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Abstract

Depression is considered to be the leading cause of disability worldwide, with ap-
proximately 350 million individuals, of all ages, affected. The mental disorder is
predominant in females and poverty is associated with an increased prevalence.
The 12-month prevalence in South Africa is approximately 16.5%, with a lifetime
prevalence of common mental disorders among adults of 38% (World Health Orga-
nization (WHO), 2017). In order to assist individuals in dealing with depression, it is
important for such individuals to be identified at an early stage in order to provide
them with the necessary support before their depression becomes unmanageable,
thus putting them at risk for self-inflicted harm.

The objective of this study was to investigate the prevalence and risk determinants
of depression among South African individuals between the ages 15 to 49 years old
and to determine which factors contribute the most to this mental illness. This study
made use of data from the 2016 South African General Household Survey which
was carried out using a multistage cluster sampling technique. The sample was not
spread geographically in proportion to the population, but rather equally across the
enumeration areas. The response variable of interest was binary, indicating whether
an individual considered himself/herself depressed or not. Three statistical ap-
proaches were applied. The first was the survey logistic regression model which
is a design-based approach. In this approach, parameter estimates and inferences
were based on the sampling weights, and only inferences concerning the effects of
certain covariates on the response variable were of interest. The second was a gen-
eralized linear mixed model which is a model-based approach. In this approach,
interest was also on estimating and accounting for the proportion of variation in the
response variable that was attributable to each of the multiple levels of sampling.
This approach also accounted for possible correlations in the data where individuals
in the same household or cluster tend to be more alike than those from other house-
holds or clusters. Lastly, a Bayesian network was applied to model the conditional
dependence among the variables. This approach is a type of probabilistic graphical
model that uses Bayesian inference for calculations of the probabilities.
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The results indicated that substance abuse, the person’s perceived health status and
gender were significantly associated with depression. Each of the three techniques
were then used to classify the depression status of the individuals, and their perfor-
mances in this classification were compared. The purpose of being able to classify an
individual’s depression status, based on their individual and household factors, is
to be able to identify a depressed individual in order to target them for intervention.
The generalized linear mixed model proved to be the better performing technique
in terms of classification. Thus, we recommend that when using data based on a
complex survey design, this technique is considered in classifying the occurrence of
an event of interest.
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Chapter 1

Introduction

Depression is a common mental disorder, which is characterized by sadness, loss of
interest, feelings of low self-worth or guilt and feelings of tiredness and poor con-
centration. These problems can become chronic or recurrent and lead to substantial
impairments in an individual’s ability to take care of his or her everyday responsibil-
ities (World Health Organization (WHO), 2017). Depression is considered to be the
leading cause of disability worldwide, with approximately 350 million individuals,
of all ages, affected. The mental disorder is predominant in females (WHO, 2012).

The burden of depression is carried among the poorest individuals of South Africa.
Mental health care is under-funded compared to other health priorities in the coun-
try (Pandey et al., 2017). The 12-month prevalence in South Africa is approximately
16.5%, with a lifetime prevalence of common mental disorders among adults of 38%
(Bateman, 2014). Furthermore, South Africa has the eighth highest rate of suicide
in the world, with approximately 8 000 people committing suicide each year. Close
to two thirds of all suicide victims are between the ages of 20 and 39, with approxi-
mately 4.6 male suicides for every female suicide (Malan, 2014).

Counselling is extremely useful in assisting individuals with depression. Tradi-
tional African medicine has a great effect on the counselling process. Although
there are substantial differences between African medicine and Westernized con-
ceptualizations of depression, they both value the emotional psychosocial contexts
(Starkowitz, 2013). However, many studies have shown that there are barriers to
seeking help and treatments for individuals with mental disorders. Such barriers
include the stigma around mental disorders, low levels of knowledge of the disease
and its treatment, and financial difficulties (Nglazi et al., 2016).

Mental disorders such as depression cause a significant economic burden on a coun-
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1.1. Literature Review

try at both the individual and societal level. This is due to an individual who suffers
from mental disorders having a reduced quality of life, disrupted work and life roles,
and increased morbidity and mortality (Nglazi et al., 2016).

1.1 Literature Review

Genetic factors play an important role in the development of depression. There have
been studies that indicate that if one identical twin is depressed, there is approx-
imately a 76% chance that the other will develop clinical depression. However, if
the identical twins were raised apart, there is a 67% chance of the second twin de-
veloping depression. This is a higher rate of depression when compared to the the
general public prevalence (All-About-Depression.com, 2017). Depression is a famil-
ial disorder, however, an individual’s environment also plays a significant part in
their depression status. Major depression is a complex disorder that does not result
from either genetic or environmental influences alone, but rather from a combina-
tion of the two (Sullivan et al., 2000).

Depression can seriously affect individuals with chronic illnesses such as cancer,
thyroid deficiencies, and the Human Immunodeficieny Virus (HIV), among others.
Some of these diagnoses can be life changing and can cause severe psychological
and emotional stress (Smith, 2015). There has been evidence of a strong association
between HIV and depression (Galambos et al., 2004).

Looking at the social risk factors for depression, first consider abuse. There is a
strong relationship between abuse and depression. Children who are abused or ne-
glected have a high risk of suffering from depression and/or other mental illnesses
as they mature. Sexual abuse does not appear to affect individuals as much as phys-
ical or any other type of abuse, however, adults with a history of childhood sexual
abuse have a higher prevalence than those who have not experienced such trauma
(National Institue of Mental Health (NIH), 2007). The lack of social support can also
cause depression. If an individual has prolonged social isolation and has only a few,
if any, supportive relationships, this can be a source of depression. Feelings of exclu-
sion can bring an episode in people who are prone to mood disorders (Healthline,
2017).

Major life events affect an individual’s depression status. Events such as being un-
employed, getting a divorce, a loss of a loved one or other stressful situations can
increase an individual’s risk of depression. A deep sadness can occur, where some
individuals will feel better after a few months and others experience more serious,
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1.1. Literature Review

long term periods of depression. An individual is likely to suffer from depression
if he/she has grieving symptoms that occur for more than two months (Healthline,
2017). Depression is a mental illness that frequently co-occurs with substance use.
Individuals who abuse substances are more likely to suffer from depression and vice
versa, i.e. individuals may consume alcohol or drugs to relieve feelings of sadness.
However, people fail to realize that substances such as alcohol can increase feelings
of sadness and fatigue (Smith, 2017).

Age and gender play important roles in depression. Depression is twice as common
in adolescent and adult females than in males. Depression disorders equally af-
fect males and females in pre-pubertal children. Epidemiological data suggests that
there is a higher depression prevalence among females than males, however some
believe that both genders are affected equally, although women are more likely to be
diagnosed with the disorder (Piccinelli & Wilkinson, 2000).

The triggers for depression among different genders are different. Females often
show internalizing symptoms whereas as males show externalizing symptoms. For
example, women display more sensitivity to interpersonal relationships and men
display more sensitivity to external career and goal orientated factors. Women also
experience illnesses such as premenstrual dysphoric disorder, postpartum depres-
sion and postmenopausal depression and anxiety, that are associated with changes
in ovarian hormones and could contribute to the increased prevalence of depression
in women (Albert, 2015).

All ethnic and cultural groups are exposed to depression. The depression rate across
different groups are consistent, however, ethnic and cultural differences often im-
pact the way in which members express their feelings and their willingness to seek
treatment (Haggerty, 2016). Poverty is associated with increased prevalence of men-
tal health disorders. Brown & Moran (1997) showed how financial hardship was
related to the risk of having a chronic episode of depression, lasting at least a year.
A study on depression in the United States, which made use of Household Popula-
tion survey data from 2009-2012, showed that more than 15% of people living below
the federal poverty level had depression compared with 6.2% of persons living at or
above the poverty level (Pratt, 2014).

Very few studies on the prevalence and risk factors of depression in the South African
population have been carried out recently. Data for these studies were obtained from
the Composite International Diagnostic Interview with logistic regression being the
primary method of analysis (Herman et al., 2009; Nglazi et al., 2016; Tomlinson et al.,
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2009). Since there are only a few studies available, this may be attributed to the the
higher burden of other communicable and non-communicable diseases than receive
more attention, such as HIV, hypertension and diabetes. However, depression is of-
ten a co-morbidity of these diseases, and thus should not be taken lightly (Nglazi
et al., 2016).

1.2 Aims and Objectives of the Study

This study aimed at using various statistical methods to analyze data on depression
that was collected based on a complex survey design. The specific objectives of the
study are:

• To investigate the risk determinants of depression among South African indi-
viduals aged 15 to 49 years old and to determine which factors contribute the
most to this mental illness.

• To explore various statistical methods of classifying a person’s depression sta-
tus.

1.3 Thesis Structure

This chapter provided an introduction to the topic, as well as a review of literature
on depression and associated risk factors. In addition, the chapter provded the ob-
jectives of the study. Chapter 2 introduces the data, the variables of interest and
some descriptive analysis of the data. Furthermore, Chapter 2 discusses the statis-
tical methods appropriate for the analysis of the data, therefore presenting a brief
overview of the methods considered in this thesis. Chapter 3 introduces the gen-
eralized linear model and the survey logistic regression model which presents the
first statistical approach applied, the results of which are presented at the end of the
chapter. Chapter 4 covers a brief overview of the generalized linear mixed model
which is the second statistical approach applied. The results of this second approach
are presented at the end of Chapter 4. The last statistical approach applied, Bayesian
Networks, is discussed in Chapter 5, where the results are presented at the end of
the chapter. The final chapter, Chapter 6, provides a comparison of the performance
of the three approaches in classifying an individual’s diabetes status. In addition,
this chapter discusses the limitations of the thesis, the conclusion and the future di-
rection of this study.

4



Chapter 2

Data Description and Exploration

This chapter discusses the area of study, the data set and the variables of the study.
Exploratory analyses is also done to enable the individual to get a general under-
standing of the data.

2.1 Study Area

The Republic of South Africa is at the southern tip of Africa. It shares a boarder
with Botswana, Lesotho, Mozambique, Namibia, Swaziland and Zimbabwe and has
a coastline of 2,798 km. The country has an area of 1,219,090 square kilometres with
approximately 4,620 square kilometres being taken up by water and 1,214,470 is land
(CIA World Factbook, 2017). South Africa is divided up into 9 provinces, namely,
Limpopo, North West, Gauteng, Mpumalanga, Northern Cape, Free State, KwaZulu
Natal, Western Cape and Eastern Cape, as shown in Figure 2.1 on the next page.
There is approximately 55 520 396 people living in South Africa with slightly more
females than males. The population growth rate was estimated to be 0.99% in 2017.
The South African birth rate is close to 20.5 births per 1000 individuals and the death
rate is approximately 9.6 deaths per 1000 individuals (Statistics South Africa, 2011).

2.2 The Data Set

This study made use of data from the 2016 South African General Household Sur-
vey (SAGHS). The SAGHS is an annual survey which is aimed at determining the
progress of development in South Africa. The performance of programmes and the
quality of services are consistently measured across various sectors in the country.

5



2.2. The Data Set

Figure 2.1: Map of South Africa

2.2.1 Sampling Procedure and Data Collection

The SAGHS was nationally represented and made use of a stratified multi-stage
cluster sampling design to carry out the survey. South Africa was stratified into its 9
provinces which were then subdivided into 62 districts. These districts were further
divided into 233 enumeration areas (EAs). The sample was not spread geographi-
cally in proportion to the population, but rather equally across the EAs.

The survey consisted of a two-stage sample design where the first stage involved
selecting clusters from a list of EAs covered in the 2011 Population Census. These
areas made up the primary sampling units (PSUs) or clusters. A total of 3,324 clus-
ters with probability proportional to size were collected. A list of all households in
the 3,324 clusters was drawn up and provided the sampling frame from which the
dwelling units were selected for the survey. The second stage of the selection pro-
cess involved systematic sampling of the dwelling units from the list of households
in each cluster. The final sample then consisted of 21,228 households.

Data was collected from all the individuals in the selected households using the GHS

6



2.3. Study Variables

questionnaire. This questionnaire was designed to collect demographic, biographi-
cal and health information, among others, from each household member, as well as
information on the household’s dwelling unit, such as household assets, access to
electricity, and type of water sources.

2.3 Study Variables

The response variable of interest is the self-reported depression status of the sampled
individuals between the ages of 15 to 49 years. This is a binary response, indicating
whether or not the individual believed they were depressed.

The independent variables considered comprise of individual and household related
factors as shown by Figure 2.2. These variables are based on the literature as well as
the availability of information in the SAGHS data.

Figure 2.2: Potential factors associated with depression
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2.4. Data Exploration

2.4 Data Exploration

Before any statistical modelling of the data is done, it is ideal to first carry out some
exploratory analyses, which is presented in this section. This enables an individual
to get a general understanding of the data. In addition, this section provides more
detail regarding the explanatory variables.

The final data set used in this study comprised of 29840 individuals from 15073
households. The total number of individuals who reported to suffer from diabetes
was 100, resulting in an observed prevalence of 0.3%. It is acknowledged that this
observed prevalence is significantly low, particularly compared to the national 12-
month prevalence of 16.5%. This is most likely due to it being based on self-reporting,
where individuals are concerned about the stigma concerning depression or any
mental health issues, thus leading to under-reporting of depression in the survey.

Tables 2.1 and 2.2 present the distribution of the data set according to the individual
and household explanatory variables of interest, respectively. The majority of the
sample was made up of individuals from the Black race group. Most of the indi-
viduals perceived their health to be good, however this was based on self-reporting.
The majority of the sampled individuals had a secondary school level of education
and most of the individuals were employed at the time of the survey. However,
a fair amount of the sampled individuals were not economically active during the
time of the survey (40.7% of the sample). This refers to those who are retired, dis-
abled or working as a ‘housewife’. Only 14.7% of the sampled individuals were on
a private medical aid scheme. Only 3.7% of the sample reported to be HIV positive,
which is also based on self-reporting. Once again, this is significantly lower than the
current prevalence of HIV in South Africans between the ages of 15 to 49 years old,
at 19% (Avert, 2019). In addition, only 0.2% of the sampled reported to suffer from
substance abuse, which is based on alcohol or drug use. The majority of the sampled
individuals were single and owned a cellphone.

8
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Table 2.1: Distribution of the sample according to the individual level variables

Variable %

Age group 15-19 years 17.7
20-29 years 33.1
30-39 years 28.2
40-49 years 21.0

Gender Male 47.9
Female 52.1

Race African/Black 82.9
Coloured 10
Indian/Asian 1.9
White 5.2

Health status Excellent 35.0
Very Good 21.1
Good 37.8
Fair 4.8
Poor 1.4

Highest education level No schooling 1.4
Primary School 11.2
Secondary School 75.2
Higher Education 12.2

Employment Status Employed 43.7
Unemployed 15.7
Not Economically Active 40.7

Medical aid scheme Yes 14.7
No 85.3

Disability Not disabled 94.0
Disabled 6.0

Social grants Yes 8.5
No 91.5

Marital status Married 21.3
Partnered 11.1
Divorced/widowed/separated 2.9
Single 64.7

HIV/AIDS Yes 3.7
No 96.3

Substance abuse Yes 0.2
No 99.8

Cellphone ownership Yes 88.2
No 11.8

Relationship to household head Head 32.3
Spouse/partner 13.8
Other 53.9

9
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It can be seen from Table 2.2 below that the majority of the households had flush
toilet facilities, access to electricity and protected water sources for drinking water,
which comprised of protected wells (private and public), boreholes and protected
springs. Unprotected water sources included open wells (private and public), un-
protected springs, rainwater and surface water (rivers/streams, ponds/lakes and
dams). Individuals from households with unimproved toilet facilities, which in-
cluded pit latrines without ventilations, comprised of 17.1% of the sample. Most of
the sampled households were from urban areas of residence. A total of 3.6% of the
sampled individuals had lost a household member.

Table 2.2: Distribution of the sample according to the household level variables

Variable %

Type of toilet facility Flush Toilet 59.6
VIP Latrine 20.0
Unimproved Facility 17.1
Other 3.3

Access to electricity Yes 93.8
No 6.2

Source of drinking water Tap into household 43.9
Protected water 50.7
Unprotected water 5.4

Province Western Cape 10.9
Eastern Cape 13.3
Northern Cape 4.5
Free State 5.4
KwaZulu-Natal 17.8
North West 6.6
Gauteng 22.3
Mpumalanga 8.2
Limpopo 11.0

Type of residence Urban 64.7
Traditional 31.5
Farms 3.8

Household members passed away Yes 3.4
No 96.6
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Figure 2.3 displays the observed prevalence of depression according to the province
of residence. The North West Province had the highest prevalence of depression at
0.61% and KwaZulu-Natal had the lowest at 0.06%.

Figure 2.3: Observed prevalence of depression according to province in South Africa

Figure 2.3 displays the observed prevalence of depression according disability sta-
tus, substance abuse, HIV status and health status. In general, those who suffered
from health related issues, such as HIV and disability, had a higher observed preva-
lence of depression at 1.00% and 1.73%, respectively, compared to those who re-
ported not to be suffering from these issues. The prevalence of depression decreased
with an increase in an individual’s perception of their health. Individuals abusing
alcohol or drugs had a substantially higher prevalence of depression (17.86%) com-
pared to those who reported not to be abusing these substances (0.3%). The treemap
in Figure 2.5 on the next page presents the observed prevalence of depression ac-
cording to the demographic variables race and gender. The White race group had a
prevalence of 0.77%, which is more than the that of the other race groups combined.
It should be noted that the Indian/Asian race group is not represented in this figure,
this is due to none of the individuals in this race group having reported to suffer
from depression. The prevalence of depression for females (0.48%) was almost three
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times that of males (0.18%).
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Figure 2.4: Observed prevalence of depression according disability status, substance abuse, HIV
status and health status

Figure 2.5: Observed prevalence of depression according race and gender
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The parallel plot in Figure 2.6 below displays some descriptive statistics for the con-
tinuous covariates, age, the number of members in a household and the number of
children five or younger in the household, according to depression status. Both de-
pressed and not depressed individuals had the same minimum age of 15, minimum
number of household members at 1 and minimum number of younger children in
the household at 0. However, the average and maximum of these covariates dif-
fered for each group of individuals. The average age was higher for those who were
depressed, however, the average household size and average number of young chil-
dren in the household was slightly lower for those who were depressed compared
to those who were not depressed.

Figure 2.6: Descriptive statistics for the continuous covariates according to depression status

The observed prevalence of depression according the cellphone ownership, whether
or not the individual was on a social grant, whether or not the individual was on
a medical aid scheme and employment status is presented in Figure 2.7. A higher
prevalence of depression was observed for individuals not on social grants (0.34%)
and for individuals on a medical aid scheme (0.39%), as well as for those that own
cellphones (0.35%). However, individuals not employed had the highest prevalence
of depression at 0.41% compared to those employed at 0.33%.
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Figure 2.7: Observed prevalence of depression according to cellphone ownership, social grants, med-
ical aid scheme and employment status

Figure 2.8 on the next page displays the observed prevalence according to high-
est education level. Those with no schooling had the highest observed prevalence
(0.72%) followed by those with higher education such as a degree or diploma (0.63%).
Figure 2.9 presents the observed prevalence of depression according to marital sta-
tus, relationship to the head of household and whether or not a household member
had passed away. A similar prevalence was observed between those or had and
had not lost a household family member. A substantially higher prevalence of de-
pression was seen in individuals who were divorced, separated or widowed (1.53%)
compared to those who were married (0.41%), partnered (0.33%) or single (0.26%).
The highest prevalence of depression was observed in individuals who were the
head of their household (0.59%) rather than a spouse or partner (0.51%).
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Figure 2.8: Observed prevalence of depression according to the highest level of education

Figure 2.9: Observed prevalence of depression according to marital status, relationship to the
head of household and whether or not a household member had passed away
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Figure 2.10 below presents the observed prevalence of depression according to the
household characteristics: access to electricity, type of toilet facility, source of water
for drinking and type of place of residence. These household characteristics are as-
sociated with an individual’s socio-economic status, where individuals residing in
households with flush toilets, tap water and access to electricity are perceived to be
at a higher socio-economic status compared to those living in households without
access to these facilities. In addition, individuals residing in households with access
to these facilities had a higher prevalence of depression, as well as those residing in
urban areas compared to those living in other places of residence.

Based on these exploratory results, it is observed that the majority of the individu-
als who reported to suffer from depression were at a higher socio-economic status,
where they could afford a medical aid scheme and were not on a social grant.

Figure 2.10: Observed prevalence of depression according to household characteristics
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2.5 Statistical Methods Considered for this Study

The response variable of interest is binary, namely, the self-reported status of de-
pression of the individual. Thus, logistic regression, which is a class of generalized
linear models (GLMs), would usually be selected for the analysis. However, in this
study, three different statistical approaches are considered. The first two take into
account the complex survey design used to collect the data. These include a design-
based approach and a model-based approach. For the design-based approach, a
survey logistic regression model is used where parameter estimates and inferences
are based on the sampling weights, and only inferences concerning the effects of
certain covariates on the response variable are of interest (Heeringa et al., 2010). For
the model-based approach, a generalized linear mixed model is applied. In this
approach, interest is also on estimating the proportion of variation in the response
variable that was attributable to each of the multiple levels of sampling (Heeringa
et al., 2010). This approach also accounts for possible correlations in the data where
individuals in the same household or cluster tend to be more alike than those from
other households or clusters. The last statistical approach considered in this thesis is
a Bayesian network, which is applied to model the conditional dependence among
the variables. This approach is a type of probabilistic graphical model that uses
Bayesian inference for calculations of the probabilities. Each of the three techniques
will be used to classify the depression status of the individuals, and their perfor-
mances in this classification will be compared.

The following three chapters give an overview of the three approaches as well as
presents the results of each applied to the SAGHS data.
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Chapter 3

Generalized Linear Models

Linear statistical models are commonly used for various analysis procedures (Ravis-
hanker & Dey, 2001). The general linear model (LM) forms the basis of the statistical
analysis that is used in applied and social research. However, the LM assumes that
the response variable is continuous and is thus not appropriate in the case of a dis-
crete, binary response. In this chapter, appropriate methods of dealing with discrete
responses are discussed.

3.1 Generalized Linear Models

In cases where the response variable is not normal, the general linear model cannot
be applied. Instead, the generalized linear model (GLM) is used to model the data.
The GLM was developed by Nelder and Wedderburn in 1972. It can be used to fit a
binary response variable that follows a general distribution of the exponential fam-
ily (Agresti, 2002).

If Yi for i = 1, . . . , n is a response variable from a distribution that is a member of the
exponential family, then the probability density function for Yi is given by

f(yi, θi, φ) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
, (3.1)

where θi is the natural or canonical parameter, b(θi) is a function of the natural pa-
rameter, a(φ) = φ

ωi
is a function of the scale parameter, where ωi is the weight for the

ith observation and c(yi, φ) is a constant.

The mean and variance of the response variable are:

E(Yi) = b′(θi) = µi i = 1, 2, ..., n, (3.2)
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var(Yi) = ai(φ)b′′(θi) = ai(φ)v(µi) i = 1, 2, ..., n, (3.3)

where v(µi) = b′′(θi)

The GLM consists of three components:

1. Random Component: This consists of the independent response variables Yi

which belong to the exponential family with a probability distribution given
by Equation 3.1.

2. Systematic component: This component relates a vector η = (η1, η2, ..., ηn)′ to
a set of explanatory variables through a link function. Let xi = (1, x1i, ..., xpi)′

be a (p+1)-dimensional vector of covariates and β = (β0, β1, ..., βp)′ be a vector
of the unknown regression coefficients. The distribution of Yi depends on xi

through the linear predictor, ηi, such that

ηi = β0 + β1x1i + β2x2i + ... + βpxpi

= x′
iβ.

3. A link function: This component, denoted by g, is a monotonic and differen-
tiable function that links the mean response µi = E(yi) to the linear predictor
ηi = x′

iβ as follows

ηi = g(µi) = x′
iβ. (3.4)

Distributions such as the Poisson, Binomial, Chi-Square and Gamma distribution
belong to the exponential family. Each member of the exponential family of distri-
butions has a unique canonical link function. The logit is the link function for the
Binomial distribution. The GLM with a logit link is referred to as a logistic regression
model which is discussed in Section 3.2

3.1.1 Parameter Estimation

The maximum likelihood (ML) method can be used for the parameter estimation
of GLMs. Advances in statistical theory and computer software have allowed this
method of estimation to become the most popular technique in applied statistics
(Wu, 2005). The log-likelihood function for a single observation is given by

`i = ln f(yi, θi, φ) =
yiθi − b(θi)

ai(φ)
+ c(yi, φ). (3.5)
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Since Yi, i = 1, ..., n, are independent, the joint log-likelihood function is

`(β, y) =
n∑

i=1

`i. (3.6)

The ML estimation of βj , j = 0, ..., p is the solution to the equation

∂`i

∂βj

= 0. (3.7)

To obtain the solution, we use the chain rule

∂`i

∂βj

=
∂`i

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

. (3.8)

Using Equation 3.5, we obtain

∂`i

∂θi

=
yi − b′(θi)

ai(φ)
=

yi − µi

ai(φ)
. (3.9)

Since µi = b′(θi), V ar(Yi) = ai(φ)v(µi), and ηi =
∑

j βjxij ,

∂µi

∂θi

= b′′(θi) = v(µi),

∂ηi

∂βj

= xij.

Therefore,

∂`(β, y)

∂βj

=
n∑

i=1

yi − µi

ai(φ)

1

v(µi)

∂µi

∂ηi

xij

=
n∑

i=1

(yi − µi)Wi
∂ηi

∂µi

xij,

where Wi is referred to as the iterative weights, which is given by

Wi =
1

ai(φ)

(
∂µi

∂ηi

)2

v−1
i

=
1

V ar(Yi)

(
∂µi

∂ηi

)2

,

(3.10)
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where vi = v(µi) is the variance function. Since ηi = g(µi),
∂µi

∂ηi
depends on the link

function of the model.

Therefore, solving for the equation below will give the ML estimate for β

n∑
i=1

(yi − µi)Wi
∂ηi

∂µi

xij = 0. (3.11)

Equation 3.11 is a non-linear function of β. Iterative procedures such as Newton
Raphson and Fisher Score are therefore required to solve this equation.

Newton Raphson

The iterative equation for Newton Raphson is given by

θ̂
(t+1)

= θ̂
(t) − (H(t))−1U (t), (3.12)

where θ̂
(t)

is the approximation of θ at the tth iteration. U (t) =
∂`p

∂θ
evaluated at

θ̂
(t)

, where U is called the score. H(t) is the Hessian matrix, H , with the following
elements evaluated at θ̂

(t)
:

Hjk =
∂2`p

∂θj∂θk

. (3.13)

Fisher Score

The Fisher score equation is given by

θ̂
(t+1)

= θ̂
(t)

+ (I(t))−1U (t), (3.14)

where I = −E(H) is known as the information matrix.

Both Newton Raphson and Fisher Score require an appropriate starting value θ̂
(0)

,
whereafter the process will continue until the difference between the successive ap-
proximations is negligible i.e. the algorithm converges.

Applying the Newton Raphson to Equation 3.11, the iterative equation will be

β̂
(t+1)

= β̂
(t) − (H(t))−1U (t), (3.15)

and the iterative Fisher Score equation given by
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β̂
(t+1)

= β̂
(t)

+ (I(t))−1U (t), (3.16)

with information matrix

I = −E(H)

= −E

(
∂2`

∂β∂β′

)
= X ′WX,

(3.17)

where W is known as the weight matrix with diagonal elements given in Equation
3.10. Equation 3.16 can be written as

I(t)β̂
(t+1)

= I(t)β̂
(t)

+ U (t)

= X ′W (t)z(t),
(3.18)

where W (t) is the weight matrix evaluated at β̂
(t)

, and z(t) has the following ele-
ments evaluated at β̂

(t)

zi = ηi + (yi − µi)

(
∂ηi

∂µi

)
. (3.19)

zi is known as the adjusted dependent variable or the working variable. We, there-
fore, obtain

β̂
(t+1)

= (X ′W (t)X)−1X ′W (t)z(t). (3.20)

Each iteration step is as a result of a weighted least squares regression of zi on the
independent variables xi, with weight Wi. Therefore, Fisher scoring can be regarded
as iteratively reweighted least squares (IRWLS) carried out on a transformed version
of the response variable (Knypstra, 2008).

It follows that the asymptotic variance of the estimate of β is the inverse of the in-
formation matrix given in Equation 3.17 and can be estimated by

V̂ ar(β̂) = (X ′ŴX)−1, (3.21)

where Ŵ is W evaluated at β̂ and depends on the link function of the model. The
dispersion parameter, φ, in function ai(φ) that is used in the calculation of Wi re-
solves to 0 in the IRWLS procedure. The estimate of β is therefore the same under
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any value of φ. However, the value of φ is necessary for the calculation of the vari-
ance of β̂, so when φ is unknown, it can be estimated using a moment estimator
(McCulloch & Searle, 2001), given by

φ̂ =
1

n− p− 1

n∑
i=1

ωi(yi − µ̂i)
2

v(µ̂i)
, (3.22)

where ωi is the weight defined in Equation 3.1.

3.1.2 Measure of Fit

Assessing the goodness-of-fit of the model of interest is an important step in statis-
tical analysis. One way in which this is done is by using the deviance. The deviance
is a measure of discrepancy between the predicted values from the fitted model and
the actual values of the data set. Assume for a fitted model, there are p + 1 parame-
ters and `(µ̂, φ, y) is the log-likelihood function maximized over β̂ for a fixed value
of the dispersion parameter φ, and `(y, φ, y) is the maximum log-likelihood achiev-
able under the saturated model where the number of parameters equals the number
of observations, the scaled deviance is

Ds =
−2 [`(µ̂, φ, y)− `(y, φ, y)]

φ
. (3.23)

If φ = 1, the deviance is defined as

Ds = −2 [`(µ̂, φ, y)− `(y, φ, y)] . (3.24)

The scaled deviance converges asymptotically to a χ2 distribution with n− p− 1 de-
grees of freedom. Therefore, when testing at α level of significance, the fitted model
is rejected if the calculated deviance is greater that or equal to χ2

n−p−1;α

The Generalized Pearson’s Chi-Square is another commonly used measure of goodness
of fit. This is given by

χ2 =
n∑

i=1

(yi − µ̂i)
2

v(µ̂i)
, (3.25)

which asymptotically follows a χ2 distribution with n − p − 1 degrees of freedom,
where v(µ̂i) is the estimated variance function for the distribution. Similar to the
deviance, the smaller the value of the χ2 statistic, the better the fit of the model. The

scaled Pearson’s χ2 statistic is
χ2

φ
(Wu, 2005). The value of the Pearson’s χ2 test for

linear models is the residual sum of squares, since v(µ̂i) is generally taken as one,
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which leads to both the deviance and Pearson’s χ2 statistic having exact χ2 distribu-
tions. These measures of goodness-of-fit for other distributions have asymptotic χ2

distributions. When samples are small, no distribution is superior to another. The
deviance, however, has an advantage over Pearson’s χ2 statistic as it is additive for
nested models (Nelder & Wedderburn, 1972).

3.1.3 Likelihood Ratio Test

In order to test whether an independent variable has no effect on the response vari-
able (in other words their parameter is equal to zero), given the other variables in
the model, the deviances of the full model and the reduced model can be compared.
The test statistic is compared using the following

Dreduced −Dfull. (3.26)

Both the deviances above involve the log-likelihood for the saturated model, there-
fore, resulting in the following test statistic

χ2 = −2 [log-likelihood(reducedmodel)− log-likelihood(full model)] . (3.27)

The test statistic has an asymptotic χ2 distribution. The degrees of freedom is the dif-
ference in the number of parameters between the full model and the reduced model.
This test is known as the Likelihood Ratio Test.

As seen in the previous section, if φ 6= 1, the scaled deviance can be used. Applying
the scaled deviance definition, Equation 3.27 becomes

T =
−2 [log-likelihood(reduced model)− log-likelihood(full model)]

φ
. (3.28)

When φ 6= 1 and unknown, the value of φ can be estimated by using Equation 3.22.

3.1.4 Wald Test

The Wald test is a hypothesis test usually performed on parameters that have been
estimated by the maximum likelihood. Suppose a hypothesis test on a single param-
eter βj needs to be performed. The test statistic for this test is

z0 =
β̂j

se(β̂j)
. (3.29)

The standard error of βj is the square root of the diagonal elements in the inverse of
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the information matrix given in Equation 3.17. The null hypothesis for the Wald test
is H0 : βj = 0, i.e. the variable has no effect on the response. Therefore, for large
values of the test statistic, the null hypothesis is rejected and it can be concluded
that the corresponding variable is significant to the model and thus has a significant
effect on the response.

3.1.5 Quasi-Likelihood Function

The maximum likelihood requires a known distribution in order to evaluate the
function, however, it is not always practical to have a known distribution. Wedder-
burn (1974) proposed the quasi-likelihood (QL) method as a way of fitting regression
models without having to state a specific distribution. He considered both linear and
non-linear models and showed that only the relationship between the mean and the
variance of observations need to be specified in order to find the quasi-likelihood
function (Elder, 1996). The issue of over-dispersion is not an issue when the QL
method is used (Agresti, 2007).

Wedderburn (1974) used the following relation to determine the quasi-likelihood
(specifically quasi-log-likelihood) function Q(yi;µi) for each observation

∂Q(yi;µi)
∂µi

=
ωi(yi − µi)

φ v(µi)
, (3.30)

where ωi is the known weight associated with observation yi.

Therefore, from Equation 3.30, we can obtain

Q(yi;µi) =
∫ µi

yi

ωi(yi − t)
φ v(µi)

dt + some function of yi. (3.31)

Thus, the maximum quasi-likelihood estimates of β can be obtained from Equation
3.31 using Fisher Scoring. Equation 3.22 can be used to estimate φ 3.22.

The QL above explains the case for which observations are independent. This can,
however, be extended to cases for which the observations are correlated. It can be
shown that properties of the quasi-likelihood function are similar to properties of
the ordinary log-likelihood function. It is therefore possible to carry out goodness-
of-fit and hypothesis tests that were previously discussed. In addition, when the
distribution of the response comes from the exponential family, the log-likelihood
function is identical to the quasi-log-likelihood function (Wedderburn, 1974).
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3.2 Logistic Regression

The logistic regression model is a special case of a generalized linear model and is
used to a model binary response. The binary response is usually coded as 0 or 1
(Hilbe, 2009). Let the response variable be defined as

Yi =

1 if the outcome is a success e.g. an individual is suffering from depression,

0 if the outcome is a failure e.g. an individual is not suffering from depression.
(3.32)

Thus, Yi follows a Bernoulli distribution, so we let P (Yi = 1) = πi be the probability
of success and P (Yi = 0) = 1− πi be the probability of failure. Therefore,

E(Yi) = πi, (3.33)

and

V ar(Yi) = πi(1− πi). (3.34)

Suppose we use the General Linear Model to model Yi:

Yi = β0 + β1xi1 + β2xi2 + ... + βpxip + εi i = 1, ..., n. (3.35)

Thus, by Equation 3.33

E(Yi) = πi

= β0 + β1xi1 + β2xi2 + ... + βpxip i = 1, ..., n

= x′
iβ.

(3.36)

Since πi is a probability, it is limited by 0 ≤ πi ≤ 1. However, using Equation 3.35
to model a binary outcome would result in the value of E(Yi) outside of its range.
Therefore, a model for E(Yi) that restricts its value between 0 and 1 would be more
suitable (Rencher & Schaaljie, 2008). Such a model is given by the logistic regression
model, given by

logit(πi) = ln

(
πi

1− πi

)
= x′

iβ i = 1, 2, ..., n, (3.37)

where x′
i is a vector of explanatory variables corresponding to the ith observation
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and β is a vector of unknown parameters (Lugga, 2012). The left hand side of Equa-
tion 3.37 is referred to as the logit link, denoted by ηi in the GLM. Thus, Equation
3.36 will become

πi =
exp(x′

iβ)

1 + exp(x′
iβ)

. (3.38)

This is known as the logistic regression model which is a class of the GLM with a
logit link. The value of the link, ηi, is allowed to range freely while restricting that of
E(Yi) = πi = µi between 0 and 1. There are three commonly used links to model a
binary response, namely, the logit link, the probit link and the complementary log-
log link, however the logit link is the most convenient to interpret (Lugga, 2012).
The maximum likelihood estimates of β can be found using the iterative equations
discussed previously in sub-section 3.1.1. The score U can be found as follows.

A binary variable has the following probability distribution

f(yi) = π yi

i (1− πi)
1−yi . (3.39)

Equation 3.39 can be expressed as

f(yi) = exp

[
yi ln

(
πi

1− πi

)
+ ln(1− πi)

]
. (3.40)

The equation above is in the same form of Equation 3.1 where ai(φ) = 1, there-
fore, the dispersion parameter φ = 1, c(yi, φ) = 0 and the canonical parameter

θi = ln
(

πi

1− πi

)
which results in πi =

eθi

1 + eθi
. Therefore, b(θi) = ln(1 + eθi)

Since, for the logistic regression model, E(Yi) = πi = µi, V ar(Yi) = µi(1 − µi) = vi

and the link function

ηi = ln

(
µi

1− µi

)
= ln(µi)− ln(1− µi).

It follows
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3.2. Logistic Regression

∂ηi

∂µi

=
∂

∂µi

[ln(µi)− ln(1− µi)]

=
1

µi

+
1

1− µi

=
1

µi(1− µi)
,

and

v−1
i =

1

µi(1− µi)
.

Therefore,

Wi =
1

ai(φ)

(
∂µi

∂ηi

)2

v−1
i

= [µi(1− µi)]
2 1

µi(1− µi)

= µi(1− µi).

(3.41)

Thus, the score U given in Equation 3.11 can reduce to

n∑
i=1

(yi − µi)xij, (3.42)

where µi = πi is given by Equation 3.38. Using this value of U in the iterative equa-
tions of Newton Raphson and Fisher Scoring given by Equation 3.15 and Equation
3.16, respectively, the ML estimate of β can be obtained. The variance of β̂ can be
calculated by using Equation 3.21 where the diagonal elements in the weight matrix
W are given by Equation 3.41.

The odds of an event occurring is given by

πi

1− πi

. (3.43)

Taking eβj gives the odds ratio corresponding to a one unit increase in the corre-
sponding independent variable xij , while all other independent variables remain
constant. In general, for a k unit change in the independent variable, the odds ratio
is defined as ekβj . This explains how much more or less likely an event is to occur if
there is a change in one of the independent variables (Kutner et al., 2005).
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3.3. Survey Logistic Regression

3.3 Survey Logistic Regression

The logistic regression model is used to model binary response. However, the re-
sults are only valid if the data was obtained using simply random sampling. Thus,
in the case of survey data that consists of clustering and stratification, the logistic
regression model is no longer appropriate as failure to account for the survey design
can result in overestimation of standard errors which can lead to incorrect results
(Heeringa et al., 2010). It is therefore necessary to make adjustments to the classi-
cal logistic regression model in order to make valid inferences. Logistic regression
that is used in the analysis of data from complex survey designs, where sampling
weights are accounted for, is referred to as survey logistic regression and is a design-
based statistical approach (Roberts et al., 1987)

Survey logistic regression (SLR) models have the same theory as ordinary logistic
regression (OLR) models. The only difference is in the estimation of the variance of
the parameter estimates. If the data is selected using simple random sampling, then
the SLR and OLR models give identical estimates. However, if the data is selected
from a complex survey design, the regression coefficient estimates and the standard
errors will differ due to incorporating the sampling weight (Moeti, 2007).

3.3.1 The Model

Let’s consider the survey logistic regression model for a binary response variable
Yhij(j = 1, ..., nhi; i = 1, ..., nh;h = 1, ...,H) which equals 1 if the jth individual in the
ith household, within the hth cluster, is suffering from depression, and 0 otherwise.
Also, let πhij = P (Yhij) = 1 be the probability that this individual is suffering from
depression. Then the survey logistic regression model is given by

logit(πhij) = x′
hijβ, (3.44)

with

πhij =
exp(x′

hijβ)

1 + exp(x′
hijβ)

, (3.45)

where xhij is the row of the design matrix corresponding to the response of the jth

individual in the ith household within the hth cluster, and β is the vector of unknown
regression coefficients that need to be estimated.

The maximum likelihood estimation is used to estimate parameters of an ordinary
logistic regression model. However, calculation of standard errors of parameter es-
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3.3. Survey Logistic Regression

timates can be complicated for data obtained from complex survey designs (Vit-
tinghoff et al., 2011). The survey logistic regression model has the same form as
the ordinary logistic regression model. Therefore, the probability distribution of the
response variable is given by

f(yhij) = π
yhij

hij (1− πhij)
1−yhij , (3.46)

which yields

E(Yhij) = πhij =
ex′

hijβ

1 + ex′
hijβ

, (3.47)

and

V ar(Yhij) = πhij(1− πhij) =
ex′

hijβ

(1 + ex′
hijβ)2

. (3.48)

The log-likelihood function is then given by

` = ln L(y) =

nh∑
i=1

nhi∑
j=1

H∑
h=1

ln f(yhij). (3.49)

Sampling weights are not incorporated in the above log-likelihood function. There-
fore, the maximum likelihood estimates of the model’s parameters which are ob-
tained using this function are only valid for simple random sampling where observa-
tions are unweighted. As a result, we resort to a likelihood function that incorporates
the sampling weights, namely, a pseudo-likelihood function. The pseudo-maximum
likelihood (PML) is a method of estimation that uses the pseudo-likelihood function.

3.3.2 Pseudo-Likelihood Function

The PML method is similar to that of the maximum-likelihood method. However,
the sampling weights are accounted for as follows:

P` =

nh∑
i=1

nhi∑
j=1

H∑
h=1

whij ln f(yhij), (3.50)

where P` represents the pseudo-log-likelihood function with whij being the weight
associated with the Y th

hij observation. Substituting the probability distribution of yhij

given by Equation 3.46 into Equation 3.50, the pseudo-likelihood function for the
survey logistic regression model obtained is
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3.3. Survey Logistic Regression

P` =

nh∑
i=1

nhi∑
j=1

H∑
h=1

whij[yhij ln(πhij) + (1 + yhij) ln(1− πhij)]. (3.51)

The parameter estimates can be obtained if Equation 3.51 is maximized with respect
to β.

∂P`

∂β
=

nh∑
i=1

nhi∑
j=1

H∑
h=1

whijD
′
[

yhij − πhij

πhij(1− πhij)

]
= 0, (3.52)

where D′ =
∂(π(β))

∂β
is a vector of partial derivatives.

It can be shown that the above equation can be simplified into the following estimat-
ing equations

S(β) =

nh∑
i=1

nhi∑
j=1

H∑
h=1

whij(yhij − πhij)x
′
hij = 0. (3.53)

These estimating equations are nonlinear functions of β, and therefore, requires it-
erative procedures such as Newton-Raphson and Fisher Scoring to be solved.

Incorporating Equation 3.15 into Equation 3.53, the Newton-Raphson iterative pro-
cedure is given by

β̂
(t+1)

= β̂
(t) − (H(t))−1S(β̂)(t), (3.54)

where S(β̂) is Equation 3.53 evaluated at β̂
(t)

and H(t) is the Hessian matric, H ,
evaluated at β̂

(t)
where

H =
∂2P`

∂β∂β′ . (3.55)

Incorporating Equation 3.16 into Equation 3.53, the Fisher Scoring iterative proce-
dure is given by

β̂
(t+1)

= β̂
(t) − (I(t))−1S(β̂)(t). (3.56)

The most commonly used methods of variance estimation for the survey logistic
regression model are Taylor series approximation, which is based on a linearization
technique, Jackknife repeated replication (JRR) and balanced repeated replication
(BRR), which are based on a resampling technique (Heeringa et al., 2010). Only the
Taylor series approximation method will be considered for this thesis.
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3.3. Survey Logistic Regression

3.3.3 Taylor Series Approximation

The Taylor series approximation method is based on the simplicity associated with
estimating the variance of a linear statistic, even with a complex sample design.

The parameter estimates, β̂, are defined by

S(β̂) = 0. (3.57)

Using the linear terms of the Taylor series expansion, the following approximate
linearized expression is obtained

S(β̂) ' S(β) +
∂S(β)

∂β
(β̂ − β). (3.58)

Therefore,

S(β̂)− S(β) ' ∂S(β)

∂β
(β̂ − β). (3.59)

Taking the variances of both sides of Equation 3.59, the variance approximation of
S(β̂) can be expressed by

V ar

[
S(β̂)

]
=

[
∂S(β)

∂β

]
V ar(β̂)

[
∂S(β̂)

∂β

]′
. (3.60)

Equation 3.60 can be written as

V ar(β̂) =

[
∂S(β)

∂β

]−1

V ar

[
S(β̂)

][
∂S(β)

∂β

]−1

. (3.61)

This leads to the following sandwich type variance estimator

V̂ ar(β̂) =

[
I(β̂)

]−1

V ar

[
S(β̂)

][
I(β̂)

]−1

, (3.62)

where I(β̂) =
∂S(β)

∂β
=

∂2P`

∂β∂β′ is the information matrix evaluated at β = β̂ and

V ar
[
S(β̂)

]
denotes the variance-covariance matrix for the p+1 estimating equations.

Since each estimating equation is a sample total of the individual scores for the n

survey respondents, standard formulae can be used to estimate the variances and
covariances (Heeringa et al., 2010).
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3.3.4 Model Checking

Goodness-of-Fit

Generally after fitting a model, a test of goodness-of-fit is needed to assess whether
the model used is the best for fitting the data. This test measures the discrepancy
between observed values and expected values for the model used in the analysis.
The main tools used for assessing the goodness-of-fit of the fitted generalized linear
model is the log-likelihood ratio (deviance) and the Pearson Chi-square statistics.
The goodness-of-fit tests are based on independent observations that are identically
distributed. In many cases, however, the observations are not i.i.d.. In GLMs, for ex-
ample, the observations are independent but not identically distributed (Jiang, 2001).
In a complex survey design, observations that are in the same cluster tend to be
more homogenous than observations that are from different clusters. The appropri-
ate test of goodness-of-fit in this situation is an extension to the Hosmer-Lemeshow
goodness-of-fit test as it accounts for the design of a study making it appropriate
in measuring the fit of the survey logistic regression model (Hosmer & Lemeshow,
1980).

Hosmer & Lemeshow (1982) developed a set of goodness-of-fit tests to avoid prob-
lems associated with the asymptotic distribution of a Chi-square test. The Hosmer-
Lemeshow goodness-of-fit-test suggests that observations have to be partitioned
into g (where g is preferably 10) equal sized groups base on their ordered estimated
probabilities, π̂i. The Hosmer-Lemeshow test statistic, which follows a Chi-square
distribution with 8 degrees of freedom, is

χ2
HL =

10∑
j=1

(Oj − Ej)
2

Ej(1− Ej

nj
)
, (3.63)

where
nj = number of observations in the jth group,
Oj =

∑
i yi = observed number of cases in the jth group,

Ej =
∑

i = π̂i = expected number of cases in the jth group.

Currently, there is no formal goodness-of-fit testing procedure for fitting a survey
logistic regression model to sample survey data (Archer & Lemeshow, 2006). How-
ever, the proposed goodness-of-fit test is the F -adjusted mean residual test as fol-
lows:

Once the survey logistic regression model is fitted, the residuals for the jth observa-
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3.3. Survey Logistic Regression

tion in the the ith cluster are obtained. The residuals are calculated as follows

r̂ij = yij − π̂(xij). (3.64)

Then using a grouping strategy proposed by Graubard et al. (1997), the observations
are grouped into deciles of risk based on their estimated probabilities and sampling
weights (Archer & Lemeshow, 2006). The mean residuals by decile of risk M̂ ′ =
(M̂1, M̂2, ..., M̂10) with

M̂g =

∑
i

∑
j wij r̂ij∑

i

∑
j wij

g = 1, 2, ..., 10, (3.65)

where wij denotes the sampling weight associated with observations yij .

The Wald test statistic for testing g categories is given by

Ŵ = M̂ ′
[
V̂ ar(M̂)

]−1

M̂ , (3.66)

where V̂ ar(M̂) denotes the variance-covariance matrix of M̂ which can be obtained
through linearization (Archer et al., 2007). This test statistic is Chi-square with g − 1
degrees of freedom. However, the Chi-square distribution was found not to be an
appropriate reference distribution. The F -corrected Wald statistic is therefore used
instead. The test statistic is given by

F =
(f − g + 2)

fg
W. (3.67)

This test statistic is approximately F -distributed with g − 1 numerator degrees of
freedom and f − g + 2 denominator degrees of freedom, where f is the difference
between the number of sampled clusters and the number of strata, with g denoting
the number of categories (Archer & Lemeshow, 2006). From this, the F -adjusted
mean residual test statistic is obtained as follows

Q̂m =
(f − 8)

10f
M̂ ′

[
V̂ ar(M̂)

]−1

M̂ , (3.68)

since g = 10 deciles of risk.

In addition to the above, information criteria such as Akaike’s Information Criteria
(AIC) and Schwarz Criterion (SC) can be used to compare the goodness-of-fit of two
nested models.
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Testing Model Parameters

Inferences about the parameters of the survey logistic regression model cannot rely
on the likelihood ratio test since the SLR model is based on the pseudo-likelihood
which is an approximation to the true likelihood function (Hosmer Jr et al., 2013). It
is, therefore, appropriate to use the Wald test instead. The null hypothesis for the
Wald test is

H0 = Cβ = 0, (3.69)

with test statistic

W = (Cβ̂)′
[
C V̂ ar(β̂) C ′

]−1

(Cβ̂), (3.70)

where

• C is a matrix of constants that defines the hypothesis to be tested,

• V̂ ar(β̂) is the estimated variance-covariance matrix for β̂ given by Equation
3.60.

The decision on whether to reject, or not to reject, the null hypothesis is based on
the Chi-square test statistic with q degrees of freedom, where q is the number of
independent rows of the matrix C, and the p-value. Thus, the null hypothesis is
rejected at a p-value associated with this test statistic, of less that 0.05, else it is not
rejected. The Wald test statistic can be approximated to an F -statistic using Equation
3.67 with g − q degrees of freedom.

3.3.5 Survey Logistic Regression for Classification

The survey logistic regression model can be used as a classification technique by
obtaining the estimated probability of the event of interest occurring, given by

π̂hij =
exp(x′

hijβ̂)

1 + exp(x′
hijβ̂)

, (3.71)

Then, based on a comparing the estimated probability to a specified threshold, the
event of interest can be classified as either occurring or not occurring. In the case of a
binary response, such as depression status, the default threshold is 0.5. For example,
if π̂hij > 0.5, we classify the individual as having depression. However, this thresh-
old can be changed depending on the domain under analysis. In this study, as the
event is rare with only 0.3% of the individuals stating they have depression, we will
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consider a threshold of 1% as well as the default of 50% when using the statistical
models to classify the individual’s depression status.

3.4 Classification Performance Measures

The performance of a model with regards to classification can be calculated by mak-
ing use of a confusion matrix. A confusion matrix shows where the model gets
’confused’ in making predictions. Information on actual values in the rows and pre-
dicted values in the columns are represented. The following terms are defined with
respect to classifying whether an individual suffers from depression or not:

1. True Positive (TP): the number of cases correctly identified for those that suffer
from depression.

2. False Positive (FP): the number of cases incorrectly identified for those that
suffer from depression.

3. True Negatives (TN): the number of cases correctly identified as not suffering
from depression

4. False Negative (FN): the number of cases incorrecly identified as not suffering
from depression.

A general form of the confusion matrix is depicted in Table 3.1 below (Beleites et al.,
2013).

Table 3.1: General Confusion Matrix

Observed
Predicted
Yes No

Yes TP FN
No FP TN

From the confusion matrix, we can determine the model performance by assessing
the following fractions:

• Accuracy measures the proportion of actual positives and negatives that are
correctly identified, given by

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.72)
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• Sensitivity measures the proportion of actual positives that are correctly iden-
tified, given by

Sensitivity =
TP

TP + FN
. (3.73)

• Specificity measures the proportion of actual negatives that are correctly iden-
tified, given by

Specificity =
TN

TN + FP
. (3.74)

• Precision measures the proportion of actual positives out of all those that are
predicted to be positive, given by

Precision =
TP

TP + FP
. (3.75)

3.5 Survey Logistic Regression Model Applied to SAGHS
data

The analysis in this section was done using SAS version 9.4. The procedure PROC
SURVEYLOGISTIC was used to fit the survey logistic regression model to the data.
PROC SURVEYLOGISTIC incorporates the complex survey design in the analysis,
including designs with stratification and unequal weighting. For this study, the
household weights are equal to the inverse of the probability of a household being
selected to take part in the survey. Each individual received their household’s sam-
pling weight, and thus their observation was weighted according to this household
weight. The weights were adjusted for non-response and missing observations. The
Taylor series approximation method was used for variance estimation of the SLR
model

Before the final SLR model was obtained, a univariate SLR model was fitted for each
explanatory variable to assess its association with depression status. Only those
variables that were significant using a relaxed p-value of 20% were selected for the
final SLR model. Based on the univariate models, the following variables were not
included in the final model:

- Employment status

- Medical aid cover

- Social grants

- Cellphone ownership
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- Electricity access

- Whether or not a household member had passed away

Furthermore, to avoid possible confounding effects between the explanatory vari-
ables, all meaningful two-way interactions effects were explored. Only significant
interactions where the full model achieved convergence as well as a substantially
improved AIC value were selected for the final model.

In SAS, the model’s predictive accuracy can be assessed using statistics such as

the concordance index (c), Somers’ D (SD), Goodman-Kruskal Gamma (GKG), and

Kendall’s Tau-a (KT). These statistics are calculated as follows:

c = [nt − 0.5(t− nc − nd)]t
−1

SD = (nc − nd)t
−1

GKG = (nc − nd)(nc + nd)
−1

KT = (nc − nd)[0.5N(N − 1)]−1

where

- nc is the number of concordant pairs (a pair of observations with different ob-
served responses is concordant if the observation with the lower ordered re-
sponse value, y = 0, has a lower predicted mean score than the observation
with the higher ordered response value, y = 1),

- nd is the number of discordant pairs (the opposite to concordant pairs),

- N is the sum of observation frequencies in the data and t is the total number
of pairs,

- t − nc − nd is the number of tied pairs, which are paired observations with
different responses that are neither concordant nor discordant.

The concordance index c is equal to the area under the receiver operating charac-
teristic (ROC) curve and ranges from 0 to 1. A value of 0 implies that there is no
association. The predictive accuracy is poor if c is between 0.5 and 0.6, moderate be-
tween 0.6 and 0.7, acceptable between 0.7 and 0.8 and excellent if c is greater than 0.8.
Somers’ D statistic, which ranges from -1 (all pairs disagree) to 1 (all pairs agree), is
used to determine the strength and direction of relation of the pairs of observations
(UCLA: Statistical Consulting Group, 2019). The Goodman-Kruskal Gamma statis-
tic, which also ranges from -1 (no association) to 1 (perfect association), is calculated
similarly to Somers’ D, however it ignores the tied pairs. The last statistic, Kendall’s
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Tau-a, is a modification to Somers’ D where it takes into account the difference be-
tween the total number of paired observations and the number of paired observa-
tions with different responses (SAS Institute Inc., 2013). In addition to choosing the
significant two-way interaction effects based on those that substantially reduced the
AIC value, the interaction effects were also selected based on those that maximized
the four statistics given above.

The final SLR model is presented in Table 3.2 below. The main effects for variables
relationship to household head, race, health status and substance abuse had a signif-
icant effect on the likelihood of depression at a 5% level of significance. In addition,
disability status and highest education level were significant at a 10% level of sig-
nificance. The interaction effects between substance abuse and disability status, as
well as highest education level and gender were both had a significant effect on the
likelihood of depression. This final model resulted in a concordance index of 0.896,
thus, the predictive accuracy of the final SLR model is in an acceptable range.

Table 3.2: Analysis of effects for the final SLR model

Effect F-Value p-value

Age 0.10 0.758
Number of young children 1.44 0.231
Household size 0.11 0.745
Marital status 0.48 0.696
Province 1.42 0.183
Relationship to household head 6.79 0.001
HIV/AIDS 0.11 0.737
Type of residence 1.10 0.332
Race 680.6 <0.001
Health status 15.20 <0.001
Type of toilet facility 1.92 0.124
Source of water 2.23 0.107
Substance abuse 57.93 <0.001
Disability status 3.58 0.059
Highest education level 2.51 0.057
Gender 0.19 0.665
Substance abuse * Disability status 7.06 0.008
Highest education level * Gender 3.44 0.016

Table 3.3 on the next page displays the estimated adjusted odds ratios (OR) and
their 95% confidence intervals (CI) for the variables that were not included in the
interactions.
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Table 3.3: Odds ratio estimates (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the SLR model

Variables Odds Ratio (95% CI)

Age 0.995 (0.964; 1.027)

Number of young children 0.774 (0.509; 1.177)

Household size 0.977 (0.849; 1.124)

Marital status (ref = single)

Divorced/widowed/separated 1.282 (0.598; 2.746)

Married 0.677 (0.255; 1.801)

Partnered 0.844 (0.342; 2.083)

Province (ref = Western Cape)

Eastern Cape 1.234 (0.548; 2.776)

Free State 1.078 (0.391; 2.972)

Gauteng 0.808 (0.360; 1.817)

KwaZulu-Natal 0.157 (0.037; 0.664)∗

Limpopo 0.697 (0.227; 2.139)

Mpumalanga 0.776 (0.254; 2.367)

North West 1.129 (0.439; 2.902)

Northern Cape 1.009 (0.341; 2.987)

Relationship to household head (ref = head of household)

Spouse/partner 0.594 (0.220; 1.603)

Other 0.194 (0.081; 0.464)∗

HIV/AIDS (ref = yes)

No 1.151 (0.507; 2.613)

Type of residence (ref = urban)

Farms 0.491 (0.100; 2.420)

Traditional 1.802 (0.624; 5.203)

Race (ref = white)

African/Black 0.521 (0.243; 1.119)

Coloured 0.552 (0.209; 1.461)

Indian/Asian <.001 (<.001; <.001)∗

Health status (ref = Poor)

Excellent 0.050 (0.018; 0.135)∗

Very Good 0.037 (0.012; 0.117)∗

Good 0.102 (0.043; 0.245)∗

Fair 0.548 (0.241; 1.249)

Continued on next page
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Table 3.3 – Continued from the previous page

Variables Odds Ratio (95% CI)

Source of water (ref = tap)

Protected water 0.624 (0.337; 1.155)

Unprotected water 1.482 (0.446; 4.918)

Type of toilet facility (ref = flush toilet)

Unimproved Facility 0.225 (0.064; 0.791)∗

VIP Latrine 0.354 (0.110; 1.141)

Other 0.213 (0.021; 2.148)
∗significant at 5% level of significance

Significance of the factors were assessed based on the inclusion of 1 in the 95% confi-
dence interval for the odds ratio. No significant differences in the odds of depression
were seen with an increase in age, number of household members and the number
of children five and under in the household (Table 3.3. In addition, there were no
significant differences in the odds of depression based on marital status, whether or
not the individual has HIV/AIDS, type of residence and source of drinking water.
The inability of the SLR model to detect significance differences for these variables
may be attributed to the small number of cases in the data. However, the results
suggest that individuals residing in KwaZulu-Natal had a significantly lower odds
of depression compared to those residing in the Western Cape (OR = 0.157, 95% CI:
0.037–0.664). Those who had a relationship to the household head other than be-
ing a spouse or partner had a significantly lower odds compared to those who were
the head of household (OD = 0.194, 95% CI: 0.081–0.464). Individuals from the In-
dian/Asian race group had a substantially lower odds of depression compared to
those from the White race group. This result is due to no Indian/Asian individuals
reported to have suffered from depression in the survey. The reported health status
of an individual was significantly associated with their depression status, where the
likelihood of depression was much lower for those who had a positive perception of
their health. Compared to individuals residing in households that have flush toilet
facilities, those in households with unimproved toilet facilities had a significantly
lower likelihood of depression (OR = 0.225, 95% CI: 0.064–0.791).

Figures 3.1 and 3.2 present the estimated log-odd of depression according to the in-
teraction between substance abuse and disability, and the interaction between high-
est education level and gender, respectively. A positive log-odds is associated with
a higher likelihood of depression, and a negative log-odds is associated with a de-
creased likelihood of depression.
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Figure 3.1: The estimated log-odds of depression associated with substance abuse and dis-
ability for the SLR model

Figure 3.2: The estimated log-odds of depression associated with highest education level
and gender for the SLR model
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Interestingly, the log-odds of depression was higher for those who were not disabled
but abusing substances, compared to those who were disabled and abusing sub-
stances (Figure 3.1). However, there was a decrease in the log-odds for those who
were not abusing substances, regardless of whether they were disabled or not. Thus,
in general, individuals abusing substances had a substantially higher likelihood of
being depressed. Based on Figure 3.2, females in general had a higher likelihood of
depression, except for those with only a primary school level of education as males
with this same level of education had the higher likelihood. A significant difference
in the log-odds of depression was seen between males and females with a secondary
school level of education.

The predicted probabilities of an individual’s depression status for each observation
was extracted from the SLR model. The classification can be seen in Tables 3.4 and
3.5, which were based on a 50% and 1% threshold, respectively. An accuracy of
99.6% was achieved based on the 50% threshold, however it resulted in a sensitivity
of only 1% and a precision of 25%. These calculations can be seen below.

Accuracy =
TP + TN

TP + TN + FP + FN
=

1 + 29737
1 + 99 + 3 + 29737

=
29738
29840

= 0.996

Sensitivity =
TP

TP + FN
=

1
99 + 1

=
1

100
= 0.01

Precision =
TP

TP + FP
=

1
1 + 3

=
1
4

= 0.25

Table 3.4: Confusion Matrix for the Survey Logistic Regression Model based on a 50%
threshold

Observed
Predicted

Total
Yes No

Yes 1 99 100

No 3 29737 29740

Total 4 29836 29840

Using a threshold of 1%, an accuracy of 94.1% was achieved, with a sensitivity of
67% and a precision of 3.7%. These calculations can be seen below.

Accuracy =
TP + TN

TP + TN + FP + FN
=

67 + 28019
67 + 33 + 1721 + 28019

= 0.941

44



3.6. Summary

Sensitivity =
TP

TP + FN
=

67
67 + 33

=
67
100

= 0.67

Precision =
TP

TP + FP
=

67
67 + 1721

=
67

1788
= 0.037

Table 3.5: Confusion Matrix for the Survey Logistic Regression Model based on a 1%
threshold

Observed
Predicted

Total
Yes No

Yes 67 33 100

No 1721 28019 29740

Total 1788 28052 29840

3.6 Summary

This chapter considered an overview of generalized linear models, which is a class
of models used to model non-normal responses. An extension of this class of models
was presented, namely the survey logistic regression model, which is used to model
a binary response based on data obtained from a complex survey design. The survey
logistic regression model is a design-based approach as it incorporates the sampling
weights in the estimation of the parameters and their standard errors.

This chapter concluded with the presentation of the results from the survey logistic
regression model applied to the SAGHS data. Two interaction effects were included
in the final model. The model accounted for the design of the survey and assumed
that the observations were independent. However, it did not account for the effects
of clustering where observations may be correlated. Thus, the next chapter discusses
an approach that accounts for such clustering in the survey design.
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Chapter 4

Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) are an extension of the GLM in which
random effects are added to the model. The use of GLMMs can allow random effects
to be properly specified and computed, where errors can also be correlated. Gener-
alized Linear Mixed Models focus on non-normal distributions, but the model can
include normally distributed data as a special case. This model can overcome the
over-dispersion in the data and at the same time, accommodate the population het-
erogeneity. The main difference in the structure of GLMMs as compared with GLMs
is the incorporation of the random effects term into the linear predictor. However,
the nature of the data may also dictate the use of GLMMs rather than the GLM.
These have models become more applicable in many practical situations, however,
parameter estimation is not as straight forward due of the inclusion of the random
effects (McCulloch & Neuhaus, 2005).

A variable is considered a fixed effect when interest is on the effect of only those fac-
tor levels that are included in the model (McCulloch & Neuhaus, 2005). However,
the variable is considered a random effect if the factor levels of the variable that are
included in the model only represents a sample from a larger population of potential
factor levels, and inferences are to be made on the whole population of factor lev-
els. A random effect is used to model the random variation in the response variable
based on the different levels of the factor (Jiang, 2007). Hence, mixed models are of-
ten applied in the modelling hierarchical or multilevel data, where observations can
be placed in levels of hierarchy in the data. Such data includes clustered, repeated
measures and longitudinal data where observations within the same cluster or from
the same individual tend to be more homogeneous compared to those from another
cluster or individual. This means that these observations can no longer be treated as
independent. However, the inclusion of a random effect in the model allows for the
correlation structure of the observations to be modelled and accounted for.
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4.1. The GLMM

As the data used in this study was based on a multistage cluster sampling design,
the clusters included in the study only represent a random sample of clusters. In
addition, the clusters were generally based on some kind of community, such as a
village or residential area. Therefore, individuals in the same cluster may have more
in common and thus be more alike compared to those from different clusters. It is
for this reason that we consider the GLMM to model the depression status of an
individual, as it can account for possible correlations in the data.

4.1 The GLMM

Let Yij indicate the jth response, j = 1, 2..., ni, for the ith cluster, i = 1, 2, ...,m, and yi

indicates the ni×1 vector of responses for the ith cluster. In the GLMM, responses Yij

of yi are assumed to be conditionally independent given a vector of random effects,
γi which are normally distributed. Observations in GLMMs arise from a distribution
in the exponential family with the following form

f(yij |θij , φ) = exp
{

yijθij − b(θij)
φ

+ c(yij , φ)
}

, (4.1)

which follows the same form as Equation 3.1 in Chapter 3, and thus the parameters
in the above equation are similarly defined as those in Equation 3.1.

The mean µij is the conditional mean of Yij that is modelled through a linear predic-
tor ηij , containing fixed regression parameters β, as well as subject-specific parame-
ters γi. Thus,

ηij = g(µij) = g
[
E(yij |γi)

]
= x′

ijβ + z′
ijγi,

(4.2)

or in matrix form

g(µ) = Xβ + Zγ, (4.3)

where g(.) is the known link function that links the conditional mean of y and the
linear form of predictors. X is the n × (p + 1) design matrix for fixed effects. β is a
(p + 1)× 1 vector of fixed effects regression coefficients. Z is the n× q design matrix
for the random effects and γ is a q × 1 vector of random effect coefficients. Thus, it
is assumed γ ∼ N(0,G) where G depends on unknown variance components.

There are two approaches used to estimate the parameters in a GLMM: the Bayesian
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4.2. Maximum Likelihood Estimation

approach and the maximum likelihood approach. The method of maximum likeli-
hood is the most commonly used method of estimation and has a variety of optimal-
ity properties (Searle et al., 2006). This study focusses on the maximum likelihood
approach.

4.2 Maximum Likelihood Estimation

In linear mixed models, estimation of parameters is based on the marginal likeli-
hood of the data and can be evaluated analytically (Jiang, 2007). With GLMMs, to
obtain maximum likelihood estimates, the marginal likelihood is maximized. This
is done by integrating over the distribution of q-dimensional random effects. The
contribution of the ith cluster to the likelihood is given by

fi(yij |β,G, φ) =
∫ ni∏

j=1

fij(yij |γi,β, φ)f(γi|G)dγi, (4.4)

where f(γi|G) is the distribution of random effects.

Therefore, the complete likelihood function for β, G and φ is given by

L(β,G, φ) =
m∏

i=1

fi(yij |β,G, φ)

=
m∏

i=1

∫ ni∏
j=1

fij(yij |γi,β, φ)f(γi|G)dγi.

(4.5)

In the case on modelling a non-normal response, parameter estimation for the GLMM
becomes difficult. Generally, unlike the linear mixed models, the likelihood function
under the GLMM does not have a closed-form expression (Jiang, 2007). This is due to
the likelihood involving high-dimensional integrals that cannot be evaluated analyt-
ically. Thus, approximations are required to evaluate the likelihood function given
in Equation 4.5. There have been a number of proposed methods of approximation
(Hedeker, 2005), however, there are three basic approaches:

• approximation of the integrand.

• approximation of the integral itself.

• approximation of the data.
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4.3. Laplace Approximation

4.3 Laplace Approximation

The exact likelihood function can sometimes be difficult to evaluate. A common
method used for an approximation of the likelihood function is the Laplace approxi-
mation, which is based on an approximation of the integrand (Jiang, 2007). Suppose
an integral has the form ∫

eQ(x)dx, (4.6)

where Q(x) is a known and unimodal function, and x is a q × 1 vector of variables.
If Q(x) is minimized when x = x̂, then the second-order Taylor series expansion of
Q(x) around x̂ is given by

Q(x) ≈ Q(x̂) +
1
2
(x− x̂)′Q′′(x̂)(x− x̂), (4.7)

where Q′′(x̂) is the Hessian of Q evaluated at x̂. The approximation to this integral
uses as many different estimates of x̂ as necessary according to the different modes
of function Q.

Since γ ∼ N(0,G), it can be shown that the integral in the likelihood Equation 4.5
is proportional to the integral in Equation 4.6, where the function Q is given by

Q(γ) = φ−1
ni∑

j=1

[
yij(x′

ijβ + z′
ijγ)− b(x′

ijβ + z′
ijγ)

]
− 1

2
γ′Gγ. (4.8)

Thus, Laplace’s method can be applied. This approximation method tends to be
better for large cluster sizes and can be improved by adding higher-order terms to
the Taylor series expansion.

4.4 Gaussian Quadrature

The Laplace approximation is based on a linearization method of the integrand. The
Gauss-Hermite Quadrature and the Adaptive Gauss-Hermite Quadrature are alter-
natives that provide an approximation of the integral or numerical integration. Due
to their relation with Gaussian densities, they give approximations to an integral in
the following form (Liu & Pierce, 1994)∫

h(x)e−x2
dx. (4.9)

In order to apply the Gauss-Hermite Quadrature and the Adaptive Gauss-Hermite
Quadrature methods, the likelihood contribution for the ith cluster in Equation 4.4
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4.4. Gaussian Quadrature

must be represented in the form of the integral in Equation 4.9, which is done by
standardizing the random effects such that they have an identity variance-covariance
matrix I .

Let δi = G− 1
2 γi. Thus, δi has a normal distribution with mean 0 and variance-

covariance matrix I . The linear predictor therefore becomes θij = x′
ijβ + z′

ijG
1
2 δi,

which now contains the variance components in G. This leads to the likelihood
contribution for the ith cluster given by

f(yij |β,G, φ) =
∫ ni∏

j=1

fij(yij |γi,β, φ)f(γi|G)dγi

=
∫ ni∏

j=1

fij(yij |δi,β,G, φ)f(δi)dδi.

(4.10)

Thus, this equation is now in the form of Equation 4.9 and therefore can be approxi-
mated using the Gauss-Hermite quadrature or adaptive Gauss-Hermite quadrature.

In Gauss-Hermite quadrature, the integral in Equation 4.9 is approximated by

∫
h(x)e−x2

dx ≈
L∑

i=1

wih(xi), (4.11)

where the values of xi are solutions of the Lth order to the Hermite polynomial with
weights wi. The values of xi and wi for i = 1, 2, . . . , 20 are found in tables given by
Abramowitz & Stegum (1972). If L increases, the approximation improves , however
when the sum is taken from 1 to L, the Gauss-Hermite quadrature gives exact solu-
tions for all polynomials of degree 2L−1 (McCulloch & Searle, 2001). The quadrature
points xi are chosen independently of the function h(x) and thus may result in xi not
lying in the region of interest (Pinheiro & Bates, 1995). This method can sum over
a large number of points which can prove useful in the event of a large number of
random effects in a model (Hedeker, 2005).

The adaptive Gauss-Hermite quadrature is a method that is used to overcome the
issue in which xi does not lie in the region of interest. In the adaptive Gauss-Hermite
quadrature method, the quadrature points are rescaled and shifted such that the in-
tegrand in Equation 4.9 is sampled in a suitable range (Liu & Pierce, 1994). In order
to obtain the same level of accuracy as the Gauss-Hermite quadrature, this method
requires significantly less quadrature points. However, this adaptive Gauss-Hermite
quadrature is much more time consuming to compute as the mode and curvature is
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4.5. Penalized Quasi-Likelihood

calculated for each cluster in the data set (Hartzel et al., 2001). The adaptive Gauss-
Hermite quadrature reduces to the Laplace Approximation when L = 1.

Newton Raphson and Fisher Scoring iterative procedures can be used to maximize
the likelihood after applying these numerical approximations. These methods work
relatively well in the case of a single random effect or even when there are two or
three nested random effects in the model. However, for more complicated struc-
tures, these methods fail (McCulloch & Searle, 2001).

4.5 Penalized Quasi-Likelihood

The Penalized Quasi-Likelihood is based on the decomposition of the data into the
mean and an appropriate error term using the Taylor series expansion of the mean.
The mean is a non-linear function of the linear predictor since it is the inverse of the
link function (Molenberghs & Verbeke, 2005). Consider the decomposition

Yij = µij + εij

= h(x′
ijβ + z′

ijγi) + εij ,
(4.12)

where h(x′
ijβ + z′

ijγi) = g−1(x′
ijβ + z′

ijγi) is the inverse of the link function. The
error terms are assumed to follow a distribution with a mean of zero and vari-
ance equal to V ar(Yij) = φv(µij). Assuming the natural or canonical link function,
v(µij) = h′(x′

ijβ + z′
ijγi) where h′ is the derivative with respect to µij . In order to

obtain an approximation of the mean and the parameters, the Taylor series expan-
sion of Equation 4.12 is carried out. When this is done about current estimates β̂

and γ̂i, the method is referred to as Penalized Quasi-Likelihood (PQL) (Goldstein &
Rasbash, 1996). This gives

Yij ≈ h(x′
ijβ̂ + z′

ijγ̂i)

+ h′(x′
ijβ̂ + z′

ijγ̂i)x
′
ij(β − β̂)

+ h′(x′
ijβ̂ + z′

ijγ̂i)z
′
ij(γi − γ̂) + εij

= µ̂ij + v(µ̂ij)x′
ij(β − β̂) + v(µ̂ij)z′

ij(γi − γ̂) + εij ,

(4.13)

where µ̂ij is equal to its current predictor h(x′
ijβ̂ + z′

ijγ̂i) for the conditional mean
E(Yijγi). This becomes

yi ≈ µ̂i + V̂ iXi(β − β̂) + V̂ iZi(γi − γ̂) + εi, (4.14)
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4.6. Marginal Quasi-Likelihood

where Xi and Zi are appropriate design matrices and V̂ i is the diagonal matrix with
elements v(µ̂ij) = h′(x′

ijβ̂+z′
ijγ̂i). Rearranging the terms in the above equation and

multiplying by V̂
−1

i gives

y∗
i ≡ V̂

−1

i (yi − µ̂i) + Xiβ̂ + Ziγ̂ ≈ Xiβ + Ziγ + ε∗i , (4.15)

where E(ε∗i ) = E(V̂
−1

i εi) = 0. Equation 4.15 can be viewed as can be viewed as
a linear mixed model for the pseudo response y∗

i . Thus, methods of fitting linear
mixed models become available in order to obtain updated estimates for β,G and φ.
Specifically, estimates can be obtained by optimizing the quasi-likelihood function
that includes a penalty term on the random effects of the form

1
2
γ′Gγ.

This results in optimizing a penalized quasi-likelihood function below

LPQL =
∑

Qi −
1
2
γ′Gγ, (4.16)

where Qi is the quasi-likelihood function by McCulloch & Nelder (1989). More in-
formation on this procedure can be found by Breslow & Clayton (1993).

4.6 Marginal Quasi-Likelihood

This method is similar to the PQL method, however, the Taylor series expansion of
the mean in Equation 4.12 is carried out about the current estimate of β̂ for the fixed
effects but about γ̂i = 0 for the random effects. The current predictor of µ̂ij will,
therefore, be of the form h(x′

ijβ̂). Therefore, the pseudo data in Equation 4.15 can be
represented as

y∗
i ≡ V̂

−1

i (yi − µ̂i) + Xiβ̂ ≈ Xiβ + Ziγ + ε∗i , (4.17)

which satisfies the approximate linear mixed model. The same procedure of obtain-
ing the updated estimates of β, G and φ for the PQL method can be followed for
the MQL method, however, the resulting estimates will be referred to as marginal
quasi-likelihood estimates (Breslow & Clayton, 1993).

The PQL and MGL methods may result in biased estimates. These estimates may
be biased towards zero (Hedeker, 2005). Various methods of dealing with these bias
estimates have been proposed. Beslow & Lin (1995) and Lin & Breslow (1996) pro-
posed the inclusion of bias correction terms and Kuk (1995) proposed the use of iter-
ative bootstrap. Goldstein & Rasbash (1996) showed that including a second order
term in the Taylor series expansion improves the accuracy of the approximations.
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4.7. Model Selection

4.7 Model Selection

Inferences about parameters can be done by using a number of various tests. In cases
where the fixed effect parameter estimates are obtained using the numerical approx-
imations, inferences can be done using the the likelihood ratio test and Wald test for
GLMs, or the F-test for the survey logistic regression model. The likelihood ratio
test can be used to compare two nested models with the same covariance structure
but with different mean structures. However, as the PQL and MQL methods are not
likelihood-based, the likelihood ratio test cannot be used for model selection in the
case of estimates being obtained using these methods (Hedeker, 2005).

The likelihood ratio test can also be used for comparing nested models with different
covariance structures but with the same mean. Inferences on the variance compo-
nents will also be valid for F-tests. However, if the variance parameter to be tested
takes values on the boundary of the parameter space, the normal approximation fails
and thus the test statistics for these tests will not have the traditional Chi-square dis-
tribution under the null hypothesis (Zhang & Lin, 2008). Self & Liang (1987), Stram
& Lee (1994) and Zhang & Lin (2008) have shown that testing the null hypothesis of
no random effects can be carried out using a mixture of Chi-squared distributions
rather that the classical single Chi-square distribution.

After fitting the GLMM, it can be used to classify the depression status of an individ-
ual based on a similar procedure to that discussed for the SLR model in Sub-section
3.3.5.

4.8 GLMM Applied to SAGHS Data

The analysis in this section was also done using SAS version 9.4. In SAS, the pro-
cedure PROC GLIMMIX allows a GLMM to be fitted to the data. The RANDOM
statement specifies the random effects to be included in the model. In order to ac-
count for any heterogeneity between clusters in the SAGHS data, an intercept term
that varied at cluster level was included in the model, thus resulting in a random
intercept model. There were 3131 clusters in the final SAGHS data. The logit link
function was used with a binary distribution specified. Along with being computa-
tionally less demanding, this model was fitted using the Laplace approximation as
this method is likelihood based and therefore allows for the comparison of models
using model selection criteria such as AIC and BIC.

The need for a random intercept was assessed by testing if the corresponding covari-
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4.8. GLMM Applied to SAGHS Data

ance parameter should be equal to zero. This was done using the COVTEST state-
ment in SAS, which produces likelihood ratio tests for covariance parameters. The
parameter under the null hypothesis fell on the boundary of the parameter space,
therefore, the p-value for the test was determined using a linear combination of cen-
tral Chi-Square probabilities. The table below shows the result of this test when
fitting the full GLMM to the data. This result indicates that the null hypothesis of
the covariance parameter equal to zero was rejected, thus suggesting the random
cluster effect was significant in the model. In addition, The variance component for
the random cluster effect was estimated as 52.0 with a standard error of 12.2. This
estimate is far from zero, thus confirming again the need for this random effect in
the model, which also suggests that there was high variation between the clusters.

Table 4.1: Test of covariance parameters based on the likelihood.

Label DF -2Log Likelihood χ2 P-value
No G - side effects 1 999.62 120.23 <0.0001

The label SAS gives the covariance parameter of the random effect is ’G-side effects’.
SAS can distinguish between two types of random effects. The covariance param-
eters for the random components in the model that are contained in the variance-
covariance matrices G and R are referred to as G-side and R-side effects, respec-
tively. Including a random intercept in the model according to the different clusters
will result in the inclusion of G-side effects in the model. R-side effects are also called
residual effects, and such an effect allows for an overdispersion effect to be added
to the model which acts as a multiplier on the variance function, thus lifting the re-
striction of the dispersion parameter φ = 1.

In order to determine which covariance structure of G is best suited for the data,
each of the covariance structures (VC (Variance Components), AR(1) , UN (Unstruc-
tured) and CS (Compound Symmetry)) were tested (SAS Institute Inc., 2013). VC
yielded the lowest AIC value, thus it was selected. The final GLMM was fitted using
the same variables as those in the final SLR model. It should be noted that the SAS
GLIMMIX procedure can include a weight statement so that the parameter estimates
are weighted, just as in the case of the SLR model. However, upon attempting to in-
corporate the sampling weights in the GLMM, the model was highly overdispersed.
Thus, the final results below are based on the unweighted GLMM, which did not
suffer from residual overdispersion.

The significance of the variables in the final GLMM is presented in Table 4.2. The
GLMM found fewer significant factors compared to the SLR model. Once again,
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this could be attributed to the small number of depressed cases in the data. How-
ever, both the GLMM and SLR model found the following variables significant: re-
lationship to head, health status, substance abuse, substance abuse as well as the
interaction between the highest education level and gender.Highest education level
was a significant factor for depression at a 10% level of significance.

Table 4.2: Analysis of effects for the final GLMM

Effect F-Value p-value

Age 0.08 0.783
Number of young children 0.82 0.365
Household size 2.39 0.122
Marital status 1.49 0.216
Province 0.22 0.988
Relationship to household head 7.04 0.001
HIV status 0.25 0.619
Type of residence 0.01 0.988
Race 0.42 0.737
Health status 16.07 <0.001
Type of toilet facility 0.24 0.867
Source of water 1.33 0.264
Substance abuse 16.40 <0.001
Disability status 0.75 0.387
Highest education level 2.25 0.081
Gender 5.60 0.018
Substance abuse * Disability status 7.13 0.008
Highest education level * Gender 4.47 0.004

Table 4.3 on the next page gives the estimated adjusted odds ratios (OR) and their
95% confidence intervals (CI) for the variables that were not included in the inter-
actions. The odds of depression for those who were not the household head, or a
spouse/partner to the household head, were 0.162 times less likely to have depres-
sion (95% CI: 0.062–0.423). No significant differences in the odds of depression were
seen for the different race groups or provinces. Again, the reported health status
of an individual proved to be a significant factor for depression, where the odds of
depression was much lower for those who perceived their health to be better than
poor.
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Table 4.3: Odds ratio estimates (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the GLMM

Variables Odds Ratio (95% CI)

Age 1.006 (0.965; 1.048)

Number of young children 0.786 (0.467; 1.322)

Household size 0.851 (0.693; 1.044)

Marital status (ref = single)

Divorced/widowed/separated 1.423 (0.469; 4.320)

Married 0.459 (0.169; 1.244)

Partnered 0.434 (0.138; 1.359)

Province (ref = Western Cape)

Eastern Cape 0.974 (0.122; 7.754)

Free State 0.924 (0.086; 9.889)

Gauteng 0.943 (0.153; 5.800)

KwaZulu-Natal 0.218 (0.009; 5.124)

Limpopo 0.788 (0.048; 12.88)

Mpumalanga 0.644 (0.043; 9.590)

North West 1.614 (0.170; 15.33)

Northern Cape 0.774 (0.064; 9.424)

Relationship to household head (ref = head of household)

Spouse/partner 0.649 (0.243; 1.736)

Other 0.162 (0.062; 0.423)∗

HIV/AIDS (ref = yes)

No 1.310 (0.451; 3.803)

Type of residence (ref = urban)

Farms 1.147 (0.040; 33.08)

Traditional 0.887 (0.124; 6.329)

Race (ref = white)

African/Black 0.570 (0.114; 2.861)

Coloured 1.135 (0.172; 7.475)

Indian/Asian 0.002 (<.001; >999)

Health status (ref = Poor)

Excellent 0.008 (0.002; 0.034)∗

Very Good 0.044 (0.013; 0.142)∗

Good 0.008 (0.002; 0.040)∗

Fair 0.303 (0.098; 0.938)∗

Continued on next page
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Table 4.3 – Continued from the previous page

Variables Odds Ratio (95% CI)

Source of water (ref = tap)

Protected water 0.540 (0.233; 1.248)

Unprotected water 1.319 (0.153; 11.39)

Type of toilet facility (ref = flush toilet)

Unimproved Facility 0.528 (0.085; 3.270)

VIP Latrine 0.792 (0.136; 4.619)

Other 1.578 (0.107; 23.32)
∗significant at 5% level of significance

Figures 4.1 and 4.2 display the estimated log-odd of depression according to the in-
teraction between substance abuse and disability, and the interaction between high-
est education level and gender, respectively, for the GLMM. These interaction effects
display similar patterns to that of the SLR model. Individuals abusing substances
had a higher likelihood of depression compared to those not abusing substances,
regardless of their disability status.

Figure 4.1: The estimated log-odds of depression associated with substance abuse and dis-
ability for the GLMM
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Based on Figure 4.2 below, we can see again that females generally had a higher
likelihood of depression, where females with a secondary education level had the
highest chance of being depressed. However, their male counterparts (those with a
secondary education level), had the lowest chance of being depressed. This Figure
4.2 clearly displays the need to account for the interaction between education level
and gender. If the interaction between the two variables was not accounted for, the
effect of education level on the likelihood of depression would have been the same
for both males and females, which would not have been appropriate.

Figure 4.2: The estimated log-odds of depression associated with highest education level
and gender for the GLMM

In a similar manner to that of the SLR model, the estimated probabilities based on
the GLMM were extracted for each of the observations in the SAGHS data set. Based
on a threshold of 50% and 1%, the depression status of the individuals was classified,
the confusion matrices for which are given in Tables 4.4 and 4.5, respectively. The
threshold of 50% yielded an accuracy of 99.8% with a sensitivity of 36% and precision
of 80%. The calculations can be seen by the equations that follow.
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Accuracy =
TP + TN

TP + TN + FP + FN
=

36 + 29731
36 + 29731 + 9 + 64

=
29767
29840

= 0.998

Sensitivity =
TP

TP + FN
=

36
36 + 64

=
36
100

= 0.36

Precision =
TP

TP + FP
=

36
36 + 9

=
36
45

= 0.80

Table 4.4: Confusion Matrix for the Generalized Linear Mixed Model based on a 50%
threshold

Observed
Predicted

Total
Yes No

Yes 36 64 100
No 9 29731 29740

Total 45 29795 29840

Based on a 1% threshold, the accuracy decreased to 98.3%, with an increase in the
sensitivity to 96% but a substantially lower precision of 15.9%. This can be seen by
the following equations

Accuracy =
TP + TN

TP + TN + FP + FN
=

96 + 29233
96 + 29233 + 507 + 4

=
29329
29840

= 0.983

Sensitivity =
TP

TP + FN
=

96
96 + 4

=
96
100

= 0.96

Precision =
TP

TP + FP
=

96
96 + 507

=
96
45

= 0.189

Table 4.5: Confusion Matrix for the Generalized Linear Mixed Model based on a 1% thresh-
old

Observed
Predicted

Total
Yes No

Yes 96 4 100
No 507 29233 29740

Total 603 29237 29840

4.9 Summary

This chapter extended on the theory of Chapter 3 by considering the inclusion of a
random effect in the generalized linear model to produce a generalized linear mixed
model. A random effect accounts for possible correlations in the data that may be
present due to multiple stages of sampling. In this study, the random effect was in-
corporated into the model to account for the effect of clustering. The results showed
that this clustering effect was significant, indicating a high amount of variation in the
o. An additional random effect can be included in the model based on the house-
hold of residence to further account for correlations in the observations from the
same household. However, the SAGHS data did not permit this as the model failed
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4.9. Summary

to converge. This chapter concluded with the presentation of the results from the
GLMM applied to the SAGHS data, which indicated similar results to that of the
SLR model.

So far, the two approaches that have been applied to model and classify an individ-
ual’s depression status are based on classical statistical techniques. Next, we con-
sider a machine learning technique that focuses on determining the important vari-
ables in classifying an individual’s depression status. Such a technique is referred to
as a Bayesian network.
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Chapter 5

Bayesian Networks

5.1 Introduction to Bayesian Networks

Bayesian networks are probabilistic graphical models, which allow the represen-
tation of dependencies among variables and aid in specifying the joint probabil-
ity distributions among the variables (Han et al., 2012). Bayesian networks are a
common classification technique. Bayesian networks, also known as Bayesian be-
lief networks, were introduced by Judea Pearl in the early 1980s as a representation
device, allowing an individual to systematically and locally assemble probabilistic
beliefs into a coherent whole. Some of these beliefs could be read off directly from
the Bayesian network, however, many were implied by this representation and re-
quired computational work to be made explicit. Computing and explicating these
beliefs has been the subject of much research and become known as the problem
of inference in Bayesian networks. The computed beliefs form the basis of decision
making (Darwiche, 2010). There has been a lot of progress on inferences in Bayesian
networks since it was first introduced and a lot more can be done. People always
exceed the ability of existing algorithms by building more complex networks (Dar-
wiche, 2010).

A Bayesian network is defined by two components:

i) a directed acyclic graph (DAG).

ii) a set of conditional probability tables for each variable in the DAG (Darwiche,
2010).

The DAG consists of nodes, representing variables, and arcs, representing the de-
pendency relations between the variables. If there is an arc from node X to node
Y, then X is the parent of Y and Y is a descendent or child of X . Furthermore, a
property of a DAG is that it must not consist of any loops or cycles. Each variable in
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5.1. Introduction to Bayesian Networks

the Bayesian network is conditionally independent of its non-descendants, given its
parents. The variables in a BN may be discrete or continuous. In addition, the vari-
ables may correspond to actual variables given in the data or to ”hidden variables”
that are believed to form a relationship.

Figure 5.1 is an example of a simple Bayesian network, taken from Han et al. (2012).
The arcs, given by the arrows, allow a representation of causal knowledge. For ex-
ample, having lung cancer is dependent on a person?s family history of lung can-
cer, as well as whether or not the person is a smoker. However, the variable Posi-
tiveXRay is independent of whether the patient has a family history of lung cancer
or is a smoker, given information regarding whether or not the patient has lung can-
cer. This means that once we know the outcome of the variable LungCancer, then
the variables FamilyHistory and Smoker do not provide any additional information
regarding PositiveXRay. The DAG also indicates that the variable LungCancer is con-
ditionally independent of Emphysema, given its parents, FamilyHistory and Smoker.

Figure 5.1: An example of a Bayesian network. (a) A DAG (b) The conditional probability
table for the values of the variable LungCancer (LC) showing each possible com-
bination of the values of its parent nodes, FamilyHistory (FH) and Smoker (S)
(Han et al., 2012).

The Bayesian network has one conditional probability table (CPT) for each node in
the network. The CPT for a variable Y gives the conditional distribution P (Y |Parents(Y )).
Part (b) in Figure 5.1 above gives a CPT for the variable LungCancer. The conditional
probability for each known value of LungCancer is given for each possible combi-
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5.2. Training a Bayesian Network

nation of the values of its parents. For example, we see that

P (LungCancer = yes|FamilyHistory = yes, Smoker = yes) = 0.8.

These conditional probability tables can be used in calculations of probabilities of
certain joint or conditional events of interest occurring in the network.

Consider n random variables X1, X2, ..., Xn, a directed acyclic graph with n num-
bered nodes, and suppose node i corresponds to variable i. As each variable is con-
ditionally independent of its non-descendants in the network, given its parents, the
joint probability distribution of the variables in the network is given by

P (X1, X2, ...Xn) =
n∏

i=1

P (Xi|Parents(Xi)) for i = 1, 2, ..., n. (5.1)

The value of P (Xi|Parents(Xi) is taken from the CPT for variable Xi.

Bayesian networks are used for modelling knowledge in many domains with uncer-
tain knowledge. For example, medicine, engineering, text analysis and data fusion
(Gulyás, 2006).

5.2 Training a Bayesian Network

The training of a BN refers to constructing the DAG and estimating the CPT for
each node of the DAG for a given data set. Thus, the training of a BN involves two
steps: (1) creating the structure of the network, and (2) estimating the probability
values in the tables associated with each node. The network topology, which refers
to the layout of the nodes and arcs, can constructed by human experts or inferred
from the data. Several algorithms exist for training the network topology from the
data. However, human experts usually have good experience and understanding of
the direct conditional dependencies that hold in the domain under analysis, which
helps in network design. In this case, experts must specify conditional probabilities
for the nodes that participate in direct dependencies. These probabilities can then be
used to compute the remaining probability values (Tan et al., 2014).

If the network topology is known and all of the variables are observable, then train-
ing the network is simple where only the CPT entries need to be computed. In this
case, computing the probabilities is done similarly to that of a naı̈ve Bayesian clas-
sification technique. However, if the network topology is given but some of the
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variables are hidden, the gradient descent method can be used to train the network.
Such a training method results in what is called an adaptive probabilistic network.
If both the topology of a BN and the values in the CPTs need to be determined, this
presents a very difficult computational task (Han et al., 2012).

The trained BN can be used for inference where it can provide estimated probabili-
ties of the event of interest occurring, which can then be used to classify the event as
occurring or not.

5.3 Types of Bayesian Network Structures

Several types of Bayesian network structures can be trained (Dean, 2018).

• Naı̈ve Bayesian network, which connects the response/target variable to each
explanatory/input variable. However, there are no other connections between
the variables because the input variables are assumed to be conditionally in-
dependent on each other. This is the simplest of the Bayesian networks.

• Tree-Augmented Naive (TAN), which connects the target variable to each in-
put variable and connects the input variables in a tree structure. The tree that
connects the input variables is based on the maximum spanning tree algo-
rithm. In a TAN, each node can have at most two parents, one of which must
be the target variable.

• Bayesian Network Augmented Naive (BAN), which connects the target vari-
able to each input variable and creates a Bayesian network structure between
the input variables. In a BAN, each node can have multiple parents, one of
which must be the target variable.

• Parent Child (PC), which connects the target variable to each input variable.
However, input variables are allowed to be either a parent of the target variable
or a child of the target variable. The Bayesian Information Criterion is used to
determine whether an input variable is a parent of the target variable or a child
of the target variable.

• Markov Blanket, which creates a set of connections between the target variable
and the input variables, but also permits connections between certain input
variables. Only the children of the target variable are allowed to have an ad-
ditional parent node. All other variables are conditionally independent of the
target variable and thus do not affect the classification model. The Bayesian In-
formation Criterion is used to determine whether an input variable is a parent
of the target variable or a child of the target variable
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5.4 Bayesian Network Applied to SAGHS Data

In SAS Enterprise Miner, the procedure PROC HPBNET allows a Bayesian Network
model to be fitted to the data. The HPBNET procedure can learn different types of
Bayesian network structures, including those discussed in Section 5.3. PROC HPB-
NET performs efficient variable selection through independence tests, and it selects
the best model automatically from the specified parameters (Dean, 2018).

Table 5.1 below shows the variable selection results. PROC HPBNET removes vari-
ables where the p-value is greater than 0.05. The procedure also automatically bins
the values of continuous variables into groups. However, for the purpose of this
analysis, the age of the individual was incorporated into the Bayesian network as
qualitative.

Table 5.1: Variable Selection

Variable Selected χ2 Statistic p-value Degrees of Freedom Conditional Variables

Age Group Yes 43.95 < 0.001 6

Number of children ≤ 5 years No 10.03 0.187 7

Disability Yes 111.31 < 0.001 1

Highest education level No 32.03 0.058 21 Age group

Employment status No 0.91 0.635 2

Gender Yes 21.01 < 0.001 1

Type of residence No 14.61 0.405 14 Age group

Household size No 25.14 0.196 20

Marital status No 27.90 0.143 21 Age group

Province of residence No 31.46 0.494 32 Race

Medical aid cover No 0.43 0.511 1

Health status Yes 252.79 < 0.001 4

Substance Abuse Yes 515.74 < 0.001 1

HIV status No 5.76 0.330 5 Health status

Social grants No 0.03 0.852 1

Cellphone ownership No 1.37 0.241 1

Electricity Access No 4.07 0.771 7 Age group

Death in household No 0.04 0.827 1

Race No 13.18 0.356 12 Highest education level

Relationship to head Yes 41.64 < 0.001 2

Type of toilet facility No 26.61 0.874 36 Province of residence

Source of drinking water No 23.96 0.156 18 Province of residence
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Table 5.1 indicates the highest education level, type of residence, marital status and
electricity access are conditionally independent of depression given the age group,
therefore, PROC HPBNET removes it from the network. Similarly, province of res-
idence is conditionally independent of depression given the race of the individual,
HIV status is conditionally independent of depression given health status and race
is conditionally independent of depression given the highest education level.

Table 5.2 below presents the structure of the Bayesian network, where the parent
nodes and child nodes are indicated for the network. In addition, the DAG for this
structure is given by Figure 5.2. The health status of an individual is the parent
of depression. Depression is the parent of disability, age group, gender, substance
abuse, as well as the individual’s relationship to the head of the household.

Table 5.2: Structure of the Network

Parent Node Child Node

Health Status Depression
Depression Age group (in years)
Relationship to head of the household Age group (in years)
Depression Disability
Depression Relationship to head of the household
Substance Abuse Gender
Depression Substance Abuse
Depression Relationship to head of the household
Disability Relationship to head of the household
Gender Relationship to head of the household
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5.4. Bayesian Network Applied to SAGHS Data

Figure 5.2: Resulting DAG for the Bayesian Network applied to the SAGHS Data.

In summary, from the structure, one can infer that depression is dependent on:

• Health status

• Age group of the individual

• Disability

• Gender

• Substance Abuse

• Relationship to head of the household

However, depression is conditionally independent of

• Number of children 5 years or younger in the household

• Highest education level

• Employment status

• Type of residence
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• Household size

• Marital status

• Province of residence

• Medical aid cover

• HIV status

• Social grants

• Cellphone ownership

• Electricity access

• Whether or not household members have passed away

• Race

The conditional probability tables for the Bayesian Network is given by Table A.1 in
Appendix A. This conditional probability table together with the network structure
indicated by Table 5.2 determine the Bayesian Network.

The Bayesian Network indicates that, given an individual who has a poor health
status, the probability of depression is 3.46%. It can also be inferred that, given the
individual suffers from depression, the probability that the individual is disabled is
31.373%, the probability that the individual is female is 77.174% and the probabil-
ity that the individual suffers from substance abuse is 10.784%. If the individual is
depressed, the probability that he/she is the head of the household is 50% and the
probability the he/she is the spouse is 32.143%. The probability that the individual
is between the ages of 40 and 44 years is 25%, given the individual is depressed. If
the individual is depressed, the probability that he/she is between the ages of 30 and
34 years old is 21.875% and if he/she is between the ages of 35-39 the probability is
15.625%. These are ages where the individual is at the prime of his/her working life
and the responsibilities are greatest. Probabilities of certain variables of the Bayesian
Network are shown in Table 5.3.
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Table 5.3: Probability table of Bayesian Network

Child Node Condition Parent Node Condition Probability

Disability Yes Depression Yes 0.31373
Gender Male Depression Yes 0.22826
Substance Abuse Yes Depression Yes 0.10784
Relationship to head Head Depression Yes 0.50000
Relationship to head Spouse Depression Yes 0.32143
Relationship to head Other Depression Yes 0.17857
Age group 25 to 29 Depression Yes 0.10938
Relationship to head Head Age group 45 to 49 0.19159
Depressed Yes Health status Poor 0.03457

The Bayesian Network also indicates that if your age is between the ages of 45 and
49 years, the probability of being the head of the household is 19.159%.

The resulting Bayesian network was used to estimate the probability of depression
for each individual in the sample. Using this estimated probability, the individual
was classified as having depression or not based on two thresholds, 50% and 1%.
Table 5.4 below presents the confusion matrix based on a 50% threshold. Based on
this threshold, the table indicates that the model provides a 99.6% accuracy, however,
the sensitivity is only 3% with a precision of 18.8%. This calculation can be seen
below.

Accuracy =
TP + TN

TP + TN + FP + FN
=

3 + 29727
3 + 29727 + 13 + 97

=
29730
29840

= 0.996

Sensitivity =
TP

TP + FN
=

3
3 + 97

=
3

100
= 0.003

Precision =
TP

TP + FP
=

3
3 + 13

=
96
45

= 0.188

Table 5.4: Confusion Matrix for the Bayesian Network based on a 50% threshold

Observed
Predicted

Total
Yes No

Yes 3 97 100
No 13 29727 29740

Total 16 29824 29840
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Table 5.5 below presents the confusion matrix based on a 1% threshold. Based on this
threshold, the model provides a 93.7% accuracy, however, the sensitivity is much
higher at 59% compared to that using a 50% threshold. Although, the precision is
lower 3.1%. The equations below indicate how these statistics are calculated.

Accuracy =
TP + TN

TP + TN + FP + FN
=

59 + 27888
59 + 27888 + 1852 + 41

=
27947
29840

= 0.996

Sensitivity =
TP

TP + FN
=

59
59 + 41

=
59
100

= 0.59

Precision =
TP

TP + FP
=

59
59 + 1852

=
96

1911
= 0.031

Table 5.5: Confusion Matrix for the Bayesian Network based on a 1% threshold

Observed
Predicted

Total
Yes No

Yes 59 41 100
No 1852 27888 29740

Total 1911 27929 29840
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5.5 Summary

This chapter considered a Bayesian network to explore the important variables in
determining an individual’s depression status. This technique is a common classifi-
cation machine learning technique which allows the representation of dependencies
among the variables. A brief overview of Bayesian networks was discussed in this
chapter. The chapter then concluded by presenting the results of the Bayesian net-
work applied to the SAGHS data, where the variables that depression status was
dependent on and conditionally independent on were indicated. The results of the
Bayesian network were then used to classify the depression status of the individuals
in the data.

The final chapter discusses and compares the results of the three approaches ap-
plied in this study. In addition, the limitations of the study are discussed, as well as
possible future directions of the study.
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Chapter 6

Discussion and Conclusion

6.1 Comparison of Model Accuracies

Table 6.1 below presents a comparison of the performance of the models considered
in this thesis with regards to classifying an individual’s depression status. Classifi-
cation was done based on two thresholds, 50% and 1%. This means an individual
was classified as suffering from depression if their estimated probability, which was
extracted for each fitted model, was more than 0.5 for the 50% threshold and more
than 0.01 for the 1% threshold. All of the models produced a very high accuracy
for both thresholds, as well as a very high specificity. However, these two measures
should not be focused on as these models might have achieved these accuracies by
chance due to the excessive number of non-depressed cases in the data compared to
the number of depressed cases. While none of the models produced sufficient per-
formance statistics in terms of all four measures simultaneously, the GLMM based
on a 50% threshold seems to be performing best with having obtained an 80% pre-
cision. The Bayesian network produced the lowest precision for both thresholds,
which is unsurprising as this technique is not able to accommodate the design of the
survey used to collect the data.

Table 6.1: Classification statistics (%) for the different models based on thresholds of 50%
and 1%

Model Accuracy Sensitivity Specificity Precision

SLR model (50%) 99.6 1 99.99 25.9

SLR model (1%) 94.1 67 94.20 3.7

GLMM (50%) 99.8 36 99.97 80.0

GLMM (1%) 98.3 96 98.30 15.9

Bayesian Network (50%) 99.6 3 99.96 18.8

Bayesian Network (1%) 93.7 59 93.77 3.1
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6.2 Limitations

The limitations of this study are numerous. The biggest limitation lies in the number
of depressed cases, with only 0.3% of the sampled individuals having reported that
they suffer from depression. This has restricted the ability of the statistical models to
detect any significant association between the explanatory variables and depression
status. Therefore, the results should be considered with caution. In addition, the
data was based on a cross sectional design, therefore no causal effect can be estab-
lished between the explanatory variables and the response. Many of the variables
were also based on self-reporting, such as health status, depression status and dis-
ability status, which may cause bias in the data. This may be particularly true of
depression status, as based on other studies, the 12-month prevalence of depression
in SA is 16.5%, which is substantially higher than the 0.3% seen in the nationally
representative SAGHS data (Bateman, 2014). This can be attributed to numerous
reasons, such as the stigma around depression, where individuals with depression
may be considered as weak, therefore restricting their willingness to be open about
their depression status (Barney et al., 2006). Furthermore, many individuals may not
be aware of their depression status as their knowledge of the signs and symptoms
of depression may be low.

6.3 Conclusion

This study aimed to investigate the risk determinants of depression among South
African individuals aged 15 to 49 years old and to determine which factors con-
tribute the most to this mental illness. This was done by applying three approaches
to the SAGHS data, which was obtained using a complex survey design. The survey
logistic regression model, a generalized linear mixed model and a Bayesian network
were the three approaches considered. The SLR model and GLMM account for the
survey design in various ways. The SLR model incorporates the sampling weights
in the estimation of the parameters, and the GLMM accounts for the effect of clus-
tering by way of a random intercept at cluster level. The Bayesian network, which is
a probabilistic graphical model, does not account for the survey design, which may
explain this approach having the worst performance with regards to classification.
The Bayesian network is also unable to determine the significance of a variable in
modelling depression, only the importance of the variable. However, it is able to
accommodate dependencies among all of the variables, unlike the SLR model and
GLMM. Thus, each approach has their own advantages.

The SLR model and GLMM indicated that a person’s perceived health status, abuse
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of substance, and gender were significantly associated with depression. An individ-
ual with a poor perception of their health had a significantly higher odds of depres-
sion compared to those with a more positive perception. The two models found a
significant interaction between disability status and substance abuse, as well as be-
tween highest level of education and gender. Individuals abusing substances had a
higher likelihood of depression. Although, we are unable to state whether the indi-
vidual is depressed because they are abusing substances, or if the they are abusing
substances because they are depressed, however either relation has been shown to
be true (Nglazi et al., 2016). In general, women had a substantially higher chance of
being depressed compared to men, particularly those with only a secondary level of
education. This is a common finding (Pratt, 2014). Thus, possible risk determinants
of depression consist of poor health, abuse of substance and being female, particu-
larly being female with a secondary level of education.

While the Bayesian network showed that depression was dependent on the age
group of the individual, the SLR model and GLMM did not indicate that age was
significantly associated with depression. Although, the latter models incorporated
age as a continuous effect rather than categorical. The exploratory data analysis re-
vealed that the average age of the depressed individuals was higher than those who
were not depressed, which is in agreement to other findings (Pratt, 2014). Based
on the explanatory data analysis, it appeared that individuals in a higher socioeco-
nomic bracket were more likely to be depressed, which was confirmed by the results
of the SLR model where individuals residing in households with flush toilet facili-
ties had a significantly higher likelihood of depression compared to those residing
in households with unimproved toilet facilities. This funding may be due to these
individuals experiencing the pressure of sustaining such a lifestyle, or the pressure
of the job that affords them such a lifestyle. This result contradicts that of Brown &
Moran (1997) and Pratt (2014).

The aim of this study was to use the applied methods to classify an individual’s de-
pression status and asses which method performed the best in this classification. The
purpose of being able to classify an individual’s depression status, based on their in-
dividual and household factors, is to be able to identify a depressed individual in
order to apply the appropriate intervention before they inflict self-harm. It is also
important to be able to identify individuals at a higher risk of depression in order
equip them with the knowledge of how to handle such an illness. Even though the
performance of the three methods was restricted due to the limitations of the data,
the GLMM proved to be the better performing technique. Thus, we recommend
that when using data based on a complex survey design, a GLMM is considered in
classifying the occurrence of an event of interest.
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6.4 Future Direction

There is still much to do in order to assist individuals suffering from mental illnesses
such as depression. South Africa especially has a long way to go in helping such
individuals, particularly with the stigma around depression. As the data utilized in
this study was from 2016, a future direction includes obtaining an updated SAGHS
data set and exploring methods that are not sensitive to the low number of cases, in
addition to being able to accommodate the survey design.
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Appendix A

Probability Table for the Bayesian Network

Table A.1: Probability Table

Parent Node Parent Condition Child Node Child Condition Value

Health status Excellent Depression Yes 0.00153
Health status Excellent Depression No 0.99847
Health status Very good Depression Yes 0.00143
Health status Very good Depression No 0.99857
Health status Good Depression Yes 0.00317
Health status Good Depression No 0.99690
Health status Fair Depression Yes 0.02153
Health status Fair Depression No 0.97847
Health status Poor Depression Yes 0.03457
Health status Poor Depression No 0.96543
Depression Yes Age group 15-19 years 0.01563
Depression Yes Age group 20-24 years 0.07813
Depression Yes Age group 25-29 years 0.10938
Depression Yes Age group 30-34 years 0.21875
Depression Yes Age group 35-39 years 0.15625
Depression Yes Age group 40-44 years 0.25000
Depression Yes Age group 45-49 years 0.17188
Depression No Age group 15-19 years 0.31580
Depression No Age group 20-24 years 0.25193
Depression No Age group 25-29 years 0.18096
Depression No Age group 30-34 years 0.11535
Depression No Age group 35-39 years 0.06661
Depression No Age group 40-44 years 0.04345
Depression No Age group 45-49 years 0.02590
Relationship to head Head Age group 15-19 years 0.01398
Relationship to head Head Age group 20-24 years 0.06605
Relationship to head Head Age group 25-29 years 0.13920
Relationship to head Head Age group 30-34 years 0.19931
Relationship to head Head Age group 35-39 years 0.19159
Relationship to head Head Age group 40-44 years 0.19827

Continued on next page
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Appendix A

Table A.1 – Continued from previous page
Parent Node Parent Condition Child Node Child Condition Value

Relationship to head Head Age group 45-49 years 0.19159
Relationship to head Spouse/Partner Age group 15-19 years 0.01313
Relationship to head Spouse/Partner Age group 20-24 years 0.08192
Relationship to head Spouse/Partner Age group 25-29 years 0.14827
Relationship to head Spouse/Partner Age group 30-34 years 0.21439
Relationship to head Spouse/Partner Age group 35-39 years 0.20321
Relationship to head Spouse/Partner Age group 40-44 years 0.17647
Relationship to head Spouse/Partner Age group 45-49 years 0.16262
Relationship to head Other Age group 15-19 years 0.31580
Relationship to head Other Age group 20-24 years 0.25193
Relationship to head Other Age group 25-29 years 0.18096
Relationship to head Other Age group 30-34 years 0.11535
Relationship to head Other Age group 35-39 years 0.06661
Relationship to head Other Age group 40-44 years 0.04345
Relationship to head Other Age group 45-49 years 0.02590
Depression Yes Disability No 0.68630
Depression Yes Disability Yes 0.31370
Depression No Disability No 0.94090
Depression No Disability Yes 0.05910
Depression Yes Gender Male 0.22826
Depression Yes Gender Female 0.77174
Depression No Gender Male 0.47885
Depression No Gender Female 0.52115
Substance Abuse Yes Gender Male 0.79167
Substance Abuse Yes Gender Female 0.20833
Substance Abuse No Gender Male 0.47885
Substance Abuse No Gender Female 0.52115
Depression Yes Substance Abuse Yes 0.10784
Depression Yes Substance Abuse No 0.89216
Depression No Substance Abuse Yes 0.00158
Depression No Substance Abuse No 0.99842
Depression Yes Relationship to head Head 0.56604
Depression Yes Relationship to head Spouse/Partner 0.24528
Depression Yes Relationship to head Other 0.18868
Depression No Relationship to head Head 0.22440
Depression No Relationship to head Spouse/Partner 0.24470
Depression No Relationship to head Other 0.53090
Disability No Relationship to head Head 0.54545
Disability No Relationship to head Spouse/Partner 0.04545
Disability No Relationship to head Other 0.40909
Disability Yes Relationship to head Head 0.50000
Disability Yes Relationship to head Spouse/Partner 0.32143
Disability Yes Relationship to head Other 0.17857
Gender Male Relationship to head Head 0.55556
Gender Male Relationship to head Spouse/Partner 0.22222

Continued on next page
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Appendix A

Table A.1 – Continued from previous page
Parent Node Parent Condition Child Node Child Condition Value

Gender Male Relationship to head Other 0.22222
Gender Female Relationship to head Head 0.22442
Gender Female Relationship to head Spouse/Partner 0.24466
Gender Female Relationship to head Other 0.53091
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Appendix B

SAS Codes

*——————————– FINAL SLR MODEl——————————–*
proc surveylogistic data =SAGHS 2016;
class

MaritalStatus SubstanceAbuse Disability EduLevel (ref=’Higher Education’)
Gender RelationHH (ref=’Head’) TypeRes HIV Race
HealthStatus (ref=’Poor’) WaterSource (ref=’Tap into household’)
Province ToiletFacility(ref=’Flush Toilet’) / param=reference ;

model Depression (descending) = Age Child5yr Hholdsz MaritalStatus EduLevel|Gender
Province RelationHH HIV TypeRes HealthStatus
Race Disability|SubstanceAbuse WaterSource ToiletFacility ;

weight person wgt;
OUTPUT OUT=SLR predicted pred=p ;
run;

*———————————Final GLMM ———————————*

proc glimmix data=SAGHS 2016 method=laplace;
class

MaritalStatus SubstanceAbuse Disability EduLevel (ref=’Higher Education’)
Gender RelationHH (ref=’Head’) TypeRes HIV Race
HealthStatus (ref=’Poor’) WaterSource (ref=’Tap into household’)
Province ToiletFacility(ref=’Flush Toilet’) ;

model Depression (descending) = Age Child5yr Hholdsz MaritalStatus EduLevel|Gender
Province RelationHH HIV TypeRes HealthStatus
Race Disability|SubstanceAbuse WaterSource
ToiletFacility / link=logit dist=binary oddsratio solution ;

random int / subject = PSU type=VC ;
covtest zerog;
OUTPUT OUT=glmm predicted pred=p predicted(ilink) ;
run;
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*——————————–BAYESIAN NETWORK MODEL——————————–*

proc hpbnet data=GHS 2016;
target Depression;
input Age group

Gender
Race
Health Status
Highest education level
Marital Status
Medical Aid Cover
employ status
disability
social grants
HIV
Substance Abuse
Cellphone ownership
relationship to head
Electricity
waterAccess
ToiletFacility
Province
TypeRes
HouseholdSize
Death of Household Member
Child Under 5 /level=NOM

output network=network varselect=varselect;
run;

proc print data=network noobs label;
var parentnode childnode ;
where type =”STRUCTURE”;
run;

proc print data=network noobs label;
var parentnode parentcond childnode childcond value ;
where type =”PROBABILITY”;
run;

proc print data=varselect noobs label;
run;
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