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Abstract

We develop a mathematical model which seeks to assess the impact of HIV Pre-Exposure

Prophylaxis (PrEP) on the prevalence and incidence of HIV infection. Mathematical analysis

of the model is carried out to establish the threshold conditions that determine the stability of

the steady states. Numerical simulations are performed to gain insight into the use and efficacy

of PrEP. Results from our model reveal that the basic reproduction number is a function of the

rate at which individuals use PrEP and the rate at which PrEP protects individuals from HIV

infection. Furthermore, strategies where either PrEP awareness or PrEP efficacy was low show

potential loop-holes that can lead to more complications than benefits. The best strategies

revealed by our results is that a high level of awareness and high PrEP efficacy are needed.
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Chapter 1

Introduction

HIV infection has been one of the most dramatic pandemic that the world population has ever

faced. Since the detection of HIV patients in 1981 [1], the virus invaded the world population

and progressively grew to a global pandemic. According to UNAIDS, in 2011 approximatively

34 million people were carriers of HIV infection and 1.8 million people died from AIDS [2].

Many preventive strategies including abstinence, reducing number of sexual partners, partner

selection, use of male and female condoms, mutual monogamy practice with an HIV-negative

partner, and needle hygiene were used by the health care authorities in various settings to

reduce and prevent HIV infection [3]. Despite all these efforts, the strategies were shown to be

insufficient and inadequate to curb the pandemic.

New preventive interventions are still being investigated in order to stop or to slow down the

ongoing progression of the virus. Prophylactic drug administration such as HIV pre-exposure

prophylaxis (PrEP) use seemed, recently, to be the most promising and ideal intervention to

prevent HIV transmission via sexual intercourses. Prophylaxis is preventive medicine or pre-

ventive care consisting of measures taken to prevent the outbreak of some diseases rather than

curing them or treating their symptoms [4]. Examples of prophylaxis include measles vaccine,

influenza vaccine, birth control pills and antimalarials [4]. In the case of HIV, prophylaxis is

administered orally in form of PrEP. Many clinical trials and other research on HIV transmis-

sion prevention proved fruitless as they failed to ascertain total safety of individual involved.
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Recently, a cellulose sulphate (microbicide) test was stopped prematurely because the gel was

ineffective and also exposed the population to a higher risk of infection [5].

However, antiretroviral (ARV) drugs consistently used by infected individuals show signifi-

cant reduction of the likelihood risk of infecting uninfected individuals. Results from some trials

proved that in serodiscordant couples, the infected individuals using ARVs reduces the risk of

infecting the seronegative parters by 62% to 73% [6]. Furthermore, in the case of preventing

mother–to–child transmission (PMTCT), ARV administration to HIV-infected mothers showed

substantial reduction in perinatal HIV transmission [3]. These findings give a motivation to the

hypothesis that transmission could be reduced further if treatment was delivered before any

potential exposure to HIV infection using PrEP [7]. HIV PrEP consists of taking antiretroviral

drugs as daily single doses by uninfected individuals in order to reduce the risk of HIV infection

in high risk settings. PrEP awareness, PrEP efficacy and the acceptability of PrEP use are

some of the various challenges that concerns the PrEP approach as a preventive measure [3].

Many trials based on PrEP drugs use and PrEP drugs efficacy for HIV prevention are underway

across the world.

In 2004–2005, many clinical trials, in different regions of the world, were undertaken in order

to evaluate the biological safety of the ARV Tenofovir disoproxil fumarate (TDF) in humans

and to assess the acceptability of TDF for PrEP. In Botswana the studies focused on the

(sexually active) young adults class, in Thailand (Bangkok) the studies targeted the injection

drugs users (IDUs), in Ghana, Cameroon, Nigeria, and Cambodia, female sex workers, and in

USA (San Fransisco and Atlanta), men having sex with men (MSM) settings [3]. PrEP use for

HIV prevention has thus generated considerable interest in researchers to further explore its

benefits.

Mathematical analyses have been carried out to assess the likely impacts of PrEP use as vac-

cines on HIV/AIDS incidence in various communities. A study by Vissers et al. [8] used a

mathematical model to fit data collected from some countries which rolled out PrEP use in

high risk populations only. The model captured a number of factors affecting PrEP use by

categorizing populations through variables such as gender, level of risk, stage of infection and

PrEP intake. Their results suggested that high risk behaviour reduced the impact of PrEP use.
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However, the study concentrated on simulations and one cannot ascertain the well-posedness of

the model used and no mathematical analysis was carried out to ensure validation of mathemat-

ical results to the biological set-up of the infection. Bhunu and Mushayabasa [9], formulated

a model that highlighted PrEP use as vaccine on susceptible individuals and the existing an-

tiretroviral as therapy for infected individuals in community. Their theoretical results showed,

via the reproduction number obtained, that the combined strategies (vaccine + therapy) use

in community have a great impact in reduction of HIV transmission rate. They carried out

the model analysis validating the results by numerical simulations. However, the efficacy of

pre-exposure vaccine that is a main factor affecting PrEP use was not highlighted.

In this study, we develop mathematical models which captures the population dynamics of HIV

infection progression and assess the effects of PrEP on HIV incidence and HIV prevalence by

incorporating PrEP. We focus and validate the model analysis on two of the factors affecting

PrEP use i.e PrEP awareness and PrEP efficacy. We ensure well-posedness of our model in

order to trust the validation of the results emanating from the models.

This thesis is divided into five chapters. In the remainder of this first chapter we give definitions

of some basic concepts and analytical techniques that are very useful in our analysis. In the

second chapter, we review the basic models developed by May and Anderson [10, 11] as a basis

for discussing how mathematical models are developed and used to represent the dynamics of

HIV. We use various techniques to ensure that the models developed are well-posed. In chapter

3, we incorporate pre-exposure HIV prophylaxis in the model including aspects that measure

PrEP awareness and PrEP efficacy. We carry out the analysis of the model and focus on the

important threshold parameter that is used as a measure of determining progression of HIV in

a population using PrEP. In chapter 4, we carry out numerical simulations to gain more insight

in the interpretations of model results and possible predictions. We present different strategies

of PrEP use and efficacy and find the best possible strategies revealed by our model. In chapter

5, we discuss our results and give possible recommendations as revealed by our model results

as well as limitations for our model.
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1.1 Literature review

1.1.1 HIV infection

Human immunodeficiency virus (HIV) was diagnosed in the first patients in 1981 [1]. Its origin

was revealed to be from animal species. HIV invaded the world population and progressively

developed into a global pandemic. According to UNAIDS [2], about 34 million people are

currently carriers of HIV infection, more than 2.7 million people newly infected of HIV and

approximatively 1.8 million people died from AIDS in 2011. HIV infection is transmitted

through risky exposure to infected blood transfusion, sexual intercourse, mother-to-child during

birth or breastfeeding, organ transplant, etc. The virus typically lives off the blood cells (CD4+

T-cells) which are the system’s immune command center. In fact, a healthy individual’s blood

counts 800 to 1,200/mm3 CD4+ T-cells. An individual is declared HIV positive (or identified

as developing AIDS) once the number of the CD4+ T-cells is less than 200/mm3 [1].

1.1.2 HIV phases of infection progression

An individual infected by HIV generally can be asymptomatic or symptomatic as time pro-

gresses. These symptoms are manifested progressively and are grouped into distinct categories

as follows [12]:

1. Primary HIV infection stage: This is a highly infectious stage. It lasts for a few

weeks up to three months during which the individual can even be declared HIV-negative.

Individuals in this stage are mostly asymptomatic.

2. Chronic stage: During this period individuals become symptomatic. This stage can

last for a decade or more. The level of infection is low during this stage.

3. Pre-AIDS stage: Advanced symptoms such as diarrhoea, loss of weight, fever, cough,

etc are observed. The immune system of the patient becomes extremely weak.

4. AIDS: This is the last stage of the infection before an individual dies. Severe symptoms
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are observed. The individual is exposed to opportunistic infectious diseases such as TB,

cholera and malaria amongst others.

1.2 Basic notions and definitions

Here we provide some concepts, theorems and definitions used in this thesis.

• Susceptible individual: Uninfected individual but who is at risk of HIV infection.

• Infected individual: An individual with HIV infection, infectious and capable of passing

infection to other individuals.

• AIDS individual: HIV-positive individual with full blown AIDS.

• Force of infection: The force of infection refers to the rate at which susceptible indi-

viduals can be infected by an infected individual through sexual contact or other means

such as blood transfusion and use of infected materials.

1.2.1 Equilibrium point of a system of equations

Definition 1.2.1. Consider the following initial value problem (IVP)ẋ(t) = F (x(t)), x ∈ Rn,

x(t0) = x0,

(1.1)

where F : Rn −→ Rn. A point x∗0 is said to be a fixed point, stationary point, critical point,

steady state or equilibrium point of system (1.1) if

F (x∗0) = 0. (1.2)

1.2.2 Local and global stability of an equilibrium point

The equilibrium point x∗0 of system (1.1) is said to be locally stable if all solutions of system

(1.1), with given initial values in a neighbourhood of x∗0, remain close to x∗0 for all time. The
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equilibrium point x∗0 is asymptotically stable if it is stable and all solutions of system (1.1)

starting near x∗0 converge to x∗0 as time goes to infinity. Asymptotic stability of x∗0 of the

system (1.1) can also be inferred when all the eigenvalues of the Jacobian matrix of the system

(1.1) are negative or have negative real parts. A point x∗0 is globally stable if its stability is

independent of the given initial conditions. An equilibrium point that is not stable is said to

be unstable.

1.2.3 Spectral radius of a matrix

Let A be an n × n matrix and λi (1 ≤ i ≤ n) be its eigenvalues. The spectral radius of the

matrix A is the eigenvalue with the largest absolute value, i.e

ρ(A) = max{|λi|, i = 1, . . . , n}.

1.2.4 Basic reproduction number

This dimensionless positive number is one of the most useful parameters in mathematical

analysis of epidemiological models. It is often used to characterize or to describe the progression

of an infection in a community. The role played by the reproduction number is to provide

information about the spread and the possibilities of the eradication of the infection. This is

because its expression is composed of key parameters on which the model assumptions were

made.

Definition 1.2.2. A function h : x 7−→ h(x) ∈ Rn defined for x ∈ Rn is said to be homogeneous

of degree α > 0, if ∀ x ∈ Rn, h satisfies [13]

h(λx) = λαh(x), λ > 0. (1.3)

In particular, for α = 1, h is said to be homogeneous of degree 1.

Proposition 1.2.3. Any homogeneous function h of degree 1 satisfies the following property

(Euler Identity)
n∑
i=1

∂h(x)

∂xi
xi = h(x). (1.4)
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The homogeneity property of the function allows one to introduce a new variable [13].

Corollary 1.2.4. In general, a system in Rn defined as follows

ẋ = h(x), x ∈ Rn, (1.5)

is said to be homogeneous of degree 1, if h is homogeneous of degree 1.

Proposition 1.2.5. Every homogeneous system ẋ = h(x) of dimension n can be projected onto

a hyperplane (of dimension n− 1) [13].

Proof. Without loss generality, let us consider the system (1.5) as a biological model defined in

a region Ω such that Ω is positively invariant. The system being homogeneous, we introduce a

new variable y such that

y =
x

N
, x ∈ Rn

+,

where N = x1 +x2 + · · ·+xn can be the total population of individuals. N varies in time since

xi (1 ≤ xi ≤ n) varies in time. Then

ẏ =
ẋ

N
− x

N2
Ṅ

=
1

N
h(x)− x

N2

n∑
i=1

hi(x)

= h(
x

N
)− x

N

n∑
i=1

hi(
x

N
) since h is homogeneous

= h(y)− y
n∑
i=1

hi(y).

Thus we have

ẏ = h(y)− y
n∑
i=1

hi(y), (1.6)

and
n∑
i=1

yi = 1. (1.7)

The system (1.6) is defined in the hyperplane
∑n

i=1 yi = 1. Thus the system (1.5) is projected

onto the hyperplane
∑n

i=1 yi = 1. In other words, the system (1.6) is said to be the non-

dimensionalized form of the system (1.5) [13].
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Definition 1.2.6. (Prophylaxis) The term prophylaxis is regarded as all preventive measures

taken by high risk individuals in a community where an epidemic is revealed.

Prophylaxis is simply a way to stamp out an outbreak of a disease or minimize the symptoms of

someone who has been exposed to the infection [4]. Two types of prophylaxis are known: pre-

exposure prophylaxis and post-exposure prophylaxis. Pre-exposure prophylaxis is a measure

taken by susceptible individuals in order to prevent themselves from getting infected while

post-exposure prophylaxis refers to any procedures that help to prevent disease or infection

immediately after exposure or to ease symptoms associated with the illness [4].

Theorem 1.2.7. Let us consider the following system of ordinary differential equations with a

parameter ε [14]
dX

dt
= f(X, ε), (1.8)

where f : Rn×R −→ Rn and f ∈ C2(Rn×R), so that X∗ = 0 is an equilibrium point of system

of equations (1.8), that is f(0, ε) = 0 for all ε. In addition, we assume

(i) A = DfX(0, 0) =
∂fi
∂xj

(0, 0) is the linearization matrix of the system of equations (1.8)

around the equilibrium point X∗ = 0, with ε evaluated at 0. Zero is a simple eigenvalue

of A and other eigenvalues of A have negative real parts.

(ii) Matrix A has a right eigenvector U = (ui) (1 ≤ i ≤ n) and a left eigenvector V = (vj)

(1 ≤ j ≤ n) corresponding to the zero eigenvalue.

Let fk be the kth component of f such that

a =
∑

vkuiuj
∂2fk
∂xi∂xj

(0, 0), b =
∑

vkui
∂2fk
∂xi∂ε

(0, 0). (1.9)

The local stability of the equilibrium point X∗ = 0 is confirmed by the signs of a and b.

(I) a > 0, b > 0. When ε < 0, with |ε| � 1, 0 is locally asymptotically stable, and there

exists a positive unstable equilibrium. When 0 < ε � 1, 0 is unstable and there exists a

negative and locally asymptotically stable equilibrium.
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(II) a < 0, b < 0. When ε < 0 with |ε| � 1, 0 is unstable. When 0 < ε � 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium.

(III) a > 0, b < 0. When ε < 0, 0 is unstable, and there exists a locally asymptotically stable

negative equilibrium. When 0 < ε � 1, 0 is stable, and a positive unstable equilibrium

appears.

(IV) a < 0, b > 0. When ε changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and

locally asymptotically stable.

Theorem 1.2.8. Consider an epidemic model [15]

dZ

dt
= F (X, Y ), (1.10)

which is written in the form

dX

dt
= G(X, Y ),

dY

dt
= H(X, Y ), H(X, 0) = 0,

where the vector X ∈ Rm (its components) denotes the number of uninfected individuals and

the vector Y ∈ Rn (its components) denotes the number of infected individuals and ε0 = (X0, 0)

denotes the disease-free equilibrium of the system (1.10). If the following conditions are satisfied

(i) For
dX

dt
= G(X, 0), X0 is globally asymptotically stable,

(ii) H(X, Y ) = BY − Ĥ(X, Y ), Ĥ(X, Y ) ≥ 0 for (X, Y ) ∈ Ω,

where Ω is the region where the model makes biological sense, B = DXH(X0, 0) is a matrix

with off diagonal elements positive, then the disease-free equilibrium ε0 = (X0, 0) is a globally

asymptotically stable equilibrium point of (1.10) provided the basic reproduction number of the

model is less than one.
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Chapter 2

REVIEW OF BASIC HIV MODEL

2.1 Model description

We consider a simple HIV/AIDS model (see Figure 2.1) governed by the system of non-linear

equations below:

Ṡ = bN − λS − µS,

İ = λS − (ρ1 + µ)I,

Ȧ = ρ1I − (µ+ δ)A.

(2.1)

We consider a population of size N , which is divided into susceptible individuals (S), infected

individuals (I) and AIDS individuals (A) so that

N = S + I + A. (2.2)

We denote by λ, the force of infection. We assume that a proportion λ of susceptible individuals

become infected by infectious individuals and AIDS individuals so that their number diminishes

at the rate λS while the number of infected individuals increases at the same rate. The force

of infection is

λ =
c(η1I + η2A)

N
. (2.3)

We consider recruitment of individuals, bN , as the source of susceptible individuals. The natural

death rate is denoted by µ and the natural birth rate by b. We assume that AIDS individuals

10



Figure 2.1: Flow diagram for the model

are dying either by natural death or from AIDS at the rate δ. A proportion ρ1 of infected

individuals progresses to the full blown AIDS class. The negative terms in the three equations

of (2.1) indicate the movement of individuals out of a class while the positive terms denotes

movement into a class.

We analyse the model (2.1) by computing the basic reproduction number of the model using van

den Driessche and Watmough’s approach [16] and study the (local) stability of its equilibrium

points. Firstly, we simplify the model by considering the case δ = 0 and µ = b, carry out the

model analysis and relax these assumptions subsequently. We assume that S(t), I(t), and A(t)

are positive functions for all t ≥ 0, continuous, at least twice differentiable and that all the

parameters defined are positive. In Table 2.1, we define each variable and each parameter in

the system (2.1).

2.2 Case 1: Birth rate balanced by death rate with no

AIDS deaths

In this case, we assume that the full blown AIDS individuals are not dying from AIDS (δ = 0)

and all deaths are due to natural causes and that the natural birth rate is equal to the natural

death rate (b = µ). The system (2.1) becomes

11



Table 2.1: Parameters and variables used in the model.

Variables Description

S Number of susceptible individuals.

I Number of infected individuals.

A Number of individuals suffering from AIDS.

N Total size of population considered.

Parameters Description

b Natural birth rate.

µ Natural death rate.

δ Death rate due to AIDS.

ρ1 Progression rate from infected class to AIDS class.

η1 Contact rate of infected person and susceptible person.

η2 Contact rate of AIDS person and susceptible person.

c Average number of new sexual partners acquired per unit time.

λ Force of infection.

Ṡ = µN − c(η1I + η2A)

N
S − µS,

İ =
c(η1I + η2A)

N
S − (ρ1 + µ)I,

Ȧ = ρ1I − µA.

(2.4)

Adding the three equations of system (2.4) we have

Ṅ = Ṡ + İ + Ȧ = µN − µ(S + I + A) = 0. (2.5)

The total population N considered is therefore constant.
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2.2.1 Nondimensionalization of the model

From system (2.4) we pose

h(S, I, A) = (Ṡ, İ , Ȧ). (2.6)

Since for λ > 0, we have

h(λS, λI, λA) =

(
µλN − c(η1λI + η2λA)

λN
λS − µλS, c(η1λI + η2λA)

λN
λS − (ρ1 + µ)λI, ρ1λI − µλA

)
= λ

(
µN − c(η1I + η2A)

N
S − µS, c(η1I + η2A)

N
S − (ρ1 + µ)I, ρ1I − µA

)
= λh(S, I, A),

h(S, I, A) is homogeneous of degree 1.

Therefore we nondimensionalize the system (2.4) by setting

s =
S

N
, i =

I

N
, a =

A

N
, ṡ =

Ṡ

N
, i̇ =

İ

N
, ȧ =

Ȧ

N
. (2.7)

Substituting (2.7) into the system of equations (2.4) we have

ṡ = µ− c(η1i+ η2a)s− µs,

i̇ = c(η1i+ η2a)s− (ρ1 + µ)i,

ȧ = ρ1i− µa,

(2.8)

with

s+ i+ a = 1. (2.9)

2.2.2 Positivity and boundedness of solutions of the model

We define the feasible region (region with positive solutions) of model (2.8) to be

Ω = {(s, i, a) ∈ R3
+|s ≥ 0, i ≥ 0, a ≥ 0, s+ i+ a = 1}. (2.10)

We proceed to prove that Ω is positively invariant and solutions in Ω are bounded in the

following theorem.
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Theorem 2.2.1. Ω is positively invariant for the system (2.8) and there exists a constant

M > 0 such that all solutions starting in Ω satisfy s, i, a ≤M for all large t.

Proof. We assume that s(0) > 0, i(0) > 0 and a(0) > 0. Considering the first equation of (2.8),

we obtain the integrating factor

ϕ(t) = e
∫ t
0 (cη1i(τ)+cη2a(τ)+µ)dτ . (2.11)

d

dt

(
ϕ(t)s(t)

)
= ϕ̇(t)s(t) + ϕ(t)ṡ(t)

= (cη1i(t) + cη2a(t) + µ)ϕ(t)s(t)− (cη1i(t) + cη2a+ µ)ϕ(t)s(t) + µϕ(t)

= µϕ(t).

Integrating both sides we have

ϕ(t)s(t) = s(0) + µ

∫ t

0

ϕ(τ)dτ, (2.12)

> 0 for all t ≥ 0.

Similarly, let us consider the equation

ȧ(t) = ρ1i(t)− µa(t) (2.13)

= ρ1(1− s(t)− a(t))− µa(t) (2.14)

= ρ1(1− s(t))− (ρ1 + µ)a(t). (2.15)

We obtain the integrating factor

Φ(t) = e
∫ t
0 (µ+ρ1)dτ = e(µ+ρ1)t. (2.16)

We have

d

dt

(
Φ(t)a(t)

)
= Φ̇(t)a(t) + Φ(t)ȧ(t) (2.17)

= (ρ1 + µ)a(t)Φ(t)− (ρ1 + µ)a(t)Φ(t) + ρ1(1− s(t))Φ(t) (2.18)

= ρ1(1− s(t))Φ(t). (2.19)
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Integrating both sides of equation (2.19), we obtain

Φ(t)a(t) = a(0) + ρ1

∫ t

0

(1− s(τ))Φ(τ)dτ, (2.20)

> 0 since 0 < s(t) ≤ 1 for all t ≥ 0. (2.21)

Since s(t) + i(t) + a(t) = 1, i(t) = 1 − s(t) − a(t) > 0 for all t ≥ 0. Thus the region Ω is

positively invariant.

We know that 0 < s(t) ≤ 1, 0 < i(t) ≤ 1, 0 < a(t) ≤ 1 and s(t) + i(t) + a(t) = 1. Choosing

M = 1, gives 0 < s(t) ≤ M, 0 < i(t) ≤ M, 0 < a(t) ≤ M, for all large t. Therefore all

solutions of the system of equation (2.4) starting in the region Ω are bounded. This completes

the proof of the theorem.

2.3 Stability analysis of the equilibrium points

2.3.1 Disease free equilibrium point (DFE)

The disease free equilibrium point of the model is a solution of the system when there is no

infection in the population. We calculate the DFE of the system of equations (2.8) for s, i, and

a by setting ṡ = 0, i̇ = 0, and ȧ = 0, with i = 0 and a = 0 to yield,

s = 1. (2.22)

The disease free equilibrium point of the system of equations (2.8) is

E0 = (1, 0, 0). (2.23)

2.3.2 Basic reproduction number

The basic reproduction number, denoted by R0, is defined as the expected number of secondary

infections that result from introducing a single infected individual into a purely susceptible

population. For a simple model where there is only one infected compartment, R0 is simply

the product of the infection rate and the mean duration of the infection [16]. However, for a
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model with more than one infected compartments, we compute R0 by using the next generation

matrix approach used by Watmough and Van Den Driessche [16]. According to Watmough and

van den Driessche, the basic reproduction number R0 is defined by

R0 = ρ(FV −1), (2.24)

where

• F = (fij) is a matrix for which the entry (i, j) is the rate at which infected individuals in

compartment j produce new infections in compartment i.

• V −1 = (vjk) is a matrix for which the entry (j, k) is the average duration of the infected

individuals in compartment j.

• ρ(FV −1) is the spectral radius of the next generation matrix FV −1.

Considering the infected compartments (i and a) in model (2.8) and using the same notation

as used in [16], the matrix of rate of appearance of new infection, F , and the matrix of rate of

transfer individuals V are given by

F =

c(η1i+ η2a)s

0

 , V =

 (ρ1 + µ)i

−ρ1i+ µa

 . (2.25)

Evaluating the Jacobian matrices of F and V at E0 we have

F =

[
∂Fi
∂xj

(E0)

]
=

cη1s cη2s

0 0

 , V =

[
∂Vi
∂xj

(E0)

]
=

(ρ1 + µ) 0

−ρ1 µ

 . (2.26)

It follows that

V −1 =


1

ρ1 + µ
0

ρ1
µ(ρ1 + µ)

1

µ

 . (2.27)

Thus the next generation matrix of the system of equations (2.8) is given by

FV −1 =

cη1µ+ cη2ρ1
µ(ρ1 + µ)

cη2
µ

0 0

 . (2.28)
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The next generation matrix FV −1 has only one non-zero eigenvalue. The basic reproduction

number of the system of equations (2.8) is

R0 =
c(η1µ+ η2ρ1)

µ(ρ1 + µ)
. (2.29)

Moreover, R0 can be written in the form

R0 =
cη1

ρ1 + µ
+

cη2ρ1
µ(µ+ ρ1)

, (2.30)

where the first term is a contribution of infected individuals in the infected class and the second

term is that of AIDS individuals in contact with susceptible individuals.

2.3.3 Stability analysis of the disease free equilibrium

To analyse the stability of the DFE, we evaluate the Jacobian matrix of the system of equations

(2.8) at E0. We have

JE0 =


−µ −cη1 −cη2
0 cη1 − (ρ1 + µ) cη2

0 ρ1 −µ

 , (2.31)

with characteristic equation given by

det(JE0 − λI) = 0. (2.32)

This gives

(µ+ λ)(λ2 + b1λ+ b0) = 0, (2.33)

with b1 = 2µ+ ρ1 − cη1, b0 = µ(µ+ ρ1)(1−R0).

The disease free equilibrium point E0 is locally asymptotically stable if all the eigenvalues of

the Jacobian matrix JE0 are negative or have negative real parts and unstable if at least one

eigenvalue is positive or has a positive real part.

The characteristic equation (2.33) has at most three solutions. The first is λ1 = −µ < 0. The

other two eigenvalues are roots of the quadratic equation λ2 + b1λ+ b0 = 0, with solution

λ2,3 =
−b1

2
±

√(
b1
2

)2

− b0. (2.34)
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In order to have eigenvalues with negative real parts, it is sufficient that b0 > 0. This is achieved

when R0 < 1. We summarize the result into the following theorem.

Theorem 2.3.1. The disease free equilibrium point E0 is locally asymptotically stable when

R0 < 1 and unstable when R0 > 1.

2.3.4 Endemic equilibrium point (EEP)

We compute the endemic equilibrium point when i 6= 0 and a 6= 0, that is when the infection

persists.

Solving the system (2.8) for s∗, i∗, and a∗, the last equation yields

a∗ =
ρ1
µ
i∗. (2.35)

Adding the first and the second equations of the system (2.8) yields

s∗ = 1−
(

1 +
ρ1
µ

)
i∗. (2.36)

Substituting (2.36) into the first equation of the system (2.8), we obtain

i∗ =
µ(R0 − 1)

(ρ1 + µ)R0

. (2.37)

Manipulating (2.35), (2.36) and (2.37) we obtain the endemic equilibrium point given by

E1 =

(
1

R0

,
µ(R0 − 1)

(ρ1 + µ)R0

,
ρ1(R0 − 1)

(ρ1 + µ)R0

)
. (2.38)

The endemic equilibrium E1 exists when R0 > 1.

2.3.5 Stability analysis of the endemic equilibrium point

We analyse the stability of the endemic equilibrium point of the system of equations (2.8) by

proving the following theorem:

Theorem 2.3.2. The endemic equilibrium of the system (2.8) is locally asymptotically stable

when R0 > 1.
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Proof. The Jacobian matrix of system (2.8) evaluated at the endemic equilibrium point E1 is

given by

JE1 =


−µ− c(η1i∗ + η2a

∗) −cη1s∗ −cη2s∗

c(η1i
∗ + η2a

∗) cη1s
∗ − (ρ1 + µ) cη2s

∗

0 ρ1 −µ

 . (2.39)

Substituting s∗, i∗ and a∗ into JE1 , we obtain

JE1 =


−µR0 −cη1

R0

−cη2
R0

µ(R0 − 1)
cη1
R0

− (ρ1 + µ)
cη2
R0

0 ρ1 −µ

 . (2.40)

The characteristic equation of the matrix (2.40) is given by

det(JE1 − λI) =

∣∣∣∣∣∣∣∣∣∣
−µR0 − λ −cη1

R0

−cη2
R0

µ(R0 − 1)
cη1
R0

− (ρ1 + µ)− λ cη2
R0

0 ρ1 −µ− λ

∣∣∣∣∣∣∣∣∣∣
= 0. (2.41)

Expanding the determinant in equation (2.41) along the third row, we have

(λ+ µ)(λ2 + a1λ+ a0) = 0, (2.42)

where a1 = µR0 + ρ1 + µ− cη1
R0

, a0 = µ(ρ1 + µ)(R0 − 1).

The solutions of the characteristic equation (2.42) are λ1 = −µ < 0 and the other two are

solutions of the quadratic equation λ2 + a1λ+ a0 = 0 which are

λ2,3 = −a1
2
±
√(a1

2

)2
− a0.

The eigenvalues λ2,3 have negative real parts when a0 > 0, that is R0 > 1. This completes the

proof of the theorem.

Remark 2.3.3.

1. For 0 < R0 < 1, the disease free equilibrium point E0 = (1, 0, 0) is the only equilibrium

that exists and it is locally asymptotically stable in Ω. This means, when R0 is less

than unity, an infected individual produces less than one new infected individual and the

epidemic dies out.
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2. For R0=1, the DFE and EEP coalesce. A phenomenon known as supercritical bifurcation

occurs. There is exchange of stability between the DFE and EEP.

3. For R0 > 1, the DFE E0 becomes unstable and a new equilibrium point, the endemic

equilibrium point (EEP) exists and it is locally asymptotically stable in Ω. In this case,

all solutions starting inside Ω converge to the EEP. Each infected individual produces

more than one new infected individuals and the epidemic persists in the population.

2.4 Case 2: Birth rate different from death rate with no

AIDS deaths

In this case, we consider the fact that the birth rate is different from the natural death rate,

i.e b 6= µ and there are no deaths due to AIDS.

Ṡ = bN − c(η1I + η2A)

N
S − µS,

İ =
c(η1I + η2A)

N
S − (ρ1 + µ)I,

Ȧ = ρ1I − µA.

(2.43)

Adding the three equations of the system (2.43), we have

Ṅ = Ṡ + İ + Ȧ = (b− µ)N. (2.44)

Since b 6= µ, then Ṅ(t) 6= 0. This means that N(t) varies in time, and from (2.44) we obtain

N(t) = N0e
(b−µ)t, (2.45)

where N = N0 at t = 0.

From (2.45), we note that if b > µ, that is when the natural birth rate is greater than the

natural death rate, N(t) −→ ∞ as t −→ ∞ and if b < µ , that is when the natural death rate

goes above the natural birth rate, N(t) −→ 0 (extinction) as t −→∞.

We non-dimensionalize the system of equation (2.43) by setting

s =
S

N
, i =

I

N
, a =

A

N
. (2.46)
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Then

ṡ =
Ṡ

N
− S

N2
Ṅ

=
1

N

(
bN − c(η1I + η2A)

N
S − µS

)
− S

N2
(b− µ)N

= b− c(η1i+ η2a)s− µs− (b− µ)s

= b− (cη1i+ cη2a)s− bs.

i̇ =
İ

N
− I

N2
Ṅ

= c(η1i+ η2a)s− (ρ1 + µ)i− (b− µ)i

= c(η1i+ η2a)s− (ρ1 + b)i.

Similarly, we obtain ȧ = ρ1i− ba.

The non-dimensionlazed system of (2.43) becomes

ṡ = b− c(η1i+ η2a)s− bs,

i̇ = c(η1i+ η2a)s− (ρ1 + b)i,

ȧ = ρ1i− ba.

(2.47)

with

s+ i+ a = 1. (2.48)

Note that the system of equations (2.47) has the same form as the system of equations (2.8),

except that we have b in the dynamics and not µ. Therefore we can apply the same techniques

as in section 2.2 for stability analysis of the model.

We thus consider the region Ω defined as follows, as the biologically feasible region of the system

(2.47):

Ω = {(s, i, a) ∈ R3
+|s ≥ 0, i ≥ 0, a ≥ 0, s+ i+ a = 1}. (2.49)

As proved in section 2.2, Ω is positively invariant and attracting. The DFE point is the same

as that in section 2.2 and the basic reproduction number depending on b is given by

Rb =
c(η1b+ η2ρ1)

b(ρ1 + b)
. (2.50)
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Theorem 2.4.1. The disease free equilibrium point Eb of the system (2.47) is locally asymp-

totically stable when Rb < 1 and unstable when Rb > 1.

The proof of this theorem is similar to that of theorem 2.3.1.

The endemic equilibrium point is given by

E∗b =

(
1

Rb

,
b(Rb − 1)

(ρ1 + b)Rb

,
ρ1(Rb − 1)

(ρ1 + b)Rb

)
, (2.51)

and the existence of stability conditions are summarized in the following theorem:

Theorem 2.4.2. The endemic equilibrium point of the system of equations (2.47) exists and

is locally asymptotically stable when Rb > 1.

2.4.1 Comparison and observations

We compare the basic reproduction number found in the cases b = µ and b 6= µ.

Setting R = Rb −R0, then

R =
c(η1b+ η2ρ1)

b(ρ1 + b)
− c(η1µ+ η2ρ1)

µ(ρ1 + µ)

=
cη1

(b+ ρ1)
+

cη2ρ1
b(ρ1 + b)

− cη1
(µ+ ρ1)

− cη2ρ1
µ(ρ1 + µ)

=
cη1

(b+ ρ1)
− cη1

(µ+ ρ1)
+

cη2ρ1
b(ρ1 + b)

− cη2ρ1
µ(ρ1 + µ)

=
cη1(µ− b)

(ρ1 + µ)(ρ1 + b)
+
cη2ρ1(µ− b)(b+ µ)

bµ(ρ1 + µ)(ρ1 + b)
+

cη2ρ
2
1(µ− b)

bµ(ρ1 + µ)(ρ1 + b)

= (µ− b)
[

cη1
(ρ1 + µ)(ρ1 + b)

+
cη2ρ1(b+ µ)

bµ(ρ1 + µ)(ρ1 + b)
+

cη2ρ
2
1

bµ(ρ1 + µ)(ρ1 + b)

]
= (µ− b)

[
cbη1µ+ cη2(b+ µ)ρ1 + cη2ρ

2
1

bµ(ρ1 + µ)(ρ1 + b)

]
.

The sign of R depends on the sign of µ− b, thus

(i) For b < µ, R0 < Rb, the scenario leading to extinction.

(ii) For b = µ, Rb = R0, the scenario in section 2.2 with a constant population.

(iii) For b > µ, R0 > Rb, the case with exponential growth.
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2.5 Case 3: Birth rate different from death rate with

deaths due to AIDS

We incorporate the death rate due to AIDS and assume that the recruitment rate is constant

and denoted by π instead of bN . We thus obtain the modified system (2.52).

Ṡ = π − c(η1I + η2A)

N
S − µS,

İ =
c(η1I + η2A)

N
S − (ρ1 + µ)I,

Ȧ = ρ1I − (µ+ δ)A.

(2.52)

Adding the three equations in (2.52), we have

Ṅ = π − µN − δA (2.53)

≤ π − µN. (2.54)

This means the right hand side of (2.54) is bounded by π−µN for which using initial condition

N = N0 at t = 0, we have

N(t) ≤ π

µ
(1− e−µt) +N0e

−µt. (2.55)

Thus N(t) ≤ π

µ
if N0 ≤

π

µ
.

If N(t) >
π

µ
, Ṅ < 0 then (S, I, A) enters or approaches asymptotically inside the positive region

Ωδ. From equation (2.55) it is seen that as t→∞, N(t) is bounded above by
π

µ
. As a result,

we define the set Ωδ as

Ωδ =
{

(S, I, A) ∈ R3
+|S + I + A ≤ π

µ

}
, (2.56)

as the biologically feasible region of the system (2.52). It is clear that all solutions of the system

of equations (2.52) are bounded and Ωδ is attracting.

2.5.1 Basic reproduction number

The basic reproduction number Rδ of the system of equations (2.52) is computed using the

technique of the next generation matrix approach as used in our previous cases.
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We obtain

Rδ =
c(η1(µ+ δ) + η2ρ1)

(µ+ δ)(ρ1 + µ)
. (2.57)

Remark 2.5.1.

It can be seen that for δ = 0, Rδ = R0 whilst for δ 6= 0, Rδ < R0.

Indeed,

Rδ −R0 =
cη1(µ+ δ) + η2ρ1
(µ+ δ)(ρ1 + µ)

− cη1µ+ cη2ρ1
µ(ρ1 + µ)

=
cη1

µ+ ρ1
+

cη2ρ1
(δ + µ)(µ+ ρ1)

− cη1
µ+ ρ1

− cη2ρ1
µ(µ+ ρ1)

=
cη2ρ1

(δ + µ)(µ+ ρ1)
− cη2ρ1
µ(µ+ ρ1)

= − cη2ρ1δ

µ(µ+ δ)(µ+ ρ1)
< 0.

2.5.2 Disease free equilibrium point

Equating the right side of the system of equations (2.52) to zero with the conditions I = 0,

A = 0, and solving for S, I, and A, we obtain

S =
π

µ
. (2.58)

Thus, the DFE of the system of equations (2.52) is given by

Eδ =

(
π

µ
, 0, 0

)
. (2.59)

2.5.3 Stability analysis of the disease free equilibrium point

The Jacobian matrix of the system of equations (2.52) evaluated at DFE is given by

JEδ =


−µ −cη1 −cη2
0 cη1 − (ρ1 + µ) cη2

0 ρ1 −(µ+ δ)

 . (2.60)

One of the eigenvalues of the Jacobian matrix JEδ is λ1 = −µ < 0. The other two are solutions

of the characteristic equation

λ2 + a1λ+ a0 = 0, (2.61)
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where a1 = (2µ+ ρ1 − cη1 + δ), a0 = (µ+ δ)(1−Rδ).

The solutions of (2.61) are given by

λ2,3 = −a1
2
±
√(a1

2

)2
− a0. (2.62)

We can see that all the eigenvalues have negative real parts when a0 > 0, that is when Rδ < 1.

Theorem 2.5.2. The disease free equilibrium point Eδ of the system of equations (2.52) is

locally asymptotically stable when Rδ < 1 and unstable when Rδ > 1.

2.5.4 The endemic equilibrium point

To determine the endemic equilibrium point of the system (2.52), we solve the system of equa-

tions (2.63)–(2.65) for S∗, I∗, and A∗ as follows

π − c(η1I
∗ + η2A

∗)

N∗
S∗ − µS∗ = 0, (2.63)

c(η1I
∗ + η2A

∗)

N∗
S∗ − (ρ1 + µ)I∗ = 0, (2.64)

ρ1I
∗ − (µ+ δ)A∗ = 0. (2.65)

Equation (2.65) yields

A∗ =
ρ1

µ+ δ
I∗. (2.66)

Adding equations (2.63) and (2.64) we obtain

S∗ =
π

µ
−
(
ρ1 + µ

µ

)
I∗. (2.67)

Substituting (2.66) and (2.67) into equation (2.64) we have

I∗ =
π(µ+ δ)(Rδ − 1)

µ(µ+ ρ1 + δ)Rδ + δρ1(Rδ − 1)
. (2.68)

Substituting (2.68) into (2.66) and (2.67) we have

S∗ =
π(µ+ ρ1 + δ)

µ(µ+ ρ1 + δ)Rδ + δρ1(Rδ − 1)
, A∗ =

πρ1(Rδ − 1)

µ(µ+ ρ1 + δ)Rδ + δρ1(Rδ − 1)
. (2.69)

The EEP of the system of equations (2.52) is given by

E∗δ =

(
π(µ+ ρ1 + δ)

Φ + δρ1(Rδ − 1)
,
π(µ+ δ)(Rδ − 1)

Φ + δρ1(Rδ − 1)
,

πρ1(Rδ − 1)

Φ + δρ1(Rδ − 1)

)
, (2.70)
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where Φ = µ(µ+ ρ1 + δ)Rδ.

Solutions S∗, I∗, and A∗ are positive when Rδ > 1. This leads to the following theorem:

Theorem 2.5.3. The endemic equilibrium point E∗δ of the system of equations (2.52) exists

only when Rδ > 1.

2.5.5 Stability analysis of the endemic equilibrium point

We show the stability of the EEP of the system of equations (2.52) by proving the following

theorem:

Theorem 2.5.4. The EEP of the system of equations (2.52) is locally asymptotically stable

when Rδ > 1.

Proof. Let JE∗
δ

be the Jacobian matrix of the system of equations (2.52) evaluated at EEP,

JE∗
δ

=


−(ρ1 + µ)I∗(Rδ − 1)

S∗Rδ

− µ (ρ1 + µ)I∗

N∗
− cη1
Rδ

(ρ1 + µ)I∗

N∗
− cη2
Rδ

(ρ1 + µ)I∗(Rδ − 1)

S∗Rδ

−(ρ1 + µ)I∗

N∗
+
cη1
Rδ

− (ρ1 + µ) −(ρ1 + µ)I∗

N∗
+
cη2
Rδ

0 ρ1 −(µ+ δ)

 .

The characteristic equation of the Jacobian matrix is given by

λ3 + a2λ
2 + a1λ+ a0 = 0, (2.71)

where

a2 = A2 +
(ρ1 + µ)(µ+ δ)(Rδ − 1)

µ+ ρ1 + δ
,

a1 = A1 +
(ρ1 + µ)(µ+ δ)(2µ+ δ + ρ1)(Rδ − 1)

µ+ ρ1 + δ
,

a0 =
(ρ1 + µ)2(µ+ δ)2(Rδ − 1)2

Rδ(ρ1 + µ+ δ)
+
µ(ρ1 + µ)(µ+ δ)(Rδ − 1)

Rδ

,

A1 = µ(µ+ δ) +
cµη2ρ1

(µ+ δ)Rδ

, A2 = 2µ+ δ +
cη2ρ1

(µ+ δ)Rδ

.
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Clearly, a0, a1, and a2 > 0 when Rδ > 1 and

a2a1 − a0 =

(
A2 +

(ρ1 + µ)(µ+ δ)(Rδ − 1)

µ+ ρ1 + δ

)(
A1 +

(ρ1 + µ)(µ+ δ)(2µ+ δ + ρ1)(Rδ − 1)

µ+ ρ1 + δ

)
− (δ + µ)2(ρ1 + µ)2(Rδ − 1)2

Rδ(µ+ ρ1 + δ)
− µ(µ+ ρ1)(δ + µ)(Rδ − 1)

Rδ

=
(ρ1 + µ)2(µ+ δ)2(2µ+ ρ1 + δ)(Rδ − 1)2

(µ+ ρ1 + δ)2
+
A2(µ+ δ)(ρ1 + µ)(2µ+ δ + ρ1)(Rδ − 1)

µ+ ρ1 + δ

+
A1(µ+ ρ1)(µ+ δ)(Rδ − 1)

µ+ ρ1 + δ
− (ρ1 + µ)2(µ+ δ)2(Rδ − 1)2

Rδ(µ+ ρ1 + δ)
− µ(µ+ ρ1)(µ+ δ)(Rδ − 1)

Rδ

+ A1A2

= A1A2 +
A1(µ+ ρ1)(µ+ δ)(Rδ − 1)

µ+ ρ1 + δ
+B1 +B2 > 0, when Rδ > 1,

where

B1 =
(µ+ δ)2(ρ1 + µ)2(2µ+ ρ1 + δ)(Rδ − 1)2

(µ+ ρ1 + δ)2
− (δ + µ)2(ρ1 + µ)2(Rδ − 1)2

Rδ(µ+ ρ1 + δ)

= [µ+ (µ+ ρ1 + δ)(Rδ − 1)]
(ρ1 + µ)2(µ+ δ)2(Rδ − 1)2

(µ+ ρ1 + δ)2Rδ

,

B2 =
A2(µ+ δ)(ρ1 + µ)(2µ+ δ + ρ1)(Rδ − 1)

µ+ ρ1 + δ
− µ(µ+ ρ1)(µ+ δ)(Rδ − 1)

Rδ

=

[
A2µRδ + (µ+ ρ1 + δ)

(
µ(Rδ − 1) + (µ+ δ)Rδ +

cη2ρ1
µ+ δ

)]
(ρ1 + µ)(δ + µ)(Rδ − 1)

(µ+ ρ1 + δ)(Rδ

.

All the Routh–Hurwitz conditions are satisfied when Rδ > 1. Therefore, by the Routh–Hurwitz

criterion for stability [17], all the eigenvalues of JE∗
δ

are negative or have negative real parts.

The endemic equilibrium point E∗δ is thus locally asymptotically stable when Rδ > 1.

2.6 Remarks

(I) If we consider the expression of I∗ in equation (2.68), we have

I∗sat = lim
Rδ→∞

I∗ = lim
Rδ→∞

π(µ+ δ)(Rδ − 1)

(µ+ ρ1)(µ+ δ)Rδ − δρ1
=

π

µ+ ρ1
. (2.72)

Similarly, the AIDS individuals attains its saturation A∗sat, that is

A∗sat = lim
Rδ→∞

A∗ = lim
Rδ→∞

πρ1(Rδ − 1)

(µ+ ρ1)(µ+ δ)Rδ − δρ1
=

πρ1
(µ+ ρ1)(µ+ δ)

, (2.73)
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0 No endemic

Rδ < 1, DFE is stable

Endemic persists

Rδ > 1, DFE is unstableRδ = 1

Bifurcation point
1 +∞

Figure 2.2: Graphical representation of the endemic as function of Rδ

and

S∗sat = lim
Rδ→∞

S∗ = lim
Rδ→∞

π(µ+ ρ1 + δ)

(µ+ ρ1)(µ+ δ)Rδ − δρ1
= 0. (2.74)

The biological meaning of equations (2.72)–(2.74) is that when there is no HIV interven-

tion, that is no use of condoms, counselling, HIV education or pre-exposure HIV prophy-

laxis, the number of infected people increases exponentially and attains the saturation

I∗sat. In this situation the number of susceptible individuals progressively diminishes and

tends to zero whereas the number of AIDS individuals converges to the saturation A∗sat.

Hence, if the infection is not controlled every individual will end up being a carrier of HIV

or having full blown AIDS. However, some susceptible individuals aware of the high risk

of HIV infection, due to various awareness interventions mentioned earlier, may decide

to take the pre-exposure HIV prophylaxis. Taking this fact into account, we modify our

model and look for the impact of including pre-exposure HIV prophylaxis in our findings

in the previous sections.

(II) Furthermore, for 0 < Rδ < 1, the number of susceptible individuals is equal to
π

µ
,

while the number of infected and that of AIDS individuals are equal to zero. In that

situation, it is clear that the DFE is the only equilibrium point that exists and it is

locally asymptotically stable. An infected individual produces less than one infected

individual. Hence, no epidemic will develop.

For Rδ = 1, an exchange of stability occurred (supercritical bifurcation) between the

DFE and the EEP (See Figures 2.2 and 2.3).

For Rδ > 1, the EEP exists and it is locally asymptotically stable. The DFE becomes

unstable. Each infected individual infects more than one (susceptible) individual per unit

time. The infection develops into a stable endemic.
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Figure 2.3: The bifurcation diagram and evolution of the infection by Rδ with estimated

values of the parameters π = 105, ρ1 = 0.6, µ = 0.03, and δ = 0.04 [21].
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Chapter 3

PRE-EXPOSURE HIV

PROPHYLAXIS MODEL

3.1 Introduction

HIV infection prevention by means of abstinence or mutual monogamy practice with an HIV-

negative partner remains the first line of defence against the virus. Although the method is more

effective, one notices that, it is not fully practised by many individuals in different communities.

The antiretroviral drugs use and correct use of condoms before any sexual activity has been

demonstrated to be a highly potent and fundamental strategy against HIV infection. These

health precaution measures taken by uninfected individuals, before being exposed to a risk of

HIV infection, are defined as pre-exposure HIV prophylaxis (PrEP). Two recent studies showed

that PrEP using antiretroviral drugs (Tenofovir and Truvada) substantially reduced the risk

of acquiring HIV infection [18]. The efficacy and the use of PrEP medication remain a big

challenge in PrEP intervention. In this section, we investigate how PrEP use and its efficacy

can impact the prevalence and the incidence of HIV infection in our community. We thus set

up some hypotheses for convenient scenarios in communities which lead to a model for analysis.
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3.1.1 Model description

We consider that some susceptible individuals who are at high risk of HIV infection take PrEP

but some do not. We assume that a proportion γ of susceptible individuals is on PrEP and

the remaining proportion (1 − γ)S is not on prophylaxis (γ can be regarded as the measure

of awareness on the use of PrEP, so that 0 ≤ γ ≤ 1). We denote the number of susceptible

individuals using the PrEP by Sp. However, only a proportion σ of Sp is protected from the

PrEP (σ is the measure of effectiveness of the drugs that are used as PrEP, with 0 ≤ σ ≤ 1). As

a result (1−σ)Sp are exposed to the risk of HIV infection due to PrEP failure. The individuals

who become infected due to PrEP failure move to a new infected class Ip while those who do

not take PrEP and become infected move to the infected class I. Individuals from the I and

Ip classes progress to the AIDS class, denoted by A, at constant rates ρ1 and ρ2 respectively.

The total population N considered is the sum of all these individuals:

N = S + Sp + I + Ip + A. (3.1)

We assume that recruited individuals into the population N are susceptible individuals so

that the compartment S increases with constant recruitment rate π. The resultant system of

differential equations is given by

Ṡ = π − γS − (1− γ)λS − µS,

Ṡp = γS − (1− σ)λSp − µSp,

İ = (1− γ)λS − (ρ1 + µ)I,

İp = (1− σ)λSp − (ρ2 + µ)Ip,

Ȧ = ρ1I + ρ2Ip − (µ+ δ)A.

(3.2)

with

N = S + Sp + I + Ip + A.

We consider the force of infection to be

λ =
c(η1I + η2Ip + η3A)

N
. (3.3)

The flow diagram of model (3.2) is represented in Figure 3.1. All the variables and parameters

are defined in Table 3.1.
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Figure 3.1: Flow diagram for the PrEP model.

3.1.2 Positivity and boundedness of solutions of the model

Since we know that the variables S(t), Sp(t), I(t), Ip(t), and A(t) represent human population

data, it is important to show that all solutions of the system of equations (3.2) are positive and

bounded. To prove that, we add the right hand side and left hand side of the system to yield

Ṅ = π − µN − δA. (3.4)

It can be seen that equation (3.4) is the same as equation (2.53) and the analysis follows that

of section 2.5. Thus, all solutions of the system of equations (3.2) are positive and bounded in

Ωp defined by

Ωp =
{

(S, Sp, I, Ip, A) ∈ R5
+|S + I + Sp + Ip + A ≤ π

µ

}
. (3.5)

3.2 PrEP model analysis

In this section, we investigate the local and the global stability of the equilibrium points of the

model (3.2) using the basic reproduction number for our analysis. As before we make use of the

van den Driessche and Watmough approach to calculate the basic reproduction number and we

use centre manifold theory [15] for the local stability analysis of the EEP. We investigate the
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Table 3.1: Parameters and variables used in the PrEP model .

Variables Description

S Number of susceptible individuals not on prophylaxis.

I Number of infected individuals from S compartment.

Sp Number of susceptible individuals on PrEP.

Ip Number of infected individuals from Sp compartment.

A Number of individuals suffering from AIDS.

N Total population individuals considered.

Parameters Description

π Recruitment rate.

µ Natural death rate.

δ Death rate due to AIDS.

σ Efficacy of the PrEP.

ρ1 Progression rate from infected compartment I to AIDS compartment.

ρ2 Progression rate from infected compartment Ip to AIDS compartment.

η1 Contact rate of infected individuals from I class and susceptible individual (S).

η2 Contact rate of infected individuals from Ip class and susceptible individual (Sp).

η3 Contact rate of AIDS individuals and susceptible individual.

c Average number of new sexual partners acquired per unit time.

λ The force of infection.

impact of PrEP awareness and its efficacy on the progression of HIV infection in a population.

In particular, we investigate its effects on HIV prevalence and incidence.

3.2.1 Disease free equilibrium point and basic reproduction number

The disease free equilibrium point of model (3.2) is obtained by setting the left hand side of

the system (3.2) to zero with conditions I = 0, Ip = 0, and A = 0 and solving for So and Sop .
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We obtain

Eo
p = (So, Sop , I

o, Iop , A
o) =

(
π

µ+ γ
,

πγ

µ(µ+ γ)
, 0, 0, 0

)
. (3.6)

Following van den Driessche and Watmough [16], the Jacobian matrices of infected compart-

ments, DxF(x) and DxV(x), evaluated at DFE Eo
p are

F =


cµ(1− γ)η1

µ+ γ

cµ(1− γ)η2
µ+ γ

cµ(1− γ)η3
µ+ γ

cγ(1− σ)η1
µ+ γ

cγ(1− σ)η2
µ+ γ

cγ(1− σ)η3
µ+ γ

0 0 0

 , V =


ρ1 + µ 0 0

0 ρ2 + µ 0

−ρ1 −ρ2 (µ+ δ)

 . (3.7)

It follows that

V −1 =


1

ρ1 + µ
0 0

0
1

ρ2 + µ
0

ρ1
(ρ1 + µ)(δ + µ)

ρ2
(ρ2 + µ)(δ + µ)

1

µ+ δ

 . (3.8)

The next generation matrix FV −1 of the system (3.2) is given by

FV −1 =


cµ(1− γ)(η1(µ+ δ) + ρ1η3)

(γ + µ)(µ+ ρ1)(µ+ δ)

cµ(1− γ)(η2(µ+ δ) + ρ2η3)

(γ + µ)(µ+ ρ2)(µ+ δ)

cµ(1− γ)η3
(γ + µ)(µ+ δ)

cγ(1− σ)(η1(µ+ δ) + ρ1η3)

(γ + µ)(µ+ ρ1)(µ+ δ)

cγ(1− σ)(η2(µ+ δ) + ρ2η3)

(γ + µ)(µ+ ρ2)(µ+ δ)

cγ(1− σ)η3
(γ + µ)(µ+ δ)

0 0 0

 .
(3.9)

The characteristic equation is given by

λ(λ2 − tr(A)λ+ det(A)) = 0. (3.10)

The solutions of equation (3.10) are λ = 0 and the solutions of the quadratic equation

λ2 − tr(A)λ+ det(A) = 0. (3.11)

The equation (3.11) is the characteristic equation of the matrix

A =


cµ(1− γ)(η1(µ+ δ) + ρ1η3)

(γ + µ)(µ+ ρ1)(µ+ δ)

cµ(1− γ)(η2(µ+ δ) + ρ2η3)

(γ + µ)(µ+ ρ2)(µ+ δ)
cγ(1− σ)(η1(µ+ δ) + ρ1η3)

(γ + µ)(µ+ ρ1)(µ+ δ)

cγ(1− σ)(η2(µ+ δ) + ρ2η3)

(γ + µ)(µ+ ρ2)(µ+ δ)

 . (3.12)
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Solving equation (3.11) we obtain

λ1 = 0, λ2 = tr(A) =
cµ(1− γ)(η1(µ+ δ) + ρ1η3)

(γ + µ)(µ+ ρ1)(µ+ δ)
+
cγ(1− σ)(η2(µ+ δ) + ρ2η3)

(γ + µ)(µ+ ρ2)(µ+ δ)
.

It follows that ρ(FV −1) = tr(A). Therefore the basic reproduction number of the model (3.2)

is given by

R0 =
cµ(1− γ)(η1(µ+ δ) + ρ1η3)

(γ + µ)(µ+ ρ1)(µ+ δ)
+
cγ(1− σ)(η2(µ+ δ) + ρ2η3)

(γ + µ)(µ+ ρ2)(µ+ δ)
. (3.13)

3.2.2 Influence of PrEP on R0

We investigate the effects of the efficacy of PrEP on R0 by computing the partial derivative of

R0 with respect to σ, that is

∂R0

∂σ
= − cγ

γ + µ

η2(µ+ δ) + ρ2η3
(µ+ ρ2)(µ+ δ)

< 0. (3.14)

We note from equation (3.14) that R0 is a decreasing function of σ. This means that the

increase in the efficacy of PrEP results in the decline of the basic reproduction number due

to infection from reduced PrEP failure. Thus the PrEP slows down the progression of HIV

infection. Awareness of the PrEP protection in the community is also important for the control

of the progression of HIV infection.

We can rewrite R0 in the form

R0 =
1− γ
γ + µ

Rn +
γ

γ + µ
Rp, (3.15)

where

Rn =
cµ(η1(µ+ δ) + ρ1η3)

(µ+ ρ1)(µ+ δ)
(3.16)

and

Rp =
c(1− σ)(η2(µ+ δ) + ρ2η3)

(µ+ ρ2)(µ+ δ)
. (3.17)

We have
∂R0

∂γ
= − µ+ 1

(γ + µ)2

[
Rn −R∗n

]
, (3.18)

35



where

R∗n =
µ

µ+ 1
Rp. (3.19)

From equation (3.18), we make the following observations:

(i) If R∗n ≥ Rn,
∂R0

∂γ
≥ 0.

(ii) If R∗n < Rn,
∂R0

∂γ
< 0.

We notice that when Rn is less than its threshold value R∗n, the PrEP administration to indi-

viduals in the community may have no impact on the infection rate. When Rn is above the

threshold value R∗n, then the PrEP decreases the basic reproduction number. The analysis in

(i) and (ii) reveals that raising awareness on prophylaxis alone as a strategy may not always

work. Efforts should be made to consider the efficacy of PrEP as well.

We also note that

lim
(σ,γ)→(σ,1)

R0 =
c(1− σ)(η2(µ+ δ) + ρ2η3)

(1 + µ)(µ+ ρ2)(µ+ δ)
=

1

µ+ 1
Rp, (3.20)

lim
(σ,γ)→(1,1)

R0 = 0, (3.21)

lim
(σ,γ)→(1,γ)

R0 =
cµ(1− γ)(η1(µ+ δ) + ρ1η3)

(γ + µ)(µ+ ρ1)(µ+ δ)
=

1− γ
µ+ γ

Rn. (3.22)

It can be seen that when protection from the PrEP improves, that is when σ goes to unity,

only the second term of R0 goes to zero. This means that increasing the efficacy of PrEP in

community does not guarantee the total eradication of the infection but will certainly reduce

the infection rate. When the response to PrEP awareness increases, that is when γ goes to

unity, the infection is not eradicated either. However, when both of σ and γ tend simultaneously

to unity, the number of secondary infections diminishes and tends to zero with increasing time.

This means that a combined strategy regarding PrEP awareness and efficacy, when effectively

implemented, may lead to effective control of HIV infection. However, the control status is

unstable as drugs wane with time and individuals may respond to the awareness at different

rates. For maximum benefits, care must be taken to ensure strict adherence to the use of PrEP

and combine PrEP use with other strategies of HIV control.
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3.2.3 Mathematical observations and biological interpretation

The basic reproduction number R0 of the system of equations (3.2) can be regarded as a linear

combination of two basic reproduction numbers, R1 and R2, of two system of equations, (S1)

and (S2), which are respectively governed by the triplets (S, I, A) and (Sp, Ip, A). To show that,

we consider the following two models generated by model (3.2)

(S1) :

Ṡ = π − (1− γ)
c(η1I + η3A)

N1

S − (µ+ γ)S,

İ = (1− γ)
c(η1I + η3A)

N1

S − (ρ1 + µ)I,

Ȧ = ρ1I − (µ+ δ)A,

(3.23)

with

N1 = S + I + A. (3.24)

(S2) :

Ṡp = γS − (1− σ)
c(η2I2 + η3A)

N2

Sp − µSp,

İp = (1− σ)
c(η2Ip + η3A)

N2

Sp − (ρ2 + µ)Ip,

Ȧ = ρ2Ip − (µ+ δ)A,

(3.25)

with

N2 = Sp + Ip + A. (3.26)

The system of equations (S1) describes interactions and progression dynamics of individuals not

on PrEP, while the system of equations (S2) deals with interactions and progression dynamics

of individuals on PrEP. We analyse the dynamics of both systems of equations.

(a) Positivity and boundedness of solutions

Adding both sides of system of equations (S1) and both sides of system of equations (S2), we

have respectively

Ṅ1 = π − γS − µN1 − δA (3.27)
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and

Ṅ2 = γS − µN2 − δA, (3.28)

which respectively imply

Ṅ1 ≤ π − µN1 (3.29)

and

Ṅ2 ≤ γS − µN2. (3.30)

From (3.29), we have

N1 ≤
π

µ
−N0

1 e
−µt, where N0

1 = N1(0), (3.31)

=⇒ N1 ≤
π

µ
, ∀ t ≥ 0. (3.32)

Since, S < N1 ≤
π

µ
, then from (3.30) we obtain

Ṅ2 ≤
γπ

µ
− µN2, (3.33)

which yields

N2 ≤
γπ

µ2
−N0

2 e
−µt, (3.34)

where N0
2 = N2(0).

Following the same analysis as that of equation (3.4), we define the feasible region of systems

(S1) and (S2) to be

Ω1 =

{
(S, I, A) ∈ R3

+|S + I + A ≤ π

µ

}
⊆ Ωp (3.35)

and

Ω2 =

{
(Sp, Ip, A) ∈ R3

+|Sp + Ip + A ≤ γπ

µ2

}
⊆ Ωp, (3.36)

respectively.

From what precedes in section 2.2.2, one can state that the regions Ω1 and Ω2 are positively

invariant and attracting. Moreover, it is seen that

N ≤ N1 +N2 ≤
π

µ

(
1 +

γ

µ

)
. (3.37)

Then every solution in Ω1 or Ω2 belongs to Ωp, this implies that Ω1 ∪ Ω2 ⊂ Ωp.
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(b) Basic reproduction numbers

The disease free equilibrium points of the system of equations (S1) and (S2) are respectively

E1
0 =

(
π

γ + µ
, 0, 0

)
, (3.38)

and

E2
0 =

(
πγ

µ(γ + µ)
, 0, 0

)
. (3.39)

The basic reproduction number of systems (S1) and (S2) computed using van den Driessche

and Watmough’s techniques [16], leads to

R1 =
c(1− γ)(η1(µ+ δ) + ρ1η3)

(µ+ ρ1)(µ+ δ)
, (3.40)

and

R2 =
c(1− σ)(η2(µ+ δ) + ρ2η3)

(µ+ ρ2)(µ+ δ)
. (3.41)

It is clear that

R0 =
µ

γ + µ
R1 +

(
1− µ

γ + µ

)
R2. (3.42)

This confirms that the basic reproduction number of the main model (3.2), R0, is a linear

combination of R1 and R2 that are reproduction numbers of models (S1) and (S2). We can see

that the main model (3.2) is partitioned into two models (S1) and (S2) and it follows that its

basic reproduction number is a linear combination of each of both models (S1) and (S2). Such

a model is said to be a parameter connected. This leads to the following definitions

Definition 3.2.1. An epidemiological model

(S) : ẋ = f(x), x ∈ Rn
+ (3.43)

is said to be a parameter connected model, if there exists a partition of that model into two

sub-models (S1) and (S2) such that the basic reproduction number of the model (S) connected

by a parameter κ, is linear combination of basic reproduction numbers, R1 and R2, of the

sub-models (S1) and (S2), that is

R = κR1 + (1− κ)R2. (3.44)
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We call min{κR1, (1 − κ)R2} the slow basic reproduction number and max{κR1, (1 − κ)R2}

the fast basic reproduction number. Thus the parameter κ (0 < κ ≤ 1) is called the slow-fast

parameter of the parameter connected model. From that definition, the model (3.2) is a

parameter connected model with

κ =
µ

γ + µ
. (3.45)

We note that the slow-fast parameter depends on the level of PrEP awareness. Increasing γ

reduces the value of the κ whilst reducing γ increases the value of κ.

If the basic reproduction number cannot be disaggregated as in (3.44), we call the model a

compact model. Thus the basic HIV model analysed in section 2.1 is a compact model. Even

though some compact models present the required linear combination property they cannot

always be partitioned into two sub-models.

The analysis of the parameter connected model for an epidemiological disease is important in

the sense that it reveals that the control of infection in a community may need a balance in more

than one intervention strategy. Thus in our case, the control will be done by simultaneously

monitoring both the fast basic reproduction number and the slow basic reproduction number to

levels where the epidemic can be managed effectively. The parameter connected model allows

us to determine the group of individuals in a community who are more susceptible to infection.

To eradicate the infection calls for measures to provide more PrEP education to individuals

presenting the fast basic reproduction number and administering a more effective PrEP drug.

3.2.4 Local stability of the disease free equilibrium point

To analyze the local stability of the DFE, we compute the Jacobian matrix of the system of

equations (3.2) and evaluate it at the DFE Eo
p . We have
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J(Eo
p) =



−µ− γ 0 −cµ(1− γ)η1
µ+ γ

−cµ(1− γ)η2
µ+ γ

−cµ(1− γ)η3
µ+ γ

γ −µ −cγ(1− σ)η1
µ+ γ

−cγ(1− σ)η2
µ+ γ

−cγ(1− σ)η3
µ+ γ

0 0
cµ(1− γ)η1

µ+ γ
− ρ1 − µ

cµ(1− γ)η2
µ+ γ

cµ(1− γ)η3
µ+ γ

0 0
cγ(1− σ)η1

µ+ γ

cγ(1− σ)η2
µ+ γ

− ρ2 − µ
cγ(1− σ)η3

µ+ γ

0 0 ρ1 ρ2 −(µ+ δ)


.

(3.46)

The characteristic equation of J(Eo
p) is given by

det(J(Eo
p)) = (λ+ µ)(λ+ γ + µ)P (λ) = 0, (3.47)

where

P (λ) = λ3 + a2λ
2 + a1λ+ a0, (3.48)

and

a2 = (δ + µ) + (ρ1 + 2µ+ ρ2)(1−R0) +
(ρ1 + µ)γR2 + (ρ2 + µ)µR1

µ+ γ
+
η3(µρ1 + γρ2)

(µ+ δ)(µ+ γ)
,

a1 = (µ+ ρ1)(µ+ ρ2)(1−R0) + (µ+ δ)(ρ1 + ρ2 + 2µ)(1−R0) + (µ+ δ)(µ+ ρ1)
γR2

µ+ γ

+ (µ+ δ)(µ+ ρ2)
µR1

µ+ γ
+
cµ(1− γ)ρ1η3(ρ2 + µ)

(µ+ γ)(µ+ δ)
+
cγ(1− σ)ρ2η3(ρ1 + µ)

(µ+ γ)(µ+ δ)
,

a0 = (µ+ δ)(µ+ ρ1)(µ+ ρ2)(1−R0).

The first two eigenvalues of the matrix J(Eo
p) are λ1 = −µ < 0 and λ2 = −(γ + µ) < 0. The

other three are solutions of P (λ) = 0.

Clearly a2, a1, and a0 are positive when R0 < 1, and

a1a2 − a0 = (µ+ δ + C2)(C1 + (µ+ ρ1)(µ+ ρ2)(1−R0))− (µ+ δ)(µ+ ρ1)(µ+ ρ2)(1−R0)

= (µ+ δ)C1 + C2C1 + C2(µ+ ρ1)(µ+ ρ2)(1−R0)

> 0 when R0 < 1,
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where

C2 = (ρ1 + ρ2 + 2µ)(1−R0) +
(ρ1 + µ)γR2 + (ρ2 + µ)µR1

µ+ γ
+
η3(µρ1 + γρ2)

(µ+ δ)(µ+ γ)
.

C1 = (µ+ δ)(ρ1 + ρ2 + 2µ)(1−R0) + (µ+ δ)(ρ1 + µ)
γR2

µ+ γ
+ (µ+ δ)(ρ2 + µ)

µR1

µ+ γ

+
cµ(1− γ)ρ1η3(ρ2 + µ)

(µ+ γ)(µ+ δ)
+
cγ(1− σ)ρ2η3(ρ1 + µ)

(µ+ γ)(µ+ δ)
.

The Routh–Hurwitz criterion for stability [17] is satisfied when R0 < 1, therefore all the

eigenvalues of J(Eo
p) have a negative real part when R0 < 1. We summarize the results in the

following theorem:

Theorem 3.2.2. The disease free equilibrium point Eo
p of the system of equations (3.2) is

locally asymptotically stable if R0 < 1 and unstable when R0 > 1.

Theorem 3.2.2 suggests that HIV infection can be eradicated from the population when the

basic reproduction number R0 is less than unity. This is a necessary condition for stability but

one needs to take care when using this result for biological interpretation. This is because one

of R1 or R2 may be greater that unity when R0 < 1. We proceed to test for global stability of

the DFE.

3.2.5 Global stability of the disease free equilibrium point

We follow the Castillo-Chavez et al. [15] approach to prove the global stability of the DFE. In

order to use Theorem 1.2.8, we write the system (3.2) in the form

Ẋ = F (X, Y ),

Ẏ = H(X, Y ), H(X, 0) = 0,
(3.49)

where the components of the vector X = (S, Sp) ∈ R2
+ denote the number of uninfected

individuals and the components of vector Y = (I, Ip, A) ∈ R3
+ denote the number of infected

individuals. Thus the DFE becomes Eo
p = (Xo, 0) where

Xo =

(
π

γ + µ
,

πγ

µ(γ + µ)

)
. (3.50)
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The global stability property of the DFE is achieved when the following two conditions are

satisfied:

H1 : For Ẋ = F (X, 0), Xo is globally asymptotically stable (GAS).

H2 : H(X, Y ) = BY − Ĥ(X, Y ), Ĥ(X, Y ) ≥ 0 for (X, Y ) ∈ Ωp.

From equation (3.2), it follows that

F (X, 0) =

π − (µ+ γ)S

γS − µSp

 , Ĥ(X, Y ) =


Ĥ1

Ĥ2

Ĥ3

 =


c(1− γ)(η1I + η2Ip + η3A)

(
µ

µ+ γ
− S

N

)
c(1− σ)(η1I + η2Ip + η3A)

(
γ

µ+ γ
− Sp
N

)
0


(3.51)

and

B =


cµ(1− γ)η1

µ+ γ
− ρ1 − µ

cµ(1− γ)η2
µ+ γ

cµ(1− γ)η3
µ+ γ

cγ(1− σ)η1
µ+ γ

cγ(1− σ)η2
µ+ γ

− ρ2 − µ
cγ(1− σ)η3

µ+ γ

ρ1 ρ2 −(µ+ δ)

 . (3.52)

The first condition (H1) is satisfied when Xo is a GAS equilibrium point of the system

Ṡ = π − (µ+ γ)S,

Ṡp = γS − µSp.
(3.53)

To prove that, we solve system (3.53) for S and Sp and we obtain

X(t) = (S(t), Sp(t)) =

(
π

µ+ γ
− c0e−(µ+γ)t,

γπ

µ(γ + µ)
+ c1e

−µtt+ c2e
−(µ+γ)t

)
, (3.54)

where c0, c1, and c2 ∈ R.

It is clear that

lim
t→∞

X(t) = Xo. (3.55)

This implies that independently of the initial conditions values, all solutions of the system

(3.53) converge to the equilibrium point Xo. Thus, Xo is GAS equilibrium point of (3.53).

To prove condition (H2) that required Ĥ(X, Y ) ≥ 0, which implies Ĥ1 ≥ 0 and Ĥ2 ≥ 0, we

proceed by contradiction.
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We assume that Ĥ1 < 0 and Ĥ2 < 0, which respectively implies that

µ

µ+ γ
<
S

N
and

γ

µ+ γ
<
Sp
N
. (3.56)

Adding both inequalities in (3.56), we obtain

1 <
S + Sp
N

that is N < S + Sp, (3.57)

which is a contradiction. Therefore Ĥ1 ≥ 0 and Ĥ2 ≥ 0. This completes the proof to the two

conditions.

As a result, we have therefore proved the global stability of the DFE Eo
p of system (3.2) that

we summarized in the theorem as follows:

Theorem 3.2.3. The DFE Eo
p of the system of equations (3.2) is globally asymptotically stable

when R0 < 1 and unstable R0 > 1.

Theorem 3.2.3 confirms that when R0 < 1, we can take control of the spread of HIV infec-

tion independently of the initial conditions of the infection as long as we can keep the basic

reproduction number below 1.

3.2.6 Endemic equilibrium point and its local stability

The coordinates of the endemic equilibrium point E∗p = (S∗, S∗p , I
∗, I∗p , A

∗) of the system of

equations (3.2) are obtained, using the approach of Lungu et al. [19] via

π − (γ + (1− γ)λ∗ + µ)S∗ = 0, (3.58)

γS∗ − (µ+ (1− σ)λ∗)S∗p = 0, (3.59)

(1− γ)λ∗S − (ρ1 + µ)I∗ = 0, (3.60)

(1− σ)λ∗S∗p − (ρ2 + µ)I∗p = 0, (3.61)

ρ1I
∗ + ρ2I

∗
p − (µ+ δ)A∗ = 0. (3.62)

From equation (3.58) we have

S∗ =
π

γ + (1− γ)λ∗ + µ
. (3.63)
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Substituting equation (3.63) into equation (3.59) we obtain

S∗p =
γπ(

µ+ (1− σ)λ∗
)(
γ + (1− γ)λ∗ + µ

) . (3.64)

Equation (3.63) and equation (3.60) yield

I∗ =
(1− γ)λ∗π(

ρ1 + µ
)(
γ + (1− γ)λ∗ + µ

) . (3.65)

Substituting equation (3.64) into equation (3.61) we obtain

I∗p =
(1− σ)λ∗γπ(

ρ2 + µ
)(
γ + (1− γ)λ∗ + µ

)(
µ+ (1− σ)λ∗

) . (3.66)

From equation (3.62) we have

A∗ =
λ∗π(

γ + (1− γ)λ∗ + µ
)(
µ+ δ

) [ρ1(1− γ)

(ρ1 + µ)
+

ρ2γ(1− σ)

(ρ2 + µ)(µ+ (1− σ)λ∗)

]
. (3.67)

Substituting the expressions for I∗, I∗p , and A∗ into

λ∗ = c
η1I
∗ + η2I

∗
p + η3A

∗

N∗
, (3.68)

we obtain

λ∗N∗ =
(cη1(µ+ δ) + η3ρ1)(1− γ)

(
µ+ (1− σ)λ∗

)
(ρ1 + µ)(µ+ δ)

(
γ + (1− γ)λ∗ + µ

)(
µ+ (1− σ)λ∗

)λ∗
+

(cη2(µ+ δ) + η3ρ2)(1− σ)γ

(µ+ δ)
(
ρ2 + µ

)(
γ + (1− γ)λ∗ + µ

)(
µ+ (1− σ)λ∗

)λ∗. (3.69)

Equation (3.69) has a trivial solution λ∗1 = 0 or two non-zero solutions λ∗2,3 6= 0. Clearly, when

λ∗1 = 0,

S∗ =
π

µ+ γ
, S∗p =

πγ

µ(γ + µ)
, I∗ = 0, I∗p = 0, A∗ = 0. (3.70)

Then λ∗1 = 0 corresponds to the disease free equilibrium point and one of the non-zero solutions

(the positive one) of equation (3.69), which are obtained via solutions to the following quadratic

equation obtained from equation (3.69)

λ∗2 − e1λ∗ + e0 = 0, (3.71)

where

e1 =
δρ1µ(1− γ) + ρ2δ(ρ1 + µ)

(µ+ ρ1 + δ)
+
R1(ρ1 + µ)(µ+ δ)(1− σ)

(1− γ)(µ+ ρ1 + δ)
,

45



and

e0 =
(1−R0)(µ+ γ)(µ+ δ)(ρ1 + µ)

(1− γ)(1− σ)(µ+ ρ1 + δ)
,

would therefore correspond to the endemic equilibrium point.

The quadratic equation (3.71) has a real solution when its discriminant ∆ = (−e1)2 − 4e0 > 0,

i.e when e0 < 0. This is possible when R0 > 1. From that we have

λ∗2 =
e1
2
−
√(e1

2

)2
− e0 and λ∗3 =

e1
2

+

√(e1
2

)2
− e0.

Since for R0 > 1, e0 < 0, we have
(e1

2

)2
− e0 >

(e1
2

)2
. Thus, λ∗2 < 0 and λ∗3 > 0. λ∗3 > 0 is

therefore the unique positive solution that corresponds to the EEP.

Theorem 3.2.4. The PrEP model (3.2) has a unique endemic equilibrium point (EEP) when

R0 > 1.

To analyse the local stability of the endemic point of the model (3.2), we use centre manifold

theory [14]. The centre manifold theory states that the stability of a steady state under the

initial system is determined by its stability under the restriction of the system to the centre

manifold [20]. To use the method, we introduce the new variables S = x1, Sp = x2, I = x3,

Ip = x4, A = x5 and ẋ1 = f1, ẋ2 = f2, ẋ3 = f3, ẋ4 = f4, ẋ5 = f5. The total population N

becomes N = x1 + x2 + x3 + x4 + x5. The system (3.2) becomes

ẋ1 = f1 = π − γx1 − (1− γ)
c(η1x3 + η2x4 + η3x5)x1
x1 + x2 + x3 + x4 + x5

− µx1,

ẋ2 = f2 = γx1 − (1− σ)
c(η1x3 + η2x4 + η3x5)x2
x1 + x2 + x3 + x4 + x5

− µx2,

ẋ3 = f3 = (1− γ)
c(η1x3 + η2x4 + η3x5)x1
x1 + x2 + x3 + x4 + x5

− (ρ1 + µ)x3,

ẋ4 = f4 = (1− σ)
c(η1x3 + η2x4 + η3x5)x2
x1 + x2 + x3 + x4 + x5

− (ρ2 + µ)x4,

ẋ5 = f5 = ρ1x3 + ρ2x4 − (µ+ δ)x5.

(3.72)

The disease free equilibrium point of (3.72) is

Ep
0 =

(
π

γ + µ
,

πγ

µ(γ + µ)
, 0, 0, 0

)
, (3.73)
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and the basic reproduction number of model (3.72) is given by

R0 =
cµ(1− γ)(η1(µ+ δ) + η3ρ1)(µ+ ρ2) + cγ(1− σ)(η2(µ+ δ) + η3ρ2)(µ+ ρ1)

(µ+ γ)(µ+ δ)(ρ2 + µ)(ρ1 + µ)
. (3.74)

Let us consider c as bifurcation parameter. Setting R0 = 1 and solving for c we obtain

c = c∗ =
(µ+ γ)(µ+ δ)(ρ2 + µ)(ρ1 + µ)

µ(1− γ)(η1(µ+ δ) + η3ρ1)(µ+ ρ2) + γ(1− σ)(η2(µ+ δ) + η3ρ2)(µ+ ρ1)
. (3.75)

The Jacobian matrix of (3.72) evaluated at the DFE Ep
0 with c = c∗ is

Dxf(Ep
0) =



−µ− γ 0 −c
∗µ(1− γ)η1
µ+ γ

−c
∗µ(1− γ)η2
µ+ γ

−c
∗µ(1− γ)η3
µ+ γ

γ −µ −c
∗γ(1− σ)η1
µ+ γ

−c
∗γ(1− σ)η2
µ+ γ

−c
∗γ(1− σ)η3
µ+ γ

0 0
c∗µ(1− γ)η1

µ+ γ
− ρ1 − µ

c∗µ(1− γ)η2
µ+ γ

c∗µ(1− γ)η3
µ+ γ

0 0
c∗γ(1− σ)η1

µ+ γ

c∗γ(1− σ)η2
µ+ γ

− ρ2 − µ
c∗γ(1− σ)η3

µ+ γ

0 0 ρ1 ρ2 −(µ+ δ)


.

(3.76)

The eigenvalues of the matrix Dxf(Ep
0) are solutions of

λ(λ+ µ)(λ+ µ+ γ)(λ2 + d1λ+ d0) = 0. (3.77)

where

d1 = (δ + µ) + (ρ1 + µ)

(
1− c∗µ(1− γ)η1

(µ+ γ)(ρ1 + µ)

)
+ (ρ2 + µ)

(
1− c∗γ(1− σ)η2

(µ+ γ)(ρ2 + µ)

)
,

d0 = (µ+ δ)

[
(µ+ ρ1)

(
1− µR1

µ+ γ

)
+ (µ+ ρ2)

(
1− γR2

µ+ γ

)]
+
c∗µ(1− γ)ρ1η3(ρ2 + µ)

(µ+ γ)(µ+ δ)

+
c∗γ(1− σ)ρ2η3(ρ1 + µ)

(µ+ γ)(µ+ δ)
.

The characteristic equation (3.77) has at most five solutions. The first three are λ1 = 0,

λ2 = −µ < 0, and λ3 = −(µ+ γ) < 0. The other two are roots of the quadratic equation

λ2 + d1λ+ d0 = 0, (3.78)

whose solution is

λ2,3 =
−d1

2
±

√(
d1
2

)2

− d0. (3.79)

47



To have eigenvalues with negative real parts, it is sufficient that d0 > 0, that is when

0 <
µR1

µ+ γ
≤ 1 and 0 <

γR2

µ+ γ
≤ 1. (3.80)

This is achieved since
µR1

µ+ γ
+

γR2

µ+ γ
= R0 = 1. (3.81)

Since 0 is a simple eigenvalue of matrix Dxf(Ep
0), we can apply centre manifold theory to

determine the local stability of the endemic equilibrium point E∗p .

The right eigenvector Y = [y1, y2, y3, y4, y5]
T associated with the zero eigenvalue is obtained by

solving

Dxf(Ep
0) · Y =



−µ− γ 0 −Aη1 −Aη2 −Aη3
γ −µ −Bη1 −Bη2 −Bη3
0 0 Aη1 − ρ1 − µ Aη2 Aη3

0 0 Bη1 Bη2 − ρ2 − µ Bη3

0 0 ρ1 ρ2 −(µ+ δ)





y1

y2

y3

y4

y5


= 0, (3.82)

where

A =
c∗µ(1− γ)

µ+ γ
, B =

c∗γ(1− σ)

µ+ γ
.

System (3.82) can be rewritten as

−(µ+ γ)y1 − Aη1y3 − Aη2y4 − Aη3y5 = 0, (3.83)

γy1 − µy2 −Bη1y3 −Bη2y4 −Bη3y5 = 0, (3.84)

(Aη1 − ρ1 − µ)y3 + Aη2y4 − Aη3y5 = 0, (3.85)

Bη1y3 + (Bη2 − ρ2 − µ)y4 +Bη3y5 = 0, (3.86)

ρ1y3 + ρ2y4 − (δ + µ)y5 = 0. (3.87)

Adding equation (3.83) to (3.85) and equation (3.84) to (3.86) and subsequently substituting
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equation (3.87) into equations (3.85) and (3.86), the system (3.83)–(3.87) becomes

−(µ+ γ)y1 + (ρ1 + µ)y3 = 0, (3.88)

γy1 − (ρ2 + µ)y4 − µy2 = 0, (3.89)(
A
η1(µ+ δ) + ρ1η3

µ+ δ
− (ρ1 + µ)

)
y3 + A

(
η2(δ + µ) + η2ρ3

δ + µ

)
y4 = 0, (3.90)

B

(
η1(δ + µ) + η1ρ3

δ + µ

)
y3 +

(
B
η2(µ+ δ) + ρ2η3

µ+ δ
− (ρ2 + µ)

)
y4 = 0, (3.91)

ρ1y3 + ρ2y4 − (δ + µ)y5 = 0, (3.92)

Equation (3.88) gives

y1 = −ρ1 + µ

µ+ γ
y3. (3.93)

Substituting (3.93) into (3.89) we have

y2 = −γ(ρ1 + µ)

µ(µ+ γ)
y3 −

(ρ2 + µ)

µ
y4. (3.94)

Substituting the expressions for A and B into equation (3.90), we obtain

y4 =
γ(1− σ)

µ(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2

 y3. (3.95)

Substituting equation (3.95) into equation (3.92) we obtain

y5 =

 ρ1
µ+ δ

+
γ(1− σ)ρ2

µ(1− γ)(µ+ δ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2


 y3. (3.96)

To find y3, we replace y4 in equation (3.91) to yield

γ

µ+ γ

µ

µ+ γ
R2R1y3 −

(
γ

µ+ γ
R2 − 1

)(
µ

µ+ γ
R1 − 1

)
y3 =

γ

µ+ γ

µ

µ+ γ
R2R1y3−

γ

µ+ γ

µ

µ+ γ
R2R1y3 +

(
µ

µ+ γ
R1 +

γ

µ+ γ
R2 − 1

)
y3 = 0,

(3.97)

and so

(R0 − 1)y3 = 0. (3.98)
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Since R0 = 1, y3 is a non-zero arbitrary solution. Thus choosing y3 = 1, we have

y1 = −ρ1 + µ

µ+ γ
, (3.99)

y2 = −γ(ρ1 + µ)

µ(µ+ γ)
− (ρ2 + µ)

µ

γ(1− σ)

µ(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2

 , (3.100)

y3 = 1, (3.101)

y4 =
γ(1− σ)

µ(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2

 , (3.102)

y5 =
ρ1

µ+ δ
+

γ(1− σ)ρ2
µ(1− γ)(µ+ δ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2

 . (3.103)

The left eigenvector Z = [z1, z2, z3, z4, z5]
T is obtained by solving the system of equations

(z1, z2, z3, z4, z5) ·



−µ− γ 0 −Aη1 −Aη2 −Aη3
γ −µ −Bη1 −Bη2 −Bη3
0 0 Aη1 − ρ1 − µ Aη2 Aη3

0 0 Bη1 Bη2 − ρ2 − µ Bη3

0 0 ρ1 ρ2 −(µ+ δ)


= 0, (3.104)

which gives

−(µ+ γ)z1 + γz2 = 0, (3.105)

µz2 = 0, (3.106)

−Aη1z1 −Bη1z2 + (Aη1 − ρ1 − µ)z3 +Bη1z4 + ρ1z5 = 0, (3.107)

−Aη2z1 −Bη2z2 + Aη2z3 + (Bη2 − ρ2 − µ)z4 + ρ2z5 = 0, (3.108)

−Aη1z1 −Bη1z2 + Aη3z3 +Bη3z4 − (µ+ δ)z5 = 0. (3.109)

Equation (3.106) gives

z2 = 0. (3.110)

Substituting equation (3.110) into equation (3.105) we have

z1 = 0. (3.111)
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From equation (3.109) we deduce

z5 =
Aη3
µ+ δ

z3 +
Bη3
µ+ δ

z4. (3.112)

Replacing z5 in equation (3.107) we obtain

A
(η1(µ+ δ) + ρ1η3)

µ+ δ
z4 +

(
B

(η1(µ+ δ) + ρ1η3)

µ+ δ
− (ρ1 + µ)

)
z3 = 0, (3.113)

while substituting z5 into equation (3.108) we obtain

A
(η2(µ+ δ) + ρ2η3)

µ+ δ
z3 +

(
B

(η2(µ+ δ) + ρ2η3)

µ+ δ
− (ρ2 + µ)

)
z4 = 0. (3.114)

Manipulating equation (3.113) and equation (3.112) with the expressions for A and B, we

obtain

z1 = 0, (3.115)

z2 = 0, (3.116)

z4 =
µ(1− γ)

γ(1− σ)


γ

µ+ γ
R2

1− γ

µ+ γ
R2

 z3, (3.117)

z5 =
cµ(1− γ)η3

(γ + µ)(µ+ δ)

 1

1− γ

µ+ γ
R2

 z3. (3.118)

To find z3, we substitute the expression for z4 into equation (3.114) and using the same manip-

ulation as carried out in the right eigenvector’s case, we obtain

(R0 − 1)z3 = 0. (3.119)

Again, since R0 = 1 and setting z3 = 1, we obtain

z1 = 0, (3.120)

z2 = 0, (3.121)

z4 =
µ(1− γ)

γ(1− σ)


γ

µ+ γ
R2

1− γ

µ+ γ
R2

 , (3.122)

z5 =
cµ(1− γ)η3

(γ + µ)(µ+ δ)

 1

1− γ

µ+ γ
R2

 . (3.123)
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We note that the non-zero components of the left eigenvector are positive. This is obvious since

0 <
γ

µ+ γ
R2 < R0 = 1. (3.124)

In order to fully apply the method we need to compute a and b as defined in (1.9). We calculate

all non-zero partial derivatives
∂2fk
∂xi∂xj

(Ep
o , c
∗) and

∂2fk
∂xi∂c

(Ep
o , c
∗) where (1 ≤ i, j, k ≤ 5).

For a, we require:

• For k = 1, we have

∂2f1
∂x21

= 0,
∂2f1
∂x1∂x2

= 0,
∂2f1
∂x1∂x3

= −µγc
∗(1− γ)η1
π(µ+ γ)

,
∂2f1
∂x1∂x4

= −µγc
∗(1− γ)η2
π(µ+ γ)

,

∂2f1
∂x1∂x5

= −µγc
∗(1− γ)η3
π(µ+ γ)

,
∂2f1
∂x2∂x1

= 0,
∂2f1
∂x22

= 0,
∂2f1
∂x2∂x3

=
µ2c∗(1− γ)η1
π(γ + µ)

,

∂2f1
∂x2∂x4

=
µ2c∗(1− γ)η2
π(µ+ γ)

,
∂2f1
∂x2∂x5

=
µ2c∗(1− γ)η3
π(µ+ γ)

,
∂2f1
∂x3∂x1

= −µγc
∗(1− γ)η1
π(µ+ γ)

,

∂2f1
∂x3∂x2

=
µ2c∗(1− γ)η1
π(γ + µ)

,
∂2f1
∂x23

=
2µ2c∗(1− γ)η1
π(µ+ γ)

,
∂2f1
∂x3∂x4

=
µ2c∗(1− γ)(η1 + η2)

π(µ+ γ)
,

∂2f1
∂x3∂x5

=
µ2c∗(1− γ)(η1 + η3)

π(µ+ γ)
,

∂2f1
∂x4∂x1

= −µγc
∗(1− γ)η2
π(µ+ γ)

,
∂2f1
∂x4∂x2

=
µ2c∗(1− γ)η2
π(µ+ γ)

,

∂2f1
∂x4∂x3

=
µ2c∗(1− γ)(η1 + η2)

π(µ+ γ)
,

∂2f1
∂x24

=
2µ2c∗(1− γ)η2
π(µ+ γ)

,
∂2f1
∂x4∂x5

=
µ2c∗(1− γ)(η2 + η3)

π(µ+ γ)
,

∂2f1
∂x5∂x1

= −µγc
∗(1− γ)η3
π(µ+ γ)

,
∂2f1
∂x5∂x2

=
µ2c∗(1− γ)η3
π(µ+ γ)

,
∂2f1
∂x5∂x3

=
µ2c∗(1− γ)(η1 + η3)

π(µ+ γ)
,

∂2f1
∂x4∂x5

=
µ2c∗(1− γ)(η2 + η3)

π(µ+ γ)
,

∂2f1
∂x25

=
2µ2c∗(1− γ)η3
π(µ+ γ)

.

• For k = 2, we have

∂2f2
∂x21

= 0,
∂2f2
∂x1∂x2

= 0,
∂2f2
∂x1∂x3

=
µγc∗(1− σ)η1
π(µ+ γ)

,
∂2f2
∂x1∂x4

=
µγc∗(1− σ)η2
π(µ+ γ)

,

∂2f2
∂x1∂x5

=
µγc∗(1− σ)η3
π(µ+ γ)

,
∂2f2
∂x2∂x1

=
∂2f2
∂x22

= 0,
∂2f2
∂x2∂x3

= −µ
2c∗(1− σ)η1
π(γ + µ)

,

∂2f2
∂x2∂x4

= −µ
2c∗(1− σ)η2
π(µ+ γ)

,
∂2f2
∂x2∂x5

= −µ
2c∗(1− σ)η3
π(µ+ γ)

,
∂2f2
∂x3∂x1

=
µγc∗(1− σ)η1
π(µ+ γ)

,
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∂2f2
∂x3∂x2

= −µ
2c∗(1− σ)η1
π(γ + µ)

,
∂2f2
∂x23

=
2µγc∗(1− σ)η1

π(µ+ γ)
,

∂2f2
∂x3∂x4

=
µγc∗(1− σ)(η1 + η2)

π(µ+ γ)
,

∂2f2
∂x3∂x5

=
µγc∗(1− γ)(η1 + η3)

π(µ+ γ)
,

∂2f2
∂x4∂x1

=
µγc∗(1− σ)η2
π(µ+ γ)

,
∂2f2
∂x4∂x2

= −µ
2c∗(1− σ)η2
π(µ+ γ)

,

∂2f2
∂x4∂x3

=
µγc∗(1− σ)(η1 + η2)

π(µ+ γ)
,

∂2f2
∂x24

=
2µγc∗(1− σ)η2

π(µ+ γ)
,

∂2f2
∂x4∂x5

=
µγc∗(1− σ)(η2 + η3)

π(µ+ γ)
,

∂2f2
∂x5∂x1

=
µγc∗(1− σ)η3
π(µ+ γ)

,
∂2f2
∂x5∂x2

= −µ
2c∗(1− σ)η3
π(µ+ γ)

,
∂2f2
∂x5∂x3

=
µγc∗(1− σ)(η1 + η3)

π(µ+ γ)
,

∂2f2
∂x4∂x5

=
µγc∗(1− σ)(η2 + η3)

π(µ+ γ)
,

∂2f2
∂x25

= −2µγc∗(1− σ)η3
π(µ+ γ)

.

• For k = 3, we have

∂2f3
∂x21

= 0,
∂2f3
∂x1∂x2

= 0,
∂2f3
∂x1∂x3

=
µγc∗(1− γ)η1
π(µ+ γ)

,
∂2f3
∂x1∂x4

=
µγc∗(1− γ)η2
π(µ+ γ)

,

∂2f3
∂x1∂x5

=
µγc∗(1− γ)η3
π(µ+ γ)

,
∂2f3
∂x2∂x1

= 0,
∂2f3
∂x22

= 0,
∂2f3
∂x2∂x3

= −µ
2c∗(1− γ)η1
π(γ + µ)

,

∂2f3
∂x2∂x4

= −µ
2c∗(1− γ)η2
π(µ+ γ)

,
∂2f3
∂x2∂x5

= −µ
2c∗(1− γ)η3
π(µ+ γ)

,
∂2f3
∂x3∂x1

=
µγc∗(1− γ)η1
π(µ+ γ)

,

∂2f3
∂x3∂x2

= −µ
2c∗(1− γ)η1
π(γ + µ)

,
∂2f3
∂x23

= −2µ2c∗(1− γ)η1
π(µ+ γ)

,
∂2f3
∂x3∂x4

= −µ
2c∗(1− γ)(η1 + η2)

π(µ+ γ)
,

∂2f3
∂x3∂x5

= −µ
2c∗(1− γ)(η1 + η3)

π(µ+ γ)
,

∂2f3
∂x4∂x1

=
µγc∗(1− γ)η2
π(µ+ γ)

,
∂2f3
∂x4∂x2

= −µ
2c∗(1− γ)η2
π(µ+ γ)

,

∂2f3
∂x4∂x3

= −µ
2c∗(1− γ)(η1 + η2)

π(µ+ γ)
,

∂2f3
∂x24

= −2µ2c∗(1− γ)η2
π(µ+ γ)

,
∂2f3
∂x4∂x5

= −µ
2c∗(1− γ)(η2 + η3)

π(µ+ γ)
,

∂2f3
∂x5∂x1

=
µγc∗(1− γ)η3
π(µ+ γ)

,
∂2f3
∂x5∂x2

= −µ
2c∗(1− γ)η3
π(µ+ γ)

,
∂2f3
∂x5∂x3

= −µ
2c∗(1− γ)(η1 + η3)

π(µ+ γ)
,

∂2f3
∂x4∂x5

= −µ
2c∗(1− γ)(η2 + η3)

π(µ+ γ)
,

∂2f3
∂x25

= −2µ2c∗(1− γ)η3
π(µ+ γ)

.

• For k = 4, we have

∂2f4
∂x21

= 0,
∂2f4
∂x1∂x2

= 0,
∂2f4
∂x1∂x3

= −µγc
∗(1− σ)η1
π(µ+ γ)

,
∂2f4
∂x1∂x4

= −µγc
∗(1− σ)η2
π(µ+ γ)

,

∂2f4
∂x1∂x5

= −µγc
∗(1− σ)η3
π(µ+ γ)

,
∂2f4
∂x2∂x1

= 0,
∂2f4
∂x22

= 0,
∂2f4
∂x2∂x3

=
µ2c∗(1− σ)η1
π(γ + µ)

,

∂2f4
∂x2∂x4

= −µ
2c∗(1− σ)η2
π(µ+ γ)

,
∂2f4
∂x2∂x5

=
µ2c∗(1− σ)η3
π(µ+ γ)

,
∂2f4
∂x3∂x1

= −µγc
∗(1− σ)η1
π(µ+ γ)

,
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∂2f4
∂x3∂x2

=
µ2c∗(1− σ)η1
π(γ + µ)

,
∂2f4
∂x23

= −2µγc∗(1− σ)η1
π(µ+ γ)

,
∂2f4
∂x3∂x4

= −µγc
∗(1− σ)(η1 + η2)

π(µ+ γ)
,

∂2f4
∂x3∂x5

= −µγc
∗(1− γ)(η1 + η3)

π(µ+ γ)
,

∂2f4
∂x4∂x1

= −µγc
∗(1− σ)η2
π(µ+ γ)

,
∂2f4
∂x4∂x2

=
µ2c∗(1− σ)η2
π(µ+ γ)

,

∂2f4
∂x4∂x3

= −µγc
∗(1− σ)(η1 + η2)

π(µ+ γ)
,

∂2f4
∂x24

= −2µγc∗(1− σ)η2
π(µ+ γ)

,
∂2f4
∂x4∂x5

= −µγc
∗(1− σ)(η2 + η3)

π(µ+ γ)
,

∂2f4
∂x5∂x1

= −µγc
∗(1− σ)η3
π(µ+ γ)

,
∂2f4
∂x5∂x2

=
µ2c∗(1− σ)η3
π(µ+ γ)

,
∂2f4
∂x5∂x3

= −µγc
∗(1− σ)(η1 + η3)

π(µ+ γ)
,

∂2f4
∂x4∂x5

= −µγc
∗(1− σ)(η2 + η3)

π(µ+ γ)
,

∂2f4
∂x25

= −2µγc∗(1− σ)η3
π(µ+ γ)

.

• For k = 5, we have

∂2f5
∂xi∂xj

= 0, 1 ≤ i, j ≤ 5.

For b we require:

• For k = 1,

∂2f1
∂x1∂c∗

= 0,
∂2f1
∂x2∂c∗

= 0,
∂2f1
∂x3∂c∗

= −µ(1− γ)η1
(µ+ γ)

,

∂2f1
∂x4∂c∗

= −µ(1− γ)η2
(µ+ γ)

,
∂2f1
∂x5∂c∗

= −µ(1− γ)η3
(µ+ γ)

.

• For k = 2,

∂2f2
∂x1∂c∗

= 0,
∂2f2
∂x2∂c∗

= 0,
∂2f2
∂x3∂c∗

= −γ(1− σ)η1
(µ+ γ)

,

∂2f2
∂x4∂c∗

= −γ(1− σ)η2
(µ+ γ)

,
∂2f2
∂x5∂c∗

= −γ(1− σ)η3
(µ+ γ)

.

• For k = 3,

∂2f3
∂x1∂c∗

= 0,
∂2f3
∂x2∂c∗

= 0,
∂2f3
∂x3∂c∗

=
µ(1− γ)η1

(µ+ γ)
,

∂2f3
∂x4∂c∗

=
µ(1− γ)η2

(µ+ γ)
,

∂2f3
∂x5∂c∗

=
µ(1− γ)η3

(µ+ γ)
.

• For k = 4,

∂2f4
∂x1∂c∗

= 0,
∂2f4
∂x2∂c∗

= 0,
∂2f4
∂x3∂c∗

=
γ(1− σ)η1

(µ+ γ)
,

∂2f4
∂x4∂c∗

=
γ(1− σ)η2

(µ+ γ)
,

∂2f4
∂x5∂c∗

=
γ(1− σ)η3

(µ+ γ)
.
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• For k = 5,

∂2f5
∂xi∂c∗

= 0, 1 ≤ i ≤ 5.

Putting it all together we obtain

a =
5∑

i,j,k=1

zkyiyj
∂2fk
∂xi∂xj

=
5∑

i,j=1

z1yiyj
∂2f1
∂xi∂xj

+
5∑

i,j=1

z2yiyj
∂2f2
∂xi∂xj

+
5∑

i,j=1

z3yiyj
∂2f3
∂xi∂xj

+
5∑

i,j=1

z4yiyj
∂2f4
∂xi∂xj

=
5∑

i,j=3

z3yiyj
∂2f3
∂xi∂xj

+
5∑

i,j=3

z4yiyj
∂2f4
∂xi∂xj

= z3

(
y3y3

∂2f3
∂x23

+ 2y3y4
∂2f3
∂x3∂x4

+ 2y3y5
∂2f3
∂x3∂x5

+ 2y4y5
∂2f3
∂x4∂x5

+ y4y4
∂2f3
∂x24

+ y5y5
∂2f3
∂x25

)
+

z4

(
y3y3

∂2f4
∂x23

+ 2y3y4
∂2f4
∂x3∂x4

+ 2y3y5
∂2f4
∂x3∂x5

+ 2y4y5
∂2f4
∂x4∂x5

+ y4y4
∂2f4
∂x24

+ y5y5
∂2f4
∂x25

)
= z3(ϑ

3
33 + 2ϑ3

34 + 2ϑ3
35 + ϑ3

44 + 2ϑ3
45 + ϑ3

55) + z4(ϑ
4
33 + 2ϑ4

34 + 2ϑ4
35 + ϑ4

44 + 2ϑ4
45 + ϑ4

55),

where

ϑ3
33 = y3y3

∂2f3
∂x23

= −2
µ2c∗(1− γ)η1
π(µ+ γ)

,

ϑ3
34 = y3y4

∂2f3
∂x3∂x4

= −µc
∗γ(1− σ)(η1 + η2)

π(µ+ γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2

 ,
ϑ3
35 = y3y5

∂2f3
∂x3∂x5

= −µ
2c∗(1− γ)(η1 + η3)

π(µ+ γ)

 ρ1
µ+ δ

+
γ(1− σ)ρ2

µ(1− γ)(µ+ δ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2


 ,

ϑ3
44 = y4y4

∂2f3
∂x24

= −2µγc∗(1− σ)η2
π(µ+ γ)

γ(1− σ)

µ(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2




2

,

ϑ3
45 = y4y5

∂2f3
∂x4∂x5

= −y5
µ2c∗(1− γ)(η2 + η3)

π(µ+ γ)

γ(1− σ)

µ(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2


 ,
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ϑ3
55 = y5y5

∂2f3
∂x25

= −2µ2c∗(1− γ)η3
π(µ+ γ)

 ρ1
µ+ δ

+
γ(1− σ)ρ2

µ(1− γ)(µ+ δ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2




2

,

ϑ4
44 = y4y4

∂2f4
∂x24

= −2
µ2c∗(1− γ)η2
π(µ+ γ)

γ(1− σ)

µ(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2




2

,

ϑ4
34 = y3y4

∂2f4
∂x3∂x4

= −µγc
∗(1− σ)(η1 + η2)

π(µ+ γ)

γ(1− σ)

µ(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2


 ,

ϑ4
35 = y3y5

∂2f4
∂x3∂x5

= −µγc
∗(1− σ)(η1 + η3)

π(µ+ γ)

 ρ1
µ+ δ

+
γ(1− σ)ρ2

µ(1− γ)(µ+ δ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2


 ,

ϑ4
45 = y4y5

∂2f4
∂x4∂x5

= −y5
µγc∗(1− σ)(η2 + η3)

π(µ+ γ)

γ(1− σ)

µ(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2


 ,

ϑ4
55 = y5y5

∂2f4
∂x25

= −2µγc∗(1− γ)η3
π(µ+ γ)

 ρ1
µ+ δ

+
γ(1− σ)ρ2

µ(1− γ)(µ+ δ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2




2

.

Since 0 <
µ

µ+ γ
R1 < 1 and 0 <

γ

µ+ γ
R2 < 1, z3 > 0, z4 > 0, then all the terms ϑkij for

(3 ≤ i, j ≤ 5, k = 3 = 4) are negative. Hence,

a = z3(ϑ
3
33+2ϑ3

34+2ϑ3
35+ϑ3

44+2ϑ3
45+ϑ3

55)+z4(ϑ
4
33+2ϑ4

34+2ϑ4
35+ϑ4

44+2ϑ4
45+ϑ4

55) < 0 (3.125)

and

b =
5∑

i,k=1

zkyi
∂2fk
∂xi∂c∗

=
5∑
i=1

z1yi
∂2f1
∂xi∂c∗

+
5∑
i=1

z2yi
∂2f2
∂xi∂c∗

+
5∑
i=1

z3yi
∂2f3
∂xi∂c∗

+
5∑
i=1

z4yi
∂2f4
∂xi∂c∗

+
5∑
i=1

z5yi
∂2f5
∂xi∂c∗

=
5∑
i=1

z3yi
∂2f3
∂xi∂c∗

+
5∑
i=1

z4yi
∂2f4
∂xi∂c∗

= z3

(
y3

∂2f3
∂x3∂c∗

+ y4
∂2f3
∂x4∂c∗

+ y5
∂2f3
∂xi∂c∗

)
+ z4

(
y3

∂2f4
∂x3∂c∗

+ y4
∂2f4
∂x4∂c∗

+ y5
∂2f4
∂xi∂c∗

)
= z3(ω

3
3 + ω3

4 + ω3
5) + z4(ω

4
3 + ω4

4 + ω4
5),
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where

ω3
3 = y3

∂2f3
∂x3∂c∗

=
µ(1− γ)η1

(µ+ γ)
,

ω3
4 = y4

∂2f3
∂x4∂c∗

=
η2γ(1− σ)

(µ+ γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2

 ,
ω3
5 = y5

∂2f3
∂x5∂c∗

=
µ(1− γ)η3

(µ+ γ)

 ρ1
µ+ δ

+
γ(1− σ)ρ2

µ(1− γ)(µ+ δ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2


 ,

ω4
3 = y3

∂2f4
∂x3∂c∗

=
γ(1− σ)η1

(µ+ γ)
,

ω4
4 = y4

∂2f4
∂x4∂c∗

=
γ2η2(1− σ)2

µ(µ+ γ)(1− γ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2

 ,
ω4
5 = y5

∂2f4
∂x5∂c∗

=
γ(1− σ)η3

(µ+ γ)

 ρ1
µ+ δ

+
γ(1− σ)ρ2

µ(1− γ)(µ+ δ)

1− µ

µ+ γ
R1

γ

µ+ γ
R2


 .

It follows that all the terms ωki for (3 ≤ i ≤ 5, k = 3 = 4) are positive. This is achieved since

0 <
µ

µ+ γ
R1 < 1 and 0 <

γ

µ+ γ
R2 < 1,

and, moreover, z3 and z4 are also positive. Therefore

b = z3(ω
3
3 + ω3

4 + ω3
5) + z4(ω

4
3 + ω4

4 + ω4
5) > 0. (3.126)

Thus we have a < 0 and b > 0 that corresponds to condition (iv) of Theorem 1.2.7. This leads

to the following result:

Theorem 3.2.5. The PrEP model (3.2) has a unique endemic equilibrium point E∗p and it is

locally asymptotically stable when R0 > 1 but close to 1.

Since a < 0, b > 0, there is an exchange of stability between the DFE and EEP when R0 = 1.

This means the system undergoes a supercritical bifurcation.
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Chapter 4

Numerical Simulations

4.1 Introduction

Analytical results for the PrEP model (3.2) gave an insight of the conditions under which

PrEP can be effective and those for which PrEP may fail. To quantitatively represent the

evolution of the dynamics of PrEP use, we resort to the use of parameter values that can best

represent possible hypothetical scenarios emanating from our analytical analysis to carry out the

numerical simulations. We use such results to draw conclusions and have a better understanding

of different strategies that can and cannot be used for effective PrEP administration. We use

parameter values chosen from [21] and we summarize the threshold parameters values obtained

using those parameters (see Table 4.1).

The assumptions made on the parameters π, c, µ, δ in our study are the same as considered in

[21]. We assume that η1 < η2 to mean that probability of successful transmission of infection

is higher in non-PrEP infectives that PrEP users infectives. Similarly, η2 < η3 means that

probability of successful transmission of HIV infection is AIDS individuals than the PrEP

users’. We also assume that the progression of infected individuals from Ip to the AIDS class

A is lower than the progression of infected individuals from I class to the AIDS class (A), that

is ρ2 < ρ1.

We use the Python programming language (Odeint) for our simulations. We focus our analysis
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Table 4.1: Parameter values considered

π c µ δ ρ1 ρ2 η1 η2 η3

104 4 0.02 0.04 0.7 0.6 0.4 0.04 0.3

on the effects of PrEP awareness (γ) and its efficacy (σ) on the HIV incidence function and

HIV prevalence. We do this by investigating how increasing or decreasing γ and σ can affect

the spread of HIV infection. We then give a biological interpretation of the numerical results

obtained. We explore the effects of PrEP based on the following hypothetical scenarios on γ

and σ:

(i) No PrEP use, i.e γ = σ = 0.

(ii) Low PrEP awareness and low PrEP efficacy.

(iii) Low PrEP awareness and high PrEP efficacy.

(iv) High PrEP awareness and low PrEP efficacy.

(v) High PrEP awareness and high PrEP efficacy.

For illustrative purposes, we use representative proportions for PrEP awareness and PrEP

efficacy as indicated Table 4.1. Representative figures (see Figures 4.1 to 4.5) are produced

based on the values in Table 4.1 and the hypothetical values and the interpretations thereof.

In all simulations, S(0) = 5× 105, Sp(0) = 0, Ip(0) = 0.1× 104, I(0) = 1, and A(0) = 0.

(i) We take γ = σ = 0 to mean there is no PrEP use. Figure 4.1 shows that when there is

no PrEP use, the susceptible population is reduced significantly and the incidence of infection

rises. This means that the majority of the individuals are either infected or have developed

AIDS.

(ii) We take 35% to indicate low PrEP awareness for susceptible individuals and 35% to indicate

low efficacy of PrEP drugs. The fast reproduction number is associated with individuals not

taking PrEP whilst the slow reproduction number is for individuals on PrEP, even though
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Figure 4.1: Profiles of each class of the population with σ = 0, γ = 0, R1 = 5.34, R2 = 3.22,

κ = 1.00, R0 = 5.34.

Ro is reduced compared to case (i). This strategy also reduces the incidence of the infection.

However, it is is not capable of suppressing the infection completely.

(iii) We now investigate the strategy of keeping the awareness level low (35%) whilst increasing

the efficacy of drugs (to 85%). The fast reproduction number still remains associated with

the non-PrEP group but the basic reproduction number reduces to below unity. Figure 4.3

shows a reduction in non-PrEP infected individuals and AIDS individuals associated with a

slight increase in susceptible PrEP individuals. The incidence is reduced. Due care must be

taken when using this strategy since much of the contribution to the infection still comes from

the non-PrEP infected individuals. Our analytical results showed that the disease-free steady

state is globally asymptotically stable when the reproduction number is less than unity. This

therefore implies that the strategy of high PrEP drug efficacy may be successful in controlling

HIV in the community. However, due care must be taken to ensure strict adherence to PrEP

drug use to maintain the effectiveness of the strategy. The challenge that comes with this
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Figure 4.2: Profiles for state variable dynamics with σ = 0.35, γ = 0.35, R1 = 3.47, R2 = 1.97,

κ = 0.054, R0 = 2.63.

strategy is that the high efficacy of PrEP drugs may not be affordable in poorly resourced

settings.

(iv) The next strategy is where the awareness is increased to 85% but with low efficacy of

anti-HIV drugs (35%). In this case, there is a switch of the fast reproduction number from

the non-PrEP group to the PrEP group. The basic reproduction number is also above unity.

Figure 4.4 shows that a number of individuals escape infection due to PrEP use. We also

observe an increase in the incidence of infection. Since the fast reproduction is above unity this

strategy may not be reliable to use especially if the drugs used are of low efficacy and are prone

to development of resistance.
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Figure 4.3: Profiles for state variable dynamics with σ = 0.85, γ = 0.35, R1 = 3.47, R2 = 0.45,

κ = 0.054, R0 = 0.61.

(v) We finally investigate the case where both awareness and efficacy are high, i.e γ = 85%

and σ = 85%. Figure 4.5 shows a significant decrease of the incidence function as well as

the number of infected individuals (I and Ip). The number of full blow AIDS individuals and

infected individuals decreases progressively with time. The number of susceptible individuals

on PrEP use increases compared to those who do not. The basic reproduction number Ro

obtained is less than one. Both slow and fast reproduction numbers are below unity. Clearly,

this strategy of PrEP use and its efficacy is a viable preventive control measure against HIV

transmission in the community. However, increasing γ = 85% and efficacy σ = 85% remains

a big challenge since this involves strict adherence of individuals to drug uptake and effective
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monitoring efforts on individuals’ appropriate and proper utilization of PrEP education.

(vi) Figure 4.6 depicts the evolution of the force of infection in time with the different strategies

considering. It is interesting to note that considering strategy of high PrEP efficacy and low

PrEP use has more benefits of decline the force of infection that the strategy of low PrEP

efficacy and high PrEP use. Overall, it can see that strategy of high PrEP use and high PrEP

efficacy significantly reduce the force of infection.

(vii) The contour plot in figure 4.7 shows how the different combined strategies of awareness

and efficacy affects the basic reproduction number. It is clear that increasing both awareness

and efficacy has a profound effect of reducing the basic reproduction number. Hence, any policy

regarding the use of PrEP should focus on continuous improvement of both PrEP awareness

and PrEP efficacy to achieve a significant control level of HIV infection.
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Figure 4.4: Profiles for state variable dynamics with σ = 0.35, γ = 0.85, R1 = 0.80, R2 = 1.95,

κ = 0.022, R0 = 1.93.
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Figure 4.5: Profiles for state variable dynamics with σ = 0.85, γ = 0.85, R1 = 0.80, R2 = 0.45,

κ = 0.022, R0 = 0.46.
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Figure 4.6: The incidence function λ(t) = cη1I(t)+cη2Ip(t)+cη3A(t)

N(t)
with different values of σ and γ.
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Figure 4.7: Contour plot on PrEP awareness (γ) and its efficacy (σ) vs R0.
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Chapter 5

Conclusion

5.1 Observations

Pre-exposure prophylaxis (PrEP) used to prevent HIV infection has recently generated consid-

erable interests [3]. In trying to investigate how PrEP use may affect HIV infection progression

in the community, we developed an HIV/AIDS model and carried out analysis of the various

steady states of the model. The model had two steady states: the disease free equilibrium point

and the endemic equilibrium point. Threshold conditions for the stability of steady states were

established through the use of the basic reproduction number. Stability analysis of both equi-

librium points showed that when the basic reproduction number is less than one, the disease

free equilibrium (DFE) point is locally asymptotically stable and when the basic reproduction

number is greater than one, the DFE point becomes unstable while the endemic equilibrium is

stable. Numerical simulations were carried out to support the theoretical results. The simula-

tions suggest that in the absence of interventions, a large proportion of the population will end

up being infected or developing full blown AIDS.

The basic reproduction number of the PrEP model depends on the rate at which individuals

use PrEP (PrEP awareness) and the rate at which PrEP protects individuals (PrEP efficacy).

The stability analysis of the steady states of the model was performed. The DFE point was

locally asymptotically stable when the basic reproduction number is less than unity and unstable
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otherwise. We used Centre Manifold theory to establish the stability of the endemic equilibrium

point. Centre Manifold theory was used to prove that the endemic equilibrium point is locally

asymptotically stable when the basic reproduction number is greater than one. Numerical

simulations of the model on the influence of the PrEP awareness and PrEP efficacy revealed

the following:

• In absence of preventive control measures the majority of individuals progress to the

infected status or develop AIDS. This is an ideal case for HIV infection progression without

intervention.

• PrEP intervention with low PrEP use and low PrEP efficacy reduces the progression rate

but remains an ineffective strategy for the eradication of the infection.

• Large responses to PrEP use (by susceptible individuals) with low efficacy of PrEP drugs

does not guarantee eradication of HIV infection in communities.

• Low PrEP awareness associated with high PrEP efficacy strategy reduces significantly the

incidence of HIV infection. This reduction however, is dependent on a strict adherence

to a suitable drug regimen and the maintenance of high awareness of PrEP use in the

community.

• High PrEP use and awareness reduces the HIV infection more significantly than any other

strategy considered.

One of the challenges associated with a high PrEP campaign and an effective PrEP implemen-

tation is that in resource-poor settings, funds are not enough to cater for expensive PrEP drugs

and campaigns. For instance, the expected yearly per-case cost for TDF (Tenofovir Disoproxil

Fumarate) is $6,292/yr for 30 tablets in a month [3] and Truvada (Trenofovir + emtricitabine)

costs $869 for 30 days [7]. This high cost of PrEP remains an impeding factor in all efforts for

effective PrEP intervention in countries which are unable to finance the PrEP program imple-

mentation. In an effort for successful PrEP program in high risk settings, governments should

strive to ensure that they subsidize the price of high efficacy PrEP drugs. In addition expert

advice is required to recommend drugs with little or no side effects, stage strategic awareness

69



campaigns to increase the knowledge and increase usage of PrEP, promote strict adherence of

individuals on PrEP to reduce the occurrence of drug resistance, introduce screening facilities

to any individual keen on using PrEP drugs, and establish regulations against illegal and unli-

censed PrEP distribution to avoid provision of fake drugs. Care must be taken for individuals

not to consider PrEP as the only way of prevention but to use it in combination with other

intervention strategies such as condoms use, provision of good nutrition, counselling etc.

5.2 Further Work

In this study, we managed to expose the potential that PrEP use has in a bid to control HIV

infection. This is a basic step towards more inclusive and deep studies on various intervention

strategies. To improve the results of our model, possible extensions may include, incorporation

of vertical transmission of HIV infection in the PrEP model dynamics, introduction of ARV

treatment to individuals who become infected and those infected due to PrEP failure, use of

data to validate the prediction of our PrEP model, and using PrEP with other intervention

strategies such as condoms use, home based care etc.
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