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ABSTRACT

Studies on collisionless shock waves and turbulent heating
problems in plasmas have aroused considerable interest in electron-
jon streaming instabilities. In this thesis a theoretical investi-
gation of the electrostatic crossfield current-driven ion acoustic
instability is conducted. For the entire investigation the electrons
are assumed to be hot and the ions cold, i.e., Te >> Ti(~0). The
lengthscales and timescales are chosen such that the electrons are
magnetized and the ions unmagnetized, with the analysis usually con-

ducted in the ion rest frame.

Using the Vlasov equation, the linear dispersion relation
is solved for equilibrium particle velocity distribution functions
of the general form foj(ﬁ?,V“). The results obtained are found to
reduce to well known forms for the special case of Maxwellian distri-
butions. The author's previously reported work on the effect of in-
homogeneities in plasma density, plasma temperature and magnetic field
on the instability, is reviewed. An explanation is offered for the

reversal in the behaviour of the temperature gradient drift.

The quasilinear development of the instability is investi-

gated. Particle diffusion equations in velocity space are set up,

iy 2
= £, (0 Vpt).

The equations are solved analytically both for particles resonating

assuming distribution functions of the general form foj

with the waves and for non-resonant particles. It is found that
electron diffusion is along the external magnetic field while the
ions diffuse primarily across the field. An examination of anomalous
plasma resistivity indicates an enhancement of the resistivity per-
pendicular to the magnetic field, as compared to the field-free case.
The electron heating rate is found to be greater than the ion heating

rate. Under certain conditions, the ion acoustic and the electron-
cyclotron drift instabilities are found to produce the same relative

heating rate for the two species. Energy studies indicate an exchange



of energy between the waves and the resonant electrons. However, a
comparatively small fraction of the total wave energy appears in the
form of electrostatic potential energy. A similar result has been

reported for electrostatic ion cyclotron waves.

The effect of a sheared magnetic fieid on the linear in-
stability in a plasma with a density gradient is investigated. The
analysis is restricted to the limit when wave growth due to inverse
electron Landau damping is small. Magnetic shear is found to be

stabilizing and the critical shear length is obtained.

Using a model corresponding to the Double Plasma device, the
effect of elastic and inelastic charge-transfer ion~neutral collisions
on an incident ion beam are studied. The Bhatnagar-~Gross—Krook col-
lision model is adopted and here the investigation is conducted in the
electron rest frame. The elastic collisions are found to cause a
slowing down of the beam, while the inelastic collisions give rise to
an exponential decay in ion beam density. The effect of collisional
damping on ion acoustic perturbations superimposed on the ion beam is

then determined.
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CHAPTER ONE

INTRODUCTION

1.1 PLASMA CONFINEMENT AND SHOCK WAVES

The considerable interest in, and intense study of plasma
instabilities in recent years have arisen from several sources. Among
these are:

(1) the structure of, and energy dissipation in collisionless
shock waves in plasmas,

(i1) the stability of a plasma as regards thermonuclear fusion
experiments, and

(ii1) astrophysical and space phenomena such as sunspots and

emission of radio waves by galaxies.

Laboratory plasmas are invariably not in thermodynamic
equilibrium and this means that a certain amount of free energy is
stored in the plasma. This energy may arise from, for instance, particle
drifts due to gradients in plasma density, plasma temperature or magnetic
fields, externally induced currents or beams of particles. The plasma
can attain thermal equilibrium by allowing the growth of electromagnetic
waves and a redistribution of energy among the waves and plasma particles.
This process of energy conversion is called an Znstability. Plasma

instabilities may be broadly classed into two types — those arising from



distortions in physical space, i.e.,change in shape, called macroscopic
or hydromagnetic instabilities, and those involving changes in velocity

space, known as microinstabilities.

At the high temperatures (v 108K) required for thermonuclear
reactions the plasma cannot be physically contained by walls. It is
therefore magnetically confined. Much of the research in plasma physics
has been directed to the development of confining systems which will allow
the containment of the plasma at the required density and period of time

(1)

for fusion reactions to take place. The Lawson condition for a

power—-producing reactor requires ion temperatures Ti 2 10 keV, and the
product of particle density (n) and energy confinement time (1) of

=3

oY cm

nt > 1 s for a deuteriumtritium fusion reaction.

Plasma configuration schemes designed to confine plasmas may be
broadly classed as 'open' systems or 'closed' systems. Of the former,
magnetic mirrors and the linear 8- and Z-pinch devices are well known
examples. In the case of magnetic mirrors, suitably arranged current-
carrying coils produce a magnetic bottle, i.e.,a magnetic field in which
it is possible to trap plasma particles. The linear 6~ and Z-pinches
will be discussed later. Confinement times in the open systems are short
because particles escape through the open ends. To overcome particle
losses the field lines are bent to yield a toroidal magnetic field,

thereby forming a closed system.

Of the closed confinement systems the Stellarator and the Tokamak
have received most attention. To improve particle confinement in closed

systems externally arranged conductors modify the magnetic field so that



it has the property of nested magnetic flux surfaces. Such a configuration
is present in the Stellarator. In the Tokamak, the conversion of the
toroidal magnetic field into a toroidal-poloidal field is achieved with
high internal currents coupled to the plasma by means of a transformer.
This conversion has been found to improve plasma stability and confinement,
and at present the Tokamak is the most promising device in which the
conditions for a successful controlled thermonuclear fusion reaction can be

realized.

At the high temperatures required for fusion experiments ohmic

-¥
heating is not suitable since it decreases with temperature, T, as T 2,

There was, thus, a need for more efficient heating mechanisms. Gas

dynamic studies have demonstrated that strong shock waves are highly
efficient in heating a medium. This led to an interest in shock waves as

a potential heating mechanism for plasmas. Shock waves arise as follows.
When a wave excited in a plasma attains a large enough amplitude and
propagates at speeds above the speed of sound, it steepens as it propagates
to form a shock, i.e., a narrow transition layer propagating through the
system, separating two regions of local thermodynamic equilibrium which
have different densities, temperatures and mean velocities. Shocks with
widths substantially smaller than the mean free path for binary collisions

are called collisionless.

In addition to the decrease in ohmic heating, at the temperatures
required for fusion experiments two-body collisions are rare and the
plasma is practically collisionlesézl'The important implication of this
is that collisional dissipation, the dissipation mechanism of conventional

shocks, is no longer possible. By what process, then, is dissipation in

a collisionless plasma achieved? A possible mechanism is the excitation



of plasma waves by instabilities due to the relative drift between electrons
and ions. Furthermore, instabilities can play a significant role in
determining the behaviour of shock fronts, which are locations of gradients
in magnetic field, plasma density and plasma temperature and therefore

constitute a source for particle drifts.

In the open linear 6-pinch device an externally induced, rapidly
rising axiél magnetic field B induces an azimuthal current of density }
within the plasma. The resulting } x B force acts to push the plasma
towards the axis; this rapid radial compression produces a shock wave
which may provide shock heating. In the case of the Z-pinch the roles of

> : ; 3 : 5
the current j] and the magnetic field B are now reversed; ? is now axial

and B azimuthal with the } x B force again directed inwards. 6- pinch
experiments are conducted in many laboratories, including, for instance,
Los Alamos (U.S.A.) and Julich (West Germany). Besides the linear 6-pinch,
experiments are also performed in the toroidal 6-pinch which is designed
to overcome end losses of the former. A typical Z-pinch device is

Tarantula II at Culham Laboratory, U.K.

1.2 COLLISIONLESS SHOCK EXPERIMENTS

Collisionless shock waves have been produced in a number of plasma
1aboratories(3’4). We shall discuss some of the experiments on the structure
of shock waves propagating through a plasma perpendicular to an external
magnetic field. Most of the shocks were formed in a 8- or Z-pinch.

PAUL et aZ(S)

created an imploding shock wave, which propagated
radially inwards, in a linear Z-pinch by producing a sharply rising axial

current in a thin annular layer (~1 cm). The measured shock width (1,4 mm)

was much less than the mean free paths for ion-ion collisions (5 c¢m) and



ion—-neutral collisions (2,5 cm). Although the shock thickness does not

,(6)

eliminate electron—ion collisions, PAUL et a discounted these

interactions as the dominant dissipation mechanism. They found that the
measured temperature of about 40 eV at shock velocity to initial Alfvén
velocity ratio M = 2,5 far exceeded that calculated by assuming resistive
(ion~electron) dissipation. These results demonstrated that significant
collisionless electron heating occurred in the shocks. The authors attributed
the dissipation mechanism to plasma instabilities arising from the relative
drift between electrons and ions. This process provides an anomalous

resistance to the current. The electrons are heated by the subsequent

damping of the waves.

Experiments in the linear Z-pinch were continued by PAUL et aZ(7)
when they studied the light scattered from a 50 MW ruby laser during
the passage of the shock through the laser beam. Measurements of
scattered power from the shock indicated the presence of an unusually
high level of fluctuation within the shock, which in turn implied the
presence of instability and associated nonlinear phenomena. The source
of the free energy to drive the instability was attributed to the current

in the plasma or drifts due to inhomogeneities within the shock.

Using a 6-pinch device KEILHACKER et al(s) investigated the heating
of a plasma by collisionless shock waves. From Thomson scattering of laser
light the variations in magnetic field, electron density and temperature
were measured. Only 20%Z of the observed electron heating could be explained
in terms of adiabatic and collisional resistive heating. The measured electron
temperature and shock width indicated an anomalously high effective collision
frequency, about two orders of magnitude higher than that for classical

binary collisions. The authors then suggested excitation of plasma waves,



driven by electron-ion relative drifts, in the high current density of the
shock front as the most probable cause of the anomalous plasma resistance.

,(9)

In a later experiment KEILHACKER et a measured the level of
density fluctuations in a collisionless shock wave as a function of time
for a fixed scattering angle. The maximum level of fluctuations in the
shock front was found to be about 250 times the thermal level. The
reversal of the frequency shift of the fluctuations with the reversal of
the diamagnetic current in the shock front suggested that the electron
drift provided the free energy for the instabilities causing the enhanced
fluctuations. 1In this experiment the electron temperature 158 and the ion
temperature Ti were such that Te $ Tif

In a more recent experiment, ASTRAKHANTSEV et aZ(lo)

investigated
the nature of turbulent processes and the mechanism of collisionless
dissipation in the front of an electrostatic shock wave. The observed
high level of turbulence was attributable to plasma instabilities arising

from counter-streaming ion beams. Ion heating was explained in terms of

the diffuse scattering of the ions by the oscillations which were excited.

Astrophysical observations have revealed that when the solar wind
(plasma flow from the sun) encounters the earth's magnetic field, a
collisionless shock is formed. This transition layer is called the bow
shock. Measurements, via satellites, have indicated a high level of

(2)

electrostatic fluctuations within the shock and was associated with

current-driven plasma instabilities.

Experiments on shock structure including those discussed above,

have revealed that the shock width L and the time of passage of the



shock T satisfy the following conditions:

Q <11 < |Qe|

(1.2.1)
where Qi(ﬂe) is the ion (electron) gyrofrequency, Qj = qu/ij, and
r, (re) is the ion (electron) gyroradius.
Under such conditions the effect of the magnetic field on the

ions, as compared to that on the electrons, is neglipible, and the ions

may be considered to be unmagnetized.

It is thus seen that plasma instabilities play an important

role in collisionless shock dissipation of plasma energy.

1.3 SUMMARY OF THESIS

This thesis is concerned with a theoretical study of linear and

quasilinear aspects of a particular plasma instability - the electrostatic
crossfield current-driven ion acoustic instability. The principal

electrostatic instabilities and associated linear investigations are
summarized in Chapter Two. Experimental studies of the ion acoustic

instability are discussed and the development of the quasilinear theory

is reviewed.

In Chapter Three the linear dispersion relation is established and

solved for any equilibrium velocity distribution function of the type

foj = foj (YLZ, Vz), where Vz and YL are the components of the velocity V



along and perpendicular to B = B2 respectively. For the case of
Maxwellian electron and ion equilibrium velocity distributions, the
general results are shown to reduce to well known forms. For the purpose
of completeness, a previously reported study by the author'on the

effect of inhomogeneities is reviewed. The quasilinear diffusion
equations for the electrons and ions are set up and solved in Chapter
Four. Electron and ion heating rates and anomalous resistivity studies
are presented. Total energy conservation is then discussed. Finally,

a brief comparison is made with the heating rates associated with the

electron-cyclotron drift instability.

The effect of a density gradient and a sheared magnetic field on
the ion acoustic instability are studied in Chapter Five. In Chapter
Six we examine the linear effects of elastic and inelastic charge-transfer
collisions on the crossfield current—-driven ion acoustic instability.
Here the model is chosen to correspond to that of the Double Plasma
device (DP-device) in the Plasma Physics Research Institute, University of
Natal, Durban. Finally in Chapter Seven a summary is presented of the
major findings in the preceding chapters. Conclusions are drawn, and

possible extensions to the investigations undertaken are discussed.



CHAPTER TWO

A SURVEY OF LINEAR AND QUASILINEAR INVESTIGATIONS OF

PLASMA INSTABILITIES

2.1 INTRODUCTION

In investigations of crossfield current-driven plasma instabilities
more attention has been given to electrostatic instabilities, where
perturbations in the magnetic field are neglected and the electric field
is assumed to be derivable from a scalar potential. The reason for this
is that such modes constitute the fastest growing and most destructive
instabilities as far as plasma confinement is concerned.

Instabilities within a plasma may be divided into two types(ll):

(a) Dissipative instability: arising from an exchange of energy

between the plasma particles and the wave. The physical

mechanism for Landau damping - collisionless damping of a
wave — 1s associated with the strong interaction between a
longitudinal plasma wave and those particles in the plasma

having velocities close to the wave phase velocity V¢. of
these, particles with velocity V<V. are accelerated, while

¢

x >
those with V>V are decelerated. If there are more

¢

particles travelling with velocities slightly less than v

¢
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than with velocities slightly larger, the net result is an
extraction of energy from the wave with consequent wave
damping. However, when the reverse holds, energy is trans-
ferred from the particles to the wave, which grows in
amplitude. This is known as 'inverse' Landau damping and

can, if sufficiently strong, lead to instability.

(b) Reactive instabilities: involve a coupling between two

waves which carry energy of opposite sign to each other.
There is an energy exchange between the two waves, but not
between the wave and the plasma. For a linear electrostatic

wave the energy demsity is given by:

|§|2 %; {w eL(m,k)} =0

E = 7€ &

(o)

where € is the longitudinal dielectric constant. LASHMORE-
DAVIES (12) shows that for £ < 0 (i.e.,a negative energy

> 1
wave) one requires 0 < w <k.3b. Negative energy waves have

the unusual property that they grow when energy is extracted
from them. Thus when a negative and a positive energy wave
couple, both grow. Similarly, a negative energy wave grows

when energy is extracted from it by resonant particles (dis-

sipative case).

It should be noted that because dissipative instabilities involve
relatively few particles (the resonant ones), while reactive instabilities
involve the whole distribution function which supports the wave, the

latter are more difficult to stabilize and in that sense are most dangerous,
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2.2 THEORETICAL LINEAR INVESTIGATIONS

Of the plasma instabilities that occur, there are three which
have received considerable attention. These are the ion acoustic instability,
the electron-cyclotron drift instability (also known as the beam cyclotron
or Bernstein instability) and the modified two-stream instability. A
‘review of the reported linear aspects of these instabilities is now

presented.

(a) Ion acoustic instability

Ion acoustic waves satisfy the dispersion relation:

k C
S

© = !

(1 + k2 ADZ)

where Cs = (Te/mi)i is the ion sound speed and
AD = (Te/4n n, e2)i the electron Debye length. These modes
are found to grow when vy > Cs’ where vy is the electron-ion
relative drift. 1In addition, an important requirement is that
T, >> T, The instability is of a dissipative nature, arising
from the interaction of the ion sound waves with resonant
electrons and ions. A necessary condition for the growth of
the waves is the dominance of inverse electron Landau damping
over ion Landau damping. The condition Te = By is very

important, since when Te ~ T, ion Landau damping is strong and

the waves are stabilized or even damped.
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In their examination of the ion acoustic instability KRALL and

Book {13

used the gradients in electron density and magnetic

field as the only sources of electron drift. Their

investigation was limited to the regime (kre)2 *» 1, (m/kVﬁ) >
(1/kre)2, where k = (0,k,0) is the wave vector and V% the

average magnetic drift. The growth rate of the instability was
found to be comparable with that for the B = 0 ion wave instability;
the effect of the non—zero magnetic field was to reduce the

growth rate.

AREFEV(14)

, in his treatment of the ion acoustic instability,
assumed that the electron drift resulted from an externally
applied electric field. The linear dispersion relation was
3 > >
solved for T >> T, by assuming lw-k'V | <<k C,
: e 1 D 2 &
kC. << w and KLZ r 2 << 1. The choice k /k ~ (m /m.)i was
i e z e i
shown to restrict the instability to drift speeds VD such that
2¢Cc_ >V, _>C._.
s s

D

A detailed, numerical, linear study of electrostatic
instabilities has been undertaken by LASHMORE-DAVIES and MARTIN(ll).
They have assumed the B x B drift to be the major source of
electron current and therefore neglected the effects of gradients.
The analysis for the ion acoustic instability was subjected to

B ; > > >
the approximation k = (0, ky, kz), k? X% << 1, and (w - k-VD)
<< Y2k C_ or e_b I (b) << 1. Here b = (k_r )zand I (b) is

z e 0 . y e 0

the modified Bessel function of order zero. An analysis of the
normalized growth rate (Y/Qe) as a function of k r, showed that

for ky r, % 1 the magnetic field effects were strong, producing
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an enhanced growth rate compared to the magnetic field-free
case. For ky r, 2 4, a surprising result was obtained; the
behaviour of the instability seemed to be independent of the

magnetic field.

The enhanced grbwth rate in the presence of the magnetic field,

(11)

as discovered by LASHMORE-DAVIES and MARTIN contradict the

result of KRALL and BOOK(13)

» who found the opposite effect.
Besides the choice of different parameter ranges, this may be
attributed to the fact that the Ex3B drift, in the opinion of
the former the dominant drift, is ignored by the latter.

(15) ..

PRIEST and SANDERSON ve differed in their approach to the

ion acoustic instability problem. They have established the

linear dispersion relation via the generalized Gordeyev integra1(16).

Using the assumption k= (0,'ky, k), (ky re)2 > 1 and (k, re)2 21,
they found that the inclusion of a temperature gradient produced a
dramatic increase in the growth rate. This was attributed, not to a
simply larger drift velocity, but to a distortion of the electron
distribution function produced by VT; the distortion being such
that it increased the slope of the electron velocity distribution
function (and therefore the growth rate) in the resonant region of
velocity space. The effect of a density gradient drift that was
small compared to the electron thermal speed Ce’ was found to be
negligible, while a slight modification to the growth rate was
prodﬁced by a magnetic field gradient. The authors also

conjecture that a temperature gradient drift of order Ce could

cause sufficient distortion of the electron distribution function

to allow the ion acoustic instability even when Ti " Te and VD %06,
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the obvious implication being that the ion acoustic instability

could not be completely ruled out in experiments where the

9

average electron and ion temperatures were of the same order 5

(15)

The suggestion of PRIEST and SANDERSON concerning ion acoustic

instability at Te " Ti was numerically investigated, to some

(17). For a low collision

degree, by ALLEN and SANDERSON
frequency, k; N 1, a significant VT drift but a weak VB

drift, the authors found:

(i) maximum growth occurred for propagation perpendicular
>
to B,
(ii) a positive growth rate was obtained for VT
is the VT drift, and

=0,5¢C
e

and T T., where V
e i

T

(iii) for VT Ce’ the wave phase velocity increased with the
wave number, a behaviour exactly opposite to that of a
normal ion acoustic mode.

BHARUTHRAM and HELLBERG(IS)

studied the ion acoustic instability,
the electron-cyclotron drift instability and the intermediate
transition regime for a dominant drift Vo (either external-beam
type or E x E) and weak gradients in electron density, temperature
and magnetic field. For the ion acoustic mode with kz # 0 the

VT drift enhanced the growth rate for EL fy. @ 1, but had a
stabilizing effect for EL L - 1. The Vn drift ~lways had a
stabilizing effect. By allowing a Vn drift at various angles to
=i

Vo, it turned out that the maximum growth was always achieved

for propagation along the net drift, as found by ALLEN and



(b)

15

(17)

SANDERSON for the particular case of a net drift across the

magnetic field.

(19) have

In a more recent report, SIZONENKO and STEPANOV
examined the crossfield current-driven ion acoustic instability
driven by gradients in plasma temperature, plasma density and
magnetic field in the limit Te >> Ti' Derivations of the
instability growth rate are presented for both a strong and a
weak VB drift. Wave propagation along and perpendicular to

the magnetic field are separately treated.

The electron-cyclotron drift instability (ECDI)

This instability is also known as the beam cyclotron or
Bernstein instability. For Te >> Ti’ the instability is of a
reactive type, arising from the resonance coupling between a
Doppler-shifted negative energy electron Bernstein wave and

the positive energy ion acoustic wave. As a result one has

the resonance condition w # ﬁ-Vb - |n] Qe = k Cg for maximum
growth rate. Electron Bernstein waves are electrostatic modes.
Their propagation is independent of ion dynamics and occurs
under zero drift conditions. These modes satisfy the dispersion
relation w = £ Qe (£ is an integer) and propagate, with a
constant amplitude, perpendicular to the magnetic field. They
are severely damped for slightly off-perpendicular propagation.
In one of the first investigations on the reactive ECDI, WONG(ZO)
worked in the rest frame of the drifting electrons, with the
crossfield ion drift being produced by some external source. The

linear dispersion relation was solved with the aid of the
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assumptions k = (0, k, 0), k2 re2 >> 1 and Te >> Ti'
Modifications to the dispersion relation introduced by kz >0
were found to be small provided the upper limit of (kz/ky) was
restricted. The treatment was extended to include the effect of
a VB drift.

(12)

The results of LASHMORE-DAVIES for the reactive ECDI are

(20) if one takes into consideration the

(12)

identical to that of WONG
former's additional assumption of k? ADZ << 1. LASHMORE-DAVIES
was the first to point out that the ECDI could exist as a
dissipative instability when Te " Ti‘ The driving mechanism was
associated with the Doppler-shifted electron Bernstein mode 'seeing’
a positive slope to the ion distribution function and thereby
undergoing ion Landau damping, which, for a negative energy wave

(21) included

results in growth. In a later paper LASHMORE-DAVIES
a density gradient drift. This not only reduced the net growth
rate of the reactive ECDI but also restricted the instability to
wave numbers lying within a specified band. A much more detailed
examination of the dissipative ECDI was also undertaken.

(22)

GARY and SANDERSON investigated the reactive ECDI in the

>
presence of an E x E electron drift, and arrived, independently,

at the result obtained by WONG(ZO).

They then showed that the
inclusion of a VB drift reduced the instability growth rate.

Despite this, the growth rate was still larger than that of the

magnetic field-free ion acoustic instability.



17

FORSLUND et al(23)

made an indepth study of the dissipative ECDI.
A numerical solution of the dispersion relation revealed that the
growth rate was a maximum near the point of intersection of the
wave phase velocity with the maximum slope of the ion velocity
distribution. The authors initially discovered the instability
with a numerical simulation code.

Gary extended the work of GARY and SANDERSON(ZZ)

(24) and = Ti(25).

for Te >> Ti (~0)

to the regime Te = 10 Ti Te The major finding
in the former case was the reduction in the growth rate of the
reactive ECDI, presumably due to the enhancement of ion Landau
damping by a finite Ti' The latter case, demonstrated, via
numerical studies, that the unstable modes were severely damped

for propagation outside a few tenths of a degree off the

perpendicular to B.

In an extension of the theory on the dissipative ECDI (Te v Ti)’

SANDERSON and PRIEST(26)

included gradients in electron density
-and temperature. For perpendicular propagation the growth rate
was increased. For oblique propagation the instability ceased

to exist due to strong electron Landau damping of the Bernstein
mode. In a later report SANDERSON and PRIEST(27) included a VB
drift and analytically solved the dispersion relation for ¥, o> Ti
and Te v Ti'

LASHMORE-DAVIES and MARTIN(ll)

(12,21)

» besides reproducing the work of
LASHMORE-DAVIES » numerically extended the results to cover

the whole range of parameter space. The regime Te =10 Ti was

also considered.
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Modified two-stream instability (MTSI)

This instability is associated with modes which propagate with

(28)

wave numbers and frquencies satisfying s Qi << @ << Qe’
kr << 1, C, << (0/k) and |w - Q.Vb| >> k_ C_, and are

described by the dispersion relation:

k2w 2 w 2 k 2 w 2
1 + Yy Pe _ pe _ _z pe - = 0,
k2 Qe2 ) k2 (w - ﬁ-%b)

Here, % = (0, ky, kz) and mpe (mpi) the electron (ion) plasma

frequency.

In arriving at the above dispersion relation only the zeroth

order term in the electron contribution to the dispersion relation
was considered since w << Qe. The MISI differs from the well
known two-stream instability for a non-diamagnetic plasma, which

has the dispersion relation(zg)

U).z U)2
- P _ pe a
1 wZ e~ W
(w - k-VD)

in that the latter requires VD > Ce for instability, while it (MSTI)
may exist for drifts much smaller than Co-

In his treatment of the MTSI STEPANOV(3O)

took into account not
only the zeroth order but also the first order term in the electron

contribution to the dispersion relation. Working in the electron

frame, he found
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; A ) 4 )
(i) for v >> C,: growth rate y " (me/mi) Wpi

(i) for vy $ C, (il /k) v (me/mi)i ty v Re(w) v (@ szi)i

when wpe 2 Qe’ and vy ~ Re(w) " wpi when wpe S Qe.

(31)

ASHBY and PATON in an analytical study, arrived at

Re(w) v vy n keV. ~ =@ . ¢ +a. 2fg 2f§ (the lower
D “LH pi’ pe e

hybrid frequency) for (kz/ky) n (me/mi)i. The MTSI was
experimentally observed by the authors in a low density plasma

stream.

The modified two-stream instability was also studied by

(14)

AREFEV Part of his results showed that instability

occurred for a discrete frequency spectrum. In their

(32)

investigation KRALL and LIEWER used the additional assumption

}
k, << EL' They found that V, >((Te + Ti)/mi) was a necessary

condition for a positive growth rate.

The dispersion relation for the MISI, given above, was manipulated

(11)

by LASHMORE-DAVIES and MARTIN ~ to show that the instability may

be visualized as a reactive instability, arising from a resonance

coupling between two modes - the lower hybrid (w = Wy = wpi x

(1 + wpezlgez)_i) and a Doppler-shifted electron plasma wave

perpendicular to E, with w - ky V. == (kz/k) wpe. The latter

D
(12)

has w < k*V_ and is therefore a negative energy mode The

D

authors then showed that the so called drift modes, as discussed

32 P .
(32) for propagation across E in the presence

by KRALL and LIEWER
of gradients, were just the MISI propagating perpendicular to B.

Thus the effect of the gradients was to increase the 'cone of

propagation' of the MTSI.
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A detailed study of the MTSI in the linear and nonlinear regimes

1(28)

was conducted by McBRIDE et a . The importance of the

instability as a possible turbulent heating mechanism was

1(33)

indicated. PAPADOPOULOS et « examined a MTSI arising from
two counter—-streaming ion beams through a relatively cold electron
background. The quasilinear and nonlinear stages of the
instability were also studied.

(a4 found that the growth rate of the MISI assumed a maximum

GLADD
value for a particular oblique angle of propagation. The
introduction of a weak density gradient shifted the maximum growth
rate to kz = 0, corresponding to the lower hybrid drift instability.
Electromagnetic effects were also investigated. As a follow up,

DAVIDSON and GLADD(35)

examined the anomalous resistivity and
heating associated with the lower hybrid drift instability.

However, before entering the nonlinear regime, the authors undertook
an extensive parameter study in the linear domain - the instability

being driven by an E x B drift and gradients in electron

temperature, electron density and magnetic field.

The instabilities discussed above are not isolated from each other.
GARY(24) has examined the reactive (electron Bernstein mode -

ion wave coupling) ECDI for propagation across B. However, for
oblique propagation he finds that the Bernstein mode is severely
damped. The coupling is no longer possible and the ion acoustic
wave grows, provided inverse electron Landau damping overcomes ion
Landau damping. Thus, as the propagation changes from the
perpendicular to B and becomes oblique, the reactive ECDI degenerates

into the dissipative ion acoustic instability. LASHMORE-DAVIES and
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(11) (14)

and MARTIN and AREFEV have shown from numerical studies

that as (kz/k) increases the MISI changes to the ion acoustic

instability. It has been pointed out by LASHMORE-DAVIES and

(11) (34)

MARTIN and GLADD that the MTSI (kz # 0) and lower

_ 0y (32

hybrid drift instability (kz may be considered as

different aspects of the same instability.

2.3 EXPERIMENTAL INVESTIGATIONS OF THE ION ACOUSTIC INSTABILITY

Here, we briefly discuss some of the experiments involving the
ion acoustic instability.

HIROSE et al(36)

have reported an experimental observation of the
crossfield ion acoustic instability in a toroidal turbulent-heating
experiment. The measured values of the anomalous resistivity (about two
orders of magnitude larger than the classical value) and anomalous electron
thermal transport (about 25 times larger than the classical value) were

explained in terms of ion acoustic waves driven by a radial temperature

gradient across the toroidal magnetic field.

Observation of the crossfield ion acoustic instability in two
different configurations, a streaming cesium-plasma device and a double

137

plasma device, have been reported by BARRETT et a The authors have
suggested that the instability could occur for Te N Ti’ a suitable kz
allowing for inverse electron Landau damping to overcome ion Landau damping.
However, the experimental growth rates do not provide convincing agreement
with theoretical predictions. This could possibly be due to a neglect of
the finite size of the plasma, plasma inhomogeneities and inter-particle

1(28)

collisions. McBRIDE et q have remarked that the results of
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)

BARRETT et al(37 could be explained in terms of the modified two-stream

instability.

(38) measured the electrostatic fluctuations

HAMBERGER and JANCARIK
in a turbulent-heating experiment performed in a small toroidal stellarator.
For a hydrogen plasma in which the electron drift was relatively small, the
observed fluctuation spectra appeared to be consistent with turbulence driven
by ion sound waves.

(39) observed the evolution of ion acoustic waves in a

WATANABE
discharge tube by gradually increasing the electron drift velocity. The
onset of the ion acoustic instability was seen when the bias on the grid
controlling the electron.drift velocity (Vg) reached 1,1 V. For Vg $ 10V
nonlinear effects set in, and the instability entered a turbulent state.
The ion acoustic nature of the instability was confirmed by the measured

dispersion relation which agreed remarkably well with the theoretical curve

for ion acoustic waves.

In another turbulent-heating experiment in a magnetic mirror,
(40)
WHARTON et al found that the low frequency components of the measured
turbulent spectrum followed the dispersion curve for ion acoustic waves.
The heating of the plasma was attributed to the current-driven ion acoustic

instability.

The crossfield current-driven ion acoustic instability was studied
in an ion beamplasma system within a double-plasma device by HAYZEN and
BARRETT(Al). Allowing for the finiteness of the plasma and ion-neutral

collisions the authors obtained very good agreement between the measured

spatial growth rates and dispersion properties, and the equivalent
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theoretical estimates for the crossfield ion acoustic instability. JONES

(42) have extended the experiments into the nonlinear domain.

and BARRETT
Quasilinear and nonlinear theories have been invoked to explain the

observed nonlinear saturation of the instability.

2.4 DEVELOPMENT OF THE QUASILINEAR THEORY

When plasma instabilities are excited and the associated waves
grow, after a sufficient time these waves assume such amplitudes that the
nonlinear terms become important and the linearizing of the Vlasov
equation (a basic equation for the study of a collisionless plasma) is mo
longer valid. Nonlinear behaviour is very much an inherent characteristic

(38,39,42)

of laboratory plasmas The question arises as to the evolution

of such instabilities; nonlinear effects may modify certain plasma

parameters which in turn can cause the unstable oscillations to saturate.

A natural extension of the linear theory of plasma waves and

instabilities is the weak turbulence theory - first published independently

1(43) and DRUMMOND and PINES(AA). There are two necessary

conditions on which the weak turbulence theory is based(45). The first is

by VEDENOV et a

that the energy density associated with the fluctuations, W, must be small
compared to the plasma thermal energy, nkT, i.e. (W/nkT) << 1. The second
requirement is that the spectrum of waves must be broad. If Aw is the
frequency spread of the wave spectrum, then it is necessary that

(46)

-1 - -4 4 ’ ;
Aw — << (eEk/m) i, where (eEk/m) * = t is the trapping time of an
electron in the potential well of the electric field E having wave number
k. What this means is that the correlation time of the waves Aw_l must be

much shorter than the trapping time €. i.e. a particle does not 'see' a

single wave long enough to be trapped by it. For a valid application of
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weak turbulence theory it is essential that both these conditions are
independently satisfied. Regimes which do not satisfy these conditions

are loosely described as strongly turbulent.

As is well known, in the linear theory terms of second order and
higher are neglected. In weak turbulence theory such terms, generally up
to the fourth order, are retained. In the simplest treatment of weak
turbulence theory, called quasilinear theory, the coupling between the

different modes is neglected. This will be discussed in Chapter Four.

Since its inception quasilinear theory has been extensively
treated in several standard texts, some of which are by SAGDEEV and
GALEEV(A7), TSYTOVICH(AS), DAVIDSON(46) and KRALL and TRIVELPIECE(l).

We shall review a few of the papers that have made significant contributions
to the development of the quasilinear theory.

In the initial report of DRUMMOND and PINES(AA)

the fundamental
equations of quasilinear theory are established. The authors then show that
for electron plasma oscillations with a positive growth rate (y > O) one
half of the energy lost by particles resonating with the waves goes into

the wave electrostatic potential energy and the otﬁer into the kinetic
energy of oscillations of the bulk of the non-resonant particles. In a
one-dimensional application, a Maxwellian velocity distribution with a

'gentle-bump' is chosen. A numerical study of the development of the

system in time shows:

1) a flattening of the velocity distribution (also known as

plateau formation) in the bump region, and
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(11) although, the initial fluctuation level does grow in time,
its final level, however, is still comparatively small.

(49) formulated the quasilinear theory

BERNSTEIN and ENGELMANN
for growing (y > O) and decaying (y < 0) modes. For the one-dimensional
case of a'bump in tail' velocity distribution they recovered the results
of DRUMMOND and PINES(AA). This implied that in the one-dimensional
treatment only growing modes need be considered. However, this is not
true in two— or three-dimensions. The 'H-like' theorem (analogous to
Boltzmann's H-theorem in thermodynamics) developed by the authors showed
that the asymptotic behaviour in time was such that y < O for all modes
within the system, i.e. it was inadequate to consider only growing
oscillations. This time asymptotic behaviour in two- and three-dimensions

has been comprehensively treated by SAGDEEV and GALEEV(47).

In their treatment of the quasilinear theory VAHALA and

(50)

MONTGOMERY considered the fluctuations to consist of a discrete E -

. . . +
spectrum, which was in contrast to the case of a continuous k - spectrum
(49) 4 >
as used by BERNSTEIN and ENGELMANN . For such a discrete k - spectrum
they found that a consistent formulation of the quasilinear theory could
be undertaken without decaying modes in one—,two— or three-dimensions;

a result different from that of BERNSTEIN and ENGELMANN(Ag)

for a continuous
spectrum. However, in view of the fact that one of the pre-conditions for
the quasilinear theory is a sufficiently broad spectrum, the discrete spectrum

of VAHALA and MONTGOMERY(SO)

may not fulfill this requirement. The authors
then point out that the inclusion of damped waves could result in negative
diffusion coefficients in velocity space and therefore lead to

inconsistencies. It seems that this problem has arisen from a misinterpretation

of the diffusion coefficient in the resonance region of velocity space for
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(46), who shoys that the

decaying modes and has been resolved by DAVIDSON
diffusion coefficient is non—-negative in the resonance region for both
growing and decaying modes.

(51)

BURNS and KNORR attempted to resolve some of the difficulties
associated with the quasilinear theory. They investigated a one—dimensional
electron plasma. In the development of the theory the authors emphasized
the need for the approximate form of the perturbed velocity distribution
used in the calculation of the velocity moments to be supplemented by the
prescribed Landau contour of integration. If this is not done significant
errors could arise. Good qualitative agreement was obtained for a discrete
spectrum between quasilinear theory and,a numerical analysis of the one-
dimensional Vlasov equation and Poisson's equation in the absence of mode-
coupling terms; The authors also found that the requirement of VAHALA and

MONTGOMERY(SO)

that all growth rates remain non-negative for a finite time
was not necessary. Furthermore, they showed that if the Landau contour

of integration is well defined then damped modes (y < 0) need not render
the velocity diffusion equation ill-posed, as argued by VAHALA and

MoNTGoMERY <0 .

Despite the initial difficulties associated with it, quasilinear
theory has been widely applied. DAVIDSON et al(sz) investigated electron
heating by two counter-streaming ion beams in a computer simulation
experiment of a one-dimensional beam-plasma system. The rate of electron
heating and its saturation offered good agreement with the predictions
of the related quasilinear theory. A detailed study, comprising linear
and nonlinear theory and computer simulation, of the electron-cyclotron
drift instability was undertaken by LAMPE et aZ(53). Quasilinear rate

equations for the electron temperature, ion temperature and the average
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ion drift velocity were obtained. The results of the computer simulation
for cold ions exhibited good agreement with the quasilinear predictions.
The saturation of the instability was found to be accompanied by ion

(35) (54) have examined

trapping effects. DAVIDSON and GLADD and DAVIDSON
the lower hybrid drift instability in considerable detail in the
quasilinear regime; current relaxation, electron and ion heating rates

and diffusion relaxation times have been studied.

The quasilinear behaviour of the two-stream ion cyclotron
instability was theoretically studied by DRUMMOND and ROSENBLUTH(SS).
Energy considerations showed that only a fraction kZADz << 1 of the
energy given up by the resonant electrons appeared as wave potential
energy. The bulk of the energy went into the kinetic energy of the wave
motion, associated with the oscillations of the non-resonant electrons
and ions in the presence of the wave. This was in contrast to the

result of DRUMMOND and PINES(44)

for electron plasma oscillations,
where the energy was equally divided between wave potential and kinetic
energies. The authors also found that the resonant interaction between

waves and electrons led to an anomalous spatial diffusion across the

magnetic field.

DUM et aZ(56) investigated the turbulent heating and stabilization
of the crossfield current-driven ion acoustic instability via two-
dimensional computer simulation. Heating and anomalous resistivity results
were well in agreement with quasilinear predictions, as was the relaxation

of the electron and ion energy distributions.

The nonlinear development of the ion acoustic instability in a

collisionless, unmagnetized plasma was theoretically investigated by
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CAPONI and DAVIDSON(57).

The ana'ysis was conducted via the quasilinear
theory, extended to include the effects of ion resonance broadening.
Calculated values of the anomalous resistivity provided much better
agreement with experimental values than the expression of SAGDEEV and

GALEEV(47, p.94-103)

, which is based on the assumption that nonlinear
ion Landau damping is the dominant saturation mechanism. Numerical
integration provided the temporal variation of the fluctuation energy
density and electron and ion heating rates.

(58) studied

In a more recent undertaking, APPERT and VACLAVIK
the saturation of the current—driven ion acoustic instability in a
weakly ionized, uniform, unmagnetized plasma. The analysis was conducted
within the context of a quasilinear model that included the effects of
close two-body collisions and Coulomb collisions. The spectral
distribution of the turbulence was calculated in a one-dimensional
treatment. Inarestricted three-dimensional treatment, where
(me/mi)i < kz/k << 1, an expression was derived for the total wave energy
density in terms of measurable physical parameters. Numerical calculations
showed that the ion velocity distribution function was virtually
unaf fected by the turbulent oscillations. For low degrees of ionization
the effect of Coulomb collisions was negligible. The derived results
provided favourable agreement with previously reported experimental

observations.

We conclude this section by mentioning an experiment that has
confirmed the quasilinear theory. ROBERSON et aZ(Sg) studied the
'gentle-bump' instability in a long plasma column into which an electron

beam was injected. The observed flattening of the bump in velocity
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space and the saturation of the wave energy were in excellent agreement
with the predictions of quasilinear theory. As a note of warning, the
authors point out that the theory should be carefully appiied. For, when
the experimental conditions exceeded the limits of quasilinear theory,

ever so slightly, a qualitatively different behaviour was observed.
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CHAPTER THREE

LINEAR THEORY OF THE CROSSFIELD CURRENT-DRIVEN ION ACOUSTIC

INSTABILITY

3.1 BASIC EQUATIONS

We adopt the model of GARY and SANDERSON (43

and consider a
o . . . =
homogeneous collisionless plasma with an external electric field Eo

and a magnetic field ﬁo as shown in Fig. 3.1 below. The analysis is

conducted in the ion rest frame.

==E %
o o
>y
C(E X§)
> 0 0
V. = 3 -
= B
0
X
Figure 3.1
Two fundamental assumptions are made:
(a) The time scale T and length scale % of the perturbation are

such that they satisfy the conditions (1.2.1), viz.,
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and

As mentioned earlier, under such conditions the ions may be considered
. = -> be o g ->
unmagnetized, and the magnetized electrons have an E x B drift Vo re-

lative to the ions,

(b) We use the electrostatic approximation, i.e., assume that the
wave electric field is produced by charge separation, which in turn im-
plies that the perturbed electric field fl can be expressed in terms of
a scalar potential ¢l as fl = - V¢‘. For a wave propagating as

exp {i(ﬁ . T - wt)}, Maxwell's equation

reduces to

Therefore, in the electrostatic approximation, the magnetic field re-
. - s s T

mains unperturbed and the waves are longitudinal with k parallel to El'

In addition, for electromagnetic effects to remain insignificant the

wave phase speed V, must be such that V, = w/k << C, where C is the

¢ ¢
speed of light.

In the absence of collisions, the electron and ion velocity distribution

functions fj(j = e(electron), j = i(ion)) satisfy the Vlasov equation
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of . (£,V,t) of . (T,V,t) e Vx3B of . (£,V,t)
_i” +§]*._i”+J_(E+C°). s\LyV, =0
at a? mJ 37
(3.1.1)

We define £, = <f,> + £ ., where £ . = <f.> is the ensemble average
] ] 13 0] i

of fj’ usually defined as an average over one or several coordinates

in space or over time. flj represents the perturbation in fj due to

a set of randomly phased, rapid oscillations. Similarly

:E*(_r*,t) = fo + §1(¥,t).

The Vlasov equation is now averaged over an arbitrary variablej the

exact variable will be specified later. We obtain

>

3f . 3 . x B of . s, f ¥
_°_J+V'.—°-J-+J-<i§+ . °), Le-AE L) (3.1.2)
° v - v

e,
ot m. 5

>
or 1
Bfl. Bf].
Note that g .—LY)=F . (—L)=o0, etec.
0 > 0 >
oV aVv

Subtracting Eq.(3.1.2) from Eq.(3.1.1), we get

S, . of . . Vx3 of 5f
g,y 1,55 . XO). i, Sz 0j )
ot 3? mj \ o] aV mJ \ 1 av
e. r, afl. Bfl.
=_;L[El ___J_<El Tlﬂ (1.3
i 3V 3V

If we assume periodic boundary conditions at the end of a system of
length L, the perturbed quantities may be expressed in terms of their

spatial Fourier transforms as
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> >
ik.
£15(0,0) = T £, (V,6) it >
k
e
E G0 = E 0 el (3.1.4)
k
> >
i
¢, (F,6) =L ¢ () e "
1 k
k
where
> 1 -+ v "]':]E._r* >
fjk(v’t) == flj(r, ,t) e dr
L
> 1 |2 ~» -ik.r >
Ek(t) = —§-J El(r,t) e dr
L
> > > b ; . y
and El(r,t) == V¢l(r,t) in the electrostatic limit. For convenience we

. 4 > ., - .
have written k instead of k in all summations and subscripts.

4 226
Their time dependence is taken to be of the WKB form 48, » ),

viz.,
t
exp {[ Sk(t') dt'} (3.1.5)
o
where, in general, Sk(t') = =1 wk(t') = —iwi(t') + yk(t'), where
. "
wk(t) = wk(t) i yk(t) (3.1.6)
with ol =

k = Re(wk) the real part, and Yy = Im(wk) the imaginary part of .

In the electrostatic limit Maxwell's equations are replaced by Poisson's

equation

v = - 41 ¥ n. e, L, T I
¢ ™I e (317
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Defihing the ensemble average as

<g> = lim l§ J g dr
L~ L

the right hand side of Eq.(3.1.2) is manipulated with the aid of

Eq.(3.1.4) to yield

e
[ ef . o . (4,0 TR
E, . —di EB ) o 15, Rt
1 > q =3
oV q k 3V

+ Wby 1P 4
=1imZZE(t).—:J——3Je q). dr
Lwe q k 3 ¢
, 3f.. (V,t)
> K
= E () . —
k v

since
j{f G +R =0

3

lim —‘J exp {i(k+q).z} dr =
I L

L > > <>
0ifq+k#0

Thus Eq.(3.1.2) may be rewritten as

> >

of . _ TR VxB of . e. of ,

2 +V.—+Bl+_l('r§ § == °>. +°J=-—lzﬁk.—;15 (3.1.8)
orT o oV sk oV

In the linear approximation we neglect the products of perturbed
quantities,and hence set the right hand sides of Eqs.(3.1.3) and

(3.1.8) to zero. We then write

£, = .(YL,VZ) £3:1.4)

as the solution of Eq.(3.1.8). Note that the background distribution
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foj is assumed to be spatially uniform and isotropic in the velocity
3>
plane perpendicular to Bo' The reason for this particular choice of

foj will be discussed in Section 3.2.

With its right hand side equated to zero,Eq.(3.1.3) reduces to

> >
of af .. e VxB of .. e, af .
a‘J+V.T'l+_J.(E + — °>. +'J=-J-v¢l A (3.1.10)
t oY m, \© A i

where EI(?,t) has been replaced by - V¢l(¥,t). This equation, in turn,

can be written as

where the operator [d/dt]u is defined as the rate of change following

(16)

an unperturbed orbit in phase space , 1.e., the left hand side re-
presents the rate of change of flj as 'seen' by a particle which at

. - + + ’ »
time t is at the phase point (r,V) under observation, but whose motion

through phase space is determined by the external fields Eo and go'

Thus, integrating Eq.(3.1.10) along the unperturbed orbits, we find

e. ¢t of .
£,.@V,t) ==L | vo (F',t"). =2 g¢° (3.1.11)
1_] m. 1 >,
- L CAY
The lower limit has been set at t' = - = under the assumption that the

plasma is undisturbed in the infinite past and the perturbatiens grow

from zero.
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3.2 ELECTRON AND ION CONTRIBUTIONS TO THE DISPERSION RELATION

For the electrons Eq.(3.1.11) becomes

t

of
> = -8 T oe '
fle(r,3,t) = m J V¢1(r.,t ). T dt (3.2.1)

The equation governing electron motion in the presence of an electric

field Eo and a magnetic field ﬁo is

o
(@]

> >
_-; > VxBo
mr = - e [E + ] (3.2.2)

For the configuration shown in Fig. 3.1 this yields

Vx(t') = \i(t) cos {8(t) - Qe(t'-t)}
Vy(t') - Vo = \i(t) sin {6(t) - Qe(t'—t)}
Vz = constant.

2 >, .
where Vz(t) = V2(t) + (V. (t) = V) and V_1is the electron Ex3B drift.
L X y o o
From the above equations we may construct two constants of the motionm,
viz.,

2

2
-V

+ (V.-v )2 and V
y o z

Since any distribution that is a function of the constants of the motion

(1

is necessarily a solution of the zero order Vlasov equation ythe
equilibrium distribution function foe is chosen to depend on ﬁ? and Vz,

i.e.,

foe = foe(YL,V ) (3.2.3)
as in Eq.(3.1.9).
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afoe e foe afoe
Now = R i 2
oV o o Ve
1 afoe v1+ 1 afoe ;l*z
YL a‘_/L A avz
where
vV = R+ (V-V) §
Vi = V_ X v 'o y
Consequently
3f 5f > of 93¢
TR A M B ST
av 1l z

In the linear approximation, Sk

of time. Expression (3.1.5)

= -iw

X is a constant, i.e. independent

then reduces to

exp (- 1 Wy t)

Thus, using Eq.(3.1.4), the perturbed quantities 9 and f,, may be

written as

> > > if: _{'
fle(r,V,t) =X fek(v’t) e
k
where
> _ 3 —iw t
fek(v’t) = fekw(v) k
and
> ik.r
6,8 =L g (6) T =5 g
k k
where
- -iw, t
b (8) =6 ek

.
P FE),00= 6, e Eru®)

., >
e1(k.r-wkt)

(3.2.5a)

=3 ¢, (£(t),t)
k kw

(3.2.5b)
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In terms of the Fourier transforms (3.1.4), Eq.(3.2.1) reduces to

t =
e e [ > afoe(v) > > >

fek(V,t) =-= j ¢k(t')ik - = exp {ik . [r(t")-r(t)]} dt'

e ov!
Since ¢k(t') = ¢km e_iwkt', this may be rewritten as

e ‘ > Bfoe(V') > -+ -+
fek(V,t) =-= J ¢k(t) ik « — exp {ik . [r(t')—r(t)]-iwk(t'-t)} de!

e ov'
or (3.2.5¢)
£, (W) =-2 t 14 200 (1) iR . [E(E)-F(e) )i, (2=t} de!

ekw = Eé ) ¢kw 1k . aV' exp 11k . [r(t')-r(t 1w,
Then
d¢1(?,t) 3, 3,
T "3 VT
or
> . ~
ol PR E {- iw, - kyVo - szz)} 1w

from which

dg.

> _ |- k,w B _ _ ~

v, . Y = i e iuy, kyvo k)8, ] (3.2.6)

With the aid of Eqs.(3.2.4), (3.2.5 ) and (3.2.6), Eq.(3.2.1) reduces

to
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T fekw(v) exp {i[%.T(t) - mkt]}

k
t ) of {N (+(tl) tl)} ~ 5
-2 x| [ﬁﬁ{g_trm FED M e v 1, 0F e e )
ek

of

. oe ~ > ' '
+ '.Lkz W‘Cbkw(r(t ),t )] dt

which yields

X J exp'{ii L)) - imk(t'-t)} dt']
(3.2.7)

The electron equation of motion (3.2.2) has as solutions (47)

x(t') = x(t) - (YL/Qe) {sin [6(t) - Qe(t'—t)] - sin 6(t)}
y(t') = y(t) + (YL/Qe) {cos [6(t) - Qe(t'-t)] - cos B(t)} + V _(t'-t)
z(t') = z(t) + Vz(t'—t)

(3.2.8)
with which

k. [2@eH-1(t)] = (kv /2) [— sin {[8(t) - 9_(t'-0)] - ¥} + sin {6(t) - w}]

L
+ (kyVo + szz) (t'-t)
where

x =(kokgok) = (y cosy, k) sin¥, k) (3.2.9)



40

Z
z
A : i!t
_\7 A~ gl ~
2 i X TR ~
V 1]
} |
| |
0,V _,0) | |
, —> y > Y
PNl y |
L 1 -
/
/ YL k.L
/' X
Figure 3.2

Hence, the integral in Eq.(3.2.7) may be rewritten as

t
exp {i £ sin[o(t) - ¥]} J exp {- i £ sin [O(t) - Qe(t'-t) - v]}

X  exp {i(kyVo vy - wk) (" -¢)) dt’

where

g = KLYL/Qe. (3.2.10)
This integral is manipulated with the aid of the identity (60)
+00
exp (1 a sin B) = I Jn(a) exp (i n B) (3.2.11)

ne——e

where Jn is the Bessel function of the first kind of order n,

Recalling that the plasma is undisturbed at t = - =, we finally obtain
of
1 oe ; ;
£ (V) --= ) [— - exp{i £ sin(©-Y¥)}
ekw m, kw [YL GYL
1 3 1 9 1 3
-k TR THRR | el . Sy Sl
. z+oo {(w, yvo) W 3 k V. (Vz v, \_ILG\_IL)}foe
o I I 1, Eexpl-i n(e-1))]
n= (wk kyvo kv, nQe) n

(3.2.12)
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For low frequency modes, of which the ion acoustic is an example,
|w, =k V = kV | << {2 |, and therefore we keep only the n = 0 term
k y o Z Z e

in the summation above. Then

oe
] (3.2.12a)

For the ions we assume not only that because of their inertia, they

are ummagnetized, but also for the same reason they do not react to

the electric field. Thus the equation of motion for the ions is
r=3

with solutions

3
r

>
V = constant
>
r

?(t')

(t) + v (t1=t)
Then for the ions, Eq.(3.2.7) modifies to

Iy _ e
m(v) - Ei LW

1 %o {. { B ; (1 3 13 )}
= iw = = *ikV = o <= = o ,
[YL oV k YL GYL 2% Vz 8Vz Vi ol

t
[ exp {i(ﬁ.V—wk) (c'=t})} dt']

X J_m

It must be noted that here YE = Vi + Vi, while for the electrons we

2 2 o 12
had V" = V, + (V =V )
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Upon integrating with respect to t' we find

£, =24 [— - 01]
1k my ke [ 9% (KT
(3.2.13)
where
ﬁ . V =';L . ?L + szz = ELYL cos¢ + szz
3.3 THE LINEAR DISPERSION RELATION

The linear dispersion relation for the crossfield current-
driven ion acoustic instability is now derived with the added assumption
that the electrons are hot and the ions cold, i.e., Te (electron

temperature) >> Ti (ion temperature).
Using Eq.(3.2,.5b), Poisson's equation (3.1.7) reduces to

= ———-(nikw —'nekw) (3.3.1)

where njkw represents the perturbation in density of the jth species.
njkw is found with the aid of Eqs.(3.2.12a) and (3.2.13) and the
relation

n. =Jrf. dv (3.3.1a)
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For the electrons

V.|. dV.L dedG

where dV = YLdYLdede is expressed in terms of cylindrical coordinates

in velocity space and £ = KLYL/Qe, as defined by Eq.(3.2.10).

We expand exp {i £ sin (6-¥)} in terms of the identity (3.2.11) and

then use the result

2m 2n if 2 =0
J exp (1 2 ©) d6 = {
) 0 if 2 O
to obtain
b B (13 13
{(w -k V )= +k V —-—-——)}f
] =_2ﬂe¢ an afoe_JZ(g) k Ty o'y 3y 'z z\V 3V v W oe]
ekuw . ko ) [ 3y ) (o "k V 7k V)
X Yl.dYL dv
2f  J2(E)k (OF__/3V )
- - gﬂg_¢ J [{I-Jz(g)} 1 6@ - 8 £ " ge 2 ] V. dv dv
m, ko ) | o v Y (wk—kyVo—szz) s s €
(3.3.2)
For a background distribution fo of the type (3.2.3), we define
1 2
Woe(Vz) = J foe(YL,Vz) v 4% (3.3.3)

and write
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[ 2 _

Jo Jo(lellﬂe) foe(Yl’Vz)YLdYL = a(EL/Qe) Woe(Vz) (3.3.4)
) 2 1 afoe(‘.,l.z’vz)
L {l—Jo(lel /Qe)} V_L W Yl.d‘ﬁ. = B(k_L/Qe) \Poe(Vz) (3.3.5)

We shall later show that for Maxwellian velocity distributions

a(kl/Qe) and 8(kl/9e) are well known expressions.

Equation (3.3.2) then becomes

4o
2me J [ a(k.L /Qe)kz )

Pekw - —nc rw [B(klme) F (wk-kyVo-szz) Wz] Yoalle? 9y

(3.3.6)

From Eq.(3.2.13) for the ions, we obtain

£, dv
ke ikw

1 3 1 9 1 9o
. ok {wk ¥ iy Ve (V E A ) )}foi
=2y [_‘. L - = B R N ) poawae g0
m, "k Y oY (wk-kzvz—kl\i,cosdﬂ | s el
", 1 afoi
[ con(f agD) - 108000
= ku I 2 4 Vv, dV, dV d¢
m, (wk-szz-k-LYL cosé) i Fuep, IRl

upon rotating our coordinate system in the Vx_vy plane through an angle

¥, as shown in the accompaning figure.
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Integrating with respect to the phase angle ¢, we get

+ 2
2red k k
k“’J[ = - 3]\v(v)dv (3.3.7)
n. - - = —— - o3&
iko m, (w ke V )2 (wk kzvz) oV | oi’'z z
=00 zZ Z
_where
2
woi(vz) = J foi(Yl’vz) YLdYL (3:3:8)

In arriving at Eq.(3.3.7) we have approximated

2.2 2
{1 99 ]‘”2 1. Y
2 2
(wk-kzvz) 2(wk-szz)
kzv2
4 1l g ;
by assum1ng-————————7-<< 1. This is reasonable since the average
(wk-kzvz)

/2 /2

. 1 12 .
ion speed <V>i ~ Ci (Ti/mi) << (Te/mi) = Cs (wk/k),

for T, >> T,, k ~ k) and |kzvz| << .

We now substitute for LR and LT from Eqs.(3.3.6) and (3.3.7)

respectively, into Eq.(3.3.1), and obtain the dispersion relation
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w 12 po k
_ 4re [2me { eJ ( z ) )
b, ~EilENE e |8 - — = )Y .(V) av
ku 2 L m, ke |m, I (mk_kzvz)Z (0, "k, V ) 3V _/ oi’'z z
+o0
(!(kl/Qe)kz 3
* I [B(KL/Qe) " (w,-k V -k V) v, ] Woe(vz) de}]
T S Y z

The assumption |k \ | < wy for the ions allows us to reduce this equation
z z

to the approximate form

w . .D

Kk 2k V k Kk V

e(mk)=1-——2--8“2‘32 nie-[ {-:':—<1+ zz)-—z—<1+ zz)gv}w.(vz)dvz
’ mk- L®% Kk U Uy zJ Ot

T 0L(k.l./ge)kz )
* l {B(Kllne) - (mk—kyVo-szz) SV;

} ¥y (V) dv ] = 0 (3.3.9)
oe z z

In Eq.(3.1.6) we have written w0 = mi + 1 Vi Restricting ourselves

to growth rates Yy such that |yk| << m;, we may expand

1 I R A 21 Yk)
2 r,. 2 ,r.2\ T
(‘_"k) (wk+1vk) () w,
and (3.3.10)
iy

Lo L(i-
U)k mr wr.
k k

The condition |YR| << m{ also allows us to expand the integral

z oe
av
@, RV K Vv, T

+o
J k ¥y
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about w, = m; (i.e. = 0). Hence

k Yk

400
k (Y /av)
J Z oe Z de

Bl
~m(mk+1Yk kyvo kzvz)

E k, (Y /) = k (3Y_/3V )
im J -dv +1Yk ~ {lim J = 28 _Z de]
e+0‘-m —k \' -k \' +1e) Jw Wy e+0 (w —k \' -k V +1e)
00

k_(3y __/av.))

(1 + iy 3 ) [lim J - e W ] (3.3.11)

8wk e*0+ —m(wk-kyvo—kzvz+1e)
The integral term may be written as
400
(Y __/a3v.)
- lim J A av_

¥ H
elaoT ox {Vz‘[{(mk-kyvo)/kz}+1e 1}

where ¢' = e/kz.

It is seen from the above expression that by expanding about

w = w; + ie we have moved the pole above the real Vz axis (e'>0).
Since the integral has to be performed according to the "Landau

n (1, p. 376), this enables us to integrate along the real

prescription
Vv, axis. The limit €'+0 then yields the solution to the original
integral,

Thus, defining

v = (w; - kyVo)/kz (3.3.11a)
we have (I, p. 382)
=00
(Y _ /3v)
- lim J oc 2 dv
+

oot Lo Vi) ?
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@Y__/ov) %
- H__ v, + i J (@¥_ /oV) m 8(V, - V) dvz]

(vz-v;)
(Y /3v) oV
= = (f——“——z— v - in(av“) . (3.3.12)
w -7) z’v =V
Z Zz Zz Zz

The second term on the right hand side, due to G(Vz-vz), represents the
resonant interaction between the electrons and the wave, i.e. electrons
with speed along the magnetic field go close to the Doppler-shifted

wave speed Vz = (ul

X _kyvo)/kz' These particles are responsible for

either growth or damping of the wave. The first term is the principal
part of the integral, and represents the non-resonant interaction between
the bulk of the electrons and the wave - the particles merely oscillating

in the presence of the wave.

With the aid of the Eqs.(3.3.10) - (3.3.12) the dispersion relation

(3.3.9) can be written as

+o0 2 . .
) 8‘"262 me kJ_ / 21Yk |' ZRZVZ/ 1Yk
e(w,k)=1- G 5 T 2\1- L]+ 1-
m k1P (wl) wr wrgg\ wy
e —o0 k k k k
k iv, K2y [ 2y
i [.3(._ )+ 2z (). k)]i_} vy (V) Qv
Wof uE (wr)Z\ WF 713V, oi z z
k k k k
+o
B (K, / )J W) iy / )( 2 ({2 0e?%) oe
+ Q Y V.)av + a(k /@ 1+1 ){4 dVv +i1r< )
i e_moe z’ 'z L Ye X‘ami W V) z S
Z Zz z Z
=0 (3.3.13)

Upon resolving into real and imaginary components, we obtain for the

real part
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+00 2
2 2 rm k, k k V
e(m,k)=1-8"§ f_eJ {LZ-—Z(H 22Y2 1y (v)av
¥ Py | : (w5) o LU B | el T e s
g k k k
b (3Y  /av)
+B(k/Q)J o(V,) dv, +a(k/9)¢——-—dv]=0
-L e - .I. (V—V) VA
(3.3.14)
The imaginary part can be manipulated to show that
Y, - 1 atg /) [or @ )/av] v
x° +o 2
w m 2k 2k V k 2k V
k —eH{(- 'L)(l+ zz>+—5(l+-—-zz)-a—}‘l’.(V)dV]
m, (mr)Z of of of BVZ ol z z
P k k k k
(3.3.15)

In arriving at the above results we have neglected small terms and their

products in comparison to other terms.
In addition, for the growth rate (3.3.15) we have assumed
-— _ )
v,| = |(mk kyVo)/kz| << |vz| (3.3.16)

for the non-resonant electrons. This approximation will be discussed

in the next section.

We recall that the expressions (3.3.14) and (3.3.15) hold for any
equilibrium distributions of the form £ , = f .(Yf,v ), with the
o] 0] z

functionals o and B given by (3.3.4) and (3.3.5) respectively.
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3.4 APPLICATION TO MAXWELLIAN ELECTRON AND ION VELOCITY

DISTRIBUTIONS

The theory developed above, is now applied to the case of

Maxwellian electron and ion velocity distributions.

For the drifting electrons we choose

/2

<
N
~
1]

2.-3 2 2 2 2
n (2nCe) exp { (VX+(Vy Vo) +Vz)/2Ce}

R 7 2
a, exp {—(q_+Vz)/2Ce}

where
_ 2,=3/2
a, =mn, (2ﬂCe) (3.4.1)
2 2 2
and, we recall, for the electrons V, = V +(V -V )",
2 & Ay Ry
Then, from Eq.(3.3.3),
¥ (V) = £ (w2, ) v av
oe' 'z o o L%z 4 TAL
_ B . B
= a_ exp ( Vz/ZCe) Jo exp ( YL/ZCe) v dv
o2 Py my
= aeCe exp ( Vz/ZCe) (3.4.2)
Furthermore
[ Paqwe) e i) v ay
Jo oMW/ %e) oo 17z 1 "1
_ 2,2 2 2, 2
= a, exp ( Vz/ZCe) [ Jo (ng!Qe) exp (—YL/ZCe) W dYL

o
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(60)

Using the relation

co

2 2
[ exp (-pxz) J2 (qx) x dx -1 exp /— S—) I (S—) (3.4.3)
Jo n 2p \ 2p/ n\2p "

where In is the modified Bessel function of the first kind of order n,

it turns out that

co

2 2 2 2,2
L I G/ £ (V) Y 4y = aCloexp (-V/2¢)) T_(b)  (3.4.4)

where
-b
Fo(b) = @ Io(b)
with (3.4.5)
22,2
b = ELCe/Qe

Thus, from Eqs.(3.3.4), (3.4.2) and (3.4.4) we see that
a(EL/Qe) = Fo(b) (3.4.6)

Similarly

00

2
I {1 - I, 04 Y /Qe)}

(o}

of
1 oe
/AN

iy

00

a, exp (-v2/2¢2) j (- 2agwe)r (¢h exp (<yPr2ch) y a
(o}

1

2 2 2 2. =1
aeCe exp ( Vz/2Ce) {Fo(b) -1} (Ce) (3.4.7)
Therefore, from Eqs.(3.3.5), (3.4.2) and (3.4.7),

Bl /0,) = (€)™ {r ) - 1) (3.4.8)



For the stationary ions the equilibrium distribution function is

chosen to be

2 s 2.-3/2 3 vy ] 2
foi(YL,Vz) =n (ZﬂCi) exp { (Vx+Vy+Vz)/2Ci}
. 2
= a; exp {—(YL+VZ)/2C1}
where
~ 2,-3/2
a; =mn_ (ZﬂCi) (3.4.9)
and V2 = V2+V2 for the ions.
L Xy

Then, using Eq.(3.3.8), we find

2 2.2
Woi(Vz) = a, Ci exp (—\Z/ZCi)

and (see Appendix A)

+o0 +o0
( 2 [ 2,2
y . = a, . - .
J 0j (VZ) de aJ CJ J exp ( VZ/ZCJ) de
2 . ,
- a, cf (2vC§)]/2 (fom £ (3.4.10a)
+oo = (no/2n)
( _
J Vz Woi(vz) de =0 (3.4.10b)
e Lk V . /3¥ 2k
z 2 oli\dv T 2 2.1/2
1 + 3V z=--—a, C. (2nC.)
Wof 3 W Lo i
-0 k k
(3.4.10¢)
n Rk
= - 0 =
2nm;

where £ = integer.
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Furthermore, the assumption (3.3.16) leads to the result

(3Y  /3V ) ey

# oe' "z J 1 % v = - ae(Z"Ci 1/2
v -v)

VA Z

(3.4.10d)
2n1C

With the results (3.4.6) — (3.4.10) the real part of the dispersion

relation ((3.3.14)) reduces to

81r2e2 me Ef no ki no no no
b= 2[nT{r22_n+ rzﬂ}‘" z{ro(b)"}'ro(b) 2]=°
m, k i (wk) (w,) 21rCe

which may be written as

2 2
| _ope [Te k" 1] _
2 |m, o2 2|~
k i (wk) Ce

, 2 2 B 2, \1/2 .,
since k" = Kk~ + kz, and wpe = (4wnoe /me) is the electron plasma

frequency.

Solving for wi, we obtain

r _ 2. 2.=1/2
W = k CS (1 +k AD) (3.4.11)

/2 /2

2.1 . 1
h = 4 =
wnere AD (T / ne ) is the electron Debye length and CS (T /mi)

is the ion sound speed. The expression (3.4.11) is the usual form for

(1

r . .
wk for the ion acoustic mode

Similarly, expression (3.3.15) for the growth rate reduces to
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Y, T Fo(b) n, (ZHCZ)—3/2 CZ[(JVZ/CZ) exp {—(Vz//ECe)z}]
¥ 2
wy m, _ ZEL \ 32-+ kz /_ 2kz 32)]
m, ( r)2} 2T of \ r 2n/]
t i k “K

—wr () T exp {-(vz//ice>2}

m 2
[_e (anc2y3/2 2k ]
m, e 21T(mr)Z
k
Substituting for Vz and Fo(b) from Eqs.(3.3.11a) and (3.4.5) respectively,

this becomes

r

b
X (“\]/2 {E /&y/z} e LM {kyv° mk] | (3.4.12)
m; - kz \Zmi (1+k2A§) sz

In arriving at the result (3.4.12) we have assumed that for the warm

mr—k \'
o

Y2k C
zZ e

electrons

<< 1 and hence set exp {-(Vz//ECé)z} = 1, For

Vz ~ Ce this is equivalent to the approximation (3.3.16), and has been

(11) (14)

adopted by LASHMORE-DAVIES and MARTIN and AREFEV . Since in

practice Vo >> (m;/k), it follows that (m;//szCe) << 1. This implies

wy kCS me)1/2 kz
that W ~ -k—C << ], or 0 < (E << T(_' (3.4.]3)
zZ e zZ e 1

In experimental observations of the ion acoustic instability BARREIT et ql (37)

and HAYZEN and BARRETT (41) find agreement with theory for parameters

satisfying this condition. The former worked with a cesium plasma with

1/2
(me/mi) /2, 0,002 and (kz/k) = 0,03, the latter with an argon plasma
1/2

with (me/mi) = 0,004 and (kz/k) 50,03,
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The growth rate (3.4.12) is identical to that obtained from the ion
acoustic dispersion relation of LASHMORE —~ DAVIES and MARTIN (]]).
For long wavelength fluctuations, i.e. b = Kfrz << 1, it agrees with

the result of AREFEV (14)

, provided one neglects, as we have done, the
contribution of the small exponential term due to ion Landau damping in

his investigations.

The enhancement of the growth rate by the factor (k/kz) for wave pro-
pagation oblique to the magnetic field as compared to the field-free or

field-aligned case, has been discussed by HAYZEN (61) (62).

and LEE In
the absence of a magnetic field the electrons, because of their small
mass, move rapidly to neutralize any potential variations produced by

the ions.

However, for B + 0 the electrons are tied to the field lines

and are free to accelerate only along B.
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In the figure above, an electron at point P will travel a distance PQ
in the field-free case to neutralize the potential perturbation. For
> ; i P

B # 0 the motion of the electron across is restricted. Instead an
electron at R is free to accelerate along B and reach the point Q.
The longer distance travelled by the neutralizing electron (RQ > PQ)
allows the perturbations to grow to a larger amplitude. From the

figure (RQ/PQ) = (k/kz).

In terms of velocity distribution functions, since the electron
. . x . . - - S
thermal motion is along B, its projection along the wave vector k, gives

an effective distribution with the thermal speed diminished by the ratio

kz/k, as shown in the figure below.

£(V)

fe projected

>
along k

Consequently, even for small drift velocities Vo b3 Cs’ the phase velocity
of the wave (V¢ ~ CS) can coincide with the location of maximum slope of
the effective electron distribution function and thereby experience en-
hanced growth. Since the ions are unmagnetized, the slope of the ion

distribution function is not affected, and ion Landau damping remains

unaltered.

<V
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2.3 ‘THE EFFECT OF INHOMOGENEITIES ON THE CROSSFIELD CURRENT-

DRIVEN ION ACOUSTIC INSTABILITY

The formalism presented in arriving at the results (3.3.14)
and (3.3.15) is for a general equilibrium distribution foj(ﬁ?,vz). It
has been shown to yield previously derived results for the special case
of Maxwellian electron and ion velocity distributions. In the linear
treatment of electrostatic plasma instabilities, where one may include
inhomogeneities in plasma temperature, plasma density and magnetic field,
it is a normal practice to choose a self-consistent equilibrium velocity
distribution for both the electrons and the ions, and the dispersion
relation is established in terms of the plasma dispersion function (63).
Since almost every reference cited in Section 2.1 adopts this approach,
it is appropriate that for purpose of completeness we review the technique.
The work presented here under has been previously undertaken by the author

(64) (18)

of this thesis and the findings have been reported

. . L3 3 . . +
We consider a model with gradients in magnetic field B, electron
density n, and electron temperature perpendicular to the magnetic field ?le’

as shown in the figure below.

PROPAGATING

Piiff;, T
>y
/-\-/ 5

—_—
VB Vo
Vn
v
X ‘/ VT
Le

Assuming the inhomogeneities to vary linearly, we may write
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2
e
3 =38 (1+x)2 (T/B=——~—--§=—VB %) (a)
° 22 |
e
(1+px) < e § Vo $) (b)
n =n 4 = - = -
e ° "ome | "
e e
(3.5.1)
R 6T
T = T, (1+6%) (vT = - §=- Vo ¥) (c)
m |Q |
e e
> >
¢ -k D) (@)
B

where the quantities in parantheses are the associated gradient drift
. s . - 1 : ;
velocities. VO is the E x B drift of the magnetized electrons re-
lative to the cold ummagnetized ions which are assumed to be at rest.
From the equations of motion for the electron:
eE

—52 - |Qe|(]+ex)§
e

i |sze|(1+gx)x

L
H

zZ=20
we may construct, among others, the following constants of the motion

(to order ¢)

2 2
YL = Vx + (Vy Vo) ’ Vz and X = x -~

Thus, the equilibrium distribution for the electrons is taken to be

. W+
2

2 % » I TR
foe(YL ,vz,x) =——37 {1 + X[p+{6(\_7|_—2Ce)/2Ce}]}exp =
e

(ZWCe)

(3.5.2)

and has been shown to be self-consistent (64).
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Then
afoe afoe 2 afoe afoe
e Wit WA taw WYe
2 Bﬁ_

> >

(% +V)) V.=V )

sk 2y 2y ot 8 % o L rswvi-2cy2cillg ¢
2 oe 2 1l “oe 4 e Ve oe
c, la | ¢ o,

.

where use has been made of the local approximation This involves
evaluating all equilibrium features which occur in the dispersion
relation (ne,TLe,dne/dx, etc.) at the local position x = 0. 1In

addition, the inhomogeneities have been assumed to be weak, so that

products of gradients are neglected.

The expression for afoe/aV is then used in Eq.(3.2.5¢c) to

find the perturbed electron distribution fekw($)’ which in turn, via

Eq.(3.3.1a), yields the perturbed electron density LI Using the
identity (3.2.11), it turns out that
400 400 2 2
eklu Teo |' (21TC§)3 ‘ =.—m o J—m " 2\ Qe / 2C§
{w-k [VO-Vn+VT(]-W?/C§)]}]
x J (3.5.3)

(kZVZ-[w—ky(Vo—VB)]-lQe) |

We may express the integration with respect to Vz in terms of the

plasma dispersion function (Z-function), defined as (63)
+0o0
-1/2 ( gxp{~ x2)
Z(A) = | o= dx (3.5.4a)

=00

for Im(A) > 0 and as the analytic continuation of this for m() < 0.
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An alternative definition is

ix
Z(A) = 2i exp(—XZ) J exp(—tz) dt (3.5.4b)
Then
n e o
n . " ; L [[] + ! g E J {w-k_[V -V +VT(1—Y|_2/CZ)]}
e eo /szCe f=-— ‘0 ey "
w-k (V+€V2/2§2 )40 K Vi v
xz[ y U LI RN (2 Vo v | ss)
2k C N 202/ =l

The ions, once again, are assumed to traverse straight line orbits
with constant velocity, i.e., due to their inertia, they react to
neither the magnetic nor the electric field . Then the ion equation

of motion

LR

with the solution

') - T(t) =V (£'-t)

and an equilibrium velocity distribution

2 no (§?+V:)
oi*l 2.3/2 2
(ZWCi) 2Ci
2 2 2 . . .

where YL = Vx+vy’ are used to arrive, in a manner paralleling that
for the electrons, at the result

n e

k
n, =>4 2" (w/Y2ke ) (3.5.6)

1kw 2T,
i
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for the perturbed ion density. Here Z'(A), the first derivation of

. A g ; 1
the plasma dispersion function, is given by €63 16)

Z'(A) = = 2[1+x Zz())] (3.5.7)

Upon substituting for LI and LY from Eqs.(3.5.5) and (3.5.6)

respectively, into Poisson's equation (3.3.1), viz.,

¢km n k2 (nikm_nekm)

we may write the dispersion relation in the familiar form

1 + Ke + Ki =0 (3.5.8a)
where
2 -
o[ I g, 2.a
K =—114+ E {w-k [V -V +V_(1-%"/C)]1}
i ! /EkC32=-m.[ow ACRENS S S
Z e
w=k (V +e%2/20 )~29 A 2
er o - e]JZ(kV/Q)exp/--—'l;—)VdV]
| 7k C R S B \ 2/ 171
Z e e
(3.5.8b)
and
2
—
K, = 7 7T, z'(m/ﬁkci) (3.5.8¢)

For the low frequency ion acoustic wave ( |m—ky{Vo+ eﬁ?/ZQe}l << IQel )
we use the result Z_n(x)= -Zn(x) to retain only the £ = 0 term in the

summation in the expression for Ke. For a plasma with warm electrons and

cold ioms, i.e., Te >> Ti(~0), we assume
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2
w-k_(V_ + ¥ /20 )
lz_| Rl o U

- | 2k C_

and use the power series expansion(63)
2

Z(O\) = i i R e T n%/3 + w5 - ... for Al << 1l

(3.5.9a)
The assumption of cold ioms implieslzi|= |w//§kCi| >> 1. In this limit
: , (63)
one may employ the asympototic expansion
O 2 4
ZO) =i 7% 8 e - [ & 1/27 + 34" + ....] (3.5.9b)
where
0 Im(A) > 0
§ =<1 Im(A) =0
2 Im(A) < O

For a weak magnetic field gradient, VB is small. The assumption

|zoe| << 1 thus implies that the Doppler-shifted wave speed along the
magnetic field is very much smaller than the electron thermal speed.
For the ioms, |zi| >> 1 means that the wave phase speed is much larger

than the ion thermal speed.

With the aid of the above approximations and the results (60)

© 2

V
[ .2 D g2 =
JOJO(leL /Qe) exp \ "2-(—:2/ YLd‘.IL = Ce e Io(b)
e
© 2
i 3 4

J g? Ji(glg_/ﬂe) exp (- —3) day =2, e [ (1-Db) Io(b) * bI](b)]
(o]

2C2
e
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2 R 2 2 v i .
where b = Kfce/Qe = KLre and In(b) is the modified Bessel function of

order n, the dispersion relation (3.5.8a) may be solved for the growth

rate to yield

1/2 0 TR B
T s[{ky(Vo vn+vT) mk}ro 2kvaQo]

<
P

(3.5.10)

=

=2 2
2{a FCS oS ky<VB>Qo}

with

being the real part of the frequency, and where

Q
]

(1 + kzxg)'i r_(b) e_bIn(b)

Q (b) = (1-D)T_ + BT, s = (c/k) (m /om)t

and > = (eC§/|Qe|) is the average VB drift. In the analysis we
have chosen s s 1. In the absence of inhomogeneities the growth rate

(3.5.10) reduces to the expression (3.4.12).

The significant feature of this result is that while it

(15)

confirms earlier calculations that showed that VT has a destabilizing
effect for large Klre, for longer wavelengths (@Lre s 1) the temperature
gradient is found to reduce the growth rate (see Fig. 3.3). One may

offer the following possible explanation for the observed behaviour.

For large KLre (>> 1) the distortion in the electron dis-
tribution function produced by the introduction of a temperature gradient,
as explained by PRIEST and SANDERSON (]5), increases the slope of the
distribution function at the velocity corresponding to the wave phase
velocity. This distortion arises from the fact that for a temperature
gradient increasing with x, electrons situated at larger x values in

physical space have larger gyroradii (for a fixed ﬁ), since
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Figure 3.3

0.4

£l

0,2

Bl I5

Normalized growth rate of the crossfield current-driven ion acoustic

instability as a function of b-l=(kL;e)_2. Curve 1 represents 30 alone,

curve 2 also includes the effects of VB and Vﬁ, while curve 3 has VQ,V

Vn and VT' Other parameters are ky/k = 0,9995, s = 0,045 (cesium plasma).
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2 212
Ce = Te(x)/me = Qere

This results in a non-symmetric spread in Vy’ with the spread in V
for Vy < 0 being larger than that for Vy>0, as can be seen from Fig.
3.4(a) below. In the absence of VT the spread is symmetric. The
consequent enhancement in growth rate is sufficient to overcome the

reduction 1in growth rate resulting from a decrease in total particle

drift speed VD Vo - Vn = Vpe A net positive change in growth results.
Now, for KL= k = constant ( fixed wavelength) ELre may be reduced

so that Klre s | by decreasing r,. If we retain the same temperature
gradient, it is seen from the above equation that at a given x, r,

is reduced by increasing Qe, i.e., increasing the magnetic field

strength., This illustrated in Fig. 3.4(b) below.

y y
A | | N I I
| .
| I |
VT —> S = |
|
|
| |
I ' |
| |
fo ol o
| |
|
| @ |
| I
| | L
} | | I
| - — x - —>» X
XO Xo
3 B
z V4
(a) ELre>>1; Weak B field (b) gLresl; Strong B field

Figure 3.4
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Thus, although the spread in Vy for Vy < 0, is larger than that for

Vy > 0, the net spread in Vy is smaller for a strong B field as compared
to a weak B field. The resulting distortion in the electron distribution
function is smaller, which implies a weaker enhancement of wave growth.
It is then possible for the reduction in growth due to a decrease in

the net drift velocity to dominate over the weak enhancement and produce

a smaller resultant growth rate, i.e., VT now has a stabilizing effect.

It is seen from Fig. 3.3 that in contrast to the temperature

gradient, the introduction of a density gradient, which reduces the

net drift V_, has a stabilizing influence for all b-].

D’
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CHAPTER FOUR

THE QUASILINEAR THEORY OF THE CROSSFIELD CURRENT~DRIVEN

ION ACOUSTIC INSTABILITY

4.1 ESTABLISHMENT OF THE QUASILINEAR DIFFUSION EQUATIONS

In the quasilinear limit of weak turbulence theory, the right
hand side of Eq.(3.1.2), and therefore of Eq.(3.1.8), is retained, i.e.,
we treat foj(v,t) as a slowly varying function of time. With foj(g,t)
still assumed to be isotropic in its velocity dependence perpendicular

>
to Bo, we may write

o @) = < fj(V,t) >= £ (\_ILZ, Vg, t) (4.1.1)

Expressing Eq.(3.1.8) in terms of cylindrical coordinates (3_,Vz,9)

in velocity space, we have (see Appendix B)

af . of . e. B e : af .. af . B 5 :
s R > R (e o _ siné ﬂ)-g._ﬂh—JzE e
t g mj o BYL i a6 j 96 mj K -k i
(4.1.2)
e.B
where Qj = —%r%-is the gyrofrequency.
3

In general,for a background distribution of the type (4.1.1), we average

over the phase angle 6 to obtain (47,65)

m o

of . 2n e. of.
_°l=_.1_I (__Jz (-i¢ ﬁ)*. —Jﬁ)de
. k
1k oV

(4.1.3)
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- ) -
= K = =1 * 1 = =
Here we have set E_k gk (-1k ¢k) » since E, 9,

The right hand side of Eq. (3.1.3), which can be shown to re-

present the coupling between the different plasma modes by writing El

and f1j in terms of their spatial Fourier transforms (45), is again

neglected. Therefore, we may use for the perturbations fjkw the

solutions found in Chapter Three.

However, the transition from linear to quasilinear is not

straight forward. We recall that the fjk were solutions of the basic

equation (3.1.11), which for a time dependent foj may be written as
5
e. of .(V',t')

t
2 ==l i o] " 1
flj (r, ¥, t) = — J' V¢1 0 T a "3 dt

J-oo

In terms of the Fourier transforms (3.1.4)this becomes

- e; (t - of '(V"t') - - -
f.k(V, t) = El J ¢k (2" £F . — exp (i k . [r(t')-r(t)]) dte'

(4.1.4)

As mentioned in Section 2.4, a prerequisite for the validity of
the quasilinear theory is that a sufficiently broad spectrum of waves
must be present. If A(wk -K . V) is the characteristic spread in

(uk -%. V) over the range of k values in the spectrum, then

v = Al - F . S

Cc

may be considered as the correlation time of the fluctuating fields for

the resonant particles.

In equation (4.1.4) we may approximate
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foj (V', t') = foj (V‘, t =x)
_, afo.(V', t)
~ ' -1
- foj iy BT ot
"t @', t)

provided T the characteristic time of relaxation of foj’ is such that

0j
T << 71 (4.1.5)
c i
0]
with R (.
c
For a time dependence of the WKB type (3.1.5), we set
t
¢k (t) = ¢kw exp {- i Io @ (™) dat"}
(4.1.5a)
g = } . $ " "
fjk V,t) = fjkm (V,t) exp {- i Jo W (™) e
=
] p_— o 8 1] n
Then ¢k (L") = ¢km exp {- i Jo W, (") dt"}
rt t
g e i - Ta e am
o t
t t
= ¢, P {-1i J W, (tH dt"}exp{i[ W, (t") de"}

o &!

¢, (£) exp {- 1 w (€) (t' - t)}

where we have also approximated

W (™) W (t - 1)

aw, (t)
k
LA

= ‘*’k(t)
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for T, L T We note that this condition is satisfied if the

0]
frequency spectrum is broad, as is required.

In going over from the linear to the quasilinear behaviour
we have allowed foj to change very slowly in time. Equation:(4.l.4)
may now be written in the familiar form (cf.Eq. (3.2.5¢c))
e, rt 2
V,t) = L J ¢k(t) iic*.afoj(v’t) explik.[F(t") - ?(t)]-iwk(t) (t'-t)} dt!
m. —

>

fjk
J i e av

or, from Eq. (4.1.5a)

e. t A s I
fjkmo‘z’,t)ﬁﬂ b, 1K #l exp{i k . [¥(t")-r(t)]-i w (t)(t'-t)}dt'

+ 3 .
We note that here f. (V,t), where as in the linear treatment we

jkw - fjkw

had fjkw = fjkw(v)' The time dependence has been introduced in Eq.(4.1.5a)

to allow for the slow time variation of foj(v,t). This is clear from the above

equation.

Hence,for the ion acoustic instability the perturbations fekm
and fikw are given by Eqs. (3.2.12a) and {3.2.13) respectively, with
= f
)

£ .

@,t)
0j 3V and w, = wk(t).

Diffusion Equations

For a given fjk we can manipulate the right hand side of Eq. (4.1.3)
and write this equation in the form
af. . of

L v 0 5Y

:
;
:
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Thus foj obeys a diffusion equation in velocity space. The diffusion
tensor Bj is proportional to the wave energy density. We shall see
that ﬁj can be written as the sum of two terms. The first is due to
the resonant particles, i.e.,those with speed V close to the wave
phase speed V¢ = (w;/k). It is the interaction between these particles
and the wave that is responsible for wave growth or damping. During
wave growth (damping) energy is extracted from (gained by) the resonant
particles. Therefore the velocity distribution of these particles
must change as they lose or gain energy - hence the diffusion in
velocity space. The second term is due to the non-resonant particles
which do not interact directly with the wave but merely oscillate in
the presence of the wave, thereby acquiring mechanical energy. The
'diffusion’ of non-resonant particles occurs because they gain (lose)

energy as the wave grows (damps).

Electron Diffusion Equation

For the electrons we substitute for fek’ which is given by

Eqs.(4.1.5a).and (3.2.12a), into Eq.(4.1.3). Then

afoe iez Zz 9 |1 afoe
— == — (X4, (t) | i —[—— - exp{i £sin(6-W}J (&)
ot m.z K k av\{l a\_IL o]
e
1 3 1 3 1 3
{(w,-kV)—e=—+ kV (=5 -=——)}
. k YL BYL 28 Vz E)Vz 3 B\i oe]>

(wk - kyv0 - szz)

where <= ==> denotes the average over the phase angle.
To simplify the algebra we rotate our coordinate system in the

X - y plane through an angle ¥ as shown in Fig. 4.1 below.



We then have

'1Z=1&al+oaw+kzez

(i? o =V cos ¢
1 ch 1
> .
(g, = sin ¢
Figure 4.1
with
9 _ a 3 sin ¢ 9 £ . 3 cos ¢ 9 -
— =& (cos ¢ —— - =) 4 Gy (8in ¢ T=—# =) + 2 —
5 L 3 L €y 3 L 3z
Hence
> 9 ) sin ¢ 3 9
k.—=¥k (cos ¢ —— - —) k
T 1 M YL 00 z 3V
and
of i of
oe ie 2 ) sin ¢ 3 ) 1 oe
= (- N Z|, |k (cos ¢ =o— - =—= =)+ k e
ot o \g w2 A oo Tz v Uiy 9y
| b3 1 3
U = k¥ s * %G w5 Hoe
. . Z 8
- exp(i & sin ¢)JO(E) .
(wk - kyvo - szz)

(4.1.6)
where <—- =~-> now represents the averaging over ¢. This may be rewritten
as
of

. 2 :
e (- fi—>§|¢k|2<kl(ws 5 38(8) _ sin ¢ (), , o M>

BYL YL ad z BVZ

(4.1.7)
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where
1 9 1 0o 1 9
3f : Ve - EY gt .S V"BYL)}foe
1 oe ii s ' “'m 'L
g(®) = g3 -EJ,L(E)e J_(E)
17y °
(w, —kV -kV)
k y o Z2 2z

(4.1.8)

In writing g(¢) in the above form we have expressed exp{i £ sin ¢}

in terms of the identity (3.2.11).

Now

_sin g 3g(®) \ _ 1 r" (- sin ¢) 2g(4) d¢
v 99 2m . v 9¢

2n

- | RS

by - J YL cos ¢ d¢
o

Equation (4.1.7) then reduces to

afoe 1e2 2 9 1 9
Pt (- = )z |¢k| {31(3§f + V—)< cos ¢ g(¢)> + kz W < g(d)> }
m_ k 1 z .
(4.1.9)
Upon substituting for g(9) from Eq. (4.1.8) it turns out that
| 1 29 1 09
Jo(a){(wk—kyvo)T W_*kz"z(v_ WO W”foe {3, (®)+3, (&)}
<cos ¢ g(¢)>= - -Saae -
(0, - kV, - kzvz) 2
=0
where we have used the result
+ o 2m
z Jz(E)J cos ¢ exp (i 2 ¢) do = n{ Jl(£)+§1(£)}
f= - o
=0 (4.1.92)
since (60)

J_(x) = (-n)" J_(x) (n=1, 2,3, ....)
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2 1 o .3 1 23
ot o ) Loy~ RV 5 * &G T T A e
il oe 4 Y1 g
<g(¢$)> = T 3
(wk - kyVo - szz)
of J 2(E) & (af . 7% )
2 1 oe o) z oe z
={1 -7 (E)}V—SV =
w T

(wk - kyVo - kzvz)

With these results Eq. (4.1.9) reduces to

2
Jo (&) kz(afoelavz)i]

e z 3V (4.1.10)

afoe ie2 2 )
= Rel:(T)Z|¢k| k {
m_ k z (wk - kyVo - szz)

We have taken the real part on the right hand side since the left hand

side represents a real time rate of change.

We note that

ie2 2 3 2 1 =% e
Re[(— “59E [l "k, gL -3, (s))V———L] =0
mk z o

vy
(4.1.10a)
. . - p ;
Recalling that W = 0 + 1Y), we find
¥
., T . =17 _ k
Refitu + 1w = k¥, - k) ke P g
z'z "k Yk
(4.1.11)

where

r _ T
wk = wk kyVo

Equation (4.1.10}is then rewritten as

of of
oe _ 0 D oe
ot 8Vz e 8Vz (4.1.12)
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with
2 2. 2
=44 ! g Koy 1o 17 35 0qwa)
s _2 g2 2
Pe k <ksz lISk) - %

We observe that this implies electron diffusion in the Vz
direction, i.e. along Eo' This is not surprising since the magnetized
electrons are tied to the field lines and are free to accelerate only
along Eo' For the case of a field-free plasma one would expect the
electrons to diffuse in the direction of wave propagation, since motion
along the wave vector provides the most energy exchange. Equation

(4.1.12) thus implies electron heating along the magnetic field.

Ion Diffusion Equation

Since we assume that the ions do not react to the external
fields Eo and Eo (see discussion preceeding Eq.(3.2.13)), for them

Eq.(4.1.2) reduces to

afoi
e 2 A =4 of
at - m ZE_k. lk
1k >
aVv
of
*
=y (-ie B A
ik oV

Upon substituting for fik which is given by Eqs.(4.1.5a) and (3.2.13),
we find that

1 3 i 2 _ Lge

{w,= ==+k V (= — - = —)I}f .
'afoi - ie2)2|¢ |271€ 3_[1_ 'afoi . K 34 z'zV, 3V, 3y Ol]
ot ol kK ale M (w - & . D
—(K v )l_ afoi = ol
- ie2)z|¢ Izic’a— Lk vy z aVz
m k k .BV > 3
i (wk -k . V)

(4.1.13)
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From Fig. 4.1 and the discussion preceeding Eq.(4.1.6), we see that for

: . : . i 2
a background distribution foi of the type (4.1.1), v1z.,foi(YL,Vz,t),

Q afoi Wi oo b l_afoi 3 EL sin ¢ afoi - afoi
-7 11 ‘ia‘ﬂ. \_JL 3¢ z avz

_ (ﬁ V ) 1 afoi e afoi

1°1° v Y z 3V_

Hence Eq.(4.1.13) can be written as (taking the real part)

> >
afoi i Re[i%Z A |¢ |2 E 3 {k s (Bfoi/BV)}]
. ll.l
ot e kX W Y, -k . V) veiladan
1 k
which, in turn, may be rewritten as
of . of .
ol d = ol
5t = D
aV oV
4.1.14
with ( )
+ 2
_ 2 k k v |¢ |
e k 'k
Dl a7 i (K v - wr)2 + 4
my ' K Yk
The ion diffusion equation (4.1.14) has the same form as
(28)

that used by McBRIDE et al for the modified two-stream in-
stability. Furthermore, in the small gyroradius approximation

g = klg/Qe << 1, with JS (¢) = 1. 1In this limit Eq.(4.1.12) differs
from that of McBRIDE et al (28) for the electrons only by the Doppler-
shifted term kyVo. For a spatially homogeneous plasma the electron

82)

diffusion equation of SAGDEEV and GALEEV(47’ L reduces to

Eq. (4.1.12) above.
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As for the ions, the (8/83) dependence in Bq.(4.1.14) in-
dicates a general three-dimensional diffusion. We assume, however,

that kz << k. This is reasonable since experimental measurements by

(37) (41)

HIROSE et al (36) BARRETT et al and HAYZEN and BARRETT

display maximum growth rates when kz << k., The approximation

g A28
Loy =¥ )
|—_EE_E_X_P | << 1 in Section 3.4 places a lower limit on (kz/k).
z e
Hence the discussion to follow is valid for (kz/k) values satisfying

(cf. Eq.(3.4.13))

{22}1/2 << EE << ] (4.1.15)

Since wave propagation is now restricted primarily perpendicular to
. . g . > > .

go’ we may, as an approximation, replace k k with k| k; in Eq.(4.1.14).
Thus, from this equation we conclude that ion diffusion (and therefore
. - - . . _> . . .
ion heating) is predominantly perpendicular to Bo' This is a plausible
implication since the ions, with their straight line trajectories, will
tend to favour the direction that produces the most heating. With wave
propagation restricted to a small cone about the perpendicular, ion

heating will be primarily normal to Eo'

4.2 SOLUTIONS OF THE ELECTRON DIFFUSION EQUATIONS

(a) Resonant electron diffusion

For the resonant electrons, which are responsible for wave
r
w, -k V
rowth k p L k
growth, ___E_Vz_g = | (see discussion following Eq.(3.3.12)) and
z2 z

Eq.(4.1.12) reduces to
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of
ot

2 of
oe _ 9 e 2 2 _ o 2 oe 4.2.1)
- 572{;7 k. |¢k| T S(kzvz wk) N (8) 5V }

e

- r
where, from Eq.(4.1.11), B =W - kyVo, and we have, for small !

made use of the identity
lim "k

+ SEs2 2
+ 0 (szz - wk) + Yk

=T G(szz -3 (4.2.2)
Yk

This identity implies that Eq.(4.2.1) is valid only for unstable
modes, i-e-,Yk > 0. DAVIDSON 125 B ]64), however, has discussed the
extension to the stable regime. It is found that Eq.(4.2.1) is also

applicable in this regime, i.e.,for Y i 0.

For k<< k we approximate |¢ |2 = |4 |2 and replace I by Jdk .
z k ky z

k
z

Then
afoe 3 e2 2 2 ki mi afoe
T ~ W {—2— z |¢k I Jo(kJ_V_L /Qe) TTJ V— (S(kz = V—') 3V dkz}
z m Kk 1 z z z
e
We set T = %F Y , and using definition (3.3.3), viz.,
Ky k
_ 2
Woe(Vz,t) = J: foe(YL,Vz,t) YL dYL (4.2.3)
integrate with respect to | in to obtain
2
ay__(V,,t) ) I 4 EN ot a¥_ (V,,t) :
A T IR ™ i ©F g Q —tt
at 3Vz 2m X mi VS e 3Vz

(4.2.3a)
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In arriving at the above result definition (3.3.4) for
2 2 S
a(gL/Qe) has been used. We recall that |¢k| = ¢, |7(t) and b= (8) = KV .

By replacing time with the new parameter

= 25 {& ’ E e’ | |2 "y @it - kv )2 malky /2) de'}
T= 21 ok ;7_ ¢k (") (wk . y o e ki e

equation (4.2.3a) may be written in the form

R R
A
a\yoe(vz,r) | g awoe( Z,T)

T T 25 v {_3 v } (4.2.4)
z Vz z

where the superscript "R" indicates resonant particles. We note that
T has the dimensions of (velocity)s.
The "Green's function" solution of Eq.(4.2.4) is (see Appendix C)

2/2v,5/2

WR v ,t) = é{nvzv'z WR (V',t=0)1 (2v
oe' z o 2z oe

T 2" )45 /T)exp{-(V25+V;5)/r}dv;

(4.2.5)

where Wge (VZ,T = 0) is the initial electron distribution in the

resonant region of velocity space and 24/ is the modified Bessel

5
function of order -4/5. For a given Wie (VZ,T = 0), Eq.(4.2.5)

may be used to determine Wﬁe(vz,r) at any later time t.

On the other hand, we may in the time asymptotic limit
obtain the similarity solution (66) of Eq.(4.2.4). 1t is a solution
that gives the asymptotic distribution of velocity (t,T - «) for an
arbitrary initial form of the distribution function. We proceed by
writing

R

Yoo (V,,1) = 7% 6(2) (4.2.6)
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where g = Vz Tv
Equation (4.2.4) then becomes
Sv+l " '
p $(D) +v T o' (D) = T () 3.8 (8)y (4.2.7)
g g

where

2

3'(r) = 38 | gn(gy - 4 4E)
% ac?

Since the left hand side has an explicit dependence on % only, it

follows that 5v+l = 0, i.e.yv = -1/5. Therefore
-1/5 5 5 =l
L= Vz T / > = B Vz T .

Thus from Eq.(4.2.7) we have

1 ¢"(%) 3. _k
p $(2) o At = )
53 250t O

0 and obtain

Initially, we set p

6 (g) = A' j§3 exp (-CS)dc

Since the integral on the right hand side cannot be manipulated by

standard methods, we try a solution of the form
5
$(z) = A exp (-¢7)

Equation (4.2.7) then yields p = -1/5, and hence from Eq.(4.2.6)

v 0 =4 Y G (-2 /) (4.2.8)
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For the ideal choice of initial distribution (so that the integral

may be exactly evaluated)

‘yﬁe (Vyor=0) = A C;l exp (—v;/ce)5 (A > 0) (4.2.9)

the solution (4.2.5) reduces to (see Appendix C)

A

5 1/5

exp {~V>/(C° + 1)} (4.2.10)
(Ce + 1) z' e

R
Woe (VZ,T) =

which for T >> Ce (asymptotic case) reduces to the similarity solution
(4.2.8). For any other initial distribution, numerical integration of
Eq.(4.2.5) yields the evolution of the resonant electron distribution
function in time. This is illustrated in Fig. 4.2 for an initial

(t = 0) Maxwellian distribution function. The curves for 1 = 0,5

and T = 1,0 are seen to behave in a manner similar to the curve
f(V)ﬁexp(-aVs), where a=0,2. We notice that the solutions (4.2.8)

and (4.2,10) are physically acceptable for Vz > 0, but not for

Vz + —», gince they diverge in this limit. This behaviour will be
discussed later. The solution (4.2.8) has the same functional form

as that of the ummagnetized ion acoustic instability SETn 52).

(b) Non-resonant electron diffusion

. ' (3 =
By virtue of the assumpt10n|(wk = kyVo)/szzl << | for the
non-resonant electrons in the linear study (cf. Eq.(3.3.16)).for them

Eq.(4.1.12) reduces to
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Figure 4.2

1,0

¥ (V)

0 (V,/Ce) 1,5

Temporal evolution of the resonant electron velocity distribution
function Wﬁe(vz,r). The initial distribution (1= 0) is chosen to
be Maxwellian. The curve (~=:='=:- ) represents exp(—aVZ),(a=0,2),
while for comparison, the broken line (- - =) is a Maxwellian

with the same peak value. The parameterblabelling the curves is T.
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2 .2
afoe - {(z e2 Tk |¢k| Jo (kl‘i /Qe) afoe}
T ' 2 3V (4.2.11)
z k m, Vz z

As in the case of the resonant electrons, we use the definitions (4.2.3)

and (3.3.4) for Woe (Vz,t) and a(KL/Qe) respectively, to rewrite this as

NR NR

vV ,t : (V_,t)

a\yoe( z’ ) = {x e2 a(ky /Q )3 |¢ |2}3 [1 a\yoe 2’ ] (4.2.12)
= - 5 L e rST2 5 v L ] .

ot K zmz e’3t' 'k 3Vz vi 3Vz

where the superscript "NR" indicates non-resonant particles, and we
have, in addition, made use of the equation for wave growth
32 2

= d g (4.2.13)

3
7T 1%

Equation (4.2.13)may be derived as follows.

From Eq.(4.1.5a)

t
¢k(t) = by, ©XP {-1i Jo[mi(t") + 1 yk(t")] dt"}

since w, = mi + i Yie (Eq.(3.1.6)). Thus

t
4,017 = 00 65 (D) = Jo, 17 exp 2 [ (™ ae”)

o

2
|

. 9 2
with 5T |¢k| 2 v, (1) |¢k
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In terms of the parameter

2 2
e®lo, |
T = 8% a(k_L/Qe) S5 aues
k me

which has dimensions of (velocity)4, Eq.(4.2.12) takes the form

NR Wy )
¥ (V) s { l__awoe % } a2
E: "INl Ow (4.2.14)

2z V.
z
with a similarity solution
NR -1/4 4
Yoo (V1) = B 7% ey (o (4.2.15)

We have used exactly the same procedure as that used to arrive at the

result (4.2.8). Paralleling the sequence from Eq.(4.2.6) to Eq.(4.2.8),

we write
NR _ P Ly v
Yoo (Vz,r) = 17 ¢(%) (z=V_1)

Equation (4.2.14) then reduces to

4v+1]

puo+vc¢%m=‘16{“t§—2$“H

Since the left hand side has an explicit depence on [ only, it follows

that 4v+l = 0, i.e.,v = -1/4,
Upon setting p = 0 we arrive at the solution

¢(z) = B' Icz exp (- c4) dg
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in which the integral cannot be evaluated via standard methods. A
trial solution of the form ¢(z) = B exp {- c4} yields p = -1/4. Hence

the result (4.2.15).

4.3 SOLUTIONS OF THE ION DIFFUSION EQUATIONS

(a) Non-resonant ions

We recall Eq.(4.1.14) for the ioms, viz.,

of . of .
oL _ 3 D o1
ot 2
with (4.3.1)
> 2
_ 2 kky o]
e k k
D, =—1%
L m2 k (ﬁ V — 2 + 2
i k Yk

Since the average ion speed <V>i is such that

/2 /2

1 1 T
<V>i ~ Ci = (Ti/mi) << (Te/mi) = CS ~ (wk/k)
for Te >> Ti’ the interaction between the ions and the ion acoustic

waves 1s predominantly non-resonant. In the above limit and for

r .
|yk| << w, we may approximate

Y Y
> r,2 2,12 (4.3.1a)
(. T -w)®+ v " )
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for the bulk of the (non-resonant) ions.

Rotating the coordinate system through an angle ¥, as shown in Fig. 4.1,

we have

> > -~ -~ -~ ~

kk=(kle_|_+kzz)(kle_|_+kzz)

-k23 8 +k k 28 +k k &2 +Kk>EZ
L L L z 4 L 1 "z "L z

and
) - d_ sin ¢ 9 = , ) cos ¢ 9 g8
— =& (cos ¢ - =) + €,(sin ¢ == + ) + Z2x=
T 3 D ¥ 3y, D oV,

Equation (4.3.1) then becomes

of .
o1 _ 3 a_ E’.En_é.a_ + 808 ¢ 9 . g
Y {g (cosz¢ oV YL ) + e\,(31n ¢ J_ YL 3¢) + 'c)Vz}
2 v e |
ey Xk 2a s sk k B8 +1 k 82 +k2EE
2k (r)z 1 FLEk z 1 5 1 1 pA
m; wy
of W o BE
~ . d o AR z
{§ cos ¢ s iy sing zo—+ %o }
(R 1 ¥
2 afoi
since for foi = foi (\i . Vz,t), Fr = 0.
This equation simplifies to
2 2
afoi ___ ﬁz Yk |¢ | {k2 COSZq> 4 foi % k2 sin2¢ afoi 2 k2 B foi
ot 2 K (r)z i aV2 i 18 YL SYL z 3V2
my Yx & z
32foi
+2k.Lk cos¢aYLav}

Upon averaging over the angle ¢ (with < cosz¢>= <sin2¢> =1/2,

<cos$> = 0), it turns out that
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2 2 2

A T - v 1og] {kz (3 i o 3f01) 2 g f01}
R P

T mlk D) T IR * v

at —-1 B { D. v af011 ) J'D af01}
5t W oy | i L 3 [Fav | Ti BV
(4.3.2)
where 2 2 2 2
Dy = ez 4 Ykrltkl ARy =%Z%
1 2mi k (wk) (| my k (wk)

Since we have already assumed kz << EL it follows that D. >>Di o i.e.,
1
+> +
ion diffusion across Bois significantly stronger than along B . There-
[ . 3 . + *
fore, the term corresponding to ion diffusion along Bo is neglected. To

obtain the non-resonant ion diffusion equation we integrate Eq.(4.3.2)

with respect to Vz, and get

MR .2 NR
®oi s W o a8 r]) 954 (V"Z' ) ]
ot Sy o [y 1 oay

where

NR , 2 _ (R a2
<I>01 (\{L,t) = jfoi (YL ,Vz,t) dVz

Substituting for Di from above, we have

1
NR NR 24 R
acpoi =3 e2 kEﬁ 1_2__l¢ 12 fl ¢oi X ; 01]
ot 2, T2 B k Y
k 2 () A v

where use has also been made of the equation for wave growth (4.2.13).

This equation may in turn be expressed in terms of the new parameter

T, defined as
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2 2
2 K |0, |
Zm

T=2 . 2
k i (mk)

and having the dimensions of temperature, as

BQNB BQNB 82¢N3
oi _1 [1 o1 01]
= om. | W 4,3.3
3T 2m, | Y 3‘12 ( )
For an initial Maxwellian distribution
2
n m m. V,
NR .2 _ _ _ o i il
oi (Wt = Gl 3 P ( il ) (4.3.4)
io io

this equation has the solution (see Appendix.D)

NR 2 Bl "y 4
(boi (V.l. sT) = 5 (Tio e exp [- 7,1.—1—0—_’_—;;] (4.3.5)

i.e.,the Maxwellian character is retained, with an effective temperature

increase of T.

Using the definition of the wave energy density, to be given later

(Eq.(4.4.7a)), we find T = (Ewk/noTio) Tio’ where W = iwk is the

total energy density associated with the fluctuations. Since quasi-

linear theory requires W/noTio << 1, it follows that T << T, .
io

Such a small modification to the ion distribution function, due to

the oscillations, has also been found by APPERT and VACLAVIK(SS)

for an ummagnetized plasma.
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(b) Resonant ions

Although the ion-wave interaction is almost entirely non-

resonant, it is possible for the few high velocity ions in the tail
of the distribution to resonate with the waves and produce ion Landau

damping.

From the discussion following Eq.(4.1.14) and the treatment

of the non-resonant ions, we neglect ion diffusion along go and set

>

k = _1€_L. Since for the resonant ions m{i o _12 . _\7, the identity (4.2.2)

allows us to write their associated diffusion equation, from

Eq.(4.3.1), as

af . _
o1 3 3 sing 9 & : ) cosd 3
= { 3 _ siok 8., & o 4
3T g| (cos¢ W, W % e\y(51n¢ N A 3¢)}
e’ 2,2 r 3 sing 3
- I |¢’k| ko G(mk - k; Vj cosd) é:l. %L’ {él(cos¢ T e W)
k o, L. L
popoe . @ CGOEE B,
+ ew(51n¢ 3‘i+ YL 3¢)} foi

with ¢, & and 'é\y as shown in Fig. 4.1.

In analogy with the non-resonant ions, for the resonant ions we define
R 2 R 2
o . (,t) = Jfoi (W,V,,t) dv,

The above equation then reduces to

R R
% . z 2 ad

ok _ 3 _ sioh B e 2 2 - oi
3T (cos¢ —aYL T _6¢>) E—mz kll¢k| cosd G(mk kg i cosé) N
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Upon averaging over the angle ¢ , we find

2 o2 3ok
oi‘'l o |l B 1 2|1 2 L 3 oi
Y = av[‘fLz 7 K 1o LGj Eas ¢ S0y ~ Y eontiiiiee ]

- S o] )

i

T 2 R ol
Lo g el I 4 295 (0 (4.3.6)
v oM kmg (YLz ) Vz)lﬁ\i 3V

_r
where Va = wk/KL.

Transforming to the energy-like variable W = ﬁ? - Vﬁ and introducing

the new parameter

2

T =25 27 w
m.
i

=M

r t 1y TS 7
e Y. J |¢k| (t") dt

o}

equation (4.3.6) may be rewritten as

R R
a¢>oi(W,r) o 3¢ _. (W, 1)
oW w1/2 oW (4.3.7)

3T

N
Sl

We now determine the time-asymptotic similarity solution of this equationm.

As before, we write (cf. procedure from Eq.(4.2.6) to Eq.(4.2.8))

q?ii W,t) = P ¢(z) (z=Wrt)
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Equation (4.3.7) then reduces to

+1]

' Pl ") _ 1 ¢'(D)
po(@) +vio'(p) = 55 [ CI/Z - | C3/2] (4.3.8)

Niu'.

Since the left hand side has an explicit dependence on ¢ only, it

0, i.e.yv = = 2/5. Thus,

follows that gv+l

T—2/5 - 5/2 _ w5/2 T-l

L =W 4

and, from Eq.(4.3.8)

S S L ' 1 %
p¢ (g) = 53";775' 2 4Mg) 1 532575 5}

We set p = 0 and find that

1/2 5/2

¢ (g) = A’ JC exp (- ¢7'7) dg

which cannot be evaluated by standard techniques.

5/2

A trial solution of the form ¢(g) = A exp (-z~'°) yields p = -2/5.

Thus we finally obtain

¢§i (W,T) = A T-2/5 exp (- W5/2/T)
(4.3.9)
= A T_2/5 exp {—(ﬁ? - V§)5/2/T}

having substituted back for W.
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Ion heating due to Landau damping thus leads to an exp (- ﬁ?) type of

distribution.

Discussion

For an ummagnetized plasma and a two-dimensional wave

spectrum, SAGDEEV and GALEEV(#7» P. 52)

arrive at the similarity
solution .fe(V) = A exp {- (V/Vgs} for the resonant electrons. This
distribution has the same form as Eq.(4.2.8) above. Computer simulation

experiments by BISKAMP et al (67)

predict fe « exp {- (V/Ce)x} with
4.7 < x < 4,9. The discrepancy in the exponential factor was attributed

to electron—electron collisions, which the theory neglects.

We have seen in Section 4.1 that if the condition (4.1.5) is
>
satisfied then the perturbations fjkw(v’t) are given by their linear

forms, as derived in Chapter Three, with w, = wk(t) and foj = foj(v,t).

k
It thus follows that in the quasilinear limit the plasma oscillations

continue to satisfy the linear dispersion relation. Hence, from

Eq.(3.3. 15) the growth rate yk(t) mav be written as

l' (V vt)
™ a(gL/Q ) [ = ]
i _ 2V,

r +-m
2k V k 2k V

“k _e zZz _ 2z z zy 8

m, [I 2(] x iE ) r i) ¥ r ) avi} ¥oi (Vz’t) dvz]
X Wy wy z

(4.3.10)

The solution (4.2.8) is a one-dimensional projection of foe(v’t)'

. R : X :
It 1s seen that Woe(Vz,t) reaches a time asymptotic stable form with
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(avﬁe/avz) # 0 for a given non-zero Vz. It is well known, however,
that in the one-dimensional quasilinear treatment Wie(vz,t) flattens
in the resonance region with (awﬁe/avz) = 0 (47, and references there
in).

Why does this not apply in this case? The solution (4.2.8) has a
very strong dependence on the existence of a broad spectrum of waves.
Consider, for simplicity, the electron velocity distribution in the
(Vy,Vz) plane. We assume the wave spectrum to have a sufficiently

broad spread in kz, with kz small (kz << k).

T 7 72 7772 T T T T [ [ T I IN T NI L L)
7 2 1 7771 1 7 L L L 4 LD INCL L AL L DLl

>y
(a) (b)
Figure 4.3
For a mode propagating at an angle B with respect to ﬁo’ kz = kz wax"

Using the one-dimensional analogy, all the electrons in the shaded
band (Fig. 4.3(b)) will, through the term 6(kV_ - mlr() in the diffusion
equation (4.2.1), interact resonantly with the wave, resulting in the

eventual formation of a plateau ((awge/avz) = 0) in the shaded region.

<>
As k moves through the angle (a - B) to the angle o in Fig.

4.3(a), kz decreases. Therefore (mi/kz) increases and reaches the maxi-
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mum value of (&E/k ). . For a4 sufficiently small kz in this value

z min

could extend to very high velocities resulting in possible flattening

over the region shown below.

Figure 4.4

The above discussion refers to the Vy - Vz plane only. The inclusion
of a VX component will extend the resonance region to a much larger
volume in velocity space, the flattening of which will require a
significant amount of energy and will therefore be physically un-
attainable. Hence for a quasi-stationary equilibrium we require,

from the diffusion equation (4.1.12), DE = 0, We see from Eq.(4.2.3a)

that
e2|¢ |2 mr2
R L k k
LA ol e i)
k m, Vz

Therefore DE = 0 holds omnly if |¢k|2 +~ O for all k. Thus the wave
spectrum must damp to zero with Yy < 0. We have seen in Section 3.4
that for a Maxwellian ion velocity distribution, which from Eq.(4.3.5)
holds true for the bulk of the (non-resonant) ions, the denominator on

the right hand side of Eq.(4.3.10) above is positive. Hence Ty * 0
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requires (awoe/avz) < 0 for all resonant Vz, i.e.,the distribution
function Wﬁe(vz,t) must tend, in the time-asymptotic limit, to a mono-

tonically decreasing form, as,for example, given by Eq.(4.2.8).

Even if the spread in kz is not broad enough, we can have a
sufficiently large spread in the frequency w for resonance over the
region shaded in Fig. 4.4. Experimental studies of turbulent heating

by VIRKO and KIRICHENKO (68

indicated the presence of the ion sound in-
stability. The observed frequency spectrum was found to be three-
dimensional with a wide spread in the phase velocity (w/kz) along the

magnetic field. This enabled the authors to make a quasilinear estimate

of the electron heating rate.

The diffusion in velocity space of the non-resonant electrons
is associated with the growth and damping of the electrostatic fluctuations,
since the kinetic energy of the non-resonant electrons is associated with
their 'sloshing' motion in the presence of the waves. As these electrons
do not interact directly with the waves, one would expect their velocity
distribution to display a Maxwellian - type of behaviour, i.e.,
« exp (- Vi). The exp (- V:) dependence in Eq.(4.2.15) is somewhat

surprising. However, SAGDEEV and CALEEy 47> P+ 70

have pointed out
that although the interaction is adiabatic, i.e.,non-resonant, con-

siderable modification of the velocity distribution could occur.

As in the case of the non-resonant electrons, the diffusion
of the non-resonant ions is attributed to their oscillations in the
presence of the waves. Eq.(4.3.5) shows that this results in an

2 2
effective heating with a temperature increment of e e2 0 |¢k|

% E 2m. e
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The asymptotic distribution for the resonant high energy
ions can be explained in a manner analogous to that for the resonant
electrons, strongly depending on the existence of a broad spread in
k) or w. The form of the distribution will be discussed later when we

investigate particle heating rates.

4.4 ANOMALOUS PLASMA RESISTIVITY

Experimental investigations of plasma instabilities have
inferred the presence of an anomalous resistivity of a few orders of
magnitude larger than the classical collisional value (6’8). The
E x B drift (Vo) of the electrons relative to the ions provides the
necessary free energy to drive the instability. When an instability
occurs, the wave momentum and energy grow at the expense of electron
momentum and kinetic energy respectively, in particular of the
resonant electrons (see the discussion following Eq.(3.3.12)). We
therefore associate the loss rate of electron momentum (due to the
radiation of ion sound waves) with the effective wave-particle

collision frequency, i.e.,

9 <V>

n
e o0 at

- m, 0 -V)o(t) Veg =M (4.4.1)

From Eqs.(4.1.1) and (4.1.2),

a<V> 1 [+ afoe >
n =m n {—
e o0 dt e o no
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ie * > afek
-m Re 2254 ka : avy (4.4.12)
e m k >
e k oV

as the other terms in Eq.(4.1.2) vanish due to the choice of foe and
=

. V = A.
since o V0 ¥

of

Now JV T, —=k 40
oV

-2 lv kL o+ EeowEiE 3 4N an

X x dV y oV z oV ek x 'y z

X y z
R ) 5 )

+ ¢ va{kxa_v e }fekdvx dVy de+z[Vz{kxﬁx+ + }fekdvx dVy de
= -k xjfekdif—k nyekdif—kzszede

-5
where we have used the fact that f_, (V) =0 at V =+ o,

Therefore

-5
3<V> 5 > ¥ >
e Py 3¢ - Re {E (~iek¢) erk dv}

Substituting for fek(V) from Eqs.(4.1.5a) and (3.2.12a), we see that

of

> _-e 1 oe : :
erk ) av = E;'¢k J[ﬁi 5?f—'_ exp {i £ sin (8 - ¥)} Jo )

13 13 1 3
-k v — o -
T k¥ g 59 * Ko' (Vz T 37, ) Eoe
x - - y dy, dv_ de
(Luk ky V0 kz Vz) ] {1 z
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2te 0‘(k-l-/ne) kz ]

il . J{B(Kllge) T, -kV -kUV )57'] voe(vz’t) L
e k y o Z2, z

as shown in the manipulation leading from Eq.(3.3.1a) to Eq.(3.3.6),
with Woe(Vz,t) defined in Eq.(4.2.3).

Then

ZJ a(KL/Qe) kz (BWoe/BVz)
dv
(mk - kyvo - szz) z}

where the result (4.1.10a) has been used.

ik el

3<VU> 21re2 {
m n = - Re
e 09t m X

e

With the aid of the result (4.1.11), the right hand side becomes

21re2 > 2 'a(EL/Qe) Ykkz(avoe/avz)
- Tk |4, dv (4.4.2)
Me k k ey e i s
Z'Z k Yk

For the resonant electrons, we use the identity (4.2.2) to arrive at

+ oo
a<V> -21r2e2 > : 2 r avoe
mn = =Tk alk /a) |¢k| J SV - E mr—aT,

e k Al z

22 3V at)
=2r1"e > 2 oe z
==X kaly/Q) o, | [a—v— ]V - (4.4.3)

e k z z z

. R I £ ol
where, as in Eq.(3.3.11a), Vz e u')k/kz (mk kyVo)/kz.

If it is assumed that the ion velocity distribution is Maxwellian,
which in the light of the discussion in Section 4.3 pertaining to the
bulk of the ions, viz.,the non-resonant ones, is reasonable, then we

can use the results in Section 3.4 to manipulate the denominator of

growth rate (4.3.10).



99

The results (3.4.10a) - (3.4.10c) then allow us to write the growth rate as

Yk(t) Y T a(KL/Qe) (Bwoe(Vz,t)/BVz)Vzévz
e 2

bR S M s T
m, [( r)2 2m r 2m |
£y Yk
from which
v, (£) n 2 m
a(k, /9 )[a\v (V_,t)/3V ] o s B (4.4.4)
e oe 2z z i r 2 o m,
V = w 2m r i
z z k (wk)
Equation (4.4.3) then becomes
2 2 2
aefa AR E MR 61"
n = - T k
e o0 3t m, r.3
i k (w,)
k
2 2 2
0oy, k% |¢, |
- -1 s _pi k k% (4.4.5)
2m r.3
k (mk)

where wpi = (41Tn0e2/mi)i is the ion plasma frequency.

From Eq.(3.3.14), the results (3.3.10a) - (3.4.10c) for a Maxwellian

jon distribution, and the approximation (3.3.16) for the non-resonant

electrons, we see that

2
wpi
er(m,k) = | -(;;;2 +p
k
where p is independent of w. Therefore

K

aér(m’k) 2 mzi

3“’; (m§)3 (4.4.6)



100

Thus, from Eqs.(4.4.1) and (4.4.5) we find that

2 2 > >
| LI |¢k| (k. V)
Vg T 7w = () 9
k odw m n V
k e o0 O
b5 gelasliin 0.3
T T k o] 1
=3 2y {w i e ) 5
X k 'k 8k 8m of gy
“ k e o O
i.e.,
E.% W
Vet X | T i (4.4.7)
k w iw o ¥
k e 0o O
where
2
e Kk’ |6, |
W, = w — (4.4.7a)
k k 8t 8m
k
is the total wave energy density(47).
» (47)
This expression compares favourably with that of SAGDEEV and GALEEV .

65
and for K parallel to Vo is identical to that of HASEGAWA( ).

Since Eq.(4.4.7) represents the momentum transfer parallel to Vo’ i.e.,

across ﬁo, it (Eq.(4.4.7)) describes the effective collision frequency

and associated anomalous resistivity perpendicular to the magnetic

field. To emphasize this point we write the frequency as Vet
L

If, as an approximation, we replace Yy by its linear expression as

given by Eq.(3.4.12), then

i r, r
zfﬁg i (101/2 i E.I TE }1 Po (b) (kyVo wk) 85. kyVo Wk
w 4 k k 2m. 252 k C W T

pe z i
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For Vo >3 10 Nl i KL =k, b= KL T, << 1, and klﬁ~l, which are typical

BT

experimental parameters, this reduces to

- LI VLI L T "
® T4 k. s, . awm, CC
pe k 'z 1 D oe se
(1_1/2 5 k e
8 k o1

Here, the relation w__ = kDC and the result T (b)=] for b << 1 have
pe e o

been used. Thus

¥

n T
Z 0 e

\Y ~ W

ef (4.4.8)

=

-
Pe ¢

For the case of wave propagation and particle drift along the magnetic

(65, p. 67)

field, HASEGAWA uses the linear expression for the growth

rate and the approximations Vo = CS and kAD ~ | to arrive at the result

z wk

Vg~ W
I pe kn T
o e

(4.4.9)

He then discusses the fact that this effective collision frequency is
larger than the classical electron-ion collision frequency given by

\),=U)e TT
el pno

e

where W is the energy density of the fluctuating field in thermal
equilibrium, since this is the minimum value of the field energy density
W= Ewk due to the instability.

From Eqs.(4.4.8) and (4.4.9) we see that in the case of propagation
oblique to the magnetic field and particle drift across the magnetic
field the effective collision frequency vegL is enhanced by the factor

(k/kz) when compared to Veg * This is probably due to the increase in
|
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& i ;
the growth rate by an amount r In the presence of the magnetic
2

field, as discussed in Section 3.4. Since the resistivity is pro—
portional to Vg it is also enhanced. This is not surprising, as
in a magnetized plasma the electrons, drifting across ﬁ, are bound
to the field lines. Thermal runaway across B is lowered with a

consequent decrease in conductivity.

4,5 ELECTRON AND TON HEATING RATES

The concept of kinetic temperature is introduced in terms

of the mean random kinetic energy of the plasma components.

From gas kinetic theory we have

3 1 2 . .
E'nj Tj = E-nj “ﬁ <wj> (j = i,e) (4.5.1)
_ 1 2 >

>
where Wi the random velocity, equals W - Vo) for the drifting electrons

and V for the stationary ions.

(a) Electron Heating Rate

For the electrons, the above equation reduces to

3
3, Te < B ®m 8
2 ° %t -

i {l J(V - ¥ )2 afoe dv
° 3t
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For a background distribution of the type (4.1.1), we substitute for

foe from the quasilinear diffusion equation (4.1.2).

It then turns

at
out that
oT m . of
3 e e ie - H R ak .
E‘ no T = '—2- Re {; z ¢k J(V VO) K art dV} (4.5.2)
e k v
Now
of
[@_Wz. ek 43
[o] =>
vV
of of of
= {V2 + (V. -V )2 + vz} {k &k k Bk & k ——95} dv_dv_ dv
X y o z X BVX y BVy z BVZ X Yy z

Considering the first term,

of

|2 K av av av =
x | x 9V X y z
X
and
of of
2 ek > 2 ek
ky J(Vy Vo) v 4V = ky Jvz v
X X
since fek = 0 at Vx =+ o,

>

dv =

0

=2k JV £ . dv_ dv_ dv
x'| x ek T Ty 7

may manipulate the other integrals to find that

of
> 2 > ek >
V-V) % . s <
J( o) 5 dv 2 J{kxvx + ky(vy vo) + szz} fek dv
-3 J(i_l_ ) G_L g 05 av (4.5.3)

where, as previously defined, k

_L o (kx ,ky)

and V| =

>

VR + (Vy - Vo) y

-
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for the electrons.

Furthermore

of
1 ; ;
= - ﬁé by JKLYL cos ¢ {?i 8Vo - exp (i £ sin ¢) Jo (&)
1 9 1 3 1 9
{(wk - kyvo) YL BYL kzvz (V WY 5?3} :

oe
]‘.’L d\i de d¢

(4.5.4)
where a substitution for fek has been made from Eqs.(4.1.5a) and
(3.2.12a), and the coordinate system has been rotated through the angle

¥ as shown in Fig. 4.1.

With the aid of the identity (3.2.11) and then the result (4.1.9a),

we find that the integral (4.5.4) vanishes.

Equation (4.5.3) then reduces to

> > 2> afek [
[(v V) k. — v = - 2 6.V, fa av (4.5.5)
av < Z e

As previously, we substitute for fek and then integrate with respect

to ¢ to find

2e0y 1 s
me szvz [VL 3—VJ_— = Zl JO (E) Jf. (E) exp (1 L ¢)

-5
-2 Jk vV f dv =
z z ek

1 9 1 9 1 3
o)V g ag * %' @ &, ~ g’ Foe
) (o k¥ - EV) i s A
y o zZ z
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4re ¢k

2
1 Mg I, B K, (afoe/avz)] o ook I
v W (u)k - kyvo - szz) e z

ka -2 @
ZZ[ (0]

Thus from Eqs.(4.5.2) and (4.5.5) we see that

aT r of

3 e _ 2me i 2 iy . oe
E.no ot e Re {i E |¢k| szvz [{l Jo (E)} YL BYL
32 () k. (3f__/aV)
__o z oe 27y qv v
(wk—kV—kV) s e (e
y o zZ z
21re2 r 2 k: Vz Ji () (afoe/avz)
= Re-iZ|¢|J ~ — \id\_ILdV]
R | K k (wk kyvo szz) 5
since
R [ {1 - 2 (s)}l—ﬁiv dy, dv =0
ell o &8&_ - S 1 z

Using Eq.(4.1.11) this becomes

2 2
3 e =27 e 2 szz Yk Jo (€) (afoe/avz)
>n — = s ¢, | Vp AV dv
2 o ot m K k (mr —kV )2 3 2 z
k 2 Z Yk

With the definitions (3.3.4) and (4.2.3) for a(KL/Qe) and Woe(vz,t)

respectively, the above equation reduces to
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2
3 aTe 21re2 2 kz Vz Tk (ayoe/avz)
E-no —E— = - o Y |¢k| G(KL/Qe) £r3 5 7 dv
e k (szz - mk) * Y E (4.5.6)

Both the resonant and the non-resonant electrons contribute to the
right hand side of Eq.(4.5.6). For the resonant electrons we use the

identity (4.2.2) to write_ their contribution as

r
B
— &+ AV
k
Ime’ 2 € 3 : r
Eeua |¢k| a(ky /) J k V. Q¥ _/3V) 7 §(kV - &) dV,
e k r
B
- AV
z
2ﬂ2e2 2 r 3\yoe Er
=-—5 I |¢k| ally /) B |37 1y = K=7
e k z z k z

where 2AV is the width of the resonance region.
For a Maxwellian ion distribution, the result (4.4.4) allows us to

write this as

2 r
) 2n°e : ﬁk f_ k2 '¢ |2
m r3m 'k k
e k (wk)
2 3 r
w_. d€ (wr) )
- —RL Tk L Ry ? (]2
k 21r(wr)2 dwl 2 wz wt % K
k k pi 'k

having used Eq.(4.4.6). Finally, definition (4.4.7a) for the wave

energy density is used to write the resonant-electron heating rate as

X2y W
K k 'k

K.V
[————-43 - 1] (4.5.7)
"
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o, r ~kV) BV
since - — = - ——IL2 =2,
4t o i
k k k

As for the non-resonant electrons, since they do not interact directly
with the waves it is not expected that the heating experienced by them
would be as significant as that of the resonant electrons., The so
called 'fake diffusion' of the non-resonant electrons, as discussed
earlier, describes their adjustment to changes in wave amplitude.
During the growth phase of the wave the kinetic energy associated
with the 'sloshing motion' of the non-resonant particles in the
presence of the wave increases and the non-resonant electrons appear
to be heated. However, since an important requirement for weak
turbulence theory, and therefore quasilinear theory, is that the
electron field fluctuations be sufficiently small (refer to Section
2.4), it follows that the heating of the non-resonant electrons is
very weak. This will be shown later from energy considerations.
Hence, to a fairly good approximation, from Eqs.(4.5.6) and (4.5.7)

the total electron heating rate may be written as

T [K %
. 1] W (4.5.8)

r
k

(b) Ion Heating Rate

It has been pointed out at the beginning of Section 4.3
that the interaction between the ions and the waves is primarily

non-resonant. Thus, the discussion above implies a low level of
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ion heating. This is analytically shown to be so.

For the ions, Eq.(4.5.1) gives

oT. n m, of .
3 i, Fhgsaipll | Rl
7 no F - 2 {;‘c: JV 3t dV]’ (4-5.9)
o
Upon substituting for szgi-from Eq.(4.1.13a), the integral on the

right hand side reduces to

> >
.2 ko QE, D
Re |5 z|¢k|2jvzﬁ.3_+{ o +}<ﬁ
m- k ov (wk -k . V)
i
2 & . P k. G .0}
=-2Re[%>:|¢k|2[ — di?]
m, k (wk -k . V2

by virtue of the result (4.5.3),as there are no particles at V = + oo,
We recall that for the ions ﬁ_ =V R+V_¥.

X y
With the result (4.1.11) and the approximation (4.3.1a) applicable

to the non-resonant ions, it can be shown that

& . V) {k . f _./3N)}
Re [i J — = dV] = J(k v (k. =2 lr‘ L4V
(wk -k . V) v (wk)
Therefore
of . 2 o of .
JVZ 2 v = - 2 ﬁ%z'%'z I(it R =2 b (4.5.10)
m. w aV
k
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Upon rotating our coordinate axes in the x-y plane through the angle

¥ as shown in Fig. 4.1, we find that

of
} dv

Ja.»a. =
aV

of of .

| oi _ sin¢ afoi-l oi
= J(ELYL cosp + szz) {EL cos¢ BYL W | + kz sv;—} YL

dYL de dé

of .

2 ol 2
v Jy E A R R I"zst‘i B
for an foi of the form (4.1.1).

Using the fact that there are no particles at V) =+ o, it turms out

that

2 2 af01 2
o e, g fe e e,
2
TN

since the equilibrium ion density n is given by

n = Jfoi YL dYL de dé = 27 Jfoi YL dYL de

Similarly
of .
2 ol _ 2
27 kz JVZ BVZ de YL in =-n kz
Thus,
> > o afoi > 2 2 2
k .V){k . —=}dV="-n (ky +k ) =-nk
¥ o z o
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and from Eqs.(4.5.9) and (4.5.10),

aT, 2. X
s B v O R (4.5.11a)
2 "o at m i i - 0
i k(wk)
2 2 2
P
k " (w;)2
ve. i,
Recalling that i ——5—3 and the wave energy density
Bwk (wk)
r aer k2|¢k|2 0
Wk =W, —T —g; — » Ve may write the above equation as
qw
k
& . N
-y - e iy 4.50]1
T %t E i Yk ( )

From Eqs.(4.5.8) and (4.5.11) we see that

> >

[k -V
32y, W = l}
3T /ot k K k[ or
e - k
BTi/Bt b3 e wk
k
(4.5.12)
TR
B "]
k

Measurements of electron and ion heating rates in the Double Plasma
device by JONES (86) agree reasonably well with this expression.
Since for appreciable growth rates the drift speed Vo is several

times larger than the wave phase speed (wi/k) = Cs’ it follows that

for small kz



=~
<¢

>> ]

~

Therefore Eq.(4.5.12) shows that the increase in electron temperature
(electron thermal energy) is significantly larger than that in ion
temperature (ion thermal energy). This is in keeping with the

experimentally observed phenomenon that ion acoustic waves have
(36, 41)
k

= 6

maximum growth for

Then the effective electron mass kzme/ki < mi and therefore the

electrons experience a larger increase in thermal energy.

To estimate the characteristic heating time of the electrons (the)

we adopt the approximate formula

Then from Eq.(4.5.8) for the heating rate and Eq.(3.4.12) for the

linear growth rate,

] P
1 22/1'_)’& (,‘“_ﬂ* s . B3 ade
the 3 \4/ Kk 2m, ) \C ) Tk 0T

. r

For the typical values of (VO/CS) =8, Wy =1,0 MHz , kVo/sze ~ 1,

as measured by HAYZEN and BARRETT (&1 and Zwk/noTe=]0—2, it terms
k

out that the = 40us. This compares favourably with the value
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| 10_43, as quasilinearly estimated from the experimental results

he
of VIRKO and KIRICHENKO (68).

As for the characteristic ion heating time, it is seen from

the above ratio of the heating rates that

thi (I/Ti) (BTi/Bt) ¥ . 1) -

v
& =2 —_—
R ATy 5 (BTe/Bt) \cs ,

=
T

(4]), we find t, . = 1,4 t

hi = 64us.

For Te =10 Ti and (Vo/Cs) = 8 s

The heating of electrons is via scattering of electrons by ion sound
waves, being related to the linear wave-particle resonances. In the
assessment of ion heating we have neglected the high-energy ions in
the tail of the distribution which resonate with the waves. For the
ion acoustic mode with Te >> Ti there are very few such ions. Thus
within the confines of the quasilinear theory the only possible ion
heating is associated with the sloshing motion of the non-resonant
ions in the presence of the waves. This motion, however, comprises
ordered energy. Therefore in speaking of thermal heating which in-
volves random energy, we are assuming the presence of some other
nonlinear processes, such as particle trapping, which convert ordered

energy into random energy.

The small increase in ion temperature due to the non-resonant
nature of the ion - wave interactions implies that the change in the

ion distribution should be small, This has been confirmed in Section
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4,3, where we saw that for an initial Maxwellian distribution the
only change in the non-resonant ion distribution with time was a
small increase in ion temperature. However, it has been observed

(40) (56) that the ions

in experiments and in computer simulations
have a two-temperature distribution, showing the marked presence of

a high-energy tail. At the outset one may attribute this effect to
linear Landau damping of the waves on the few ions in the tail of

the distribution. We recall that this resonance process was not
considered in arriving at Eq.(4.5.11). However, in Section 4.3

we have noticed that a quasilinear treatment of resonant ion - wave
interactions leads to an asymptotic distribution with an exp (- VS)
dependence on velocity. Such a dependence was not observed in either

experiments or simulations (40, 56).

Thus, we conclude that linear ion Landau damping may be a
contributory process to ion heating, but is certainly not the dominant
one. To explain the observed ion heating we have to invoke other non-
linear processes such as particle trapping and nonlinear Landau damp-
ing. In the latter process two or more modes of the wave spectrum
may couple to produce beats which resonate with the ions and cause

damping. For two modes (mk,ﬁ) and (mk,,ﬁ') the resonance condition

is

(mk—wk,)-(k’—k') .V =0

where V is the ion velocity.
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4.6 ENERGY STUDIES

The rate of change of the average kinetic energy of the

electrons is given by

n m of
1 oe .l 2 oe .,
5 { JV ) dv} (4.6.1)

9 TR
3t 7% B V) =

In a manner paralleling the development from Eq.(4.5.1) to Eq.(4.5.3)

we see that

m f
%E-(%-n m, <V2>) = 73 Re {%E P ¢: JVZQ 5 —:EE-dV} (4.6.2)
e oV
with
2> afek [ >
J Vi . W=-2|v +kv +kv)E_ av
8V e 3 vy z z' “ek

[ 2 > >
= -2 _(EL 2 YL + kyVo + szz) fek dv (4.6.3)

~

Vx g+ (Vy - Vo) y.

where we recall that ?L

From the discussion following Eq.(4.5.4) we have that

=¥
=
=
-
o
<t
]
o

Upon substituting for fek from Eqs.(4.1.5a) and (3.2.12a), we find

that
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KV |, dV = (—e¢k) r‘af°3—zJ()J() (i29¢)
yVo ek - Tk [YLBYL 2 2 2 o B
I 9 1 3 1 3
{(a, - kyV ) ?i 5?i RV (V; gv; = ?i 5?1)}f a
X (wk ¥ - 27 ) ]YL av de d¢é
yo z z
2
2med of JO () k. (3 [V )
k [ oe 0 z DE- LB
=-kV J{I—J(E)} - - —~ ]v dy; dv
yo m ]| v oY G =R ¥, v LT
(4.6.4)
Similarly
2
2med T (E)k_(3f /avV)
> o_ k r 1} LR Z o4 ®
szvz fage V= -3 J 2 [{] J (E)}_ 3y (w,~k V =k V) ]&.dYL v,
e k--Y o 22
(4.6.5)

The results (4.6.4) and (4.6.5) are used to rewrite the right hand

side of Eq.(4.6.3), which is then used to express Eq.(4.6.2) as

5 1 2 T i )k (3f__/3V )
=% (7 n, m V) = = Re{l i |¢k| J(k v +k V )[ {k = -(wk-kyVo)}]g-dYLdvz}

e
Now
kV +kV w
y o zZ 2z

=1 +
(szz + kyVo mk) (szz + kyVo )

k)

and the integral above becomes

8

<00 (=]

kY of Jz(kJ_vl /8 )k, df

oe
- v, e %y X “’kJ o 1KV, ~(w —k v, )} av ‘ﬁ.d‘.’Lde

0 —38
| ——+
o

[\*]
~
o]
~
=
N

8

- o0
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Since

400
of
oe i K &
[ BVZ de {foe 0
-0 V =400

N

as there are no particles at Vz = + o, the first term vanishes. Thus
[I 2 BY 2 ]
T L7

v )foe(YL ’Vz’t)Y]-dYL

2
9 1 2me 2 -
57 (GR.m <V %5)= ————R { z|¢, | Iw k - - dv }
3t 2o ok _mk 2 {szz (w, kyVo)} z

With the definitions (3.1.6), (3.3.4) and (4.2.3) for w, , a(k/Q)

k’
and Woe(Vz,t) respectively, this may be further reduced to

2 wr Y
2_.(1. <V >) = - 2"e z |¢ | k, a(k /9 ) e
zZ z k Yk
(kV_ - By) 7 /0¥
e Vigin k {° oe
* kv - mr)2 VAR Vs
z'z  k Yk o

The term on the right hand side above is made up of contributions from
R

both the resonant and the non-resonant electrons. If Ke represents

the average kinetic energy of the resonant electrons, then we may

use the identity (4.2.2) to arrive at

R
oK 2 oY r
e _ _ 2me 2 r oe i
5T = " = 0T aly /) w n[av ]V o
e k z z kz z
With the aid of Eq.(4.4.4) it turns out that
aKR % 2 2|¢ |2
ot X k (w )3 k 8m

k
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)

oK
ot

o

=~ 2y W
K k 'k

In arriving at this result we have used Eqs.(4.4.6) and (4,4.7a),
The equation for wave growth (4.2.13) finally allows us to write

it in the form

{KIZ $ Y =10 (4.6.6)

This tells us that the total energy in our wave—particle system is

conserved, i.e., the kinetic energy lost by the resonant electrons is con-
verted into total wave energy. The latter is made up of the wave electro-
static energy plus the kinetic energy associated with the oscillations

of the non-resonant electrons and ions in the presence of the wave.

From Eqs.(4.4.6) and (4.4.7a) we see that the rate of change of total

wave energy density may be written as

a/zw>
N
ﬁ:.—k_.=zz W
ot ot Y "k
k
20, k2|¢k|2
=2 Xy 1—

= (w;) )

Upon substituting wi = kCS a + kzkg)-l/z (the usual form for wi,
cf. Eq.(3.4.11)) this reduces to
2 i
k &, |
oW D k
=4 X {1 + ——} ¥, g (4.6.7)
t X k2 k 8n
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The contributions to the right hand side of Eq.(4.6.7) are as follows:

(a) A fraction
&, |*
2 i Y " Bn (4.6.8)

which represents the rate of change of the electrostatic energy

density of the waves.

(

(b) From Eq.(4.5.11) we see that a fraction
K2 IEk|2
2 X <1 +—]22) 'Yk—'STT— (4.6.9)
k k

is the rate at which energy is fed into the oscillations of the non-

resonant ions, i.e.,the ion kinetic energy of the waves.

(c) It thus follows from Eqs.(4.6.7) - (4.6.9) that the fraction
SOk

2 =¥ (4.6.10)
K k2 k 8m

represents the rate at which energy is fed into the oscillations of the

non-resonant electrons, i.e.,the electron kinetic energy of the waves.

Thus for k XD << 1 (i.e (k%/kz) >> 1), as is common in practice, it is

seen from Eqs.(4.6.7) and (4.6.8) that the waves have only a fraction

kzkz
D

2

<< 1

of their energy as potential energy. A similar result has been found

for electrostatic ion cyclotron waves by DRUMMOND and ROSENBLUTH (55).

As pointed out by the authors, this behaviour is in contrast to the
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case of electron plasma oscillations for which the energy lost by the
resonant electrons was equally divided into wave potential and kinetic

energies (44).

Furthermore, for kzkz < 1, k s k=k =k and
D z y
VO >> CS ~ w/k, we see from Eqs.(4.5.7), (4.6.7) and (4.6.10) that the
heating rate of the resonant electrons far exceeds that of the non-
resonant electrons, thereby justifying our assertion in the discussion

preceeding Eq.(4.5.8) that the heating of the latter is very weak.

4.7 "HEATING RATES ASSOCIATED WITH THE ELECTRON-CYCLOTRON DRIFT

INSTABILITY (ECDI)

A quasilinear derivation of electron and ion heating rates
associated with the reactive ECDI has been presented by LAMPE et ai (53),
for wave propagation across the magnetic field, i.e.,kz = 0. We
recall that the reactive ECDI arises in the limit Te >> T, from a
resonance coupling between a negative energy Doppler-shifted electron

Bernstein mode and the positive energy ion acoustic wave. The resonance

condition satisfied is

r=
k

" 1/2

N D M
kyVO +nQ = k CS (1 +k AD) (4.7.1)
We shall briefly describe the procedure followed. The geometry of
our model corresponds to that shown in Fig. 3.1, i.e.,a reference frame
in which the magnetized electrons drift with an E x B drift Vo relative to
the unmagnetized ions. For the electrons, the heating rate is given by

Eq.(4.5.2), viz.,
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where from Eq.(4.5.3),

of
-> > 2 > e - > > >
J(V - Vo) k . ;v— dv = 2 Jkl \ﬂ_ fek dv

for modes propagating across the magnetic field (i = gL)'

We substitute for fek from Eqs.(4.1.5a) and (3.2.12). The expression

on the right hand side in the above equation then becomes

2e [ﬁ 3 [1 afoe el B st W)}{(wk_kyvo) afoe}( KV —nQ )—l
—¢, |k V|5 = - exp{ifsin(6- : B -n
AR A

x J_ (£) exp {- i n(8 - W)}] av

where in the summation over n we retain only the term satisfying the

resonance condition (4.7.1), since this is the most dominant term.

Then for a Maxwellian electron velocity distribution (as assumed by

LAMPE et al (53)) the identity (3.2.11) and the recurrence relation(60)
Jop )+ I () = (2n/x) T (%)

are used to arrive at the result

3T /2e2m‘./2 . kG g (1 k2A§)3/2 ; 2

2172 | K 3t 1%

e _ i ) Lo _
e\ 3 2 lye s ksz\
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For k =k =k and V_ >> V,, this reduces to
y & 0 ¢

2.1/2
aTe . /26 mi \V

h 0 232 %
ot | 3 /372
e

2
1§(1+1<7\D) sz 19

|2 (4.7.2)

which, apart from the factor (2/3) is that found by LAMPE et al (53).

In a similar manner, by following the analysis from Eq.(4.5.9) to

Eq.(4.5.11a), it can be shown that the ion heating rate is given by

é.izl = EE. s _Ei.g_ |¢ |2
2 3t 2m. r\29t k
i7 k(w,)
k
i.e.y
2, 2
aTi=/£\z(1+kxD)a_¢|2 i
at \mi/k 2 at "k
S
This differs by the factor (1/3) from the result of LAMPE et al (53).

2,2 : "
For k XD << 1 and v, > Cs’ as is common in practice, from Eqs.(4.7.2)

and (4.7.3) we have

9T -2 \Y
e ( i ) o
ot 3 Tz/Z oV

In the same limits Eq.(4.5.2) for the ion acoustic instability reduces

to
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.

k k and &y || V
for z << and ky o

Thus we conclude that the reactive ECDI propagating across
the magnetic field (kZ = 0) and the ion acoustic instability propagating
slightly off the perpendicular (kZ @< k) provide the same relative
electron and ion heating rates. This is not surprising, since for wave
propagation off the perpendicular to ﬁ the electron Berstein modes are
severely damped and the ECDI transforms into just the positive energy

ion acoustic mode (24, 53).
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CHAPTER FIVE

THE CROSSFIELD CURRENT-DRIVEN ION ACOUSTIC INSTABILITY IN A PLASMA

WITH A DENSITY GRADIENT IN A SHEARED MAGNETIC FIELD

5.1 INTRODUCTION

If, instead of a constant field in the z direction, the
equilibrium magnetic field 30 is chosen to be

ﬁo = B,(®) 2+ B _(x) 79 (5.1.1)

then the lines of force of the field remain straight. However, because
of the x dependence of Boz and Boy the lines are not parallel to each
other; the direction of the line of force is, in general, a function of
the coordinate x. Thus, the field (5.1.1) is an example of a field with
straight but non-parallel lines of force. It will be seen in the next
section that such a field leads to a coordinate dependent k“(com-

ponent of the wave vector k along the magnetic field %o). Magnetic
fields giving rise to such a behaviour of k" are called sheared

magnetic fields,

Most of the study on the effect of magnetic shear on plasma
instabilities has been concentrated on drift waves. This is probably
due to the broad range of plasma conditions under which such modes are
unstable. Since they are driven by inhomogeneities within the plasma,
e.g.,a density gradient, drift waves are easily excited in most high

temperature plasma devices. As far as is known, very little evidence
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exists of theoretical studies of the ion acoustic instability in a sheared
magnetic field. A study of the crossfield current-driven ion acoustic
instability in a plasma with an electron density gradient in a magnetic

field of this nature is the subject of the present chapter.

5.2 ELECTRON CONTRIBUTION TO THE DISPERSION RELATION

We consider a model in which the magnetic field exhibits shear

in the x direction. Thus, we Write(69’ 70)

>
B = B

[N H]

oz 2V Boy y

Bo{ + (x/LS) v} (52,1}

[N H]

. 1 d B_T]-1 :
with Boz >> Boy’ where LS [&- oy » called the shear length, is

b=
the characteristic length over which the magnetic field changes direction.

The electron density is also assumed to vary in the x direction, with
n, = n(l+ex) (5.2,2)

-1

where ¢ . -% dne = Ln is the density gradient scale length.
e dx

As in Chapter Three, we assume that the length and time scales are such

that the electrons are magnetized and the ions are not. Retaining the

additional approximation that the ions do not react to the electric

. + » . + +
field Eo’ i1t turns out, once again, that the electrons have an E x B

el 2 > R SR ; : 2
drift Vo = C(Eo x B)/B” relative to the ions. In examining the motion

of the electrons we shall closely follow the mathematical formalism

presented by DAVIDSON and KAMMASH (7]).
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%
k= (0 ,ky ’kZ)

ry

£
e
X

Figure 5.1

The geometry considered is shown in Fig. 5.1 above, where, in addition

to the sheared magnetic field, there is a constant external electric
field in the negative x direction. The investigation is conducted in

the ion rest frame. In the absence of shear one normally works in the
(x, y, 2z) cartesian coordinate system as shown above. However, to
simplify the calculations of the unperturbed particle orbits in a sheared

: . 3 - O >
field we introduce a rotating coordinate system (e, eS“(x), e%L(X) )

defined by

> -
e = ¥
X
3w - B(x)
eS“ X - ]i] (5.2-3)
-> -> ->
eslfx) = eS" x e

From Fig. 5.! we see that

'5. = h § + h 2
I vy’ z”
-). ~ ”~
e, = hz y - h zZ
| y
where in general, (5.2.4)
B (x) B__(x)

ho() = =L, b = 22—
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Since the plasma density and magnetic shear are chosen to have a spatial
dependence on x only, the perturbation potential is taken to be of the

form
¢1(¥,t) = ¢,(®) exp { ilk.r - w tl}  (5.2.5a)

where

(5.2.5b)

In contrast to the shearless case ﬁo " Z, the wave numbers kz and k
no longer represent the components of ﬁ along and perpendicular to the
magnetic field respectively. These roles are now played by the quantities

k” and kl , From Eqs. (5.2.4) and (5.2.5b) these are given by

ki (%) k h(x) + k h (x)
. Il = z 2 (5.2.5¢)
ky hz(x) - kz hy(X)

2
k() k. e

;. !

In the stationary coordinate system (X, ¥, Z) the position vector of a
. L3 [ + -~ -~ -~ * .

particle is given by r(t) = x(t) % + y(t) § + z(t) Z, while in the

rotating frame, ?(t) = x(t) 3x + §L(t) éﬂ.+ s"(t) Zé.
]

In solving the electron equation of motion
>
m T

e

= —e{E + @ xB/c (5.2.6)
it is simpler to calculate x(t), gL(t) and s"(t), instead of the more
complicated solutions x(t), y(t) and z(t). In doing so, we shall assume

that a single electron is not affected by the shear, but that its motion

is determined by a constant local field. Thus, in terms of typical lengths,

we assume

r, << LS (5.2.7a)

where r, is the electron gyroradius.
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In the rotating coordinate system

(5.2.7b)

and the density gradient (5.2.2) produces an electron diamagnetic

drift(l’ p.422)
e T
V =-—=2%¢
n e B S|
2

eT e C

ee 1 e 2
where, as previously defined, Qe o (-eB/meC) is the electron gyrofrequency.

A set of solutions to Eq. (5.2.6) is (cf. Eq. (3.2.8) )

x(e') = x(t) - (4 /2) { sin [ 8(t) - @_(¢'-£)] - Sin 8(t))

%L(t')=%L(t)+ (YL/Qe) {Cos[6(t) = Qe(t'—t)] - CosB(t)}+ Vo(t'-t) (5.2.8)

sp(E) = 5 () + v (e'-E)
where v, 2 = vx2 £y - V)2, e = tan~' { (stt) v )/V (£) ) and
W= V. e .

&
From the Eqs. (5.2.8) we may construct, among others, the following

constants of motion (as in Section 3.5)

ﬁ-z; % and X = x + (VSL B vo)

Then from Eqs. (5.2.5) and (5.2.8)

4, E',e") = ¢, (x") exp {ik(x").T(t') - fw, t')

ik, (x)V
= ¢, (x") exp {ik(x).7(t) - iw, t} exp{ S [Cos{® - ﬂe(t'-t)}-Cose]}

9]
e

x exp {- 1 [wk - gl(x)vo - k"(x)%l] (t'-t)} (5.2.9)
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where it has been assumed that KL and k" depend on x rather tham x'.
This is reasonable since the difference is of the order of (re/Ls),

which by assumption (5.2.7a) is negligibly small.

The equilibrium velocity distribution for the electrons is chosen

to be a function of the above constants of motion, viz.,

2
foe = foe (YL ’ V" ’ X) ; .
2
% { (Vsl -Vo)l] [ [Vx +(Vs _Vo) W ]
=_3/2[1+SX+T &xp) ~ $2
e e
(5.2.10)

We can readily show that the above distribution is self-consistent. It
is, in fact, the form to which the distribution (3.5.2) reduces in the

absence of a temperature gradient,

Following the technique adopted in Chapter Three, we may express the
electron and ion distribution functions and the electric field as sums
of their respective equilibrium values and a perturbation term due to the
presence of oscillations. Eq. (3.1.11) then gives us the perturbed
distribution fij (;, V, t) in terms of the perturbation potential 9

and the equilibrium distribution fo" e 1T

-> v ej £ > afoj
= ot '
fij(r’ yt) E} J V¢](r ,t'). —E%T dt

)

with Poisson's equation

v? ¢ = -4 ZIn.e
17173
e? > t R afo.
==4p T | Qv | vo,(F',t"). —2L ¢’ (G =1i,e)
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For perturbations of the form (5.2.5a), this reduces to

a2 2\ > e% - £ b afo.
(-7 -k} o, (T,e) = - 4m T t—nlj dv j v, (Tt . —2L qe (5.2.11)

90X / e av'

:

where k2 = k

) and E =y 5 (v v) o it can be
For foe = f (YL » Yy X and | =V e RN

v
shown that

of 4 of >
oe e + oe e

1
- s — s
) L oV, i
v YL BYL e % "

of f
= 9 = p EL afoe of

— v SN e ey ; L
4y - ¥ 1Qeax ¢’1+1kllav“ %

Furthermore,

d
hEe %,y %
dt at S

LT A SO A A T LY

Combining these results, we have

of
l oe
N85

= Shagiliel i, o {(wk-k_LVo—k“V")
e afoe

88 e r,t

+Qe X T K 3V|I}¢](r )

Thus, in the electron contribution to the right hand side of Eq. (5.2.11),

viz.,

2
_ 4me [ dv [ v¢,l(¥',t') e (5.2.12a)
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the integral with respect to time reduces to

1 afoe > afoe KL afoe afoe
Z ¢&¢)+%w -l V V) T & _.__+k__}
W VI

t

x J ¢1(¥',t') dt! (5.2.12b)

-—00

with ¢](¥',t') given by Eq. (5.2.9). The unknown function ¢](x') in

the said equation is now expanded about x' = x as follows:
2
d¢, (x") 2 d%,(x")
9, (x") = ¢, (x) + (x'x) ~—E—T—— + (x';x) : _ SR
x'=x dx'? -
x'=x
(5:i2:.43)

With the aid of Eqs. (5.2.9) and (5.2.13)we see that

¢ t %, (t,t) L2 8% &0
[ ¢1(;',t') dt' = J f¢ (T,t) + (x' =) W ;x) 21 ]
J [ 9x
ik, V 1
X exp'{ [Cos{G—Qe(tv_t)}-Cose]Iexp{—i(wk—ElVo ”II)(t -t)} dt'
e

(5.2.14)

With the aid of the identitieé6o)

[ kL . .
exp i —- Cos{¢ - Qe(t'-t)}'}= R Jn(E) exp{ -in[¢ —Qe(t'—t)]}
e

=00

and
4

ky Vi
exp {—i #‘ Cos ¢}= z { J (&) exp (i n¢)
e n=-=%

where, as previously defined, £ = klﬁ/Qe, Eq. (5.2.14) permits us to

write the electron term (5.2.12a) as

1 Bf
v ¢ X
7o e

2
_ 47e [
Rt

49
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3f k, of o
+ il av av de @, k) L Ky voe}
- i e K% v oV Q, oxX v
[ t/ . a¢l(¥’t) (x"-x)2 az¢l(f,t)>
. a . ==} +

x L L J (&) Jm(a)d‘ \fbl(r,t) i 2 2

w1 OO Cim - Y- e (£1-0)) dt'} } (5.2.152)

where

T A (5.2.15b)

For foe(YLz, W|, X) as defined in Eq. (5.2.10),

Y: n_(1+ex) 2 n v 2 2
1 "oe_ _ o exp { -V7], _ Sing [ Yot (1 -4 \exp{ -V }]
WY C 2(21rc 2y3/2 2 U (me H320e N\ ¢ 2/ e Y

e e e e e
(5.2.16a)
afoe noe V2
= exp{ } (5.2.16b)
X (2'n'C )ST 2Ce2

of ) -no(l+ex)V'l ex _y2 } _ne Yy Y Sing —v2
Wy L 2 2,3/2 2 2 2,372 &Py 2
c, (2mc ) 2, R CL 2,

(5.2.16¢)
Then
(w vy L af . EL Bf . Bfoe
MY \_IL a\i 2, ax Il 5,
B.n (l+ex) 2

k i v
= - exp + exp
(21rC 2y3/2 lzc 2f q (2 c, 2y3/2 {zc 2}
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£ T ind
(mk—k“ql)sn : _v2 l B, en Y Sin _y2
" 7 oceatl prr | i 3 7 el o
(2ﬁC ) L 2Ce * (2ﬁC ) Ce 2Ce
(5.2.16d)
With the aid of Eq. (5.2.16a) it turns out that
r ] Bf
Vv dv dv,de — ¢ (r t)
J AL a\_zL
>
_ Tnprex) ¢, (x,t) (5.2.17)
C 2
e

We notice that if we substitute for (x'-x) from Eq. (5.2.8) and use
Eq. (5.2.16d), then the second term within [- - ] in Eq. (5.2.15a)

involves integrals of the type

dé {exp{—i(mk—k“% —nﬂe)(t'—t)} exp {i h(n,m)¢}dt'

provided we express the sines and cosines in terms of exponentials.
All such integrals which are necessary to manipulate the said term

completely are explicity shown in Appendix E.

With the result (5.2.17) and the integrals in Appendix E, Eq. (5.2.15a)

reduces to

2
4ﬁe [ _-n (1+ex) dv dWI

- \/ = =B n_ (1+ex) k
2 5 ¢9,(r,t) + iJ 4£——-§—§75{ (e, e) (ko 5 + : ln°\
c (2nc %) \' ¢?2 e

e

2 2
2mJ_“(&) -v©/2 m
- ™y exp (-V7/2C / Y
Plt@ gy cpeg




+

X

2 , = =
27p Jpz(g) exp (-V2/2Ce 5‘ a¢l\¥,t) (twk — k“ql)eno mk eno ﬁ-

T
P E{_i(mk - kll“l - er} J 9X QeV.L Ce Qe
23 A
1y 218 %_ exp(-V /2Ce ) l_._é_. (E)}
2p kj.z {i@, - kY - )} 1L
3262, Ol 5, n_(1+ex) - exp(-v2/2¢ )
1 9 WRHERAET, AT L e.Lo) or P e 13 20y
+ =
2 7 2 Q AT N v Up
9% c, e /P K° i@ - kY psze)‘i 1
_ - PR
1 mk “||) en_ _ mk eno %_ z 2“ exp (-V /2Ce )
? e i *-ia 0 )}
€ e ¥ l » mk “P
2pQ
. [ Pe 3 1) \
1 —il' aﬁ_{J ()} + KLYL P(E)I I |

As in Section 3.2, we restrict ourselves to low frequency modes for
which lmk - " ﬂ< Q ., Therefore, only the p = o term is retained in the

summations above.

We then use the results

th

© +T exp(-V, 2/2Ce2)

[ 2
) % 2y /9) exp(=y 2726 ) LN @ -y

.2 *h 4
= Ce e Io(b)(ﬁ /k") Z(Ae)
where b = k 2C 2/Q R - @ /2 kyC , I_(b) has already been defined
L a "Ta e k i~e’ "o y
as the modified Bessel function of the first kind of order zero, and

Z(A) is the plasma dispersion function as defined by the equations (3.5.4),
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+o i

2 2 d 2
f exp (/26,0 gy o 0RO Y dﬂLI @ )
2. -b }
= 2 ¢, b e [Io(b) - Ic')(b)] (/1) z(ke)
and
© “+oo
o 2002y L2 (52 e
Jo exp(-Y /2(:e ) T N {Jo (k /Qe)}\ﬁ_d\ﬁ_J exp ( % /zce ) dvlI
1 -
= (21rCe2)2 [e bIo(b) - 1]
to write the above expression as
-lmez -n_(1+€x) 4 2T n - k_LECez
o > ¢](r,t) + : ° 5373 {¢l(r,t) ( -Gk(]+ex) * )
P c, ¢, (2mc %) e

3, (z,t)
R N OYCL™ z(xe){] +___L§;_._{% Ny ;;15 tre Hir ()1}
1

T z; s (2 2 b [r,0) - 1, )] (/i) Z(xe)}]
L

2, 2
+ l-E—Efr,t) -0, (1+ex) + KLeCe
2 8x2 k Q

e

1 2
—5 (26" [I‘o(b)— I‘l(b)] (wé/k“) Z(ke)gl}]

ky

where we have used the result (60) Ié (b) = (dIo(b)/db) = I‘(b) and have

written Tn(b) = e—bIn(b). This may be further reduced to
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=4T n e2

SR oo

m C
ee

2
0] ' k eC
[**li" (1+ex) - & (_EE j]ro(b) Z(Ae)}
LY2c, TlyC, N e

€

ZEL

3¢1(_;,t)], Bk
2 Bxgggl[ro(b)—]] E

Y2k C
We

(b [r,o) - T, 20

| 32¢](_I*‘,t) {[ak(]ﬂ-':x) k_L (ECeZ

br ) - T, ()] 2 )}
k_Lz 3% Y2k /fk"Ce " )} @ : T

Hce

(5.2.18)

5.3 THE ION TERM

It has already been assumed that, due to their inertia, the ions
-> >
react to neither the magnetic field B nor the electric field E,. They

. . ; R
assume straight line orbits with r = V = constant.

Since the ions are unmagnetized, it is not expected that their
motion will be affected by the magnetic shear. In other words, if an
ion does not perceive the original field Eo at x = o, then one does
not expect it to sense the rotation of the ﬁ field in the y-z plane as

it moves on its straight line trajectory.

An alternative view point arises from the fact that we are
interested in the ion acoustic instability with frequency m~sz in the

limit T >> T.. Then
e 1

(rympt = e <<c = @ mpt <« amyb e

Ci << w/k << Ce
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or

e7C, <% & <8 £G
1 e

where t~ is the period and A the wavelength of the wave. Therefore,
during one wave period the distance travelled by a typical ion is very
small compared to the wavelength, which in turn, is much less than the
distance traversed by a typical electron. We thus conclude that over
the time scales involved, for the ions the distance (x'-x) in expansion

(5.2.13) is negligibly small and ¢(x') = ¢(x).

The equilibrium ion distribution is chosen to a stationary Maxwellian,

viz.,

2
foi(‘ﬂ- ?

W = n e et -y By e (5.3

with Yl.z = sz + VS 2. It is seen from the equations (5.2.12) that the

L
ion contribution to the right hand side of Eq. (5.2.11) is

2 of . of . of . of
=4me” [ 11 oi > | oi (] oi 1 oi)
L R R = =

x J ¢1('r*',t')dt'i|

In the light of the above discussion, and by definition (5.2.5a) for

+ [
4>](r,t), this reduces to

2
-4re ¢](;’t) JdV[] af°i+i{w 1 af°i+kv 1 8foi_1 8foi)}
m.
i | O o Ul TR O e

exp{i [k, (F(t")-F(t))~u, (t'-t)] } dt']

{e2]



With the aid of the solution

T(t') = r(t) + V(t'~t)
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to the ion equation of motion T = 6, the time integral above is
manipulated to yield
2 of . it .
-4me -+ > |1 oi + F=lf 1 oi
¢, (r,t) | AV |= - (w, - k.V) W, =—
m, 1 J N k 1 kY 5\_7L

1 afoi 1 afoi
+ e 2 e
i ( I T a‘.’L)}

For the velocity distribution (5.3.1),

of . -n
1 oi > o 1 J 2 2
J —_— dv = exp{~(V, © + ¥, )/2C
N (e, 2312 ¢ 2 5 N
1 1
-
=9
c.?
1
of | Of
oi 1 "ol _,

(5,3,2)

2
i} \_Il_d\_ll_dV"de
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where Ai = wk/ /fk"Ci-

The techniques employed in arriving at these results are the same as those

used in Section 3.3. Por the last result we have approximated

2.2 -} 2
1 - EL:@_____ ~ 1 + __jg:ii___
7 ) 7
(0l ) 2wy =ky %y )

which for the ion acoustic wave 1is physically plausible (see discussion

following Eq. (3.3.8)).

The ion term (5.3.2) then reduces to

2 2
EL a°z(r.)

4Tn e i
(5.3.3)
Mgl dx,l H
i i

._02 ¢1(?,t) { L+ Ay {z(xi) +
m,C.
11

5.4 THE EIGENVALUE EQUATION

From Eq. (5.2.18) for the electrons and Eq. (5.3.3) for the

ions, Eq. (5.2.11) may be written as

2 2 /- 2
k @, (1+ex) K,V 97 ¢
1
. [12 s k[z) E ! b{I _(b)-T, (b)} z(X) ;
k| Kk V2 KC,q /Ek"ce - ox

2
1 € kD 3¢1
+ s |:W kT {[I'o(b)-l] -~ 2b [Po(b)—l"](b)] A Z(Xe)}:lTx

2
®, (1+ex) kV
+ [—1 - k% {(1+ex) pif = o 4 AT (b) Z(A )}
k e, VIgc, ) ° .
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T K2 y? %o
__.‘Elz{1+>\. Z(,) + ——s e, =0
T3 il S ary

where we recall

=

A = k - k Lo
¢ Ve Y2k, C
e 1~e
2.2 2
= = Q
M=o 2ge b= KTe /e,
ko= AV o (am e ytt
D D (o] e
and
eT
Vn = | e[ is the magnitude of the diamagnetic
m (8
e e

drift ‘v’n ((5.2.7¢)).

The above equation may be rewritten as

2

=7 A SRR+ 300 T 600 = 0
..L dx J.
(5.4.1)
where
2 2 =
k 1 w, (1+ex) k, Vv
1 “D k 1l'n
A(X) = —= - = + bl () - T, )] z(r)
K g2 (@k“c @k"C\ [° : ! ¢
e e
)
=& D - - 1
B(x) = b (frg®) =17 =26 [T (6 =T ()] 2, 2(r)}
k]§ mk(l+ex) k.LV
C(x) = =1 = =~ | (1+ex) - + 2.\ ) z(2)
k /Ek"ce Y2k, C = £
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2
T k k d“z(r.)
-TE S +A.(ZQ.)+ L 5 21>
i : Voo e

To obtain analytical results we resort to further approximations. It
follows from Eq. (5.2.2) that
ex = x/Ln

Thus, for the purpose of simplification, we assume that Eq. (5.4.1) is
only applicable over a range of x which is much less than Ln' This
imposes the restriction that the potential ¢(x) is very localized,

vanishing for x values not very far from x = 0. Then
(x/L ) << 1 (5.4.2a)

and the coefficients A(x), B(x) and C(x) reduce to

2
k k w -k ((V -Vv)
1 D [lc L' o n ]
A(x) = - b {I' (b)-T,(b)} Z(A)
k2 k2 /Ek"C o 1 e
e
(5.4.2b)
i
_ €
B(x) = ?I ;;7 {[To(b) - {] - 2b [yo(b) - rl(b)] Ae z(xe)} (5.4.2¢)
kg {w, =k (V -V )i
C(x) = -1 - — 1+ K L o BT (b) z(A )]
Kk /Ek"c ° =
e
2 2 .2
T k ki d°z(n.)
- T—e—g{l + A, Ir_z(x.) + —J'—z—zl]} (5.4.2d)
ik 1 Lo4ks ax

i i

For warm electrons and cold ions, i.e., T >> T., we assume as in
e i

Section 3.5,

el = o V) 1V2k | <<t (5.4.3a)
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and

|>‘i| = |mk|,V7k"Ci>>l (5.4.3b)

A term common to A(x) and C(x) is

o, = k4 (V=Y )]

z ()
/ik“c
e
i [wk—gl(vo—vn)] ; wk—glvo PR
V2k,,C Y2k, C
e e

For B << B and k << k , we see from Egs. (5.2.5¢), (5.2.4) and
oy oz z y

(5.2.1) that in the presence of magnetic shear

1
=
+

k"(x) (x/Ls)ky

(5.4.5)

R
It

KL ky constant

we + iy = kV
k i )
Now A = .

/2K C
e

w —k v i'y
-k 1o, & (5.4.6)
V2kyC Y2k, C
e I¥e

If we assume yk>0 (growing wave) tﬁen the sign of Im>\e = *k//ikﬂce

can be changed by reversing the sign of k;. It is seen from Eq. (5.4.5)
that this implies x assuming an appropriate negative value. However,

such a change leads to difficulties as far as the Z-function is concerned,

since it is a sectionally regular function of two sheets with a
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; 71)
discontinuity along the real axis. TFor real A it behaves as follows( s

b -x2 2
ki?o+ Z(A+i8) = 11'_i J 75:77 dx + i1ri e_x (5.4.7a)
a0 2
- 2
Lim A+is) = il e dx - int e A (5.4.7b)
&+ oF Z(M+ig) = (x-A

Thus, a derivation of the dispersion relation for different initial

signs of Imh will lead to two relations involving different sheets of

the Z-function.

We notice from Eq.(5.4.6) that changing the sign of Im(Ae) through k
also changes the sign of Reke. A similar behaviour holds for
[mk-EL(VO-Vn)]//Ek“Ce. Therefore, we may compensate for the dis-
continuity of Z(Ae) by taking k;>0 (i.e.,x>0 for kz small) in the first
term of the product in Eq. (5.4.4), and for Z(Xe) use the power series

expansion in the limit lxe|<<l corresponding to Eq.(5.4.7a) above.

This yields

[w, =k (V. =-V)]
k 41 Ye n - (Ae)
/ik“c
e
w =k (V. -V)
- Ly ~ ]t ) {iﬂi - % (5.4.8a)
/Elkﬂlce :

where, from Eq. (5.4.5), |k"| implies k" >0 ,and therefore x > 0

provided kz is very small.

The problem associated with the discontinuity of the Z-function did not

arise earlier in the work undertaken in Section 3.5 » because there we
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have assumed kz=>0, without actually stating so. Therefore, in the
consequent manipulations the power series expansion corresponding to

Eq. (5.4.7a) was used (cf. Eq. (3.5.9a) ).

For |Ai| >> 1, we have the asymptotic expamsion (3.5.9b), viz.,

1 1

A TR e & iane ) (5.4.8b)
L i 3
1
with
A dZZ(Ai) :
_2_ & e — (5.4.80)
ar2 A2
i 3 1

With these results the coefficients A(x) ((5.4.2b)) and C(x) ((5.4.2d))

reduce to
2 2
k {w, =k, (V -V )}
L 1
A(x) = =5 - in’ E%- k= 0 0 uir ) -1 (5] (5.4.9a)
K K5 VI|kylc . .
e
2 2 2
[w, ~k, (V -V )] T k
C(X)=—1-§é{l+iwi k. o F(b)}-_eﬁ{__‘__i__l}
K 2|k, c . R ar A
i firiSq;
kg } [wk—gL(v -V )] k2C2
== 1 - — {1 + im g2 ¥ (b)} + Dzs (5.4.9b)
k 2]yl cC, 5 iy

For physically meaningful solutions we require A < x where x is the

range over which ¢(x) is non-zero. By virtue of assumption (5.4.2a) we

have
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. (72 g
Since IPo(b)|§l,|Po(b)—Pl(b)l§l ) and by assumption (5.4.3a) Ile|<<1,
it thus follows that the coefficient B(x) is small compared to A(x) and

C(x) and is therefore neglected.

Equation (5.4.1) may then be written as

2
L aw %)-+c(x) $(x) = 0 (5.4.10)
gL dx

with A(x) and C(x) given by Eqs. (5.4.9a) and (5.4.9b) respectively.

This equation is called the eigenvalue equation.

We notice that since in the absence of shear (LS+ ») ¢ is a constant,
Eq. (5.4.10) then implies C = 0, C no longer having an x dependence
since Ky is also constant. This gives us the usual non-shear linear

dispersion relation

2 2.2
k [w, =k (V =V )] C
c=—1-—12’{1+5mi LS 22 r(b)}+kDZS=o (5.4.11a)
k Y2k ,.C = w
e k
For w, = mi + iyk with |yk|<<w£, the real part is given by (1, p. 389)
ReC(w;) =0
This yields
. 2.2 -4
Wy, = kCS(] + k AD) (5.4.11b)
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For the growth rate, the equation

e ImC(wi)
k LEReC(w;)
Bwk
gives
} - T kK (V -V ) - o
Yoo (m\ [k /e\} 0 1l o o &k (5.4, 11c)
AR R oV el

which is a special case of the result (3.5.10) when one ignores

gradients in plasma temperature and magnetic field.

For Vn < Vo’ we have by assumption (5.4.3a) that

e ~ EL(VO-Vn)
/2 k,C
e

<< ]

Since |Po(b) - Fl(b)| <1 (72), it is seen from Eq. (5.4.9a) that

2
i
A(x) = — (5.4.12)
k
for
2 2
b w
ﬁ;hp—;s 1 (5.4.13)
k Qe

The effect of magnetic shear is now introduced. We substitute for KL
and ky from the equations (5.4.5). 1In the limit of approximation

(5.4.12), Eq. (5.4.10) may be written as
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. 3 e
2 in b~k (¥ =¥ 3I0 (b)) kT
d ng) _ ; [] + 152, k v o_ln 0 i ZS] $(z) =0
dx A 2|k +xk L "|c w J
D z y 8 e k

The necessary boundary condition is that ¢(x) -~ 0, as x + + ». Since
for kz small (~0) this equation is symmetric in X we may restrict it

to x > 0, with the added condition that ¢(x) be regular at x = 0.

We transform to the new variable z = ky(x + (kz/ky)LS), to obtain

-2t N
d2¢(z) ) i [] . kZAZ /l i kDCS\ g 17 {mk kyVD}PO(b)
dz2 kzkz y'D\ wz } /ElzlL-lC
y D k zZ e
2 2.2
A k. C
2D / _ B s\] - 4
ol ;7 \l mz }J ¢(Z) = 0 (5-4-14)
] k

where V_ = Vo - Vn' This equation, in turn, may be written as

D
2
d ¢(z) 1
= Q(z) =
d22 k2A2 z) ¢(z) (5.4.15a)
y D
where
Q(z) = Qp(2) + 1 Q (2) (5.4.15b)
with
2.2
k. C 2
Qp(z) = 1 + ksxg (1 b ZZS> {1 + kZLZ} (5. 4:15¢)
k y s
:
=1 = _'I
QI(Z) (2) {wk kyVD} Fo(b)/(IZI LS Ce) (5.4.15d)

To analyse this equation we temporarily ignore QI(Z)’ i.e.,we treat

the inverse-electron Landau damping term, which, from Eq. (5.4.1lc),

282
> m£/5L~CS (k™)X << 1),

gives rise to a positive growth rate when V D

D
as a perturbation, i.e.,we assume the magnetic shear effect to dominate.

Such an approach has been adopted by PEARLSTEIN and BERK(7O) and by

(73)

GLADD and HORTON in the study of drift waves. Equation (5.4.15a)
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then reduces to

2
4y tp - a’2) 4 = 0 (5.4.16a)

dz

where
2.2.-2 2.2 22,2

B = - (kny) {1+ kny a - chS/wk)} (5.4.16b)

and
. -1 2.2

@ = iL) T L0gci/ed) - 11 < 16 (5.4.16¢)

with
_ -1 22,20 .}
§ = (kyLS) {(chS/wk) 1}

The above differential equation is similar to that encountered in a

study of the harmonic oscillator in wave mechanics. A solution that
satisfies the required boundary condition of waves with outgoing energy
(70)

flux at large z, and therefore large x, is given by

6(z2) = H_ Leitd o) mewli abud) (5.4.17a)

where Hn (n=20,1,2, ...) is the Hermite polynomial of order n,

and

g= (20+1) o (5.4.17b)

Substituting for 8 and o in the above equation, we have

2.2 2.2
[/*p%s s i) e ] el kpCs _ i !
I\ 2 W2l KL 2

“k v'D y s “k

. - T gl s (1 .
Setting w, = W * o1y with lyk| W, this becomes
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25 2 R
k °C 2iy . C
| e 1 k\= L ) kD,S x &8 (5.4.18a)
v (wr)2 w: / kyLS wr Ty
k k k
where it has been assumed, in addition, that
2 2092
loy | << ¥y €2 (5.4.18b)

This approximation will be discussed later.

Resolving Eq. (5.4.18a) into real and imaginary components, we find

k 2C 2
@hH? = L2 (5.4.19a)
k o
1 +k "X
y D
and (w;)Z
s (n+3) 'k
Y 5 (5.4.19b)
k kyLS kDCS

We see that Yz < 0. Therefore shear has a stabilizing effect.

2 .2 : . .
Further, for ky XD << 1, as is usually the case 1in practice,

r,2 2 2 . B EEea ; 2 2 2
(wk) = ky CS , and in this limit the assumption lwk | << kD CS holds

true.

We now estimate the wave growth produced by inverse electron Landau

(69)

case of a shear dominated situation, is given by QR(ZT) =0, i.e.,

damping by evaluating QI(Z) at the WKB turning point , which, in the

2.2 rz, @ 2 3 21,8 B B2
1+ kny {1 = (€ /wp )} = - kny o= (chS/wk)} (zT/kyLS)

With the aid of the results (5.4.19), it turns out that

z2 Ziys wr

: N k _ _ iCine]) k (5.4.20)
k2L2 WoF kyLs kDCs T

y s k

Thus, upon evaluating the electron term QI(z) at z = Zps we add it

to the coefficient B in Eq.(5.4.16b) and obtain the consequent dis-

persion relation
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relation
4 58
g 4 o . :
[ kp Cs 1 1 . /_‘ll\i “K kyVD)ro(b)L;]= i(2n+1) B
patial Sl 25 Y = 2ies . kL i
AN T S |zplC, s\ o,
(5.4.21)

3 o
An approximate stability criterion may be obtained by setting W, =0 5

as given by Eq.(5.4.19a).

Then, using the assumption (5.4.18b), we have

r 2 2 2, 2 2
n(&va - Wy ) ro kyzLS " (2n+])2 kD cS
] il 2
4 4 2.2 |z, | k L w
2ky A kyCe T Yy s k

With (|zT| /kyLS)2 given by Eq. (5.4.20), it turns out that
1/3

=2/3
L 2\1/3 m, v i L
2 =(%) (2n+1)(m—1) (C_D - > (ro(b)) 2/3_ (X_S>
D (1P s D/c

Therefore for a fixed XD’ (LS/XD) < (LS/XD)c will result in a

completely damped wave.

Figure 5.2 represents a plot of the normalized growth rate

Yk/w; against b_1 = (Klre)_z, as obtained from Eq. (5.4.21). Since

shear damping increases with decreasing shear length, the associated
net growth rate is seen to decrease. For kAD = 0,1, it turns out that

the critical shear length (LS/)\D)c = 130, and for kkD = 0,2, (LS/AD)C= 80.

An attempt to find an analytical solution to the eigenvalue equation

(5.4.10) in the opposite limit, viz.,
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Figure 5.2
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2

5 r (® -T,®mI > 1 (5.4.22)
Kk »’Elkulce
which requires
2 2
b W
i;: Pe2 >» 1
k Q
e
(74)

leads to difficulties. For, the usual WKB technique used in

solving an equation of the form

2
d
40 4 ) 4x) = 0
dx
can no longer be employed. This technique involves setting up solutions

at the WKB turning points x, and Xy, where Q(xl) = Q(xz) = 0, which in

1
the asymptotic limit reduce to exponentially decreasing solufions at

X =+ %t », where Q assumes a constant complex value. The eigenvalue w
is determined by the requirement that the solutions at X and X, match
in the region between X, and x,.

2

The equation (5.4.10) can be readily written in the above form, with

Kk “C(x)
Q(x) = M—E_ T e

A(x)
As x + t =, C(x) is given by Eq. (5.4.2d), since from the expression
(5.4.5) for k“, it is seen that the expansion (5.4.3b) used in
arriving at the result (5.4.9b) is not valid at these limits. It can
be shown that C(x) reduces to a constant as x + + =, However, A(x),

which is still given by Eq.(5.4.9a), excluding the (Kf/kz)
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contribution (by virtue of assumption (5.4.22)), vanishes at these

extremeties. This causes Q(x) to diverge at x + % «,

A close inspection of the mathematical formalism shows that the
ions do not contribute a term to the coefficient A(x). This is so since
the ions have been assumed to be ummagnetized. It thus seems feasible
that the presence of magnetized ions could produce a term which, in the
limit (5.4.22), would make A(x) non-zero at x »+ t+ ®, and thereby allow

an approximate WKB solution.
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CHAPTER SIX

THE EFFECT OF ELASTIC AND INELASTIC CHARGE-TRANSFER COLLISIONS

ON THE CROSSFIELD CURRENT-DRIVEN ION ACOUSTIC INSTABILITY

Here, we initially concern ourselves with the effect of
elastic and inelastic collisions on an incident ion beam, We then
study the effect of such collisions on ion acoustic wave perturbations

superimposed on the ion beam.

6.1 SPATIAL EVOLUTION OF AN INCIDENT ION BEAM IN THE PRESENCE

OF ELASTIC AND INELASTIC COLLISIONS

We adopt the model of LEE (62

which describes the experimetal
arrangement in the Double Plasma (DP) device in the Plasma Physics
Research Institute, University of Natal, Durban. In the model, a beam
of thermally isotropic ions, density No, enters the region y > 0 of an
(x,y,2z) Cartesian coordinate system with an initial drift ﬁ(y = 0)

= Uo? in the laboratory frame. This region is called the target plasma,
while the ion beam originates from the source or driver plasma. To

maintain quasi-neutrality we have a thermally isotropic electron dis-
tribution of equal density. These electrons are at rest in the lab-
oratory frame. This is in contrast to the investigations

conducted far, where we have worked in the ion rest frame.

The half-space defined by -~ » < x < + », y > 0,
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—w< z< +w, ig filled with neutral atoms of the same atomic species
as the ions in the beam, with ng (neutral atom density) >> ng (ion beam
density). The system is subjected to a constant magnetic field io in
the z direction. No external electric field is present. As before,
the length and time scales are such that the electrons are magnetized
and the ions are not. The latter therefore assume straight line orbits

with constant velocity.

There are several possible collision processes within the
half-space defined above. These are electron-electron, electron—-ion,
electron-neutral, ion-neutral and ion-ion. The starting point of a
statistical description of a plasma with collisions is an equation of

the form (1,16)

D
h
(o>
+h
o ¥
(o
h
(o
+h

I
+
<y
|
+

ok (ped) (6.1.1)

Q

Tt
QL
R

where (Bf/Bt)C is the time rate of change of the distribution function
as a result of collisions. In the absence of collisions the right hand
side of Eq.(6.1.1) vanishes and it reduces to the Vlasov equation

(cf. Eq.(3.1.1)). The actual construction of the collision term (3f/8t)C
presents considerable difficulty. Furthermore, it differs in form for
the various types of collisions. There are two well known models of

the collision term. The first, the Boltzmann collision integral (l),

is based on the assumption that the collisions are short-range and
binary. It is appropriate for the study of a weakly ionized plasma.

The second, the Fokker—Planck model, is suited to the examination of

a fully ionized plasma where the deflection of a particle is more
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likely due to the cumulative effect of a large number of small-angle
scatterings than a single close collision. Here, the long range

Coulomb-interactions are of importance.

In our investigations we shall adopt the 'Boltzmann model',
Thus, Coulomb-interactions between charged particles are neglected.

(62) has shown

Electron-neutral collisions are also ignored. LEE
that the effect of such collisions are negligible when compared to
ion-neutral collisions. He found that for typical experimental para-
meters the mean free path for electron-neutral collisions was twice

as long as the width of the DP device measured along the magnetic
field. Our analysis is thus restricted to ion-neutral collisions
only. Of these, the elastic collisions between the incident beam ions
and the stationary neutrals are of the 'billiard-ball' type. The
total kinetic energy of the interaction remains constant and the
internal states of the colliding particles are unchanged. The in-
elastic collision is assumed to be of a charge-transfer type, where-
by an incident beam ion, travelling with a velocity ﬁ, 'absorbs' an
electron from a neutral atom (of the same atomic species) at rest.

The end products of the interaction are therefore a neutral atom
with approximate velocity U and an ion with zero drift velocity in

the laboratory frame, which, henceforth, will be referred to as a

'rest' ion.

The Boltzmann collision integral is complicated by nature
and is mathematically intractable. In practice it is necessary to
simplify the mathematical procedures in order to interpret experimental

measurements, Therefore, we adopt the model of BHATNAGAR et al (75)



156

and write the Boltzmann equation for the beam ions as

f of
b I
at

>
or

Q

Bjo
| s |
(e 13
+
o
[ I |
QL
KPR S
oo
>|<
<

(6.1.2)

Here, the first team on the right hand side is the elastic collision
term, while the second represents inelastic charge-transfer collisions.
The effect of the elastic collisions is to drive the velocity distribution

fB(¥,V,t) towards a stationary Maxwellian foB,(¥,V,t) given by

g0 .3 2
N 0, (y) 0L V. &)
£ (5, V,t) = exp |- J ] (6.1.3)
oB (nc, 2)372 ! 2 ¢,°
10 10
/2

where Cio = (Tio/mi)] is the thermal speed of an ion with zero drift.
This is plausible since the condition ng >> ng implies that the back-
ground neutrals may be considered to act as an infinite sink for

momentum and energy. In Eq.(6.1.2) we have written the collision

frequencies as

| <

v, = (6.1.4)
(& >‘ci(e)

where vV, (vi) is the elastic (inelastic) collision frequency and Ace
(Aci) the mean free path for elastic (inelastic) collisions. 1In
general the mean free path A is related to the collision cross section
¢ and the background neutral density ny according to

A= (nN cr)_l

Although the density ng changes (due to charge-transfer collisions)

as the ion beam traverses the region y > 0, the condition ng >> ng
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implies that this change, as seen by the beam ions, is negligibly small.
The cross section o is usually a function of velocity. However, if we
restrict ourselves by the assumption that o is independent of velocity,
then we see that A assumes a constant value, The experimental

(76) (77)

measurements of BROWN and OHNUMA and FUJITA exhibit a wide
velocity range over which the change in ¢ is small. Hence, Eq.(6.1.4)
tells us that although the mean free paths Aci and Ace are constants,
the collision frequencies vy and L have an explicit dependence on

speed.

In writing down Eq.(6.1.3) we have assumed spatial homo-
geneity in the x and z directions, and neglected any spatial variatiomn
of the temperature. It has already been assumed that the ion beam
enters the region y > 0 with density NO and drift ﬁ(y =0) = UO§. We
assume, in addition, that they enter with a Maxwellian distribution.

Thus we may write

{V2 +(V -U )2 + V2}
X y o z] (6.1.5)

7
2 Cip

—

£ _(y=0,V) = %
oY = UV = 7.3/2 €XP
(2ﬂCiB)

with nB(y = 0) = No'
We note that here CiB = (TiB/mi)]/z is the thermal speed of a drifting
beam ion and is usually different from that of a stationary ion, since
in general TiB * Tio' The effect of the charge-transfer collisions

is to modify the density of the ion beam as it progresses into the
region y>0, This change is represented by the term nB(y) in ¥q.(6.1.3).
As for the elastic collisions, they cause a slowing down of the beam.

Hence, from the point of view of the elastic collisions, allowing for
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density modification by the inelastic collisions, we may expand the

distribution fB(y,G) about an equilibrium foB(y,V) defined by

m, +3/2 [ m, {V2 + (V. - Uo)2 T Vi}
) exp ]

iy i _ TN Yy
£,3(7sV) = ng(y) (ZnTi 27T

B/ [ iB
(6.1.6)

Since there is no external electric field and the ions are unmagnetized,

we have

N V X f BfB
£ (E +— °> .—===0 & T
mNe 5V

Furthermore, we seek a stationary solution of Eq.(6.1.2). Thus

I Q

5T =0 (6.1.7b)

Using the expansion

F (v, ) = £ _(y,0) + €F, (g, 1) + €26, (g, ) + ... Uhedaty

B oB ] 2
and the results (6.1.7a) and (6.1.7b), Eq.(6.1.2) becomes

3 2 _ & 2 2
Vy 5 {f g+ € +€f,+ ...} = B f(f , + €, + €%, % ) = £ s
M 2
=5 o (foB + Ef] + €6, ¢+ wa o)
ci
(6.1.9)

In writing the above equation we have assumed that the inelastic
collisions occur much more frequently than the elastic ones. There-
fore the collision term of the latter is of an order (in €) higher
than that of the former. An equivalent statement is that the collision

mean free paths are such that
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>‘ci << Ace (6.1.10)

To lowest order in €, Eq.(6.1.9) yields

afoB

VyT=_¥ £ (6.1.11)

We notice that the choice (6.1.6) for foB(;,V) and the expansion
(6.1.8) for fB(y,V) have restricted possible spatial variations in U
and TiB to higher orders of magnitude than that in the density n(y).
This means that we consider the spatial variation of n(y) to be much
more rapid than that of U(y) and TiB(y)' In fact the variation of
TiB is ignored. This behaviour has been experimentally observed by

JONES and BARRETT (42).

Figure 6.1

Choosing spherical coordinates in velocity space as shown above,

Eq.(6.1.11) reduces to

V cos ©
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i.e.,

e Efgg = :l_.f
OB N Ty =  Rap el
ci

Upon substituting for foB from Eq.(6.1.6), with TiB treated as a

constant, we have

2

2
ang (y) { m, }3/2 { mi{vx + (Vz,_ Uo)
cos © exp |-
1B

% V2}
¥
3y 2n T. 2 TiB

nB(Y) {EFﬁfT‘ 5T (6.1.12)

1
A 1B

m. 3/2 m.{V2 + (Vv -U )2 + V2}
i } {_ T y 0 z ]
exp
ci iB

. z ; = 2 i
Next, we integrate over velocity space with dV = V° sin 6 dV de6 d¢.

The left hand side of Eq.(6.1.12) then becomes

21 /2 » 2 2
BnB(y)I m, 3/2 / miV \ miUo miUo 9
3 \ZnT d$|de |dV cosé exp\— 5T }exp T V cos®© Jexp| - Eir—-v siné
y iB o to U iB iB iB
(6.1.13)

In general the integration with respect to 6 ranges from 0 to m. How-
ever, the beam ions entering the region y>0 and proceeding in the
positive y direction have Vy > 0. Since these are the ions detected,
we see from Fig. 6.1 that the upper limit of © is restricted to m/2.
The lower limit of V is chosen as Uo and not zero since in the absence
of any thermal motion the ions have the externally imposed drift

. >
velocity Uo'

Using the result

2 .
Jﬂ/ cos® sin® exp(x cosB) d6 = %

(o}
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we see that

/2 m UOV\
I cosO sin® exp {( cose} de
P
o 1B
T m,U V T m.U V T 2
u iB {exp [ i o i B )} PR
m; 0V \ T/ mUV \ Tip miUOVZ

We substitute this result into Eq.(6.1.13) and perform the trivial

integration with respect ¢ to obtain

2 2
m. (V-U ) T. 0 m. (V-U ) T 2
ZW[J:XP{- 12T o }(m ;BV)VZdV—Jexp {— 12T 2 }(m GBV> V2 dv
U iB io U i i

1B 10
o o
m.V2 m.U2 T.2
+ J“ exp /— = ) exp /— = O) 1B V2dV]
u_ \ 2T \ 2T miUin

1/2
____) (V - U ),this reduces to
‘B o

T, 2T, \1/2 o T W Tion2 2P x V2
iB 2 iB B B 2 B
2"[m.U J:exp (-x7) {( = ) X + UO} (—;%—) dx _(m ; ) ngp(—x )( ml > dx

io i

1/2 ,T..\1/2 T.2 U2 U
¥ (7) ( B) om A ( 77 ) [‘ —t ( )H
] mn’u g 2C.
10 1B

1/2 " <2TiB\I/2 _ I-1/2 TiB\z 2TiB\]/2
o 2 m.U

% 1%/ V% /

(]
N
3
r—
I i N
I-‘B =)
(=3 I
o] o]
~——”
——,
N —
N
g| 3
(o}
~—”
+
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2 2
o (31 - (2]

. [mizz (%)1/2 (—Ef)3/2 {1 - mjug + ;zi% exp ( 2::§>{1 - erf<“§:1B>]}]
2
o2 (B ) - B (- e - e ()

(6.1.14)

where erf(x) is the well known error function, defined as

g1 fF <4
erf(x) = TZ J e dt
(o}

T

From Eqs.(6.1.13) and (6.1.14) we see that integration of the left hand

side of Eq.(6.1.12) over velocity space gives

P G () [ ) f - St )

U
(o]
Cis I Cig | 7 Yo TN 2%
= [WZU— + 7 {l - —Uz- (] - e o 1B|-] - erf \/Q'C.B>]>}J ay
(o] (o] 1

(6.1.15)

Next, we integrate the right hand side of Eq.(6.1.12) over velocity

space. In terms of the chosen spherical coordinates, this becomes

n (y), m, \3/2:2rm/2 m.U Vcos® m.U
B { i } I [ [w g \ Fidaur g ) R T
= T d$|d® [dV exp exp expy - 5=— |V sind
Aei L2nTipl ) U \ T 13/ \' Tip \' 2y

0
0

(6.1.16)
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Now

/2 miUOv /
J exp {( - ) cose} sin® de = \
o iB

Together with this result and the trivial integration with respect to

¢, Eq.(6.1.16) reduces to

2 2

nB(y) m, }B/Z(ZHTiB)[Jw { m, o miUo mlv
- —*—-—{ exp 2 S ) }V dV-Jexp(— ————)exp( >V dV]
xci ZHTiB miUo Uo 2T Uo 2TiB 2% iB
2
n_(y)¢ m. 3/2,2wT. oo 2T, \1/2 2T, \1/2 U
R Rl () e ke
v gyl e USRCOWT) T A, i )
/ ml )]/2
where x = | 57— vV -u).
\ZTiB o
This gives
2
. nB(y) { mi }3/2 <2ﬂTiB> {l (ZTiB\ X 1]/2 . (ZTiB\l/z_ (T_lB_)exp (_ EQ__ }
Aoy 2rT.g m. U 2\ my -l o\ m ) m, Cigl
! { Cip { /2 U, (%]
e 1+(_ .. (e -———}n(y) (6.1.17)
i Lam 72y 2] Cip \ cigj I's

Hence from Eqs.(6.1.15) and (6.1.17) we see that

[t - S 22
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The solution to this differential equatiom is

nB(y) = A exp (— o % _)

cl
where
2
Ci'B l-]—exp —UL.|+1_
(2“)172 | c.2 |~ 2
o = = ;B (6.1.18a)
U
CiB + LI Eig [1 - exp {— _HQ_) {1 = ‘il ( 2 )}]
(2n)1;20 2 gyt \ 2c,2 ot
o o 1B 1B
Since nB(y =0) = NO, it follows that
f EX)
& & .1.18b
nB(Y) NO exP \ )\01 (6 8 )

It is seen that for CiB << Uo’ as is usually the case in practice,

and

nB(y) = No exp (- y/lci) (6.1.19)

It is important to note that the result (6.1.19) is equivalent to
replacing V by Vy on the right hand side of Eq.(6.1.11) above. Since
ciB - Cio’ this holds true for Uo >> Ci in general.

Figure 6.2 illustrates nB(y)/No as a function of y/)\ci :
The parameter labelling the curves is (UO//ibiB). The corresponding
a values are given in parentheses. The nB/No values for a = | are
less than 0,5% larger than those for a = 1,02((U_//V2C.p) = 10) and
cannot be separately indicated. For the DP device, a typical value of
(UolffciB) is ~ 17 (41). The expression (6.1.19) is therefore a good

indication of the spatial variation of ion beam density in the device.
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Figure 6.2
1,0
\
Ng |
No

10(1,02)

i 4(1,12)

i 2 (1 ,64)

=
1

kabi

Variafion of normalized ion beam density nB(y)/No with distance

into the plasma. The parameter labelling the curves is (Uo//ECiB),

The corresponding a values, as defined in Eq.(6.1.18a), are given

in parantheses.
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6.2 THE BACKGROUND REST IONS

It has been shown that if Uo >> Ci then the stationary dis-

tribution of the beam ions may be written as

m, }3/2 [ mi(Vi + V2 + V2)

= 4 = 5 y z
foB.(y,V) = No exp ( y/kci) {ZHT expL 2Tio ] (6.2.1)

io

Since the rest ions are created by charge-transfer inelastic collisionms,
the Boltzmann equation for them may be written as

> R

il SR
ot >
r

8lo

of of [ v
[ (6.2.2)

) i
The choice of the collision term in Eq.(6.2.2) not only allows us to
maintain constant local ion density, but is also consistent with our
assumption, and an experimentally observed phenomenon, that the ions

created during the collision have zero drift velocity in the laboratory

frame.

In view of the results (6.1.7a) and (6.1.7b), and spatial

homogeneity in the x and z directions, Eq.(6.2.2) modifies to

8fR

v
y 9y

As mentioned at the end of Section 6.1, the assumption Ci << Uo allows
us to write nB(y) = No exp (- y/xci), as in Eq.(6.2.1), and is
equivalent to setting V = Vy on the right hand side above.
Thus, we have
afR \Y
vV __=lf
FAy A,

. oB'
{
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i.e.,
> 2
af_(y,V) m, 33/2 m.V
| L N oewp -yn ) { = } exp (- 8 )
ay xci o cl 21rTio 2Tio

We integrate with respect to y and use the fact that there are no

rest ions at y = 0, to find

2

fR(yﬁ) = N_ {1 — exp (- *}CJ} {;:;io}wz exp /\- 2;1)) (6.2.3)
with rest ion density
ng (y) = Jr £.(v,V) &V
=N_ {1 - exp (- y/A_)} (6.2.4)
It is clear from Eqs.(6.1.19) and (6.2.4) that
ng(y) + n (y) = N, (6.2.5)

which is consistent with the mechanism of the charge-transfer process,
whereby for each beam ion lost, a rest ion is 'born'. Therefore, a

constant total ion demsity is maintained.

6.3 VARTATION OF MEAN BEAM SPEED WITH DISTANCE INTO THE PLASMA

To first order in €, Eq.(6.1.9) yields
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v
Ve, == = — X (foB foB') == f (6.3.1)

ce ci

where foB and foB' are given by Eqs.(6.1.6) and (6.1.3) respectively.

As in the previous undertaking, in the limit Ci << Uo we have

ng(y) = N_ exp (- y/A L)

and set V = Vy on the right hand side of Eq.(6.3.1). Thus, upon

substituting for foB and foB' we obtain

2 2 2
of N my A8/ m, (V +[V -U_]17+V7)
1 1 o [ 1 g o z
— + = f=-— expy/r_.) ( ) exp{- b }

3y Ay 1T A ci’| T, o 2T, o
/ m, 3/2 m. (Vi Vi)
- (EFTT‘) e { 2, }]
10 10
1.e. ,
2 s
N m., +3/2 m. (V2+[V -U ]17+V?)
9 { 0 r g X 0 z
— £, exp (y/A )} = - — < exp {— b }
dy |1 koo [ 2ﬂTiB/ 2TiB
/mg \3/2 m, (V2+V24v2)
() - {-ae]
mT, 2T.
10 10

We integrate with respect to y, and since fl(y = O,V) = 0, it turns

out that

2 2 2

N %y, \3/2 m, (Vo+[v_-U0 17+v7)

V) = - Yy i [( 1 \ {_ Hee oo y o 2
fl(y ) xce No exp ( y/Aci) [ 2nTiB/ = 2TiB

P
_ { mi 332 (VX y V7))
T =y T (6.3.2)

10 10
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From Eqs.(6.1.8), (6.1.6) and (6.3.2), we have (to first order in €)

£,(7,0) = £_,G,0) + £,(3,V)

2 S
m. 3/2 m. (V+[v =g 17+vD)
nB(y){l—(y/Ace)} (i ) exp {- Lt X J ° z }

\ZHTiB 2TiB
m. 3/2 m.(V2+V2+V2)
+L n (y) /——JL—— exp §- B
xR, P T
ce io io

(6.3.3)
Equation (6.3.3) tells us that after a distance y, a fraction y/>\ce
of the ions in the charge-transfer modulated ion beam have undergone
elastic collisions. These ions are lost to the drifting beam and,
as shown, become part of the eventually stationary distribution foB'
given by Eq.(6.1.3).

The mean drift velocity ﬁ(y) of the ion beam is calculated with the

aid of Eq.(6.3.3). It is found that

10 = 57 | ¥ 5000 @ = v 9
B
where

U(y) = U, {1 = A )
(6.3.4)
=U {1 = G ) GA)

Since Aci << Ace by assumption (6.1.10), we see from Eqs.(6.1.19) and
(6.3.4) that the spatial variation of the ion beam density is indeed

much more rapid than that of the mean flow velocity.



170

The loss of beam ions by charge-transfer interactions and the spreading

of the beam with distance, in the absence of any instability, have been

(41,42)

" =4
observed in the DP device . At an argon pressure of 8 x 10 ~ Torr,

the following measurements were recorded at a distance of 16 cm into

the plasma(78):

ng(y)
Ion beam density N = 0,467
0
AU
Ion beam speed : 0,10 < T < 0,14
o)

where AU = Uo - U(y).

In Fig. 6.3 plots of nB(y)/No and U(y)/Uo are displayed,
satisfying Eqs.(6.1.19) and (6.3.4) respectively. We recall that these
curves are for Ci << Uo’ a condition well satisfied by the‘experiment.
The parameter labelling the different curves of U(y)/Uo is (Aci/kce).

cm (78).

Measurements show that Aci = 20 Thus, at (y/Aci) = (16/20)

= 0,80, we notice from the figure that when

(a) (Aci/xce) = 0,10
n, (y)
= 0,45 AU _ 0,08
U
o o
(b) (Aci/xce) = 0,20
nB(y) AU
= = 0,45 T = 0,16
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Figure 6.3

| il i)
0 2 Y/Aci 4

Variation of normalized ion beam density nB(y)/No ¢

) and
average beam speed U(y)/Uo L B ), as defined by Eqs.(6.1.19)
and (6.3.4) respectively, with distance into the plasma. The

parameter labelling the different U(y)/Uo curves 1is Aci/xce'
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Comparing these values with the experimental results we see that a
reasonable estimate of (Acilxce) for the DP device under the given
operating conditions is 0,10 < (Acilkce) < 0,20. Thus, it appears that
our assumption that the inelastic charge-transfer collisions are more

dominant than the elastic collisions is justified by experiment.

6.4 WAVE PERTURBATIONS SUPERIMPOSED ON THE INCIDENT ION BEAM

Before proceeding with our investigations on the effect of
ion-neutral collisions on wave perturbations superimposed on the ion
beam, we review some of theoretical studies already undertaken using
the collision model of BHATNAGAR, GROSS and KROOK (75), henceforth,

referred to as the BGK model. A few experimental observations are

also discussed.

(a) Theoretical Studies

KAW (79)

investigated the propagation of ion waves in a
weakly ionized collisional plasma with crossfield electron drift. With
the assumption v, << Qe and vy >> Qi’ where Ve(Vi) ig the electron (ion)-
neutral collision frequency, he used the fluid equations to describe
electron motion along B and a kinetic equation with a BGK collision
model for the ions. Upon using the quasi-neutrality approximation it
turned out that the perturbation growth rate was a factor (kzlki)

larger than that in an unmagnetized plasma. Electron-neutral collisions
were found to promote wave growth, while ion-neutral collisions caused

damping.
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(80) studied the effect of ion-neutral

CUSSENOT and FABRY
collisions on ion waves. Numerical solutions of the dispersion re-
lation showed that collisions were important in the low frequency range,
i.e.y(w/v) < 1, where w is the wave frequency and v the collision
frequency. In this domain collisional damping was much more significant

than ion Landau damping. The transition to ion Landau damping occurred

over the range v < w < wpi.

(79)

The investigations of KAW were carried a step further

by SHARMA and BHATNAGAR (81)

who included the effects of perturbations
in the average drift velocity and temperature of the ions. Using the
complete BGK collision model for the ions they found that ion-neutral
collisions did not contribute to wave damping, in contrast to the find-

ings of KAW. The inclusion of collisions was found to reduce the

critical drift velocity required for the onset of the instability.

(b) Experimental Observations

To compare with their measurements made in the positive
column of a helium discharge, FENNEMAN et al beR) developed a one
dimensional linear theory of the ion acoustic instability. The approach
was via the Boltzmann equation with a BGK type elastic collision term
for both ion-neutral and electron-neutral collisions. The authors
showed that in the region of parameter space where the ion acoustic
waves were well defined electron-neutral collisions could be neglected.
Their experimental results provided quite good agreement with theory.
The waves were found to grow spatially and saturate. The saturation

mechanism was not well understood.
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Working in a DP device, KIWAMOTO (83)

injected a high density
ion beam into a homogeneous unmagnetized plasma. The charge-transfer
mean free path for the beam ions was measured to be ~ 15 e¢m. Pro-

pagation of test waves showed that for beam speeds V. < 2 CS the fast-

b
beam ion acoustic mode damped exponentially, while the initially grow-
ing slow—beam mode saturated further down the target chamber.

(84)

SATO et al conducted their experiments in a Q-machine
operated as a DP device. They found that as the positive bias on the

grid separating the driver plasma from the target plasma was increased
the damping distance § ‘and the wavelength A of the perturbations also

increased, as did the ratio §/A. Both the fast and the slow-beam ion

acoustic modes were detected and the measured phase speeds agreed well
with theoretical estimates.

Dispersion measurements by HAYZEN and BARRETT (41)

in the
Double Plasma device, on which the model in Section 6.1 is based, in-
dicate the propagation of the slow-beam ion acoustic mode. Good agree-
ment between theoretical and experimental growth rates is obtained for
a fitted ion-neutral collision frequency of 1,7 x 10_5 s_l. The over-
all effect of the collisions was to reduce the growth rate. The
authors found that the calculated growth rate corresponding to the

above collision frequency was less than the collisionless value by a

factor of two.
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We have seen that in the absence of wave perturbations, and
for C. << U , the effect of elastic and inelastic collisions was to
i o

modify the background distribution

(6.4.1)

3/2 f_ mi(Vi+(Vy-Uo)2+V§)}
1ot A 6 | 2T

+h
o]
=
7~~~
«
[}
o
<4
S’
n
=z
e
=]
'—l
-

iB

with which the ions enter the region y > 0, into the form ((6.3.3))

m. +3/2 ( mi(vi+(vy—Uo)2+V:)
foB(y,V)=No eXP(-y/Aci){l-y/lce}(ZWT_ ) - 2%, }
iB 1B
2 22
; 3/2 m,(V + V #7)
3 e __ix y ez
¥ % No &*E < wil \ErT; ) - { 2T, }
ce c1l 10 10

(6.4.2)

The distribution (6.4.2) is taken as a pseudo-equilibrium for the wave
perturbations, i.e., from the point of view of the waves, it is selected

to be the zero-order solution of the Boltzmann equation

_y

of of X B of \) \Y
TBLg. B, e [, 0] e o e o if et
ot 532 m, | e | > A B oB' Xla%sB
ar 1 oV ce ci

and is therefore written as foB(y,V), (6.4.3)
We recall that

f =N - }

oB' o ¥P ( y/)\c1) \ZWTio/ s { 2Tio } (6.4.4)

is the stationary Maxwellian towards which the system is driven by the

collisions.
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Thus, we write

£, 0,0 = £, + £5GT,0)

(6.4.5)
E(?,t)

+
El(r,t)

where le(?,v,t) and §](¥,t) represent the perturbations due to the

waves. Once again, the electrostatic approximation has been used, with

§I(¥,t) = 9.

Similarly, for the 'rest' ions the distribution

m. 3/2 m.(V2+V2
i 1% s
) exp {—
o

2
> +Vz)
Er(Vsy) = Ny {1 = exp (= v/ p)} (7}?;‘ 75 }

(6.4.6) -
is the assumed pseudo-equilibrium for wave perturbations, since it is

the zero-order solution of the associated Boltzmann equation

|'+ -\-7 X-ﬁ 3fR Vv oy
LE b °] ) = r‘l £ g1 (FsV,t) (6.4.7)
Ccl

of of

Ry . B

ot -
or

JL

1

We have seen that in the absence of any instability the distributions
(6.4.2) and (6.4.6) maintain a constant total ion density (cf. Eq.(6.2.5)).
However, to maintain a constant local total ion density in the presence

of oscillations, we modify Eqs.(6.4.3) and (6.4.7) as follows.

For the beam ions we write

Sf Sf Vx3 of n (z,t)
B, 3 B,e [z, o] B (e . B )v ¢
m % B

[
—+ V. . PPENES -
at o3 : | g P Ve \'B E;;T;T— oB'

(6.4.8)
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where, in general, ve(vi) is the elastic (inelastic) collision

frequency.

Here

= - 6.4,
noB(y) No exp ( y/kci) ( 9)
and, from Eq.(6.4.5),

> > > ->
nB(r,t) = J fB(r,V,t) dv

np(y) * “IBG’t)

where

> > > >
nlB(r,t) = J le(r,V,t) dv
is the perturbation in the ion beam density due to the waves.

The Boltzmann equation for the rest ions is written as

[+ %]

f of
R+v . B+

__X &G et (6.4.10)
ot 3?

. : ;
aV & noB(y) o8

> >
V x §o> afR nB(r,t)

B|lo
B

The reason for the choice of the above forms can be easily seen for the
case where the collision frequencies are independent of velocity. Upon
adding Eqs.(6.4.8) and (6.4.10), and integrating over velocity space,

we find that the localized total ion density is, indeed, conserved.

We substitute for f; from Eq.(6.4.5) into Eq.(6.4.8), express vevy)

explicity in terms of Vy and xce(xci), and linearize about foB(V,y),
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to obtain
of af of Y n \
1B, ¥ IB e - - ( 1B ) iy
— ¥V, -= VW,  ——=- £ _ - S £
&e 3T i 4% e \ 1B np(y) "oB Vel I8
(6.4.11)

where ﬁl =—V¢l in the electrostatic limit. The result (6.1.7a) has

also been used. Assuming the perturbed quantities to be harmonic in

space and time, we may write

0. (t,t) =X ¢, exp {i(k . T - w,_ t)}
| X kw k
> > e .o >
le(r,V,t) = i kam (V) exp {i(k . r - Wy t)} (6.4.12)
and
-> . ->
nlB(r,t) = E Doy ©%P g4 S w, t)}
Then, from Eq.(6.4.11),
of \' \Y n \'
. - e 2 oB Bkw
-—iw £ +ik . .VE, -24 ik, ==L f 4o f - Lf
k B 5
kw Bkw m, kw 7 Ace Bkuw. XCe noBZy) oB Aci.Bkm
Solving for kam’
e > >
o ke k'(afoB/aV) iV n £

i y Bkw oB'
> > g
{wk k.V+1(kce+kci)Vy} (y){mk-k.v+1(kce+kci)vy}

Bk = A
cenoB

-1 . . >
where kcj = ch (j = i,e) and anw = J kaw dv.

We integrate the above equation over velocity space and obtain

K.(afoB/aV)dﬁ in

VR il
ng =-% 4 J % y “oB'
v B P &
caT el "y

7 L
{mk-k.V+1(kce+kci)vy}

(6.4.13)
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Since the ummagnetized ions assume straight line trajectories we may

simplify the algebra by an appropriate rotation of the coordinate axes
> >

so that Vy is parallel to k. Upon substituting for foB from Eq.(6.4.2),

the first term on the right hand side in the above equation becomes

2
" ( m, >3/2 " [(V -U )exp{ (v +(Vy—U )T+v
T, . 2

[ : )y/2C.2}
m, bew BT U A N5 C'BJ O O

2
1B4dv

2
z
e )

it 2
g - 20y
E () ) e g
A 2 (wk:Ik-i(kce+kci)]vy)

2 2
1 K J(Vy—Uo)exp{—(Vy-Uo) /2ciB}

(2nC. 2)1/2

dv

_e [q-
B mi¢kw“oB(Y)[{1 YA ol (0 kT V) y

ClB

%

2
. (z_ \ 1 K va oxp LI Ao ]
Acé/ (ZﬂC )1/2 lo (wk-k Vy) y

where (6.4.14)

ki =k -1 (kce + kci)

vV, -1U)
Defining x = ——)L———Jl—, the first integral becomes

=
2 Cip

3
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where (6.4.15)

- ]
mk k U0

0 m ——
Y2 k'C.
iB

and 2'(8), the derivative of the Z-function, is defined by Eq.(3.5.7).

Similarly, the second integral may be manipulated to yield

5 142
(2 Gl z2'(8")
k' 2
where (6.4.16)
e’ =-——:ﬁi—-
Y2 k'C,
10

With the results (6.4.15) and (6.4.16), Eq.(6.4.14) reduces to

{1-(y/x_ )} (y/x )
ﬁ: % "o %7 [ Zce z2'(9) + ——-—E%- z'(e')] (6.4.17)
1 2 C, 2 @:
1B io

In a manner paralleling the one above, the integral in the second term

in Eq.(6.4.13) reduces to

n_(y)
_1%%;7_ z'(e'") (6.4.18)

Thus, from Eqs.(6.4.13), (6.4.17) and (6.4.18), we have

{1-(y/x )} Gw/x. )
n, =< ¢ n_(y) BT-r-——————iﬂi—— z'(8) + —== Z'(e')]
Bkw m, "kw 0B kT | 5 .2 2 .2
iB io
i anw

1 1
*z—ch;“e)



Solving for Do’

ed {1=(y/x )} b, )
kw k ce ' ce 1ot
m, noB(y) k' {______—f—_- i +‘———_—7_ o & )]
1 2oy 2 G,
- 1B 10
anm -

'{‘ < z'(e')]
ce
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(6.4.19)

For the rest ions we write fR Frfgy i R’ and linearize Eq.(6.4.10)

oR 1

about foR' Upon substituting ¥y @ (Vy/kci), we obtain

of of of v n
IR + v ) IR e oR 2l A 1B

—_— £
ar i v ci "oB

ot (y) “oB'

For perturbations of the form (6.4.12), this reduces to

of \Y/ n
- 1w
1 A cL o

from which

. > e > oR _ 'y _Bkw
k kam : Rkw m, ¢ku) ® .= A .n BZy) foB'

where, in analogy with the equations (6.4.12),

flR(?,V,t) = E kaw(V) exp {i(k . T - w, £)}

The density perturbation associated with kaw is given

Mok = J kaw dv

by

av

(6.4.20)
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Once again taking k Il Vy and substituting for fOR from Eq.(6.4.6), we

find that the first integral on the right hand side reduces to

+00 2 2
) noR(y) " J Vy exp ( Vy/2Cio) o
(2nC.2)l/2 2 (0, -k Vy) y
io io ==
n _(y)
- R F A
2 k io
28
io
where (6.4.21)

noR(y) = No{l - exp (- y/ACi)}

With the aid of Eq.(6.4.4), the second integral in Eq.(6.4.20) modifies

to
+o0 2 2
n g(¥) J Yy exp ( Vy/ZCio) .
2,1/2 (w, —k V) y
(2wCio) i k y
n (y)
_ O oy
== (wk//ikcio) (6.4.22)
From Eqs.(6.4.19) - (6.4.22), we have
ep, n (y) i n
anw = kaL) OR 2 Z'(evl) + Zk}‘Bkw Z'(en)
1 2C. ci
io
ed n__(y) g , . -]
o ko oR i k wl et :
G [ 7t Ta T ") & {] e 2 (@ )}
i 2Cio ci ce

+
2
2C;p s

[1- GA DI 2@ (A)
. { : z'(e')}]

(6.4.23)
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with
(1)1_
" = ——— (6.4.24)
Y2kC.
10
6.5 THE ELECTRON TERM

We assume that the stationary neutralizing background electrons

have a Maxwellian distribution, given by

2.~5f2

+
foe(V) = No(21TCe

exp {—(v2+v§+v§)/2c§} (6.5.1)

The perturbed electron density is given by Eq.(3.3.2) of Chapter Three,

viz.,
2
of F(E) &, (BE_ /3% )
_ _ 2me [, _ 2 1. ok i z oe' "z
Tekw m, ¢kw-J[{l Io (€] ¥ 3y (0, =~ k,V) ] L
(6.5.2)

2 2 .2
where YL = Vx+vy and £ = KLYL/Qe. We have allowed for the fact that

here the electrons, in contrast to the study undertaken in Chapter
Three, no longer have a drift 60.
For a distribution of the type (6.5.1), it is seen from Eqs.(3.4.4) and

(3.4.7) that we may write

e Yo ) T 2,2
O Ty {ce (r_(b) - 1] Jexp (- v2/2c%) av
e -00
o (3/3V) fexp (- v2/2¢%))
- wk Z" |2 .

(6.5.3)

. o oo
h 11 = - =
where we recall, Fo(b) exp (-b) Io(b) with b ELCe/Qe.
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With the aid of the integrals in Appendix A, this may be expressed in

terms of the plasma dispersion function as

ed N '
n, =-—2_2 rro(b) {1 + 2 g IraC) } 2 1]

or using the relation (3.5.7),

ed N w
B = kw ._g.[l + ro(b) ( L ) Z(wk//ikzc )] (6.5.4)
m ¢ 7k _C :
e e
6.6 - SOLUTION OF THE DISPERSION RELATION
With the aid of Eqs.(6.4.19), (6.4.23) and (6.5.4), Poisson's
equation
_ hme
O = 2 Vg * Tone ~ Taxe

becomes

R NG k_{["@/*ce)“'(e) g (y/xce>7,(e,)}{l_ i Z.(e.)}"
K2l omy k 2, % 2¢, i
1B 10
Z'(O")J'noR(Y) i % i ' : =1 [l‘(Y/lce)] Z'(e)
TR e “oB(Y)ET[" Bty o )} [ w5
io iB

(y/kce) ( No Wy
el e () ne)
2 Z(w, /Y2 ¢ -
io mecf_ (o} ‘/Ekzce k z e)

(6.6.1)
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where, from Eqs.(6.4.14), (6.4.i5), (6.4.16) and (6.4.24) respectively,

w, = k'Uo
k' =k-1i(k, *k;) ; 6=
Y2k 'C,
iB
W,
. s
L]
Y2k'C. Y2kC.
10 10

In solving the dispersion relation we retain the assumption of warm

B’ Tio'

electrons and cold ions, i.e.,Te >> Ti

For the warm electrons we use the approximation

| Y%
Y2k C
Z e

<< 1 (6.6.2)

i.e., the wave phase speed along B is much smaller than the electron

thermal speed, and hence the power series expansion (62)
. 1/2 2 [ 202
ZQA) =i exp (= A7) = 24 [] o9 *+ ....] (6.6.3)

for |A| << 1.

For the cold ions, we assume

w, — k'U
|e| S e S >> ]
v2k'C.
iB
|e'| = i-—wk_ >> 1

Y2k'C.,
10



186

and
w
|en| - ' k >3 |
V2kC,
io
Then the asymptotic expansion (63)
-1 1
Z(X) > = A (1 + __E)
2

for |X| >> 1, permits us to approximate

Z2'A) = =2[1 +xz(W)]

& A (6.6.4)

With the approximations (6.6.3) and (6.6.4) the dispersion relation

(6.6.1) simplifies to

1

_ dme? [noB(y) k {“"y“ce)] ( LN )2 ; (Y/)‘ce)/ﬁk'cioy}
K2 m, Kk 2c,2 (&0 ), 2c,2 \ ¢
1B 10

/Ik'C, \24-
) {1 e ( 2kwilo>2} 1

. l_ </§kcio)2 {noR(y) " % o K [1 } i //Ek'Cio 24-1
m, w or 2 Mg e W - DR\ oy

y [[]‘(Y/xce)] (/Ek'CiB\Z (y/kce) (/Ek'cio>2]}

¥ w
2.2 w kT / 2.2 8
1B 10
N w
o PEE 1 Iy 7k
- {1 + 44 r_(b) e }] =0 .65
n C Y2k C

e e
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To proceed further we assume, in addition to Ace >> Aci’ that

k A >> kA . > 1 (6.6.6)
ce ci

In terms of the definition kcj = A;; (j = i,e) we have

k2 k., » k
cl ce

This means that the wavelength of the fluctuations is assumed to be
much smaller than the inelastic charge-transfer mean free path, which,
in turn, is smaller than the elastic mean free path. Typical measured

(78)

values in the DP device are A ~ 2 cm and Aci ~ 20 cm, and the
investigations in Section 6.3 have inferred 0,1 < (Aci/xce)< 0,2.

Thus, (6.6.6) is a reasonable approximation.

Then

For w, = w; + 1 Y0 with |ﬁ‘| << w;, we use the approximation (3.3.10),

viz,,

N‘SNI-—-
'
-
N
“Ti
t

The dispersion relation (6.6.5) then becomes

]_

. 2 2
4ne2[noB(y)I1+ 1(kce-‘.kci)}j[]_(y/)‘ce)] 2[k —Zlk(kce+kci)]c'
m.

1B
29 1 k 1 2 r : 2
k i ZCiB [ (wk—ka) +i (Yk+{kce+kci}Uo)]
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+

T - :
(y/Ace) ZCio[k —21k(kce+kci)] 4k 21Yk\}

: 1
2 r.2 \ %
2Ci0 (mk) wk
22e,? , 2iv, () in () ({I-(gA )}
“io f 'k\ [ oR oB r ce
' n AT 02 g T 52
m; (w) " io iB
e - e ;
ZCiB[k -21k(kce+kci)] (y/Ace) [k 21k(kce+kci)] . 21Yk
T . -l 2 .2 S e
[(wk_ka)+1(Yk+{kce+kci}uo)] 2Cio (wk) wk
N sl (b) (“’; +iy)
- {1 : 0 }] -0 (6.6.7)
n C Y2k _C
ee z e
where terms of second order and higher have been neglected.
If we assume, in addition, that
v.+ {k +k .}U
k rce c1” o .., (6.6.8)
(wk—ka)
then
I 3 1 {]_ Zl(Yk+{kce+kci}Uo)}
r . "R ] r
[(wk ka)+1(Yk+{kce+kci}Uo)] (wk-ka) (wk-ka)
and Eq.(6.6.7) modifies to
2 i I 2 :
| - dne [“og(y) fis Hkeethei)y {“ R e
K m., k I E 2 \
1 (wk ka)
: 2
) (1 i 21(Yk+{kce+kci}Uo)) " (y/2 )k 1 2i(k +kci))/ 2iy,
N 2 . T it >}
(uy KU ) (w}) \ \ of
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0.2 . i & 2 ;
2k C.o 21Yk noR(y) i “oB(y) {1 (y/kce)}k ( 21(kce+kci)
4 A" % i S N K
X i J
mi(mk) wy 2C; ci (mk ka)

. 2 . .
< (- 21(Yk+{kce+kci}uo)> o SO\ (1- 21Yk\]}

: 1-
r_ v k / 4
(mk ka) (mk) Wy

. 1/2 T .

N i T' (b) (w, +1iv,)
_ o2 {l + o k k }] =0 (6.6.9)
mC Y2k C

e e zZ e

Upon neglecting the product of small quantities, the real part turns

out to be

ime2 [noB(y) {{1-<y/xce>}k2 (y/xce>k2} n K N ]
1- + = =0
k2 ny (wE-ka)2 (mi)z mi(wli)2 mecz
i.e.,
m, . Nomi =0 _(y) {____l____ + (y/A ) [ ¢ 1 ]
hre’ k7c2 P (wr-ky ) L’ (a{-kuo)2J

. {No-noB(y)}}
@p)?
‘where we have used Eqs.(6.4.9) and (6.4.21) to replace noR(y). This

may be rewritten as

n__(y) [{ : - - 2}{1 - (y/x )}] =N hod : ]+ i
oB r 2 T e " 2T ¢ 2
w, ~kU () L g 4
where wpi is the ion plasma frequency and Cs the ion sound speed. We

now make the assumptions

r,2

(wk)

r 2
>> (wk—ka) (6.6.10a)
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and

r,2 =2
(wk) > k Cs (6.6.10b)

The physical implications of these approximations will be discussed

a postertori. The above equation then reduces to

Ny ex (-3 U= A ke )
o

r 2 AT2
- C E
(wk ka) k wpl
from which
r 2 .22 kzcﬁ -1
(wk-ka) =k CS {] + 5 } exp (- y/)\ci) {1 - y/)\ce}
wpi
Solving for wi, we have
. i - y/2x ) {1 - (y/2 )}‘/2] (6.6.11)
' k Uo b 2.2.1/2 exp /e Y/ ce [
(1+k AD)

Thus, the assumption (6.6.10b) implies

2y s - y/20 ) {1 = (y/A )}‘/2]2 >> k2¢2
"o - (1+k2A2)]72 €XP A7 ¥ Ve s
D

. 2,2,-1/2
Since (1+k AD) / <1, 0 < exp (-y/ZAci) <1 for y >0, and for

0<y<A

1 . . . . ol .
ce? 1 - (y/kce)} /2 < 1, this restriction is satisfied if

U > C (6.6.12)

i.e.’the ion beam speed is much larger than the ion sound speed - as is
usually the case in experimental studies of the ion sound instability.

It is easy to show that this condition also justifies the assumption

(6.6.10a).
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The positive sign in Eq.(6.6.11) corresponds to the so called fast-
beam ion acoustic mode, and the negative sign to the slow-beam ion
acoustic mode. Since electron density n, = No’ the said equation may

be written as

1/2

wr {N_ exp (- y/x _.)} C
Koy + 2 73 &= 232 73 {1 = (y/kce)}]/2
ko~ N (142 %)
o D
i.e.,
r
“k BB\ E Cq 1/2
_k = UO t (n—/ W {] = (y/kce)} (6.6.]18)
e (1+k AD)

where from Eq(6.4.9) n . is the ion beam density. In the absence of

elastic collisions (Ace + «), this reduces to

r
w_k I (noB)]/Z CS
k 0~ \Rg (1+k2>\]§)]/f

2.2 . ; s
For k AD << 1, this corresponds to the expression derived by

SATO et al (84). Moreover, in the complete absence of collisions

(Ace’kci + ) , Eq.(6.6.11) modifies to

of =1 (u_+ ¢ (sl (6.6.13)

which is the usual collisionless ion acoustic wave frequency as determined

in the electron rest—-frame (37).

The imaginary part of the dispersion relation (6.6.9) gives
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e

nOB(y) {[]—(ylkce)]kz (_ 2(kC +kCi) Z(Yk+{kce+k0i}uo)>

et (mll;—ka)2 5 (mi-ka)
(y/X )k2 2{k +k .} 2 k  tk [1-(y/A )]k2 (y/x )k2
" Y% ce (_ ce ci’ _ Yk) i ( ce ci) { VI e - Vi ce ]}
Bl k r k r 2 r.2
(mk) Wy . (wk—ka) (wk)
2 2 2 2 2
2y, K" n_p(y)  2k°C. n o(y) {[l—(ylkce)]k ' (y/kce)k}
- . g 2 %
wi mi(wli)2 mi(wi)2 2k>‘C (wi‘ka) (wi)
r
N w
__ o n]/2 I (b) . . 0
m C = YL
e
i.e.,
noB(y) (kce+kci) [ kz 1 1 2
m {_ k |, r - (y/Ace) { T 2 AR 2} % ]
i (wp U ) (w k0 )" (@)
2 3
\ (y/x_ Ik r 2yk]} ; noB(y) {l-(ylkce)}k r 2v, A 2(kce+kci)Uo]
(wi)z | wi s (wi—ka)z I (wi—ka) (m;—ka)

r r‘.2 r
Wy mi(wk) mi(m

2 2.2
2Yk K noR(y) 2% Cio noB(Y) [ k2
r
) (
k

1 1 2
2 2k>\ci wk_kUO)Z ce (wi—kuo)z (wr)Z

N w1/2 wr
o r k
T
e e zZ e

=0

Using approximation (6.6.10a) this reduces to

np® OAJE K@) noB(y){l-(y/kce)}kz]

zyk [_ m
i

r~3 - r\J3 T 3
(wk) mi(wk) m, (wk—ka)

2
I noB(y) {(kce+kci) [k {l_(ylkce)}
|

m. k

T 2
i (mk-kUO)



193

2 < S 2
: 2noB(y) k {l-(y/lce)}(kce+kci)do g 2k Cio noB(y) S A (y/lce)}
m. r 3 =2 21, r 2
i (wk—ka) mi(wk) ci (mk-ka)
r
. N 12 . “x
m C2 V3 ¢
e e
Thus
v) k +k 2kU kzc 2 N nl/zr w
noB(y) {1-(y/x )} {('ce ci) [l+ 0 ]_ g T }_ 02 - o
m. r 2 k r 2,
i (wy KU ) (w, ~kU ) (0 )kA ;7 mC, Kk »/'2'kzce
n,pY) 1 » 1 1 norY)
2 m, r 2 (y“ce) Bl r 0 )3, 3 _(r—)§
i (mk-ka) (mk) (wk 5 m, (w,
(6.6.14)

In the absence of collisions (Ace’ A L, > ),

ci
k , k. >0
ce’ ci
ng = No exp (- y/Aci) = N0
np = N, {1 - exp (- y/Aci)} =0

Then for the slow-beam ion acoustic mode (corresponding to the negative

sign in Eq.(6.6.13)), the growth rate (6.6.14) reduces to

Y (ﬂme>1/2 (b) (
—_ = | —— 6.6.15)
wi 8m. 1+k2A2)37

(61)

A.J. HAYZEN has shown from theoretical considerations that for

U > C_,
(o} 1

[

ot |
1
o
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where k = kr + 1 ki is complex when w is real (as in experiments).
Computational studies relaxed this result into the region Uo > Cs'
Hence from Eq.(6.6.15) we may write

_ ki ) (IEENI/Z E. Fo(b)
8mi} kz 2.2 3/

Tk 2
T (1+k AD)

o |

This is identical to the result of BARRETT et «al (37).

The growth rate (6.6.14) which describes the linear behaviour of the
crossfield ion acoustic instability in the presence of elastic and in-
elastic charge-transfer collisions will be numerically considered in

the next section.

6.7 NUMERICAL STUDIES

A graphical study of the variation of the normalized growth
rate (Yk/wpe) with distance into the plasma (y/kci) has been conducted
as a function of the different variable parameters. The examination
is restricted to the slow—beam ion acoustic wave since measurements
in the DP device have revealed this to be the mode travelling down the

(41, 62)

target plasma Wherever possible, parameter values typical

of the argon plasma (with (mi/me) = 73440) in the DP device have been

chosen.

The curves in Fig. 6.4 correspond to different values of
(UO/CS). For a given (y/Aci), the growth rate is found to increase

with (Uo/Cs)' This may be explained as follows. An increase in ion
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Figure 6.4

ixlo'"’ —
W

7.5

Normalized growth rate yk/u)pe for the ion acoustic instability as
a function of the normalized distance y/kci. mi/me = 73440,

T, /T =0,1, A ./A =0,1, k.= 0,1,

10 e Cl ce D />\ci = 0,004, kz/k = 0’03’

D

w_ /9
e

pe V2. The parameter labelling the curves is UO/CS.
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Figure 6.5
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Normalized growth rate yk/wpe for the ion acoustic instability as
a function of the normalized distance y/kci. mi/me = 73440,

Tio/Te = 051, A /A __ = 0,1, Ap/Ae; = 0,004, k /k = 0,03, U /C, =5,

w_ /9

pe’ e V2. The parameter labelling the curves is kkD.
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Figure 6.6
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Normalized growth rate Ykﬁnpe for the ion acoustic instability as
a function of the normalized distance y/kci. mi/me = 73440,
io' e ’

T, /T, = 0,1, U /C =5, K =0,l, k/k = 0,03, wpe/sze = V2,

The parameter labelling the curves is XD/kci.
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Figure 6.7
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Normalized growth rate yk/ube for the ion acoustic instability as
a function of the normalized distance y/kci. mi/me = 73440,

Tio/Te = 0,1, A /A = 0,1, U /C =5, k) = 0,1, A,/A_, = 0,004,

w /Qe

pe Y2, The parameter labelling the curves is kz/k.
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Figure 6.8
4
-
Y, -5
< x10
h)pe
2

AW

Normalized growth rate Yk/wpe for the ion acoustic instability as

a function of the normalized distance y/kci. mi/me = 73440,

T, /Te 0,1, Uo/ CS = 5, kAD = 0,1, XD/xci = 0,004, kz/k = 0,03,

10

w_ /9 Y2, The parameter labelling the curves is xci/xce'

pe' e
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Figure 6.9(a)

<
2l
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FhF-

0 & | 9
| y/Aci 0,
Normalized frequency w;/wpe for the ion acoustic instability as

a function of the normalized distance y/Aci. mi/me = 73440,

A ./x_ = 0,1, For the solid lines (
ci’ “ce

) U/C =5 and the
o' ’s
parameter labelling the curves is kAD; the broken lines (==+=+=)

are for kAy = 0,1, with UO/CS as the variable parameter.
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Figure 6.9(b)
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o
© z%kci o

Normalized wave phase speed V¢/Uo( ) and normalized average
beam speed U(y)/Uo( ------- ) for the ion acoustic instability as
a function of the normalized distance y/kci. mi/me = 73440,

Uo/Cs =5, kAD = 0,1. The parameter labelling the curves is Aci/xce'
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beam speed results in more free energy being available to drive the
instability. Thus wave growth is enhanced. The observed reduction
in growth rate with (y/kci), for a given (Uo/Cs)’ may be attributed
to the decrease in the ion beam speed U(y) (= Uo{l—(kci/kce) (y/kci)})
and the number of beam ions supporting the waves, viz.,
nB(Y) = No exp (—y/kci) , as we move down the plasma into the region
y20.

The parameter labelling the curves in Fig. 6.5 is kkD. An

explanation of the increase in growth rate with kA_, for a given (y/kci),

D)
may be offered in terms of the wave phase velocity. We notice from

Eq.(6.6.11) that in the limit kz << k the slow mode satisfies the
(12)

. x> - .
condition 0 < @, < K.Uo, and is therefore a negative energy mode .

k
Such a mode grows when energy is extracted from it, i.e.,when the wave
'sees' a negative gradient to the particle distribution function. It
damps when it 'sees' a positive gradient (energy gained by the wave).
From Eq.(6.3.3) we see that the ion beam distribution function in the

V_ direction, at a distance y into the plasma, may be qualitatively

represented as follows.
£(V)

eo

Figure 6.10



203

The projection of the slow wave phase velocity (6.6.11) in the

y direction is

r
Y K [ Cq ‘/2]
== |y = (=y/2x ) {1=(y/x )}
Voy i (szkg)ﬂz e e ZE R o

For fixed (UO/CS), (k/kz) and (y/kci), V¢y increases with kAD. V¢y

shifts to V! in the figure above. We see that the electrons, with

¢y
an associated negative velocity distribution slope, promote wave
growth, while the ions, with a positive slope, cause damping. How-

ever, for Te >> T._ ion Landau damping is very small, and the shift

1B

from V v to V'v does very little to alter this. On the other hand,

] ¢

the change in Bfe/BV is much more significant, and since it (Bfe/BV)
becomes more negative as we move frbm V¢y to V&y’ electron Landau
damping increases and wave growth (for a negative energy mode) is en-
hanced. Thus an increase in V, , corresponding to an increase in

¢y

KAps results in a positive change in growth rate.

In Fig. 6.6 the variable parameter is (AD/ACi). Our results
show that for (AD/Aci) > 0,006, the wave is completely damped. This
may be so because for a fixed Ap (i.e.yconstant electron density and
temperature), (AD/Aci) increases as Aci gets smaller. Hence collisions
get stronger and it is possible to reach the state where collisional
damping dominates over wavegrowth due to Landau damping and a net damp-
ing of the wave results, Experimentally, Aci may be reduced by increasing

the neutral atom density in the target plasma.
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The behaviour of the growth rate curves in Fig.6.7 is similar to
that in Fig.6.6. Here we notice that for (kz/ k) > 0,045 the mode is

completely damped.

o
=¥

This corresponds to angles of propagation

o> 2,6o off the perpendicular to B. 7 8

L .
v

The numerical results of Lee (62 - Fig.4.8A) exhibit a similar behaviour,
with 6= 0,37o for the fastest growing mode. The drop off in growth rate as

the angle ® increases is discussed below.

1
o

N
=¥

~ LB 0.2 i()-
N o
1
~N
T S >
BN 5
.
e
~
{‘l
¢l<0 ¢]>0

It is seen that as the wave vector k rotates from the angle a, through
the angle (az—u]) the distance an electron has to move along the
magnetic field to 'short out' the perturbation decreases from AA' to
BB'; consequently, wave growth is hindered. The discussion at the
end of Section 3.4 allows us to interpret this in terms of velocié&
distribution functions. As we rotate from angle @, to a,,

. . i g & :
effective electron distribution along k has a thermal speed that in-

the

creases from (kzul/k)ce to (kzuzlk)ce’ and the effective distribution
function changes as shown below.
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£(V)

Therefore, as we move from o , the

2

gradient of the electron distribution as 'seen' by the wave becomes less

r through the angle (az-a]), to g
negative. Being a negative energy mode, this implies a reduction in
electron Landau damping with a consequent decrease in growth rate. For

To >> TiB’ ion Landau is very small and effectively remains unaltered.

The parameter labelling the curves in Fig.6.8 is (Aci/kce). For
a given (y/Aci) we observe that the growth rate decreases with increasing
(A ./A ). At the same observation point, i.e. fixed y and A ., A__ has to
ci’ce ci’ “ce
decrease in order that (kci/kce) increases. As kcegets smaller, a sharper
drop in the ion beam drift speed U(y) (= Uo{l - (kci/kce)(y/kci)})results.
Thus, the free energy available to drive the instability diminishes faster,

with a corresponding drop off in growth rate.

On the other hand, it is seen from the expression (6.6.11) for

the phase velocity that V¢ increases with (kci/kce). Thus, V shifts to

oy

V&y in figure 6.10 and growth is enhanced. This contradicts the above

discussion. The paradox may be somewhat resolved by an examination of the

computed results.
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For (UO/CS) = 5 and kAD = 0,1, (V¢/Uo) changes from 0,8112 for
(Aci/xce) = 0,05 to 0,8126 for (Aci/xce) = 0,20 at (y/Aci) = 0,1, i.e.,
an increase of 0,17%. At the same location, (U(y)/Uo) changes from 0,995
for (Aci/kce) = 0,05 to 0,98 for (Aci/kce) = 0,20, i.e., a drop of 1,517,
Therefore, the negative effect of_(U(y)/Uo) is much more significant than
the positive effect of (V¢/Uo)’ for increasing (Aci/kce). Overall wave
damping results. An inspection of Fig.6.9(b) shows this to be the case in

general.

We see in Fig. 6.8, as well as in the others, that the growth rate
decreases with distance and becomes negative, i.e.,total wave damping sets
in. For (Aci/kce) = 0,2, the transition from positive to negative occurs
at (y/kci) =~ 0,595, while for (Aci/xce) = 0,1 it takes place at

(y/xci) ~ 0,825,

For the chosen parameters, we find, form calculation, that the
ion beam speed U(y) equals the wave phase speed in the direction of the
drift, V¢

(Xci/kce) = 0,1. For values of (y/Aci) larger than these critical values

- at (y/kci) = 0,664 for (Aci/kce) = 0,2, and (y/Aci) = 1,09 for

V¢y exceeds U(y). Thus, the condition 0 < Wy < K.ﬁ is not satisfied
any more and the wave is no longer a negative energy mode. Instead, it
becomes a positive energy wave. If at such values of (y/Aci) the ion

distribution function can be represented by an averaged Maxwellian, the

situation may be visualized as follows:
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£(V)

U(y) V¢y

Thus, the wave 'sees' a negative slope to both the electron and
the ion distributions. Since it is now a positive energy mode , this results
in electron and ion Landau damping. Under the influence of the joint
damping effect the initially positive growth rate decreases and becomes

negative.

The fact that the graphical transition of the growth rate from
positive to negative values occurs at a value lower than that calculated,

may be attributed to a possible breakdown of the assumption (6.6.8), viz.,

Y, + {k + k .,}U
e = k ce b3 | PR

T
(wk ka)

It is f d that £ = = =
oun at for (UO/CS) 5,_(AD/XCi) 0,004, kAD = 0,1,
and (Aci/kce) = 0,2,e 20,35 at (y/Aci) =0,6. Similarly, for (Aci/kce) = 0,1,
all other parameters as above,ex0,34 at (y/A i) = 0,8. Therefore, the
&
assumption e <<] is not strictly satisfied, which means that the plotted

curves have to be accepted with some reservation at larger values of (y/x .).
ci
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Since growth rate measurements can only be recorded after the wave
has travelled a few wavelengths, the condition X<<Xci implies that in
reality we begin observations close to y = 0, but not at y = 0. Thus, the
growth rate values at y = 0 in the above figures are of no physical

consequence.

The curves in Fig.6.9(a) represent the normalized frequency
(w;/wpe) against (y/kci). The parameters labelling the curves are kAD and
(Uo/cs)' The behaviour of the curves follows from the expression for the

normalized frequency, which, from Eq.(6.6.11a), may be written as

r 2.2.-1/2
mk . /Uo /me 1/2 |- /nOB\l/z (1+k )\D) ]/2]
o, ~ \a—)\@ Rk v B ¢ T L™ L R

The exponential drop in the ion beam density D s with (y/xci)

. . ; d r : y
is the primary cause of the gradual increase in (wk/m e) with distance.

LEE (62, Fig. 4.7B) has measured the spatial growth rate k.
i
as a function of distance into the target plasma (y>0). It is found
that starting from a positive value, ki initially rises, then de-

creases and eventually assumes negative values. The initial increase

in ki was explained by LEE in terms of beating between the slow-beam

mode and the rapidly decaying fast-beam mode.
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(61)

As discussed earlier for the ion acoustic wave HAYZEN

has shown that

i Yk
x £ T
r Wy
i.e.,
= k.
Tk V¢ 1

Since V¢ increases gradually with (y/xci) (Fig.6.9), this tells us that Vi
and ki should exhibit approximately the same behaviour as we move into the
region y > 0. This has been somewhat confirmed by the growth rate curves
displayed above, as they provide qualitative agreement with the ki

(62)

measurements of LEE

As our investigations have led to the prediction 0,1< kci/kce< 0,2,
calculations show that for Aci/xce = 0,2 the transition from positive to
negative growth rate occurs at y/xci = 0,66, while for Aci/xce = 0,1 it
occurs at y/)‘Ci = 1,09. Lee's measurements indicate the transition occuring

(78) , for argon

at y =13,6 cm. If one uses kci = 20cm , as measured by Jones
pressures of the order of 10_4 Torr, then y/kci = 0,68. This value lies
within the expected range 0,66 <y/ACi <1,09. Thus, the theory also provides

; . ; : . 62).
quantitative agreement with the experimental observations of LEE( )

As a remark, we note that for most of the calculations the wave
number k is fixed (kAD = constant). In the majority of plasma experiments this
is not the case. For a given excited frequency the wave selects the k value
that yields the largest growth rate, i.e., k is not an externally determined
parameter. However, studies with a fixed k may prove useful in
comparisons with experiments where standing wave-like perturbations

are generated, e.g., the oscillating instability (85).
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CHAPTER SEVEN

SUMMARY AND CONCLUSION

In this thesis we have examined several linear aspects and
a quasilinear development of the electrostatic crossfield current-

driven ion acoustic instability.

The linear dispersion relation has been established and
formally solved fof any general equilibrium particle velocity distri-
bution function of the form foj(ﬁf,wl). For the particular case of
Maxwellian ion and electron distributions, the results are shown to
reduce to well known forms. For the purpose of completeness, studies
on the effect of plasma inhomogeneities on the instability, which were
earlier undertaken and reported by the author, have been reviewed. In
addition, an explanation has been offered for the reversal in the

behaviour of the temperature gradient drift.

In a quasilinear investigation the electron and ion velocity
diffusion equations have been established and analytically solved.
For the electrons resonating with the waves, the projection of the
distribution along the magnetic field is of the form
Wz(Vz) = A exp (-a VZ), a = constant. The difference between this
and the usual one-dimensional quasilinear behaviour (awz(vz)/avz) = 0)
has been explained in terms of our assumption of a three-dimensional
wave spectrum. The non-resonant electrons, rather surprisingly, have

NR
the form We (Vz) = B exp (-b V:). For the ions, which diffuse pri-
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marily across ﬁ, the non-resonant portion retains its Maxwellian

character. The few high energy resonant ions, which produce linear
Landau damping assume a distribution with an exp (-VS) velocity de-
pendence. Since such a behaviour was not observed in either experi-

(40) (56)

ments or simulations , we conclude that linear ion Landau

damping is not the principal ion heating mechanism.

Investigations into electron and ion heating rates have led

to the results

which compares, reasonably well with the measurements of JONES <86).

In the limit Vo >> Cs’ the crossfield ion acoustic and the reactive
electron-cyclotron drift instabilities are found to produce the same
relative electron/ion heating rates. An examination of anomalous

plasma resistivity yields the result

for the effective electron/wave collision frequency perpendicular to
+
B. Under a suitable set of approximations this expression is found

to reduce to (k/k )v where v is the collision frequency for the
z ef" ef”

field-free case. The (k/kz) enhancement has been associated with the

. . [ - + .
restriction in electron motion across B, since they are bound to the

field lines.
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Energy studies have revealed that energy exchange occurs
between the waves and the resonant electrons. However, only a fraction
2

k Ag/Z, which is usually small in practice, of the total wave energy

appears as electrostatic potential energy.

The effect of a sheared magnetic field on the instability
has been examined in the limit in which wave growth due to inverse
Landau damping is small, Shear is found to have a stabilizing effect

on the wave perturbations.

In a model corresponding to the Double Plasma device, in-
elastic charge-transfer collisions are found to cause an exponential
drop in the density of the incident ion beam, while the elastic
collisions give rise to a linear decrease in average beam speed. The
results provide good agreement with experimental observations. In
the presence of these collisions the real part of the frequency of

ion acoustic perturbations superimposed on the ion beam turns out to be

(Eq.(6.6.11a))

{N_ exp (—y/Aci)}% C

= + S
U + £ 5
N (1+k™

_ }
o D

)

If one neglects elastic collisions and assume kzkg << 1, then this

reduces to the expression derived by SATO et al (84) Numerical

studies of the instability growth rate for the slow-beam mode provide

resonable agreement with the measurements of LEE (62).

Measurements in the DP device have confirmed the presence



=13

2
of elastic and inelastic collisions Wk 4"). On the other hand,

JONES and BARRETT \HE)

have invoked the quasilinear theory to explain
the observed electron and ion heating. The question arises as to
which is the dominant effect in the DP device. An investigation of
electron and ion diffusion in Section 4.1 has revealed that the
particle diffusion rate in velocity space as a result of interaction
with the waves is proportional to the electrostatic wave energy
density £. The analogous diffusion of the particles due to collisions
with neutrals is proportional to N;l, where ND = nAS is the number of

particles in a Debye sphere. Parameters within the DP device are

such that (78)

1 >> (E/nOTe) >> N;]

Thus diffusion due to wave-particle interactions is greater than that
due to collisions. In fact for pressures of the order of 10—4 Torr,
the perturbation wavelength A ~ 1 = 2 cm, A ., ~ 20 cm and A ¥ A s
ci ce ci
Therefore, for the first few wavelengths the plasma is practically

collisionless. Hence we conclude that quasilinear diffusion effects

are more significant than collisional effects.

The investigations undertaken in this thesis allow only a
partial understanding of the growth, saturation and nonlinear be-

haviour of the ion acoustic instability. For example in the DP device,

42 . ;
JONES and BARRETT (42) find that wave-wave coupling between the two
launched waves produces an increasing number of harmonics, with a

consequent broadening of the wave spectrum. Moreover, in the experi-

(68)

ment of VIRKO and KIRICHENKO the slowing down of the incident



214
ion beam was much more rapid than that found by JONES and BARRETT(42).
This behaviour was attributed to particle trapping effects, i.e., the
capture of ions by the ion sound waves. Both the above mentioned
effects were not considered in our studies. Therefore, our investi-
gations may be extended to include, among others, wave-wave coupling
effects, particle trapping in the potential troughs of large ampli-
tude waves and resonance broadening, whereby the perturbation of the
resonant particle orbits, due to the growing waves, causes the 'sharp'
wave—particle resonance to be broadened, i.e.,a particular mode may
exchange energy with particles within a finite velocity interval,

rather than with particles with a particular velocity.
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APPENDICES

Appendix A.

We have the recurrence relationship’

with

Thus

oo n+2 -x2 n -x2
X e dx = n+! X
-0 2 =00

+o0 400
o 50 J
J V exp(-V“/2c.) dV e pe

—co —o0

(es]
[+ exp(—V2/2C§) dav

oo}

o 2
V2 C J+ e P dp
€ -0

2.4
(ZﬂCe)

2,.2
J 2V {exp (-Vv°/2¢%) } av
-0 Vv €

+oo 9 9 9
= - 1 J Viexp (-V7/2C7) dv
—.2— -0 €
C
e
1
= -2 (27 02)2

e

(2

interger)
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Here we express
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Appendix C. Green's Function Solution of the Resonant Electron Diffusion

Eguation

We seek a solution of Eq. (4.2.4.), viz.,

(V,T) _ 1 3 [l a¥(v,r) (c.1)
3T T 25 W v v

where, for convenience, all super— and subscripts have been omitted.
Equation (C.1) is rewritten as

25 V3 8y
aT

32y _
3v2

3
vV 3v

We Laplace transform with respect to T, and obtain

2¥(v,s) 3 &FH(v,e) - 25 Bls¥(v,8) - ¥(v,r = 0)}
] V av
i.e.,
¥ _ 3 d¥ - 25 v3s¥ = - 25 v3¥(y,1=0) {0.2)
vV av

a?

The definition of the Laplace transform

(1)
E{f()} = [ £(1) ¢ % dt 3 T(s)
0

and the result

£{3f(t)/3t} = I 9f (1) e ST ar = sf(s) - £(1=0)

OBT
have been used to arrive at (C.2). Consider now the homogeneous
equation (from (C.2) )

?¥ - 3 && - 25sV3V¥ =0

LS T I (c.3

dv? Y ;
The general solution of the differential equation

d2f o df 2

= .o dr Y ¢ _ (C.4)

dx2 % In k] x £=0

(2)

is given by



1/4

- V/q' ] l]q )
f(x) = x {A-1 Iv(kx ) + Bl Kv(kx )}

where 2k

R
+
N

are modified Bessel functions of the first and second kind

respectively, of order v.

Comparing Eqs.(C.3) and (C.4) we see that

and therefore

[N
v=g ; q= %- ; ko= 255.

Thus from Eq. (C.4a), the solution to Eq. (C.3) may be written as

5(ZS%VS/Z) + B'K (ZSiVS/z)}

o2 ot
Y,s) =v (a1 Ky /5

4/

It can also be shown that

52y L px (28t 2y

¥(V,s) =V {A1£4/§23 Vv R

is a solution of Eq. (C.3).

We adopt the latter solution and write

V(U,s) = a8 (V) + B g (V)
with

g (V) =v? 1_4/5(2siv5/2)

5, =vir osiv/?

Prior to finding the solution of Eq.(C.2) we require the solution
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(C.4a)

(€.5)



of the "Green's Function" differential equation

AN QPP (c.6)
ol vav

Now, the general solution of the Green's function differential

equation
a’ d
;% + p(x) -+ qx) g = - §(x=x")
is(l)
g(x/x') = Cg (x) + Chg,(x) + G(x/x") (c.7)

where g. and are solutions of the homogeneous equation

ﬁ+p(x>d—g-+q(x> -0
12 dx g

and

G(x/x") = - g (x) g,(x, )
Wig, g, x'}

where x, = greater of (x, x') , x_ = lesser of (x, x'),

<

and

W= gl(x').dgz(x') _ dgl(x').gz(x')
Py &= (c.72)

is the Wronskian of the two functions gl(x') and gz(x').

We now determine the solution of (C.6) subject to the boundary

conditions

lim ¥(,s) =0 (C.8a)

Voo

[g_@g,@] = 0
v V=0 (C.8b)
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The first condition is true for all velocity distributions
since there are no particles at V = + », The second is true,
for example, for distributions of the form exp (-aVn), a >0,

n>2,

Using equation (C.5) and (C.7), the solution of Eq.(C.6) may be

written as

V(v = c, v21 4/5(25£V5/2) +C V2K 4/5(2s%V5/2) + G(V/V'")
(C.9)
The Wronskian reduces to
) 5/2 2 8/2
Weg. ,g,,x"'} =V'1 (Ey*< "), 4. {97k (k' )}
1752 -4/5 I -4 /5
= 12 '5/12 ,2 15/2
%V“ {v I_,/5kV e % _4/5(kV )
4 5/2 5/2
= {1 R = (kv'7" %)}
-4/5 dV' 4/5 4/5 dV' 4/5
= - (5/2)v">

where k = 25* and we have used the result(z) W{K (z), I (z)} = (1/2).

Therefore
"o 13 =1
and Eq.(C.9) reduces to

e 2 2
Yo = c,v 1_4/5(25%V5/ ) + ¢,k 4/5(23%V5/2)

+ z(sv'3)"g1(v<)g2(v>) (C.10)
. (2)
Since
lim [Vz IF4/5(285V5/2)] 3

Vo>roew

the boundary condition (C.8a) requires that C1 = 0.
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It can also be shown that iu the limit as V- Q,

g_;{VZK_é/S(ZsiVS/Z)} -+ o+ Thus, the boundary condition (C.8b)
dv
requires that C, = 0.

2

With ¢, = C2 = 0, Eq.(C.I0) reduces to

-~r 3 “1
Y(V/VT) = 2(5V'T) g, (V )e, (V)
i e (C.1E)

The Green's function solution g(x/x'), given by Eq.(C.7), may now

be used to find the solution of the equation

gf% * P00 dy + q@y = - £

dx (C.12)

The solution at any point x', a<x'<b, where a and b are fixed

(1

limits, is

b
y(x') = J o /) D, wple T = Ll &
a

=4~

X=
[ﬁ{g,y}exp{— [L(5?) ~ L(X)]}]
X=a

(G.13)
where

L(x)

X
J p(z)dz , a $x_ sx <b.

X
(¢}

The equivalent equation for ¥(V',s) is
Y(r',s) = Ja%(v/v') 25> ¥(v,T = 0)exp{~ [L(V') - L(V)]} dv
0
o [0 Famn, Y@ e (- LAY - LD ]
V=0

(Ca4)

where, the manipulation from Eqs. (C.7) to (C.11) yields g(x/x"'),
and comparisons of Eqs.(C.2) and (C.12) yields f(x) .
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We have set our fixed limits at a = 0 and b =, This will be

discussed later.

From Eqs.(C.2) and (C.12),

p(V) = =-3/v
Therefore
Y
L) = -[ 34V" = -3 1n(V/V )
" °
\

)
Similarly L(V') = -3 1n(V'/Vo), and hence

exp{ - [LOV') - LN} = (v'/n)3

(C.15)
The first term in Eq.(C.14) then becomes
2(5V') g](V<)g2(V>) 25V7y(V,T =0) (V'/V)~ dv
0
(C.16)

The second term is Eq.(C.l14) may be written as

V= o
[ WEFW/VY, W, ) Yexp{-[L(V") - LV} ]
V=0

V= o0
= {{@KV/V') a¥(v,s) _ d¥/v") ¥V, V' /N> ]
dv dv V=0

where the result (C.15), and the definition (C.7a) of the Wronskian
have been used. For 0<V'<w, when V=, V'<V, and when V=0, V'>V.

Therefore, upon substituting for ¥(V/V') from Eqs.(C.11) and (C.5),

we obtain

5/2 5/2

(kv )d¥(V, s)

131042
[ /5T, s =

2
) {v K_, /5 (kV

21 W(v,s)}(v'/v ) ]

V= oo

2 5
- d [V K_4/5(kV

dv

/
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= o 1 2 5/2,
{(2/5v A SPPM(S A { VL, /5 (kY )g%ﬂv,s)

a I V21_4/5(kv5/2)] V(V,s)}(v‘/v Y ]

av V=0

(2v'2/5)1

5/2 i 5/2 ¥
45V )[ lim  K_, (V"% d¥(V,s)

V-—)—eo _V——-'&—V—

: 5/2 . 5/2
-0-f 1i 2K, v + lim 1 d{K (v )}} ]
{'V - o g Vo V d ¥
2 5/2 . 5/2
- VD Rl fabe 1 5y o ]
| ~4/5 l { s : .9

—{ Lim g_I_A/S(kVS/z) ¥,
V-0t 2

V-0 vV av ~4/5

+# lim 1 d (I (kv5/2)}.?(v,s)} ]
where k = ZSiand we have made use of the boundary conditions (C.8a)

and (C.8b).

From the definitions of Iv(x) and K, (x) and the asymptotic expansion
(2, pp. 201 - 204)

of Ky(x) , all the above limits can be shown to
vanish. Thus, the second term in Eq.(C.14) also vanishes, and from
Eq.(C.16) we have

(e}

W) =10 [ gV gy ¥, = 0) v
0

To manipulate this further, we write it as

. y!
¥(Vis) = g0 { {gl(v<)g2(v>) ¥(V,t = 0) 4V

+ '||-81(V<)82(V>)‘{‘(V,T = 0) dv }
V"
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Recalling that V_ = lesser of (V,V') and V., = greater of (V,V'),

with the aid of the definitions (C.5) we have

Tv,s) =10 J?&z T byS/2yy 12 R_,/5(28%V byi5/2y iy, = 0) av
Jo
+ 10 JV?'ZI_A/S(ZS%V'S/Z)VZ 45028 b3/ 2yy(v,t = 0) dv
(C.17)
(3)

In determining the inverse-Laplace transform, we use the result

£ Gx( fatent] sh) 1y( tadvt1sdy)=in (amb) /20 ) expl-(atb) /21
T

Therefore
-1
£ {2K_4/5(2siv'5/2) T sl 08 2572y o 4/5{(a b) /21 Yexpl-(at+b)/27}
where
ai + bi = 2V'5/2

5/2

We then have

a-b = 4V'5/2V5/2
and
a+b = 20V + V)
Hence
15/2 i 5/2 15/2
£ 12K 4502 tyr3/2y g 52tV = 11 vt R 2
T

x exp{~(V'"> + V)/1}



230

i 5/2

)

Similarly, the inverse-Laplace transform of 21(_4/5 4/5

5/2

can.be shown to be just equal to that of 2K_4/5(25iV' (2s Yo

X 45

Therefore, upon taking the inverse-Laplace transform on both sides of

Eq.(C.17), we obtain

oo
2 1
¥(v',t) = [W(V,T=0)V2 \/ARN - 4/5(2V5/2 5/2/T ) exp{ (V +V! )/T}dV
0
(C.18)
. . . . . (4, p. 65)
This solution is similar to that quoted by SAGDEEV and GALEEV
for the loss—cone instability.
We choose an idealized initial distribution
= - A - 5
¥(V,t = 0) 7 exp ( V/Ce) (€.19)

in order to manipulate the integral in Eq.(C.18) exactly.

Then

2 5/2 5/2

Y(v',t) = > )expl - (a+p)V }dv

5 )
exp (~aV'’)a J i QY [
e 0 '_4/5

(C.20)

where a= T_] and p = C;S.

Defining x = V5, the integral reduces to

2/5

- \5/2
(1/5)Jox 4/5(2aV

vx) expl —(a+p)k} dx

= (1/5) J%h_i IZv(Zﬁfi) exp (-yx) dx
(C.21a)
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where

u- 4 = =2/5 , = u= 1/10
2\) = —4/5 3 = V= = 2/5
28 = 2dv'5/2,= 8= av/?

(5)

We use the identity

[éxu-i IZv( 2BYX) exp (-YX) dx
0

= Tuev+d) 871 Y ™ exp (82/2v) M. (B%/v) (C.21b)

- AV
T(2v 1) s

where I'is the Gamma function. Mu v (x) is the Whittaker function,
’

(5)

and is given, in terms of the Kummer function lFl’ by

Mu,v(y) = y£+v exp (-y/2) 1Fi{ J+v-u, 2v+1,y}

(C.21¢)
For u= 1/10 and v= - 2/5 (as found above), it turns out that
NI BN IR N NIVERVERY
y]/10 ey/2
since(s)

1Fl{a,a,y} =

(Cc.214d)



With the aid of the results (C,21b) - (C,21d), the integral (C.2la)

reduces to

5/2

(175 v (o) 10 (203 )1 1 expla V1 /2 (at0) D

and Eq.(C.20) becomes

y(V',t) = A D]/S uV'2 al/SV']/Zexp {--aV'5 [1 - a/(a+p)]}
LN VE
5
= A exp { ~ V' /(1 /o + 1/p)}
(/g + 1/p)1/5
- A exp { = V'7/(r+C)) (C.22)
(e Cz_f) 175

The solution to the differential equation (C.1) is clearly restricted
. T r

to the resonance region ( wk/kz - AV, wk/kz + AV )

of width 2AV. By assuming this interval to lie in the region v,z 0,

we have extended the limits of integration in Eq.(C.14) to 0 and + =,

This is in order, since there are no resonant particles in the

intervals (O, wi/k ~ AV ) and ( wr/k + AV, » ) and y(V_,t) =0
k' "z k' 2z z

there. The resonance region is restricted to the domain sz 0 for

modes with kz>0. The latter condition is usually assumed in theoretical

studies.
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Appendix D. Green's Function Solution of the Non-Resonant Ion Diffusion

Eguation.

We require the solution of Eq.(4.3.3), viz.,

(D.1)

[«% N (<]
- [
il
Nl—d
5|
1
<3| —
[« F 3 [o%]
<3|
+
Qo
N
N |
| S )

where, for convenience, all super- and subscripts have been omitted.
The technique in solving Eq.(D.l) is analogous to that adopted in
solving the resonant electron diffusion equation (Appendix C). We

solve Eq.(D,]1)subject to the initial condition

o(V,T = 0) = No(mi/ZHTio)exp(—miVZ/ZTio) (D.2)

Taking the Laplace-transform of Eq.(D.1) with respect to 1, we

obtain
s¥(V,s) - 8(V,T=0) =1 [d2 LA ld’q?(v,s)]
e | had
m1 dV2 vV dv
Rearranging
2 ~
d°? +1 g§ - 2m,s¢ = - 2m, ¥(V,Tt = 0) (D.3)
av2 v dv 1 1

The homogeneous equation associated with Eq.(D.3) is

- 2mis$ =0 (D.4)
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Comparing Eq.(D.4) with Eq.(C.4), we see that
= =15 =0 ; k, = (2m s)i
- =T A i

Therefore

Q
+
N

<
+
N

and hence, from Eq.(C.4a), the solution of Eq.(D.4) is

~ 1
o(V,s) = A; Io{(Zmis)%V} + B; KO{ (Zmis)EV}
(D.5)
= A;gl(V) + B;gz(V)
where
8 V) = Io{(ZmiS)%V}
y (D.6)
gz(V) = Ko{(Zmis)EV}

Using the functions g](V) and gZ(V) we may write down the solutions of

the Green's function differential equation as (cf.manipulation from

Eq.(C.6) to Eq.(C.9))

o(v,vr) = ClIo(kV) + CzKo(kV) + G(V/VY)

(D.7)

where

G(V/V?Y) =..gl(V<)g2(V>) and k = (Zmis)%,
W{8; 18,5V}
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with
N A I (k') d K (') _ dI, (k') K_(kV')
av' av'
= - k WK (z),I (2)} (z = kV')
(o] (o]

= - (k/2)

= -(1/v") (D.8)
since’? WK (2),1 ()} = (1/2)

As in Appendix C, the boundary conditions

|
o

lim ®(V,s)
V> » (D.9a)

[d NQ(V,sil _ o
av 4, (D.9b)

require that Cl = C2 = 0 in Eq.(D.7) (cf. ref. 1, p.271 for limiting

forms of I (x), K (x) and K'(x) = - K, (x)). Therefore
o o) o) 1
¥V/V') = G(V/VY)
= 8, (V) 8,(V)) A (D.10)

This, in turn, yields the solution of our original equation (D.3),

which, following the procedure leading from Eq.(C.12) to Eq.(C.14),

may be written as

oo

B(v',s) = J 8, (V)g, (V) V' {2m.8(V,7=0) Jexp{~[L(V") = L(V)]} dV

0

=x©

i
+ [ﬁ{akv/v'),$(v,s)}exp{—[L(v') - L(V)]]V
=0 (D.11)

A



236

Since V = %.(3 0), we have extended the limits of integration to

- NR
cover the entire %_ - gpace, as outside the non-resonant domain ¢ = 0.
Comparing Eq.(D.3) with Eq.(C.12), we see that
p(V) = (1/V)

and therefore

\'
L(V) = jp(y)dy = 1n(V/v )

\Y
o

Similarly L(V') = 1n(V'/Vo), and hence

exp -[L(V') - LMW1} = (/") (D.12)

Then, from Egs.(D.6), (D.10) and (D.11),
Vo

[W{E'(V/V'), 3(v,s)} expl -[ L(V") - L(V)]}]
V=0

= [v{ I (WK (kV) d 3(V,s) ~-TI (kv'). d K (kV). 5’(v,s)} ]
o 0 W 0 v ° V= ®

- V{K (kV")I (kV) d H(V,s) - K (kV")g I (kv). $(V,s)}
Lo & W ot

since for 0 <V'€ », yhen V = ®, V'< V and when V = 0, V'> V,

As in Appendix C, with the aid of the boundary conditions (D.9a) and
(D.9b), and the limiting values of Io(x) and Ko(x), and of their
derivatives, the right hand side of the above equation can be shown to

vanish.
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Hence, from Eqs.(D.11) and (D.12), we have

3(V,8) = I gl(V<)g2(V>) 2m, o(V,T =0) Vdv
0
VI
= m.[ oL {(Zm.)£Vs£} K{(Zm.)iv'sﬁ} oV, T = 0) Vdv
1 0 (o} 1 o] 1
+um[31{Qmo%@i}K{Qmo%ﬁ}¢w;r=m\lw
1 o 1 [o} 1
VI

(3)

With the inverse-Laplace transform

oo (abehishr (atetish ) < L xf(aby/2n) expl-Garh) /2]
v T
we obtain

£-1{2K0([(2mi)iV']s£)Io([(Zmi)%V]S%)}= Io(miVV'/T)eXp{-mi(V'2+V2)/2T}

L
T

where

mi(V'2+V2)

o]
+

o
i

1
2¢y?
(Zmi) v

Y]
+
lon
N
Il

(Zmi)iv a-b

o]
~o—
|
o
=
1]

2m.V'V
i

Similarly

E_]{ZKO([(Zmi)£V]s£)10([(2mi)£V']s£)} - Io(miVV'/T)exp{-mi(V'2+V2)/2T}

1
1

Using these results, and upon substituting for ¢(V,t=0) from Eq.(D.2), it

turns out that

°(v',0) = N (m, /21T, ) (m, /) exp(- miV'2/21)

o

x J;o(miV'V/T)exp{—[(mi/21)+(mi/2Tio)]V2} vdv

(D.13)



In order to evaluate the integral, we

The integral then modifies to

® }

} exp(-yw)I (2Bw*) dw
0 )

where

Using the identity (C.21b), viz.,

oo

set w = V2/2.

I xu--%I2 (28V%) exp (- yx) dx
0 v

o T gt 22y ij\;sz/v>

T(2v+1)
we find that

o
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(D.14)

1 - -
Joexp<-vw)zo<2sw2)dw = 87" v lexp(s?/2v) M, (85/)

From Egs.(C.21c) and (C.21d),

My 8/

1
(8%/y) texp (82/2v)

The integral in Eq.(D.13) then reduces to

-1 -}

87 v 2 exp(82/2v) (8%/v)texp(8%/2y)

(D.15)

6%/ exp (-8272v) (Fyl1,1,82/7)

-l exp (BZ/Y)
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We replace y and B with the expressions given in Eq.(D.14). Then

Eq.(D.13) finally yields

2
dV',T) = No(mi/ZNTio)(mi/T) exp (- miV /21)

2,2 2
X {TTio/[mi(Tio+T)]}exP{miV' TioT/[ZT mi(Tio+T)]}

i.e.,

)
o(V',1) = N {mi/[Zﬂ(Tioﬂ)]}exp{- m,V /[2(Tio+'r)]} (D.16)

A similar result has been found by SAGDEEV and GALEEV(4’p'68) for the

non-resonant electrons in the case of Langmuir waves.



Appendix E.

+ 2T ot . ; "
a) I J (8)J (&) Jde J jm 1rn)e e, - -ad ) (e
n,m= -°°n o —00
2T
=1 JnJmi(n-m) {—i(wk—knv“-nge)}'l Jel(m-n)e 46
n,m o

2, -1
= g 2T Jn {1(wk- kuql-nﬂe)}

since
2m
[ i(m-n)e 40 = 21 if m=n
Joe T 10 otherwise
2m
b) £ JJ |sine i™™ JA@™™E (s kv -ng )17 de
nm k b e
n,m )
2m .
i(n-m) e1(m—n+l)6
= % JnJm (-1/2) de
n,m 5 {_(wk-kHWI-nQe)}

) 2z(n-m) ei(m—n—l)e 10
o {_ (wk-k" V“ -nQe) }

_ s _ _ -1 :
= (1/2) i 21 { 1(wk kY, nQe)} Jn ( Jn—l + Jn+l)

(Zﬂlg)i{—i(wk_kHWI—nge)}—l nJi(E)

(6)

since

I &)+ 3 () = (2n/x) J_ ()

t)
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dt'

(E.1)

(E.2)
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Similarly
2T t _ ' '
) IJJ Jde [<x' -y i JEEmmE —i(e gy -na) (=)
n,m Rl -
2m t
= (- /Qe) LJJ ere J[{Sin(e - Qe[t'—t]) - Sin6}
n,m o -0
i(n-'l:n) ei(m—n)e e—i(mk—knvIl -nQe) (t'—t)]dt,
=0 (E.3)
2m t '
) £ JJ ere J(x'—x) sing 1 ("™ E@ MO il kg -0 ) (t'-t) 4,
n m
n,m fo] ~00

2
= (Vv /) oL, _ -1 2
el "L o {1(wk kY, nQe)} lvg_V{Jn(le_L /ne)} (E.4)
11
2r t
e) L JJ ere |-(x'--x)z g (oom) oL@ )8 et Y ~nf,) (t'-t) dt'
n,m o] =

2 . -1

= (2n/ k) T {i(w,~kyV, -nQ )} ~ Vv 5 2
1 o k M la—‘i{Jn(kl\i /Qe)} (E.5)
2m t

R ere J(x"")z sing 1 (WM @O (0 =k -na ) (1-0) Ty
o

n,m —o

2 . _ _ =1
= ( w/kJ_) IZI {1(00k LA nQe)}

L L ™Me 3 2 2ng,
TR W Jn(g)} (E.6)

where ¢§ = k.I.YL /Qe.



REFERENCES FOR APPENDICES

E.A. Kraut, "Fundamentals of Mathematical Physics',
(McGraw-Hil1,1967).

N.W. McLachlan, 'Bessel Functions for Engineers', (Oxford
University Press, 2nd Edition 1955).

G.E. Roberts and K. Kaufman, 'Table of Laplace Transforms',
(W.B. Saunders Company,1966)

R.Z. Sagdeev and A.A. Galeev, 'Nonlinear Plasmé Theory',
(W.A. Benjamin Inc.,1969).

I.S. Gradshteyn and I.M. Ryzhik, 'Tables of Integrals,
Series and Products', (Academic Press,1965).

G, Watson, 'A Treatise on the Theory of Bessel Functions',

(Cambridge University Press, 2nd Edition 1944).

242



	Bharuthram_Ramashwar_1979.front.p001
	Bharuthram_Ramashwar_1979.front.p002
	Bharuthram_Ramashwar_1979.front.p003
	Bharuthram_Ramashwar_1979.front.p004
	Bharuthram_Ramashwar_1979.front.p005
	Bharuthram_Ramashwar_1979.front.p006
	Bharuthram_Ramashwar_1979.front.p007
	Bharuthram_Ramashwar_1979.front.p008
	Bharuthram_Ramashwar_1979.front.p009
	Bharuthram_Ramashwar_1979.front.p010
	Bharuthram_Ramashwar_1979.front.p011
	Bharuthram_Ramashwar_1979.p001
	Bharuthram_Ramashwar_1979.p002
	Bharuthram_Ramashwar_1979.p003
	Bharuthram_Ramashwar_1979.p004
	Bharuthram_Ramashwar_1979.p005
	Bharuthram_Ramashwar_1979.p006
	Bharuthram_Ramashwar_1979.p007
	Bharuthram_Ramashwar_1979.p008
	Bharuthram_Ramashwar_1979.p009
	Bharuthram_Ramashwar_1979.p010
	Bharuthram_Ramashwar_1979.p011
	Bharuthram_Ramashwar_1979.p012
	Bharuthram_Ramashwar_1979.p013
	Bharuthram_Ramashwar_1979.p014
	Bharuthram_Ramashwar_1979.p015
	Bharuthram_Ramashwar_1979.p016
	Bharuthram_Ramashwar_1979.p017
	Bharuthram_Ramashwar_1979.p018
	Bharuthram_Ramashwar_1979.p019
	Bharuthram_Ramashwar_1979.p020
	Bharuthram_Ramashwar_1979.p021
	Bharuthram_Ramashwar_1979.p022
	Bharuthram_Ramashwar_1979.p023
	Bharuthram_Ramashwar_1979.p024
	Bharuthram_Ramashwar_1979.p025
	Bharuthram_Ramashwar_1979.p026
	Bharuthram_Ramashwar_1979.p027
	Bharuthram_Ramashwar_1979.p028
	Bharuthram_Ramashwar_1979.p029
	Bharuthram_Ramashwar_1979.p030
	Bharuthram_Ramashwar_1979.p031
	Bharuthram_Ramashwar_1979.p032
	Bharuthram_Ramashwar_1979.p033
	Bharuthram_Ramashwar_1979.p034
	Bharuthram_Ramashwar_1979.p035
	Bharuthram_Ramashwar_1979.p036
	Bharuthram_Ramashwar_1979.p037
	Bharuthram_Ramashwar_1979.p038
	Bharuthram_Ramashwar_1979.p039
	Bharuthram_Ramashwar_1979.p040
	Bharuthram_Ramashwar_1979.p041
	Bharuthram_Ramashwar_1979.p042
	Bharuthram_Ramashwar_1979.p043
	Bharuthram_Ramashwar_1979.p044
	Bharuthram_Ramashwar_1979.p045
	Bharuthram_Ramashwar_1979.p046
	Bharuthram_Ramashwar_1979.p047
	Bharuthram_Ramashwar_1979.p048
	Bharuthram_Ramashwar_1979.p049
	Bharuthram_Ramashwar_1979.p050
	Bharuthram_Ramashwar_1979.p051
	Bharuthram_Ramashwar_1979.p052
	Bharuthram_Ramashwar_1979.p053
	Bharuthram_Ramashwar_1979.p054
	Bharuthram_Ramashwar_1979.p055
	Bharuthram_Ramashwar_1979.p056
	Bharuthram_Ramashwar_1979.p057
	Bharuthram_Ramashwar_1979.p058
	Bharuthram_Ramashwar_1979.p059
	Bharuthram_Ramashwar_1979.p060
	Bharuthram_Ramashwar_1979.p061
	Bharuthram_Ramashwar_1979.p062
	Bharuthram_Ramashwar_1979.p063
	Bharuthram_Ramashwar_1979.p064
	Bharuthram_Ramashwar_1979.p065
	Bharuthram_Ramashwar_1979.p066
	Bharuthram_Ramashwar_1979.p067
	Bharuthram_Ramashwar_1979.p068
	Bharuthram_Ramashwar_1979.p069
	Bharuthram_Ramashwar_1979.p070
	Bharuthram_Ramashwar_1979.p071
	Bharuthram_Ramashwar_1979.p072
	Bharuthram_Ramashwar_1979.p073
	Bharuthram_Ramashwar_1979.p074
	Bharuthram_Ramashwar_1979.p075
	Bharuthram_Ramashwar_1979.p076
	Bharuthram_Ramashwar_1979.p077
	Bharuthram_Ramashwar_1979.p078
	Bharuthram_Ramashwar_1979.p079
	Bharuthram_Ramashwar_1979.p080
	Bharuthram_Ramashwar_1979.p081
	Bharuthram_Ramashwar_1979.p082
	Bharuthram_Ramashwar_1979.p083
	Bharuthram_Ramashwar_1979.p084
	Bharuthram_Ramashwar_1979.p085
	Bharuthram_Ramashwar_1979.p086
	Bharuthram_Ramashwar_1979.p087
	Bharuthram_Ramashwar_1979.p088
	Bharuthram_Ramashwar_1979.p089
	Bharuthram_Ramashwar_1979.p090
	Bharuthram_Ramashwar_1979.p091
	Bharuthram_Ramashwar_1979.p092
	Bharuthram_Ramashwar_1979.p093
	Bharuthram_Ramashwar_1979.p094
	Bharuthram_Ramashwar_1979.p095
	Bharuthram_Ramashwar_1979.p096
	Bharuthram_Ramashwar_1979.p097
	Bharuthram_Ramashwar_1979.p098
	Bharuthram_Ramashwar_1979.p099
	Bharuthram_Ramashwar_1979.p100
	Bharuthram_Ramashwar_1979.p101
	Bharuthram_Ramashwar_1979.p102
	Bharuthram_Ramashwar_1979.p103
	Bharuthram_Ramashwar_1979.p104
	Bharuthram_Ramashwar_1979.p105
	Bharuthram_Ramashwar_1979.p106
	Bharuthram_Ramashwar_1979.p107
	Bharuthram_Ramashwar_1979.p108
	Bharuthram_Ramashwar_1979.p109
	Bharuthram_Ramashwar_1979.p110
	Bharuthram_Ramashwar_1979.p111
	Bharuthram_Ramashwar_1979.p112
	Bharuthram_Ramashwar_1979.p113
	Bharuthram_Ramashwar_1979.p114
	Bharuthram_Ramashwar_1979.p115
	Bharuthram_Ramashwar_1979.p116
	Bharuthram_Ramashwar_1979.p117
	Bharuthram_Ramashwar_1979.p118
	Bharuthram_Ramashwar_1979.p119
	Bharuthram_Ramashwar_1979.p120
	Bharuthram_Ramashwar_1979.p121
	Bharuthram_Ramashwar_1979.p122
	Bharuthram_Ramashwar_1979.p123
	Bharuthram_Ramashwar_1979.p124
	Bharuthram_Ramashwar_1979.p125
	Bharuthram_Ramashwar_1979.p126
	Bharuthram_Ramashwar_1979.p127
	Bharuthram_Ramashwar_1979.p128
	Bharuthram_Ramashwar_1979.p129
	Bharuthram_Ramashwar_1979.p130
	Bharuthram_Ramashwar_1979.p131
	Bharuthram_Ramashwar_1979.p132
	Bharuthram_Ramashwar_1979.p133
	Bharuthram_Ramashwar_1979.p134
	Bharuthram_Ramashwar_1979.p135
	Bharuthram_Ramashwar_1979.p136
	Bharuthram_Ramashwar_1979.p137
	Bharuthram_Ramashwar_1979.p138
	Bharuthram_Ramashwar_1979.p139
	Bharuthram_Ramashwar_1979.p140
	Bharuthram_Ramashwar_1979.p141
	Bharuthram_Ramashwar_1979.p142
	Bharuthram_Ramashwar_1979.p143
	Bharuthram_Ramashwar_1979.p144
	Bharuthram_Ramashwar_1979.p145
	Bharuthram_Ramashwar_1979.p146
	Bharuthram_Ramashwar_1979.p147
	Bharuthram_Ramashwar_1979.p148
	Bharuthram_Ramashwar_1979.p149
	Bharuthram_Ramashwar_1979.p150
	Bharuthram_Ramashwar_1979.p151
	Bharuthram_Ramashwar_1979.p152
	Bharuthram_Ramashwar_1979.p153
	Bharuthram_Ramashwar_1979.p154
	Bharuthram_Ramashwar_1979.p155
	Bharuthram_Ramashwar_1979.p156
	Bharuthram_Ramashwar_1979.p157
	Bharuthram_Ramashwar_1979.p158
	Bharuthram_Ramashwar_1979.p159
	Bharuthram_Ramashwar_1979.p160
	Bharuthram_Ramashwar_1979.p161
	Bharuthram_Ramashwar_1979.p162
	Bharuthram_Ramashwar_1979.p163
	Bharuthram_Ramashwar_1979.p164
	Bharuthram_Ramashwar_1979.p165
	Bharuthram_Ramashwar_1979.p166
	Bharuthram_Ramashwar_1979.p167
	Bharuthram_Ramashwar_1979.p168
	Bharuthram_Ramashwar_1979.p169
	Bharuthram_Ramashwar_1979.p170
	Bharuthram_Ramashwar_1979.p171
	Bharuthram_Ramashwar_1979.p172
	Bharuthram_Ramashwar_1979.p173
	Bharuthram_Ramashwar_1979.p174
	Bharuthram_Ramashwar_1979.p175
	Bharuthram_Ramashwar_1979.p176
	Bharuthram_Ramashwar_1979.p177
	Bharuthram_Ramashwar_1979.p178
	Bharuthram_Ramashwar_1979.p179
	Bharuthram_Ramashwar_1979.p180
	Bharuthram_Ramashwar_1979.p181
	Bharuthram_Ramashwar_1979.p182
	Bharuthram_Ramashwar_1979.p183
	Bharuthram_Ramashwar_1979.p184
	Bharuthram_Ramashwar_1979.p185
	Bharuthram_Ramashwar_1979.p186
	Bharuthram_Ramashwar_1979.p187
	Bharuthram_Ramashwar_1979.p188
	Bharuthram_Ramashwar_1979.p189
	Bharuthram_Ramashwar_1979.p190
	Bharuthram_Ramashwar_1979.p191
	Bharuthram_Ramashwar_1979.p192
	Bharuthram_Ramashwar_1979.p193
	Bharuthram_Ramashwar_1979.p194
	Bharuthram_Ramashwar_1979.p195
	Bharuthram_Ramashwar_1979.p196
	Bharuthram_Ramashwar_1979.p197
	Bharuthram_Ramashwar_1979.p198
	Bharuthram_Ramashwar_1979.p199
	Bharuthram_Ramashwar_1979.p200
	Bharuthram_Ramashwar_1979.p201
	Bharuthram_Ramashwar_1979.p202
	Bharuthram_Ramashwar_1979.p203
	Bharuthram_Ramashwar_1979.p204
	Bharuthram_Ramashwar_1979.p205
	Bharuthram_Ramashwar_1979.p206
	Bharuthram_Ramashwar_1979.p207
	Bharuthram_Ramashwar_1979.p208
	Bharuthram_Ramashwar_1979.p209
	Bharuthram_Ramashwar_1979.p210
	Bharuthram_Ramashwar_1979.p211
	Bharuthram_Ramashwar_1979.p212
	Bharuthram_Ramashwar_1979.p213
	Bharuthram_Ramashwar_1979.p214
	Bharuthram_Ramashwar_1979.p215
	Bharuthram_Ramashwar_1979.p216
	Bharuthram_Ramashwar_1979.p217
	Bharuthram_Ramashwar_1979.p218
	Bharuthram_Ramashwar_1979.p219
	Bharuthram_Ramashwar_1979.p220
	Bharuthram_Ramashwar_1979.p221
	Bharuthram_Ramashwar_1979.p222
	Bharuthram_Ramashwar_1979.p223
	Bharuthram_Ramashwar_1979.p224
	Bharuthram_Ramashwar_1979.p225
	Bharuthram_Ramashwar_1979.p226
	Bharuthram_Ramashwar_1979.p227
	Bharuthram_Ramashwar_1979.p228
	Bharuthram_Ramashwar_1979.p229
	Bharuthram_Ramashwar_1979.p230
	Bharuthram_Ramashwar_1979.p231
	Bharuthram_Ramashwar_1979.p232
	Bharuthram_Ramashwar_1979.p233
	Bharuthram_Ramashwar_1979.p234
	Bharuthram_Ramashwar_1979.p235
	Bharuthram_Ramashwar_1979.p236
	Bharuthram_Ramashwar_1979.p237
	Bharuthram_Ramashwar_1979.p238
	Bharuthram_Ramashwar_1979.p239
	Bharuthram_Ramashwar_1979.p240
	Bharuthram_Ramashwar_1979.p241
	Bharuthram_Ramashwar_1979.p242

