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Abstract

In this thesis we study spherically symmetric spacetimes which are static with a

perfect fluid source. The Einstein field equations, in a number of equivalent forms,

are derived in detail. The physical properties of a relativistic star are briefly re­

viewed. We specify two particular choices for one of the gravitational potentials.

The behaviour of the remaining gravitational potential is governed by a second order

differential equation. This equation has solutions in terms of elementary functions

for some cases. The differential equation, in other cases, may be expressed as Bessel,

confluent hypergeometric and hypergeometric equations. In such instances the so­

lution is given in terms of special functions. A number of solutions to the Einstein

field equations are generated. We believe that these solutions may be used to model

realistic stars. Many of the solutions found are new and have not been published

previously. In some cases our solutions are generalisations of cases considered previ­

ously. For some choices of the gravitational potential our solutions are equivalent to

well-known results documented in the literature; in these cases we explicitly relate

our solutions to those published previously. We have utilised the computer package

MATHEMATICA Version 2.0 (Wolfram 1991) to assist with calculations, and to

produce figures to describe the gravitational field. In addition, we briefly investigate

the approach of specifying an equation of state relating the energy density and the

pressure. The solution of the Einstein field equations, for a linear equation of state,

is reduced to integrating Abel's equation of the second kind.
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1 Introduction

General relativity is a relativistic theory of gravitation and has been successfully

applied to describe phenomena in astrophysics and cosmology (Misner et al. 1973).

It reduces to the Newtonian theory for weak gravitational fields. In general rela­

tivity the gravitational field of a body is contained in the curvature of spacetime

which is described by the Riemann tensor. The matter content is represented by

the symmetric energy-momentum tensor for charged and uncharged matter. The

energy-momentum tensor is related to the curvature of the manifold via the Einstein

field equations which satisfy the conservation laws, namely the Bianchi identities.

The Einstein field equations are a set of highly nonlinear partial differential equa­

tions which are difficult to integrate without simplifying assumptions. In order to

solve the Einstein field equations of general relativity it is sometimes assumed that

spacetime admits a particular symmetry in the hope that the field equations are

simplified (Maharaj et al. 1991). Another approach is to attempt to integrate the

field equations directly without ab initio specifying a spacetime symmetry, e.g. a

conformal Killing vector. The latter is the approach that we follow in this thesis.

It is important to find explicit solutions to the Einstein field equations for

astrophysical and cosmological applications. Our interest here is relativistic astro­

physics, in particular spherically symmetric stars which are static. Exact solutions to

the Einstein field equations are very important as they throw light on the qualitative
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features of these gravitational fields. They facilitate the investigation and discussion

of the physical properties of relativistic stars (Schutz 1985, Shapiro and Teukolsky

1983). It is difficult to study these features in the general Einstein field equations;

in an exact solution a physical analysis is easier. In addition explicit calculations,

e.g. surface redshift of stars, are possible to describe physical properties of stars.

We should emphasise that an exact solution is only the first step in the modelling of

stars. For a realistic stellar model we require additional physical constraints (Glass

and Goldman 1978).

There exist many solutions to the Einstein field equations in the literature.

Only some of the solutions are treated seriously as a large number of the known so­

lutions are not physically acceptable. Some of the famous exact solutions, applicable

to relativistic astrophysics, are:

(i) The Schwarzschild exterior solution describes the exterior gravitational field to

a static, spherically symmetric body. In fact we can show that every spherically

symmetric exterior solution is static (and therefore given by the Schwarzschild

exterior line element) even if the interior solution is nonstatic. This general

result is called Birkhoff's theorem. It is the Schwarzschild exterior solution that

is utilised in the classical tests of general relativity: bending of light, perihelion

advance, spectral shift and time delay in radar signals.

(ii) The Schwarzschild interior solution is valid for the interior of the star where

the energy density is taken to be constant. The Schwarzschild interior and

the Schwarzschild exterior solutions match smoothly at the boundary of the

star. The Schwarzschild interior solution may be used to rriodel relativistic

stars for which the variations in the energy density are small, and is a good

approximation for small stars in which the pressures are not too large.
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(iii) The Reissner-Nordstrom solution represents the exterior gravitational field

for a static, spherically symmetric charged body. In practice astrophysical

bodies are uncharged and consequently the influence of the electromagnetic

field may be neglected. However this solution is important as a simple example

of an exact solution of the Einstein-Maxwell system of equations and may be

utilised as a first approximation in some physical situations.

(iv) The!(err solution describes the exterior gravitational field of a rotating, axially

symmetric gravitating body. The Kerr solution reduces to the Schwarzschild

exterior solution in the appropriate limit. We should point out that an interior

solution that matches smoothly to the exterior Kerr line element has not yet

been found (Stephani 1990).

For a more detailed exposition to the exact solutions of the Einstein field equations

the reader is referred to Kramer et al. (1980).

In this thesis we investigate static, spherically symmetric spacetimes with

a perfect fluid source. These assumptions are usually made in the study of rela-

tivistic stars and lead to forms of the field equations which are generalisations of

the corresponding Newtonian equations (Schutz 1985). Our objective is to find new

solutions to the Einstein field equations that may be applied to relativistic stars. We

believe that the solutions presented in this thesis are physically reasonable and may

be utilised to model realistic stars.

In chapter 2 we briefly consider only those aspects of differential geometry

and general relativity necessary and relevant for this thesis. We begin by intro-

ducing the metric tensor field, the metric connection and the covariant derivative

on the manifold. These are used to define the Riemann tensor the Ricci tensor, ,
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the Ricci scalar and the Einstein tensor. The matter content is described by the

energy-momentum tensor. We are then in a position to motivate the Einstein field

equations. The field equations are derived in detail for a static, spherically symmet­

ric line spacetime. Two other equivalent forms of the field equations are obtained

which for some applications simplifies the solution of the field equations. In the first

form of the field equations it is easier to compare with the corresponding Newtonian

equations (Schutz 1985). The second form of the field equations utilises the transfor­

mations of Durgapal and Bannerji (1983), and this form is utilised in later chapters.

The Schwarzschild exterior solution and the Schwarzschild interior solution with con­

stant energy density are reviewed. A brief outline of some of the physical properties

required of interior solutions to the field equations, for a realistic relativistic stellar

model, is discussed.

In chapter 3 we consider a particular class of solutions to the Einstein

field equations. We choose a form for the metric function which generalises that of

Finch and Skea (1989). A mistake in the transformation presented by Finch and

Skea (1989) is corrected and we provide details of the derivation missing in their

treatment. Then we consider a case which is related to the confluent hypergeometric

differential equation via a complex transformation. As this solution is difficult to

. interpret analytically the behaviour of the metric functions are presented graphically.

Two other solutions are found and are related to existing solutions in the literature

by appropriate choices of the constants of integration. Finally we point out that our

method may be applied to find further new solutions.

In chapter 4 we specify a form for one of the gravitational potentials, dif­

ferent to that used in chapter 3, in the hope of generating a class of new solutions

to the Einstein field equations. This form of the metric function generalises that
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of Durgapal and Bannerji (1983). We generate a new solution to the Einstein field

equations which reduces, as a particular case, to the Durgapal and Bannerji (1983)

solution. The solution of the field equations, for the general form of the gravitational

potential chosen, is reduced to finding a solution of the hypergeometric equation

which depends on one parameter. The solution to this equation is given in terms of

special functions. We regain our generalisation of the Durgapal and Bannerji (1983)

solution as a special case of the hypergeometric equation. In addition a new solution

is obtained, in terms of elementary functions, as a special case of the general hyper­

geometric solution. The package MATHEMATICA Version 2.0 (Wolfram 1991) has

been utilised to assist in obtaining explicit forms of the hypergeometric function for

particular values of the parameter.

We briefly investigate another approach of finding solutions to the Einstein

field equations in chapter 5. In this approach we assume a linear equation of state

relating the energy density and pressure. This approach was used by Ibanez and

Sanz (1982) to obtain a new solution. The paper of Ibanez and Sanz (1982) is briefly

reviewed and their field equations analysed. Their line element and field equations are

related to the standard literature by a coordinate transformation. Then the solution

of the Einstein field equations is reduced to obtaining a solution to a first order

differential equation. This is Abel's equation of the second kind which is difficult

to integrate. An equivalent second order differential equation is generated which for

some cases may be more easily integrated.

The results obtained in this thesis are summarised in the conclusion. Some

areas of future :research emanating from the results in this thesis and other related

topics are pointed out. We believe that many of the results obtained in this thesis

are original and have not been previously documented.
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2 Static Spherically Symmetric Spacetimes

2.1 Introduction

In this chapter we briefly introduce those aspects of differential geometry and general

relativity relevant for this thesis. For detailed expositions on differentiable manifolds

and tensor analysis the reader is referred to Bishop and Goldberg (1968), Hawk­

ing and Ellis (1973), Misner et al. (1973) and Wald (1984). In §2.2 we introduce

the metric tensor field, the metric connection and the covariant derivative on the

spacetime manifold. This makes it possible to define the Riemann tensor, the Ricci

tensor, the Ricci scalar and the Einstein tensor. The general energy-momentum

tensor, for uncharged matter, is defined and related to the curvature of the mani­

fold via the Einstein field equations. In §2.3 we study the spacetime geometry of

static, spherically symmetric spacetimes. The field equations are derived in detail in

Schwarzschild coordinates. A second form of the field equations is obtained by the

introduction of the mass function which is proportional to the total mass contained

within a sphere. A third form of the field equations is also obtained by the intro­

duction of a new coordinate and redefining two metric functions. This third form of

the field equations was first utilised by Durgapal and Bannerji (1983) and helps in

the search to find new solutions. In §2.4 we briefly review the Schwarzschild exterior

solution and th~,Schwarzschild interior solution with a constant energy density. We
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consider conditions that should be imposed on the solutions of the field equations for

a realistic relativistic stellar model in §2.5. Finally we consider the Buchdahllimit

which provides a general limit on the radius of relativistic stars.

2.2 Spacetime Geometry

We take s'pacetime M to be a 4-dimensional differentiable manifold endowed with a

symmetric, nondegenerate metric field g of signature (- + + +). A manifold with an

indefinite metric tensor field, as is the case in general relativity, is termed a pseudo-

Riemannian manifold. Points in the manifold may be labelled by the real coordinates

tensor field g is important for the discussion of metrical properties in a manifold and

is necessary for the definition of the length of a curve in M. If the curve is given by

xa (u), Ul ::; U ::; U2, then the length is defined as the integral

f.
1./.2

s=
1./.1

Equivalently we may write

(2.1 )

where we have dropped the modulus signs, without loss of generality, to obtain the

socalled line element (2.1) or the fundamental metric form. The metric tensor field

g may be associated with the metric connection r. The fundamental theorem of

Riemannian geometry guarantees the existence of a unique symmetric connection

preserving inner products under parallel transport. This connection is called the

metric connection r and may be expressed in terms of the components of the metric
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tensor g and its derivatives

a 1 ad ( )r be = 29 ged,b + 9db,e - 9be,d

where we utilise the notation that commas denote partial differentiation.

(2.2)

Let Y be a covariant vector field. Then the covariant derivative of Y is

given by

where the semicolon denotes covariant differentiation. The covariant derivative is

the modification of the partial derivative such that when operating on a (r, s) tensor

field it produces a (r, s + 1) tensor field on M. On covariantly differentiating for a

second time we obtain

The quantity Rd
abe is a (1,3) tensor field and is called the Riemann tensor or the

curvature tensor. The Riemann tensor provides a measure of the curvature of a

manifold, i.e. it provides a measure of deviation from flatness. In flat Minkowski

spacetime we have that Ra bed = 0 and for a ,curved spacetime Rabed is nonvanishing

in general. From the above it is clear that the nonvanishing of the Riemann tensor

arises from the noncommutativity of the covariant derivative. Upon contraction of

the Riemann tensor

(2.3)

we obtain
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(2.4)

where Rab is the Ricci tensor. A contraction of the Ricci tensor (2.4), i.e. a second

contraction of the Riemann tensor (2.3), yields

abR= 9 ab (2.5)

where R is the Ricci scalar. We construct the Einstein tensor G, in terms of the

Ricci tensor (2.4) and the Ricci scalar (2.5), as follows

(2.6)

A distinguishing characteristic of the Einstein tensor is that it has zero divergence

Cab
jb = 0 (2.7)

which follows from definition. This property of the Einstein tensor is sometimes

called the Bianchi identity.

In general relativity the matter distribution is described by the symmetric

energy-momentum tensor T given by

(2.8)

where p is the energy density, p is the isotropic (kinetic) pressure, qa is the heat

flow vector and 1r
ab is the anisotropic (stress) pressure tensor. These quantities are

measured relative to a fluid 4-velocity u. We will only consider perfect fluids for

which there are no heat conduction and stress terms:
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For a perfect fluid energy-momentum tensor equation (2.8) takes the simplified form

(2.9)

The perfect fluid form (2.9) is applicable in many situations in relativistic astro­

physics and cosmology (Misner et al. 1973). The energy-momentum tensor (2.8) is

coupled to the Einstein tensor (2.6) via the Einstein field equations

cab = Tab (2.10)

in suitable units. The field equations (2.10) give the relationship between the cur­

vature of the manifold M and the matter distribution in spacetime. For further

information on the motivation and derivation of the Einstein field equations see Fe­

lice and Clarke (1990), Misner et al. (1973) and Stephani (1990).

2.3 The Field Equations

The field equations (2.10) are highly nonlinear and to find solutions we require sim­

plifying assumptions. The standard approach is to impose a symmetry requirement

on the spacetime manifold (Kramer et al. 1980). In this thesis we are concerned

with solutions to the Einstein field equations which are static and spherically sym­

metric. This means we are considering that class of spacetime, admitting a Lie

algebra spanned by four Killing vectors, invariant under rotations. Such solutions

are applicable in relativistic astrophysics (Shapiro and Teukolsky 1983). In standard

coordinates (x a
) ;=:: (t, r, e, 4J), the generic form of the line element is given by

(2.11 )
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For the line element (2.11) the nonvanishing connection coefficients (2.2) are given

by

r o I
01 = V

2 1r 12 = ­
r

r 2
33 = - sin () cos ()

3 1r 13 = ­
r

r 3
23 = cot ()

where primes denote differentiation with respect to r. Substituting the above con-

nection coefficients in the Ricci tensor (2.4) for the line element (2.11) we obtain the

nonvanishing components of the Ricci tensor (2.4):

R - [ "+ 12 1,1 + 2V
/
] 2v-2'\00- V V -v/\ - e

r

[
" 12 I I 2A

/
]Rn = - v + v - v A - -;-

R22 = 1 ~ [1 + r(v' - A')] e- 2
,\

R33 = sin2
()Rn

11
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(2.12c)

(2.12d)



Then the Ricci tensor components (2.12) and the definition (2.5) yield the following

form for the Ricci scalar

[
1 (" ,2 " 2v' 2-\' 1) 2A]R = 2 - - v + v - v -\ +- - - + - e-
r 2 r r r 2

(2.13)

for a static, spherically symmetric spacetime. The Ricci tensor components (2.12)

and the Ricci scalar (2.13) generate the corresponding nonvanishing components of

the Einstein tensor (2.6). These are given by

1 2A ( -2A) 2v'Gll = --e 1 - e +-
r 2 r

[
, \I]2 -2A 11 ,2 v " /\G22 = rev + v + -:;: - v -\ - -:;:

for the line element (2.11).

(2.14a)

(2.14b)

(2.14c)

(2.14d)

We formulate the field equations for the case of a perfect fluid energy-

momentum tensor. The energy-momentum tensor (2.9) and the Einstein tensor

components (2.14) for a comoving fluid velocity vector

generate the Einstein field equations

(2.15a)
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1 ( -2,}.) 2v' -2,}.-- 1- e +-e = p
r 2 r

[
VI AI]

- 2,}. 11 + 12 + I , I _ Pe V V --VI\---
r r

(2.15b)

(2.15c)

for a static, spherically symmetric spacetime. The conservation laws Tab;b 0,

obtained from (2.7) and (2.10), reduce to the equation

dp dv
-=-(p+p)­
dr dr

(2.16)

Equation (2.16) is a direct consequence of the field equations and may be used in

place of one of the field equations in (2.15). The field equations (2.15) are three

equations with four unknowns and consequently we need an additional condition to

find a solution. Sometimes it is convenient to assume an equation of state of the

form

p = p(p)

which will have different functional forms for different fluids. The relationship be-

tween equations of state and solutions to the field equations is pursued in chapter 5.

The field equations (2.15) may be expressed in a variety of equivalent forms which for

some applications make the integration process simpler. In the following we present

two equivalent forms of (2.15).

A second form of the field equations is obtained by introducing the "mass"

function m(r). From equation (2.15a) it follows that

where k is a constant. This suggests that we define a "mass" function m(r) as

(2.17)
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We may interpret the quantity m(r) as being proportional to the total mass contained

within a sphere of radius r. However note that here r· is the coordinate radius (the

true radius of the sphere is given as

by Stephani (1990)). On utilising (2.17) the field equation (2.15a) can be written as

1 ( 2>.)m(r) = 2"r 1 - e- (2.18)

where we have set k = 0 so that e- 2>. remains finite at r = O. Essentially in (2.18)

the metric variable A has been replaced by the new function m(r). In terms of the

mass function (2.17) we can express the field equations (2.15) as the following system

of differential equations

d 1 2
-m(r) = -r p
dr 2

dv ipr3 +m(r)
dr r[r-2m(r)]

11 ,2 [r-[rm(r)]'], [rm'(r)-m(r)] pr
v +v + v - = ----

r[r - 2m(r)] r 2 [r - 2m(r)] [r - 2m(r)]

(2.19a)

(2.19b)

(2.19c)

In the above we have three equations in the four unknowns p (or m), p, v and

A. Once A is specified then m(r) and p can be found from (2.18) and (2.19a). The

remaining unknowns p and v are then determined by (2.19b) and (2.19c) in principle.

In practice this is not an easy matter as the resulting equations are highly nonlinear.

It is interesting to observe that we can express the pressure gradient in terms of m,

p and p. On substituting (2.19b) into (2.16) we obtain the result

dp
dr

(p +p)[m(r) + ipr 3
]

r[r - 2m(r)]

14

(2.20)



known as the Oppenheimer-Volkoff equation (Oppenheimer and Volkoff 1939). In

the Newtonian limit

p« p

the pressure gradient (2.20) becomes

dp

dr

m« r

pm(r)
r 2

(2.21 )

(Schutz 1985). This is exactly the equation for hydrostatic equilibrium for Newtonian

stars (Chandrasekar 1939). A comparision of the relativistic equation (2.20) and the

Newtonian equation (2.21) reveals that the relativistic correction tends to steepen

the pressure gradients relative to the Newtonian gradients. This means that for a

fluid to remain static it must have stronger internal forces in general relativity than

in Newtonian theory.

We now consider a third form of the field equations that we utilise in chap-

ters 3 and 4 to obtain new solutions. In this case it is convenient to introduce a new

coordinate x and two metric functions y( x) and Z (x). The appropriate transforma-

tion is given by

Z(x) = e- 2A (r)

where A and C are constants. For this transformation the Einstein field equations

(2.15) take the form

15
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4Zy Z - 1 P-+--=-
y x C

(2.22b)

(2.22c) .

where dots represent differentiation with respect to x. The metric functions y and

Z are now dependent on the new coordinate x. This form of the field equations has

been used by Durgapal and Bannerji (1983), Durgapal and Fuloria (1985) and Finch

and Skea (1989) to gener~te new solutions.

2.4 Schwarzschild Solutions

Schwarzschild (1916a) was the first person to obtain an exact solution to the Einstein

field equations. This solution represents the gravitational field exterior to a static,

spherically symmetric body. Later he obtained a second solution describing the

gravitational field inside the spherically symmetric body for a constant energy density

source. These two solutions match smoothly at the surface of the body. In chapters

3 and 4 we will find new solutions for other forms of the energy-momentum tensor.

Such solutions are important in astrophysics and may be used to model relativistic

stars (Shapiro and Teukolsky 1983).

(a) Schwarzschild exterior solution

We provide only an outline of the derivation of the Schwarzschild exterior solution

as this is well documented in the literature (Stephani 1990). In the region outside
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the star both the energy density and pressure vanish

p=o p=o

Integrating the field equations (2.19) we obtain the metric functions

e" = (1 _2~) 1/2

where we have specified the constants of integration by utilising the boundary con-

ditions. Here the constant M represents the energy density of the star. The

Schwarzschild exterior solution may then be written as

(2.23)

One can describe the local geometry of spacetime in the solar system to a good

approximation by the Schwarzschild solution (2.23). The Schwarzschild exterior

solution· is essential for a discussion of the classical tests of general relativity: the

bending of light, perihelion advance of Mercury, gravitational red shift and the time

delay in radar propagation. For a thorough treatment of these classical tests see

D'Inverno (1992), Wald (1984) and Will (~981). For the exterior Schwarzschild

solution (2.23) the metric components become singular when r = 0 and r = 2M.

The singularity at r = 2M is not a true singularity of the spacetime structure

but represents a breakdown of the coordinates that have been used to obtain the

general form of the line element (2.11). We may avoid this coordinate singularity by

utilising the Kruskal-Szekeres coordinates which cover all of spacetime. For a detailed

treatment of the relationship between the Schwarzchild coordinates and Kruskal-

Szekeres coordinates the reader is referred to Felice and Clarke (1990), Misner et al.

(1973) and Stephani (1990).

We have derived the exterior Schwarzschild solution corresponding to an

interior static gravitating body. However, even if the interior is nonstatic the exterior
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solution is given by the Schwarzschild line element (2.23). This result is called the

Birkhoff's theorem: every spherically symmetric eKterior solution is static. This is

a remarkable result and depends only on spherical symmetry of the interior source.

Note that Birkhoff's theorem may be interpreted as the analogue ofthe corresponding

result in electrodynamics, i.e. a spherically symmetric distribution of charge does

not radiate (Stephani 1990).

(b) Schwarzschild interior solution

In order to obtain an interior solution it is necessary to fix an equation of state. For

the Schwarzchild interior solution (Schwarzschild 1916b) we suppose that the energy

density is uniform. Let us consider the region inside the star with

P = po,

where po is constant and R is the radius of the star. On integrating (2.19a) we obtain

1 3
m(r) = 6Por (2.24)

where we have set the constant of integration to be zero so that at r = 0 we have

m = O. Upon substituting (2.24) into (2.20) and integrating we obtain

po + 3p = (po + 3Pc) (1 _2m) 1/2
po +P po +Pc r

(2.25)

where (Po + 3pc) / (Po + Pc) is the constant of integration in which Pc = p(O) is the

central pressure. We obtain the following explicit form of the central pressure

[
1- (1- 2M/R)1/2 ]

Pc = Po 3 (1 _ 2M/ R)1/2 - 1

from (2.25) and where we have set m(R) = M. Replacing Pc in (2.25) we obtain the

pressure

(2.26)
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Now on substituting (2.26) into (2.16) and integrating we obtain the first metric

function 1/ as

(2.27)

where we have chosen the constant of integration such that the interior solution joins

continuously to the exterior solution at the surface of the star. On using (2.18) and

(2.24) the remaining metric function). is given by

(2.28)

The Schwarzschild interior solution may then be written as

(2.29)

The solution (2.29) may be used to model relativistic stars for which the variation

in p is small. It is a good approximation for small stars in which the pressures are

not too large.

2.5 Physical Properties

The Einstein field equations (2.19) admit a variety of solutions. However many of

these solutions do not correspond to a physical matter distribution. For a realistic

relativistic stellar model we need to impose conditions on the solutions of the field

equations. This greatly reduces the number of possibilities allowed by the field

equations. Restricting the model to physically acceptable matter we generate the

following conditions:
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(a) The pressure and energy density should be positive and finite everywhere in the

interior of the star including the origin:

O<p<oo O<p<oo

(b) The pressure and energy density should be monotonic decreasing functions of r

outward to the surface of the star. At the boundary the pressure must vanish:

dp < 0
dr -

dp < 0
dr - p(R) = 0

(c) The interior line element should be joined continuously to the exterior

Schwarzschild line element at the boundary of the star.

ev(R) = (1 _2:) 1/2 (
2M) -1/2

eA(R) = 1--
R.

(d) The speed of sound should be everywhere less than the speed of light:

For a complete analysis of the conditions (a)-(d) for a relativistic star the reader is

referred to Knutsen's analysis (Knutsen 1989) of the analytic solution of Durgapal

and Fuloria (1985). It should be pointed out that most solutions do not satisfy all

the conditions (a)-(d) throughout the interior of the star and may be valid only for

some regions of spacetime. For example the Tolman solutions (Tolman 1939) become

singular at the center. Such solutions have to be treated as an envelope of the core

of the star and have to be matched to some other solution valid for the core.

Some of the conditions (a)-(d) may in fact be too stringent and one has

to be careful not to neglect solutions that are physically reasonable. For example

condition (b) requiring that the pressure and energy density be strictly decreasing
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outwards to the surface may be too restrictive for some physical applications (Ma-

haraj and Maartens 1989). We should also point out that our model utilises a perfect

fluid energy-momentum tensor. Some analyses suggest that an anisotropic energy-

momentum tensor may produce a realistic solution to model high surface redshifts

(Bowers and Liang 1974). For an exact solution to the field equations, with a nonva-

nishing anisotropic pressure terms, see Maharaj and Maartens (1989). There is also

the possibility of having a nonzero electromagnetic field in which case the energy-

momentum tensor (2.9) has to be modified. For the physical relevance of solutions

representing charged stars in astrophysics the reader is referred to Herrera and Ponce

de Leon (1985), Maartens et al. (1986) and Maartens and Maharaj (1990).

For the Schwarzschild interior solution we observe that

Pc -+ co as M/ R -+ 4/9

Thus there are no uniform density stars with radii smaller than 9M/4 : to support

such stars in a static configuration requires pressures larger than infinite. In fact this

restriction on the radius is a limit on more general stars. It is possible to obtain a

condition on the maximum possible mass M for a given radius R from the condition

that p should decrease outwards (p'(r) < 0) on the grounds of stability. The pressure

P must vanish on the surface of the star and we require that p and pare finite in

the interior. Then a spherically symmetric star can only exist in a state of stable

equilibrium if M and R satisfy the inequality

M 4
-<­
R 9

This limit on the radius of the star was found by Buchdahl (1959) and is sometimes

referred to as Buchdahl's theorem.
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3 A generalisation of Finch and Skea

3.1 Introduction

In this chapter we consider a class of solutions to the Einstein field equations. The

field equations are reduced to a system of three equations in three unknowns by as­

suming an explicit form for one of the gravitational potentials. The metric function

depends on the parameter n which may take on any real value. Then the differential

equation governing the remaining metric function "is obtained. This treatment of the

gravitational potentials is done in §3.2. We first consider the case n = -1, which

was also analysed by Duorah and Ray (1987) and Finch and Skea (1989), in §3.3.

Mistakes in their paper are pointed out and we provide the details of the appropriate

transformation missing in their analysis. In §3.4 we consider n = -2 and show that,

in fact, this case is related to the confluent hypergeometric differential equation via a

complex transformation. A graphical representation of the behaviour of the gravita­

tional potentials is presented as an illustration. We find the solution of the Einstein

field equations for n ~ 1, in §3.5, and provide the appropriate transformations that

relate this result to the Schwarzschild interior solution. The casen = 2 is analysed

in §3.6 and the general solution is related to that of Mehra (1966). Finally in §3.7 we

consider some other cases of n which illustrate the difficulty of finding further new

solutions.
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3.2 Choice of the metric function Z

The field equations (2.22) comprise a system of three equations in the four unknowns

p, p, y and Z. Clearly we require an additional condition to find a solution to this

system. One option is to assume an equation of state relating p and p. We investigate.

this possibility in chapter 5. Another possib~lity is to specify a form of one of p, P,

y and Z. Finch and Skea (1989) choose a simple form for the metric function Z (x)

which leads to a new solution of the field equations. Here we assume a form for Z (x)

that generalises that of Finch and Skea (1989) in the anticipation of finding other

new solutions to the Einstein field equations (2.22).

The metric function Z (x) is chosen to have the form

Z=(l+x)n (3.1 )

where we take n i= o. If n = 0 then the metric function eA = 1 and furthermore p

vanishes from (2.22a), which is not acceptable. Upon substituting (3.1) into the field

equation (2.22c) we obtain

which is a differential equation governing the behaviour of y(x). Note that we have

essentially reduced the solution of the field equations to integrating (3.2). Once a

solution y(x) is found the energy density p and pressure p are obtained from (2.22a)

and (2.22b) respectively. In the following sections of this chapter we consider different

values of n and seek solutions from the ordinary differential equations that result from

(3.2). We do not undertake an analysis of the physical properties of the solutions as

this falls outside the scope of this thesis. Our intention is to find exact solutions to

the Einstein field equations.
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3.3 The case n == -1

This case was first investigated by Duorah and Ray (1987). However their solution

is incorrect because of an elementary mistake that arises in the integration process ..

This mistake was pointed out by Finch and Skea (1989) in their thorough investiga­

tion of the solution of the field equations for this case. With n = -1 equation (3.1)

gives the metric function

Z=_l_
l+x

and the second metric function y(x) is governed by

4(1+x)y-2y+y=O

from (3.2).

(3.3)

(3.4 )

Finch and Skea (1989) state that the above equation (3.4) may be trans-

formed into a Bessel equation of order ~. Even though the solution given by Finch

and Skea (1989) is correct the intermediate transformation

u(v) = y(x)X3
/

4

v=~

leading to the Bessel equation is not valid. This may be easily verified by substituting

the above transformation into (3.4) to obtain

which does not admit Bessel functions of order ~ as a solution. In this section

we rederive the Finch and Skea (1989) solution, correcting the mistakes in their
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derivation and providing details of the transformations involved. vVe should point out

that the details of the solution presented by Finch and Ske,a (1989) are sketchy and it

is difficult to follow their derivation. We attempt to provide the details missing from

their arguments in addition to correcting mistakes in their transformations. Their

solution is important in relativistic astrophysics and we believe that our analysis

makes their results more accessible.

It is convenient to transform (3.4) by introducing the new variable

x = 1 +x

Then (3.4) becomes

where y(X) = Y. We now introduce a new function u(X) such that

Y(X) = u(x)xm

where mER. Then the ordinary differential equation (3.5) becomes

2 d2u du 2
4X dX2 + (8m - 2)X dX + (4m - 6m +X)u = 0

If we define

where a E R then this differential equation takes the form

(3.5)

2 20:' d2u du 2
4a X dX2 + [4a(a-I )X 0:' + 2a(4m - 1)XO:'] dX + [4m - 6m + X]u = 0 (3.6)

We need to replace X with X in (3.6) such that a Bessel equation is obtained. On

choosing a = ~ and m = ~ in equation (3.6) we obtain

X2 d
2
u X~ [2 _(~)2] =

dX2 + dX + X 2 U 0
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which is a Bessel equation of order ~. The desired transformation for (3.4) is then

given by

u(v) = y(x) (1 + X)-3/4

v=~

which corrects the transformation of Finch and Skea (1989).

Now on using the above transformation in the differential equation (3.4)

we obtain the Bessel equation

2d
2
u du [2 (3) 2]V - +v- + v - - u = 0

dv 2 dv 2

where we have utilised the same variables as Finch and Skea (1989). The solution,

in the variables u and v, of this Bessel equation is given by

(3.7)

In the above solution a and b are constants and J3/ 2 and J-3/2 are linearly indepen-

dent Bessel functions of fractional order. It is possible to express the solution (3.7)

in terms of elementary functions by using the following identities

{f sinv (fJ3/2(V) = - -- - - cos V
7rV V 7rV

{f cosv (f'J-3/2(V) = - - -- - - sinv
7rV v 7rV

Then the general solution of (3.4) can be written as

y(x) = (Cl +C2~) sinhTI+ (C2 - Cl~) cos hTI (3.8)
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where we have redefined the constants

The metric function y(x), given by (3.8), is now in the form presented by Finch and

Skea (1989).

The metric functions y and Z are given by (3.8) and (3.3) respectively.

The quantities p and p may be calculated from (2.22a) and (2.22b). The solution to

the field equations (2.22), in terms of the radial coordinate r, is then given by the

system

p 3 + Cr 2

C - (1 +Cr2)2
(3.9a)

p

C
1. ({3VI +er 2 +1) + ({3 - vI + Cr 2

) t an VI + Cr 2

1 +Cr 2 ({3vI +er2 - 1) - ({3 +VI +Cr 2 ) t an VI +er2
(3.9b)

(3.9c)

(3.9d)

where we have set {3 = Cl/ C2· We have utilised the same notation, in this section,

as Finch and Skea (1989) to facilitate comparison with their results. For a detailed

analysis of the physical features of the solution (3.9) the reader is referred to Finch

and Skea (1989). We should point out that this solution is regular in the interior

of the relativistic star and matches smoothly to the Schwarzschild exterior at the

boundary.
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3.4 The case n . -2

Upon substituting n = -2 into (3.1) we obtain

z = 1
(1 + X)2

and equation (3.2) becomes

4(1 + x)ii - 4y + (x + 3)y = 0

(3.10)

We transform the above differential equation into a more convenient form by intro-

ducing a new variable

x = 1 +x

to obtain

d2y dY
4X dX2 - 4dX + (X + 2)Y = 0 (3.11)

where y(X) = Y. We have not succeeded in integrating this equation in terms of

elementary functions.

However we can transform (3.11) into a well-known ordinary differential

equation by letting

z = iX

On substituting this into (3.11) and simplifying we obtain

d
2
F dF (3 i)z- + (3 - z)- - - +- F = 0

dz2 dz 2 2

which is of the form

d2F dF
z_·- + (b - z)- - aF = 0

dz2 dz
(3.12)

where a and b are constants. Equation (3.12) is the confluent hypergeometric dif-

ferential equation. The general solution is given in terms of the Kummer functions
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M( b ) and U(a ' b· z) For our differential equation in this case we havea; ; z " .

3 i
a=-+­

2 2
b=3

For the differential equation (3.11) the general solution is then given by

(3.13)

where Cl and C2 are constants. In terms of the metric function y( x) we have

y(x) = e+{1+x) (1 + X)2 [Cl M G+~; 3;i(1 + x))

+ C2 U G+ ~; 3; i(1 + x) ) ] (3.14) .

The properties of the confluent hypergeometric equation and the Kummer functions

M and U are analysed in detail by Abramowitz and Stegun (1972). As far as we are

awar,e solutions of this type, for spherically symmetric gravitational fields, have not

been considered previously. We believe that the Kummer functions (3.14) are new

solutions to the Einstein field equations for a static, spherically symmetric gravita-

tional field.

The metric functions y(x) and Z(x) are given by (3.14) and (3.10) re-

spectively. The matter variables p and p can be calculated from (2.22a) and (2.22b)

respectively. Thus we generate the general solution of the field equations for n = -2.

Note that i = R appears in the right hand side of (3.14). In principle we can

reexpress the solution in terms of only the real variable x. However this is difficult

in practice as i appears as part of the parameters and the argument of the special

functions M and U. This case is the object of ongoing research. Note that it is pos-

sible to obtain a graphical representation of the solution. For example with Cl = 1,
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C2 = 1 and 0.67 ::; x :::; 6.16 we generate curves for y(x) and Z(x). These curves are

presef.lted in figures 1 and 2 respectively:

7 -,
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4

3

2

1

0
0 1 2 3 4 5 6 7

Fig 1: The Function y( x)

0.4 -,

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 1 2 3 4 5 6 7

Fig 2: The Function Z(x)
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In generating these curves we have utilised the computer package MATHEMATICA

Version 2.0 (Wolfram 1991). We observe from figures 1 and 2 that the gravita-

tional functions y( x) and Z (x) are well-behaved, continuous functions in the interval

0.67 ::; x ::; 6.16. The functions y(x) and Z(x) remain finite in the interval consid-

ered. This suggests that the solutions of Einstein equations, expressible in terms

of the confluent hypergeometric functions, lead to physically reasonable models in

relativistic astrophysics.

3.5 The case n == 1

On substituting n = 1 into (3.1) we obtain the metric function

Z=l+x

The remaining metric function y (x) can be calculated from

4(1 +x)y + 21' = 0

which follows from (3.2). Upon integrating (3.16) we obtain the solution

y(x) =Cl~ + C2

where Cl and C2 are constants of integration.

(3.15)

(3.16)

(3.17)

We can now obtain a general solution of the field equations by calculating

p and p via the equations (2.22a) and (2.22b) respectively. The general solution is

then given by the system

p
- =-3
C
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p 3Cl VI + C r 2 + C2

C Cl VI +Cr2 + C2

2). 1
e =

1 + Cr2

(3.18b)

(3.18c)

(3.18d)

The general solution (3.18) is not new and in fact it is equivalent to the Schwarzschild

interior solution (Schwarzschild 1916b). The solutions (2.29) and (3.18) may be

shown to be equivalent by the following transformation

A=~
2

1
C = --Po

3

Even though the solution (3.18) is the same as the Schwarzschild interior solution

note that our solution was obtained using a different approach. In the Schwarzchild

interior solution P is assumed to be constant whereas in our case we assumed a form

for the metric function Z. Thus we have proved that the choice of the gravitational

potential Z given by (3.15) is equivalent to assuming that the energy density p is
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constant.

3.6 The case n == 2

With n = 2 equation (3.1) gives the gravitational potential

Z = (1 + X)2

Equation (3.2) becomes

4(1 + X)2 y +4(1 + x)y + y = 0

which is of Euler-Cauchy form. The general solution to (3.20) is given by

where Cl and C2 are constants. We may redefine the constants Cl and C2 as

(3.19)

(3.20)

where Cl and C2 are new constants. Then y( x) has the compact form

y(x) = Cl cos (C2 -ln~)

which is equivalent to the form given above.

(3.21r

The general solution to the field equations is then given by the system

.f!.- = -6 - 5Cr2

C
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2). 1e =----
(1 +Cr2)2

(3.22c)

(3.22d)

The solution (3.22) was found previously by Mehra (1966) in a very different form.

This case was also later analysed by Kuchowicz (1967). However note that Mehra

(1966) assumed a form for the energy density p. We have used a different avenue to

obtain our general solution: we specified a form for the gravitational potential Z.

We now establish the transformation relating our solution(3.22) to that of

Mehra (1966). The solution of Mehra (1966), adapted to our coordinates, is given

by the system

(3.23a)

p=~ ~
aVS

[ ( 4)] -12). pc 2 r
e = 1 - 15 5r - 3a2

2v _[~2a2Pc (Zl - Z) aftc. (Zl - z)J 2e - - -- cos - - - sIn
15 2 3 5 2
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where Pc, a, d1 , d2 are constants. The quantity z is given by

[

r 2 5
z=ln ---+

a2 6

and the constant Zl has the form

Even though the Mehra (1966) solution has a complicated form it is the same as

our solution. Our solution (3.22) and the Mehra solution (3.23) may be shown to be

equivalent by the relationships

Pc = -6C

2 6
a =--

5C

d2
. ( f.5)d

1
= tan C2 + In V3"

Note that the variable r in the solution (3.22) and the variable z in the solution

(3.23) are related by
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vVe have studied the Mehra (1966) solution in particular because it is often

referred to in the literature and is listed by Kramer et al. (1980). The form of the

solution (3.23) to the field equations as presented by Mehra (1966) is complicated

and difficult to utilise in applications. Our equivalent form (3.22) is simpler and

more compact and we believe that this form should make the analysis of the physical

features of a relativistic star easier.

3.7 Other cases

It is possible to generate a variety of differential equations governing the metric

function y(x) from (3.1) for different values of n. These will correspond to new

solutions of the Einstein field equations (2.22). However the differential equations

resulting from (3.2) are extremely complicated and we have, as yet, not succeeded in

integrating them. For example in the case of n = -3 we obtain the metric function

z = 1
(1 +X)3

and y (x) is governed by the equation

4(1 + x)y - 6iJ + (x2 +4x +6)y= 0

We have been unable to solve this differential equation. As another example we

consider n = 3. Then Z (x) is given by

Z = (1 + x)3

and y( x) has to satisfy the differential equation
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As yet we have not found a solution for this differential equation. The analysis of

these equations, and other cases of n, will be the subject of future investigation.

Power series solutions may be generated utilising the method of Frobenius. The

utilisation of numerical methods is also a possibility that will be pllrsued.
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4 A generalisation of Durgapal and Bannerji

4.1 Introduction

In this chapter we specify a particular form for one of the gravitational potentials.

Our intention is to generate new classes of solutions to the Einstein field equations.

The gravitational potential chosen depends on the parameter k which may take on

any real value. Then the second order ordinary differential equation governing the

other metric function is obtained in §4.2. We first consider the case k = -~, which

was initially analysed by Durgapal and Bannerji (1983), in §4.3. However their result

is only a particular solution for this case. A general solution for k = -~, which we

believe is new, is obtained. In §4.4 we consider the general case for arbitrary k.

We find that the solutions are related to the hypergeometric differential equation.

A brief discussion of the hypergeometric function, which is a special function, is

. presented. This class of solutions reduces to elementary and special functions for

particular values of the parameter k. We regain, from the hypergeometric solution,

the generalisation of the Durgapal and Bannerji (1983) solution discussed earlier in

§4.3. Another special case of the general hypergeometric solution is consiodered in

detail in §4.5. This turns out be a new solution to the Einstein field equations and

is given in terms of elementary functions.
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4.2 Another choice of the metric function Z

In chapter 3 the particular choice of the metric function (3.1) for Z (x) generated a

number of new solutions to the field equations. Here we choose a different functional

form of the metric function Z(x). Durgapal and Bannerji (1983) used a form for

Z(x) which leads to a new solution of the field equations. In this chapter we shall

assume a functional form, which reduces to that of Durgapal and Bannerji (1983),

in the hope of finding other new solutions to the Einstein field equations (2~22). We

suppose that the metric function Z (x) is given by

Z = 1 +kx
l+x

(4.1 )

.where we take k i- 1. If k = 1 then the metric function eA = 1 and the energy density

p vanishes. The other case excluded here is k = 0 in which case we regain the results

of §3.3. We believe that the general form of the metric function (4.1) has not been

postulated previously. It has the. advantage of producing some well known models

found before for particular values of k, in addition to generating new solutions.

Upon substituting equation (4.1) into the field equation (2.22c) we obtain

the condition

4(1 +x)(l +kx)ij +2(k - l)y + (1 - k)y = 0 (4.2)

which is a differential equation that governs the behaviour of the gravitational po-

tential y(x). Solutions to equation (4.2) are crucial in the generation of new solutions

to the field equations. Once (4.2) has been integrated then the energy density p and

pressure p are obtained via (2.22a) and (2.22b) respectively. We attempt to integrate

(4.2) for the particular case of k = -~ and for arbitrary values of k in subsequent

sections.
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4.3 The case k == -~

This case was first considered by Durgapal and Bannerji (1983). We first briefly

outline their procedure and then generalise their solution. Durgapal and Bannerji

(1983) assumed that the energy density was given by

3C(3 +C1'2 )

P = 2(1 +C1'2)2

and then substituted p in equation (2.15a). On integrating the resulting differential

equation they obtained the metric function

-2). 2 - C1' 2

e =----
2(1 +C1' 2

)

Thereafter they used the transformation

to simplify the subsequent calculations. From this transformation they immediately

obtained

z x _ (2 - x)
( ) - 2(1 + x) (4.3)

Then substituting (4.3) in (2.22c) Durgapal and Bannerji (1983) obtained the equa-

-tion

2(2 - x)(l + x)y - 3y + ~Y = 0 (4.4)

which governs the behaviour of y(x). This analysis is equivalent to substituting

k = -! in (4.2). Durgapal and Bannerji (1983) state that a-particular solution for

y(x), from (4.4), is given by

y = (1 + X?/2
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Their solution of (2.22) is then given by the system

p 3(3 + Cr 2
)

C 2(1 +Cr2)2

p 9(1 - Cr2
)

C 2(1 +Cr2 )2

(4.6a)

(4.6b)

(4.6c)

(4.6d)

Equations (4.6) describe the solution of the field equations (2.22) for the function

(4.3). However note that this is not the general solution for the gravitational potential

(4.3) as y(x), given by (4.5), is only a particular solution of (4.4). It is possible to

find the general solution of (4.4) and therefore obtain the general solution of the

Einstein field equations for the metric function Z(x) with k = - ~.

We provide detailed calculations leading to the general solution of the dif-

ferential equation (4.4). It is well known that.if

is one solution of a linear, homogeneous differential equation then

(4.7)

is a linearly independent second solution. It remains to explicitly determine v(x)

from equation (4.4). On substituting equation (4.7) into equation (4.4) we obtain,

after simplication,

2(2 - x)(l + X)YIV + [4(2 - x)(l + X)ih - 3Yl] v
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Since Yl is a solution to equation (4.4) we have that equation (4.8) reduces to

2(2 - x)(1 + X)YlV + [4(2 - x)(1 + X)Yl - 3Yl] v = 0

Upon substituting Yl (x) into equation (4.9) and rearranging we have that

v -9 +6x
-
v 2(2-x)(1+x)

which may be integrated by partial fractions to yield

. _ 1
v = Cl (2 _ x)1/2(1 + X)5/2

(4.8)

(4.9)

where 2\ is the first constant of integration. The variables v and x in this differential

equation separate and we have

J
dx

V=Cl (2-x)1/2(1+x)5/2 +C2 (4.10)

where C2 is a second constant of integration. The integral in (4.10) may be simplified

if we introduce the new variable

U=(2-X)1/2

Then equation (4.10) becomes
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which is a simpler form to integrate than (4.10). The integral may be evaluated using

elementary trigonometric substitution and we obtain the solution for v as

( )
_ - 2Cl(2 - X)1/2 (2x +5) _

v x - 27(1 + x )3/2 + C2

in terms of x. On substituting (4.12) into (4.7) we obtain

(4.12)

(4.13)

which is a second solution to the differential equation (4.4). Clearly Y2(X) is linearly

independent ofYl(x), The general solution to equation (4.4) is then given by

where 0'1 and 0'2 are constants. This general solution has the explicit form

where the new constants

(4.14)

have been introduced for simplicity.

The quantities p and p can be calculated from (2.22a) and (2.22b) respec-

tively. The metric function y(x) is given by (4.14), and the function Z(x) is given

by (4.3). The general solution to the Einstein field equations (2.22) is now given by

the system

p 3(3 + Cr 2
)

C 2(1 +Cr2)2

l!- _ gC1 (1 +Cr2)1/2(1 - Cr2) - c2(2 - Cr2)1/2(10Cr2+ 13)
C 2c1(1 +Cr2)5/2 + 2C2(2 - Cr2)1/2(1 +Cr2)(2Cr2+ 5)
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2A 2(1 +Cr 2
)

e = 2 _ Cr2 (4.15c)

(4.15d)

in terms of the original variable r. The equations (4.15) are the general solution of

the Einstein field equations corresponding to Z(x) given by (4.3). We believe that

this solution is new and has not been published in the literature previously. We note

that on setting

in equations (4.15) we regain the solution (4.6) of Durgapal and Bannerji (1983) as a

special case. This verifies that our solution is indeed a generalisation of the solution

given by Durgapal and Bannerji (1983).

4.4 The general case

In this section we consider the metric function Z, as given by (4.1), for arbitrary k.

We shall use this form together with (4.2), which generates y(x), in the anticipation

of finding new solutions. Our intention in this section is to find the general solution

of (4.2) and then consider some simple subcases that may arise. It is convenient to

introduce the new variable X by

X = l+x

Then equation (4.2) becomes

d2y dY
4X(X - ]{)- +2]{- - ]{Y = 0

dX2 dX
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where y(X) = Y and we have defined

k-1
]{=--

k
k # 0,1

as a new constant. If we now define the variable X such that

x = ]{X

then the above differential equation becomes

d2 y 1 dY 1
X(l - X)- - -- + -]{y = 0

dX2 2 dX 4
(4.16)

where y = Y(X). Equation (4.16) is a special case of the hypergeometric differential

equation.

The general hypergeometric differential equation in the standard form

d2w dw
z(l - z) dz 2 + [c - (a + b+ 1)z] dz - ab z = 0 (4.17)

where a, band c are constants, is given by Abramowitz and Stegun (1972). The

solutions to this equation are given in terms of the hypergeometric function

F(a, b; c; z)

. The solutions of (4.17) are categorised by the three regular singular points

z = 0, 1, 00

of the equation. The general theory of differential equations distinguishes between

the following six cases

(i) None of the numbers c, c - a - b, a - b is an integer.

(ii) One of the numbers a, b, c - a, c - b is an integer.
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(iii) c - a - b is an integer but c is not an integer.

(iv) c=l.

(v) c = m + 1, where m is a natural number.

(vi) c = 1 - m, where m is a natural number.

For the general properties of the solutions for each of the six cases given above the

reader is referred to Abramowitz and Stegun (1972).

On comparing (4.16) and (4.17) we find that

-1 ± VI +]{
a=

2
b = -1 +VI +]{

2
1

c= --
2

in our case. We note that the solution will be guaranteed to be real provided 1+!{ ~ °
which is equivalent to

k<O or
1

k>­- 2

It is easy to see, from the above for our values of a, band 'c, that the cases (iii)-

(vi) are not applicable to (4.16). Real solutions may only be contained in cases (i)

and (ii). As c i- 0, -1, -2,···, the first solution of equation (4.16) is given as a

hypergeometric series

Y
ab v a(a+l)b(b+l) 2

1 = 1 + -A. + X
l!c 2!c(c+l)

a(a+l)(a+2)b(b+l)(b+2) 3
+ X +

3! c(c + 1) (c + 2)

= F(a b· c· X), , ,
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Also since c # 2,3,4, .. " the second _olution is given by

_ I-C[ (a-c+1)(b-c+1)x
Y2 - X 1 + I! (-c + 2)

(a-c+1)(a-c+2)(b-c+1)(b-c+2)V2 ]+ ('\. + ...
2!(-c+2)(-c+3) .

= X l
-

c F(a - c + 1, b - c + 1; 2 - c; X) (4.19)

The hypergeometric series solutions (4.18) and (4.19) have been obtained from

Kreyzig (1972). The general solution to equation (4.16) may be written as the

combination

Y = Cl F(a, b; c; X) + C2 X l
-

c F(a - c + 1, b- c +1; 2 - c; X)

where Cl and C2 are constants.

(4.20)

We note that a variety of new solutions, in terms of elementary and special

functions, may be obtained from (4.20) for particular values of a and b (with c = -~).

Some values of ]{ may reduce (4.20) to solutions that have been previously found.

We consider one such case as an example. On choosing ]{ = 3 which is equivalent

to k = -~, equation (4.16) becomes

d2 y 1 dY 3
X(l - X)- - -- + -y = 0

. dX2 2 dX 4

The first solution to this differential equation is given, from (4.18), in terms of- the

. hypergeometric function F as

Yl = F(~ -~. -~. X)
2' 2' 2'
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The explicit form for this hypergeometric function is obtainable from MATHEMAT-

rCA \;"ersion 2.0 (vVolfram 1991) in the form

Y1 = ~1 - X (1 +2X)

which reduces to

1
Y1(X) = /iV7(2 - X)1/2 (2x +5)

y27

in terms of the variable x. The second linearly independent solution can be obtained

from (4.19) as

Y - X 3
/

2 F (2 O· ~. X)
2 - , '2'

On using MATHEMATICA Version 2.0 (Wolfram 1991) we obtain the explicit form

of this solution and we write it in terms of the variable x as

1
Y2 (x) = /iV7 (1 +x?/2

y27

Then the general solution is given by

where Cl and C2 are constants. We may reexpress this solution as

where we have defined the new constants

(4.21 )

Observe that this solution is equivalent to our generalisation of the Durgapal and

Bannerji (1983) solution discussed in §4.3. Thus we have demonstrated that the

solution (4.21) is in fact a special case of the hypergeometric function. We note that

there may exist a variety of solutions, previously found in the literature, that may be
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regained from our general case. However, we should point out that some solutions

may not be contained in this class of solutions. For example, the Finch and Skea

(1989) solution discussed in chapter 3 is excluded as k i= o. It would be ~nteresting

to find all cases of (4.20) which produce solutions in terms of elementary functions.

4.5 A new solution

There may exist a variety of solutions in the class (4.20) which reduces to e~mentary

or special functions. In this section we consider one such special case from the general

solution obtained in §4.4. We believe that this case is in fact a new solution to the

Einstein field equations which has not been published previously. We seek solutions

such that

c-a= m

.. -1+v'1 +]<
where m is an integer. On uSIng a = - and c = _1.

2
we have that2 .

1 +]{ = 4m2

which is equivalent to

k = 1
2 - 4m2

Observe that if m = +! then k = 1 which is not admissible as we have observed

earlier. We consider the simple case m = 0 which is equivalent to k = !. Then

equation (4.16) becomes.

d2y 1 dY 1
X(l- X)- - -- - -y = 0

dX2 2 dX 4

for ]{ = -1.
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One solution, with ]{ = -1, to this hypergeometric differential equation is

given by

F (-~ -~. -~. x)
2' 2' 2'

which corresponds to (4.18) with a = b = c = -~. The explicit form of this

special function, generated by MATHEMATICA Version 2.0 (Wolfram 1991), is given

explicitly by

in terms of the variable X. In terms of the variable x we have

This is one solution of

2(1 +x)(2 +x)ii - if + ~Y = 0

(4.22)

(4.23)

which is generated from (4.2) with k = ~. Unfortunately the second solution (4.19)

given in terms of the hypergeometric function

X3/2F(11'~'X), '2'

is not given in a usable form by MATHEMATICA Version 2.0 (Wolfram 1991). We

have to utilise a more direct method to find the second solution.

The linearly independent second solution to equatio~ (4.23) is given by

(4.24)

and we have to find the arbitrary function v(x). On substituting equation (4.24) into

(4.23) we obtain

2(1 + x)(2 + X)YIV + [4(1 + x)(2 +X)ih - Yl]V
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which reduces to

(4.25 )

since Y1, given by (4.22), is a solution to equation (4.23). Upon substituting (4.22)

into the differential equation (4.25) we have that

v -1 - 2x
-
v 2(1+x)(2+x)

1[1 3]-- -----
2 l+x 2+x

which may be integrated by partial fractions to yield

. _ (1+X)1/2
V = Cl (2 + x )3/2

where Cl is the first constant of integration. Since the variables v and x in this

differential equation separate we have

-J(1 + x )1/2 -
V = Cl· (2 + x )3/2 dx + C2 (4.26)

, where C2 is the second constant of integration. On introducing the new variable

u=(1+x)1/2

then the integral in equation (4.26) may be simplified as
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Upon integrating equation (4.27) by parts we find that

The remaining integral in the above is a standard integral and we can write the

solution for v as

in terms of x. From equations (4.28) and (4.24) we obtain

which is a second solution to the differential equation (4.23).

The general solution to (4.23) is then given by

y(x) = f31Y1(X) + f32Y2(X)

where f31 and f32 are constants. We write this solution explicitly as

where we have defined

(4.29)

(4.30)

as new constants. Thus we have demonstrated that the solutions of the hypergeomet­

ric equation (4.16) for !{ = -1 (i.e. k = !) may be expressed in terms of elementary

functions.
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The general solution to the Einstein field equations (2.22) is then given by

the system

p 3 + Cr2

C - 2(1 +Cr2)2
(4.31a)

(4.31b)

(4.31c)

(4.31d)

in terms of the original variable r. The system (4.31) represents the general solution

for the gravitational potential Z(x) given by (4.1) with k = ~. We believe that this

is a new solution to the Einstein field equations. It is interesting to observe that

the soluti<?ns for k = ~ and k = - ~ are closely related, but different. _In particular

the energy density p is found to be similar on comparison of (4.15) and (4.31). We

believe that it is possible to find further new solutions by choosing other values of
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the parameter k. However j this will not be pursued in this thesis and will be the

subject of future research.
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5 An equation of state

5.1 Introduction

In chapters 3 and 4 we studied classes of solutions to the Einstein field equations

which were obtained by assuming a form for one of the gravitational potentials.

However this approach does not guarantee a physical equation of state. Another

approach in seeking a solution is to ab initio assume an equation of state relating the

energy density to the pressure. By assuming an equation of state a new solution was

recently found by Buchdahl (1981) which provides the general relativistic generali­

sation of the n == 1 Newtonian polytrope. Ibanez and Sanz (1982) assumed a linear

relationship between the energy density and pressure, and presented a new solution.

It- seems that Ibanez and Sanz (1982) are one of the few authors to have specified a

linear equation of state in an attempt to find a new solution. Our intention in this

. chapter is to briefly review the paper of Ibanez and Sanz (1982), and analyse their

resulting field equations. The paper of Ibanez and Sanz (1982) utilises unusual co­

ordinates and we relate their line element and field equations, in §5.2, to our results

from chapter 2. This makes comparison with results of the standard literature and

this thesis easier. In §5.3 we reduce the solution of the Einstein field equations to

obtaining a solution of Abel's equation of the second kind. This equation is highly

nonlinear and is not easily integrable.
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5.2 The basic equations

We briefly review the paper of Ibanez and Sanz (1982) in this section and relate their

results to ours. In order to facilitate comparision we first show that our line element

(2.11) and the field equations (2.15) are the same as those utilised by Ibanez and

Sanz (1982). Their line element, in coordinates (i, T, B, J), is given by

(5.1 )

where v and /3 are functions of T. The field equations, corresponding to the line

element (5.1), are given by

(5.2a)

(5.2b)

(5.2c)

for the metric functions v and /3.

The line element (2.11) is given'in coordinates (t,r,B,cP). We can relate

(2.11) and (5.1) if we have

t = t

B=()
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(5.3d)

for the two sets of coordinates. The two metric functions must be related by

iI(r) = v(r)

t(r) = A(r)

(5.4a)

(5.4b)

The transformations (5.3) relate the coordinates (E, r, fJ,~) to (t, r, B, 1J), and the

equations (5.4) relate the functions iI, t to v, A. With the assistance of these trans­

formations we can easily verify that the field equations (5.2) are equivalent to (2.15).

Note that (5.2a) is equivalent to (2.15a), (5.2b) is equivalent to (2.15b), and (5.2c)

is generated by a linear combination of (2.15b) and (2.15c).

Thus we have established the equivalence of the approach of Ibanez and

Sanz (1982) and that of the standard literature. Henceforth we shall drop the tildes

and utilise the notation of Ibanez and Sanz (1982). That is, the line element is given

by

and the field equations comprise the system

p = e-2(r+,6) (2/3' + e2{3 - 1)

p = e -2(r+{3) (211' - e2{3 + 1)

v" + v,2 - (2 + /3') v' = 1+{3' - e2
{3

from (5.2).
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For supermassive stars the barotropic equation of state

p =p(p)

may be utilised (Shapiro and Teukolsky 1983). This equation of state is used, for

example, in the modelling of neutron stars. The simplest case of the above is a linear

relationship between the energy density and pressure

p == np (5.7)

used by Ibanez and Sanz (1982) where n E [0,1] for a physical equation of state.

(a)n==O:

The case n == °corresponds to vanishing pressure and also the energy density vanishes

from the field equations (5.6). Thus this case is neglected.

(b) n E (0, 1]:

Ibanez and ~anz (1982) found a solution for the interval nE(O, 1] by assuming a form

for the metric function v. Their solution is given by the system

{3 4n
e2 == 1+ ---

(I + n)2

The class of solutions (5.8) has the line element
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We can show that this solution violates the condition of regularity at the centre

by transforming to Schwarzschild coordinates (Ibanez and Sanz 1982). Thus these

solutions may only be used locally to represent certain regions of the star.

From equations (5.6) we have ,that

p + p = e-2(r+,6) (2(3' +2v')

and on utilising equation (5.7) we may express the above equation as

p = _2-e-2(r+,6) ((3' +v')
l+n

On equating (5.6a) and (5.9) we obtain, after simplification,

(5.9)

(5.10)

In equation (5.10) we have eliminated the energy density p and the pressure p. In

addition (5.10) has the advantage of being a first order equation. We observe that

the problem of finding a solution to the Einstein field equations given by the system

(5.6) with the linear equation of state (5.7), is now reduced to obtaining a solution

for the functions v and (3 satisfying the differential equations (5.6c) and (5.10). Once

v and (3 are obtained then the energy density p and the pressure p can be calculated

via equations (5.9) and (5.7) respectively.

We should point out that there are many other possible approaches to

studying relativistic stars with physically valid energy density-pressure configura-

tions. Glass and Goldman (1978) reformulated the field equations to obtain an

equation connecting the energy density and the pressure which is free of the metric

functions. This equation must be related to the Abel equation of the second kind

that we derive in §5.3. This equation is difficult to solve but Glass and Goldman

(1978) obtain some analytic solutions applicable to adiabatically stable stars.
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5,.3 Abel's equation

In this section we analyse the equations (5.6c) and (5.10) governing the behaviour of

the potentials lJ and (3. We eliminate lJ by substituting equation- (5.10) in equation

(5.6c) to obtain

n(3" + ~(2n2 +3n + 1)(3'e2f3 + (n2 - n )(3,2 - ~(2n2 +5n +1)(3'
2 2

1 1 1
__(n 2+4n + 1)e2f3 + -(1 +n?e4f3 + _(n2+6n +1) == 0
244

(5.11)

which is a second order differential equation in (3. We need to find a solution (3 to

(5.11). Then (5.10) generates lJ and the solution to (5.6) follows for the equation of

state p == np in principle. However equation (5.11) is highly nonlinear and we have

not yet found a solution in closed form. We can reduce (5.11) to a simpler form by

introducing the new variable

B(r) == e- 2f3

Then equation (5.11) becomes

BB" _ (1 +n) B,2 _ (2n
2+5n + 1) BB' + (2n +.l)(n +1) B'

2 2n 2n

_(n2+6n+1)B2+(n2+4n+1)B_(1+n)2 == 0
2n n 2n

(5.12)

Equation (5.12) is a second order nonlinear differential equation free of the exponen-

tial functions.

We now reduce equation (5.12) to a first order differential equation. On

using the transformations

B==B(r)
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then we have
dA E"
dB E'

so that equation (5.12) reduces to the form

_(n2 +6n+1)B2 + (n
2
+4n+1)B_ (1+n)2

2n n 2n
o (5.13)

which is Abel's equation of the second kind (Zwillinger 1989). There are few solu-

tions, in closed form, known to Abel's equation and it seems that (5.13) does not

fall in any category that has been studied previously (Kamke 1971). We have been

unable to find a solution to this equation as yet. Equation (5.13) will be studied

further in future.

Perhaps we should point out that (5.11) may be put into an equivalent

form which may be useful in finding a solution. We define another variable w such

that

w = E(1-n)/2

Then using E = e- 2{3 and w = E(1-n)/2 we find that (5.12) may be written as

w" _ (2n
2 + 5n + 1) w' _ (n

2 + 6n + 1)(1 - n) w _ (2n + 1)(1 - n) (w(-l-n)/(l-nl)'
2n . .4n 2n

+ (n
2+4n + 1)(1 - n) w(-l-n)/l-n _ (1 + n)2(1 - n) w(-3+n)/(1-n) = 0

2n 4n
(5.14)

The differential equation (5.14) is equivalent to (5.12) and for some approaches may

be more easily integrated. Choices for specific values of n may reduce (5.14) to a

simpler form.
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6 Conclusion

Our objective in this thesis was to find new solutions to the Einstein field equations

that may be applied to relativistic stars. These solutions have extensive applications

in relativistic astrophysics as they may be used to model realistic stars. The spher­

ically symmetric spacetimes, with a perfect fluid source, investigated are static and

provide a good model for many stars, e.g. neutron stars (Shapiro and Teukolsky

1983). A number of new solutions to the Einstein field equations, which we believe

to be physically reasonable, were obtained explicitly.

We now provide a broad outline of the work carried out in this thesis with

special attention given to solutions to the Einstein field equations that were found

in our investigation:

• We obtained the Einstein field equations in three equivalent forms for static,

spherically symmetric gravitational fields.

• A brief review of the Schwarzschild exterior solution and the Schwarzschild

interior solution with constant energy density was carried out. In this context

Birkhoff's theorem and Buchdahl's theorem were introduced.

• The physical properties required of the interior solutions to the Einstein field

equations, for a realistic relativistic stellar model, were discussed. "
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• We first considered the gravitational potential

1z=-­
l+x

which has been previously analysed by Finch and Skea (1989). Mistakes in

their transformation were corrected, and many of the details missing in their

treatment were also provided.

• For the case

z = 1
(1 + X)2

the solution was related to the confluent hypergeometric differential equation

via a complex transformation. The solution was subsequently given in terms of

special functions, the Kummer functions. As the solution was difficult to inter-

pret analytically the behaviour of the gravitational potentials was represented

graphically with the help of MATHEMATICA Version 2.0 (Wolfram 1991). We

believe that this is a new solution to the Einstein field equations.

• Two solutions were obtained for the functions

z == 1 +x Z = (1 + X)2

These resulting solutions are not new and were explicitly related to the

Schwarzschild interior solution (Schwarzschild 1916b) and the Mehra solution

(Mehra 1966) by appropriate transformations. Note that we specified the func-

tion Z to obtain these solutions which is- different from the approach normally

utilised to generate the Schwarzschild interior and the Mehra solution. Thus

we have established- the equivalence of our approach with that of the classical

literature. Moreover the Mehra(1966) solution has a complicated form which

is difficult to follow and apply. Our solution has a more canonical form and is

easier to apply in the analysis of the physical properties.
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• The choice of the metric function

1 - Ix
Z = 2

l+x

generates a new solution to the Einstein field equations. This case generalises

the Durgapal and Bannerji (1983) solution.

• For the case

z = 1 + kx
l+x

where k is arbitrary, the solution is related to the hypergeometric differential

equation. The general solution is given in terms of the hypergeometric function.

We believe that this is a new class of solutions to the Einstein field equations.

As a special case of the hypergeometric equation we regained our generalisation

of the Durgapal and Bannerji (1983) solution. Even though this is a large

class, it should be noted that some solutions may not be regained from the

hypergeometric equation, e.g. the Finch and Skea (1989) solution.

• Another new solution was obtained as a special case of the hypergeometric

equation by choosing

z = 1 + ~x
l+x

This solution was expressed in terms of elementary functions with the assistance

of MATHEMATICA Version 2.0 (Wolfram 1991).

• Finally we considered the equation of state

p = np

where nc[O, 1], relating the energy density and the pressure. We briefly reviewed

the paper of Ibanez and Sanz (1982) who found a new solution for this equation
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of state. The solution to the Einstein field equations was then reduced to finding

a solution to Abel's equation of the second kind.

In the above we have highlighted our results in this thesis.

A class of solutions was obtained for the choice of the metric function

generalising the one used by Finch and Skea (1989). It would be interesting to study

and analyse other values of the parameter n for the function

Z=(l+x)n

which may result in the generation of further new solutions for this metric function.

In particular an analysis of the solution given in terms of the Kummer functions for

n = -2 should be performed in the future. We also believe that it is possible to

choose other values of the parameter k for the metric function

Z = 1+ kx
l+x

which will generate other new solutions in closed form. In addition other special cases

of the hypergeometric equation, resulting from this form of Z, should be studied

further. The solution to Abel's equation of the second kind should be pursued.

Furthermore it is interesting to observe that there may exist other forms of

the metric functions that we may utilise in generating new solutions. In particular

there is the possibility of generalising the solutions of Durgapal et al. (1984) and

Durgapal and Fuloria (1985). The fact that these solutions are physically acceptable

is demonstrated by Knutsen (1989) in his treatment of-the physical properties of the

model of Durgapal and Fuloria (1985). An analysis of the physical properties of the

new solutions found in this thesis will b~ another avenue to explore (Knutsen 1988).

A solution-generating technique may be utilised in producing physically valid energy
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density-pressure configurations for adiabatically stable stars (Glass and Goldman

1978). We may also investigate anisotropic energy-momentum tensors in future

(Maharaj and Maartens 1989, Ponce de Leon 1987 and Ponce de Leon 1988). Charged

stars with nonzero electromagnetic tensor fields (Herrera and Ponce de Lean 1985"

Maartens and Maharaj 1990) are other avenues worth exploring.

This thesis represents an attempt to finding solutions to Einstein field equa­

tions that may be applied to relativistic stars. We hope that we have demonstrated

that the study of relativistic spherical stars is a fertile area of research. Clearly fur­

ther investigation of other solutions that may be used to model realistic stars should

be pursued.
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