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Abstract 

In this work, it is required to investigate the production and optimisation of biodiesel using 

heterogeneous catalyst to determine whether the resulting biodiesel may be utilised in an existing diesel 

engine without modification. Castor oil and sunflower oils were chosen in the present study and 

conventional methods of biodiesel production, in the form of transesterification, were employed. The 

type of alcohol and catalyst chosen was methanol and calcium oxide, respectively, due to their relatively 

low cost and wide availability.  

 

The Box-Behnken Design was used to design the experiments and conduct statistical analysis in 

Minitab™ on each oil. The factors tested were temperature, catalyst loading, reaction time and 

alcohol/oil molar ratio. The experimental methodology followed was the conventional method which 

comprised the heating of oil and alcohol in the presence of a catalyst under continuous stirring, followed 

by separation using a separation funnel. However, due to the high acid value of castor oil, esterification 

was performed using sulphuric acid as a catalyst in the presence of methanol. The process of 

esterification meant that three types of oils were now considered in the design, viz, base castor oil, 

esterified castor oil and sunflower oil.  

 

The optimisation study conducted on castor oil esterification revealed that alcohol/oil molar ratio had 

the largest effect on the reduction of free fatty acids, resulting in a value of 0.715 % from a value of 

12 % free fatty acids. Calcium oxide catalyst required calcination at 600℃ for 3 ℎ𝑟𝑠 for activation. 

Castor oil transesterification was conducted by first producing a large amount of esterified castor oil; at 

the optimal conditions; in the presence of calcium oxide and methanol where temperature proved to 

have the largest effect on the yield of biodiesel produced and a maximum yield of 97.2 % was achieved 

which was in accordance with the optimal conditions predicted by the regression full quadratic model. 

Similar to esterification, sunflower oil transesterification was largely affected by alcohol/oil molar ratio 

and an optimal yield of 98 % was achieved.  

 

The physical properties of the resulting fuels were tested, and biodiesel produced from sunflower oil is 

recommended, whereas biodiesel produced from castor oil does not meet ASTM D6751 fuel standards. 

The resulting fuels were blended with kerosene to form bio-jet fuel in fractions of 10 % and 20 %. The 

resulting blends are recommended for fuel testing to determine if further refinements are necessary 

according to ASTM standards.  Biodiesel derived from sunflower oil could potentially reduce the strain 

on depleting fossil fuel reserves, lower overall greenhouse gas emissions, as well as promote job 

creation and further academic advancement within the alternative fuel environment.  
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Chapter 1 – Introduction  

1.1. Background  

Biodiesel is a fuel derived from renewable feedstocks with the potential to provide an alternative to 

conventional petro-diesel. These feedstocks can be categorized as edible or non-edible and provide the 

basis for biodiesel production all around the world. Biodiesel is commonly produced via a 

transesterification reaction with alcohol in the presence of a catalyst. This process converts fats and oils 

(triglycerides) into mono-alkyl esters. Oils such as palm, sunflower, soybean and olive are among the 

most common edible feedstocks utilised. Biodiesel production can be decentralised, thus promoting 

economic development in rural areas as well as limit toxicity to residential areas (Gebremariam & 

Marchetti, 2017). In comparison to petro-diesel, biodiesel offers zero sulphur and reduced carbon 

monoxide and dioxide emissions.   

Typical catalysts used in the transesterification reaction include sodium hydroxide (NaOH), potassium 

hydroxide (KOH) and calcium oxide (CaO). Generally, methanol is preferred to ethanol due to 

increased biodiesel yield. Other methods of biodiesel production include direct blending of oils, 

microemulsions and combustion of oils and fats in the absence of oxygen (pyrolysis) (Gebremariam & 

Marchetti, 2017). Less common methods of biodiesel production using nano-catalysts and ionic liquids 

offer greater efficiency in the conversion of fatty acids into biodiesel but suffer from high capital and 

production costs (Lin, et al., 2017).    

1.2. Problem Statement 

Petro-diesel contributes significantly to global warming and increased green-house gas emissions. 

Biodiesel derived from non-edible feedstocks such as castor and neem oil serve as a renewable means 

to reduce the increased demand for petro-diesel, thus reducing strain on fossil fuel reserves. 

Heterogenous catalysts such a CaO provide high reaction rates and yields as well as ease of separation 

thus promoting recycling and reusability of the catalyst. 

1.3. Motivation and Research Aim 

The main aim of this work is to investigate whether biodiesel produced via heterogeneous catalysis 

using esterification and transesterification reactions, with optimised parameters; temperature, 

alcohol/oil ratio, catalyst concentration and reaction time; can serve as a suitable alternative to petro-

diesel and be used in a normal diesel engine without modification. These parameters can easily be 

scaled-up to accommodate large scale biodiesel production and aid in energy and economic saving.  

 

The objectives of this work include: 

 Literature review prior to experimental design necessary to determine the optimal 

conditions  
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 Experimental work in the form of esterification and transesterification reactions according 

to the experimental design to investigate the factors that influence the yield of biodiesel 

produced and data, statistical and gas chromatography (GC) analysis 

 Optimisation and model validation at the optimal conditions 

 Physical property analysis of biodiesel produced in accordance with ASTM standards to 

confirm/reject if biodiesel produced can serve as a replacement for petro-diesel 

 Blending of biodiesel with kerosene to produce blended bio-jet fuel 

1.4. Thesis Statement  

The hypothesis of this work is that the biodiesel produced via heterogeneous catalyst in the presence of 

methanol can serve as a suitable alternative to petro-diesel and can be used in a normal diesel engine 

without modification. 

1.5. Research Contributions 

This work involves the use of castor and sunflower oils as renewable non-edible and edible feedstocks, 

respectively, in the presence of methanol. Calcium oxide catalyst (CaO) facilitates the increase in 

reaction rate and yield of biodiesel produced. The optimal conditions determined can aid in existing 

biodiesel production plants currently using the feedstocks mentioned to further optimise their process 

and increase the purity of biodiesel produced. This work can also help to realise the potential of bio-jet 

fuel and reduce strain on depleting fossil fuels.  

1.6. Overview of Thesis  

Chapter 1 highlights the necessary information about the materials used as well as the need for such 

an investigation. Additionally, an overview of the research objectives and motivations are mentioned 

so that the reader has a comprehensive understanding of why the investigation was conducted.  

  

Chapter 2 focuses mainly on the literature behind biodiesel production and aims to give a 

comprehensive understanding of the process of biodiesel production and concerns arising from the 

different production methods. The different and common feedstocks and alcohols are highlighted as 

well as difficulties associated with the use of the materials mentioned. Common processes of biodiesel 

and petro-diesel production are also mentioned and discussed. Typical catalysts and operating 

conditions are discussed as well as other production factors such as, separation time and stirrer speed.  

 

Chapter 3 describes the methods and materials used in the conduction of the esterification and 

transesterification reactions as well as the equipment used. A schematic of the equipment setup is also 

presented to provide a visual representation of the experimental procedure and aid in further 

understanding of the experimental design.  



3 

 

 

Chapter 4 focuses on the chosen experimental design and method and provides an in-depth view into 

the experimental design. This step is crucial in determining the optimal conditions from response 

surface plots conducted via data analysis in Minitab™ software.  

 

Chapter 5 focuses mainly on the esterification of castor oil using sulphuric acid as a catalyst and 

methanol and the results and discussion therein. The focus of the esterification reaction was aimed at 

the reduction in acid value of castor oil and not the biodiesel yield produced.  

 

Chapter 6 highlights the transesterification of the esterified castor oil, at the optimal conditions, and 

optimization procedure and results obtained in determining the optimal conditions in the presence of 

calcium oxide catalyst and methanol.  

 

Chapter 7 highlights the transesterification of sunflower oil and optimization procedure and results 

obtained in determining the optimal conditions. The individual effects of the reaction conditions 

investigated are discussed as well as differences in yield obtained.  

 

Chapter 8 deals mainly with the physical property comparison of biodiesel produced. Physical 

properties such a density, pour point and kinematic viscosity are investigated and discussed. The effect 

of catalyst reusability on reaction rate and biodiesel yield is also discussed. Potential strategies to 

alleviate deposition of material into the catalyst pores is discussed. The blending of biodiesel with 

kerosene is investigated and the resulting physical properties are discussed.  

 

Chapter 9 provides the main conclusions that can be drawn from this work and recommendations 

necessary for future work. Conclusions between the two different oils and catalyst used will be 

discussed. 
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Chapter 2 – Literature Review  

2.1. Introduction  

In recent years biodiesel production has become more attractive owing to depleting fossil fuel reserves, 

global warming and climate change as well as energy production. Biodiesel can be derived from various 

edible and non-edible feedstocks, making it a renewable, non-toxic, environmentally friendly and 

biodegradable fuel source. In order to be an effective replacement for petro-diesel, biodiesel has to 

conform to ASTM (American Society for Testing and Materials) D6751 and EN (European Standard) 

14214 standards. These standards regulate the quality of fuel that may be used in an engine without 

modification. Kinematic viscosity, density and cetane number are among the more important properties. 

There are various methods for the production of biodiesel, however, transesterification using a base 

catalyst is regarded as the most common.  

2.2. Properties of Raw Materials  

Biodiesel is produced primarily by four different methods, viz., transesterification, pyrolysis, direct use 

and blending and microemulsions of which transesterification is the most common. Generally, edible 

or non-edible oil, animal fat and microalgae and fungi oil are used for the production of biodiesel in the 

presence of an alcohol (Marwaha, et al., 2018).  

 

Figure 1 ‒ Molecular Structure of Triglyceride (Vegetable oil) (Ruhul, et al., 2015) 

A typical selection of oils used for biodiesel production can be seen in Table 1 below: 
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Table 1 ‒ Physiochemical Properties of Different Oils (Marwaha, et al., 2018) 

Feedstock 

(Oil) 

Heating 

Value 

 (𝑀𝐽/𝑘𝑔) 

Density 

(𝑘𝑔/𝑚3) 

Kinematic 

Viscosity at 

(38 ℃) 

 (𝑚𝑚2/𝑠) 

Flash 

Point 

Pour 

Point  

(℃) 

 

Cetane 

Number 

References 

Corn 39.5 909.5 34.9 277 -40.0 37.6 (Barnwal & Sharma, 2005) 

Cottonseed ‒ 915 33.7 (40 ℃) 234 -15.0 33.7 (Canakci & Sanli, 2008) 

Linseed 39.3 923.6 27.2 241 -15.0 34.6 (Srivastava & Prasad, 2000) 

Peanut ‒ 903 40 (40 ℃) 271 -6.7 34.6 (Canakci & Sanli, 2008) 

Rapeseed 39.7 ‒ 37.0 246 -31.7 37.6 (Jain & Sharma, 2010) 

Safflower 39.5 914.4 31.3 260 -6.7 41.3 (Barnwal & Sharma, 2005) 

Sesame 39.3 ‒ 35.5 260 -9.4 40.2 (Jain & Sharma, 2010) 

Soya bean 39.6 913.8 32.6 254 -12.2 37.9 (Srivastava & Prasad, 2000) 

Sunflower 39.6 916.1 33.9 274 -15.0 37.1 (Jain & Sharma, 2010) 

Palm ‒ 918.8 39.6 267 ‒ 42.0 (Barnwal & Sharma, 2005) 

Babassu ‒ 946.0 30.3 150 ‒ 38.0 (Srivastava & Prasad, 2000) 

Jatropha 39-40 912 55 (30 ℃) 240 ‒ 40-45 (Jain & Sharma, 2010) 

Karanja ‒ 936.5 43.6 (40 ℃) ‒ ‒ ‒ (Karmakar, et al., 2010) 

Neem ‒ 918.5 50.3 (40 ℃) ‒ ‒ ‒ (Karmakar, et al., 2010) 

Castor 37.4 955.0 251 (40 ℃) ‒ ‒ 42.3 (Karmakar, et al., 2010) 

Mahua 36.0 960 24.5 (40 ℃) 232 ‒ ‒ (Karmakar, et al., 2010) 

Tallow ‒ 903 51.2 (40 ℃) 201 ‒ 40.2 (Canakci & Sanli, 2008) 

With reference to Table 1, the extremely high kinematic viscosity of castor oil can be regarded as an 

outlier. This may be attributed to the high percentage of Ricinoleic acid (~90 𝑤𝑡%) present in castor 

oil. However, the physiochemical properties of castor oil vary depending on the extraction method. For 

instance, castor oil extracted from cold pressing method (mechanical) has low acid content, low iodine 

content with a lighter colour but high saponification value in comparison to castor oil extracted by 

solvent extraction method (Omari, et al., 2015).  

Table 2 – Feedstocks  (Mujeeb, et al., 2016) 

Group Source of Oil 

Non-edible oils Babassu tree, copaiba, jatropha, jojoba, mahua, milk bush, nagchampa, neem, petroleum nut, rubber 

seed tree, silk cotton tree and castor 

Major oils Coconut (copra), corn (maize), cottonseed, canola (a variety of rapeseed), olive, peanut (groundnut), 

safflower, sesame, soybean and sunflower 

Nut oils Almond, cashew, hazelnut, macadamia, pecan, pistachio and walnut 

Other edible oils Amaranth, apricot, artichoke, avocado, babassu, bay laurel, beech nut, ben, Borneo tallow nut, carob 

pod, cohune, coriander seed, false flax, grape seed, hemp, kapok seed, lemon seed, meadowfoam seed, 

mustard, okra seed (hibiscus seed), perilla seed, pine nut, poppy seed, prune kernel, quinoa, rice bran, 

tallow, tea (camellia), thistle and wheat germ 
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Table 3 – Physical Properties of Different Oils (Ambat, et al., 2018)  

Oil  Saponification value Iodine value 
Acid value 

(𝑚𝑔𝐾𝑂𝐻/𝑔 𝑜𝑖𝑙) 
References 

Canola 188-193 109-126 0.6-0.8 (Thanh, et al., 2012) 

Olive 184-196 75-94 0.9-2.2 (Dorado, et al., 2004) 

Corn 187-198 103-140 0.1-5.7 (Thanh, et al., 2012) 

Jatropha Curcas 177-189 92-112 15.6-43 (Thanh, et al., 2012) 

Palm 186-209 35-61 6.9-50.8 (Thanh, et al., 2012) 

Rapeseed 168-187 94-120 0.2 (Gryglewicz, 1999) 

Soybean  189-195 117-143 0.1-0.2 (Thanh, et al., 2012) 

Sunflower 186-194 110-143 0.2-0.5 (Thanh, et al., 2012) 

Table 4 – Composition of Fatty Acid (𝑤𝑡%) in Different Feedstocks (Ambat, et al., 2018)  

Oil Myristic 

𝐶14:0 

Palmitic 

𝐶16:0 

Stearic 

𝐶18:0 

Oleic 

𝐶18:1 

Linoleic 

𝐶18:2 

Linolenic 

𝐶18:3 

References 

Edible        

Sunflower  5-8 2-6 15-40 30-70 3-5 (Li & Khanal, 2016) 

Rapeseed  1-3 0-1 10-15 12-15 8-12 (Li & Khanal, 2016) 

Soybean  6-10 2-5 20-30 50-60 5-11 (Li & Khanal, 2016) 

Peanut  8-9 2-3 50-65 20-30  (Li & Khanal, 2016) 

Olive  9-10 2-3 72-85 10-12 0-1 (Li & Khanal, 2016) 

Palm  0.5-2 39-48 3-6 36-44 9-12  (Li & Khanal, 2016) 

Mustard    1-2 8-23 10-24 8-18 (Li & Khanal, 2016) 

Coconut 16-21 7-10 2-4 5-10 1-2.5  (Li & Khanal, 2016) 

Almond   6.5 1.4 70.7 20 0.9 (Singh & Singh, 2010) 

Walnut   7.2 1.9 18.5 56 16.2 (Singh & Singh, 2010) 

Sesame  13 4 53 30  (Singh & Singh, 2010) 

Non-edible        

Linseed  4-7 2-4 25-40 35-40 25-60 (Li & Khanal, 2016) 

Neem  13-16  49.1-61.9   (Li & Khanal, 2016) 

Jatropha 14-15 0-13  34.3-45.8 14-15 0-0.3 (Li & Khanal, 2016) 

Cotton seed  23-28 0.8-0.9 13.3-18.3  0.2 (Li & Khanal, 2016) 

Rubber 2.2 10.2 8.7 24.6 39.6 16.3 (Ghazali, et al., 2015) 

Karanja   3.7-7.9 2.4-8.6 44.5-71.3 10-18  (Ghazali, et al., 2015) 

Pongamia 11.6   51.5 11.6  (Ambat, et al., 2018) 

Stillingia 0.1 7.5 2.3 16.7 31.5 41.5 (Ghazali, et al., 2015) 

Other        

Chicken fat 3.1 19.8 3.1 37.62   (Ambat, et al., 2018) 

Waste cooking  8.5 3.1 21.2 55.2 5.9 (Ambat, et al., 2018) 

Tallow 23.3 19.3 42.4 2.9 0.9 2.9 (Singh & Singh, 2010) 

Brown grease 1.6 22.8 12.5 42.3 12.1 0.8 (Ghazali, et al., 2015) 

Microalgal 12-15 10-20     (Ambat, et al., 2018) 

Yellow grease 2.4 23.2 12.9 44.3 6.9 0. (Ghazali, et al., 2015) 
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2.3. Properties of Biodiesel  

The properties of biodiesel present an inherent issue that may prove difficult to overcome in the pursuit 

of meeting American, European and South African fuel standards. These properties stem from the base 

oils used in the production of biodiesel. For instance, if waste cooking oil and castor oil are used as the 

base oil in a single stage transesterification reaction then biodiesel with high acid content and high 

kinematic viscosity will be produced, respectively. There are various factors that influence the 

properties of biodiesel and these factors are discussed below. 

 

Figure 2 ‒ Molecular Structure of (a) Petroleum diesel and (b) Biodiesel (Ruhul, et al., 2015) 

 

2.3.1. Kinematic Viscosity 

Kinematic viscosity represents the resistance to flow occurring between adjacent layers within a fluid. 

According to Goering et al. (1982), kinematic viscosity increases with increasing chain length and 

decreases with an increase in the number of unsaturated bonds present in the fuel. Therefore, biodiesel 

with a high kinematic viscosity may not be suitable for engine use as this may cause fuel filter and 

pump clogging, lower engine performance and higher greenhouse gas emissions (Ayetor, et al., 2015). 

Biodiesel with high kinematic viscosity may result in reduced fuel atomization and insufficient fuel to 

air ratios within the engine. As a result, the mean diameter of the fuel particles increases which leads to 

increased penetration within the combustion chamber (Choi & Reitz, 1999). This is because of inhibited 

fuel injector processes due to the high kinematic viscosity. Moreover, with an increase in kinematic 

viscosity comes an increase in fuel line pressure leading to the injectors. This may cause early injection 

and result in incomplete and ineffective combustion of the fuel (Lee, et al., 2002).     

A two-step transesterification process using 1 𝑤𝑡% H2SO4 highlighted by Ayetor et al. (2015) was 

found to significantly reduce the kinematic viscosity of the biodiesel produced from Coconut oil, 
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Jatropha oil and Palm kernel oil by 38.5 %, 35.1 % and 24 %, respectively. Najafi et al. (2018) reported 

a kinematic viscosity of 6.482 (𝑚𝑚2/𝑠) when waste cooking oil was used in the production of 

biodiesel in the presence of methanol and sodium hydroxide (NaOH). Additionally, when waste 

cooking oil in used in the presence of ethanol and an acid-catalyst, a two-step process may be employed 

as seen in the work of Tchameni et al. (2015) whereby the acid-esterification is followed by ethanolic 

de-acidification to reduce the Free Fatty Acid (FFA) content. This process resulted in biodiesel with a 

kinematic viscosity of 4 (𝑚𝑚2/𝑠), which is significantly better than the work by Najafi et al. (2018).  

2.3.2. Density  

The density of biodiesel generally differs according to the feedstock used. This is evident by the work 

of Azocar et al. (2007) who used rapeseed oil and waste cooking oil with densities of 930 and 

940 (𝑘𝑔/𝑚3), respectively, to produce biodiesel with lower densities of 880 and 890 (𝑘𝑔/𝑚3), 

respectively. Biodiesel which has a low density will result in better engine performance as the diameter 

and inertia of the fuel droplet will be smaller in comparison with biodiesel having a higher density (Choi 

& Reitz, 1999; Canakci & Sanli, 2008). The density is also a function of viscosity and heating value. 

Hoekman et al. (2012) reported that biodiesel comprising longer chain lengths have lower density.  

2.3.3. Cetane Number  

The cetane number of a fuel represents its quality during ignition and combustion (Giakoumis & 

Sarakatsanis, 2019). This number is usually between 55-60 for biodiesel and 35-60 for petro-diesel. The 

high cetane number for biodiesel can be attributed to the methyl esters present in biodiesel which result 

in straight-chained bonds that improve the auto-ignition of biodiesel. This process, however, is hindered 

by the unsaturated bonds present in biodiesel which may result in poor combustion, depending on the 

feedstock and purity of biodiesel used (Giakoumis & Sarakatsanis, 2019).  

2.3.4. Cloud and Pour Point  

The cloud point refers to the temperature at which crystals begin to form and the pour point refers to 

the temperature at which biodiesel can be poured during refrigerated conditions (Muhammad, et al., 

2019). The process for determination of the cloud point is (1) refrigerate a small sample of biodiesel 

and remove it from the freezer every minute to check for any visible changes, (2) record the temperature 

at which crystals begin to form using a thermometer. Similarly, for pour point, the frozen biodiesel is 

removed from the freezer and the temperature is recorded when the mixture is able to be poured.  

2.3.5. Flash Point  

The flash point is the defined as the minimum temperature needed for the fuel to form a combustible 

mixture with air. Muhammad et al. (2019) observed a reduction of 35 ± 1℃ in flash point temperatures 

between crude and refined castor oil biodiesel. This serves as an indication of increased volatility 

between crude and refined castor oil biodiesel.  
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2.3.6. Acid Value 

The acid value of biodiesel is defined simply as the amount of base, measured in 𝑚𝑔 𝐾𝑂𝐻, necessary 

to neutralise the free fatty acids in 1 𝑔 of biodiesel (Tubino & Aricetti, 2011). Azocar et al. (2007) 

reported the acid values of waste cooking oil collected from restaurants and residential areas to be 

1.62 𝑚𝑔 𝐾𝑂𝐻/𝑔 and 0.17 𝑚𝑔 𝐾𝑂𝐻/𝑔, respectively. Typically, waste cooking oil has a high acid 

value and must undergo acid-esterification to lower the acid value. However, in the case of Azocar et 

al. (2007), the low acid values can be attributed to the original oils (soybean and sunflower) having low 

acid values. The acid value greatly effects the amount of refining necessary to obtain biodiesel within 

ASTM D6751 standards. This is evident in the work of Tchameni et al. (2015) who used a two-step 

process (acid esterification and ethanolic de-acidification) to lower the acid value of waste cooking oil 

from 83.07 to 3.36 and finally to 0.56 𝑚𝑔 𝐾𝑂𝐻/𝑔.   

2.3.7. Measuring of Biodiesel Properties 

Table 5 ‒ Measuring of Biodiesel Properties  

Property Typical Apparatus  Limits  Units Standard References  

Kinematic 

viscosity 

Ostwald viscometer 

Red wood viscometer 

 

1.9 –  6.0 𝑚𝑚2/𝑠 ASTM 

D445 

 

(Gabriel, et al., 2018) 

(Sivaramakrishnan & 

Ravikumar, 2012) 

Density  Anton Paar digital 

densimeter 

Hydrometer 

820 − 900 𝑘𝑔/𝑚3 ASTM 

D4052 

ASTM 

D941 

(Pratas, et al., 2011) 

 

(Sivaramakrishnan & 

Ravikumar, 2012) 

Iodine 

content 

Method of Wijs 120 max − EN14214 (Zahan & Kano, 2018) 

Acid value Burette  0.8 max 𝑚𝑔 𝐾𝑂𝐻/𝑔 ASTM 

D974 

(Zahan & Kano, 2018) 

Cetane 

number  

Ignition quality tester  47 min 

 

 

− ASTM 

D613 

ASTM 

D976  

(Sivaramakrishnan & 

Ravikumar, 2012) 

Flash point 

(closed cup) 

Penksy Martins apparatus  93 min ℃ ASTM D93  (Sivaramakrishnan & 

Ravikumar, 2012) 

Pour point Dry ice  −15 ℃ ASTM 

D6751 

(Zahan & Kano, 2018) 

2.3.8. Characterisation of Biodiesel by Analytical Methods 

Whilst the other methods focus on testing of physiochemical properties of biodiesel, there exists a need 

to determine the composition and hence characterise the biodiesel produced. This is usually achieved 

by gas chromatography mass spectroscopy (GC-MS) analysis. The main purpose of this process is to 

determine the composition of biodiesel produced in an attempt to characterise the quality of biodiesel 

produced. The gas chromatography unit is a device which vaporises a small amount of liquid sample 
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injected into the unit. The detector in the unit then detects the various components within the vapour 

sample. Therefore, adequate temperature control needs to be maintained within the unit and this is 

achieved by means of a temperature-controlled program. The temperature-controlled program needs to 

effectively and carefully exploit the difference in the boiling points of the different compounds present 

in the biodiesel, such that the sample containing various compounds may vaporise gradually over time 

as to not overwhelm the detector and produce incorrect chromatograms (Ambat, et al., 2018).   

Table 6 – Analytical Methods for the Characterisation of Biodiesel (Ambat, et al., 2018) 

Feedstock 

(oil) 

Analytical 

technique  

Analysis conditions References  

Stillingia  GC Column with thermal profiling or ramp; temperature from 

190℃ to 280℃; flow rate of nitrogen, hydrogen and air at 

25 𝑚𝑙/𝑚𝑖𝑛, 40 𝑚𝑙/𝑚𝑖𝑛, 400 𝑚𝑙/𝑚𝑖𝑛, respectively 

(Wen, et al., 2010) 

Karanja  NMR Esters are analysed at 400 𝑀𝐻𝑧 with 𝐶𝐷𝐶𝑙3 as solvent (Kaur & Ali, 2011) 

Jatropha NMR Esters are analysed at 400 𝑀𝐻𝑧 with 𝐶𝐷𝐶𝑙3 as solvent (Kaur & Ali, 2011) 

Sunflower GC DB wax column with thermal profiling or ramp; temperatures 

from 100℃ to 240℃; detector and injector temperatures 

280℃and 260℃, respectively 

(Bet-Moushoul, et al., 2016) 

Oleic acid GC Clarus 580 GC, Perkin Elmer, USA used (Mahdavi, et al., 2015) 

Soybean GC HP−5 capillary column with thermal profiling or ramp; 

temperature from 135℃ to 250℃; detector and injector 

temperatures 300℃ and 280℃, respectively 

(Qiu, et al., 2011) 

Jatropha  GC-MS Samples diluted using chloroform; esters determined based on 

comparison of standards, sample retention time and peak area 

(Hashmi, et al., 2016) 

Soybean  HPLC C18 Kromasil column with methanol as mobile phase and a 

flow rate of 1 𝑚𝑙/𝑚𝑖𝑛; samples are detected at 250 𝑛𝑚 

(Liu, et al., 2012) 

Soybean  GC-MS Helium as carrier gas; DB−1 column (Istadi, et al., 2015) 

Waste 

cooking  

GC Alltech EC−5 column with deactivated straight liner with 

thermal profiling, or ramp the temperature from 35℃ to 300℃ 

at the rate of 20℃/𝑚𝑖𝑛 

(Gurunathan & Ravi, 2015) 

Madhuca 

indica 

GC-MS, 

NMR 

HP−5 capillary column with thermal profiling, or ramp the 

temperature from 50℃ to 290℃, carrier gas (helium) flow rate 

of 1 𝑚𝑙/𝑚𝑖𝑛 

In NMR analysis at 300 𝑀𝐻𝑧 with 𝐶𝐷𝐶𝑙3 as solvent, with an 

internal standard, tetramethylsilane 

(Thangaraj & Piraman, 2016) 

Vegetable  GC-MS 

with FID 

HP−5 capillary column with thermal profiling, or ramp the 

temperature from 50℃ to 280℃  

(Feyzi & Shahbazi, 2015) 

Algae 

lipids 

GC-MS, 

GC-FID 

HP−5 capillary column with a constant oven temperature of 

320℃; detector and injector temperature 280℃  

(Teo, et al., 2016) 



11 

 

Chicken 

fat 

NMR In NMR analysis, esters were analysed at 300 𝑀𝐻𝑧 with 

𝐶𝐷𝐶𝑙3 for sample preparation 

(Shi, et al., 2013) 

   

2.3.9. Prediction Models for Biodiesel Properties 

Recently the use of prediction models using Least Squares Support Vector Machine (LSSVM) offer 

great accuracy in the prediction of properties for biodiesel. In a recent study by Razavi et al. (2019) 

comprising 56, 59, 44 and 25 experimental and literature data points; obtained from a variety of sources 

in literature (Razavi et al. (2019)); for Iodine content, kinematic viscosity, cloud point and pour point, 

respectively, was used in conjunction with the LSSVM model and particle swarm optimization (PSO). 

The LSSVM-PSO model resulted in coefficients of 0.99995, 0.99981, 0.99848 and 0.99930 for pour 

point, cloud point, iodine value and kinematic viscosity, respectively, which clearly indicates that the 

model can accurately describe the physical properties associated with the experimental and literature 

data.      

2.4. Biodiesel Production Methods 

As with any fuel production process, there are many different methods to produce the same fuel with 

moderate variations. The methods discussed below comprise different ways to produce biodiesel from 

a variety of feedstocks and techniques.   

2.4.1. Direct Use and Blending 

This method involves the direct use of vegetable oil in diesel engines without further processing and 

modifications to the engine. According to Mujeeb et al. (2016), vegetable oil has been successfully 

blended with petro-diesel in a ratio of 20 % vegetable oil and 80 % petro-diesel. However, blending 

ratios of greater than 20 % may led to fuel injector blockages, gelling of engine oil lubricant and 

increased carbon deposition on pistons due to increased reactivity of unsaturated bonds and higher 

viscosity presented by vegetable oil (Demirbas, 2008). Prolonged direct use of vegetable oil may raise 

the issue of food vs fuel as well as result in incomplete combustion owing to lower volatility of the 

blended fuel mixture. Ma & Hanna (1999) emphasized the issue of oil deterioration during storage of 

blended fuel. The issues associated with direct use of vegetable oil can be mitigated by the addition of 

4 𝑤𝑡% ethanol to the blend to improve brake thermal efficiency (Bilgin, et al., 2002). Additionally, 

pure ethanol may be used to reduce the kinematic viscosity of the oil as seen in the work of Ma & Hanna 

(1999), who used canola oil and 10 𝑤𝑡% ethanol to reduce the kinematic viscosity of the oil from 37.82 

to 21.15 (𝑚𝑚2/𝑠) at 37℃.  

According to a study conducted by Ziejewski et al. (1986), the blending of 25 % sunflower oil with 

75 % petro-diesel resulted in a kinematic viscosity of 4.88 (𝑚𝑚2/𝑠), which is within the range of 

1.9 − 6 (𝑚𝑚2/𝑠) according to ASTM D6751 standards. Generally, the use of direct and blended oils 
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is regarded as impractical due to poor engine performance, high kinematic viscosity, high free fatty acid 

content, gum formation and oxidation and polymerization during storage and combustion, respectively 

(Ma & Hanna, 1999).  

Table 7 ‒ Problem, Probable Cause and Potential Solutions for Direct Use and Blending of Oils (Harwood, 1984) 

Problem  Probable Cause Potential Solution  

Short-term   

Cold weather starting  High viscosity, low cetane and low flash point of 

vegetable oils 

Preheat fuel prior to injection. Chemically 

alter fuel to an ester 

Plugging and 

gumming of filters, 

lines and injectors 

Natural gums (phosphatides) in vegetable oil. 

Other ash 

Partially refine the oil to remove gums. 

Filter to 4-microns 

Engine knocking Very low cetane number of some oils. Improper 

injection timing 

Adjust injection timing. Use higher 

compression engines. Preheat fuel prior to 

injection. Chemically alter fuel to an ester 

   

Long-term   

Coking of injectors 

on piston and head of 

engine 

High viscosity of vegetable oil, incomplete 

combustion of fuel. Poor combustion at part load 

with vegetable oils 

Heat fuel prior to injection. Switch engine to 

diesel fuel when operation at part load. 

Chemically alter the vegetable oil to an ester 

Carbon deposits in 

piston and head of 

engine 

High viscosity of vegetable oil, incomplete 

combustion of fuel. Poor combustion at part load 

with vegetable oils 

Heat fuel prior to injection. Switch engine to 

diesel fuel when operation at part load. 

Chemically alter the vegetable oil to an ester 

Excessive engine 

wear 

High viscosity of vegetable oil, incomplete 

combustion of fuel. Poor combustion at part load 

with vegetable oils. Possible free fatty acids in 

vegetable oil. Dilution of engine lubrication oil due 

to blow-by of vegetable oil 

Heat fuel prior to injection. Switch engine to 

diesel fuel when operation at part load. 

Chemically alter the vegetable oil to an 

ester. Increase motor oil changes. Motor oil 

additives to inhibit oxidation 

Failure of engine 

lubricating oil due to 

polymerization 

Collection of polyunsaturated vegetable oil blow-

by in crankcase to the point where polymerization 

occurs 

Heat fuel prior to injection. Switch engine to 

diesel fuel when operation at part load. 

Chemically alter the vegetable oil to an 

ester. Increase motor oil changes. Motor oil 

additives to inhibit oxidation 

 

2.4.2. Microemulsion 

Microemulsion can be regarded as a thermodynamically stable state between two immiscible liquids 

and an amphiphile in which there exists a stable liquid solution which is visibly isotropic (Ma & Hanna, 

1999). Generally, a microemulsion of biodiesel comprises diesel fuel, alcohol, cetane improver and 

surfactant. The purpose of alcohol serves to lower the viscosity of the fuel whereas long-chain alcohols 

act as surfactants and the cetane number is adjusted by the use of alkyl nitrates (Chiaramonti, et al., 

2003).    



13 

 

This process involves the addition of a solvent to biodiesel and petro-diesel in the presence of a 

surfactant in an attempt to lower the viscosity of the blended biodiesel blend. The surfactant serves to 

lower the surface tension between the two immiscible solvent and fuel phases and typically has a 

hydrophilic-lipophilic balance (HLB) value in the range of 8 − 18 for oil-to-water emulsions (Maawa, 

et al., 2019). Ziejewski et al. (1984) prepared a microemulsion of 53 % akali-refined sunflower oil, 

13.3 % ethanol and 33.4 % butan-1-ol with a viscosity of 6.31 (𝑚𝑚2/𝑠) at 40℃ and concluded that 

viscosity decreased and an improvement in spray pattern from fuel injectors could be noticed when the 

volume percentage of butan-1-ol increased. The study also conducted a 200-hour endurance 

performance test and observed fuel injector sticking, significant carbon deposits and incomplete 

combustion. Furthermore, ternary phase equilibrium diagrams and plots of viscosity versus solvent 

fraction may be used to determine the ratios necessary for successful emulsion (Schwab, et al., 1987).  

2.4.3. Conventional Transesterification 

2.4.3.1 Homogeneous Acid-Catalysed Transesterification 

This method employs an acid catalyst such as HCl or H2SO4 to convert the triglycerides present in 

various edible and non-edible oils into biodiesel and glycerol. Typically, this method is employed and 

economically viable when feedstocks with high acid values are used for the production of biodiesel 

(Gebremariam & Marchetti, 2017). The presence of water can reduce the yield by competitive formation 

of carboxylic acids (Park, et al., 2010). The high reaction time corresponding to a slow reaction rate 

when acid catalysts are utilized presences a disadvantage as the resulting process conditions may not 

be feasible. This method, however, is extremely useful for the conversion of high acid value feedstocks 

into biodiesel which meet ASTM standards.  

A yield of 99 ± 1% can be achieved using acid catalysts when methanol is used in excess which drives 

the forward reaction to equilibrium at 70℃ for 4 ℎ (Zheng, et al., 2006). Generally, for acid catalysed 

transesterification, a large excess of methanol is used which is evident by the works of Soriano Jr et al. 

(2009) and Miao et al. (2009) who reported optimal methanol to oil molar ratios of 24:1 for 18 ℎ at 

100℃ in the presence of 5 𝑤𝑡% AlCl3 and 20:1 at 120℃ in the presence of 2.0 Molar (M) 

trifluoroacetic, respectively.     

2.4.3.2 Homogeneous Base-Catalysed Transesterification 

Typical base catalysts include NaOH, KOH and carbonates (Ma & Hanna, 1999). This method of 

transesterification offers reduced reaction time corresponding to high reaction rates; in comparison to 

acid catalysts; which may reduce the overall operating cost of the process. Alkaline catalysts are more 

commonly used commercially due to the non-corrosive nature of the catalyst (Ranganathan, et al., 

2008). In addition, only low acid content feedstocks may be used with base catalysts as the presence of 
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high acid content and water results in saponification which lowers the yield as well as introduces a 

degree of difficulty during separation of biodiesel and glycerol (Parawira, 2010).  

Typically, sodium hydroxide is preferred over potassium hydroxide and sodium methoxide owing to its 

lower cost and moderate catalytic activity. According to a study by Leung & Guo (2006), sodium 

hydroxide resulted in a higher purity of biodiesel whilst still maintaining a relatively high biodiesel 

yield, in comparison to potassium hydroxide and sodium methoxide, under the same reaction 

conditions. However, potassium hydroxide proved to result in less emulsion and easier separation than 

sodium hydroxide (Hossain & Boyce, 2009).  

 

Figure 3 ‒ Continuous Transesterification Reactor (Ma & Hanna, 1999) 

Table 8 ‒ Comparison between Different Separation and Purification Techniques (Atadashi, et al., 2010) 

Type of catalyst Separation method  Purification method  Advantages  Disadvantages 

Solid oxide Gravitational settling Evaporation Removal of methanol Less energy 

consumption 

Sodium hydroxide Microwave 

irradiation 

Water washing Removal of excess 

methanol and catalyst 

Large amount of 

waste wash water and 

energy consumption 

Sodium methoxide Centrifugation Distillation, 

neutralization, water 

washing 

Methanol recovery, 

removal of excess 

methanol and catalyst 

Energy and water 

waste 

Sodium hydroxide Gravitational settling Neutralization with 

acid, warm water 

washing 

Removal of 

methanol, residual 

catalyst and soap 

High energy and 

water consumption 
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Acid/potassium 

hydroxide 

Centrifugation Hot water washing Removal of residual 

methanol and other 

contaminants 

High energy and 

water consumption 

Sodium hydroxide Membrane filtration Neutralization, 

membrane, water 

washing 

Removal of excess 

methanol, residual 

catalyst and soap 

Less water, time and 

energy waste 

Enzyme/acid Gravitational settling Evaporation  Removal of excess 

methanol 

Less water waste 

Sodium hydroxide Membrane reactor Washing with reverse 

osmosis water 

Removal of unreacted 

oil and soap traces 

Less water 

requirement 

Potassium hydroxide Separative membrane Separative membrane Removal of excess 

methanol and soap 

No waste water 

Sodium hydroxide Membrane separator Membrane separator Removal of unreacted 

tri- and mono-

glycerides and 

glycerol 

No water requirement 

Sodium methoxide Membrane separator Neutralization, 

distilled water 

washing, distillation  

Removal of 

contaminants 

High water waste and 

energy consumption 

 

2.4.3.3 Heterogeneous Catalysed Transesterification 

Unlike homogeneous catalysts, heterogeneous catalysts can be easily separated after the reaction but 

prior to decantation (Ma & Hanna, 1999). This type of catalyst is usually solid, in the form of powder 

and offers more economic reaction conditions in comparison to their homogeneous counterparts. 

Generally, acid heterogeneous catalysts may be used for an esterification reaction because the acid 

catalyst can catalyse the free fatty acids present in the reaction mixture and base catalysts are used in 

transesterification reactions to facilitate the conversion of triglycerides into fatty acid methyl esters and 

glycerol (Ma & Hanna, 1999). In addition, heterogeneous catalysts are highly selective and may be 

reused once recovered. The potential for separation by filtration or centrifugation eliminates the need 

for waste water treatment and reduces product contamination by catalyst.   

Furthermore, as mentioned by Refaat (2011), heterogeneous catalysts such as calcium oxide can 

produce biodiesel with exceptional high yield and purity that are close to the theoretical value as well 

as produce glycerol as a by-product with at least a purity of 98 % without salt contaminants. However, 

the major drawback of heterogeneous catalysts is deactivation, which occurs over time either due to 

poisoning, coking, leaching and sintering.   

Malani et al. (2019) used wet impregnation method to synthesis KI impregnated ZnO catalyst for 

ultrasound assisted biodiesel production. To determine the role of sonication, transesterification was 

used as a base case. They reported that esterification using concentrated H2SO4 was necessary when 

high acid value non-edible oils are used. The heterogeneous catalyst was able to be recovered by high 
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speed centrifugation at 6000𝑔 for 15 𝑚𝑖𝑛 at room temperature. The catalyst surface was washed with 

n-hexane to remove impurities such as oil, methanol, glycerol, biodiesel as well as impurities present 

in the oil. In order to reuse the catalyst, an oven drying time of 1 ℎ and temperature of 110℃ was 

necessary which is followed by calcination at 500℃ for 3 ℎ.  

da Silva Castro et al. (2019) synthesized CaO from eggshells by first washing all organic matter 

followed by drying, crushing, separation by sieves and finally calcination at different temperatures. 

After transesterification, they reported a directly proportional relationship between calcination 

temperature and yield, however, as calcination temperature increased to the maximum tested value of 

1000℃, the kinematic viscosity of the biodiesel produced using the catalyst that was calcinated at 

1000℃ did not meet the required specification. 

2.4.3.3.1 Reaction Mechanism of Heterogenous Catalysts (CaO) 

Biodiesel production via heterogenous catalysis follows similar reaction mechanism principles to 

homogenous catalysis. The main mechanism in homogeneous catalysis is the formation of nucleophilic 

alcoxides that attack the electrophilic sites on the triglycerides, whilst protonation occurs in the carbonyl 

functional group of the triglycerides which is attacked by the alcohol to generate an intermediate 

tetrahedral complex in acid catalysis (Endalew, et al., 2011).   

Biodiesel production from vegetable oils (triglycerides) is typically achieved via three steps, (1) 

generation of a tetrahedral intermediate complex, (2) chemical breakdown of the tetrahedral 

intermediate to a diacylglycerol (DAG) ion and fatty acid ester, (3) catalyst recovery by proton transfer. 

This process is repeated three times to yield three fatty acid esters and one glycerol molecule, as seen 

in Figure 4 which represents the stoichiometric equation of the reaction system.  

 

Figure 4 ‒ Stoichiometric Equation of Biodiesel Production (Marinković, et al., 2016) 

However, calcium oxide powder is solid in nature and does not dissolve in methanol. Therefore, for 

heterogenous catalysis, the reaction occurs on the catalyst surface which is understood by two basic 
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mechanisms, viz. Eley-Rideal (ER) and Langmuir-Hinshelwood-Hougen-Watson (LHHW). The ER 

mechanism works on the assumption that the reaction occurs by the direct pickup of reactants from the 

surface by the liquid phase and the LHHW mechanisms works by assuming that reactants are first 

adsorbed onto the catalyst surface, and then the reaction occurs on the catalyst surface, and finally the 

products is desorbed from the catalyst surface (Marinković, et al., 2016).  

2.4.3.3.2 Properties and Reaction Kinetics of Heterogenous Catalysts (CaO) 

The production of biodiesel usually occurs when triglycerides and methanol react in the presence of a 

catalyst. The catalyst chosen for this work is heterogeneous in nature which means, it is not soluble in 

the oil or methanol. Instead, the catalyst mixes with the reactants, promotes the production of biodiesel 

and at the end, is able to be recovered as solid powder. Calcium oxide powder was chosen for this work 

due to its wide availability and cost.  

Calcium oxide catalyst is usually derived from organic matter containing calcium, such as limestone, 

calcite and eggshells containing calcium carbonate (𝐶𝑎𝐶𝑂3). The process of thermal decomposition or 

calcination results in a release of a molecule of carbon dioxide from 𝐶𝑎𝐶𝑂3, which then reduces to 

quicklime (𝐶𝑎𝑂). The calcination temperature is highly dependent on the base material used and often 

affects the yield and quality of biodiesel produced.   

Table 9 ‒ Temperature of Formation of CaO depending on Precursor (Marinković, et al., 2016)  

Precursor  Calcination conditions (heating rate, atmosphere) Formation temperature (𝐾) 

Calcium hydroxide 1.5 𝐾/𝑚𝑖𝑛, 𝑁2 693-923 

Calcium hydroxide  10 𝐾/𝑚𝑖𝑛, 20 𝑣𝑜𝑙% 𝑂2/𝐴𝑟 705-725 

Calcium nitrate  1.5 𝐾/𝑚𝑖𝑛, 𝑁2 873 

Calcium nitrate  10 𝐾/𝑚𝑖𝑛, 20 𝑣𝑜𝑙% 𝑂2/𝐴𝑟 906 

Limestone  ‒ 990 

Calcium carbonate  10 𝐾/𝑚𝑖𝑛, 𝑁2 914 or 1144 

Calcium carbonate  Vacuum  934 

Calcium carbonate  1.5 𝐾/𝑚𝑖𝑛, 𝑁2 ~973 

Calcium carbonate  10 𝐾/𝑚𝑖𝑛, 20 𝑣𝑜𝑙% 𝑂2/𝐴𝑟 1058 

Calcium acetate  < 20 𝐾/𝑚𝑖𝑛, Air 973 

Calcium acetate  20 𝐾/𝑚𝑖𝑛, Air 1038 

Calcium oxalate 10 𝐾/𝑚𝑖𝑛, 20 𝑣𝑜𝑙% 𝑂2/𝐴𝑟 1000-1040 

Calcite (Iceland spar) 2 𝐾/𝑚𝑖𝑛, Air 1073-1123 

 

Table 10 ‒ Physiochemical Properties of CaO (Marinković, et al., 2016) 

Characteristic  Description  

Chemical name  Calcium oxide 

Chemical formula CaO 

Common name Lime, quicklime, caustic lime, calx, fluxing lime  

Molar mass (𝑔/𝑚𝑜𝑙) 56.0774 
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Density (𝑘𝑔/𝑚3) 3340 

Odour  Odourless  

Melting point (𝐾) 2886 

Boiling point (𝐾) 3123 

Heat of formation (𝑘𝐽/𝑚𝑜𝑙) 635.55 

Heat of hydration (𝑘𝐽/𝑚𝑜𝑙) 63.18 

Solubility   

  Water (𝑚𝑔 𝐶𝑎𝑂/𝑚𝑙) 1.19 (298 𝐾), 0.57 (373 𝐾), exothermic reaction  

  Methanol (𝑚𝑔 𝐶𝑎𝑂/𝑚𝑙) 0.1-0.2 (298 𝐾), 0.03-0.04 (333 𝐾), exothermic reaction 

  Glycerol (𝑚𝑔 𝐶𝑎𝑂/𝑚𝑙) 1.6 (0.5 ℎ, 298 𝐾), 5.7 (2 ℎ, 298 𝐾) 

  Glycerol and methanol (𝑚𝑔 𝐶𝑎𝑂/𝑚𝑙) ~1 (333 𝐾) 

  Biodiesel, glycerol and methanol (𝑚𝑔 𝐶𝑎𝑂/𝑚𝑙 𝑎𝑙𝑐𝑜ℎ𝑜𝑙) 0.4 (298 𝐾), 0.6 (373 𝐾),  

In a recent study by da Silva Castro et al. (2019), they report a directly proportional relationship between 

calcination temperature and kinematic viscosity of the biodiesel produced. They conclude that once the 

calcination temperature is in excess, the biodiesel produced via heterogeneous catalysis does not meet 

fuel specifications, because the kinematic viscosity increased with an increase in calcination 

temperature.   

 

Figure 5 ‒ IR Spectrum of CaO Calcinated at different Temperatures (Esipovich, et al., 2014) 

As seen by the IR spectrum in Figure 5, the absorbance peaks decrease with an increase in temperature, 

with little or no effect observed between the calcination temperatures of 600℃ and 900℃. Therefore, 

a suitable calcination temperature of 600℃ may be employed regarding calcium oxide catalyst. This is 

due to the thermal decomposition of hydroxides and carbonates at 600℃. In addition, the amount of 

basic centers; as shown in Table 11; is the highest for the calcination temperature of 600℃.  

Table 11 ‒ Basic strength distribution of CaO catalyst (Esipovich, et al., 2014) 

Catalyst  Basicity (𝑚𝑚𝑜𝑙/𝑔) 

Commercial CaO (un-calcinated) 0.03 

CaO calcinated at 300℃ 0.01 
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CaO calcinated at 600℃ 0.08 

CaO calcinated at 900℃ 0.04 

Furthermore, calcinated calcium oxide is a chemically unstable compound as it readily reacts with 

carbon dioxide and water in the air to quickly form calcium carbonate again, thus partially undoing the 

calcination process by covering the outermost surface of the catalyst with a layer of calcium carbonate, 

hence deactivating the catalyst.    

However, Liu et al. (2008) showed that despite water having negative effects directly after calcination, 

the addition of 0.2 𝑤𝑡% (𝑜𝑓 𝑜𝑖𝑙) of water into the reaction system resulted in an increase in yield. This 

is illustrated in Figure 6 which represents the influence of water on a reaction system comprising 

soybean oil and methanol in a molar ratio of 9:1, calcinated calcium oxide catalyst with a loading of 

1.3 𝑤𝑡% (𝑜𝑓 𝑜𝑖𝑙) and reaction temperature of 60℃. 

 

Figure 6 ‒ Influence of Water Addition (Esipovich, et al., 2014) 

 

As seen in Figure 6, there is an increase in catalytic activity by the addition of water into the reaction 

system, however, the largest yield can be observed by the addition of the smallest amount of water 

added which is 0.2 𝑤𝑡% (𝑜𝑓 𝑜𝑖𝑙) water. Esipovich et al. (2014) suggested the formation of active 

hydroxide sites (𝑂𝐻−) on the catalyst surface as a result of the interaction between the catalyst active 

centers and water. This facilitates an increase in methoxide anions formation and resulted in a higher 

yield. According to Kouzu et al. (2009), the addition of water improves the solubility of the catalyst 

medium in the reaction system, thus promoting a higher reaction rate because the reaction is catalysed 

by diluted active calcium oxide rather than active calcium oxide. However, excess water may result in 

partial hydrolysis of fatty acid methyl esters (FAME), which significantly lowers the reaction rate as 

well as the yield produced by deactivating the catalyst surface, as seen in Figure 6. The reaction 

mechanism for the effect of water on the catalyst surface is seen in Figure 7. 
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Figure 7 ‒ Reaction Mechanism of Water on CaO Surface (Esipovich, et al., 2014) 

Table 12 ‒ Reaction Kinetics of CaO-based Catalysts (Marinković, et al., 2016) 

Oil  Reaction conditions  Kinetic model 𝑅2 

 Catalyst/ 

loading (%) 

Methanol/ 

Oil molar 

ratio 

Temperature 

(𝐾) 

  

Cameline 

sativa  

CaO/0.5 15:1 373 𝑑𝑥𝐴

𝑑𝑡
= 𝑘(𝜃𝐵 − 3𝑥𝐴) 

0.332 

Soybean  CaO/0.5 ‒ 488 
−

𝑑𝐶𝐴

𝑑𝑡
= 3.9579𝑥10−3𝐶𝐴𝐶𝐵

−0.5 
0.490 

Soybean  CaO/2 12:1 313-338 
−

𝑑𝐶𝐴

𝑑𝑡
= 𝑘𝑎𝑝𝑝𝐶𝐴 

‒ 

Waste frying 

soybean 

CaO/2 6:1 333 ‒ ‒ 

Soybean  CaO/1.2 12:1 ‒ ‒ ‒ 

Soybean, 

virgin 

K-CaO/7.5 12:1 308-338 ‒ ‒ 

Sunflower  CaO/ 

1-10 

6:1 333 𝑑𝑥𝐴

𝑑𝑡
=

𝑘𝑚𝑡,𝐴𝑘2

𝑘𝑚𝑡,𝐴 + 𝑘2

(1 − 𝑥𝐴) 
0.920-0.981 

Sunflower  Quicklime/ 

1-10 

6:1-18:1 333 𝑑𝑥𝐴

𝑑𝑡
= 𝑘𝑚

(1 − 𝑥𝐴)(𝐶𝑅𝑂 + 3𝐶𝐴𝑜𝑥𝐴)

𝐾 + 𝐶𝐴𝑜(1 − 𝑥𝐴)
 

0.968-0.998 

Sunflower 

(refined, used) 

CaO∙ZnO/2 10:1 333-369 𝑑𝑥𝐴

𝑑𝑡
=

𝑘(𝑘𝑚𝑡,𝐴)
𝑜

[1 + 𝛼𝑥𝐴
𝛽]

𝑘+(𝑘𝑚𝑡,𝐴)
𝑜

[1 + 𝛼𝑥𝐴
𝛽]

(1 − 𝑥𝐴) 
0.960-0.994 

Sunflower  CaO∙ZnO/ 

0.5-2 

6:1, 10:1 333 ‒ ‒ 

Jojoba  Mussel shell 

CaO/6-10 

6:1-12:1 318-338 ‒ ‒ 

 

2.4.3.4 Lipase Catalysed Transesterification  

This method utilises enzymes instead of acid and base catalysts to facilitate the conversion of 

triglycerides into biodiesel. Enzyme catalysts do not result in saponification and can be used with 

feedstocks that have a high free fatty acid percentage. In addition, enzyme catalysts are capable of 

converting more of the oil into biodiesel but suffer from high costs associated with increased reaction 
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times (Gebremariam & Marchetti, 2017). Pairiawi (2010) mentioned that generally enzyme, whole cells 

or lipase catalysts are immobilised during biodiesel production to enable mild operating temperatures 

of 50℃ and enzyme reusability without separation. Gebremariam & Marchetti (2017) reported that 

methanol and glycerol serve to inhibit immobilised enzyme catalyst activity. They reported that tert-

butyl and continuous glycerol removal as well as stepwise addition of methanol into the reaction mixture 

serve to prevent the reduction in catalyst activity and decrease the overall cost (Ranganathan, et al., 

2008).  

Table 13 ‒ Advantages and Disadvantages of Lipase Catalysed Transesterification (Parawira, 2010)  

Advantages Disadvantages 

Biocompatible, biodegradable and environmental 

acceptability 

Loss of some initial activity due to volume of the oil 

molecule 

Possibility of regeneration and reuse of the immobilized 

residue, because it can be left in the reactor if one keep the 

reactive flow 

Number of support enzyme is not uniform 

Use of enzymes in reactors allows use of high concentration 

of them and that makes for a longer activation of the lipases 

More expensive 

Immobilization of lipase could protect it from the solvent 

that could be used in the reaction and that will prevent all 

enzyme particles getting together 

 

Separation of product will be easier using this catalyst, 

producing product of very high purity with less or no 

downstream operations 

 

 

2.4.3.5 Nano-Catalysed Transesterification 

Nano catalysts are very small particles with high surface area. This large surface area serves to reduces 

side reactions and mass transfer resistance associated with conventional catalysts. Seffati et al. (2019) 

used 𝐶𝑎𝑂/𝐶𝑢𝐹𝑒2𝑂4 nano catalyst for the production of biodiesel from chicken fat. They report that the 

distinct advantage of this catalyst was its magnetic characteristics which enabled easy separation by the 

use of a magnet. Their work shows that when catalyst content increases, biodiesel yield also increases 

with a maximum yield of 94.69 % noted when 3 % (𝑊/𝑣) catalyst is used. Borah et al. (2019) prepared 

Zinc (Zn) doped CaO nanocatalyst derived from waste egg shells by wet impregnation method. They 

reported a decrease in catalytic activity when the catalyst is reused due to leaching of Zn or blockage 

of reaction sites on the catalyst by products. Hu et al. (2011) report that calcination temperature should 

be taken into account as a parameter for biodiesel optimization as this influenced the yield of biodiesel 

produced when 𝐾𝐹/𝐶𝑎𝑂– 𝐹𝑒3𝑂4, 𝐾𝐹/𝑆𝑟𝑂– 𝐹𝑒3𝑂4 and 𝐾𝐹/𝑀𝑔𝑂– 𝐹𝑒3𝑂4 nano-catalysts are used.  

In a recent study, Saxena et al. (2019) produced biodiesel rich in 𝐶18 methyl esters from soybean oil 

and methanol in a ratio of 1:10 in the presence of bimetallic Fe(III) doped ZnO nano-particles with 

average particle size and surface area of 76.24 ± 17 𝑛𝑚 and 12.39 𝑚2𝑔−1, respectively. They reported 
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a reaction time of 3 ℎ, temperature of 65℃ and stirrer speed of 900 𝑟𝑝𝑚. Additionally, recovery by 

magnetic current was used to recover 90 ± 2% of the nano-catalyst which was easily reused by first 

washing with anhydrous methanol then drying at 80℃ overnight to obtain efficient transesterification 

under reuse at the same conditions. Similarly, Salimi & Hosseini (2019) observed a biodiesel yield of 

92.08 % after subjecting their 𝑍𝑛𝑂/𝐵𝑖𝐹𝑒𝑂3 nano-catalyst to a reusability test for five consecutive 

experiments which was attributed to the high catalytic activity of the nano-catalyst.  

2.4.3.6 Ionic Liquids Transesterification  

Ionic liquids are liquids comprising organic or inorganic anions and organic cations (Gebremariam & 

Marchetti, 2017; Reddy, 2015).  Roman et al. (2019) recently showed that ionic liquids can serve as a 

viable alternative to conventional catalysts with reference to esterification reactions for the production 

of biodiesel. In their work with 1-methylimidazolium hydrogen sulfate, [𝐻𝑀𝐼𝑀]𝐻𝑆𝑂4, they showed 

that their ionic liquid can convert oils with high acid content into biodiesel. They however report a high 

catalyst dosage of 13.5 𝑤𝑡 % which is necessary to facilitate the optimal conversion of oleic acid into 

fatty acid methyl esters. The optimal reaction temperature of 110℃, which seems high with regards to 

conventional esterification reactions, was negated by the low activation energy of 6.8 𝑘𝐽/𝑚𝑜𝑙 

determined by a kinetic study.  

In addition, Gebremariam & Marchetti (2017) report that ionic liquids are not soluble in the organic 

phase of biodiesel, therefore, biodiesel with high purity may be filtered from the reaction mixture. 

Similarly, pure glycerol may be easily separated by conventional distillation leaving pure ionic liquid 

which may be reused without any further purification steps. With reference to transesterification, 1-n-

butyl-3-methylimidazolium cation is the most widely studied ionic liquid (Andreani & Rocha, 2012).   

The optimal conditions for biodiesel production using ionic liquids is not widely done in literature. This 

may be due to the relative complexity regarding ionic liquids or high costs associated with the 

production process. However, Guo et al. (2014) conducted a study to investigate the optimum 

conditions for biodiesel production when soybean oil is reacted in the presence of methanol and an ionic 

liquid via ultrasonic irradiation (24 𝑘𝐻𝑧, 80 𝑊). A yield of 96 % was achieved with a reaction time of 

20 𝑚𝑖𝑛 using an optimal temperature and an oil to alcohol molar ratio of 60℃ and 1:14, respectively. 

Furthermore, they concluded that ionic liquid was effective in the conversion of soybean oil to biodiesel 

and that the ionic liquid could be separated by simple decantation.  
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Table 14 ‒ Optimum Conditions for Biodiesel Production via Ionic Liquid Transesterification (Gebremariam & Marchetti, 

2017) 

Feedstock Methanol/Oil 

molar ratio 

Ionic liquid catalyst Catalyst loading 

(𝑤𝑡%) 

Temperature 

(℃) 

Reaction 

time (ℎ) 

Yield 

(%) 

Soybean  8:1 Basic Ionic Liquids [𝐻𝑛𝑚𝑚]𝑂𝐻 4 70 1.5 97 

Cottonseed 12:1 1-(4-Sulfonic acid) 

butylpyridinium hydrogen sulfate 

0.057 170 5 92 

Rapeseed  10:1 1-propyl-3-methyl imidazolium 

hydrogen sulfate 

([𝑃𝑟𝑀𝐼𝑀][𝐻𝑆𝑂4]) 

10 140 5 19.74 

Rapeseed  10:1 1-propyl-3-methyl imidazolium 

hydrogen sulfate 

([𝑃𝑟𝑀𝐼𝑀][𝐻𝑆𝑂4]) 

10 130 5 94.91 

Rapeseed  10:1 1-butyl-3-methylimidazolium 

hydrogen sulfate 

([𝐵𝑀𝐼𝑀][𝐻𝑆𝑂4]) 

10 110 5 8.89 

Rapeseed  10:1 1-butylsulfonate-3-methyl 

imidazolium hydrogen sulfate 

([𝐵𝑆𝑂3𝐻𝑀𝐼𝑀][𝐻𝑆𝑂4]) 

10 130 5 100 

 

2.4.3.7 Supercritical Transesterification  

Supercritical method refers to the operation of a process beyond the critical points of the reactants such 

that liquid and vapour phases do not exist, instead a single supercritical phase exists. This method 

involves operation under extreme temperatures and pressures which seem unfeasible in comparison to 

convention transesterification methods. However, due to the existence of a single supercritical phase 

between the alcohol and oil, mass transfer limitations are negated resulting in significant reduction of 

reaction time (Leung, et al., 2010). This is due to the sharp reduction in dielectric constant of methanol; 

making it non-polar; above the critical points of methanol. Furthermore, at or above the critical points 

of methanol, there is a drastic change in solubility between methanol and oil, generating a homogeneous 

phase (Gebremariam & Marchetti, 2017). 

Kusdiana & Saka (2004) reported that supercritical methanol transesterification is less energy intensive 

in comparison to commercial processes due to the drastic reduction in reaction time from 4 ℎ to 4 𝑚𝑖𝑛 

(Shahid & Jamal, 2011). This was proved by the work of Marulanda (2012) who conducted pilot plant 

supercritical methanol transesterification experiments at an oil/alcohol molar ratio and temperature of 

9:1 and 400℃, respectively. They concluded that should the pilot plant be scaled up to produce 

10000 𝑡𝑜𝑛𝑠/𝑦𝑟, the energy requirement would be 573 𝑘𝑊/𝑦𝑟. This is significantly lower than the 

energy requirement (2407 𝑘𝑊/𝑦𝑟) of a similar process operating at an oil/alcohol molar ratio and 

temperature of 1:42 and 300℃, respectively, and lower than the energy requirement (2326 𝑘𝑊/𝑦𝑟) of 

a conventional transesterification process.   
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However, the sensitive nature of the process may be costly due to the high energy requirement to 

achieve such extreme temperatures and pressures. In addition, the process may be non-catalytic in 

nature which simplifies purification and product recovery. Moreover, the utilization of co-solvents may 

reduce overall cost by improving conversion efficiency (Gebremariam & Marchetti, 2017). The use of 

a co-solvent to reduce cost is evident in the work of Van Kasteren & Nisworo (2007) who used propane 

as a co-solvent in a single-stage supercritical methanol transesterification reaction.   

Table 15 ‒ Optimum Conditions for Biodiesel Production via Supercritical Transesterification (Gebremariam & Marchetti, 

2017) 

Feedstock Alcohol  Process variables Yield (%) 

  Alcohol/Oil Temperature 

(℃) 

Time 

(𝑚𝑖𝑛) 

Pressure 

(𝑀𝑃𝑎) 

 

Refined lard Methanol  45:1 335 15 20 89.9 

Rapeseed oil  Methanol  45:1 350 4 14 95 

Coconut oil Methanol  42:1 350 7 19 95 

Palm oil Methanol  42:1 350 7 19 96 

Rapeseed oil  Methanol  42:1 350 15 12 93 

Rapeseed oil  Ethanol  42:1 350 20 12 91.9 

Rapeseed oil  Propan-1-ol 42:1 350 25 12 91.1 

Jatropha oil Methanol  43:1 320 4 8.4 100 

Sunflower oil  Methanol  41:1 252 20 24 95 

Sunflower oil  Methanol with 0.3 % 𝐶𝑎𝑂 41:1 252 17 24 95 

Sunflower oil  Methanol with 0.5 % 𝐶𝑎𝑂 41:1 252 13 24 100 

Palm oil  Methanol  45:1 350 5 40 95 

Vegetable oil Ethanol with 𝐶2𝑂 co-solvent 25:1 200 6 20 80 

Numerous studies have been conducted in literature regarding the optimum conditions for supercritical 

transesterification. In general, temperature is regarded as the main parameter which has the most 

influence over yield and is followed by reaction time and lastly by pressure. In the work by Kiss et al. 

(2014), experiments regarding the effect of temperature, pressure and time was investigated. They 

reported that decreasing reaction pressure resulted in a decrease in yield whilst a decrease in temperature 

may be mitigated by an increase in reaction time.     

Recently, in the work of Lamba et al. (2019), the combination of supercritical methanol method and 

catalytic transesterification was studied. This involved operation at a temperature and pressure of 250℃ 

and 10 𝑀𝑃𝑎, respectively, and oil to alcohol ratio of 1: 40. They concluded that 1 𝑤𝑡% of 

heterogeneous catalyst is sufficient to overcome the pathway limitations associated with supercritical 

methanol method and heterogeneous catalytic method.   
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2.4.3.8 Non-Catalytic Transesterification   

Transesterification may be achieved via the BIOX cosolvent process, which is a non-catalytic process. 

According to Mujeeb et al. (2016), the BIOX process is a relatively new Canadian process and 

originates from Professor David Boocock of the University of Toronto. This process involves the use 

of inert cosolvents to produce a single oil-rich phase. The function of the cosolvent is to increase the 

solubility of the alcohol in the triglyceride phase, thus making inert cosolvent selection very important 

to the efficiency of the process. The resulting single oil-rich phase achieves transesterification under 

standard temperatures and pressures. The BIOX process offers the lowest reaction time among the 

aforementioned transesterification processes, with a reported reaction time of greater than 99 % 

complete within seconds (Mujeeb, et al., 2016).    

In addition to the low reaction time and economical process conditions, the BIOX process can be 

adjusted to a two-step esterification and transesterification process to accommodate high acid value 

feedstocks of up to 10 % FFA. The robust nature of the process can be seen by the variety of feedstocks 

that may be processed. Typical feedstocks include, grain-based oils, waste cooking oils and greases and 

animal fats (Van Gerpen, et al., 2004). The inert nature of the cosolvent; Tetrahydrofuran; allows the 

single stage or dual stage BIOX process to be continuous by recycling of the cosolvent, which may be 

reused as many times as necessary. Cosolvents may also be designed for specific alcohols and 

feedstocks to maximize efficiency. Mujeeb et al. (2016) reported that complete transesterification 

occurs after 5 − 10 𝑚𝑖𝑛𝑠.    

 

Figure 8 ‒ Convention Biodiesel Production & Purification (Atadashi, et al., 2010) 
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2.4.4. Microwave Technology 

This involves the production of biodiesel by electromagnetic waves with frequencies ranging from 

0.3 𝐺𝐻𝑧 to 300 𝐺𝐻𝑧 (Nayak, et al., 2019). A conventional microwave functions by dielectric heating 

in which energy is not used to break and form new bonds, instead it is absorbed by water present in 

food, sugar and fats. According to Kapilan & Baykov (2014), thermal analysis of the dielectric 

properties of the microwave depend significantly on the temperature, frequency and catalyst which may 

facilitate industrial design and production of biodiesel by microwave assisted technology. In 

comparison to convention biodiesel production, microwave technology is less energy and time intensive 

with reaction times of 2 𝑚𝑖𝑛, 3 𝑚𝑖𝑛 and 4 𝑚𝑖𝑛 reported for jatropha oil, waste cooking oil and palm 

oil, respectively (El Sherbiny, et al., 2010; Chen, et al., 2012; Khemthong & Faungnawakij, 2012).  

 

Figure 9 ‒ Biodiesel Production via Microwave Technology (Ruhul, et al., 2015) 

The procedure for microwave irradiation; highlighted by Kapilan & Baykov (2014); is as follows, (1) 

provide suitable agitation to the mixture of oil, alcohol and catalyst prior to microwave irradiation, (2) 

conduct transesterification via microwave irradiation for a suitable reaction time, generally under 

10 𝑚𝑖𝑛𝑠 according to literature, (3) proceed with gravity separation in a separation funnel and hot 

water-washing to remove glycerol and other impurities, respectively, (4) proceed with product drying 

to reduce the moisture content generated by the reaction and residuals of water washing. The optimum 

conditions for biodiesel production with a variety of oils via microwave irradiation are seen in Table 16 

below: 
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Table 16 ‒ Optimum Conditions for Biodiesel Production via Microwave Irradiation Technology (Kapilan & Baykov, 2014) 

Type of Oil Optimum Conditions References 

Jatropha Methanol/Oil molar ratio of 7.5:1, 1.5 𝑤𝑡% KOH, reaction 

temperature of 65℃, reaction time of 2 𝑚𝑖𝑛 

(El Sherbiny, et al., 2010) 

Pongamia 

pinnata seed 

Alcohol/Oil molar ratio of 6:1, reaction temperature of 60℃, 

0.5 𝑤𝑡% NaOH and 1.0 𝑤𝑡% KOH 

(Kumar, et al., 2011) 

Waste cooking Methanol/Oil molar ratio of 6:1, 0.75 𝑤𝑡% 𝐶𝐻3𝑂𝑁𝑎 or NaOH, 

reaction time of 3 𝑚𝑖𝑛, microwave power of 750𝑊 

(Chen, et al., 2012) 

Yellow horn oil Methanol/Oil molar ratio of 12:1, temperature of 60℃, reaction 

time of 10 𝑚𝑖𝑛, 1 𝑤𝑡% heteropoly acid catalyst 

(𝐶𝑠2.5𝐻0.5𝑃𝑊12𝑂40) 

(Zhang, et al., 2010) 

Palm  Methanol/Oil ratio of 18:1, reaction time of 4 𝑚𝑖𝑛, 

900 𝑊 microwave power, 15 𝑤𝑡% CaO catalysts derived from 

eggshells 

(Khemthong, et al., 2012) 

Waste frying 

palm 

Ethanol/Oil molar ratio of 12:1, 3 𝑤𝑡% NaOH, reaction time of 

30 𝑠𝑒𝑐 

(Lertsathapornsuk, et al., 2008) 

Microwave technology may also be applied to the production of biodiesel from wet microalgae. Cheng 

et al. (2013) conducted a novel approach in which wet microalgae was subject to microwave irradiation 

in a single step reaction. They concluded that, both the yield and conversion rate were higher than the 

corresponding two-step conventional reactions necessary for the production of biodiesel. Furthermore, 

they report that the microwave irradiation effects serve to increase the biocatalytic activity, rather than 

inhibit the catalyst activity by enzyme deactivation. As with any system, there exists a need for system 

wide control, however, very few researchers have employed the use of controllers to regulate the 

microwave power as well as automatic controllers to provide real-time adjustments to the process (Wali, 

et al., 2013).  

Lertsathapornsuk et al. (2008) produced biodiesel via microwave irradiation from waste palm oil. The 

resultant biodiesel was then tested against conventional petro-diesel in a 100 𝑘𝑊 diesel generator, 

however, this comparison did not feature pure biodiesel in the test. They concluded that for B50 (50% 

petro-diesel/50% biodiesel) at all engine loads, engine thermal efficiency was reduced, however, lower 

emissions compared to petro-diesel were observed. Furthermore, they report that at the engine load of 

75 𝑘𝑊, the emissions of 𝐶𝑂, 𝑁𝑂𝑋 and 𝐻𝐶 were higher than that of petro-diesel.   

2.4.5. Ultrasonic Technology 

This type of biodiesel production employs the phenomenon of emulsification to induce cavitation of 

the liquid-liquid phase of the reactants. The cavitation causes radial motion of the system which in turn 

causes microturbulence within the reacting phase (Ji, et al., 2006). In a study conducted by Chen et al. 

(2011), tung oil and blends of tung oil of 20, 30 and 50 𝑤𝑡% was subject to ultrasonic irradiation in 

the presence of methanol and KOH. They concluded that blends of tung oil resulted in higher yields 
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with shorter reaction time and the resultant fuel was in accordance with biodiesel standards. Table 17 

illustrates the optimum conditions for biodiesel production in accordance with ASTM standards using 

ultrasonic technology.  

Table 17 ‒ Optimum Conditions for Biodiesel Production via Ultrasonic Technology (Kapilan & Baykov, 2014) 

Type of Oil Optimum Conditions References 

Waste cooking oil Methanol/Oil ratio of 6:1, 1 𝑤𝑡% KOH, temperature of 45℃, 

ultrasound power of 200 W, irradiation time of 40 𝑚𝑖𝑛 

(Hingu, et al., 2010) 

Coconut oil Ethanol/Oil ratio 1:6, 0.75 𝑤𝑡% KOH, 7 𝑚𝑖𝑛 reaction time (Kumar, et al., 2010) 

Canola oil Methanol/Oil molar ratio of 5:1, 0.7 𝑤𝑡% KOH, reaction time 50 𝑚𝑖𝑛, 

ultrasonic irradiation of 20 𝑘𝐻𝑧 with an input capacity of 1 𝑘𝑊 

(Okitsu, et al., 2010) 

Jatropha oil Methanol/Oil ratio 1:4, catalyst of 5 𝑤𝑡% of oil, reaction time 30 𝑚𝑖𝑛, 

ultrasonic amplitude 50 % (100 𝑊/𝑚3) and cycle 0.7 𝑠 

(Kumar, et al., 2011) 

Crude cottonseed oil Methanol/Oil ratio of 6.2:1, 1 𝑤𝑡% NaOH, reaction time of 8 𝑚𝑖𝑛 (Fan, et al., 2010) 

2.4.6. Microwave & Ultrasonic Technology 

The combination of these two methods seem to result in an economical approach to biodiesel 

production, however, using ultrasound alone resulted in a reaction time of 60 𝑚𝑖𝑛 for esterification and 

20 𝑚𝑖𝑛 for transesterification when high acid content nagchampa oil is used whilst the combination of 

the aforementioned methods resulted in reaction times of 15 and 6 minutes (Gole & Gogate, 2013). In 

an attempt to determine the most economical approach, Yin et al. (2012) conducted a study using four 

different methods, viz. mechanical agitation (MS), flat plate ultrasonic irradiation (FPUI), flat plate 

ultrasonic irradiation in conjunction with mechanical agitation (UIMS) and probe ultrasonic irradiation 

(PUI) with sunflower oil. They concluded that UIMS and PUI were among the better methods which 

resulted in lower catalyst dosage, reduced energy consumption, reduced reaction time and lower 

alcohol/oil ratio under the same reaction conditions.  

2.4.7. Pyrolysis & Catalytic Cracking 

Pyrolysis by definition is the thermal conversion or combustion of a substance by the addition of heat 

in the absence of oxygen or air to facilitate the cleavage of bonds to yield smaller molecules (Ma & 

Hanna, 1999).  

 

Figure 10 ‒ Reaction Mechanism Illustrating Thermal Decomposition of Triglycerides (Schwab, et al., 1988) 
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There have been many works that have studied the effects and conditions of pyrolysis on bio-fuel 

production. Niehaus et al. (1986) and Schwab et al. (1988) pyrolyzed soybean and safflower oil, 

respectively, in conjunction with a sparged supply of air and nitrogen in a distillation unit. Table 18 

illustrates the differences in fuel properties between soybean oil and pyrolyzed soybean oil against 

diesel fuel.  

Table 18 ‒ Comparison of Fuel Properties between Pyrolyzed Oil and Diesel Fuel (Ma & Hanna, 1999) 

 Soybean oil Pyrolyzed soybean oil Diesel fuel 

 (Niehaus, et al., 

1986) 

(Schwab, et al., 

1988) 

(Niehaus, et 

al., 1986) 

(Schwab, et 

al., 1988) 

(Niehaus, et 

al., 1986) 

(Schwab, et 

al., 1988) 

Cetane number 38.0 37.9 43.0 43.0 51.0 40.0 

Higher heating 

value, 𝑀𝐽/𝑘𝑔 

39.3 39.6 40.6 40.3 45.6 45.5 

Pour point, ℃ -12.2 -12.2 4.4 7.2 -6.7 max -6.7 max 

Viscosity, 𝑐𝑆𝑡 at 

37.8 ℃ 

32.6 32.6 7.74 10.2 2.82 1.9-4.1 

  

In addition, the process of pyrolysis can accommodate catalysts to speed up the overall reaction process. 

In the work by, Pioch et al. (1993), copra and palm oil were catalytically cracked under pyrolysis 

conditions at 450℃ in the presence of a conventional petroleum catalyst (𝑆𝑖𝑂2/𝐴𝑙2𝑂3) to gases, liquids 

and solids.  Biodiesel and biofuel were produced by fractionation of the condensed organic phase which 

yielded similar properties to that of petroleum diesel.    

2.4.8. Microalgae  

Microalgae-based biodiesel is derived from prokaryotic or eukaryotic micro-organisms that are either 

unicellular or simple multi-cellular in nature. It is widely understood that microalgae-based biodiesel 

can offer many advantages over traditional feedstocks currently used in the production of biodiesel. The 

distinct advantage of microalgae is the amount of biodiesel that can be extracted from a very small 

population of microalgae as compared to the large area required of crop cultivation. In addition, 

microalgae only requires sunlight and simple nutrients to grow and reproduce, thus completing a life 

cycle every few days (Sheehan, et al., 1998). Microalgae is easy to cultivate and can grow is almost any 

environment. There are numerous species of microalgae that can be adapted to live in specific regions 

and growth can be accelerated by means of nutrients and aeration in the case of aquatic microalgae 

(Mujeeb, et al., 2016). A comparison between microalgae and traditional feedstocks used for biodiesel 

production can be seen in Table 19. A vast difference in land use and biodiesel productivity can be seen 

when high oil content microalgae is used. These differences are due to similar seed oil content values 

but very different land usage values. Therefore, from a practical point of view, microalgae-based 

biodiesel seems to be the most economical way of biodiesel production.    
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Table 19 – Comparison of Microalgae and Traditional Feedstocks (Mujeeb, et al., 2016)   

Plant source Seed oil content 

(% 𝑜𝑖𝑙 𝑏𝑦 𝑤𝑡 𝑖𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠) 

Oil yield  

(𝐿 𝑜𝑖𝑙/ℎ𝑎 𝑦𝑒𝑎𝑟) 

Land use 

(𝑚2𝑦𝑒𝑎𝑟/

𝑘𝑔 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙) 

Biodiesel productivity 

(𝑘𝑔 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙/ℎ𝑎 𝑦𝑒𝑎𝑟) 

Corn/Maize  44 172 66 152 

Hemp  33 363 31 321 

Soybean  18 636 18 562 

Jatropha  28 741 15 656 

Canola/Rapeseed  41 974 12 862 

Sunflower  40 1070 11 946 

Castor  48 1307 9 1156 

Palm oil  36 5366 2 4747 

Microalgae (low oil 

content) 

30 58700 0.2 51927 

Microalgae (medium 

oil content) 

50 97800 0.1 86515 

Microalgae (high oil 

content) 

70 136900 0.1 121104 

 

 

Figure 11 – Microalgae based Oil Extraction (Mujeeb, et al., 2016) 

With reference to Figure 11, it can be seen that water and nutrients are necessary for adequate growth 

of microalgae. Typically, nutrients required are nitrogen-based and usually in the form of chemical or 

inorganic fertilizers. Chemical fertilizers, however, contaminate water sources easily and are often 

difficult to remove from wastewater. According to Colosi et al. (2015), secondary and tertiary 

wastewater treatments are necessary to reduce the amount of nitrates and ortho-phosphates present in 

chemical fertilizers that are not removed during the primary wastewater treatment process. This will 

result in approximately 60 − 80% of additional energy utilization by the treatment plant. An attractive 

solution would be to culture microalgae in wastewater, thus eliminating the need for large amounts of 
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chemical fertilizer and wastewater purification can occur by the removal of nitrates and ortho-

phosphates (Colosi, et al., 2015). 

 

Lipid extraction is achieved depending on the type of microalgae used and on the nature of biodiesel to 

be produced. Much like terrestrial energy crops, lipid extraction can be achieved by mechanical means 

using cell homogenizers, bead mills, ultrasound, autoclaves and spray drying. However, due to the thick 

cell walls present in the microalgae, mechanical press methods are generally not applied as it results in 

intra-lipid loss. Generally, solvent extraction and supercritical fluid extraction methods are employed 

for lipid extraction.  

 

Chemical solvent extraction is the most common method in microalgae processes and offers high 

efficiency in lipid extraction. Moreover, the solvents used are typically n-hexane, methanol and ethanol, 

which are readily available. These solvents have a high selectivity and solubility towards lipids and can 

quickly extract lipids from the microalgae. However, the efficiency of extraction strongly depends on 

the type of microalgae used, more specifically on the thickness of the cell wall as the rate limiting factor 

in the extraction process is diffusion through the cell wall (Mujeeb, et al., 2016).    

 

Supercritical fluid extraction exploits the single-phase nature of a supercritical system to greatly 

increase the efficiency of the extraction process in which the fluid used for extraction becomes a super-

solvent (Mujeeb, et al., 2016). Carbon dioxide is regarded as the most attractive supercritical fluid as it 

is able to extract pharmaceutical and health aiding products from microalgae (Plaza, et al., 2009). 

Carbon dioxide has several advantages over solvent extraction fluids viz., (1) non-oxidizing and non-

toxic to prevent the degradation of products, (2) relatively low critical temperature to avoid thermal 

degradation, (3) higher efficiency of extraction due to increased diffusivity and lower surface tension 

of carbon dioxide, (4) ease of separation after extraction under atmospheric temperatures and pressures 

(Mujeeb, et al., 2016; Plaza, et al., 2009). Thereafter, once extraction is complete, transesterification 

can occur using any suitable method discussed earlier.       

 

2.4.9. Membrane Technology 

This process utilizes an organic or inorganic membrane to remove the transesterification reaction 

products as soon as they are formed, thus eliminating the adverse effects of the alcohol and glycerol 

present in the reaction system (Aransiola, et al., 2014). According to Cao et al. (2009), the efficiency 

and selectivity parameter of the membrane employed depends on suitable pore size and chemical 

affinity. Membrane technology can also be employed in the refinement of crude biodiesel as evident in 

the work of Cao et al. (2009), who achieved high quality biodiesel from crude biodiesel. Generally, 

membrane technology is utilized in conjunction with membrane reactors. In the work of Cao et al. 

(2009), it is evident that a variety of oils may be used in the production of biodiesel. These oils; soybean, 
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palm and canola oil; are relatively common in the biodiesel environment. They report that the main 

advantage of membrane reactors and membrane technology is the quality of biodiesel produced, 

conversely, the size and structure of the membrane is limited as larger membranes would be prone to 

structural weakness and tearing. Moreover, larger membranes have been employed using ceramic as 

the material of construction, however, this makes the membrane relatively expensive (Ambat, et al., 

2018).     

 

Figure 12 ‒ Biodiesel Production via Membrane Technology (Atadashi, et al., 2010)  

 

Table 20 ‒ Advantages and Disadvantages associated with Catalytic and Non-Catalytic Processes (Ruhul, et al., 2015) 

Process  Advantages Disadvantages 

Catalytic  Lower power consumption regarding heating Higher process cost 

 Higher yield is possible Greater time is required than for non-catalytic 

method 

 Relatively lower temperature and pressure 

required 

Cost involved with catalyst loading 

  Preparation of catalyst is quite complex 

Non-catalytic Less water is produced as a by-product and 

sometimes the presence of water accelerates the 

conversion rate 

Relatively lower yield than for catalytic 

conventional process 

 Simpler purification steps involved More energy is required, especially in the heating 

step 

 Simpler separation steps involved High temperature and pressure required 

 High quality glycerine produced as a by-product High alcohol/oil ratio required 

 Environmentally friendly as a smaller amount of 

chemical used 

 

 Less time required  

 Low quality feedstock can be easily transformed 

into biodiesel 
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2.5. Factors Affecting Biodiesel Production ‒ Esterification & Transesterification  

There are various factors that affect the yield of biodiesel, viz. reaction temperature, reaction time, 

alcohol/oil ratio, catalyst loading and stirrer speed. The aforementioned factors are specific for 

esterification and transesterification reactions were edible and non-edible oils react with alcohol in the 

presence of a catalyst.  

2.5.1. Temperature 

N.i et al. (2018) recorded an increase in biodiesel yield with an increase in reaction temperature up to 

the boiling point of the alcohol used. This is to be expected as the reaction is endothermic with positive 

activation energy. Additionally, soap formation was observed when reaction temperature exceeded the 

boiling point of the alcohol used and this can be attributed to the triglycerides present in the feedstock 

(waste cooking oil). They also noted the formation of a waxy solution upon addition of alcohol and 

catalyst (NaOH) when oil temperature was in excess. In such a case, no biodiesel could be synthesised.  

Tan et al. (2016) noted an optimal reaction temperature of 65℃ when methanol is used in conjunction 

with waste cooking oil in the presence of a homogeneous or heterogeneous catalyst in a closed reaction 

vessel. This is in accordance with literature as it corresponds to the normal boiling point temperature of 

methanol.   

Sheet (2018) investigated the effects of pre-treatment by heating prior to transesterification for waste 

cooking oil. They concluded that pre-treatment by heating past the alcohol boiling point is not 

recommended. This may be attributed to an increase in saponification rate by the catalyst during 

transesterification.    

Anguebes-Franseschi et al. (2016) employed the use of Response Surface Methodology (RSM) and 

Central Composite Design (CCD) to investigate the effects of reaction temperature; among other 

parameters; on biodiesel production from African crude palm oil. An optimal temperature of 56℃ 

resulted in a yield of 90 %, with further temperature increase resulting in saponification and reduction 

in yield.  

 

Dhawane et al. (2018) conducted parametric optimisation to investigate biodiesel production from 

waste cooking oil. The Taguchi Approach was employed for optimisation which resulted in reaction 

temperature having the largest effect (71.6 %) on biodiesel yield according to an analysis of variance 

(ANOVA). The maximum yield and optimal reaction temperature are 95.376 % and 60℃, respectively, 

when methanol is used in a molar ratio of 12:1 in the presence of 5 𝑤𝑡% H2SO4 for 3 hours.   
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2.5.2. Acid Value 

Generally, a high acid value may be noted when waste cooking oil is used as a feedstock. This is evident 

in the work of Tchameni et al. (2015) who noted an acid value of  83.07 𝑚𝑔 𝐾𝑂𝐻/𝑔 𝑜𝑖𝑙. This is above 

the limit of 2 𝑚𝑔 𝐾𝑂𝐻/𝑔 𝑜𝑖𝑙 according to literature (Tchameni, et al., 2015; Freedman & Pryde, 1982). 

Their solution involved a two-step (1) acid-catalysed esterification and (2) base-catalysed 

transesterification process to reduce the acid value to 3.32 𝑚𝑔 𝐾𝑂𝐻/𝑔 𝑜𝑖𝑙 and finally to 

0.56 𝑚𝑔 𝐾𝑂𝐻/𝑔 𝑜𝑖𝑙. Similarly, Anguebes-Franseschi et al. (2016) followed a two-step process for 

African crude palm oil with a free fatty acid content of 5.72 %.  

Whereas, Sousa et al. (2010) used castor oil with an acid value of 4.7 𝑚𝑔 𝐾𝑂𝐻/𝑔 𝑜𝑖𝑙 and glycerol in a 

ratio of 1:2, with trace amounts of base-catalyst in a neutralisation reaction to reduce the acid value to 

0.44 𝑚𝑔 𝐾𝑂𝐻/𝑔 𝑜𝑖𝑙 under constant heating at 120℃ for 2 hours. The glycerol was obtained from 

previous transesterification reactions in the presence of a base catalyst. However, the amount of glycerol 

necessary for this process is double the amount of castor oil, therefore, this method may not be feasible 

as first glycerol needs to be produced by transesterification and then used in subsequent neutralisation 

reactions.  

2.5.3. Reaction Time  

When waste cooking oil is used as a feedstock in the presence of methanol, the reaction time is typically 

60 − 90 𝑚𝑖𝑛. This is evident in the work of N.i et al. (2018) who observed a 5 % difference in biodiesel 

yield for reaction times of 60 and 90 minutes. The curve of reaction time versus biodiesel yield rises 

with time, but soon reaches equilibrium around 60 minutes. The reaction time of 60 minutes is in 

accordance with Samuel et al. (2015), who noted an optimal yield of 97.2 % when Nigerian waste 

cooking oil is used.  

In addition, Sanli & Canakci (2008) who used sunflower oil as a feedstock, noted only a 1 % increase 

in yield when the reaction time is changed from 1 ℎ to 8 ℎ. They concluded that a reaction time of 1 ℎ 

is appropriate for biodiesel production for low viscosity oils and that an extended reaction time may 

result in a decrease in yield. Furthermore, a decrease in biodiesel density was noticed when reaction 

time increased. This effect was more pronounced when soybean oil was used as compared to sunflower 

oil. They reported an inversely proportional relationship between density and reaction time for soybean 

oil and observed that all oils tested had reached the standard density for biodiesel even with a reaction 

time of 30 minutes.  

Boz et al. (2015) noted a reaction time of 9 hours during simultaneous esterification and 

transesterification of waste cooking oil as well as for testing other factors such as alcohol/oil ratio and 

catalyst (Amberlyst 15 and modified Amberlyst 15) ion-exchange capacity.  
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2.5.4. Alcohol/Oil Molar Ratio 

This ratio represents the molar quantities of alcohol that needs to be added to oil to fully convert the oil 

into biodiesel. Alcohol is typically present in excess quantities to ensure maximum conversion. N.i et 

al. (2018) described an alcohol/oil ratio of 6:1 as the optimum. In their work, higher ratios of waste 

cooking oil to alcohol led to increased glycerine and alcohol in the separation stage which led to 

decreased purity of biodiesel.  

Sanli & Canakci (2008) noted a decrease in biodiesel yield when sunflower oil was used with a 

decreased oil/alcohol ratio. Initially, the ratio of oil to methanol was 6:1 which resulted in a yield of 

97.85 %. Decreasing the alcohol/oil ratio from 6:1 to 3:1 resulted in a 20.3 % decrease in yield. The 

alcohol/oil ratio of 3:1 is the stoichiometric ratio of oil to alcohol as seen in Figure 13. Factors such as 

viscosity, density and glycerol production were also negatively affected. The viscosity was found to 

increase by 1.03 𝑚𝑚2/𝑠 whilst the density and total glycerol production increased by 0.0062 𝑔/𝑐𝑚3 

and 1.1 %, respectively. They concluded that further increase; past 6:1; in alcohol/oil ratio had very 

little effect on the yield as well as on the physical properties of the product. In this work, however, the 

oils used were of low density and viscosity which significantly contributed to the conclusion drawn. 

Further increase in the alcohol/ratio may proof beneficial when high viscosity oils are used as this 

increases the solubility and contact time of the oil in alcohol (Leung & Guo, 2006).    

 

Figure 13 ‒ Stoichiometric Transesterification Reaction (Canakci & Sanli, 2008) 

2.5.5. Alcohol Type 

According to N.i et al. (2018), methanol is more effective in the conversion of oil to biodiesel than 

ethanol as the energy required to break the hydroxide bond (𝑂𝐻−) from methanol is lower than that of 

ethanol. Therefore, for a transesterification reaction, they concluded that methanol has a higher affinity 

for waste cooking oil conversion than ethanol.   

The work of Sanli & Canakci (2008) highlighted the difficulty associated when ethanol is used in the 

transesterification reaction. They noted difficulty in separation between biodiesel and glycerol phases 
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after transesterification due to low purity ethanol (96 %). Furthermore, after physical property testing; 

density and viscosity; they noticed the similarity between the physical properties of the products and 

that of the vegetable oil used. This led to the realisation that biodiesel could not be synthesised by the 

low purity ethanol even at alcohol to oil ratios of 20:1. In addition to ethanol usage, they also 

investigated the use of propan-2-ol for transesterification. The relative low reactivity of propan-2-ol can 

be attributed to the branched hydroxide group present. Therefore, biodiesel could not be synthesised 

when propan-2-ol is used in the presence of an alkaline catalyst, even at unfeasible conditions. Sanli & 

Canakci (2008) used an acid catalyst after the unsuccessful attempt at biodiesel production using an 

alkaline catalyst. A similar procedure was noted when butan-1-ol was used.     

2.5.6. Type of Catalyst & Catalyst Loading 

The type of catalyst and catalyst loading significantly effects the yield of biodiesel produced. This is 

evident in the work of Fereidooni et al. (2017) whereby an investigation into the effect of bentonite on 

biodiesel synthesis was conducted. Waste cooking oil, potassium hydroxide and methanol were the 

reactants. Prior to transesterification, potassium hydroxide (0.6 𝑔) of concentration 21.43 𝑚𝑔/𝑚𝐿 was 

reacted with methanol (22 𝑔) and heated at 60℃ for 1 hour to form potassium methoxide. Varying 

amounts of bentonite zeolite were then added to potassium methoxide. They reported a directly 

proportional relationship between the amount of bentonite added versus biodiesel yield. This may be 

attributed to the water removing capabilities of bentonite during potassium methoxide synthesis. The 

reduction in water by bentonite serves to maintain the catalytic activity of the methoxide catalyst.    

The effect of catalyst type and loading can generally be seen in works involving biodiesel production. 

For example, Sanli & Canakci (2008) noted a decrease in yield for an increase in KOH loading from 

1 (𝑤𝑡 %) to 1.5 (𝑤𝑡 %). Excess alkaline catalyst resulted in an increase in saponification. Conversely, 

when NaOH loading was increased from 0.5 (𝑤𝑡 %) to 1 (𝑤𝑡 %), a 4.24 % increase in yield was 

observed under the same reaction conditions. Excess NaOH loading; 1.5 (𝑤𝑡 %); resulted in gelling 

which resulted in no biodiesel being synthesised. In addition, they noted longer dissolving times when 

NaOH was dissolved in methanol than that of KOH. Acid-catalysed transesterification using 𝐻2𝑆𝑂4 

occurred when propan-2-ol and butan-1-ol were used with sunflower oil. Butan-1-ol at 5 (𝑤𝑡 %) 

catalyst loading and reaction temperature of 110℃ resulted in biodiesel which was in accordance with 

EN 14214 standards whereas the biodiesel produced from propan-2-ol could not meet EN 14214 

standards, even at 3 (𝑤𝑡 %) and 5 (𝑤𝑡 %) catalyst loading and reaction temperature of 77℃. Sanli & 

Canakci (2008) also noted slow reaction times when using acid-catalysts, which is in accordance with 

literature.  

Boz et al. (2015) investigated the use of Amberlyst 15 and modified Amberlyst 15 catalyst for the 

simultaneous esterification and transesterification reaction when waste cooking oil with a high free fatty 
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acid content (1.04 − 8.04 %) is used for biodiesel production. Their findings indicated a relatively low 

biodiesel yield of 78 ± 3.39 %, corresponding to Amberlyst 15 catalyst, which may be attributed to the 

simultaneous nature of the process whereby water production during esterification resulted in hydrolysis 

of triglycerides which in turn, led to inhibited biodiesel production. Another factor contributing to lower 

yield is catalyst loading. This was investigated in the work by Anguebes-Franseschi et al. (2016), who 

reported that excess catalyst promoted saponification of triglycerides of African crude palm oil and the 

reversibility of the reaction system may also result in a lower yield if the reaction time is in excess. 

2.5.7. Stirrer Speed 

Since oil and alcohol are immiscible mixtures, significant agitation is necessary for the 

transesterification reaction to proceed timeously. N.i et al. (2018) reported highest biodiesel yields for 

maximum stirrer speeds of 600 and 800 𝑟𝑝𝑚 when ethanol and methanol, respectively, is used with 

waste cooking oil. The speed of the stirrer is important in the mixing of the alcohol and catalyst, in the 

case of heterogeneous catalysts, the catalyst and alcohol must be mixed under heating, such that the 

alcohol adsorbs onto the catalyst surface.  

Karmakar et al. (2018) reported that stirrer speed is an important parameter in castor oil esterification 

owing to the high viscosity of castor oil, especially when the reaction temperature is low. They 

concluded that higher stirrer speeds below the optimum speed leads to an increase in turbulence within 

the reaction mixture, thus promoting interactions between the reactants at a molecular scale. According 

to their findings, they report that a stirrer speed of 700 𝑟𝑝𝑚 is sufficient to overcome external mass 

transfer limitations associated with the catalyst, oil and alcohol and does not result in reduced contact 

time between the aforementioned reactants. In the case of castor oil esterification, an increase in reaction 

rate and Free Fatty Acid conversion was observed with an increase in stirrer speed up to the optimum 

speed of 700 𝑟𝑝𝑚. 

2.6. Biodiesel Optimization  

There are a variety of factors that influence the production and optimisation of biodiesel, however, the 

common factors generally include, temperature, reaction time, alcohol/oil ratio and catalyst loading. 

These factors are specific to the reaction system and will not be applicable to similar reaction systems 

with minor differences therefore for the best results, optimisation should occur for every reaction 

system. Typically, one variable at a time (OVAT), Central Composite Design (CCD) and Box-Behnken 

Design (BBD) are used for the optimisation of biodiesel production.   

2.6.1. One variable at a time (OVAT) 

This method of optimisation is regarded in literature as the most basic form of optimisation and 

functions by fixing specific variables as constants whilst varying the other variable. This method of 

optimisation makes discovering the optimal conditions much easier as one may be able to see which 
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variables have produced the largest impact on the yield of biodiesel. Furthermore, since other variables 

are fixed, when the effect of the changing variable is plotted against yield, it will be clear from the plot 

where the optimal condition that results in the highest yield lies.  

2.6.2. Central Composite Design (CCD) 

A Central Composite Design may be regarded as a design comprising a cube and a star portion. This 

design is recommended for sequential experiments due to its ability to capture information from a 

properly planned two-level factorial experiment. Furthermore, the CCD can easily estimate regression 

parameters in a full quadratic regression model and has orthogonal blocks. The design is rotatable or 

nearly rotatable.   

2.6.3. Box-Behnken Design (BBD) 

A Box-Behnken Design may be regarded as a cube comprising design points at either the center of the 

cube or at the midpoints of the lines making up the cube, or a possible combination of the two 

aforementioned methods. Additionally, this design method does not operate at all design factors at the 

extremes simultaneously. A key advantage of this design is the efficiency of estimation of regression 

coefficients in a regression model. The model may be regarded as rotatable or nearly rotatable and the 

design has orthogonal blocks. Generally, in literature, when compared to Central Composite Design 

(CCD), it can be seen that BBD has fewer experiments that need to be conducted for the same number 

of factors. This may be regarded as more economical since fewer resources need to be used to achieve 

similar results. The following figure provides a visual representation of the Box-Behnken Design.   

 

Figure 14 ‒ Box-Behnken Design  

According to Ferreira et al. (2007), the Box-Behnken design easily estimates regression parameters for 

a full quadratic model and permits the building of sequential designs by the use of multiple blocks. In 

addition, the design is able to determine the lack of fit of the model to the data set. Furthermore, in their 

work in the comparison between Box-Behnken design, Central Composite design, Doehlert Matrix and 
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full factorial designs, the Box-Behnken design and Doehlert Matrix was shown to be more efficient 

than the Central Composite design and very efficient when compared to the full factorial design.   

2.7. Summary 

As seen in this chapter, there are many ways to produce biodiesel, however, transesterification using a 

homogeneous base catalyst is mostly used. However, as technology improves and the need for biodiesel 

becomes greater, emerging technologies such as supercritical methanol transesterification and 

ultrasonic assisted transesterification may prove vital in meeting the demand of biodiesel. Currently, 

biodiesel is more expensive than petro-diesel, which may be attributed to the high price of the feedstock 

used in the production of biodiesel. This may be mitigated by the use of microalgae as a feedstock 

which do not require large areas for cultivation, however, expensive temperature and environmental 

controls are required to cultivate the microalgae.   

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

Chapter 3 – Equipment Description  

3.1. Introduction  

This chapter focuses mainly on providing a concise image of the experimental setup. The optimization 

methodology chosen for this study is the Box-Behnken Design (BBD). Although two oils, viz. castor 

oil and sunflower oil, were used, the process of esterification and transesterification of castor oil resulted 

in effectively three independent experiments. As such, 27 separate experiments were conducted for 

each of the three feedstocks, i.e. base castor oil, esterified castor oil and sunflower oil.  

3.2. Materials Used  

The following raw materials were of analytical grade and used without further purification: 

Table 21 – Raw Materials 

Material Supplier  Purity 

Castor oil KIWA BCS Oeko-garantie − 

Sunflower oil LICHRO  − 

Methanol Sigma-Aldrich  ≥ 99.8 % 

Calcium oxide catalyst (CaO) Radchem Analytical Grade (AR) 

Sulphuric acid Radchem Analytical Grade (98 %) 

However, additional materials were necessary for physical property testing according to ASTM 

standards. Toluene and propan-2-ol were used in conjunction with water in the ratio of 100: 99: 1, 

respectively, to form the titration solvent necessary for the determination of the acid value. Potassium 

hydroxide was used as the titrant when combined with water to form a 0.1 𝑀 solution. Ethanol and 

hydrochloric acid were used with potassium hydroxide to determine the saponification value of the oils. 

Hexane was used to wash the catalyst surface during the catalyst reusability study which was conducted 

independently from the experimental procedure. Finally, kerosene was used in the blending process 

with biodiesel from the respective oils to produce bio-jet fuel.  

Table 22 – Additional Materials Used 

Material Supplier Purity 

Toluene Merck Analytical Grade (≥ 99 %) 

Propan-2-ol Radchem Analytical Grade (AR) 

n-Hexane Sigma-Aldrich  Analytical Grade (AR) 

Potassium hydroxide Radchem Analytical Grade (AR) 

Ethanol  Sigma-Aldrich  Analytical Grade (AR) 

Hydrochloric Acid Sigma-Aldrich  Analytical Grade (AR) 

Kerosene LICHRO − 
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3.3. Equipment Used  

The following equipment was used to facilitate the esterification and transesterification of castor oil and 

transesterification of sunflower oil. The figure shown below is to be used in conjunction with the table 

below: 

Table 23 ‒ Equipment Used 

Equipment Key Description 

Burette (50𝑚𝑙)  To determine the acid content of the base oil and biodiesel produced by titration 

against 0.1 𝑀 KOH solution  

Centrifuge   Facilitates the separation of solid catalyst from the biodiesel and glycerol mixture 

Magnetic stirrer and 

heater (500𝑚𝑙) 

1 To impart kinetic energy into the reaction vessel whilst providing magnetic 

stirring via a magnetic stirrer bar 

Reflux condenser 2 To condense methanol vapours during the reaction, thus increasing the oil/alcohol 

contact time and improving yield 

Rotary Evaporator  To remove excess water and methanol residuals present in the biodiesel after hot 

water washing 

Separation funnel 

(500𝑚𝑙) 

3 Allows biodiesel to easily settle at the top of the funnel for easy removal of the 

bottom glycerol layer 

Stirrer bar  4 Ensures the vigorous mixing of the oil and alcohol with the catalyst 

Thermometer  5 To measure the average kinetic energy of the reaction proceedings. To enable 

suitable temperature adjustments to maintain isothermal conditions 

Three-necked flask 

(500𝑚𝑙) 

6 To contain the reaction contents and to facilitate the addition of a thermometer and 

reflux condenser  

Water bath 7 Provides cold water to the condenser, which in turn condenses the methanol 

vapours  
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3.4. Experimental Setup 

 

Figure 15 ‒ Experimental Setup (Schematic) 

The following picture of the experimental setup may aid to visualise the process: 

 

Figure 16  ‒ Experimental Setup (Picture) 
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3.5. Summary 

In general, the equipment used is in accordance with conventional transesterification equipment. 

However, minor losses in yield may have occurred during transfer of the sample from the vials used for 

centrifugation to the separation funnel. Overnight settling coupled with water washing may have also 

resulted in loss of yield. The evidence of saponification was seen in many experiments, and due to the 

type of catalyst used, more soap was produced upon water washing. Water washing was necessary to 

improve the quality of the biodiesel.    
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Chapter 4 – Experimental Design & Methodology 

4.1. Introduction 

The experimental design follows a Box-Behnken Design with 4 factorials, viz. reaction temperature, 

reaction time, alcohol/oil molar ratio and catalyst loading. An acid value limit of 2 𝑚𝑔 𝐾𝑂𝐻/𝑔 𝑜𝑖𝑙 is 

recommended in literature (Tchameni, et al., 2015; Freedman & Pryde, 1982). Preliminary acid value 

testing of commercial castor and sunflower oils revealed the need for a two-step esterification and 

transesterification process for castor oil as the acid number was greater than 2 𝑚𝑔 𝐾𝑂𝐻/𝑔 whereas a 

single transesterification reaction was sufficient for sunflower oil as it had an acid value lower than the 

allowed amount. Additionally, it is widely reported in literature that biodiesel produced from castor oil 

in a single transesterification reaction has a high kinematic viscosity which does not meet ASTM 

standards.  

4.2. Experimental Design  

As evident in Table 24, Table 25 and Table 26, the four factors varied were temperature, catalyst 

loading, reaction time and alcohol/oil ratio. According to the Box-Behnken experimental design 

conducted on Minitab™, there are a minimum of 27 experiments, inclusive of 3 replicates which are 

highlighted in bold font. The experiments are randomised to minimise experimental error.   

The amount of required experiments for optimisation is calculated via the following equation (Srikanth, 

et al., 2018): 

𝑁 = 2𝑘(𝑘 − 1) + 𝐶 

Where, 𝑁, represents the number of experiments and 𝑘 represents the number of independent variables 

or predictors and 𝐶 represents the central points necessary for model validation and determination of 

coefficients.  

𝑁 = 2 ∗ 4 ∗ (4 − 1) + 3 = 27 

Table 24 ‒ Castor Oil Esterification Experimental Box-Behnken Design 

Std Order Run Order Pt Type Blocks Temperature 

(℃) 

Catalyst 

Loading (𝑤𝑡%) 

Time 

(𝑚𝑖𝑛) 

Alcohol/Oil 

Ratio 

13 1 2 1 47 0.25 30 9.5 

24 2 2 1 47 3.25 75 15 

22 3 2 1 47 3.25 75 4 

10 4 2 1 64 1.75 75 4 

20 5 2 1 64 1.75 120 9.5 

2 6 2 1 64 0.25 75 9.5 

18 7 2 1 64 1.75 30 9.5 
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4 8 2 1 64 3.25 75 9.5 

6 9 2 1 47 1.75 120 4 

3 10 2 1 30 3.25 75 9.5 

25 11 0 1 47 1.75 75 9.5 

9 12 2 1 30 1.75 75 4 

1 13 2 1 30 0.25 75 9.5 

8 14 2 1 47 1.75 120 15 

7 15 2 1 47 1.75 30 15 

19 16 2 1 30 1.75 120 9.5 

21 17 2 1 47 0.25 75 4 

16 18 2 1 47 3.25 120 9.5 

26 19 0 1 47 1.75 75 9.5 

5 20 2 1 47 1.75 30 4 

11 21 2 1 30 1.75 75 15 

12 22 2 1 64 1.75 75 15 

23 23 2 1 47 0.25 75 15 

17 24 2 1 30 1.75 30 9.5 

15 25 2 1 47 0.25 120 9.5 

27 26 0 1 47 1.75 75 9.5 

14 27 2 1 47 3.25 30 9.5 

Table 25 ‒ Castor Oil Transesterification Experimental Box-Behnken Design 

Std Order Run Order Pt Type Blocks Temperature 

(℃) 

Catalyst 

Loading (𝑤𝑡%) 

Time 

(𝑚𝑖𝑛) 

Alcohol/Oil 

Ratio 

3 1 2 1 30 1.5 75 9.5 

1 2 2 1 30 0.5 75 9.5 

11 3 2 1 30 1 75 15 

21 4 2 1 47 0.5 75 4 

5 5 2 1 47 1 30 4 

17 6 2 1 30 1 30 9.5 

6 7 2 1 47 1 120 4 

26 8 0 1 47 1 75 9.5 

16 9 2 1 47 1.5 120 9.5 

20 10 2 1 64 1 120 9.5 

25 11 0 1 47 1 75 9.5 

10 12 2 1 64 1 75 4 

15 13 2 1 47 0.5 120 9.5 

23 14 2 1 47 0.5 75 15 

22 15 2 1 47 1.5 75 4 

7 16 2 1 47 1 30 15 

13 17 2 1 47 0.5 30 9.5 

9 18 2 1 30 1 75 4 

19 19 2 1 30 1 120 9.5 

12 20 2 1 64 1 75 15 

27 21 0 1 47 1 75 9.5 
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8 22 2 1 47 1 120 15 

18 23 2 1 64 1 30 9.5 

24 24 2 1 47 1.5 75 15 

2 25 2 1 64 0.5 75 9.5 

4 26 2 1 64 1.5 75 9.5 

14 27 2 1 47 1.5 30 9.5 

Table 26 ‒ Sunflower Oil Transesterification Experimental Box-Behnken Design 

Std Order Run Order Pt Type Blocks Temperature 

(℃) 

Catalyst 

Loading (𝑤𝑡%) 

Time 

(𝑚𝑖𝑛) 

Alcohol/Oil 

Ratio 

14 1 2 1 47 1.5 30 9.5 

7 2 2 1 47 1 30 15 

16 3 2 1 47 1.5 120 9.5 

27 4 0 1 47 1 75 9.5 

21 5 2 1 47 0.5 75 4 

20 6 2 1 64 1 120 9.5 

26 7 0 1 47 1 75 9.5 

24 8 2 1 47 1.5 75 15 

17 9 2 1 30 1 30 9.5 

22 10 2 1 47 1.5 75 4 

8 11 2 1 47 1 120 15 

15 12 2 1 47 0.5 120 9.5 

2 13 2 1 64 0.5 75 9.5 

12 14 2 1 64 1 75 15 

6 15 2 1 47 1 120 4 

13 16 2 1 47 0.5 30 9.5 

5 17 2 1 47 1 30 4 

1 18 2 1 30 0.5 75 9.5 

10 19 2 1 64 1 75 4 

18 20 2 1 64 1 30 9.5 

23 21 2 1 47 0.5 75 15 

11 22 2 1 30 1 75 15 

4 23 2 1 64 1.5 75 9.5 

25 24 0 1 47 1 75 9.5 

9 25 2 1 30 1 75 4 

19 26 2 1 30 1 120 9.5 

3 27 2 1 30 1.5 75 9.5 
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4.3. Experimental Method 

The following experimental method was followed for esterification of castor oil: 

1. Weight exactly 286.5 𝑔 of castor oil in the 3-neck flask which corresponds to a volume of 

300 𝑚𝑙 

2. Proceed to preheat the oil to the desired operating temperature as determined by the Box-

Behnken Design 

3. Weight the alcohol in an appropriate measuring cylinder depending on the alcohol/oil molar 

ratio 

4. Weight the catalyst in a smaller beaker or measuring cylinder depending on the catalyst loading  

5. Mix and heat the catalyst and alcohol prior to addition into the reaction flask 

6. Once the oil has reached the desired temperature, proceed with the addition of the catalyst and 

alcohol mixture 

7. Carefully maintain the reaction temperature using the temperature controller at the desired 

temperature 

8. Once complete, empty contents into separation funnel for gravity separation overnight 

9. Proceed with decantation of the bottom glycerol, unreacted oil, alcohol and catalyst layer 

10. Follow with hot water washing using hot tap water several times until the bottom wash water 

layer is clear 

11. Proceed with rotary evaporation at 90℃ and 150 𝑚𝑏𝑎𝑟 to remove water and alcohol 

12. Measure out the biodiesel produced and calculate the yield via the following equation: 

 𝑌𝑖𝑒𝑙𝑑 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙
 

13. Proceed with acid value testing according to ASTM D974 

14. Proceed with the optimization of esterification of castor oil and determine the optimal 

conditions 

15. Conduct castor oil esterification at the optimal conditions for model validation 

A similar procedure was followed for transesterification of esterified castor oil and sunflower oil with 

minor differences: 

1. Calculate the adjusted amount of esterified castor oil biodiesel produced and sunflower oil 

which is to be used as the feedstock for the transesterification process  

2. Proceed with calcination of Calcium Oxide (CaO) catalyst at 600℃ for 3 hours and store in a 

desiccator under vacuum conditions with potassium hydroxide (KOH) pellets to remove 

moisture from the catalyst sample 

3. Mix the catalyst and alcohol under heating to the required conditions and thermostat the 

esterified castor oil/sunflower oil to the required conditions separately. Add approximately 
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0.2 (𝑤𝑡 % 𝑜𝑖𝑙) water to the catalyst and alcohol mixture and leave for a period of 30 𝑚𝑖𝑛𝑠, 

after which time the esterified castor oil/sunflower oil may be added and the timer can start 

4. Proceed with neutralisation of the base catalyst by a calculated amount of acid 

5. Proceed with high speed centrifugation separation then transfer to a separating funnel for 

overnight gravity separation 

6. Proceed with hot tap water washing and decantation until the bottom layer is clear  

7. Proceed with rotary evaporation at 90℃ and 150 𝑚𝑏𝑎𝑟 to remove residual water and alcohol 

8. Calculate the yield via the following equation:  

𝑌𝑖𝑒𝑙𝑑 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑒𝑠𝑡𝑒𝑟𝑖𝑓𝑖𝑒𝑑/𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 𝑜𝑖𝑙
 

4.4. Analytical Method – Gas Chromatography Analysis 

In this work, biodiesel synthesized from esterified castor oil and sunflower oil at the optimal conditions 

was subject to GC-MS analysis. An Ultra Alloy column type was used with a diameter, length and 

thickness of 0.25 𝑚𝑚, 30 𝑚 and 0.25 𝜇𝑚, respectively, within a Shimadzu Gas Chromatography Mass 

Spectroscopy (GC-MS) machine. An injection temperature of 250℃ and column oven temperature of 

120℃ were set. The injection mode of split ratio was selected and a split ratio of 30 was used for a 

0.1 𝜇𝐿 injection and a solvent cut time of 1 𝑚𝑖𝑛 was employed. Helium carrier gas was used with a 

linear velocity of 37.5 𝑐𝑚/𝑠 whilst the total flow, column flow and pressure were set to 34 𝑚𝐿/𝑚𝑖𝑛, 

1 𝑚𝐿/𝑚𝑖𝑛 and 80.6 𝑘𝑃𝑎, respectively. The temperature program for the column oven temperature was 

as follows, (1) an initial temperature of 120℃ which increases at a rate of 10℃/𝑚𝑖𝑛 to a temperature 

of 180℃, (2) the temperature of 180℃ is held for 1 𝑚𝑖𝑛, (3) after which a final temperature of 240℃ 

is achieved by heating at a rate of 2℃/𝑚𝑖𝑛. In addition, a purge flow of 3 𝑚𝐿/𝑚𝑖𝑛 was employed. The 

above settings resulted in a run-time of 37 𝑚𝑖𝑛𝑠 and were specific to the Gas Chromatography machine 

(Warra, 2015).  

With reference to the Mass Spectroscopy machine, an ion source temperature and interface temperature 

of 250℃ and 280℃ was selected. The run-time for the Mass Spectroscopy machine was also 37 𝑚𝑖𝑛𝑠 

with an event time of 0.5 𝑠 and a scan speed of 1428. The aforementioned settings are adapted from 

the work of Warra (2015), however, modifications were necessary depending on the type of oil used 

and chromatogram produced.    

4.5. Summary 

The experimental design was conducted on Minitab™ using the Box-Behnken response surface 

methodology. A total of 27 experiments is to be conducted for each of the three different feedstocks, 

i.e. base castor oil, esterified castor oil and sunflower oil. The resulting biodiesel is then analysed by 

gas chromatography and mass spectroscopy to identify the compounds present.  
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Chapter 5 – Results & Discussion: Castor Oil Esterification 

5.1. Introduction  

This chapter focuses mainly on the esterification of castor oil using sulphuric acid as a catalyst to reduce 

the acid value of castor oil. Box-Behnken response surface methodology has been employed to design 

and optimise for the conditions necessary to achieve the lowest possible acid value of the castor oil. 

The resulting esterified castor oil; at the optimal conditions; was then subject to transesterification via 

heterogeneous catalyst as discussed in the next chapter. The design, optimisation and statistical analysis 

was performed on Minitab™. In this section, 𝐴, 𝐵, 𝐶 and 𝐷 represent Temperature, Catalyst loading, 

Reaction time and Methanol/Oil molar ratio, respectively.   

5.2. Statistical Models   

Upon the completion of the design and conduction of the experiments, the values of the response 

variable; Free Fatty Acid (FFA % oleic acid); was entered into the software. Table 27 shows the 

statistical models that were tested. At first glance, it can be seen that the full quadratic model provides 

the best description for the current experimental data. Furthermore, the F-Value is the highest for the 

full quadratic model, which means that the model can sufficiently predict the responses associated with 

the data. In addition, the linear models could not predict some of the coefficients in the model and had 

to be omitted, whereas the full quadratic model was able to predict the coefficients for all the terms used 

in the model. The R-Squared value is also the highest for the full quadratic model which means that the 

goodness of fit of the data by the quadratic model is sufficient. Furthermore, the difference in the R-

Squared and R-Squared adjusted value is less than 0.1, therefore the full quadratic model may be 

assumed suitable for the determination of the optimal conditions for esterification (Halder, et al., 2015).  

Table 27 ‒ Statistical Model Testing for Castor Oil Esterification  

Model Summary Sum of Squares R-squared R-squared (adjusted) F-Value Suggestion 

Linear 184.714 62.11 % 55.23 % 9.02 Not Suggested 

Linear + Squares 246.578 82.92 % 75.33 % 10.92 Not Suggested 

Linear + Interactions 233.172 78.41 % 64.92 % 5.81 Not Suggested 

Full Quadratic 295.036 99.21 % 98.29 % 107.98 Suggested 

 

5.3. Statistical Analysis 

With reference to Table 28, it can be seen that the full quadratic model is very significant with a high 

F-Value and very low P-Value (Halder, et al., 2015). Additionally, it can be seen that the alcohol/oil 

molar ratio has the biggest influence on the data analysis because it has the highest F-Value, followed 

by catalyst loading, temperature and finally reaction time. Furthermore, the P-Value for all linear factors 

is very significant and well below the confidence interval used for the statistical analysis of 95%. 
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Therefore, it can be said that the observations recorded in the experiments did not happen by chance as 

the probability of that happening is very low, as indicated by the low P-Value of the model.  

Table 28 ‒ Analysis of Variance (ANOVA) for Castor Oil Esterification (Full Quadratic Model) 

Analysis of Variance (ANOVA) 

Source DF Adjusted Sum of Squares Adjusted Mean of Squares F-Value P-Value 

Model 14 295.036 21.074 107.98 < 0.0001 

Linear 4 184.714 46.178 236.61 < 0.0001 

  A 1 12.506 12.506 64.08 < 0.0001 

  B 1 46.306 46.306 237.26 < 0.0001 

  C 1 3.799 3.799 19.46 0.001 

  D 1 122.103 122.103 625.62 < 0.0001 

Square 4 61.864 15.466 79.24 < 0.0001 

  A*A 1 2.251 2.251 11.54 0.005 

  B*B 1 5.117 5.117 26.22 < 0.0001 

  C*C 1 6.638 6.638 34.01 < 0.0001 

  D*D 1 27.439 27.439 140.59 < 0.0001 

2-Way Interaction 6 48.458 8.076 41.38 < 0.0001 

  A*B 1 5.924 5.924 30.35 < 0.0001 

  A*C 1 0.242 0.242 1.24 0.287 

  A*D 1 22.468 22.468 115.12 < 0.0001 

  B*C 1 1.315 1.315 6.74 0.023 

  B*D 1 9.11 9.11 46.68 < 0.0001 

  C*D 1 9.399 9.399 48.16 < 0.0001 

Error 12 2.342 0.195 
  

  Lack-of-Fit 10 2.326 0.233 28.83 0.034 

  Pure Error 2 0.016 0.008   

Total 26 297.378    

The factors that have the largest influence on the process are the linear terms of alcohol/oil molar ratio 

followed by catalyst loading and the quadratic effects of alcohol/oil molar ratio which is followed by 

the interaction between temperature and alcohol/oil molar ratio. 

Table 29 ‒ Coded Coefficients for Castor Oil Esterification (Full Quadratic Model) 

Coded Coefficients 

Term Effect Coefficient SE Coefficient T-Value P-Value VIF 

Constant 
 

5.97 0.255 23.4 < 0.0001 
 

A -2.042 -1.021 0.128 -8 < 0.0001 1 

B 3.929 1.964 0.128 15.4 < 0.0001 1 

C -1.125 -0.563 0.128 -4.41 0.001 1 

D -6.38 -3.19 0.128 -25.01 < 0.0001 1 

A*A -1.299 -0.65 0.191 -3.4 0.005 1.25 

B*B -1.959 -0.979 0.191 -5.12 < 0.0001 1.25 

C*C -2.231 -1.116 0.191 -5.83 < 0.0001 1.25 
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D*D 4.536 2.268 0.191 11.86 < 0.0001 1.25 

A*B -2.434 -1.217 0.221 -5.51 < 0.0001 1 

A*C 0.492 0.246 0.221 1.11 0.287 1 

A*D -4.74 -2.37 0.221 -10.73 < 0.0001 1 

B*C -1.147 -0.573 0.221 -2.6 0.023 1 

B*D 3.018 1.509 0.221 6.83 < 0.0001 1 

C*D -3.066 -1.533 0.221 -6.94 < 0.0001 1 

 

Table 30 ‒ Model Summary for Castor Oil Esterification (Full Quadratic Model) 

Model Summary 

S                   R-squared R-squared (adjusted) R-squared (predicted) 

0.441781  99.21 % 98.29 % 95.48 % 

 

As evident by Table 30, the R-Squared value is very close to unity which means that the model gives a 

true representation of the data from the experiments. In addition, the optimal values may be found easily 

because the model may be used for interpolation within the experimental range.  

The full quadratic model is shown in the following equation (Halder, et al., 2015): 

𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖𝑋𝑖 + ∑ 𝛽𝑖𝑖𝑋𝑖
2 + ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑖<𝑗

𝑘

𝑖=1

𝑘

𝑖=1

 (5.1) 

Where, the constant, linear, linear and squares and two-way interaction terms are captured by the first, 

second, third and fourth terms of Eq. (5.1), respectively. The fully expanded version of Eq. (5.1) is 

shown below: 

𝑌 = 𝛽𝑜 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽11𝑋1
2+ 𝛽22𝑋2

2+ 𝛽33𝑋3
2+ 𝛽44𝑋4

2 

      + 𝛽12𝑋1𝑋2  +  𝛽13𝑋1𝑋3 +  𝛽14𝑋1𝑋4 +  𝛽23𝑋2𝑋3 +  𝛽24𝑋2𝑋4 +  𝛽34𝑋3𝑋4 
(5.2) 

The regression equation obtained via multiple regression analysis is shown below in coded units, where 

𝐴, 𝐵, 𝐶 and 𝐷 represent Temperature, Catalyst loading, Reaction time and Methanol/Oil molar ratio, 

respectively.   

𝑌 = −6.28 + 0.4515 ∗ 𝐴 + 3.976 ∗ 𝐵 + 0.1287 ∗ 𝐶 − 0.669 ∗ 𝐷 − 0.002248 ∗ 𝐴2 

       −0.4353 ∗ 𝐵2 − 0.000551 ∗ 𝐶2 + 0.07498 ∗ 𝐷2 − 0.04772 ∗ 𝐴𝐵 + 0.000322 ∗ 𝐴𝐶 

       −0.02535 ∗ 𝐴𝐷 − 0.00850 ∗ 𝐵𝐶 + 0.1829 ∗ 𝐵𝐷 − 0.006194 ∗ 𝐶𝐷 

(5.3) 
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5.4. The Individual Effects of Process Parameters on FFA (% Oleic Acid) 

The objective of this study was to determine the optimal conditions necessary to reduce the acid value 

of castor oil via esterification in the presence of methanol and sulphuric acid. Therefore, it is crucial to 

evaluate the effects that each variable has on the response variable. The individual effects can be seen 

by the Analysis of Variance (ANOVA)  in Table 28, whereas the interaction of two parameters and the 

resulting effect on the response variable can be visualised by a surface plot. The design and optimisation 

methodology for this work is the Box-Behnken Design, which employs the use of response surfaces to 

visualise the effects and interaction between parameters on the response variable. For the purposes of 

consistency, the constant setting for all variables was kept at the midpoints, i.e. temperature of 47℃, 

catalyst loading of 1.75 𝑤𝑡%, time of 75 𝑚𝑖𝑛𝑠 and alcohol/oil molar ratio of 9.5.    

5.4.1. The Effect of Temperature on FFA (% Oleic Acid) 

The temperature values employed for this work are 30 ℃, 47 ℃ and 64 ℃. Although higher 

temperature ranges were employed in similar works, this range was chosen to give the best possible 

result as the optimised temperature should certainly fall within this range. Furthermore, it is reported in 

literature that the reaction temperature should not exceed that of the boiling point of the alcohol used 

(N.i, et al., 2018). In this work, the alcohol chosen was methanol which has a normal boiling point 

temperature of 64.7 ℃ (Kundu, et al., 2016).   

In addition, should the reaction temperature exceed that of the boiling point of the alcohol, 

saponification and a reduction in yield may be observed as in the case of (N.i, et al., 2018; Tan, et al., 

2016). A similar conclusion was drawn by Halder et al. (2015) who noted that an increase in temperature 

results in a decrease in the conversion of FFAs in castor oil. Ultimately, they concluded that when all 

other variables are kept constant whilst temperature is varied, lower temperatures; 40 ℃; favoured the 

conversion of FFAs and higher temperatures; 80 ℃; past the boiling point of methanol were inefficient 

in the conversion of FFAs.  

According to the work by Halder et al. (2015), the parameter that has the biggest influence on castor oil 

esterification in the presence of sulphuric acid and methanol is reaction temperature, which is followed 

by alcohol/oil molar ratio, catalyst loading and lastly reaction time. However, temperature may 

influence the FFA content when high temperatures are used, as in the case of Halder et al. (2015) who 

employed a temperature range of 50 − 70℃, whereas the temperature range for this work was much 

milder and was in the range of 30 − 64℃. Higher operating conditions may have also led to the 

conclusion drawn earlier. Furthermore, despite different operating conditions and raw materials, similar 

conclusions were drawn by Khan et al. (2010) who conducted acid esterification on crude palm oil and 

rubber seed oil blend. Similar to the works cited above, this work also determined that reaction time has 

the smallest effect on the process. 
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As shown in Figure 17, a contradiction between the work of Halder et al. (2015) and this work was 

observed in the case of temperature effects. This may be as a result of the baseline of the other three 

variables. Simply put, the other variables may have influenced the FFAs much more at their baselines, 

which may have negated the effects of temperature variation on the FFAs. This suggestion is validated 

by the ANOVA analysis found in Table 28 which shows the vast differences between the respective F-

Values. The F-Values of alcohol/oil molar ratio, catalyst loading and temperature are 625.62, 237.26 

and 64.08, respectively. 

 

Figure 17 ‒ Effect of Temperature (A) on FFA (% Oleic Acid)  

As mentioned previously, a high F-Value implies that the parameter is statistically significant to the 

process. Therefore, the effect of temperature may have been minimal due to its relatively low F-Value 

as compared to alcohol/oil molar ratio and catalyst loading. Furthermore, Kundu et al. (2016) reported 

that lower temperatures have a higher effect on FFA conversion than alcohol/oil molar ratio when castor 

oil esterification is conducted in the presence of sulphuric acid and methanol. However, it is reported 

in literature that higher temperatures below the boiling point of the alcohol serve to increase the reaction 

rate during transesterification and lower temperatures require longer reaction times (Kundu, et al., 

2016). Similarly, in this work for esterification, the high temperature limit of 64℃ may have caused an 

increase in reaction rate which led to the conversion of FFAs in the castor oil.  

Higher operating temperatures may also result in a positive effect on the physical properties of the 

esterified castor oil/biodiesel produced in the case of esterification. Deshpande et al. (2012) noted that 

an increase in reaction temperature results in a decrease in the physical properties of the biodiesel 

produced from castor oil in the presence of sulphuric acid. In their work, when temperature increased 

from 30℃ to 50℃, the kinematic viscosity of the products decreased by 25.9 %. In addition, a decrease 

in the density and FFA of the products was reported with an increase in reaction temperature.  

In addition, while other works may have focused on producing biodiesel via acid-catalysed 

esterification, this work focused on conducting esterification for the purposes of FFA reduction and to 
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find the optimal conditions at which the FFAs are minimised, which will later be trans-esterified via 

heterogeneous base catalysis to produce biodiesel. Therefore, the reaction time for esterification was 

relatively low at 30 − 120 𝑚𝑖𝑛𝑠 whilst reaction times of (0 − 4 ℎ) are reported by Halder et al. (2015) 

and Kundu et al. (2016) who conducted castor oil esterification using sulphuric acid and methanol. As 

such, deviations from literature is to be expected as the process conditions as well as the end products 

are different. However, Deshpande et al. (2012) noted a decrease in FFA content with an increase in 

temperature for castor oil esterification in the presence of sulphuric acid and methanol which is in 

accordance with this work.        

5.4.2. The Effect of Catalyst Loading on FFA (% Oleic Acid) 

The catalyst loading for this section was in the range of 0.25 − 3.25 (𝑤𝑡%) of the oil used Halder et 

al. (2015). The lower limit of the catalyst loading allowed for the optimal conditions for esterification 

to be found due to the relatively large operation range whilst minimising catalyst loading during 

experiments.  

 

Figure 18 ‒ Effect of Catalyst Loading (B) on FFA (% Oleic Acid)  

Sulphuric acid is among the most common acid catalyst for esterification due to its relatively low cost 

and availability (Hayyan, et al., 2011). Furthermore, sulphuric acid is highly efficient at high 

temperatures and in the case of esterification, is less likely to result in saponification (Hayyan, et al., 

2011). As can be seen from Figure 18, when the catalyst loading increases so does the FFA content. 

This result is expected as higher catalyst ratios promote water formation during esterification. 

Furthermore, water present in the feedstock may have aided in the result shown in Figure 18. Similar 

observations were noticed in the work of Agra & Warnijati (1996) who produced motor oil via castor 

oil esterification in the presence of ethanol and sulphuric acid.  

Furthermore, similar results were recorded by Kundu et al. (2016) who found the optimal conditions of 

catalyst loading at 1 (𝑤𝑡%) of the mass of castor oil used in esterification. They concluded that as 

catalyst loading increased past 1 (𝑤𝑡%), the conversion of FFAs were minimal, hence further increase 
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in catalyst loading would only result in higher operating costs. However, the opposite observation was 

reported by Ferdous et al. (2013) who conducted acid catalysed castor oil esterification in the presence 

of methanol and sulphuric acid. They reported that as catalyst loading increases, the FFA conversion 

also increases up to a certain constant value.  

The base castor oil used in the work of Ferdous et al. (2013) had a similar acid value to the castor oil 

used in this work, however, the conditions at which they evaluated the effect of catalyst loading on FFA 

was very different to this work. In particular, the alcohol/oil molar ratio and reaction temperature of 

9.5: 1 and 47℃, respectively, was employed in this work whilst a ratio and reaction temperature of 6: 1 

and 60℃, respectively, was employed in their work. According to the statistical analysis in this work, 

the alcohol/oil molar ratio may have resulted in the difference between their results and the literature 

results. The results shown in Figure 18 is in accordance with Halder et al. (2015) and Deshpande et al. 

(2012).  

Another benefit of operation at lower catalyst loadings would be the positive effect on the kinematic 

viscosity of the product. Deshpande et al. (2012) reported that higher catalyst loadings resulted in 

biodiesel with higher viscosities. This may lead to biodiesel which does not fulfil ASTM fuel standards. 

Therefore, catalyst loading should be kept at a minimum for an economical process as well as for the 

production of biodiesel with a kinematic viscosity in the range of ASTM fuel standards.  

With reference to Figure 18, it can be seen that an increase in catalyst loading has a negative effect of 

FFA conversion. This may be as a result of the base castor oil having a high amount of FFAs which 

when combined with the increased acid catalyst loading serve to inhibit the catalytic activity of the 

catalyst as the catalyst cannot provide suitable activity when the acid concentration is beyond a specific 

concentration within the reaction vessel (Banani, et al., 2015).   

 

5.4.3. The Effect of Time on FFA (% Oleic Acid) 

The reaction time for this section was chosen to be in the range of 30 − 120 𝑚𝑖𝑛𝑠. As mentioned 

previously, longer reaction times may be employed if biodiesel is to be produced via acid catalysed 

esterification, however, since the purpose of this section is to minimise the FFA content of castor oil, 

shorter reaction times may be employed as biodiesel does not need to be produced. The reaction time 

range was selected such that enough time for a reduction in acid content may be achieved without 

producing biodiesel as biodiesel would be produced via heterogeneous base catalysis at the optimal 

esterification conditions. 

As seen in Figure 19, initially the FFA content increases with an increase in reaction time until 

approximately 1 ℎ𝑟 has elapsed. This result is to be expected as initially the acid content and the acid 
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catalyst combine to yield a mixture of higher acid content. This higher acid content inhibits the catalytic 

activity of the catalyst as the catalyst cannot be effective past a critical acid concentration in the reaction 

mixture, as mentioned by Banani et al. (2015). However, past a reaction time of 1 ℎ𝑟, the catalyst seems 

to become effective and reduce the acid content of the reaction mixture.    

 

Figure 19 ‒ Effect of Time (C) on FFA (% Oleic Acid)  

However, as mentioned earlier, as discovered in this work and literature, reaction time in the case of 

castor oil esterification proves to be statistically insignificant. The F-Value for the linear model reaction 

time according to this work was 19.46 with a P-Value of 0.001 whilst the F-Values in the linear model 

for alcohol/oil molar ratio, catalyst loading and reaction temperature are 625.62, 237.26 and 64.08, 

respectively, with P-Values less than 0.0001. Simply put, although reaction time is an important 

parameter during experimental design, statistically it showed to be insignificant in comparison to the 

other parameters which may have negated the effects of reaction time because the other parameters 

influence the FFAs more.  

Hence, if a slightly different alcohol/oil molar ratio is chosen whilst all other factors are kept constant, 

the resulting plot of time and FFA may be completely different. However, reaction time proved to be 

statistically insignificant relative to the other parameters but is statistically relevant due to the low P-

Value which is below the 95% confidence interval used for the ANOVA which indicates that the values 

obtained did not occur by chance.  

Kundu et al. (2016) reported that initially FFA decreases with increasing reaction time until equilibrium 

is achieved in the case of castor oil esterification using sulphuric acid as a catalyst. In their work, 

however, the effect of reaction time on FFA content was explored in the time domain of 60 −

120 𝑚𝑖𝑛𝑠. Therefore, their conclusions are incomplete because it is based on a starting reaction time 

of 1 ℎ𝑟. Similar conclusions were drawn by Halder et al. (2015) for the case of castor oil esterification 

in the presence of sulphuric acid and methanol.  
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In this work, it is shown that the FFA content increased until a reaction time of 1 ℎ𝑟, after which there 

was a reduction in acid content of the reaction mixture which is in accordance with the works cited 

above. An equilibrium was not achieved because the reaction time was relatively short in comparison 

to other works which employed reaction times of 0 − 4 ℎ. This short reaction time and low reaction 

temperature of 47℃ meant that equilibrium would not be achieved at the current operating conditions.  

However, it can be seen from Figure 19 that longer reaction times; past 1 ℎ𝑟; resulted in a decrease in 

FFA content which is the objective of this study. Longer reaction times, however, are not economical 

as there would be more heating costs and less volume of products produced per day. Furthermore, it is 

reported by Goyal et al. (2012) that longer reaction times promote water formation during esterification 

which serves to inhibit the catalytic activity of the sulphuric acid catalyst.  

Deshpande et al. (2012) conducted castor oil esterification in the presence of sulphuric acid to reduce 

the FFA content as well as explore the effects that the different parameters had on the density and 

kinematic viscosity of the biodiesel produced. An initial decrease in kinematic viscosity was associated 

with an increase in reaction time, however, at a reaction time of 45 𝑚𝑖𝑛𝑠 the kinematic viscosity began 

to increase to time. They reported a marginal decrease in the specific gravity of the biodiesel produced 

as time increased.  

 

5.4.4. The Effect of Alcohol/Oil Molar Ratio on FFA (% Oleic Acid) 

The alcohol/oil molar ratio employed for this work was in the range of 4:1 to 15:1 with the middle ratio 

at a value of 9.5:1. The lower limit of 4:1 was selected to explore the lowest possible alcohol/oil molar 

ratio that would facilitate the esterification reaction. Furthermore, the minimum allowed stoichiometric 

ratio is 3:1, therefore, operation at a ratio of 4:1 would be regarded as the minimum allowed ratio that 

would negate the reverse reaction. The upper limit of 15:1 was selected as operation at ratios higher 

than 15:1 would marginally lower the FFA content but substantially increase the overall process cost.  

As cited by Kundu et al. (2016) for the case of castor oil esterification using sulphuric acid, operation 

at ratios higher than 15:1 would lead to difficulties and higher costs that may be associated with heating 

as the entire reaction volume has to be heated to the required temperature and maintained for the entire 

duration of the reaction. Furthermore, they report that lower alcohol/oil molar ratios would promote the 

reverse reaction as higher ratios negate the reverse reaction by shifting the reaction equilibrium towards 

the forward desired reaction. It is with excess alcohol/oil molar ratios that the reaction set can be 

assumed pseudo-first order irreversible.  

However, if the alcohol/oil molar ratio is greater than 15:1, the excess methanol in the reaction vessel 

would drive the forward reaction towards the generation of products. For an esterification reaction, the 

main reaction set comprises oil and alcohol reacting in the presence of an acid catalyst to form biodiesel 
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and water (Kundu, et al., 2016). The excess methanol will therefore drive the forward reaction faster 

than usual which would lead to an increase in reaction rate. Therefore, more biodiesel would be 

generated but at the same time, more water is generated which tends to inhibit the reaction rate and 

lower the catalytic activity. Furthermore, Halder et al. (2015) reported that in the case of castor oil 

esterification, water tends to promote the reverse reaction as well as increase the separation time of the 

products.   

As seen in this work, in Table 28, the F-Value for alcohol/oil molar ratio for the linear model is the 

highest throughout the data set, which is indictive of the most important parameter that affects the FFA 

content in the reaction system. From Figure 20, it is clear that the largest range of FFA values; shown 

on the y-axis; is captured by the variations of the alcohol/oil molar ratio. The results depicted in the 

figure is in accordance with the literature values. Similar results were obtained by Halder et al. (2015) 

and Kundu et al. (2016) for castor oil esterification via sulphuric acid. According to Karmakar et al. 

(2018), alcohol/oil molar ratio is the most significant parameter that affects the process, which is in 

accordance with this work.  

 

Figure 20 ‒ Effect of Alcohol/Oil Molar Ratio (D) on FFA (% Oleic Acid)  

According to Deshpande et al. (2012), an increase in alcohol/oil molar ratio would lower the kinematic 

viscosity of the biodiesel produced but would have marginal or no effect on the specific gravity of the 

product. In addition, in their work with high acid value castor oil esterification, a decrease in FFA 

content was as a result of an increase in alcohol/oil molar ratio which conforms to the literature and this 

work.  

Figure 21 shown below represents the combined main effects of temperature, catalyst loading, reaction 

time and alcohol/oil molar ratio. The Box-Behnken Design allows for the use of three levels for a 

specific parameter and these levels are coded −1, 0 and 1. With −1 representing the lower limits of the 

parameters, 0 representing the mid-points of the data range of the parameters and 1 representing the 

upper limits of the parameters.  
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Figure 21 ‒ Castor Oil Esterification ‒ Perturbation  

Obviously, to show the effect of one variable, the other three variables must be kept constant. Therefore, 

all four variables were kept at their mid-points whilst one of the four variables was varied. The mid-

points or 0 reference point for temperature, catalyst loading, time and alcohol/oil molar ratio was 47℃, 

1.75 (𝑤𝑡%) oil, 75 𝑚𝑖𝑛𝑠 and 9.5, respectively. The upper and lower limits of the variables may be 

found in Table 24.  

5.5. Response Surface Plots 

Response surface plots help show the interaction of two parameters on one response variable, i.e. FFA. 

The combination of these parameters in conjunction with the ANOVA analysis help determine which 

parameters and interactions are important to the process. The regression equation (Eq. (5.3)) stated 

previously was used to plot the response surfaces and contour plots shown below. As mentioned 

previously, when trying to determine the relationship between two parameters and the resulting effect 

of the response variable, the other two factors need to be kept constant. For the purposes of consistency, 

the constant setting for all variables was kept at the midpoints, i.e. temperature of 47℃, catalyst loading 

of 1.75 𝑤𝑡%, time of 75 𝑚𝑖𝑛𝑠 and alcohol/oil molar ratio of 9.5.    

5.5.1. The Effect of Temperature & Catalyst Loading on FFA (% Oleic Acid)  

The 3-D response surface for the interaction between temperature and catalyst loading is shown in 

Figure 22 and the contour plot between temperature and catalyst loading is shown in Figure 23 whilst 

the reaction time and alcohol/oil molar ratio were set at 75 𝑚𝑖𝑛𝑠 and 9.5: 1, respectively, in the 

regression equation. With reference to the response surface plot, it can be seen that low temperatures of 

30℃ and low catalyst loading of 0.25 (𝑤𝑡%) of oil resulted in the lowest FFA reading of approximately 

2.1 % obtained in this plot. However, the lowest reading of 2.1 % by itself is not sufficient to reduce 

the allowed FFA content for base catalysed transesterification, thus validating the use of response 

surface optimisation to achieve the lowest possible value.  
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Figure 22 ‒ Esterification Response Surface (A) vs (B) 

 

Figure 23 ‒ Esterification Contour (A) vs (B) 

Furthermore, from Table 28 it can be seen that the interaction between temperature and catalyst loading 

has a relatively high F-Value of 30.35 with a P-Value that is less than 0.0001. This is indictive of an 

interaction that is statistically significant where both parameters affect the response variable. The subtle 

effects of temperature variations may be seen on the temperature axis in Figure 22 which shows that 

catalyst loading is the dominant parameter as it influences a wider range of FFA values than 

temperature. It can therefore be said that the interactions between temperature and catalyst loading did 

not occur by chance as indicated by the low P-Value.  

The maximum FFA value recorded in this plot was approximately 8.4 % which occurs at the upper 

limit of catalyst loading and lower limit of temperature. It is therefore important to highlight that both 

the minimum and maximum values of FFA lie at the boundary conditions of temperature and catalyst 

loading, hence the optimal values for temperature and catalyst loading should lie inside the response 

surface. However, due to the high coefficient of determination (𝑅2) of the full quadratic model, the 

model may be able to minimise the FFA to values below zero, which is impractical. Therefore, as 

mentioned before, in the case of optimisation, the values of temperature and catalyst loading will be 

constrained to their specific domains, such that the values obtained lie within the response surface and 

do not result in an FFA value that is below zero.  

By inspection of Figure 22, it can be seen that the lower limits of temperature and catalyst result in the 

highest conversion of FFAs. This may be as a result of the low catalyst loading employed. The lower 

limit of catalyst loading of 0.25 (𝑤𝑡%) may have combined with the existing acid content in the oil 

and the resulting acid concentration in the reaction mixture may have increased, which led to a high 

conversion of FFAs within the allowed time limit. In that case the reaction temperature of 30℃ may 

have been sufficient to facilitate the esterification reaction. Conversely, at the catalyst loading upper 

limit of 3.25 (𝑤𝑡%) with a reaction temperature of 30℃, there may have been an excess of acid in the 

reaction system which required longer reaction times to reduce the FFA content at such a low 

temperature. In addition, the acid concentration may have exceeded the critical acid concentration 
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allowed for esterification, after which the catalytic activity is reduced (Banani, et al., 2015). 

Furthermore, due to the low reaction temperature, the reaction rate may have simply been too low for 

an esterification reaction to proceed timeously.   

Considering the upper limit of temperature, it can be seen that at the lower catalyst limit, the conversion 

of FFAs is not as high as it was for the lower temperature limit. This may be due to the reaction mixture 

having the correct acid concentration, but the reaction temperature may have been too high, which 

increased the rate of the forward reaction. As the forward reaction proceeds, water is produced as a by-

product which serves to inhibit the catalytic activity. A similar observation can be made about the upper 

limits of temperature and catalyst loading. However, in this case the acid concentration may have 

exceeded the critical acid concentration but due to the high temperature, the reaction rate may have 

increased which led to the conversion of FFAs, thereby reducing the overall acid concentration of the 

reaction mixture.   

The boundary effects of the parameters are more clearly seen in Figure 23 which shows the different 

curvatures or contours of the interactions between temperature and catalyst loading. In addition, it can 

be seen that an FFA value of 4 % was determined when both parameters are at their upper limits. 

Similar, but less obvious response surfaces were obtained by Halder et al. (2015) in the case of castor 

oil esterification via sulphuric acid and methanol using a Central Composite Design (CCD) approach. 

However, in their work, reaction temperature exhibited the largest effect on FFA content. Nevertheless, 

the resulting response surface depicts the same general shape as this work and any differences may be 

due to the operating conditions employed in their work, viz. a reaction temperature and catalyst loading 

of 50 − 70℃ and 1 − 2.5 (𝑤𝑡%) of oil, respectively. Very few works involving response surface 

methodology of castor oil esterification using sulphuric acid have been done therefore this work is in 

agreement with the work done by Halder et al. (2015). 

5.5.2. The Effect of Temperature & Time on FFA (% Oleic Acid)  

The 3-D response surface for the interaction between temperature and time is shown in Figure 24 and 

the contour plot between temperature and time is shown in Figure 25 whilst the catalyst loading and 

alcohol/oil molar ratio were set at 1.75 (𝑤𝑡%) of oil and 9.5: 1, respectively, in the regression equation. 

The lowest FFA value of 2.9 % can be seen on the response surface and contour plot. It can be seen 

that the highest conversion of FFAs; which corresponds to the lowest FFA percentage; occurs at the 

upper limits of temperature and time.  
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Figure 24 ‒ Esterification Response Surface (A) vs (C) 

 

Figure 25 ‒ Esterification Contour (A) vs (C) 

However, according to Table 28, the F-Value and P-Value corresponding to the interaction between 

temperature and time is 1.24 and 0.287, respectively. The F-Value for this interaction is the lowest 

amongst the interaction between the other variable, hence the F-Value for temperature and time is 

regarded as low for this work. Furthermore, the P-Value is greater than the confidence interval of 95 % 

used in this work, which means that the probability that these results occurred by chance is 0.287. It 

can therefore be said that the interaction between temperature and time is statistically insignificant as it 

did not fall within the confidence interval of this work. However, for the purposes of consistency in 

employing the full quadratic model, the interaction between temperature and time was included in the 

regression model equation.  

However, the trend observed in the response surface and contour plot is in keeping with the individual 

effects of temperature on FFA and time on FFA. As the reaction temperature increases, the rate of the 

reaction increases which results in a reduction in the FFA values. A similar observation can be made 

about an increase in reaction time. Whilst the interaction between temperature and time is statistically 

insignificant, it is worthwhile to understand why this occurs. The conclusion drawn is as a result of the 

only parameter that changed settings from the previous work, i.e. response surface plots of temperature 

and catalyst loading on FFA. From that work, it can be seen that temperature and catalyst loading was 

varied whilst time and alcohol/oil molar ratio were kept constant at 75 𝑚𝑖𝑛𝑠 and 9.5, respectively. In 

this section temperature and time are varied whilst catalyst loading and alcohol/oil molar ratio are kept 

constant at 1.75 (𝑤𝑡%) of oil and 9.5, respectively. Therefore, similar to the conclusions drawn earlier, 

the effect of temperature and time was negated by the catalyst loading base setting of 1.75 (𝑤𝑡%) of 

oil.   

5.5.3. The Effect of Temperature & Alcohol/Oil Molar Ratio on FFA (% Oleic Acid)  

The 3-D response surface for the interaction between temperature and alcohol/oil molar ratio is shown 

in Figure 26 and the contour plot between temperature and alcohol/oil molar ratio is shown in Figure 

27 whilst the catalyst loading and time were set at 1.75 (𝑤𝑡%) of oil and 75 𝑚𝑖𝑛𝑠, respectively, in the 
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regression equation. It can be seen from the response surface that the minimum FFA value of 2 % 

occurs at the upper limits of temperature and alcohol/oil molar ratio. This FFA value of 2 % is not 

constrained to only the upper limit values as indicated by the contour plot, the domain of temperature 

and alcohol/oil molar ratio that allows the minimum FFA is 60 − 64℃ and 12.5 − 15, respectively.     

 

Figure 26 ‒ Esterification Response Surface (A) vs (D) 

 

Figure 27 ‒ Esterification Contour (A) vs (D) 

As mentioned previously, the alcohol/oil molar ratio is the dominant parameter in this work with an F-

Value of  625.62. Therefore, any parameter interacting with it will have a much more profound effect 

on the response variable with respect to the other parameter and a negative effect on the response 

variable will be noted with respect to alcohol/oil molar ratio. As such, the F-Value for the interaction 

between temperature and alcohol/oil molar ratio is 115.12 with a P-Value that is less than 0.0001 which 

signifies that the interaction is statistically significant and did not occur by chance. Furthermore, as 

stated earlier, catalyst loading has a larger influence over the response variable than temperature whilst 

reaction time has the smallest influence, however, the interaction between temperature and alcohol/oil 

molar ratio has a much larger effect on the response variable than the interaction between catalyst 

loading and alcohol/oil molar ratio and time and alcohol/oil molar ratio. The latter observation is 

expected. Whilst temperature may not have been as dominant as the other parameters, the interaction 

between temperature and alcohol/oil molar ratio has the largest effect on the FFA content than other 

interactions. 

With reference to Figure 26, it can be seen that the upper limits of temperature and alcohol/oil molar 

ratio yield the highest conversion of FFAs because the FFA value of 2 % is the lowest at those 

conditions. This may be due to an increased reaction rate associated with an increase in temperature. 

The excess methanol in the reaction vessel allows for the increased reaction rate to proceed towards the 

formation of products, thereby reducing the FFA content. The results obtained by Halder et al. (2015) 

who conducted castor oil esterification via sulphuric acid and methanol is not in agreement with this 

work.  
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This may be due to the operating conditions employed in their work, of which, two parameters are 

different. Firstly, the temperature range of 50 − 70℃ is regarded as too high. They concluded that an 

increase in temperature resulted in an increase in FFA content due to methanol loss. Obviously then 

their effect of temperature and alcohol/oil molar ratio on FFA results may be somewhat misleading as 

the aim is to investigate the interaction effects of the two parameters on the FFA content which may be 

hard to do if one parameter is depleting continuously at a reaction temperature of 70℃. Secondly, the 

base reaction time setting of 2 ℎ𝑟𝑠 was employed. As mentioned previously, longer reaction times lead 

to reduced FFA values.  

Focusing on the upper limit and lower limit of temperature and alcohol/oil molar ratio, respectively, the 

highest FFA value of 12 % may be noted. This may be due to the evaporative loss of a marginal amount 

of methanol at 64℃ which may have led to the promotion of the reverse reaction as it is understood 

that a large excess of methanol is required to drive the forward reaction to equilibrium. There is very 

little effect of the FFA content when the reaction temperature is 30℃ and the alcohol/oil molar ratio is 

4 or 15. An FFA value of 8 % was obtained with a reaction temperature of 30℃ and alcohol/oil molar 

ratio of 15 whilst a value of 10 % was obtained at the same temperature but alcohol/oil molar ratio of 

4. The difference may be explained by the difference in methanol amounts between the two cases.  

5.5.4. The Effect of Catalyst Loading & Time on FFA (% Oleic Acid)  

The 3-D response surface for the interaction between catalyst loading and time is shown in Figure 28 

and the contour plot between catalyst loading and time is shown in Figure 29 whilst the temperature 

and alcohol/oil molar ratio were set at 47℃ and 9.5: 1, respectively, in the regression equation. The 

lowest value of FFA is approximately 2 % which occurs at both the upper and lower limits of time 

when the catalyst loading is 0.25 (𝑤𝑡%) of oil. 

 

Figure 28 ‒ Esterification Response Surface (B) vs (C) 

 

Figure 29 ‒ Esterification Contour (B) vs (C) 

According to Table 28, the F-Value and P-Value of the interaction between catalyst loading and time 

is 6.74 and 0.023, respectively. Whilst both these values are relatively low, the P-Value is above the 
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confidence interval of 95 % used in this work which signifies the results obtained are statistically 

significant and did not occur by chance. In addition, the relatively low F-Value is indictive that the 

interaction between the respective parameters may have resulted in only a marginal effect on the 

response variable.  

From Figure 28 the time effects can be seen on the time axis which leads to the conclusion that as time 

increases so does the FFA until the turning point which occurs at approximately 1 ℎ𝑟, after which the 

FFA decreases for a catalyst loading of 0.25 (𝑤𝑡%) of oil, whilst only a decrease in FFA content may 

be noted at a catalyst loading of 3.25 (𝑤𝑡%) of oil. This observation may be explained by the relative 

lower catalyst concentration in the reaction vessel, as a result, the reaction takes longer to proceed at 

lower catalyst concentrations. However, once the catalyst has fully combined with the reaction mixture, 

the esterification reaction can proceed which results in a reduction in FFA as time increases. This is 

justified by considering the catalyst loading at the upper limits where the FFA response has no turning 

point, i.e. there is only a decrease in FFA with an increase in time.  

This decrease in FFA values with increasing time for both upper and lower catalyst loading limits is in 

accordance with Halder et al. (2015), however in their work with castor oil esterification, the lower time 

limit of 1 ℎ𝑟 was employed, as such no turning points may been seen on their time axis response surface. 

They however, report an increase in FFA, beyond a reaction time of 120 𝑚𝑖𝑛𝑠, which was not explored 

in this work. As such, at a time of 120 𝑚𝑖𝑛𝑠, the FFA content begins to increase which may be attributed 

to an increase in water formation due to the forward reaction. The increased water in the reaction 

mixture promotes the reverse reaction as well as inhibits the catalytic activity (Karmakar, et al., 2018).  

As such, a positive conclusion may be drawn from the aforementioned results as lower catalyst amounts 

may be employed to achieve a greater reduction in FFA with time as compared to higher catalyst 

amounts. Nevertheless, the effect of catalyst concentration has a more profound effect on the response 

variable according to the statistical analysis, therefore, it may be suitable to have slightly higher catalyst 

loadings with reduced time than lower catalyst loadings with longer reaction times as throughput of 

products will far outweigh the cost of the catalyst. Furthermore, shorter reaction times will result in 

lower thermal heating costs. Therefore, keeping the previously mentioned factors in mind, there should 

be a trade-off between catalyst loading and reaction time.  

5.5.5. The Effect of Catalyst Loading & Alcohol/Oil Molar Ratio on FFA (% Oleic Acid)  

The 3-D response surface for the interaction between catalyst loading and alcohol/oil molar ratio is 

shown in Figure 30 and the contour plot between catalyst loading and alcohol/oil molar ratio is shown 

in Figure 31 whilst the temperature and time were set at 47℃ and 75 𝑚𝑖𝑛𝑠, respectively, in the 

regression equation. The lower limit of catalyst loading and upper limit of alcohol/oil molar ratio yield 

an FFA value of approximately 0.8 % which is the lowest FFA value recorded in this work.  
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Figure 30 ‒ Esterification Response Surface (B) vs (D) 

 

Figure 31 ‒ Esterification Contour (B) vs (D) 

This low value of 0.8 % FFA is to be expected as catalyst loading and alcohol/oil molar ratio have the 

largest individual effect on the response variable in terms of the linear model, whereas the effect of the 

interaction between these two parameters seems somewhat diminished with an F-Value and P-Value of 

46.68 and less than 0.0001, respectively. This may be as a result of the interaction between these two 

parameters.  

With reference to Figure 30, the highest FFA value of 11 % is recorded for the upper limit of catalyst 

loading and lower limit of alcohol/oil molar ratio whereas the lower limit of catalyst loading and lower 

limit of alcohol/oil molar ratio resulted in the second highest FFA value of 10 %. The common 

denominator in both cases is the lower limit of alcohol/oil molar ratio. As shown in Figure 20, lower 

alcohol/oil molar ratios result in higher FFAs. This may be due to insufficient methanol present in the 

reaction mixture which is necessary to drive the forward reaction to equilibrium. The reaction, however, 

may still occur but at a very reduced reaction rate which is validated by the difference in the FFA values 

obtained for the upper and lower catalyst loadings.  

However, considering the upper limits of both catalyst loading and alcohol/oil molar ratio, it can be 

seen that the resulting FFA value is approximately 7.6 %. This value is in accordance with this work as 

mentioned previously, higher alcohol/oil molar ratios and lower catalyst loadings result in a drastic 

reduction in the FFA. Since alcohol/oil molar ratio is more statistically significant than catalyst loading, 

a value of 7.6 % FFA is reasonable because the reductive tendencies on FFAs of an increase in 

alcohol/oil molar ratio become less profound as the catalyst loading increases.  

The general shape and slope of the surface plot from the upper limit of catalyst loading reveals that as 

catalyst loading decreases, so does the FFA. This trend, however, is not followed throughout the surface 

as at the upper limit of catalyst, there is a turning point at an alcohol/oil molar ratio of approximately 

9.5 which results in an FFA value of 6.4 %. This may be as a result of an increase in the alcohol/oil 

molar ratio which drives the forward reaction to equilibrium. The turning point could signify that under 
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those conditions, the lowest possible FFA reduction has been achieved, after which further increase in 

alcohol/oil molar ratio causes an increase in reaction rate and water production becomes more 

significant thus promoting the reverse reaction.  

5.5.6. The Effect of Time & Alcohol/Oil Molar Ratio on FFA (% Oleic Acid)  

The 3-D response surface for the interaction between time and alcohol/oil molar ratio is shown in Figure 

32 and the contour plot between time and alcohol/oil molar ratio is shown in Figure 33 whilst the 

temperature and catalyst loading were set at 47℃ and 1.75 (𝑤𝑡%) of oil, respectively, in the regression 

equation. The lowest FFA value of approximately 2 % occurs at the upper limit of time and alcohol/oil 

molar ratio as shown by the contour plot in Figure 33.  

 

 

Figure 32 ‒ Esterification Response Surface (C) vs (D) 

 

Figure 33 ‒ Esterification Contour (C) vs (D) 

The interaction between time and alcohol/oil molar ratio is shown in the figures above with an F-Value 

of 48.16. This is the second highest F-Value in terms of interaction effects apart from the interaction 

between temperature and alcohol/oil molar ratio. Obviously then alcohol/oil molar ratio is the dominant 

parameter which causes a more significant effect than reaction time on the response variable. The P-

Value for this interaction is less than 0.0001 which indicates that the results obtained are statistically 

significant and did not occur by chance.  

The odd-twisting response surface may be attributed to the time parameter. As mentioned earlier, there 

is a difference in this work and the work of Halder et al. (2015) in the case of castor oil esterification. 

More specifically, in their work, a reaction time starting from 1 ℎ𝑟 was employed and as shown in this 

work, there is a turning point between the start of the reaction and the first hour. Furthermore, they 

concluded that there is a gradual reduction in FFA as time and alcohol/oil molar ratio increases. A 

similar trend may be noticed in the surface plot with the lowest FFA value of 2 % recorded at the upper 

limit of time and alcohol/oil molar ratio.  
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Consider the lower limit of alcohol/oil molar ratio and the time axis. As time increases an initial 

decrease in FFA may be observed up until a time of approximately 60 𝑚𝑖𝑛𝑠. This may be due to the 

forward reaction occurring and resulting in a decrease in FFA content, however, past a time of 60 𝑚𝑖𝑛𝑠, 

the FFA begins to increase implying that the reverse reaction is occurring due to water formation 

generated previously by the forward reaction.  

Focusing on the contour plot, it can be seen that as time increases and for alcohol/oil molar ratios greater 

than 8, there is minimal change in the FFA content which remains constant at 5 %. This effect remains 

true up until a reaction time of 70 𝑚𝑖𝑛𝑠, after which the FFA content decreases with increasing time 

and increasing alcohol/oil molar ratios. A possible explanation for this observation may be due to water 

present in the oil as this may cause the reverse reaction to occur. In addition, it is stated earlier that 

reaction time first causes an increase in FFA up to a time of 1 ℎ𝑟, after which there is a decrease in FFA 

content. This observation is not visible in the region in question, indicating that the tendency of the FFA 

to increase when reaction time is less than 1 ℎ𝑟, has been reduced by the increasing alcohol/oil molar 

ratios which has a tendency to reduce the FFAs at high ratios.   

The following table illustrates the actual FFAs and the predicted FFAs from the regression equation 

associated with the coded units; A, B, C and D which represent temperature, catalyst loading, time and 

alcohol/oil molar ratio, respectively.   

Table 31 ‒ Box-Behnken Design Matrix for Castor Oil Esterification in Coded Units 

Run Order A B C D Actual FFA (%) Predicted FFA (%) 

1 47 0.25 30 9.5 1.850 1.90 

2 47 3.25 75 15 7.800 7.54 

3 47 3.25 75 4 10.437 10.90 

4 64 1.75 75 4 11.934 12.13 

5 64 1.75 120 9.5 3.176 2.86 

6 64 0.25 75 9.5 2.638 2.57 

7 64 1.75 30 9.5 3.701 3.50 

8 64 3.25 75 9.5 3.791 4.07 

9 47 1.75 120 4 11.786 11.28 

10 30 3.25 75 9.5 8.588 8.54 

11 47 1.75 75 9.5 6.073 5.97 

12 30 1.75 75 4 9.610 9.43 

13 30 0.25 75 9.5 2.567 2.18 

14 47 1.75 120 15 1.530 1.83 

15 47 1.75 30 15 5.636 6.03 

16 30 1.75 120 9.5 4.030 4.41 

17 47 0.25 75 4 9.550 9.99 

18 47 3.25 120 9.5 4.826 4.70 

19 47 1.75 75 9.5 5.927 5.97 
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20 47 1.75 30 4 9.760 9.34 

21 30 1.75 75 15 8.056 7.78 

22 64 1.75 75 15 0.900 1.00 

23 47 0.25 75 15 0.876 0.59 

24 30 1.75 30 9.5 5.540 6.03 

25 47 0.25 120 9.5 1.679 1.92 

26 47 1.75 75 9.5 5.909 5.97 

27 47 3.25 30 9.5 7.291 6.97 

Figure 34 shows the similarities between the actual results obtained via experiments versus the predicted 

results from the regression equation. The resulting data may be fitted to a linear model indicating a 

strong relationship between the two parameters. 

 

Figure 34 ‒ Predicted FFA vs Actual FFA 

The optimisation of the castor oil esterification Box-Behnken Design using a full quadratic model was 

conducted on Minitab™ where all the parameters where constrained to their respective domains as to 

avoid FFA minimisation below zero. As mentioned earlier, a trade-off between catalyst loading and 

alcohol/oil molar ratio was necessary to reduce the FFA below 0.8 %. Furthermore, the results of the 

optimisation are in direct agreement with the factors previously mentioned. The model validation 

experiments were conducted in triplets and the average is represented in Table 32. The optimisation 

conditions is deemed suitable as there is a 0.7 % difference between the actual and predicted values.  

Table 32 ‒ Optimum Conditions for Castor Oil Esterification ‒ FFA Minimisation  

Parameter Optimum Value 

Temperature (A) 58 ℃ 

Catalyst Loading (B)  0.865 (𝑤𝑡% 𝑜𝑖𝑙) 

Time (C) 100.58 𝑚𝑖𝑛 

Alcohol/Oil Molar Ratio (D)  12.54 

FFA (% Oleic Acid) (Predicted) 0.720 

FFA (% Oleic Acid) (Actual) 0.715 
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5.6. Summary  

Castor oil esterification was conducted using sulphuric acid as a catalyst in the presence of methanol. 

The Box-Behnken experimental design was used on Minitab™ to design the experiments with the 

fewest number of experiments to reduce operating costs and save resources. A total of 27 experiments 

were conducted inclusive of 3 replicates which is necessary for the determination of the regression 

coefficients. The resulting data was then tested and fitted to suitable models, of which, the full quadratic 

model was chosen. Alcohol/oil molar ratio was determined to be the most significant parameter which 

influenced the reduction of FFAs which was followed by catalyst loading whilst temperature and time 

had minimal effects on the reduction of FFAs. The response surface of the interaction between 

alcohol/oil molar ratio and catalyst loading showed the largest reduction in FFA content with a value 

of 0.8 % after which the optimisation for the minimisation of FFAs further reduced the FFAs to the 

optimal value of 0.72 by lowering the reaction time, alcohol/oil molar ratio and catalyst loading and 

increasing the reaction temperature. The FFA value of 0.72 was validated by the conduction of a series 

of three identical experiments at the optimal conditions to result in an FFA value of 0.715.  
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Chapter 6 – Results & Discussion: Castor Oil Transesterification 

6.1. Introduction 

This chapter is the second step in the production of biodiesel from castor oil. In the previous chapter, 

castor oil underwent acid-catalysed esterification via sulphuric acid and methanol to reduce the FFA 

content from a base value of 12 % to 0.715 % at the optimal conditions. Therefore, a large volume of 

castor oil with this FFA content was produced and stored for use in transesterification where calcium 

oxide is used as a heterogeneous base catalyst in the presence of methanol. The design of the 

experiment, statistical analysis and optimisation was conducted on Minitab™ using the Box-Behnken 

response surface methodology. In this section, 𝐴, 𝐵, 𝐶 and 𝐷 represent Temperature, Catalyst loading, 

Reaction time and Methanol/Oil molar ratio, respectively.   

6.2. Statistical Models 

The Box-Behnken model is generally associated with response surfaces, however, other models such 

as linear or a combination thereof may be employed provided that the model can sufficiently predict 

the data within the experimental range. With reference to Table 33, it can be seen that the linear model 

is not suitable for such prediction, simply because the coefficient of determination (𝑅2) value is too 

low. This means that the experimental data does not follow a linear or directly proportion trend which 

is expected in the case of a reacting system, as equilibrium should be reached at some point in time. 

The coefficient of determination indicates the goodness of fit between the data and the model, hence a 

full quadratic model is suggested in this work. Another observation that can be made would be the 

difference in (𝑅2) values between the linear plus squares and linear plus interactions models. This 

indicates that the interactions between the parameters is outweighed by the parameters interacting with 

themselves. In addition, the full quadratic model allows for all the model terms to be included in the 

regression equation, a characteristic not applicable in the other models, to result in the highest 

coefficient of determination and F-Value. According to Halder et al. (2015), if the difference between 

the R-Squared and R-Squared adjusted value is less than 0.1, the model is suitable for prediction of 

values within the data range. The difference between these two values is 0.049.    

Table 33 ‒ Statistical Model Testing for Castor Oil Transesterification  

Model Summary Sum of Squares R-squared R-squared (adjusted) F-Value Suggestion 

Linear 0.519683 59.70 % 52.37 % 8.15 Not Suggested 

Linear + Squares 0.750888 86.26 % 80.15 % 14.13 Not Suggested 

Linear + Interactions 0.602983 69.27 %  50.06 % 3.61 Not Suggested 

Full Quadratic 0.834188 95.83 % 90.96 % 19.69 Suggested 
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6.3. Statistical Analysis 

As mentioned previously, the full quadratic model was chosen for this section which resulted in an F-

Value and P-Value of 19.69 and less than 0.0001, respectively. Previously, it was stated that the 

interaction of the parameters with themselves are stronger than the interaction between the parameters 

which is shown to be valid even in the case of the full quadratic model. According to Halder et al. 

(2015), a high F-Value and low P-Value below the 95 % confidence interval is indictive of a model or 

parameter that strongly influences the response variable, which in this case is biodiesel yield. Therefore, 

to determine which individual parameters influence the yield, the linear model is used to make the 

following observation. It can be seen from Table 34 that temperature has the largest effect on yield 

which is followed by time then catalyst loading and lastly alcohol/oil molar ratio. An observation made 

from the table below would be the low P-Value of the model, which indicates that the model is 

significant and that the results observed did not occur by chance.  

Table 34 ‒ Analysis of Variance (ANOVA) for Castor Oil Transesterification (Full Quadratic Model) 

Analysis of Variance (ANOVA) 

Source DF Adjusted Sum of Squares Adjusted Mean of Squares F-Value P-Value 

Model 14 0.834188 0.059585 19.69 < 0.0001 

Linear 4 0.519683 0.129921 42.94 < 0.0001 

  A 1 0.304008 0.304008 100.48 < 0.0001 

  B 1 0.080033 0.080033 26.45 < 0.0001 

  C 1 0.118008 0.118008 39 < 0.0001 

  D 1 0.017633 0.017633 5.83 0.033 

Square 4 0.231205 0.057801 19.1 < 0.0001 

  A*A 1 0.115379 0.115379 38.13 < 0.0001 

  B*B 1 0.151126 0.151126 49.95 < 0.0001 

  C*C 1 0.002601 0.002601 0.86 0.372 

  D*D 1 0.059737 0.059737 19.74 0.001 

2-Way Interaction 6 0.0833 0.013883 4.59 0.012 

  A*B 1 0.009025 0.009025 2.98 0.11 

  A*C 1 0.015625 0.015625 5.16 0.042 

  A*D 1 0.000625 0.000625 0.21 0.658 

  B*C 1 0.0289 0.0289 9.55 0.009 

  B*D 1 0.021025 0.021025 6.95 0.022 

  C*D 1 0.0081 0.0081 2.68 0.128 

Error 12 0.036308 0.003026 
  

  Lack-of-Fit 10 0.036242 0.003624 108.72 0.009 

  Pure Error 2 0.000067 0.000033   

Total 26 0.870496    

As evident from Table 34 it can be seen that the parameters which influence the yield the most is the 

linear parameter of temperature, which is followed by the interaction of catalyst loading with itself and 

the linear term of reaction time is followed by the interaction of temperature with itself.  
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Table 35 ‒ Coded Coefficients for Castor Oil Transesterification (Full Quadratic Model) 

Coded Coefficients 

Term Effect Coefficient SE Coefficient T-Value P-Value VIF 

Constant 
 

0.9267 0.0318 29.18 < 0.0001 
 

A 0.3183 0.1592 0.0159 10.02 < 0.0001 1 

B 0.1633 0.0817 0.0159 5.14 < 0.0001 1 

C 0.1983 0.0992 0.0159 6.25 < 0.0001 1 

D 0.0767 0.0383 0.0159 2.41 0.033 1 

A*A -0.2942 -0.1471 0.0238 -6.18 < 0.0001 1.25 

B*B -0.3367 -0.1683 0.0238 -7.07 < 0.0001 1.25 

C*C -0.0442 -0.0221 0.0238 -0.93 0.372 1.25 

D*D -0.2117 -0.1058 0.0238 -4.44 0.001 1.25 

A*B 0.095 0.0475 0.0275 1.73 0.11 1 

A*C -0.125 -0.0625 0.0275 -2.27 0.042 1 

A*D -0.025 -0.0125 0.0275 -0.45 0.658 1 

B*C -0.17 -0.085 0.0275 -3.09 0.009 1 

B*D 0.145 0.0725 0.0275 2.64 0.022 1 

C*D -0.09 -0.045 0.0275 -1.64 0.128 1 

 

Table 36 ‒ Model Summary for Castor Oil Transesterification (Full Quadratic Model) 

Model Summary 

S                   R-squared R-squared (adjusted) R-squared (predicted) 

0.0550063 95.83 % 90.96 % 76.00 % 

From Table 36 it can be seen that there is a good agreement between the R-Squared and R-Squared 

adjusted values. The difference between these two values is 0.049, thus making it suitable for the 

optimisation procedure because the model can sufficiently interpolate values within the data range.  

The full quadratic model is shown in the following equation (Halder, et al., 2015): 

𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖𝑋𝑖 + ∑ 𝛽𝑖𝑖𝑋𝑖
2 + ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑖<𝑗

𝑘

𝑖=1

𝑘

𝑖=1

 (6.1) 

Where, the constant, linear, linear and squares and two-way interaction terms are captured by the first, 

second, third and fourth terms of Eq. (6.1), respectively. The fully expanded version of Eq. (6.1) is 

shown below: 

𝑌 = 𝛽𝑜 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽11𝑋1
2+ 𝛽22𝑋2

2+ 𝛽33𝑋3
2+ 𝛽44𝑋4

2 

      + 𝛽12𝑋1𝑋2  +  𝛽13𝑋1𝑋3 +  𝛽14𝑋1𝑋4 +  𝛽23𝑋2𝑋3 +  𝛽24𝑋2𝑋4 +  𝛽34𝑋3𝑋4 
(6.2) 
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The regression equation obtained via multiple regression analysis is shown below in coded units, where 

𝐴, 𝐵, 𝐶 and 𝐷 represent Temperature, Catalyst loading, Reaction time and Methanol/Oil molar ratio, 

respectively.   

𝑌 = −2.330 + 0.05901 ∗ 𝐴 + 1.280 ∗ 𝐵 + 0.01318 ∗ 𝐶 + 0.0670 ∗ 𝐷 − 0.000509 ∗ 𝐴2 

       −0.6733 ∗ 𝐵2 − 0.000011 ∗ 𝐶2 − 0.003499 ∗ 𝐷2 + 0.00559 ∗ 𝐴𝐵 − 0.000082 ∗ 𝐴𝐶 

       −0.000134 ∗ 𝐴𝐷 − 0.00378 ∗ 𝐵𝐶 + 0.0264 ∗ 𝐵𝐷 − 0.000182 ∗ 𝐶𝐷 

(6.3) 

 

6.4. The Individual Effects of Process Parameters on Yield 

In order to determine which parameters have the largest effect on the yield of biodiesel produced, the 

individual effects of each parameter need to be discussed whereas the combination effects of two 

parameters on the biodiesel yield may be seen in a surface plot. Whilst the ANOVA analysis in Table 

34 shows which parameters and interactions effect the entire data set by analysing the variance of the 

data within the specified confidence interval, the individual and interaction effects of the parameters 

may be visualised by plots to quantify and understand the results of the statistical analysis. For the 

purposes of consistency, the constant setting for all variables was kept at the midpoints, i.e. temperature 

of 47℃, catalyst loading of 1 𝑤𝑡%, time of 75 𝑚𝑖𝑛𝑠 and alcohol/oil molar ratio of 9.5.    

6.4.1. The Effect of Temperature on Yield 

Similar to the esterification procedure highlighted earlier, the temperatures employed in this section are 

30℃, 47℃ and 64℃. These values were the same for esterification as the optimal temperature should 

not exceed that of the boiling point of methanol which has a normal boiling point of 64.7℃ (Kundu, et 

al., 2016). According to N.i et al. (2018) who conducted transesterification on waste cooking oil in the 

presence of sodium hydroxide catalyst, no biodiesel could be synthesised when the temperature of the 

oil was in excess. 

Anguebes-Franseschi et al. (2016) noted similar observations in the case of African crude palm oil 

transesterification where an optimal temperature of 56℃ resulted in a biodiesel yield of 90 % and 

further increase in temperature resulted in a reduction in yield and saponification. The lower 

temperature limit of 30℃ was chosen such that low temperature transesterification could be 

investigated which may result in a reduction in thermal heating costs, should the optimisation reveal 

that yield is maximised at low temperatures. It can therefore be said that the temperature conditions 

were chosen in accordance with literature.  
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Figure 35 ‒ Effect of Temperature (A) on Yield 

According to the ANOVA analysis presented in Table 34, temperature has the largest effect on biodiesel 

yield with an F-Value and P-Value of 100.48 and less than 0.0001, respectively. The low P-Value 

indicates that the parameter is statistically significant.  

However, in the work of Pradhan et al. (2012) in the case of biodiesel production from calcium oxide 

by reactive extraction of castor seed, temperature effects were somewhat negated by the extreme 

alcohol/oil molar ratio of 225: 1, employed in their work. They ultimately conclude that the process is 

feasible due to the short time between raw material and product as the extraction and purification of 

castor oil from castor seed has been omitted by the reactive extraction process. In their work, it is 

reported that temperatures above the boiling point of methanol were avoided.  

They concluded that higher temperatures led to methanol loss which proves difficult in product 

extraction as well as increase the rate of saponification. Saponification is a side reaction that may occur 

during the transesterification reaction and the rate of saponification increases with an increase in 

temperature when alkali catalysts are employed (Pradhan, et al., 2012). In addition, they also noted that 

yield was highest when the reaction temperature was close to that of the boiling point temperature of 

the alcohol used. As seen in Figure 35, the temperature which facilitates the maximum yield of 96 % is 

approximately 56℃. This observation is in accordance with the works cited previously.  

However, according to Figure 35, three regions can be seen in the graph, (1) increasing, (2) maximum 

or turning point and (3) decreasing regions. Firstly, the transesterification reaction is known to be 

endothermic which means that temperature must be added to the system in order to overcome the 

activation energy and begin the reaction. Therefore, as temperature increases, so does the reaction rate, 

which drives the forward reaction towards the production of biodiesel and glycerol, provided that the 

reaction occurs in an excess of methanol. Similar conclusions were drawn by Chaudhary et al. (2018) 

in the case of castor oil transesterification using methanol and sulphuric acid as a catalyst via the Central 

Composite Design (CCD) response surface methodology approach. In addition, due to the high 
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kinematic viscosity of esterified castor oil, higher temperatures may be necessary to effectively reduce 

the kinematic viscosity and thus increase the solubility of the castor oil in methanol, thereby increasing 

the yield produced.   

The decreasing region of the graph which occurs between temperatures of 57℃ and 64℃ may be 

explained by methanol loss due to the temperature increase close to the boiling point temperature of 

methanol. Although a reflux condenser circulating chilled water was utilised, the temperature at which 

methanol returned to the reaction vessel after condensation may have produced an adverse effect on the 

reaction rate, which resulted in a decrease in yield. Furthermore, it is reported by Liu et al. (2008) that 

a 0.2 𝑤𝑡% of oil addition of water into the reaction vessel results in an increase in yield, a procedure 

that was followed in this work. However, as temperature increased, the frequency of side reactions may 

have also increased. In particular, the production of soap by saponification or water by esterification. 

Therefore, with an increase in temperature and the resulting methanol depletion, the amount of water 

in the reaction system may have resulted in partial hydrolysis of FAMEs, which led to a decrease in 

yield. This justification is validated by Liu et al. (2008) in the case of soybean oil transesterification 

using calcium oxide, methanol and 0.2 𝑤𝑡% addition of water.  

6.4.2. The Effect of Catalyst Loading on Yield 

The catalyst loadings, with reference to the amount of esterified castor oil, were 0.5 𝑤𝑡%, 1 𝑤𝑡% and 

1.5 𝑤𝑡%. The catalyst chosen was calcium oxide which readily deactivates when exposed to 

atmospheric conditions due to carbon dioxide and water in the air that act as poisons for the catalyst. 

As such, calcination at 600℃ for 3 ℎ𝑟𝑠 inside a muffle furnace was necessary to fully activate the 

catalyst. These conditions resulted in the decomposition of hydroxides and carbonates as well as an 

increase in the basicity of the catalyst as shown by (Esipovich, et al., 2014).  

 

Figure 36 ‒ Effect of Catalyst Loading (B) on Yield 

As seen in Table 34, the F-Value and P-Value for catalyst loading according to the linear model is 26.45 

and less than 0.0001, respectively. It can therefore be said that catalyst loading has the third highest 
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effect on yield. This may be due to the immediate deactivation of the catalyst upon exposure with the 

atmosphere which occurred during weighing and loading of the catalyst into the reaction vessel.   

Furthermore, it is reported by Veljković et al. (2009) in the case of transesterification, that the catalyst 

and alcohol should be mixed and heated under stirring for a period of 30 𝑚𝑖𝑛𝑠 before the addition of 

oil that has been thermostated separately. This procedure was followed in this work, however, after the 

addition of esterified oil, 0.2 𝑤𝑡% of water was added which may have initially deactivated the catalyst 

and inhibited the forward reaction.  

However, as catalyst loading increases, so does the yield of biodiesel. This increase in yield is 

maximised at a catalyst loading of 1.1 𝑤𝑡% which produces a yield of 93 %. This trend is to be expected 

as an increase in catalyst loading effectively increases the number of basic sites that a reaction may 

occur on. Similar observations are made in the work of Win & Khine (2017) in the case of palm oil 

transesterification using calcium oxide doped with potassium fluoride. In their work, they conclude that 

as the amount of potassium fluoride doping increases, so does the yield because the number of basic 

sites increases.  

Considering the maximum or turning point shown in Figure 36, it can be said that at those conditions 

the maximum yield possible was achieved. Therefore, from an optimisation point of view, it can be 

noted that lower catalyst loadings result in higher yields up to the maximum point, therefore the amount 

of catalyst added should be kept moderately low as excess catalyst leads to a reduction in yield. This is 

seen at a catalyst loading past 1.1 𝑤𝑡% and may be attributed to an excess amount of basic sites present 

in the reaction vessel which may promote side reactions like saponification.  

6.4.3. The Effect of Time on Yield 

Similar to the procedure outlined in the previous chapter, the reaction time values are 30 𝑚𝑖𝑛𝑠, 75 𝑚𝑖𝑛𝑠 

and 120 𝑚𝑖𝑛𝑠. This range was selected to fully explore the effect of reaction time on yield to allow a 

suitable optimisation time to be determined. Heterogeneous base catalysts are known to have a faster 

reaction rate than their acid catalyst counterparts (Refaat, 2011), therefore a maximum reaction time of 

120 𝑚𝑖𝑛𝑠 is deemed sufficient to allow for maximum biodiesel production without the reverse reaction 

or saponification occurring. The lower time limit was employed mainly to reduce the high operating 

costs associated with longer reaction times.  
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Figure 37 ‒ Effect of Time (C) on Yield 

With reference to Figure 37, at a reaction time of 120 𝑚𝑖𝑛𝑠, a yield of 100 % is observed to occur. 

This combination of parameters did not occur experimentally and may be attributed to over-prediction 

from the regression model.  

As seen in Table 34, reaction time is a significant parameter in the production of biodiesel according to 

the linear model with an F-Value and P-Value of 39 and less than 0.0001, respectively. Although, 

through statistical analysis of the data, reaction time is deemed significant, the effect of reaction time 

on yield seems somewhat linear, which is an unusual observation due to the high reaction rate 

characteristics of heterogeneous base catalysts and high basicity of calcinated calcium oxide catalyst.  

This high reaction rate in conjunction with sufficient reaction time should result in the reaction reaching 

equilibrium or a maximum point should have occurred, indicating that the reverse reaction or 

saponification is occurring. However, with reference to Figure 37, a steady increase in yield is observed 

with an increase in reaction time. This may be justified by the reaction temperature, which is the 

parameter that has the largest influence on the yield. Basically, if the reaction temperature is low, the 

rate of the reaction will be low as temperature is necessary for an endothermic reaction. Therefore, a 

longer reaction time is necessary to achieve equilibrium or induce the reverse reaction. This is justified 

by Figure 38 which shows that at elevated temperatures for the same reaction conditions, there exists a 

turning point at which the yield is maximised and the reverse reaction or saponification becomes 

significant. Furthermore, Figure 38 shows a much more realistic maximum yield of 95 % which is 

achieved at a reaction time of 110 𝑚𝑖𝑛𝑠.  
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Figure 38 ‒ Effect of Time (C) on Yield (Elevated Temperature) 

 

6.4.4. The Effect of Alcohol/Oil Molar Ratio on Yield 

This section employed the use of alcohol/oil molar ratios of 4: 1, 9.5: 1 and 15: 1. The lower limit was 

regarded as the minimum ratio employed because according to stoichiometry, 3 𝑚𝑜𝑙𝑠 of alcohol reacts 

with 1 𝑚𝑜𝑙 of triglyceride to form 3 𝑚𝑜𝑙𝑠 of FAMEs and 1 𝑚𝑜𝑙 of glycerol, therefore employing a 

minimum ratio of 4: 1 should theoretically drive the reaction in the forward direction towards the 

production of biodiesel. However, using a ratio of 4: 1 should reduce the reaction rate as methanol will 

not be in excess, therefore a lower catalyst loading would be necessary to achieve effective 

transesterification as seen in this work. The upper limit of alcohol/oil molar ratio was selected to avoid 

high operating costs as there is no appreciable change in yield with an increase in alcohol/oil molar ratio 

at moderate temperatures. Similar conclusions were drawn by Chaudhary et al. (2018) in the case of 

castor oil transesterification in the presence of sulphuric acid and methanol. In their work, alcohol/oil 

molar ratios as high as 30: 1 were employed and appreciable changes in yield were noted only in the 

case of high temperatures and high catalyst loadings.   

The alcohol/oil molar ratio must be in excess to drive the forward reaction to equilibrium otherwise the 

reverse reaction may occur, or the reaction simply may not occur if the temperature is low. It is with 

the assumption of excess methanol that the reversibility of the reaction set may be negated and the 

reaction may be assumed pseudo-first order. Whilst this assumption is theoretically valid, the reverse 

reaction may still occur for many of the reasons discussed previously.  
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Figure 39 ‒ Effect of Alcohol/Oil Molar Ratio (D) on Yield 

In this work, alcohol/oil molar ratio was shown to have the smallest influence on the yield according to 

the linear model presented in Table 34. The relatively low F-Value of 5.83 and P-Value of 0.033 

indicate that although the parameter has a small effect on the response variable, it is still statistically 

significant because the P-Value is below the confidence interval of 95 % employed in this work. With 

reference of Figure 39, it can be seen that a maximum or turning point occurs at an alcohol/oil molar 

ratio of 10.5: 1 which corresponds to a maximum yield of 92.5 %. The increasing region of the graph 

may be attributed to the increase in alcohol/oil molar ratio which drives the forward reaction, thereby 

increasing the reaction rate. Additionally, an increase in methanol will allow the surface of the catalyst 

to become fully saturated, thus increasing the frequency of reactions.  

Furthermore, an increase in methanol would effectively lower the overall kinematic viscosity of the 

reaction mixture, thus making it easier for the triglyceride molecules to be transferred via mass transfer 

across the methanol layer covering the catalyst surface. However, the maximum point achieved using 

these conditions is relative to the conditions and may not exist if other conditions are employed. For 

example, in the work of Chaudhary et al. (2018), higher reaction temperatures resulted in an increase 

in biodiesel yield at higher alcohol/oil molar ratios.  

After an alcohol/oil molar ratio of 10.5: 1, a reduction in yield can be noted. This may be attributed to 

excess methanol in the reaction system. According to Win & Khine (2017), who conducted palm oil 

transesterification using calcium oxide catalyst and calcium oxide doped with potassium fluoride, 

glycerol produced in the reaction would dissolve in a large excess of methanol. This would effectively 

reduce the amount of methanol available for transesterification as glycerol would inhibit the interaction 

between the methanol and catalyst. They conclude by stating that the aforementioned tends to promote 

the reverse reaction, as shown in Figure 39.  

Figure 40 shown below represents the combined main effects of temperature, catalyst loading, reaction 

time and alcohol/oil molar ratio. The Box-Behnken Design allows for the use of three levels for a 
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specific parameter and these levels are coded −1, 0 and 1. With −1 representing the lower limits of the 

parameters, 0 representing the mid-points of the data range of the parameters and 1 representing the 

upper limits of the parameters.  

 

Figure 40 ‒ Castor Oil Transesterification ‒ Perturbation  

 

6.5. Response Surface Plots 

The regression equation (Eq. (6.3)) stated previously was used to plot the response surfaces and contour 

plots shown below. As mentioned previously, when trying to determine the relationship between two 

parameters and the resulting effect of the response variable, the other two factors need to be kept 

constant. For the purposes of consistency, the constant setting for all variables was kept at the midpoints, 

i.e. temperature of 47℃, catalyst loading of 1 𝑤𝑡%, time of 75 𝑚𝑖𝑛𝑠 and alcohol/oil molar ratio of 9.5.    

6.5.1. The Effect of Temperature & Catalyst Loading on Yield 

The 3-D response surface for the interaction between temperature and catalyst loading is shown in 

Figure 41 and the contour plot between temperature and catalyst loading is shown in Figure 42 whilst 

the reaction time and alcohol/oil molar ratio were set at 75 𝑚𝑖𝑛𝑠 and 9.5: 1, respectively, in the 

regression equation. With reference to the response surface, a maximum yield of approximately 90 % 

may be seen which is unlike the esterification process because the values of interest are found inside 

the response surface and not at the extrema. The response surface also indicates a large range of values 

that result in 90 % yield which may be more clearly seen in the contour plot shown in Figure 42.  
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Figure 41 ‒ Transesterification Response Surface (A) vs (B) 

 

Figure 42 ‒ Transesterification Contour (A) vs (B) 

With reference to Table 34 for the interaction between temperature and catalyst loading, an F-Value 

and P-Value of 2.98 and 0.11, respectively, can be seen. Therefore, the interaction between these two 

parameters are regarded as being statistically insignificant because the interaction resulted in a P-Value 

that is not within the confidence interval of 95 % (Pradhan, et al., 2012). However, omitting all of the 

terms presented in Table 34 which are statistically insignificant resulted in an increase in standard 

deviation from 0.0550063 to 0.0595080 and a decrease in the coefficient of determination (𝑅2) from 

95.83 % to 93.49 %. Clearly then, the omitted terms had a positive effect on the model used which 

may be attributed to the type of model used initially, which was the full quadratic model.  

The ranges of temperature and catalyst loading which result in a yield of approximately 90 % are 47℃ 

to 64℃ and 0.95 𝑤𝑡% to 1.4 𝑤𝑡%, respectively. In addition, the model predicts that temperatures above 

the boiling point of methanol may be employed to result in a 90 % yield, however, this may prove 

incorrect as methanol loss will result in decreased contact time between the triglycerides and catalyst 

(N.i, et al., 2018). Furthermore, depletion of methanol may induce the reverse reaction as an excess 

amount of methanol is necessary to drive the forward reaction to equilibrium.  

The lowest yield reported by the response surface is 40 % which occurred at the lower limits of 

temperature and catalyst loading. This may be attributed to the low reaction temperature as temperature 

was found to have the largest influence on the yield of biodiesel produced according to the ANOVA. 

As such, the low reaction rate coupled with minimal catalyst resulted in a low yield. This suggestion 

may be justified as a slightly higher yield of 45 % may be noticed at a temperature and catalyst loading 

of 30℃ and 1.5 𝑤𝑡%, respectively.  

However, at the upper limits of temperature and catalyst loading, a slight decrease in yield may be 

noticed. This may be due to a decrease in temperature caused by methanol condensing back into the 

reaction vessel at the temperature of the chilled water bath. The results of this work is in accordance 
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with Pradhan et al. (2012) who conducted reactive extraction of castor seed in the presence of calcium 

oxide catalyst and methanol in a molar ratio to oil of 225: 1.  

6.5.2. The effect of Temperature & Time on Yield 

The 3-D response surface for the interaction between temperature and time is shown in Figure 43 and 

the contour plot between temperature and time is shown in Figure 44 whilst the catalyst loading and 

alcohol/oil molar ratio were set at 1 𝑤𝑡% and 9.5: 1, respectively, in the regression equation. The 

maximum yield of 98.5 % which is close to the theoretical yield of 100 % occurs at a temperature range 

and reaction time range of 47℃ to 57℃ and 105 𝑚𝑖𝑛𝑠 to 120 𝑚𝑖𝑛𝑠, respectively.   

 

Figure 43 ‒ Transesterification Response Surface (A) vs (C) 

 

Figure 44 ‒ Transesterification Contour (A) vs (C) 

With reference to Table 34, it can be seen that according to the linear model, temperature and time have 

the largest influence on the yield of biodiesel produced, therefore, the interaction between the two 

parameters should have a large impact on the yield. The F-Value and P-Value of the interaction between 

these parameters are 5.16 and 0.042, respectively. Overall, it can be seen that the F-Value and P-Value 

is the third highest among the interaction effects which means that the combined effect of temperature 

and time has a negative effect on the yield. The interaction, however, is statistically significant as the 

P-Value is above the 95 % confidence interval used in this work.  

Consider the lower limit of temperature and time which results in a yield of 45 %. This may be 

attributed to the reaction temperature being too low which causes the reaction rate for transesterification 

to be too slow. Furthermore, this seems like a valid assumption because a yield of 70 % is achieved 

when the reaction temperature is 30℃ and the reaction time is 120 𝑚𝑖𝑛𝑠, thereby indicating that the 

reaction rate was too slow, and a longer reaction time was required by the transesterification reaction. 

A yield of approximately 85 % and 95 % was achieved when the reaction time was 30 𝑚𝑖𝑛𝑠 and 

120 𝑚𝑖𝑛𝑠, respectively, for a temperature of 64℃. This result is expected as longer reaction times are 

necessary for effective conversion of triglycerides. It is also important to note the maxima which occurs 

in the temperature and time range highlighted earlier. This resulted in a yield of approximately 98.5 %, 
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after which when temperature or time were increased or decreased, a decrease in yield was observed. 

This may be due to temperature increase beyond 57℃ which resulted in methanol loss. The reaction 

temperature may have been lowered by condensed methanol; at the temperature of the chilled water; 

falling back into the reaction vessel. The methanol loss may have resulted in insufficient coverage of 

the catalyst surface on which the reaction occurs, as such the rate of the reaction may have been lowered 

(Lukić, et al., 2013).    

6.5.3. The Effect of Temperature & Alcohol/Oil Molar Ratio on Yield 

The 3-D response surface for the interaction between temperature and alcohol/oil molar ratio is shown 

in Figure 45 and the contour plot between temperature and alcohol/oil molar ratio is shown in Figure 

46 whilst the catalyst loading and reaction time were set at 1 𝑤𝑡% and 75 𝑚𝑖𝑛𝑠, respectively, in the 

regression equation. With reference to the following plots, a maximum yield of 95 % can be seen to 

occur within the temperature and alcohol/oil molar ratio range of 50℃ to 62℃ and 8: 1 to 12.5: 1, 

respectively.  

 

Figure 45 ‒ Transesterification Response Surface (A) vs (D) 

 

Figure 46 ‒ Transesterification Contour (A) vs (D) 

From Table 34 it can clearly be seen that the interaction between temperature and alcohol/oil molar 

ratio is statistically insignificant as the P-Value is above the 95 % confidence interval employed in this 

work. Furthermore, the F-Value of 0.21 and P-Value of 0.658 clearly indicate that the interaction 

between temperature and alcohol/oil molar ratio has the lowest influence over the response variable. 

Nevertheless, the response surface and contour plot between temperature and alcohol/oil molar ratio are 

in accordance with the literature, as discussed below. 

A local maximum may be seen occurring in the temperature and alcohol/oil molar ratio ranges outlined 

earlier. This result is highly expected as yield increases with an increase in temperature as the rate of 

the reaction increases for a constant alcohol/oil molar ratio, as seen in the temperature axis of the 

response surface plot, but as the temperature approaches close to the boiling point of methanol, the yield 

decreases slightly indicating methanol loss.  
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In addition, this effect is seen in the work of Bharti et al. (2019) who conducted transesterification of 

soybean oil in the presence of methanol and nano-calcium oxide catalysts prepared using the Sol-Gel 

method using the Box-Behnken response surface methodology. However, in their work, a catalyst 

loading of 3.675 𝑤𝑡% was employed to produce a similar response surface to that of this work. Bojan 

et al. (2011) reported similar response surfaces for the interaction between temperature and alcohol/oil 

ratio in the case of transesterification with high content free fatty acid Jatropha Curcas oil using 

potassium hydroxide as a catalyst. However, in their work, a maximum yield of 76 % was recorded 

which may be attributed to saponification occurring due to the high free fatty acid content of the base 

oil.  

With reference to castor oil, Deb et al. (2017) conducted a saponification reaction and acidification 

reaction to produce FFAs, then esterification reaction to obtain similar response surfaces to this work. 

Similar temperature ranges were employed but a maximum alcohol/oil molar ratio of 9: 1 was 

employed. Lastly, similar results were obtained in the work of Chaudhary et al. (2018) in the case of 

castor oil transesterification using sulphuric acid and a Central Composite Design approach. It can 

therefore be said that the results of this work, especially the interaction between temperature and 

alcohol/oil molar ratio which was shown to be statistically insignificant, is in accordance with the 

literature cited above.   

6.5.4. The Effect of Catalyst Loading & Time on Yield 

The 3-D response surface for the interaction between catalyst loading and time is shown in Figure 47 

and the contour plot between catalyst loading and time is shown in Figure 48 whilst the reaction 

temperature and alcohol/oil molar ratio were set at 47℃ and 9.5: 1, respectively, in the regression 

equation. A maximum yield of 95 % may be seen to occur within the catalyst loading and time ranges 

of 0.75 𝑤𝑡% to 1.25 𝑤𝑡% and 88 𝑚𝑖𝑛𝑠 to 120 𝑚𝑖𝑛𝑠, respectively.  

 

Figure 47 ‒ Transesterification Response Surface (B) vs (C) 

 

Figure 48 ‒ Transesterification Contour (B) vs (C) 
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According to Table 34, the interaction between catalyst loading and time is the most significant among 

the interactions because it has the highest F-Value of 9.55 and lowest P-Value of 0.009. As shown by 

the response surface in Figure 47, reaction time has a larger influence over the yield, covering values 

from 50 % to 83 % whilst catalyst loading only influences the yield within a range of 50 % to 80 %. 

Therefore, reaction time is shown to have a larger influence over the response variable in comparison 

to catalyst loading, which is in accordance with the ANOVA presented in Table 34.  

The range of values highlighted previously which result in a yield of 95 % is relatively large, indicating 

that the process is not too sensitive with respect to the two parameters. However, it is expected that 

lower catalyst loadings require longer reaction times in the case of transesterification which is shown 

more clearly in the contour plot in Figure 48. As shown in the contour plot, as catalyst loading increases 

the time required to maintain the 95 % yield decreases. This result is expected as more catalyst means 

that there are more active sites for reactions to occur and the process will reach the maximum conversion 

faster. This effect is observed until a catalyst loading of 1.1 𝑤𝑡% and a reaction time of 88 𝑚𝑖𝑛𝑠 where 

a turning point is observed.  

This turning point may indicate that those conditions are the minimum conditions necessary to achieve 

a yield of 95 %. Further increase in catalyst loading past 1.1 𝑤𝑡% results in longer reaction times which 

indicate that the excess amount of catalyst in the reaction vessel has led to the occurrence of side 

reactions, i.e. saponification. This however, does not lower the yield immediately, probably due to the 

reaction temperature of 47℃, which may not be high enough to promote the increase in reaction rate of 

the saponification reaction. However, as catalyst loading increased past 1.3 𝑤𝑡%, the saponification 

reaction becomes more significant and a reduction in yield is observed.  

With reference to Figure 47, an almost linear relationship may be seen at the reaction time axis for the 

catalyst loading of 0.5 𝑤𝑡%. This result is expected as lower catalyst loadings require longer reaction 

times and the linearity suggests that saponification or the reverse reaction did not occur.  Similar results 

for the interaction between catalyst loading and reaction time were noted by Malpani et al. (2016) in 

the case of biodiesel production from algae oil using calcium oxide with titanium dioxide as a catalyst 

and methanol. In their work, however, a much gentler response surface is noticed which may be 

attributed to the difference in operating conditions employed.  

6.5.5. The Effect of Catalyst Loading & Alcohol/Oil Molar Ratio on Yield  

The 3-D response surface for the interaction between catalyst loading and alcohol/oil molar ratio is 

shown in Figure 49 and the contour plot between catalyst loading and alcohol/oil molar ratio is shown 

in Figure 50 whilst the reaction temperature and time were set at 47℃ and 75 𝑚𝑖𝑛𝑠, respectively, in 

the regression equation. A maximum yield of 90 % is achieved when the catalyst loading and 

alcohol/oil molar ratio are within the ranges of 0.9 𝑤𝑡% to 1.4 𝑤𝑡% and 8: 1 to 14.5: 1, respectively. It 
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is important to note that the range to obtain a relatively high yield is the largest between the interaction 

of catalyst loading and alcohol/oil molar ratio.  

 

Figure 49 ‒ Transesterification Response Surface (B) vs (D) 

 

Figure 50 ‒ Transesterification Contour (B) vs (D) 

This wide range is in accordance with the ANOVA conducted in Table 34, which indicates that 

according to the linear model, catalyst loading and alcohol/oil molar ratio are among two of the lowest 

parameters that influence the yield, therefore, the range of the parameters should not have a drastic 

influence over the yield.  However, the interaction between these two parameters has the second highest 

impact on the yield. The F-Value and P-Value of 6.95 and 0.022 indicate that the interaction is 

statistically significant, and the values obtained did not occur by chance as the probability of that 

happening is relatively low because the interaction of the parameters falls within a 95 % confidence 

interval.  

Similar results were reported by Chumuang & Punsuvon (2017) who conducted transesterification of 

waste cooking oil in the presence of calcium methoxide as a catalyst and tetrahydrofuran as a cosolvent. 

In their work, the addition of tetrahydrofuran influenced the response surface obtained and different 

operating conditions were employed, nevertheless, similar results to this work was observed. This may 

be attributed to tetrahydrofuran lowering the overall viscosity of the reaction mixture and increasing the 

solubility between the oil, methanol and catalyst.  

In this work, water was used instead of tetrahydrofuran. According to Liu et al. (2008), the addition of 

0.2 𝑤𝑡% of oil of water increases the yield of biodiesel produced. This was validated by Esipovich et 

al. (2014) in the case of calcium oxide catalysts, who suggested that water forms active hydroxide sites 

(𝑂𝐻−) on the catalyst surface which leads to an increase in methoxide anion formation, thereby 

increasing the yield by promoting the formation of methoxide anions. In addition, the addition of water 

was found to increase the solubility of the reacting species and the calcium oxide catalyst because the 

reaction is catalysed by diluted active calcium oxide rather than active calcium oxide (Kouzu, et al., 

2009).    
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With reference to Figure 49, considering the lower limit of catalyst loading and upper limit of alcohol/oil 

molar ratio, a yield of 54 % was achieved. This is due to excess methanol in the reaction system which 

readily dissolves with glycerol produced via the forward reaction, thereby leading to a decrease in 

methanol coverage on the catalyst surface (Win & Khine, 2017). This may lead to blockage of active 

sites by the triglyceride or glycerol molecules which lowers the reaction rate.  

6.5.6. The Effect of Time & Alcohol/Oil Molar Ratio on Yield 

The 3-D response surface for the interaction between time and alcohol/oil molar ratio is shown in Figure 

51 and the contour plot between time and alcohol/oil molar ratio is shown in Figure 52 whilst the 

reaction temperature and catalyst loading were set at 47℃ and 1 𝑤𝑡%, respectively, in the regression 

equation. A maximum yield of 95 % was found to occur in the ranges of 88 𝑚𝑖𝑛𝑠 to 120 𝑚𝑖𝑛𝑠 and 

5.5: 1 to 13: 1 for reaction time and alcohol/oil molar ratio, respectively.  

 

Figure 51 ‒ Transesterification Response Surface (C) vs (D) 

 

Figure 52 ‒ Transesterification Contour (C) vs (D) 

As seen in Figure 51, the reaction time parameters displays a much larger influence over alcohol/oil 

molar ratio because it influences a wider range of the response variable as compared to alcohol/oil molar 

ratio. However, the interaction between the two parameters are deemed statistically insignificant 

because the P-Value of 0.128 is above the 95 % confidence interval employed in this work. 

Furthermore, the F-Value of 2.68 reveals that the interaction has relatively small effect on the response 

variable.  

As expected, the lower limits of time and alcohol/oil molar ratio result in a yield of 60 %, which is the 

lowest value recorded by the response surface. This may be due to insufficient methanol necessary to 

drive the forward reaction timeously, as such, the reaction rate is rather low which results in a low yield 

of biodiesel. In addition, the reaction time may simply be too short for the reaction to result in a high 

yield as the conversion of triglycerides into biodiesel requires sufficient reaction time. Considering the 

lower limit of reaction time and upper limit of alcohol/oil molar ratio, the above statement appears valid 

as higher ratios promote the forward reaction as indicated by a yield of 78 %.  



89 

 

The linearity of the effect of time can be seen quite clearly on the time axis for an alcohol/oil molar 

ratio of 4: 1, which indicates that at low ratios, the reaction time may be increased to result in higher 

yields produced. The overall shape of the response surface indicates that the system responds better to 

high reaction times and as time decreases, so does the yield, which is an effect that is particularly visible 

at low alcohol/oil molar ratios. Similar results were recorded by Chumuang & Punsuvon (2017) in the 

case of waste cooking oil transesterification using calcium methoxide as a catalyst and tetrahydrofuran 

as a cosolvent. However, in their response surface, there is minimal variation between the two 

parameters in question which may be due to the difference in reaction time. For this work, the reaction 

time started at 30 𝑚𝑖𝑛𝑠 whilst in their work, a starting reaction time of 60 𝑚𝑖𝑛𝑠 was employed. The 

following table illustrates the actual yield and the predicted yield from the regression equation 

associated with the coded units; A, B, C and D which represent temperature, catalyst loading, time and 

alcohol/oil molar ratio, respectively.   

Table 37 ‒ Box-Behnken Design Matrix for Castor Oil Transesterification in Coded Units 

Run Order A B C D Actual Yield Predicted Yield  

1 30 1.5 75 9.5 0.46 0.48 

2 30 0.5 75 9.5 0.40 0.42 

3 30 1 75 15 0.56 0.56 

4 47 0.5 75 4 0.60 0.60 

5 47 1 30 4 0.64 0.62 

6 30 1 30 9.5 0.50 0.44 

7 47 1 120 4 0.91 0.90 

8 47 1 75 9.5 0.93 0.92 

9 47 1.5 120 9.5 0.91 0.83 

10 64 1 120 9.5 0.91 0.95 

11 47 1 75 9.5 0.92 0.92 

12 64 1 75 4 0.84 0.80 

13 47 0.5 120 9.5 0.87 0.83 

14 47 0.5 75 15 0.60 0.53 

15 47 1.5 75 4 0.58 0.62 

16 47 1 30 15 0.73 0.78 

17 47 0.5 30 9.5 0.42 0.47 

18 30 1 75 4 0.45 0.46 

19 30 1 120 9.5 0.76 0.76 

20 64 1 75 15 0.90 0.86 

21 47 1 75 9.5 0.93 0.92 

22 47 1 120 15 0.82 0.89 

23 64 1 30 9.5 0.90 0.88 

24 47 1.5 75 15 0.87 0.84 

25 64 0.5 75 9.5 0.62 0.64 

26 64 1.5 75 9.5 0.87 0.90 

27 47 1.5 30 9.5 0.80 0.80 
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Figure 53 shows the actual yield plotted against the predicted yield obtained from the regression 

equation. As seen below, a linear regression equation can be fitted to the data set and the regression 

coefficient of determination (𝑅2) is 0.95826 which indicates a very strong relationship between the 

actual experimental data and the predicted data from the regression equation. Therefore, the use of the 

full quadratic model is valid for optimisation where interpolation between the different parameters can 

occur to maximise the yield.  

 

Figure 53 ‒ Predicted Yield vs Actual Yield 

The optimisation of the castor oil transesterification Box-Behnken Design using a full quadratic model 

was conducted on Minitab™ where all the parameters where constrained to their respective domains as 

to avoid maximisation of the response variable beyond 100 %. The parameter that has the largest 

influence over the response variable is temperature, therefore temperature is expected to be high because 

higher temperatures promote the forward reaction by increasing the reaction rate. Secondly, catalyst 

loading is expected to be high and reaction time is expected to be low to prevent saponification and 

alcohol/oil molar ratio should be relatively high as the reverse reaction should not occur at any point in 

time. Three model validation experiments were conducted and the average yield of 97.2 % is presented 

in the table below. The results of the optimisation are deemed suitable as saponification did not occur 

and the difference between the predicted and actual yields are 1.4 %.  

Table 38 ‒ Optimum Conditions for Castor Oil Transesterification ‒ Yield Maximisation  

Parameter Optimum Value 

Temperature (A) 61 ℃ 

Catalyst Loading (B)  1.368 (𝑤𝑡% 𝑜𝑖𝑙) 

Time (C) 31.8 𝑚𝑖𝑛 

Alcohol/Oil Molar Ratio (D)  12.8 

Yield (Predicted) 0.986 

Yield (Actual) 0.972 
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Figure 54 ‒ Castor Oil Biodiesel (Optimal Conditions) Chromatogram 

 

Table 39 ‒ Castor Oil Biodiesel (Optimal Conditions) GCMS 

Peak Number Retention Time (𝑚𝑖𝑛) Area (%) Name 

1 1.802 0.13 Methyl alcohol 

2 2.057 0.07 Acetone 

3 2.300 0.07 Furfural 

4 2.625 0.52 Heptanal 

5 16.879 1.17 Hexadecenoic acid, methyl ester 

6 22.583 4.75 11-Octadecenoic acid, methyl ester 

7 22.805 4.08 Methyl stearate 

8 22.954 0.54 Methyl palmitate 

9 23.696 1.51 9-Octadecenoic acid, methyl ester 

10 30.441 87.16 Methyl linoleate  

 

6.6. Summary   

Castor oil transesterification was conducted using esterified castor oil at the optimal conditions in the 

presence of calcium oxide and methanol with the addition of 0.2 𝑤𝑡% of oil of water. Response surface 

methodology using Box-Behnken design was employed to design and analyse the experimental results. 

A total of 27 experiments were conducted inclusive of 3 replicates which are necessary for the 

determination of the regression coefficients by Minitab™. Statistical analysis in the form of an ANOVA 

revealed that temperature was the most important parameter according to the full quadratic model 

chosen. Reaction time, catalyst loading and alcohol/oil molar ratio were ranked second, third and fourth, 

respectively, in terms of influence on yield according to the linear part of the full quadratic model. The 

response surface between temperature and time showed the largest influence over the yield, with a 

maximum predicted yield of 98.5 %. The optimisation revealed a maximum predicted yield of 98.6 % 

which is in accordance with the factors discussed earlier. The actual yield attained at the optimal 

conditions was 97.2 % which proves that the model and optimisation is valid.  
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Chapter 7 – Results & Discussion: Sunflower Oil Transesterification 

7.1. Introduction 

This section focuses on the production of biodiesel from sunflower oil by transesterification using 

calcium oxide catalyst and methanol. One of the reasons for this section was to evaluate the performance 

of the calcium oxide catalyst to determine if the results produced via the transesterification of esterified 

castor oil was as a result of the activity of the calcium oxide or as a result of esterification of the base 

castor oil by sulphuric acid catalyst. Furthermore, the physical properties of sunflower oil make it 

desirable for the production of biodiesel and jet fuel thereafter. The design of the experiment, statistical 

analysis and optimisation was conducted on Minitab™ using the Box-Behnken response surface 

methodology. In this section, 𝐴, 𝐵, 𝐶 and 𝐷 represent Temperature, Catalyst loading, Reaction time and 

Methanol/Oil molar ratio, respectively.   

7.2. Statistical Models 

As mentioned previously, the Box-Behnken response surface methodology was used to design the 

experiments. However, a choice of four different models is given in Minitab™ with the full quadratic 

model usually selected for response surfaces (Halder, et al., 2015). In this work, the full quadratic model 

is suggested for use as the coefficient of determination (𝑅2) is the highest among the other models and 

the linear model with interactions has the second highest coefficient of determination value. This 

suggests that the interaction between the parameters are significant and therefore validates the use of 

the full quadratic model as with the other models, the interaction between the parameters will be omitted 

in the regression equation. The linear model is ranked the lowest and the full quadratic model the highest 

because of the coefficient of determination values. It is vital to note that the coefficient of determination 

value increases with increasing model complexity. According to Halder et al. (2015), if the difference 

between the R-Squared and R-Squared adjusted value is less than 0.1, the model is suitable for 

prediction of values within the data range. The difference between these two values is 0.051.     

Table 40 ‒ Statistical Model Testing for Sunflower Oil Transesterification  

Model Summary Sum of Squares R-squared R-squared (adjusted) F-Value Suggestion 

Linear 0.202566 57.66 % 49.97 % 7.49 Not Suggested 

Linear + Squares 0.241445 68.73 % 54.84 % 4.95 Not Suggested 

Linear + Interactions 0.296945 84.53 % 74.86 % 8.74 Not Suggested 

Full Quadratic 0.335824 95.60 % 90.46 % 18.62 Suggested 

 

7.3. Statistical Analysis 

According to Halder et al. (2015), a high F-Value and low P-Value below the confidence interval 

employed is indictive of a model or parameter that is statistically significant. The F-Value and P-Value 

for the full quadratic model employed is 18.62 and less than 0.0001, respectively. It can therefore be 
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said that the full quadratic model is statistically significant and the values obtained thereafter did not 

occur by chance. Furthermore, the full quadratic model accounts for the linearity of the parameters, 

which is useful when trying to determine the individual effects of each parameter on the response 

variable. As such, based on the linear part of the full quadratic model, it can be seen that alcohol/oil 

molar ratio has the largest influence on the yield of biodiesel produced. Reaction temperature, catalyst 

loading and reaction time and ranked second, third and fourth, respectively.   

Table 41 ‒ Analysis of Variance (ANOVA) for Sunflower Oil Transesterification (Full Quadratic Model) 

Analysis of Variance (ANOVA) 

Source DF Adjusted Sum of Squares Adjusted Mean of Squares F-Value P-Value 

Model 14 0.335824 0.023987 18.62 < 0.0001 

Linear 4 0.084167 0.021042 16.33 < 0.0001 

  A 1 0.034112 0.034112 26.48 < 0.0001 

  B 1 0.033583 0.033583 26.07 < 0.0001 

  C 1 0.001002 0.001002 0.78 0.395 

  D 1 0.05858 0.05858 45.47 < 0.0001 

Square 4 0.038879 0.00972 7.54 0.003 

  A*A 1 0.015213 0.015213 11.81 0.005 

  B*B 1 0.034398 0.034398 26.7 < 0.0001 

  C*C 1 0.006053 0.006053 4.7 0.051 

  D*D 1 0.008223 0.008223 6.38 0.027 

2-Way Interaction 6 0.094379 0.01573 12.21 < 0.0001 

  A*B 1 0.000445 0.000445 0.35 0.568 

  A*C 1 0.003872 0.003872 3.01 0.109 

  A*D 1 0.053565 0.053565 41.58 < 0.0001 

  B*C 1 0.004621 0.004621 3.59 0.083 

  B*D 1 0.021347 0.021347 16.57 0.002 

  C*D 1 0.010529 0.010529 8.17 0.014 

Error 12 0.01546 0.001288 
  

  Lack-of-Fit 10 0.015021 0.001502 6.84 0.134 

  Pure Error 2 0.000439 0.00022 
  

Total 26 0.351284 
   

Considering the full quadratic model and ranking of parameters based on their F-Values, it can be seen 

in Table 41 that the linear term of alcohol/oil molar ratio has the largest influence on the yield and is 

followed by the interaction between temperature and alcohol/oil molar ratio, which is expected as these 

are the two parameters that has the largest effect on the response variable. In addition, the interaction 

of catalyst loading with itself is followed by the linear model temperature term.   
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Table 42 ‒ Coded Coefficients for Sunflower Oil Transesterification (Full Quadratic Model) 

Coded Coefficients 

Term Effect Coefficient SE Coefficient T-Value P-Value VIF 

Constant  2.613 0.261 10.02 < 0.0001  

A -0.06243 -0.03122 0.00607 -5.15 < 0.0001 99.08 

B -1.859 -0.93 0.182 -5.11 < 0.0001 77.21 

C -0.00339 -0.0017 0.00192 -0.88 0.395 69.88 

D -0.2143 -0.1071 0.0159 -6.74 < 0.0001 71.12 

A*A 0.00037 0.000185 0.000054 3.44 0.005 70.04 

B*B 0.6425 0.3212 0.0622 5.17 < 0.0001 37.25 

C*C 0.000033 0.000017 0.000008 2.17 0.051 26.25 

D*D 0.002596 0.001298 0.000514 2.53 0.027 28.1 

A*B 0.00248 0.00124 0.00211 0.59 0.568 35.93 

A*C -0.000081 -0.000041 0.000023 -1.73 0.109 32.26 

A*D 0.002475 0.001238 0.000192 6.45 < 0.0001 32.88 

B*C -0.003021 -0.001511 0.000798 -1.89 0.083 21.33 

B*D 0.05313 0.02656 0.00653 4.07 0.002 21.95 

C*D 0.000415 0.000207 0.000073 2.86 0.014 18.28 

 

Table 43 ‒ Model Summary for Sunflower Oil Transesterification (Full Quadratic Model) 

Model Summary 

S                   R-squared R-squared (adjusted) R-squared (predicted) 

0.0358933   95.60 % 90.46 % 75.09 % 

It can be seen in Table 43 that there is a good agreement between the R-Squared and R-Squared adjusted 

values. The difference between the two values is 0.051. As such, the full quadratic model may be 

assumed valid for optimisation as the model can sufficiently model and predict the data.   

The full quadratic model is shown in the following equation (Halder, et al., 2015): 

𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖𝑋𝑖 + ∑ 𝛽𝑖𝑖𝑋𝑖
2 + ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑖<𝑗

𝑘

𝑖=1

𝑘

𝑖=1

 (7.1) 

Where, the constant, linear, linear and squares and two-way interaction terms are captured by the first, 

second, third and fourth terms of Eq. (7.1), respectively. The fully expanded version of Eq. (7.1) is 

shown below: 

𝑌 = 𝛽𝑜 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽11𝑋1
2+ 𝛽22𝑋2

2+ 𝛽33𝑋3
2+ 𝛽44𝑋4

2 

      + 𝛽12𝑋1𝑋2  +  𝛽13𝑋1𝑋3 +  𝛽14𝑋1𝑋4 +  𝛽23𝑋2𝑋3 +  𝛽24𝑋2𝑋4 +  𝛽34𝑋3𝑋4 
(7.2) 
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The regression equation obtained via multiple regression analysis is shown below in coded units, where 

𝐴, 𝐵, 𝐶 and 𝐷 represent Temperature, Catalyst loading, Reaction time and Methanol/Oil molar ratio, 

respectively.   

𝑌 = 2.613 − 0.03122 ∗ 𝐴 − 0.930 ∗ 𝐵 − 0.00170 ∗ 𝐶 − 0.1071 ∗ 𝐷 + 0.000185 ∗ 𝐴2 

        + 0.3212 ∗ 𝐵2 + 0.000017 ∗ 𝐶2 + 0.001298 ∗ 𝐷2 + 0.00124 ∗ 𝐴𝐵 − 0.000041 ∗ 𝐴𝐶 

        + 0.001238 ∗ 𝐴𝐷 − 0.001511 ∗ 𝐵𝐶 + 0.02656 ∗ 𝐵𝐷 + 0.000207 ∗ 𝐶𝐷 

(7.3) 

 

7.4. The Individual Effects of Process Parameters on Yield 

The individual effects of the parameters and their effect on the yield of biodiesel produced is found by 

keeping all other parameters at their midpoints and varying the parameter in question for the entire data 

range. The interaction between two parameters and the resulting effect on the response variable may be 

visualised in a surface plot. For the purposes of consistency, the constant setting for all variables was 

kept at the midpoints, i.e. temperature of 47℃, catalyst loading of 1 𝑤𝑡%, time of 75 𝑚𝑖𝑛𝑠 and 

alcohol/oil molar ratio of 9.5.    

7.4.1. The Effect of Temperature on Yield 

The temperature range of values are inclusive of temperatures of 30℃, 47℃ and 64℃. This range was 

the same as the previous two sections mainly because the boiling point temperature of methanol is 

64.7℃ and for consistency (Kundu, et al., 2016). The point of consistency was to evaluate the 

performance of the catalyst used, hence identical conditions were used in the transesterification of 

sunflower oil as compared to the transesterification of esterified castor oil. The lower limit of 

temperature was chosen such that low temperature optimisation may be achieved which would result in 

reduced thermal costs.   

 

Figure 55 ‒ Effect of Temperature (A) on Yield 
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In the work of Anastopoulos et al. (2013), an increase in sunflower oil biodiesel yield was observed 

with an increase in temperature for the case of sunflower oil transesterification using lithium nitrate 

loaded on calcium oxide as a catalyst in the presence of methanol. They concluded that an optimal 

temperature of 60℃ resulted in approximately 98 % yield of FAMEs. A contradiction to their work 

may be seen in this work as temperature increase was found to result in a reduction in yield.  

This may be attributed to a multitude of factors, the primary factor being the type of catalyst used as in 

this work, neat calcium oxide catalyst was used instead of lithium nitrate loaded on calcium oxide. 

Furthermore, in their investigation of the parameters which affect the yield, temperature was not 

included as a parameter that affects the yield. The optimal conditions based on parametric optimisation 

(one-variable-at-a-time) was found for catalyst loading, reaction time and alcohol/oil molar ratio and 

then the effects of temperature was explored using those optimal conditions. As such, the effects of 

temperature variations may have been negated by the other variables. In this work, the baseline for the 

other variables was at their midpoints, hence, the alcohol/oil molar ratio; which has the largest effect 

on yield; may have influenced the yield much more at its baseline than temperature.  

Unlike the castor oil section, in this section temperature is shown to have a negative impact on the yield 

of biodiesel produced as indicated by the negative shape of the plot in Figure 55. Temperature was 

found to have the second strongest influence over the yield according to the ANOVA presented in Table 

41, with an F-Value and P-Value of 26.48 and less than 0.0001, respectively. As such, it can be said 

that the results of the temperature effects on yield did not occur by chance and that temperature is shown 

to be statistically significant as the P-Value is well below the 95 % confidence interval used in this 

work.  

Furthermore, the shape of plot may be justified in the sense that the reaction system preferred to operate 

at low temperatures based on the baseline of the other variables. Simply put, the baseline of the other 

variables were relatively low, but sufficient to sustain a process that produces a high yield at low 

temperatures as indicated by the 88.5 % yield which occurs at a temperature of 30℃. Further increase 

in the reaction temperature led to a reduction in yield, of which a minimum yield of 75 % is noted at a 

temperature of 57℃. This reduction may be explained by the occurrence of side reactions which may 

occur with an increase in temperature due to an increase in reaction rate. Side reactions such as 

esterification and saponification result in a reduction in yield by consuming the catalyst (Anastopoulos, 

et al., 2013).   

Clearly, the aforementioned factors are valid because using a higher alcohol/oil molar ratio completely 

reverses the effect that temperature has on the yield, as shown below, proving that the plots shown are 

relative to the conditions used. Furthermore, it can be said that the results of this work are in accordance 

with Anastopoulos et al. (2013). Similar results were noted in work of Veličković et al. (2016) in the 
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work of sunflower oil transesterification using calcium oxide and ethanol. In addition, as reaction 

temperature increased, the kinematic viscosity of the resulting sunflower oil biodiesel produced in the 

presence of methanol and calcium oxide catalyst decreased in the work of Son & Kusakabe (2011). 

Similar observations were noted in this work, as such, it can be said that the findings in this work are in 

accordance with the literature cited above.    

 

Figure 56 ‒ Effect of Temperature (A) on Yield (Elevated Alcohol/Oil Molar Ratio) 

 

7.4.2. The Effect of Catalyst Loading on Yield 

As mentioned earlier the catalyst loading values were kept constant with respect to the 

transesterification of esterified castor oil section, as such, catalyst loadings of 0.5 𝑤𝑡%, 1 𝑤𝑡% and 

1.5 𝑤𝑡% was employed. The catalyst loadings for this work are relatively low as compared to Veljković 

et al. (2009) who employed calcium oxide loadings of 1 𝑤𝑡% to 10 𝑤𝑡%. However, due to the high 

calcination temperature of 600℃ employed in this work, which is noted to be the optimal calcination 

temperature for calcium oxide by Esipovich et al. (2014), and the addition of 0.2 𝑤𝑡% of oil of water 

employed in this work, which is noted to be the optimal amount of water to be added into the reaction 

vessel by Liu et al. (2008), the relatively low catalyst loadings should produce biodiesel without the 

saponification reaction occurring.  

In addition, for the transesterification of soybean oil, Esipovich et al. (2014) showed that the use of 

1.3 𝑤𝑡% calcined calcium oxide catalyst was sufficient to result in a yield of approximately 98 % 

biodiesel. Therefore, the use of the current catalyst loadings are valid as the optimal catalyst loading 

should be found to somewhere in the upper catalyst loading range. Furthermore, an optimal catalyst 

loading of 1 𝑤𝑡% of calcium oxide using sunflower oil as a feedstock for transesterification may be 

seen in many works (Granados, et al., 2007; Veljković, et al., 2009; Vujicic, et al., 2010). 



98 

 

 

Figure 57 ‒ Effect of Catalyst Loading (B) on Yield 

As seen in Table 41, the effect of catalyst loading on yield is significant with an F-Value and P-Value 

of 26.07 and less than 0.0001, respectively, according to the linear section of the full quadratic model. 

Additionally, the effect of catalyst loading has a very similar effect to that of reaction temperature, 

however both result in a negative impact on the yield, therefore the interaction between these two 

parameters should produce a negative impact on the yield.  

Nevertheless, a decreasing trend may be noticed as catalyst loading increases up until 1.15 𝑤𝑡%. This 

may be attributed to insufficient catalyst in the reaction system which increases the overall mass transfer 

resistance between the reacting species and catalyst surface. The amount of water added to the reaction 

system was kept constant at 0.2 𝑤𝑡% of oil of water which may have led to the partial hydrolysis of 

FAMEs into free fatty acids, as indicated by Liu et al. (2008). Simply put, the amount of water added 

was constant (during experiments) whilst the amount of catalyst was varied (in the regression equation) 

which may have led to an excess amount of water in the reaction system because the catalyst loading 

was low. Furthermore, due to the low reaction time of 75 𝑚𝑖𝑛𝑠, Todorović et al. (2019) report that mass 

transfer limitations are more pronounced during the initial reaction period, as such 75 𝑚𝑖𝑛𝑠 may be 

regarded as the initial reaction period as transesterification reactions generally require reaction times 

longer than 75 𝑚𝑖𝑛𝑠 for completion. 

However, an increase in the yield may be noticed as catalyst loading increases past 1.2 𝑤𝑡%. This may 

be due to the system favouring higher catalyst loadings for the production of biodiesel, which is an 

expected result and is in accordance with the works cited above.   

7.4.3. The Effect of Time on Yield 

The reaction time values are inclusive of 30 𝑚𝑖𝑛𝑠, 75 𝑚𝑖𝑛𝑠 and 120 𝑚𝑖𝑛𝑠. The lower limit of time 

was selected to allow for the option of low reaction time during optimisation which would result in 

reduced operating expenses. Furthermore, it is reported by Samuel et al. (2015) that a reaction time of 

60 𝑚𝑖𝑛𝑠 is sufficient for the transesterification of Nigerian waste cooking oil. Similar results were noted 
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by N.i et al. (2018) in the case of transesterification using waste cooking oil and methanol. In their 

work, a 5 % difference in yield was noted when reaction time increased from 60 𝑚𝑖𝑛𝑠 to 90 𝑚𝑖𝑛𝑠, 

therefore a reaction time of 120 𝑚𝑖𝑛𝑠 is deemed suitable for complete transesterification.  

 

Figure 58 ‒ Effect of Time (C) on Yield 

According to the ANOVA presented in Table 41, the effect of time on the response variable is less 

significant that the other parameters as indicated by the lowest F-Value of 0.78 and highest P-Value of 

0.395. This value is above the 95 % confidence interval employed in this work and is deemed 

statistically insignificant. However, in the work of El-Gendy et al. (2014) in the case of 

transesterification of sunflower oil and waste sunflower oil using calcium oxide as a catalyst, reaction 

time proved to be the most significant parameter that had the largest effect on the yield of biodiesel 

produced.  

In their work, a reaction time range of 1 ℎ𝑟 to 3 ℎ𝑟𝑠 was employed with a catalyst loading range of 

6 𝑤𝑡% to 12 𝑤𝑡%. The higher catalyst loading may have led to an increase in the rate of the reaction 

which in turn, led to the occurrence of side reaction such as esterification or side reactions which is 

highly probable considering the high free fatty acid content of the waste cooking sunflower oil. 

Furthermore, longer reaction times are necessary when higher catalyst loadings are employed because 

excess catalyst in the reaction system results in an increase in mass transfer resistance because of 

insufficient coverage of the catalyst surface by methanol (Todorović, et al., 2019).  

According to Figure 58, a decrease in yield is observed to occur with an increase in reaction time which 

signifies that the reverse reaction, saponification or esterification is occurring. Furthermore, the amount 

of water added to the reaction system may also play a role in the response observed. The water in the 

system may result in partial hydrolysis of the FAMEs to produce free fatty acids which when combined 

with methanol undergoes esterification to yield FAME and more water (Son, et al., 2010). Simply put, 

the amount of water in the system may be increasing with time due to partial hydrolysis and 

esterification.  
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However, at a reaction time of 95 𝑚𝑖𝑛𝑠, the yield reaches a minimum and a turning point is observed, 

after which further increase in time results in an increase in yield. In keeping with the previously 

developed idea, the amount of water in the system may have also led to this increase in yield. According 

to Kouzu et al. (2009), water increases the solubility between the reacting species thereby leading to an 

increase in reaction rate. Furthermore, the time of 95 𝑚𝑖𝑛𝑠 could signify that all of the free fatty acids 

present in the sunflower oil have been consumed and the transesterification reaction can proceed. In 

addition, the increasing amount of water in the system would lead to a reduction in yield as stated 

previously. This reduction in yield is accompanied by the reverse reaction occurring and more reactants 

are formed. Therefore, the concentration of reactants increases whilst the concentration of products 

decreases, which leads to the promotion of the forward reaction due to concentration differentials 

according to Le Chatelier’s principle.  

7.4.4. The Effect of Alcohol/Oil Molar Ratio on Yield 

The alcohol/oil molar ratio values employed in this work are 4: 1, 9.5: 1 and 15: 1. The lower limit of 

alcohol/oil molar ratio was regarded as the minimum ratio that would allow for the transesterification 

of sunflower oil because theoretically 3 𝑚𝑜𝑙𝑠 of alcohol are required to react with 1 𝑚𝑜𝑙 of triglyceride 

to form 3 𝑚𝑜𝑙𝑠 of FAMEs and 1 𝑚𝑜𝑙 of glycerol. However, the yield is expected to be low when low 

alcohol/oil molar ratios are employed because an excess of alcohol is required to drive the forward 

reaction to equilibrium. The upper limit was selected such that excess methanol was not used which 

would readily dissolve in glycerol, thus limiting the amount of methanol available for 

transesterification. The yield was found to increase with increasing alcohol/oil molar ratio which was 

expected and is in accordance with Kostić et al. (2016) in the case of sunflower oil transesterification 

using calcium oxide and methanol.   

 

Figure 59 ‒ Effect of Alcohol/Oil Molar Ratio (D) on Yield 

According to Table 41, alcohol/oil molar ratio has the largest effect on the yield of biodiesel produced 

with an F-Value and P-Value of 45.47 and less than 0.0001, respectively. This observation is validated 
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by the very low P-Value which means that the results did not occur by chance. Unlike the other 

parameters, changing the value of the alcohol/oil molar ratio will not result in a drastic change in Figure 

59 because alcohol/oil is the most significant parameter.  

In the work of El-Gendy et al. (2014) in the case of transesterification using sunflower oil and waste 

cooking sunflower oil, alcohol/oil molar ratio was shown to have the second highest impact on the yield 

of biodiesel. This may be due to the catalyst loadings of 6 𝑤𝑡% to 12 𝑤𝑡% employed as higher catalyst 

loadings may require higher alcohol/oil molar ratios to promote the forward reaction as well as 

completely form a layer around the catalyst surface to reduce mass transfer limitation and increase the 

reaction rate. The highest alcohol/oil molar ratio employed in their work was 9: 1, which may have been 

insufficient for the amount of catalyst in the reaction vessel.  

With reference to Figure 59, it can be seen that for the entire alcohol/oil molar ratio range, the yield 

ranges from 70 % to 90 %. Therefore, optimisation using higher alcohol/oil molar ratios and lower 

reaction temperatures may be possible due to their individual effects discussed earlier.  

Figure 60 shown below represents the combined main effects of temperature, catalyst loading, reaction 

time and alcohol/oil molar ratio. The Box-Behnken Design allows for the use of three levels for a 

specific parameter and these levels are coded −1, 0 and 1. With −1 representing the lower limits of the 

parameters, 0 representing the mid-points of the data range of the parameters and 1 representing the 

upper limits of the parameters.  

 

Figure 60 ‒ Sunflower Oil Transesterification ‒ Perturbation  
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7.5. Response Surface Plots 

The regression equation (Eq. (7.3)) stated previously was used to plot the response surfaces and contour 

plots shown below. As mentioned previously, when trying to determine the relationship between two 

parameters and the resulting effect of the response variable, the other two factors need to be kept 

constant. For the purposes of consistency, the constant setting for all variables was kept at the midpoints, 

i.e. temperature of 47℃, catalyst loading of 1 𝑤𝑡%, time of 75 𝑚𝑖𝑛𝑠 and alcohol/oil molar ratio of 9.5.  

7.5.1. The Effect of Temperature & Catalyst Loading on Yield 

The 3-D response surface for the interaction between temperature and catalyst loading is shown in 

Figure 61 and the contour plot between temperature and catalyst loading is shown in Figure 62 whilst 

the reaction time and alcohol/oil molar ratio were set at 75 𝑚𝑖𝑛𝑠 and 9.5: 1, respectively, in the 

regression equation. A maximum yield which is close to the theoretical yield of 100 % is predicted by 

the regression model for a temperature and catalyst loading of 30℃ and 0.5 𝑤𝑡%, respectively. As 

achieving a yield of 100 % is impractical, the conclusion drawn is due to over-prediction of the response 

variable by the regression equation. These conditions fell within the experimental range as determined 

by the Box-Behnken experimental design and a yield of 97 % was achieved. The coefficient of 

determination (𝑅2) value of 95.60 % means that 4.4 % of the total variations are not explained by the 

full quadratic model.  

 

Figure 61 ‒ Sunflower Oil Response Surface (A) vs (B) 

 

Figure 62 ‒ Sunflower Oil Contour (A) vs (B) 

According to Table 41, the interaction between temperature and catalyst loading is not significant due 

to the low F-Value of 0.35 and high P-Value of 0.568. In fact, the interaction is ranked the least 

important among the other interactions according to the F-Values and P-Values shown in the ANOVA. 

This result is to be expected because of the relatively small reaction time of 75 𝑚𝑖𝑛𝑠 employed.  

Avramović et al. (2015) showed that for sunflower transesterification in the presence of calcium oxide 

and ethanol, operation at high temperatures and catalyst loadings results in higher yields produced. In 

their work, temperature ranges of 65℃ to 75℃ and catalyst loadings in the range of 10 𝑤𝑡% to 20 𝑤𝑡% 
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were employed but the key parameter was the reaction time of 420 𝑚𝑖𝑛𝑠 which was employed. This 

long reaction time may have completely negated any reduction in yield that may have occurred at the 

start of the reaction and during the initial reaction period.  

As highlighted previously, in this work, the alcohol/oil molar ratio proved to have a much larger effect 

on the yield than temperature, therefore this response surface is not in accordance with literature because 

it was produced relative to the other parameters that have a much larger influence on the yield at their 

baselines than temperature. However, temperature variations aside, the effects of catalyst loading can 

be seen by the response surface. It can be seen that as catalyst loading increases, the yield initially 

decreases and then increases, which is an effect that is shown at both temperature limits.  

This could signify that the system prefers operation at lower catalyst limits, but as catalyst concentration 

increases, the reaction rate increases which may lead to an increase in the occurrence of side reactions. 

However, as the catalyst loading passes 1 𝑤𝑡%, there is sufficient catalyst to sustain both the forward 

reaction and side reaction, but as the forward reaction progresses the amount of triglycerides present in 

the reaction vessel decrease, thereby decreasing the occurrence of side reactions such as saponification.   

7.5.2. The Effect of Temperature & Time on Yield 

The 3-D response surface for the interaction between temperature and time is shown in Figure 63 and 

the contour plot between temperature and time is shown in Figure 64 whilst the catalyst loading and 

alcohol/oil molar ratio were set at 1 𝑤𝑡% and 9.5: 1, respectively, in the regression equation. A 

maximum yield of 92 % was found to occur at a temperature of 30 ℃ and a reaction time of 120 𝑚𝑖𝑛𝑠. 

Therefore, a trend of low reaction temperature that results in high yields is seen by the previous response 

surface and Figure 63 which implies that low temperature optimisation is possible. The minimum yield 

of 74 % is seen to occur at a temperature and time range of 53℃ to 64℃ and 80 𝑚𝑖𝑛𝑠 to 120 𝑚𝑖𝑛𝑠, 

respectively.  

 

Figure 63 ‒ Sunflower Oil Response Surface (A) vs (C) 

 

Figure 64 ‒ Sunflower Oil Contour (A) vs (C) 
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With reference to Table 41, it can be seen that the interaction between temperature and time is 

statistically insignificant as the F-Value of 3.01 and P-Value of 0.109 are among the lowest of the 

interaction between parameters. Furthermore, since the P-Value is greater than the 95 % confidence 

interval used in this work, the interaction between temperature and time is regarded as statistically 

insignificant.  

However, as shown earlier, the removal of insignificant interactions from the full quadratic model has 

negative effects on the coefficient of determination. As such, if all the insignificant interactions are 

removed from the ANOVA in Table 41, the resulting 𝑅2 value would be 93.06 % which is a decrease 

in the models ability to predict the variance of the data. Furthermore, 6.94 % of the variance of the data 

would not be explained by the regression model.  

With reference to Figure 63, an increase in biodiesel yield can be seen at low reaction times and high 

reaction temperatures which may be attributed to the mass transfer limitations imposed at low reaction 

temperatures due to high kinematic viscosity. However, as temperature increases, the overall viscosity 

of the reaction mixture decreases which reduces the mass transfer limitations and results in an increase 

in yield. However, for a reaction time of 120 𝑚𝑖𝑛𝑠 an increase in yield is expected with an increase in 

temperature. However, no such increase in yield is observed which may be attributed to an insufficient 

catalyst loading of 1 𝑤𝑡% which is necessary to sustain the forward reaction at prolonged reaction 

times.  

7.5.3. The Effect of Temperature & Alcohol/Oil Molar Ratio on Yield 

The 3-D response surface for the interaction between temperature and alcohol/oil molar ratio is shown 

in Figure 65 and the contour plot between temperature and alcohol/oil molar ratio is shown in Figure 

66 whilst the catalyst loading and reaction time were set at 1 𝑤𝑡% and 75 𝑚𝑖𝑛𝑠, respectively, in the 

regression equation. A maximum yield of approximately 99 % is found to occur at a reaction 

temperature and alcohol/oil molar ratio of 64℃ and 15: 1, respectively. These conditions were found 

to be within the Box-Behnken experimental design and a yield of 97 % was achieved experimentally 

at these conditions. It can therefore be said that the high yield of 99 % is as a result of over-prediction 

by the regression equation.  
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Figure 65 ‒ Sunflower Oil Response Surface (A) vs (D) 

 

Figure 66 ‒ Sunflower Oil Contour (A) vs (D) 

The interaction between temperature and alcohol/oil molar ratio is ranked as the most influential 

interaction over the yield according to the ANOVA presented in Table 41. The high F-Value of 41.58 

and low P-Value of less than 0.0001 indicate that the interaction is statistically significant and the 

results did not occur by chance as the probability of that happening is negligible. Furthermore, according 

to the linear model presented in the full quadratic model, temperature and alcohol/oil molar ratio have 

the largest effect on the yield, therefore, the interaction between the two parameters should have a large 

effect on the yield.  

Similar results to this work were found by Kostić et al. (2016) in the case of sunflower transesterification 

using methanol and calcium oxide derived from palm kernel biochar. In their work, biodiesel yield was 

found to increase with an increase in alcohol/oil molar ratio and temperature. The operation 

temperatures and alcohol/oil molar ratios are similar to this work, however, a catalyst loading of 3 𝑤𝑡% 

and reaction time of 4 ℎ𝑟𝑠 was used to generate the response surface. They conclude that a rapid 

increase in yield occurs at higher temperatures and that this increase is higher than that observed by 

increasing the alcohol/oil molar ratio, as such, similar conclusions are evident in this work, as seen by 

the response surface in Figure 65.  

However, according to the findings of Todorović et al. (2019) who conducted sunflower 

transesterification in the presence of calcium oxide and methanol using biodiesel as a cosolvent, at 

lower temperatures and alcohol/oil molar ratios, the yield should be the lowest. This however, is not the 

case in this work, as the yield is observed to increase when the aforementioned conditions are imposed. 

This difference may be as a result of the biodiesel cosolvent employed in their work or an increase in 

water content present at low temperatures and alcohol/oil molar ratios due to esterification or partial 

hydrolysis of FAMEs to form free fatty acids. As mentioned earlier, the increased water content in the 

reaction vessel, increases the overall solubility of the catalyst in the reacting species and hence increases 

the reaction rate (Kouzu, et al., 2009).   
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7.5.4. The Effect of Catalyst Loading & Time on Yield 

The 3-D response surface for the interaction between catalyst loading and time is shown in Figure 67 

and the contour plot between catalyst loading and time is shown in Figure 68 whilst the reaction 

temperature and alcohol/oil molar ratio were set at 47℃ and 9.5: 1, respectively, in the regression 

equation. The maximum yield of 92 % is seen to occur at a catalyst loading of 0.5 𝑤𝑡% and reaction 

time of 120 𝑚𝑖𝑛𝑠 whilst the minimum yield of 76 % occurs at a catalyst loading range of 1 𝑤𝑡% to 

1.4 𝑤𝑡% and time range of 80 𝑚𝑖𝑛𝑠 to 120 𝑚𝑖𝑛𝑠.  

 

Figure 67 ‒ Sunflower Oil Response Surface (B) vs (C) 

 

Figure 68 ‒ Sunflower Oil Contour (B) vs (C) 

As evident by Table 41, the linear effect of catalyst loading is statistically significant whilst the reaction 

time is shown to be statistically insignificant in the full quadratic model. However, the result of the two 

parameters are shown to be statistically insignificant or slightly significant because of the P-Value of 

0.083. This value is slightly below the 95 % confidence interval employed in this work, therefore, it 

may be regarded as slightly significant. This result is to be expected as the high P-Value of time in the 

linear model outweighs the low P-Value of catalyst loading in the linear model.  

Slightly similar results were reported by El-Gendy et al. (2014) in the case of transesterification of 

sunflower oil and water cooking sunflower oil in the presence of calcium oxide and methanol. In their 

work, the yield of biodiesel was found to increase initially with time and then decrease. This effect is 

seen on the time axis of the response surface, however, a much more pronounced effect was observed 

in their work with may be attributed to longer reaction times of 3 ℎ𝑟𝑠. In addition, their response surface 

only started at a reaction time of 1 ℎ𝑟.  

Furthermore, they noted a slight decrease in biodiesel yield with an increase in catalyst loading, 

however, in this work, a much more noticeable effect may be seen. This may be attributed to insufficient 

catalyst at lower catalyst loadings which result in side reactions and an increase in water production. 

However, as catalyst loading increased past 1 𝑤𝑡% an increase in yield is observed which may be as a 

result of the increased solubility between the catalyst and reacting species. Therefore, the more 
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noticeable effect in this work may be as a result of water addition at the start of the reaction, which is a 

factor that is not explored in their work.  

The decrease in yield at the upper catalyst limit with an increase in reaction time may be due to excess 

catalyst in the reaction system which promotes the occurrence of side reactions, as such the yield of 

biodiesel produced decreases as the catalyst is consumed by side reactions, i.e. saponification.   

7.5.5. The Effect of Catalyst Loading & Alcohol/Oil Molar Ratio on Yield 

The 3-D response surface for the interaction between catalyst loading and alcohol/oil molar ratio is 

shown in Figure 69 and the contour plot between catalyst loading and alcohol/oil molar ratio is shown 

in Figure 70 whilst the reaction temperature and time were set at 47℃ and 75 𝑚𝑖𝑛𝑠, respectively, in 

the regression equation. Over-prediction by the regression model may be seen to occur at a catalyst 

loading of 1.5 𝑤𝑡% and alcohol/oil molar ratio of 15: 1, resulting in a maximum yield of 100 %. 

Fortunately, these conditions fell within the Box-Behnken experimental design and a yield of 97 % was 

achieved experimentally. The minimum yield of 68 % occurs at a catalyst loading of 1.5 𝑤𝑡% and 

alcohol/oil molar ratio of 4: 1.  

 

Figure 69 ‒ Sunflower Oil Response Surface (B) vs (D) 

 

Figure 70 ‒ Sunflower Oil Contour (B) vs (D) 

The interaction between catalyst loading and alcohol/oil molar ratio has the second largest effect among 

the interactions of the parameters according to Table 41. The F-Value and P-Value of 16.57 and 0.002 

signify that the interaction is statistically significant, and the results did not occur by chance.  

With reference to Figure 69, the yield of biodiesel is found to increase with increasing alcohol/oil molar 

ratios at both catalyst loading limits. This result is expected as it is in accordance with the ANOVA. In 

addition, increasing the amount of methanol in the reaction vessel ensures that complete coverage of 

the catalyst surface is achieved, which is necessary for the formation of the methoxide anions necessary 

for the transesterification reaction (Esipovich, et al., 2014). Furthermore, it is known that excess 

methanol is required to drive the forward reaction to equilibrium, as such, higher methanol 
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concentrations in the reaction vessel will result in higher reaction rates, thus resulting in higher yields 

produced.   

Similar results were reported by El-Gendy et al. (2014) in the case of transesterification of sunflower 

oil and waste cooking sunflower oil. In their work, a decrease in yield was noticed with an increase in 

catalyst loading, as seen in this work. This may be due to possible side reactions that result in a reduction 

in yield. However, they reported that yield increased with increasing alcohol/oil molar ratio up to 7.5: 1, 

after which a reduction in yield was observed. No such conclusion may be drawn in this work but a 

moderate change in yield is observed with increasing alcohol/oil molar ratio at the lower catalyst limit.  

7.5.6. The Effect of Time & Alcohol/Oil Molar Ratio on Yield 

The 3-D response surface for the interaction between reaction time and alcohol/oil molar ratio is shown 

in Figure 71 and the contour plot between reaction time and alcohol/oil molar ratio is shown in Figure 

72 whilst the reaction temperature and catalyst loading were set at 47℃ and 1 𝑤𝑡%, respectively, in the 

regression equation. The maximum yield of approximately 96 % can be seen to occur at a time of 

120 𝑚𝑖𝑛𝑠 and alcohol/oil molar ratio of 15: 1 whereas the minimum yield of 66 % occurs at a time of 

120 𝑚𝑖𝑛𝑠 and alcohol/oil molar ratio of 4: 1.  

 

Figure 71 ‒ Sunflower Oil Response Surface (C) vs (D) 

 

Figure 72 ‒ Sunflower Oil Contour (C) vs (D) 

With reference to Table 41, it can be seen that the interaction between time and alcohol/oil molar ratio 

is statistically significant with a P-Value of 0.014, which is below the 95 % confidence interval 

employed in this work. Furthermore, the F-Value of 8.17 makes the interaction the third most 

significant among the interaction between the other parameters. It is important to note that all 

interactions involving alcohol/oil molar ratio were statistically significant, whereas other interactions 

were slightly or not significant.  

Similar results to this work were noted by Avramovic et al. (2015) in the case of sunflower oil 

transesterification in the presence of calcium oxide and ethanol. In their work, an increase in yield was 

observed as alcohol/oil molar ratio increased at lower reaction times. They however, conclude that 
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higher reaction times of 480 𝑚𝑖𝑛𝑠 resulted in high yields despite the low alcohol/oil molar ratios 

employed. In this work, the opposite was shown to be true.  

Considering the minimum yield of 66 % achieved at the lower limit of alcohol/oil molar ratio and upper 

limit of time. It may be valid to assume that insufficient methanol in the reaction vessel resulted in a 

low reaction rate which struggled to drive the forward reaction. This assumption is shown to be 

appropriate as at the upper limit of time and alcohol/oil molar ratio, a yield of 96 % is achieved. 

Therefore, it can be said that longer reaction times and higher alcohol/oil molar ratios promote the 

forward reaction and result in high yields of biodiesel.  

The following table illustrates the actual yield and the predicted yield from the regression equation 

associated with the coded units; A, B, C and D which represent temperature, catalyst loading, time and 

alcohol/oil molar ratio, respectively.   

Table 44 ‒ Box-Behnken Design Matrix for Sunflower Oil Transesterification in Coded Units 

Run Order A B C D Actual Yield Predicted Yield 

1 47 1.5 30 9.5 0.87 0.90 

2 47 1 30 15 0.93 0.91 

3 47 1.5 120 9.5 0.80 0.77 

4 47 1 75 9.5 0.75 0.77 

5 47 0.5 75 4 0.93 0.91 

6 64 1 120 9.5 0.73 0.73 

7 47 1 75 9.5 0.78 0.77 

8 47 1.5 75 15 0.97 1.01 

9 30 1 30 9.5 0.93 0.92 

10 47 1.5 75 4 0.65 0.67 

11 47 1 120 15 0.92 0.96 

12 47 0.5 120 9.5 0.95 0.93 

13 64 0.5 75 9.5 0.87 0.87 

14 64 1 75 15 0.97 1.01 

15 47 1 120 4 0.64 0.66 

16 47 0.5 30 9.5 0.89 0.92 

17 47 1 30 4 0.85 0.82 

18 30 0.5 75 9.5 0.97 1.02 

19 64 1 75 4 0.55 0.58 

20 64 1 30 9.5 0.85 0.85 

21 47 0.5 75 15 0.96 0.96 

22 30 1 75 15 0.94 0.91 

23 64 1.5 75 9.5 0.84 0.80 

24 47 1 75 9.5 0.77 0.77 

25 30 1 75 4 0.96 0.94 

26 30 1 120 9.5 0.93 0.92 

27 30 1.5 75 9.5 0.90 0.91 
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Figure 73 shows the actual yield plotted against the predicted yield obtained from the regression 

equation. As seen below, a linear regression equation can be fitted to the data set and the regression 

coefficient of determination (𝑅2) is 0.9551 which indicates a very strong relationship between the 

actual experimental data and the predicted data from the regression equation. Therefore, the use of the 

full quadratic model is valid for optimisation where interpolation between the different parameters can 

occur to maximise the yield.  

 

Figure 73 ‒ Sunflower Oil Predicted Yield vs Actual Yield 

The optimisation of the sunflower oil transesterification Box-Behnken Design using a full quadratic 

model was conducted on Minitab™ where all the parameters where constrained to their respective 

domains as to avoid maximisation of the response variable beyond 100 %. However, further restriction 

was applied within the respective domains to prevent the prediction of yields higher than 100 %. As 

mentioned earlier, low temperature optimisation was possible and higher reaction times and alcohol/oil 

molar ratios need to be applied to maximise the yield. Three model validation experiments were 

conducted and the average yield of 98 % is presented in the table below. The results of the optimisation 

are deemed suitable as saponification did not occur and the difference between the predicted and actual 

yields are 1 %.  

Table 45 ‒ Optimum Conditions for Sunflower Oil Transesterification ‒ Yield Maximisation  

Parameter Optimum Value 

Temperature (A) 35 ℃ 

Catalyst Loading (B)  1.38 (𝑤𝑡% 𝑜𝑖𝑙) 

Time (C) 115 𝑚𝑖𝑛 

Alcohol/Oil Molar Ratio (D)  14.44 

Yield (Predicted) 0.99 

Yield (Actual) 0.98 
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Figure 74 ‒ Sunflower Oil Biodiesel (Optimal Conditions) Chromatogram 

 

Table 46 ‒ Sunflower Oil Biodiesel (Optimal Conditions) GCMS 

Peak Number Retention Time (𝑚𝑖𝑛) Area (%) Name 

1 1.816 0.08 Octanoic acid, methyl ester 

2 2.082 0.04 Decanoic acid, methyl ester 

3 2.325 0.05 Dodecanoic acid, methyl ester 

4 7.791 0.1 Methyl tetradecanoate 

5 11.481 0.09 Pentadecanoic acid, methyl ester 

6 16.983 5.76 Hexadecenoic acid, methyl ester 

7 23.091 60.17 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 

8 23.302 29.54 9-Octadecenoic acid, methyl ester 

9 23.889 3.88 Methyl stearate 

10 31.121 0.3 9,12-Octadecadienoic acid, methyl ester 

 

7.6. Summary  

Sunflower oil transesterification was conducted in the presence of calcium oxide and methanol with the 

addition of 0.2 𝑤𝑡% of oil of water. Box-Behnken response surface methodology was used to design 

and analyse the experimental results. A total of 27 experiments were conducted inclusive of 3 replicates 

which are necessary for the determination of the regression coefficients by Minitab™. Statistical 

analysis in the form of an ANOVA revealed that alcohol/oil molar ratio was the most important 

parameter according to the full quadratic model chosen. Reaction temperature, catalyst loading and time 

were ranked second, third and fourth, respectively, in terms of influence on yield according to the linear 

part of the full quadratic model. All interactions with the alcohol/oil molar ratio parameter were shown 

to be statistically significant. In this section, over-prediction by the regression model was particularly 

significant which resulted in the restriction of the respective domains of all parameters. The 

optimisation revealed a maximum predicted yield of 99 % which is in accordance with the factors 

discussed earlier. The actual yield attained at the optimal conditions was 98 % which proves that the 

model and optimisation is valid. This yield is in accordance with the literature (Veljković, et al., 2009).  
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Chapter 8 – Physical Properties & Blending 

8.1. Introduction 

With the production of biodiesel, comes the need to determine if the product is suitable for use in normal 

engines without modification. This is achieved via physical property testing which is in accordance 

with fuel standards. In this work, however, more important physical properties such as density, 

viscosity, acid value, flash point, pour point and heat of combustion were evaluated. The samples tested 

are inclusive of the base castor oil, esterified castor oil, castor oil transesterification (Biodiesel), base 

sunflower oil, sunflower oil transesterification (Biodiesel) and blends of both the biodiesel samples with 

kerosene, i.e. 10 % biodiesel and 90 % kerosene and lastly 20 % biodiesel and 80 % kerosene.   

8.1.1. Density  

The density of the samples was determined via the use of a measuring cylinder and a hydrometer. The 

measuring cylinder was filled with the sample and the hydrometer was spun and dropped into the 

measuring cylinder. The reading, taken from the top of the sample surface, on the hydrometer 

corresponds to the specific gravity of the sample. After which, the specific gravity of the sample was 

converted into the density of the sample by taking a reference density of 1000 𝑘𝑔/𝑚3 of water.   

Table 47 ‒ Density Measurements 

Density (𝑘𝑔/𝑚3) Test 1  Test 2  Test 3  Average  

Castor oil at 15℃ 954 955 956 955 

Esterified castor oil at 15℃ 950 946 948 948 

Castor oil biodiesel at 15℃ 912 913 914 913 

Sunflower oil at 15℃ 912 919 916 916 

Sunflower oil biodiesel at 15℃ 890 895 892 892 

Blends with Kerosene     

Castor oil biodiesel  10 %: 90% at 15℃ 816 812 817 815 

Castor oil biodiesel 20 %: 80% at 15℃ 834 832 826 830 

Sunflower oil biodiesel 10 %: 90% at 15℃ 814 815 809 812 

Sunflower oil biodiesel 20 %: 80% at 15℃ 813 815 818 815 

As seen from the above table, the density of castor oil biodiesel is slightly above the limit of 

900 (𝑘𝑔/𝑚3) as specified by ASTM D941, whereas the densities of the other fuels are within range. 

The density of the jet fuel samples are within range because the density range for jet fuel is 775 −

840 (𝑘𝑔/𝑚3) according to ASTM D1655.  

8.1.2. Kinematic Viscosity 

The absolute or dynamic viscosity of the samples were determined using a viscometer equipped with a 

jacketed sampler capable of heating the samples to a temperature of 40℃ using a hot water bath with 

temperature control. A general spindle size of S21 was selected as this gave the most accurate results 



113 

 

with were in accordance with literature. A small sample was loaded into the jacketed vessel and left for 

a period of 30 𝑚𝑖𝑛𝑠 to reach the required temperature, after which the spindle was lowered into the 

vessel and turned on at a speed of 60 𝑟𝑝𝑚. The absolute or dynamic viscosity in units of centipoise was 

recorded and the kinematic viscosity of the samples were determined by dividing the absolute or 

dynamic viscosity by the density of the respective sample.  

Table 48 ‒ Kinematic Viscosity Measurements  

Kinematic Viscosity (𝑚𝑚2/𝑠) Test 1  Test 2  Test 3  Average  

Castor oil at 25℃ 265 254 262 260 

Esterified castor oil at 40℃ 90 87 79 85 

Castor oil biodiesel at 40℃ 10 8.5 9.5 9.3 

Sunflower oil at 25℃ 35 29 33 32 

Sunflower oil biodiesel at 40℃ 3.1 2.6 2.8 2.8 

Blends with Kerosene     

Castor oil biodiesel  10 %: 90% at 20℃ 2 1.6 1.7 1.8 

Castor oil biodiesel 20 %: 80% at  20℃ 1 1.3 1.3 1.2 

Sunflower oil biodiesel 10 %: 90% at  20℃ 1.3 1.2 1.2 1.2 

Sunflower oil biodiesel 20 %: 80% at  20℃ 1.2 1.2 1.2 1.2 

As seen from the above table, the kinematic viscosity of castor oil biodiesel is slightly above the limit 

of 6 𝑚𝑚2/𝑠 as specified by ASTM D445 standards, furthermore, it can be seen that sunflower oil 

biodiesel is well within the range. The blends of jet fuel are also within the range because the maximum 

allowed kinematic viscosity is 8 𝑚𝑚2/𝑠 at a temperature of 20℃, as specified by ASTM D1665. 

8.1.3. Acid Value 

The acid value of the samples were determined by titration against a 0.1 𝑀 solution of KOH. A sample 

mass of 2 𝑔 was used for base castor oil because the acid value was expected to be high whereas a 

sample mass of 20 𝑔 was used for sunflower oil because the acid value was expected to be low. Titration 

solvent in the form of toluene:propan-2-ol:water in a ratio of 100: 99: 1 was added in a volume of 

100 𝑚𝑙 to the conical flask along with approximately 5 drops of phenolphthalein indicator  and titrated. 

Endpoint was reached when the solution turned pale pink with a persistent colour. The volume 

difference was recorded, and the acid value was calculated according to the formula shown in Appendix 

A – Sample Calculations.  

Table 49 ‒ Acid Value Measurements 

Acid Value (𝑚𝑔𝐾𝑂𝐻/𝑔) Test 1  Test 2  Test 3  Average  

Castor oil  25.892 22.469 23.248 23.872 

Esterified castor oil  0.719 0.714 0.711 0.715 

Castor oil biodiesel  0.573 0.532 0.565 0.557 

Sunflower oil  0.375 0.224 0.211 0.265 

Sunflower oil biodiesel  0.214 0.208 0.212 0.211 
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Blends with Kerosene     

Castor oil biodiesel  10 %: 90%  0.523 0.553 0.560 0.545 

Castor oil biodiesel 20 %: 80%  0.537 0.545 0.572 0.551 

Sunflower oil biodiesel 10 %: 90%  0.207 0.213 0.205 0.208 

Sunflower oil biodiesel 20 %: 80%  0.209 0.214 0.213 0.212 

It can be seen by the table above that castor oil biodiesel is slightly above the limit of 0.5 𝑚𝑔𝐾𝑂𝐻/𝑔 

as specified by ASTM D974 and sunflower oil biodiesel falls below this limit. In addition, the jet fuel 

maximum allowed acid value is 0.015 𝑚𝑔𝐾𝑂𝐻/𝑔 which means that all of the samples tested are above 

this limit. Further processing may be required to reduce the acid content of the blended samples.  

8.1.4. Flash Point (Closed Cup) 

A flash point apparatus was used to determine the flash point of the samples in question. Sufficient fuel 

was added to the cup and closed. Hot water was added to the apparatus for further heating inside the 

apparatus. A thermometer was used to record the sample temperature. At 1℃ intervals, the lid was 

opened and exposed to an ignition source and the lowest temperature was recorded when the fuel 

vapours flashed above the fuel source.    

Table 50 ‒ Flash Point Measurements 

Flash Point (℃) Test 1  Test 2  Test 3  Average  

Castor oil  − − − − 

Esterified castor oil  − − − − 

Castor oil biodiesel  156 161 159 159 

Sunflower oil  − − − − 

Sunflower oil biodiesel  105 95 97 99 

Blends with Kerosene     

Castor oil biodiesel  10 %: 90%  58 63 59 60 

Castor oil biodiesel 20 %: 80%  72 65 67 68 

Sunflower oil biodiesel 10 %: 90% 55 59 58 57 

Sunflower oil biodiesel 20 %: 80%  59 65 63 62 

As shown in the table above, both castor oil biodiesel and sunflower oil biodiesel are above the 

minimum flash point temperature range of 93℃ and below the limit of 170℃ as specified by ASTM 

D93. However, only the minimum flash point temperature limit is specified according to ASTM D1655 

for jet fuel and this limit is 38℃, of which all samples tested are above the minimum limit for jet fuel.  

8.1.5. Pour Point 

The pour point of the samples were determined by placing a sufficient amount of the sample in a beaker 

which was surrounded by dry ice. A thermometer was used to record the lowest temperature achieved 

at which the mixture was fluid enough to be poured.  
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Table 51 ‒ Pour Point Measurements 

Pour Point (℃) Test 1  Test 2  Test 3  Average  

Castor oil  − − − − 

Esterified castor oil  − − − − 

Castor oil biodiesel  10 8 6 8 

Sunflower oil  − − − − 

Sunflower oil biodiesel  0 -1 -3 -1 

Blends with Kerosene     

Castor oil biodiesel  10 %: 90%  − − − − 

Castor oil biodiesel 20 %: 80%  − − − − 

Sunflower oil biodiesel 10 %: 90%  − − − − 

Sunflower oil biodiesel 20 %: 80%  − − − − 

As seen from the table above, the pour point was determined only for castor oil biodiesel and sunflower 

oil biodiesel as the reported pour point temperature of −47℃ for jet fuel, as seen in ASTM D1655, 

could not be tested due to temperature restrains. However, both castor oil biodiesel and sunflower oil 

biodiesel are within the range of −15℃ to 10℃ according to ASTM D6751 for pour point temperatures. 

The castor oil biodiesel has a larger pour point temperature due to higher kinematic viscosity.  

8.1.6. Heat of Combustion 

The heat of combustion was determined only for jet fuel where the following formula is applicable 

(Speight, 2002): 

𝐻𝑒𝑎𝑡 𝑜𝑓 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 = 12400 − 2100(𝑆𝐺)2 = 𝑏𝑡𝑢/𝑙𝑏  

Table 52 ‒ Heat of Combustion Results 

Heat of Combustion (𝑏𝑡𝑢/𝑙𝑏) Test 1  Test 2  Test 3  Average  

Blends with Kerosene     

Castor oil biodiesel  10 %: 90% at 15℃ 11002 11015 10998 11005 

Castor oil biodiesel 20 %: 80% at 15℃ 10939 10946 10967 10953 

Sunflower oil biodiesel 10 %: 90% at 15℃ 11009 11005 11026 11015 

Sunflower oil biodiesel 20 %: 80% at 15℃ 11012 11005 10995 11005 

 

8.1.7. API Gravity 

The API gravity was determined only for jet fuel where the following formula is applicable (Speight, 

2002): 

𝐴𝑃𝐼 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =
141.5

𝑆𝐺
− 131.5  
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Table 53 ‒ API Gravity Results 

API Gravity  Test 1  Test 2  Test 3  Average  

Blends with Kerosene     

Castor oil biodiesel  10 %: 90% at 15℃ 42 43 42 42 

Castor oil biodiesel 20 %: 80% at 15℃ 38 39 40 39 

Sunflower oil biodiesel 10 %: 90% at 15℃ 42 42 43 43 

Sunflower oil biodiesel 20 %: 80% at 15℃ 43 42 41 42 

 

 

Figure 75 ‒ Density Range for Jet Fuel (Kaiser, et al., 2019) 

From the figure above, it can be seen that jet fuels 𝐽𝑃 − 5 and 𝐽𝑃 − 8 have been synthesized by blending 

kerosene with biodiesel obtained from castor and sunflower oils. However, with reference to the heat 

of combustion, jet fuel with a lower heat of combustion has been produced as the recommended heat of 

combustion by Kaiser et al. (2019) is 17280 𝑏𝑡𝑢/𝑙𝑏.  

8.2. Summary  

The important physical properties such as density, kinematic viscosity, acid value, flash point, pour 

point and in the case of blending only, heat of combustion and API gravity have been determined. The 

density of castor oil biodiesel was slightly above the limit, whereas the densities of all other fuels tested 

were within range. A similar observation can be made about kinematic viscosity. However, for acid 

value, only sunflower oil biodiesel was within the limits whereas the flash point and pour point 

temperatures for all fuels tested were within the limits. Jet fuel, 𝐽𝑃 − 5 and 𝐽𝑃 − 8, have been 

synthesized according to the respective API gravities. The heat of combustion of jet fuel produced was 

lowered than the recommended limit, however, lower blending ratios of castor oil biodiesel and 

sunflower oil biodiesel produced higher heats of combustion.  
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Chapter 9 – Conclusion & Recommendations  

Castor oil and sunflower oil were used in the production of bio-fuel, viz, biodiesel and jet fuel via 

heterogeneous alkaline catalyst. The high acid value of castor oil of approximately 12 % free fatty acids 

(oleic acid) meant that alkaline catalyst would be ineffective in the conversion of triglycerides present 

in the oil to biodiesel. Hence, a two-step process comprising acid-catalysed esterification and base-

catalysed transesterification employed. The acid catalyst employed was sulphuric acid due to its wide 

availability and low cost. The heterogenous base catalyst employed was calcium oxide for similar 

reasons, however, calcium oxide readily deactivates in the presence of atmospheric conditions and 

calcination at a temperature of 600℃ for 3 ℎ𝑟𝑠 was necessary. 

The objectives of this study was to investigate and optimise the parameters that effect the yield of 

biodiesel produced, viz, reaction temperature, catalyst loading, time and alcohol/oil molar ratio. This is 

achieved in Minitab™ where the Box-Behnken response surface methodology was employed to design 

the 27 experiments necessary to determine a suitable regression model. The type of regression model 

chosen was the full quadratic model as it resulted in the highest coefficient of determination (𝑅2) value 

among the other models tested. Statistical analysis in form of an ANOVA was conducted to evaluate 

the effects and interaction between the parameters and the response variable. The regression equation 

was then used to generate the plots showing the individual effects and interactions between two 

variables and the resulting effect on the response variable.  

With reference to the esterification process, the objective was the minimisation of the free fatty acids 

present in castor oil. The optimisation revealed that a minimal value of 0.72 % was possible, however, 

a value of 0.715 % was obtained experimentally. A large amount of esterified castor oil was produced 

at those conditions and used in the transesterification of castor oil. A total of 90 experiments were 

conducted inclusive of replicates and model validation. With reference to castor oil transesterification, 

a possible yield of 98.6 % was predicted but a yield of 97.2 % was achieved experimentally. Finally, a 

maximum yield of 99 % was predicted for sunflower oil transesterification but a yield of 98 % was 

achieved experimentally. The coefficient of determination for castor oil esterification, castor oil 

transesterification and sunflower oil transesterification was 99.21 %, 95.83 % and 95.60 %, 

respectively. In all three cases, however, restriction of the parameter domains was necessary, especially 

in the case of sunflower oil transesterification, to limit the optimisation from producing conditions that 

resulted in the free fatty acid content being zero and yields produced over 100 %. Catalyst reusability 

was investigated independently and found to be significant in the sense that after the reaction, the 

catalyst was unable to be reused without calcination.  

Physical property testing was conducted on the biodiesels produced. In addition, the resulting fuels were 

mixed with kerosene in 10 % and 20 % ratios to produce jet fuel. The density of biodiesel produced 
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from castor oil was slightly over the specified limit of 900 𝑘𝑔/𝑚3, whereas all other densities were 

within range. Similar conclusions are drawn in the case of kinematic viscosity and acid value. However, 

in the case of acid value, only biodiesel produced from sunflower oil met the required specifications. 

Biodiesel produced from castor oil resulted in higher flash and pour point temperatures as compared to 

that of sunflower oil which may be attributed to the high kinematic viscosity of castor oil, even after 

esterification.  

 

The objectives of this work were met in the sense that the parameters influencing the yield of biodiesel 

production were investigated. The resulting process was optimised and there was a strong relationship 

between the optimisation and experimental values. Finally, physical property testing of the biodiesel 

and blending of biodiesel with kerosene for the production of jet fuel was conducted. Furthermore, 

castor oil biodiesel did not meet most of the standards required by ASTM D6751, hence it is not 

recommended for biodiesel production whereas sunflower oil is suitable for biodiesel production. The 

heterogeneous nature of calcium oxide made it easy to work with and separate from the reaction mixture 

by centrifugation. However, further testing and refinement is required in the case of biodiesel produced 

from castor oil. The main parameters, density and viscosity, of the produced jet fuel were within 

specification however further testing is required before use in a jet engine. The heat of combustion of 

jet fuel produced was lowered than the recommended limit, however, lower blending ratios of castor 

oil biodiesel and sunflower oil biodiesel produced higher heats of combustion. It is therefore a viable 

assumption that biodiesel produced from sunflower oil may serve as a replacement for petro-diesel in 

the use of normal diesel engines without modification.  
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A1 

 

Appendix A – Sample Calculations 

Determination of Molar Mass: 

The molar mass of the base oils, castor and sunflower, may be calculated via the following formula 

(Huaping, et al., 2006): 

𝑀𝑊𝑜𝑖𝑙 =
56.1 ∗ 1000 ∗ 3

𝑆𝑉 − 𝐴𝑉
 (A.1) 

The application of this formula (Eq. (A.1)) involves the determination of the Saponification Value, 𝑆𝑉, 

and the Acid Value, 𝐴𝑉, of the base oils.  

The Acid Value, 𝐴𝑉, of the base oils were calculated according to the (ASTM-D974-12, 2012) standard. 

The following formula is applicable: 

𝐴𝑉 =
56.1 ∗ 𝑀 ∗ (𝑉𝑡 − 𝑉𝑏)

𝑚
=

𝑚𝑔 𝐾𝑂𝐻

𝑔 𝑜𝑖𝑙
 (A.2) 

Where, 𝑀, represents the molarity of the potassium hydroxide solution and 𝑉𝑡 and 𝑉𝑏 represent the 

volume of potassium hydroxide solution titrated and used for the blank titration. The mass of the sample 

is shown by 𝑚. The procedure outlined by the standard requires the use of 2 𝑔 of sample to be used if 

the expected acid value is high and a mass of 20 𝑔 is to be used if the expected acid value is low.  

The blank titration is completed by first preparing a titration solvent comprising toluene, propan-2-ol 

and de-ionised water in a ratio of 100:99:1, respectively. Then, 100 𝑚𝑙 of titration solvent and 5 drops 

of phenolphthalein indicator were mixed and swirled in a conical flask. A 0.1 𝑀 KOH solution was 

prepared by the addition and mixing of 5.61 𝑔 of solid potassium hydroxide pellets in 1 𝐿 of de-ionised 

water. The initial reading of the titrant level on the burette was recorded prior to titration and the final 

reading of the level was recorded when the contents of the conical flask turned pale pink for at least a 

period of 15 𝑚𝑖𝑛𝑠 under constant swirling. The difference in volume between the final and initial 

reading was calculated to be 0.2 𝑐𝑚3.    

Similarly, the acid value of sunflower oil of sample mass 20 𝑔 needed 1.15 𝑐𝑚3 of titrant to reach 

endpoint: 

𝐴𝑉𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 =
56.1 ∗ 0.1 ∗ (1.15 − 0.2)

20
= 0.265 

𝑚𝑔 𝐾𝑂𝐻

𝑔 𝑜𝑖𝑙
  

The acid value of castor oil is expected to be high, therefore a sample of mass 2 𝑔 was used: 
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𝐴𝑉𝑐𝑎𝑠𝑡𝑜𝑟 =
56.1 ∗ 0.1 ∗ (8.71 − 0.2)

2
= 23.872 

𝑚𝑔 𝐾𝑂𝐻

𝑔 𝑜𝑖𝑙
  

Additionally, the free fatty acid calculated as a percentage of oleic acid is then computed for sunflower 

oil and castor oil as follows (ASTM-D974-12, 2012): 

𝐹𝐹𝐴𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 =
28.2 ∗ 0.1 ∗ (1.15 − 0.2)

20
= 0.134 (% 𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑)  

And the FFA content of castor oil is determined in a similar way: 

𝐹𝐹𝐴𝑐𝑎𝑠𝑡𝑜𝑟 =
28.2 ∗ 0.1 ∗ (8.71 − 0.2)

2
= 12.0 (% 𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑)  

The saponification value, 𝑆𝑉, is determined by the procedure outlined in (Muhammad, et al., 2019) 

where 2 𝑔 of the sample and 25 𝑐𝑚3 of 0.1𝑁 ethanolic KOH was boiled at total reflux under constant 

stirring. Once the mixture cooled, without gelling or solidifying; approximately 5 drops of 

phenolphthalein indicator was added and the mixture turned pink or pale pink. Titration against 0.5𝑀 

HCL solution was performed until the pink colour disappeared and the volume of the titrant used was 

recorded for the actual sample and blank titration. The following formula was then used to determine 

the saponification value, 𝑆𝑉: 

𝑆𝑉 =
56.1 ∗ 𝑀 ∗ (𝑉𝑏 − 𝑉𝑡)

𝑚
=

𝑚𝑔 𝐾𝑂𝐻

𝑔 𝑜𝑖𝑙
 (A.3) 

Where, 𝑀 represents the molarity of the HCL solution used as the titrant and the other variables were 

mentioned earlier. The saponification value for sunflower oil is calculated as follows: 

𝑆𝑉𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 =
56.1 ∗ 0.5 ∗ (20 − 6.3)

2
= 192.14 

𝑚𝑔 𝐾𝑂𝐻

𝑔 𝑜𝑖𝑙
  

Similarly, the saponification value for castor oil is calculated: 

𝑆𝑉𝑐𝑎𝑠𝑡𝑜𝑟 =
56.1 ∗ 0.5 ∗ (20 − 5.4)

2
= 204.77 

𝑚𝑔 𝐾𝑂𝐻

𝑔 𝑜𝑖𝑙
  

And hence the molar mass of sunflower oil can be calculated via Eq. (A.1): 

𝑀𝑊𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 =
56.1 ∗ 1000 ∗ 3

192.14 − 0.265
= 877.13 

𝑔

𝑔𝑚𝑜𝑙
  

Similarly, the molar mass of castor oil is calculated: 
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𝑀𝑊𝑐𝑎𝑠𝑡𝑜𝑟 =
56.1 ∗ 1000 ∗ 3

204.77 − 23.872
= 930.36 

𝑔

𝑔𝑚𝑜𝑙
  

The calculated values of molar mass for sunflower and castor oil are within 0.11% and 0.36%, 

respectively, when compared to the literature values.  

Esterification:  

1. Determination of amount of alcohol and catalyst loading  

Firstly, the limits of the alcohol/oil molar ratio and catalyst loading must be set. The limits in the case 

of esterification using sulphuric acid as a catalyst was set at an alcohol/oil molar ratio of 4:1 to 15:1 and 

0.25 𝑤𝑡(%) to 3.25 𝑤𝑡(%) of the oil mass for catalyst loading. The following calculation procedure is 

illustrated for an alcohol/oil molar ratio of 15:1 and 0.25 𝑤𝑡(%) catalyst loading, but is applicable to 

all possible combinations thereafter, however, esterification is exclusive to castor oil only.  

The volume of oil used was limited to the maximum reaction vessel volume of 500 𝑚𝑙, therefore, the 

volume of oil was selected based on the maximum alcohol/oil molar ratio of 15:1. The volume of oil 

used in all experiments was 300 𝑚𝑙. The following equation is then applicable: 

𝑚𝑐𝑎𝑠𝑡𝑜𝑟 = 𝜌𝑜𝑖𝑙 ∗ 𝑉𝑜𝑖𝑙 =
955 ∗ 300

1000
= 286.5 𝑔  

Next, the number of moles of oil must be computed: 

𝑛𝑐𝑎𝑠𝑡𝑜𝑟 =
𝑚𝑐𝑎𝑠𝑡𝑜𝑟

𝑀𝑊𝑐𝑎𝑠𝑡𝑜𝑟
=

286.5

930.36
= 0.308 𝑚𝑜𝑙  

Applying an alcohol/oil molar ratio of 15:1 

𝑛𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 𝑛𝑐𝑎𝑠𝑡𝑜𝑟 ∗ 15 = 0.308 ∗ 15 = 4.619 𝑚𝑜𝑙  

Next, using the molar mass of the alcohol (methanol), the mass of the alcohol to be weighted can be 

determined: 

𝑚𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 𝑛𝑎𝑙𝑐𝑜ℎ𝑜𝑙 ∗ 𝑀𝑊𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 4.619 ∗ 32.04 = 147.99 𝑔  

And finally, the catalyst loading can be computed: 

𝑚𝑐𝑎𝑡 = 𝑚𝑐𝑎𝑠𝑡𝑜𝑟 ∗ 0.25% = 286.5 ∗ 0.0025 = 0.716 𝑔  

A check of the total volume of the reaction mixture may be performed using the density of the alcohol: 
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𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑐𝑎𝑠𝑡𝑜𝑟 + 𝑉𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 300 +
147.99 ∗ 1000

792
= 486.87 𝑚𝑙  

2. Determination of amount of base needed to neutralise the acid catalyst  

After the esterification reaction, the acid catalyst present in the reaction mixture must be neutralised 

with the calculated amount of base, to reflect the correct acid value of the esterification reaction. This 

procedure is outlined below: 

The balanced stoichiometric reaction for the acid-base neutralisation reaction is as follows: 

2𝐾𝑂𝐻 + 𝐻2𝑆𝑂4  ⟶ 𝐾2𝑆𝑂4 + 2𝐻2𝑂 (A.4) 

Since concentrated sulphuric acid was used as the acid catalyst, the purity of the catalyst must be 

accounted for in determining how much base is necessary for the neutralisation reaction. The purity of 

sulphuric acid was 98 % by mass. Consider 100 𝑔 of sulphuric acid: 

𝑉100 𝑔 =
𝑚100 𝑔

𝜌𝐻2𝑆𝑂4

=
100

1.827
= 54.73 𝑚𝑙  

Therefore, the number of grams in 1000 𝑚𝑙 with a purity of 98 %: 

𝑚1000 𝑚𝑙 =
𝑝𝑢𝑟𝑖𝑡𝑦100 𝑔

𝑉100 𝑔
∗ 1000 =

98

54.73
∗ 1000 = 1790.61 𝑔  

Next, the number of moles must be computed to determine the molarity of the acid: 

𝑛1000 𝑚𝑙 =
𝑚1000 𝑚𝑙

𝑀𝑊𝐻2𝑆𝑂4

=
1790.61

98.08
= 18.26 𝑚𝑜𝑙  

The molarity of the acid is determined via the following equation: 

𝑀 =
𝑛1000 𝑚𝑙

1 𝐿
=

18.26

1
= 18.26 

𝑚𝑜𝑙

𝐿
  

Once the molarity of the catalyst is determined, the amount of catalyst on a mass basis that has been 

added to the reaction mixture must be computed. The following calculation procedure is illustrated for 

0.25 𝑤𝑡(%) catalyst loading, but is applicable to all possible combinations thereafter:  

𝑚𝑐𝑎𝑡 = 𝑚𝑐𝑎𝑠𝑡𝑜𝑟 ∗ 0.25% = 286.5 ∗ 0.0025 = 0.716 𝑔  

The volume of catalyst added is calculated using the density of the catalyst: 
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𝑉 =
𝑚0.716 𝑔

𝜌𝐻2𝑆𝑂4

=
0.716

1.827
= 0.39 𝑚𝑙  

Therefore, using simple algebra: 

0.39 𝑚𝑙

1
∗ 

18.26 𝑚𝑜𝑙

1000 𝑚𝑙
= 7.12 ∗ 10−3 𝑚𝑜𝑙 𝐻2𝑆𝑂4  

And accounting for the stoichiometry of the reaction: 

7.16 ∗ 10−3 𝑚𝑜𝑙 𝐻2𝑆𝑂4

1
∗

2 𝑚𝑜𝑙 𝐾𝑂𝐻

1 𝑚𝑜𝑙 𝐻2𝑆𝑂4
∗

56.1 𝑔

1 𝑚𝑜𝑙 𝐾𝑂𝐻
= 0.8 𝑔  

Hence, 0.8 𝑔 of KOH is necessary to neutralise the amount of acid catalyst added to the reaction 

mixture. However, it may be useful to first prepare a potassium hydroxide solution and then calculate 

the volume of that solution that is necessary to facilitate the neutralisation reaction, as solid potassium 

hydroxide pellets may not dissolve quickly in the reaction mixture. The volume of KOH solution is 

calculated by first preparing a strong basic solution corresponding to the high acidic solution. In the 

case of this work, since the molarity of the acid was 18.26 𝑀, a KOH solution of 1 𝑀 was prepared by 

the addition of 56.1 𝑔 of KOH pellets to 1 𝐿 of de-ionised water.  

Therefore, the volume of 1 𝑀 KOH solution that must be added: 

𝑉 =
𝑚

𝑀𝑊 ∗ 𝑀
=

0.8 𝑔 ∗ 1000 𝑚𝑙

56.1 𝑔 ∙ 𝑚𝑜𝑙−1 ∗ 1 𝑚𝑜𝑙
= 14.26 𝑚𝑙 𝐾𝑂𝐻  

3. Determination of acid value for esterification experiments 

 After neutralisation of the acid catalyst, the resulting mixture is transferred to a separation funnel for 

overnight settling, followed by hot tap water washing to remove glycerol, soap and potassium salts and 

other impurities. After water washing several times, a sample of 2 𝑔 is weighted and added to a conical 

flask containing 100 𝑚𝑙 titration solvent and 5 drops of phenolphthalein indicator. A similar procedure 

is then followed as outlined before.  

The following calculation is for the following conditions; reaction temperature, catalyst loading, time 

and alcohol/oil molar ratio of 47℃, 0.25 𝑤𝑡(%), 30 𝑚𝑖𝑛𝑠 and 9.5: 1, respectively, but is applicable to 

all possible combinations thereafter:  

𝐴𝑉𝑒𝑠𝑡𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
56.1 ∗ 0.1 ∗ (1.51 − 0.2)

2
= 3.67 

𝑚𝑔 𝐾𝑂𝐻

𝑔 𝑜𝑖𝑙
  

The free fatty acid calculated as a percentage of oleic acid is then computed (ASTM-D974-12, 2012): 
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𝐹𝐹𝐴𝑒𝑠𝑡𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
28.2 ∗ 0.1 ∗ (1.51 − 0.2)

2
= 1.85 (% 𝑜𝑙𝑒𝑖𝑐 𝑎𝑐𝑖𝑑)  

Transesterification:  

1. Determination of amount of alcohol and catalyst loading  

This procedure is very similar to the previous procedure with the only a difference in the limits of 

catalyst loading. The catalyst loading limits in the case of transesterification using calcinated calcium 

oxide as a catalyst was set at 0.5 𝑤𝑡(%) to 1.5 𝑤𝑡(%) of the oil mass. The following calculation 

procedure is illustrated for sunflower oil with an alcohol/oil molar ratio of 15:1 and 0.5 𝑤𝑡(%) catalyst 

loading, but is applicable to all possible combinations thereafter:  

The volume of oil used was limited to the maximum reaction vessel volume of 500 𝑚𝑙, therefore, the 

volume of oil was selected based on the maximum alcohol/oil molar ratio of 15:1. The volume of oil 

used in all experiments was 300 𝑚𝑙. The following equation is then applicable: 

𝑚𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 = 𝜌𝑜𝑖𝑙 ∗ 𝑉𝑜𝑖𝑙 =
916 ∗ 300

1000
= 274.8 𝑔  

Next, the number of moles of oil must be computed: 

𝑛𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 =
𝑚𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟

𝑀𝑊𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟
=

274.8

877.13 
= 0.313 𝑚𝑜𝑙  

Applying an alcohol/oil molar ratio of 15:1 

𝑛𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 𝑛𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 ∗ 15 = 0.313 ∗ 15 = 4.699 𝑚𝑜𝑙  

Next, using the molar mass of the alcohol (methanol), the mass of the alcohol to be weighted can be 

determined: 

𝑚𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 𝑛𝑎𝑙𝑐𝑜ℎ𝑜𝑙 ∗ 𝑀𝑊𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 4.699 ∗ 32.04 = 150.569 𝑔  

And finally, the catalyst loading can be computed: 

𝑚𝑐𝑎𝑡 = 𝑚𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 ∗ 0.5% = 274.8 ∗ 0.005 = 1.374 𝑔  

A check of the total volume of the reaction mixture may be performed using the density of the alcohol: 

𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 + 𝑉𝑎𝑙𝑐𝑜ℎ𝑜𝑙 = 300 +
150.569 ∗ 1000

792
= 490.11 𝑚𝑙  
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Similarly, the amount of alcohol and catalyst loading can be calculated for castor oil in the case of 

transesterification.  

2. Determination of amount of acid needed to neutralise the base catalyst  

After the transesterification reaction, the base catalyst present in the reaction mixture must be 

neutralised with the calculated amount of acid, to stop the reaction. Sulphuric acid was used as the 

neutralising agent. 

The balanced stoichiometric reaction for the acid-base neutralisation reaction is as follows: 

𝐶𝑎𝑂 + 𝐻2𝑆𝑂4  ⟶ 𝐶𝑎𝑆𝑂4 + 𝐻2𝑂 (A.5) 

Analytical grade calcium oxide was first calcinated, then used in the transesterification reaction, 

therefore, the purity was assumed to be greater than 99 % by mass. Consider 100 𝑔 of calcium oxide: 

𝑉100 𝑔 =
𝑚100 𝑔

𝜌𝐶𝑎𝑂
=

100

3.34
= 29.94 𝑚𝑙  

Therefore, the number of grams in 1000 𝑚𝑙 with a purity of 99 %: 

𝑚1000 𝑚𝑙 =
𝑝𝑢𝑟𝑖𝑡𝑦100 𝑔

𝑉100 𝑔
∗ 1000 =

99

29.94
∗ 1000 = 3306.6 𝑔  

Next, the number of moles must be computed to determine the molarity of the base: 

𝑛1000 𝑚𝑙 =
𝑚1000 𝑚𝑙

𝑀𝑊𝐶𝑎𝑂
=

3306.6

56.08
= 58.962 𝑚𝑜𝑙  

The molarity of the base is determined via the following equation: 

𝑀 =
𝑛1000 𝑚𝑙

1 𝐿
=

58.962

1
= 58.962 

𝑚𝑜𝑙

𝐿
  

Once the molarity of the catalyst is determined, the amount of catalyst on a mass basis that has been 

added to the reaction mixture must be computed. The following calculation procedure is illustrated for 

0.5 𝑤𝑡(%) catalyst loading, but is applicable to all possible combinations thereafter:  

𝑚𝑐𝑎𝑡 = 𝑚𝑠𝑢𝑛𝑓𝑙𝑜𝑤𝑒𝑟 ∗ 0.5% = 274.8 ∗ 0.005 = 1.374 𝑔  

The volume of catalyst added is calculated using the density of the catalyst: 
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𝑉 =
𝑚1.374 𝑔

𝜌𝐶𝑎𝑂
=

1.374

3.34
= 0.411 𝑚𝑙  

Therefore, using simple algebra: 

0.411 𝑚𝑙

1
∗ 

58.962 𝑚𝑜𝑙

1000 𝑚𝑙
= 2.43 ∗ 10−2 𝑚𝑜𝑙 𝐶𝑎𝑂  

And accounting for the stoichiometry of the reaction: 

2.43 ∗ 10−2 𝑚𝑜𝑙 𝐶𝑎𝑂

1
∗

1 𝑚𝑜𝑙 𝐻2𝑆𝑂4

1 𝑚𝑜𝑙 𝐶𝑎𝑂
∗

98.08 𝑔

1 𝑚𝑜𝑙 𝐻2𝑆𝑂4
= 2.38 𝑔  

In the case of this work, a sulphuric acid solution of 1 𝑀 was prepared by the addition of 98.08 𝑔 of 

sulphuric acid to 1 𝐿 of de-ionised water.  

Therefore, the volume of 1 𝑀 𝐻2𝑆𝑂4 solution that must be added: 

𝑉 =
𝑚

𝑀𝑊 ∗ 𝑀
=

2.38 𝑔 ∗ 1000 𝑚𝑙

98.08 𝑔 ∙ 𝑚𝑜𝑙−1 ∗ 1 𝑚𝑜𝑙
= 24.256 𝑚𝑙 𝐻2𝑆𝑂4  

3. Determination of yield 

As mentioned in the experimental methodology, the yield is calculated as follows: 

𝑌𝑖𝑒𝑙𝑑 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙/𝑒𝑠𝑡𝑒𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑖𝑙
 (A.6) 

The following is an example of yield calculation for sunflower oil in the case of transesterification with 

reaction conditions; temperature, catalyst loading, time, alcohol/oil molar ratio of 47℃, 1.5 𝑤𝑡%, 

30 𝑚𝑖𝑛𝑠 and 9.5: 1, respectively, which resulted in 240.2 𝑔 of biodiesel: 

𝑌𝑖𝑒𝑙𝑑 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙/𝑒𝑠𝑡𝑒𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑖𝑙
=

240.2

274.8
= 0.87 ∗ 100 = 87 %  

 


