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PREFACE 

The work described in this thesis was carried 

out in the Department of Physics, University of Natal, 

Durban, from January 1976 to December 1979, under the 

supervision of Professor ~nfred A. Hellberg. 

These studies represent original work by the 

author and, except for the part presented in Section 3.5, 

have not been submitted in any form to this or any other 

University.. Where use was made of the work of others it 

has been duly acknowledged in the text. 

The Guassian c.g,s. system of units has been 

used for the work undertaken in this thesis. The 

equations are numbered according to the section in which 

they appear. A list of symbols used has also been compiled. 
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ABSTRACT 

Studies on collisionless shock waves and turbulent heating 

problems in plasmas have aroused considerable interest in electron­

ion streaming instabilities. In this thesis a theoretical investi­

gation of the electrostatic crossfield current-driven ion acoustic 

instability is conducted. For the entire investigation the electrons 

are assumed to be hot and the ions cold, i.e., T »T.(-o). The e 1 

lengthscales and times cales are chosen such that the electrons are 

magnetized and the ions unmagnetized, with the analysis usually con­

ducted in the ion rest frame. 

Using the Vlasov equation, the linear dispersion relation 

is solved for equilibrium particle velocity distribution functions 

iv 

of the general form foj(~,Vn). The results obtained are found to 

reduce to well known forms for the special case of Maxwellian distri­

butions. The author's previously reported work on the effect of in­

homogeneities in plasma density, plasma temperature and magnetic field 

on the instability, is reviewed. An explanation is offered for the 

reversal in the behaviour of the temperature gradient drift. 

The quasilinear development of the instability is investi­

gated. Particle diffusion equations in velocity space are set up, 
2 assuming distribution functions of the general form f . = f .(Vt ,VII,t). 

OJ OJ ~ 
The equations are solved analytically both for particles resonating 

with the waves and for non-resonant particles. It is found that 

electron diffusion is along . the external magnetic field while the 

ions diffuse primarily across the field. An examination of anomalous 

plasma resistivity indicates an enhancement of the resistivity per­

pendicular to the magnetic field, as compared to the field-free case. 

The electron heating rate is found to be greater than the ion heating 

rate. Under certain conditions, the ion acoustic and the electron­

cyclotron drift instabilities are found to produce the same relative 

heating rate for the two species. Energy studies indicate an exchange 



of energy between the waves and the resonant electrons. However, a 

comparatively small fraction of the total wave energy appears in the 

form of electrostatic potential energy. A similar result has been 

reported for electrostatic ion cyclotron waves. 

The effect of a sheared magnetic field on the linear in­

stability in a plasma with a density gradient is investigated. The 

analysis is restricted to the limit when wave growth due to inverse 

electron Landau damping is small. Magnetic shear is found t .O be 

stabilizing and the critical shear length is obtained. 

Using a model corresponding to the Double Plasma device, the 

effect of elastic and inelastic charge-transfer ion-neutral collisions 

on an incident ion beam are studied. The Bhatnagar-Gross-Krook col­

lision model is adopted and here the investigation is conducted in the 

electron rest frame. The elastic collisions are found to cause a 

slowing down of the beam, while the inelastic collisions give rise to 

an exponential decay in ion beam density. The effect of collisional 

damping on ion acoustic perturbations superimposed on the ion beam is 

then determined. 

v 
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CHAPTER ONE 

INTRODUCTION 

1.1 PLASMA CONFINEMENT AND SHOCK WAVES 

The considerable interest in, and intense study of plasma 

instabilities in recent years have arisen from several sources. Among 

these are: 

(i) the structure of, and energy dissipation in co11isionless 

shock waves in plasmas, 

(ii) the stability of a plasma as regards thermonuclear fusion 

experiments, and 

(iii) astrophysical and space phenomena such as sunspots and 

emission of radio waves by galaxies. 

Laboratory plasmas are invariably not in thermodynamic 

equilibrium and this means that a certain amount of free energy is 

1 

stored in the plasma. This energy may arise from, for instance, particle 

drifts due to gradients in plasma density, plasma temperature or magnetic 

fields, externally induced currents or beams of particles. The plasma 

can attain thermal equilibrium by allowing the growth of electromagnetic 

waves and a redistribution of energy among the waves and plasma particles. 

This process of energy conversion is called an instabiZity. Plasma 

instabilities may be broadly classed into two types - those arising from 
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distortions in physical space, i.e., change in shape, called macroscopic 

or hydromagnetic instabilities, and those involving changes in velocity 

space, known as udcroinstabilities. 

At the high temperatures ('V !08K) required for thermonuclear 

reactions the plasma cannot be physically contained by walls. It is 

therefore magnetically confined. Much of the research in plasma physics 

has been directed to the development of confining systems which will allow 

the containment of the plasma at the required density and period of time 

for fusion reactions .to take place. The Lawson condition(l) for a 

power-producing reactor requires ion temperatures T. ~ 10 keV, and the 
1 

product of particle density (n) and energy confinement time (T) of 

nT > 1014 cm- 3 s for a deuteriumrtritium fusion reaction. 

Plasma configuration schemes designed to confine plasmas may be 

broadly classed as 'open' systems or 'closed' systems. Of the former, 

magnetic udrrors and the linear 8- and Z-pinch devices are well known 

examples. In the case of magnetic udrrors, suitably arranged current-

carrying coils produce a magnetic bottle, i.e., a magnetic field in which 

it is possible to trap plasma particles. The linear e- and Z-pinches 

will be discussed later. Confinement times in the open systems are short 

because particles escape through the open ends. To overcome particle 

losses the field lines are bent to yield a toroidal magnetic field, 

thereby forming a closed system. 

Of the closed confinement systems the Stellarator and the Tokamak 

have received most attention. To improve particle confinement in closed 

systems externally arranged conductors modify the magnetic field so that 
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it has the property of nested uagnetic flux surfaces. Such a configuration 

is present in the Stellarator. In the Tokamak, the conversion of the 

toroidal magnetic field into a toroidal-poloidal field is achieved with 

high internal currents coupled to the plasma by means of a transformer. 

This conversion has been found to improve plasma stability and confinement, 

and at present the Tokamak is the most promising device in which the 

conditions for a successful controlled thermonuclear fusion reaction can be 

realized. 

At the high temperatures required for fusion experiments ohmic 

-~ heating is not suitable since it decreases with temperature, T, as T • 

There was, thus, a need for more efficient heating mechanisms. Gas 

dynamic studies have demonstrated that strong shock waves are highly 

efficient in heating a medium. This led to an interest in shock waves as 

a potential he~ting mechanism for plasmas. Shock waves arise as follows. 

When a wave excited in a plasma attains a large enough amplitude and 

propagates at speeds above the speed of sound, it steepens as it propagates 

to form a shock, i.e., a narrow transition layer propagating through the 

system, separating two regions of local thermodynamic equilibrium which 

have different densities, temperatures and mean velocities. Shocks with 

widths substantially smaller than the mean free path for binary collisions 

are called collisionless. 

In addition to the decrease in ohmic heating, at the temperatures 

required for fusion experiments two-body collisions are rare and the 

plasma is practically collisionlesJ 2).The important implication of this 

is that collisional dissipation, the dissipation mechanism of conventional 

shocks, is no longer possible. By what process, then, is dissipation in 

a collisionless plasma achieved? A possible mechanism is the excitation 
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of plasma waves by instabilities due to the relative drift between electrons 

and ions. Furthermore, instabilities can playa significant role in 

determining the behaviour of shock fronts, which are locations of gradients 

in magnetic field, plasma density and plasma temperature and therefore 

constitute a source for particle drifts. 

In the open linear a-pinch device an externally induced, rapidly 

-+ •• • -7 
rising axial magnetic field B 1nduces an aZ1mutha1 current of dens1ty J 

1 · -7 -+ hh 1 within the plasma. The resu t1ng J x B force acts to pus t e p asma 

towards the axis; this rapid radial compression produces a shock wave 

which may provide shock heating. In the case of the Z-pinch the roles of 

the current r and the magnetic field B are now reversed; r is now axial 
±. . -t -+ •• • and B aZ1mutha1 w1th the J x B force aga1n d1rected 1nwards. a- pinch 

experiments are conducted in many laboratories, including, for instance, 

Los Alamos (U.S.A.) and Ju1ich (West Germany). Besides the linear a-pinch, 

experiments are also performed in the toroidal a-pinch which is designed 

to overcome end losses of the former. A typical Z-pinch device is 

Tarantula II at Culham Laboratory, U.K. 

1.2 COLLISIONLESS SHOCK EXPERIMENTS 

Collisionless shock waves have been produced in a number of plasma 

laboratories (3 ,4) • We shall discuss some of the experiments on the structure 

of shock waves propagating through a plasma perpendicular to an external 

magnetic field. Most of the shocks were formed in a a- or Z-pinch. 

PAUL et aZ(5) created an imploding shock wave, which propagated 

radially inwards, in a linear Z-pinch by producing a sharply rising axial 

current in a thin annular layer (rv 1 cm). The measured shock width (1,4 nnn) 

was much less than the mean free paths for ion-ion collisions (5 cm) and 
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ion-neutral collisions (2,5 cm). Although the shock thickness does not 

eliminate electron-ion collisions, PAUL et aZ(6) discounted these 

interactions as the dominant dissipation mechanism. They found that the 

measured temperature of about 40 eV at shock velocity to initial Alfven 

velocity ratio M = 2,5 far exceeded that calculated by assuming resistive 

(ion-electron) dissipation. These results demonstrated that significant 

collisionless electron heating occurred in the shocks. The authors attributed 

the dissipation mechanism to plasma instabilities arising from the relative 

drift between electrons and ions. This process provides an anomalous 

resistance to the current. The electrons are heated by the subsequent 

damping of the waves. 

Experiments in the linear Z-pinch were continued by PAUL et aZ(7) 

when they studied the light scattered from a 50 MW ruby laser during 

the passage of the shock through the laser beam. Measurements of 

scattered power from the shock indicated the presence of an unusually 

high level of fluctuation within the shock, which in turn implied the 

presence of instability and associated nonlinear phenomena. The source 

of the free energy to drive the instability was attributed to the current 

in the plasma or drifts due to inhomogeneities within the shock. 

Using a &-pinch device KEILHACKER et aZ(8) investigated the heating 

of a plasma by collisionless shock waves. From Thomson scattering of laser 

light the variations in magnetic field, electron density and temperature 

were measured. Only 20% of the observed electron heating could be explained 

in terms of adiabatic and collisional resistive heating. The measured electron 

temperature and shock width indicated an anomalously high effective collision 

frequency, about two orders of magnitude higher than that for classical 

binary collisions. The authors then suggested excitation of plasma waves, 
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driven by electron-ion relative c r ifts, in the high current density of the 

shock front as the most probable cause of the anomalous plasma resistance. 

In a later experiment KEILHACKER et aZ(9) measured the level of 

density fluctuations in a collisionless shock wave as a function of time 

for a fixed scattering angle. The maximum level of fluctuations in the 

shock front was found to be about 250 times the thermal level. The 

reversal of the frequency shift of the fluctuations with the reversal of 

the diamagnetic current in the shock front suggested that the electron 

drift provided the free energy for the instabilities causing the enhanced 

fluctuations. In this experiment the electron temperature T and the ion e 

temperature T. were such that T ST .• 
1 e 1 , 

In a more recent experiment, ASTRAKHANTSEV et aZUO)investigated 

the nature of turbulent processes and the mechanism of collisionless 

dissipation in the front of an electrostatic shock wave. The observed 

high level of turbulence was attributable to plasma instabilities arising 

from counter-streaming ion beams. Ion heating was explained in terms of 

the diffuse scattering of the ions by the oscillations which were excited. 

Astrophysical observations have revealed that when the solar wind 

(plasma flow from the sun) encounters the earth's magnetic field, a 

collisionless shock is formed. This transition layer is called the bow 

shock. Measurements, via satellites, have indicated a high level of 

electrostatic fluctuations within the shock( 2) and was associated with 

current-driven plasma instabilities. 

Experiments on shock structure including those discussed above, 

have revealed that the shock width L and the time of passage of the 



shock L satisfy the following conditions: 

i 
< .-1 < In I 

e 

< r. 
1. 

(1.2.1) 

where n.(n ) is the ion (electron) gyrofrequency, OJ' = q.B/m.C, and 
1. e J J 

r. (r ) is the ion (electron) gyroradius. 
1. e 

Under such conditions the effect of the magnetic field on the 

7 

ions, as compared to that on the electrons, is neg1ipible, and the ions 

may be considered to be unmagnetized. 

It is thus seen that plasma instabilities play an important 

role in co1lision1ess shock dissipation of plasma energy. 

1.3 SUMMARY OF THESIS 

This thesis is concerned with a theoretical study of linear and 

quasilinear aspects of a particular plasma instability - the electrostatic 

crossfield current-driven ion acoustic instability. The principal 

electrostatic instabilities and associated linear investigations are 

summarized in Chapter Two. Experimental studies of the ion acoustic 

instability are discussed and the development of the quasilinear theory 

is reviewed. 

In Chapter Three the linear dispersion relation is established and 

solved for any equilibrium velocity distribution function of the type 

f . = f . (~12, V }, . where V and Vi are the components of the velocity V 
OJ OJ Z Z 
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along and perpendicular to B = Bz respectively. For the case of 

Maxwellian electron and ion equilibrium velocity distributions, the 

general results are shown to reduce to well known forms. For the purpose 

of completeness, a previously reported study by the author on the 

effect of inhomogeneities is reviewed. The quasilinear diffusion 

equations for the electrons and ions are set up and solved in Chapter 

Four. Electron and ion heating rates and anomalous resistivity studies 

are presented. Total energy conservation is then discussed. Finally, 

a brief comparison is made with the heating rates associated with the 

electron-cyclotron drift instability. 

The effect of a density gradient and a sheared magnetic field on 

the ion acoustic instability are studied in Chapter Five. In Chapter 

Six we examine the linear effects of elastic and inelastic charge-transfer 

collisions on the crossfield current-driven ion acoustic instability. 

Here the model is chosen to correspond to that of the Double Plasma 

device (DP-device) in the Plasma Physics Research Institute, University of 

Natal, Durban. Finally in Chapter Seven a summary is presented of the 

major findings in the preceding chapters. Conclusions are drawn, and 

possible extensions to the investigations undertaken are discussed. 



CHAPTER TWO 

A SURVEY OF LINEAR AND QUASILINEAR INVESTIGATIONS OF 

PLASMA INSTABILITIES 

2.1 INTRODUCTION 

9 

Tn investigations of crossfield current-driven plasma instabilities 

more attention has been given to electrostatic instabilities, where 

perturbations in the magnetic field are neglected and the electric field 

is assumed to be derivable from a scalar potential. The reason for this 

is that such modes constitute the fastest growing and most destructive 

instabilities as far as plasma confinement is concerned. 

Instabilities within a plasma may be divided into two types(ll): 

(a) Dissipative instability: arising from an exchange of energy 

between the plasma particles and the wave. The physical 

mechanism for Landau damping - collisionless damping of a 

wave - is associated with the strong interaction between a 

longitudinal plasma wave and those particles in the plasma 

having velocities close to the wave phase velocity V~. Of 

these, particles with velocity V<V~ are accelerated, while 

those with v>V~ are decelerated. If there are more 

particles travelling with velocities slightly less than V~ 



than with velocities slightly larger, the net result is an 

extraction of energy from the wave with consequent wave 

damping. However, when the reverse holds, energy is trans-

ferred from the particles to the wave, which grows in 

amplitude. This is known as 'inverse' Landau damping and 

can, if sufficiently strong, lead to instability. 

(b) Reactive instabilities: involve a coupling between two 

waves which carry energy of opposite sign to each other. 

There is an energy exchange between the two waves, but not 

between the wave and the plasma. For a linear electrostatic 

wave the energy density is given by: 

where Et is the longitudinal dielectric constant. LASHMORE­

DAVIES (12) shows that for ~ < 0 (i.e.,a negative energy 

wave) one requires 0 < w <k.VD• Negative energy waves have 

the unusual property that they grow when energy is extracted 

from them. Thus when a negative and a positive energy wave 
\ 

couple, both grow. Similarly, a negative energy wave grows 

when energy is extracted from it by resonant particles (dis­

sipative case). 

10 

It should be noted that because dissipative instabilities involve 

relatively few particles (the resonant ones), while reactive instabilities 

involve the whole distribution function wh1'ch supports the wave, the 

latter are more difficult to stabilize and in that sense are most dangerous. 
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2.2 THEORETICAL LINEAR INVESTIGATIONS 

Of the plasma instabilities that occur, there are three which 

have received considerable attention. These are the ion acoustic instability, 

the electron-cyclotron drift instability (also known as the beam cyclotron 

or Be~nstein instability) and the modified two-stream instability. A 

review of the reported linear aspects of these instabilities is now 

presented. 

(a) Ion acoustic instability 

Ion acoustic waves satisfy the dispersion relation: 

k C s 
W = ------------r 

(1 + k 2 A 2) I 
D 

where C = (T /m.)i is the ion sound speed and s e 1. 

A = (T /4w n e2)i the electron Debye length. These modes Dee 

are found to grow when VD > Cs ' where VD is the electron-ion 

relative drift. In addition, an important requirement is that 

T »T .• The instability is of a dissipative nature, arising e 1. 

from the interaction of the ion sound waves with resonant 

electrons and ions. A necessary condition for the growth of 

the waves is the dominance of inverse electron Landau damping 

over ion Landau damping. The condition T »T. is very e 1. 

important, since when T ~ T. ion Landau damping is strong and e 1. 

the waves are stabilized or even damped. 
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In their examination of the ion acoustic instability KRALL and 

BOOK(13) used the gradients in electron density and magnetic 

field as the only sources of electron drift. Their 

investigation was limited to the regime (kr )2 > 1, (w/kVB) > 
e 

. -+ 
and VB the (l/kr )2, where k = (O,k,O) is the wave vector 

e 

average magnetic drift. The growth rate of the instability was 

found to be comparable with that for the B = 0 ion wave instability; 

the effect of the non-zero magnetic field was to reduce the 

growth rate. 

AREFEV(14) , in his treatment of the ion acoustic instability, 

assumed that the electron drift resulted from an externally 

applied electric field. The linear dispersion relation was 

solved for T »T. by assuming 
e 1 

lw-k-vDI «k C, z e 

kCi « w and ~2 re 2 «1. The choice k Ik ~ (m 1m.)! 
z e 1 

was 

shown to restrict the instability to drift speeds VD such that 

2 C > V > C . s D s 

A detailed, numerical, linear study of electrostatic 

instabilities has been undertaken by LASHMORE-DAVIES and MARTIN(11). 

They have assumed the t x B drift to be the major source of 

electron current and therefore neglected the effects of gradients. 

The analysis for the ion acoustic instability was subjected to 

the approximation k = (0, k , 
Y 

«12k C or e-b I (b) « 1. 
z e 0 

Here b = 

-+-+ 
« 1, and (w - k-V ) 

D 
2 . 

(k r) and I (b) 1S yeo 

the modified Bessel function of order zero. An analysis of the 

normalized growth rate (yIn) as a function of k r showed that eye 

for ky re ~ 1 the magnetic field effects were strong, producing 



an enhanced growth rate compared to the magnetic field-free 

case. For k r ~ 4, a surprising result was obtained; 
y e 

the 

behaviour of the instability seemed to be independent of the 

magnetic field. 

13 

The enhanced growth rate in the presence of the magnetic field, 

as discovered by LASHMORE-DAVIES and MARTIN(ll) contradict the 

result of KRALL and BOOK(13), who found the opposite effect. 

Besides the choice of different parameter ranges, this may be 

~ ~ . . . 
attributed to the fact that the E x B dr~ft, in the op~n~on of 

the former the dominant drift, is ignored by the latter. 

PRIEST and SANDERSON(15) have differed in their approach to the 

ion acoustic instability problem. They have established the 

linear dispersion relation via the generalized Gordeyev integral(16). 
~ 

Using the assumption k = (0, k , k ), (k r)2» 1 and (k r)2 ~ 1, 
y z y e z e 

they found that the inclusion of a temperature gradient produced a 

dramatic increase in the growth rate. This was attributed, not to a 

simply larger drift velocity, but to a distortion of the electron 

distribution function produced by VT; the distortion being such 

that it increased the slope of the electron velocity distribution 

function (and therefore the growth rate) in the resonant region of 

velocity space. The effect of a density gradient drift that was 

small compared to the electron thermal speed C , was found to be 
e · 

negligible, while a slight modification to the growth rate was 

produced by a magnetic field gradient. The authors also 
• 

conjecture that a temperature gradient drift of order C could 
e 

cause sufficient distortion of the electron distribution function 

to allow the ion acoustic instability even when T. ~ T and V
D 

< C , 
~ e e 



14 

the obvious implication being that the ion acoustic instability 

could not be completely ruled out in experiments where the 

average electron and ion temperatures were of the same order(9) • 

The suggestion of PRIEST and SANDERSON(15) concerning ion acoustic 

instability at T ~ T. was numerically investigated, to some e ~ 

degree, by ALLEN and SANDERSON(17). For a low collision 

frequency, ~ re » 1, a significant VT drift but a weak VB 

drift, the authors found: 

(i) maximum growth occurred for propagation perpendicular 

~ 

to B, 

(ii) a positive growth rate was obtained for VT = 0,5 Ce 

and Te = Ti' where VT is the VT drift, and 

(iii) for VT = C , the wave phase velocity increased with the 
e 

wave number, a behaviour exactly opposite to that of a 

normal ion acoustic mode. 

BHARUTHRAM and HELLBERG(18) studied the ion acoustic instability, 

the electron-cyclotron drift instability and the intermediate 

transition regime for a dominant drift V (either external-beam 
o 

type or E x B) and weak gradients in electron density, temperature 

and magnetic field. For the ion acoustic mode with k ; 0 the z 

VT drift enhanced the growth rate for k~ re > 1, but had a 

stabilizing effect for ~ re ~ 1. The Vn drift ~ lways had a 

stabilizing effect. By allowing a Vn drift at various angles to 
~ 

V , it turned out that the maximum growth was always achieved o 

for propagation along the net drift, as found by ALLEN and 
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SANDERSON(17) for the particular case of a net drift across the 

magnetic field. 

In a more recent report, SIZONENKO and STEPANOV(19) have 

examined the crossfield current-driven ion acoustic instability 

driven by gradients in plasma temperature, plasma density and 

magnetic field in the limit Te »Ti • Derivations of the 

instability growth rate are presented for both a strong and a 

weak VB drift. Wave propagation along and perpendicular to 

the magnetic field are separately treated. 

(b) The electron-cyclotron drift instability (ECDI) 

This instability is also known as the beam cyclotron or 

Bernstein instability. For T »T., the instability is of a 
e 1 

reactive type, arising from the resonance coupling between a 

Doppler-shifted negative energy electron Bernstein wave and 

the positive energy ion acoustic wave. As a result one has 

the resonance condition w ~ koVD - Inl ne - k Cs for maximum 

growth rate. Electron Bernstein waves are electrostatic modes. 

Their propagation is independent of ion dynamics and occurs 

under zero drift conditions. These modes satisfy the dispersion 

relation w ~ ~ n (~is an integer) and propagate, with a e 

constant amplitude, perpendicular to the magnetic field. They 

are severely damped for slightly off-perpendicular propagation. 

In one of the first investigations on the reactive ECDI, WONG(20) 

worked in the rest frame of the drifting electrons, with the 

crossfield ion drift being produced by some external source. The 

linear dispersion relation was solved with the aid of the 
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assumptions k = (0, k, C), k2 r 2 » 1 and T »T .• e e 1 

Modifications to the dispersion relation introduced by k ~ 0 z 

were found to be small provided the upper limit of (k /k ) was z y 

restricted. The treatment was extended to include the effect of 

a VB drift. 

The results of LASHMORE-DAVIES(12) for the reactive ECDI are 

identical to that of WONG(20) if one takes into consideration the 

former's additional assumption of k 2 AD2 «1. LASHMORE-DAVIES(12) 

was the first to point out that the ECDI could exist as a 

dissipative instability when Te ~ Ti • The driving mechanism was 

associated with the Doppler-shifted electron Bernstein mode 'seeing' 

a positive slope to the ion distribution function and thereby 

undergoing ion Landau damping, which, for a negative energy wave 

results in growth. In a later paper LASHMORE-DAVIES(2l) included 

a density gradient drift. This not only reduced the net growth 

rate of the reactive ECDI but also restricted the instability to 

wave numbers lying within a specified band. A much more detailed 

examination of the dissipative ECDI was also undertaken. 

GARY and SANDERSON(22) investigated the reactive ECDI in the 

+ + . 
presence of an E x B electron dr1ft, and arrived, independently, 

at the result obtained by WONG (20) • They then showed that the 

inclusion of a VB drift reduced the instability growth rate. 

Despite this, the growth rate was still larger than that of the 

magnetic field-free ion acoustic instability. 
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FORSLUND et aZ(23) made an indepth study of the dissipative ECDI. 

A numerical solution of the dispersion relation revealed that the 

growth rate was a maximum near the point of intersection of the 

wave phase velocity with the maximum slope of the ion velocity 

distribution. The authors initially discovered the instability 

with a numerical simulation code. 

Gary extended the work of GARY and SANDERSON(22) for T »T. (~O) e 1 . 

to the regime T = 10 T. (24) and T 
e 1 e 

= T. (25). 
1 

The major finding 

in the former case was the reduction in the growth rate of the 

reactive ECDI, presumably due to the enhancement of ion Landau 

damping by a finite T .• The latter case, demonstrated, via 
1 

numerical studies, that the unstable modes were severely damped 

for propagation outside a few tenths of a degree off the 

. ~ 
perpendicular to B. 

In an extension of the theory on the dissipative ECDI (T ~ T.), e 1 

SANDERSON and PRIEST(26) included gradients in electron density 

. and temperature. For perpendicular propagation the growth rate 

was increased. For oblique propagation the instability ceased 

to exist due to strong electron Landau damping of the Bernstein 

mode. In a later report SANDERSON and PRIEST(27) included a VB 

drift and analytically solved the dispersion relation for Te » Ti 

and T ~ T .• 
e 1 

LASHMORE-DAVIES and MARTIN(ll), besides reproducing the work of 

(12 21) . 
LASHMORE-DAVIES ' , numerically extended the results to cover 

the whole range of parameter space. The regime T = 10 T. was e 1 

also considered. 
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(c) Modified two-stream instability (MTSI) 

This instability is associated with modes which propagate with 

wave numbers and frquencies satisfying(28): G. « 00 « G , 
1 e 

kr «1, C. « (oo/k) and 100 - k.vol »k C, and are 
e 1 z e 

described by the dispersion relation: 

k 200 2 00 2 k 2 00 2 
Y pe pe z 

I + .......... _-'"-'- - ---r - -
k 2 n 2 w k 2 

e 

pe = 0 
-+- -+- 2 • 

(00 - koVO) 

Here, t = (0, k , k ) and 00 (00.) the electron (ion) plasma y z pe p1 

frequency. 

In arriving at the above dispersion relation only the zeroth 

order term in the electron contribution to the dispersion relation 

was considered since 00 « n. The MTSI differs from the well e 

known two-stream instability for a non-diamagnetic plasma, which 

has the dispersion relation(29) 

= 0, 

in that the latter requires Vo > Ce for instability, while it (MSTI) 

may exist for drifts much smaller than ceo 

In his treatment of the MTSI STEPANOV(30) took into account not 

only the zeroth order but also the first order term in the electron 

contribution to the dispersion relation. Working in the electron 

frame, he found 



(i) for VD 
» C : growth rate y ~ (m /m.)~ w .; 

e e 1 p1 

(U) for VD S C , (k /k) ~ (m /m.)~ :y ~ Re(w) ~ (n 
e z e 1 e 

when w ~ n , and y ~ Re(w) ~ w • when w S n . 
pe e pl pe e 

ASHBY and PATON (31) , in an analytical study, arrived at 

Re(w) ~ y ~ k'V
D 

~ ~H = w .• (1 + w 2/0 2)~ (the lower 
L pi . pe e 

hybrid frequency) for (k /k ) ~ (m /m.)~. The MTSI was 
z y e 1 

19 

n.) ~ 
1 

experimentally observed by the authors in a low density plasma 

stream. 

The modified two-stream instability was also studied by 

AREFEv(14). Part of his results showed that instability 

occurred for a discrete frequency spectrum. In their 

investigation KRALL and LIEWER(32) used the additional assumption 

kz «k1 . They found that VD > «Te + Ti ) /mi ) ~ was a necessary 

condition for a positive growth rate. 

The dispersion relation for the MTSI, given above, was manipulated 

by LASHMORE-DAVIES and MARTIN(ll) to show that the instability may 

be visualized as a reactive instability, arising from a resonance 

coupling between two modes - the lower hybrid (w = w = w . x LH pi 

(1 + w 2/n 2)-~) and a Doppler-shifted electron plasma wave pe e 
-+ 

perpendicular to B, with w - k VD ~ - (k /k) w • The latter 
y z pe 

has w < k'VD and is therefore a negative energy mode (12) • The 

authors then showed that the so called drift modes, as discussed 

by KRALL and LIEWER(32) for propagation across B in the presence 

of gradients, were just the MTSI propagating perpendicular to B. 
Thus the effect of the gradients was to increase the 'cone of 

propagation' of the MTSI. 
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A detailed study of the MTSI in the linear and nonlinear regimes 

was conducted by McBRIDE et aZ(28). The importance of the 

instability as a possible turbulent heating mechanism was 

indicated. PAPADOPOULOS et aZ (33 ) examined a MTSI arising from 

two counter-streaming ion beams through a relatively cold electron 

background. The quasilinear and nonlinear stages of the 

instability were also studied. 

GLADD (34) found that the growth rate of the MTSI assumed a maximum 

value for a particular oblique angle of propagation. The 

introduction of a weak density gradient shifted the maximum growth 

rate to k = 0, corresponding to the lower hybrid drift instability. 
z 

Electromagnetic effects were also investigated. As a follow up, 

DAVIDSON and GLADD(35) examined the anomalous resistivity and 

heating associated with the lower hybrid drift instability. 

However, before entering the nonlinear regime, the authors undertook 

an extensive parameter study in the linear domain - the instability 

.. ....... ~ . . . . 
beLng drLven by an E x B drLft and gradLents Ln electron 

temperature, electron density and magnetic field. 

The instabilities discussed above are not isolated from each other. 

GARy(24) has examined the reactive (electron Bernstein mode -

ion wave coupling) ECDI for propagation across B. However, for 

oblique propagation he finds that the Bernstein mode is severely 

damped. The coupling is no longer possible and the ion acoustic 

wave grows, provided inverse electron Landau damping overcomes ion 

Landau damping. Thus, as the propagation changes from the 

~ 

perpendicular to B and becomes oblique, the reactive ECDI degenerates 

into the dissipative ion acoustic instability. LASHMORE-DAVIES and 
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and MARTIN(ll) and AREFEV(14) have shown from numerical studies 

that as (k /k) increases the MTSI changes to the ion acoustic z 

instability. It has been pointed out by LASHMORE-DAVIES and 

MARTIN(ll) and GLADD(34) 

hybrid drift instability 

that the MTSI (k ~ 0) and lower z 

(k = 0)(32) may be considered as 
z 

different aspects of the same instability. 

2.3 EXPERIMENTAL INVESTIGATIONS OF THE ION ACOUSTIC INSTABILITY 

Here, we briefly discuss some of the experiments involving the 

ion acoustic instability. 

HIROSE et aZ(36) have reported an experimental observation of the 

crossfield ion acoustic instability in a toroidal turbulent-heating 

experiment. The measured values of the anomalous resistivity (about two 

orders of magnitude larger than the classical value) and anomalous electron 

thermal transport (about 25 times larger than the classical value) were 

explained in terms of ion acoustic waves driven by a radial temperature 

gradient across the toroidal magnetic field. 

Observation of the crossfield ion acoustic instability in two 

different configurations, a streaming cesium-plasma device and a double 

plasma device, have been reported by BARRETT et aZ(37). The authors have 

suggested that the instability could occur for T ~ T., a suitable k 
e ~ z 

allowing for inverse electron Landau damping to overcome ion Landau damping. 

However, the experimental growth rates do not provide convincing agreement 

with theoretical predictions. This could possibly be due to a neglect of 

the finite size of the plasma, plasma inhomogeneities and inter-particle 

collisions. McBRIDE et aZ(28) have remarked that the results of 
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BARRETT et aZ(37) could be explained in terms of the modified two-stream 

instability. 

HAMBERGER and JANCARIK(38) measured the electrostatic fluctuations 

in a turbulent-heating experiment performed in a small toroidal stellarator. 

For a hydrogen plasma in which the electron drift was relatively small, the 

observed fluctuation spectra appeared to be consistent with turbulence driven 

by ion sound waves. 

WATANABE(39) observed the evolution of ion acoustic waves in a 

discharge tube by gradually increasing the electron drift velocity. The 

onset of the ion acoustic instability was seen when the bias on the grid 

controlling the electron drift velocity (Vg) reached 1,1 V. For V l 10 V g 

nonlinear effects set in, and the instability entered a turbulent state. 

The ion acoustic nature of the instability was confirmed by the measured 

dispersion relation which agreed remarkably well with the theoretical curve 

for ion acoustic waves. 

In another turbulent-heating experiment in a magnetic mirror, 

WHARTON et aZ(40) found that the low frequency components of the measured 

turbulent spectrum followed the dispersion curve for ion acoustic waves. 

The heating of the plasma was attributed to the current-driven ion acoustic 

instability. 

The crossfield current-driven ion acoustic instability was studied 

in an ion beamrplasma system within a double-plasma device by HAYZEN and 

BARRETT(4l). Allowing for the finiteness of the plasma and ion-neutral 

collisions the authors obtained very good agreement between the measured 

spatial growth rates and dispersion properties, and the equivalent 
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theoretical estimates for the crossfield ion acoustic instability. JONES 

and BARRETT(42) have extended the experiments into the nonlinear domain. 

Quasilinear and nonlinear theories have been invoked to explain the 

observed nonlinear saturation of the instability. 

2.4 DEVELOPMENT OF THE QUASILINEAR THEORY 

When plasma instabilities are excited and the associated waves 

grow, after a sufficient time these waves assume such amplitudes that the 

nonlinear terms become important and the linearizing of the Vlasov 

equation (a basic equation for the study of a collisionless plasma) is no 

longer valid. Nonlinear behaviour is very much an inherent characteristic 

of 1 b 1 (38,39,42) a oratory p asmas . The question arises as to the evolution 

of such instabilities; nonlinear effects may modify certain plasma 

parameters which in turn can cause the unstable oscillations to saturate. 

A natural extension of the linear theory of plasma waves and 

instabilities is the weak turbulence theory - first published independently 

by VEDENOV et aZ(43) and DRUMMOND and PINES (44) • There are two necessary 

conditions on which the weak turbulence theory is based(4S). The first is 

that the energy density associated with the fluctuations, W, must be small 

compared to the plasma thermal energy, nkT, i.e. (W/nkT) «1. The second 

requirement is that the spectrum of waves must be broad. If ~w is the 

frequency spread of the wave spectrum, then it is necessary that 

~w-l « (eEk/m)-~, where (eEk/m)-~ = t is the trapping time(46) of an 
r 

electron in the potential well of the electric field E having wave number 

k. -1 What this means is that the correlation time of the waves ~w must be 

much shorter than the trapping time t • i.e. a particle does not 'see' a 
r 

single wave long enough to be trapped by it. For a valid application of 
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weak turbulence theory it is essential that both these conditions are 

independently satisfied. Regimes which do not satisfy these conditions 

a~e loosely described as strongly turbulent. 

As is well known, in the linear theory terms of second order and 

higher are neglected. In weak turbulence theory such terms, generally up 

to the fourth order, are retained. In the simplest treatment of weak 

turbulence theory, called quasilinear theory, the coupling between the 

different modes is neglected. This will be discussed in Chapter Four. 

since its inception quasilinear theory has been extensively 

treated in several standard texts, some of which are by SAGDEEV and 

GALEEV(47), TSYTOVICH(48), DAVIDSON(46) and KRALL and TRIVELPIECE(I) • 

We shall review a few of the papers that have made significant contributions 

to the development of the quasilinear theory. 

In the initial report of DRUMMOND and PINES(44) the fundamental 

equations of quasilinear theory are established. The authors then show that 

for electron plasma oscillations with a positive gro\07th rate (y > 0) one 

half of the energy lost by particles resonating with the waves goes into 

the wave electrostatic potential energy and the other into the kinetic 

energy of oscillations of the bulk of the non-resonant particles. In a 

one-dimensional application, a Maxwellian velocity distribution with a 

'gentle-bump' is chosen. A numerical study of the development of the 

system in time shows: 

(i) a flattening of the velocity distribution (also known as 

plateau formation) in the bump region, and 
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(H) although, the initial fluctuation level does grow in time, 

its final level, however, is still comparatively small. 

BERNSTEIN and ENGELMANN(49) formulated the quasi1inear theory 

for growing (y > 0) and decaying (y < 0) modes. For the one-dimensional 

case of a'bump in tail' velocity distribution they recovered the results 

of 'DRUMMOND and PINES (44) • This implied that in the one-dimensional 

treatment only growing modes need be considered. However, this is not 

true in two- or three-dimensions. The 'H-1ike' theorem (analogous to 

Boltzmann's H-theorem in thermodynamics) developed by the authors showed 

that the asymptotic behaviour in time was such that y < 0 for all modes 

within the system, i.e. it was inadequate to consider only growing 

oscillations. This time asymptotic behaviour in two- and three-dimensions 

(47) has been comprehensively treated by SAGDEEV and GALEEV • 

In their treatment of the quasi linear theory VAHALA and 

MONTGOMERy(50) considered the fluctuations to consist of a discrete k -

spectrum, which was in contrast to the case of a continuous k - spectrum 

as used by BERNSTEIN and ENGELMANN(49) . • -+-
For such a d1screte k - spectrum 

they found that a consistent formulation of the quasi linear theory could 

be undertaken without decaying modes in one-,two- or three-dimensions; 

a result different from that of BERNSTEIN and ENGELMANN(49) for a continuous 

spectrum. However, in view of the fact that one of the pre-conditions for 

the quasi linear theory is a sufficiently broad spectrum, the discrete spectrum 

of VAHALA and MONTGOMERy(50) may not fulfill this requirement. The authors 

then point out that the inclusion of damped waves could result in negative 

Qiffusion coefficients in velocity space and therefore lead to 

inconsistencies. It seems that this problem has arisen from a misinterpretation 

of the diffusion coefficient in the resonance region of velocity space for 
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. (46) 
decay~ng modes and has been resolved by DAVIDSON ,who shows that the 

diffusion coefficient is non-negative in the resonance region for both 

growing and decaying modes. 

BURNS and KNORR(5I) attempted to resolve some of the difficulties 

associated with the quasilinear theory. They investigated a one-dimensional 

electron plasma. In the development of the theory the authors emphasized 

the need for the approximate form of the perturbed velocity distribution 

used in the calculation of the velocity moments to be supple~nted by the 

prescribed Landau contour of integration. If this is not done significant 

errors could arise. Goo.d qualitative agreement was obtained for a discrete 

spectrum between quasilinear theory and ,a numerical analysis of the one-

dimensional Vlasov equation and Poisson's equation in the absence of mode-

coupling terms. The authors also found that the requirement of VAHALA and 

MONTGOMERy(50) that all growth rates remain non-negative for a finite time 

was not necessary. Furthermore, they showed that if the Landau contour 

of integration is well defined then damped modes (y < 0) need not render 

the velocity diffusion equation ill-posed, as argued by VAHALA and 

MONTGOMERY (50) • 

Despite the initial difficulties associated with it, quasilinear 

theory has been widely applied. DAVIDSON et aZ(52) investigated electron 

heating by two counter-streaming ion beams in a computer simulation 

experiment of a one-dimensional beam-plasma system. The rate of electron 

heating and its saturation offered good agreement with the predictions 

of the related quasilinear theory. A detailed study, comprising linear 

and nonlinear theory and computer simulation, of the electron-cyclotron 

drift instability was undertaken by LAMPE et aZ eS3 ). Quasilinear rate 

equations for the electron temperature, ion temperature and the average 
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ion drift velocity were obtained. The results of the computer simulation 

for cold ions exhibited good agreement with the quasi1inear predictions. 

The saturation of the instability was found to be accompanied by ion 

trapping effects. DAVIDSON and GLADD (35 ) and DAVIDSON(54) have examined 

the lower hybrid drift instability in considerable detail in the 

quasilinear regime; current relaxation, electron and ion heating rates 

and diffusion relaxation times have been studied. 

The quasi linear behaviour of the two-stream ion cyclotron 

instability was theoretically studied by DRUMMOND and ROSENBLUTH(55) • 

Energy considerations showed that only a fraction k2AD2 « 1 of the 

energy given up by the resonant electrons appeared as wave potential 

energy. The bulk of the energy went into the kinetic energy of the wave 

motion, associated with the oscillations of the non-resonant electrons 

and ions in the presence of the wave. This was in contrast to the 

result of DRUMMOND and PINES(44) for electron plasma oscillations, 

where the energy was equally divided between wave potential and kinetic 

energies. The authors also found that the resonant interaction between 

waves and electrons led to an anomalous spatial diffusion across the 

magnetic field. 

DUM t "7 (56). . d h l ' • e a~ ~nvest~gate t e turbu ent heat~ng and stabi1~zation 

of the crossfield current-driven ion acoustic instability via two-

dimensional computer simulation. Heating and anomalous resistivity results 

were well in agreement with quasi linear predictions, as was the relaxation 

of the electron and ion energy distributions. 

The nonlinear development of the ion acoustic instability in a 

collisionless, unmagnetized plasma was theoretically investigated by 
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CAPONI and DAVIDSON(57). The ana: ysis was conducted V1a the quasi linear 

theory, extended to include the effects of ion resonance broadening. 

Calculated values of the anomalous resistivity provided much better 

agreement with experimental values than the expression of SAGDEEV and 

(47, p.94-l03) h' h' b d h 'h I' GALEEV , w 1C 1S ase on t e assumpt10n t at non 1near 

ion Landau damping is the dominant saturation mechanism. Numerical 

integration provided the temporal variation of the fluctuation energy 

density and electron and ion heating rates. 

In a more recent undertaking, APPERT and VACLAVIK(58) studied 

the saturation of the current-driven ion acoustic instability in a 

weakly ionized, uniform, unmagnetized plasma. The analysis was conducted 

within the context of a quasi linear model that included the effects of 

close two-body collisions and Coulomb collisions. The spectral 

distribution of the turbulence was calculated in a one-dimensional 

treatment. In a restricted three-dimensional treatment, where 

(m /m,)~ < k /k « 1, an expression was derived for the total wave energy e 1 z 

density in terms of measurable physical parameters. Numerical calculations 

showed that the ion velocity distribution function was virtually 

unaffected by the turbulent oscillations. For low degrees of ionization 

the effect of Coulomb collisions was negligible. The derived results 

provided favourable agreement with previously reported experimental 

observations. 

We conclude this section by mentioning an experiment that has 

confirmed the quasilinear theory. ROBERSON et aZ(S9) studied the 

'gentle-bump' instability in a long plasma column into ~hich an electron 

beam was injected, The observed flattening of the bump in velocity 
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space and the saturation of the wave energy were in excellent agreement 

with the predictions of quasilinear theory. As a note of warning, the 

authors point out that the theory should be carefully applied. For, when 

the experimental conditions exceeded the limits of quasilinear theory, 

ever 80 slightly, a qualitatively different behaviour was observed. 
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CHAPTER THREE 

LINEAR THEORY OF THE CROSSFIELDCURRENT~DRIVEN ION ACOUSTIC 

INSTABILITY 

3.1 BASIC EQUATIONS 

We adopt the model of GARY and SANDERSON (22) and consider a 

~omogeneous collisionless plasma with an external electric field E 
o 

and a magnetic field B as shown in Fig. 3.1 below. The analysis is 
. 0 

conducted in the ion rest frame. 

z 

x 

Ii =B z/ o 0 
/ 

E =-E x 
o 0 

-+ V = 
o 

Figure 3.1 

Two fundamental assumptions are made: 

y 

(a) The time scale L and length scale t of the perturbation are 

such that they satisfy the conditions (1.2.1), viz., 
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n. -1 In I < T < 
1 e 

and 

r < R, < r. 
e 1 

As mentioned earlier, under such conditions the ions may be considered 

-+- :t • -+­
unmagnetized, and the magnetized electrons have an E x H dr1ft . V re­o 

lative to the ions. 

(b) We use the electrostatic approximation, i.e., assume that the 

wave electric field is produced by charge separation, which in turn im­

plies that the perturbed electric field EI can be expressed in terms of 

a scalar potential ~1 as El • - V~I' For a wave propagating as 
. -+ -+- . 

exp {i(k • r - wt)}, Maxwell's equation 

=--
at 

reduces to 

-0 = k x E = wB I 1 

Therefore, in the electrostatic approximation, the magnetic field re­

mains unperturbed and the waves are longitudinal with k parallel to E
I

. 

In addition, for electromagnetic effects to remain insignificant the 

wave phase speed V~ must be such that V~ = w/k « C, where C is the 

speed of light. 

In the absence of collisions, the electron and ion velocity distribution 

functions f.(j = e(electron) , j = i(ion» satisfy the Vlasov equation 
J 



-+-+ af.(r,V,t) 
--..1. 
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-+ 
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-+-+ 
af.(r,V,t) 
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ar 

-+ -+ e. ( V Xc Bo) 
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= 0 

(3.1.1) 

We define f. = <f.> + ft" where f . = <f,> is the ensemble average 
J J J oJ J ' 

of f., usually defined as an average over one or several coordinates 
J 

in space or over time. f), represents the perturbation in f. due to 
J J 

a set of randomly phased, rapid oscillations. Similarly 

The Vlasov equation is now averaged over an arbitrary variable; the 

exact variable will be specified later. We obtain 

Note that <
aft') <af l ,) E . -:fJ- = E . ~ = 0, etc. 

o av 0 av 

Subtracting Eq.(3.1.2) from Eq.(3.1.1), we get 

af ') -& . av 

(3.1.2) 

(3.1.3) 

If we assume periodic boundary conditions at the end of a system of 

length L, the perturbed quantities may be expressed in terms of their 

spatial Fourier transforms as 



where 

• 

.~ ~ 
l.k.r e 

.~ ~ 
l.k.r 

e 

.-+ ~ 
~ () l.k. r 

~I(r,t) = L ~k t e 
k 

~ I J ~ ~ ~(t) = L3 EI (r,t) 
.+ ~ 

-l.k.r d~ e r 
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(3.1.4) 

and EI(;,t) = - V~I(;.t) in the electrostatic limit. For convenience we 

have written k instead of k in all summations and subscripts. 

Their time dependence is taken to be of the WKB form (46, p 226) 

viz. , 

(3.1.5) 

where, in general, Sk(t') = -

(3.1.6) 

with w~ = Re(wk) the real part, and Yk = Im(wk) the imaginary part of wk' 

In the electrostatic limit Maxwell's equations are replaced by Poisson's 

equation 

- 41T L n. e. 
j J J 

(3.1.7) 



Defining the ensemble average as 

<g> = lim ~ J g d~ 
L-+oo L 

the right hand side of Eq.(3.1.2) is manipulated with the aid of 

Eq.(3.1.4) to yield 

lEI . a: lj)= Ir. E (t) 
\' av \~ q 

.-+ -+ 
1q.r 

e • 

since 

aL k I r 
= lim r. r. E (t) • ~ - J 

L-+oo q k q av L 3 

-+ 
-+ af jk (V ,t) 

= r. ~k(t) • 
k av 

Thus Eq.(3.1.2) may be rewritten as 

-+ -+ 

. (-+ -+) -+ 
1 k+q .r d-+ e r 
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--.£J.. + V • -2..l. + --.l E 
af . a£. e. ( 

at ",-+ m. 0 
+ 0 .-2..l.=---.lr.E . 

V x B) af. e. 

C av mj k -k 

af
jk 

-+ av 
(3.1.8) 

or J 

In the linear approximation we neglect the products of perturbed 

quantities ,and hence set the right hand sides of Eqs.(3.1.3) and 

(3.1.8) to zero. We then write 

f . 
OJ 

2 = f . (VI ,V ) 
oJ.&. Z 

(3.1.9) 

as the solution of Eq.(3.1.8). Note that the background distribution 
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f . is assumed to be spatially uniform 
OJ 

and isotropic in the velocity 

• -+ 
plane perpend1cular to B • o 

The reason for this particular choice of 

f . will be discussed in Section 3.2. 
OJ 

With its right hand side equated to zero,Eq.(3.1.3) reduces to 

~+ :± a tV. (3.1.10) 

-+ -+ -+ 
where E1(r,t) has been replaced by - V~l(r,t). This equation, in turn, 

can be written as 

-+-+ = g(r,V,t) 

where the operator [d/dt] is defined as the rate of change following 
u 

(16) . 
an unperturbed orbit in phase space , 1.e., the left hand side re-

presents the rate of change of f lj as 'seen' by a particle which at 

time t is at the phase point (i,V) under observation, but whose motion 

through phase space is determined by the external fields E and B . 
o 0 

Thus, integrating Eq.(3.1.10) along the unperturbed orbits. we find 

e. It af . 
f 1J·(t,V,t) = ~ V~I (-;, ,t'). -:!1- dt' 

av' J -CD 

(3. 1. II ) 

The lower limit has been set at t' = - 00 under the assumption that the 

plasma is undisturbed in the infinite past and the perturbations grow 

from zero. 
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3.2 ELECTRON AND ION CONTRIBUTIONS TO THE DISPERSION RELATION 

For the electrons Eq.(3.1.11} becomes 

t 

- i J 
e 

af 
,J, (-+, ') ~ dt' V'll 1 r . , t • 

av' 
(3.2.1) 

The equation governing electron motion in the presence of an electric 

field E and a magnetic field B is o 0 

:;. 
mr = - e [

-+ V x B ] E + 0 
o C 

For the configuration shown in Fig. 3.1 this yields 

Vx(t'} = 'i. (t) 

V (t') -V =V. (t) yo. 

cos {a(t} - ~ (t'-t}} e 

sin {a(t} - ~ (t'-t}} 
e 

V = constant. z 

(3.2.2) 

2 
where ~ (t) = V2 (t} + (V (t) - V }2 

-+ 
and V 

o 
• -+ -+ • 1S the electron E x B dr1ft. x Y 0 

From the above equations we may construct two constants of the motion, 

viz., 

and V 
z 

Since any distribution that is a function of the constants of the motion 

is necessarily a solution of the zero order Vlasov equation (1) ,the 

2 equilibrium distribution function f is chosen to depend on V,l and V , oe z 

i. e. , 

f oe 

as in Eq.(3.1.9). 

2 = f (VI ,V ) oe. z (3.2.3) 



Now 

where 

Consequently 

af af af af 
oe oe ~ + oe A + oe A ----A --y -z 

~± av av av 
aV X y Z 

(V -V ) Y 
y 0 
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(3.2.4) 

In the linear approximation, Sk = -iwk is a constant, i.e. independent 

of time. Expression (3.1.5) then reduces to 

exp (- i wk t) 

Thus, using Eq.(3.1.4), the perturbed quantities ~I and fie may be 

written as 

e 

where 

'-+k + 1 • r 

(+ ).. f k (+V) e-iwkt 
fek V,t e W 

and 

where 

-iw t 
<l>k(t) .. <l>kw e k 

(3.2. Sa) 

(3.2.5b) 
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In terms of the Fourier transforms (3.1.4), Eq.(3.2.1) reduces to 

t 

-: J 
e 

exp Uk • [~(t')-~(t)]} dt' 

-iw t' Since $k(t') C $kw e k ,this may be rewritten as 

t 

... -!:. J $ (t) m k 
·-+k 1 • 

Of (V') 
oe exp {ik • [~(t')-~(t)]-iw (t'-t)} dt' av' k 

or 

-+ 
f k (V) = e w 

Then 

e 
-00 

-+ ar 

.-+ 1k • 

= 'V$ 1 • v'1 + 1: {- i(wk - k V - k V )} +k kYo Z Z w 

from which 

-+ (d~kw ] 'V$ 1 • V,1 :or 1: -- + i (wk - k V - k V )+1 ... 
k dt Y 0 Z Z NW 

(3.2.5c) 

(3.2.6) 

With the aid of Eqs.(3.2.4), (3.2.5 ) and (3.2.6), Eq.(3.2.1) reduces 

to 
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which yields 

t 

J . -+ -+ -+ ] x exp {ik . [r(t')-r(t)] - iwk(t'-t)} dt' 

-co 

(3.2.7) 

The electron equation of motion (3.2.2) has as solutions (47) 

x(t') = x(t) - (1 fOe) { sin [e(t) - 0 (t'-t)] e - sin e(t)} 

y(t' ) = y(t) + (1 fOe) {cos [e(t) - 0 (t'-t)] e - cos e(t)} + V (t'-t) 
0 

z(t') = z(t) + V (t'-t) z 

(3.2.8) 

with which 

+ (k V + k V ) (t'-t) 
y 0 Z Z 

where 

(3.2.9) 



x 
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Z 
Z 

v k 
Z '. 

Z - ... V 

(O,V ,0) 
0 .......... 

y ~----~------~y 

/ x 

Figure 3.2 

Hence, the integral in Eq.(3.2.7) may be rewritten as 

t 

exp {i f; sin[a(t) - 'l'l} J exp {- i f; sin [a(t) - n (t'-t) - 'l'l} e 

x exp tiCk V + k V - w ) (t' -t)} dt' 
y 0 Z Z k 

where 

f; - kl'i /ne • 

This integral is manipulated with the aid of the identity (60) 

+00 
exp (i a sin S) = L n-- J (a) exp (i n S) 

n 

where J is the Bessel function of the first kind of order n. 
n 

(3.2.10) 

(3.2. 11 ) 

Recalling that the plasma is undisturbed at t - - 00, we finally obtain 

f (±) e 1 oe {" "( )} 
[ 

af 

k v = - - ~ - -- - exp 1. ~ S1.n a-'l' 
e w me kw 'i a'i 

x 
{(wk-kV) a +kV (1 a -lL)}f 

Y o VI aVI Z Z -V "'V V, "'v, 
;.&.. ..L. a 1. a 1. oe ] 

-----.,..(w--":"'"k~V:-:---~k~V~-;,..· nn'='z--,-) ...:Z:---:::---::::-. J n (0 exp{ -i n (a-'l') } 
kyo Z z e n=-

(3.2.12) 
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For low frequency modes, of which the ion acoustic is an example, 

Iw - k V - k V I « to I, and therefore we keep only the n = 0 term kyo z z e 

in the summation above. Then 

sin (9-'l')} J (0 
o 

{( ) 1 · a (1 a 1 a )}f 
_W_k_-_k_y_V_O_Vi_l--,a_'i--.o:+:--;:k::-z_V,:","z--=:"v-,z:--a_v __ z_-_l __ a_'i_ oe] 

(w -k V -k V ) kyo z z 
(3.2.12a) x 

For the ions we assume not only that because of their inertia, they 

are unmagnetized, but also for the same reason they do not react to 

the electric field. Thus the equation of motion for the ions is 

with solutions 

~ -+ 
r = V = constant 

-+ -+ ± r(t') = r(t) + v (t'-t) 

Then for the ions, Eq.(3.2.7) modifies to 

f 1'kw(V) = me </>kw fl-V.
1 ~v.f oi + {i wk ~ ~V1. + i kzVz (-VI z ~Vz - -v.

1
1. ~V.'I )}f01' 

i 1.0~ '1. 0 
0 0..L. 

x 

It must be noted that here V.
2 = v 2 + v2 , while for the electrons we :J.. x y 



Upon integrating with respect to t' we find 

~f {Wk V.~I ~Vi + k V --(
1 a 

Z Z V av z z ~ rIa oi .L. a.l. 

fikw (V) - :i ~kw li a'i - ~~ 

(wk-k.V) 

where 

3.3 THE LINEAR DISPERSION RELATION 

42 

1 - -
'). 

(3.2.13) 

The linear dispersion relation for the crossfield current-

driven ion acoustic instability is now derived with the added assumption 

that the electrons are hot and the ions cold, i.e., T (electron 
e 

temperature) » T. (ion temperature). 
1 

Using Eq.(3.2.5b), Poisson's equation (3.1.7) reduces to 

4'11'e 
4>t,.,. • -2 (n' k - . n k ) 

NU k 1W ew 
(3.3.1) 

h th t b . . d . f h . th . were njkw represents e per ur at10n 1n ens1ty 0 t e J spec1es. 

njkw is found with the aid of Eqs.(3.2.12a) and (3.2.13) and the 

relation 

r f d~V njkw .. J jkw (3.3.1a) 
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For the electrons 

e 
n .. - - ~ 

ekw m kw e J r 
I af oe 
- -- - exp {i t sin (a-If)} J (0 L\ al 0 

I - -
1 

x (w -k V -k V ) 
kyo Z Z 

where dV - ~ d~ dVzda is expressed in terms of cylindrical coordinates 

in velocity space and t = ki~/ne' as defined by Eq.(3.2.IO). 

We expand exp {i t sin (a-If)} in terms of the identity (3.2.11) and 

then use the result 

21T if R, 0 

J exp (i R, a) da = {021T = 
o if R, * 0 

to obtain 

(3.3.2) 

For a background distribution f of the type (3.2.3), we define oe 

co 

If (V) = J f (v.z ,V ) VI dV. oe z oe. z •• 
o 

(3.3.3) 

and write 

• 



00 

We shall later show that for Maxwellian velocity distributions 

Equation (3.3.2) then becomes 

n -eklll 
_ 21fe ~ 

m klll e 

From Eq.(3.2.13) for the ions, we obtain 

niklll - J f ikw dV 

44 

(3.3.4) 

(3.3.5) 

(3.3.6) 

upon rotating our coordinate system in the V -V plane through an angle x y 

~, as shown in the accompaning figure. 

z 

\ 
\ 

\ 
\ 

y 

~--~--~------.x 
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\ 

Integrating with respect to the phase angle ~, we get 

211' ~ +ao 1c~ k 
n. • kw J [ -~ - z ~ ] ~ .(V ) dV 

1kw m. (k V)2 (wk-k V ) av 01 Z Z 
(3.3.7) 

1 W
k

- Z Z Z 
-co ZZ 

. where 

QI) 

In arriving at Eq.(3.3.7) we have approximated 

kl'f 2]-112 == 

(wk-k V ) 
Z Z 

kN 
1 +----_:=:" 

2(w
k
-k V )2 

Z Z 

(3.3.8) 

kIt 
by assuming ----~2 « 1. 

(wk-k V ) 
This is reasonable since the averase 

Z Z 

( I 1/2 (T Im.)1/ 2 ( /) ion IJpeed <V> ...... C.· T. m.)« - C - wk k , 
1 1 1 1 e 1 s 

We now substitute for nekw and nikw from Eqs.(3.3.6) and (3.3.7) 

respectively, into Eq.(3.3.1), and obtain the dispersion relation 
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The assumption \kzV
z

\ « wk for the ions allows us to reduce this equation 

to the approximate form 

£(w,k) .. 
2k V \ k ( k V ) a } + z z} _ 2.. I + -.!...!. _ 'l'. (V ) dV 

w
k 

wk wk avz 01 Z z 

~ a(k~/n }k} ] 

J {Q(k In } e z ~V 'l'oe(Vz} dV~ - 0 + ~ 1 U e - (w -k V -k V ) a 
kyo z z z 

(3.3.9) 

In Eq.(3.1.6} we have written wk - w~ + i Yk • Restricting ourselves 

to growth rates Yk such that \Yk \ « w~, we may expand 

and (3.3.10) 

The condition \Yk \ « w~ also allows us to expand the integral 

+00 

J 
k a'l' 

z ~dV 
(wk-k V -k V }aV z 

-co yo ZZ Z 



about wk - w~ (i.e. Yk - 0). Hence 

~J k (av /aV) z oe z 
--------dV 
(wr+iy -k V -k V) z 

~ . k kyo Z Z 
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~J k (aV /aV) [~ k (aV /av) 
• lim Z oe Z dV +iy _a__ lim J Z . oe Z dV] 

+ (wr-k V -k V +iE) Z kawr .+ (Wr_k V -k V +iE) Z 
e+{)' -oo k yo zz k e+O~ k yo zz 

~ k (aV /av) 
(1 + . a) [1' J Z oe Z dV] - ~y -- ~m 

k awr + (~r_k V -k V +iE) Z 
k e+O~kYOZZ 

(3.3.11) 

The integral term may be written as 

- lim 
(av /av) oe Z 

----~-------- dV 
{V -[{(wkr-k V )/k }+iE']} Z 

~ Z Y 0 Z 

where E' - dk . 
Z 

It is seen from the above expression that by expanding about 

w - w~ + iE we have moved the pole above the real Vz axis (E'>O). 

Since the integral has to be performed according to the '~andau 

prescription" (1, p. 376), this enables us to integrate along the real 

V axis. The limit E'~+ then yields the solution to the original 
z 

integral. 

Thus, defining 

we have (I, p. 382) 

+00 (av /aV) 

f oe z 

. {V - (\1 + iE' ) } 
-co Z Z 

dV 
Z 

(3.3.11a) 
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[i(a'¥ /aV) 
+(1) 

oe z dV + i J (a'¥ lav) '11' <5 (V - V') dV ] .. -
(V -V' ) z oe z z z z 

z Z -co 

fa, /av) C'¥ \ oe z dV . oe (3.3.]2) ., - - 1'11' --) z ·av (V -V ) ='1 z V z z z z 

The second term on the right hand side, due to <5(V -V), represents the z z 

resonant interaction between the electrons and the wave, i.e. electrons 

with speed along the magnetic field B close to the Doppler-shifted 
o 

wave speed V .. (wk
r -k V )/k. These particles are responsible for z y 0 Z 

either growth or damping of the wave. The first term is the principal 

part of the integral, and represents the non-resonant interaction between 

the bulk of the electrons and the wave - the particles merely oscillating 

in the presence of the wave. 

with the aid of the Eqs.(3.3.]O) - (3.3.]2) the dispersion relation 

(3.3.9) can be written as 

If .(Vz) dV 
01 Z 

+co 

+ B(k. In )J If (V )dV 
..L e oe z z 

a 0 (3.3.]3) 

Upon resolving into real and imaginary components, we obtain for the 

real part 



e: (w,k) = 
r 

_ k z (1 + k z V z) L } v . (V ) dV 
r r av 01 Z Z w
k 

w
k 

Z 

+00 

J ~ 
(av taV) ] 

V (V) dV + a(ki/n ) oe Z dV - 0 
oe Z z e (V -V ) Z 

-m Z Z 

49 

(3.3.14) 

The imaginary part can be manipulated to show that 

a(k. In ) tav (V) /av J ·v V • e L oe z z = z z 
- 1T 

--= ------------~------------------------------------------
2k2 +co 

(W~2) (I :~ (J {(-
1 

-00 

(3.3.15) 

In arriving at the above results we have neglected small terms and their 

products in comparison to other terms. 

In addition, for the growth rate (3.3.15) we have assumed 

Iv I = I (wkr-k V )/k I « Iv I 
Z y 0 Z Z 

(3.3.16) 

for the non-resonant electrons. This approximation will be discussed 

in the next section. 

We recall that the expressions (3.3.14) and (3.3.15) hold for any 

equilibrium distributions of the form f . = f . (V;,V ), with the 
OJ OJ.... Z 

functionals a and B given by (3.3.4) and (3.3.5) respectively. 



50 

3.4 APPLICATION TO MAXWELLIAN ELECTRON AND ION VELOCITY 

DISTRIBUTIONS 

The theory developed above, is now applied to the case of 

Maxwellian electron and ion velocity distributions. 

For the drifting electrons we choose 

f (V.2 
V ) oe 1.' z 

= n (2TIC2)-3/2 exp {-(V2+(V -V )2+v2)/2C2} 
o e x y 0 z e 

where 

= a exp {_(v,2+v2)/2C2} 
e :L z e 

a = n e 0 

and, we recall, for the electrons ~2 = v2+(V -V )2. 1 x y 0 

Then, from Eq.(3.3.3), 

00 

00 

Furthermore 

00 

fo 

2 2 
J o (k1YOe) f (1 ,v z) 1 d1 oe 

00 

= a exp (_V2/2C2) 
fo 

i (kJ. line) exp e z e 0 
(_v,2/2C2) 

:1. e 

(3.4.1) 

(3.4.2) 

~ d~ 
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Using the relation (60) 

ex> 

J exp (_px
2

) J! (qx) x dx = 2~ exp (- ~) In (~) 
o 

(3.4.3) 

where I is the modified Bessel function of the first kind of order n, 
n 

it turns out that 

ex> 

J J~ (k1 "¥Qe) 
2 

1 dl 
2 (_V2/2C2) r (b) f (l,Vz) = a C exp oe e e z e 0 

0 

(3.4.4) 

where 

r (b) -b I (b) = e 
0 0 

with (3.4.5) 

b = k2C2/n2 
J. e e 

Thus, from Eqs.(3.3.4), (3.4.2) and (3.4.4) we see that 

r (b) 
o (3.4.6) 

Similarly 

(3.4.7) 

Therefore, from Eqs ·. (3.3.5), (3.4.2) and (3.4.7), 

(3.4.8) 



52 

For the stationary ions the equilibrium distribution function is 

chosen to be 

2 
f . (VI, V ) = n 
o~ ~ Z 0 

where 

a. = n (2nC~)-3/2 
~ 0 ~ 

(3.4.9) 

and 

Then, using Eq.(3.3.8), we find 

1jI .(V ) = a. C: exp (_v2/2C~) 
O~ Z ~ ~ Z ~ 

and (see Appendix A) 

+00 +00 

J 1jI .(V ) dV = a. C~ J exp (_V2/2C~) dV 
oJ Z Z J J Z J Z 

-00 -00 

= a. C: (2nc:)1/2 (j = i,e) (3.4. t Oa) 
J J J 

= (n /2n) 
+00 0 

r V 1jI • (V ) dV = 0 (3.4. t Ob) J Z O~ Z Z 
-00 

+00 

J {t 
~k V eli' .) tk 

C7 (2nC7)t/2 + z z} ~ dV z 
r av Z = --a. r ~ ~ ~ 

-00 
wk z wk 

(3.4. IOc) 

n R.k 
0 Z = r 

2nwk 

where ~ = integer. 



Furthermore, the assumption (3.3.16) leads to the result 

t 
(iPI' lav) oe z 

(V -V ) 
z z 

dV 
z 

+00 a'l' 
= J 1.. ~ dV =-

V av z z z 

= 
n 

o 

21TC 2 
e 
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(3.4.10d) 

With the results (3.4.6) - (3.4.10) the real part of the dispersion 

relation «3.3.14» reduces to 

which may be written as 

+ n02 {r (b) - 1} - ro(b) ~] = 0 
21TC 0 21TC 2 

e e 

__ 11=0 

c2J 
e 

since k
2 = ~ + k;, and wpe = 

frequency. 

2 1/2 (41Tn e 1m ) is the electron plasma 
o e 

r Solving for wk ' we obtain 

(3.4.11) 

where AD = (T 141Tn e2)1/2 is the electron Debye length and C = (T Im.)1/2 
e 0 s e 1 

is the ion sound speed. The expression (3.4.11) is the usual form for 

w~ for the ion acoustic mode (I) 

Similarly, expression (3.3.15) for the growth rate reduces to 
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r (b) (21fC2)-3/2 2 2 . 12 2 
Yk - 1f n C [(-V /C ) exp {-(V / 2C ) }] 

0 0 e e z e z e 
-= 2 r k 2k wk :~ [(- 2~) n (- :~)] o + z z 

(wr)2 21f r r 
1. k wk wk 

- 1f r (b) V exp {-(V l/2c )2} 
o z z e 

= ----~------~-----------------

Substituting for V and r (b) from Eqs.(3.3.IIa) and (3.4.5) respectively, z 0 

this becomes 

1t -= (3.4.12) 

In arriving at the result (3.4.12) we have assumed that for the warm 

electrons IW~-kyVOI « 1 and hence set exp {-(V /lic )2} = 1. 
12k C z e 

For 

z e 

v ~ C this is equivalent to the approximation (3.3.16), and has been 
z e 

adopted by LASHMORE-DAVIES and MARTIN (11) and AREFEV (14) Since in 

This implies 

r 
wk kCs (m )1/2 k 

that kC ~ kC« 1, or ° < m e1.' .' « k z • 
z e z e 

(3.4.13) 

In experimental observations of the ion acoustic instabilit¥ BARRETT et at (37) 

and BAYZEN and BARRETT (41) find agreement with theory for parameters 

satisfying this condition. The former worked with a cesium plasma with 

(m /m.)1/2 = 0,002 and (k /k) = 0,03, the latter with an argon plasma 
e 1. z 

with (m /m.)1/2 = 0,004 and (k /k) = 0,03. 
e 1. z 



The growth rate (3.4.12) is identical to that obtained from the ion 

acoustic dispersion relation of LASHMORE - DAVIES and MARTIN (11). 
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For long wavelength fluctuations, i.e. b = ~r! « 1, it agrees with 

the result of AREFEV (14), provided one neglects, as we have done, the 

contribution of the small exponential term due to ion Landau damping in 

his investigations. 

The enhancement of the growth rate by the factor (k/k ) for wave pro­z 

pagation oblique to the magnetic field as compared to the field-free or 

field-aligned case, has been discussed by HAYZEN (61) and LEE (62). In 

the absence of a magnetic field the electrons, because of their small 

mass, move rapidly to neutralize any potential variations produced by 

the ions. 

However, for B * 0 the electrons are tied to the field lines 

and are free to accelerate only along B. 

\ 

\ 
\ 
\ 

\ 

p ~----~----~----------~-----

\ 
\ 

\ 
\ 

f 

\ 
\ 
~1 > 0 

~1 < 0 
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In the figure above, an electron at point P will travel a distance PQ 

in the field-free case to neutralize the potential perturbation. For 

! * 0 the motion of the electron across B is restricted. Instead an 

electron at R is free to accelerate along B and reach the point Q. 

The longer distance travelled by the neutralizing electron (RQ > PQ) 

allows the perturbations to grow to a larger amplitude. From the 

figure (RQ/PQ) = (k/k ). z 

In terms of velocity distribution functions, since the electron 

thermal motion is along B, its projection along the wave vector k, gives 

an effective distribution with the thermal speed diminished by the ratio 

k /k, as shown in the figure below . z 

f(V) 

f 
e 

projected 

+ 
along k 

------~--------~----------~------------------------------------~--v o C V 
s 0 

Consequently, even for small drift velocities V ~ C , the phase velocity 
o s 

of the wave (V~ ~ Cs ) can coincide with the location of maximum slope of 

the effective electron distribution function and thereby experience en-

hanced growth. Since the ions are unmagnetized, the slope of the ion 

distribution function is not affected, and ion Landau damping remains 

unaltered. 
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3.5 "THE 'ElrECT OF ImIOXOGENEITIES ON THE CROSSFIELD CURRENT-

DRIVEN ION ACOUSTIC INSTABILITY 

The formalism presented in arriving at the results (3.3.14) 

2 
and (3.3.15) is for a general equilibrium distribution f .(v. ,V). It 

OJ.J. Z 

has been shown to yield previously derived results for the special case 

of Maxwellian electron and ion velocity distributions. In the linear 

treatment of electrostatic plasma instabilities, where one may include 

inhomogeneities in plasma temperature, plasma density and magnetic field, 

it is a normal practice to choose a self-consistent equilibrium velocity 

distribution for both the electrons and the ions, and the dispersion 

relation is established in terms of the plasma dispersion function (63). 

Since almost every reference cited in Section 2.1 adopts this approach, 

it is appropriate that for purpose of completeness we review the technique. 

The work presented here under has been previously undertaken by the author 

of this thesis (64) and th.e findings have been reported (18) 

We consider a model with gradients in magnetic field S, electron 

density ne and electron temperature perpendicular to the magnetic field :Le' 

as shown in the figure below. 

PROPAGATING 

x 

Z 

-+ 
VB 
-+ 

~ V 
n 

V 
T 

~------------------~y 
-+ 
V~ 

o 

Ass,uming the inh.omogeneities to vary linearly, we may write 



B = B (1+ex)'Z 
o 

n = n (1+px) 
e 0 

= T (1+ox) eo 

-+ -+ V = C(E x B) 
o B2 

-+ 
(VB 

(Vn 

-+ 
(VT 

Er 
= -

21n I e 

pT 
eo = 

melne l 

oT eo = 
m \n I e e 
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y = - v y) B 
(a) 

y = - V y) 
n 

(b) 

(3.5.1) 

y - V y) = T 
. (c) 

(d) 

where the quantities in parantheses are the associated gradient drift 

velocities. V is the E x B drift of the magnetized electrons re-
o 

lative to the cold unmagnetized io~s which are assumed to be at rest. 

From the equations of motion for the electron: 

eE 
•• 0 
x = ---m 

e 
In I (l+ex)y e 

y = \n I (J+EX)X 
e 

z = 0 

we may construct, among others, the following constants of the motion 

(to order £l 

x -
(V -V ) 

y 0 

lne l 
Thus, the equilibrium distribution for the electrons is taken to be 

2 
f (V,1.' V ,X) = oe z 

n { o · 22 2 
2 3/2 {l + X[ p+{ OCl-2C ) /2C } ]}exp -

(21TC ) e e 
e 

(3 • .5.2) 

and has been shown to be self-consistent (64) 
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Then 

af af 2 af af oe oe oe oe 
-- = -2- Vvl + ax- V,," + w- VVV av a'1 z z 

f oe 

(V -V ) 
y 0 0 -+ - -1 
In I C

2 
f - _1_ {p+[o(v,

1
2_2C?!2C2]}y f 

oe In lee oe 
e e e 

(I) 
where use has been made of the local approximation This involves 

evaluating all equilibrium features which qccur in the dispersion 

relation (n ,T:l ,dn Idx, etc.) at the local position x = O. In e e e 

addition, the inhomogeneities have been assumed to be weak, so that 

products of gradients are neglected. 

The expression for af lay is then used in Eq.(3.2.5c) to oe 

find the perturbed electron distribution fekw(Y), which in turn, via 

Eq.(3.3.la), yields the perturbed electron density n
ekw

• Using the 

identity (3.2.11), it turns out that 

n e~k o w 
T eo 

x 

2 2 
{w-k [V -V +VT(l-V, Ic )]}1 yon ~ e 

(3.5.3) 

We may express the integration with respect to V in terms of the 
z 

plasma dispersion function (Z-function), defined as (63) 

Z(A) 

+00 

= ~-1/2 J exp(- x
2

) 
(X-A) dx 

-00 

(3.5.4a) 

for ~(A) > 0 and as the analytic continuation of this for Lm(A) < O. 



An alternative definition is 

Then 

iA 

Z(A) = 2i exp(-A
2

) J 

00 

2 exp(-t ) dt 

( 1 + __ 1--:::- ; J {w-k [V -V +V
T

(1-V.z /c2)]} 
~ 3 yon. e 

"f2k C .\=-00 0 
Z e 

2 

(

W-k (V + e:l/20 )-10 ] 
~ Z Y 0 e e 

12k C 
z e 

J
2(k.J..l \ 
1,-0-) exp 

e 
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(3.5.4b) 

(3.5.5) 

The ions, once again, are assumed to traverse straight line orbits 

with constant velocity, i.e., due to their inertia, they react to 

neither the magnetic nor the electric field. Then the ion equation 

of motion 

:;. 7 
r = U 

with the solution 

~ ~ ~ 

ret') - ret) = V (~'-~) 

and an equilibrium velocity distribution 

2 
f .(v. ,V ) 
01. Z = -(-2'1r-:-;~:-)-=-3'"T7"::'"2 exp {-

1 

where ~ = v;+v~, are used to arrive, in a manner paralleling that 

for the electrons, at the result 

n e~k o W 
n ikw = 2T. 

1 

z' (w/likC.) 
1 

(3.5.6) 
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for the perturbed ion density. Here Z'().), the first derivation of 

. ... b (63, 16) the plasma dispers10n funct10n, 1S g1ven y 

Z'()') = - 2[1+). Z()')] (3.5.7) 

Upon substituting for nekw and nikw from Eqs.(3.5.5) and (3.5.6) 

respectively, into Poisson's equation (3.3.1), viz., 

we may write the dispersion relation in the familiar form 

where 

+ K + K. ::: 0 
e 1 

[
W-k (V +£~/2n )-tn ] 

x Z y 0 e e 

12k C 
z e 

and 

~T 
Ki ::: - k2 2;: z, (w/l2kC i ) 

(3.5.8a) 

(3.S.8b) 

(3.5.8c) 

For the low frequency ion acoustic wave ( Iw-k {V + £v,12/2n }I « In I ) 
y 0 e e 

we use the result Z (x)z -Z (x) to retain only the t • 0 term in the -n n 

summation in the expression for K • For a plasma with warm electrons and 
e 

co 1d ions, i. e. , T »T.(~O), we assume 
e 1 
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w-k (V + E~/2ne) 
Iz I c y 0 « 

oe 12k C 
z e 

d h 
. . (63) 

an use t e power ser1es expans10n 

Z(X) • i ~! e-x2 - 2 X[1 - 2X 2/3 + 4X 4/15 - •••• ] for Ixi « 1. ' 

(3.5.9a) 

The assumption of cold ions implies IZil = Iw/12kCil »1. In this limit 

(63) 
one may employ the asympototic expansion 

Z(X) ! -x 2 -1 2 4 = i ~ 6 e - X [1 + 1 /2X + 3/ 4X + •••• ] (3.5.9b) 

where 

Im(X) > 0 

6 = Im(X) = 0 

Im(X) < 0 

For a weak magnetic field gradient, VB is small. The assumption 

Iz 1« 1 thus implies that the Doppler-shifted wave speed along the 
oe 

magnetic field is very much smaller than the electron thermal speed. 

For the ions, Iz.1 » 1 means that the wave phase speed is much larger 
1 

than the ion thermal speed. 

With the aid of the above approximations and the results (60) 
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where b E k1.2C2/02 = k1.2r2 and I (b) i s the modified Bessel function of 
e e e n 

order n, the dispersion relation (3.5.8a) may be solved for the growth 

rate to yield 

Y
k 

~1/2s[{k (V -V +vT)-wkrlr -2k VTQ ] 
__ = ________ ~y--~o--n~~--~~o~~y~~o--

2{a-2kC -as2k <V >Q 1 
s y B 0 

(3.5.10) 

with 

r 
wk = kCsa 

being the real part of the frequency, and where 

r (b) = e-bI (b) 
n n 

s = (k/k ) (m /2m.)! 
z e 1 

and <VB> = (tC2/lo I) is the average VB drift. In the analysis we 
e e 

have chosen s ~ I. In the absence of inhomogeneities the growth rate 

(3.5.10) reduces to the expression (3.4.12). 

The significant feature of this result is that while it 

confirms earlier calculations (15) that showed that VT has a destabilizing 

effect for large k1re , for longer wavelengths (~re ~ I) the temperature 

gradient is found to reduce the growth rate (see Fig. 3.3). One may 

offer the following possible explanation for the observed behaviour. 

For large ~re (» I) the distortion in the electron dis­

tribution function produced by the introduction of a temperature gradient, 

as explained by PRIEST and SANDERSON (15), increases the slope of the 

distribution function at the velocity corresponding to the wave phase 

velocity. This distortion arises from the fact that for a temperature 

gradient increasing with x, electrons situated at larger x values in 

physical space have larger gyroradii (for a fixed B), since 
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Figure 3.3 

0,4---------------, 

~ k 

0,2 

° [5 

Normalized growth rate of the crossfield current-driven ion acoustic 
-1 -2 -+ 

instability as a function of b =(k~r) • Curve 1 represents Valone, 
~ -+. 0-+-+ 

curve 2 also includes the effects of VB and Vn ' wh~le curve 3 nas Vo'VB, 
-+ -+ 
Vn and VT. Other parameters are ky/k = 0,9995, s = 0,045 (cesium plasma). 
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c2 = T (x)/m e e e 

This results in a non-symmetric spread in V , with the spread in V 
y Y 

for V < 0 being larger than that for V >0, as can be seen from Fig. 
y Y 

3.4(a) below. In the absence of VT the spread is symmetric. The 

consequent enhancement in growth rate is sufficient to overcome the 

reduction in growth rate resulting from a decrease in total particle 

drift speed Vn = Vo - Vn - VT• A net positive change in growth results. 

Now, for kJ. ~ k 

so that k.L re S 

= constant ( fixed wavelength) ~re may be reduced 

by decreasing r • If we retain the same temperature 
e 

gradient, it is seen from the above equation that at a given x, r e 

is reduced by increasing n , i.e., increasing the magnetic field 
e 

strength. This illustrated in Fig. 3.4(b) below. 

z 

y 

x 
o 

z 

(a) ~re»I; Weak B field 

Figure 3.4 

y 

I 
I 
I 

@ 

~------------~~~--------~x x o 

(b) ~reSl; Strong B field 
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Thus, although the spread in V for V < 0, is larger than that for y y 

V > 0, the net spread in V is smaller for a strong B field as compared y y 

to a weak B field. The resulting distortion in the electron distribution 

function is smaller, which implies a weaker enhancement of wave growth. 

It is then possible for the reduction in growth due to a decrease in 

the net drift velocity to dominate over the weak enhancement and produce 

a smaller resultant growth rate, i.e., VT now has a stabilizing effect. 

It is seen from Fig. 3.3 that in contrast to the temperature 

gradient, the introduction of a density gradient, which reduces the 

-1 
net drift V

D
, has a stabilizing influence for all b • 
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CHAPTER FOUR 

THE QUASILINEAR THEORY OF THE CROSSFIELD CURRENT-DRIVEN 

ION ACOUSTIC INSTABILITY 

4.1 ESTABLISHMENT OF THE QUASILINEARDIFFUSION EQUATIONS 

In the quasilinear limit of weak turbulence theory, the right 

hand side of Eq.(3.1.2), and therefore of Eq.(3.1.8), is retained, i.e., 

-+-we treat f .(V,t) as a slowly varying function of time. 
OJ 

Wi th f . (V, t) 
OJ 

still assumed to be isotropic in its velocity dependence perpendicular 

-+-
to B , we may write 

o 

f . (V, t) 
OJ = < f. (V, t) > 

J 
(4.1.1) 

Expressing Eq.(3.1.8) in terms of cylindrical coordinates (~'Vz,e) 

in velocity space, we have (see Appendix B) 

--2J.. + -:t --2J.. _ ....J.. E e ~ S1n --2J.. n ~ = _ ....J.. ~ E • 
af . af. e. ( af. . e af . ) af . e. -+- af jk 
at v. at mj 0 cos a~ - T ae - ~~j ae mj; -k av 

(4.1.2) 
e.B 

where n. = ~ is the gyrofrequency. 
J m.C 

J 

In general,for a background distribution of the type (4.1.1), we average 

over the phase angle e to obtain (47,65) 

~=- --lr afo ' 1 f2TT ( e. 

at 2n 0 mj k 
af. k ) 

(- i ~k k)*. ~ de 
av 

(4.1.3) 
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Here we have set E_k = Ek = (-ik ~k)*' since El = - V~1 • 

The right hand side of Eq. (3.1.3), which can be shown to re­

present the coupling between the different plasma modes by writing El 
d f . t f h' ' . 1 F' f (45). . an Ij 1n erms 0 t e1r spat1a our1er trans orms , 1S aga1n 

neglected. Therefore, we may use for the perturbations fjkw the 

solutions found in Chapter Three. 

However, the transition from linear to quasilinear is not 

straight forward. We recall that the fjk were solutions of the basic 

equation (3 •. 1.11), which for a time dependent f . may be written as 
OJ 

e. Jt 
f (~ ~ t) = -l "~(~r', t') . 

1· r, v, Y'+'1 . J . m. 
J_ 00 

~ 

af . (V' , t') 
~ 

av' 
dt' 

In terms of the Fourier transforms (3.I.4)this becomes 

e. Jt 
fJ.k(V, t) = -l ~ (t') m. k 

J _ 00 

af . (V' t') 
-+ 01' ( -+ i k • ~ exp ' i k 

av' 
-+ -+ ) [r(t')-r(t)] dt' 

(4.1.4) 

As mentioned in Section 2.4, a prerequisite for the validity of 

the quasilinear theory is that a sufficiently broad spectrum of waves 

must be present. If ~(Wk - rk . V) is the characteristic spread in 

(~ - k . V) over the range of k values in the spectrum, then 

-+ ~ -1 
LC = I~(~ - k • v) I 

may be considered as the correlation time of the fluctuating fields for 

the resonant particles. 

In equation (4.1.4) we may approximate 
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f oj 
t, V , t' ) = f oj (V', t - T) 

af t, t) • V , 
f t, t) _T --2J.. = oj V , at 

~ f t, t) oj V , 

provided Tf .' the characteristic tbne of relaxation of f ., is such that 
~ ~ 

with t - t' ~ T • 
C 

For a tbne dependence of the WKB type (3.1.5), we set 

<l>k (t) = <l>kw exp {- i r ~ (til) dt"} 
o 

-+ 
f jk (V, t) = f.k (V,t) exp {- i It W

k 
(til) dt"} 

J W 0 

t' 
Then <l>k (t') = <l>kW exp {- i I Wk (til) dt"} 

0 

= <l>kw exp {- i [It - It ] Wk (til) dt"} 
o t' 

= <l>kw exp {- i r W (til) dt"}expU r 
o k t' 

= <l>k (t) exp {- i wk(t) (t' - t)} 

where we have also approximated 

Wk (til) = W (t 
k - T) 

= wk(t) - T 

3wk(t) 

at 

~ wk(t) 

(4.1.5) 

(4.1.5a) 

Wk (til) dt"} 



for 'r «'r f . 
c OJ 

We note that this condition is satisfied if the 

frequency spectrum is broad, as is required. 

In going over from the linear to the quasilinear behaviour 

we have allowed f . to change very slowly in time. Equation '1 (4.1.4) 
OJ 

may now be written in the familiar form (cf.Eq. (3.2.5c» 
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(~ ) - ~ Jt~ ( ) 'k af .(V,t) exp{it.[t(t') - 7(t)]-iwk(t) (t'-t)} dt' fjk V,t - m. ~k t ~.~ 
J _ 00 av 

or, from Eq. (4.1.5a) 
~ 

e'Jt 
f., .... (V, t)-1. <Ilk i k 

af . (V, t) ---..£J. . -+ -+ -+ 
av exp{i k • [r(t')-r(t)]-i wk(t)(t'-t)}dt' J1\.W m. W 

J_ co 

We note that here f. , ... = f' k (V,t), where as in the linear treatment we 
Jl\.W J W 

had fjkw = fjkw(V). The time dependence has been introduced in Eq.(4.1.5a) 

~ 

to allow for the slow time variation of f .(V,t). This is clear from the above 
OJ 

equation. 

Hence,for the ion acoustic instability the perturbations f k 
e W 

and fikw are given by Eqs. (3.2.12a) and {3.2.13) respectively, with 
~ 

foj = foj(V,t) and wk = wk(t). 

Diffusion Equations 

For a given fjk we can manipulate the right hand side of Eq. (4.1.3) 

and write this equation in the form 

afo ' a af . 
--.£J.. = - D ~ a • .• 

t av J av 
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Thus f . obeys a diffusion equation in velocity space. The diffusion 
OJ 

tensor D. is proportional to the wave energy density. We shall see 
J 

that D. can be written as the sum of two terms. The first is due to 
J 

the resonant particles, i.e., those with speed V close to the wave 

r 
phase speed v~ = (ook/k). It is the interaction between these particles 

and the wave that is responsible for wave growth or damping. During 

wave growth (damping) energy is extracted from (gained by) the resonant 

particles. Therefore the velocity distribution of these particles 

must change as they lose or gain energy - hence the diffusion in 

velocity space. The second term is due to the non-resonant particles 

which do not interact directly with the wave but merely oscillate in 

the presence of the wave, thereby acquiring mechanical energy. The 

'diffusion' of non-resonant particles occurs because they gain (lose) 

energy as the wave grows (damps). 

Electron Diffusion Equation 

For the electrons we substitute for f ek , which is given by 

Eqs.(4.1.5a).and (3.2.12a), into Eq.(4.1 .3). Then 

af . 2 ~ ~ af ~ =- ,~ LI~ (t) I ~ • a _1 ~_ 
at rri2 k k av ~ 01 exp{i ~sin(e-~}J (~) 

o 
e 

where <- --> 

)( 

{(oo -k V )1- _0 _ + k V (_1 _a_ 
kyo 'i 0'i z z v z av z 

(00 - k V - k V ) kyo Z z 

1 a 
- - --)}f 
~ a~ oej) 

denotes the average over the phase angle. 

To simplify the algebra we rotate our coordinate system in the 

x - y plane through an angle ~ as shown in Fig. 4.1 below. 
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We then have 

~ 

k = 1). e.L + Oe'l' + k z e z 

(1 ) ~ = 1 cos <p 

z 
Figure 4.1 

with 

a ... ( '" _a __ sin <p L) + ... ( • '" _a _ + cos <p L) 
av = e.L cos 'f' aYL YL alP ~ Sl.n 'f' a~ !. alP 

Hence 

k . a --'- _ k, (cos <p _a _ - sin t ~"') + k ~ 
av· a'l. 1 O'f' z oV z 

and 

af 
oe --= at 

... a 
+ z­az 

(4.1.6) 

where <- - --> now represents the averaging over <P. This may be rewritten 

as 

(4.1.7) 
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where 
{ {w - k V )_1 _0 _ + k V (_I _0 ___ I .L.) }£ 

1 ofoe it~ kyo ~ 01 z z V~ oVz 1. 0l oe 
g{~) = - - - L J {~)e J (~)------------------l 01 t ~ 0 

(w - k V - k V ) kyo Z Z 

(4.1.~) 

In writing g{~) in the above form we have expressed exp{i ~ sin ~} 

in terms of the identity (3.2.11). 

Now 

/ _ sin ~ og{~) ) = __ I J2~ (- sin ~) og{~) d~ 
\ ~ o~ ~1T 0 1. o~ 

= _1 J21T ~ cos ¢I d¢l 
2~ 0 'i 

Equation (4.1.7) then reduces to 

af 
oe --= at 

Upon substituting for g{¢I) from Eq. (4.1.8) it turns out that 

(w - k V - k V ) kyo Z Z 

= 0 

where we have used the result 

~ 00 J (~) J21T cos ~ exp (i R, ¢I) d¢l = 1T{ J
1 
(O + :!) (~) } 

t= - 00 R, 0 

= 0 

since 
(60) 

J (x) = (_l)n J (x) 
-n n 

(n = 1, 2, 3, •••• } 

(4.1.9) 

(4.1 .9a) 

2 
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1 of oe 
J 2(~) {(Ill _ k V )_1 _0 _ + k V (1- _0 ___ 1 L)}f 

o kyo '1 0l z z V z oV z 'i 0':l oe 
<g(c/l» = 1. 01. -

(Ill - k V - k V ) kyo z z 

2 1 
of J 2(~) k (af lav) 

= {I - J (~)} _ ~ _ 0 Z oe Z 

o 1 a1 
(Ill - k V - k V ) kyo Z Z 

With these results Eq. (4.1.9) reduces to 

2 
af [ . 2 J (0 k (af /,OV)] 
~ = Re (~)rlc/l 12 k _a _ { 0 Z oe z} 
at m2 k k Z avz (Ill - k V - k V ) 

e kyo z z 

(4.1.10) 

We have taken the real part on the right hand side since the left hand 

side represents a real time rate of change. 

We note that 

[ 
ie2 1 2 a 2 1 af ] 

Re (- -r-)r c/lkl kz av- {(I - J (~»~ a~oe} = 0 
m k z 0 ~ 1-

e 
(4.1 • lOa) 

r 
Recalling that IIlk = IIlk + iYk' we find 

Re [i(lIlr
k 

+ 1 Y - k V - k V ) -I] = ____ Y~k ___ _ 
kyo z z (k V _r)2 2 

z z - IIlk + Yk 

(4.1.11) 

where 

_r r k V 
III = III -k kyo 

Equation (4.1.10)is then rewritten as 

af ~ af oe a oe 
a-;- = av- De av 

z z (4.1.12) 
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We observe that this implies electron diffusion in the V 
z 

-+ 
direction, i.e. along B. This is not surprising since the magnetized 

o 

electrons are tied to the field lines and are free to accelerate only 

-+ 
along B. For the case of a field-free plasma one would expect the 

o 

electrons to diffuse in the direction of wave propagation, since motion 

along the wave vector provides the most energy exchange. Equation 

(4.1.12) thus implies electron heating along the magnetic field. 

Ion Diffusion Equation 

Since we assume that the ions do not react to the external 

fields E and B (see discussion preceeding Eq.(3.2.13», for them 
o 0 

Eq.(4.1.2) reduces to 

af . 
01 

at= 

e -+ * = - -- L (-i ~k k) 
mi k 

Upon substituting for fik which is given by Eqs.(4.1 .Sa) and (3.2.13), 

we find that 

af . 
01 

at= 

{ 1 L +k V (1. L _! a )}f 
• 2 2 ~1 af. wkv, a\i z z V av \L au' oi j (- T)LI~ I k. a __ ~ ___ 1 _____ ..;::z_-=z:.....-_:L_:L __ 

m
i 

k k av ~ aYL (w
k 

- k . V) 

(4.1.13) 
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From Fig. 4.1 and the discussion preceeding Eq.(4.1.6), we see that for 

a background distribution f . of the type (4.1.1), viz.,f .(V,1
2,v ,t), 

01 01 Z 

-+ at. 
01 1 af. k, sin ~ af . af . 

k --= 01 ~ ~ + k 01 
kl ~ cos 4> 1 al - 1 a~ z av z -+ 

av 

-+ -+ 1 afoi afoi = (k1 .V,1.) u -- + k 
1. a~ z av z 

Hence Eq.(4.1.13) can be written as (taking the real part) 

which, 

with 

-+ -+ 
af . [. 2 2 "{k • (af .laV)}] 01 1e I I -+ 0 01 
~ = Re 2' L ~k k. -::;: -+-+ 

m
i 

k av (Wk - k • V) 

in turn, may be 

af oi a --=- D. at -+ av 

2 
e 

Di = 2' L 
m. k 

1 

1 

rewritten as 

af oi 

av 

(4.1.13a) 

(4.1.14) 

The ion diffusion equation (4.1.14) has the same form as 

that used by McBRIDE et aZ (28) for the modified two-stream in-

stability. Furthermore, in the small gyroradius approximation 

; = kl~ne « I, with J~ (;) ~ I. In this limit Eq.(4.1.12) differs 

from that of McBRIDE et aZ (28) for the electrons only by the Doppler-

shifted term k V . For a spatially homogeneous plasma the electron y 0 

diffusion equation of SAGDEEV and GALEEV(47, p. 82) reduces to 

Eq. (4.1.12) above. 
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As for the ions, the (a/aV) dependence in Bq.(4.1.14) in-

dicates a general three-dimensi.onal diffus.ion. We as.sume, however, 

that k «k. 
z 

HIROSE et at 

This is reasonable since experimental measurements by 

(36) BARRETT et at (37) and HAYZEN and BARRETT (41) , 

display maximum growth rates when k «k. The approximation 
z 

(w~ - k V ) 
Ike y 0 I « 1 in Section 3.4 places a lower limit on (k/k). 

z e 

Hence the discussion to follow is valid for (k /k) values satisfying z 

(cf. Eq.(3.4.13» 

k 
« .2.. « 

k 
(4.1.15) 

Since wave propagation is now restricted primarily perpendicular to 

z .. + + . +k +k' (4 14) Ho' we may, as an approx1mat10n, replace k k w1th i i 1n Eq •• 1. • 

Thus, from this equation we conclude that ion diffusion (and therefore 

ion heating) is predomina~tly perpendicular to B. This is a plausible 
o 

implication since the ions, with their straight line trajectories, will 

tend to favour the direction that produces the most heating. With wave 

propagation restricted to a small cone about the perpendicular, ion 

+ 
heating will be primarily normal to B • 

o 

4.2 

(a) 

growth, 

SOLUTIONS OF THE ELECTRON DIFFUSION EQUATIONS 

Resonant electron diffusion 

For the resonant electrons, which are responsible for wave 
r w - k V 
k k VY 0 ~ 1 (see discussion following Eq.(3.3.12» and 

z z 

Eq.(4.J.J2) reduces to 
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(4.2.1) 

where, from Eq.(4.1.11), ~ = w~ - kyVo' and we have, for small Yk , 

made use of the identity 

= 'If o(k V - !i!kr) z z (4.2.2) 

This identity implies that Eq.(4.2.1) is valid only for unstable 

modes, i.e., Y
k 

> O. DAVIDSON (46, p. 164), however, has discussed the 

extension to the stable regime. It is found that Eq.(4.2.1) is also 

applicable in this regime, i.e., for Yk < O. 

For k «k we approximate 
z ICPk l2 ~ ICPk 12 and replace L by Jdkz • 

:1. k 

Then 

af '" oe a 
~~ av 

z 

We set L ~ ~ L , and using definition (3.3.3), viz., 
kJ. 2'1f k 

'Y (V ,t) 
oe z 

integrate with respect 

a'Y (V ,t) 
oe z 

at 

to 1. dl to obtain 

2 

e
2
1 CPk 12 /jj~ 
2 -3- 'If 

m V e z 

z 

(4.2.3) 

} 

(4.2.3a) 
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In arriving at the above resul t definition (3.3.4) for 

a(kJL/Qe) has been used. We recall that l~kl2 = l~kI2(t) and m~-w~(t) - kyVo ' 

By replacing time with the new parameter 
\ 

't" = J
t 2 

25 {1... r !.- 1 ~ 12 ( t ' ) 
21T k 2 k o m 

(Wkr(t') - k V )2 1T a(~/Q ) dt'} yo . e 
e 

equation (4.2.3a) may be written in the form 

R a'¥ (V ,T) oe z 
aT 

R 
1 a {I a 'i' 0 e (V z ' T )} 

= 25 av -V 3 W-
z z 

(4.2.4) 

z 

where the superscript "R" indicates resonant particles. We note that 

T has the dimensions of (ve10city)5. 

The "Green's function" solution of Eq.(4.2.4) is (see Appendix C) 

'i'R (V' ,T=0)I4/5(2V5/2v,5/2/T)exp{-(v 5+v ,5)/T}dV' 
oe z - z z z z z 

(4.2.5) 

where 'i'R (V ,T = 0) is the initial electron distribution in the oe z 

resonant region of velocity space and !4/5 is the modified Bessel 

function of order -4/5. For a given 'i'R (V ,T = 0), Eq.(4.2.5) oe z 
R may be used to determine 'i' (V ,T) at any later time t. oe z 

On the other hand, we may in the time asymptotic limit 

obta1'n th "1' l' (66) f E (4 2 4) , l' e S1m1 af1ty so ut10n 0 q, .• • It 1S a so ut10n 

that gives the asymptotic distribution of velocity (t,T ~ ~) for an 

arbitrary initial form of the distribution function. We proceed by 

writing 

(4.2.6) 



where 
\I 

z; = V '(' z 

Equation (4.2.4) then becomes 
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'('5\1+1 </>" (z;) 3 p' (z;) 
p </>(Z;) + \I Z; </>' (Z;) = ~25=--- {-3- - 4} (4.2.7) 

where 

</>'(z;) = -:-d </>.:..,.;(;...:.Z;,;...) 
dZ; 

Z; Z; 

</>"(Z;) 

Since the left hand side has an explicit dependence on Z; only, it 

follows that 5\1+1 = 0, i.e.,\1 = -1/5. Therefore 

-1/5 Z; = V '(' 
z 

... 5 5-1 Z; = V '(' • 
Z 

Thus from Eq.(4.2.7) we have 

p </>(Z;) = 215 </>"(Z;) - </>'(Z;) {_3_ - I} 
z;3 25Z;4 5 

Initially, we set p = 0 and obtain 

J 
3 5 

</>(~) = A' Z; exp (-Z; )dZ; 

Since the integral on the right hand side cannot be manipulated by 

standard methods, we try a solution of the form 

5 </>(Z;) = A exp (-Z; ) 

Equation (4.2.7) then yields p = -1/5, and hence from Eq.(4.2.6) 

R -1/5 5 
~ (V ,T) = A '(' exp (-V /T) oe z z (4.2.8) 
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For the ideal choice of initial distribution (so that the integral 

may be exactly evaluated) 

~R (V' T = 0) = A C-1 exp (-V'/C )5 (A > 0) (4.2.9) 
oe z' e z e 

the solution (4.2.5) reduces to (see Appendix C) 

'i'R (V, T) 
oe z (4.2.10) 

which for T »C (asymptotic case) reduces to the sUnilarity solution 
e 

(4.2.8). For any other initial distribution, numerical integration of 

Eq.(4.2.5) yields the evolution of the resonant electron distribution 

function in time. This is illustrated in Fig. 4.2 for an initial 

(T = 0) Maxwellian distribution function. The curves for T - 0,5 

and T = 1,0 are seen to behave in a manner similar to the curve 

5 f(V)«exp(-aV ), where a~0,2. We notice that the solutions (4.2.8) 

and (4.2.10) are physically acceptable for V > 0, but not for 
z - ' 

V ~ -=, since they diverge in this limit. This behaviour will be z 

discussed later. The solution (4.2.8) has the same functional form 

as that of the unmagnetized ion acoustic instability (47, p. 52) 

(b) Non-resonant electron diffusion 

By virtue of 

non-resonant electrons 

Eq.(4.1.12) reduces to 

the assumptionl(~kr - K V )/k V I « 1 for 
y 0 z z 

in the linear study (cf. Eq.(3.3.16» ,for 

the 

them 
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Figure 4.2 

1,O-~------------------r 

o 

" "-

" " " " "-
"-

" " " " " " " " 

1,5 
Temporal evolution of the resonant electron velocity distribution 

function ~R (V ,T). The initial distribution (T= 0) is chosen to oe z 
5 be Maxwellian. The curve (_._._ . _) represents exp(-aV ),(a=0,2), 
z 

while for comparison, the broken line (- - -) is a Maxwellian 

with the same peak value. The parameter labelling the curves is T. 
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af 2 Y IlPk l2 
J

0

2 (k.L~/ne) af 
~ _ L u: e _k ___ --:~----~} 
at - av k -r v2 av 

z me z z 
(4.2.11) 

As in the case of the resonant electrons, we use the definitions (4.2.3) 

and (3.3.4) for ~ (V ,t) and a(ki/n ) respectively, to rewrite this as oe z e 

(4.2.12) 

where the superscript "NR" indicates non-resonant particles, and we 

have, in addition~ made use of the equation for wave growth 
, 

Equation (4.2.13)may be derived as follows. 

From Eq. (4.1. Sa) 

lPk(t) = lPkw exp {-i Jt[W~(t") + 1 yk(t")] dt"} 
o 

since wk = w~ + i Yk (Eq.(3.1.6». Thus 

with 

(4.2.13) 



84 

In terms of the parameter 

which has dimensions of (velocity)4, Eq.(4.2.12) takes the form 

{ 
a~NR(V ,t)} 

1 aloe z 
= 16 av v2 av-z z 

(4.2.14) 

z 

with a similarity solution 

q,NR (V T) = 
oe z' (4.2.15) 

We have used exactly the same procedure as that used to arrive at the 

result (4.2.8). Paralleling the sequence from Eq. (4.2.6) to Eq. (4.2.8), 

we write 

(I; = V TV) 
Z 

Equation (4.2.14) then reduces to 

4v+l 
r "'''(r) 2 ""(r) 

pHI;) + V I; 4>' (I;) = ." 16 {'I' ." - 'I' "'} 
1;2 1;3 

Since the left hand side has an explicit depence on I; only, it follows 

that 4v+l = 0, i.e.,v = -1/4. 

Upon setting p = 0 we arrive at the solution 



in which the integral cannot be evaluated via standard methods. A 

trial solution of the form $(~) = B exp {- ~4} yields p = -1/4. Hence 

the result (4.2.15). 

4.3 SOLUTIONS OF THE ION DIFFUSION EQUATIONS 

(a) Non-resonant ions 

We recall Eq.(4.1.14) for the ions, viz., 

with 

af. .... 
01 a 
~=~ 

av 
-D. 

1 

af . 
01 

av 

Since the average ion speed <V>. is such that 
1 

(4.3.1) 

for T »T., the interaction between the ions and the ion acoustic e 1 

waves is predominantly non-resonant. In the above limit and for 

IYk l « w~ we may approximate 

85 

(4.3.1a) 
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for the bulk of the (non-resonant) ions. 

Rotating the coordinate system through an angle '1', as shown in Fig. 4.1, 

we have 

-+-+ 
(k.L e.L + kz Z ) (k1 eJ. + k Z ) k k = z 

k
2 

eJ. e.l + kz kJ. Z e.l 
A 

+ k2 A A 

= + kJ. k
Z 

el z z z 
:L z 

and 

a A a sin ~ a 
A (. ~ a + cos ~ 2-) A a 

-= e.L (cos ~ aVo ~) + ell' S1n aVo + z_ 

av ~ YL l. ~ a~ av 

Equation (4.3.1) then becomes 

af . af. df . 

• {~ cos ~ aV;1 + ell' sin~ aYl
01 

+ Z av :1} 

2 af . 
since for foi = foi ('1, Vz,t), a~01 = o. 

This equation s~plifies to 

af . 2 Yk l~kl2 2 
--...£!. = ~ I: {k 2 

cos ~ 
2 

+ k.L 

2 
. 2.!. af. 2 a f . 

S1n ~ --...£!. + k 01 
at m~ k (w~)2 ::L 1. Cl'i z av2 

z 

U . h l.!. ( . h 2.!. . 2 pon averag1ng over t e ang e ~ W1t < cos ~> = <S1n ~> = 1/2, 

<cos~> = 0), it turns out that 

z 



af. 2 
~=~r 
at 2 k m. 

1 

where 

2 
{!.a.. 

2 

af . 
--.£!:..) 
aYL 

2 k 2 

= ~ r Z 
2 

m. k 
1 
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(4.3.2) 

Since we have already assumed k « k. it follows that D. »D. ,i.e., 
Z '" ~ 11 

+ + 
ion diffusion across B is significantly stronger than along B • There-

o 0 

fore, the term corresponding to ion diffusion along B is neglected. To 
o 

obtain the non-resonant ion diffusion equation we integrate Eq.(4.3.2) 

with respect to V , and get 
Z 

a~~ (~ ,t) 
01 1 a 

a~~ (~ ,t) 
01 = -at 'i 0'i [D. 

1J. ~ 0']. ] 
where 

~~ 2 
= Jf~ 2 dV (~ ,t) (\l. ,V z' t) 

01 01 Z 

Substituting for D. from above, we have 
:L 

NR 2 NR 

[1 O~. ° ~ .] _~+ 01 

l°'l, 2 0'i 

where use has also been made of the equation for wave growth (4.2.13). 

This equation may in turn be expressed in terms of the new parameter 

T, defined as 



'[ = 

and having the dimensions of temperature, as 

For an initial Maxwellian distribution 

~~ (~2,'[ = 0) = 
01. "" 

n m. 
o 1. 

2'IT T. 
1.0 

exp 

2 
mi "i 

(- 2 T. ) 
1.0 

this equation has the solution (see Appendix D) 

= 
n m. [ o 1. 

-2-'IT ....;(;....T-.~+~'[ ..... ) exp -
1.0 
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(4.3.3) 

(4.3.4) 

(4.3.5) 

i.e.,the Maxwellian character is retained, with an effective temperature 

increase of T. 

Using the definition of the wave energy density, to be given later 

(Eq.(4.4.7a)), we find '[ = (EWk/n T. ) T. ,where W = LWk is the 
k 0 1.0 1.0 k 

total energy density associated with the fluctuations. Since quasi-

linear theory requires WIn T. «1, it follows that '[ « T .• 
o 1.0 1.0 

Such a small modification to the ion distribution function, due to 

the oscillations, has also been found by APPERT and VACLAVIK(58) 

for an unmagnetized plasma. 
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(b) Resonant ions 

Although the ion-wave interaction is almost entirely non-

resonant, it is possible for the few high velocity ions in the tail 

of the distribution to resonate with the waves and produce ion Landau 

damping. 

From the discussion following Eq.(4.1.14) and the treatment 

of the non-resonant ions, we neglect ion diffusion along B and set 
o 

-+k -+k • f h • r -+ -+ • d • (4 2 ) = ~. S~nce or t e resonant ~ons wk ~ k • V, the ~ ent~ty •• 2 

allows us to write their associated diffusion equation, from 

Eq. (4.3. 1 ), as 

af . 
o~ --= at 

2 
r~ 

2 
k m. 

~ 

+ ..... ( . '" ~ + cos4> ~)} f 
e,¥ s ~n'f' C)l 1 C)4> oi 

with 4>, e~ and e,¥ as shown in Fig. 4.1. 

In analogy with the non-resonant ions, for the resonant ions we define 

The above equation then reduces to 



Upon averaging over the angle ~ , we find 

R 2 
a~ .(V.l,t) 

01 

at 

where V 
a 

I = -
1 

R 2 
a~oi (l 't)] 
a1 (4.3.6) 

Transforming to the energy-like variable W = ~ - V; and introducing 

the new parameter 

T = 

equation (4.3.6) may be rewritten as 

R a~ . (W,T) 
01 

aT 

R 
= ..i .L [ I a ~ 0 i (W, T) J 

25 aw wI/2 aw (4.3.7) 

We now determine the time-asymptotic similarity solution of this equation. 

As before, we write (cf. procedure from Eq.(4.2.6) to Eq.(4.2.8» 

v 
(r,; = W T ) 
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Equation (4.3.7) then reduces to 

p ~(~) + v ~ ~'(~) (4.3.8) 

Since the left hand side has an explicit dependence on ~ only, it 

5 follows that ZV+I = 0, i.e.,v = - 2/5. Thus, 

W -2/5 5/2 W5/ 2 -I 
~ = T ~ ~ = T 

and, from Eq.(4.3.8) 

p ~ (~) = ...i~"(~) _ 2 ~'(~) {I ~} 
25 ~172 25~372 - 5 

We set p = 0 and find that 

which cannot be evaluated by standard techniques. 

A trial solution of the form ~(~) = A exp (_~5/2) yields p - -2/5. 

Thus we finally obtain 

(4.3.9) 

having substituted back for W. 
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5 Ion heating due to Landau damping thus leads to an exp (- ~) type of 

distribution. 

Discussion 

For an unmagnetized plasma and a two-dimensional wave 

spectrum, SAGDEEV and GALEEV(47, p. 52) arrive at the similarity 

solution . f (V) = A exp {- (V/V)5} for the resonant electrons. This 
e 0 

distribution has the same form as Eq.(4.2.8) above. Computer simulation 

experiments by BISKAMP et aZ (67) predict f ~ exp {- (ViC )x} with 
e e 

4.7 ~ x ~ 4,9. The discrepancy in the exponential factor was attributed 

to electron-electron collisions, which the theory neglects. 

We have seen in Section 4.1 that if the condition (4.1.5) is 

-+ 
satisfied then the perturbations fjkw(V,t) are given by their linear 

-+ 
forms, as derived in Chapter Three, with wk - wk(t) and f . - f .(V,t). 

oJ oJ 

It thus follows that in the quasilinear limit the plasma oscillations 

continue to satisfy the linear dispersion relation. Hence, from 

Eq. (3.3.15) the growth rate yk(t) mav be written as 

ra'!' (V, t)] 
TI a(k In) ~ z 

:.l e Lavz v .. V 
Yk Z Z 
-- = ----~--~~---------------------------------------------

me [+J. cJ2kl (1 + 

mi _ co~w~) 2 

k 
Z (1 + 
r w
k 

(4.3.10) 

-+ 
The solution (4.2.8) is a one-dimensional projection of f (V,t). 

oe 

It is seen that ,!,R (V ,t) reaches a time asymptotic stable form with oe Z 
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(a,R /av ) * 0 for a given non-zero V. It is well known, however, oe z z 
R that in the one-dimensional quasilinear treaenent ~ (V ,t) flattens oe z 

in the resonance region with (a~R /av ) = 0 (47, and references there oe z 

in). 

Why does this not apply in this case? The solution (4.2.8) has a 

very strong dependence on the existence of a broad spectrum of waves. 

Consider, for simplicity, the electron velocity distribution in the 

(V ,V ) plane. We assume the wave spectrum to have a sufficiently 
y z 

broad spread in k , with k small (k «k). z z z 

V 
z 

k z max 

z max 

(a) (b) 

Figure 4.3 

For a mode propagating at an angle ~ with respect to Bo' kz C k
z 

max· 

Using the one-dimensional analogy, all the electrons in the shaded 

band (Fig. 4.3(b» will, through the term o(k V - rnkr) in the diffusion z z 

equation (4.2.1), interact resonantly with the wave, resulting in the 

eventual formation of a plateau «a~R /av ) = 0) in the shaded region. oe z 

~ 

As k moves through the angle (a - ~) to the angle a in Fig. 

4.3(a), kz decreases. Therefore (~/kz) increases and reaches the maxi-

V 
Y 
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mum value of (rnr/k ° ). _ For a Sufficiently small k m10n this value 
k tm~ z 

could extend to very high velocities resulting in possible flattening 

over the region shown below. 

k z 

k 

V 

z max 

z 

Figure 4.4 

The above discussion refers to the V - V plane only. The inclusion 
y z 

qf a Vx component will extend the resonance region to a much larger 

volume in velocity space, the flattening of which will require a 

significant amount of energy and will therefore be physically un-

attainable. Rence for a quasi-stationary equilibrium we require, 

from the diffusion equation (4.1.12), DR = O. We see from Eq.(4.2.3a) 
e 

that 

Therefore D! = 0 holds only if l$k l2 + 0 for all k. Thus the wave 

spectrum must damp to zero with Yk < o. We have seen in Section 3.4 

that for a Maxwellian ion velocity distribution, which from Eq.(4.3.S) 

holds true for the bulk of the (non-resonant) ions, the denominator on 

the right hand side of Eq.(4.3.10) above is positive. Hence Yk < 0 
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requires (a~ lav) < 0 for all resonant V , i.e.,the distribution oe z z 

function ~R (V ,t) must tend, in the time-asymptotic limit, to a mono­
oe z 

tonically decreasing form, as,for example, given by Eq.(4.2.8). 

Even if the spread in k is not broad enough, we can have a 
z 

sufficiently large spread in the frequency w for resonance over the 

region shaded in Fig. 4.4. Experimental studies of turbulent heating 

by VIRKO and KIRICHENKO (68) indicated the presence of the ion sound in-

stability. The observed frequency spectrum was found to be three-

dimensional with a wide spread in the phase velocity (w/k ) along the 
z 

magnetic field. This enabled the authors to make a quasilinear estimate 

of the electron heating rate. 

The diffusion in velocity space of the non-resohant electrons 

is associated with the growth and damping of the electrostatic fluctuations, 

since the kinetic energy of the non-resonant electrons is associated with 

their 'sloshing' motion in the presence of the waves. As these electrons 

do not interact directly with the waves, one would expect their velocity 

distribution to display a Maxwellian - type of behaviour, i.e., 

ex: exp (- V
2). 
~ 

surprising. 

4 The exp (- V ) dependence in Eq.(4.2.15) is somewhat 
z 

However, SAGDEE'V and GALEEV(47, p. 70) have pointed out 

that although the interaction is adiabatic, i.e., non-resonant, con-

siderable modification of the velocity distribution could occur. 

As in the case of the non-resonant electrons, the diffusion 

of the non-resonant ions is attributed to their oscillations in the 

presence of the waves. Eq.(4.3.5) shows that this 

effective heating with a temperature increment of 
T 
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The asymptotic distribution for the resonant high energy 

ions can be explained in a manner analogous to that for the resonant 

electrons, strongly depending on the existence of a broad spread in 

k~ or w. The form of the distribution will be discussed later when we 

investigate particle heating rates. 

4.4 ANOMALOUS PLASMA RESISTIVITY 

Experimental investigations of plasma instabilities have 

inferred the presence of an anomalous resistivity of a few orders of 

magnitude larger than the classical collisional value (6,8). Th.e 

~ ~ . (~) .. E x B dr1ft V of the electrons relat1ve to the 10ns 
o 

provides the 

necessary free energy to drive the instability. When an instability 

occurs, the wave momentum and energy grow at the expense of electron 

momentum and kinetic energy respectively, in particular of the 

resonant electrons (see the discussion following Eq.(3.3.12». We 

therefore associate the loss rate of electron momentum (due to the 

radiation of ion sound waves) with the effective wave-particle 

collision frequency, i.e., 

~ * a<v> - m n V (t) v f = m n e 0 0 e e 0 ~ (4.4.1) 

From Eqs.(4.1.1) and (4.1.2), 

a<v> 1 
m n -- = m n {-

e 0 at eon 
o 



97 

(4.4.1a) 

as the other terms in Eq.(4.1.2) vanish due to the choice of f and oe 
• -+ .... S1nce V = V y. 

o 0 

Now 

+ y Iv {k ~ +---+---}f dV dV dV +zIv {k ~ +---+---}f dV dV dV Y x~V ek x y z z xav ek x y z 
x x 

= - k x I f dV - k Y I f dV - k z I fek dV x ek y ek z 

-+ 
where we have used the fact that fek (V) = 0 at V = + 00. 

Therefore 

-+ 
Substituting for fek(V) from Eqs.(4.1.5a) and (3.2.12a), we see that 

1 a 
- - - )}f YL aYL O(i] 

YL d'i dV z de x 
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J[ 
a(kiln ) k a] 

= - m21Te ~k 8(kl.ln
e

) - e z )- '¥ (v ,t) dV (wk - k V - k V av oe z z e yo zz z 

as shown in the manipulation leading from Eq.(3.3.1a) to Eq.(3.3.6), 

with'¥ (V ,t) defined in Eq.(4.2.3). oe z 

Then 
-+ 2 J a (kl In ) k (a'¥ Jav) 

m n a<v> = _ 21Te ae{L i k I~ 12 • e z oe z 
e 0 at m k k (Ol. - k V - k V ) e Kyo Z Z 

where the result (4.1.10a) has been used. 

With the aid of the result (4.1.11), the right hand side becomes 

dV z (4.4.2) 

For the resonant electrons, we use the identity (4.2.2) to arrive at 

+00 

where, as in Eq.(3.3.11a), Vz = w~/kz = 

a'¥ 
15 (k V - Gr

k
r ) k ~ dV z z z av z 

(W
k
r 

- k V ) /k • Y 0 z 

z 

(4.4.3) 

If it is assumed that the ion velocity distribution is Maxwellian, 

which in the light of the discussion in Section 4.3 pertaining to the 

bulk of the ions, viz.,the non-resonant ones, is reasonable, then we 

can use the results in Section 3.4 to manipulate the denominator of 

growth rate (4.3.10). 
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The results (3.4.10a) - (3.4.10c) then allow us to write the growth rate as 

from which 

a(k:l./n } [a'i' (V ,t}/aV ] 
e oe z z V = V 

(4.4.4) 

z z 

Equation (4.4.3) then becomes 

2 n 
2 

Yk k
2 

l<Pk l2 -+ e a<v> 0 -+ 
m n --= l: k 

e o at m. k (w~)3 1 

2 
Yk k

2 
l<Pk l2 

1 
w Ei = - -l: k 

21T k (w~}3 
(4.4.5) 

where W . = (41Tn e 2/m.)! is the ion plasma frequency. 
p1 0 1 

From Eq.(3.3.]4), the results (3.3.]Oa) - (3.4.]Oc) for a Maxwellian 

ion distribution, and the approximation (3.3.]6) for the non-resonant 

electrons, we see that 

€: (w,k) = 
r 

2 w . 
-~ 
(w~}2 

+ P 

r where p is independent of wk. Therefore 

= 

2 2 w • 
E1 

(w~)3 (4.4.6) 



Thus, from Eqs.(4.4.1) and (4.4.5) we find that 

1 
\I ef = 41T ~ 

= L 2 Y 
k k 

i. e. , 

Yk k2 
\41 k \2 (it . V 0) 

m n V
2 

e 0 0 

m n V2 
e 0 0 

100 

\I ef (4.4.7) 

where 

(4.4.7a) 

. (47) 
is the total wave energy dens1ty • 

This expression compares favourably with that of 

and for k parallel to V is identical to that of 
o 

(47) 
SAGDEEV and GALEEV , 

HASEGAWA(65) • 

-+ 
Since Eq.(4.4.7) represents the momentum transfer parallel to V , i.e., 

o 

across B , it (Eq.(4.4.7» describes the effective collision frequency 
o 

and associated anomalous resistivity perpendicular to the magnetic 

field. To emphasize this point we write the frequency as \I f • 
e;L 

If, as an approximation, we replace Yk by its linear expression 

given by Eq.(3.4.12), then 

(~)1/2 ~ ~ f me }! (b) r r k V \I r (k V - wk) wk ~= 0 y 0 ..L:l.. 
4 k 12m. -

W 
(I + k2" 2) k C W r l pe z 1 s pe wk m D 

as 

Wk 

n e 0 
V2 

0 
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2 2 
For Vo » Cs ' ky = k~ = k, b = kl re « 1, and kAD~l, which are typical 

experimental parameters, this reduces to 

~= (!.)1/2 1: ~ {me}! 
W 4 k k 2m. pe Z 1 

n m C C 
o e s e 

Here, the relation wpe = kuCe and the result r o(b)=1 for b « 1 have 

been used. Thus 

(4.4.8) 

For the case of wave propagation and particle drift along the magnetic 

field, HASEGAWA (65, p. 67) uses the linear expression for the growth 

rate and the approximations Vo = Cs and kAD ~ 1 to arrive at the result 

W 1: Wk 
pe k n T 

o e 
(4.4.9) 

He then discusses the fact that this effective collision frequency is 

larger than the classical electron-ion collision frequency given by 
WT 

" • = W e1 pe n T 
o e 

where WT is the energy density of the fluctuating field in thermal 

equilibrium, since this is the minimum value of the field energy density 

W = LWk due to the instability. 
k 

From Eqs.(4.4.8) and (4.4.9) we see that in the case of propagation 

oblique to the magnetic field and particle drift across the magnetic 

field the effective collision frequency "f is enhanced by the factor 
e:l. 

(k/k ) when compared to " f. This is probably due to the increase in 
z e II 



k the growth rate by an amount k in the presence of the magnetic 
z 

field, as discussed in Section 3.4. Since the resistivity is pro-

portional to vef it is also enhanced. This is not surprising, as 

in a magnetized plasma the electrons, drifting across t, are bound 

to the field lines. Thermal runaway across B is lowered with a 

consequent decrease in conductivity. 

4.5 ELECTRON AND ION HEATING RATES 
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The concept of kinetic temperature is introduced in terms 

of the mean random kinetic energy of the plasma components. 

From gas kinetic theory we have 

2 
m. <w.> 

J J 
(j = i,e) 

Jw~ f . dV 
J OJ 

(4.5.1) 

-+ -+ -+ 
where w., the random velocity, equals (V - V ) for the drifting electrons 

J 0 

and V for the stationary ions. 

(a) Electron Heating Rate 

For the electrons, the above equation reduces to 

3 aT n e 
2" 0 at = 

2 
n m a <w> 

o e at e 
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For a background distribution of the type (4.1.1), we substitute for 

afoe from the quas i linear diffus i on equation (4.1.2). It then turns 
~ 
out that 

3 aT m . * J 2 af k 
- n -.!:. = ~ Re {2:!: r cf> (V - V) k . + dVL 
2 0 at 2 me k k 0 av I (4.5.2) 

Now 

J 
2 . afek at afek = {V

2 
+ (V - V )2 + Vz} {kx ~V + k ~ + k ~V } dV dV dV 

x y 0 0 x y avy z 0 z x y z 

Considering the first term, 

and 

since 

J 
af 

k V2 ~ dV dV dV x xav x y z 
x 

k J(V - V )2 afek dV = k Jv2 afek dV = 0 
x y 0 av x z av x x 

fek = o at V = + 00. 
x 

In a similar manner we may manipulate the other integrals to find that 

- 2 I{k V + k (V - V > + k V } x x y y 0 z z 

= - 2 J<kJ. . ~ + kzVz> fek dV 

f d-+-V 
ek 

(4.5.3) 

where, as previously defined, k~ = (k ,k ) x y 
-+-

and 1 = V X + (V - V ) Y x y 0 



for the electrons. 

Furthermore 

x 

{(Wk - kyVo) ~ ~~ + kzVz (~z ~Vz ~ ;~} foe] 
------------------(~w---~k-=V-----k~V~)------------1 

kyo z z 
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d'i dVz d~ 

(4.5.4) 

where a substitution for fek has been made from Eqs.(4.1.5a) and 

(3.2.12a), and the coordinate system has been rotated through the angle 

~ as shown in Fig. 4.1. 

With the aid of the identity (3.2.11) and then the result (4.1.9a), 

we find that the integral (4.5.4) vanishes. 

Equation (4.5.3) then reduces to 

J 
af J ~ 2 -+ ek ~ 

(V - V) k. -- dV = - 2 k V f k dV 
o av z z e 

(4.5.5) 

, 

As previously, we substitute for fek and then integrate with respect 

to 4> to find 

- 2 Jk V fek dV = 2e4>k Jk V [.!.. dfoe - r J (~) J J/, (~) exp (i I. ~) 
z z me z z Y1. 3YL J/, 0 

{(W - k V ).!.. a + k V (.!.. a 
kyo 'i d'i Z z V z av z 

x 
(w - k V - k V ) kyo Z z 



)05 

4 $ af J2 (~) k (af /av)] 
= ne k Jk V [{I _ J2 (~)} b ~ _ 0 Z t oe Z Yo dVo 'dV 

m Z Z 0 VI av. (wk - k V - k V) l. l. Z e .. .. yo zz 

Thus from Eqs.(4.5.2) and (4.5.5) we see that 

3 aT 2 2 2 J r 2 ) at 
- n ~ = ~ Re {i L 1$ 1 k V . {) - J (~)} - ~ 
2 0 at me k k Z Z L 0 l aYL 

J2 (~) k (af /av >] o Z oe Z V. 
(w

k 
- k V - k V) 1 dl dV Z 

y 0 Z Z 

2 2J k
2 

V J2 (~) (af /av) 
= 2ne Re r

L
- iLl 1 Z Z 0 oe Z V. dV, dV

z
] 

m $k (w - k V - k V ) ~ .. 
e k kyo Z Z 

since 

Using Eq.(4.1.1) this becomes 

Vol dYL dV Z 

With the definitions (3.3.4) and (4.2.3) for a(k.l/ne) and ~oe(Vz,t) 

respectively, the above equation reduces to 
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(4.5.6) 

Both the resonant and the non-resonant electrons contribute to the 

right hand side of Eq.(4.5.6). For the resonant electrons we use the 

identity (4.2.2) to write their 
lijr 

.J: + 6V 
k 

contribution as 

Z J k
2 

V (a~ /aV) ~ &(k V - liikr) dV 
Z Z oe Z Z Z Z 

/jjr 
k it - 6V 
Z 

= _ 2".
2 
e 

2 ~ 1 12 ( / ) r [.7 oe] rnk
r 

L. ct>k a kJ. ne lilk av V = - = V 
me k z z k z 

z 

where 26V is the width of the resonance region. 

For a Maxwellian ion distribution, the result (4.4.4) allows us to 

wri te this as 

2 r 3 r 
w. {a e: (W)} wk 2 = _ 1: _ .... p_1_ .2:. k - Y, k 

r ' 2 r 2 r k 
k 2~(wk) aWk 2 wpi wk 

lct>k l2 

having used Eq.(4.4.6). Finally, definition (4.4.7a) for the wave 

energy density is used to write the resonant-electron heating rate as 

(4.5.7) 



since 
~r (w~ - k V ) __ k_ = ____ ,JI-y_o 

-+k -+ • V 
o =-- --
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1 • 

As for the non-resonant electrons, since they do not interact directly 

with the waves it is not expected that the heating experienced by them 

would be as significant as that of the resonant electrons. The so 

called 'fake diffusion' of the non-resonant electrons, as discussed 

earlier, describes their adjustment to changes in wave amplitude. 

During the growth phase of the wave the kinetic energy associated 

with the 'sloshing motion' of the non-resonant particles in the 

presence of the wave increases and the non-resonant electrons appear 

to be heated. However, since an important requirement for weak 

turbulence theory, and therefore quasilinear theory, is that the 

electron field fluctuations be sufficiently small (refer to Section 

2.4), it follows that the heating of the non-resonant electrons is 

very weak. This will be shown later from energy considerations. 

Hence, to a fairly good approximation, from Eqs.(4.5.6) and (4.5.7) 

the total electron heating rate may be written as 

(4.5.8) 

(b) Ion Heating Rate 

It has been pointed out at the beginning of Section 4.3 

that the interaction between the ions and the waves is primarily 

non-resonant. Thus, the discussion above implies a low level of 
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ion heating. This is analytically shown to be so. 

For the ions, Eq.(4.5.1) gives 

3 aT. n m. 1 J 2 af . 
- n _1 = ...E..2:. {- V ~ dVl 
2 0 at 2 n at 

o 
(4.5.9) 

ai. 
Upon substituting for at

01 
from Eq.(4.1.13a), the integral on the 

right hand side reduces to 

r. 2 

Re L:~ 
2 

J 
2 " . {k . (a f . j() V) } .. ~ 

L 14> 1 V k _0 01 dV k • .. .. .. 
k av (w

k 
- k • V) 

1 

= - 2 Re 

by virtue of the result (4.5.3),as there are no particles at V - +~. 

." A A We recall that for the 10ns ~ = Vx x + Vy y. 

With the result (4.1.11) and the approximation (4.3.1a) applicable 

to the non-resonant ions, it can be shown that 

Therefore 

(4.5.10) 
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Upon rotating our coordinate axes in the x-y plane through the angle 

~ as shown in Fig. 4.1, we find that 

r af, '.1. af '1 af • 
+ kzV

z
) {k. LCos~ 01 S1n~ 01 + k ~} V, dV, dV d~ 

..L al - 'i ar-J z av z 1 1. z 

for an f . of the form (4.1.1). 01 

Using the fact that there are no particles at ~ =+~, it turns out 

that 

since the equilibrium ion density n is given by 
o 

no = J f oi l d'i, dV z d4> = 27T J f oi 'i d~ dV z 

Similarly 

Thus, 



and from Eqs.(4.5.9) and (4.5.10) , 

3 aT i 
-n -- = 2 0 at 

aE 2w
2

• 

2 (- n k ) 
o 

Re~alling that ~ =~3 and the wave energy density 
aW

k 
(w

k
) 

, we may write the above equation as 

From Eqs.(4.5.8) and (4.5.11) we see that 
-+ -+-

[
k .rVo ] I:2Y

k 
W

k 
--..;.. - 1 

aTe/at k Wk 
aT .la t = ---:I:=--Y-k-:W-:-:-k~--

1 k 
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(4.5.11 a) 

(4.5.11) 

(4.5.12) 

Measurements of electron and ion heating rates in the Double Plasma 

device by JONES (86) agree reasonably well with this expression. 

Since for appreciable growth rates the 

times larger than the wave phase speed 

for small k z 

drift speed V is several 
o 

r 
(wk/k) ~ cs ' it follows that 
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-+ -+ 
k.V 
___ 0_» 1 

Therefore Eq.(4.5.12) shows that .the increase in electron temperature 

(electron thermal energy) is significantly larger than that in ion 

temperature (ion thermal energy). This is in keeping with the 

experimentally observed phenomenon that ion acoustic waves have 

maximum growth for (36, 41) 

:z > (::)1 

Then the effective electron mass k2m /k2 < m. and therefore the 
e z 1 

electrons experience a larger increase in thermal energy. 

To estimate the characteristic heating time of the electrons (the) 

we adopt the approximate formula 

dT 
e 

~ 

T dt 
e 

Then from Eq.(4.5.8) for the heating rate and Eq.(3.4.12) for the 

linear growth rate, 

For the typical values of (V /e ) = 8, 
o s 

as measured by HAYZEN and BARRETT (41) 

r 
wk =1 ,0 MHz, kV /k C ,... I, 

o z e 
-2 

and LWk/n T ~IO ,it terms 
k 0 e 

out that the ~ 4~s. This compares favourably with the value 
" 
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-4 t ~ 10 s, as quasilinearly estimated from the experimental results 
he 

of VIRKO and KIRICHENKO (68) 

As for the characteristic ion heating time, it is seen from 

the above ratio of the heating rates that 

(lIT.) (dT./at) 
1 1 

"""(I~j"""'T-')'--"""( a""""T"""""j a:-t~) :: 
e e 

For T = 10 T. and (V Ic ) -- 8 (41) f' d t - I 4 t - 64"s e 1 0 S we 1n hi - , he - ~. 

The heating of electrons is via scattering of electrons by ion sound 

waves, being related to the linear wave-particle resonances. In the 

assessment of ion heating we have neglected the high-energy ions in 

the tail of the distribution which resonate with the waves. For the 

ion acoustic mode with T »T. there are very few such ions. Thus e 1 

within the confines of the quasilinear theory the only possible ion 

heating is associated with the sloshing motion of the non-resonant 

ions in the presence of the waves. This motion, however, comprises 

ordered energy. Therefore in speaking of thermal heating which in-

volves random energy, we are assuming the presence of some other 

nonlinear processes, such as particle trapping, which convert ordered 

energy into random energy. 

The small increase 1n ion temperature due to the non-resonant 

nature of the ion - wave interactions implies that the change in the 

ion distribution should be small. This has been confirmed in Section 



4.3, where we saw that for an init i al Maxwellian distribution the 

only change in the non-resonant i on distribution with time was a 

small increase in ion temperature. However, it has been observed 

in experiments (40) and in computer simulations (56) that the ions 
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have a two-temperature distribution, showing the marked presence of 

a high-energy tail. At the outset one may attribute this effect to 

linear Landau ' damping of the waves on the few ions in the tail of 

the distribution. We recall that this resonance process was not 

considered in arriving at Eq.(4.5.11). However, in Section 4.3 

we have noticed that a quasi1inear treatment of resonant ion - wave 

interactions leads to an asymptotic distribution with an exp (- VS) 

dependence on velocity . Such a dependence was not observed in either 

experiments or simulations (40, 56) 

Thus, we conclude that linear ion Landau damping may be a 

contributory process to ion heating, but is certainly not the dominant 

one. To explain the observed ion heating we have to i~voke other non-

linear processes such as particle trapping and nonlinear Landau damp-

ing. In the latter process two or more modes of the wave spectrum 

may couple to produce beats which resonate with the ions and cause 

damping. -+ -+ 
For two modes (wk,k) and (wk"k') the resonance condition 

is 

where V is the ion velocity. 
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4.6 ENERGY STUDIES 

The rate of change of the average kinetic energy of the 

electrons is given by 

n m J af a ( 1 2 ) = ~ {.!. v2 ~ dV} at '2 no me <V > 2 n at 
o 

(4.6.1) 

In a manner paralleling the development from Eq.(4.5.1) to Eq.(4.5.3) 

we see that 

(4.6.2) 

with 

J V
2k 

af 
ek d-+ - 2 J(k V + k V ) 

-+ 
-- V = k V + fek dV -+ x x y y z z av 

J -+ -+ + k V ) 
-+ 

(4.6.3) = - 2 (~. 'i + k V fek dV y 0 z z 

where we recall that ~ = V X + (V - V ) 9. 
""'- x y 0 

From the discussion following Eq.(4.5.4) we have that 

Upon substituting for fek from Eqs.(4.1.5a) and (3.2.12a), we find 

that 



I 
e~k Ifl af 

k v f k dV = k V (- -) L- -2~ - L J (0 J (0 exp (i R. ~) 
y 0 e y 0 me ~ a~ R. R. 0 

. {( k V ) 1 a k (1 a - 1.. .L )}f 
wk - y 0 ~ al + z V z Vz av z ~ a~ oe] 

x ------.,.(w---~k~V"..---...."k---""V~) ~--=----- YL dYL dV z d~ 
kyo z z 
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(4.6.4) 

Similarly 

2'ITe~k I [ 1 af i(Ok (af /av)] I ~ {2 } oe 0 z oe z 
kzV z fek dV = - k V 1 - J (0 V. av.- - (w -k V -k V) 'i d'i dV 

me z z 0 l. 1 kyo z z z 

(4.6.5) 

The results (4.6.4) and (4.6.5) are used to rewrite the right hand 

side of Eq.(4.6.3), w.hich is then used to express Eq.(4.6.2) as 

Now 
k V + k V 
Y 0 Z Z = 

(k V + k V - w
k

) 
Z Z y 0 

W
k 1 + ...,.".. ___ -....."....;~--.....,... 

(k V + k V - w
k

) 
Z Z y 0 

and the integral above becomes 

COJ + co k V, elf +CO

J 
JCO J2 (k. V. In)k elf 

J J02( ~1) k
z 

oe 0 •• e z oe 
u w- dVz'i dV1 + wk {k V -(w -k V )} w- \}. d'i dVz e z _ co 0 Z z kyo z o-CO 



Since 

={f '\.=0 oef 
V =+00 

Z -
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as there are no particles at V = ~ 00, the first term vanishes. Thus z 

With the definitions (3.1.6), (3.3.4) and (4.2.3) for wk ' a(k~/ne} 

and ~ (V ,t) respectively, this may be further reduced to oe z . 

a (-2
1 

n m <v2
>) at 0 e 

The term on the right hand side above is made up of contributions from 

both the resonant and the non-resonant electrons. R 
If K represents e 

the average kinetic energy of the resonant electrons, then we may 

use the identity (4.2.2) to arrive at 

With the aid of Eq.(4.4.4} it turns out that 

aKR 
e -- = at - 1: 2 

k 
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i. e., 

In arriving at this result we have used Eqs.(4.4.6) and (4.4.7a). 

The equation for wave growth (4.2.13) finally allows us to write 

it in the form 

L. {KR + LW
k

} = 0 at e k 
(4.6.6) 

This tells us that the total energy in our wave-particle system is 

conserved, i.e., the kinetic energy lost by the resonant electrons is con-

verted into total wave energy. The latter is made up of the wave electro-

static energy plus the kinetic energy associated with the oscillations 

of the non-resonant electrons and ions in the presence of the wave. 

From Eqs.(4.4.6) and (4.4.7a) we see that the rate of change of total 

wave energy density may be written as 

aw 
-= at 

Upon substituting w~ = kes (I + k2A~)-1/2 (the usual form for w~, 

cf. Eq.(3.4.11» this reduces to 

(4.6.7) 
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The contributions t o the right hand s ide of Eq.(4.6.7} are as follows: 

(a) A fraction 

(4.6.8) 

which represents the rate of change of the electrostatic energy 

density of the waves. 

(b) From Eq.(4.5.11} we see that a fraction 

k
2 

1Ekl2 

2 ; (1 + k~) Yk 81T (4.6.9) 

is the rate at which energy is fed into the oscillations of the non-

resonant ions, i.e., the ion kinetic energy of the waves. 

(c) It thus follows from Eqs.(4.6.7) - (4.6.9) that the fraction 

(4.6.10) 

represents the rate at which energy is fed into the oscillations of the 

non-resonant electrons, i.e., the electron kinetic energy of the waves. 

Thus for k2A~ « 1 (i.e (k~/k2) » I), as is common in practice, it is 

seen from Eqs.(4.6.7) and (4.6.8) that the waves have only a fraction 

k2A 2 
__ D_ « 

2 

of their energy as potential energy. A similar result has been found 

for electrostatic ion cyclotron waves by DRUMMOND and ROSENBLUTH (55). 

As pointed out by the authors, this behaviour is in contrast to the 



\ 
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case of electron plasma oscillations for which the energy lost by the 

resonant electrons was equally divided into wave potential and kinetic 

(44) energies 

Furthermore, 

v »C ~ w/k, we see 
o s 

2 2 
for k AD « I, kz « k ~ k~ = ky and 

from Eqs.(4.5.7), (4.6.7) and (4.6.10) that the 

heating rate of the resonant electrons . far exceeds that of the non-

resonant electrons, thereby justifying our assertion in the discussion 

preceeding Eq.(4.5.8) that the heating of the latter is very weak. 

4.7 HEATING RATES ASSOCIATED WITH THE ELECTRON-CYCLOTRON DRIFT 

INSTABILITY (ECDI) 

A quasi linear derivation of electron and ion heating rates 

associated with the reactive ECDI has been presented by LAMPE et al (53) 

for wave propagation across the magnetic field, i.e.,k = O. We 
z 

recall that the reactive ECDI arises in the limit T »T. from a 
e 1 

resonance coupling between a negative energy Doppler~shifted electron 

Bernstein mode and the positive energy ion acoustic wave. The resonance 

condition satisfied is 

r w = k V + n n ~ k C kyo e s (4.7.1) 

We shall briefly describe the procedure followed. The geometry of 

our model corresponds to that shown in Fig. '3.1, i.e' J a reference frame 

in which the magnetized electrons drift with an E x B drift V relative to 
o 

the unmagnetized ions. For the electrons, the heating rate is given by 

Eq.(4.5.2), viz., 



\ where from Eq.(4 . 5.3), 

J (
-+ -+) 2 -+ V - V k 

o J
-+ -+ -+ 

- 2 k.l. ~ f ek dV 

• • (-+ -+) for modes propagating across the magnet1c f1eld k = kL • 

120 

We substitute for fek from Eqs.(4.1 .5a) and (3.2.12). The expression 

on the right hand side in the above equation then becomes 

2 

J [I 
a f {( wk- k V ) a f } 1 

~ -+k:t oe { . . ( )} . y ,o oe (k )-
me'f'k ''i ia'i - exp 1/;S1n8-1j1 'i a~ wk-yVo-nne 

x I n (/;) exp {- i n(e - 1jI)}] dV 

where in the summation over n we retain only the term satisfying the 

resonance condition (4.7.1), since this is the most dominant term. 

Then for a Maxwellian electron velocity distribution (as assumed by 

LAMPE et aZ (53» the identity (3.2.11) and the recurrence relation(60) 

J I(x) + J I(x) n- n+ 

are used to arrive at the result 

aT 
e -- = 

, (I 

(2n/x) J (x) 
n 
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For k = k.l = k and V o » V~, this reduces to 
y 

aT 2 2 1/2 V 
( e m. tJrr k2A 2)3/2 ~ l~kl2 e 1 0 L (I + (4.7.2) -= 

at \ 3 . T3/ 2 k D at 
e 

which, apart from the factor (2/3) is that found by LAMPE et al (53) 

In a similar manner, by following the analysis from Eq.(4.5.9) to 

Eq.(4.5.lla), it can be shown that the ion heating rate is given by 

3 aT i --= 
2 at 

i.e., 

(4.7.3) 

This differs by the factor (1/3) from the result of LAMPE et al (53) 

2 2 
For k AD « I and Vo » Cs ' as is common in practice, from Eqs.(4.7.2) 

and (4.7.3) we have 

aT 2 J /2 
e (2emi ) Vo 

at 3 T3/2 2V e 0 
aT. = =-

C:) I c 
1 S 

at c2 
s 

In the same limits Eq.(4.5.2) for the ion acoustic instability reduces 

to 



\ 

aT fat 
e 

~a T=-.~7r--a '7"t ~ 
1 

2 k • V 

2V 
o 

C s 
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o 

Thus we conclude that the reactive ECDr propagating across 

the magnetic field (k = 0) and the ion acoustic instability propagating 
z 

slightly off the perpendicular (k «k) provide the same relative 
z 

electron and ion heating rates. This is not surprising, since for wave 

propagation off the perpendicular to B the electron Berstein modes are 

severely damped and the ECDr transforms into just the positive energy 

. . d (24, 53) 10n acoust1C mo e 
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CHAPTER FIVE 

THE CROSSFIELD CURRENT-DRIVEN ION ACOUSTIC INSTABILITY IN A PLASMA 

WITH A DENSITY GRADIENT IN A SHEARED MAGNETIC FIELD 

5. 1 INTRODUCTION 

If, instead of a constant field in the z direction, the 

equilibrium magnetic field t is chosen to be o 

B = o 
B (x) 2 + oz 

B (x) y oy (5.1.1) 

then the lines of force of the field remain straight. However, because 

of the x dependence of Band B the lines are not parallel to each oz oy 

other; the direction of the line of force is, in general, a function of 

the coordinate x. Thus, the field (5.1.1) is an example of a field with 

straight but non-parallel lines of force. It will be seen in the next 

section that such a field leads to a coordinate dependent kll(com­

ponent of the wave vector k along the magnetic field B). Magnetic 
o 

fields giving rise to such a behaviour of kit are called sheared 

magnetic fields. 

Most of the study on the effect of magnetic shear on plasma 

instabilities has been concentrated on drift waves. This is probably 

due to the broad range of plasma conditions under which such modes are 

unstable. Since they are driven by inhomogeneities within the plasma, 

e.g.,a density gradient, drift waves are easily excited in most high 

temperature plasma devices. As far as is known,very little evidence 
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exists of theoretical studies of the ion acoustic instability in a sheared 

magnetic field. A study of the crossfield current-driven ion acoustic 

instability in a plasma with an electron density gradient in a magnetic 

field of this nature is the subject of the present chapter. 

5.2 ELECTRON CONTRIBUTION TO THE DISPERSION RELATION 

We consider a model in which the magnetic field exhibits shear 

in the x direction. Thus, we write (69, 70) 

-+ 
B = B z + B ..... oz oy Y 

B {z + (x/L) y} 
o s 

(5.2.1) = 

with B »B ,where L oz oy s 
d B ~-1 oy ,called the shear length, is 
dx 

the characteristic length over which the magnetic field changes direction. 

The electron density is also assumed to vary in the x direction, with 

n e 

where -1 

[*e dneJ -I e: = 
dx 

= 

= 

n (1 + e: x) 
o (5.2.2) 

L is the density gradient scale length. 
n 

As in Chapter Three, we assume that the length and time scales are such 

that the electrons are magnetized and the ions are not. Retaining the 

additional approximation that the ions do not react to the electric 

• -+ -+ -+ 
f1e1d E , it turns out, once again, that the electrons have an E x B o 

-+ 
drift V = o 

-+ -+ 2 
C(E x B)/B relative to the ions. o In examining the motion 

of the electrons we shall closely follow the mathematical formalism 

presented by DAVIDSON and KAMMASH (71) 
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Figure 5.1 
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The geometry considered is shown in Fig. 5.1 above, where, in addition 

to the sheared magnetic field, there is a constant external electric 

field in the negative x direction. The investigation is conducted in 

the ion rest frame. In the absence of shear one normally works in the 

(x, y, z) cartesian coordinate system as shown above. However, to 

simplify the calculations of the unperturbed particle orbits in a sheared 

f · ld . d . . (-+ -+ () -+ (» 1e we 1ntro uce a rotat1ng coord1nate system e, ex, e~ x 
x sn -.L 

defined by 

-+ ,. 
e = x x 

-+ (x) 
B(x) 

e = (5.2.3) 511 1B1 

-+ (x) -+ -+ e = e x e 
s.L 5

11 
x 

From Fig. 5.1 we see that 

-+ 
y y 

,. e = h + h z 
su z 

-+ y e = h h Z 
sol z y 

where in general, (5.2.4) 

B (x) B (x) 
h (x) = oy 

h (x) oz = 
Y B z B 
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Since the plasma density and magnetic shear are chosen to have a spatial 

dependence on x only, the perturbation potential is taken to be of the 

form 

where 

,+ 
4l 1(r,t) 

k = 

= 

= 

k Z z 

kn 

In contrast to the shearless case 

+ 

,+ 
e 

sll 

B o II 

(5.2.5a) 

k ... yy 
,+ 

(5.2.5b) + kJ. e 
~ 

... the wave numbers k and k z, z y 

no longer represent the components of k along and perpendicular to the 

magnetic field respectively. These roles are now played by the quantities 

kll and kl ' From Eqs. (5.2.4) and (5.2.5b) these are given by 

"k • ...-
= e 

sll 
k . ...-

= e 
~ 

= k h (x) + k h (x) 
y y z z 

= k h (x) - k h (x) 
y z z y 

(5.2.5c) 

In the stationary coordinate system (x, y, z) the position vector of a 
-+ . 

particle is given by ret) = x(t) x + y(t) y + z(t) z, while in the 

-+ -+ -+ rotating frame, r(t) = x(t) e + s, (t) e + 
x ... ~ 

In solving the electron equation of motion 

m ~ = -e {E + (V x B)/C} 
e 0 

(5.2.6) 

it is simpler to calculate x(t), s.t.(t) and sll(t), instead of the more 

complicated solutions x(t), y(t) and z(t). In doing so, we shall assume 

that a single electron is not affected by the shear, but that its motion 

is determined by a constant local field. Thus, in terms of typical lengths, 

we assume 

r «L 
e s (5.2.7a) 

where re is the electron gyroradius. 
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In the rotating coordinate system 

~ cE .... 
V = 0 e 

o B 81. 
(5.2.7b) 

and the density gradient (5.2.2) produces an electron diamagnetic 

drift (I, p.422) 

E T 
~ e~ 
V =---e neB s.l 

E T e ~ 
=--e 

m n Sl 
(5.2.7c) 

e e ... 

where, as previously defined, n = (-eB/m C) is the electron gyrofrequency. 
e e 

A set of solutions to Eq. (5.2.6) is (cf. Eq. (3.2.8) ) 

x(t') = x(t) - (VI /n ) { Sin [ 6(t) - n (t'-t)] - Sin 6(t)} ... e e 

s~ (t')=s~ (t)+ (~/ne) {Cos[6(t) ~ 0e(t'-t)] - Cos6(t)}+ Vo(t'-t) (5.2.8) 

sll (t') = sll (t) + ~I (t' -t) 

2 2 
where 'i = Vx + (V - V )2 

~ 0' 
6 (t) = tan -I { (V (t) -V )/V (t) } and 

51 0 x 
~ -+ = V. e 

sll 

From the Eq5. (5.2.8) we may construct, among others, the following 

constants of motion (as in Section 3.5) 

and X = x + (Vs - V ) 
.L 0 

n 
e 

Then from Eqs. (5.2.5) and (5.2.8) 

{i~ (x)l } 
iwkt} exp n [Cos{6 - ne(t'-t)}-Cos6] 

e 

(5.2.9) 
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where it has been assumed that k.l and kll depend on x rather than x'. 

This is reasonable since the difference is of the order of (r /L ), 
e s 

which by assumption (5.2.7a) is negligibly small. 

The equilibrium velocity distribution for the electrons is chosen 

to be a function of the above constants of motion, viz., 

f 
oe = 

= 

f 
oe 

2 
(~ , VII ' X) 

2C 2 
e 

(5.2.10) 

We can readily show that the above distribution is self-consistent. It 

is, in fact, the form to which the distribution (3.5.2) reduces in the 

absence of a temperature gradient. 

Following the technique adopted in Chapter Three, we may express the 

electron and ion distribution functions and the electric field as sums 

of their respective equilibrium values and a perturbation term due to the 

presence of oscillations. Eq. (3.1.11) then gives us the perturbed 

distribution f .. (~, V, t) in terms of the perturbation potential ~1 
1.J 

and the equilibrium distribution f ., viz., 
OJ 

f .. (t,V,t) 
1.J 

e. Jt 
=..J. 

m. 
J -00 

af . 
'iJ A. (-+, t') 01 dt' 'f'1 r, .-T 

av' 

with Poisson's equation 

=-41T I: 
J 

2 ejJ 
m. 

J 

t 
-+ J af . 

dV 'iJ4>I(t"t').~dt' av' -00 

(j = i,e) 



For perturbations of the form (S.2.Sa), this reduces to 

(
a2 2\ + 
-2 - k ) ~ 1 (r, t) = 
ax 

2 
e. J - 41T I: -1.. 

. m. 
J J 

t 

+ J + dV V~ 1 (r', t? 
af . 
-& dt' 

+ av' 
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(5.2.11) 

2 + 
For foe = foe (l ' ~I ' X) and 1 = 

+ + 
V e + (V - V ) e ,it can be 

x x ~ 0 ~ 

shown that 

and 

af oe 

av 
1 

af oe = ---1 al 
+ 1+ 

af 1 af 
v~ 1 • ~ = - oe v~ av 'i al 1 

Furthermore, 

n 
e 

af oe 
ax 

+ 
e + 
~ 

af + 
oe e 

aVjI . ~I 

+ k. af af v. + . ~ oe +' k oe ~ 
1 lnax-~1 1 UW-'f'1 

e " 

Combining these results, we have 

Thus, in the electron contribution to the right hand side of Eq. (5.2.11), 

viz. , 

(S.2.12a) 
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the integral with respect to time reduces to 

t 

x J <1>1 (;, ,t') dt' (5.2.12b) 

~ 

with <1>1 (r' ,t') given by Eq. (5.2.9). The unknown function <1>'1 (x') in 

the said equation is now expanded about x' = x as follows: 

<l>1{x) + (x'-x) 

With the aid of Eqs. (5.2.9) and {5.2.13)we see that 

t r <I> (;, t') dt' 
J l' I 

-00 

W' h h 'd f 'd" (60) 1t t e a1 0 the 1 ent1t1es 

d2t11I(X') I 
dx,2 

x' .. x 

(5.2.13) 

+ ••• 

(5.2.14) 

f, kll 
exp 11 T 

e 
Cos{<I> - ne{t'-t)} }= ;a' in In{f;) exp{ -in[<I> -ne{t'-t)]} 

n=-oo 

and 

n=-oo 
en J (f;) exp (i n til) 

n 

where, as previously defined, f; = kl~ne' Eq. (5.2.14) permits us to 

write the electron term (5.2.12a) as 



where 

For f
oe

(12, ~I' X) as defined in Eq. (5.2.10), 

1 
af 

oe ---= 'i al 

Then 

a f n e: { v2 } oe 0 -

---ax- = (27rC 2)3/2 exp 2C 2 
e e 
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(5.2.15b) 

(5.2.16a) 

(5.2.16b) 

(5.2.16c) 
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Sine 

(5.2.16d) 

With the aid of Eq. (5.2.16a) it turns out that 

af r 1 oe -+ 

J 1 d'i dV lld9 v. w.- <I> 1 (r, t) 
1.. 1. 

(5.2.17) 

We notice that if we substitute for (x'-x) from Eq. (5.2.8) and use 

Eq. (5.2.16d), then the second term within [- - ] in Eq. (5.2.15a) 

involves integrals of the type 

provided we express the sines and cosines in terms of exponentials. 

All such integrals which are necessary to manipUlate the said term 

completely are explicity shown in Appendix E. 

With the result (5.2.17) and the integrals in Appendix E, Eq. (5.2.1Sa) 

reduces to 

-41T 2 
-m--.;;e- [ 

e 

n (I+£x) 
o 
C 2 

e 

fin 
o 'i) 
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1 21Tne 'i 
x 2·· L 2 . P k 

1 

x 
J pne 2 
)- kl ~{J (O} 
l d'J. p 

+ 

As in Section 3.2, we restrict ourselves to low frequency modes for 

which IWk - kU ~11«n e· Therefore, only the p = 0 term is retained in the 

summations above. 

We then use the results 

2 2 exp(-v. 12e
e

) 

(wk - k"~I) 

where b = kJ.. 2C e 2 /n e 
2

, he = wk/.f2 kllC e' 10 (b) has already been defined 

as the modified Bessel function of the first kind of order zero, and 

Z(h) is the plasma dispersion function as defined by the equations (3.5.4), 
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= 2 C 2 b e-b [I (b) - I'(b)] 
e 0 0 

and 

to write the above expression as 

2 
-411'e [ -no (1 +e:x) 

me C 2 
e 

where we have used the result (60) II (b) = (dI (b)/db) • I
1

(b) and have 
o 0 

written r (b) = e-bI (b). This may be further reduced to 
n n 



-4n n e
2 r -+ { 

-m-c-
o-=-2- L'I (r,t) -(1+£x) 

e e 

£ 
+ -

2k 2 
:.L. 

1 --
k 2 

:J.. 

5.3 THE ION TERM 
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(1+~x) -

(5.2.18) 

It has already been assumed that, due to their inertia, the ions 
-+ -+ 

react to neither the magnetic field B nor the electric field Eo. They 

assume straight line orbits with t = V = constant. 

Since the ions are unmagnetized, it is not expected that their 

motion will be affected by the magnetic shear. In other words, if an 

-+ 
ion does not perceive the original field B at x = 0, then one does o 

-+ 
not expect it to sense the rotation of the B field in the y-z plane as 

it moves on its straight line trajectory. 

An alternative view point arises from the fact that we are 

interested in the ion acoustic instability with frequency IIl""'kC in the 
s 

limit T » T.. Then 
e 1 

(T . 1m. ) ~ = c. 
1 1 1 

«C = (T Im.)~ « (T 1m )~ - C 
s e 1 e e e 

i. e., 
C. « wlk« C 

1 e 
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or 

t'C. «A « t'C 
~ e 

where t' is the period and A the wavelength of the wave. Therefore, 

during one wave period the distance travelled by a typical ion is very 

small compared to the wavelength" which in turn, is much less than the 

distance traversed by a typical electron. We thus conclude that over 

the time scales involved, for the ions the distance (x'-x) in expansion 

(5.2.13) is negligibly small and 4>(x') ~ 4>(x). 

The equilibrium ion distribution is chosen to a stationary Maxwellian, 

viz. , 

2 It is seen from the equations (5.2.12) that the 

ion contribution to the right hand side of Eq. (5.2.11) is 

. o~ o~ o~ 

{ 
1 af. (1 af. 1 af. )} 

~ Wk 1 al + ka ~I Vii av. - 'i . al 

x 

In the light of the above discussion, and by definition (5.2.5a) for 
-+ 

~lr, t), this reduces to 

t · L exp{i [k.(~(t')-~(t»-"k(t'-t)]} dtJ 



With the aid of the solution 

-+ -+ -+ 
r(t') = r(t) + V(t'-t) 

to the ion equation of motion ~ = 0, the time integral above is 

manipulated to yield 

For the velocity distribution (5.3.1), 

-n o =-
C. 2 
~ 

J 
wk I af. -+ 

~dV 
-+ -+) v.

l 
a v.

l (wk-k.V 

n A. [ = 0 ~ Z(A~) 
c. 2 ... 
~ 

k 2 
1 

+-
4k 2 

U 

(5.3.2) 
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The techniques employed in an 'i ving at these results are the same as those 

used in Section 3.3. lor the last result we have approx~ted 

which for the ion acoustic wave is physically plausible (see discussion 

following Eq. (3.3.8»). 

The ion term (5.3.2) then reduces to 

2 
41Tn e 

o 

m.e. 
1 1 

2 

5.4 THE EIGENVALUE EQUATION 

k 2 
i. 

+--
2 

4kll 
(5.3.3) 

ions, 

From Eq. (5.2.18) for the electrons and Eq. (5.3.3) for the 

Eq. (5.2. 11) may be written as 

1 

k 2 
i 

+ 1 [e: 
kl. 2k~ 

2 

~ {IF o(bH] - 2b [r 0 (b)-r 1 (b)] X. Z(X.)} ] a~ 



T 
e - -T. 
1 

where we recall 

and 

A = 
e 

= = 

= 

k 2 
~ 

+-
2 

4kU 

2 +~ (41Tn e IT ) 
o e 
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V 
n = 

e:T 
e 

m In I 
is the magnitude of the diamagnetic 

e e 

drift V «5.2.7c». 
n 

The above equation may be rewritten as 

1 d2~(x) + _1 B(x) d~(x) A(x) + C(x) ~(x) = 0 
k.l2 dx2 kl dx 

(5.4.1) 

where 
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To obtain analytical results we resort to further approximations. It 

follows from Eq. (S.2.2) that 

EX = x/L 
n 

Thus, for the purpose of simplification, we assume that Eq. (S.4.1) is 

only applicable over a range of x which is much less than L. This n 

imposes the restriction that the potential $(x) is very localized, 

vanishing for x values not very far from x = O. Then 

(x/L ) « 1 (S.4.2a) 
n 

and the coefficients A(x), B(x) and C(x) reduce to 

(S.4.2b) 

2 

B(x) = ~l. ~2 ([ro(b) - IJ - 2b [ro(b) - rl(b)] ~. Z(A.)l (5.4.2c) 

C(x) = - 1 

+A. 
1. 

(5.4.2d) 

For warm electrons and cold ions, i e T »T we assume as in • ., e i' 

Section 3.S, 

(5.4.3a) 



and 

A term common to A(x) and C(x) is 

= 

[W k - k.l. (V 0 -V n) ] 

Iikl\Ce 

[W k -k.l (V 0 -V n)] 

I2kllCe 

Z (X ) 
e 
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(5.4.3b) 

(5.4.4) 

For B «B and k «k, we see from Eqs. (5.2.5c), (5.2.4) and 
oy oz Z y 

(5.2.1) that in the presence of magnetic shear 

k\l(x) .- k + (x/L )k 
Z s y 

(5.4.5) 

kl :::: k ... constant 
y 

Now X 
tl)t · ~ iYk -:k.LVo 

= e v2kllCe 

wk -k1Vo + 
iYk 

(5.4.6) = 
12kUce I2knce 

If we assume yk>O (growing wave) then the sign of rmXe = \./likJlCe 

can be changed by reversing the sign of kll' It is seen from Eq. (5.4.5) 

that this implies x assuming an appropriate negative value. However, 

such a change leads to difficulties as far as the Z-function is concerned, 

since it is a sectionally regular function of two sheets with a 
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discontinuity along the real axis. For real A it behaves as follows(71): 

+<x> 

lim ~ J + Z ( A+i 0) = Tf-
0.... 0 

+<x> 

lim + Z{A+io) = 'If-~ J 
0.... 0 

2 -x e 
(X-A) 

2 -x 
e 

(X-A) 

~ _A2 
dx + i Tf e (5.4.7a) 

~ _A2 
dx - i'lf e (5.4.7b) 

Thus, a derivation of the dispersion relation for different initial 

signs of lmA will lead to two relations involving different sheets of 
e 

the Z-function. 

We notice from Eq.{5.4.6) that changing the sign of Im{A
e

) thro~gh k 

also changes the sign of ReA • A similar behaviour holds for 
e 

[wk-kl{Vo-Vn)]/v'ik"Ce' Therefore, we may compensate for the dis-

continuity of Z{Ae) by taking kll>O (Le • .,x>O for kz small) in the first 

term of the product in Eq. (5.4.4), and for Z{A ) use the power series 
e 

expansion in the limit IA 1«1 corresponding to Eq.(5.4.7a) above. . e 

This yields 

[Wk - ki{Vo - V
rt
)] 

I2knce 

Z (A ) 
e 

(5.4.8a) 

where, from Eq. (5.4.5), Iklll implies kU >0 ,and therefore x ~ 0 

provided k is very small. z 

The problem associated with the discontinuity of the Z-function did not 

arise earlier in the work undertaken in Section 3.5 , because there we 



143 

have assumed k > 0 ., without actually stating so. Therefore, in the 
z 

consequent manipulations the power series expansion corresponding to 

Eq. (5.4.7a) was used (cf. Eq. (3.5.9a) ). 

For IA.I» 1, we have the asymptotic expansion (3.5.9b), viz., 
1 

with 

Z(L) 
1 

L 
1 

"2 

1 ' 1 
=-(- +-.-

Ai 2A~ 
+ •••• ) (5.4.8b) 

1 

(5.4.8c) 

With these results the coefficients A(x) (5.4.2b») and e(x) (5.4.2d») 

reduce to 

2 
1 k- {w -k. (V -V)} 

i~2 __ -~ k. 0 n b[r (b) 

k
2 /ilk Ie 0 11 e 

- r
1

(b)] (5.4.9a) 

e(x) = -

(5.4.9b) 

For physically meaningful solutions we require A < x where x is the 

range over which ~(x) is non-zero. By virtue of assumption (5.4.2a) we 

have 
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e: x 
- < -« 
k.1 Ln 

Since Iro(b)I~I,lro(b)-rl(b)I~1 (72) and by assumption. (5.4.3a) I>. 1«1, 
e 

it thus follows that the coefficient B(x) is small compared to A(x) and 

C(x) and is . therefore neglected . 

Equation (5.4.1) may then be written as 

_1_ A(x) 
k 2 
1. 

d
2Hx) 

-~..:... + C(x) 4»(x) = 0 
dx2 (5.4.10) 

with A(x) and C(x) given by Eqs. (5.4.9a) and (5.4.9b) respectively. 

This equation is called the eigenvalue equation. 

We notice that since in the absence of shear (L ~ ~) 4» is a constant, 
s 

Eq. (5.4.10) then implies C = 0, C no longer having an x dependence 

since kn is also constant. This gives us the usual non-shear linear 

dispersion relation 

~C2 
r (b)} + __ s = 0 

o 2 w
k 

(5.4.11a) 

F r +' 'th 1 1« r th I t 1'S' b (t, p. 389) or wk = wk 1Yk W1 Yk wk ' e rea par g1ven y 

This yields 
(5.4.11b) 
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For the growth rate, the equation 

gives 

(5.4.11 c) 

which is a special case of the result (3.5.10) when one ignores 

gradients in plasma temperature and magnetic field. 

For V < V , we have by assumption (5.4.3a) that 
n 0 

\ ~ - ki(Vo-Vn) \ « 

rz knee 

Since Iro(b) - r 1(b) I s (72), it is seen from Eq. (5.4.9a) that 

for 

A(x) =: 

k 2 
~ 

k2 (5.4.12) 

b~ w 2 
-2 =: -.E!.2 ~ (5.4.13) 

k n 
e 

The effect of magnetic shear is now introduced. We substitute for kl 

and kit from the equations (5.4.5). In the limit of approximation 

(5.4.12), Eq. (5.4.10) may be written as 
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2 i~~{Wk-k (V -V )}r (b) k2C2 
d cI> (x) _ _I [I + k 2AD2 + __ ~Jl..y--.;o--:-n~_o;;;....-_ - -2s lJ ~ (x) 

dx2 AD2 l2\k +xk L-1\C w
k Z y s e 

= 0 

The necessary boundary condition is that ~(x) ~ 0, as x ~ ! 00. Since 

for k small (~o) this equation is symmetric in x we may restrict it 
Z 

to x ~ 0, with the added condition that ~(x) be regular at x = o. 

We transform to the new variable z = k (x + (k /k )L ), to obtain 
y z y s 

i~~{Wk-kyvD}ro(b) 
li\z\L-1C 

z e 

(5.4.14) 

where VD = Vo - Vn • This equation, in turn, may be written as 

d2~ (z) 1 
dz2 - k2A2 Q(z) $(z) = 0 

y D 

(5.4.15a) 

where 

(5.4.15b) 

with 

(5.4.15c) 

(5.4.15d) 

To analyse this equation we temporarily ignore QI(z), i.e.,we treat 

the inverse-electron Landau damping term, which, from Eq. (5.4.llc), 

gives rise to a positive growth rate when VD > W~/k~-Cs (k
2

AD2 «I), 

as a perturbation, i.e.,we assume the magnetic shear effect to dominate. 

Such an approach has been adopted by PEARLSTEIN and BERK(70) and by 

GLADD and HORTON(73) in the study of drift waves. Equation (5.4.15a) 
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then reduces to 

d2~ 2 2 
- + {a - ex z } ~ (z) = 0 
dz

2 
(5.4.16a) 

where 

(5.4.16b) 

and 

(5.4.16c) 

with 

The above differential equation is similar to that encountered in a 

study of the harmonic oscillator in wave mechanics. A solution that 

satisfies the required boundary condition of waves with outgoing energy 

flux at large z, and therefore large x, is given by(70) 

~(z) = H {(io)~ z} exp(-~ ioz2
) 

n 
(5.4.17a) 

where H (n = 0,1,2, ••• ) is the Hermite polynomial of order n, 
n 

and 

a = (2n+l) ex (5.4.17b) 

Substituting for B and ex in the above equation, we have 

2 2 I) __ 1_1 = i(2n+l) {ItDcs - I}! 

k2,2J k L 2 
yl\n y s wk 

Setting wk = W~ + iY~ with 
r 

wk ' this becomes 



1 + k 2A 2 
y D 

i (2n+1) 
kL 

y s 

where it has been assumed, in addition, that 

I 2 I < k 2 C
s
2 

wk < -1) 

This approxUnation will be discussed later. 
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(5.4.18a) 

(5.4.18b) 

Resolving Eq. (5.4.18a) into real and Unaginary components, we find 
k 2C 2 

Y s (5.4.19a) 
+ ky 2AD 

2 

and 

= 
( r),2 

(n+i) I 
k L lLC Y s -1) s 

s We see that Y
k 

< O. Therefore shear has a stabilizing effect. 

Further, for k2 A2 
Y D 

« I, as is usually the case in practice, 

(w
r
)2 :: k

2 
C

2 
, and in this lUnit the assumption 

k y s 
true. 

(5.4.19b) 

We now estUnate the wave growth produced by inverse electron Landau 

damping by evaluating QI(z) at the WKB turning point(69), which, in the 

case of a shear dominated situation, is given by QR(zT) = 0, i.e., 

With the aid of the results (5.4.19), it turns out that 

2 2' s zT ~Yk 

k2L 2 = -r- = -
w
k Y s 

i(2n+I) 
k L 
Y s 

(5.4.20) 

Thus, upon evaluating the electron term QI(z) at z = zT' we add it 

to the coefficient S in Eq.(5.4.16b) and obtain the consequent dis­

persion relation 
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2C 2 )1 i(2n+l) _~s __ 1 
k L W 2 

y s k 

(5.4.21) 

. r 
An approx~ate stability criterion may be obtained by sett1ng wk=wk ' 

as given by Eq.(5.4.19a). 

Then, using the assumption (5.4.18b), we have 

r 2 2 
~(k VD - wk ) r 

y 0 

With (lzTI /k L )2 given by Eq. (5.4.20), it turns out that 
y s 

L2 1 /3 m. VD 2/3 L 1/3 -2/3 ( 

~ =(.) (2n+1) (m:) (C
s 

- 1) ~o(br E ~\ 

Therefore for a fixed AD' (LS/AD) 

completely damped wave. 

< (L /AD) will result in a 
s c 

Figure 5.2 represents a plot of the normalized growth rate 

r -1 -2 yk/wk against b = (k1re) , as obtained from Eq. (5.4.21). Since 

shear damping increases with decreasing shear length, the associated 

net growth rate is seen to decrease. For kAD = 0,1, it turns out that 

the critical shear length (LS/AD)C = 130, and for kAD = 0,2, (LS/AD)C· 80. 

An attempt to find an analytical solution to the eigenvalue equation 

(5.4.10) in the opposite limit, viz., 
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» (S.4.22) 

which requires 

leads to difficulties. For, the usual WKB technique(74) used in 

solving an equation of the form 

can no longer be employed. This technique involves setting up solutions 

at the WKB turning points xl and x2' where Q(x l ) = Q(x2) = 0, which in 

the asymptotic limit reduce to exponentially decreasing solutions at 

X ~ ± =, where Q assumes a constant complex value. The eigenvalue w 

is determined by the requirement that the solutions at xl and x2 match 

in the region between xl and x2• 

The equation (S.4.10) can be readily written in the above form, with 

Q(x) = 
2 kl C(x) 

A(x) 

As X ~ ± =, C(x) is given by Eq. (5.4.2d), since from the expression 

(S.4.5) for kll' it is seen that the expansion (5.4.3b) used in 

arriving at the result (5.4.9b) is not valid at these limits. It can 

be shown that C(x) reduces to a constant as X ~ ± =. However, A(x), 

which is still given by Eq.(S.4.9a), excluding the (kllk2) 
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contribution (by virtue of assumption (5.4.22», vanishes at these 

extremeties. This causes Q(x) to diverge at x ~ ~ 00. 

A close inspection of the mathematical formalism shows that the 

ions do not contribute a term to the coefficient A(x). This is so since 

the ions have been assumed to be unmagnetized. It thus seems feasible 

that the presence of magnetized ions could produce a term which, in the 

limit (5.4.22), would make A(x) non-zero at x ~ ± 00, and thereby allow 

an approximate WKB solution. 
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CHAPTER SIX 

THE EFFECT OF ELASTIC AND INELASTIC CHARGE-TRANSFER COLLISIONS 

ON THE CROSSFIELD CURRENT-DRIVEN ION ACOUSTIC INSTABILITY 

Here, we initially concern ourselves with the effect of 

elastic and inelastic collisions on an incident ion oeam. We then 

study the effect of such collisions on ion acoustic wave perturbations 

superimposed on the ion beam. 

6.1 SPATIAL EVOLUTION OF AN INCIDENT ION BEAM IN THE PRESENCE 

OF ELASTIC AND INELASTIC COLLISIONS 

We adop t the model of LEE (62) which describes the experimetal 

arrangement in the Double Plasma (DP) device in the Plasma Physics 

Research Institute, University of Natal, Durban. In the model, a beam 

of thermally isotr opic ions, density N , enters the region y ~ 0 of an 
o 

(x,y,z) Cartesian coordinate system with an initial drift U(y = 0) 

= U Y in the labor atory frame. This region is called the target plasma, o 

while the ion beam originates from the source or driver plasma. To 

maintain quasi-neutrality we have a thermally isotropic electron dis-

tribution of equal density. These electrons are at rest in the lab-

oratory frame. This is in contrast to the investigations 

conducted far, where we have worked in the ion rest frame. 

The half-space defined by - = < x < + =, y ~ 0, 
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- ~ ~ z S +~, is filled with neutral atoms of the same atomic species 

as the ions in the beam, with ~ (neutral atom density) » nB (ion beam 

density). 
• -+ 

The system is subjected to a constant magnetic f1eld B in o 

the z direction. No external electric field is present. As before, 

the length and time scales are such that the electrons are magnetized 

and the ions are not. The latter therefore assume straight line orbits 

with constant velocity. 

There are several possible collision processes within the 

half-space defined above. These are electron-electron, electron-ion, 

electron-neutral, ion-neutral and ion-ion. The starting point of a 

statistical description of a plasma with collisions is an equation of 

the form (1,16) 

af (6.1.1) -= 

where (af/at) is the time rate of change of the distribution function 
c 

as a result of collisions. In the absence of collisions the right hand 

side of Eq.(6.1 .1) vanishes and it reduces to the Vlasov equation 

(cf. Eq.(3.1.1)). The actual construction of the collision term (af/at) 
c 

presents considerable difficulty. Furthermore, it differs in form for 

the various types of collisions. There are two well known models of 

the collision term. The first, the Boltzmann collision integral (I), 

is based on the assumption that the collisions are short-range and 

binary. It is appropriate for the study of a weakly ionized plasma. 

The second, the Fokker-Planck model, is suited to the examination of 

a fully ionized plasma where the deflection of a particle is more 
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likely due to the cumulative effect of a large number of small~angle 

scatterings than a single close collision. Here, the long range 

Coulomb-interactions are of importance. 

In our investigations we shall adopt the 'Boltzmann model'. 

Thus, Coulomb-interactions between charged particles are neglected. 

Electron-neutral collisions are also ignored. LEE (62) has shown 

that the effect of such collisions are negligible ¥hen compared to 

ion-neutral collisions. He found that for typical experimental para­

meters the mean free path for electron-neutral collisions was twice 

as long as the width of the DP device measured along the magnetic 

field. Our analysis is thus restricted to ion-neutral collisions 

only. Of these, the elastic collisions between the incident beam ions 

and the stationary neutrals are of the 'billiard-ball' type. The 

total kinetic energy of the interaction remains constant and the 

internal states of the colliding particles are unchanged. The in-

elastic collision is assumed to be of a charge-transfer type, where­

by an incident beam ion, travelling with a velocity U, 'absorbs' an 

electron from a neutral atom (of the same atomic species) at rest. 

The end products of the interaction are therefore a neutral atom 

with approximate velocity U and an ion with zero drift velocity in 

the laboratory frame, which, henceforth, will be referred to as a 

'rest' ion. 

The Boltzmann collision integral is complicated by nature 

and is mathematically intractable. In practice it is necessary to 

simplify the mathematical procedures in order to interpret experimental 

measurements. Therefore, we adopt the model of BHATNAGAR et at (75) 



and write the Boltzmann equation for the beam ions as 

afB e r+ V ~ B] 
- + - LEo + ,,+ m. 
or 1 av 

v - -A ce 
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(6.1.2) 

Here, the first team on the right hand side is the elastic collision 

term, while the second represents inelastic charge-transfer collisions. 

The effect of the elastic collisions is to drive the velocity distribution 

fB(~,V,t) towards a stationary Maxwellian fOB,(~,V,t) given by 

~(y) (V
2 

+ v2 
+ V

2
) 

fOB,(~,V,t) = (2~C. 2)3/2 exp (- x 2 ~.2 z] (6.1.3) 
10 10 

where C. = (T. /m.)1/2 is the thermal speed of an ion with zero drift. 
10 10 1 

This is plausible since the condition ~ » nB implies that the back­

ground neutrals may be considered to act as an infinite sink for 

momentum and energy. In Eq.(6.1 .2) we have written the collision 

frequencies as 

V 
vHe) = r 

ci(e) 
(6.1.4) 

where v (v.) is t he elastic (inelastic) collision frequency and A 
e 1 ce 

(A .) the mean free path for elastic (inelastic) collisions . In 
C1 

general the mean free path A is related to the collision cross section 

o and the background neutral density ~ according to 

-I 
A = (~ 0) 

Although the dens i ty ~ changes (due to charge-transfer collisions) 

as the ion beam traverses the region y ~ 0, the condition ~ » n
B 
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implies that this change, as seen by the beam ions, is negligibly small. 

The cross section a is usually a function of velocity. However, if we 

restrict ourselves by the assumption that a is independent of velocity, 

then we see that A assumes a constant value. The experimental 

measurements of BROWN (76) and OHNUMA and FUJITA (77) exhibit a wide 

velocity range over which the change in a is small. Hence, Eq.(6.1 .4) 

tells us that although the mean free paths A • and A are constants, 
C1 ce 

the collision frequencies v. and v have an explicit dependence on 
1 e 

speed. 

In writ i ng down Eq.(6.1 .3) we have assumed spatial homo-

geneity in the x and z directions, and neglected any spatial variation 

of the temperature. It has already been assumed that the ion beam 

+ 
enters the region y > 0 with density N and drift U(y = 0) = U y. We 

o 0 

assume, in addition, that they enter with a Maxwellian distribution. 

Thus we may write 

{V2 
+ (V - U )2 2 N 

[- + Vz}] 
foB(y 

+ 0 x y 0 = O,V) = 
(2'1fC

i
i)3!2 

exp (6.1.5) 2 2 CiB 

with nB(y = 0) = N • 
0 

We note that here CiB = (TiB/mi )1/2 is the thermal speed of a drifting 

beam ion and is usually different from that of a stationary ion, since 

in general T' B * T. . The effect of the charge-transfer collisions 
]- 10 

is to modify the density of the ion beam as it progresses into the 

region y>O. This change is represented by the term nB(y) in Eq.(6.1.3). 

As for the elastic collisions, they cause a slowing down of the beam. 

Hence, from the point of view of the elastic collisions, allowing for 
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density modification by the inelastic collisions, we may expand the 

distribution fB(y,V) about an equilibrium foB(y,V) defined by 

222 

( 
m. )3/2 r m. {V + (V - U) + V }] 

~ 1 1 X yo z 
f B(y,V) = nB(y) 2~T exp l- 2 T 

o iB iB 

(6.1.6) 

Since there is no external electric field and the ions are unmagnetized, 

we have 

Furthermore, we seek a stationary solution of Eq.(6.1 .2). 

d 
at = 0 

Using the expansion 

and the results (6.1.7a) and (6.1.7b), Eq.(6.1 .2) becomes 

EV --A ce 

(6.1.7a) 

Thus 

(6.1 • 7b) 

(6.1.8) 

(6.1.9) 

In writing the above equation we have assumed that the inelastic 

collisions occur much more frequently than the elastic ones. There-

fore the collision term of the latter is of an order (in E) higher 

than that of the former. An equivalent statement is that the collision 

mean free paths are such that 



A • « A 
C1 ce 

To lowest order in E, Eq.(6.1.9) yields 

afoB 
V --= 

Y Cly 
V 
A • foB 

C1 
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(6.1.10) 

(6.1.11) 

We notice that the choice (6.1.6) for foB(y,V) and the expansion 

(6.1.8) for fB(y,V) have restricted possible spatial variations in U 

and TiB to higher orders of magnitude than that in th~ density n(y). 

This means that we consider the spatial variation of n(y) to be much 

more rapid than that of U(y) and TiB(y). In fact the variation of 

TiB is ignored. This behaviour has been experimentally observed by 

JONES and BARRETT (42) 

y 

-.. 
V 

Figure 6.1 
x 

Choosing spherical coordinates in velocity space as shown above, 

Eq.(6.1.11) reduces to 

. ClfoB __ V 
V cos 9 -- = foB Cly A • 

C1 
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i.e. , 
afOB -1 

cos e -=-f . ay l. oB 
Cl 

Upon substituting for foB from Eq.(6.1.6), with TiB treated as a 

constant, we have 

cos 

2 2 2 
1 { m. }3/2 

= - r
ci 

nB(y) 2w ~iB exp [ 
m.{V + (V - U) + V l] 

_ 1 X Y 0 Z 

. 2 TiB 
(6.1.12) 

Next, we integrate over velocity space with dV = v2 sin e dV de d~. 

rhe left hand side of Eq.(6.1.12) then becomes 

2w w /2 00 

anB(y){ mi }3/2J J J a 2wT. d~ de dV 
y lB 0 0 U 

2 
( m.V \ (m.u 

cose exp\- 2~iB)exp ~i: V 

2 

) ( 
m.u) 2 

cose exp - 2~i: V sine 

o 

(6.1.13) 

In general the integration with respect to e ranges from 0 to w. How-

ever, the beam ions entering the region y>O and proceeding in the 

positive y direction have V > O. Since these are the ions detected, 
y 

we see from Fig. 6.1. that the upper limit of e is restricted to w/2. 

The lower limit of V is chosen as U and not zero since in the absence 
o 

of any thermal motion the ions have the externally imposed drift 

• -+-
veloclty U • 

o 

using the result 

J
W/ 2 • cose Slne 

o 

exp(x cose) de x 1 x 1 = x (e - x e ) + -2 
x 
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we see that 

We substitute this result into Eq.(6.1.13) and perform the trivial 

integration with respect ~ to obtain 

2 2 

[
r: { m.(V-U) }( T' B ) 2 Joo {m.(v-u)}( T' B )2 2 

2n J~uexp - 12T .
B

o m.~ V V dV- uexp - 12T .
B

o m.~ V V dV 
1 10 1 10 o 0 

2 2 2 
f miV) f miuO) TiB 2] 

exp \-~ exp \-~ 2 2 2 V dV 
1B 1B m.U V 

1 0 

( 
m. )1/2 

Defining x = 2T~B (V - Uo),this reduces to 

[ 
T'B [ 2 {f2TiB\1/2 } (2TiB\1/2 f TiB)2r: 2 (2TiB)1/2 

2n m.~ exp (-x) \~) x + Uo ~) dx -\m.U J~xp(-x) ~ dx 
100 1 110 0 1 

2 

(
TiB)1/2 TiB 
- --exp m. 2u2 

1 m. 
1 0 

= 2~ [f TiB) {l (2TiB) + ~1/2 U (2TiB)1/2} _ ~1/2 ( TiB)2 (2TiB\1/2 
\m.U 2 m. 20m. 2 m.U m. ) 1 '0 1 1 1 0 1 



[ 
T.; 

= 2'1f ++ 
m.U 

1. 0 

f'lf)1/2 (TiB)3/2 { 
r- ,- 1 ,2 m. 

1. 

I 
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2 
T' B T' B (U 'f ( U \]}] 

- ~ + ~ exp ,- --;')L 1 - erf 0 ") 

m.U m.U 2C' B Iic' B 1. 0 1. 0 1. 1. 

-U2/2C :r 
- e 0 i~1 - erf 

(6.1.14) 

where erf(x) is the well known error function, defined as 

2 JX _t
2 

erf(x) = ~ e dt 
'If 0 

From Eqs.(6.1.13) and (6.1.14) we see that integration of the left hand 

side of Eq.(6.1.12) over velocity space gives 

(6.1.15) 

Next, we integrate the right hand side of Eq.(6.1.12) over velocity 

space. In terms of the chosen spherical coordinates, this becomes 

(6.1.16) 
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Now 

In/2 {(m.u V)} ( T' B ) [ (m.u V) ] exp ~ 0 . cose sine de = \m.~ v exp ~.o - 1 
o i B 1. 0 1.B 

Together with this result and the trivial integration with respect to 

~, Eq.(6.1.16) reduces to 

2 2 
nB(Y)J m. }3/2(2nT'B)[r: {m. 2} r: ( m.u) (m.v) ] 

- ~2n~'B m.U1. J~uexp - 2T~B(V-Uo) V dV-J~uexp - 2~.oB exp - 2~'B V dV 
C1. 1. 1. 0 1. 1. 1. 

o 0 

2 
nB(y){ mi }3/2(2nTiB)[I~ 2 {(2TiB\I/2 }(2TiB)I/2 2 (uo )] 

= - exp(-x) --) x + u -- dx-C. exp - -A. 2nT. B m. U m. 0 m. 1.B C 2 C1. 1. 1. 0 0 1. 1. iB 

( 
m. )1/2 

where x = 2T:
B 

(V. - Uo). 

This gives 

nB(y) {mi }3/2 
A. 2nT' B C1. . 1. 

2 

(
2nTiB) {l (2TiB\ + ~1/2 u (

2T
iB)I/2_ (TiB)exp (_ ~)} 

m.U 2 m.) 20m. m. C 2 
1. 0 1. 1. 1. iB 

1 = - -A • C1. 

\1/2 U U
2 

+ (n) -..2. - exp (\-~ \)}lJn (Y) 
2 C' B C 2 B 

1. iB 

Hence from Eqs.(6.1.15) and (6.1.17) we see that 

2 

[ 
CiB 11 ~iJif -U

2
/2C.

2
[ JUo )]}] 1/2 + 211- ~ l-e 0 · 1.B l-er.J:\-

(2n) U U rzC. 
o 0 1B 

(6.1.17) 

1 
= -

A . 
C1 

)

1/2 U U2 

+ (\I ~ - exp (- ~)}ln (y) 
CiB C 2 J B 

iB 
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The solution to this differential equation is 

nB(y) = A exp (- a f ,) 
C1 

where 

CiB t 1 -
U2 

exp (- c:~)] + t (21T)1/2u 
0 (6. 1 .18a) a = 2 U

2 
CiB 1 CiB 

[1 - exp (- ~) {I - erf Cz::)}] (21T) 1/2u 
+ - ---

2 2U2 
0 0 

2C iB 

Since nB(y - 0) = No' it follows that 

= No exp (- ~,) 
C:l 

(6.1. 18b) 

It is seen that for C'B « U , as is usually the case in practice, 
1 0 

and 

(6.1.19) 

It is important to note that the result (6.1.19) is equivalent to 

replacing V by V on the right hand side of Eq.(6.1.11) above. Since 
y 

C'B - C, , this holds true for U 
1 10 0 

» C, in general. 
1 

Figure 6.2 illustrates nB(y)/N
o as a function of y/X , • 

C1 

The parameter labelling the curves is (U /l2c'B)' The corresponding 
o 1 

a values are given in parentheses. The nB/N
o 

values for a = 1 are 

less than 0,5% larger than those for a = 1 ,02«U /l2c'B) = 10) and 
o 1 

cannot be separately indicated. For the DP device, a typical value of 

(U /l!c'B) is ~ 17 (41). The expression (6.1.19) is therefore a good o 1 

indication of the spatial variation of ion beam density in the device. 
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Figure 6.2 

1,0----------.:-------------, 

0,5 10(1,02) 

o 2 

I 

Variation of normalized ion beam density nB(y)/N
o 

with distance 

into the plasma. The parameter labelling the curves is (U /!2Co
B
), 

o 1 

The corresponding a values, as defined in Eq.(6.1.18a), are given 

in parantheses. 
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6.2 THE BACKGROUND REST IONS 

It has been shown that if U »C. then the stationary dis­
o 1 

tribution of the beam ions may be written as 

-+ 
foB' (y,V) { 

m. }3/2 
= No exp(-Y/A ci ) 2TI~. 

10 

2 2 
r m. (V + V 

1 X Y (6.2.1) 

Since the rest ions are created by charge-transfer inelastic collisions, 

the Boltzmann equation for them may be written as 

(6.2.2) 

The choice of the collision term in Eq.(6.2.2) not only allows us to 

maintain constant local ion density, but is also consistent with our 

assumption, and an experimentally observed phenomenon, that the ions 

created during the collision have zero drift velocity in the laboratory 

frame. 

In view of the results (6.1.7a) and (6.1.7b), and spatial 

homogeneity in the x and z directions, Eq.(6.2.2) modifies to 

V afR = V foB' 
y ay A. 

C1 

As mentioned at the end of Section 6.1, the assumption C. «U allows 
1 0 

us to write nB(y) = No exp (- Y/A ci ), as in Eq.(6.2.1), and 1S 

equivalent to setting V = V on the right hand side above. 
y 

Thus, we have 
af

R 
V 

V - =..:t... foB' y ay A. 
C1 



i.e. , 

1 N 
= r. 0 

C1. 
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2 

{ m. }3/2 (m.v ) 
exp (- Y/A ci) 2TI~. exp - 2~. 

1.0 1.0 

We integrate with respect to y and use the fact that there are no 

rest ions at y = 0 , to find 

(6.2.3) 

with rest ion dens i ty 

~(y) 

(6.2.4) 

It is clear from Eqs.(6.1.19) and (6.2.4) that 

(6.2.5) 

which is consistent with the mechanism of the charge-transfer process, 

whereby for each beam ion lost, a rest ion is 'born'. Therefore, a 

constant total ion density is maintained. 

6.3 VARIATION OF MEAN BEAM SPEED WITH DISTANCE INTO THE PLASMA 

To first order in E, Eq.(6.1.9) yields 



V 
A ce 
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(6.3.1) 

where foB and foB' are given by Eqs.(6.1.6) and (6.1.3) respectively. 

As in the previous undertaking, in the limit C. «U we have 
1 0 

nB(y) = N exp (- y/A .) o C1 

and set V = V on t he right hand side of Eq.(6.3.I). Thus, upon 
y 

substituting for foB and foB' we obtain 

222 
( m. )3/2 {m. (V +V +V )}] 1 1 X Y z 

- \2nT. exp - 2T. 
10 10 

i. e. , 

222 
( m. )3/2 {m.(v +v +v )}] 1 1 X Y z 

- \2nT. exp - 2T. 
10 10 

We integrate with respect to y, and since fl(y 

out that 

-+ = O,V) = 0, it turns 

-+ 
f 1 (y, V) = 

( 
mi )3/2 

- 2nT. exp 
10 

222 

{ 
m. (V +V +v )}] _ 1 X Y z 

2T. 
10 

(6.3.2) 
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From Eqs.(6.1.8), (6.1.6) and (6.3.2), we have (to first order in E) 

+I. 
A ce 

222 
( m. )3/2 {m.(v +V +V )} 1 1 X Y z 

nB(y) ,2TIT. exp - 2T. 
10 10 

(6.3.3) 

Equation (6.3.3) tells us that after a distance y, a fraction ylA ce 

of the ions in the charge-transfer modulated ion beam have undergone 

elastic collisions. These ions are lost to the drifting beam and, 

as shown, become part of the eventually stationary distribution foB' 

given by Eq.(6.1.3). 

The mean drift velocity O(y) of the ion beam is calculated with the 

aid of Eq.(6.3.3). It is found that 

where 

(6.3.4) 

= U {I - (A ./A ) (y/A .)} o C1 ce C1 

Since Aci « Ace by assumption (6.1.10), we see from Eqs.(6.1.19) and 

(6.3.,4) that the spatial variation of the ion beam density is indeed 

much more rapid than that of the mean flow velocity. 
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The loss of beam ions by charge-transfer interactions and the spreading 

of the beam with distance, in the absence of any instability, have been 

d · h Pd· (41,42) A f 8 10-4 T observe 1n teD eV1ce • t an argon pressure 0 x orr, 

the following measurements were recorded at a distance of 16 cm into 

the plasma (78) : 

Ion beam density 

Ion beam speed 

where 6U = U - Q(y). 
o 

nB(y) 
= N 

0 

0,10 < 

0,467 

6U 0,14 -< 
U 

0 

In Fig. 6.3 plots of nB(y)/No and U(y)/U 
o 

are displayed, 

satisfying Eqs.(6.1.19) and (6.3.4) respectively. We recall that these 

curves are for C. « U , a condition well satisfied by the experiment. 
1 0 

The parameter labelling the different curves of U(y)/U 
o 

is (A • /A ) • 
C1 ce 

Measurements show that A . ~ 20 cm (78). Thus, at (Y/A .) = (16/20) 
C1 C1 

= 0,80, we notice from the figure that when 

~(y) 

N 
o 

= 0,45 

= 0,45 

6U U = 0,08 
o 

6U U = 0,16 
o 
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Variation of normalized ion beam density n
B 

(y) /No ~--) and 

average beam speed U(y)/U (- ' -'-'-), as defined by Eqs.(6.1.19) 
o 

and (6.3.4) respectively, with distance into the plasma. The 

parameter labelling the different U(y)/U curves is A ./A • 
o C1 ce 
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Comparing these values with the experimental results we see that a 

reasonable estimate of (A ./X ) for the DP device under the given 
C1 ce 

operating conditions is 0,10 < (A ./A ) < '0,20. Thus, it appears that 
C1 ce 

our assumption that the inelastic charge-transfer collisions are more 

dominant than the elastic collisions is justified by experiment. 

6.4 WAVE PERTURBATIONS SUPERIMPOSED ON THE INCIDENT ION BEAM 

Before proceeding with our investigations on the effect of 

ion-neutral collisions on wave perturbations superimposed on the lon 

beam, we review some of theoretical studies already undertaken using 

(75) 
the collision model of BHATNAGAR, GROSS and KROOK , henceforth, 

referred to as the BGK model. A few experimental observations are 

also discussed. 

(a) Theoretical Studies 

KAW (79). . d h . f' . 1nvestigate t e propagatIon 0 10n waves 1n n 

weakly ionized collisional plasma with crossfield electron drift. With 

the assumption \) «n and \) . » rl. , where \) (v.) is the electron (lon)-
eel 1 e 1 

neutral collision frequency, he used the fluid equations to describe 

electron motion along B and a kinetic equation with a BGK collision 

model for the ions. Upon using the quasi-neutrality approximation it 

2 2 turned out that the perturbation growth rate was a factor. (k /k ) 
z 

larger than that in an unmagnetized plasma. Electron-neutral collisions 

were found to promote wave growth, while ion-neutral collisions caused 

damping. 
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CUSSENOT and FABRY (80) studied the effect of ion-neutral 

collisions on ion waves. Numer i cal solutions of the dispersion re-

lation showed that collisions were important in the low frequency range, 

i.e.,(w/v) < I, where w is the wave frequency and v the collision 

frequency. In this domain collisional damping was much more significant 

than ion Landau damping. The transition to ion Landau damping occurred 

over the range v < w < w •• 
pl. 

The investigations of KAW (79) were carried a step further 

by SHARMA and BHATNAGAR (81) who included the effects of perturbations 

in the average drift velocity and temperature of the ions. Using the 

complete BGK collision .model for the ions they found that ion-neutral 

collisions did not contribute to wave damping, in contrast to the find-

ings of KAW. The inclusion of collisions was found to reduce the 

critical drift velocity required for the onset of the instability. 

(b) Experimental Observations 

To compare with their measurements made in the positive 

column of a helium discharge, FENNEMAN et aZ (82) 
developed a one 

dimensional linear theory of the ion acoustic instability. The approach 

was via the Boltzmann equation with a BGK type elastic collision term 

for both ion-neutral and electron-neutral collisions. The authors 

showed that in the region of parameter space where the ion acoustic 

waves were well defined electron-neutral collisions could be neglected. 

Their experimental results provided quite good agreement with theory. 

The waves were found to grow spatially and saturate. The saturation 

mechanism was not well understood. 
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Working in a DP device, KIWAMOTO (83) injected a high density 

ion beam into a homogeneous unmagnetized plasma. The charge-transfer 

mean free path for the beam ions was measured to be ~ 15 cm. Pro-

pagation of test waves showed that for beam speeds Vb < 2 Cs the fast­

beam ion acoustic mode damped exponentially, while the initially grow-

ing slow-beam mode saturated further down the target chamber • 

., (84) ", Q h' SATO et a~ conducted the1r exper1ments 1n a -mac 1ne 

operated as a DP device. They found that as the positive bias on the 

grid separating the driver plasma from the target plasma was increased 

the damping distance o ' and the wavelength h of the perturbations also 

increased, as did the ratio O/h. Both the fast and the slow-beam ion 

acoustic modes were detected and the measured phase speeds agreed well 

with theoretical estimates. 

Dispersion measurements by HAYZEN and BARRETT (41) in the 

Double Plasma device, on which the model in Section 6.1 is based, in-

dicate the propagation of the slow-beam ion acoustic mode. Good agree-

ment between theoretical and experimental growth rates is obtained for 

a fitted ion-neutral collision frequency of 1,7 x 10-5 s-1 The over-

all effect of the collisions was to reduce the growth rate. The 

authors found that the calculated growth rate corresponding to the 

above collision frequency was less than the collisionless value by a 

factor of two. 
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We have seen that in the absence of wave perturbations, and 

for C. « U , the effect of elastic and inelastic collisions was to 
1 0 

modify the background distribution 

fOB(y 
-+ = O,V) (6.4.1) 

with which the ions enter the region y > 0, into the form «6.3.3)) 

-+ (m. )3/2 
f B(y,V)=N exp(-y/).. . ){.1-y/).. } 2 ~ 

o 0 Cl ce ~'B 
1 ' 

exp 

222 
r m. (V + (V -u ) +V )} 

1 X Y 0 z 
\- 2TiB 

222 

+¥.. 
).. 

ce 

(_ ¥.. ,( mi )3/2 
No exp \. ).. .J \.2~T. exp 

C1 10 
{ 

m. (V + V +V )} 
_ 1 X Y z 

2T. 
10 

(6.4.2) 

The distribution (6.4.2) is taken as a pseudo-equilibrium for the wave 

perturbations, i.e., from the point of view of the waves, it is selected 

to be the zero-order solution of the Boltzmann equation 

af B e r V x Bol af B 
-:;- + iii. LE + C J' -:;- = ar 1 av 

-+ 
and is therefore written as foB(y,V). 

We recall that 

222 

{ 
m.(V +V +V )} 

_ 1 X Y z 
2T. 

10 

(6.4.3) 

(6.4.4) 

is the stationary Maxwellian towards which the system is driven by the 

collisions. 
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Thus, we write 

~:± :± ~~ 
fB(r,v,t) = foB(y,V) + fIB(r,V,t) 

(6.4.5) 
E(~,t) = EI(~,t) 

~ ~ ± ~ 
where fIB(r,V,t) and ~I(r,t) represent the perturbations due to the 

waves. Once again, the electrostatic approximation has been used, with 

Similarly, for the 'rest' ions the distribution 

N {I - exp 
o 

222 

( 
m. )3/2 {m.(v +V +V )} 

( / )} 
1 1 X Y z 

- Y A. 2 T exp - -""'=2=T --"---
C1 'IT. • 

10 10 

(6.4.6) 

is the assumed pseudo-equilibrium for wave perturbations, since it is 

the zero-order solution of the associated Boltzmann equation 

(6.4.7) 

We have seen that in the absence of any instability the distributions 

(6.4.2) and (6.4.6) maintain a constant total ion density (cf. Eq.(6.2.5». 

However, to maintain a constant local total ion density in the presence 

of oscillations, we modify Eqs.(6.4.3) and (6.4.7) as follows. 

For the beam ions we write 

- \) 
e 

(6.4.8) 



where, in general, v (v.) is the elastic (inelastic) collision 
e 1. 

frequency. 

Here 

= N exp (- y/X .) 
o C1. 

and, from Eq.(6.4.5), 

where 

is the perturbation in the ion beam density due to the waves. 

The Boltzmann equation for the rest ions is written as 

afR -+ V. at 
afR e ( V x Bo) 
- + - ,E+ C • + m. a r 1. 
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(6.4.9) 

(6.4.10) 

The reason for the choice of the above forms can be easily seen for the 

case where the co l lision frequencies are independent of velocity. Upon 

adding Eqs.(6.4.8 ) and (6.4.10), and integrating over velocity space, 

we find that the l ocalized total ion density is, indeed, conserved. 

We substitute for fB from Eq.(6.4.5) into Eq.(6.4.8), express v (v.) 
e 1. 

explicity in terms of V and A (A .), and linearize about f B(V,y), Y ce C1. 0 
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to obtain 

(6.4.11) 

where El =-v'$1 in the electrostatic limit. The result (6.1.7a) has 

also been used. Assuming the perturbed quantities to be harmonic in 

space and time, we may write 

-+ . -+ -+ 
$1(r,t) = L $ exp {i(k • r - w t)} 

k kw k 

-+-+ -+ . -+ -+ 
f 1B(r,V,t) = ~ f Bkw (V) exp {i(k • r - wk t)} (6.4.12) 

and 

Then, from Eq.(6.4.11), 

- i f +' +k -+V f e ~ . -+k af oB - ~ f + ~ nBkw f - ~ f 
wk Bkw 1. . Bkw - m. 'l'kw1. • -- = A Bkw A n B(Y) oB' A • . Bkw 

1. av ce .ce 0 C1. 

Solving for f Bkw , 

- ~ 4>k k. (0£ B/aV) m. w 0 1. 
fBkw = --=--------

{wk-k.V+i(k +k .)V } ce C1. Y 

+ 
A n B(y){wk-k.V+i(k +k .)V } ce 0 ce C1. Y 

where kcj = A:~ (j = i ,e) and ~kw J fBkw dV. 

We integrate the above equation over velocity space and obtain 

e 
= - m. $kw 

1. 

J k . (3foB/3V)dV 

· {w-it .V+i(k +k .)V} 
ce C1. y 

+ A n B(Y) ce 0 J 
V f B' dV Y 0 

{wk-it.V+i(k +k .)V } ce C1. Y 

(6.4.13) 
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Since the unmagnetized ions assume straight line trajectories we may 

simplify the algebra by an appropriate rotation of the coordinate axes 
+ + 

so that Vy is parallel to k. Upon substituting for foB from Eq.(6.4.2), 

the first term on the right hand side in the above equation becomes 

222 2 
,e ~ k Y 0 x Y 0 z ~ + r 

(
m. \3/2 J(V -U )exp{-(V +(V -U ) +V)/2C· B} 

iii. ~kw noB(y)L{I-y/Ace} 21fT.
B

) -C 2 (wk-[k-i(k +k .)]V) , dV 
~ ~ iB ce c~ y 

+1.. 
A ce 

= ~ ~k n B(y)r
L
{I-y/A } m. w 0 ce 

~ 

where 

2 2 2 2 

( 
m. )3/2 k J V exp{-(V +V +V )/2C. } ] 
~ _ y . x y z ~o dV 

,21fT . C 2 (wk-[k-~(k +k .)]V ) 
~o. ce c~ y 

~o 

dV 
y 

(6.4.14) 

k J = k - i (k + k .) ce c~ 

Defining x = 
(V - U ) 

Y 0 

12 C. 
~B 

+00 

12CiB I - k"' 

the first integral becomes 

2 x exp (-x) 

(21fC ';B2) 1 12 
... Z' (9) =----
k' 

2 



where 

e a 

III - k'U 
k 0 

12 k'C
iB 
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(6.4.15) 

and Z'(e), the deri vative of the Z-function, is defined by Eq.(3.5.7). 

Similarly, the second integral may be manipulated to yield 

( 21T C. 2) 1 /2 
10 z, (e') 

k' 2 

where (6.4.16) 

With the results (6.4.15) and (6.4.16), Eq.(6.4.14) reduces to 

e 
ii. <l>kw (6.4.17) 

1 

In a manner paralleling the one above, the integral in the second term 

in Eq.(6.4.13) reduces to 

n (y) 
oB z' (e') 
2k' (6.4.18) 

Thus, from Eqs.(6.4.13), (6.4.17) and (6.4.18), we have 

z' (e) + z'(e') ] 

i n
Bklll + z' (e') 2k'A ce 
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Solving for nBkw ' 

e~kw k ({I-(Y/A ce)} (Y/Ace) ] 
--nB(y)k'" 2 Z'(9)+---=--Z'(9') 

m. 0 2 C 2 C. 2 
1. iB 1.0 

(6.4.19) 

. [I i Z' (9') ] 
l 2k'L . ce 

For the rest ions we write fR = foR + fiR' and linearize Eq.(6.4.10) 

about foR' Upon substituting v. = (V /A .), we obtain 
1. Y C1. 

af lR af l af R V niB 
-- + V • __ R - ~ "14> • _0_ =.J.. --r-'t"" foB' 
at ~ m. 1 ~~V A. noB(Y) ar 1. Q C1. 

For perturbations of the form (6.4.12), this reduces to 

from which 

e -+ ~ 
- - 4>k k. (af R!dV) m. w 0 

fRkw (V) = __ 1.;;...-. ______ _ 

(w
k 

- it . V) 
+ 

where, in analogy with the equations (6.4.12), 

The density perturbation associated with fRkw is given by 

= (6.4.20) 
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Once again taking k II Vy and subst ituting for foR from Eq.(6.4.6), we 

find that the first integral on the right hand side reduces to 

+00 2 2 
n R(Y) k J V exp (- V /2C. ) _ 0 _ Y Y ~o 

(2~c.2)172 c. 2 (wk - k V ) 
~o ~o -co Y 

noR(Y) 
= Z I (wk/likC. ) 

2C.2 ~o 
~o 

dV 
Y 

where (6.4.2]) 

n R(Y) = N" {] - exp (- Y/A . )} 
o 0 c~ 

With the aid of Eq.(6.4.4), the second integral in Eq.(6.4.20) modifies 

to 

(6.4.22) 

From Eqs.(6.4.]9) - (6.4.22), we have 

e$ [nOR(Y) i ~ {I - i 
-] 

= ~ zI (e") + noB(Y) zl(e l )} m. 2C. 2 2kA . 2k'A 
~ c~ ce 

~o 

)( (] - (Y /A ) ] Z I (e) (Y/Ace) 
zl(e l )}] 

ce 
2 + 

2C. 2 2C iB ~o 

(6.4.23) 



with 
00 

e" = -~­
I2kC. 

10 

6.5 THE ELECTRON TERM 
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(6.4.24) 

We assume that the stationary neutralizing background electrons 

have a Maxwellian distribution, given by 

(6.5.1) 

The perturbed electron density is given by Eq.(3.3.2) of Chapter Three, 

viz. , 

= _ 211'e cp 
m koo 

e 

J2(~) k (af /av)] o z oe z 
(00 - k V ) '1- d'1- dV z 

k z z 

(6.5.2) 

222 
where ~ = Vx+Vy and ~ = k~~/ne' We have allowed for the fact that 

here the electrons, in contrast to the study undertaken in Chapter 

Three, no longer have a drif .t V . 
o 

For a distribution of the type (6.5.1), it is seen from Eqs.(3.4.4) and 

(3.4.7) that we may write 

n ekoo 

- r (b) 
o 

+00 2 2 

J 
k (a/av ) {exp (- V /2C )} 

z z z e 
(ook - k V ) z Z 

-00 

where we recall, r (b) = exp (-b) I (b) with b = k2c2/n2 
o 0 j.,e e 

(6.5.3) 
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With the aid of the integrals in Appendix A, this may be expressed in 

terms of the plasma dispersion function as 

+ 
z, (w

k
/l2k C ) 

- z e 2 . } - 1] 

or using the relation (3.5.7), 

e~kw N r ( w \ ] 
nekw = -- 0 1 + r (b) k z(wk/l2kzCe) 

m ?" l 0 '12k C ) 
e e z e 

(6.5.4) 

6.6 SOLUTION OF THE DISPERSION RELATION 

With the aid of Eqs.(6.4.19), (6.4.23) and (6.5.4), Poisson's 

equation 

becomes 

~
2 n B(Y) H[t-(Y/A )]z'(e) 

t 
TIe 0 ce 

- + 
k2 m. k 2C 2 

1 iB 

(Y/Ace) Z'(e')}{t- i z'(e,)}-l 
2 2k'A 2C. ce 

10 

+ Z'(e,,){nOR(Y) + 

mi 2c. 2 
10 

(Y/A ce) ]} 
+ Z'(e') 

2c. 2 
10 

(6.6.1) 
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where, from Eqs.(6.4.14), (6.4. J5), (6.4.16) and (6.4.24) respectively, 

k' = k - i (k + k .) ce C1 

W
k a' = --.;.;....-

I2k'C. 
10 

a = 
W - k'U 

k 0 

f2k'C
iB 

W
k a" = ---

IikC. 
10 

In solving the dispersion relation we retain the assumption of warm 

electrons and cold ions, i.e.,Te » TiB , Tio. 

For the warm electrons we use the approximation 

I wk I «1 
12k C 

(6.6.2) 

z e 

i.e., the wave phase speed along B is much smaller than the electron 

thermal speed, and hence the power series expansion (63) 

Z(A) = i ~1/2 exp (- A2) - 2A II _ 2;2 + •••• ] 

for IA I « 1. 

For the cold ions, we assume 

I 
- k'U 

lei - ~k'CiB I » J 

(6.6.3) 



and 

\e"\ a I W
k I » I 

fikC. 1.0 

. . (63) 
Then the asymptot1.C expans1.on 

Z()') 

for \).\ » I, permits us to approximate 

Z'().) = - 2[1 + ). Z()')] 

~ ).-2 
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(6.6.4) 

With the approximations (6.6.3) and (6.6.~) the dispersion relation 

(6.6.1) simplifies to 

I 
+­m. 1. 

4 2 [n B(Y) k {[I-(Y/). )] 
I 

1Te 0 ce 
- -- LT 

k 2 
mi k 2Ci~ 

i (l2k'CiO)2]-1 
""'2k~i).:"'- \ w

k ce 

-~ {I + i 1TI/2 r (b) Wk}] = 0 
m C

2 
0 12k C 

(6.6.5) 
e e z e 



To proceed further we assume, in addition to A »A., that ce C1 

k A ce 
»kA.»1 

C1 

In terms of the definition k . = A:~ (j = CJ 

k»k.»k 
C1 ce 

i ,e) we have 

J 87 

(6.6.6) 

This means that the wavelength of the fluctuations is assumed to be 

much smaller than the inelastic charge-transfer mean free path, which, 

in turn, is smaller than the elastic mean free path. Typical measured 

values in the DP device (78) are A ~ 2 cm and A . ~ 20 cm, and the 
C1 

investigations in Section 6.3 have inferred 0,1 < (A ./A )< 0,2. 
C1 ce 

Thus, (6.6.6) is a reasonable approximation. 

Then 

1 1 { i (k +k .)} 
~":'""T:----::----:- ::: _ I + ce c 1 

k' = k-i(k +k .) k k 
ce C1 

For wk = W~ + i Yk , with 11k1 « w~, we use the approximation (3.3.10), 

viz. , 

The dispersion re l ation (6.6.5) then becomes 

4TIe2[n B(Y){ i(k +k .)}{[ I-(Y/A )] 1- __ 0 1+ ce C1 ce 
k 2 m. k 2 2 

1 C. 1B 

2[k2-2ik(k +k .)]C. B
2 

ce C1 1 

[ (wk
r -kU ) +i( yk+{k +k .}U)] 2 

o ce C1 0 



(Y /A ) 2C.
2

[k
2
-2ik(k +k .)] ( 2iYk\} + ce 10 _ ce C1 . 1- __ , 

-2-C"".2:- ( r,2 \. wr ) 
10 wk l k 

+ 2k~Ci! (1- 2iYk) {nOR(Y) + 
r 2 r 2 m. (w ) wk 2C. 1 k 10 

i noB(Y) r{I-(Y/A ce)} 

2kAci L 2c
i
i 
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2C.i[k2-2ik(k +k .)] 
x 1 ce C1 + 

[(wrk-kU )+i(yk+{k +k .}U )]2 

[k
2
-2ik(k +k .)] 2( 2iYk)]} ____ ::-ce __ c_1_2C. 1---

( rJ2 10 r - w
k 

wk o ce C1 0 

-~{I + 
m C2 

e e 

(6.6.7) 

where terms of second order and higher have been neglected. 

If we assume, in addition, that 

then 

I
Yk+ {k +k .}U I ce C1 0 « 

r 
(wk-kUo) 

and Eq.(6.6.7) modifies to 

2 

{
[l-(Y/A )]k ( 

ce 1 
(wr _kU)2 \. 

k 0 

(6.6.8) 

2i(k +k .») _ ce C1 
k 



2k
2
C.

2 
( 2iYk) {n R(Y) i n B(Y) + 10 1- __ 0 + 0 

--r-2 r 2 2kA. 
m.(w) wk 2C. C1 

1 k . 10 

-~{1 
m C2 

e e 
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[
{I-(Y/A )}k2 ( 2i(k +k .») 
___ ..;;.c..;,.e-..-_ \1- C: C1 

(wr-kU )2 
k 0 

(6.6.9) 

Upon neglecting the product of small quantities, the real part turns 

out to be 

i.e., 

{N -n B(Y)}} + 0 0 . 

(w~)2 

where we have used Eqs.(6.4.9) and (6.4.21) to replace noR(Y). This 

may be rewritten as 

where w . is the ion plasma frequency and C the ion sound speed. We p1 s 

now make the assumptions ) 

(6.6.10a) 



190 

and 

(6.6. lOb) 

The physical implications of these approximations will be discussed 

a posteriori. The above equation then reduces to 

No exp (- Y/A ci) {1 - (Y/A ce)} {I I } 
--=-----(-W-r..:::_.=.kU-)-::2:----....;;..;;.- = No k 2C2 + w : 

k 0 s pl 

from which 

r 
Solving for wk ' we have 

r 
W .. k 

k [ 
Cs 1/2] u! 2 2 1/2 exp (- y/2A .) {1 - (Y/A )} 

o (I+k AD) Cl ce 

Thus, the assumption (6.6.10b) implies 

k2 [u + Cs (/2) {I (/' }}1/2]2» k2C2 
O - 2 2 1/2 exp - Y A. - Y Ace s 

(I+k AD) Cl 

(6.6.11) 

Sl·nce (l+k2'n2),-1/2 < 1,0 / A < exp (-y 2A .) < I for y >_ 0, and for 
Cl -

o ~ y ~ Ace' {I - (Y/Ace)}1/2 < I, this restriction is satisfied if 

U »C 
o s 

(6.6.12) 

i.e •• the ion beam speed is much larger than the ion sound speed - as is 

usually the case in experimental studies of the ion sound instability. 

It is easy to show that this condition also justifies the assumption 

(6.6.10a). 



191 

The positive sign in Eq.(6.6.11) corresponds to the so called fast-

beam ion acoustic mode, and the negative sign to the slow-beam ion 

acoustic mode. Since electron density n = N , the said equation may 
e 0 

be written as 

i. e. , 

r 
wk = U + (nOB)1/2 

k 0 - n e 
(6.6.11a) 

where from Eq(6.4.9) noB is the ion beam density. In the absence of 

elastic collisions (A ~ 00), this reduces to . ce 

2 2 
For k An « 1, this corresponds to the expression derived by 

SATO et aZ 
(84) 

Moreover, in the complete absence of collisions 

(A ,A. ~oo) , Eq.(6.6.11) modifies to ce C1 

+ C 
s (6.6.13) 

which is the usual collisionless ion acoustic wave frequency as determined 

in the electron rest-frame (37) 

The imaginary part of the dispersion relation (6.6.9) gives 



noB(Y) 
m. 

1 

i. e. , 

{

[l-(Y/A )]k2 ( 2(k +k.) ce ce C1 
--(w-r-_-kU-)-=2:-- --k 

k ° 

N 
__ 0_ 1Tl/2 r (b) 

m C
2 ° e e 

(k +k .) 
ce C1 

k 

12k C z e 

+ _(Y_/_A_ce....,)<:-k_2 r
l
- 2y k

r
]} 

(w~, 2 w
k 

n B(Y) 
+ ° m. 

1 

2(yk+{k +k .}U ») 
ce C1 ° 
r 

(Wk -kU
o

) 

= 0 

N 1T I /2 w~ 
_0---;::-- r = 0 
m C

2 ° 12k C 
e e z e 

Using approximation (6.6.10a) this reduces to 
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+ 

NO ] /2 
+--7r r 

m C2 
0 12k C 

e e z e 

Thus 

In the absence of collisions (A ,A. -+ 00), 
ce C1. 

k ,k. -+ 0 ce C1. 

noB = No exp (- Y/A ci ) = No 

n = N {] - exp (- Y/A .)} = 0 
oR 0 C1. 

] 93 

12k C 
z e 

(6.6.]4) 

Then for the slow-beam ion acoustic mode (corresponding to the negative 

sign in Eq.(6.6.13», the growth rate (6.6.14) reduces to 

(

7rme)I/2 k 
8m. k 

1. Z 

r (b) 
o 

(6.6.15) 

A.J. HAY ZEN (61) has shown from theoretical considerations that for 

U »C, 
o s 



where k = k + i k. is complex when w i s real (as in experiments). 
r 1 

Computational studies relaxed this result into the region Uo > Cs • 

Hence from Eq.(6.6.15) we may write 

(

1Tme)I/2 !. 
8m. k 

1 Z 

r (b) 
o 

This is identical to the result of BARRETT et at (37) 
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The growth rate (6.6.14) which describes the linear behaviour of the 

crossfield ion acoustic instability in the presence of elastic and in-

elastic charge-transfer collisions will be numerically considered in 

the next section. 

6.7 NUMERICAL STUDIES 

A graphical study of the variation of the normalized growth 

rate (Yk/w ) with distance into the plasma (Y/A .) has been conducted pe C1 

as a function of the different variable parameters. The examination 

is restricted to the slow-beam ion acoustic wave since measurements 

in the DP device have revealed this to be the mode travelling down the 

target plasma (41, 62). Wh 'bl l' 1 erever POSS1 e, parameter va ues typ1ca 

of the argon plasma (with (m./m ) = 73440) in the DP device have been 
1 e 

chosen. 

The curves in Fig. 6.4 correspond to different values of 

For a given (Y/A .), the growth rate is found to increase 
C1 

with (U /C). This may be explained as follows. An increase in ion o s 
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Figure 6.4 

8 

-1 

Normalized growth rate Yk/w for the ion acoustic instability as pe 

a function of the normalized distance y/A .• m./m = 73440, 
C1. 1. e 

T. IT = 0,1, A ./A = 0,1, kAn • 0,1, An/A . = 0,004, k Ik = 0,03, 
1.0 e C1. ce C1. z 

w In = 1:2. The parameter labelling the curves is u Ie . pe e 0 S 



Figure 6.5 

15-----------------------------, 

O~----------~--J~~------~------~~~,9 
~··Ci 

-2L-----__________________ --____ ~ 

Normalized growth rate yk/w for the ion acoustic instability pe 
a function of the normalized distance y/A •• m./m = 73440, C1 1 e 
T. IT = 0,1 , A ./A = 0,1, AD/A . = 0,004, k Ik = 0,03, 10 e C1 ce C1 z 

w In = 12, The parameter labelling the curves is kAn' pe e 

U Ie o S 
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as 

= 5, 



Figure 6.6 
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w: xlO 

pe 
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,a 

Normalized growth rate yk/w for the ion acoustic instability as pe 

a function of the normalized distance y /'A •• m./m = 73440, 
C1 1 e 

T. IT = 0,1, U Ie = 5, kA n = 0,1, k Ik = 0,03, III In = 12. 
10 e 0 s z pe e 

The parameter labelling the curves is An/A .• 
. C1 



Figure 6.7 
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Yk -5 
-xiO 
Wpe 
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0,04 
0,045 
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Normalized growth ~ate ~ Iw for the ion acoustic instability as 
: 'K pe 

a function of the normalized distance y/~ .• m./m = 73440, 
C1 1 e 

T. IT = 0,1 , ~ ./~ = 0,1, U Ie =5, kAn = 0,1, ~n/~ . = 0,004, 
10 e Cl ce 0 s C1 

w In = 12. The parameter labelling the curves is k Ik. pe e z 
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Figure 6.8 

4 

2 

o 

-O,5~----------------------------~----~~ 

Normalized growth rate yklw for the ion acoustic instability as pe 

a function of the normalized distance y/A .• m./m = 73440, 
. C1. 1. e 

T. IT = 0,1, U I c = 5, kA n = 0,1, An/A . = 0,004, k Ik = 0,03, 
1.0 e 0 s C1. Z 

w In = ~ The parameter labelling the curves is A ./A • pe e C1. ce 
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Figure 6.9(a) 
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Normalized frequency wkr/w for the ion acoustic instability as pe 

a function of the normalized distance Y/A .• m./m = 73440, 
Cl 1 e 

A ./A = 0,1. For the solid lines (-----) U /e = 5 and the 
Cl ce 0 ~ 

parameter labell ing the curves is kAD; the broken lines (_. - .' -. -) 

are for kAD = 0,1, with U Ie as the variable parameter. o s 
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Figure 6.9(b) 

1,0 

-- . -r- . 

0,5 

o 1,0 

Normalized wave phase speed V~/Uo(-----) and normalized average 

beam speed U(y)/U (_._._._) for the ion acoustic instability as o 

a function of the normalized distance y/X .• m./m = 73440, 
Cl 1 e 

U /e = 5, kAD = 0,]. The parameter labelling the curves is A ./A 
o s Cl ce 
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beam speed results in more free energy being available to drive the 

instability. Thus wave growth is enhanced. The observed reduction 

in growth rate with (Y/A .), for a given (u /e ), may be attributed 
C1 0 S 

to the decrease in the ion beam speed U(y) (= U {1-(A ./A ) (Y/A .)}) 
o C1 ce C1 

and the number of beam ions supporting the waves, viz., 

= N exp (-y/A .) , as we move down the plasma into the region o C1 

The parameter labelling the curves in Fig. 6.5 is kAn. An 

explanation of the increase in growth rate withkAn, for a given (Y/A .), 
C1 

may be offered in terms of the wave phase velocity. We notice from 

Eq.(6.6.11) that in the limit k «k the slow mode satisfies the z 

condition 0 < w
k 

< k.U
o

' and is therefore a negative energy mode (12). 

Such a mode grows when energy is extracted from it, i.e., when the wave 

'sees' a negative gradient to the particle distribution function. It 

damps when it 'sees' a positive gradient (energy gained by the wave). 

From Eq.(6.3.3) we see that the ion beam distribution function in the 

v direction, at a distance y into the plasma, may be qualitatively 
y 

represented as follows. 
f(V) 

____ '-~~ ________ ~~~ ______ ~~ ______ ~ _________ V 
o 

Figure 6.10 

U 
o 

Y 



The projection of the slow wave phase velocity (6.6.11) in the 

y direction is 

r 

V =Wk=~[u 
~y k k 0 

y y 
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For fixed (U /e ), (k/k) and (Y/A .), V~ increases with kA D• V~y o s Z . C1 .y • 

shifts to V;y in the figure above. We see that the electrons, with 

an associated negative velocity distribution slope, promote wave 

growth, while the ions, with a positive slope, cause damping. How-

ever, for Te » TiB ion Landau damping is very small, and the shift 

from V~y to V;y does very little to alter this. On the other hand, 

the change in af / av is much more significant, and since it (af /av) 
e e 

becomes more negat ive as we move from V~y to V;y' electron Landau 

damping increases and wave growth (for a negative energy mode) is en-

hanced. Thus an increase in V~y' corresponding to an increase in 

kAD, results in a positive change in growth rate. 

In Fig. 6.6 the variable parameter is (AD/A .). Our results 
C1 

show that for (AD / A .) > 0,006, the wave is completely damped. This 
C1 

may be so because for a fixed AD (i.e., constant electron density and 

temperature), (AD/A .) increases as A . gets smaller. Hence collisions 
. C1 C1 

get stronger and i t is possible to reach the state where collisional 

damping dominates over wavegrowth due to Landau damping and a net damp-

ing of the wave results. Experimentally, A • may be reduced by increasing 
C1 

the neutral atom density in the target plasma. 
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The behaviour of the growth rate curves in Fig.6.7 is similar to 

that in Fig.6.6. Here we notice that for (k z/ k» 0,045 the mode is 

completely damped. 

This corresponds to angles of propagation 

9> 2,6 0 off the perpendicular to B. 

The numerical resul ts of Lee (62 - Fig.4.8A) exhibit a similar behaviour, 

with 9= 0,37 0 for t he fastest growing mode. The drop off in growth rate as 

the angle 9 increases is discussed below. 

It is seen that as the wave vector k rotates from the angle a, through 

the angle (a 2-a)) the distance an electron has to move along the 

magnetic field to 'short out' the perturbation decreases from AA' to 

BB'; consequently, wave growth is hindered. The discussion at the 

end of Section 3.4 allows ' us to interpret this in terms of velocity 

distribution func t ions. As we rotate from angle a) to a 2 , the 

-+ 
effective electron distribution along k has a thermal speed that in-

creases from (k /k)C to (k /k)C, and the effective distribution 
za

l 
e za

2 
e 

function changes as shown below. 



f (v) 

V~y u 
o 
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v 
y 

Therefore, as we move from ai' through the angle (a 2-a l ), to a
2

, the 

gradient of the electron distribution as 'seen' by the wave becomes less 

negative. Being a negative energy mode, this implies a reduction in 

electron Landau damping with a consequent decrease in growth rate. For 

T »T'B' ion Landau is very small and effectively remains unaltered. 
e 1 

The parameter labelling the curves in Fig.6.a is (A ,fA ). For 
C1 ce 

a given (yfA ,) we observe that the growth rate decreases with increasing 
C1 

(A ,fA ). At the same observation point, i.e. fixed y and A "A has to 
C1 ce C1 ce 

decrease in order that (A ,/A ) increases. As A gets smaller, a sharper 
C1 ce ce 

drop in the ion beam drift speed U(y)(= U {I - (A ,IA )(y/A ,)})results. 
o C1 ce C1 

Thus, the free energy available to drive the instability diminishes faster, 

with a corresponding drop off in growth rate. 

On the other hand, it is seen from the expression (6.6.11) for 

the phase velocity that V~ increases with (A ,IA ). Thus, V~ shifts to 
~ C1 ce ~y 

V' in figure 6.10 and growth is enhanced. This contradicts the above cpy 

discussion. The paradox may be somewhat resolved by an examination of the 

computed results. 
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For (Uo/C s ) = 5 and kAD = 0,1, (V~/Uo) changes from 0,8112 for 

(X ./x ) = 0,05 to 0,8126 for (X ./X ) = 0,20 at (y/X .) = 0,1, i.e., Cl. ce Cl. ce Cl. 

an increase of 0,17%. At the same location, (U(y)/U ) changes from 0,995 
o 

for (X ./x ) = 0,05 to 0,98 for (X ./X ) = 0,20, i.e., a drop. of 1,51%. 
Cl. ce Cl. ce 

Therefore, the negative effect of (U(y)/U
o

) is much more significant than 

the positive effect of (V~/U ), for increasing (A ./X ). Overall wave 
~ 0 Cl. ce 

damping results. An inspection of Fig.6.9(b) shows this to be the case in 

general. 

We see in Fig. 6.8, as well as in the others, that the growth rate 

decreases with distance and becomes negative, i.e., total wave damping sets 

in. For (X ./x ) = 0,2, the transition from positive to negative occurs Cl. . ce 

at (y/A .) ~ 0,595, while for (X ./A ) = 0,1 it takes place at Cl. Cl. ce 

(y/X .) ~ 0,825. Cl. 

For the chosen parameters, we find, form calculation, that the 

ion beam speed U(y) equals the wave phase speed in the direction of the 

drift, V~y' at (y/X .) = 0,664 for (X ./X ) = 0,2, and (y/X .) = 1,09 for 
~ Cl. cl. ce cl. 

(X . . /X ) = 0,1. For values of (y/A .) larger than these critical values 
Cl. ce Cl. 

V~y exceeds U(y). Thus, the condition ° < wk < k.n is not satisfied 

any more and the wave is no longer a negative energy mode. Instead, it 

becomes a positive energy wave. If at such values of (y/X .) Cl. the ion 

distribution function can be represented by an averaged Maxwellian, the 

situation may be visualized as follows: 
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f(V) 

----~----------------------------~----~----------------~a.---V 
U(y) 

Thus, the wave 'sees' a negative slope to both the electron and 

the ion distributions. Since it is now a positive energy mode, this results 

in electron and ion Landau damping. Under the influence of the joint 

damping effect ,the initially positive growth rate decreases and becomes 

negative. 

The fact that the graphical transition of the growth rate from 

positive to negative values occurs at a value lower than that calculated, 

may be attributed to a possible breakdown of the assumption (6.6.8), viz., 

t = 
Yk + {k + k .}U I ce c~ 0 « 1 

r 
(wk - kU 0) 

It is found that for (Uo/Cs) = 5, (;\.nfAci) = 0,004, ,k>.n = 0,1, 

and (;\. ./;\. ) = 0,2,e:::: 0,35 at (y/A. .) =0,6. Similarly, for (A. ./A. ) = 0,1, 
c~ ce c~ c~ ce 

all other parameters as above,€~0,34 at (y/A. .) = 0,8. Therefore, the 
c~ 

as'sumption e:« J is not strictly satisfied, which means that the plotted 

y 

curves have to be accepted with some reservation at larger values of (y/A. .). 
c~ 
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Since growth' rate measurements can only be recorded after the wave 

has travelled a few wavelengths, the condition A«A . implies that in 
C1 

reality we begin observations close to y = 0, but not at y = O. Thus, the 

growth rate values at y = 0 in the above figures are of no physical 

consequence. 

Th.e curves in Fig.6.9(a) represent the normalized frequency 

r (wk/w ) against (Y/A .). The parameters labelling the curves are kAD and pe C1 

(U /e ). The behavi our of th.e curves follows from the expression for the o s 
norm.alized frequency, which, from Eq.(6.6.lla), may be written as 

{I - (A ./A ) (Y/A .)}1/2] 
C1 ce C1 

The exponential drop in the ion beam density n B with (Y/A .) 
o C1 

is the primary cause of the gradual increase in (wkr / w ) with distance. 
pe 

LEE (62, Fig. 4.7B) has measured the spatial growth rate k. 
1 

as a function of distance into the target plasma (y>O). It is found 

that starting from a positive value, k. initially rises, then de-
1 

creases and eventually assumes negative values. The initial increase 

in ki was explained by LEE in terms of beating between the slow-beam 

mode and the rapidly decaying fast-beam mode. 
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As discussed earlier for the ion acoustic wave BAYZEN (61) 

has shown that 

i.e., 

.k. 
1 

k 
r 

V k. 
~ 1 

Since V~ increases gradually with (yfAci) (Fig.6.9), this tells us that Yk 

and k. should exhibit approximately the same behaviour as we move into the 
1 

region y ~ 0. This has been somewhat confirmed by the growth. rate curves 

displayed above, as they provide qualitative agreement with the k. 
1 

measurements of LEE(62). 

As our investigations have led to the prediction 0,1< X .fA < 0,2, 
C1 ce 

calculations show that for A .fA = 0,2 the transition from positive to 
C1 ce 

negative growth rate occurs at yfA . = 0,66, while for A ./A = 0,1 it 
C1 C1 ce 

occurs at y/A . = 1,09. Lee's measurements indicate the transition occuring 
C1 

at y =13,6 cm. If one uses A . = 20cm , as measured by Jones (78) , for argon 
C1 

pressures of the order of 10-4 Torr, then y/A . = 0,68. This value lies 
C1 

within the expected range 0,66 <y/A . <1,09. Thus, the theory also provides 
c1 

quantitative agreement with the experimental observations of LEE(62). 

As a remark, we note that for .most of the calculations the wave 

number k is fixed (kAn = constant). In the majority of plasma experiments this 

is not the case. For a given excited frequency the wave selects the k value 

that yields the largest growth rate, i.e., k is not an externally determined 

parameter. However, studies with a fixed k may prove useful in 

comparisons with experiments where standing wave-like perturbations 

are generated, e.g., the oscillating instability (85) 
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CHAPTER SEVEN 

SUMMARY AND CONCLUSION 

In this thesis we have examined several linear aspects and 

a quasilinear development of the electrostatic crossfield current-

driven ion acoustic instability. 

The linear dispersion relation has been established and 

formally solved for any general equilibrium particle velocity distri-

2 
but ion function of the form fOJ(~ '~I). For the particular case of 

Maxwellian ion and electron distributions, the results are shown to 

reduce to well known forms. For the purpose of completeness, studies 

on the effect of plasma inhomogeneities on the instability, which were 

earlier undertaken and reported by the author, have been reviewed. In 

addition, an explanation has been offered for the reversal in the 

behaviour of the temperature gradient drift. 

In a quasilinear investigation the electron and ion velocity 

diffusion equations have been established and analytically solved. 

For the electrons resonating with the waves, the projection of the 

distribution along the magnetic field is of the form 

R 5 
~ (V ) = A exp (-a V ), a = constant. The difference between this e z z 

and the usual one-dimensional quasilinear behaviour (a~R(v )/av ) = 0) 
e z z 

has been explained in terms of our assumption of a three-dimensional 

wave spectrum. The non-resonant electrons, rather surprisingly, have 

the form ~NR(V ) = B exp (-b V4). For the ions, which diffuse pri-e z z 



marily across B, the non-resonant portion retains its Maxwellian 

character. The few high energy resonant ions, which produce linear 

Landau damping assume a distribution with an exp (_V5) velocity de-
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pendence. Since such a behaviour was not observed in either experi­

ments (40) or simulations (56), we conclude that linear ion Landau 

damping is not the principal ion heating mechanism. 

Investigations into electron and ion heating rates have led 

to the results 

aT /at e 
aT. !at 

1 

which compares, reasonably well with the measurements of JONES (86). 

In the limit V » C , the crossfield ion acoustic and the reactive 
o s 

electron-cyclotron drift instabilities are found to produce the same 

relative electron/ion heating rates. An examination of anomalous 

plasma resistivity yields the result 

vef 

for the effective electron/wave collision frequency perpendicular to 

-+ 
B. Under a suitable set of approximations this expression is found 

to reduce to (k/k )v f where v f is the collision frequency for the 
z e II e " 

field-free case. The (k/k ) enhancement has been associated with the z 
• -+ 

restriction in electron mot1on across B, since they are bound to the 

field lines. 
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Energy studies have revealed that energy exchange occurs 

between the waves and the resonant electrons. However, only a fraction 

2 2 k Ari/2, which is usually small in practice, of the total wave energy 

appears as electrostatic potential energy. 

The effect of a sheared magnetic field on the instability 

has been examined in the limit in which wave growth due to inverse 

Landau damping is small. Shear is found to have a stabilizing effect 

on the wave perturbations. 

In a model corresponding to the Double Plasma device, in-

elastic charge-transfer collisions are found to cause an exponential 

drop in the density of the incident ion beam, while the elastic 

collisions give rise to a linear decrease in average beam speed. The 

results provide good agreement with experimental observations. In 

the presence of these collisions the real part of the frequency of 

ion acoustic perturbations superimposed on the ion beam turns out to be 

(Eq. (6.6. II a) ) 

{I - (y/'A )}~ 
ce 

2 2 If one neglects elastic collisions and assume k AD « I, then this 

reduces to the expression derived by SATO et at (84) Numerical 

studies of the instability growth rate for the slow-beam mode provide 

resonable agreement with the measurements of LEE (62) 

Measurements in the DP device have confirmed the presence 
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of elastic and inelastic collisions (41,42) On the other hand, 

JONES and BARRETT (42) have invoked the quasilinear theory to explain 

the observed electron and ion heating. The question arises as to 

which is the dominant effect in the np device. An investigation of 

electron and ion diffusion in Section 4.1 has revealed that the 

particle diffusion rate in velocity space as a result of interaction 

with the waves is proportional to the electrostatic wave energy 

density;. The analogous diffusion of the particles due to collisions 

-I 3 
with neutrals is proportional to Nn ' where Nn = nAn is the number of 

particles in a nebye sphere. Parameters within the np device are 

such that (78) 

I » (;/n T ) » Nn-
I 

o e 

Thus diffusion due to wave-particle interactions 1S greater than that 

due to collisions . -4 In fact for pressures of the order of 10 Torr, 

the perturbation wavelength A ~ I - 2 cm, A . ~ 20 cm and A > A .• 
C1 ce C1 

Therefore, for the first few wavelengths the plasma is practically 

collisionless. Hence we conclude that quasilinear diffusion effects 

are more significant than collisional effects. 

The investigations undertaken in this thesis allow only a 

partial understanding of the growth, saturation and nonlinear be-

haviour of the ion acoustic instability. For example in the DP device, 

JONES and BARRETT (42) find that wave-wave coupling between the two 

launched waves produces an increasing number of harmonics, with a 

consequent broadening of the wave spectrum. Moreover, in the experi­

ment of VIRKO and KIRICHENKO (68) the slowing down of the incident 
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. (42) 
ion beam was much more rapid t han that found by JONES and BARRETT • 

This behaviour was attributed to particle trapping effects, i.e., the 

capture of ions by the ion sound waves. Both the above mentioned 

effects were not considered in our studies. Therefore, our investi-

gations may be extended to include, among others, wave-wave coupling 

effects, particle trapping in the pote~tial troughs of large ampli-

tu'de waves and resonance broadening, whereby the perturbation of the 

resonant particle orbits, due to the growing waves, causes the 'sharp' 

wave-particle resonance to be broadened, i.e.,a particular mode may 

exchange energy with particles within a finite velocity interval, 

rather than with particles wit h a particular velocity. 
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APPENDICES 

We have the recurrence relationship· 

J
+oo n+2 -x2 

x e dx = 
-<lO 

with 

n+l 
-2- J

+co n -x2 
x e dx 
~ 

-x2 
e dx J

+co -x2 
= 0, ~e dx = 

Thus 

= 

= 

v .L { exp (_V
2 

/2C 2) } dV 
aV e 

(R, = interger) 
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(p - v/l2c ) e 



Appendix B 

Here we express 

e. I V x B) at. 
J. IE + o. ~ 
mj \ 0 C av 

in terms of cylindrical coordinates in velocity space. 

a ,.. a ,.. a - = x- + y-
av av av x y 

a a~ a +~ =--

+ ,.. a 
z av 

a 

z 

v 
z 

z 

-+ 
v 

v 
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av avx a'l, av x ae x y 
1!I:::----t--rl "----~) Y 

a = cose -
a~ 

sine a -----
~ ae 

Similarly 

a 
av 

y 

= . e a + cose L 
S1n al 1 ae 

x 

with 

Vx = 1 cose 

v = v. sine 
y J. 

v.
l 

= (V2 +v2) 1 /2 
x y 

/ 
/ 

e = tan-1 (V /v ). 
y x 

From Fig. 3.1, E -E x. Therefore 
o 0 

e. 
...l."E 
m. 0 

J 

x,.. e ~ - nne ~ ,.. + . e ~ + ~......El. ,.. {( 
at. . df. \ ( a f . e a f . \ 

. cos al 'i ae)x S1n a1 1 ae ) y 

e i ( af. s· e af . ) = - ~ E \ cose --£l -~ --£l 
mj 0 a1 1 ae , 

+ ~,.. df. } 
av Z 

Z 



~ ~ ~ 

For B = (O,OrB ), V x B = ( B V , -B V ,0) and 
o 0 0 0 y 0 x 

e ~ ~ "If 
J'VxB o . _ 0 oJ 

mj C 3V 
= ~ ~ 1nS CosS ~J e.B { S. ( af. 

mjC \ 3'i 

- 'i CosS (Sins 3foj + CosS afoj ) } 
3'i 'i as , 

e.B af . 
=_~~J 

m.C as 
J 

af . 
= -n. --.£.,J 

J as 

where n. = ejBo is the gyrofrequency of the jth species. 
J m.C 

J 
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Appendix C. Green's Function Solution of the Resonant Electron Diffusion. 

Equation 

We seek a solution of Eq. (4 . 2.4.), viz., 

3'! (V,r) = _I ! [2-
aT 25 av v3 

a'l'(V'T)] 
oV 

(C. I ) 

where, for convenience, all super- and subscripts have been omitted. 
Equation (C.I) is rewritten as 

3 o 'I! 
V av = 

We Laplace transform with respect to T, and obtain 

3 cfii(V,s) = 25 v3{sl(V,s) - 'I!(V,T = O)} 
V dV 

i.e. , 

The 

and 

3 d~ - 25 V3s~ = - 25 V3'l'(V,T=O) 
V dV 

definition of the Laplace transform (l) 

[{f(T)} = f ;(T) 
-aT dT ~ e 3- f(8) 

0 
the result 

[ {of(T)/dT} = J ;f(T) 
-ST ,., 

- f(T=O) e dT = sf(s) 
OOT 

(C .2) 

have been u~ed to arrive at (C.2). Consider now the homogeneous 
equation (from (C.2) ) 

d 2ty - 3 lip 
V dV 

- 25 S V3 ~ = 0 

Th.e general solution of the differential equation 

is given by (2) 

(C.3) 

(C.4) 
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f(x) 
/ l l q Ijq 

= xV q' {A' I (kx ) + B' K (kx )} 
1 V 1 V 

(C.4a) 

where 
0. + 2 

\) = y + 2' q = y + 2' .,k = and I and K y+2' \) \) 

are modified Bessel functions of the first and second kind 
respectively, of order v. 

Comparing Eqs.(C.3) and (c.4) we see that 

and therefore 

It 
\)= 5" q = ~ k = 2s ~. 

Thus from Eq. (C.4a), the solution to Eq. (C.3) may be written as 

It can also be shown that 

is a solution of Eq. (C.3). 

We adopt the latt er solution and write 

W(V,s) = A g (V) + B g (V) 
1 1 1 2 

with (C.S) 

Prior to .finding the solution of Eq. (C.2) we require the solution 



of the "Green's Function" differential equation 

(C.6) 

Now, the general solution of the Green's function differential 

equation 

2 
~ + p(x) ~- + q(x) g = - O(x-x') 
dx2 dx 

. (1) 
15 

where gl and g2 are solutions of the homogeneous equation 

2 
~ + p(x) ~ddx + q(x) g = 0 
dx2 

and 

G(x/x') = - gl (x<) g2(x> ) 

W {gl' g2' x'} 

where x> 

and 

= great er of (x, x') ,x = lesser of (x, x'), < 

(C.7) 
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W = g 1 (x'). dS2 (x') 

dx' 

dg 1 (x'). g2(x') 

dx' (C.7a) 

is the Wronskian of the two functions gl (x') and g2(x'). 

We now determine the solut,i on of (C .6) subj ect to the boundary 
i 

conditions 

lim W'(V, s) = 0 (C .Sa) 

V+«> 

[
do/(V,S)] 
dV V=O 

= 0 
(C.Sb) 



The first condition is true for all velocity distributions 

since there are no partic1e~ at V = +~. The second is true, 

for example, for distributions of the form exp (-avl), a >0, 

n >2. 
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Using equation (C.5) and (C.7), the solution of Eq.(C.6) may be 

written as 

If (V /V') 

(C.9) 

The wronskian reduces to 

{ '} - ,2 (k ,5/2) d ' {V,2K (kV,5/2)} W gl,g2'x - V 1-4/ 5 V. 4/5 
dV' -

= v,4 {I d K (kV,5/2) K d I (kV,5/2)} 
-4/5 -- -4/5 - -4/5 -- -4/5 ~, ~, 

= - (5/2)V,3 

where k = 2s~ and we have used the result(2) W{K (z),1 (z)} ~ (I/z). 
v v 

Therefore 

and Eq.(C.9) reduces to 

(C.IO) 

Since(2) 
lim 

V-+~ 

the boundary condition (C.8a) requires that C
I 

= O. 
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It can also be shown that i:1 the liJnit as' V-+ · 0, 

d . {V2K (2s!V5/ 2)} -+ co~ Thus, the boundary condition (C.8b) 
dV -4/5 

requires that C2 = O. 

With C
I 

= C2 = 0, Eq.(C.IO) reduces to 

(C .11) 

The Green's function solution g(x/x'), given by Eq.(C.7), may now 

be used to find the solution of the equation 

.~ + p(x) ~ + q(x)y = - f(x) 
~ dx (C.12) 

The solution at any point x', a<x'<b, where a and b are fixed 

1
.. . (I) 1m1ts, 1S 

where 

y(x') = Jbg(x/x') f(x) exp{- [L(x') - L(x)]} dx 
a 

+ [W{g,y)exp{- [L(x') - L(x)]} J::: 
L(x) = IXp(Z)dZ , a ~xo ~x <b. 

x o 

The equivalent equation for W(V' ,s) is 

(c.n) 

~(V',s) = I:~(v/v') 25V3 ~(V,T 

+ G {;; (V /V '), 1 (V,s} 

- O)exp{- [L(V') - L(V)]} dV 

V=co 
exp {- [L(V') - L(V)]} ] 

V=o 

(C.14) 

where, the manipulation from Eqs. (C.7) to (C.II) yields g(x/x'), 

and comparisons of Eqs.(C.2) and (C.12) yields f(x) • 
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We have set our fixed limits at a = 0 and b =00. This will be 

discussed later. 

From Eqs.(C.2) and (C.12), 

p(V) = - 3/V 

Therefore 

L(V) = -J
V

3dV II = -3 In(V/V ) 
""""V'f 0 

Vo 
Similarly L(V') = -3 In(V'/V ), and hence o 

exp{ - [L(V') - L(V)]} = (V'/V)3 

The first term in Eq.(C.14) then becomes 

The second term is Eq.(C.14) may be written as 

V= CD 

fl W{W(V/V'),~(v,s)}exp{~[L(V') - L(V)]} ] 
v=o 

= fl{'I1(V /V') dq1(V, s) 
dV 

d~(V/V') 'i¥(V,s)}(V'/V)3 --dV 

(C.1S) 

(C.16) 

r=oo 
v=o 

where the result (C.JS), and the definition (C.7a) of the Wronskian 

have been used. For O<V'<m, when V=m, V'<V, and when V=O, V'>V. 

Therefore, upon substituting for ~(V/V') from Eqs.(C.ll) and (C.S), 

we obtain 

I
f (2/SV,3)V,2r (kV,S/2) {V2K (kVS/2)d~(V s) 

-4/S -4/S dV' 

_ ~ [V2K_4/S(kVS/2)] '(V,s)}(V'/V )3 ] 
dV V= 00 



-{ lim ' 2 I (kv
5

/
2
). I¥ (V,s)' } 

V-+O { ;2 -4/5 

+ lim 
V-+O 
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1 d { K (kV5/2)}}] 
V dV -4/5 

I (kV5/2) "I 
-4/5 ,.., l 
-~-V-- • '¥(V,s)f 

where k = 2s!and we have made use of the boundary conditions (C.8a) 

and (C.8b). 

From the defini tions of IV<x) and Kv(x) and the asymptotic expansion 

of Kv(x) (2, pp. 201 - 204) , all the above limits can be shown to 

vanish. Thus, the second term in Eq. (C. "14) also vanishes, and from 

Eq.(C.t6) we have 

To manipulate t his further, we write it as 

1 (V',s) v' 
= 10 {J~1(V<)g2(V» '¥(V,T = 0) dV 

+ J;1 (V )g2(V )'¥(V ,T = 0) dV } 

V' 
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Recalling that V < = lesser of (V, V') and V> = greater of (V, V' l, 

with the aid of the definitions (C.S) we have 

(C .17) 

In determining the inverse-Laplace transform, we use the result(3) 

c 1 {2~( [a ~+b~] s~) 1\)( [atb~ls~)}=.!.Iv{(a-b)/2·dexp{-(a+b)/2Tl 
T 

Therefore 

-1 ~ ,S/2 ~ S/2 £ {2K_4/ S(2s V )I_4/ S(2s V )} =.!.I_4/S{(a-b)/2T}exp{-(a+b)/2T} 
T 

where 

We then hqve 

and 

Hence 

· 55 
x exp{ - (V' + V Y/T} 
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Similarly, the inverse-Laplace transform of 2K (2s iVS/ 2)I (2s iV,S/2) 
-4/S -4/S 

can .be shown to be just equal to that of 2K_4/S(2siv,5/2)I_4/5(2s1v5/2). 

Therefore, upon taking the inverse-Laplace transform on both sides of 

Eq.(C.l7), we obtain 

(C.lS) 

This solution is similar to that quoted by SAGDEEV and GALEEV (4, p. 6S) 

for the loss-cone instability. 

We choose an idealized initial distribution 

~(V" = 0) = A exp (-V/C )5 
C e e 

in order to manipulate the integral in Eq.(C.IS) exactly. 

Then 

(C.19) 

5AV,2 ,5 J 002 . 5/2 5/2 · . S 
~(V',.) = -c:- exp (-aV )a OV I_4/ S(2aV' V )exp{- (a+p)V }dV 

where a= .-1 and p = C-5• 
e 

Defining x = v5, the integral reduces to 

(1 IS)J :-2/5 I (2aV,.5/2 vx) exp{ -(a+p)x} dx o -4/5 

ilJ-i = (lIS) J~ 12v(2~YX) exp (-yx) dx 

(C.20) 

(C.2Ia) 
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where 

lJ- ~ ... -2/5 • u = 1/10 

2" = -4/5 • " = - 2/5 

213 = 2rJ:oJ,5/2, .. e = aV,5/2 

Y= a+p 

h 'd . (5) We use t e 1 ent1ty 

roxlJ-! I (2SfX) exp (-yx) dx J 0: 2" 

= r(lJ+"+!) S-l Y~ ' exp (S2/2Y) M_~ v(S2/y ) 
r (2v+ 1) , 

(C.21b) 

where tis the Gamma function. ~ " (x) is the Whittaker function, , 
•. . . (5) 

and 1S g1ven, 1n terms of the Kummer funct10n F , by 
1 1 

(C.21c) 

For lJ = 1/10 and ,,= - 2/5 (as found above), it turns out that 

since(5) 

]/10 y/2 = y e 

F {a,a,y} = eY 
1 1 

= yl/IOe-y/ 2 .F {1/5,1/5,y} 
1 1 

(C.2Id) 
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With. the aid of the results (C.2Jb) - (C.21d), th.e integral (C.2Ja) 

reduces to 

and Eq.(C.20) becomes 

= A 

A • 

a l / 5VI 1/2exp {-aVIS [I - a/(a+p)]} 

(a+p)1/5 

S exp { - VI /(I/a + I/P)} 

(C.22) 

The solution to the differential equation (C.I) is clearly restricted 

to the resonance region ( W~/kz - 6V 

of width 26V. By assuming this interval to lie in the region Vz~ 0, 

we have extended the limits of integration in Eq.(C.14) to 0 and + 00. 

This is in order, since there are no resonant particles in the 

intervals (0, w~/kz -

there. The resonance region is restricted to the domain V ~ 0 for 
z 

modes with k >0. The latter condition is usually assumed in theoretical z 

studies. 
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Appendix D~ Green's Function Solution of the Non-Resonant Ion Diffusion 

Equation. 

We require the solution of Eq.(4.3.3), viz., 

(D. 1 ) 

where, for convenience, all super- and subscripts have been omitted. 

The technique in solving Eq.(D.l) is analogous to that adopted in 

solving the resonant electron diffusion equation (Appendix C). We 

solve Eq .• (D.I)subject to the initial condition 

cHV,T = 0) = 2 N (m./2nT. )exp(-m.V /2T. ) 
o 1 10 1 10 

(D.2) 

Taking the Laplace-transform of Eq.(D.l) with respect to T, we 

obtain 

sl(v,s) - ~(V,T = 0) =.!. [d
2 

l'(V,s) + .!. dl'(V,S)] 
2mi dV2 V dV 

Rearranging 

+ I dl - 2m.s1 = - 2m. ~(V,T = 0) 
V dV 1 1 

The homogeneous equation associated with Eq.(D.3) is 

d~ + 

dV2 
d~ 

V dV 
2m.s~ = 0 

1 

(D.3) 

(D .4) 
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Comparing Eq. (0 . 4) with Eq. (C.4), we see that 

. (l = -1 y = 0 

Therefore 

(l + 1 
v = ---=- = 0 , 

2 = 1 , 
2kl ! 

and k = -~ = k 1 = (2m
1
• s) , 

y + 2 y + 2 q = ---=­y + 2 

and hence, from Eq.(C.4a), the solution of Eq.(0.4) is 

"" cIl(V,s) = A' I {(2m.s)~V} + B' K { (2m.s)!V} 
1 0 1 1 0 1 

+ 

where 

gl (V) = 10 {( 2m is) !V} 

K {(2m.s) !V} g2(V) = o 1 

(0.5) 

(0.6) 

using the functions gl(V) and g2(V) we may write down the solutions of 

the Green's function differential equation as (cf.manipulation from 

Eq.(C.6) to Eq.(C.9» 

where 

+ 

G (V /V I) = - g 1 (V < ) g 2 (V> ) 

W{gl,g2'V'} 

+ G(V/V') 

and k = (2m.s)!. 
1 

(0.7) 



with 

• (2) 
S1nce 

dV' 

= - k W{K (z),I (z)} 
o 0 

= - (k/ z) 

= -(1/V ') 

W{K (z) ,I (z)} = (1/z) • 
" " 

As in Appendix C, the boundary conditions 

lim i(V,s) = 0 
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dV' 

(z = kV') 

(D.8) 

V+ ex> (D.9a) 

[
d i(V ,s~ = 0 

dV Jv=o (D.9b) 

require that CI = C
2 

= 0 in Eq.(D.7) (cf. ref. I, p.271 for limiting 

forms of Io(x), Ko(x) and K~(x) = - KI(x». Therefore 

i(v/v') = G(V/V') 

.. g1 (V <) g2(V» V' (D.I0) 

This, in turn, yields the solution of our original equation (D.3), 

which, following the procedure leading from Eq.(C.12) to Eq.(C.14), 

may be written as 

t(V·.s) - J
o
;t(V<)g2(V» v· 12mi~(V,T'O)}expl-[L(V') - L(V)]} dV 

+ [Wlt(V/V·),t(v,s)}expl-[L(V·) - L(V)]~:: 
(D. II ) 
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Since V = ~ (~ 0), we have extended the limits of integration to 

• • ",NR 0 
cover the entire ~ - space, as outslde the non-resonant domaln ~ = • 

Comparing Eq.(D.3) with Eq.(C.12), we see that 

p(V) = (l IV) 

and therefore 

L(V) = r p(y)dy = In(V Iv 0) 
V o 

Similarly L(V') = In(V'IV), and hence o 

exp O {-[L(V') - L(V)]} = (V/V') 

Then, from Eqs.(D.6), (D.IO) and (D.ll), 
V - a> 

[il!i(V/V'), t(V,s)) exp{ -[ L(V') - L(V)])L ~ 0 

(D.12) 

= [V{ I (kV')K (kV) d ~(V,S) 
o 0 dV 

- I (kV'). d K (kV). ~(V,S)} ] 
o dV 0 V- a> 

- [VfK (kV')I (kV) d ~(V,S) - Ko(kV')!Llo(kV). ~(V,S)} ] 
l 0 0 dV dV 

V -= 0 

since for 0 <V'< a>, when V = a>, V'< V and when V = 0, V'> V. 

As in Appendix C, with the aid of the boundary conditions (D.9a) and 

(D.9b), and the limiting values of Io(x) and KO(x) , and of their 

derivatives, the right hand side of the above equation can be shown to 

vanish. 
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Hence, from Eqs.(D.ll} and (D.12), we have 

V' 

2m. ~(V,T = 0) V dV 1. 

= m J 2I {(2m.)~Vs~} K{(2m.)~V's~} ~(V,T = 0) V dV 
iO 0 1. 0 1. 

+ m J 0021 {(2m.)~V's~} K {(2m.)~Vs~} ~(V,T = 0) V dV 
i 0 1. 0 1. 

V' 

With the inverse-Laplace transform(3) 

1. I~ (a-b) f2T} exp{ -(a+b) f2T} 
T 

we obtain 

where 

a ~ + b~ = (2m.) ~V' a + b = m .(V,2+V2) 
1. 

} 1. .. 
a~ - b! (2m.) !V = a - b = 2m.V'V 1. 1. 

Similarly 

Using these results, and upon substituting for ~(V,T=O) from Eq.(D.2), it 

turns out that 

~(V' ,T) = N (m./2~T. )(m.fT) exp(- m V,2 /2T ) o 1. 1.0 1. i 

x II:<m1..v 'V/T)exp{-[(m.f2T)+(m./2T. )]V2} VdV o 1. 1. 1.0 

(D.13) 



2 
In order to evaluate the integral, we set w = V /2. 

The integral then modifies to 

where 

J 
=exP(-YW)I (26w~) dw 

o 0 

m.(T. + 'r) 
~ ~o . 

Y. = 
T. 'r 
~o 

Using the identity (C.21b), viz., 

= 

6 = 
m.V' 
~ 

JOX~-~I2V(261i) exp (- yx) dx 

= 

we find that 

r(~+v+!) 

r (Zv+ 1) 
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(D .14) 

J 
~ -I -~ 2 Z 

OexP(-YW)Io(Z6W )dw = S y exp(S /Zy) M_Lo(S /y) 

(D. 15) 

From Eqs.(C.Zlc) and (C.Zld), 

Z! Z = (6 / y) exp (6 / Z y) 

The integral in Eq.(D.13) then reduces to 

-I Z y exp (6 /y) 
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We replace y and e with the expressions given in Eq.(D.14). Then 

Eq.(D.13) finally yields 

~ (V' ,-r) 
2 

= N (m./2TIT. )(m./-r) exp(- m.V' /2-r) 
o 1 10 1 1 

222 
x {TT. /[m.(T. +-r)]}exp{m.V' T. -r/[2-r m.(T. +-r)]} 

10 1 10 1 10 1 10 

i. e. , 

~(v' ,T) = N {m./[2TI(T. +-r)]}exp{- m.V,2/[2(T. +-r)]} 
o 1 10 1 10 

(D.16) 

A similar result has been found by SAGDEEV and GALEEV(4,p.68) for the 

non-resonant electrons in the case of Langmuir waves. 
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Appendix E. 

a) ~ In(~)Jm(~) J~; Iti(n-m) ei(m-n)e e-i(wk-kn~1 -nne) (t'-t) dt' 
n,m= -()() 0-00 

21T 

= E J J i(n-m) {-i(w -~-v. -nn )}-t J ei(m-n)e de 
nm kOllD e 

n,m 0 

since 

21T 

if m=n 
otherwise 

b) E JnJ
m 

JSine i(n-m) ei(m-n)e {-i(wk-k'~t -nne)}-I de 
n,m 0 

= E J J nm n,m 

since(6) 

I n- 1 (x) + I n+1 (x) = (2n/x) I n (x) 

(E. 1 ) 

(E.2) 
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Similarly 

2'11' t 

c) E JnJ
m 

Jde J~' - x) i(n-m) ei(m-n)e e-i(wk-~~ -nOe) (t'-t) dt' 
n,m 0 

2'11' t 

= (-lIne) E JnJm Jde J:~sin(e - ne[t'-t]) - Sine} 
n,m 0 

x 

= 0 (E .3) 

2'11' t 

d) E JnJ
m 

Ide J (X'-X) Sine i(n-m)ei(m-n)e e-i(wk-ka~1 -nne) (t'-t) dt' 
n,m 0-00 

1 a {J2(kl.V.
1 

In )} 
V. aVo n e 
1 1 

(E .4) 

2'11' t 

e) E JnJ
m 

Ide J(X'-x)2 i(n-m) ei(m-n)e e-i(Wk-ka~l-nne)(t'-t) dt' 
n.m 0-00 

2. -1 
= (2'11'1 k1 ) E h(wk-ka V• -nne)} 1!... {J2(k V. In )} 

n al n 1~ e 
(E .5) 

2'11' t 

f) E JnJ
m 

Jdoe f~,_x)2 Sine i(n-m)ei(m-n)e e-i(wk-kll"l,-nne)(t'-t) 'dt' 
n,m ~ 

where ~ = ~ 1 In • 
e 

(E.6) 
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