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ABSTRACT 

Dukuduku indigenous forest in South Africa provides varied products and usable materials for 

human needs that include construction and fence poles, raw material for craft work, livestock 

browse and medicine to the poor rural communities. The Dukuduku indigenous forest is 

dominated by many rare and endangered tree species, for example Syzygium cordatum, Cussonia 

zuluensis, Ficus natalensis, Canthium inerme, Strychnos madagascariensis, Strychnos spinosa, 

Albizia adianthifolia, Ekebergia capensis, Harpephyllum caffrum, Hymenocardia ulmoides, 

Sclercarya  birrea and Trichilia dregeana. These tree species play a significant role in ecosystem 

functioning and services, land use dynamics and other socio-economic aspects. Such aspects 

include ecological, economic, livelihood, security-based and well-being benefits. However, some 

tree species in the Dukuduku indigenous forest have become endangered and threatened by a 

number of factors such as the rapid harvesting rate and  climate. Conventional approaches of 

monitoring and mapping endangered tree species are complex and require intensive fieldwork 

which is a costly, time-consuming and subjective protocol, particularly when carried out in 

highly fragmented ecosystems. In this regard, remotely-sensed data offer a practical and 

economical means of quantifying indigenous forest fragmentation over large areas. Remote 

sensing is capable of providing rapid, relatively inexpensive and near-real-time data that could be 

used for monitoring endangered tree species especially in indigenous forest ecosystems where 

data collection may be difficult. The advent of advanced imaging systems and supervised 

learning algorithms has made it increasingly practical to facilitate the development of models 

that adequately map endangered tree species and estimate their biophysical and biochemical 

properties in the fragmented forest ecosystems. Recently, vegetation maps have been produced 

using the advanced imaging systems such as WorldView-2 and robust classification algorithms 

like support vectors machines (SVM) and artificial neural networks (ANN). However, 

delineation of endangered tree species from other land use/cover and estimating their biophysical 

(leaf area index: LAI) and biochemical (leaf nitrogen: N and carbon: CN) traits in a fragmented 

ecosystem using high spatial resolution imagery has largely remained elusive due to the 

complexity of the species structure and their distribution. 
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Therefore, in the current research, WorldView-2 data with SVM and ANN classification 

algorithms were firstly used to map the spatial distribution of detailed land use/cover classes in 

the Dukuduku indigenous forest. The study successfully mapped eight land use/cover patterns, 

achieving an overall classification accuracy of 78% with an allocation disagreement (AD) of 

17% and a quantity disagreement (QD) of 5%. The results demonstrated the ability of remotely-

sensed data for mapping land use/cover at high accuracy within an indigenous forest ecosystem.  

 

Secondly, the study examined the utility of the advanced WorldView-2 data for distinguishing 

endangered tree species from other land use/cover using SVM and ANN classification 

algorithms. The results showed the robustness of the two machine learning algorithms for 

classifying the endangered tree species. Overall accuracy of 77% (AD of 12% and QD of 11%) 

for SVM and 75% (AD of 16% and QD of 9%) for ANN were achieved. Furthermore, the advent 

of the additional WorldView-2 bands for mapping the six endangered tree species was also 

tested. Results showed that the additional WorldView-2 bands produced almost the same overall 

accuracy of 70% for both SVM (AD = 14% and QD = 16%) and ANN (AD = 19% and QD = 

11%). 

 

Thirdly, the relationship between LAI of the six endangered tree species and spectral vegetation 

indices (SVIs) derived from WorldView-2 data in fragmented and intact indigenous forest 

ecosystems were tested using SVM and ANN regression algorithms. The results showed that 

LAI at tree species level could be accurately estimated using the fragmented stratum data 

compared with the intact stratum data. Specifically, the study showed that the accurate LAI 

predictions were achieved for Hymenocardia ulmoides tree using the fragmented stratum data 

and SVM regression model based on a validation data set (R2
Val = 0.75, RMSEVal = 1.37% of the 

mean). 

 

Finally, multispectral WorldView-2 spectral variables with the SVM and ANN regression 

methods were explored for estimating and mapping forest leaf N and CN concentrations of 

fragmented and intact indigenous forests ecosystems. The results showed that the accurate forest 

foliar N predictions were achieved for the fragmented data using the SVM (R2
Val = 0.77, 

RMSEVal = 1.07% of the mean) and ANN (R2
Val = 0.70 and RMSEVal = 5.40% of the mean) 

regression methods. The study also showed that the accurate forest foliar CN predictions were 
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achieved for the fragmented data using SVM (R2
Val = 0.67, RMSEVal = 1.64% of the mean) and 

ANN (R2
Val = 0.51, RMSEVal = 2.21% of the mean). It was observed that that SVM regression 

approach achieved relatively more accurate models for estimating the forest leaf N and CN 

concentrations in the fragmented and intact indigenous forest ecosystems compared to the ANN 

regression method. 

 

Overall, the results provide accurate information that is important for forest managers and 

researchers for making informed decisions regarding the conservation and management of the 

land use/cover patterns and endangered tree species in Dukuduku indigenous forest in South 

Africa. 
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1.1 Background 

Indigenous forests stretch across different parts of Africa and are particularly concentrated in the 

southern and eastern parts of the continent (Eeley et al., 2001). Indigenous forests are a source of 

valued resources that highly contribute to rural communities in southern Africa (Shackleton and 

Shackleton, 2004; Eldeen and van Staden, 2007; van Wyk, 2008). They play a vital role in 

nutrient and carbon cycling, provide habitats for fauna and flora, and reduces soil erosion 

(Eldeen, 2005; Brendler et al., 2010). The indigenous forest biome also supports a high 

proportion of South Africa flora and fauna diversity, e.g. forest mammals and forest birds 

represent more than 13% of the total terrestrial of these taxa in southern Africa (Eeley et al., 

1999). 

 

In South Africa, indigenous forests cover about 0.2% of the country’s land surface, and consist 

of many small, fragmented and largely scattered patches in relatively dry landscapes (Ndlovu, 

2013). The country has a strong history of utilizing tree species for traditional healing (Louw et 

al., 2002; Eldeen, 2005). The country also has a high rate of plant diversity, with some 30000 

species of flowering plants and 80% of these species are endemic (Goldblati, 1978; Fennell et 

al., 2004). This incorporates a large diversity of plants including, among others, trees, shrubs, 

and herbs (Louw et al., 2002). An example of such fragmented forests in KwaZulu Natal, South 

Africa is the Dukuduku forest. Dukuduku indigenous forest is one of the best preserved remnants 

of South African coastal forests (Ntombela, 2003). Dukuduku indigenous forest provides variety 

of benefits and products that include traditional medicine, resin, and livestock browsing (Eldeen, 

2005; Brendler et al., 2010; Cho et al., 2012; Mlambo, 2013). The medicinal tree species are a 

very important component provided by indigenous forests and play a vital role in providing 

subsistence and income (Hamilton, 2004). However, the coastal forest in the Dukuduku area is 

highly threatened by the rapid growth of informal human settlements and agricultural systems 

(Ndlovu, 2013). It is interesting to note that local communities in Zululand use different tree 

species to treat human diseases, such as fever, stomach ache dysentery, snake and scorpion bites 

(Hutchings, 1996; Sewram et al., 2000; Eldeen and van Staden, 2007; Brendler et al., 2010). In 

addition, the Dukuduku indigenous forest has become home to an increasing number of mainly 

subsistence farmers, some of whom form part of the group of land claimants (Sundnes, 2013). 

Therefore, these growing illegal squatters lead to large scale and rapid destruction of the forest 

ecosystem. For the aforementioned reasons, some tree species have become endangered, 
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threatened and rare in different forests in South Africa. In particular, the Dukuduku forest has 

experienced intense harvesting which has led to the disappearance of some of these tree species 

(van Wyk et al., 2006; Mlambo, 2013). The intensive harvesting of these tree species for 

different use has caused over utilization of resources and has subsequently affected the forest 

ecosystem in the area (Baillie et al., 2004; Wiersum et al., 2006). 

 

Moreover, studies have shown that the distribution of some rare and threatened tree species has 

decreased due to over utilization of resources for wood carving and traditional medicine in 

Dukuduku area (Eldeen, 2005; Mlambo, 2013).  The Dukuduku area is dominated by several rare 

tree species, for example Syzygium cordatum, Cussonia zuluensis, Ficus natalensis, Canthium 

inerme, Strychnos madagascariensis, Strychnos spinosa, Albizia adianthifolia, Ekebergia 

capensis, Harpephyllum caffrum, Hymenocardia ulmoides, Sclercarya birrea and Trichilia 

dregeana (Watt and Breyer-Brandwijk, 1962; Jäger et al., 1996).  Among these tree species, six 

tree species (Figure 1.1) were observed to be under severe threat and endangered (Mlambo, 

2013). Therefore, this research focuses on classifying these tree species amongst other land 

use/cover and estimates their biophysical and biochemical parameters. Endangered tree species 

require sound management and protection protocols to assess the ecosystems’ services and 

resilience in the value chain (Eldeen, 2005; Lyons et al., 2005; Pouteau et al., 2012). This 

requires intensive fieldwork to geo-locate and identify endangered tree species from other land 

use/cover classes and estimate their biophysical and biochemical properties (Rushton et al., 

2004; Pouteau et al., 2012). 
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Field Photograph Scientific name Isizulu name  English name 

 

Albizia adianthifolia    IGowani Flat crown  

 

Ekebergia capensis UmYamathi Cape ash    

 

Harpephyllum caffrum UmGwenya Wild Plum 

 

Hymenocardia ulmoides UmBambahlangu Red- heart tree 

 

Sclercarya birrea UmGanu Marula 

 

Trichilia dregeana UmKhuhlu Forest mahogany    

Figure 1.1: The endangered tree species selected in the present study 
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1.2 Endangered Tree Species in Indigenous Forest 

In the past few decades, traditional methods have been used to quantify, map and monitor 

vegetation and tree species. These methods provide significantly better results in mapping 

endangered tree species over small areas. However, the traditional ground-based forest surveys 

are complex and require intensive and difficult fieldwork that involves interrogating local expert 

knowledge in terms of species identification and to support accurate information on the spatial 

and temporal distribution of endangered tree species, dynamics and characteristics. This exercise 

is too expensive, and time-consuming, particularly in a large fragmented ecosystem. In order to 

understand the spatial distribution of endangered tree species and develop sustainable forest 

management practices to monitor their functions in the indigenous forest ecosystem, it is 

important to (i) improve the understanding of the dynamics of indigenous forest ecosystems, and 

(ii) develop an early warning system for forest fragmentation and loss of forest species diversity. 

Furthermore, there is more precise information available from forest surveys and there is a 

critical requirement to develop real-time spatially-explicit data for modeling the spatial 

distribution and predicting the biophysical (e.g. LAI: leaf area index) and biochemical (e.g. N: 

nitrogen and CN: carbon) indicators needed for the rapid assessment and proactive management 

of the endangered tree species. One of the best ways to improve the management and monitoring 

of indigenous forest ecosystems is to estimate the biophysical (e.g. LAI) and biochemical (e.g. 

foliar N and CN concentrations) attributes. These tree characteristics are proxies for ecosystem 

resilience, conservation and forest health. The forest LAI is an important biophysical attribute for 

modeling the energy and mass exchange between the land surface and the atmosphere of 

terrestrial ecosystems as it is one of the most useful indicators of forest growth, biomass and net 

primary production (Asner et al., 2003). Therefore, predicting LAI of some tree species that play 

a vital role in ecosystem services is a necessary and valuable information.  

 

Forest leaf N and CN are also among the most important biochemical components of tree organic 

matter, and the estimation of their concentrations can help to monitor the nutrient uptake 

processes and forest health. Estimating forest foliar N and CN concentrations of different forest 

ecosystems such as the fragmented and intact Dukuduku forests could help resource managers to 

understand the impact of various socio-ecological mechanisms on indigenous forest species and 

the vulnerability of these ecosystems to external and internal perturbations. In this regard, a 

complementary remotely-sensed data has successfully been used to provide a fairly accurate, 
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repetitive and unbiased means for mapping and monitoring vegetation and tree species. 

Therefore, techniques that make use of the advantages of remote sensing are needed for mapping 

endangered tree species in order to determine the condition of indigenous forest ecosystems. 

1.3 Application of Remote Sensing for Characterizing Endangered Tree Species in 

an Indigenous Forest Ecosystem 

Obtaining accurate information for the sake of mapping and monitoring endangered tree species 

distribution is an important technical task for sustainable indigenous forest management. Remote 

sensing is a powerful tool that can obtain accurate information for mapping and monitoring 

vegetation species in different indigenous forest ecosystems (Vogelmann, 1995; Fuller, 2001; 

Cho et al., 2013). However, remotely-sensed mapping and monitoring of changes in the spatial 

distribution of vegetation species in fragmented ecosystems faces some challenges that are 

associated with the characteristics of indigenous vegetation species as well as with the pixel size 

of some sensors. The challenges facing scientists in terms of the application of remote sensing 

for distinguishing between vegetation species in fragmented ecosystem are as follows: (i) 

vegetation species phenology changes as a result of climate change, particularly precipitation, 

which leads to the spectral variability of the same species (Ray, 1995); (ii) the likelihood of 

nonlinear mixing due to the multiple scattering of light from the species canopies and/or leaves, 

which leads to an overestimation of green vegetation species; and (iii) vegetation species 

adaptations to harsh environmental factors, which make the spectral reflectance of these species 

different (Ray and Murray, 1996).  

 

Multispectral imagery (i.e. Landsat, IKONOS and Système Pour l'Observation de la Terre 

(SPOT)) are affordable, relatively available, and provide accurate data for discriminating among 

endangered tree species in fragmented ecosystems. In general, multispectral data have brought 

great opportunities for classifying land use/cover and tree species in homogenous and intact 

landscapes (Pu and Landry, 2012). Multispectral remote sensing has largely been used for 

mapping and modeling forest species, their biochemical and biophysical parameters (Ferwerda et 

al., 2005; Davi et al., 2006; Pilger, 2008). However, multispectral remotely-sensed data have 

high spatial resolution and provide more bands with lower spatial resolution. The lower spatial 

resolution of multispectral remotely-sensed data might not accurately classify land use/cover and 

tree species in a large landscape (Cho et al., 2013). Multiple objects within a pixel can lead to 
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spectral confusion and poor discriminating among discrete and continuous cover classes causing 

ambiguous land use/cover and tree species classes (Aplin, 2003). Conversely, these challenges 

hinder the classification of land use/cover classes and tree species when multispectral remotely-

sensed data are captured from heterogeneous and fragmented forest ecosystems (Foody, 2002).  

 

The advent of hyperspectral remotely-sensed data can overcome the limitations of multispectral 

data by offering spectral data of many and contiguous wavebands for more reliable and accurate 

land use/cover and tree species mapping (Vaiphasa et al., 2007; Petropoulos et al., 2012). 

Hyperspectral remotely-sensed data are considered one of the most advanced techniques for 

studying species dynamics, because it has many narrow wavelengths of less than 10 nm 

(Vaiphasa et al., 2007). Many studies that have investigated the use of hyperspectral remote 

sensing in characterizing vegetation and have demonstrated the usefulness of the red edge region 

of the electromagnetic spectrum for mapping vegetation species and for estimating their 

biochemical and biophysical characteristics (Mutanga, 2005; Cho and Skidmore, 2006; Adam et 

al., 2010; Adam et al., 2012). The red edge region offers accurate details on the variations in 

species structure and condition (Cho et al., 2008a). However, the uses of hyperspectral data have 

their own limitations in terms of cost, availability and high dimensionality.  

 

Recently, the newly launched multispectral satellites like Sentinel-2, WorldView-2, WorldView-

3, and RapidEye, have brought great opportunities for mapping land use/cover and tree species. 

Among these satellites, WorldView-2 which provides relatively better spectral resolution of eight 

wavebands with a pixel size of 2m (DigitalGlobe, 2010; Omar, 2010). WorldView-2 offers key 

spectral bands such as red edge and yellow, depicting tree spectral characteristics more 

accurately as compared to the other conventional wavebands like green and red  (Dlamini, 2010; 

Ozdemir and Karnieli, 2011; Pu and Landry, 2012). For instance, the usefulness of WorldView-2 

data for mapping individual tree species in indigenous and plantation forest ecosystems and 

characterizing coastal landscapes, has been demonstrated in many studies, among others, 

Navulur (2009), Chen et al. (2011) and Peerbhay et al. (2014). On the other hand, literature 

demonstrates that WorldView-2 satellite offers a better alternative data source for quantifying 

and providing timely spatial variations of forest biophysical (e.g. LAI and biomass) and 

biochemical (e.g. N) attributes (Cho et al., 2013; Cho et al., 2014). However, there is a lack of 

knowledge on the performance of WorldView-2 spectral subsets and variables for mapping land 
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use/cover and distinguishing between endangered tree species as well as predicting their LAI, N 

and CN concentrations in fragmented landscapes. Consequently, the challenges would be to 

assess and monitor both the distribution and quantity (e.g. LAI) of endangered tree species using 

remotely-sensed data in order to provide the most suitable level of detail and accuracy for 

mapping purposes. This facilitates a better understanding of the species quantity interaction in a 

spatial context. Therefore, this study focuses on the use of WorldView-2 data to accomplish the 

task of mapping land use/cover and to distinguish among six endangered tree species. 

Specifically, the study explored the advent of the WorldView-2 spectral subsets (WorldView-2 

eight bands, WorldView-2 standard bands, and WorldView-2 additional bands) for mapping land 

use/cover and endangered tree species, as well as for estimating some tree and forest foliar 

biophysical (LAI) and biochemical (N and CN) traits. The results of this study would therefore 

fill the gap in scientific research that requires further investigations necessary for reliable and 

accurate monitoring of indigenous forest especially in a fragmented ecosystem. The strength of 

the WorldView-2 multispectral data, however, needs to be further investigated for estimating and 

mapping other biophysical (e.g. biomass) biochemicals (e.g. P and K) traits in indigenous and 

tropical forest ecosystems within a fragmented ecosystem. 

1.4 Aim and Objectives 

The aim of the study was to investigate the utility of multispectral WorldView-2 data for 

mapping six endangered tree species and other land use/cover types in the fragmented Dukuduku 

indigenous forest ecosystem in South Africa. The study further explored the possibility to 

estimate biophysical and biochemical traits of the six endangered tree species. 

The specific objectives of the current study were to: 

 

1. Investigate the utility of high spatial resolution multispectral WorldView-2 data and 

advanced machine learning classification algorithms for mapping the land use/cover 

classes in a fragmented Dukuduku indigenous forest ecosystem; 

 

2. Examine the utility of the advanced multispectral WorldView-2 data for mapping 

endangered tree species in the fragmented Dukuduku indigenous forest ecosystem using 

machine learning classification algorithms; 

 



9 

 

3. Test the utility of spectral vegetation indices (SVIs) calculated from the multispectral 

WorldView-2 data for predicting endangered tree species LAI in the fragmented and 

intact indigenous forest ecosystems using machine learning regression algorithms; and   

 

4. Map fragmented and intact indigenous forest leaf N and CN concentrations using 

multispectral WorldView-2 spectral variables and machine learning regression 

algorithms. 

1.5 Scope of the Study   

This study successfully mapped the spatial distribution of eight land use/cover classes in the 

Dukuduku area of northern KwaZulu-Natal province, South Africa using the very high spatial 

resolution multispectral WorldView-2 data. The utility of multispectral WorldView-2 datasets 

for mapping six endangered tree species in a fragmented Dukuduku forest ecosystem was also 

investigated using support vector machines (SVM) and artificial neural networks (ANN) 

classification algorithms. The study further demonstrates the utility of multispectral WorldView-

2 derived SVIs and the SVM and ANN regression algorithms for estimating LAI of six 

endangered tree species under different management practices. The strength and potential of 

multispectral WorldView-2 dataset for estimating the concentrations of fragmented and intact 

indigenous forests foliar N and CN concentrations was subsequently evaluated using 24 SVIs 

derived from WorldView-2 data and two robust and effective machine learning SVM and ANN 

regression algorithms. In this context, relatively more emphasis was placed on the prediction of 

forest and endangered tree species biophysical and biochemical characteristics because it is 

considered as the most limiting factor for the ecological, hydrological, and economic roles of tree 

species in indigenous forest ecosystem (Eldeen, 2005; Brendler et al., 2010; Pouteau et al., 

2012).   

1.6 Description of the Study Area 

1.6.1 General  

The study area includes two forest management protocols which are commonly practiced in the 

southern African indigenous forest ecosystems. These include fragmented and intact indigenous 

forests ecosystems. Fragmented indigenous forests are managed by the local communities and 
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the traditional leaders. These are the forests and/or woodlands where individual tree crowns do 

not overlay to form a continuous canopy layer and are largely spaced. Intact indigenous forests 

are managed by the officials (e.g. Department of Forestry) and are defined as areas of land that 

are occupied by trees of continuous canopy layer. The Dukuduku region consists of fragmented 

and intact indigenous forest ecosystems which are dominated by rare tree species.  

1.6.2 Dukuduku Indigenous Forest Ecosystem  

The study was conducted in the Dukuduku indegenous forest which is located on the northern 

bank of Umfolozi River floodplain, South Africa. The study area is located between latitute 

28°52'25"S and longitude 32°17'23"E (Figure 1.2). The Dukuduku forest area covers more than 

6000 hectares (ha) of indigenous coastal forest on the rolling savannahs of the inland across the 

dune line along the KwaZulu-Natal coast, from southern KwaZulu-Natal province to beyond the 

Mozambican boundary (Ndlovu, 2013). The subtropical climate dominating the study area has 

warm moist summers and mild dry winters. The mean daily maximum temperatures are 26°C in 

January and 21°C in July, while mean daily minimum temperatures are 19°C in January and 9°C 

in July (Von Maltitz et al., 2003). The rainy season falls between November and March with a 

mean annual rainfall of 1250 mm (Von Maltitz et al., 2003). In South Africa, the Dukuduku 

forest is also considered to be one of the largest remaining stretches of coastal forest. However, 

due to a high number of individual illegal settlement and intensive agricultural systems, the 

natural vegetation surrounding the forest has been extensively removed (Cho et al., 2012; 

Ndlovu, 2013). Similarly, increasing human activities and settlement in the area have led to an 

increase in ecosystem fragmentation (van Wyk et al., 2006; Ndlovu, 2013). Therefore, the 

Dukuduku forest is facing many threats presented by the destruction of indigenous vegetation, 

forest plantation and agricultural systems. The majority of forests in the area are dominated by 

several indigenous vegetation including different age groups and other types land use/cover.  The 

most dominant tree species in the area include Syzygium cordatum and Cussonia zuluensis. 

However, it is observed that six other tree species (Figure 1.1) in the Dukuduku forest are under 

severe threat and endangered in both the fragmented and intact forest ecosystems as they face 

rapid harvesting for woodcarving and other uses (Watt and Breyer-Brandwijk, 1962; Jäger et al., 

1996; Mlambo, 2013).  
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Figure 1.2: The location of the Dukuduku indigenous forest in KwaZulu-Natal province, South 

Africa 

1.7 Outline of the Thesis  

This thesis consists of a set of research papers addressing each of the objectives listed in Section 

1.4. The papers have been either published or under preparation. Three papers have already been 

published, and one is still in preparation. Each paper has been written as a stand-alone article that 

can be read separately from the rest of the thesis but that draws separate conclusions that link to 

the overall research objective. As a result, a number of overlaps and replications occur in the 

sections “Introduction” and “Methods” in the different chapters. This problem is deemed to be of 
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little significance when one considers the critical peer-review process and the fact that the 

different chapters are papers that can be read separately without losing the overall context. This 

thesis consists of six chapters from the introduction to the synthesis.  

 

Chapter One: This chapter serves as an introduction to the study. 

 

Chapter Two: In this chapter a new very high spatial resolution multispectral WorldView-2 

imagery with additional band sets, is evaluated for classifying the land use/cover classes. 

Specifically, the study explored the utility of the three WorldView-2 spectral datasets including 

(8B: all bands, SB: four standard bands, and AB: four additional bands) to better improve the 

classification accuracy and distinguishing amongst various land use/cover classes using the SVM 

algorithm within a Dukuduku fragmented ecosystem. 

  

Chapter Three: This chapter focuses on examining the utility of the WorldView-2 data for 

mapping six endangered tree species and other land use/cover classes in the fragmented 

Dukuduku indigenous forest using the advanced SVM and ANN classification algorithms. 

Furthermore, the chapter looks at utilization of the advent of the additional bands of WorldView-

2 for mapping endangered tree species.   

 

Chapter Four: This chapter investigates the potential of SVIs calculated from high spatial 

resolution WorldView-2 imagery to better improve prediction of six endangered tree species LAI 

in fragmented and intact indigenous forest ecosystems. The study also examines whether there 

are significant differences between the trees LAI of intact and fragmented indigenous forest 

ecosystems. 

 

Chapter Five: This chapter provides an evaluation of the utility of different SVIs derived from 

WorldView-2 data for estimating and mapping intact and fragmented indigenous forests leaf N 

and CN concentrations. Two robust machine learning SVM and ANN regression methods were 

used for deriving the predictive models. Furthermore, the chapter tests if there are significant 

differences in foliar N and CN concentrations between the intact and fragmented indigenous 

forest ecosystems. 
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Chapter Six: This chapter highlights the summary and the main study outputs. Conclusions are 

also derived based on the findings of the preceding chapter. Some relevant recommendations for 

future study on the application of remote sensing in indigenous tree species mapping are 

outlined. A special emphasis is directed to the operational use of remotely-sensed data for 

mapping and monitoring endangered tree species. 

 

At the end, a list of references is provided.  
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Exploring the Utility of the Additional WorldView-2 Bands and Support Vector 

Machines for Mapping Land Use/Cover in a Fragmented Ecosystem, South Africa 
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2015. 

 

 

2. G. Omer, O. Mutanga, E.M. Abdel-Rahman and E. Adam, “Potential utility of the 

WorldView-2 multispectral data and support vector machines algorithm to classifying land 

use/cover in Dukuduku landscape, Kwazulu-Natal, South Africa” Presented at the 10th African 

Association of Remote Sensing of the Environment (AARSE) conference, Johannesburg, South 

Africa, pp. 309-318, 2014. 



15 

 

ABSTRACT 

Land use/cover classification is a key research field in environmental applications of remote 

sensing on the earth’s surface. The advent of new high resolution multispectral sensors with 

unique bands has provided an opportunity to map the spatial distribution of detailed land 

use/cover classes over a large fragmented area. The objectives of the present study were to: (1) 

map land use/cover classes using multispectral WorldView-2 data and support vector machines 

(SVM) in a fragmented ecosystem; and (2) compare the accuracy of three WorldView-2 spectral 

data sets for distinguishing amongst various land use/cover classes in a fragmented ecosystem. 

WorldView-2 spectral subsets comprising four standard bands (SB: blue, green, red and near 

infrared-1), and four additional bands (AB: coastal blue, yellow, red edge and near infrared-2) as 

well as all eight multispectral bands (8bands: 8B) were used for land use/cover classification. 

The overall classification accuracies of 78% for the land use/cover classification based on all 

eight multispectral bands. However, overall accuracy was 64% and 51% for the AB and SB land 

use/cover classifications, respectively. This indicates that additional bands such as red edge 

improve land use/cover classification. There were significant differences between the 

performance of all WorldView-2 subset pair comparisons (8B versus SB, 8B versus AB and SB 

versus AB) as demonstrated by the results of McNemar’s test (Z score ≥1.96). This study 

concludes that WorldView-2 multispectral data and the SVM classifier have the potential to map 

land use/cover classes in a fragmented ecosystem. The study also offers relatively accurate 

information that is important for the indigenous forest managers in KwaZulu-Natal, South Africa 

for making informed decisions regarding conservation and management of land use/cover 

patterns. 

 

Keywords: Land use/cover classification, fragmented ecosystem, WorldView-2, support vector 

machines 
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2.1 Introduction 

Land use/cover is a fundamental variable that influences and links with many parts of human and 

physical systems and is a vital data component for many aspects of environmental change 

(Foody, 2002; Otukei and Blaschke, 2010). The changes in land use/cover have significant 

effects on basic ecosystem processes including biogeochemical cycling and land degradation 

(Penner, 1994; Foley et al., 2005; Otukei and Blaschke, 2010). Similarly, the land use/cover 

maps are be used for environmental monitoring, management as well as modeling (Otukei and 

Blaschke, 2010). Despite this important role, land use/cover mapping is still faces a complex 

challenge in relation to ambiguous classes used (Cingolani et al., 2004; Otukei and Blaschke, 

2010). Additionally, fragmented ecosystems in many parts of Africa are characterized by the 

removal and clearing of the forest for pasture, agriculture and settlements leading to vegetation 

species loss (van Wyk et al., 2006; Cho et al., 2013). In most cases, indigenous forests are 

fragmented into patches of various sizes and shapes surrounded by a matrix of different land 

use/cover classes (Benitez‐Malvido, 1998; Cho et al., 2013). In this context, information relating 

to the dynamics, distribution and productivity of land use/cover is not only beneficial to the 

source of economic security but is also needed for fragmented ecosystems inventory, 

management and monitoring (Cingolani et al., 2004; Pignatti et al., 2009; Cho et al., 2013). In 

order to meet the management and monitoring requirements of fragmented ecosystems, more 

specific information from land use/cover surveys and inventories is needed. However, it is quite 

difficult and challenging to produce land use/cover maps using traditional field survey 

approaches.  

 

Traditional approaches are complex and require intensive fieldwork which is a costly and time-

consuming, particularly in highly heterogeneous and fragmented ecosystems. In this regard, 

remote sensing is a particularly useful tool, as it has successfully been used for tree species and 

land cover classification (Clark et al., 2005; Larsen, 2007). Moreover, multispectral sensors such 

as Landsat and SPOT cover large areas of the earth’s surface at repeated time intervals, making 

remote sensing a perfect alternative to traditional approaches for land use/cover. Recently, the 

developments of high spatial resolution multispectral sensors such as IKONOS have brought 

unique opportunities for classifying and monitoring land use/cover (Pu and Landry, 2012). 

Multispectral data either have high spatial resolution but offer only a few bands like blue, green, 

red, and near infrared (NIR), or they offer relatively more bands but with lower spatial 
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resolution. The low spatial resolution multispectral sensors might not accurately map land 

use/cover classes in a heterogeneous and fragmented ecosystem (Foody, 2002; Cho et al., 2012). 

Multiple objects within a pixel in such a case can lead to spectral confusion and poor distinction 

amongst discrete and continuous cover types, resulting in ambiguous land use/cover classes used 

(Cingolani et al., 2004). On the other hand, multispectral data of very fine spatial resolution may 

not capture in the intra-class variability accurately when course land use/cover classes are 

mapped. As far as the spectral resolution is concerned, the advent of hyperspectral data can 

overcome the limitations of multispectral data by providing spectral data of many and contiguous 

wavebands (Vaiphasa et al., 2007) for more accurate and reliable land use/cover maps (Pal, 

2006; Petropoulos et al., 2012). However, the use of hyperspectral data has its own limitations in 

terms of cost, availability, processing, and high dimensionality (Vaiphasa et al., 2007; Dalponte 

et al., 2009). 

 

Recently, high spatial resolution multispectral sensors such as RapidEye, WorldView-2 and 

Sentinel-2 have been designed with relatively fewer additional bands to overcome the limitations 

of their spectral capabilities over other high spatial resolution multispectral sensors of 

conventional bands (standard bands) such as QuickBird. The potential of WorldView-2 data, for 

instance, has been demonstrated in a number of diverse studies that include, predicting and 

mapping forest structural parameters (Ozdemir and Karnieli, 2011), urban land cover mapping 

(Zhou et al., 2012), and discriminating commercial forest species (Peerbhay et al., 2014). These 

studies have demonstrated the utility of the eight available spectral bands of WorldView-2 

imagery for mapping and predicting a feature of interest and concluded that WorldView-2 data 

have considerably improved the classification and prediction accuracies compared to 

conventional sensors. For instance, Pu and Landry (2012) explored the use of WorldView-2 and 

IKONOS data sets for mapping tree species and found that the bands available in WorldView-2 

significantly increased the classification accuracy compared to the bands available in IKONOS 

sensor. These studies have limitations related to paucity of knowledge on the performance of 

WorldView-2 spectral subsets in vegetation and land use/cover types with advanced 

classification methods. 

 

Various classification methods have been implemented in order to map vegetation species and 

land use/cover classes using WorldView-2 data. These methods include discriminant analysis 
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(Pu and Landry, 2012), decision trees (Heumann, 2011), and maximum likelihood and minimum 

distance to the mean classifiers (Cho et al., 2011; McCarthy and Halls, 2014). All these 

classifiers have used supervised classification methods with conventional multispectral data. 

Amongst these classifiers, the maximum likelihood and minimum distance to the mean have 

been the most widely used (Kavzoglu and Mather, 2003; Otukei and Blaschke, 2010). These two 

classifiers have the ability to generate acceptable accuracy, simplicity and availability in most 

image processing packages (Zhang et al., 2007; Cho et al., 2011). However, all these classifiers 

have their own limitations that are related particularly to distributional assumptions and to 

mapping areas with limited training samples (Kavzoglu and Mather, 2003; Cho et al., 2012).  

 

To tackle these problems, powerful classification methods are essentially used for mapping land 

use/cover (Lu and Weng, 2007). These classification methods include, ANN, random forest (RF) 

and SVM (Civco, 1993; Pal, 2003; Pal, 2006; Heumann, 2011). SVM, ANN and RF offer a 

precise way to map land use/cover and tree species from remote sensing images without 

depending on any assumptions (Breiman, 2001; Dixon and Candade, 2008; Xiong et al., 2010). 

RF is widely used for mining and classifying hyperspectral data for plant species identification 

and classification (Lawrence et al., 2006; Verikas et al., 2011; Naidoo et al., 2012) while the 

application of SVM and ANN classifiers have been mainly explored in forest species 

classification using multispectral imagery (Xiong et al., 2010; Yoon et al., 2011; Nitze et al., 

2012). Amongst these methods, attention has been paid to the use of SVM classifier due to its 

superior image-handling ability (Vapnik, 1998). Numerous studies have used SVM classifier and 

multispectral imagery for land use/cover mapping (Kavzoglu and Colkesen, 2009; Otukei and 

Blaschke, 2010; Petropoulos et al., 2012; Adam et al., 2014). These researchers have found 

relatively better or similar performances obtained by this classifier as compared to other 

classifiers when multispectral and hyperspectral data were used. The exploration of the utility of 

WorldView-2 additional bands for improving the accuracy of land use/cover maps in a 

fragmented ecosystem is needed. From the available literature and to the best of the researcher’s 

knowledge, no study utilized different WorldView-2 spectral subsets and SVM classifier to map 

land use/cover class in a fragmented ecosystem. Therefore, the objectives of the present study 

were to: (1) map different land use/cover classes using WorldView-2 data and SVM classifier in 

a fragmented ecosystem; and (2) compare the accuracy of three WorldView-2 spectral subsets in 

distinguishing amongst various land use/cover classes in a fragmented ecosystem. 
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2.2 Methodology 

2.2.1 Image Acquisition and Pre-processing  

A cloud-free WorldView-2 multispectral image covering the study area was acquired on 1st 

December 2013. WorldView-2 image (Figure 2.1) consists of eight multispectral bands in the 

400-1040 nm spectral range with a spatial resolution of 2 m and swath width of 16.4 km at nadir. 

The spectral bands of WorldView-2 are coastal blue (400–450 nm), blue (450–510 nm), green 

(510–580 nm), yellow (585–625 nm), red (630–690 nm), red edge (705–745 nm), NIR-1 (770–

895 nm), and NIR-2 (860–1040 nm). The image was atmospherically corrected and transformed 

to canopy reflectance using the Quick Atmospheric Correction (QUAC) extension in 

Environment for Visualizing Images (ENVI) 4.7 software (ENVI, 2009). QUAC determines 

atmospheric compensation parameters directly from the information contained within the image 

(pixel spectra) thus allowing for the retrieval of accurate reflectance spectra (Shen et al., 2005; 

Agrawal and Sarup, 2011). The image was then referenced to the Universal Transverse Mercator 

(UTM zone 36 South) projection using WGS-84 Geodetic datum. The acquired image was 

geometrically corrected by DigitalGlobe™. After the geometric and atmospheric correction, the 

WorldView-2 image was spectral subsets to four SB and four new additional bands (AB). These 

subsets together with all eight 8B of WorldView-2 were compared for mapping land use/cover 

classes using SVM supervised classifier. 
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Figure 2.1: Location and a true-color WorldView-2 image of the study area 

2.2.2 Field Data Collection 

The field campaign was carried out on 7th December 2013, within a week of the WorldView-2 

imagery acquisition. This was done in order to collect ground reference data of eight land 

use/cover classes, namely dune forest (DF), indigenous forest (IF), fragmented forest (FF), 

Eucalyptus spp (EP), Pinus spp (PN), mature sugarcane (MS), young sugarcane (YS), and 

grassland (GL) using a handheld Leica GS20 GPS with sub-meter accuracy. During the field 

visit, a total of 75 sample data points were collected for each class. The ground reference data 

were collected using random sampling protocol to adequately sample land use/cover classes 
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based on their representative sizes within the study area. The reference data were then divided 

randomly into training (70%) and test (30%) dataset using Hawth’s Analysis tool in ArcGIS 9.3. 

The SVM classifier was trained on 70% of a randomly selected holdout sample and final 

accuracy was assessed using the remaining 30% samples.  

2.3 Statistical Analysis  

The effectiveness of SVM classifier to map land use/cover classes was investigated in this study. 

The classifier was trained on 70% (n = 53) of a randomly selected holdout sample and final 

accuracy assessments were evaluated using the remaining 30% (n = 22) of the dataset.  When the 

training positions and classes were allocated, classification signatures were created for the eight 

land use/cover classes in the study area. After assessing and adjusting the signatures, SVM 

supervised classification method was then employed to classify the WorldView-2 image. SVM 

parameters were optimized and then input into the ENVI software to map the classes on 

WorldView-2 image. The e1071 library version 2.15.2 in R statistical packages (R Development 

Core, 2012) was employed for SVM parameters optimization.  

2.3.1 Support Vector Machines (SVM) Classifier   

SVM (Cortes and Vapnik, 1995) is a learning technique that analyzes data and recognizes 

patterns. The algorithm was successfully used for classifying multispectral images (Cihlar, 2000; 

Muñoz‐Villers and López‐Blanco, 2008; Kavzoglu and Colkesen, 2009; Mountrakis et al., 2011; 

Petropoulos et al., 2012) for various purposes. SVM was originally introduced as a binary 

classifier (Cortes and Vapnik, 1995). However, real remote sensing problems usually include 

identification of multiple classes. Amendments are made to the simple SVM binary classifier to 

run as a multi-class classifier using methods such as one-against-one (OAO) and one-against-all 

(OAA) procedures. The algorithm is then assigned to the correct class by using a voting 

mechanism (Mathur and Foody, 2008; Krahwinkler and Rossman, 2011). SVM is a distribution-

free algorithm that requires few training data points, and does not encounter any overfitting 

problem (Cortes and Vapnik, 1995; Burges, 1998; Brown et al., 1999; Everingham et al., 2007). 

SVM attempts to maximize the margin; that is the distance between the data points of each class 

to the optimal separating linear hyperplane axes created from each variable (Petropoulos et al., 

2011). There are two supporting hyperplanes in the boundaries of the data distribution and the 

data points on the margin of these hyperplanes are the support vectors of the algorithm and the 
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optimal hyperplaneis in the middle of the margin. Many classes are not linearly separable, hence 

SVM uses kernel trick to adjust for finding a nonlinear (e.g. polynomial) separating hyperplane 

in a high-dimensional feature space using optimization function (Hornik et al., 2006; Yang, 

2011). For detailed description on SVM theory and principles see Cortes and Vapnik (1995), 

Burges (1998), Hornik et al. (2006) and Mathur and Foody (2008). 

 

In the present study, WorldView-2 subsets (8B, SB and AB) were used for defining the space 

feature of SVM. A radial basis function was used to find an optimal hyperplane that can 

differentiate amongst land use/cover classes in the Dukuduku landscape. Radial basis function 

performed relatively better for classifying remotely-sensed data when compared with the 

polynomial kernel (Huang et al., 2002; Kavzoglu and Colkesen, 2009; Pal, 2009; Yang, 2011) 

and requires optimization of only two parameters. These are the cost function (C) which controls 

the tradeoff between maximization of the margin width and minimizing the number of 

misclassified data points in the training dataset samples, and gamma (λ) which is the width 

parameter of the radial basis function kernel (Hornik et al., 2006). The OAO procedure is used to 

implement a multiclass-based SVM model. The regularization of the C and λ parameters was 

performed using a 10-fold cross validation method (Hsu et al., 2009; Yang, 2011). The dataset 

was divided into 10 subsets of equal size, SVM models were then trained on nine subset samples, 

and tested on the removed one and the process was repeated ten times until all subset samples 

had served as test samples. The pair parameter that minimizes the classification error was then 

considered as the optimal values for final classification.  

2.3.2 Accuracy Assessment  

A confusion matrix was constructed to compare the true class with the class assigned by SVM 

and to calculate the overall accuracy, producer’s accuracy (PA) and user’s accuracy (UA). 

Overall accuracy has the advantage of being directly interpretable as the percentage (%) between 

the number of correctly classified samples and the number of test samples. PA refers to the 

probability of a certain class being correctly classified, while UA represents the likelihood that a 

sample belongs to a specific class and the classifier accurately assigns it such a class. In addition, 

two parameters were calculated from the cross-tabulation matrix to evaluate the reliability of 

SVM classifier. These include quantity disagreement (QD) and allocation disagreement (AD) 

which were developed by Pontius and Millones (2011). The QD is the amount of the contrast 
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between the number of test data and predicted data, while the AD describes the number of 

expected classes that have less than optimal spatial location in comparison to the test data. 

Depending on the accuracy metrics achieved for each WorldView-2 dataset in each accuracy 

assessment method, a statistical analysis can be performed to test if there was any significant 

difference between the classification results of three WorldView-2 spectral subsets. Hence, 

McNemar’s test was performed to test whether there were any significant differences amongst 

the confusion matrices of the three WorldView-2 spectral datasets. McNemar’s test is a 

nonparametric test based upon standardized normal test statistic calculated from error matrices of 

SVM classifier given as follows (Foody, 2004a; Leeuw et al., 2006): 

 

𝑍 =
𝑓12 − 𝑓21

√𝑓12 + 𝑓21
 

 

Equation 2. 1 

 

where 𝑓12 denotes the number of samples that are misclassified on the first confusion matrix but 

correctly classified on the second confusion matrix. 𝑓21 denotes the number of samples that are 

misclassified on the second confusion matrix but correctly classified on the first confusion 

matrix. A difference in accuracy between the confusion matrices of different WorldView-2 

spectral subsets is statistically significant (p≤0.05) if Z score is more than 1.96 (Foody, 2004a; 

Leeuw et al., 2006). 

2.4 Results 

2.4.1 Optimization of Support Vector Machines  

The results of grid search and 10-fold cross validation method indicated optimal values of λ and 

C for SVM, respectively, of 0.1 and 10 for 8B, 0.1 and 1000 for SB, and 0.1 and 100 for AB. 

When these optimal values were input into SVM classifier, minimum classification error of 

32.00%, 35.30%, and 36.30% for 8B, SB and AB, respectively were obtained. The optimal 

values of λ and C were input into SVM classification algorithm to map different land use/cover 

classes in the study area using the three WorldView-2 spectral data sets. 

2.4.2 Accuracy Assessment 

Figure 2.2 shows land use/cover maps obtained using SVM classifier. The main visual difference 

between the maps is that a relatively homogeneous map was produced when the WorldView-2 
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8B was used as compared with other spectral subsets. The maps also show that the Dukuduku 

indigenous forest was mainly surrounded by grassland and commercial forest plantation, while 

the grassland on the northeastern part of the study area was fragmented. Most of sugarcane farms 

in the study area were at a mature growth stage.   

 

 

Figure 2.2: Land use/cover classification maps obtained using support vector machines 

classifier: (a) all eight WorldView-2 bands, (b) four standard WorldView-2 bands and (c) four 

additional WorldView-2 bands 
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Furthermore, the overall accuracy assessment for mapping land use/cover class was 78% (total 

disagreement = 22%), 51% (total disagreement = 49%) and 64% (total disagreement = 36%) 

using 8B, SB and AB respectively (Tables 2.1, 2.2 and 2.3). SVM classifier obtained QD values 

of 5%, 13% and 14% for 8B, SB and AB, respectively (Tables 2.1, 2.2 and 2.3). The tables also 

show relatively high AD values of 17%, 36% and 22%.  

Table 2.1: Classification confusion matrix of support vector machines (SVM) classifier using 

WorldView-2 8B for the 30% test data sets. The confusion matrix includes overall accuracy 

(OA), quantity disagreements (QD) and allocation disagreements (AD) 

Class FF EP IF GL MS DF PN YS Total  

FF 15 0 0 3 1 5 0 0 24 

EP 1 20 5 0 0 1 0 0 27 

IF 0 1 13 2 1 0 1 1 19 

GL 1 0 2 17 1 0 1 0 22 

MS 3 0 1 0 16 0 0 0 20 

DF 2 1 0 0 1 16 0 0 20 

PN 0 0 1 0 2 0 20 1 24 

YS 0 0 0 0 0 0 0 20 20 

Total  22 22 22 22 22 22 22 22 176 

OA (%)  78         

QD (%) 5         

AD (%) 17         

FF = Fragmented forest, EP = Eucalyptus spp, IF = Indigenous forest, GL = Grassland, MS = 

Mature sugarcane, DF = Dune forest, PN = Pinus spp, YS = Young sugarcane 

 

 

 

 



26 

 

Table 2.2: Classification confusion matrix of support vector machines (SVM) classifier using 

WorldView-2 SB for the 30% test data sets. The confusion matrix includes overall accuracy 

(OA), quantity disagreements (QD) and allocation disagreements (AD) 

Class FF EP IF GL MS DF PN YS Total 

FF 13 0 3 5 4 4 0 0 29 

EP 0 13 3 0 0 4 0 0 20 

IF 0 4 12 6 0 1 1 0 24 

GL 0 0 0 2 0 0 0 0 2 

MS 1 0 3 5 8 4 3 2 26 

DF 6 4 1 1 0 9 0 2 23 

PN 0 1 0 0 6 0 17 2 26 

YS 2 0 0 3 4 0 1 16 26 

Total 22 22 22 22 22 22 22 22 176 

OA (%) 51         

QD (%) 13         

AD (%) 36         

FF = Fragmented forest, EP = Eucalyptus spp, IF = Indigenous forest, GL = Grassland, MS = 

Mature sugarcane, DF = Dune forest, PN = Pinus spp, YS = Young sugarcane 

Table 2.3: Classification confusion matrix of support vector machines (SVM) classifier using 

WorldView-2 AB for the 30% test data sets. The confusion matrix includes overall accuracy 

(OA), quantity disagreements (QD) and allocation disagreements (AD) 

Class FF EP IF GL MS DF PN YS Total 

FF 19 0 2 4 4 0 0 0 29 

EP 0 20 2 0 0 1 0 0 23 

IF 0 0 11 3 0 3 0 0 17 

GL 0 0 1 8 1 0 0 0 10 

MS 1 1 0 3 9 1 2 2 19 

DF 0 1 1 0 0 13 0 3 18 

PN 0 0 0 2 8 1 19 2 32 

YS 2 0 5 2 0 3 1 15 28 

Total 22 22 22 22 22 22 22 22 176 

OA (%) 64         

QD (%) 14         

AD (%) 22         

FF = Fragmented forest, EP = Eucalyptus spp, IF = Indigenous forest, GL = Grassland, MS = 

Mature sugarcane, DF = Dune forest, PN = Pinus spp, YS = Young sugarcane 
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Generally, all land use/cover classes achieved over 70% producer’s and user’s accuracies, with 

exception of FF (PA = 63% and UA = 68%) and IF (PA of 68% and UA of 59%) when 8B 

subset was used (Figure 2.3). The results indicate that the values of the UA were less than 50% 

for dune forest, grassland, and mature sugarcane classes on SB subset (Figure 2.4) and for 

grassland and mature sugarcane on AB subset (Figure 2.5). According to McNemar’s test, there 

was significant difference (Z ≥ 1.96) at 95% confidence level amongst the confusion matrices of 

SVM classifier using WorldView-2 8B, SB and AB subsets (Table 2.4). Table 2.5 shows areas 

under each land use/cover class obtained from WorldView-2 8B, SB and AB subsets using SVM 

classification algorithm. The incomparable areas obtained by WorldView-2 subsets also confirm 

the dissimilar performance of SVM classification algorithm. The study area is dominated by 

indigenous forest, commercial plantation and grassland.  

 

 

Figure 2.3: Producer’s accuracy (%) and user’s accuracy (%) of the studied eight land use/cover 

classes using all eight bands subset (8B) and support vector machines classifier for the 30% test 

data sets 
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Figure 2.4: Producer’s accuracy (%) and user’s accuracy (%) of the studied eight land use/cover 

classes using standard bands subset (SB) and support vector machines classifier for the 30% test 

data sets 

 

Figure 2.5: Producer’s accuracy (%) and user’s accuracy (%) of the studied eight land use/cover 

classes using additional bands subset (AB) and support vector machines classifier for the 30% 

test data sets 
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Table 2.4: McNemar’s test result for comparing classification confusion matrices obtained using 

WorldView-2 8B, SB, and AB 

  SB   

  Correctly Classified Misclassified Total 

 Correctly Classified 98 12 110 

8B Misclassified 11 55 66 

 Total 109 67 176 

 Z  score                        5.42   

  AB   

  Correctly Classified Misclassified Total 

 Correctly Classified 96 14 110 

8B Misclassified 12 54 66 

 Total 108 68 176 

 Z  score 5.17   

  AB   

  Correctly Classified Misclassified Total 

 Correctly Classified 93 16 109 

SB Misclassified 15 52 67 

 Total 108 68 176 

 Z  score 4.52   

8B = all WorldView-2 eight bands subset, SB = four WorldView-2 standard bands subset and 

AB = four WorldView-2 additional bands subset 

Table 2.5: Area of each land use/cover class in the study area obtained from all WorldView-2 

eight bands, four WorldView-2 standard bands and four WorldView-2 additional bands subsets 

based on support vector machines classification algorithm 

Land use/cover class Area (ha) 

8B  SB AB 

Fragmented forest 1918.52 1931.66 2131.63 

Dune forest 2146.92 1945.23 1572.41 

Eucalyptus spp 1579.09 2636.70 1520.79 

Indigenous forest 4292.60 2814.09 4569.94 

Grassland 2762.34 4388.52 2697.19 

Mature sugarcane  2348.33 2106.46 2444.29 

Pinus spp 1848.63 1818.57 1700.74 
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Table 2.5 (Continued) 

Land use/cover class Area (ha) 

8B  SB AB 

Young sugarcane 2991.09 2246.29 3250.52 

8B = all WorldView-2 eight bands subset, SB = four WorldView-2 standard bands subset and 

AB = four WorldView-2 additional bands subset 

2.5 Discussion 

The use of different types of spectral and spatial resolutions of optical sensors have been studied 

extensively in land use/cover mapping. These resolutions however obtained different degrees of 

classification accuracies. Nonetheless, concerns on the accuracy levels still continue (Lu and 

Weng, 2007). Moreover, cost and availability of remotely-sensed data with suitable spatial, 

spectral resolutions continue to be the main constraints facing large applications in land 

use/cover mapping. Land use/cover maps obtained from commonly used medium spatial-

resolution multispectral sensors have often been arbitrated to be inadequate for operational 

application (Foody, 2002). On the other hand, the use of imagery from fine spatial resolution 

sensors has its own limitations in terms of cost, availability, processing, and high dimensionality. 

The limitations that characterize medium scale remotely-sensed data prevent the application and 

combination of field data with remotely-sensed data (Lu and Weng, 2007). Against this 

background, this study demonstrates that WorldView-2 data is effective for mapping land 

use/cover classes using SVM classifier in a fragmented ecosystem. This result is in conformity 

with Cho et al. (2013), and Ghosh and Joshi (2014) who concluded that using WorldView-2 data 

with advanced classification methods in a fragmented ecosystem leads to improved classification 

accuracy.   

 

The main finding of the present study was that WorldView-2 8B significantly outperformed SB 

and AB subsets in mapping land use/cover classes in a fragmented ecosystem. The finding is in 

conformity with other studies (Elsharkawy et al., 2012; Pu and Landry, 2012; Peerbhay et al., 

2014) that demonstrated the utility of WorldView-2 8B for mapping land use/cover class in 

intact landscapes. There are two reasons that may have led to high accuracy. Firstly, the land 

use/cover class in the Dukuduku forest consists of vegetation and WorldView-2 additional bands 
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are effective in differentiating vegetated surfaces (Marchisio et al., 2010; Yang, 2011; Alsubaie, 

2012). Secondly, the SVM classification algorithm is useful for land use/cover mapping of 

fragmented ecosystems because SVM reduces classification error on test data points without a 

prior assumption about their distribution (Mountrakis et al., 2011; Ghosh and Joshi, 2014). 

 

Moreover, SVM is a known versatile classifier that constructs models based on a small data from 

different classes (Cortes and Vapnik, 1995) maximizing the margin between the support vectors 

and the hyperplane. The classification error is therefore significantly minimized. In the present 

study, a nonlinear kernel function was used to perform SVM classification. A nonlinear kernel is 

an efficient method to solve inseparability problems that may be found in the land use/cover 

classes. The relatively good performance of SVM classifier obtained in this study is consistent 

with the findings of Huang et al. (2002), Kavzoglu and Colkesen (2009) and Petropoulos et al. 

(2012) who utilized a kernel functions analysis of SVM for classifying remotely-sensed data and 

concluded that the classifier leads to improved classification accuracy. A number of researchers 

have found that SVM was the best classification technique for mapping land use/cover using 

high spatial resolution imagery such as WorldView-2 (Pal, 2006; Chen, 2011; Pu and Landry, 

2012). From previous studies and available literature, WorldView-2 subsets (8B, SB and AB) 

have never been compared for mapping land use/cover classes in areas with small dataset 

samples such as the fragmented ecosystem in the Dukuduku area of KwaZulu-Natal, South 

Africa. The study showed that SVM classifier was unable to fully deal with the high spectral 

variation inherent in some land use/cover classes like mature sugarcane and grassland which 

obtained relatively lower UA and PA (see Figures 2.4 and 2.5). This is a common problem when 

classifying heterogeneous landscapes using high spatial resolution (WorldView-2 image) based 

on per-pixel classification techniques (Lu and Weng, 2007). 

 

Although the eight land use/cover classes could be separated accurately using only the four 

standard bands, the use of the WorldView-2 additional bands (coastal blue, yellow, red edge and 

NIR-2) led to a considerable improvement in the classification accuracy. That is expected when 

advanced machine learning algorithm is used with WorldView-2 data. The additional wavebands 

are expected to provide an increase of up to 30% in classification accuracy (Zhou et al., 2012). 

The low UA for the GL and MS classes indicate that there is a probability that pixels classified 

as GL and MS may not actually exist on the ground. That is expected since the physiological age 



32 

 

of a mature sugarcane crop could be similar to densely vegetated grassland as a result of some 

confounding factors such as weeds and abiotic stressors (Abdel-Rahman et al., 2013) and hence 

show similar spectral characteristics. The relatively high allocation disagreements shown in 

tables 2.1, 2.2 and 2.3 of the confusion matrices were expected since pixels covered by multi-

classes could probably be mismatched in terms of spatial patterns between test ground truth 

instances and predicated test samples. However, these classification results are of a good 

practical application as the QD ranged between 5% and 14% for the different classification 

results.  

 

In summary, the findings of the present study are promising for accurate mapping of land 

use/cover in fragmented areas as it demonstrates the possibility of mapping land use/cover 

classes using WorldView-2 data and SVM classifier. Moreover, the results provide reliable 

information on land use/cover classes in the Dukuduku area that could be used for the design of 

management plans policies as a basis for assessing and monitoring natural resources, ecological 

fragmentation and the ecosystem function. This information is therefore critical in the 

management of one of the most valuable landscapes in South Africa. Furthermore, mapping 

sugarcane ages is useful for the southern African sugar industry for making informed decisions 

with regard to sugarcane harvesting and milling. Further research is needed to widen the use of 

WorldView-2 imagery in identifying the rare forest species within the indigenous forest in the 

north-western part of the study area. This study mapped eight course land use/cover classes using 

remotely-sensed data with a fine pixel size. The intra-classes variability could have exceeded the 

fine pixel size of the WorldView-2 image.  Hence, remotely-sensed data of medium spatial 

resolution (e.g., 10 or 20 m) could yield relatively better classification results. 

2.6 Conclusions 

The present study shows a successful application of multispectral WorldView-2 data and the 

machine learning SVM classifier for mapping eight land use/cover classes in a fragmented 

ecosystem. The results showed that WorldView-2 8B significantly outperformed both SB and 

AB subsets in mapping land use/cover classes, achieving an overall accuracy of 78%. On the 

other hand, WorldView-2 AB subset yielded significantly higher classification accuracy than SB 

subset. The results further demonstrated that the classification error for mature sugarcane and 

grassland was relatively higher. The study provides land use/cover maps that could be used as 
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essential information for decision-making regarding land management and policy strategies in 

the fragmented Dukuduku area. It is recommended that further studies should look at identifying 

threatened (rare) tree species within the indigenous Dukuduku forest.  
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ABSTRACT 

Endangered tree species play a significant role in ecosystem functioning and services, land use 

dynamics, and other socio-economic aspects. Such aspects include ecological, economic, 

livelihood, security-based and well-being benefits. The development of techniques for mapping 

and monitoring endangered tree species is thus critical for understanding the functioning of 

ecosystems. The advent of advanced imaging systems and supervised learning algorithms has 

provided an opportunity to map endangered tree species over fragmented areas. Recently, 

vegetation maps have been produced using advanced imaging systems such as WorldView-2 and 

robust classification algorithms such as support vectors machines (SVM) and artificial neural 

networks (ANN). However, delineation of endangered tree species in a fragmented ecosystem 

using high resolution imagery has largely remained elusive due to the complexity of the species 

structure and their distribution. Therefore, the aim of the present study was to examine the utility 

of the advanced WorldView-2 data for mapping endangered tree species in the fragmented 

Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. 

Specifically, additional WorldView-2 bands were tested for mapping six endangered tree 

species. WorldView-2 spectral subsets comprising four standard bands (SB) and four additional 

bands (AB) as well as all eight multispectral bands (8bands: 8B) were classified using SVM and 

ANN methods. The results showed the robustness of the two machine learning algorithms for 

mapping the endangered tree species with an overall accuracy of 77% for SVM and 75% for 

ANN using 8B. The SB produced overall accuracy of 65% for SVM and 64% for ANN. The AB 

produced almost the same overall accuracy of 70% for both SVM and ANN. There were 

significant differences between the performances of the two classification algorithms as 

demonstrated by the results of McNemar’s test (Z score ≥1.96). This study concludes that SVM 

and ANN classification algorithms with WorldView-2 8B have the potential to map endangered 

tree species in the Dukuduku indigenous forest. This study offers relatively accurate information 

that is important for forest managers to make informed decisions regarding management, and 

conservation protocols of endangered tree species.  

 

Keywords: Endangered tree species, indigenous forest, Dukuduku, WorldView-2, support 

vector machines, artificial neural networks 
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3.1 Introduction 

Indigenous forests span across different parts of Africa with relatively more existence in the 

southern and eastern parts of the continent (Eeley et al., 2001). In South Africa, indigenous 

forests consist of many small, fragmented and largely scattered patches and cover approximately 

0.2% of the country’s land surface (Benitez‐Malvido, 1998; Cho et al., 2012; Cho et al., 2013). 

Apart from their ecological, economic, livelihood security and well-being, indigenous forests in 

the country provide some medicinal products to the communities in the rural areas and contribute 

to the concept of “ecosystem services” (Shackleton and Shackleton, 2004; Eldeen and van 

Staden, 2007; van Wyk, 2008). One such indigenous forest in South Africa is the Dukuduku 

forest that is located in KwaZulu-Natal province. Dukuduku forest provides varied products and 

usable materials for human needs that include construction and fence poles, raw material for 

craft work, livestock browse and medicine to the poor rural communities (Eldeen, 2005; Eldeen 

and van Staden, 2007; van Wyk, 2008; Brendler et al., 2010; Cho et al., 2012). Different tree 

species in the forest play a vital role in providing such useful needs. It is interesting to note that 

local communities in Zululand, South Africa use some of these tree species to treat human 

diseases such as fever, stomachache, dysentery, snake and scorpion bites, malaria, 

inflammations, backache and facilitating childbirth (Hutchings, 1996; Jäger et al., 1996; Sewram 

et al., 2000; Eldeen and van Staden, 2007; Brendler et al., 2010). Therefore, some tree species in 

the Dukuduku indigenous forest have become endangered and threatened because of the rapid 

harvesting rate and removal (van Wyk et al., 2006; Cho et al., 2013). These activities have 

resulted in over-exploitation of natural resources and caused severe forest fragmentation and 

serious threats to the conservation of tree species diversity in the indigenous Dukuduku forest 

ecosystem (Baillie et al., 2004; Kätsch, 2006; Wiersum et al., 2006; Cho et al., 2012).  

 

Endangered tree species need specific management and conservation protocols in order to play 

significant roles in ecosystem functioning, land use dynamics, and other socio-economic aspects 

in the value chain (Eldeen, 2005; Lyons et al., 2005; Pouteau et al., 2012). This requires 

intensive fieldwork to geo-locate and identify endangered tree species and characterize as well as 

estimate their coverage and distribution (Rushton et al., 2004; Pouteau et al., 2012). In this 

context, more precise information from forest survey is needed for mapping and monitoring 

endangered tree species in order to develop sustainable forest management practices. However, 

traditional field survey protocols are costly, time-consuming and often lack the necessary 
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geospatial accuracy. Remotely-sensed data have been regarded as valuable source of information 

over the past decades for classifying and monitoring forest species and vegetation communities 

(Clark et al., 2005; Quackenbush et al., 2006; Van Aardt and Wynne, 2007; Pignatti et al., 

2009). However, mapping of tree species (e.g. endangered tree species) still faces complex 

challenges in relation to ambiguous classes used. Multiple objects within a pixel can lead to 

spectral confusion and poor distinction amongst different cover types (Aplin, 2003; Cingolani et 

al., 2004; Herold et al., 2008). In particular, these challenges hinder the classification of tree 

species when multispectral data are captured in fragmented forests (Foody, 2002; Cho et al., 

2012). This is due to broader and fewer spectral measurements collected by some multispectral 

sensors like Landsat and SPOT5 which might lead to spectral overlap between tree species.  

 

Recently, the advent of new generation satellites with high spectral and spatial resolution such as 

Sentinel-2, WorldView-3, WorldView-2, RapidEye and Pleiades has brought unique 

opportunities for mapping trees at species level. Among these satellites, WorldView-2 and 

WorldView-3 offer key spectral bands like yellow, coastal blue and red edge that help in 

depicting tree characteristics. The utility of WorldView-2 image, for instance, has been 

demonstrated in various studies that include, predicting and mapping forest structural parameters 

(Ozdemir and Karnieli, 2011), mapping of tree species  (Navulur, 2009), monitoring plantation 

forest (Omar, 2010), mapping increaser and decreaser grass species in degraded rangelands  

(Mansour and Mutanga, 2012), and the detection of invasive alien plants (Dlamini, 2010).  These 

studies discussed the utility of the eight available spectral bands of WorldView-2 imagery and 

concluded that the WorldView-2 data have considerably improved the classification and 

prediction accuracies of features of interest compared to other multispectral data. These studies, 

however, have some limitations related to lack of knowledge on the performance of WorldView-

2 spectral subsets for mapping tree species using advanced and robust classification algorithms.  

 

Various advanced classification algorithms such as classification trees, RF, ANN, and SVM have 

been used to extract tree species information from multi-sensor and multispectral remote sensing 

images (Atkinson and Tatnall, 1997; Breiman, 2001; Petropoulos et al., 2012; Adelabu et al., 

2013). Amongst these classification methods, attention has been accorded to the use of RF, SVM 

and ANN due to their superior image-handling abilities (Dixon and Candade, 2008; Adelabu et 

al., 2013). RF, SVM and ANN offer a precise way to map vegetation cover and tree species from 
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remote sensing images without to depend on any assumptions (Breiman, 2001; Mutanga and 

Skidmore, 2004a; Dixon and Candade, 2008; Xiong et al., 2010; Yoon et al., 2011). RF is 

widely used for mining and classifying hyperspectral data for plant species identification and 

classification (Lawrence et al., 2006; Verikas et al., 2011; Naidoo et al., 2012) whilst the 

application of SVM and ANN classification algorithms have been mainly explored in forest 

species classification using multispectral imagery (Xiong et al., 2010; Yoon et al., 2011; Nitze et 

al., 2012). In addition, SVM is a well-known machine learning algorithm which has frequently 

been used to locate multiple linear or potentially nonlinear class samples by a variety of kernel 

approaches (Bennett and Campbell, 2000). The kernel approach takes on several methods such 

as polynomial and a radial basis function that have revealed accurate results for vegetation 

classification (Pal and Mather, 2005). Radial basis function has many advantages which include 

its effectiveness as it works in an infinite dimensional feature space and having a single 

parameter conversely to the other well working kernels (Cortes and Vapnik, 1995; Hsu et al., 

2009; Krahwinkler and Rossman, 2011). 

 

On the other hand, ANN is machine learning systems comprising of inter-connected linkages of 

modest processing elements. The algorithm is characterized by robust pattern recognition power, 

allowing it to represent complex multi-variate data forms (Atkinson and Tatnall, 1997). ANN has 

many advantages over the statistical methods which include easy adaptation to different kinds of 

data and input structures, and the ability to generalize for technique with multiple images 

(Bishop, 1995; Paola and Schowengerdt, 1995; Mathers, 1999; Lu and Weng, 2007), as well as 

the ability to categorize data with limited training data compared with traditional classifiers 

(Mathers, 1999). Previous studies demonstrated that SVM and ANN perform better than the 

conventional classification methods like maximum likelihood, minimum distance to the mean 

(Dixon and Candade, 2008; Shafri et al., 2009; Otukei and Blaschke, 2010; Xiong et al., 2010; 

Nitze et al., 2012). These conventional classification methods depend on assumptions that may 

limit their utilities for many datasets and for mapping areas with limited training samples 

(Kavzoglu and Mather, 2003; Dixon and Candade, 2008; Otukei and Blaschke, 2010). Moreover, 

ANN is often referred to as a black-box technique that could encounter an over-fitting problem 

on the test dataset (Kimes et al., 2000; Qiu and Jensen, 2004). Perfectly describing processes that 

interpret input data into output classes could, however, be challenging due to the combined use 

of multiple nonlinear activation functions at different layers  (Kavzoglu and Mather, 2003). To 
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the best of the researcher’s knowledge, no study utilized very high resolution WorldView-2 

imagery and SVM and ANN classification algorithms to map endangered tree species in a 

fragmented ecosystem. Therefore, the objective of the present study was to examine the utility of 

the advanced WorldView-2 satellite data for mapping endangered tree species in the fragmented 

Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. 

Specifically, additional WorldView-2 bands were tested for mapping six endangered tree 

species. 

3.2 Methodology 

3.2.1 Field Data Collection 

Intensive field work was conducted to identify endangered tree species associated with 

indigenous forest in the study area within one week of the WorldView-2 imagery acquisition. 

The purposive sampling approach was employed to geo-locate six endangered tree species grown 

in fragmented and intact Dukuduku indigenous forest ecosystems in the area using a handheld 

Leica GS20 GPS with sub-meter accuracy. The six tree species were purposively selected for 

analysis in the study. These trees are regarded as rare and endangered species because of their 

rapid harvesting and removal (van Wyk et al., 2006). The networks of road and open paths were 

used to assist in selecting the endangered tree species by walking in various directions in the 

study area. Figure 3.1 shows the morphological and spectral characteristics of the six tree 

species. The target species were identified with the aid of expert knowledge. In total, 827 sample 

points were collected from the six endangered tree species and land use/cover classes in the 

study area. The sample points for each class were 101 (Albizia adianthifolia), 71 (Ekebergia 

capensis), 62 (Harpephyllum caffrum), 70 (Hymenocardia ulmoides), 80 (Sclercarya birrea), 68 

(Trichilia dregeana), 75 (sugarcane), 75 (grassland), 75 (plantation forest), and 150 (other forest 

species that include coastal and dune forest species) (Figure 3.2). These points were then used as 

ground-truth data to classify the different WorldView-2 spectral subsets based on the pixel 

spectral signatures of the classes. For the tree classes, one pixel was used per individual tree 

crown.  
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3.2.2 Image Acquisition and Pre-Processing 

In this study, a cloud-free WorldView-2 satellite imagery was acquired from the study area on 1st 

December 2013. WorldView-2 image is the first very high resolution satellite imagery that has 

the ability to acquire data of eight spectral bands in the 400 –1040 nm spectral range with spatial 

resolution of two metres and swath width of 16.4 Kilometers. The eight spectral bands of 

WorldView-2 consist of four standard bands situated in the blue (450 – 510 nm), green (510 – 

580 nm), red (630 – 690 nm), and NIR-1 (770 – 895 nm), and four additional bands which are 

coastal blue (400 – 450 nm), yellow (585 – 625 nm), red edge (705 – 745 nm) and NIR-2 (860 – 

1040 nm). The WorldView-2 image was atmospherically corrected using the QUAC procedure 

in Interactive Data Language (IDL) ENVI 4.7 software (ENVI, 2009). QUAC determines 

atmospheric compensation parameters directly from the information contained within the image 

(pixel spectra), thus allowing for the retrieval of accurate reflectance spectra (Shen et al., 2005). 

No geometric correction was made on the WorldView-2 image as it was provided already 

corrected by DigitalGlobe™. The image was referenced to the Universal Transverse Mercator 

(UTM zone 36 South) projection and WGS-84 Geodetic datum. The WorldView-2 image was 

spectral subsets to separate the four SB and four AB subsets. The separated WorldView-2 

subsets together with the 8B were then compared for classifying endangered tree species using 

SVM and ANN supervised learning classification algorithms. 
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Species Field Photograph Spectral curve 

Albizia adianthifolia    

  
Ekebergia capensis 

 
 

Harpephyllum caffrum 

 
 

Hymenocardia ulmoides 

 
 

Sclercarya birrea 

 
 

Trichilia dregeana 

  

Figure 3.1: Field photographs and the corresponding average spectral reflectance curves of the six tree 

species extracted from WorldView-2 image pixels (n = 44 for each spectrum) located at the centre of 

tree crowns. 
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Figure 3.2: The location of the Dukuduku indigenous forest in KwaZulu-Natal province, South 

Africa and field sample locations overlaid in a true-color WorldView-2 image 

3.3 Statistical Analysis  

It is noted that a sufficient number of training samples are a pre-requisite for a successful 

classification (Lu and Weng, 2007). It is also reported that the sample points should be 
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distributed consistently across the spatial extent of the classes to provide a representative 

description of the overall population (Foody and Mathur, 2004). In the current study, the SVM 

and ANN classification algorithms were trained on 70% (583) of a randomly selected holdout 

sample and final accuracy assessments were evaluated using the remaining 30% (244) of the 

dataset. The ground-truth training samples were overlaid over WorldView-2 spectral subsets, and 

classification signatures were then created for the six selected endangered tree species and land 

use/cover classes in the area. After assessing and adjusting signatures, SVM and ANN 

supervised classification methods were employed.  

3.3.1 Support Vector Machines (SVM) Classification Algorithm 

SVM classification algorithm is a binary learning technique that analyzes data and recognizes 

patterns (Cortes and Vapnik, 1995). However, numerous pattern recognition applications require 

multiple classes. Hence, multi-class SVM problems are solved by generating multiple binary 

classifiers (Yavuz and Cevikalp, 2008). Amendments are effected to the simple SVM binary 

classifiers to run as a multi-class classifier using procedures like OAO and OAA. In each class, 

OAA adopts one binary SVM to alienate a class member from others. Conversely, OAO uses a 

binary SVM from each pair of classes to separate members of one class from others. The SVM 

algorithm is then assigned the correct class by using a voting mechanism (Mathur and Foody, 

2008; Krahwinkler and Rossman, 2011). The algorithm requires no assumption about the data 

distribution and uses very efficient principles in order not to overfit the test or new data sample 

(Cortes and Vapnik, 1995; Burges, 1998; Brown et al., 1999; Everingham et al., 2007). In 

addition, SVM attempts to maximize the margin, i.e. the distance between the data points of each 

class, to the optimal separating linear hyperplane axes created from each variable (Petropoulos et 

al., 2011). In a two class experiment, the algorithm sets two supporting hyperplanes in the 

boundaries and searches to maximize the margin between them. Sample points lying on the 

supporting hyperplanes are named support vectors and in the middle of the margin is the optimal 

hyperplane. The algorithm aims to determine a linear discriminant function with maximum 

margin to discriminate each class. 

 

However, many classes are not linearly separable, hence SVM projects vectors into a high-

dimensional feature space by means of a kernel trick and fits the optimum hyperplane that 

discriminates classes using an optimization function (Hornik et al., 2006; Yang, 2011). 



44 

 

Polynomial and radial basis function kernels are the most commonly used functions for 

classifying remotely-sensed data (Huang et al., 2002; Dixon and Candade, 2008). In comparison, 

a number of researchers have found that a radial basis function outperforms polynomial kernel in 

classification of remotely-sensed data (Huang et al., 2002; Hornik et al., 2006; Yang, 2011). 

Furthermore, radial basis function is computationally fast and easy to implement and requires 

optimizing only two parameters. These are the C which is a value for standardizing the error of 

misclassified data points in the training dataset samples, and λ which is the kernel width 

parameter of the radial basis function (Hornik et al., 2006).  

 

In the current study, three WorldView-2 spectral subsets and radial basis function were used to 

find an optimal hyperplane that can differentiate amongst the six endangered tree species in the 

Dukuduku forest. The C and λ parameters of the radial basis function were optimized in order to 

avoid over-fitting problems (Hornik et al., 2006). The regularization of the two parameters was 

performed using a 10-fold cross validation method (Hornik et al., 2006; Hsu et al., 2009; Yang, 

2011). The training dataset was divided into 10 subsets of equal sizes. SVM models were then 

trained on nine subset samples, and tested using the removed one and the process was repeated 

ten times until all subset samples had served as test samples. The pair parameter that minimizes 

the classification error was then considered as the optimal value for the final classification 

process. The OAO procedure was used to implement a multiclass SVM model as suggested by 

Hsu and Lin (2002)  who stated that this scheme is more symmetric than OAA with regard to 

class sizes. The e1071 library version 2.15.2 in R statistical packages (R Development Core, 

2012) was employed for optimizing SVM parameters. The optimal SVM parameters were then 

input into the ENVI software to implement SVM classification algorithm in order to map the 

endangered tree species and other classes on WorldView-2 image.  

3.3.2 Artificial Neural Networks (ANN) Classification Algorithm: Multilayer 

Perceptron 

In machine learning and related fields, an ANN is a nonparametric classification technique that 

does not depend on an assumption of data normality (Atkinson and Tatnall, 1997; Foody, 2004b; 

Dixon and Candade, 2008). An ANN is a mathematical model that attempts to simulate the 

structure and functional aspects of biological neural linkages. It comprises of an interconnected 

group of artificial neurons and processes information using a connectionist approach for 
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computation (Xiu and Liu, 2003). An ANN is originally designed as pattern recognition and data 

analysis tools that mimic the neural storage and analytical operations of the brain. Like SVM, an 

ANN approach has a distinct advantage over other classification methods. The algorithm is 

advantageous in that it is nonparametric and therefore requires little or no prior knowledge on the 

distribution of input data (Benediktsson and Sveinsson, 1997). Moreover, an ANN fits arbitrary 

decision-boundary to separate amongst the data points and therefore produces high classification 

accuracy (Bishop, 1995; Licciardi et al., 2012).   

 

Various models of ANN have been used in remote sensing studies such as radial basis function, 

back propagation and multilayer perceptron (Werbos, 1974; Atkinson and Tatnall, 1997; Tang et 

al., 2003; Dixon and Candade, 2008; Lottering and Mutanga, 2012; Liu et al., 2013). The 

multilayer perceptron is a commonly used ANN structure that comprises of an input layer and an 

output layer and one or more hidden layers of nonlinearly-activating nodes (Atkinson and 

Tatnall, 1997; Foody, 2004b; García Nieto et al., 2012). The nodes in each layer connect with a 

certain synaptic weight to all the nodes in the next layer (García Nieto et al., 2012). Perceptron 

learning occurs through changes in the linkages weights after items of data are processed. A 

multilayer perceptron is a feed forward ANN model that maps input data onto a set of 

appropriate output. It is an adjustment of the standard linear perceptron that uses three or more 

layers of neurons (nodes) with nonlinear activation functions (Kavzoglu and Mather, 2003; 

Foody, 2004b; Xiong et al., 2010). ANN has been widely used in classifying land cover and tree 

species that are not linearly separable in the original spectral space (Zhang et al., 1997; Xiu and 

Liu, 2003; Dixon and Candade, 2008; Liu et al., 2013). Moreover, multilayer perceptron model 

using the standard back propagation algorithm is one of the well-known ANN structures of 

algorithm. This algorithm used standard back propagation for supervised learning from Tanagra 

software1.4 (Rakotomalala, 2005).  

 

In the present study, ANN classification algorithm was used as a supervised nonlinear 

classification algorithm to map endangered tree species and other classes using WorldView-2 

data. Numerous variations of internal networks structure, input data, and learning algorithms 

have been tested to define optimal classifier features. Table 3.1 shows a list of the parameters 

used to train all ANN models.  The input layers consisted of eight for 8B and four for both SB 

and AB, whilst two hidden layers were found optimum for all models (Table 3.1). The structure 
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of the hidden layers was also tested to assess the necessary number of hidden layers and number 

of required nodes per layer. This was tested by manually changing the number of nodes. The 

train-test parameters were excluded to obtain overall test error rate and then viewed to get 

confusion matrix for classifying endangered tree species and other classes using Tanagra 

software (Rakotomalala, 2005; Wahbeh et al., 2011). The ANN was trained with a back 

propagation -training algorithm and one hidden layer (Ingram et al., 2005). The back propagation 

algorithm is a supervised method that uses the gradient descent technique, which adjusts weights 

to minimize the classification error and optimizes ANN parameters (Richter et al., 2011; 

Lottering and Mutanga, 2012).  In the present study, the number of hidden layers was set to two 

and the number of training iterations was set to a default value of 1000 (Rakotomalala, 2005).  

The optimum number of nodes was established after manually changing the number of nodes 

(Table 3.1). The optimal parameters were then input into the ENVI software in order to map the 

endangered tree species and land use/cover on WorldView-2 image (ENVI, 2009).  

Table 3.1: Parameters for the best trained and artificial neural networks (ANN) used for 

mapping endangered tree species 

Model inputs Hidden Profile 

All WorldView-2 eight bands (8B) subset 8 2 MLP 8:8-2-1:1 

Four WorldView-2 standard bands  (SB) subset  4 2 MLP 4:4-2-1:1 

Four WorldView-2 additional bands  (AB) subset  4 2 MLP 4:4-2-1:1 

  MLP = multilayer perceptron 

3.3.3 Accuracy Assessment  

The accuracy of SVM and ANN classification algorithms were evaluated using the 30% (n = 

244) holdout sample of the dataset. A confusion matrix was constructed to compare the true class 

with the class assigned by SVM and ANN and to calculate the overall accuracy, PA and UA 

(Congalton and Green, 2008; Xiong et al., 2010). Overall accuracy is the overall probability that 

test sample points on the image have been classified properly. PA, which is expressed as a 

percentage (%), denotes the likelihood of a certain class being correctly classified, while UA 

refers to the probability that a sample is labeled as a specific class and the classifier accurately 

assigns it such a class. It has become customary in remote sensing studies to report the kappa 

index of agreement for accuracy assessment purposes since kappa also compares two maps that 
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show a set of categories. However, recent studies have shown some limitations of kappa since it 

gives information that is redundant or misleading for practical decision making (Pontius and 

Millones, 2011). These researchers recommend using a more suitable and simpler approach that 

focuses on two parameters of disagreement between maps in terms of the quantity (Quantity 

disagreement; QD) and spatial allocation (Allocation disagreement; AD) of the categories 

instead of Kappa variants. The two useful parameters were calculated from the cross-tabulation 

matrices to assess reliability of each classification algorithm. The QD is the amount of difference 

between the number of test data points and the predicted ones, while the AD describes the 

number of expected classes that have less than optimal spatial location in comparison to the test 

data.  

 

According to accuracy metrics achieved for each algorithm in each accuracy assessment method, 

a statistical analysis can be performed to test if there was any significant difference between the 

classification results of SVM and ANN classification algorithms. Therefore, the study performed 

McNemar’s test to examine whether there were any significant differences amongst the 

confusion matrices of the two classification algorithms (SVM and ANN). McNemar’s test is a 

nonparametric test based upon standardized normal test statistic calculated from error matrices of 

two algorithms given as follows (Foody, 2004a; Leeuw et al., 2006): 

 

𝑍 =
𝑓12 − 𝑓21

√𝑓12 + 𝑓21
 

 

Equation 3. 1 

 

where 𝑓12 denotes the number of samples that are misclassified on the first confusion matrix but 

correctly classified on the second confusion matrix. 𝑓21 denotes the number of samples that are 

misclassified on the second confusion matrix but correctly classified on the first confusion 

matrix. A difference in accuracy between the confusion matrices of two algorithms that used 

different WorldView-2 spectral subsets is statistically significant (p≤0.05) if a Z score is more 

than 1.96 (Foody, 2004a; Leeuw et al., 2006). 
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3.4. Results 

3.4.1 Accuracy Assessment 

Table 3.2 shows the summary accuracy assessment results for the WorldView-2 eight bands 

(8B), WorldView-2 standard bands (SB) and WorldView-2 additional bands (AB) based on the 

SVM classifier. The overall classification accuracy for the 8B, SB and AB classifications were 

respectively, 77%, 65% and 70%. In terms of quantity disagreement, 8B and SB classifications 

(11%) were slightly lower than AB which had 16%. However, the allocation disagreement for 

SB significantly high at 24%, while it was relatively low for 8B (12%) and AB (14%). The 

individual class accuracies were generally high for the 8B, while individual class accuracies were 

low for SB and AB. The individual UA and PA for each endangered tree species achieved by the 

two classification algorithms are shown in Figures 3.3 and 3.4. When WorldView-2 8B subset 

was classified using SVM, the UA for some endangered tree species (Albizia adianthifolia, 

Hymenocardia ulmoides, Harpephyllum caffrum and Sclercarya  birrea) was relatively higher 

and ranged between 73.17% and 85.71% while for Trichilia dregeana and Ekebergia capensis 

the accuracy was less than 55% (Figure 3.3a).  

 

The accuracy assessment results for the WorldView-2 8B, WorldView-2 SB and WorldView-2 

AB based on the ANN classifier were presented in Table 3.3. A higher overall classification 

accuracy was achieved using WorldView-2 8B (75%) followed by WorldView-2 AB (70%) and 

WorldView-2 SB (64%). The ANN classifier obtained high quantity disagreement values for AB 

(11%) followed by 8B and SB that have achieved the same values of quantity disagreement 

(9%), but these values are less than those obtained using SVM (Table 3.3). Furthermore, the 

Tables also show relatively high allocation disagreement values for SB followed by AB and 8B 

that obtained the lowest values when both SVM and ANN algorithms were used (Tables 3.2 and 

3.3). Additionally, the use of WorldView-2 8B subset and ANN resulted in relatively higher UA 

for Harpephyllum caffrum (73.68%) and Sclercarya birrea (81.81%) whereas all other four 

endangered tree species (Albizia adianthifolia, Hymenocardia ulmoides, Ekebergia capensis and 

Trichilia dregeana) achieved UA of less than 65% (Figure 3.3b). Regarding the PA, the two 

classification algorithms (SVM and ANN) mapped Albizia adianthifolia with an accuracy 

ranging between 80% and 100% (Figure 3.4). Overall, all endangered tree species were classified 

with fairly higher PA, except for Hymenocardia ulmoides (Figures 3.3 and 3.4). Additionally, all 
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land use/cover obtained individual accuracies of more than 50% when SVM, ANN and all 

WorldView-2 subsets were employed (Figures 3.3 and 3.4), except grassland class (45.45%) 

when SVM and WorldView-2 SB were used (Figure 3.4a).   

Table 3.2: Confusion matrix of support vector machines (SVM) classification algorithm using 

(a) WorldView-2 eight bands, (b) WorldView-2 standard bands and (c) WorldView-2 additional 

bands for the 30% test datasets. The confusion matrix includes overall accuracy (OA), quantity 

disagreements (QD) and allocation disagreements (AD) for six endangered tree species and land 

use/cover classes 

Field  

data  

AA EC HC HU ScB TD GL PF SC OFS  Total 

a) WorldView-2 eight bands      

AA 30 1 0 8 1 0 0 1 0 0 41 

EC 0 16 1 0 2 8 1 1 1 0 30 

HC 0 0 16 1 0 0 2 0 0 0 19 

HU 0 0 0 10 0 0 0 0 2 1 13 

ScB 0 1 1 0 18 0 0 1 0 0 21 

TD 0 3 0 2 3 12 1 0 2 0 23 

GL 0 0 0 0 0 0 16 3 1 0 20 

PF 0 0 0 0 0 0 0 15 0 0 15 

SC 0 0 0 0 0 0 1 0 14 1 16 

OFS  0 0 0 0 0 0 1 1 2 42 46 

Total 30 21 18 21 24 20 22 22 22 44 244 

OA (%) 77           

QD (%) 11           

AD (%) 12           

b) WorldView-2 standard bands 

AA 25 5 5 5 6 4 0 1 2 0 53 

EC 1 11 2 0 1 2 1 2 1 0 21 

HC 2 0 11 2 0 0 3 1 0 0 19 

HU 1 1 0 10 1 2 1 2 0 0 18 

ScB 1 2 0 0 14 0 0 1 0 0 18 

TD 0 2 0 4 2 12 1 0 1 1 23 

GL 0 0 0 0 0 0 10 0 2 0 12 

PF 0 0 0 0 0 0 4 13 2 1 20 

SC 0 0 0 0 0 0 2 0 13 2 17 

OFS  0 0 0 0 0 0 0 2 1 40 43 

Total 30 21 18 21 24 20 22 22 22 44 244 

OA (%) 65           

QD (%) 11           

AD (%) 24           
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Table 3.2 (Continued) 

c) WorldView-2 additional bands 

AA 30 8 5 10 7 8 0 0 0 0 68 

EC 0 11 4 0 1 0 1 1 1 0 19 

HC 0 0 9 1 0 0 1 0 0 0 11 

HU 0 0 0 10 0 0 0 0 2 1 13 

ScB 0 0 0 0 14 0 0 2 0 1 17 

TD 0 2 0 0 2 12 1 0 1 0 18 

GL 0 0 0 0 0 0 14 0 1 0 15 

PF 0 0 0 0 0 0 0 17 0 3 20 

SC 0 0 0 0 0 0 2 0 16 1 19 

OFS 0 0 0 0 0 0 1 2 1 38 42 

Total 30 21 18 21 24 20 20 22 22 44 244 

OA (%) 70           

QD (%) 16           

AD (%) 14           

AA = Albizia adianthifolia, EC = Ekebergia capensis, HC = Harpephyllum caffrum, HU = 

Hymenocardia ulmoides, ScB = Sclercarya birrea, TD = Trichilia dregeana, GL = grassland, 

SC = sugarcane, PF = plantation forests and OFS = other forest species 

Table 3.3: Confusion matrix of artificial neural networks (ANN) classification algorithm using 

(a) WorldView-2 eight bands, (b) WorldView-2 standard bands and (c) WorldView-2 additional 

bands for the 30% test datasets. The confusion matrix includes overall accuracy (OA), quantity 

disagreements (QD) and allocation disagreements (AD) for six endangered tree species and land 

use/cover classes 

Field  

data  

AA EC HC HU ScB TD GL PF SC OFS  Total 

a) WorldView-2 eight bands      

AA 29 1 2 7 2 0 2 1 0 3 47 

EC 0 14 1 0 1 3 1 1 1 0 22 

HC 0 1 14 1 1 1 1 0 0 0 19 

HU 1 0 0 11 1 1 2 0 0 1 17 

ScB 0 2 0 0 18 1 0 1 0 0 22 

TD 0 3 1 2 1 14 1 0 1 0 23 

GL 0 0 0 0 0 0 14 1 1 2 18 

PF 0 0 0 0 0 0 0 18 0 0 18 

SC 0 0 0 0 0 0 0 0 15 2 17 

OFS  0 0 0 0 0 0 1 0 4 36 41 

Total 30 21 18 21 24 20 22 22 22 44 244 

OA (%) 75           
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Table 3.3 (Continued) 

Field  

data  

AA EC HC HU ScB TD GL PF SC OFS  Total 

a) WorldView-2 eight bands 

QD (%) 09           

AD (%) 16           

b) WorldView-2 standard bands 

AA 24 2 1 7 4 1 0 0 2 5 46 

EC 1 12 2 0 1 2 1 2 1 0 22 

HC 1 1 11 1 3 1 1 1 0 1 21 

HU 2 2 0 10 2 2 0 0 0 1 19 

ScB 2 1 1 1 13 3 0 1 0 0 22 

TD 0 3 3 2 1 11 1 0 1 1 23 

GL 0 0 0 0 0 0 13 2 1 0 16 

PF 0 0 0 0 0 0 0 15 2 2 19 

SC 0 0 0 0 0 0 2 0 14 2 18 

OFS  0 0 0 0 0 0 4 1 1 32 38 

Total 30 21 18 21 24 20 22 22 22 44 244 

OA (%) 64           

QD (%) 09           

AD (%) 27           

c) WorldView-2 additional bands 

AA 28 6 3 7 6 2 0 0 0 0 52 

EC 1 11 1 0 1 1 1 1 1 0 18 

HC 0 1 11 1 2 2 1 2 1 0 21 

HU 0 0 0 12 1 1 0 0 3 0 17 

ScB 1 2 2 0 12 1 0 2 0 0 20 

TD 0 1 1 1 2 13 1 0 1 0 20 

GL 0 0 0 0 0 0 12 1 1 0 14 

PF 0 0 0 0 0 0 3 15 0 1 19 

SC 0 0 0 0 0 0 2 0 14 1 17 

OFS 0 0 0 0 0 0 1 1 1 42 45 

Total 30 21 18 21 24 20 21 22 22 44 244 

OA (%) 70           

QD (%) 11           

AD (%) 19           

AA = Albizia adianthifolia, EC = Ekebergia capensis, HC = Harpephyllum caffrum, HU = 

Hymenocardia ulmoides, ScB = Sclercarya birrea, TD = Trichilia dregeana, GL = grassland, 

SC = sugarcane, PF = plantation forests and OFS = other forest species 
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 Figure 3.3: User’s accuracy (%) of the studied six endangered tree species achieved by support 

vector machines (a) and artificial neural networks (b) classification algorithms when all 

WorldView-2 eight bands (8B), standard bands (SB) and additional bands (AB) were used 



53 

 

 

Figure 3.4: Producer’s accuracy (%) of the studied six endangered tree species achieved by 

support vector machines (a) and artificial neural networks (b) classification algorithms when all 

WorldView-2 eight bands subset (8B), standard bands (SB) and additional (AB) were used 

3.4.2 Classification Results 

Results of the grid search and 10-fold cross validation method indicated optimal values of λ and 

C for SVM, respectively, of 1 and 10 for WorldView-2 8B, 1 and 1000 for WorldView-2 SB, 
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and 1 and 100 for WorldView-2 AB. When these optimal values were input into SVM algorithm, 

minimum overall classification errors of 38.40%, 39.40%, and 36.90% for 8B, SB and AB, 

respectively were obtained. Figures 3.5, 3.6 and 3.7 show the classification maps (land use/cover 

and endangered tree species) of the study area. The maps show nearly similar spatial distribution 

of endangered tree species in the study area. Figures 3.5, 3.6 and 3.7 also show the spatial 

distribution of the six endangered tree species and other classes in the study area when 

WorldView-2 8B, SB and AB were classified using SVM and ANN. The main visual difference 

between the maps is that a relatively homogeneous map was produced when the WorldView-2 

8B was used as compared with other WorldView-2 spectral subsets (Figures 3.5, 3.6 and 3.7). 

The maps also show that the study area was mainly surrounded by grassland, sugarcane and 

plantation forest, while the forest and grassland on the north eastern part of the study area were 

relatively patchy.  

 

The results in Table 3.4 show areas under each endangered tree species and other classes 

obtained from different WorldView-2 spectral subsets using SVM and ANN classification 

algorithms. The Table demonstrates that the plantation class have the largest area (4063.5ha) 

when WorldView-2 8B subset and SVM classifier were used, while grassland occupied most of 

the study area (2472.1ha) when SB subset and SVM classifier were deployed. With regard to 

endangered tree species, results show that the Albizia adianthifolia have the largest area when 

WorldView-2 AB subset and SVM (1316.3ha) as well as ANN (1315.1ha) classifiers were used, 

while the Harpephyllum caffrum achieved the smallest area (478.1ha) when WorldView-2 SB 

subset and SVM were employed (Table 3.4).  

 



55 

 

 

Figure 3.5: Classification maps obtained using all eight WorldView-2 bands (8B): (a) support 

vector machines algorithm and (b) artificial neural networks algorithm 

 

Figure 3.6: Classification maps obtained using four standard WorldView-2 bands (SB): (a) 

support vector machines algorithm and (b) artificial neural networks algorithm 
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Figure 3.7: Classification maps obtained using four additional WorldView-2 bands (AB): (a) 

support vector machines algorithm and (b) artificial neural networks algorithm 

Table 3.4: Area under each endangered tree species and land use/cover classes in the study area 

obtained using WorldView-2 data, support vector machines (SVM) and artificial neural networks 

(ANN) classification algorithms 

Class Area (ha) 

Support vector machines  Artificial neural networks 

8B SB AB 8B SB AB 

Albizia adianthifolia  1308.8 1311.9 1316.3 1312.4 1311.2 1315.1 

Ekebergia capensis 632.0 634.0 632.1 633.2 634.0 628.2 

Harpephllum cafrum 486.1 478.1 486.9 488.8 489.4 487.0 

Hymenocardia ulmoides  869.5 863.4 864.3 868.2 865.0 864.8 

Sclercarya birrea 1109.3 1112.2 1111.1 1110.1 1112.2 1110.6 

Trichilia dregeana 929.7 932.5 932.0 930.1 930.5 931.3 

Other forest species  1058.0 1059.9 1061.0 1059.0 1058.2 1064.0 

Sugarcane  781.2 783.2 783.1 779.2 784.9 783.5 

Plantation  4063.5 4051.7 4051.4 4057.0 4056.3 4051.2 

Grassland 2461.0 2472.1 2460.7 2461.1 2457.3 2463.1 

8B = WorldView-2 eight bands subset, SB = WorldView-2 standard bands subset and AB = 

WorldView-2 additional bands subset 
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According to McNemar’s test, there were significant differences (Z ≥ 1.96) at 95% confidence 

level amongst the confusion matrices of SVM and ANN classification algorithms using 

WorldView-2 8B, SB, and AB spectral subsets (Table 3.5). Regardless of the WorldView-2 

subset used, SVM significantly outperformed ANN for mapping the endangered tree species and 

land use/cover classes in the study area. 

Table 3.5: McNemar’s test result for comparing classification confusion matrices obtained from 

support vector machines (SVM) and artificial neural networks (ANN)  algorithms using 

WorldView-2 8B, SB, and AB 

All WorldView-2 eight bands (8B) subset   

 ANN   

   Correctly Classified Misclassified Total 

  Correctly Classified 97 03 100 

 SVM Misclassified 02 32 34 

  Total 99 35 134 

  Z  score                      5.15   

Four WorldView-2 standard bands  (SB) subset    

   ANN   

   Correctly Classified Misclassified Total 

  Correctly Classified 80 03 83 

 SVM Misclassified 00 51 51 

  Total 80 54 134 

  Z  score 7.14   

Four WorldView-2 additional bands subset (AB)   

   ANN   

   Correctly Classified Misclassified Total 

  Correctly Classified 82 4 86 

 SVM Misclassified 5 43 48 

  Total 87 47 134 

  Z  score 5.48   

SVM = support vector machines classification algorithm and ANN = artificial neural networks 

classification algorithm 

3.5 Discussion and Conclusions 

This study examined the performance of SVM and ANN algorithms and the potential of new 

generation multispectral WorldView-2 data to map the spatial extent of endangered tree species 
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in the Dukuduku indigenous forest of South Africa. Other land use/cover types in the study area 

were also classified in order to map target tree species within different land use/cover patterns. 

Tree species maps obtained from commonly used medium-spatial-resolution multispectral 

satellite (30m to 100m) have often been less accurate for operational application (Foody, 2002; 

Lu and Weng, 2007). Conversely, the use of imagery from very high spatial resolution sensors 

(<5 m) has its own limitations in terms of cost, availability, processing, and high dimensionality. 

Limitations that characterize fine and medium scale remotely-sensed data prevent the application 

and combination of field data with remotely-sensed data (Lu and Weng, 2007). Against this 

background, this study highlights the utility of multispectral WorldView-2 imagery for mapping 

endangered tree species in a fragmented Dukuduku forest. The study demonstrates that 

WorldView-2 data are effective for classifying endangered tree species using SVM and ANN 

classification algorithms. The spatial location of six selected endangered tree species has been 

mapped at 2m spatial resolution. Furthermore, the study indicates that the eight bands of 

WorldView-2 are found to be very suitable for endangered tree species identification and 

mapping. The results indicate the significant improvement in the overall accuracy of the 

classification results that can be largely attributed to the eight bands of WorldView-2 (Tables 3.2 

and 3.3). This result is in conformity with Cho et al. (2013) and Omer et al. (2014) who 

concluded that using WorldView-2 data with advanced classification methods for mapping land 

use/cover in a fragmented ecosystem could lead to improved classification accuracy. There are 

two reasons that may have led to the delineation of endangered tree species in Dukuduku area 

with relatively high classification accuracy. Firstly, with regard to the machine learning 

classification algorithms SVM is a robust and versatile method that produces accurate 

classification results when it is employed for mapping vegetation cover and tree species using 

remotely-sensed data without having to rely on any statistical assumptions (Dixon and Candade, 

2008; Xiong et al., 2010; Immitzer et al., 2012; Ghosh and Joshi, 2014). Secondly, ANN is also 

a robust and reliable algorithm that yields accurate classification results (Table 3.4). The 

accuracy increased when the hidden layers were increased from 1 to 2 (Huang and Huang, 1991; 

Duhoux et al., 2001; Nguyen and Chan, 2004; Lu and Weng, 2007). Moreover, tree 

morphological characteristics like canopy geometry and structural features as well as leaf color 

of the six endangered tree species are seemingly different (Figure 3.1). That could have resulted 

in very different spectral features captured by WorldView-2 data and enabled accurate species 

classification maps.    
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The comparison between SVM and ANN were employed to investigate their ability for tree 

species mapping. Both SVM and ANN algorithms achieved comparable overall accuracies. SVM 

produced higher classification accuracy than ANN by about 2% when WorldView-2 8B was 

used (Tables 3.2 and 3.3). However, the relatively low overall classification accuracies (ranged 

between 64% and 65%) obtained using WorldView-2 SB questioned the classification protocol 

employed and the spectral variability captured by a fewer number of WorldView-2 bands. 

Combining other forest species in one class could have confused the delineation of six select 

endangered tree species when only four WorldView-2 bands (SB or AB) were analyzed. 

Nonetheless, that level of accuracy is quite common in the remote sensing image classification 

studies that looked at mapping vegetation at tree species level (Omar, 2010; Immitzer et al., 

2012; Engler et al., 2013). More ground -truth samples could be required in order to improve the 

accuracy in such a case (Omar, 2010; Omer et al., 2014).  

 

It is important to note, however, that SVM and ANN were unable to fully deal with the high 

spectral variation inherent in some tree species (e.g. Hymenocardia ulmoides). This is a common 

problem when mapping heterogeneous landscapes using high spatial resolution images based on 

per-pixel classification techniques (Lu and Weng, 2007). In this regard, an object-based 

classification approach would produce higher classification accuracy (e.g. Immitzer et al. 

(2012)). Although the six endangered tree species could be separated accurately using only the 

four standard bands, the use of the WorldView-2 additional bands led to a considerable 

improvement in the classification accuracy. That is expected when the advanced imaging 

systems such as WorldView-2 data with additional bands are used. For instance, the overall 

accuracy increased from 65% and 64% to 77% and 75% for SVM and ANN, respectively, when 

new bands were added. The new WorldView-2 bands are useful for differentiating vegetated 

surfaces and are valuable in vegetation identification (Kimes et al., 1998; Dlamini, 2010; Omar, 

2010; Immitzer et al., 2012; Ghosh and Joshi, 2014). Zhou et al. (2012) mentioned that the 

WorldView-2 additional wavebands are expected to provide an increase of up to 30% in 

classification accuracy. The new bands are also strongly related to vegetation and tree species 

characteristics. For example, the yellow band is intended for the detection of ‘yellowness’ in 

vegetation (Immitzer and Atzberger, 2014) like senescent tree crowns (see Hymenocardia 

ulmoides crown in Figure 3.1). In remote sensing, the red edge is the channel of abrupt change in 
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the leaf reflectance between 680 and 780 nm, due to the combined effects of strong chlorophyll 

absorption in red bands and high reflectance in the NIR bands (Horler et al., 1983; DigitalGlobe, 

2010). The reflectance increases beginning at about 685 nm and an asymptotic reflectance 

reached at wavelengths beyond 760 nm for each endangered tree species (Figure 3.1). Many 

spectral features of vegetation are found within the red edge position that is related with changes 

in chlorophyll content (Filella and Penuelas, 1994; Lichtenthaler et al., 1996; Marchisio et al., 

2010). The NIR-2 band that partly overlaps the standard NIR-1 band but is less affected by 

atmospheric influence is expected to enable a relatively accurate endangered tree species 

classification. 

 

The low UA for the Albizia adianthifolia and PA for Hymenocardia ulmoides indicate that there 

is a probability that pixels classified as Albizia adianthifolia and Hymenocardia ulmoides may 

not actually exist on the ground. That could also be due to spectral overlaps between Albizia 

adianthifolia and Hymenocardia ulmoides and other forest species. The relatively high AD 

shown in Tables 3.2 and 3.3 of the confusion matrix was expected since pixels covered by multi-

classes could probably be mismatched in terms of spatial pattern between test ground-truth 

instances and predicated test samples. However, the study employed an independent holdout test 

sample (30%) for assessing the performance of the classification models (SVM and ANN) based 

on the recommendation by Adelabu et al. (2015) while Atzberger et al. (2015) noted that 

bootstrapping approach produced relatively representative and repeatable accuracy measures 

when the performance of predictive models is evaluated.    

 

The study showed that SVM outperformed ANN in distinguishing amongst endangered tree 

species in a fragmented landscape. SVM offers more benefits as compared to other classification 

models such as ANN. SVM is paired with the kernel trick, exploring and finding tuning kernels 

that create appropriate feature spaces where the linear classification is able to classify data 

created by nonlinear phenomena (Mountrakis et al., 2011; Richter et al., 2011; Rullan-Silva et 

al., 2013). On the other hand, ANN could encounter an over-fitting problem and result in low 

classification accuracy on the test dataset as shown in Tables 3.2 and 3.3 (Kimes et al., 2000). 

However, researchers have shown that ANN compares favorably with the established supervised 

machine learning classification algorithms like SVM for tree species mapping (Combal et al., 

2003; Ingram et al., 2005; Dorigo et al., 2007; Xiong et al., 2010; Ghosh and Joshi, 2014). Since 
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the purposively subset WorldView-2 bands was used to test the utility of the SB and AB for 

mapping endangered tree species, the study did not use any feature selection method like RF to 

select a fewer number of bands that might classify endangered tree species with a comparable 

accuracy to the one produced by the 8B. Although, studies have demonstrated the robustness of 

RF as variable selection and classification approach in tree species mapping (Omar, 2010; 

Immitzer et al., 2012; Adelabu et al., 2013) a combination of RF as a feature selection method 

and SVM as a classification approach would have yielded optimum endangered tree species 

mapping results.     

 

In summary, the study findings are promising for accurate classification of endangered tree 

species in a fragmented ecosystem using multispectral WorldView-2 bands, SVM and ANN 

classification algorithms. Moreover, the relatively accurate classification results achieved with 

SVM and WorldView-2 8B subset in this study provide reliable information on tree species in 

the Dukuduku area that could be used in the design of management plans and policies as a basis 

for assessing and monitoring natural resources, ecological fragmentation and ecosystem 

functions and services.  
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Empirical Estimation of Leaf Area Index (LAI) of Endangered Tree Species in 

Intact and Fragmented Indigenous Forest Ecosystems Using WorldView-2 Data and 
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ABSTRACT 

Leaf area index (LAI) is an important biophysical input variable for forest ecosystems and 

ecological modeling, as it plays a key role for the forest productivity and structural 

characteristics. The ground-based methods like the handheld optical instruments used to estimate 

LAI are expensive and time-consuming. The advent of very high spatial resolution multispectral 

data and robust machine learning regression algorithms like support vector machines (SVM) and 

artificial neural networks (ANN) has provided an opportunity to estimate LAI at tree species 

level. The objective of the present study was, therefore, to test the utility of spectral vegetation 

indices (SVIs) calculated from the multispectral WorldView-2 data for predicting LAI at tree 

species level using the SVM and ANN machine learning regression algorithms. The study further 

tested whether there were significant differences between intact and fragmented (open) 

indigenous forests LAI at tree species level. The study shows that LAI of six endangered tree 

species could be accurately estimated using the fragmented forest data compared with the intact 

forest data. Specifically, the study shows that relatively accurate LAI predictions were achieved 

for Hymenocardia ulmoides using the fragmented stratum data and SVM regression model based 

on a validation data set (R2
Val = 0.75, RMSEVal = 0.05 (1.37% of the mean)). The study further 

shows that the SVM regression approach achieved more accurate models for estimating the LAI 

of the six endangered tree species compared with the ANN regression method. It is concluded 

that the successful application of the WorldView-2 data, SVM and ANN methods for predicting 

LAI of six endangered tree species in the Dukuduku indigenous forest could help in making 

informed decisions and policies regarding management, protection and conservation of these 

endangered tree species. 

 

Keywords: Leaf area index, tree species, indigenous forest, WorldView-2, support vector 

machines, artificial neural networks 
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4.1 Introduction 

Indigenous forests in South Africa cover about 0.2% of the country’s land surface (Ndlovu, 

2013). In KwaZulu-Natal province, coastal lowland indigenous forests occur in small, 

fragmented and largely scattered patches in relatively dry landscapes (Cho et al., 2012; Ndlovu, 

2013). An example of such fragmented forests in KwaZulu Natal, South Africa is the Dukuduku 

forest. Dukuduku indigenous forest is one of the largest and the best preserved remnants of South 

African coastal forests (Ntombela, 2003). However, forest in the Dukuduku area is highly 

threatened by the rapid growth of informal human settlements and agricultural systems (Ndlovu, 

2013). As one of the key features of landscape in South Africa, careful indigenous forest 

monitoring, management and conservation is critical. Therefore, a multi-disciplinary research is 

needed to optimally manage and conserve the endangered tree species in these indigenous forests 

as they support livelihoods of millions of people in the poor rural communities. Indigenous 

forests provide a number of benefits like food resources, fence poles, and traditional medicine to 

treat human diseases in these poor rural communities (Eldeen, 2005; Brendler et al., 2010).  

 

One way of managing and monitoring indigenous forest ecosystems is to estimate the trees’ 

structural (e.g. height), biophysical (e.g. LAI) and biochemical (e.g. foliar N concentrations) 

traits. In general, these tree characteristics are measures and proxies for ecosystem resilience, 

services, conservation, landscape integrity and environmental health. The tree structural and bio-

physiological traits could also be used to study the effect of climate change on the indigenous 

forest ecosystems. For instance, indigenous forests LAI and biomass are indicators of the amount 

of sequestered carbon which provides a relatively cheap means for offsetting significant shares 

of the annual greenhouse gas emissions (Jordan, 1969; Laurance et al., 1998; Beets et al., 2011; 

Itkonen, 2012). Forest LAI is an important biophysical measure for modeling the energy and 

mass exchange characteristics between the land surface and the atmosphere of terrestrial 

ecosystems (Asner et al., 2003). LAI is one of the most useful indicators of vegetation 

development and health for informing the forest management practices with respect to 

adjustments and requirements and used indirectly as an input variable for primary production, 

forest growth and yield models (Asner et al., 2003). Therefore, estimating LAI at tree species 

level is a necessary and valuable information for tree monitoring, management, conservation and 

ecosystem services in terms of productivity and health status in indigenous forest ecosystems. On 

the other hand, the different land use/cover types and other ecological threats like land 
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degradation can also significantly affect tree biophysical and structural properties, as well as 

productivity (i.e. net primary productivity: NPP) in the indigenous forest ecosystems. 

Specifically, studies have shown that LAI, which is a dimensionless variable that is defined as 

the total one-sided surface area of all leaves in the canopy per unit ground area (Bréda, 2003), is 

an important biophysical variable that determines forest photosynthetic capacity, and therefore 

the NPP, biomass and other ecosystem processes (Gower et al., 1999; Leuning et al., 2008; 

Boegh et al., 2013). 

 

Commonly, LAI is estimated through destructive and non-destructive ground-based methods 

(Chason et al., 1991). However, these ground-based methods of estimating LAI, like the 

handheld optical instruments, are time-consuming, laborious, subjective and expensive, 

particularly when carried out in large fragmented landscapes. Hence, studies have sought 

complementary approaches that use rapid, up-to-date, cost-effective and synoptic data for 

estimating and modeling LAI (Itkonen, 2012; Cho et al., 2014; Tarantino et al., 2015). 

Development in remote sensing technologies, data, and processing as well as analytical 

approaches have made it possible to explicitly and accurately estimate LAI of forests and 

croplands (Darvishzadeh et al., 2009; Pope and Treitz, 2013; Cho et al., 2014; Atzberger et al., 

2015). These studies estimated LAI using different empirical (e.g. linear and polynomial 

regressions) and physical (e.g. inversion of radiative transfer models) approaches. For example, 

the physical approaches have been used to estimate LAI of forests in different landscapes 

(Abuelgasim et al., 2006; Darvishzadeh et al., 2009; Pope and Treitz, 2013; Atzberger et al., 

2015). Physically-based retrieval methods, which refers to inversion of radiative transfer models 

against remote sensing observations (Gobron et al., 2000; Houborg and Boegh, 2008), while the 

empirical approaches that include multiple linear regressions based on more than two bands also 

have been applied in predicting LAI (Kokaly and Clark, 1999; Kovacs et al., 2004; Pope and 

Treitz, 2013). However, identifying suitable variables for developing a multiple regression 

approach is often critical because some variables are either weakly correlated with LAI or are 

highly correlated to each other (Kovacs et al., 2004). Moreover, the major challenge is that the 

multiple linear regressions have often produced limited results, mainly because of their 

requirements to satisfy some statistical conditions or to assume normal distribution of the input 

dataset as well as it suffers from multi-collinearity (Cohen et al., 2003; Schlerf et al., 2005). 

Given this problem, a powerful method for identifying the most useful vegetation indices to 
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improve the prediction of LAI using machine learning regression algorithms is really required. In 

addition, the aforementioned studies utilized remotely-sensed data of varying spectral 

(multispectral and hyperspectral) and spatial (fine and medium) resolutions and relatively 

accurate LAI estimation models were obtained. However, from previous studies and available 

literature no study has modeled LAI at tree species level in indigenous forest ecosystem in South 

Africa. Estimating LAI at species level could help resource managers to understand the impact of 

various socio-ecological mechanisms on indigenous tree species and the vulnerability of these 

trees to external and internal perturbations.  

 

Specifically, previous studies have mostly focused on the use of SVIs that combined the advent 

of two or three wavebands as opposed to the use of spectral features at a single waveband on 

modeling forests LAI (Kovacs et al., 2005; Yang et al., 2006; Leuning et al., 2008; Tillack et al., 

2014). SVIs are a mathematical combination of different spectral bands, commonly located in 

the visible and NIR regions of the electromagnetic spectrum (Viña et al., 2011). SVIs have 

become one of the most important sources of information for monitoring vegetation, tree species, 

and other forest biophysical traits. The advantage of the SVIs is to improve the information 

contained in the spectral reflectance by detecting the spectral variability that might be due to 

different vegetation, plant, canopy and leaf physiological, and morphological characteristics 

(Moulin, 1999; Viña et al., 2011). Moreover, SVIs are efficient remotely-sensed variables in 

reducing the noise in the spectral data due to, for example, the ambient atmospheric conditions, 

sun view angles, canopy geometry, shading, and soil background (Gilabert et al., 2002). 

Therefore, a number of SVIs have been developed and tested to estimate indigenous forest LAI. 

It was found that SVIs were suitable for detecting the within forest LAI spatial variability 

(Moulin, 1999; Cho et al., 2008b). The most commonly used SVI, the normalized different 

vegetation index (NDVI), simple ratio index (SRI) and soil adjusted vegetation index (SAVI) are 

calculated from multispectral data of low and medium spatial resolutions like Landsat and 

MODIS (Moderate Resolution Imaging SpectroRadiometer) and utilized for estimating forest 

LAI (Chen, 1996; Gilabert et al., 2002; Yang et al., 2006; Leuning et al., 2008). However, 

because of low and medium spatial resolutions, the previous studies could not estimate the LAI 

at tree species level. Estimating LAI at tree species level is a necessary and provides valuable 

information for tree characterization, monitoring, management, conservation and ecosystem 

services in terms of productivity and health status in indigenous forest ecosystem.  
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On the other hand, the newly launched multispectral sensors like Sentinel-2, WorldView-2, 

WorldView-3, and Pleiades provide data of fine to medium pixel size that can also capture the 

vegetation spectral properties at some unique portions of the electromagnetic spectrum (e.g. red 

edge). The fine spatial resolution of these newly launched sensors and the inclusion of the 

additional bands in calculating the SVI offer a great opportunity for estimating LAI at tree 

species level. The additional bands (e.g. yellow and red edge), which were previously contained 

in the hyperspectral data, could overcome the limitations of the conventional bands (e.g. red) 

while reducing the unnecessary redundancy in the hyperspectral remotely-sensed data (Davi et 

al., 2006; Soudani et al., 2006; Yang, 2011; Adelabu et al., 2013). Studies have revealed that the 

key bands like the red edge of multispectral data are useful to characterize spatial variability 

changes in vegetation biophysical parameters like LAI (Tarantino et al., 2015).  

 

Where the empirical regression methods are concerned, most of the above-mentioned studies 

either employed multiple linear regressions or machine learning approaches like RF to estimate 

LAI at forest level. However, the major challenge with conventional empirical methods that 

include multiple linear regressions, is that they assume a normal distribution on the response 

variables and suffer from multi-collinearity (Cohen et al., 2003; Schlerf et al., 2005). The use of 

machine learning methods has therefore been regarded as efficient and robust protocols for 

estimating forest biophysical traits in the field of remote sensing (Thissen et al., 2004; Cho and 

Skidmore, 2009; Liu et al., 2013). Particularly, these methods which make no assumption of the 

input predictor variables distribution have increasingly offered a better capability to analyze 

remote sensing data (Chan and Paelinckx, 2008; Dalponte et al., 2009). In particular, there is a 

lack of knowledge on whether the high resolution multispectral data (e.g. WorldView-2) could 

be employed to estimate LAI of individual tree species in two different indigenous forest 

ecosystems (e.g. fragmented and intact forest ecosystems). Moreover, ecologists might need to 

test whether there are significant differences between LAI of tree species grown in intact and 

fragmented forest ecosystems in order to assess the ecosystems’ services and resilience in the 

value chain. The empirical estimation of tree LAI in such complex and dynamic forest 

ecosystems using remotely-sensed data may require efficient and robust machine learning 

regression algorithms like SVM and ANN. SVM is a well-known machine learning algorithm 

which has frequently been used to change the nonlinear regression problem into a linear 
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projection by a variety of kernel methods (Cristianini and Shawe-Taylor, 2000; Cherkassky and 

Ma, 2004). The advantage of SVM compared to other conventional linear and nonlinear 

regression methods is that it offers excellent generalization abilities. The SVM algorithm also 

offers scarce solutions where only the most relevant sample of the training data are weighted 

causing low computational cost (Cortes and Vapnik, 1995; Gilabert et al., 2002). Previously, this 

algorithm has been applied to relate SVIs to various vegetation biophysical traits like LAI with 

various success (Verrelst et al., 2012a; Liang et al., 2013). 

 

On the other hand, ANN regression comprises of an interconnected group of artificial neurons 

and processes information using a connectionist method for calculation (Atkinson and Tatnall, 

1997; Xiu and Liu, 2003; Singh and Chauhan, 2009). The approach therefore offers a very 

efficient regression method to simulate the relationship between SVIs and LAI (Smith, 1993; 

Kimes et al., 1998; Fang and Liang, 2003). From the available literature and to the researcher’s 

knowledge, no study utilized SVIs calculated from WorldView-2 data, SVM and ANN 

regression to predict LAI in tropical indigenous forests at species level. In the present study, the 

utility of SVIs calculated from the multispectral WorldView-2 data was tested for predicting LAI 

at tree species level using the SVM and ANN machine learning regression algorithms. The LAI 

of six endangered tree species grown in the Dukuduku intact and fragmented (open) indigenous 

forest ecosystems was estimated. The study also tested whether there are significant differences 

between LAI of the six endangered tree species grown in intact and fragmented indigenous forest 

ecosystems.  

4.2 Methodology   

4.2.1 Sampling Procedure and Field Data Collection 

A field campaign was carried out between 1st and 7th December 2013 following stratified 

purposive sampling method to collect LAI measurements from the six selected endangered tree 

species (Albizia adianthifolia, Ekebergia capensis, Harpephyllum caffrum, Hymenocardia 

ulmoides, Sclercarya birrea and Trichilia dregeana). A handheld Leica Geosystem GS20 GPS of 

sub-meter (0–0.25 m) accuracy (Geosystems, 2004) was used to geo-locate the sample trees. A 

handheld LAI-2200 plant canopy analyzer (PCA) was used to estimate LAI of each sample tree 

under overcast sky conditions at low solar elevation, i.e. around early morning (8:00-10:00, 
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Greenwich Mean Time: GMT +2) and late afternoon (15:00-18:00, GMT +2) with 1800 view 

restrictor on the sensor (Soudani et al., 2006; Lottering and Mutanga, 2012). To avoid direct 

sunlight on the sensor, it was necessary for the operator to take samples of below and above 

canopy radiation in the opposite direction to the sun. For each sample plot, one above canopy 

measurement was taken by walking to an adjacent open field. Next, five below canopy 

measurements were performed on the individual trees at regular space points around each tree 

diameter from which the average sample plot LAI was calculated. In total, 563 samples were 

collected from both the fragmented (n = 300) and intact (n = 263) indigenous forest strata 

(Figure 4.1). For each endangered tree species, the sample points were 58 and 67 (Albizia 

adianthifolia), 47 and 37 (Ekebergia capensis), 41 and 44 (Harpephyllum caffrum), 39 and 56 

(Hymenocardia ulmoides), 40 and 59 (Sclercarya birrea), and 38 and 37 (Trichilia dregeana) in 

the intact and fragmented strata, respectively.   
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Figure 4.1: The location of the Dukuduku indigenous forest in KwaZulu-Natal province, South 

Africa and field sample locations overlaid in a true-color WorldView-2 image 

4.2.2 Satellite Image Acquisition and Pre-Processing 

WorldView-2 image was acquired on 1st December 2013 under clear-sky conditions. The 

WorldView-2 is the first multispectral commercial satellite with eight wavelength and senses in 
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the 400 –1400 nm spectral range (50-180 nm). The spatial resolution of the multispectral bands 

is 2.0 m along with a panchromatic band of 0.5 m pixel size with a swath of 16.4 km at nadir 

(DigitalGlobe, 2010). The WorldView-2 image consists of four conventional bands and four 

additional bands. Therefore, the sensor has the spectral and spatial resolutions that meet many 

applications like predicting and monitoring forest structural and biophysical variables at species 

level (Ozdemir and Karnieli, 2011; Mutanga et al., 2015). The image was atmospherically 

corrected and transformed at canopy reflectance using the QUAC procedure in ENVI 4.7 

software (ENVI, 2009). QUAC performs in-scene based atmospheric correction at the visible 

and near- to-shortwave infrared (VNIR-SWIR) region of the electromagnetic spectrum for multi-

and hyperspectral imagery. QUAC determines atmospheric composition parameters directly 

from the information contained within the image (Pixel spectra), thus allowing for the retrieval 

of accurate reflectance spectra (Shen et al., 2005; Zengeya et al., 2013). The acquired image was 

geometrically corrected (UTM zone 36 South using WGS-84 geodetic datum) by digitalGlobe™.  

4.2.3 Spectral Vegetation Indices (SVIs) 

SVIs are usually derived from a combination of two or more image bands and are expected to 

provide more stable information about the vegetation compared to spectral information at a 

single band (Jackson and Huete, 1991; Jawak and Luis, 2013). SVIs based on absorption and 

reflectance in the visible and NIR regions (e.g. NDVI) have been widely used for estimating 

biophysical parameters (e.g. LAI) of agricultural and natural ecosystem (Chen, 1996; Pope and 

Treitz, 2013; Tillack et al., 2014; Pu and Cheng, 2015). In the current study, after the 

WorldView-2 image was processed, 24 SVIs were computed (Table 4.1) and utilized to predict 

the LAI of the six endangered tree species. These indices were selected based on previous studies 

that predicted forest biophysical traits like LAI and biomass (Lu, 2006; Tillack et al., 2014; Pu 

and Cheng, 2015; Ojoyi et al., 2016). The study investigated the use of all SVIs combined 

together (n = 24) for predicting the LAI of the endangered tree species in each forest stratum (i.e. 

intact and fragmented forests). 
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Table 4.1: Summary of the WorldView-2-derived spectral vegetation indices (SVIs) used in 

present study 

No.  Vegetation index  Abbreviation  Equation  Reference  

1  Simple Ratio Index SRI  NIR1/RED  (Jordan, 1969) 

2 Normalized Difference 

Vegetation Index  

NDVI  NIR1 – RED/NIR1 + 

RED  

Rouse et al. 

(1973) 

 

3 Ratio Vegetation Index  RVI  RED/NIR1  (Richardson and 

Weigand, 1977) 

4 Transformed Vegetation 

Index  

TVI  √NIR1 – 

RED/NIR1+RED +0.5  

(Deering and 

Rouse, 1975)  

5 Non-Linear Index  
 

NLI  (NIR2-RED)/(NIR2 + 

RED)  

(Goel and Qin, 

1994) 

6 Atmospherically Resistant 

Vegetation Index  

ARVI  (NIR2-(2*RED-

BLUE)/(NIR2 

+(2*RED-BLUE)  

(Kaufman and 

Tanre, 1992) 

7 Structure-Insensitive 

Pigment Index  

SIPI  (NIR1–BLUE)/(NIR1–

RED EDGE)  

(Peluelas et al., 

1995) 

8 Renormalized Difference 

Index  

RDI  (NIR1-RED) 

/(NIR1+RED)½  

(Roujean and 

Breon, 1995) 

9 Green Normalized 

Difference Vegetation 

Index  

GNDVI  (NIR1-GREEN)/(NIR1+ 

GREEN)  

(Gitelson and 

Merzlyak, 

1996) 

10 Modified Simple Ratio*  MSR*  (NIR1/RED-

1)/(NIR1/RED)½+1  

(Chen, 1996) 

11 Pigment Specific Simple 

Ratio (Chlorophyll a)  

PSSRa  NIR1/RED EDGE  (Blackburn, 

1998) 

12 Pigment Specific Simple 

Ratio(Chlorophyll b)  

PSSRb  NIR1/RED  (Blackburn, 

1998)  

13 Plant Senescence 

Reflectance Index  

PSRI  (RED EDGE–

BLUE)/NIR1  

(Merzlyak et 

al., 1999) 

14 Enhanced Vegetation 

Index  

EVI  2.5 *((NIR1 − RED)/ 

(NIR1+ 6* RED −7.5* 

BLUE + 1))  

(Huete et al., 

1999)  

15 Modified Chlorophyll 

Absorption in Reflectance 

Index  

MCARI  [(RED EDGE–RED)–

0.2(RED EDGE– 

GREEN)](RED 

EDGE/RED)  

(Daughtry et 

al., 2000) 

16 Modified Simple Ratio  MSR  (NIR1 − BLUE)/(RED 

− BLUE)  

(Sims and 

Gamon, 2002) 

17 Normalized Difference 

Index  

NDI  (NIR1 – RED)/ (NIR1 + 

RED)  

(Sims and 

Gamon, 2002) 
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Table 4.1 (Continued) 

No.  Vegetation index  Abbreviation  Equation  Reference  

18 Transformed Chlorophyll 

Absorption in Reflectance 

Index  

TCARI  3[(RED EDGE–RED)–

0.2(RED EDGE– 

GREEN)(RED-

EDGE/RED)]  

(Haboudane 

et al., 2002) 

19 Visible Atmospherically 

Resistant Index  

VARI  (GREEN-

RED)/(GREEN+RED-

BLUE)  

(Gitelson et 

al., 2002) 

20 Visible Green Index  VGI  (GREEN-

RED)/(GREEN+RED)  

(Gitelson et 

al., 2002) 

21 Modified Normalized 

Difference  

MND  (NIR1–

BLUE)/(NIR1+RED 

EDGE–2BLUE)  

(Sims and 

Gamon, 2002)  

22 Carotenoid Reflectance 

Index  

CRI  (1/BLUE)-(1/RED 

EDGE)  

(Gitelson et 

al., 2002) 

23 Green Index  GI  (NIR1/RED) - 1  (Gitelson et 

al., 2005) 

24 Red Index  RI  (NIR1/RED) -1  (Gitelson et 

al., 2005) 

Blue, green, red, red edge, near infrared 1 and near infrared 2 are WorldView-2 bands 2, 3, 5, 6,7 

and 8, respectively 

4.3 Statistical Analysis 

4.3.1 Descriptive Statistics and an Independent t-test 

The field LAI data were described using the mean and standard deviation (SD) statistics. The 

data were then tested for normality using the Shapiro-Wilk test (Royston, 1982). An independent 

t-test was then performed with 95% confidence levels (p ≤ 0.05) to test if there were significant 

differences in the endangered tree species LAI between the intact and fragmented indigenous 

forest strata.  

4.3.2 Support Vector Machines (SVM) Regression Algorithm 

SVM algorithm, which was invented by Cortes and Vapnik (1995), is based on statistical 

learning theory and can be regarded as the same type of networks, corresponding precisely to the 

same type of solution but trained in a different way and therefore with different values of the 

weight after the training (Evgeniou et al., 1999; Gilabert et al., 2002; Durbha et al., 2007). SVM 
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is very specific learning algorithms characterized by the usage of kernels, absence of local 

minima, sparseness of the solution and capacity control obtained by acting on the margin, or on a 

number of support vectors (Karamouz et al., 2009). Originally, SVM was developed to solve the 

classification problems but it was later extended to handle regression problems (Vapnik, 1995; 

Marabel and Alvarez-Taboada, 2013). The support vector regression algorithm converts the 

nonlinear regression problem into a linear relationship by using the kernel functions to map the 

original input space into a new feature space with higher dimensions (Cortes and Vapnik, 1995; 

Chen et al., 2012). In particular, the SVM regression aims to estimate an unknown continuous-

valued function based on a finite number of noisy samples (Cherkassky and Ma, 2002; Marabel 

and Alvarez-Taboada, 2013). Basically, it makes use of structural minimization principle which 

is known to have good generalization performance for different dataset sizes as contrasted to 

empirical risk minimization employed by other method like ANN (Camps-Valls et al., 2006; 

Akande et al., 2014). There are different variations of SVM that use different optimization 

methods due to two parameters that are commonly used. These two parameters are ε-insensitive 

zone (ε-SVM) and regularization parameter (C-SVM) (Cherkassky and Ma, 2002). The accuracy 

of the SVM is highly dependent on a correct setting of the meta-parameters (ε-SVM and C-

SVM). The parameter ε-SVM controls the width of the epsilon-insensitive zone for the training 

dataset (Kohestani and Hassanlourad, 2015). Hence, the value of ε-SVM can affect the number 

of support vectors used to construct the regression function. In other words, the bigger the 

epsilon, the fewer support vectors are selected (Cherkassky and Ma, 2004; Kohestani and 

Hassanlourad, 2015). Conversely, bigger ε-SVM values result in more ‘flat’ estimates (Marabel 

and Alvarez-Taboada, 2013), while the parameter C-SVM determines the balance between the 

model complexity and the degree to which the larger deviations (than epsilon) are tolerated in the 

optimization (Cherkassky and Ma, 2002; Marabel and Alvarez-Taboada, 2013). Therefore, the 

larger values of C-SVM aim at minimizing the empirical risk regardless of the complexity of the 

model (Marabel and Alvarez-Taboada, 2013). In this regard, both C-SVM and ε-SVM values 

affect model complexity. A more detailed description of SVM method can be found in Cortes 

and Vapnik (1995), Cherkassky and Ma (2002) and  Ben-Hur and Weston (2010).  

 

In the present study, the SVM regression method was used to estimate the LAI of the six 

endangered tree species, using the Vapnik's ε-insensitive loss function to minimize the training 

errors. In order to project the data into a new space, a radial basis function was used, followed by 
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optimization procedure to find the number of support vectors for the best performance. 

Moreover, the optimal values of the two parameters C-SVM and ε-SVM of the radial basis 

function were obtained using a 10-fold cross validation method and grid search on the training 

dataset (Hsu et al., 2009; Yang, 2011). The training dataset was divided into 10 subsets of equal 

size, SVM regression models were then trained on the nine subset samples, and tested on the 

removed one and the process was repeated ten times until all subset samples had served as test 

samples (Omer et al., 2015a). The pair parameter that minimizes the prediction error was then 

considered as the best values for the final prediction performance. The analysis was carried out 

using the e1071 library version 2.15.2 in R statistical packages (R Development Core, 2015). 

4.3.3 Artificial Neural Networks (ANN) Regression Algorithm 

ANN is one of the first developed nonparametric machine learning regression techniques. It is a 

powerful approach that can not only analyze complex relationships but also does not depend on 

an assumption of data normality (Atkinson and Tatnall, 1997; Foody, 2004b). The ANN is a 

mathematical model that simulates the structure and functional aspects of the biological neural 

connections. It consists of an interconnected group of artificial neurons and processes 

information using a connectionist method for calculation (Xiu and Liu, 2003; Singh and 

Chauhan, 2009). Several models of ANN such as radial basis function, back propagation and 

multilayer perceptron have been applied for analyzing remotely-sensed data for a variety of 

applications like forestry and ecological modeling (Foody et al., 2003; Corne et al., 2004; 

Ingram et al., 2005). Radial basis function neural networks have proved to be a good function for 

analyzing a wide variety of remotely-sensed data since it reduces the computational time 

required for the training process (Foody, 2004b; Boegh et al., 2013). The approach requires one 

input variable which is the ‘distance’ between the weight and input nodes. The back propagation 

is the multilayer feed forward neural networks method which comprises of a series of simple 

connected neurons, or nodes, between input and output layers (Atkinson and Tatnall, 1997) while 

the multilayer perceptron is a commonly used ANN structure that consists of an input layer, an 

output layer and one or more hidden layers of nonlinearly-activating nodes (Atkinson and 

Tatnall, 1997; García Nieto et al., 2012). The nodes are connected by a certain synaptic weight to 

all nodes in the next layer and the perceptron learning occurs through the changes in the 

connections weights after the input protector (SVIs) are processed (García Nieto et al., 2012). 

The multilayer perceptron is a feed forward ANN model that projects input data onto a set of 
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suitable output by using three or more layers of nodes with nonlinear activation functions 

(Atkinson and Tatnall, 1997; Xiong et al., 2010). ANN has been widely used in modeling 

vegetation and tree species traits that are not linearly predictable in the original remotely-sensed 

variables (Menzies et al., 2007; Liu et al., 2013). 

 

In the present study, ANN regression algorithm was employed using the multilayer perceptron 

modeling approach to estimate the LAI of the six endangered tree species using the 24 SVIs 

presented in Table 4.1. Many trials of internal networks structure, input data, and learning 

algorithms have been tested to define the optimal regression features. The structure of the hidden 

layers was tested to assess the necessary number of hidden layers and the number of required 

nodes per layer. This was tested by manually changing the number of nodes in the hidden layer.   

4.3.4 Validation  

To validate the performance of the SVM and ANN regression algorithms, the reference data 

were randomly split into 70% (210 and 184 for the intact and fragmented strata, respectively) for 

calibration and 30% (90 and 79 for the intact and fragmented strata, respectively) for validation 

based on the recommendation made by Adelabu et al. (2015). Moreover, the calibration dataset 

was used for optimizing the SVM and ANN regression algorithms, while the validation dataset 

was used to examine the performance and reliability of the prediction models. One-to-one 

relationships between the measured and predicted LAI values were fitted and the coefficient of 

determination (R2), root mean square errors (RMSE) and bias were then calculated (Equations 

4.1, 4.2, and 4.3). The RMSE provides direct estimates of the modeling errors expressed in the 

original measurement units, the lower value of RMSE indicates a good predictive model 

performance (Akande et al., 2014).  
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Equation 4. 3 

where 
iy  is the measured LAI, i

y


 is the predicted LAI, y  is the mean of the measured LAI, n is 

the number of sample data in the validation dataset.  

4.4 Results 

4.4.1 Descriptive Statistics and an Independent t-test  

A Shapiro–Wilk normality test showed that the LAI data for the six endangered tree species 

grown in the fragmented and intact indigenous forest strata were normally distributed (p = 0.03 

for the intact forest stratum and p = 0.04 for the fragmented forest stratum). Figure 4.2 shows the 

descriptive statistics of the LAI for the six endangered tree species in the fragmented and intact 

indigenous forest strata. The result of the independent t-test showed that fragmented forest 

obtained significantly higher (p ≤0.05) mean LAI compared to the intact indigenous forest strata 

(Figure 4.2). With regard to the individual tree species, there is a great variability in LAI among 

the tree species and the highest mean LAI were achieved for Albizia adianthifolia (4.19) and 

Trichilia dregeana (3.94) in intact forest stratum, while the lowest mean values were obtained 

for Albizia adianthifolia (2.03) in fragmented forest stratum (Figure 4.2). Also, the descriptive 

statistics of the combined (aggregated) LAI across the six endangered tree species in the intact 

and fragmented forest ecosystems are shown in Figure 4.3. The result of the independent t-test 

showed that the two forest ecosystems (fragmented and intact) revealed a significant (p ≤0.05) 

combined LAI.  
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Figure 4.2: Descriptive statistics of the measured LAI of the six endangered tree species in both 

the intact (I) and fragmented (F) forest ecosystems. LAI data for each tree species in the both 

forest ecosystems (I and F) with a different letter are significantly different (p ≤0.05) from each 

other  
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Figure 4.3: Descriptive statistics of the measured LAI of the combined (aggregated) six 

endangered tree species datasets in both the intact (I) and fragmented (F) forest ecosystems. 

Combined LAI data with a different letter are significantly different (p ≤0.05) from each other 

4.4.2 Support Vector Machines (SVM) and Artificial Neural Networks (ANN) 

Regression Models  

Table 4.2 shows the optimum parameters for both the SVM and ANN regression methods. The 

10-fold cross validation method and grid search approaches resulted in optimal ε-SVM and C-

SVM values of 1 and 100, respectively, for all endangered tree species in the two forest strata, 

except for the Albizia adianthifolia and Sclercarya birrea in fragmented forest stratum (1 and 

1000), Hymenocardia ulmoides, Sclercarya birrea and Trichilia dregeana in intact forest stratum 

(1 and 10). The table also shows that the input layers for ANN regression method ranged 

between 1 and 6 for the six endangered tree species in the fragmented forest stratum and between 

4 and 6 for the species in the intact forest stratum, while the hidden layers were varied between 2 

to 5 and 4 to 9 for the fragmented and intact forest strata, respectively. The optimal ε-SVM and 

C-SVM values of 1 and 100 respectively, for combined fragmented and intact data also 

presented in Table 4.2.  
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Table 4.2: The optimal parameters for the best trained SVM and ANN regression models used 

for estimating the LAI of the six endangered tree species in the fragmented and intact indigenous 

forest strata 

Support vector machines (SVM) 

Endangered 

tree species 

 Fragmented forest stratum Intact forest stratum 

  ε-SVM  C-SVM   ε-SVM  C-SVM 

AA 1.0 1000 1.0 100 

EC 1.0 100 1.0 100 

HC 1.0 100 1.0 100 

HU 1.0 100 1.0 10 

ScB 1.0 1000 1.0 10 

TD 1.0 100 1.0 10 

Combined data 1.0 100 1.0 100 

Artificial neural networks (ANN) 

 inputs Hidden Profile inputs Hidden Profile 

AA 3.0 05 MLP 3:3-5-1:1 4.0 06 MLP 4:4-6-1:1 

EC 5.0 04 MLP 5:5-4-1:1 6.0 08 MLP 6:6-8-1:1 

HC 2.0 03 MLP 2:2-3-1:1 4.0 09 MLP 4:4-9-1:1 

HU 1.0 02 MLP 1:1-2-1:1 5.0 06 MLP 5:5-6-1:1 

ScB 1.0 02 MLP 1:1-2-1:1 4.0 04 MLP 4:4-4-1:1 

TD 6.0 05 MLP 6:6-5-1:1 6.0 04 MLP 6:6-4-1:1 

Combined data 3.0 04 MLP 3:3-4-1:1 4.0 05 MLP 4:4-5-1:1 

AA = Albizia adianthifolia, EC = Ekebergia capensis, HC = Harpephyllum caffrum, HU = 

Hymenocardia ulmoides, ScB = Sclercarya birrea, TD = Trichilia dregeana, ε-SVM = ε-

insensitive zone, C-SVM = regularization parameter and MLP = multilayer perceptron 

 

The results of training (calibrating) both the SVM and ANN regression approaches are presented 

in Table 4.3. All the SVM and ANN models explained more than 70% of the variance (R2
Cal ≤ 

0.70) in the tree LAI in the fragmented forest stratum, except for the Sclercarya birrea when the 

SVM and ANN models were trained and for the Trichilia dregeana using the ANN regression 

method. For the intact forest stratum, the results showed R2
Cal values of more than 0.70 for all 

endangered tree species when SVM regression model was fitted, while the ANN regression 

models resulted in R2
Cal values of less than 0.70 for all tree species except for the Harpephyllum 

caffrum (Table 4.3). In general, the SVM regression models yielded relatively better results 

compared to the ANN models. On the other hand, models developed using the fragmented forest 
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data fitted LAI data more accurately compared with the models developed using the intact forest 

data (Table 4.3). 

Table 4.3: Coefficient of determination (R2
Cal) and root mean square errors (RMSECal) for the 

SVM and ANN regression models when calibrated using the data collected from the fragmented 

and intact forest strata 

Cal = Calibration dataset, AA = Albizia adianthifolia, EC = Ekebergia capensis, HC = 

Harpephyllum caffrum, HU = Hymenocardia ulmoides, ScB = Sclercarya birrea, and TD = 

Trichilia dregeana 

4.4.3 Model Validation  

Figures 4.4, 4.5, 4.6 and 4.7 show the one-to-one relationships between the measured and 

predicted LAI for all models developed in the present study. When the performance of the SVM 

prediction models was assessed, the results showed that the LAI could be better estimated for the 

Hymenocardia ulmoides trees grown in the fragmented forest ecosystem as indicated by the 

relatively higher R2
Val, and lower error metrics (Figure 4.4) while for the intact forest ecosystem 

(Figure 4.5) the best model was achieved for predicting the LAI of the Albizia adianthifolia trees 

(R2
Val = 0.80 and RMSEVal = 2.10% of the mean). The slope in all other predictive models was 

deviated from the expected one-to-one relationship and the models either overestimated or 

Support vector machines (SVM) 

Endangered tree 

species 

Fragmented forest stratum  Intact forest stratum 

R2
Cal RMSECal RMSECal% R2

Cal RMSECal RMSECal % 

AA 0.79 0.09 2.06 0.83 0.13 1.93 

EC 0.75 0.05 0.87 0.77 0.05 1.27 

HC 0.82 0.04 1.09 0.78 0.04 1.35 

HU 0.86 0.03 0.73 0.73 0.06 0.98 

ScB 0.64 0.08 1.12 0.72 0.09 3.50 

TD 0.72 0.05 1.73 0.69 0.06 1.72 

Combined data 0.81 0.06 1.89 0.77 0.08 2.58 

Artificial neural networks (ANN) 

AA 0.74 0.07 4.69 0.62 0.09 2.18 

EC 0.70 0.03 0.91 0.63 0.05 1.33 

HC 0.78 0.04 1.14 0.71 0.05 1.39 

HU 0.84 0.03 0.78 0.59 0.07 2.00 

ScB 0.66 0.04 1.15 0.67 0.05 1.31 

TD 0.67 0.06 1.81 0.62 0.08 1.99 

Combined data 0.74 0.07 2.41 0.62 0.10 4.02 
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underestimated the LAI measurements. On the other hand, the best ANN regression model was 

achieved for estimating the LAI of the Hymenocardia ulmoides trees (Figure 4.6) in the 

fragmented forest stratum (R2
Val = 0.71 and RMSEVal = 1.52% of the mean) and for 

Harpephyllum caffrum trees (Figure 4.7) in the intact forest stratum (R2
Val = 0.71 and RMSEVal = 

1.57% of the mean). It is interesting to note that most of the SVM models developed using the 

fragmented data overestimated the LAI in all tree species, except for Sclercarya birrea. 

Furthermore, the results also showed that the LAI could be better estimated for the combined 

fragmented forest dataset (Figure 4.8) compared with combined intact forest dataset (Figure 4.9).  

Since the SVM regression method achieved relatively more accurate prediction models, 

predicted LAI maps were produced using the regression algorithm for the combined intact and 

fragmented data (Figure 4.10). The maps can be compared to the WorldView-2 image which 

depicts the intact and fragmented forest ecosystems. The maps show the spatial variation in the 

forest LAI in the fragmented and intact forest ecosystems.  
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Figure 4.4: One-to-one relationships between measured and predicted LAI based on an 

independent validation dataset (30%) using support vector machines (SVM) regression algorithm 

and fragmented indigenous forest data 
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Figure 4.5: One-to-one relationships between measured and predicted LAI based on an 

independent validation dataset (30%) using support vector machines (SVM) regression algorithm 

and intact indigenous forest data 
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Figure 4.6: One-to-one relationships between measured and predicted LAI based on an 

independent validation dataset (30%) using artificial neural networks (ANN) regression 

algorithm and fragmented indigenous forest data  
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Figure 4.7: One-to-one relationships between measured and predicted LAI based on an 

independent validation dataset (30%) using artificial neural networks (ANN) regression 

algorithm and intact indigenous forest data  
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Figure 4.8: One-to-one relationships between measured and predicted LAI based on an 

independent validation dataset (30%) using combined fragmented indigenous forest data and (a) 

support vector machines and (b) artificial neural networks 

 

Figure 4.9: One-to-one relationships between measured and predicted LAI based on an 

independent validation dataset (30%) using combined intact indigenous forest data and (a) 

support vector machines and (b) artificial neural networks 
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Figure 4.10: Leaf area index predicted map of the indigenous Dukuduku forest area. The map 

was produced using the support vector regression algorithm and a) the intact forest data and b) 

the fragmented forest data  

4.5 Discussion  

The present study aimed at testing the relationships between LAI of six endangered tree species 

and SVIs derived from WorldView-2 imagery captured from fragmented and intact indigenous 

forest ecosystems. The machine learning SVM and ANN regression algorithms were tested for 

deriving predictive models that can accurately estimate the LAI of the six endangered tree 

species. The study also tested the null hypothesis that LAI of the six endangered tree species 

grown in the intact and fragmented indigenous forest ecosystems are not significantly different. 

The use of the optical sensors with different types of spectral and spatial resolution (i.e. fine, 

medium and coarse) has attained different degrees of success for LAI estimation (Abuelgasim et 

al., 2006; Yang et al., 2006; Leuning et al., 2008). However, estimating LAI using SVIs such as 
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NDVI and SRI computed from medium-spatial-resolution multispectral satellites (10 m to 100 

m) is constrained by an asymptotic relationship with LAI in densely vegetated areas like 

indigenous forest ecosystems (Mutanga and Skidmore, 2004b; Davi et al., 2006). Therefore, the 

study explored the use of the fine spatial resolution WorldView-2 sensor and the inclusion of the 

additional red edge band in calculating the SVIs for estimating LAI at tree species level. 

 

The study shows that LAI at individual tree species level can accurately be estimated in 

fragmented and intact forest ecosystems. These results are consistent with other studies that 

demonstrated the utility of WorldView-2 in predicting LAI at different spatial scales of a 

landscape (Pope and Treitz, 2013; Pu and Cheng, 2015; Tarantino et al., 2015). These findings 

therefore support the assertion that the potential utility of WorldView-2 spectral variables offer 

improved predictions accuracy of vegetation biophysical characteristics such as LAI in 

indigenous ecosystems (Mutanga et al., 2012; Pope and Treitz, 2013; Tillack et al., 2014; 

Tarantino et al., 2015). The successful use of WorldView-2 data in predicting LAI at tree species 

level could be due to the fine pixel size (2m) that is required to capture the spectral properties of 

each individual tree species. This is in agreement with the findings of other studies like Pu and 

Cheng (2015) who found that LAI predictive models generated using WorldView-2 data in a 

mixed forest ecosystem performed better than those derived using the relatively low spatial 

resolution, Landsat 5 TM data.  

 

Although, all the 24 SVIs (Table 4.1) combined together were utilized to predict LAI of the 

endangered tree species, it hypothesized that the red edge band which was included in some of 

the SVI could have enhanced the performance of the LAI predictive models. The red edge band 

which is the inflection point in the slope that connects the reflectance in the red band in the NIR 

spectral range (Pu et al., 2003; Mutanga and Skidmore, 2007; Herrmann et al., 2010) is more 

sensitive to the vegetation biophysical properties like chlorophyll content as compared to other 

regions of the electromagnetic spectrum (Pope and Treitz, 2013; Tillack et al., 2014). These 

studies found that the vegetation indices calculated from the red edge and NIR have relatively 

stronger correlation with LAI in different landscapes. Chlorophyll content can be one of the 

vegetation biochemicals that has a direct relationship with LAI (Mutanga and Skidmore, 2004b; 

Mutanga and Skidmore, 2007; Herrmann et al., 2010). In general, this result is in conformity 

with Mutanga et al. (2012) who concluded that the vegetation indices derived from WorldView-
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2 data involving the additional red edge band can improve the predicting accuracies of vegetation 

biophysical properties (e.g. biomass) compared with the indices that only include conventional 

bands.  

 

The tree LAI in the fragmented forest (open) was significantly higher than that in the intact 

forest, and the predictive models for estimating LAI in fragmented forest (Figures 4.4 and 4.6) 

outperformed those for predicting LAI in the intact forest (Figures 4.5 and 4.7). The higher LAI 

in the fragmented forest is expected since the trees are grown with relatively less competition 

from their surrounding plants compared with the trees in the intact forest and they could have 

optimally utilized the climatic and soil elements that are required for their growth. In the intact 

forest, the target endangered tree species could have been mixed with other tree species within 

the sample plots and could also have resulted in mixed spectral features (SVI). Hence, the mixed 

spectral features in the intact forest ecosystem might have hindered the performance of the LAI 

predictive models. Moreover, in a few cases in the intact forest ecosystem and due to the 

difficulty of taking measurements close to the stem area of the individual trees, the LAI 

measurements were collected from sites where two or more tree species were overlapped. The 

spectral features from the overlapped sites could also have resulted in mixed spectral features 

due to different trees structural and biophysical traits (Omer et al., 2015a). Similarly, it is 

interesting to note that in the intact forest stratum, the study sampled trees along the roads and 

open paths, hence it is expected that one side of trees could have received more sunlight than the 

other side of the trees. Since the LAI is a light-dependent biophysical trait, the variation in light 

alongside tree crowns could have confounded the prediction of LAI in the intact forest and the 

performance of the models developed when intact forest data were utilized. 

 

The study utilized two optimized learning nonlinear regression methods (SVM and ANN) to 

estimate LAI in the Dukuduku indigenous forest at tree species level. Tree biophysical 

parameters in such a complex and dynamic natural ecosystem might possibly not be modeled 

using a linear relationship. The nonlinear SVM and ANN regression approaches explained the 

high  variability in the trees’ LAI in the complex Dukuduku landscape and resulted in predictive 

models of relatively high accuracy. The study also parametrized the two regression approaches to 

get the best meta parameters for estimating LAI (Cherkassky and Ma, 2004; Verger et al., 2008). 

The results showed that different optimal parameters were required to estimate LAI in the 
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fragmented and intact forest ecosystems. This was expected since the study employed empirical 

statistical approaches for deriving the predictive models under two different forest ecosystems. 

This result is in conformity with other studies that reported different optimal settings for SVM 

and ANN under different levels and complexities of landscapes (Camps-Valls et al., 2006; 

Verger et al., 2008; Lottering and Mutanga, 2012; Verrelst et al., 2012b; Liang et al., 2013). 

 

Furthermore, the study shows that the LAI predictive models derived using SVM regression 

performed relatively better than those derived using ANN regression. Other studies also noted 

the superiority of SVM models for predicting forests and crops LAI (Camps-Valls et al., 2006; 

Pope and Treitz, 2013; Tillack et al., 2014). The superiority of SVM models for predicting 

endangered tree species LAI when compared with the ANN models could also be due to the fact 

that SVM regression usually makes use of structural minimization principle which is known to 

have the ability to produce accurate predictive models (Cristianini and Shawe-Taylor, 2000; 

Camps-Valls et al., 2006; Akande et al., 2014). Meanwhile, ANN regression approach employs 

model functions like radial basis function that are relatively biased when used with input 

remotely-sensed variables and can  deviate from what has been presented during the training 

stage (Kimes et al., 1998; Atzberger, 2004; Baret and Buis, 2008). Furthermore, ANN regression 

is often referred to as a black-box technique that could encounter an overfitting problem on the 

test dataset (Kimes et al., 2000; Qiu and Jensen, 2004). ANN also requires a relatively long 

processing time during the training phase due to manual adjustments of the hidden layers nodes. 

However, SVM was optimized using a 10-fold cross validation method, while ANN optimal 

parameters were obtained using a trial and error approach. Further studies should employ the 

same method to calibrate and optimize SVM and ANN regression methods when they are 

compared for their performance in predicting forest biophysical traits. 

 

Overall, the results are promising for accurate prediction of LAI at tree species level in the 

Dukuduku forest ecosystem. However, the results should be interpreted with some caution as 

snapshot data was used at specific environmental conditions and forest ecosystems. Further 

studies should explore the transferability of the present models to other points in space or time. 

The LAI estimates should also be utilized to study and model other forest biophysical (e.g. 

biomass, NPP) and metro-physiological (e.g. evapotranspiration) traits using process-based 

physical models.  
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4.6 Conclusions 

The present study shows a successful application of high spatial resolution WorldView-2 data 

and the machine learning SVM and ANN regression methods for estimating LAI of six 

endangered tree species in fragmented and intact Dukuduku indigenous forest ecosystems in 

South Africa. The results showed that 60% (R2
Val > 0.60) of the variation in LAI of the 

endangered tree species could be explained by the predictive models when data in the 

fragmented forest ecosystem were utilized. On the other hand, the results revealed that a 

maximum R2
Val of 0.80 could be obtained for estimating the LAI of the endangered tree species 

in intact forest ecosystems. In general, LAI predictive models developed using the fragmented 

forest data performed more accurately (RMSEval ranged between 1.37% and 14.72% of the 

mean) compared with the models developed using the intact forest data (RMSEval ranged 

between 1.57% and 5.85% of the mean) and SVM regression approach achieved relatively more 

accurate LAI estimation models compared with ANN regression. 

 

Overall, the successful application of the WorldView-2 data, SVM and ANN for predicting LAI 

of six endangered tree species in the Dukuduku indigenous forest could help in making informed 

decisions and policies regarding management, protection and conservation of these endangered 

tree species. The strength of the multispectral WorldView-2 data, however, needs to be further 

tested for other biophysical (e.g. biomass) and biochemical parameters (e.g. leaf N, CN) in 

indigenous and tropical forest ecosystems within a heterogeneous landscape where the 

biophysical and biochemical traits are highly variable. The findings of this study, do however, 

provide the necessary insight and motivation to the remote sensing community, ecologists and 

forest managers to shift toward identifying the most suitable and readily available remotely-

sensed necessary for reliable and accurate indigenous forest management and monitoring 

protocols particularly in a fragmented ecosystem. 
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CHAPTER FIVE 

 

 

 

 

Mapping Leaf Nitrogen and Carbon Concentrations of Intact and Fragmented 

Indigenous Forest Ecosystems Using Empirical Modeling Techniques and 

WorldView-2 Data  
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ABSTRACT 

Forest nitrogen (N) and carbon (CN) are among the most important biochemical components of 

tree organic matter, and the estimation of their concentrations can help to monitor the nutrient 

uptake processes and health of forest trees. Traditionally, these tree biochemical components are 

estimated using costly, labour intensive, and time-consuming. The use of very high spatial 

resolution multispectral data and advanced machine learning regression algorithms such as 

support vector machines (SVM) and artificial neural networks (ANN) provide an opportunity to 

accurately estimate foliar N and CN concentrations over intact and fragmented forest ecosystems. 

In the present study, the utility of spectral vegetation indices calculated from WorldView-2 

imagery for mapping leaf N and CN concentrations of fragmented and intact indigenous forest 

ecosystems was explored using SVM and ANN regression algorithms. The study further tested 

whether there were significant differences in the leaf N and CN concentrations between the intact 

and fragmented indigenous forest ecosystems. The study showed that the intact forest obtained 

significantly higher (p = 0.03) mean values for N as compared to the fragmented indigenous 

forest. There was no significant difference (p = 0.55) in the CN mean concentration between the 

intact and fragmented indigenous forest strata. The results further showed that the foliar N and 

CN concentrations could be more accurately estimated using the fragmented stratum data 

compared with the intact stratum data. Specifically, the results showed that the most accurate N 

predictions were achieved when the fragmented data and support vector machines were utilized 

(R2
Val = 0.77, RMSEVal = 1.07% of the mean). In addition, the most accurate foliar CN 

predictions were achieved for the fragmented data using the SVM regression method (R2
Val = 

0.67, RMSEVal = 1.64% of the mean). Overall, SVM regressions achieved more accurate models 

for estimating forest foliar N and CN concentrations in the fragmented and intact indigenous 

forests compared to the ANN regression method. It is concluded that the successful application 

of the WorldView-2 data integrated with SVM can provide an accurate framework for mapping 

the concentrations of biochemical elements in two indigenous forest ecosystems. 

 

Keywords: Intact indigenous forest, fragmented indigenous forest, nitrogen, carbon, 

WorldView-2, support vector machine, artificial neural networks 
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5.1 Introduction 

Indigenous forests are a source of valued resources that highly contribute to rural communities in 

southern Africa (Shackleton and Shackleton, 2004; Eldeen and van Staden, 2007; van Wyk, 

2008). Indigenous forests play a vital role in the nutrient and carbon cycling of ecosystems. 

Leguminous forest species, for example, provide a substantial amount of nitrogen (N) to the 

other flora habitats, and contribute to preventing soil erosion (Vitousek and Sanford, 1986; 

Eldeen, 2005; Brendler et al., 2010). The degradation of indigenous forest ecosystems is a 

significant contributing factor to climate change since expanding carbon (CN) storage in 

indigenous forests has been identified as a potential measure to mitigate global warming 

(DeFries et al., 2000; de Chazal and Rounsevell, 2009). Different acreage of forest cover store 

different amount of CN and the changes in forest cover can be used to monitor the changes in 

sequestrated CN (Mushtaq and Malik, 2014). Estimates of the leaf chemistry of key tree species 

in indigenous forests allow for a better understanding of ecosystem functioning, when many 

biochemical processes, like photosynthesis, respiration and litter composition, are related to the 

chemical composition of tree species. The N and CN concentrations are considered to be among 

the most important chemical components of green foliage. Foliar N is closely related to the rate 

of maximum photosynthetic and can help measure ecosystem productivity (Huber et al., 2008). 

Similarly, CN is closely related to biomass and may assist in managing critical indigenous forest 

resources sustainably. One unique fragmented forest in KwaZulu-Natal is the Dukuduku forest. 

This forest provides basic resources, including medicinal products to the surrounding 

communities and valuably contributes to the ecosystem services concept (Shackleton and 

Shackleton, 2004; Eldeen and van Staden, 2007; van Wyk, 2008). Dukuduku indigenous forest 

provides different products and usable materials for human needs such as fence poles and 

construction, raw material, and livestock browsing (Eldeen, 2005; Cho et al., 2012; Mlambo, 

2013). The forest is also one of the best preserved remnants of coastal forests in the country (van 

Wyk et al., 2006). Despite the aforementioned importance, the coastal forest species in the 

Dukuduku area face growing threats and pressure by the rapid growth of informal human 

settlements and agricultural activities. Moreover, the spatial coverage in the Dukuduku 

indigenous forest is being constantly reduced by the extreme variability of climate and other 

intensive land use interventions (van Wyk et al., 2006; Ndlovu, 2013). 
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As one of the critically fragmented forest landscapes in South Africa, Dukuduku requires careful 

monitoring, management and conservation. Therefore, a multi-disciplinary study is required to 

optimally manage and conserve the endangered tree species in these indigenous forests that 

support the livelihoods of millions of people (Eldeen, 2005; Cho et al., 2013). One of the best 

ways to improve the management and monitoring of indigenous forest ecosystems is to estimate 

certain tree structural (e.g. tree diameter), biophysical (e.g. LAI) and biochemical (e.g. foliar N 

and CN concentrations) attributes. Generally, these tree characteristics are proxies for ecosystem 

resilience, services, conservation and forest health. For example, N is taken up by plants in the 

form of nitrates which are used in the synthesis of components that include chlorophyll, CN 

fixing enzyme ribulose biphosphate carboxylase and inert structural components in cell tissue 

(Cho et al., 2013). On the other hand, a large amount of CN is allocated to cellulose (65%) and 

lignin (20%) (Elvidge, 1990), which are intensely impacted on forest growth, and the terrestrial 

ecosystem CN cycle (Malhi et al., 2011; McMurtrie and Dewar, 2013). In this context, 

indigenous forests constitute one of the main sinks of atmospheric carbon dioxide (CO2), and 

take up between 15% to 25% of annual global green gas emissions (Jensen et al., 1999). The 

impact of forest disturbance on N and CN stocks at the different landscape levels has been widely 

studied. For instance, a recent study by Cho et al. (2013) asserted that the forest foliar N stock in 

fragmenting ecosystems is affected by the conversion of intact forests into grassland. This 

conversion reduces the leaf N stock in the landscape. In addition, the ecological consequences of 

forest fragmentation include CN sequestration and canopy nutrient stocks (Vasconcelos and 

Luizão, 2004; Broadbent et al., 2008). However, from the available literature and to the 

researcher’s knowledge, no study has estimated and mapped forest leaf N and CN concentrations 

at forest stratum level, especially within fragmented and intact forest ecosystems. Estimating and 

mapping leaf N and CN concentrations at forest stratum level could be utilized by forest and 

resource managers to understand and manage the functioning, health and the changes 

experienced by the indigenous forest ecosystems.   

 

Traditional measurements of indigenous forest biochemical traits involve costly, laborious and 

time-consuming analytical approaches which are spatially constrained over large areas. Hence, 

studies sought complementary approaches that use rapid, up-to-date, and cost-effective for 

estimating and modeling forest foliar N and CN concentrations (Adjorlolo et al., 2013; Cho et al., 

2013; Mutanga et al., 2015). The use of remotely-sensed data provide rapid and synoptic 
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approaches for estimating forest foliar biochemical contents (Huber et al., 2008; Cho et al., 

2013). Previous studies achieved acceptable accuracies for estimating forest leaf N and CN 

concentrations using empirical approaches and SVIs calculated from multispectral (Hansen and 

Schjoerring, 2003; Zhang et al., 2006) and hyperspectral (Foody et al., 1996; Ferwerda et al., 

2005; Siegmann et al., 2013) datasets. Most of the aforementioned studies have employed 

hyperspectral data for mapping foliar N and CN concentrations in plantation forestry. However, 

very little attention has been given to estimating foliar N and CN concentrations in different 

indigenous forest ecosystems (e.g. fragmented versus intact forest strata). In general, the 

operational use of hyperspectral data for estimating vegetation biochemical components is 

constrained by the availability, quality, and cost of airborne and spaceborne hyperspectral images 

(Mutanga et al., 2012). The high dimensionality and co-linearity associated with hyperspectral 

datasets also limit their use for estimating vegetation biochemical traits. Estimating biochemical 

parameters at varying forest ecosystem levels could help resource managers to understand the 

impact of various socio-ecological mechanisms on indigenous forest species and the 

vulnerability of these ecosystems to external and internal perturbations.  

 

As an alternative data source, the recent improvement of multispectral satellites like Sentinel-2, 

WorldView-3 and WorldView-2, are designed with additional bands that offer a great 

opportunity for estimating forest foliar N and CN concentrations. In particular, these new 

satellites provide high spatial resolution imagery that could be suitable for estimating forest 

foliar N and CN concentrations at ecosystem level. The use of WorldView-2 data, for instance, 

has provided accurate vegetation biochemical estimates (Gobron et al., 2000; Mutanga et al., 

2015). As mentioned above, WorldView-2 imagery has a reasonable number of spectral 

wavebands that are configured within distinguishable portions of the electromagnetic spectrum 

to overcome the limitations of the conventional bands of other multispectral sensors like 

QuickBird, SPOT, and Landsat, while reducing the unnecessary redundancy as contained in the 

hyperspectral data (Adjorlolo et al., 2013; Ramoelo et al., 2014; Mutanga et al., 2015). The 

additional WorldView-2 bands like the red edge are known to have a positive relationship with 

chlorophyll and N concentrations (Cho and Skidmore, 2006). Furthermore, the researchers have 

commonly focused on use of SVIs which combine the advent of two or more bands as opposed 

to the use of spectral features at a single band on modeling forests biochemical parameters 

(Peluelas et al., 1995; Ferwerda et al., 2005; Cho and Skidmore, 2009; Adjorlolo et al., 2013).  
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In general, previous studies have either employed conventional (e.g. multiple linear regressions) 

or advanced machine learning (e.g. RF) regression approaches for estimating forest biochemical 

components (Peterson et al., 1988; Serrano et al., 2002; Karimi et al., 2008; Ramoelo et al., 

2014; Mutanga et al., 2015). However, the major challenge with the conventional empirical 

methods is that they assume a normal distribution on the response variables and suffer from 

multi-collinearity (Cohen et al., 2003). The use of advanced machine learning regression 

methods has therefore been regarded as efficient and robust protocols for estimating forest 

biochemical components in the field of remote sensing (Huang et al., 2004; Thissen et al., 2004; 

Wang et al., 2009; Liu et al., 2013). Particularly, these methods do not require any statistical 

assumptions and efficiently handled multi-collinearity in the input predictor variables. The 

present study hypothesized that there is a lack of knowledge on whether or not high resolution 

WorldView-2 multispectral data with additional bands could be employed for estimating forest 

foliar N and CN concentrations of different indigenous forest ecosystems (e.g. fragmented and 

intact forest ecosystems). Moreover, forest ecologists might need to test whether there are 

significant differences between N and CN concentrations of tree species in intact and fragmented 

forest ecosystems.  

 

The study also tested the use of the efficient and robust SVM and ANN regression algorithms for 

estimating forest N and CN concentrations. SVM is a universal learning method, introduced by 

Vapnik (1995), which uses kernel functions to project the input data space to a high-dimensional 

feature space (Shao and He, 2011). The method is dependent on the structural risk minimization 

as an alternative of the empirical risk minimization, that can cause the solution to be captured in 

a local minimum and the networks overfitted. The structural risk minimization reduces the 

empirical error and model complexity simultaneously, which can improve the generalization 

ability of the SVM for regression problems in many applications. The SVM algorithm avoids 

overfitting and multi-dimensional problems when dealing with spectral data, and produces 

accurate forest biochemical estimates (Vapnik, 1995; Burges, 1998; Zhang et al., 2008). The 

algorithm was applied to relate SVIs to various vegetation biochemical traits such as N and CN 

(Ferwerda et al., 2005; Tian et al., 2011). On the other hand, the ANN algorithm comprises an 

interconnected group of artificial neurons and processes information using a connectionist 

method for calculation (Singh and Chauhan, 2009). The algorithm offers a very efficient tool to 
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simulate the relationship between SVIs and biochemical permeates and has been utilized for 

estimating forest biochemical contents like N and CN using remotely-sensed data (Jensen et al., 

1999; Wang et al., 2009; Liu et al., 2010). However, to the best of the researcher’s knowledge, 

few studies have been done to compare the performance of the SVM and ANN algorithms to 

estimate forest foliar N and CN concentrations in tropical indigenous forest ecosystems. 

Therefore, this study aimed to test the utility of SVIs computed from WorldView-2 imagery for 

predicting foliar N and CN concentrations of fragmented and intact indigenous forest ecosystems 

using the SVM and ANN machine learning regression algorithms. The study further tested 

whether there were significant differences between the tree foliar N and CN concentrations 

between the intact and fragmented indigenous forest ecosystems.  

 5.2 Methodology   

5.2.1 Field Data Collection 

The field data collection was carried out between 1st and 7th December 2013. The stratified 

purposive sampling approach was adopted to collect leaf samples from six tree species grown in 

fragmented and intact Dukuduku indigenous forest ecosystems. The six tree species were 

purposively selected for analysis in the present study. These trees are regarded as rare and 

endangered species because of their rapid harvesting and removal (van Wyk et al., 2006). A 

measuring tape and compass, with a handheld Leica Geosystem GS20 GPS of sub-meter (0–0.25 

m) accuracy (Geosystems, 2004), were used to geo-locate the sample trees. The leaf samples of 

the six tree species were collected across the study area and then clipped with a pair of hand 

scissors and sealed in brown paper bags. The leaf samples were then pooled across the tree 

species in each forest ecosystems; the fragmented and intact forest strata and then stored in a 

cool box for transportation and chemical analysis. In total, 170 samples were collected from both 

the intact (n = 85) and fragmented (n = 85) indigenous forest strata (Figure 5.1).  
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Figure 5.1: The location of the Dukuduku indigenous forest in KwaZulu-Natal province, South 

Africa  and field sample locations overlaid in a true-color WorldView-2 image 

5.2.2 Chemical Analysis 

The harvested leaf samples of each forest stratum were subjected to chemical analysis following 

the Kjeldahl procedure (Kjeldahl, 1883). The samples were first oven-dried at 70°C for 48 hours 
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and then mill-crushed to about 1 mm. The dried and crushed samples were then processed for 

complete feed analysis to estimate the N and CN concentrations in percentage. For a detailed 

description of Kjeldahl procedure, the readers are referred to, for example, Kjeldahl (1883), 

Peluelas et al. (1995) and Sáez-Plaza et al. (2013). 

5.2.3 Satellite Image Acquisition and Pre-Processing 

A cloud-free multispectral WorldView-2 imagery covering the study area was acquired on 1st 

December 2013. The WorldView-2 image consists of eight wavebands, spanning the wavelength 

range of 400-1040 nm with a spatial resolution of 2 m and swath width of 16.4 km at nadir 

(DigitalGlobe, 2010). The spectral ranges of the WorldView-2 eight bands include four standard 

bands (blue: 450 - 510 nm, green: 510 – 580 nm, red: 630–690 nm, and near infrared-1: 770–895 

nm) and four additional bands (coastal blue: 400 – 450 nm, yellow: 585-625 nm, red edge: 705–

745 nm, and a new near infrared-2: 860–1040 nm) (DigitalGlobe, 2010). The sensor has the 

spectral and spatial resolutions that meet many forest applications such as predicting and 

monitoring forest biochemical variables at forest ecosystem level (Mutanga et al., 2015). The 

image was atmospherically corrected and transformed at canopy reflectance using the QUAC 

procedure in ENVI 4.7 software (ENVI, 2009). QUAC performs in-scene based atmospheric 

correction at the visible and near- to-shortwave infrared (VNIR-SWIR) region of the 

electromagnetic spectrum for multi-and hyperspectral imagery (Shen et al., 2005). The acquired 

image was already geometrically corrected by DigitalGlobe™.  

5.2.4 Spectral Vegetation Indices (SVIs) Derived from WorldView-2 Data 

After the WorldView-2 image was processed, 24 SVIs were calculated (Table 4.1 in Chapter 4) 

and utilized to predict the leaf N and CN concentrations of the pooled tree species data across the 

fragmented and intact indigenous forest ecosystems. These indices are known features for 

vegetation chlorophyll and other biochemical properties (Haboudane et al., 2002; Wu et al., 

2008; Adjorlolo et al., 2013; Mutanga et al., 2015). 



102 

 

5.3 Statistical Analysis 

5.3.1 Descriptive Statistics and Independent t-test 

The Shapiro-Wilk test (Royston, 1982) was used to test the normality in the response variables 

(e.g. foliar N and CN concentrations). An independent t-test was then used with 95% confidence 

level (p ≤ 0.05) to test if there were significant differences in the leaf N and CN concentrations 

between the intact and fragmented indigenous forest strata. 

5.3.2 Support Vector Machines (SVM) Algorithm 

SVM is a relatively new learning system based on statistical learning theory (Vapnik, 1995; 

Durbha et al., 2007). SVM can be observed as the same type of networks corresponding 

precisely to the same type of solution but trained in a different way and then with different 

values of the weight after the training (Vapnik, 1995; Gilabert et al., 2002; Durbha et al., 2007). 

The method is characterized by the usage of kernels, absence of local minima, and sparseness of 

the solution and capacity control obtained by acting on the margin, or on support vectors number 

(Karamouz et al., 2009). Initially, SVM was developed to solve classification problems and later 

extended to handle regression problems (Cortes and Vapnik, 1995; Marabel and Alvarez-

Taboada, 2013). The SVM regression approach mostly converts the nonlinear regression 

problem into a linear relationship using the kernel functions (Cortes and Vapnik, 1995; Chen et 

al., 2012). In particular, the goal of SVM is to estimate an unknown continuous-valued function 

based on a finite number of noisy samples (Marabel and Alvarez-Taboada, 2013). Basically, it 

makes use of structural minimization principle which is known to have accurate generalization 

performance for different datasets size as contrasted to empirical risk minimization employed by 

other approaches like ANN (Camps-Valls et al., 2006; Akande et al., 2014). The SVM algorithm 

uses two meta-parameters (ε-SVM and C-SVM) to optimize the method. The performance of the 

SVM therefore depends on the correct setting of these two meta-parameters (Cherkassky and 

Ma, 2004). Specifically, the parameter ε-SVM controls the width of the epsilon-insensitive zone 

to fit the training dataset (Kohestani and Hassanlourad, 2015). Hence, the value of ε-SVM can 

affect the number of support vectors to make the regression function. In other words, the bigger 

the epsilon, the fewer support vectors are selected (Cherkassky and Ma, 2004; Kohestani and 

Hassanlourad, 2015). On the other hand, a bigger ε-SVM values result in more ‘flat’ estimates, 

while the C-SVM determines the balance between the model complexity and the degree to which 
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the larger deviations (than epsilon) are tolerated in the optimization (Marabel and Alvarez-

Taboada, 2013). Therefore, the larger values of C-SVM aim at minimizing the empirical risk 

regardless of the complexity of the model. In this regard, both ε-SVM and C-SVM values affect 

the model complexity. 

 

In the present study, the SVM algorithm was used to estimate the foliar N and CN concentrations 

of the fragmented and intact ecosystems, using the Vapnik’s ε-insensitive loss function to 

minimize the training errors (Marabel and Alvarez-Taboada, 2013). In order to project the data 

into a new space, a radial basis function was used, followed by an optimization procedure to find 

the number of support vectors for the best performance (Hsu et al., 2009; Richter et al., 2011). 

Moreover, the optimal values of the C-SVM and ε-SVM parameters of the radial basis function 

was performed using a 10-fold cross validation method and grid search on the training dataset 

(Hsu et al., 2009; Shao and He, 2011). The training dataset was divided into 10 subsets of equal 

size, whereby SVM models were then trained on the 9 subsets samples, and tested on the 

removed one and the process was repeated 10 times until all subset samples had served as test 

samples. The pair parameter that minimizes the prediction error was then considered as the best 

values for the final prediction performance. The analysis was carried out using the e1071 library 

version 2.15.2 in R statistical packages (R Development Core, 2015). 

5.3.3 Artificial Neural Networks (ANN) Algorithm 

ANN regression algorithm which was introduced by Atkinson and Tatnall (1997) is a 

nonparametric machine learning procedure that is suitable for analyzing complex relationships. 

ANN is a computation model that tries to simulate the structure and functional features of 

biological neural connections. It comprises of an interconnected group of artificial neurons and 

processes information using a connectionist method for calculation. Various models of ANN 

algorithm (e.g. multilayer perceptron, radial basis function, and back propagation) have been 

used for analyzing remotely-sensed data for a variety of applications like forestry modeling 

(Atkinson and Tatnall, 1997; Foody, 2004b; Wang et al., 2009; Liu et al., 2013; Omer et al., 

2015a). Radial basis function neural network has been demonstrated to be an accurate function 

for analyzing a large variety of remotely-sensed data since it reduces the computational time 

required for the training process (Foody, 2004b; Boegh et al., 2013). The approach needs one 

input variable which is the ‘distance’ between the weight and input nodes. The back propagation 
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is a multilayer feed forward neural networks method which comprises of a series of simple 

connected nodes, or neurons between input and output layers (Atkinson and Tatnall, 1997), while 

the multilayer perceptron is a commonly used ANN structure that consists of an input layer, an 

output layer and one or more hidden layers of nonlinearly-activating nodes (Atkinson and 

Tatnall, 1997; García Nieto et al., 2012). The nodes are connected by a certain synaptic weight to 

all nodes in the next layer and the perceptron learning occurs through changes in the networks 

weights after the input protector (SVIs in this study) are processed (García Nieto et al., 2012). 

The multilayer perceptron is a feed forward ANN model that projects input data onto a set of 

suitable output by using three or more layers of nodes with nonlinear activation functions 

(Atkinson and Tatnall, 1997; Xiong et al., 2010). ANN algorithm has been extensively used in 

modeling vegetation traits such as biochemical parameters (N and CN) that are not linearly 

predictable in the original remotely-sensed variables (Papale and Valentini, 2003; Melesse and 

Hanley, 2005; Wang et al., 2009; Liu et al., 2013). 

 

In the current study, ANN regression algorithm using the multilayer perceptron modeling 

approach was performed to estimate leaf N and CN concentration of intact and fragmented forest 

ecosystems using the 24 SVIs derived from WorldView-2 imagery. Various trials of internal 

networks structure, input data, and learning algorithms have been tested to define the optimal 

regression features. The structure of the hidden layers was tested to assess the necessary number 

of hidden layers and the number of required nodes per layer. This was used by manually 

changing the number of nodes in the hidden layer. The ANN was then trained with a back 

propagation learning algorithm and one hidden layer to model the respective biochemical 

parameters. 

5.3.4 Validation  

To test the performance of the SVM and ANN models, the reference data were randomly split 

into 70% (59) for calibration and 30% (26) for validation according to the recommendation made 

by Adelabu et al. (2015). One-to-one relationships between the measured and predicted foliar N 

and CN concentrations were fitted and R2
Val, RMSEVal and bias were then calculated (see 

Equations 4.1, 4.2, and 4.3 in Chapter 4).  
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5.4 Results 

5.4.1 Descriptive Statistics and Independent t-test 

The results obtained from Shapiro–Wilk normality test indicated that the leaf N and CN 

concentrations in the fragmented and intact indigenous forest strata were normally distributed (p 

= 0.05 for the intact forest stratum and p = 0.04 for the fragmented forest stratum). Table 5.1 

shows the descriptive statistics of the fragmented and intact indigenous forest leaf N and CN 

concentrations. The independent t-test showed that the intact forest stratum obtained significantly 

higher (p = 0.03) mean foliar N value compared to the fragmented indigenous forest stratum. 

There was no significant difference (p = 0.55) in the mean foliar CN concentration between the 

intact and fragmented indigenous forest strata. The higher mean values for foliar N (1.84%) and 

CN (45.16%) concentrations were obtained for the intact forest ecosystem, while the least mean 

values for N (1.78%) and CN (44. 95%) concentrations were obtained for the fragmented forest 

stratum (Table 5.1). Furthermore, the descriptive statistics of the combined (aggregated) N and 

CN across the two forest strata is also shown in Table 5.1.  

Table 5.1: Descriptive statistics of the measured leaf nitrogen (N) and carbon (CN) concentration 

(%) obtained from intact and fragmented indigenous forest strata as well as the combined stratum 

data. Means with the same letter are not significantly different (p ≥0.05) from each other 

according to the independent t-test 

Nitrogen (N) 

Forest stratum 

(ecosystem) 

No. of sample Mean Min Max SD P value 

Intact  85 1.84a 0.27 4.42 0.89 0.03  

Fragmented 85 1.78b 0.23 3.99 0.87 

Combined 170 1.81 0.23 4.42 0.88  

Carbon (CN ) 

Intact  85 45.16a 38.60 49.73 1.99 0.55  

Fragmented 85 44.95a 38.23 50.77 2.58 

Combined 170 44.88 38.60 50.77 2.07  

SD = Standard deviation 
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5.4.2 Support Vector Machines (SVM) and Artificial Neural Networks (ANN) 

Regression Models  

The optimum parameters obtained for both SVM and ANN regressions are shown in Table 5.2. 

The 10-fold cross validation and grid search approach results in optimal ε-SVM and C-SVM 

values of 1 and 100, respectively for N and CN in both the intact and fragmented strata, except 

for CN (1 and 1000) in the intact forest stratum, and N and CN when the combined data were used 

(1 and 10). Table 5.2 also shows that the input layers for ANN algorithm ranged between 8 and 

10 for the intact, fragmented and combined data when N concentration was estimated, 9 for 

intact and 11 for both fragmented and combined data when CN was estimated, while the number 

of hidden layers varied between 3 to 5 for both N and CN in the two forest strata (ecosystems). 

Table 5.2: The optimal parameters for the best trained SVM and ANN models used for 

estimating the nitrogen (N) and carbon (CN) concentrations of the fragmented and intact 

indigenous forest strata as well as combined data 

Regression model 

Support vector machines (SVM) 

Forest stratum 

(ecosystem) 

Nitrogen (N) Carbon (CN) 

  ε-SVM  C-SVM ε-SVM   C-SVM 

Intact  1.0 100 1.0 1000 

Fragmented  1.0 100 1.0 100 

Combined 1.0 10 1.0 10 

Artificial neural networks (ANN) 

 Nitrogen (N) Carbon (CN) 

inputs Hidden Profile inputs Hidden Profile 

Intact  08 3 MLP 8:8-3-1:1 09 5 MLP 9:9-5-1:1 

Fragmented  10 4 MLP 10:10-4-1:1 11 4 MLP 11:11-4-1:1 

Combined  09 4 MLP 9:9-4-1:1 11 5 MLP 11:11-5-1:1 

ε-SVM = ε-insensitive zone, C-SVM = regularization parameter, MLP = multilayer perceptron 

 

The results of calibrating both the SVM and ANN regression approaches in intact, fragmented 

and combined data are presented in Table 5.3. Both the SVM and ANN models explained more 

than 80% of the variance (R2
Cal ≤ 0.80) in the forest foliar N concentration, except when the 

fragmented forest data and ANN regression method were utilized. For the forest foliar CN 

concentration, the results showed R2
Cal values ranged between 0.64 and 0.71 for SVM models, 

while the ANN models resulted in R2
Cal range of 0.55 and 0.59 (Table 5.3). In general, the SVM 
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models yielded relatively more accurate results for estimating forest foliar N and CN 

concentrations compared to the ANN. On the other hand, models developed using the intact 

forest data fitted the training data more accurately compared with the models developed using 

the fragmented forest data (Table 5.3).  

Table 5.3: Coefficient of determination (R2
Cal) and root mean square errors (RMSECal) for the 

SVM and ANN regression models when calibrated using the data collected from the fragmented 

and intact forest strata 

Nitrogen (N) 

Forest stratum 

(ecosystem) 

Support vector machines Artificial neural networks (ANN) 

R2
Cal RMSECal RMSECal% R2

Cal RMSECal RMSECal% 

Intact data 0.93 0.03 1.23 0.89 0.05 1.94 

Fragmented data 0.83 0.07 2.68 0.73 0.11 3.20 

Combined data 0.93 0.04 1.47 0.91 0.04 1.32 

Carbon (CN) 

Intact data 0.69 0.12 0.27 0.57 0.16 0.35 

Fragmented data 0.64 0.17 0.45 0.55 0.29 0.66 

Combined data 0.71 0.09 0.23 0.59 0.14 0.32 

Cal = Calibration dataset 

 5.4.3 Model Validation  

One-to-one relationships between measured and predicted forest foliar N and CN concentrations 

for all the predictive models are shown in Figures 5.2, 5.3, and 5.4. N models derived using the 

fragmented data and SVM regression approach performed more accurately (RMSEVal = 1.07% of 

the mean) compared with models developed using the intact data and ANN regression methods 

(RMSEVal = 5.56% of the mean). In contrast, the ANN regression method achieved a more 

accurate model compared with SVM using the combined fragmented and intact data (Figure 5.4). 
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Figure 5.2: One-to-one relationships between measured and predicted forest leaf nitrogen (N) 

concentration (%) based on an independent validation dataset (30%) using the intact indigenous 

forest data and (a) support vector machines and (b) artificial neural networks 

 

Figure 5.3: One-to-one relationships between measured and predicted forest leaf nitrogen (N) 

concentration (%) based on an independent validation dataset (30%) using the fragmented 

indigenous forest data and (a) support vector machines and (b) artificial neural networks 
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Figure 5.4: One-to-one relationships between measured and predicted forest leaf nitrogen (N) 

concentration (%) based on an independent validation dataset (30%) using the combined intact 

and fragmented data and (a) support vector machines and (b) artificial neural networks 

Figures 5.5, 5.6 and 5.7 show the results for validating the forest foliar CN estimation models. 

When the performance of the prediction models was assessed, the results showed that the forest 

foliar N and CN concentrations could be better estimated in the fragmented forest stratum as 

indicated by the relatively higher R2
Val (0.67), and lower error metrics (RMSEVal = 1.64% of the 

mean) (Figure 5.6a). The gradient in most of the other predictive models deviated from the 

expected one-to-one relationship and the models either overestimated or underestimated the 

forest foliar CN estimates. Likewise, the SVM models for estimating forest foliar CN 

concentrations outperformed the ANN ones.  
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Figure 5.5: One-to-one relationships between measured and predicted forest leaf carbon (CN) 

concentration (%) based on an independent validation dataset (30%) using the intact indigenous 

forest data and (a) support vector machines and (b) artificial neural networks 

 

Figure 5.6: One-to-one relationships between measured and predicted forest leaf carbon (CN) 

concentration (%) based on an independent validation dataset (30%) using the fragmented 

indigenous forest data and (a) support vector machines and (b) artificial neural networks 
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Figure 5.7: One-to-one relationships between measured and predicted forest leaf carbon (CN) 

concentration (%) based on an independent validation dataset (30%) using the combined intact 

and fragmented data (a) support vector machines and (b) artificial neural networks algorithms  

Since the SVM regression method produced the best results, predicted forest foliar N and CN 

concentrations maps were produced using the WorldView-2 imagery and SVM regression 

algorithm (Figures 5.8 and 5.9). The maps can be compared to the WorldView-2 image which 

depicts the intact and fragmented forest areas. The maps show the spatial variation in the forest 

foliar N and CN concentrations in both intact and fragmented forest ecosystems. In general, the 

forest foliar N and CN spatial patterns are more compact in the intact forest compared with the 

fragmented forest and higher foliar N concentrations were observed towards the northern part of 

both forest landscapes (Figure 5.8). However, there is not a distinct trend in forest foliar CN 

concentrations across the study area (Figure 5.9).  
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Figure 5.8: Forest foliar nitrogen (N) concentration (%) map of the indigenous Dukuduku forest 

area. The map was produced using the support vector machines regression algorithm and a) the 

intact forest data and b) the fragmented forest data 
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Figure 5.9: Forest foliar carbon (CN) concentration (%) map of the indigenous Dukuduku forest 

area. The map was produced using the support vector machines regression algorithm and a) the 

intact forest data and b) the fragmented forest data 

5.5 Discussion  

The relationships between forest foliar N and CN concentrations and SVIs calculated from the 

high spatial resolution WorldView-2 imagery acquired from fragmented and intact indigenous 

forest ecosystems was tested in the present study. The machine learning SVM and ANN 

regressions were employed for deriving predictive models that can accurately estimate the forest 

foliar N and CN concentrations in the intact and fragmented forest ecosystems. The study also 

investigated the null hypothesis that forest foliar N and CN concentrations in the intact and 

fragmented indigenous forest ecosystems were not significantly different.  
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The use of the optical sensors with different spectral and spatial resolutions for estimating 

plantation forests’ and crops’ foliar N and CN concentrations has achieved different degrees of 

success (Martin and Aber, 1997; Abdel-Rahman et al., 2010; Mutanga et al., 2012). However, 

estimating foliar N and CN concentrations using SVIs such as NDVI and SRI calculated from 

medium-spatial-resolution multispectral satellites (10 m to 100 m) is constrained by the lack of 

spectral information that can mimic the spectral properties of the N and CN, particularly in 

densely vegetated and fragmented indigenous forest ecosystems (Kumar et al., 2001; 

Miphokasap et al., 2012). Also, the medium and coarse pixel size of such optical multispectral 

data might not capture the spectral responses of the target trees/crops or forest ecosystems as 

they could be mixed with other confound spectral responses within the pixels. This study, 

therefore, explored the use of the fine spatial resolution (2 m) multispectral WorldView-2 data 

which is characterized by the inclusion of some additional bands like yellow and red edge for 

estimating forest foliar N and CN concentrations in fragmented and intact indigenous forest 

ecosystems. The study shows that the forest foliar N and CN concentrations at each stratum can 

be accurately estimated. This result is in agreement with other studies that revealed the utility of 

WorldView-2 data in predicting biochemical concentrations like N and CN in different types of 

savannah landscapes (Adjorlolo et al., 2013; Zengeya et al., 2013; Mutanga et al., 2015). The 

successful application of WorldView-2 data for predicting N and CN concentration at a forest 

strata  (intact and fragmented) level could be due to the fine pixel size (2 m) of WorldView-2 

that is needed to capture the spectral properties of each forest stratum. Moreover, the inclusion of 

the red edge band in calculating some of the SVIs could also have contributed to the derivation 

of such accurate forest foliar N and CN estimates (Mutanga et al., 2015). The red edge band 

which is the inflection point in the slope connecting the reflectance in the red and in the NIR 

spectral range is more sensitive to the vegetation biochemical properties like chlorophyll and N 

content as compared to other regions of the electromagnetic spectrum (Pu et al., 2003; Mutanga 

and Skidmore, 2007; Herrmann et al., 2010). In this regard, this finding is in conformity with 

Mutanga et al. (2015) who concluded that the vegetation indices calculated from the red edge 

band of WorldView-2 data can improve the prediction accuracy of vegetation biochemical 

properties compared with the indices calculated from the other conventional bands. 

 

The study also shows that the leaf N and CN concentrations in the fragmented forest ecosystem 

were significantly lower than those in the intact forest ecosystem. This finding is consistent with 
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the findings by Cho et al. (2013) who concluded that indigenous forest fragmentation leads to 

significant losses in foliar N as most of the land use/cover classes, like agro-urban and grassland 

systems, resulting from forest fragmentation obtained least foliar N concentration when 

compared to the intact indigenous forest. In addition, the degraded forest patches and intensive 

cropping systems like maize and sugarcane in the fragmented stratum (Cho et al., 2013) could 

have led to poor soil fertility and hence less available N to the forest ecosystem.  Less available 

N can lead to a poor photosynthetic system and therefore less foliar CN content in the fragmented 

ecosystem as opposed to the healthy intact forest ecosystem that could have had relatively more 

available soil N and an efficient photosynthetic system (i.e. higher foliar CN content). Future 

studies should investigate the role of these indigenous forest ecosystems in the nutrition of the 

surrounding agro-ecosystems (e.g. farm and grass lands). However, the predictive models for 

estimating fragmented forest foliar N and CN concentrations outperformed those for predicting 

intact forest foliar N and CN concentrations. The species composition and tree density in the 

intact forest ecosystem could have been higher compared to the fragmented forest ecosystem. 

This could have confounded the performance of the intact forest foliar N and CN predictive 

models, since the models were derived at forest ecosystem (stratum) level using tree level field 

samples. In particular, the field data were collected from only six target species and the 

predictive models were derived using the pooled leaf samples across the six tree species in each 

forest stratum. The spectral features of the target tree species and other tree species were found 

to be different from each other (Omer et al., 2015a). These discrepancies in the performance of 

the two forest strata (fragmented and intact) predictive models are in accordance with the finding 

of Omer et al. (2016) who noted that models for estimating tree LAI in a fragmented indigenous 

forest ecosystem performed better than those developed using the intact indigenous forest data.  

 

The study utilized two optimized learning nonlinear regression methods (SVM and ANN) to 

estimate forest foliar N and CN concentrations in the Dukuduku indigenous forest ecosystem. 

Forest biochemical parameters in such a complex and dynamic natural ecosystem might possibly 

not be modeled in a linear relationship. The nonlinear SVM and ANN methods could have 

explained a great variability in the forest foliar N and CN concentrations and resulted in 

predictive models of relatively better performance. The study also parametrized the two 

regression approaches to get the best generalization estimates of forest foliar N and CN 

concentrations during the learning process (Cherkassky and Ma, 2004). The results showed that 
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different optimal parameters were required to estimate the forest foliar N and CN concentrations 

in the fragmented and intact forest ecosystems. These optimal parameters correspond to the best 

performance for the trained SVM and ANN regression models. That was expected since the 

study employed empirical statistical approaches for deriving the predictive models under two 

different forest ecosystems. 

 

In general, it was found that the SVM models for estimating forest foliar N and CN 

concentrations outperformed the ANN models in both the fragmented and intact forest 

ecosystems. This finding is consistent with some studies that reported the superior performance 

of SVM regression models for estimating vegetation biochemical contents compared with other 

machine learning regression approaches. For example, Karimi et al. (2008) noted that SVM 

regression is an efficient approach for projecting the input data to a higher dimensional space and 

commonly is not affected by the collinearity. Zhai et al. (2013) also reinforce the accurate 

performance of the SVM algorithm when compared with the partial least squares regression for 

predicting vegetation biochemical components. Moreover, SVM is considered as a solution for 

those cases in which a significant amount of nonlinear information is present. Furthermore, SVM 

regression commonly makes use of the structural minimization principle which is known to have 

the ability to produce accurate predictive models (Cristianini and Shawe-Taylor, 2000), while 

ANN regression method employs model functions like radial basis function that are relatively 

biased when performed with input remotely-sensed variables (Kimes et al., 1998; Baret and 

Buis, 2008). 

 

Forest foliar N and CN maps (Figures 5.8 and 5.9) were produced using the SVM regression 

algorithm as it achieved the most accurate predictive models. The maps show distinct variations 

in the forest N and CN concentrations between the intact and fragmented forest ecosystems. 

Notwithstanding, the accuracy of the maps could have been underlain by the heterogeneity in the 

Dukuduku indigenous forest. The final map thus offers the potential for linking forest foliar N 

and CN variability with their health conditions, even in the landscapes with disparate intact and 

fragmented area. Mapping forest leaf N and CN concentrations at the scale of the WorldView-2 

image (2 m) in the natural forest ecosystems of Africa would allow for a stratum-to-stratum 

assessment of leaf N and CN stocks because of the relatively small crown of some tree species. 

Many forest ecosystems (e.g. intact and fragmented) consist of a mixture of different tree species 
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and understory vegetation that might create a high variability of leaf N and CN content. It can 

therefore be inferred that the successful mapping of the foliar N and CN concentrations in the 

fragmented and intact forests might provide a better understanding of the required land 

management practices or what is expected from such forest ecosystems and their role in the 

value chain. This is even more relevant in the indigenous forest region of Africa, where a large 

number of the population depends on the indigenous forest ecosystems for their livelihoods.  

 

Overall, the study provides promising results for accurate forest foliar N and CN mapping in the 

Dukuduku intact and fragmented forest ecosystems. However, the results should be interpreted 

with some care as data at specific environmental conditions and at a fixed location were used. 

Further studies should explore the transferability of the present models to other points in space or 

time. The forest foliar N and CN estimates should also be integrated with process-based physical 

models for a further understanding and assessment of intact and fragmented forests. However, 

one of the shortfalls of using the WorldView-2 data for modeling purposes is the cost 

implications associated with acquiring imagery over a large area or at a landscape level. 

Therefore, mapping forest foliar N and CN concentrations over broader extents would require 

further investigation involving the testing of cost effective medium resolution satellite sensors 

like Sentinel-2. However, there would have to be some modifications to the respective 

methodology to account for the spatial configuration of the intact and fragmented indigenous 

forest ecosystems.   

 5.6 Conclusions 

In the present study, the utility of the high spatial resolution multispectral WorldView-2 imagery 

with SVM and ANN regression algorithms was investigated for mapping forest foliar N and CN 

concentrations in the intact and fragmented Dukuduku indigenous forest ecosystems.  The results 

showed that the N and CN predictive models developed using the fragmented forest data 

(RMSEVal ranged between 1.07% and 5.40% of the mean) outperformed models developed using 

the intact forest data (RMSEVal ranged between 2.50% and 5.56% of the mean). It is also 

concluded that the SVM regression approach achieved relatively more accurate forest foliar N 

and CN estimation models compared with the ANN. Overall, the study provides valuable 

information that could be utilized by forest managers and ecologists to understand the 

functioning, health and key changes of the Dukuduku indigenous forest ecosystem. The study 
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also presents an opportunity for comparing the competing machine learning regression methods 

for analyzing the newly launched multispectral imagery for mapping forest foliar N and CN 

concentrations across different forest ecosystems. The strength of the WorldView-2 multispectral 

sensor, however, needs to be further investigated for mapping other biochemicals (e.g. P and K) 

in indigenous forest ecosystems within a fragmented landscape.  
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6.1 Introduction 

What is the benefit of remote sensing for land use/cover and endangered tree species in 

fragmented indigenous forest ecosystems? Research in fragmented indigenous forest ecosystems 

revealed that land use/cover and tree species (e.g. endangered tree species) classification are the 

most important research fields in ecological applications of remote sensing. Moreover, 

fragmented landscapes in different sites of Africa are described by the removal of the tree 

species for other land uses such as pasture and  agricultural activities, particularly in Dukuduku 

indigenous forest, South Africa (van Wyk et al., 2006). In the study area, the existence of 

endangered tree species is threatened by human encroachment activities that have resulted in an 

over utilization of resources which has subsequently affected the forest ecosystem (Cho et al., 

2013; Omer et al., 2015a). Endangered tree species require sound conservation and management 

protocols that need intensive fieldwork to geo-locate as well as monitor endangered tree species 

characteristics and estimate their coverage and distribution (Rushton et al., 2004; Pouteau et al., 

2012). Therefore, more accurate information from forest surveys is required for monitoring and 

distinguishing the endangered tree species from other land use/cover classes in order to improve 

sustainable indigenous forest management practices. In efforts to minimize the potential loss of 

tree species in indigenous forest ecosystems of southern Africa, therefore, an integrated 

management strategy is needed to combine mapping and monitoring methods. 

 

Monitoring and mapping the general spatial distribution of vegetation and tree species’ 

biophysical and biochemical traits (e.g. LAI, N, and CN) over large fragmented areas in 

indigenous forest ecosystem using conventional approaches is challenging as it is complex, very 

expensive, and labour intensive. Hence, there is a need for methods that consider the financial 

logistics, real time detection and advanced techniques for monitoring endangered tree species in 

indigenous forest ecosystems. In this regard, remote sensing has an advantage of being able to 

meet data requirements, and has proven to be a cost-effective, commendable and reliable 

opportunity for monitoring and mapping forest species characteristics. Moreover, earth 

observation data are able to produce timely and accurate information for use when mapping the 

spatial distribution of vegetation species parameters especially in indigenous forest ecosystems 

where data collection may be difficult. 
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The aim of the study was to investigate the utility of multispectral WorldView-2 data for 

mapping endangered tree species and other land use/cover types in the fragmented Dukuduku 

indigenous forest ecosystem in South Africa. The study further explored the possibility to 

estimate biophysical and biochemical traits of the six endangered tree species. 

The specific objectives of the current study were to: 

  

(1) Investigate the utility of high spatial resolution multispectral WorldView-2 data and 

advanced machine learning classification algorithms for mapping the land use/cover classes 

in a fragmented Dukuduku indigenous forest ecosystem; 

 

(2) Examine the utility of the advanced multispectral WorldView-2 data for mapping 

endangered tree species in the fragmented Dukuduku indigenous forest ecosystem using 

machine learning classification algorithms; 

 

(3) Test the utility of spectral vegetation indices (SVIs) calculated from the multispectral 

WorldView-2 data for predicting endangered tree species LAI in the fragmented and intact 

indigenous forest ecosystems using machine learning regression algorithms; and  

  

(4) Map fragmented and intact indigenous forest leaf N and CN concentrations using 

multispectral WorldView-2 spectral variables and machine learning regression algorithms. 

 

All of the above objectives have been achieved in this study. 

6.2 Summary of the Findings 

6.2.1 Exploring the Capability of WorldView-2 High Spatial Resolution Data for 

Classifying Land Use/Cover Classes 

Multispectral data such as SPOT and Landsat TM cover large areas of the earth’s surface at 

repeated time intervals, making remote sensing more effective than conventional approaches for 

mapping of land use/cover. Recently, the developments of high spatial resolution multispectral 

data (IKONOS) have brought great opportunities for monitoring and mapping land use/cover (Pu 

and Landry, 2012). Multispectral remotely-sensed data have high spatial resolution and offer 



122 

 

relatively more bands but with lower spatial resolution. The low spatial resolution multispectral 

sensors cause the problem of spectral overlap and mixed pixels between the different classes and 

might not accurately map land use/cover in a fragmented indigenous forest ecosystem (Foody, 

2002; Cho et al., 2012). On the other hand, the development in multispectral sensors, such as 

WorldView-2, containing relatively fewer additional bands like yellow and red edge, make 

mapping land cover and vegetation at species level possible (Dlamini, 2010; Omer et al., 2014). 

In the present study, WorldView-2 spectral subsets were tested for mapping different land 

use/cover classes in a fragmented Dukuduku indigenous forest of South Africa using two leaning 

classification algorithms; SVM and ANN (Chapter 2). The relatively accurate land use/cover 

maps obtained using the SVM classification algorithms and three WV2 subsets are presented in 

Figure 6.1. The main visual difference between the maps is that the relatively homogenous map 

was produced when the WorldView-2 8B (Figure 6.1a) was used as compared with WorldView-

2 SB (Figure 6.1b) and WorldView-2 AB (Figure 6.1c). The maps also show that the fragmented 

Dukuduku forest was mainly surrounding by forests plantation and grassland, while the 

grassland on the north eastern of the study area was fragmented. The SVM classifier was able to 

classifying the eight land use/cover classes with an overall accuracy of 78%, 51% and 64% for 

WorldView-2 8B, WorldView-2 SB and WorldView-2 AB, respectively. Overall, the use of 

WorldView-2 8B significantly outperformed the WorldView-2 SB and WorldView-2 AB subsets 

for classifying land use/cover classes. 
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Figure 6.1: Land use/cover classification maps obtained using support vector machines 

classifier: (a) all eight WorldView-2 bands, (b) four standard WorldView-2 bands and (c) four 

additional WorldView-2 bands 

6.2.2 Evaluating the Utility of Multispectral WorldView-2 Data for Mapping the 

Endangered Tree Species  

Remotely-sensed data were regarded as a useful source of information for monitoring and 

mapping vegetation and forest species communities (Clark et al., 2005; Pignatti et al., 2009). 

Mapping of tree species, however, still faces some challenges in relation to ambiguous classes 

used. Multiple objects within a pixel can lead to spectral confusion and poor  discrimination 

amongst different cover classes (Aplin, 2003; Cingolani et al., 2004). Specifically, these 
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challenges hinder the tree species classification when multispectral data are captured in 

fragmented ecosystems (Cho et al., 2012). Moreover, multispectral sensors like SPOT and 

Landsat TM have high spatial resolution and offer relatively more bands but with low spatial 

resolution. Use of low spatial resolution multispectral sensors is challenging because of the 

problem of spectral overlap and mixed pixels between tree species due to broader and fewer 

spectral measurements. Conversely, the advent of WorldView-2 data with additional bands like 

red edge makes vegetation mapping at species level possible (Omar, 2010; Omer et al., 2015b). 

This study evaluated the ability of WorldView-2 for classifying the endangered tree species and 

other land use/cover classes using advanced machine learning ANN and SVM classification 

algorithms (Chapter 3). The endangered tree species and land use/cover maps produced using 

WorldView-2 8B with the SVM and ANN methods are presented in Figure 6.2. The maps show 

nearly similar spatial distribution of endangered tree species in the Dukuduku area. The main 

visual difference between the maps is that a relatively homogenous map was obtained when the 

WorldView-2 8B was used. The machine learning classification algorithms were able to map the 

six target species and land use/cover with an overall accuracy of 77% for SVM and 75% for 

ANN and WorldView-2 8B. Overall, this study demonstrated that the SVM and ANN methods 

with WorldView-2 8B have the potential to map endangered tree species in the Dukuduku 

indigenous forest.  
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Figure 6.2: Classification maps obtained using all eight WorldView-2 bands (8B): (a) support 

vector machines algorithm and (b) artificial neural networks algorithm 

6.2.3 Quantifying Leaf Area Index of Endangered Tree Species Using WorldView-2 

Data and Two Machine Learning Regression Algorithms  

Development in remote sensing technologies and analytical approaches makes it possible to 

explicitly and accurately estimate forests LAI (Abuelgasim et al., 2006; Darvishzadeh et al., 

2008; Atzberger et al., 2015). Studies have used remotely-sensed data of varying spectral 

(multispectral and hyperspectral) and spatial (fine and medium) resolutions and relatively 

accurate LAI estimation models were obtained. However, because of the low and medium spatial 

resolutions, the previous studies could not model the LAI at tree species level. On the other hand, 

most of the previous studies have used multiple linear regressions to estimate vegetation 

biophysical parameters (Kovacs et al., 2004; Adjorlolo et al., 2013; Pope and Treitz, 2013). 

However, the major challenge is the unreliable and poorly performing predictive models when 

multiple linear regressions is employed, mainly because of its requirements to assume a normally 

distributed response (output) variable as well as encounters multi-collinearity problem (Cohen et 

al., 2003; Schlerf et al., 2005; Adjorlolo et al., 2013). From the available literature, no previous 

study has modeled LAI at tree species level using the newly launched multispectral sensors like 
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WorldView-2 and advanced machine learning regression algorithms like SVM and ANN in a 

fragmented indigenous forest. The machine learning methods are regarded as being effective for 

estimating the biophysical contents of vegetation and tree species. In this study (Chapter 4), LAI 

of six endangered tree species was estimated in fragmented and intact indigenous forest 

ecosystems using SVIs calculated from WorldView-2 image and the SVM as well as ANN 

regressions. The study further tested whether there were significant differences between LAI of 

the six endangered tree species in the intact and fragmented indigenous forest ecosystems. The 

study shows that the fragmented forest obtained significantly higher (p ≤0.05) mean LAI as 

compared to the intact indigenous forest. The results showed that LAI could be accurately 

estimated using the fragmented stratum data compared with the intact stratum data. With regard 

to the individual tree species, the results showed that the LAI was better estimated for the 

Hymenocardia ulmoides tree species grown in the fragmented forest ecosystem as indicated by 

the relatively higher R2
Val (0.75) and lower error metrics like RMSE Val (1.37% of the mean) 

when SVM was employed (Figure 6.3). In general, SVM regression methods achieved relatively 

more accurate LAI estimates compared with the ANN regression. It is concluded that tree LAI 

can be estimated using the machine learning regression algorithms and WorldView-2 

multispectral data. 
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Figure 6.3: One-to-one relationships between measured and predicted LAI based on an 

independent validation dataset (30%) using support vector machines (SVM) regression algorithm 

and fragmented indigenous forest data  
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6.2.4 Evaluating the Reliability and Robustness of Worldview-2 Data and Machine 

learning Regression Algorithms for Mapping Fragmented and Intact Forest Leaf 

Nitrogen and Carbon Concentrations 

Forest leaf N and CN are among the most important biochemical components of tree organic 

matter, and the estimation of their concentrations can help to monitor the nutrient uptake 

processes and forest health. Monitoring indigenous forest biochemical traits (e.g. N and CN) 

using conventional approaches are costly and time-consuming. Hence, there is a need for 

complementary approaches that use rapid, up-to-date, and cost-effective for estimating and 

mapping forest foliar N and CN concentrations (Adjorlolo et al., 2013; Mutanga et al., 2015). In 

this context, remotely-sensed data provide rapid and synoptic approaches for estimating forest 

foliar N and CN concentrations (Martin and Aber, 1997; Huber et al., 2008; Cho et al., 2013). 

Studies have noted that plantation forest leaf N and CN concentrations can be estimated using 

empirical approaches and multispectral (Hansen and Schjoerring, 2003; Zhang et al., 2006) as 

well as hyperspectral (Foody et al., 1996; Ferwerda et al., 2005; Tian et al., 2011; Siegmann et 

al., 2013) datasets. However, the indigenous forests also play an important role for ecosystem 

services and the value chain in general. Therefore, their foliar biochemical components need to 

be monitored and mapped.  In particular, estimating forest foliar N and CN concentrations of 

different forest ecosystems like the fragmented and intact Dukuduku forests could help resource 

managers to understand the impact of various socio-ecological mechanisms on indigenous forest 

species and the vulnerability of these ecosystems to external and internal perturbations. In 

addition, machine learning algorithms (e.g. SVM and ANN) are regarded as efficient and robust 

regression approaches for deriving models in such complex and dynamic forest ecosystems 

(Omer et al., 2015a). To the best of the researcher’s knowledge, there is a lack of literature on 

mapping fragmented and intact indigenous forest foliar N and CN concentrations using the 

advanced SVM and ANN learning regression methods. The present study explored the use of 

WorldView-2 spectral variables and SVM as well as ANN regression approaches for mapping 

fragmented and intact indigenous forest leaf N and CN the concentrations (Chapter 5). The 

chapter further investigated whether there are significant differences in the leaf N and CN 

concentrations between the intact and fragmented indigenous forest ecosystems. 

 

The results showed that the intact forest obtained significantly higher (p = 0.03) mean foliar N 

concentration as compared to the fragmented indigenous forest. However, there was no 
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significant difference (p = 0.55) in the mean CN concentration between the intact and fragmented 

indigenous forest. In addition, the results showed that forest foliar N and CN concentrations could 

be more accurately estimated using the fragmented stratum data compared with the intact stratum 

data. The results also revealed that relatively accurate foliar N predictions were achieved for the 

fragmented forest data using the SVM (R2
Val = 0.77, RMSEVal = 1.07% of the mean) and ANN 

(R2
Val = 0.70, RMSEVal = 5.40% of the mean) regression methods (Figure 6.4). Furthermore, 

more accurate foliar CN predictions were achieved for the fragmented data using SVM (R2
Val = 

0.67, RMSEVal = 1.64% of the mean) and ANN (R2
Val = 0.51, RMSEVal = 2.21% of the mean) 

methods (Figure 6.5) compared with the intact data. The study further demonstrated that the 

SVM regression approach achieved relatively more accurate models for estimating the forest leaf 

N and CN concentrations in the fragmented and intact indigenous forests as compared to the 

ANN regression method. Hence, predicted forest foliar N and CN concentrations maps were 

produced using the SVM regression algorithm and the WorldView-2 spectral vegetation indices. 

The maps of forest foliar N (Figure 6.6) and CN (Figure 6.7) show the spatial variation in the 

forest foliar N and CN concentrations in the intact and fragmented forest ecosystems. The forest 

foliar N and CN spatial patterns were more compact in the intact forest compared with the 

fragmented forest and higher N concentrations were observed towards the northern part of both 

forest landscapes (Figure 6.6). However, there was no distinct trend in CN concentrations across 

the study area (Figure 6.7). Overall, the results obtained from this study demonstrated the 

robustness and usefulness of the SVM regression for mapping forest foliar N and CN 

concentrations in the fragmented and intact Dukuduku indigenous forest ecosystems. 
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Figure 6.4: One-to-one relationships between measured and predicted forest leaf nitrogen 

concentration (%) based on an independent validation dataset (30%) using fragmented 

indigenous forest data and (a) support vector machines and (b) artificial neural networks 

 

Figure 6.5: One-to-one relationships between measured and predicted forest leaf carbon 

concentration (%) based on an independent validation dataset (30%) using fragmented 

indigenous forest data and (a) support vector machines and (b) artificial neural networks. 
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Figure 6.6: Forest foliar nitrogen (N) concentration (%) predicted map of the indigenous 

Dukuduku forest area. The map was produced using the support vector machine regression 

algorithm and a) the intact forest data and b) the fragmented forest data 
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Figure 6.7: Forest foliar carbon (CN) concentration (%) predicted map of the indigenous 

Dukuduku forest area. The map was produced using the support vector machine egression 

algorithm and a) the intact forest data and b) the fragmented forest data 

6.3 Conclusions 

The aim of the study was to investigate the utility of the multispectral WorldView-2 data for 

mapping endangered tree species and other land use/cover types in the fragmented Dukuduku 

indigenous forest ecosystem in South Africa. The study further explored the possibility of 

estimating biophysical and biochemical traits of six endangered tree species. The research 

carried out from Chapters 2 to 6 in this study showed that there is a potential for using 

multispectral WorldView-2 imagery to map eight land use/cover and six selected endangered 

tree species. The possible use of multispectral WorldView-2 data for predicting biophysical and 

biochemical parameters has also been demonstrated (Chapters 4 and 5). The findings reported in 

this study are that the information contained in the multispectral WorldView-2 data and the use 

of advanced classification and regression algorithms can accomplish these tasks. The main 
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conclusions were based on the following findings from the different objectives addressed in this 

study: 

1. The application of high spatial resolution multispectral data with additional bands such as 

WorldView-2 and the machine learning SVM classification algorithm has a high 

potential for classifying different land use/cover classes in a fragmented indigenous forest 

ecosystem (Chapter 2); 

 

2. The application of multispectral WorldView-2 data has a high potential for mapping six 

endangered tree species, using two machine learning classification algorithms (SVM and 

ANN). The result implies that the challenges facing researchers in mapping tree species 

in indigenous forest ecosystem could be minimized through the use of multispectral data 

with additional bands (Chapter 3); 

 

3. There is a potential for using WorldView-2 spectral subsets for mapping the general land 

use/cover classes (Chapter 2) and endangered tree species (Chapter 3) using SVM and 

ANN methods. However, the use of the WorldView-2 8B produced more accurate maps 

than those of the SB and AB subsets; 

 

4. The inclusion of the four WorldView-2 AB can improve the classification results of the 

land use/cover classes and endangered tree species in a fragmented indigenous forest  

ecosystem (Chapters 2 and 3); 

 

5. LAI of endangered tree species in intact and fragmented indigenous forest ecosystems 

could be accurately predicted using SVIs derived from multispectral WorldView-2 data. 

Moreover, LAI predictive models developed using the fragmented forest data performed 

more accurately compared with the models developed using the intact forest data 

(Chapter 4); and 

 

6. Forest foliar N and CN concentrations could be accurately predicted using the 

multispectral WorldView-2 spectral variables under fragmented and intact indigenous 

forest ecosystems. Moreover, the predictive models derived using the fragmented forest 

data performed more accurately compared with those developed using the intact forest 
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data (Chapter 5). However, the intact forest foliar N and CN concentrations were 

significantly higher than the fragmented forest.   

 

Overall, the successful application of the WorldView-2 data, SVM and ANN classification and 

regression approaches in endangered tree species and their biophysical and biochemical variables 

in the Dukuduku indigenous forest could help in making informed decisions and policies 

regarding management, protection and conservation of these rare and endangered tree species. 

The strength of the WorldView-2 multispectral data, however, needs to be further tested for other 

biophysical (e.g. biomass, NPP), metro-physiological (e.g. evapotranspiration) and biochemical 

(e.g. Chlorophyll) traits using process-based physical models in indigenous and tropical forest 

ecosystems within a heterogeneous and fragmented landscape where the biophysical and 

biochemical traits are highly variable. The findings of this study, however, provide the necessary 

insights and motivation to the remote sensing community, forest managers and ecologists to 

move toward identifying the most suitable and readily available remote sensing satellites 

necessary for accurate and reliable indigenous forest monitoring specifically in a fragmented and 

heterogeneous landscape. 

6.4 Recommendations 

Remote sensing is an integral and essential tool for the collection of data necessary to support 

decisions and action programs to improve productivity and health status in indigenous forest 

ecosystems. While not all seek to use remote sensing for monitoring forest health and 

conservation have proven successful, several have been shown to meet data requirements, and 

have been demonstrated to be accurate, precise, and provide up-to-date spatial information on the 

current status of indigenous forest vegetation and cost-effective alternatives to ground data 

acquisition. In this regard, the study expects that the results of this thesis could be used to 

support precision indigenous forest analysis and develop effective and sustainable forest 

management systems. The results from this study contribute to the existing research in general, 

and further support scientific knowledge of ecological and forest management practices in Africa 

and other sites around the world which are more sensitive to climate changes. Furthermore, the 

results of this study could lay the foundation for possible management practices that will enable 

efficient and sustainable use of the resources emanating from endangered tree species. In this 

context, the following recommendations could be considered for future research work: 
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1. In this study eight course land use/cover classes were mapped using WorldView-2 data 

with a fine pixel size. The intra-classes variability could have exceeded the fine pixel size 

of the WorldView-2 image.  Hence, remotely-sensed data of medium spatial resolution 

(e.g. 10 or 20 m) could yield relatively better classification results. Furthermore, this 

study did not consider the scale of the fragmentation which should match the image pixel 

size to accurately map the land use/cover classes, since the study area is a fragmented 

landscape. Future studies should look at the scale of the fragmentation using fragstats 

metrics extracted from multi-temporal satellite data. Scale of fragmentation should then 

be matched with an appropriate image resolution to derive more accurate land use/cover 

classification maps.  

 

2. Newly launched multispectral data contain additional bands and do not need complex 

processing techniques. In this regard, the utility of multispectral satellites other than 

WorldView-2 (e.g. WorldView-3, Sentinel-2, RapidEye and Pleiades) for mapping 

endangered tree species in intact and fragmented forest ecosystems should be tested. In 

addition, it is also of interest for future research to assess the ability of Landsat 8 OLI 

(Operational Land Imager) and TIRS (Thermal Infrared Sensor) for detecting and 

classifying the endangered tree species. 

 

3. The present study focused on determining the possibility of the spectral discrimination of 

endangered tree species (n = 6) and their biophysical characteristic like LAI in a 

fragmented and intact forest ecosystems. Biochemical parameters like N and CN across 

Dukuduku indigenous forest strata have also been predicted. Further research should 

investigate and estimate the biophysical (e.g. biomass, NPP), metro-physiological (e.g. 

evapotranspiration) and biochemical (e.g. chlorophyll) traits for each of the endangered 

tree species in fragmented and intact forest ecosystems using process-based physical 

models. 

 

4. The availability of multispectral sensors will allow mapping and estimating of some 

vegetation and tree species characteristics in indigenous forest ecosystems. This includes 

the biochemical variables such as chlorophyll that are important in monitoring the health 
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of tree species. This will help to establish a fundamental understanding of the spatial 

distribution of endangered tree species functions and quality which could lead to the 

development of early warning systems to detect any subtle changes in the indigenous 

forest systems, such as signs of stress, and could lead to the development of techniques to 

classify forest conditions like healthy or disturbed ecosystem based on their species 

quality and quantity. 

 

5. In order for remote sensing approaches to become operational for mapping endangered 

tree species, further studies are needed to investigate the optimal spatial resolution (pixel 

size) that could better distinguish among the endangered tree species in highly diverse 

ecosystems like tropical and indigenous forests. 

 

6. The reliability of the internal accuracy assessments of machine learning SVM and ANN 

algorithms for classifying land use/cover and endangered tree species was tested in this 

study. More research is still needed on the strength of SVM and ANN as compared to 

other algorithms like RF, which has proved to be successful in remote sensing 

classification and regression approaches. Since the purposively subset WorldView-2 band 

was used to test the utility of the SB and AB for mapping endangered tree species, the 

study did not use any feature selection method like RF to select a fewer number of bands 

that might classify endangered tree species with a comparable accuracy to the one yielded 

by the 8B. Further research should test the use of other machine learning methods like RF 

as variable selection and classification approach for tree species mapping. 

 

Finally, one of the shortfalls of WorldView-2 is the cost implication associated with acquiring 

imagery over a regional or landscape level. Therefore, estimation and mapping biophysical (e.g. 

LAI) and biochemical parameters (e.g. CN or N) over broader extents would require further 

investigation involving the testing of cost effective medium resolution satellite sensors such as 

Landsat 8. However, there would have to be some modifications to the respective methodology 

to account for the spatial configuration of the intact and fragmented indigenous forests.   
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