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ABSTRACT 

Aeromonas spp. isolates, which are fish and opportunistic human pathogens, form biofilms, 

however the factors involved in and affecting biofilm formation have not been fully elucidated. 

Biofilm formation is affected by motility, cell surface characteristics, and/or metabolism, thus it 

is important to identify factors potentially contributing to initial attachment and/or biofilm 

formation and their correlation with biofilm formation by Aeromonas spp. isolates. With 

knowledge of the stages of biofilm formation, mechanisms involved in biofilm formation and its 

physiology, various strategies may be applied to control aeromonad biofilms. Factors potentially 

involved in initial attachment and/or biofilm formation were investigated for 99 Aeromonas 

isolates obtained from seawater and cultured fish. Aeromonad biofilm formation was assessed 

using microtiter plate assays under varying physicochemical conditions. The disk diffusion 

method was used to determine the antimicrobial susceptibility profiles of isolates, for 

comparison to clinical and aquaculture isolates reported in other studies. The MICs and MBICs 

for antimicrobial agents (azithromycin, ceftazidime, ciprofloxacin, gentamicin and tetracycline) 

of planktonic cells and biofilm cells, respectively, were investigated using the broth 

microdilution and modified microtiter plate assays. The effect of sub-MIC (0.5 × MIC) and 

supra-MIC (2 × MIC) exposures on biofilm-forming cells was also determined using microtiter 

plate assays. The presence of efflux pump-mediated resistance in 45 Aeromonas spp. isolates 

was determined using the disk diffusion assay incorporating efflux pump inhibitors (EPIs) 

[carbonyl cyanide 3-chlorophenylhydrazone (CCCP), phenylalanine arginine β-naphthylamide 

(PAβN) and 1-(1-naphthylmethyl)-piperazine (NMP)]. Modified microtite plate assays were used 

to determine the effect of EPIs [CCCP, PAβN, and NMP], matrix-degrading DNase I and 

quorum-sensing inhibitors (QSIs; vanillin, 2(5H)-furanone, S-adenosylhomocysteine and 

cinnamaldehyde) on initial attachment and mature biofilm. Majority of isolates were motile by 

swimming  and swarming and displayed caseinase, gelatinase, and DNase activities, as well as 

an A-layer phenotype. Majority of isolates displayed high levels of autoaggregation and were 

hydrophilic. Isolates showed varying levels of adherence, but majority were strongly adherent in 

nutrient-rich media at 30 ºC. Motility appeared to be a significant characteristic for biofilm 

formation. Majority of Aeromonas isolates spp. showed high levels of resistance to β-lactams, 

trimethoprim and sulphamethoxazole, and were susceptible to augmentin, piperacillin-

tazobactam, aztreonam, 2nd and 3rd generation cephalosporins, carbapenems, macrolides, 

fluoroquinolones and aminoglycosides . High levels of resistance towards ceftazidime (MIC > 32 

µg/ml) were observed for isolates, while levels of resistance towards remaining antimicrobial 

agents tested (tetracycline, azithromycin, ciprofloxacin, and gentamicin) were ≤ 32 µg/ml. There 

was a ≥16-fold increase in MBICs (4096 µg/ml) compared to the MICs for all the antimicrobial 

agents. The sub-MIC, MIC, and supra-MIC exposures of all antimicrobial agents had an 

inhibitory effect on both initial attachment and pre-formed biofilms by Aeromonas spp. isolates. 

Majority of isolates were more susceptible to tetracycline, norfloxacin, and azithromycin due to 
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CCCP and NMP inhibition of the efflux pumps eliminating these antimicrobial agents. 

Susceptibility to erythromycin was observed for 51% and 47% of isolates, respectively, due to 

NMP and PAβN inhibition of the efflux pump/s eliminating erythromycin.  In the microtiter 

plate assays, CCCP, NMP and PABN exposures resulted in significant reduction of biofilm 

formation by majority of Aeromonas spp. isolates in both initial attachment and mature biofilm 

assays, with CCCP being more effective. DNase I was more effective in reducing mature 

biofilm, causing reduction for 60% of isolates, compared to its effect on initial attachment. QSIs 

were also more effective in reducing mature biofilm compared to inhibiting initial attachment. 

Although increased biofilm dispersal was observed with all QSIs, vanillin and 2(5H)-furanone 

were more effective compared to S-adenosylhomocysteine and cinnamaldehyde. Based on data 

obtained in this study, antimicrobial agents, EPIs and QSIs can be used as potential biofilm-

inhibiting compounds in aquaculture to control aeromonad infections and may not only prevent 

disease outbreaks but they could also increase the effectiveness of existing therapeutic agents. 
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CHAPTER ONE 

Introduction and Literature Review 

 

1.1. The genus Aeromonas and pathogenicity of Aeromonas spp. 

Members of the genus Aeromonas belong to the family Aeromonadaceae (Abbott et al., 2003; 

Ghenghesh et al., 2008) and have been known to microbiologists since the early 1890s (Farmer 

et al., 2006). Until 1984, only four phenospecies were identified, viz., Aeromonas hydrophila, A. 

salmonicida, A. sobria and A. caviae (Ghenghesh et al., 2008). With the evolution of newer, 

more effective techniques over the years, molecular techniques such as DNA-DNA 

hybridization, have allowed the identification of 17 hybridization groups (genospecies) and 14 

phenospecies, including A. bestiarum, A. media, A. eucrenophila, A. veronii biotype veronii, A. 

veronii biotype sobria, A. salmonicida, A. hydrophila, A. schubertii, A. caviae, A. trota, A. 

allosaccharophila, A. encheleia, A. popoffii, A. culicicola, A. simiae, A. jandaei and A. 

molluscorum (Ghenghesh et al., 2008; Soler et al., 2004; Tacao et al., 2005). 

The genus Aeromonas comprises Gram-negative, non-spore-forming, rod-shaped, 

facultative anaerobes, which are oxidase- and catalase-positive. Species are motile by polar 

flagella (some species are non-polar) and they grow at a temperature of 22-28 °C (Belaluddin 

and Shahjahan, 2003; Farmer et al., 2006; Ghenghesh et al., 2008; Kirov et al., 2002; Tacao et 

al., 2005). Members of the genus Aeromonas are ubiquitous and autochthonous aquatic bacteria 

(Castro-Escarpulli et al., 2003; Gordon et al., 2008 and Kirov et al., 2002; Tacao et al., 2005) 

and occupy a wide variety of environmental niches including soil and water. They are also 
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pathogens of warm- and cold-blooded animals (Jacobs and Chenia, 2007). Because of this 

diversity in habitats, aeromonads have been observed to be associated with a wide variety of 

diseases. 

Aeromonas spp. isolates are often associated with fish diseases, where A. salmonicida 

causes furunculosis, which affects salmon and trout at commercial farms (Austin, 1997; Farmer 

et al., 2003; L‘Abee-Lund and Sorum, 2001). A. hydrophila causes red sore disease of bass and 

also affects carp and cod causing ulcer disease (Farmer et al., 2006). Channel fish, shad and 

centrarchid fish are also affected by A. hydrophila (Farmer et al., 2006). A. bestiarum and A. 

sobria have been observed in frozen fish intended for human consumption in Mexico (Castro-

Escarpulli et al., 2003). These pathogenic aeomonads cause losses in farmed fish stocks and this 

results in economic losses in aquaculture. Humans may be exposed to pathogens of aquaculture 

origin via consumption of inadequately prepared fish products or by cross contamination of other 

foods by these fish bacteria (Abrahim et al., 2007; Austin, 1997; Castro-Escarpulli et al., 2003; 

Davies et al., 2001; Farmer et al., 2006; Ghenghesh et al., 2008; Hanninen et al., 1997; Jacobs 

and Chenia, 2007).  

Aeromonads have also been identified as an aetiological agent in human (food or water-

borne) infections (Davies et al., 2001; Farmer et al., 2006; Ghenghesh et al., 2008; Gordon et al., 

2008; Kirov et al., 2002; Koksal et al., 2007; Tacao et al., 2005). In humans, they are the 

causative agents of gastroenteritis, wound infections (cellulitis, furunculosis and abscesses) and 

septicaemia (Ghenghesh et al., 2008; Koksal et al., 2007). They are also associated with 

respiratory, urinary tract and ocular infections, meningitis, endocarditis, peritonitis, hepatobiliary 

disease and endotoxic shock (Ghenghesh et al., 2008; Koksal et al., 2007). A. hydrophila, A. 
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veronii and A. caviae are normally the cause of extra-intestinal infections in immuno-

compromised patients (Abrahim et al., 2007; Castro-Escarpulli et al., 2003; Ghenghesh et al., 

2008; Gordon et al., 2008; Koksal et al., 2007). A. sobria and A. schubertii were isolated and 

were found to be associated with blood infection (Farmer et al., 2006). Aeromonas spp. are also 

found in water (fresh, drinking, aquatic samples), in waste-water drainage, sewage and in 

swimming pools, with many cases of infection in humans and animals being traced to exposure 

to contaminated water (Abrahim et al., 2007; Farmer et al., 2006; Gordon et al., 2008; Hanninen 

et al., 1997; Koksal et al., 2007). 

 

1.2.Bacterial biofilms and biofilm development  

It has been observed that most bacterial infections involve biofilms (Behlau and Gilmore, 2008; 

Hoiby et al., 2010). Aquatic fish pathogens such as Vibrio, Yersinia, and Aeromonas have been 

shown to form biofilm structures in aquaculture environments, and survival of these aquatic 

bacteria outside the fish host may be dependent on biofilm formation (Basson et al., 2008). 

Biofilms are collections of microorganisms enclosed in a matrix known as extracellular 

polymeric substances (EPS) which consists of polysaccharides, proteins and DNA originating 

from the microbes; that provides structural stability, protection to the biofilm and also promotes 

adherence or initial attachment of microbes to smooth surfaces and to other cells (Behlau and 

Gilmore,2008; Chmielewski and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay and voan 

Holy, 2006; Hoiby et al., 2010; Vu et al., 2009). Bacterial biofilms form on biotic or abiotic 

surfaces, developing into large communities of complex architecture whereby there is cell-to-cell 

communication and co-ordinated behaviour, i.e., quorum-sensing (Behlau and Gilmore, 2008; 
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Hoiby et al., 2010; Vu et al., 2009). In these biofilms, microbes surround themselves with the 

slimy EPS, which protects them from their environment; conferring protection against 

phagocytosis, interference with the cellular immune response, and reduction of antimicrobial 

potency, making them hard to remove or kill with traditional chemical or mechanical methods. 

Due to this durability, biofilms are responsible for a wide range of industrial and health 

problems. Current technologies used to deal with biofilms are largely ineffective, costly and 

based on toxic biocides. Consequently, new strategies are being investigated with the main foci 

being the use of biosolutions (enzymes, phages, interspecies interactions and antimicrobial 

molecules from microbial origin) (Simoes et al., 2010). 

There are five basic stages (Fig. 1) involved in the development of biofilms, viz., 

adhesion (attachment), colonization, maturation, detachment and detachment (Behlau and 

Gilmore, 2008; Chmielewski and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay and von 

Holy, 2006). Adhesion or attachment, either reversible and irreversible, is the first stage in 

biofilm development. For reversible adhesion, it is the initial non-specific weak association of 

cells to the surface, and involves van der Waal‘s and hydrophobic interactions. At this stage 

bacteria are easily removable. Irreversible adhesion on the other hand involves firm adherence 

and involves hydrogen bonding, covalent and hydrophobic bonding. It results from the anchoring 

of appendages (pili, flagella) or production of extracellular polymers (Behlau and Gilmore, 2008; 

Chmielewski and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay and von Holy, 2006). This 

is followed by the formation of microcolonies given appropriate growth conditions, and results 

from simultaneous aggregation and growth of microorganisms and is accompanied by the 

production of the EPS (Chmielewski and Frank, 2003). This then leads to the maturation of these 
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microcolonies into organized three-dimensional structures. If conditions are suitable, which are 

enclosed and stabilized by the EPS. Lastly, the dispersal or detachment of the bacterial cells from 

the biofilm and there is subsequent transfer to other surfaces (Behlau and Gilmore, 2008; 

Chmielewski and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay and von Holy, 2006). 

 

Figure 1.1: The development of a biofilm. Stage 1: initial attachment of cells to the surface; 

stage 2: microlony formation and production of the extracellular polymeric substances (EPS); 

stage 3: early development of biofilm architecture; stage 4: maturation of biofilm architecture; 

and stage 5: dispersion of bacterial cells from the biofilm (Lasa, 2006). 

 

 

1.2.1. Biofilm formation by Aeromonas spp. 

Aeromonas spp. isolates have been identified from diverse biofilms. Bechet and Blondeau (2003) 

observed that A. caviae were capable of forming biofilms on the glass surface of cultured flasks 

in nutrient broth under agitation at 30 ˚C for 15 h. Aeromonads were also detected in water 
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distribution pipe biofilms in the United States where they were shown to be very persistent 

(Bomo et al., 2004). A. hydrophila biofilms have been grown on chitin flakes suspended in 

tryptic soy broth (TSB) to improve antigen delivery for oral vaccination of catfish (Asha et al., 

2004; Azad et al., 1999; Nayak et al., 2004). Dogruoz et al. (2009) observed that Pseudomonas 

and Aeromonas spp. strains are pioneer colonizers and are predominant in biofilms on galvanized 

steel surfaces. Aeromonas spp. isolates, A. hydrophila in particular, have been described to form 

biofilms on microtiter plates in TSB when incubated for 48 h, without agitation at 30 ˚C (Gavin 

et al., 2003; Merino et al., 2001). They have also been shown to form biofilms in borosilicate 

glass tubes, when incubated for 30 h without agitation at 37 ˚C (Kirov et al., 2004). Kozlova et 

al. (2008) revealed that A. hydrophila could form biofilms on glass cover slips and on plastic-

cover slips after 24 h of incubation. A. caviae and A. hydrophila were able to grow biofilms on 

glass tube walls for 24 h at 30 ◦C in Luria Bertani (LB) medium (Li et al., 2009). A. hydrophila 

was among the seven isolates described to be strong-biofilm formers (Li et al., 2009).  

 

1.3 Mechanism of biofilm formation and factors associated with initial attachment and/or 

biofilm formation 

Initial attachment or adhesion has been shown to be a very important for most of microbial 

infections, being a crucial stage in biofilm formation (Behlau and Gilmore, 2008; Chmielewski 

and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay and von Holy, 2006). Initial attachment is 

affected by chemical and physical properties of the cell and surface, as well as the composition 

of the surrounding medium (Behlau and Gilmore, 2008; Chmielewski and Frank, 2003; Decho, 

2000; Donlan, 2002; Lindsay and von Holy, 2006). According to Behlau and Gilmore (2008), 
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environmental signals including variation in temperature, nutrient availability, pH, osmolarity, 

iron and oxygen requirements enhances biofilm formation and are involved in the initiation of 

this process. For adhesion, cell surface components which include flagella, pili, fimbriae, adhesin 

proteins, proteases, capsules, EPS as well as surface charge (i.e., hydrophobicity), all play a huge 

role in initial attachment for biofilm formation and in pathogenicity (Behlau and Gilmore, 2008; 

Basson et al., 2008; Chmielewski and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay and 

von Holy, 2006; Karatan and Watnick, 2009) and many of them are important components of 

bacterial motility (Basson et al., 2008). Francolini and Donelli (2010) have suggested that 

possible anti-biofilm strategies should be based on the inhibition of microbial adhesion to the 

surface and of colonization. 

 

1.3.1. Motility  

Flagella are more than organelles of locomotion, they are important as they allow cells to move 

to a specific attachment site. They play an important role in motility and in attachment by 

overcoming repulsive forces associated with the surface and contribute to pathogenesis (Behlau 

and Gilmore, 2008; Chmielewski and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay and von 

Holy, 2006). In addition, motility is required to move along the surface, thereby, facilitating 

growth and spread of a developing biofilm; and also flagella themselves (as surface appendages) 

can directly mediate attachment to surfaces (Van Houdt and Michiels, 2010). According to 

Santos et al. (2010), swimming motility is important not only in the initial approach of bacterial 

cells to surfaces but also in the attachment of cells for the formation of biofilms.  
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Mesophilic Aeromonas express a single polar flagellum for swimming under all culture 

conditions and produce lateral flagella for swarming on solid media (Altarriba et al., 2003; Gavin 

et al., 2002; Kirov et al., 2002; 2004; Kirov, 2003; Rabaan et al., 2001). Altarriba et al. (2003) 

described the presence of a polar flagella operon (flg) of Aeromonas and its association with 

motility (swimming and swarming), adherence to Hep-2 cells as well their ability to form 

biofilms. Although A. salmonicida is classified as non-motile, several flagellar genes have also 

been identified (Altarriba et al., 2003). 

Swarming motility is known to facilitate rapid colonization of surfaces and is linked to 

virulence factor production (proteases), robust biofilm formation, antimicrobial resistance and 

pathogenicity (Connelly et al., 2004). It permits fast and local colonization, where bacteria then 

proceed to form microcolonies, which is then followed by the formation of a mature biofilm 

(Santos et al., 2010). Connelly et al. (2004) observed that extracellular proteolytic activity 

played a central role in swarming motility and was often associated with biofilm formation in 

Bacillus subtilis. Murray et al. (2010) observed that swarming motility was negatively associated 

with biofilm formation by clinical P. aeruginosa isolates; however, swarming motility was 

positively associated with the secretion of proteases and exoenzymes by these isolates. 

Kalmokoff et al. (2006) described the role of the motility complex in biofilm formation by 

Campylobacter jejuni 11168. Their findings demonstrated that the flagella complex FlaA, FlaB, 

FlaG, and FliD plays a crucial role in initial attachment of C. jejuni 11168 to solid surfaces 

during biofilm formation, as well as in the cell-cell interactions required for pellicle formation 

(Kalmokoff et al., 2006).  
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The lateral flagella of Aeromonas species have been described as being essential for 

epithelial cell adherence and biofilm formation (Gavin et al., 2002; 2003; Rabaan et al., 2001). 

Kirov et al. (2004) has also described Aeromonas flagella (polar and lateral) as enterocyte 

adhesins that contribute to biofilm formation on surfaces. Furthermore, Imziln et al. (1998) 

observed that in motile aeromonads, there was a significant correlation between most virulent 

factors, although some strains produced one virulence factor, which was independent of presence 

of the other. Santos et al. (2010) observed that A. caviae produce inducible lateral flagella (laf), 

involved in swarming motility which is associated with the area of colonization of surfaces, 

biomass production as well as biofilm formation. They provided evidence that both polar flagella 

and lateral flagella function in biofilm formation by A. caviae strains isolated from environment, 

food and human source.  

 

1.3.2. Lipopolysaccharide (LPS) and other virulence properties  

Lipopolysaccharide (LPS) and the Gram-negative outer membrane are also involved in adhesion 

and pathogenicity in many pathogenic bacteria. LPS is an amphiphilic antigen common to most 

Gram-negative bacteria such as Aeromonas spp; and is a potent immunogenic substance that 

plays a role in initial attachment of cells to host tissues, biofilm formation and pathogenicity in 

many Gram-negative bacteria (Asha et al., 2004; Bandara et al., 2010; Lee et al., 2010). It 

consists of lipid A, a core oligosaccharide, and the O-antigen side chain polysaccharide, and all 

three parts are important (Lee et al., 2010). The O-antigen has been shown to be involved in the 

colonization of the host and in resistance of bacteria to antimicrobial stress (Asha et al., 2004; 

Lee et al., 2010). Sawasdidoln et al. (2010) reported that apart from being immunogenic, LPS 
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also acts as a permeability barrier, at bacterial surfaces mostly to hydrophobic agents. It has been 

observed that the deficiency in the LPS negatively affects biofilm formation in most Gram-

negative bacteria (Asha et al., 2004; Lee et al., 2010). Asha et al. (2004) compared the LPS of 

biofilms of A. hydrophila with that of planktonic cells, and observed that approximately 15 

proteins were repressed while three new proteins were uniquely expressed in biofilm cells 

compared to the planktonic cells. The same changes in LPS moiety have also been observed 

during biofilm formation in P. aeruginosa (Hodgson et al., 1995). The adhesive properties of the 

outer membrane and its role as an adhesion non-fimbrial protein involved in A. veronii adhesion 

have been described by Vacquez-Juarez et al. (2004).  

Ljungh et al. (1985) observed that surface proteins (A-layer and proteolytic enzymes) 

contribute to high surface hydrophobicity of autoaggregating Staphylococcus aureus strains. It 

has been observed that the cell envelope of virulent A. salmonicida is composed of an A-layer 

(predominant cell surface protein) found beyond the outer membrane and the repeating O-

antigen subunit of bacterial LPS (Fernandez et al., 1995). The 50 kDA A-layer protein is also 

responsible for several cell surfaces properties such as autoaggregation and hydrophobicity, 

because it has a high proportion of hydrophobic amino acids which confer increased cell surface 

hydrophobicity (Bjornsdottir et al., 1992; Fernandez et al., 1995; Phipps et al., 1983). Phipps et 

al. (1983) purified and characterized the A-layer from A. salmonicida, and observed that this 

protein was hydrophobic in composition and the N-terminal sequence was highly hydrophobic, 

as it lacks carbohydrate residues. The phenotype A-layer+ LPS+ is an essential virulence factor 

for Aeromonas spp., particularly A. salmonicida (Fernandez et al., 1995). The presence of the A-

layer, which is said to be absent in avirulent strains of A. salmonicida and the LPS, is essential 
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for agglutination, virulence and pathogenesis (Bernoth, 1990; Bjornsdottir et al., 1992; Ellis et 

al., 1997; Fernandez et al., 1995). Van Alstine et al. (1986) observed that both the presence of 

the superficial protein A-layer and the O polysaccharide chains of lipopolysaccharide play an 

important role in the detachment behaviour of A. salmonicida cells and that the presence of the 

A-layer, which is crucial to the virulence of A. salmonicida, appeared to increase the surface 

hydrophobicity of this pathogen. 

 

1.3.3. Cell surface hydrophobicity 

Hydrophobicity of the cell surface is another important factor in adhesion and biofilm formation. 

This is because hydrophobic interactions of the cell surface tend to increase more with an 

increasing non-polar nature of one or both surfaces involved (Donlan, 2002). Although bacteria 

are negatively charged, they still contain hydrophobic surface components, which influence their 

surface attachment and play a role in pathogenicity and biofilm formation (Donlan, 2002; Dykes 

et al. 2003). Surface hydrophobicity is generally associated with bacterial adhesiveness; it varies 

from organism to organism, and from strain to strain and is influenced by the growth medium, 

bacterial age, and bacterial structure (Basson et al., 2008). Fimbriae and pili contribute to cell 

surface hydrophobicity as these are also known to contain hydrophobic amino acid residues 

(Donlan, 2002). Xu et al. (2009) also reported that bacterial hydrophobic and hydrophilic 

properties are the result of proteins and polysaccharides on bacterial cell surface. According to 

Di Bonaventura et al. (2008), Listeria monocytogenes can adhere to and form biofilms on food-

processing surfaces and this is significantly influenced by temperature and cell surface 

hydrophobicity. Pagedar et al. (2010) and Kouidhi et al. (2010) observed that substrate surface 
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hydrophobicity affected biofilm formation by S. aureus isolates as this was positively correlated 

to biofilm formation; hence hydrophobicity plays a critical role in the adherence of S. aureus to 

various surfaces, such as polystyrene surfaces. However, Auger et al. (2009) evaluated cell 

surface properties and biofilm formation by B. cereus and observed that cell surface 

hydrophobicity, the presence of an S layer, and adhesion on HeLa epithelial cells were not 

positively correlated to biofilm formation.  

Bartkova and Ciznar (1994) evaluated the adherence pattern of non-pilated A. hydrophila 

and observed that hydrophobicity may be the major factor responsible for adherence to epithelial 

cells. Trust et al. (1983) observed differences in cell surface hydrophobicity of fish pathogenic A. 

salmonicida strains, which differed in their ability to produce the A-layer surface protein array. 

The presence of this superficial protein layer, as mentioned previously, is said to be crucial to the 

virulence of this organism and was found to coincide with a drastic increase in cell surface 

hydrophobicity. Bonet et al. (1993) also observed that cell surface properties, such as 

hydrophobicity, are strongly influenced by capsule production; and that increased capsular 

polysaccharide production by A. salmonicida is associated with enhanced cell hydrophilicity. 

Deree et al. (1997) also observed that the cell surface hydrophobicity of A. salmonicida was 

responsible for pathogenicity of fish pathogens as hydrophobic cells adhered to fish surfaces and 

macrophages. Jiwa (1983) investigated hydrophobicity in Aeromonas spp. and observed that 

Aeromonas spp., particularly A. hydrophila and A. sobria, can vary in their hydrophobicity and 

cells may express weak to strong hydrophobic cell surface properties. Scoaris et al. (2008) used 

the bacterial adherence to hydrocarbons test to evaluate the hydrophobicity of Aeromonas spp. 

isolates and its correlation to virulence and observed that most of the virulent strains were highly 
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hydrophilic. Elhariry et al. (2011) observed that Aeromonas strains were hydrophilic and no 

significance differences were observed between hydrophobicity of Aeromonas strains. 

 

1.3.4. Autoaggregation and Coaggregation 

Autoaggregation, the attachment of genetically identical cells to each other, and coaggregation, 

the adhesion of genetically distinct cells to each other, are common features of cells that are able 

to participate in biofilm formation (Basson et al., 2008). Coaggregation appears to be a more 

widespread phenomenon and is an essential feature of many multi-species biofilms. It allows 

secondary colonizer cells in suspension to recognize and attach to cells on the surface of a pre-

existing biofilm, and it also allows these secondary colonizers to coaggregate with each other 

whilst in suspension, followed by adhesion of these flocs to a biofilms.  In both autoaggreagation 

and coaggregation, co-adhesion of the suspended cells to the biofilms is necessary in order for 

the cells to become part of the biofilm (Rickard et al., 2003). A larger portion of biofilm strains 

were able to coaggregate and autoaggregate compared to their planktonic counterparts (Basson et 

al., 2008).  

The processes that allow for autoaggregation and coaggregation are highly specific and 

are typically mediated by interactions between ―adhesin‖ proteins found on one cell and 

complementary saccharide ―receptors‖ borne on another. Typically the ―adhesin‖ and the 

―receptor‖ components would be present on the same cell (Rickard et al., 2003). Many bacterial 

adhesins are lipoproteins, and it is believed that specific receptor-ligand (protein-saccharide or 

protein-protein) interactions mediate the aggregation of bacterial cells allowing for adherence 
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and biofilm formation, since interruption of these interactions by the addition of sugars such as 

lactose and galactose has been observed. Del Re et al. (1998) observed that autoaggregation is an 

important trait contributing to the ability of Bifidobacterium suis to colonize the intestinal tract. 

Del Re et al. (2000) indicated that the ability to autoaggregate and cell surface hydrophobicity 

seem to be independent traits which were both necessary for B. longum adhesion. Rahman et al. 

(2008) observed that autoaggregation of Bifidobacterium was mediated by surface proteins. 

Tomich and Mohr (2003) observed that cable pilus expression played a role in mediating 

Burkholderia cenocepacia cell-cell interaction and thus autoaggegation and adherence. Kos et al. 

(2003) observed that there was a relationship between autoaggregation and adhesive ability of 

Lactobacillus acidophilus M92, which was mediated by the proteinaceous components of the 

cell surface.  Felek et al. (2008) demonstrated that the autotransporter YapC (surface protein) of 

Yersiniapestis, can mediate adhesion to Hep-2 cells, which leads to autoaggregation and biofilm 

formation, all of which play a role in overcoming the host immune system. Iida et al. (2010) 

demonstrated that autoaggregation of enteropathogenic E. coli strains plays a role in adhesion of 

these to Hep-2 cells, and that a bundle-forming pilus is involved in bacteria-bacteria interaction 

and subsequent autoaggregation. 

As previously mentioned, the A-layer is commonly responsible for several cell surfaces 

properties such as autoaggregation in Aeromonas spp. (Bjornsdottir et al., 1992; Fernandez et al., 

1995; Phipps et al., 1983). Ishiguro et al. (1981) observed that attenuated strains of A. 

salmonicida strains not possessing the A-layer did not autoaggregate. Fernandez et al. (1995) 

also reported that characteristics of autoaggregation are highly common among Aeromonas spp. 

and frequently associated with the A-layer+ LPS+ phenotype. Basson et al. (2008) observed that 
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Aeromonas spp. can coaggregate with Flavobacterium johnsoniae-like isolates which are also 

Gram-negative aquatic fish pathogens, although the rates of coaggregation were not high as the 

rate of coaggregation observed with Gram-positive bacteria. The same trend has also been 

observed with Myroides odoratus by Jacobs and Chenia (2009), where the rate of coaggregation 

of Aeromonas spp. with M. odoratus was not as high when compared to the rate of coaggregation 

observed with Gram-positive bacteria. 

 

1.3.5. Extracellular DNA secretion  

Bacterial EPS is generally composed of polysaccharides, proteins, phospholipids, humic 

substances and nucleic acids such extracellular DNA (eDNA) (Behlau and Gilmore, 2008; 

Chmielewski and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay and von Holy, 2006; Hoiby 

et al., 2010; Simões et al., 2010; Vu et al., 2009). It is generally assumed that nucleic acids are 

localized inside living cells and that their primary function is the storage of information. In 

contrast, eDNA is not considered to be a remnant of lysed cells but a major structural component 

of the EPS (Bockelmann et al., 2006). Three hypotheses have been put forward for the origin of 

eDNA, i.e., either from the lysis of subpopulation, release through membrane vesicles from the 

cell and/or it could be secreted actively (Vilain et al., 2009).  

eDNA has been shown to play a major role in the structure of biofilms (Spoering and 

Gilmore, 2006). Biofilms provide a niche for horizontal gene transfer (HGT), as cells are close to 

one another, which allows them to transfer genes located in the eDNA, which may be required 

for antimicrobial resistance, and thus survival of biofilm (Allen-Holmes et al., 2006; Donlan, 
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2002; Finkel and Kolter, 2001; Hannan et al., 2010; Tetz et al., 2009). Evidence that eDNA may 

function as a cell-to-surface adhesin and/or cell-to-cell adhesin in the initial phase of biofilm 

formation was observed in the Gram-negative bacterium, P. aeruginosa (Molin and Tolken-

Nielsen, 2003; Steinberger and Holden, 2005). eDNA has previously been shown to be essential 

for saturated biofilm stability during early stages of biofilm growth (Witchurch et al., 2002). 

Steinberg and Holden (2005) reported that eDNA was present in unsaturated P. aeruginosa 

biofilm and was maximally 50% more abundant than cellular DNA and that it played a role in 

initial attachment and early biofilm formation. Tetz et al. (2009) confirmed the role of eDNA in 

the EPS in the maintenance of biofilms in Gram-positive and Gram-negative bacteria. Vilain et 

al. (2009) also observed that biofilm formation by Bacillus cereus requires DNA as part of the 

EPS. According to Das et al. (2010), DNA released by autolysins acts as an adhesive and 

strengthens the biofilm, and that removal of eDNA from Gram-positive bacteria reduced initial 

adhesion and bacterial aggregation of cells to surfaces.  eDNA has also been shown to be an 

important component of the extracellular matrix of Neisseria meningitidis biofilms, as it 

stabilized biofilm structures in the late stages of meningitidis biofilm formation (Lappann et al., 

2010). Kirkpatrick and Viollier (2010) reported the role of eDNA in Caulobacter crescentus 

biofilm dispersal. In C. crescentus, biofilm formation is facilitated through its asymmetric cell 

division, where one daughter cell becomes a motile flagellated swarmer cell able to colonize new 

surfaces, while the other remains a stalked cell attached to the substrate through an adhesive 

holdfast (Kirkpatrick and Viollier, 2010). When a threshold level of cell death is reached in the 

biofilm, in order to allow cells to escape from the biofilm, the concentration of eDNA from lysed 

cells becomes sufficient to bind newly synthesized holdfasts. This prevents further growth of the 
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biofilm without dispersing the stalked cells from the holdfast and eDNA, therefore, directly 

regulates the homeostasis of the biofilm (Kirkpatrick and Viollier, 2010).  

 

1.3.6. Quorum sensing, different types of signals and QS detection 

Quorum sensing (QS) is a mechanism of cell-to-cell communication via the production of 

compounds called autoinducers. This allows bacteria to sense their own population and as well 

as the population of other bacteria in the environment (Bi et al., 2007). QS regulates functions 

like conjugation, secretion of virulence factors, antibiotic production and biofilm formation (Bi 

et al., 2007). QS appears to regulate biofilm formation in most bacteria including Aeromonas 

spp. (Bi et al., 2007; Garde et al., 2010; Lynch et al., 2002; Ponnusamy et al., 2009).  

N-acyl homoserine lactones (AHLs) are highly conserved, having the same homoserine 

lactone moiety but different acyl side chains and substitutions (carbonyl and hydroxyl) at the C3 

carbon (Ponnusamy et al., 2009). They are also chemically unstable and their production is 

affected by temperature and carbon source (Medina-Martinez et al., 2006). Medina-Martinez et 

al. (2006) observed that carbon sources (glucose) and temperature have an effect on N-butanoyl-

L-homoserine lactone (C4-HSL) produced by A. hydrophila.  

Swift et al. (1997) observed that A. hydrophila and A. salmonicida produce diffusible 

AHLs, with N-butyryl homoserine lactone (BHL) being produced as the main signalling 

molecule by these species. A. hydrophila produces: N-octanoylhomoserine lactone (OHL), N-

dodecanoylhomoserine lactone (d-DHL) and t-DHL N-tetradecanoylhomoserine lactone while A. 

salmonicida produces OHL, d-DHL, t-DHL and N-decanoylhomoserine lactone (DHL) (Cataldi 
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et al., 2007). Aeromonas spp. isolates isolated from patients with malaria were shown to produce 

C4-HSL and C6-HSL as their two major types of AHLs. A. sobria and A. hydrophila isolated 

from patients in Malaysia produced C4-HSL and C6-HSL, respectively (Chan et al., 2010). A. 

hydrophila isolated from faeces, fish and meat was shown to produce C4-HSL, as the major 

AHL, and A. caviae isolated from vegetables was shown to produce 3-oxo-C6-HSL (Chan et al., 

2010; Medina-Martínez et al., 2006). Aeromonas spp. isolates isolated from municipal activated 

sludge produced C4-HSL and C6-HSL (Morgan-Sagastume et al., 2005). 

In A. hydrophila and A. salmonicida, the genes responsible for QS are ahyRI and asaRI 

(Swift et al, 1997). A. hydrophila possesses homologues of the V. fischeriluxI and luxR QS genes 

termed ahyI and ahyR, respectively (Bi et al., 2007; Garde et al., 2010; Ponnusamy et al., 2009). 

When the bacterial population has reached a minimum population size, the appropriate target 

gene is activated via transcriptional activator AhyR, which acts as both negative and positive 

regulator of ahyI (Bi et al., 2007; Garde et al., 2010). 

The autoinducer that is responsible for cell-to-cell communication between both Gram-

negative and Gram-positive bacteria is AI-2 (Kozlova et al., 2008). The gene responsible for 

production of AI-2 in A. hydrophila is luxS, while in Vibrio spp. the receptors of LuxS protein 

are recognized as LuxP, however in A. hydrophila the receptors have not been identified 

(Kozlova et al., 2011). In A. hydrophila, AI-2 together with AI-1 is responsible for production of 

virulence factors (Khajanchi et al., 2010). AI-2 was shown to be responsible for the formation of 

well-defined biofilm structures of A. hydrophila, when compared with an AI-2 mutant strain that 

formed an altered biofilm (Kozlova et al., 2008).   
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Different strategies have been used to identify AHL production, including the use of 

biosensors, thin layer chromatography and/or high performance liquid chromatography (Wang et 

al., 2010). The biosensors that are commonly used are Chromobacterium violaceum CV026 and 

Agrobacterium tumefaciens A136. The former detects short and medium AHLs (C6, C6-3-oxo, 

C8, C8-3-oxo, C4) and the latter detects a broad range of AHLs (all 3-oxo, C6, C8, C10, C12, 

C14, C6-3-hydroxy, C8-3-hydroxy and C10-3-hydroxy) (Steindler and Venturi, 2007). 

Production of AHLs by C. violaceum CV026 is indicated by the production of a purple violacein 

pigment, while in A. tumefaciens A136, it is indicated by the presence of blue colour which 

appears after this bacterium utilizes 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (X-gal). 

The C. violaceum CV026 reporter strain was constructed by inserting a transposon in the cviI 

AHL synthase gene (responsible for production of AHL) and the putative violacein repressor 

locus, so that this strain can only produce violacein against exogenous AHL. The A. tumefaciens 

A136 strain was constructed by introducing mutation in the traI gene (responsible for the 

production of AHL), and the construct contains two plasmids, viz., pCF218 inserted with traR 

expressed from tetR vector promoter, and pCF372 which is transcriptionally linked to lacZ, and 

as a result the reporter can utilize X-gal, and produce a detectable blue color (Steindler and 

Venturi, 2007).    

 

1.3.6.1. QS, expression of virulence factors and biofilm formation in bacteria 

For most pathogens, secretion of virulence factors and initiation of biofilm formation is 

important to cause infections and is regulated by QS. QS is shown to be linked to protease 

production, virulence and biofilm formation in many bacteria including Aeromonas spp. Vivas et 
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al. (2004) reported that the production of proteases, particularly in A. hydrophila, is under the 

control of QS mechanisms. Extracellular enzymes, such as proteases, play a huge role in 

invasion, virulence, and in the establishment of infections by overcoming initial host defences by 

providing nutrients for cell proliferation (Sakai, 1985; Zacaria et al., 2010). Vivas et al. (2004) 

reported that the role of proteases is to provide nutrients by breaking host proteins into small 

molecules, capable of entering the bacterial cell. Moreover, these extracellular proteases 

contribute to the metabolic versatility that allows Aeromonas to persist in the different habitats 

and that facilitate ecological interactions with other organisms (Zacaria et al., 2010). Proteases, 

gelatinases, haemolysins, and elastases have been identified to be essential for virulence and 

pathogenicity in A. hydrophila (Cascon et al., 2000; Poobalane et al., 2008; Vivas et al., 2004). 

Sechi et al. (2002) analysed the production of virulence factors in Aeromonas spp. from 

Sardinian waters and from patients with diarrhoea and found that the cytopathic effect induced 

on Hep-2 cells was due to toxins, haemolysins, proteases and gelatinase produced by Aeromonas 

spp.  The expression of the gelatinase enzyme (GelE) and extracellular proteases has also been 

described to play a role in initial adhesion, colonization of surfaces, as well as in biofilm 

formation by Enterococcus faecalis (Thomas et al., 2009; Van Merode et al., 2006). This 

enzyme has been shown to hydrolyse small, biologically active peptides such as gelatine and 

collagen (Van Merode et al., 2006). Snowden et al. (2006) tested the most prevalent and 

persistent strains of Aeromonas in waterways of the Sunshine Coast region, and found that 

isolates possessed different virulence properties (toxins and proteases), which appeared to be 

associated with the ability to adhere to and translocate to the human gut epithelial cell model. 

Two proteases that have been identified in A. hydrophila include metalloproteases and serine 

proteases (Cascon et al., 2000; Harf-Monteil et al., 2004; Imziln et al., 1998) which are said to 
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be produced under the control of QS mechanism (Vivas et al., 2004). Nitta et al. (2007) also 

purified a 65kDA-serine protein (ASP) produced by A. sobria, which is more virulent than other 

Aeromonas species, and is involved in septic shock and other diseases conditions. Yu et al. 

(2007) characterized extracellular proteases produced by A. hydrophila AH-1 using proteomics, 

and determined that the serine protease was involved in the processing of a toxin, and secreted 

enzymes such as haemolysin and metalloprotease. Khajanchi et al. (2009) also reported the role 

of N-acyl homoserine lactones in quorum sensing, biofilm formation, protease production and 

virulence of clinical isolate A. hydrophila. 

 

1.4. Antimicrobial resistance in biofilms 

In biofilms, bacteria are usually embedded within the EPS produced by them and this matrix 

affects the penetration of an externally applied antimicrobial stress to cells buried in the depth. 

Additionally, most antimicrobial agents target actively growing cells which are found in the 

periphery of the biofilm and the inner inactive cells are not affected by the application of the 

antimicrobial stress (Del Pozo and Patel, 2007). Lewis (2008) also described that cells within 

biofilms prevent an antimicrobial agent from binding to the target, which leads to the increase in 

the minimum inhibitory concentration (MIC). This causes a problem for antimicrobial therapy 

and results in the re-occurrence of disease outbreaks by most pathogens. 
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1.4.1. Minimum inhibitory concentrations (MICs) and minimum bactericidal 

concentrations (MBCs) of bacteria in biofilms  

Clinical biofilm infections are marked by symptoms that typically recur even after repeated 

treatment with the antimicrobial agents. Standard antimicrobial therapy is only able to eliminate 

the planktonic cells, leaving the sessile (surface-attached) forms to spread within the biofilm and 

to continue to disseminate when therapy is terminated (Davey and O‘Toole, 2000). According to 

Dal Sasso et al. (2003) when faced with bacterial infections, antimicrobial therapy is usually 

used in order to reach the minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC). MICs are defined as the lowest concentration of an antimicrobial agent 

that will inhibit visible growth of a microorganism after overnight incubation while MBCs are 

defined as the lowest concentrations that will prevent growth of an organism after subculture to 

an antimicrobial-free media (Andrews, 2001). The MICs and MBCs of antimicrobial agents to 

biofilm-growing bacteria may be up to 100-1000-fold higher compared with planktonic bacteria 

(Hoiby et al., 2010).  

Based on antimicrobial susceptibility studies, planktonic Aeromonas spp. isolates are 

often resistant to β-lactams, tetracycline, quinolones, and second- and third-generation 

cephalosporins (Castro-Escarpulli et al., 2003; Farmer et al., 2006; Jacobs and Chenia, 2007). 

Many strains of Aeromonas spp. display resistance to piperacillin and mezlocillin, while being 

susceptible to gentamicin, ciprofloxacin, chloramphenicol, amikacin, trimethoprim 

sulfamethoxazole, nitrofurantoin, and tobramycin (Castro-Escarpulli et al., 2003; Farmer et al., 

2006; Jacobs and Chenia, 2007).  
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1.4.2. Mechanisms of antimicrobial resistance in biofilms  

In biofilms, bacteria are usually embedded within the EPS produced by them and this matrix 

affects the penetration of an externally applied antimicrobial stress to cells buried in the depth. 

Additionally, most antimicrobial agents target actively growing cells which are found in the 

periphery of the biofilm (Fig. 2) and the inner inactive cells are not affected by the application of 

the antimicrobial stress (Del Pozo and Patel, 2007). Lewis (2008) also described that cells within 

biofilms prevent an antimicrobial agent from binding to the target, which leads to the increase in 

the MIC. Another problem is that the increased bacterial density within biofilm microcolonies 

results in waste accumulation (Fig. 2) and a distorted microenvironment, which may have an 

effect on antimicrobial agent action deep within the biofilm (Del Pozo and Patel, 2007). One 

mechanism for multidrug tolerance of biofilms involves the production of persister cells (Fig. 2). 

These are produced in small numbers and exhibit multidrug tolerance (Lewis, 2008). The 

number of persisters in a growing population of bacteria rises at mid-log phase and reaches a 

maximum of approximately 1% at stationary state (Lewis, 2008). Persisters are not mutants but 

rather phenotypic variants of the wild-type that upon re-inoculation produce a culture with 

similar levels of tolerant (Shah et al., 2006). Other mechanisms of resistance (Fig. 2) that are 

considered likely when bacteria assume the biofilm lifestyle may also include phenotypic 

changes in bacteria that result in resistance while bacteria are within the biofilm environment, 

including inactivation of antimicrobial agents by extracellular polymers or modifying enzymes 

(Davey and O‘Toole, 2000; Hoiby, 2010) and regulated efflux pumps (Hoiby, et al., 2010).  
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Figure 1.2: Some proposed-biofilm associated resistance mechanisms: (1) Antimicrobial agents 
may fail to penetrate beyond the surface layers of the biofilm. Outer layers of biofilm cells 
absorb damage. Antimicrobial agent‘s action may be impaired in areas of waste accumulation or 

altered environment (pH, pCO2, pO2, etc). (2) Antimicrobial agents may be trapped and 
destroyed by enzymes in the biofilm matrix. (3) Altered growth rate inside the biofilm. 

Antimicrobial agents may not be active against non-growing microorganisms (persister cells). (4) 
Expression of biofilm-specific resistance genes (e.g., efflux pumps). (5) Stress response to 
hostile environmental conditions leading to an over-expression of antimicrobial agent-destroying 

enzymes (Del Pozo and Patel, 2007). 
 

 

  1.4.2.1. Efflux pumps systems and biofilm formation  

Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired 

antimicrobial resistance of bacterial pathogens (Martinez et al., 2009) and pose a huge threat for 
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antimicrobial therapy and human health. Multidrug efflux pumps are transport proteins that 

extrude chemically unrelated antimicrobial agents from the cell into the environment (Nelson, 

2002; Mah and O‘Toole, 2001). They act like bilge pumps that decrease the intracellular 

concentration of the drug to sub-toxic levels (Borges-Walmsley et al., 2003). The genes that 

code for these multidrug efflux pumps are present in the chromosomes of all living organisms 

but can also be found on plasmids (Piddock, 2006a). The genes are highly conserved (members 

of the same species contain the same efflux pumps) and their expression is tightly regulated 

(Martinez et al., 2009). Nelson (2002) reported that efflux proteins can be specific, facilitating 

the efflux of only one compound or a class of compounds or they can be non-specific exhibiting 

broad specificity for chemical compounds that are structurally unrelated. Martinez et al. (2009) 

reported that in clinical environments, multidrug efflux pumps are involved in resistance to 

antimicrobial agents present on mucosal surfaces and this resistance allows bacteria to grow, 

form biofilms and colonize these surfaces (Fig. 3). Furthermore, they could efflux virulence 

factors, and are also involved in the QS-regulated expression of virulence factors (Martinez et al. 

2009). All of these are important traits required for the survival of pathogenic and virulent 

bacteria in clinical environments. In non-clinical environments (Fig. 3), they may allow for 

heavy-metal resistance, resistance to organic solvents and in resistance to antimicrobial agents 

produced by plants, and this may also have relevant outcomes for the environment (Fernandes et 

al., 2003; Martinez et al. 2009). 
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Figure 1.3: Functional role of multidrug efflux pumps in clinical and nonclinical environments 

(Martinez et al., 2009). 

 

 

1.4.2.2. Classes and organization of efflux pump systems 

Multidrug efflux pumps are subdivided into different families (Fig. 4), based upon their 

molecular architecture, mechanisms of action, energization requirements and biochemical 

constitution (Nelson, 2002). In most bacteria, the extrusion of drugs and other cytotoxic 

compounds is conferred by pumps in which the drug efflux process is coupled to the influx of a 

proton [H+] (Borges-Walmsley et al., 2003; Martinez et al., 2009). These are called proton-

driven antiporters, and are divided into a number of families namely: the MF (major facilitator), 

SMR (small multidrug resistance) family, and the RND (resistance-nodulation-division) families. 
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Figure 1.4: Diagrammatic representation of the five families of efflux pumps (Martinez et al., 

2009). 

   

 

In Gram-negative bacteria the expression of efflux pumps is often induced through sub-

lethal exposure of bacteria to lethal agents (Gilbert et al., 2002). It is reported that active efflux 

usually confers a moderate level of resistance, causing a 2-fold increase in the MIC upon the 

expression of these pumps (Piddock, 2006b; Van Bambeke et al., 2006). A key characteristic of 

the efflux pumps is the variety of molecules they can transport, which in turn relates to their poor 

substrate specificity (Van Bambeke et al., 2000). Piddock (2006a) also reported that a single 

organism can possess multiple multidrug efflux pumps. Moreover, the pumps may also transport 

different classes of antimicrobial agents (Fig. 5), not within the same class (Van Bambeke et al., 

2000). Multidrug efflux pumps can extrude compounds from antimicrobial agents, to 

disinfectants, dyes, and detergents, and the substrates for each pump are said to be different 
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depending on the pump and on the bacterial species (Piddock, 2006a). The drug substrate profile 

of bacteria that overexpress an efflux pump generally includes structurally diverse antimicrobial 

agents such as chloramphenicol, quinolones (nalidixic acids, ciprofloxacin, norfloxacin), 

tetracyclines, aminoglycosides, β-lactams, dyes such as ethidium bromide, detergents (sodium 

dodecyl sulphate) and biocides such triclosan (Piddock, 2006a). Although the specific substrates 

that are transported by different efflux pump systems are difficult to predict, it has been shown 

that most transporters recognize molecules with a polar, slightly charged head associated with a 

hydrophobic domain (Van Bambeke et al., 2000). Van Bambeke et al. (2000) reported that a 

given antimicrobial agent can be a substrate for different types of pumps, so that it may be 

expelled by different bacteria, such that no common pump been identified so far. The modulation 

of the activity of a given transporter may be compensated for by a modulation in the opposite 

direction of another transporter, with, therefore, no or little change in the expulsion of the drug 

and thus giving false results that the drug is not transported (Piddock, 2006a; Van Bambeke et 

al., 2000). 
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Figure 1.5: Different substrates for multidrug efflux pumps (Lynch, 2006). Abbreviations 

employed: OM: outer membrane; P: periplasm; CM: cytoplasmic membrane; MFP: membrane 

fusion protein; TETs: tetracyclines; CAT: chloramphenicol; FQs: fluoroquinolones; CDDs: 

cationic dyes and detergents; AMGs: aminoglycosides; MACs: macrolides; BLAs: β-lactams. 

 

 

1.4.2.3. Prevalence of RND efflux pumps in Gram-negative bacteria 

A wide variety of efflux pump systems have been identified in many bacteria, including 

Aeromonas spp. isolates, causing multidrug resistance. Bornet et al. (2003) reported on the 

expression of a multidrug efflux pump (AcrA) responsible for resistance to β-lactams, 

quinolones, tetracycline and chloramphenicol in Enterobacter aerogenes due to the repeated use 

of imipenem to treat patients infected by E. aerogenes. Efflux pump genes of the RND family 

were also shown to be present in the genome of Burkholderia cenocepacia and Burkholderia 

pseudomallei isolates (Guglierame et al., 2006; Kumar et al., 2008). Sanchez-Cespedes and Vila 
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(2007) reported on the presence of the acrA and acrB genes of Citrobacter freundii which were 

shown to be similar to those described in E. coli, and their overexpression was found play an 

important role in the resistance of C. freundii to quinolones. Huang et al. (2008) also reported on 

the increased expression of the AdeABC efflux pump, which caused decreased susceptibility to 

carbapenems among Acinetobacter baumannii isolates in a Chinese hospital.  

A multi-drug efflux pump, AheABC, belonging to the RND family was observed in 

Aeromonas spp. isolates specifically, A. hydrophila and A. salmonicida (Giraud et al., 2004; 

Hernould et al., 2008). This pump is involved in resistance to the antimicrobial agents 

erythromycin, trimethoprim, fusidic acid, rifampicin as well as to quinolones (nalidixic acid and 

oxolinic acid) and fluoroquinolones (ofloxacin and ciprofloxacin). 

 

1.5. Biofilm Control Strategies  

Diverse strategies are being applied to control bacterial biofilms due to their increased resistance 

to antimicrobial agents, including the use of quorum-quenching enzymes, phytochemicals, 

bacteriophages, nanoparticles, varying concentrations of antimicrobial agents, efflux pump 

inhibition, matrix-degrading enzymes, quorum-sensing inhibitors (Francolini and Donelli, 2010; 

Xiong and Liu, 2010).   

 

1.5.1. Targeting biofilms with antimicrobial agents   

Antimicrobial agents are designed to target different components of the cell structure including 

cell wall, cell membrane and intracellular organelles (Cloete, 2003), efflux pump systems (Van 
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Bambeke et al., 2000) as well as QS signals (Rasmussen and Givskov, 2006). Many studies have 

focused on biofilm formation due to their increased resistance to antimicrobials which causes 

problems in treatment of biofilm-associated diseases (Hoiby et al., 2009). Treating diseases of 

cells living within biofilm does not lead to the complete elimination of the biofilms but only cells 

on the surface may be eliminated leaving cells in the middle to gain resistance against these 

antimicrobial agents. These cells may either need a longer exposure time to the antimicrobial 

agents or higher concentrations of antimicrobial agents to be effective in removing them (Cogan, 

2006). Targeting the attachment of cells to the surface where the cells are still accessible to 

elimination by antimicrobial agents is a good strategy because once cells have already been 

attached to the surface; it is not easy to eliminate them. The attached cells display reduced 

susceptibility to antimicrobial agents due to increased production of EPS, reduction of the 

growth rate as a result of accumulation of waste products and other attachment-specific 

phenotypes that are observed when cells reside within biofilms (Takahashi et al., 2007). In the 

case of pathogens, once the cells have already adhered to the host tissue, it not easy to eliminate 

them because the infection process has already been triggered (Takahashi et al., 2007).  

Another possibility is to use a combination of two or more drugs that have different 

modes of action to target different sites, but this has been proven to have a slower mechanism of 

action compared to the single drug therapies (Quave et al., 2008). Because cells within biofilm 

demonstrate different resistance mechanisms, the additive effect of two or more drugs has been 

proposed to be effective against pathogens (Tabak et al., 2009). Tabak et al. (2009) observed that 

biofilms of Salmonella enterica serovar Typhimurium were more susceptible to double treatment 

with ciprofloxacin and triclosan because the double attack by these antimicrobials is beyond the 

capability of their defence system. In addition, triclosan weakens the cell membrane and allows 
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entry of ciprofloxacin into the cell and act on it target site. The weakening of the cell membrane 

by triclosan is caused by reduction of Van der Waal‘s forces/interactions between the adjacent 

phospholipid molecules of the cell membrane. Exposure of cells to triclosan also increases 

mutations of genes required for the formation of membrane structure of cells. This demonstrates 

that synergistic action of two or more antimicrobials is more effective compared to a single drug 

therapy (Tabak et al., 2009). 

Lewis (2007) observed that fluoroquinolone agents are effective against biofilm 

formation but once the biofilm community is matured, the antimicrobial agent is restricted in it 

ability to diffuse through the biofilm and reach its target site. Quinolones are a large group of 

excellent, synthetic antimicrobial agents that are known to have a broad spectrum of activity 

against a wide variety of infections (Chen and Lo, 2003). They are also used as drugs of choice 

for the treatment of Aeromonas infections in humans and in the treatment of bacterial fish 

diseases (Alcaide et al., 2010). These drugs can persist in the environment for a long time, 

consequently leading to the emergence of resistant strains (Alcaide et al., 2010). Their 

mechanism of action involves bacterial DNA damage which leads to defects in negative 

supercoiling and cell death, and this is linked to the inhibition of DNA gyrase activity, which 

plays a role in DNA packaging, replication and transcription as well as topoisomerase IV activity 

which mediates the relaxation of DNA duplex and unlinking of daughter chromosomes following 

replication (Martinez et al., 2006).  

In addition, some cells within biofilms possess the enzyme β-lactamase that allows them 

to degrade antimicrobial agents containing the β-lactam ring reducing their effectiveness (Lewis, 

2007). Some antimicrobial agents are effective in preventing the attachment of biofilms on the 
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surface while others can cause detachment from biofilm that have already been attached to the 

surface. Tetracycline and monocycline were able to inhibit the early phase of biofilm growth as 

they inhibit attachment of Actinobacillus actinomycetemcomitans to the surface preventing 

formation of biofilms (Takahashi et al., 2007). 

By understanding bacterial cell physiology, antimicrobial agents have been designed to 

target these appendages, which indirectly interfere with biofilm formation stages as well as the 

maintenance of the mature biofilm. Braga et al. (2000) observed a reduction in adhesiveness of 

pathogenic E. coli strains to human epithelial cells. This reduction was correlated with the 

filamentation of E. coli cells when exposed to cefodizime because it binds to penicillin binding 

protein 3 (PBP3) that plays a very important role in adhesion to the epithelial cells. The binding 

of cefodizime to PBP3 exposed on the surface prevented surrounding E. coli cells from 

recognising PBP3, which is crucial for biofilm formation thus interfering with a pathogenesis 

process. An initial stage of biofilm formation by these cells is also prevented due to inhibition of 

adhesion to epithelial cells by cefodizime. Cefodizime reduced hydrophobicity, which is required 

for biofilm formation and fimbriation which prevents fimbriated cells to bind into non-fimbriated 

cells and form biofilms in a process called autogreggation. Exposure of cells to cefodizime 

reduced motility which is important for spreading of the infection from one point into another 

and if this process is prevented biofilm formation can be controlled (Braga et al., 2000). 

Vidya et al. (2005) observed that exposure of E. coli to gentamicin, ceftazidime, 

ampicillin, ciprofloxacin and co-trimoxazole resulted in varying levels of adhesion. Co-

trimoxazole caused the greatest suppression of adhesion compared to other tested antimicrobial 

agents followed by ceftazidime while ciprofloxacin, gentamicin and ampicillin cause 



53 

 

filamentation of E. coli cells. Adherence inhibition of these tested antimicrobial agents were 

dose-dependent indicating the importance of concentration of antimicrobial agents in treatment 

of diseases caused by bacterial pathogens. Inhibition of adherence during infection is important 

because adhesion to the surface is the first step that leads to the colonization and initiation of the 

infection process (Vidya et al., 2005). Ciprofloxacin and gentamicin reduced biofilm formation 

through the reduction of exopoplysaccharide production in S. enterica serovar Typhimurium 

which is required for the maintenance of the 3-D structure of biofilm by serving as the protective 

layer of cells within biofilms (Majtan et al., 2007). Thus antimicrobial agents can have different 

modes of action depending on the bacterial species or genera they act on as differences are 

observed with E. coli and S. enterica serovar Typhimurium where there was reduction of 

adherence for E. coli and thinning of EPS for S. enterica serovar Typhimurium following 

ciprofloxacin and gentamicin exposures (Vidya et al., 2005; Majtan et al., 2007). 

 

1.5.1.1. Effect of varying concentrations of diverse antimicrobial 

agents on planktonic and biofilm cells 

The effective therapeutic result of antimicrobial agents is best when the concentration is above 

the MIC. However, after a certain period of time following dosing, antimicrobial agent 

concentrations within many tissues become lower than the MIC (Pompillo et al., 2010) and these 

are called sub-inhibitory concentrations (sub-MIC). So depending on the type of the 

antimicrobial agent used or their modes of action, sub-MIC exposure can either eliminate or 

reduce the ability of pathogens to form biofilms by interfering with different stages of biofilm 

formation resulting in the elimination of these pathogens. When cells are exposed to 
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antimicrobial agents especially at sub-MIC levels, regardless of whether they are planktonic or 

biofilm cells, there are morphological changes that occur in response to the exposure to the 

antimicrobials (Dynes et al., 2009). In planktonic cells, morphological changes include changes 

in cell shape, width and surface composition. They become longer; reduce their width and 

change their surface composition by changing the chemical composition on their surface. These 

changes allow the cells to adapt and survive in the presence of antimicrobial agents. Changes in 

surface composition that mostly occur in the planktonic cells is the increase in lipid deposition 

on the cell membrane which is thought to be important for the maintenance of the cell membrane 

integrity during exposure to antimicrobial agents as well as preventing leakage of the 

intracellular components. Dynes et al. (2009) observed that where there was a greater lipid 

content in Pseudomonas fluorescens cells in response to exposure to chlorhexidine, triclosan and 

benzalkonium chloride (Dynes et al., 2009). Microorganisms often grow in the presence of sub-

MICs, which although not able to inactivate the microorganism, are potentially capable of 

altering  the chemical and physical cell-surface characteristics and consequently the functionality 

and expression of some virulence properties such as adhesion, biofilm formation, hydrophobicity 

and motility (Pompillo et al., 2010). Pompillo et al. (2010) observed that sub-concentrations of 

moxifloxacin decreased adhesion and biofilm formation of Stenotrophomonas maltophila. Braga 

and Piatti (1993) observed that sub-MIC rufloxacin concentrations played a role in decreasing 

pathogen-host interactions. Matjan et al. (2007) also observed that sub-MICs of antimicrobial 

agents affected biofilm formation of clinical strains of Salmonella enterica serovar 

Typhimurium. For some microorganisms being exposed to sub-MIC of antimicrobial agents can 

stimulate biofilm formation because they do not kill cells within biofilms but only inhibit their 

growth, this has been observed for which cells exposed to cefalexin (Haddadin et al., 2009). 
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1.5.2. Efflux Pump Inhibition  

Efflux pump inhibitors (EPIs) have been used to inhibit different efflux pump systems used by 

diverse bacterial species thus preventing elimination of antimicrobial agents within the cells. It is 

thought that by inhibiting these efflux pump systems, the antimicrobial agent will remain within 

the cells to act on their targets sites thus eliminating or inhibiting cell growth causing reduction 

of these biofilms (Hirakata et al., 2009). Efflux pump inhibition represents one of the most 

promising strategies to control bacterial biofilms because cells in biofilm over-express these 

efflux pump systems compared to planktonic cells. This has been observed in E. coli and 

Klebsiella spp. strains during biofilm phase of growth, where aaeX and yqgA which encodes the 

membrane protein component of the AaeAB efflux pump and a putative transport protein 

required for the efflux pump mechanism, respectively, were up-regulated in biofilms (Kvist et 

al., 2008). 

Since there are different efflux pump systems, different inhibitors inhibit specific efflux 

pumps depending on their spectrum of activity (Kvist et al., 2008). There are six different 

mechanisms of efflux pump inhibition that have been described (Poole and Lomovskaya, 2006); 

the first mechanism is through targeting the substrate binding sites of the efflux pump system. 

EPIs are designed to competitively inhibit the binding of the drug into their site causing the drug 

to remain within the cell. The second mechanism is inhibition of the pump modulation sites 

where the inhibitors act through allosteric inhibition by binding to sites other than the binding 

site and alter the activity of the efflux pump system. The third mechanism is uncoupling of drug 

efflux from proton influx. This occurs in secondary transporters that require energy to pump the 

drug out and by uncoupling proton influx and drug efflux, thus the efflux pump can be inhibited. 



56 

 

Protein-protein interaction is required for the assembly of any multi-components proteins in the 

cell including the efflux pump systems, thus by inhibiting the interaction between different 

components of the efflux pump, drug efflux can be prevented because the protein will be missing 

some of it vital parts. Inhibition of the exit pore is another mechanism of efflux pump inhibition 

and represents one of the components of efflux pump system in Gram-negative bacteria. This 

component adheres to the outer membrane of the cell wall while other components are required 

to serve as the passage, which connects the inner membrane and the outer membrane. The last 

component adheres to the inner membrane and stabilizes it (Poole and Lomovskaya, 2006). The 

TolC component is the exit pore that opens in the periplasm for elimination of the antimicrobial 

agent. Opening of TolC components can be inhibited by antimicrobial agents, e.g., divalent and 

trivalent cations, thus inhibiting the efflux pump systems in microorganisms. The last mechanism 

is through the inhibition of the efflux pump gene expression because efflux pump systems are 

encoded chromosomally and their expression is controlled by regulatory proteins that regulate if 

they are expressed or not and to what extent (Poole and Lomovskaya, 2006). 

There are different compounds that are potential EPIs. The first class are the tetracycline 

analogues. These analogues are able to bind into efflux systems that are responsible for 

elimination of tetracycline antibiotics. The most effective inhibition by this class is obtained 

through 6-(alkylthio)-methyl-doxycycline compounds. These compounds are most potent 

inhibitors of both class A and B efflux pumps that are abundant in E. coli and at the same time 

they are less effective on class K and L efflux systems which are found in Gram-positive bacteria 

(Van Bambeke et al., 2006). Aminoglycoside analogues provide another class of EPIs but they 

have been proven to be poor inhibitors due their ability to being highly hydrophilic in nature 
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(Van Bambeke et al., 2006). However, aminoglycosides have been used as inhibitors as they are 

able to reduce MICs of antimicrobial agents from one to four-fold decrease when tested in 

Haemophilus influenzae. They are also able to increase susceptibility of the wild type strain to 

different antimicrobial agents (Van Bambeke et al., 2006). Fluoroquinolone analogues are also 

commonly used EPIs that are effective in inhibiting efflux pumps in both Gram-positive and 

Gram-negative bacteria (Van Bambeke et al., 2006). The use of fluoroquinolones analogues was 

able to restore macrolide activity in streptococci that were over-expressing the Mef pumps. 

Piperazinyl-linked fluoroquinolone displayed potent antibacterial activity against Staphylococcus 

aureus, some of which were resistant to antimicrobial agents due to the presence of the NorA 

pumps (Van Bambeke et al., 2006). Indioles, ureas and aromatic amides all belong to another 

class of EPIs. These inhibitors have a broad structural diversity and are able to inhibit multiple 

efflux pump systems demonstrating a low structural specificity for the pumps. Such inhibitors 

can be very useful for multiple efflux pump systems because they have a broad spectrum of 

activity. Other efflux pump inhibitors include piperadine-carboxylic acid derivatives, 

alkaylaaminoquinole, thioalkoxyquinolone, alkoxyquinolone and peptidometrics. Efflux pump 

inhibition using the above mentioned inhibitors and other additional inhibitors such as 

phenylalanine arginine β-naphthylamide (PAβN), 1-(1-naphthylmethyl)-piperazine (NMP) and 

carbonyl cyanide 3-chlorophenylhydrazone (CCCP) are promising candidates to be used in 

managing bacterial associated diseases (Van Bambeke et al., 2006).  

When an EPI is added together with other antimicrobial compounds, this causes a 

reduction in the MIC values of different antimicrobial agents because cells become more 

susceptible to these antimicrobials. Bina et al. (2009) observed that the MIC of different 
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antimicrobials compounds was reduced in the presence of two EPIs (PAβN and NMP). Both 

PAβN and NMP inhibit RND pumps that are abundant in Gram-negative bacteria including 

Vibrio cholerae, in which the multiple RND pumps, not only pump out antimicrobial agents but 

also modulate the expression of virulence genes (Bina et al., 2009). Because RND pumps are 

found in cell membrane and are not regulatory proteins, they modulate gene expression through 

the efflux of QS molecules that reach the recipient cells and induce expression of these virulence 

genes (Bina et al., 2009). PAβN and NMP inhibit the RND pumps by inhibiting RND-dependent 

gene expression resulting in reduction of MIC of the antimicrobial agents. This is important 

since the adhesion factor and virulence factors required for biofilm formation and virulence in V. 

cholerae are dependent on these genes being functional. The inhibition of the efflux pumps 

results in the reduction of virulence of V. cholerae strains due to the inhibition of adhesion to the 

host epithelial cells thus interfering with biofilm formation. This is why EPIs have the potential 

to be used in clinical drug therapy together with the antimicrobial agents (Bina et al., 2009). 

Hirakata et al. (2009) observed that P. aeruginosa invasiveness was reduced upon 

exposure to PAβN, which inhibits the MexAB-OprM efflux pump system in P. aeruginosa 

strains and also damages the outer membrane of Gram-negative organisms. This suggests that the 

inhibition of these efflux pump systems prevents the elimination of an antimicrobial agent 

allowing the antimicrobial agent to act on its target site (Hirakata et al., 2009). Efflux pump 

systems that are dependent on proton motive force (PMF), MexAB-OprM, and others largely 

contribute to the efflux of antimicrobial agents and other compounds. Inhibition of these efflux 

pump systems interferes with biofilm formation by causing the accumulation of autoinducers 

within the cell (Ikonomidis et al., 2008). Ikonomidis et al. (2008) observed that the addition of 
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the PMF inhibitor CCCP at the beginning of biofilm growth resulted in reduced growth 

compared to the untreated cells. This is because CCCP interferes with the PMF-dependent 

transporters that are abundant in bacterial cells. It was also observed that a lower concentration 

of CCCP did not have much effect on biofilm formation of P. aeruginosa. This organism might 

require higher concentrations of efflux inhibitors or might be using other types of efflux pump 

systems that are not entirely inhibited by CCCP (Ikonomidis et al., 2008). The addition of 

different EPIs, PAβN and NMP, resulted in the inhibition of biofilm formation by P. putida and 

Staphylococcus aureus (Kvist et al., 2008). Biofilm formation of uropathogenic Klebsiella spp. 

isolates and E. coli was also reduced by the addition of the EPI thioridazine, which inhibits the 

MFS pump. Multiple EPIs may be used to inhibit different efflux pumps because the organism 

might possess different kinds of efflux pumps that may contribute to resistance against different 

types of antimicrobial agents. That is why a combination of two or more types of EPIs have been 

used to synergistically act together in inhibiting different kinds of efflux pumps found in 

different bacterial species. The combination of thioridazine and PAβN resulted in an even greater 

effect on Klebsiella spp. and E. coli biofilm inhibition compared to the individual EPIs because 

these individual bacterial strains possess more than one type of efflux pump system (Kvist et al., 

2008). Based on the proteomic and transcriptomic studies of F. johnsoniae-like isolates, an 

upregulation of RND-, MATE-, MFS-efflux pump proteins was observed during biofilm phase 

of growth (Flemming, 2010) indicating the ability of these strains to be resistant to multiple 

antimicrobial agents in the biofilm stage of growth compared to planktonic cells (Flemming, 

2010). 
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The efflux pump resistance mechanism is one of multiple resistance mechanisms 

observed in bacterial species and inhibition of these efflux pump systems does not necessarily 

mean that the bacteria will become completely susceptible to a range of antimicrobial agents. 

This was demonstrated in a multidrug-resistant P. aeruginosa isolate that produces β-lactamase. 

In this organism, inhibition of the MexAB-OprM efflux pump did not reduce or hinder resistance 

of P. aeruginosa to β-lactams since they are able to degrade and inactivate β-lactams (Poole and 

Lomovskaya, 2006). This means that efflux pump inhibition alone is not sufficient to reduce 

resistance to antimicrobial agents but can be used in combination with other antimicrobial 

agents. Since these efflux pumps are responsible for waste management in cells, it is possible 

that the cell can have multiple efflux pump systems to eliminate different waste and 

antimicrobial compounds, thus different inhibitors can be used at the same time or inhibitors 

with a broad spectrum of activity can be used to target these different pump systems. This is very 

useful when dealing with multidrug resistance organisms such as P. aeruginosa. Because EPIs 

can be used together with antimicrobial agents, these agents must not be cell wall-acting 

antimicrobials because they will tend to compete with the EPIs resulting in the reduction of their 

effectiveness (Poole and Lomovskaya, 2006). 

 

1.5.3. Quorum sensing inhibition as strategy to control biofilm formation  

The interference of bacterial QS is acknowledged to attenuate virulence and is considered to be a 

potential new therapy to treat bacterial infections caused by pathogenic bacteria (Rasch et al., 

2005; Truchado et al., 2009). If cells cannot efficiently communicate, then they cannot form 

biofilms, which allows drugs to easily attack cells because they will be existing as planktonic 
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cells. Thus, QS inhibition has been proposed to be a promising way of managing bacterial 

infections (Ni et al., 2009). There are a variety of mechanisms associated with the inhibition of 

bacterial QS (Fig. 6), viz., (1) inhibition of autoinducer synthesis, (2) autoinducer receptor 

antagonism, (3) inhibition of targets downstream of receptor binding, (4) sequestration of 

autoinducers, (5) degradation of autoinducers, (6) inhibition of autoinducer transport, and (7) 

antibodies that ‗‗cover‘‘ and therefore, block autoinducer receptors (Ni et al., 2009).  

 

 

Figure 1.6: Different mechanisms of quorum sensing inhibition in microorganisms (Boyer and 

Wisniewski-Dye, 2009). 
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Enzyme molecules produced by different bacterial species have also been found to be 

effective as quorum sensing inhibitors (QSIs). AHL-lactonases are a group of enzymes produced 

by different bacterial species and have a quorum-quenching activity. This is because they 

hydrolyse the homoserine lactone ring of AHL molecules making them unavailable to act on 

recipient cells. Long chain AHL signals can also be degraded with paraoxonase enzymes that are 

found in mammalian cells as part of the defence system of the mammalian tissue. They silence 

bacterial communication due to the hydrolysis of homoserine lactone rings (Dong et al., 2007). 

AHL-acylase is another type of enzyme produced by species like P. aeruginosa and has the 

ability to silence communication between bacterial species due to it ability to hydrolyse the 

amide bond producing corresponding fatty acids and homoserine lactone (Dong et al., 2007).  

QSIs include the molecules that structurally mimic QS signals such as halogenated 

furanones, which have a similar structure to AHLs. Furanone, first isolated from Delisea pulcra, 

was observed to be effective against Gram-negative bacteria, with susceptibility of the isolates to 

antimicrobial agents being increased in the presence of furanones. Furanones inhibit QS by 

interfering with AI-2 pathways but the mechanism of action of these furanone molecules is still 

unclear (Vestby et al., 2010). There are different types of furanones that have been used for QS 

inhibition but the brominated furanones have been predominately used due to their ability to 

strongly inhibit communication because bacterial species thus inhibiting biofilm formation. 

These molecules competitively prevent binding of the QS molecules to the receptor or decrease 

the receptor concentration thus QS molecules cannot initiate the transduction pathway that leads 

to the response (Dong et al., 2007). Beside inhibition of QS through competitive competition, 

furanones are known to be able to cause protein degradation of the LuxR protein, which is 
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required for the expression of genes required for QS. The degradation of LuxR causes reduced 

expression of the QS molecules resulting in reduced communication between the cells and 

inhibits the multi-cellular behaviour of microorganisms (Manefield et al., 2002).  

The second group are the enzymes inhibitors that interfere with the enzyme activities that 

are required for QS. These enzymes inhibitors include triclosan that inhibits enoyl-ACP 

reductase activity whose product is an essential intermediate for AHL biosynthesis and closantel, 

which is a potent inhibitor of histidine kinase sensor of the two-component system that is crucial 

for QS in different bacterial species (Dong et al., 2007).  

In the study performed by Kai et al. (2009), exposure of cells to sub-MIC of azithromycin 

resulted in a small down-regulation of AHL synthesis enzymes that resulted in a larger effect on 

AHL production thus interfering with bacterial communication. This was achieved by inhibition 

of intracellular S-adenosylmethionine, which decreases AHL production by transcriptional 

regulators (LasR and RHIR) during exposure of P. aeruginosa to azithromycin (Kai et al., 2009). 

Beside azithromycin, different QSIs have been used to inhibit bacterial QS thus controlling 

biofilm formation. These QSIs have different mechanisms of action causing variations in the 

level of QS inhibition. Cinnamaldehyde acts by competitively binding to the QS receptor sites 

and prevents the binding of the QS molecule only when an organism is using short chain QS 

molecules but fails to cause inhibition of long chain QS molecules (Brackman et al., 2009). Due 

to the low effectiveness of cinnamaldehyde, it can be used in combination with other 

antimicrobial agents to increase it effectiveness. This was observed in biofilms of Salmonella 

enterica serovar Typhimurium where the combination of cinnamaldehyde and thymol greatly 

reduced biofilm formation. Similar results were observed with biofilms of Staphylococcus, 
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Micrococcus, Bacillus and Enterobacter spp., where the combination of cinnamaldehyde and 

eugenol was effective against biofilms of these isolates as well as preventing biofilm formation 

by these isolates. However, cinnamaldehyde was observed to be less effective against already 

formed biofilms compared to planktonic cells (Zhou et al., 2006). Ponnusamy et al. (2009) 

discovered the potential use of vanillin as a quorum sensing inhibitor for A. hydrophila biofilm 

formation, as it has been observed to inhibit short-chain (C4-) and long-chain (3-oxo-C8-) AHL 

molecules.  

Microorganisms do not only use the AHLs as their QS molecules but also use autoinducer-

2 (AI-2). Molecules such as S-adenosylhomocysteine, sinefungin and butyryl-SAM have been 

used for QS inhibition because they are S-adenosylmethionine (SAM) analogues that interfere 

with QS signalling by inhibiting the synthesis of SAM, a QS intermediate (Schauder et al., 

2001).  

 

1.5.4. Use of DNase matrix-dispersing enzymes 

The EPS is the outermost layer of the biofilm and consists of a wide variety of polysaccharides, 

proteins, glycoproteins, glycolipids and often, large amounts of extracellular DNA (eDNA) 

(Kaplan, 2009). eDNA has been identified as an important stabilizing factor in biofilms, although 

it does play very different structural roles in biofilms formed by different organisms. 

Tetz and Tetz (2010) observed the effects of eDNA destruction by DNase I on the 

characteristics of bacterial biofilms and found that DNase I (5.0 µg/ml) was effective on bacterial 

biofilms causing bacterial biofilms to be less tolerant to antimicrobial agents. However, the role 
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of eDNA in early stages of biofilm formation is poorly understood (Tetz and Tetz, 2010). DNase 

I was effective against both Gram-negative (P. aeruginosa, H. influenzae, etc.) and Gram-

positive (Staphylococcus epidermidis, Streptococcus intermedius, etc.) bacteria indicating the 

broad-spectrum of activity and can potentially be used for therapeutic purposes to eliminate 

bacterial biofilms. When DNase I was added at the time of inoculation, it resulted in up to 99% 

reduction of biofilm formation, as observed after crystal violet staining. The action of DNase I 

on biofilms depends on its concentration and the type of species that are exposed to the enzymes. 

Inhibition of biofilms by DNase I is not through inhibition of cell growth but one possible 

explanation is the degradation of cell surface nucleic acid that function as adhesins, since 

inhibiting adhesion to the surface results in prevention of biofilm formation. Supporting this 

hypothesis of using eDNA as an adhesin is the fact that when exogenous DNA was added to the 

culture medium of P. aeruginosa, it resulted in increased adhesion to the surface. Another role of 

eDNA within biofilm matrix may be through cell-to-cell interactions that causes the cells to form 

aggregates resulting in biofilm formation. Less coaggregated cells of P. aeruginosa and S. 

aureus were observed when these cells were exposed to DNase I, which is correlated with 

reduction in biofilm formation (Kaplan, 2009). 

DNase I can also be effective on pre-formed biofilms (12-60 hour old), reducing biofilms 

of different bacterial strains. However, less effectiveness was observed for established (80 hour 

old) biofilms (Kaplan, 2009). The effectiveness of DNase I in different microorganisms is 

affected by other factors such as the type of isolate exposed to the enzyme, the media used to 

grow the bacterial isolates, the origin of the enzymes and other cell characteristics (Kaplan, 

2009). Due to increased resistance of the cells within biofilms, effectiveness of the DNase I on 
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pre-formed biofilms is thus important. This was observed with S. epidermidis where detachment 

was observed for 6 hour old biofilm but a 24 hour old biofilm was completely resistant to DNase 

I treatment (Kaplan, 2009). This may be due to the fact that cells in young biofilms may be 

completely relying on DNA as an adhesin but as they grow older they produce other adhesins 

that are used for biofilm maintenance. Another possible explanation is that cells in mature 

biofilm might contain stabilized DNA that is very resistant to the DNase I attack or the DNA 

may be sheltered by other components in the biofilm matrix reducing effectiveness of the DNase 

I in matured biofilms (Kaplan, 2009). 

DNase I can also increase the bactericidal activity of different antimicrobial agents by 

sensitizing the bacterial cells to antimicrobial agents, thus making them more susceptible to 

antimicrobial agents (Kaplan, 2009). This was observed with P. aeruginosa and S. aureus where 

the effectiveness of levofloxacin, rafampin, benzalkonium chloride, cetylpyridinium chloride, 

bleach, and chlorhexidine gluconate was increased when these bacterial cells were pre-exposed 

to the DNase I prior to the treatment with these bactericidal agents. The mechanism by which the 

DNase I sensitizes the cells is not known, however, it is hypothesized that DNA acts as a barrier 

for the diffusion of bactericidal agents so by degradation this DNA allows for the entry of these 

antimicrobial agents to act on bacterial cells and eliminates them (Kaplan, 2009). Another 

possibility is that DNA that is surface-attached restricts the entry of the antimicrobial agents, so 

by eliminating this surface-exposed DNA, the antimicrobial agent gains entry to the cell and act 

on their targets site (Kaplan, 2009).  
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1.6. Rationale of the study 

Biofilm formation is not only an important stage in the pathogenicity of organisms, but biofilm 

establishment on host tissue (human or fish) or on inanimate surfaces also inhibits the 

effectiveness of antimicrobial therapy, protects against host defence mechanisms and also 

facilitates bacterial communication (QS) leading to the expression of virulence determinants. 

Thus, apart from characterizing Aeromonas spp. isolates, identifying species, which have the 

ability to form biofilms and the manner in which they form biofilms is critical. Additionally, 

although Aeromonas spp. biofilms have been studied, the focus has been on specific species, i.e., 

A. hydrophila and A. caviae. Thus, studying biofilm formation by a variety of members of this 

genus could provide more relevant information on the behaviour of diverse species and identify 

phenotypic adherence and/or biofilm formation characteristics of Aeromonas spp. This, together 

with understanding the factors involved in and affecting biofilm formation by Aeromonas spp. 

isolates is also important. Evaluating the antimicrobial concentrations required to eradicate 

biofilms by Aeromonas spp. isolates could facilitate effective treatment of these biofilms using 

antimicrobial agents, as cells in a biofilm appear to be more resistant to antimicrobial agents 

and/or biofilm inhibition molecules.  Understanding and evaluating the effect of different biofilm 

inhibitors on biofilm formation by Aeromonas spp. isolates could facilitate effective removal of 

these biofilms and provide strategies to solve some of the infections caused by these biofilms.  

It is hypothesized that Aeromonas spp. isolates from diverse cultured fish will display 

biofilm-forming abilities, which are species-specific and are associated with their pathogenicity. 

It is further hypothesized that characteristics such as motility, hydrophobicity, autoaggregation, 

proteolytic ability, extracellular DNA secretion may be correlated with the initiation of biofilm 
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formation and/or biofilm maturation by Aeromonas spp. isolates. Additionally, it is hypothesized 

that exposure to antimicrobial agents, efflux pump inhibitors and quorum-sensing inhibitors will 

control Aeromonas spp. biofilm formation. 

 

1.7. Objectives  

The following objectives have been established: 

a. To evaluate the ability of Aeromonas spp. isolates from diverse fish species to form 

biofilms; 

b. To investigate factors potentially involved in initiating biofilm formation, i.e., 

determining the correlation between motility, cell surface characteristics, and 

metabolism with biofilm formation by Aeromonas spp. isolates; 

c. To determine the antimicrobial resistance profiles of Aeromonas spp. isolates; 

d. To determine efflux pump-mediated resistance in Aeromonas spp. isolates and its 

potential contribution to antimicrobial resistance in biofilms; 

e. To identify the ability of Aeromonas spp. isolates to communicate by producing 

signaling molecules (AHL production);  

f.        To determine the effect of varying concentrations of diverse antimicrobial agents 

on planktonic and biofilm cells; and 

g. To determine the effect of efflux pump inhibitors, lytic enzymes and quorum-sensing 

inhibitors on Aeromonas spp. biofilm-forming ability.  
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1.8. Aims of present study 

The following aims were pursued: 

a. To screen Aeromonas spp. isolates obtained from diverse fish species for biofilm 

formation using microtiter plate assays, under different physicochemical parameters 

including temperature, agitation, and nutrient availability; 

b. To identify factors potentially contributing to initial attachment and/or biofilm 

formation, i.e., capsule production, motility (swimming/swarming), hydrophobicity, 

autoaggregation, protease activity, and extracellular DNA production; 

c. To determine the antimicrobial susceptibility of Aeromonas spp. isolates using the 

disk diffusion method; 

d. To determine the prevalence and diversity of efflux pumps in Aeromonas spp. using 

the disk diffusion assay on efflux inhibitor-containing Mueller Hinton (MH) 

medium; 

e. To identify the expression of QS signaling molecules by Aeromonas spp. isolates 

using biosensors: Chromobacterium violaceum CV026 and Agrobacterium 

tumefaciens A136; 

f.        To determine the effect of antimicrobial agents (azithromycin, ceftazidime, 

ciprofloxacin, gentamicin, tetracycline), i.e., the minimum inhibitory concentration 

(MIC) and minimum biofilm inhibitory concentration (MBIC) of planktonic and 

biofilm-forming isolates, respectively, using the broth microdilution and modified 

microtiter plate assay; 



70 

 

g. To determine the effect of sub-minimum inhibitory concentration (sub-MIC), MIC 

and supra-minimum inhibitory concentration (supra-MIC) of planktonic and biofilm-

forming cells, respectively, using microtiter plate assays; and 

h. To determine the effect of efflux pump inhibitors [carbonyl cyanide 3-

chlorophenylhydrazone (CCCP), phenylalanine arginine β-naphthylamide (PAβN) 

and 1-(1-naphthylmethyl)-piperazine (NMP)], lytic enymes (DNase I) and quorum-

sensing inhibitors [cinnamaldehyde, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-

furanone, S-adenosylhomocysteine, vanillin] on planktonic and biofilm-forming 

isolates (initial attachment and/or mature biofilm) using microtiter plate assays. 
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CHAPTER TWO 

Phenotypic investigation of factors potentially involved in initial attachment and/or biofilm 

formation by Aeromonas spp. isolates 

 

2.1. Introduction  

Members of the genus Aeromonas are ubiquitous and autochthonous aquatic bacteria (Castro-

Escarpulli et al., 2003; Gordon et al., 2008; Kirov et al., 2002; Tacao et al., 2005) that occupy a 

wide variety of environmental niches including soil and water. They are also pathogens of warm- 

and cold-blooded animals, often associated with fish and human (food or water-borne) 

infections. They are implicated as possible threats to human health, and also result in economic 

losses in aquaculture and fish-farming industries (Davies et al., 2001; Farmer et al., 2006; 

Ghenghesh et al., 2008; Gordon et al., 2008; Kirov et al., 2002; Koksal et al., 2007; Tacao et al., 

2005). 

Most bacterial infections involve biofilms (Behlau and Gilmore, 2008; Hoiby etal., 

2010). Aquatic fish pathogens such as Aeromonas spp. have been shown to form biofilm 

structures in aquaculture environments and on abiotic surfaces, and their survival outside the fish 

host may be dependent on biofilm formation (Basson et al., 2008). Bacterial biofilms form on 

biotic or abiotic surfaces, developing into large communities of complex architecture where there 

is cell-to-cell communication and co-ordinated behaviour, i.e., quorum sensing (Behlau and 

Gilmore, 2008; Hoiby et al., 2010; Vu et al., 2009). Aeromonas spp. isolates form biofilms in 

diverse environments, i.e., glass surfaces, galvanized steel surfaces, and on microtiter plate wells 
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(Asha et al., 2004; Azad et al., 1999; Dogruoz et al., 2009; Gavin et al., 2004; Li et al., 2009; 

Merino et al., 2001; Nayak et al., 2004). In these biofilms, bacteria surround themselves with a 

slimy EPS, which protects them from their environment; conferring protection against 

phagocytosis in the host, interference with the cellular immune response, and reduction of 

antimicrobial potency. Due to this durability, biofilms are responsible for a wide range of 

industrial and health problems (Asha et al., 2004; Azad et al., 1999; Dogruoz et al., 2009; Gavin 

et al., 2004; Li et al., 2009; Merino et al., 2001; Nayak et al., 2004). 

Initial attachment or adhesion is very important for most microbial infections and a 

crucial stage in biofilm formation (Behlau and Gilmore, 2008; Chmielewski and Frank, 2003; 

Decho, 2000; Donlan, 2002; Lindsay and von Holy, 2006). It is affected by chemical and 

physical properties of the cell and surface, as well composition of the surrounding medium 

(Behlau and Gilmore, 2008; Chmielewski and Frank, 2003; Decho, 2000; Donlan, 2002; Lindsay 

and von Holy, 2006). Environmental signals also promote biofilm formation and are involved in 

the initiation of this biofilm process including variation in temperature, nutrient availability, pH, 

osmolarity, iron and oxygen requirements (Behlau and Gilmore, 2008). For adhesion, cell 

surface components (flagella, pili, fimbriae, adhesin proteins), proteases, capsules, LPS, EPS, 

surface charge (i.e., hydrophobicity), autoaggregation and coaggregation, eDNA, QS, all play a 

huge role in initial attachment and/or biofilm formation and in pathogenicity of most pathogens 

(Asha et al., 2004; Bandara et al., 2010; Basson et al., 2008; Chmielewski and Frank, 2003; 

Decho, 2000; Donlan, 2002; Lindsay and von Holy, 2006; Karatan and Watnick, 2009).  

Identifying Aeromonas species, which have the ability to form biofilms is critical since the 

manner in which they actually form biofilms has not been fully elucidated. Additionally, 
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although Aeromonas spp. biofilms have been studied, the focus has been on specific species, i.e., 

A. hydrophila and A. caviae (Asha et al., 2004; Azad et al., 1999; Dogruoz et al., 2009; Gavin et 

al., 2004; Li et al., 2009; Merino et al., 2001; Nayak et al., 2004). Thus studying biofilm 

formation by a variety of members of this genus could provide more relevant information on the 

behaviour of diverse species and identify phenotypic adherence and/or biofilm formation 

characteristics displayed by Aeromonas spp. isolates. Therefore, the aim of this study was to 

screen Aeromonas spp. isolates isolated from diverse fish species for biofilm formation, using 

different physicochemical parameters including temperature, agitation, and nutrient availability, 

in order to determine the optimal conditions for biofilm formation. Since biofilm formation is 

affected by motility, cell surface characteristics, and/or metabolism, identifying factors 

potentially contributing to initial attachment and/or biofilm formation and their correlation with 

biofilm formation by Aeromonas spp. isolates was also assessed. 

 

2.2. Materials and Methods 

2.2.1. Bacterial isolates and growth conditions  

Three-hundred and seventy-one cultures, obtained from South African catfish, koi carp, tilapia, 

trout, abalone and seawater, were screened to identify presumptive Aeromonas spp. Bacterial 

colonies were grown on tryptic soy broth (TSB) agar plates and transferred to the selective 

medium Rimmler-Shotts (RS) agar (Farmer et al., 2006) to identify presumptive Aeromonas spp. 

isolates. These isolates were then subjected to Matrix Assisted Laser Desorption/Ionization 

Time-of-Flight (MALDI-ToF) mass spectrometry analysis for species identification. All 
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Aeromonas spp. isolates, as well as two type strains (A. caviae ATCC 15468T  and A. hydrophila 

ATCC 7966T) were maintained on tryptic soy broth (TSB) agar plates at 4 ºC and for long-term 

storage in TSB containing 20% glycerol at -70 ºC (Jacobs and Chenia, 2007).  

 

 2.2.2. Biochemical and physiological characterization of Aeromonas isolates  

Preliminary identification of isolates included screening by oxidase test, gelatin hydrolysis, A-

layer phenotypic detection test, motility, and casein tests to further identify presumptive 

Aeromonas spp. isolates and to phenotypically detect the presence of factors associated with 

initial attachment and/or biofilm formation. 

A-layer presence test was determined by streaking 24 hour cultures on TSB agar plates, 

supplemented with 0.1 mg/ml Coomassie brilliant blue R250 (Merck Chemicals, Gauteng, South 

Africa). Plates were incubated at 30 ºC for 4 days, and observed for blue and/or white colonies, 

indicative of the presence and/or absence of the A-layer protein, respectively (Evernberg et al., 

1985; Bernoth, 1990). 

Motility [swimming (0.25% agar) and swarming (0.6% agar)] was determined by 

measuring the zone or the migration of cell suspension (inoculated in the centre) through the agar 

from the centre to towards the periphery of the plate (Altarriba et al., 2003; Wilhelms et al., 

2009). Plates were inoculated with five microlitres of cell suspension, standardized equivalent to 

a 0.5 McFarland standard, and incubated for 24 hours at 30 ºC. Colony diameters were measured 

and averaged. All assays were carried out in triplicate. 
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Caseinolytic (proteolytic) activity was determined by the casein hydrolysis test. The 

substrate used for the test was bacteriological agar supplemented with 1% skim milk (Zacaria et 

al., 2010). Plates were inoculated as described above for the motility tests. Development or 

appearance of either a clear halo or zones of clearance around a colony were taken as a positive 

result.  Colony diameters as well as zone diameters were measured and the relative caseinolytic 

activity (RCA) was determined using the formula: RCA = halo diameter (zone) – bacterial 

growth diameter/ bacterial growth diameter (Zacaria et al., 2010).  

 

2.2.3. Determination of the effect of physicochemical conditions for optimal biofilm 

formation by Aeromonas spp. isolates 

The effect of different temperatures (37 ºC, 30 ºC, or room temperature, ≈ 21 ºC), nutrient 

conditions (nutrient-rich or -poor), agitation (dynamic or static) for optimal biofilm formation 

was determined using the microtiter plate assay as described by Basson et al. (2008) with a few 

modifications. All isolates were cultured overnight in enriched TSB broth (TSB; Merck 

Chemicals, Gauteng, South Africa), cells were washed three times and resuspended in sterilized 

distilled water to a turbidity equivalent to a 0.5 MacFarland standard (Basson et al., 2008). Wells 

of sterile 96-well bottomed microtiter plates were each filled with 90 µl TSB (nutrient-rich) or 

Enriched Anacker and Ordal‘s broth (EAOB; nutrient-poor) and 10 µl of each cell suspension, in 

triplicate. Negative control wells contained TSB or EAOB only. Plates were placed on a 

microtiter shaker (45 rpm, Labnet) and/or benchtop to stimulate dynamic and/or static 

conditions, respectively. These were incubated aerobically at 37 ºC, 30 ºC, and room temperature 

(≈ 21 ºC) for 24 hours.  
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Contents of each well were aspirated, washed three times with 250 µl of sterile distilled 

water and the remaining cells were fixed with 200 µl of methanol for 15 min. After air-drying, 

wells were stained with 150 µl of 2% Hucker‘s crystal violet for 5 min. Excess crystal violet was 

removed by gently rinsing plates under running tap water. Dye bound to the adherent cells was 

resolubilized with 150 µl of 33% (v/v) glacial acetic acid, and the optical density (OD) of each 

well was obtained at 595 nm using the Fluoroskan reader (Ascent F1, Thermolabsystems). Tests 

were done in triplicate, on two separate occasions and the results were averaged. The cut-off OD 

(ODc) for the microtiter plate test was defined as three standard deviations above the mean OD 

of the negative control (Basson et al., 2008). Isolates were classified as follows: OD ≤ ODc = 

non-adherent, ODc < OD ≤ (2 × ODc) = weakly adherent, (2 × ODc) < OD ≤ (4 × ODc) = 

moderately adherent, and (4 × ODc) < OD = strongly adherent (Basson et al., 2008; Stepanović 

et al., 2000). 

 

2.2.4. Cell surface hydrophobicity assay  

Surface hydrophobicity was determined using the bacterial adherence to hydrocarbons (BATH) 

test as described by Basson et al. (2008). Bacteria grown in TSB, were harvested during the 

exponential growth phase (18 hour old cultures), washed three times and resuspended in sterile 

0.1 M phosphate buffer (pH 7) to an OD of 0.8 at a wavelength of 550 nm (OD0). Samples (3 ml) 

of bacterial suspension were placed in glass tubes with 400 µl of the hydrocarbon, xylene, 

equilibrated in a water bath at 25 ºC for 10 min and vortexed. After a 15 min phase separation, 

the lower aqueous phase was removed and its OD550 (OD1) was determined. Values were 

expressed as the percentage of bacteria adhering to hydrocarbon (A) compared with the control 
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suspension as follows: A = [(OD0 - OD1/ OD0] × 100%. Each value represented the mean 

experiments done in triplicate, on two separate occasions. Isolates were considered strongly 

hydrophobic when values were> 50%, moderately hydrophobic if values were in the range of 20-

50%, and hydrophilic if values were < 20%. Phosphate buffered saline (PBS) was used as a 

negative control. 

 

2.2.5. Autoaggegation assay  

Autoaggregation was determined according to the protocol described by Basson et al. (2008). 

Bacteria were grown in 20 ml TSB, harvested after 36 hours, washed three times, and 

resuspended in sterile distilled water to an OD of 0.3 at a wavelength of 660 nm. The percentage 

of autoaggregation for study isolates was measured by transferring the bacterial suspension to a 

sterile cuvette and measuring the OD after 60 min at a wavelength of 660 nm (Basson et al., 

2008). The degree of autoaggregation was determined as the percent decrease of optical density 

after 60 min using the equation: % Autoaggreagtion = [(OD0 – OD60/ OD0] × 100%, where OD0 

referred to the initial OD of the organism measured, while OD60 was obtained after 60 min at 

room temperature. Experiments were done in triplicate, on two separate occasions (Basson et al., 

2008). Isolates were considered to have strong autoaggregation ability when values were > 50%, 

moderate autoaggregation ability when values were in the range of 20-49%, and weak 

autoaggregation ability when values were < 20%. 
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2.2.6. Statistical analyses 

Statistical significance of differences (p < 0.05) caused by altered variables (temperature, 

nutrient medium, agitation) in the microtiter adherence assays were determined using one-way 

repeated measures analysis of variance (OWR-ANOVA). Correlation analyses for the different 

parameters affecting biofilm formation were performed using the Pearson‘s Correlation 

Coefficient, where a p value< 0.05 was considered significant. 

 

2.3. Results  

2.3.1. Bacterial isolates and growth conditions  

Ninety-nine presumptive Aeromonas spp. isolates (Table 2.1.) from catfish (n = 14), koi carp (n 

= 32), tilapia (n = 33) and seawater (n = 20), respectively, were selected following the production 

of yellow colonies without black centre on RS agar as well as two type strains (A. caviae ATCC 

15468T  and A. hydrophila ATCC 7966T). These isolates, M1−M99, were classified into 10 

species by MALDI-ToF analyses as described in Table 2.1.  
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Table 2.1. Selection of presumptive Aeromonas spp. isolates, using selective media and 

MALDI –TOF analysis  

Fish host/origin 

 

n = 99 

 

Species identification 

 

Catfish 

 

14 A. culicicola, A. bestiarum, A. allosaccharophila, A. 
jandaei, A. hydrophila 

 
Koi carp 

 

32 A. caviae, A. bestiarum, A. allosaccharophila, A. 

salmonicida, A. culicicola, A. hydrophila 
 

Tilapia 

 

33 A. caviae, A. icthiosmia, A. allosaccharophila, A. sobria, 

A. culicicola, A. hydrophila, A. jandaei, A. veronii 
 

Seawater 

 

20 A. culicicola, A. jandaei 
 

 

 

2.3.2. Biochemical and physiological characterization of Aeromonas isolates 

All 99 study isolates were oxidase-positive, while varied results were obtained for gelatin 

hydrolysis, A-layer phenotypic, motility (swimming and swarming), and casein hydrolysis tests, 

for all isolates from the five different fish hosts or origin (Table 2.2.). Majority of the isolates 

(86.9%; 86/99) were capable of degrading gelatin while 80.8% (80/99) of the isolates were 

capable of producing the A-layer protein (A-layer protein positive). All isolates (100%) were 

motile by swimming, with zone diameters ranging from 14 – 61 mm and 98% (97/99) were 

motile by swarming, with zone diameters ranging from 5.7 – 67.3 mm (Table A1). Partial 

degradation of casein was observed for 90.9% (90/99) of isolates, with zone diameters ranging 

from 9.0 – 22 mm and the relative caseinolytic activity (RCA) ranged from 0 – 1.1 (Table A2). 

The two type strains (A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T) demonstrated 
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positive results for all biochemical and physiological test, i.e., gelatin hydrolysis, A-layer 

phenotypic, motility (swimming and swarming), and casein hydrolysis tests. 

A negative correlation was observed between casein hydrolysis and swarming motility (r 

= −0.205, p = 0.0414). Swarming and swimming motility were positively correlated (r = 0.203, p 

= 0.0436). There was also a positive correlation between the fish host/origin of the isolates and 

swimming motility (r = 0.221, p = 0.0279).  

 

Table 2.2. Biochemical and physiological characterization of 99 Aeromonas spp. isolates 

obtained from 5 different fish hosts or origin  

 

 

Phenotypic tests 

 

Number (%) 

positive 

Total (n= 99) 

 

 

Catfish 

(n=14) 

 

 

Koi carp 

(n=32) 

 

 

Tilapia 

(n=33) 

 

 

Seawater 

(n=20) 

 

Swimming 

 

99 (100) 
 

14 (100) 
 

32 (100) 
 

33 (100) 
 

20 (100) 
 

Swarming 

 

97 (98.0) 

 

13 (92.9) 

 

32 (100) 

 

32 (97.0) 

 

20 (100) 

 

Casein 

hydrolysis 

 

90 (90.9) 

 

13 (92.9) 

 

27 (84.4) 

 

30 (90.9) 

 

20 (100) 

 

Gelatin 

hydrolysis 

 

86 (86.9) 
 

11 (78.6) 
 

23 (71.9) 
 

32 (97.0) 
 

20 (100) 
 

A-layer presence 

 

80 (80.8) 
 

10 (71.4) 
 

25 (78.1) 
 

29 (87.9) 
 

16 (80.0) 
 

 

 

 



81 

 

2.3.3. Determination of the effect of physicochemical conditions for optimal biofilm 

formation by Aeromonas spp. isolates 

Isolates showed varying levels of adherence, but 92.9% (92/99) were strongly adherent in 

nutrient-rich medium (TSB) at 30 ºC, under static conditions (Table 2.3, Table A3). Biofilm 

formation was influenced more by altered nutrient levels rather than temperature. Majority of the 

isolates adhered strongly at 30 ºC, 37 ºC and room temperature (≈21ºC) under both static and 

shaking conditions (Table 2.3), and showed a preference for nutrient-rich (TSB) medium (Table 

A5). The type strains (A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T) also 

demonstrated strong-biofilm abilities.  

At room temperature (≈21ºC), biofilm formation ranged from 0.273−1.301 in EAOB 

under shaking conditions, with 6.1% (6/99) of isolates being non-adherent; while under static 

conditions, biofilm formation ranged from 0.286−1.221, with 3% (3/99) of isolates appearing 

non-adherent (Table 2.3, Table A3). Using TSB, biofilm formation ranged from 0.289−1.311, 

with agitation; while under static conditions it ranged from 0.816−1.460 under static conditions 

(Table A4). At 30 ºC, biofilm formation ranged from 0.221−1.302 under shaking conditions in 

EAOB, with 8.1% (8/99) of isolates considered non-adherent; while under static conditions, 

biofilm formation ranged from 0.473−1.206, with 18.2% (18/99) of isolates considered non-

adherent (Table A3). Similarly, for TSB under shaking conditions, biofilm formation ranged 

from 0.371−1.457; while under static conditions, it ranged from 0.560−1.482 (Table A4). At 

37ºC, biofilm formation ranged from 0.393 to 0.777 in EAOB under shaking conditions, with 

8.1% (8/99) of isolates considered non-adherent; while under static conditions, biofilm formation 

ranged from 0.260−0.779, with 2% (2/99) of isolates considered non-adherent (Table A3). Using 
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TSB, biofilm formation ranged from 0.275−1.005 with agitation; while it ranged from 

0.411−1.411 under static conditions (Table A4). 

Stronger biofilm formation in this study was documented at all temperature tested in 

nutrient-rich TSB compared to nutrient-poor EAOB as shown in Table 2.3. In nutrient-poor 

EAOB, stronger adherence ability of the isolates was observed under static conditions compared 

to shaking conditions.  

Correlation analyses for the different parameters affecting biofilm formation were 

performed using the Pearson‘s Correlation Coefficient, where a p value< 0.05 was considered 

significant. A significant negative correlation was observed between fish host/origin and biofilm 

formation (37 ºC, TSB, shaking; r = −0.0233, p = 0.0203), while a positive correlation was 

observed between fish host/origin and biofilm formation was observed (RT, EAOB, static; r = 

0.217, p = 0.0311). Positive correlations were observed between swimming motility and biofilm 

formation (30 ºC, and RT, TSB, static; 30 ºC, EAOB, shaking; r = 0.199, p = 0.0486; r = 0.254, 

p= 0.0113; r = 0.217, p = 0.0306). Swarming motility was also positively correlated with biofilm 

formation (37 ºC, TSB, static; 37 ºC, EAOB, shaking; r = 0.229, p = 0.0229; r = 0.258, p = 

0.0100). A negative weak correlation was observed between casein hydrolysis and biofilm 

formation (37 ºC, EAOB, static; r = −0.330, p =0.0008) while a negative correlation was also 

observed between autoaggegation and biofilm formation (37 ºC, TSB, shaking; r = −0.213, p = 

0.0344). Furthermore, significant negative weak correlations were observed between gelatinase 

activity and biofilm formation (30 ºC, TSB, shaking and static; 30 ºC, 37 ºC, EAOB, shaking and 

static; r = −0.360, p = 0.0002; r = −0.271, p = 0.0066; r = −0.228, p =0.0232, r = −0.231, p 

=0.0212).  
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Table 2.3. Biofilm formation by Aeromonas spp. isolates (n=99) following incubation at room temperature (RT, ≈21 ºC), 30 ºC, 

or 37 ºC, under shaking or static conditions in nutrient-rich (TSB) or nutrient-poor (EAOB) media, respectively 

 

Number of isolates (%) 

 

Biofilm formation* 

Parameters  Non-adherent   Weak   Moderate   Strong 

 No. (%) Average 

optical density 

OD ± SD 

No. (%) Average 

optical 

density OD ± 

SD 

   No. (%) Average 

optical density 

OD ± SD 

No. 

(%) 

Average 

optical density 

OD ± SD 

RT EAOB Shaking  6 (6.1) 0.146±0.009  21 (21.2) 0.273±0.051   25 (25.3)   0.528±0.049  47 (47.5) 1.301±0.041 

RT EAOB Static  3 (3.0) 0.136±0.012  29 (29.3) 0.286±0.050  20 (20.2) 0.481±0.050  47 (47.5) 1.221±0.040 

RT TSB Shaking  -  -  2 (2.0) 0.289±0.032  21 (21.2) 0.714±0.063  76 (76.8) 1.311±0.078 

RT TSB Static  -  -  -  -  19 (19.2) 0.816±0.043  82 (82.8) 1.460±0.036 

30ºC EAOB Shaking  8 (8.1) 0.158±0.017  29 (29.3) 0.221±0.051  30 (30.3) 0.512±0.035  32 (32.3) 1.032±0.042 

30 ºC EAOB Static 18 (18.2) 0.249±0.032  34 (34.3) 0.473±0.046  18 (18.2) 0.714±0.039  29 (29.3) 1.206±0.048 

30 ºC TSB Shaking  -  -  4 (4.0) 0.371±0.047  15 (15.2) 0.766±0.044  80 (80.8) 1.457±0.047 

30 ºC TSB Static  -  -  -  -  7 (7.1) 0.560±0.030  92 (92.9) 1.482±0.048 

37 ºC EAOB Shaking  8 (8.1) 0.181±0.024  42 (42.4) 0.393±0.027  38 (38.4) 0.443±0.069  11 (11.1) 0.777±0.041 

37 ºC EAOB Static  2 (2.0) 0.189±0.013  37 (37.4) 0.260±0.038  47 (47.5) 0.453±0.062  13 (13.1) 0.779±0.045 

37 ºC TSB Shaking  -  -  4 (4.1) 0.275±0.014  12 (12.1) 0.604±0.018  83 (83.8) 1.005±0.040 

37 ºC TSB Static  -  -  4 (4.1) 0.411±0.013  24 (24.2) 0.731±0.029  71 (71.7) 1.411±0.030 

*Biofilm formation assay data are the mean of three independent experiments carried out in triplicate ± standard deviation (Stepanovic 

et al. 2000). 
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2.3.4. Correlation of cell surface hydrophobicity of Aeromonas spp. with biofilm 

formation  

Overall, the BATH values for isolates ranged from 0.27−69.1% (Table 2.4). Majority of isolates 

(74.8%; 74/99) were classified as hydrophilic (0.27 − 19.27), 21.2% (21/99) as moderately 

hydrophobic (20.31 – 45.80), and 4% (4/99) as hydrophobic (52.64-69.09), respectively (Table 

2.4). The type strains, A. caviae ATCC 15468T  (19%) and A. hydrophila ATCC 7966T  (17.3%) 

were also classified as hydrophilic. Majority of hydrophilic isolates belonged to four species, i.e., 

A. hydrophila, A. jandaei, A. bestiarum, and A. culicicola. No specific association was observed 

between BATH hydrophobicity and specific fish host/origin. It was not possible to correlate 

Aeromonas spp. isolates‘ hydrophilic nature with biofilm formation or with any of the 

phenotypes associated with biofilm formation. 

 

Table 2.4. BATH hydrophobicity results obtained for 99 Aeromonas spp. isolates, according 

to their fish hosts/origin 

Isolates (fish host/origin) 

 

No. (%) HPL* 

 

No. (%)MHPB* 

 

No. (%) HPB* 

 

Koi carp (n = 32) 

 

25 (78.1) 
 

5 (15.6) 
 

2 (6.3) 
 

Catfish (n = 14) 

 

9 (64.3) 

 

4 (28.6) 

 

1 (7.1) 

 
Tilapia (n = 33) 25 (75.8) 7 (21.2) 1 (3.0) 

 

Seawater (n = 20) 

 

 

15 (75.0) 
 

 

5 (25.0) 
 

 

- 
 

All isolates 74 (74.8)        21 (21.2)          4 (4.0) 

*HPL=hydrophilic, MHPB=moderately hydrophobic, and HPB=hydrophobic (Basson et al., 

2008). 
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2.3.5. Correlation of autoaggegation of Aeromonas spp. with biofilm formation  

Autoaggregation indices ranged from 26 − 84% (Table 2.5). Majority of isolates displayed high 

levels of autoaggregation, with 84.8% (84/99) of the isolates displaying strong autoaggregation 

abilities (50 − 84%) and 15.2% (15/99) of the isolates displaying moderate autoaggregation 

ability (26 − 48%). No specific association was observed between autoaggregation ability and 

specific Aeromonas species. The type strains, A. caviae ATCC 15468T  (69%) and A. hydrophila 

ATCC 7966T (82%) also displayed high levels of autoaggregation. No significant correlation was 

observed with biofilm formation.  

 

Table 2.5. Autoaggregation results obtained for 99 Aeromonas spp. isolates, according to 

their fish hosts/origin 

Isolates (fish host/origin) No. (%) SA* No. (%) MA* No. (%) WA* 

Koi carp (n = 32) 

 

29 (90.6)  

 

3 (9.4) 

 

- 

 

Catfish (n = 14) 

 

11 (78.6) 
 

3 (21.4) 
 

- 

 

Tilapia (n = 33) 

 

29 (87.9) 
 

4 (12.1) 
 

- 

 

Seawater (n = 20) 

 

15 (85.0) 
 

5 (25.0) 
 

- 

 

All isolates 84 (84.8) 15 (15.2) - 

*SA=strong autoaggregation ability, MA=moderate autoaggregation ability, WA=weak 

autoaggregation ability (Basson et al., 2008). 
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2.4. Discussion 

Members of the genus Aeromonas are often associated with fish diseases and are also human 

opportunistic pathogens causing food or water-borne infections in humans (Davies et al., 2001; 

Farmer et al., 2006; Ghenghesh et al., 2008; Gordon et al., 2008; Kirov et al., 2002; Koksal et 

al., 2007; Tacao et al., 2005). The ability of most bacterial pathogens, such as Aeromonas spp., 

to cause disease is usually linked to their ability to form biofilms (Behlau and Gilmore, 2008; 

Hoiby et al., 2010). 

Aeromonas spp. isolates displayed strong adherence profiles with a preference for 

adherence at moderate temperatures (30 ºC), and nutrient-rich environments with low 

hydrodynamic forces (static conditions). The type strains, A. caviae ATCC 15468T  and A. 

hydrophila ATCC 7966T  also displayed strong adherence profiles under these conditions. These 

conditions may be correlated with isolation of majority of study isolates from aquaculture tanks 

with high nutrient availability and steady, slow water flow (Jacobs and Chenia, 2009; Giaouris et 

al., 2005; Williams et al., 2009). All isolates in this study displayed strong adherence 

characteristics at room temperature (≈21 ºC) and 30 ºC in nutrient-rich environment under static 

and shaking conditions, as a range of 22-28 ºC is their optimal temperature, according to the 

literature (Belaluddin and Shahjahan, 2003; Farmer et al., 2006; Ghenghesh et al., 2008; Kirov et 

al., 2002; Tacao et al., 2005). Aeromonas spp. isolates such A. hydrophila have been described to 

form biofilms on microtiter plates in TSB (nutrient-rich) when incubated for 48 hours, without 

agitation at 30 ˚C (Gavin et al., 2003; Elhariry, 2011; Merino et al., 2001). Based on this study, 

strong adherence profiles were also observed at 37ºC in nutrient-rich environments under static 

and dynamic (shaking) conditions correlating with conditions often associated with clinical 

isolation sites (Belaluddin and Shahjahan, 2003; Farmer et al., 2006; Ghenghesh et al., 2008; 
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Kirov et al., 2002; Tacao et al., 2005). Aeromonas spp. isolates have been shown to form 

biofilms at this temperature (37 ˚C) in borosilicate glass tubes, when they were incubated for 30 

hours without agitation (Kirov et al., 2004). Biofilm formation appeared to be influenced more 

by nutrient-rich conditions suggesting that nutrient limitation is not a cue in the switch to a 

sessile lifestyle for Aeromonas spp. isolates. The ability to form good biofilms in nutrient-rich 

medium has been previously observed for other species such as Myroides odoratus, Salmonella 

spp. and non-tuberculous Mycobacterium spp., and is consistent with their ability to cause 

disease (Jacobs and Chenia, 2009; Giaouris et al., 2005; Williams et al., 2009).  

Majority of the isolates in the present study displayed motility, both swimming and 

swarming. Motility is usually mediated by flagella amongst other components in Aeromonas spp. 

isolates and is required to move along the surface thereby, facilitating growth and spread of a 

developing biofilm. These flagella themselves (as surface appendages) can also directly mediate 

attachment to surfaces (Van Houdt and Michiels, 2010). Mesophilic Aeromonas express a single 

polar flagellum for swimming in all culture conditions and produce lateral flagella for swarming 

on solid media (Altarriba et al., 2003; Gavin et al., 2002; Kirov et al., 2002, 2004; Kirov, 2003; 

Rabaan et al., 2001). A significant positive correlation was observed between swimming motility 

and biofilm formation while swarming motility was also positively correlated with biofilm 

formation. A significant positive significant correlation between motility and biofilm formation 

was also observed for aquatic M. odoratus (Jacobs and Chenia, 2009).  

Majority of the Aeromonas spp. isolates in the present study were capable of producing 

the A-layer protein, as has been observed previously by Fernandez et al. (1995). The cell 

envelope of virulent A. salmonicida is composed of A-layer (predominant cell surface protein) 

beyond the outer membrane and the repeating O-antigen subunit of bacterial LPS (Fernandez et 
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al., 1995). The presence of this protein, which is said to be absent in avirulent strains of A. 

salmonicida, together with the LPS was suggested to be essential for agglutination, virulence and 

pathogenesis (Bernoth, 1990; Bjornsdottir et al., 1992; Ellis et al., 1997; Fernandez et al., 1995). 

The A-layer is responsible for several cell surfaces properties such as cell-surface hydrophobicity 

and autoaggregation in Aeromonas spp. (Bjornsdottir et al., 1992; Fernandez et al., 1995; Phipps 

et al., 1983), but no correlations with biofilm formation were observed in the present study. 

Study isolates displayed considerable variability in their autoaggregating abilities 

suggesting differences between Aeromonas spp. and between isolates. The type strains, A. caviae 

ATCC 15468T  (69%) and A. hydrophila ATCC 7966T  (82%) also displayed high levels of 

autoaggregation. A significant negative correlation was observed between autoaggregation and 

biofilm formation for Aeromonas spp. isolates in the present study. 

Majority of the study isolates were hydrophilic, with 74.8% (74/99) being classified as 

hydrophilic (0.27 − 19.27). The type strains, A. caviae ATCC 15468T  (19%) and A. hydrophila 

ATCC 7966T  (17.3%) were also classified as hydrophilic. Scoaris et al. (2008) used the bacterial 

adherence to hydrocarbons test to evaluate the hydrophobicity of Aeromonas spp. isolates and its 

correlation to virulence and observed that most of the virulent strains were hydrophilic. Elhariry 

et al. (2011) also studied hydrophobicity patterns amongst Aeromonas strains, and observed that 

most Aeromonas strains were hydrophilic and no significance differences in hydrophobicity were 

observed among the Aeromonas strains. Although the general rule has been that adhesiveness 

increases with increasing or decreases with decreasing hydrophobicity, a number of studies have 

shown contradictory results, where no relationship was found between the bacterial strain‘s 

surface hydrophobicity and the extent of initial binding to either a hydrophilic or hydrophobic 
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substrate (Basson et al., 2008). It was not possible to correlate Aeromonas spp. biofilm formation 

and the strongly hydrophilic nature demonstrated by these isolates in present study.  

The presence of Aeromonas spp. isolates in mixed species biofilms has been reported 

previously from the clinical and industrial settings (Asha et al., 2004; Azad et al., 1999; Bomo et 

al., 2004; Dogruoz et al., 2009; Nayak et al., 2004). Aeromonas spp. isolates from seawater and 

diverse cultured fish displayed different levels of biofilm formation on polystyrene, which was 

affected by nutrient alteration, but not by temperature. Since biofilms have been studied with 

members of this genus, although the focus has been on specific species (A. hydrophila and A. 

caviae), studying biofilm formation with a variety of members of this genus provided more 

relevant information on the behaviour of diverse species from diverse sources. Additionally, the 

ability of Aeromonas spp. to autoaggregate, rather than its hydrophilic nature, appears to be a 

significant characteristic in biofilm formation. The role of motility and other surface-associated 

appendages (A-layer) and extra-cellular enzymes (protease and gelatinase) in adherence and 

biofilm formation requires further investigation. These all play a role in the adherence and/or 

biofilm formation by Aeromonas spp. isolates, and have implications in antimicrobial resistance 

by these species, which requires investigation.  
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CHAPTER THREE 

Antimicrobial resistance of planktonic and biofilm-associated Aeromonas spp. isolates 

 

3.1. Introduction 

Most aquatic bacterial pathogens, such as Aeromonas spp., in aquatic environments are often 

associated with surfaces (biofilm state) rather than in a planktonic state (Basson et al., 2008). 

Antimicrobial resistance studies have shown that planktonic Aeromonas spp. isolates are often 

resistant to β-lactams, tetracycline, quinolones, and second- and third-generation cephalosporins 

(Castro-Escarpulli et al., 2003; Farmer et al., 2006; Jacobs and Chenia, 2007). Many strains of 

Aeromonas spp. display resistance to piperacillin and mezlocillin, while being susceptible to 

gentamicin, chloramphenicol, amikacin, trimethoprim sulfamethoxazole, nitrofurantoin, and 

tobramycin (Castro-Escarpulli et al., 2003; Farmer et al., 2006; Jacobs and Chenia, 2007). 

Planktonic Aeromonas spp. from South African patients were observed to have MICs ranging 

from 1 − 64 µg/ml for tetracycline, azithromycin, ceftazidime, ciprofloxacin, and gentamicin 

(Ramalivhana et al., 2009).   

Abrahim et al. (2007) described that differences in the antimicrobial resistance profiles 

observed for Aeromonas spp. may be well related to the source of the Aeromonas isolates. Son et 

al. (1997) also observed that the differences in the frequency of resistance could well be related 

to the source of the Aeromonas isolates, and the frequency and type of antimicrobial agents 

prescribed for treating infections in different geographical areas. High antimicrobial resistance 

rates were observed among aeromonads isolated from fish (Abrahim et al., 2007). This could be 

explained by the prophylactic use of antimicrobial agents to prevent fish diseases in fish farms 

(Abraham et al., 2008; Abrahim et al., 2007; Baquero et al., 2008; Son et al., 1997).  A. 
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salmonicida and A. hydrophila, common fish pathogens, were observed to be highly resistant to 

a great variety of antimicrobial agents, such as β-lactams, tetracycline, quinolones, as well as 

second- and third-generation cephalosporins (Austin, 1997; Farmer et al., 2006; L‘Abee-Lund 

and Sorum, 2001; Jacobs and Chenia, 2007). High rates of resistance have also been observed in 

Aeromonas spp. isolates from clinical environmental sources (Abrahim et al., 2007). Studies of 

clinical and environmental isolates of Aeromonas have reported high level of resistance to 

ampicillin (Huddleston et al., 2007). Clinical isolates of A. hydrophila, A. caviae and A. veronii 

biovar sobria, which are also pathogens of fish (Wahli et al., 2005) displayed very similar 

susceptibility patterns (Farmer et al., 2006) and were more resistant to fluoroquinolones, 

ciprofloxacin, ofloxacin and nalidixic acid (Castro-Escarpulli et al., 2003; Farmer et al., 2006; 

Jacobs and Chenia, 2007). Chien et al. (1996) observed that in Taiwan, clinical isolates of 

Aeromonas were found to be susceptible to moxalactam, ceftazidime, cefepime, aztreonam, 

imipenem, amikacin, and fluoroquinolones and were resistance to tetracycline, trmethoprim-

sulfamethoxazole and some cephalosporins. 

Many studies have focused on biofilm formation due to their increased resistance to 

antimicrobial agents, which causes problems in treatment of biofilm-associated diseases (Hoiby 

et al., 2010). It has been observed that the antimicrobial agents MICs and MBCs of biofilm-

growing bacteria (minimum biofilm inhibitory concentration, MBICs) may be up to 100- to 

1000-fold higher compared with planktonic bacteria (Hoiby et al., 2010). Using antimicrobial 

agents to treat biofilms only causes cells on the outer surface may be eliminated, leaving cells in 

the middle to continue to disseminate and spread within the biofilm when therapy is terminated 

and thus gain resistance against antimicrobial agents (Davey and O‘Toole, 2000; Del Pozo and 

Patel, 2007). These cells may require higher concentrations of antimicrobial agents (supra-
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inhibitory concentrations; supra-MICs), to be effective in removing these cells (Cogan, 2006). 

Waste accumulation and a distorted microenvironment due to the increased bacterial density 

within biofilm microcolonies may also have an effect on antimicrobial agent action deep within 

the biofilm (Del Pozo and Patel, 2007). Cells within biofilms prevent an antimicrobial agent 

from binding to the target, which leads to the increase in the minimum inhibitory concentration 

(MIC) (Lewis, 2008).  

Unlike planktonic bacteria, biofilms are hard to eradicate due to the fact that they are 

characterized by the presence of the slimy EPS, which protects microbes from their environment; 

conferring protection against phagocytosis, interference with the cellular immune response, and 

reduction of antimicrobial potency (Behlau and Gilmore, 2008; Chmielewski and Frank, 2003; 

Decho, 2000; Donlan, 2002; Lindsay and von Holy, 2006; Hoiby et al., 2010; Vu et al., 2009). 

Due to this durability, biofilms are responsible for a wide variety of industrial and health 

problems (Hoiby et al., 2010; Vu et al., 2009). Targeting the first stage of biofilm formation, i.e., 

initial attachment of cells to the surface, where the cells are still accessible to elimination by 

antimicrobial agents is a wise strategy because when cells have already attached to the surface, it 

is usually not easy to eliminate them due to the presence of EPS (Takahashi et al., 2007). Many 

antimicrobial agents work differently on various microorganisms because there is a variation 

among strains and their ability to resist the effects of antimicrobial agents; and are able to 

efficiently inhibit the adherence of biofilms post- and pre-formation (Dal Sasso et al., 2003).   

Antimicrobial agent concentrations within many tissues usually become lower than the 

MIC, and these are called sub-inhibitory concentrations (sub-MICs) (Pompillo et al., 2010). 

Depending on the type of the antimicrobial agent used or their modes of action, sub-MIC 

exposures can eliminate or reduce the ability of pathogens to form biofilms by interfering with 
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different stages of biofilm formation resulting in the elimination of these pathogens. 

Microorganisms usually grow in the presence of sub-MICs of antimicrobial agents, which are 

potentially capable of altering the chemical and physical cell-surface characteristics and 

consequently the functionality and expression of some virulence properties such as adhesion, 

biofilm formation, hydrophobicity and motility (Pompillo et al., 2010). Pompillo et al. (2010) 

observed that sub-MICs of moxifloxacin caused a decrease in adhesion and biofilm formation of 

Stenotrophomonas maltophila. Matjan et al. (2007) also observed that sub-inhibitory 

concentrations of antibiotics affected biofilm formation by clinical strains of Salmonella enterica 

serovar Typhimurium. For some microorganisms being exposed to sub-MIC of antimicrobial 

agents stimulates biofilm formation, without killing cells within biofilms but inhibit their growth, 

and this has been observed for cells exposed to cefalexin (Haddadin et al., 2009).  

Since Aeromonas spp. isolates are important fish and human opportunistic pathogens, it 

was important to determine their antimicrobial resistance profiles, for comparison to clinical and 

aquaculture isolates reported in other studies. Evaluating the antimicrobial concentrations 

required to eradicate biofilms by Aeromonas spp. isolates could also facilitate effective treatment 

of these biofilms using antimicrobial agents, as cells in a biofilm appear to be more resistant to 

antimicrobial agents. It was, therefore, crucial to determine the effect of varying concentrations 

(MIC, sub-MIC and supra-MIC) of diverse antimicrobial agents on biofilm cells of Aeromonas 

spp. isolates. Thus, the MICs and MBICs for azithromycin, ceftazidime, ciprofloxacin, 

gentamicin and tetracycline of planktonic cells and biofilm cells, respectively, were investigated 

using the broth microdilution and modified microtiter plate assays. To determine the effect of 

sub-MIC (0.5 × MIC) and supra-MIC (2 × MIC) exposures on biofilm-forming cells, microtiter 

plate assays were utilized. 
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3.2.  Materials and Methods 

3.2.1.  Antimicrobial agent susceptibility testing 

Ninety-nine presumptive Aeromonas spp. isolates (Section 2.2.1, Table 2.1) and two type strains 

(A. caviae ATCC 15468T  and A. hydrophila ATCCT  7966) were used to determine the 

antimicrobial resistance profiles of Aeromonas spp. isolates. Antimicrobial susceptibility to 26 

antimicrobial agents was determined using Oxoid disks (Oxoid, SA), on Mueller-Hinton (MH; 

Biolab Diagnostics) agar plates following Clinical Laboratory Standards International protocols 

(CLSI, 2006). The following antimicrobial agent disks were used: amikacin (AK30), amoxycillin 

(AML10), ampicillin (AMP10), augmentin (AMC30), azithromycin (AZM15), aztreonam 

(ATM30), cefotaxime (CTX30), cefoxitin (FOX30), cefpodoxime (CPD10), ceftazidime 

(CAZ30), ceftriaxone (CRO30), cefuroxime (CXM30), chloramphenicol (C30), ciprofloxacin 

(CIP5), cotrimoxazole (SXT25), erythromycin (E15), gentamicin (CN10), imipenem (IPM10), 

nalidixic acid (NA30), ofloxacin (OFX5), oxacillin (OX1), piperacillin-tazobactam (TZP110), 

streptomycin (S10), sulphamethoxazole (RL25), tetracycline (TE30) and trimethoprim (W1.25). 

Isolates were grown overnight in TSB, washed three times with sterile distilled water and the 

turbidity of the cell suspensions were adjusted to that equivalent to a 0.5 McFarland standard. 

These inocula were used to subsequently inoculate MH agar plates using sterile swabs, after 

which four antimicrobial agent disks were placed on the agar at equal distances from each other 

and plates were incubated for 24 hours at 30 ºC. Bacterial strains Escherichia coli ATCC 25922, 

Klebsiella pneumoniae ATCC 700603, Staphylococcus aureus ATCC 29212 were used as 

antimicrobial susceptibility testing controls, according to CLSI recommendations (2006). Testing 

was done in duplicate and resistance profiles (resistant, intermediate, or susceptible) were 

assigned after measuring average zone diameters using CLSI breakpoints. 
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MAR index values (a/b, where ‗a’ represents the number of antimicrobial agents the 

isolate was resistant to and ‗b’ represents the total number of antimicrobial agents the isolate was 

tested against) were calculated for all isolates. When isolates exposed to high risk contamination 

sources originating from humans or animals where antimicrobial agents are often used a MAR 

index value higher than 0.2 should be observed. When antimicrobial agents are seldom or never 

used a MAR value less than or equal to 0.2 should be observed (Jacobs and Chenia, 2007). 

 

3.2.2. Broth microdilution and modified microtiter plate assays to determine MICs 

and MBICs of planktonic and biofilm cells 

Twenty-one Aeromonas spp. isolates (Table 3.1) as well as the type strains were selected based 

on their species, biochemical, physiological and biofilm-forming characteristics for the 

determination of MICs and MBICs of planktonic and biofilm-forming isolates, respectively, for 

five antimicrobial agents. These isolates were also utilized for the determination of the effect of 

sub-MIC and supra-MIC exposures on biofilm-forming cells. 

Five antimicrobial agents [azithromycin (macrolide), ceftazidime (extended-spectrum 

cephalosporin), ciprofloxacin (fluoroquinolone), gentamicin (aminoglycoside), and tetracycline 

(tetracycline)] were tested against the isolates using thirteen concentrations: 0.008, 0.016, 0.064, 

0.125, 0.5, 1, 2, 4, 16, 32, 64, 128 and 256 µg/ml. MICs and MBICs of planktonic and biofilm 

cells were determined using the broth microdilution (Andrews, 2001) and modified microtiter 

plate assays (Basson et al., 2008), respectively.  

MICs of the various planktonic cultures for each of the selected antimicrobial agents 

were determined using the broth microdilution assay (Andrews, 2001). Two-fold serial dilutions 

of antimicrobial agents were prepared in MH broth. Cultures were grown overnight in TSB, 
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washed three times with sterile distilled water and diluted until they were equivalent to a 0.5 

MacFarland (Andrews, 2001). Microtiter plate wells, each containing 100 µl of MH broth 

medium with the required antimicrobial agent concentration, were inoculated with 10 µl of cell 

suspension and incubated at 30 ºC for 24 hours without shaking. The MIC was the lowest 

concentration of antimicrobial agent, which inhibited visible growth of organism. This was done 

in triplicate, on two separate occasions (Andrews, 2001). 

 MBICs of cells were determined using the modified microtiter plate assay. Biofilms were 

formed as described by Basson et al. (2008) with conditions determined to be effective for 

optimal biofilm formation in Chapter 2 (Section 2.2.3), using MH broth but omitting the drying 

and staining steps. Once the biofilms had formed, planktonic cells were washed off and the wells 

were air-dried. Serial dilutions of antimicrobial agents (azithromycin, ciprofloxacin, ceftazidime, 

gentamicin, and tetracycline) were added to 100 µl of fresh MH broth at the required 

antimicrobial agent concentrations and transferred to wells to determine MBICs of the biofilm 

cells. Wells contained 0.008, 0.5, 12, 32, 256, 1024, 2048, and 4096 µg/ml of the antimicrobial 

agents to be tested. Plates were incubated for further 24 hours at 30 ºC (Basson et al., 2008). For 

both assays (broth microdilution and MBIC assay), the negative control wells contained broth 

only and the positive control wells contained the respective cell suspensions with no 

antimicrobial agents added.  

Contents of each well were aspirated, washed three times with 250 µl of sterile distilled 

water and the remaining cells were fixed with 200 µl of methanol for 15 min. After air-drying, 

wells were stained with 150 µl of 2% Hucker‘s crystal violet for 5 min. Excess crystal violet was 

removed by gently rinsing plates under running tap water. Dye bound to the adherent cells was 

resolubilized with 150 µl of 33% (v/v) glacial acetic acid and the optical density (OD) of each 
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well was obtained at 595 nm using Fluoroskan reader (Ascent F1, Thermolabsystems). Tests 

were done in triplicate, on two separate occasions and the results averaged. The cut-off OD 

(ODc) for the microtiter plate test was defined as three standard deviations above the mean OD 

of the negative control (Basson et al., 2008). Isolates were classified as follows: OD ≤ ODc = 

non-adherent, ODc < OD ≤ (2 × ODc) = weakly adherent, (2 × ODc) < OD ≤ (4 × ODc) = 

moderately adherent, and (4 × ODc) < OD = strongly adherent (Basson et al., 2008). 

 

3.2.3. Effect of varying antimicrobial concentrations on biofilm formation 

The effect of the sub-MIC, MIC and supra-MIC exposures of selected antimicrobial agents 

(azithromycin, ceftazidime, ciprofloxacin, gentamicin, and tetracycline) on initial attachment 

and/or biofilm formation was determined using modified microtiter assays. Two treatments were 

investigated using the plate assays, i.e., exposure of cultures at the time of inoculation (initial 

attachment) and exposure after 24 hours biofilm formation (mature biofilm/detachment).  

 For effect of the sub-MIC, MIC and supra-MIC exposure on initial attachment, bacterial 

cultures were grown overnight at 30 ºC for 18 hours, and microtiter plate assays were set up as 

described previously by Basson et al. (2008). Concentrations equivalent to sub-MIC, MIC and 

supra-MIC of individual isolates were added to wells at the time of inoculation. These sub-MIC 

and supra-MIC concentrations were determined based on individual MIC results of isolates 

(Section 3.2.2).  
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Table 3.1. Aeromonas spp. isolates selected for the determination of effect of MIC, sub-MIC and supra-MIC concentrations of 

diverse antimicrobial agents on planktonic and biofilm cells 
Isolate  Source  Species identification Casein 

hydrolysis
* 

Gelatin 
hydrolysis

* 
Motility

* 
A-layer 

detection
* 

Biofilm-forming 
ability

# 
Hydrophobicity

¥ 
Autoaggregation

§ 

          M3 Catfish A. allosaccharophila  +  +  +   + S MHPB SA 

M4 Catfish A.  jandaei  +  −  +   + S HPL SA 

          
M10 Catfish 

 
A. culicicola/jandaei  +  −  +   +  S HPL SA 

M11 Catfish 
 

Aeromonas spp.  −  +  +   + S HPL SA 

M12 Catfish A. bestiarum  +  +   +    + S HPB SA 

          
M16 Tilapia  

 
A. jandaei  +  +  +   + S HPL SA 

          
M20 Tilapia  

 
Aeromonas spp.  +  +  +    +  S HPL SA 

M21 Tilapia  A. allosaccharophila  +  +  +   + S MHPB SA 

          
M27 Sea water 

 
Aeromonas spp.  +   +    +    + S HPL SA 

M36 Sea water 
 

A. jandaei  +   +  +   + S HPL SA 

M37 Sea water 
 

Aeromonas spp.   +   +  +   + S HPL SA 

M40 Sea water A. culicicola  +   +  +   + S MHPB SA 
          
          

M44 Tilapia 
  

A. icthiosmia  +    +   +    +  S HPL SA 

M48 Tilapia 
  

A. icthiosmia  +   +  +   + S HPL SA 

M54 Tilapia  
 

A. icthiosmia  +   +   +    +  S HPL SA 

M56 Tilapia  A. culicicola  +   +   +    + S HPB MA 

          
M75 Koi carp 

 
Aeromonas. spp.   +   +  +   + S HPL SA 

M78 Koi carp 
 

A. bestiarum  −   +  +   + S HPL MA 

M82 Koi carp 
 

A. culicicola  +   +  +   +  S HPL SA 

M87 Koi carp 
 

A. bestiarum  +   +  +   + S MHPB SA 

M89 Koi carp A. allosaccharophila  +  −  +   − M HPL SA 

      ATCC 15468
T A. caviae + + + + M HPL SA 

      ATCC 7966
T A. hydrophila + + + + S HPL MA 

+: positive for test, −: negative for test; *S=strong biofilm-former, *M=moderate biofilm-former,*HPL=hydrophilic, *MHPB=moderately hydrophobic, *HPB=hydrophobic, *SA=strong 
autoaggregation ability, *MA=moderate autoaggregation ability. 
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Staining and determination of OD values were done as previously described above according to 

Basson et al. (2008). Optical density (OD595nm) in the presence of sub-MICs, MICs and supra-

MICs of each antimicrobial agent was compared to that of control wells without antimicrobial 

agent exposure, to determine the effect of exposure of cultures at the time of inoculation in the 

presence of varying antimicrobial agent concentrations. 

    The effect of antmicrobial agent exposure on mature biofilm was done by allowing cells 

to form biofilms over a 24 hour period, after which the sub-MIC, MIC and supra-MIC 

concentrations of antimicrobial agent were added to the 24 hour mature biofilms and incubated 

for a further 24 hours. For both assays, the negative control contained broth only and the positive 

control contained the respective cell suspensions with no antimicrobial agents added. Staining 

and determination of OD values was done as previously described in Section 3.2.2, according to 

Basson et al. (2008). All experiments were done in triplicate, on two separate occasions. Optical 

density (OD595nm) in the presence of sub-MIC, MIC or supra-MIC of each antimicrobial agent 

were compared to that of control wells without antimicrobial agent exposure, to determine the 

increase or decrease in biofilm formation as a result of antimicrobial agent exposure. 

 Biofilm persistence in the presence of antimicrobial agents was calculated using the 

equation or formula: percent of biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 

positive control - OD595 negative control) × 100%, where x corresponds to the tested 

antimicrobial agent (Tre-Hardy et al., 2008).  
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3.2.4. Statistical analyses 

Differences in adhesion between untreated and treated samples were determined by Paired t-tests 

or Wilcoxon signed rank tests if the homogeneity of variances test failed (SigmaStat V3.5, Systat 

Software, Inc; San Jose, CA, USA).  Differences were considered significant if p < 0.05. 

 

3.3. Results  

 3.3.1. Antimicrobial agent susceptibility testing 

Varying levels of susceptibility/resistance to the different antimicrobial agents were displayed by 

the Aeromonas spp. isolates (Table 3.2). Study isolates displayed high levels of resistance to β-

lactams (>90%), although majority were susceptible to augmentin (53.1%), piperacillin-

tazobactam (98.2%), aztreonam (89.9%), 2nd and 3rd generation cephalosporins (>80%) as well 

as carbapenems (100%) as shown in Table 3.2. Low-levels (19.4%) of resistance were observed 

for tetracycline, while higher levels of resistance were observed to the metabolic inhibitors, 

trimethoprim (65.2%) and sulphamethoxazole (81.1%). Isolates also displayed high levels of 

susceptibility to macrolides, erythromycin (47.6%) and azithromycin (94.4%). High levels of 

susceptibility to the quinolones [ciprofloxacin (100%), nalidixic acid (85.5%) and ofloxacin 

(98.2%)], aminoglycosides [amikacin (100%), gentamicin (100%), and streptomycin (96.2%)] as 

well as to metabolic inhibitor, cotrimoxazole (96.1%) were observed (Table 3.2). The resistance 

profiles for all 99 isolates were summarized and listed in Table A5. The resistance profiles, 

based on disk diffusion assays, for the 21 isolates selected for further study are listed in Table 

3.3. Similar antimicrobial resistance profiles were observed for the type strains (A. caviae ATCC 

15468T  and A. hydrophila ATCC 7966T). MAR indices ranged from 0.04 − 0.4. A high 

http://en.wikipedia.org/wiki/San_Jose,_California
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percentage of isolates (89.9 %, 89/99) had MAR indices ≥ 0.2, of which 32.3% (32/99) of 

isolates had MAR indices ≥ 0.3.  
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Table 3.2. Overall antimicrobial susceptibility patterns displayed by Aeromonas spp. isolates obtained from seawater and 

South African fish 

Antimicrobial agents       Antimicrobial agent class 

 

 

 

 

Resistance 

 

%  of isolates 

 

Intermediate 

 

 

Susceptible 

Amikacin (AK30) Aminoglycoside 0 0 100 

Ampicillin (AMP10) Penicillin 92.9 0 7.1 

Amoxycillin (AML10) Penicillin 91.6 2 6.4 

Augmentin (AMC30) Penicillin 26.9 20.1 53.1 

Azithromycin (AZM15) Macrolide 0 5.7 94.4 

Aztreonam (ATM30) Monobactam 5.3 4.9 89.9 

Ceftazidime (CAZ30) 3rd generation cephalosporin 0 0 100 

Cefotaxime (CTX30) 3rd generation cephalosporin 0.8 1.5 97.7 

Cefoxitin (FOX30) 2nd generation cephalosporin 8.5 3.4 88.2 

Cefpodoxime (CPD10) 3rd generation cephalosporin 15.7 0.8 83.6 

Ceftriaxone (CRO30) 3rd generation cephalosporin 0 2.3 97.7 

Cefuroxime (CXM30) 2nd generation cephalosporin 6.4 12.1 81.5 

Chloramphenicol (C30) Chloramphenicol 3.1 4.6 92.3 

Ciprofloxacin (CIP5) Quinolone 0 0.0 100 

Erythromycin (E15) Macrolide 18.6 33.8 47.6 

Gentamicin (CN10) Aminoglycoside 0 0.0 100 

Imipenem (IPM10) Carbapenem 0 0.0 100 

Nalidixic acid (NA30) Quinolone 11.2 3.9 85.0 

Ofloxacin (OFX5) Quinolone 0 1.8 98.2 

Oxacillin (OX1) Penicillin 100 0.0 0.0 

Tetracycline (TE30) Tetracycline 19.4 3.9 76.8 

Piperacillin-tazobactam (TZP110) Penicillin 0 1.8 98.2 

Trimethoprim (W1.25) Metabolic inhibitor 65.2 2.0 32.8 

Streptomycin (S10) Aminoglycoside 2.3 1.5 96.2 

Sulphamethoxazole (RL25) Metabolic inhibitor 81.1 1.6 17.4 

Sulphamethoxazole / trimethoprim (SXT25) Metabolic inhibitor 1.5 2.4 96.1 
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3.3.2. Broth microdilution and modified microtiter plate assays to determine MICs 

and MBICs of planktonic and biofilm cells 

The MICs for azithromycin against Aeromonas spp. isolates ranged from 12-32 µg/ml, while 

ceftazidime MICs ranged from 32-256 µg/ml. Ciprofloxacin MICs ranged from 4-32 µg/ml, and 

gentamicin and tetracycline MICs ranged from 2-32 µg/ml (Table 3.3). Aeromonas spp. isolates 

and the type strains (A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T) displayed higher 

levels of resistance towards ceftazidime (MIC > 32 µg/ml), while for majority of the isolates 

(100%), levels of resistance towards remaining antimicrobial agents tested (tetracycline, 

azithromycin, ciprofloxacin, and gentamicin) were ≤ 32 µg/ml (Table 3.3).  

For the MBIC assay, Aeromonas spp. isolates and the type strains (A. caviae ATCC 

15468T  and A. hydrophila ATCC 7966T) displayed varying levels of detachment in the presence 

of all antimicrobial agents at the concentrations tested (Figs. 3.1−3.21). Azithromycin (AZM) 

had an inhibitory effect on pre-formed biofilms of 100% of Aeromonas spp. isolates and the 

MBICs were higher than the azithromycin MICs, as majority (100%) of the isolates displayed 

detachment only at the highest concentration of azithromycin (4096 µg/ml) (Figs. 3.1−3.21). The 

same trend was observed for ceftazidime (CAZ), ciprofloxacin (CIP), gentamicin (GN) and 

tetracycline (TET), with majority of isolates (100%) displaying detachment at the highest 

concentration (4096 µg/ml) of these antimicrobial agents (Figs. 3.1−3.21).  

Although all isolates displayed increased detachment at the highest concentration (4096 

µg/ml) of these antimicrobial agents, with some antimicrobial agents there was increased 

adhesion rather than increased detachment. In the present study, an increase in adherence upon 

exposure to azithromycin (0.5 µg/ml), ceftazidime (0.5 µg/ml, 12 µg/ml and 32 µg/ml) and 

tetracycline (0.008 µg/ml and 0.5 µg/ml) was observed for isolate M3 (Fig. 3.1). This increase in 
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adherence was also observed for isolate M4 (Fig. 3.2) upon exposure to azithromycin (0.008 

µg/ml and 0.5 µg/ml), ceftazidime (0.008 µg/ml, 0.5 µg/ml, 12 µg/ml and 32 µg/ml) and 

tetracycline (0.008 µg/ml, 0.5 µg/ml, 12 µg/ml, 1024 µg/ml and 4096 µg/ml). For isolate M11 

(Fig. 3.4), an increase in adherence was observed upon exposure to tetracycline (0.008 µg/ml), 

and gentamicin (0.008 µg/ml) for isolate M20 (Fig. 3.7). This increase in adherence upon 

exposure to azithromycin (0.5 µg/ml), ceftazidime (0.008 µg/ml), ciprofloxacin (0.008 µg/ml, 

0.5 µg/ml and 12 µg/ml), gentamicin (0.008 µg/ml, 0.5 µg/ml and 12 µg/ml) and tetracycline 

(0.008 µg/ml) was also observed for isolate M27 (Fig. 3.9). For isolate M36 (Fig. 3.10), an 

increase in adherence was observed upon exposure to ceftazidime (0.008 µg/ml and 0.5 µg/ml), 

and exposure to ciprofloxain (0.008 µg/ml) for isolate M40 (Fig. 3.12) and upon exposure of 

gentamicin (0.008 µg/ml) for isolate M48 (Fig. 3.14). An increase in adherence upon exposure to 

ceftazidime (12 µg/ml), ciprofloxacin (12 µg/ml and 32 µg/ml), gentamicin (2048 µg/ml) and 

tetracycline (0.008 µg/ml, 32 µg/ml, 256 µg/ml, 1024 µg/ml, 2048 µg/ml and 4096 µg/ml) was 

also observed for isolate M78 (Fig. 3.18). Lastly, for isolate M82 (Fig. 3.19), an increase in 

adherence was observed upon exposure to ciprofloxacin (12 µg/ml), and gentamicin (0.008 

µg/ml and 0.5 µg/ml), and upon exposure to ceftazidime (256 µg/ml) for isolate M89 (Fig. 3.21). 

Since majority of the isolates displayed MIC levels ranging from 2-256 µg/ml, there was a ≥16-

fold increase in MBICs (4096 µg/ml) compared to the MICs for all the antimicrobial agents.  
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Table 3.3. Antimicrobial resistance profiles and MICs of Aeromonas spp. isolates  

Isolate Source Species identification MIC (µg/ml) 
 

AZM      CAZ         CIP          GN        TET 

Resistance profiles 
 

 

M3 Catfish A. allosaccharophila 12 32 4 2 2 AMP,AML,OX 

M4 Catfish A. jandaei 32 256 12 12 12 AMP,AML,AMC,OX,W,RL 

M10 Catfish A. culicicola/jandaei 32 256 32 32 32 AMP,AML,CPD,OX,W,RL 

M11 Catfish Aeromonas spp. 32 256 32 4 32 AMP,AML,AMC,E,OX,W 

M12 Catfish A. bestiarum 32 256 12 12 32 AMP,AML,OX,W,RL 

M16 Tilapia  A. jandaei 32 256 4 4 32 AMP,AML,CPD,CXM,FOX,OX,W,RL 

M20 Tilapia  Aeromonas spp. 32 256 12 32 32 AMP,AML,FOX,CPD,CXM,OX,W,RL,SXT 

M21 Tilapia  A. allosaccharophila 32 256 12 32 12 AMP,AML,AMC,FOX,CPD,CXM,OX,W,S 

M27 Sea water Aeromonas spp.  32 256 12 4 12 AMP,E, OX, W, RL 

M36 Sea water A. jandaei 32 256 4 4 12 AMP,AML,E,OX,RL 

M37 Sea water Aeromonas spp.  32 256 32 32 32 AMP,AML,OX,TE,W,RL 

M40 Sea water A. culicicola 32 128 32 32 32 AMP,AML,ATM,OX,RL 

M44 Tilapia  A. icthiosmia 32 256 4 12 12 AMP,AML,OX,RL 

M48 Tilapia  A. icthiosmia 12 256 12 32 2 AMP,AML,OX,W,RL 

M54 Tilapia  A. icthiosmia 32 256 12 12 32 AMP,AML,AMC,E,OX,TE,W,RL 

M56 Tilapia  A. culicicola 32 256 12 12 32 AMP,AML,E,NA,OX,W,RL 

M75 Koi carp Aeromonas. spp.  32 256 12 4 32 AMP,AML,CPD,CXM,C,E,OX,W 

M78 Koi carp A. bestiarum 32 256 12 12 12 AMP,AML,AMC,CPD,CXM,OX,W,RL 

M82 Koi carp A. culicicola 32 256 12 4 12 AMP,AML,AMC,ATM,CPD,CXM,E,FOX,OX,
W,RL 

M87 Koi carp A. bestiarum 32 256 12 32 12 AMP,AML,AMC,OX,W,RL 

M89 Koi carp A. allosaccharophila 32 256 4 12 12 AMP,AML,AMC,CPD,CXM,OX 
     ATCC 15468

T 
A. caviae 32 256 12 4 32 AMP,AML,AMC,E,OX,TE,W,RL 

     ATCC 7966
T 

A. hydrophila 32 256 32 12 12 AMP,AML,AMC,CPD,OX,W,RL 
AMP=ampicillin, AML=amoxycillin, AMC=augmentin, AZM=azithromycin, ATM=aztreonam, CAZ=ceftazidime, FOX=cefoxitin, CPD=cefpodoxime, 

CXM=cefuroxime, CIP=ciprofloxacin, E=erythromycin, GN=gentamicin, NA=nalidixic acid, OX=oxacillin,, TE=tetracycline, W=trimethoprim, 

S=streptomycin, RL=sulphamethoxazole, SXT=cotrimoxazo le. 
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Figure 3.1. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M3 biofilm 

cells following exposure to increasing concentrations of azithromycin, ceftazidime, 
ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.2. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M4 biofilm 

cells following exposure to increasing concentrations of azithromycin, ceftazidime, 
ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 
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Figure 3.3. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M10 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.4. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M11 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 
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Figure 3.5. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M12 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.6. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M16 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 
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Figure 3.7. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M20 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.8. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M21 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays.  
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Figure 3.9. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M27 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.10. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M36 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 
ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 
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Figure 3.11. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M37 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.12. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M40 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 
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Figure 3.13. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M44 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.14. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M48 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 
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Figure 3.15. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M54 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.16. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M56 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

TSB

AZM

CAZ

CIP

GN

TET

A
d

h
er

en
ce

 (O
D

 5
9

5
n

m
) 

Antimicrobial agent concentrations  (µg/ml) 

TSB

AZM

CAZ

CIP

GN

TET

A
d

h
er

en
ce

 (O
D

 5
9

5
n

m
) 

Antimicrobial agent concentrations   (µg/ml) 



 

 

114 

 

Figure 3.17. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M75 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.18. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M78 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 
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Figure 3.19. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M82 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

Figure 3.20. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M87 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 
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Figure 3.21. Minimum biofilm inhibitory concentrations of Aeromonas spp. isolate M89 biofilm 
cells following exposure to increasing concentrations of azithromycin, ceftazidime, 

ciprofloxacin, gentamicin and tetracycline, as determined by the microtiter plate assays. 

 

 

3.3.3. Effect of varying antimicrobial concentrations on biofilm formation 

The effect of sub-MIC, MIC and supra-MIC exposures of the selected antimicrobial agents 

[azithromycin (AZM), ceftazidime (CAZ), ciprofloxacin (CIP), gentamicin (GN) and 

tetracycline (TET)] on initial attachment and/or biofilm formation was determined using 

microtiter plate assays. For the effect of sub-MIC, MIC and supra-MIC exposures of 

antimicrobial agents on initial attachment, varying levels of adherence were observed. All 

(100%, 21/21) of the isolates displayed lower levels of adherence when exposed to azithromycin 

(AZM) compared to the untreated isolates. This was observed for sub-MIC, MIC and supra-MIC 

exposures of azithromycin on adherence of Aeromonas spp. isolates (Fig. 3.22). The same trend 
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was also observed for sub-MIC, MIC and supra-MIC exposures of ceftazidime (CAZ), 

ciprofloxacin (CIP), gentamicin (GN) and tetracycline (TET), when added at the time of 

inoculation (Figs. 3.23 −3.26). In the present study, an increase in adherence upon sub-MIC 

exposure to ciprofloxacin was observed for isolates M27 and M75 (Fig. 3.24) and for isolate 

M27 (Fig. 3.25) upon sub-MIC exposures to gentamicin during the initial attachment assay. A 

similar trend was observed for the type strains (A. caviae ATCC 15468T  and A. hydrophila 

ATCC 7966T), where lower levels of adherence were observed with sub-MIC, MIC and supra-

MIC exposures of AZM, CIP, CAZ, GN and TET when these were added at the time of 

inoculation.  

 

 

 
 

Figure 3.22. Effect of sub-MIC, MIC and supra-MIC exposures of azithromycin (AZM) on 

initial attachment by Aeromonas spp. isolates using microtiter plate assays. 
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Figure 3.23. Effect of sub-MIC, MIC and supra-MIC exposures of ceftazidime (CAZ) on initial 
attachment by Aeromonas spp. isolates using microtiter plate assays. 

 

 

Figure 3.24. Effect of sub-MIC, MIC and supra-MIC exposures of ciprofloxacin (CIP) on initial 

attachment by Aeromonas spp. isolates using microtiter plate assays. 
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Figure 3.25. Effect of sub-MIC, MIC and supra-MIC exposures of gentamicin (GN) on initial 
attachment by Aeromonas spp. isolates using microtiter plate assays. 

 

Figure 3.26. Effect of sub-MIC, MIC and supra-MIC exposures of tetracycline (TET) on initial 
attachment by Aeromonas spp. isolates using microtiter plate assays. 
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For the effect of sub-MIC, MIC and supra-MIC exposures on pre-formed biofilms of 

Aeromonas spp isolates and type strains, varying levels of detachment were also observed. 

Majority of the isolates displayed increased detachment when exposed to azithromycin compared 

to when untreated. This was observed for both sub-MIC (90.5%, 19/21) and supra-MIC (95.2%, 

20/21) exposures of azithromycin (Fig. 3.27). The same trend was also observed for sub-MIC 

and supra-MIC exposures to tetracycline (TET), ciprofloxacin (CIP), ceftazidime (CAZ) and 

gentamicin (GN) of pre-formed Aeromonas spp. biofilms (Figs. 3.28−3.31). An increase in 

adherence upon sub-MIC exposure of ceftazidime was observed for 14.3% (3/21) of isolates 

(M12, M36, M48; Fig. 3.28), as well as for 33.3% (7/21) of isolates (M3, M10, M16, M36, M48, 

M54 and M82; Fig. 3.29) upon sub-MIC exposure to ciprofloxacin and for 9.5% (2/21) of 

isolates (M48, M89; Fig. 3.31) upon sub-MIC exposure to tetracycline, respectively.  

 

 

 

Figure 3.27. Effect of sub-MIC, MIC and supra-MIC exposures of azithromycin (AZM) on pre-
formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 
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Figure 3.28. Effect of sub-MIC, MIC and supra-MIC exposures of ceftazidime (CAZ) on pre-
formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 

 

Figure 3.29. Effect of sub-MIC, MIC and supra-MIC exposures of ciprofloxacin (CIP) on pre-

formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 
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Figure 3.30. Effect of sub-MIC, MIC and supra-MIC exposures of gentamicin (GN) on pre-

formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 

 

 

Figure 3.31. Effect of sub-MIC, MIC and supra-MIC exposures of tetracycline (TET) on pre-
formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 
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When examining biofilm persistence data (Table 3.4), for 76.2% (16/21), 71.4% (15/21) 

and 66.7% (14/21) of the isolates up to 90% of initial attachment was inhibited by sub-MIC, 

MIC and supra-MIC exposures of AZM, respectively. For 47.6% (10/21), 61.9% (13/21) and 

76.2% (16/21) of the isolates up to 90% of initial attachment was inhibited by sub-MIC, MIC 

and supra-MIC exposures of CAZ (Table 3.4), respectively. For 80.9% (17/21), 76.2% (16/21) 

and 80.9% (17/21) of the isolates up to 90% of initial attachment was inhibited by sub-MIC, 

MIC and supra-MIC exposures of CIP (Table 3.4), respectively. For 66.7% (14/21), 80.9% 

(17/21) and 90.4% (19/21) of the isolates up to 90% of initial attachment was inhibited by sub-

MIC, MIC and supra-MIC exposures of GN (Table 3.4), respectively. Finally, for 52.3% (11/21), 

61.9% (13/21) and 76.2% (16/21) of the isolates up to 90% of initial attachment was inhibited by 

sub-MIC, MIC and supra-MIC exposures of TET (Table 3.4), respectively.  
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Table 3.4. Biofilm persistence in the presence of sub-MIC, MIC and supra-MIC exposures of azithromycin (AZM), 

ceftazidime (CAZ), ciprofloxacin (CIP), gentamicin (GN), and tetracycline (TET) on initial attachment of Aeromonas spp. 

isolates  
 %  Biofilm persistence* 

 AZM CAZ CIP GN TET 

Isolates sub-MIC MIC supra-MIC sub-MIC MIC supra-MIC sub-MIC MIC supra-MIC sub-MIC MIC supra-MIC sub-MIC MIC supra-MIC 

M3 3 0 8 1 -1 -1 -4 0 -2 1 -2 0 3 -1 0 

M4 0 -1 -1 6 11 1 10 0 3 -1 2 -2 71 3 3 

M10 9 18 8 18 10 12 2 1 0 0 1 2 0 2 7 

M11 2 6 39 5 8 6 0 4 4 66 1 6 2 1 1 

M12 0 2 1 14 9 5 4 1 -1 3 4 1 1 5 1 

M16 4 0 0 7 1 1 0 4 0 2 -1 1 8 12 6 

M20 0 9 8 76 58 37 3 6 3 1 0 2 1 3 4 

M21 7 2 5 4 10 1 5 1 1 -1 1 5 7 10 6 

M27 3 3 4 25 33 24 119 115 28 114 76 1 34 6 0 

M36 5 4 5 1 2 3 3 2 4 50 5 2 34 29 1 

M37 5 2 4 4 0 0 1 3 1 0 0 1 8 4 5 

M40 4 11 11 31 13 9 -3 3 13 11 15 23 14 16 38 

M44 49 52 19 17 27 30 6 68 13 37 56 10 56 50 11 

M48 51 38 14 15 8 7 1 2 0 1 2 7 69 112 101 

M54 12 50 48 57 45 41 47 13 8 47 61 42 27 20 12 

M56 1 0 4 15 15 9 -2 0 -1 1 -1 3 1 2 5 

M75 5 4 6 51 21 9 127 98 16 28 7 2 2 13 9 

M78 2 2 1 7 1 3 5 10 4 4 1 4 3 8 8 

M82 0 -2 5 3 0 0 4 2 -1 2 0 0 74 3 2 

M87 98 1 95 77 4 -2 0 -1 0 -1 0 1 84 18 17 

M89 12 11 14 4 1 0 89 40 -1 -1 -1 -1 41 -1 1 

ATCC 15468
 5 10 6 45 15 12 25 7 -6 5 20 8 45 4 1 

ATCC 7966 6 15 2 35 50 9 10 4 1 2 10 3 30 7 1 

*Biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 positive control - OD595 negative control) × 100,% where x corresponds to the tested antimicrobial agent (Tre-Hardy et al., 2008). 
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On examination of biofilm persistence data (Table 3.5), 23.8% (5/21), 19.1% (4/21) and 

19.1% (4/21) of the isolates, ≥75 of pre-formed biofilm was detached by sub-MIC, MIC and 

supra-MIC exposures of AZM, respectively. For 14.3% (3/21), 38.1% (8/21) and 38.1% (8/21) 

of the isolates, ≥75 of pre-formed biofilm was detached by sub-MIC, MIC and supra-MIC 

exposures of CAZ, respectively. For 19.1% (4/21), 14.3% (3/21) and 14.3% (3/21) of the 

isolates, ≥75 of pre-formed biofilm was detached by sub-MIC, MIC and supra-MIC exposures of 

CIP, respectively. For 9.5% (2/21), 9.5% (2/21) and 19.4% (4/21) of the isolates, ≥75 of pre-

formed biofilm was detached by sub-MIC, MIC and supra-MIC exposures of GN, respectively. 

Finally, for 4.8% (1/21), 9.5% (2/21), and 9.5% (2/21) of the isolates, ≥75 of pre-formed biofilm 

was detached by sub-MIC, MIC and supra-MIC exposures of TET, respectively.  

 

 

 

 



 

 

126 

Table 3.5. Biofilm persistence in the presence of sub-MIC, MIC and supra-MIC exposures of azithromycin (AZM), 

ceftazidime (CAZ), ciprofloxacin (CIP), gentamicin (GN), and tetracycline (TET) on pre-formed biofilms of Aeromonas spp. 

isolates  
 % Biofilm persistence* 

  AZM   CAZ   CIP   GN   TET 

Isolates sub-MIC MIC supra-MIC sub-MIC MIC supra-MIC sub-MIC MIC supra-MIC sub-MIC MIC supra-MIC sub-MIC MIC supra-MIC 
                

M3 20 23 34 79 66 53 110 106 8 51 39 37 43 50 61 

M4 14 18 37 54 52 22 98 86 55 42 21 18 47 42 31 

M10 53 50 67 26 24 33 271 187 76 44 39 43 52 51 38 

M11 40 61 47 49 47 33 47 45 32 75 104 43 48 46 51 

M12 62 72 40 167 133 75 168 136 67 66 65 71 70 55 75 

M16 20 5 12 3 3 4 44 95 9 40 4 4 52 57 64 

M20 85 85 85 35 25 25 106 77 71 98 89 62 83 82 39 

M21 51 66 51 67 89 92 50 62 98 53 54 98 51 50 95 

M27 25 22 79 50 28 26 40 25 21 67 94 59 56 86 75 

M36 126 104 76 116 116 175 114 121 93 83 93 111 98 83 107 

M37 31 37 69 4 2 1 19 26 13 24 46 43 4 16 14 

M40 131 103 94 28 21 6 24 32 23 33 26 34 55 42 43 

M44 37 28 21 38 25 26 49 98 89 72 65 70 53 56 70 

M48 68 63 58 138 160 135 111 35 30 138 182 164 77 152 58 

M54 94 86 99 88 74 99 110 128 106 66 105 114 102 113 115 

M56 35 22 23 37 19 19 9 11 8 37 36 38 35 38 37 

M75 85 76 60 79 74 55 93 65 86 66 54 62 74 73 58 

M78 19 29 28 93 61 57 62 84 63 22 30 22 64 24 28 

M82 32 28 58 65 86 19 116 139 70 29 33 27 83 46 53 

M87 27 34 34 57 77 79 19 15 18 92 69 95 51 72 54 

M89 15 11 10 10 7 3 42 104 109 88 70 11 116 30 10 

ATCC 15468
 35 47 15 45 15 12 55 77 23 56 87 33 22 66 45 

ATCC 7966 40 56 20 88 67 20 46 100 45 34 76 23 56 76 34 

*Biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 positive control - OD595 negative control) × 100, where x corresponds to the tested antimicrobial agent (Tre-

Hardy et al., 2008). 
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3.4. Discussion  

Given the importance of Aeromonas spp. isolates in causing fish diseases and as human 

opportunistic pathogens (Davies et al., 2001; Farmer et al., 2006; Kirov et al., 2002; Koksal et 

al., 2007; Tacao et al., 2005).  Since Aeromonas spp. cause significant economic losses in 

farmed fish, it was, therefore, crucial to determine the antimicrobial resistance profiles of 

Aeromonas spp. isolates, and to determine similarity of antimicrobial susceptibility profiles to 

other clinical and aquacultural isolates reported in the literature. Additionally, it was critical to 

understand the effect of varying concentrations of antimicrobial agents on aeromonad biofilm 

formation.  

In aquaculture, diagnoses are often presumptive and therapeutic measures in general are 

administered in the absence of reliable antimicrobial resistance data for the relevant pathogenic 

organism (Jacobs and Chenia, 2007). Antimicrobial resistance data from previous studies suggest 

that the indiscriminate use of tetracycline has resulted in high a percentage of resistant strains 

(Jacobs and Chenia, 2007). Although high levels of aeromonad tetracycline resistance have been 

reported previously in other studies (Jacobs and Chenia, 2007; Rhodes et al., 2000, 2004; 

Schmidt et al., 2001), a lower prevalence (19.4%) of tetracycline resistance was observed (Table 

3.2) in the present study, and it could due to the source of isolation of the isolates (Jacobs and 

Chenia, 2007). A high prevalence of 53.3% of tetracycline resistance was observed for 

Aeromonas spp. isolated from farm-raised fresh water fish (Vivekanandhan et al., 2002), while 

44.1% of isolates obtained by from frozen fish intended for human consumption were 

tetracycline-resistant (Castro-Escarpulli et al., 2003). A high prevalence of 78.3% tetracycline 

resistance was also was observed for Aeromonas spp. from South African aquaculture systems 
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(Jacobs and Chenia, 2007) and 100% tetracycline resistance was observed for A. veronii isolates 

from catfish (Nawaz et al., 2006).  

Although majority of these Aeromonas isolates spp. showed high resistance to β-lactams 

(penicillins), majority were susceptible to augmentin, piperacillin-tazobactam, aztreonam, 2nd 

and 3rd generation cephalosporins, carbapenems, macrolides, fluoroquinolones and 

aminoglycosides (Table 3.2), as has been reported previously in other studies (Castro-Escarpulli 

et al., 2003; Jacobs and Chenia, 2007; Koksal et al., 2007). Isolates in the present study also 

displayed trimethoprim and sulphamethoxazole resistance and this as well as β-lactam resistance 

could potentially be associated with plasmids and integrons (Casas et al., 2005; Chang et al., 

2007; Jacobs and Chenia, 2007; L‘Abee-Lund and Sorum, 2000, 2001; Niumsup et al., 2003; 

Rhodes et al., 2004; Sorum et al., 2003). Similar results were obtained for the type strains (A. 

caviae ATCC 15468T  and A. hydrophila ATCC 7966T).    

All study isolates in the present study appeared to have susceptibility profiles similar to 

environmental, fish and clinical isolates and to the type strains (A. caviae ATCC 15468T  and A. 

hydrophila ATCC 7966T) which displayed susceptibility to amikacin, gentamicin, 

chloramphenicol, 2nd and 3rd generation cephalosporins, quinolones, carbapenems and 

cotrimoxazole (Abrahim et al., 2007; Castro-Escarpulli et al., 2003; Chien et al., 1996; Farmer et 

al., 2006; Jacobs and Chenia, 2007; Wahli et al., 2005). As previously described, the newer 

generation fluoroquinolones, ciprofloxacin and ofloxacin appeared to be highly bactericidal 

(Table 3.2) (Alcaide et al., 2010; Castro-Escarpulli et al., 2003; Koksal et al., 2007; Jacobs and 

Chenia, 2007). According to Alcaide et al. (2010) and Jacobs and Chenia (2007), 

fluoroquinolones are the drugs of choice to treat bacterial fish diseases and clinical human 

Aeromonas infections (Castro-Escarpulli et al., 2003; Koksal et al., 2007; Jacobs and Chenia, 
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2007).  The MAR index values were not as high as those reported by Jacobs and Chenia (2007), 

although 32.3% had MAR index values ≥ 0.3%, indicating high risk contamination originating 

from humans or animals where antimicrobial agents are often used (Jacob and Chenia, 2007) .  

Using the broth microdilution assay to determine the MIC of planktonic cells, majority of 

Aeromonas spp. isolates and the type strains (A. caviae ATCC 15468T  and A. hydrophila ATCC 

7966T) displayed higher levels of resistance towards ceftazidime (MIC > 32 µg/ml, Table 3.3) 

although they appeared to be highly susceptible to this drug using the disk diffusion assay (Table 

3.2). This might have been due to the difference in the sensitivity of both methods, and also 

because the broth microdilution microtiter assay is quantitative, while the disk diffusion method 

is qualitative (Arikan et al., 2002). Aeromonas spp. isolates displayed higher levels of resistance 

towards ceftazidime (MIC > 32 µg/ml), while levels of resistance towards ciprofloxacin (MIC 

range of 4 − 32 µg/ml), were not as high as described by Cattoir et al. (2008) who obtained MICs 

> 32 mg/ml for environmental Aeromonas spp. isolates. Alcaide et al. (2010) also observed 

lower levels of resistance towards ciprofloxacin, with majority of quinolone-resistant Aeromonas 

spp. isolates having MIsC ranging of 0.004−8 mg/ml. Picao et al. (2008) also obtained MIC 

levels ≥ 1 mg/l for ciprofloxacin in A. allosaccharophila recovered from a Swiss lake. This 

explains why fluoroquinolones are the drugs of choice to treat bacterial fish diseases and clinical 

human Aeromonas infections (Alcaide et al., 2010; Jacobs and Chenia, 2007). For most isolates 

in this study, the MICs were at the highest concentration of antimicrobial agents tested (32 

µg/ml). This is similar to MIC ranges of 1 - 64 µg/ml, which were observed in the literature by 

Ramalivhana et al. (2009) for all the tested antimicrobial agents against Aeromonas spp. from 

South African patients. 
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In medicine it has been estimated that 65% of infections are biofilm-associated, costing 

the health care system billions of dollars. These biofilm infections are 10 to 1000 times more 

resistant to the effects of antimicrobial agents (Olson et al., 2002). Aeromonas spp. isolates and 

the type strains (A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T) displayed varying 

levels of detachment in the presence of all antimicrobial agents at a concentration ranging from 

0.008, 0.5, 12, 32, 256, 1024, 2048, to 4096 µg/ml (Figs. 3.1−3.21). All antimicrobial agents 

used had an effect on pre-formed biofilms by Aeromonas spp. isolates, with detachment being 

observed at all concentrations. However, as expected, majority of isolates displayed maximum 

detachment at the highest concentration (4096 µg/ml) of these antimicrobial agents. There was a 

≥16-fold increase in MBICs (4096 µg/ml) compared to the MICs for all the antimicrobial agents, 

since majority of the isolates displayed MIC levels ranging from 2-256 µg/ml, and detachment or 

destruction of the pre-formed biofilms was observed after exposure of antimicrobial agents. 

Sandoe et al. (2006) also observed that MBICs of ampicillin, vancomycin and linezolid for E. 

faecalis isolates were 8192, 4096 and 4096 mg/l, respectively, a similar trend to what was 

observed in the present study. This was also observed for Streptococcus pneumoniae isolates 

from cystic fibrosis and blood samples, where the MBICs were higher than the MICs of 

penicillin, tetracycline and rifampicin (Garcia-Castillo et al., 2007).  

Sub-MIC exposure can either eliminate or reduce the ability of pathogens to form 

biofilms by interfering with different stages of biofilm formation resulting in the elimination of 

these pathogens, depending on the mode of action of the drug and type of bacterial strain (Dal 

Sasso et al., 2003). Although sub-MICs are not able to inactivate the microorganism, they are 

potentially capable of altering the chemical and physical cell-surface characteristics and 

consequently the functionality and expression of some virulence properties such as adhesion, 
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biofilm formation, hydrophobicity and motility (Pompillo et al., 2010). In the present study, all 

antimicrobial agents were able to efficiently inhibit initial attachment and increase detachment of 

pre-formed biofilms of Aeromonas spp. isolates and type strains (A caviae ATCC 15468T  and A. 

hydrophila ATCC 7966T) [Figs. 3.22 - 3.31]. This, however, was at varying levels due to their 

varied modes of action and also perhaps the type of isolates tested. Sub-MICs have been shown 

to inhibit biofilm formation causing a decrease in adherence by many bacteria including 

Stenotrophomonas maltophila, Salmonella enterica serovar Typhimurium (Matjan et al., 2007; 

Pompillo et al., 2010). However, Braga and Ricci (1998) observed that sub-MIC and supra-MICs 

of cefodizime (β-lactam) induced the death of E. coli. Hoffman et al. (2005) observed that sub-

MICs of aminoglycoside antimicrobial agents induced biofilm formation in P. aeruginosa and E. 

coli. This was also observed by Ahmed et al. (2009) where the sub-MICs and supra-MICs of 

ampicillin, tetracycline and ciprofloxacin increased biofilm formation in Streptococcus 

intermedius. This was also observed in the present study, although most isolates displayed 

decreased adherence on exposure of different concentrations of antimicrobial agents. With some 

antimicrobial agents there was increased adhesion in the initial attachment assay, and increased 

adhesion rather than increased detachment in the pre-formed biofilm assay as well. This increase 

in adherence was observed upon sub-MIC exposure of ciprofloxacin for isolates M27 and M75 

(Fig. 3.24) and upon sub-MIC exposures of gentamicin for isolate M27 (Fig. 3.25) during the 

initial attachment assay. An increase in adherence upon sub-MIC exposure of ceftazidime was 

observed for 14.3% (3/21) of isolates (M12, M36, M48; Fig. 3.28), as well as for 33.3% (7/21) of 

isolates (M3, M10, M16, M36, M48, M54 and M82; Fig. 3.29) upon sub-MIC exposure to 

ciprofloxacin and for 9.5% (2/21) of isolates (M48, M89; Fig. 3.31) upon sub-MIC exposure to 

tetracycline, respectively, in the pre-formed biofilm assay. 
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With supra-MIC exposures of antimicrobial agents on initial attachment and pre-formed 

biofilms of Aeromonas spp. isolates and type strains (A. caviae ATCC 15468T  and A. hydrophila 

ATCC 7966T), varying levels of adherence were observed, but supra-MIC esposure of all 

antimicrobial agents had maximum inhibitory effect on majority of the isolates for both the 

initial attachment and biofilm detachment assays. Tilmicosin and roxithromycin (newer 

macrolides) completely inhibited the growth of Pasteurella multocida after supra-MIC exposures 

(Lim and Yun, 2001). Similarly, exposure to all antimicrobial agents at supra-MIC caused 

decreased initial attachment adhesion or increased pre-formed biofilm detachment. 

The fluoroquinolones which are the drugs of choice to treat bacterial fish diseases and 

clinical human Aeromonas infections were highly effective in the present study, as could be 

observed from the disk diffusion assay results and MIC levels for thise drugs. Evaluating the 

antimicrobial concentration required to eradicate biofilms by Aeromonas spp. isolates could 

facilitate effective treatment of these biofilms using antimicrobial agents, as cells in a biofilm are 

to be more resistant to antimicrobial agents and higher therapeutic doses should be prescribed. In 

the present study, all antimicrobial agents used had an effect on pre-formed biofilms (MBICs) of 

Aeromonas spp. isolates with majority of isolates displaying maximum detachment at the highest 

concentration (4096 µg/ml) of these antimicrobial agents. The sub-MIC, MIC, and supra-MIC 

exposures of all antimicrobial agents had an inhibitory effect on both initial attachment and pre-

formed biofilms by Aeromonas spp. isolates.    
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CHAPTER FOUR 

Biofilm Control Strategies: Effect of efflux pump inhibition on biofilm formation by 

Aeromonas spp. 

 

4.1. Introduction  

Most bacteria have evolved over the years, and have developed multidrug resistance mechanisms 

to cope with the stresses they encounter. One of the mechanisms for multidrug tolerance of 

biofilms involves the production of persister cells which are produced in small numbers and 

exhibit multidrug tolerance (Lewis, 2008). Other mechanisms include phenotypic changes in 

bacteria that occur within biofilm environments that result in resistance, inactivation of 

antimicrobial agents by extracellular polymers or modifying enzymes (Davey and O‘Toole, 

2000; Hoiby, 2010) as well as up-regulated efflux pumps (Hoiby et al., 2010; Gilbert et al., 

2002). In biofilm environments of most pathogens, multidrug efflux pumps are highly expressed 

and pose a huge threat for antimicrobial therapy and human health. They are relevant elements in 

intrinsic and acquired antimicrobial resistance of pathogenic bacteria (Martinez et al., 2009). 

These proteins extrude chemically unrelated antimicrobial agents from the cell into the 

environment, thereby decreasing the intracellular concentration of the antimicrobial agent to 

subtoxic levels which cells can withstand (Borges-Walmsley et al., 2003; Nelson, 2002; Mah and 

O‘Toole, 2001).  

Efflux proteins can be specific, facilitating the efflux of only one compound or a class of 

compounds and/or non-specific exhibiting broad specificity for chemical compounds that are 

structurally unrelated (Nelson, 2002). Piddock (2006) also described that a single organism can 

possess multiple multidrug efflux pumps, and may transport different classes of antimicrobial 
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agents, not within the same class of antimicrobial agents (Van Bambeke et al., 2000). They can 

extrude various compounds from antimicrobial agents, to disinfectants, dyes, and detergents, 

however, the substrates for each pump are different depending on the actual pump and on the 

bacterial species (Piddock, 2006a). In clinical environments, they may efflux virulence factors, 

and are also involved in the quorum sensing-regulated expression of virulence factors (Martinez 

et al., 2009), which are important traits required for pathogenicity and virulence in bacteria. In 

non-clinical environments, they have relevant implications for the environment as they allow for 

heavy-metal resistance, resistance to organic solvents and resistance to antimicrobial agents 

produced by plants (Fernandes et al., 2003; Martinez et al., 2009).   

A wide variety of efflux pump systems exhibiting drug specificity and multidrug resistance 

have been identified in many bacteria, including Aeromonas spp. isolates, These include efflux 

pump systems (AcrA, AcrB) of the RND family commonly dominant in Gram-negative bacteria 

such E. coli, Enterobacter aerogenes, and Citrobacter freundii, causing resistance to β-lactams, 

quinolones, tetracycline and chloramphenicol (Blair and Piddock, 2009; Bornet et al.,  2003; 

Martinez et al., 2009; Nikaido and Zgurskaya, 2001; Piddock, 2006a, 2006b; Sanchez-Cespedes 

and Vila, 2007). Increased expression of the AdeABC efflux pump causing decreased 

susceptibility to carbapenems among Acinetobacter baumannii isolates in a Chinese hospital was 

also reported by Huang et al. (2008). A multidrug efflux pump, AheABC belonging to the RND 

family has been identified in Aeromonas spp. isolates, specifically A. hydrophila and A. 

salmonicida. This pump was involved in resistance to the antimicrobial agents erythromycin, 

trimethoprim, fusidic acid, rifampicin as well as to the quinolones and fluoroquinolones nalidixic 

acid, oxolinic acid, ofloxacin and ciprofloxacin (Giraud et al., 2004; Hernould et al., 2008).  
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Efflux pump inhibition represents one of the promising strategies to control bacterial 

biofilms due to the fact that cells in biofilm over-express these efflux pump systems compared to 

planktonic cells. This has been observed in most bacteria such as E. coli and Klebsiella spp. as a 

result of the AaeAB efflux pump (Kvist et al., 2008). Efflux pump inhibitors (EPIs) have been 

used to inhibit different efflux pump systems used by different bacterial species thus preventing 

elimination of antimicrobial agents within the cells. There are different efflux pump systems and 

different inhibitors inhibit specific efflux pumps depending on the type of pump and on their 

spectrum of activity (Kvist et al., 2008).  

EPIs are added together with other antimicrobial compounds, and this causes a reduction 

in the MIC values of different antimicrobial agents because the cells become more susceptible to 

these antimicrobials (Kvist et al., 2008). Both PAβN and NMP inhibit RND pumps that are 

mostly abundant in Gram-negative bacteria including Vibrio cholerae (Hernould et al., 2008). 

Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) is potential inhibitor used to control 

bacterial infections as it interferes with proton motive force (PMF)-dependent transporters 

abundant in Gram-negative bacteria, and contributes to the efflux of antimicrobial agents and 

other compounds (Ikonomidis et al., 2008; Ramon-Garcia et al., 2006). PAβN, NMP and CCCP 

are promising candidates to be used in managing bacterial associated diseases (Van Bambeke et 

al., 2006).  

Since efflux pumps are highly expressed in biofilms and play a huge role in antimicrobial 

resistance in bacteria such as Aeromonas spp. isolates, it was, therefore, important to determine 

the prevalence and diversity of these efflux pumps in Aeromonas spp. and additionally, 

determine the substrate specificity of these efflux pumps. This was determined using disk 

diffusion assays incorporating efflux pump inhibitors. The study also investigated the effect of 
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CCCP, PAβN and NMP on initial attachment and detachment of pre-formed biofilms of 

Aeromonas spp. isolates, using modified microtitre plate assays. This was to determine the point 

at which efflux pump inhibitors are effective for biofilm control and could facilitate effective 

removal of these biofilms, thus providing a solution to the infections caused by these aeromonad 

biofilms.  

 

4.2. Materials and Methods 

4.2.1. Identification of efflux pump-associated antimicrobial resistance in 

Aeromonas spp. 

Forty-five presumptive Aeromonas spp. isolates (Table 4.1) were selected based on their 

antimicrobial resistance profiles (Chapter 3), biofilm phenotypes and associated phenotypic 

characteristics (motility, casein hydrolysis, A-layer, hydrophobicity, autoaggregation) for the 

identification of efflux pump-mediated resistance. The two type strains A. caviae ATCC 15468T  

and A. hydrophila ATCC 7966T  were also included in the assays. Bacterial colonies were grown 

on TSB agar plates.  

To determine the presence of an efflux mechanism, Mueller-Hinton (MH) agar plates 

were prepared with or without EPIs [(carbonyl cyanide 3-chlorophenylhydrazone (CCCP) 

(Sigma, SA), phenylalanine arginine β-naphthylamide (PAβN) or 1-(1-naphthylmethyl)-

piperazine (NMP)] (Magnet et al., 2001; Shi et al., 2005). The final concentration of the efflux 

inhibitors in the MH agar was 20 µg/ml. MH agar with or without efflux inhibitors was 

inoculated with standardized cell suspensions equivalent to a 0.5 MacFarland standard, and 16 

Oxoid antimicrobial agent disks {aminoglycosides [amikacin (AK30), gentamicin (CN10), 

streptomycin (S10)], macrolides [azithromycin (AZM15), erythromycin (E15)], cephalosporins 
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[cefpodoxamine (CPD10)], chloramphenicols [chloramphenicol (C30)], metabolic inhibitors 

[sulphamethoxazole (RL25), trimethoprim (W1.25)], penicillins [ampicillin (AMP10)], 

quinolones [enrofloxacin Baytril (ENR5), ciprofloxacin (CIP5), nalidixic acid (NA30), 

norfloxacin (NOR10), ofloxacin (OFX5)],  and tetracyclines [tetracycline (TE30)]} were placed 

onto the inoculated plates. The plates were incubated at 30 ºC for 24 hours. 

Inhibition zone diameters were measured and the resistance or susceptibility profiles of 

the isolates were determined in the presence/absence of EPIs. When the efflux was present in 

isolates, zone diameters on the EPI-containing plates were greater than corresponding zone 

diameters on plates without the inhibitor (Magnet et al., 2001). MH agar plates without EPIs 

inoculated with respective cell suspensions were used as growth controls. E. coli ATCC 25922 

served as the efflux-negative control and multi-drug resistant P. aeruginosa ATCC 27853 was 

the efflux-positive control.  

 

4.2.2. Effect of efflux pump inhibitors on initial attachment and/or biofilm 

formation by Aeromonas spp.  

EPIs (CCCP, PAβN and NMP) were used to determine their effect on initial attachment and pre-

formed biofilm using a modified microtiter assay (Basson et al., 2008). Sixteen hour-old cultures 

were used to prepare cell suspensions, which were standardised equivalent to a 0.5 McFarland 

standard (Basson et al., 2008). The first assay was to investigate the effect of EPIs on initial 

attachment of cells. EPIs (20 µg/ml) were added to 90 µl TSB and 10 µl of cell suspension and 

incubated for 24 hours at 30 ºC with agitation.  
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Table 4.1. Aeromonas spp. isolates selected for the identification of efflux pump-mediated resistance   
Isolate Source Species identification Casein 

hydrolysis* 

Gelatin 

hydrolysis* 

Motility* A-layer 

detection* 

Biofilm-

forming 
ability* 

Hydrophobicity* Autoaggregation*  

M1 Catfish A. culicicola  +  +  +  − S  HPL SA 
M3 Catfish A. allosaccharophila  +  +  +   + S MHPB SA 
M4 Catfish A. jandaei  +  −  +   + S HPL SA 
M7 Catfish A. culicicola  +  +   +    +  S MHPB SA 
M10 Catfish A. culicicola/jandaei  +  −  +   +  S HPL SA 
M11 Catfish Aeromonas spp .  −  +  +   + S HPL SA 
M12 Catfish A. bestiarum  +  +   +    + S HPB SA 
M15 Tilapia  Aeromonas spp .  +  +  +   +  M HPL SA 
M16 Tilapia  A. jandaei  +  +  +   + S HPL SA 
M19 Tilapia  A. jandaei  +  +  +   + M HPL MA 
M20 Tilapia  Aeromonas spp .  +  +  +   +  S HPL SA 
M21 Tilapia  A. allosaccharophila  +  +  +   + S MHPB SA 
M24 Sea water A. jandaei  +  +  +   + S MHPB SA 
M27 Sea water Aeromonas spp .  +   +    +    + S HPL SA 
M29 Sea water A. culicicola  +  +  +    + S MHPB SA 
M30 Sea water A. jandaei  +  +  +   + S HPL MA 
M33 Sea water Aeromonas spp .   +  +  +   + S MHPB SA 
M35 Sea water A.culicicola  +   +  +   + S MHPB MA 
M36 Sea water A. jandaei  +   +  +   + S HPL SA 
M37 Sea water Aeromonas spp .   +   +  +   + S HPL SA 
M40 Sea water A. culicicola  +   +  +   + S MHPB SA 
M42 Tilapia  A. culicicola  +   +  +  − S  HPL SA 
M43 Tilapia  Aeromonas spp .   +   +  +   + S MHPB SA 
M44 Tilapia  A. icthiosmia  +    +   +    +  S HPL SA 
M48 Tilapia  A. icthiosmia  +   +  +   + S HPL SA 
M54 Tilapia  A. icthiosmia  +   +   +    +  S HPL SA 
M56 Tilapia  A. culicicola  +   +   +    + S HPB MA 
M61 Tilapia  A. culicicola  +   +  +    + S HPL SA 
M69 Koi carp A. bestiarum  +  −  +   + S HPL SA 
M71 Koi carp A. bestiarum  −  −  +    + M MHPB SA 
M73 Koi carp A. bestiarum  +   +  +   + S HPL SA 
M74 Koi carp A. allosaccharophila  +  −   +    + S HPB SA 
M75 Koi carp Aeromonas. spp .   +   +  +   + S HPL SA 
M78 Koi carp A. bestiarum  −   +  +   + S HPL MA 
M79 Koi carp A. bestiarum  +   +  +   − S  MHPB SA 
M82 Koi carp A. culicicola  +   +  +   +  S HPL SA 
M83 Koi carp A. bestiarum  +   +  +   + M HPB SA 
M84 Koi carp A. bestiarum  +   +  +   − S  HPL SA 
M85 Koi carp A. allosaccharophila  +   +  +  − S  HPL SA 
M87 Koi carp A. bestiarum  +   +  +  + S MHPB SA 
M89 Koi carp A. allosaccharophila  +  −  +   − M HPL SA 
M91 Koi carp A. bestiarum  +  −  +   + S MHPB SA 
M93 Koi carp A. allosaccharophila  +   +  +   + S HPL SA 
M97 Koi carp A. bestiarum  +   +  +   − S  HPL SA 
M98 

ATCC 15468T 
ATCC 7966T 

Koi carp   Aeromonas spp   
A. caviae  

A. hydrophila 

 + 
+ 
+ 

  + 
+  
+ 

 + 
+ 
+ 

  +  
 + 
 + 

S  
M  
S  

HPL  
HPL  
HPL 

SA  
SA  
MA 

+: positive for test, −: negative for test; *S=strong biofilm-former, *M=moderate biofilm-former, *HPL= hydrophilic, *MHPB= moderately hydrophobic, *HPB= hydrophobic, *SA= strong 

autoaggregation ability, *MA= moderate autoaggregation ability 
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For the second assay, pre-formed 24 hour biofilms were washed three times with sterile 

deionised water, and allowed to air-dry. Following the addition of fresh 90 µl TSB and EPIs (20 

µg/ml), microtiter plates were incubated for a further 24 hours with agitation at 30 ˚C. For both 

assays, the negative control contained broth only and the positive control contained the 

respective cell suspension with no EPIs added. Staining and determination of OD values (OD595) 

was done as described previously in Section 2.2.3 (Basson et al., 2008). OD595nm of isolates with 

EPIs were compared with OD595nm of positive control, without EPIs to determine the change in 

biofilm formation as a result of EPI exposure.  

Biofilm persistence in the presence of EPIs was calculated using the equation or formula: 

percent of biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 positive control - 

OD595 negative control) × 100%, where x corresponds to the tested EPI (Tre-Hardy et al., 2008). 

 

4.2.3. Statistical analyses 

Differences in adhesion between untreated and treated samples were determined by Paired t-tests 

or Wilcoxon signed rank tests if the homogeneity of variances test failed (SigmaStat V3.5, Systat 

Software, Inc; San Jose, CA, USA). Differences were considered significant if p < 0.05.   

 

4.3. Results 

4.3.1. Identification of efflux pump-associated antimicrobial resistance in 

Aeromonas spp. 

Varying levels of susceptibility/resistance to the different antimicrobial agents were displayed by 

the different Aeromonas spp. isolates, in the presence and absence of EPIs (Table 4.2). A 

diameter difference of ≥5 mm was used as a cut-off, together with susceptibility/resistance 

http://en.wikipedia.org/wiki/San_Jose,_California
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patterns. For majority of isolates in the presence of CCCP, susceptibility to norfloxacin (53%), 

azithromycin (63%), and tetracycline (58%) was increased (Table 4.2). Furthermore, for majority 

of isolates in the presence of NMP, susceptibility to norfloxacin (56%), tetracycline (62%), 

azithromycin (42%) and erythromycin (51%) was increased (Table 4.2). Lastly, for majority of 

isolates in the presence of PAβN, susceptibility to erythromycin (47%) was increased (Table 

4.2). The type strains A caviae ATCC 15468T  and A. hydrophila ATCC 7966T , also 

demonstrated increased susceptibility to norfloxacin, azithromycin, tetracycline and 

erythromycin, following exposure to all EPIs (CCCP, NMP, PAβN). 

There were three different categories of EPI-induced changes observed (Table 4.3).  Some 

isolates which were initially susceptible in the absence of the respective EPIs, displayed 

increased susceptibility. Some isolates which were intermediately susceptible became fully 

susceptible.  Some isolates which were resistant displayed intermediate susceptibility or full 

susceptibility.  Some isolates displayed changes in susceptibility following exposure to all three 

EPIs simultaneously, whereas others were only affected by 1 or more EPIs simultaneously 

(Table 4.3). 

   



 

 

141 

 

 

Table 4.2. Antimicrobial agent susceptibility of Aeromonas spp. isolates in the presence and absence of efflux pump inhibitors 

Antimicrobial agent No. (%) 
susceptible  

without 
inhibitor 

(n=19)   

No. (%) 
susceptible 

with 
CCCP

* 

(n=19)   

No. (%) 
susceptible  

without 
inhibitor 

(n=45)   

No. (%) 
susceptible  

with  
NMP

* 

(n=45)   

No. (%) 
susceptible 

without 
inhibitor 

(n=45)   

No. (%) 
susceptible 

with  
PAβN

* 

(n=45)   

Aminoglycosides 
Amikacin (AK30) 
Gentamicin (CN10) 
Streptomycin (S10) 

 
17 (89) 
15 (79) 
12 (63) 

 
2 (11) 
4 (21) 
7 (37) 

 
39 (87) 
25 (56) 
27 (60) 

 
6 (13) 
20 (44) 
18 (40) 

 
36 (80) 
29 (64) 
35 (78) 

 
9 (20) 

16 (36) 
10 (22) 

Macrolides  
Azithromycin (AZM15) 
Erythromycin (E15) 

 
Cephalosporins  

Cefpodoxime (CPD10) 
 

Chloramphenicols 

 
7 (37) 
12 (63) 

 
 

13 (68) 
 

 
12 (63) 
7 (37) 

 
 

6 (32) 

 
16 (36) 
12 (27) 

 
 

30 (67) 

 
19 (42) 
23 (51) 

 
 

15 (33) 

 
30 (47) 
14 (31) 

 
 

35 (78) 

 
5 (33) 

21 (47) 
 
 

10 (22) 

Chloramphenicol (C30) 
 

Metabolic inhibitors  

11 (58) 8 (42) 29 (64) 16 (36) 27 (60) 18 (40) 

Trimethoprim (W1.25) 19 (100) 0 (0) 45 (100) 0 (0) 45 (100) 0 (0) 

Sulphamethoxazole (RL25) 
 

Penicillins 
Ampicillin (AMP 10)  
 

Quinolones 

19 (100) 
 
 

15 (79) 

0 (0) 
 
 

4 (21) 

45 (100) 
 
 

32 (82) 

0 (0) 
 
 

8 (18) 

45 (100) 
 
 

40 (89) 

0 (0) 
 
 

5 (11) 

Ciprofloxacin (CIP5) 
Enrofloxacin (ENR5) 
Nalidixic acid (NA30) 
Norfloxacin (NOR10) 

14 (74) 
13 (68) 
13 (68) 
9 (47) 

5 (26) 
6 (32) 
6 (32) 
10 (53) 

32 (71) 
28 (62) 
26 (58) 
20 (44) 

13 (29) 
17 (38) 
19 (42)  
25 (56) 

35 (78) 
31 (69) 
32 (71) 
27 (60) 

10 (22) 
14 (31) 
13 (29) 
18 (40) 

Ofloxacin (OFX5) 12 (63) 7 (37) 28 (62) 17 (38) 36 (80) 9 (20) 

Tetracyclines        

Tetracycline (TE30) 8 (42) 11 (58) 7 (38) 28 (62) 32 (71) 13 (29) 

     *CCCP= Carbonyl cyanide 3-chlorophenylhydrazone, *PAβN= phenylalanine arginine β-naphthylamide, *NMP= 1-(1-naphthylmethyl)-piperazine  
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Table 4.3. Three categories of EPI-induced susceptibility observed for Aeromonas spp. isolates  

 Total no. 
(%) of 

isolates 
susceptible 

without 
inhibitor  

(n=45)   

No. (%) 
susceptible 

with 
CCCP* 
(n=19) 

No. (%) 
susceptible 

with  
NMP* 
(n=45) 

No. (%) 
susceptible 

with 
PAβN*  
(n=45) 

Total no. (%) 
of isolates 

intermediately 
susceptible   

without  
inhibitor 

(n=45) 

No. (%) 
susceptible 

with 
CCCP* 
(n=19)  

No. (%) 
susceptible 

with  
NMP* 
(n=45) 

No. (%) 
susceptible  
with PAβN* 

(n=45)  

Total no. 
(%) of 

isolates 
resistant  

without  
inhibitor  

(n=45) 

No. (%) 
susceptible 

with 
CCCP* 
(n=19) 

No. (%) 
susceptible 

with  
NMP* 
(n =45) 

No.(%) 
susceptible 

with 
PAβN* 
(n=45) 

Aminoglycosides 

Amikacin (AK30) 
Gentamicin (CN10) 

 

13 (28.9)  
26 (57.8)  

 

 2 (10.5)  
4 (21.1) 

 

6 (13.3)  
20 (44.4)  

 

8 (17.8)  
13 (28.9)  

        

Streptomycin (S10) 26 (57.8)  5 (26.3)  17 (37.8)  9 (20.0) 1 ( 2.2)  1 (5.3)  0 (0) 0 (0)     

 

Macrolides  

Azithromycin (AZM15) 
Erythromycin (E15) 

 

Cephalosporins 

 

 

27 (60.0) 
15 (33.3)  

 

 

7 (36.8)  
1 (5.3)  

 

 

18 (40.0)  
11 (24.4)  

 

 

8 (17.8) 
10 (22.2)  

 

 

 

2 (4.4)  
7 (15.6) 

 

 

1 (5.3)  
1 (5.3) 

 

 

1 (2.2)  
5 (11.1) 

 

 

1 (2.2)  
4 (8.9) 

 

 

1 (2.2)  
13 (28.9) 

 

 

1 (5.3)  
4 (21.1) 

 

 

1 (2.2)  
6 (13.3) 

 

 

1 (2.2)  
6 (13.3) 

Cefpodoxime (CPD10) 

 
Chloramphenicols 

Chloramphenicol (C30) 

22 (48.9) 

 
 

20 (44.4)  

 

5 (26.3)  

 
 

5 (26.3)  

 

14 (31.1) 

 
 

15 (33.3)  

 

9 (20.0) 

 
 

12 (26.7)  

 

 
 

3 (6.7) 

 

 
 

1 (5.3) 

 

 
 

2 (4.4) 

 

 
 

3 (6.7) 

2 (4.4) 

 
 

3 (6.7) 

1 (5.3)  

 
 

0 (0) 

2 (4.4) 

 
 

2 (4.4) 

1 (2.2)  

 
 

3 (6.7)  

 

Penicillins 
Ampicillin (AMP10) 

 

 
2 (4.4) 

 

 
0 (0) 

 

 
2 (4.4) 

 

 

 
1 (2.2) 

 

     

 
7 (15.6) 

 

 
4 (8.9) 

 

 
5 (11.1) 

 

 
2 (4.4)  

Quinolones  

Ciprofloxacin (CIP5) 

 

13 (28.9) 

 

1 (5.3) 

 

9 (20.0) 

 

1 (2.2) 

        

Enrofloxacin (ENR5)  
Nalidixic acid (NA30) 

Norfloxacin (NOR10) 

Ofloxacin (OFX5) 

 
Tetracyclines 

22 (48.9) 
25 (55.6) 

29 (64.4) 

11 (24.4) 

6 (31.6)  
6 (31.6)  

 12 (63.2) 

 5 (26.3) 

14 (31.1) 
19 (42.2) 

25 (55.2)  

8 (17.8) 

14 (31.1) 
14 (31.1) 

19 (42.2)  

8 (17.8) 

     
1 (2.2) 

 

 
0 (0) 

 
1 (2.2) 

 
0 (0) 

Tetracycline (TE30) 23 (51.1) 4 (21.1) 21 (46.7) 8 (17.8) 2 (4.4) 0 (0) 1 (2.2) 1 (2.2) 10 (22.2) 3 (15.8) 7 (15.6) 4 (8.9) 

*CCCP= Carbonyl cyanide 3-chlorophenylhydrazone, *PAβN= phenylalanine arginine β-naphthylamide, *NMP= 1-(1-naphthylmethyl)-piperazine



 

 

143 

4.3.2. Effect of efflux pump inhibitors on initial attachment and/or biofilm 

formation by Aeromonas spp.  

Following CCCP treatment at the time of inoculation (initial attachment), 100% (45/45) of 

isolates demonstrated decreased adhesion, while none of the isolates demonstrated increased 

adhesion (Fig. 4.1). Following NMP treatment, 11% (5/45) of isolates demonstrated increased 

adhesion while decreased adhesion was observed for 89% (40/45) of isolates (Fig. 4.2). 

Following PAβN treatment, 36% (16/45) of isolates demonstrated increased adhesion while 

decreased adhesion was observed for 64% (29/45) of isolates (Fig. 4.3). A similar trend of results 

was obtained for the type strains (A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T), 

where lower levels of adherence were observed for the initial attachment assay. Treatment with 

EPIs in the initial attachment assay resulted in statistically significant altered adherence (p = 

0.001).   
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Figure 4.1. Effect of 20 μg/ml carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on initial attachment of Aeromonas spp.isolates 
using microtiter plate assays. 
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Figure 4.2. Effect of 20 μg/ml 1-(1-naphthylmethyl)-piperazine (NMP) on initial attachment of Aeromonas spp. isolates using 

microtiter plate assays.
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Figure 4.3. Effect of 20 μg/ml phenylalanine arginine β-naphthylamide (PAβN) on initial attachment of Aeromonas spp. isolates using 

microtiter plate assays.
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On treatment of pre-formed biofilms with CCCP, 100% (45/45) of isolates demonstrated 

increased detachment, while none of the isolates demonstrated increased adhesion (Fig. 4.4). On 

treatment of pre-formed biofilms with NMP, 2% (1/45) of isolates demonstrated increased 

adhesion, while increased detachment was observed for 98% (44/45) of isolates (Fig. 4.5). On 

treatment of pre-formed biofilms with PAβN, 20% (9/45) of isolates demonstrated increased 

adhesion, while increased detachment was observed for 80% (36/45) of isolates (Fig. 4.6). A 

similar trend of results was obtained for the type strains (A. caviae ATCC 15468T  and A. 

hydrophila ATCC 7966T), where increased detachment was observed in the pre-formed biofilm 

assay. Treatment with all EPIs in the pre-formed assay resulted in statistically significant altered 

adherence (p = 0.001).   
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Figure 4.4. Effect of 20 μg/ml carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on pre-formed biofilms of Aeromonas spp. isolates 

using microtiter plate assays.
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 Figure 4.5. Effect of 20 μg/ml 1-(1-naphthylmethyl)-piperazine (NMP) on pre-formed biofilms of Aeromonas spp. isolates using 
microtiter plate assays.
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Figure 4.6. Effect of 20 μg/ml phenylalanine arginine β-naphthylamide (PAβN) on pre-formed biofilms of Aeromonas spp. isolates 

using microtiter plate assays. 
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Analysis of biofilm persistence data (Table 4.4) revealed that for 88.9% (40/45) of the 

isolates, up to ≥75% of the biofilm was destroyed by CCCP exposure at the time of inoculation. 

For 6.7% (3/45) of the isolates, up to ≥75% of the biofilm was destroyed by NMP exposure at 

the time of inoculation (Table 4.4). Finally, for 20% (9/45) of the isolates, up to ≥75% of the 

biofilm was destroyed by PAβN exposure at the time of inoculation (Table 4.4).  

Examination of biofilm persistence data (Table 4.4) revealed that for 20% (9/45) of the 

isolates, ≥75% of the pre-formed biofilm was destroyed by CCCP exposure. For 28.9% (13/45) 

of the isolates, ≥75% of the pre-formed biofilm was destroyed by NMP exposure (Table 4.4). 

Finally, for 4.5% (2/45) of the isolates, ≥75% of the pre-formed biofilm was PAβN exposure 

PAβN exposure destroyed by PAβN exposure (Table 4.4).  
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Table 4.4. Biofilm persistence in the presence of CCCP, NMP and PAβN exposure on initial 

attachment (24 H) and pre-formed biofilms (BIO) of Aeromonas spp. isolates 

 

 %  Biofilm persistence* 

Isolates  24 H 

CCCP 
24H NMP 24H PAβN BIO 

CCCP 

BIO NMP BIO PAβN 

M1 -7 -2 49 34 17 77 
M3 -5 58 72 54 41 92 
M4 2 44 118 41 56 99 
M7 1 29 76 24 53 57 

M10 -1 41 58 22 51 76 
M11 -5 35 54 16 27 78 
M12 -1 46 177 6 4 1 
M15 -1 24 131 86 9 164 
M16 5 5 29 11 1 21 
M19 50 9 128 10 53 47 
M20 -7 170 168 38 76 108 
M21 1 53 132 57 64 142 
M24 90 27 97 34 16 72 
M27 19 123 136 40 50 35 
M29 -5 51 28 36 33 96 
M30 -1 9 28 76 26 95 
M33 29 26 46 19 22 63 
M35 -12 44 79 43 98 169 
M36 4 42 144 73 64 115 
M37 -7 28 144 53 49 48 
M40 1 12 97 54 48 62 
M42 -5 52 90 49 60 72 
M43 1 137 88 43 34 77 
M44 12 84 95 55 24 81 
M48 5 41 74 37 40 55 
M54 -1 31 71 68 30 116 
M56 -2 36 121 45 86 55 
M61 37 65 85 26 71 72 
M69 26 47 70 63 38 42 
M71 13 16 25 19 80 11 
M73 18 51 11 56 24 118 
M74 6 31 61 51 3 26 
M75 -2 85 123 22 55 73 
M78 11 71 258 84 131 145 
M79 -1 24 33 34 15 70 
M82 10 38 105 31 125 62 
M83 -7 49 31 70 53 77 
M84 -5 4 26 53 19 114 
M85 0 11 23 63 90 166 
M87 1 120 162 46 7 55 
M89 20 145 126 6 1 40 
M91 -4 27 71 22 59 78 
M93 -4 34 77 40 67 56 
M97 1 46 93 35 47 75 
M98 -1 26 109 30 50 84 

ATCC 15468
T 

6 56 78 45 44 77 
ATCC 7966

T 
3 34 99 28 56 90 

*Biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 positive control - OD595 negative control) × 100, where x 

corresponds to the tested antimicrobial agent (Tre-Hardy et al., 2008). 
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Table 4.5 summarises the overall effects of EPI exposures on initial attachment and 

biofilm detachment, respectively.  CCCP was effective in inhibiting initial attachment as well as 

increasing detachment from pre-formed biofilms. NMP and PAβN were more effective in 

increasing detachment of pre-formed biofilms compared to inhibiting initial attachment. 

 

Table 4.5. Summary table for the effect of EPIs on initial attachment and pre-formed 

biofilms of Aeromonas spp. isolates  

Treatments 

 

Initial attachment 

%  Increase    %  Decrease    %  No effect 

(number of isolates) 

Pre-formed biofilms  

%  Increase    %  Decrease    %  No effect  

(number of isolates) 

20 μg/ml CCCP - 100 (45/45) - - 100 (45/45) - 

20 μg/ml NMP 11 (5/45) 89 (40/45) - 2 (1/45) 98 (44/45) - 

20 μg/ml PAβN 36 (16/45) 64 (29/45) - 20 (9/45) 80 (36/45) - 

 

 

4.4. Discussion 

Since efflux pumps are highly expressed in bacterial biofilms and play a huge role in 

antimicrobial resistance in bacteria such as Aeromonas spp. isolates, it was therefore important to 

determine the prevalence and diversity of these efflux pumps in Aeromonas spp. and 

additionally, determine the substrate (antimicrobial agent) specificity of these efflux pumps. 

Majority of Aeromonas spp. isolates in the present study were more susceptible to tetracycline, 

norfloxacin, and azithromycin due to CCCP and NMP inhibition of the efflux pumps (Table 4.2). 

This efflux data suggests the presence of broad-substrate range efflux pumps and/or multiple 

efflux pumps, which are able to extrude different classes of antimicrobial agents. Piddock (2006) 
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reported that a single organism can possess multiple multi-drug efflux pumps and these may also 

transport different classes of antimicrobial agents, from different classes (Van Bambeke et al., 

2000). 

Hernould et al. (2008) studied the multidrug efflux system in Aeromonas spp., i.e., 

AheABC efflux pump, belonging to the RND family which was able to extrude non-quinolone 

antimicrobials [erythromycin, tetracycline, trimethoprim, fusidic acid, and rifampicin] as well as 

quinolones and fluoroquinolones [nalidixic acid, oxolinic acid, norfloxacin, ofloxacin and 

ciprofloxacin]. In the present study, majority of isolates (Table 4.2) and type strains were more 

susceptible to tetracycline, norfloxacin, and azithromycin due to CCCP and NMP inhibition of 

the efflux pumps. This has also been reported by Hernould et al. (2008), and was rather 

disturbing in the case of norfloxacin, as quinolones are the drugs of choice for treatment of 

Aeromonas infections in humans and in treatment of bacterial fish diseases (Alcaide et al., 2010). 

This may this may pose a threat in antimicrobial therapy if these bacteria have evolved ways to 

remove these drugs. Ramon-Garcia et al. (2006) observed that tetracycline efflux was inhibited 

with the use of CCCP in Mycobacterium fortuitum. This was rather not surprising as tetracycline 

is primarily extruded PMF-driven efflux pumps, and thus tetracycline efflux is usually abolished 

in presence of a PMF inhibitor such as CCCP.  Bean and Wareham (2008) observed that 11.3% 

of Acinetobacter spp. isolates showed an increase in susceptibility to tetracycline in the presence 

of NMP, which was lower than that obtained in the present study for Aeromonas spp. isolates. 

PAβN and NMP have been shown to cause an increase in susceptibility to erythromycin, 

norfloxacin and tetracycline in other bacteria like Campylobacter jejuni spp. (Hannula and 

Hanninen, 2008), so it is not suprising the same scenario was observed for Aeromonas spp.  
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PAβN and NMP both inhibit the RND pumps that are mostly abundant in Gram-negative 

bacteria including V. cholerae, F. johnsoniae, E. coli and other important clinical isolates (Bina 

et al., 2009; Hirakata et al., 2009).  CCCP, NMP and PAβN all produced significant reduction of 

biofilm formation by Aeromonas spp. isolates and type strains (both initial attachment and 

mature biofilm), although CCCP was most effective for all (100%) of the isolates. This may be 

due to the varied modes of action of these EPIs. For P. aeruginosa, CCCP at the beginning of 

biofilm growth resulted in reduced growth compared to the untreated cells (Ikomomidis et al., 

2008). In the present study, NMP had a greater effect on biofilm formation causing a significant 

reduction in 98% of isolates compared to PAβN. This is similar to what was obtained by Kvist et 

al. (2008), where NMP (20 µg/ml) was shown to have a significant effect on biofilm formation 

by S. aureus and P. putida and resulted in 50% reduction, whereas PAβN had no significant 

effect on biofilm formation by these two organisms.  In summary, in the present study, CCCP 

was most effective, followed by NMP then lastly PAβN, for both the initial attachment and pre-

formed biofilm assays (Table 4.5). 

An efflux phenotype was observed for Aeromonas spp. isolates, eliminating diverse 

classes of antimicrobial agents, thus suggesting the presence of broad-substrate range efflux 

pumps and/or multiple efflux pumps. Since microorganisms have multiple efflux pump systems, 

EPIs with a broad spectrum of activity need to be used so they can be effective against diverse, 

multiple efflux pump systems present in different microbial pathogens. This is one of the few 

studies, on the analysis of multidrug efflux pumps in Aeromonas spp. isolates, since there have 

been limited reports of efflux in Aeromonas spp. (Hernould et al., 2008). Further study is 

required to explore the type of efflux pumps, substrate profile, and regulation mechanisms of 

these pumps in these Aeromonas spp. isolates.  
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Based on present data, EPIs do inhibit the different efflux pump systems used by 

Aeromonas spp. isolates and thus could prevent elimination of antimicrobial agents within these 

cells, and thus reduce multidrug resistance. These EPIs also can be used as potential inhibitors of 

biofilm formation by Aeromonas spp. isolates, as they caused reduction of adherence and 

increased detachment of majority of the isolates. Although more work still needs to done with 

these inhibitors and their mechanism, efflux pump inhibition represents a potential control 

strategy to limit aeromonad biofilms and may not only prevent disease outbreaks but also 

increase effectiveness of existing therapeutic agents.  
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CHAPTER FIVE 

Biofilm Control Strategies: Effect of Lytic enzymes and Quorum-sensing inhibition on  

biofilm formation by Aeromonas spp. 

 

5.1. Introduction  

The EPS is the outermost layer of the biofilm and consists of a wide variety of polysaccharides, 

proteins, glycoproteins, glycolipids and often, large amounts of extracellular DNA (eDNA) 

(Kaplan, 2009). The eDNA is not mainly considered to be a remnant of lysed cells but a major 

structural component of the EPS (Bockelmann et al., 2006). Previous studies show that eDNA 

may function as a cell-to-surface adhesin and/or cell-to-cell adhesin in the initial phase of biofilm 

formation in the Gram-negative bacterium, P. aeruginosa (Molin and Tolken-Nielsen, 2003; 

Steinberger and Holden, 2005). Steinberg and Holden (2005) reported that extracellular DNA 

was present in unsaturated P. aeruginosa biofilm and was maximally 50% more abundant than 

cellular DNA and that it played a role in initial attachment and early biofilm formation. Das et al. 

(2010) also reported that eDNA released by autolysins, acts as an adhesive and strengthens the 

biofilm, and found that the removal of eDNA from Gram-positive bacteria reduced initial 

adhesion and bacterial aggregation of cells to surfaces. Inhibition of biofilm formation was 

observed for Bacillus cereus, Bdellevibrio bacteriovorus, Comamonas denitrificans, 

Enterococcus faecalis, non-typeable H. influenzae, P. aeruginosa, Shewanella oneidensis, S. 

aureus, Staph. epidermidis, and Streptococcus intermedius when DNase I was added during the 

initial attachment assay (Kaplan, 2009). 

eDNA has also been shown to be an important component of the extracellular matrix of 

Neisseria meningitidis biofilms, as it was shown to stabilize biofilm structures in the late stages 
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of biofilm formation by N. meningitidis (Lappann et al., 2010). Kirkpatrick and Viollier (2010) 

reported the role of eDNA in Caulobacter crescentus biofilm dispersal.  Detachment from pre-

formed biofilms following DNase I treatment was observed for A. baumanii, A. 

actinomycetemcomitans, B. bacteriovorus, C.  jejuni, E. coli, non-typeable H. influenzae, K. 

pneumoniae, S. oneidensis, Staph. haemolyticus, Strep. mutans, Strep. pneumoniae, and Strep. 

pyogenes (Kaplan, 2009).  However, on addition of DNase to pre-formed biofilm, some biofilms 

are resistant or partially resistant to detachment, this has been observed with biofilms of 

Comamonas denitrificans, E. faecalis, P. aeruginosa, Staph epidermidis, and Strep. intermedius.  

This might be explained by cells in mature biofilms being held together by adhesins other than 

eDNA, or eDNA may be stabilized and resistant to lysis by DNase I (Kaplan, 2009). 

DNase can also increase the bactericidal activity of different antimicrobial agents by 

sensitizing bacterial cells to antimicrobial agents,making them more susceptible to antimicrobial 

agents. This was observed with P. aeruginosa and S. aureus where the effectiveness of 

levofloxacin, rafampin, benzalkonium chloride, cetylpyridinium chloride, bleach, and 

chlorhexidine gluconate was increased when these bacterial cells were pre-exposed to the DNase 

prior to the treatment of these bactericidal agents (Kaplan, 2009). The mechanism by which the 

DNase sensitize the cells is not known, however, it is predicted that DNA acts as a barrier for the 

diffusion of bactericidal agents, allowing for the entry of these antimicrobial agents to act on 

bacterial cells and eliminates them (Kaplan, 2009). Another possibility is that DNA that is 

surface-attached restricts the entry of the antimicrobial agents, so by eliminating this surface-

exposed DNA, the antimicrobial agents gains entry to the cell and act on their targets site 

(Kaplan, 2009). 
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Quorum sensing (QS) is a regulatory mechanism that allows surface-associated cells to 

coordinate their communal behavior through the production, release and detection of 

autoinducing signals. QS regulates functions like conjugation, secretion of virulence factors, 

antibiotic production and biofilm formation (Bi et al., 2007). QS systems are important in 

regulating bacterial attachment and for biofilm maturation (Xiong and Liu, 2010). It has been 

shown in detail that QS regulates biofilm formation in most bacteria including Aeromonas spp 

(Bi et al., 2007; Garde et al., 2010; Lynch et al., 2002; Ponnusamy et al., 2009). Due to the 

critical role of QS in biofilm formation, three potential QS targets have been identified in Gram-

negative bacteria: the signal generator, the signal molecule and the signal receptor (Rasmussen & 

Givskov, 2006), with quorum sensing inhibitors (QSIs) presenting as potential therapeutic 

options for the control of biofilms (Francolini and Donelli, 2010). QS may be interrupted in 

many ways and one of these is to inhibit the signal molecule from binding to the receptor via 

analogues of the signal molecules. The halogenated furanone (5Z)-4-bromo-5-

(bromomethylene)-3-butyl-2(5H)-furanone and its synthetic derivatives are potent inhibitors of 

Gram-negative QS, which disrupt AHL- as well as autoinducer 2 (AI-2)-mediated signalling in 

Gram-negative bacteria, without affecting bacterial growth (Hentzer and Givskov, 2003).  

Furanones mimic the AHL signal and bind LasR, acting as competitive inhibitors of AHL 

binding (Hentzer et al., 2002). Furanones can inhibit biofilm formation while not affecting cell 

growth, and have been shown to reduce P. aeruginosa virulence, increase sensitivity to 

antibiotics and cause increased biofilm detachment (Hentzer et al., 2002). They also disrupt the 

AI-2 biosynthetic pathway by inactivating LuxS, an enzyme essential for AI-2 production 

(Xiong and Liu, 2010).   
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Since AHL signals are highly homologous, so are their synthases. S-adenosylmethionine 

(SAM) is a critical intermediate used as the amino donor for generation of the homoserine 

lactone ring moiety. Traditional inhibitors of SAM-utilizing enzymes such as S-

adenosylhomocysteine (SAH), sinefungin, and other intermediate mimics are potent inhibitors of 

AHL synthesis acting on the synthase responsible for producing C4-HSL, the secondary 

messenger in P. aeruginosa (Musk and Hergenrother, 2006).  Autoinducer-2 (AI-2) is another 

SAM-derived QS signal molecule, whose proximate precursor is SAH.  S-adenosylhomocysteine 

is the metabolite that is generated as a by-product of all SAM-utilizing methylation reactions 

(Musk and Hergenrother, 2006).   

trans-cinnamaldehyde (3-phenyl-2-propenal, TC) is a natural flavouring substance and a 

potent aromatic compound which has a broad spectrum of antimicrobial activity (Nuryastuti et 

al., 2009; Amalaradjou et al., 2010).  Cinnamaldehyde causes inhibition of the PMF, respiratory 

chain, electron transfer, and substrate oxidation, resulting in uncoupling of oxidative 

phosphorylation, inhibition of active transport, loss of pool metabolites, and disruption of 

synthesis of DNA, RNA, proteins, lipids, and polysaccharides. It results in extensive leakage 

from bacterial cells or the exit of critical molecules and ions leads cell death (Nuryastuti et al., 

2009).  Cinnamaldehyde has been observed to inhibit biofilm formation of E. coli and P. 

aeruginosa (Niu and Gilbert, 2004), as well as Burkholderia multivorans and B. cenocepacia 

(Brackmann et al., 2009). It has also been identified as an inhibitor of both the AHL- and AI-2-

based QS systems in V. harveyi (Niu et al., 2006). 

Vanillin is the major component of vanilla beans, also a principal flavoring compound 

used in numerous foods (20 – 26 mM concentrations), such as ice cream, chocolate, and 

confectionary products (Ponnusamy et al., 2009). Vanillin has been shown to have inhibitory 
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effects against many bacteria including B. subtilis, S. enteriditis, and E. coli (Katayama and 

Nagai, 1960). Ponnusamy et al. (2009) also described the potential use of vanillin as a QSI for A. 

hydrophila biofilm formation, where it had an effect on the adherence and detachment of A. 

hydrophila.  

Since eDNA and quorum sensing play a huge role in biofilm formation by many bacteria, 

including Aeromonas spp., it was, therefore, important to evaluate the effect of different biofilm 

inhibitors on biofilm formation by Aeromonas spp. isolates. Therefore, the current study aimed at 

investigating the effect of DNase I, a lytic enzyme; (Z-)-4-bromo-5-(bromomethylene)-2(5H)-

furanone, S-adenosylhomocysteine, cinnamaldehyde, and vanillin on initial attachment and 

detachment of pre-formed biofilms of Aeromonas spp. isolates, using modified microtitre plate 

assays. This was to determine the point at which lytic enzymes and QSIs are effective for biofilm 

control and was critical as it may facilitate effective removal of these biofilms. 

 

5.2. Materials and Methods 

5.2.1. Bacterial isolates and growth conditions  

Forty-five presumptive Aeromonas spp. isolates (Chapter 4, Table 4.1) and 2 type strains (A 

caviae ATCC 15468T  and A. hydrophila ATCC 7966T) were used for the detection of AHL 

signalling molecules, for the determination of DNase activity and for investigating the effect of 

DNase I and QSIs on initial attachment and pre-formed biofilms. Bacterial colonies were grown 

on tryptic soy broth (TSB) agar plates [Tryptic soy broth (TSB); Merck Chemicals, Gauteng, 

South Africa) supplemented with 10% bacteriological agar (Bacteriological agar; Merck 

Chemicals, Gauteng, South Africa].  
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5.2.2. Investigation of DNase production  

DNase production was determined using DNase Agar supplemented with 0.01% bromophenol 

blue (Merck, SA). Plates were inoculated with five microlitres of cell suspension, standardised 

equivalent to a 0.5 McFarland standard, in triplicate, and incubated for 4 days at 30 ºC.  DNase-

positive Streptococcus pyogenes ATCC 19615 was used as a positive control.  Plates were 

flooded with 0.1% of a 1 M HCl solution, and development or appearance of either a pink halo 

or zones of clearance around a colony were taken as a positive result (Jeffries et al., 1957). 

Colony diameters as well as zone diameters were measured and the relative DNase activity 

(RDA) was determined using the formula: RDA = halo diameter (zone) – bacterial growth 

diameter/ bacterial growth diameter (Zacaria et al., 2010).  

 

5.2.3. Effect of DNase I on initial attachment and/or biofilm formation by 

Aeromonas spp. isolates  

DNase I was added at the time of inoculation and to pre-formed biofilms to determine if 

Aeromonas spp. isolates were using eDNA for initial attachment (as an adhesin) or to maintain 

their biofilm structure in mature biofilms.  Sixteen hour TSB cultures were used to prepare cell 

suspensions, which were standardised equivalent to a 0.5 McFarland standard (Basson et al., 

2008).  For initial attachment assays, bovine DNase I (Sigma-Aldrich, St Louis, MO, USA) was 

added to 90 µl TSB and 10 µl of cell suspension, at a final concentration of 1 mg/ml (Izano et 

al., 2009) and microtitre plates were incubated for 24 hours at 30 ˚C with agitation (Basson et 

al., 2008).   

For pre-formed biofilm detachment assays, 24 hour biofilm were established following 

addition of 90 µl TSB and 10 µl of standardized cell suspension to microtitre plate wells, which 
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were incubated at 30 ºC for 24 hours.  After a 24 hour incubation period, microtitre plates were 

washed three times with sterile deionised water, and allowed to air-dry.  Following the addition 

of fresh 90 µl TSB and DNase I (to a final concentration of 1 mg/ml), microtitre plates were 

incubated for a further 24 hours with agitation at 30 ˚C. For both assays, the negative control 

contained only TSB, while positive controls contained respective cell suspensions without 

DNase I added. Staining and determination of OD values (OD595nm) was done as described 

previously in Chapter 2 (Section 2.2.3), according to Basson et al. (2008). These were compared 

with the OD595nm of the control wells without DNase I to determine the effect of DNase I on 

biofilm formation.  

Biofilm persistence in the presence of DNase I was calculated using the equation or 

formula: percent of biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 positive 

control - OD595 negative control) × 100%, where x corresponds to the DNase I enzyme (Tre-

Hardy et al., 2008). 

 

5.2.4. Identification N-acyl homoserine lactone (AHL) quorum sensing signal 

production by Aeromonas spp. isolates using biosensors 

In order to identify N-acyl homoserine lactones (AHLs) production by Aeromonas spp. isolates, 

24 hour TSA cultures were cross-streaked against the 24 hour C. violaceum CV026 biosensor on 

LB agar plates and A. tumefaciens A136 biosensor on LB agar plates containing 50 µl of 20 

mg/ml 5-bromo-4-chloro-indolyl-β-D-galactopyranoside [X-gal] (Swift et al., 1997). Plates were 

incubated at 30 ºC for 24 hours. Positive assays were judged as the production of the purple color 

by the C. violaceum CV026 reporter and the production of blue color by A. tumefaciens A136 

reporter due X-gal hydrolysis (Swift et al., 1997). C. violaceum ATCC 31532 (C6-HSL 
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overproducer) was used as a positive control for the CV026 biosensor assay for AHL detection, 

while A. tumefaciens KYC6 (3-oxo-C8 HSL overproducer) was used as a positive control for the 

A136 biosensor assay for AHL detection.  

 

5.2.5. Effect of quorum-sensing inhibitors on initial attachment and/or bioiflm 

biofilm formation by Aeromonas spp. isolates 

QSIs [cinnamaldehyde, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone, S-

adenosylhomocysteine (SAHC) and vanillin; Sigma-Aldrich] were used to determine their effect 

on initial attachment and pre-formed biofilms using modified microtiter assays. Sixteen hour-old 

cultures were used to prepare cell suspensions, which were standardised equivalent to a 0.5 

McFarland standard (Basson et al., 2008). The first assay was to investigate the effect of QSIs on 

initial attachment of cells. QSIs at a concentration of 5 µg/ml cinnamaldehyde, 5 µg/ml 2(5H)-

furanone, 5 µg/ml S-adenosylhomocysteine or 5 µg/ml vanillin, and were added to 90 µl TSB 

and 10 µl of cell suspension and incubated for 24 hours at 30 ºC with agitation.  

For the second assay, pre-formed 24 hour biofilms were exposed to QSIs at the respective 

concentrations, in TSB (90 µl) and incubated for a further 24 hours with agitation at 30 ºC. After 

a 24 h incubation period, microtiter plates were washed three times with sterile deionised water, 

and allowed to air-dry. The negative control contained broth only and the positive control 

contained the respective cell suspension only without quorum sensing inhibitors added. Staining 

and determination of OD values (OD595nm) was done as described previously in Chapter 2 

(Section 2.2.3), according to Basson et al. (2008). These were compared with the OD595nm of the 

control wells without QSIs  to determine the effect of these QSIs on biofilm formation.  
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Biofilm persistence in the presence of QSIs was calculated using the equation or formula: 

percent of biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 positive control - 

OD595 negative control) × 100%, where x corresponds to the QSI (Tre-Hardy et al., 2008). 

 

5.2.6. Statistical analyses 

Differences in adhesion between untreated and treated samples were determined by Paired t-tests 

or Wilcoxon signed rank tests if the homogeneity of variances test failed (SigmaStat V3.5, Systat 

Software, Inc; San Jose, CA, USA). Differences were considered significant if p < 0.05.   

 

5.3. Results 

5.3.1. Investigation of DNase production  

Zones of clearing were observed for 97,7% (44/45) of isolates and type strains, A. caviae ATCC 

15468T  and A. hydrophila ATCC 7966T , which were DNase-positive, with zone diameters 

ranging from 9.7 – 21.7 mm and the relative caseinolytic activity (RDA) ranged from 0 – 1.3 

(Table A2). There was also a positive correlation the fish host/origin of isolates and relative 

DNase activity (r = 0.225, p = 0.0108). A strong positive correlation was also observed between 

DNase activity and autoaggregation [Chapter 2, Scetion 2.3.5] (r = 0.207, p = 0.0399). A zone of 

clearing (20 mm) was also observed for the DNase-positive control, Streptococcus pyogenes 

ATCC 19615.  

 

 

 

http://en.wikipedia.org/wiki/San_Jose,_California
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5.3.2. Effect of DNase I on initial attachment and/or biofilm formation by 

Aeromonas spp. isolates  

Following DNase I treatment, 47% (21/45) of isolates demonstrated increased adhesion while 

decreased adhesion was observed for 53% (24/45) of isolates in the initial attachment assay (Fig. 

5.1). Similar results were obtained for both type strains A. caviae ATCC 15468T  and A. 

hydrophila ATCC 7966T , where lower levels of adherence were observed in the initial 

attachment assay. Although DNase I treatment at the time of inoculation (p = 0.223) resulted in 

altered adherence of the study isolates, these were not statistically significant. No statistically 

significant correlations were evident between DNase agar zone diameter, untreated adhesion or 

adhesion following attachment and biofilm treatments. 

 On treatment of pre-formed biofilms with DNase I, 40% (18/45) of isolates demonstrated 

increased adhesion, while increased detachment was observed for 60% (27/45) of isolates (Fig. 

5.2). Similar results were obtained for both type strains A. caviae ATCC 15468T  and A. 

hydrophila ATCC 7966T , where increased detachment was observed in pre-formed biofilm 

assay. Although DNase I treatment of pre-formed Aeromonas spp. biofilms resulted in altered 

adherence of the study isolates, these were not statistically significant (p = 0.071). No 

statistically significant correlations were evident between DNase agar zone diameter, untreated 

adhesion or adhesion following attachment and biofilm treatments. 

Based on biofilm persistence data (Table 5.1), for 4.5% (2/45) of the isolates up to ≥75% 

of the biofilm was destroyed by DNase I added at the time of inoculation. For the pre-formed 

biofilms, ≥75% of the pre-formed biofilm was destroyed by DNase I for 2.2% (1/45) of the 

isolates (Table 5.1).  
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      Figure 5.1. Effect of 1 mg/ml DNase I on initial attachment of Aeromonas spp. isolates using microtiter plate assays. 
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Figure 5.2. Effect of 1 mg/ml DNase I on pre-formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 
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Table 5.1. Biofilm persistence in the presence of DNase I on initial attachment (24 H) and 

pre-formed biofilms (BIO) of Aeromonas spp. isolates 

 
 %  Biofilm persistence* 

Isolates 24 H DNase I BIO DNase I 

M1 88 89 
M3 115 107 

M4 102 91 

M10 42 56 
M11 92 94 

M12 149 40 

M15 107 79 
M16 39 41 

M19 230 74 

M20 135 75 
M21 143 164 

M24 147 53 

M27 54 83 
M29 138 44 

M30 77 148 

M33 108 105 
M35 97 123 

M36 128 105 

M37 112 107 
M40 111 123 

M42 88 93 

M43 230 103 
M44 77 109 

M48 70 105 

M54 78 93 
M56 76 94 

M61 77 149 

M69 52 83 
M7 58 66 

M71 27 104 

M73 12 108 
M74 62 14 

M75 115 56 

M78 141 156 
M79 144 150 

M82 98 89 

M83 40 133 
M84 114 110 

M85 18 83 

M87 86 91 
M89 107 100 

M91 84 77 

M93 79 62 
M97 106 91 

M98 107 99 

A. caviae ATCC 15468
T 

98 109 
A. hydrophila ATCC 7966

T 
86 96 

*Biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 positive control - OD595 negative control) × 100%, where x 

corresponds to the tested antimicrobial agent (Tre-Hardy et al., 2008).
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5.3.3. Identification N-acyl homoserine lactone (AHL) quorum sensing signal 

production by Aeromonas spp. isolates using biosensors 

The C. violaceum CV026 biosensor detects short and medium AHLs (C6, C6-3-oxo C8, C8-3-

oxo), and produces purple violacein pigment. C. violaceum CV026 reporter responded to 33% 

(33/99) of isolates by the production of violacein. Agrobacterium tumefaciens A136 detects a 

broad range of AHLs (all 3-oxo, C6, C8, C10, C12, C14, C6-3- hydroxy, C8-3-hydroxy and 

C10-3-hydroxy) and utilizes X-gal hydrolysis to produce a blue color. In the present study, the A. 

tumefaciens A136 reporter responded to all isolates (100%) producing a signal (blue colour) in 

the presence of X-gal. A. tumefaciens A136 and C. violaceum CV026 reporter responded to both 

the type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T . 

 

5.2.4. Effect of quorum-sensing inhibitors on initial attachment and/or bioiflm 

biofilm formation by Aeromonas spp. isolates 

Following cinnamaldehyde treatment at the time of inoculation, 11% (5/45) of isolates 

demonstrated increased adhesion while decreased adhesion was observed for 89% (40/45) of 

isolates (Fig. 5.3). The type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T  

also displayed lower levels of adherence during the initial attachment assay. Treatment at the 

time of inoculation resulted in statistically significant altered adherence (p = 0.001).   

Following furanone treatment, 16% (7/45) of isolates demonstrated increased adhesion 

while decreased adhesion was observed for 84% (38/45) of isolates in the initial attachment 

assay (Fig. 5.4). The type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T  also 

displayed lower levels of adherence during the initial attachment assay. Treatment at the time of 

inoculation resulted in statistically significant altered adherence (p = 0.001).   
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Following SAHC treatment at the time of inoculation, 9% (4/45) of isolates demonstrated 

increased adhesion while decreased adhesion was observed for 87% (39/45) of isolates (Fig. 5.5). 

The type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T  also displayed lower 

levels of adherence during the initial attachment assay. Treatment resulted in statistically 

significant altered adherence (p = 0.001).   

Following vanillin treatment at the time of inoculation, 22% (10/45) of isolates 

demonstrated increased adhesion while decreased adhesion was observed for 78% (35/45) of 

isolates (Fig. 5.6). The type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T  

also displayed lower levels of adherence during the initial attachment assay. Treatment at the 

time of inoculation resulted in statistically significant altered adherence (p = 0.001).  In the initial 

attachment assay, treatments with all four compounds resulted in statistically significant 

alterations in adhesion (p < 0.05).   
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Figure 5.3. Effect of 5 µg/ml cinnamaldehyde on initial attachment of Aeromonas spp. isolates using microtiter plate assays. 
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Figure 5.4. Effect of 5 μg/ml 2(5H)-furanone on initial attachment of Aeromonas spp. isolates using microtiter plate assays. 
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Figure 5.5. Effect of 5 μg/ml S-adenosylhomocysteine (SAHC) on initial attachment of Aeromonas spp. isolates using microtiter plate 

assays. 
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Figure 5.6. Effect of 5 μg/ml vanillin on initial attachment of Aeromonas spp. isolates using microtiter plate assays.
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Following cinnamaldehyde treatment of pre-formed biofilms, 7% (3/45) of isolates 

demonstrated increased adhesion, while increased detachment was observed for 93% (42/45) of 

isolates (Fig. 5.7). The type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T  

also displayed increased detachment in the pre-formed biofilm assay. Treatment of pre-formed 

Aeromonas spp. biofilms resulted in statistically significant altered adherence (p = 0.001).   

   Following furanone treatment of pre-formed biofilms, 4% (2/45) of isolates 

demonstrated increased adhesion, while increased detachment was observed for 96% (43/45) of 

isolates (Fig. 5.8). The type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T  

also increased detachment in the pre-formed biofilm assay. Treatment of pre-formed Aeromonas 

spp. biofilms resulted in statistically significant altered adherence (p = 0.001).   

Following SAHC treatment of pre-formed biofilms, 9% (4/45) of isolates demonstrated 

increased adhesion, while increased detachment was observed for 91% (41/45) of isolates (Fig. 

5.9). The type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T  also displayed 

increased detachment in the pre-formed biofilm assay. Treatment of pre-formed Aeromonas spp. 

biofilms resulted in statistically significant altered adherence (p = 0.001).   

Following vanillin treatment of pre-formed biofilms, 2% (1/45) of isolates demonstrated 

increased adhesion, while increased detachment was observed for 96% (43/45) of isolates (Fig. 

5.10). The type strains, A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T  also displayed 

increased detachment in the pre-formed biofilm assay. Treatment of pre-formed Aeromonas spp. 

biofilms resulted in statistically significant altered adherence (p = 0.001). All four treatments of 

pre-formed biofilms resulted in statistically significant alterations in adhesion (p < 0.05).   
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Figure 5.7. Effect of 5 µg/ml cinnamaldehyde on pre-formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 
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Figure 5.8. Effect of 5 μg/ml 2(5H)-furanone on pre-formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 
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Figure 5.9. Effect of 5 μg/ml S-adenosylhomocysteine (SAHC) on pre-formed biofilms of Aeromonas spp. isolates using mirotiter 

plate assays. 
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Figure 5.10. Effect of 5 μg/ml vanillin on pre-formed biofilms of Aeromonas spp. isolates using microtiter plate assays. 
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Based on biofilm persistence data (Table 5.2), for 4.5% (2/45) of the isolates, up to ≥75% 

of the biofilm was destroyed by addition of cinnamaldehyde at the time of inoculation. For 2.2% 

(1/45) of the isolates, up to ≥75% of the biofilm was destroyed by addition of 2(5H)-furanone at 

the time of inoculation (Table 5.2). For 4.5% (2/45) of the isolates, up to ≥75% of the biofilm 

was destroyed by addition of SAHC at the time of inoculation (Table 5.2). Finally, for 11.1% 

(5/45) of the isolates, up to ≥75% of the biofilm was destroyed by addition of vanillin at the time 

of inoculation (Table 5.2). 

Based on biofilm persistence data (Table 5.2) for the effect of QSIs on pre-formed 

biofilms, for 22.2% (10/45) of the isolates, ≥75% of the pre-formed biofilm was destroyed by 

addition of cinnamaldehyde. For 11.1% (5/45) of the isolates, ≥75% of the pre-formed biofilm 

was destroyed by addition of 2(5H)-furanone (Table 5.2). For 8.8% (4/45) of the isolates, ≥75% 

of the pre-formed biofilm was destroyed by addition of SAHC (Table 5.2). Finally, for 15.6% 

(7/45) of the isolates, ≥75% of the pre-formed biofilm was destroyed by addition of vanillin 

(Table 5.2).  
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Table 5.2. Biofilm persistence in the presence of cinnamaldehyede, 2(5H)-furanone, SAHC 

and vanillin exposure on initial attachment (24 H) and pre-formed biofilms (BIO) of 

Aeromonas spp. isolates 

Isolates %  Biofilm persistence* 

 

 

24 H 

Cinnamaldehyde  

24 H 

Furanone  

24 H 

SAHC 

24 H 

Vanillin 

BIO  

Cinnamaldehyde 

BIO  

Furanone  

BIO  

SAHC 

BIO  

Vanillin 

M1 91 59 68 69 115 101 114 116 

M3 78 126 100 66 66 73 66 56 

M4 113 99 102 113 67 31 81 51 

M7 64 63 100 107 92 89 85 87 

M10 92 138 99 93 75 89 105 87 

M11 78 125 81 66 69 60 72 83 

M12 50 64 66 59 23 20 20 20 

M15 45 36 73 51 48 83 116 60 

M16 36 48 44 68 20 31 50 32 

M19 52 59 123 103 68 36 63 56 

M20 38 86 76 69 72 18 36 38 

M21 49 46 18 20 33 26 30 51 

M24 121 135 175 115 37 44 82 50 

M27 55 44 51 29 7 29 31 31 

M29 81 52 75 81 75 109 85 84 

M30 34 63 67 75 109 68 112 100 

M33 63 66 66 102 44 40 25 35 

M35 105 68 87 89 48 65 88 58 

M36 46 40 35 81 11 46 63 21 

M37 51 86 71 73 49 24 35 58 

M40 47 77 80 52 25 43 39 27 

M42 65 102 62 57 16 18 30 18 

M43 84 99 91 65 97 38 102 69 

M44 99 56 95 113 69 45 62 56 

M48 52 91 52 35 27 38 28 31 

M54 57 35 24 24 55 73 38 58 

M56 43 74 75 78 18 17 37 29 

M61 70 81 25 28 27 69 62 22 

M69 61 99 58 47 108 70 90 92 

M71 15 68 76 24 54 60 73 19 

M73 55 3 98 73 77 89 62 85 

M74 53 61 59 97 55 56 72 67 

M75 49 82 78 97 36 38 48 31 

M78 44 70 75 56 22 46 60 43 

M79 56 56 39 24 65 51 66 92 

M82 65 63 63 35 16 44 18 56 

M83 66 82 69 59 33 53 77 97 

M84 31 51 56 46 92 56 26 65 

M85 76 33 42 79 88 54 65 53 

M87 110 102 50 50 48 51 56 49 

M89 123 149 66 103 21 71 30 18 

M91 33 100 52 33 89 82 93 82 

M93 69 113 114 100 18 47 28 41 

M97 14 29 91 105 25 23 12 12 

M98 34 58 78 23 57 33 58 69% 

ATCC 15468T
 

30 66 56 89 74 44 23 87 

ATCC 7966
T 

34 76 99 77 82 37 15 96 

*Biofilm persistence = (OD595 x – OD595 negative control)/ (OD595 positive control - OD595 negative control) × 100%, where x 

corresponds to the tested antimicrobial agent (Tre-Hardy et al., 2008). 
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Table 5.3 summarises the overall effects of DNase I and QSI treatments on initial attachment and 

biofilm detachment of Aeromonas spp. isolates. 

 

Table 5.3. Summary table for effect of DNase I and QSIs on initial attachment and pre-

formed biofilms of Aeromonas spp. isolates  

Treatments 

 

Initial attachment 

%  Increase    %  Decrease    %  No effect 

(number of isolates) 

Pre-formed biofilms  

%  Increase    %  Decrease    %  No effect  

(number of isolates) 

1 mg/ml DNase I  47 (21/45) 53 (24/45) - 40 (18/40) 60 (27/45) - 

5 μg/ml Cinnamaldehyde  11 (5/45) 89 (40/45) - 7 (3/45) 93 (42/45) - 

5 μg/ml 2(5H)-furanone  16 (7/45) 84 (38/45) - 4 (2/45) 96 (43/45) - 

5 μg/ml SAHC 9 (4/45) 87 (39/45) 4 (2/45) 9 (4/45) 91 (41/45) - 

5 μg/ml Vanillin 22 (10/45) 78 (35/45) - 2 (1/45) 96 (43/45) 2 (1/45) 

 

 

5.4. Discussion 

Diverse strategies are being applied to control bacterial biofilms due to their increased resistance 

to antimicrobial agents, including the use of matrix-degrading enzymes, quorum-sensing 

inhibitors, and quorum-quenching enzymes (Francolini and Donelli, 2010; Xiong and Liu, 2010).  

The present study investigated the effects of DNase I, a matrix-degrading enzyme, quorum 

sensing inhibitors [(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone and S-

adenosylhomocysteine], as well as the phytochemicals cinnamaldehyde and vanillin, on initial 

attachment and detachment of Aeromonas spp. isolates from abiotic surfaces.   
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DNase I was more effective in reducing mature bacterial biofilms, with greater reduction 

for mature biofilms (60% of isolates) than on initial attachment (reduction for 53% of isolates), 

although this was not significant for the population as a whole. Similar results were obtained for 

A. caviae ATCC 15468T  and A. hydrophila ATCC 7966T , where lower levels of adherence were 

observed in the initial attachment assay and increased detachment was observed in pre-formed 

biofilm assay. These results were similar to the findings of Whitchurch et al. (2002) for P. 

aeruginosa, where eDNA was involved in biofilm adhesion and maturation, as well as biofilm 

stabilization. The effect of DNase I did not appear to isolate-specific. The decreased adhesion 

following DNase I exposure, may be explained by the action of DNase I removing the secreted 

DNA adhesins, thus preventing effective attachment. The increased adhesion observed for some 

isolates may be explained by the exolytic action of DNase I facilitating the adhesion process and 

promoting attachment by degrading eDNA. This has been observed for C. crescentus biofilm, 

which matured faster in the presence of DNase I than in its absence (Berne et al., 2010).   

A. tumefaciens A136 detects a broad range of AHLs (all 3-oxo, C6, C8, C10, C12, C14, 

C6-3- hydroxy, C8-3-hydroxy and C10-3-hydroxy) which is why in the present study, the A. 

tumefaciens A136 reporter responded to all isolates (100%) producing a signal (blue colour) in 

the presence of X-gal. C. violaceum CV026 detectes short and medium AHLs (C6, C6-3-oxo C8, 

C8-3-oxo), and produced the purple violacein pigment. The C. violaceum CV026 reporter 

responded to 33% of isolates by the production of violacein. Swift et al. (1997) observed that A. 

hydrophila and A. salmonicida produce diffusible AHL. Aeromonas spp. isolates isolated from 

patients with malaria were shown to produce C4-HSL and C6-HSL as their major two types of 

AHLs. A. hydrophila was shown to produce both C4-HSL and C6-HSL, while A. sobria only 

produced C4-HSL (Chan et al., 2010). A. hydrophila was shown to produce C4-HSL, as the 
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major AHL, and A. caviae was shown to produce 3-oxo-C6-HSL (Medina-Martínez et al., 2006). 

Aeromonas spp. isolates isolated from municipal activated sludge produced C4-HSL and C6-

HSL (Morgan-Sagastume et al., 2005). This implies that Aeromonas spp. isolates in the present 

study may also produce diverse AHLs, specifically C4-HSL and C6-HSL as major AHLs. 

Another strategy to inhibit bacterial biofilm formation is QS inhibition because 

microorganisms communicate using QS signals and these signals play important roles in 

initiating biofilm formation and in the detachment of biofilms. QSIs were more effective in 

reducing bacterial biofilm (mature biofilm) compared to preventing initial attachment. In the 

present study, although increased biofilm dispersal was observed with all QSIs, vanillin and 

2(5H)-furanone were more effective (reduction for 96% of isolates) compared to SAHC and 

cinnamaldehyde and this might be due to their varied modes of action.  

Vanillin and furanones inhibit both short and long chain AHLs and A. hydrophila growth 

and biofilm formation was reduced up to 17% by 1 mg/ml 2(5H)-furanone and up to 46.3% by 

0.25 mg/ml vanillin (Ponnusamy et al., 2009; Viana et al., 2009). Brominated furanones have 

been widely used due to their antibacterial ability, anti-QS activity and anti-biofilm effect.  These 

molecules competitively prevent binding of the QS molecules to the receptor or decrease the 

receptor concentration thus inhibiting or inactivating the signal transduction of QS (Dong et al., 

2007). This effectiveness of quorum sensing inhibition using brominated furanones has been 

observed with P. aeruginosa was observed, as well as reduced virulence factors production, 

biofilm formation, respectively (Hentzer et al., 2002). 2(5H)-furanone also caused a significant 

reduction (32%) in QS-mediated biofilm formation of A. hydrophila (Ponnusamy et al., 2010), 

this was, however, lower than the ≥75% reduction of the biofilm obtained in the study (Table 

5.2). 
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Vanillin was more effective in reducing pre-formed biofilm (mature biofilm). Following 

vanillin treatment at the time of attachment, decreased adhesion was observed for 78% (35/45) of 

isolates in the initial attachment assay while detachment was observed for 96% (43/45) of 

isolates. Ponnusamy et al. (2009) also described the potential use of vanillin as a QSI for A. 

hydrophila biofilm formation, where it had an effect on the adherence and detachment of A. 

hydrophila.    

Cinnamaldehyde was also more effective on mature biofilms than on initial attachement. 

Cinnamaldehyde has been observed to inhibit biofilm formation of E. coli and P. aeruginosa, as 

well as swimming motility of E. coli (Niu and Gilbert, 2004).  Following cinnamaldehyde 

treatment, an 11% reduction in biofilm mass was observed for Burkholderia multivorans 

(Brackmann et al., 2009), which was lower than the ≥75% reduction (Table 5.2) obtained in 

present study for Aeromonas spp. isolates.   

S-adenosylhomocysteine (SAHC), an intermediate formed during the synthesis of both 

AHLs and AI-2, can be directly used as QSI because it mimics the action of SAM-utilizing 

enzyme that donates the nitrogen atom from SAM to become AHLs (Musk and Hergenrother, 

2006). Following SAHC treatment, 87% (39/45) of isolates (Fig. 5.5) displayed decreased 

adhesion at the time of inoculation, while 91% (41/45) of isolates (Fig. 5.9) displayed increased 

detachment for pre-formed biofilms. Based on the present data, in the initial attachment assay 

(Table 5.3), cinnamaldehyde was most effective, followed by SAHC, 2(5H)-furanone then lastly 

vanillin. For the pre-formed biofilm assay, 2(5H)-furanone and vanillin were the most effective, 

followed by cinnamaldehyde then SAHC (Table 5.3).  

The A. tumefaciens A136 and Chromobacterium violaceum CV026 biosensor strains 

were effective and useful in phenotypic detection of AHLs, although further analysis such as 
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liquid-liquid and solid-phase extraction methods (Wang et al, 2010) could be used to identify 

and characterize AHLs from different Aeromonas spp. isolates. This could provide relevant 

information on the exact AHL molecules produced by the study isolates. Because QSI 

compounds attenuate virulence of pathogenic bacteria without affecting growth, they have been 

termed anti-pathogenic drugs, as opposed to being antibacterial drugs.  QSIs and the DNase I 

enzyme are thus alternative treatment options that may be used to treat diseases and outbreaks 

associated with aeromonad species because these treatments interfere with crucial stages of 

biofilm formation, i.e., QS and degradation of the adhesin eDNA. The toxicity and carcinogenic 

effects as well as poor stability in aqueous solutions have greatly limited the utilization of 

halogenated furanones as antimicrobials (Hentzer and Givskov, 2003). Vanillin could be a 

potential alternative to the toxic chemicals, and has potential practical application in aquaculture 

systems (Ponnusamy et al., 2009). The source and identity of the eDNA has to be established in 

order to clarify its specific role in the ability of Aeromonas spp. to form biofilms.   
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CHAPTER SIX 

CONCLUSIONS 

 

The presence of Aeromonas spp. isolates in mixed spp. biofilms has been reported previously 

from the clinical and industrial settings (Asha et al., 2004; Azad et al., 1999; Bomo et al., 2004; 

Dogruoz et al., 2009; Nayak et al., 2004). Aeromonas spp. isolates from seawater and diverse 

cultured fish displayed different levels of biofilm formation on polystyrene, which was affected 

by alteration of nutrient availability, but not by temperature. Although biofilms have been 

studied for A. hydrophila and A. caviae, studying biofilm formation by a variety of members of 

this genus provides more relevant information on the behaviour of diverse species from diverse 

sources. The ability of Aeromonas spp. to autoaggregate, rather than its hydrophilic nature, 

appears to be a significant characteristic for aeromonad biofilm formation. The role of motility 

and other surface-associated appendages (A-layer) and extra-cellular enzymes (protease and 

gelatinase) in adherence and biofilm formation did not appear statistically significant and 

requires further investigation.  

Majority of Aeromonas isolates showed a high level resistance to β-lactams (penicillins), 

trimethoprim and sulphamethoxazole, and were susceptible to augmentin, piperacillin-

tazobactam, aztreonam, 2nd and 3rd generation cephalosporins, carbapenems, macrolides, 

tetracyclines, fluoroquinolones and aminoglycosides, and appeared to have susceptibility profiles 

similar to environmental, fish and clinical isolates. For most isolates, the MICs were at the 

highest concentration of antimicrobial agents tested (32 µg/ml), except for ceftazidime for which 

most isolates were highly resistant with (MICs > 32 µg/ml). Of the five antimicrobial agents, 

fluoroquinolones, which are the drugs of choice to treat bacterial fish diseases and clinical 
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human Aeromonas infections, were highly effective in the present study. This conclusion was 

reached following analysis of the disk diffusion data and MIC levels for analysis of this drug.  

Evaluating the antimicrobial concentration required to eradicate biofilms by Aeromonas 

spp. isolates could facilitate effective treatment of these biofilms using antimicrobial agents, as 

cells in a biofilm appear to be more resistant to antimicrobial agents and/or biofilm inhibition 

molecules. In the present study, all antimicrobial agents used had an effect on pre-formed 

biofilms by Aeromonas spp. isolates (MBICs); however, majority of isolates displayed 

significant detachment at the highest concentration (4096 µg/ml) of these antimicrobial agents 

and this was somehow expected as this was the highest concentration. The sub-MIC, MIC and 

supra-MIC exposures of all antimicrobial agents had an effect on both initial attachment and pre-

formed biofilms of Aeromonas spp. isolates.    

Since the Aeromonas spp. isolates in the present study eliminated diverse classes of 

antimicrobial agents, this suggests the presence of broad-substrate range efflux pumps and/or 

multiple efflux pumps. Since microorganisms have multiple efflux pump systems, EPIs with a 

broad spectrum of activity need to be used so they can be effective against diverse, multiple 

efflux pump systems present in different microbial pathogens. Further experiments are required 

to explore the type of efflux pumps, substrate profiles, and regulation mechanisms of these 

pumps in these local Aeromonas spp. isolates. All EPIs (CCCP, NMP and PAβN) displayed 

significant reduction on biofilm formation by Aeromonas spp. isolates in the initial attachment 

and mature biofilm assays, although a much greater effect was observed on pre-formed biofilm 

[detachment] (Table 4.4). In the present study, CCCP was most effective, followed by NMP then 

lastly PAβN, for both the initial attachment and pre-formed biofilm assays (Table 4.4). 

Therefore, the EPIs do inhibit different efflux pump systems used by Aeromonas spp. isolates 
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and thus could prevent elimination of antimicrobial agents within these cells, and thus multidrug 

resistance. These EPIs also can be used as potential inhibitors of biofilm formation by 

Aeromonas spp. isolates, as they caused reduction of adherence and detachment of majority of 

the isolates. Although more work still needs to done with these inhibitors and their mechanism, 

efflux pump inhibition represents one of the control strategies to limit aeromonad biofilms and 

could not only prevent disease outbreaks but also increase effectiveness of existing therapeutic 

agents.  

The A. tumefaciens A136 and C. violaceum CV026 biosensor strains were effective and 

useful in phenotypic detection of AHLs, although further analysis such as liquid-liquid and solid-

phase extraction methods (Wang et al., 2010) could be used to identify and characterize AHLs 

from different Aeromonas spp. isolates. This could provide relevant information on the exact 

AHL molecules produced by the study isolates. Based on the present data, in the initial 

attachment assay (Table 5.3), cinnamaldehyde was most effective, followed by SAHC, 2(5H)-

furanone then lastly vanillin. For the pre-formed biofilm assay, 2(5H)-furanone and vanillin were 

the most effective, followed by cinnamaldehyde then SAHC (Table 5.3). QSIs and the DNase I 

enzyme are thus alternative treatment options that may be used to treat diseases and outbreaks 

associated with aeromonad species because these treatments interfere with crucial stages of 

biofilm formation, i.e., QS and degradation of the adhesin eDNA. The toxicity and carcinogenic 

effects as well as poor stability in aqueous solutions have greatly limited the utilization of 

halogenated furanones as antimicrobials (Hentzer and Givskov, 2003). Vanillin has been 

revolutionarily developed, it adds to the suitability for the commercial use. Also, vanillin could 

be a potential alternative to the toxic chemicals, and it has more advantage in its applications to 
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aquaculture systems (Ponnusamy et al., 2008). The source and identity of the eDNA has to be 

established in order to clarify its specific role in the ability of Aeromonas spp. to form biofilms.   

Future work will entail understanding fully, the factors involved in and affecting biofilm 

formation by Aeromonas spp. isolates and their correlation with biofilm formation by these 

isolates. Although higher concentrations of antimicrobial agents had an effect on the detachment 

of Aeromonas pre-formed bioflms, evaluating whether these would be practical to use in 

aquqaculture systems and the exact antimicrobial concentration required to eradicate biofilms by 

Aeromonas spp. isolates could facilitate effective treatment. Further experiments are required to 

explore the type of efflux pumps, substrate profile, and regulation mechanisms of these pumps in 

these South African Aeromonas spp. isolates. Additionally, to determine the importance of multi-

drug efflux pumps for biofilm resistance to antimicrobial agents and a better understanding of the 

mechanisms by which EPIs work will allow for more effective control of biofilm-associated 

diseases. Identifying and characterizing AHLs from different Aeromonas spp. isolates could 

provide relevant information on the exact AHL molecules produced by the study isolates, and the 

diversity between different species and geographical origins. The source and identity of the 

eDNA has to be established in order to clarify its specific role in the ability of Aeromonas spp. to 

form biofilms.  
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Appendix 

Table A1. Biochemical and physiological characterization of 99 Aeromonas spp. isolates obtained from different fish hosts or 

origin  

Code Source Species A-

layer 

Gelatin 

hydrolysis 

Motility (mm) 

 

Swimming   Swarming 

Hydrophobicity 

(%) 

Hydrophobicity 

classification* 
Autoaggregation 

(%) 

Autoaggregation 

classification# 

M1 Catfish A. culicicola − + 40.0 10.0 6.96 HPL 72 SA 

M2 Catfish A. hydrophila + + 29.3 8.3 6.45 HPL 39 MA 

M3 Catfish A. allosaccharophila + + 60.7 9.0 23.39 MHPB 63 SA 

M4 Catfish A. jandaei + − 21.7 7.0 12.88 HPL 52 SA 

M5 Catfish A. hydrophila + + 36.7 12.3 16.80 HPL 41 MA 

M6 Catfish A. hydrophila − + 26.7 15.3 14.02 HPL 48 MA 

M7 Catfish A. culicicola + + 21.0 12.3 23.98 MHPB 65 SA 

M8 T ilapia A. allosaccharophila − + 14.7 8.3 0.27 HPL 57 SA 

M9 Catfish Plesiomonasshigelloides + + 26.7 5.7 1.34 HPL 69 SA 

M10 Catfish A. culicicola/jandaei + − 39.3 16.0 10.60 HPL 54 SA 

M11 Catfish Aeromonas spp. + + 60.0 13.3 10.72 HPL 74 SA 

M12 Catfish A. bestiarum + + 36.7 15.3 56.26 HPB 72 SA 

M13 Catfish A. hydrophila − + 60.0 16.3 20.76 MHPB 76 SA 

M14 T ilapia A. hydrophila + + 38.3 14.7 3.33 HPL 80 SA 

M15 T ilapia Aeromonas spp. + + 37.7 9.0 0.97 HPL 75 SA 

M16 T ilapia A. jandaei + + 30.7 9.0 2.58 HPL 75 SA 

M17 T ilapia A. hydrophila + + 31.0 11.7 4.34 HPL 50 SA 

M18 T ilapia A. caviae + + 37.3 15.0 33.99 MHPB 81 SA 

M19 T ilapia A. jandaei + + 40.0 14.7 10.90 HPL 45 MA 

M20 T ilapia Aeromonas spp. + + 34.7 15.3 15.04 HPL 66 SA 

M21 T ilapia A. allosaccharophila + + 36.0 9.0 30.18 MHPB 73 SA 

M22 Seawater A. culicicola + + 50.3 12.0 17.96 HPL 41 MA 

M23 Seawater A. culicicola + + 40.0 31.7 6.70 HPL 47 MA 



215 

 

M24 Seawater A. jandaei + + 41.7 16.0 33.36 MHPB 58 SA 

M25 Seawater A. culicicola + + 42.0 23.0 12.04 HPL 73 SA 

M26 Seawater Aeromonas spp. 45 − + 39.7 17.7 14.85 HPL 62 SA 

M27 Seawater Aeromonas spp. 45 + + 43.0 35.3 4.60 HPL 55 SA 

M28 Seawater A. jandaei + + 41.0 10.3 18.38 HPL 66 SA 

M29 Seawater A. culicicola + + 51.0 15.3 29.24 MHPB 84 SA 

M30 Seawater A. jandaei + + 51.0 51.0 16.06 HPL 37 MA 

M31 Seawater A. culicicola + + 41.0 22.3 6.39 HPL 61 SA 

M32 Seawater A. culicicola − + 47.3 21.3 2.00 HPL 63 SA 

M33 Seawater Aeromonas spp. 310 + + 43.0 26.7 24.58 MHPB 82 SA 

M34 Seawater Aeromonas spp. 45 − + 51.0 15.3 12.97 HPL 50 SA 

M35 Seawater A. culicicola + + 41.0 46.7 34.31 MHPB 39 MA 

M36 Seawater A. jandaei + + 41.7 12.0 15.98 HPL 60 SA 

M37 Seawater Aeromonas spp. 45 + + 45.0 21.7 3.21 HPL 65 SA 

M38 Seawater A. culicicola + + 41.7 20.0 0.97 HPL 56 SA 

M39 Seawater A. culicicola + + 40.0 12.3 9.73 HPL 62 SA 

M40 Seawater A. culicicola + + 41.0 19.0 20.78 MHPB 60 SA 

M41 Seawater Aeromonas spp. − + 39.7 22.7 0.57 HPL 26 MA 

M42 T ilapia A. culicicola − + 35.7 14.7 3.40 HPL 75 SA 

M43 T ilapia Aeromonas spp. 310 + + 33.7 14.3 37.07 MHPB 67 SA 

M44 T ilapia A. icthiosmia + + 33.7 13.0 13.39 HPL 53 SA 

M45 T ilapia Plesiomonasshigelloides + + 32.0 11.0 8.48 HPL 74 SA 

M46 T ilapia Plesiomonasshigelloides + + 34.7 8.0 21.32 MHPB 54 SA 

M47 T ilapia Plesiomonasshigelloides + + 15.0 8.0 19.27 HPL 55 SA 

M48 T ilapia A. icthiosmia + + 17.7 8.3 1.84 HPL 74 SA 

M49 T ilapia A. sobria + + 30.3 17.3 18.19 HPL 51 MA 

M50 Catfish A. hydrophila − + 14.3 9.7 6.19 HPL 54 SA 

M51 Catfish A. hydrophila + + 59.3 8.7 20.31 MHPB 38 MA 

M52 T ilapia A. hydrophila + + 15.3 7.3 5.82 HPL 64 SA 

M53 Catfish A. hydrophila + − 53.0 67.3 10.22 HPL 60 SA 
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M54 T ilapia A. icthiosmia + + 39.7 9.7 2.85 HPL 78 SA 

M55 T ilapia A. veronii/A. culicicola + + 41.7 7.7 4.42 HPL 70 SA 

M56 T ilapia A. culicicola + + 40.3 8.3 61.02 HPB 34 MA 

M57 T ilapia A. veronii + + 39.3 6.0 11.41 HPL 65 SA 

M58 T ilapia A. culicicola + + 40.3 8.3 23.29 MHPB 64 SA 

M59 T ilapia A. caviae + + 32.0 11.0 3.48 HPL 42 MA 

M60 T ilapia A. hydrophila + + 34.7 14.0 9.36 HPL 74 SA 

M61 T ilapia A. culicicola + + 44.3 15.7 3.45 HPL 69 SA 

M62 T ilapia A. hydrophila + + 20.0 23.0 7.64 HPL 76 SA 

M63 T ilapia A. veronii + + 38.0 11.7 8.13 HPL 58 SA 

M64 T ilapia A. hydrophila + − 59.7 14.3 2.07 HPL 60 SA 

M65 T ilapia A. hydrophila − + 41.7 10.7 5.42 HPL 75 SA 

M66 T ilapia Plesiomonasshigelloides − + 40.0 15.7 45.80 MHPB 56 SA 

M67 T ilapia Plesiomonasshigelloides + + 40.0 47.7 29.08 MHPB 67 SA 

M68 Goldfish A. caviae + − 47.0 12.3 4.54 HPL 54 SA 

M69 Goldfish A. bestiarum + − 34.7 12.0 2.99 HPL 66 SA 

M70 Goldfish A. bestiarum + + 60.7 16.0 10.09 HPL 55 SA 

M71 Goldfish A. bestiarum + − 28.0 28.3 26.15 MHPB 56 SA 

M72 Goldfish A. bestiarum + + 35.0 12.0 18.29 HPL 74 SA 

M73 Goldfish A. bestiarum + + 59.7 13.7 13.95 HPL 70 SA 

M74 Goldfish A. allosaccharophila + − 54.0 13.0 52.64 HPB 57 SA 

M75 Goldfish Aeromonas. spp. 45 + + 23.0 11.0 11.58 HPL 57 SA 

M76 Goldfish A. salmonicida + − 52.3 9.0 12.25 HPL 61 SA 

M77 Goldfish A. salmonicida + + 54.3 9.0 10.31 HPL 44 MA 

M78 Goldfish A. bestiarum + + 59.3 21.7 7.46 HPL 52 MA 

M79 Goldfish A. bestiarum − + 29.0 15.3 37.58 MHPB 62 SA 

M80 Goldfish A. bestiarum + + 40.0 20.0 19.21 HPL 78 SA 

M81 Goldfish A. bestiarum + + 54.0 12.3 29.56 MHPB 63 SA 

M82 Goldfish A. culicicola + + 52.7 13.7 15.57 HPL 82 SA 

M83 Goldfish A. bestiarum + + 40.0 15.3 69.09 HPB 64 SA 
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M84 Goldfish A. bestiarum − + 49.7 14.0 11.41 HPL 54 SA 

M85 Goldfish A. allosaccharophila − + 23.3 19.0 10.54 HPL 56 SA 

M86 Goldfish A. hydrophila + + 37.3 10.3 18.26 HPL 59 SA 

M87 Goldfish A. bestiarum + + 60.0 9.0 45.31 MHPB 72 SA 

M88 Goldfish A. bestiarum − + 52.7 13.3 1.79 HPL 63 SA 

M89 Goldfish A. allosaccharophila − − 37.0 14.7 3.19 HPL 61 SA 

M90 Goldfish A. bestiarum − − 19.0 12.3 16.57 HPL 46 MA 

M91 Goldfish A. bestiarum + − 14.0 12.0 34.72 MHPB 74 SA 

M92 Goldfish A. allosaccharophila + + 38.0 40.7 18.25 HPL 69 SA 

M93 Goldfish A. allosaccharophila + + 41.7 18.7 8.88 HPL 69 SA 

M94 Goldfish A. hydrophila + − 54.0 29.0 8.57 HPL 51 SA 

M95 Goldfish A. hydrophila + + 61.0 21.0 6.77 HPL 61 SA 

M96 Goldfish A. bestiarum + + 41.7 13.7 4.21 HPL 56 SA 

M97 Goldfish A. bestiarum − + 44.3 9.7 17.06 HPL 58 SA 

M98 Goldfish Aeromonas spp. 310 + + 28.3 13.0 0.49 HPL 52 SA 

M99 Goldfish A. bestiarum + + 40.0 14.7 4.69 HPL 67 SA 

*HPL = hydrophilic, MHPB = moderately hydrophobic, and HPB = hydrophobic 

#
SA = strong autoaggregation ability, MA = moderate autoaggregation ability, WA = weak autoaggregation ability (Basson et al., 2008). 
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Table A2. Relative caseinolytic and DNase activities of 99 Aeromonas spp. isolates obtained from different fish hosts or origin  

Code Source Species Casein hydrolysis 

zone diameter (mm) 

RCA* 

 

DNase hydrolysis 

zone diameter (mm) 

RDA* 

M1 Catfish A. culicicola 21.7 0.4 15.3 0.4 

M2 Catfish A. hydrophila 19.0 0.5 12.7 0.4 

M3 Catfish A. allosaccharophila 16.3 0.4 13.7 0.3 

M4 Catfish A. jandaei 22.0 0.5 14.3 0.3 

M5 Catfish A. hydrophila 21.0 0.2 16.3 0.4 

M6 Catfish A. hydrophila 16.7 0.3 15.7 0.3 

M7 Catfish A. culicicola 18.3 0.8 23.7 1.3 

M8 T ilapia A. allosaccharophila 18.7 0.6 9.7 0.0 

M9 Catfish Plesiomonasshigelloides 16.0 0.4 16.7 0.6 

M10 Catfish A. culicicola/jandaei 18.3 0.9 18.3 0.3 

M11 Catfish Aeromonas spp. 10.0 0.0 18.7 0.3 

M12 Catfish A. bestiarum 14.3 0.1 16.0 0.4 

M13 Catfish A. hydrophila 16.3 0.3 18.3 0.3 

M14 T ilapia A. hydrophila 15.7 0.1 20.7 0.4 

M15 T ilapia Aeromonas spp. 19.7 0.7 14.3 0.3 

M16 T ilapia A. jandaei 18.3 0.8 16.3 0.4 

M17 T ilapia A. hydrophila 18.7 0.9 15.7 0.5 

M18 T ilapia A. caviae 17.3 0.8 19.7 0.6 

M19 T ilapia A. jandaei 16.3 0.5 10.3 0.0 

M20 T ilapia Aeromonas spp. 18.0 0.9 18.3 0.5 

M21 T ilapia A. allosaccharophila 20.7 0.9 18.7 0.2 

M22 Seawater A. culicicola 17.7 0.7 17.3 0.4 

M23 Seawater A. culicicola 15.3 0.3 16.3 0.4 

M24 Seawater A. jandaei 16.3 0.4 18.0 0.2 

M25 Seawater A. culicicola 17.7 0.7 20.7 0.2 

M26 Seawater Aeromonas spp. 45 14.7 0.5 17.7 0.4 
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M27 Seawater Aeromonas spp. 45 15.7 0.5 15.3 0.5 

M28 Seawater A. jandaei 15.3 0.1 16.3 0.4 

M29 Seawater A. culicicola 16.7 0.1 17.7 0.5 

M30 Seawater A. jandaei 18.3 0.6 14.7 0.5 

M31 Seawater A. culicicola 17.7 0.2 15.7 0.6 

M32 Seawater A. culicicola 18.3 0.3 15.3 0.2 

M33 Seawater Aeromonas spp. 310 16.7 0.5 16.7 0.3 

M34 Seawater Aeromonas spp. 45 16.3 0.4 18.3 0.3 

M35 Seawater A. culicicola 19.3 0.9 17.7 0.5 

M36 Seawater A. jandaei 14.0 0.1 15.7 0.5 

M37 Seawater Aeromonas spp. 45 17.7 0.7 15.0 0.5 

M38 Seawater A. culicicola 18.3 0.5 15.3 0.6 

M39 Seawater A. culicicola 15.0 0.2 17.7 0.4 

M40 Seawater A. culicicola 15.7 0.2 16.3 0.4 

M41 Seawater Aeromonas spp. 16.7 0.2 16.3 0.4 

M42 T ilapia A. culicicola 16.7 0.4 18.0 0.6 

M43 T ilapia Aeromonas spp. 310 18.3 0.8 20.3 0.3 

M44 T ilapia A. icthiosmia 16.7 0.7 16.3 0.4 

M45 T ilapia Plesiomonasshigelloides 18.7 0.9 19.3 0.5 

M46 T ilapia Plesiomonasshigelloides 20.0 0.6 16.7 0.5 

M47 T ilapia Plesiomonasshigelloides 21.7 0.8 9.7 0.0 

M48 T ilapia A. icthiosmia 14.7 0.3 16.3 0.6 

M49 T ilapia A. sobria 11.0 0.0 20.7 0.4 

M50 Catfish A. hydrophila 17.0 0.1 15.7 0.3 

M51 Catfish A. hydrophila 18.3 0.6 18.3 0.6 

M52 T ilapia A. hydrophila 18.0 0.4 16.7 0.6 

M53 Catfish A. hydrophila 20.3 0.8 16.3 0.3 

M54 T ilapia A. icthiosmia 16.7 0.7 19.3 0.4 

M55 T ilapia A. veronii/A. culicicola 17.3 0.7 14.0 0.4 

M56 T ilapia A. culicicola 18.7 0.3 17.7 0.4 
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M57 T ilapia A. veronii 17.3 0.5 18.3 0.6 

M58 T ilapia A. culicicola 17.7 0.5 15.0 0.5 

M59 T ilapia A. caviae 19.0 0.8 15.7 0.3 

M60 T ilapia A. hydrophila 17.7 0.4 16.7 0.7 

M61 T ilapia A. culicicola 17.3 0.2 16.7 0.6 

M62 T ilapia A. hydrophila 15.7 0.6 18.3 0.8 

M63 T ilapia A. veronii 19.7 0.6 16.7 0.7 

M64 T ilapia A. hydrophila 21.3 0.8 18.7 0.6 

M65 T ilapia A. hydrophila 15.3 0.5 20.0 0.7 

M66 T ilapia Plesiomonasshigelloides 11.7 0.0 21.7 0.5 

M67 T ilapia Plesiomonasshigelloides 10.0 0.0 14.7 0.7 

M68 Goldfish A. caviae 10.3 0.0 15.0 0.5 

M69 Goldfish A. bestiarum 14.3 0.4 17.0 0.5 

M70 Goldfish A. bestiarum 15.3 0.6 18.3 0.5 

M71 Goldfish A. bestiarum 11.7 0.0 15.0 0.5 

M72 Goldfish A. bestiarum 15.3 0.3 15.0 0.5 

M73 Goldfish A. bestiarum 17.7 0.2 17.3 0.4 

M74 Goldfish A. allosaccharophila 15.3 0.8 14.7 0.6 

M75 Goldfish Aeromonas. spp. 45 15.7 0.6 15.7 0.4 

M76 Goldfish A. salmonicida 17.3 0.5 14.3 0.7 

M77 Goldfish A. salmonicida 18.7 0.6 15.3 0.5 

M78 Goldfish A. bestiarum 10.0 0.0 17.3 0.5 

M79 Goldfish A. bestiarum 18.3 0.8 15.3 0.5 

M80 Goldfish A. bestiarum 18.7 0.5 17.7 0.4 

M81 Goldfish A. bestiarum 9.0 0.0 15.3 0.6 

M82 Goldfish A. culicicola 16.3 0.5 15.7 0.3 

M83 Goldfish A. bestiarum 18.0 1.1 17.3 0.5 

M84 Goldfish A. bestiarum 20.7 1.0 18.7 0.8 

M85 Goldfish A. allosaccharophila 17.7 0.5 19.3 0.8 

M86 Goldfish A. hydrophila 15.3 0.5 18.0 0.9 
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M87 Goldfish A. bestiarum 16.3 0.3 20.3 0.8 

M88 Goldfish A. bestiarum 17.7 0.8 16.7 0.6 

M89 Goldfish A. allosaccharophila 14.7 0.2 17.3 0.5 

M90 Goldfish A. bestiarum 15.7 0.4 18.7 0.5 

M91 Goldfish A. bestiarum 15.3 0.4 17.3 0.7 

M92 Goldfish A. allosaccharophila 11.0 0.0 17.7 0.4 

M93 Goldfish A. allosaccharophila 18.3 0.9 19.0 0.5 

M94 Goldfish A. hydrophila 17.7 0.6 17.7 0.7 

M95 Goldfish A. hydrophila 15.7 0.5 17.3 0.7 

M96 Goldfish A. bestiarum 15.3 0.4 15.7 0.8 

M97 Goldfish A. bestiarum 17.7 0.4 19.7 0.6 

M98 Goldfish Aeromonas spp. 310 16.0 0.5 21.3 0.8 

M99 Goldfish A. bestiarum 16.3 0.3 17.3 0.4 

*
RCA = relative caseinolytic activity, RDA=relative DNase activity, RCA/RDA=halo diameter (zone) – bacterial growth diameter/ bacterial growth 

diameter (Zacaria et al., 2010).  

 

 

 

 

 

 

 

 

Table A3. Biofilm formation of 99 Aeromonas spp. isolates following incubation at room temperature (RT, ≈21 ºC), 30 ºC, or 

37 ºC, under shaking or static conditions in nutrient-poor (EAOB) media, respectively 
 

 

Code Source Species RT EAOB SD RT EAOB SD 30 EAOB SD 30 EAOB SD 37 EAOB SD 37 EAOB SD 
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SH* ST* SH* ST* SH* ST* 

M1 Catfish A. culicicola 0.187 ±0.037 0.422 ±0.047 0.180 ±0.037 0.278 ±0.009 0.239 ±0.023 0.386 ±0.045 

M2 Catfish A. hydrophila 1.759 ±0.043 1.824 ±0.146 0.282 ±0.009 0.361 ±0.037 0.301 ±0.045 0.259 ±0.011 

M3 Catfish A. allosaccharophila 0.465 ±0.014 0.716 ±0.052 0.682 ±0.107 1.291 ±0.183 0.388 ±0.054 0.374 ±0.121 

M4 Catfish A. jandaei 0.877 ±0.058 1.188 ±0.084 0.563 ±0.014 0.259 ±0.010 0.453 ±0.081 0.500 ±0.059 

M5 Catfish A. hydrophila 0.195 ±0.016 0.280 ±0.049 0.608 ±0.059 0.564 ±0.057 0.154 ±0.019 0.171 ±0.022 

M6 Catfish A. hydrophila 0.358 ±0.039 0.213 ±0.049 0.316 ±0.031 0.174 ±0.011 0.461 ±0.017 0.169 ±0.022 

M7 Catfish A. culicicola 0.200 ±0.049 0.253 ±0.031 0.196 ±0.013 0.179 ±0.009 0.597 ±0.039 0.719 ±0.050 

M8 Tilapia A. allosaccharophila 0.474 ±0.084 0.640 ±0.037 0.346 ±0.045 0.565 ±0.062 0.857 ±0.048 0.799 ±0.056 

M9 Catfish Plesiomonasshigelloides 0.142 ±0.018 0.155 ±0.024 0.154 ±0.034 0.147 ±0.016 0.162 ±0.017 0.169 ±0.049 

M10 Catfish A. culicicola/jandaei 2.242 ±0.231 1.928 ±0.168 1.492 ±0.133 1.321 ±0.179 0.658 ±0.212 0.622 ±0.047 

M11 Catfish Aeromonas spp. 0.328 ±0.014 0.441 ±0.028 0.622 ±0.028 0.478 ±0.108 0.465 ±0.051 0.462 ±0.095 

M12 Catfish A. bestiarum 0.249 ±0.045 0.563 ±0.087 0.168 ±0.022 0.136 ±0.024 0.120 ±0.004 0.161 ±0.006 

M13 Catfish A. hydrophila 0.227 ±0.029 0.355 ±0.037 0.194 ±0.013 0.263 ±0.028 0.232 ±0.015 0.406 ±0.093 

M14 Tilapia A. hydrophila 0.971 ±0.046 0.736 ±0.033 0.855 ±0.053 1.017 ±0.035 0.578 ±0.017 0.958 ±0.071 

M15 Tilapia Aeromonas spp. 0.292 ±0.038 0.266 ±0.023 0.193 ±0.024 0.209 ±0.045 0.183 ±0.005 0.189 ±0.017 

M16 Tilapia A. jandaei 1.638 ±0.297 0.828 ±0.025 1.380 ±0.208 1.243 ±0.037 0.703 ±0.064 0.898 ±0.041 

M17 Tilapia A. hydrophila 0.194 ±0.004 0.168 ±0.017 0.278 ±0.061 0.168 ±0.027 0.156 ±0.022 0.150 ±0.027 

M18 Tilapia A. caviae 0.147 ±0.028 0.145 ±0.006 0.187 ±0.022 0.185 ±0.021 0.150 ±0.022 0.168 ±0.025 

M19 Tilapia A. jandaei 0.349 ±0.042 0.327 ±0.062 0.155 ±0.021 0.169 ±0.033 0.989 ±0.070 0.312 ±0.028 

M20 Tilapia Aeromonas spp. 3.286 ±0.182 2.437 ±0.286 2.383 ±0.284 1.234 ±0.064 0.219 ±0.069 0.318 ±0.033 

M21 Tilapia A. allosaccharophila 1.690 ±0.345 2.003 ±0.074 0.457 ±0.046 1.754 ±0.338 0.154 ±0.020 0.169 ±0.040 

M22 Seawater A. culicicola 0.131 ±0.003 0.135 ±0.015 0.385 ±0.113 0.138 ±0.005 0.188 ±0.026 0.148 ±0.021 

M23 Seawater A. culicicola 0.633 ±0.067 0.246 ±0.023 0.348 ±0.030 0.179 ±0.090 0.250 ±0.040 0.326 ±0.034 

M24 Seawater A. jandaei 1.250 ±0.112 1.181 ±0.147 0.289 ±0.033 0.260 ±0.049 0.227 ±0.013 0.164 ±0.011 

M25 Seawater A. culicicola 0.182 ±0.022 0.163 ±0.013 0.164 ±0.014 0.174 ±0.018 0.270 ±0.060 0.198 ±0.006 

M26 Seawater Aeromonas spp. 45 1.673 ±0.076 1.688 ±0.106 1.264 ±0.187 0.781 ±0.044 0.285 ±0.005 0.347 ±0.058 

M27 Seawater Aeromonas spp. 45 1.220 ±0.067 1.564 ±0.061 0.442 ±0.004 0.412 ±0.096 0.238 ±0.044 0.212 ±0.011 

M28 Seawater A. jandaei 0.411 ±0.032 0.171 ±0.012 0.646 ±0.079 0.227 ±0.009 0.386 ±0.045 0.317 ±0.037 
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M29 Seawater A. culicicola 1.181 ±0.115 1.163 ±0.222 0.797 ±0.094 0.761 ±0.047 0.218 ±0.012 0.272 ±0.077 

M30 Seawater A. jandaei 0.142 ±0.005 0.145 ±0.016 0.512 ±0.070 0.149 ±0.010 0.603 ±0.099 0.145 ±0.032 

M31 Seawater A. culicicola 0.148 ±0.024 0.171 ±0.051 0.702 ±0.129 0.298 ±0.028 0.453 ±0.005 0.225 ±0.016 

M32 Seawater A. culicicola 0.234 ±0.016 0.237 ±0.030 0.224 ±0.012 0.293 ±0.015 0.168 ±0.050 0.295 ±0.060 

M33 Seawater Aeromonas spp. 310 1.031 ±0.019 0.888 ±0.052 0.525 ±0.171 0.786 ±0.082 0.430 ±0.049 0.646 ±0.079 

M34 Seawater Aeromonas spp. 45 0.132 ±0.005 0.166 ±0.052 0.342 ±0.020 0.178 ±0.019 0.149 ±0.022 0.166 ±0.008 

M35 Seawater A. culicicola 1.275 ±0.089 1.636 ±0.166 0.530 ±0.072 0.770 ±0.100 0.678 ±0.062 0.550 ±0.087 

M36 Seawater A. jandaei 0.454 ±0.004 1.431 ±0.141 0.265 ±0.087 0.820 ±0.081 0.155 ±0.028 0.381 ±0.017 

M37 Seawater Aeromonas spp. 45 1.257 ±0.205 0.997 ±0.031 0.177 ±0.009 0.272 ±0.034 0.370 ±0.066 0.165 ±0.009 

M38 Seawater A. culicicola 1.061 ±0.056 1.333 ±0.163 0.238 ±0.039 0.937 ±0.083 0.185 ±0.016 0.191 ±0.030 

M39 Seawater A. culicicola 1.719 ±0.286 1.763 ±0.042 1.323 ±0.258 1.353 ±0.226 0.147 ±0.004 0.286 ±0.045 

M40 Seawater A. culicicola 0.643 ±0.027 0.345 ±0.027 0.127 ±0.003 0.169 ±0.012 0.175 ±0.025 0.237 ±0.019 

M41 Seawater Aeromonas spp. 1.863 ±0.106 1.559 ±0.294 1.280 ±0.096 1.216 ±0.137 0.624 ±0.074 0.512 ±0.070 

M42 Tilapia A. culicicola 0.553 ±0.069 0.163 ±0.011 0.234 ±0.040 0.163 ±0.026 0.434 ±0.005 0.162 ±0.014 

M43 Tilapia Aeromonas spp. 310 0.133 ±0.015 0.129 ±0.010 0.141 ±0.012 0.146 ±0.008 0.284 ±0.035 0.294 ±0.075 

M44 Tilapia A. icthiosmia 1.325 ±0.211 0.688 ±0.074 1.427 ±0.059 0.538 ±0.031 0.388 ±0.029 0.384 ±0.063 

M45 Tilapia Plesiomonasshigelloides 1.237 ±0.272 1.182 ±0.110 0.487 ±0.058 0.828 ±0.112 0.463 ±0.044 0.211 ±0.011 

M46 Tilapia Plesiomonasshigelloides 0.153 ±0.019 0.171 ±0.018 0.187 ±0.023 0.211 ±0.012 0.429 ±0.008 0.213 ±0.003 

M47 Tilapia Plesiomonasshigelloides 0.129 ±0.007 0.158 ±0.025 0.224 ±0.042 0.987 ±0.064 0.772 ±0.006 0.764 ±0.035 

M48 Tilapia A. icthiosmia 0.179 ±0.017 0.170 ±0.011 0.199 ±0.032 0.251 ±0.038 0.461 ±0.017 0.420 ±0.054 

M49 Tilapia A. sobria 1.201 ±0.072 0.941 ±0.030 0.772 ±0.112 0.769 ±0.111 0.384 ±0.094 0.270 ±0.060 

M50 Catfish A. hydrophila 0.294 ±0.034 0.429 ±0.089 0.458 ±0.058 0.169 ±0.016 0.310 ±0.066 0.302 ±0.045 

M51 Catfish A. hydrophila 1.826 ±0.233 1.841 ±0.015 1.338 ±0.137 1.500 ±0.235 0.274 ±0.050 0.376 ±0.080 

M52 Tilapia A. hydrophila 1.114 ±0.086 0.700 ±0.039 1.333 ±0.147 1.042 ±0.129 0.794 ±0.057 1.432 ±0.393 

M53 Catfish A. hydrophila 1.413 ±0.211 0.760 ±0.085 1.331 ±0.086 1.291 ±0.037 0.554 ±0.091 0.514 ±0.189 

M54 Tilapia A. icthiosmia 1.005 ±0.050 0.773 ±0.085 0.697 ±0.014 1.281 ±0.026 0.429 ±0.008 0.757 ±0.033 

M55 Tilapia A. veronii/A. culicicola 0.189 ±0.017 0.202 ±0.089 0.193 ±0.005 0.315 ±0.054 0.152 ±0.004 0.226 ±0.029 

M56 Tilapia A. culicicola 0.507 ±0.007 0.702 ±0.102 0.613 ±0.034 0.234 ±0.019 0.592 ±0.098 0.930 ±0.048 

M57 Tilapia A. veronii 0.336 ±0.043 0.214 ±0.068 0.619 ±0.070 0.593 ±0.068 0.485 ±0.050 0.457 ±0.055 

M58 Tilapia A. culicicola 1.036 ±0.046 1.439 ±0.325 1.112 ±0.107 1.314 ±0.242 0.635 ±0.080 0.696 ±0.151 
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M59 Tilapia A. caviae 0.165 ±0.036 0.181 ±0.057 0.154 ±0.014 0.227 ±0.035 0.153 0.013 0.397 ±0.058 

M60 Tilapia A. hydrophila 1.239 ±0.099 1.047 ±0.186 0.862 ±0.047 1.302 ±0.036 0.288 ±0.074 0.577 ±0.058 

M61 Tilapia A. culicicola 0.206 ±0.060 0.180 ±0.055 0.420 ±0.062 0.166 ±0.015 0.177 ±0.038 0.203 ±0.030 

M62 Tilapia A. hydrophila 0.228 ±0.027 0.215 ±0.042 0.196 ±0.030 0.189 ±0.035 0.154 ±0.021 0.237 ±0.070 

M63 Tilapia A. veronii 0.274 ±0.081 0.280 ±0.026 0.194 ±0.015 0.271 ±0.053 0.231 ±0.046 0.260 ±0.078 

M64 Tilapia A. hydrophila 0.647 ±0.022 0.554 ±0.017 0.737 ±0.090 0.238 ±0.027 0.319 ±0.096 0.529 ±0.073 

M65 Tilapia A. hydrophila 1.170 ±0.095 0.874 ±0.020 0.977 ±0.043 1.446 ±0.209 0.239 ±0.045 0.318 ±0.108 

M66 Tilapia Plesiomonasshigelloides 0.963 ±0.074 0.470 ±0.064 0.795 ±0.060 1.213 ±0.066 0.548 ±0.100 0.739 ±0.060 

M67 Tilapia Plesiomonasshigelloides 0.802 ±0.050 0.492 ±0.029 0.849 ±0.058 1.228 ±0.012 0.569 ±0.058 0.864 ±0.051 

M68 Goldfish A. caviae 0.271 ±0.071 0.242 ±0.011 0.382 ±0.071 0.271 ±0.055 0.464 ±0.086 0.485 ±0.025 

M69 Goldfish A. bestiarum 0.747 ±0.106 1.265 ±0.081 1.456 ±0.314 1.158 ±0.085 0.360 ±0.051 0.450 ±0.168 

M70 Goldfish A. bestiarum 0.796 ±0.072 0.783 ±0.029 0.505 ±0.044 1.264 ±0.170 0.823 ±0.199 0.807 ±0.021 

M71 Goldfish A. bestiarum 0.623 ±0.065 0.786 ±0.067 0.530 ±0.069 1.242 ±0.115 0.350 ±0.023 0.462 ±0.107 

M72 Goldfish A. bestiarum 0.241 ±0.010 0.207 ±0.032 0.181 ±0.021 0.232 ±0.068 0.164 ±0.012 0.420 ±0.025 

M73 Goldfish A. bestiarum 0.555 ±0.048 0.639 ±0.028 0.806 ±0.050 0.744 ±0.050 0.318 ±0.057 0.423 ±0.068 

M74 Goldfish A. allosaccharophila 0.650 ±0.038 0.630 ±0.037 0.880 ±0.080 0.709 ±0.013 0.646 ±0.015 0.804 ±0.127 

M75 Goldfish Aeromonas. spp. 45 0.778 ±0.068 0.401 ±0.071 0.611 ±0.012 0.496 ±0.054 0.553 ±0.114 0.887 ±0.063 

M76 Goldfish A. salmonicida 1.438 ±0.197 1.400 ±0.063 1.231 ±0.124 1.376 ±0.160 0.629 ±0.070 0.684 ±0.032 

M77 Goldfish A. salmonicida 0.327 ±0.039 0.295 ±0.026 0.628 ±0.062 0.289 ±0.027 0.693 ±0.108 0.619 ±0.021 

M78 Goldfish A. bestiarum 0.473 ±0.063 0.378 ±0.007 1.467 ±0.056 0.716 ±0.156 0.776 ±0.112 0.570 ±0.060 

M79 Goldfish A. bestiarum 1.100 ±0.065 1.125 ±0.050 0.772 ±0.034 0.834 ±0.051 0.526 ±0.067 0.435 ±0.068 

M80 Goldfish A. bestiarum 1.136 ±0.042 0.678 ±0.015 0.408 ±0.014 0.537 ±0.023 0.192 ±0.049 0.429 ±0.057 

M81 Goldfish A. bestiarum 0.814 ±0.155 0.548 ±0.007 0.860 ±0.091 1.219 ±0.052 0.260 ±0.044 0.414 ±0.070 

M82 Goldfish A. culicicola 1.832 ±0.082 1.649 ±0.233 0.829 ±0.057 1.405 ±0.203 0.287 ±0.076 0.393 ±0.089 

M83 Goldfish A. bestiarum 1.550 ±0.122 1.855 ±0.179 0.583 ±0.064 1.156 ±0.127 0.186 ±0.023 0.458 ±0.070 

M84 Goldfish A. bestiarum 1.463 ±0.157 1.151 ±0.220 0.748 ±0.019 1.272 ±0.049 0.338 ±0.087 0.781 ±0.078 

M85 Goldfish A. allosaccharophila 0.837 ±0.084 1.557 ±0.335 1.014 ±0.053 1.455 ±0.282 0.279 ±0.058 0.422 ±0.050 

M86 Goldfish A. hydrophila 0.625 ±0.111 0.781 ±0.080 0.259 ±0.025 0.373 ±0.036 0.163 ±0.017 0.234 ±0.022 

M87 Goldfish A. bestiarum 0.377 ±0.029 0.518 ±0.036 0.369 ±0.060 0.255 ±0.053 0.183 ±0.024 0.216 ±0.010 

M88 Goldfish A. bestiarum 1.305 ±0.200 0.861 ±0.026 0.665 ±0.058 1.129 ±0.087 0.407 ±0.091 0.342 ±0.017 
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M89 Goldfish A. allosaccharophila 0.551 ±0.049 1.409 ±0.264 0.592 ±0.090 0.747 ±0.079 0.167 ±0.009 0.190 ±0.009 

M90 Goldfish A. bestiarum 0.272 ±0.048 0.343 ±0.013 0.399 ±0.078 0.429 ±0.081 0.468 ±0.010 0.514 ±0.065 

M91 Goldfish A. bestiarum 0.537 ±0.106 0.208 ±0.003 0.271 ±0.055 0.237 ±0.002 0.472 ±0.082 0.367 ±0.032 

M92 Goldfish A. allosaccharophila 1.321 ±0.193 0.781 ±0.051 1.335 ±0.030 0.979 ±0.069 0.735 ±0.021 0.648 ±0.069 

M93 Goldfish A. allosaccharophila 1.426 ±0.154 1.316 ±0.142 0.501 ±0.063 0.693 ±0.099 0.284 ±0.054 0.258 ±0.031 

M94 Goldfish A. hydrophila 1.539 ±0.198 1.240 ±0.214 1.362 ±0.204 1.292 ±0.067 0.740 ±0.106 0.636 ±0.071 

M95 Goldfish A. hydrophila 0.923 ±0.111 1.188 ±0.012 1.108 ±0.049 1.460 ±0.228 0.648 ±0.105 0.640 ±0.098 

M96 Goldfish A. bestiarum 1.026 ±0.059 1.724 ±0.095 0.306 ±0.057 0.572 ±0.023 0.284 ±0.044 0.256 ±0.036 

M97 Goldfish A. bestiarum 0.180 ±0.058 0.124 ±0.016 0.386 ±0.045 0.386 ±0.103 0.257 ±0.065 0.275 ±0.120 

M98 Goldfish Aeromonas spp. 310 1.040 ±0.056 1.209 ±0.243 0.199 ±0.061 0.315 ±0.017 0.327 ±0.110 0.254 ±0.027 

M99 Goldfish A. bestiarum 1.282 ±0.052 0.830 ±0.042 0.198 ±0.022 0.349 ±0.051 0.213 ±0.022 0.220 ±0.016 

*
RT EAOB SH=room temperature (RT, ≈21 ºC) under shaking conditions in nutrient-poor EAOB media, RT EAOB ST=room temperature (RT, ≈21 ºC) under 

static conditions in nutrient-poor EAOB media, 30 EAOB SH=30 ºC under shaking conditions in nutrient-poor EAOB media, 30 EAOB ST=30 ºC under static 

conditions in nutrient-poor EAOB media, 37 EAOB SH=37 ºC under shaking conditions in nutrient-poor EAOB media, 37 EAOB ST=37 ºC under static 

conditions in nutrient-poor EAOB media, SD=standard deviation.    

 

 

 

 

 

 

Table A4. Biofilm formation of 99 Aeromonas spp. isolates following incubation at room temperature (RT, ≈21 ºC), 30 ºC, or 

37 ºC, under shaking or static conditions in nutrient-rich (TSB) media, respectively 
 

Code Source Species RT TSB 

SH*  

SD RT TSB 

ST* 

SD 30 TSB 

SH* 

SD 30 TSB  

ST* 

SD 37 TSB 

SH* 

SD 37 TSB  

ST* 

SD 

M1 Catfish A. culicicola 1.257 ±0.111 1.435 ±0.132 1.691 ±0.158 1.059 ±0.072 0.962 ±0.049 1.665 ±0.175 

M2 Catfish A. hydrophila 1.076 ±0.087 1.203 ±0.086 0.695 ±0.040 1.277 ±0.035 0.847 ±0.055 1.357 ±0.122 

M3 Catfish A. allosaccharophila 1.138 ±0.056 0.722 ±0.072 2.012 ±0.053 2.192 ±0.104 0.745 ±0.090 0.756 ±0.074 

M4 Catfish A. jandaei 1.448 ±0.367 1.506 ±0.142 2.164 ±0.079 3.026 ±0.230 0.565 ±0.124 0.603 ±0.120 

M5 Catfish A. hydrophila 1.579 ±0.024 1.218 ±0.155 1.144 ±0.031 1.628 ±0.359 1.275 ±0.166 1.668 ±0.453 
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M6 Catfish A. hydrophila 1.318 ±0.282 1.161 ±0.100 1.825 ±0.164 1.150 ±0.196 1.793 ±0.163 1.390 ±0.151 

M7 Catfish A. culicicola 1.525 ±0.119 0.448 ±0.144 1.342 ±0.288 2.506 ±0.285 1.622 ±0.373 1.492 ±0.258 

M8 Tilapia A. allosaccharophila 1.722 ±0.280 1.260 ±0.319 1.298 ±0.232 1.158 ±0.156 0.711 ±0.070 1.550 ±0.224 

M9 Catfish Plesiomonasshigelloides 0.271 ±0.048 0.292 ±0.061 0.956 ±0.086 1.686 ±0.237 0.909 ±0.093 0.382 ±0.013 

M10 Catfish A. culicicola/jandaei 2.002 ±0.133 1.150 ±0.108 2.510 ±0.077 1.821 ±0.141 0.411 ±0.093 0.349 ±0.088 

M11 Catfish Aeromonas spp. 1.225 ±0.098 1.038 ±0.094 1.526 ±0.347 1.584 ±0.227 0.763 ±0.202 0.577 ±0.185 

M12 Catfish A. bestiarum 1.582 ±0.318 2.648 ±0.477 1.747 ±0.153 1.150 ±0.120 0.908 ±0.077 0.627 ±0.049 

M13 Catfish A. hydrophila 0.554 ±0.163 0.480 ±0.042 1.178 ±0.053 1.417 ±0.347 0.748 ±0.125 0.826 ±0.044 

M14 Tilapia A. hydrophila 1.639 ±0.216 1.565 ±0.312 1.767 ±0.174 1.956 ±0.144 1.459 ±0.163 2.206 ±0.102 

M15 Tilapia Aeromonas spp. 0.724 ±0.056 0.423 ±0.060 0.475 ±0.052 0.467 ±0.075 0.540 ±0.075 0.597 ±0.017 

M16 Tilapia A. jandaei 0.805 ±0.060 2.030 ±0.101 2.478 ±0.204 2.670 ±0.046 0.665 ±0.044 0.534 ±0.035 

M17 Tilapia A. hydrophila 0.735 ±0.044 1.326 ±0.215 1.364 ±0.321 1.192 ±0.084 1.209 ±0.144 2.149 ±0.143 

M18 Tilapia A. caviae 1.297 ±0.046 0.854 ±0.064 1.025 ±0.149 1.238 ±0.088 0.852 ±0.059 0.764 ±0.042 

M19 Tilapia A. jandaei 0.668 ±0.055 0.796 ±0.075 1.315 ±0.194 0.533 ±0.072 0.697 ±0.075 0.425 ±0.054 

M20 Tilapia Aeromonas spp. 1.290 ±0.313 1.584 ±0.024 1.068 ±0.072 1.013 ±0.111 0.695 ±0.051 0.669 ±0.008 

M21 Tilapia A. allosaccharophila 2.718 ±0.069 1.431 ±0.118 0.504 ±0.011 0.662 ±0.090 0.755 ±0.042 1.702 ±0.224 

M22 Seawater A. culicicola 0.539 ±0.044 0.495 ±0.075 0.462 ±0.023 0.915 ±0.107 0.797 ±0.082 0.782 ±0.132 

M23 Seawater A. culicicola 1.507 ±0.251 1.154 ±0.093 1.470 ±0.124 1.603 ±0.166 0.954 ±0.052 1.651 ±0.114 

M24 Seawater A. jandaei 1.825 ±0.231 1.954 ±0.027 4.000 ±0.000 2.354 ±0.263 1.404 ±0.166 1.231 ±0.170 

M25 Seawater A. culicicola 0.829 ±0.064 0.993 ±0.033 1.067 ±0.075 1.347 ±0.215 0.907 ±0.074 1.233 ±0.239 

M26 Seawater Aeromonas spp. 45 1.303 ±0.284 1.216 ±0.220 1.033 ±0.013 0.882 ±0.025 0.823 ±0.046 0.918 ±0.084 

M27 Seawater Aeromonas spp. 45 1.784 ±0.084 1.856 ±0.061 0.925 ±0.035 1.281 ±0.045 1.000 ±0.006 2.230 ±0.523 

M28 Seawater A. jandaei 0.866 ±0.033 1.144 ±0.031 1.480 ±0.048 1.274 ±0.106 0.759 ±0.030 1.442 ±0.184 

M29 Seawater A. culicicola 2.257 ±0.313 1.553 ±0.045 0.437 ±0.037 1.358 ±0.227 0.727 ±0.059 0.822 ±0.076 

M30 Seawater A. jandaei 1.043 ±0.026 0.999 ±0.084 0.377 ±0.017 2.816 ±0.061 1.085 ±0.101 2.128 ±0.179 

M31 Seawater A. culicicola 0.923 ±0.084 0.625 ±0.074 1.254 ±0.015 1.285 ±0.120 0.971 ±0.067 1.674 ±0.139 

M32 Seawater A. culicicola 1.080 ±0.082 1.456 ±0.285 0.940 ±0.021 0.919 ±0.078 0.565 ±0.019 1.478 ±0.269 

M33 Seawater Aeromonas spp. 310 1.630 ±0.160 1.732 ±0.363 1.987 ±0.106 0.913 ±0.076 1.659 ±0.191 1.402 ±0.438 

M34 Seawater Aeromonas spp. 45 0.594 ±0.037 0.662 ±0.095 0.802 ±0.074 1.204 0.068 1.153 ±0.016 2.674 ±0.292 

M35 Seawater A. culicicola 1.725 ±0.205 1.550 ±0.406 1.533 ±0.261 1.727 ±0.179 1.676 ±0.213 1.276 ±0.104 
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M36 Seawater A. jandaei 1.355 ±0.107 1.581 ±0.375 0.759 ±0.040 1.200 ±0.107 0.563 ±0.079 1.782 ±0.485 

M37 Seawater Aeromonas spp. 45 1.633 ±0.030 1.154 ±0.082 1.364 ±0.032 1.663 ±0.160 0.932 ±0.084 1.656 ±0.201 

M38 Seawater A. culicicola 0.880 ±0.051 1.591 ±0.117 1.428 ±0.156 1.248 ±0.283 1.463 ±0.391 1.606 ±0.259 

M39 Seawater A. culicicola 1.115 ±0.048 1.710 ±0.190 0.873 ±0.003 0.937 ±0.081 1.163 ±0.182 1.404 ±0.201 

M40 Seawater A. culicicola 0.738 ±0.078 1.351 ±0.181 0.896 ±0.093 2.254 ±0.149 0.785 ±0.019 1.596 ±0.304 

M41 Seawater Aeromonas spp. 1.574 ±0.320 1.354 ±0.426 1.516 ±0.073 1.404 ±0.391 0.766 ±0.024 0.882 ±0.025 

M42 Tilapia A. culicicola 1.405 ±0.061 1.636 ±0.333 1.300 ±0.342 0.890 ±0.098 1.597 ±0.045 0.876 ±0.088 

M43 Tilapia Aeromonas spp. 310 1.377 ±0.121 1.237 ±0.109 1.647 ±0.362 1.707 ±0.144 0.950 ±0.045 2.291 ±0.096 

M44 Tilapia A. icthiosmia 2.211 ±0.057 1.608 ±0.068 1.790 ±0.180 1.238 ±0.131 0.433 ±0.043 0.455 ±0.142 

M45 Tilapia Plesiomonasshigelloides 1.481 ±0.340 1.800 ±0.092 1.105 ±0.017 1.530 ±0.042 1.132 ±0.060 1.810 ±0.135 

M46 Tilapia Plesiomonasshigelloides 0.554 ±0.018 1.631 ±0.279 1.271 ±0.180 1.186 ±0.048 0.725 ±0.102 0.458 ±0.097 

M47 Tilapia Plesiomonasshigelloides 1.595 ±0.481 0.641 ±0.067 1.393 ±0.196 1.301 ±0.118 1.130 ±0.039 0.868 ±0.097 

M48 Tilapia A. icthiosmia 0.773 ±0.073 0.984 ±0.034 1.340 ±0.177 1.394 ±0.071 1.334 ±0.239 1.367 ±0.318 

M49 Tilapia A. sobria 1.535 ±0.401 2.205 ±0.172 1.231 ±0.032 1.710 ±0.280 1.533 ±0.060 1.657 ±0.242 

M50 Catfish A. hydrophila 1.703 ±0.161 1.366 ±0.348 1.470 ±0.271 1.621 ±0.484 0.736 ±0.025 0.475 ±0.082 

M51 Catfish A. hydrophila 1.622 ±0.024 2.254 ±0.277 1.074 ±0.108 1.446 ±0.101 0.381 ±0.011 0.317 ±0.128 

M52 Tilapia A. hydrophila 1.642 ±0.202 1.210 ±0.383 1.613 ±0.167 1.532 ±0.072 1.458 ±0.234 0.786 ±0.132 

M53 Catfish A. hydrophila 2.210 ±0.051 1.609 ±0.070 2.171 ±0.096 1.867 ±0.134 0.641 ±0.031 1.688 ±0.151 

M54 Tilapia A. icthiosmia 1.308 ±0.262 1.501 ±0.394 1.514 ±0.313 2.320 ±0.043 0.712 ±0.073 0.731 ±0.180 

M55 Tilapia A. veronii/A. culicicola 1.418 ±0.286 1.309 ±0.042 1.628 ±0.116 1.266 ±0.061 1.101 v0.040 1.214 ±0.033 

M56 Tilapia A. culicicola 1.571 ±0.221 1.677 ±0.399 1.633 ±0.266 1.146 ±0.036 1.487 ±0.423 1.410 ±0.126 

M57 Tilapia A. veronii 1.786 ±0.066 1.434 ±0.376 1.146 ±0.237 0.822 ±0.099 0.612 ±0.015 0.729 ±0.112 

M58 Tilapia A. culicicola 1.543 ±0.256 1.559 ±0.203 1.060 ±0.096 1.571 ±0.157 1.988 ±0.251 0.868 ±0.094 

M59 Tilapia A. caviae 1.270 ±0.078 0.595 ±0.030 1.354 ±0.338 1.255 ±0.241 0.696 ±0.093 1.133 ±0.133 

M60 Tilapia A. hydrophila 1.405 ±0.236 1.414 ±0.139 1.232 ±0.130 1.575 ±0.359 0.977 ±0.121 1.361 ±0.445 

M61 Tilapia A. culicicola 1.437 ±0.218 0.822 ±0.097 1.546 ±0.020 1.722 ±0.146 0.853 ±0.036 1.455 ±0.334 

M62 Tilapia A. hydrophila 0.325 ±0.025 0.576 ±0.064 0.324 ±0.077 0.451 ±0.068 0.180 ±0.026 0.425 ±0.023 

M63 Tilapia A. veronii 0.379 ±0.061 0.546 ±0.120 0.778 ±0.025 1.656 ±0.155 0.281 ±0.048 0.769 ±0.120 

M64 Tilapia A. hydrophila 0.812 ±0.101 0.620 ±0.058 1.194 ±0.228 1.616 ±0.195 1.195 ±0.053 1.330 ±0.137 

M65 Tilapia A. hydrophila 1.138 ±0.045 1.208 ±0.163 1.522 ±0.267 1.665 ±0.222 1.232 ±0.144 1.799 ±0.347 



228 

 

M66 Tilapia Plesiomonasshigelloides 1.838 ±0.209 2.084 ±0.021 1.345 ±0.183 2.188 ±0.232 1.326 ±0.201 1.816 ±0.151 

M67 Tilapia Plesiomonasshigelloides 1.759 ±0.105 1.413 ±0.262 1.493 ±0.134 1.533 ±0.127 1.262 ±0.115 1.110 ±0.081 

M68 Goldfish A. caviae 0.724 ±0.040 0.716 ±0.110 1.638 ±0.235 3.432 ±0.557 0.543 ±0.043 0.482 ±0.059 

M69 Goldfish A. bestiarum 1.439 ±0.208 1.181 ±0.205 1.894 ±0.127 2.461 ±0.411 0.762 ±0.017 3.145 ±0.900 

M70 Goldfish A. bestiarum 1.380 ±0.244 1.745 ±0.308 2.318 ±0.089 1.260 ±0.236 1.442 ±0.198 3.651 ±0.494 

M71 Goldfish A. bestiarum 1.143 ±0.235 0.785 ±0.042 1.302 ±0.177 0.665 ±0.094 0.319 ±0.068 0.428 ±0.082 

M72 Goldfish A. bestiarum 0.413 ±0.031 0.497 ±0.071 0.560 ±0.054 0.717 ±0.107 0.232 ±0.080 0.378 ±0.060 

M73 Goldfish A. bestiarum 1.270 ±0.212 1.488 ±0.209 1.152 ±0.130 1.548 ±0.169 0.718 ±0.059 0.737 ±0.074 

M74 Goldfish A. allosaccharophila 1.404 ±0.124 2.121 ±0.282 3.267 ±0.349 2.430 ±0.195 0.435 ±0.009 0.784 ±0.096 

M75 Goldfish Aeromonas. spp. 45 2.119 ±0.032 1.594 ±0.264 1.735 ±0.105 1.453 ±0.273 1.162 ±0.113 1.339 ±0.213 

M76 Goldfish A. salmonicida 0.853 ±0.078 0.861 ±0.016 1.200 ±0.109 1.442 ±0.098 0.544 ±0.014 0.447 ±0.039 

M77 Goldfish A. salmonicida 0.728 ±0.106 1.400 ±0.177 1.142 ±0.151 1.413 ±0.291 0.537 ±0.063 0.333 ±0.047 

M78 Goldfish A. bestiarum 3.068 ±0.494 1.997 ±0.081 3.460 ±0.326 1.815 ±0.165 1.197 ±0.000 3.471 ±0.069 

M79 Goldfish A. bestiarum 0.777 ±0.035 0.878 ±0.044 1.552 ±0.110 1.238 ±0.172 1.145 ±0.175 1.357 ±0.232 

M80 Goldfish A. bestiarum 0.646 ±0.096 0.889 ±0.058 0.699 ±0.119 1.147 ±0.243 1.522 ±0.159 1.410 ±0.286 

M81 Goldfish A. bestiarum 1.490 ±0.250 1.610 ±0.056 1.822 ±0.055 1.198 ±0.088 0.632 ±0.086 0.488 ±0.258 

M82 Goldfish A. culicicola 1.411 ±0.113 3.004 ±0.378 1.551 ±0.136 1.586 ±0.036 0.629 ±0.093 0.620 ±0.078 

M83 Goldfish A. bestiarum 0.602 ±0.066 0.505 ±0.040 0.419 ±0.053 0.651 ±0.077 0.324 ±0.130 0.277 ±0.040 

M84 Goldfish A. bestiarum 1.477 ±0.155 3.590 ±0.358 2.102 ±0.150 1.570 ±0.484 0.757 ±0.045 0.588 ±0.064 

M85 Goldfish A. allosaccharophila 1.038 ±0.120 1.085 ±0.078 1.406 ±0.244 1.579 ±0.229 1.355 ±0.086 0.493 ±0.095 

M86 Goldfish A. hydrophila 0.702 ±0.085 0.601 ±0.084 0.780 ±0.096 0.532 ±0.078 0.698 ±0.064 0.261 ±0.099 

M87 Goldfish A. bestiarum 1.063 ±0.057 1.804 ±0.075 1.965 ±0.312 1.414 ±0.139 0.554 ±0.036 0.508 ±0.107 

M88 Goldfish A. bestiarum 0.433 ±0.076 0.366 ±0.021 1.506 ±0.198 1.682 ±0.186 0.504 ±0.104 0.462 ±0.090 

M89 Goldfish A. allosaccharophila 0.705 ±0.098 0.437 ±0.060 0.643 ±0.083 0.502 ±0.056 0.283 ±0.047 0.308 ±0.032 

M90 Goldfish A. bestiarum 0.850 ±0.091 1.530 ±0.112 1.074 ±0.070 1.565 ±0.204 0.485 ±0.080 0.365 ±0.102 

M91 Goldfish A. bestiarum 0.729 ±0.114 0.723 ±0.052 1.564 ±0.382 1.580 ±0.340 0.588 ±0.065 0.465 ±0.051 

M92 Goldfish A. allosaccharophila 1.609 ±0.155 1.547 ±0.231 1.630 ±0.265 1.424 ±0.345 0.474 ±0.066 0.388 ±0.069 

M93 Goldfish A. allosaccharophila 1.162 ±0.113 1.451 ±0.286 0.656 ±0.042 0.354 ±0.074 0.977 ±0.082 1.897 ±0.096 

M94 Goldfish A. hydrophila 1.248 ±0.136 1.168 ±0.094 2.580 ±0.117 2.696 ±0.440 0.428 ±0.064 1.822 ±0.836 

M95 Goldfish A. hydrophila 0.888 ±0.094 1.334 ±0.140 1.410 ±0.199 1.930 ±0.066 0.704 ±0.049 0.522 ±0.044 
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M96 Goldfish A. bestiarum 1.755 ±0.108 1.371 ±0.189 0.739 ±0.119 1.337 ±0.273 1.640 ±0.156 1.177 ±0.200 

M97 Goldfish A. bestiarum 0.253 ±0.038 0.563 ±0.150 1.166 ±0.147 1.988 ±0.251 1.462 ±0.123 1.873 ±0.123 

M98 Goldfish Aeromonas spp. 310 1.507 ±0.318 2.189 ±0.325 1.130 ±0.100 1.219 ±0.168 1.060 ±0.115 1.204 ±0.093 

M99 Goldfish A. bestiarum 0.867 ±0.032 0.962 ±0.041 0.729 ±0.020 0.867 ±0.025 1.188 ±0.169 1.321 ±0.386 

*RT TSB SH=room temperature (RT, ≈21 ºC) under shaking conditions in nutrient-rich TSB media, RT TSB ST=room temperature (RT, ≈21 ºC) under static 

conditions in nutrient-rich TSB media, 30 TSB SH=30 ºC under shaking conditions in nutrient-rich TSB media, 30 TSB ST=30 ºC under static conditions in 

nutrient-rich TSB media, 37 TSB SH=37 ºC under shaking conditions in nutrient-rich TSB media, 37 TSB ST=37 ºC under static conditions in nutrient-rich TSB 

media, SD=standard deviation.    

 

 

 

Table A5. Resistance profiles of 99 Aeromonas spp. isolates obtained from different fish hosts or origin 

Code Source Species Resistance profiles 

M1 Catfish A. culicicola NA,OX,T 

M2 Catfish A. hydrophila AMP,AML,OX,W,RL 

M3 Catfish A. allosaccharophila AMP,AML,OX 

M4 Catfish A. jandaei AMP,AML,AMC,OX,W,RL 

M5 Catfish A. hydrophila AMP,AML,OX,W,RL 

M6 Catfish A. hydrophila AMP,AML,NA,OX,W 

M7 Catfish A. culicicola AMP,AML,E,OX,T,W,RL 

M8 Tilapia A. allosaccharophila AMP,AML,AMC,OX,T,W,RL 

M9 Catfish Plesiomonasshigelloides OX 

M10 Catfish A. culicicola/jandaei AMP,AML,CPD,OX,W,RL 

M11 Catfish Aeromonas spp . AMP,AML,AMC,E,OX,W 

M12 Catfish A. bestiarum AMP,AML,OX,W,RL 

M13 Catfish A. hydrophila AMP,AML,OX,W,RL 

M14 Tilapia A. hydrophila OX 
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M15 Tilapia Aeromonas spp . AMP,AML,AMC,FOX,OX 

M16 Tilapia A. jandaei AMP,AML,CPD,CXM,FOX,OX,W,RL 

M17 Tilapia A. hydrophila AMP,AML,OX,W,RL 

M18 Tilapia A. caviae AMP,AML 

M19 Tilapia A. jandaei AMP,AML,AMC,FOX,OX,W,RL 

M20 Tilapia Aeromonas spp . AMP,AML,FOX,CPD,CXM,OX,W,RL,SXT 

M21 Tilapia A. allosaccharophila AMP,AML,AMC,FOX,CPD,CXM,OX,W,S 

M22 Seawater A. culicicola AMP,AML,OX,W,RL 

M23 Seawater A. culicicola AMP,AML,OX,RL 

M24 Seawater A. jandaei AMP,AML,OX,RL 

M25 Seawater A. culicicola AMP,AML,OX,RL 

M26 Seawater Aeromonas spp. 45 AMP,AML,OX,RL 

M27 Seawater Aeromonas spp. 45 AMP,E, OX, W, RL 

M28 Seawater A. jandaei AMP,AML,OX,RL 

M29 Seawater A. culicicola AMP,AML,OX,RL 

M30 Seawater A. jandaei AMP,AML,OX,RL 

M31 Seawater A. culicicola AMP,AML,OX,W,RL 

M32 Seawater A. culicicola AMP,AML,OX,RL 

M33 Seawater Aeromonas spp. 310 AMP,AML,ATM,NA,OX,W,RL 

M34 Seawater Aeromonas spp. 45 AMP,AML,OX,RL 

M35 Seawater A. culicicola AMP,AML,OX,RL 

M36 Seawater A. jandaei AMP,AML,E,OX,RL 

M37 Seawater Aeromonas spp. 45 AMP,AML,OX,T,W,RL 

M38 Seawater A. culicicola ATM,OX,RL 

M39 Seawater A. culicicola AMP,AML,OX,RL 

M40 Seawater A. culicicola AMP,AML,ATM,OX,RL 

M41 Seawater Aeromonas spp . AMP,AML,OX,RL 

M42 Tilapia A. culicicola AMP,AML,NA,OX,RL 

M43 Tilapia Aeromonas spp. 310 AMP,AML,NA,OX,RL 

M44 Tilapia A. icthiosmia AMP,AML,OX,RL 
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M45 Tilapia Plesiomonasshigelloides AMP,AML,AMC,OX,T,W,RL 

M46 Tilapia Plesiomonasshigelloides AMP,AML,E,NA,OX,W,S,RL,SXT 

M47 Tilapia Plesiomonasshigelloides AMP,AML,OX,W,RL 

M48 Tilapia A. icthiosmia AMP,AML,OX,W,RL 

M49 Tilapia A. sobria AMP,AML,AMC,OX,T 

M50 Catfish A. hydrophila AMP,AML,CXM,E,NA,OX,W,RL 

M51 Catfish A. hydrophila AMP,AML,AMC,OX,W,RL 

M52 Tilapia A. hydrophila AMP,AML,AMC,CPD,CXM,E,OX,T,W,RL 

M53 Catfish A. hydrophila AMP,AML,OX,T,W,RL 

M54 Tilapia A. icthiosmia AMP,AML,AMC,E,OX,T,W,RL 

M55 Tilapia A. veronii/A. culicicola AMP,AML,OX,W,RL 

M56 Tilapia A. culicicola AMP,AML,E,NA,OX,W,RL 

M57 Tilapia A. veronii AMP,AML,AMC,CPD,CXM,C,E,OX,T,W,RL 

M58 Tilapia A. culicicola AMP,AML,AMC,OX,W,RL 

M59 Tilapia A. caviae AMP,AML,OX,T,W,RL 

M60 Tilapia A. hydrophila AMP,AML,AMC,E,OX,T,W,RL 

M61 Tilapia A. culicicola AMP,AML,OX 

M62 Tilapia A. hydrophila AMP,AML,OX,RW,RL 

M63 Tilapia A. veronii AMP,AML,AMC,OX,W,RL 

M64 Tilapia A. hydrophila AMP,AML,CPD,FOX,OX,W,RL 

M65 Tilapia A. hydrophila AMP,AML,OX,W,RL 

M66 Tilapia Plesiomonasshigelloides AMP,AML,OX,RL 

M67 Tilapia Plesiomonasshigelloides AMP,AML,OX,W,RL 

M68 Goldfish A. caviae AMP,AML,AMC,CPD,OX,W,RL 

M69 Goldfish A. bestiarum AMP,AML,AMC,CPD,OX,W,S,RL 

M70 Goldfish A. bestiarum AMP,AML,AMC,CPD,OX,T,W,RL 

M71 Goldfish A. bestiarum AMP,AML,CPD,CXM,E,OX,W 

M72 Goldfish A. bestiarum AMP,AML,OX,W,RL 

M73 Goldfish A. bestiarum AMP,AML,AMC,CXM,FOX,OX,W,RL 

M74 Goldfish A. allosaccharophila AMP,AML,C,NA,OX,T,W,RL 



232 

 

M75 Goldfish Aeromonas. spp. 45 AMP,AML,CPD,CXM,C,E,OX,W 

M76 Goldfish A. salmonicida AMP,AML,AMC,CPD,OX,W,RL 

M77 Goldfish A. salmonicida AMP,AML,AMC,CPD,OX,W,RL 

M78 Goldfish A. bestiarum AMP,AML,AMC,CPD,CXM,OX,W,RL 

M79 Goldfish A. bestiarum APM,AML,OX 

M80 Goldfish A. bestiarum APM,AML,NA,OX,T,W 

M81 Goldfish A. bestiarum AMP,AML,CXM,CTX,OX,W,RL 

M82 Goldfish A. culicicola AMP,AML,AMC,ATM,CPD, 

CXM,E,FOX,OX,W,RL 

M83 Goldfish A. bestiarum AMP,AML,OX,W,RL 

M84 Goldfish A. bestiarum AMP,AML,OX,W,RL 

M85 Goldfish A. allosaccharophila AMP,AML,AMC,OX,W,RL 

M86 Goldfish A. hydrophila AMP,AML,AMC,OX,W,RL 

M87 Goldfish A. bestiarum AMP,AML,AMC,OX,W,RL 

M88 Goldfish A. bestiarum AMP,AML,AMC,CPD,CXM,E,FOX,OX,W,RL 

M89 Goldfish A. allosaccharophila AMP,AML,AMC,CPD,CXM,OX 

M90 Goldfish A. bestiarum AMP,AML,AMC,CXM,OX,W,RL 

M91 Goldfish A. bestiarum AMP,AML,OX,W,RL 

M92 Goldfish A. allosaccharophila AMP,AML,CPD,OX,W,RL 

M93 Goldfish A. allosaccharophila AMP,AML,C,NA,OX,W,RL 

M94 Goldfish A. hydrophila AMP,AML,AMC,E,OX,T,W,RL 

M95 Goldfish A. hydrophila AMP,AML,AMC,CXM,E,OX,T,W,RL 

M96 Goldfish A. bestiarum E,OX,T 

M97 Goldfish A. bestiarum E,OX,T 

M98 Goldfish Aeromonas spp. 310 AMP,AML,OX,W,RL 

M99 Goldfish A. bestiarum AMP,AML,CPD,CXM,OX 

AMP=ampicillin, AML=amoxycillin, AMC=augmentin, AZM=azithromycin, ATM=aztreonam, CAZ=ceftazidime, FOX=cefoxitin, CPD=cefpodoxime, 

CXM=cefuroxime, CIP=ciprofloxacin, E=erythromycin, GN=gentamicin, NA=nalidixic acid, OX=oxacillin, TE=tetracycline, W=trimethoprim, S=streptomycin, 

RL=sulphamethoxazole, SXT=cotrimoxazole 
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