types of PPs in the literature. These range from the norm-

conserving ones where ΨPseudo and ΨAll−electron are identical outside the cut-off radius

and their eigenvalues agree for the chosen atomic reference configuration to the

ultrasoft one which relaxes the norm-conservation condition to allow calculations to

be performed with the lowest possible cut-off energy for the plane-wave basis set.

Nevertheless, to allow for more efficient computations of the electronic structure

within DFT, the PP method and the linear augmented PW methods have been

generalized in the projector augmented wave (PAW) method [149–151].

The PAW method allows for a significant reduction in the number of wave

functions that must be calculated. This is because the pseudo potentials only must

be calculated and tabulated once for each type. As discussed by Richard Martin in

[152], the PAW method is a general approach to solution of the electronic structure

problem that reformulates the OPW method by adapting it to modern techniques

for calculation of total energy, forces, and stress within DFT. Just as in the ultrasoft

37



PP method [153], the PAW formalism introduces projectors and auxiliary localized

functions. The PAW approach also defines a functional for the total energy that

involves auxiliary functions, and it uses advances in algorithms for more efficient

solution of the generalized eigenvalue problem in a many-body system. The main

difference is that the PAW method keeps the full all-electron wavefunction in a

form that is like the general OPW formalism because the full wavefunction varies

rapidly near the nucleus. All integrals are evaluated as a combination of integrals of

smooth functions extending throughout space plus localized contributions evaluated

by radial integration over muffin-tin spheres, as in the augmented plane wave (APW)

method.

The wavefunction of all-electron (AE) in the PAW approach is transformed

from pseudo wavefunctions |ψαn⟩. By employing the linear map operator τ [154], it

could be written as:

|ψαn⟩ = τ
∼α
|ψ⟩ =

∼α
|ψ⟩+

∑
i

(|ϕi⟩ −
∼
|ϕi⟩)

∼
⟨pi|

∼α
ψn⟩, (3.50)

where
∼α
|ψn⟩ denotes the variational pseudo wave-function. |ϕi⟩ and

∼
|ϕi⟩ represent the

partial pseudo and all electron (AE) wavefunctions. The index i denotes the sites

of ions [154] since the valence electrons can only experience the screened Coulomb

potential due to the core electrons. A basis set of plane waves for the valence

electron wavefunctions can be built from the atomic wavefunctions. However, when

it is used to perform an AE calculation, the core electron states will also be included.

Inclusion of core-states result in time-consuming calculations. When the calculations

are performed using the PAW basis functions, a much lower cut-off energy is required

leading to faster AE calculations. These make the PAW scheme a popular approach

for practical DFT calculations in CMP.

3.6.2 Spin-orbit coupling (SOC)

In quantum physics, the relativistic interaction between the spin and angular mo-

mentum of an electron is known as spin-orbit coupling (SOC). As discussed exten-
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sively by Taylor, et al [155], it is important to consider the fundamental question of

when it constitutes a valid approximation to ignore relativistic effects when the elec-

tronic band structure of a solid is calculated within DFT. Consider that the Fermi

energy of a metal, i.e., given by the energy difference between the lowest and highest

filled conduction band state, is of the order of a few electron volts. This energy is far

smaller than the rest-mass energy of the electron by about 1× 10−5, it may appear

physically intuitive to always neglect such effects. However, it is crucial to note that

the potential wells are very deep near the nuclei of heavy atoms, and that a small

change in energy can cause significant qualitative differences in the electronic band

structure in an insulating material (e.g., a semiconductor) whose energy band gap

is small.

Thus, it is physically intuitive to start the consideration of the effects of the

SOC on the electronic band structure within the Dirac theory of the relativistic

electron [20]. This is because the Dirac equation,

(
βmc2 + c

∑3
n=1 αnpn

)
ψ(x, t) = iℏ∂ψ(x,t)

∂t
, (3.51)

which describes the motion of a relativistic electron in terms of a four-component

wavefunction, also obeys Bloch’s theorem. Thus, a wave numberK can be associated

with each electron state. This makes it possible to recast the OPW method in terms

of an orthogonalization of the four component plane waves to the four-component

tight-binding core states. The Dirac equation also has the periodicity of the lattice,

just like Schrodinger equation. In the non-relativistic limit, the electron and positron

parts of the Dirac equation can be separated by means of the Foldy-Wouthuysen

transformation (F-W) [156, 157] to give an expression that is analogous to Equation

(3.1). The F-W transformation gives a two-component wavefunction that describes

only the electron. The most important terms contained in the Hamiltonian after

the F-W reduction of the Dirac equation are given by

H =
1

2m

(
p− e

c
A
)2

− 1

8m3c2
p2 + V (r)− e

mc
S.∇×A

+
1

2m2c2
S.
[
∇V (r)×

(
p− e

c
A
)]

+
ℏ2

8m3c2
∇2V.

(3.52)
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This reduced Hamiltonian contains a correction to the electronic kinetic energy

because of a symmetry-breaking field denoted by the vector potential A and two

additional terms that involve the spin angular momentum S. However, since rel-

ativistic effects usually contribute a small amount to the total energy of a Bloch

electron, it is often possible to treat them as a perturbation of the nonrelativistic

band structure. The fact that the electron wavefunction has two components is

consistent with the electron possessing a degree of freedom corresponding to a spin

angular momentum S = ±1/2ℏ which can point either up or down.

In the following, current understanding of the dynamics of a relativistic electron

is summarized from the viewpoint of quantum field theory. Firstly, the negative-

energy states that were encountered by Dirac is not because of time reversal sym-

metry but because of the negative solutions of the Dirac equation. Dirac assumed

erroneously that matter is stable because all (or almost all) the negative-energy

states are filled. Secondly, Dirac’s interpretation of antimatter is untenable in to-

day’s high-energy physics. This is partly because it is now well-known that there are

charged elementary bosons like the W+ with a distinct antiparticle, the W−, and

the Pauli’s exclusion principle does not apply to bosons. As noted by Steven Wein-

berg [158], the current understanding is that the solutions of the Dirac equations are

not a relativistic generalization of probability amplitudes like the Schrödinger wave-

function, as Dirac had thought. Instead, the positive-energy solutions are matrix

elements (ψ0, ψxψ1) of the quantized electron field ψx between various one-electron

statesψ1 and the vacuum ψ0, while the negative-energy solutions are matrix ele-

ments (Cψ0, ψxψ1) of the electron field between the vacuum and various positron

states. These current understanding have important implications on the dynamics

of relativistic electrons in Dirac materials.

In Section 3.9, the modified Hamiltonian in Equation (3.52) is used as the

theoretical basis for exploring the emergence of topological quantum phases of free

electrons in Dirac materials. By applying a time-dependent vector potential as

the absorption kick to the 0 K, electronic structure topological phase diagrams

are obtained. Signatures of near-field electrodynamics are also investigated using
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TDDFT to unravel a collective transport phase that behaves like a quantum-fluid.

The non-relativistic formulation of the KS method discussed in Section 3.4.2

relies on the Hamiltonian given in equation (3.8). This Hamiltonian does not include

SOC [159]. In an interacting many-body system the SOC Hamiltonian ĤSO is given

by [160]:

ĤSO =
eℏ

4m2c2
σ̂.
[
E(r)× p̂

]
, (3.53)

where σ̂ is the Pauli spin matrices, and E(r) denotes electric field at the position r

of electron. p̂ denotes the momentum operator. However, the potential of electrons

can be written as:

E(r) =
1

2m2c2
1

r

dV

dr
. (3.54)

To include the spin-orbital effect within Hamiltonian of many-body system, equation

(3.8) is re-written as:

Ĥe = T̂ + V̂e−e + V̂e−n + ĤSO. (3.55)

In practical calculations, the SOC is included self-consistently by using relativistic

pseudo-potentials. In this case the SOC is treated as a first-order perturbation of

the spin state using relativistic PAW potentials. SOC lifts Kramers degeneracies

by splitting electron states that are degenerate when it is not included. Further

relaxation of the structure due to the inclusion of SOC is ignored in the calculations

presented here.

The inclusion of SOC in DFT calculations is important for gaining insights

into magnetism and emergent spin signatures [160]. The role of SOC in breaking

of time-reversal and orbital symmetries are significant factors in the emergence of

topological quantum phases of the electron and their associated phase transitions.

It is shown in the results section, how SOC can change the transport character from

the energy dispersion spectrum, especially around the Fermi level. In addition, it

causes emergent phenomena such as anisotropy in magnetism, magnetic damping

[161, 162], relaxation of spin [163], and exotic anomalous Hall effect [164].

41



3.7 Tight binding approximation

In the following analyses, the dynamics of the nuclei is neglected. Dynamics of the

electronic degrees of freedom are completely decoupled from ionic dynamics. This

approximation is valid since the electron are moving faster than the more massive

ions. The resulting adiabatic dynamics is consistent with the BO approximation.

To apply the Schrödinger picture to the wave dynamics of charge (or spin) carriers

in a Dirac material, it is important to note that the Hamiltonian of the electronic

system is analogous to equation (3.13). The electronic Hamiltonian will generate

the time evolution of the quantum state of the electrons. Given the state function

of the electronic system at an initial time t = 0, then the unitary time evolution of

the quantum state at time t is

ψ(
∼
r, t) = U(t)ψ(0), (3.56)

where

U(t) = e−iĤt/ℏ (3.57)

if the Hamiltonian does not depend on time.

However, to study the nonadiabatic dynamics of an electronic system using

a time-dependent Hamiltonian, the tight binding model of graphene is introduced

in the following. This is a necessary first step for understanding time dependent

DFT in the tight binding approximation using the linear combination of atomic like

orbitals. This allows for insights into the full-dimensional dynamics of molecules,

clusters and macroscopic solids that include any type of couplings in the adiabatic

regime. Examples of the couplings, which serve as ground state symmetry-breaking

fields, include spin-orbit coupling, magnetic field, electric field, and electromagnetic

fields, such as the coupling of monochromatic light (e.g., a laser field) to the magnetic

(or electric) dipole moment in materials.

The tight-binding (TB) model allows more effective systems to be treated, with

thousand of atoms in the lattice as a semi-empirical method. The central idea of the
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TB model was formulated by Slater and Koster [165] based on the postulation that

the basis set of eigenstates for a complex system is atomic-like and hence localized.

In the computational modeling of materials, the TB (or the linear combination of

atomic orbitals (LCAO)) method can be use in calculating electronic band struc-

ture and Bloch state of the electrons just as with ab initio calculations performed

within DFT. However, the TB model requires fitting the parameters of the electronic

structure to available experimental data on relevant physical properties of the mate-

rial under consideration, or fitting them to results of accurate ab initio calculations

when no reliable experimental data exist. For this reason, the set of parameters

generated from the tight binding model of given a material are not transferable to

other materials.

Nevertheless, the TB model is easy to generate for materials whose bonding

electron states are dominated by the hybridization between valence electrons that

are located in the s and p orbitals. Tight binding calculations are far easier to

perform compared to ab initio calculations when implemented in the two-centre

approximation to the multicentered integrals that appear in the Hartree-Fock theory

of solids [166]. This is because only nearest neighbor hopping terms are considered.

The consequence is that the computation of the electronic structure is done faster,

but at the expense of the accuracy of valence orbital ranges and chemical bond

lengths.

3.8 The tight binding model of graphene

Graphene is the single-atom thick two-dimensional plane of graphite. The carbon

atoms are arranged in a hexagonal lattice or honeycomb structure as shown in Figure

3.3. each carbon atom is bonded strongly to three other carbons in the plane of the

monolayer. Its strong σ-bonds arise from s-p hybridization and the C-C bonds show

no ionicity. The unit cell of the graphene lattice can be described in terms of two

inter-penetrating triangular sublattices. Thus, modelling of the nearest neighbour

hopping of an electron from the reference carbon in terms of parameter t ignores the

contribution from the intra-sublattice hopping that would have been expected from
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the two sublattices. Thus, only one nonzero matrix element t, is used in to describe

the nearest-neighbor hopping [167].

Figure 3.3: The hexagonal (honeycomb) lattice of graphene.

Generally, the TB model Hamiltonian of the honeycomb lattice can be written

as [168]:

Ĥ = −t
∑
⟨i,j⟩

[
ˆ
a†i b̂j +

ˆ
b†j âi

]
, (3.58)

where t denotes the hopping amplitude. For graphene, t ≃ 2.7 eV [169]. This

parameter corresponds to the matrix element of the kinetic energy operator. The

terms in the angle bracket ⟨i, j⟩ denotes the nearest neighbors hopping between

sub-lattice sites A and B, while, â†i (âi) denotes the corresponding operator for cre-

ation(annihilation), respectively. The sum over nearest neighbors given by:

∑
⟨i,j⟩

[
ˆ
a†i b̂j +

ˆ
b†j âi

]
=
∑
i∈A

∑
δ

[
ˆ
a†i

ˆbi+δ +
ˆ
b†i+δâi

]
, (3.59)

where δ denotes position vectors of the nearest neighbors which is given by δ1, δ2,

and δ3. The summation over all the vectors δ combined the TB Hamiltonian of

graphene in (3.58) given by:

Ĥ =
−t
N/2

∑
i∈A

∑
δ,k,k′

[
ei(k−k′).rie−ik

′.δ ˆa†kb̂k′ +H.c.
]
, (3.60)
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where N/2 defines the number of sublattice sites A. The Hamiltonian can take the

form:

Ĥ =
∑
k

ψ†h(k)ψ, (3.61)

where the Hamiltonian is expressed in terms of the nearest neighbor hopping pa-

rameter t, in unit of energy, as a matrix with its elements given as shown in the

following equations:

ψ ≡

âk
b̂k

 , (3.62)

ψ† =
(
âk b̂k

)
, (3.63)

and

h(k) ≡ −t

 0 △k

△∗
k 0

 , (3.64)

where

△k ≡
∑
δ

eik.δ[168]. (3.65)

The eigenvalues of the above matrix representation are ε± = ±t
√

△k△∗
k, and

can be computed by re-writing △k in the form:

△k = eik.δ1 + eik.δ2 + eik.δ3 . (3.66)

The energy levels are expressed as:

ε±(k) = ±t

√√√√1 + 4 cos

(
3

2
kxa

)
cos

(√
3

2

)
+ 4 cos2(

√
3

2
kya). (3.67)

Alternatively, equation (3.67) can be expressed as:

ε±(k) = ±t
√
3 + f(k), (3.68)

where

f(k) = 2 cos
(√

3kya
)
+ 4 cos

(
3

2
kxa

)
cos

(√
3

2
kya

)
. (3.69)
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Figure (3.4) shows the energy-momentum dispersion relation for electrons in

graphene as predicted in the nearest-neighbour TB model. Here, the conduction

and valence bands touch at the Fermi level (E = 0 eV) at the time-reversal sym-

metric points K and K′ in the first Brillouin zone. The electronic ground state in

graphene, when determined from first principles calculation with DFT can be used

to benchmark the TB model when there are not external applied fields. Insofar

as the semimetallic band structure is correctly reproduced in both approaches, the

transport character in both model calculations support the ballistic transport of

electrons. Herein, the ground state electronic structure in bulk tantalum arsenide

(TaAs) is determined and combined with external field-dependent tight-binding cal-

culations of the low-energy band dispersion in graphene to study the emergence of

topologically ordered quantum states in the carrier transport model in Dirac mate-

rials. This allows the study evolution of graphene band structure with changes in

the topological order parameters is employed here to study the dependence of the

magnitude of the emergent bandgap on-field tuning parameters.

Figure 3.4: The energy-momentum dispersion relation of nearest-neighbor for
graphene. (a) Zero energy states, and (b) the bands touch each other at the Dirac
points. (c) Graphene Brillouin Zone [7].

3.9 Time dependent DFT in the LCAO basis

Time-dependent density-functional theory (TDDFT) is based on the linear response

formalism used to compute the excited states of electronic systems. It describes the

electronic properties and dynamics of a many-body system in the presence of time-

dependent potentials. Examples of such potentials include the electric, magnetic,

or electromagnetic field. The first derivation for TDDFT was presented in 1984
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by Runge and Gross [170] for describing time-dependent systems. In the linear-

response regime, a good choice for time dependent DFT calculations is the real-

time (RT) propagation (TDDFT). The RT-TDDFT method uses the same ground

state electron density as input information, just as the LR-TDDFT for computing

response functions for perturbations of short duration. It incorporates nonlinear

spectral information for long initial perturbations. Also, in RT-TDDFT, the TDKS

wavefunction is propagated in time by integrating the TDKS equations numerically

[171]. Therefore, by dealing with the electronic structure as an independent quantum

system whose perturbed Hamiltonian depends on time, all relevant details about the

physics of the system are included in its time expansion operator matrix elements.

The RT-TDDFT calculations performed in this study are based on the numer-

ical implementations of the localized atomic basis set of the projector augmented

wave (PAW) method in the grid-based projector augmented waves GPAW code

[172, 173]. In the LCAO-based DFT implementation [174], the Kohn-Sham pseudo

wave functions

ψ(r) =
∑
µ

∼
ϕ(r)cµn, (3.70)

are expanded onto a set of atomic-localised orbitals
∼
ϕ(r), where the time-independent

electron density is:

n(r) =
∑
occ

|ψ(r)∗ψ(r)|. (3.71)

Since the corresponding time independent density matrix (or propagator) can be

written as:

ρµv =
∑
n

cµnfnc
∗
vn, (3.72)

with cµn as variational parameters, one can extract the pseudo density from density

matrix as:
∼
n(r) =

∑
µv

∼
ϕ(r)∗

∼
ϕ(r)ρµv +

∑
a

∼
n
a

c(r). (3.73)

The atomic-like basis functions are constructed as products of numerical radial
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functions φnl(rµ) and spherical harmonics Ylm(r̂µ), where

∼
ϕ(r) =

∼
ϕ
(
rµ +Rµ

)
= φnl(rµ)Ylm(r̂µ), (3.74)

where the position of nucleus µ is denoted by Rµ. The major difference between

the LCAO and PW approaches to DFT is that the variational parameters of the

eigenvalue problem are the coefficients cvn instead of the real space wave function.

The eigenvalue problem that must be solved computationally through direct diago-

nalization of the Hamiltonian matrix is given by:

∑
v

Hµvcvn =
∑
v

Sµvcvnεn. (3.75)

To get the coefficients cvn here, εn denotes the energies when the Hamiltonian Hµv

and the overlap matrix Sµv are known.

The RT-TDDFT calculations are based of the real-time propagation of the

localised LCAO functions atomic-localised orbitals
∼
ϕ(r) as described by Kuisma, et

al. [175]. The action of the PAW operator T̂ on the all-electron wave function,

ψ(r, t) = T̂
∼
ψ(

∼
r, t) (3.76)

transforms the Hamiltonian unitarily, such that:

[
T̂ †
(
− i

d

dt
+ ĤKS

)
T̂
]
ψ(

∼
r, t) = 0. (3.77)

This leads to the following matrix eigenvalue problem expressed as a first order

differential equation:

− iS
d

dt
C(t) = H(t)C(t), (3.78)

where C, S, and H are dense matrices of linear Hermitian operators. This is solved

numerically using the semi-implicit Crank-Nicolson method to propagate the wave-

functions for C(t) in the predictor-corrector scheme.

The signatures of the near-field quantum electrodynamics in small clusters of
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some Dirac materials are calculated at energies where topological quantum phase

transitions are expected to occur

3.10 Quantum transport in ballistic conductors

This section presents theoretical model of electron scattering in quantum transport.

Several techniques have been developed to study the transport of carriers in atomic

conductors. This includes the method of nonequilibrium Green’s functions combined

with localized basis sets [176–179]. An alternative method involves the use of an

independent system of wavelet basis to determine the Green’s function [180]. In

addition, the scattering method was used to investigate the resistance of atomic

wires for both small and large bias [181]. The scattering of electrons has been

proposed as the solution to the scattering problem for an open quantum system. A

significant advantage of this method is that the scattering amplitude is based on

the Landauer-Büttiker formula for relating the ballistic conductance to the total

transmission coefficient at the Fermi energy.

In the ballistic transport regime, the electronic transport across nanoscale de-

vices has no scattering among the electrodes [176]. However, the resistance can be

high in the contacted regions. This is because the moving electron medium, is scat-

tered by atoms of the contact since it behaves as impurities. Graphene and carbon

nanotube manifest ballistic conductance. Quantum point contact devices that con-

tain sub-micrometre scale lengths of these materials exhibit quantized conductance

plateaus as a function of applied bias voltage. Insights into the transport charac-

ter can be obtained by applying scattering theory of transport as a fundamental

framework to explain the electrical conductance [182]. The two leads (electrodes)

are connected to the nanocontact scatter region as shown in Fig. 3.5. Left (L) and

right (R) leads are conductors, and act like reservoirs of charge (or spin) carriers so

that the current flow can be defined as:

I =
2e

h

∫
T (E)

[
fl(E)− fR(E)

]
dE, (3.79)
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Figure 3.5: Open quantum system scheme, with the three regions left lead (L),
scattering, and the right lead (R).

where T (E) denotes the transmission, f denotes the Fermi Dirac distribution func-

tion, and h is the Plank’s constant. At zero temperature, the current (I) is given

by:

I =
2e

h

∫
T (E)dE. (3.80)

Using the Landauer-Büttiker formula, the spin conductance is given by [183, 184]:

Gσ =
e2

h

∑
k∥

Tσ(k∥, EF ), (3.81)

where k∥ defines the parallel component of the wave vector resolved along the plane

of the 2D Brillouin zone.
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Chapter 4

Computational Details

This chapter presents the details of the computational experiments performed in this

thesis. The method of numerical renormalization group is introduced as the formal

computational framework that are permits a systematic investigation of the changes

that are inherent in the scale-dependent view of a physical system. This is used

as basis for the qualitative understanding of the approach to the renormalization of

carrier transport properties of Dirac materials on the tight-binding model of pristine

graphene.

First-principles calculations are performed to determine the electronic structure

in bulk TaAs. The method of implementing the renormalization of the electronic

structure of bulk TaAs on the honeycomb lattice using a TB model of graphene

is presented. The carrier transport state of the bulk TaAs on the field-dependent

transport equivalent on the TB model of pristine graphene is used to track the

emergence of topological phases.

Lastly, the computational set-up of the symmetric Co(111)/hBN/Co(111) and

Co(111)/MoS2/Co(111) multilayers and the method used to apply a perpendicular

electric field to these architectures are presented.
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4.1 First-principles calculations of the ground state in TaAs

Tantalum Arsenide (TaAs) crystallizes in the body-centered tetragonal crystal struc-

ture. Its crystal symmetry belongs to space group I41 md (No. 109). The lattice con-

stants are a = b = 3.37Å, c=11.56Å [185]. State-of-the-art ab initio electronic struc-

ture calculations were performed within DFT using the plane wave self-consistent

field code of the QUANTUM ESPRESSO (QE) package [186]. The interactions be-

tween ions and valence electrons are described using the projector augmented wave

(PAW) potentials [149]. It treats the exchange-correlation interaction was accounted

for in the Generalized Gradient Approximation as parameterized by Perdew-Burke-

Ernzerhof (PBE) [135]. The cut-off of 45 and 270 Ry the kinetic energy and charge

density expansions in the plane-wave basis. The 8×8×8 uniform Monkhorst-Pack k-

points mesh are used to reach convergence of total energies and Hellman-Feynman

forces within 10−12 eV and 10−3 eV/Å, respectively. The Brillouin zone (BZ) is

sampled with a much denser k-points mesh of 24 × 24 × 24 [142]. The electronic

states were populated using a Methfessels-Paxton (MP) smearing scheme using a

width of 7.35 mRy [187]. The optimized unit cell of bulk TaAs is used to per-

form collinear magnetization calculations without spin-orbit coupling. In contrast,

the non-collinear calculations were performed using fully relativistic pseudopoten-

tials to incorporate SOC effect. The inclusion of SOC lifts Kramers’ degeneracy by

spin-splitting of of electron states that are degenerate without the SOC.

The field-theoretic equations used in the renormalization group (RG) analysis

of massless Dirac fermions in graphene by Yusuke Nishida [188] are adopted in this

study. By coupling the electronic structure to a supercritical Coulomb potential

to mimic the effect of disorder, different regimes from weak, moderate to strong

Coulombic electron-electron interactions and weak quenched disorder in graphene

are explored. This is physically plausible because the competition between strong

Coulombic interactions between electrons and a weak quenched disorder in graphene

drives the emergence of quantum phase at 0 K. This is computational strategy is

motivated by theoretical predictions of the one-loop renormalization calculation in

graphene by Foster and Aleiner [189]. The one-loop RG calculation of the weak-
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coupling shows that the following possibilities with graphene: (i) Coulomb inter-

actions are irrelevant in the absence of disorder from the RG perspective because

the clean Dirac description of the non-interacting ground state is stable. (ii) when

a generic disorder is introduced to break the symmetry of the ground state, the

noninteracting, clean Dirac fixed point (i.e., time-reversal symmetric BZ point KK′)

becomes unstable. In this case, the system flows toward strong disorder and in-

teraction coupling. This framework allows for the renormalization of the carrier

transport state of any Dirac material onto an equivalent electronic band structure

of the pristine graphene. Findings of the Yusuke Nishida RG analysis are also tested

by analyzing the induced charge and current densities, as signature of the near field

electrodynamic in the radiation-reaction approximation of the RT-TDDFT.

To study the emergence of topological quantum phases, electronic ground state

in bulk TaAs is renormalized on the electronic structure of the graphene sheet within

the TB model. Effects of the application of an external drive field to the rescaled

graphene GS are investigated. This method allows for the analysis of the emergence

of trivial equilibrium bands into non-equilibrium topological bands as a function of

the external field intensity. The energy values utilized in the numerical computa-

tion are scaled by the hopping parameter t, which has different scales for different

materials. In addition, the near-field electrodynamics calculations were performed

on dimers and small clusters of TaAs and graphene to gain insight to the interaction

between see the light materials from the nanoscale and the response of charge carrier

to light during ballistic transport.

4.1.1 Van der Waals multilayer heterostructures

Herein the multilayer heterostructures of Co(111)/insulating Dirac materials/Co(111)

were modelled to construct symmetric pMTJs via material physical stacking of

monolayer materials using procedures analogous to those used recently to study mul-

tilayers [190–192]. The monolayer DMs such as hexagonal boron nitride (h-BN) and

molybdenum disulfide (MoS2) were placed as tunnel barriers. The semi-conducting

h-BN layer has a wide bandgap. It used to raise graphene’s conductivity, and it has
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been employed in spintronic devices [193–196]. However, MoS2 is a layered material

with a direct bandgap suitable for a tunnel barrier in perpendicular magnetic tunnel

junction (pMTJ) [197, 198].

The calculation of ballistic conductance using the PW basis is performed using

the PWCOND code of the QE suite. The pMTJ model includes lead regions of

Co(111) and scattering regions of monolayer hBN, or MoS2. The equilibrium lattice

constants of the system are separately relaxed. Using the supercell model of 2 × 2

in xy-plane with enough vacuum of 15 Å to avoid the interaction between nearest

neighbour slabs. The obtained optimized lattice constants are: Co(111), 5-layers

(5.0176 Å), h-BN, monolayer (5.112 Å) and MoS2, monolayer (6.381 Å). To construct

multilayers, the atomic simulation environment software [199] is used to put them

together layer by layer.

In addition, scalar relativistic pseudopotentials are used to describe the exchange-

correlation energy with non-empirical spin-density van der Waals density functional

correction (svdw-DF2) [200–202]. Cutoff limits of 80 and 450 Ry were set for the

kinetic energy and charge density expansions in the plane waves basis, respectively.

The Monkhorst-Pack k-point grid of 6 × 6 × 1 is utilised to sample the BZ [142].

A denser mesh of 18 × 18 × 1 k-points is used for calculating the density of states

(DOS). Electron states were populated using the Marzari-Vanderbilt cold smearing

of a width of 0.0074 Ry [203].

4.1.2 Density of states (DOS)

The number of electrons N that occupy states in volume per energy unit E is

known as the density of states (DOS). Its magnitude is given by: N(E)δE. It is

essential to describe the electronic properties of the quantum system by interpreting

the contribution of orbitals in energy level in the range (E;E + δE). It can also

be used to classify the electronic transport phase of a material [204]. The general

formula of DOS can be understood from the dispersion relation between energy E

and wave-vector k as:
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E =
ℏ2

2m
k2. (4.1)

The general definition of the total density of states in three dimensions is written

as:

D(E) =
1

2π2
.
(2m
ℏ2
) 3

2
.E

1
2 . (4.2)

The lower density of states describes the disappearing occupying states. How-

ever, high DOS represents the availability of states to occupy. Although DFT sys-

tematically underestimates the bandgap of some phases, such as semiconductor and

insulator, it successfully reproduces the shape of the DOS. Also, topological effects

significantly impact the electronic signatures that appear in the DOS in condensed

matter systems. Such signatures include the appearance of van Hove singularities

(or kinks) in the DOS. The wavevectors at which such singularities or kink states oc-

cur in k-space are often referred to as critical points of the Brillouin zone. However,

this critical point, which influences the optical absorption properties of the material

is not related to the critical points observed in phase diagrams.

4.1.3 Charge transfer at interfaces

The charge density difference (CDD) is used to define the charge transfer [205] and

determine the electrons density excess and lack at the interface. Therefore, the inter-

actions between Co(111) leads and tunnel barrier regions was obtained by computing

the charge distribution at the interface. The proximity effects induced magnetoelec-

tric couplings were determined using the electronic density of the ground-state. The

interfacial charge transfer △ρ(r) due to the covalent bonding and proximity effects

in the multilayer heterostructures were determined using the expression [206]:

△ ρ(r) = ρHet(r)− ρCo(r)− ρX(r), (4.3)

where ρHet(r) denotes the charge density in the multilayer, ρCo(r) indicates the

charge density when the atoms in the barrier region have been deleted, and all Co

atoms are maintained in their positions as in the unit cell of the multilayer. However,
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ρX(r) denotes the charge density calculated for the monolayer tunnel barriers when

all Co atoms have been deleted from the supercell model of the multilayer and all

atomic positions in species X = MoS2 (or hBN) are kept.

4.2 Ballistic carrier transport

Figure 3.5 the schematic of the open quantum system of the mesoscopic structure of

the multilayer system in the pMTJ. This structure is used in computational experi-

ments to imitate the ballistic transport behavior of the pMTJs when it is connected

to metallic electrodes. Applying a small bias on those leads will cause charge (or

spin) carriers to flow leading to measurable transport properties. Herein, the spin

tunneling probabilities, quantum conductance and tunneling magnetoresistance were

calculated. The open quantum system (Fig. 3.5) is made of three central regions.

These are the scatter region (S), the left (L) and right (R) leads, respectively. It is

assumed that two spin-polarized (i.e. spin-up, and spin-down) electrons pass ballis-

tically through the barrier, each elastic scattering occurs in the scattering area, a

wire consisting of one atom or a molecule [176].

Leads L and R are considered to be semi-infinitely linked to far away electron

reservoirs. Therefore, the conductance of the system over the scattering zone was

determined via the Landauer formula, G = 2e2

h
T [183, 184]. The quantum transport

properties were calculated using the field theory that has been implemented in the

PWCOND code of the QE package [176, 207] with open boundary conditions. The

dense 60 × 60 × 1 k-mesh was used to calculate the wavevector-dependent spin

transmission spectrum.

For simulating the transmission of spin carriers in pMTJs, the spin degree of

freedom is considered to be conserved during the tunneling process with respect

to the z-axis of spin quantization. This axis also corresponds to the direction of

collinear magnetization in the determination of tunneling magnetoresistance (TMR).

The TMR signal was calculated using: is TMR = GP−GAP

GAP
× 100% where GP and

GAP denote the conductance for the parallel (P) and anti-parallel (AP) alignments

of the leads, respectively. Nevertheless, G = e2

h
(T ↑ + T ↓), where T ↑ and T ↓ denote
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the majority-spin and minority-spin conductance obtained in the parallel or anti-

parallel configurations at Fermi level. The constant e2

h
denotes the conductance

quantum.

4.3 Effect of applied electric field on the ground state

Symmetry place a central role in physics. At 0 K, breaking the crystal symmetry

that controls Bloch states nature will lead emergent new phases. These emergent

quantum phases can undergo transitions at 0 K when an external perturbing po-

tential couples to the electronic ground state to break the intrinsic symmetry. For

instance, in the existence of time-reversal symmetry, the orbital magnetic moment

and Berry curvature of the Bloch states must vanish unless inversion symmetry is

broken [208]. Space inversion and time reversal are the two fundamental symme-

tries that are applicable to all crystalline materials [209, 210]. In the bulk TaAs

and stacked hetero structures studied herein, the corresponding structural inversion

symmetry is already broken. However, time-reversal symmetry of the electron state

are explicitly broken in the calculations using SOC, electric field, magnetic field and

electromagnetic field. Each of these field couples to the ground state of the graphene

when applied, and behaves as a disorder potential of tunable intensity.

Various methods are used to apply the external electric field, depending on the

system under study. Herein, a sawtooth potential is added to the bare ion Coulomb

barrier to apply the perpendicular electric field to the heterostructures. The self-

consistent loop for calculating the total energy of each structure is converged at the

adjusted potential. However, the local system is not re-optimized at each new finite

electric field. The applied electric field is given in Hartree atomic units (a.u.), where 1

Hartree a.u. = 51.4220632 ×1010 V/m. Applying electric field through pMTJ along

the z-axis leads to the breaking of inversion symmetry of the ground state. This

therefore introduces an additional term to the Hamiltonian, H0. The expectation

value of H0 is the total energy obtained from the DFT, whereas the additional term

is the Rashba spin-orbit Hamiltonian (HR) associated with the electric field. The
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additional term is given by:

HR =
λR
2
(p× ẑ).σ, (4.4)

where σ and λR denote the Pauli spin matrices and magnitude of the SOC, respec-

tively, and λR is proportional to the applied electric field. The resulting k-space

Hamiltonian, H = H0 + Hk, where Hk = λR
2
(k × ẑ).σ characterizes a group of

Bloch electrons, that move adiabatically as a wavepacket in a non-degenerate band

of index n with a total energy En. The wavepacket was treated to enclose a range of

quantized wavevectors smaller than the volume of the Brillouin zone. This implies

that the dimension of the travelling disorder waves is far larger than the lattice

constant in real space [211].

4.4 The effective Hamiltonian of graphene

The generic Hamiltonian of Equation (3.60) for a honeycomb lattice is used to char-

acterize the carrier transport model equivalent of a Dirac material on the graphene

band structure. The effective Hamiltonian of graphene is defined in this model as

the sum of the following five terms:

H =− t
∑
⟨i,j⟩α

c†iαcjα

+ i
λSO

3
√
3

∑
≪i,j≫β

νijc
†
iασ

Z
αβcjβ

+ iλR(EZ)
∑

⟨i,j⟩αβ

c†iα
(
σ × d̂i,j

)Z
αβ
cjβ

− l
∑
iα

µiEZc
†
iαciα

+M
∑
iα

c†iασ
Zciα.

(4.5)

In this case, c†iα (cjα) denote the of creation (annihilation) operators of an electron

with spin polarization α at site i, and the sums over ⟨i, j⟩ and ≪ i, j ≫ run over

all the nearest or next nearest neighbour hopping sites. The terms of the effective
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Hamiltonian in the above equation are explained as follows: the first term denotes

the nearest-neighbour hopping (Hhc) with unit energy t. It takes the value t ≃ 2.7

eV [212]. The second term represents the intrinsic spin-orbit (HSO), while the third

term denotes Rashba spin-orbit (HR) associated with nearest neighbour hoppings

induced by external electric field Ez [213–215]. The fourth term is the staggered sub-

lattice (HST ) induced by the electric field Ez, while l denotes the buckling height of

the lattice, and µi = ±1. The last term denotes the magnetic exchange interactions

(HM) [169, 213, 216].

Consequently, signatures of the near-field electrodynamics of a Bloch electron

that propagates in a 2D Dirac material will be influenced by the applied uniform

drive field [217–221]. Field-dependence of the changes in such signatures is realized

from the tight-binding formalism of graphene [220], and used herein as a sensitive

probe of phase changes at zero temperature. The exchange field M is due to the

coupling of the graphene sheet to a ferromagnet. It is achieved in multilayers that

integrate a ferromagnetic slab in stacked hybrid materials [190–192]. Alternatively,

when ferromagnetic atoms are deposited on the graphene. The vector operation

σ × d̂i,j yields a spin matrix of zero diagonal and non-zero off-diagonal elements so

that hopping from site i to j leads to the flipped-spin configuration.

4.5 Renormalizing the TaAs ground-state to the equivalent

TB model of graphene and emergence of topologically-

ordered phases

Probing topological quantum phase transitions (TQPTs) remains a fundamental

challenge due to the lack of local order parameters. The tractability of quantum

phases is achieved herein by studying the topological order that emerges through the

projection of the DFT ground state in TaAs on the graphene lattice using the TB

model. This is due to the similarity between their semi-metallic carrier transport

character at zero temperature. Thus, and equivalence principles is adopted. It must

be noted however, that the implied equivalence of the zero temperature ground

state does not imply any similarity between their local atomic structures, bonding
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chemistry or crystal lattice symmetry.

The QUANTUM HONEYCOMB software is used to calculate the transport

and topological properties of quantum materials within the TB model [222]. This is

performed by keeping the scaling parameters that reproduce the transport properties

of the TaAs band structure with SOC on the graphene lattice. The correct low

energy dispersion was reproduced with the hoping parameter of energy t = 2.05 eV.

The scaling parameters such λR, λSO, µ, and EZ are different for all materials and

are defined in terms of t. In this context the renormalization parameters of the band

structure are obtained with λR/t = 0.04t and M/t = 0.06t.

The result of the renormalization strategy is equivalent to the considerations

of the Kane-Mele model [223, 224], for a bulk system, with an additional exchange

field term. Then, parameter fit to the bandgap in the Kane-Mele model corresponds

to the bandgap in TaAs with SOC from DFT calculations. This mapping could

generalize the analyses to all Dirac materials in carrier transport from the low-

energy band dispersion. This parameter fitting is justifiable because the nature

of the transport signature in Dirac material depends precisely on the low-energy

excitation of carriers close to the Fermi level. Nevertheless, the magnitude of each

scaling parameter (i.e., t, µ, and λ) used to characterize carrier transport differs for

each Dirac material.

One of the main goals of research in modern CMP is to gain useful insights

into the zero-temperature transport phase in quantum materials. By extension, it

is desirable to understand the emergence of topological order from the action of any

symmetry-breaking operation with applied fields, and to understand how to control

and tune the transition between such topological quantum phase (TQPs). The

exfoliation of graphene in 2004, and the surge in the number of related 2D materials

discovered so far has led to proposals of a plethora of new research directions in the

theoretical physics of quantum materials. Thus, 2D materials are considered as the

best candidate for realizing quantum phase transitions via applied external fields

or by stacking them to construct multilayers. This due to the complex interplay

between their unique band topologies and the quantum confinement. Therefore,
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characterizing how they react to electromagnetic fields is necessary for optical and

optoelectronic applications.

Since the Hamiltonian in Equation (4.5) is written as a combination of the

Rashba spin-orbit coupling effect, magnetic exchange field, and external electric

field, calculations were performed using Quantum Honeycomb to drive topological

phase changes and to derive the topological phase diagrams. These zero tempera-

ture phases are characterized by the pair of metrics of topological order. These are

the topological invariants Z2 and the Chern number C. Their discrete jumps dis-

tinguish transitions between different topologically ordered phases [225, 226]. These

topological invariants are related to the Berry connection A(j) of the jth band for a

2D crystalline system, where A(j) is defined as:

A(j)(k) = i⟨υj(k)|∆jυj(k)⟩,k = (kx, ky), (4.6)

and the Berry curvature Ω(j) is given by:

Ω(j)(k) = ∆j⟨υj(k)|∆jυj(k)⟩. (4.7)

Thus, the integration over the Brillouin zone (BZ) give us Chern number of jth band

and can be written as:

C(j) =
1

2π

∫
BZ

(k)dk. (4.8)

The non-zero Chern number informs whether something topologically is happening

in the wavefunction. Also, allows to distinguish between different topological phases.

It is an intrinsic property of the band structure and has various effects on the carrier

transport of the system [210, 227]. The role of the SOC in lifting the degeneracies of

bulk bands in these calculations confirms that the spin is a good quantum number

in this formalism.
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Chapter 5

Results and Discussion

This chapter presents the results and discussion of the research outlined in this the-

sis. This chapter is based on the results and discussions presented in Refs. [1] and

[2]. These include the structural properties of the bulk TaAs and the heterostruc-

tures. It discusses how external fields break the symmetry of the ground state and

induce quantum phase transition. Also, it describes the interaction between light

and matter, particularly when the bulk systems are reduced to atomic nanoclus-

ter. Furthermore, their responses to the electromagnetic field are presented and

discussed.

5.1 Dirac material systems: bulk tantalum arsenide and graphene

5.1.1 Convergence test for bulk TaAs

The fundamental procedure in density functional theory calculations is to acquire

suitable ecutwfc and k-points for the crystal system under study. Figure 5.1 shows

the convergence test of the cut-off energy and k-points for the bulk TaAs. It is ob-

tained by adjusting their values through self-consistency calculation until the differ-

ence between the lowest total energy becomes very small. Also, it is a characteristic

function for a plane-wave basis set where a single parameter controls the accuracy

of computed results compared to a localized basis set. The cutoff value of 45 Ry

and the k-points mesh of size 8× 8× 8 give good convergence of the minimum total
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energy are shown in Figs. 5.1(a) and 5.1(b), respectively. These convergence test

calculations gave the values that were used to perform DFT calculation to determine

the total energy of the GS.

Figure 5.1: Convergence test of the (a) ecutwfc and (b) k-points for bulk TaAs.

5.1.2 Structural properties of bulk TaAs

Figure 5.2 shows the optimized structure of bulk TaAs, wherein the unit cell and

its associated Brillouin zone are illustrated. The calculations show that the body-

centred tetragonal unit cell is the most stable structural phase of TaAs. Also, this

electronic structure converged to the correct non-magnetic ground state where the

total magnetic moment was 0 µB, as expected. The lattice constants and internal

coordinates of TaAs were fully relaxed, yielding lattice constants of a = b = 3.4347

Å, c = 11.6409 Å in good agreement with experimental values of a = b = 3.37 Å, c

= 11.56 Å [228, 229]. This optimized structure was used as the input charge density

for the self-consistency cycle to solve the Kohn-Sham (KS) equation in the collinear

magnetic ground state calculations.
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Figure 5.2: Optimized structure of the bulk TaAs, and its Brillouin zone. (a)
Body-centred tetragonal unit cell. (b) Top view of TaAs unit cell. (c) Brillouin zone
sampling path (red lines) through the high-symmetry points ( black dots) for the
bulk and surface, respectively.

5.1.3 Ground state electronic properties

Band structure

Figure 5.3 shows the band structures of bulk TaAs (top panels) and graphene sheet

(bottom panels). In the absence of spin-orbit coupling (SOC), Fig. 5.3(a) indicates

that the conduction and valence bands of TaAs intersect each other through the

Σ-N-Σ1 path in the Brillouin zone, as anticipated in a semimetal system. However,

when SOC is introduced (see Fig. 5.3(b)), the band structure is wholly gapped along

the path through the high symmetry points in the Brillouin zone. Band inversions

are observed points Σ, N, and near to point Σ1 along the Σ1-Γ direction. At these

points, the spin-orbit coupling brings the bottom of the conduction band below

the top of the valence band and opens a gap at the band crossings. Furthermore,

the inclusion of SOC induces the appearance of Weyl points that are shifted away

from the high-symmetry points in reciprocal space. The bands degeneracies are also

lifted. This is observable as the doubling of the number of distinct bands available

in both valence and conduction bands. There is also a small change in the relative

energy and position of the bands. This splitting of band energy levels show that the

doubly-degenerate bands observed in the absence of SOC is lifted. This observation

excludes pair of Kramers point N, which remain doubly degenerate - even when SOC

is applied. The topological features of the TaAs band structure agrees with other
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previous studies done on the same system [72, 230, 231]. According to Yan et al,

the Weyl semimetallic nature of the bulk TaAs distinguishes it from graphene via

the linear dispersion around the Weyl points [71]. Nevertheless, a finite band gap

has been opened when the SOC is applied.

On the other hand, Fig. 5.3(c) shows the band structure of graphene sheet from

the tight-binding (TB) model. Similar to TaAs, in the absence of SOC, graphene

yields a zero-gap in the energy spectrum and a gapped band structure in the pres-

ence of SOC (see Fig. 5.3(d)). This electronic character is consistent with the

semi-metallic transport signature as anticipated for pristine graphene. It is vital to

affirm that the function of the SOC is to lift the Kramers degeneracies that arise

in electronic states when SOC is ignored. However, The magnitude of the intrinsic

SOC is extremely small to result in any measurable bandgap in the band structure

of graphene. The invariance of the SOC under time-reversal symmetry signifies that

additional fields that can break the symmetry of the electronic structure must be

applied to the electronic states to change the bandgap in bulk TaAs. These addi-

tional fields are phenomenological, and they were simulated as magnetic exchange

field M, external electric field EZ and Rashba SOC (λR). The strength of SOC in

graphene is weak when compared with other 2D materials such as germanene and

silicene. Due to its low buckled structure, it presents a lower staggering potential

with significant divergences in electron dynamics.

5.1.4 Effect of external fields on the band structure of TaAs

mapped on graphene

Renormalization is a simple computational approach analyzing the occurrence of

some physical model when the scale changes. Herein it is used to show how external

drivers can be employed to tune the electronic band structure between trivial to non-

trivial and vice versa, as a computational strategy for testing the formal hypothesis

of the renormalizing group technique.

Figure 5.3(d) illustrates how the bandgap of a graphene sheet is affected by

application of external fields. For instance, an applied Zeeman exchange of M/t =
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0.06t, and a Rashba SOC of λR/t = 0.04t, result in an induced small bandgap. This

is similar to what was observed with bulk TaAs when the SOC was introduced in

its electronic band structure. Figure 5.3(b) emphasizes that the magnitude of this

induced bandgap precisely corresponds to the SOC-induced bandgap in TaAs. This

supports the foundation of the renormalization strategy for the ground state.

Figure 5.3: Electronic structure from DFT of the bulk TaAs in the (a) absence,
and (b) presence of the SOC, respectively. The dashed horizontal line denotes the
Fermi level. (c) The corresponding band structure of bulk TaAs renormalized to the
graphene sheet in the absence of SOC. (d) In the presence of SOC, at λR/t = 0.04t
and exchange field M/t = 0.06t. The Fermi level is located at E/t = 0 eV, where
t indicates the rescaled unit of energy. The color bars in (c) and (d) represent the
value of the spin texture in units of SZ , where ℏ = 1 [1].

Figure 5.3(a,c) shows the drive field lifts the degeneracy at the high symmetry

points. The valence and conduction bands touch when time-reversal and spatial

inversion symmetries are protected at generic points in the k-space that are not

necessarily high-symmetry points. As anticipated, the ground state band structure

shows semimetallic transport nature without SOC since the bands at Brillouin zone

points K and K′ connect each other. Therefore, the presence of the SOC accurately

characterizes the band structure of TaAs as supported by the induced small bandgap.

With an equivalently small band gap in from the DFT band spectrum (see Fig.
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5.3(b,d)). Spin orbit coupling again, removes the degeneracy of the electronic states,

and this gives extremal spin textures, i.e., SZ = ±1. However, the band structure

does not sensitivity to spin due to the weak SOC in graphene [232].

In addition, Fig. 5.3(a) reveals that two of the four TaAs bands intersect at the

Fermi level in the BZ. These bands the two bands that are modeled by the graphene

band crossings at points K and K′ (see Fig. 5.3(c)). Therefore, the transport

signature of TaAs around the Fermi level perfectly resemble the emergent transport

character of the tuned graphene. Tuning the 2-band TB model with such field control

parameters provide exceptional transport signatures in the honeycomb lattice. This

confirms that the renormalization process accurately captures the effects of the SOC

on the carrier transport character of the DFT ground state in TaAs. As mapping,

the 3D TaAs structure onto the 2D structure is valid when they share the transport

character and size of band gap. To functionalize the renormalization method, it is

used here to follow the emergence of quantum phases an using TaAs as a model of

Dirac materials.

5.1.5 Topological phase diagrams

The importance of topological phase diagrams (TPDs) is to delineate regions of

topological and trivial phases and to identify unique TQPs. Herein, TPDs are com-

bined with the electronic band structure plots to interpret the dispersion relation.

This yields deeper insights into the low energy excitations of carriers. The topologi-

cal numbers used to characterize quantum phases are topological invariant (Z2) and

the Chern number (C). The condition when Z2 = 1 indicates a non-trivial quantum

phase like the topological insulator phase. However, Z2= 0 implies a trivial phase

like a common insulator. Order parameters are employed to illustrate the emergence

of non-local topological order and determine the associated TQPs.

The bulk-edge correspondence principle accurately keeps the chiral edge states

predicted in a graphene ribbon structure. According to the effective theory of low-

energy excitations, the Hamiltonian that characterizes the carrier dynamics can be
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given by:

h±,0(k− k0) = E0(k− k0)σ0 + Vxq1σx +m0σz, (5.1)

where σ denotes the Pauli matrices. The mass m defines the tuning parameter for

the topological phase transitions [233]. For instance, the phase transition between

the quantum spin Hall (QSH) and the band insulator (BI) emerges when the sign

of m term in equation (5.1) is reversed. It is characterised only by Z2. Both time-

reversal and inversion symmetries ensure that the order-parameter C, disappears.

The electronic character near the transition point between two quantum phases

tends to enhance field-dependent reactions. The neighborhood of such points on a

phase diagram can be tractable using topological numbers, wherein the transition

between different topological phases are described by the Z2 and C order parameters.

Their integral form for the electronic phase quantifies the topological order and a

discontinuous change in their values signals a topological quantum phase transition.

As the intensity of the external driving grows to the critical point spontaneously, the

Hamiltonian of the electronic system spontaneously breaks the symmetry. There-

fore, the phase could change from a trivial to a non-trivial phase and vice versa.

Since Z2 and C are good quantum numbers vital in distinguishing the quantum

states of matter at 0 K, such as topological or trivial phases, they can be used to

map topological phase diagrams to identify topological phase transitions (TQPTs)

.topological phase diagrams and the corresponding band structures are interpreted

to show that the TQPT points are tunable by applying global symmetry-breaking

fields.

Figures 5.4 - 5.7 show different TPDs and the band structure around the Fermi

level as response functions of the changes in topological order parameters (Z2, C).

The TPDs describe the dependence of the topological order parameters on the in-

tensity of the different fields, such as Rashba SOC (λR/t) and the Zeeman exchange

(M/t). Also, the band structures are characterized as variations of field drivers at

distinct regions where topological phase transition occurs. For example, Fig. 5.4

shows the topological invariant phase diagram [Fig. 5.4(a)], and the band structure

[Fig. 5.4(b) and (c)] corresponding to the pairs of the topological order parame-
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ters (TOPs), denoted by the pair of parameter (Z2, C), are shown as a functional

dependence on the intensity of the Rashba SOC and the Zeeman exchange fields.

Fig. 5.4(a) signifies the spectral response of the Z2 invariant derived as a variation

of λR/t with M/t. In Fig. 5.4(a), the phase diagram is colour-coded to show a large

region of distinct values of the TOP for distinguishing between trivial (green), and

non-trivial (blue) quantum phases.

As the drive field intensity is increased, additional quantum phases emerge

[see Fig. 5.4(a)]. Different band topologies characterize these additional quantum

phases. For instance, their low-energy dispersion spectra and spin textures are dis-

similar. Fig. 5.4(b) and (c) also shows that the change in the TOPs is accompanied

by corresponding changes in the spin texture of the electronic transport phase during

the TQPT. For illustration, Figs. 5.4(b) and (c) show the region around the Fermi

level within the energy window ±1.0 eV. It is for band structures that correspond

to the pair of TOPs (Z2, C) equivalent to (1,2) and (0,0), respectively. Similarly,

Fig. 5.4(b) and (c) shows that the changes in the TOPs is also accompanied by

corresponding changes in the spin texture of the electronic transport phase during

the TQPT. The are the discrete points of the TPD, wherein a discontinuous change

in the TOP modifies the electronic state manifold either from one topological phase

to another (see Fig. 5.4(b)) or from a topological to a trivial phase (see Fig. 5.4(c)).

Figure 5.4: Effect of the Rashba SOC and the Zeeman exchange fields on the
topological invariant phase diagram (a) and the band structures [(b), and (c)] of the
electronic phases that correspond to topological order parameter pair, (Z2, C). The
phase field is color-coded green to denote Z2=0, while color blue denotes Z2=1 (a).
The graphene band structure around the Fermi level in electronic phases wherein
the topological order parameter pair (Z2, C) is equivalent to (1,2) and (0,0) as an
independent TQPT from phase fields wherein Z2 is (b) 0, or (c) it is equal to 1.
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To comprehend the fundamental differences between the band structures in

Figs. 5.4(b) and (c), it is essential to note that the reference energy E/t = 0 eV

denotes the Fermi level. Also, the yellow-shaded region of the band structure corre-

sponds to the valence band. The blue, red, and green regions in all band structures

represent the up spin (⇈), down spin (⇊), and chiral edge states. Since all avail-

able valence band states are occupied, the energy bands are described by different

characteristic energy dispersions around the Fermi level. Therefore, the low-lying

conduction and valence bands are displayed with an intrinsic spin texture (denoted

by the colour bar in Figs. 5.4(b) and (c)). The spin textures that characterize elec-

tron states in the trivial band structure (Fig.5.4(c)), are different from the ones in

the topological band structure [see Fig. 5.4(b)].

In Fig. 5.4(c), electron states possess opposite spin textures. The conduction

and valence bands states are exclusively endowed with a positive, and negative spin

textures, respectively. The topological band structure [see Fig. 5.4(b)] is character-

ized by a mixed spin-state texture. In this case, the Dirac dispersions around the

Fermi level are characterized by spin-texture reversal when time-reversal symme-

try is enforced on the electron state. This observation is consistent in valence and

conduction electron states although the character of carrier dispersion is invariant

with the band manifold. The spin textures in the two channels are very different de-

spite their observed similarities since spin is an eigenstate of the Hamiltonian under

broken time-reversal symmetry.

Figure 5.5 shows the Chern number phase diagram [Fig. 5.5(a)] and the band

structure for each of the unique electronic phases identified with pairs of TOPs.

Distinct electronic phases are labelled by integer Chern numbers -1, 0, 2 and 3,

respectively, and their TQPTs yield three unique electronic structures shown in Figs.

5.5(b-d). Figs. 5.5(b) and (c) denote a minimally gapped electronic phase, with

similar low-energy dispersions except that the energy of both of the conduction and

valence band states are slightly shifted at the Γ−point, despite the similarity in their

low-energy dispersion profiles. Nonetheless, their electronic phases are nontrivial

since they correspond to the TOPs of (0,3), and (0,-1), respectively. By contrast,
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Fig. 5.5(d) shows the TOPs of (1,2) in the electronic phase. The corresponding

band structure has a large Γ−point gap (at least 2 eV). It is important to note

that a fourth, albeit trivial, quantum phase of the electron state also exists in the

ground-state manifold [see Fig. 5.5(a)]. This manifests as an independent subset of

the Chern number phase diagram.

One way to understand the (0,0) electronic phase is by noting that the perturba-

tion of the ground state by an internal (or external) field also varies the eigenfunction

spectrum of the Hamiltonian. The resulting phase transitions are, therefore, either

topological or trivial. As discovered recently by Chen et al. [234] in an anisotropic

antiferromagnetic spin-1 biquadratic model, symmetry protection in both trivial and

quantum phases play a significant role in electronic phase transitions. The authors

discovered that the quantum phase transitions between the symmetry-protected

trivial phases belong to the Gaussian universality class with central charge of c = 1.

In contrast, quantum phase transitions from the symmetry-protected trivial phases

to the dimerized phase belong to, instead, the Ising universality class with cen-

tral charge of c = 1
2
. QPTs between the two trivial (0,0) phases imply symmetry

protection in the models.

In the case discussed in this thesis, contrast, symmetry-breaking causes any of

the possible transitions from the trivial (0,0) to either (0,3) or (0,-1) topological

phases. It must also be considered that symmetry breaking perturbations by the

external field induces a modification of the local curvature of the associated Berry

phase. This agrees with the findings of Li et al. have showed that internal fields

control the QPT in the trivial phase found on the graphene torus [93]. Thus, in-

sofar as the QPT between the two trivial (0,0) is concerned, the Chern number is

unchanged under the constraining effect of an internal or external field unless the

renormalization flow takes the system towards a TQPT point.
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Figure 5.5: Chern number phase diagram obtained as a functional dependence
on the intensity of the Rashba SOC and Zeeman exchange fields (a). The phase
field is color-coded green to denote C = 0, blue to denote C = 2, red to denote
C = −1 and black to denote C = 3. The band structure around the Fermi level in
electronic phases wherein the topological order parameter pair (Z2, C) is equivalent
to (b) (0,3), (c) (0,-1), and (d) (1,2).

In the following discussion, the influence of the staggered sublattice potential,

µ, on the ground-state electronic structure is explored. This action emanates from

the buckled structure of the honeycomb structure, although the magnitude of µ in

graphene is small unlike in other 2D forms of Dirac materials. To understand the

following analyses, consider that the, the honeycomb lattice representation of the

Haldane model has four phases, three non-trivial with C = +2, and one trivial

insulator phase with C = 0, respectively [223]. Figure 5.6 demonstrates the effect

of the staggered sublattice potential µ on the Z2 phase diagram of the Haldane

model in the honeycomb lattice [235]. The distinct TQPTs of the phase diagram

are clear from the parameter space of the Hamiltonian. These are associated with

systematic changes in the topological order parameters and the dispersion character

from the band structure. The response of the ground state to a small change in the
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sublattice potential µ is described via sensitivity of the TOPs and its effects on the

electronic. The findings reveal that a facile electronic switch is available on these

when using a symmetry-breaking field as the micro-probe of the electronic structure.

The approach of breaking the ground state symmetry using the sub-lattice potential

µ guarantees the presence of the presence of edge states are tunable from the energy

dispersion. This offers a route for direct control of topological phases of matter

through the use of metamaterials, multilayers, surfaces, edges, and atomic clusters.

Figure 5.6(a) illustrates the topological invariant Z2 phase diagram obtained for

µ1 = 0.1t. This again reveals two regions of phases denoted by Z2 = 0 (green) and Z2

=1 (blue), respectively. However, Fig. 5.6(b) depicts the adjusted band structure of

the (0,0) trivial electronic phase at 0.1t. A small bandgap marks the band structure

at the K and K ′ points of the BZ. Again, the energy dispersion’s nature is different

from the band structure of the analogous electronic phases. It is found that, µ has

particularly impacted energy dispersion without changing the underlying topological

order of the electronic phase since the pair of order parameters (0,0) are unchanged.

Nevertheless, Fig. 5.6(c) indicates that the band structure of the electronic phase

that undergoes the TQPT has changed. Physically, this change can occur under the

distortion of the unit cell due to the change is sub-lattice potential µ1.

Fig. 5.6(d) shows the phase diagram of the topological invariant Z2 when

the staggered potential is set to µ2 = 0.3t. Similarly, Figs. 5.6(e,f) describe the

complementary band structures at the specific region in the phase diagram. It

found that this value of the sublattice potential causes a transition between trivial

and topological phases. The non-zero Chern numbers (see Figs. 5.6(c,e,f)) ensure

the presence of edge states (indicated by the green color) due to the topological

index theorem [236].

73



Figure 5.6: (a) Effect of a fixed staggered sublattice potential of 0.1t on the topo-
logical invariant phase diagram of the Haldane model on the modified honeycomb
lattice. The associated band structure of specified electronic phases in phase fields
is indicated by the (b) blue, and (c) green colors. (d) A similar plot at a fixed
staggered sublattice potential of 0.3t. The band structures are associated with the
two-phase regions denoted by colors (e) blue, and (f) green. The color bars in (b,c)
and (e,f) denote the expectation value of the spin texture in units of SZ , where ℏ
=1 [1].

The zero Chern number is associated with the trivial insulator phase in the

Haldane model. It can only vary when it bisects another band at the transition

region. Therefore, the transport signature for the emergent electronic phase must

be either metallic, or semi-metallic without a gap. Thus, the opening of the KK ′-

points bandgap forms the topological insulating phase from the trivial band insulator

phase. Thus, when the Fermi level is positioned within the gap region, the case where

C ̸= 0 means that bands must arise below the Fermi energy. This suggests that both

the integer quantum Hall and gapless edge states must coexist in the existence of

the disorder.

To understand the susceptibility of the electronic states to the underlying ma-

terial, the Chern number phase diagram for two different intensities of the staggered

potential µ was analysed. The staggered sublattice potential has been fixed to retain

the character of the previous discussion. Figure 5.7 shows the Chern number phase

diagram at staggered potentials of µ1 = 0.1t (see Fig. 5.7(a)) and µ2 = 0.3t (see Fig.

5.7(b)). Also, the band structures for certain quantum phases at the distinguished
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Chern numbers are also provided, for comparison. The results reveal that the ad-

justment of Rashba SOC independently induces a narrow bandgap in the BZ path

of all the band structures in Fig. 5.7. This suggests that the strength of the applied

field recreates a significant function in the ground state at the TQPT. However, the

intensity evolutions do not possess any other consequence once the phase transition

has emerged.

Figure 5.7: Chern number phase diagram as the function of staggered sublattice
potential (a) µ1 = 0.1t, and (b) µ2 = 0.3t. Where the green color denotes C = 0,
blue denotes C = 2, red denotes C = -1 and yellow denotes C = 1, respectively.
The band structure derived for unique quantum phases at 0.1t are plotted for Chern
numbers: (c) -1, (d) 0, (e) 1 , (f) 2. The corresponding band structure for unique
quantum phases at 0.3t are plotted for Chern numbers: (g) -1, (h) 0, (i) 1, (j) 2,
respectively. The color bars in (c) to (j) denote the expectation value of the spin
texture in units of SZ , where ℏ =1 [1].

The Chern number phase diagram in Fig. 5.7(a,b) exhibits sensitivity to the

changes in the Rashba SOC. For instance, the regions of the topological Chern phase

widen and values of the Chern number are adjusted. This characteristic response

75



is systematic, and it is found when the effective Hamiltonian emphasizes transport

a unique carrier transport, in the presence of a modification in the SOC parameter

under the driving field. Figures 5.7(c-f) indicate that the Kramers degeneracy is

lifted at the KK′ points in the energy spectrum. An equivalent routine has also

adjusted the topological invariant Z2 as a function of Rashba λR/t and Zeeman field

M/t with a fixed value of electric field of Ez/t = 0.5t.

The analysis highlights that the transition between trivial and non-trivial phases

emerged, and the bandgap rises when the field intensity grows. However, the increase

in the Rashba field systematically reduces the bandgap. Resulting in a gapless band

structure in the vicinity of K and K′. This explains the capability to adjust an

ordinary insulator into a non-trivial insulator by changing electric field intensity

since the Chern number for both suits is C = 2. Also, the findings in Figs. 5.4-5.7

reveal that if the values of Z2 and C are non-zero. All the topological phenomena

anticipated in the quantum Hall transport signature will be detectable, including

the presence of the edge states. Also, fixing the staggering potential is an interior

field condition that reaches the tunability of the SOC-induced various phases from

the band structures, such as, the semiconducting, insulator, and metallic.

5.2 Van der Waals multilayer heterostructures

5.2.1 Convergence test

As mentioned in Section 5.1.1, convergence testing is a crucial strategy in scientific

computing that will always be performed to provide appropriate input crystal struc-

ture and tuning parameters for principles calculations performed based on DFT.

Figures 5.8(a,b) and Figs. 5.8(c,d) illustrate the convergence tests for the cutoff

limit for kinetic energy expansion in the plane waves basis, and the k-points mesh

for Co(111)/hBN/Co(111) and Co(111)/MoS2/Co(111), respectively. The results

show that a suitable BZ sampling is achieved in reciprocal space when the k-points

mesh and the cutoff energy for both multilayers have a nearly equal number of

6× 6× 1 and ecut of 80 Ry.
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Figure 5.8: Convergence tests of the multilayer stacks, for (a) cut-off energy,
and (b) k-points of Co(111)/hBN/Co(111), (c) cut-off energy, and (d) k-points for
Co(111)/MoS2/Co(111) heterostructure.

5.2.2 Structural properties

Figure 5.9 describes the construction of artificially constructed hybrid materials and

the optimized structure of the Co(111)/hBN/Co(111) and Co(111)/MoS2/Co(111)

stacks in the cubical unit cell. The central (green) zone of the structures represents

the scattering region, which is made of a monolayer of either hBN or 2H-polytype

of MoS2. However, the orange zone in Fig. 5.9(a) illustrates the right (R) and left

(L) leads, which are made of five layers of fcc Co(111) surface. Therefore, pMTJs

derived in this measurement geometry are symmetric because both leads are created

from surface slabs of the same material. The results demonstrate that the interlayer

distance between the Co(111) slab and hBN layer is dCo(111)/hBN = 3.38 Å. This

distrance is the same for the top and bottom leads. These results agree well with

the other studies [190, 192, 237, 238].
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Figure 5.9: The optimized unit cell for the local structures and the schematic
diagram of the pMTJ showing two similar leads and a central scattering region.
(a) Co(111)/hBN/Co(111) stack. (b) B (N) atoms are displayed in green (red),
respectively. (b) Co(111)/MoS2/Co(111) heterostructure. (c) Mo (S) atoms are
illustrated in grey (yellow), respectively. The vector Z denotes the spin transport
direction [2].

The interlayer distance between Co(111) and the upper layer S atoms of the

MoS2 layer is dCo(111)/MoS2 = 2.28 Å. This also agrees well with other investigations

[205, 238–240]. This shows that the electronic system is satisfactorily set up for the

DFT computations of the lowest ground state. Furthermore, the interatomic spaces

are similar for both metallic electrodes of the symmetric heterostructure. The length

of the metallic Co-Co bonds is unaffected because of the invariance between the local

structure in the fixed (bottom) and free (top) layers. Houari et al. [241] suggest

that at equilibrium, the ground state in metallic cobalt is ferromagnetic and that

the hcp phase was better stable than the fcc phase. Nevertheless, the computed

nearest-neighbour distances are discovered here to be slightly lower than the 2.54 Å

distance anticipated in the stable but nonmagnetic fcc phase.
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5.2.3 Magnetic properties

Magnetic moments

Figure 5.10 illustrates the distribution of magnetic moments (m) at the ground state

(GS) (blue circle) and for various intensities of the electric field (black and red). The

GS spin moments reveal the slightest variations close to the average, irrespective of

the type of barrier material. When the electric field intensity is raised, the local

relaxation of the m demonstrates a strong sensitivity to the material of the tunnel

region. When the material of the tunnel region is hBN, this is illustrated in the field-

dependence of the evolution of the local magnetic moments in the bottom (reference)

layer (see Fig.5.10(a)). A similar field-effect is also observed in the local moment

when the barrier region is monolayer MoS2. However, these zero-temperature fluc-

tuation in local moments have no effect on quantum phase transition for the case

where MoS2 is the barrier. Nevertheless, in the top (free) layer (see Fig.5.10(b)), the

applied field yields variations in localized m and breaks the symmetry of the ground

state. The increase of field intensity from zero to 0.1 and 0.3 a.u. cause instabilities

in magnetic moments in the range of −1.80 and −1.97 µB in the reference layer as

displayed in Fig. 5.10(a). The field-induced instabilities resemble the variations in

magnetic moments seen in the anti-ferromagnetic state with opposing spin direc-

tions. However, the variations of spin magnetic moments in the free layer is between

0.71 to 1.81 µB. This is similar to the variation in magnetic moments seen in a fer-

romagnetic state along the direction parallel to the direction of spin quantization.

This presents a substantial layer-dependent instabilities when the hBN monolayer

is incorporated in the tunnel barrier region.

At an intensity of 0.1 a.u., the spin moments of N atoms grew from 0.005 µB

to 0.092 µB. Then it drops to −0.051 µB at a strength of 0.3 a.u. as seen clearly

in the bottom panel of Fig.5.10(a). The application of a perpendicular electric field

significantly contributes to the strength of electronic coupling [190]. The interfa-

cial charge transfer between the Co-hBN heterobilayer is therefore mediated by the

strong magnetization from Co-layers. This leads to polarization in the nonmagnetic
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atoms of the hBN layer.

Figure 5.10: Magnetic spin moments (in µB) per atomic site of, (a)
Co(111)/hBN/Co(111), and (b) Co(111)/ MoS2/Co(111) interfaces. The colors
(blue, black, and red) show the magnitudes of the electric field (in a.u.) as a function
of the magnetic moment. The corresponding lower panels illustrate the zoomed-in
image of the central region of the magnetic tunnel junction to show distributions of
localized magnetic moments in monolayer hBN and MoS2, respectively [2].

Figure 5.10(b) demonstrates the behaviour of spin moments under the influence

of an electric field when the barrier is monolayer MoS2. At zero-field, the magnetic

moments of S (Mo) atoms are 0.006 (−0.031) µB, respectively, as in the zoomed-in

bottom panel. At a field strength of 0.1 a.u., the magnetic moments rise to 0.0083

µB in S-atoms and starts to be polarized. The Mo-atoms stay unpolarized when the

field intensity is increased to 0.3 a.u. The findings reveal that the reference layers are

unchanged, and the significant changes in magnetic moments arise in the free layer at

a high field of 0.3 a.u. (see Fig. 5.10(b)). The zoomed-in panel of Fig. 5.10(b) shows

spin fluctuations in Mo and S atoms and and suggests a weak magnetic exchange

between Mo and Co atoms. The analysis of the induced spin fluctuations shows the

response of the ground state as the electric field intensity grows. The field-induced
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changes lead to strong polarization in the monolayer barriers. This is attributed

to the magnetocelectric couplings from the proximity effect in the hetero-bilayer

interfaces within the lead - barrier - lead heterostructure.

Magnetization reversal and magnetic ordering energy

In this section, analysis of the response of the magnetic moments to changes in the

intensity of the applied electric field is presented in term of changes in magnetiza-

tion. Table 5.1 shows the electric field effects on the ground state energy (△E),

and the collinear magnetization (M) relative to the direction of the quantization of

spin. Table 5.1 shows that the magnitude of the magnetization is sensitive to the

material of the tunnel region. The total magnetization of the P (or AP) configu-

ration simultaneously decreases (or increases) nonlinearly with an increase in the

amplitude of the applied field for both tunnel barrier materials. In the parallel spin

orientation, both barrier models show a net decrease in magnetization as the applied

field is increased to 0.3 Hartree a.u. In the anti-parallel direction, the magnitude of

magnetization reversed as the applied electric field is increased.

The magnetic ordering of the ground state of the multilayer heterostructure is

also sensitive to the applied electric field. It decreases as applied field increases.

The decreasing total magnetization observed in the P-configuration with monolayer

hBN is more pronounced in the AP-configuration as a sign change in the magne-

tization. The observed negative magnetization shows a reversal of magnetization

through proximity effects. This is a unique feature of the spin-flip transition nec-

essary to realize a non-volatile 180° magnetization reversal in the spin-transport

phase. The energy of magnetic ordering is calculated as △E = E(AP ) − E(P ),

where E(AP )(E(P )) denotes the lowest total energy for AP(P) magnetic align-

ments, respectively.

Results of the pMTJ model that includes a hBN barrier show that △E drops

as the electric field increases. It is found that as the electric field increases in

intensity, the total magnetization (M) in the P (AP) alignment drops (increases),

respectively. When the field reaches its critical value of 0.1 a.u., magnetic ordering
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energy △E decreases below 0 eV. This is equivalent to the electric field causes the

quantum phase transition (QPT). It is shown in Section 5.2.4 that this QPT leads

to the dynamical stability in the tunnel magnetoresistance (TMR) signal. On the

other hand, for pMTJs-based on MoS2 barrier, the △E exhibits a contrasting trend

compared to the hBN barrier. △E increases fast as field intensity increases before

suddenly decreasing drops to -1.95 eV at field strength 0.3 a.u.

Table 5.1: Field effects on the ground state energy (△E), magnetization (M) per
cell (in µB) for spin aligned parallel (P ), and antiparallel (AP ) to the quantization
axis.

Electric Field Co(111)/hBN/Co(111) Co(111)/MoS2/Co(111)
(a.u.) 1010

(V/m)
M(P ) M(AP ) △E (eV) M(P ) M(AP ) △E

(eV)
0.0 0.0 62.6 -0.03 0.0 62.34 -0.57 0.0
0.01 0.51 62.5 0.32 -0.004 62.49 -0.48 0.002
0.1 5.14 18.3 4.31 -2.59 62.33 -0.28 0.038
0.3 15.43 28.0 12.25 -1.49 61.14 61.13 -1.95

Notwithstanding the nature of the tunnel barrier material, the data in Table

5.1 has shown a predominantly negative magnetization (M) as the intensity of the

applied field is increased. This field-induced flipped-magnetization is a proxim-

ity effect that arises from changes in magnetic ordering energy, polarizations, and

fluctuations in the local magnetic moments. These underlying signatures provide

evidence of electric field mediated magneto-electric coupling in multilayers, without

an explicit application of a magnetic field agrees with previous studies [242, 243].

The findings of recent experiments [244–246] support the insight generated from the

theoretical and computational analyses presented in this thesis, that the magnetic

moments that have appeared in the nonmagnetic layer is due to the proximity effect

coupling in the magneto-electric signature of pMTJs in the interface. Others studies

show the manipulation of magnetization reversal via the applied electric field found

in ferromagnetic (FM) heterostructures [243, 247–249], anti-ferromagnets (AFM) in

collinear [250] and noncollinear magnetization [251].
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Electronic density of state (DOS)

The density of state provides a way to describe how the available energy states of

a system are filled. This mechanism allow to specify the carrier transport state.

Examples of such state include the insulating, semiconducting or metallic transport

character identifiable from the band gap between the conduction and valence band.

Herein, Figs. 5.11 and 5.12 show the effect of the applied electric field on the

projected density of states (PDOS) for the two different models of pMTJs. Figure

5.11 demonstrates the effect of the applied field on the PDOS of the system based on

the hBN barrier (top panels), as well as the PDOS of the barrier (bottom panels).

At the ground state, Fig. 5.11(a) reveals that the spin-minority channel has ∼ 40

of electronic states per eV/unit cell and vanishes in the spin-majority channel near

the Fermi level. This is similar to the half-metallic transport phase.

At zero-field, the d-orbitals of Co atoms dominate the donation of DOS in

the lowest unoccupied and highest occupied levels regardless of the barrier layer.

However, at a field intensity of 0.1 a.u., the half-metallic state evolves into the

metallic state as in Fig. 5.11(b). Consequently 0.1 a.u. characterise the critical

point of the electric field in which the QPT expected to occur. This is due to the

change in the population of the spin-majority channel of Co atoms from insulator to

full-metallic state as seen in Figs. 5.11(a,b). Fig. 5.11(d,e,f) shows that at zero-field

and the finite-field, the PDOS of the barrier (B and N atoms) contribute minimal

electron states the electronic density of states near the Fermi level compared to Co.

83



Figure 5.11: Top panel: Effect of applied electric field on the spin-polarized elec-
tronic DOS of hBN-based pMTJ. Bottom panel: The PDOS of hBN shows p-orbitals
of B and N atoms. At the electric field of (a,d) 0, (b,e) 0.1, and (c,f) 0.3 a.u., re-
spectively. Positive and negative PDOS denote spin-up and spin-down channels,
respectively. The vertical dashed lines denote the Fermi level (EF ) [2].

Figures 5.11(d,e,f) also show that the finite field signature of hBN barrier model

changes into the metallic from an insulating state. This is attributed to orbital

hybridization. Moreover, the p-orbital of N and B atoms govern the distribution

of states near the Fermi level. The p-orbitals of B atoms states in the spin-up at

zero-field. Also, the transport signature at high field intensity (0.3 a.u.) remains

metallic. The DOS of atoms within the the barrier region correlate with the local

spin magnetic moments for the N atoms. Here the p-orbitals of the N atoms show

comparatively stronger electronic response to the changes in applied field intensity.

Crucially, the combined occurrence of extremal fluctuations in the localized magnetic

moments on the N atoms (of the barrier (see Fig. 5.10(a)) as well as observation of

similarly extremal p-orbital DOS at applied field intensity of 0.1 Hartree a. u. (see

Fig. 5.11(e)) is not a random coincidence. In Section 5.2.4, it is shown that this is

the critical intensity of the applied field in the underlying quantum phase transition.

Figure 5.12 illustrates the effect of the electric field on the DOS of the pMTJ

based on the MoS2 barrier (top panels). The DOS for the barrier layer is shown in

the bottom panels. The PDOS at zero and finite fields are shown in Figs 5.12(a)-(c).
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The d-orbital of Co governs the states at various field strengths. Overall, the half-

metallic state characterizes the carrier transport signature in each case, as observed

in Figs. 5.11(a,b,c). Thus, the applied electric field has no notable effect on carrier

transport when MoS2 is the tunnel barrier, unlike with the hBN barrier.

Figure 5.12: Top panel: Effect of applied electric field on the spin-polarized orbital-
resolved electronic DOS of MoS2 based pMTJ. Bottom panel: The PDOS for MoS2

shows Mo d-orbital and S p-orbital. At the electric field of (a,d) 0, (b,e) 0.1, and (c,f)
0.3 a.u., respectively. Positive and negative PDOS denote spin-up and spin-down
channels, respectively. The vertical dashed lines indicate the Fermi level (EF ) [2].

Consequently, the barrier systems respond differently to the applied field, par-

ticularly at the critical field. For example, for the hBN barrier, p-orbitals of N

atoms control the states while the d-orbital of Mo atoms governs the states when

MoS2 is in the barrier. However, at 0.3 a.u., the metallic nature is controlled by

the p-orbital of N and S atoms [see Figs. 5.11(f) and 5.12(f)]. The p-orbital of the

S atom contributes states per eV near the Fermi level than the d-orbital of the Mo

atom. The direct donation of electron states to the MoS2 system does not originate

from the Mo atoms alone, as found in Ref. [252]. In the present work, competition

is found between the d (p) orbitals of Mo (S) atoms, respectively, at a high field of

0.3 a.u. The robust bonding between the MoS2 and Co (111) and the small distance

between S and Co tolerate notable wavefunction overlap between Co, Mo, and S

states. This is equivalent to that found in Ti and MoS2/metal contacts [253, 254].
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Charge at the interfaces

Figure 5.13 displays the volume charge density difference △ρ(r) for the two models

of the pMTJs at zero field and in the presence of the electric field. The yellow

(cyan) colour denotes a localised excess (depletion) of charge density in each case.

In addition, the distribution of charge at the interfaces provides intuitive insights

into the interactions between leads and the barrier. Figure 5.13(a,b) shows the

△ρ(r) of Co(111)/hBN/Co(111) system plotted with an isosurface value of 1×10−3

e/Å3. At zero-field, a net transfer of charges has emerged at the interface between

the Co and N atoms [see Fig. 5.13(a)]. The results reveal that hBN transforms

into an electron-rich region due to the large charge collection around N atoms. In

contrast, at 0.1 a.u., the Co atoms evolve as holes region [see Fig. 5.13(b)] due to

the insufficiency of electrons.

Figure 5.13: Charge density difference for a system including (left panel) mono-
layer hBN, and (right panel) MoS2 tunnel barrier with an applied electric field of
amplitude (a,c )0.0, and (b,d) 0.1 a.u. Yellow and cyan denote electron accumula-
tion and depletion regions, respectively [2].

Figures 5.13(c) and (d) display the △ρ(r) for Co(111)/MoS2/Co(111) model

with an isosurface of 3 × 10−3 e/Å3. These show a large density of charges in the

region between Co-S bonds. Fig. 5.13(c) exhibits a large collection of charges on the
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Co-S bonds even without the applied field. The charge collection zones demonstrate

an electronic shadow formed in the tunnel barrier region. This is shown in yellow in

the interface and suggests that this area is full of electrons as the field intensity is

increased to 0.1 a.u. The top interface becomes a low electron-density region (i.e.,

full of holes). due to the the deficit charge density. The aggregation of charge density

creates a localized surface zone in the top interface, while the bottom interface forms

a wave-like pattern as shown in Fig. 5.13(d).

Figure 5.14: Contour plots of the total (volumetric) charge density distribution of
a long [110] plane as a function of applied electric field intensity for the heterostruc-
tures of Co(111)/hBN/Co(111), in the top panels, and Co(111)/MoS2/Co(111), in
the bottom panels. The intensity values of 0.0 and 0.1 a.u. were applied in (a) and
(c), and (b) and (d), respectively [2].

Figure 5.14 depicts the total charge density (CD) along the [110] plane as a 2D

projection. There is a weak localization of the CD in the region between Co(111)
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and hBN. This weak charge density localization represents 4% of the highest charge

density found between the B-N bond in the interface [see Fig. 5.14(a)]. This is

similar to the low CD region discovered between Fe(110) and hBN in graphene/hBN

heterobilayer [192]. Fig. 5.14(b) displays the volume charge density at a field of

0.1 a.u. for Co(111)/hBN/Co(111) heterostructure. This alternating domains are

associated with the proximity effect in the symmetric magnetic tunnel junction

considered herein.

Figure 5.13(b) exhibits a broad line with no charge density region surrounding

the reservoirs of heightened local CD with the hBN based barrier. This charge carrier

arises via location hopping in the half-metallic phase. Even though the electric field

breaks charge symmetry in the ground state, it introduces a neighbouring region of

elevated charge density on one part of the interface. This form of charge distribution

leads to a metallic state. An analogous transport medium for carriers through a

nano-line of carries is not found in the MoS2 barrier model. Thus, It is concluded

that the electric field creates a toggling control of the CD. Figs. 5.14(a) and (b)

also indicate that the applied electric field emerges in locations with high CD in the

ion cores. This suggests the existence of an electric dipole via an interface. Figs.

5.14(c) and (d) demonstrate complementary CD with MoS2 distinguished by lower

CD sites at the interface. Overall, the applied field has a negligible effect on the CD

relative to the ground state allocation.

5.2.4 Effect of applied electric field

Spin conductance

Mesoscopic physics addresses the interpretation of ballistic transport in condensed

matter, one notable finding of mesoscopic physics is quantum conductance (QC)

[255]. The goal is to gain insights into the influence of the electric field on the spin

quantum conductance (QC) behavior of multilayers heterostructure, for parallel (P)

and anti-parallel (AP) magnetic configuration as presented in Tables 5.2 and 5.3.

Table 5.2 illustrates the spin conductance (SC) when hBN is the barrier. At
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all intensities of applied fields, the SC of the P configuration is higher than the SC

of the AP, implying an extensive resistance to transmission in AP configuration.

The excess spin dispersion increases the resistance due to the chiral anomaly in

the Fermi level topology in the majority and minority spin domains [191]. This

creates an imbalance in the spin population around the Fermi level. This manifests

in spin conductance coefficient in the P(AP) configurations under varying electric

field intensity. For instance, the spin conductance is 0.0001 (0.00004) Ω−1 for P

(AP), respectively. This is an attribute of the more high spin transmission in the

P orientation. However, the AP states conductance increases at a high field of 0.3

a.u. than the P states.

Table 5.2: Effect of electric field on the SC of the Co(111)/hBN/Co(111) het-
erostructure.

Electric Field Parallel Antiparallel

(a.u.) 1010
(V/m)

T↑ T↓ G⇈ T↑ T↓ G↑↓

0.0 0.0 0.27284 0.93178 4.66 0.3192 0.2987 2.394
0.01 0.51 0.25774 0.71976 3.79 0.3944 0.3053 2.71
0.1 5.14 2.014 0.74109 100 0.8513 0.2284 4.183
0.3 15.43 0.03491 0.0000063 0.135 0.3801 0.2963 2.621

Table 5.3: Effect of electric field on the SC of the Co(111)/MoS2/Co(111) het-
erostructure.

Electric Field Parallel Antiparallel

(a.u.) 1010
(V/m)

T↑ T↓ G⇈(×10−5) T↑ T↓ G↑↓(×10−5)

0.0 0.0 0.9103 1.087 7.730 0.688 1.65 9.08
0.01 0.51 1.321 1.18 9.695 0.4356 1.417 7.17
0.1 5.14 0.1795 1.82 7.748 0.24 0.2611 1.94
0.3 15.43 0.0849 0.00853 0.3622 0.0051 0.00346 0.0333

For the MoS2 based tunnel barrier, Table 5.3 shows a relatively decreasing spin

conductance. It is vital to highlight that the spin transmission coefficients for the

majority and minority spin states are coupled to the spin polarization P the following

equation:

η =

(
T ↑(EF )− T ↓(EF )

)(
T ↓(EF ) + T ↑(EF )

) . (5.2)

89



On the other hand, for the hBN barrier model, the spin transmission coefficient

is 2.0 (0.74) e2/h for the majority (minority) spin transmission. This was employed

to get spin polarization (η) of 46% in the P spin orientation. In the AP spin states,

the computed spin polarization is 57%. Then the polarization increases to 99% in

the P state with the electric field increasing, but it drops to 11% in the AP state

when the field is increased to 0.3 a.u.

For pMTJ-based on MoS2, the spin transmission is higher in the absence of

an external field. Its metallic carrier transport character is dominated by the spin

down states (T ↓) for both P and AP spin configurations. Using 1.32 (1.18) e2/h

for the majority (minority) in the P state, respectively, a small polarization of 5%

is obtained. By contrast, 62% is achieved in the AP state. Also, at 0.3 a.u, the

polarization increases to 82% in P-alignment and 19% for AP-alignment in both

channels.

Spin-dependent transmission spectra of Co/monolayer/Co

In this section, presents the transmission spectra of both models of pMTJs as the

function of energy E for P and AP spin orientations. Figures 5.15 and 5.16 demon-

strate the evaluation of transmission via an applied electric field. Figure 5.15 displays

the transmission spectra of pMTJs based on hBN as a tunnel barrier. At zero-field,

the minority spin dominates the transmission for P (Fig. 5.16(a)), with the same

trend at the field of 0.01 a.u. in Fig. 5.16(b). In contrast, in AP (Fig. 5.16(e)),

both spin channel conductance is almost equal. At the higher strength of the field

0.1 and 0.3 a.u., the spin flipped the domination of spin states at EF from minority

to majority (see Fig. 5.15(c) and (g)). In addition, the transmission propagation

of spin-up T ↑ at EF (2.0) is more heightened than the spin-down (0.74) in the P

configuration.

On the other side, Fig. 5.16 illustrates the transmission spectra when the MoS2

is a barrier. Again, at zero fields, the transmission is high and governed by the

minority spin ↓ for P and AP magnetic arrangements (Fig. 5.16(a,e)), suggesting

a metallic nature. However, at 0.01 a.u., a significant evolution occurred in which
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the conductance of P configuration is dominated by the majority spin ↑ [see Fig.

5.16(b)], and the transmission of majority (minority) spin is 1.32 (1.18). Contrary

to AP, which is dominated by minority spin. At a higher field intensity of 0.3

a.u., the majority spin competes with the minority with greater conductance and

exhibits considerable polarization. Opposite, in APC, the T (EF ) values for the spin

channels are almost matching and have a slight transmission probability (0.005 vs

0.003) as in Fig. 5.16(h). Therefore, these results coincide with Tables 5.2 and 5.3

and demonstrate the response of pMTJs to the applied electric field with changing

magnetization directions. The spin-flip in the Fermi level was also seen in Figs.

5.15(c) and 5.16(b) to result in varying the values of TMR and polarization as well.

91



Figure 5.15: Electric field dependent transmission spectra of Co(111)/h-
BN/Co(111) junction in the P (left panels), and AP configurations (right panels),
around the Fermi level for the spin-up (blue color) and spin-down (red color) chan-
nels at field magnetitudes of (a,e) 0.0, (b,f) 0.01, (c,g) 0.1, (d,h) 0.3 a.u., respectively
The vertical dashed lines indicate the Fermi level (EF ).
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Figure 5.16: Electric field dependent transmission spectra of
Co(111)/MoS2/Co(111) satck in the P (left panels), and AP configurations
(right panels), around the Fermi level for the spin-up (blue color) and spin-down
(red color) channels at field magnetitudes of (a,e) 0.0, (b,f) 0.01, (c,g) 0.1, (d,h) 0.3
a.u., respectively The vertical dashed lines indicate the Fermi level (EF ).

Tunneling magnetoresistance (TMR)

The concept behind the emergence of the TMR is spin-dependent tunneling. Where

the electrons of the spin-channel can exclusively tunnel into a specific spin channel

[256]. Figure 5.17 shows the magnetoresistance for two different barriers model. At

zero bias, the TMR is 94.95% when hBN is a barrier in the vertical stack (see Fig.
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5.17(a)). The applied field remarkably fluctuates the computed TMR, especially

at 0.1 a.u. The TMR achieve the highest value of 139.06% due to the extensive

spin transmission coefficient discovered in the spin-up states of the P magnetic

orientation. Since the TMR is positive when the electrodes are constructed with the

same material [257]. The discovered drop to -94% at a field intensity of 0.3 a.u. in

Fig. 5.17(a). Attributed to the magnetoelectric effect is the larger magnitude of the

quantum conductance in the AP (2.621) than in P (0.135) spin states. Also, this

negative value conforms to the actual one depending on the asymmetric bias. This

behaviour is different from the class of barriers used. Also, the spin transmission

becomes sensitive at the interface due to the bond mechanisms at the lead/barrier

interface. The results reveal that the critical electric field yields quantum phase

transition when hBN is a barrier analogous to the field strength where the TMR

arrives at the saturation region.

Figure 5.17: The evaluation of tunneling magnetoresistance for monolayer tunnel
barrier based on (a) hBN, and (b) MoS2, at different magnitudes of an electric field
[2].

On the other hand, Fig. 5.17(b) exhibits a high TMR of 299.09% when MoS2

as tunnel barrier at the critical field (0.1 a.u.). It is evolved to 987.02% at an

intensity of 0.3 a.u. These results agree with Dolui et al. [252], they discovered a

colossal magnetoresistance of 300% in the Fe/MoS2/Fe system. In this work, the

exotic increase in the TMR is due to an additional efficient spin-filter influence in

the AP-alignment.
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Generally, the dependence of the calculated TMR on the electric field for differ-

ent tunnel barriers of the symmetric pMTJ [see Figs. 5.17] are in good agreement

with those studied with symmetric regions of MoS2, and hBN [258]. Inserting ei-

ther hBN or MoS2 as the tunnel layer in the vertical stack shows perfect spintronic

performance due to the high TMR discovered: 139% (987%) for hBN (MoS2), re-

spectively. This shows effective modifications compared with the TMR calculated

of the oxides barriers Al2O3 with the same Co leads [256, 259].

The wave-vector k∥ resolved transmission

To gain insights into the magnetic coupling and the electric character of pMTJs and

TMR, k-space-resolved spin transmission spectra within the 2D BZ at the critical

field intensity were computed. Figure 5.18 displays the wavevector dependency

for the spin channels (up and down) in the P-alignment and AP-alignment in the

contour maps.

Figure 5.18: k∥-resolved spin transmission spectrum at the critical field.
Co(111)/hBN/Co(111) in the top panel, and Co(111)/MoS2/Co(111) in the bot-
tom panel. For the (a,c,e,g) majority, and (b,d,f,h) minority spin states in (a,b,e,f)
parallel (P), and (c,d,g,h) antiparallel (AP) configurations, respectively, [2].

In pMTJs based on hBN, the results demonstrate that the majority-spin of

Co/hBN/Co stack (top panel) in P and AP arrangements govern the transmission

spectra comparative to the minority-spin as shown in Fig. 5.18(a). Obviously, from

95



the colour scale, the high intensity peaks emanate from the middle of BZ at the Γ-

point. This confirms that majority-spin has high transmission than minority-spin.

Although for P-alignment, the spin-up transmission in the middle of BZ arises due

to a robust coupling between occupied and unoccupied states of Co d-orbitals in

spin-down. This is also in a good agreement with conductance in Tables 5.2 and

5.3.

Nevertheless, for AP-alignment, the transmission spectra correspond to the

majority (minority) spin, being strong (weak), close to the centre of BZ. This com-

promises the spin-polarized charge density values of Co-atoms at the interfaces (see

Fig. 5.14(b)). In AP-alignment reveals the tiniest donations from carriers at the AP

in the corners and edges of BZ. From Fig. 5.18(c), the high density emanates from

the centre. However, the transmission of spin-down in Fig. 5.18(d) is characterized

by low density (in blue) in the middle of BZ covered by high density. There is a

different scenario for pMTJs based on the MoS2 in the bottom panel, especially the

transmission of P-alignment. The spin-down electrons have a higher transmission

than the spin-up (see Figs. 5.18(e) and 5.18(f)). A high density characterizes the

Γ-point. This differs from the majority spin, where the high density emanates away

from the centre of BZ. In AP-alignment, both spin channels are described by high

transmission spectra in the middle of the BZ and near the gamma-point.

Carrier transport phase diagram of the Co/hBN/Co model

Quantum phase transitions (QPTs) are fundamental features that insight into the

nature of the condensed matter system at the ground state. Herein, the spin flip

energy is used as the probe of quantum phase transitions in the transport phase

of carriers. The spin-flip energy (Esf ) as used in the phase diagram defines a non-

thermal control parameter to drive quantum phase transition by quantum fluctu-

ations rather than thermal fluctuations. It is equal to the metric of the non-local

order of the Landau theory. The spin-flip energy has been computed as the distance

from the Fermi level at 0 eV, and the valence band maxima [260]. Figure 5.19 shows

the transport signature phase diagram when hBN is a barrier in the system.
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The results reveal a trivial transition in the carrier transport phase at a field

strength of 0.1 a.u. This denotes the critical point of the applied field. Also, there is

a drop in the spin-flip energy while electric field intensity increases to the quantum

critical point (QCP). The spin flip energy disappears beyond QCP. The critical

field where the first-order QPT occurs reveals an abrupt quantum transition from

half-metallic to metallic phase at the ground state.

Figure 5.19: Electric field-induced carrier transport phase diagram of pMTJs
based on hBN. The vertical dashed line denotes the quantum critical point [2].

The quantum critical point is found to occur at E = 0.1 a.u. This is because

E= 0.1 a.u. is the only point in the spin-flip energy versus applied electric field plot

[see Fig. 5.19] wherein the applied electric field has induced the gapless transport

state in the monolayer hBN-based heterostructure. This effect is observed in the

spin-up channel of the Co(111)/hBN/Co(111) heterostructure as a change in the

quantum transport state of the system from a half-metallic to a metallic phase.

For instance, the calculations have been repeated for the magnitude of the applied

electric field of 0.09 and 0.095 a.u, respectively. The results are shown in the Figure

5.20. These results show a gap in the spin up channel of the projected density of

states at both E=0.09 and E=0.095 a.u. This observation confirms the validity of
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the above assertion. All the other values of the applied electric field before E=0.1

a.u. give rise to a finite band gap in the spin-up channel while all the values of the

applied electric field beyond 0.1 a.u. give rise to the "gapless" state expected in

metallic transport of carriers.

Figure 5.20: Projected density of states for Co(111)/BN/Co(111) stack at (a)
0.09a.u. and (b) 0.095a.u., respectively.

In Ref. [1], a facile electronic switch between trivial and topological quantum

phases was discovered via the normalizing electronic structure of the bulk to the

2D model on the honeycomb lattice. Moreover, the effect of applying a magnetic

field to the artificially-stacked multilayer heterostructure leads to the appearance

of magnetic skyrmion spin textures [261]. The Coulombic exchange between the

two magnetic electrodes with a monolayer barrier layer creates a symmetry-breaking

mechanism. Due to first-order perturbation in the electronic states, proximity effects

are induced [262, 263]. Consequently, when an external field is applied to van der

Waals heterostructures (or to magnetic tunnel junctions), it modulates the time-

evolution of electronic density oscillations. This is the mechanism that leads to

collective excitations [264–266]. Such excitations include the charge density wave

(CDW) phase at a specific region of the QPT, a spin-polarized CDW phase, and the

formation of robust quasiparticles and spin texture [1, 191, 261].
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5.3 Light-matter interactions

5.3.1 Emergent electrodynamics: Plasmonic responses

The coupling between light and matter forms collective excitations. Bosonic excita-

tions such plasmons intensely affects the optical properties of the nanoparticle sys-

tem. However, non-linear properties arise as an electromagnetic field (EM) response

at specific QPTs energies in Dirac materials. Emergent properties originate from the

interaction between the EM field and chemical bonds. These collective properties

can be understood from the systematic analyses of the interband optical transitions

obtained relative to the ground-state electronic density. This phenomenon can be

described within electromagnetic theory by solving Maxwell’s equations [267]. The

contributions from the photon absorption spectrum to comprehend these optical

reactions are due to the distinct intensities determined in the photoabsorption spec-

tra analyzed. The results demonstrate wave-like interference patterns as the field

response of an electronic structure and transportation signature.

The model material used herein to observed and characterize the emergent

quantum transport phases is based on the computation performance of low-dimensional

DMs systems. Such as nanoclusters and nano-line for TaAs and graphene, respec-

tively. Instead of their bulk systems. This computational technique permits per-

spicuity into the plasmonic characters from DMs optronics reactions. The function

of monolayer DMs to form van der Waals heterostructures for spintronics applica-

tions has been confirmed [261]. Moreover, modelling DMs like TaAs and graphene

ensures the preservation of their edge states when geometrically reduced to their

nano-size. Therefore, quantum confinement consequences evolve, and the transport

signature emerges at the edges and remains topologically preserved. Manipulat-

ing edge-states ensure the intuitive formation of the topological numbers (Z2, C)

discussed in the previous section for characterizing TPDs.

Determining the upper bound of the potential for nanoparticle systems is not

crucial. Instead, it is only required to determine the reference energy of the plas-

monic state. It is characterized as the difference in energy between an isolated
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nanocluster within an extensive vacuum area and the related Bloch state. The

difference between the eigenvalue in each system compared to the propagator eigen-

value in the reference dielectric system is known as binding energy. Its calculations

have been tested based on gold as a reference system to manipulate the light absorp-

tion at the nanometer scale for novel applications and fundamental investigation of

physical system [268].

Figure 5.21 exhibits the localization of the near field enhancement intensity

for nanostructure and dimer subsystems. Also, the growing in the classical (see

Fig. 5.21(a,c)) and quantum (see Fig. 5.21(b,d)) regimes. The top (bottom) panels

represent the field distribution for TaAs (graphene), respectively. The field strengths

are calculated at the point where the topological phase transition occurred, with an

energy scale of t= 2.05 eV. The classical subsystem of the TaAs cluster (Fig. 5.21(a))

is simulated as a spheroidal nanoparticle with a radius of 7.85 Å. However, the

quantum subsystem (Fig. 5.21(b)) indicates the dimer of Ta-As with an interatomic

space of 2.62 Å. The emergence of the enhancement of the EM field intensities

around subsystems nanostructures. It is attributed to the coupling between the

incident photons and the collective fluctuations of free carriers at the surface. The

results demonstrate identical growth of the field intensity for both nanostructures

(TaAs and graphene). Correspond to the equivalency of the electronic structure

renormalization as the system’s shape expansions.
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Figure 5.21: Local distribution of field enhancement in the (a,c) Classical, and
(b,d) Quantum subsystems for TaAs (top panels) and graphene (bottom panels).
The color bars denote the field enhancement in Volts/Å [1].

The classical and quantum mechanical prototypes show non-uniform field be-

havior. However, the effect of the applied electric field is observable in the area close

to the dimers. The absence of inversion symmetry makes the interatomic distance

of Ta-As an ill-described property in the nano-line axis. So the structure of TaAs

nano-line is hard to benchmark and to simulate because it is dissimilar to the carbon

nano-line model. Hence, it is reasonable to elucidate the differences observed in the

profile of the induced potential from the quantum subsystem of the carbon system

for comparison with the Ta-As. These analyses are based on the assumption that

there is a uniform distribution of carrier density near-atomic cores. The C-C bonds

exhibit a substantially increased volumetric carrier density due to the effect of the

field in the graphene system.
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The analysis of the two quantum subsystems demonstrates that the order of

magnitude of the field enhancement in the classical subsystem is compatible. The

field enhancement in the corresponding quantum subsystem of the graphene is one

order of magnitude stronger than in the TaAs. The impact of the field enhancement

leads to regions of high and low intensities near the atoms of the dimers, even at

a low absorption kick of 10−5. Therefore, once TQPT has emerged, a shift in field

strength does not vary the ordering of the topological electronic phase. Figures

5.21(a,b) exhibit significant field enhancements at the edges of the nanoparticle

as characterised by the yellow region. Since the field lines commonly construct

uniform boundaries, the observed outwards divergence of the equipotential surfaces

from the boundaries in both the quantum and classical subsystem suggest that the

nanoline is behaving like a dipole configuration when subjected to an electric field.

Consequently, the nanostructure core acts as a sink of field lines.

By contrast, the response of the quantum subsystem to the field enhancement

demonstrates differences in the interatomic distance in Ta and As atoms of the

dimer (Fig. 5.21(b)) and C-C (Fig. 5.21(d)), respectively. Remarkably, the field

modes in the two dimers show two different characteristics due to the asymmetric

charge distribution between the Ta-As dimer (see Fig. 5.21(b)). In Fig. 5.21(d), the

field enhancement shape close to the C-C atom is uniform, thus maintaining carrier

symmetry. It is attributed to the uniform response of the structure near the C-C

dimer to the applied field. Altogether, the investigations show that the external

field creates an extra field as an immediate response to the distortion of the local

potential due mainly to the carrier redistribution. This redistribution of carriers

induces a collective excitation mode similar to the charge density wave (CDW).

From the perspective of electrodynamics, the electric field E can be expressed

as the sum of the electrostatic and electrodynamic contributions, such that

E = −∇V +
∂

∂t
A, (5.3)

where V denotes the electrostatic potential and A denotes the magnetic vector

potential, respectively. It appears in the nano-structures of Dirac materials due to
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the potential created by the field-induced volume charge density. The localization

of the generated potential in the non-trivial phase is indicated in Fig. 5.22 of TaAs

(graphene) in the top (bottom) panels, respectively. Again the potential in classical

subsystems of TaAs (Fig. 5.22(a)) and graphene (Fig. 5.22(c)) are identical insofar

as the depth of the potential and distribution of equipotential surfaces are involved.

Nevertheless, small dissimilarities are observable in the distribution of regions of

high and low potentials. While the spatial distribution of localized areas of potential

extrema is almost alike in both systems, slight dissimilarities are again noticeable.

This agrees with the strength of the field enhancement in similar subsystems.

Figure 5.22: Induced potentials in TaAs (top panels) and graphene (bottom pan-
els) for (a,c) classical, and (b,d) quantum subsystems. The color bars denote the
induced potential in volts [1].

Figures 5.22(b) and (d) show the imaginary domain of the generated potential

in both quantum subsystems. The results demonstrate that the generated potential
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in the Ta-As dimer is less than the C-C dimer by three orders of magnitude. Also,

there are two contiguous neighbouring areas of maximum and minimum potential

from the atomic cores of the dimers. Notice that the applied potentials are moved

along the axis of the Ta-As dimer. By contrast, the spatial location of the C-C

dimer is moved out from the axis of the dimer at an angle of 90°.

Figure 5.23 illustrates the imaginary part of the generated CDW in both quan-

tum subsystems of Ta-As (see Fig. 5.23(a)) and C-C (see Fig. 5.23(b)) dimer. The

charge density allocations demonstrate high and low carrier density pockets near

the atomic spots. The Ta and As atoms areas are distinguished by a high and low

charge density mix. However, the axis of the C-C dimer maintains a low, but uniform

charge density. The localized heightened and lower densities areas are implanted in

the uniform set of disappearing carrier density, especially at large radial distances

away from the dimers. However, a detectable fluctuation in the carrier density is

noticeable near the Ta and As atoms of the dimer. By contrast, this is not observed

in the C-C dimer.
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Figure 5.23: The imaginary part of the induced volume charge density in the
quantum subsystems of (a) Ta-As, and (b) C-C dimers, respectively. The color bars
denote the induced volume charge density in Coulombs/Å3 [1].

Fig. 5.23(b) shows that a charge density of low magnitude is localized along

the axis of the C-C dimer. The two localized areas of significantly higher charge

density are found to be contiguous to the bond axis, as if their coordinates have been

rotated by an angle of 90° through the center of the C-C bond length. Therefore, a

continuous induced potential is anticipated as the charge accumulates. The charge

deficient areas are uniformly spread near the dimer cores. The coordinate and

uniform distribution of the induced charges in both systems suggest that a little

excess work must be done on the individual structure to induce transport dynamics

in the topological quantum phase.

Figure 5.23 also shows how the collective excitation, such as the plasmon re-
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sponse of the nanostructure, originates from the vibrational modes of the chiral edge

when Dirac materials are incorporated into a nano-junction. The results reveal the

similarity of carrier modes in both subsystems due to the high charge density that

surrounds the atom cores. This proposes an existence of a large limit between the lo-

cal geometries of the Ta-As and C-C dimers, in which the electrodynamic responses

of both subsystems will agree. The observed warping in the electrostatic potential

of DMs signifies that carrier transportation will also depend on additional potential

wells and barriers at the TQPT point. It is therefore expected that an externally

applied field will not necessarily lead to a symmetric transportation of charges on

the surface of the DM in the region of the topological phase diagram wherein TQPTs

are expected to occur.

Some investigations of the plasmonic reaction of metallic nano-junctions have

demonstrated a complete correlation between the spectral positions of the domi-

nating resonance in the collective excitation and the imaginary part of the induced

volume charge density distribution that generated the CDW with unique excitation

frequencies [269]. Herein, it is found in the quantum subsystem, that the plasmonic

responses agrees with the results of Fukuoka and Tanabe on similar nanostructures

[270]. The agreement is due to the substantial enhancement of the EM field en-

ergy in the area encircling the nanoclusters to the distinctive character of plasmons.

Correlation of the plasmonic state with the quantization of charge (or spin) trans-

port suggests that the lightning-rod effect causes the mechanism at the atomic scale

[271]. It is a character of the field enhancements (see Fig. 5.26). Accordingly, the

formation of facile plasmons in van der Waals heterostructure stacks are expected.

This is attributed to the induced potential gradients in the quantum subsystems

(Fig. 5.25) as a result of the existence of heterobilayer interfaces.

5.3.2 Optical photoabsorption spectra

To get a deep understanding of electronic systems, the optical absorption spectra

were analysed. It is one of the conventional methods of connecting the results of

theoretical and experimental studies [272]. The computational modelling is based
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on time-dependent density functional theory (TDDFT) within periodic boundary

conditions. Figure 5.24 depicts the dependency of the optical photoabsorption spec-

tra on the local structure of the two materials obtained by setting the probability

distribution Gaussian at a width of 0.1 eV. Figures 5.24(a,b) represent the pho-

toabsorption spectrum of the C-C dimer and bulk graphene system whereas Fig.

5.24(c,d) exhibit the identical spectra for TaAs. The photoabsorption shows some

of the incident radiation absorbed by the material within the indicated range of

energy. The emergence of peaks at 4.2 eV (see Fig. 5.24(a)) and 9.4 eV (see Fig.

5.24(c)) implies that optically generated transitions occur at those energy points

between the valence and conduction band states. This forms exciton (electron-hole

pair) in a similar manner to the quantum dots. Also, the fluctuating peaks suggests

the possibility of intense absorption of radiation by the C-C dimer at the lowest en-

ergy of 4.2 eV. This corresponds to the relatively lower absorption of Ta-As dimers

at high energy of 9.4 eV.

However, Fig. 5.24(b,d) shows a broad absorption spectrum of the bulk struc-

tures. These show a dominant peak at an energy of 9.96 (8.9) eV for TaAs (graphene),

respectively. The inadequate resolution of the prevalent cluster peaks in the pho-

toabsorption spectra of bulk structures is a fascinating nonlinear optical phenomenon.

For instance, the location of the main peak in the spectra of both bulk structures

is well-resolved in the nanocluster spectra. These seem like low intensity peaks that

appear more reduced in the TaAs system than graphene due to the effect of quantum

confinement. The poor resolution of the absorption peaks in the clusters is ascribed

to the effects of quantum confinement, which causes the widening of the peaks in

the bulk structure. It is reasonable that the reverse impact causes the sensitiveness

of the measured bandgap to the dimension of the nanoparticle.
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Figure 5.24: Optical photoabsorption spectra of (a) the sp3-hybridized C-C dimer,
and (b) the carbon nanoline. (c) The absorption spectrum for the Ta-As dimer, and
(d) the TaAs nanocluster [1].

Despite the difference in the chemical composition between TaAs and graphene

structures, their ground state at zero field is characterized by a gapless electronic

state. Nevertheless, the semiconducting transport phase is characterized with a

narrow bandgap. This arises from the precise mix of external perturbation fields

and the intrinsic SOC. The first absorption maxima in Figs. 5.24(a)-(d) denotes

electronic transitions from the valence to the conduction bands leaving behind a

hole, which can combine with an electron to create an exciton (electron-hole pair).

The photon energy of the first absorption maxima approximately corresponds to the

width of the bandgap. Again, the discontinuous peaks in Fig. 5.24(a,c) suggest that

extra transitions from the bound e-h pairs must emerge. This argument also holds

because the C-C dimers exhibit little absorption peaks at energies of 1.74 and 7.96

eV in (Fig. 5.24(a)), and 2.44 and 3.68 eV in (Fig. 5.24(c)).

A precise quantum mechanical understanding of the optical absorption peaks
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obtained in the previous section can be achieved by reviewing the transition contri-

butions maps (TCM) of Kohn-Sham (KS) eigenvalues between electron-hole (e-h)

transitions. Figure 5.25 displays a composite plot of the DOS and the optical TCM

at particular energies in the photoabsorption spectra of the graphene system. The

TCM demonstrates two separate DOS. This corresponds to one each for whole elec-

tronic states as seen in the top spectra, and the unoccupied states as in the right

spectra for photoabsorption peaks at energies of 1.74 and 9.65 eV in Fig. 5.25(a),

and 2.44 and 3.68 eV in Fig. 5.25(c). The spectra for both total electron (e) and

hole (h) states are constant under various photoabsorption energy showing that the

DOS of the carrier is not sensitive to the photon absorption.

The analysis TCM shows that any peak in the absorption spectra contains nu-

merous single-particle transitions between e-h states. The hole (h) formation is from

the Fermi level at 0.0 eV transition to the highest occupied valance band, about -3.0

eV. Moreover, the carriers are formed from the lowest unoccupied conduction band

up to nearly 1.75 eV. In this broadened energy range, just carbon p-states are dy-

namic, and the complete transition demonstrates no contributions from the 2s-states

of carbon. Also, the number of h-states is more elevated at 9.65 eV, corresponding

to the 1.74 eV. There is a net depletion of electron density at the Fermi level for the

low-energy absorption, whereas there is an excess at 1.75 eV. Nevertheless, at 9.65

eV, the TCM does not exhibit any collective dipolar fluctuations since the excess

density vanishes.

109



Figure 5.25: Electronic density of states combined with the optical transition
contribution map at extremal energies (a) 1.74 eV. (b) 9.65 eV. The blue and red
colors in the photon absorption of the graphene system show lack and excess electron
density, respectively [1].

5.3.3 Carrier transport through the quantum fluid phase

Features of the near-field quantum electrodynamics in the TQP are characterized

to identify an ordered quantum fluid phase. Figure 5.26 illustrates the formation of

carrier density wave (CDW) through the carbon nano-line at the particular energies

in the photoabsorption spectra. The results show the symmetry of the emergent

field near the nano-line (1D) atoms. It is characterized by high (blue) and low

(red) carrier intensities. These carrier intensities suggest a distinctive non-linear

optical character in the TQPT point, like a quantum fluid phase. This gives rise

to the dynamical concept affecting electrons hopping around atoms. The driven

electric field sets up as a stationary waveform in a familiar vibrational pattern. The

intensity positions within the corraled states vary periodically with the increase in

photon energy from 1.74 to 7.95 eV. The halos of the lower field are positioned close

to the carbon ions located in the middle of the nano-line (see Figs. 5.26(a)-(e)).
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Figure 5.26: Carrier density wave of carbon nano-line at different photon energies
of (a) 1.74. (b) 4.22. (c) 4.86. (d) 6.07. (e) 7.95. (f) 9.65 eV. The atomic cores are
shown in black balls, while minimal and maximal carrier density (in Coulombs/Å3)
are displayed in blue and red colors, respectively [2].

On the other hand, Figure 5.26(f) reveals that at 9.65 eV, the strong field halos

are positioned on the carbon atoms in the middle of the nanoline. Figure 5.26(a)-(f)

unravels the intrinsic nature of a field-driven carrier density wave that is local-

ized in the region between the carbon bonds. The resulting standing wave in the

near-neighbor locations on the carbon nanoline forms a stationary charge density

wave (CDW). This proposes a possible foundational basis for the transport of carri-

ers through the CDW state in emergent applications in optoelectronics, photonics,

quantum optics, and quantum computing. Since the time reversal symmetry is not

preserved in the nanoline, the observed standing wave approximates the signature

of the spin density wave (SDW) state whenever spin is a proper eigenstate of the

system’s Hamiltonian. A similar scenario is discovered in the Ta-As dimer because

the induced CDW is close to the constituent atoms despite its isolated character.
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Chapter 6

Conclusion

In this thesis, first-principles and tight-binding model calculations have been used to

investigate the electronic ground state of bulk tantalum arsenide and graphene, re-

spectively. Computational experiments are also performed to unravel the underlying

nature of quantum phase transitions in Dirac materials using a suitably renormalized

ground-state on the graphene lattice. The findings show that nanoplasmonic modes

have distinct properties as an emergent response to topological quantum phases.

Combining two or more fields in the tunable tight binding model of the graphene

gives a rich spectrum of topological phases. This provides a theoretical foundation

for experimentalists to alter the carrier states in Dirac materials by adding external

fields.

Furthermore, the investigation of magnetoelectric coupling and proximity-induced

phenomena may develop when an insulating monolayer of a Dirac material is inserted

as the tunnel barrier layer of the perpendicular magnetic tunnel junction (pMTJ)

in the ferromagnetic metal-insulator-metal multilayer stack. The response of the

spin transport signatures in symmetric pMTJs to externally applied electric field

show a quantum phase change from half-metallic to full-metallic phase when the

model insulator material is hBN. No phase transition is observed when the insulator

material is molybdenum disulphide. These observations are understood in terms of

the strong hybridization of the p-orbitals of N and B atoms with the d-orbitals of

Co in the interface.
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Analyses of tunneling magnetoresistance demonstrate a giant signal of 987.02%

(139.06%) in MoS2 (hBN) insulator model, respectively. The strength of the applied

field at the QCP coincides with an electric field magnitude of 0.1 Hatree a.u. at which

the TMR reachs its maximum value. The findings provide insights into dissipative

scattering anomalies in spin logic devices. This work constitutes a critical first step

toward achieving a lower energy delay product performance and a faster switching

operation in spintronic devices.
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